DATA Power Semiconductor Division (1) General Instrument BOOK 11th EDITION

DATA BOOK

CONTRACTORISTICS MANUFACTURERS REPRESENTATIVES 10495 BANDLEY AVENUE CUPERTINO, CA 95014-1972 FOR FREE SAMPLES CALL

(408) 342-1200

APPROVED

GI General Instrument Power Semiconductor Division

INTRODUCTION

General Instrument Corporation is a major multinational company manufacturing a wide range of products from data systems, broadband communications and semiconductor products. The corporation, which has been in existence over 50 years, has manufacturing and sales locations throughout the world serving all major electronic markets.

The Power Semiconductor Division, a leading producer of discrete semiconductor devices has manufacturing facilities in the United States, Ireland and the Far East. These devices include low and medium power rectifiers from standard thru ultrafast recovery, bridge assemblies and transient voltage suppressors. We offer the widest selection of rectifier package types and junction structures including plastic encapsulated, glass passivated, superectifier, and surface mounts. Advanced junction technologies include double diffusion, double diffused fast and ultra-fast recovery, narrow base epitaxial, PAR and Schottky.

Particular emphasis has been focused on the superectifier product family including our new super surface mounted devices. The superectifier, when introduced over fifteen years ago increased rectifier reliability by several orders of magnitude. Today it still remains unmatched as the cost performance leader in axial leaded rectifiers. Now the superectifier features of metallurgically bonded junction, glass passivation, and flame retardant encapsulation are available in our line of super surface mounted rectifiers. For the ultimate in surface mounted rectifier reliability it's super surface mount.

The information contained in this data book is intended to provide the necessary technical and support data to assist the design engineer. It is our policy to maintain high standards of product manufacturing. The General Instrument logo (GI), printed on every component, ensures that it reaches the highest level of quality and reliability. In the complex and competitive semiconductor industry, high standards of quality using the latest methods of statistical quality controls are of the utmost importance since they constitute for our customers, the assurance of reliable product performance.

Not every application problem can be solved using a standard device, in this case we often develop special products to meet the customer requirements. If in doubt, call your local Sales Office or our Application Engineering Laboratory for further information.

> G General Instrument

CJ Junction Capacitance	Tc Case Temperature
IF DC Forward Current	td Time Duration
I(AV) Average Forward Rectifier Current	tr Fall Time
ID Stand-by Reverse Leakage Current	TJ Junction Temperature
IFSM Peak Forward Surge Current	TL Lead Temperature
Io Mean Forward Current	trRise Time
IR Reverse Leakage Current	trr Reverse Recovery Time
Irr Reverse Recovery Current	TSTG Storage Temperature
IPPM Maximum Peak Impulse Current	V(BR) Reverse Breakdown Voltage
IRM(REC) Maximum Peak Recovery Current	VFM Instantaneous Forward Voltage
IRSM Maximum Non-Repetitive Reverse Peak Current	VFR Forward Recovery Voltage
IT On-State Test Current	VR Dc Reverse Voltage
I ² t Rating for Fusing	VRM Maximum Recurrent Peak Reverse Voltage
P _{M(AV)} . Steady State Power Dissipation	VRMS RMS Input Voltage
PPM Peak Pulse Power Dissipation	VRRM Repetitive Peak Reverse Voltage
QRR Recovered Charge	VRSM Maximum Non-Repetitive Peak Reverse Voltage
ROJA . Thermal Resistance (Junction to Ambient)	Vc . Clamping Voltage
ROJC . Thermal Resistance(Junction to Case)	Vwm Working Stand-off Voltage
ROJL . Thermal Resistance (Junction to Lead)	Vz Zener Voltage
TA Ambient Temperature	Zz Dynamic Impedance

DRAWINGS

All dimensions are in inches and (millimeters.) Figures not to scale.

TEMPERATURES

Ratings at 25°C ambient temperature unless otherwise specified.

The General Instrument data book is not a document for official acceptance tests. Relevant is only the detailed data sheet, which is available on request. The Manufacturer reserves the right to change the contained data at any time in order to improve performance and supply the best product possible.

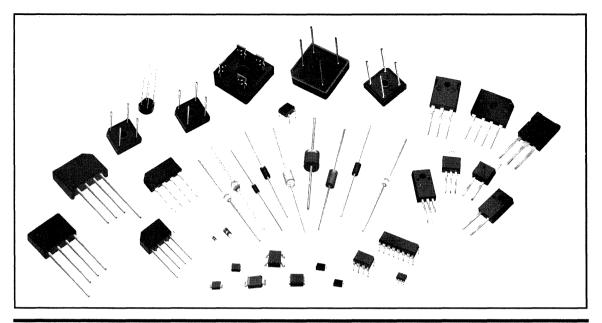
Notice of Revision on JEDEC Registered Case Outlines

The following case outlines have undergone a revision of outline names as shown below:

OLD OUTLINE	NEW OUTLINE
CASE 1	DO-201AD
CASE 25	DO-204AC
DO-15	DO-204AC
DO-41	DO-204AL
SO-8	MS-012AA
TO-3P	TO-247AD
8 PIN DIP	MS-001BA
16 PIN DIP	MS-001BB

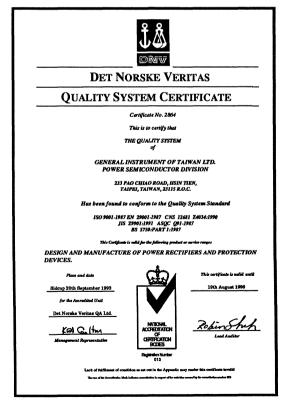
CONTENTS

POWER SEMICONDUCTOR DIVISION


> DATA BOOK 11th Edition

General Information	
	1
Symbols	2
Numerical Index	
Quality Assurance	-
Introduction	18
Test Conditions	19
High Reliability-Test Capabilities	20
Schottky Rectifiers	
Quick Selector Guide Axial Plastic Schottky Rectifiers 0.6 to 5.0 AMP	22
Medium Current Schottky Rectifiers 7.5 to 40 AMP	25
Fast Efficient Rectifiers	
	128
Quick Selector Guide Glass Passivated Fast Efficient Rectifiers 1.0 to 6.0 AMP	131
Fast Efficient Superectifier 1.0 to 5.0 AMP Plastic Fast Efficient Rectifiers 1.0 to 3.0 to	155
Plastic Fast Efficient Rectifiers 1.0 to 3.0 AMP	165
Superectifiers	103
	007
Quick Selector Guide Standard Recovery Superectifiers 0.25 to 2.0 AMP	227
Fast Recovery Superectifiers 0.5 to 3.0 AMP	261
Miniature GPP Plastic Rectifier 1.0 AMP	
Glass Rectifiers	
Quick Selector Guide	294
Standard Recovery Glass Passivated Rectifiers 1.0 to 3.0 AMP	296
Fast Recovery Glass Passivated Rectifiers 1.0 to 3.0 AMP	327
Plastic Rectifiers	02,
Quick Selector Guide	352
Standard Recovery Plastic Rectifiers 1.0 to 8.0 AMP	354
Fast Recovery Plastic Rectifiers 1.0 to 6 AMP	375
Bridge Rectifiers	
Quick Selector Guide	398
Bridge Rectifiers 0.9 to 35 AMP	402
	402
	451
Surface Mounted Rectifiers	
Surface Mounted Rectifiers Quick Selector Guide	461
Surface Mounted Rectifiers Quick Selector Guide	461
Surface Mounted Rectifiers Quick Selector Guide	461 464
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Translent Voltage Suppressor Axial Leaded Translent Voltage Suppressor 400 to 6500 Watts	461 464
Surface Mounted Rectifiers Quick Selector Guide	461 464
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes	461 464 552 611
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier	461 464 552 611 625 629
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS	461 464 552 611 625 629 632
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppress Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability	461 464 552 611 625 629 632 635
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Trans2nd TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package	461 464 552 611 625 629 632 635 639
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Araial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing OTVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages	. 461 . 464 . 552 . 611 . 625 . 629 . 632 . 635 . 639 . 641 . 645
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Transiert Voltage Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs	461 464 552 611 625 632 632 635 639 641 645 649
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Supplies to Line Voltage Transient Suppress	461 464 552 611 625 629 632 639 632 639 641 645 649 657
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies	461 464 552 611 625 629 632 635 639 641 645 645 6657 661
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of Transient and Noise Barrier for Switching Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors	461 464 552 611 625 629 632 632 635 634 641 645 649 657 661 665 665
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of Transient and Noise Barrier for Switching Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors	461 464 552 611 625 629 632 632 635 634 641 645 649 657 661 665 665
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Transorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Transzorb TVS Doide Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETS Hardening Power Supplies to Line Voltage Transient Suppresors An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zoner Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors Protection of Power Supply and Data Lines Using Rectifier in Voltage Multiplier Circuits	461 464 552 611 625 639 635 639 635 639 641 645 645 667 661 665 667 663 6683 687
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Dode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETS Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zoner Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors Protectifier in Voltage Multiplier Circuits Using Rectifier in Voltage Suppressor Ideally suited for Automotive Applications	461 464 552 611 625 639 635 639 635 639 641 645 645 667 661 665 667 663 6683 687
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of Transient and Noise Barrier for Switching Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors Protection of Power Supply and Data Lines Using Rectifier in Voltage Suppressor Ideally suited for Automotive Applications Quiknotes	461 464 552 611 625 629 632 639 641 645 667 661 665 667 683 683 683 683
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Transzorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Transzorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Protection of Power Supply and Data Lines Using Rectifier in Voltage Multiplier Circuits Transient Voltage Suppressor Ideally suited for Automotive Applications Quiknotes	461 464 552 611 625 632 635 635 635 639 641 645 649 665 665 665 665 665 665 665 665 665 66
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors Protection of Power Supply and Data Lines Using Rectifier in Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve	461 464 552 611 625 632 635 635 635 639 641 645 649 657 664 667 683 667 683 667 691
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Protection of Power Supply and Data Lines Using Rectifier in Voltage Multiplier Circuits Transient Voltage Suppressor / Automotive Applications Quiknotes What is a Silicon Transient Voltage Suppresor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve	461 464 552 611 625 632 635 641 645 645 645 645 6657 667 691 697 697 699 770
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Transzorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusings for XD Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transient Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Using Rectifier in Voltage Multiplier Circuits Transient Voltage Suppressor Ideally suited for Automotive Applications Quiknotes What is a Silicon Transient Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve Protecting tor Repetitive Transient Vo	461 464 552 611 625 632 632 635 645 645 645 645 667 661 668 669 669
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Rectifier in Voltage Multiplier Circuits Transient Voltage Suppressor Ideally suiled for Automotive Applications Quiknotes What is a Silicon Transient Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve </td <td>461 464 552 611 625 629 632 632 649 645 665 664 665 665 667 665 667 663 665 667 663 691 697 698 699 702</td>	461 464 552 611 625 629 632 632 649 645 665 664 665 665 667 665 667 663 665 667 663 691 697 698 699 702
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Transzorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppressors Optimizing Placement of Board Level Transient Voltage Suppressors Optimizing Rectifier in Voltage Multiplier Circuits Transient Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve Protecting Low Current Loads in Harsh Electrical Environments Protecting tor Repetitive Transient Voltages Bulk, Tape and Reel Information <td>461 464 552 611 625 632 639 641 645 665 664 665 665 665 665 665 665 669 1 700 702</td>	461 464 552 611 625 632 639 641 645 665 664 665 665 665 665 665 665 669 1 700 702
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppressors Protection of Power Supply and Data Lines Using Rectifier in Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve Protecting for Repetitive Transient Voltages Protecting Low Current Loads in Harsh Electrical Environments Protecting for Repetitive Transient Voltages Parkage Band Reel Information	4461 464 552 611 625 639 645 645 645 661 665 667 663 667 669 663 669 699 700 702
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Transient Voltage Arrays 300 to 500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability Trans.Zorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transients An Effective Transient and Noise Barrier for Switching Power Supplies A Comparison of Zener Diodes vs Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Placement of Board Level for Automotive Applications Quiknets What is a Silicon Transient Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve Protecting tor Repetitive Transient Voltages	4461 464 552 611 625 639 645 645 645 661 665 667 663 667 669 663 669 699 700 702
Surface Mounted Rectifiers Quick Selector Guide Surface Mounted Rectifier 0.5 to 3.0 AMP Transient Voltage Suppressor Axial Leaded Transient Voltage Suppressor 400 to 6500 Watts Application Notes Design Guidelines for Schottky Rectifier Selecting the Optimum Voltage Transient Suppresor Superectifier Typical TransZorb TVS Applications - SCHEMATICS Superectifier Designs Brings New Level of Reliability TransZorb TVS Diode Array DA Series 8 and 16 Ping Dual-in-line Package Failure Modes and Fusing of TVS Devices Effect of Lead Wire Lengths on Protector Clamping Voltages The Use of TransZorb Diodes with Power MOSFETs Hardening Power Supplies to Line Voltage Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppresors Optimizing Placement of Board Level Transient Voltage Suppressors Protection of Power Supply and Data Lines Using Rectifier in Voltage Suppressor? Determining Clamping Voltage Levels for a Broad Range of Pulse Currents Using the Power versus Time Curve Protecting for Repetitive Transient Voltages Protecting Low Current Loads in Harsh Electrical Environments Protecting for Repetitive Transient Voltages Parkage Band Reel Information	461 464 552 611 625 632 632 635 639 645 645 645 667 663 667 663 669 700 702 702

Published January, 1994


(ii) General Instrument

GENERAL INSTRUMENT'S PRODUCT LINE

GENERAL INSTRUMENT ISO 9000 APPROVED

1.5KA6.8,A564	1.5KE22C,CA 592	1.5KE170,A592	1N4383GP244
1.5KA7.5,A 564	1.5KE24,A 592	1.5KE170C,CA592	1N4384GP 244
1.5KA8.2,A564	1.5KE24C,CA 592	1.5KE180,A592	1N4385GP 244
1.5KA9.1,A564	1.5KE27 ,A592	1.5KE 180 C,CA592	1N4585GP 244
1.5KA10,A564	1.5KE27C,CA 592	1.5KE200,A592	1N4586GP 244
1.5KA11,A564	1.5KE30,A 592	1.5KE200C,CA592	1N4933 376
1.5KA12,A564	1.5KE30C,CA 592	1.5KE220,A592	1N4933GP 266
1.5KA13,A564	1.5KE33,A 592	1.5KE220C,CA592	1N4934 376
1.5KA15,A564	1.5KE33C,CA 592	1.5KE250,A	1N4934GP 266
1.5KA16,A564	1.5KE36,A 592	1.5KE250C,CA592	1N4935 376
1.5KA18,A564	1.5KE36C,CA 592	1.5KE300,A592	1N4935GP 266
1.5KA20,A564	1.5KE39,A 592	1.5KE300C,CA592	1N4936 376
1.5KA22,A564	1.5KE39C,CA 592	1.5KE350,A	1N4936GP 266
1.5KA24,A564	1.5KE40,A 592	1.5KE350C,CA592	1N4937 376
1.5KA27,A564	1.5KE40C,CA 592	1.5KE400,A592	1N4937GP 266
1.5KA30,A564	1.5KE43,A 592	1.5KE400C,CA592	1N4942 328
1.5KA33,A564	1.5KE43C,CA 592	1N3611GP236	1N4942GP 268
1.5KA36,A564	1.5KE47,A 592	1N3612GP236	1N4944 328
1.5KA39,A564	1.5KE47C,CA 592	1N3613GP236	1N4944GP268
1.5KA43,A564	1.5KE51, A 592	1N3614GP236	1 N4946 328
1.5KE6.8,A592	1.5KE51C,CA 592	1N3957GP236	1N4946GP 268
1.5KE6.8C,CA592	1.5KE56,A 592	1N4001354	1N4947 328
1.5KE7.5,A592	1.5KE56C,CA 592	1N4001GP238	1N4947GP 268
1.5KE7.5C,CA592	1.5KE62, A 592	1N4002354	1 N4948 328
1.5KE8.2,A592	1.5KE62C,CA 592	1N4002GP238	1N4948GP 268
1.5KE8.2C,CA592	1.5KE68,A 592	1N4003354	1N5059 298
1.5KE9.1,A592	1.5KE68C,CA 592	1N4003GP238	1N5059GP246
1.5KE9.1C,CA592	1.5KE75, A 592	1N4004354	1 N5060 298
1.5KE10,A592	1.5KE75C,CA 592	1N4004GP238	1N5060GP 246
1.5KE10C,CA592	1.5KE82, A592	1N4005354	1N5061 298
1.5KE11,A592	1.5KE82C,CA 592	1N4005GP238	1N5061GP246
1.5KE11C,CA592	1.5KE91,A 592	1\\4006354	1N5062 298
1.5KE12,A592	1.5KE91C,CA 592	1N4006GP238	1N5062GP 246
1.5KE12C,CA592	1.5KE100,A 592	1N4007354	1N5391 358
1.5KE13,A592	1.5KE100C,CA 592	1N4007GP238	1N5391GP 248
1.5KE13C,CA592	1.5KE110,A 592	1N4245296	1N5392 358
1.5KE15,A592	1.5KE110C,CA 592	1N4245GP240	1N5392GP 248
1.5KE15C,CA592	1.5KE120,A 592	1N4246296	1N5393 358
1.5KE16,A592	1.5KE120C,CA 592	1N4246GP240	1N5393GP 248
1.5KE16C,CA592	1.5KE130,A 592	1N4247296	1N5394 358
1.5KE18,A592	1.5KE130C,CA 592	1N4247GP240	1N5394GP 248
1.5KE18C,CA592	1.5KE150,A592	1N4248296	1N5395 358
1.5KE20,A592	1.5KE150C,CA 592	1N4248GP240	1N5395GP 248
1.5KE20C,CA592	1.5KE160,A 592	1N4249296	1N5396 358
1.5KE22,A592	1.5KE160C,CA 592	1N4249GP240	1N5396GP248
	-		

1N5397	358	1N5627 308	1N6478470	5KP110.A 606
1N5397GP		1N5627GP 256	1N6479470	5KP11,A
1N5398		1N5817	1N6480470	5KP12.A
1N5498GP		1N5818	1N6481470	5KP13.A
1N5399		1N5819	1N6482470	5KP14.A
1N5399GP		1N5820	1N6483470	5KP15,A
1N5400		1N5821	1N6484470	5KP16,A 606
1N5401		1N5822	2KBP005M418	5KP17,A 606
1N5402		1N6267.A	2KBP01M418	5KP18.A 606
1N5403		1N6268.A	2KBP02M418	5KP20.A 606
1N5404		1N6269,A	2KBP04M418	5KP22,A 606
1N5405		1N6270,A	2KBP06M418	5KP22,A 606
				•
1N5406		1N6271,A	2KBP08M418	5KP26,A 606
1N5407		1N6272, A	2KBP10M418	5KP28,A 606
1N5408		1N6273,A 592	2W005G416	5KP30,A 606
1N5415		1N6274,A	2W01G416	5KP33,A 606
1N5416		1N6275,A592	2W02G416	5KP36,A 606
1N5417		1N6276,A 592	2W04G416	5KP40,A 606
1N5418		1N6277,A 592	2W06G416	5KP43,A 606
1N5419		1N6278, A592	2W08G416	5KP45,A 606
1N5420	340	1N6279,A 592	2W10G416	5KP48,A 606
1N5550	306	1N6280,A 592	3N246412	5KP51,A 606
1N5551	306	1N6281,A 592	3N247412	5KP54,A 606
1N5552	306	1N6282, A592	3N248412	5KP58,A 606
1N5614	300	1N6283,A 592	3N249412	5KP60,A 606
1N5615	330	1N6284,A 592	3N250412	5KP64,A 606
1N5615GP	272	1N6285,A 592	3N251412	5KP70,A 606
1N5616	300	1N6286,A 592	3N252412	5KP75,A 606
1N5617	330	1N6287,A 592	3N253418	5KP78,A 606
1N5617GP	272	1N6288,A 592	3N254418	5KP85,A 606
1N5618	300	1N6289,A 592	3N255418	5KP90,A 606
1N5619	330	1N6290,A 592	3N256418	6KA24 568
1N5619GP	272	1N6291,A 592	3N257418	AGP15-200 252
1N5620	300	1N6292,A 592	3N258418	AGP15-400 252
1N5621	330	1N6293,A 592	3N259418	AGP15-600 252
1N5621GP	272	1N6294,A 592	5KP5.0,A606	AGP15-800 252
1N5622		1N6295, A	5KP6.0.A606	B40C1000G 408
1N5623		1N6296,A	5KP6.5,A606	B40C1500G 414
1N5623GP		1N6297.A	5KP7.0.A	B40C800G 402
1N5624		1N6298,A	5KP7.5,A606	B40C800DM 404
1N5624GP		1N6299,A	5KP8.0.A606	B80C1500G 414
1N5625		1N6299,A		
1N5625GP			5KP8.5,A606	B80C800G 402
		1N6301,A	5KP9.0,A606	B80C1000G 408
1N5626		1N6302, A59 2	5KP10,A606	B80C800DM 404
1N5626GP	256	1N6303,A 592	5KP100,A606	B125C1000G 408

B125C1500G414	BYM10-600 472	BYW33	BZW04-33
B125C800G402	BYM10A-800 472	BYW34338	BZW04P37 574
B125C800DM404	BYM10A-1000 472	BYW35338	BZW04-37 574
B250C1000G408	BYM11-50	BYW36	BZW04P40 574
B250C1500G414	BYM11-100 474	BYW72346	BZW04-40 574
B250C800G402	BYM11-200 474	BYW73	BZW04P44 574
B250C800DM 404	BYM11-400474	BYW74	BZW04-44 574
B380C1000G408	BYM11-600474	BYW75346	BZW04P48 574
B380C1500G414	BYM11-800 474	BYW76346	BZW04-48 574
B380C800G402	BYM11-1000 474	BZW04P5V8574	BZW04P53 574
B380C800DM404	BYM12-50 476	BZW04-5V8574	BZW04-53 574
BA157GP264	BYM12-100 476	BZW04P6V4574	BZW04P58 574
BA158GP264	BYM12-150 476	BZW04-6V4574	BZW04-58 574
BA159DGP264	BYM12-200 476	BZW04P7V0574	BZW04P64 574
BA159GP264	BYM12-300 476	BZW04-7V0574	BZW04-64574
BY228322	BYM12-400 476	BZW04P7V8574	BZW04P70 574
BY396P386	BYM13-20 482	BZW04-7V8574	BZW04-70 574
BY397P	BYM13-30 482	BZW04P8V5574	BZW04P78 574
BY398P	BYM13-40 482	BZW04-8V5574	BZW04-78 574
BY399P	BYM13-50 482	BZW04P9V4574	BZW04P85 574
BY500-100	BYM13-60 482	BZW04P10574	BZW04-85 574
BY500-200	BYV26D 136	BZW04-10574	BZW04P94 574
BY500-400	BYV26E 136	BZW04P11574	BZW04-94574
BY500-600	BYV27-50 140	BZW04-11574	BZW04P102 574
BY500-800	BYV27-100 140	BZW04P13574	BZW04-102574
BYM05-50464	BYV27-150 140	BZW04-13574	BZW04P110574
BYM05-100464	BYV27-200 140	BZW04P14574	BZW04-110574
BYM05-200464	BYV28-50 146	BZW04-14574	BZW04P128 574
BYM05-400	BYV28-100 146	BZW04P15574	BZW04-128 574
BYM05-600464	BYV28-150 146	BZW04-15574	BZW04P136
BYM06-50466	BYV28-200 146	BZW04P17574	BZW04-136
BYM06-100466	BYV32-50 210	BZW04-17574	BZW04P145
BYM06-200466	BYV32-100	BZW04P19574	BZW04-145
BYM06-400466	BYV32-150 210	BZW04-19574	BZW04P154
BYM06-600466	BYV32-200 210	BZW04P20	BZW04-154
BYM07-50468	BYV95A 334	BZW04-20	BZW04P171
BYM07-100468	BYV95B 334	BZW04P23574	BZW04-171574
BYM07-150468	BYV95C 334	BZW04-23574	BZW04P188
BYM07-200468	BYV96D 334	BZW04P26574	BZW04-188
BYM07-300468	BYV96E 334	BZW04-26	BZW04P213 574
BYM07-400468	BYW29-50 198	BZW04P28574	BZW04-213574
BYM10-50472	BYW29-100 198	BZW04-28574	BZW04P239 574
BYM10-100472	BYW29-150 198	BZW04P31574	BZW04-239 574
BYM10-200472	BYW29-200 198	BZW04-31574	BZW04P256 574
BYM10-400472	BYW32	BZW04P33574	BZW04-256 574

BZW04P273574	EGF1B 492	ES2C514	FEPF16DT 204
BZW04-273574	EGF1C 492	ES2D514	FEPF16FT 204
BZW04P299574	EGF1D 492	ES3A534	FEPF16GT 204
BZW04-299574	EGL34A 468	ES3B534	FEPF16HT 204
BZW04P342574	EGL34B 468	ES3C534	FEPF16JT 204
BZW04-342574	EGL34C 468	ES3D534	FEP30AP 222
BZW04P376574	EGL34D 468	FE1A132	FEP30BP 222
BZW04-376574	EGL34F 468	FE1B132	FEP30CP 222
CG1316	EGL34G 468	FE1C132	FEP30DP 222
CG2320	EGL41A 476	FE1D132	FEP30FP 222
CG3324	EGL41B 476	FE2A138	FEP30GP 222
DA05CM	EGL41C 476	FE2B138	FEP30HP 222
DA12CM620	EGL41D 476	FE2C138	FEP30JP 222
DA15CM620	EGL41F 476	FE2D138	FEPF30AP 220
DA24CM620	EGL41G 476	FE3A144	FEPF30BP 220
DA05P618	EGP10A 156	FE3B144	FEPF30CP 220
DA12P618	EGP10B 156	FE3C144	FEPF30DP 220
DA15P618	EGP10C 156	FE3D144	FEPF30FP 220
DA24P618	EGP10D 156	FE5A148	FEPF30GP 220
DF005M406	EGP10F 156	FE5B148	FEPF30HP 220
DF005S454	EGP10G 156	FE5C148	FEPF30JP 220
DF01M406	EGP20A 158	FE5D148	FES8AT 194
DF01S454	EGP20B 158	FE6A150	FES8BT 194
DF02M406	EGP20C 158	FE6B150	FES8CT 194
DF02S454	EGP20D 158	FE6C150	FES8DT 194
DF04M406	EGP20F 158	FE6D150	FES8FT 194
DF04S454	EGP20G 158	FEP6AT186	FES8GT 194
DF06M406	EGP30A 160	FEP6BT186	FES8HT 194
DF06S454	EGP30B 160	FEP6CT186	FES8JT 194
DF08M406	EGP30C 160	FEP6DT186	FES16AT 202
DF08S454	EGP30D 160	FEP16AT206	FES16BT 202
DF10M406	EGP30F 160	FEP16BT206	FES16CT 202
DF10S454	EGP30G 160	FEP16CT	FES16DT 202
DG1316	EGP50A 162	FEP16DT	FES16FT 202
DG2320	EGP50B 162	FEP16FT	FES16GT 202
DG3324	EGP50C 162	FEP16GT206	FES16HT 202
EDF1AM	EGP50D 162	FEP16HT	FES16JT 202
EDF1AS456	EGP50F 162	FEP16JT	FESF8AT 192
EDF1BM448	EGP50G 162	FEPF6AT184	FESF8BT 192
EDF1BS456	ES1A 498	FEPF6BT184	FESF8CT 192
EDF1CM	ES1B 498	FEPF6CT 184	FESF8DT 192
EDF1CS	ES1C 498	FEPF6DT	FESF8FT 192
EDF1DM	ES1D 498	FEPF16AT204	FESF8GT 192
EDF1DS	ES2A	FEPF16BT204	FESF8HT 192
EGF1A498	ES2B	FEPF16CT204	FESF8JT 192
LOI 1A	520	FEFF1001204	FEOFOUL

FESF16AT200	GBPC106 420	GBU6A430	GI816 274
FESF16BT200	GBPC108 420	GBU6B430	Gl817 274
FESF16CT200	GBPC110 420	GBU6D430	Gl818 274
FESF16DT200	GBPC6005 434	GBU6G430	GI820
FESF16FT200	GBPC601 434	GBU6J430	Gl821
FESF16GT	GBPC602 434	GBU6K430	Gi822 390
FESF16HT200	GBPC604 434	GBU6M430	Gl824
FESF16JT200	GBPC606 434	GBU8A436	GI826
G1A302	GBPC608 434	GBU8B436	GI828
G1B302	GBPC610 434	GBU8D436	GI850 380
G1D302	GBPC12-005,W 440	GBU8G436	Gl851 380
G1G302	GBPC12-01,W 440	GBU8J436	Gl852 380
G1J302	GBPC12-02,W 440	GBU8K436	Gl854 380
G1K302	GBPC12-04,W 440	GBU8M436	Gl856 380
G1M302	GBPC12-06,W 440	GF1A488	GI858 380
G2A304	GBPC12-08,W 440	GF1B488	Gl910
G2B304	GBPC12-10,W 440	GF1D488	Gl911
G2D304	GBPC15-005,W 440	GF1G488	Gl912 382
G2G304	GBPC15-01,W 440	GF1J488	Gl914
G2J304	GBPC15-02,W 440	GF1K488	Gl916
G2K304	GBPC15-04,W 440	GF1M488	Gl917
G2M304	GBPC15-06,W 440	GI1-1200318	GI1001 134
G3A310	GBPC15-08,W 440	GI1-1400318	GI1002 134
G3B310	GBPC15-10,W 440	GI1-1600318	GI1003 134
G3D310	GBPC25-005,W 440	Gl250-1232	GI1004 134
G3G310	GBPC25-01,W 440	GI250-2232	GI1101 142
G3J310	GBPC25-02,W 440	GI250-3232	Gl1102 142
G3K310	GBPC25-04,W 440	Gl250-4232	Gl1103 142
G3M310	GBPC25-06,W 440	GI500362	GI1104 142
G4A312	GBPC25-08,W 440	GI501362	Gl1301 152
G4B312	GBPC25-10,W 440	GI502362	GI1302 152
G4D312	GBPC35-005,W 444	GI504362	GI1303 152
G4G312	GBPC35-01,W 444	GI506362	GI1304 152
G4J312	GBPC35-02,W 444	GI508362	GI1401 196
GBL005422	GBPC35-04,W 444	GI510362	GI1402 196
GBL01422	GBPC35-06,W 444	GI750366	Gl1403 196
GBL02422	GBPC35-08,W 444	GI751366	Gi1404 196
GBL04422	GBPC35-10,W 444	GI752366	Gl2401208
GBL06422	GBU4A 426	GI754366	Gl2402 208
GBL08422	GBU4B 426	GI756366	Gl2403 208
GBL10422	GBU4D 426	GI758366	GI2404 208
GBPC1005 420	GBU4G 426	Gl810274	GL34A 464
GBPC101420	GBU4J 426	Gl811274	GL34B 464
GBPC102420	GBU4K 426	Gl812274	GL34D 464
GBPC104420	GBU4M 426	Gl814274	GL34G 464

.....

GL34J464	GP08B	KBL06424	LCE18,A 602
GL41A472	GP08D 234	KBL08424	LCE20,A 602
GL41B472	GP08G 234	KBL10424	LCE22,A 602
GL41D472	GP08J	KBP005M412	LCE24,A 602
GL41G472	GP10A	KBP01M412	LCE26,A 602
GL41J472	GP10B	KBP02M412	LCE28,A 602
GL41K	GP10D 242	KBP04M412	LCE30,A 602
GL41M472	GP10G242	KBP06M412	LCE33,A 602
GL41T472	GP10J242	KBP08M412	LCE36,A 602
GL41Y472	GP10K 242	KBP10M412	LCE40,A 602
GLL4735478	GP10M242	KBU4A428	LCE43,A 602
GLL4736478	GP10N 242	KBU4B428	LCE45,A 602
GLL4737478	GP10Q242	KBU4D428	LCE48,A 602
GLL4738478	GP10T 242	KBU4G428	LCE51,A 602
GLL4739478	GP10V 242	KBU4J428	LCE54,A 602
GLL4740478	GP10W 242	KBU4K428	LCE58,A 602
GLL4741478	GP10Y 242	KBU4M428	LCE60,A 602
GLL4742478	GP15A 250	KBU6A432	LCE64,A 602
GLL4743478	GP15B 250	KBU6B432	LCE70,A 602
GLL4744478	GP15D 250	KBU6D432	LCE75,A 602
GLL4745478	GP15G 250	KBU6G432	LCE80,A 602
GLL4746478	GP15J 250	KBU6J432	LCE90,A 602
GLL4747478	GP15K 250	KBU6K432	M100A 356
GLL4748478	GP15M250	KBU6M432	M100B 356
GLL4749478	GP20A 254	KBU8A438	M100D 356
GLL4750478	GP20B 254	KBU8B438	M100G 356
GLL4751478	GP20D 254	KBU8D438	M100J 356
GLL4752478	GP20G 254	KBU8G438	M100K 356
GLL4753478	GP20J254	KBU8J438	M100M356
GLL4754478	GP30A 258	KBU8K438	MB2M 401
GLL4755478	GP30B 258	KBU8M438	MB4M 401
GLL4756478	GP30D 258	LCE6.5,A	MB6M 401
GLL4757478	GP30G 258	LCE7.0,A	MB2S 453
GLL4758478	GP30J258	LCE7.5,A	MB4S 453
GLL4759478	GP30K 258	LCE8.0,A602	MB6S 453
GLL4760478	GP30M258	LCE8.5,A	MBR735 44
GLL4761478	ICTE5.0,	LCE9.0,A602	MBR745 44
GLL4762478	ICTE8,C 598	LCE10,A602	MBR750 46
GLL4763478	ICTE10,C 598	LCE11,A602	MBR760 46
GP02-20230	ICTE12,C 598	LCE12,A602	MBR103552
GP02-25230	ICTE15,C 598	LCE13,A602	MBR104552
GP02-30230	KBL005 424	LCE14,A602	MBR105054
GP02-35230	KBL01424	LCE15,A602	MBR106054
GP02-40230	KBL02 424	LCE16,A602	MBR1535CT 68
GP08A234	KBL04 424	LCE17,A602	MBR1545CT 68

			B.4/2000 01
MBR1550CT70	MBRF2560CT	P4KA15,A556	P4KE33C,CA 570
MBR1560CT70	MBRF3035PT 104	P4KA16,A556	P4KE36,A 570
MBR163580	MBRF3045PT 104	P4KA18,A556	P4KE36C,CA 570
MBR164580	MBRF3050PT 106	P4KA20,A556	P4KE39,A 570
MBR165082	MBRF3060PT 106	P4KA22,A556	P4KE39C,CA 570
MBR166082	MBRF4035PT 118	P4KA24,A556	P4KE43,A 570
MBR2035CT88	MBRF4045PT 118	P4KA27,A556	P4KE43C,CA 570
MBR2045CT88	MBRF4050PT 120	P4KA30,A556	P4KE47,A 570
MBR2050CT90	MBRF4060PT 120	P4KA33,A556	P4KE47C,CA 570
MBR2060CT90	MPG06A 286	P4KA36,A556	P4KE51,A 570
MBR2535CT100	MPG06B 286	P4KA39,A556	P4KE51C,CA 570
MBR2545CT100	MPG06D 286	P4KA43,A556	P4KE56,A 570
MBR2550CT102	MPG06G 286	P4KE6.8,A570	P4KE56C,CA 570
MBR2560CT102	MPG06J 286	P4KE6.8C,CA570	P4KE62,A 570
MBR3035PT108	MPG06K 286	P4KE7.5,A570	P4KE62C,CA 570
MBR3045PT 108	MPG06M 286	P4KE7.5C,CA570	P4KE68,A 570
MBR3050PT110	NS8AT 372	P4KE8.2,A570	P4KE68C,CA 570
MBR3060PT110	NS8BT 372	P4KE8.2C,CA570	P4KE75,A 570
MBR4035PT122	NS8DT 372	P4KE9.1,A570	P4KE75C,CA 570
MBR4045PT122	NS8GT 372	P4KE9.1C,CA570	P4KE82,A 570
MBR4050PT 124	NS8JT 372	P4KE10,A570	P4KE82C,CA 570
MBR4060PT 124	NS8KT 372	P4KE10C,CA570	P4KE91,A 570
MBRF73540	NS8MT 372	P4KE11,A570	P4KE91C,CA 570
MBRF74540	NSF8AT 370	P4KE11C,CA570	P4KE100,A 570
MBRF75042	NSF8BT 370	P4KE12,A570	P4KE100C,CA 570
MBRF76042	NSF8DT 370	P4KE12C,CA570	P4KE110,A 570
MBRF103548	NSF8GT 370	P4KE13,A570	P4KE110C,CA 570
MBRF104548	NSF8JT 370	P4KE13C,CA570	P4KE120,A 570
MBRF105050	NSF8KT 370	P4KE15,A570	P4KE120C,CA 570
MBRF106050	NSF8MT 370	P4KE15C,CA570	P4KE130,A 570
MBRF1535CT64	P300A	P4KE16,A570	P4KE130C,CA 570
MBRF1545CT64	P300B	P4KE16C,CA570	P4KE150,A 570
MBRF1550CT66	P300D 364	P4KE18,A570	P4KE150C,CA 570
MBRF1560CT66	P300G 364	P4KE18C,CA570	P4KE160,A 570
MBRF163576	P300J	P4KE20,A570	P4KE160C,CA 570
MBRF164576	P300K 364	P4KE20C,CA570	P4KE170,A 570
MBRF1650	P300M	P4KE22,A570	P4KE170C,CA 570
MBRF166078	P4KA6.8,A 556	P4KE22C,CA570	P4KE180,A 570
MBRF2035CT84	P4KA7.5,A 556	P4KE24,A570	P4KE180C,CA 570
MBRF2045CT84	P4KA8.2,A 556	P4KE24C,CA570	P4KE200,A 570
MBRF2050CT	P4KA9.1,A	P4KE27.A	P4KE200C.CA
MBRF2060CT	P4KA10,A 556	P4KE27C,CA570	P4KE220,A 570
MBRF2535CT	P4KA11,A 556	P4KE30,A570	P4KE220C,CA 570
MBRF2545CT	P4KA12,A 556	P4KE30C.CA570	P4KE250,A 570
MBRF2550CT	P4KA13,A	P4KE33.A570	P4KE250C.CA 570

D4//E000 4			5005
P4KE300,A	P6KE12,A 588	P6KE91C,CA	RG3D
P4KE300C,CA570	P6KE12C,CA 588	P6KE100,A	RG3G
P4KE350,A	P6KE13,A 588	P6KE100C,CA588	RG3J
P4KE350C,CA570	P6KE13C,CA 588	P6KE110,A588	RG3K
P4KE400,A570	P6KE15,A 588	P6KE110C,CA588	RG3M 342
P4KE400C,CA570	P6KE15C,CA 588	P6KE120,A588	RG4A 344
P600A	P6KE16,A 588	P6KE120C,CA588	RG4B 344
P600B368	P6KE16C,CA 588	P6KE130,A588	RG4D 344
P600D368	P6KE16,A 588	P6KE130C,CA588	RG4G 344
P600G	P6KE16C,CA 588	P6KE150,A588	RG4J 344
P600J	P6KE18,A 588	P6KE150C,CA588	RGF1A 490
P600K	P6KE18C,CA 588	P6KE160,A588	RGF1B 490
P600M	P6KE20,A 588	P6KE160C,CA588	RGF1D 490
P6KA6.8,A560	P6KE20C,CA 588	P6KE170,A588	RGF1G 490
P6KA7.5,A560	P6KE22, A 588	P6KE170C,CA588	RGF1J 490
P6KA8.2,A560	P6KE22C,CA 588	P6KE180,A588	RGF1K 490
P6KA9.1,A560	P6KE24,A 588	P6KE180C,CA588	RGF1M 490
P6KA10,A560	P6KE24C,CA 588	P6KE200,A588	RGL34A 466
P6KA11,A560	P6KE27,A 588	P6KE200C,CA588	RGL34B 466
P6KA12,A560	P6KE27C,CA 588	P6KE220,A588	RGL34D 466
P6KA13,A560	P6KE30,A 588	P6KE220C,CA588	RGL34G 466
P6KA15,A560	P6KE30C,CA 588	P6KE250,A588	RGL34J 466
P6KA16,A560	P6KE33,A 588	P6KE250C,CA588	RGL41A 474
P6KA18,A560	P6KE33C,CA 588	P6KE300,A588	RGL41B 474
P6KA20,A560	P6KE36,A 588	P6KE300C,CA588	RGL41D 474
P6KA22,A560	P6KE36C,CA 588	P6KE350,A588	RGL41G 474
P6KA24,A560	P6KE39,A 588	P6KE350C,CA588	RGL41J 474
P6KA27,A560	P6KE39C,CA 588	P6KE400,A588	RGL41K 474
P6KA30,A560	P6KE43,A 588	P6KE400C,CA588	RGL41M 474
P6KA33,A560	P6KE43C,CA 588	RG1A332	RGP02-12E 262
P6KA36,A560	P6KE47,A 588	RG1B332	RGP02-14E 262
P6KA39,A560	P6KE47C,CA 588	RG1D	RGP02-16E 262
P6KA43,A560	P6KE51,A 588	RG1G	RGP02-18E 262
P6KE6.8,A588	P6KE51C,CA 588	RG1J332	RGP02-20E 262
P6KE6.8C,CA588	P6KE56,A 588	RG1K332	RGP10A 270
P6KE7.5,A588	P6KE56C,CA 588	RG1M332	RGP10B 270
P6KE7.5C,CA588	P6KE62,A 588	RG2A336	RGP10D 270
P6KE8.2.A	P6KE62C,CA 588	RG2B336	RGP10G 270
P6KE8.2C,CA588	P6KE68,A 588	RG2D	RGP10J 270
P6KE9.1,A588	P6KE68C,CA 588	RG2G336	RGP10K 270
P6KE9.1C,CA588	P6KE75,A	RG2J	RGP10M 270
P6KE10,A	P6KE75C.CA	RG2K	RGP15A
P6KE10C,CA	P6KE82,A 588	RG2M	RGP15B
P6KE11,A588	P6KE82C.CA 588	RG3A	RGP15D
P6KE11C.CA	P6KE91.A	RG3B	RGP15G 276

RGP15J276	S1B 494	SA15C,CA578	SA78,A578
RGP15K	S1D 494	SA150,0A578	SA78C.CA
RGP15M276	S1G 494	SA16C.CA578	SA85,A
PGP20A	S1J 494	SA180,0A	SA85C,CA
RGP20B	S15	SA17,A	SA90,A 578
RGP20D278	S2B	SA170,0A	SA90C,CA 578
RGP20G278	S2D	SA18, A	SA300,CA
RGP20J278	S2G	SA180,0A	SA100,A
RGP25A	S2J	SA20C,CA578	SA110,A
RGP25B	S2K	SA22.A	SA110C.CA 578
RGP25D	S2M	SA22C.CA578	SA120,A
RGP25G280	S3A	SA24,A	SA120C,CA 578
RGP25J	S3B530	SA24C.CA578	SA130.A
RGP25K	S3D530	SA26,A	SA130C,CA 578
RGP25M280	S3G 530	SA26C,CA578	SA150,A
RGP30A282	S3J	SA28,A	SA150C,CA 578
RGP30B282	S3K 530	SA28C,CA	SA160,A
RGP30D282	S3M 530	SA30,A	SA160C,CA 578
RGP30G282	SA5.0,A	SA30C,CA578	SA170,A
RGP30J282	SA5.0C,CA	SA33,A578	SA170C,CA 578
RGP30K282	SA6.0,A578	SA33C,CA578	SAB5.0 585
RGP30M282	SA6.0C,CA 578	SA36,A578	SAB10 585
RMPG06A288	SA6.5,A 578	SA36C,CA578	SAB12 585
RMPG06B288	SA6.5C,CA 578	SA40,A578	SAB15 585
RMPG06D288	SA7.0,A578	SA40C,CA578	SAB18 585
RMPG06G288	SA7.0C,CA 578	SA43,A578	SAB24 585
RMPG06J288	SA7.5,A 578	SA43C,CA578	SAB28 585
RS1A496	SA7.5C,CA 578	SA45,A578	SAC5.0 586
RS1B496	SA8.0,A 578	SA45C,CA578	SAC6.0 586
RS1D496	SA8.0C,CA 578	SA48,A578	SAC7.0 586
RS1G496	SA8.5,A 578	SA48C,CA578	SAC8.0 586
RS1J496	SA8.5C,CA 578	SA51,A578	SAC8.5 586
RS2A512	SA9.0,A 578	SA51C,CA578	SAC10 586
RS2B512	SA9.0C,CA 578	SA54,A578	SAC12 586
RS2D512	SA10,A 578	SA54C,CA578	SAC15 586
RS2G512	SA10C,CA 578	SA58,A578	SAC18 586
RS2J512	SA11,A 578	SA58C,CA578	SAC22 586
RS2K512	SA11C,CA 578	SA60,A578	SAC26 586
RS3A532	SA12,A578	SA60C,CA578	SAC30 586
RS3B532	SA12C,CA 578	SA64,A578	SAC36 586
RS3D532	SA13,A578	SA64C,CA578	SAC45 586
RS3G532	SA13C,CA 578	SA70,A578	SAC50 586
RS3J532	SA14,A578	SA70C,CA578	SB020 26
RS3K532	SA14C,CA 578	SA75,A578	SB030 26
S1A494	SA15,A 578	SA75C,CA578	SB040 26

SB120
SB130
SB14030
SB150
SB160
SB32034
SB33034
SB34034
SB35034
SB36034
SB52036
SB53036
SB54036
SB55036
SB560
SBL103058
SBL104058
SBL1030CT62
SBL1040CT62
SBL1630CT74
SBL1640CT74
SBL2030PT94
SBL2040PT94
SBL3030PT114
SBL3040PT114
SBLF103056
SBLF104056
SBLF1030CT60
SBLF1040CT60
SBLF1630CT72
SBLF1640CT72 SBLF2030PT92
SBLF2030F192 SBLF2040PT92
SBLF2040P1
SBLF3040PT112
SD241P116
SGL41-20
SGL41-20482 SGL41-30
SGL41-30482
SGL41-50482
SGL41-50482 SGL41-60
SMAJ5.0,A
SMAJ6.0,A
SMAJ6.5,A
SMAJ7.0,A
Sivino7.0,A

CMA 17 E A
SMAJ7.5,A
SMAJ8.5.A
SMAJ9.0,A
SMAJ10,A
SMAJ11.A
SMAJ12.A
SMAJ12,A
SMAJ14.A
SMAJ15,A
SMAJ16,A
SMAJ17,A
SMAJ18,A
SMAJ20.A
SMAJ22.A
SMAJ24,A
SMAJ26.A
SMAJ28,A
SMAJ20,A
SMAJ33.A
SMAJ36,A
SMAJ40.A
SMAJ43,A
SMAJ45,A
SMAJ48,A
SMAJ51,A
SMAJ54,A
SMAJ58.A
SMAJ60,A
SMAJ64.A
SMAJ70,A
SMAJ75,A
SMAJ78,A
SMAJ85.A
SMAJ90,A
SMAJ100,A
SMAJ110,A
SMAJ120,A
SMAJ130,A
SMAJ150,A
SMAJ160.A
SMAJ170,A
SMBG, J5.0, A
SMBG, J5.0C, CA 522
SMBG, J6.0, A 518

SMAGB, J6.0C, CA
SMA6.5,A518
SMBG, J6.5C, CA
SMBG,J7.0,A518
SMBG, J7.0C, CA
SMBG,J7.5,A518
SMBG,J7.5C,CA
SMBG,J8.0,A518
SMBG,J8.0C,CA
SMBG,J8.5,A518
SMBG,J8.5C,CA
SMBG,J9.0,A518
SMBG, J9.0C, CA
SMBG,J10,A518
SMBG,J10C,CA522
SMBG,J11,A518
SMBG,J11C,CA522
SMBG,J12,A518
SMBG, J12C, CA522
SMBG,J13,A518
SMBG,J13C,CA522
SMBG,J14,A518
SMBG,J14C,CA522
SMBG,J15,A518
SMBG,J15C,CA522
SMBG,J16,A518
SMBG,J16C,CA522
SMBG,J17,A518
SMBG,J17C,CA522
SMBG,J18,A518
SMBG,J18C,CA522
SMBG,J20,A518
SMBG,J20C,CA522
SMBG,J22,A518
SMBG,J22C,CA522
SMBG,J24,A518
SMBG, J24C, CA522
SMBG,J26,A518
SMBG, J26C, CA522
SMBG,J28,A518
SMBG, J28C, CA522
SMBG,J30,A518
SMBG, J30C, CA522
SMBG,J33,A518
SMBG,J33C,CA522

SMBG,J36,A 518
SMBG, J36C, CA 522
SMBG, J40, A 518
SMBG, J40C, CA 522
SMBG, J43, A 518
SMBG, J43C, CA 522
SMBG, J45, A 518
SMBG, J45C, CA 522
SMBG, J48, A 518
SMBG, J48C, CA 522
SMBG,J51,A518
SMBG, J51C, CA 522
SMBG, J54, A 518
SMBG, J54C, CA 522
SMBG, J58, A 518
SMBG, J58C, CA 522
SMBG, J60, A 518
SMBG, J60C, CA 522
SMBG, J64, A 518
SMBG, J64C, CA 522
SMBG,J70,A 518
SMBG,J70C,CA 522
SMBG,J75,A 518
SMBG,J75C,CA 522
SMBG,J78,A 518
SMBG, J78C, CA 522
SMBG,J85,A 518
SMBG, J85C, CA 522
SMBG, J90, A 518
SMBG, J90C, CA 522
SMBG,J100,A 518
SMBG,J100C,CA 522
SMBG,J110,A 518
SMBG,J110C,CA522
SMBG,J120,A 518
SMBG,J120C,CA 522
SMBG,J130,A 518
SMBG,J130C,CA 522
SMBG,J150,A 518
SMBG,J150C,CA 522
SMBG,J160,A518
SMBG,J160C,CA 522
SMBG,J170,A518
SMBG,J170C,CA 522
SMCG,J5.0,A 538

SMCG,J5.0C,CA542	SMCG,J33,A 538	SMCG,J170C,CA542	SUF30J 178
SMCG,J6.0,A538	SMCG,J33C,CA 542	SMDA05,C616	TGL41-6.8,A 484
SMCG,J6.0C,CA542	SMCG,J36,A 538	SMDA0.5C-8616	TGL41-7.5,A 484
SMCG,J6.5,A538	SMCG,J36C,CA 542	SMDA12-8616	TGL41-8.2,A 484
SMCG,J6.5C,CA542	SMCG,J40,A 538	SMDA12,C616	TGL41-9.1,A 484
SMCG,J7.0,A538	SMCG,J40C,CA 542	SMDA15-8616	TGL41-10,A 484
SMCG,J7.0C,CA542	SMCG,J43,A 538	SMDAA5,C616	TGL41-11,A 484
SMCG,J7.5,A538	SMCG,J43C,CA 542	SMDA24-8616	TGL41-12,A 484
SMCG,J7.5C,CA542	SMCG,J45,A 538	SMDA24,C616	TGL41-13,A 484
SMCG,J8.0,A538	SMCG,J45C,CA 542	SRP100A	TGL41-15,A 484
SMCG,J8.0C,CA542	SMCG,J48,A 538	SRP100B	TGL41-16,A 484
SMCG,J8.5,A538	SMCG,J48C,CA 542	SRP100D	TGL41-18,A 484
SMCG,J8.5C,CA542	SMCG,J51,A 538	SRP100G	TGL41-20,A 484
SMCG,J9.0,A538	SMCG,J51C,CA 542	SRP100J	TGL41-22,A 484
SMCG,J9.0C,CA542	SMCG,J54,A 538	SRP100K	TGL41-24,A 484
SMCG,J10,A538	SMCG,J54C,CA 542	SRP300A	TGL41-27,A 484
SMCG,J10C,CA542	SMCG,J58,A 538	SRP300B	TGL41-30,A 484
SMCG,J11,A538	SMCG,J58C,CA 542	SRP300D	TGL41-33,A 484
SMCG,J11C,CA542	SMCG,J60,A 538	SRP300G384	TGL41-36,A 484
SMCG,J12,A538	SMCG,J60C,CA 542	SRP300J	TGL41-39,A 484
SMCG,J12C,CA542	SMCG,J64,A 538	SRP300K	TGL41-43,A 484
SMCG,J13,A538	SMCG,J64C,CA 542	SRP600A	TGL41-47,A 484
SMCG,J13C,CA542	SMCG,J70,A 538	SRP600B	TGL41-51,A 484
SMCG,J14,A538	SMCG,J70C,CA 542	SRP600D	TGL41-56,A 484
SMCG,J14C,CA542	SMCG,J75,A 538	SRP600G	TGL41-62,A 484
SMCG,J15,A538	SMCG,J75C,CA 542	SRP600J	TGL41-68,A 484
SMCG,J15C,CA542	SMCG,J78,A 538	SRP600K	TGL41-75,A 484
SMCG,J16,A538	SMCG,J78C,CA 542	SS12500	TGL41-82,A 484
SMCG,J16C,CA542	SMCG,J85,A 538	SS13500	TGL41-91,A 484
SMCG,J17,A538	SMCG,J85C,CA 542	SS14500	TGL41-100,A 484
SMCG,J17C,CA542	SMCG,J90,A 538	SS15500	TGL41-110,A 484
SMCG,J18,A538	SMCG,J90C,CA 542	SS16500	TGL41-120,A 484
SMCG,J18C,CA542	SMCG,J100,A 538	SS22516	TGL41-130,A 484
SMCG,J20,A538	SMCG,J100C,CA 542	SS23516	TGL41-150,A 484
SMCG,J20C,CA542	SMCG,J110,A 538	SS24516	TGL41-160,A 484
SMCG,J22,A538	SMCG,J110C,CA 542	SS25516	TGL41-170,A 484
SMCG,J22C,CA542	SMCG,J120,A 538	SS26516	TGL41-180,A 484
SMCG,J24,A538	SMCG,J120C,CA 542	SS32536	TGL41-200,A 484
SMCG,J24C,CA542	SMCG,J130,A 538	SS33536	TMPG06-6.8,A 552
SMCG,J26,A538	SMCG,J130C,CA542	SS34536	TMPG06-7.5,A 552
SMCG,J26C,CA542	SMCG,J150,A 538	SS35536	TMPG06-8.2,A 552
SMCG,J28,A538	SMCG,J150C,CA 542	SS36536	TMPG06-9.1,A 552
SMCG,J28C,CA542	SMCG,J160,A 538	SUF15G172	TMPG06-10,A 552
SMCG,J30,A538	SMCG,J160C,CA 542	SUF15J172	TMPG06-11,A 552
SMCG,J30C,CA542	SMCG,J170,A 538	SUF30G178	TMPG06-12,A552

TMPG06-13,A552	Т
TMPG06-15,A552	Т
TMPG06-16,A552	Т
TMPG06-18,A552	Т
TMPG06-20,A552	Т
TMPG06-22,A552	Т
TMPG06-24,A552	Т
TMPG06-27,A552	Т
TMPG06-30,A552	Т
TMPG06-33,A552	Т
TMPG06-36,A552	Т
TMPG06-39,A552	Т
TMPG06-43,A552	Т
TPSMA6.8,A506	Т
TPSMA7.5,A506	Т
TPSMA8.2,A506	Т
TPSMA9.1,A506	Т
TPSMA10,A506	Т
TPSMA11,A506	Т
TPSMA12,A506	Т
TPSMA13,A506	Т
TPSMA15,A506	Т
TPSMA16,A506	Т
TPSMA18,A506	Т
TPSMA20,A506	т
TPSMA22,A506	Т
TPSMA24,A506	Т
TPSMA27,A506	Т
TPSMA30,A506	U
TPSMA33,A506	υ
TPSMA36,A506	υ
TPSMA39,A506	U
TPSMA43,A506	ι
TPSMB6.8,A526	ι
TPSMB7.5,A526	ι
TPSMB8.2,A526	ι
TPSMB9.1,A526	ι
TPSMB10,A526	ι
TPSMB11,A526	ι
TPSMB12,A526	ι
TPSMB13,A526	ι
TPSMB15,A526	ι
TPSMB16,A526	ι
TPSMB18,A526	ι
TPSMB20,A526	ι
	-

PSMB22,A 52	6
PSMB24,A52	6
PSMB27,A 52	6
PSMB30,A 52	6
	6
PSMB36,A52	6
PSMB39,A 52	6
PSMB43,A52	6
PSMC6.8,A54	6
PSMC7.5,A54	
PSMC8.2,A54	6
PSMC9.1,A54	6
PSMC10,A54	6
PSMC11,A54	6
PSMC12,A54	
PSMC13,A54	6
PSMC15,A54	
PSMC16, A 54	6
PSMC18,A54	6
PSMC20,A54	
PSMC22,A54	
PSMC24,A54	
PSMC27,A54	6
PSMC30,A54	
PSMC33,A54	
PSMC36,A54	
PSMC39,A54	
PSMC43,A54	
F4001 17	
F400217	
F4003 17	
F4004 17	
F4005 17	
IF4006 17	
IF4007 17	
IF5400 17	
IF5401 17	
JF5402 17	
JF5403 17	
JF5404 17	-
JF5405 17	
JF5406 17	
JF54071	
JF5408 1	
JG06A 10	66

UG06B10	66
UG06C10	66
UG06D10	66
UG1A10	68
UG1B10	68
UG1C10	68
UG1D1	68
UG2A1	74
UG2B1	74
UG2C1	74
UG2D1	74
UG4A1	80
UG4B1	80
UG4C1	80
UG4D1	80
UG8AT1	90
UG8BT1	90
UG8CT1	90
UG8DT1	90
UG18ACT2	14
UG18BCT2	14
UG18CCT2	14
UG18DCT2	14
UG30APT2	18
UG30BPT2	18
UG30CPT2	18
UG30DPT2	18
UGF8AT1	88
UGF8BT1	88
UGF8CT1	88
UGF8DT1	88
UGF18ACT2	12
UGF18BCT2	12
UGF18CCT2	
UGF18DCT2	12
UGF30APT2	216
UGF30BPT2	216
UGF30CPT2	
UGF30DPT2	216
W005G4	110
W001G	1 10
W002G	
W004G	
W006G	410
W008G	410

QUALITY ASSURANCE

QUALITY ASSURANCE

CUSTOMER INFORMATION

INTRODUCTION

Quality and Reliability of the Power Semiconductor Division extends its services to the areas of materials and product analysis, statistical quality control, reliability evaluation, quality inspection and development of new test methods.

Headquartered in New York, it assumes the responsibility for the development, implementation and administration of the Quality Assurance and statistical quality control programs for all operations of the Division, both domestic and foreign.

At our manufacturing plants, rigid and extensive in-process statistical quality controls are utilized such that the quality and reliability of our products are consistent and repeatable. The laboratories of our facilities are equipped with the latest high-level instrumentation and staffed with skilled technicians and engineers.

Professional expertise and the most modern scientific equipment maintains our position of excellence and leadership as the foremost producer of semiconductor devices, and assures that the quality levels of our products, from inspection and test of raw materials to final approval of completed devices, meet the highest standards of the industry.

We offer

- Top-flight specialists and modern facilities.
- Experienced Test and Reliability Engineers.
- Statistical Quality Control.
- Fully equipped laboratories able to perform all types of scientific investigation.

SERVICES OF THE MATERIALS AND DEVICE ANALYSIS SECTION

- Testing, inspection and evaluation of materials utilizing the facilities of the electrical, mechanical, high-reliability and chemical analysis departments of our laboratories.
- Research and development of testing methods.
- Inspection of materials to ensure compliance by suppliers and contractors to specifications.
- Failure analysis to determine the cause of breakdown in materials or components.
- Qualification testing of military devices in accordance with applicable military specifications. The laboratories are qualified to perform testing to MIL-S-19500, MIL-STD-750, MIL-STD-202, and also are qualified to MIL-STD-883 tests under MIL-M-38510. Qualification approvals (QPL listing) were awarded by the United States, Canadian and West German Departments of Defense.

TEST CONDITIONS

OPERATING LIFE

Conditions: Rated voltage, rated current, for 1000 hours at rated maximum junction temperature

DC BLOCKING Conditions: Rated voltage for 1000 hours at rated maximum junction temperature in inert environment.

STORAGE LIFE

Conditions: Rated maximum ambient temperature for 1000 hours in inert environment

LEAD PULL

Conditions: Axial pull to destruction.

LEAD FATIGUE

Conditions: number of 90-degree bends with 0.5 kg weight attached to lead.

MOISTURE RESISTANCE

Conditions: 85 °C, 85% Relative Humidity for 1000 hours.

FLAMMABILITY

Conditions: Encapsulating compound, General Instrument's proprietary formulas, GI-4B or GI-5A is self-extinguishing, recognized and registered by Underwriters' Laboratories, U.S. under 94V-O rating.

SOLDERABILITY

Conditions: 95% coverage within 1.2 mm of device body.

TEMPERATURE CYCLING

Conditions: - 65 °C to +175 °C.

SHOCK Conditions: 5 blows of 1500g's.

VIBRATION (CONSTANT) Conditions 20 q's at 60 Hz ± 20 Hz.

ACCELERATION Conditions: 20,000 g's.

SALT ATMOSPHERE

Conditions: 5% solution for 24 hours at 40 °C.

HIGH RELIABILITY-TEST CAPABILITIES

• Barometric Pressure:

This equipment simulates low atmospheric pressure encountered in non-pressurized environments up to 200,000 feet.

Humidity:

This equipment evaluates units in an accelerated manner, and monitors the effects of their resistance to high humidity and heat conditions. Typical RH of 90 to 98% is achieved.

Salt (Spray) and Salt Atmosphere:

The equipment provides an accelerated laboratory corrosion test simulating the effects of seacoast atmospheres. Salt concentration and velocity per day can be maintained between 10,000 and 50,000 mgm/m2/day. Salt Atmosphere - Salt spray 5%- 20% salt solution.

Thermal Shock Temp.-Cycling:

This test determines the resistance of devices to exposure at extremely high and low temperatures. Chamber limits - 74°C to 250° C.

Mass Spectrometer Leak Detector (Fine Leak):

To determine the effectiveness (or the hermeticity) of the seal on devices with internal cavities which are evacuated or contain air or gas. Machine limits $1 - 10^{-9}$ to $10 - 10^{-6}$ atm.

Gross Leak:

Determine seal leak greater than 10 - 10 ⁻⁶ATM cc/Sec.

• Constant Acceleration:

Determines the effects of a centrifugal force on devices up to 700,000g under space environment (refrigerated vacuum).

Shock:

Subjects the devices to conditions resulting from sudden applied forces or abrupt changes in motion produced by rough handing, transportation or field operation from 10 to 4,500g.

Vibration Fatigue:

Tests the effects of vibration within the frequency range of 60 Hz at 0-70g.

Vibration Noise:

Measures the amount of electrical noise produced by the devices under vibration from 9-5kHz and 0-70g.

Non-Operating Life:

To determine the effects on devices at elevated temperatures. Temperature ranges up to 300 °C.

Operating Life Test:

To operate the devices under intended condition to screen and eliminate marginal devices and eliminate mortality.

- ♦ Steady State Operating Life
- Reverse Bias Operating Life
- Intermittent Operating Life

Solderability - Lead Integrity (Lead Tension):

Determine the solderability on all devices from 0 to 400 °C.

Lead Tension - Designed to check the capabilities of the devices to withstand straight pulls.

Lead integrity (bending stress):

Check the quality of leads, welds and seals of the devices to withstand bends under specific weights.

Lead integrity (lead torque):

Check the devices, leads and seals for resistance to twisting motion. Equipment limits from .5 cmkg to 100 mkg.

Hi-Power Microscopic Inspection:

Examine internal and external construction of our devices up to 600 times.

• Bond Strength:

This determines strength of lead bonding between the active area of the device and connecting packaging lead.

SCHOTTKY RECTIFIERS 0.6 TO 40 AMPERES

LOW CURRENT AXIAL SCHOTTKY RECTIFIERS

SB020 thru SB040	SB120 thru SB160	1N5817 thru 1N5819	SB320 thru SB360	1N5820 thru 1N5822	SB520 thru SB560
MPG06	DO-	204AL	DO-201AD	DO-201 AD	DO-201AD
0.6	1.0	1.0	3.0	3.0	5.0
SB020	SB120	1N5817	SB320	1N5820	SB520
SB030	SB1 30	1N5818	SB330	1N5821	SB530
SB040	SB140	1N5819	SB340	1N5822	SB540
	SB150		SB350		SB550
	SB160		SB360	1	SB560
	thru SB040 MPG06 0.6 SB020 SB030	thru thru SB040 SB160 MPG06 DO- 0.6 1.0 SB020 SB130 SB030 SB130 SB040 SB150	thru thru thru thru SB040 SB160 1/8619 MPG06 DO-204AL 0.6 1.0 1.0 SB020 SB120 1/8519 SB020 SB130 1/8518 SB040 SB140 1/8519 SB040 SB150 1/8519	thru thru thru thru thru SB040 SB160 1MS519 SB360 MP306 DO-204AL DO-201AD 0.6 1.0 1.0 3.0 SB020 SB120 1N5817 SB320 SB030 SB130 1N5818 SB330 SB040 SB140 1N5819 SB340 SB150 SB350 SB350	thru SB040 thru SB160 thru INSe19 thru SB360 thru INSe219 MP306 DO-204AL DO-201AD DO-201AD 0.6 1.0 1.0 3.0 SB020 SB120 1NS17 SB220 1NS622 SB030 SB130 1NS618 SB330 1NS621 SB040 SB140 1NS619 SB340 1NS622 SB150 SB350 SB350 SB350

MEDIUM CURRENT SCHOTTKY RECTIFIERS

TYPE	MBRF735 thru MBRF760	MBR735 thru MBR760	SBLF1030 thru SBLF1040	SBL1030 thru SBL1040	MBRF1 035 thru MBRF1 01 00	MBR1035 thru MBR10100	MBRF1635 thru MBRF1660	MBR1635 thru MBR1660		
PACKAGE	ITO-220AC	TO-220AC	ITO-220AC	TO-220AC	ITO-220AC	TO-220AC	ITO-220AC	TO-220AC		
BARRIER HEIGHT	HIGH	HIGH	LOW	LOW	HIGH	HIGH	HIGH	HIGH		
IO(A)	7.5	7.5	10.0	10.0	10.0	10.0	16.0	16.0		
VR=30(V)			SBLF1030	SBL1030						
VR=35(V)	MBRF735	MBR735			MBRF1035	MBR1 03 5	MBRF1635	MBR1635		
VR=40(V)			SBLF1040	SBL1040						
VR=45(V)	MBRF745	MBR745		-	MBRF1045	MBR1045	MBRF1645	MBR1645		
VR=50(V)	MBRF750	MBR750			MBRF1050	MBR1050	MBRF1650	MBR1 650		
VR=60(V)	MBRF760	MBR760			MBRF1060	MBR1060	MBRF1660	MBR1660		

SINGLE RECTIFIERS

G General Instrument

MEDIUM CURRENT SCHOTTKY RECTIFIERS

ТҮРЕ	SBLF1030CT thru SBLF1040CT	SBL1030CT thru SBL1040CT	MBRF1535CT thru MBRF1560CT	MBR1535CT thru MBR1560CT	SBLF1630CT thru SBLF1640CT	SBLF1630CT thru SBL1640CT	MBRF2035CT thru MBRF20100CT	MBR2535CT thru MBR20100CT	MBRF2535C7 thru MBRF2560CT	MBR2535CT thru MBR2560CT	
PACKAGE	ITO-220AB	TO-220AB	ITO-220AB	TO-220AB	ITO-220AB	TO-220AB	ITO-220AB	TO-220AB	ITO-220AB	TO-220AB	
BARRIER HEIGHT	LOW	LOW	HIGH	нідн	LOW	LOW	нюн	HIGH	HIGH	HIGH	
IO(A)	10.0	10.0	15.0	15.0	16.0	16.0	20.0	20.0	30.0	30.0	
VR=30(V)	SBLF1030CT	SBL1030CT			SBLF1630CT	SBL1630CT					
VR=35(V0			MBRF1535CT	MBR1535CT			MBRF2035CT	MBR2035CT	MBRF2535CT	MBR2535CT	
VR=40(V)	SBLF1040CT	SBL1040CT			SBLF1640CT	SBL1640CT					
VR=45(V)			MBRF1545CT	MBR1545CT			MBRF2045CT	MBR2045CT	MBRF2545CT	MBR2545CT	
VR=50(V)			MBRF1550CT	MBR1550CT			MBRF2050CT	MBR2050CT	MBRF2550CT	MBR2550CT	
VR=60(V)			MBRF1560CT	MBR1560CT			MBRF2060CT	MBR2060CT	MBRF2560CT	MBR2560CT	

DUAL RECTIFIERS

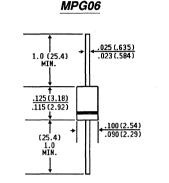
MEDIUM CURRENT SCHOTTKY RECTIFIERS

				DUAL N		10 0000	•		
ТУРЕ	SBLF2030PT thru SBLF2040PT	SBL2030PT thru SBL2040PT	SBLF3030PT thru SBLF3040PT	SBL3030PT thru SBL3040PT	MBRF3035PT thru MBRF3060PT	MBR3035PT thru MBR3060PT	SD241 P	MBRF4035PT thru MBRF4060PT	MBR4035PT thru MBR4060PT
PACKAGE	ITO-3P	TO-247AD	ITO-3P	TO-247AD	ITO-3P	TO-247AD	TO-247AD	ITO-3P	TO-247AD
BARRIER HEIGHT	LOW	LOW	LOW	LOW	HIGH	HIGH	HIGH	HIGH	HIGH
IO(A)	20.0	20.0	30.0	30.0	30.0	30.0	30.0	40.0	40.0
VR=30(V)	SBLF2030PT	SBL2030PT	SBLF3030PT	SBL3030PT					
VR=35(V)					MBRF3035PT	MBR3035PT		MBRF4035PT	MBR4035PT
VR=40(V)	SBLF2040PT	SBL2040PT	SBLF3040PT	SBL3040PT					
VR=45(V)					MBRF3045PT	MBR3045PT	SD241P	MBRF4045PT	MBR4045PT
VR=50(V)					MBRF3050PT	MBR3050PT		MBRF4050PT	MBR4050PT
VR=60(V)					MBRF3060PT	MBR3060PT		MBRF4060PT	MBR4060PT

DUAL RECTIFIERS CONT.

GD General Instrument

•


AXIAL PLASTIC SCHOTTKY RECTIFIERS 0.6 TO 5.0 AMPERES

SB020 THRU SB040

MINIATURE LOW CURRENT SCHOTTKY BARRIER RECTIFIER VOLTAGE - 20 to 40 Volts CURRENT - 0.6 Amperes

FEATURES

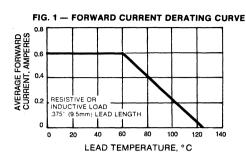
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss,
- high efficiency
 High current capability. low VF
- High surge capacity
- Epitaxial construction
- Guardring for transient protection
- For use in low voltage, high frequency inverters,
- free wheeling, and polarity protection applications • High temperature soldering guaranteed:
- 250°C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs. (2.3 kg) tension

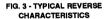
MECHANICAL DATA

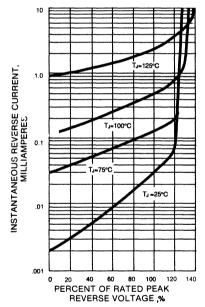
Dimensions in inches and (millimeters) Case: Molded Plastic Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0064 ounces, 0.181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

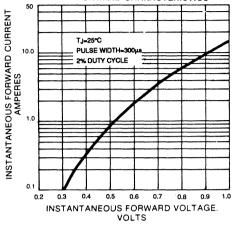
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

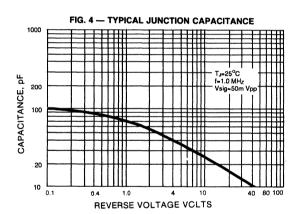

		SYMBOLS	SB020	SB030	SB040	UNITS
Maximum Recurrent Peak Reverse Vo	Maximum Recurrent Peak Reverse Voltage			30	40	Volts
Maximum RMS Voltage		VRMS	14	21	28	Volts
Maximum DC Blocking Voltage	locking Voltage			30	40	Volts
Maximum Average Forward Rectified C (9.5mm) Lead Length $T_L=60^{\circ}C$	I(AV)		Amps			
Peak Forward Surge Current, 8.3ms si half sine-wave superimposed on rated						
(JEDEC Method) T _L =70°C		IFSM	20.0			Amps
Maximum Instantaneous Forward Volta at 0.6A	Maximum Instantaneous Forward Voltage at 0.6A		0.55			Volts
Maximum Instantaneous Reverse Curr	ent at					
Rated DC Blocking (NOTE 2)	Ta=25°C	IR		0.5		mA
	Ta=100°C	I _R		10.0		mA
Typical Thermal Resistance (NOTE 1)		Røja		46.0		°C/W
Operating Junction Temperature Rang	Operating Junction Temperature Range		-55 to +125			°C
Storage Temperature Range		T _{STG}	-55 to +150			°C

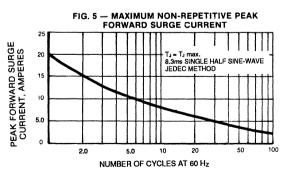

NOTES:

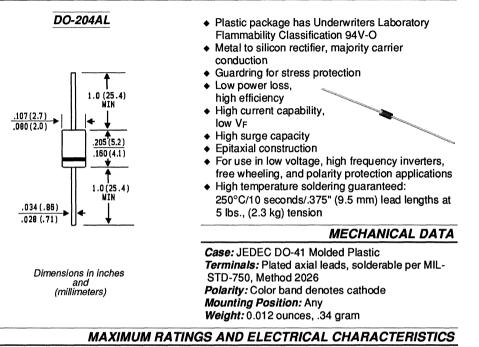

 Thermal Resistance from Junction to Ambient Vertical P.C. Board Mounting, 0.5", 1.27mm Lead Length with 1.5" sq. (38.1mm²) copper pads.

2. Pulse Test: Pulse width=300µs, Duty Cycle=2%.


RATINGS AND CHARACTERISTIC CURVES SB020 THRU SB040







G General Instrument

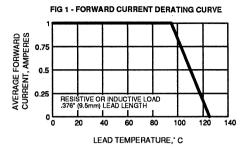
1N5817 THRU 1N5819

MINIATURE SCHOTTKY BARRIER RECTIFIERS VOLTAGE - 20 to 40 Volts CURRENT - 1.0 Ampere

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	1N5817	1N5818	1N5819	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	Volts
Maximum RMS Voltage	VRMS	14	21	28	Volts
* Maximum DC Blocking Voltage	VDC	20	30	40	Volts
* Maximum Non-Repetitve Peak Reverse Voltage	VRSM	24	36	48	Volts
* Maximum Average Forward Rectified Current					
.375", 9.5mm Lead Length at TL=90°C	I(AV)		1.0		Amps
* Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)					
$T_L = 70^{\circ}C$	IFSM		25.0		Amps
* Maximum Forward Voltage at 1.0A	VF	.450	.550	.600	Volts
* Maximum Forward Voltage at 3.1A	VF	.750	.875	.900	Volts
* Maximum Instantaneous Reverse Current at					
Rated DC Reverse Voltage (NOTE 3) TA=25°C	IR		1.0		mA
Ta=100°C			10.0		
Typical Thermal Resistance (NOTE 1)	Rejl	15.0			°C/W
Typical Junction Capacitance (NOTE 2)	CJ	110.0			pF
* Storage and Operating JunctionTemperature Range	TJ,TSTG	-65 to +125			°C


NOTES: 1. Thermal Resistance from Junction to Lead, PC Board Mounting with .375(9.5mm) Lead Lengths and 1.5 in² (38.1 mm²) copper pads.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Pulse Test: 300µs Pulse Width, 2.% Duty Cycle.

*JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N5817 THRU 1N5819

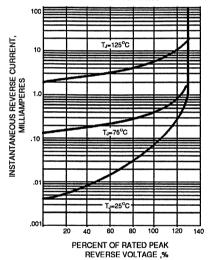
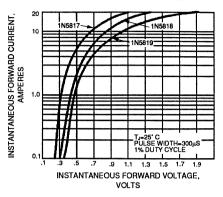
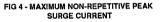
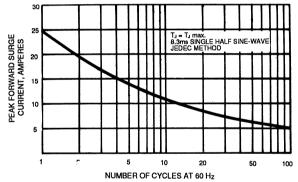
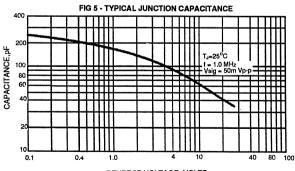
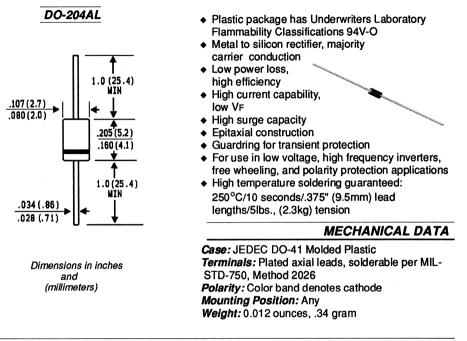






FIG 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS


REVERSE VOLTAGE, VOLTS

(D) General Instrument

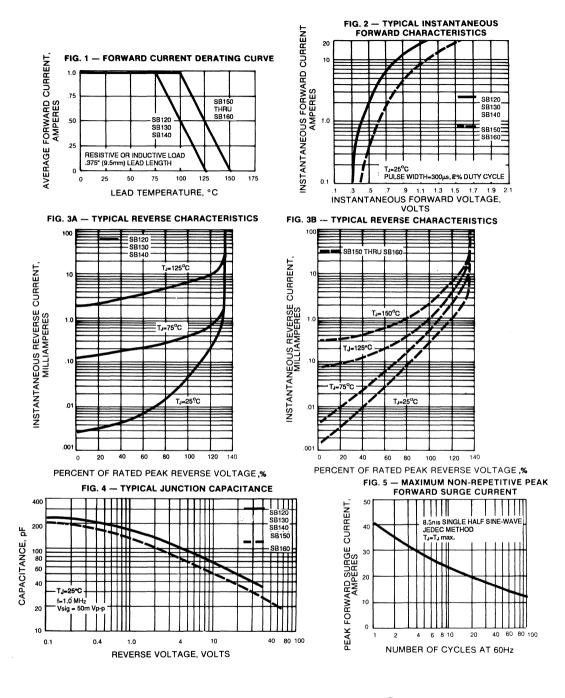
SB120 THRU SB160

MINIATURE SCHOTTKY BARRIER RECTIFIER VOLTAGE RANGE - 20 to 60 Volts CURRENT - 1.0 Ampere

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOL	S SB120	SB130	SB140	SB150	SB160	UNITS
Maximum Recurrent Peak Reverse Voltage		20	30	40	50	60	Volts
Maximum RMS Voltage		14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Length See Fig.1	I(AV)			1.0		:	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)			40.0				
Maximum Instantaneous Forward Voltage at 1.0A (NOTE 2)			0.50 0.70			70	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage (NOTE 2) TA=25°C TA=100°C	l _R I _R		0.5			0	mA mA
Typical Thermal Resistance (NOTE 1)	Rejl		15.0			°C/W	
Operating Junction Temperature Range	TJ		-65 to +1	25	-65 to	+150	°C
Storage Temperature Range				65 to +1	50		°C

NOTES:

1. Thermal Resistance Junction to Lead P.C. Board Mounting .375" (9.5 mm) Lead Lengths.

2.Pulse Test: Pulse Width=300µs, Duty Cycle=2.0%.

RATINGS AND CHARACTERISTIC CURVES SB120 THRU SB160

(D) General Instrument

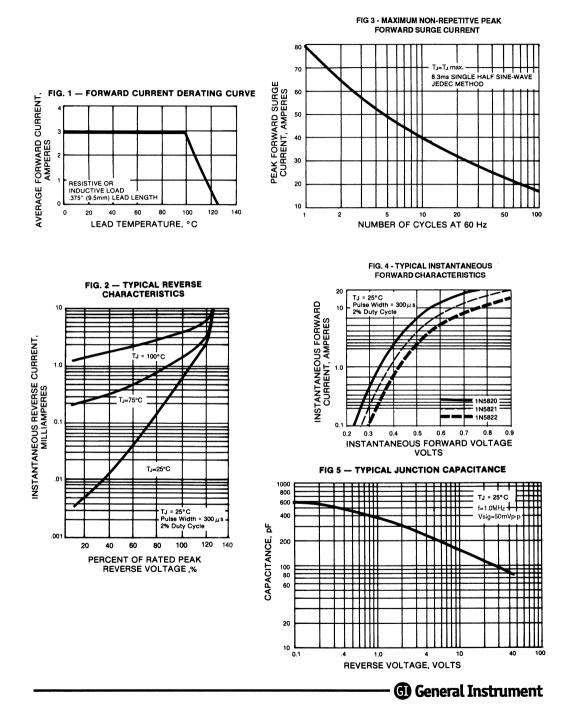
1N5820 THRU 1N5822

MEDIUM CURRENT SCHOTTKY BARRIER RECTIFIER VOLTAGE -20 to 40 Volts CURRENT - 3.0 Amperes

FEATURES Plastic package has Underwriters Laboratory ٠ Flammability Classification 94V-O DO-201AD Metal to silicon rectifier, majority carrier conduction Low power loss, high efficiency High current capability, low VF .210 (5.3) .190 (4.8) High surge capacity 1.0 (25.4) DIA. Epitaxial construction MIN. Guardring for transient protection For use in low voltage, high frequency inverters. free wheeling, and polarity protection applications .375 (9.5) .285 (7.2) High temperature soldering guaranteed: 250°C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs. (2.3 ka) tension 1.0 (25.4) MIN. **MECHANICAL DATA** .052(1.3) Case: JEDEC DO-201AD Molded Plastic 048 (1.2) Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Dimensions in inches Mounting Position: Anv and Weight: 0.04 ounces, 1.12 gram (millimeters) MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

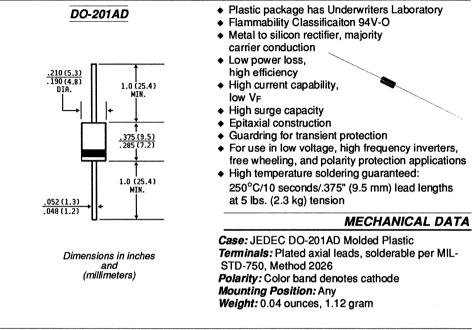
	SYMBOLS	1N5820	1N5821	1N5822	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	Volts
Maximum RMS Voltage		14	21	28	Volts
* Maximum DC Blocking Voltage		20	30	40	Volts
* Non-Repetitve Peak Reverse Voltage	VRSM	24	36	48	Volts
* Maximum Average Forward Rectified Current					
.375", 9.5mm Lead Length at TL=95°C	l(AV)		3.0		Amps
* Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load					
(JEDEC Method) atTL=75°C	IFSM		80.0		Amps
* Maximum Instantaneous Forward Voltage at 3.0 (NOTE 1)	VF	.475	.500	.525	Volts
* Maximum Instantaneous Forward Voltage at 9.4 (NOTE 1)	VF	.850	.900	.950	Volts
* Maximum Average Reverse Current at Rated					
DC Blocking Voltage TA=25°C	IR		2.0		mA
(NOTE 1) TA=100°C	IR		20.0		mA
Typical Thermal Resistance (NOTE 2)	Rejl		20.0		°C/W
* Storage and Operating Junction Temperature Range			-65 to +125	5	°C


NOTES:

1. Pulse Test: Pulse Width=300µs, Duty Cycle=2%.

Thermal Resistance from Junction to Lead Vertical PC Board Mounting, .500" (12.7 mm) Lead Length with 2.5" sq. (63.5mm²) copper pads.

*JEDEC registered values


RATINGS AND CHARACTERISTIC CURVES 1N5820 THRU 1N5822

SB320 THRU SB360

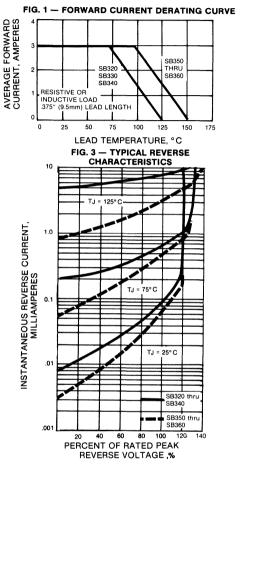
MEDIUM CURRENT SCHOTTKY BARRIER RECTIFIER VOLTAGE - 20 to 60 Volts CURRENT - 3.0 Amperes

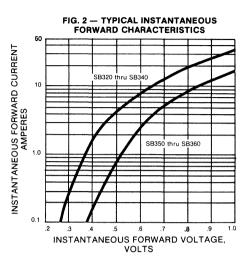
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	SB320	SB330	SB340	SB350	SB360	UNITS
Maximum Recurrent Peak Reverse Voltage		20	30	40	50	60	Volts
Maximum RMS Voltage		14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current at .375", 9.5mm Lead Length (see Fig. 1)	I(AV)			3.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	80.0					Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF	.50 .74			4	Volts	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			0.5 20.0				mA mA
Typical Thermal Resistance (NOTE 1)	RØJL	20	20.0 10.0		.0	°C/W	
Operating Junction Temperature Range			-65 to +1	25	-65 to	+150	°C
Storage Temperature Range			-65 to +150			°C	


NOTES:


1. Thermal Resistance from Junction to Lead Vertical P.C. Board Mounting, .500" (12.7 mm) Lead Length with 2.5"sq.

(63.5mm²) copper pads.

2. Pulse Test: Pulse Width=300µs, Duty Cycle=2%.

RATINGS AND CHARACTERISTIC CURVES SB320 THRU SB360

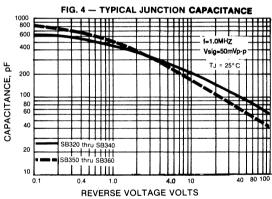
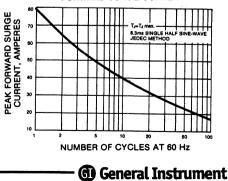



FIG. 5 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

SB520 THRU SB560

HIGH CURRENT SCHOTTKY BARRIER RECTIFIERS

VOLTAGE - 20 to 60 Volts CURRENT - 5.0 Amperes

DO-201AD

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- Guardring for transient protection
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.375" (9.5 mm) lead lengths at 5 lbs., (2.3 kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD Molded Plastic *Terminals:* Plated axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.04 ounces, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

L		SYMBOLS	S SB520	SB530	SB540	SB550	SB560	UNITS
Maximum Recurrent Peak Revers	se Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS Voltage		VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage		VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current .375", 9.5mm Lead Length See Fig.1		I(AV)			5.0			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at rated T _L		IFSM			150.0			Amps
Maximum Instantaneous Forward	Voltage at 5.0A	VF	0.5	55		0.6	67	Volts
Maximum Instantaneous Reverse	Ourrent at							
Rated DC Blocking Voltage	Ta=25°C	IR			0.5			mA
(NOTE 2)	Ta=100°C	IR			50.0	2!	5.0	mA
Typical Thermal Resistance (NOTE 1)		Rejl	15	.0		10	.0	°C/W
Operating Junction Temperature	Operating Junction Temperature Range		-65 to	+125		-65 to	+150	°C
Storage Temperature Range		Tstg		-	65 to +15	50		°C

NOTES:

1. Thermal Resistance Junction to Lead Vertical P.C. Board Mounting, .375" (9.5mm) Lead Length.

2. Pulse Test: Pulse Width=300µs, Duty Cycle=2%.

RATINGS AND CHARACTERISTIC CURVES SB520 THRU SB560

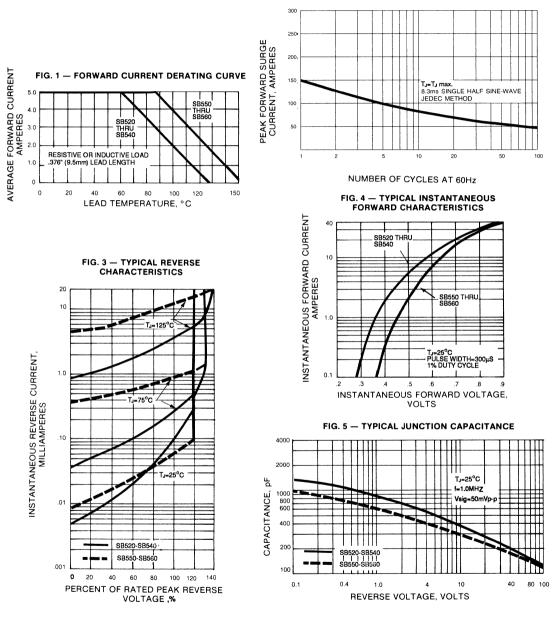
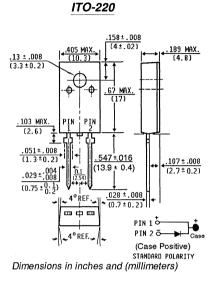


FIG. 2 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

MEDIUM CURRENT SCHOTTKY RECTIFIERS 7.5 TO 40.0 AMPERES

SEE NEW ISOLATED PACKAGES



MBRF735 AND MBRF745

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 7.5 Amperes

FEATURES

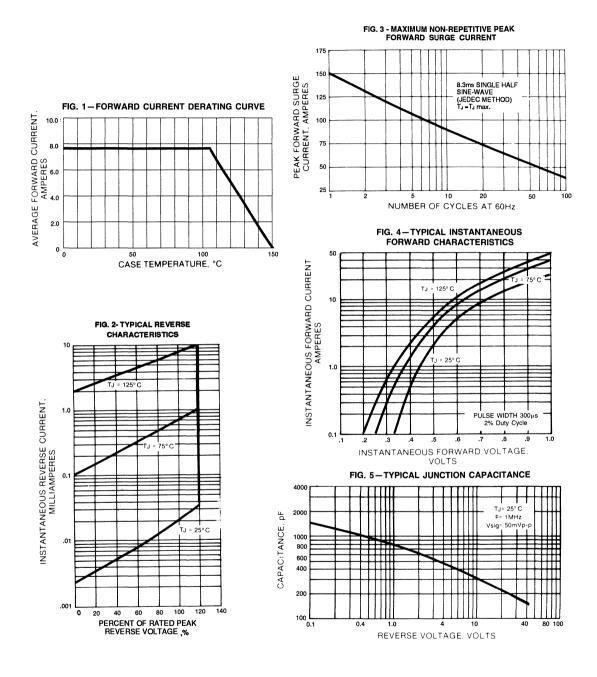
- Isolated plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection
- Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-220 Fully Overmolded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in.- lb. max. Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

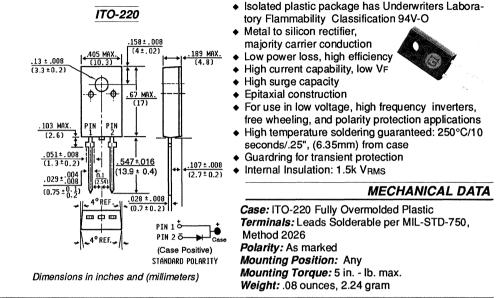

	SYMBOLS	MBRF735	MBRF745	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWS	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=105^{\circ}C$	I(AV)	7.5		Amps
Peak Repetitive Forward Current (Square Wave, 20 KHz) at $T_C=105^{\circ}C$	IFRM	1!	5.0	Amps
Peak Forward Surge Current,8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
$ \begin{array}{ll} \mbox{Maximum Instantaneous} & I_{F}=7.5A, T_{C}=125^{\circ}C \\ \mbox{Forward Voltage at} & I_{F}=15A, T_{C}=125^{\circ}C \\ \mbox{I}_{F}=15A, T_{C}=25^{\circ}C \\ \end{array} $	VF	0.	57 72 84	Volts
Maximum Instantaneous Reverse Current $T_{C}=125^{\circ}C$ at Rated DC Blocking Voltage (NOTE 2) $T_{C}=25^{\circ}C$	I _R	15.0 0.1		mA mA
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (NOTE 1)	Røjc	3.5		°C/W
Operating Junction Temperature Range	TJ	-65 to +150		°C
Storage Temperature Range	T _{STG}	-65 to	+175	°C

NOTES: 1. Thermal Resistance Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF735 AND MBRF745



MBRF750 AND MBRF760

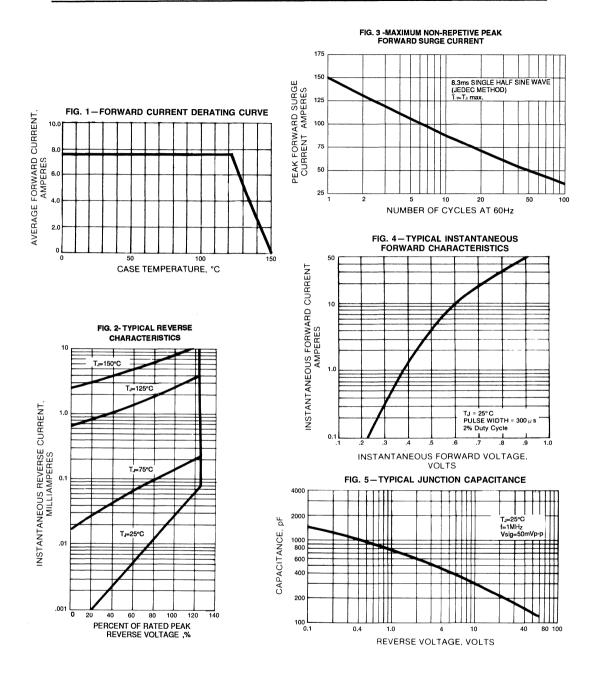
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 7.5 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBRF750	MBRF760	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	7.5		Amps
Peak Repetitive Forward Current (Square Wave, 20 KHz) at $T_C \mbox{=} 125^\circ \mbox{C}$	IFRM	1	5.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	0.5		Amps
Maximum InstantaneousIF=7.5A, TC=125°CForward Voltage at (NOTE 2)IF=7.5A, TC=25°C	VF	0.65 0.75		Volts
Maximum Instantaneous Reverse Current at T _C =125°C Rated DC Blocking Voltage (NOTE 2) T _C =25°C	I _R	50.0 0.5		mA mA
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (NOTE 1)	Røjc	3.5		°C/W
Operating Junction Temperature Range	TJ	-65 to +150		°C
Storage Temperature Range	TSTG	-65 to	o +175	°C

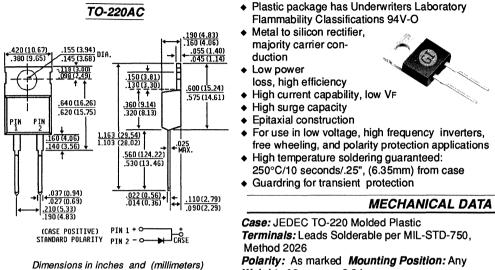

NOTES:

1. Thermal Resistance Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF750 AND MBRF760



MBR735 AND MBR745

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 7.5 Amperes

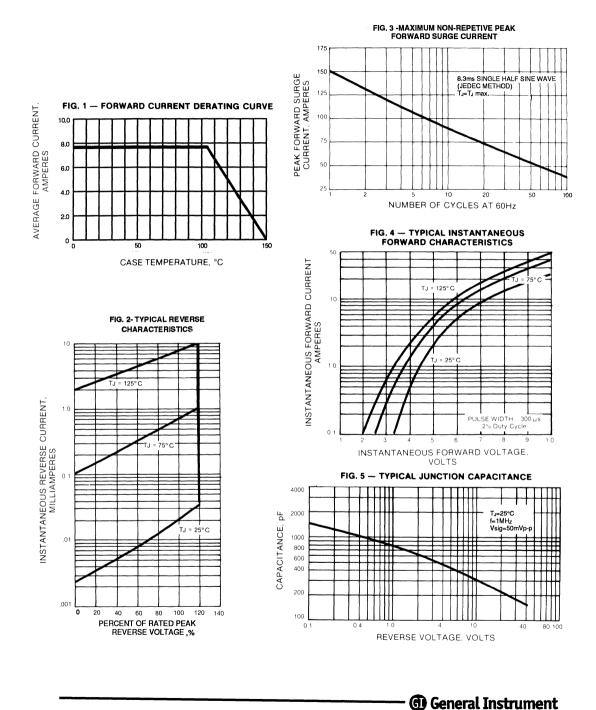
FEATURES

(millimeters) Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR735	MBR745	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T _C =105°C	l(AV)	7.5		Amps
Peak Repetitive Forward Current(Square Wave, 20 KHz) at $T_C=105^{\circ}C$	IFSM	15.0		Amps
Peak Foward Surge Current,8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
$\begin{array}{ll} \mbox{Maximum Instantaneous} & I_F=7.5A, T_C=125^\circ C \\ \mbox{Forward Voltage at} & I_F=15A, T_C=125^\circ C \\ \mbox{I}_F=15A, T_C=25^\circ C \\ \end{array}$	VF	0	57 72 84	Volts
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	IR	-	5.0 0.1	mA mA
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Maximum Thermal Resistance, (NOTE 1)	Rejc	3.0		°C/W
Operating Junction Temperature Range	TJ	-65 to +150		°C
Storage Temperature Range	T _{STG}	-65 to +175		°C

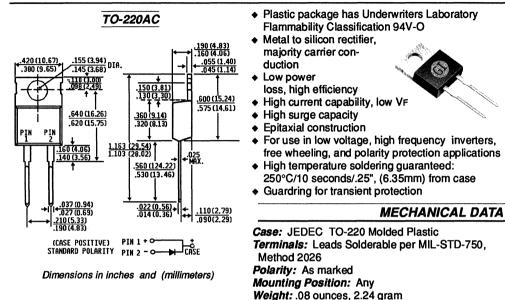

NOTES:

1. Thermal Resistance Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs, 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR735 AND MBR745


45

MBR750 AND MBR760

SCHOTTKY RECTIFIER

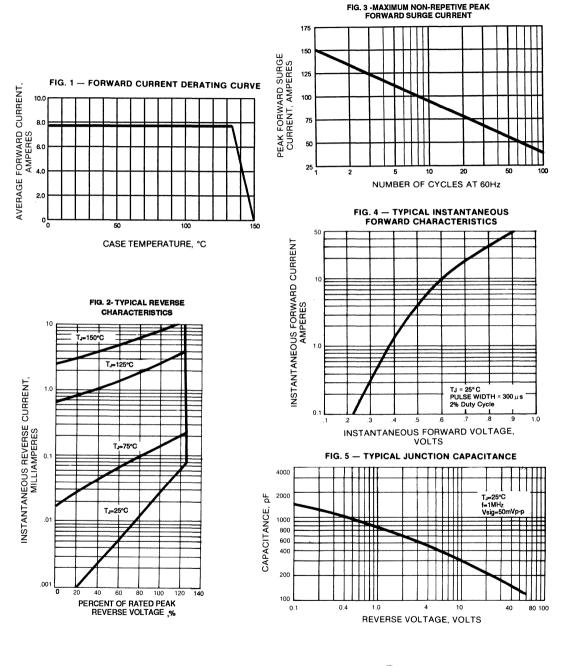
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 7.5 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

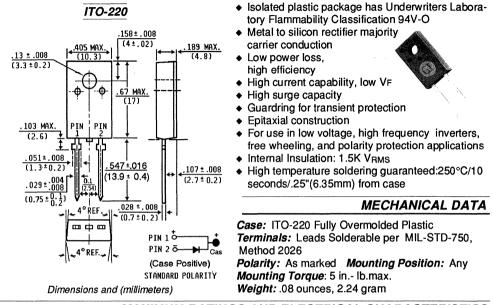
	SYMBOLS	MBR750	MBR760	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	Vrws	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_C=125$ °C	l(AV)	7.5		Amps
Peak Repetitive Forward Current (Square Wave, 20 KHz) at T _C =125°C	IFRM	15.0		Amps
Peak Forward Surge Current, 8.3ms single half sine- -wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	0.5		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	0.65 0.75		Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage (NOTE 2) Tc=125°C	IR	-	0.5 0.0	mA mA
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance (NOTE 1)	Rejc	3.0		°C/W
Operating Junction Temperature Range	Tj	-65 to +150		°C
Storage Temperature Range	T _{STG}	-65 to	o +175	°C


NOTES:

1. Thermal Resistance from Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

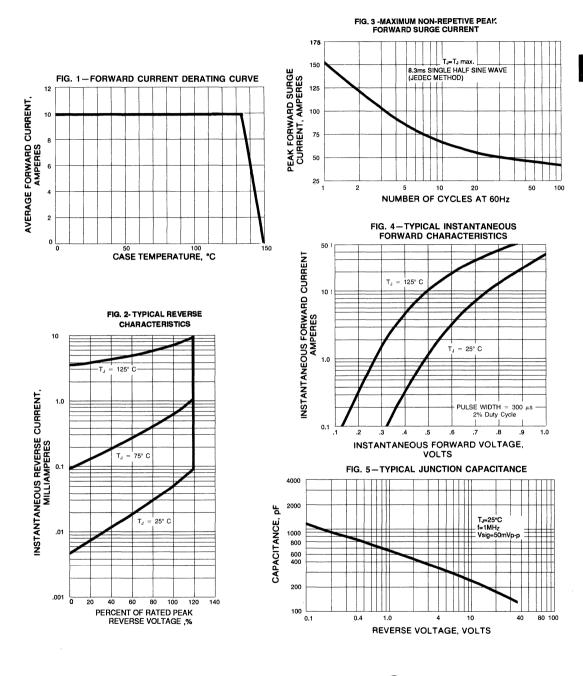
3. 2µs Pulse Width, f=1.0 KHz.


RATINGS AND CHARACTERISTIC CURVES MBR750 AND MBR760

MBRF1035 AND MBRF1045

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 10.0 Amperes

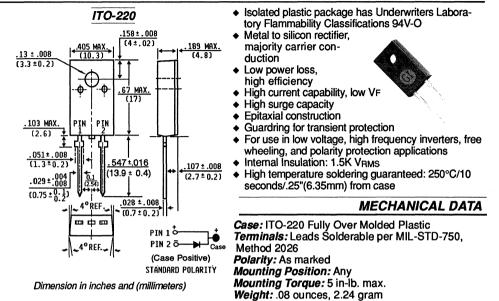

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBRF1035	MBRF1045	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWS	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at Tc=135°C	I(AV)	10.0		Amps
Peak Repetitive Forward Current, (Square Wave 20 KHz) at T _C =135°C	IFSM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	15	0.0	Amps
Peak Repetitive Reverse Surge Current (NOTE 2))	IRSM	1.0		Amps
Voltage Rate of Change at (rated V _R)	dv/dt	1000		V/µs
Maximum Instantaneous Forward Voltage at (NOTE 1) I _F =10A, T _C =125°C I _F =20A, T _C =125°C I _F =20A, T _C =25°C	VF	0.57 0.72 0.84		Volts
Maximum Instantaneous Reverse Current at DC Blocking Voltage (NOTE 1) T _C =125°C T _C =25°C	l _R		5.0).1	mA mA
Typical Thermal Resistance, Junction to Case	Røjc	2.2		°C/W
Operating Junction Temperature Range	TJ	-65 to +150		°C
Storage Temperature Range	T _{STG}	-65 te	o +175	°C

NOTES: 1. Pulse Test: Pulse Width 300µs, Duty Cycle 2%. 2. 2.0µs Pulse Width, f=1.0KHz.

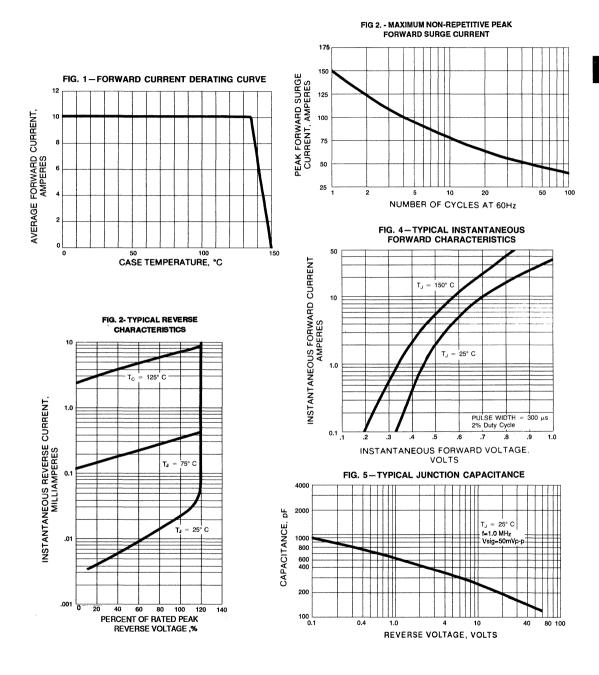
RATINGS AND CHARACTERISTIC CURVES MBRF1035 AND MBRF1045


(iii) General Instrument

MBRF1050 AND MBRF1060

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT -10.0 Amperes

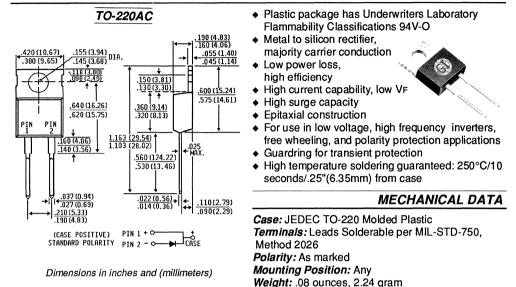


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	MBRF1050	MBRF1060	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	60	Volts
Maximum Working Peak Reve	rse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	9	VDC	50	60	Volts
Maximum Average Forward Rec	tified Current at Tc=133°C	I(AV)	1	0.0	Amps
Peak Repetitive Forward Current, (Square Wave 20 KHz) at Tc=133°C		IFRM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave su on rated load (JEDEC Method		IFSM	15	0.0	Amps
Peak Repetitive Reverse Surge Current (NOTE 2)		IRRM	0.5		Amps
Voltage Rate of Change (rated	IV _R)	dv/dt	1000		V/µs
Maximum Instantaneous Forward Voltage at (NOTE 1)	IF=1.0A, T _C =25°C IF=10A, T _C =125°C IF=20A, T _C =125°C IF=20A, T _C =25°C	VF	0	80 70 85 95	Volts
Maximum Instantaneous Reve DC Block Voltage (NOTE 1)	erse Current at Rated T _C =125°C T _C =25°C	IR	-	0.0 .15	mA mA
Typical Thermal Resistance, J	unction to Case	Rejc	2	2.2	°C/W
Operating Junction Temperatu	ire Range	TJ	-65 to +150		°C
Storage Temperature Range		TSTG	-65 t	o +175	°C

NOTES: 1. Pulse Test Pulse Width 300µs, Duty Cycle 2%. 2. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF1050 AND MBRF1060

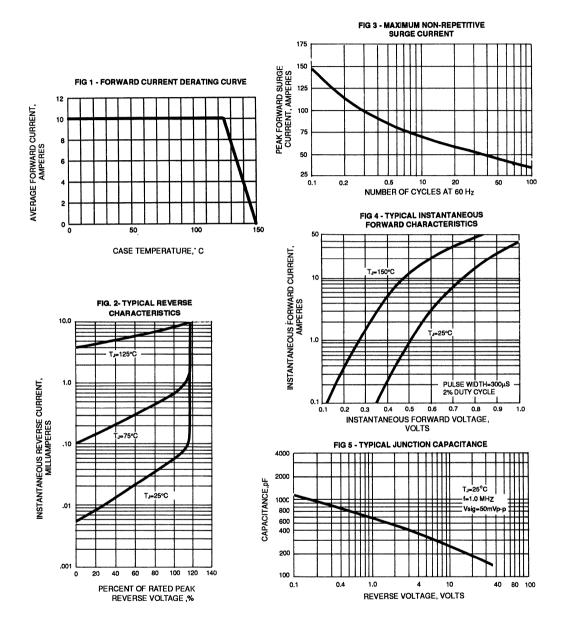

(ii) General Instrument

MBR1035 AND MBR1045

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 10.0 Amperes

FEATURES

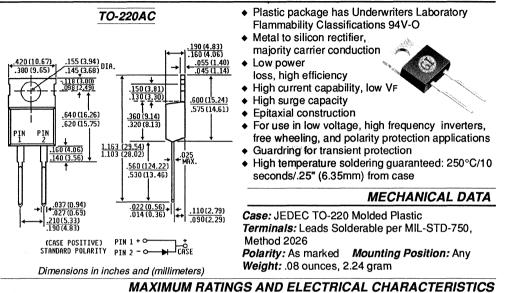

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR1035	MBR1045	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T _C =125°C	I(AV)	10.0		Amps
Peak Repetitive Forward Current, (Square Wave 20 KHz) at T _C =135°C	İfsm	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 2)	IRRM	1.0		Amps
Voltage Rate of Change at (rated V _R)	dv/dt	1000		V/µs
$\begin{array}{ll} \mbox{Maximum Instantaneous} & I_F=10A, \ T_C=125^\circ C \\ \mbox{Forward Voltage (NOTE 1)} & I_F=20A, \ T_C=125^\circ C \\ \ I_F=20A, \ T_C=25^\circ C \end{array}$	VF	0	57 72 84	Volts
	I _R		5.0).1	mA mA
Maximum Thermal Resistance, Junction to Case	RejC	2.0		°C/W
Operating Junction Temperature Range	Tj	-65 to +150		°C
Storage Temperature Range	T _{STG}	-65 te	o +175	°C

NOTES: 1. Pulse Test: Pulse Width 300µs, Duty Cycle 2%. 2. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1035 AND MBR1045



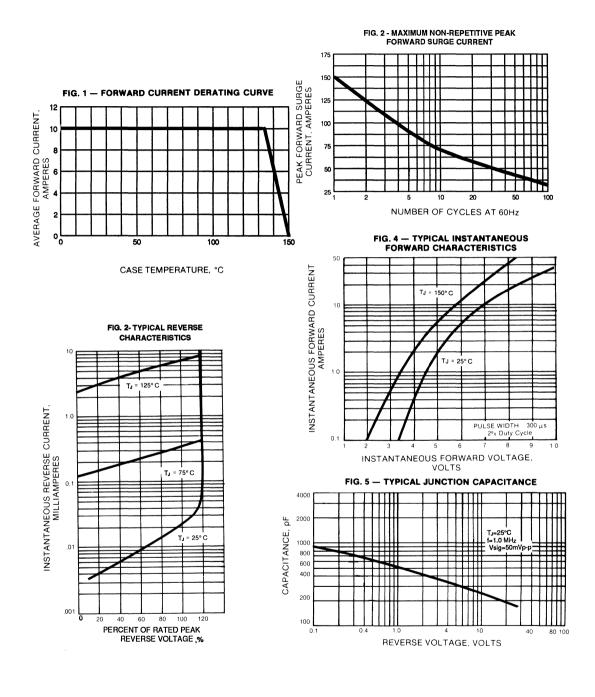
MBR1050 AND MBR1060

SCHOTTKY RECTIFIER

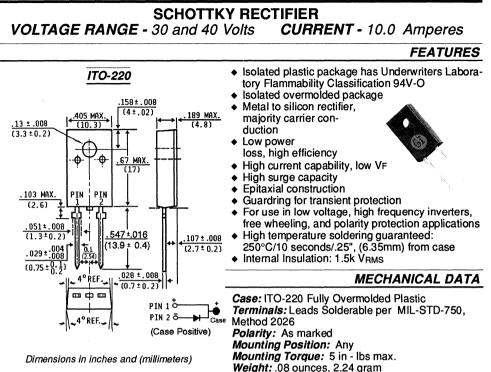
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 10.0 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


		SYMBOLS	MBR1050	MBR1060	UNITS
Maximum Recurrent Peak Rev	verse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reven	se Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage		VDC	50	60	Volts
Maximum Average Forward Rectified Current Tc=133°C		I(AV)	10.0		Amps
Peak Repetitive Forward Current , (Square Wave 20 KHz) at Tc=133°C		IFSM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)		Ігям	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 2)		IRRM	0.5		Amps
Voltage Rate of Change at (rat	ed V _R)	dv/dt	1000		V/µs
Maximum Instantaneous Forward Voltage (NOTE 1)	IF=10A, T _C =25°C IF=10A, T _C =125°C IF=20A, T _C =125°C IF=20A, T _C =25°C	VF	0. 0.	80 70 85 95	Volts
Maximum Instantaneous Reve DC Blocking Voltage (NOTE 1)	rse Current at rated T _C =125°C T _C =25°C	IR).0 15	mA mA
Maximum Thermal Resistance, Junction to Case		Røjc	2.0		°C/W
Operating Junction Temperatu	re Range	TJ	-65 to +150		°C
Storage Temperature Range		TSTG	-65 to	o +175	°C

NOTES:


1. Pulse Test: Pulse Width 300µs, Duty Cycle 2%.

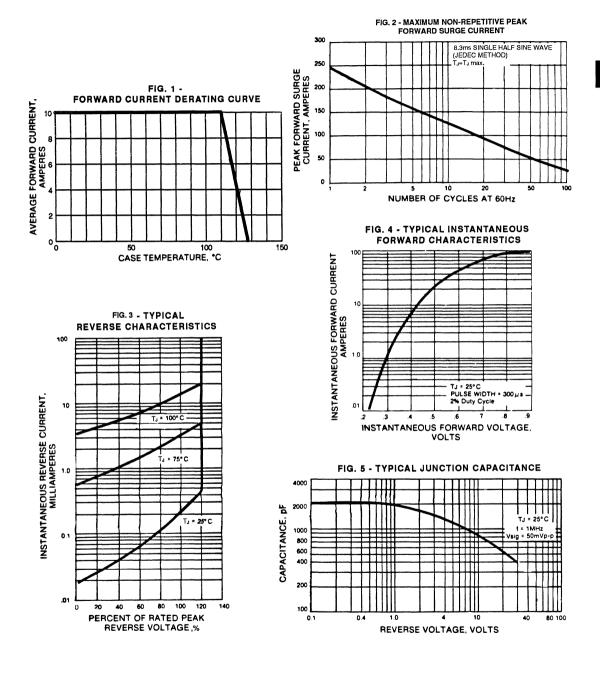
2. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1050 AND MBR1060

SBLF1030 AND SBLF1040

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

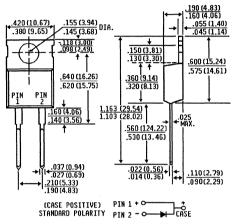

	SYMBOLS	SBLF1030	SBLF1040	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current	I(AV)	l(AV) 10.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage IF=10A, (NOTE 2)	VF	0.60		Volts
Maximum Average Reverse Current at Tc=25°C rated DC Blocking Voltage per leg (NOTE 2) Tc=100°C				mA
Typical Thermal Resistance (NOTE 1)	RØJC	3.5		°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG	-40 to +125		°C

NOTES:

1. Thermal Resistance from Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF1030 AND SBLF1040


SBL1030 AND SBL1040

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10.0 Amperes

FEATURES

TO-220AC

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
 - Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection

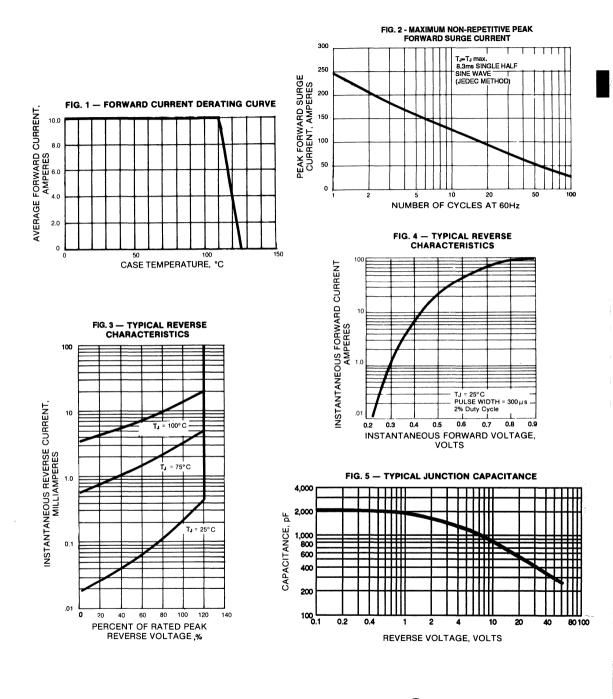
MECHANICAL DATA

Case: JEDEC TO-220 Molded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Weight: .08 ounces, 2.24 gram

CROSS REFERENCE GUIDEGIFUJISHINDENGENSBL1040ERC62-004S5S4MSBL1030---S5S3M

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

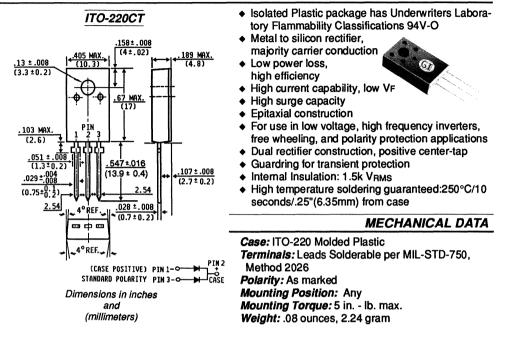

	SYMBOLS	SBL1030	SBL1040	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at T _C =110°C	I(AV)	10.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage at IF=10A, Tc=25°C (NOTE 2)	VF	0.60		Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage (NOTE 2) Tc=100°C	IR	1.0 50.0		mA
Typical Thermal Resistance (NOTE 1)	RøJC	3.0		°C/W
Operating and Storage Temperature Range	TJ,TSTG	-40 to +125		°C

NOTES:

1. Thermal Resistance from Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

RATINGS AND CHARACTERISTIC CURVES SBL1030 AND SBL1040



SBLF1030CT AND SBLF1040CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	SBLF1030CT	SBLF1040CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at Tc=95°C	I(AV)	10.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175.0		Amps
Maximum Instantaneous Forward Voltage Per Leg at IF=5.0A, Tc=25°C (NOTE 2)	VF	0.55		Volts
Maximum Instantaneous Reverse Current at Tc =25°C rated DC Blocking Voltage per leg (NOTE 2) 00°C	IR	0.5 50.0		mA
Typical Thermal Resistance per element (NOTE 1)	ReJC	3.5		°C/W
Operating and StorageTemperature Range	TJ, TSTG	-40 to +125		°C

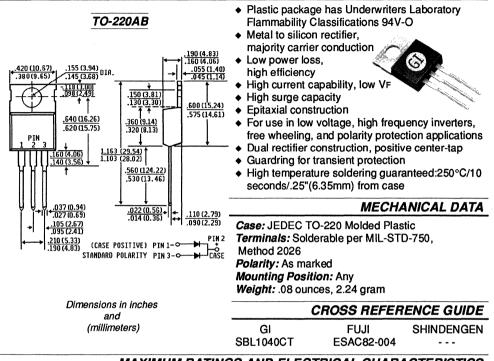
Notes:

1. Thermal Resistance from Junction to Case per element.

2. Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

RATINGS AND CHARACTERISTIC CURVES SBLF1030CT AND SBLF1040CT

G General Instrument


.

SBL1030CT AND SBL1040CT

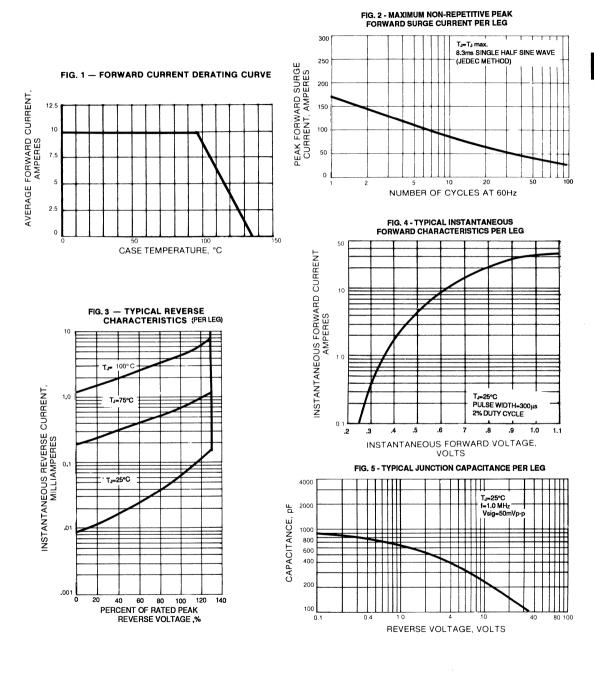
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 10.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

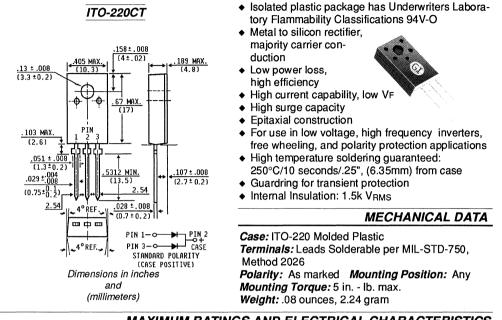

	SYMBOLS	SBL1030CT	SBL1040CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at T _C =95°C	I(AV)	10.0		Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175.0		Amps
Maximum Instantaneous Forward Voltage Per Leg at IF=5.0A,Tc=25°C (NOTE 2)	VF	0.	.55	Volts
Maximum Instantaneous Reverse Current at Tc=25 rated DC Blocking Voltage per leg (NOTE 2) Tc=10		0.5 50.0		mA
Typical Thermal Resistance per leg (NOTE 1)	RejC	3	3.0	°C/W
Operating Junction and Storage Temperature Range	T _{J,TSTG}	-40 te	o +125	°C

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

RATINGS AND CHARACTERISTIC CURVES SBL1030CT AND SBL1040CT



MBRF1535CT AND MBRF1545CT

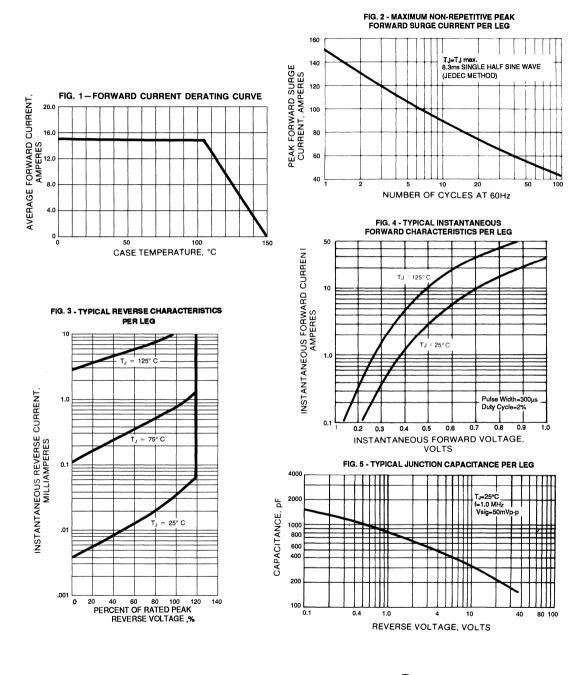
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

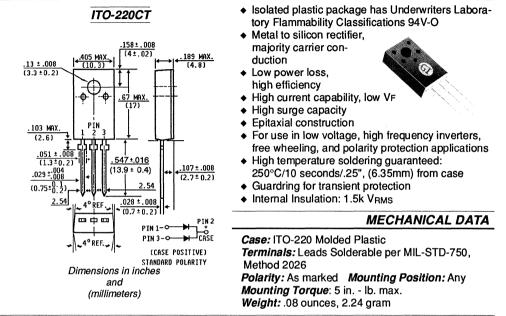

		SYMBOLS	MBRF1535CT	MBRF1545CT	UNITS
Maximum Recurrent Peak Revers	e Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse	Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage		VDC	35	45	Volts
Maximum Average Forward Rectifie	ed Current at Tc=105°C	I(AV)	15.0		Amps
Peak Repetitive Forward Current per leg at T_{C} =105°C	(Square Wave, 20 KH _Z)	I _{FRM}	15.0		Amps
Peak Forward Surge Current, 8.3 wave superimposed on rated load		IFSM	150.0		Amps
Peak Repetitive Reverse Surge (N	IOTE 3)	IRRM	1.0		Amps
Maximum Instantaneous	I _F = 7.5A,Tc=125°C		0.	57	
Forward Voltage	I _F = 15A, T _C =125°C	VF	0.	72	Volts
Per Leg at (NOTE 2)	I _F =15A, T _C = 25°C		0.	84	
Maximum Instantaneous Reverse	Current at Rated				
DC Blocking Voltage per leg	T _C = 125°C	IR	1	5.0	mA
(NOTE 2)	Tc= 25°C		0	.1	
Voltage Rate of Change at (Rated	d V _R)	dv/dt	1000		V/µs
Typical Thermal Resistance per l	pical Thermal Resistance per leg (NOTE 1)		3.5		°C/W
Operating Junction Temperature	ion Temperature Range		-65 to +150		°C
Storage Temperature Range		TSTG	-65 to) +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

3. 2.0µs Pulse Width, 1.0KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF1535CT AND MBRF1545CT


(ii) General Instrument

MBRF1550CT AND MBRF1560CT

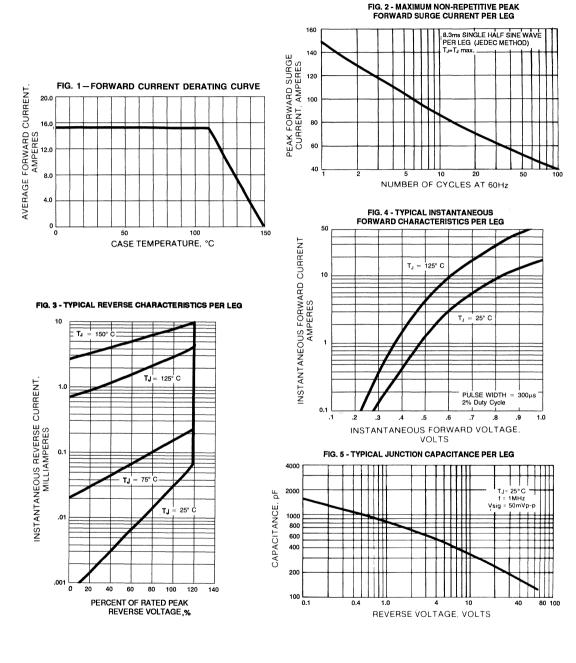
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 15.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

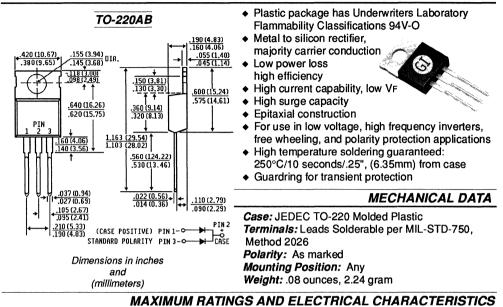

	SYMBOLS	MBRF1550CT	MBRF1560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T _C =105°C	I(AV)	15.0		Amps
Peak Repetitive Forward Current (Square Wave, 20 KHz) at Tc=105°C per leg	IFRM	15.0		Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	15	0.0	Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	0.5		Amps
Maximum Instantaneous Forward I _F =7.5A,Tc=125°C Voltage Per Leg at (NOTE 2) I _F =7.5A, Tc=25°C	VF		65 75	Volts
Maximum Instantaneous Reverse Current $T_{C}=125^{\circ}C$ at Rated DC Blocking Voltage per leg $T_{C}=25^{\circ}C$ (NOTE 3)	IR	50).0 .5	mA
Voltage Rate of Change, (Rated V _R)	dv/dt	10	000	V/µs
Typical Thermal Resistance per leg (NOTE 1)	Røjc	3	.5	°C/W
Operating Junction Temperature Range	TJ	-65 to	+150	°C
Storage Temperature Range	T _{STG}	-65 to	o +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

3. 2.0µs Pulse Width, 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF1550CT AND MBRF1560CT



MBR1535CT AND MBR1545CT

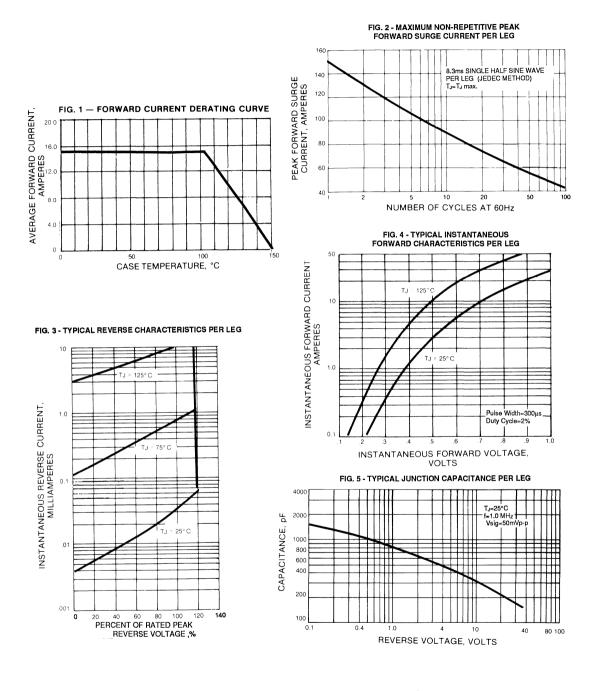
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 15.0 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR1535CT	MBR1545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=105^{\circ}C$	I(AV)	1:	5.0	Amps
Peak Repetitive Forward Current per diode at $T_C=105^{\circ}C$ (Rated V _R , Square wave, 20KH _Z)	l _{FRM}	1:	5.0	Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	15	0.0	Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	150.0 1.0		Amps
Maximum Instantaneous Forward Voltage				
Per Leg at IF=7.5Å,Tc=125°C (NOTE 2) IF=15A,Tc=125°C IF=15A,Tc=25°C IF=15A,Tc=25°C	VF	0.	57 72 84	Volts
Maximum Instantaneous Reverse Current at Rated				
DC Blocking Voltage per leg $T_{C}=125^{\circ}C$ $T_{C}=25^{\circ}C$	IR		5.0	mA
Voltage Rate of Change at (Rated V _{R)}	dv/dt	10	000	V/µs
Maximum Thermal Resistance per leg (NOTE 1)	Røjc	3.0		°C/W
Operating Junction Temperature Range	ΤJ	-65 to +150		°C
Storage Temperature Range	Tstg	-65 to	o +175	°C

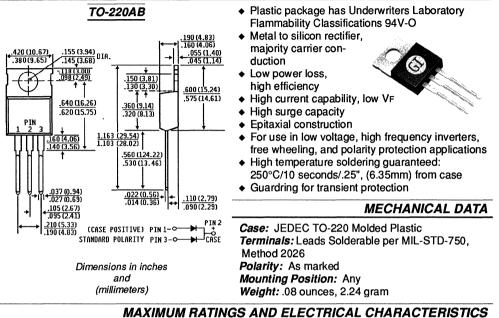

NOTES:

1. Thermal Resistance Junction to Case.

2. Pulse Test: 300µs, Pulse Width, 2% Duty Factor.

3. 2.0µs, Pulse Width 1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1535CT AND MBR1545CT



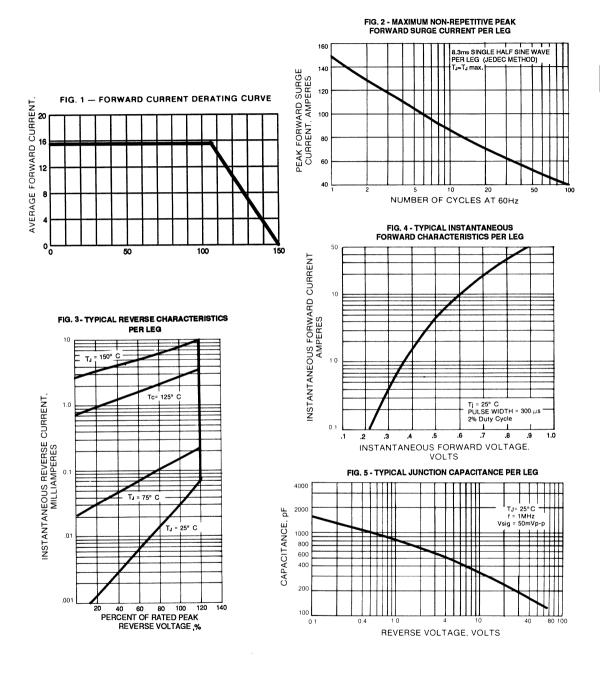
MBR1550CT AND MBR1560CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 15.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERIS

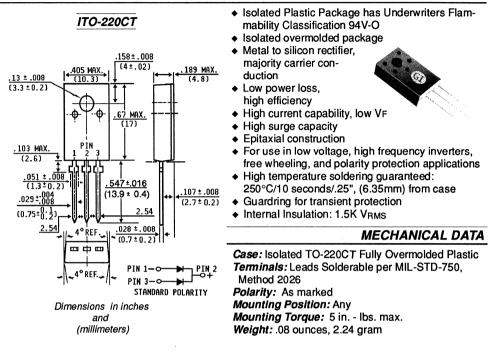

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR1550CT	MBR1560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T _C =105°C	I(AV)	15	5.0	Amps
Peak Repetitive Forward Current (Rated V _R , Sq. Wave, 20KHz) at T _C =105°C	IFRM	15	5.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	15	0.0	Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	0	.5	Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF		75 65	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per leg at Tc=25°C Tc=125°C	IR	1	.0 0.0	mA
Voltage Rate of Change (Rated V _R)	dv/dt	10	000	V/µs
Typical Thermal Resistance per leg (NOTE 1)	Røjc	3	.0	°C/W
Operating Junction Temperature Range	TJ	-65 to	0 +150	°C
Storage Temperature Range	Tstg	-65 to	0 +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg. 2. Pulse Test: 300 µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1550CT AND MBR1560CT



SBLF1630CT AND SBLF1640CT

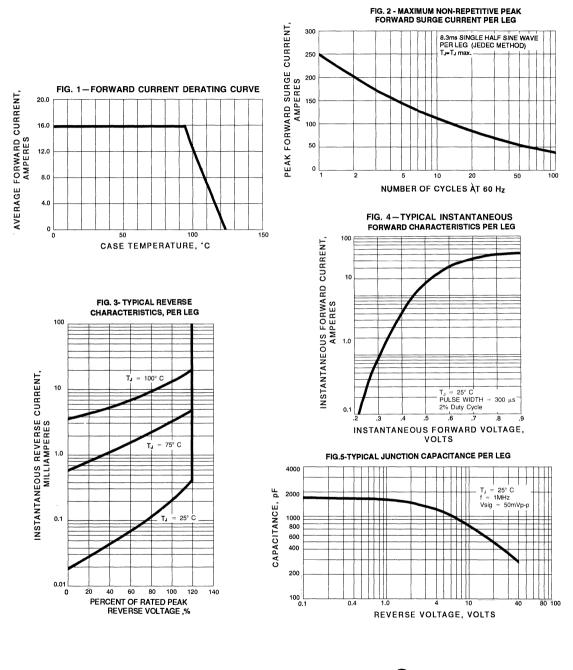
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 16.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

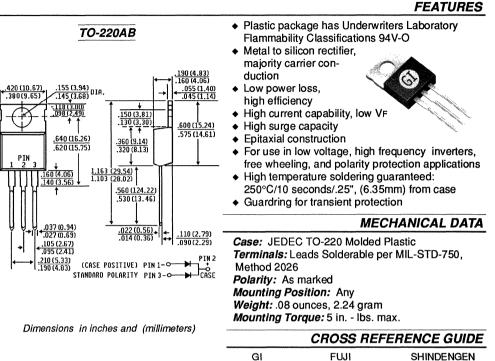

	SYMBOLS	SBLF1630CT	SBLF1640CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at $T_{C}=95^{\circ}C$	I(AV)	16	5.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage per leg IF=8.0A (NOTE 2)	VF	0.	55	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg Tc=100°C	IR	-	.5 0.0	mA
Typical Thermal Resistance (NOTE 1)	Rejc	2	.2	°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-40 to	o +125	°C

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF1630CT AND SBLF1640CT



G General Instrument

SBL1630CT AND SBL1640CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT -16.0 Amperes

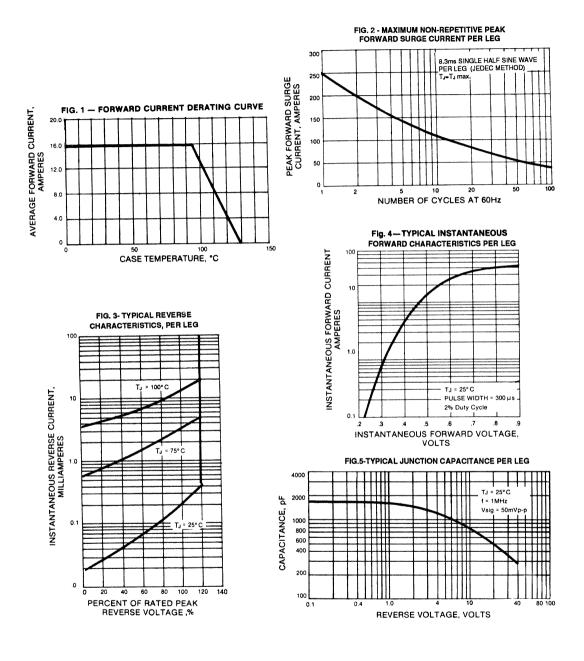
GI SBL1640CT

SHINDENGEN

ESAD82-004

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	SBL1630CT	SBL1640CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at Tc=95°C	I(AV)	10	6.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage per leg I_{F} =8.0A (NOTE 2)	VF	0.	.55	Volts
Maximum Instantaneous Reverse Current at Tc=25°C rated DC Blocking Voltage per leg Tc=100°C	IR	0.5 50.0		mA
Typical Thermal Resistance per leg (NOTE 1)	Røjc	3.0		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-40 to +125		°C

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2 Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL1630CT AND SBL1640CT

(i) General Instrument

MBRF1635 AND MBRF1645

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16.0 Amperes

FEATURES Isolated plastic package has Underwriters Labora-IT0-220 tory Flammability Classifications 94V-O 158±.008 Metal to silicon rectifier, (4±.02) 189 MAX. .405 MAX. majority carrier conduction (4.8) Low power loss high efficiency High current capability, low VF Ф .67 MAX. High surge capacity (17) Epitaxial construction For use in low voltage, high frequency inverters, PIN PIN free wheeling, and polarity protection applications High temperature soldering guaranteed: 051±.008 250°C/10 seconds/.25", (6.35mm) from case (1.3[±]0.2) 547±.016 107±.008 Guardring for transient protection (13.9 ± 0.4) .029 ±:004 (2.7±0.2) Internal Insulation: 1.5k VRMS .028 ±.008 **MECHANICAL DATA** REF. (0.7 ± 0.2) m rh m Case: ITO-220 Molded Plastic Terminals: Leads Solderable per MIL-STD-750, PIN 15 RFF PIN 2 ō----Method 2026 -STANDARD POLARITY Polarity: As marked (Case Positive) Mounting Position: Any Mounting Torque: 5 in. -Ibs. max. Dimensions in inches and (millimeters) Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

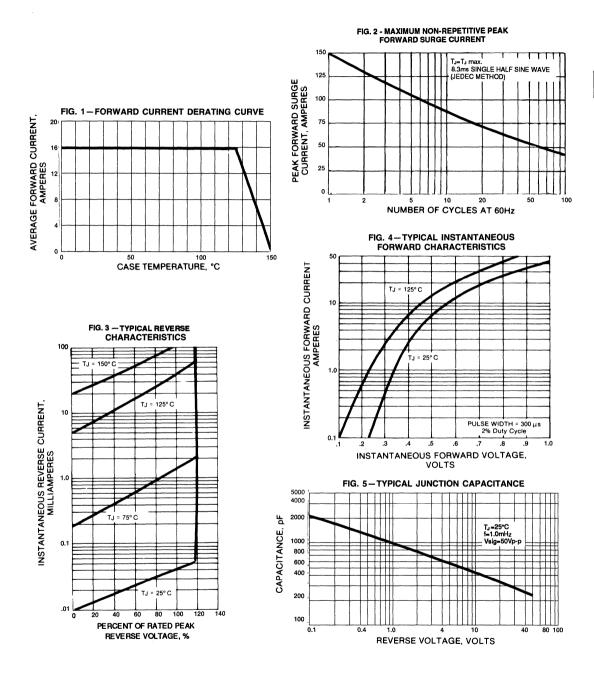
	SYMBOLS	MBRF1635	MBRF1645	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	16.0		Amps
Peak Repetitive Forward Current, (Square Wave, 20 KHz) at T_C = 125°C	IFSM	32.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 2)	IRSM	1.0		Amps
Voltage Rate of Change at (Rated V _R)	dv/dt	1000		V/µs
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	-	.57 .63	Volts Volts
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IR		0.0).2	mA
Typical Thermal Resistance, Junction to Case	Røjc	2	2.0	°C/W
Operating Junction Temperature Range	Тj	-65 to	o +150	°C
Storage Temperature Range	TSTG	-65 to	o +175	°C

NOTES:

1. Pulse Test: 300 µs Pulse Width, 2% Duty Cycle.

2. 2.0µs Pulse Width, 1.0 KHz.

<u>.13 ± .0</u>08

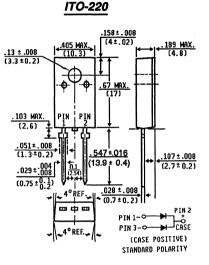

 (3.3 ± 0.2)

.103 MAX

(2.6)

(0.75 ±

RATINGS AND CHARACTERISTIC CURVES MBRF1635 AND MBRF1645


(D) General Instrument

MBRF1650 AND MBRF1660

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 16.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Isolated Plastic package has Underwriters Laboratory Flammability Classifications 94V-O

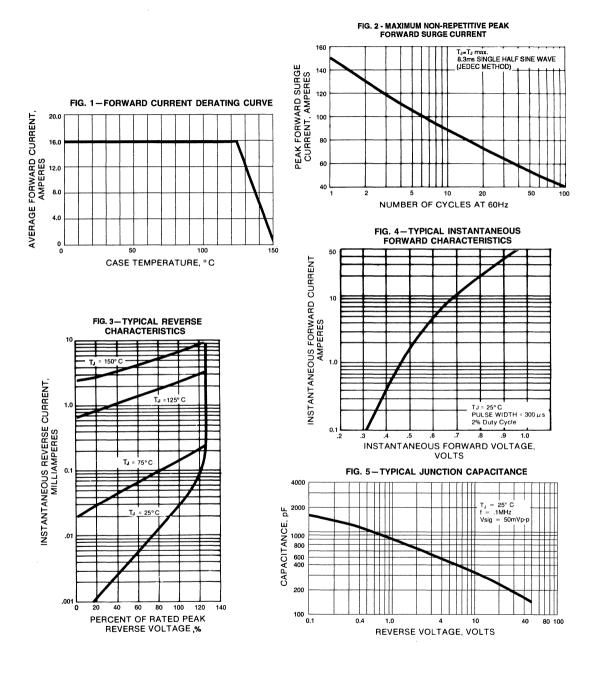
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed:
- 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection
- Internal Insulation: 1.5k V_{RMS}

MECHANICAL DATA

Case: ITO-220 Molded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - lbs. max. Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

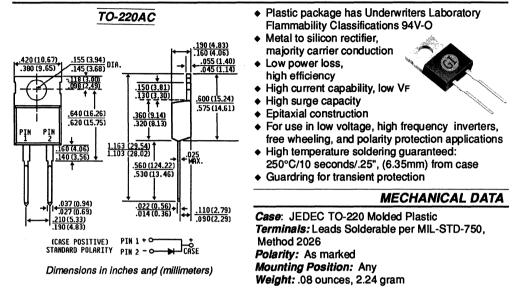

SYMBOLS	MBRF1650	MBRF1660	UNITS
VRRM	50	60	Volts
VRWM	50	60	Volts
VDC	50	60	Volts
I(AV)	10	5.0	Amps
IFRM	32.0		Amps
IFSM	150		Amps
IRRM	0.5		Amps
dv/dt	10	000	V/µs
VF	-		Volts Volts
IR	5	0.0	mA
	1	.0	
RejC	2	2.0	°C/W
TJ	-65 to	o +150	°C
TSTG	-65 to	o +175	°C
	VRRM VRWM VDC I(AV) IFRM IFRM IFSM IRRM dv/dt VF IR IR ReJC TJ	VRRM 50 VRWM 50 VDC 50 I(AV) 10 IFRM 32 IFSM 1 IRRM 00 dv/dt 10 VF 00 IR 50 TJ -65 to	VRRM 50 60 VRWM 50 60 VDC 50 60 VDC 50 60 I(AV) 16.0 IFRM 32.0 IFSM 150 IRRM 0.5 dv/dt 1000 VF 0.62 0.75 1.0 IR 50.0 1.0 1.0 ReJC 2.0 TJ -65 to +150

NOTES:

2. 2.0µs Pulse Width, 1.0 KHz.

^{1.} Pulse Test: 300µs Pulse Width, 2% Duty Cycle.

RATINGS AND CHARACTERISTIC CURVES MBRF1650 AND MBRF1660


G General Instrument

MBR1635 AND MBR1645

SCHOTTKY RECTIFIER

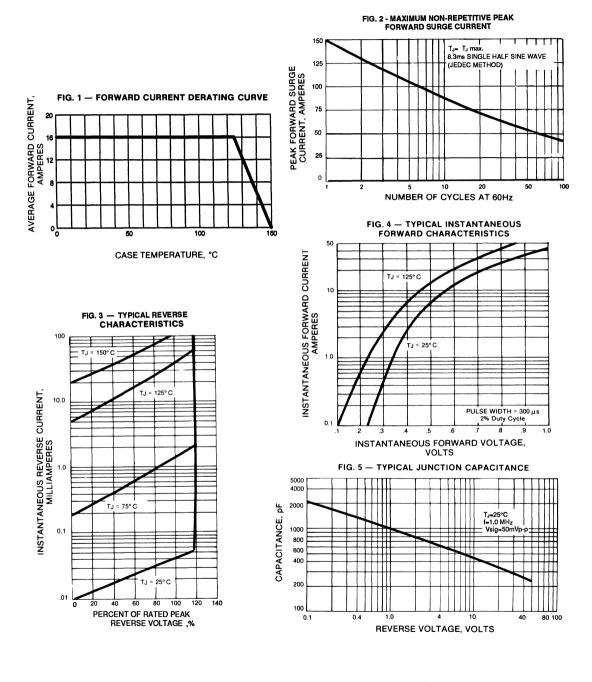
VOLTAGE RANGE - 35 and 45 Volts CURRENT - 16.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR1635	MBR1645	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	16.0		Amps
Peak Repetitive Forward Current, (Rated V _R , Sq. Wave 20 KHz) at T _C =125°C	IFRM	32.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150		Amps
Peak Repetitive Reverse Surge Current (NOTE 2)	IRRM	1.0		Amps
Voltage Rate of Change, (rated V _R)	dv/dt	1000		V/µs
Maximum Instantaneous Forward Voltage (NOTE 1) IF=16A, T _C =25°C IF=16A, T _C =125°C	VF	-	.63 .57	Volts
Maximum Instantaneous Reverse Current at rated DC Blocking Voltage T _C =25°C (NOTE 1) T _C =125°C	IR).2 0.0	mA
Maximum Thermal Resistance (NOTE 3)	Rejc		1.5	°C/W
Operating Junction Temperature Range	Tj	-65 t	0 +150	°C
Storage Temperature Range	TSTG	-65 t	0 +175	°C

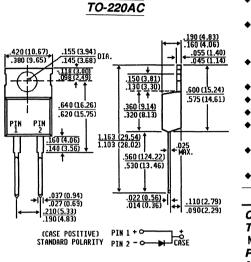

NOTES:

1. Pulse Test Pulse Width 300µs, Duty Cycle 2%.

2. 2.0µs Pulse Width, 1.0 KHz.

3. Thermal Resistance from Junction to Case.

RATINGS AND CHARACTERISTIC CURVES MBR1635 AND MBR1645


(D) General Instrument

MBR1650 AND MBR1660

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 16.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection

MECHANICAL DATA

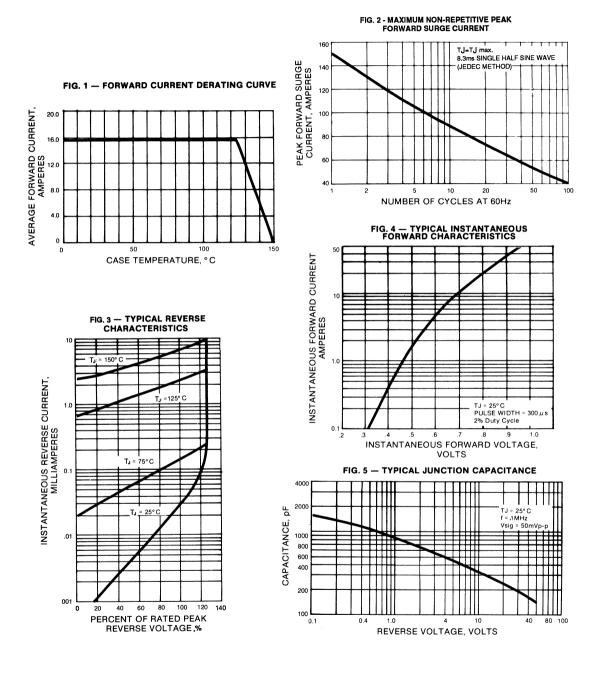
Case: JEDEC TO-220 Molded Plastic *Terminals:* Leads Solderable per MIL-STD-750, Method 2026 *Polarity:* As marked *Mounting Position:* Any *Weight:* .08 ounces, 2.24 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR1650	MBR1660	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	10	6.0	Amps
Peak Repetitive Forward Current (Rated V_R , Sq. Wave, 20 KH _Z) at T _C =125°C	IFRM	32.0		Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Pead Repetitive Reverse SurgeCurrent (NOTE 3)	IRRM	0.5		Amps
Maximum Instantaneous Forward Voltage Per Leg IF=16A, TC = 25°C IF=16A, TC=125°C (NOTE 2)	VF		.75 .65	Volts
Maximum Instantaneous Reverse Current at Tc= 25°C rated DC Blocking Voltage Tc=125°C	IB	1.0 50.0		mA
Voltage Rate of Change (Rated V _R)	dv/dt	1000		V/µs
Maximum Typical Thermal Resistance (NOTE 1)	ReJC	3	3.0	°C/W
Operating Junction Temperature Range	TJ	-65 to	o +150	°C
Storage Temperature Range	Tstg	-65 to	o +150	°C


NOTES:

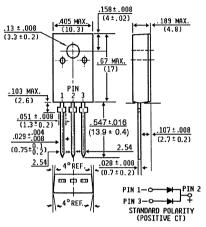
1. Thermal Resistance from Junction to Case.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR1650 AND MBR1660

(D) General Instrument


MBRF2035CT AND MBRF2045CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 20.0 Amperes

FEATURES

ITO-220CT

 Isolated plastic package has Underwriters Laboratory Flammability Classification 94 V-O

- Metal to silicon rectifier,
 - majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- Guardring for transient protection
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Internal Insulation: 1.5k V_{BMS}

MECHANICAL DATA

Case: Isolated TO-220CT Fully Overmolded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ibs. max. Weight: .08 ounces, 2.24 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

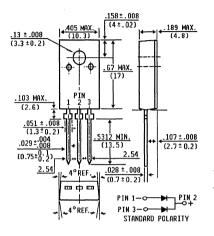
		SYMBOLS	MBRF2035CT	MBRF2045CT	UNITS
Maximum Recurrent Peak F	everse Voltage	VRRM	35	45	Volts
Working Peak Reverse Volta	ge	VRWM	35	45	Volts
Maximum DC Blocking Volta	ge	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T_{C} =135°C		I(AV)	20.0		Amps
Peak Repetitive Forward Current per diode leg (Rated V_R , Sq. wave, 2.0KHz) at T _C =135°C		IFRM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)		IFSM	150.0		Amps
Peak Repetitive Reverse Su	rge Current (NOTE 3)	IRRM	1.0		Amps
Maximum Instantaneous Forward Voltage Per Leg (NOTE 2)	I _F = 10A, T _C = 125°C I _F = 20A, T _C =25°C I _F = 20A, T _C =125°C	I _F = 10A, T _C = 125°C 0.57 I _F = 20A, T _C =25°C V _F 0.84		.84	Volts
Maximum Instantaneous Reverse Current at rated DC Blocking Voltage per element $T_c = 25^{\circ}C$ $T_c = 125^{\circ}C$		IR	0.1 25.0		mA
Voltage Rate of Change (Rated V _B)		dv/dt	1000		V/µs
Typical Thermal Resistance	per element (NOTE 1)	RøJC	2	2.2	°C/W
Operating Junction Tempera	ture Range	TJ	-65 to +150		°C
Storage Temperature Range		T _{STG}	-65 t	0 +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg. 2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0 μ s, Pulse Width f=1KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2035CT AND MBRF2045CT

G General Instrument


MBRF2050CT AND MBRF2060CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 20.0 Amperes

FEATURES

ITO-220CT

Dimensions in inches and (millimeters)

 Isolated Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed:
 050% (10 accords) (05" (0.25mm) from accords)
- 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection
- Internal Insulation:1.5k V_{RMS}

MECHANICAL DATA

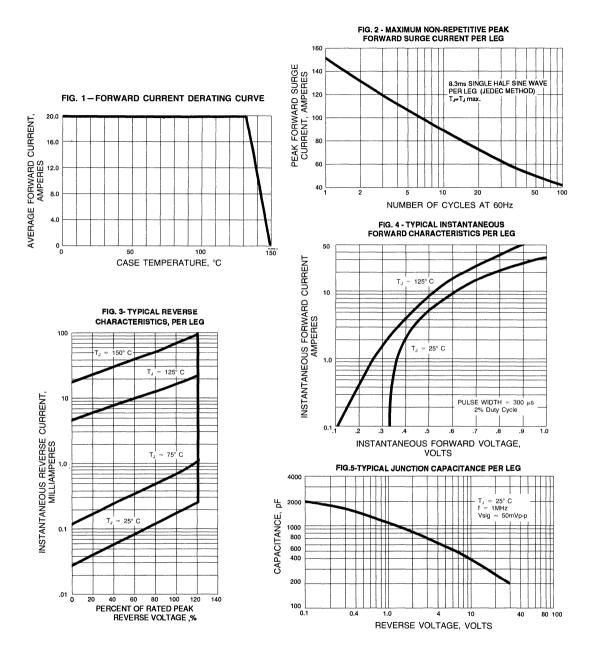
Case: Isolated TO-220CT Fully Overmolded Plastic *Terminals:* Leads Solderable per MIL-STD-750, Method 2026 *Polarity:* As marked

Mounting Position: Any Mounting Torque: 5 in. - lbs. max.

Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

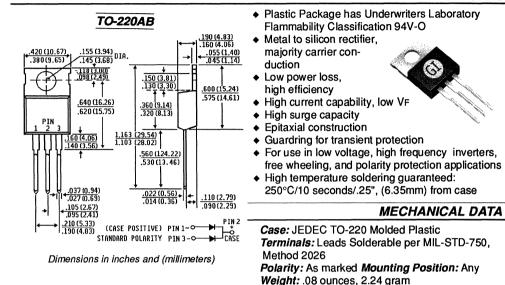

	SYMBOLS	MBRF2050CT	MBRF2060CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T _C =133°C	I(AV)	20	0.0	Amps
Peak Repetitive Forward Current per leg (Rated V _R ,Sq. wave, 2.0 KHz) at T _C =133°C	IFRM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	0. 0.	80 70 95 85	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR	0. 150		mA
Voltage Rate of Change (Rated V _R)	dv/dt	10	000	V/µs
Typical Thermal Resistance per leg (NOTE 1)	Røjc	2	.2	°C/W
Operating Junction Temperature Range	TJ	-65 to	+150	°C
Storage Temperature Range	T _{STG}	-65 to) +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per element.

2. Pulse Test: 300µs Pulse Width 300µs, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2050CT AND MBRF2060CT


(D) General Instrument

MBR2035CT AND MBR2045CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 20.0 Amperes

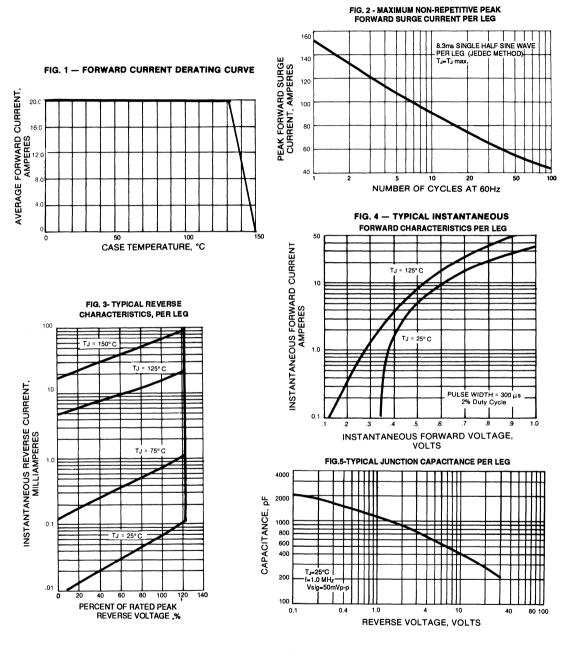
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Mounting Torque: 5 in. - Ibs.max.

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	MBR2035CT	MBR2045CT	UNITS
Maximum Recurrent Peak Reverse	/oltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage		VRWM	35	45	Volts
Maximum DC Blocking Voltage	Maximum DC Blocking Voltage		35	45	Volts
Maximum Average Forward Rectified Current at T _C =135°C		I(AV)	20.0		Amps
Peak Repetitve Forward Current per leg (Rated V_R , Sq. wave 2.0 KHz) at T _C =135°C		IFBM	20	20.0	
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)		IFSM	150.0		Amps
Peak Repetitive Reverse Surge Curr	Peak Repetitive Reverse Surge Current (NOTE 3)		1.0		Amps
Forward Voltage per leg	I _F =10A, T _C =125°C I _F =20A, T _C =25°C I _F =20A, T _C =125°C	VF	0.57 0.84 0.72		Volts
Maximum Instantaneous Reverse Current at rated DC Blocking Voltage per leg T _C =25°C T _C =125°C		IR	-	.1 5.0	mA
Voltage Rate of Change, (Rated VR)	Voltage Rate of Change, (Rated V _R)		10	000	V/µs
Typical Thermal Resistance per leg (Typical Thermal Resistance per leg (NOTE 1)		2	0	°C/W
Operating Junction Temperature Ran	nge	TJ	-65 to	o +150	°C
Storage Temperature Range		T _{STG}	-65 to	o +175	°C

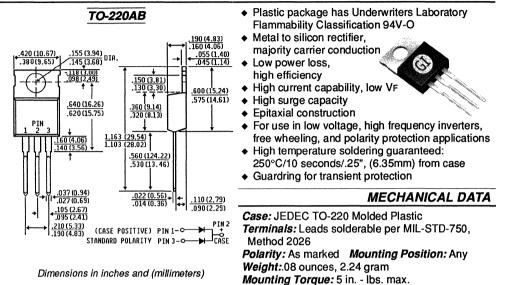

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2035CT AND MBR2045CT


General Instrument

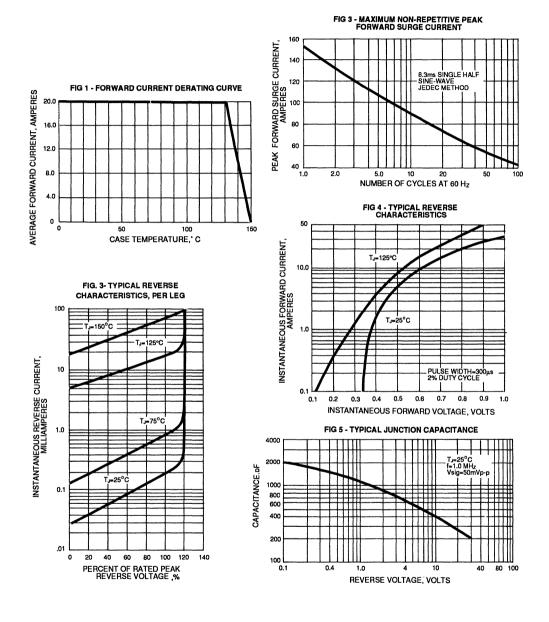
MBR2050CT AND MBR2060CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 20.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

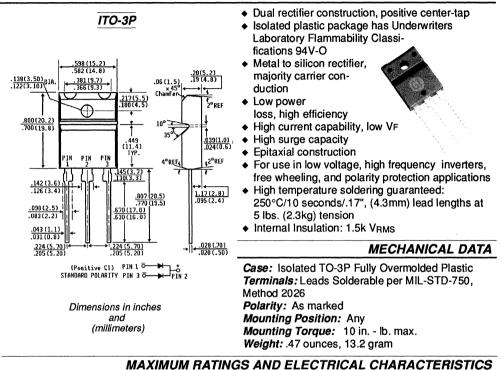

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	MBR2050CT	MBR2060CT	UNITS
Maximum Recurrent Peak Re	verse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reve	rse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltag	Ð	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T _C =133°C		l(av)	20.0		Amps
Peak Repetitive Forward Current per leg (Rated V_{R} , Sq. wave, 2.0 KHz) at T _C =133° C		IFRM	20.0		Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)		IFSM	150.0		Amps
Peak Repetitive Reverse Surg	e Current (NOTE 3)	IRRM	0.5		Amps
Maximum Instantaneous	I⊧ 10A,Tc=25°C		0.	80	
Forward Voltage per leg	I _F =10A, T _C =125°C			.70	
(NOTE 2)	I _F =20A, T _C =25°C I _F =20A, T _C =125°C	VF		.95 .85	Volts
Maximum Instantaneous Reve	erse Current at				
rated DC Blocking Voltage p	er leg T _C =25°C T _C =125°C	IR	-	.15 50.0	mA
Voltage Rate of Change (Rate	ed V _R)	dv/dt	10	000	V/µs
Maximum Thermal Resistance	e per leg (NOTE 1)	Røjc	2	2.0	°C/W
Operating Junction Temperati	ure Range	TJ	-65 te	o +150	°C
Storage Temperature Range		TSTG	-65 te	o +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg. 2. Pulse Test: 300µs Pulse Width, 2% Duty Factor,

3. 2.0µs, Pulse Width, f=1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2050CT AND MBR2060CT


(ii) General Instrument

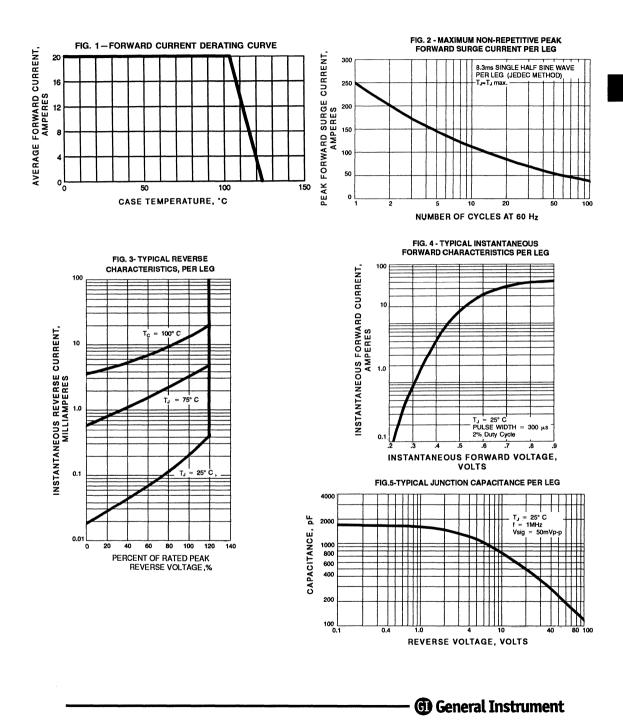
SBLF2030PT AND SBLF2040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 20.0 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

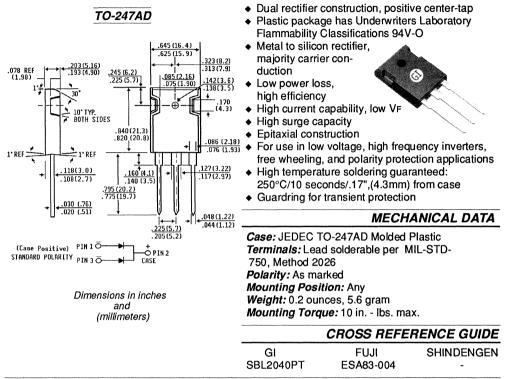

	SYMBOLS	SBLF2030PT	SBLF2040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at T_{C} =105°C	I(AV)	20	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F =10.0A (NOTE 2)	VF	0.	55	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg Tc=100°C	l _R		.0 0.0	mA
Typical Thermal Resistance (NOTE 1)	Røjc	2	.0	°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG	-40 to	+125	°C

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF2030PT AND SBLF2040PT


93

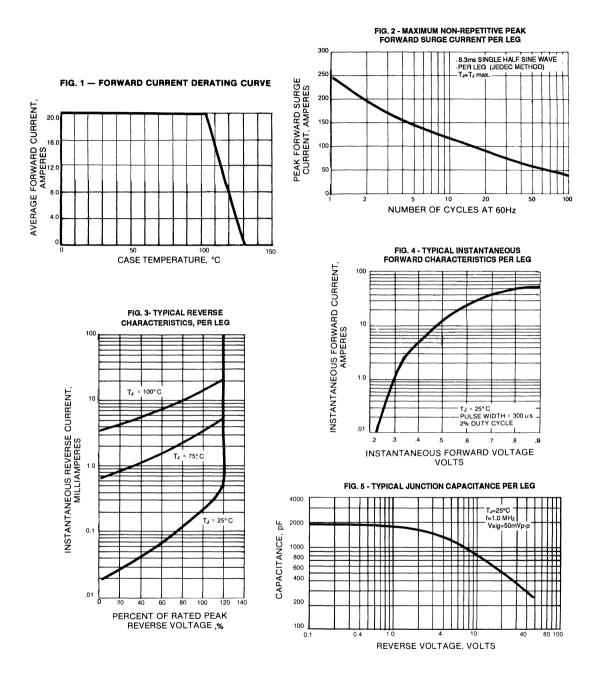
SBL2030PT AND SBL2040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 20.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

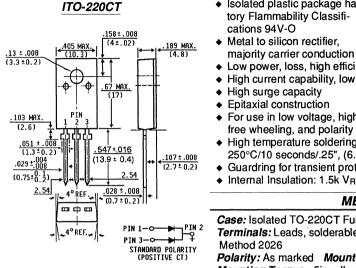

. Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	SBL2030PT	SBL2040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at T _C =105°C	I(AV)	20	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0		Amps
Maximum Instantaneous Forward Voltage per leg I _F =10.0A (NOTE 2)	VF	0.	55	Volts
Maximum Instantaneous Current atTc=25°CRated DC Blocking Voltage per legTc=100°C	IR		.0).0	mA
Typical Thermal Resistance per leg (NOTE 1)	Røjc	1	.5	°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-40 to	+125	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

^{2.} Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL2030PT AND SBL2040PT


(D) General Instrument

MBRF2535CT AND MBRF2545CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Isolated plastic package has Underwriters Laboratory Flammability Classifi-

- Metal to silicon rectifier,
- Low power, loss, high efficiency
- High current capability, low VF

- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds/.25", (6.35mm) from case
- Guardring for transient protection
- Internal Insulation: 1.5k VRMS

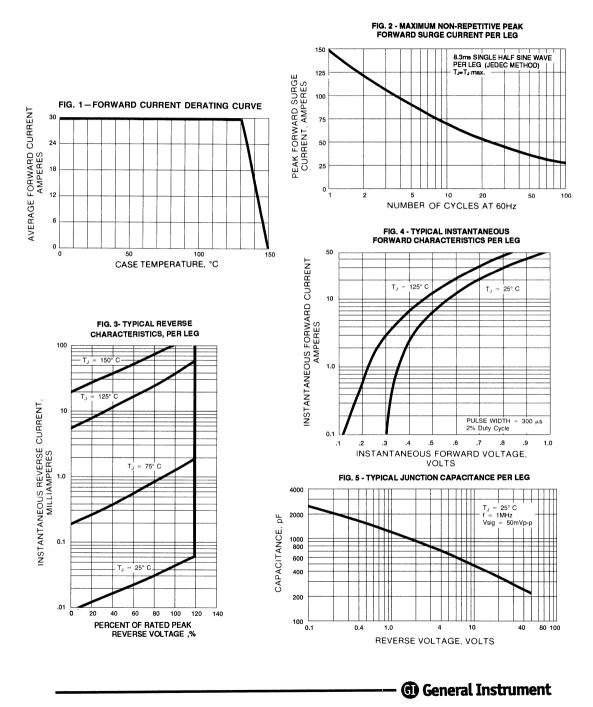
MECHANICAL DATA

Case: Isolated TO-220CT Fully Overmolded Plastic Terminals: Leads, solderable per MIL-STD-750,

Polarity: As marked Mounting Position: Any Mounting Torque: 5in. - lb. max. Weight: .08 ounces, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

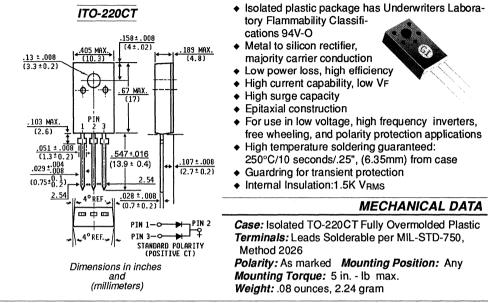

	SYMBOLS	MBRF2535CT	MBRF2545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=130^{\circ}C$	I(AV)	30.0		Amps
Peak Repetitive Forward Current per leg (rated $V_{R_{s}}$ Square Wave, 20 KHz) at T _C =130°C	IFRM	30.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
Maximum Instantaneous Forward Voltage Per Leg I _F =30A, T _C =25°C (NOTE 2) I _F =30A, T _C =125°C	VF	0.82 0.73		Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C	I _R I _R	0.2 40.0		mA mA
Typical Thermal Resistance, (NOTE 1)	RØJC	1.8		°C/W
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Operating Junction Temperature Range	TJ	-65 to + 150		°C
Storage Temperature Range	T _{STG}	-65 te	-65 to +175	

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2%, Duty Factor

3. 2.0µs, Pulse Width 1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2535CT AND MBRF2545CT



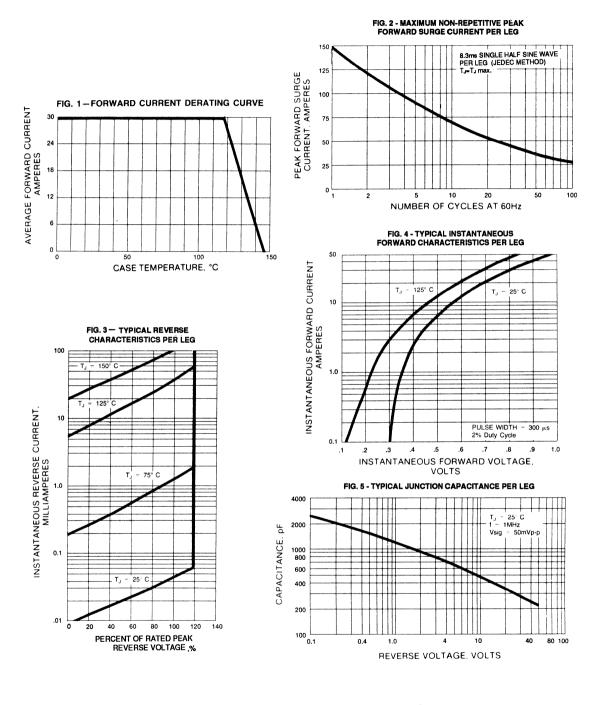
97

MBRF2550CT AND MBRF2560CT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

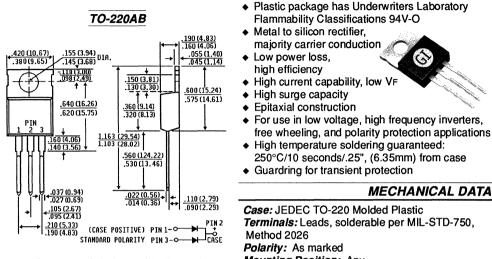

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBRF2550CT	MBRF2560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	30.0		Amps
Peak Repetitve Forward Current per leg (Rated $V_R,$ Sq. Wave, 20 KHz) at $T_C \= 125^\circ C$			Amps	
eak Forward Surge Current 8.3ms single half sine-wave uperimposed on rated load (JEDEC Method) I _{FSM} 150.0		0.0	Amps	
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
Maximum Forward Voltage per leg I _F =15.0A, T _C =25°C (NOTE 2) I _F =15.0A, T _C =125°C	VF		75 65	Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per leg (NOTE 2) $T_C=25^{\circ}C$ $T_C=125^{\circ}C$	IR	1.0 50.0		mA
Typical Thermal Resistance (NOTE 1)	Røjc	1.8		°C/W
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Operating Junction Temperature Range	Tj	-65 to + 150		°C
Storage Temperature Range	TSTG	-65 to	o +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg. 2. Pulse Test: 300µs Pulse Width, 2%, Duty Factor

3. 2.0µs, Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF2550CT AND MBRF2560CT


G General Instrument

MBR2535CT AND MBR2545CT

SCHOTTKY RECTIFIER

CURRENT - 30.0 Amperes VOLTAGE RANGE - 35 and 45 Volts

FEATURES

Guardring for transient protection

MECHANICAL DATA

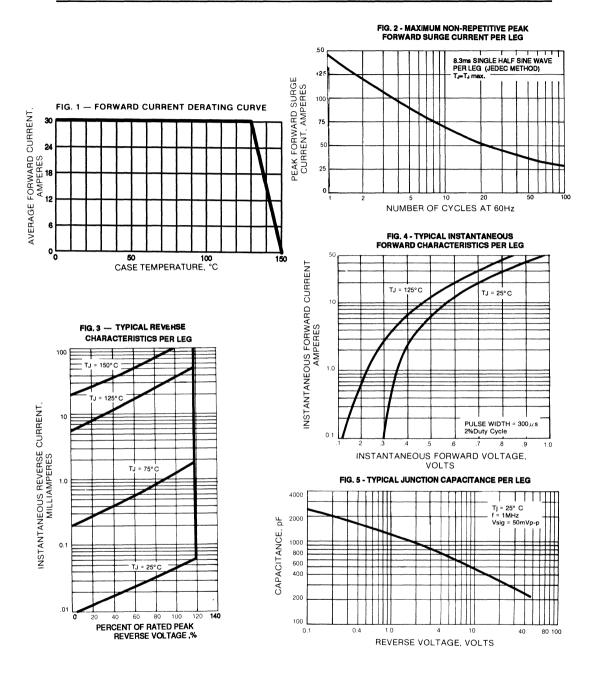
Case: JEDEC TO-220 Molded Plastic Terminals: Leads, solderable per MIL-STD-750. Mounting Position: Any Weight: .08 ounces, 2.24 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR2535CT	MBR2545CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C=130^{\circ}C$	I(AV)	30.0		Amps
Peak Repetitive Forward Current per leg (rated V_{R_i} Square Wave,20 KHz) at T _C =130°C	IFRM	30.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	0.82 0.73		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Volltage per leg (NOTE 2) $T_C=25^{\circ}C$ $T_C=125^{\circ}C$	l _R	0.2 40.0		mA
Maximum Thermal Resistance (NOTE 1)	Røjc	1.5		°C/W
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/us
Operating Junction Temperature Range	ΤJ	-65 to	-65 to + 150	
Storage Temperature Range	TSTG	-65 to +175		°C

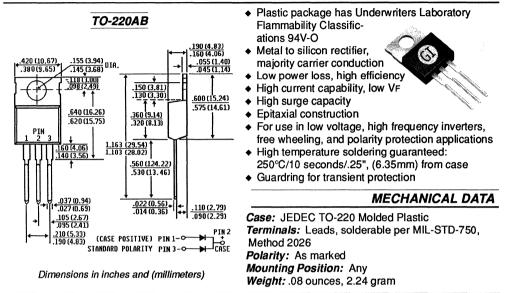

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test 300µs Pulse Width, 2%, Duty Factor.

3. 2.0µs, Pulse Width, f=1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2535CT AND MBR2545CT



(iii) General Instrument

MBR2550CT AND MBR2560CT

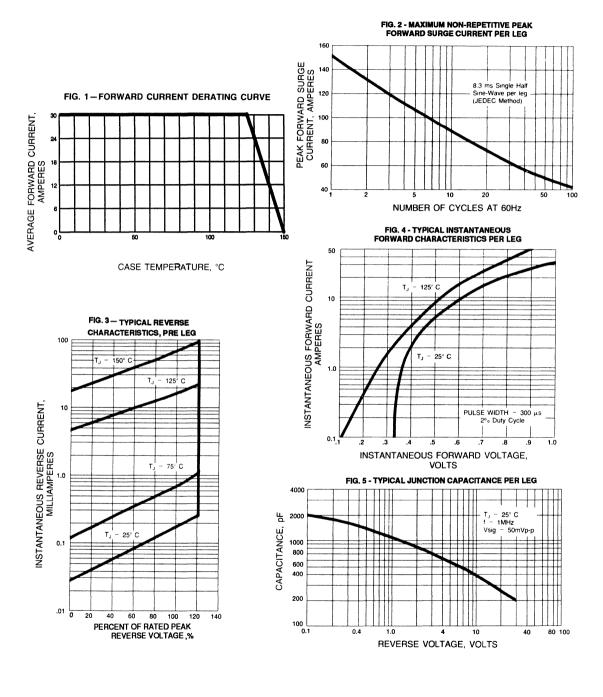
SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR2550CT	MBR2560CT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50 60		Volts
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$	I(AV)	30.0		Amps
Peak Repetitive Forward Current per leg (rated V _R ,Square wave, 20 KH _Z) at T _C =125°C	IFRM	30.0		Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	150.0		Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	0.5		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	0.75 0.65		Volts
Maximum Instantaneous Reverse Current at at Rated DC Blocking Voltage per leg (NOTE 2) $T_C=25^{\circ}C$ $T_C=125^{\circ}C$	IR	1.0 50.0		mA
Typical Thermal Resistance, (NOTE 1)	Røjc	1.5		°C/W
Voltage Rate of Change (rated V _R)	dv/dt	1000		V/µs
Operating Junction Temperature Range	Tj	-65 to + 150		°C
Storage Temperature Range	T _{STG}	-65 to +175		°C

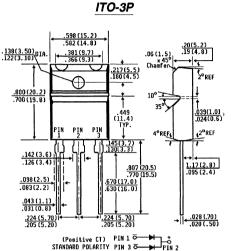

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2%, Duty Factor.

3. 2.0µs, Pulse Width, f=1 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR2550CT AND MBR2560CT


(D) General Instrument

MBRF3035PT AND MBRF3045PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 30.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

Dual rectifier construction, positive center-tap
Isolated plastic package has Underwriters Labora-

tory Flammability Classifications 94V-O

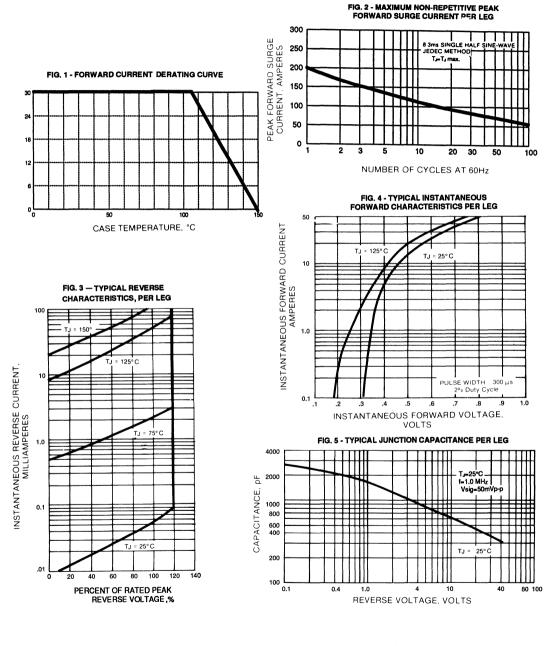
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C,
- .17 (4.3mm) lead length at 5 lbs. (2.3kg) tension • Guardring for transient protection
- Guarding for transient protection
 Internal Insulation: 1.5k VRMs

MECHANICAL DATA

Case: ITO-3P Fully Overmolded Plastic Terminals: Lead solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - lb. max. Weight: .47 ounces, 13.2 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified Resistive or inductive load.


	SYMBOLS	MBRF3035PT	MBRF3045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at T_{C} =105°C	I(AV)	30.0		Amps
Peak Repetitve Forward Current per leg (rated V_R , Square wave, 20 KHz) at T_C =105°C	IFRM	30	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	2	00	Amps
Peak Repetitive Reverse Surge Current (NOTE 3)	IRSM	2.0		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF	0.60 0.76 0.72		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Tc=25°C Voltage per leg at (NOTE 2) Tc=125°C	IR		.0 0.0	mA
Typical Thermal Resistance (NOTE 1)	Røjc	1	.7	°C/W
Voltage Rate of Change (rated V _R)	dv/dt	10	000	V/µs
Operating Junction Temperature Range	TJ	-65 to +150		°Ċ
Storage Temperature Range	TSTG	-65 te	o +175	°C

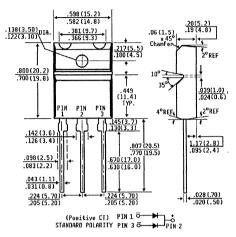
NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0KHz

RATINGS AND CHARACTERISTISC CURVES MBRF3035PT AND MBRF3045PT

(ii) General Instrument


MBRF3050PT AND MBRF3060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30.0 Amperes

FEATURES

ITO-3P

Dimensions in inches and (millimeters)

Dual rectifier construction, positive center-tap
 Isolated plastic package has Underwriters Labora-

- tory Flammability Classi-
- fications 94V-O ◆ Metal to silicon rectifier,
- majority carrier conduction
 Low power loss, high efficiency
- Low power loss, high enciency
 High current capability. low VF
- High current capability, low
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C, .17 (4.3mm) from case
- Guardring for transient protection
- Internal Insulation: 1.5k VRMS

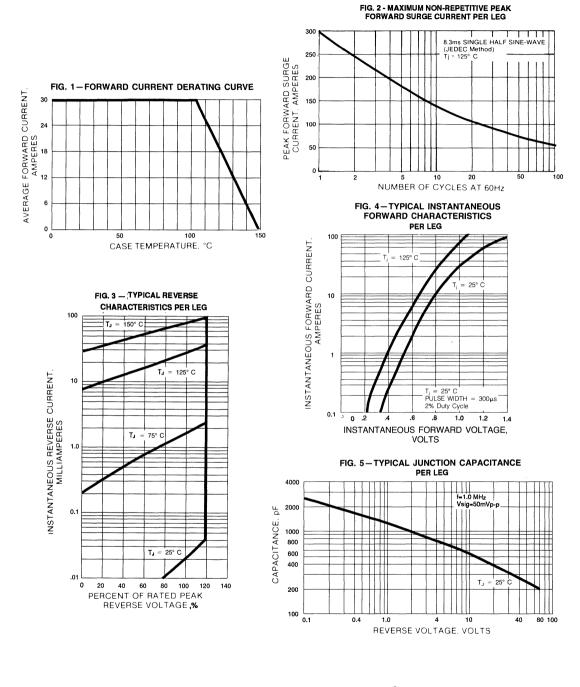
MECHANICAL DATA

Case: ITO-3P Fully Overmolded Plastic Terminals: Lead Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ib. max. Weight: .47 ounces, 13.2 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	MBRF3050PT	MBRF3060PT	UNITS
Maximum Recurrent Peak Reverse	Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage		VRWM	50	60	Volts
Maximum DC Blocking Voltage		VDC	50	60	Volts
Maximum Average Forward Rectifie Current at Tc=105°C			0.0	Amps	
Peak Repetitve Forward Current pe Square wave, 20 KHz) at Tc=105°C		IFRM	30.0		Amps
Peak Forward Surge Current, 8.3m wave superimposed on rated load (•	IFSM	300.0		Amps
Peak Repetitive Reverse Surge Cu	rrent (NOTE 3)	IRSM	I _{RSM} 1.0		Amps
	I _F =20A, T _C =25°C I _F =20A, T _C =125°C	VF	0.75 0.65		Volts
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage per leg (NOTE 2)	T _C =25°C Tc=125°C	IR	5.0 100.0		mA
Typical Thermal Resistance (NOTE 1)		Røjc	1	.7	°C/W
Voltage Rate of Change (rated V _R)		dv/dt	1	000	V/µs
Operating Junction Temperature Range		TJ	-65 to +150		°C
Storage Temperature Range		Tstg	-65 t	0 +175	°C

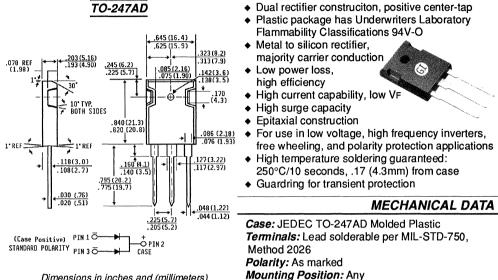

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF3050PT AND MBRF3060PT


(D) General Instrument

MBR3035PT AND MBR3045PT

SCHOTTKY RECTIFIER

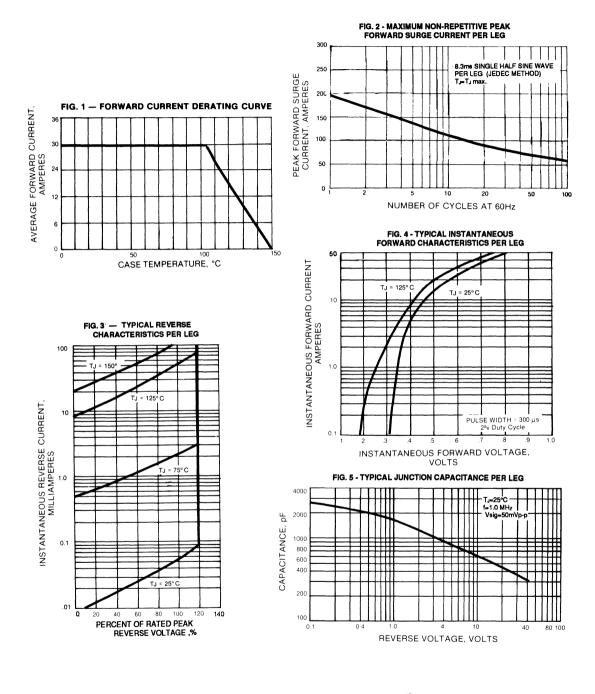
CURRENT - 30.0 Amperes VOLTAGE RANGE - 35 and 45 Volts

FEATURES

Dimensions in inches and (millimeters)

Weight: 0.2 ounces, 5.6 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

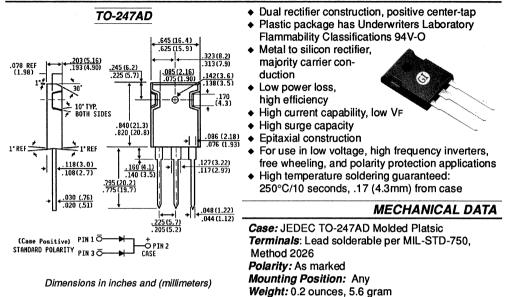

	SYMBOLS	MBR3035PT	MBR3045PT	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts	
Maximum Working Peak Reverse Voltage	VRWM	35	45	Volts	
Maximum DC Blocking Voltage	VDC	35	45	Volts	
Maximum Average Forward Rectified Current at $T_C=105^{\circ}C$	I(AV)	30	0.0	Amps	
Peak Repetitve Forward Current per leg (rated V _R , Square wave, 20 KHz) at T _C =105°C	IFRM	30	0.0	Amps	
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	20	200.0		
Peak Repetitive Reverse Surge Current (NOTE 2)	IRSM	2	.0	Amps	
Maximum Instantaneous Forward Voltage per leg IF=20A,TC=125°C (NOTE 3) IF=30A, TC=25°C IF=30A, TC=125°C	VF	0.	60 76 72	Volts	
Maximum Instantaneous Reverse Current at Rated DC Blocking Voltage Tc=25°C per leg (NOTE 3) Tc=125°C	IB	1.0	0 0.0	mA	
Maximum Thermal Resistance (NOTE 1)	Røjc	1	.4	°C/W	
Voltage Rate of Change at (Rated V _R)	dv/dt	10	000	V/µs	
Operating Junction Temperature Range	TJ	-65 to	o +150	°C	
Storage Temperature Range	Tstg	-65 to	0 +175	°C	

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. 2.0µs, Pulse Width, f=1.0 KHz.

3. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES MBR3035PT AND MBR3045PT


G General Instrument

MBR3050PT AND MBR3060PT

SCHOTTKY RECTIFIER

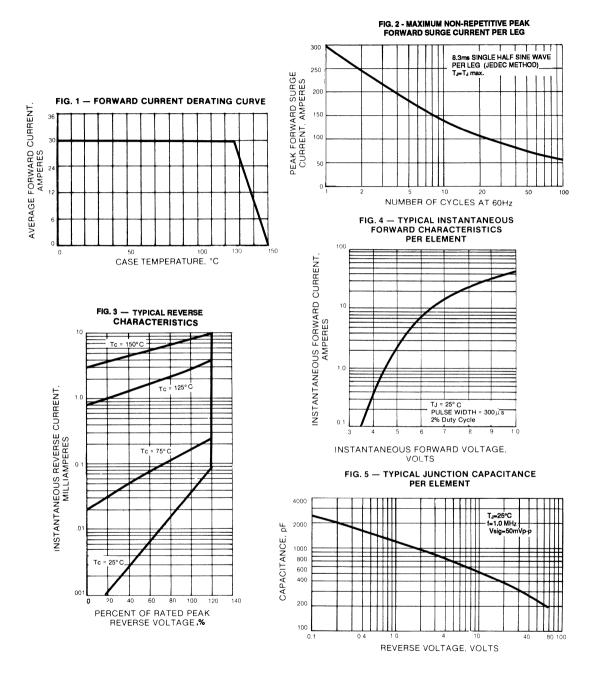
VOLTAGE RANGE - 50 and 60 Volts CURRENT - 30.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR3050PT	MBR3060PT	UNIT S		
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts		
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts		
Maximum DC Blocking Voltage	VDC	50	60	Volts		
Maximum Average Forward Rectified Current at $T_C=125^{\circ}C$						
Peak Repetitve Forward Current per leg (rated V_R , Square wave, 20 KHz) at T _C =105°C	itve Forward Current per leg (rated V _R ,					
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30	0.0	Amps		
Peak Repetitive Reverse Current (NOTE 3)	IRSM	1	Amps			
Maximum Instantaneous Forward Voltage Per Leg at I _F =20A, Tc=125°C (NOTE 2) I _F =20A, T _C =25°C	VF		65 75	Volts		
Maximum Instantaneous Reverse Current at rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C Tc=125°C		-	.0 0.0	mA		
Maximum Thermal Resistance (NOTE 1)	RØJC	2	.0	°C/W		
Voltage Rate of Change (rated V _R)	dv/dt	10	000	V/µs		
Operating JunctionTemperature Range	TJ	-65 to	+ 150	°C		
Storage Temperature Range	TSTG	-65 to	0 +175	°C		

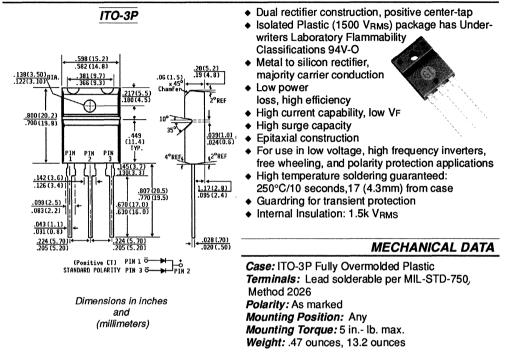

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACHTERISTIC CURVES MBR3050PT AND MBR3060PT



(D) General Instrument

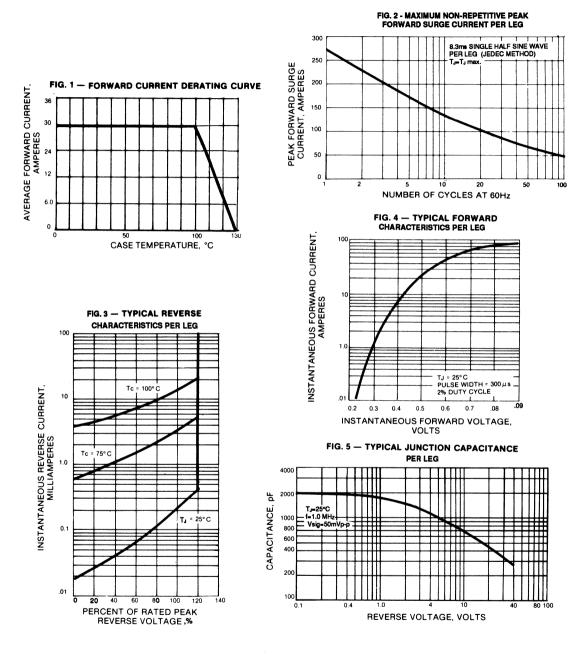
SBLF3030PT AND SBLF3040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

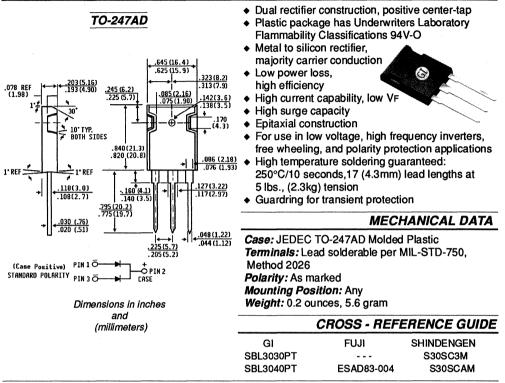

	SYMBOLS	SBLF3030PT	SBLF3040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at $T_C=100^{\circ}$	I(AV)	30	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	275.0		Amps
Maximum Instantaneous Forward Voltage per leg at I _F =15A, Tc=25°C (NOTE 2)	VF	0.	55	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg (NOTE 2) Tc=100°C	IR		.0 5.0	mA
Maximum Thermal Resistance (NOTE 1)	RejC	2	.5	°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-40 to	+125	°C

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBLF3030PT AND SBLF3040PT



G General Instrument

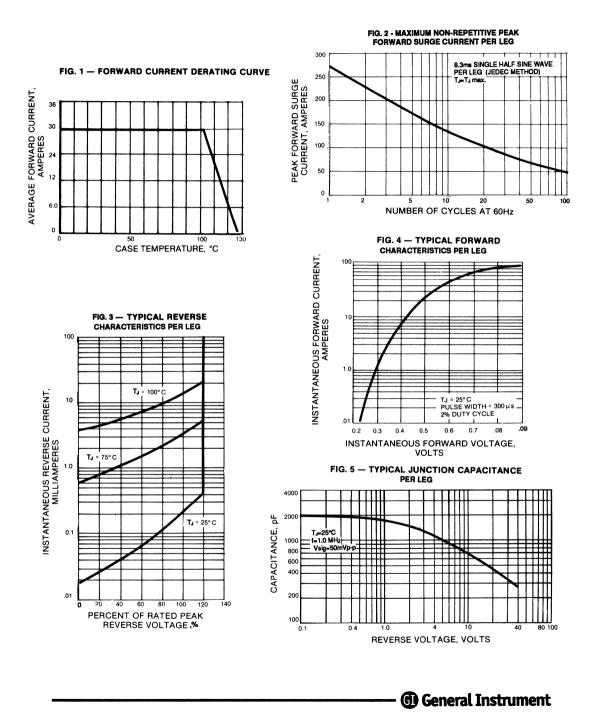
SBL3030PT AND SBL3040PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 30 and 40 Volts CURRENT - 30.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	SBL3030PT	SBL3040PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	30	40	Volts
Maximum RMS Voltage	VRMS	21	28	Volts
Maximum DC Blocking Voltage	VDC	30	40	Volts
Maximum Average Forward Rectified Current at $T_{C}=100^{\circ}C$	I(AV)	30	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	27	Amps	
Maximum Instantaneous Forward Voltage per leg at IF=15A, Tc=25°C (NOTE 2)	VF	0.	55	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg (NOTE 2) Tc=100°C	IR	-	.0 5.0	mA
Maximum Thermal Resistance (NOTE 1)	RejC	2	2.0	°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG	-40 to) +125	°C

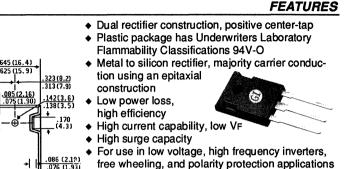
NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

RATINGS AND CHARACTERISTIC CURVES SBL3030PT AND SBL3040PT

115


SD241P

SCHOTTKY RECTIFIERS VOLTAGE RANGE - 45 Volts CURRENT - 30.0 Amperes

127 (3.22) 117 (2.97)

.048(1.22)

.044 (1.12)

- High temperature soldering guaranteed:
- 250°C, .17", 4.3mm from case for 10 seconds • Guardring for transient protection

MECHANICAL DATA

Case: JEDEC TO-247AD Molded Plastic Terminals: Lead solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Weight: 0.2 ounces, 5.6 gram

Dimensions in inches and (millimeters)

Ó PIN 2

CASE

TO-247AD

.245 (6.2)

.840(21.3)

140

<u>795 (20.2)</u> 775 (19.7)

203 (5.16) 193 (4.90)

10° TYP. BOTH SIDES

1 . REE

118(3.0)

108(2.7)

.030 (.76)

(Case Positive) PIN1Ō

STANDARD POLARITY PIN 3 0

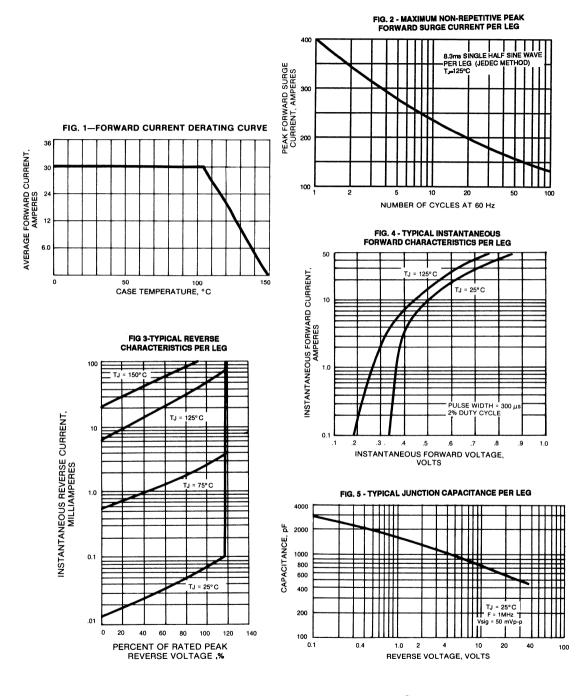
.078 REF (1.98)

1" REF

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	SD241P	UNITS
Maximum Recurrent Peak Reverse Voltage a	t Tc= 25°C	VRRM	45	Volts
Maximum Blocking Voltage at Tc=25°C		VDC	45	Volts
Maximum Working Peak Reverse Voltage		VRWM	35	Volts
Maximum Average Forward Rectified Current at T _C =105°C		I(AV)	30.0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)		IFSM	400.0	Amps
Peak Repetitive Reverse Surge Current (NOTE	E 3)	IRSM	2.0	Amps
Maximum Instantaneous Forward Voltage per leg at (NOTE 2)	I _F =10A, T _C =125°C I _F =20A, T _C =125°C	VF	0.47 0.60	Volts
Maximum Instantaneous Reverse Current Reverse Voltage per leg at V_R =35V (NOTE 2)	Tc=25℃ Tc=125℃	IR	1.0 100.0	mA
Voltage Rate of Change at V _R = 35V		dv/dt	1000	V/µs
Maximum Thermal Resistance (NOTE 1)		RejC	1.4	°C
Operating Junction Temperature Range		TJ	-65 to +150	°C
Storage Temperature Range		TSTG	-65 to +175	°C

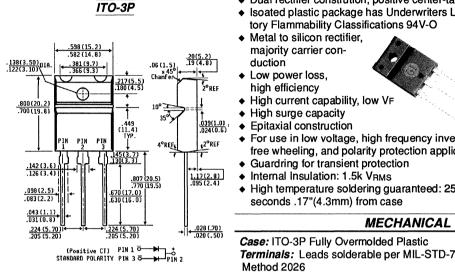

NOTES:

1. Thermal Resistance from Junction of Case per leg.

2. Pulse Test: Pulse Width=300µs, Duty Cycle=2%.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES SD241P


(D) General Instrument

MBRF4035PT AND MBRF4045PT

SCHOTTKY RECTIFIER

CURRENT - 40.0 Amperes VOLTAGE RANGE - 35 and 45 Volts

FEATURES

Dimensions in inches and (millimeters)

Dual rectifier constrution, positive center-tap

Isoated plastic package has Underwriters Labora-

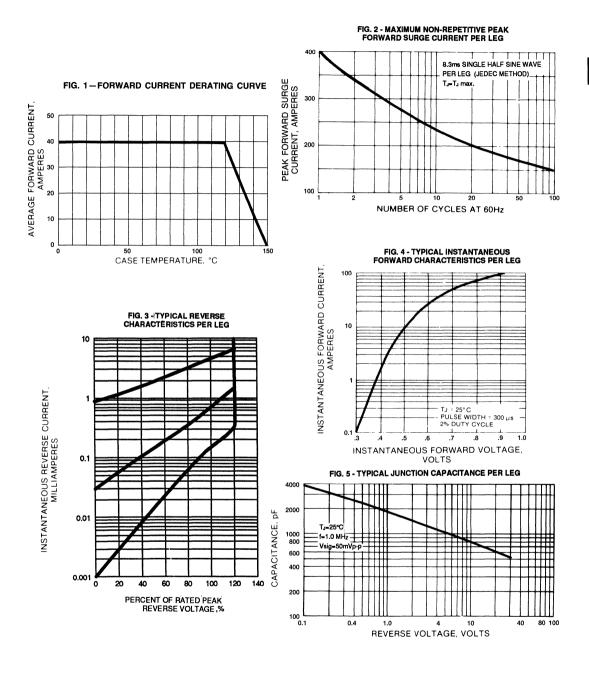
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering guaranteed: 250°C/10

MECHANICAL DATA

Terminals: Leads solderable per MIL-STD-750, Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - lb. max. Weight: .47 ounces. 13.2 ounces

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

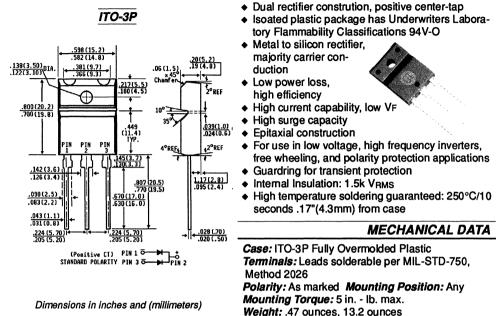

	SYMBOLS	MBRF4035PT	MBRF4045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Voltage	VRWM	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at Tc=120°C	I(AV)	40	0.0	Amps
Peak Repetitive Forward Current per leg (Rated V _R , Square wave, 20 KH _Z) at T _C =120°C	IFRM	40	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	4	Amps	
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	2.0		Amps
Maximum Instantaneous Forward Voltage per leg at IF=20A, Tc_25°C (NOTE 2) IF=20A, Tc=125°C	VF		70 60	Volts
Maximum Instantaneous Reverse Current at $Tc=25^{\circ}C$ Rated DC Blocking Voltage per leg (NOTE 2) $Tc=125^{\circ}C$	I _R	1	0.0 10.0	mA
Typical Thermal Resistance (NOTE 1)	ReJC	1	.6	°C/W
Voltage Rate of Change (Rated V _R)	dv/dt	10	000	V/µs
Operating Junction Temperature Range	TJ	-65 te	o +150	°C
Storage Temperature Range	TSTG	-65 te	o +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF4035PT AND MBRF4045PT



(1) General Instrument

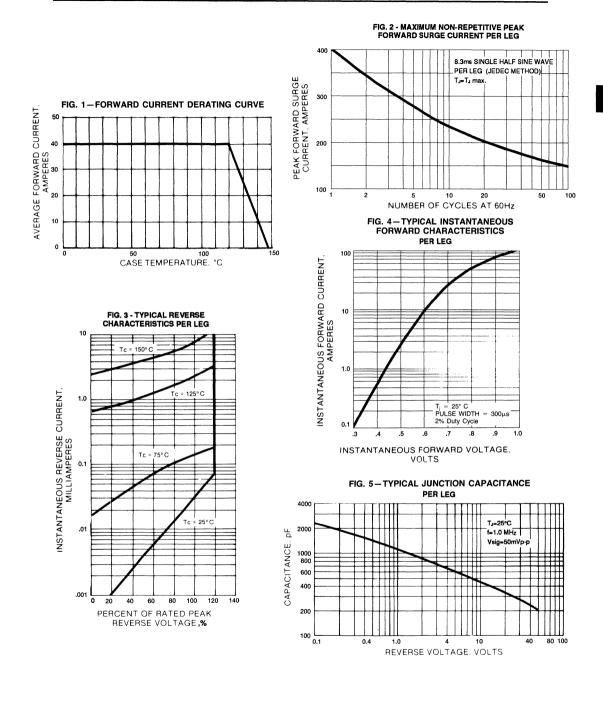
MBRF4050PT AND MBRF4060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 40.0 Amperes

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

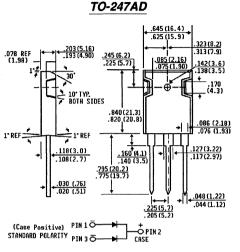

	SYMBOLS	MBRF4050PT	MBRF4060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at T_{C} =120°C	l(AV)	40	0.0	Amps
Peak Repetitive Forward Current per leg (Rated V _R , Square wave, 20 KH _Z) at T _C =120°C	IFRM	4	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	40	Amps	
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
Maximum Instantaneous Forward Voltage per leg IF=20A, Tc_25°C (NOTE 2) IF=20A, Tc=125°C	VF		80 70	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C	IR		0.0 0.0	mA
Typical Thermal Resistance (NOTE 1)	RejC	1	.6	°C/W
Voltage Rate of Change (Rated V _R)	dv/dt	10	000	V/µs
Operating Junction Temperature Range	Tj	-65 to	+150	°C
Storage Temperature Range	TSTG	-65 to	o +175	°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBRF4050PT AND MBRF4060PT


(1) General Instrument

MBR4035PT AND MBR4045PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 35 and 45 Volts CURRENT - 40 .0 Amperes

FEATURES

- Dual rectifier constrution, positive center-tap
- Plastic package has Underwriters Laboratory Flammability Classifications 94V-O
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- Guardring for transient protection
- High temperature soldering guaranteed: 250°C/10 seconds .17"(4.3mm) from case

MECHANICAL DATA

Case: JEDEC TO-247AD Molded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026

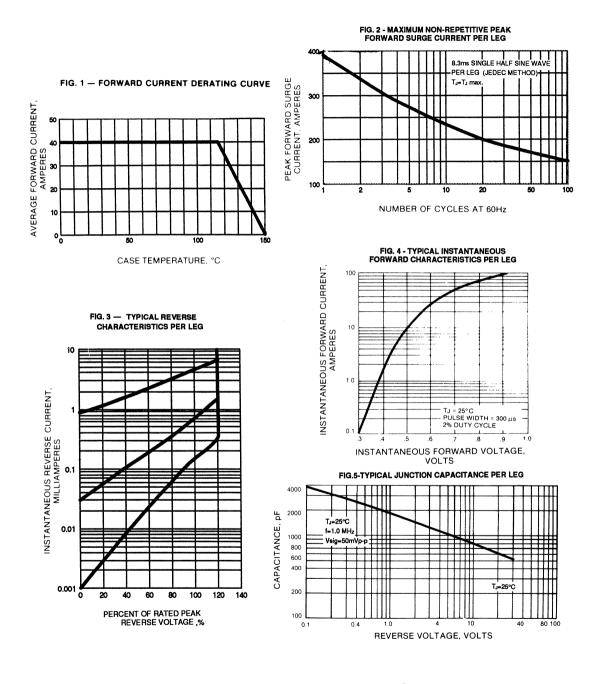
Polarity: As marked *Mounting Position:* Any *Weight:* 0.2 ounces, 5.6 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	MBR4035PT	MBR4045PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	35	45	Volts
Maximum Working Peak Reverse Voltage	VRMS	35	45	Volts
Maximum DC Blocking Voltage	VDC	35	45	Volts
Maximum Average Forward Rectified Current at $T_C = 125^{\circ}C$	I(AV)	40	0.0	Amps
Peak Repetitive Forward Current per leg (Rated V_R , Square wave, 20 KHz) at T _C =120°C	IFRM	40	Amps	
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	40	Amps	
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	2.0		Amps
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VF		70 60	Volts
Maximum Instantaneous Reverse Current at Tc=25°C rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C	IR		0.0 0.0	mA
Typical Thermal Resistance per leg (NOTE 1)	RejC	1	.4	°C/W
Voltage Rate of Change (Rated V _R)	dv/dt	10	000	V/µs
Operating Junction Temperature Range	Tj	-65 to	o +150	°C
Storage Temperature Range	TSTG	-65 to) +175	°C

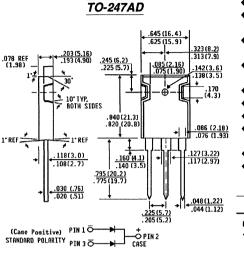

NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR4035PT AND MBR4045PT


(D) General Instrument

MBR4050PT AND MBR4060PT

SCHOTTKY RECTIFIER

VOLTAGE RANGE - 50 and 60 Volts CURRENT - 40.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

Dual rectifier construction, positive center-tap

- Plastic package has Underwriters Laboratory
- Flammability Classifications 94V-O
- Metal to sincon rectiler, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- Guardring for transient protection
- High temperature soldering guaranteed: 250°C/10 seconds/.17"(4.3mm) from case

MECHANICAL DATA

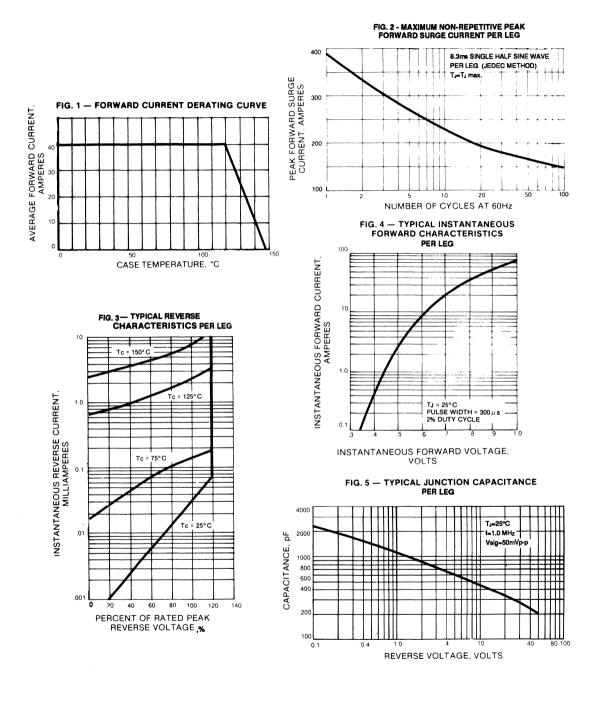
 \odot

Case: JEDEC TO-247AD Molded Plastic Terminals: Leads Solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Weight: 0.2 ounces, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	MBR4050PT	MBR4060PT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	60	Volts
Maximum Working Peak Reverse Voltage	VRWM	50	60	Volts
Maximum DC Blocking Voltage	VDC	50	60	Volts
Maximum Average Forward Rectified Current at $T_C=120^{\circ}C$	I(AV)	40).0	Amps
Peak Repetitive Forward Current per leg (Rated V _R , Square wave, 20 KH _Z) at T _C =120°C	IFRM	40	0.0	Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	40	Amps	
Peak Repetitive Reverse Surge Current (NOTE 3)	IRRM	1.0		Amps
Maximum Instantaneous Forward Voltage per leg at IF=20A, Tc=25°C (NOTE 2) IF=20A, Tc=125°C IF=20A, Tc=125°C	VF		80 70	Volts
Maximum Instantaneous Reverse Current at Tc=25°C Rated DC Blocking Voltage per leg (NOTE 2) Tc=125°C	IR		0.0 0.0	mA
Typical Thermal Resistance (NOTE 1)	RejC	1	.4	°C/W
Voltage Rate of Change at (Rated V _R)	dv/dt	10	000	V/µs
Operating Junction Temperature Range	TJ	-65 to	o +150	°C
Storage Temperature Range	T _{STG}	-65 to) +175	°C


NOTES:

1. Thermal Resistance from Junction to Case per leg.

2. Pulse Test: 300µs Pulse Width, 2% Duty Factor.

3. 2.0µs Pulse Width, f=1.0 KHz.

RATINGS AND CHARACTERISTIC CURVES MBR4050PT AND MBR4060PT

(1) General Instrument

FAST EFFICIENT RECITFIERS

SEE NEW ISOLATED PACKAGES

Ŵ

LOW TO MEDIUM CURRENT AXIAL FAST EPITAXIAL RECTIFIERS

TYPE	UG06A thru UG06D	UG1A thru UG1D	FE1A thru FE1D	Gi1001 thru Gi1004	BYV26D thru BYV26E	UG2A thru UG2D	FE2A thru FE2D	BYV27-50 thru BYV27-200	Gi1101 thru Gi1104	FESA tinu FESD	BYV28-50 thru BYV28-200	UG4A time UG4D	FESA thru FESD	FE6A thru FE6D	G[1301 thru G 1304	SUF15G thru SUF15J	SUF30G thru SUF30J
PACKAGE	MPG06	00-204AL	DO-204AP	DO-204AP	DO204AC	DO204AD	00-204AP	DO-204AP	DO-204AP	G4	G4	DO-201AD	G4	G4	G4	DO201AD	5 P600
IO(A)	0.6	1.0	1.0	1.0	1.0	2.0	2.0	20	25	3.0	3.5	4.0	5.0	6.0	6.0	1.5	3.0
VR=50(V)	UGD6A	UGIA	FEIA	GI1001		UG2A	FE2A	BYV27-50	Gi1101	FE3A	BYV28-50	UGAA	FESA	FEGA	GI1301		· .
VR=100(V)	UG068	UG1B	FE18	Gi1002		UG2B	FE28	BYV27-100	Gi1102	FE38	BYV28-100	UG48	FE58	FE68	GI1302		
VR=150(V)	UG06C	UGIC	FE1C	Gi1003		UG2C	FE2C	BYV27-150	Gittes	FE3C	BYV28-150	UG4C	FESC	FEGC	GI1303		
VR=200(V)	UG06D	UGID	FE1D	GI1004		UG2D	FE20	BYV27-200	Gi1104	FE30	BYV28-200	UG4D	FE5D	FE6D	GI1304		
VR=300(V)																	
VR=400(V)																SUF15G	SUF30G
VRES00(V)										[
VR-600(V)																SUF15J	SUF30J
VR-900(V)					BYV26D				[
VR=1000(V)					BYV26E												
trr (ns)	15	15	35	25/36	75	15	35	25	25/35	35	30	20	35	35	30/50	35	15

LOW TO MEDIUM CURRENT AXIAL FAST EFFICIENT RECTIFIERS

			(con	it.)		
TYPE	EGP10A thru EGP10D	EGP20A thru EGP20D	EGP30A thru EGP30D	EGP50A thru EGP50D	UF4001 thru UF4007	UF5400 thru UF5408
PACKAGE	DO204AL	DO204AC	GIP20	GP20	DO204AL	DO-201AD
IO(A)	1.0	2.0	3.0	5.0	1.0	3.0
VR=50(V)	EGP10A	EGP20A	EGP30A	EGP50A	UF4001	UF5400
VR=100(V)	EGP10B	EGP208	EGP30B	EGP50B	UF4002	UF5401
UV=150(V)	EGP10C	EGP20C	EGP30C	EGP50C		
VR=200(V)	EGP10D	EGP20D	EGP30D	EGP50D	UF4003	UF5402
VR=300(V)	EGP10F	EGP20F	EGP30F	EGP50F		UF5403
VR=400(V)	EGP10G	EGP20G	EGP30G	EGP50G	UF4004	UF5404
UV=500(V)				1		UF5405
VR=600(V)					UF4005	UF5406
VR=800(V)					UF4006	UF5407
VR=1000(V)					UF4007	UF5408
trr (ns)	50	50	50	50	50/75	50/75

128

MEDIUM TO HIGH CURRENT FAST EPITAXIAL RECTIFIERS

TYPE	UGF8AT thru	UG8AT thru	FESFBAT thru	FESBAT thru	Gi 1401 thru	BYW29-50 thru	FESF16AT thru	FES16AT
PACKAGE	IT0-220	UGBDT TO-220AC	FESRAJT ITO-220	FESBJT TO-220AC	GI1404 TO-220AC	BYW29-200 TO-220AC	FESF16JT ITO-220	TO-220AC
10(A)	8.0	8.0	8.0	8.0	8.0	8.0	16	16
VR=50(V)	UGF8AT	UG8AT	FESF8AT	FES8AT	GI1401	BYW29-50	FESF16AT	FES16AT
VR=100(V)	UGF8BT	UG8BT	FESF8BT	FES8BT	Gi1402	BYW29-100	FESF16BT	FES16BT
VR=150(V)	UGF8CT	UG8CT	FESF8CT	FES8CT	GI1403	BYW29-150	FESF16CT	FES16CT
VR=200(V)	UGF8DT	UG8DT	FESF8DT	FES8DT	GI1404	BYW29-200	FESF16DT	FES16DT
VR=300(V)			FESF8FT	FES8FT			FESF16FT	FES16FT
VR=400(V)			FESF8GT	FES8GT			FESF16GT	FES16GT
VR=500(V)			FESF8HT	FES8HT			FESF16HT	FES16HT
VR=600(V)			FESF&JT	FES&JT			FESF16JT	FES16JT
trr (ns)	20	20	35/50	35/50	35	25	35/50	35/50

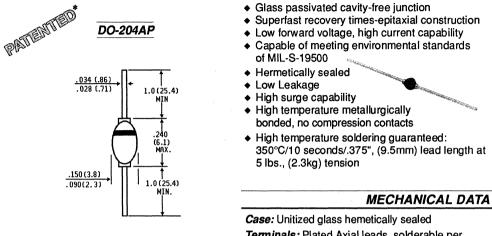
SINGLE RECTIFIERS

MEDIUM TO HIGH CURRENT FAST EPITAXIAL RECTIFIERS DUAL RECTIFIERS

	FEPF6AT	FEP6AT	FEPF16AT	FEP16AT	GI2401	UGF18ACT	UG18ACT	BYV32-50	UGF30APT	UG30APT	FEPF30AP	FEP30AP
TYPE	hru	thru	thru	thru	thru	thru	thru	thru	thru	thru	thru	thru
	FEPF6DT	FEP6DT	FEPF16JT	FEP16AT	Gi2404	UGF18DCT	UG18DCT	BYV32-200	UGF30DPT	UG30DPT	FEPF30JP	FEP30JP
PACKAGE	ITO-220CT	TO-220AB	ITO-220	ITO-220CT	TO-220AB	ITO-220CT	TO-220AB	TO-220AB	ITO-3P	TO-247AD	ITO-3P	TO-247AD
IO(A)	6	6	16	16	16	18	18	18	30	30	30	30
VR=50(V)	FEPF6AT	FEP6AT	FEPF16AT	FEP16AT	GI2401	UGF18ACT	UG18ACT	BYV32-50	UGF30APT	UG30APT	FEPF30AP	FEP30AP
VR=100(V)	FEPF6BT	FEP6BT	FEPF16BT	FEP16BT	GI2402	UGF18BCT	UG18BCT	BYV32-100	UGF30BPT	UG30BPT	FEPF30BP	FEP30BP
VR=150(V)	FEPF6CT	FEP6CT	FEPF16CT	FEP16CT	GI2403	UGF18CCT	UG18CCT	BYV32-150	UGF30CPT	UG30CPT	FEPF30CP	FEP30CP
VR=200(V)	FEPF6DT	FEP6DT	FEPF16DT	FEP16DT	GI2404	UGF18DCT	UG18DCT	BYV32-200	UGF30DPT	UG30DPT	FEPF30DP	FEP30DP
VR=300(V)			FEPF16FT	FEP16FT							FEPF30FP	FEP30FP
VR=400(V)			FEPF16GT	FEP16GT							FEPF30GP	FEP30GP
VR=500(V)			FEPF16HT	FEP16HT							FEPF30HP	FEP30HP
VR=600(V)			FEPF16JT	FEP16HT							FEPF30JP	FEP30JP
trr (ns)	35	35	35/50	35/50	35	20	20	25	20	20	35/50	35/50

GLASS PASSIVATED FAST EPITAXIAL RECTIFIERS

1.0 AMPERE TO 6.0 AMPERES



FE1A THRU FE1D

MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER Current - 1.0 Ampere

Voltage - 50 to 200 Volts

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

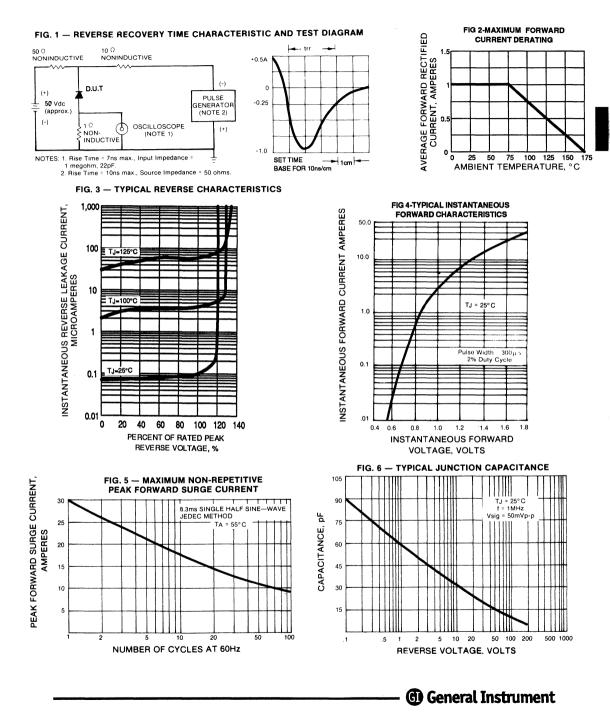
Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any

Weight: 0.002 ounce, 0.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	FE1A	FE1B	FE1C	FE1D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =75°C	I(AV)		1.	.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) TA=55°C	IFSM		30).0		Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			Volts		
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR	2.0 50.0				μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}		35	5.0		ns
Typical Junction Capacitance (NOTE 2)	CJ	a think and a second second second	45	5.0		pf
Typical Thermal Resistance (NOTE 3)	Røja Røjl			5.0 0.0		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG		-65 to	o +175		°C


NOTES:

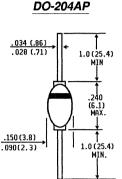
1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance from Junction to Ambient and/or Lead, .375" (9.5mm) Lead Lengths mounted on P.C. board with .47in,² (12mm²) copper pads.

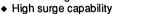
RATINGS AND CHARACTERISTIC CURVES FE1A THRU FE1D

GI1001 THRU GI1004


MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts

Current - 2.5 Amperes


FEATURES

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low Leakage

- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3ka) tension

MECHANICAL DATA

Case: JEDEC DO-204AP Unitized glass hemetically sealed

Terminals: Plated Axial leads, solderable per MIL-STD-750. Method 2026

Polarity: Color band denotes cathode

Mounting Position: Any

* Brazed-Lead assembly is covered by Patent No. 3,930,306 of 1976

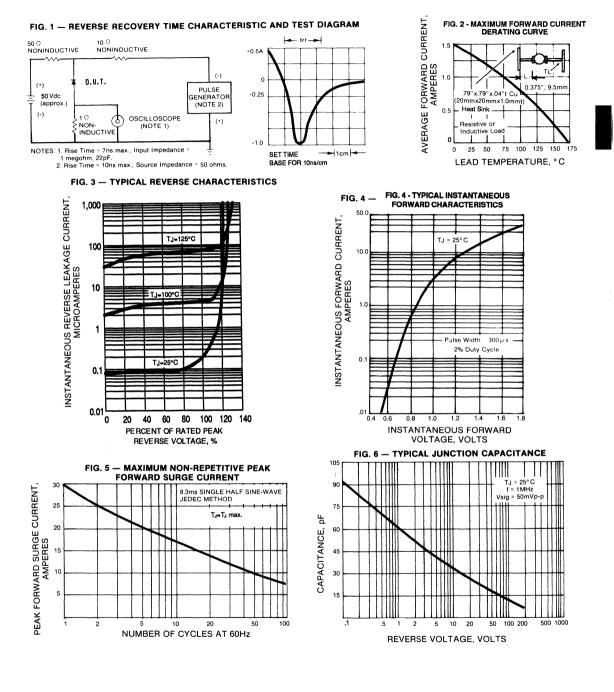
Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Weight: 0.02 ounce, 0.6 gram

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	GI 1001	GI1002	GI1003	GI1004	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T_L = 75°C	I(AV)		1.	0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		30	.0		Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		0.9	75		Volts
Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A =100°C	IR		2. 50			μA
Maximum Reverse Recovery Time TJ=25°C (NOTE 1)	T _{RR}		25	i.0	A	ns
Typical Junction Capacitance (NOTE 2)	CJ		45	5.0		pf
Typical Thermal Resistance (NOTE 3,4)	Røja Røjl	65.0 20.0				°C/W
Operating Junction and Storage Temperature Range	Tj,Tstg		-65 to	+175		°C

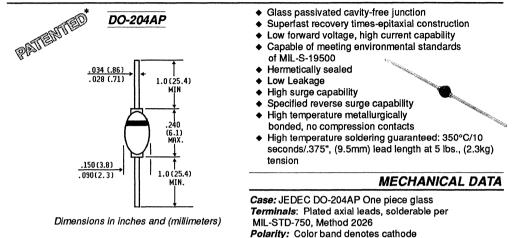

NOTES

1. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, recover to 0.25A.

Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.
 Thermal Resistance from Junction to Lead ,.375" (9.5mm) Lead Lengths, both leads attached to heat sinks.

4. Thermal Resistance from Junction to Ambient, 375"(9.5mm) Lead Lengths mounted on P.C. board with .47in.² (12mm) copper pads

RATINGS AND CHARACTERISTIC CURVES GI1001 THRU GI1004


G General Instrument

BYV26D AND BYV26E

MINIATURE GLASS PASSIVATED ULTRA FAST EPITAXIAL RECTIFIER

Voltage - 800 to 1000 Volts Current - 1.0 Ampere

FEATURES

* Brazed-lead assembly is covered by Patent No. 3.930.306 of 1976

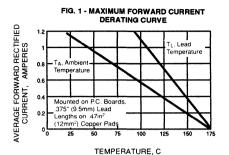
Patent No. 3,930,306 of 1976 Weight: 0.02 ounce, 0.56 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Mounting Position: Any

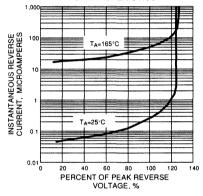
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BVY26D	BYV26E	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	560	700	Volts
Maximum DC Blocking Voltage	VDC	800	1000	Volts
Minimum Avalanche Breakdown Voltage at 100 µA	VBR	900	1100	Volts
Maximum Average Forward Rectified Current 375", (9.5mm) Lead Lengths See Fig. 1	l(AV)	1	.0	Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load T _J =T _J max.	IFSM	3	0.0	Amps
Maximum Instantaneous Forward Voltage at 1.0A Ta=25°C TJ=175°C	VF		.50 .30	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _J =165°C	IR		5.0 50.0	μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	7	5.0	ns
Non Repetitive Peak Reverse Energy (NOTE 4)	Ersm	1	0.0	mj
Typical Junction Capacitance (NOTE 2)	CJ	1	5.0	pf
Typical Thermal Resistance (NOTE 3)	Røja Røjl	-	0.0 6.0	°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG		o +175	°C/W

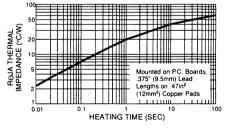
NOTES:


1. Reverse Recovery Test Conditions: IF =0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.


3. Thermal Resistance from Junction to Ambient and/or Leads, .375" (9.5mm) Lead Lengths, mounted on P.C. Board with .47in² (12mm²) copper pads.

4. Peak Reverse Energy measured at IR=400mA, TJ=TJ max. on inductivve load.


RATINGS AND CHARACTERISTIC CURVES BYV26D AND BYV26E

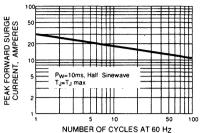
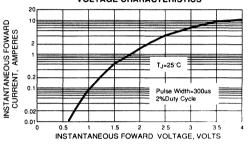
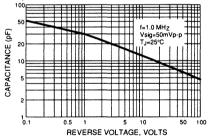
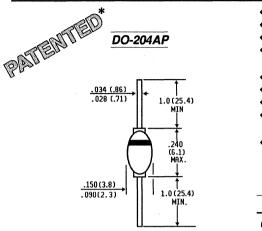




FIG. 4 - TYPICAL INSTANTANEOUS FORWARD VOLTAGE CHARACTERISTICS


G General Instrument

FE2A THRU FE2D

MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts Current - 2.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- · Hermetically sealed
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP Unitized glass hemetically sealed

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

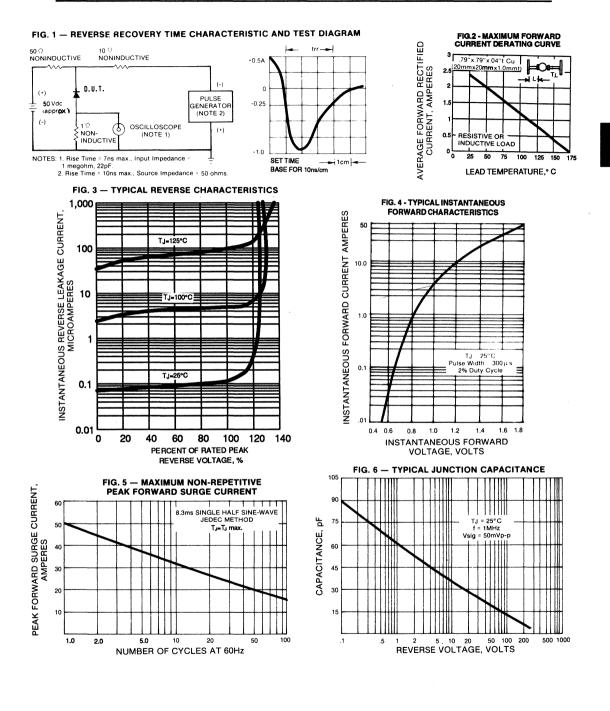
Polarity: Color band denotes cathode

Mounting Position: Any *Weight:* 0.002 ounce, 0.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	FE2A	FE2B	FE2C	FE2D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	V _{RMS} 35 70 105 140				140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at TL=75°C	I(AV)		2	.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A = 55°C	IFSM		50	0.0		Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		0.9	95		Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IB			.0).0		μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C (NOTE 1)	T _{RR}		35	5.0		ns
Typical Junction Capacitance (NOTE 2)	CJ		pf			
Typical Thermal Resistance (NOTE 3)	Røja		°C/W			
Operating Junction and Storage Temperature Range	Tj,Tstg	-65 to +175				°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

Thermal Resistance from Junction to Ambient, .375" (9.5mm) Lead Lengths, mounted on P.C. Board with .47in.²(12mm²) copper pads.

RATINGS AND CHARACTERISTIC CURVES FE2A THRU FE2D

G General Instrument

BYV27-50 THRU BYV27-200

MINIATURE GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts Current - 2.0 Amperes

FEATURES

- Glass passivated cavity-free junction
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage
- High surge capability
 - High temperature metallurgically
- bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP Unitized glass hermetically sealed

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: 0.02 ounce, 0.6 gram

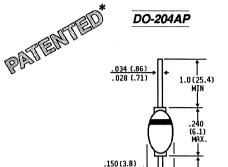
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

1.0 (25.4)

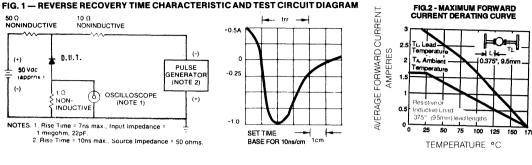
MIN.


	SYMBOLS	BYV27-50	BYV27-100	BYV27-150	BYV27-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	55	110	165	220	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at TL=85°C	I(AV)			Amps		
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load T _A =175°C	IFSM		50	.0		Amps
Maximum Instantaneous ForwardTJ=175°CVoltage at 3.0ATJ=25°C	VF	0.88 1.07				Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =165°C	IR	1.0 150.0				μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		25	5.0		nS
Typical Junction Capacitance (NOTE 2)	CJ		45	5.0	ويسادفن فالشامة ومعرز فمحاطي ويهيهمون	pf
Typical Thermal Resistance (NOTE 3)	RØJL			°C/W		
Operating Junction and Storage Temperature Range	TJTSTG		-65 to	+175		°C

NOTES:

1.Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.

.090(2.3)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

RATINGS AND CHARACTERISTIC CURVES BYV27-50 THRU BYV27-200

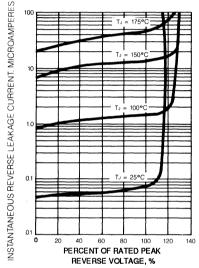
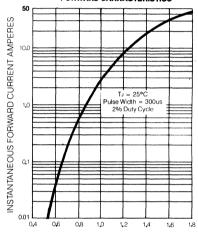
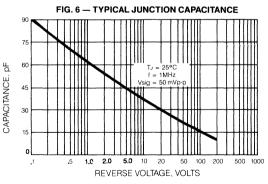




FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 60 50 40 10ms SINGLE HALF WINE-WAVE T_=175°C 30 20 10 0 20 50 100 1.0 2.0 5.0 10 NUMBER OF CYCLES AT 60 Hz

FIG. 4 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

(D) General Instrument

GI1101 THRU GI1104

GLASS PASSIVATED FAST EPITAXIAL RECTIFIER Current - 2.5 Amperes

Voltage - 50 to 200 Volts

FEATURES

PATENTED DO-204AP .034 (.86) .028 (.71) 1.0 (25.4) MTN (6 MAX .150(3.8) 1.0 (25.4) .090(2.3) MIN.

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage

- High temperature metallurgically
- bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP Unitized glass hemetically sealed

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode

Mounting Position: Any Weight: 0.02 ounce, 0.6 gram

Dimensions in inches and (millimeters)

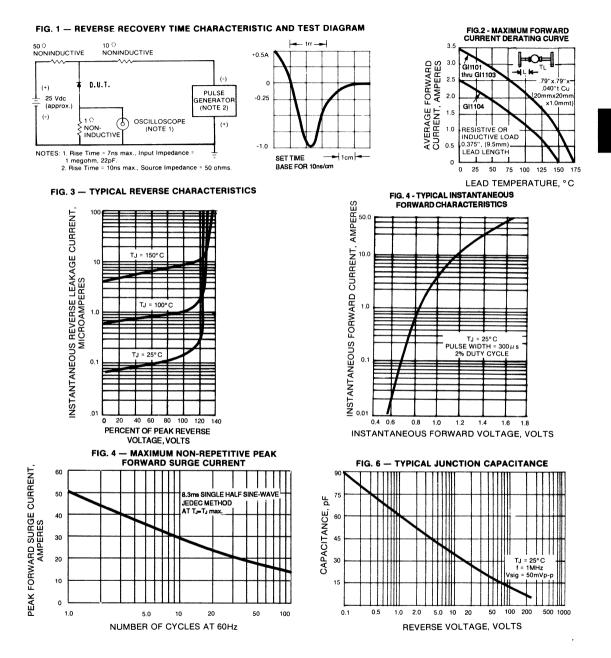
* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	GI1101	GI1102	GI1103	GI1104	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths. See Fig. 2	I(AV)		2.5	-	(NOTE 3) 2.0	Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		50	.0		Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF		.975		(NOTE 4) 1.25	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR		2.0 50.0		10.0 200.0	μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}		25.0		50.0	ns
Typical Junction Capacitance (NOTE 2)	CJ		45.	0		pf
Typical Thermal Resistance (NOTE 5)	Røjl	20.0			•	°C/W
Operating Junction and Storage Temperature Range	TJTSTG		-65 to 175		-65 to +150	°C

NOTES:


1. Reverse Recovery Test Conditions: $l_F{=}0.5A,\ l_B{=}1.0A,$ recover to 0.25A. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

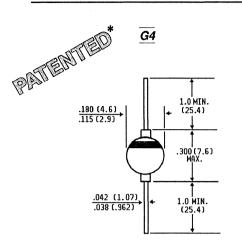
3. TL= 55°C, .375" (9.5mm) Lead Length.

4. IFM=1.0A

5. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heat sinks.

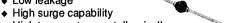
RATINGS AND CHARACTERISTIC CURVES GI1101 THRU GI1104

General Instrument


FE3A THRU FE3D

GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts


Current - 3.0 Amperes

FEATURES

Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage

- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3ka) tension

MECHANICAL DATA

Case: Unitized glass hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: 0.037 ounce, 1.04 gram

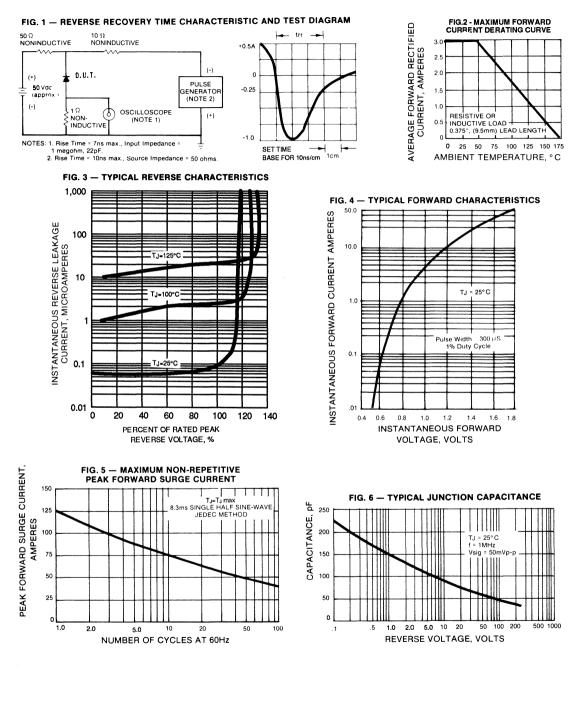
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

	SYMBOLS	FE3A	FE3B	FE3C	FE3D	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts	
Maximum RMS Voltage	VRMS	35	70	105	140	Volts	
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	l(AV)		3	.0	-	Amps	
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method) $T_A=55^{\circ}C$	IFSM		125.0				
Maximum Instantaneous Forward Voltage at 3.0A	VF		Volts				
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=100°C	IR		-	.0).0		μA	
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		35	5.0		ns	
Typical Junction Capacitance (NOTE 2)	CJ		10	0.0		pf	
Typical Thermal Resistance (NOTE 3)	Røja Røjl	55.0 20.0				°C/W	
Operating Junction and Storage Temperature Range	TJTSTG		-65 to	+175		°C	

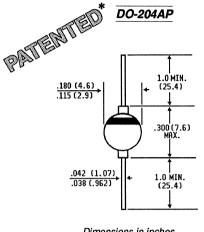

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IB=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient, and/or Leads, .375" (9.5mm) Lead Lengths mounted on P.C. board.

RATINGS AND CHARACTERISTIC CURVES FE3A THRU FE3D


(D) General Instrument

BYV28-50 THRU BYV28-200

GLASS PASSIVATED FAST EPITAXIAL RECTIFIERS

Voltage - 50 to 200 Volts Current - 3.5 Amperes

FEATURES

Dimensions in inches and (millimeters) • Glass passivated cavity-free junction

- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- · Hermetically sealed
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode

Mounting Position: Any

Weight: 0.037 ounce, 7.4 gram

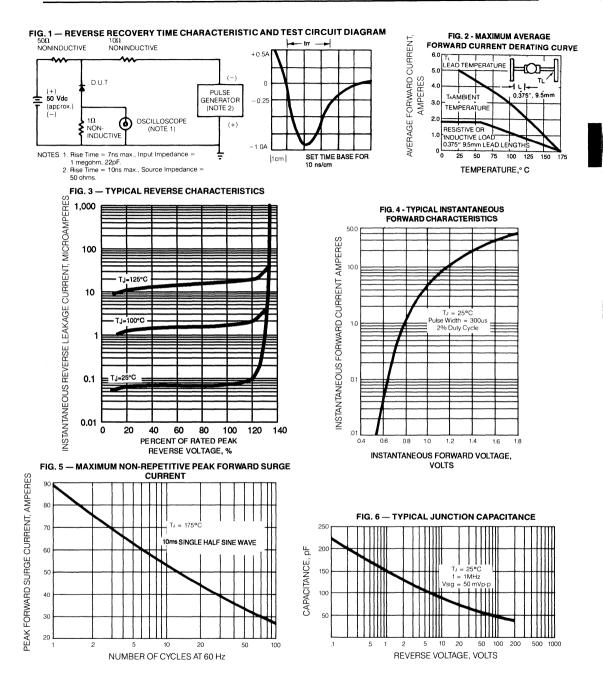
* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BYV28-50	BYV28-100	BYV28-150	BYV28-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Minimum Reverse Breakdown Voltage at 100µA	VBR	55	110	165	220	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_L=85^{\circ}C$	I(AV)		3	.5		Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =175°C	IFSM		90	0.0		Amps
Maximum Instantaneous ForwardTJ=175°CVoltage at 3.0ATJ=25°C	VF	0.89 1.1				Volts
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=165°C	IR		-	.0 0.0		μА
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			ns		
Typical Junction Capacitance (NOTE 2)	Сј 100.0					pf
Typical Thermal Resistance (NOTE 3,4)	Røja Røjl			°C/W		
Operating Junction and Storage Temperature Range	TJTSTG			°C		

NOTES:

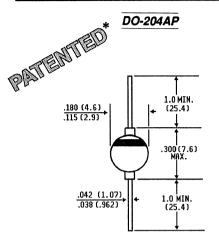

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.

4. Thermal Resistance from Junction to Ambient, .375" (9.5mm) Lead Lengths mounted on P.C. Board.

RATINGS AND CHARACTERISTIC CURVES BYV28-50 THRU BYV28-200


(D) General Instrument

FE5A THRU FE5D

GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts Current - 5.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

*Brazed-lead assenmbly to Patent No. 3,930,306 of 1976

Glass passivated cavity-free junction

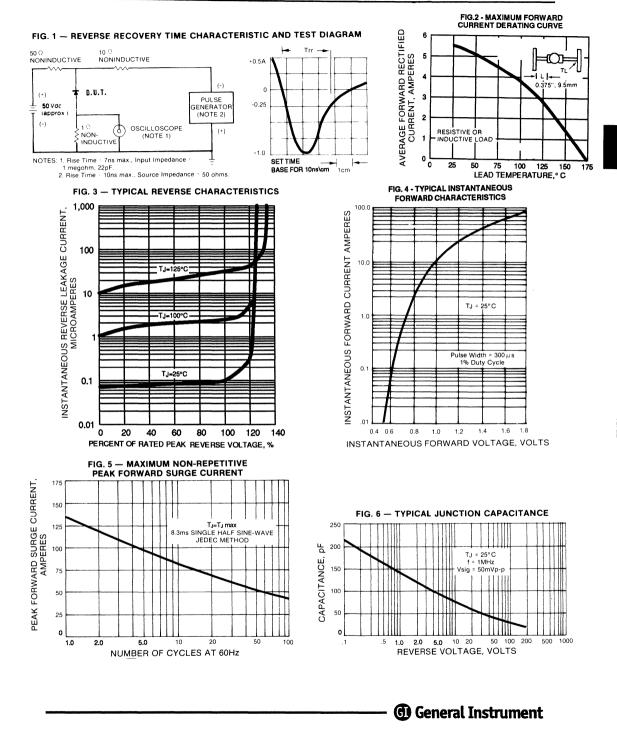
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Axial leads, solderable per MIL-STD-750. Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

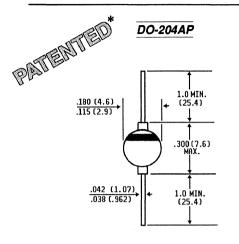

	SYMBOLS	FE5A	FE5B	FE5C	FE5D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	200	Volts		
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_L=55$ °C						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =55°C	urrent wave superimposed Method) T _A =55°C I _{FSM} 135.0					Amps
Maximum Instantaneous Forward Voltage at 5.0A	VF		0.	95		Volts
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=100°C	IR		-	.0).0		μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		35	5.0		ns
Typical Junction Capacitance (NOTE 2)	CJ			pf		
Typical Thermal Resistance (NOTE 3,4)	Røja Røjl			°C/W		
Operating Junction and Storage Temperature Range						°C

NOTES:

Reverse Recovery Test Conditions: IF=0.5A, In=1.0A, recover to 0.25A.
 Measured at 1.0 MHz and applied reverse voltage of 4.0 V_{DC}.
 Thermal Resistance from Junction to Lead, .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.

4. Thermal Resistance from Junction to Ambient, .375"(9.5) Lead Lengths mounted on P.C.

RATINGS AND CHARACTERISTIC CURVES FE5A THRU FE5D



FE6A THRU FE6D

GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Current - 6.0 Amperes Voltage - 50 to 200 Volts

FEATURES

- Glass passivated cavity-free junction
- Superfast recovery times-epitaxial construction
- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at
- 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.037 ounce, 1.04 gram

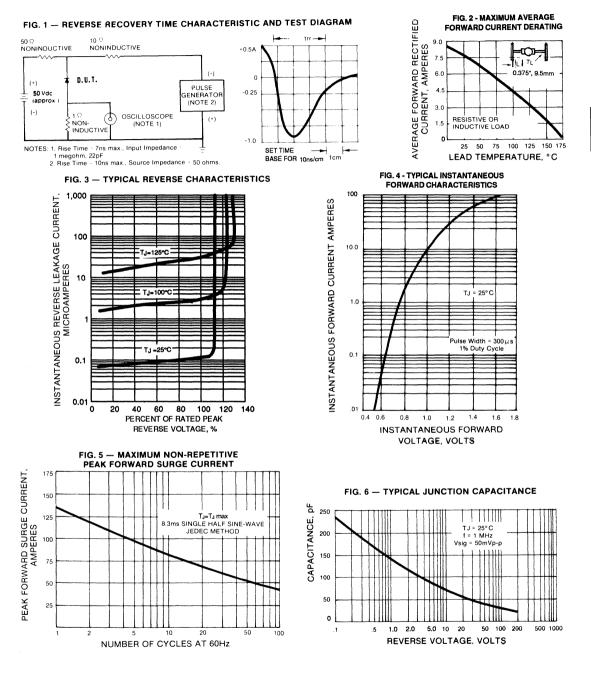
Dimensions in inches and (millimeters)

* Brazed - lead assembly is covered by Patent No. 3.930.306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	FE6A	FE6B	FE6C	FE6D	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts	
Maximum RMS Voltage	VRMS	35	70	105	140	Volts	
Maximum DC Blocking Voltage	VDC	50	200	Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at TL=55°C	I(AV)		6	.0		Amps	
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =55°C	IFSM		13	5.0		Amps	
Maximum Instantaneous Forward Voltage at 6.0/	A VF		Volts				
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=100°C	IR		-	.0).0		μΑ	
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		35	5.0		ns	
Typical Junction Capacitance (NOTE 2)	CJ			pf			
Typical Thermal Resistance (NOTE 3,4)	esistance (NOTE 3,4) ROJA ROJL		55.0 18.0				
Operating Junction and Storage Temperature Range	TJTSTG		-65 to	o +175		°C	

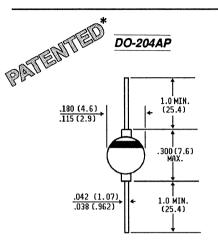

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.
 Thermal Resistance from Junction to Lead at .375" (9.5mm) Lead Lengths, both leads attached to heatsinks.

^{4.} Thermal Resistance from Junction to Ambient, 375" (9.5mm) Lead Lengths mounted on P.C. board.

RATINGS AND CHARACTERISTIC CURVES FE6A THRU FE6D


G General Instrument

GI1301 THRU GI1304

GLASS PASSIVATED FAST EPITAXIAL RECTIFIER

Voltage - 50 to 200 Volts Current - 6.0 Amperes

FEATURES

Glass passivated cavity-free junction Superfast recovery times-epitaxial construction

- Low forward voltage, high current capability
- Capable of meeting environmental standards of MIL-S-19500
- Hermetically sealed
- Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Unitized glass hemetically sealed *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.037 ounce, 1.04 gram

Dimensions in inches and (millimeters)

* Brazed - lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

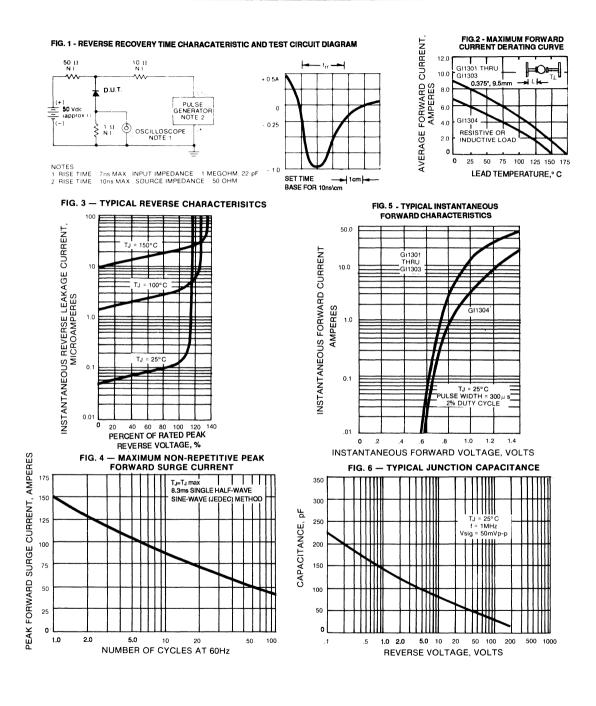
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	GI1301	GI1302	GI1303	GI1304	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at , See Fig. 2	I(AV)		6.0		(NOTE 3) 5.0	Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		15	0.0		Amps
Maximum Instantaneous Forward Voltage at 6.0A	VF		0.925		(NOTE 4) 1.25	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR		5.0 150.0		20.0 500.0	μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}		30.0		50.0	ns
Typical Junction Capacitance (NOTE 2)	CJ		9	5.0		pf
Typical Thermal Resistance (NOTE 5, 6)	Røja Røjl		55.0 18.0			
Operating Junction and Storage Temperature Range	TJTSTG	-	-65 to +17			°C

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR = 1.0A, recover to 0.25A,

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


3. T_L = 55°C, .375" (9.5mm) Lead Length.

4. IFM = 3.0ADC.

5. Thermal Resistance from Junction to Lead , 375" (9.5mm) Lead Lengths, both leads attached to heatsinks.

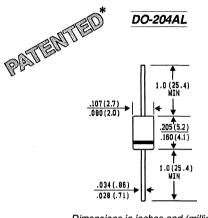
6. Thermal Resistance from Junction to Ambient, 375"(9.5mm) Lead Lengths mounted on P.C. board.

RATINGS AND CHARACTERISTIC CURVES GI1301 THRU GI1304

(1) General Instrument

GLASS PASSIVATED PLASTIC FAST EFFICIENT RECTIFIERS

1.0 AMPERE TO 5.0 AMPERES



EGP10A THRU EGP10G

MINIATURE GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 400 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of

- Glass passivated cavity-free junction
- Superfast recovery times for high efficiency
- Low forward voltage, high current capability
- Low leakage
- High surge capability
 High temperature

- metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

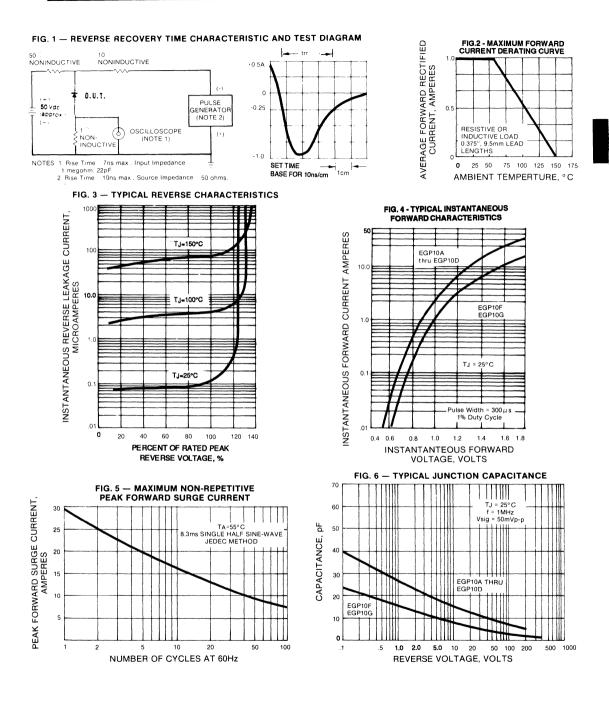
MECHANICAL DATA

Case: JEDEC DO-41AL Molded plastic over glass *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, 0 3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	EGP 10A	EGP 10B	EGP 10C	EGP 10D	EGP 10F	EGP 10G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)	1.0						Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load T _A =55°C	IFSM	30,0						Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			0	.95	1.	25	Volte
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR				5.0 00			μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			50).0			ns
Typical Junction Capacitance (NOTE 2)	CJ	20.0 10.0				.0	pf	
Typical Thermal Resistance (NOTE 3)	Røja	50.0					°C/M	
Operating Junction and Storage Temperature Range	Tj,Tstg	-65 to +150						°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient, .375"(9.5mm) lead lengths, P.C. board mounted.

RATINGS AND CHARACTERISTIC CURVES EGP10A THRU EGP10G

(D) General Instrument

EGP20A THRU EGP20G

MINIATURE GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 400 Volts

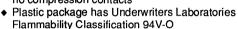
Current - 2.0 Amperes

FEATURES

 DO-204AC

 Indext

 <


Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976

Glass passivated cavity-free junction

- Superfast recovery times for high efficiency
- · Low forward voltage, high current capability
- Low leakage
- High surge
- capability
 High temperature metallurgically bonded, no compression contacts

 High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

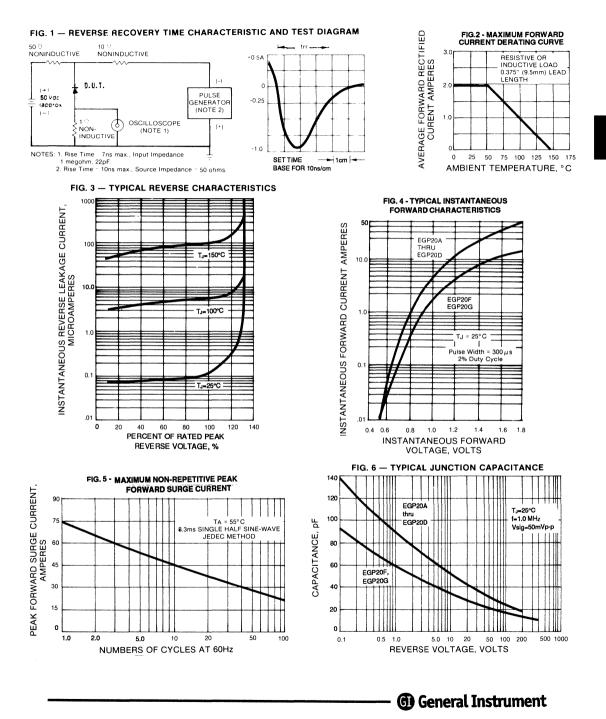
MECHANICAL DATA

Case: JEDEC DO-204AC Molded plastic over glass *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	EGP 20A	EGP 20B	EGP 20C	EGP 20D	EGP 20F	EGP 20G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	l _(AV) 2.0					Amps		
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load T _A =55°C	IFSM	75.0					Amps	
Maximum Instantaneous Forward Voltage at 2.0A	VF		0.9	5		1.2	25	Volts
Maximum DC Reverse CurrentT_A=25°Cat Rated DC Blocking VoltageT_A=125°C	lR				5.0 50.0	•		μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			50	0.0			ns
Typical Junction Capacitance (NOTE 2)	CJ	70.0 40.0				0	pf	
Typical Thermal Resistance (NOTE 3)	Røja	30.0					°C/M	
Operating Junction and Storage Temperature Range	TJTSTG	-65 to +150					°C	

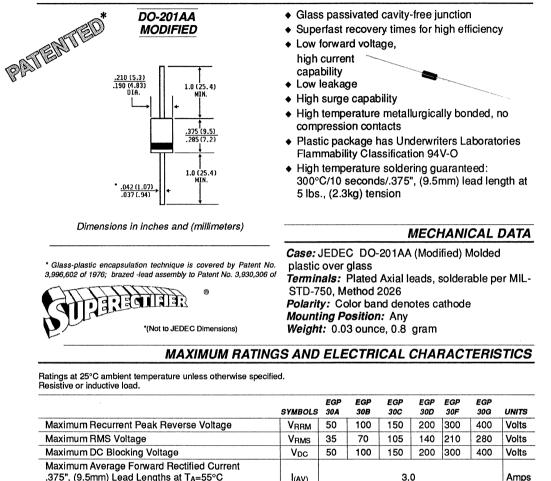

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient, .375"(9.5mm) lead lengths, P.C. board mounted.

RATINGS AND CHARACTERISTIC CURVES EGP20A THRU EGP20G


159

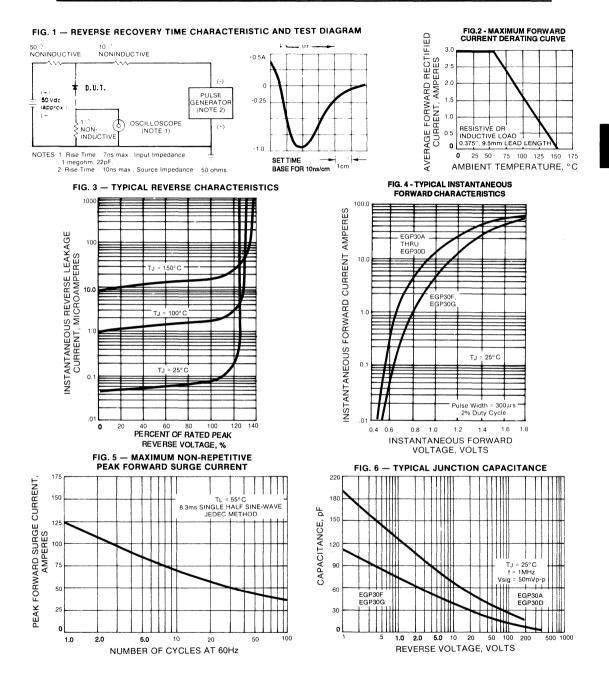
EGP30A THRU EGP30G

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 400 Volts Current - 3.0 Amperes

FEATURES

VRRM	50						UNITS
		100	150	200	300	400	Volts
VRMS	35	70	105	140	210	280	Volts
VDC	50	100	150	200	300	400	Volts
I(AV)	I _(AV) 3.0						Amps
IFSM	125.0						Amps
VF		0.9	95		1.25	;	Volts
IR	1						μΑ
T _{RR}			50	0.0			ns
CJ		90	.0		55	.0	pf
Røja	55.0					°C/W	
TJTSTG	-65 to +150						°C
	I(AV) IFSM VF IR TRR CJ RØJA	V _{DC} 50 I(AV)	VDC 50 100 I(AV) I II IFSM VF 0.5 IR IR II TRR CJ 90 RØJA II II	V _{DC} 50 100 150 I(AV) 3. IFSM 12 VF 0.95 IR 1 TRR 50 CJ 90.0 RØJA 55	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$


NOTES:

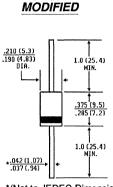
1. Reverse Recovery Test Conditions: IF=0.5A, IR =1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient, .375"(9.5mm) lead lengths, P.C. board mounted.

RATINGS AND CHARACTERISTIC CURVES EGP30A THRU EGP30G

(D) General Instrument


EGP50A THRU EGP50G

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 400 Volts Current - 5.0 Amperes

FEATURES

PATENTED*

DO-201AA

*(Not to JEDEC Dimensions)

Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976

- · Glass passivated cavity-free junction
- Superfast recovery times for high efficiency
- Low forward voltage, high
- current capability • Low leakage
- High surge capability
- High temperature metallurgically bonded, no compression contacts
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

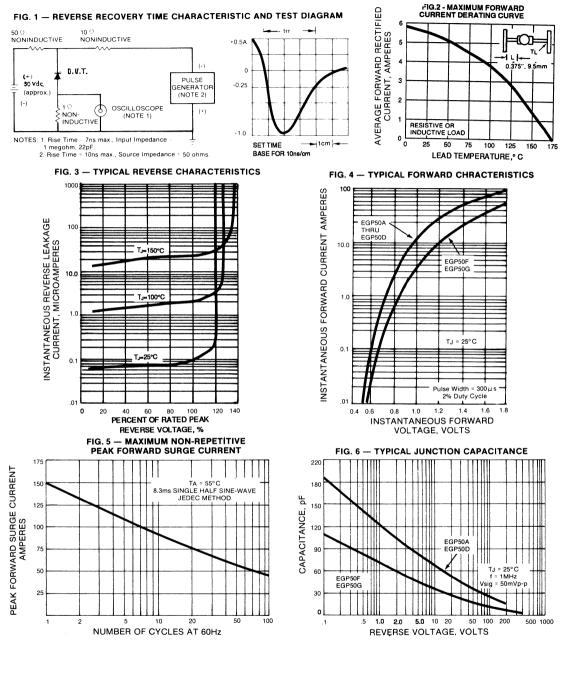
MECHANICAL DATA

Case: JEDEC DO-201AA (Modified) Molded plastic over glass Terminals: Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	EGP 50A	EGP 50B	EGP 50C	EGP 50D	EGP 50F	EGP 50G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50 100 150 200 300 400				400	Volts	
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T_L =55°C	I(AV)	5.0						Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load T_L =55°C	IFSM	150.0						Amps
Maximum Instantaneous Forward Voltage at 5.0A	VF		0	.95		1.2	25	Volts
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 125^{\circ}C$	IR				5.0 0.0	-		μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			5	0.0			ns
Typical Thermal Resistance (NOTE 3)	RØJL			20	0.0			°C\W
Typical Junction Capacitance (NOTE 2)	CJ	100.0						pf
Operating Junction and Storage Temperature Range	TJTSTG	-65 to +150						°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

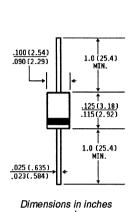
3. Thermal Resistance from Junction to Lead at .375", 9.5mm Lead Lengths, both leads to heatsink.

RATINGS AND CHARACTERISTIC CURVES EGP50A THRU EGP50G

G General Instrument

PLASTIC FAST EFFICIENT RECTIFIERS

1.0 AND 3.0 AMPERES



UG06A THRU UG06D

MINIATURE ULTRAFAST PLASTIC RECTIFIER

Voltage - 50 to 200 Volts Current - 0.6 Amperes

FEATURES

MPG06

and (millimeters)

Ideally suited for use in very high frequency switching power supplies, inverters and as free wheeling diodes

- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Ultrafast 15 nanosecond reverse recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Nitride oxide passivated junction
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over a passivated junction Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weiaht: 0.0064 ounce, 0.181 oram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	UG06A	UG06B	UG06C	UG06D	UNITS		
Maximum Recurrent Peak Reverse V	oltage	VRRM	50	100	150	200	Volts		
Maximum RMS Voltage		VRMS	35	70	105	140	Volts		
Maximum DC Blocking Voltage		VDC	50	100	150	200	Volts		
Maximum Average Forward Rectified .375", (9.5mm) Lead Lengths at TL=7		I(AV)			Amps				
Peak Forward Surge Current 8.3 ms single half sine-wave superim on rated load (JEDEC Method)	ns single half sine-wave superimposed			M 40.0					
Maximum Instantaneous Forward Vol	Instantaneous Forward Voltage at 0.6A			0.95					
Maximum DC Reverse Current	T _A =25°C								
at Rated DC Blocking Voltage	T _A =100°C	l _R		100	0.0		μΑ		
Maximum Reverse Recovery Time (No	DTE 1)TJ=25°C	T _{RR}		15	.0		ns		
Maximum Reverse Recovery Time	Tj=25°C			25.0					
(NOTE 2)	Tj=100°C	T _{RR}		35	.0		ns		
Maximum Stored Charge	Tj=25°C			8.	.0				
(NOTE 2)	Tj=100°C	Q _{RR}		20	0.0		nC		
Typical Junction Capacitance (NOTE 3)	CJ		10	0.0		pf		
Typical Thermal Resistance (NOTE 4)		Reja		°C/W					
Operating Junction and Storage Temperature Range		TJ,TSTG		-55 to	+150		°C .		

NOTES:

1. Reverse Recovery Test Conditions: IF =0.5A, IR =1.0A, recover to 0.25A.

2. TRR and QRR measured on LEM tester IF =0.6A: VR = 30V, di\dt=50 A/µs.

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES UG06A THRU UG06D

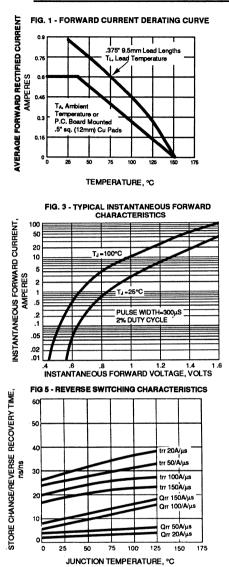
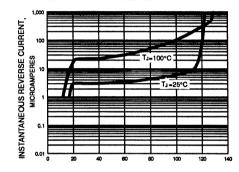
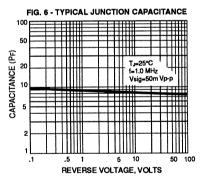
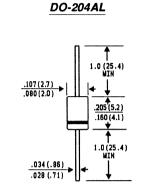




FIG. 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 10 PEAK FORWARD SURGE CURRENT, AMPERES 60 8.3ms Single Half Sine Wave JEDEC Method 30 T x Ш 10 30 50 NUMBER OF CYCLES AT 60 Hz

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE, %


General Instrument

UG1A THRU UG1D

MINIATURE ULTRAFAST PLASTIC RECTIFIER

Voltage - 50 to 200 Volts Current - 1.0 Amperes

FEATURES

- Ideally suited for use in very high frequency switching power supplies, inverters and as free wheeling diodes
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Ultrafast 15 nanosecond reverse recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Nitride oxide passivated junction
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL, molded plastic over a passivated junction *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, 0.34 gram

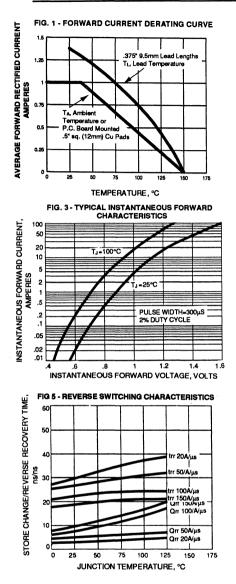
Dimensions in inches and (millimeters)

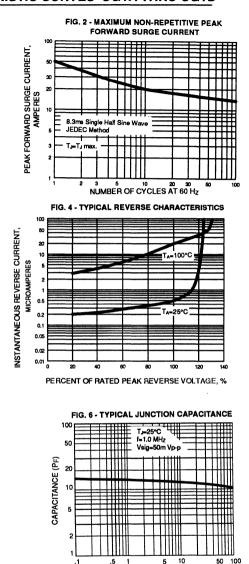
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	UG1A	UG1B	UG1C	UG1D	UNITS
Maximum Recurrent Peak Reverse	Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage		VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage		VDC	50	200	Volts		
Maximum Average Forward Rectifie .375", (9.5mm) Lead Lengths at TL=		I(AV)			Amps		
Peak Forward Surge Current 8.3 ms single half sine-wave superi on rated load (JEDEC Method)	nposed	IFSM			Amps		
Maximum Instantaneous Forward V	oltage at 1.0A	VF			Volts		
Maximum DC Reverse Current	T _A = 25°C						
at Rated DC Blocking Voltage	T _A =100°C	l _R			μΑ		
Maximum Reverse Recovery Time	NOTE 1)TJ=25°C	T _{RR}		nS			
Maximum Reverse Recovery Time	Tj=25°C						
(NOTE 2)	T _{J=} 100°C	T _{RR}		35	5.0		ns
Maximum Stored Charge	Tj=25°C			10).0		
(NOTE 2)	Tj=100°C	QRR		22	2.0		nC ·
Typical Junction Capacitance (NOTE	3)	CJ		pf			
Typical Thermal Resistance (NOTE 4)	Reja		°C/W			
Operating Junction and		T T		EE 1	. 150		°C
Storage Temperature Range		TJ,TSTG		-55 10	+150		1 .0

NOTES:


1. Reverse Recovery Test Conditions: IF =0.5A, IR =1.0A, recover to 0.25A.


2. T_{RR} andd O_{RR} measured on LEM tester I_F=1.0A: V_R =30V, di/dt=50A/µs.

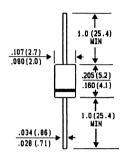
3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES UG1A THRU UG1D

REVERSE VOLTAGE, VOLTS

(D) General Instrument


UF4001 THRU UF4007

MINIATURE ULTRAFAST EFFICIENT GLASS PASSIVATED PLASTIC RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

DO-204AL

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- 1.0 Ampere operation at T_A=55°C with no thermal runaway
- · Glass passivated chip junctions
- Low cost
- Ultrafast recovery times for high efficiency
- ◆ Low Forward Voltage
- Low Leakage
- High Surge Capability
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL Molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode end Weight: 0.012 ounce, 0.3 gram Mounting Position: Any

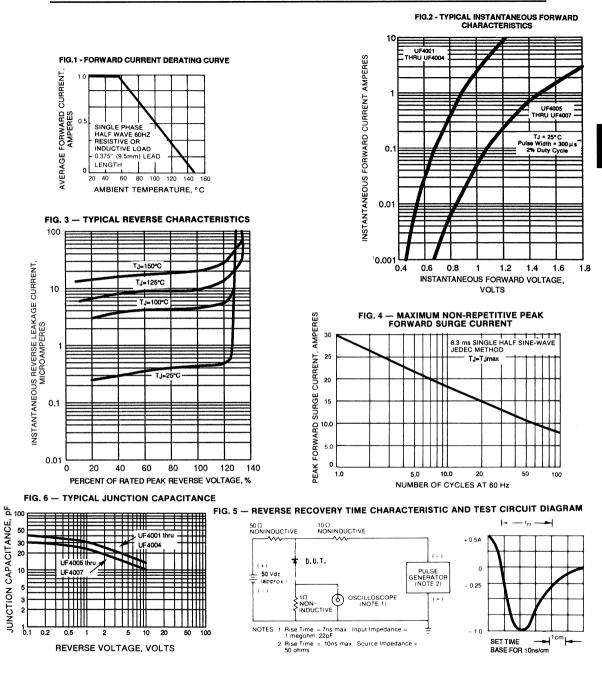
,

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

		UF	UF	UF	UF	UF	UF	UF	
	SYMBOL	S 4001	4002	4003	4004	4005	4006	4007	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375" (9.5mm) Lead Length $T_A=55^{\circ}C$	I(AV)	1.0					Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0					Amps		
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.0			1.7		Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR				10.0 50.0				μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	Trr			50.0	כ	1	75.0		ns
Typical Junction Capacitance (NOTE 2)	CJ	17.0 15.0			pF				
Typical Thermal Resistance (NOTE 3)	RØJA RØJA	1		50.0 14.5			60.0 15.0		∘c/w
Operating Junction and Storage Temperature Range	Rejl			-5	5 to +	150			°C


NOTES:

2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient, .375", 9.5mm Lead Lengths, P.C. board mounted.

^{1.} Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

RATINGS AND CHARACTERISTIC CURVES UF4001 THRU UF4007

G General Instrument

SUF15G AND SUF15J

GLASS PASSIVATED ULTRA FAST EPITAXIAL RECTIFIER

Voltage - 400 and 600 Volts Current - 1.5 Amperes

FEATURES

 Plastic package has Underwriters Laboratory DO-201AD Flammability Classification 94V-O Glass passivated chip junctions Superfast recovery times for high efficiency High forward surge capability 1.0 (25.4) Low Leakage MIN. Low Power Loss High temperature soldering guaranteed: 260°C for 10 seconds at .375" (9.5mm) lead lengths at .375 (9.5) 5 lbs. (2.3kg) tension **MECHANICAL DATA** 1.0 (25.4) Case: JEDEC DO-201 AD molded epoxy MTN.

Terminals: Plated Axial leads solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounces, 1.1 grams

Dimensions in inches and (millimeters)

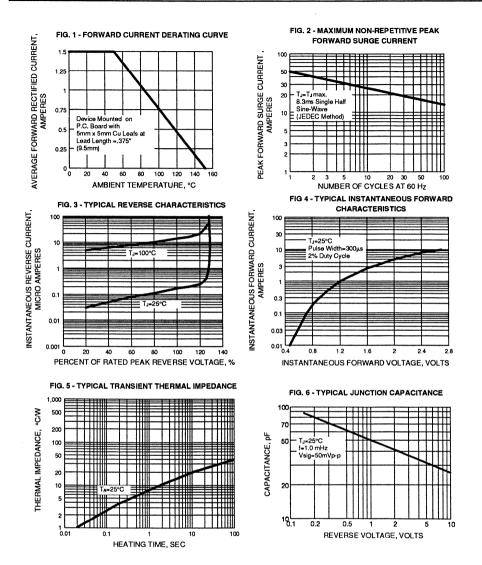
.210 (5.3)

DIA

.052 (1.3)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


	SYMBOLS	SUF15G	SUF15J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	400	600	Volts
Maximum RMS Voltage	VRMS	280	420	Volts
Maximum DC Blocking Voltage	VDC	400	600	Volts
Maximum Average Forward Rectified Current, .375" (9.5 mm) lead lengths at T _A =50°C	I(AV)	1	Amps	
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	50	Amps	
Maximum Instantaneous Forward Voltage at 1.5A	VF	1.80		Volts
Maximum Peak Reverse CurrentT_A=25°Cat rated Peak Reverse VoltageT_A=100°C	IR	1) 1	μA	
Maximum Reverse Recovery Time (NOTE1)	T _{RR}	35.0		nS
Typical Thermal Resistance (NOTE 2)	Røja	65.0		°C/W
Operating Junction Temperature Range	TJ	-40 to +150		°C
Storage Temperature Range	T _{STG}	-40 to	°C	

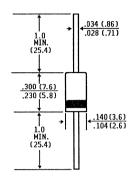
NOTES:

1. Reverse Recovery Test Condition: IF=0.5A, IR=1.0A, IRR=0.25A.

2. Thermal Resistance from Junction to Ambient at 375" (9.5mm) lead length, P.C. board mounted.

RATINGS AND CHARACTERISTIC CURVES SUF15G AND SUF15J

G General Instrument


UG2A THRU UG2D

ULTRAFAST PLASTIC RECTIFIER

Voltage - 50 to 200 Volts Current - 2.0 Amperes

FEATURES

DO-204AC

- Ideally suited for use in very high frequency switching power supplies, inverters and as free wheeling diodes
- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Ultrafast 15 nanosecond reverse recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Nitride oxide passivated junction
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: DO-204AC molded plastic over a passivated junction

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.015 ounce, 0.4 gram

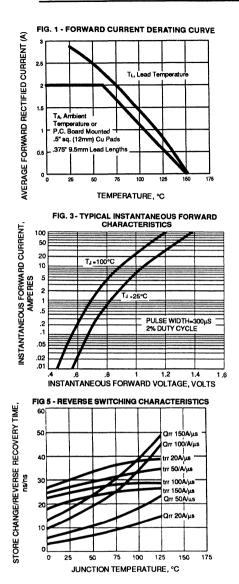
Dimensions in inches and (millimeters)

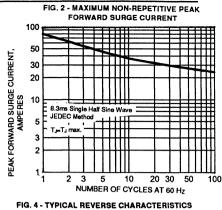
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

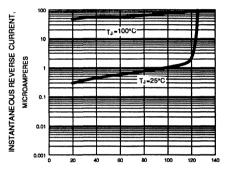
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UG2A	UG2B	UG2C	UG2D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	V _{RMS}	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Currer .375", (9.5mm) Lead Lengths at T_L =75°C, F			2.0		Amps	
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		80.0			
Maximum Instantaneous Forward Voltage at	t 2.0A V _F	0.95				Volts
Maximum DC Reverse CurrentTA= 2at Rated DC Blocking VoltageTA=10			μΑ			
Maximum Reverse Recovery Time (NOTE 1) TJ=	=25°C T _{RR}		15		ns	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		25.0 35.0				ns
Maximum Stored ChargeTJ= 2(NOTE 2)TJ=10			nC			
Typical Junction Capacitance (NOTE 3)	CJ		20).0		pf
Typical Thermal Resistance (NOTE 4)	Røja		45	5.0		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG		-55 to	+150		°C

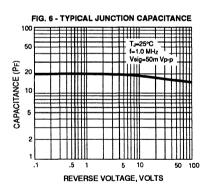
NOTES:


1. Reverse Recovery Test Conditions: IF=0.5A, IR =1.0A, recover to 0.25A.


2. T_{RR} and O_{RR} measured on LEM tester: V_R = 30V, di\dt=50 A/ μ s I_F = 2.0A.


3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.


RATINGS AND CHARACTERISTIC CURVES UG2A THRU UG2D

PERCENT OF RATED PEAK REVERSE VOLTAGE, %

General Instrument

UF5400 THRU UF5408

ULTRAFAST EFFICIENT PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

1.0 (25.4)

MIN.

. 375 (9.5) 285 (7.2)

1.0 (25.4) MIN

Dimensions in inches

and (millimeters)

DO-201AD

DIA

.052(1.3)

Current - 3.0 Amperes

FEATURES

Plastic packace has Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated chip junctions
- + Low cost
- Ultrafast recovery
- times for high efficiency • Low forward voltage,
- high current capability
- Low leakage
- High surge capability
- High temperature soldering guaranteed:

250°C .375"(9.5mm) lead lengths for 10 seconds at 5 lbs. (2.3 kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD, molded plastic *Terminals:* Plated Axial Leads solderable per MIL-STD-750, Method 2026

Polarity: Color band denotes cathode end

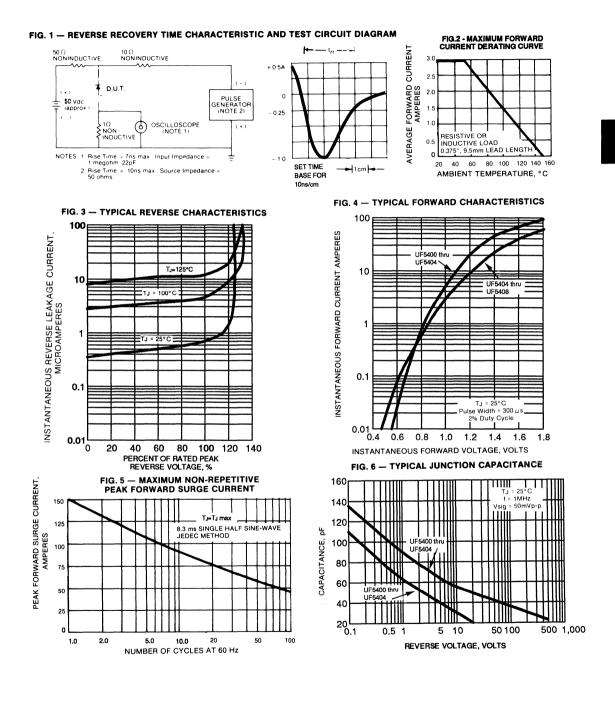
Mounting Position: Any

Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOL	UF 5 5400	UF 5401	UF 5402	UF 5403	UF 5404	UF 5405	UF 5406	UF 5407	UF 5408	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	210	280	350	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	300	400	500	600	800	1000	Volts
Maximum Average Forward Rectified Currer .375", (9.5 mm) Lead Length at T _A =55°C	nt, I(AV)	I(AV) 3.0								Amps	
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =55°C	IFSM	I _{FSM} 150.0								Amps	
Maximum Instantaneous Forward Voltage at 3.0A	VF				1.0				1.7		Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C I _R	10.0 50.0							μA		
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}				50.0				75.0		ns
Typical Junction Capacitance (NOTE 2)	Cj				40.0				50.0		pf
Typical Thermal Resistance (NOTE 3)	Røja Røjl								∘c/w		
Operating Junction and Storage Temperature Range	TJ,TSTO	та -55 to +150							°C		

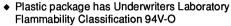

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measure at 1MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance from Junction to Lead, .375"(9.5mm) lead lengths, both leads attached to heatsink.

RATINGS AND CHARACTERISTIC CURVES UF5400 THRU UF5408



G General Instrument

SUF30G AND SUF30J

GLASS PASSIVATED ULTRA FAST EPITAXIAL RECTIFIER Voltage - 400 and 600 Volts Current - 3.0 Amperes

FEATURES

- Glass passivated chip junctions
- Superfast recovery times for high efficiency
- High forward surge capability
- Low Leakage

Low Power Loss

 High temperature soldering guaranteed: 260°C for 10 seconds at .375" (9.5mm) lead lengths at 5 lbs. (2.3kg) tension

MECHANICAL DATA

Case: Void-free molded epoxy *Terminals:* Plated Axial leads solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.07 ounces, 2.1 grams

Dimensions in inches and (millimeters)

.052 (1.3)

P-600

360 (9.1)

.340 (8.6)

.0 MIN

<u>.360 (9.1)</u> .340 (8.6)

1.0 MIN. (25.4)

(25 4)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

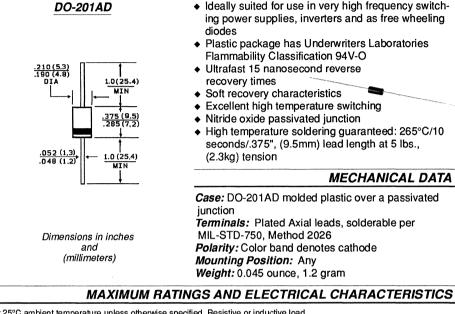
	SYMBOLS	SUF30G	SUF30J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	400	600	Volts
Maximum RMS Voltage	VRMS	280	420	Volts
Maximum DC Blocking Voltage	VDC	400	600	Volts
Maximum Average Forward Rectified Current, .200" (5.0mm) Lead Lengths at $T_A=60$ °C	I(AV)	3.0		Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	Ігѕм	80.0		Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF	1.80	2.0	Volts
Maximum Peak Reverse Current T _A =25°C at rated Peak Reverse Voltage T _A =100°C	IR	10.0 100		μA
Maximum Reverse Recovery Time (NOTE1)	T _{RR}	35.0		nS
Typical Thermal Resistance (NOTE 2)	Røja	25.0		°C/W
Operating Junction Temperature Range	TJ	-40 to +150		°C
Storage Temperature Range	T _{STG}	-40 to +150		°C

NOTES:

2. Thermal Resistance from Junction to Ambient at .200" (5.0mm) lead lengths with both leads attached to heat sink.

^{1.} Reverse Recovery Test Condition: IF=0.5A, IR=1.0A, IRR=0.25A.

RATINGS AND CHARACTERISTIC CURVES SUF30G AND SUF30J


(1) General Instrument

UG4A THRU UG4D

ULTRAFAST PLASTIC RECTIFIER

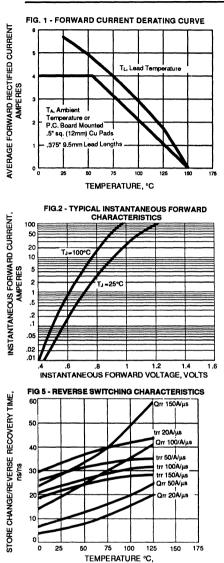
Voltage - 50 to 200 Volts Current - 4.0 Amperes

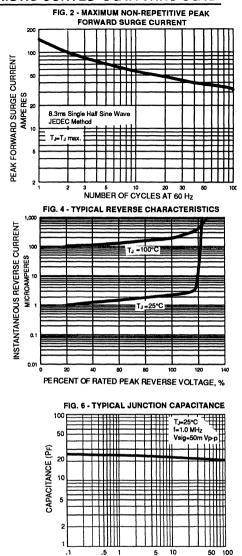
FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UG4A	UG4B	UG4C	UG4D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at TL =75°C	I(AV)		4.	0		Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0				Amps
Maximum Instantaneous Forward Voltage at 4.0A	VF		0.9	95		Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR		5. 300	-		μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°	C TRR		20	.0		ns
$\begin{array}{llllllllllllllllllllllllllllllllllll$	T _{RR}		30 50			ns
Maximum Stored Charge T _J =25°C			15	.0		
(NOTE 2) TJ=100°C	Q _{RR}		30	.0		nC
Typical Junction Capacitance (NOTE 3)	CJ		pf			
Typical Thermal Resistance (NOTE 4)	RØJA		°C/W			
Operating Junction and Storage Temperature Range	TJ,TSTG		-55 to	+150		°C

NOTES:


1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.


2. TRR and QRR measured on LEM tester: IF=4.0A, VR = 30V, di/dt=50 A/µs

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths.

RATINGS AND CHARACTERISTIC CURVES UG4A THRU UG4D

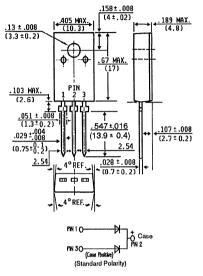
REVERSE VOLTAGE, VOLTS

G General Instrument

MEDIUM CURRENT FAST EFFICIENT RECTIFIERS

6.0 TO 30.0 AMPERES

SEE NEW ISOLATED PACKAGES


FEPF6AT THRU FEPF6DT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 6.0 Amperes

FEATURES

ITO-220CT

Dimensions in inches and millimeters

- Dual rectifier construction, positive center-tap
 Isolated Plastic package has Underwriters Labo-
- ratory Flammability Classi-
- fication 94V-O
 Glass passivated chip junctions
- Superfast recovery times for high efficiency
- Low power loss
- Low forward voltage, high current capability
- For use in low voltage, high frequency inverters, free wheeling and polarity protection applications
- High temperature soldering guaranteed: 250°C, .25", (6.35mm) from case for 10 seconds
- Internal Insulation: 1.5k V_{RMS}

MECHANICAL DATA

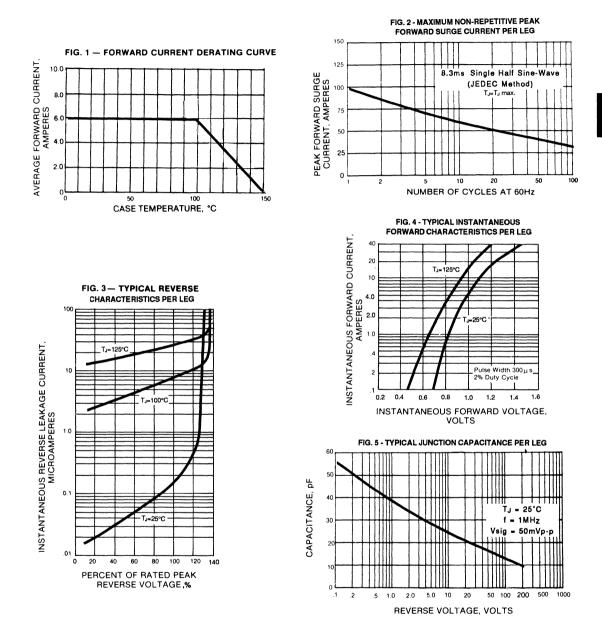
Case: ITO-220 fully overmolded plastic *Terminals:* Plated Lead solderable per MIL-STD-750, Method 2026

Polarity: As marked

Mounting Position: Any

Mounting Torque: 5 in.-lb. max.

Weight: 0.08 ounce, 2.24 gram


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. SYMBOLS FEPF6CT FEPF6DT UNITS FEPF6AT FEPF6BT Maximum Recurrent Peak Reverse Voltage VRRM 50 100 150 200 Volts Maximum RMS Voltage 35 70 105 140 Volts VRMS Maximum DC Blocking Voltage VDC 50 100 150 200 Volts Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at Tc=100°C 6.0 (AV) Amps Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) TA=55°C 100.0 IFSM Amps Maximum Instantaneous Forward Voltage per leg at 3.0A V_{F} 0.975 Volts Maximum DC Reverse Current T_A=25°C 5.0 at Rated DC Blocking Voltage T_A=100°C IR 50.0 μA Maximum Reverse Recovery Time (NOTE 1) TJ=25°C TBB 35.0 per leg ns Typical Thermal Resistance (NOTE 2) ROJC 4.0 °C/W **Operating Junction and Storage** Temperature Range °C TJTSTG -55 to +150

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FEPF6AT THRU FEPF6DT

G General Instrument

FEP6AT THRU FEP6DT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 6.0 Amperes

.<u>190 (4.83)</u> .160 (4.06)

.055(1.40)

.600 (15.24)

.575 (14.61)

.110 (2.79)

-

TO-220AB

.150 (3.81)

360 (9.14)

.560 (124.22)

.022 (0.56)

(CASE POSITIVE) PIN 1-0

STANDARD POLARITY PIN 3-0-

1.163 (29.54) 1.103 (28.02)

.155 (3.94) .145 (3.68) DIA.

18 (3.00) 98 (2.49)

.640 (16.26)

60 (4.06) 140 (3.56)

37 (0.94)

105 (2.67) .095 (2.41)

210 (5.33)

420 (10.67)

.380(9.65)

PIN

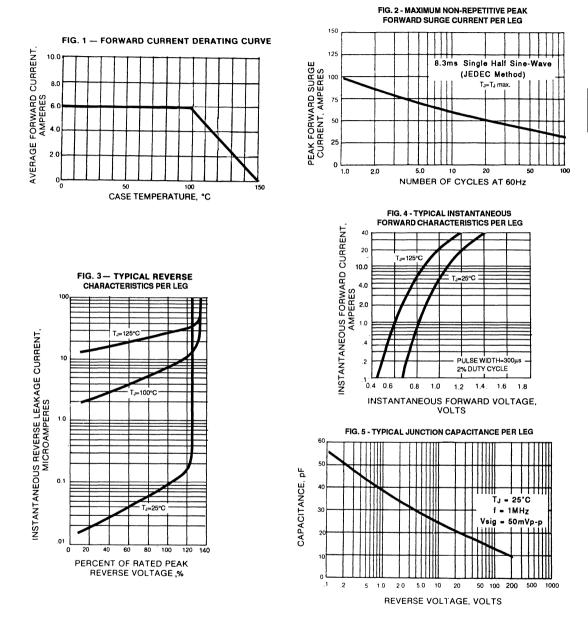
- Dual rectifier construction, positive center-tap
- Plastic package has carries Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Superfast recovery times for high efficiency
- Low power loss
- Low forward voltage, high current capability
- For use in low voltage, high frequency inverters, free wheeling and polarity protection applications
- High temperature soldering guaranteed: 250°C, .25", (6.35mm) from case for 10 seconds

MECHANICAL DATA

Case: JEDEC TO-220AB molded plastic Terminals: Plated Lead solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in.- lb. max. Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

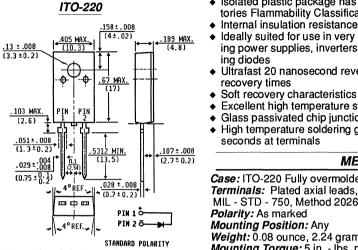

Dimensions in inches and (millimeters)

	SYMBOLS	FEP6AT	FEP6BT	FEP6CT	FEP6DT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	140	Volts		
Maximum DC Blocking Voltage	VDC	50	200	Volts		
Maximum Average Forward Rectified Current Tc=100°C	I(AV)			Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps		
Maximum Instantaneous Forward Voltage per leg at 3.0A	VF		0.9	975		Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR		5.0 50.0			
Maximum Reverse Recovery Time (NOTE 2) per leg TJ=25°C	T _{RR}			ns.		
Typical Thermal Resistance (NOTE 3)	RØJC			°C/W		
Operating Junction and Storage Temperature Range	TJTSTG			°C		

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, IRR= 25A.

RATINGS AND CHARACTERISTIC CURVES FEP6AT THRU FEP6DT


G General Instrument

UGF8AT THRU UGF8DT

ULTRAFAST GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 8.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Isolated plastic package has Underwriters Laboratories Flammability Classification 94V-O

- Internal insulation resistance 1.5k VRMS
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheelina diodes
- Ultrafast 20 nanosecond reverse recovery times

- Excellent high temperature switching
- Glass passivated chip junction
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

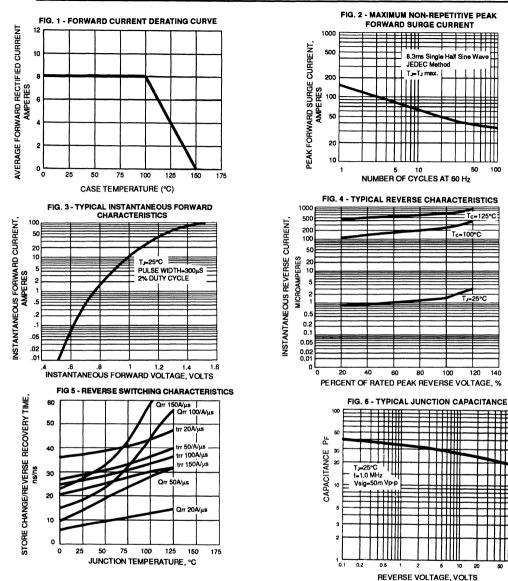
MECHANICAL DATA

Case: ITO-220 Fully overmolded plastic Terminals: Plated axial leads, solderable per MIL - STD - 750, Method 2026 Polarity: As marked Mounting Position: Any Weight: 0.08 ounce, 2.24 gram Mounting Torque: 5 in. - Ibs. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UGF8AT	UGF8BT	UGF8CT	UGF8DT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	200	Volts		
Maximum RMS Voltage	VRMS	35	140	Volts		
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at $T_C=100^{\circ}C$	I(AV)			Amps		
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		150.0			
Maximum Instantaneous Forward Voltage at 8.0A 20A 5.0A,T _A =150°C	VF	1.00 1.20 0.95				Volts
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=100°C	ÍR		10.0 300.0			
Maximum Reverse Recovery Time (NOTE 1)TJ=25°C	T _{RR}		20.0			
Maximum Reverse Recovery Time T _J =25°C (NOTE 2) T _{J=} 100°C	T _{RR}		30 50			ns
Maximum Stored ChargeTJ=25°C(NOTE 2)TJ=100°C	Q _{RR}		20 45			nC
Typical Junction Capacitance (NOTE 3)	Cj			pf		
Typical Thermal Resistance (NOTE 4)	ROJC			°Ċ/W		
Operating and Storage Temperature Range	Tj,Tstg			°C		


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. TRR and QRR measured on LEM tester:IF=8.0A, VR=30V, di\dt=50 A/µs.

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES UGF8AT THRU UGF8DT

G General Instrument

50 100

Tc=125°C

Tc=100°C

TJ=25°C

120 140

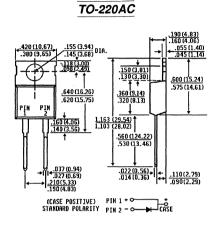
H

100

Ш

тш

5 10 20 50 100


UG8AT THRU UG8DT

ULTRAFAST GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 8.0 Amperes

FEATURES

 \odot

- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheeling diodes
- Ultrafast 20 nanosecond reverse recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Glass passivated chip junction
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

MECHANICAL DATA

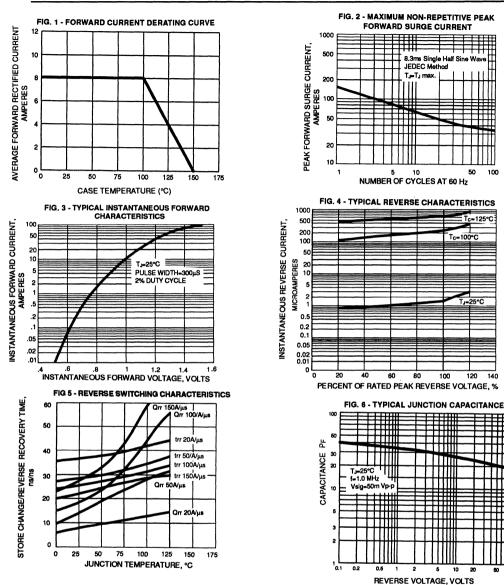
Case: JEDEC TO-220AC molded plastic *Terminals:* Plated axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* As marked *Mounting Position:* Any Weight: 0.08 ounce, 2.24 gram *Mounting Torque:* 5 in. - lbs. max.

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UG8AT	UG8BT	UG8CT	UG8DT	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts	
Maximum RMS Voltage	VRMS	35	140	Volts			
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts	
Maximum Average Forward Rectified Current at $T_C=100^{\circ}C$	I(AV)			Amps			
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
Maximum Instantaneous Forward Voltage at 8.0A 20A 5.0A, TJ=150°C	VF			Volts Volts			
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=100°C	IR			0.0		μΑ	
Maximum Reverse Recovery Time (NOTE 1)TJ=25°C	C T _{RR}		20	.0		ns	
Maximum Reverse Recovery Time T _J =25°C (NOTE 2) T _J =100°C	T _{RR}).0).0		ns	
Maximum Stored ChargeTJ=25°C(NOTE 2)TJ=100°C	Q _{RR}		nC				
Typical Junction Capacitance (NOTE 3)	CJ			pf			
Typical Thermal Resistance (NOTE 4)	Røjc	4.0					
Operating Junction and Storage Temperature Range	TJ, TSTG		°C				


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. TRR and QRR measured on LEM tester: VR=30V, divdt=50 A/ μ s IF=8.0A.

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES UG8AT THRU UG8DT

G General Instrument

50

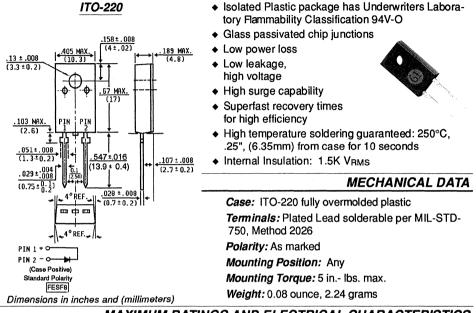
Tc=125°C

TJ=25°C

120 140

П

60 100


100

FESF8AT THRU FESF8JT

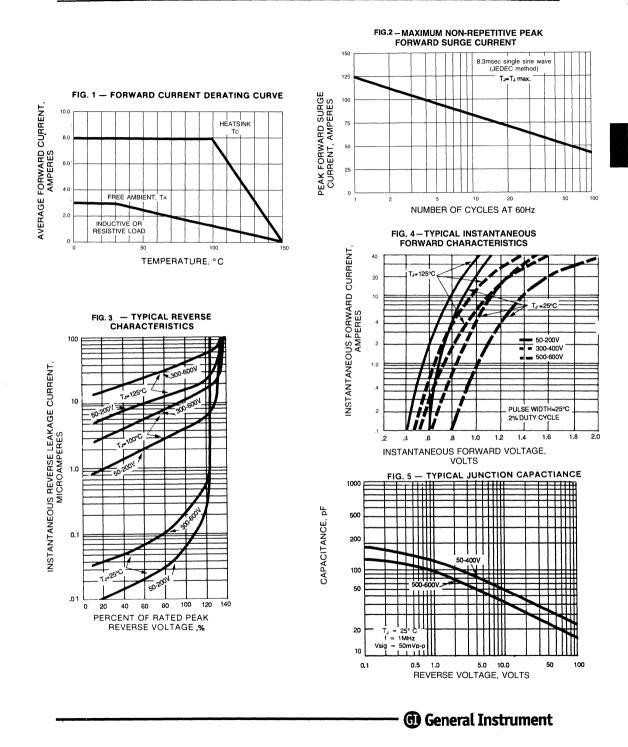
FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 8.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

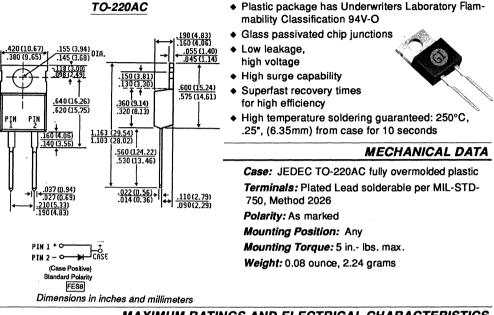

		FESF	FESF	FESF	FESF	FESF	FESF	FESF	FESF	,
	SYMBOLS	5 8AT	8 B T	8CT	8DT	8FT	8GT	8HT	8JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				8	.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125.0								Amps
Maximum Instantaneous Forward Voltage at 8.0A	VF			0.95			1.3	1	.5	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR).0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}			35.0			50.0)		ns
Typical Junction Capacitance (NOTE 1)	CJ	85.0 60.0						0.0	pf	
Typical Thermal Resistance (NOTE 3)	ROJC	3.0							°C/W	
Operating Junction and Storage Temperature Range	TJTSTO	G -55 to +150							∘c	

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FESF8AT THRU FESF8JT SERIES



FES8AT THRU FES8JT

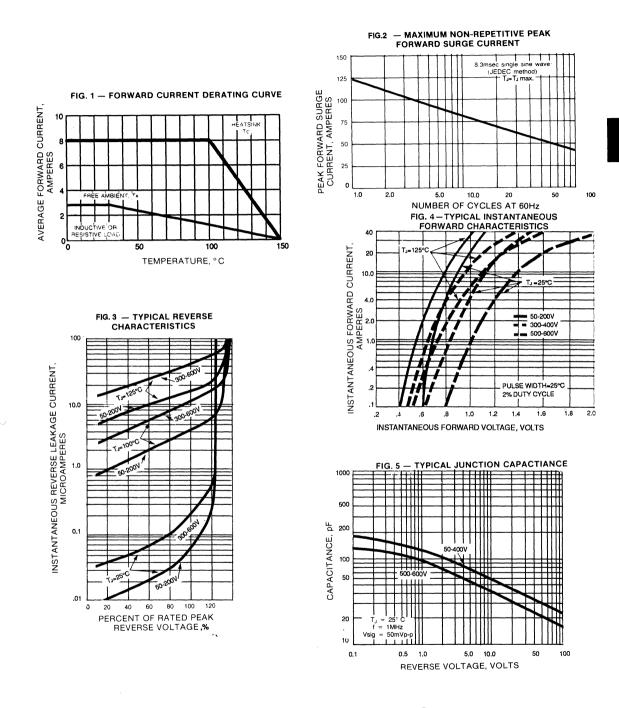
FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 8.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

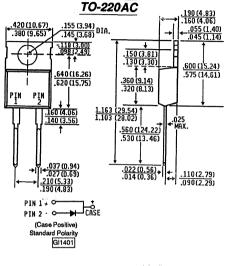

		FES	FES	FES	FES	FES	FES	FES	FES	
	SYMBOLS	S 8AT	8 B T	8CT	8DT	8FT	8GT	8HT	8JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				8	.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125.0								Amps
Maximum Instantaneous Forward Voltage at 8.0/	A VF			0.95			1.3	1	.5	Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR).0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	TRR			35.0			50.0)		ns
Typical Junction Capacitance (NOTE 1)	CJ		85.0 60.0						0.0	pf
Typical Thermal Resistance (NOTE 3)	Rejc	3.0							°C/W	
Operating Junction and Storage Temperature Range	TJTSTG	-55 to +150							°C	

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FES8AT THRU FES8JT SERIES


G General Instrument

GI1401 THRU GI1404

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 200 Volts Current - 8.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated cavity-free junction
- ◆ Low power loss
- Low leakage
- High surge capability
- Superfast recovery times for high efficiency
- High temperature soldering guaranteed: 250°C,.25", (6.35mm) from case for 10 seconds

MECHANICAL DATA

Case: JEDEC TO-220AC molded plastic *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: As marked

Mounting Position: Any

Mounting Torque: 5 in. - Ibs. max.

Dimensions in inches and (millimeters)

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	GI1401	GI1402	GI1403	GI1404	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	50	50 100 150 200						
Maximum RMS Voltage	VRMS	35	70	105	140	Volts			
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts			
Maximum Average Forward Rectified Current at Tc=125°C	I(AV)		Amps						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps						
Maximum Instantaneous Forward Voltage at IF=4A, T_J=100°C IF=8A, T_J=100°C IF=4A, T_J=25°C IF=8A, T_J=25°C	Ve		Volts						
Maximum DC Reverse Current Tc=25°C at Rated DC Blocking Voltage Tc=100°C	l _R		0.9 5. 15		······································	μΑ			
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		nS						
Typical Junction Capacitance (NOTE 2)	CJ		pf						
Typical Thermal Resistance (NOTE 3)	ReJC		°C/W						
Operating Junction and Storage Temperature Range	TJ,TSTG		°C						

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF= 0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES GI1401 THRU GI1404

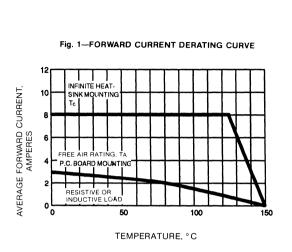
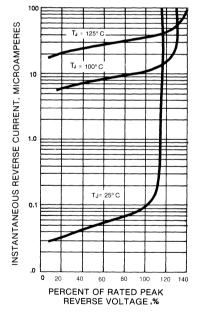
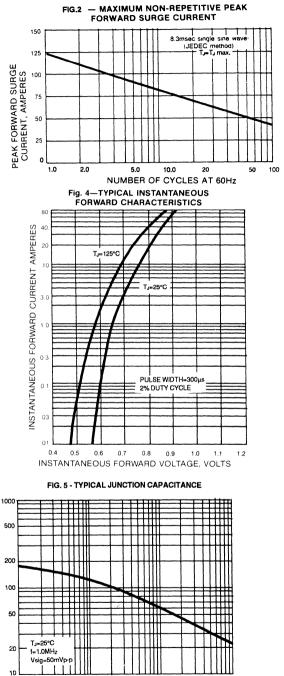




Fig. 3 - TYPICAL REVERSE CHARACTERISTICS

(D) General Instrument

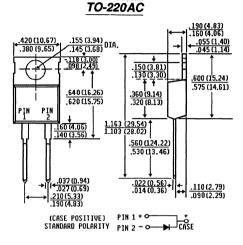
50 100

10.0

5.0 **REVERSE VOLTAGE, VOLTS**

.1

.5 1.0


ц

CAPACITANCE,

BYW29-50 THRU BYW29-200

FAST EFFICIENT GLASS PASSIVATED RECTIFIER Voltage - 50 to 200 Volts Current - 8.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Low power loss
- Low leakage
- High surge capability
- Superfast recovery times for high efficiency

MECHANICAL DATA

Case: JEDEC TO-220AC molded plastic Terminals: Plated axial leads, solderable per

MIL-STD-750, Method 2026 *Polarity:* As marked

Mounting Position: Any

Mounting Torque: 5 in. - lbs. max.

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

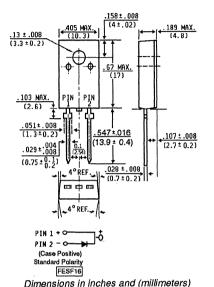
	SYMBOLS	BYW29-50 B	YW29-100	BYW29-150	BYW29-200	UNITS							
Maximum Recurrent Peak Reverse Voltage	VRRM	50	50 100 150 200										
Maximum RMS Voltage	VRMS	35	70	105	140	Volts							
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts							
Maximum Average Forward Rectified Current at T_{C} = 125°C	I(AV)		8.0										
Peak Forward Surge Current 10ms single half sine-wave superimposed TJ=150°C	IFSM		100.0							100.0			
Maximum Instantaneous Forward Voltage IF=20A, TJ=25°C IF=8A, TJ=150°C	VF		1.3 0.8										
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR			0.0 0.0		μA							
Maximum Reverse Recovery Time (NOTE 2)	T _{RR}		25	5.0		ns							
Typical Junction Capacitance (NOTE 1)	CJ		45.0										
Maximum Thermal Resistance (NOTE 3)	RejC			°C/W									
Operating Junction and Storage Temperature Range	TJ,TSTG			°C									

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=1A to VR=30V, with di/dt=100A/µs.

RATINGS AND CHARACTERISTIC CURVES BYW29-50 THRU BYW29-200


FESF16AT THRU FESF16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 16.0 Amperes

FEATURES

IT0-220

- Isolated plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated chip junctions
- Low power loss
 - Low forward voltage, high current capability
 - High surge capability
 - Superfast recovery times for high efficiency
- ♦ High temperature soldering guaranteed: 250°C, .25",(6.35mm) from case for 10 seconds
- Internal Insulation: 1.5k VRMS

MECHANICAL DATA

Case: JEDEC ITO-220 Fully overmolded plastic *Terminals:* Plated Lead solderable per MIL-STD-750 Method 2026

Polarity: As marked

Mounting Position: Any

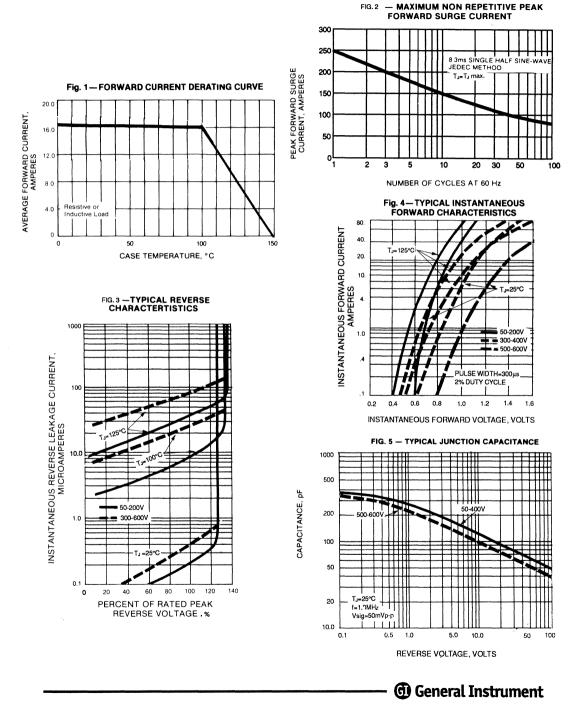
Mounting Torque: 5 in. - Ib. max.

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25ÉC ambient temperature unless otherwise specified. Resistive or inductive load.

For capacitive load, derate current by 20%.

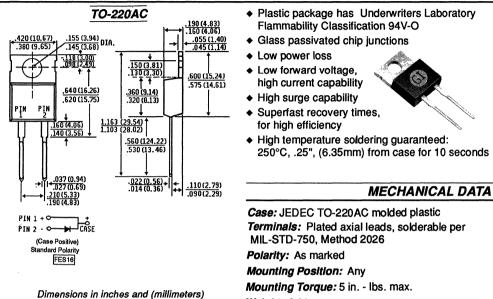

		FESF	FESF	FESF	FESF	FESF	FESF	FESF	FESF	
	SYMBOLS	16AT	16 B T	16CT	16DT	16FT	16GT	16HT	16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				16	3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0								Amps
Maximum Instantaneous Forward Voltage at 16A	VF		0.	975			1.3	1.5	5	Volts
Maximum DC Reverse Current Tc=25°C at Rated DC Blocking Voltage Tc=100°C	IR).0 0.0				μΑ
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}			35.0			50.0)		ns
Typical Junction Capacitance (NOTE 1)	CJ	175.0 145.0						5.0	pf	
Typical Thermal Resistance (NOTE 3)	Røjc	1.7							°C/W	
Operating and Storage Temperature Range	ТјТата	G -55 to +150							°C	

NOTES:

1. Measured at 1 MHZ and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FESF16AT THRU FESF16JT



FES16AT THRU FES16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

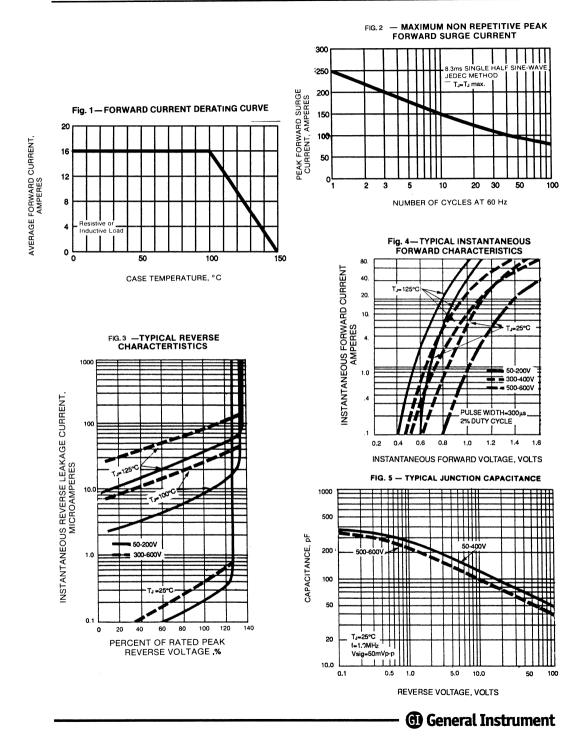
Voltage - 50 to 600 Volts Current - 16.0 Amperes

FEATURES

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

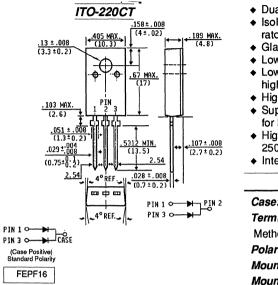

		FES	FES	FES	FES	FES	FES	FES	FES	
·	SYMBOL	S 16AT	16 BT	16CT	16DT	16FT	16GT	16HT	16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				16	5.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	250.0								Amps
Maximum Instantaneous Forward Voltage at 16A	VF		(0.975			1.3	1.	.5	Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR).0 0.0				μΑ
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	TRR	35.0 50.0							ns	
Typical Junction Capacitance (NOTE 1)	CJ	175.0 145.0						45.0	pf	
Typical Thermal Resistance (NOTE 3)	RejC	1.5							°C/W	
Operating Junction and Storage Temperature Range	TJTSTG	-55 to +175							°C	

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FES16AT THRU FES16JT SERIES



FEPF16AT THRU FEPF16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 16 .0 Amperes

FEATURES

Dual rectifier construction, positive centertap

- Isolated plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Low power loss
- Low forward voltage,
- high current capability
- High surge capability
- Superfast recovery times for high efficiency

- High temperature soldering guaranteed: 250°C, 25", (6.35mm) from case for 10 seconds
- Internal Insulation: 1.5K VRMS

MECHANICAL DATA

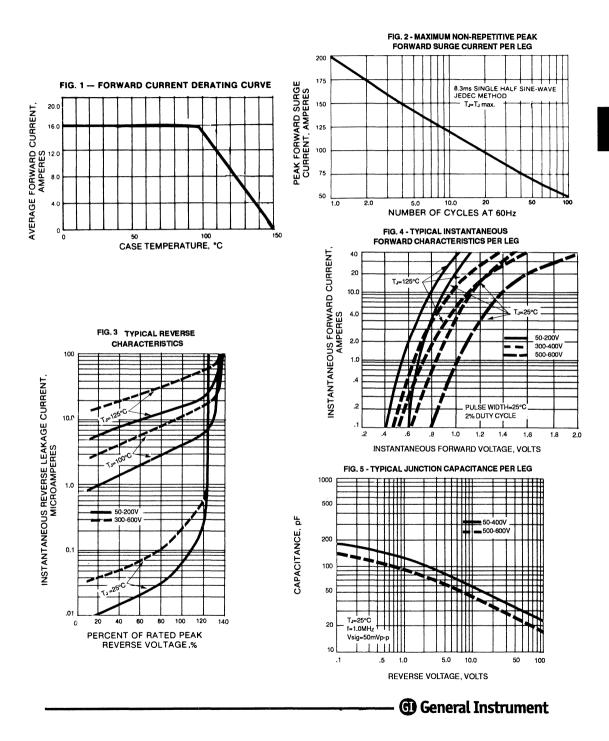
Case: ITO-220 fully overmolded plastic Terminals: Plated Lead solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - lbs. max.

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

Dimensions in inches and (millimeters)

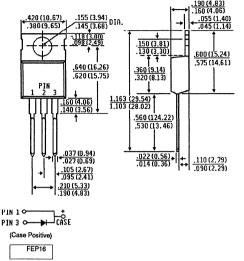

		FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	FEPF	
	SYMBOLS	5 16AT	16BT	16CT	16DT	16FT	16GT	16HT	16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				16	6.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200.0							Amps	
Maximum Instantaneous Forward Voltage at 8.0A per leg	VF			0.95		1	.3	1.	5	Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR).0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) per leg TJ=25°C	T _{RR}			35.0			50.0)		ns
Typical Junction Capacitance per leg (NOTE 1)	CJ	85.0 60.0						0	pf	
Typical Thermal Resistance (NOTE 3)	Røjc	2.2							°C/W	
Operating and Storage Temperature Range Temperature Range	TJ,TSTO	G -55 to +156							°C	

NOTES:

1. Measured at 1 MHZ and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FEPF16AT THRU FEPF16JT SERIES


FEP16AT THRU FEP16JT

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts Current - 16.0 Amperes

FEATURES

TO-220AB

- Dual rectifier construciton, positive centertap
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Low power loss
- Low forward voltage, high current capability
- High surge capability
- Superfast recovery times for high efficiency

 High temperature soldering guaranteed: 250°C,.25", (6.35mm) from case for 10 seconds

MECHANICAL DATA

Case: JEDEC TO-220-AB molded plastic *Terminals:* Plated Leads solderable per MIL-STD-750, Method 2026

Polarity: As marked

Mounting Position: Any

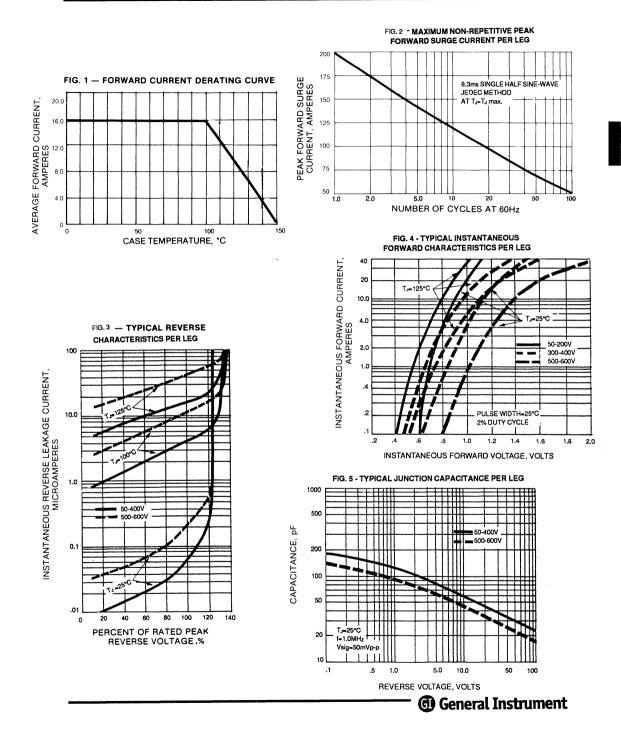
Mounting Torque: 5 in. - Ibs max

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)


		FEP	FEP	FEP	FEP	FEP	FEP	FEP	FEP	
	SYMBOL	5 16AT	16BT	16CT	16DT	16FT	16GT	16HT	16JT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				16	.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200.0								Amps
Maximum Instantaneous Forward Voltage per leg at 8.0A	VF			0.95			1.3	1.	5	. Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR).0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) per leg TJ= 25°C	T _{RR}	35.0 50.0						ns		
Typical Junction Capacitance per leg (NOTE 1)	CJ	85.0 60.0						0.0	pf	
Maximum Thermal Resistance (NOTE 3)	RØJC	C 3.0						°C/W		
Operating Junction and Storage Temperature Range	TJTSTO	G -55 to +150							°C	

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES FEP16AT THRU FEP16JT

GI2401 THRU GI2404

GLASS PASSIVATED FAST EFFICIENT RECTIFIER

Voltage - 50 to 200 Volts Current - 16.0 Amperes

90 (4.83

.055 (1.40)

.<u>600 (15.24)</u> .575 (14.61)

.110 (2.79)

FEATURES

- Dual rectifier construction, positive centertap
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Low power loss
- High surge capability
- Superfast recovery
- times for high efficiency
- High temperature soldering guarenteed: 250°C, .25",(6.35mm) from case for 10 seconds

MECHANICAL DATA

Case: JEDEC TO-220-AB molded plastic Terminals: Plated Lead solderable per MIL-STD-750. Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ibs max

Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and millimeters

TO-220AB

.150 (3.81

.<u>360 (9.14)</u> .320 (8.13)

.<u>560 (124.22)</u> .530 (13.46)

.022 (0.56) .014 (0.36)

1.163 (29.54) 1.103 (28.02)

Ŧ

.155 (3.94) .145 (3.68) DIA.

118 (3.00) .098 (2.49)

.640 (16.26)

.620(15.75)

50 (4.06)

420 (10.67)

PIN

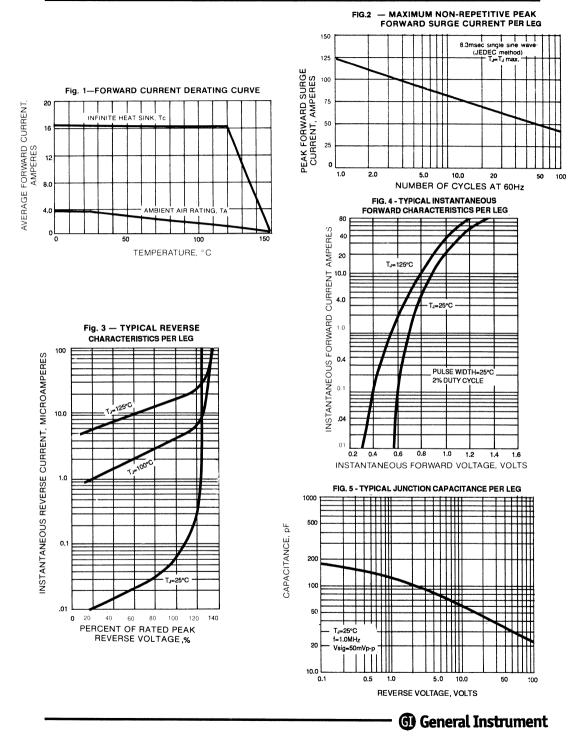
PIN 1

PIN 3 - O (Case Positive)

STANDARD POLARITY

GI2401

For capacitive load, derate current by 20%,

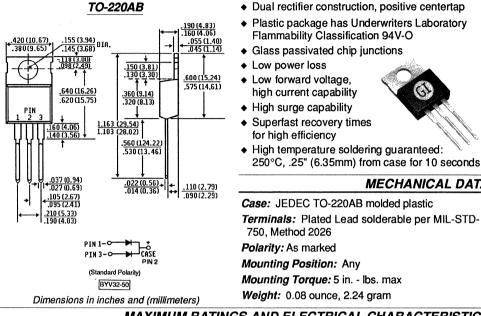

	SYMBOLS	GI2401	GI2402	GI2403	GI2404	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at Tc=125°C	I(AV)		16.0			
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125.0				Amps
Maximum Instantaneous Forward Voltage per leg I _F =4A, T _J =100°C I _F =8A, T _J =100°C I _F =4A, T _J =25°C		0.800 0.895 0.900				
I _F =8A, T _J =25°C	VF	0.975				Volts
Maximum DC Reverse Current T _C =25°C at Rated DC Blocking Voltage T _C =100°C	IR		5.0 150.0		5.0 500.0	μA
Maximum Reverse Recovery Time per leg (NOTE2)	T _{RR}	35.0				ns
Typical Junction Capacitance per leg (NOTE 1)	CJ	85.0				pf
Maximum Thermal Resistance (NOTE 3)	Røjc	1.75				°C/W
Operating Junction and Storage Temperature Range	TJTSTG	-55 to +150				°C

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF =0.5A, IR=1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES GI2401 THRU GI2404



BYV32-50 THRU BYV32-200

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 150 Volts Current - 18.0 Amperes

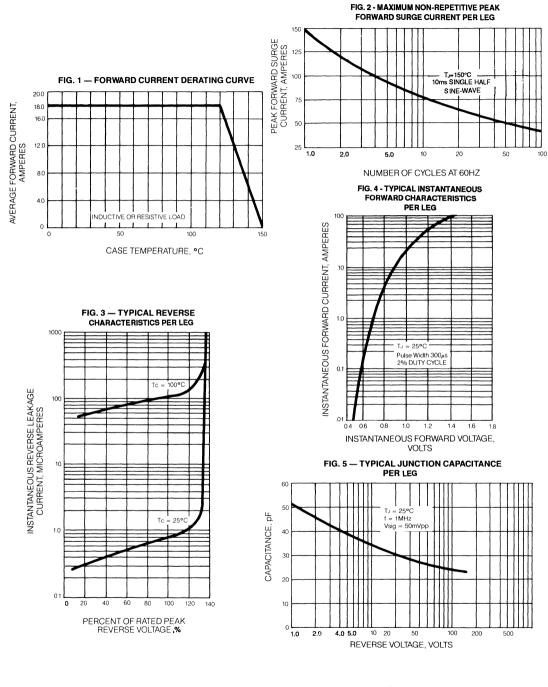
FEATURES

Dual rectifier construction, positive centertap

250°C, .25" (6.35mm) from case for 10 seconds

MECHANICAL DATA

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

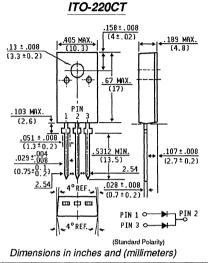

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BYV32-50	BYV32-100	BYV32-150	BYV32-200	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at Tc=120°C	I(AV)		18.0			
Peak Forward Surge Current 10ms single half sine-wave superimposed TJ=150C	IFSM			Amps		
$\begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage per leg} \\ \mbox{at} I_{F}{=}20A, \\ I_{F}{=}5.0A, \ T_{J}{=}100^{\circ}C \end{array}$	VF	1.15 0.85				Volts
Maximum DC Reverse CurrentTC=25°Cat Rated DC Blocking VoltageTC=100°C	IR		10.0 600.0			
Maximum Reverse Recovery Time per leg (NOTE 2 TJ=25°C	T _{RR}		35.0			
Typical Junction Capacitance (NOTE 1)	CJ	45.0				pf
Maximum Thermal Resistance per leg (NOTE 3)	RØJC	3.0				°C/W
Operating Junction and Storage Temperature Range	TJTSTG	- 55 to +150				°C

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts. 2. Reverse Recovery Test Conditions: $I_F=1.0A$ to $V_R=30V$, with di/dt=100A/µs.

RATINGS AND CHARACTERISTIC CURVES BYV32-50 THRU BYV32-200


G General Instrument

UGF18ACT THRU UGF18DCT

ULTRAFAST RECTIFIER

Voltage - 50 to 200 Volts Current - 18.0 Amperes

FEATURES

- Isolated plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Internal insulation resistance 1.5k VRMs
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free
- wheeling diodes
 Ultrafast 25 nanosecond reverse
- recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Glass passivated chip junctions
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

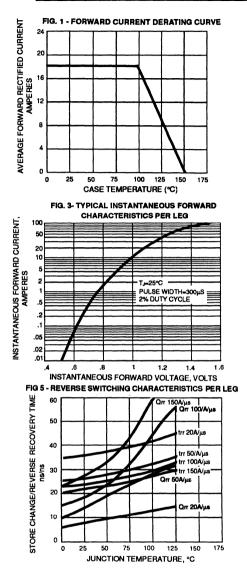
MECHANICAL DATA

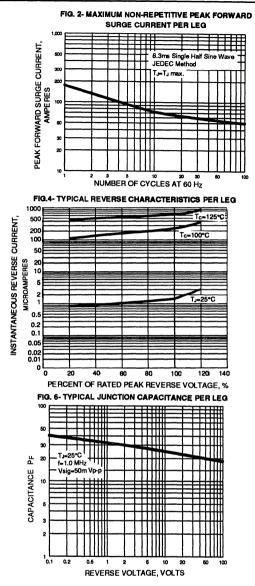
Case: ITO-220CT Fully overmolded plastic Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 5 in. - Ibs. max. Weight: 0.08 ounce, 2.24 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UGF18ACT	UGF18BCT	UGF18CCT	UGF18DCT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at $T_C=105^{\circ}C$	l(AV)	18.0				Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	Ifsm		Amps			
Maximum Instantaneous Forward Voltage per leg at: 9.0A 20A 5.0A, TJ=100°C	VF	1.10 1.20 0.95				Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	l _R		10.0 300.0			
Maximum Reverse Recovery Time (NOTE 1)	TRR	20.0				nS
Maximum Reverse Recovery Time TJ=25°C (NOTE 2) TJ=100°C	T _{RR}	30.0 50.0				ns
Maximum Stored ChargeT_J=25°C(NOTE 2)T_J=100°C	Q _{RR}	20.0 45.0				nC
Typical Junction Capacitance (NOTE 3)	CJ	30.0			pf	
Typical Thermal Resistance (NOTE 4)	RØJC	4.5				°C/W
Operating Junction and Storage Temperature Range	TJTSTG	-55 to +150				°C


NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IB=1.0A, recover to 0.25A.

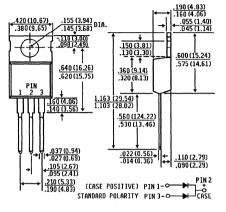

2. TRR and QRR measured on LEM tester:IF=9.0A, VR=30V, di\dt=50 A/µs

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES UGF18AT THRU UGF18DT

G General Instrument


UG18ACT THRU UG18DCT

ULTRAFAST RECTIFIER

Voltage - 50 to 200 Volts Current - 18.0 Amperes

FEATURES

TO-220AB

- Plastic package has Underwriters Laboratories Flammability Classification 94V-O
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheeling diodes
- Ultrafast 25 nanosecond reverse recovery times
- Soft recovery characteristics
- Excellent high temperature switching
- Glass passivated glass junctions
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

MECHANICAL DATA

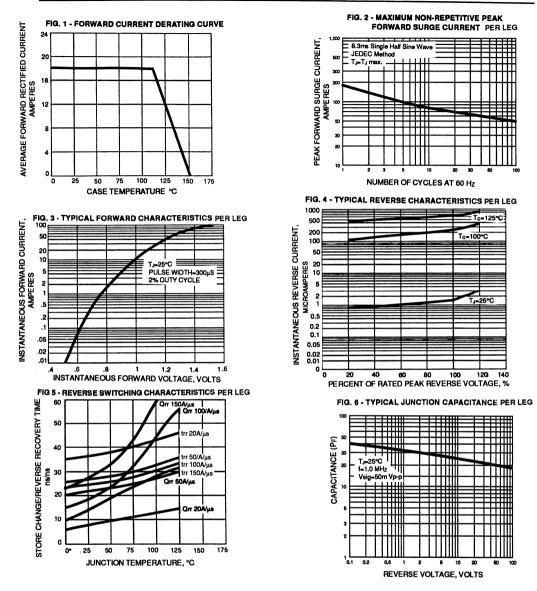
Case: JEDEC TO-220AB molded plastic *Terminals:* Plated leads solderable per MIL-STD-750, Method 2026 *Polarity:* As marked *Mounting Position:* Any *Mounting Torque:* 5 in. - Ibs. max. *Weight:* 0.08 ounce, 2.24 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	UG18ACT	UG18BCT	UG18CCT	UG18DCT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at T_{C} =105°C	l(AV)			Amps		
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method) per leg	IFSM			Amps		
Maximum Instantaneous Forward Voltage per leg at: 9.0A 20A 5.0A, TJ=100°C	VF		Volts			
Maximum DC Reverse CurrentT_A=25°Cat Rated DC Blocking Voltage per legT_A=100°C	IR	0.95 10.0 300.0				μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	20.0				ns
Maximum Reverse Recovery Time T _J =25°C (NOTE 2) T _J =100°C	T _{RR}	30.0 50.0				nŝ
Maximum Stored ChargeT_J=25°C(NOTE 2)T_J=100°C	QRR	20.0 45.0				nC
Typical Junction Capacitance (NOTE 3)	CJ	30.0			pf	
Typical Thermal Resistance (NOTE 4)	RØJC	4.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG		-55 to	+150		°C


NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. T_{RR} and Q_{RR} measured on LEM tester :IF=9.0A VR=30V, di\dt=50 A/ μs

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES UG18ACT THRU UG18DCT

(ii) General Instrument

UGF30APT THRU UGF30DPT

ULTRAFAST RECTIFIER

Current - 30 Amperes Voltage - 50 to 200 Volts

FEATURES

- Isolated Plastic material used carries Underwriters Laboratory Flammability Classification 94V-0 Internal Insulation: 1.5k VRMS .20(5.2) .06(1.5) Ideally suited for use in very high frequency switching 2°REF
 - power supplies, inverters and as a free wheeling diodes Ultrafast 30 nanosecond recovery times
 - Low leakage current
 - Glass passivated junction
 - Soft recovery characteristics
 - Excellent high temperature switching
 - High temperature soldering guaranteed: 250 °C/10 seconds at terminals

MECHANICAL DATA

Case: ITO-3P Fully overmolded plastic Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 10 in.-lb. max. Weight: 0.037 ounce, 1.04 gram

Dimensions in inches and (millimeters)

ITO-3P

.217(5.5)

.449 (11.4)

<u>670(17.0)</u> 630(16.0)

.224 (5.70) .205 (5.20)

130

PIN PIN

Chamf

100 35°

.807 (20.5) .770 (19.5)

4°REF

039(1.0)

2°REF

1.17(2.8) .095(2.4)

.028(.70)

.138(3.50) .122(3.10)

.800(20.2)

.098(2.5)

.043 (1

.031(0.8)

224 (5.70)

PIN 1

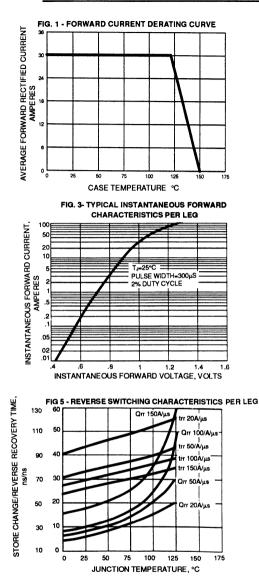
PIN 3 O

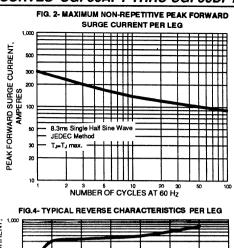
(CASE POSITIVE)

STANDARD POLARITY

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	UGF30APT	UGF30BPT	UGF30CPT	UGF30DPT	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts	
Maximum RMS Voltage	VRMS	35	70	105	140	Volts	
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts	
Maximum Average Forward Rectified Current at T_{C} =120°C	I(AV)		30	.0		Amps	
Peak Forward Surge Current							
8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300.0					
Maximum Instantaneous Forward Voltage per leg at: 15A			1.	0			
30A 10A , TJ=100°C	VF		1.15 .85				
Maximum DC Reverse Current TA=25°C			15	.0			
at Rated DC Blocking Voltage per leg TA=100°C	IR		80	0.0		μΑ	
Maximum Reverse Recovery Time Per Leg (NOTE 1)	TRR		20	.0		ns	
Maximum Reverse Recovery Time TJ=25°C			35	.0			
Per Leg (NOTE 2) TJ=100°C	TRR		50	.0		n's i	
Maximum Stored Charge TJ=25°C			22	2.0			
Per Leg (NOTE 2) TJ=100°C	QRR		50	0.0		nC	
Typical Junction Capacitance Per Leg (NOTE 3)	CJ	75.0					
Typical Thermal Resistance (NOTE 4)	Røjc		1	.5		°C/W	
Operating Junction and Storage Temperature Range	TJ,TSTG		۰Ĉ				


NOTES: 1. Reverse Recovery Test Conditions: I_F =0.5A, I_R =1.0A, recover to 0.25A. 2. T_{RR} andd Q_{RR} measured on LEM tester: V_R =30V, di\dt=50 A/μs I_F = 15.0A

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to Case per element.

RATINGS AND CHARACTERISTIC CURVES UGF30APT THRU UGF30DPT

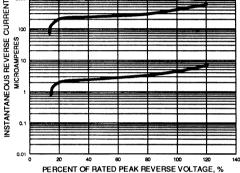
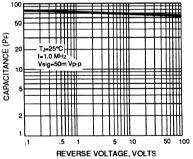
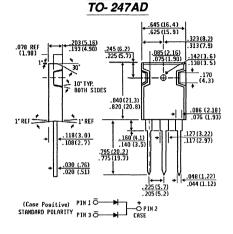



FIG. 6- TYPICAL JUNCTION CAPACITANCE PER LEG

(1) General Instrument


UG30APT THRU UG30DPT

ULTRAFAST RECTIFIER

Voltage - 50 to 200 Volts Current - 30.0 Amperes

FEATURES

Gi

- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-0
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheeling diodes
- Ultrafast 15 nanosecond recovery typical
- Low leakage current
- Glass passivated chip junctions
- Soft recovery characteristics
- Excellent with temperature switching
- High temperature soldering guaranteed:
- 250 °C/10 seconds at terminals

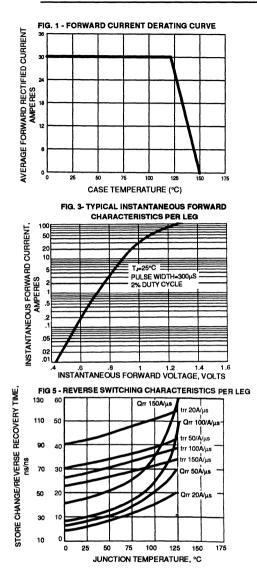
MECHANICAL DATA

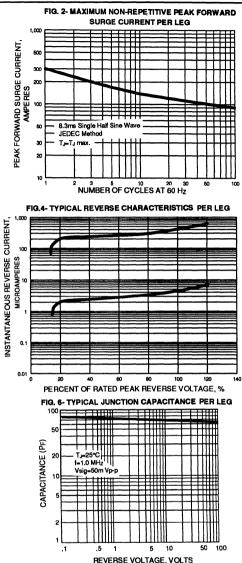
Case: JEDEC TO-247-AD molded plastic Terminals: Lead solderable per MIL-STD-202, Method 208 Polarity: As marked Mounting Position: Any Mounting Torque: 10 in.-lb.max. Weight : .2 ounce, 5.6 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	UG30APT	UG30BPT	UG30CPT	UG30DPT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at Tc=120°C	I(AV)			Amps		
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps		
Maximum Instantaneous Forward Voltage per leg at 15A 30A 10A TJ=100°C	VF			Volts		
Maximum DC Reverse Current at $T_A = 25^{\circ}C$ Rated DC Blocking Voltage per leg $T_A = 100^{\circ}C$	lg		5. 800			μA
Maximum Reverse Recovery Time Per Leg (NOTE1	T _{RR}		20	.0		ns
Maximum Reverse Recovery Time $T_{J=} 25^{\circ}C$ Per Leg (NOTE 2) $T_{J=} 100^{\circ}C$	T _{RR}		35 50			ns
Maximum Stored Charge TJ=25°C Per Leg (NOTE 2) TJ=100°C	Q _{RR}		22 50			nC
Typical Junction Capacitance Per Leg (NOTE 3)	CJ			pf		
Typical Thermal Resistance (NOTE 4)	RØJC			°Ċ/W		
Operating Junction and Storage Temperature Range	TJTSTG			°C		

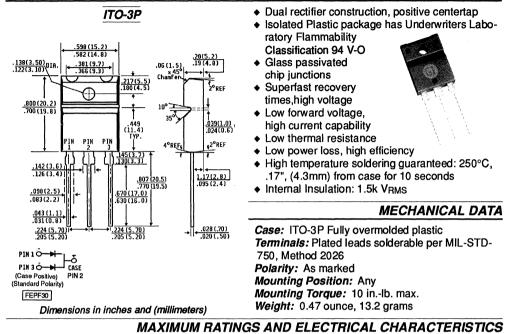

NOTES: 1. Reverse Recovery Test Conditions: Ir =0.5A, I_R = 1.0A, recover to 0.25A. 2. T_{RR} and Q_{RR} measured on LEM tester: I_F=15.0A, V_R=30V, di\dt=50 A\u00e4s

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

4. Thermal Resistance from Junction to case per element.

RATINGS AND CHARACTERISTIC CURVES UG30APT THRU UG30DPT

(D) General Instrument


FEPF30AP THRU FEPF30JP

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

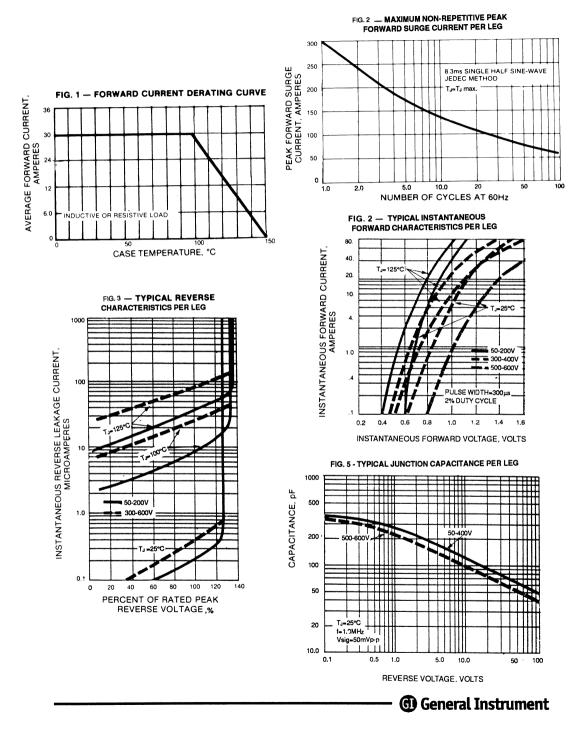
Voltage - 50 to 600 Volts

Current - 30.0 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	FEPF 30AP	FEPF 30BP	FEPF 30CP	FEPF 30DP	FEPF 30FP	FEPF 30GP	FEPF 30HP	FEPF 30JP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)				30).0		•		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300.0						Amps		
Maximum Instantaneous Forward Voltage at 15.0A per leg	VF		с	0.95			1.3	.	1.5	Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc=100°C	IR).0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) per leg TJ=25°C	T _{RR}		35.0 50.0					ns		
Typical Junction Capacitance per leg (NOTE 1)	CJ	175.0 145.0				45.0	pf			
Thermal Resistance (NOTE 3)	Røjc	2.0				°C/W				
Operating Junction and Storage Temperature Range	TJ,TSTO	rg -55 to 150					°C			

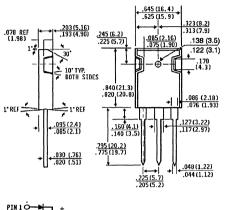

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

3. Thermal Resistance from Junction to Case per leg.

RATINGS AND CHARACTERISTIC CURVES FEPF30AP THRU FEPF30JP SERIES


FEP30AP THRU FEP30JP

FAST EFFICIENT GLASS PASSIVATED RECTIFIER

Voltage - 50 to 600 Volts

TO-247AD

PIN 1 O PIN 3 O (Case Positive) PIN 2 (Standard Polarity) [FEP30]

Dimensions in inches and (millimeters)

Dual rectifier construction, positive centertap

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junctions
- Superfast recovery times,
- high voltageLow forward voltage,
- high current capability
- Low thermal resistance
- Low power loss, high efficiency
- High temperature soldering guaranteed: 250°C,.17", (4.3mm) from case for 10 seconds

MECHANICAL DATA

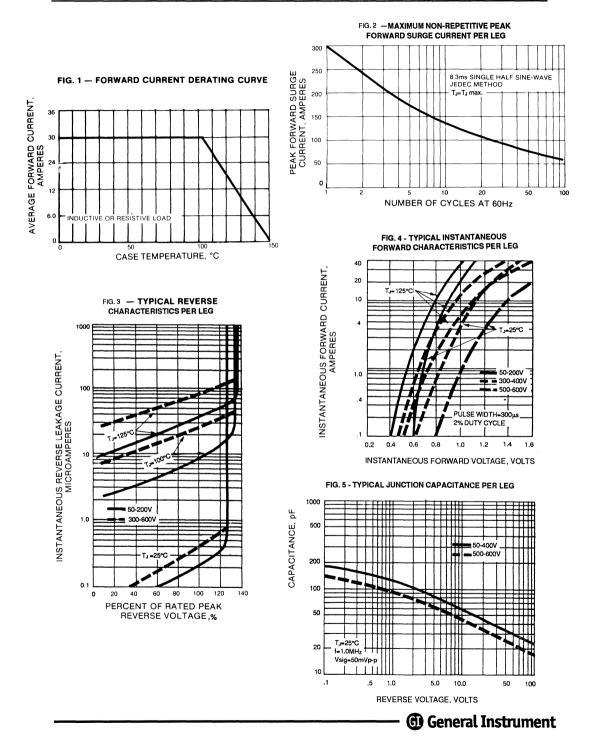
6

Case: JEDEC TO-247-AD molded plastic Terminals: Plated Leads solderable per MIL-STD-750, Method 2026 Polarity: As marked Mounting Position: Any Mounting Torque: 10 in. - lbs. max Weight: 0.2 ounce, 5.6 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

		FEP	FEP	FEP	FEP	FEP	FEP	FEP	FEP	
	SYMBOLS	5 30AF	9 30BP	30CP	30DP	30FP	30GP	30HP	30JP	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current at T_{C} =100°C	I(AV)				30	.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30	0.0				Amps
Maximum Instantaneous Forward Voltage per leg at 15.0A	VF			0.95		1	.3	1	.5	Volts
Maximum DC Reverse CurrentTc=25°Cat Rated DC Blocking VoltageTc= 100°C	IR					0.0 0.0				μA
Maximum Reverse Recovery Time (NOTE 2) per leg TJ=25°C	T _{RR}			35.0		50.0				ns
Typical Junction Capacitance per leg (NOTE 1)	CJ		-	75.0	145.0			.0	pf	
Typical Thermal Resistance (NOTE 3)	RØJC				1	1.0				°C/W
Operating and Storage Temperature Range Temperature Range	TJTSTG				-55 t	0 +15	0			°C

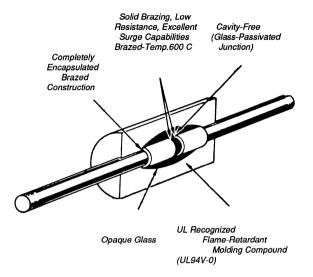

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

3. Thermal Resistance from Junction to Case per leg.

RATINGS AND CHARACTERISTIC CURVES FEP30AP THRU FEP30JP



SUPERECTIFIERS

0.25 TO 3.0 AMPERES 50 VOLTS TO 4000 VOLTS

SUPERECTIFIER .25 to 3.0 Amperes 50 Volts to 4000 Volts

Introduction

No other .25 to 3.0 Ampere rectifiers of any kind - plastic, glass, or metal - can match (or even approach) **SUPERECTIFIER**'s combination of features...the result of General Instrument's unique glass-plastic construction:

- Brazed at greater than 600°C at both leads and die-eliminates all soft solders
- Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-0, the highest available
- Patented glass passivation
- Reliability proved equal to military requirements
- Hermetically sealed construction
- Cost effective construction at plastic prices

General Instrument's **SUPERECTIFIER** is exactly that...a super rectifier. There is nothing else in the world like it.

In cell construction, most other rectifiers rated up to 3.0 Amperes are soft soldered or are only pressure contacted and silastic passivated. **SUPERECTIFIER** uses a patented brazed construction and glass passivation to seal its junction hermetically. In device encapsulation, again **SUPERECTIFIER** is the only one that won't go up in flames. It is one of the few rectifiers using an exclusive flame-RETARDANT molding compound, rated UL94V-0, the highest rating available. Other plastic rectifiers use flame-ENHANCING compounds. Here again, **SUPERECTIFIER**'s superiority is manifest. With this construction it exceeds environmental standards of MIL-S-19500.

In summary, **SUPERECTIFIER** is the world's only rectifier with totally brazed construction, with a patented glass passivated junction, and with flame-retardant molding encapsulation.

FAMILIES OF GENERAL INSTRUMENT SUPERECTIFIER

Glass Passivated Junction Plastic Rectifiers 0.25 to 1.5 AMPERES

Types:

1N3611GP thru 1N3614GP 1N4001GP thru 1N4007GP 1N4245PG thru 1N4249GP 1N5059GP thru 1N5062GP G1250-1 thru G1250-2 GP02-20 thru G1250-2 GP08A thru GP08J GP10A thru GP10Y GP15A thru GP15M Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Glass Passivated Junction overmolded in epoxy packages for easy handling
- Io rated current operation at 55 °C Ambient Temperature with no Thermal Runaway
- Capable of meeting Environmental Standards of MIL-S-19500
- High Temperature Soldering Guaranteed 350°C/10 Second/.375", 9.5mm Lead Length at 5lbs. 2.25kg Tension
- Tin Plated Axial Leads, Solderable per MIL-STD-202 Method 208

Glass Passivated Junction Plastic Rectifiers 2.0 to 3.0 AMPERES

Types: 1N5624GP thru 1N5627GP GP20A thru GP20J GP25A thru GP25M GP30A thru GP30M

Features:

- High Temperature Metallurgically Bonded
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Glass Passivated Junction overmolded in epoxy packages for easy handling
- Io rated current operation at 55 C Ambient Temperature with no Thermal Runaway
- Typical less than 0.1 μ A
- Capable of meeting Environmental Standards of MIL-S-19500
- Tin Plated Axial Leads, Solderable per MIL-STD-202 Method 208
- High Temperature Soldering Guaranteed 350 °C/10 Second/.375", (9.5mm) Lead Length at 5 lbs (2.25kg) Tension

Fast Recovery Glass Passivated Junction Plastic Rectifiers 0.50 to 3.0 AMPERES

Types:

1N4942GP thru 1N4948GP RGP02-12E thru RGP02-20E RGP10Athru RGP10M RGP15A thru RGP15M RGP20Athru RGP20J RGP20Athru RGP20J RGP30A thru RGP30M BA157GP thru BA159GP

Features:

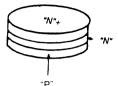
- High Temperature Metallurgically Bonded
- ◆ Fast switching for High Rectification Efficiency to 100kHz
- Plastic Package has Underwriters Laboratory Classification 94V-0
- Capable of meeting Environmental Standards of MIL-S-19500
- Includes all Advantages of the SUPERECTIFIER Design
- Tin Plated Axial Leads, Solderable per MIL-STD-202 Method 208
- High Temperature Soldering Guaranteed: 350 °C/10 Second/.375", (9.5mm) Lead Length at 5 lbs. (2.25kg)Tension

TYPE	RGP02* -12E thru -20E	GP02 -20 thru -40	GP1250 -1 thru -4	TYPE	BA157GP* thru BY159GP*	GP08A thru GP08J	GP10A thru GP10M	1N3611GP thru 1N3614GP& 1N3957GP	1N4001GP thru 1N4007GP	1N4245GP thru 1N4249GP	1 N4933GP* thru 1 N4937GP*
CASE	D0-204AL	D0-204AL	D0-204AL	CASE	D0-204AL	D0-204AL	D0-204AL	D0-204AL	D0-204AL	D0-204AL	D0-204AL
lo(A)	0.5	0.25	0.25	lo(A)	0.5	0.8	1.0	1.0	1.0	1.0	1.0
@TA(C°)	55	55	75	@TA(*C)	55	55	55	100	75	55	75
VR=1000(V)			G1250-1	VR= 50(V)		GP08A	GP10A		1N4001GP		1N4933GP
VR=1200(V)	RG02-12E			VR=100(V)		GP08B	GP10B		1N4002GP		1N4934GP
VR=1400(V)	RG02-14E			VR=200(V)		GP08D	GP10D	1N3611GP	1N4003GP	1N4245GP	1N4935GP
VR=1600(V)	RG02-16E			VR-300(V)		GP08G					
VR=1800(V)	RG02-18E			VR=400(V)	BA157GP		GP10G	1N3612GP	1N4004GP	1N4246GP	1N4936GP
VR=2000(V)	RG02-20E	GP02-20	G1250-2	VR= 500(V)		GP08J					
VR=2500(V)		GP02-25		VR= 600(V)	BA158GP		GP10J	1N3613GP	1N4005GP	1N4247GP	1N4937GP
VR=3000(V)		GP02-30	G1250-3	VR- 800(V)	BA159DGP		GP10K	1N3614GP	1N4006GP	1N4248GP	
VR=3500(V)		GP02-35		VR=1000(V)	BA159GP		GP10M	1N3957GP	1N4007GP	1N4249GP	
VR=4000(V)		GP02-40	G1250-4	V _R =>1000V			GP10N-Y				
SURGE(A)	20	15	15		20	25	30	30	30	25	30
VF(V)	1.8	3.0	3.5		1.3	1.3	1.1	1.1	1.1	1.2	1.2

QUICK GUIDE TO SUPERECTIFIERS

*FAST RECOVERY

QUICK GUIDE TO SUPERECTIFIERS


	1N4383GP	1N5059GP	AGP15-200	GP15A	1N5391GP	RGP15A*	GP20A	RGP20A	RGP25A	1N5624GP	GP30A	RGP30A*
TYPE	thru	thru	thru	thru	thru	thru	thru	thru	thru	thru	thru	thru
	1N4586GP	1N5062GP	AGP15-800	GP15M	1N5399GP	RGP15M*	GP20J	RGP20J*	RGP25M*	1N5627GP	GP30M	RGP30*
CASE	D0-204AC	D0-204AC	D0-204AC	D0-204AC	D0-204AC	D0-204AC			DO201AD	DO201AD	DO201AD	DO201AD
lo(A)	1.0	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.5	3.0	3.0	3.0
@TA(C°)	55	55	55	55	55	55	55	55	55	70	55	55
VR= 50(V)				GP15A	1N5391GP	RGP15A	GP20A	RGP20A	RGP25A		GP30A	RGP30A
VR= 100(V)				GP15B	1N5392GP	RGP15B	GP20B	RGP20B	RGP25B		GP30B	RGP30B
VR= 200(V)	1N4383GP	1N5059GP	AGP15-200	GP15D	1N5393GP	RGP15D	GP20D	RGP20D	RGP25D	1N5624GP	GP30D	RGP30D
VR= 300(V)					1N5394GP							
VR= 400(V)	1N4384GP	1N5060GP	AGP15-400	GP15G	1N5395GP	RGP15G	GP20G	RGP20G	RGP25G	1N5625GP	GP30G	RGP30G
VR= 500(V)					1N5396GP							
VR= 600(V)	1N4385GP	1N5061GP	AGP15-600	GP15J	1N5397GP	RGP15J	GP20J	RGP20J	RGP25J	1N5626GP	GP3QJ	RGP30J
VR= 800(V)	1N4585GP	1N5062GP	AGP15-800	GP15K	1N5398GP	RGP15K			RGP25K	1N5627GP	GP30K	RGP30K
VR=1000(V)	1N4586GP	1N5399GP		GP15M		RGP15M			RGP25M		GP30M	RGP30M
-												
SURGE(A)	50	50	50	50	50	50	65	65	65	100	125	125
VF(V)	V F-1.0	1.2	VF=1.1	1.1	1.4	1.3	1.1	1.3	1.3	1.0	1.1	1.3

*FAST RECOVERY

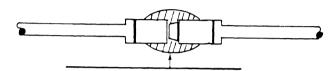
GLASS RECTIFIER PROCESS

Diffused Slice

1-Diffuse a PN junction into a slice of silicon.

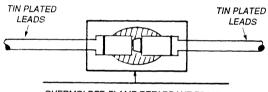
EVAPORATED ALUMINUM

2-Evaporate aluminum on both sides of the slice to make metallurgical contact.



SAND BLASTED ROUND DICE

3-Sandblast the slice to produce a round beveled die.


COPPER LEADS ALUMINIZED DIE BRAZED AT 700 °C

LEADS BRAZED TO MOLYBDENUM HEATSINKS 4. Braze the die between two molybdenum heat sinks to which leads have been attached at approximately 700°C.

GLASS BODY AND PASSIVATION

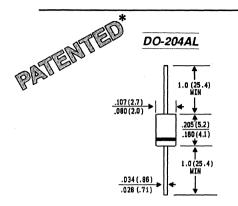
5-Clean the assembly by chemically etching, washing and drying. 6-Apply glass in the form of a frit to the die and molybdenum assembly. 7-Melt the glass by heating in an oven to approximately 600 °C.

OVERMOLDED FLAME-RETARDANT EPOXY

8-Overmold glass passivated construction with UL recognized flame-retardant 94V-0 classification epoxy.

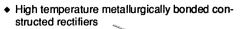
9-Perform finishing operations such as lead tinning, electrical testing and marking.

Package Design


The small size of the superectifier with its capability up to 3 Amperes permits packing densities in electronic assemblies and equipment, while increasing reliability. Only high temperature brazing operations are used to withstand the 600°C required to melt and fuse the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability, increasing operating and storage temperature range while reducing thermal resistance.

Reliability

Specified reliability data on Superectifier devices are available from the General Instrument Semiconductor Components Reliability Department. The basic design of the superectifier devices and the strict positive controls over materials and manufacturing processes provide assurance of failure-free performance under the most severe conditions. Processing facilities have been geared to follow the procedural requirements of Milltary Standard 750 and are capable of withstanding environmental extremes in excess of MiL-S-19500. Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing", which has proven product reliability with over 1 Billion Superectifiers now in use.


GP02-20 THRU GP02-40

MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Voltage - 2000 to 4000 Volts Current - 0.25 Amperes

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

FEATURES

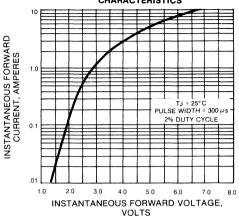
Case: JEDEC DO-204AL Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

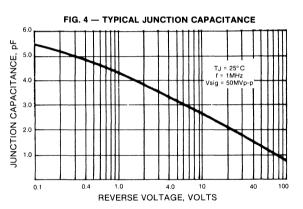
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP02 -20	GP02 -25	GPO2 -30	GPO2 -35	GPO2 -40	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	2000 ·	2500	3000	3500	4000	Volts
Maximum RMS Voltage	VRMS	1400	1750	2100	2450	2800	Volts
Maximum DC Blocking Voltage	VDC	2000	2500	3000	3500	4000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)			0.25			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at $T_A=55^{\circ}$ C	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 1.0A	VF			3.0			Volts
Maximum DC Reverse CurrentTA= 25°Cat Rated DC Blocking VoltageTA=100°C	IR			5.0 50.0			μA
Typical Reverse Recovery Time (NOTE 2)	T _{RR}			2.0			μs
Typical Junction Capacitance (NOTE 1)	CJ	3.0					
Typical Thermal Resistance (NOTE 3)	Reja	130.0					°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175					°C

NOTES:


2. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, Irr=.25A.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

^{1.} Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

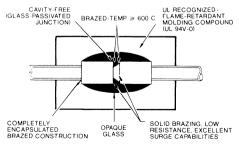
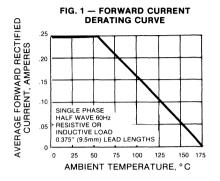
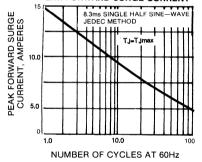
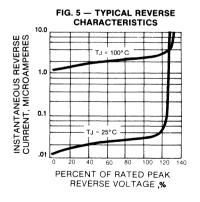

RATINGS AND CHARACTERISTIC CURVES GP02-20 THRU GP02-40

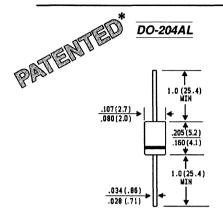
FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS







General Instrument



GI250-1 THRU GI250-4

MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1000 to 4000 Volts Current - 0.25 Amperes

 High temperature metallurgically bonded constructed rectifiers

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

Dimensions in inches and (millimeters)

 Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed lead assembly to Patent No. 3,930,306 of 1976

MECHANICAL DATA

Case: JEDEC DO-204AL Molded plastic over glass

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

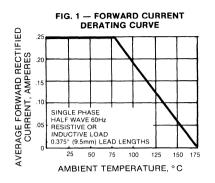
Polarity: Color band denotes cathode

Mounting Position: Any *Weight:* 0.012 ounce, .3 gram

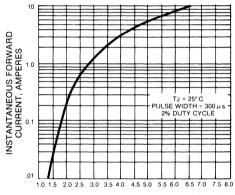
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

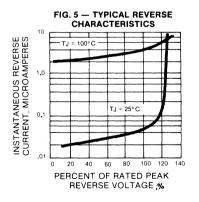
	SYMBOLS	Gl250-1	GI250-2	GI250-3	GI250-4	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	1000	2000	3000	4000	Volts			
Maximum RMS Voltage	VRMS	700	1400	2100	2800	Volts			
Maximum DC Blocking Voltage	VDC	1000	2000	3000	4000	Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 75^{\circ}C$	I(AV)		0	.25		Amps			
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load at $T_A=75^{\circ}C$ (JEDEC Method)	IFSM		15.0						
Maximum Instantaneous Forward Voltage at 0.25A	VF		3	.5		Volts			
Maximum DC Reverse Current $T_A = 25^{\circ}C$ at Rated DC Blocking Voltage $T_A = 100^{\circ}C$	IR		-	.0 0.0		μA			
Typical Reverse Recovery Time (NOTE 2)	T _{RR}		2	.0		μs			
Typical Junction Capacitance (NOTE 1)	CJ		3	.0		pf			
Typical Thermal Resistance (NOTE 3)	Reja		130.0						
Operating Junction and Storage Temperature Range	Tj,Tstg		-65 to +175						


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.


2. Reverse Recovery Test Conditions: IF =0.5A, IR =1.0A, Irr=0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.


RATINGS AND CHARACTERISTIC CURVES GI250-1 THRU GI250-4

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

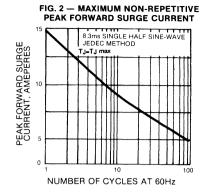


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

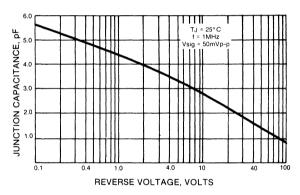
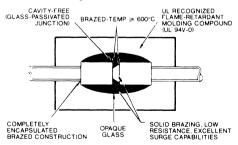
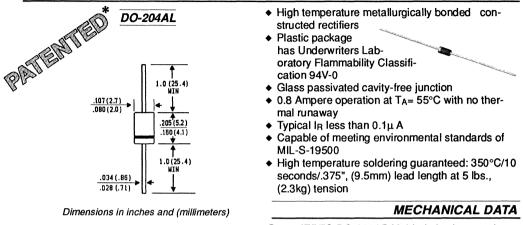



Fig. 6-SUPERECTIFIER



(D) General Instrument

GP08A THRU GP08J

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 0.8 Amperes

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AP Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GP08A	GP08B	GPO8D	GPO8G	GP08J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A = 55^{\circ}C$	l(AV)			8. 0	_		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A =55°C	IFSM			25.0			Amps
Maximum Instantaneous Forward Voltage at 0.8A	VF	1.3					Volts
Maximum Full Load Reverse Current Full Cycle Average 375" (9.5mm)Lead Lengths at TA=55°C	I _{R(AV)}			30.0			μA
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR			5.0 50.0			μA
Typical Reverse Recovery Time (NOTE 1)	T _{RR}			2.0			μs
Typical Junction Capacitance (NOTE 2)	CJ	8.0					pf
Typical Thermal Resistance (NOTE 3)	Reja	45.0					°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175					°C

NOTES:

1. Measure on IF =0.5A, IB =1.0A, Irr = .25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP08A THRU GP08J

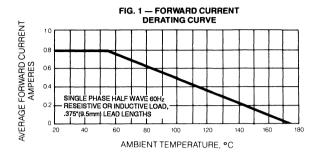
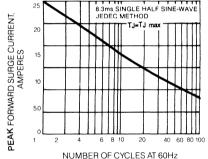



FIG. 3 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

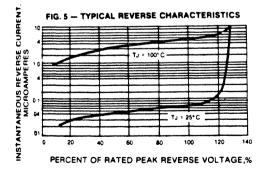


FIG. 2 TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

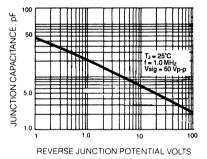
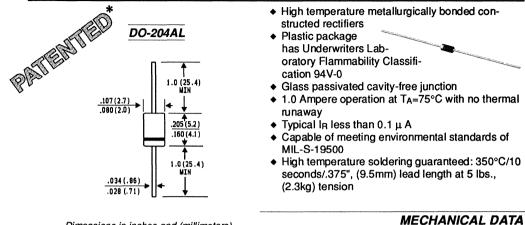




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

G General Instrument

235


1N3611GP THRU 1N3614GP AND 1N3957GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts

Current - 1.0 Ampere

Dimensions in inches and (millimeters)

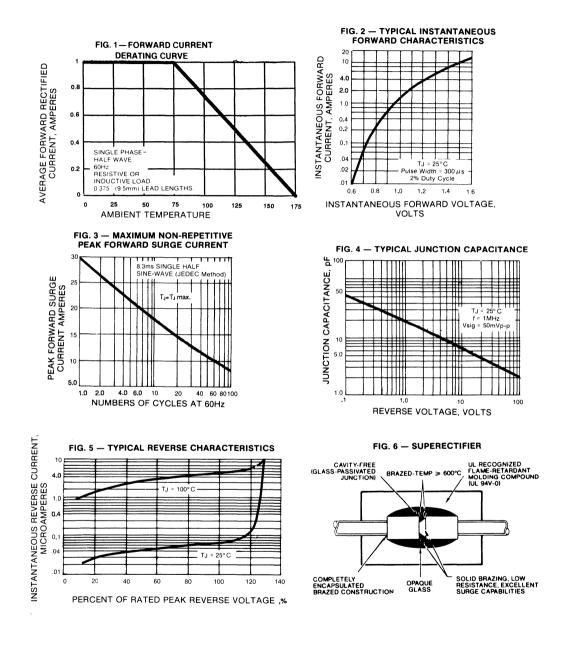
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AL Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

· .	SYMBOLS	1N 3611GP	1N 3612GP	1N 3613GP	1N 3614GP	1N 3957GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Amps
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	I(AV)			1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.0			Volts
* Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	IR			1.0 300.0			μA
Typical Reverse Recovery Time (NOTE 1)	T _{RR}			2.0			μs
Typical Junction Capacitance (NOTE 2)	CJ			10.0			pf
Typical Thermal Resistance (NOTE 3)	Reja			45.0			°C/W
Operating Junction and Storage Temperature Range	Tj,Tstg		-	65 to +17	75		°C


NOTES:

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Values

^{1.} Reverse Recovery Test Conditions : IF=0.5A, IR = 1.0A, Irr =.25A.

G General Instrument

1N4001GP THRU 1N4007GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

Current -1.0 Ampere

PATENTED High temperature metallurgically bonded constructed rectifiers Plastic package DO-204AL has Underwriters Laboratory Flammability Classification 94V-0 Glass passivated cavity-free junction 1.0 Ampere operation at TA= 75°C with no ther-(25.4) 0 mal runaway .107 (2.7 Typical I_R less than 0.1 μ A .080(2.0) Capable of meeting environmental standards of 205 (5.2) MIL-S-19500 .160 (4.1) High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., 1.0(25.4)(2.3kg) tension **M**TN .034 (.86) .028 (.71) MECHANICAL DATA Dimensions in inches and (millimeters) Case: JEDEC DO-204AL Molded plastic over glass

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AL Molded plastic over glas *Terminals:* Axial leads, solderable per MIL-STD-202, Method 208 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4001GP	1N 4002GP	1N 4003GP	1N 4004GP	1N 4005GP	1N 4006GP	1N 4007GP	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =75°C	I(AV)				1.0				Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.1				Volts
*Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length T _A = 75°C	IR(AV)				30.0				μA
*Maximum DC Reverse Current T _A =25°C					5.0				
at Rated DC Blocking Voltage T _A =125°C	IR				50.0				μΑ
Typical Reverse Recovery Time (NOTE 1)	T _{RR}				2.0				μS
Typical Junction Capacitance (NOTE 2)	CJ				8.0				pf
Typical Thermal Resistance (NOTE 3)	Reja	A 45.0					°C/W		
*Operating Junction and Storage Temperature Range	TJ,TSTO			-6	5 to +	175			°C

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr= 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N4001GP THRU 1N4007GP

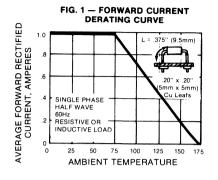


FIG. 3 - MAXIMUM NON-REPETITIVE

PEAK FORWARD SURGE CURRENT

8.3ms SINGLE HALF

SINE-WAVE (JEDEC Method)

. TJ=TJ

TITI

60 80 100

m

4.0 6.0 10 20 40

NUMBERS OF CYCLES AT 60Hz

30

25

20

15

10

5.0 1.0 2.0

PEAK FORWARD SURGE CURRENT, AMPERES

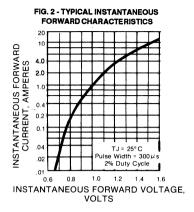
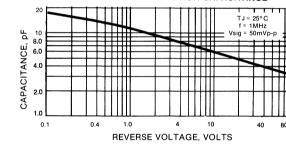



FIG. 4 - TYPICAL JUNCTION CAPACITANCE 20 TJ ≈ 25° C f = 1MHz 10 Vsig = 50mVp-p 8.0 6.0 ++4.0 Ш 2.0 1.0 0.1 04 1.0 4 10 40 80 100 REVERSE VOLTAGE, VOLTS

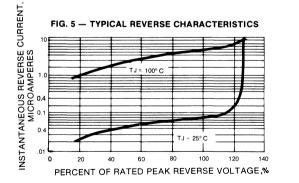
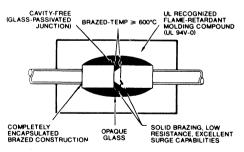
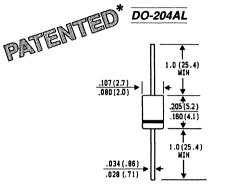



FIG. 6 - SUPERECTIFIER


General Instrument

1N4245GP THRU 1N4249GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Current - 1.0 Ampere

Voltage - 200 to 1000 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

- High temperature metallurgically bonded constructed rectifiers
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction
- 1.0 Ampere operation at TA=55°C with no ther-٠ mal runaway
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

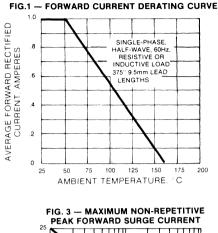
MECHANICAL DATA

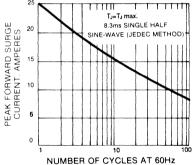
Case: JEDEC DO-204AL Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

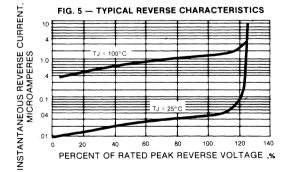
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

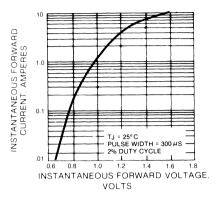
	SYMBOLS	1N 4245GP	1N 4246GP	1N 4247GP	1N 4248GP	1N 4249GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			25.0			Amps
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
* Maximum Full Load Reverse Current Full Cycle Average .375" (9.5mm) Lead Length TA=55°C	IR(AV)			50.0			μΑ
* Maximum Reverse Current at Rated T _A =25°C DC Blocking Voltage T _A =125°C	IR			1.0 25.0			μА
Typical Junction Capacitance (NOTE 1)	CJ			8.0			pf
Typical Thermal Resistance (NOTE 2)	Reja	45.0					°C/W
* Operating Junction Temperature Range	TJ	-65 to +160					°C
* Storage Temperature Range	Tstg		-	65 to +17	75		°C

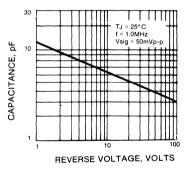

NOTES:


1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


2. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

JEDEC registered values


RATINGS AND CHARACTERISTIC CURVES 1N4245GP THRU 1N4249GP



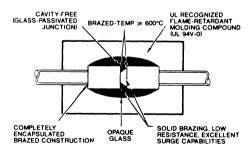
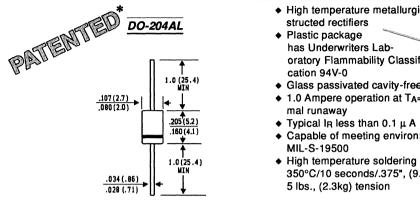

FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

FIG. 6 --- SUPERECTIFIER

(iii) General Instrument


GP10A THRU GP10Y

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1600 Volts

Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

High temperature metallurgically bonded con-

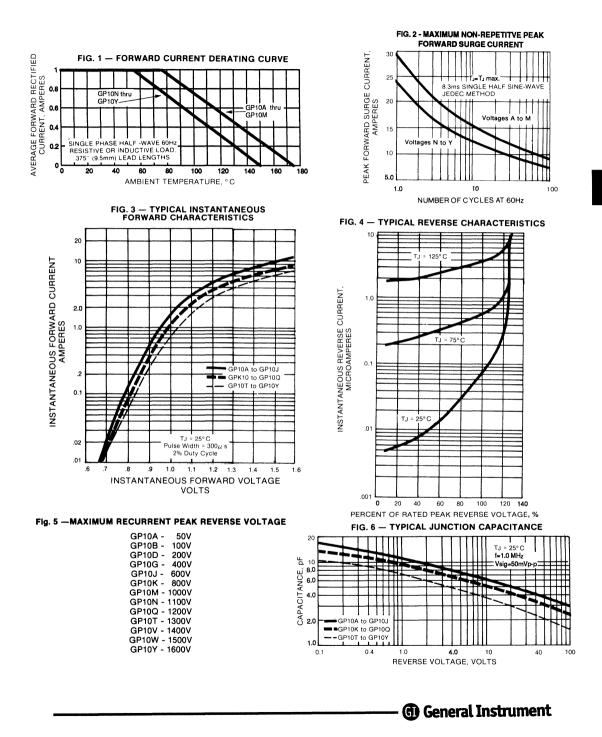
- oratory Flammability Classifi-
- Glass passivated cavity-free junction
- ♦ 1.0 Ampere operation at TA=55°C with no ther-
- Capable of meeting environmental standards of
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at

MECHANICAL DATA

Case: JEDEC DO-204AL molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave 60Hz resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	ABDGJK	MNQ	r v w y	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50 to 1600 V	olts, See F	-ig 5.	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths (see fig. 1)	l(AV)		Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0	25.0	Amps	
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.1	1.2	1.3	Volts
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	IR(AV)		μA		
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	lR		μA		
Typical Reverse Recovery Time (NOTE 1)	T _{RR}		μS		
Typical Junction Capacitance (NOTE 2)	CJ	8.0	7.0	5.0	pf
Typical Thermal Resistance (NOTE 3)	Reja		°C/W		
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +1	°C		

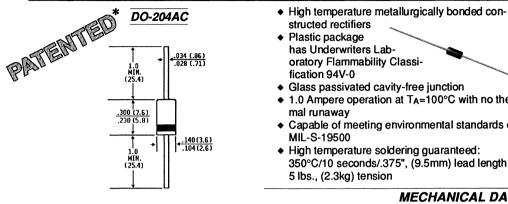

NOTES:

1. Reverse Recovery Test Condition: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GP10A THRU GP10Y



1N4383GP THRU 1N4385GP 1N4585GP AND 1N4586GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

FEATURES

has Underwriters Laboratory Flammability Classi-

- Glass passivated cavity-free junction
- 1.0 Ampere operation at TA=100°C with no thermal runaway
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3ka) tension

MECHANICAL DATA

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed lead assembly to Patent No. 3,930,306 of 1976

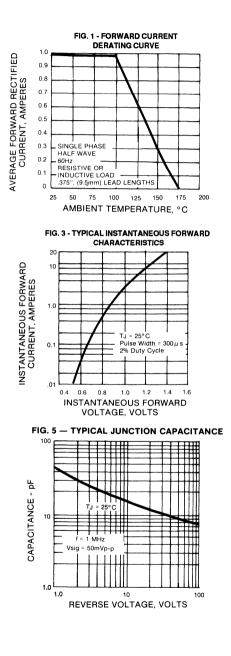
बतेगेनेनिः ®

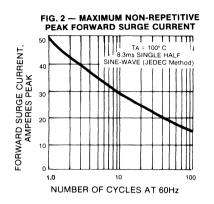
Case: JEDEC DO-204AC Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce,0.4 gram

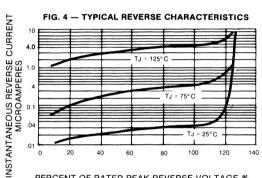
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4383GP	1N 4384GP	1N 4385GP	1N 4585GP	1N 4586GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=100^{\circ}C$	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at Ta=100°C	IFSM			50.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.0					Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	l _R	5.0 250.0				μA	
* Typical Reverse Recovery Time (NOTE 2)	T _{RR}	2.0				μS	
Maximum Full Load Reverse Current Full Cycle Average at .375" (9.5mm) Lead Lengths T _A =100°C	IR(AV)	275	250	225	200	200	μA
Typical Junction Capacitance (NOTE 1)	CJ	15.0			pf		
Typical Thermal Resistance (NOTE 3)	Reja	25.0			°C/W		
* Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175				°C	


NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr= 0.25A.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4383GP THRU 1N4385GP 1N4585GP AND 1N4586GP

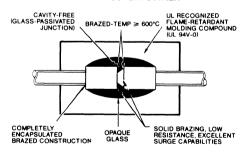
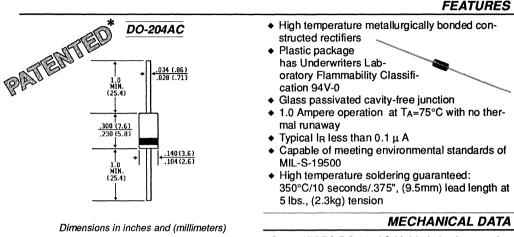


FIG. 6 - SUPERECTIFIER


G General Instrument

1N5059GP THRU 1N5062GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 800 Volts

Current - 1.0 Ampere

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976 Case: JEDEC DO-204AC Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5059GP	1N5060GP	1N5061GP	1N5062GP	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	I(AV)			Amps		
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	50.0				Amps
*Maximum Instantaneous Forward Voltage at 1.0A $T_A=75^{\circ}C$	VF	1.2				Volts
*Maximum Full Load Reverse Current, Full Cycle Average, .375" (9.5mm) Lead Lengths at $T_A=25^{\circ}C$ $T_A=75^{\circ}C$	IR(AV)	5.0 150.0				μA
*Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=175^{\circ}C$	IR	5.0 300.0				μΑ
Typical Reverse Recovery Time (NOTE 1)	T _{RR}	2.0			μs	
Typical Junction Capacitance (NOTE 2)	CJ	15.0			pf	
Typical Thermal Resistance (NOTE 3)	Reja	25.0			°C/W	
*Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175				°C

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N5059GP THRU 1N5062GP

FIG. 2 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

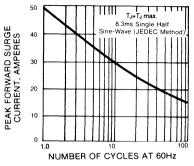
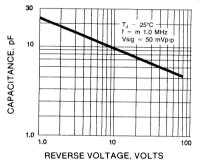
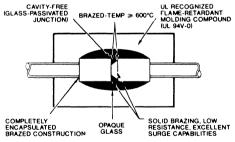
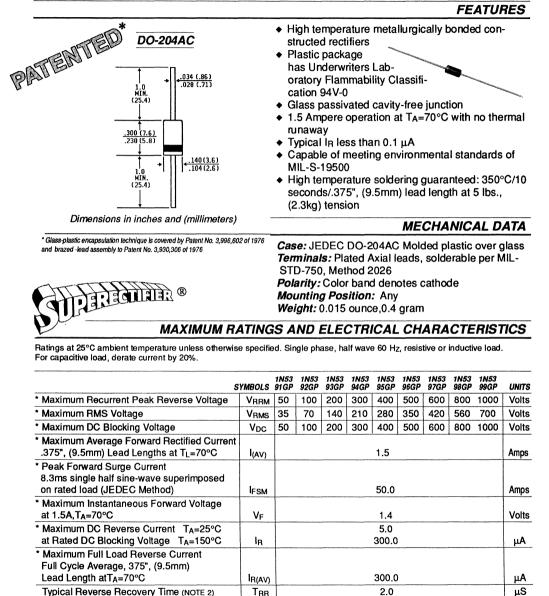




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

FIG. 6 - SUPERECTIFIER


G General Instrument

1N5391GP THRU 1N5399GP

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

Current - 1.5 Amperes

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

Typical Junction Capacitance (NOTE 1)

Typical Thermal Resistance (NOTE 3)

Operating Junction and Storage Temperature Range

2. Reverse Recovery Test Condition: IF=0.5A, IR=1.0A, Irr=0.25A.

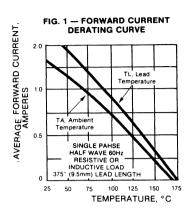
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

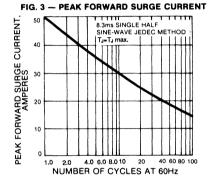
СJ

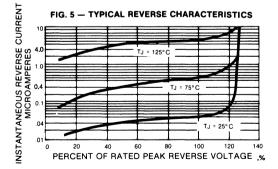
RØJA

TJ, TSTG

15.0


30.0


-65 to +175


pf ℃/W

°C

RATINGS AND CHARACTERISTIC CURVES 1N5391GP THRU 1N5399GP

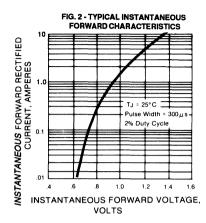


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

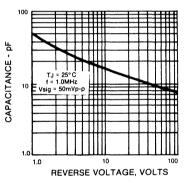
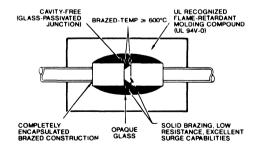
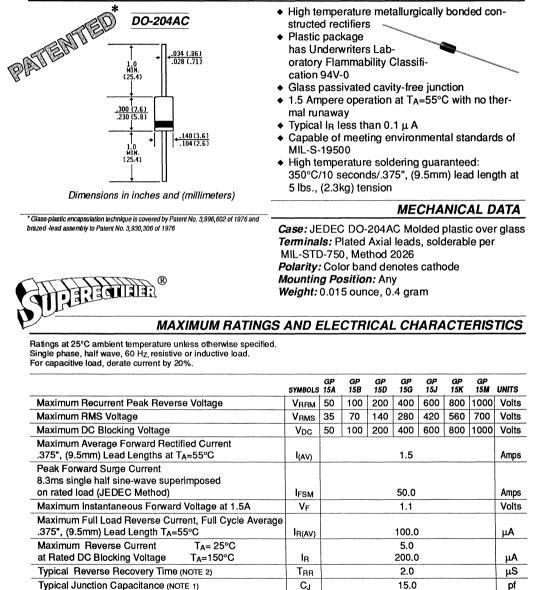



FIG. 6 - SUPERECTIFIER

(D) General Instrument


GP15A THRU GP15M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

Current - 1.5 Amperes

Operating Junction and Storage Temperature Range NOTES:

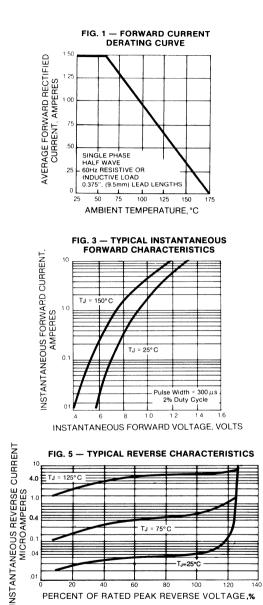
Typical Thermal Resistance (NOTE 3)

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

2. Reverse Recovery Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RØJA


TJ, **T**STG

25.0

-65 to +175

<u>°C/W</u> ℃

RATINGS AND CHARACTERISTIC CURVES GP15A THRU GP15M

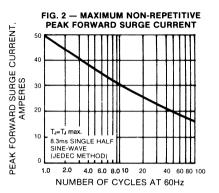
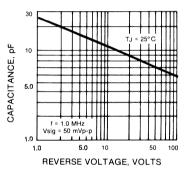
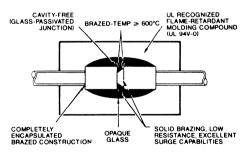
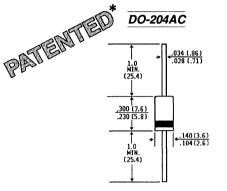




FIG. 4 - TYPICAL JUNCTION CAPACITANCE


G General Instrument

AGP15-200 THRU AGP15-800

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC CONTROLLED AVALANCHE RECTIFIER

Voltage - 200 to 800 Volts Current - 1.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

कोोबोबेरे ®

High temperature metallurgically bonded constructed rectifiers

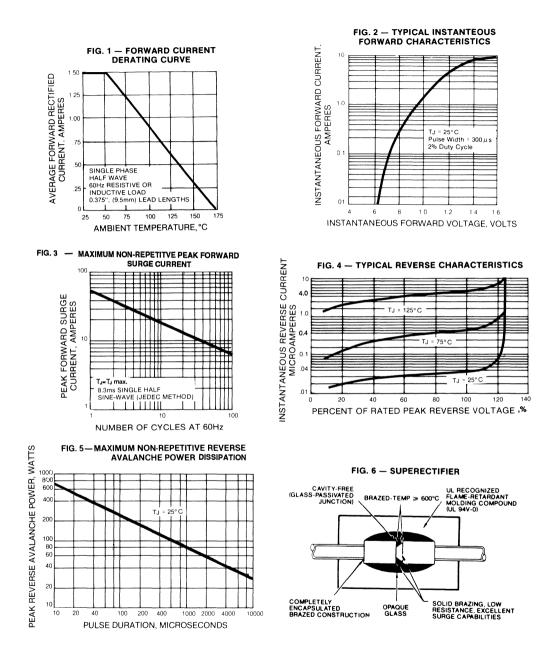
- Controlled Avalanche characteristic combined with the ability to dissipate reverse power
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Glass passivated cavity-free junction
- 1.5 Ampere operation at T_A=55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AC Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode

Mounting Position: Any Weight: 0.0154 ounce,.4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

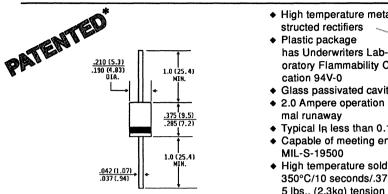

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	AGP15-200	AGP15-400	AGP15-600	AGP15-800	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts
Minimum Avalanche Breakdown Voltage at 100 μ A	VBR	240	Volts			
Maximum Avalanche Breakdown Voltage at 100 μ A	VBR	500	Volts			
Maximum Peak Power Dissipation in the Avalanche Region 20 μs Pulse	Рвм			Watts		
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)			Amps		
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM			Amps		
Maximum Instantaneous Forward Voltage at 1.5A	VF		1	.1		Volts
Maximum Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=150°C	IR		-	.0 0.0		μA
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Length at $T_A=55^{\circ}C$	IR(AV)			μA		
Typical Reverse Recovery Time (NOTE 2)	T _{RR}		μS			
Typical Junction Capacitance (NOTE 1)	CJ		pf			
Typical Thermal Resistance (NOTE 3)	Reja			°C/W		
Operating Junction and Storage Temperature Range	TJ,TSTG		-65 to	+175		°C

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF= 0.5A, IR= 1.0A, recover to 0.25A.

RATINGS AND CHARACTERISTIC CURVES AGP15-200 THRU AGP15-800



G General Instrument

GP20A THRU GP20J

GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER Current - 2.0 Amperes

Voltage - 50 to 600 Volts

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed lead assembly to Patent No. 3,930,306 of 1976

High temperature metallurgically bonded con-

- has Underwriters Laboratory Flammability Classifi-
- Glass passivated cavity-free junction
- ♦ 2.0 Ampere operation at TA= 55°C with no ther-
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

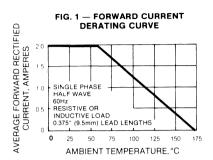
MECHANICAL DATA

FEATURES

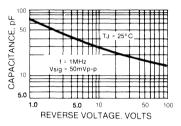
Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750. Method 2026 Polarity: Band denotes cathode Mounting Position: Any Weiaht: 0.03 ounce, 0.8 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

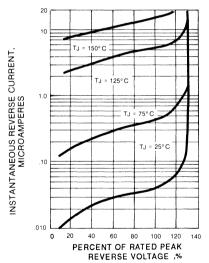
Ratings at 25°C ambient temperature unless otherwise specified 60 Hz. Resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GP 20A	GP 20B	GP 20D	GP 20G	GP 20J	UNITS	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts	
Maximum RMS Voltage	VRMS	35	Volts					
Maximum DC Blocking Voltage	VDC	50	Volts					
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)		Amps					
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	65.0						
Maximum Instantaneous Forward Voltage at 2.0A	VF		1.2			1.1	Volts	
Maximum Reverse Current at Rated DC Blocking Voltage T _A =25°C	I _R			5.0			μA	
Maximum Full Load Reverse Current, Full Cycle Average, 375" (9.5mm) Lead Length T _A =55°C	IR(AV)			100.0			μA	
Typical Reverse Recovery Time (NOTE 1)	TRR			2.5			μs	
Typical Junction Capacitance (NOTE 2)	CJ	40.0						
Typical Thermal Resistance (NOTE 3)	R o ja		°C/W					
Operating Junction and Storage Temperature Range	TJ,TSTG		°C					

NOTES:


1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Reverse Recovery Test Conditions : IF=0.5A, IR= 1.0A, Irr=0.25A.


RATINGS AND CHARACTERISTIC CURVES GP20A THRU GP20J

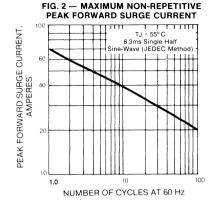
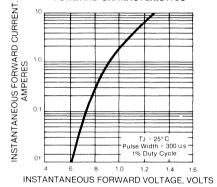
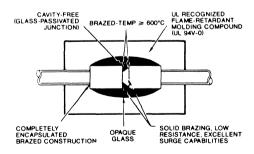
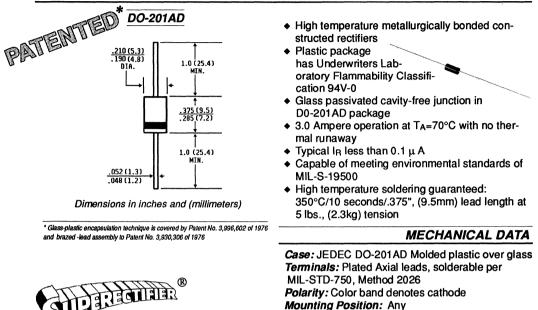


FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS


FIG. 6 - SUPERECTIFIER

1N5624GP THRU 1N5627GP

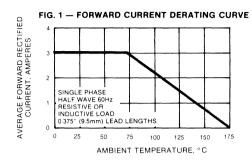
GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 200 to 800 Volts Current - 3.0 Amperes

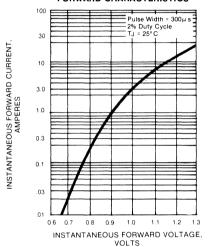
Weight: 0.04 ounce, 1.12 gram

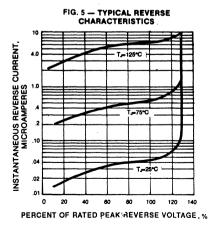
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N5624GP	1N5625GP	1N5626GP	1N5627GP	UNITS							
* Maximum Recurrent Peak Reverse Voltage	VRRM	200											
* Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts							
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =70°C	I(AV)		3.0										
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		125.0							125.0			
* Maximum Instantaneous Forward Voltage at 3.0A T _A =25°C T _A =70°C	VF			Volts									
Maximum Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	IR	300		.0	00.0	μΑ							
Maximum Full Load Reverse Current, Full Cycle Average, 375" (9.5mm) Lead Length at T _A =70°C			20	0.0		μΑ							
Typical Reverse Recovery Time (NOTE 2)	T _{RR}		3.0										
Typical Junction Capacitance (NOTE 1)	CJ			pf									
Typical Thermal Resistance (NOTE 3)	Reja			°C/W									
Operating Junction and Storage Temperature Range	Tj,Tstg		-65 to) +175		°C							

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.


2. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, recover to 0.25A.



RATINGS AND CHARACTERISTIC CURVES 1N5624GP THRU 1N5627GP

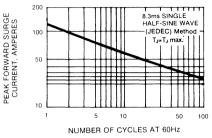
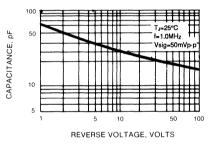
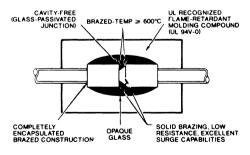
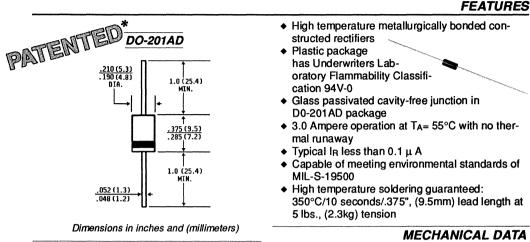




FIG. 4- TYPICAL JUNCTION CAPACITANCE


G General Instrument

GP30A THRU GP30M

GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts

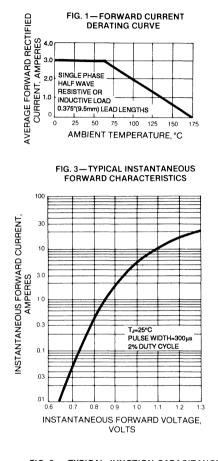
Volts Current - 3.0 Amperes

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

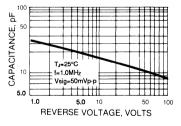
Case: JEDEC DO-201AD Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz,resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GP 30A	GP 30B	GP 30D	GP 30G	GP 30J	GP 30K	GP 30M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				125.0				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		1.2	1		1.1			Volts
Maximum Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	IR				5.0 100.0				μΑ
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length T _{A=} 55°C	IR(AV)				100.0	1			μΑ
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}				3.0				μS
Typical Junction Capacitance (NOTE1)	CJ				40.0				pf
Typical Thermal Resistance (NOTE 3)	Reja				15.0				°C/W
Operating Junction and Storage Temperature Range	TJ, TSTO	à		-6	5 to +'	175			°C

NOTES:


1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

RATINGS AND CHARACTERISTIC CURVES GP30A THRU GP30M

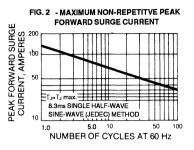


FIG. 4 — TYPICAL REVERSE CHARACTERISTICS

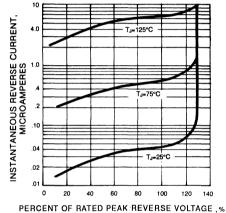
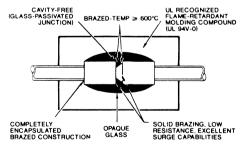
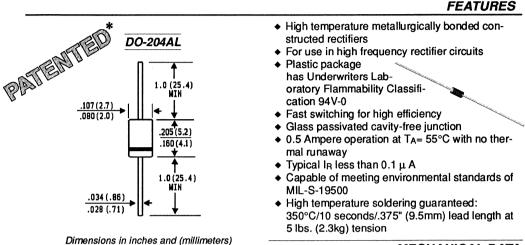



FIG. 6 — SUPERECTIFIER

(iii) General Instrument

•

FAST-RECOVERY SUPERECTIFIERS 0.5 AMPERES THRU 3.0 AMPERES 50 VOLTS TO 2000 VOLTS



A

RGP02-12E THRU RGP02-20E

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 1200 to 2000 Volts Current - 0.5 Amperes

MECHANICAL DATA

Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976
 and brazed -lead assembly to Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AL Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD- 750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, .3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RGP02 -12E	RGP02 -14E	RGPO2 -16E	RGPO2 -18E	RGPO2 -20E	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1200	1400	1600	1800	2000	Volts
Maximum RMS Voltage	VRMS	840	Volts				
Maximum DC Blocking Voltage	VDC	1200	Volts				
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)		Amps				
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	20.0					
Maximum Instantaneous Forward Voltage at 0.1A	VF			1.8			Volts
Maximum DC Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=125°C	IR			5.0 50.0			μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		3	300.0			nS
Typical Junction Capacitance (NOTE 2)	CJ	5.0					
Typical Thermal Resistance (NOTE 3)	Reja	50.0					
Operating Junction and Storage Temperature Range	TJ, TSTG			•C			

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr =.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES RGP02-12E THRU RGP02-20E

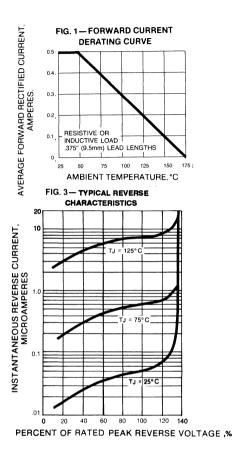
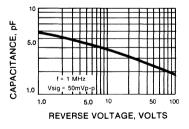



FIG. 5 - TYPICAL JUNCTION CAPACITANCE

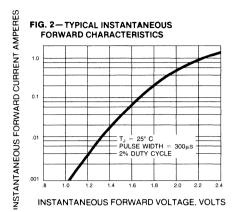


FIG. 4 -- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

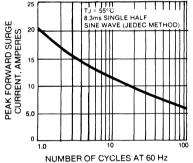
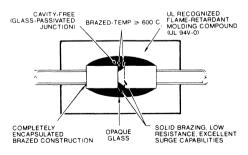
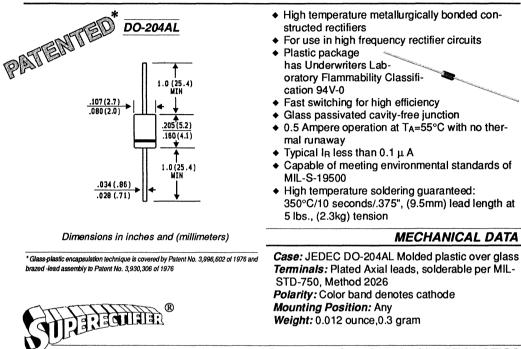



FIG. 6-SUPERECTIFIER


G General Instrument

BA157GP THRU BA159GP

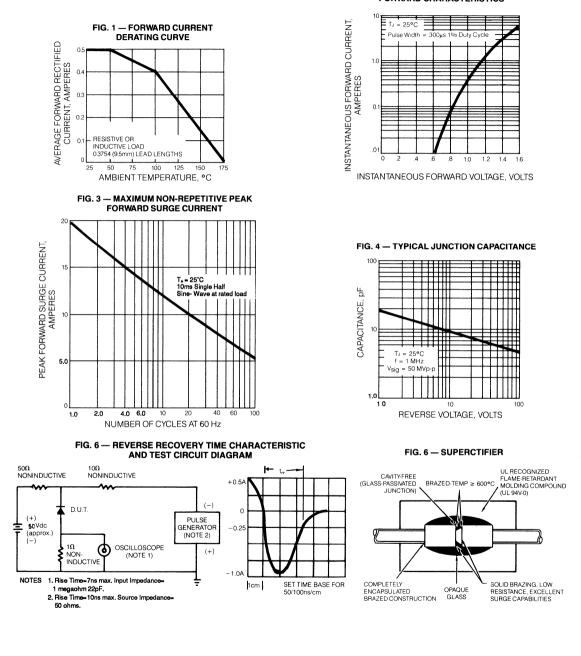
MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 400 to 1000 Volts Current - 0.5 Ampere

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

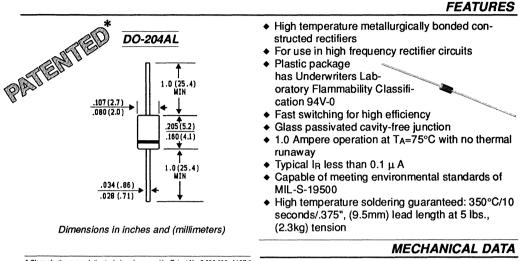

	SYMBOLS	BA157GP	BA158GP	BA159DGP	BA159GP	UNITS			
Maximum Recurrent Peak Reverse Voltage	VRRM	400	600	800	1000	Volts			
Maximum RMS Voltage	VRMS	280	420	560	700	Volts			
Maximum DC Blocking Voltage	VDC	400	600	800	1000	Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	l(AV)		0	.5		Amps			
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at T _A =25°C	IFSM		20.0						
Maximum Instantaneous Forward Voltage at 1.0A	VF		1	.5		Volts			
Maximum DC Reverse Current at Rated DC Blocking Voltage	IR		Ę	5.0		μΑ			
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	150	250	500	500	nS			
Typical Junction Capacitance (NOTE 2)	CJ		15.0						
Typical Thermal Resistance (NOTE 3)	Reja		°C/W						
Operating Junction and Storage Temperature Range	TJ,TSTG			°C					

NOTES:

1. Reverse Recovery Test Conditions : IF= 0.5A, IR= 1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDc.

RATINGS AND CHARACTERISTIC CURVES BA157GP THRU BA159GP


FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

General Instrument

1N4933GP THRU 1N4937GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 1.0 Ampere

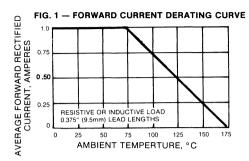
* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 197 6 and brazed -lead assembly by Patent No. 3,930,306 of 1976

Case: JEDEC DO-204AL Molded plastic over glass *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* 0.012 ounce, 0.34 gram

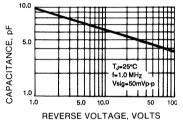
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

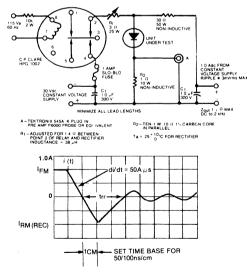
	SYMBOLS	1N 4933GP	1N 4934GP	1N 4935GP	1N 4936GP	1N 4937GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
* Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			30.0			Amps
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
* Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	IR			5.0 100.0			μA
* Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			200.0			nS
Typical Junction Capacitance (NOTE 2)	CJ			15.0			pf
Typical Thermal Resistance (NOTE 3)	Reja			50.0			°C/W
* Operating Junction and Storage Temperature Range	TJ,TSTG			°C			


NOTES: 1. Reverse Recovery Test Conditions: IF=1.0A, VR=30 Volts.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC Registered Values


RATINGS AND CHARACTERISTIC CURVES 1N4933GP THRU 1N4937GP

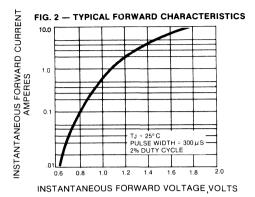


FIG. 5 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

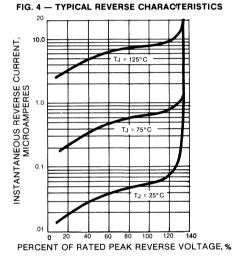
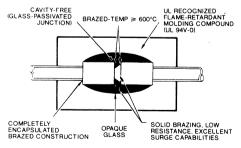
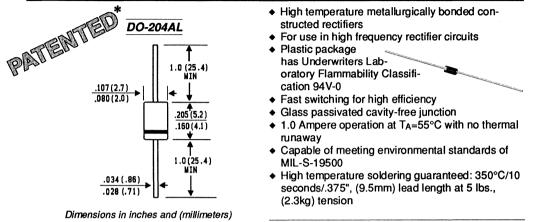



FIG. 6 — SUPERECTIFIER


(D) General Instrument

1N4942GP THRU 1N4948GP

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

* settleter

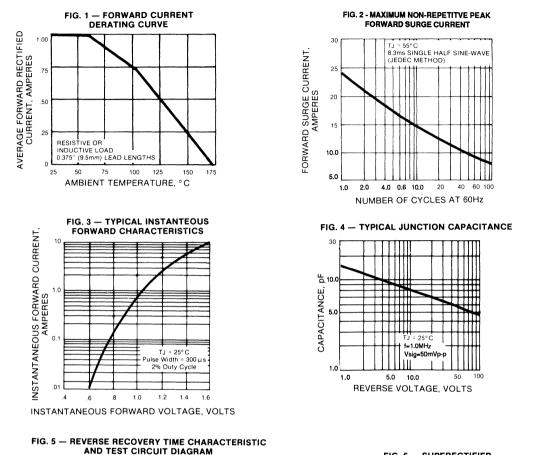
MECHANICAL DATA

Case: JEDEC DO-204AL Molded plastic over glass Terminals: Plated Axial leads,solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.Resistive or inductive load.

	SYMBOLS	1N 4942GP	1N 4944GP	1N 4946GP	1N 4947GP	1N 4948GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	Volts				
* Maximum RMS Voltage	VRMS	140	Volts				
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
* Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3		_	Volts
* Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A =150°C	IR			1.0 200.0			μА
* Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}	150	150	250	250	500	nS
Typical Junction Capacitance (NOTE 2)	CJ	15.0					
Typical Thermal Resistance (NOTE 3)	Reja		°C/W				
* Operating Junction and Storage Temperature Range	TJ,TSTG			°C			

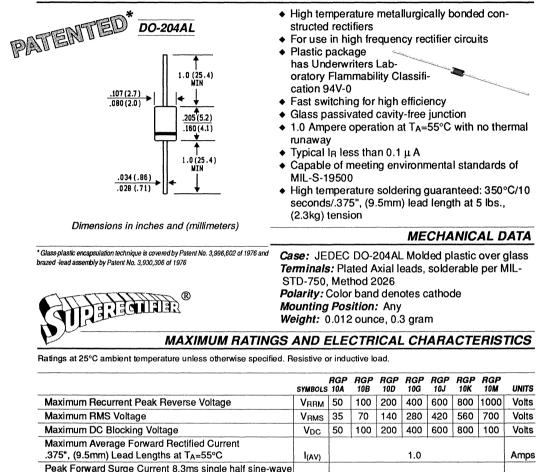

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4942GP THRU 1N4948GP



G General Instrument

RGP10A THRU RGP10M

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.0 Ampere

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, recover to 0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

superimposed on rated load (JEDEC Method)

.375", (9.5mm) Lead Length TA=55°C

Typical Junction Capacitance (NOTE 2)

Typical Thermal Resistance (NOTE 3)

Maximum DC Reverse Current

at Rated DC Blocking Voltage

Maximum Instantaneous Forward Voltage at 1.0A

Maximum Reverse Recovery Time TJ=25°C (NOTE 1)

Operating Junction and Storage Temperature Range

Maximum Full Load Reverse Current, Full Cycle Average

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

T_A=25°C

T_A=150°C

IFSM

VF

IR

IR

TRR

СJ

RØJA

T_J,T_{STG}

150

30.0

1.3

100.0

5.0

200.0

15.0

50.0

-65 to +175

250

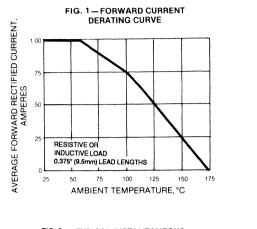
500

Amps

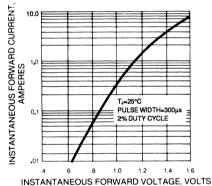
Volts

μA

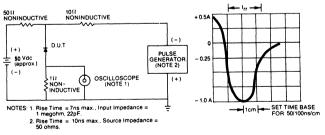
μA


nS

pf


°C/W

°C


RATINGS AND CHARACTERISTIC CURVES RGP10A THRU RGP10M

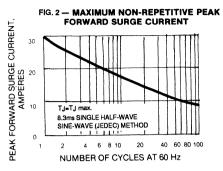


FIG. 4 — TYPICAL JUNCTION CAPACITANCE

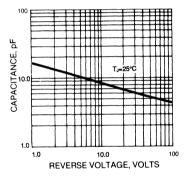
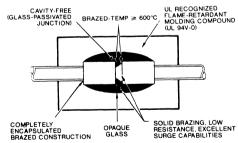
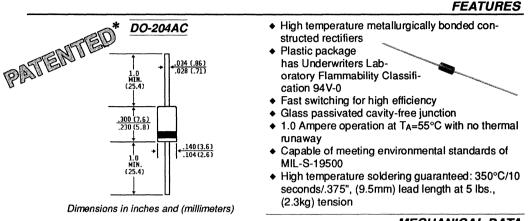



FIG. 6-SUPERECTIFIER



General Instrument

1N5615GP THRU 1N5623GP

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly by Patent No. 3,930,306 of 1976

MECHANICAL DATA

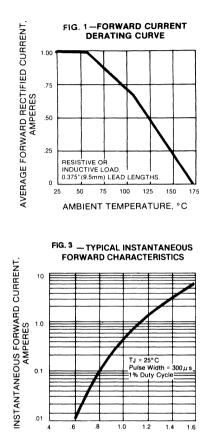
Case: JEDEC DO-204AC Molded plastic over class Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, .4 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	1N 5615GP	1N 5617GP	1N 5619GP	1N 5621GP	1N 5623GP	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Amps
* Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)			1.0			Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			50.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR			0.5 25.0			μА
* Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR	150	150	250	300	500	ns
Typical Junction Capacitance (NOTE 2)	CJ			pf			
Typical Thermal Resistance (NOTE 3)	Reja		°C/W				
* Operating Junction and Storage Temperature Range	Tj,Tstg			°C			

NOTES:


1. Reverse Recovery Test Conditions: IF=0.5A, IB=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

* JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N5615GP THRU 1N5623GP

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

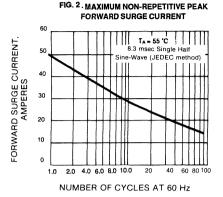
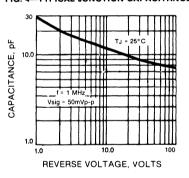
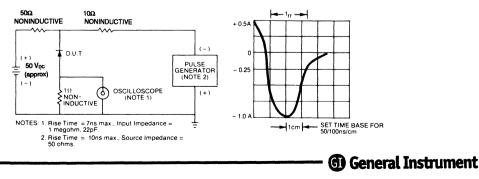




FIG. 4-TYPICAL JUNCTION CAPACITANCE

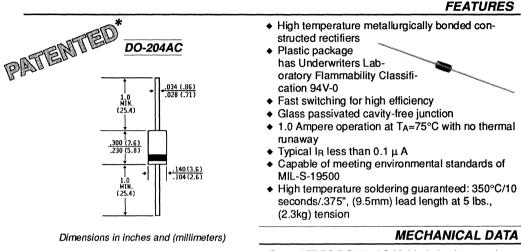


FIG. 5 -REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

GI810 THRU GI818

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.0 Ampere

Case: JEDEC DO-204AC Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

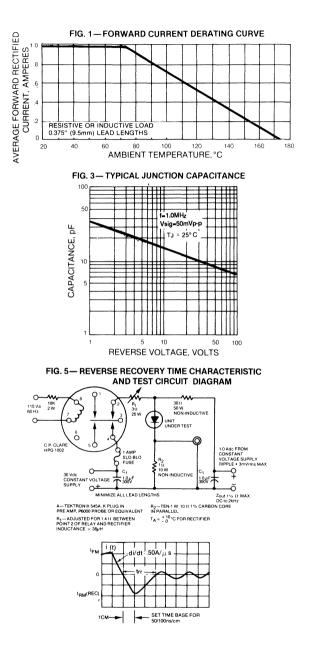
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

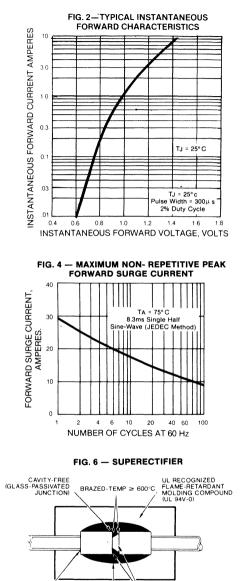
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

* Glass-plastic encapsulation technique is covered by Patent No. 3.996.602 of 1976

* feltlet

and brazed -lead assembly by Patent No. 3,930,306 of 1976


	SYMBOL	GI 5 810	GI 811	GI 812	GI 814	GI 816	GI 817	GI 818	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	I(AV)	1.0					Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =75°C	IFSM	30.0						Amps	
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.2				Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR				10.0 100.0	1			μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	750.0					nS		
Typical Junction Capacitance (NOTE 2)	CJ	25.0					pf		
Typical Thermal Resistance (NOTE 3)	RØJA	30.0					°C/W		
Operating Junction and Storage Temperature Range	TJ,TSTO	3		-6	5 to +	175			°C


NOTES:

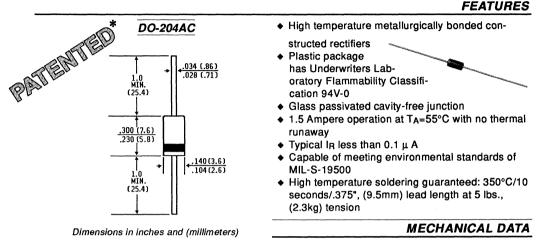
1. Reverse Recovery Test Conditions: IF=1.0A, VR=30V.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES GI810 THRU GI818

SOLID BRAZING, LOW RESISTANCE, EXCELLENT SURGE CAPABILITIES

G General Instrument


OPAQUE GLASS

COMPLETELY ENCAPSULATED BRAZED CONSTRUCTION

RGP15A THRU RGP15M

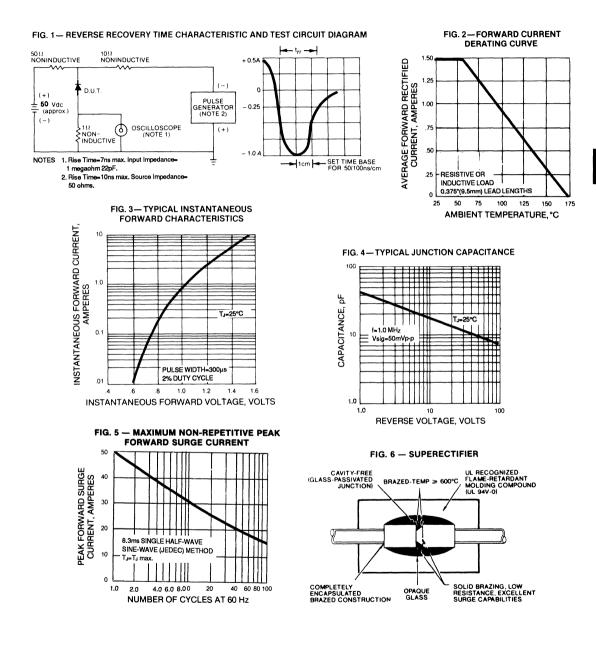
GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.5 Ampere

* Gless-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976 Case: JEDEC DO-204AC Molded plastic over glass: Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.015 ounce, 0.4 gram

® FERIDELER

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

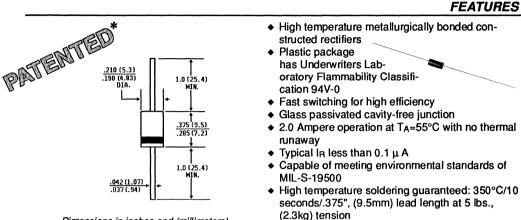

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RGP 15A	RGP 15B	RGP 15D	RGP 15G	RGP 15J	RGP 15K	RGP 15M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)				1.5				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.5A	VF				1.3				Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	IR				5.0 200.0	I			μA
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length $T_A=55^{\circ}C$	IR(AV)				100.0)			μA
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	TRR		1	50		250	5	00	nS
Typical Junction Capacitance (NOTE 2)	CJ				25.0				pf
Typical Thermal Resistance (NOTE 3)	RØJA	A 30.0							°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175							°C

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF=.5A, IR=1A, Irr=.25A.

RATINGS AND CHARACTERISTIC CURVES RGP15A THRU RGP15M



G General Instrument

RGP20A THRU RGP20J

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 2.0 Amperes

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly by Patent No. 3,930,306 of 1976

Case: Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color Band denotes cathode Mounting Position: Any Weight: 0.03 ounce, 0.8 gram

MECHANICAL DATA

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

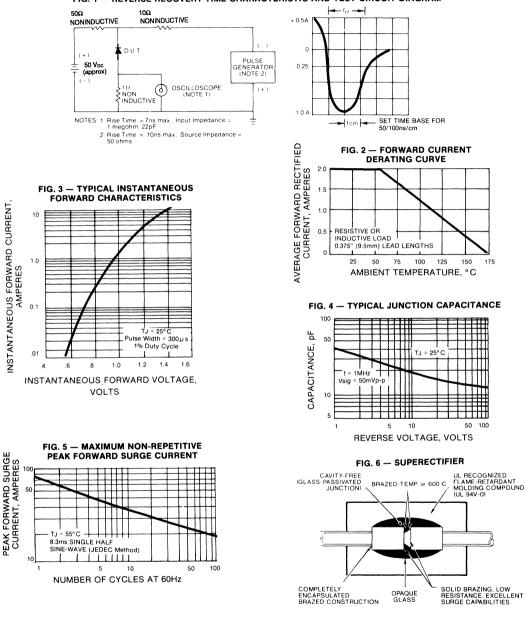
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

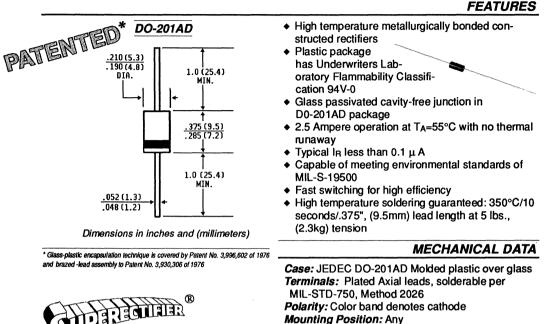
	SYMBOLS	RGP 20A	RGP 20B	RGP 20D	RGP 20G	RGP 20J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	Volts				
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)			Amps			
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
Maximum Instantaneous Forward Voltage at 2.0A	VF			1.3			Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	IR			5.0 100.0			μA
Maximum Full Load Reverse Current, Full Cycle Average, 375" (9.5mm) Lead Length T _A =55°C	IR(AV)			100.0			μА
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}		nS				
Typical Junction Capacitance (NOTE 1)	CJ		pf				
Typical Thermal Resistance (NOTE 3)	Reja		°C/W				
Operating Junction and Storage Temperature Range	TJ,TSTG			-65 to +1	75		°C

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

Measured at I MHZ and applied reverse voltage of 4.0 volts.
 Reverse Recovery Test Conditions: I_F=0.5A, I_R=1.0A, Irr=0.25A.

RATINGS AND CHARACTERISTIC CURVES RGP20A THRU RGP20J




FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

(D) General Instrument

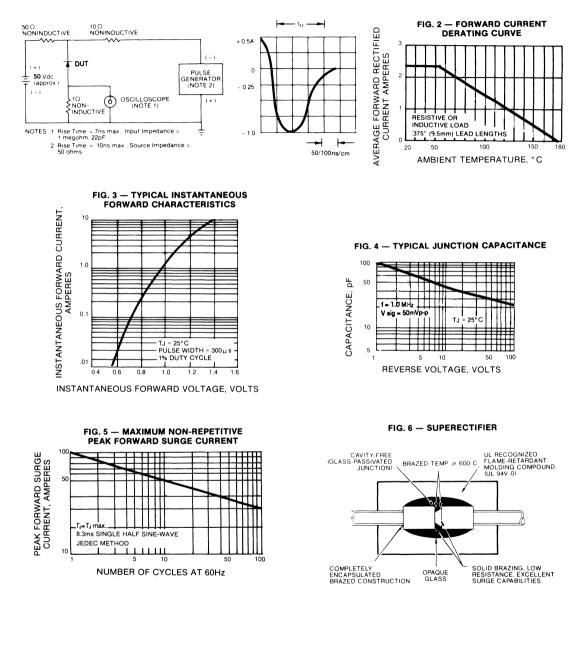
RGP25A THRU RGP25M

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 2.5 Amperes

Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

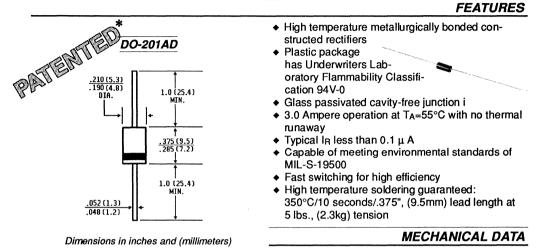

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RGP 5 25A	RGP 25B	RGP 25D	RGP 25G	RGP 25J	RGP 25K	RGP 25M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)	2.5							Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	100.0							Amps
Maximum Instantaneous Forward Voltage at 2.5A	VF	1.3							Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR	5.0 200.0							μA
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length T_A =55°C	IR	100.0							μA
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	TRR		150			250	5	00	nS
Typical Junction Capacitance (NOTE1)	CJ	60.0							pf
Typical Thermal Resistance (NOTE 3)	Reja	16.0							°C/W
Operating Junction and Storage Temperature Range	TJ,TSTO	-65 to +175							°C

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

RATINGS AND CHARACTERISTIC CURVES RGP25A THRU RGP25M


FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

(ii) General Instrument

RGP30A THRU RGP30M

GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

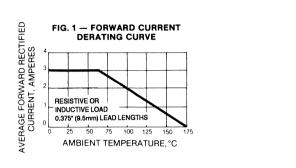
Voltage - 50 to 1000 Volts Current - 3.0 Amperes

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976 and brazed -lead assembly to Patent No. 3,930,306 of 1976

Case: JEDEC DO-201AD Molded plastic over glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.12 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOL	RGP 530A	RGP 30B	RGP 30D	RGP 30G	RGP 30J	RGP 30K	RGP 30M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)	3.0							Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	125.0							Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF	1.3							Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR	5.0 100.0							μA
Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Length T_A =55°C	IR(AV)	100.0							μΑ
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}		1	50		250	50	00	nS
Typical Junction Capacitance (NOTE1)	CJ	60.0							pf
Typical Thermal Resistance (NOTE 3)	Reja	16.0							°C/W
Operating Junction and Storage Temperature Range	TJ,TST	G -65 to +175							°C

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, Irr= .25A.

RATINGS AND CHARACTERISTIC CURVES RGP30A THRU RGP30M

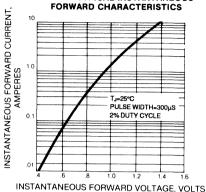


FIG. 3 - TYPICAL INSTANTANEOUS

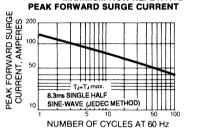


FIG. 2 - MAXIMUM NON-REPETITIVE

FIG. 4 — TYPICAL JUNCTION CAPACITANCE

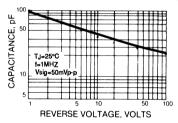
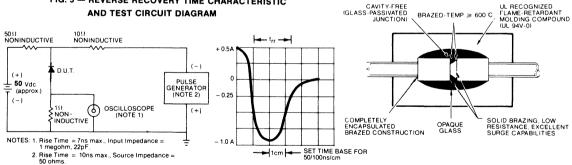



FIG. 5 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

FIG. 6 - SUPERECTIFIER

(D) General Instrument

. .

.

284

MINIATURE GLASS PASSIVATED CHIP PLASTIC RECTIFIER

1.0 AMPERE 50 VOLTS TO 1000 VOLTS

MPG06A THRU MPG06M

MINIATURE GLASS PASSIVATED JUNCTION PLASTIC RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.0 Ampere

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94 V-O
- Low forward voltage, high current capability
- Glass passivated chip junctions
- High Surge Capability
- 1.0 Ampere operation at T_A=25°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass passivated chip Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0064 ounce, .181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, $60H_Z$, resistive or inductive load.

Dimensions in inches

and (millimeters)

.100(2.54)

.090 (2.29)

.025(.635)

1.0 (25.4)

MIN.

.125 (3. 18) .115 (2. 92)

1.0 (25.4) MIN.

		MPG	MPG	MPG	MPG	MPG	MPG	MPG	
	SYMBOLS	5 06A	06 B	06D	06G	06J	06K	06M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"									
(9.5mm) Lead Length at T _A =25°C	I(AV)	1.0							Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method) T _A =25°C	IFSM	40.0							Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.1						Volts	
Maximum DC Reverse Current T _A =25°C		5.0							
at Rated DC Blocking Voltage TA=125°C	IR	50.0							μA
Typical Junction Capacitance (NOTE 1)	CJ	10.0							pf
Typical Reverse Recovery Time (NOTE 2)	TRR	0.6						μS	
Thermal Resistance Typical					65.0				
Maximum (NOTE 3)	RØJA	85.0						°C/W	
Operating Junction and Storage Temperature Range	TJ,TSTG	-55 to +150						°C	

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditons: IF=0.5A, 1.0A, Irr = 0.25A.

RATING AND CHARACTERISTIC CURVES MPG06A THRU MPG06M

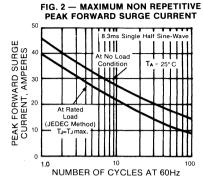
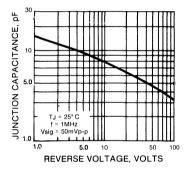
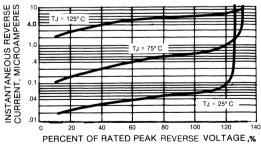




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

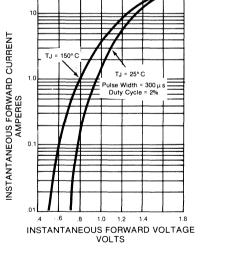


FIG. 1 - FORWARD CURRENT

DERATING CURVE

LENGTH

60Hz RESISTIVE OR INDUCTIVE LOAD 0.375", 9.5mm LEAD

AVERAGE FORWARD RECTIFIED CURRENT, AMPERES

12

1.0

0.8 0.6

04

0

30

CAPACITIVE

25 50 AMBIENT TEMPERATURE, °C

5.0 10 lpk/IAV 0.2

20

75 100 125 150 175

FIG. 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

@ General Instrument

RMPG06A THRU RMPG06J

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING PLASTIC RECTIFIER

Voltage - 50 to 600 Volts Current - 1.0 Ampere

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94 V-O
- Low forward voltage drops, high current capability
- Glass passivated chip junctions
- High Surge Capability
- 1.0 Ampere operation at T_A=25°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic over glass passivated chip Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: 0.0064 ounce. .181 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches

and (millimeters)

.100 (2.54)

.090 (2.29)

.025 (.635

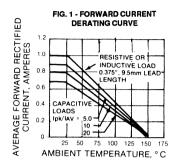
1.0 (25.4)

MTN.

.125 (3.18)

1.0 (25.4) MIN.

	SYMBOLS	RMPG 06A	RMPG 06B	RMPG 06D	RMPG 06G	RMPG 06J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	70	200	400	600	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at T _A =25°C	Lun			1.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed	<u> (AV)</u>			1.0			Anips
on rated load (JEDEC Method) T _A =25°C	IFSM			40.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3			Volts
Maximum DC Reverse Current T _A =25°C				5.0			
at Rated DC Blocking Voltage TA=125°C	IR			50.0			μΑ
Typical Junction Capacitance (NOTE 1)	CJ			6.6			pf
Typical Reverse Recovery Time (NOTE 2)							
TJ=25°C	TRR		15	0		200	nS
Thermal Resistance Typical				67.0			
Maximum (NOTE 3)	R o ja			85.0			°C/W
Operating Junction and Storage Temperature Range	J,TSTG		-	55 to +15	50		°C


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditons: IF= 0.5A, IR=1.0A, Irr = 0.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATING AND CHARACTERISTIC CURVES RMPG06A THRU RMPG06J

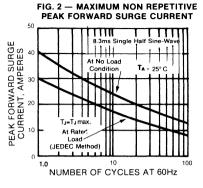


FIG. 4 - TYPICAL JUNCTION CAPACITANCE

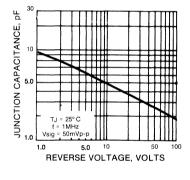
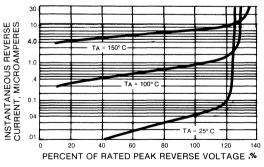
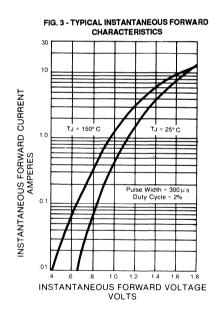




FIG. 5 — TYPICAL REVERSE CHARACTERISTICS

290

.

GLASS PASSIVATED RECITFIERS

0.2 AMPERE TO 3.0 AMPERES 50 VOLTS TO 1600 VOLTS

GLASS PASSIVATED RECTIFIER 0.2 to 0.3 Amperes 50 Volts to 1600 Volts

Device Design

The Glass Passivated Rectifier is a hermetically sealed, cavityfree, diffused junction rectifier with unsurpassed operating and surge characteristics at high temperature. Cavityfree construction with a specially developed extremely pure glass in direct contact with the silicon junction plus durable heat sink design obviate the need for solder joints and compression contact parts. The carefully matched expansion characteristics of the glass and metal parts in combination with the direct contact of the glass and silicon junction make the active rectifying elements impervious to surface contamination, moisture or other external chemical agents. Further, the long term degradation associated with organic junction protection is avoided.

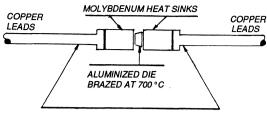
There are many steps necessary to produce such a device:

"N"+ "N

Diffused Slice

1-Diffuse a PN junction into a slice of silicon.

Metallized Slice



EVAPORATED ALUMINUM

SAND BLASTED ROUND DICE 2-Evaporate aluminum on both sides of the slice to make metallurgical contact.

3-Sandblast the slice to produce a round beveled die.

GLASS BODY & PASSIVATION FIRED AT 600°C

GLASS PASSIVATED RECTIFIER

LEADS BRAZED TO MOLYBDENUM 4. Braze the die between two molybdenum heat sinks to which leads have been attached at approximately 700°C.

5-Clean the assembly by chemically etching, washing and drying.

6-Apply glass in the form of a frit to the die and molybdenum assembly.

7-Melt the glass by heating in an oven to approximately 600 °C.

8-Overmold glass passivated construction with UL recognized flame-retardant 94V-0 classification epoxy.

Package Design

The small size of the glass package with its capability up to 3 Ampere permits greater packing densities in electronic assemblies and equipment, while increasing reliability. Furthermore, only high temperature brazing operations are used to withstand the 600 C required to melt and fuse the glass. This technique eliminates solder construction and tremendously enhances mechanical strength and temperature cycling capability, increasing operating and storage temperature range while reducing thermal resistance.

Reliability

Specified reliability data on Glass Passivated Rectifier devices are available from the General Instrument Semiconductor Components Division Reliability Department. The basic design of the Glass Passivated rectifier and the strict positive controls over materials and manufacturing processes provide assurance of failure free performance under the most severe conditions. Processing facilities have been geared to follow the procedural requirements of Military Standard 750.Glass Passivated rectifiers are capable of withstanding environmental extremes in excess of MIL-S-19500E and of meeting requirements of MIL-STD-883, MIL-Q-9858 and MIL-I-45208. Assurance of production uniformity and reliability is provided by a test technique called "Operational Load Line Testing," which has proven product reliability with over 1 Billion Glass Passivated rectifiers now in use.

FAMILIES OF GENERAL INSTRUMENT GLASS PASSIVATED RECTIFIERS

Glass Passivated Junction Recitifiers 1.0 to 3.0 AMPERES

Types: 1N4245 thru 1N4249 1N5059 thru 1N5062

1N5614 thru 1N5622

1N5550 thru 1N5554 1N5624 thru 1N5627

G1A thru G1M

G2A thru G2M

G3A thru G3M G4A thru G4M

Features:

- ♦ Glass Passivated Junction
- High Mechanical Strength
- ◆ Storage up to 200 °C
- Voidless Construction
- Hermetically Sealed
- Avalanche Operation
- ◆ Low Leakage
- High Conductance
- ◆ Tin Plated Axial Leads, Solerable per MIL-STD-750/2026

Glass Passivated Fast Recovery Junction Rectifiers 1.0 to 3.0 AMPERES

Types: 1N4942 thru 1N4948

1N5615 thru 1N5623

1N5415 thru 1N5420 RG1A thru RG1M

RG2A thru RG2M

RG3A thru RG3M

RG4A thru RG4M

BYV95 thru BYV96 BYW32 thru BYW36

BYW72 thru BYW76

Features:

- Glass Passivated Junction
- Fast Switching for High Rectification Efficiency to 100 kHz
- High Mechanical Strength
- ◆ Low Leakage
- ◆ Hermetically Sealed
- ♦ Storage up to 200°C
- ◆ Tin Plated Axial Leads, Solderable per MIL-STD-750/2026

High Voltage Glass Passivated Junction Rectifiers 1.0 to 3.0 Amperes

Types: CG1, DG1 CG2, DG2 CG3, DG3 G11-1200 thru G11-1600

Features:

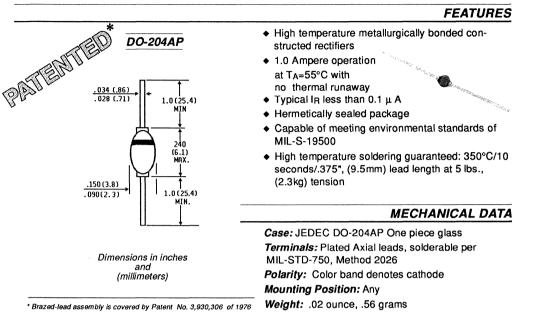
- All Advantages of a Hermetically Sealed Glass Passivated Junction
- Specially designed for Clamper/Damper Applications in Television/CRT circuitry
- ◆ Low Leakage, VR ratings of 1400 volts to 1600 volts
- High Mechanical Strength
- Tin Plated Axial Leads, Solderable per MIL-STD-750/2026

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS

TYPE	1N4245 thru 1N4249	1N4942* thru 1N4948*	1N5059 thru 1N5062	1N5614 thru 1N5622	1N5615* thru 1N5623*	G1A thru G1M	RG1A* thru RG1M*
CASE	DO204AP	DO204AP	DO204AP	DO204AP	DO204AP	DO204AP	DO204AP
lo(A)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
@TA(C)	55	55	55	55	55	100	55
VR= 50(V)					1	GIA	RGIA
VR=100(V)				1		G1B	RG1B
VR=200(V)	1N4245	1N4942	1N5059	1N5614	1N5615	G1D	RGID
VR=300(V)							
VR=400(V)	1N4246	1N4944	1N5060	1N5616	1N5617	GIG	RGIG
/R=500(V)		1					
/R=600(V)	1N4247	1N4946	1N5061	1N5618	1N5619	G1J	RG1J
/R=800(V)	1N4248	1N4947	1N5062	1N5620	1N5621	G1K	RG1K
VR=1000(V)	1N4249	1N4948	1	1N5622	1N5623	G1M	RG1M
SURGE(A)	25	30	50	50	50	50	30
/F(V)	1.2	1.3	1.2	1.2	1.2	1.1	1.3

*Fast Recovery

QUICK GUIDE TO GLASS PASSIVATED RECTIFIERS


	CG1	G2A	RG2A*	CG2	1N5624	1N5550	1N5415*	G3A	G4A	RG3A*	RG4A	CG3
TYPE	and	thru	thru	and	thru	thru	thru	thru	thru	fhru	thru	and
	DG1	G2M	RG2M*	DG2	1N5627	1N5552	1N5420*	G3M	G4J	RG4J*	RG4M	DG3
CASE	DO204AP	DO204AP	DO204AP	DO204AP	GPR3	GPR4	GPR4	GPR3	GPR4	GPR3	GPR4	GPR3
lo(A)	1.5	2.0	2.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
TA(C)	55	70	55	50	70	55	55	70	70	55	50	50
VR= 50(V)		G2A	RG2A		1		1N5415	G3A	G4A	RG3A	RG4A	
VR=100(V)		G2B	RG2B				1N5416	G3B	G4B	RG3B	RG4B	
VR=200(V)	1	G2D	RG2D		1N5624	1N5550	1N5417	G3D	G4D	RG3D	RG4D	
VR-300(V)							1					
VR=400(V)		G2G	RG2G		1N5625	1N5551	1N5418	G3G	G4G	RG3G	RG4G	
VR=500(V)							1N5419					
VR=600(V)	1	G2J	RG2J		1N5626	1N5552	1N5420	G3J	G4J	RG3J	RG4J	
VR=800(V)		G2K	RG2K		1N5627			G3K			RG4K	1
VR=1000(V)		G2M	RG2M			1	1	G3M		1	RG4M	1
VR>1000(V)	CG1/DG1			CG2/DG2	1	1						CG3/DG3
SURGE(A)	40	50	50	40	125	100	80	125	125	100	100	100
VF(V)	1.0	1.2	1.3	1.1	1.0	1.2/	1.1	1.1	1.1	1.3	1.3	12

*Fast Recovery

1N4245 THRU 1N4249

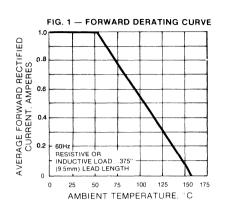
MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

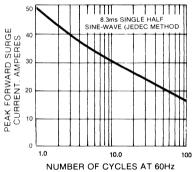
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N4245	1N4246	1N4247	1N4248	1N4249	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)			1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			50.0			Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF	1.2					Volts
*Maximum Full Load Reverse Current, Full Cycle Average .375", (9.5mm) Lead Lengths at T _A =55°C	IR(AV)			50.0			μА
*Maximum Reverse Current TA=25°C				1.0			
at Rated DC Blocking Voltage T _A =125°C	IR			25.0			μΑ
Typical Junction Capacitance (NOTE 1)	CJ			15.0			pf
Typical Thermal Resistance (NOTE 2)	Reja	40.0					°C/W
*Operating Temperature Range	TJ	-65 to +160					°C
*Storage Temperature Range	TSTG		ب	65 to +20	0		°C


NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts.


2. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N4245 THRU 1N4249

FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

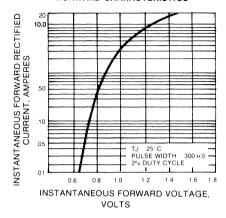
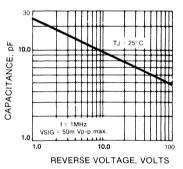
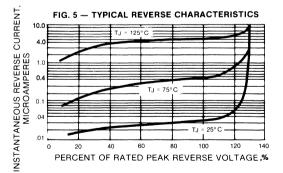
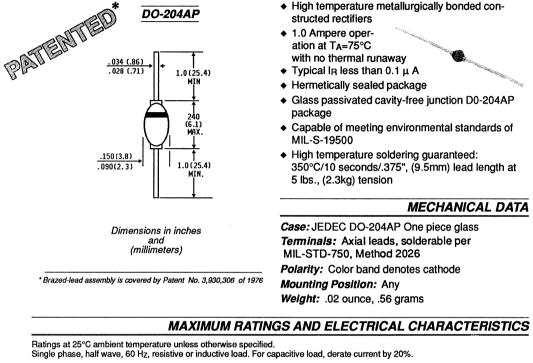




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



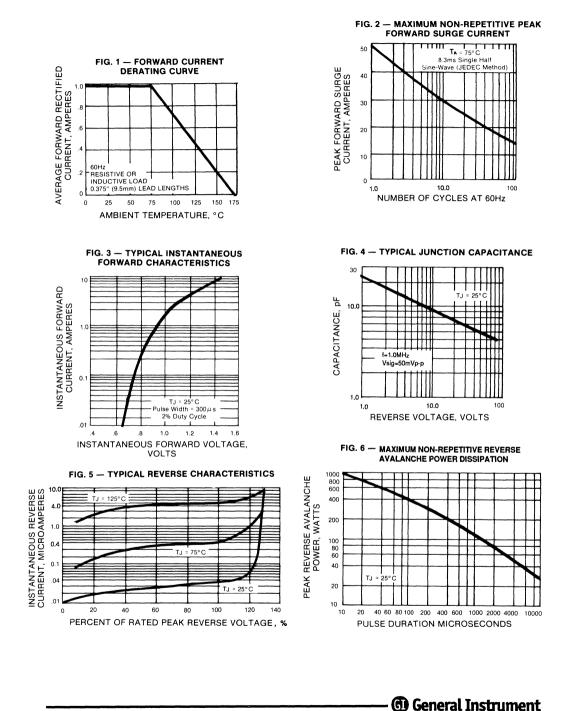
1N5059 THRU 1N5062

MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 200 to 800 Volts Current - 1.0 Ampere

		SYMBOLS	1N5059	1N5060	1N5061	1N5062	UNITS
*Maximum Recurrent Peak Reverse Vo	oltage	VRRM	200	400	600	800	Volts
Maximum RMS Voltage		VRMS	140	280	420	560	Volts
*Maximum DC Blocking Voltage		VDC	200	400	600	Volts	
*Maximum Average Forward Rectified .375", (9.5mm) Lead Lengths at T _A =7		l(AV)		1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimp on rated load (JEDEC Method)	osed	İfsm		50.0)		Amps
*Maximum Instantaneous Forward Volt	age at 1.0A	VF			Volts		
*Maximum Full Load Reverse Current,	Full Cycle						
Average .375", (9.5mm)	T _A = 25°C			5.0			
Lead Lengths at	T _A =75°C	IR(AV)	150	D	10	0	μΑ
*Maximum DC Reverse Current	T _A = 25°C			5.0			
at Rated DC Blocking Voltage T	a=175°C	lr I	30	0	2	00	† μ Α
Typical Reverse Recovery Time (NOTE	1)	T _{RR}		2.0			μs
Typical Junction Capacitance (NOTE 2)		CJ		15.0			
Typical Thermal Resistance (NOTE 3)		Røja		40.0)		°C/W
*Operating and Storage Temperature	Operating and Storage Temperature Range			-65 to +	175		°C

NOTES:


1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr =.25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N5059 THRU 1N5062

1N5614 THRU 1N5622

MINIATURE GLASS PASSIVATED MEDIUM-SWITCHING JUNCTION RECTIFIER Voltage - 200 to 1000 Volts Current - 1.0. Ampere

- High temperature metallurgically bonded constructed rectifiers
- 1.0 Ampere operation at T_A= 55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP One piece glass *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode *Mounting Position:* Any *Weight:* .02 ounce, .56 grams

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

Dimensions in inches

(millimeters)

PATENTED

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

DO-204AP

1.0 (25.4)

MIN

1.0 (25.4)

MIN.

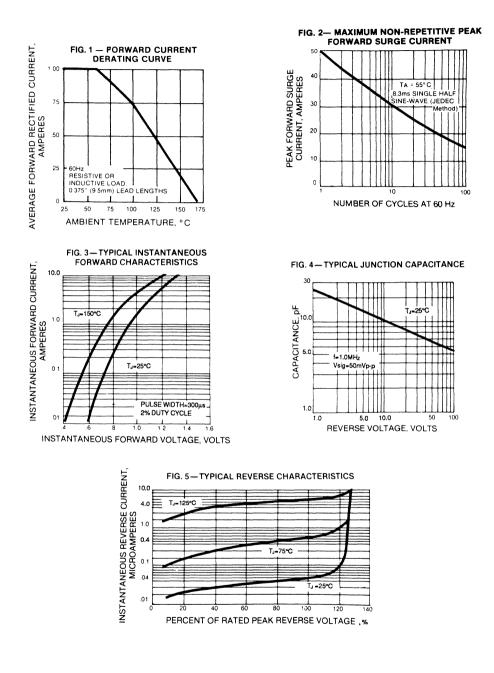
.034 (.86)

. 028 (.71)

.150 (3.8)

100(2.5) DIA.

	0/4/00/ 0	4115044	4415040	4115040	4115000	4115000	14470
	SYMBOLS	1N5614	1N5616	1N5618	1N5620	1N5622	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Reverse Breakdown Voltage at 50 μ A	VBR	220	440	660	880	1100	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T_A =55°C	l(AV)		1	1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			50.0			Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
*Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$ $T_A=200^{\circ}C$	IR			0.5 25.0 1500	u	4 ⁴ 1	μA
*Maximum Reverse Recovery Time (NOTE 1)	TRR			2.0			μs
Maximum Junction Capacitance (NOTE 2)	CJ	45.0	35.0	25.0	20.0	15.0	pf
Typical Thermal Resistance (NOTE 3)	Reja			40.0	•		°C/W
*Operating Junction Temperature Range	TJ		••••••	65 to +17	'5		°C
*Storage Temperature Range	TSTG		-	65 to +20	00		°C

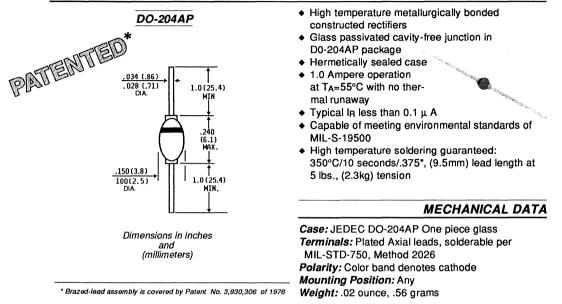

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1 MHz and applied reverse voltage of 12 volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATING AND CHARACTERISTIC CURVES 1N5614 THRU 1N5622



G1A THRU G1M

MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

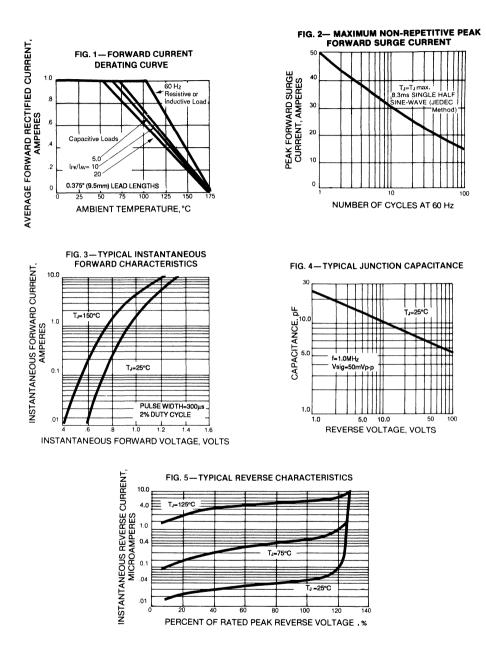
Voltage - 50 to 1000 Volts Current- 1.0 Ampere

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	G1A	G1B	G1D	G1G	G1J	G1K	G1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	70	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"						,			
(9.5mm) Lead Length at T _A =100°C	I(AV)				1.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF		1.2			1.1			Volts
Maximum Full Load Reverse Current, Full Cycle									
Average, .375", (9.5mm) Lead Length at TA=100°C	IR(AV)				200.0				μA
Maximum DC Reverse Current T _A =25°C					2.0				
at Rated DC Blocking Voltage T _A =150°C	l _R				100.0				μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR				2.0				μs
Typical Junction Capacitance (NOTE 2)	CJ				15.0				pf
Typical Thermal Resistance (NOTE 3)	Røja				40.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG			-6	5 to +1	75			°C


NOTES:

1. Measured with IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES G1A THRU G1M

G2A THRU G2M

MINIATURE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 1000 Volts Current- 2.0 Amperes

FEATURES

PATENTED High temperature metallurgically bonded constructed rectifiers DO-204AP Glass passivated cavity-free junction in D0-204AP package Hermetically sealed case .034 (.86) ♦ 2.0 Ampere operation . 028 (.71) DIA. 1.0 (25.4) at TA=75°C with no ther-MIN mal runaway Typical I_R less than 0.1 μ A Capable of meeting environmental standards of 240 (6.1)MIL-S-19500 MAY High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at .150(3.8) 5 lbs., (2.3kg) tension 100(2.5) 1.0(25.4) MIN. DIA. **MECHANICAL DATA** Case: JEDEC DO-204AP One piece glass Dimensions in inches Terminals: Plated Axial leads, solderable per and (millimeters) MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any

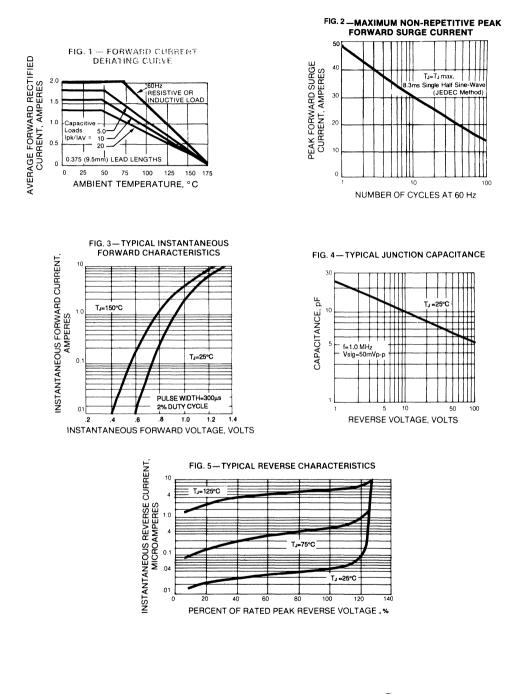
* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Weight: .02 ounce, .56 grams

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	G2A	G2 B	G2D	G2G	G2J	G2K	G2M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375" (9.5mm) Lead Length at T _A =75°C	I(AV)				2.0	•			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)					50.0				4 000
Maximum Instantaneous Forward Voltage at 2.0A	IFSM VF		1.2		50.0	1.1			Amps Volts
Maximum Full Load Reverse Current, Full Cycle Average, .375", (9.5mm) Lead Length at T _A =100°C	IR(AV)				100.0)			μΑ
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =150°C	IR				1.0 100.0)			μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR				2.0				μs
Typical Junction Capacitance (NOTE 2)	CJ				15.0				pf
Typical Thermal Resistance (NOTE 3)	Reja				40.0				°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG			-6	5 to +1	175			°C


NOTES:

1. Measured with IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES G2A THRU G2M

1N5550 THRU 1N5552

GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 200 to 600 Volts Current - 3.0 Amperes

FEATURES

- Glass passivated cavity-free junction
- High temperature metallurgically bonded
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500

Medium switching for

- Constant of Constant of Constant
- good efficiency
 High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750 Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce, 1.04 grams

Dimensions in inches and (millimeters)

.180 (4.6)

.130 (3.3) DIA

.042 (1.07)

.038 (.962) DIA. 1.0 MIN.

.300 (7.6)

MAX.

1.0 MIN.

(25.4)

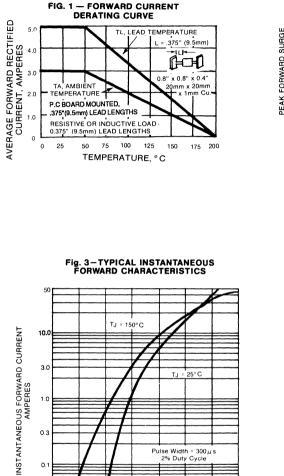
(25.4)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N5550	1N5551	1N5552	1UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	Volts
Maximum RMS Voltage	VRMS	140	280	420	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	Volts
*Minimum Reverse Breakdown Voltage at 50 µ A	VBR	240	460	660	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)		3.0		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		100.0		Amps
* Maximum Instantaneous Forward Voltage at 3.0A	VF		1.0		Volts
*Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C T _A =200°C	IR		1.0 25.0 1500.0		μА
*Maximum Junction Capacitance (NOTE 2)	CJ	150	120	100	pf
*Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		2.0		μs
Typical Thermal Resistance (NOTE 3)	Reja		15.0		°C/W
*Operating Junction and Storage Temperature Range	Tj,Tstg		-65 to +200)	°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1 MHz and applied reverse voltage of 12.0 volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads mounted between heat sinks. *JEDEC Registered Values

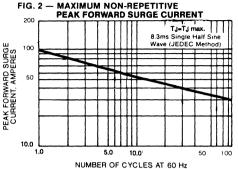
RATINGS AND CHARACTERISTIC CURVES 1N5550 THRU 1N5554

Pulse Width = 300 µ s 2% Duty Cycle

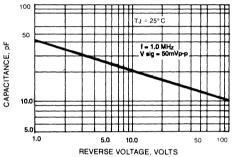
1.4 1.6

1.0 1.2

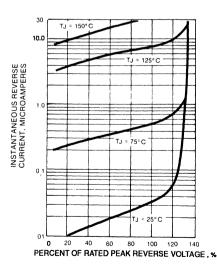
INSTANTANEOUS FORWARD VOLTAGE, VOLTS

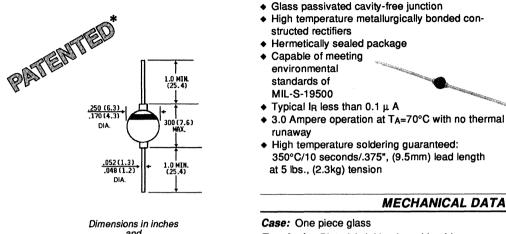

0.3

0.1


.03

.01


0.2 04 0.6 0.8



1N5624 THRU 1N5627

GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 200 to 800 Volts Current - 3.0 Amperes

FEATURES

and (millimeters)

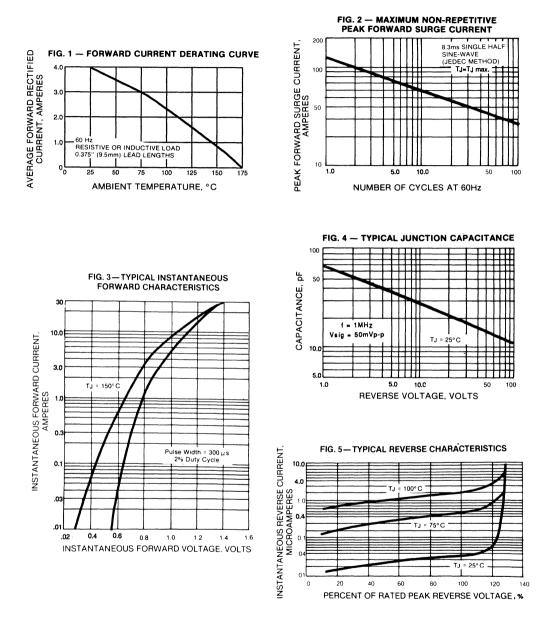
MECHANICAL DATA

Terminals: Plated Axial leads, solderable per MIL-STD-750. Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 grams

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	1N5624	1N5625	1N5626	1N5627	UNITS		
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	Volts		
Maximum RMS Voltage	VRMS	140	280	420	560	Volts		
*Maximum DC Blocking Voltage	VDC	200	400	600	800	Volts		
*Maximum Average Forward Rectified Current								
.375", (9.5mm) Lead Lengths at T _A =70°C	I(AV)		3.0			Amps		
Peak Forward Surge Current 8.3ms single half sine-								
wave superimposed on rated load (JEDEC Method) IFSM		125.	0		Amps		
*Maximum Instantaneous Forward Voltage at 3.0A								
T _A =25°C			1.0)				
T _A =70°C	VF		0.9	5		Volts		
*Maximum DC Reverse Current TA=25°C			5.0)				
at Rated DC Blocking Voltage TA=175°C	IR	300.0			200.0	μΑ		
*Maximum Full Load Reverse Current, Full cycle								
Average, .375", (9.5mm) lead length at T _A =70°C	IR(AV)	150.0			100.0	μA		
Typical Junction Capacitance (NOTE 1)	CJ		40.	0		pf		
Typical Thermal Resistance (NOTE 2)	Reja		15.0					
*Operating JunctionTemperature Range	TJ		-65 to -	+175		°C		
*Storage Temperature Range	TSTG		-65 to -	+200		°C		

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

2. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached between heatsinks.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N5624 THRU 1N5627

G3A THRU G3M

GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 1000 Volts Current- 3.0 Amperes

FEATURES

(millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity-free junction
- Hermetically sealed package
- ♦ 3.0 Ampere operation Solution at TA=70°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

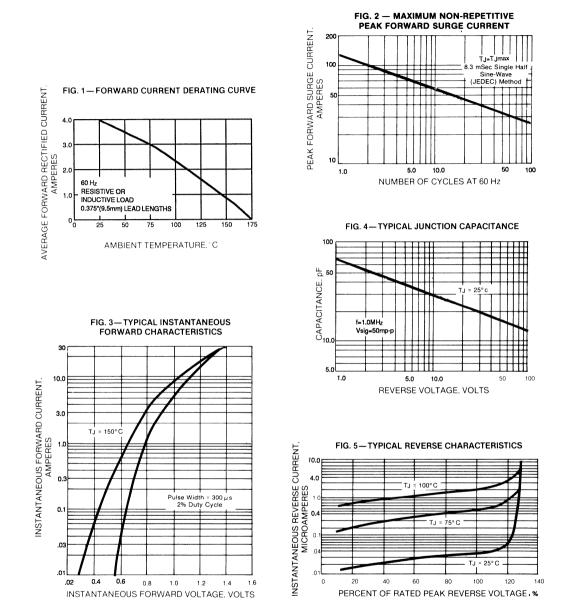
MECHANICAL DATA

Case: One piece glass, hermetically sealed Terminals: Plated Axial leads, solderable per MIL-STD-750. Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce,1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	G3A	G3 B	G3D	G3G	G3J	GЗK	G3M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"									
(9.5mm) Lead Length at T _A =70°C	I(AV)				3.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	IFSM				125.0				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		1.2			1.1			Volts
Maximum Full Load Reverse Current, Full Cycle									
Average, .375", (9.5mm) Lead Length at T _A =70°C	IR(AV)				200.0				μA
Maximum DC Reverse Current T _A =25°C					5.0				
at Rated DC Blocking Voltage T _A =150°C	IR				100.0				μΑ
Typical Reverse Recovery Time (NOTE 1)	T _{RR}				3.0				μs
Typical Junction Capacitance (NOTE 2)	CJ				40.0				pf
Typical Thermal Resistance (NOTE 3)	Reja				15.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG			-6	5 to +1	75			°C

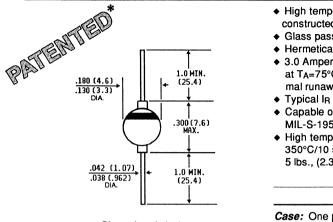

NOTES:

1. Measured with IF=0.5A, IB=1A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads mounted between heatsinks.

RATINGS AND CHARACTERISTIC CURVES G3A THRU G3M



G4A THRU G4J

GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 600 Volts Current - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity-free junction
- Hermetically Sealed package
- 3.0 Ampere operation at T_A=75°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

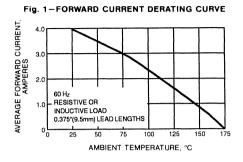
Case: One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce,1.04 grams

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%

	SYMBOLS	G4A	G4B	G4D	G4G	G4J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current, .375"							
(9.5mm) Lead Length at T _A =70°C	I(AV)			3.0			Amps
Peak Forward Surge Current							
8.3ms single half sine-wave superimposed							
on rated load (JEDEC Method)	IFSM			100.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			Volts			
Maximum Full Load Reverse Current Full Cycle							
Average, .375", (9.5mm) Lead Length at TA=70°C	IR(AV)			200.0			μA
Maximum Average Reverse Current at Peak TA=25°C	;			5.0			
Reverse Voltage TA=100°C	IR(AV)			100.0			μΑ
Maximum DC Reverse Current T _A =25°C				1.0			
at Rated DC Blocking Voltage TA=100°C	IR			100.0			μA
Typical Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}			μs			
Typical Junction Capacitance (NOTE 1)	CJ	40.0					pf
Typical Thermal Resistance (NOTE 3)	Reja			°C/W			
Operating Junction and Storage Temperature Range	T _J ,T _{STG}		-	65 to +17	5		°C


NOTES:

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths with both leads mounted between heatsinks.

^{1.} Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES G4A THRU G4M

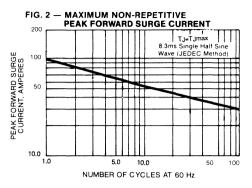


Fig. 4-TYPICAL JUNCTION CAPACITANCE

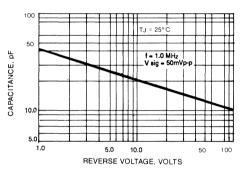


FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

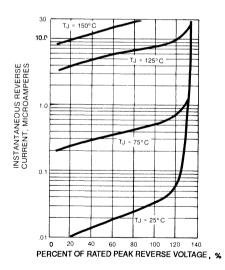
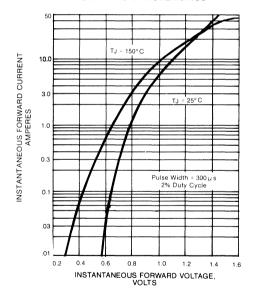



Fig. 3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

HIGH VOLTAGE GLASS PASSIVATED RECTIFIERS

1.0 AMPERE TO 3.0 AMPERES 1200 VOLTS TO 1600 VOLTS

CG1 AND DG1

MINIATURE CLAMPER / DAMPER GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1400 to 1500 Volts Current - 1.5 Amperes

FEATURES

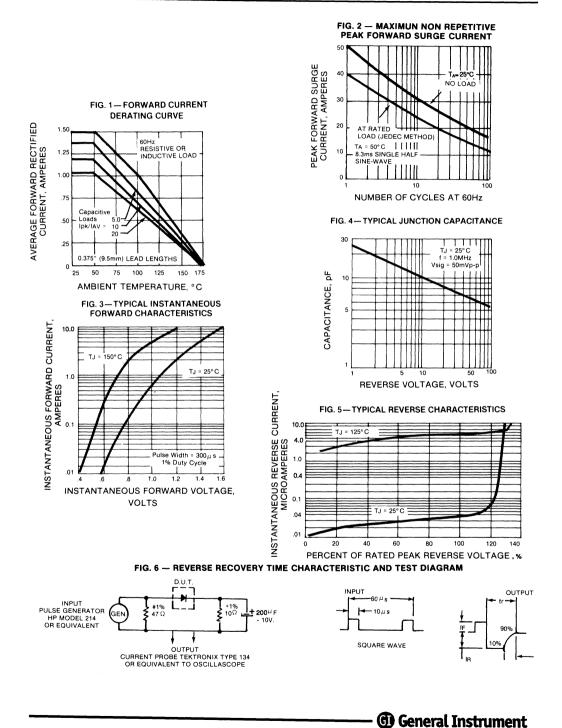
 Specially designed for clamping circuits horizan-PATENTED tal deflection systems and damper applications DO-204AP High temperature metallurgically bonded constructed rectifiers Glass passivated cavity-034 (.86) free junction in D0-204AP package 028 (.71) 1.0(25.4) 1.5 Ampere operation at TA=50°C with no thermal runaway Typical I_R less than 0.1 μ A (6.1) Hermetically sealed package Capable of meeting environmental standards of .150 (3.8) MIL-S-19500 100(2.5) DIA. 1.0 (25.4) High temperature soldering guaranteed: MTN. 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension MECHANICAL DATA Dimensions in inches and Case: JEDEC DO-204AP One piece glass (millimeters) Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 * Brazed-lead assembly is covered by Patent No. 3.930.306 of 1976 Polarity: Color band denotes cathode

Polarity: Color band denotes cathor **Mounting Position:** Any **Weight:** .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	CG1	DG1	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts
Maximum RMS Voltage	VRMS	980	1050	Volts
Maximum DC Blocking Voltage	VDC	1400	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=50$ °C	I(AV)	1.5		Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	40.0		Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.1		Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR	5.0 100		μΑ
Maximum Full Load Reverse Current Full Cycle Average, .375", (9.5mm) Lead Length T _A =100°C	IR(AV)	50.0		μA
Maximum Reverse Recovery Time (NOTE 1) TJ= 25°C	T _{RR}	15.0	20.0	μs
Typical Junction Capacitance (NOTE 2)	CJ	15.0		pf
Typical Thermal Resistance (NOTE 3)	Reja	40.0		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175		°C

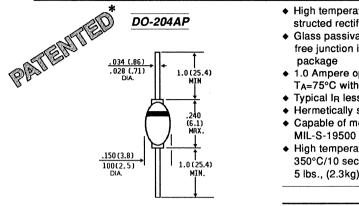

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=50ma.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES CG1 AND DG1



GI1-1200 THRU GI1-1600

MINIATURE HIGH VOLTAGE GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1200 to 1600 Volts Current - 1.0 Ampere

FEATURES

 High temperature metallurgically bonded constructed rectifiers Glass passivated cavity-

- free junction in D0-204AP 1.0 Ampere operation at
- TA=75°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce, .56 grams

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	GI1-1200	GI1-1400	GI1-1600	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1200	1400	1600	Volts
Maximum RMS Voltage	VRMS	840	980	1120	Volts
Maximum DC Blocking Voltage	VDC	1200	1400	1600	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=75^{\circ}C$	I(AV)		1.0		Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	30.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A 3.14A	VF	1.1 1.3		Volts	
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR	10.0 100.0		μA	
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	25.0		μs	
Maximum Forward Recovery Time (NOTE 2)	T _{FR}	1.0		μs	
Typical Junction Capacitance (NOTE 3)	CJ	15.0		pf	
Typical Thermal Resistance (NOTE 4)	Røja	40.0			°Ċ/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175		°C	

NOTES:

1. Measured on Tektronix Type "S" recovery plug-in Tektronix 545 Scope or equivalent IFM=20 mA, IRM= 2mA.

2. Measured on Tektronix Type "S" recovery plug-in, Tektronix 545 or equivalent, IFM = 20mA.

3. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES GI1-1200 THRU GI1-1600

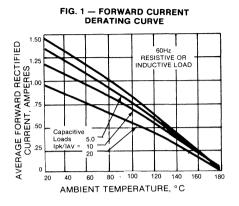
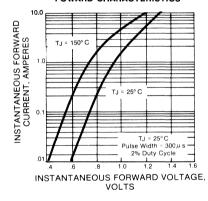



FIG. 3 — TYPICAL INSTANTANEOUS FOWARD CHARACTERISTICS

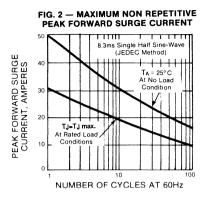
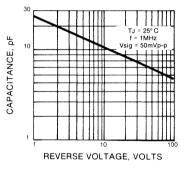
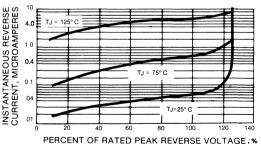




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

CG2 AND DG2

MINIATURE CLAMPER / DAMPER GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1400 to 1500 Volts

1.0 (25.4)

240

(6 1)

1 0 (25 4)

MTN.

DO-204AP

.034 (.86)

.028 (.71) DIA

.150(3.8) 100(2.5)

Current - 2.0 Amperes

- Specially designed for clamping circuits in horizontal deflection systems and damper applications
- High temperature metallurgically bonded
- Glass passivated cavity-free junction in a D0-204AP package

- at TA=50°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AP One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .02 ounce. .56 grams

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

Dimensions in inches

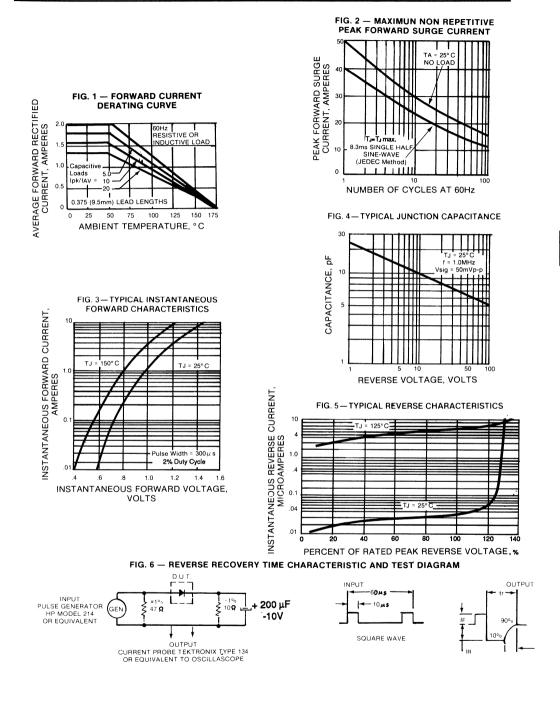
and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	CG2	DG2	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts
Maximum RMS Voltage	VRMS	980	1050	Volts
Maximum DC Blocking Voltage	VDC	1400	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=50$ °C	I(AV)	2.0		Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	40.0		Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF	1.1		Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR	5.0 100.0		μA
Maximum Full Load Reverse Current Full Cycle Average, .375", (9.5mm) Lead Length T _A =100°C	IR(AV)	200.0		μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}	15.0	20.0	μs
Typical Junction Capacitance (NOTE 2)	CJ	15.0		pf
Typical Thermal Resistance (NOTE 3)	Reja	40.0		°C/W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-65 to +175		°C

NOTES:


PATENTER

1. Measured with IF=0.5A, IR=50mA.

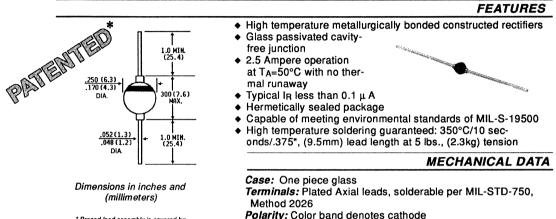
2. Measured at 1 MHz and applied reverse voltage of 4.0 V_{DC}.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES CG2 AND DG2

BY228 SERIES

CLAMPER / DAMPER GLASS PASSIVATED JUNCTION RECTIFIER


Voltage - 1500 Volts

Current - 2.5 Amperes

GENERAL DESCRIPTION

These silicon Glass Passivated Clamper / Damper Rectifiers are designed for TV Applications, such as clamping circuits in horizontal deflection systems and damper

applications. The glass passivated construction and Dual Heat-Sink design assures reliable and stable operation.

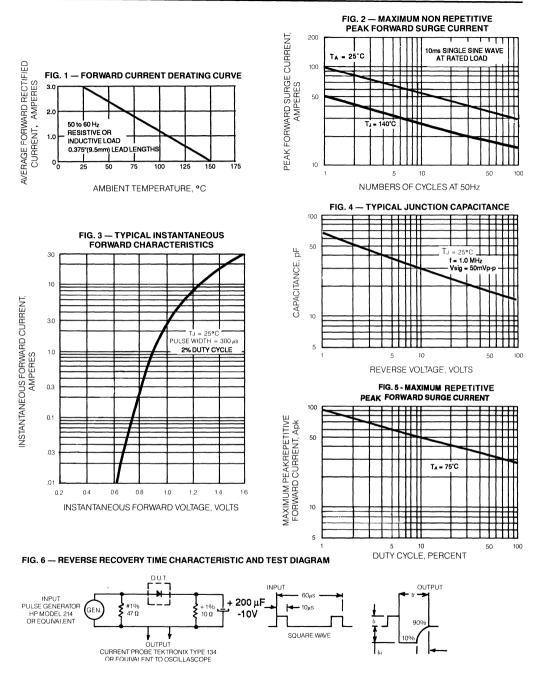
* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 - 60 HZ, resistive or inductive load.. For capacitive load, derate current by 20%.

	SYMBOLS	BY228	UNITS
Maximum Non Repetitive Peak Reverse Voltage	VRSM	1650	Volts
Maximum Recurrent Peak Reverse Voltage	VRRM	1500	Volts
Maximum RMS Voltage	VRMS	1050	Volts
Maximum DC Blocking Voltage	VDC	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_{A=}$ 50°C	I(AV)	2.5	Amps
Peak Forward Surge Current 10ms single half sine -wave superimposed on rated load	IFSM	50.0	Amps
Maximum Instantaneous Forward Voltage at 5.0A	VF	1.6	Volts
Working Peak Forward Current at TA=75°C	IFWM	5.0	Amps
Peak Repetitive Forward Surge Current at TA=75°C	IFRM	10.0	Amps
Maximum Peak Reverse Current $T_A=25^{\circ}C$ at Rated Peak Reverse Voltage $T_J=140^{\circ}C$	IR	5.0 200	μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}	20.0	μS
Maximum Forward Recovery Time (NOTE 3)	T _{FR}	1.0	μS
Typical Junction Capacitance (NOTE 2)	CJ	40.0	pf
Typical Thermal Resistance (NOTE 4)	Reja	20.0	°C/W
Operating Junction Temperature Range	Тј	-65 to +150	°C
Storage Temperature Range	Tstg	-65 to +200	°C


NOTES: 1. Measured with IF = 1.0A, IB= 50mA, di/dt=50mA/us.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Measured with IF=5.0A with tr-0.1 µs.

4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATING AND CHARACTERISTIC CURVES BY228 SERIES

CG3 AND DG3

CLAMPER / DAMPER GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 1400 to 1500 Volts CL

Current - 3.0 Amperes

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

- Specially designed for clamping circuits horizontal deflection systems and damper applications
- High temperature metallurgically bonded constructed rectifiers
- Glass passivated cavity-free junction
- 3.0 Åmpere operation at T_A=50°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Hermetically sealed package
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

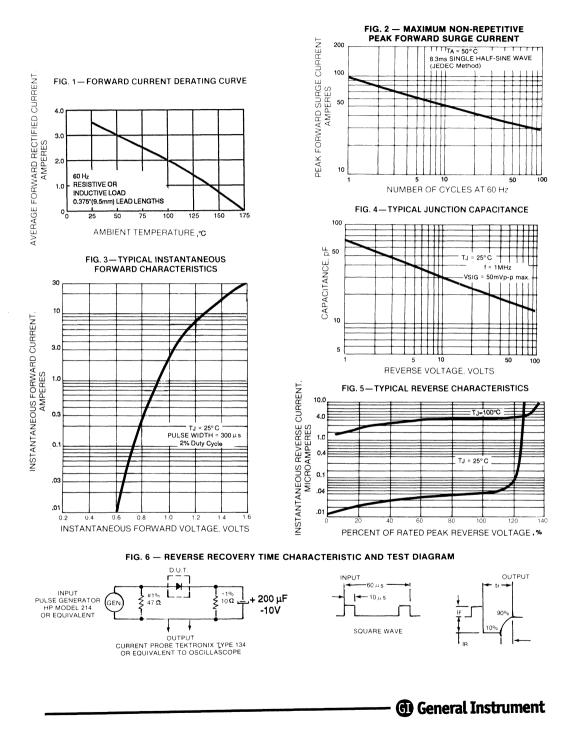
MECHANICAL DATA

Case: One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	CG3	DG3	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	1400	1500	Volts
Maximum RMS Voltage	VRMS	980	1050	Volts
Maximum DC Blocking Voltage	VDC	1400	1500	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=50^{\circ}C$	l(AV)	3.	0	Amps
Peak Forward Surge Current 8.3ms single half sine -wave superimposed on rated load (JEDEC Method)	IFSM	10	0.0	Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF	1.	.2	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR	-	.0 0.0	μA
Maximum Full Load Reverse Current Full Cycle Average, .375", (9.5mm) Lead Length T _{A=} 70°C	IR(AV)	20	0.0	μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}	15.0	20.0	μs
Typical Junction Capacitance (NOTE 2)	CJ	40	0.0	pf
Typical Thermal Resistance (NOTE 3)	R O JA	20.0		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to	+175	°C


NOTES:

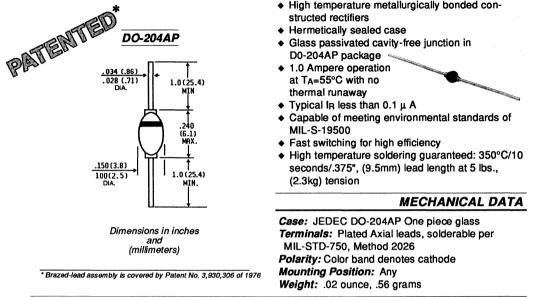
1. Measured with IF=0.5A, IR=50mA.

2. Measured at 1 MHz and applied reverse voltage of 4.0 $V_{\text{DC}}.$

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES CG3 AND DG3

FAST RECOVERY GLASS PASSIVATED RECTIFIERS 1.0 AMPERE TO 3.0 AMPERES 50 VOLTS TO 1000 VOLTS



1N4942 THRU 1N4948

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 200 to 1000 Volts Current - 1.0 Ampere

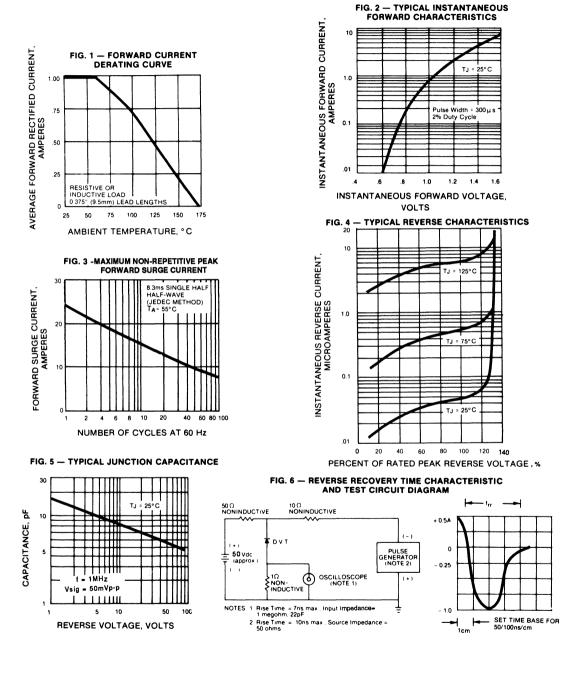
FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	1N4942	1N4944	1N4946	1N4947	1N4948	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
*Minimum Reverse Breakdown Voltage at 50 µ A	VBR	220	440	660	880	1100	Volts
*Maximum Average Forward Rectified Current							
.375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)			1.0			Amps
*Peak Forward Surge Current							
8.3ms single half sine-wave superimposed							
on rated load (JEDEC Method)	IFSM			25.0			Amps
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1.3			Volts
at 2.0A, T _A =-40°C	VF			Volts			
*Maximum DC Reverse Current T _A =25°C	l _R			1.0			μA
at Rated DC Blocking Voltage T _A = 175°C	lR			500.0			μA
*Maximum Reverse Recovery Time (NOTE 1)TJ=25°C	TRR	150	150	250	250	500	nS
Typical Junction Capacitance (NOTE 2)	CJ		-	15.0			pf
Typical Thermal Resistance (NOTE 3)	Reja	50.0					°C/W
*Operating Junction and Storage Temperature Range	TJ,TSTG		-	65 to +17	75		°C

NOTES:

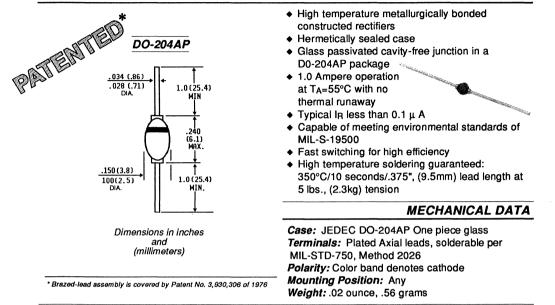

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N4942 THRU 1N4948



(D) General Instrument

1N5615 THRU 1N5623

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

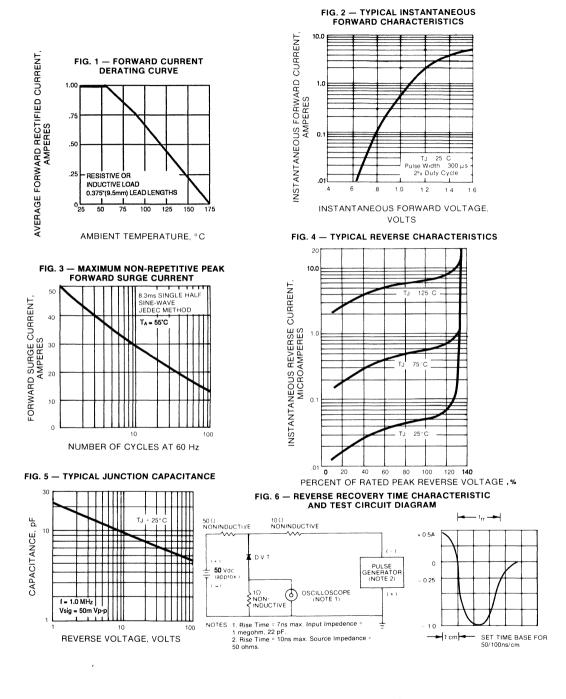
Voltage - 200 to 1000 Volts Current - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	s	YMBOLS	1N5615	1N5617	1N5619	1N5621	1N5623	UNITS
*Maximum Recurrent Peak Reverse Voltage		VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage		VDC	200	400	600	800	1000	Volts
*Minimum Reverse Breakdown Voltage at 50	ΟμΑ	VBR	220	440	660	880	1100	Volts
*Maximum Average Forward Rectified Curre .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	ont	I(AV)	1		1.0			Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)		IFSM			50.0			Amps
*Maximum Instantaneous Forward Voltage a	at 1.0A	VF			Volts			
3 3 1	25°C 00°C 200°C	IR			0.5 25.0 1500.0			μΑ
*Maximum Reverse Recovery Time (NOTE 1)	Tj=25°C	T _{RR}	150	150	250	300	500	nS
*Maximum Junction Capacitance (NOTE 2)		CJ	45 35 25 20 15					pf
Typical Thermal Resistance (NOTE 3)		Reja			50.0			°C/W
*Operating Junction Temperature Range		Tj			°C			
*Storage Temperature Range		T _{STG}		-	65 to +20	0		°C

NOTES:

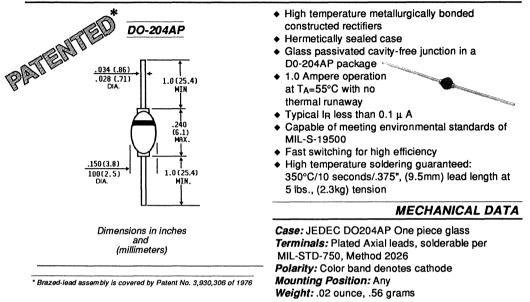

1. Reverse Recovery Test Conditions : IF=0.5A, IR=1.0A, Irr=25A.

2. Measured at 1 MHz and applied reverse voltage of 12 volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

*JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N5615 THRU 1N5623


G General Instrument

RG1A THRU RG1M

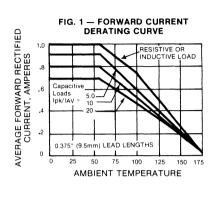
MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

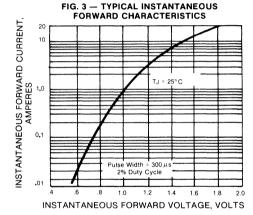
Voltage - 50 to 1000 Volts Current - 1.0 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

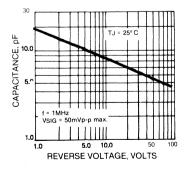
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RG1A	BG1B	RG1D	RG1G	RG1.I	RG1K	RG1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800		Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, .375"									
(9.5mm) Lead Length at T _A =55°C	I(AV)				1.0				Amps
Peak Forward Surge Current									
8.3ms single half sine-wave superimposed									
on rated load (JEDEC Method)	IFSM	30.0							Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.3							Volts
Maximum Full Load Reverse Current,									
Full Cycle Average, .375", (9.5mm) T _A =25°C	IR(AV)				1.0				μA
Lead Length at TA=100°C					100.0				
Maximum DC Reverse Current									
at Rated DC Blocking Voltage	l _R				2.0				μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		150			200	250	500	nS
Typical Junction Capacitance (NOTE 2)	CJ				15.0				pf
Typical Thermal Resistance (NOTE 3)	Reja				50.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	G -65 to +175						°C	

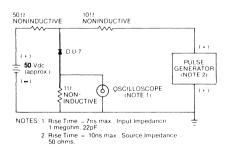

NOTES:

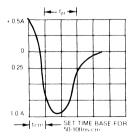

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATINGS AND CHARACTERISTIC CURVES RG1A THRU RG1M





G General Instrument

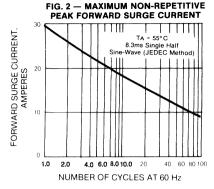
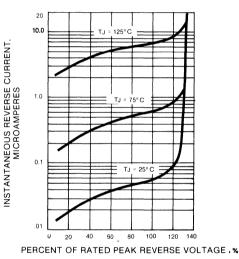
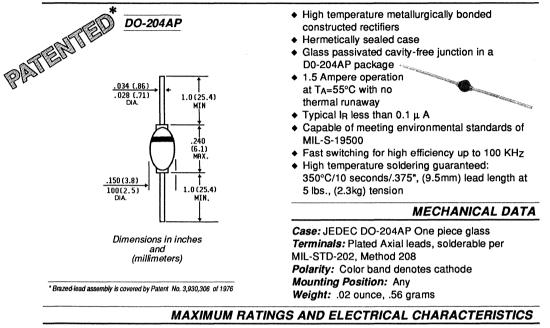



FIG. 4 - TYPICAL REVERSE CHARACTERISTICS



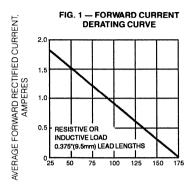
BYV95 AND BYV96 SERIES

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

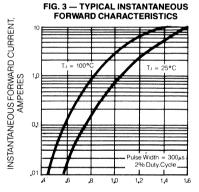
Voltage - 200 to 1000 Volts Current - 1.5 Amperes

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

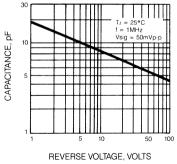

	SYMBOLS	BYV95A	BYV95B	BYV95C	BYV96D	BYV96E	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	800	1000	Volts
Minimum Avalanche Breakdown Voltage at 100 µ A	VBR	300	500	700	900	1100	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)			1.5			Amps
Peak Forward Surge Current, 10ms single half sine- wave superimposed on rated load at $T_J=165^{\circ}C$	IFSM			35.0			Amps
Maximum Instantaneous Forward							
Voltage at 3.0A T _A =25°C				1.6			
T	VF			1.35			Volts
Maximum Full Load Reverse Current,							
Full Cycle Average, .375", (9.5mm) TJ=25°C	IR(AV)			1.0			μΑ
Lead Length at TJ=165°C				150.0			
Maximum DC Reverse Current							
at rated DC Blocking Voltage TA=25°C	IR			2.0			μA
Maximum Reverse Recovery Time (NOTE 1)TJ=25°C	TRR		250			300	nS
Typical Junction Capacitance (NOTE 2)	CJ			10.0			pf
Typical Thermal Resistance (NOTE 3)	Reja			50.0			°C/W
Operating Junction Temperature Range	Tj	-65 to +175					
Storage Temperature Range	TSTG			65 to +20	00		°C

NOTES: 1. Measured with IF=0.5A, IR=1.0A, Irr = .25A.


2. Measured at 1 MHz and applied reverse voltage of 4.0.VDC.

3. Thermal Resistance from Junciton to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATING AND CHARACTERISTIC CURVES BYV95 AND BYV96 SERIES



AMBIENT TEMPERATURE, °C

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

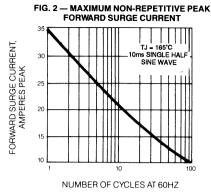
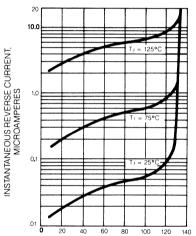
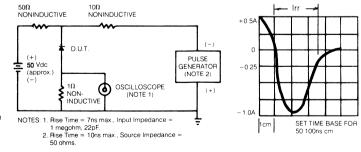
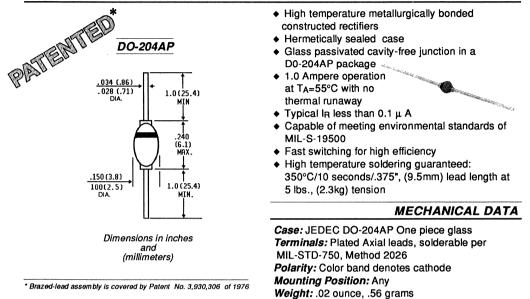




FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE . %


FIG. 6 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

RG2A THRU RG2M

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER Voltage - 50 to 1000 Volts Current - 2.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RG2A	RG2B	RG2D	RG2G	RG2J	RG2K	RG2M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	75", (9.5mm) Lead Lengths at T _A =55°C I(AV) 2.0								
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 2.0A	VF				1.3				Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	IR(AV)				1.0 100.0				μA
Maximum DC Reverse Current at Rated DC Blocking Voltage T _A =25°C	lR				5.0				μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR		150			200	250	500	nS
Typical Junction Capacitance (NOTE 2)	CJ	15.0							pf
Typical Thermal Resistance (NOTE 3)	RØJA	50.0						°C/W	
Operating Junction and Storage Temperature Range	Tj,Tstg			-6	5 to +'	175			°C

NOTES:

1. Measured with $I_{F}=0.5A$, $I_{R}=1.0A$, $I_{rr}=.25A$.

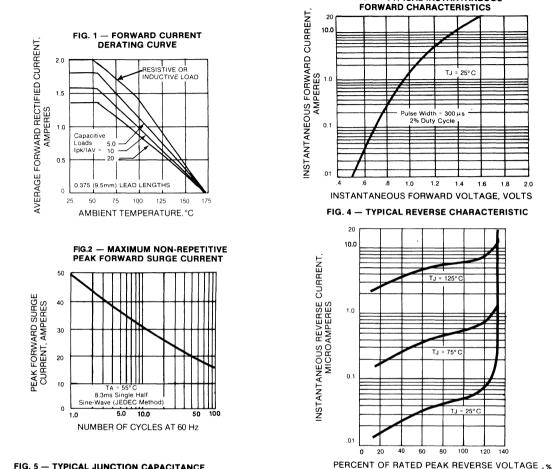
2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

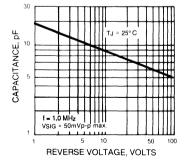
RATINGS AND CHARACTERISTIC CURVES RG2A THRU RG2M

FIG. 3 - TYPICAL INSTANTANEOUS

25° C


1.4 1.6 1.8 20

10 25° C


100

140

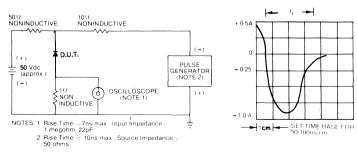
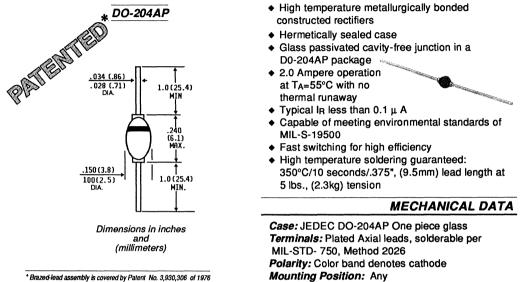

120

FIG. 5 - TYPICAL JUNCTION CAPACITANCE


FIG. 5-REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

BYW32 THRU BYW36

MINIATURE GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER Voltage - 200 to 600 Volts Current - 2.0 Amperes

Weight: .02 ounce, .56 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	5 BYW32	BYW33	BYW34	BYW35	BYW36	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	VDC	200	300	400	500	600	Volts
Maximum Average Forward Rectified Current							
.375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)			2.0			Amps
Peak Forward Surge Current							
10ms single half sine-wave superimposed							
on rated load at T _A =25°C	IFSM			40.0			Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.2			Volts
Maximum DC Reverse Current							
at Rated DC Blocking Voltage	I _R			5.0			μΑ
Maximum Full Load Reverse Current							
Full Cycle Average, .375", (9.5mm) T _A = 25°C	R(AV)			5.0			μA
Lead Length T _A =100°C				50.0			
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR			200			nS
Typical Junction Capacitance (NOTE 2)	CJ			pf			
Typical Thermal Resistance (NOTE 3)	Reja	50.0					°C/W
Operating Junction Temperature Range	TJ	-65 to +175					°C
Storage Temperature Range	TSTG		-	65 to +20	00		°C

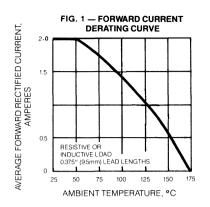
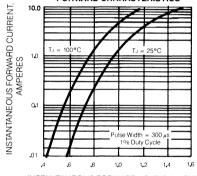
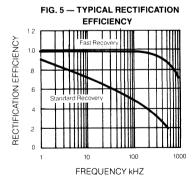
NOTES:

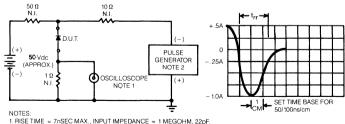
1. Measured with IF=0.5A, IR=1.0A, Irr=25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

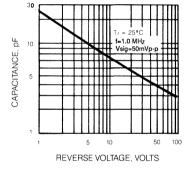
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, P.C. Board Mounted.

RATING AND CHARACTERISTIC CURVES BYW32 THRU BYW36


FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

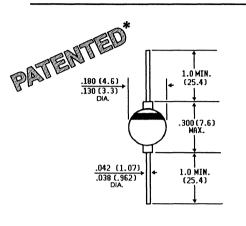
INSTANTANEOUS FORWARD VOLTAGE, VOLTS



1. RISE TIME = 7nSEC MAX., INPUT IMPEDANCE = 1 MEGOHM, 22pF. 2. RISE TIME = 10nSEC MAX., SOURCE IMPEDANCE = 50 OHM.

EVERSE BECC

FIG. 2 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT 50 PEAK FORWARD SURGE CURRENT, AMPERES 40 30 20 TA = 25° ċ 10 + t 10 ms Single Sine Wave 0 1.0 **2.0 4.0 6.0 8.0 10.0** 20 40 60 80 100 NUMBER OF CYCLES AT 60 Hz



1N5415 THRU 1N5420

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 50 to 600 Volts Current - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

- Glass passivated cavity-free junction
- High temperaturae metallurgically bonded
- Hermetically sealed package
- Capable of meeting ٠ environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

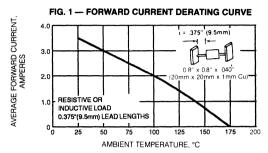
Case: One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .037 ounce, 1.04 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

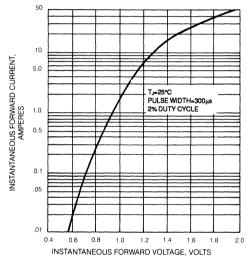
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	1N5415	1N5416	1N5417	1N5418	1N5419	1N5420	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	500	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	350	420	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	500	600	Volts
*Minimum Reverse Breakdown Voltage at 50 µ A	VBR	55	110	220	440	550	660	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at T _A =55°C	I(AV)		-		3.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A =100°C	IFSM			8	80.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A* at 9.0A	VF	1.10 1.50						Volts
Maximum DC Reverse Current *T _A =25°C at Rated DC Blocking Voltage T _A =100°C *T _A =175°C	IR			2	1.0 20.0 2.0			μΑ μΑ mA
*Maximum Junction Capacitance (NOTE 2)	CJ	200	175	150	120	110	100	pf
*Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR	150 250 400					400	nS
Typical Thermal Resistance (NOTE 3)	Reja	22.0						°C/W
*Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175						°C

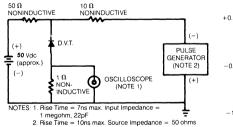
NOTES:

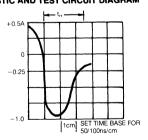

1. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, Irr=25A.

2. Measured at 1 MHz and applied reverse voltage of 12.0 volts.


3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads to heat sink.

*JEDEC Registered Values


RATINGS AND CHARACTERISTIC CURVES 1N5415 THRU 1N5420



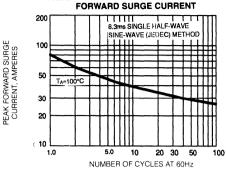


FIG. 2 --- MAXIMUM NON-REPETITIVE PEAK

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

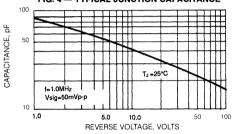
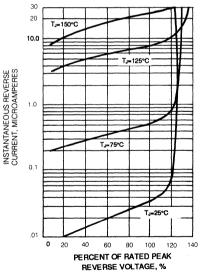



FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

RG3A THRU RG3M

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER Voltage - 50 to 1000 Volts Current - 3.0 Amperes

FEATURES

PATTENTED :250 (6.3) :170 (4.3) DIA :0017.6) MRX. :0017.6) MRX. :0017.6) MRX. :0017.6) MRX. :0017.6) :0

> Dimension in inches and (millimeters)

* Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976

 High temperature metallurgically bonded constructed rectifiers

- Glass passivated cavity-free junction
- Hermetically sealed package
- 3.0 Ampere operation at T_A=55°C with no thermal runaway
- Typical I_R less than 0.1 μ A
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 350°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

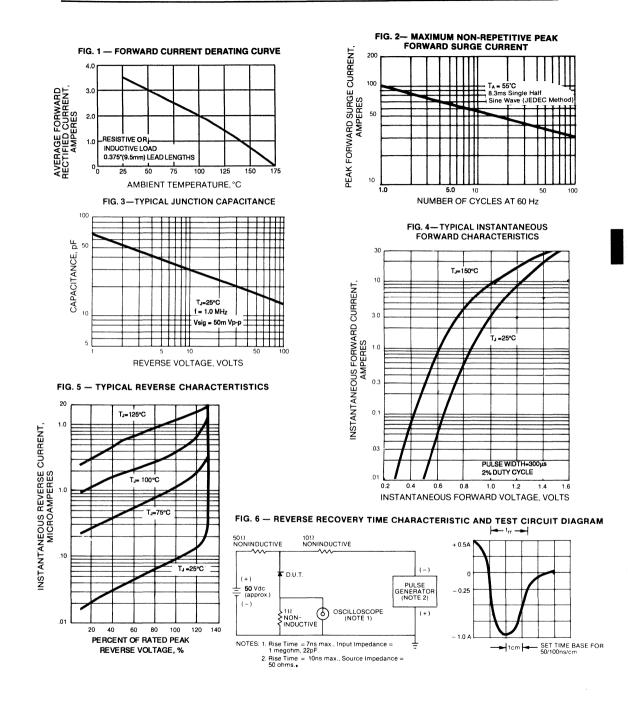
MECHANICAL DATA

Case: One piece glass Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RG3A	RG3B	RG3D	RG3G	RG3J	RG3K	RG3M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	220	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) Lead Lengths at $T_A=55^{\circ}C$	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100.0				Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF				1.3				Volts
Maximum Average Reverse Current T _A = 25°C at Rated Peak Reverse Voltage T _A =100°C	I _{R(AV)}				2.0 100.0	1			μA
Maximum DC Reverse Current at Rated DC Blocking Voltage T _A =25°C	IR				5.0				μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		150			250	400	500	nS
Typical Junction Capacitance (NOTE 2)	(NOTE 2) CJ 40.0							pf	
Typical Thermal Resistance (NOTE 3)	Reja				22.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTO	3		-6	5 to +1	175			°C

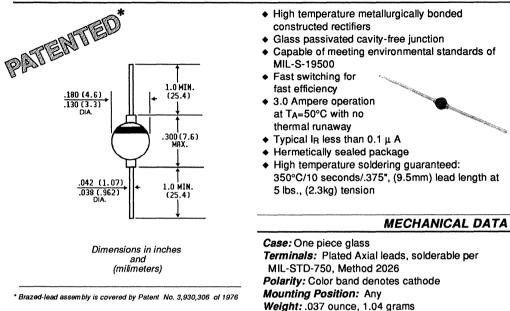

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Ir=.25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached to heat sink.

RATINGS AND CHARACTERISTIC CURVES RG3A THRU RG3M


RG4A THRU RG4J

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

Voltage - 50 to 600 Volts

Current - 3.0 Amperes

FEATURES

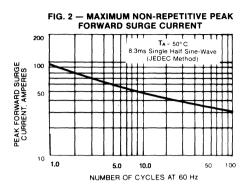
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

5	YMBOLS	RG4A	RG4B	RG4D	RG4G	RG4J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50 [·]	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current							
.375", (9.5mm) Lead Lengths at T _A =50°C	I(AV)			3.0			Amps
Peak Forward Surge Current							
8.3ms single half sine-wave superimposed							
on rated load (JEDEC Method)	IFSM			100.0			Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3			Volts
Maximum Reverse Current							
at Rated DC Blocking Voltage TA=25°C	IR	5.0					μΑ
Maximum Average Reverse Current T _A = 25°C							
at Peak Reverse Voltage TA=100°C	R(AV)			100.0			μΑ
Typical Junction Capacitance (NOTE 2)	CJ			pf			
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR	150 250					nS
Typical Thermal Resistance (NOTE 3)	Reja	22.0					°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG		•	65 to +17	75		°C

NOTES:

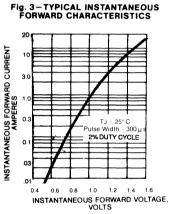
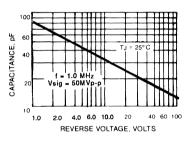
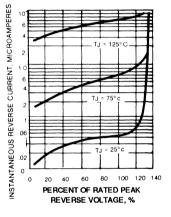
1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=25A.

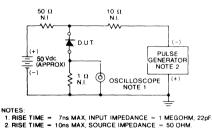

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

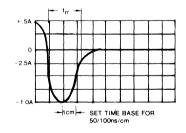
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads to heat sink.

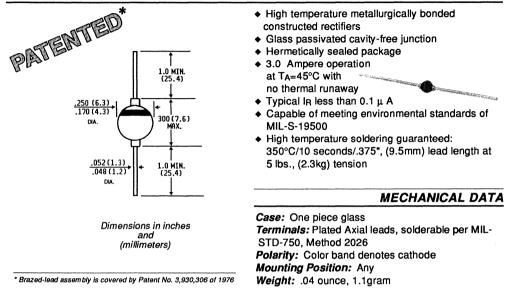
RATINGS AND CHARACTERISTIC CURVES RG4A THRU RG4M

Fig. 1-FORWARD CURRENT DERATING CURVE


Fig. 4-TYPICAL JUNCTION CAPACITANCE





BYW72 THRU BYW76 SERIES

GLASS PASSIVATED JUNCTION FAST SWITCHING RECTIFIER

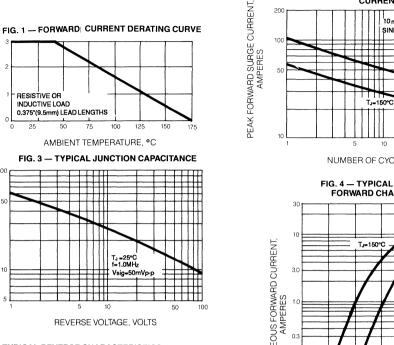
Voltage - 200 to 600 Volts Current - 3.0 Amperes

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BYW72	BYW73	BYW74	BYW75	BYW76	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	300	400	500	600	Volts
Maximum RMS Voltage	VRMS	140	210	280	350	420	Volts
Maximum DC Blocking Voltage	V _{DC} 200 300 400 500 600						
Maximum Average Forward Rectified Current							
.375", (9.5mm) Lead Lengths at T _A =45°C	I(AV)			3.0			Amps
Peak Forward Surge Current							
10ms single half sine-wave superimposed							
on rated load	IFSM			Amps			
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.1			Volts
Maximum Average Reverse Current at							
Rated Peak Reverse Voltage TA=100°C	IR(AV)			50.0			μΑ
Maximum DC Reverse Current							
at Rated DC Blocking Voltage T _A = 25°C	l _R			5.0			μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR			200.0			nS
Typical Junction Capacitance (NOTE 2)	CJ			40.0			pf
Typical Thermal Resistance (NOTE 3)	R O JA	22.0					
Operating Junction Temperature Range	Tj	-65 to +175					°C
Storage Temperature Range	TSTG	-65 to +300					°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr = 25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

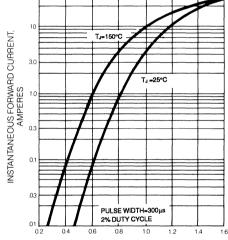
3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) Lead Lengths, with both leads attached to heat sink.

RATING AND CHARACTERISTIC CURVES BYW72 THRU BYW76

FIG. 2 -- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

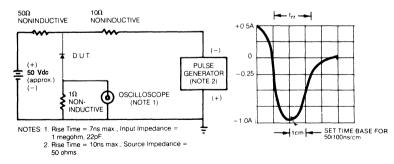
10 ms SINGLE HALF-WAVE

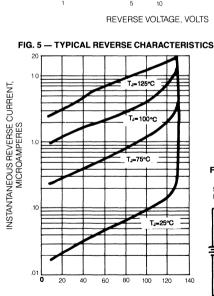
SINE-WAVE (JEDEC) METHOD at rated load


TJ=25℃

50

100


NUMBER OF CYCLES AT 60 Hz


FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FORWARD VOLTAGE, VOLTS

FIG. 6 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

AVERAGE FORWARD RECTIFIED CURRENT, AMPERES

2

100

10

5

Ч 50

CAPACITANCE,

25

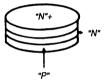
PERCENT OF RATED PEAK **REVERSE VOLTAGE, %**

PLASTIC RECTIFIERS

1.0 AMPERE TO 8.0 AMPERES 50 VOLTS TO 1000 VOLTS

PLASTIC RECTIFIERS 1.0 Ampere to 8.0 Amperes 50 to 1000 Volts

Principle of Construction

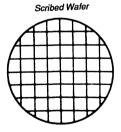

General Instrument has produced Plastic Rectifiers successfully for many years. The key factor in the production of our Plastic Rectifiers is the double nail head construction concept.

The small size allows many sub assemblies to be processed simultaneously in batch form.

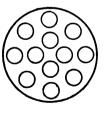
This method ensures General Instrument to produce high volumes of rectifiers economically.

The diode construction consists of the following steps:

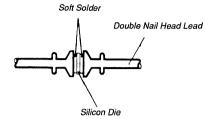
Diffused Slice


1 - Diffusing a PN junction into a slice of silicon.

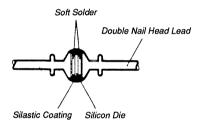
2 - Metallizing the slice of silicon.


Metallized Slice

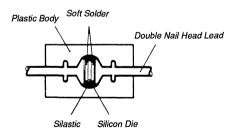
Gold and Nickel Plating



3 - Scribing and breaking the slice into individual dies, for the 1.0 Ampere devices we use a sandblast technology for the 3.0 thru 25.0 Ampere devices we use a saw technology.


350

PLASTIC RECTIFIERS



4 - Soldering the die between two Double Nail Head Leads.

Soldering between Double Head Lead

- 5 Cleaning the assembly by chemical etching, washing and drying.
- 6 Passivating the finished rectifier with silastic.

Double Nail Head Plastic Rectifier

7 - Overmolding by General Instrument proprietary 4B flame retardant molding compound.

8 - Lead tinning, electrical testing, marking and packing.

FAMILIES OF GENERAL INSTRUMENT PLASTIC RECTIFIERS

Miniature Plastic Rectifiers 1.0 to 1.5 AMPERES

Types: 1N4001 thru 1N4007 M100A thru M100M 1N5391 thru 1N5399

Features:

- Low Cost
- Diffused Junction
- Low Leakage
- High Current Capability
- Easily Cleaned with Freon, Alcohol, Chlorothene and similar Solvents
- Plated axial leads, solderable per MIL-STD-750, Method 2026
- Case: Jedec DO-204AL
- High Temperature Soldering Guaranteed 250°C/10 Seconds/.375" (10mm) Lead Length at 5 lbs (2.25 kg) Tension

Plastic Power Rectifiers 3.0 to 8.0 AMPERES

Types:

1N5400 thru 1N5408 P300A thru P300M GI500 thru GI510 GI750 thru GI758 P600A thru P600M NS8AT thru NS8MT*

Features:

- High Surge Current Capability
- Void-Free Plastic Packages
- High Current Operation
- Typical Ir less than .1µA
- High Temperature Soldering Guaranteed 250°C/10 Seconds/.375" (10mm) Lead Length at 5 lbs (2.25 kg) Tension

* This series uses glass passivated chip junctions.

Fast Recovery Plastic Rectifiers 1.0 to 6.0 AMPERES

Types:

BY396P[†]thru BY399 1N4933 thru 1N4937 BY500-100 thru BY500-800 SRP100A thru SRP100K GI820 thru GI826 SRP300A thru SRP300K GI850 thru GI856 SRP600A thru SRP600K GI910 thru GI917

Features:

- High Surge Current Capability
- Void-Free Plastic Packages
- High Current Operation
- Typical Ir less than 1.0 μA
- High Temperature Soldering Guaranteed 250°C/10 Seconds/.375" (10mm) Lead Length at 5 lbs (2.25 kg) Tension
- Controlled Soft Recovery Guarantees on SRP100A thru SRP100K, SRP300A thru SRP300K, BY500-100 thru BY500-800 and SRP600A thru SRP600K series
- Plated axial leads, solderable per MIL-STD-750, Method 2026

TYPE	1N4001 thru 1N4007	M100A thru M100M	1N4933* thru 1N4937*	SRP100A* thru SRP100K*	1N5391 thru 1N5399	1 N5400 thru 1 N5408	P300A thru P300M	GI500 thru GI510	Gl910* thru Gl917*	G1850* thru G1856*	SRP300A* thru SRP300K	BY396P* thru BY399P*
CASE	DO-204AL	DO-204AL	DO-204AL	DO-204AL	DO204AL	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD	DO201AD
lo(A)	1.0	1.0	1.0	1.0	1.5	3.0	3.0	3.0	3.0	3.0	3.0	3.0
@TA(°C)	75	100	75	55	75 at TL	55	55	95	90	90	55	50
VR= 50(V)	1 N4001	M100A	1N4933	SRP100A	1N5391	1N5400	P300A	GI500	GI910	GI850	SRP300A	
VR= 100(V)	1N4002	M100B	1N4934	SRP100B	1N5392	1N5401	P300B	GI501	GI911	GI851	SRP300B	BY396P
VR= 200(V)	1N4003	M100D	1N4935	SRP100D	1N5393	1N5402	P300D	GI502	GI912	G1852	SRP300D	BY397P
VR= 300(V)					1N5394	1N5403						
VR= 400(V)	1N4004	M100G	1N4936	SRP100G	1N5395	1N5404	P300G	GI504	GI914	GI854	SRP300G	BY398P
VR= 500(V)					1N5396	1N5405						
VR= 600(V)	1N4005	M100J	1N4937	SRP100J	1N5397	1N5406	P300J	GI506	GI916	GI856	SRP300J	
VR= 800(V)	1N4006	M100K		SRP100K	1N5398	1N5407	P300K	GI508	GI917		SRP300K	BY399P
VR=1000(V)	1N4007	M100M			1N5399	1N5408	P300M	GI510				
SURGE(A)	30	50	30	30	50	200	200	100	100	150	100	100
VF(V)	1.1	1.0/1.1	1.2	1.3	1.4	1.2	1.1	.1.1	1.25	1.25	1.3	1.25

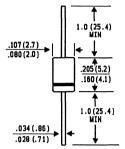
QUICK GUIDE TO PLASTIC RECTIFIERS

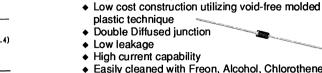
*Fast Recovery

QUICK GUIDE TO PLASTIC RECTIFIERS

	BY500-100*	GI750	PEOOA	GI820*	SRP600A*	NSBAT
TYPE	thru	thru	thru	thru	thru	thru
	BY500-800*	GI758	P600M	GI826*	SRP600K*	NS8MT
CASE	DO201AD	P600	P600	P600	P600	TO-220AC
lo(A)	5.0	6.0	6.0	5.0	6.0	8.0
@TA(°C)	45	60	60	55	55	100Tc
VR= 50(V)		GI750	P600A	Gl820	SRP600A	NSBAT
VR= 100(V)	BY500-100	GI751	P600B	GI821	SRP600B	NS8BT
VR= 200(V)	BY500-200	GI752	P600D	GI822	SRP600D	NS8DT
VR= 400(V)	BY500-400	GI754	P600G	G1824	SRP600G	NS8GT
VR= 600(V)	BY500-600	GI756	P600J	GI826	SRP600J	NS&JT
VR= 800(V)	BY500-800	GI758	P600K		SRP600K	NS8KT
VR=1000(V)			P600M			NS8MT
SURGE(A)	200	400	400	300	300	175
VF(V)	1.35	.9/.95	.9/1.0	1.0	1.3	1.1

*Fast Recovery


1N4001 THRU 1N4007


MINIATURE PLASTIC RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

DO-204AL

 Easily cleaned with Freon, Alcohol, Chlorothene and similar solvents

The plastic package carries Underwriters Labora-

tory Flammability Classification 94V-O

 High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL, molded plastic *Terminals:* Plated axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode end *Weight:* 0.012 ounce, 0.3 gram *Mounting Position:* Any *Handling Precautions:* None

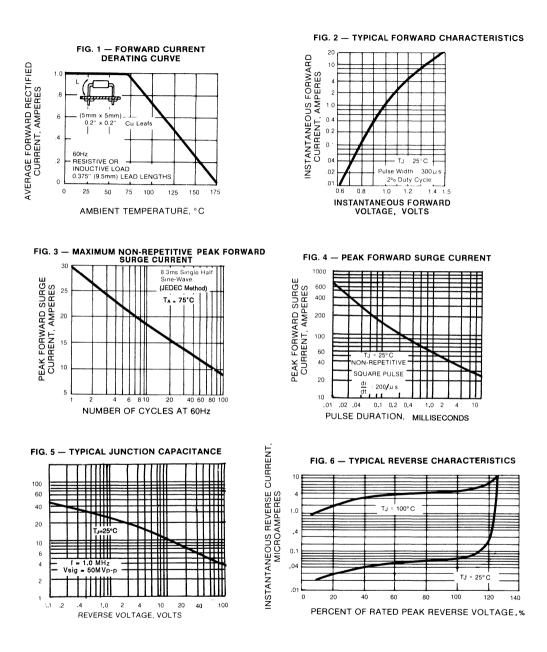
Dimension in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 4001	1N 4002	1N 4003	1N 4004	1N 4005	1N 4006	1N 4007	UNITS
*Maximum Recurrent Peak Reverse Voltage	VBBM	50	1002	200	4004	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
"Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at TA=75°C		1.0							
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I(AV)				30.0				Amps
*Maximum Instantaneous Forward Voltage at 1.0A				Volts					
*Maximum Full Load Reverse Current Full Cycle Average .375", (9.5mm) lead lengths at TL=75°C	IR(AV)				30.0				μА
*Maximum DC Reverse Current TA= 25°C					5.0				·
at Rated DC Blocking Voltage TA=100°C	IR				50.0				μA
Typical Reverse Recovery Time (NOTE 1) TA=25°C		30.0							μS
Typical Junction Capacitance (NOTE 2) TJ =25°C	Cj				15.0				pF
Typical Thermal Resistance (NOTE 3)		50.0							°C/W
Maximum DC Blocking Voltage Temperature		+150						°C	
*Operating Junction and Storage Temperature Range	TJ,TSTG			-50) to +'	175			°C

NOTES:


1. Measured on Tektronix Type "S" recovery plug-in. Tektronix 545 Scope or equivalent, IFM = 20mA, IRM =1mA.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at. 375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N4001 THRU 1N4007

(D) General Instrument

M100A THRU M100M

MINIATURE LOW CURRENT PLASTIC RECTIFIER CURRENT - 1.0 Ampere

VOLTAGE - 50 to 1000 Volts

1.0 (25.4)

MTN

.205 (5.2)

.160(4.1)

1.0(25.4) MIN

DO-204AL

.107 (2.7)

.080(2.0)

.034(.86)

.028 (.71)

FEATURES

Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Low cost construction utilizing void-free molded plastic technique
- Diffused junction
- Low leakage
- High surge current capability
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL, molded plastic Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode end Weight: 0.012 ounce, 0.3 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

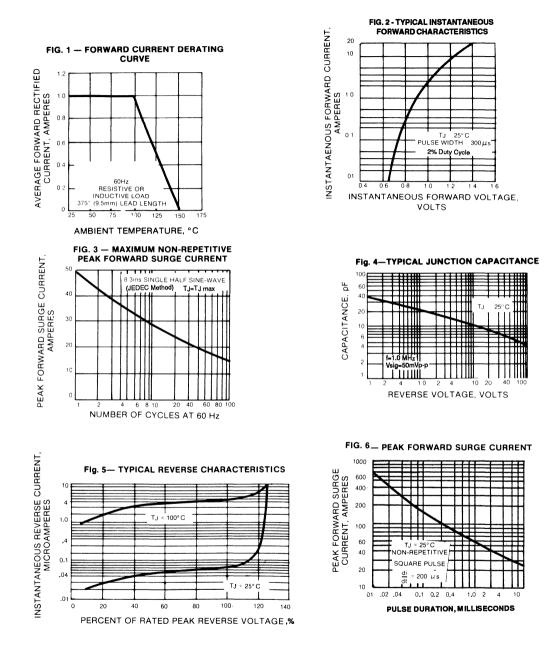
Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Dimensions in inches

and

(millimeters)

	SYMBOLS		M100 B	M100 D	M100 G	M 100	M100 K		UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=100^{\circ}C$	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.0 1.1						Volts	
Maximum Full Load Reverse Current Full Cycle Average .375", (9.5mm) lead lengths at $T_A=55^{\circ}C$	IR				100				μΑ
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR				1.0 50.0				μA
Typical Reverse Recovery Time (NOTE 2)	TRR	1			2.0				μS
Typical Junction Capacitance (NOTE 1) TJ=25°C					30.0				pF
Typical Thermal Resistance (NOTE 3)					50.0		1,,		°C/W
Operating Junction and Storage Temperature Range	TJ,TSTO	Э		-5	0 to +	150			°C


NOTES:

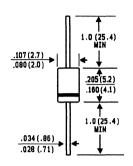
1. Measured at 1.0 MHz and applied reverse voltage of 4.0 V_{DC}.

2. Measured with IF=0 .5A, IR=0.1A, Irr=.25A

3. Thermal Resistance from Junction to Ambient at . 375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARCTERISTIC CURVES M100A THRU M100M

@ General Instrument


1N5391 THRU 1N5399

MINIATURE LOW CURRENT PLASTIC RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes

FEATURES

DO-204AL

Dimensions in inchtes and (millimeters)

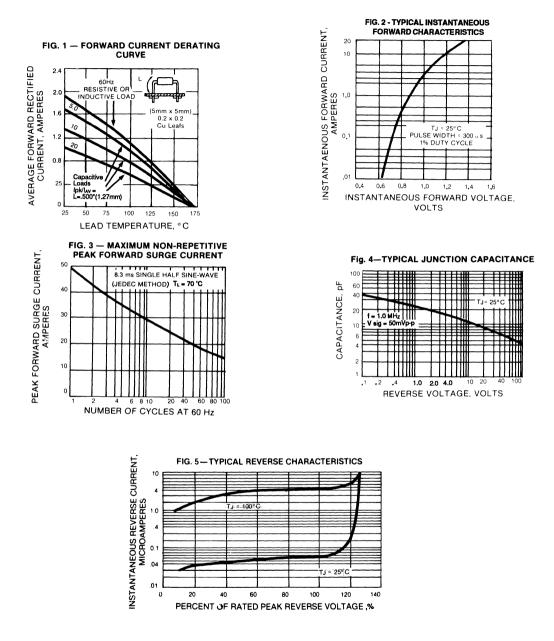
- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- ◆ 1.5 Ampere operation at TL= 70°C with no thermal runaway
- ♦ Typical I_R less than 0.1µA
- Low cost construction utilizing void-free molded plastic technique
- High temperature soldering guaranteed: 250°C/10 seconds.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL, molded plastic *Terminals:* Plated axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode end *Weight:* 0.012 ounce, 0.3 gram *Mounting Position:* Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25° C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

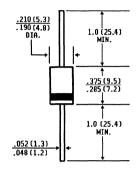

	SYMBOLS	1N 5391	1N 5392	1N 5393	1N 5394	1N 5395	1N 5396	1N 5397	1N 5398	1N 5399	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
*Maximum RMS Voltage		35	70	140	210	280	350	420	560	700	Volts
*Maximum DC Blocking Voltage		50	100	200	300	400	500	600	800	1000	Volts
*Maximum Average Forward Rectified Current .500, (12.7mm) lead lengths at TL=70°C		1.5									Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM					50.0					Amps
*Maximum Instantaneous Forward Voltage at 1.5A, T _A =70°C	VF					1.4					Volts
* Maximum DC Reverse Current $T_A= 25^{\circ}C$ at Rated DC Blocking Voltage $T_A= 150^{\circ}C$	IR		5.0 300.0								μA
*Maximum Full Load Reverse Current Full Cycle Average,.375",(9.5mm) Lead Length at TL=70°C						300.0					μΑ
Typical Reverse Recovery Time (NOTE 2)		2.0									μS
Typical Junction Capacitance (NOTE 1)		15.0							pF		
Typical Thermal Resistance (NOTE 3)		50.0									°C/W
*Maximum DC Blocking Voltage Temperature		+150								°C	
*Operating Junction Temperature Range		-50 to +170									°C
*Storage Temperature Range					-5	0 to +'	175				°C

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vpc.

2. Measured with IF=0.5A, IR=0.1A, Irr= .25A.

 Thermal Resistance from Junction to Ambient at ,375" (9.5mm) lead lengths, P.C. Board mounted. *JEDEC Registered Value.

RATINGS AND CHARACTERISTIC CURVES 1N5391 THRU 1N5399


(D) General Instrument

1N5400 THRU 1N5408

MEDIUM CURRENT PLASTIC RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Void-free molded plastic package
- ◆ 3.0 Ampere operation at
- T_{L} = 105°C with no thermal runaway
- Typical I_R less than 0.1µA
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead length at 5 lbs., (2.3kg) tension

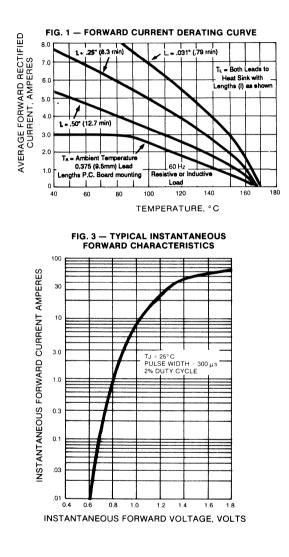
MECHANICAL DATA

Case: JEDEC DO-201AD Molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color Band denotes cathode Weight: 0.04 ounce, 1.1 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	1N 5400	1N 5401	1N 5402	1N 5403	1N 5404	1N 5405	1N 5406	1N 5407	1N 5408	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	300	400	500	600	800	1000	Volts
*Maximum RMS Voltage	VRMS	35	70	140	210	280	350	420	560	700	Volts
*Maximum DC Blocking Voltage to TA=150°C	VDC	50	100	200	300	400	500	600	800	1000	Volts
*Maximum Average Forward Rectified Current .5", (12.5mm) lead lengths at TL=105°C	I(AV)	3.0									Amps
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200.0									Amps
*Maximum Instantaneous Forward Voltage at 3.0A	VF	1.2									Volts
* Maximum DC Reverse Current $T_{A}= 25^{\circ}C$ at Rated DC Blocking Voltage $T_{A}=150^{\circ}C$	l _R					10.0 500.0	1				μA
*Maximum Full Load Reverse Current Full Cycle Average, .5", (12.5 mm) Lead Length at TL=105°C	IR(AV)					500.0					μA
Typical Junction Capacitance (NOTE 1)TJ=25°C	CJ					28.0					pF
*Typical Thermal Resistance (NOTE 2)	Reja					15.0					°C/V
Maximum DC Blocking Voltage Temperature	TA	+150									°C
*Operating Junction Temperature Range	TJ	+50 to +170									°C
*Storage Temperature Range	TSTG	-50 to +175									°C


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at ,375" (9.5mm) lead lengths, P.C. Board mounted.

*JEDEC Registered Value

RATINGS AND CHARACTERISTIC CURVES 1N5400 THRU 1N5408

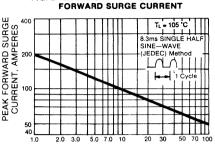


FIG. 2-MAXIMUM NON-REPETITIVE PEAK

NUMBER OF CYCLES AT 60Hz

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

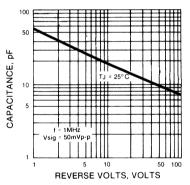
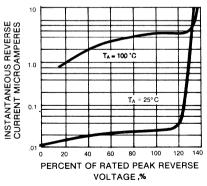
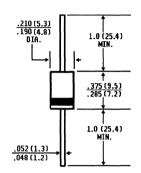



FIG. 5 - TYPICAL REVERSE CHARACTERISTICS

General Instrument


GI500 THRU GI510

MEDIUM CURRENT PLASTIC RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Typical I_R less than 0.1 μA
- Void-free molded plastic package
- High current operation of 3 Amperes at T_A= 95°C with no thermal runaway
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC D0-201AD Molded plastic *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color Band denotes cathode

Weight: 0.04 ounce, 1.1 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	G1 500	Gl 501	Gl 502	Gl 504	GI 506	Gl 508	Gl 510	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=95^{\circ}C$	I(AV)				3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				100.0				Amps
Maximum Instantaneous Forward Voltage TJ= 25°C at 9.4A TJ=175°C	VF				1.1 1.0				Volts
Maximum DC Reverse Current TA=25°C					5.0				
at Rated DC Blocking Voltage T _A =100°C	l _R				50.0				μA
Typical Junction Capacitance (NOTE 2) TJ= 25°C	CJ				28.0				pF
Typical Reverse Recovery Time (NOTE 3)	T _{RR}				2.5				μS
Typical Thermal Resistance (NOTE 1)	Reja				15.0				°C/W
Operating Junction Temperature Range	Tj			-5	0 to +1	50			°C
Storage Temperature Range	TSTG			-5	0 to +	175			°C

NOTES:

1. Thermal Resistance from Junction to applied at ambient .375* (9.5mm) lead lengths, P.C. Board mounted.

2. Measured at 1MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr= 0.25A.

RATINGS AND CHARACTERISTIC CURVES GI500 THRU GI510

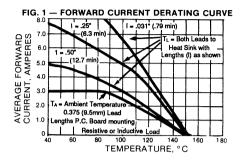
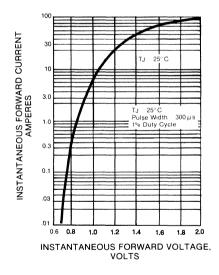



FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG. 2 — MAXIMUM PEAK FORWARD SURGE CURRENT

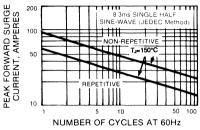
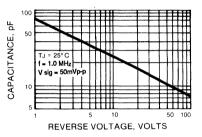
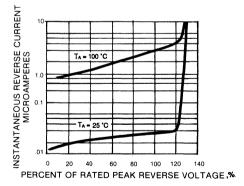
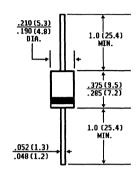




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

G General Instrument


P300A THRU P300M

MEDIUM CURRENT PLASTIC RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Typical I_R less than 0.1 μ A
- Void-free molded plastic package
- 3.0 Ampere operation at T_A=90°C with no thermal runaway
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD Molded plastic

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color Band denotes cathode

Weight: 0.4 ounce, 1.1 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

ала манула жана факта - адара - дар - дар <u>- а</u> дар <u>4</u> 00 - адар 400 - адар - дар - дар - дар - дар - дар - дар - да		SYMBOLS	P300 5 A	P300 B	P300 D	P300 G	P300	P300 K	P300 M	UNITS
Maximum Recurrent Peak Reverse Voltage	Э	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Curro .375", (9.5mm) lead lengths at T _A =55°C	ənt	I(AV)		•		3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed rated load (JEDEC Method)	on	IFSM				200.0				Amps
Maximum Instantaneous Forward Voltage at 3.0A	TJ=25℃	VF				1.2				Volts
Maximum DC Reverse Current	T _A = 25°C		1			5.0				
at Rated DC Blocking Voltage	T _A =100°C	IR				25.0				μA
Typical Junction Capacitance (NOTE 1)	TJ= 25°C	CJ				28.0				pF
Typical Reverse Recovery Time (NOTE 2)		T _{RR}				2.5				μS
Typical Thermal Resistance (NOTE 3)		Reja				15.0				°C/W
Operating Junction and Storage Temperat	ure Range	TJ,TSTO	3		-5	0 to +	150			°C

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARACTERISTIC CURVES P300A THRU P300M

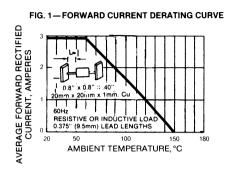
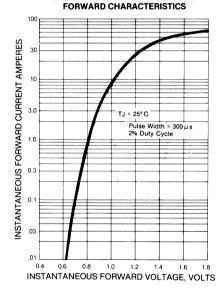
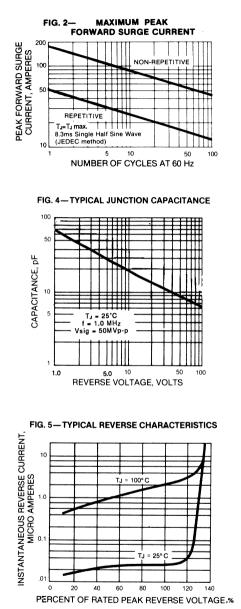
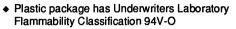




FIG. 3-TYPICAL INSTANTANEOUS


(ii) General Instrument

GI750 THRU GI758

HIGH CURRENT PLASTIC RECTIFIER

VOLTAGE - 50 to 800 Volts CURRENT - 6.0 Amperes

FEATURES

- High Current Capability
- Diffused Junction
- Completely Insulated Case
- Uniform Molded Body
- High Surge Current Capability
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Void-free Molded plastic

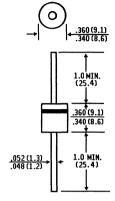
Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color Band denotes cathode

Weight: 0.07 ounce, 2.1 grams

Mounting Position: Any

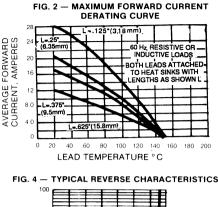
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

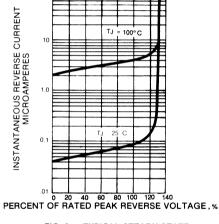

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

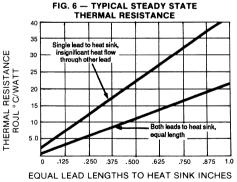
	SYMBOLS	GI750	GI751	GI752	GI754	GI756	GI758	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	Volts					
Maximum Average Forward Rectified Current at $T_A=60^{\circ}C$ P.C. Board Mounting (FIG. 1) $T_L=60^{\circ}C$.125", (3.18mm) Lead Lengths (FIG. 2)	I(AV)	6.0 22.0						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			40	0.0			Amps
Maximum Instantaneous Forward Voltage at 6.0A 100A	VF	0.90 0.95						Volts
Maximum DC Reverse CurrentT_A=25°Cat Rated DC Blocking VoltageT_A=100°C	IR	5.0						μA mA
Typical Junction Capacitance (NOTE 2)	CJ	300.0						pF
Typical Thermal Resistance (NOTE 1)	Rejl	10.0						°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-50 to +150						°C

NOTES:

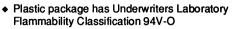
1. Thermal Resistance from Junction to Lead at .50"(12.7mm) lead lengths,


with both leads attached to heat sinks. 2. Measured at 1.0 MHZ and applied reverse voltage of 4.0 volts.




Dimensions in inches and (millimeters)

RATINGS AND CHARACTERISTIC CURVES GI750 THRU GI758


G General Instrument

P600A THRU P600M

VOLTAGE - 50 to 1000 Volts CURRENT - 6.0 Amperes

FEATURES

- High Current Capability
- Diffused Junction
- Completely Insulated Case
- Uniform Molded Body
- High Surge Current Capability
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Void-free molded plastic

Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026

Polarity: Color Band denotes cathode

Weight: 0.07 ounce, 2.1 grams

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

360 (9.1)

1.0 MIN (25.4)

360 (9.1)

.340 (8.6)

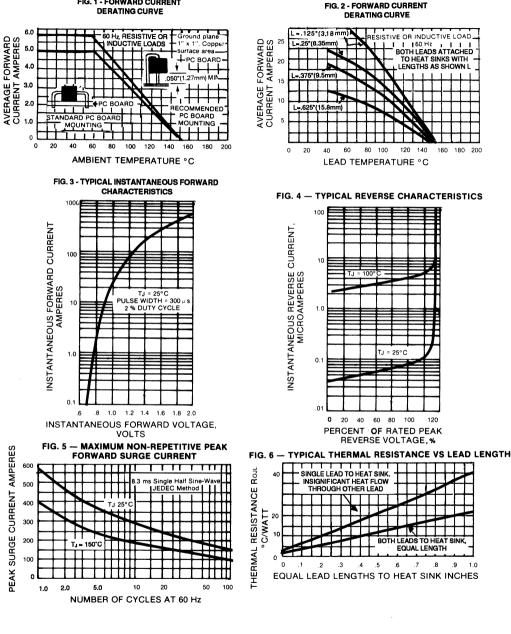
1.0 MIN. (25.4)

Dimensions in inches

and (millimeters)

.052(1.3)

	SYMBOLS	P600A	P600B	P600D	P600G	P600J	P600K	P600M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $T_A=60^{\circ}C$.375" (9.5mm) Lead Lengths (FIG 1) $T_L=60^{\circ}C$.125" (3.18mm) Lead Lengths (FIG 2)	I(AV)				6.0 22.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				400.0	I			Amps
Maximum Instantaneous Forward Voltage at 6.0A 100A	VF	0.90 1.0							Volts
Maximum DC Reverse Current $T_{A=}25^{\circ}C$ at Rated DC Blocking Voltage $T_{A=}100^{\circ}C$	IR	5.0							μA mA
Typical Junction Capacitance (NOTE 2)	CJ				300.0)			pF
Typical Thermal Resistance (NOTE 1)	Rejl	IL 10.0						°C/M	
Operating Junction and Storage Temperature Range	TJ,TSTO	-50 to +150							°C


NOTES:

1. Thermal Resistance from Junction to Lead at .50"(12.7mm) lead lengths, with both leads attached to heat sinks.

2. Measured at 1.0 MHZ and applied reverse voltage of 4.0 volts.

368

RATINGS AND CHARACTERISTIC CURVES P600A THRU P600M

FIG. 1 - FORWARD CURRENT **DERATING CURVE**

General Instrument

NSF8AT THRU NSF8MT

HIGH CURRENT GLASS PASSIVATED RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

- Fully Isolated Overmolded Package
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- + High surge current capability
- High current capability
- Low forward voltage
- Glass passivated chip junction
- Internal Insulation: 1.5k VRMS\
- High temperature soldering guaranteed: 265°C/10 seconds .160" (4.06 mm) lead lengths at 5 lbs/ (2.3 kg) tension

MECHANICAL DATA

Case: ITO-220 fully overmolded plastic

Terminals: Plated Lead solderable per MIL-STD-750, Method 2026

Polarity: As marked

Weight: .08 ounces, 2.24 gram

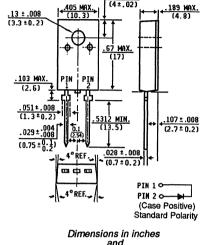
Mounting Position: Any

Mounting Torque: 5 in. - Ibs. max.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

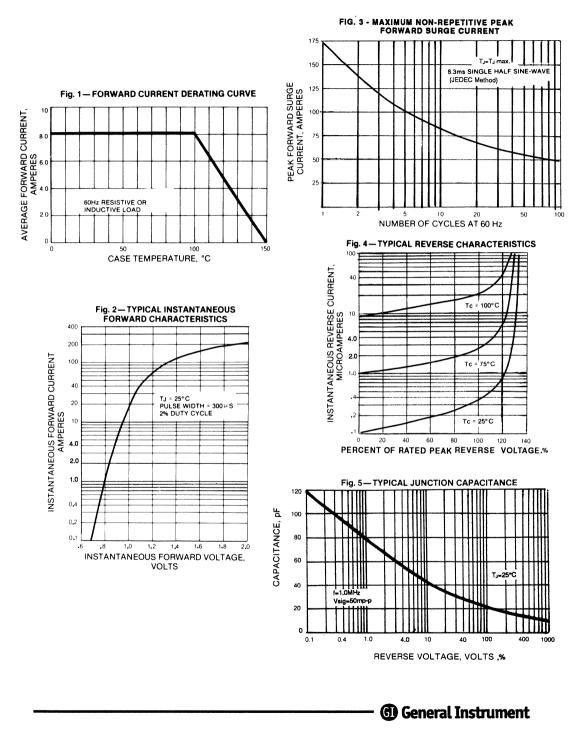
(millimeters)


	SYMBOLS	NSF8 AT	NSF8 BT	NSF8 DT	NSF8 GT	NSF8 JT	NSF8 KT	NSF8 MT	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at Tc=100°C	I(AV)	8.0							
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	175.0							
Maximum Instantaneous Forward Voltage at 8.0A	VF				1.1				Volts
Maximum Reverse Current T _C =25°C at Rated DC Blocking Voltage T _C =100°C	IR	10.0 100.0							μА
Typical Junction Capacitance (NOTE 2)	CJ	55.0							pF
Typical Thermal Resistance (NOTE 1)	ReJC	3.0							°C/W
Operating Junction and Storage Temperature Range	TJ,TSTO	G -55 to +150							°C

NOTES:

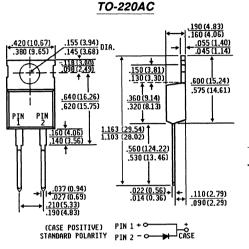
1. Thermal Resistance Junction to Case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.



ITO-220

158±.008


RATINGS AND CHARACTERISTIC CURVES NSF8AT THRU NSF8MT

NS8AT THRU NS8MT

HIGH CURRENT GLASS PASSIVATED PLASTIC RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

 Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- High current capability
- High surge current capability
- Low forward voltage drop
- Glass passivated chip junction
- High temperature soldering guaranteed: 265°C/10 seconds/.160" (4.06 mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC TO-220AC molded plastic

Terminals: Plated Axial Leads solderable per MIL-STD-750, Method 2026

Polarity: As marked

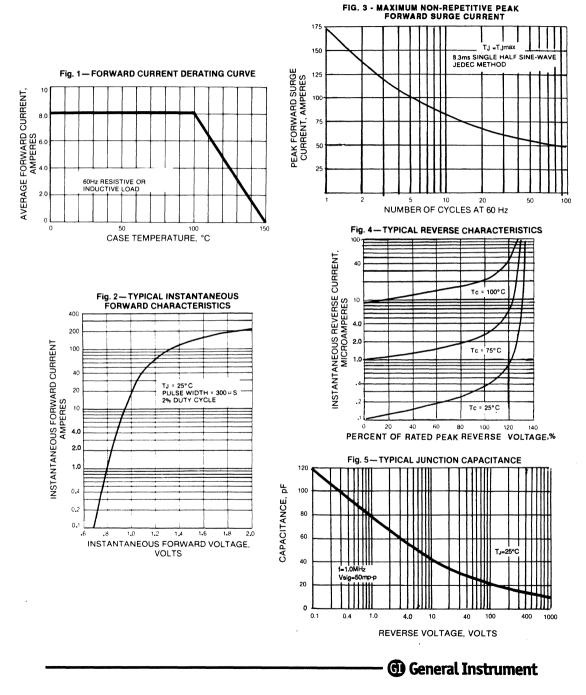
Weight: 0.08 ounce, 2.24 gram

Mounting Torque: 5 in. - Ibs. max.

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


NS8 RT NS8 DT NSE NSØ NSE NS8 AT NSO UNITS SYMBOLS 400 600 800 1000 Maximum Recurrent Peak Reverse Voltage VRRM 50 100 200 Volts Maximum RMS Voltage VRMS 35 70 140 280 420 560 700 Volts Maximum DC Blocking Voltage 100 200 400 600 800 1000 Volts VDC 50 Maximum Average Forward Rectified Current at Tc=100°C I(AV) 8.0 Amps Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) 175.0 IFSM Amps Maximum Instantaneous Forward Voltage at 8.0A VF 1.1 Volts Maximum Reverse Current at Rated DC Blocking Voltage Tc=25°C 10.0 μA IR Tc=100°C 100.0 pF Typical Junction Capacitance (NOTE 2) TJ=25°C СJ 55.0 Typical Thermal Resistance (NOTE 1) °C/W ReJC 3.0 Operating Junction and Storage Temperature Range °C TJ, TSTG -55 to +150

NOTES:

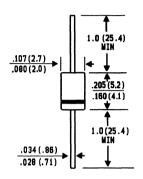
1. Thermal Resistance from Junction to Case.

2. Measured at 1 MHz and applied reversed voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES NS8AT THRU NS8MT

FAST RECOVERY PLASTIC RECTIFIERS

1.0 AMPERE TO 6.0 AMPERES 50 VOLTS TO 800 VOLTS


1N4933 THRU 1N4937

MINIATURE FAST SWITCHING PLASTIC RECTIFIER

VOLTAGE - 50 to 600 Volts CURRENT - 1.0 Ampere

FEATURES

DO-204AL

Dimension in inches and (millimeters)

- Low cost
 - Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- Void-free molded plastic package
- 1.0 Ampere operation at T_A=75°C with no thermal runaway
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AL, molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Anv Weight: 0.012 ounce, 0.34 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	1N4933	1N4934	1N4935	1N4936	1N4937	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
*Maximum RMS Voltage	VRMS	35	70	145	280	420	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
*Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _A =75°C	I(AV)			Amps			
*Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) at T _A =75°C	IFSM			Amps			
*Maximum Instantaneous Forward Voltage at 1.0A	VF			1	.2		Volts
*Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR				i.0 10.0		μA
*Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			20	0.0		nS
*Maximum Reverse Recovery Current (NOTE 1)	IRM(Rec)			Amps			
Typical Junction Capacitance (NOTE 2)	CJ			pF			
Typical Thermal Resistance (NOTE 3)	Reja			°C/W			
*Operating Junction and Storage Temperature Rang	e TJ,TSTG			°C			

NOTES:

1. Reverse Recovery Test Conditions: IF=1.0A, VR=30V., di/dt= 50A/ μ s. 2. Measured at 1.0 MHz and applied reverse voltage of 4.0 VDC.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted,

*JEDEC registered values

RATINGS AND CHARACTERISTIC CURVES 1N4933 THRU 1N4937

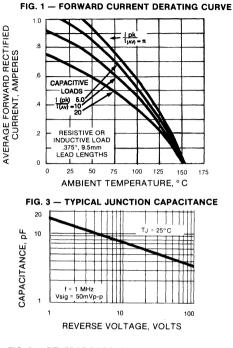
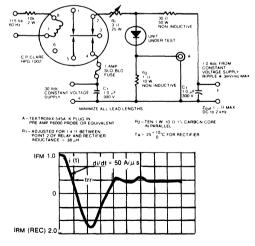



FIG. 5 — REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

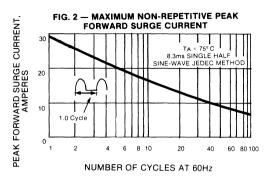
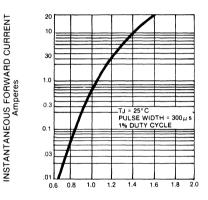
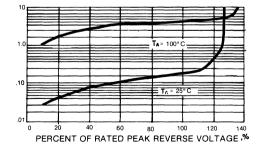
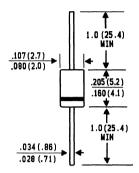




FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

INSTANTANEOUS FOWARD VOLTAGE, VOLTS

FIG. 5-TYPICAL REVERSE CHARACTERISTICS


(D) General Instrument

SRP100A THRU SRP100K

MINIATURE SOFT RECOVERY FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 1.0 Ampere

FEATURES

DO-204AL

Dimension in inches and (millimeters)

 High surge current capability Plastic package has Underwriters Laboratory

- Flammability Classification 94V-O
- Void-free molded plastic in DO-41 package
- 1.0 Ampere operation at TA=55°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

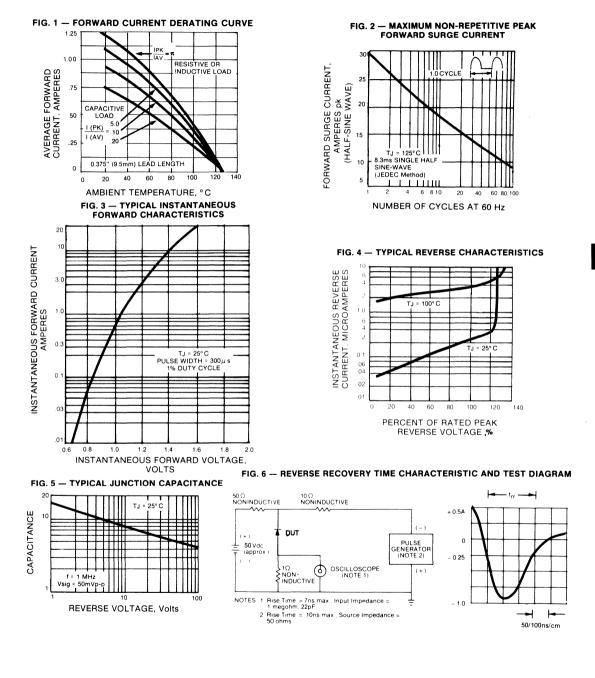
Case: JEDEC DO-204AL, molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Band denotes cathode

Mounting Position: Any

Weight: 0.012 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


SYMBOLS	SRP 100A	SRP 100B	SRP 100D	SRP 100G	SRP 100J	SRP 100K	UNITS
VRRM	50	100	200	400	600	800	Volts
VRMS	35	70	140	280	420	560	Volts
VDC	50	100	200	400	600	800	Volts
I(AV)	1.0						
IFSM	30.0						
VF			1.3				Volts
IR			10.0 200.0				μA
T _{RR}			100		2	00	nS
CJ	12.0						pF
RØJA	41.0						°C/W
TJ	-50 to +125						°C
TSTG		-{	50 to +1	50			°C
	VRRM VRMS VDC I(AV) IFSM VF IR TRR CJ RØJA TJ	SYMBOLS 100A VRMM 50 VRMS 35 VDC 50 I(AV) - IFSM - VF - IR - TRR - CJ - R@JA -	SYMBOLS 100A 100B VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV) - - IFSM - - VF - - IR - - TRR - - RØJA - -	SYMBOLS 100A 100B 100D VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) 100 200 I(AV) 1.0 200 IFSM 30.0 VF IFSM 30.0 VF IR 200.0 1.3 CJ 12.0 ReJA TJ -50 to +1 -50 to +1	SYMBOLS 100A 100B 100D 100G VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 1.0 200 400 I(AV) 1.0 200 400 IFSM 30.0 70 1.0 IFSM 30.0 70 1.0 IFSM 30.0 70 1.0 IR 200.0 70 1.0 RR 100 70 70 RBJA 41.0 70 70 TJ -50 to +125 50 70	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOLS 100A 100B 100D 100G 100K V _{RRM} 50 100 200 400 600 800 V _{RMS} 35 70 140 280 420 560 V _{DC} 50 100 200 400 600 800 I _(AV) 1.0 200 400 600 800 I _(AV) 1.0 1.0 1.0 1.0 1.0 I _{FSM} 30.0 7.0 1.0 200 200 200 V _F 1.3 10.0 200

NOTES:

1. Measured at 1 MHz and applied reverse voltage of 4.0 volts. 2. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, P.C. Board mounted.

RATINGS AND CHARACTERISTIC CURVES SRP100A THRU SRP100K

(ii) General Instrument

GI850 THRU GI858

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER

VOLTAGE - 50 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- Void-free molded plastic package
- High current operation
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

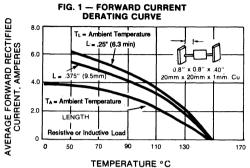
MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any Weight: .04 ounce, 1.1 gram

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


· · · · · · · · · · · · · · · · · · ·	SYMBOLS	GI850	GI851	GI852	GI854	GI856	GI858	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	510	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Voits
Maximum Non-repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	880	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=90$ °C	I(AV)			3.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100.0						Amps
Maximum Instantaneous Forward Voltage at 3A TJ=25°C 9.4A TJ=175°C	VF			1.25 1.10				Volts
Maximum DC Reverse Current TA=25°C				10.0				
at Rated DC Blocking Voltage TA=100°C	IR I	150	150	200	250	300	500	μA
Typical Junction Capacitance TJ=25°C (NOTE 1)	CJ			28.0		1		pF
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}	200.0						nS
Maximum Reverse Recovery Current (NOTE 2)	IRM(REC)	2.0						Amps
Typical Thermal Resistance (NOTE 3)	Reja	15.0						°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-50 to +150						°C

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

Reverse Recovery Test Conditions: Ir=1.0A, Vn=30V, di/dt=50A/µs.
 Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES GI850 THRU GI856

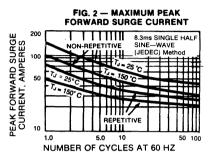
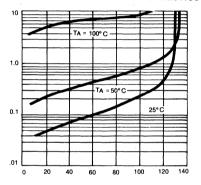
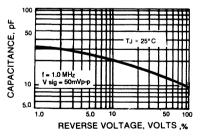
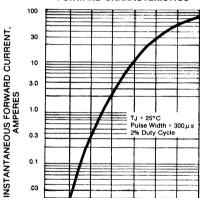
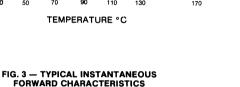




FIG. 4 - TYPICAL REVERSE CHARACTERISTICS



PERCENT OF RATED PEAK REVERSE VOLTAGE,%

FIG. 5 - TYPICAL JUNCTION CAPACITANCE

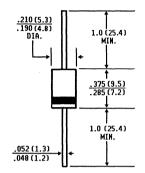


INSTANTANEOUS FORWARD VOLTAGE, VOLTS

.03

.01 .04 0.6 0.8 1.0 1.2 1.4 16

18


GI910 THRU GI917

SOFT RECOVERY, MEDIUM-SWITHING PLASTIC RECTIFIER

VOLTAGE - 50 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Void-free molded plastic package
 High current opera-
- tion of 3.0 Amperes at TA=90°C
- Fast switching for high efficiency
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

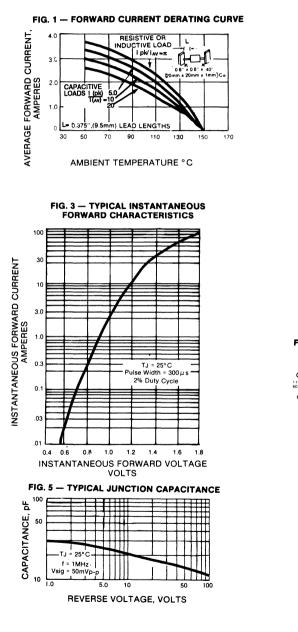
MECHANICAL DATA

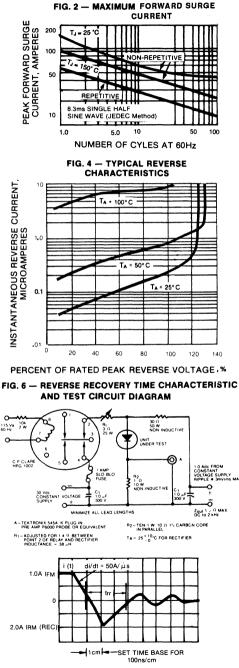
Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color Band denotes cathode Mounting Position: Any Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	GI910	GI911	GI912	GI914	GI916	GI917	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=90^{\circ}C$	I(AV)	3.0						
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100.0						
Maximum Instantaneous Forward3.0A TJ=25°CVoltage at9.4A TJ=175°C	VF			1.25 1.10				Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR			10.0 300.0				μA
Typical Junction Capacitance (NOTE 1) TJ=25°C	CJ			28.0				pF
Maximum Reverse Recovery Time TJ=25°C (NOTE 2)	TRR			750				nS
Maximum Reverse Recovery Current	IRM(REC	5		2.0				Amps
Typical Thermal Resistance (NOTE 3)	Reja	15.0						°C/W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}		-5	0 to +1	50			°C


NOTES:

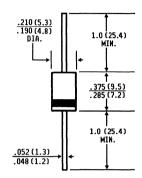

1. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

2. Reverse Recovery Test Conditions: IF=1.0A, VR=30V, di/dt=50 A/µs.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, both leads to a heat sink.

RATINGS AND CHARACTERISTIC CURVES GI910 THRU GI917

(D) General Instrument


SRP300A THRU SRP300K

SOFT RECOVERY, FAST-SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts

CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimension in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Void-free molded plastic package
- 3.0 Ampere operation at TA=55°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 250°C/10 seconds/.375", (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750. Method 2026 Polarity: Color Band denotes cathode

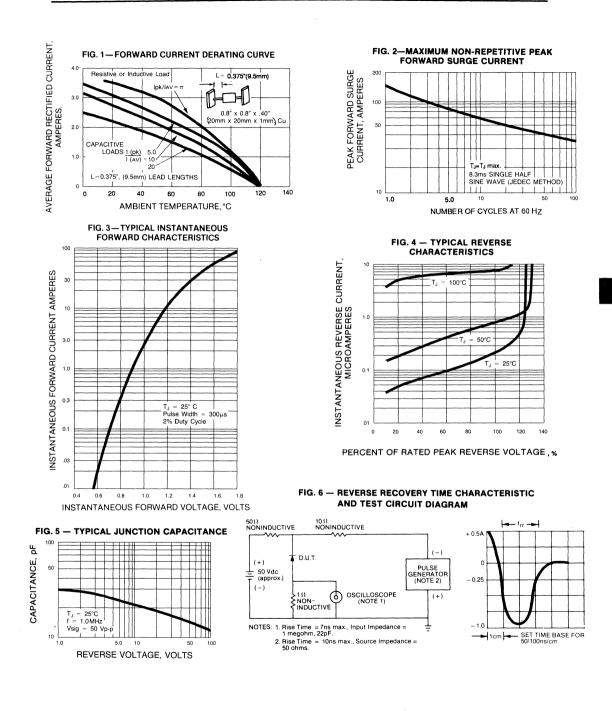
Mounting Position: Any

Weight: 0.04 ounce, 1.1 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	SRP 300A	SRP 300B	SRP 300D	SRP 300G	SRP 300J	SRP 300K	UNITS		
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts		
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts		
Maximum DC Blocking Voltage	VDC	50 100 200 400 600 800					Volts			
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=55$ °C	I(AV)	3.0								
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0								
Maximum Instantaneous Forward Voltage at 3.0A	VF			1.3				Volts		
Maximum DC Reverse Current TA=25°C				10.0						
at Rated DC Blocking Voltage TA=100°C	l _R		200		300	400	500	μA		
Maximum Reverse Recovery Time (NOTE 2) TJ=25°C	T _{RR}	100	100	150	150	200	200	nS		
Typical Junction Capacitance (NOTE 1)TJ=25°C	CJ			28.0				pF		
Typical Thermal Resistance (NOTE 3)	Reja	15.0						°C/W		
Operating Junction Temperature Range	Tj	-50 to +125						°C		
Storage Temperature Range	TSTG		-{	50 to +1	-50 to +150					

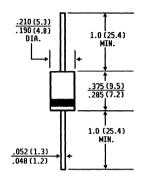

NOTES:

^{1.} Measured at 1 MHz and applied reverse voltage of 4.0 volts.

^{2.} Reverse Recovery Test Conditions: IF=0..5A, IR=1.0A, Irr=.25A.

^{3.} Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES SRP300A THRU SRP300K


G General Instrument

BY396P THRU BY399P

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER VOLTAGE - 100 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Void-free molded plastic package
- 3.0 Ampere operation at T_A=50°C with no thermal runaway
- Fast switching for high efficiency
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color Band denotes end *Mounting Position:* Any *Weight:* .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BY396P	BY397P	BY398P	BY399P	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	100	200	400	800	Volts
Maximum RMS Voltage	VRMS	70	Volts			
Maximum DC Blocking Voltage	VDC	100	800	Volts		
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T _A =50°C	I(AV)			Amps		
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at T _A =25°C	IFSM	100.0				Amps
Maximum Repetitive Peak Forward Surge (NOTE 1)	IFRM			Amps		
Maximum Instantaneous Forward Voltage at 3.0A	VF		1	.25		Volts
Maximum DC Reverse Current T _A = 25°C at Rated DC Blocking Voltage T _A =100°C	IR			0.0 00.0		μΑ
Maximum Reverse Recovery Time (NOTE 3) TJ=25°C	TRR		5	0.00		nS
Maximum Forward Recovery Time 100mA TJ=25°C	TFR			1.0		μS
Typical Junction Capacitance (NOTE 2)	CJ			pF		
Typical Thermal Resistance (NOTE 4)	Reja			°C/W		
Operating Junction Temperature Range	Tj			°C		
Storage Temperature Range	TSTG		-50 1	0 +150		°C

NOTES:

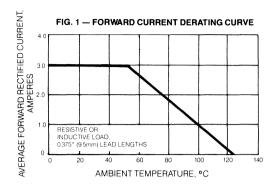
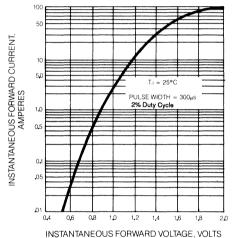
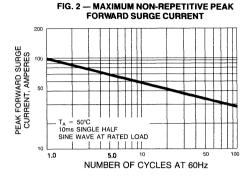
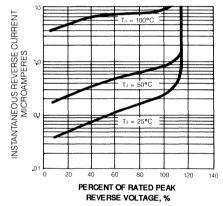
1. Repetitive Peak Forward Surge Current at f<15KHz.

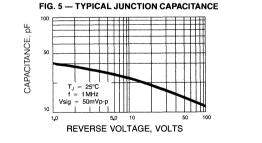
2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Test Conditions: IF=10mA, IR=10mA, Irr=1.0mA.

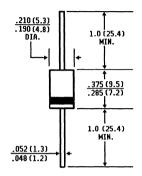
4. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths with both leads to heat sink.

RATINGS AND CHARACTETISTIC CURVES BY396P THRU BY399P


FIG. 3 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

General Instrument


BY500-100 THRU BY500-800

SOFT RECOVERY, FAST SWITCHING PLASTIC RECTIFIER CURRENT - 5.0 Amperes

VOLTAGE - 100 to 800 Volts

FEATURES

DO-201AD

Dimensions in inches and (millimeters)

- High surge current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Fast switching for high efficiency
- High current operation at TI =45°C
- Void-free molded plastic package
- High temperature soldering guaranteed: 250°C/10 seconds /.375". (9.5mm) lead lengths at 5 lbs., (2.3kg) tension
- Especially designed for applications such as Switch Mode Power Supplies, Inverters, Converters. TV Scanning, Ultrasonic-Systems, Speed controlled DC Motors, Low RF Interference and Free Wheeling Rectifiers

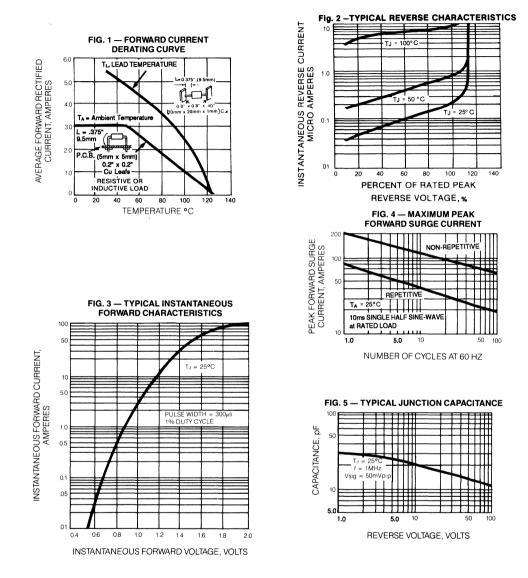
MECHANICAL DATA

Case: JEDEC DO-201AD molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color Band denotes end Mounting Position: Any Weight: .04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	BY500-100	BY500-200	BY500-400	BY500-600	B Y 500-800	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	100	800	Volts			
Maximum RMS Voltage	VRMS	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at T_L =45°C	I(AV)			5.0			Amps
Peak Forward Surge Current 10ms single half sine-wave superimposed on rated load at Ta=25°C	IFSM			200.0			Amps
Maximum Repetitive Peak Forward Surge	IFRM		Amps				
Maximum Instantaneous Forward Voltage at 5.0A	VF			Volts			
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	la	10.0 1.0					μA mA
Maximum Reverse Recovery Time (NOTE 3) TJ=25°C	TRR			nS			
Maximum Reverse Recovery Current (NOTE 3)	IRM(REC)			Amps			
Typical Junction Capacitance TJ=25°C (NOTE 2)	CJ			pF			
Typical Thermal Resistance (NOTE 1)	Reja	15.0					°C/W
Operating Junction Temperature Range	TJ	-50 to +125					°C
Storage Temperature Range	TSTG	-50 to +150					°C


NOTES:

1. Thermal Resistance from Junction to Ambient at 375", (9.5mm) lead lengths with both leads to heat sink.

Measured at 1 MHz and applied reverse voltage of 4.0 volts.

3. Reverse Recovery Test Conditions: IF=1.0A, VR=30V, di/dt=50A/us.

RATINGS AND CHARACTERISTIC CURVES BY500-100 THRU BY500-800

(D) General Instrument

GI820 THRU GI828

HIGH CURRENT FAST SWITCHING PLASTIC RECTIFIER CURRENT - 5.0 Amperes

VOLTAGE - 50 to 800 Volts

360 (9.1)

340 (8.6)

1.0 MIN (25.4)

.360 (9.1)

.340 (8.6)

1.0 MIN.

(25.4)

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- High surge current capability
- High current operation
- Fast switching for high efficiency
- Diffused junction
- Completely insulated case
- Uniform molded body
- High temperature soldering guaranteed: 250°C/10 seconds/.375" (9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Void-free molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color Band denotes cathode Mounting Position: Any Weight: 0.07 ounce, 2.1grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

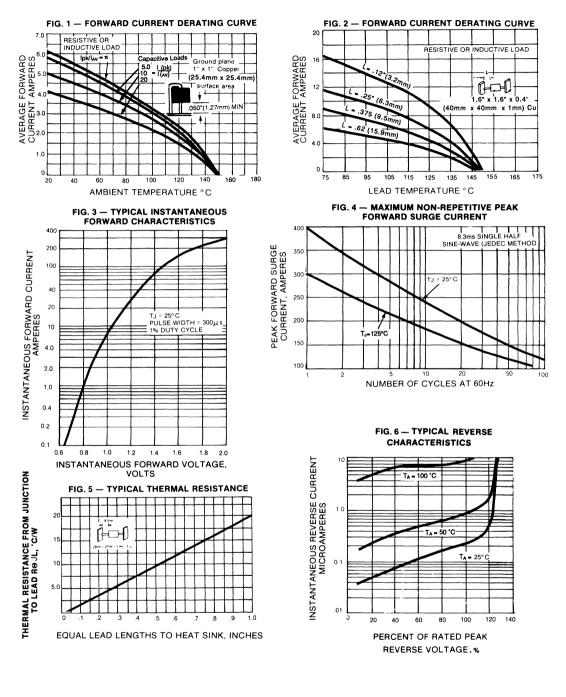
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches

and (millimeters)

.052 (1.3)

	SYMBOLS	GI820	GI821	GI822	GI824	GI826	GI828	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Non-repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	880	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=55$ °C	I(AV)	5.0						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300.0						Amps
Maximum Instantaneous Forward Voltage at 5.0A at 15.7A TJ=150°C	VF	1.10 1.05					Volts	
Maximum Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	I _R	10.0 1.0						μA mA
Typical Junction Capacitance TJ=25°C (NOTE 3)	Cj	300.0					pF	
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			200.0				nS
Maximum Reverse Recovery Current (NOTE 1)	RM(REC)	2.0						Amps
Typical Thermal Resistance (NOTE 2)	ReJA	10.0						°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-50 to +150						°C


NOTES

1. Reverse Recovery Test Conditions: IF=1.0A, VR= 30V, di/dt = 50A/µs.

2 Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

3. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GI820 THRU GI826

General Instrument

SRP600A THRU SRP600K

HIGH CURRENT SOFT RECOVERY FAST-SWITCHING PLASTIC RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 6.0 Amperes

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- High surge current capability
- High Current Operation
- Void-free molded plastic package
- Fast switching for high efficiency
- High temperature soldering guaranteed: 250°C/10 seconds/.375",(9.5mm) lead lengths at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Void-free molded plastic Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Mounting Position: Any

Weight: 0.07 ounce, 2.1grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load. For capacitive load, derate current by 20%.

<u>.360 (9.1)</u> .340 (8.6)

1.0 MTN

<u>.360 (9.1)</u> .340 (8.6)

1.0 MIN.

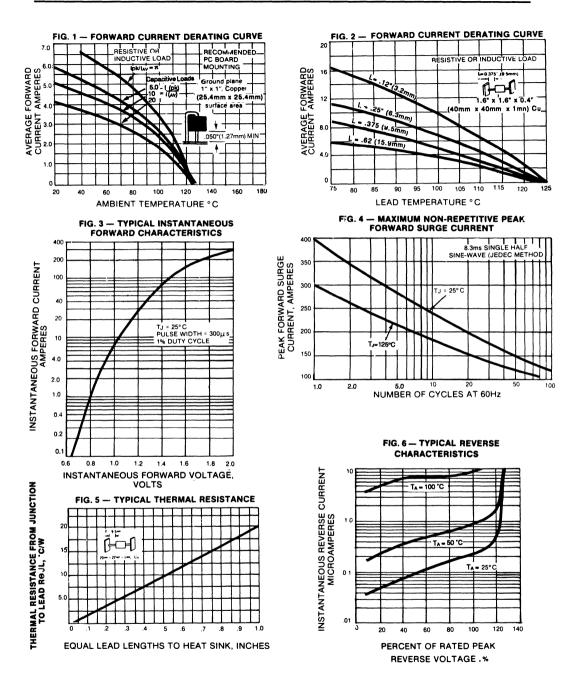
(25.4)

Dimensions in inches

and (millimeters)

.052 (1.3) .048 (1.2) 12

	SYMBOLS	SRP 600A	SRP 600B	SRP 600D	SRP 600G	SRP 600J	SRP 600K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead lengths at $T_A=55^{\circ}C$	I(AV)	6.0						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	300.0						Amps
Maximum Instantaneous Forward Voltage at 6.0A	VF	1.3						Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=100^{\circ}C$	IR	10.0 1.0						μA mA
Maximum Reverse Recovery Time (NOTE 1) TJ= 25°C	TRR	100	100	150	150	200	200	nS
Typical Junction Capacitance (NOTE 2) TJ= 25°C	CJ	300.0						pF
Typical Thermal Resistance (NOTE 3)	RØJA	10.0						°C/W
Operating Junction Temperature Range	TJ	-50 to +125						°C
Storage Temperature Range	TSTG	-50 to +150						°C


NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

3. Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lengths, with both leads to heat sink.

RATINGS AND CHARACTERISTIC CURVES SRP600A THRU SRP600K

G General Instrument

FULL-WAVE BRIDGE RECTIFIERS

0.5 AMPERE TO 35.0 AMPERES 50 VOLTS TO 1000 VOLTS

BRIDGE RECTIFIERS 0.9 to 35 Amperes 50 Volts to 1000 Volts

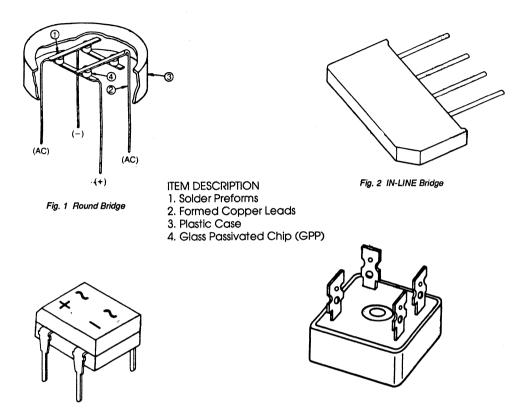


Fig. 3 DUAL-IN-LINE Bridge

Fig. 4 Chassis Mounted Bridge

FAMILIES OF GENERAL INSTRUMENT BRIDGE RECTIFIERS

All types of rectifier cells, which are produced by General Instrument, are available in bridge configurations, molded in various plastic packages.

The basic types of packages are: Round Plastic Package (Fig. 1) IN-LINE Plastic Package (Fig. 2) DUAL-IN-LINE Plastic Package (Fig. 3) Square Plastic Package for Chassis Mounting (Fig. 4)

These bridge families are available with different plated terminals such as wire leads or Faston terminals.

FAMILIES OF GENERAL INSTRUMENT **BRIDGE RECTIFIERS**

Dual-In-Line Single Phase Bridge Rectifiers0.9 to 1.0 AMPERE

Types: DF005M thru DF10M EDF1AM thru EDF1DM B40C80DM thru B380C800DM

Features:

- Surge Overload Rating 50 Amperes Peak
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction
- Tinned Copper Leads Solderable to MIL-STD-750. Method 2026
- Glass Passivated Chip Junctions
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-O
- All bridge series are UL recognized under component index, file number E54214

Miniature Single-Phase Bridge Rectifiers1.5 to 2.0 AMPERES

Types:

W005G thru W10G 2W005G thru 2W10G B40C800G thru B250C800G B40C1000G thru B380C10000G B40C1500G thru B380C1500G

Features:

- Surge Overload Rating 50 and 60 Amperes Peak
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction
- Leads are Solderable to MIL-STD-750. Method 2026
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-O
- All bridge series are UL recognized under component index, file number E54214
- All series have glass passivated chip junctions

In-Line Single Phase Bridge Rectifiers 1.0 to 8.0 AMPERES

Types: KBP005M thru KBP10M 2KBP005M thru 2KBP10M GBU4A thru GBU4M GBL005 thru GBL10 GBU6A thru GBU6M GBU8A thru GBU8M KBLOO5 thru KBL10 KBU4A thru KBU4M KBU6A thru KBU6M KBU8A thru KBU8M 3N249 thru 3N252 3N253 thru 3N259

Features:

- Surge Overload Rating from 50 to 300 Amperes Peak
- Ideal for Printed Circuit Board
- Reliable Low Cost Construction utilizing molded Plastic Leads are Solderable to MIL-STD-750, Method 2026
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-O
- All bridge series are UL recognized under component index file number E54214
- All series have glass passivated chip junctions

High Current Single Phase Bridge Rectifiers3.0 to 35.0 AMPERES

Types:

GBPC 1005 thru GBPC 110 GBPC6005 thru GBPC610 GBPC12005 thru GBPC1210 GBPC15005 thru GBPC1510 GBPC25005 thru GBPC2510 GBPC35005 thru GBPC3510

Features:

- High Capability of Surge Overload Rating
- Insulated Case for Maximum Heat Dissipation
- Low Forward Voltage Drop
- Copper Leads or Faston Terminals, versions for GBPC12.15, 25 & 35 series only
- Simple Installation thru Screw hole for NBR6 Screw
- Leads are Solderable to MIL-STD-750.Method 2026
- Plastic Package has Underwriters Laboratory Flammability Classification 94V-O
- All bridge series are UL recognized under component index, file number E54214
- All bridges have glass passivated chip junctions

QUICK GUIDE TO BRIDGE RECTIFIERS

10(A)	1.0	1.5	1.5	1.0	2.0	2.0	2.0	4.0	4.0	4.0	4.0	6.0	6.0	8.0	8.0
@TA(C)	40	25	50	75	25	50	55	40	50	100TC	100TC	100TC	100TC	100TC	100TC
SURGE(A)	50	50	50	30	60	60	60	150	200	150	200	175	250	200	300
V _R =50(V)	DF005M	W005G	KBP005M	3N246	2W005G	2KBP005M	3N253	GBL005	KBL005	GBU4A	KBU4A	GBU6A	KBU6A	GBU8A	KBUBA
V _R =100(V)	DF01M	W01G	KBP01M	3N247	2W01G	2KBP01M	3N254	GBL01	KBL01	GBU4B	KBU4B	GBU6B	KBU68	GBU88	KBU6B
V _{R=200(V)}	DF02M	W02M	KBP02M	3N248	2W02G	2KBP02M	3N255	GBL02	KBL02	GBU4D	KBU4D	GBU6D	KBU6D	GBU8D	KBUGD
VB=400(V)	DF04M	W04G	KBP04M	3N249	2W04G	2KBP04M	3N256	GBL04	KBL04	GBU4G	KBU4G	GBU6G	KBU6G	GBUSG	KBUeG
V _R =600(V)	DF06M	W06G	KBPOGM	3N250	2W06G	2KBP06M	3N257	GBL06	KBL06	GBU4J	KBUAJ	GBU6J	KBUGJ	GBUBJ	KBUSJ
V _R =800(V)	DF08M	W08G	KBPOOM	3N251	2W08G	2KBP08M	3N258	GBL08	KBL08	GBU4K	KBU4K	GBU6K	KBUGK	GBUBK	KBUeK
V _R =1000(V)	DF10M	W10G	KBP10M	KBP10M	3N252	2W10G	2KBP10M	3N259	GBL10	KBL10	GBU4M	KBU4M	KBUGM	GBUeM	KBUGM

QUICK GUIDE TO BRIDGE RECTIFIERS

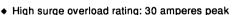
l _O (A)	3.0	6.0	12	15	25	35	I _O (A)
@T _C (C)	50	100	55	55	55	50	@T_("C)
SURGE(A)	60	175	200	300	300	400	SURGE(a)
V _R =50(V)	GBPC1005	GBPC6005	GBPC12005	GBPC15005	GBPC25005	GBPC3550	VR=50(V)
V _R =100(V)	GBPC101	GBPC601	GBPC1201	GBPC1501	GBPC2501	GBPC3501	VR=50(V)
V _R =200(V)	GBPC102	GBPC602	GBPC1202	GBPC1502	GBPC2502	GBPC3502	VR=50(V)
V _R =400(V)	GBPC104	GBPC604	GBPC1204	GBPC1504	GBPC2504	GBPC3504	VR=400(V)
V _{R=} 600(V)	GBPC106	GBPC606	GBPC1206	GBPC1506	GBPC2506	GBPC3506	VR=600(V)
V _{R=} 800(V)	GBPC108	GBPC608	GBPC1208	GBPC1508	GBPC2508	GBPC3508	VR=800(V)
V _R =1000(V)	GBPC110	GBPC610	GBPC1210	GBPC1510	GBPC2510	GBPC3510	VR=1000(V)

1)G Indicates Glass Passivated Chip Junctions
 2) DM Indicates Dual-Inline Package (IC-Leads)

l _O (A)	0.8	1.0	1.5
@TA(C)	45	45	45
SURGE(A)	45	45	45
VRMS=40(V)	B40C800 ¹⁾²⁾	B40C1000 ¹⁾	B40C1500 ¹⁾
VRMS=80(V)	B80C8001)2)	B80C10001)	B80C1 5001)
VRMS=125(V)	B125C8001)2)	B125C1000 ¹)	B250C1500 ¹)
VRMS=250(V)	B250C800 ¹⁾²⁾	B250C1000 ¹⁾	B250C1500 ¹)
VRMS=380(V)	B380C8001)2)	B380C1000 ¹⁾	B380C1500 ¹)

QUICK GUIDE TO BRIDGE RECTIFIERS

1)G Indicates Glass Passivated Chip Junctions
 2) DM Indicates Dual-Inline Package (IC-Leads)


A COMPANY AND A

MB2M THRU MB6M

MINIATURE GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER Voltage - 200 to 600 Volts Current - 0.5 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Recognition 94V-O
- Glass passivation chip junctions

- · Saves space on printed circuit board
- High temperature soldering guaranteed: 260°C/10 seconds at 5 lbs. (2.3kg) tension

MECHANICAL DATA

Case: Molded Plastic Terminals: Plated leads solderable per MIL-STD-750,

Method 2026

Polarity: Polarity symbols marked on body

Weight: 0.078 ounce, 0.23 grams

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, Resistive or inductive load.

.155(3.94)

.190(4.83)

.047(1.19)

.027(.71)

.019(.48

.205(5.21)

.049(1.24)

105(2.67)

.095(2.41)

Dimensions in inches and (millimeters)

117(2.97) 107(2.72)

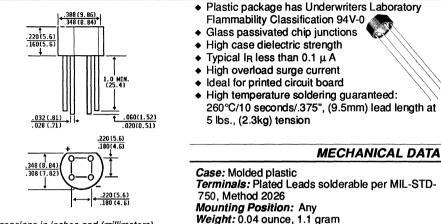
.013(.33)

.007(.18)

	SYMBOLS	MB2M	MB4M	MB6M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	Volts
Maximum RMS Voltage	VRMS	140	280	420	Volts
Maximum DC Blocking Voltage	V _{DC}	200	400	600	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C - on Glass-Epoxy P.C.B.	I(AV)		0.5		Amps
Peak Forward Surge Current 8.3m sec Single Half Sine- Wave superimposed on Rated Load (JEDEC Method)	IFSM		30.0		Amps
Rating for Fusing (t<8.35ms)	l ² t		3.8		A ² s
Maximum Instantaneous Forward Voltage Drop per Element at 0.4A	VF		1.0		Volts
Maximum Reverse Current at TA=25°C			5.0		
Rated DC Blocking Voltage per element T _A =125°C	l _R		500		Ω0μΑ
Typical Junction Capacitance per element (NOTE 1)	СJ		25.0		pf
Typical Thermal Resistance (NOTE 2)	R o jl Roja		20.0 75.0		°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG		-55 to +150		°C

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

 Thermal Resistance from Junction to Lead and/or Ambient, P.C. board mounted on .047 in² (12mm²) copper pads.


B40C 800G THRU B380C 800G

MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER

Voltage - 65 to 600 Volts

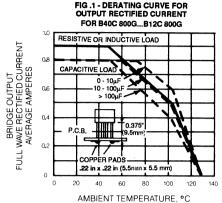
Current - 0.9 Amperes

FEATURES

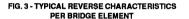
Dimensions in inches and (millimeters)

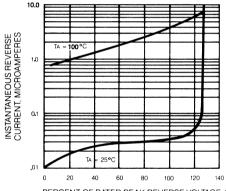
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

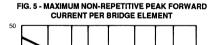

	SYMBOLS	840 C800G	880 C800G	B125 C800G	B250 C800G	<i>B380</i> <i>C800</i> G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for free air operation at $T_A=45^{\circ}C$ R + L-Load C-Load	I(AV)			0.9 0.8			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	65	125	200	400 [·]	600	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	600	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current Single Sine wave on rated load at TJ=125°C Rating for Fusing at TJ=125°C (t<100ms)	I _{FSM} I ² t			45.0			Amps A ² sec
Minimum Series Resistor C-Load @V _{BMS} = ±10%	Rt	1.0	2.0	4.0	8.0	12.0	Ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per leg at 0.9A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive Peak Voltage per leg T _A =25°C	IR			10.0			μA
Typical Thermal Resistance (NOTE 1)	RØJA			36.0			C/W
Operating Junction Temperature Range	TJ		-	40 to +12	25		°C
Storage Temperature Range	Tstg		-	40 to +12	25		°C

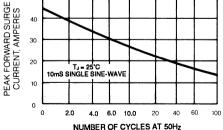
NOTES:


1. Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2" x 0.2"


(5.5mm x 5.5mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES B4OC 800G THRU B380C 800G




AMBIENT TEMPETATORIE, O

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

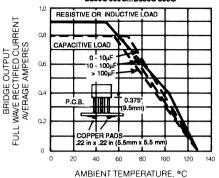


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

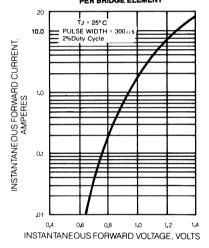
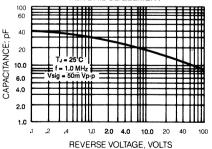
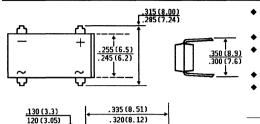
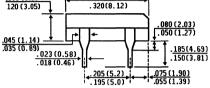



FIG. 6 — TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT


B40C 800DM THRU B380 C800DM


MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER

Voltage - 65 to 600 Volts

Current - 0.9 Amperes

FEATURES

Dimensions in inches and (millimeters)

Plastic package has Underwriters Laboratory Flammability Classification 94V-0

- Glass passivated chip junctions
 - Surge overload rating of 45 Amperes peak

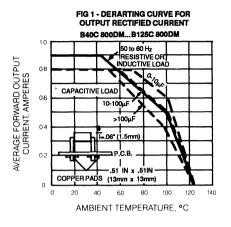
 Ideal for printed circuit board
 High temperature soldering guaranteed: 260°C / 10 seconds at 5 lbs., (2.3kg) tension

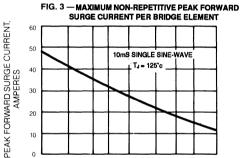
MECHANICAL DATA

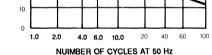
Case: Molded plastic Terminals: Plated Leads solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on body Mounting Position: Any Weight: 0.04 ounce, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

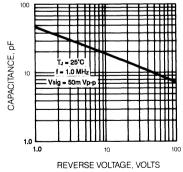
Ratings at 25° C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.


	SYMBOLS	B40	B80	B 125	B250	B380	UNITS
		C800DM	C800DM	C800DM	C800DM	C800DM	
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for free air operation at $T_A=45^{\circ}C$ R + L-Load C-Load	I(AV)			0.9 0.8			Amps
Maximum DC Blocking Voltage	V _{DC}	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	900	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	650	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current Single Sine wave on rated load at TJ=125°C	IFSM			45.0			Amps
Rating for Fusing at T _J =125C (t<100ms)	l ² t			10.0			A ² sec
Minimum Series Resistor C-Load @ V _{RMS} = ±10%	Rt	1.0	2.0	4.0	8.0	12.0	Ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per leg at 0.9A	VF			1.0		ţ	Volts
Maximum Reverse Current at rated Repetitive Peak Voltage per leg T_A = 25°C	IR			10.0			μA
Typical Thermal Resistance (NOTE 1)	Reja			40.0	i fan de alexanse anno 1979 ter i alex	n ann an An An Anna an Anna An An An	°C/W
Operating Junction Temperature Range	Tj		-	40 to +12	25	,	°C
Storage Temperature Range	TSTG		-	40 to +15	50		°C


NOTES:


1. Thermal Resistance from Junction to Ambient mounted on P.C Board 0.5" x 0.5" (13mm x 13mm) Copper pads.

RATINGS AND CHARACTERISTIC CURVES B40C 800DM THRU B380C 800DM


AVERAGE FORWARD OUTPUT

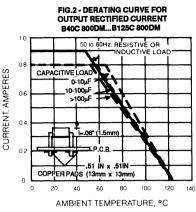


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

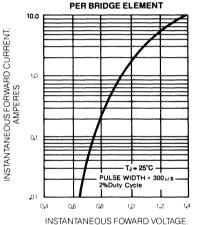
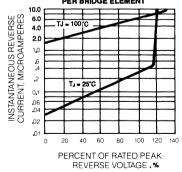
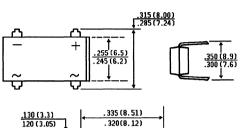
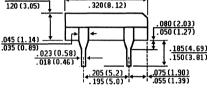



FIG. 6 - TYPICAL REVERSE CHARACTERISTICS PER BRIDGE ELEMENT




(D) General Instrument

DF005M THRU DF10M

MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

Dimensions in inches

and

(millimeters)

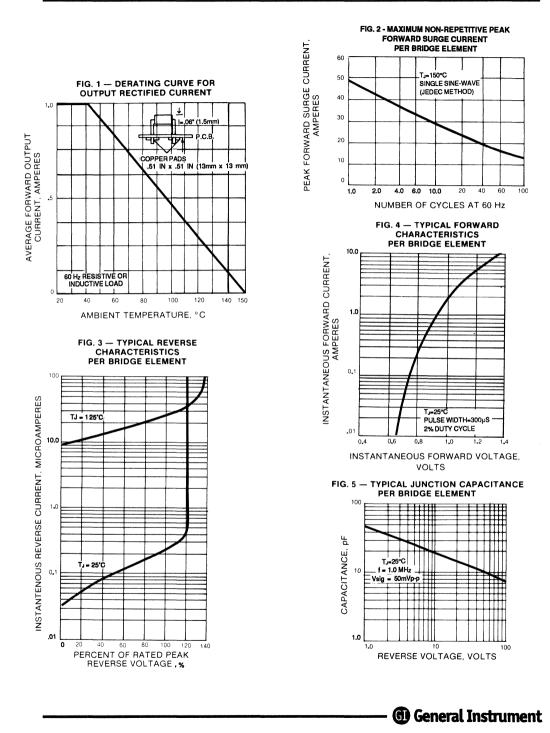
- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory flammability recognition 94V-0
- Glass passivated chip junctions
 - Surge overload rating of 50 Amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic Terminals: Plated Lead solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on body Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

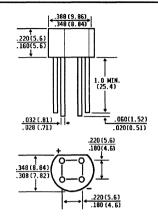

	SYMBOLS	DF 005M	DF 01M	DF 02M	DF 04M	DF 06M	DF 08M	DF 10M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C	I(AV)				1.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.35ms)	l ² t				10.0				A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 1.0A	VF				1.1				Volts
Maximum Reverse CurrentT_A=25°Cat Rated DC Blocking Voltage per legT_A=125°C	l _R				5.0 500.0				μA
Typical Junction Capacitance per leg (NOTE 1)	CJ				25.0				pF
Typical Thermal Resistance (NOTE 2)	RØJA				40.0				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG			-5	5 to +	150			°C

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with 0.5" x 0.5" (13mmx13mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES DF005M THRU DF10M



407

B40C 1000G THRU B380C 1000G

MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER Voltage - 65 to 600 Volts Current - 1.0 Ampere

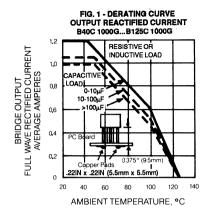
FEATURES

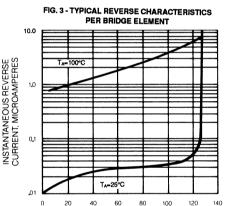
- Glass passivated chip junctions
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge current
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic *Terminals:* Plated Leads solderable per MIL-STD-750, Method 2026 *Mounting Position:* Any *Weight:* 0.05 ounce, 1.3 gram

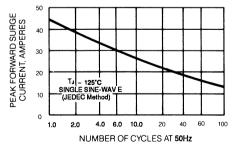
Dimensions in inches and (millimeters)


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 50Hz or 60 Hz, resistive or inductive load.

	SYMBOLS	B40 C 1000G	880 C 1000G	B125 C 1000G	B250 C 1000G	B380 C 1000G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
Maximum Average Forward Output Current for free air operation at $T_A=45^{\circ}C$ R + L-Load C-Load	l(AV)			1.2 1.0			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	800	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	900	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	600	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current Single Sine wave on rated load (JEDEC Method) at T_J =125°C	IFSM			45.0			Amps
Rating for Fusing at T _J =125C (t<100ms)	l ² t			10.0			A ² sec
Minimum Series Resistor C-Load @ V _{RMS} = ±10%	Rt	1.0	2.0	4.0	8.0	12.0	Ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per leg at 1.0A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive Peak Voltage per leg $T_A=25^{\circ}C$	IR			10.0			μΑ
Typical Thermal Resistance (NOTE 1)	ROJA			36.0			°C/W
Operating Junction Temperature Range	TJ		-	40 to +12	25		°C
Storage Temperature Range	TSTG		-	40 to +1	50		°C

NOTES: 1. Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2"x0.2" (5.5mm x 5.5mm) Copper Pads.


RATINGS AND CHARACTERISTIC CURVES B40C 1000G THRU B380C 1000G

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

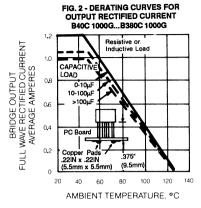


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

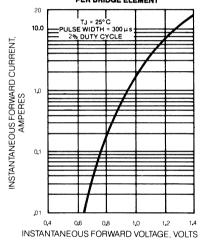
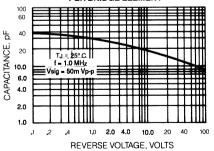
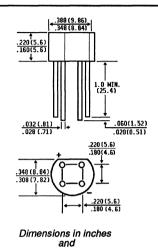



FIG. 6 — TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT



W005G THRU W10G

MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER

CURRENT - 1.5 Amperes **VOLTAGE -** 50 - 1000 Volts

FEATURES

 High case dielectric strength Typical In less than 0.1 µ A ٠ High overload surge capability Ideal for printed circuit board

This series is UL recognized under component

 Plastic material used carries Underwriters Laboratory flammability recognition 94V-O

٠

index, file number E54214 Glass passivated chip junctions

High temperature soldering guaranteed: 260°C/10 seconds/.375", (9.5mm) lead • length /5lbs., (2.3 kg) tension

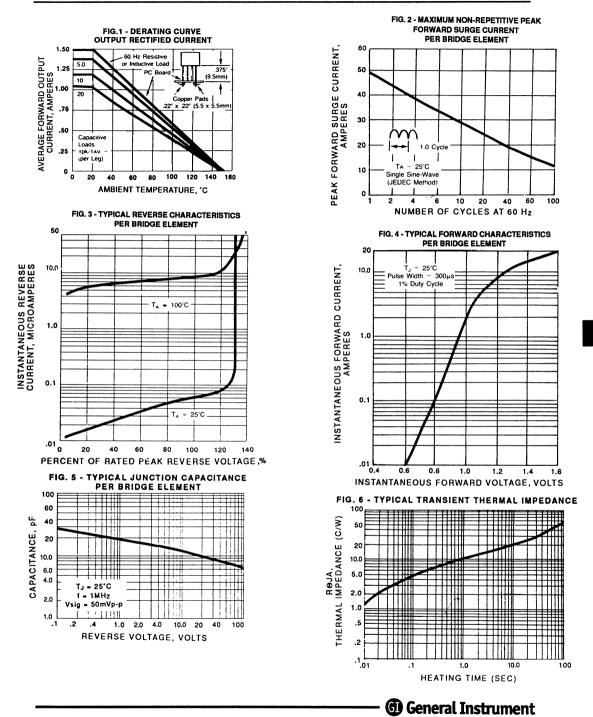
MECHANICAL DATA

Case: Molded plastic Terminals: Plated Leads solderable per MIL-STD-750. Method 2026 Mounting Position: Any Weight: 0.04 ounce, 1.1 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

(millimeters)


	SYMBOLS	W 005G	W 01G	W 02G	W 04G	W 06G	W 08G	W 10G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at .375", (9.5mm) lead length at $T_A=25^{\circ}C$	I(AV)				1.5				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM				50.0				Amps
Rating for fusing (t<8.3ms)	l ² t				10.0			A ² sec	
Maximum Instantaneous Forward Voltage Drop per leg at 1.0 Ampere	VF				1.0				Volts
Maximum DC Reverse Current at Rated TA=25°C					5.0				
DC Blocking Voltage per leg T _A =125°C	TJ				500.0				μA
Typical Junction Capacitance per leg (NOTE 1)	CJ				14.0				pF
Typical Thermal Resistance (NOTE 2)	Røja				36.0				°C/W
Operating Junction Temperature Range	TJ			-5	5 to +1	50			°C
Storage Temperature Range	TSTG			-5	5 to +1	50			°C

NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient at .375", 9.5mm lead length P.C. Board mounting.

RATINGS AND CHARACTERISTIC CURVES W005G THRU W10G

411

KBP005M THRU KBP10M 3N246 THRU 3N252

MINIATURE GLASS PASSIVATED SINGLE - PHASE RECTIFIER BRIDGE VOLTAGE - 50 to 1000 Volts CURRENT - 1.5 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic package has Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
- Surge overload rating -30 Amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed:260°C /10 seconds at 5 lbs., (2.3kg) tension

Q.

Case: Molded plastic Terminals: Plated Lead solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on case Mounting postition: Any

Weight: 0.06 ounce, 1.70 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

Dimensions in inches and (millimeters)

600 (15.24) 560 (14.22)

11 521

Polarity shown on front side of

positive lead by beveled corner

.125 x

.640 MI

.034(8.6)

.200(5.08)

.180(4.57)

500 (12.70

.460 (11.68)

460 (11.68) 420 (10.67)

50 MIN (12.7)

160 (4.1) .140 (3.6)

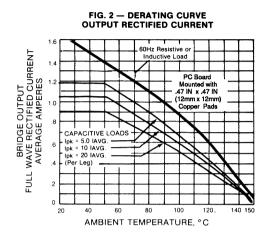
05 (2.67)

085(2.16)

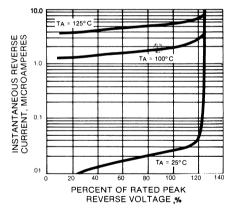
case:

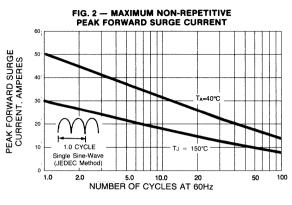
	SYMBOLS	KBP005M 3N246	KBP01M 3N247	KBP02M 3N248	KBP04M 3N249	KBP06M 3N250	KBPOBM 3N251	KBP10M 3N252	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
* Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectified Current at $T_A=40^{\circ}C$	I(AV)				1.5				Amps
* Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method) TJ=150°C	IFSM				30.0				Amps
Rating for fusing (t<8.35ms)	l ² t				10.0				A ² sec
* Maximum Instantaneous Forward Voltage drop 1.0A per leg at 1.57A					1.0 1.3				Volts
* Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage per leg T _A =125°C	l _R				5.0 500.0				μА
Typical Junction Capacitance per leg (NOTE 1)	CJ				15.0				pF
Typical Thermal Resistance (NOTE 2)	RØJA				28.0				°C/W
*Operating Junction and Storage Temperature Range	TJ,TSTO	à		-5	5 to +1	50			°C

NOTES:


1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (12mm x12mm) Copper Pads.


JEDEC Registered Values


RATINGS AND CHARACTERISTIC CURVES KBP005M THRU KBP10M / 3N246 THRU 3N252

20

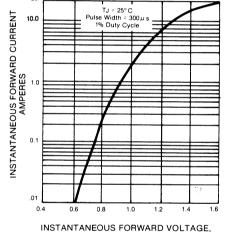
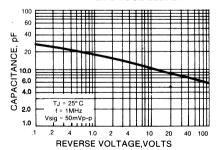
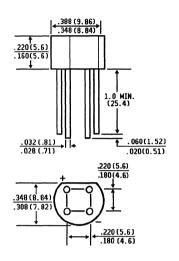


FIG. 3 - TYPICAL	REVERSE	CHARACTERISTICS
PER	BRIDGE E	LEMENT



VOLTS

FIG. 5 — TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT


(ii) General Instrument

B40C 1500G THRU B380C 1500G

MINIATURE GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER

Voltage - 65 to 600 Volts Current - 1.5 Amperes

FEATURES

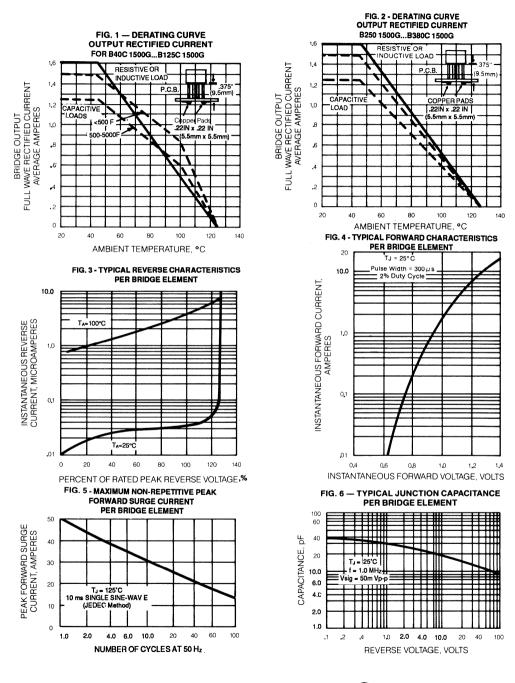
 Plastic package has Underwriters Laboratory Flammability Classification 94V-0

- High case dielectric strength
- Typical I_R less than 0.1 μ A
- High overload surge current
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C/10 seconds/.375", (9.5mm) lead length at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded plastic *Terminals:* Plated Leads solderable per MIL-STD-750, Method 2026 *Mounting Position:* Any *Weight:* 0.04 ounce, 1.1 gram

Dimensions in inches and (millimeters)


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 50 Hz or 60 Hz, resistive or inductive load.

	SYMBOLS	840 C1500G	880 C1500G	B125 C1500G	B250 C1500G	B380 C1500G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	65	125	200	400	600	Volts
Maximum RMS Input Voltage R + C-Load	VRMS	40	80	125	250	380	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I(AV)			1.6 1.5			Amps
Maximum DC Blocking Voltage	VDC	65	125	200	400	600	Volts
Maximum Repetitive Peak Reverse Voltage	VRRM	90	180	300	600	800	Volts
Maximum Peak Working Voltage	VRWM	90	180	300	600	800	Volts
Maximum Non-Repetitve Peak Voltage	VRSM	100	200	350	650	1000	Volts
Maximum Repetive Peak Forward Surge Current	IFRM			10.0			Amps
Peak Forward Surge Current Single Sine wave on rated load at T _J =125°C Rating for Fusing at T _J =125°C (t<100ms)	IFSM I ² t			50.0 12.5			Amps A ² sec
Min.Series Resistor C-Load @ $V_{RMS} = \pm 10\%$	Rt	1.0	2.0	4.0	8.0	12.0	ohms
Maximum Load Capacitance +50% -10%	CL	5000	2500	1000	500	200	μF
Maximum Instantaneous Forward Voltage Drop per leg at 1.5A	VF			1.0			Volts
Maximum Reverse Current at rated Repetitive Peak Voltage per leg T _A =25°C	IR			10.0			μA
Typical Thermal Resistance (NOTE 1)	Røja			36.0			°C/W
Operating Junction Temperature Range	TJ		-	40 to +12	25		°C
Storage Temperature Range	TSTG		-	40 to +1	50		°C

NOTES: 1. Thermal Resistance from Junction to Ambient mounted on P.C Board at .375" (9.5mm) Lead Lengths with 0.2"x0.2" (5.5mm x 5.5mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES B40C 1500G THRU B380C 1500G

G General Instrument

2W005G THRU 2W10G

MINIATURE GLASS PASSIVATED SINGLE- PHASE BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 2.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Glass passivated chip junctions
- Plastic package has Underwriters Laboratory flammability recognition 94V-0
- High case dielectric strength
- Typical I_R less than 0.5 μ A
- High overload surge capability
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C for /10 seconds /.375" (9.5mm) lead lengths/5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded plastic

Terminals: Plated leads, solderable per MIL-STD-750, Method 2026

Mounting Position: Any *Weight:* 0.05 ounce, 1.3 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

Dimensions in inches

and (millimeters)

-388 (9.86)

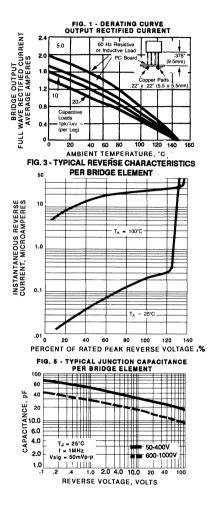
060(1.52)

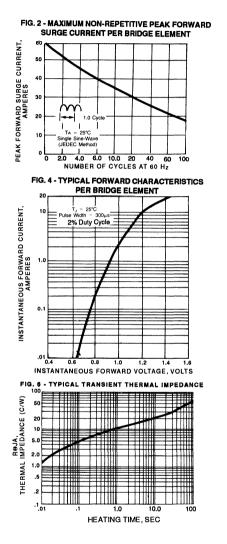
.020(0.51)

.220 (5.6)

220(5.6)

.032(.81)

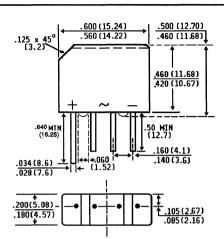

	SYMBOLS	2W 005G	2W 01G	2W 02G	2W 04G	2W 06G	2W 08G	2W 10G	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current .375", (9.5mm) lead length (SEE FIG. 1)	I(AV)				2.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM				60.0				Amps
Rating for fusing (t<8.3ms)	l ² t	15.0							A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 2.0 Amperes	VF				1.1				Volts
Maximum DC Reverse Current at Rated TA=	25°C				5.0				μΑ
DC Blocking Voltage per leg TA=1	25°C I _R				500.0)			μA
Typical Junction Capacitance per leg (NOTE 1)	CJ	40.0 20.0							pF
Typical Thermal Resistance (NOTE 2)	Røja	40.0							°C/W
Operating Junction Temperature Range	TJ	-55 to + 150							°C
Storage Temperature Range	TSTG			-5	5 to +'	150		•	°C


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

2. Thermal Resistance from Junction to Ambient at .375", 9.5mm lead length for P.C. Board mounting.

RATINGS AND CHARACTERISTIC CURVES 2W005G THRU 2W10G



(f) General Instrument

2KBP005M THRU 2KBP10M 3N253 THRU 3N259

GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 2.0 Amperes

FEATURES

Polarity shown on front side of case: positive lead by beveled corner

Dimensions in inches and (millimeters)

 This series is UL recognized under component index, file number E54214

- Plastic package has Underwriters Laboratory flammability recognition 94V-O
- · Glass passivated chip junctions
- Typical I_R less than 0.1 μ A
- Built -in printed circuit board stand-offs
- High case dielectric strength
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

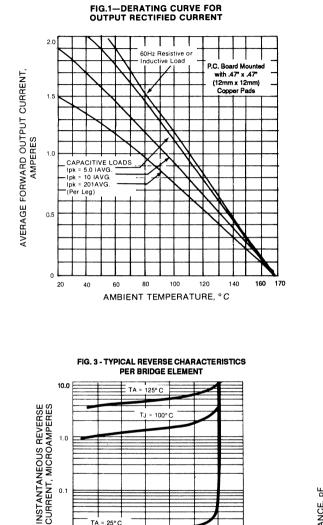
3

Case: Molded plastic Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Mounting postition: Any Weight: 0.06 ounce, 1.70 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load.

	SYMBOLS	2KBP 005M 3N253	2KBP 01M 3N254	2KBP 02M 3N255	2KBP 04M 3N256	2KPB 06M 3N257	2KBP 08M 3N258	2KBP 10M 3N259	UNITS
*Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
*Maximum RMS Voltage		35	70	140	280	420	560	700	Volts
*Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
*Maximum Average Forward Output Rectified Current at $T_A=55^{\circ}C$	I(AV)	2.0							
*Peak Forward Surge Current Single half sine-wave superimposed onrated load (JEDEC Method)	IFSM	60.0					Amps		
Rating for fusing (t<8.35ms)	l ² t	15.0							A ² sec
* Maximum Instantaneous Forward Voltage drop per leg at 3.14A	VF				1.1				Volts
* Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage per leg T _A =125°C	IR				5.0 500.0)			μA
Typical Junction Capacitance per leg (NOTE 1)	Cj	25.0							pF
Typical Thermal Resistance (NOTE 2)		30.0							°C/M
*Operating Junction and Storage Temperature Range	TJ,TSTO	-55 to +165							°C


NOTES:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .47" x .47" (12mm x12mm) Copper Pads.

* JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 3N253 THRU 3N259 / 2KBP005M THRU 2KBP10M

0.1

.01

0 20 40 60 80 100 120 140

TA = 25° C

PERCENT OF RATED PEAK

REVERSE VOLTAGE,%

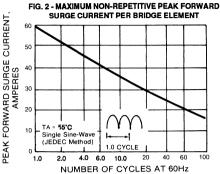


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

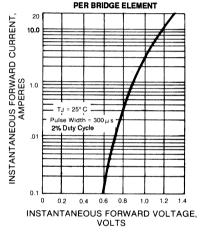
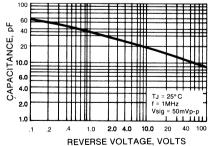



FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT

General Instrument

GBPC1005 THRU GBPC110

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts

CURRENT - 3.0 Amperes

FEATURES

HOLE FOR #6 screw 158 (4.01) DIA .630 (16.00) 590 (14.98) 445 (11.30) .142 (3.61) *****I∢ 405(10.29) 445 (11.30) .630 (16.00) 405(10.29) .590 (14.98) |-**⊕**<u>A</u>C .094 (2.4) x 45° .128 (3.25) .0<u>40 (1.02)</u> typ. .048 (1.22) .032 (.81) DIA.-750 028 (.71) (19.05) MIN. .200 (5.08) 1 .160 (4.06) Polarity shown on side of case: positive lead by beveled corner

> Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Glass passivated chip junctions
 Plastic package has underwriters Lab-
- Plastic package has underwhere Laboratory flammability recognition 94V-0
- High case dielectric strength of 1500 V_{RMS}
- Typical I_R less than 0.1 μ A
- High surge current capability
- Ideal for printed circuit boards
- High temperature soldering guaranteed: 260°C /10 seconds/ .375" (9.5mm) lead lengths /5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Molded plastic *Terminals:* Plated leads solderable per MIL-STD-750, Method 2026 *Mounting Position:* Bolt down on heat-sink with silicone thermal compound between bridge and mounting surface for maximum heat transfer with number 6.0 screw

Mounting Torque: 5.0 in.-lb. max. *Weight:* 0.1 ounces, 2.8 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate by 20%

		GBPC	GBPC	GPBC	GBPC	GBPC	GBPC	GBPC	
	SYMBOLS	1005	101	102	104	106	108	110	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Bridge Input Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I(AV)	3.0 I(AV) 2.0							Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM	и 60.0					Amps		
Rating for fusing (t<8.3ms)	l ² t				15.0				A ² sec
Maximum Instantaneous Forward Voltage Drop per leg at 1.5 Amperes	VF				1.0				Volts
Maximum DC Reverse Current at Rated TA= 25°C					5.0				
DC Blocking Voltage per leg T _A =125°C	IR				500.0				μA
Typical Junction Capacitance per leg (NOTE 3)	CJ				21.0				pF
Typical Thermal Resistance from Junction to Case (NOTE 1)	ROJC				8.0				°C/W
Operating Junction Temperature Range	Tj			-5	5 to +	150			°C
Storage Temperature Range	TSTG			-5	5 to +'	150			°C

NOTES:

1. Unit mounted on 4.0"x4.0"x.11" thick (10.5 x10.5 x 0.3 cm) Al. plate.

2. Unit mounted on P.C. board at .375" ,9.5mm lead lengths with .5"x.5" (12mmx12mm) Copper pads.

3. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GBPC1005 THRU GBPC110

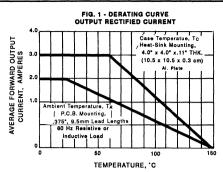
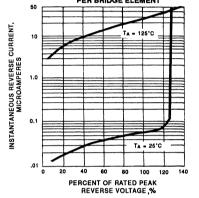
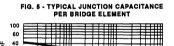
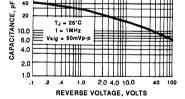





FIG. 3 - TYPICAL REVERSE CHARACTERISTICS PER BRIDGE ELEMENT

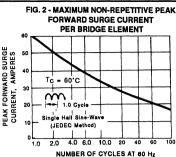
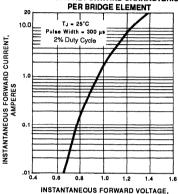
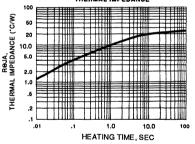
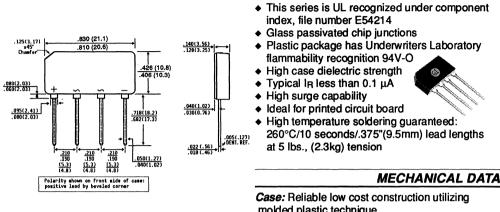




FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

VOLTS

FIG. 6 - TYPICAL TRANSIENT THERMAL IMPEDANCE


@ General Instrument

GBL005 THRU GBL10

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER CURRENT - 4.0 Amperes

VOLTAGE - 50 - 1000 Volts

FEATURES

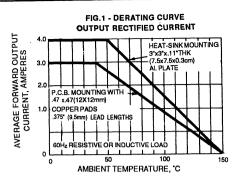
Dimensions in inches and (millimeters)

MECHANICAL DATA

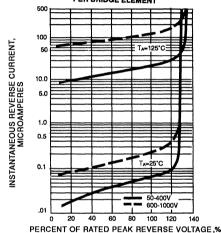
molded plastic technique Terminals: Plated leads solderable per MIL-STD-750. Method 2026 Mounting Position: Any Weight: .071 ounces, 2.0 grams

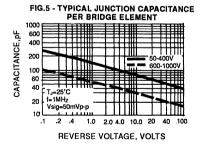
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

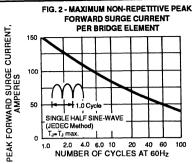
Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.


	SYMBOLS	GBL 005	GBL 01	GBL 02	GBL 04	GBL 06	GBL 08	GBL 10	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	V _{DC} 50 100 200 400 600 800 1				1000	Volts		
Maximum Average Forward Ta=50°C (NOTE 1) Rectified Output Current at Ta=40°C (NOTE 2)	l(AV)	4.0 3.0							Amps
Peak Forward Surge Current, Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0							Amps
Rating for fusing (t<8.3ms)	l ² t				93.0				A ² sec
Maximum Instantaneous Forward Drop per leg at 4.0 Amperes	VF				1.1				Volts
Maximum DC Reverse Current at Rated $T_A=25^{\circ}C$ DC Blocking Voltage per leg $T_A=125^{\circ}C$	IR				5.0 500.0				μA
Typical Junction Capacitance per leg (NOTE 3)	. Cj		9	5.0			40.0)	pF
Typical Thermal Resistance from (NOTE 1) Junction to Ambient (NOTE 2)	Reja	10.0 22.0							∘c/w
Operating Junction Temperature Range	Tj			-5	5 to +	150			°C
Storage Temperature Range	TSTG			-5	5 to +'	150			°C

NOTES:


Unit mounted on 3.0"x3.0"x.11" thick (7.5x7.5x0.3cm) Al. plate.
 Unit mounted on P.C. Board at .375", 9.5mm lead lengths with .5"x.5" (12mmx12mm) copper pads.


3. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.


RATINGS AND CHARACTERISTIC CURVES GBL005 THRU GBL10

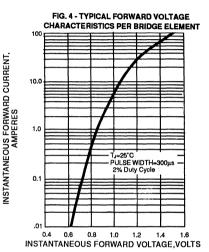
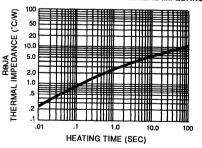
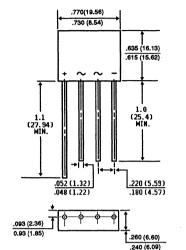



FIG.6 - TYPICAL TRANSIENT THERMAL IMPEDANCE


(D) General Instrument

KBL005 THRU KBL10

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER CURRENT - 4.0 Amperes

VOLTAGE - 50 to 1000 Volts

FEATURES

Dimensions in inches and (millimeters)

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Class-
- ification 94V-O High case dielectric
- strength of 1500VRMS Ideal for printed cir-
- cuit board Reliable low cost construction utilizing molded plastic technique
- Glass passivated chip junctions
- Surge overload rating of 200 Amperes peak
- High temperature soldering guaranteed: 250° C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated leads solderable per MIL-STD-750, Method 2026

Mounting Position: Anv Weight: 0.2 ounce, 5.6 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	KBL 5 005	KBL 01	KBL 02	KBL 04	KBL 06	KBL 08	KBL 10	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Current at T _A =50°C	I(AV)	4.0					-	Amps	
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	200.0							
Maximum Instantaneous Forward Voltage drop per leg at 4.0A	VF				1.1				Volte
Maximum DC Reverse CurrentTA=2at Rated DC Blocking Voltage per legTA=12		5.0 1.0						μA mA	
Typical Thermal Resistance per leg (NOTE 1)	Reja				20.0				°CN
Operating Junction and Storage Temperature Range	Т Тј,тѕтс			-50	to +1	50			°C

NOTES:

1.Thermal Resistance from Junction to Ambient at .375" (9.5mm) lead lenghts on a P.C. Board

with .5"x.5" (12mmx12mm) with copper pads.

RATINGS AND CHARACTERISTIC CURVES KBL005 THRU KBL10

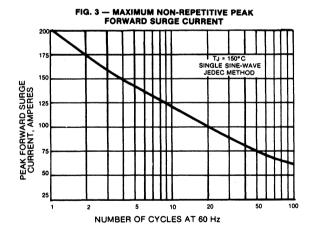
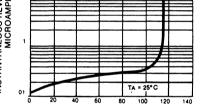
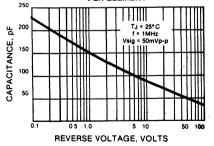
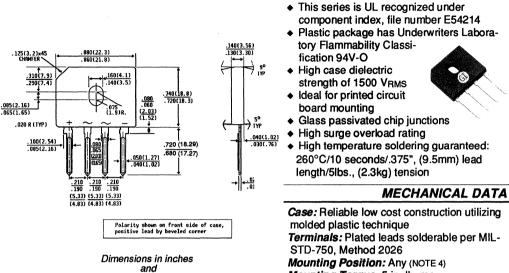




FIG. 2 - TYPCIAL INSTANTANEOUS FORWARD CHARACTERISTICS PER ELEMENT 100 INSTANTANEOUS FORWARD CURRENT AMPERES 40 20 10 4.0 2.0 1.0 TJ = 25°C Pulse Width = 300 µs 2% Duty Cycle 0.4 0.2 0.1 0.6 0.8 1.1 1.2 0.7 0.9 1.0 INSTANTANEOUS FORWARD VOLTAGE, VOLTS FIG. 4 - TYPICAL REVERSE CHARACTERISTICS 10 INSTANTANEOUS REVERSE CURRENT MICROAMPERES Tc = 100°C 10

PERCENT OF RATED PEAK REVERSE VOLTAGE, %


FIG. 5 - TYPICAL JUNCTION CAPACITANCE PER ELEMENT

GBU4A THRU GBU4M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 4.0 Amperes

FEATURES

(millimeters)

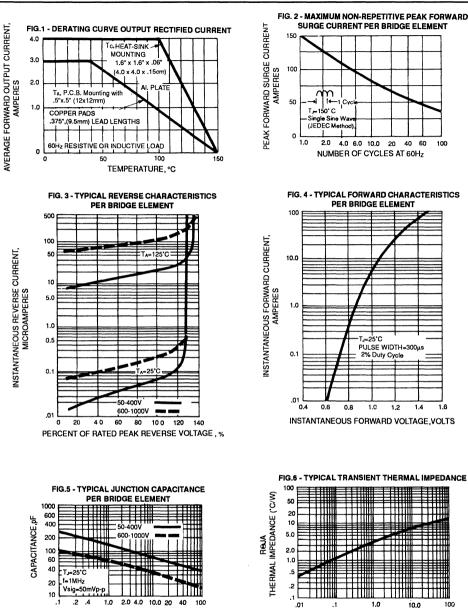
MECHANICAL DATA

Mounting Torque: 5 in. lb. max. Weight: 0.015 ounce. 4.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz. For capacitive load, derate current by 20%.

					GBU				
	SYMBOLS	4A	4B	4D	4G	4J	4K	4M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Tc=100°C (NOTE 1)		4.0							
Output Current at T _A =40°C (NOTE 2)	I(AV)				3.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM	150.0					Amps		
Rating for fusing (t<8.3ms)	l ² t	I ² t 93.0					A ² sec		
Maximum Instantaneous Forward Voltage drop per leg at 4.0A	VF				1.0				Volts
Maximum DC Reverse Current at TJ=25°C	;				5.0				
Rated DC Blocking Voltage per leg TJ=125°C	IR I				500.0)			μA
Typical Junction Capacitance per leg (NOTE 3)	CJ		10	01.0		4	6.0		pF
Typical Thermal Resistance from Junction to Case(NOTE	1) ROJC	2.5							
(per leg) Junction to Ambient (NOTE	2) RØJA	22.0					°C/W		
Operating Junction and Storage Temperature Range	TJ,TSTG			-5	5 to +	150			°C


Notes: 1. Unit case mounted on 1.6"x1.6"x0.06" THK (4.0x4.0x0.15cm) Al. Plate.

2. Units mounted on P,C. Board with .5"x.5" (12mmx12mm) copper pads and .375"(9.5mm) lead lengths.

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

4. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with number 6.0 screw.

RATINGS AND CHARACTERISTIC CURVES GBU4A THRU GBU4M

REVERSE VOLTAGE, VOLTS

FIG. 4 - TYPICAL FORWARD CHARACTERISTICS

100

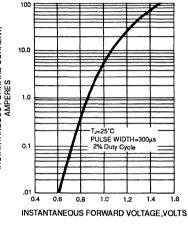
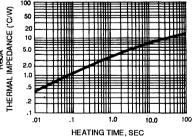



FIG.6 - TYPICAL TRANSIENT THERMAL IMPEDANCE

(D) General Instrument

KBU4A THRU KBU4M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

185 (4.7) 165 (4.2)

205 (6.6)

.052(1.3)

165 (4 2)

.455 (11.3) .405 (10.3)

2.40 (6.09)

.200 (5.08)

45° .085 (2.2) .065 (1.7)

.+-

.075(1.9)R.TYP (2 PLACES)

Dimensions in inches

and

(millimeters)

VOLTAGE - 50 to 1000 Volts CURRENT - 4.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- High case dielectric strength of 1500 VRMs
- Ideal for printed circuit board
 Reliable low cost construction
- utilizing molded plastic technique
- Glass passivated chip junctions
- Glass passivated chip junctions
 Surge everleed rating of 000 Ampore
- Surge overload rating of 200 Amperes peak
- High temperature soldering guaranteed: 250°C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique Terminals: Plated lead solderable per MIL-STD-750, Method 2026 Mounting Position: Any (NOTE 3) Mounting Torgue: 5 in. lb. max. Weight: 0.3 ounce, 8.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

		SYMBOLS	KBU 4A	KBU 4B	KBU 4D	KBU 4G	KBU 4J	KBU 4K	KBU 4M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified T _C =100°C Output Current at T _A =30°C (r		I(AV)	4.0							Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		IFSM						Amps		
Maximum Instantaneous Forward Voltage drop per leg at 4.0A		VF	1.0						Volts	
Maximum DC Reverse Current T/	4=25°C					5.0				μA
at Rated DC Blocking Voltage per leg TA=	=125°C	I _R				1.0				mA
Typical Themal Resistance per leg (NOTE 1)		ReJC	3.3							
(NOTE 2)		Reja	20.0							°C/M
Operating Junction and Storage Temperature Range			G -50 to +150							°C

NOTES:

.160 (4.1)

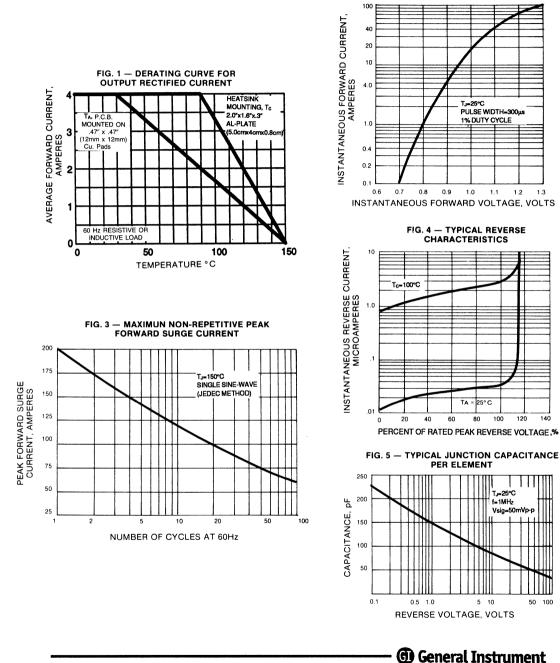
.760 .700(17.8) (19.3) .660(16.8)

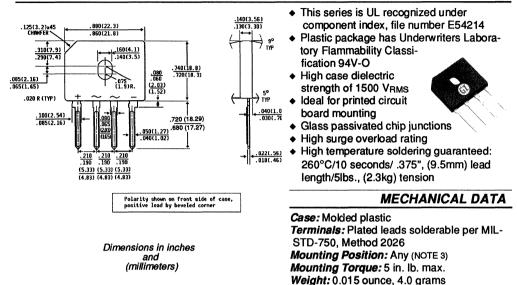
1. Thermal Resistance from Junction to Case with units mounted on a 2.0"x1.6 "x 0.3" THK (5cm. x 4cm. x0.8cm.) Al. Plate.

2. Units mounted on P.C. Board with .5"x.5" (12mmx12mm) copper pads and .375" (9.5mm) lead lengths.

Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with number 6 screw.

RATINGS AND CHARACTERISTIC CURVES KBU4A THRU KBU4M




FIG. 2 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER ELEMENT

GBU6A THRU GBU6M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER CURRENT - 6.0 Amperes

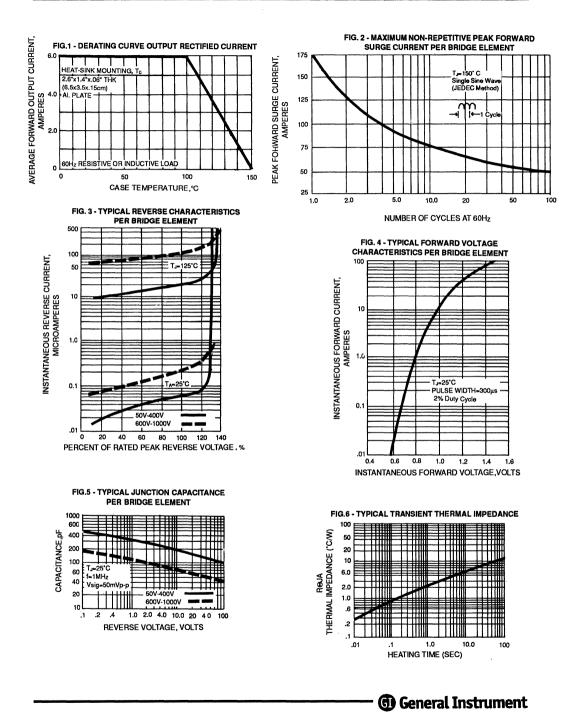
VOLTAGE - 50 to 1000 Volts

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz. For capacitive load, derate current by 20%.

					GBU				
	SYMBOLS	6A	6B	6D	6G	6J	6K	6M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified									
Output Current at T _C =100°C (NOTE 1)	I(AV)			Amps					
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)	IFSM	175.0						Amps	
Rating for fusing (t<8.3ms)	l ² t	127.0							A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 6.0A	VF				1.0				Volts
Maximum DC Reverse Current at TJ=25°C					5.0				
Rated DC Blocking Voltage per leg T _J =125°C	IR				500.0)			μΑ
Typical Junction Capacitance per leg (NOTE 2)	CJ		21	1.0		9	4.0		pF
Typical Thermal Resistance per leg from									
Junction to Case (NOTE 1)	RejC				2.2				°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	ì		-5	5 to +	150			°C


Notes:

1. Units case mounted on 2.6"x1.4"x0.06" THK (6.5x3.5x0.15 cm) Al. Plate. heatsink.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

3. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with number 6.0 screws.

RATINGS AND CHARACTERISTIC CURVES GBU6A THRU GBU6M

KBU6A THRU KBU6M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIERS CURRENT - 6.0 Amperes

VOLTAGE - 50 to 1000 Volts

185 (4.2) .165 (4.2)

45° .085 (2.2)

.455 (11.3) .405 (10.3)

.240 (6.09)

.200 (5.08)

.075(1.9)R. TYP (2 PLACES)

Dimensions in inches

and (millimeters) .280(7.1)

205 (6.6)

.052(1.3)

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- High case dielectric strength of 1500 VRMS
- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- Glass passivated chip junctions
- Surge overload rating of 250 Amperes peak
- High temperature soldering guaranteed: 250°C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Mounting Position: Any (NOTE 3) Mounting Torgue: 5 in. lb. max. Weight: 0.3 ounce, 8.0 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz Resistive or inductive load. For capacitive load, derate current by 20%.

		SYMBOL	KBU s 6A	KBU 6B	KBU 6D	KBU 6G	KBU 6J	KBU 6K	KBU 6 M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Output Current at	T _C =100°C T _A =40°C	I(AV)				6.0 6.0				Amps
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)		IFSM				250.0				Amps
Maximum Instantaneous Forward Voltage per leg at 6.0A	ə drop	VF				1.0				Volts
Maximum DC Reverse Current	T _A =25°C					5.0				μA
at Rated DC Blocking Voltage per leg	T _A =125°C	IR				1.0				mA
Typical Thermal Resistance per leg (NOTE 1)		Rejc				4.7				
(NOTE 2)		RØJA				18.0				°C/W
Operating Junction and Storage Temperature Range		TJ,TSTO			-5	0 to +	150			°C

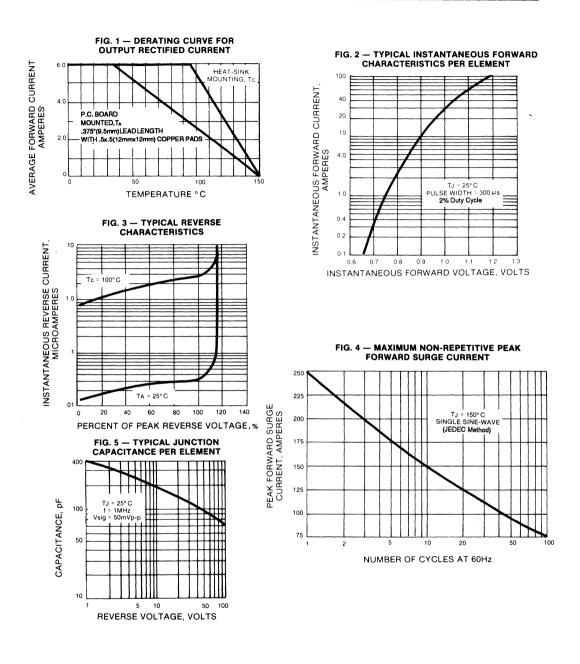
NOTES:

.160 (4.1)

.760 .700(17.8) (19.3) .660(16.8)

(Ż

.220 (5.6


1. Thermal Resistance from Junction to Case with units mounted on a 2.6"x1.4x.06" THK

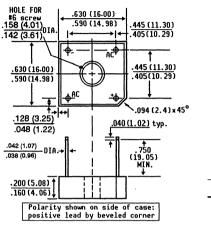
(6.5cm. x 3.5cm. x.15cm.) Al. Plate.

2. Thermal Resistance from Junction to Ambient with units in free air, P.C. board mounted on .5"sq.(12mm²) Cu. pads, .375"(9.5mm) lead lengths.

3. Recommended mounted position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with number 6 screw.

RATINGS AND CHARACTERISTIC CURVES KBU6A THRU KBU6M

@ General Instrument


GBPC6005 THRU GBPC610

GLASS PASSIVATED SINGLE - PHASE BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts

CURRENT - 6.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

- Glass passivated chip junctions
- This series is UL recognized under component index, file number E54214
- Plastic package has carries Underwriters Laboratory flammability recognition 94V-O
- High case dielectric strength of 1500 VRMS
- Typical I_R less than 0.5 μ A
- High surge current capability
- Ideal for printed circuit boards
- High temperature soldering guaranteed: 260°C /10 seconds at 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable construction utilizing molded plastic technique

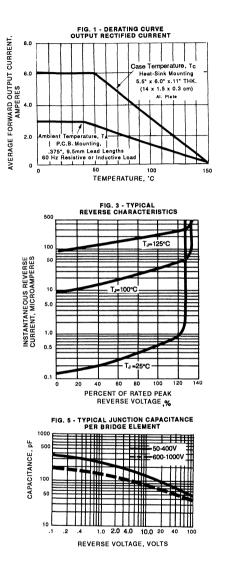
Terminals: Plated leads solderable per MIL-STD-750, Method 2026

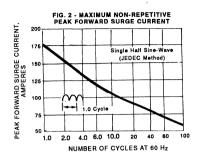
Mounting Position: Bolt down on heat-sink with silicone thermal compound between bridge and mounting surface for maximum heat transfer with number 6.0 screw

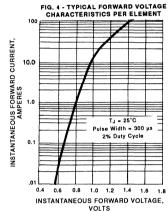
Mounting Torque: 5.0 in. - Ib. max. Weiaht: 0.1 ounces, 2.8 grams

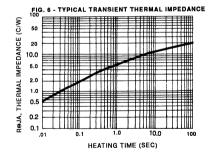
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

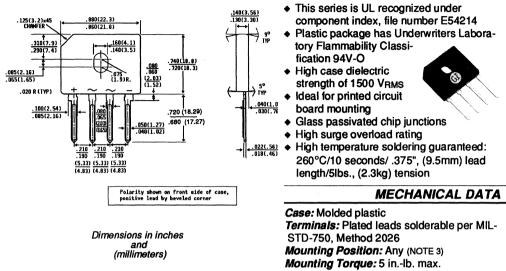

	SYMBOLS	GBPC 6005	GBPC 601	GPBC 602	GBPC 604	GBPC 606	GBPC 608	GBPC 610	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Bridge Input Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Voits
Maximum Average Forward $T_c=50^{\circ}C$ (NOTE 1)Rectified Output Current at $T_A=40^{\circ}C$ (NOTE 2)	I(AV)				6.0 3.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)					175.0				Amps
Rating for fusing (t<8.3ms)	l ² t				127.0				A ² sec
Maximum Instantaneous Forward Voltage Drop per leg at 3.0 Amperes	VF				1.0				Volts
Maximum DC Reverse Current at Rated T _A = 25°C					5.0				
DC Blocking Voltage per leg T _A =125°C	IR				500.0				μA
Typical Junction Capacitance per leg (NOTE 3)		186.0 90.0						pF	
Typical Thermal Resistance from Junction to Case (NOTE 1)					8.0				°C/W
Operating Junction Temperature Range				-5	5 to +1	50			°C
Storage Temperature Range	TSTG			-5	5 to +1	150			°C


NOTES: 1. Unit mounted on 5.5"x 6.0"x.11" thick (14x15x0.3 cm) Al. plate.


2. Unit mounted on P.C. board at .375" ,9.5mm lead lengths with .5"x.5"(12mmx12mm) Copper pads.


3. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GBPC6005 THRU GBPC610



(D) General Instrument

GBU8A THRU GBU8M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER CURRENT - 8.0 Amperes VOLTAGE - 50 to 1000 Volts

FEATURES

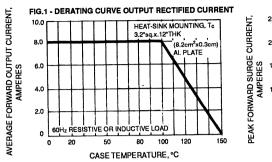
Weight: 0.015 ounce. 4.0 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

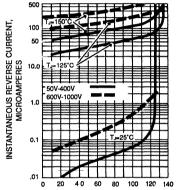
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60 Hz. For capacitive load, derate current by 20%.

		li bandi i sera				GBU				
	5	SYMBOLS	8A	8B	8D	8G	8J	8K	8M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified										
Output Current at Tc=100°C (r	NOTE 1)	l(AV)				8.0				Amps
Peak Forward Surge Current Single sine-wave superimposed on rated load (JEDEC Method)		IFSM	FSM 200.0							Amps
Rating for fusing (t<8.3ms)		l ² t				166.0				A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 8.0A		VF				1.0				Volts
Maximum DC Reverse Current at T	j=25°C					5.0				
Rated DC Blocking Voltage per leg TJ	=125°C	IR	500.0						μΑ	
Typical Junction Capacitance (NOTE 2)		CJ		21	1.0		94	4.0		pF
Typical Thermal Resistance per leg (NOTE 1)		Rejc				2.2				
(NOTE 4)		Røja				21.0				°C/W
Operating Junction and Storage Temperature Ra	nge	TJ,TSTG			-5	5 to +1	50			°C

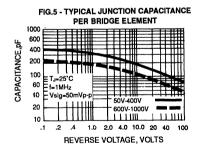
NOTES:


1. Units case mounted on 3.2"x3.2"x.12" THK (8.2 x8.2 x 0.3cm.) Al. Plate. heatsink.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.


3. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum heat transfer with number 6.0 screws.

4. Units mounted in free air, no heat sink on P.C. board, .5 sq (12mm²) Cu Pads, .375" (9.5mm) lead length.


RATINGS AND CHARACTERISTIC CURVES GBU8A THRU GBU8M

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

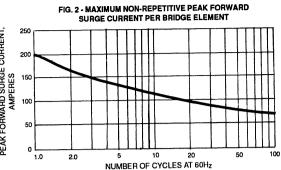


FIG. 4 - TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

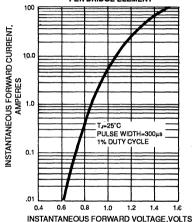
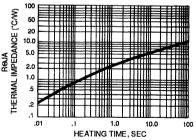



FIG.6 - TYPICAL TRANSIENT THERMAL IMPEDANCE

(D) General Instrument

KBU8A THRU KBU8M

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 8.0 Amperes

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic material used carries Underwriters Laboratory Flammability Classification 94V-O
- High case dielectric strength of 1500 V_{RMS}
- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- Glass passivated chip junctions
- Surge overload rating of 300 Amperes peak
- High temperature soldering guaranteed: 250°C /10 seconds / .375", (9.5mm) lead length / 5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: Reliable low cost construction utilizing molded plastic technique

Terminals: Plated leads solderable per MIL-STD-750, Method 2026

Mounting Position: Any (NOTE 3)

Mounting Torgue: 5 in. lb. max.

Weight: 0.3 ounce, 8.0 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

.185 (4.7) .165 (4.2) .165 (4.2)

205 (6.6)

.052(1.3) .048(1.2)

+ 45°

.085

.065 (1.7)

455 (11.3)

405 (10.3)

2.40 (6.09)

.200 (5.08)

335 (23.7

(Ŧ

.075(1.9)R.TYP

Dimensions in inches and

(millimeters)

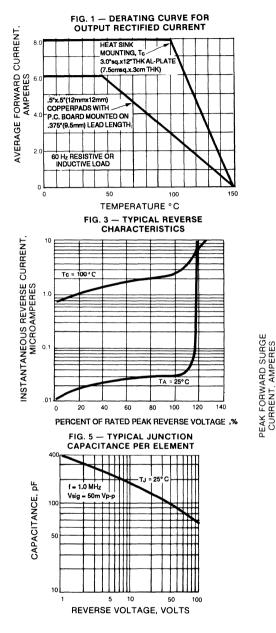
.160 (4.1)

.760 .700(17.8) (19.3) .660(16.8) MAX

.220 (5.6)

		SYMBOL	KBU s 8A	KBU 8B	KBU 8D	KBU 8G	KBU 8J	KBU 8K	KBU 8M	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified T _C =100°C (NOTE 1) Output Current at T _a =45°C (NOTE 2)						8.0 6.0				Amps
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)		IFSM				300.0				Amps
Maximum Instantaneous Forward Voltag per leg at 8.0A	e drop	VF				1.0				Volts
Maximum DC Reverse Current at Rated DC Blocking Voltage per leg	T _A =25°C T _A =125°C	IR				10.0 1.0				μA mA
Typical Thermal Resistance per leg (NOTE 1)		RejC				3.0				
(NOTE 2) Operating Junction and Storage Temperature Range		ROJA T _J , T _{STG}			-5	18.0 0 to +1	50			•C/W •C

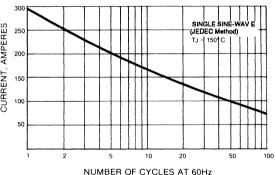
NOTES:

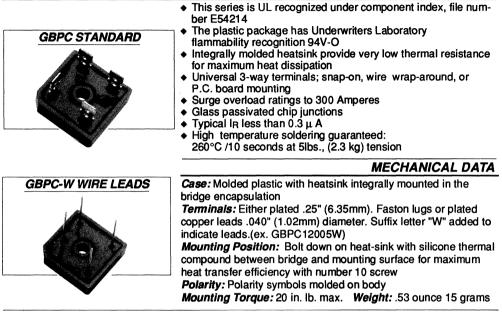

1. Units mounted on a 3"sq.x .11" THK (7.5cm. sq.x0.3cm.) Al. Plate heatsink.

2. Units mounted in free air, no heatsink, P.C. board at .375" (9.5mm) lead lengths with .5"sq. (12mm²) copper pads.

3. Recommended mounting position is to bolt down on heatsink with silicone thermal compound for maximum

heat transfer with number 6 screw.


RATINGS AND CHARACTERISTIC CURVES KBU8A THRU KBU8M



G General Instrument

GBPC12,15,25 SERIES

HIGH CURRENT GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

				GE	PC12,1	5,25			
	SYMBOLS	005	01	02	04	06	08	10	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward GBPC12					12.0				
Rectified Output Current GBPC15	I(AV)				15.0				Amps
(SEE FIG.1) GBPC25					25.0				
Peak Forward Surge Current Single GBPC12					200.0	1			
sine-wave superimposed on GBPC15	IFSM				300.0	l i			Amps
rated load (JEDEC Method) GBPC25					300.0				
Rating (non-repetitive, for t GBPC12					160.0	1			
greater than 1 ms and less GBPC15	l ² t				375.0)			Amps ² se
than 8.3 ms) for fusing GBPC25					375.0)			
Maximum Instantaneous GBPC12 IF=6.0A									
Forward Voltage drop per GBPC15 IF=7.5A	VF				1.1				Volts
leg at GBPC25 I _F =12.5A									
Maximum Reverse DC Current at Rated TA=25°C					5.0				
DC Blocking Voltage per leg T _A =125°C	l _R				500.0)			μA
RMS Isolation Voltage from case to leads	Viso				2500.	0			Volts
Typical Junction Capacitance per leg (NOTE 2)	CJ				300.0)			pF
Typical Thermal Resistance per leg (NOTE 1)	Rejc				1.9				°C/W
Operating Junction Temperature Range	Tj			-5	5 to +	150			°C
Storage Temperature Range	T _{STG}			-5	5 to +	150			°C

NOTES: 1. Thermal Resistance from Junction to Case per leg.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GBPC12, 15, 25 SERIES

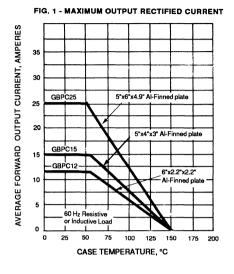


FIG 2 - MAXIMUM OUTPUT RECTIFIED CURRENT

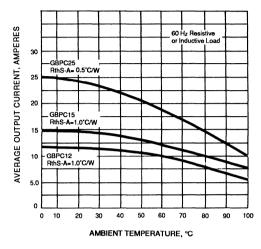
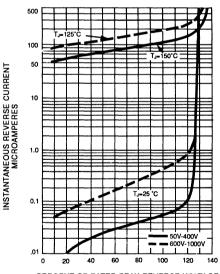
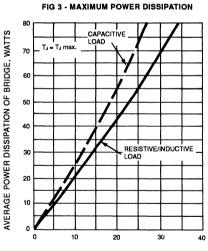




FIG 4 - TYPICAL REVERSE CHARACTERISTICS

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

(D) General Instrument

AVERAGE OUTPUT CURRENT, AMPERES

441

RATINGS AND CHARACTERISTIC CURVES GBPC12,15,25 SERIES

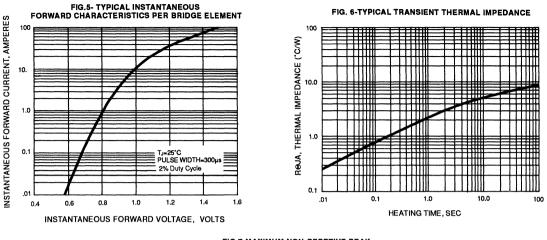


FIG.7-MAXIMUM NON-REPETIVE PEAK FORWARD SURGE CURRENT

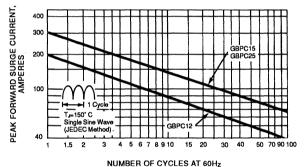
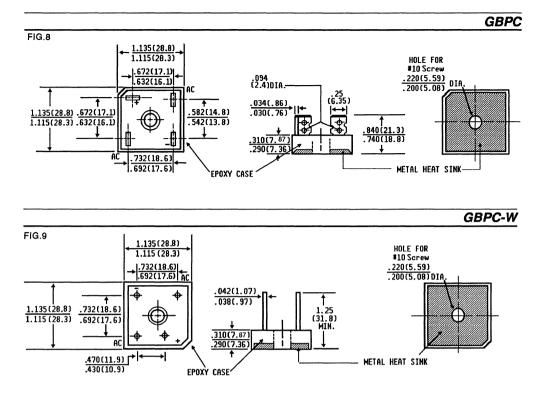



FIG.8-TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT

G General Instrument

Dimensions in inches and (millimeters)

Notes:

- 1. Corrosion resistant terminals designed with .250 female quick connectors for wrap around or snap-on.
- 2. A thin film of silicone thermal compound is recommended between the bridge case and mounting
- surface for improved thermal conduction.
- 3. Higher dielectric strengths availbable. Consult factory.

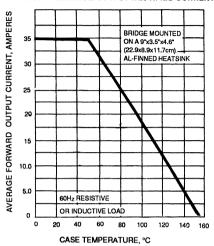
(f) General Instrument

GBPC35005 THRU GBPC3510

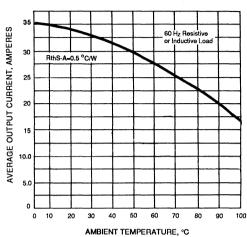
HIGH CURRENT GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

				G	BPC35				
SYMBOLS	005	01	02	04	06	08	10	UNITS	3
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Output Current at Tc=50°C (NOTE 1)	l(AV)				35.0				Amps
Peak Forward Surge Current Single sine-wave super- imposed on rated load (JEDEC Method)					400.0				Amps
Rating (non-repetitive, for t greater than 1 ms and less than 8.3 ms) for fusing	l ² t				660.0)			Amps ² Se
Maximum Instantaneous Forward Voltage drop per leg at 17.5 Amps	VF				1.1				Volts
$\begin{array}{llllllllllllllllllllllllllllllllllll$	l _R				5.0 500.0)			μA
RMS Isolation Voltage from case to leads	Viso				2500.	0			Volts
Typical Junction Capacitance per leg (NOTE 2)					300.0)			pF
Typical Thermal Resistance from Junction to Case per leg (NOTE 1)	Rejc				1.4				°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG			-5	5 to +	150			°C


NOTES: 1. Bridge mounted on a 9"x3.5"x4.6"(22.9x8.9x11.7cm) Al-Finned Heatsink.

2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.

RATINGS AND CHARACTERISTIC CURVES GBPC35005 THRU GBPC3510

FIG. 1 - MAXIMUM OUTPUT RECTIFIED CURRENT

FIG 2 - MAXIMUM OUTPUT RECTIFIED CURRENT

FIG 4 - TYPICAL REVERSE CHARACTERISTICS

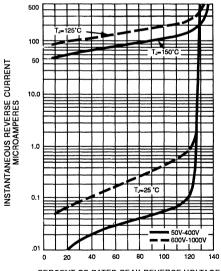
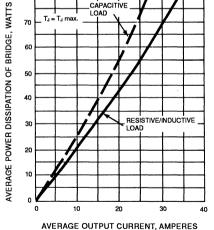



FIG 3 - MAXIMUM POWER DISSIPATION

80

PERCENT OF RATED PEAK REVERSE VOLTAGE ,%

General Instrument

RATINGS AND CHARACTERISTIC CURVES GBPC35005 THRU GBPC3510

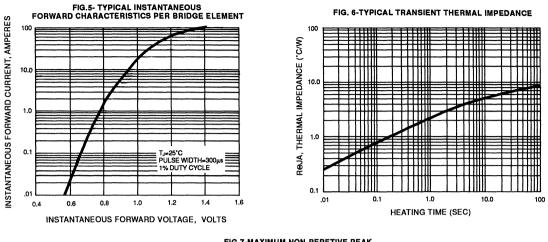


FIG.7-MAXIMUM NON-REPETIVE PEAK FORWARD SURGE CURRENT

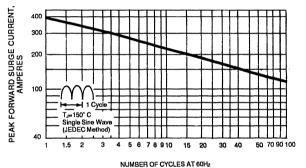
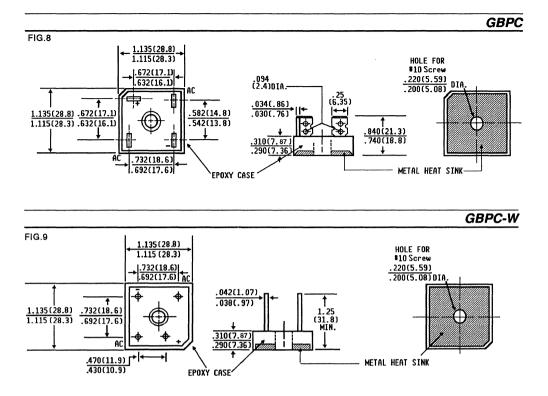
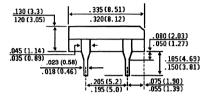



FIG.8-TYPICAL JUNCTION CAPACITANCE PER BRIDGE ELEMENT

G General Instrument

Dimensions in inches and (millimeters)

Notes:


- 1. Corrosion resistant terminals designed with .250 female quick connectors for wrap around or snap-on.
- 2. A thin film of silicone thermal compound is recommended between the bridge case and mounting
- surface for improved thermal conduction.
- 3. Higher dielectric strengths availbable. Consult factory.

EDF1AM THRU EDF1DM

MINIATURE GLASS PASSIVATED FAST EFFICIENT BRIDGE RECITIFIER

VOLTAGE - 50 to 200 Volts CURRENT - 1.0 Ampere

FEATURES

 This series is UL recognized under component index, file number E54214

- Plastic package has Underwriters Laboratory flammability recognition 94V-0
- Glass passivated chip junctions
- High Surge overload rating -50 amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed: 265°C /10 seconds at 5 lbs., (2.3kg) tension
- Superfast recovery times for high efficiency

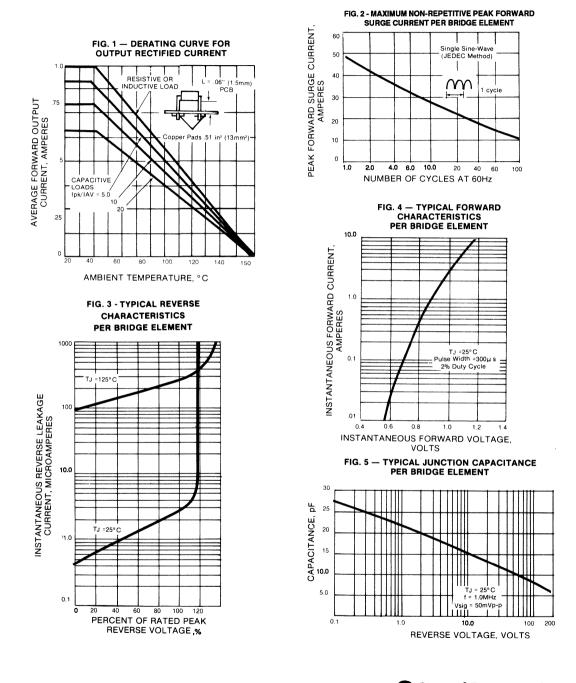
MECHANICAL DATA

Case: Molded plastic Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on body Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	EDF1AM	EDF1BM	EDF1CM	EDF1DM	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	106	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C	I(AV)			1.0		Amps
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			50.0		Amps
Rating for fusing (t<8.35ms)	l ² t	10.0				A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 1.0A	VF			1.05		Volts
Maximum Reverse CurrentTA=25°Cat Rated DC Blocking VoltageTA=125°C	IR			5.0 1.0		μA mA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}			50.0		nS
Typical Thermal Resistance (NOTE 2)	Reja			40.0		°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG		-55	to +150		°C

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .51"sq. (13mm sq.) Copper Pads.

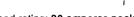
RATINGS AND CHARACTERISTIC CURVES EDF1AM THRU EDF1DM

G General Instrument

SURFACE MOUNT BRIDGE RECTIFIER 0.5 AMPERE TO 1.0 AMPERE 50 VOLTS TO 1000 VOLTS

SEE NEW ISOLATED PACKAGES

 \Rightarrow


MB2S THRU MB6S

MINIATURE GLASS PASSIVATED SINGLE-PHASE SURFACE MOUNT BRIDGE RECTIFIER

VOLTAGE - 200 to 600 Volts CURRENT - 0.5 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Recognition 94V-O
- Glass passivation chip junctions

- High surge overload rating: 30 amperes peak
- Saves space on printed circuit board
- High temperature soldering guaranteed:260°C/10 seconds at 5 lbs. (2.3kg) tension

0'-7'-023(58) 022(

.105(2.67)

H

.155(3.94)

145(3.68)

.272(6.91)

.190(4.83)

.106(2.7)

.029(.75)

.017(.45)

-11

Dimensions in inches and (millimeters)

MECHANICAL DATA

Case: Molded Plastic over passivated junctions Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on body Weight: .0078 ounce, 0.22 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.

	SYMBOLS	MB2S	MB 4S	MB6S	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	200	400	600	Volts
Maximum RMS Voltage	VRMS	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	200	400	600	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C - on Glass-Epoxy P.C.B. - on Ceramic P.C.B.	I(AV)		0.5 0.8		Amps
Peak Forward Surge Current 8.3m sec Single Half Sine- Wave superimposed on Rated Load (JEDEC Method)	IFSM		30.0		Amps
Rating for Fusing (t<8.35ms)	l ² t		3.8		A ² s
Maximum Instantaneous Forward Voltage Drop per Element at 0.4A	VF		1.0		Volts
Maximum DC Reverse Current atT_A=25°CRated DC Blocking Voltage per elementT_A=125°C	IR		5.0 500		μΑ
Typical Junction Capacitance per element (NOTE 1)	CJ		25.0		pF
Typical Thermal Resistance (NOTE 2)	R o jl Roja		20.0 75.0		°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG		-55 to +150		°C

NOTES: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

2. Thermal Resistance from Junction to Lead and /or Ambient, P.C. board mounted on .047 in.² (12mm²) copper pads.

DF005S THRU DF10S

MINIATURE GLASS PASSIVATED SINGLE - PHASE SURFACE MOUNT BRIDGE RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere

FEATURES

(da

- This series is UL recognized under component index, file number E54214
- Plastic package has Underwriters Laboratory flammability recognition 94V-O
- Glass passivated chip junctions
- High Surge overload rating 50 amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C /10 seconds at 5 lbs., (2.3kg) tension

MECHANICAL DATA

Case: Molded Plastic

Terminals: Plated leads solderable per MIL-STD-750, Method 2026

Polarity: Polarity symbols marked on body

Weight: 0.04 ounce, 1.0 gram

Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

.205 (5.2

.025(.635)

F

.047(1.201...)

.040(1.02)

310(7.9)

.290(7.4)

.255 (6.5)

.013(.330) .003(.076)

404(10.3)

386(9.80)

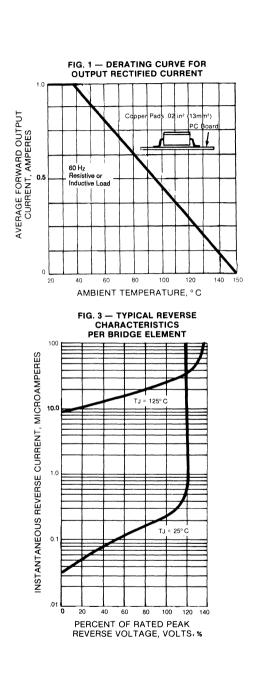
.130 (3.3) .120 (3.05)

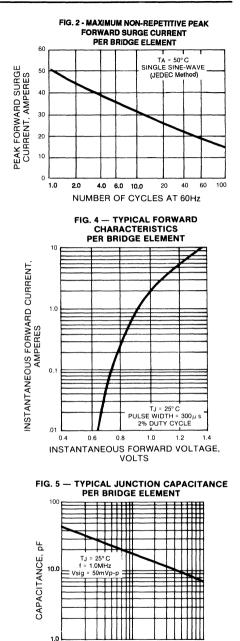
.335 (8.51)

Dimensions in inches and

(millimeters)

.013(.330)


.060 (1.524)


	SYMBOLS	DF0 05S	DF 01S	DF 02S	DF 04S	DF 06S	DF 08S	DF 105	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C	I(AV)				1.0				Amp
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)					50.0				Amps
Rating for fusing (t<8.35ms)	l ² t				10.0				A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 1.0A	VF				1.1				Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage per leg T _A =125°C	l _R				5.0 0.5				μA _m A
Typical Junction Capacitance per leg (NOTE 1)	CJ				25.0				pF
Operating Junction Temperature Range	TJ			-5	5 to +1	50			°C
Storage Temperature Range	TSTG			-5	5 to +1	50			°C

NOTE:

1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts.

RATINGS AND CHARACTERISTIC CURVES DF005S THRU DF10S

10.0 REVERSE VOLTAGE, VOLTS

1.0

G General Instrument

100

EDF1AS THRU EDF1DS

MINIATURE GLASS PASSIVATED FAST EFFICIENT SURFACE MOUNT BRIDGE RECTIFIER VOLTAGE - 50 to 200 Volts CURRENT - 1.0 Ampere

FEATURES

- This series is UL recognized under component index, file number E54214
- Plastic package has Underwriters Laboratory flammability recognition 94V-0
- Glass passivated chip junctions
- High surge overload rating-50 amperes peak
- Ideal for printed circuit board
- High temperature soldering guaranteed: 260°C /10 seconds at 5 lbs., (2.3kg) tension
- Superfast recovery times for high efficiency

MECHANICAL DATA

Case: Molded plastic Terminals: Plated leads solderable per MIL-STD-750, Method 2026 Polarity: Polarity symbols marked on body Weight: 0.04 ounce, 1.0 gram Mounting Position: Any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches

and (millimeters)

.310(7.9)

.255 (6.5) .245 (6.2)

.013(.330)

.003(.076)

. 386(9.80)

.130 (3.3) .120 (3.05)

.335 (8.51)

.013(.330)

.009(.241)

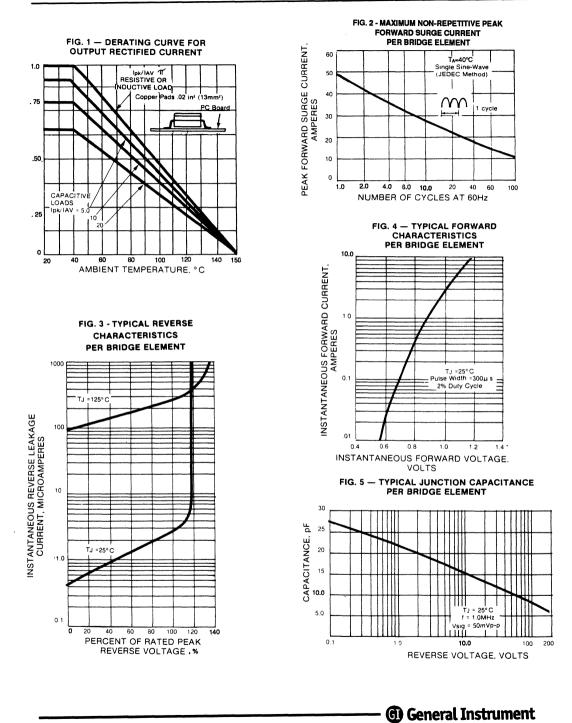
.060 (1.524)

	SYMBOLS	EDF1AS	EDF1BS	EDF1CS	EDF1DS	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	106	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Output Rectified Current at T _A =40°C	I(AV)			1.0		Amps
Peak Forward Surge Current Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		50.0			
Rating for fusing (t<8.35ms)	l ² t	10.0				A ² sec
Maximum Instantaneous Forward Voltage drop per leg at 1.0A	VF		1	.05		Volts
Maximum DC Reverse CurrentT_A=25°Cat Rated DC Blocking VoltageT_A=125°C	IR			μA mA		
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	T _{RR}		5	50.0		nS
Typical Thermal Resistance (NOTE 2)	Reja		4	40.0		°C/W
Operating Junction and Storage Temperature Range	TJ, TSTG		-55	to +150		°C

NOTES:

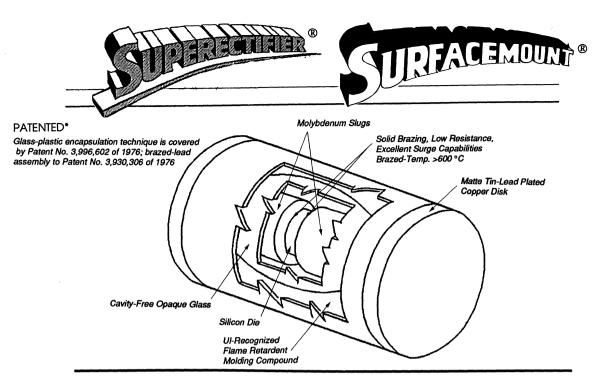
.047(1.20)...

.025(.635)


.040(1.02)

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=.25A.

2. Thermal Resistance from Junction to Ambient mounted on P.C. Board with, .51"sq. (13mm sq.) Copper Pads.


RATINGS AND CHARACTERISTIC CURVES EDF1AS THRU EDF1DS

0.5 AMPERE TO 3.0 AMPERES 50 VOLTS TO 1600 VOLTS

Our surface mount SUPERECTIFIER has redefined the concept of time and space. Passivated silicon SUPERECTIFIERs (1N6478-1N6484 and GL41A-GL41Y) are 1.0 Amp. 50-1600 V(BR) leadless, surface mounted devices that provide new space options, from increased surface density to reduced board size. Component placement speeds can be an order of magnitude higher. Our surface mount SUPERECTIFIERs Feature:

Brazing at greater than 600 Deg C at both terminal and die-eliminates all soft solders.

Exclusive UL recognized flame-retardant epoxy molding compound rated 94V-0, the highest available rating. (hermetically sealed construction.)

No other 1.0 Ampere rectifier of any kind - plastic, glass or metal - can match our surface mount SUPERECTIFIER features.

The way we make our surface mount SUPERECTIFIER is what makes them the best.

In eall construction, most other rectifiers rated up to 1.0 ampere are soldered or are only pressure contacted. Our surface mounted SUPERECTIFIER is made into an entirely solid unit with leads and cell brazed at temperatures greater than 600 Deg C. All other rectifiers fail at half that temperature!

Conventional plastic rectifiers use either varnish, silicon rubber or a thin film of silicon oxide to protect the junction. Our surface mount SUPERECTIFIER uses a patented glass passivation to seal its junction hermetically. In device encapsulation, our surface mount SUPERECTIFIER uses a flame-RETARDANT molding compound, rated UL94V-0, the highest rating available. In fact, it is the only plastic rectifier that exceeds environmental standards of MIL-S-19500.

In summary, the General Instrument surface mount SUPERECTIFIER is the world's only rectifier with totally brazed construction, with a patented glass passivated Junction, and with flame-retardant molding encapsulation.

G General Instrument

SURFACE MOUNT SUPERECTIFIERS

Surface Mount Superectifiers

Features:

- ♦ High Temperature Metallurgically Bonded
- ◆ Plastic Package has Underwriters Laboratory Flammability Classification 94V-0
- Glass Passivated Junction
- Capable of meeting Environmental Standards of MIL-S-19500
- High Temperature Soldering guaranteed for all present methods, including wave and vapor reflow soldering

Types:

1N6478-1N6484	1.0 Amp. Standard Recovery Time
GL41A-GL41Y	1.0 Amp. Standard Recovery Time
RGL41A-RGL41M	1.0 Amp. Standard Recovery Time
EGL41A-EGL41G	1.0 Amp. Standard Recovery Time
GL34A-GL34J	5.0 Amp. Standard Recovery Time

RGL34A-RGL34J	5.0 Amp. Standard Recovery Time
EGL34A-EGL34G	5.0 Amp. Standard Recovery Time
GF1A-GF1M	1.0 Amp. Standard Recovery Time
RGF1A-RGF1M	1.0 Amp. Standard Recovery Time
EGF1A-EGF1D	1.0 Amp. Standard Recovery Time

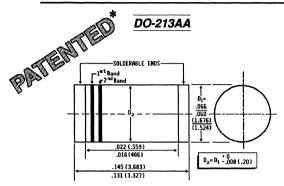
QUICK GUIDE TO SURFACE MOUNT SUPERECTIFIERS

	1N6478	GL41A	RGL41A*	EGL41A+	GL34A	RGL34A*	EGL34A+
TYPE	thru 1N6484	thru GL41M	thru RGL41M*	thru EGL41G+	thru GL34J	hru RGL34J*	thru EGL34G+
CASE	DO-213AB	DO-213AB	DO-213AB	DO-213AB	DO-213AA	DO-213AA	DO-213AA
io (A)	1.0	1.0	1.0	1.0	0.5	0.5	0.5
at TT(°C)	75	75	55	75	75	55	75
V8=50(V)	1N6478	GL41A	RGL41A	EGL41A	GL34A	RGL34A	EGL34A
(H= 100(V)	1N6479	GL41B	RGL41B	EGL418	GL34B	RGL34B	EGL348
/R=150(V)				EGL41C			EGL34C
(R= 200(V)	1N6480	GL41D	RGL41D	EGL41D	GL34D	RGL34D	EGL34D
/H= 300(V)				EGL41F			EGL34F
R = 400(V)	1N6481	GL41G	RGL41G	EGL41G	GL34G	RGL34G	EGL34G
R = 600(V)	1N6482	GL41J	RGL41J		GL34J	RGL34J	
R= 800(V)	1N6483	GL41K	RGL41K				
R = 1000(V)	1N6484	GL41M	RGL41M				
VR=1300(V)		GL41T					
VR=1600(V)		GL41Y					
SURGE (A)	30	30	30	30	10	10	10
V (V)	1.0	1.1/1.2	1.3	1.0/1.25	1.1	1.3	1.25
* Fast Recover	v + Ultrafa	st Recovery				L	

QUICK GUIDE TO SURFACE MOUNT SUPERECTIFIERS

(CONT.)			
ТҮРЕ	GF1A thru GF1M	* RGF1A thru RGF1M	+ EGF1A thru EGF1G
CASE	**DO-214BA	**DO-214BA	**DO-214BA
l _o (A)	1.0	1.0	1.0
at T _L (℃)	125	55	75
V _R =50(V)	GF1A	RGF1A	EGF1A
V _B =100(V)	GF1B	RGF1B	EGF1B
V _B =150(V)			EGF1C
V _R =200(V)	GF1D	RGF1D	EGF1D
V _B =300(V)			
V _B =400(V)	GF1G	RGF1G	
V _R =600(V)	GF1J	RGF1J	
V _B =800(V)	GF1K	RGF1K	
V _B =1000(V)	GF1M	RGF1M	
SURGE (A)	30	30	30
V(V)	1.1/1.2	1.3	1.0/1.25
* Fast Rocove	w 1 litrafact D	ecovery **Modifier	

Fast Recovery +Ultrafast Recovery **Modified


General Instrument

Series Type Volta		Voltage (V)	Current or Power	trr (ns)	Package		
GL34	Rectifier	50-600	0.5A		MELF/DO-213AA		
RGL34	Rectifier	50-600	0.5A	150/250	MELF/DO-213AA		
EGL34	Rectifier	50-400	0.5A	50	MELF/DO-213AA		
1N6478	Rectifier	50-1000	1.0A		MELF/DO-213AB		
GL41	Rectifier	50-1600	1.0A		MELF/DO-213AB		
RGL41	Rectifier	50-1000	1.0A	150-500	MELF/DO-213AB		
EGL41	Rectifier	50-400	1.0A	50	MELF/DO-213AB		
GLL4735	Zener	6.2-91	1.0 Watt		MELF/DO-213AB		
ZGL41	Zener	100-200	1.0 Watt		MELF/DO-213AB		
TGL41	TVS	6.8-200	400 Watt Peak		MELF/DO-213AB		
SGL41	Schottky	20-60	1.0A		MELF/DO-213AB		
<i>S1</i>	Rectifier	50-600	1.0A		SMA/DO-214AC		
RS1	Rectifier	50-600	1.0A	150-250	SMA/DO-214AC		
ES1	Rectifier	50-200	1.0A	15	SMA/D0-214AC		
<i>SS1</i>	Schottky	20-60	1.0A		SMA/DO-214AC		
SMAJ	TVS	6.8-170V	400 Watt Peak		SMA/D0-214AC		
GF1	Rectifier	50-1000	1.0A		GF1/DO-214BA		
RGF1	Rectifier	50-1000	1.0A	150-500	GF1/D0-214BA		
EGF1	Rectifier	50-200	1.0A	50	GF1/DO-214BA		
<i>S2</i>	Rectifier	50-1000	1.5A		SMB/DO214AA		
RS2	Rectifier	50-800	1.5A	150-500	SMB/DO214AA		
ES2	Rectifier	50-200	2.0A	20	SMB/DO-214AA		
<i>SS</i> 2	Schottky	20-60	2.0A		SMB/DO-214AA		
SMBJ,G	TVS	5.0-170	600 Watt Peak		SMB/DO-214AA		
S3	Rectifier	50-1000	2.5A		SMC/DO-214AB		
RS3	Rectifier	50-800	2.5A	150-500	SMCIDO-214AB		
ES3	Rectifier	50-200	3.0A	20	SMCIDO-214AB		
SS3	Schottky	20-60	3.0A		SMC/DO-214AB		
SMCJ.G	TVS	5.0-170	1500 Watt Pea	k	SMC/DO-214AB		

BYM05-50 THRU BYM05-600 GL34A THRU GL34J

SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER Current - 0.5 Amperes Voltage - 50 to 600 Volts

FEATURES

Dimensions in inches and (millimeters)

* Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed -lead assembly to Patent No. 3,930,306 of 1976

्रिवेगीवीविः

- For surface mounted applications
- High temperature metallurgically bonded

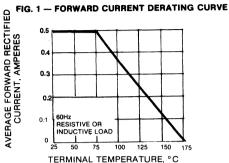
Glass passivated junction

- Plasticpackage has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals.Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

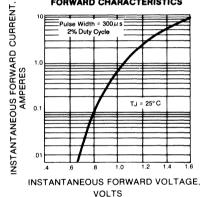
Case: Molded plastic over glass Terminals: Plated Terminals, solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram, 0.0014 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

		BYM05					
	SYMBOLS	-50	-100	-200	-400	-600	UNITS
Standard recovery time device: 1 st band is white		GL34A	GL34B	GL34D	GL34G	GL34J	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current at TT=75°C		0.5					Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			10.0			Amps
Maximum Instantaneous Forward Voltage at 0.5A	VF	1.2 1.3					Volts
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	IR	5.0 50.0					μΑ
Maximum Full Load Reverse Current, Full Cycle Average at T _A =75°C	IR(AV)	-		20			μA
Typical Junction Capacitance (NOTE 1)	CJ	7.0					pF
Maximum Thermal Resistance R _{thJL} (NOTE 2) R _{thJA} (NOTE 3)		70.0 150.0					°C/W
Operating Junction and Storage Temperature Range		-65 to +175					°C
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 V_{DC}. 2. Thermal resistance junction to terminal, 5.0mm²₂ copper pads to each terminal.


3. Thermal resistance junction to ambient, 5.0mm² copper pads to each terminal.


RATINGS AND CHARACTERISTIC CURVES BYM05-50 THRU BYM05-600 GL34A THRU GL34J

TERMINAL TEMPERATURE, °C

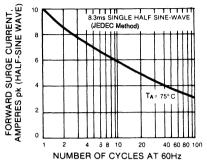
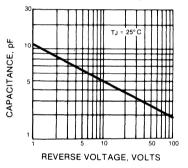
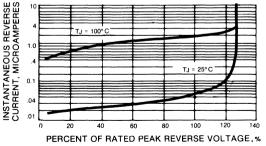
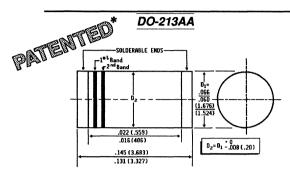




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



(D) General Instrument

BYM06-50 THRU BYM06-600 RGL34A THRU RGL34J

SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING JUNCTION RECTIFIER Voltage - 50 to 600 Volts Current - 0.5 Amperes

FEATURES

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

* FERTERET

For surface mounted applications

 High temperature metallurgically bonded

- Glass passivated junction
 Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

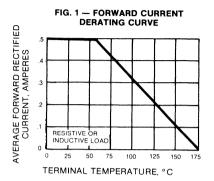
Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram, 0.0014 ounce

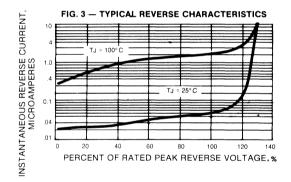
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°°C ambient temperature unless otherwise specified. Resistive or inductive load.

		BYM06					
	SYMBOLS	-50	-100	-200	-400	-600	UNITS
Fast switching device: 1 st band is Red		RGL34A	RGL34B	RGL34D	RGL34G	RGL34J	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current at Tr=55°C				0.5			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	10.0					Amps
Maximum Instantaneous Forward Voltage at 0.5A		1.3					Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C		5.0 50.0					μА
Maximum Full Load Reverse Current, Full Cycle Average, at TA=55°C		30.0					μΑ
Maximum Reverse Recovery Time (NOTE 1) T _A =25°C	T _{RR}	150 250				250	nS
Typical Junction Capacitance (NOTE 2)	CJ	CJ 4.0			pF		
Maximum Thermal Resistance (NOTE 3) (NOTE 4)	R o jl Roja	70 150.0				∘c/w	
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175					°C
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	

NOTES: 1. Reverse Recovery Test Conditions IF=0.5A, IR=1.0A, Irr= .25A.


2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.


3. Thermal resistance from junction to terminal, 5mm² copper pads to each terminal.

4. Thermal resistance from junction to ambient, 5mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM06-50 THRU BYM06-600 RGL34A THRU RGL34J

FIG. 2 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

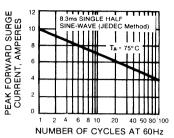
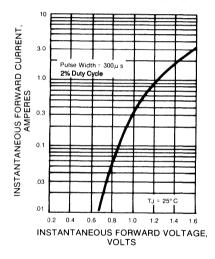


FIG. 4 — TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS



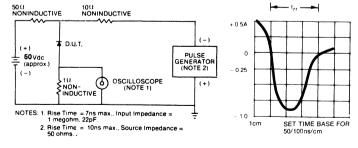
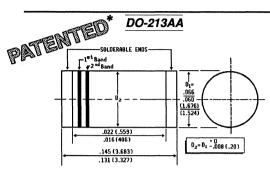


FIG. 5 - TYPICAL JUNCTION CAPACITANCE



BYM07-50 THRU BYM07-400 EGL34A THRU EGL34G

SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT JUNCTION RECTIFIER Voltage - 50 to 400 Volts Current - 0.5 Amperes

FEATURES

Dimensions in inches and (millimeters)

*Brazed-lead assembly is covered by Patent No. 3,930,306 of 1976 and glass composition by Patent No. 3,752,701 of 1973

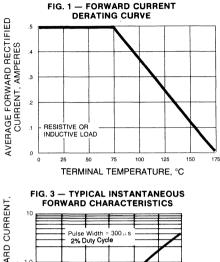
- For surface mounted applications
- High temperature metallurgically bonded

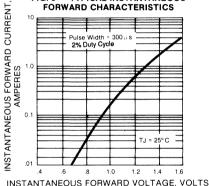
- Glass passivated junction Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Ultrafast switching for high efficiency
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

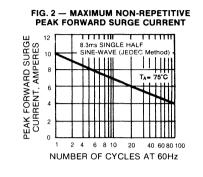
MECHANICAL DATA

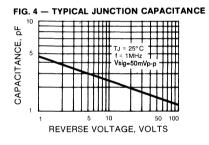
Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.036 gram, 0.0014 ounce

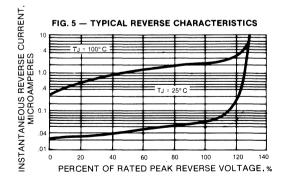
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

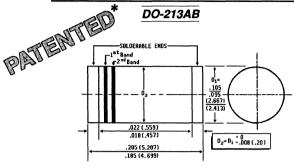

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	BYM07							_
	SYMBOLS	-50	-100	-150	-200	-300	-400	UNITS
Fast Efficient device: 1 st band is Green		EGL34A	EGL34B	EGL34C	EGL34D	EGL34F	EGL34G	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current at T _T =75°C	I(AV)			0	.5			Amps
Peak Forward Surge Current, 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM} 10.0						Amps	
Maximum Instantaneous Forward Voltage at 0.5A	VF	1.25 1.35					5	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	IR	5.0 50.0						μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR	50.0						nS
Typical Junction Capacitance (NOTE 2)	CJ			4	.0			pF
Maximum Thermal Resistance (NOTE 3)	Rejl 70.0							
(NOTE4)	RejA 150.0						°C/W	
Operating Junction and Storage Temperature Range	IJ, ISTG	TJ,TSTG -65 to +175						°C
Polarity Color Bands (2 nd Band)		Gray	Red	Pink	Orange	Brown	Yellow	


NOTES: 1. Reverse Recovery Test Conditions: IF= 0.5A, Ir= 1.0A, Irr = .25A


Measured at 1 MHz and applied reverse voltage of 4.0 Volts.
 Thermal resistance from junction to terminal, 5.0mm² copper pads to each terminal.
 Thermal resistance from junction to ambient, 5.0mm² copper pads to each terminal.


RATINGS AND CHARACTERISTIC CURVES BYM07-50 THRU BYM07-400 EGL34A THRU EGL34G



1N6478 THRU 1N6484

SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER

Voltage - 50 to 1000 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

- For surface mounted applications High temperature metallurgically
- bonded
- Glass passivated junction
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals. Complete device submersible temperature of 265°C for 10 seconds in solder bath

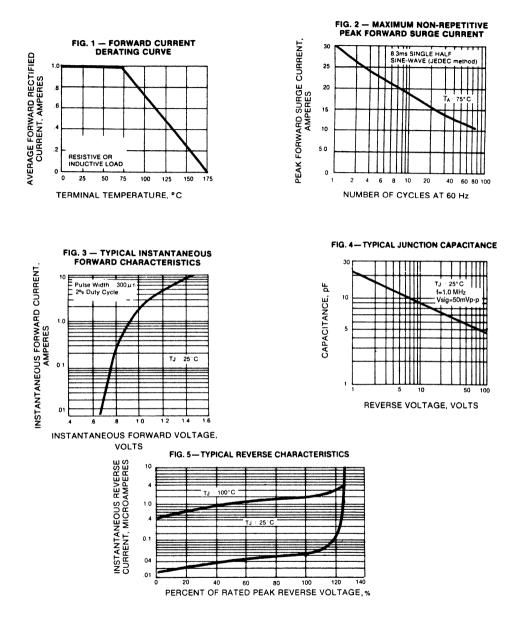
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated terminals, solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram. 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

		1N	1N	1N	1N	1N	1N	1N	
Standard recovery time device: 1 st band is White	SYMBOLS	6478	6479	6480	6481	6482	6483	6484	UNITS
* Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
* Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
* Maximum Average Forward Rectified Current at T _T =75°C	I(AV)				1.0				Amps
* Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) T _A =75°C	IFSM				30.0				Amps
* Maximum Instantaneous Forward Voltage at 1.0A TA=75°C TA=25°C TA=25°C	VF	1.0 1.1							Volts
* Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	IR	10.0 I _R 200							μA
 Maximum Full Load Reverse Current, Full Cycle Average at T_A=75°C 	IR(AV)	IB(AV) 100.0							μA
Typical Junction Capacitance (NOTE 1)	CJ				15				pF
* Maximum Thermal Resistance (NOTE 2) (NOTE 3)	R o jl Roja								°C/W
* Operating Junction and Storage Temperature Range	TJ,TSTG			-6	5 to +	175			°C
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	Blue	Violet	

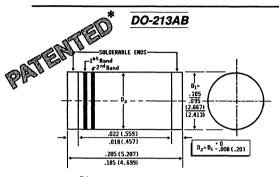

NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

2. Thermal resistance from junction to terminal, 6.0mm² copper pads to each terminal.

Thermal resistance from junction to ambient, 6.0mm² copper pads to each terminal.
 JEDEC Registered Values

JEDEC Registered Values

RATINGS AND CHARACTERISTIC CURVES 1N6478 THRU 1N6484



General Instrument

BYM10-50 THRU BYM10-1000 GL41A THRU GL41Y

SURFACE MOUNT GLASS PASSIVATED JUNCTION RECTIFIER Voltage - 50 to 1600 Volts Current - 1.0 Ampere

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

- For surface mounted applications
- High temperature metallurgically bonded
 - Glass passivated junction

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- High temperature soldering guaranteed: 450°C/5 seconds at terminals.Complete device submersible temperature of 265°C for 10 seconds in solder bath

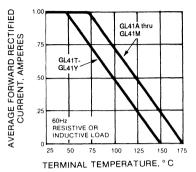
MECHANICAL DATA

Case: Molded plastic over glass Terminals: Plated Terminals, solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

			BYN		4	-	YM10				
	SYMBOLS	- 50	-100	-200	-400	-600	-800	-1000			UNITS
Standard recovery device: 1 st band is White		GL41A	GL41B	GL41D	GL41G	GL41J	GL41K	GL41M	GL41T	GL41Y	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	1300	1600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	910	1120	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	1300	1600	Volts
Maximum Average Forward Rectified Current											
SEE FIG. 1	l(AV)					1.0			-		Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed											
on rated load (JEDEC Method)	FSM					30.0					Amps
Maximum Instantaneous Forward									-		
Voltage at 1.0A	VF	1		1.1				1	.2		Volts
Maximum DC Reverse Current TA=25°C						10.0	•				
at Rated DC Blocking Voltage T _A =125°C	I _R					50.0					μΑ
Maximum Full Load Reverse Current											
Full Cycle Average at T _A =75°C	IR(AV)					30.0					μA
Typical Junction Capacitance (NOTE 1)	CJ	15.0									рF
Maximum Thermal Resistance (NOTE 2)	Rejl					30.0					
(NOTE 3)	Reja					75.0					°C/W
Operating Junction and											
Storage Temperature Range					-65	i to +1	75		-65 to	+150	°C
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green	Blue	Violet	White	Brown	


NOTES: 1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

2. Thermal resistance from junction to terminal, 6.0mm² copper pads to each terminal.

3. Thermal resistance from junction to ambient, 6.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM10-50 THRU BYM10-1000 GL41A THRU GL41M

FIG. 1 - FORWARD CURRENT DERATING CURVE

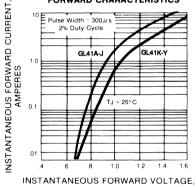


FIG. 2 — MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

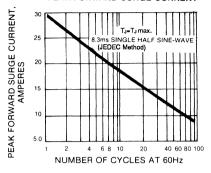
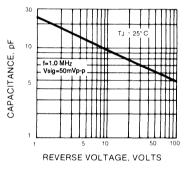
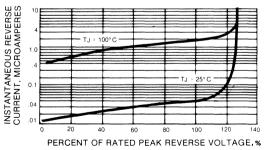
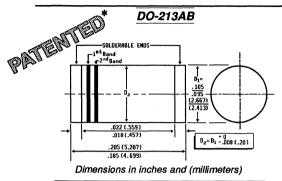




FIG. 4 — TYPICAL JUNCTION CAPACITANCE



G General Instrument

BYM11-50 THRU BYM11-1000 RGL41A THRU RGL41M

SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING JUNCTION RECTIFIER Voltage - 50 to 1000 Volts Current - 1.0 Amperes

FEATURES

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

- For surface mounted applications
 High temperature metallurgically
 - bonded
- Glass passivated junction

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- Capable of meeting environmental standards of MIL-S-19500
- Fast switching for high efficiency
- High temperature soldering guaranteed: 450°C/5 secondsat terminals. Complete device submersible temperature of 260°C for 10 seconds in solder bath

MECHANICAL DATA

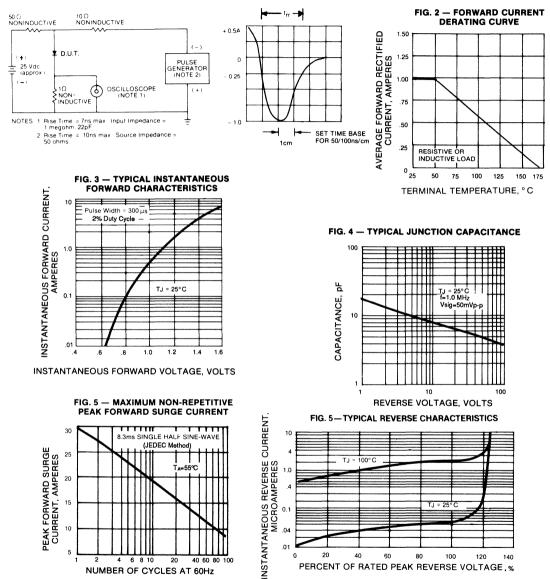
Case: Molded plastic over glass *Terminals:* Plated Terminals, solderable per MIL-STD-750, Method 2026

Polarity: Two bands indicate cathode

1st band denotes device type 2nd band denotes voltage type *Mounting Position:* Any *Handling Precautions:* None *Weight:* 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.


					BYM11				
	SYMBOLS	- 50	-100	-200	-400	-600	-800 -	1000	UNITS
Fast switching time device: 1 st band is Red		RGL 41 A	RGL 41B	RGL 41D	RGL 41G	RGL 41J	RGL 41K	RGL 41M	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at TT=55°C	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	sм 30.0							Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF				1.3				Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	IR				5.0 50.0				μΑ
Maximum Full Load Reverse Current, Full Cycle Average, at T _A = 55℃	IR(AV)				50.0				μΑ
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR		150			250	500	500	nS
Typical Junction Capacitance (NOTE 4)	CJ				15.0		•		pF
Maximum Thermal Resistance (NOTE 2)	e (NOTE 2) Rejl 30.0								
(NOTE 3)	ROJA				75.0				°C/₩
Operating Junction and Storage Temperature Range	TJ,TSTG -65 to +175						°C		
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yelow	Green	Blue	Violet	

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR= 1.0A, Irr=.25A. 2. Thermal resistance from unction to terminal, 6.0mm² copper pads to each terminals. Thermal Resistance from junction to ambient 6.0mm² copper pads to each terminal.

4. Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.

RATINGS AND CHARACTERISTIC CURVES BYM11-50 THRU BYM11-1000 RGL41A THRU RGL41M

FIG. 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

G General Instrument

BYM12-50 THRU BYM12-400 EGL41A THRU EGL41G

SURFACE MOUNT GLASS PASSIVATED FAST EFFICIENT JUNCTION RECTIFIER Voltage - 50 to 400 Volts Current - 1.0 Ampere

bonded

FEATURES

Dimensions in inches and (millimeters)

*Glass-plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

नगेवतीविदित

 Plastic package has Underwriters Laboratory Flammability Classification 94V-0

For surface mounted applications

High temperature metallurgically

Glass passivated junction

- Superfast recovery times for high efficiency
- Capable of meeting environmental standards of MIL-S-19500
- Ultra fast switching for high efficiency
- High temperature soldering guaranteed: 450°C/ 5 seconds at terminals. Complete device submersible temperature of 265°C for 10 seconds in solder bath

MECHANICAL DATA

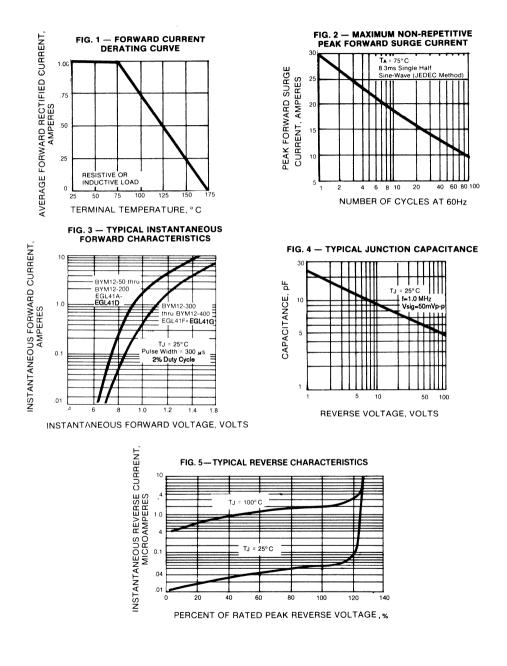
Case: Molded plastic over glass Terminals: Solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denoted device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram, 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

				BYM1	2			
	SYMBOLS	-50	-100	-150	-200	300	-400	UNITS
Fast efficient devices: 1 st band is green		EGL 41A	EGL 41B	EGL 41C	EGL 41D	EGL 41F	EGL 41G	
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	300	400	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	210	280	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	300	400	Volts
Maximum Average Forward Rectified Current at Tt=75°C	I(AV)				1.0			Amps
Peak Forward Surge Current, 8.3ms single half sine- wave superimposed on rated load (JEDEC Method)	IFSM	30.0						Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.0 1.25					Volts	
Maximum DC Reverse Current $T_A=25^{\circ}C$ at Rated DC Blocking Voltage $T_A=125^{\circ}C$	l _R	5.0 IB 50.0						μA
Maximum Reverse Recovery Time (NOTE 1) TJ=25°C	TRR	Г _{ВВ} 50						
Typical Junction Capacitance (NOTE 2)	CJ			1	5.0			pF
Maximum Thermal Resistance RthJL (NOTE 3)	ROJL ROJA			-	80.0			∘c/w
RthJA (NOTE 4) Operating Junction and Storage Temperature Range	TJ,TSTG							°C
Polarity Color Bands (2 nd Band)		Gray	Red	Pink	Orange	Brown	Yellow	

NOTES:


1. Reverse Recovery Test Conditions: IF = 0.5A, IR = 1.0A, Irr = 0.25A.

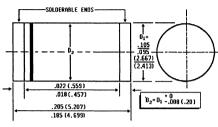
2. Measured at 1 MHz and applied reverse voltage of 4.0 Volts.

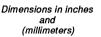
3. Thermal resistance junction to terminal, 6.0mm² copper pads to each terminal.

4. Thermal resistance junction to ambient, 6.0mm² copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM12-50 THRU BYM12-400 EGL41A THRU EGL41G

G General Instrument


GLL4735 THRU GLL4763


1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER

Voltage - 6.2-91.0 Volts Power Rating - 1.0 Watt

FEATURES

DO-213AB

- Plastic package has Underwriter Labaoratory Flammability Classification 94 V-O
- For surface mounted applications
- Glass passivated chip junction
- Low zener impedance
- Excellent clamping capability
- High temperature soldering guaranteed: 250°C/10 seconds/ at terminals

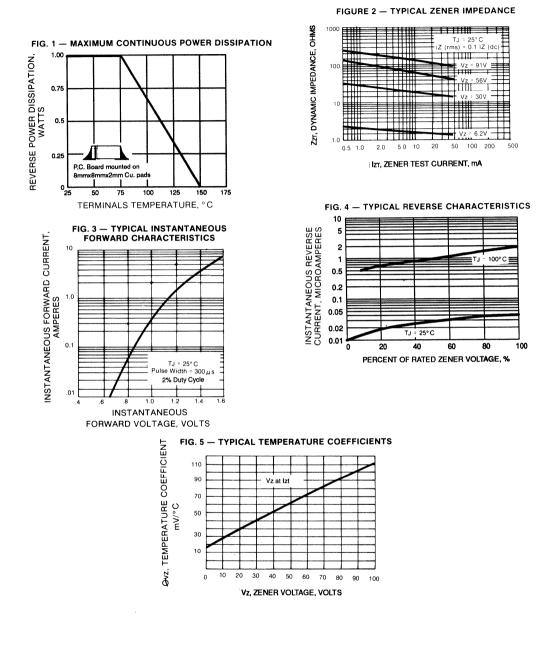
MECHANICAL DATA

Case: JEDEC DO-213AB Molded plastic over passi vated junction Terminals: Solder plated, Solderable per MIL-STD-

750, Method 2026 **Polarity:** Red band denotes cathode

Mounting Position: Any *Handling Precautions:* None *Weight:* 0.116 grams, 0.0046 ounce

Ratings at 25°C ambient temperature unless otherwise specified. <u>OPERATING JUNCTION AND STORAGE TEMPERATURE RANGE: -55°C to +150°C</u>


Туре	*Nominal Zener Voltage at Izr	Maximum DC Power Dissiption at Tr=75℃	Test Current		num Dyn npedence		Maximum Leakage		Maximum Surge Current (NOTE 1)	Maximum Forward Voltage at 200mA
1720	Vz Volts	PD Watts	Izr mA	Izr Ohms	Z _{ZK at} Ohms	lzĸ mA	ιR μA	V _R Volts	IRM mApk	V _F Volts
GLL4735	6.2	1.0	41.0	2.0	700	1.0	10.0	3.0	730.0	1.2
GLL4736	6.8	1.0	37.0	3.5	700	1.0	10.0	4.0	660.0	1.2
GLL4737	7.5	1.0	34.0	4.0	700	0.5	10.0	5.0	605.0	1.2
GLL4738	8.2	1.0	31.0	4.5	700	0.5	10.0	6.0	550.0	1.2
GLL4739	9.1	1.0	28.0	5.0	700	0.5	10.0	7.0	500.0	1.2
GLL4740	10	1.0	25.0	7.0	700	0.25	10.0	7.6	454.0	1.2
GLL4741	11	1.0	23.0	8.0	700	0.25	5.0	8.4	414.0	1.2
GLL4742	12	1.0	21.0	9.0	700	0.25	5.0	9.1	380.0	1.2
GLL4743	13	1.0	19.0	10.0	700	0.25	5.0	9.9	344.0	1.2
GLL4744	15	1.0	17.0	14.0	700	0.25	5.0	11.4	305.0	1.2
GLL4745	16	1.0	15.5	16.0	700	0.25	5.0	12.2	285.0	1.2
GLL4746	18	1.0	14.0	20.0	750	0.25	5.0	13.7	250.0	1.2
GLL4747	20	1.0	12.5	22.0	750	0.25	5.0	15.2	225.0	1.2
GLL4748	22	1.0	11.5	23.0	750	0.25	5.0	16.7	205.0	1.2
GLL4749	24	1.0	10.5	25.0	750	0.25	5.0	18.2	190.0	1.2
GLL4750	27	1.0	9.5	35.0	750	0.25	5.0	20.6	170.0	1.2
GLL4751	30	1.0	8.5	40.0	1000	0.25	5.0	22.8	150.0	1.2
GLL4752	33	1.0	7.5	45.0	1000	0.25	5.0	25.1	135.0	1.2
GLL4753	36	1.0	7.0	50.0	1000	0.25	5.0	27.4	125.0	1.2
GLL4754	39	1,0	6.5	60.0	1000	0.25	5.0	29.7	115.0	1.2
GLL4755	43	1.0	6.0	70.0	1500	0.25	5.0	32.7	110.0	1.2
GLL4756	47	1.0	5.5	80.0	1500	0.25	5.0	35.8	95.0	1.2
GLL4757	51	1.0	5.0	95.0	1500	0.25	5.0	38.8	90.0	1.2
GLL4758	56	1.0	4.5	110.0	2000	0.25	5.0	42.6	80.0	1.2
GLL4759	62	1.0	4.0	125.0	2000	0.25	5.0	47.1	70.0	1.2
GLL4760	68	1.0	3.7	150.0	2000	0.25	5.0	51.7	65.0	1.2
GLL4761	75	1.0	3.3	175.0	2000	0.25	5.0	56.0	60.0	1.2
GLL4762	82	1.0	3.0	200.0	3000	0.25	5.0	62.2	55.0	1.2
GLL4763	91	1.0	2.0	250.0	3000	0.25	5.0	69.2	50.0	1.2

*Standard Voltage Tolerance ±10%, Suffix A ±5%

NOTE 1: Surge Current is a non-repetitive, 8.3 mS pulse width square wave or

equivalent sine-wave superimposed on Izr per JEDEC method.

RATINGS AND CHARACTERISTIC CURVES GLL4735 THRU GLL4763

(D) General Instrument

ZGL41-100 THRU ZGL41-200

1.0 WATT SURFACE MOUNT GLASS PASSIVATED ZENER

Voltage - 100 - 200 Volts

0'1= .105

(2.667)

+ 0 D₂= D₁ - .008 (.20)

DO-213AB

SOLDERABLE ENDS

.022 (.559) .018(.457)

205 (5.207) .185 (4.699)

Power Rating - 1.0 Watt

FEATURES

- Plastic package has Underwriters Labaoratory Flammability Classification 94 V-O
- For surface mounted applications
- Glass passivated junction
- Low zener impedance
- Excellent clamping capability
- High temperature soldering guaranteed: 250°C/10 seconds/at terminals

Case: JEDEC DO-213AB molded plastic over passivated junction

Terminals: Solder plated solderable per MIL-STD-750. Method 2026

Polarity: Red band denotes cathode

Mounting Position: Any

Handling Precautions: None

Weight: 0.116 grams, 0.0046 ounce

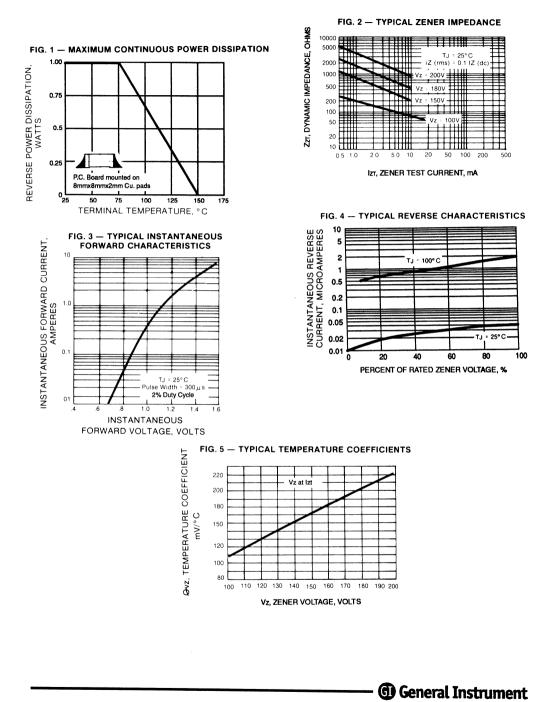
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Dimensions in inches and

(millimeters)

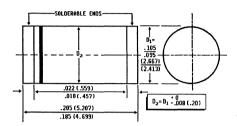
	OPERATING JUNCTION AND STORAGE TEMPERATURE RANGE -55°C to +150°C												
TYPE -	*NOMINAL ZENER VOLTAGE at br	MAXIMUM DC POWER DISSIPATION at Tr=75°C	TEST CURRENT				IMPEDANCE MAXIMUM DC REVERSE TEST LEAKAGE CURRENT					MAXIMUM SURGE CURRENT (NOTEI)	MAXIMUM FORWARD VOLTAGE at 200mA
1176	VZ	PD	ler ler	Z _{ZT} at i _{ZT}	Zzĸ @	IZK	l _R a	t VR	(NOTEI) IRM	VF			
	Volts	Watts	mA	Ohms	Ohms	mA	μ A	Volts	mAdc	VOLTS			
ZGL41-100	100	1.0	3.7	250	3100	0.25	1.0	76.0	10.0	1.5			
ZGL41-110	110	1.0	3.4	300	4000	0.25	1.0	83.6	9.1	1.5			
ZGL41-120	120	1.0	3.1	380	4500	0.25	1.0	91.2	8.3	1.5			
ZGL41-130	130	1.0	2.9	450	5000	0.25	1.0	98.8	7.7	1.5			
ZGL41-140	140	1.0	2.7	525	5500	0.25	1.0	106.4	7.1	1.5			
ZGL41-150	150	1.0	2.5	600	6000	0.25	1.0	114	6.7	1.5			
ZGL41-160	160	1.0	2.3	700	6500	0.25	1.0	121.6	6.3	1.5			
ZGL41-170	170	1.0	2.2	800	6750	0.25	1.0	129.2	5.9	1.5			
ZGL41-180	180	1.0	2.1	900	7000	0.25	1.0	136.98	5.6	1.5			
ZGL41-190	190	1.0	2.0	1050	7500	0.25	1.0	144.4	5.3	1.5			
ZGL41-200	200	1.0	1.9	1200	8000	0.25	1.0	152	5.0	1.5			



* Standard Voltgage Tolerance ±10%, Suffix A ±-5%.

NOTE 1: Surge Current is a non-repetitve, 8.3mS pulse width square wave or equivalent sine-wave superimposed on IZT JEDEC Method.

RATINGS AND CHARACTERISTIC CURVES ZGL41-100 THRU ZGL41-200


481

BYM13-20 THRU BYM13-60 SGL41-20 THRU SGL41-60

SURFACE MOUNT SCHOTTKY RECTIFIER Voltage - 20 to 60 Volts Current - 1.0 Ampere

FEATURES

DO-213AB

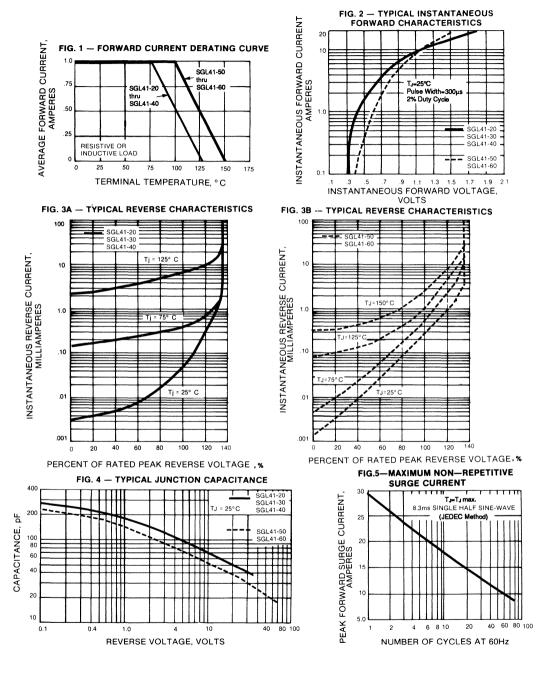
Dimensions in inches and (millimeters)

- For surface mounted applications
- Plastic material used carries Underwriters Laborataory Flammability Classifications 94V-O
- Metal to silicon rectifier. majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- For use in low voltage, high frequency inverters, free wheeling and polarity protection applications
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-213AB molded plastic Terminals: Solder Plated solderable per MIL-STD-750, Method 2026 Polarity: Two bands indicate cathode 1st band denotes device type 2nd band denotes voltage type Mounting Position: Any Handling Precautions: None Weight: 0.116 gram. 0.0046 ounce

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	to come in our added affer to really some of		1 - 41 - 44 - 44 - 44 - 44 - 44 - 44 -	BYM13				
	SYMBOLS	-20	-30	-40	-50	-60	UNITS	
Schottky devices: 1st band is orange		SGL41-20	SGL41-30	SGL41-40	SGL41-50	SGL41-60		
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts	
Maximum RMS Voltage	VRMS	14	21	28	35	42	Volts	
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts	
Maximum Average Forward Rectified Current								
(SEE FIG. 1)	I(AV)			1.0			Amps	
Peak Forward Surge Current								
8.3ms single half sine-wave superimposed								
on rated load (JEDEC Method)	IFSM		30.0					
Maximum Instantaneous Forward Voltage at 1.0A	VF	.50 .70					Volts	
Maximum Reverse Current TJ=25°C		0.5						
at Rated DC Blocking Voltage TJ=100°C	l _R		10					
Typical Junction Capacitance (NOTE 1)	CJ		110.0 80.0					
Maximum Thermal Resistance RthJL (NOTE 2)	Rejl			30.0				
RthJA (NOTE 3)	Reja			75.0			°C/W	
Operating Junction Temperature Range	TJ	-55 to +125 -55 to +150					°C	
Storage Temperature Range	TSTG	-55 to +150					°C	
Polarity Color Bands (2 nd Band)		Gray	Red	Orange	Yellow	Green		

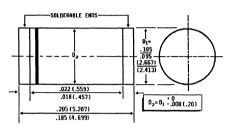
NOTES:

Measured at 1 MHz and applied reverse voltage of 4.0 Vpc.
 Thermal resistance junction to terminal, .024 in² (6.0mm²) copper pads to each terminal.
 Thermal resistance junction to ambient, .024 in² (6.0mm²) copper pads to each terminal.

RATINGS AND CHARACTERISTIC CURVES BYM13-20 THRU BYM13-60 SGL41-20 THRU SGL41-60

G General Instrument

TGL41-6.8 THRU TGL41-200A


SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

Voltage - 6.8 to 200 Volts

400 Watt Peak Pulse Power

FEATURES

DO-213AB

Dimensions in inches and (millimeters)

- For surface mounted applications
- Plastic material used carries Underwriters Laboratory Flammability Classifications 94V-O
- Glass passivated junction
- Excellent clamping capability
- Low inductance

- Fast response time typically less than 1.0ps from 0 volts to BV for unidirectional and 5,0 NS for bidirectional types
- Repitition Rate (Duty Cycle): 0.01%
- Typical I_D less than 1 μ A above 10V
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-213AB Molded plastic over passivated junction

Terminals: Solder Plated solderable per MIL-STD-750, Method 2026

Polarity: Blue bands denotes positive end (cathode) for unidirectional and a Yellow band in the middle for bidirectional types

Mounting Position: Any

Handling Precautions: None

Weight: 0.116 gram, 0.0046 ounce

DEVICES FOR BIDIRECTIONAL APPLICATIONS

For bidirection applications use suffix letters C or CA for types TGL41-6.8 thru TGL41-200A (for ex. TGL41-6.8C, TGL41-200CA). Electrical characteristics apply in both directions

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATINGS	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on			
10/1000µs waveform (NOTE 1, FIGURE 1)	Рерм	Minimum 400	Watts
Steady State Power Dissipation at TT=75°C (NOTE 2)	PM(AV)	1.0	Watt
Peak Pulse Current on 10/1000µs waveform			
(NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Peak Forward Surge Current, 8.3ms single half Sine-Wave Superimposed on Rated Load for unidirectional only (JEDEC Method) (NOTE 3)	IFSM	40.0	Amps
Maximum Instantaneous Forward Voltage at 50A (NOTE 3) for unidirectional only	VF	3.5	Volts
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 to +150	°C

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2.

2. Mounted on .31 in2 (8.0 mm²⁾ copper pads to each terminal, Figure 5.

3. 8.3ms single half sine-wave or equivalent square wave duty cycle=4 pulses per minutes maximum.

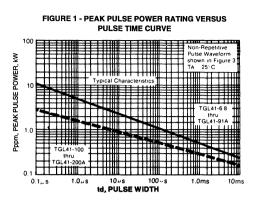
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

	Bro V(E	eakdown Volt		Reverse Stand-off	Maximum Reverse Leakage	Maximum Peak Pulse Current	Maximum Clamping	Maximum
	Volts (N		at IT (mA)	Voltage	at	IPPM	Voltage at iPPM	Temperature Coefficient
DEVICE	MIN	MAX]	VWM (Volts)	VWM (NOTE 4 ID (mA)	(NOTE 2) (Amps)	VC(Volts)	of V _(BR) (%/℃)
TGL41-6.8	6.12	7.48	10	5.50	1000	37	10.8	0.060
TGL41-6.8A	6.45	7.14	10	5.80	1000	38	10.5	0.060
TGL41-7.5	6.75	8.25	10	6.05	500	34	11.7	0.064
TGL41-7.5A	7.13	7.88	10	6.40	500	35	11.3	0.064
TGL41-8.2	7.38	9.02	10	6.63	200	32	12.5	0.068
TGL41-8.2A	7.79	8.61	10	7.02	200	33	12.1	0.068
TGL41-9.1	8.19	10.0	1.0	7.37	50	29	13.8	0.071
TGL41-9.1A	8.65	9.55	1.0	7.78	50	30	13.4	0.071
TGL41-10	9.00	11.0	1.0	8.10	10	27	15.0	0.076
TGL41-10A	9.50	10.5	1.0	8.55	10	28	14.5	0.076
TGL41-11	9.90	12.1	1.0	8.92	5.0	25	16.2	0.078
TGL41-11A	10.5	11.6	1.0	9.40	5.0	26	15.6	0.078
TGL41-12	10.8	13.2	1.0	9.72	5.0	23	17.3	0.081
TGL41-12A	11.4	12.6	1.0	10.2	5.0	24	16.7	0.081
TGL41-13	11.7	14.3	1.0	10.5	5.0	21	19.0	0.084
TGL41-13A	12.4	13.7	1.0	11.1	5.0	22	18.2	0.084
TGL41-15	13.5	16.5	1.0	12.1	5.0	18.20	22.0	0.087
TGL41-15A	14.3	15.8	1.0	12.8	5.0	18.90	21.2	0.087
TGL41-16	14.4	17.6	1.0	12.9	5.0	17.00	23.5	0.089
TGL41-16A	15.2	16.8	1.0	13.6	5.0	17.80	22.5	0.089
TGL41-18	16.2	19.8	1.0	14.5	5.0	15.10	26.5	0.091
TGL41-18A	17.1	18.9	1.0	15.3	5.0	15.90	25.2	0.091
TGL41-20	18.0	22.0	1.0	16.2	5.0	13.70	29.1	0.093
TGL41-20A	19.0	21.0	1.0	17.1	5.0	14.40	27.7	0.093
TGL41-22	19.8	24.2	1.0	17.8	5.0	12.50	31.9	0.095
TGL41-22A	20.9	23.1	1.0	18.8	5.0	13.10	30.6	0.095
TGL41-24	21.6	26.4	1.0	19.4	5.0	11.50	34.7	0.097
TGL41-24A	22.8	25.2	1.0	20.5	5.0	12.00	33.2	0.097
TGL41-27	24.3	29.7	1.0	21.8	5.0	10.20	39.1	0.099
TGL41-27A	25.7	28.4	1.0	23.1	5.0	10.70	37.5	0.099
TGL41-30	27.0	33.0	1.0	24.3	5.0	9.20	43.5	0.100
TGL41-30A	28.5	31.5	1.0	25.6	5.0	9.70	41.4	0.100
TGL41-33	29.7	36.3	1.0	26.8	5.0	8.40	47.7	0.101
TGL41-33A	31.4	34.7	1.0	28.2	5.0	8.80	45.7	0.101
TGL41-36	32.4	39.6	1.0	29.1	5.0	7.70	52.0	0.102
TGL41-36A	34.2	37.8	1.0	30.8	5.0	8.00	49.9	0.102
TGL41-39	35.1	42.9	1.0	31.6	5.0	7.10	56.4	0.103
TGL41-39A	37.1	41.0	1.0	33.3	5.0	7.40	53.9	0.103
TGL41-43	38.7	47.3	1.0	34.8	5.0	6.50	61.9	0.104
TGL41-43A	40.9	45.2	1.0	36.8	5.0	6.70	59.3	0.104
TGL41-47	42.3	51.7	1.0	38.1	5.0	5.90	67.8	0.104
TGL41-47A	44.7	49.4	1.0	40.2	5.0	6.20	64.8	0.104
TGL41-51	45.9	56.1	1.0	41.3	5.0	5.40	73.5	0.104
				1	0.0	0.40	, 0.0	0.100

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

DEVICE	Volts (NOTE 1) (r		ge at IT (mA)	Reverse Stand-off Voltage	Maximum Reverse Leakage at	Maximum Peak Puise Current IPPM	Meximum Clamping Voltage at Ippm	Temperature Coefficient
DEVICE	MIN	MAX]	Vww (Volts)	Vww(NOTE4) ID (μΑ)	(NOTE 2) (Amps)	vc (Volts)	of V _(BR) (%/℃)
TGL41-51A	48.5	53.6	1.0	43.6	5.0	5.70	70.1	0.105
TGL41-56	50.4	61.6	1.0	45.4	5.0	5.00	80.5	0.106
TGL41-56A	53.2	58.8	1.0	47.8	5.0	5.20	77.0	0.106
TGL41-62	55.8	68.2	1.0	50.2	5.0	4.50	89.0	0.107
TGL41-62A	58.9	65.1	1.0	53.0	5.0	4.70	85.0	0.107
TGL41-68	61.2	74.8	1.0	55.1	5.0	4.10	98.0	0.107
TGL41-68A	64.6	71.4	1.0	58.1	5.0	4.30	92.0	0.107
TGL41-75	67.5	82.5	1.0	60.7	5.0	3.70	108.0	0.108
TGL41-75A	71.3	78.8	1.0	64.1	5.0	3.90	103.0	0.108
TGL41-82	73.8	90.2	1.0	66.4	5.0	3.40	118.0	0.108
TGL41-82A	77.9	86.1	1.0	70.1	5.0	3.50	113.0	0.108
TGL41-91	81.9	100.0	1.0	73.7	5.0	3.00	131.8	0.109
TGL41-91A	86.5	95.50	1.0	77.8	5.0	3.20	125.0	0.109
TGL41-100	90.0	110.0	1.0	81.0	5.0	1.39	144.0	0.109
TGL41-100A	95.0	105.0	1.0	85.5	5.0	1.46	137.0	0.109
TGL41-110	99.0	121.0	1.0	89.2	5.0	1.27	158.0	0.110
TGL41-110A	105.0	116.0	1.0	94.0	5.0	1.32	152.0	0.110
TGL41-120	108.0	132.0	1.0	97.2	5.0	1.16	173.0	0.110
TGL41-120A	114.0	126.0	1.0	102.0	5.0	1.21	165.0	0.110
TGL41-130	117.0	143.0	1.0	105.0	5.0	1.07	187.0	0.110
TGL41-130A	124.0	137.0	1.0	111.0	5.0	1.12	179.0	0.110
TGL41-150	135.0	165.0	1.0	121.0	5.0	.93	215.0	0.111
TGL41-150A	143.0	158.0	1.0	128.0	5.0	.97	207.0	0.111
TGL41-160	144.0	176.0	1.0	130.0	5.0	.87	230.0	0.111
TGL41-160A	152.0	168.0	1.0	136.0	5.0	.91	219.0	0.111
TGL41-170	153.0	187.0	1.0	138.0	5.0	.82	244.0	0.111
TGL41-170A	162.0	179.0	1.0	145.0	5.0	.85	234.0	0.111
TGL41-180	162.0	198.0	1.0	146.0	5.0	.78	258.0	0.111
TGL41-180A	171.0	189.0	1.0	154.0	5.0	.81	246.0	0.111
TGL41-200	180.0	220.0	1.0	162.0	5.0	.70	287.0	0.111
TGL41-200A	190.0	210.0	1.0	171.0	5.0	.73	274.0	0.111

NOTES:


1. VBR measured after I_T applied for 300 μ s I_T = Square Wave Pulse or equivalent.

2. Surge Current Waveform per Figure 3 and Derate per Figure 2.

3. All terms and symbols are consistant with ANSI/IEE C62.35.

4. For bidirectional types having V_{WM} of 10 volts and less, the I_D limit is doubled.

RATINGS AND CHARACTERISTIC CURVES TGL41-6.8 THRU TGL41-200A

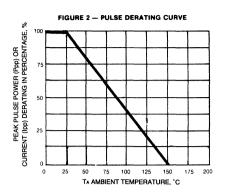
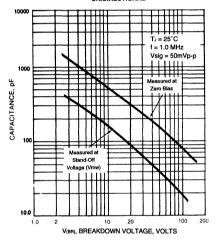
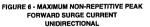
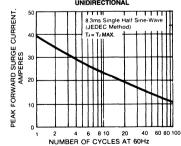
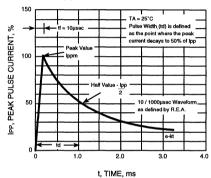
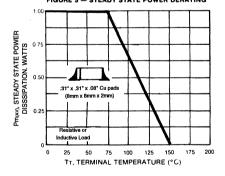





FIGURE 4 - TYPICAL JUNCTION CAPACITANCE UNIDIRECTIONAL





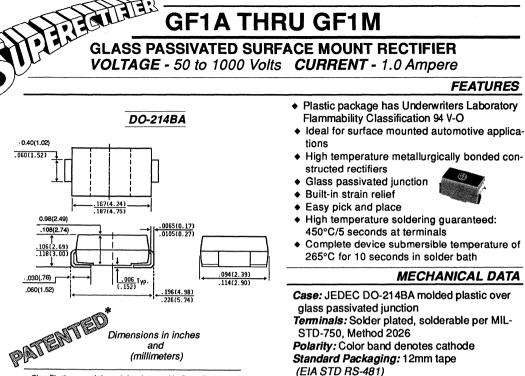

(D) General Instrument

FIGURE 3 - PUSLE WAVEFORM

Glass-Plastic encapsulation technique is covered by Patent No. 3,996,602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Weight: 0.0048 ounces, 0.120 gram

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, Resistive or inductive load.

For capacitive load, derate current by 20%.

	SYMBOLS	GF1A	GF1B	GF1D	GF1G	GF1J	GF1K	GF1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at TL=125°C	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM				30.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.10 1.20						.20	Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C	lB				5.0 50.0				μА
Typical Reverse Recovery Time (NOTE 1)	Trr				2.0				μs
Typical Junction Capacitance (NOTE 2)	CJ				15.0				pF
Maximum Thermal Resistance (NOTE 3)	Rejl	30.0							°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG			-6	5 to +	175			°C

NOTES:

1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and Applied Vr=4.0 volts.

3. P.C. board mounted on 5.0mm² (.013mm thick) copper land areas.

RATINGS AND CHARACTERISTIC CURVES GF1A THRU GF1M

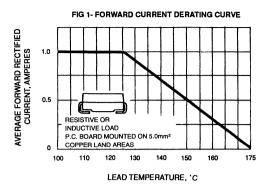


FIG 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

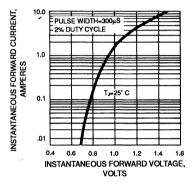
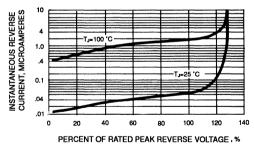



FIG 5 - TYPICAL REVERSE CHARACTERISTICS

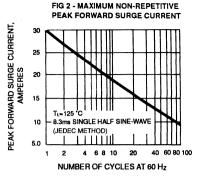
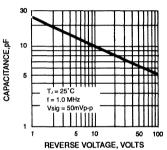
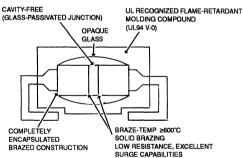




FIG 4 - TYPICAL JUNCTION CAPACITANCE

FIG 6 - SURFACE MOUNT SUPERECTIFIER PACKAGE

(iii) General Instrument

RGF1A THRU RGF1M SURFACE MOUNT GLASS PASSIVATED FAST SWITCHING SILICON RECITFIER VOLTAGE - 50 to 1000 Volts CURRENT - 1.0 Ampere **FEATURES** Plastic Package has Underwriters Laboratory Flammability Classification 94 V-O DO-214BA Ideal for surface mounted automotive applications .040(1.02) High temperature metallurgically bonded con-.060(1.52) structed rectifiers Glass passivated junction Built-in strain relief Easy pick and place .167(4.24) Fast switching for high efficiency .108(2.74) .0065(0.17) .0105(0.27) High temperature soldering guaranteed: 450°C/5 seconds at terminals Complete device submersible temperature of ٠ 265°C for 10 seconds in solder bath .094(2.39) .032(0.81) .006 .114(2.90) **MECHANICAL DATA** .196(4.98) Case: JEDEC DO-214AB molded plastic over PATENT glass passivated junction Dimensions in inches and (millimeters) Terminals: Solder plated solderable per MIL-STD-750, 2026 Polarity: Color band denotes cathode

Glass-Plastic encansulation technique is covered by Patent No. 3 996 602 of 1976; brazed-lead assembly to Patent No. 3,930,306 of 1976.

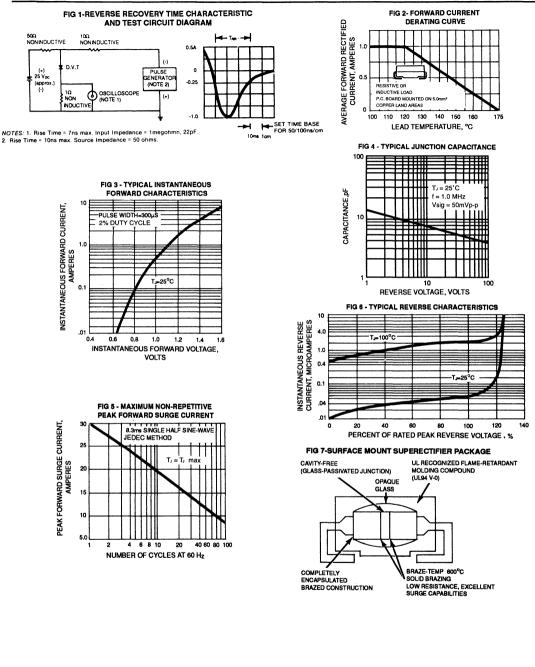
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(EIA STD RS-481)

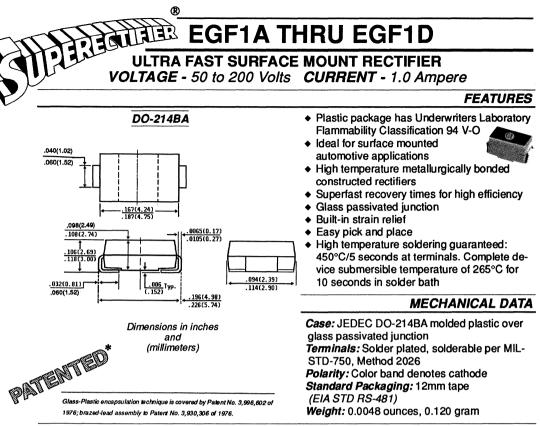
Standard Packaging: 12mm tape

Weight: 0.0048 ounces, 0.120 gram

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load.


	SYMBOLS	RGF1A	RGF1B	RGF1D	RGF1G	RGF1J	RGF1K	RGF1M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current									
at T _L =120 ^o C	I(AV)				1.0				Amps
Peak Forward Surge Current 8.3ms single half sine- wave superimposed on rated load (JEDEC method)	IFSM	30.0						Amps	
Maximum Instantaneous Forward Voltage at 1.0A	VF	1.30					Volts		
Maximum Full Load Reverse Current,									
Full Cycle Average, T _A =55°C	IR(AV)	50.0					μA		
Maximum DC Reverse Current T _A =25°C		5.0							
at Rated DC Blocking Voltage T _A =125°C	IR				100				μA
Maximum Reverse Recovery Time (NOTE 1)	Trr		15	50		250	5	00	ns
Typical Junction Capacitance (NOTE 2)	CJ	8.5					pF		
Maximum Thermal Resistance (NOTE 3)	Rejl	30.0					°C/W		
Operating Junction and Storage Temperature Range	TJ,TSTG			-6	5 to +'	175			°C

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.


2. Measured at 1.0 MHz and Applied Vr=4.0 volts.

3. P.C. board mounted on 5.0mm² (.013mm thick) copper land areas.

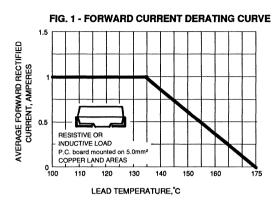
RATINGS AND CHARACTERISTIC CURVES RGF1A THRU RGF1M

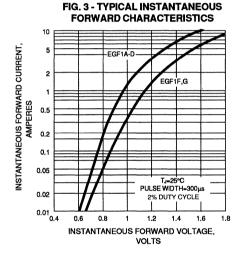
G General Instrument

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

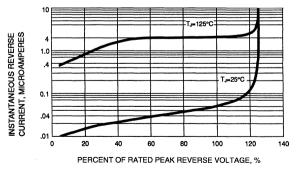
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	EGF1A	EGF1B	EGF1C	EGF1D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at TL=125°C	I(AV)	1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0				Amps
Maximum Instantaneous Forward Voltage at 1.0A	VF			Volts		
Maximum DC Reverse Current T _A =25°C			5.0)		
at Rated DC Blocking Voltage T _A =125°C	IR			μΑ		
Maximum Reverse Recovery Time (NOTE 1)	Trr		ns			
Typical Junction Capacitance (NOTE 2)	CJ		pF			
Maximum Thermal Resistance (NOTE 3)	Rejl		°C/W			
Operating Junction and Storage Temperature Range	TJ,TSTG		-65 to	+175		°C


NOTES:


1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.


3. P.C. board mounted on 5.0mm² (.013mm thick) copper land areas.

RATINGS AND CHARACTERISTIC CURVES EGF1A THRU EGF1D

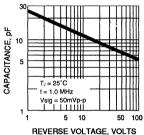
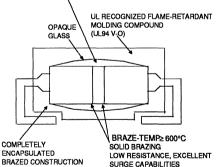
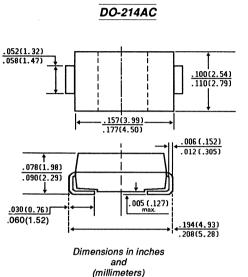




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

FIG. 6 - SURFACE MOUNT SUPERECTIFIER PACKAGE

CAVITY FREE (GLASS PASSIVATED JUNCTION)



S1A THRU S1J

SURFACE MOUNT RECTIFIER VOLTAGE - 50 to 600 Volts CURRENT - 1.0 Amperes

FEATURES

- For surface mounted applications
- Low profile package
- Built-in strain relief
 Easy pick and place
- 0
- Plastic package has Underwriters
- Laboratory Flammability Classification 94V-O
- Glass passivated chip junction
- High temperature soldering:

250°C/10 seconds at terminals

MECHANICAL DATA

Case: Molded plastic Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 Polarity: Indicated by cathode band Standard Packaging: 12mm tape (EIA STD RS-481) Weight: 0.002 ounces, 0.064 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	S1A	S1B	S1D	S1G	S1J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Curren at TL=110°C	t l(AV)		1.0				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	зм 30.0				101- <u>2</u> -04-04	Amps
Maximum Instantaneous Forward Voltage at 1	.0A VF	F 1.10					Volts
	25°C 125°C I _R	1.0 50.0					μA
Typical Reverse Recovery Time (NOTE 1)	Trr			μs			
Typical Junction Capacitance (NOTE 2)	CJ			pf			
Typical Thermal Resistance (NOTE 3)	RØJL RØJA	27.0 75.0					°C/W
Operating Junction and Storage Temperature	Range TJ, TSTG	-55 to +150					°C

NOTES:

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

^{1.} Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

^{3. 5.0}mm² (.013mm thick) land areas.

RATINGS AND CHARACTERISTIC CURVES S1A THRU S1J

FIG. 1 - FORWARD CURRENT DERATING CURVE

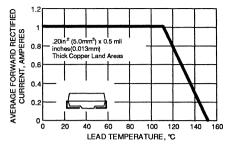
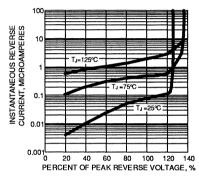
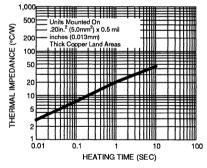




FIG 3 - TYPICAL REVERSE CHARACTERISTICS

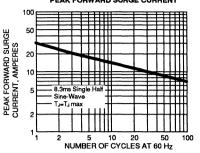


FIG 4 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

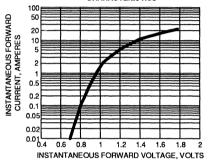
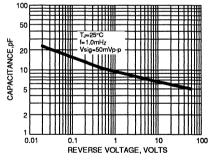
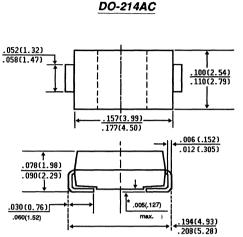



FIG. 6 - TYPICAL JUNCTION CAPACITANCE


General Instrument

RS1A THRU RS1J

FAST SWITCHING SURFACE MOUNT RECTIFIER CURRENT - 1.0 Ampere

VOLTAGE - 50 to 600 Volts

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- For surface mounted applications in order to opti-٠ mize board space
- Low profile package
- Built-in strain relief
- Easy pick and place
- (\mathfrak{G})
- Fast switching for high efficiency ٠
- Glass passivated chip junction
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

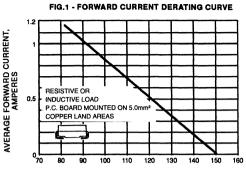
Case: JEDEC DO-214AC molded plastic over passivated junction Terminals: Solder plated solderable per MIL-STD-750. Method 2026 Polarity: Color band denotes cathode Standard Packaging: 8mm tape (EIA STD RS-481) Weight: 0.002 ounces, 0.064 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

	SYMBOLS	RS1A	RS1B	RS1D	RS1G	RS1J	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	Volts
Maximum Average Forward Rectified Current at TL=95°C	I(AV)	av) 1.0					Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			Amps			
Maximum Instantaneous Forward Voltage at 1.0A	VF			1.30			Volts
Maximum DC Reverse CurrentT_A=25'at Rated DC Blocking VoltageT_A=12'				5.0 50.0			μΑ
Maximum Reverse Recovery Time (NOTE 1)	Trr		150			250	ns
Typical Junction Capacitance (NOTE 2)	CJ	10.0					pF
Maximum Thermal Resistance (NOTE 3)	R o jl Roja			32.0 105.0			°C/W
Operating Junction and Storage Temperature Ran	nge TJ,TSTG			-55 to +1	50		°C


NOTES:

1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

3. Mounted on P.C. board with 5.0mm² (.013mm thick) copper land areas.

RATING AND CHARACTERISTIC CURVES RS1A THRU RS1K

LEAD TEMPERATURE, C

FIG.3 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST CIRCUIT DIAGRAM

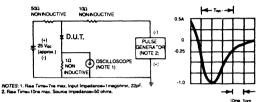


FIG. 5 - TYPICAL FORWARD CHARACTERISTICS

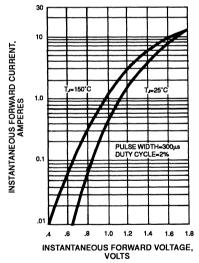


FIG.2 - MAXIMUM NON REPETITIVE PEAK FORWARD SURGE CURRENT

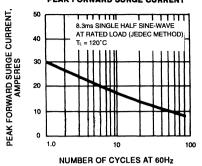


FIG.4 - TYPICAL JUNCTION CAPACITANCE

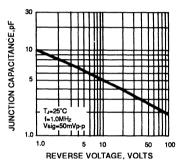
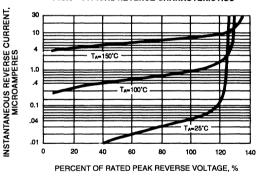
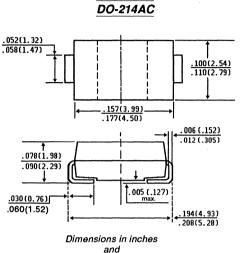



FIG.6 - TYPICAL REVERSE CHARACTERISTICS



G General Instrument

ES1A THRU ES1D

SURFACE MOUNT ULTRAFAST RECTIFIER VOLTAGE - 50 - 200 Volts CURRENT - 1.0 Ampere

FEATURES

(millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- For surface mounted applications
- Low profile package

 Ideally suited for use in very high frequency switching power supplies, inverters and as free wheeling diodes

- Ultrafast 15 nanosecond recovery times
- Low forward voltage
- Low leakage current
- Glass passivated junction
- High temperature soldering guaranteed: 250°C/10 seconds on terminals

MECHANICAL DATA

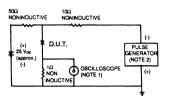
Case: JEDEC DO-214AC molded plastic over passivated junction *Terminals:* Solder plated, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes cathode band

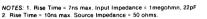
Standard Packaging: 12mm tape (EIA STD RS-481) Weight: 0.002 ounces, .064 gram

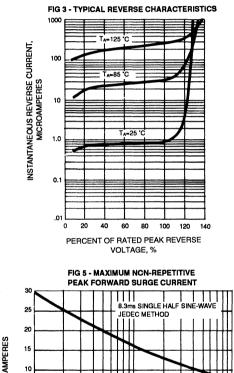
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

		SYMBOLS	ES1A	ES1B	ES1C	ES1D	UNITS
Maximum Recurrent Peak Reverse	/oltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage		VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	1945-7-997-7-7-7-997-7-7-9-9 ⁻⁹ 777-7-7-9	Vpc	50	100	150	200	Volts
Maximum Average Forward Rectified at TL=120°C	d Current	I(AV)	0.6				Amps
Peak forward Surge Current 8.3ms single half sine-wave superim rated load (JEDEC Method)	posed on	IFSM		30.0			
Maximum Instantaneous Forward Vo	htage at 0.6A			0.86	5		
	at 1.0A	VF			Volts		
Maximum DC Reverse Current	T _A =25°C		5.0				
at Rated DC Blocking Voltage	T _A =100°C	I _R		100)		μA
Maximum Reverse Recovery Time (NOTE 1)	T _{RR}		15.0	0		nS
Maximum Reverse Recovery Time	T _A =25°C			25.0	0		
(NOTE 2)	T _A =100° C	Trr		35.0	0		nS
Maximum Stored Charge	T _A =25°C			10.0	0		
(NOTE 2)	T _A =100°C	QRR	25.0				nC
Typical Junction Capacitance (NOTE	CJ			pF			
Maximum Thermal Resistance (NOTE	4)	Rejl	0JL 35.0				
		Reja		85.0	0		°C/W
Operating and Storage Temperature	Range	TJ,TSTG		°C			

NOTES: 1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.


2. TRR and QRR measured on LEM tester: IF=0.6A, VR=30V, di/dt=50 A/ $\mu s.$


3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.


4. P.C. board mounted on 5.0mm² (.013mm thick) copper pad areas.

RATINGS AND CHARACTERISTIC CURVES ES1A THRU ES1D

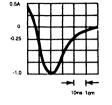
FIG 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

PEAK FORWARD SURGE CURRENT,

10 5

2

5


10

NUMBER OF CYCLES AT 60 Hz

20

50

100

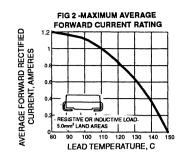
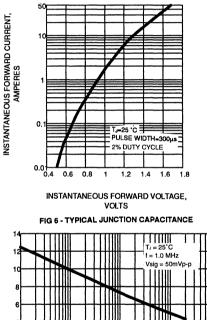
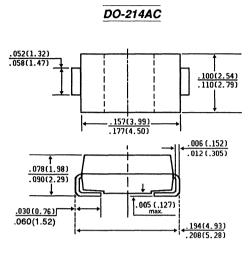



FIG 4 - TYPICAL FORWARD CHARACTERISTICS

0.5 1 5 10 50 100 5001,000

REVERSE VOLTAGE, VOLTS

G General Instrument


CAPACITANCE, pF

_0 0.1

SS12 THRU SS16

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER VOLTAGE - 20 TO 60 Volts CURRENT - 1.0 Ampere

FEATURES

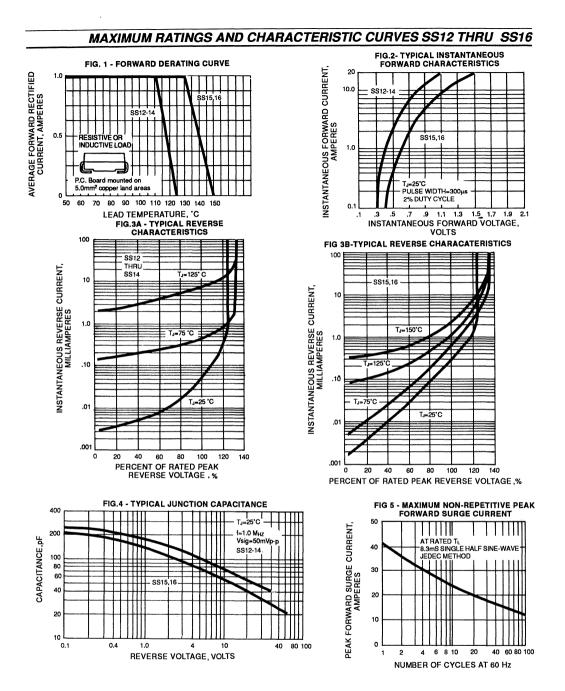
Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- For surface mounted applications
- Low profile package
- Built-in strain relief
- Metal to silicon rectifier, majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage high frequency inverters, free wheeling, and polarity protection applications
- Guardring for transient protection
- High temperatur soldering guaranteed: 250°C/10 seconds on terminals

MECHANICAL DATA

Case: JEDEC DO-214AC molded plastic Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Standard Packaging: 12mm tape (EIA STD RS-481) Weight: 0.002 ounces 0.064 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

•	SYMBOLS	SS12	SS13	SS14	SS15	SS16	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current at T _L (See Figure 1)	I(AV)		1.0				
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	30.0					Amps
Maximum Instantaneous Forward Voltage at 1.0A (NOTE 1)	VF		0.50 0.75				Volts
Maximum DC Reverse Current (NOTE 1) TA=25°C				0.5	L		
at Rated DC Blocking Voltage T _A =100°C	la la	10.0 5.0		5.0	mA		
Maximum Thermal Resistance (NOTE 2)	RØJL RØJA	35.0 95.0			°C/W		
Operating Junction Temperature Range	TJ	-65 to +125 -65 to +150		°C			
Storage Temperature Range	TSTG			-65 to +1	50		°C

NOTES:

1. Pulse Test with PW=300µsec, 2% Duty Cycle.

2. Mounted on P.C. Board with 5.0mm² (.013mm thick) copper pad areas.

G General Instrument

SMAJ5.0 THRU SMAJ170A

SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

.100(2.54) .110(2.79)

006 (.152)

.012(.305)

.194(4.93)

VOLTAGE - 5.0 to 170 Volts 400 Watt Peak Power Pulse

FEATURES

- For surface mounted applications
- Low profile package
- Built-in strain relief
- Available in unidirectional only
- Glass passivated junction
- Excellent clamping capability
- Low inductance
- Fast response time: typically less than 1.0ps from 0 volts to BV min.
- Repetition rate (Duty Cyce) : 0.01%
- Typical I_D less than 1μA above 10V
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AC low profile molded plastic

Terminals: Solder plated, solderable per MIL-STD-750, Method 2026

Polarity: Indicated by cathode band

Weight: .002 ounces, .064 gram

Standard Packaging: 12mm tape per (EIA std RS-481-1)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Dimensions in inches

and (millimeters)

DO-214AC

.157(3.99)

005 (.127)

max

.052(1.32)

.058(1.47)

.078(1.98) .090(2.29)

.030(0.76)

.060(1.52)

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation at TA=25°C (NOTE 1,2,5) Fig.1	Рерм	Minimum 400	Watts
Peak Forward Surge Current per Figure 5			
(NOTE 3)	IFSM	40.0	Amps
Peak Pulse Current Current on 10/1000µs waveform (NOTE 1, FIG.2)	Іррм	See Table 1	Amps
Steady State Power Dissipation (NOTE 4)	P _{M(AV)}	1.0	Watts
Operating Junction and Storage Temperature Range	TJ,TSTG	-55 to +150	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. Mounted on 5.0mm² copper pads to each terminal.

3. 8.3ms single half sine-wave duty cycle=4 pulses per minutes maximum.

4. Lead temperature at 75°C=TL.

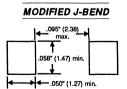
5. Peak pulse power waveform is 10/1000µS.

TABLE 1

ELECTRICAL CHARACTERISTICS AT 25°C

Device MAJ5.0 MAJ5.0A MAJ6.0A MAJ6.0A MAJ6.5A MAJ6.5A MAJ7.0 MAJ7.0A MAJ7.5A MAJ7.5A MAJ7.5A MAJ8.0A MAJ8.0A MAJ8.5	Device Marking Code AD AE AF AG AH AK AL AM	Reverse Voltage Vww (Volts) 5.0 5.0 6.0 6.0 6.5	6.40 6.67	(Volts) at Max. 7.30	IT mA	Vc	(Volts) (NOTE 5)	Surge Current IPPM (NOTE 5) (Amps)	atVww. ID≬⊥A)
MAJ5.0A MAJ6.0 MAJ6.0A MAJ6.5 MAJ6.5A MAJ7.0 MAJ7.0A MAJ7.5 MAJ7.5A MAJ7.5A MAJ8.0 MAJ8.0A	AE AF AG AH AK AL	5.0 6.0 6.0	6.40						
MAJ6.0 MAJ6.0A MAJ6.5 MAJ6.5A MAJ7.0 MAJ7.0A MAJ7.5 MAJ7.5A MAJ7.5A MAJ8.0 MAJ8.0A	AF AG AH AK AL	6.0 6.0		70	10	1	9.6	41.6	800
MAJ6.0A MAJ6.5 MAJ7.0 MAJ7.0A MAJ7.0A MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A	AG AH AK AL	6.0	6.67	7.0	10		9.2	43.5	800
MAJ6.5 MAJ6.5A MAJ7.0 MAJ7.0A MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A	AH AK AL			8.15	10		11.4	35.1	800
MAJ6.5A MAJ7.0 MAJ7.0A MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A	AK AL	6.5	6.67	7.37	10		10.3	38.8	800
MAJ7.0 MAJ7.0A MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A	AL	0.0	7.22	8.82	10		12.3	32.5	500
MAJ7.0A MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A		6.5	7.22	7.98	10	[11.2	35.7	500
MAJ7.5 MAJ7.5A MAJ8.0 MAJ8.0A	AM	7.0	7.78	9.51	10		13.3	30.1	200
MAJ7.5A MAJ8.0 MAJ8.0A		7.0	7.78	8.60	10		12.0	33.3	200
MAJ8.0 MAJ8.0A	AN	7.5	8.33	10.3	1.0		14.3	28.0	100
MAJ8.0A	AP	7.5	8.33	9.21	1.0		12.9	31.0	100
	AQ	8.0	8.89	10.9	1.0		15.0	26.5	50.0
MAIOE	AR	8.0	8.89	9.83	1.0		13.6	29.4	50.0
MAJ0.5	AS	8.5	9.44	11.5	1.0		15.9	25.1	10.0
MAJ8.5A	AT	8.5	9.44	10.4	1.0		14.4	27.7	10.0
MAJ9.0	AU	9.0	10.0	12.2	1.0		16.9	23.6	5.0
MAJ9.0A	AV	9.0	10.0	11.1	1.0		15.4	26.0	5.0
MAJ10	AW	10	11.1	13.6	1.0		18.8	21.2	5.0
MAJ10A	AX	10	11.1	12.3	1.0		17.0	23.5	5.0
MAJ11	AY	11	12.2	14.9	1.0	1	20.1	20.0	5.0
MAJ11A	AZ	11	12.2	13.5	1.0		18.2	22.0	5.0
MAJ12	BD	12	13.3	16.3	1.0		22.0	18.1	5.0
MAJ12A	BE	12	13.3	14.7	1.0		19.9	20.1	5.0
MAJ13	BF	13	14.4	17.6	1.0		23.8	16.8	5.0
MAJ13A	BG	13	14.4	15.9	1.0		21.5	18.6	5.0
MAJ14	вн	14	15.6	19.1	1.0		25.8	15.5	5.0
MAJ14A	BK	14	15.6	17.2	1.0		23.2	17.2	5.0
MAJ15	BL	15	16.7	20.4	1.0		26.9	14.8	5.0
MAJ15A	ВМ	15	16.7	18.5	1.0		24.4	16.4	5.0
MAJ16	BN	16	17.8	21.8	1.0		28.8	13.8	5.0
MAJ16A	BP	16	17.8	19.7	1.0		26.0	15.3	5.0
MAJ17	BQ	17	18.9	23.1	1.0		30.5	13.1	5.0
MAJ17A	BR	17	18.9	20.9	1.0		27.6	14.5	5.0
MAJ18	BS	18	20.0	24.4	1.0		32.2	12.4	5.0
MAJ18A	BT	18	20.0	22.1	1.0		29.2	13.7	5.0
MAJ20	BU	20	22.2	27.1	1.0		35.8	11.1	5.0
MAJ20A	BV	20	22.2	24.5	1.0		32.4	12.3	5.0
MAJ22	вw	22	24.4	29.8	1.0		39.4	10.1	5.0
MAJ22A	BX	22	24.4	26.9	1.0		35.5	11.2	5.0
MAJ24	BY	24	26.7	32.6	1.0		43.0	9.3	5.0
MAJ24A	BZ	24	26.7	29.5	1.0		38.9	10.3	5.0
MAJ26	CD	26	28.9	35.3	1.0		46.6	8.6	5.0
MAJ26A	CE	26	28.9	31.9	1.0		42.1	9.5	5.0
MAJ28	CF	28	31.1	38.0	1.0		60.0	8.0	5.0
MAJ28A	CG	28	31.1	34.4	1.0		45.4	8.8	5.0
MAJ30	сн	30	33.3	40.7	1.0		53.5	7.5	5.0
MAJ30A	СК	30	33.3	36.8	1.0		48.4	8.3	5.0
MAJ33	CL	33	36.7	44.9	1.0		59.0	6.8	5.0
МАЈЗЗА	СМ	33	36.7	40.6	1.0		53.3	7.5	5.0
MAJ36	CN	36	40.0	48.9	1.0		64.3	6.2	5.0
MAJ36A	CP	36	40.0	46.9	1.0		58.1	6.9	5.0 5.0
MAJ40	ca	40	40.0 44.4	44.2 54.3	1.0		50.1 71.4	5.6	5.0 5.0
MAJ40A	CR	40	44.4 44.4	54.5 49.1	1.0		64.5	6.2	5.0 5.0
MAJ43	CS								
MAJ43 MAJ43A	CT	43 43	47.8 47.8	58.4 52.8	1.0 1.0		76.7 69.4	5.2 5.7	5.0 5.0
MAJ45	cu	45	47.8 50.0	61.1	1.0		80.3	5.0	5.0 5.0
MAJ45A	cv	45	50.0 50.0	55.3	1.0		72.7	5.5	5.0 5.0

503


ELECTRICAL CHARACTERISTICS AT 25°C

Device	Device Marking Code	Working Peak Reverse Voltage Vww (Volts)	Brea V _(BR) (Min.	akdown Volta _l Volts) at Max.	ge IT mA	Maximum Clamping Voltage at I _{PPM} Vc (Volts) (NOTE 5)	Maximum Peak Impulse Surge Current I _{PPM} (NOTE 5) (Amps)	Maximum Reverse Leakage at V _{RWM} IDMA)
SMAJ48	CW	48	53.3	65.1	1.0	85.5	4.7	5.0
SMAJ48A	cx	48	53.3	58.9	1.0	77.4	5.2	5.0
SMAJ51	CY	51	56.7	69.3	1.0	91.1	4.4	5.0
SMAJ51A	cz	51	56.7	62.7	1.0	82.4	4.9	5.0
SMAJ54	RD	54	60.0	73.3	1.0	96.3	4.2	5.0
SMAJ54A	RE	54	60.0	66.3	1.0	87.1	4.6	5.0
SMAJ58	RF	58	64.4	78.7	1.0	103.0	3.9	5.0
SMAJ58A	RG	58	64.4	71.2	1.0	93.6	4.3	5.0
SMAJ60	RH	60	66.7	81.5	1.0	107.0	3.7	5.0
SMAJ60A	RK	60	66.7	73.7	1.0	96.8	4.1	5.0
SMAJ64	RL	64	71.1	86.4	1.0	114.0	3.5	5.0
SMAJ64A	RM	64	71.1	78.6	1.0	103.0	3.9	5.0
SMAJ70	RN	70	77.8	95.1	1.0	125	3.2	5.0
SMAJ70A	RP	70	77.8	86.0	1.0	113	3.5	5.0
SMAJ75	RQ	75	83.3	102	1.0	134	3.0	5.0
SMAJ75A	RR	75	83.3	92.1	1.0	121	3.3	5.0
SMAJ78	RS	78	86.7	106	1.0	139	2.9	5.0
SMAJ78A	RT	78	86.7	95.8	1.0	126	2.2	5.0
SMAJ85	RU	85	94.4	115	1.0	151	2.6	5.0
SMAJ85A	RV	85	94.4	104	1.0	137	2.9	5.0
SMAJ90	RW	90	100	122	1.0	160	2.5	5.0
SMAJ90A	RX	90	100	111	1.0	146	2.7	5.0
SMAJ100	RY	100	111	136	1.0	179	2.2	5.0
SMAJ100A	RZ	100	111	123	1.0	162	2.5	5.0
SMAJ110	SD	110	122	149	1.0	196	2.0	5.0
SMAJ110A	SE	110	122	135	1.0	177	2.3	5.0
SMAJ120	SF	120	133	163	1.0	214	1.9	5.0
SMAJ120A	SG	120	133	147	1.0	193	2.0	5.0
SMAJ130	SH	130	144	176	1.0	231	1.7	5.0
SMAJ130A	SK	130	144	159	1.0	209	1.9	5.0
SMAJ150	SL	150	167	204	1.0	268	1.5	5.0
SMAJ150A	SM	150	167	185	1.0	243	1.6	5.0
SMAJ160	SN	160	178	218	1.0	287	1.4	5.0
SMAJ160A	SP	160	178	197	1.0	259	1.5	5.0
SMAJ170	SQ	170	189	231	1.0	304	1.3	5.0
SMAJ170A	SR	170	189	209	1.0	275	1.4	5.0

APPLICATION NOTES

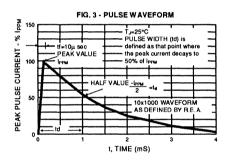
Recommended Pad Layout

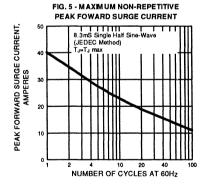
The pad dimensions should be 0.010" longer than the contact size in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods.

(Dimensions in inches and (millimeters)

This device is designed specifically for transient voltage suppression from threats generated by ESD for board level load switching components.

The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground.


This series is designed to optimize board space and for use with surface mount technology automated assembly equipment.


They can be easily mounted on printed circuit boards and ceramic substrates to protect sensitive components from transient voltage damage.

G General Instrument

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMAJ SERIES

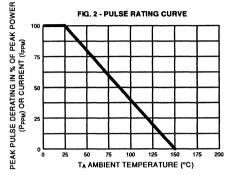
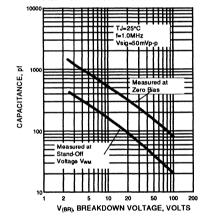
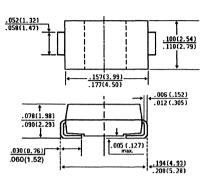



FIG. 4 - TYPICAL JUNCTION CAPACITANCE


(iii) General Instrument

TPSMA6.8 THRU TPSMA43A

AUTOMOTIVE SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 6.8 - 43.0 Volts 400 Watt Peak Pulse Power

FEATURES

DO-214AC

Dimensions in inches and (millimeters)

Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Easy pick and place
- Available in unidirectional only
- + Low profile package
- + Built-in strain relief
- + Exclusive G.I. P.A.R. chip construction
- ◆ Repetition rate (duty cycle): 0.01%
- Excellent clamping capability
- + Low incremental surge resistance
- Fast response time: typically less than 1.0ps from 0 volts to BV min.
- Typical I_D less than 1µA above 10V at T_A=150°C
- Designed to handle all under the hood surface mount applications
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AC Molded plastic Weight: 0.002 ounces, 0.064 grams Terminals: Solder plated; solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Standard Packaging: 12mm cavity Tape (EIA STD RS-481)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

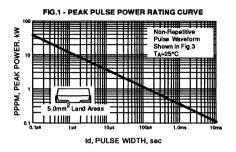
RATINGS	SYMBOLS	VALUE	UNITS
Peak Power Dissipation on 10/1000µs waveform, (NOTES 1, 2 FIG. 3)	Рррм	Minimum 400	Watts
Peak Power Pulse Current on 10/1000µs waveform (NOTE 1, FIG. 1)	Іррм	See Table 1	Amps
Peak Forward Surge Current 8.3ms single half sine-wave Superimposed on rated load (JEDEC Method) (NOTE 3)	IFSM	40.0	Amps
Instantaneous Forward Voltage at 50A (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	Tj,Tstg	-65 to +185	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. Mounted on P.C. board with 5.0mm² copper pads attached to each terminal.

3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.


ELECTRICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

Device Types	Device Marking Code	V(BR)V	akdown Voltage olts (NOTE 1)		Reverse Stand-off Voltage	Maximum Reverse Leakage at Vwu	Maximum Reverse Leakage at Vww TA=150°C	Maximum Peak Puise Surge Current IPPM (NOTE 2)	Maximum Ciamping Voltage at ippM
Device Types	Marking Code	Min.	Max.	at IŢ (mA)	Vww (Volts)	<i>ID</i> (μ <i>A</i>)	ID(µ.A)	(Amps)	Vc (Volts)
TPSMA6.8	ADP	6.12	7.48	10.0	5.50	300.0	1000.0	37.0	10.8
TPSMA6.8A	AEP	6.45	7.14	10.0	5.80	300.0	1000.0	38.1	10.5
TPSMA7.5	AFP	6.75	8.25	10.0	6.05	150.0	500.0	34.2	11.7
TPSMA7.5A	AGP	7.13	7.88	10.0	6.40	150.0	500.0	35.4	11.3
TPSMA8.2	AHP	7.38	9.02	10.0	6.63	50.0	200.0	32.0	12.5
TPSMA8.2A	ΑΚΡ	7.79	8.61	10.0	7.02	50.0	200.0	33.1	12.1
TPSMA9.1	ALP	8.19	10.00	1.0	7.37	10.0	50.0	29.0	13.8
TPSMA9.1A	AMP	8.65	9.55	1.0	7.78	10.0	50.0	29.8	13.4
TPSMA10	ANP	9.00	11.00	1.0	8.10	5.0	20.0	26.7	15.0
TPSMA10A	APP	9.50	10.50	1.0	8.55	5.0	20.0	27.6	14.5
TPSMA11	AQP	9.90	12.10	1.0	8.92	1.0	5.0	24.7	16.2
TPSMA11A	ARP	10.50	11.60	1.0	9.40	1.0	5.0	25.6	15.6
TPSMA12	ASP	10.80	13.20	1.0	9.72	1.0	5.0	23.1	17.3
TPSMA12A	ATP	11.40	12.60	1.0	10.20	1.0	5.0	23.9	16.7
TPSMA13	AUP	11.70	14.30	1.0	10.50	1.0	5.0	21.0	19.0
TPSMA13A	AVP	12.40	13.70	1.0	11.10	1.0	5.0	22.0	18.2
TPSMA15	AWP	13.50	16.30	1.0	12.10	1.0	5.0	18.2	22.0
TPSMA15A	AXP	14.30	15.80	1.0	12.80	1.0	5.0	18.7	21.2
TPSMA16	AYP	14.40	17.60	1.0	12.90	1.0	5.0	17.0	23.5
TPSMA16A	AZP	15.20	16.80	1.0	13.60	1.0	5.0	17.8	22.5
TPSMA18	BDP	16.20	19.80	1.0	14.50	1.0	5.0	15.1	26.5
TPSMA18A	BEP	17.10	18.90	1.0	15.30	1.0	5.0	15.7	25.5
TPSMA20	BFP	18.00	22.00	1.0	16.20	1.0	5.0	13.7	29.1
TPSMA20A	BGP	19.00	21.00	1.0	17.10	1.0	5.0	14.4	27.7
TPSMA22	внр	19.80	24.20	1.0	17.80	1.0	5.0	12.5	31.9
TPSMA22A	BKP	20.90	23.10	1.0	18.80	1.0	5.0	13.1	30.6
TPSMA24	BLP	21.60	26.40	1.0	19.40	1.0	5.0	11.5	34.7
TPSMA24A	BMP	22.80	25.20	1.0	20.50	1.0	5.0	12.0	33.2
TPSMA27	BNP	24.30	29.70	1.0	21.80	1.0	5.0	10.2	39.1
TPSMA27A	BPP	25.70	28.40	1.0	23.10	1.0	5.0	10.7	37.5
TPSMA30	BQP	27.00	33.00	1.0	24.30	1.0	5.0	9.2	43.5
TPSMA30A	BRP	28.50	31.50	1.0	25.60	1.0	5.0	9.7	41.4
TPSMA33	BSP	29.70	36.30	1.0	26.80	1.0	5.0	8.4	47.7
TPSMA33A	BTP	31.40	34.70	1.0	28.20	1.0	5.0	8.7	45.7
TPSMA36	BUP	32.40	39.60	1.0	29.10	1.0	5.0	7.7	52.0
TPSMA36A	BVP	34.20	37.80	1.0	30.80	1.0	5.0	8.0	49.9
TPSMA39	BWP	35.10	42.90	1.0	31.60	1.0	5.0	7.1	56.4
TPSMA39A	BXP	37.10	41.00	1.0	33.30	1.0	5.0	7.4	53.9
TPSMA43	BYP	38.70	47.30	1.0	34.80	1.0	5.0	6.5	61.9
TPSMA43A	BZP	40.90	45.20	1.0	36.80	1.0	5.0	6.7	59.3

NOTES:

1. V_(BR) measured after I_T applied for 300μs, IT=Square Wave Pulse or equivalent.
2. Surge Current Waveform per Figure 3 and Derate per Figure 2.
3. All terms and symbols are consistant with ANSI/IEEE C62.35.

RATINGS AND CHARACTERISTIC CURVES TPSMA6.8 THRU TPSMA43A

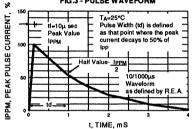
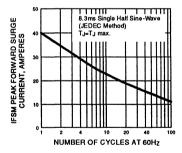



FIG. 5 - MAXMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

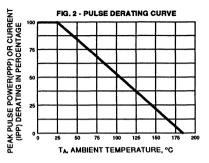
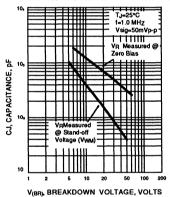
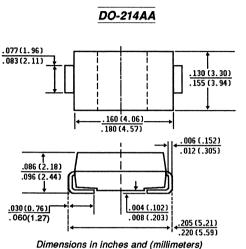



FIG.4 - TYPICAL JUNCTION CAPACITANCE


(D) General Instrument

S2A THRU S2M

SURFACE MOUNT RECTIFIER

FEATURES

 Plastic package has Underwriters Laboratory Flammability Classification 94 V-O

- For surface mounted applications
- Low profile package
- Built-in strain relief
- Easy pick and place
- Glass passivated chip junction

High temperature soldering: 250°C/10 seconds at terminals

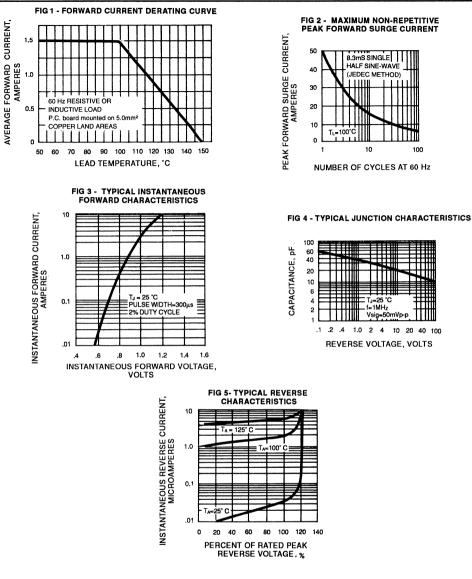
MECHANICAL DATA

Case: JEDEC DO-214AA molded plastic over passivated junction Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Indicated by cathode band Standard Packaging: 12mm tape (EIA STD RS-481) Weiaht: 0.003 ounces, 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, Resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	S2A	S2B	S2D	S2G	S2J	S2K	S2M	UNITS
	1 1								
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at TL=100°C (NOTE 3)	I(AV)				1.5				Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM} 50.0							Amps	
Maximum Instantaneous Forward Voltage at 1.5A	VF				1.15				Volts
Maximum DC Reverse Current T _{A=25°C}					1.0				
at Rated DC Blocking Voltage T _A =125°C	IR				125.0				μΑ
Typical Reverse Recovery Time (NOTE 1)	Trr				2.0				μs
Typical Junction Capacitance (NOTE 2)	CJ				30.0				pF
Maximum Thermal Resistance (NOTE 3)	Rejl				20.0				
	Reja				100.0)			°C/W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}			-5	55 to 1	50			°C

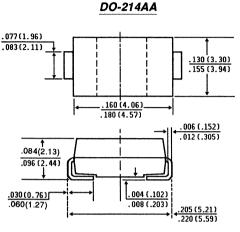

NOTES:

1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

3. 5.0mm² (.013mm thick) land areas.

RATING AND CHARACTERISTIC CURVES S2A THRU S2M



G General Instrument

RS2A THRU RS2K

FAST SWITCHING SURFACE MOUNT RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 1.5 Amperes

FEATURES

Low profile package Built-in strain relief

- Easy pick and place
- Glass passivated junction
- Fast switching for high efficiency

Plastic package has Underwriters Laboratory

Flammability Classification 94 V-O For surface mounted applications

• High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AA molded plastic over passivated junction Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Indicated by cathode band Standard Packaging: 12mm tape (EIA STD RS-481) Weiaht: 0.003 ounces, 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

Dimensions in inches and (millimeters)

	SYMBOLS	RS2A	RS2B	RS2D	RS2G	RS2J	RS2K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current at TL=100°C (NOTE 3)	I(AV)	1.5						Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	50.0						Amps
Maximum Instantaneous Forward Voltage at 1.5A	VF	1.30						Volts
Maximum DC Reverse CurrentT_A=25°Cat Rated DC Blocking VoltageT_A=125°C	l _R			-	.0 0.0			μA
Maximum Reverse Recovery Time (NOTE 1)	Trr		15	50		250	500	ns
Typical Junction Capacitance (NOTE 2)	CJ			50	0.0	.		pF
Maximum Thermal Resistance (NOTE 3)	RØJL RØJA						∘c∧w	
Operating Junction and Storage Temperature Range	TJ, TSTG						°C	

NOTES:

1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

3. 5.0mm² (.013mm thick) land areas.

RATING AND CHARACTERISTIC CURVES RS2A THRU RS2K

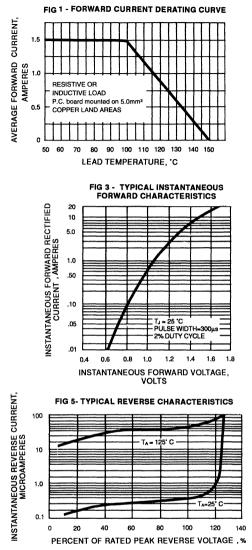


FIG 2 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

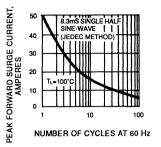
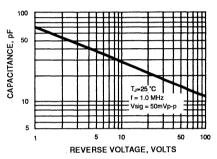
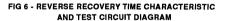
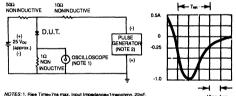
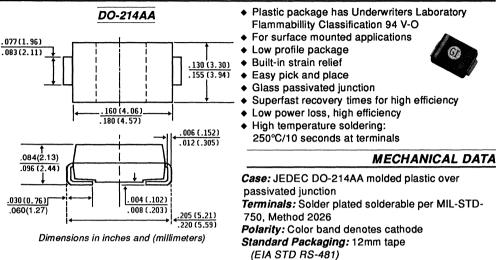





FIG 4 - TYPICAL JUNCTION CHARACTERISTICS

NOTES: 1. Rise Time=7ns max. Input Impedance=1m 2. Rise Time=10ns max. Source Impedance=50 ohms. -1m 10ns 1cm


@ General Instrument

ES2A THRU ES2D

FAST EFFICIENT SURFACE MOUNT RECTIFIER

VOLTAGE - 50 to 200 Volts CURRENT - 2.0 Amperes

FEATURES

Weight: 0.003 ounces, 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

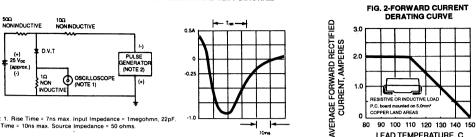
Ratings at 25 $^{\circ}\mathrm{C}$ ambient temperature unless otherwise specified. Resistive or inductive load.

		SYMBOLS	ES2A	ES2B	ES2C	ES2D	UNITS
Maximum Recurrent Peak Reverse Vol	tage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage		VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage		VDC	50	100	150	200	Volts
Maximum Average Forward Rectified C at TL=110°C	urrent	l(AV)		2.0			Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimpo rated load (JEDEC Method)	sed on	IFSM			Amps		
Maximum Instantaneous Forward Volta	ige at 2 .0A	VF			Volts		
Maximum DC Reverse Current	T _A =25°C		10.0				
at Rated DC Blocking Voltage	T _A =100℃	l _R		350)		μA
Maximum Reverse Recovery Time (NO	TE 1)	TRR		20.0)		ns
Maximum Reverse Recovery Time	T _A =25° C			30.0)		
(NOTE 2)	T _A =100°C	Trr		50.0)		ns
Maximum Stored Charge	T _A =25°C			10.0)		
(NOTE 2)	T _A =100℃	QRR	25.0				nc
Typical Junction Capacitance (NOTE 3)		CJ	25.0				pF
Maximum Thermal Resistance (NOTE 4)		Rejl			°C/W		
Operating Junction and Storage Tempe	erature Range	TJ,TSTG		-55 to -	+150		°C

Notes:

1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. TRR and QRR measured on LEM tester: VR=30V, di/dt=50 A/µs IF=2.0A.


3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

4. 5.0mm² (.013mm thick) land areas.

RATING AND CHARACTERISTIC CURVES ES2A THRU ES2D

tone

FIG 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

NOTES: 1. Rise Time = 7ns max. Input Impedance = 1megohmn, 22pF. 2. Rise Time = 10ns max. Source Impedance = 50 ohms.

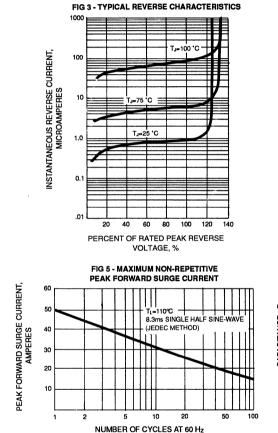
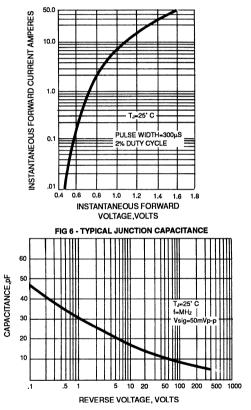
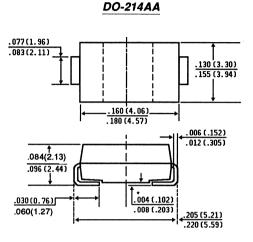



FIG 4 - TYPICAL FORWARD CHARACTERISTICS

LEAD TEMPERATURE, C


General Instrument

SS22 THRU SS26

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER CURRENT - 2.0 Amperes

VOLTAGE - 20 to 60 Volts

FEATURES

Dimensions in inches and (millimeters)

*Typical Range

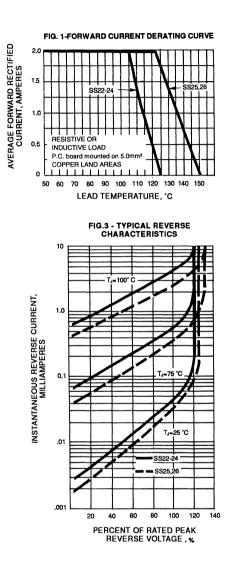
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- For surface mounted applications
- Low profile package
- Built-in strain relief
- Metal to silicon rectifier,
- majority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- High surge capacity
- Epitaxial construction
- For use in low voltage high frequency inverters, free wheeling, and polarity protection applications
- Guardring for transient protection
- High temperature soldering guaranteed: 250°C/10 seconds at terminals

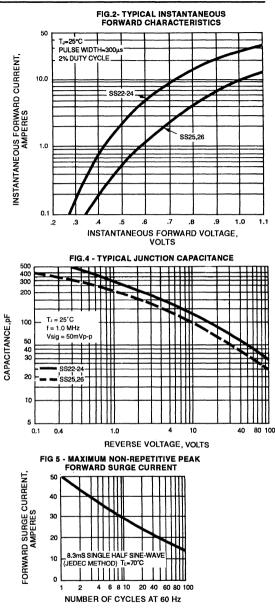
MECHANICAL DATA

Case: JEDEC DO-214AA molded plastic Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Standard Packaging: 12mm tape (EIA STD RS-481)

Weight: 0.003 ounces 0.093 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

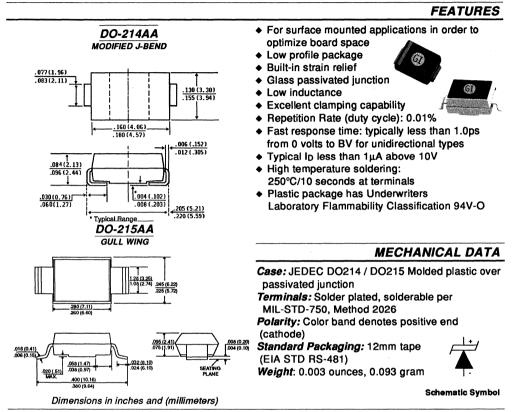

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.


	SYMBOLS	SS22	SS23	SS24	SS25	SS26	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS voltage	VRMS	14	21	28	35	42	Volts
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current at T _L (See Figure 1)	l _(AV) 2.0						Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		Amps				
Maximum Instantaneous Forward Voltage at 2.0A (NOTE 1)	VF	0.50 0.70					Volts
Maximum DC Reverse Current (NOTE 1) TA=25°C				0.5			
at Rated DC Blocking Voltage T _A =100°C	l _R		20.0		1	0.0	mA
Maximum Thermal Resistance (NOTE 2)	Rejl Reja		20.0				°C/W
Operating Junction Temperature Range	Tj		-65 to +1	25	-65 to	+150	°C
Storage Temperature Range	orage Temperature Range Tstg -65 to +150						°C

NOTES:

1. Pulse Test with PW=300 μsec, 2% Duty Cycle. 2. 5.0mm² (.013mm thick) land areas.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SS22 THRU SS26



(D) General Instrument

SMBG AND SMBJ 5.0 THRU 170,A SERIES

UNIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 5.0 - 170 Volts Peak Pulse Power - 600 Watts

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (Notes 1, 2, Fig. 1)	Рерм	Minimum 600	Watts
Peak Pulse Current on 10/1000µs waveform (Note 1, Fig. 3)	Іррм	See Table 1	Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) (Notes 2,3)	IFSM	100.0	Amps
Maximum Instantaneous Forward Voltage at 50A (Note 3, 4)	VFM	See Note 3, 4	Volts
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 to +150	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above T_A=25°C per Fig. 2. 2. Mounted on 5.0mm² (.013mm thick) land areas.

3. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum.

4. VF=3.5V for SMB-5.0 thru SMB-90 devices and VF 5.0V for SMB-100 thru SMB-170 devices.

ELECTRICAL CHARACTERISTICS AT TA=25°C (unless otherwise noted)

Guil Wing Lead	Modified "J" Band Lead	Device Marking Code	Breakdown Voltage V _(BR) (Volts) (NOTE 1) (Min / Max)	at iŢ (mA)	<u>Reverse</u> Stand-off Voltage Vww (Volta)	Maximum Reverse Leakage at VWM In(mA)	Maximum Peak Puise Surge Current ippy (NOTE 2) (Amps)	Maximum Clamping Voltage at ippu Vc (Volts)
SMBG5.0	SMBJ5.0	KD	6.40/7.55	10	5.0	800.0	62.5	9.6
SMBG5.0A	SMBJ5.0A	κe	6.40/7.25	10	5.0	800.0	65.2	9.2
SMBG6.0	SMBJ6.0	KF	6.67/8.45	10	6.0	800.0	52.6	11.4
SMBG6.0A	SMGJ6.0A	KG	6.67/7.67	10	6.0	800.0	58.3	10.3
SMBG6.5	SMBJ6.5	кн	7.22/9.14	10	6.5	500.0	48.7	12.3
SMBG6.5A	SMBJ6.5A	кк	7.22/8.30	10	6.5	500.0	53.6	11.2
SMBG7.0	SMBJ7.0	KL	7.78/9.86	10	7.0	200.0	45.1	13.3
SMBG7.0A	SMBJ7.0A	км	7.78/8.95	10	7.0	200.0	50.0	12.0
SMBG7.5	SMBJ7.5	KN	8.33/10.67	1.0	7.5	100.0	42.0	14.3
SMBG7.5A	SMBJ7.5A	КР	8.33/9.58	1.0	7.5	100.0	46.5	12.9
SMBG8.0	SMBJ8.0	KQ	8.89/11.3	1.0	8.0	50.0	40.0	15.0
SMBG8.0A	SMBJ8.0A	KR	8.89/10.2	1.0	8.0	50.0	44.1	13.6
SMBG8.5	SMBJ8.5	кs	9.44/11.9	1.0	8.5	20.0	37.7	15.9
SMBG8.5A	SMBJ8.5A	кт	9.44/10.8	1.0	8.5	20.0	41.7	14.4
SMBG9.0	SMBJ9.0	кυ	10.0/12.6	1.0	9.0	10.0	35.5	16.9
SMBJ9.0A	SMBJ9.0A	кν	10.0/11.5	1.0	9.0	10.0	39.0	15.4
SMBG10	SMBJ10	кw	11.1/14.1	1.0	10	5.0	31.9	18.8
SMBG10A	SMBJ10A	кх	11.1/12.8	1.0	10	5.0	35.3	17.0
SMBG11	SMBJ11	KY	12.2/15.4	1.0	11	5.0	29.9	20.1
SMBG11A	SMBJ11A	кz	12.2/14.0	1.0	11	5.0	33.0	18.2
SMBG12	SMBJ12	LD	13.3/16.9	1.0	12	5.0	27.3	22.0
SMBG12A	SMBJ12A	LE	13.3/15.3	1.0	12	5.0	30.2	19.9
SMBG13	SMBJ13	LF	14.4/18.2	1.0	13	5.0	25.2	23.8
SMBG13A	SMBJ13A	LG	14.4/16.5	1.0	13	5.0	27.9	21.5
SMBG14	SMBJ14	LH	15.6/19.8	1.0	14	5.0	23.3	25.8
SMBG14A	SMBJ14A	LK	15.6/17.9	1.0	14	5.0	25.8	23.2
SMBG15	SMBJ15	LL	16.7/21.1	1.0	15	5.0	22.3	26.9
SMBG15A	SMBJ15A	LM	16.7/19.2	1.0	15	5.0	24.0	24.4
SMBG16	SMBJ16	LN	17.8/22.6	1.0	16	5.0	20.8	28.8
SMBG16A	SMBJ16A	LP	17.8/20.5	1.0	16	5.0	23.1	26.0
SMBG17	SMBJ17	LQ	18.9/23.9	1.0	17	5.0	19.7	30.5
SMBG17A	SMBJ17A	LR	18.9/21.7	1.0	17	5.0	21.7	27.6
SMBG18	SMBJ18	LS	20.0/25.3	1.0	18	5.0	18.6	32.2
SMBG18A	SMBJ18A	LT	20.0/23.3	1.0	18	5.0	20.5	29.2
SMBG20	SMBJ20	LU	22.2/28.1	1.0	20	5.0	16.7	35.8
SMBG20A	SMBJ20A	LV	22.2/25.5	1.0	20	5.0	18.5	32.4
SMBG22	SMBJ22	LW	24.4/30.9	1.0	22	5.0	15.2	39.4
SMBG22A	SMBJ22A	LX	24.4/28.0	1.0	22	5.0	16.9	35.5
SMBG24	SMBJ24	LY	26.7/33.8	1.0	24	5.0	14.0	43.0
SMBG24A	SMBJ24A	LZ	26.7/30.7	1.0	24	5.0	15.4	38.9
SMBG26	SMBJ26	MD	28.9/36.6	1.0	26	5.0	12.4	46.6
SMBG26A	SMBJ26A	ME	28.9/33.2	1.0	26	5.0	14.2	42.1
SMBG28	SMBJ28	MF	31.1/39.4	1.0	28	5.0	12.0	50.0
SMBG28A	SMBJ28A	MG	31.1/35.8	1.0	28	5.0	13.2	45.4
SMBG30	SMBJ30	мн	33.3/42.2	1.0	30	5.0	11.2	53.5
SMBG30A	SMBJ30A	мк	33.1/38.3	1.0	30	5.0	12.4	46.6
SMBG33	SMBJ33	ML	36.7/46.5	1.0	33	5.0	10.2	59.0
SMBG33A	SMBJ33A	мм	36.7/42.2	1.0	33	5.0	11.3	53.3
SMBG36	SMBJ36	MN	40.0/50.7	1.0	36	5.0	9.3	64.3
SMBG36A	SMBJ36A	MP	40.0/46.0	1.0	36	5.0	10.3	58.1
SMBG40	SMBJ40	MQ	44.4/56.3	1.0	40	5.0	8.4	71.4
SMBG40A	SMBJ40A	MR	44.4/51.1	1.0	40	5.0	9.3	64.5
SMBG43	SMBJ43	MS	47.8/60.5	1.0	43	5.0	7.8	76.7
SMBG43A	SMBJ43A	мт	47.8/54.9	1.0	43	5.0	8.6	69.4
SMBG45	SMBJ45	MU	50.0/63.3	1.0	45	5.0	7.5	80.3
SMBG45A	SMBJ45A	мv	50.0/57.5	1.0	45	5.0	8.3	72.7
SMBG48	SMBJ48	мw	53.3/67.5	1.0	48	5.0	7.0	85.5
SMBG48A	SMBJ48A	мх	53.3/61.3	1.0	48	5.0	7.7	77.4
SMBG51	SMBJ51	MY	56.7/71.8	1.0	51	5.0	6.6	91.1
SMBG51A	SMBJ51A	MZ	56.7/65.2	1.0	51	5.0	7.3	82.4
SMBG54	SMBJ54	ND	60.0/76.0	1.0	54	5.0	6.2	96.3
SMBG54A	SMBJ54A	NE	60.0/69.0	1.0	54	5.0	6.9	87.1
		1		1				.

ELECTRICAL CHARACTERISTICS AT25°C

Guil-Wing	Modified	Device Marking	Breakdown Voltage V _(BR) Volts (NOTE 1)		<u>Reverse</u> Stand-off Voltage	Maximum Reverse Leakage at Vww	Maximum Peak Puise Surge Current IPPu	Maximum Ciamping Voltage at Ippy Vc(Volts)
Lead	"J" Bend Lead	Code	(Min. / Max.)	@hy mA	Vww (Volts)	iD(mA)	(NOTE 2) (Amps)	
SMBG58	SMBJ58	NF	64.4/81.6	1.0	58	5	5.8	103.0
SMBG58A	SMBJ58A	NG	64.4/74.1	1.0	58	5	6.4	93.6
SMBG60	SMBJ60	NH	66.7/84.5	1.0	60	5	5.6	107.0
SMBG60A	SMBJ60A	NK	66.7/76.7	1.0	60	5	6.2	96.8
SMBG64	SMBJ64	NL	71.1/90.1	1.0	64	5	5.3	114.0
SMBG64A	SMBJ64A	NM	71.1/81.8	1.0	64	5	5.8	103.0
SMBG70	SMBJ70	NN	77.8/98.6	1.0	70	5	4.8	125
SMBG70A	SMBJ70A	NP	77.8/89.5	1.0	70	5	5.3	113
SMBG75	SMBJ75	NQ	83.3/105.7	1.0	75	5	4.5	134
SMBG75A	SMBJ75A	NR	83.3/95.8	1.0	75	5	4.9	121
SMBG78	SMBJ78	NS	86.7/109.9	1.0	78	5	4.3	139
SMBG78A	SMBJ78A	NT	86.7/99.7	1.0	78	5	4.7	126
SMBG85	SMBJ85	NU	94.4/119.2	1.0	85	5	3.9	151
SMBG85A	SMBJ85A	NV	94.4/108.2	1.0	85	5	4.4	137
SMBG90	SMBJ90	NW	100/126.5	1.0	90	5	3.8	160
SMBG90A	SMBJ90A	NX	100/115.5	1.0	90	5	4.1	146
SMBG100	SMBJ100	NY	111/141.0	1.0	100	5	3.4	179
SMBG100A	SMBJ100A	NZ	111/128.0	1.0	100	5	3.7	162
SMBG110	SMBJ110	PD	122/154.5	1.0	110	5	3.0	196
SMBG110A	SMBJ110A	PE	122/140.5	1.0	110	5	3.4	177
SMBG120	SMBJ120	PF	133/169.0	1.0	120	5	2.8	214
SMBG120A	SMBJ120A	PG	133/153.0	1.0	120	5	3.1	193
SMBG130	SMBJ130	РН	144/182.5	1.0	130	5	2.6	231
SMBG130A	SMBJ130A	PK	144/165.5	1.0	130	5	2.9	209
SMBG150	SMBJ150	PL	167/211.5	1.0	150	5	2.2	268
SMBG150A	SMBJ150A	PM	167/192.5	1.0	150	5	2.5	243
SMBG160	SMBJ160	PN	178/226.0	1.0	160	5	2.1	287
SMBG160A	SMBJ160A	PP	178/205.0	1.0	160	5	2.3	259
SMBG170	SMBJ170	PQ	189/239.5	1.0	170	5	2.0	304
SMBG170A	SMBJ170A	PR	189/217.5	1.0	170	5	2.2	275

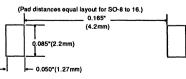
NOTES:

1. V(BR) measured after IT applied for 300µs IT = Square Wave Pulse or equivalent.

2. Surge Current Waveform per Figure 3 and Derate per Figure 2.

3. A TransZorb TVS is normally selected according to the reverse "Stand Off Voltage" (Vwm) which should be equal to or greater than the D.C. or continuous peak operating voltage level. 4. All terms and symbols are consistant with ANSI / IEEE C.62.35 specifications.

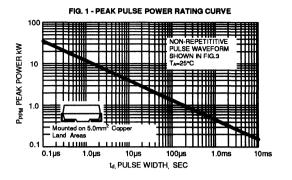
APPLICATION NOTES


These surface mountable packages are designed specifically for transient voltage suppression. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground. These high speed transient voltage suppressors can be used to effectively protect sensitive components such as integrated circuits and MOS devices.

A 600W (SMB) device is normally selected when the threat of transients is from lightening-induced transients conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. System impediance at component level in a system is usually high enough to limit the current to within the peak pulse current (Ipp) rating of this series.

RECOMMENDED PAD SIZES

The pad dimentions should be 0.010" (.25mm) longer than the contact size, in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods.



MODIFIED J-BEND

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMBG AND SMBJ SERIES

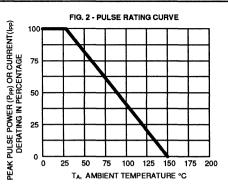
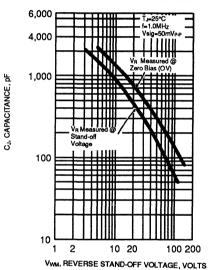
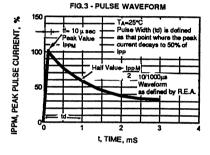
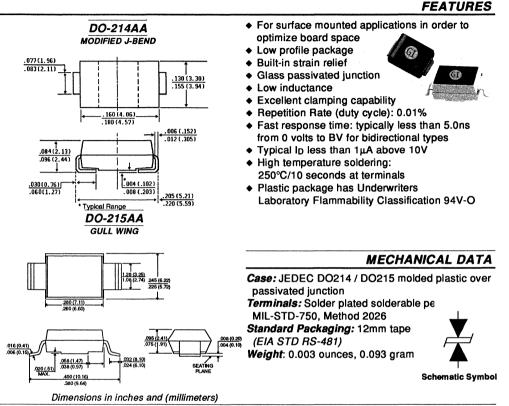




FIG. 4 - TYPICAL JUNCTION CAPACITANCE



General Instrument

SMBG AND SMBJ 5.0 THRU 170C,CA SERIES

BIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGESUPPRESSOR VOLTAGE - 5.0 - 170 Volts Peak Pulse Power - 600 Watts

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Electrical characteristics apply in both directions Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000ms waveform (Notes 1, 2, Fig. 1)	Рерм	Minimum 600	Watts
Peak Pulse Current on 10/1000ms waveform (Note 1, Fig. 3)	Іррм	See Table 1	Amps
Operating Junction and Storage Temperature Range	Tj,Tstg	-55 to +150	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. Mounted on 5.0mm² (.013mm thick) land areas.

3. Measured on 8.3ms single half sine-wave or equivalent squarewave, duty cycle 4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS TA=25°C (unless otherwise noted)

Guli Wing Lead	Modified "J" Bend Lead	Device Marking Code	Breakdown Voltage V(BR) (Volts) (NOTE 1) Min / Max	at iŢ (mA)	Reverse Stand-off Voltage Vww (Volts)	Maximum Reverse Leakage at Vww In(mA)	Maximum Peak Pulae Surge Current IPPM (NOTE 2) (Amps)	Maximum Ciamping Voltage si Ippu VC (Volts)
SMBG5.0C	SMBJ5.0C	KD	6.40 / 7.55	10	5.0	1600.0	62.5	9.6
SMBG5.0CA	SMBJ5.0CA	KE	6.40 / 7.25	10	5.0	1600.0	65.2	9.2
SMBG6.0C	SMBJ6.0C	KF	6.67 / 8.45	10	6.0	1600.0	52.6	11.4
SMBG6.0CA	SMGJ6.0CA	КG	6.67 / 7.67	10	6.0	1600.0	58.3	10.3
SMBG6.5C	SMBJ6.5C	AH	7.22 / 9.14	10	6.5	1000.0	48.7	12.3
SMBG6.5CA	SMBJ6.5CA	AK	7.22 / 8.30	10	6.5	1000.0	53.6	11.2
SMBG7.0C	SMBJ7.0C	KL	7.78 / 9.86	10	7.0	400.0	45.1	13.3
SMBG7.0CA	SMBJ7.0CA	КМ	7.78 / 8.95	10	7.0	400.0	50.0	12.0
SMBG7.5C	SMBJ7.5C	AN	8.33 / 10.67	1.0	7.5	200.0	42.0	14.3
SMBG7.5CA	SMBJ7.5CA	AP	8.33 / 9.58	1.0	7.5	200.0	46.5	12.9
SMBG8.0C	SMBJ8.0C	AQ	8.89 / 11.3	1.0	8.0	100.0	40.0	15.0
SMBG8.0CA	SMBJ8.0CA	AR	8.89 / 10.23	1.0	8.0	100.0	44.1	13.6
SMBG8.5C SMBG8.5CA	SMBJ8.5C	AS	9.44 / 11.92	1.0	8.5	20.0	37.7	15.9
SMBG9.0C	SMBJ8.5CA SMBJ9.0C	AT AU	9.44 / 10.82	1.0	8.5	20.0	41.7	14.4
SMBJ9.0CA	SMBJ9.0CA	AU	10.0 / 12.6	1.0	9.0	10.0	35.5	16.9
SMBJ9.0CA SMBG10C	SMBJ9.0CA	AV	10.0 / 11.5 11.1 / 14.1	1.0 1.0	9.0	10.0	39.0	15.4
SMBG10CA	SMBJ10CA	AW	11.1/14.1	1.0	10	5.0 5.0	31.9	18.8
SMBG11C	SMBJ11C	KY	12.2 / 15.4	1.0	11	5.0	35.3 29.9	17.0 20.1
SMBG11CA	SMBJ11CA	KZ	12.2 / 15.4	1.0	11	5.0	29.9	20.1
SMBG12C	SMBJ12C	BD	13.3 / 16.9	1.0	12	5.0	27.3	22.0
SMBG12CA	SMBJ12CA	BE	13.3 / 15.3	1.0	12	5.0	30.2	19.9
SMBG13C	SMBJ13C	LF	14.4 / 18.2	1.0	13	5.0	25.2	23.8
SMBG13CA	SMBJ13CA	LG	14.4 / 16.5	1.0	13	5.0	27.9	21.5
SMBG14C	SMBJ14C	BH	15.6 / 19.8	1.0	14	5.0	23.3	25.8
SMBG14CA	SMBJ14CA	ВК	15.6 / 17.9	1.0	14	5.0	25.8	23.2
SMBG15C	SMBJ15C	BL	16.7 / 21.1	1.0	15	5.0	22.3	26.9
SMBG15CA	SMBJ15CA	ВМ	16.7 / 19.2	1.0	15	5.0	24.0	24.4
SMBG16C	SMBJ16C	LN	17.8 / 22.6	1.0	16	5.0	20.8	28.8
SMBG16CA	SMBJ16CA	LM	17.8 / 20.5	1.0	16	5.0	23.1	26.0
SMBG17C	SMBJ17C	LQ	18.9 / 23.9	1.0	17	5.0	19.7	30.5
SMBG17CA	SMBJ17CA	LR	18.9 / 21.7	1.0	17	5.0	21.7	27.6
SMBG18C	SMBJ18C	BS	20.0 / 25.3	1.0	18	5.0	18.6	32.2
SMBG18CA	SMBJ18CA	BT	20.0 / 23.3	1.0	18	5.0	20.5	29.2
SMBG20C	SMBJ20C	LU	22.2 / 28.1	1.0	20	5.0	16.7	35.8
SMBG20CA	SMBJ20CA	LV	22.2 / 25.5	1.0	20	5.0	18.5	32.4
SMBG22C	SMBJ22C	BW	24.4 / 30.9	1.0	22	5.0	15.2	39.4
SMBG22CA	SMBJ22CA	BX	24.4 / 28.0	1.0	22	5.0	16.9	35.5
SMBG24C SMBG24CA	SMBJ24C	BY	26.7 / 33.8	1.0	24	5.0	14.0	43.0
SMBG24CA SMBG26C	SMBJ24CA SMBJ26C	BZ CD	26.7 / 30.7 28.9 / 36.6	1.0	24	5.0	15.4	38.9
SMBG26CA	SMBJ26CA	CE	28.9/36.6	1.0 1.0	26 26	5.0	12.4	46.6
SMBG28C	SMBJ28C	MF	31.1 / 39.4	1.0	28	5.0 5.0	14.2 12.0	42.1 50.0
SMBG28CA	SMBJ28CA	MG	31.1 / 35.8	1.0	28	5.0	13.2	45.4
SMBG30C	SMBJ30C	СН	33.3 / 42.2	1.0	30	5.0	11.2	53.5
SMBG30CA	SMBJ30CA	ск	33.1 / 38.3	1.0	30	5.0	12.4	46.6
SMBG33C	SMBJ33C	CL	36.7 / 46.5	1.0	33	5.0	10.2	59.0
SMBG33CA	SMBJ33CA	СМ	36.7 / 42.2	1.0	33	5.0	11.3	53.3
SMBG36C	SMBJ36C	CN	40.0 / 50.7	1.0	36	5.0	9.3	64.3
SMBG36CA	SMBJ36CA	СР	40.0 / 46.0	1.0	36	5.0	10.3	58.1
SMBG40C	SMBJ40C	ca	44.4 / 56.3	1.0	40	5.0	8.4	71.4
SMBG40CA	SMBJ40CA	CR	44.4 / 51.1	1.0	40	5.0	9.3	64.5
SMBG43C	SMBJ43C	cs	47.8 / 60.5	1.0	43	5.0	7.8	76.7
SMBG43CA	SMBJ43CA	СТ	47.8 / 54.9	1.0	43	5.0	8.6	69.4
SMBG45C	SMBJ45C	MU	50.0 / 63.3	1.0	45	5.0	7.5	80.3
SMBG45CA	SMBJ45CA	MV	50.0 / 57.5	1.0	45	5.0	8.3	72.7
SMBG48C	SMBJ48C	MW	53.3 / 67.5	1.0	48	5.0	7.0	85.5
SMBG48CA	SMBJ48CA	мх	53.3 / 61.3	1.0	48	5.0	7.7	77.4
SMBG51C	SMBJ51C	MY	56.7 / 71.8	1.0	51	5.0	6.6	91.1
SMBG51CA	SMBJ51CA	MZ	56.7 / 65.2	1.0	51	5.0	7.3	82.4
SMBG54C	SMBJ54C	ND	60.0 / 76.0	1.0	54	5.0	6.2	96.3
SMBG54CA	SMBJ54CA	NE	60.0 / 69.0	1.0	54	5.0	6.9	87.1

Guil-Wing Lead	Modified "J" Bend Lead	Device Marking Code	Breakdown Voltage V(BR) Volts (NOTE 1) Min. / Max.	at iy mA	Reverse Stand-off Voltage Vwu (Volts)	Maximum Reverse Loakage at Vww ID(mA)	Maximum Peak Puise Surge Current Ippy (NOTE 2) (Amps)	Maximum Clamping Voltage at IPPM VC (Volts)
MBG58C	SMBJ58C	NF	64.4 / 81.6	1.0	58	5.0	5.8	103.0
MBG58CA	SMBJ58CA	NG	64.4 / 74.1	1.0	58	5.0	6.4	93.6
MBG60C	SMBJ60C	NH	66.7 / 84.5	1.0	60	5.0	5.6	107.0
MBG60CA	SMBJ60CA	NK	66.7 / 76.7	1.0	60	5.0	6.2	96.8
SMBG64C	SMBJ64C	NL	71.1/90.1	1.0	64	5.0	5.3	114.0
SMBG64CA	SMBJ64CA	NM	71.1/81.8	1.0	64	5.0	5.8	103.0
MBG70C	SMBJ70C	NN	77.8 / 98.6	1.0	70	5.0	4.8	125
SMBG70CA	SMBJ70CA	NP	77.8 / 89.5	1.0	70	5.0	5.3	113
SMBG75C	SMBJ75C	NQ	83.3 / 105.7	1.0	75	5.0	4.5	134
MBG75CA	SMBJ75CA	NR	83.3 / 95.8	1.0	75	5.0	4.9	121
MBG78C	SMBJ78C	NS	86.7 / 109.8	1.0	78	5.0	4.3	139
MBG78CA	SMBJ78CA	NT	86.7 / 99.7	1.0	78	5.0	4.7	126
SMBG85C	SMBJ85C	NU	94.4 / 119.2	1.0	85	5.0	3.9	151
SMBG85CA	SMBJ85CA	NV	94.4 / 108.2	1.0	85	5.0	4.4	137
SMBG90C	SMBJ90C	NW	100/126.5	1.0	90	5.0	3.8	160
SMBG90CA	SMBJ90CA	NX	100/115.5	1.0	90	5.0	4.1	146
SMBG100C	SMBJ100C	NY	111/141.0	1.0	100	5.0	3.4	179
SMBG100CA	SMBJ100CA	NZ	111/128.0	1.0	100	5.0	3.7	162
SMBG110C	SMBJ110C	PD	122/154.5	1.0	110	5.0	3.0	196
SMBG110CA	SMBJ110CA	PE	122/140.5	1.0	110	5.0	3.4	177
SMBG120C	SMBJ120C	PF	133 / 169.0	1.0	120	5.0	2.8	214
SMBG120CA	SMBJ120CA	PG	133 / 153.0	1.0	120	5.0	3.1	193
SMBG130C	SMBJ130C	PH	144/182.5	1.0	130	5.0	2.6	231
MBG130CA	SMBJ130CA	PK	144 / 165.5	1.0	130	5.0	2.9	209
MBG150C	SMBJ150C	PL	167/211.5	1.0	150	5.0	2.2	268
MBG150CA	SMBJ150CA	РМ	167 / 192.5	1.0	150	5.0	2.5	243
MBG160C	SMBJ160C	PN	178 / 226.0	1.0	160	5.0	2.1	287
MBG160CA	SMBJ160CA	PP	178 / 205.0	1.0	160	5.0	2.3	259
SMBG170C	SMBJ170C	PQ	189 / 239.5	1.0	170	5.0	2.0	304
SMBG170CA	SMBJ170CA	PR	189/217.5	1.0	170	5.0	2.2	275

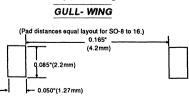
NOTES:

1. V(BR) measured after IT applied for 300µs IT = Square Wave Pulse or equivalent.

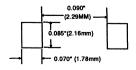
2. Surge Current Waveform per Figure 3 and Derate per Figure 2.

3. A TransZorb TVS is normally selected according to the reverse "Stand Off Voltage" (VWM) which should be equal to or greater than the DC or continuous peak operating voltage level.

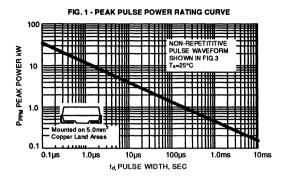
4. All terms and symbols are consistant with ANSI / IEEE C62.35 specifications.

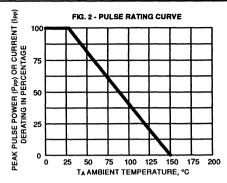

APPLICATION NOTES

These surface mountable packages are designed specifically for transient voltage suppression. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground. These high speed transient voltage suppressors can be used to effectively protect sensitive components such as integrated circuits and MOS devices.


A 600W (SMB) device is normally selected when the threat of transients is from lightening-induced transients conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. System impediance at component level in a system is usually high enough to limit the current to within the peak pulse current (lpp) rating of this series. In an overstress condition, the failure mode is a short circuit.

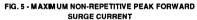
RECOMMENDED PAD SIZES


The pad dimentions should be 0.010" (.25mm) longer than the contact size, in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods.



MODIFIED J-BEND

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMBG AND SMBJ SERIES



FK. 3 - PULSE WAVEFORM

PPM, PEAK PULSE CURRENT - %

0

1.0

2.0

T, TIME (mS)

3.0

4.0

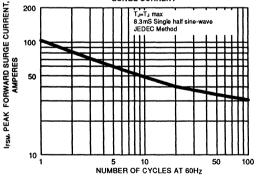
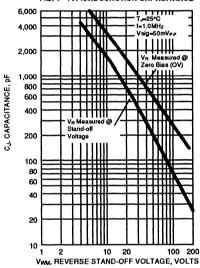
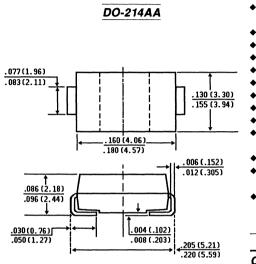



FIG. 4 - TYPICAL JUNCTION CAPACITANCE

(D) General Instrument


TPSMB6.8 THRU TPSMB43A

AUTOMOTIVE SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE - 6.8 - 43 Volts 600 Watt Peak Pulse Power

 G_{f}

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Easy pick and place
- Low profile package
- Built-in strain relief
 - Available in unidirectional only
- ◆ Exclusive G.I. P.A.R. chip construction
- Repetition Rate (duty cycle): 0.01%
- Excellent clamping capability
- Low incremental surge resistance
- Fast response time: typically less than 1.0ps from 0 volts to BV
- ♦ Typical I_D less than 1µA above 10V at T_A=150°C
- Designed to handle all under the hood surface mount application
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AA Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Standard Packaging: 12mm tape (EIA STD RS-481) Weight: 0.003 ounces, 0.093 gram

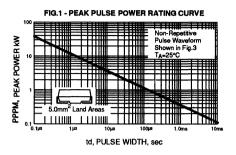
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs			
waveform (NOTES 1,2, FIG. 1)	Рррм	Minimum 600	Watts
Peak Pulse Current on 10/1000 µs			
waveform (NOTE 1, FIG. 3)	Іррм	See Table 1	Amps
Peak Forward Surge Current			
8.3ms single half sine-wave superimposed on	IFSM	70.0	Amps
rated load (JEDEC Method) (NOTES 2,3)			•
Instantaneous Forward Voltage at 50A (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage			
Temperature Range	TJ,TSTG	-65 to +185	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.


2. Mounted on 5.0mm² (.013mm thick) land areas per figure.

3. Mounted on 8.3ms single half sine-wave duty cycle=4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS AT TA=25°C (unless otherwise noted)

Device	Device Marking Code	Breakdown Voltage V _(BR) Volts (NOTE 1) Min. / Max.	at I _T mA	Reverse Stand-off Voltage Vww (Volts)	Maximum Reverse Leakage at Vwu I _{D (} _A)	T _A =150°C Maximum Reverse Leakage at Vwu Io (LA)	Maximum Peak Puise Surge Current I _{PPM} (NOTE 2) (Amps)	Maximum Clamping Voltage at I _{PM} V _C (Volts)
TPSMB6.8	KDP	6.12/7.48	10.0	5.50	500	1000.0	56	10.8
TPSMB6.8A	KEP	6.45 / 7.14	10.0	5.80	500	1000.0	57	10.5
TPSMB7.5	KFP	6.75 / 8.25	10.0	6.05	250	500.0	51	11.7
TPSMB7.5A	KGP	7.13 / 7.88	10.0	6.40	250	500.0	53	11.3
TPSMB8.2	КНР	7.38/9.02	10.0	6.63	100	200.0	48	12.5
TPSMB8.2A	ККР	7.79 / 8.61	10.0	7.02	100	200.0	50	12.1
TPSMB9.1	KLP	8.19/10.0	1.0	7.37	25	50.0	44	13.8
TPSMB9.1A	КМР	8.65 / 9.55	1.0	7.78	25	50.0	45	13.4
TPSMB10	KNP	9.00 / 11.0	1.0	8.10	5.0	20.0	40	15.0
TPSMB10A	KPP	9.50 / 10.5	1.0	8.55	5.0	20.0	41	14.5
TPSMB11	KQP	9.90 / 12.1	1.0	8.92	2.0	5.0	37	16.2
TPSMB11A	KRP	10.5 / 11.6	1.0	9.40	2.0	5.0	38	15.6
TPSMB12	KSP	10.8 / 13.2	1.0	9.72	2.0	5.0	35	17.3
TPSMB12A	КТР	11.4 / 12.6	1.0	10.2	2.0	5.0	36	16.7
TPSMB13	KUP	12.4 / 13.7	1.0	11.1	2.0	5.0	32	19.0
TPSMB13A	KVP	12.4 / 13.7	1.0	11.1	2.0	5.0	33	18.2
TPSMB15	KWP	13.5 / 16.5	1.0	12.1	2.0	5.0	27	22.0
TPSMB15A	КХР	14.3 / 15.8	1.0	12.8	2.0	5.0	28	21.2
TPSMB16	КҮР	14.4 / 17.6	1.0	12.9	2.0	5.0	26	23.5
TPSMB16A	KZP	15.2 / 16.8	1.0	13.6	2.0	5.0	27	22.5
TPSMB18	LDP	16.2 / 19.8	1.0	14.5	2.0	5.0	23	26.5
TPSMB18A	LEP	17.1 / 18.9	1.0	15.3	2.0	5.0	24	25.2
TPSMB20	LFP	18.0 / 22.0	1.0	16.2	2.0	5.0	21	29.1
TPSMB20A	LGP	19.0/21.0	1.0	17.1	2.0	5.0	22	27.7
TPSMB22	LHP	19.8 / 24.2	1.0	17.8	2.0	5.0	19	31.9
TPSMB22A	LKP	20.9/23.1	1.0	18.8	2.0	5.0	20	30.6
TPSMB24	LLP	21.6/26.4	1.0	19.4	2.0	5.0	17	34.7
TPSMB24A	LMP	22.8 / 25.2	1.0	20.5	2.0	5.0	18	33.2
TPSMB27	LNP	24.3 / 29.7	1.0	21.8	2.0	5.0	15	39.1
TPSMB27A	LPP	25.7 / 28.4	1.0	23.1	2.0	5.0	16	37.5
TPSMB30	LQP	27.0 / 33.0	1.0	24.3	2.0	5.0	14	43.5
TPSMB30A	LRP	28.5 / 31.5	1.0	25.6	2.0	5.0	14.4	41.4
TPSMB33	LSP	29.7 / 36.3	1.0	26.8	2.0	5.0	12.6	47.7
TPSMB33A	LTP	31.4/34.7	1.0	28.2	2.0	5.0	13.2	45.7
TPSMB36	LUP	32.4/39.6	1.0	29.1	2.0	5.0	11.6	52.0
TPSMB36A	LVP	34.2/37.8	1.0	30.8	2.0	5.0	12.0	49.9
TPSMB39	LWP	35.1 / 42.9	1.0	31.6	2.0	5.0	10.6	56.4
TPSMB39A	LXP	37.1/41.0	1.0	33.3	2.0	5.0	11.2	53.9
TPSMB43	LYP	38.7 / 47.3	1.0	34.8	2.0	5.0	9.6	61.9
TPSMB43A	LZP	40.9 / 45.2	1.0	36.8	2.0	5.0	10.1	59.3
		1		1 00.0 1	2.0	0.0	1 10.1	1 00.0

NOTES: 1. $V_{(BR)}$ measured after I_T applied for 300µs, I_T=Square Wave Pulse or Equivalent. 2. Surge current Waveform per Figure 3 and Derate per Figure 2. 3. All terms and symbols are consistant with ANSI/IEEE C62.35.

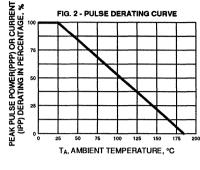


FIG. 2 - PULSE DERATING CURVE

FIG.3 - PULSE WAVEFORM

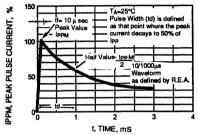
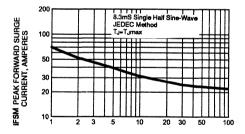
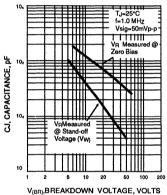
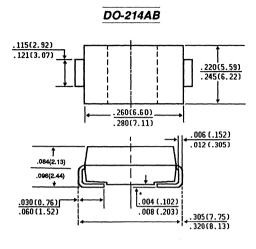




FIG. 5 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT


G General Instrument

S3A THRU S3M

SURFACE MOUNT RECTIFIER

VOLTAGE - 50 to 1000 Volts CURRENT - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

*Typical Range

- Plastic package has Underwriters Laboratory Flammability Classification 94 V-O
- For surface mounted applications
- Low profile package
- Built-in strain relief
- Easy pick and place
- · Glass passivated chip junction
- High temperature soldering: 260°C/10 seconds at terminals

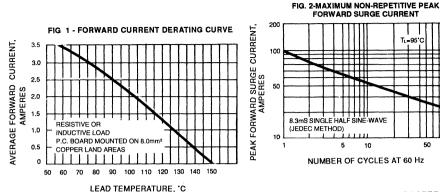
MECHANICAL DATA

Case: JEDEC DO-214AB molded plastic over passivated junction Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Color denoted cathode (EIA STD RS-481) Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

	SYMBOLS	S3A	S3B	S3D	\$3G	S3J	S3K	S3M	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS voltage	VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at TL=75°C (NOTE 3)	I(AV)	3.0						•	Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100.0						Amps	
Maximum Instantaneous Forward Voltage at 2.5A	VF				1.15				Volts
Maximum DC Reverse Current TA=25°C at Rated DC Blocking Voltage TA=125°	1	10.0 250.0						μΑ	
Typical Reverse Recovery Time (NOTE 1)	Trr	2.5							μs
Typical Junction Capacitance (NOTE 2)	CJ	60.0							pF
Maximum Thermal Resistance (NOTE 3)	R O JL ROJA								°C/W
Operating Junction and Storage Temperature Rang	e Tj,Tstg	-55 to +150							°C


NOTES:

1 Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

3. 8.0mm² (.013mm thick) land areas.

RATINGS AND CHARACTERISTIC CURVES S3A THRU S3M

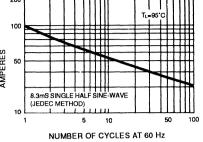
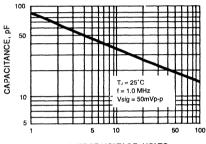
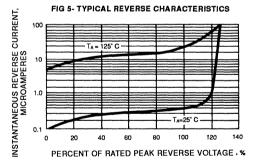
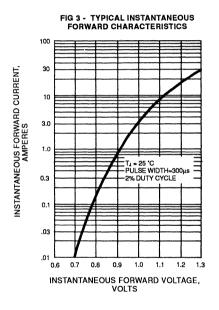
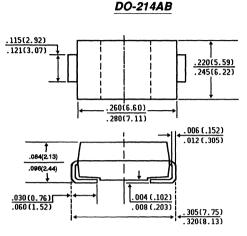





FIG 4 - TYPICAL JUNCTION CHARACTERISTICS

REVERSE VOLTAGE, VOLTS



General Instrument

RS3A THRU RS3K

FAST SWITCHING SURFACE MOUNT RECTIFIER VOLTAGE - 50 to 800 Volts CURRENT - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters)

*Typical Range

 Plastic package has Underwriters Laboratory Flammability Classification 94 V-O

- For surface mounted applications
- Low profile package
- Built-in strain relief
- Fast switching fo high efficiency
- Easy pick and place
- Glass passivated chip junction
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AB molded plastic over passivated junction Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Standard Packaging: 16mm tape (EIA STD RS-481) Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	RS3A	RS3B	RS3D	RS3G	RS3J	RS3K	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	200	400	600	800	Volts
Maximum RMS Voltage	VRMS	35	70	140	280	420	560	Volts
Maximum DC Blocking Voltage	VDC	50	100	200	400	600	800	Volts
Maximum Average Forward Rectified Current at TL=75°C	I(AV)	3.0						Amps
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	100						Amps
Maximum Instantaneous Forward Voltage at 2.5A	VF	1.3						Volts
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =125°C		10.0 250						μA
Maximum Reverse Recovery Time (NOTE 1)	Trr		15	50		250	500	ns
Typical Junction Capacitance (NOTE 2)	CJ	60.0						pF
Maximum Thermal Resistance (NOTE 3)	R O JL ROJA							°C/W
Operating Junction and Storage Temperature Range	TJ,TSTG	-55 to +150					°C	

NOTES: 1. Reverse Recovery Test conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. Measured at 1.0 MHz and applied Vr=4.0 volts.

3. 8.0mm² (.013mm thick) land areas.

RATING AND CHARACTERISTIC CURVES RS3A THRU RS3K

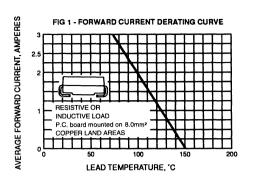
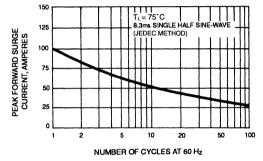
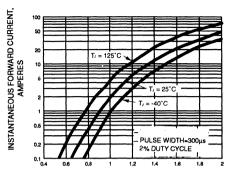




FIG 3 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

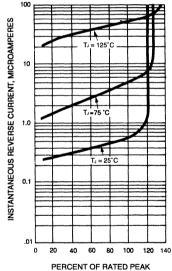


FIG 2 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

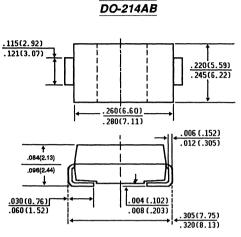
INSTANTANEOUS FORWARD VOLTAGE, VOLTS


FIG 4 - TYPICAL REVERSE CHARACTERISTICS

REVERSE VOLTAGE, %

(D) General Instrument

FIG 5 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM



ES3A THRU ES3D

SURFACE MOUNT ULTRAFAST RECTIFIER

VOLTAGE - 50 to 200 Volts CURRENT - 3.0 Amperes

FEATURES

Dimensions in inches and (millimeters) *Typical Range Plastic package has Underwriters Laboratory Flammability Classification 94 V-O

- For surface mounted applications
- Low profile package

- Built-in strain relief
 Easy pick and place
- Superfast recovery times for high efficiency
- Glass passivated chip junction
- High temperature soldering:

250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AB molded plastic over

passivated junction

Terminals: Solder plated soldrable per MIL-STD-

750, Method 2026

Polarity: Color band denotes cathode

Standard Packaging: 16mm tape

(EIA STD RS-481) Weight: 0.007 ounces, 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

	SYMBOLS	ES3A	ES3B	ES3C	ES3D	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	50	100	150	200	Volts
Maximum RMS Voltage	VRMS	35	70	105	140	Volts
Maximum DC Blocking Voltage	VDC	50	100	150	200	Volts
Maximum Average Forward Rectified Current at TL=100°C	l(AV)			Amps		
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM		100	l		Amps
Maximum Instantaneous Forward Voltage at 3.0A	VF		Volts			
Maximum DC Reverse Current T _A =25°C at Rated DC Blocking Voltage T _A =100°C	IR			μA		
Maximum Reverse Recovery Time (NOTE 1)	Trr		20.	0		ns
Maximum Reverse Recovery Time T _A =25°C (NOTE 2) T _A =100°C	Trr			ns		
Maximum Stored ChargeTA=25° C(NOTE 2)TA=100 °C	Q _{RR}			nc		
Typical Junction Capacitance (NOTE 3)	CJ		pF			
Typical Thermal Resistance (NOTE 4)	ROJL ROJA			°C/W		
Operating Junction and Storage Temperature Rang	TJ,TSTG			°C		

NOTES: 1. Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, Irr=0.25A.

2. TRR and QRR measured on LEM tester: VR=30V, di/dt=50 A/µs IF=3.0A.

3. Measured at 1.0 MHz and applied reverse voltage of 4.0 volts.

4. 8.0mm² (.013mm thick) land areas.

RATING AND CHARACTERISTIC CURVES ES3A THRU ES3D

14

10ns 1om

FIG 1 - REVERSE RECOVERY TIME CHARACTERISTIC AND TEST DIAGRAM

FIG 2 -MAXIMUM AVERAGE FORWARD CURRENT RATING

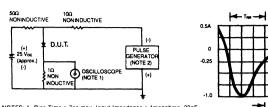
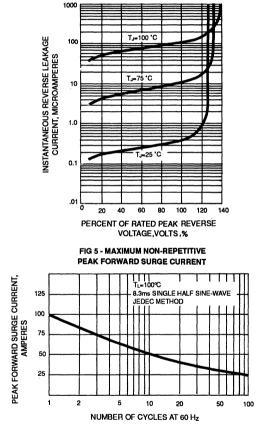



FIG 3 - TYPICAL REVERSE CHARACTERISTICS

NOTES: 1. Rise Time = 7ns max. Input Impedance = 1megohmn, 22pF. 2. Rise Time = 10ns max. Source Impedance = 50 ohms.

3.0

2 6

2.0

1.5

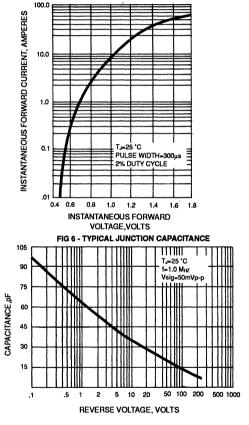
1.0

0.5

n

80

RESISTIVE OR

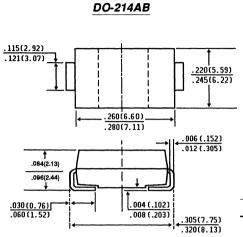

P.C. BOARD MOUNTED ON 8

90 100 110 120 130 140 150

LEAD TEMPERATURE, C

COPPER LAND AREAS

AVERAGE FORWARD RECTIFIED CURRENT, AMPERES


(iii) General Instrument

SS32 THRU SS36

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER CURRENT - 3.0 Amperes

VOLTAGE - 20 to 60 Volts

FEATURES

Dimensions in inches and (millimeters)

*Typical Range

- Plastic package has Underwriters Laboratory Flammability Clssification 94V-O
- For surface mounted applications in order to optimize board size
- Low profile package
- Built-in strain relief
- Easy pick and place

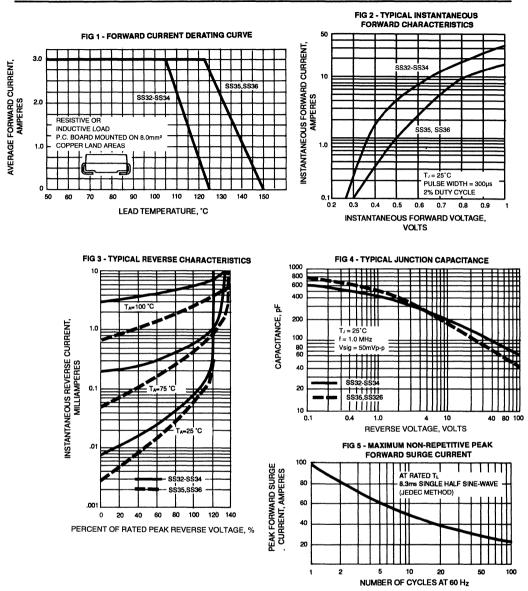
- Metal to silicon rectifier, ٠ maiority carrier conduction
- Low power loss, high efficiency
- High current capability, low VF
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AB molded plastic Terminals: Solder plated solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode Standard Packaging: 16mm tape (EIA STD RS-481) Weight: 0.007 ounces 0.21 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

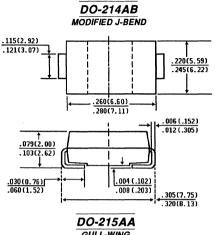

	SYMBOLS	SS32	SS33	SS34	SS35	SS36	UNITS
Maximum Recurrent Peak Reverse Voltage	VRRM	20	30	40	50	60	Volts
Maximum RMS voltage	VRMS	14	21	28	35	Volts	
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	Volts
Maximum Average Forward Rectified Current at TL (SEE FIGURE 1)	•						Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method)	IFSM			100			Amps
Maximum Instantaneous Forward Voltage at 3.0A (NOTE 1)	VF	0.50 0.75					Volts
Maximum DC Reverse Current (NOTE 1) T _A =25°C at Rated DC Blocking Voltage T _A =100°C	l _R		0.5 20.0				mA
Maximum Thermal Resistance (NOTE 2)	R o jl Roja	10.0 60.0					∘c∧w
Operating Junction Temperature Range	TJ		-55 to	+125	-55	to +150	°C
Storage Temperature Range	TSTG	-55 to +150					

NOTES:

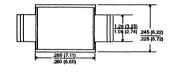
1. Test Condition: Pulse Width 300 µs, Duty Cycle 2%.

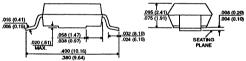
2. Mounted on P.C. board with 8.0mm² (.013mm thick) copper land areas.

RATING AND CHARACTERISTIC CURVES SS32 THRU SS36



(ii) General Instrument


SMCG AND SMCJ5.0 THRU 170, A SERIES


UNIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 5.0 - 170 Volts Peak Pulse Power - 1500 Watts

Dimensions in inches and (millimeters)

- For surface mounted applications in order to optimize board space
- Low profile package
- Built-in strain relief
- Glass passivated junction
- Excellent clamping capability
- Low inductance
- Repetition Rate (duty cycle): 0.05%
- Fast response time: typically less than 1.0ps from 0 volts to BV min.
- Typical ID less than 1µA above 10V
- High temperature soldering: 250°C/10 seconds at terminals
- Plastic package has Underwriters Laboratory Flammability Classification 944V-O

MECHANICAL DATA

Case: JEDEC DO214 / DO215 molded plastic over. passivated junction Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Standard Packaging: 16mm tape (EIA STD RS-481) Weiaht: .007 ounces, 0.21 gram

Schematic Symbol

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (Notes 1, 2, Fig. 1)	Рррм	Minimum 1500	Watts
Peak Pulse Current on 10/1000µs waveform (Note 1, Fig. 3)	Іррм	See Table 1	Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) (NOTES 2,3)	IFSM	100.0	Amps
Maximum Instantaneous Forward Voltage at 100A	VFM	See Notes 3, 4	Volts
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 to +150	۰C

NOTES:

^{1.} Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

^{2.} Mounted on 8.0mm² copper pads to each terminal.

^{3. 8.3}ms single half sine-wave, or equivalent square wave, duty cycle=4 pulses per minutes maximum. 4. VF=3.5V for SMC-5.0 thru SMC-90 and VF=5.0V for SMC-100 thru SMC-170 devices

ELECTRICAL CHARACTERISTICS at TA=25°C (unless otherwise noted)

Guli-Wing Lead	Modified J-Bend Lead	Device Marking Code	Breakdown Voltage V _(BR) (Volts) (NOTE 1) Min. / Max.) at iŢmA	Reverse Stand-off Voltage Vww (Volts)	Maximum Reverse Leakage at Vwa ID(mA)	Meximum Peak Puise Surge Current IPPM (NOTE 2) (Amps)	Maximum Clamping Voltage at Ippu Vc (Volts)
SMCG5.0	SMCJ5.0	GDD	6.40/7.55	10	5.0	1000	156.2	9.6
SMCG5.0A	SMCJ5.0A	GDE	6.40/7.25	10	5.0	1000	163.0	9.2
SMCG6.0	SMCJ6.0	GDF	6.67/8.45	10	5.0	1000	131.6	11.4
SMCG6.0A	SMCJ6.0A	GDG	6.67/7.67	10	6.0	1000	145.6	10.3
SMCG6.5	SMCJ6.5	GDH	7.22/9.14	10	6.5	500	122.0	12.3
SMCG6.5A	SMCJ6.5A	GDK	7.22/8.30	10	6.5	500	133.9	11.2
SMCG7.0	SMCJ7.0	GDL	7.78/9.86	10	7.0	200	112.8	13.3
SMCG7.0A	SMCJ7.0A	GDM	7.78/8.95	10	7.0	200	125.0	12.0
SMCG7.5	SMCJ7.5	GDN	8.33/10.67	1.0	7.5	100	104.9	14.3
SMCG7.5A	SMCJ7.5A	GDP	8.33/9.58	1.0	7.5	100	116.3	12.9
SMCG8.0	SMCJ8.0	GDQ	8.89/11.3	1.0	8.0	50	100.0	15.0
SMCG8.0A	SMCJ8.0A	GDR	8.89/10.2	1.0	8.0	50	110.3	13.6
SMCG8.5	SMCJ8.5	GDS	9.44/11.9	1.0	8.5	25	95.3	15.9
SMCG8.5A	SMCJ8.5A	GDT	9.44/10.8	1.0	8.5	20	104.2	14.4
SMCG9.0	SMCJ9.0	GDU	10.0/12.6	1.0	9.0	10	88.7	16.9
SMCG9.0A	SMCJ9.0A	GDV	10.0/11.5	1.0	9.0	10	97.4	15.4
SMCG10	SMCJ10	GDW	11.1/14.1	1.0	10	5.0	79.8	18.8
SMCG10A	SMCJ10A	GDX	11.1/12.8	1.0	10	5.0	88.2	17.0
SMCG11	SMCJ11	CDY	12.2/15.4	1.0	11	5.0	74.6	20.1
SMCG11A	SMCJ11A	GDZ	12.2/14.0	1.0	11	5.0	82.4	18.2
SMCG12	SMCJ12	GED	13.3/16.9	1.0	12	5.0	68.2	22.0
SMCG12A	SMCJ12A	GEE	13.3/15.3	1.0	12	5.0	75.3	19.9
SMCG13	SMCJ13	GEF	14.4/18.2	1.0	13	5.0	63.0	23.8
SMCG13A	SMCJ13A	GEG	14.4/16.5	1.0	13	5.0	69.7	21.5
SMCG14	SMCJ14	GEH	15.6/19.8	1.0	14	5.0	58.1	25.8
SMCG14A	SMCJ14A	GEK	15.6/17.9	1.0	14	5.0	64.7	23.2
SMCG15	SNCJ15	GEL	16.7/21.1	1.0	15	5.0	55.8	26.9
SMCG15A	SNCJ15A	GEM	16.7/19.2	1.0	15	5.0	61.5	24.4
SMCG16	SMCJ16	GEN	17.8/22.6	1.0	16	5.0	52.1	28.8
SMCG16A	SMCJ16A	GEP	17.8/20.5	1.0	16	5.0	57.7	26.0
SMCG17	SMCJ17	GEQ	18.9/23.9	1.0	17	5.0	49.2	30.5
SMCG17A	SMCJ17A	GER	18.9/21.7	1.0	17	5.0	53.3	27.6
SMCG18	SMCJ18	GES	20.0/25.3	1.0	18	5.0	46.6	32.2
SMCG18A	SMCJ18A	GET	20.0/23.3	1.0	18	5.0	51.4	29.2
SMCG20	SMCJ20	GEU	22.2/28.1	1.0	20	5.0	41.9	35.8
SMCG20A	SMCJ20A	GEV	22.2/25.5	1.0	20	5.0	46.3	32.4
SMCG22 SMCG22A	SMCJ22	GEW	24.4/30.9	1.0	22	5.0	38.1	39.4
SMCG22A SMCG24	SMCJ22A	GEX	24.4/28.0	1.0	22	5.0	42.2	35.5
SMCG24	SMCJ24 SMCJ24A	GEY GEZ	26.7/33.8	1.0	24	5.0	34.9	43.0
SMCG24A SMCG26	SMCJ24A SMCJ26		26.7/36.7	1.0	24	5.0	38.6	38.9
SMCG26	1	GFD	28.9/36.6	1.0	26	5.0	32.2	46.6
SMCG28A SMCG28	SMCJ26A SMCJ28	GFE GFF	28.9/33.2	1.0	26	5.0	35.6	42.1
SMCG28A	SMCJ28	GFG	31.1/39.4	1.0	28	5.0	30.0	50.0
SMCG20A	SMCJ28A SMCJ30	GFH	31.1/35.8 33.3/42.2	1.0	28	5.0	33.0	45.4
SMCG30A	SMCJ30A	GFK	33.3/38.3	1.0	30	5.0	28.0	53.5
SMCG33	SMCJ30A SMCJ33	GFL			30	5.0	31.0	48.4
SMCG33A	SMCJ33A	GFM	36.7/46.5	1.0	33	5.0	25.2	59.0
SMCG36	SMCJ33A SMCJ36	GFM	36.7/42.3	1.0	33	5.0	28.1	53.3
SMCG36A	SMCJ36A	GFP	40.0/50.7	1.0	36	5.0	23.3	64.3
SMCG40	SMCJ30A SMCJ40	GFQ	40.0/46.0 44.4/56.3	1.0	36	5.0	25.8	58.1
SMCG40A	SMCJ40	GFR	44.4/51.1	1.0 1.0	40	5.0	21.0	71.4
-	SMCJ43	1		1	40	5.0	23.2	64.5
SMCG43 SMCG43A	SMCJ43 SMCJ43A	GFS GFT	47.8/60.5	1.0	43	5.0	19.6	76.7
SMCG45A	SMCJ43A SMCJ45	GFU	47.8/54.9	1.0	43	5.0	21.6	69.4
	SMCJ45 SMCJ45A	1	50.0/63.3	1.0	45	5.0	18.7	80.3
SMCG45A SMCG48		GFV	50.0/57.5	1.0	45	5.0	20.6	72.7
	SMCJ48	GFW	53.3/67.5	1.0	48	5.0	17.5	85.5
SMCG48A	SMCJ48A	GFX	53.3/61.3	1.0	48	5.0	19.4	77.4
SMCG51	SMCJ51	GFY	56.7/71.8	1.0	51	5.0	18.5	91.1
SMCG51A	SMCJ51A	GFZ	56.7/65.2	1.0	51	5.0	18.2	82.4
SMCG54 SMCG54A	SMCJ54	GGD	60.0/76.0	1.0	54	5.0	15.6	96.3
0MUUJ4A	SMCJ54A	GGE	60.0/69.0	1.0	54	5.0	17.2	87.1

Guli-Wing Lead	Modified J-Bend Lead	Device Marking Code	Breakdown Voltage V _(BR) Volts(NOTE 1) Min. / Max.	@trmA	Reverse Stand-off Voltage Vww (Volts)	Meximum Reverse Leakage at Venein(LA)	Maximum Peak Puise Surge Current iPPM (NOTE 2) (Amps)	Maximum Clamping Voltage at IPPM VC (Volts)
SMCG58	SMCJ58	GGF	64.4/81.6	1.0	58	5.0	14.6	103.0
SMCG58A	SMCJ58A	GGG	64.4/74.1	1.0	58	5.0	16.0	93.6
SMCG60	SMCJ60	GGH	66.7/84.5	1.0	60	5.0	14.0	107.0
SMCG60A	SMCJ60A	GGK	66.7/76.7	1.0	60	5.0	15.5	96.8
SMCG64	SMCJ64	GGL	71.1/90.1	1.0	64	5.0	13.2	114.0
SMCG64A	SMCJ64A	GGM	71.1/81.8	1.0	64	5.0	14.6	103.0
SMCG70	SMCJ70	GGN	77.8/98.6	1.0	70	5.0	12.0	125
SMCG70A	SMCJ70A	GGP	77.8/89.5	1.0	70	5.0	13.3	113
SMCG75	SMCJ75	GGQ	83.3/105.7	1.0	75	5.0	11.2	134
SMCG75A	SMCJ75A	GGR	83.3/95.8	1.0	75	5.0	12.4	121
SMCG78	SMCJ78	GGS	86.7/109.9	1.0	78	5.0	10.8	139
SMCG78A	SMCJ78A	GGT	86.7/99.7	1.0	78	5.0	11.4	126
SMCG85	SMCJ85	GGU	94.4/119.2	1.0	85	5.0	9.9	151
SMCG85A	SMCJ85A	GGV	94.4/108.2	1.0	85	5.0	10.4	137
SMCG90	SMCJ90	GGW	100/126.5	1.0	90	5.0	9.4	160
SMCG90A	SMCJ90A	GGX	100/115.5	1.0	90	5.0	10.3	146
SMCG100	SMCJ100	GGY	111/141.0	1.0	111	5.0	8.4	179
SMCG100A	SMCJ100A	GGZ	111/128.0	1.0	100	5.0	9.3	162
SMCG110	SMCJ110	GHD	122/154.5	1.0	110	5.0	7.7	196
SMCG110A	SMCJ110A	GHE	122/140.5	1.0	110	5.0	8.4	177
SMCG120	SMCJ120	GHF	133/169.0	1.0	120	5.0	7.0	214
SMCG120A	SMCJ120A	GHG	133/153.0	1.0	120	5.0	7.9	193
SMCG130	SMCJ130	GHH	144/182.5	1.0	130	5.0	6.5	231
SMCG130A	SMCJ130A	GHK	144,165,5	1.0	130	5.0	7.2	209
SMCG150	SMCJ150	GHL	167/211.5	1.0	150	5.0	5.6	268
SMCG150A	SMCJ150A	GHM	167/192.5	1.0	150	5.0	6.2	243
SMCG160	SMCJ160	GHN	178/226.0	1.0	160	5.0	5.2	287
SMCG160A	SMCJ160A	GHP	178/205.0	1.0	160	5.0	5.8	259
SMCG170	SMCJ170	GHQ	189/239.5	1.0	170	5.0	4.9	304
SMCG170A	SMCJ170A	GHR	189/217.5	1.0	170	5.0	5.5	275

NOTES:

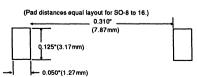
1. V(BR) measured after IT applied for 300 us. IT = Square Wave Pulse or equivalent.

2. Surge current Waveform per Figure 3 and Derate per Figure 2.

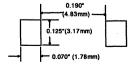
3. A TransZorb TVS is normally selected according to the reverse "Stand Off Voltage"(Vww) which should be equal to or greater than the dc or continuous voltage level.

4. All terms and symbols are consistant with ANSI / IEEE C62.35 specifications.

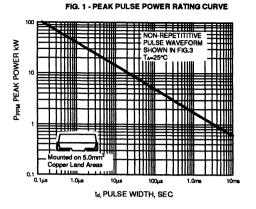
APPLICATION NOTES


This series of TransZorb transient voltage suppressors, available in small outline mountable packages, is designed to optimize board space. Packaged for use with surface mount technology automated assembly equiptment, these parts can be placed on printed circuit boards and ceramic substrates to protect sensitive components from transient voltage damage. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground.

A 1500W (SMC) device is normally selected when the threat of transients is from lightening induced transients, conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. Source impediance at component level in a system is usually high enough to limit the current within the peak pulse current (lpp) rating of this series.

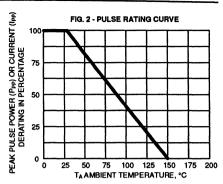
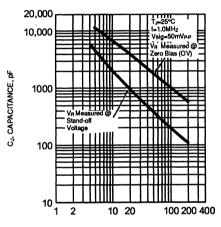

RECOMMENDED PAD SIZES

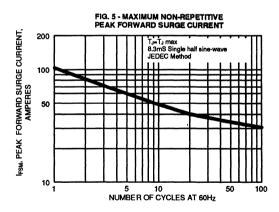
The pad dimentions should be 0.010°(.25mm) longer than the contact size, in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods.


GULL- WING

MODIFIED J-BEND

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMCG AND SMCJ SERIES

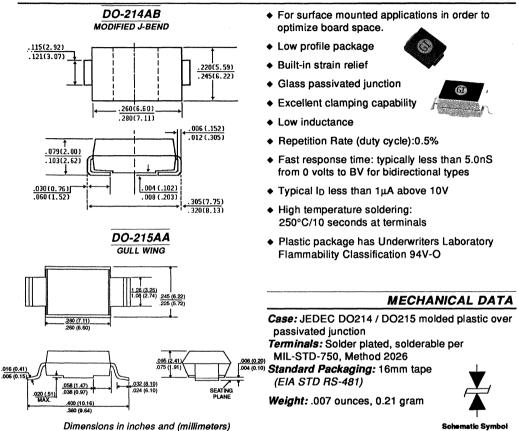




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

VWM, REVERSE STAND-OFF VOLTAGE, VOLTS

150 TA=25°C Pulse Width (td) is defined as that point where the per × 10 u sec IPPM, PEAK PULSE CURRENT, Peak Value IPPM ment decays to 50% of 100 1pp - Ipp M 10/1000µ 2 Wavatorn 50 as defined by R.E./ 0 2 1 t, TIME, mS

FIG.3 - PULSE WAVEFORM



General Instrument

SMCG AND SMCJ 5.0 THRU 170C,CA SERIES

BIDIRECTIONAL SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 5.0 - 170 Volts Peak Pulse Power - 1500 Watts

FEATURES

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Electrical characteristics apply in both directions. Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (Notes 1, 2)	Рррм	Minimum 1500	Watts
Peak Pulse Current on 10/1000µs waveform (Note 1, Fig. 3)	IPPM	See Table 1	Amps
Operating Junction and Storage Temperature Range	Tj,Tstg	-50 to +150	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. Mounted on 8.0mm² copper pads to each terminal.

ELECTRICAL CHARACTERISTICS AT TA=25°C (unless otherwise noted)

Guil-Wing Lead	Modified J-Bend Lead	Device Marking Code	Breakdown Voltage V _(BR) Volts(NOTE 1) Min. / Max.	Si at iҭ mA	Reverse and-off Voltage VWW (Volts)	Maximum Reverse Leakage at Vwu ip (⊥A)	Maximum Peak Puise Surge Current Ippu (NOTE 2) (Amps)	Maximum Clamping Voltage at ippu Vc (Volts)
SMCG5.0C	SMCJ5.0C	GDD	6.40/7.55	10	5.0	1000	156.2	9.6
SMCG5.0CA	SMCJ5.0CA	GDE	6.40/7.25	10	5.0	1000	163.0	9.2
SMCG6.0C	SMCJ6.0C	GDF	6.67/8.45	10	5.0	1000	131.6	11.4
SMCG6.0CA	SMCJ6.0CA	GDG	6.67/7.67	10	6.0	1000	145.6	10.3
SMCG6.5C	SMCJ6.5C	BDH	7.22/9.14	10	6.5	500	122.0	12.3
SMCG6.5CA	SMCJ6.5CA	BDK	7.22/8.30	10	6.5	500	133.9	11.2
SMCG7.0C	SMCJ7.0C	GDL	7.78/9.86	10	7.0	200	112.8	13.3
SMCG7.0CA	SMCJ7.0CA	GDM	7.78/8.95	10	7.0	200	125.0	12.0
SMCG7.5C	SMCJ7.5C	BDN	8.33/10.67	1.0	7.5	100	104.9	14.3
SMCG7.5CA	SMCJ7.5CA	BDP	8.33/9.58	1.0	7.5	100	116.3	12.9
SMCG8.0C	SMCJ8.0C	BDQ	8.89/11.3	1.0	8.0	50	100.0	15.0
SMCG8.0CA	SMCJ8.0CA	BDR	8.89/10.2	1.0	8.0	50	110.3	13.6
SMCG8.5C	SMCJ8.5C	BDS	9.44/11.9	1.0	8.5	25	95.3	15.9
SMCG8.5CA	SMCJ8.5CA	BDT	9.44/10.8	1.0	8.5	20	104.2	14.4
SMCG9.0C	SMCJ9.0C	BDU	10.0/12.6	1.0	9.0	10	88.7	16.9
SMCG9.0CA	SMCJ9.0CA	BDV	10.0/11.5	1.0	9.0	10	97.4	15.4
SMCG10C	SMCJ10C	BDW	11.1/14.1	1.0	10	5.0	79.8	18.8
SMCG10CA	SMCJ10CA	BDX	11.1/12.8	1.0	10	5.0	88.2	17.0
SMCG11C	SMCJ11C	GDY	12.2/15.4	1.0	11	5.0	74.6	20.1
SMCG11CA	SMCJ11CA	GDZ	12.2/14.0	1.0	11	5.0	82.4	18.2
SMCG12C	SMCJ12C	BED	13.3/16.9	1.0	12	5.0	68.2	22.0
SMCG12CA	SMCJ12CA	BEE	13.3/15.3	1.0	12	5.0	75.3	19.9
SMCG13C	SMCJ13C	GEF	14.4/18.2	1.0	13	5.0	63.0	23.8
SMCG13CA	SMCJ13CA	GEG	14.4/16.5	1.0	13	5.0	69.7	21.5
SMCG14C	SMCJ14C	BEH	15.6/19.8	1.0	14	5.0	58.1	25.8
SMCG14CA	SMCJ14CA	BEK	15.6/17.9	1.0	14	5.0	64.7	23.2
SMCG15C	SNCJ15C	BEL	16.7/21.1	1.0	15	5.0	55.8	26.9
SMCG15CA	SNCJ15CA	BEM	16.7/19.2	1.0	15	5.0	61.5	24.4
SMCG16C	SMCJ16C	GEN	17.8/22.6	1.0	16	5.0	52.1	28.8
SMCG16CA	SMCJ16CA	GEP	17.8/20.5	1.0	16	5.0	57.7	26.0
SMCG17C	SMCJ17C	GEQ	18.9/23.9	1.0	17	5.0	49.2	30.5
SMCG17CA	SMCJ17CA	GER	18.9/21.7	1.0	17	5.0	53.3	27.6
SMCG18C	SMCJ18C	BES	20.0/25.3	1.0	18	5.0	46.6	32.2
SMCG18CA	SMCJ18CA	BET	20.0/23.3	1.0	18	5.0	51.4	29.2
SMCG20C	SMCJ20C	GEU	22.2/28.1	1.0	20	5.0	41.9	35.8
SMCG20CA	SMCJ20CA	GEV	22.2/25.5	1.0	20			
SMCG22C	SMCJ22C	BEW	24.4/30.9	1.0	20	5.0	46.3	32.4
SMCG22CA	SMCJ22CA	BEX		1.0		5.0	38.1	39.4
SMCG24C	1 1		24.4/28.0		22	5.0	42.2	35.5
SMCG24CA	SMCJ24C SMCJ24CA	BEY BEZ	26.7/33.8	1.0	24	5.0	34.9	43.0
SMCG26C	SMCJ24CA	BFD	26.7/30.7	1.0	24	5.0	38.6	38.9
SMCG26CA			28.9/36.6	1.0	26	5.0	32.2	46.6
	SMCJ26CA	BFE	28.9/32.2	1.0	26	5.0	35.6	42.1
SMCG28C	SMCJ28C	GFF	31.1/39.4	1.0	28	5.0	30.0	50.0
SMCG28CA SMCG30C	SMCJ28CA	GFG	31.1/35.8	1.0	28	5.0	33.0	45.4
	SMCJ30C	BFH	33.3/42.2	1.0	30	5.0	28.0	53.5
SMCG30CA SMCG33C	SMCJ30CA	BFK	33.3/38.3	1.0	30	5.0	31.0	48.4
	SMCJ33C	BFL	36.7/46.9	1.0	33	5.0	25.2	59.0
SMCG33CA	SMCJ33CA	BFM	36.7/42.2	1.0	33	5.0	28.1	53.3
SMCG36C	SMCJ36C	BFN	40.0/5.07	1.0	36	5.0	23.3	64.3
SMCG36CA	SMCJ36CA	BFP	40.0/46.0	1.0	36	5.0	25.8	58.1
SMCG40C	SMCJ40C	BFQ	44.4/56.3	1.0	40	5.0	21.0	71.4
SMCG40CA	SMCJ40CA	BFR	44.4/51.1	1.0	40	5.0	23.2	64.5
SMCG43C	SMCJ43C	BFS	47.8/60.5	1.0	43	5.0	19.6	76.7
SMCG43CA	SMCJ43CA	BFT	47.8/54.9	1.0	43	5.0	21.6	69.4
SMCG45C	SMCJ45C	GFU	50.0/63.3	1.0	45	5.0	18.7	80.3
SMCG45CA	SMCJ45CA	GFV	50.0/57.5	1.0	45	5.0	20.6	72.7
SMCG48C	SMCJ48C	GFW	53.3/67.5	1.0	48	5.0	17.5	85.5
SMCG48CA	SMCJ48CA	GFX	53.3/61.3	1.0	48	5.0	19.4	77.4
SMCG51C	SMCJ51C	GFY	56.7/71.8	1.0	51	5.0	18.5	91.1
SMCG51CA	SMCJ51CA	GFZ	56.7/65.2	1.0	51	5.0	18.2	82.4
SMCG54C	SMCJ54C	GGD	60.0/76.0	1.0	54	5.0	15.6	96.3
SMCG54CA	SMCJ54CA	GGE	60.0/69.0	1.0	54	5.0	17.2	87.1
	I				"	0.0	17.2	07.1

ELECTRICAL CHARACTERISTICS AT TA=25°C (unless otherwise noted)

Gull-Wing Lead	Modified J-Bend Lead	Device Marking Code	Breakdown Voltage V(BR) (Volts)(NOTE Min. / Max.	1) at iŢ (mA)	Reverse Stand-off Voltage Vww (Volta)	Maximum Reverse Leakage at Vyat in (s.A)	Maximum Peak Puise Surge Current ippy (NOTE 2) (Amps)	Maximum Ciamping Voltage at ippu Vc (Volts)
SMCG58C	SMCJ58C	GGF	64.4/81.6	1.0	58	5.0	14.6	103.0
SMCG58CA	SMCJ58CA	GGG	64.4/74.6	1.0	58	5.0	16.0	93.6
SMCG60C	SMCJ60C	GGH	66.7/84.5	1.0	60	5.0	14.0	107.0
SMCG60CA	SMCJ60CA	GGK	66.7/76.7	1.0	60	5.0	15.5	96.8
SMCG64C	SMCJ64C	GGL	71.1/90.1	1.0	64	5.0	13.2	114.0
SMCG64CA	SMCJ64CA	GGM	71.1/81.8	1.0	64	5.0	14.6	103.0
SMCG70C	SMCJ70C	GGN	77.8/98.6	1.0	70	5.0	12.0	125
SMCG70CA	SMCJ70CA	GGP	77.8/89.5	1.0	70	5.0	13.3	113
SMCG75C	SMCJ75C	GGQ	83.3/105.7	1.0	75	5.0	11.2	134
SMCG75CA	SMCJ75CA	GGR	83.3/95.8	1.0	75	5.0	12.4	121
SMCG78C	SMCJ78C	GGS	86.7/109.9	1.0	78	5.0	10.8	139
SMCG78CA	SMCJ78CA	GGT	86.7/99.7	1.0	78	5.0	11.4	126
SMCG85C	SMCJ85C	GGU	94.4/119.2	1.0	85	5.0	9.9	151
SMCG85CA	SMCJ85CA	GGV	94.4/108.2	1.0	85	5.0	10.4	137
SMCG90C	SMCJ90C	GGW	100/126.5	1.0	90	5.0	9.4	160
SMCG90CA	SMCJ90CA	GGX	100/115.5	1.0	90	5.0	10.3	146
SMCG100C	SMCJ100C	GGY	111/141.0	1.0	111	5.0	8.4	179
SMCG100CA	SMCJ100CA	GGZ	111/128.0	1.0	100	5.0	9.3	162
SMCG110C	SMCJ110C	GHD	122/154.5	1.0	110	5.0	7.7	196
SMCG110CA	SMCJ110CA	GHE	122/140.5	1.0	110	5.0	8.4	177
SMCG120C	SMCJ120C	GHF	133/169.0	1.0	120	5.0	7.0	214
SMCG120CA	SMCJ120CA	GHG	133/153.0	1.0	120	5.0	7.9	193
SMCG130C	SMCJ130C	GHH	144/182.5	1.0	130	5.0	6.5	231
SMCG130CA	SMCJ130CA	GHK	144/165.5	1.0	130	5.0	7.2	209
SMCG150C	SMCJ150C	GHL	167/211.5	1.0	150	5.0	5.6	268
SMCG150CA	SMCJ150CA	GHM	167/192.5	1.0	150	5.0	6.2	243
SMCG160C	SMCJ160C	GHN	178/226.0	1.0	160	5.0	5.2	287
SMCG160CA	SMCJ160CA	GHP	178/205.0	1.0	160	5.0	5.8	259
SMCG170C	SMCJ170C	GHQ	189/239.5	1.0	170	5.0	4.9	304
SMCG170CA	SMCJ170CA	GHR	189/217.5	1.0	170	5.0	5.5	275

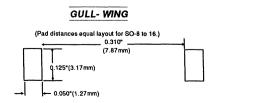
NOTES:

1. V(BR) measured after IT applied for 300 us. IT = Square Wave Pulse or equivalent.

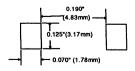
2. Surge current Waveform per Figure 3 and Derate per Figure 2.

3. A TransZorb TVS is normally selected according to the reverse "Stand Off Voltage" (Vww) which should be equal to or greater than the DC or continuous peak operating voltage level.

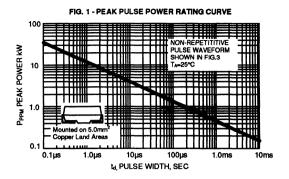
4. All terms and symbols are consistant with ANSI / IEEE C.62.35 specifications.


APPLICATION NOTES

This series of TransZorb transient voltage suppressors, available in small outline mountable packages, is designed to optimize board space. Packaged for use with surface mount technology automated assembly equiptment, these parts can be placed on printed circuit boards and ceramic substrates to protect sensitive components from transient voltage damage. The wide leads assure a large surface contact for good heat dissipation, and a low resistance path for surge current flow to ground. These high speed transient voltage suppressors can be used to effectively protect sensitive components such as integrated circuits and MOS devices.


A 1500W (SMC) device is normally selected when the threat of transients is from lightening induced transients, conducted via external leads or I/O lines. It is also used to protect against switching transients induced by large coils or industrial motors. Source impediance at component level in a system is usually high enough to limit the current within the peak pulse current (lpp) rating of this series. In an overstress condition, the failure mode is a short circuit.

RECOMMENDED PAD SIZES


The pad dimentions should be 0.010*(.25mm) longer than the contact size, in the lead axis. This allows a solder fillet to form, see figure below. Contact factory for soldering methods.

MODIFIED J-BEND

MAXIMUM RATINGS AND CHARACTERISTIC CURVES SMCG AND SMCJ SERIES

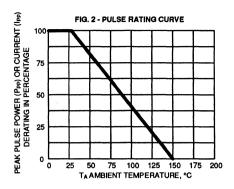
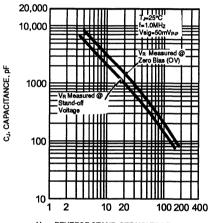
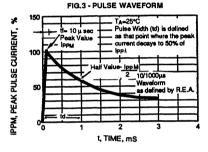
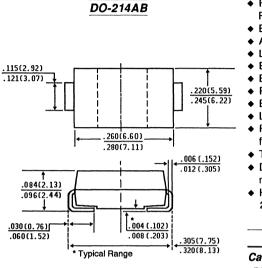




FIG. 4 - TYPICAL JUNCTION CAPACITANCE

VWM, REVERSE STAND-OFF VOLTAGE, VOLTS



G General Instrument

TPSMC6.8 THRU TPSMC43A

AUTOMOTIVE SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 6.8 - 43 Volts 1500 Watt Peak Pulse Power

FEATURES

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Easy pick and place
- Available in unidirectional only
- Low profile package Built-in strain relief
- Exclusive G.I. P.A.R. chip construction
- Repetition Rate (duty cycle): 0.05%
- Excellent clamping capability
- Low incremental surge resistance
- Fast response time: typically less than 1.0ps from 0 volts to BV
- Typical In less than 1µA above 10V at TA=150°C
- Designed to handle all under the hood surface mount application
- High temperature soldering: 250°C/10 seconds at terminals

MECHANICAL DATA

Case: JEDEC DO-214AB Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Standard Packaging: 16mm tape (EIA STD RS-481) Weight: 0.007 ounces, 0.21 gram

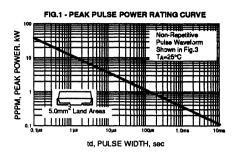
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

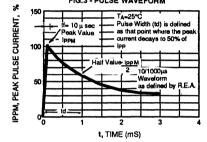
	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (NOTES 1, 2, FIG. 3)	Рррм	Minimum 1500	Watts
Peak Power Pulse Current on 10/1000µs waveform (NOTE 1, FIG. 1)	Іррм	See Table 1	Amps
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) (NOTES 2, 3)	IFSM	200.0	Amps
Instantaneous Forward Voltage at 100A (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJTSTG	-65 to +185	°C

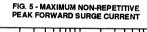
NOTES:

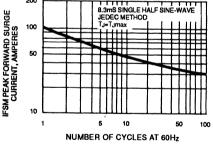
1. Non-repetitive current pulse, per Fig.3 and derated above $T_A=25^{\circ}C$ per Fig. 2. 2. Mounted on 8.0mm² copper pads to each terminal.


3. Measured on 8.3ms single half sine-wave, or equivilent squarewave, duty cycle=4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS at TA=25°C (unless otherwise noted)


Device		Breakdown Voltage V _(BR) Volts (NOTE 1) Min. / Max.	at h (mA)	Reverse Stand-off Voltage Vww (Volts)	Maximum Reverse Leakage at V _{MM} I _{R (L} A)	Ta=150°C Maximum Reverse Leakage at Vww IoµA)	Maximum Peak Pulse Surge Current I _{PPM} (NOTE 2) (Amps)	Maximum Clamping Voltage at Ipp Vc (Volts)
TPSMC6.8	DDP	6.12/ 7.48	10	5.50	500.0	1000.0	139	10.8
TPSMC6.8A	DEP	6.45 / 7.14	10	5.80	500.0	1000.0	143	10.5
TPSMC7.5	DFP	6.75 / 8.25	10	6.05	250.0	500.0	128	11.7
TPSMC7.5A	DGP	7.13 / 7.88	10	6.40	250.0	500.0	132	11.3
TPSMC8.2	DHP	7.38 / 9.02	10	6.63	100.0	200.0	120	12.5
TPSMC8.2A	DKP	7.79 / 8.61	10	7.02	100.0	200.0	124	12.1
TPSMC9.1	DLP	8.19 / 10.0	1.0	7.37	25.0	50.0	109	13.8
TPSMC9.1A	DMP	8.65 / 9.55	1.0	7.78	25.0	50.0	112	13.4
TPSMC10	DNP	9.00/11.0	1.0	8.10	10.0	25.0	100	15.0
TPSMC10A	DPP	9.50 / 10.5	1.0	8.55	10.0	25.0	103	14.5
TPSMC11	DQP	9.90 / 12.1	1.0	8.92	2.0	10.0	93.0	16.2
TPSMC11A	DRP	10.5 / 11.6	1.0	9.40	2.0	10.0	96.0	15.6
TPSMC12	DSP	10.8 / 13.2	1.0	9.72	2.0	10.0	87.0	17.3
TPSMC12A	DTP	11.4 / 12.6	1.0	10.2	2.0	10.0	90.0	16.7
TPSMC13	DUP	12.4 / 13.7	1.0	11.1	2.0	10.0	79.0	19.0
TPSMC13A	DVP	12.4 / 13.7	1.0	11.1	2.0	10.0	82.0	18.2
TPSMC15	DWP	13.5 / 16.5	1.0	12.1	2.0	10.0	68.0	22.0
TPSMC15A	DXP	14.3 / 15.8	1.0	12.8	2.0	10.0	71.0	21.2
TPSMC16	DYP	14.4 / 17.6	1.0	12.9	2.0	10.0	64.0	23.5
TPSMC16A	DZP	15.2/16.8	1.0	13.6	2.0	10.0	67.0	22.5
TPSMC18	EDP	16.2 / 19.8	1.0	14.5	2.0	10.0	56.5	26.5
TPSMC18A	EEP	17.1 / 18.9	1.0	15.3	2.0	10.0	59.5	25.2
TPSMC20	EFP	18.0 / 22.0	1.0	16.2	2.0	10.0	51.5	29.1
TPSMC20A	EGP	19.0/21.0	1.0	17.1	2.0	10.0	54.0	27.7
TPSMC22	EHP	19.8/24.2	1.0	17.8	2.0	10.0	47.0	31.9
TPSMC22A	EKP	20.9 / 23.1	1.0	18.8	2.0	10.0	49.0	30.6
TPSMC24	ELP	21.6 / 26.4	1.0	19.4	2.0	10.0	43.0	34.7
TPSMC24A	EMP	22.8 / 25.2	1.0	20.5	2.0	10.0	45.0	33.2
TPSMC27	ENP	24.3 / 29.7	1.0	21.8	2.0	10.0	38.5	39.1
TPSMC27A	EPP	25.7 / 28.4	1.0	23.1	2.0	10.0	40.0	37.5
TPSMC30	EQP	27.0/33.0	1.0	24.3	2.0	10.0	34.5	43.5
TPSMC30A	ERP	28.5/31.5	1.0	25.6	2.0	10.0	36.0	41.4
TPSMC33	ESP	29.7 / 36.3	1.0	26.8	2.0	10.0	31.5	47.7
TPSMC33A	ETP	31.4 / 34.7	1.0	28.2	2.0	10.0	33.0	45.7
TPSMC36	EUP	32.4 / 39.6	1.0	29.1	2.0	10.0	29.0	52.0
TPSMC36A	EVP	34.2/37.8	1.0	30.8	2.0	10.0	30.0	49.9
TPSMC39	EWP	35.1 / 42.9	1.0	31.6	2.0	10.0	26.5	56.4
TPSMC39A	EXP	37.1/41.0	1.0	33.3	2.0	10.0	28.0	53.9
TPSMC43	EYP	38.7 / 47.3	1.0	34.8	2.0	10.0	24.0	61.9
TPSMC43A	EZP	40.9 / 45.2	1.0	36.8	2.0	10.0	25.3	59.3


NOTES: 1. V_(BR) measured after I_T applied for 300 μ s, I_T=Square Wave Pulse or equivalent. 2. Surge current Waveform per Figure 3 and Derate per Figure 2. 3. All terms and symbols are consistant with ANSI/IEEE C62.35.


MAXIMUM RATINGS AND CHARACTERISTIC CURVES TPSMC 6.8 THRU TPSMC 43A

200

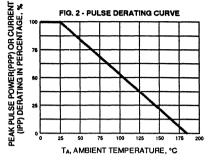
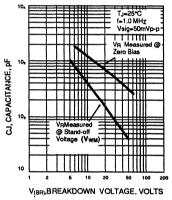



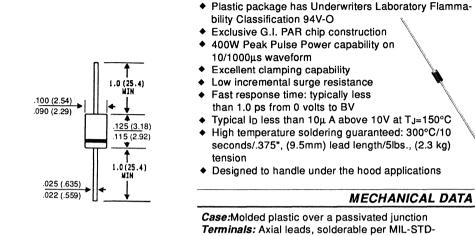
FIG.4 - TYPICAL JUNCTION CAPACITANCE

TRANSIENT VOLTAGE SUPPRESSORS

General Instrument Transient Voltage Suppressors are the stateof -the-art in semiconductor surge protection for modern electronic equipment. These products employ the same semiconductor technology that is used in high speed integrated circuits.

Because TVS devices are semiconductors, there is no inherent wear out mechanism. They are designed to provide protection against all types of transient threats from ESD to induced lightning. When overstressed, they short circuit at the changing voltage and protect the associated equipment. With proper device selection, they will not affect circuit performance nor, degrade with repeated transient events. Their wide range of voltage selections accommodate all low voltage circuit applications.

General Instrument TVS units are available in five power ranges: 400, 500, 600, 1500, and 5,000 watts with a wide variety of voltages.



TMPG06-6.8 THRU TMPG06-43A

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts 400 Watt Peak Pulse Power

FEATURES

Dimensions in inches and (millimeters) Case:Molded plastic over a passivated junction Terminals: Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Mounting Position: Any Weight : 0.0064 ounce, .181 gram

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation on 10/1000µs waveform (NOTE 1, FIG. 1)	Рерм	Minimum 400	Watts
Peak Pulse Power Current on 10/1000µs waveform (NOTE1.2, FIG. 3)	Іррм	See Table 1	Amps
Steady State Power Dissipation at T _L =75°C Lead Lengths .25', (6.33mm) (NOTE 2)	PM(AV)	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (NOTE 3)	IFSM	40.0	Amps
Instantaneous Forward Voltage at 25A (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	Tj,Tstg	-65 to +185	٥°

NOTES:

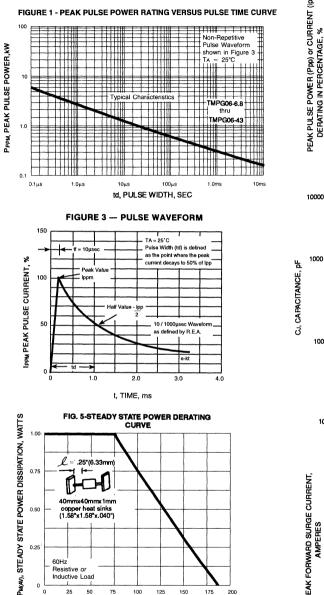
1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²).

3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum.

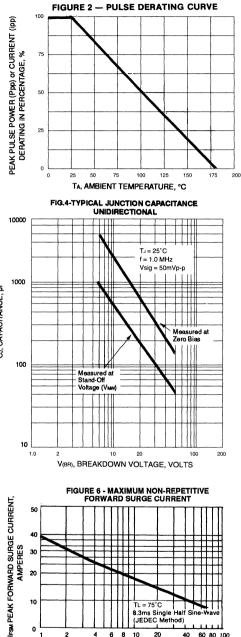
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

	v	wn Voltage (8R) (NOTE 1)	at IT (mA)	Reverse Stand off Voltage Vwu	Maximum Reverse Leakage at Vww	Tj≕150°C Maximum Reverse Leakage at Vrww	Maximum Peak Puise Current IPPM (NOTE 2)	Maximum Clamping Voltage at Ippu	Maximum Temperature Coefficient of V(pr)
DEVICE TYPE	MIN	MAX		(Volts)	lo(μA)	l _D (μA)	(Amps)	V _C (Volts)	(%/°C)
TMPG06-6.8	6.12	7.48	10.0	5.50	300	1000	39.8	10.8	0.057
TMPG06-6.8A	6.45	7.14	10.0	5.80	300	1000	41.0	10.5	0.057
TMPG06-7.5	6.75	8.25	10.0	6.05	150	500	36.8	11.7	0.060
TMPG06-7.5A	7.13	7.88	10.0	6.40	150	500	38.1	11.3	0.061
TMPG06-8.2	7.38	9.02	10.0	6.63	50.0	200	34.4	12.5	0.065
TMPG06-8.2A	7.79	8.61	10.0	7.02	50.0	200	35.5	12.1	0.065
TMPG06-9.1	8.19	10.0	1.0	7.37	10.0	50.0	32.2	13.8	0.068
TMPG06-9.1A	8.65	9.55	1.0	7.78	10.0	50.0	32.1	13.4	0.068
TMPG06-10	9.00	11.0	1.0	8.10	5.0	20.0	28.7	15.0	0.073
TMPG06-10A	9.50	10.5	1.0	8.55	5.0	20.0	29.7	14.5	0.073
TMPG06-11	9.90	12.1	1.0	8.92	2.0	10.0	26.5	16.2	0.075
TMPG06-11A	10.5	11.6	1.0	9.40	2.0	10.0	27.6	15.6	0.075
TMPG06-12	10.8	13.2	1.0	9.72	1.0	5.0	24.9	17.3	0.076
TMPG06-12A	11.4	12.6	1.0	10.2	1.0	5.0	25.8	16.7	0.078
TMPG06-13	11.7	14.3	1.0	10.5	1.0	5.0	22.6	19.0	0.081
TMPG06-13A	12.4	13.7	1.0	11.1	1.0	5.0	23.6	18.2	0.081
TMPG06-15	13.5	16.3	1.0	12.1	1.0	5.0	19.6	22.0	0.084
TMPG06-15A	14.3	15.8	1.0	12.8	1.0	5.0	20.3	21.2	0.084
TMPG06-16	14.4	17.6	1.0	12.9	1.0	5.0	18.3	23.5	0.086
TMPG06-16A	15.2	16.8	1.0	13.6	1.0	5.0	19.1	22.5	0.086
TMPG06-18	16.2	19.8	1.0	14.5	1.0	5.0	16.2	26.5	0.088
TMPG06-18A	17.1	18.9	1.0	15.3	1.0	5.0	16.9	25.5	0.088
TMPG06-20	18.0	22.0	1.0	16.2	1.0	5.0	14.8	29.1	0.090
TMPG06-20A	19.0	21.0	1.0	17.0	1.0	5.0	15.5	27.7	0.090


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

		wn Voltage V(BR) s (NOTE 1)	at IT (mA)	Reverse Stand off Voltage Vww	Maximum Reverse Leakage at Vww	Tc≕150°C Maximum Reverse Leakage at Vww	Maximum Peak Puise Current IPPM	Maximum Reverse	Maximum Temperature Coefficient of
Device Type	MIN	MAX		(Volts)	lo(μA)	arvww ip(μA)	(NOTE 2) (Amps)	Voltage at IPPM Vc (Volts)	V(BR) (%/°C)
TMPG06-22	19.8	24.2	1.0	17.8	1.0	5.0	13.5	31.9	0.092
TMPG06-22A	20.9	23.1	1.0	18.8	1.0	5.0	14.1	30.6	0.092
TMPG06-24	21.6	26.4	1.0	19.4	1.0	5.0	12.4	34.2	0.094
TMPG06-24A	22.8	25.2	1.0	20.5	1.0	5.0	13.0	33.2	0.094
TMPG06-27	24.3	29.7	1.0	21.8	1.0	5.0	11.0	39.1	0.096
TMPG06-27A	25.7	28.4	1.0	23.1	1.0	5.0	11.5	37.5	0.096
TMPG06-30	27.0	33.0	1.0	24.3	1.0	5.0	9.9	43.5	0.097
TMPG06-30A	28.5	31.5	1.0	25.6	1.0	5.0	10.4	41.4	0.097
TMPG06-33	29.7	36.3	1.0	26.8	1.0	5.0	9.0	47.7	0.098
TMPG06-33A	31.4	34.7	1.0	28.2	1.0	5.0	9.4	45.7	0.098
TMPG06-36	32.4	39.6	1.0	29.1	1.0	5.0	8.3	52.0	0.099
TMPG06-36A	34.2	37.8	1.0	30.8	1.0	5.0	8.6	49.9	0.099
TMPG06-39	35.1	42.9	1.0	31.6	1.0	5.0	7.6	56.4	0.100
TMPG06-39A	37.1	41.0	1.0	33.3	1.0	5.0	8.0	53.9	0.100
TMPG06-43	38.7	47.3	1.0	34.8	1.0	5.0	7.0	61.9	0.101
TMPG06-43A	40.9	45.2	1.0	36.8	1.0	5.0	7.3	59.3	0.101

NOTES:


1. Vpr measured after I_T applied for 300 µs, I_T = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derated per Figure 2. 3. All terms and symbols are consistant with ANSI/IEEE C62.35.

RATING AND CHARACTERISTIC CURVES TMPG06-6.8 THRU TMPG06-43A

Resistive or Inductive Load

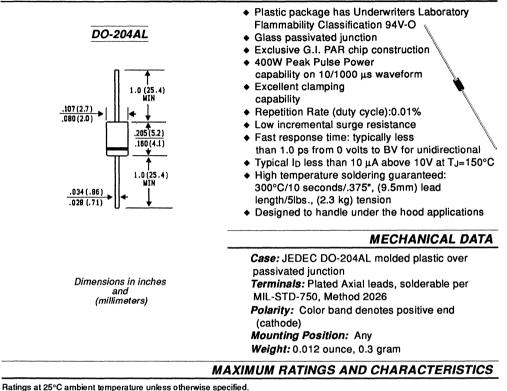
TL, LEAD TEMPERATURE, C

(JEDEC Method)

(D) General Instrument

60 80 100

8 10


NUMBER OF CYCLES AT 60 Hz

P4KA6.8 THRU P4KA43A

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts 400 Watt Peak Pulse Power

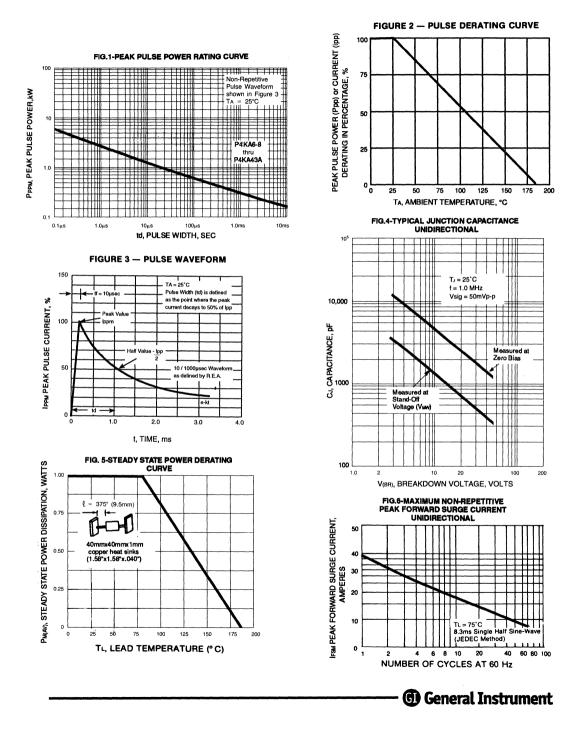
FEATURES

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 µs waveform (NOTE 1, FIG. 1)	Рррм	Minimum 400	Watts
Peak Pulse Current on 10/1000 μs waveform (NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at TL≖75°C Lead Lengths .375", (9.5mm) (№0тЕ 2)	Ρ _{Μ(AV)}	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (NOTE 3)	IFSM	40.0	Amps
Maximum Instantaneous Forward Voltage at 25A	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +185	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

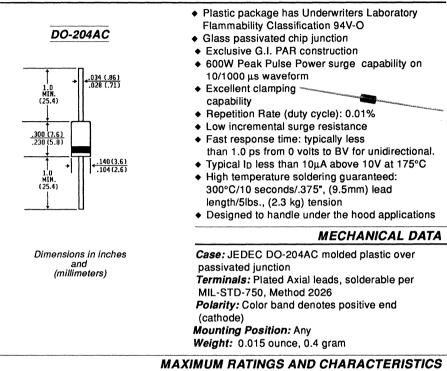
2. Mounted on Copper Leaf area of 1.57 in² (40mm²) per Figure 5.


3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.

Breakdown Volt V(BR) Volts (NOTE		- (BR)	at IT (mA)	Reverse Stand-off Voltage	d-off Reverse age Leakage M at Vvm	T_=150°C Maximum Reverse Leakage at Vww	Maximum Peak Puise Current IPPM (NOTE 2)	Maximum Clamping Voltage at Ippu	Maximum Temperature Coefficient of Vgan)
DEVICE TYPES	MIN	MAX	1	Vww (Volts)	an vww. Ιο (μΑ)	atvwa ίο (μΑ)	(NOTE 2) (Amps)	V _C (Volts)	V(BR) (%/°C)
P4KA6.8	6.12	7.48	10.0	5.50	300	1000	39.8	10.8	0.057
P4KA6.8A	6.45	7.14	10.0	5.80	300	1000	41.0	10.5	0.057
P4KA7.5	6.75	8.25	10.0	6.05	150	500	36.8	11.7	0.060
P4KA7.5A	7.13	7.88	10.0	6.40	150	500	38.1	11.3	0.061
P4KA8.2	7.38	9.02	10.0	6.63	50.0	200	34.4	12.5	0.065
P4KA8.2A	7.79	8.61	10.0	7.02	50.0	200	35.5	12.1	0.065
P4KA9.1	8.19	10.0	1.0	7.37	10.0	50.0	32.2	13.8	0.068
P4KA9.1A	8.65	9.55	1.0	7.78	10.0	50.0	32.1	13.4	0.068
P4KA10	9.00	11.0	1.0	8.10	5.0	20.0	28.7	15.0	0.073
P4KA10A	9.50	10.5	1.0	8.55	5.0	20.0	29.7	14.5	0.073
P4KA11	9.90	12.1	1.0	8.92	2.0	10.0	26.5	16.2	0.075
P4KA11A	10.5	11.6	1.0	9.40	2.0	10.0	27.6	15.6	0.075
P4KA12	10.8	13.2	1.0	9.72	1.0	10.0	24.9	17.3	0.076
P4KA12A	11.4	12.6	1.0	10.2	1.0	10.0	25.8	16.7	0.078
P4KA13	11.7	14.3	1.0	10.5	1.0	10.0	22.6	19.0	0.081
P4KA13A	12.4	13.7	1.0	11.1	1.0	10.0	23.6	18.2	0.081
P4KA15	13.5	16.3	1.0	12.1	1.0	10.0	19.6	22.0	0.084
P4KA15A	14.3	15.8	1.0	12.8	1.0	10.0	20.3	21.2	0.084
P4KA16	14.4	17.6	1.0	12.9	1.0	10.0	18.3	23.5	0.086
P4KA16A	15.2	16.8	1.0	13.6	1.0	10.0	19.1	22.5	0.086
P4KA18	16.2	19.8	1.0	14.5	1.0	10.0	16.2	26.5	0.088
P4KA18A	17.1	18.9	1.0	15.3	1.0	10.0	16.9	25.5	0.088
P4KA20	18.0	22.0	1.0	16.2	1.0	10.0	14.8	29.1	0.090
P4KA20A	19.0	21.0	1.0	17.0	1.0	10.0	15.5	27.7	0.090
P4KA22	19.8	24.2	1.0	17.8	1.0	10.0	13.5	31.9	0.092
P4KA22A	20.9	23.1	1.0	18.8	1.0	10.0	14.1	30.6	0.092
P4KA24	21.6	26.4	1.0	19.4	1.0	10.0	12.4	34.2	0.094
P4KA24A	22.8	25.2	1.0	20.5	1.0	10.0	13.0	33.2	0.094
P4KA27	24.3	29.7	1.0	21.8	1.0	10.0	11.0	39.1	0.096
P4KA27A	25.7	28.4	1.0	23.1	1.0	10.0	11.5	37.5	0.096
P4KA30	27.0	33.0	1.0	24.3	1.0	10.0	9.9	43.5	0.097
P4KA30A	28.5	31.5	1.0	25.6	1.0	10.0	10.4	41.4	0.097
P4KA33	29.7	36.3	1.0	26.8	1.0	10.0	9.0	47.7	0.098
P4KA33A	31.4	34.7	1.0	28.2	1.0	10.0	9.4	45.7	0.098
P4KA36	32.4	39.6	1.0	29.1	1.0	10.0	8.3	52.0	0.099
P4KA36A	34.2	37.8	1.0	30.8	1.0	10.0	8.6	49.9	0.099
P4KA39	35.1	42.9	1.0	31.6	1.0	10.0	7.6	56.4	0.100
P4KA39A	37.1	41.0	1.0	33.3	1.0	10.0	8.0	53.9	0.100
P4KA43	37.1	41.0	1.0	33.3					
P4KA43	40.9	47.3	1.0	34.8	1.0	10.0	7.0	61.9	0.101
I HINAHUA	40.9	40.2	1.0	30.8	1.0	10.0	7.3	59.3	0.101

NOTES: 1. V_(BR) measured after I_T applied for 300 μs, I_T=Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derated per Figure 2. 3. All terms and symbols are consistant with ANSI/IEEE C62.35.

RATINGS AND CHARACTERISTIC CURVES P4KA6.8 THRU P4KA43



P6KA6.8 THRU P6KA43A

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE - 6.8 to 43 Volts 600 Watt Peak Pulse Power

FEATURES

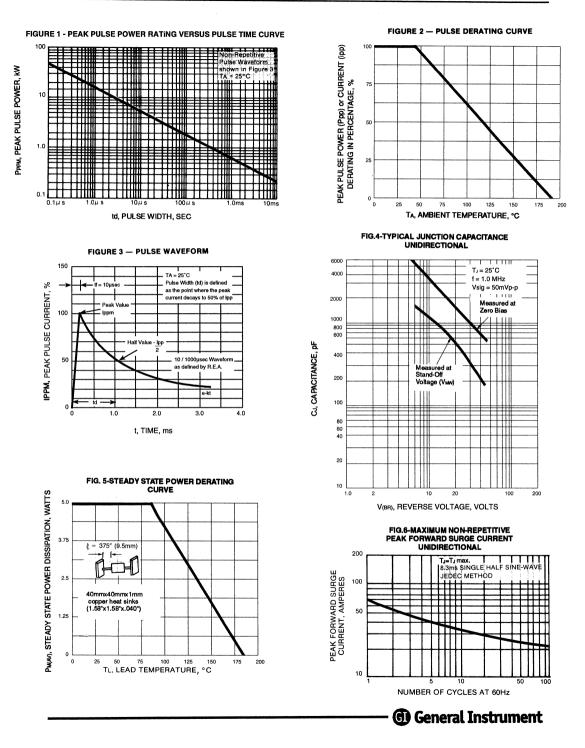
Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load.

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation at Tp=1ms			
(NOTE 1, FIGURE 1)	Рррм	Minimum 600	Watts
Pulse Pulse Current on 10/1000 µs waveform			
(NOTE 1, FIG.3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at TL=75°C			
Lead Lengths .375", (9.5mm) (NOTE 2)	P _{M(AV)}	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half			
Sine-Wave Superimposed on Rated Load			
(JEDEC Method) (NOTE 3) Unidirectional Only	IFSM	70.0	Amps
Maximum Instantaneous Forward Voltage at 50 A (NOTE 3)			
Unidirectional Only	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ, TSTG	-65 to +185	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²) per Figure 5.


3. Measured on 8.3ms single half sine-wave, or equivalent square wave, duty cycle = 4 pulses per minutes maximum.

	Breakdown Voltage V(BR) Volts (NOTE 1)		at IT (mA)	Reverse Stand off Voltage	Maximum Reverse Leakage	T _C =150°C Maximum Reverse Leakage	Maximum Peak Puise Current Inne	Maximum Clamping Voltage at Ippy	Maximum Temperature Coefficient of
DEVICE TYPE	MIN	MAX]	Vww (Volts)	atVww. bo(μA)	at Vww I⊳(µA)	(NOTE 2) (Amps)	V _C (Volts)	V(ar) (%/°C)
P6KA6.8	6.12	7.48	10	5.50	500	1000	59.7	10.8	0.057
P6KA6.8A	6.45	7.14	10	5.80	500	1000	61.4	10.5	0.057
P6KA7.5	6.75	8.25	10	6.05	250	500	58.1	11.7	0.061
P6KA7.5A	7.13	7.88	10	6.40	250	500	57.1	11.3	0.061
P6KA8.2	7.38	9.02	10	6.63	100	200	51.6	12.5	0.065
P6KA8.2A	7.79	8.61	10	7.02	100	200	53.3	12.1	0.065
P6KA9.1	8.19	10.0	1.0	7.37	25	100	46.7	13.8	0.068
P6KA9.1A	8.65	9,55	1.0	7.78	25	100	48.1	13.4	0.068
P6KA10	9.00	11.0	1.0	8.10	10	50	43.0	15.0	0.073
P6KA10A	9.50	10.5	1.0	8.55	10	50	44.5	14.5	0.073
P6KA11	9.90	12.1	1.0	8.92	5	20.0	39.8	16.2	0.075
P6KA11A	10.5	11.6	1.0	9.40	5	20.0	41.3	15.6	0.076
P6KA12	10.8	13.2	1.0	9.72	2.0	10.0	37.3	17.3	0.076
P6KA12A	11.4	12.6	1.0	10.2	2.0	10.0	38.6	16.7	0.078
P6KA13	11.7	14.3	1.0	10.5	2.0	10.0	35.9	19.0	0.081
P6KA13A	12.4	13.7	1.0	11.1	2.0	10.0	35.4	18.2	0.081
P6KA15	13.5	16.3	1.0	12.1	2.0	10.0	29.3	22.0	0.084
P6KA15A	14.3	15.8	1.0	12.1	2.0	10.0	30.4	22.0	0.084
P6KA16	14.3	17.6	1.0	12.8	2.0	10.0	27.4	21.2	0.084
P6KA16A	15.2	16.8	1.0	13.6	2.0	10.0	28.7	23.5	0.086
P6KA18	16.2	19.8	1.0	14.5	2.0	10.0	24.3	26.5	0.088
P6KA18A	17.1	18.9	1.0	14.5	2.0	10.0	24.5	25.2	0.088
P6KA20	18.0	22.0	1.0	16.2	2.0	10.0	25.6	25.2	
P6KA20A	19.0	21.0	1.0	17.1	2.0	10.0	23.3	29.1	0.090
P6KA22	19.0	21.0	1.0	17.1	2,0	10.0	23.3	31.9	0.090
P6KA22A	20.9	24.2	1.0	17.8	2.0	10.0			0.092
P6KA24	20.9	26.4	1				21.1	30.6	
P6KA24A	21.6	25.2	1.0	19.4	2.0	10.0	18.6	34.7	0.094
P6KA24A P6KA27			1.0	20.5	2.0	10.0	19.4	33.6	0.094
	24.3	29.7	1.0	21.8	2.0	10.0	16.5	39.1	0.096
P6KA27A	25.7	28.4	1.0	23.1	2.0	10.0	17.2	37.5	0.096
P6KA30	27.0	33.0	1.0	24.3	2.0	10.0	14.8	43.5	0.097
P6KA30A	28.5	31.5	1.0	25.6	2.0	10.0	15.6	41.4	0.097
P6KA33 P6KA33A	29.7	36.3	1.0	26.8	2.0	10.0	13.5	47.7	0.098
	31.4	34.7	1.0	28.2	2.0	10.0	14.1	45.7	0.098
P6KA36	32.4	39.6	1.0	29.1	2.0	10.0	12.4	52.0	0.099
P6KA36A	34.2	37.8	1.0	30.8	2.0	10.0	12.9	49.9	0.099
P6KA39	35.1	42.9	1.0	31.6	2.0	10.0	11.4	56.4	0.100
P6KA39A	37.1	41.0	1.0	33.3	2.0	10.0	12.0	53.9	0.100
P6KA43	38.7	47.3	1.0	34.8	2.0	10.0	10.4	61.9	0.101
P6KA43A	40.9	45.2	1.0	36.8	2.0	10.0	10.9	59.3	0.101

NOTES: 1. Van measured after I_T applied for 300 μ s. I_T = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derate per Figure 2. 3. All terms and symbols are consistant with ANSI/IEEE C62.35.

RATINGS AND CHARACTERISTIC CURVES P6KA6.8 THRU P6KA43A

1.5KA6.8 THRU 1.5KA43A

AUTOMOTIVE TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 43 Volts 1500 Watt Peak Pulse Power

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated chip junction
- Repetition Rate (duty cycle): 0.05%
- Exclusive G.I. PAR chip construction
- 1500W Peak Pulse Power capability on 10/1000 µs waveform
- Excellent clamping capability
- Low incremental surge resistance
- Fast response time: typically less than 1.0 ps from 0 volts to BV for unidirectional
- Typical Ip less than 20 μA above 10V at TJ=150°C
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension
- Designed to handle under the hood applications

MECHANICAL DATA

Case: Molded plastic over passivated junction Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Mounting Position: Any Weight: 0.045 ounce, 1.2 grams

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (NOTE 1, FIGURE 1)	Рррм	Minimum1500	Watts
Peak Pulse Current at T _A =25°C on 10/1000 μs waveform (NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at T _L =75°C Lead Lengths .375", (9.5mm) (NOTE 2)	Pm(av)	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (NOTE 3)	IFSM	200	Amps
Maximum Instantaneous Forward Voltage at 100A (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +185	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above $T_A=25^{\circ}C$ per Fig. 2. 2. Mounted on Copper Leaf area of 0.79 in² (20mm²), Figure 5.

3. 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum.

190 (4.8) 1.0 (25.4) MIN .375 (9.5) 1.0 (25.4) MIN. .042 (1.07) .038(0.96)

Dimensions in inches and (millimeters)

		Breakdown Volt (BR) ; (NOTE 1)	age at∏ (mA)	Reverse Stand-off Voltage	Maximum Reverse Leakage	Tj=150°C Maximum Reverse Leakage	Maximum Peak Puise Current Ippy	Maximum Clamping Voltage at Ipp	Maximum Temperature Coefficient of
DEVICE TYPE	MIN	MAX	Ţ	at Vww (Volts)	atVww. Ι <mark>⊳</mark> (μΑ)	atVww. lo(µA)	(NOTE 2) (Amps)	Vc (Volts)	V(nanc) (%/°C)
1.5KA6.8	6.12	7.48	10	5.50	500	2000	149	10.8	0.057
1.5KA6.8A	6.45	7.14	10	5.80	500	2000	153	10.5	0.057
1.5KA7.5	6.75	8.25	10	6.05	250	1000	137	11.7	0.061
1.5KA7.5A	7.13	7.88	10	6.40	250	1000	143	11.3	0.061
1.5KA8.2	7.38	9.02	10	6.63	100	400	129	12.5	0.06
1.5KA8.2A	7.79	8.61	10	7.02	100	400	133	12.1	0.06
1.5KA9.1	8.19	10.0	1.0	7.37	25.0	100	117	13.8	0.06
1.5KA9.1A	8.65	9.55	1.0	7.78	25.0	100	120	13.4	0.068
1.5KA10	9.00	11.0	1.0	8.10	10.0	50.0	107	15.0	0.07
1.5KA10A	9.50	10.5	1.0	8.55	10.0	50.0	111	14.5	0.07
1.5KA11	9.90	12.1	1.0	8.92	5.0	20.0	99.5	16.2	0.07
1.5KA11A	10.5	11.6	1.0	9.40	5.0	20.0	103	15.6	0.07
1.5KA12	10.8	13.2	1.0	9.72	2.0	10.0	93.2	17.3	0.07
1.5KA12A	11.4	12.6	1.0	10.2	2.0	10.0	96.5	17.3	0.07
1.5KA13	11.7	14.3	1.0	10.2	2.0	10.0	84.8	19.0	0.07
1.5KA13A	12.4	14.3	1.0	10.5	2.0	10.0	84.8	1	1
1.5KA15	13.5	16.3	1.0	12.1	2.0	10.0	73.3	22.0 21.2	0.08
1.5KA15A	14.3	15.8	1.0	12.1					
1.5KA16	14.3	17.6	1.0		2.0	10.0	76.0	23.5	0.08
1.5KA16A	14.4	16.8	1	12.9	2.0	10.0	68.6	23.5	0.08
1.5KA18	15.2		1.0	13.6	2.0	10.0	71.6	22.5	0.08
		19.8	1.0	14.5	2.0	10.0	60.8	26.5	0.08
1.5KA18A 1.5KA20	17.1	18.9	1.0	15.3	2.0	10.0	64.0	25.2	0.08
	18.0	22.0	1.0	16.2	2.0	10.0	55.4	29.1	0.09
1.5KA20A	19.0	21.0	1.0	17.1	2.0	10.0	58.2	27.7	0.09
1.5KA22	19.8	24.2	1.0	17.8	2.0	10.0	50.5	31.9	0.09
1.5KA22A	20.9	23.1	1.0	18.8	2.0	10.0	52.7	30.6	0.09
1.5KA24	21.6	26.4	1.0	19.4	2.0	10.0	46.5	34.7	0.09
1.5KA24A	22.8	25.2	1.0	20.5	2.0	10.0	48.6	33.2	0.09
1.5KA27	24.3	29.7	1.0	21.8	2.0	10.0	41.2	39.1	0.09
1.5KA27A	25.7	28.4	1.0	23.1	2.0	10.0	43.4	37.5	0.090
1.5KA30	27.0	33.0	1.0	24.3	2.0	10.0	37.0	43.5	0.097
1.5KA30A	28.5	31.5	1.0	25.6	2.0	10.0	38.9	41.4	0.097
1.5KA33	29.7	36.3	1.0	26.8	2.0	10.0	33.8	47.7	0.098
1.5KA33A	31.4	34.7	1.0	28.2	2.0	10.0	35.3	45.7	0.098
1.5KA36	32.4	39.6	1.0	29.1	2.0	10.0	31.0	52.0	0.099
1.5KA36A	34.2	37.8	1.0	30.8	2.0	10.0	32.3	49.9	0.099
1.5KA39	35.1	42.9	1.0	31.6	2.0	10.0	28.6	56.4	0.100
1.5KA39A	37.1	41.0	1.0	33.3	2.0	10.0	29.9	53.9	0.100
1.5KA43	38.7	47.3	1.0	34.8	2.0	10.0	26.0	61.9	0.10
1.5KA43A	40.9	45.2	1.0	36.8	2.0	10.0	27.2	59.3	0.101

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

NOTES:

VBR measured after IT applied for 300 μs. IT = Square Wave Pulse or equivalent.
 Surge current Waveform per Figure 3 and Derate per Figure 2.
 All terms and symbols are consistant with ANSI/IEEE C62.35.

RATINGS AND CHARACTERISTIC CURVES 1.5KA6.8 THRU 1.5KA43A

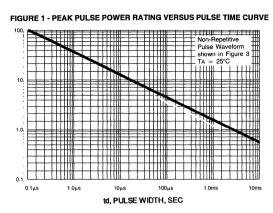
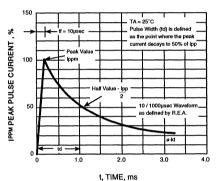
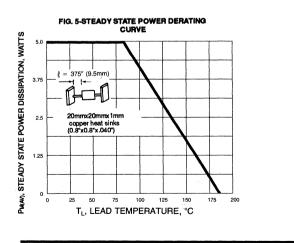




FIGURE 3 - PULSE WAVEFORM

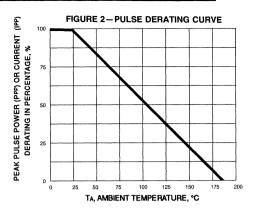
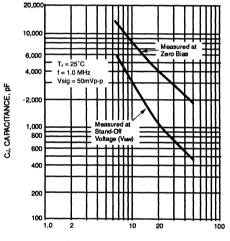
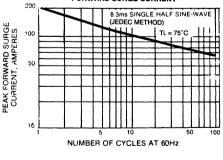




FIG.4-TYPICAL JUNCTION CAPACITANCE UNIDIRECTIONAL

V(BR), REVERSE VOLTAGE, VOLTS

FIG. 6 - MAXMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

G General Instrument

6KA24 TRANSIENT SUPPRESSOR

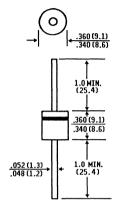
Premium Automotive
Voltage - 24 VoltsTransient Voltage Suppressor
6500 Watts Peak Pulse Power

FEATURES

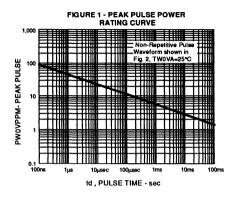
- Plastic package has Underwriters Laboratories
 Flammability classification 94V-0
- Grown glass passivation
- Exclusive G.I. PAR construction
- 6500 Peak Pulse Power capability on 10/1000µs waveform
- 2000 Peak Pulse Power capability on 10µs/50ms waveform
- + Low incremental surge resistance, .2Ω typical
- Ideally suited for automotive "load dump" applications
- Designed for under the hood applications

MECHANICAL DATA

Case: Molded plastic over nitride passivation *Terminals:* Axial leads solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes positive end(cathode) *Standard Packaging:* Tape & Reel *Mounting Position:* Any *Weight:*.007 ounce, 2.10 gram


Dimensions in inches and (millimeters)

MAXIMUM RATINGS	AND ELECTRICAL	CHARACTERISTICS


RATINGS	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10µs/1000µs waveform (NOTE 1)	Рерм	6500	Watts
Peak Pulse Power Dissipation on 10µs/50ms waveform (NOTE 2)	Рерм	2000	Watts
Steady State Power Dissipation, (NOTE 6)		T	
Lead Lengths .375"(9.5mm), TL=85°C	Pm(AV)	5.0	Watts
Peak Forward Surge Current, 8.3ms Single			
half Sine-wave on rated load (JEDEC Method) (NOTE 3)	IFSM	400	Amperes
Maximum DC Reverse Leakage Current at 24V T _A =25°C	ID	1.0	Micro-
T _A =150°C		50.0	Amperes
Breakdown Voltage at 100mA TA=25°C mininum		26.7	
T _A =25°C maximum		32.6	
T _A =150°C mininum	V _(BR)	29.7	Volts
T _A =150°C maximum		36.7	
Maximum Clamping Voltage at IPPM=90A (NOTE 4) TA=25°C		38	
T _A =150°C	Vc	40	Volts
Maximum Instantaneous Forward Voltage at 100A (NOTE 5)			
T _A =150°C	VF	1.70	Volts
Operating Junction and Storage			
Temperature Range	TJ,TSTG	-65 to +185	°C

NOTES:

- 1. Non Repetitive Current Pulse, per Figure 2, on 10/1000µs waveform
- 2. Non Repetitive Current Pulse, per Figure 5, on 10ms/50ms waveform
- 3. Measured on 8.3ms Half Sine-wave, or equivalent square wave, duty cycle=4 Pulses Maximum.
- 4. Measured on 80µ second square pulse width.
- 5. Measured on 300µ second square pulse width.
- 6. Mounted on copper leaf area of 0.79 in² (20mm²).

RATINGS AND CHARACTERISTIC CURVES 6KA24

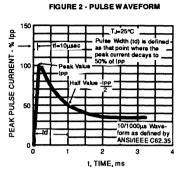


FIGURE 3 - PULSE DERATING CURVE

FIGURE 4 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

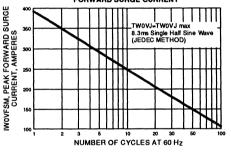
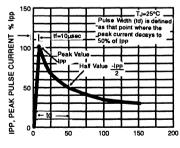



FIGURE 5 - PULSE WAVEFORM

P4KE6.8 THRU P4KE400CA

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 400 Volts 440 Watt Peak Pulse Power

Plastic package has Underwriters Laboratory Flammability Classification 94V-O Glass passivated junction in DO-41 package DO-204AL ◆ 400W Peak Pulse Power capability on 10/1000 us waveform Repetion Rate (duty cycle): 0.01% .0 (25.4) Excellent clamping .107 (2.7) capability .080(2.0) Low incremental surge resistance .205 (5.2) Fast response time: typically less .160(4.1) than 1.0 ps from 0 volts to BV for unidirectional and 5.0 nS for bidirectional types 1.0 (25.4) Typical I_D less than 1 μ A above 10V MIN High temperature soldering guaranteed: .034(.86) 265°C/10 seconds/.375", (9.5mm) lead .028 (.71) length/5lbs., (2.3 kg) tension **MECHANICAL DATA** Dimensions in inches Case: JEDEC DO-204AL molded plastic over and (millimeters) passivated junction Terminals: Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) except bi-directional types Mounting Position: Any Weight: 0.012 ounce, 0.3 gram

DEVICES FOR BIDIRECTIONAL APPLICATIONS

For Bi-directional use C or CA Suffix for types P4KE7.5 thru types P4KE440 (ex. P4KE7.5C, P4KE440CA). Electrical characteristics apply in both directions

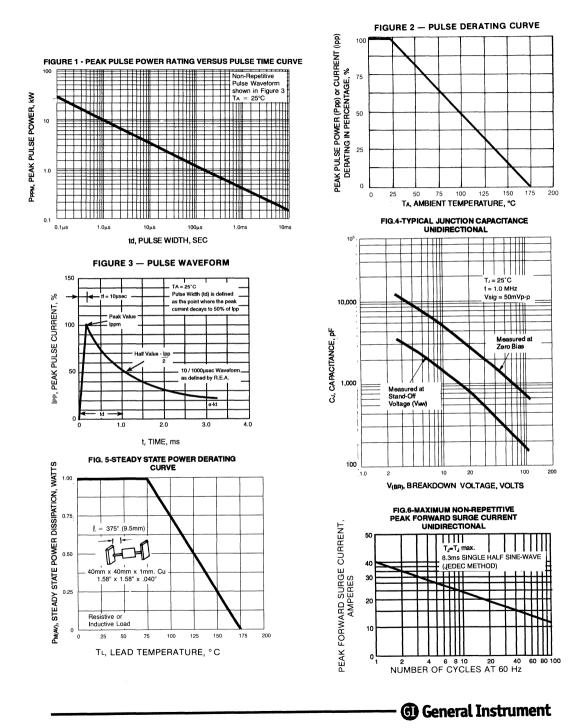
MAXIMUM RATINGS AND CHARACTERISTICS

FEATURES

Ratings at 25°C ambient temperature unless otherwise specified.			
RATING	SYMBOL	VALUE	UNITS
Peak Power Dissipation at T _A =25°C 10/1000 μ s waveform (NOTE 1, FIG. 1)	Рррм	Minimum 400	Watts
Peak Pulse Current at T _A =25°C on 10/1000 μs waveform (NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at TL=75°C Lead Lengths .375", (9.5mm) (Note 2)	P _{M(AV)}	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (NOTE 3) Unidirectional Only	IFSM	40.0	Amps
Maximum Instantaneous Forward Voltage at 50 A for Unidirectional Only (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ, TSTG	-55 to +175	°C

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above TA = 25°C per Fig. 2.

- 2. Mounted on Copper Leaf area of 1.57 in² (40mm²) per Figure 6.
- 3. 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per Minutes maximum.

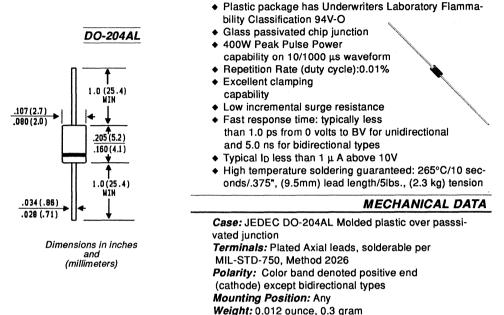

	Breakdown Voltage			Reverse	Maximum	Maximm Dack Duise	Maximum	
	V ₍₈ Voltseve		at IT (mA)	Stand-off Voltage	Maximum Reverse Leakage	Peak Puise Current Ipp	Clamping Voltage at Iep	Maximum Temperature Coefficient
Device	MIN	МАХ		V _{WM} (Volts)	at Vww. I _{D (NOTE 3)} (μΑ)	(NOTE 2) (Amps)	V _C (Volts)	ol V(BR) (%C)
P4KE6.8*	6.12	7.48	10	5.50	1000	38	10.8	0.057
P4KE6.8A*	6.45	7.14	10	5.80	1000	40	10.5	0.057
P4KE7.5	6.75	8.25	10	6.05	500	36	11.7	0.061
P4KE7.5A	7.13	7.88	10	6.40	500	37	11.3	0.061
P4KE8.2	7.38	9.02	10	6.63	200	33	12.5	0.065
P4KE8.2A	7.79	8.61	10	7.02	200	35	12.1	0.065
P4KE9.1	8.19	10.0	1.0	7.37	50	30	13.8	0.068
P4KE9.1A	8.65	9.55	1.0	7.78	50	31	13.4	0.068
P4KE10	9.00	11.0	1.0	8.10	10	28	15.0	0.073
P4KE10A	9.50	10.5	1.0	8.55	10	29	14.5	0.073
P4KE11	9.90	12.1	1.0	8.92	5.0	26	16.2	0.075
P4KE11A	10.5	11.6	1.0	9.40	5.0	27	15.6	0.075
P4KE12	10.8	13.2	1.0	9.72	5.0	24	17.3	0.076
P4KE12A	11.4	12.6	1.0	10.2	5.0	25	16.7	0.078
P4KE13	11.7	14.3	1.0	10.5	5.0	22	19.0	0.075
P4KE13A	12.4	13.7	1.0	11.1	5.0	23	18.2	0.081
P4KE15	13.5	16,5	1.0	12.1	5.0	19	22.0	0.084
P4KE15A	14.3	15.8	1.0	12.8	5.0	20	21.2	0.084
P4KE16	14.4	17.6	1.0	12.9	5.0	18	23.5	0.086
P4KE16A	15.2	16.8	1.0	13.6	5.0	19	22.5	0.086
P4KE18	16.2	19.8	1.0	14.5	5.0	16	26.5	0.088
P4KE18A	17.1	18.9	1.0	15.3	5.0	17	25.5	0.088
P4KE20	18.0	22.0	1.0	16.2	5.0	14	29.1	0.090
P4KE20A	19.0	21.0	1.0	17.1	5.0	15	27.7	0.090
P4KE22	19.8	24.2	1.0	17.8	5.0	13	31.9	0.092
P4KE22A	20.9	23.1	1.0	18.8	5.0	14	30.6	0.092
P4KE24	21.6	26.4	1.0	19.4	5.0	12	34.7	0.094
P4KE24A	22.8	25.2	1.0	20.5	5.0	13	33.2	0.094
P4KE27	24.3	29.7	1.0	21.8	5.0	11	39.1	0.096
P4KE27A	25.7	28.4	1.0	23.1	5.0	11.2	37.5	0.096
P4KE30	27.0	33.0	1.0	24.3	5.0	10	43.5	0.097
P4KE30A	28.5	31.5	1.0	25.6	5.0	10	41.4	0.097
P4KE33	29.7	36.3	1.0	26.8	5.0	9	47.7	0.098
P4KE33A	31.4	34.7	1.0	28.2	5.0	9	45.7	0.098
P4KE36	32.4	39.6	1.0	29.1	5.0	8	52.0	0.099
P4KE36A	34.2	37.8	1.0	30.8	5.0	8.4	49.9	0.099
P4KE39	35.1	42.9	1.0	31.6	5.0	7.4	56.4	0.100
P4KE39A	37.1	41.0	1.0	33.3	5.0	7.8	53.9	0.100
P4KE43	38.7	47.3	1.0	34.8	5.0	6.8	61.9	0.100
P4KE43A	40.9	45.2	1.0	36.8	5.0	7.1	59.3	0.101
P4KE47	42.3	51.7	1.0	38.1	5.0	6.2	67.8	0.101
P4KE47A	44.7	49.4	1.0	40.2	5.0	5.0	64.8	0.101
P4KE51	45.9	56.1	1.0	41.3	5.0	5.0	73.5	0.101
P4KE51A	48.5	53.6	1.0	43.6	5.0	6.0	70.1	0.102
P4KE56	50.4	61.6	1.0	45.4	5.0	5.2	80.5	0.102
P4KE56A	53.2	58.8	1.0	47.8	5.0	5.5	77.0	0.103
P4KE62	55.8	68.2	1.0	50.2	5.0	4.7	89.0	0.103
P4KE62A	58.9	65.1	1.0	53.0	5.0	4.7 5.0	89.0	
P4KE68	61.2	74.8	1.0		1		1	0.104
P4KE68A	64.6	74.8		55.1	5.0	4.3	98.0	0.104
P4KE75	64.6 67.5	82.5	1.0	58.1	5.0	4.6	92.0	0.104
P4KE75A	67.5 71.3	78.8	1.0 1.0	60.7	5.0	3.9	108	0.105
I HILLI JA	11.3	/0.0	1.0	64.1	5.0	4.1	103	0.105
				1				

* not available as bidirectional devices

	Breakdown Voltage V(BR) Volts (NOTE 1)		at IT (mA)	Reverse Stand- off Voltage Vww	Maximum Reverse Leakage at Vww	Maximm Peak Puise Current Ipp	Maximum Clamping Voltage at Iep	Maximum Temperature Coefficient
Device	MIN	MAX		(Volts)	ID (NOTE 3) (JLA)	(NOTE 2) (Amps)	V _C (Volts)	of V _(BR) (%C)
P4KE82	73.8	90.2	1.0	66.4	5.0	3.6	118	0.105
P4KE82A	77.9	86.1	1.0	70.1	5.0	3.7	113.0	0.105
P4KE91	81.9	100	1.0	73.7	5.0	3.2	131	0.106
P4KE91A	86.5	95.5	1.0	77.8	5.0	3.4	125	0.106
P4KE100	90.0	110	1.0	81.0	5.0	2.9	144	0.106
P4KE100A	95.0	105	1.0	85.5	5.0	3.1	137	0.106
P4KE110	99.0	121	1.0	89.2	5.0	2.7	158	0.107
P4KE110A	105	116	1.0	94.0	5.0	2.8	152	0.107
P4KE120	108	132	1.0	97.2	5.0	2.4	173	0.107
P4KE120A	114	126	1.0	102	5.0	2.5	165	0.107
P4KE130	117	143	1.0	105	5.0	2.2	187	0.107
P4KE130A	124	137	1.0	111	5.0	2.3	179	0.107
P4KE150	135	165	1.0	121	5.0	2.0	215	0.108
P4KE150A	143	158	1.0	128	5.0	2.0	207	0.108
P4KE160	144	176	1.0	130	5.0	1.8	230	0.108
P4KE160A	152	168	1.0	136	5.0	1.9	219	0.108
P4KE170	153	187	1.0	138	5.0	1.7	244	0.108
P4KE170A	162	179	1.0	145	5.0	1.8	234	0.108
P4KE180	162	198	1.0	146	5.0	1.6	258	0.108
P4KE180A	171	189	1.0	154	5.0	1.7	246	0.108
P4KE200	180	220	1.0	162	5.0	1.5	287	0.108
P4KE200A	190	210	1.0	171	5.0	1.53	274	0.108
P4KE220	198	242	1.0	175	5.0	1.16	344	0.108
P4KE220A	209	231	1.0	185	5.0	1.22	328	0.108
P4KE250	225	275	1.0	202	5.0	1.11	360	0.110
P4KE250A	237	267	1.0	214	5.0	1.16	344	0.110
P4KE300	270	330	1.0	243	5.0	0.93	430	0.110
P4KE300A	285	315	1.0	256	5.0	0.97	414	0.110
P4KE350	315	385	1.0	284	5.0	0.79	504	0.110
P4KE350A	332	368	1.0	300	5.0	0.83	482	0.110
P4KE400	360	440	1.0	324	5.0	0.70	574	0.110
P4KE400A	380	420	1.0	342	5.0	0.73	548	0.110
P4KE440	396	484	1.0	356	5.0	0.95	631	0.110
P4KE440A	418	462	1.0	376	5.0	1.0	602	0.110

NOTES: 1. Ven measured after h applied for 300 μ s. h = Square Wave Pulse or equivalent. 2. Surge Current Waveform per Figure 3 and Derated per Figure 2. 3. For Bidirectional types having Vn of 10 volts and less, the I_D limit is doubled. 4. All terms and symbols are consistant with ANSI/IEEE C62.35.

RATINGS AND CHARACTERISTICS P4KE6.8 THRU P4KE400CA



BZW04P5V8 THRU BZW04-376

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE - 6.8 to 440 Volts 400 Watt Peak Pulse Power

FEATURES

DEVICES FOR BIDIRECTIONAL APPLICATIONS

For Bidirectional use Suffix Letter "B." (ex. BZW04P5V8B) Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS

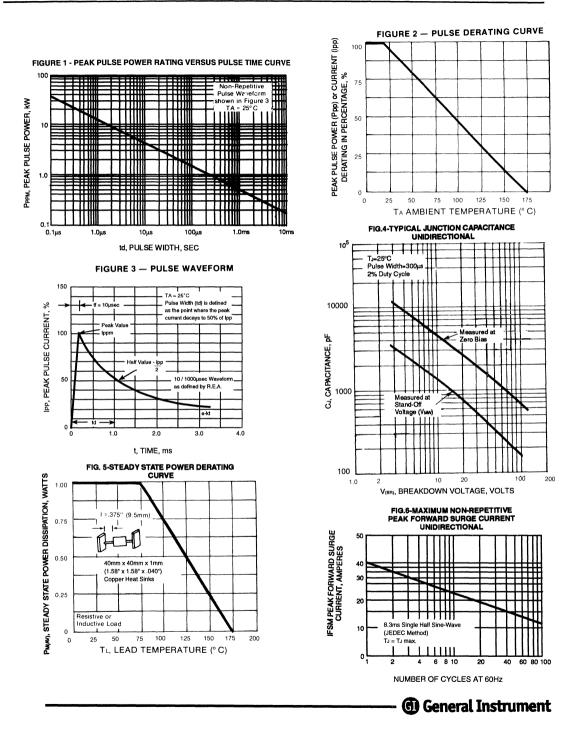
RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 µs waveform			
(NOTE 1, FIG. 3))	Рррм	Minimum 400	Watts
Peak Pulse Current on 10/1000 µs waveform			
(NOTE 1, FIG. 3)	IPPM	SEE TABLE 1	Amps
Steady Pulse State Power Dissipation at TL=75°C			
Lead Lengths .375", (9.5mm) (NOTE 2)	PM(AV)	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half			
Sine-Wave Superimposed on Rated Load			
(JEDEC Method) (NOTE 3) Unidirectional Only	IFSM	40.0	Amps
Maximum Instantaneous Forward Voltage at 50A			
(NOTE 3) Unidirectional Only	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ.TSTG	-65 to +175	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Figure 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²) Figure 6.

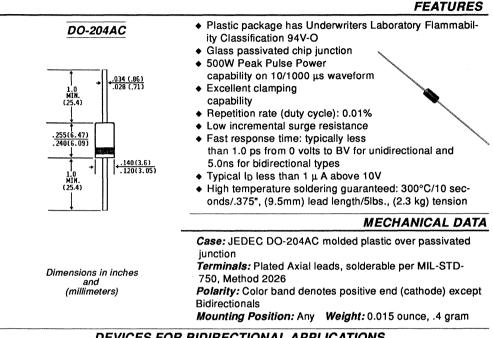
3. 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minutes maximum


	Breakdow	n Voltage		Reverse	Maximum	Maximum Peak Puise	Maximum	Maximum
		BR) (NOTE 1)	at IT (mA)	Stand-off Voltage Vww	Reverse Leakage at Vww	Current Ipp (NOTE 2)	Clamping Voltage at Ipp	Temperature Coefficient
Device Type	MIN	мах	1	(Volts)	ID (NOTE 4) (μA)	(Amps)	V _C (Volts)	of V(BR) (%C)
BZW04P5V8	6.45	7.48	10.0	5.80	1000	38.0	10.5	.057
BZW04-5V8	6.45	7.14	10.0	5.90	1000	38.0	10.5	.057
BZW04P6V4	7.13	8.25	10.0	6.40	500	35.4	11.3	.061
BZW04-6V4	7.13	7.88	10.0	6.40	500	35.4	11.3	.061
BZW04P7V0	7.79	9.02	10.0	7.02	200	33.0	12.1	.065
BZW04-7V0	7.79	8.61	10.0	7.02	200	33.0	12.1	.065
BZW04P7V8	8.65	10.0	1.0	7.78	50.0	30.0	13.4	.068
BZW04-7V8 BZW04P8V5	8.65	9.55	1.0	7.78	50.0	30.0	13.4	.073
BZW04P8V5 BZW04-8V5	9.50	11.0	1.0	8.55	10.0	27.6	14.5	.073
BZW04-8V5 BZW04P9V4	9.50	10.5	1.0	8.55	10.0	27.6	14.5	.075
BZW04P9V4 BZW04P10	10.5 11.4	12.1 13.2	1.0 1.0	9.4 10.2	5.0	25.7	15.6	.075
BZW04-10					5.0	24.0	16.7	.078
BZW04-10 BZW04P11	11.4 12.4	12.6 14.3	1.0 1.0	10.2	5.0 5.0	24.0	16.7	.078
BZW04P11 BZW04-11	12.4	14.3	1.0	11.1 11.1	5.0 5.0	22.0 22.0	18.2 18.2	.081
BZW04-11 BZW04P13	12.4	13.7	1.0	11.1 12.8			18.2 21.2	.081
BZW04P13 BZW04-13	14.3	15.8	1.0	12.8	5.0 5.0	19.0 19.0	21.2	.084 .084
BZW04-13 BZW04P14	14.3	17.6						
BZW04F14 BZW04-14	15.2	16.8	1.0 1.0	13.6 13.6	5.0	17.8	22.5	.086
BZW04-14 BZW04P15	17.1	19.8	1.0	15.3	5.0	17.8	22.5	.086
BZW04P15 BZW04-15	17.1	18.9	1.0	15.3	5.0 5.0	16.0	25.2 25.2	.088
BZW04-15 BZW04P17	19.0	22.0	1.0	15.3	5.0	16.0	25.2	.088 .090
BZW04F17 BZW04-17	19.0	22.0	1.0	17.1	5.0	14.5	27.7	
BZW04-17 BZW04P19	20.9	21.0	1.0	17.1		14.5		.090
BZW04-19	20.9	24.2	1.0	18.8	5.0 5.0	13.0	30.6 30.6	.092
BZW04P20	20.9	26.4	1.0	20.5	5.0	13.0 12.0	30.6	.092 .094
BZW04F20 BZW04-20	22.8	25.2	1.0	20.5	5.0	12.0	33.2	.094
BZW04-20 BZW04P23					1	1		
	25.7	29.7	1.0	23.1	5.0	10.7	37.5	.096
BZW04-23 BZW04P26	25.7 28.5	28.4 33.0	1.0	23.1	5.0	10.7	37.5	.096
BZW04P26 BZW04-26	28.5 28.5	33.0	1.0	25.6	5.0	9.60	41.5	.097
BZW04-28 BZW04P28	20.5 31.4	36.3	1.0 1.0	25.6 28.2	5.0	9.60	41.5	.097
BZW04-28	31.4	36.3	1.0	28.2	5.0 5.0	8.80	45.7	.098
BZW04-28 BZW04P31	34.2	34.7 39.6	1.0	30.8	5.0	8.80 8.00	45.7 49.9	.098 .099
BZW04-31	34.2	37.8	1.0	30.8	5.0	8.00	49.9	.099
BZW04P33	37.1	42.9	1.0	33.3	5.0	7.40	49.9 53.9	.1099
BZW04-33	37.1	41.0	1.0	33.3	5.0	7.40	53.9	.100
BZW04P37	40.9	47.3	1.0	36.8	5.0	6.70	59.3	.100
BZW04-37	40.9	45.2	1.0	36.8	5.0	6.70	59.3	.101
BZW04P40	44.7	51.7	1.0	40.2	5.0	6.20	64.8	.101
BZW04-40	44.7	49.4	1.0	40.2	5.0	6.20	64.8	.101
BZW04P44	48.5	56.1	1.0	43.6	5.0	5.70	70.1	.101
BZW04-44	48.5	53.6	1.0	43.6	5.0	5.70	70.1	.102
BZW04P48	53.2	61.6	1.0	47.8	5.0	5.20	77.0	.102
BZW04-48	53.2	58.8	1.0	47.8	5.0	5.20	77.0	.103
BZW04P53	58.9	68.2	1.0	53.0	5.0	4.70	85.0	.100
BZW04-53	58.9	65.1	1.0	53.0	5.0	4.70	85.0	.104
BZW04P58	64.6	74.8	1.0	58.1	5.0	4.30	92.0	.104
BZW04-58	64.6	71.4	1.0	58.1	5.0	4.30	92.0	.104
BZW04P64	71.3	82.5	1.0	64.1	5.0	3.90	103	.105
BZW04-64	71.3	78.8	1.0	64.1	5.0	3.90	103	.105
BZW04P70	77.9	90.2	1.0	70.1	5.0	3.50	113	.105
BZW04-70	77.9	86.1	1.0	70.1	5.0	3.50	113	.105
BZW04P78	86.5	100	1.0	77.8	5.0	3.20	125	.105
BZW04-78	86.5	95.5	1.0	77.8	5.0	3.20	125	.106
	L	l						

Device	V _{(B}	own Voltag R) ts (NOTE 1) MAX	je at IT (mA)	Reverse Stand-off Voltage V _{WM} (Volts)	Maximum Reverse Leakage at V _{WM} I _{D (NOTE 4)} (µA)	Maximum Peak Pulse Current IPP (NOTE 2) (Amps)	Maximum Clamping Voltage at IPP V _C (Volts)	Maximum Temperature Coefficient of V(BR) (%C)
DZWD4Doc	05.0							
BZW04P85 BZW04-85	95.0	110	1.0	85.5	5.0	2.90	137	.106
BZW04-85 BZW04P94	95.0 105	105 121	1.0 1.0	85.5	5.0	2.90	137	.106
BZW04P94 BZW04-94	105	121	1.0	94.0 94.0	5.0	2.60	152	.107
BZW04-94	114	132	1.0	94.0 102	5.0 5.0	2.60	152	.107
BZW04-102	114	126	1.0	102	5.0	2.40 2.40	165 165	.107
BZW04P110	124	143	1.0					.107
BZW04F110 BZW04-110	124	137	1.0	118 111	5.0 5.0	2.20 2.20	179 179	.107
BZW04P128	143	165	1.0	128	5.0	2.20	207	.107
BZW04-128	143	158	1.0	128	5.0	2.00	207	.108
BZW04P136	152	176	1.0	126	5.0	2.00	207	
BZW04-136	152	168	1.0	136	5.0	1.80	219	.108
BZW04P145	161	187	1.0	145	5.0 5.0	1.80	219	.108
BZW04-145	161	179	1.0	145	5.0	1.70	234	.108
BZW04P154	171	198	1.0	143	5.0	1.60	234	.108
BZW04-154	171	189	1.0	154	5.0	1.60	246	.108
BZW04P171	190	220	1.0	171	5.0	1.50	274	.108
BZW04-171	190	210	1.0	171	5.0	1.50	274	.108
BZW04P188	209	242	1.0	188	5.0	1.40	301	.108
BZW04-188	209	231	1.0	188	5.0	1.40	301	.108
BZW04P213	237	275	1.0	213	5.0	1.50	344	.110
BZW04-213	237	263	1.0	213	5.0	1.50	344	.110
BZW04P239	266	308	1.0	239	5.0	1.50	384	.110
BZW04-239	266	294	1.0	239	5.0	1.50	384	.110
BZW04P256	285	330	1.0	256	5.0	1.20	414	.110
BZW04-256	285	315	1.0	256	5.0	1.20	414	.110
BZW04P273	304	352	1.0	273	5.0	1.20	438	.110
BZW04-273	304	336	1.0	299	5.0	1.20	438	.110
BZW04P299	332	385	1.0	299	5.0	0.90	482	.110
BZW04-299	332	368	1.0	299	5.0	0.90	482	.110
BZW04P342	380	440	1.0	342	5.0	0.90	548	.110
BZW04-342	380	420	1.0	342	5.0	0.90	548	.110
BZW04P376	418	484	1.0	376	5.0	0.80	603	.110
BZW04-376	418	462	1.0	376	5.0	0.80	603	.110

NOTES:

NOTES:
 V_{BR} measured after I_T applied for 300 μs. I_T = Square Wave Pulse or equivalent.
 Surge Current Waveform per Figure 3 and Derated per Figure 2.
 All terms and symbols are consistent with ANSI/IEEE C62.35.
 For bidirectional devices with V_{WM} of 10 volts and less, the I_D limit is doubled.


RATINGS AND CHARACTERISTICS BZW04P5V8 THRU BZW04-376

SA5.0 THRU SA170CA

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

500 Watt Peak Pulse Power VOLTAGE- 5.0 to 170 Volts

DEVICES FOR BIDIRECTIONAL APPLICATIONS

For Bidirectional use C or CA Suffix for types SA6.5 thru types SA170 (ex. SA6.5C, SA170CA) Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 μs waveform (NOTE 1, FIG. 1))	Рррм	Minimum 500	Watts
Peak Pulse Current of on 10/1000 μs waveform (NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at TL=75°C Lead Lengths .375", (9.5mm) (NOTE 2)	Pm(av)	1.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load, Unidirectional only (JEDEC Method) (NOTE 3)	IFSM	70	Amps
Maximum Instantaneous Forward Voltage at 35.0 A for unidirectional only (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ,TSTG	-55 to +175	°C
			1

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²) per Figure 5.

3. 8.3ms single half sine-wave or equivalent square wave, Duty Cycle=4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

	V _{(B}	own Voltage IR) (NOTE 1)	at IT (mA)	Reverse Stand off Voltage Vww	Maximum Reverse Leakage	Maximum Peak Puise Current IPPM	Maximum Clamping Voltage at Ippu	Maximum Temperature Voltage Variation
Device	MIN	MAX		(Volts)	at Vww ID (NOTE 3) (µA)	(NOTE 2) (Amps)	V _C (Volts)	V _(BR) mV/°C
SA5.0*	6.40	7.30	10	5.0	600	52.0	9.60	5.0
SA5.0A*	6.40	7.00	10	5.0	600	54.3	9.20	5.0
SA6.0*	6.67	8.15	10	6.0	600	43.9	11.4	5.0
SA6.0A*	6.67	7.37	10	6.0	600	48.5	10.3	5.0
SA6.5	7.22	8.82	10	6.5	400	40.7	12.3	5.0
SA6.5A	7.22	7.98	10	6.5	400	44.7	11.2	5.0
SA7.0	7.78	9.51	10	7.0	150	37.8	13.3	6.0
SA7.0A	7.78	8.60	10	7.0	150	41.7	12.0	6.0
SA7.5	8.33	10.2	1.0	7.5	50	35.0	14.3	7.0
SA7.5A	8.33	9.21	1.0	7.5	50	38.8	12.9	7.0
SA8.0	8.89	10.9	1.0	8.0	25	33.3	15.0	7.0
SA8.0A	8.89	9.83	1.0	8.0	25	36.7	13.6	7.0
SA8.5	9.44	11.5	1.0	8.5	10	31.4	15.9	8.0
SA8.5A	9.44	10.4	1.0	8.5	10	34.7	14.4	8.0
SA9.0	10.0	12.2	1.0	9.0	5.0	29.5	16.9	9.0
SA9.0A	10.0	11.1	1.0	9.0	5.0	32.5	15.4	9.0
SA10	11.1	13.6	1.0	10.0	1.0	26.6	18.8	10.0
SA10A	11.1	12.3	1.0	10.0	1.0	29.4	17.0	10.0
SA11	12.2	14.9	1.0	11.0	1.0	24.9	20.1	11.0
SA11A	12.2	13.5	1.0	11.0	1.0	27.4	18.2	11.0
SA12	13.3	16.3	1.0	12.0	1.0	22.7	22.0	12.0
SA12A	13.3	14.7	1.0	12.0	1.0	25.1	19.9	12.0
SA13	14.4	17.6	1.0	13.0	1.0	21.0	23.8	13.0
SA13A	14.4	15.9	1.0	13.0	1.0	23.2	21.5	13.0
SA14	15.6	19.1	1.0	14.0	1.0	19.4	25.8	14.0
SA14A	15.6	17.2	1.0	14.0	1.0	21.5	23.2	14.0
SA15	16.7	20.4	1.0	15.0	1.0	18.8	26.9	16.0
SA15A	16.7	18.5	1.0	15.0	1.0	20.6	24.4	16.0
SA16	17.8	21.8	1.0	16.0	1.0	17.6	28.8	19.0
SA16A	17.8	19.7	1.0	16.0	1.0	19.2	26.0	17.0
SA17	18.9	23.1	1.0	17.0	1.0	16.4	30.5	20.0
SA17A	18.9	20.9	1.0	17.0	1.0	18.1	27.6	19.0
SA18	20.0	24.4	1.0	18.0	1.0	15.5	32.2	21.0
SA18A	20.0	22.1	1.0	18.0	1.0	17.2	29.2	20.0
SA20	22.2	27.1	1.0	20.0	1.0	13.9	35.8	25.0
SA20A	22.2	24.5	1.0	20.0	1.0	15.4	32.4	23.0
SA22	24.4	29.8	1.0	22.0	1.0	12.7	39.4	23.0
SA22A	24.4	26.9	1.0	22.0	1.0	14.1	35.5	25.0
SA24	26.7	32.6	1.0	24.0	1.0	11.6	43.0	31.0
SA24A	26.7	29.5	1.0	24.0	1.0	12.8	38.9	28.0
SA26	28.9	35.3	1.0	26.0	1.0	12.8	46.6	31.0
SA26A	28.9	31.9	1.0	26.0	1.0	11.9	40.0	30.0
SA28	31.1	38.0	1.0	28.0	1.0	9.9	50.1	35.0
SA28A	31.1	34.4	1.0	28.0	1.0	11.0	45.4	31.0
SA30	33.3	40.7	1.0	30.0	1.0	9.3	45.4 53.5	39.0
SA30A	33.3	36.8	1.0	30.0	1.0	10.3	48.4	39.0
SA33	36.7	44.9	1.0	33.0	1.0	8.6	59.0	42.0
SA33A	36.7	40.6	1.0	33.0	1.0	9.4	53.3	39.0
SA36	40.0	48.9	1.0	36.0	1.0	9.4 7.8	1	
SA36A	40.0	48.9	1.0				64.3	46.0
SA30A SA40	40.0	44.2 54.3		36.0	1.0	8.6	58.1	41.0
SA40 SA40A	44.4		1.0	40.0	1.0	7.0	71.4	51.0
SA40A SA43		49.1	1.0	40.0	1.0	7.8	64.5	46.0
SA43 SA43A	47.8	58.4	1.0	43.0	1.0	6.5	76.7	55.0
07407	47.8	52.8	1.0	43.0	1.0	7.2	69.4	50.0

*Not available as bidirectional devices

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Va		own Voltage NOTE 1)	at IT (mA)	Reverse Stand off Voltage Vww	Maximum Reverse Leakage at Vww	Maximum Peak Pulse Current IPPM (NOTE 2)	Maximum Clamping Voltage at lepu	Maximum Temperature Voltage at Ipp <u>M</u> Variation V _(BR)
Device	MIN	MAX		(Volts)	ID (NOTE 3) (μA)	(Amps)	Vc (Volts)	mV/°C
SA45	50.0	61.1	1.0	45.0	1.0	6.2	80.3	58.0
SA45A	50.0	55.3	1.0	45.0	1.0	6.9	72.7	52.0
SA48	53.3	65.2	1.0	48.0	1.0	5.8	85.5	63.0
SA48A	53.3	58.9	1.0	48.0	1.0	6.5	77.4	56.0
SA51	56.7	69.3	1.0	51.0	1.0	5.5	91.1	66.0
SA51A	56.7	62.7	1.0	51.0	1.0	6.1	82.4	61.0
SA54	60.0	73.3	1.0	54.0	1.0	5.2	96.3	71.0
SA54A	60.0	66.3	1.0	54.0	1.0	5.7	87.1	65.0
SA58	64.4	78.7	1.0	58.0	1.0	4.9	103	78.0
SA58A	64.4	71.2	1.0	58.0	1.0	5.3	93.6	70.0
SA60	66.7	81.5	1.0	60.0	1.0	4.7	107	80.0
SA60A	66.7	73.7	1.0	60.0	1.0	5.2	96.8	71.0
SA64	71.1	86.9	1.0	64.0	1.0	4.4	114	86.0
SA64A	71.1	78.6	1.0	64.0	1.0	4.9	103	76.0
SA70	77.8	95.1	1.0	70.0	1.0	4.0	125	94.0
SA70A	77.8	86.0	1.0	70.0	1.0	4.4	113	85.0
SA75	83.3	102	1.0	75.0	1.0	3.7	134	101
SA75A	83.3	92.1	1.0	75.0	1.0	4.1	121	91.0
SA78	86.7	106	1.0	78.0	1.0	3.6	139	105
SA78A	86.7	95.8	1.0	78.0	1.0	4.0	126	95.0
SA85	94.4	115	1.0	85.0	1.0	3.3	151	114
SA85A	94.4	104	1.0	85.0	1.0	3.6	137	103
SA90	100	122	1.0	90.0	1.0	3.1	160	121
SA90A	100	111	1.0	90.0	1.0	3.4	146	110
SA100	111	136	1.0	100	1.0	2.8	179	135
SA100A	111	123	1.0	100	1.0	3.1	162	123
SA110	122	149	1.0	110	1.0	2.6	196	148
SA110A	122	135	1.0	110	1.0	2.8	177	133
SA120	133	163	1.0	120	1.0	2.3	214	162
SA120A	133	147	1.0	120	1.0	2.0	193	146
SA130	144	176	1.0	130	1.0	2.2	230	175
SA130A	144	159	1.0	130	1.0	2.4	209	158
SA150	167	204	1.0	150	1.0	1.9	268	203
SA150A	167	185	1.0	150	1.0	2.1	243	184
SA160	178	218	1.0	160	1.0	1.7	257	217
SA160A	178	197	1.0	160	1.0	1.9	259	196
SA170	189	231	1.0	170	1.0	1.6	304	230
SA170A	189	209	1.0	170	1.0	1.8	275	208

NOTES: 1. V(BR) measured after Iτ applied for 300 μs. Iτ = Square Wave Pulse or equivalent. 2. Surge Current waveform per Figure 3 and Derate per Figure 2. 3. For bidirectional types with VR of 10 Volts and less, the I_D limit is doubled. 4. All terms and symbols are consistent with ANSI/IEE C62.35.

RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA

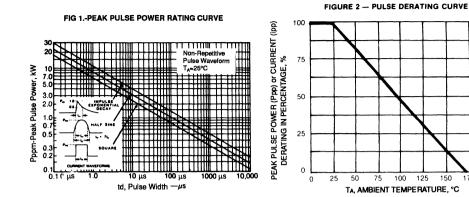
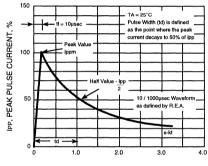



FIGURE 3 - PULSE WAVEFORM

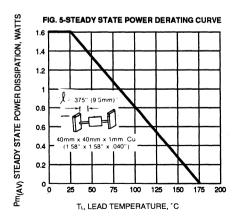
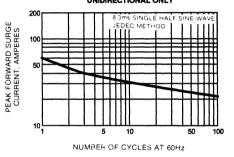



FIG. 4-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY

175 200

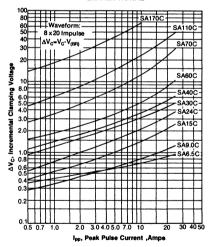


FIG. 6-INCREMENTAL CLAMPING VOLTAGE CURVE

UNIDIRECTIONAL 100 Waveform: 80 60 50 SA170 8 x 20 Impulse SA110 ни ∆V_c=V_c-V_(BR) 40 SATO 111 30 T SA54 20 TTT 111 Voltage SA40 10 Clamping 8 (5430 6.0 4.0 3.0 A24 Intel 21 SA18 ร่ล1ร่ 2 D 1. SA12 K1 ∆۷. 0.8 SA5.0-0.0 SA9.0-0 0. T 0 30 40 50 0.5 1.0 2.0 3.0 4.0 5.0 7.0 10 20

Ipp, Peak Pulse Current ,Amps

FIG. 8-INCREMENTAL CLAMPING VOLTAGE CURVE BIDIRECTIONAL

FIG. 7-INCREMENTAL CLAMPING VOLTAGE CURVE

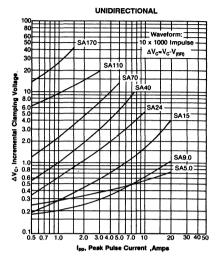
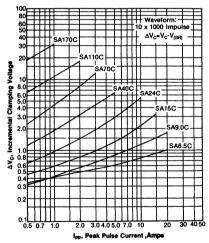



FIG. 9-INCREMENTAL CLAMPING VOLTAGE CURVE

BIDIRECTIONAL

RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA

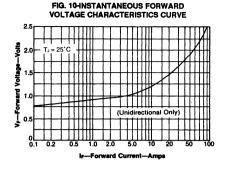
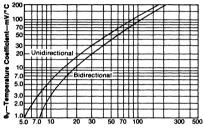



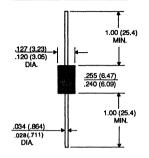
FIG. 11-BREAKDOWN VOLTAGE TEMPERATURE COEFFICIENT CURVE

VR-Rated Stand-Off Voltage-Volts

APPLICATION

This TransZorb TVS series is a low cost, 500 watt commercial and industrial product for use in applications where space is a premium and where large voltage transients can permanently damage voltage-sensitive components.

The response time of TransZorb TVS clamping action is instantaneous (1 x 10^{-9} second for unidirectional and 5 x 10^{-9} for bidirectional); therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage-sensitive semiconductor components.


SAB5.0 THRU SAB28 SERIES

UNIDIRECTIONAL TRANSIENT VOLTAGE SUPPRESSOR

Voltage- 5.0 to 28 Volts 500 Watt Peak Pulse Power

FEATURES

DO-204AC / CASE 25

 Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated junction
- Repetition Rate (duty cycle): 0.01%
- 500W Peak Pulse Power Surge capability on 10/1000μs waveform
- Excellent clamping capability
- Low incremental surge resistance
- Fast response time: typically less than 1.0 ps from 0 volts to BV min.
- Ideal for Data and Bus Line applications
- High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

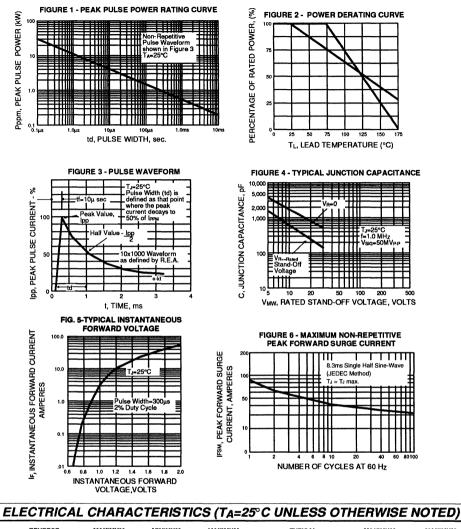
Dimensions in inches and (millimeters)

MECHANICAL DATA

Case: Molded plastic over a passivated junction *Terminals:* Plated Axial leads, solderable per MIL-STD-750, Method 2026 *Polarity:* Color band denotes positive end (cathode) *Mounting Position:* Any *Weight :* 0.0353 ounce, 1.0 gram

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (NOTE 1, FIGURE 1)	Рерм	Minimum 500	Watts
Steady State Power Dissipation, T _L = 75°C at Lead Lengths .375", (9.5mm)	Ρм(ΑV)	1.0	Watts
Peak Pulse Current at T _A =25°C on 10/1000µs waveform (NOTE 1, FIGURE 3)	Іррм	SEE TABLE 1	Amps
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load for Uni- directional only (JEDEC Method) (NOTE 2)	IFSM	70.0	Amps
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175	°C

NOTES:

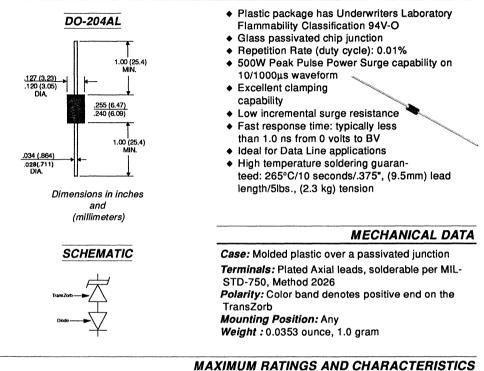
- 1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.
- 2. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum.

RATING AND CHARACTERISTIC CURVES SAB5.0 THRU SAB28 SERIES

	REVERSE STAND-OFF VOLTAGE		MINIMUM BREAKDOWN VOLTAGE V(BR) @	MAXIMUM CLAMPING VOLTAGE (FIG.2)	CLAI VOL	ICAL MPING TAGE IC	MAXIMUM CLAMPING VOLTAGE at IPPM	MAXIMUM PEAK PULSE CURRENT IPPM
PART NUMBER	V _{MW} (VOLTS)	ID at VMW D(uA)	(VOLTS) NOTE 1	Vc at 1A (VOLTS)	at 5A (VO	at 10A LTS)	(VOLTS)	NOTE 2 (AMPS)
SAB5.0	5.0	300	6.0	7.4		7.9	9.3	53.7
SAB10	10.0	3.0	11.1	13.2		14.4	16.5	30.3
SAB12	12.0	3.0	13.8	16.5		18.5	21.0	23.8
SAB15	15.0	3.0	16.7	19.7		22.2	25.2	19.8
SAB18	18.0	3.0	20.4	23.8	26.0		30.5	16.3
SAB24	24.0	3.0	28.4	32.4	37.0		42.0	11.9
SAB28	28.0	3.0	30.0	35.0	41.0		46.5	10.7

NOTES:

1. V(BR) measured at pulse width of 300µs. sq. wave or equivalent


2. Surge current waveform per Figure 3 and derate per Figure 2.

SAC5.0 THRU SAC50 SERIES

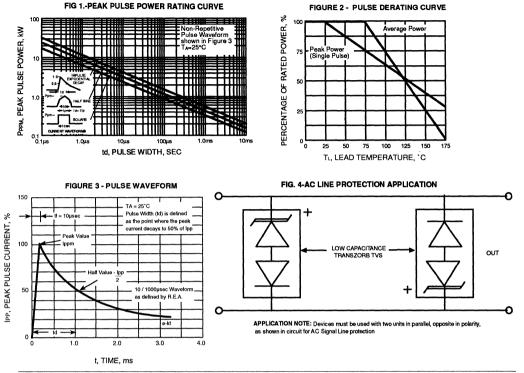
LOW CAPACITANCE TRANSIENT VOLTAGE SUPPRESSOR

Voltage- 5.0 to 50 Volts 500 Watt Peak Pulse Power

FEATURES

MAXIMUM RATINGS AND CHARA

Ratings at 25°C ambient temperature unless otherwise specified.


RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (NOTE 1)	Рерм	Minimum 500	Watts
Steady State Power Dissipation at T_L = 75°C with Lead Lengths or .375", (9.5mm)	Pm(AV)	1.0	Watts
Peak Pulse Power Surge Current at T _A =25°C 10/1000μs waveform (NOTE 1, FIG. 3)	Іррм	See table 1	Amps
Operating Junction and Storage Temperature Range	TJ,TSTG	-65 to +175	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

RATING AND CHARACTERISTIC CURVES SAC5.0 THRU SAC50 SERIES

ELECTRICAL CHARACTERISTICS (TA=25°C UNLESS OTHERWISE NOTED)

Part Number	Reverse Stand-Off Voltage (Note 1) Vww (VOLTS)	Breakdown Voltage at Iτ = 1.0mA V _(BR) (VOLTS) MIn.	Maximum Reverse Leakage at Vww Io (uA)	Maximum Clamping Voltage at I⊯=5.0A Vc (VOLTS)	Maximum Peak Puise Current per FIG, 3 Ipp (AMPS)	Junction Capacitance at 0 VOLTS (pF)	Working Inverse Blocking Voltage Vwis (VOLTS)	Inverse Blocking Leakage Current at Vwii IIB (mA)	Peak Inverse Biocking Voitage VPIB (VOLTS)
SAC5.0	5.0	7.60	300	10.0	44	50	75	1	100
SAC6.0	6.0	7.90	300	11.2	41	50	75	1	100
SAC7.0	7.0	8.33	300	12.6	38	50	75	1	100
SAC8.0	8.0	8.89	100	13.4	36	50	75	1	100
SAC8.5	8.5	9.44	50	14.0	34	50	75	1	100
SAC10	10	11.10	5.0	16.3	29	50	75	1	100
SAC12	12	13.30	5.0	19.0	25	50	75	1	100
SAC15	5	16.70	5.0	23.6	20	50	75	1	100
SAC18	18	20.00	5.0	28.8	15	50	75	1	100
SAC22	22	24.40	5.0	35.4	14	50	75	1	100
SAC26	26	28.90	5.0	42.3	11.1	50	75	1	100
SAC30	30	33.30	5.0	48.6	10.0	50	75	1	100
SAC36	36	40.00	5.0	60.0	8.6	50	75	1	100
SAC45	45	50.00	5.0	77.0	6.8	50	150	1	200
SAC50	50	55.50	5.0	88.0	5.8	50	150	1	200

587

P6KE6.8 THRU P6KE400CA

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 6.8 to 440 Volts 600 Watt Peak Pulse Power

FEATURES

1.0 MIN. (25.4) .230 (7.6) .230 (5.8) ↓ .140 (3.6) .104 (2.6)

DO-204AC

Dimensions in inches and (millimeters) Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated junction in DO-15 package
- ♦ 600W Peak Pulse Power capability on 10/1000 µs waveform
- Excellent clamping
 capability
- Repetition rate (Duty Cycle): 0.01%
- Low incremental surge resistance
- Fast response time: typically less than 1.0 ps from 0 volts to BV for unidirectional and 5.0 nS for bidirectional types
- Typical I_D less than 1 μ Å above 10V
- High temperature soldering guaranteed: 300°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

MECHANICAL DATA

Case: JEDEC DO-204AC molded plastic over passivated junction Terminals: Plated Axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) except Bidirectional Mounting Position: Any Weight: 0.015 ounce, .4 gram

DEVICES FOR BIDIRECTIONAL APPLICATIONS

For Bidirectional use C or CA Suffix for types P6KE6.8 thru types P6KE440. (ex. P6KE6.8C, P6KE400CA) Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 μs waveform (NOTE 1, FIG. 1)	Рррм	Minimum 600	Watts
Peak Pulse Current on 10/1000 μs waveform (NOTE 1, FIG. 3)	Іррм	SEE TABLE 1	Amps
Steady State Power Dissipation at TL=75°C Lead Lengths .375", (9.5mm) (NOTE 2)	Ρ _{Μ(AV)}	5.0	Watts
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method) (NOTE 3) unidirectional only	IFSM	100.0	Amps
Maximum Instantaneous Forward Voltage at 50.0A for unidirectional only (NOTE 3)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	TJ, TSTG	-65 to +175	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 1.57 in² (40mm²) per Fig. 5.

3. 8.3ms single half sine-wave or equivalent squarewave, duty cycle = 4 pulses per minutes maximum.

	Breakdown	n Voltage		Reverse	Maximum	Maximum Peak Puise	Maximum Clamping	Maximum
	V ₍ Volts (N		atiT (m4)	Stand off Voltage	Reverse Leakage	Current	Voltage at	Temperature Coefficient
Device	MIN	MAX		Vww (Volts)	at Vww Ιο (NOTE 3) (μΑ)	(NOTE 2) (Amps)	V _C (Volts)	of (Var) (%°C)
*P6KE6.8	6.12	7.48	10	5.50	1000	56	10.8	0.057
⁺ P6KE6.8A	6.45	7.14	10	5.80	1000	57	10.5	0.057
⁺ P6KE7.5	6.75	8.25	10	6.05	500	51	11.7	0.061
⁺ P6KE7.5A	7.13	7.88	10	6.40	500	53	11.3	0.061
⁺ P6KE8.2	7.38	9.02	10	6.63	200	48	12.5	0.065
⁺ P6KE8.2A	7.79	8.61	10	7.02	200	50	12.1	0.065
⁺ P6KE9.1	8.19	10.0	1.0	7.37	50	44	13.8	0.068
⁺ P6KE9.1A	8.65	9.55	1.0	7.78	50	45	13.4	0.068
⁺ P6KE10	9.00	11.0	1.0	8.10	10	40	15.0	0.073
⁺ P6KE10A	9.50	10.5	1.0	8.55	10	41	14.5	0.073
⁺ P6KE11	9.90	12.1	1.0	8.92	5.0	37	16.2	0.075
⁺ P6KE11A	10.5	11.6	1.0	9.40	5.0	38	15.6	0.075
⁺ P5KE12	10.8	13.2	1.0	9.72	5.0	35	17.3	0.078
⁺ P6KE12A	11.4	12.6	1.0	10.2	5.0	36	16.7	0.078
⁺ P6KE13	11.7	14.3	1.0	10.5	5.0	32	19.0	0.061
⁺ P6KE13A	12.4	13.7	1.0	11.1	5.0	33	18.2	0.081
+P6KE15	13.5	16.5	1.0	12.1	5.0	27	22.0	0.084
+P6KE15A	14.3	15.8	1.0	12.8	5.0	28	21.2	0.084
+P6KE16	14.4	17.6	1.0	12.9	5.0	26	23.5	0.086
+P6KE16A	15.2	16.8	1.0	13.6	5.0	27	22.5	0.086
+P6KE18	16.2	19.8	1.0	14.5	5.0	23	26.5	0.088
+P6KE18A	17.1	18.9	1.0	15.3	5.0	23	25.2	0.088
+P6KE20	18.0	22.0	1.0	16.2	5.0	24	29.1	0.088
+P6KE20A	19.0	21.0	1.0	17.1	5.0	21	29.1	0.090
+P6KE22	19.8	24.2	1.0	17.8	5.0	19	31.9	0.090
+P6KE22A	20.9	23.1	1.0	18.8	5.0	20	30.6	0.092
+P6KE24	21.6	26.4	1.0	19.4	5.0	17	30.8	0.092
+P6KE24A	22.8	252.	1.0	20.5	5.0	18	33.2	0.094
+P6KE27	24.3	29.7	1.0	21.8	5.0	15	39.1	0.094
+P6KE27A	25.7	28.4	1.0	23.1	5.0	16	37.5	0.096
+P6KE30	27.0	33.0	1.0	24.3	5.0	14	43.5	0.098
+P6KE30A	28.5	31.5	1.0	25.6	5.0	14.4	43.5	0.097
+P6KE33	29.7	36.3	1.0	26.8	5.0	14.4		
+P6KE33A	31.4	34.7	1.0	28.2	5.0		47.7	0.098
+P6KE36	32.4	39.6	1.0	20.2	5.0	13.2 11.6	45.7 52.0	0.098
⁺ P6KE36A	34.2	37.8	1.0					
⁺ P6KE39	35.1	42.9	1.0	30.8 31.6	5.0 5.0	12.0	49.9	0.099
⁺ P6KE39A	37.1	42.9	1.0	33.3	5.0	10.6	56.4 53.9	0.100
*P6KE43	38.7	41.0	1.0	33.3	5.0	11.2 9.6	1	0.100
*P6KE43A	40.9	47.3	1.0	34.8	5.0		61.9	0.101
*P6KE47	40.9	45.2	1.0	36.8	5.0	10.1 8.9	59.3 67.8	0.101
*P6KE47A	42.3	49.4	1.0	40.2	5.0	9.3	67.8	0.101
P6KE51	45.9	49.4 56.1	1.0	40.2	5.0	9.3 8.2	64.8 73.5	0.101
P6KE51A	48.5	53.6	1.0	41.5	5.0	8.6	73.5	0.102
P6KE56	48.5 50.4	61.6	1.0	45.4	5.0		1	
P6KE56A	50.0					7.4	80.5	0.103
P6KE62	53.2 55.8	58.8 68.2	1.0	47.8	5.0	7.8	77.0	0.103
P6KE62A	55.8 58.9	65.1	1.0	50.2	5.0	6.8	89.0	0.104
P6KE68		1	1.0	53.0	5.0	7.1	85.0	0.104
P6KE68A	61.2	74.8	1.0	55.1	5.0	6.1	98.0	0.104
	64.6	71.4	1.0	58.1	5.0	6.5	92.0	0.104
P6KE75	67.5	82.5	1.0	60.7	5.0	5.5	108	0.105
P6KE75A	71.3	78.8	1.0	64.1	5.0	5.8	103	0.105
P6KE82	73.8	90.2	1.0	66.4	5.0	5.1	118	0.105
P6KE82A	77.9	86.1	1.0	70.1	5.0	5.3	113	0.105
P6KE91	81.9	100	1.0	73.7	5.0	4.5	131	0.106
								1
		ł	L	L	L			L

	Breakdo	own Voltage		Reverse	Maximum	Maximum Peak Puise	Maximum	Maximum
	V Voits ((BR) NOTE 1)	at IT (mA)	Stand off Voltage Vww	Reverse Leakage at Vww	Peak Puise Current IPPM INOTE 2)	Clamping Voltage at IPPM	Temperature Coefficient of V(BR)
Device	MIN	MAX		(Volts)	ID (NOTE 3) (µA)	(Amps)	V _{C (} Volts)	(%C)
P6KE91A	86.5	95.5	1.0	77.8	5.0	4.8	125	0.106
P6KE100	90.0	110	1.0	81.0	5.0	4.2	144	0.106
P6KE100A	95.0	105	1.0	85.5	5.0	4.4	137	0.106
P6KE110	99.0	121	1.0	89.2	5.0	3.8	158	0.107
P6KE110A	105	116	1.0	94.0	5.0	4.0	152	0.107
P6KE120	108	132	1.0	97.2	5.0	3.5	173	0.107
P6KE120A	114	126	1.0	102	5.0	3.6	165	0.107
P6KE130	117	143	1.0	105	5.0	3.2	187	0.107
P6KE130A	124	137	1.0	111	5.0	3.3	179	0.107
P6KE150	135	165	1.0	121	5.0	2.8	215	0.108
P6KE150A	143	158	1.0	128	5.0	2.9	207	0.108
P6KE160	144	176	1.0	130	5.0	2.6	230	0.108
P6KE160A	152	168	1.0	136	5.0	2.7	219	0.108
P6KE170	153	187	1.0	138	5.0	2.5	244	0.108
P6KE170A	162	179	1.0	145	5.0	2.6	234	0.108
P6KE180	162	198	1.0	146	5.0	2.3	258	0.108
P6KE180A	171	189	1.0	154	5.0	2.4	246	0.108
P6KE200	180	220	1.0	162	5.0	2.1	287	0.108
P6KE200A	190	210	1.0	171	5.0	2.2	274	0.108
P6KE220	198	242	1.0	175	5.0	1.75	344	0.108
P6KE220A	209	231	1.0	185	5.0	1.83	328	0.108
P6KE250	225	275	1.0	202	5.0	1.67	360	0.110
P6KE250A	237	263	1.0	214	5.0	1.75	344	0.110
P6KE300	270	330	1.0	243	5.0	1.40	430	0.110
P6KE300A	285	315	1.0	256	5.0	1.45	414	0.110
P6KE350	315	385	1.0	284	5.0	1.20	504	0.110
P6KE350A	332	368	1.0	300	5.0	1.25	482	0.110
P6KE400	360	440	1.0	324	5.0	1.05	574	0.110
P6KE400A	380	420	1.0	342	5.0	1.10	548	0.110
P6KE440	396	484	1.0	356	5.0	0.95	631	0.110
P6KE440A	418	462	1.0	376	5.0	1.0	602	0.110

NOTES:

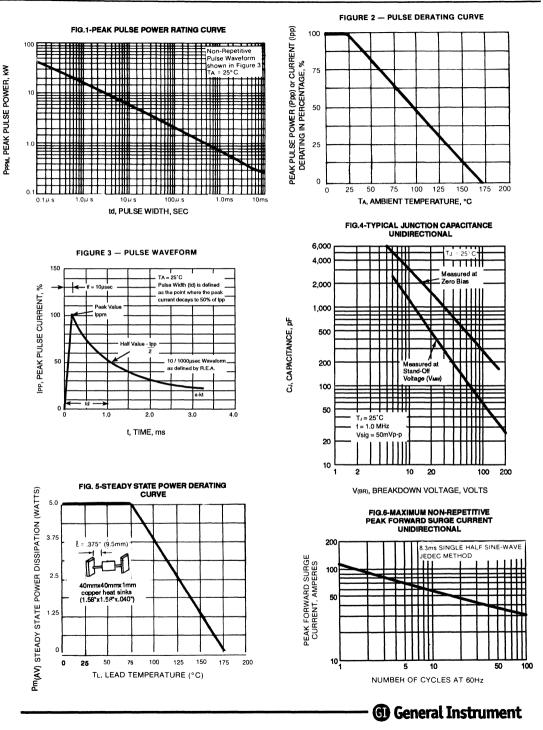
1. $V_{(BR)}$ measured after I_T applied for 300µs, I_T = Square Wave Pulse or equivalent.

2. Surge Current Waveform per Figure 3 and Derate per Figure 2.

3. For bidirectional types with VR of 10 volts and less, the ID limit is doubled.

4. All terms and symbols are consistant with ANSI/IEEE C62.35.

* UL listed for Telecom application protection 497B, file number E136766 for both unidirectional and bidirectional devices.

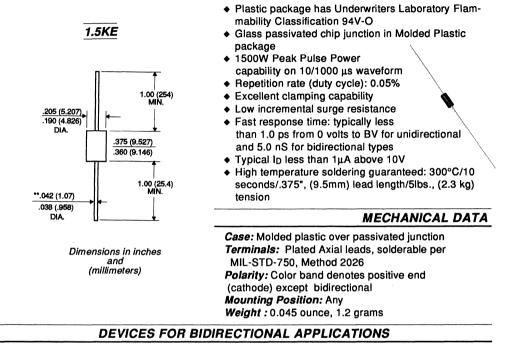

DESCRIPTION

This P6KE TVS series is a low cost commercial product for use in applications where large voltage transients can permanently damage voltage-sensitive components.

The P6KE series device types are designed in a small package size where power and space is a consideration. They are characterized by their high surge capability, extremely fast response time, and low impedance, (R_{on}). Because of the unpredictable nature of transients, and the variation of the impedance with respect to these transients, impedance, per se, is not specified as a parametric value. However, a minimum voltage at low current conditions (BV) and a maximum clamping voltage (V_C) at a maximum peak pulse current is specified.

In some instances, the thermal effect (see V_C Clamping Voltage) may be responsible for 50% to 70% of the observed voltage differential when subjected to high current pulses for several duty cycles, thus making a maximum impedance specification insignificant. In case of a severe current overload or abnormal transient beyond the maximum ratings, the TransZorb will initially fail "short" thus tripping the system's circuit breaker or fuse while protecting the entire circuit. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended power curves vs. pulse time are also available.

RATINGS AND CHARACTERISTIC CURVES P6KE6.8 THRU P6KE400CA



1.5KE6.8 THRU 1.5KE400CA

GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE - 6.8 to 440 Volts 1500 Watt Peak Pulse Power

FEATURES

For Bidirectional use C or CA Suffix for types 1.5KE6.8 thru types 1.5KE440 (ex. 1.5KE6.8C, 1.5KE400CA). Electrical characteristics apply in both directions.

MAXIMUM RATINGS AND CHARACTERISTICS

SYMBOL	VALUE	UNITS
T		
Рррм	Minimum 1500	Watts
Іррм	SEE TABLE 1	Amps
P _{M(AV)}	5.0	Watts
IFSM	200	Amps
VF	3.5/5.0	Volts
TJTSTG	-65 to +175	°C
	IPPM Pm(av) Ifsm	IPPM SEE TABLE 1 Рм(AV) 5.0 IFSM 200 VF 3.5/5.0

NOTES: 1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.

2. Mounted on Copper Leaf area of 0.79 in² (20mm²) per Figure 5.

3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle =4 pulses per minutes maximum.

ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted)

JEDEC	GENERAL		wn Voltage V _(BR)	at fT	Reverse Stand off	Maximum Reverse	Maximum Peak Puise	Maximum Clamping	Maximum
TYPE NUMBER	PART NUMBER	(Volts) Min	(NOTE 1) Max	(mA)	Voltage Vww (Volts)	Leakage at Vww lo (wones) (µA)	Current I _{PPM} (NOTE 2) (Amps)	Voltage at lppu Vc (Volts)	Temperature Coefficinet of V _{(BR}) (%/°C)
1N6267	⁺ 1.5KE6.8	6.12	7.48	10	5.50	1000	139	10.8	0.057
1N6267A	⁺ 1.5KE6.8A	6.45	7.14	10	5.80	1000	143	10.5	0.057
1N6268	⁺ 1.5KE7.5	6.75	8.25	10	6.05	500	128	11.7	0.061
1N6268A	⁺ 1.5KE7.5A	7.13	7.88	10	6.40	500	132	11.3	0.061
1N6269	⁺ 1.5KE8.2	7.38	9.02	10	6.63	200	120	12.5	0.065
1N6269A	⁺ 1.5KE8.2A	7.79	8.0	10	7.02	200	124	12.1	0.065
1N6270	⁺ 1.5KE9.1	8.19	10.0	1.0	7.37	50	109	13.8	0.068
1N6270A	⁺ 1.5KE9.1A	8.65	9.55	1.0	7.78	50	112	13.4	0.068
1N6271	⁺ 1.5KE10	9.00	11.0	1.0	8.10	10	100	15.0	0.073
1N6271A	*1.5KE10A	9.50	10.5	1.0	8.55	10	103	14.5	0.073
1N6272	⁺ 1.5KE11	9.90	12.1	1.0	8.92	5.0	93.0	16.2	0.075
1N6272A	⁺ 1.5KE11A	10.5	11.6	1.0	9.40	5.0	96.0	15.6	0.075
1N6273	⁺ 1.5KE12	10.8	13.2	1.0	9.72	5.0	87.0	17.3	0.076
1N6273A	+1.5KE12A	11.4	12.6	1.0	10.2	5.0	90.0	16.7	0.078
1N6274	⁺ 1.5KE13	11.7	14.3	1.0	10.5	5.0	79.0	19.0	0.081
1N6274A	⁺ 1.5KE13A	12.4	13.7	1.0	11.1	5.0	82.0	18.2	0.061
1N6275	⁺ 1.5KE15	13.5	16.5	1.0	12.1	5.0	68.0	22.0	0.084
1N6275A	⁺ 1.5KE15A	14.3	15.8	1.0	12.8	5.0	71.0	21.2	0.084
1N6276	⁺ 1.5KE16	14.4	17.6	1.0	12.9	5.0	64.0	23.5	0.066
1N6276A	⁺ 1.5KE16A	15.2	16.8	1.0	13.6	5.0	67.0	22.5	0.066
1N6277	⁺ 1.5KE18	16.2	19.8	1.0	14.5	5.0	56.5	26.5	0.068
1N6277A	⁺ 1.5KE18A	17.1	18.9	1.0	15.3	5.0	59.5	26.2	0.089
1N6278	*1.5KE20	18.0	22.0	1.0	16.2	5.0	51.5	29.1	0.090
1N6278A	+1.5KE20A	19.0	21.0	1.0	17.1	5.0	54.0	27.7	0.090
1N6279	⁺ 1.5KE22	19.8	24.2	1.0	17.8	5.0	47.0	31.9	0.092
1N6279A	+1.5KE22A	20.9	23.1	1.0	18.8	5.0	49.0	30.6	0.092
1N6280	⁺ 1.5KE24	21.6	26.4	1.0	19.4	5.0	43.0	34.7	0.094
1N6280A	+1.5KE24A	22.8	25.2	1.0	20.5	5.0	45.0	33.2	0.094
1N6281	⁺ 1.5KE27	24.3	29.7	1.0	21.8	5.0	38.5	39.1	0.096
1N6281A	⁺ 1.5KE27A	25.7	28.4	1.0	23.1	5.0	40.0	37.5	0.096
1N6282	⁺ 1.5KE30	27.0	33.0	1.0	24.3	5.0	34.5	43.5	0.097
1N6282A	+1.5KE30A	28.5	31.5	1.0	25.6	5.0	36.0	41.4	0.097
	+1.5KE33	29.7	36.3	1.0	26.8	5.0	31.5	47.7	0.098
1N6283A	⁺ 1.5KE33A	31.4	34.7	1.0	28.2	5.0	33.0	45.7	0.098
1N6284	⁺ 1.5KE36	32.4	39.6	1.0	29.1	5.0	29.0	52.0	0.099
1N6284A	⁺ 1.5KE36A	34.2	37.8	1.0	30.8	5.0	30.0	49.9	0.099
1N6285	⁺ 1.5KE39	35.1	42.9	1.0	31.6	5.0	26.5	56.4	0.100
1N6285A	⁺ 1.5KE39A	37.1	41.0	1.0	33.3	5.0	28.0	53.9	0.100
1N6286	⁺ 1.5KE43	38.7	47.3	1.0	34.8	5.0	24.0	61.9	0.101
1N6286A	+1.5KE43A	40.9	45.2	1.0	36.8	5.0	25.3	59.3	0.101
1N6287	1.5KE47	42.3	51.7	1.0	36.1	5.0	22.2	67.8	0.101
1N6287A	⁺ 1.5KE47A	44.7	49.4	1.0	40.2	5.0	23.2	64.8	0.101
1N6288	1.5KE51	45.9	56.1	1.0	41.3	5.0	20.4	73.5	0.102
1N6288A	1.5KE51A	48.5	53.6	1.0	43.6	5.0	21.4	70.1	0.102
1N6289	1.5KE56	50.4	61.8	1.0	45.4	5.0	18.6	80.5	0.103
1N6289A	1.5KE56A	53.2	58.8	1.0	47.8	5.0	19.5	77.0	0.103
1N6290	1.5KE62	55.8	68.2	1.0	50.2	5.0	16.9	89.0	0.104
1N6290A	1.5KE62A	58.9	65.1	1.0	53.0	5.0	17.7	85.0	0.104
1N6291	1.5KE68	61.2	74.8	1.0	55.1	5.0	15.3	98.0	0.104
1N6291A	1.5KE68A	64.6	71.4	1.0	58.1	5.0	16.3	92.0	0.104
1N6292	1.5KE75	67.5	82.5	1.0	60.7	5.0	13.9	109	0.105
1N6292A	1.5KE75A	71.3	78.8	1.0	64.1	5.0	14.6	104	0.105
1N6293	1.5KE82	73.8	90.2	1.0	66.4	5.0	12.7	118	0.105
1N6293A	1.5KE82A	77.9	86.1	1.0	70.1	5.0	13.3	113	0.105
1N6294	1.5KE91	81.9	100.0	1.0	73.7	5.0	11.4	131	0.106
	1.5KE91A	86.5	95.5	1.0	77.8	5.0	12.0	125	0.106
1N6294A 1N6295	1.5KE100	90.0	110	1.0	81.0	5.0	10.4	144	0.106

ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted)

JEDEC TYPE NUMBER	GENERAL PART NUMBER		down Voltage V(BR) (NOTE 1) Max	at IT (mA)	Reverse Stand off Voltage Vwu (Volts)	Maximum Reverse Leakage at Vww Io (NOTE 5) (µA)	Maximum Peak Pulse Current I ppu (NOTE 2) (Amps)	Maximum Clamping Voltage at I ppM Vc (Volts)	Maximum Temperature Coefficientof V _{(BR}) (%/°C)
1N6295A	1.5KE100A	95.0	105	1.0	85.5	5.0	11.0	137	0.106
1N6296	1.5KE110	99.0	121	1.0	89.2	5.0	9.5	158	0.107
1N6296A	1.5KE110A	106	116	1.0	94.0	5.0	9.9	152	0.107
1N6297	1.5KE120	108	132	1.0	97.2	5.0	8.7	173	0.107
1N6297A	1.5KE120A	114	126	1.0	102	5.0	9.1	165	0.107
1N6298	1.5KE130	117	143	1.0	106	5.0	8.0	187	0.107
1N6298A	1.5KE130A	124	137	1.0	111	5.0	8.4	179	0.107
1N6299	1.5KE150	136	165	1.0	121	5.0	7.0	215	0.108
1N6299A	1.5KE150A	143	158	1.0	128	5.0	7.2	207	0.106
1N6300	1.5KE160	144	176	1.0	130	5.0	6.5	230	0.106
1N6300A	1.5KE160A	152	168	1.0	136	5.0	6.8	219	0.108
1N6301	1.5KE170	153	167	1.0	138	5.0	6.2	244	0.108
1N6301A	1.5KE170A	162	179.	1.0	145	5.0	6.4	234	0.108
1N6302	1.5KE180	162	198	1.0	146	5.0	5.8	258	0.108
1N6302A	1.5KE180A	171	189	1.0	154	5.0	6.1	246	0.108
1N6303	1.5KE200	180	220	1.0	162	5.0	5.2	287	0.108
1N6303A	1.5KE200A*	190	210	1.0	171	5.0	5.5	274	0.108
	1.5KE220	196	242	1.0	175	5.0	4.3	344	0.108
	1.5KE220A*	209	231	1.0	185	5.0	4.6	328	0.108
	1.5KE250	225	275	1.0	202	5.0	5.0	360	0.110
	1.5KE250A	237	263	1.0	214	5.0	5.0	344	0.110
	1.5KE300	270	330	1.0	243	5.0	5.0	430	0.110
	1.5KE300A	285	315	1.0	256	5.0	5.0	414	0.110
	1.5KE350	315	385	1.0	284	5.0	4.0	504	0.110
	1.5KE350A	333	368	1.0	300	5.0	4.0	482	0.110
	1.5KE400	360	440	1.0	324	5.0	4.0	574	0.110
	1.5KE400A	380	420	1.0	342	5.0	4.0	548	0.110
	1.5KE440	396	484	1.0	356	5.0	2.38	631	0.110
	1.5KE440A	418	462	1.0	376	5.0	2.50	602	0.110

NOTES:

1. VBR measured after IT applied for 300 us. IT=Square Wave Pulse or equivalent.

Surge current Waveform per Figure 3 and Derate per Figure 2.
 Surge current Waveform per Figure 3 and Derate per Figure 2.
 VF=3.5V max., Ir=100A (1.5KE.8 thru 1.5KE91A)
 VF=5.0 V max., Ir=100A (1.5KE100 thru 1.5KE440A) per 1/2 Square or equivalent Sine Wave.
 PW-8.3ms, Duty Cycle - 4 Pulses per minute maximum.

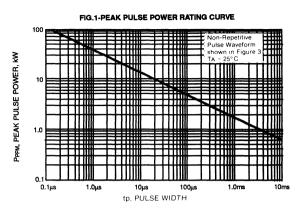
4. All terms and symbols are consistent with ANSI/IEEE CA62.35.

5. For bidirectional types with VR 10 volts and less, the ID limit is doubled.

Bidirectional versions are UL approved under component across the line protection, ULV1414 file number E108274.

(1.5KE200CA, 1.5KE220CA)

* UL listed for Telecom applications protection, 497B, file number E133766 for both unidirectional and bidirectional devices


APPLICATION

This series of Silicon Transient Suppressors is used in applications where large voltage transients can permanently damage voltage-sensitive components.

The TransZorb diode can be used in applications where induced lighting on rural or remote transmission lines presents a hazard to electronic circuitry (ref: R.E.A. specification P.E. 60).

This TransZorb TVS diode has a pulse power rating of 1500 watts for one millisecond. The response time of TransZorb TVS diode clamping action is effectively instantaneous (1 x 10^9 seconds bidirectional); therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage sensitive semiconductors and components. TransZorb TVS diodes can also be used in series or parallel to increase the peak power ratings.

RATINGS AND CHARACTERISTIC CURVES 1.5KE6.8 THRU 1.5KE400CA

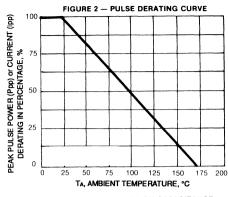
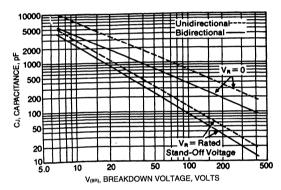
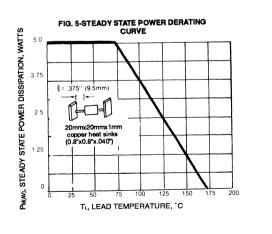




FIGURE 4 - TYPICAL JUNCTION CAPACITANCE

FIG.4-TYPICAL JUNCTION CAPACITANCE

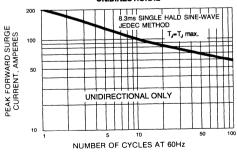
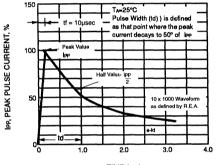
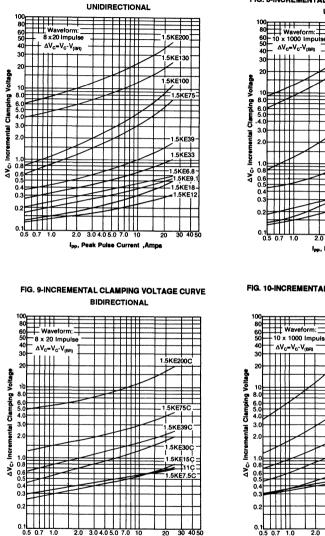




FIGURE 3 --- PULSE WAVEFORM

t, TIME (ms)

RATINGS AND CHARACTERISTIC CURVES 1.5KE6.8 THRU 1.5KE400CA

Ipp, Peak Pulse Current ,Amps

FIG. 7-INCREMENTAL CLAMPING VOLTAGE CURVE

FIG. 8-INCREMENTAL CLAMPING VOLTAGE CURVE UNIDIRECTIONAL

1.5KE200

71.5KE130

1H

1

3.0 4.0 5.0 7.0 10

Ipp, Peak Pulse Current ,Amps

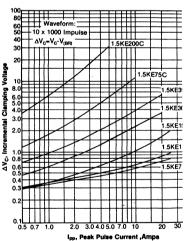
BIDIRECTIONAL

.5KE75

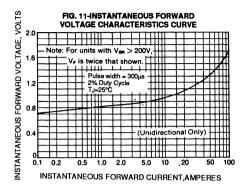
5KE3

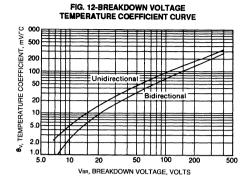
1.5KE

1.5KE


1.5KE

-


20


FIG. 10-INCREMENTAL CLAMPING VOLTAGE CURVE

20

RATINGS AND CHARACTERISTIC CURVES 1.5KE6.8 THRU 1.5KE400CA

ICTE5.0 THRU ICTE15C SERIES

TRANSIENT VOLTAGE SUPPRESSOR

Voltage- 5.0 to 15 Volts 1500 Watt Peak Pulse Power

FEATURES

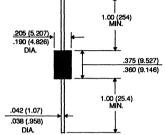
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
 Glass passivated chip junction
 Repitition Rate (duty cycle): 0.05%
 - 1500W Peak Pulse Power Surge capability on 10/1000µs waveform
 - Excellent clamping capability
 - Low Incremental Surge Resistance
 - Fast response time: typically less than 1.0 ps from 0 volts to BV for unidirectional and 5.0ns for bidirectional
 - Ideal for Data and Bus Line applications
 - High temperature soldering guaranteed: 265°C/10 seconds/.375", (9.5mm) lead length/5lbs., (2.3 kg) tension

MECHANICAL DATA Case: Molded plastic over a passivated junction **Terminals:** Plated Axial leads, solderable per MIL-STD-750, Method 2026 **Polarity:** Color band denotes positive end except for bidirectional types **Mounting Position:** Any

Weight: 0.053 ounce, 1.5 gram

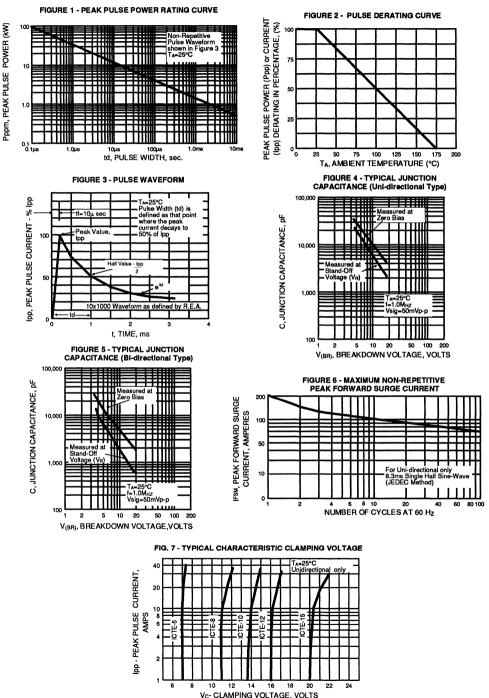
MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000µs waveform (NOTE 1, FIGURE 1)	Рерм	Minimum 1500	Watts
Steady State Power Dissipation, T _L = 75°C at Lead Lengths .375", (9.5mm)	Pm(AV)	5.0	Watts
Peak Pulse Current on 10/1000µs waveform (NOTE 1, FIGURE 3)	Іррм	See Table 1	Amps
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load for Uni- directional only (JEDEC Method) (NOTE 2)	IFSM	200.0	Amps
Maximum Instantaneous Forward Voltage at 100 Amps for unidirectional only (NOTE 2)	VF	3.5	Volts
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-65 to +175	°C

NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above $T_{A=}$ 25°C per Fig. 2.


2. 8.3ms single half sine-wave, duty cycle = 4 pulses per minute maximum.

Dimensions in inches and (millimeters)

RATING AND CHARACTERISTIC CURVES ICTE5.0 THRU ICTE15C SERIES

ANTING VULTAGE

ELECTRICAL CHARACTERISTICS AT 25°C (JEDEC REGISTERED DATA)

JEDEC TYPE NUMBER	GENERAL INSTRUMENT PART NUMBER	REVERSE STAND-OFF VOLTAGE VMW VOLTS	MINIMUM** BREAKDOWN VOLTAGE at 1mA. V(BR) VOLTS	MAXIMUM REVERSE LEAKAGE at V _{MW} ID UA	MAXIMUM CLAMPING VOLTAGE at Ipp=1A Vc VOLTS	MAXIMUM CLAMPING VOLTAGE at Ipp=10A Vc VCLTS	MAXIMUM PEAK PULSE CURRENT Ipp Amps
1N6373	ICTE-5*	5.0	6.0	300	7.1	7.5	160
1N6374	ICTE-8	8.0	9.4	25	11.3	11.5	100
1N6375	ICTE-10	10.0	11.7	2	13.7	14.1	90
1N6376	ICTE-12	12.0	14.1	2	16.1	16.5	70
1N6377	ICTE-15	15.0	17.6	2	20.1	20.6	60

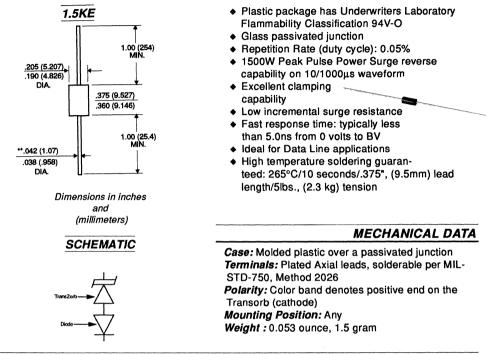
ELECTRICAL CHARACTERISTICS AT 25°C (TEST BOTH POLARITIES)

JEDEC TYPE NUMBER	GENERAL INSTRUMENT PART NUMBER (Note 1,2)	REVERSE STAND-OFF VOLTAGE VMW VOLTS	MINIMUM** BREAKDOWN VOLTAGE at 1mA. V(BR) VOLTS	MAXIMUM REVERSE LEAKAGE at V _{MW} ID UA	MAXIMUM CLAMPING VOLTAGE at Ipp=1A Vc VC	MAXIMUM CLAMPING VOLTAGE at Ipp=10A Vc VC	MAXIMUM PEAK PULSE CURRENT Ipp Amps
1N6382	ICTE-8C*	8.0	9.4	50	11.4	11.6	100
1N6383	ICTE-10C	10.0	11.7	2	14.1	14.5	90
1N6384	ICTE-12C	12.0	14.1	2	16.7	17.1	70
1N6385	ICTE-15C	15.0	17.6	2	20.8	21.4	60

NOTES:

1. C Suffix indicates bidirectional 2. ICTE-5 not available as bidirectional.

The minimum breakdown voltage as shown takes into consideration the =1 volt tolerance normally specifie for power supply regulation on most intergrated circuit manufacturers data sheets. Similar TransZorb devices are available with reduced clamping voltages where tighter regulated power supply voltages are employed.
 Clamping Factor: 1.33 at fullo rated power; 1.20 at 50% rated power; Clamping Factor: the ratio of the actual Vc(Clamping Voltages).


Voltage) to the V(BR) (Breakdown Voltage) as measured on a specific device.

LCE6.5 THRU LCE90A SERIES

LOW CAPACITANCE TRANSIENT VOLTAGE SUPPRESSOR

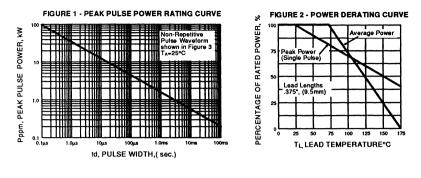
Voltage- 6.5 to 90 Volts 1500 Watt Peak Pulse Power

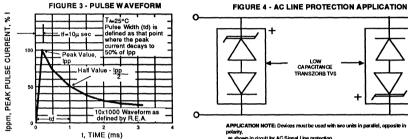
FEATURES

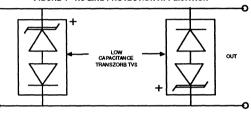
MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 µs waveform			
(NOTE 1, FIGURE 1)	Рерм	Minimum 1500	Watts
Steady State Power Dissipation, T_L = 75°C with at Lead Lengths .375", (9.5mm)	Pm(AV)	5.0	Watts
Peak Power Pulse Surge Current on 10/1000 µs waveform (FIG.3 ,NOTE 1)	Іррм	SEE TABLE 1	Amps
Operating Junction and Storage Temperature Range	TJTSTG	-65 to +175	°C


NOTES:


1. Non-repetitive current pulse, per Fig. 3 and derated above TA= 25°C per Fig. 2.


2. 8.3ms single half sine-wave, duty cycle=4 pulses per minute maximum.

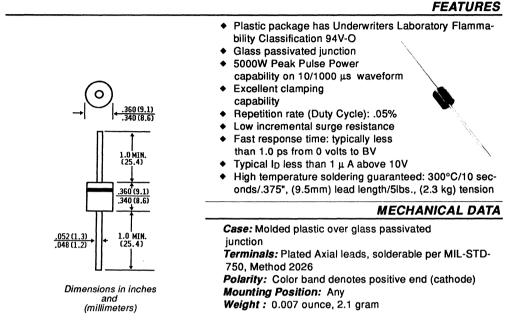
RATING AND CHARACTERISTIC CURVES LCE6.5 THRU LCE90A SERIES

with two units in parallel, opposite in polarity, as shown in circuit for AC Signal Line protection

ELECTRICAL CHARACTERISTICS at TA=25° C(UNLESS OTHERWISE NOTED)

PART NUMBER	RVERSE STAND-OFF VOLAGE Vmv (VOLTS)	BREAKDOWN VOLTAGE V(BR) (VOLTS) MIN.MAX	i _T mA	MAXIMUM REVERSE LEAKAGE AT VMW ID (µA)	MAXIMUM CLAMPING VOLTAGE AT IPP VC (VOLTS)	MAXIMUM PEAK PULSE CURRENT (FIG.2) IPPM (AMPS)	MAXIMUM JUNCTION CAPACITANCE AT 0 VOLTS (DF)	WORKING INVERSE BLOCKING VOLTAGE VWIB VOLTS	MA XIMUM INVERSE BLOCKING LEAKAGE CURRENT AT VWIB In (mA)	PEAK INVERSE BLOCKING VOLTAGE VPIB VOLTS
*LCE6.5	6.5	7.22-8.82	10.0	1000	12.3	100	100	75	1.0	100
+LCE6.5A	6.5	7.22-7.98	10.0	1000	11.2	100	100	75	1.0	100
*LCE7.0	7.0	7.78-9.51	10.0	500	13.3	100	100	75	1.0	100
*LCE7.0A	7.0	7.78-8.60	10.0	500	12.0	100	100	75	1.0	100
*LCE7.5	7.5	8.33-10.2	10.0	250	14.3	100	100	75	1.0	100
*LCE7.5A	7.5	8.33-9.21	10.0	100	12.9	100	100	75	1.0	100
*LCE8.0	8.0	8.89-10.9	1.0	100	15.0	100	100	75	1.0	100
*LCE8.0A	8.0	8.89-9.83	1.0	100	13.6	100	100	75	1.0	100
*LCE8.5	8.5	9.44-11.5	1.0	50.0	15.9	94	100	75	1.0	100
*LCE8.5A	8.5	9.44-10.4	1.0	50.0	14.4	100	100	75	1.0	100
+LCE9.0	9.0	10.0-12.2	1.0	10.0	16.9	89	100	75	1.0	100
*LCE9.0A	9.0	10.0-11.1	1.0	10.0	15.4	97	100	75	1.0	100
*LCE10	10	11.1-13.6	1.0	5.0	18.8	80	100	75	1.0	100
*LCE10A	10	11.1-12.3	1.0	5.0	17.0	88	100	75	1.0	100
*LCE11	11	12.2-14.9	1.0	5.0	20.1	74	100	75	1.0	100
*LCE11A	11	12.2-13.5	1.0	5.0	18.2	82	100	75	1.0	100
*LCE12	12	13.3-16.3	1.0	5.0	22.0	68	100	75	1.0	100
*LCE12A	12	13.3-14.7	1.0	5.0	19.9	75	100	75	1.0	100
*LCE13	13	14.4-17.6	1.0	5.0	23.8	63	100	75	1.0	100
*LCE13A	13	14.4-15.9	1.0	5.0	21.5	70	100	75	1.0	100
*LCE14	14	15.6-19.1	1.0	5.0	25.8	58	100	75	1.0	100
*LCE14A	14	15.6-17.2	1.0	5.0	23.2	65	100	75	1.0	100
*LCE15	15	16.7-20.4	1.0	5.0	26.9	56	100	75	1.0	100
*LCE15A	15	16.7-18.5	1.0	5.0	24.4	61	100	75	1.0	100
*LCE16	16	17.8-21.8	1.0	5.0	28.8	52	100	75	1.0	100
*LCE16A	16	17.8-19.7	1.0	5.0	26.0	57	100	75	1.0	100
*LCE17	17	18.9-23.1	1.0	5.0	30.5	49	100	75	1.0	100
*LCE17A	17	18.9-20.9	1.0	5.0	27.6	54	100	75	1.0	100

ELECTRICAL CHARACTERISTICS at TA=25°C UNLESS OTHERWISE NOTED


PART NUMBER	REVERSE STAND-OFF VOLAGE Vmv (VOLTS)	BREAKDOWN VOLTAGE V(BR) (VOLTS) MN.MAX	at i _T mA	MAXIMUM REVERSE LEAKAGE AT VMW ID (μΑ)	MAXIMUM CLAMPING VOLTAGE AT IPP VC (VOLTS)	MAXIMUM PEAK PULSE CURRENT (FIG.2) IPPN (AMPS)	MAXIMUM JUNCTION CAPACITANCE AT 0 VOLTS (pF)	WORKING INVERSE BLOCKING VOLTAGE VWIB (VOLTS)	MAXIMUM INVERSE BLOCKING LEAKAGE CURRENT AT VWIB In (mA)	PEAK INVERSE BLOCKING VOLTAGE VPIB (VOLTS)
*LCE18	18	20.0-24.4	l 1.0	5.0	32.2	46.0	1 100	75	1.0	100
⁺LCE18A	18	20.0-22.1	1.0	5.0	29.2	51.0	100	75	1.0	100
+LCE20	20	22.2-27.1	1.0	5.0	35.8	42.0	100	75	1.0	100
+LCE20A	20	22.2-24.5	1.0	5.0	32.4	46.0	100	75	1.0	100
+LCE22	22	24.4-29.8	1.0	5.0	39.4	38.0	100	75	1.0	100
*LCE22A	22	24.4-26.9	1.0	5.0	35.5	42.0	100	75	1.0	100
*LCE24	24	26.7-32.6	1.0	5.0	43.0	35.0	100	75	1.0	100
*LCE24A	24	26.7-29.5	1.0	5.0	38.9	39.0	100	75	1.0	100
+LCE26	26	28.9-35.3	1.0	5.0	46.6	32.0	100	75	1.0	100
*LCE26A	26	28.9-31.9	1.0	5.0	42.1	36.0	100	75	1.0	100
LCE28	28	31.1-38.0	1.0	5.0	50.1	30.0	100	75	1.0	100
LCE28A	28	31.1-34.4	1.0	5.0	45.5	33.0	100	75	1.0	100
*LCE30	30	33.3-40.7	1.0	5.0	53.5	28.0	100	75	1.0	100
*LCE30A	30	33.3-36.8	1.0	5.0	48.4	31.0	100	75	1.0	100
*LCE33	33	36.7-44.9	1.0	5.0	59.0	25.4	100	75	1.0	100
*LCE33A	33	36.7-40.6	1.0	5.0	53.3	28.1	100	75	1.0	100
*LCE36	36	40.0-48.9	1.0	5.0	64.3	23.3	100	75	1.0	100
*LCE36A	36	40.0-44.2	1.0	5.0	58.1	25.8	100	75 75	1.0	100
LCE40	40	44.4-54.3	1.0	5.0	71.4	21.0	100	75	1.0	100
LCE40A	40	44.4-54.5	1.0	5.0	64.5	23.3	100	75	1.0	100
LCE40A	43	47.8-58.4	1.0							
LCE43	43			5.0	76.7	19.5	100	150	1.0	200
LCE43A	43	47.8-52.8	1.0	5.0	69.4	21.6	100	150	1.0	200
LCE45 LCE45A	45	50.0-61.1	1.0	5.0	80.3	18.7	100	150	1.0	200
LCE45A	45	50.0-55.3	1.0	5.0	72.7	20.6	100	150	1.0	200
		53.3-65.1	1.0	5.0	85.5	17.5	100	150	1.0	200
LCE48A LCE51	48	53.3-58.9	1.0	5.0	77.4	19.4	100	150	1.0	200
	51	56.7-69.3	1.0	5.0	91.1	16.5	100	150	1.0	200
LCE51A	51	56.7-62.7	1.0	5.0	82.4	18.2	100	150	1.0	200
LCE54	54	60.0-73.3	1.0	5.0	96.3	15.6	100	150	1.0	200
LCE54A	54	60.0-66.3	1.0	5.0	87.1	17.2	100	150	1.0	200
LCE58	58	64.4-78.7	1.0	5.0	103.0	14.6	100	150	1.0	200
LCE58A	58	64.4-71.2	1.0	5.0	93.6	16.0	100	150	1.0	200
LCE60	60	66.7-81.5	1.0	5.0	107.0	14.0	90	150	1.0	200
LCE60A	60	66.7-73.7	1.0	5.0	96.8	15.5	90	150	1.0	200
LCE64	64	71.1-86.9	1.0	5.0	114.0	13.2	90	150	1.0	200
LCE64A	64	71.1-78.6	1.0	5.0	103.0	14.6	90	150	1.0	200
LCE70	70	77.8-95.1	1.0	5.0	125	12.0	90	150	1.0	200
LCE70A	70	77.8-86.0	1.0	5.0	113	13.3	90	150	1.0	200
LCE75	75	83.3-102.0	1.0	5.0	134	11.2	90	150	1.0	200
LCE75A	75	83.3-92.1	1.0	5.0	121	12.4	90	150	1.0	200
LCE80	80	88.7-108	1.0	5.0	142	10.6	90	150	1.0	200
LCE80A	80	88.7-98.0	1.0	5.0	129	11.6	90	150	1.0	200
LCE90	90	100-122	1.0	5.0	160	9.4	90	300	1.0	200
LCE90A	90	100-111	1.0	5.0	146	10.3	90	300	1.0	200

*UL listed for Telecom application protection 497B, file number E136766

5KP5.0 THRU 5KP110A

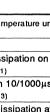
GLASS PASSIVATED JUNCTION TRANSIENT VOLTAGE SUPPRESSOR

VOLTAGE- 5.0 to 110 Volts 5000 Watt Peak Pulse Power

MAXIMUM RATINGS AND CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

RATING	SYMBOL	VALUE	UNITS
Peak Pulse Power Dissipation on 10/1000 µs			
waveform (NOTE 1, FIG. 1)	Рерм	Minimum 5000	Watts
Peak Pulse Current on 10/1000µs			
waveform (NOTE 1, FIG. 3)	IPPM	SEE TABLE 1	Amps
Steady State Power Dissipation at TL=75°C			
Lead Lengths .375", (9.5mm) (NOTE 2)	P _M (AV)	8.0	Watts
Peak Forward Surge Current, 8.3ms Single Half			
Sine-Wave Superimposed on rated load			
(JEDEC Method) (NOTE 3)	IFSM	400	Amps
Instantaneous Forward Voltage at 100A, (NOTE 3)	VF	3.5	Volts
Operating Junction and			
Storage Temperature Range	TJ,TSTG	-55 to +175	o₀ l


NOTES:

1. Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2.

2. Mounted on Copper Leaf area of 0.79 in² (20mm²).

3. Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle= 4 pulses per minutes maximum.

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$ unless otherwise noted

	Breakdow V _(BR) (Volts)	(NOTE 1)	at IT (mA)	Reverse Stand off Voltage	Maximum Reverse Leakage	Maximm Peak Pulse Current IPPM	Maximum Clamping	Maximum Temperatuur Coefficient
Device Type	MIN	МАХ		V _{WM} (Volts)	at Vwм I⊳(µA)	(NOTE 2) (Amps)	Voltage at IPPM Vc (Volts)	of V(BR) (%/°C)
5KP5.0	6.40	7.30	50	5.0	2000	520	9.6	0.057
5KP5.0A	6.40	7.00	50	5.0	2000	543	9.2	0.057
5KP6.0	6.67	8.15	50	6.0	5000	439	11.4	0.061
5KP6.0A	6.67	7.37	50	6.0	5000	485	10.3	0.061
5KP6.5	7.22	8.82	50	6.5	2000	407	12.3	0.065
5KP6.5A	7.22	7.98	50	6.5	2000	447	11.2	0.065
5KP7.0	7.78	9.51	50	7.0	1000	378	13.3	0.068
5KP7.0A	7.78	8.60	50	7.0	1000	417	12.0	0.068
5KP7.5	8.33	10.2	5.0	7.5	250	350	14.3	0.073
5KP7.5A	8.33	9.21	5.0	7.5	250	388	12.9	0.073
5KP8.0	8.89	10.9	5.0	8.0	150	333	15.0	0.075
5KP8.0A	8.89	9.83	5.0	8.0	150	367	13.6	0.075
5KP8.5	9.44	11.5	5.0	8.5	50.0	314	15.9	0.078
5KP8.5A	9.44	10.4	5.0	8.5	50.0	347	14.4	0.078
5KP9.0	10.0	12.2	5.0	9.0	20.0	295	16.9	0.081
5KP9.0A	10.0	11.1	5.0	9.0	20.0	325	15.4	0.081
5KP10	11.1	13.6	5.0	10.0	15.0	266	18.8	0.084
5KP10A	11.1	12.3	5.0	10.0	15.0	294	17.0	0.084
5KP11	12.2	14.9	5.0	11.0	10.0	249	20.1	0.086
5KP11A	12.2	13.5	5.0	11.0	10.0	274	18.2	0.086
5KP12	13.3	16.3	5.0	12.0	10.0	227	22.0	0.088
5KP12A	13.3	14.7	5.0	12.0	10.0	251	19.9	0.088
5KP13	14.4	17.6	5.0	13.0	10.0	210	23.8	0.090
5KP13A	14.4	15.9	5.0	13.0	10.0	232	21.5	0.090
5KP14	15.6	19.1	5.0	14.0	10.0	194	25.8	0.092
5KP14A	15.6	17.2	5.0	14.0	10.0	215	23.2	0.092
5KP15	16.7	20.4	5.0	15.0	10.0	188	26.9	0.094
5KP15A	16.7	18.5	5.0	15.0	10.0	206	24.4	0.094
5KP16	17.8	21.8	5.0	16.0	10.0	176	28.8	0.096
5KP16A	17.8	19.7	5.0	16.0	10.0	176	28.8	0.096
5KP17	18.9	23.1	5.0	17.0	10.0	164	30.5	0.097
5KP17A	18.9	20.9	5.0	17.0	10.0	161	27.6	0.097
5KP18	20.0	24.4	5.0	18.0	10.0	155	32.2	0.098
5KP18A	20.0	22.1	5.0	18.0	10.0	172	29.2	0.098
5KP20	22.2	27.1	5.0	20.0	10.0	139	35.8	0.099
5KP20A	22.2	24.5	5.0	20.0	10.0	154	32.4	0.099
5KP22	24.4	29.8	5.0	22.0	10.0	127	39.4	0.100
5KP22A	24.4	26.9	5.0	22.0	10.0	141	35.5	0.100
5KP24	26.7	32.6	5.0	24.0	10.0	116	43.0	0.100
5KP24A	26.7	29.5	5.0	24.0	10.0	128	38.9	0.101
5KP26	28.9	35.3	5.0	26.0	10.0	107	46.6	0.101
5KP26A	28.9	31.9	5.0	26.0	10.0	119	42.1	0.101
5KP28	31.1	38.0	5.0	28.0	10.0	99	50.1	0.102
5KP28A	31.1	34.4	5.0	28.0	10.0	110	45.4	0.102
5KP30	33.3	40.7	5.0	30.0	10.0	93	53.5	0.102
5KP30A	33.3	36.8	5.0	30.0	10.0	103	48.4	0.103
5KP33	36.7	44.9	5.0	33.0	10.0	85	59.0	0.103
5KP33A	36.7	40.6	5.0	33.0	10.0	94	53.3	0.104
5KP36	40.0	40.8	5.0	36.0	10.0	94 78	64.3	0.104
5KP36A	40.0	46.9	5.0	36.0	10.0			0.104
5KP40	40.0	44.2 54.3	5.0	40.0		85	58.1	
5KP40A	44.4 44.4	49.1			10.0	70	71.4	0.105
5KP40A	44.4 47.8		5.0	40.0	10.0	78	64.5	0.105
JNF43	47.0	58.4	5.0	43.0	10.0	65	76.7	0.105

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

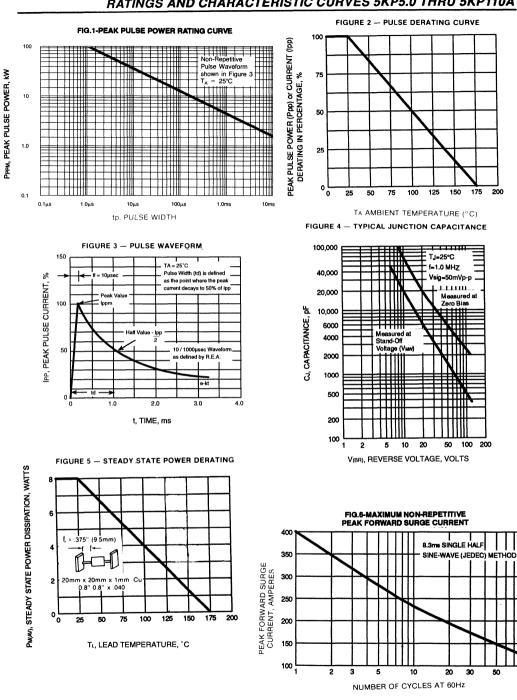
	V(BR)	wn Voltage	at IT (mA)	Reverse Stand off Voltage	Maximum Reverse Leakage	Maximum Peak Pulse Current IPPM	e Maximum Clamping Voltage at Ippm	Maximum Temperature Coefficient of V(BR)
Device Type	MIN	MAX		V _{WM} (Volts)	at Vwm Iρ (μΑ)	(NOTE 2) (Amps)	Vortage at IppM V _C (Volts)	of V(BR) (%/°C)
5KP43A	47.8	52.8	5.0	43.0	10.0	72	69.4	0.105
5KP45	50.0	61.1	5.0	45.0	10.0	62	80.3	0.106
5KP45A 5KP48	50.0 53.3	55.3 65.2	5.0 5.0	45.0	10.0	69 58	72.7 85.5	0.106
5KP48A	53.3	58.9	5.0	48.0	10.0	65	77.4	0.106
5KP51	56.1	69.3	5.0	51.0	10.0	55	91.1	0.107
5KP51A	56.7	62.7	5.0	51.0	10.0	61	82.4	0.107
5KP54	60.0	73.3	5.0	54.0	10.0	52	96.3	0.107
5KP54A	60.0	66.3	5.0	54.0	10.0	57	87.1	
5KP58	64.4	78.7	5.0	58.0	10.0	49	103	0.107
5KP58A	64.4	71.2	5.0	58.0		53	94	0.107
5KP60 5KP60A	66.7 66.7	81.5 73.7	5.0 5.0	60.0 60.0	10.0	47	107 97	0.108
5KP64	71.1	96.9	5.0	64.0	10.0 10.0	44	114	0.108
5KP64A	71.1	78.6	5.0	64.0	10.0	49	103	0.108
5KP70	77.6	95.1	5.0	70.0	10.0	40	125	
5KP70A	77.8	86.0	5.0	70.0	10.0	44	113	0.108
5KP75	83.3	102	5.0	75.0	10.0	37	134	
5KP75A 5KP78	83.3 86.7	92.1 106.0	5.0 5.0	75.0 78.0	10.0 10.0	41	121 126	0.108
5KP78A	86.7	95.8	5.0	78.0	10.0	40	126	0.108
5KP85	94.9	115	5.0	85.0	10.0	33	151	0.108
5KP85A	94.4	104	5.0	85.0	10.0	36	137	0.110
5KP90	100	122	5.0	90.0	10.0	31	160.	0.110
5KP90A	100	111	5.0	90.0	10.0	34	146	
5KP100	111	136	5.0	100	10.0	28	179	0.110
5KP100A	111	123	5.0	100	10.0	31	162	
5KP110	122	149	5.0	110	10.0	26	196	0.112
5KP110A	122	135	5.0	110	10.0	28	177	0.112

NOTES:

1. VBR measured after IT applied for 300 ms. IT = Square Wave Pulse or equivalent.

2. Surge Current waveform per Figure 3 and Derate per Figure 2.

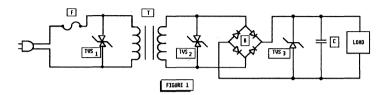
3. All items and symbols are consistant with ANSI / IEEE C62.35


APPLICATION

The 5KP series of high power transient voltage suppressors were designed to be used on the output of switching power supplies. These devices may be used to replace crowbar circuits. Both the 5 and 10 percent voltage tolerances are referenced to the power supply output voltage level.

They are able to withstand high levels of peak current while allowing a circuit breaker to trip or a fuse blow before shorting. This will enable the user to reset the breaker or replace the fuse and continue operation. For this type operation, it is recommended that a sufficient mounting surface be used for dissipating the heat generated by the TransZorb during the transient or over-voltage condition.

TransZorbs are Silicon PN Junction devices designed for absorbtion of high voltage transients associated with power disturbances, switching and induced lighting effects. This series is available from 5.0 volts thru 110 volts.

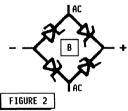

RATINGS AND CHARACTERISTIC CURVES 5KP5.0 THRU 5KP110A

(f) General Instrument

100

Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load.

Transient Voltage Suppressor 1 provides maximum protection. However, the system will probably require replacement of the line fuse (F) since it provides a dominant portion of the series impedance when a surge is encountered.


Transient Voltage Suppressor 2 provides excellent protection of circuitry excluding the transformer (T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced.

Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier (B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients.

Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance (time changing the fuse).

An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier.

The wattage ratings are available in 400 watts (P4KE, BZW04) 500 watts (SA series), 600 watts (P6KE), 1500 watts (1.5KE Series) and 5000 watts (5KP Series).

For voltage ranges not seen on specification sheet, please consult factory or the nearest sales office.

TRANSIENT VOLTAGE SUPPRESSOR ARRAYS

300 WATTS TO 500 WATTS 5.0 VOLTS TO 24.0 VOLTS

SMDA05 THRU SMDA24 SERIES

SURFACE MOUNT DIODE ARRAY TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 5.0 to 24.0 Volts 300 Watt Peak Pulse Power

INCHES

MIN MAX

0.050 BSC

0.007 0.009

0.004 0.008

0.189 0.206

6.20 0.228 0.244

MILLIMETERS

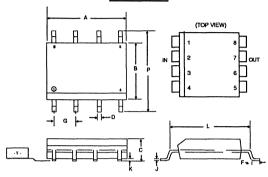
MIN MAX

1.27 BSC

DIM

G

J 0.19 0.22


κ 0.10 0.20

Т 4.82 5.21

Р 5.79

FEATURES

MS-012AA

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- · Glass passivated junctions in a surface mount array package

- Repetition Rate (duty cycle): .01%
- 300W Peak Pulse Power surge capability on 8.0/20µs waveform
- Excellent clamping capability
- Low incremental surge resistance
- Ideal for Data and Bus Line Applications
- Fast response time: typically less than 1.0ps from 0 volts to BV for unidirectional and 5.0ns for bidirectional
- High temperature soldering guaranteed: 265°C for 5 seconds

MECHANICAL DATA

Case: JEDEC MS-012AA molded plastic surface mount Terminal: Solderable per MIL-STD-750, Method 2026 Polarity: Beveled side denotes cathode side for unidirectional only, Pin number 1 marked with a colored dot on top of case Mounting Position: Any Weight: .04 ounces, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

Rating	Symbol	Value	Units
Peak Power Dissipation at TA=25°C on 8.0/20µs			
waveform (NOTE 1, FIG. 1)	Рррм	Minimum 300	Watts
Peak Power Pulse Current at TA=25°C, on			
8.0/20µs waveform (NOTE 1, FIG. 3)	Іррм	See Table 1	Amps
Operating Junction and Storage Temperature Range	TJ, TSTG	-50 to +150	°C

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. Mounted on Copper Leaf areas of .045"x.030" (1.14x.076mm) per leg.

3. 8.3ms single half sine-wave, duty cycle = 4 pulses per minute maximum.

NOTES:

DIM

A

в 3.81 4.01 0.150 0.158

С 1.35 1.75 0.053 0.069

D

F 0.67 0.77 0.026 0.030

1. -T- is seating plane. 2. Dimension "A" is datum.

MILLIMETERS

MIN MAX MIN мах

4.78

0.35 0.46 0.014 0.018

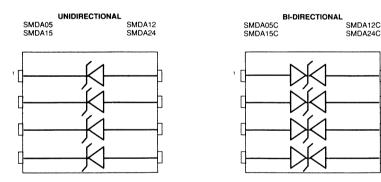
0.25 (0.010) A G 3. Positional tolerance for leads

INCHES

0.197

5.00 0.188

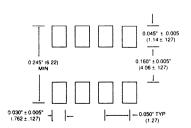
4. Controlling dimensions is in inches but shown in millimeters.


For Bi-directional application use devices with suffix C. All electrical characteristics apply in both directions.

ELECTRICAL CHARACTERISTICS AT TA=25°C

PART NUMBER	DEVICE MARKING CODE	WORKING PEAK REVERSE STAND-OFF VOLTAGE	MINIMUM BREAKDOWN VOLTAGE AT IT = 1mA (NOTE 1)	MAXIMUM CLAMPING VOLTAGE AT Ipp=1A	MAXIMUM CLAMPING VOLTAGE AT Ipp=5A	MAXIMUM REVERSE LEAKAGE CURRENT AT V RWE	MAXIMUM JUNCTION CAPACITANCE (NOTE 3)
UNIDIREC BI-DIREC		V _{RWM} Voits	B _{VR} Volts	V _C (NOTE 2) Volts	V _{C (NOTE 2)} Volts	ID μA	CJ pF
SMDA05	SDA	5.0	6.0	9.8	11.0	100	550
SMD05C	SDB	5.0	6.0	9.8	11.0	100	400
SMDA12	SDC	12.0	13.3	19.0	24.0	1.0	185
SMDA12C	SDD	12.0	13.3	19.0	24.0	1.0	150
SMDA15	SDE	15.0	16.7	24.0	30.0	1.0	140
SMDA15C	SDF	15.0	16.7	24.0	30.0	1.0	100
SMDA24	SDG	24.0	26.7	43.0	55.0	1.0	88
SMDA242C	SDH	24.0	26.7	43.0	55.0	1.0	63

NOTES: 1. V_{BR} measured at pulse width of 300μ s. sq. wave or equivalent. 2. Surge current waveform per Figure 3 and derate per Figure 2. 3. Junction capacitance measured at 1.0 MHz and applied V_R=0 volts.


CIRCUIT DIAGRAM

SOLDER PAD GEOMETRY

1. Controlling dimension is in inches, but shown in (millimeters).

RATING AND CHARACTERISTIC CURVES SMDA05 THRU SMDA24 SERIES

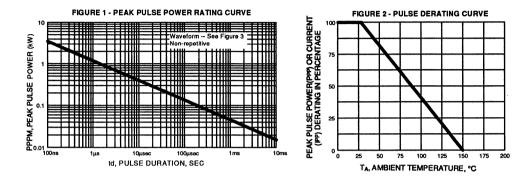


FIGURE 3 - PULSE WAVEFORM

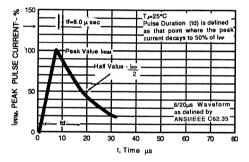
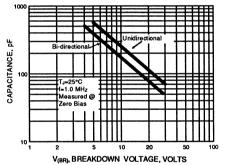



FIGURE 4 - MAXIMUM JUNCTION CAPACITANCE

G General Instrument

APPLICATION NOTES (CONT.)

Typical applications for SMDA series include protecting signal lines from electrostatic discharge and similar transient voltage threats. The SMDA suppressor can be used for both common mode and differential mode protection as illustrated below. Its compact size makes it ideal for high density circuits, such as laptop computers and hand held terminals.

Fig. 1 - Common Mode Protection - Protects Line to Ground

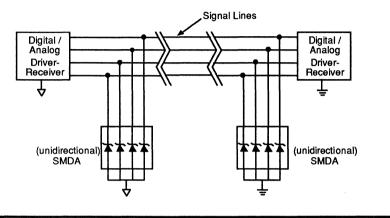
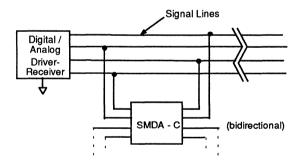
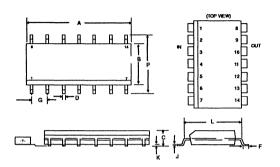



Fig. 2 - Differential Mode Protection - Protects Line-to-Line



SMDA05C-8 THRU SMDA24C-8

SURFACE MOUNT DIODE ARRAY TRANSIENT VOLTAGE SUPPRESSOR VOLTAGE - 5.0 - 24 Volts 300 Watt Peak Power

FEATURES

MS-012BA

	MILLIN	IETERS	INC	HES		MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
Α	8.56	8.74	0.337	0.344	G	1.27	BSC	0.050	BSC
В	3.81	4.01	0.150	0.158	J	0.19	0.22	0.007	0.009
С	1.35	1.75	0.053	0.069	к	0.10	0.20	0.004	0.008
D	0.35	0.46	0.014	0.018	L	4.82	5.21	0.189	0.206
F	0.67	0.77	0.026	0.030	Р	5.79	6.20	0.228	0.244

NOTES:

1. -T- is seating plane.

2. Dimension "A" is datum.

3. Positional tolerance for leads:

4. Controlling dimensions are in inches but shown in millimeters.

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Monolithic TVS junctions in a SO-14 package (JEDEC MS-012-AB)
- Repetition Rate (duty cycle): .01%
- 300W Peak Power reverse surge capability
- Excellent clamping capability
- Protection for eight data lines

- Fast response time: typically less than 5.0ns from 0 volts to BV.
- High temperature soldering guaranteed: 265°C for 5 seconds

Case: JEDEC MS-012-AB molded plastic surface mount array Terminal: Solderable per MIL-STD-750, Method 2026 Polarity: Bidirectional Mounting Position: Any Weight: .07 ounces, 1.75 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOL	VALUE	UNITS	
Peak Power Dissipation at TA=25°C 8.0/20µs wave form			Watts	
SMDA05C - 8		20.0		
SMDA12C - 8	Іррм	15.0	Amps	
SMDA15C - 8		12.0	-	
SMDA24C - 8		7.5		
Operating Junction and Storage Temperature Range		-50 to +125	°C	
	SMDA05C - 8 SMDA12C - 8 SMDA15C - 8 SMDA15C - 8 SMDA24C - 8	Оµs wave form Рррм SMDA05C - 8 SMDA12C - 8 Iррм SMDA15C - 8 SMDA12C - 8 Iррм	Dµs wave form PPPM Minimum 300 SMDA05C - 8 20.0 SMDA12C - 8 IPPM SMDA15C - 8 12.0 SMDA24C - 8 7.5	

NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

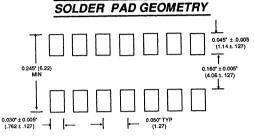
2. Mounted on Copper Leaf areas of .045"x.030" (1.14x.076mm) per leg.

BIPOLAR APPLICATIONS

All electrical characteristics apply in both directions.

616

TABLE 1


ELECTRICAL CHARACTERISTICS @ 25°C

PART NUMBER BI-DIRE	DEVICE MARKING CODE	REVERSE STAND-OFF VOLTAGE *Vwa Volts	MINIMUM BREAKDOWN VOLTAGE @ 1.0mA (NOTE 1) *V(BR) Volts	MAXIMUM CLAMPING VOLTAGE at Ipp=1A Vc (NOTE 2) Volts	MAXIMUM CLAMPING VOLTAGE at (pp=5A Vc (NOTE 2) Volta	MAXIMUM REVERSE LEAKAGE CURRENT at Vww ID µA	MAXIMUM JUNCTION CAPACITANCE (NOTE 3) CJ pF
SMDA05C - 8	SEB	5.0	6.0	9.8	11.0	100.0	350
SMDA12C - 8	SED	12.0	13.4	19.0	24.0	1.0	150
SMDA15C - 8	SEF	15.0	16.7	24.0	30.0	1.0	120
SMDA24C - 8	SEH	24.0	26.7	43.0	55.0	1.0	100

NOTES: 1.V(BR) measured at pulse width of 300µs. sq. wave or equivalent. 2. Surge current waveform per Figure 3 and derate per Figure 2.

3. Junction capacitance measured at 1.0 MHZ and applied VR=0 volts.

*Application note: Due to the topology of the SMDA array the Vrwm and V(br) specifications also apply to the differential voltage between any two data line plans. Hence, the SMDA 12C-8 is designed to "see" a maximum voltage excursion of +/- 6 volts between any two data lines.

NOTES: 1. Controlling dimension are in inches, but shown in (millimeters).

RATING AND CHARACTERISTIC CURVES FOR SMDA05C-8 THRU SMDA24C-8

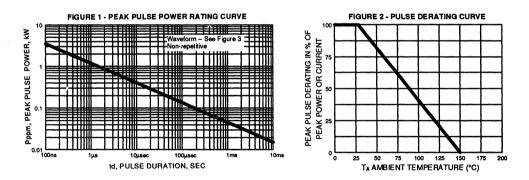
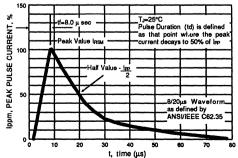
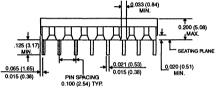
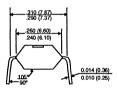



FIGURE 3 - PULSE WAVEFORM


DA05P THRU DA24P


UNIDIRECTIONAL 16-PIN DIP TRANSIENT VOLTAGE SUPPRESSOR ARRAY VOLTAGE - 5.0 - 24.0 Volts 500 Watt Peak Pulse Power

FEATURES

MS-001BB

Dimensions in inches and (millimeters)

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- Glass passivated junctions in 16-pin DIP
- ◆ Repetition Rate (duty cycle): 0.01%
- ♦ 500W Peak Pulse Power capability on 8/20µs waveform
- Excellent clamping capability
- Common ground configuration
- Ideal for Data and Bus Line Applications
- Fast response time: typically less than 1.0ps from 0 volts to BV min.
- High temperature soldering guaranteed; 250°Cfor 5 seconds

Case: JEDEC MS-001-BB Molded plastic 16-pin DIP

Terminals: Solder plated solderable per MIL-STD-750 Method 2026

Polarity: Unidirectional only. Pin number 1 marked with a colored dot on top of case. Pins #'s 1,8,9, and 16 are common ground.

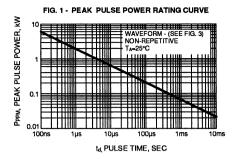
Mounting Position: Any

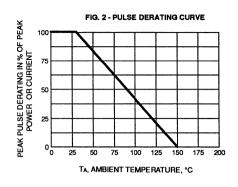
Weight: 0.04 ounces, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

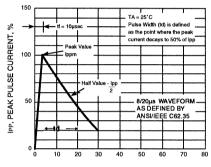
Ratings at 25°C ambient temperature unless otherwise specified.

	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation at T _A =25°C, 8.0/20μs waveform, (NOTE 1, FIG. 1)	Рррм	Minimum 500	Watts
Peak Power Pulse Current at T _A =25°C, on 8.0/20µs waveform (FIGURE 3, NOTE 1)	Іррм	See Table	Amps
Peak Forward Surge Current , 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) (NOTE 2)	IFSM	10.0	Amps
Operating Junction and Storage Temperature Range	TJ,TSTG	-50 to +150	°C

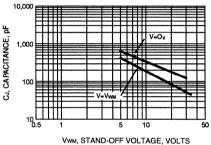

NOTES:


1. Non-repetitive current pulse, per Fig.3 and derated above TA=25°C per Fig. 2.

2. 8.3ms single half sine-wave, duty cycle = 4 pulses per minute maximum.



MAXIMUM RATINGS AND CHARACTERISTIC CURVES DA05 THRU DA24P

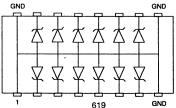


t, TIME, ms

FIG. 4 - TYPICAL JUNCTION CAPACITANCE

ELECTRICAL CHARACTERISTICS AT TA=25°C

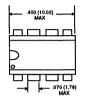
PART NUMBER	STAND-OFF VOLTAGE	MINIMUM BREAKDOWN VOLTAGE .AT 1mA	MAXIMUM REVERSE LEAKAGE CURRENT AT Vmw	MAXIMUM CLAMPING VOLTAGE AT Ipp=10A NOTE 2	MAXIMUM JUNCTION CAPACITANCE NOTE 3
	VMW VOLTS	V _(BR) VOLTS	. <i>Іо</i> μ А	Vc VOLTS	C pF
DA05P	5.0	6.0	200	12.5	880
DA12P	12.0	13.3	2	25.0	440
DA15P	15.0	16.7	2	33.0	400
DA24	24.0	26.7	2	52.1	275

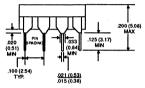

NOTES

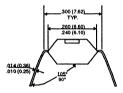
1. V(BR) measured at pulse width of 300µs. sq. wave or equivalent

3. Surge current waveform per Figure 3 and derate per Figure 2. 3. Junction capacitance measured at 1.0 MHz and applied $V_R=0$ volts.

Unidirectional 12 Line Array GND




DA05CM THRU DA24CM


BIDIRECTIONAL 8-PIN DIP TRANSIENT VOLTAGE SUPPRESSOR ARRAY VOLTAGE - 5.0 - 24.0 Volts 500 Watt Peak Pulse Power

FEATURES

<u>MS-001BA</u>

Dimensions in inches and (millimeters) Plastic package has Underwriters Laboratory Flammability Classification 94V-O

- Glass passivated junctions in 8-pin DIP
- Repetition Rate (duty cycle): 0.01%
- 500W Peak Pulse Power capability on 8/20µs waveform
- Excellent clamping capability
- Common ground configuration
- Ideal for Data and Bus Line Applications
- Fast response time: typically less than 5.0ns from 0 volts to BV min. for unidirectional
- High temperature soldering guaranteed; 250°C for 5 seconds

MECHANICAL DATA

Case: JEDEC MS-001AB molded plastic 8-pin DIP

Terminals: Solder plated solderable per MIL-STD-750 Method 2026

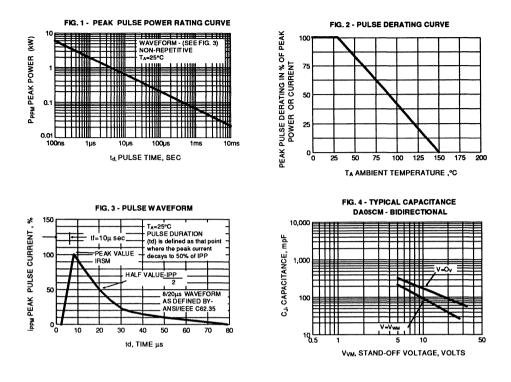
Polarity: Bidirectional only. Pin number 1 marked with a colored dot on top of case. Pins 1 and 8 are common ground (Notched end)

Mounting Position: Any

Weight: 0.04 ounces, 1.0 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


	SYMBOLS	VALUE	UNITS
Peak Pulse Power Dissipation on 8.0/20µs waveform, (FIGURE 1, NOTE 1)	Рррм	Minimum 500	Watts
Peak Power Pulse Current on 8.0/20µs waveform (FIGURE 3, NOTE 1)	Іррм	See Table	Amps
Operating Junction and Storage Temperature Range	Tj,Tstg	-50 to +150	°C

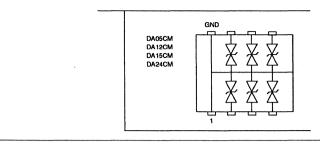
NOTES:

1. Non-repetitive current pulse, per Fig.3 and derated above $T_A=25$ °C per Fig. 2.

MAXIMUM RATINGS AND CHARACTERISTIC CURVES DA05CM THRU DA24CM

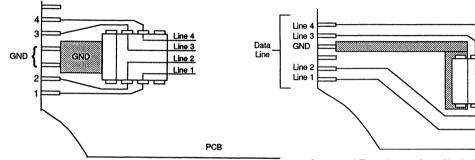
ELECTRICAL CHARACTERISTICS @ 25°C

PART NUMBER	REVERSE STAND-OFF VOLTAGE	MINIMUM BREAKDOWN VOLTAGE AT 1.0MA NOTE 1	MAXIMUM REVERSE LEAKAGE CURRENT AT VMW	MAXIMUM CLAMPING VOLTAGE AT Ipp=10A NOTE 2	MAXIMUM JUNCTION CAPACITANCE NOTE 3
	V _{MW} VOLTS	V _(BR) VOLTS	<i>ћ</i> о µ <i>А</i>	Vc VOLTS	Сј pF
DA05CM	5.0	6.0	400.0	12.5	500
DA12CM	12.0	13.3	4.0	25.0	385
DA15CM	15.0	16.7	4.0	33.0	300
DA24CM	24.0	26.7	4.0	52.1	200


NOTES

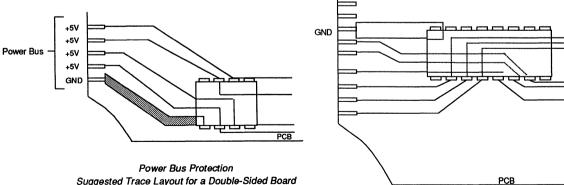
1. V(BR) measured at pulse width of 300µs. sq. wave or equivalent.

2. Surge current waveform per Figure 3 and derate per Figure 2.


3. Junction capacitance measured at 1.0 MHZ and applied VR=0 volts.

Bidirectional 6 Line Array

APPLICATION NOTES


Figure 1 - Data Line - Bidirectional Protection/Unidirectional Line Protection

Data Line Protection Suggested Trace Layout for a Single-Layer Board

Suggested Trace Layout for a Single-Layer Board

Figure 2 - Power Bus - Bidirectional Protection/Unidirectional Line Protection

Suggested Trace Layout for a Double-Sided Board

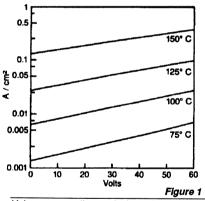
Suggested Trace Layout for a Single-Layer Board

APPLICATION NOTES

DESIGN GUIDELINES FOR SCHOTTKY RECTIFIERS

Known limitations of Schottky rectifiers -- including limited high temperature operation, high leakage and limited voltage range -- can be measured and controlled, allowing wide application on switch mode power supplies.

Jon R. Schleisner Senior Marketing Engineer


Schottky rectifiers have been used in the power supply industry for approximately 15 years. During this time, significant fiction as well as fact has been associated with this type of rectifier. The primary assets of Schottky devices are switching speeds approaching zero-time and very low forward voltage drop (Vf). This combination makes Schottky barrier rectifiers ideal for the output stages of switching power supplies. On the negative side, Schottky devices are also known for limited high-temperature operation, high leakage and limited voltage range (BVR). Though these limitations exist, they are quantifiable and controllable, allowing wide application of these devices in switch mode power supplies.

High leakage, when associated with standard P-N junction rectifiers, usually indicates "badness," implying poor reliability. In a Schottky device, leakage at high temperature (75 °C and greater) is often on the order to several milliamps, depending on chip size. In the case of Schottky barrier rectifiers, high-temperature leakage and forward voltage drop are controlled by two primary factors: the size of the chip's active area and the barrier height (ϕ B).

Design of a Schottky rectifier can be viewed as a tradeoff. A high barrier height device exhibits low leakage at high temperature, however, the forward voltage drop increases. These parameters are also controlled by the die size and resistivity of the starting material. A larger die will lower the Vf but raise the leakage if all other parameters are held constant. The resistivity of the starting material must be chosen in a range where the breakdown voltage (BVR) is not degraded at the low end and the forward end of the resistivity range. Since a larger chip size is obviously more expensive, this is not the primary method for controlling these parameters. Chip size is usually set to a dimension where the current density through the die is kept at a safe level.

Barrier Height (\(B), A Factor

General Instrument produces two product lines of Schottky barrier rectifiers. One line is referred to as the "MBR" series, a high-temperature, low-leakage, relatively high V_f type of Schottky device with a high barrier height (ϕ B). The second line is the "SBL" series, designed to operate at lower temperature (125°C or less); however, while leakage current is higher, forward voltage drop (V_f) is significantly lower and they are designed with

Voltage versus die area leakage barrier height = 0.71 volts

a low- ϕB barrier height.The low- ϕB - line SBL series uses a nichrome battier metal with a barrier height of $\phi B = 0.64 \text{ eV}$. The high- ϕB MBR series uses a nichrome-platinum barrier metal to achieve barrier height ($\phi B = 0.71 \text{ eV}$). Both series are guard-ring protected against excessive transient voltages.

Both the low- and high-barrier-height Schottky devices are valuable in a variety of applications. When the true operating temperature of the Schottky rectifier exceeds 125°C, the high-barrier-height series must be used to avoid thermal runaway. This occurs when excessive self-heating of the rectifier causes large leakage currents, resulting in additional self-heating. The process becomes a form of positive thermal feedback and may lead to damage in the rectifier or inappropriate functioning of the circuit utilizing the device.

Using a high-barrier-height (MBR) component prevents this anomaly, but sacrifices higher forward voltage. Operating the low barrier height (SBL) series at a junction temperature of 125° C or less prevents thermal runaway from occurring. If the junction temperature (Tj) in the application can be kept below 125° C, a decision on the use of a low- or high-barrier-height Schottky device must be made.

The following procedure has been developed to provide an analytical method of selecting the most efficient Schottky barrier device for a given application.

Calculating The Barrier Height (\oplus B) of Schottky Rectifiers

Calculating the barrier height of a Schottky rectifier where ϕ B is not given is a straightforward process. The following two equations will yield an excellent engineering approximation of the barrier height, ϕ B:

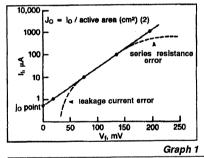
$$\phi B = (-KT/q) LN \left(J / R^*T \right) \qquad (1)$$

$$J_{o} = I_{o} / ACTIVE AREA (cm2)$$

$$\phi B = barrier height (eV) \qquad (2)$$

$$K = Boltsman's constant = 8.62 x 105 eV/^{o} K$$

 $T = ambient \ temperature \ in \ degrees \ Kelvin$ $J_o = current \ density \ at \ zero \ volts$ $R^* = Richardon's \ constant = 112 \ /cm^2 k^2$ $I_o = forward \ current \ at \ zero \ volts$


To solve Equation One, the current density J_0 (Equation Two) must be found first:

$$J_{o} = I_{o} / ACTIVE AREA \ (cm^{2}) \tag{2}$$

General Instrument provides the active area of its Schottky die in its product literature. If a manufacturer does not supply this information, decapsulating the device under question and measuring it with a precision caliper can provide an approximation of the active Schottky area, assuming 90% of the total chip area is active.

Total die area $x 0.9 = active area (3_)$

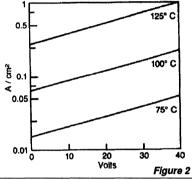
The calculation of lo is done graphically (Graph 1). A minimum of three low-current room-temperature forward voltage drop Vf measurements are needed. This data is graphed on semi-log paper (Graph 1) where the vertical axis (log scales) is the current and the horizontal axis (linear scale) is the measured Vf. When these points are graphed, the result should be a true straight line. If the graph curves downward (see the dotted line on the left side of Graph 1), it indicates that the lowest measurement current is being affected by the rectifier's room temperature leakage. In this case, the current level at which the Vf measurements are taken should be increased to "swamp" out the contribution of low level leakage on the measurement. If the current levels are raised excessively, the series resistance of the device in question will influence the measurements. This causes a downward curve as represented by the dotted line on the right side of Graph 1. Again, the results should yield a true straight line.

Calculation of Jo (current density at zero volts)

The point where the line intercepts the vertical axis is the current at zero volts (I_0) . J₀ is then calculated:

$$J_{o} = I_{o} / ACTIVE AREA (cm^{2})$$
 (2)

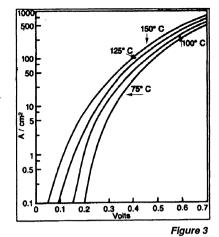
This result is then placed into the first equation:


$$\phi B = (-KT/q) LN (J_{o}/R^{*}T^{2})$$
(1)

The results of the calculation are usually in the range of 0.6 eV to 0.8 eV. Results

well outside this range indicate either a defective rectifier, measurement, or calculation error.

Selecting Efficient Schottky Devices


Normalized graphs of the low (SBL) and high (MBR) barrier height processes are provided. The vertical axis on all graphs is in amperes per square centimeter (A/ cm²). The horizontal axis provides forward voltage drop for the low and high barrier parts. Two additional graphs have the horizontal axis labeled for reverse voltage (Vr) for both the low and high barrier series. The graphs for the low barrier (SBL) series parts have curves for operation at 75 °C, 100 °C and 125 °C.

Voltage versus die area leakage barrier height = 0.64 volts

These curves may be used in two ways. If the die size, barrier height, temperature and forward current (If) are known, Vf can be graphically calculated. Using the leakage curves, and knowing the reverse voltage (V_T) to which the device will be subjected, it is possible to find the leakage current. Conversely, if the circuit parameters are set, the curves will provide the die size in A/cm² equations, making it possible to analytically select either a low- or high-barrier-height rectifier for maximum circuit efficiency. Most Schottky rectifiers are used in switch mode power supplies.

To select a Schottky rectifier that yields maximum efficiency, it is necessary to determine the "duty cycle equilibrium point," or the duty cycle point at which both a low- and high-barrier-height part will dissipate precisely the same amount of power:

Die area current versus forward voltage drop barrier height = 0.71

$D (P_{\rm df \phi BL}) + (1-D)(P_{\rm dr \phi BL}) + =$	
$D (P_{dr\phi BH} + (1-D) (D_{dr\phi BH}))$	(1)
$P_{\rm dt} = P_{\rm df} + P_{\rm dr}$	(2)
$P_{\rm df} = I_{\rm f} x V_{\rm f}$	(3)

$$P_{\rm dr} = I_{\rm r} \, x \, V_{\rm r} \tag{4}$$

D = duty cycle forward conduction l-D = duty cycle reverse blocking $I_{f} = forward current$ $I_{r} = reverse current$ $P_{df} = power dissipation in forward$ $P_{dr} = power dissipation in reverse$ $P_{dt} = total power dissipation$ $V_{f} = forward voltage drop$ $V_{r} = reverse voltage$ $\phi BL = low barrier height$ $\phi BH = high barrier height$

The following is an example of the use of this equation :

Given the need for a 30-volt Schottky capable of operating at 10 amperes, the choice is between a SBL1040 (ϕ BL = 0.64) or a MBR1045 (ϕ BH = 0.71). These two devices were chosen for convenience in this example because of their equal die size (0.0477cm² active area).

The equilibrium point must be calculated for 75°C, 100°C and 125°C. For demonstration purposes, only the 75°C equilibrium point will be calculated in detail; the other two points are calculated in the same manner. The reverse leakage (I_r) and forward voltage drop (V_f) are derived from **Graphs 1** through **4** using the temperature, die size and ϕ B given above.

For the low-barrier-height SBL1040:

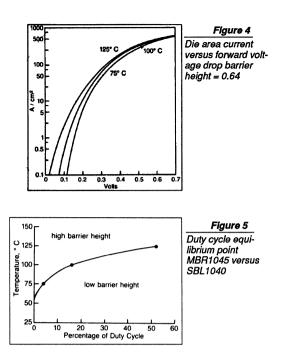
$P_{\rm dr} = V_{\rm r} x I_{\rm r} = watts$		(4)
$30 V x (1.9 x 10^{-3} A) = 0.057$	W	
$P_{dr} = If \times Vf = watts$	(3)	(3)
$10 A \times 0.46 V = 4.6 W$		

For the high-barrier-height MBR1045:

Solving for the equilibrium point at 75° C:

LOW BARRIER $(D \ x \ P_{df\phi BL}) + [(1-D) \ x \ P_{dr\phi BL}] =$ $(D \ x \ P_{df\phi BH}) + [(1-D)x_{dr\phi BH}]$

 $\begin{array}{l} (D \ x \ 4.6 \ W) + [(1-D) \ 0.057 \ W] = \\ (D \ x \ 5.65 \ W) + [(1-D) \ 0.057 \ W] = \\ (D \ x \ 5.65 \ W) + [(1-D) \ 0.00429 \ W] \\ 0.05271 = 1.1027 \ D \\ D = 0.0478 \\ D\% = 0.0478 \ x \ 100 \\ duty \ cycle \ equilibrium \ point, D = 4.78\% \end{array}$


Switching loss is assumed to be equal on both sides of the equation and thus is ignored. This procedure is then repeated for 100°C and 125 °C. After calculating the equilibrium point for 100 °C and 125°

C, the results are:

	DUTY CYCLE EQUIBRIUM
TEMP	POINT %
75°C	4.78%
100°C	15.93%
125°C	52.42%

The results of these calculations are graphed in Figure 5. To the left of the equilibrium curve, the high-barrier-height

MBR1045 is most efficient; to the right of the equilibrium curve, the low-barrierheight SBL1040 is more efficient. This is easy to understand because the high-bar

rier-height part exhibits lower reverse power loss and at a low duty cycle more time is spent in the reverse mode.

With the duty cycle higher than the equilibrium point, the part spends a larger percentage of time in the forward mode, and the low-barrier-height type part has a lower Vf and the forward power losses are reduced.

With knowledge of the application, including expected duty cycle and temperature, it is possible to choose the most efficient Schottky barrier rectifier, constructing a graph similar to Figure 1.

It is thus easy to graph the duty cycle versus temperature, as in Figure 5, and by knowing the application (expected duty cycle and temperature), make the intelligent choice of the most efficient Schottky rectifier for the application in question.

This analysis technique enables the design engineer to make an efficient and cost-effective choice of Schottky rectifier in duty-cycle-based systems. In addition, light has hopefully been shed on the difference in design philosophies between the low- and high- ϕB style of Schottky rectifiers.

SELECTING THE OPTIMUM VOLTAGE TRANSIENT SUPPRESSOR

Although the published data for several transient suppressors may appear similar enough to make the devices seem interchangeable, careful analysis can rule out nearly identical parts whose use could prove disastrous.

Jon R. Schleisner, Senior Marketing Engineer

Transient voltage suppressors (TVS) are specialized zener diodes intended to clamp the voltage appearing across a line, thereby preventing transient spikes from damaging sensitive components. They accomplish this conducting when the voltage across the line exceeds the zeneravalanche rating. Because transient voltages can be quite high, suppressors must be able to handle large avalanche currents. This means that care must be taken in the construction of the package and assembly process to ensure that the suppressor can tolerate high energy levels for short periods.

Typical transient voltage suppressors carry peak ratings of 400, 600, 1500 or 5000 watts. These wattages translate to 0.55, 0.80, 2.10 or 7.00 joules of energy during a 1-millisecond period. Avalanche ratings generally range from a few volts to several hundred volts. Key operating parameters include:

◆ Breakdown voltage (V(BR)) the voltage at which a given device breaks down in its avalanche mode. This voltage is usually characterized at a test current (I t) of 1 milliamp and is often specified as a range with minimum (V(BR) min) and maximum (V(BR) max) voltages listed.

♦ Working stand off reverse voltage v_(BR) the voltage at which the device's leakage current is measured. This voltage is always at least 10 percent lower than the mimimum breakdown voltage. Suppressors with a breakdown-voltage rating of less than 10 volts can exhibit leakage currents as high as 1 milliamp, but suppressors with higher breakdown ratings typically exhibit leakage currents of 5 microamps or less. ◆ Maximum peak pulse surge current (IPPM), the maximum current that the suppressor is guaranteed to withstand without incurring damage. This parameter is usually characterized with a 1 millisecond exponential waveform.

Maximum clamping voltage (V_C), The maximum voltage that can appear across the suppressor when the maximum rated surge current is flowing through it.

◆ Maximum breakdown-voltage temperature coefficient (%V(BR)/ ° C), the maximum allowable change in the breakdown voltage as a function of the temperature.

Design Criteria

The best way to demonstrate the selection process is through a hypothetical example. In this example, the device to be protected is an integrated circuit, IC_x , which is designed to operate on a nominal rail voltage of 15 volts, and which has an absolute maximum voltage rating of 22 volts. The first step in the selection process is to determine the energy (joules) or power (watts) contained in the surge against which the device is to be protected, and the duration of that surge.

Transients are by definition nonrepetitive, with energy levels that are difficult to ascertain. Moreover, they generally result from an unexpected failure elsewhere in the system or from natural phenomenon such as lightning. Because of this, determining energy content and duration of the surge is the most difficult step in the transient-suppressor selection process.

Some surges, however, are predictable. The surge produced by a solenoid driver is a good example. If the inductance of the coil is known and the load on the solenoid is defined, it is possible to calculate or measure the duration and magnitude of the surge. Whenever possible, a "hands

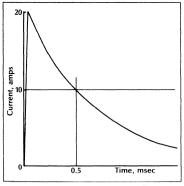


Figure 1

Waveform of an exponential -decay transient pulse with a peak current and a 0.5-millisecond pulse width at the half-peak-current point

on" measurement of the worst-case transient condition should be made. For the sake of discussion, assume that the transient being presented to IC_x has a peak current of 20 amps with a classic exponential decay, as shown in Figure 1, and a duration of 0.5 milliseconds, measured at 50 percent of the peak current.

With this data in hand, the next step is to examine manufacturer's data sheets to find a transient suppressor able to handle the anticipated surge. The breakdown voltage and maximum reverse surge current ratings published in the data sheets are key selection criteria. Since IC x has a nominal 15-volt operating voltage, the minimum breakdown voltage must be greater than 15 volts. However, since it carries a 22-volt absolute maximum voltage rating, the suppressor's maximum breakdown voltage must be less than 22 volts. The foregoing assumes a relatively stable ambient temperature, such as that usually experienced in an office environment. If the product in which ICx is used is expected to see wider temperature

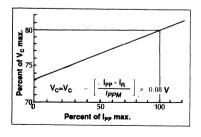


Figure 2

The clamping characateristic of a typical transient suppressor

fluctuations, the minimum breakdown voltage would have to be based on the lowest expected temperature. The resulting voltage would determined by multiplying the difference between the expected temperature and room temperature by the temperature coefficient.

WAVESHAPE	EQUATION	K FACTOR
	Iрк е ^{-1/1.44τ}	1.4
	Ірк	1.0
	lрк (Ѵ́т)	0.5
0.5 lpk	$I_{PK} \sin(\pi t) e^{-t/\tau}$	0.86
	l _{PK} sin ([π/t] t)	0.637

Energy = $\int_{0}^{\tau} V_{C}(t) | (t) \Delta t = K V_{C} | \tau$

Figure 3

The energy contained in a transient pulse depends on its wave shape

With the minumum and maximum permissible breakdown voltages in hand, examine the clamping-voltage ratings published in the manufacturer's data sheets to identify suppressors falling within the required range. It is possible that there is no device that falls well within the upper and lower limits. If the device with the closest voltage rating falls about the upper voltage limit, a very close examination of its parameters must be made. Most reputable semiconductor manufacturers apply a one-percent guardband around voltage ratings as a safety margin. In this example, the guardband raises the absolute maximum rail voltage from 22 volts to 22.22 volts. This small increase may not seem like much, but can make the difference in selecting a transient suppressor.

Selecting the Best Transient Suppressor

Consider a situation in which the only suppressor that comes close to meeting the protection need of IC carries a maximum clamping-voltage rating of 22.5 volts. The actual voltage at which the suppressor will clamp depends on the actual current flowing through it, as shown in Figure 2, and can be predicted using the following equation:

 $V_{C} - [(I_{PPM} - I_{R}) / (I_{PPM})] \times (0.08) V = V_{C}$

For the sake of discussion, consider the General Instrument type P6KE16A transient suppressor, which carries a 22.5-volt maximum clamping-voltage rating.

$$22.5 - [(27 - 20)/27] \times 0.08 (22.5) = 22.03$$
volts

Although the resulting clamping voltage is still greater than the 22-volt absolute maximum voltage rating carried by IC x, it is well within the 22.22-volt rating provided by the one-percent guardband. Thus, although carrying a maximum clamping-voltage rating 0.5 volt higher than the maximum voltage rating carried by IC x, this suppressor can be safely used in this application.

The same, however, cannot be said of all 22.5-volt suppressors. Another device in the same family, the P4KE16A, has slightly different current ratings and yields considerably different results:

$$22.5 - [(19 - 20)/19] \times 0.08 (22.5) = 22.59$$
volts

Clearly, with a 22.59-volt clamping voltage, this device cannot be used because it exceeds the maximum clamping-voltage rating plus guardband of ICx.

The next step in the selection process is to verify the transient suppressor's power rating. There are two approaches that can be taken:

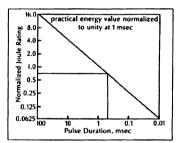
1. Since the waveform of the transient is a classic exponential decay with a 0.5-millisecond duration at the half-peak current point, a graphic plot of peak power versus time can be used. This graph is often published in manufacturer's data sheets and if it is available for the device under consideration, one need only compare the anticipated current against the current shown in the graph. Using the peakpower versus time graph published for the P6KE series suppressors, it can be seen that with a 0.5-millisecond time-constant decay, a P6KE device can handle a peakpower of 792 watts.

Using Ohm's law and a 22-volt clamping voltage, this translates to:

I = P/V = 792/22 = 36 ampsSince the anticipated peak reverse current with a 0.5-millisecond time constant is 20 amps, it is clear that a P6KE device can easily withstand the anticipated peak power of the surge.

2. Calculate the energy in joules contained in the transient and compare it to the maximum energy rating of the transient suppressor. The energy in the transient, of course, depends on its wave shape, as shown in Figure 3. The amount of energy a given transient suppressor can handle, on the other hand, depends on its energy rating and the duration of the pulse, as shown in Figure 4. In this example, the waveform has an exponential shape with a 20-amp peak current and a 0.5-millisecond half-peak-power point. Using these data, the energy calculations are as follows:

 $E = V_C(t) \times I(t) \times A(t) - KV_C \times I \times \tau$ where, in this example,

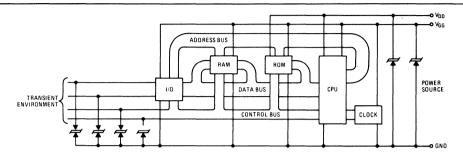

$$V_C = 2V$$

$$I = 20A$$

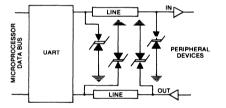
$$\tau = 0.5 \text{ msec}$$

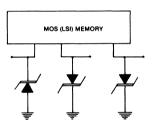
$$K = 1.4 (from Figure 3)$$
Thus $E = 1.4 x 22 x 20 x (0.5 x 10^{-3}) = 0.3081$

The maximum single-pulse energy rating for a P6KE series is 0.83 joules for a pulse of 1 millisecond duration. Referring to Equation 4, the energy rating for a 0.5-millisecond pulse becomes 0.7 x 0.83 J, or 0.581 joules. Clearly, then, a P6KE device can easily handle the 0.308-joule energy contained in the anticipated transient pulse.

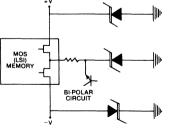

Figue 4

Enery-handling capacity of a transient volatage suppressor as a function of the transient's duration


Conclusion

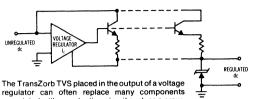

The above example assumes a nonrepetitive transient, or, if repetitive, each pulse is separated from the others by an interval of least 20 seconds. Under these conditions, however, the procedures outlined provide a straightforward and reliable method of selecting the best transient voltage suppressor for a given application. TransZorb TVs are characterized by the reverse stand-off voltage (V_{MW}). They are synonymous with the integrated or micro circuit power supply voltage. The breakdown voltage $[V_{(BR)}]$ is that point at which the TransZorb TVS is in ava-

lanche breakdown. This is temperature coellicient. Allowance has been made in establishing the minimum breakdown voltage at 25°C to provide a safe operation over the full temperature range of -65°C to +150°C.



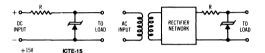
The TransZorb TVS on the signal and input power lines prevent microprocessor system failures caused by transients (electrostatic charges), AC power surges, or during switching of the power supply to ON or OFF. A static discharge can exceed 10,000V for 10 microseconds with a 60 Amp current potential. 10V applied to a typical T²L circuit for 30 nanoseconds will cause destruction. Placing TransZorb TVSs across the signal lines to ground will keep unwanted transients out of the Data and Control Buses. TransZorb TVSs which are shunted across the power lines maintain a continuous operating voltage during AC line surges and switching transients.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This threat of potential energy has given rise to high noise immunity integrated circuits. High immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or slow degradation of the circuit performance. TransZorb TVSs located on the signal line can absorb this excess energy. For some circuit applications a low capacitance unit may be required, which is available upon request. The TransZorb TVSs protect the internal MOSFET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb TVS is required on each voltage supply line to the integrated circuit.

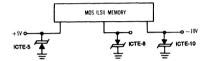


Totem pole output circuits often generate current spikes requiring decoupling capacitors. While maintaining circuit continuity, the TransZorb TVS is capable of absorbing the energy pulse as well as eliminating noise spikes due to such things as cross-talk, etc. A clamp diode in the IC substrate is limited in conduction current, <100 mA, providing a minimum protection.

DC LINE APPLICATIONS

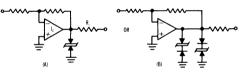


The TransZorb TVS on the power line prevents IC failures caused by transients (electrostatic discharge), power supply reversals or during switching of the power supply to on or off.

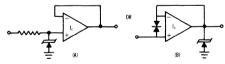


associated with a protection circuit such as a crowbar circuit. It may also be required to protect the bypass transistor from voltage spikes across the collector to emitter terminals.

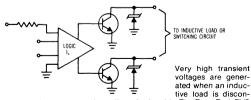
Typical power sources employing the TransZorb TVS for transient protection.



The TransZorb TVS is chosen in which the reverse stand-off voltage is equal to or greater than the DC output voltage. For certain applications it may be more desirable to replace the series resistor (R) with an inductor. In most applications, a fuse in the line is desirable. Elimination of a transformer will require an LC filter on the line for most industrial applications, when the TransZorb TVS is placed on the input to the power supply and with an input voltage greater than 40 volts.

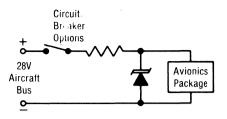


The TransZorb TVSs protect the internal MOSFET from transients introduced on the power supply line. When interfaced with bipolar TTL circuits, the same power supply is often used. A common practice is to place a series protection diode from source to gate, but this does not offer protection from source to ground and is usually limited on peak power dissipation. A TransZorb TVS is required on each voltage supply line to the integrated circuit.


- SIGNAL LINE APPLICATIONS -

A TransZorb TVS on the output of an Op-amp will prevent a voltage transient, due to a short circuit or an inductive load, from being transmitted into the output stage. Fig. A is for linear circuits whereas Fig. B may be required for reducing effective capacity at the output. The TransZorb TVS and a blocking diode is available as a single unit.

Input states are vulnerable to low energy, high voltage static discharges or crosstalk transmitted on the signal wires. Limited protection is provided by the clamp diode or an input network within the IC substrate. The diodes, however, must have a breakdown voltage greater than the supply voltage (V_{cc}) and are limited in current capacity.


nected, such as motors, relay coils and solenoids. The TransZorb TVS provides protection for the output transistor as well as the IC, eliminating a resistor/capacitor network. The ICTE series TransZorb TVS is capable of dissipating the full load current for short duration pulses (<8.3 msec). For longer pulses, the TransZorb TVS is available in stud or press fit package.

Transients generated on the line can vary from a few microseconds to several milliseconds duration and up to 10,000 volts. This threat of potential energy has given rise to high noise immunity integrated circuits. An independent study' has found that high immunity and super high immunity circuits are prone to damage by noise transients as a result of the power being dissipated by the substrate input diode. Excess current passing through the input diode can cause an open circuit condition or a slow degradation of the circuit performance. TransZorb TVSs located on the signal line can absorb this excess energy.

The Radio & Electronic Engineer, Vol. 43, No. 4, April 1973.

TransZorb TVSs can be used in series or parallel to increase their power handling capability. No precautions are required when using TransZorb TVSs in a series string since power dissipation for two or more devices of the same type is equally shared. When using TransZorb TVSs in parallel it is necessary for the units to be closely matched (approx. 0 1 volt of each other) in order for equal sharing to take place. Matched sets can be ordered from the factory for an additional charge.

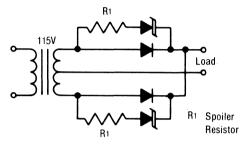


Figure 3-Breakdown Voltage Rectifier Protection

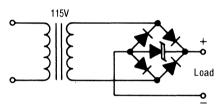
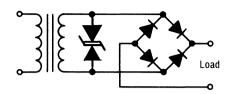



Figure 5—115V A.C. Supply Protection

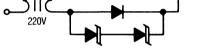
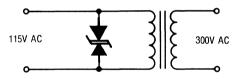
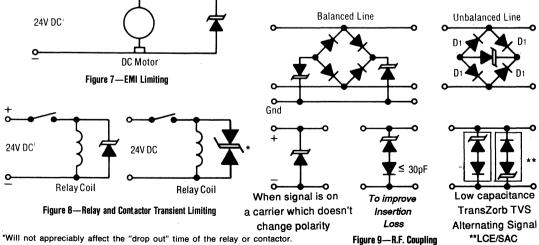
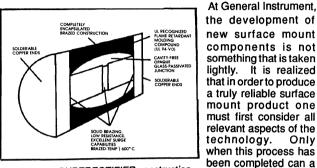




Figure 4-Breakdown Voltage Rectifier Protection*

** Maintain short leads on TVS devices to optimize effectiveness.

SUPERECTIFIER DESIGN BRINGS NEW LEVEL OF RELIABILITY TO SURFACE MOUNT COMPONENTS

by, Joseph M. Beck, Sr. Applications Engineer


Surface Mount technology is here to stay. After years of plodding through cautious experimentation, many manufacturers now have fully automated production lines in place. turers would have to re-think their approach to device fabrication. Yes, components needed to be smaller: but they also needed to be more reliable.

These production lines place circuit components at speeds that until recently would have been unthinkable. Finally being realized are the benefits of what was once considered a "Voo Doo" manufacturing technology.

Component manufacturers have learned a great deal over the past several years as well. Initially most

surface mount components were nothing more than retrofit, lead formed versions of their conventional leaded, through-hole counterparts. For most manufacturers this was the quickest and least costly method of "developing" a line of surface mountable components.

It was soon discovered, however, that this approach to component assembly would be unacceptable. Surface mount technology placed new demands upon circuit components. Electrically, the same power was being required from smaller and smaller packages. Package geometries and dimensions became critical in relation to pick and place equipment and circuit board mounting. In addition, the construction of these devices needed to be such that they would suffer no ill effects when subjected to the rigors of the new assembly environment that surface mount technology presented. Encountered in this environment was extremely high-speed pick and place equipment, component adhesive attachment, immersion in molten solder and rapid temperature changes associated with reflow soldering processes. All this meant that component manufac-

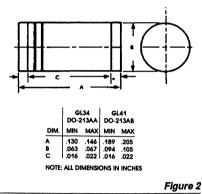
Flaure 1 - SUPERECTIFIER construction

which is surface mountable, and inherently reliable.

Surface Mount Superectifier ®

product be developed

Only


General Instrument manufactures surface mount rectifiers in the popular MELF (metalized electro face) package style. These devices, denoted as SUPERECTIFIERS, are available with a wide variety of electrical characteristics. The main difference, however, between these rectifiers and other MELF style devices lies in the area of device construction. Figure 1 shows the unique construction employed in the manufacture of the SUPERECTIFIER.

The construction of the SUPERECTIFIER does not internally utilize any soft solders. All interconnects are accomplished by the use of a high temperature brazing process (600°C). Hence, any chances of solder void occurrence or internal solder reflow during circuit board processing are eliminated. In addition, the silicon rectifier junction is completely encapsulated by a cavity-free glass. This glass encapsulation ensures that the rectifier junction is hermetically isolated from humidity and other harmful environmental intrusions.

The resultant sub-assembly could be considered to be a fully functional surface mount rectifier. In fact, many component manufacturers offer MELF devices which have this appearance; namely, an oblong glass bead with two protruding metal end terminations. However, in order that the device have a uniform shape, the General Instrument sub-assembly is over molded with epoxy. The result is a smooth, perfectly cylindrical package.

Two Sizes

Two different size SUPERECTIFIER MELF packages are available. General Instrument designation GL34 and GL41 are for 0.5 ampere and 1.0 ampere rectifier types, respectively. JEDEC mechanical specifications DO-213AA and DO213AB detail the dimensions of the GL34 and GL41, respectively. Figure 2 gives these package dimensions.

Dimensional outline

MANUFACTURING CONSIDERATIONS

Pick and Place--Surface mount SUPER-ECTIFIERS are supplied on tape and reel in accordance with JEDEC standard RS-481A. Removal of the devices from the embossed carrier tape is easily accomplished by all vacuum pick-up mechanisms which utilize a compliant tip. The compliant tip will form a tight seal around the cylindrical MELF design once contact with the device has been made. This is not always the case, however, when MELF devices with a non-uniform package outline are used. Figure 3 shows two such MELF outlines. Figure 3A is a device with a concave package outline. This type of package is difficult to consistently remove from the carrier tape as the exact position of pick-up on the component body is critical. Figure 3B is that of the most common form of MELF packaging. This type of construction utilizes a non-transparent glass body which is

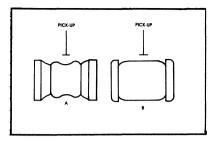


Figure 3.

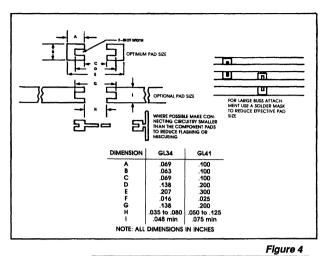
Non-uniform MELF outlines

often characterized by pitting and surface irregularities. The irregularities make it difficult for a vacuum pick-up to form a tight seal around the device body. The result is that components are often dropped onto the production room floor instead of being placed on the targeted circuit board. General Instrument solves these problems with a smooth surface and perfectly cylindrical package outline.

Bonding Pads - The geometries and dimensions of bonding pads are critical to the proper mounting, soldering and overall performance of all surface mount components. Figure 4 gives the recommended pad layouts for GL34 and GL41 MELF outlines. Use of these pad layouts will be primary assistance in the following three areas:

◆ Surface mount technology by nature dictates that smaller component packages dissipate the same power as their larger through-hole counterparts. Hence, adequate bonding pad land area is required in order to aid the component package in the dissipation of this power. The recommended pad layouts provide the needed land area for GL34 and GL41 devices to operate safely at their maximum ratings.

◆ Component adhesive attachment allows the package to shift slightly from its original placement position prior to adhesive curing. In addition, most adhesives tend to spread during the curing process which also may allow package misalignment. The geometry of the recommended pad layouts will tend to minimize such movements. This assumes, of course, that the package was originally positioned correctly.


◆ During reflow soldering, solder surface tension can have a significant effect on the movement and final position of components in relation to their bonding pads. The recommended pad layouts will actually make use of the solder surface tensions to bring MELF devices into alignment with the two bonding pad land areas. This means that MELF devices which are initially placed in slight misalignment on their bonding pads will reposition themselves during solder reflow until a position of alignment is reached.

Soldering-Surface mount SUPERECTIFIERS are capable of withstanding all present forms of wave and reflow soldering. The following guidelines should be followed, however, in order to ensure overall package integrity:

◆ GL34--Maximum temperature at device and terminations not to exceed 400°C for 5 seconds. Complete device submersible temperature not to exceed 260°C for 10 seconds in solder bath.

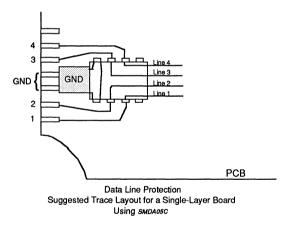
◆ GL41--Maximum temperature at device end terminations not to exceed 450°C for 5 seconds. Complete device submersible temperature not to exceed 265°C for 10 seconds in solder bath.

General Instrument's surface mount SUPERECTIFIERS combine superb electrical performance with unmatched levels of reliability. The construction of the SUPER-ECTIFIER virtually eliminates all problems associated with highspeed pick and place of MELF components. In addition, SUPER-

Recommended pad layout

PART NUMBER	CURRENT(A)	VOLTAGE(V)	TRR(NS)	PACKAGE
GENERAL PURPOS	E			
GL34A-J	0.5	50-600	-	GL34
1N6478-84	1.0	50-1000	-	GL41
GL41A-Y	1.0	50-1600	•	GL41
FAST RECOVERY				
RGL34A-J	0.5	50-600	150-250	GL34
RGL41A-M	1.0	50-1000	150-500	GL41
ULTRA FAST RECO	VERY			
EGL41A-G	1.0	50-400	50.0	GL41
EGL34A-G	0.5	50-400	50.0	GL34

ECTIFIER construction ensures that performance and reliability are never compromised when the device is subjected to the demands of surface mount assembly techniques or when other seemingly harmful environments are encountered. Quite simply, no other surface mount rectifier comes close to offering all the advantages of the SUPERECTIFIER MELF.


All surface mount components are small and save space. However, performance and reliability should never be considered necessary trade-offs in order to utilize surface mount technology. Use of General Instrument surface mount SUPERECTIFIERs requires no such sacrifices; no trade-offs.

TRANSZORB® TVS DIODE ARRAY DA SERIES 8 AND 16 PIN DUAL-IN-LINE PACKAGE (DIP)

by David W. Hutchins

Introduction

The SMDA and DA family of transient voltage suppressors (TVS) are designed for protection of multiple power bus lines or I/O ports at the printed circuit board (PCB) level. Packaged in a standard 8 or 16 pin plastic DIP, devices are available in either 5.0 to 24 volts. They are designed to be used for multiple protection of 5.0 to 24 volt logic circuits, memories, line drivers/receivers and microcomputers. Combining several protectors in a single package minimizes board space and helps in the coordination of input protection within a defined area of 1 the PCB, Figure 1.

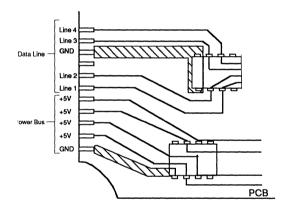
Figure 1

Induced voltage transients from residual lightning, relays, small motors, inductive load switching and electrostatic discharge (ESD) are clamped protecting sensitive components. Both unidirectional and bidirectional devices are available for positive, negative or plus and minus operating circuit voltages, respectively. The TVS array protects 4 or 6 lines within an 8 pin package and 8 or 12 lines within a 16 pin package.

Electrical Parameters

These devices are designed to be used in applications that have multiple power or data line inputs. Each transient voltage protector is capable of dissipating up to 500 watts of peak pulse power for an 8/20µs impulse waveform. The individual chips, within the package, are capable of dissipating the full peak pulse power. A peak pulse power versus time curve is provided for other pulse widths. In this case, the pulse width (duration) is defined from the point of the initial impulse to the 50% decay point of the peak impulse value.

There are two ground leads for the 8 pin DIP and four ground leads for the 16 pin DIP to allow for the higher current conduction during a transient event. The internal ground leads are capable of diverting transient currents simultaneously from all protector inputs. For best results, the PCB ground path to these terminal pins should be tied together using as large a land area as possible, Figure 1. In this way the return line impedance will be kept to a minimum, reducing the possibility of a voltage overshoot experienced with fast rise time transients.

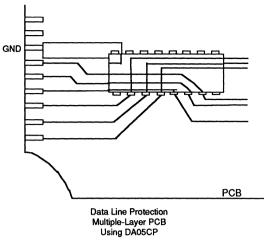

The SMDA and DA series devices are to be used in those applications where the transient events are nonrepetitive or are less than a .01% duty cycle. For transient events longer than 10ms or continuous pulses, the standard individual axial lead or surface mount device is recommended. These special applications require some level of average power dissipation rating beyond the design considerations of the SMDA and DA devices.

The unidirectional types are designed to clamp both positive and negative transients. In the forward direction, the devices will clamp the voltage below 2 volts depending upon the transient current. The bidirectional types are symetrical and will clamp the transient voltage to the same value in both directions. The actual clamping voltage will vary with the transient current. For reference, the data sheets provide the maximum clamping voltage for a 10 ampere impulse using an 8/20 μ s waveform. In those applications where the SMDA suppressor is protecting I/O ports, the individual chip capacitance is given at 0 volts, $1MH_Z$. These are maximum values to help in the calculation of the amount of loading that can be expected for signal loss or the added capacitance for long line networking systems. Lower capacitance devices are available in discrete form such as in the LCE or SAC series types for very high speed applications.

Applications

A typical application using the SMDA series devices is at the PCB interface close to the input contacts on the edge connector, Figure 1. At this location, the transient currents are diverted back to the source via the shortest route. Location of the SMDA TVS at one side of the PCB is also recommended. Protection of the power bus lines as suggested at the edge of the PCB followed by I/O port protection,

Figure 2.



Additional data lines on the back side

Power Bus and Data Line Protection Suggested Trace Layout for a Double-Sided Board Using SMDA05 for Power Bus SMDA05C for Data Line

Figure 2

It is important to keep the unprotected lines with the highest transient current away from the protected lines to avoid possible transient voltage crossover. Where this is not possible, the unprotected lines should cross at 90° to the protected lines, Figure 3.

These devices can also be used within the PCB for protection of individual circuit components. Additional caution is given when designing for protection of individual components. Coordination of the V_{cc} bus lines and the I/O ports are important. A differential voltage between input pin terminals can cause component upset or even damage. These voltage differences can be attributed to improper protector selection or the length of land traces to the protector. These traces can cause a high voltage to exist during a fast transient that will exceed the clamping voltage of the TVS. Traces leading to and from the TVS protector should be kept as short as possible to minimize voltage differences. Ground returns should be as large as possible such as a buried ground plane or surface area to reduce any series lead inductance.

FAILURE MODES AND FUSING OF TVS DEVICES

by David W. Hutchins

Introduction

Transient voltage suppressors (TVS) will fail if they are subjected to conditions beyond their designed limits. It is, therefore, important to understand the types of failure modes of TVS devices before designing them into a circuit application. There are three basic types of failure modes: shorts, open and degraded (outside of the specification limits). Although the silicon avalanche junction transient voltage suppressor (SAJTVS) will first fail short in most applications, there is always one transient event that will cause it to open initially. In this case, the transient energy is large and of short duration that the silicon chip itself explodes.

When a TVS device does short, follow-on operating current may cause the device to open. Fusing of the line is recommended in all applications. Shorted devices will start to conduct current away from the circuit or system affecting its performance. Open devices are transparent to the circuit/system and will not usually distribute circuit functions. In either case, it is difficult to determine if the TVS devices are most difficult to detect in the circuit. These can be devices with high leakage currents which may not adversely affect circuit performance, except under elevated operating temperatures. All three types of failure modes are discussed in this application note along with the design practices for fusing the line when a device does fail.

With the thought that a TVS device can fail, there are some additional terms that designers would like to impose on the protector to ease this problem. One such term is a "Fail Safe" condition. The term "Fail Safe" implies some level of safety which cannot be used in connection with the TVS device. Due to the very nature of the unknown transient threat, there are no 100% guarantees. "Fail Safe" is one of the most misunderstood terms regarding transient protection. It is important to define the term and discuss why it should not be used in reference to a TVS device. Words have different meanings to different people which is the case with the term "Fail Safe". A TVS device cannot assure a fail safe environment. By nature, a TVS device will fail when subjected to a transient beyond its designed capability. If the circuit or system is not properly fused, a shorted TVS device can become a safety hazard conducting operating currents through the return path. Even with the proper design-in and adherence to good engineering practices, this term should not be used in describing the function of the protection network. Quite often, the unknown transient threat along with some of the auess work regarding the sizing (Peak Pulse Power Rating) of the TVS device will suggest some level of risk in the overall protection system. The risk, in this case, is the trial and error method used to guarantee proper TVS device selection versus its location. This type of selection process may take some time to accomplish when the transient threat cannot be fully defined. "Fail Safe" may be used in conjunction with a complete systems approach, but not with a component such as a TVS device.

Failure Modes

TVS devices will fail in one of three modes. These are shorts, opens and degraded devices. In most applications, the preferred method of failure is a short. A short is defined when the TVS device has a resistance value of less than 1 ohm at a dc voltage of 0.1 volts (ref. IEEE/ANSI

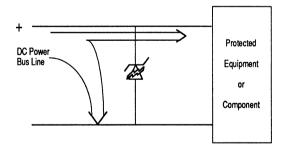


Figure 1. Current Path for Shorted Surge Suppressor

C62.35). In the more practical world, a shorted device will start to conduct a significant amount of operating current to ground, Figure 1.

The actual current shunted to ground will depend upon the resistance in the line ahead of the TVS device. For the ^{1,000} power line, this could mean a significant amount of current depending upon the available current from the power supply or source. With data lines, this can be somewhat limited but will depend upon the operating current of the circuit. Data lines operating in the milliampere range are more difficult to fuse. In either case, it is important to provide some type of fusing in the line to open up the circuit when a TVS device does short, Figure 2.

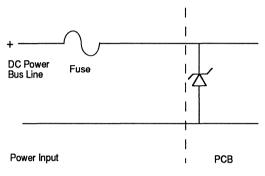


Figure 2. Fuse Location Relative to TVS Device

The fusing element must take into consideration two possibilities. First is the ability to handle the required transient current without interrupting the circuit functions. Second, it has to be able to open the line when the TVS device does short.

An open TVS device is defined as a diode that has a breakdown voltage $V_{(BR)}$ greater than 150% of the pretested value at an applied test current (I_p) (ref. IEEE/ANSI C62.35). For this test, the unit must be taken out of the circuit for verification. An open device in the circuit will not exhibit any of the standard electrical characteristics such as leakage current or clamping voltage. Once out of the circuit, the TVS device can be tested on a curve tracer for verification of the open condition.

In an improperly fused circuit, a device that has been shorted can become open after an applied operating current is allowed to conduct through the device for a period of time. Figure 3 shows the fusing currents and time durations for each of the major axial lead type package. When this occurs, there is usually some visible evidence in the form of a burn mark on or within the device indicating an open unit. Devices that degrade are more difficult to detect. These types of failed devices will exhibit an increase in the reverse leakage current under normal operating voltages (equivalent to the stand-off voltage). According to IEEE/

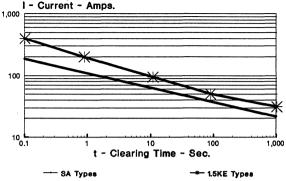


Figure 3. Clearing Time for TransZorb TVS Device -Fail Open Condition

ANSI C62.35, a degraded failure mode has occurred when the avalanche junction surge suppressor has a stand-by current greater than the maximum specified. On the power bus line, this level of current may not be noticed until the leakage current reaches the upper limit of the power supply current or when the unit shorts from the increased current conduction. For data lines, this value may be much less due to the fact that there can be loss of data transmission of information. A device will act as a low impedance shunt path to ground.

As discussed earlier, "Fail Safe" is discouraged in the description of a failure mode for TVS devices. For some, the term can be a desirable characteristic in that the unit will protect up to a specific level. To others it can mean that the device should provide protection because of the fail short or open condition. While both may be true, the TVS device should not be described as a fail safe product due to fact that no one can guarantee a specific type of device failure mode. The transient threat and the location of the transient voltage suppressor in the equipment will also have a major influence on the type of failure mode. In some applications, the transient currents and impulse waveform cannot be completely defined. As a result, the correct TVS device may not be designed in. In this case, the TVS device application is a trial and error method as suggested earlier. A TVS device is designed to withstand a specific level (power) of transient threat as defined by a peak pulse power rating versus pulse width curve, Figure 4.

Most manufacturers will provide a peak pulse power versus time curve on their individual product data sheets. This will provide the designer with the maximum power limit within a product family or series of devices. It is up to the circuit or system designer to translate this product information into the appropriate threat level. Threat levels should always be defined in terms of the peak current amplitude and impulse waveform rather than calculate

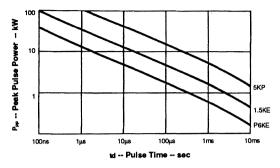


Figure 4. Peak Pulse Power vs. Pulse Time

the energy of the TVS device from the power curve. Energy is not a key parameter here due to the fact that the energy contained within the transient event is not the energy deposited in the TVS device. Equating the transient current threat to the peak pulse current rating of the TVS will ensure proper device selection and the continuous operation of the protector in the application. There will, however, be those applications in which the actual transient current cannot be defined. At best, the identification of the source of the threat is necessary; that is, lightning, switching, ESD or NEMP. From this information, the manufacturer can provide the direction for initial product selection.

Product selection begins by equating the circuit operating voltage to the stand-off voltage of the TVS device, Table 1.

TABLE 1 Avalanche Junction Selection Process

DEVICE PARAMETERS		CONDITIONS
1) Stand-Off Voltage	>	Operating Voltage
2) Peak Pulse Current	>	Transient Current
3) Clamping Voltage	<	Voltage Protection

Next, as discussed above, it is necessary to equate the transient current to the peak pulse current of the TVS device. The transient current must always be less than the peak pulse current of the TVS for continuous opera-

tion. It is the transient current that will cause the TVS device to fail in a shorted mode. Device shorts can occur at the semiconductor chip junction surface interface or within the bulk material. This type of short will appear as a burn spot on the junction surface or as a dark spot on the top/bottom of the silicon chip. The bulk type of device short will be a function of the amount of transient current that was passed through the silicon chip. The burn spot can be as small as a pin hole in the die and as large as a funnel hole of a few millimeters in diameter. In both cases there is evidence of remelted semiconductor material. Its size will usually depend upon the current amplitude of the transient and any additional follow-on current that is present over a short period of time. Longer pulses will usually remelt the solder material which can bridge the silicon chip causing the shorted condition. In this case, removing the solder bridge will allow the TVS device to recover and appear as a good device.

Follow-on current after a TVS device has failed short can become a safety or circuit performance problem. For these reasons, it is suggested that a fuse or fusible link be inserted in the line ahead of the TVS device on both the power and data line applications. Selection as well as location of a fusing element is important. From Figure 3, it is possible to determine the I²t value necessary to select the fuse for any follow-on current. As this data is defined as the clearing time for a TVS device to open up for a continuous applied current, it is necessary to select a fuse with an I²t characteristic below the device capability. Location of the fuse is best closest to the TVS device in the series line for board level protection. Figure 2. For equipment and high level systems protection, the fusing element can be a circuit breaker located at the point of power entry. At this location, the power and transient currents are terminated at the point of power entry input to the equipment preventing any additional problems such as safety hazard, data errors, or component damage.

One of the most difficult problems is the identification and, sometimes location of the failure. In-line tests are often used as the checkout procedure for the system/circuit's performance. With a transient voltage suppressor, this may not be the best solution. The first step is the identification of problem area; that is, power bus or data line. The second step is to perform a visual inspection to locate the failed device or see evidence of a burn spot on a component. The third step is to apply power to the circuit for performance testing and test for any loss of data. If there are any major problems, tripping of a circuit breaker (CB) or a blown fuse will indicate some type of line problem. Trace the line to the problem area. When a CB or fuse does function, it's best not to reset the CB or replace the fuse but to locate the source of the problem. With data lines, this can be somewhat difficult if the fusing link does not function due to improper sizing.

EFFECT OF LEAD WIRE LENGTHS ON PROTECTOR CLAMPING VOLTAGES

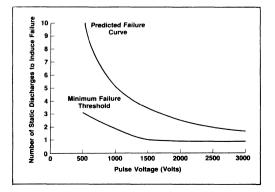
by

O. Melville Clark and Joseph J. Pizzicaroli

Originally presented at the Federal Aviation Administration-Florida Institute of Technology Workshop on Grounding and Lightning Technology March, 1979—Melbourne, Florida

Abstract

645


Under high current pulse conditions, excessive lead lengths on suppressor components can be responsible for destruction of the protected circuit. This is caused by voltage build-up across the small but finite amount of inductance in the interconnecting leads of the protector. Some suppressor devices have been tested and observed to have more than twice the specified clamping voltage which was subsequently shown to be caused by inductive effects. Problems and corrective measures are illustrated and discussed in this paper.

SEMICONDUCTOR FAILURE THRESHOLDS

MOS and small area geometry semiconductors are particularly vulnerable to the effects of transient voltages. Unfortunately there has been very little information published on this subject. The work reported by Van Keuren¹ illustrates how fragile CMOS and TTL devices can be. Minimum failure pulse voltage thresholds are shown in Table 1.

Electrostatic Discharge (ESD) failures of MOS microcircuits have been measured by Gallace and Pujol². Comparisons among several suppliers indicate that failure levels can be a function of manufacturing technique. Repeated step stressing of a sample of 25 CD4011AF type devices shows that at a given stress level devices would eventually fail, as shown in Figure 1.

N	Ainimum I		TABLE I	s of CMO	S and TT	L
	Pulse Width					
Device Type	20µsec	2µsec	1µsec	0.2µsec	0.1 <i>µ</i> sec	.025µsec
55107	22V	16V	1	22V		
55109	36V	38V	ļ	60V		
5404			30V		50V	120V
54L30			20V		50V	90V

EQUIVALENT CIRCUIT OF PROTECTOR

The equivalent circuit of a silicon transient suppressor, such as the TransZorb[®] TVS is shown in Figure 2. All parameter values are fixed by manufacturing processes and device construction except L1, the inductance resulting from the lead wires connecting the protector across the circuit for which protection is intended. Normal wiring practice results in lead lengths of the order of centimeters. In some power installations this has been observed to be of the order of feet.

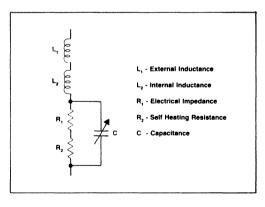


FIGURE 2—Equivalent Circuit of Protector

The inductance within an axial leaded part, as represented by L₂, is of the order of 10^{-8} henrys while the inductance within a modular assembly can be one to two orders of magnitude greater, depending on the design and the number of subcomponents. The capacitance of a silicon avalanche suppressor can vary over an order of magnitude, depending on the degree of reverse biasing.

TRANSIENT VOLTAGE RISE-TIMES

a. **EMP:** Voltage rise-times of EMP (Electromagnetic Pulse) transients, as generated by high altitude nuclear detonations, are 5kV/nsec. The presence of even a small amount of inductance in the protector

circuit can have very profound results on the effectiveness of a protector device. This is illustrated with the oscillographs in Figures 3 and 4.

Vert: 200V/div.

Horiz: 10nsec/div.

FIGURE 3— 7.5 cm Lead Wires

In Figure 3, a 30V TransZorb TVS in the DO-13 package was pulsed with a 100A 4kV/nsec rise-time transient. With 7.5 cm leads on each end, at which current was injected and voltage measured, the overshoot voltage is slightly greater than 800V. The energy under this curve is calculated to be 70μ joules, sufficient energy to destroy most types of MOS and some TTL devices. By reducing the lead length to zero and repeating the pulsing, the overshoot voltage is reduced to about 200V. The energy under this curve is less than 1μ joule, below the destruct threshold of MOS and TTL devices.

b. Lightning and Inductive Switching: From measurements made on 120V ac power systems, Martzloff³ has proposed a waveform with a frequency of 100kH. The lightning stroke, which is usually reported with current rise-times ranging from 1 to 3µsec has been more recently measured by Llewellyn⁴ to be as low as 500nsec. Transients on shipboard ac power systems have been defined by MIL-STD-1339 as having transient rise-times of 1.5µsec.

Normal wiring practices are usually considered adequate for protection of electronic circuitry. "Normal" and "adequate" are relative terms and usually prevail under conditions in which equipment performance is acceptable. What is normal and adequate protection for vacuum tubes is not the same for power semiconductor devices. Protection for microcircuits is also quite different from power semiconductors. With increased usage of microprocessors and other small area geometry semiconductors, equipment is becoming more vulnerable to transient voltages, under both single pulse and repetitive pulse conditions.

INDUCTIVE EFFECTS IN COMPONENT LEADS

a. **Calculation:** The inductance in a straight wire appears, at first glance, to be very small and insignificant. Assuming a value of 1μ H/m for a straight wire, most lead wires have inductance values in the nanohenry region. The voltage drop developed across an inductor under pulse conditions is expressed as:

$$V(t) = L \frac{di}{dt}$$

where L is inductance in henrys $\frac{di}{dt}$ is the rate change of current

For the fast rise-times of EMP as shown above, the associated problems are obvious; however, for the slower rise-time of switching and induced lightning the degree of exposure and protection required can be defined only after carefully studying all boundary conditions.

b. **Case Study:** In the following application, a silicon transient suppressor is being used to both regulate the voltage to power a telecommunications repeater and also provide transient suppression. The schematic is shown in Figure 5. This is one of two repeaters powered and protected by the same component.

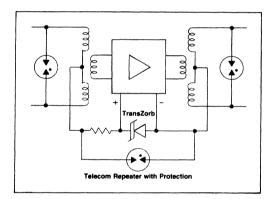


FIGURE 5—Telecom Repeater With Protection

The microcircuitry used in this equipment has some well defined failure levels; 20V in the positive direction and 6.5V in the negative direction. The suppressor has a well defined clamping voltage in the avalanche direction under a specified rise-time. The forward polarity measurements are specified at 100A with an 8.4 msec. ½ sine wave pulse. To determine higher current capability, pulse tests were made with a 1.2 x 50µsec waveform. During the process of taking data, small differences in lead length in the protection circuit were observed to have profound effects on the suppression capability of the device. Measurements extended over the range from 100A to 500A with lead lengths from the body of the device of zero, 1.0 cm and 2.0 cm. Tests were made on a molded 1.5kW Trans-Zorb®. The peak clamping voltage was plotted against pulse current as shown in Figure 6.

After tests were made with zero, 1.0 cm and 2.0 cm lead lengths, the plastic body was carefully cut away leaving only the cell containing the junction and the leads. Voltage measurements were then made across

the cell, virtually eliminating inductance within the package. A lead length of 2 cm has a peak clamping voltage of 4V at 100A and 13.5V at 500A. By contrast, the cell only has a peak clamping voltage of 1.3V at 100A and 3V at 500A. Voltage probe placement for taking measurements is shown in Figure 7.

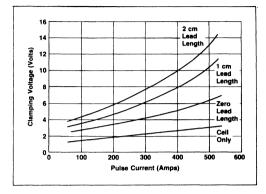


FIGURE 6—Clamping Voltage vs Pulse Current

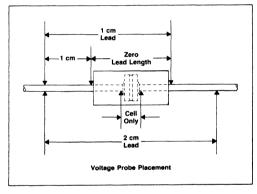


FIGURE 7—Voltage Probe Placement

Voltage drops across the lead wires contributing to peak clamping voltage can be attributed to both resistive and inductive components. Calculations were made for both resistive and inductive voltage drops for a 1.0 cm .040 in. dia. copper wire at pulse current levles from 100A to 500A. Rise-time is 1.2μ sec. This data is shown in Table II.

F	TAB Pulse Current Leve	LE II I and Voltage Di	ор
Puise Current (Amps)	Measured Voltage Drop (Volts)	Calculated Resistive Voltage Drop (Volts)	Calculated Inductive Voltage Drop (Volts
100	.75	.019	0.83
200	1.3	.038	1.66
350	2.3	.066	2.91
500	3.3	.095	4.16

Note that the calculated inductive voltage drop compares favorably with the measured voltage drop while the resistive component contributes less ₆₄₇ than 10% of the total.

CLAMPING VOLTAGE OF AC PROTECTOR

In power systems, it is quite easy to place a modular assembly protector in a convenient mounting location rather than the most effective one, especially in retrofit applications. These components are sometimes bulky and do not always conveniently fit the desired location. To illustrate reduced effectiveness in an ac power transient suppressor, a module was measured for peak clamping voltage having lead lengths of 24 in., 48 in., and 72 in. Pulse currents were 100A, 200A, 300A and 400A with a waveform of 1.2 x 50 μ sec. Lead length vs additive peak clamping voltage plotted here is that value above the normal clamping voltage with zero lead length.

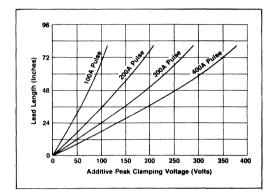
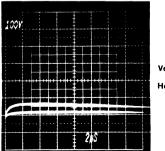
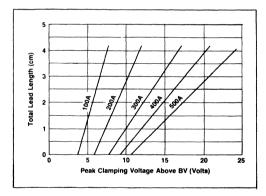



FIGURE 8-Lead Length vs Clamping Voltage

Note that the additive clamping voltage can be down in the range of 35V at 100A for 24 in. leads extending up to 350V at 400A for 72 in. leads. An oscillograph depicting optimum protection at 100A and 400A is shown in Figure 9. The 100A pulse is being clamped at about 215V and 400A pulse at 265V. The peak clamping voltage is substantia!!y increased by the inductive effects of 72 in. leads as shown in Figure 10. In this oscillograph, the 100A pulse produced a peak of about 320V and 400A pulse produced a peak of about 615V. The inductive overshoot illustrated in Figure 10 is quite profound by comparison with Figure 9.

Vert: 100V/div. Horiz: 2*u*sec/div.


FIGURE 9—AC Protector, Optimum Protection

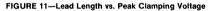
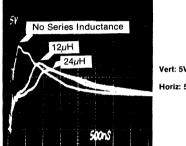


FIGURE 10-AC Protector, 72 in. Leads

CLAMPING VOLTAGE OF MICROCIRCUIT PROTECTOR

An ICT-5 type TransZorb TVS, designed for protecting low voltage logic circuits, was pulsed at levels of 100A, 200Å, 300Å, 400Å and 500Å with a 1.2 x 50 μ sec waveform. Voltage drop was measured across the leads at distances of zero, 1.0 cm and 2.0 cm from the body of the package, adding a total of 4.0 cm .030 dia. straight wire contributing to inductance and subsequently adding to the peak clamping voltage. A graph plotting total lead length vs. peak clamping voltage is shown in Figure 11.



These curves are plotted as additive above the breakdown voltage (BV) at 1mA, which was 6.3V for the device tested. The clamping voltages increase with pulse current using zero lead length due both to the electrical impedance and thermal self-heating effect on the silicon pn junction. Observe that the clamping voltage covers a very broad range, from 3.6V above BV to 24V above BV depending on peak current and insertion method.

REDUCING INDUCTIVE EFFECTS

The most obvious method of reducing inductive effects and thus optimizing protector capability is to reduce lead wire lengths in the protector circuit. If it is not possible to reduce the conductor length, other options are available. Inductance in a given length of conductor can be reduced by replacing a small diameter wire with a wide strip conductor. On circuit boards, a ground plane on one or both sides of the board has been used by the author as a method for optimizing protector clamping.

Since voltage drop across the lead length is a function of the transient rise-time, it may be feasible to add series inductance between the transient source and the protector to reduce the rise-time and subsequently the peak clamping voltage. A TransZorb® used for 5V logic protection was tested with a 300A pulse having a 1.2 x 50µsec waveform with voltage measurements made at 2.0 cm from each end of the body of the device. This is shown in Figure 12, peaking at 24V. Placing a 12µH choke ahead of the suppressor to reduce the rise-time, reduced the peak to 19V and using 24μ H reduced the peak to 17V. These curves are also shown in Figure 12.

Vert: 5V/div. Horiz: 500nsec/div.

FIGURE 12—Comparitive Clamping Voltages

CONCLUSION

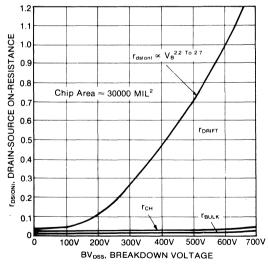
Inductive effects can be, and often are, a source of abnormally high peak clamping voltages compared to the inherent capability of a transient voltage suppressor. These high clamping voltages can cause failure of vulnerable electronic components; thus a suppressor capable of providing adequate protection can be rendered useless due to poor insertion methods. So it behooves the design engineers working on both mechanical layout and circuit design to be acutely aware of inductive effects and the problems which they can cause along with corrective measures in order to optimize transient voltage protector components.

References

- E. Van Keuren, "Effects of EMP Induced Transients on Integrated Circuits", IEEE Electromagnetic Compatibility Symposium Record, October, 1975.
- L. Gallace & H.J. Pujol, "The Evaluation of CMOS Static-Charge Protection Networks and Failure Mechanisms Associated With Overstress Conditions as Related to Device Life", presented at the 1977 Reliability Physics Symposium. April, 1977.
- F.D. Martzloff, "A Guidance on Transient Overvoltages in Low-Voltage AC Power Circuits". GE Report No. 77CRD221, September, 1977.
- Sigrid K. Llewellyn, "Broadband Magnetic Field Waveforms Radiated from Lightwarg," Masters Thesis, Florida Institute of Technology, 1977.

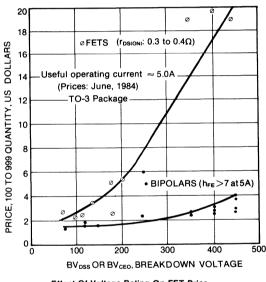
648

THE USE OF TRANSZORB® DIODES WITH POWER MOSFETS


by Jon D. Paul and Bill Roehr

ABSTRACT

Power MOSFETs have a more rapid cost vs. breakdown voltage tradeoff than do bipolar devices. Transient Voltage Suppressor TransZorb® Diodes may be used to reduce the voltage stress on the MOSFET so that a considerably lower cost device may be used.


I. Need For Transient Protection

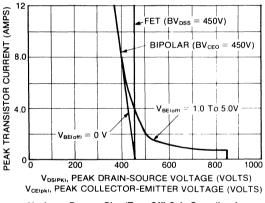
All off-line power electronic systems are subject to unwanted transient voltages. These originate from two sources: transients on the incoming ac line and transients generated in the system by the rapid switching of the power switch. The usual design procedure with bipolar switches calls for allowing generous voltage margins between the maximum anticipated circuit voltage and the breakdown rating of the transistor. The penalties are not too severe. Increasing a bipolar's breakdown rating causes a reduction in current gain and switching speed. The

Drain-Source On-Resistance vs Voltage Breakdown FIGURE 1

The TransZorb diode serves a dual application; a transient protector and an ancillary snubber. A design approach is given and successful designs are described.

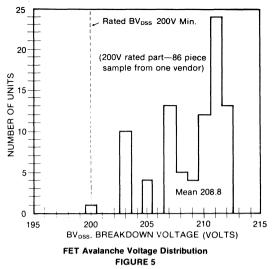
Effect Of Voltage Rating On FET Price FIGURE 2

gain, however, can be restored and speed improved with a modest increase in die area.


The MOSFET displays several properties which cause protection requirements to differ from those of the bipolar junction transistor (BJT). Figure 1 shows the direct tradeoff in on-resistance with breakdown voltage, for a fixed die size. To maintain a constant on-resistance and current rating as voltage increases requires a rapidly increasing die size.

The price picture for BJT's and FET's is shown in Figure 2. It is evident that when using FET's, reduction of the required voltage specification is a critical and very cost effective task for the design engineer.

It should be noted that the mechanism of breakdown also markedly differs between the MOSFET and BJT. Figure 3 shows the Zener-like property of the FET. The high voltage drop across the device results in high dissipation and usually destruction. should operation occur even for nanosecond intervals in the avalanche breakdown region. Operation in avalanche breakdown is not advisable for a bipolar either, but it can usually sustain some energy in the BV_{CEO(sus)} mode. Circuits are usually designed to limit peak voltage below BV_{CEO}. At low currents, however, most bipolars can handle voltages up to the BV_{CBO} limit which may approach two times the BV_{CEO} limit. The operating limits for a FET and a comparably rated bipolar device are shown in Figure 4. Properly snubbed, the bipolar can operate with a very comfortable margin for transients.


Typical FET Breakdown Characteristics FIGURE 3

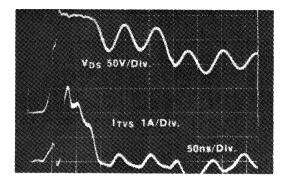
Maximum Reverse Bias (Turn-Off) Safe Operating Area FIGURE-4

In addition, the FET breakdown voltage has a significant temperature coefficient—approximately 0.5V/°C for a 400V part—which must be considered in the design. The BV_{CEO} breakdown of a BJT is essentially independent of temperature.

The close tolerance of observed MOSFET breakdown voltage is shown in Figure 5. This is a histogram of a sample of 86 parts rated at 200V. Note the nonexistent margin for error due to the tight distribution of units just above the specification minimum. The mean of this sample is 208.8 volts, with a standard deviation of 3 volts. Experience with bipolars has indicated that a margin of 50 volts is not uncommon.

Summarizing the discussion, the need to protect FETs with some voltage limiting device is compelling because:

- 1. It is expensive to design in voltage margins.
- 2. FETs display a sharp breakdown characteristic of low energy capability.
- The breakdown voltage can be expected to be very close to the specified voltage rating for most of the population.


II. Need For Ancillary Snubber

A MOSFET circuit has somewhat more critical snubbing requirements than does a corresponding bipolar circuit. As discussed in the previous section, the FET cannot dependably withstand any transients if they exceed the FET breakdown voltage, whereas the bipolar is somewhat more forgiving.

The transient problem is intensified by the fast switching of the FET. The specified FET current rise time is several times faster than that of the bipolar (for example 30ns vs. 300ns) and in practice FET circuits usually switch faster than bipolar circuits. These fast rise times generate ringing in the stray wiring inductances between the snubber and the FET as well as in the residual inductance and resistance of the snubbing circuit causing the FET to suffer short duration (20-100ns) transients. These transients are observed by probing right at the FET package, rather than at the snubbing point. Figure 6 shows typical waveforms encountered in a MOSFET SMPS. The clamping effect of the protective device is evident on the V_{DS} waveform.

Using the protector in this fashion is termed an "ancillary snubber". It is an additional snubbing device intended to clamp any fast transients which remain after the application of the main snubber. By reducing peak voltage, a lower cost FET can then be used. Dissipation in the ancillary snubber should ordinarily be a small fraction, typically 10%, of the main snubbing power in order to remain within the protector steady state power ratings.

It is important that the protection device be mounted as close as possible to the FET drain and

Waveforms Of 450W SMPS FIGURE 6

source leads to minimize the lead inductance (L_L) . Doing this is critical because any package or lead inductance will cause the FET to suffer an additional transient voltage over that of the device clamp voltage (V_c). That is, the drain source voltage, V_{DS}, is given by:

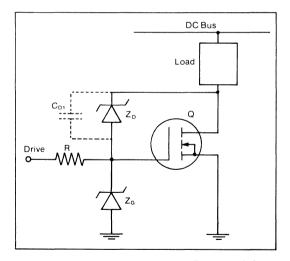
$V_{\text{DS}} = V_{\text{C}} + L_{\text{L}} \Delta I / \Delta t$

For example, a 5 Amp pulse rising in 5ns will cause a 10V increase in V_{DS} over V_C for a lead inductance of only 10nH, about 1%'' of AWG #18 wire. Thus the rating of the FET will have to be increased to accomodate this overshoot.

III. Choice Of Protective Device And Circuit

The ideal device to insure operation of the FET within its limits would have these properties:

- Low clamping ratio—to allow optimum utilization of the available FET safe operating area while abruptly limiting just below FET breakdown.
- Low capacitance—to take best advantage of the inherently fast FET switching.
- Low cost—to reduce overall systems cost by reducing FET cost without excessive protective device cost.
- Sustantial steady-state power rating—to permit use of the transient protection device to "mop-up" any remaining repetitive voltage transients after application of snubbing techniques.
- A variety of close tolerance breakdown voltages—to closely match the FET requirement.
- Low inductance and fast switching—to clip short (30ns) spikes which can be FET-fata!!
- Shorted catastrophic failure mode—to save the relatively expensive FET under extreme overload.

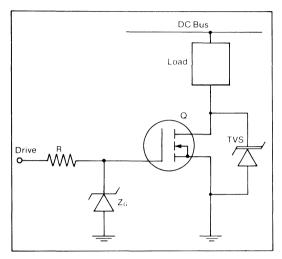

Table 1 compares the various protection devices available. The MOV is too soft in its clamp property and is specified in large voltage increments. The standard Zener is not rated for clamp properties and is not fail-safe. Gas tubes are unsuitable due to their arc conduction mode and wide breakdown variation, The Transient Voltage Suppressor (TVS) or Trans-Zorb Diode, if properly specified and selected, is the only device which can fulfill the requirement.

DEVICE	MOV	ZENER	TVS	GAS SURGE ARRESTOR
Range Of Voltages	12-4700	3-200	5-400	90-1,000
Voltage Spec Increments	10-25%	5-10%	10%	20%
Tolerance	10%	5%	5%	15%
*Clamp Ratio @ 10A	1.85 (13 J)	1.65 No Spec	1.25 (15 J)	2.55
Capacitance (200V Device)	150pF	30pF	30pF	1.2pF
Price	Medium To Low	Low	Medium	Medium
Steady State Power Dissipation Capability	Very Low (۶۷۷ For 10 J Device)	Good To 50W	Good To 10W	Not Applicable
Failure Mode	Gradual Shift In Breakdown	Open Or Short Circuit	Short Circuit	Gradual Decrease In Protection
Polarity	Bipolar Only	Unipolar & Bipolar	Unipolar & Bipolar	Bipolar Only
Other Properties And Notes	Good For Mains Use, Not Suitable FET Protection	No Spec For Transient Use	Ideal For SMPS Switch	After Ignition Enters Arc Mode With Low Voltage Drop—Requires Zero Current To Extinguish

*Defined as V_C/V_{BR} measured for a particular unit.

Protective Device Comparison

TABLE 1



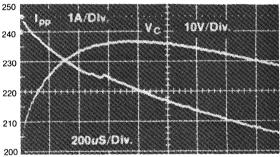
FET Protection Drain To Gate—Not Recommended FIGURE 7

A suggested technique which has been proposed by FET manufacturers for protection is shown in Figure 7: A Zener rated below the FET breakdown (minus $V_{gs(on)}$) is placed from drain to gate. During a transient the FET is turned on and can handle a much higher current than the Zener diode alone. The configuration has some serious problems:

- 1. Limited Zener availability at high voltages.
- Zener capacitance can induce an unwanted dv/dt turn-on of the FET which could be fatal.
- 3. Increased power dissipation in the FET.

Experience has taught that a protection diode from drain to source is better as shown in Figure 8. Note that a gate to source Zener is always advisable, regardless of the drain voltage breakdown protection scheme.

FET Protection Drain To Source—Preferred Circuit FIGURE 8


IV. Selecting The Transient Voltage Suppressor

Selecting the rating of the protector is a nontrivial task. This is caused by the lack of correspondence between the manner in which the TVS diodes are specified versus the service conditions experienced in the application. The TVS must be selected on these criteria:

- Minimum breakdown voltage must exceed maximum bus voltage under worst case conditions. The peak bus for a high line (135/270V) condition is 191/382 volts.
- 2. Maximum clamping voltage (V_c) at the peak applied TVS currents should be under the MOSFET minimum breakdown voltage. Peak TVS current will approximate peak switch current. For a supply with an 8 Amp switch current, TVS peaks of 3-5 Amp are typical. V_c must be determined for the TVS at its operating current at the extremes of the expected ambient temperature. The MOSFET temperature coefficient must also be considered.
- The TVS continuous power dissipation must be sufficient to handle the average power experienced by the TVS because of the repetitive current pulse applied.

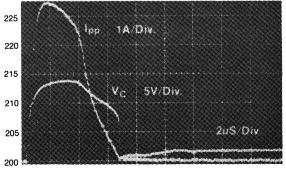
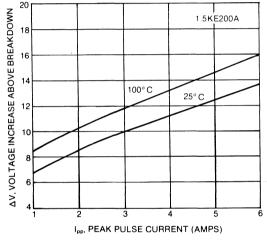

Specifications for Transient Voltage Suppressor Diodes are generally keyed toward suppressing a large single shot impulse. The format was developed years ago using standards devised by the telephone industry. The key specifications are the range of breakdown voltage (V_{BR}), usually specified at 1mA, and the maximum clamping voltage (V_c) usually specified at the rated power level of the diode. The clamping voltage is specified for a 10 x 1000µs impulse (10µs rise, 1000µs decay to the 50% point) developed by the U.S.A. Rural Electrification Agency (R.E.A.) to simulate lightning surges on telephone lines. The measured voltage is the sum of the breakdown voltage and a non-linear IR drop; both components are temperature sensitive. Since the specification additional data and some data manipulation is necessary in order to determine if a diode will fit a particular requirement.

Figure 9 shows the voltage (V_c) and current (I_{PP}) waveforms for the 10 x 1000 impulse used for the standard clamping voltage test on a 200 volt break-down device. The voltage wave shows the increase in voltage above the breakdown voltage of the diode at 25° C. The initial rise in voltage is the result of diode resistance. The slow rise to the peak value of 46V at about 800 μ s after pulse application is caused by the temperature rise of the junction. The major temperature dependent voltage change is caused by the temperature coefficient of the avalanche breakdown voltage.

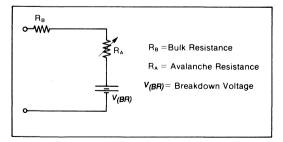
Clamping Voltage Response For A 10 x 1000 Impulse FIGURE 9

The waveforms of Figure 9 do not permit an accurate observation of the IR drop. A short test pulse is needed. Figure 10 shows the current and voltage waves when a pulse of about 5μ s width is applied.


Clamping Voltage Response for a 5us Pulse FiGURE 10

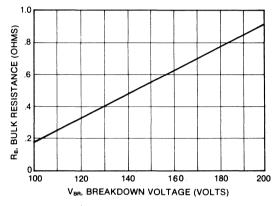
Some thermal effects are evident because the voltage does not track the fall in current; however, by reading the voltage at the peak of the current wave, the temperature contribution is small. Thus the IR drop is only 13 volts at the specified test condition of 5.5A.

Note that the temperature contributed component of voltage rise is almost three fourths of the total. This proportion has been found to be roughly the same regardless of the TVS diode voltage. Therefore, a more reasonable estimate of the voltage rise (ΔV) above breakdown under short pulse conditions (i.e., negligible instantaneous heating) can be found from:


$$\Delta V = (V_{C(10 \times 1000)} - V_{(BR)}max)/4$$
 1)

The voltage from Equation 1 is roughly correct for the test current I_{PP} specified for the clamping level V_c. Typical data supplied by the manufacturer is shown in Figure 11. It indicates a fairly constant resistance at currents above one ampere. At low currents the avalanche resistance increases rapidly with decrease-

Clamping Voltage With A Fast Pulse FIGURE 11


ing current. This behavior suggests a model as shown in Figure 12. At currents above one ampere, the resistor R_A may be replaced with a voltage taken from the y axis intercept of Figure 11. Also from Figure 11, the bulk resistance R_B may be read as approximately

Model For A Transient Voltage Suppressor Diode FIGURE 12

0.9 ohms. At currents different from the specification, ΔV may be found by adding an IR drop correction term to the voltage from Equation 1.

The resistance R_B varies somewhat proportionately with diode breakdown voltage as shown on Figure 13. This data can be used directly to estimate voltage levels for diodes in the 100 to 200 volt range. Note that R_B of a 200 volt diode is over twice that of a 100 volt part. Consequently, diodes with breakdowns over 200 volts are usually made by stacking die. For example, a 400 volt part is composed of two 200 volt diodes. The data of Figure 13 is therefore useful in estimating clamping levels for all diodes with breakdowns over 100 volts.

Relation Of Bulk Resistance To Breakdown Voltage FIGURE 13

In a snubber/clipper application, some average power $P_{M(AV)}$ is dissipated and will cause an increase in breakdown voltage. The upper limit $V_{(BR)}$ may be found from:

$$V_{(BR)} = V_{(BR)} \max_{@ 25^{\circ}C} + \Theta_{V}(T_{J} - 25^{\circ}C)$$
 2)

Where $\Theta_v =$ Temperature coefficient of breakdown voltage in volts per degree centigrade

 $T_J =$ Juntion temperature (°C)

The junction temperature (T_J) is calculated either from:

$$T_{J} = T_{A} + R_{\theta JA} P_{M}(AV) \qquad 3a)$$

$$T_{i} = T_{i} + R_{e,i} P_{M(AV)}$$
 3b)

Where $T_A = Ambient$ temperature (°C)

- $R_{0,A} =$ Junction to ambient thermal resistance $P_{M(AV)}$ = Average power
- $R_{\text{BJL}} =$ Junction to lead thermal resistance
- $T_{L} = Lead$ temperature

The thermal resistance is not often specified but can be found by using the rated power dissipation $P_{M(AV)}$ and temperature rating ($T_{J(max)}$), i.e.:

$$R_{\theta JA} = (T_{J(max)} - T_A)/P_T @ T_A$$
 4a)

$$R_{\theta JL} = (T_{J(max)} - T_L)/P_T @ T_L$$
 4b)

The total voltage is the sum of V_{BR} from Equation 2 and ΔV from Equation 1, corrected for the actual current through the TVS.

or

or

An empirical procedure is a convenient way to select the TVS. We recommend starting with the breadboard circuit, using a passive snubber and the highest available voltage grade of FET. A variety of TVS diodes covering the range of interest should be available. These could be series combinations of lower voltage parts, say 50V, 100V, and 200V devices. Alternately, a TVS whose anode is returned to a variable power supply could be used for circuits where the FET source is grounded. The REA 10 x 1000 current rating should be comparable to the FET on-state current.

The snubbing current in the TVS is observed with a current probe around the TVS lead. The current and duration of the pulse is noted as the TVS (or variable supply) voltage is varied. For each TVS voltage grade, the TVS snubbing power may be found from:

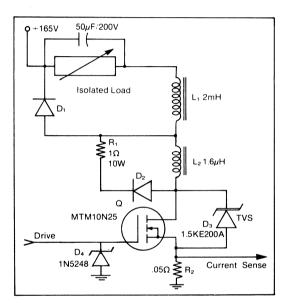
$$P_{M(AV)} = V_{C} I_{PP} t_{p} f_{r}$$
5)

Where PM(AV): Average Power

- V_c = Clamping Voltage of the TVS
- IPP = Peak Pulse Current
- t_p = Average Pulse Width
- f_r = Repetition Frequency

From this information, the tradeoff between TVS power dissipation and FET breakdown voltage (and hence cost) may be seen. Choosing the lowest voltage FET, consistent with a reasonably low cost appropriate TVS is easily done.

V. Finalizing The Design


Use of the various procedures and equations discussed are illustrated in this section for three different applications. For convenience, Table 2 is presented. It summarizes the key specs for a popular series of TVS. ΔV for the 5 μ s pulse was calculated using Equation 1. V_c for the 5 μ s pulse was calculated by adding ΔV to the maximum breakdown voltage.

ELECTRICAL	PART NUMBER						
CHARACTERISTIC	1.5KE200A	1.5KE220A	1.5KE250A	1.5KE400A			
Breakdown Voltage V _{BR} Volts Min/Max	190/210	209/231	237/263	380/420			
Maximum Clamping Voltage 10 x 1000 V _C (Volts)	274	328	344	548			
Maximum Peak Pulse Current Ipp (A)	5.5	4.6	5.0	4.0			
Estimated Maximum 5 <i>u</i> s Volts Above <i>V_(BR)</i> ∆V (Volts)	16	24	21	32			
Estimated Clamping Voltage 5 <i>u</i> s Pulse V _C (Volts)	226	255	284	452			
Maximum Temp. Coefficient V _(BR) θ _V (V/°C)	.216	.214	.266	.432			

The first example is a constant current buck regulator operating from 120Vac, the most commonly used main in the U.S.A. The circuit of Figure 14 provides a constant 9 Amp output into a load which varies from 2 to 5 Ohms. The basic regulator is composed of choke L₁, FET switch Q and freewheeling fast recovery diode D₁. The switch current is sensed by R₂; the resulting feedback signal and the gate drive are referenced to ground. The repetition frequency is 33 KHz. The ambient operating temperature range is 0°C to 50°C.

This buck topology generates a current spike when the switch turns on, during the reverse recovery

8 Amp, 0V to 50V Constant Current Buck Regulator FIGURE 14

interval of D₁. The small choke L₂ limits the magnitude of this current spike, but it stores energy and so is a source of voltage transients. Diode D₂ and resistor R₁ provide a path to dissipate this stored energy. The TVS diode D₃ snubs any remaining energy by clamping the drain-source voltage below the breakdown voltage of Q. Diode D₄ protects the gate.

The power switch has a rated BV_{DSS} of 250 volts. Since FETs are rated on the Absolute Maximum Rating System, this rating is only applicable at 25°.C. The temperature coefficient of the FET is about 250mv/°C. Therefore, at 0°C, limit samples of the FET could breakdown at 243.8V, which sets the upper limit of the TVS clamping voltage at 0°C. The maximum junction temperature of the FET under worst case operating conditions will not exceed 100°C. Therefore 268.8 volts is the upper temperature limit of both FET breakdown and maximum TVS clamping voltage. The calculated FET breakdown voltages are listed in Table 3 along with other key data points for this example.

CHARACTERISTICS	WORST CASE LIMITS			
System Ambient Temp.	25° C	0°C	50° C	
FET Breakdown Volts	250.0	243.8	268.0 @T _J = 100°C	
TVS Breakdown (Vmin)	190.0	184.6		
TVS Breakdown (Vmax)	210.0		224.3 @ T」= 91.2°C	
Maximum Clamping Volts		215.0	240.2 @ T _J = 91.2°C	

Key Voltages And Temperatures For Design Example 1 TABLE 3

The lower limit of the TVS should be above 184V to avoid conduction under the high line condition of 130Vac. The cold temperature limit is the worst case.

The waveshapes for this circuit using the best snubber/TVS combination were previously shown in Figure 6. Peak TVS current is approximately 3.2A; the current wave is modeled by a square wave having a 50ns pulse width. From Equation 5, the average power calculates as:

 $P_{M(AV)} = (200) (3.2) (50 \times 10^{-9}) (33 \times 10^{3}) = 1.06W$

Looking at Table 2, it appears that a 1.5KE200A would be satisfactory but the worst case conditions need to be checked. The maximum temperature coefficient is 0.216 Volts/°C. At 0°C, the breakdown could be as low as 190-(.216)(25) = 184.6 volts which is just barely satisfactory.

The upper junction temperature limit of the TVS is more difficult to ascertain. To minimize inductance the TVS should be mounted as close as practical to the transistor drain-source leads which will transfer some heat from the transistor to the TVS. The TVS lead temperature in the buck regulator measures 45° C at room ambient of 25° C. At the 50° C upper operating temperature of the equipment, the lead temperature T_L is 70°C. The TVS has a 5W rating at T_L = 75°C. T_{J(max}) is 175°C. Using Equation 4b:

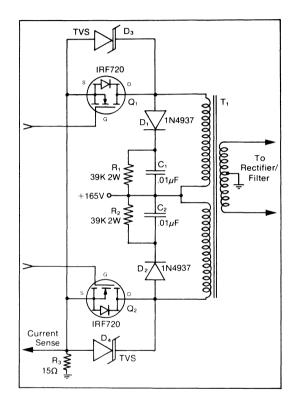
 $R_{\Theta JL} = (175 - 75)/5 = 20^{\circ} C/W$

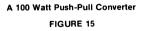
Using Equation 3b, the junction temperature is found to be:

$$T_J = 70 + (20)(1.06) = 91.2^{\circ}C$$

The maximum breakdown voltage is found from Table 2 and Equation 2 as:

The IR drop (ΔV) in the TVS must now be determined. Data for the 1.5KE200A is shown in Figure 11. It indicates $\Delta V = 12$ volts at 100°C and 10 volts at 25°C, typically. Another approach is to work from the 5.5A estimated ΔV limit of 16 volts. The current correction term is IR_B where R_B is shown in Figure 12 as 0.9 Ohms. Therefore the voltage correction for current is (3.2 - 5.5) (0.9) = -2.1V. Figure 11 indicates a +2 volt correction for T_J = 100°C. Finally:

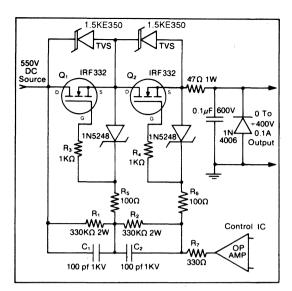

$$V_{C(max)} = 224.3 + 16 - 2.1 + 2.0 = 240.2V$$


Thus the clamping voltage is well below the actual FET breakdown of 268 volts at $T_J = 100^{\circ}$ C.

The worst case situation at 0°C needs to be checked. With a high limit TVS and a conservative Θ_V

of 0.2V/°C, the breakdown at 0°C is 210 + .2 (0-25) = 205V. At $T_A = 0$ °C, the TVS junction will be at 20°C steady-state. Accordingly voltage ΔV at $T_A = 0$ °C is less than the 10 volts shown in Figure 11, so that total V_c will not exceed 215 volts. The FET breakdown at 0°C was shown previously to be 243.8, well above the expected V_c.

The supply shown in Figure 15 is another example. It uses a pair of 400V FETs in a center-tapped push pull configuration. The dc bus is from a rectified 120Vac line (165Vdc). The push-pull topology subjects the FET to twice the bus voltage plus the overshoot due to leakage inductance. At high line the


FET steady-state off-voltage is 368 volts.

The leakage was minimized by careful transformer design. The leakage energy is snubbed primarily by diode-resistor-capacitor networks $D_1 - R_1 - C_1$ and $D_2 - R_2 - C_2$. The small remaining transient is clamped by the transient suppressing diodes D_3 and D_4 . Since the FET breakdown voltage rating is 400 volts, the voltage margins in this situation are quite tight. In order to use the lower cost 400V FET, it was necessary to use a tightly specified TVS, having a minimum breakdown voltage of 370V and a maximum of 390V.

The last circuit to be described is a linear regulator. The circuit provides a 0 to 400 volt output with low noise and precise regulation from a 550V \pm 50V source. See Figure 16.

Two FETs in series are used with 400 volt ratings. Resistors R_1 and R_2 divide the applied voltage by 2 and drive the gate of Q_1 . C_1 and C_2 provide dynamic voltage sharing by swamping FET and stray capacitances. The gate of Q_2 is driven by the control IC op-amp. The control circuitry is referenced to the source of Q_2 (output of circuit). The gate resistors R_3 and R_4 are parasitic suppressors. Resistors R_5 , R_6 and R_7 limit fault currents fed to the control circuit in case of drain to gate shorts in either FET.

Protection in this case is used simply for random transients and consists of a 1.5KE350 TVS across each FET plus an 18V gate Zener. The TVS diodes also pass reverse fault currents back to the 550V bus.

Linear Regulator Using Series MOSFETs FIGURE 16

VI. Summary

A method permitting use of lower voltage and hence lower cost FETs in switched-mode power supplies has been described. The technique involves using a carefully chosen Transient Voltage Suppressor (TVS) diode across the FET drain-source terminal to assure voltage spikes are within the FET rating. A method has been detailed for calculating the TVS performance from the data given on manufacturers data sheets. Its application to successful designs has been discussed. GENERAL REFERENCES

- 1. General Semiconductor Industries, Inc. Diode and Transistor Product Catalog, 1983
- 2. General Electric Transient Voltage Suppression Manual, 4th Edition
- 3. International Rectifier Hexfet Data Book, 1982
- 4. Motorola Zener Diode Handbook, 1967
- 5. Motorola Rectifiers and Zener Diodes Data Book, 1982
- 6. Motorola Power Data Book, 1982

ACKNOWLEDGEMENT

Thanks are due to Daniel Naum of Scientific Conversion and to Robin McCoy and Bruce Hartwig for obtain the test data and preparing preliminary drawings.

HARDENING POWER SUPPLIES TO LINE VOLTAGE TRANSIENTS

by

Bill Roehr

Originally presented at the Power Electronics Design Conference, October, 1985, Anaheim, California Also published in Power Conversion & Intelligent Motion, June, 1986

Abstract

The power line transient environment is described. Transient voltages on the DC output of off-line rectifier/filter designs are shown. Protection schemes are discussed. An integrated rectifier/tran-

INTRODUCTION

Unexpected line voltage transients are finally being recognized as a significant factor in the failure of Switching Mode Power Supplies (SMPS). As stated in a recent Navy publication': "The most predominant power supply failure modes are caused by peak instantaneous transients and subtle factors within and external to the power supply. . . The following is a list of key points to consider when designing and evaluating a switching-mode power supply design: (1) Put voltage transient protection on the input power lines."

Until the publication of IEEE Standard 587-1980², now ANSI-IEEE C62.41, the designer of off-line SMPS was unsure of the ac line transient environment. Now switching power supplies can be designed to meet this standard and pulse generators are available which produce the waveform specified. The standard specifies that low impedances across the line in commercial and industrial environments should handle an 8/20 current waveshape (double exponential, 8µs rise time, 20µs decav to half of peak) having a peak amplitude of 3000A.

It should be understood that lightning induced transients propagate through a system as a current source looking for a low impedance path to ground. It is unlikely that most designers make provision for the rectifier and filter system to handle pulse currents up to 3000A, but a conservative design philosophy indicates that this should be done. The task is not easy, because component manufacturers do not generally consider this problem either.

A rectifier diode having a single-cycle 60Hz surge current rating exceeding 300A would most probably handle the 3000A, $8/20\mu$ s impulse specified in the standard, but the capability of rectifiers with lower ratings is questionable and needs to be verified. Rectifier diode surge capability will not be further addressed in this paper but clearly the rectifier must handle surge currents; the amount depends upon the protection scheme used.

In most off-line SMPS, the element which prevents excessive transient voltages from appearing across the DC bus and also bears the brunt of carrying the line to neutral transient pulse current is the filter capacitor. However, the charge delivered by the input transient and the voltage drop across the capacitor's ESL and ESR combine to develop a large overshoot voltage. This overshoot usually shorts the power switches connected to the DC output from the rectifier system.

Providing a network to limit voltage to a predetermined maximum rather than using higher voltage sient suppressor circuit is suggested as a costeffective means of rendering the DC bus virtually immune to line transients.

power switches offers a number of advantages to the power supply designer, independent of the choice of switching transistor (i.e., bipolar or FET). For a bipolar transistor of a given die area, lowering the breakdown voltage raises current gain and reduces all switching times. Reducing the breakdown voltage of a FET chip causes a marked decrease in on-state voltage—the principle determinant of power loss—because of the relationship $r_{DS(n)}$ of V_B^{2f} . Alternately a smaller size power switch chip could be used to achieve the same performance while realizing a significant cost savings³.

CONDITIONS IN AN UNPROTECTED SYSTEM

Most SMPS have an input network as shown in Figure 1. The impedance is used to limit start-up inrush current without causing excessive power loss. The series impedance may be a thermistor or a resistor which is often shunted by a triac to reduce power loss after start-up.

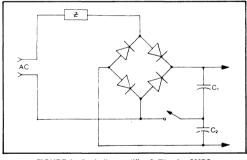


FIGURE 1—Basic line rectifier & filter for SMPS operating from 120/240V lines

It is not unusual to allow for a 20% tolerance on a 120/240V ac power line which puts the voltage crest at about 400 volts. Added to the dc level is the overshoot caused by the 3000A impulse. The usual switching power supply which operates from 120/240V inputs has two capacitors as part of the voltage doubler arrangement. The capacitors are connected in series when used on 240V. Thus, the total dc bus voltage spikes up to twice the individual capacitor transients when used on 240V.

The voltage waveform of Figure 2 reveals the presence of three components of overshoot: 1) a fast rising step caused by the di/dt of the wave flowing through the capacitors ESL, 2) an in-phase component caused by the current flow through capacitor ESL, and 3) a charge placed on the capacitor. Obviously, the transient voltage can be reduced by using a large

valued capacitor having low ESL and ESR. The relationship is given in Equation 1.

$$v_{c} = \frac{I}{C} \int i dt + i R_{s} + L_{s} \frac{di}{dt}$$
(1)

where

- C = input filter capacitance
- i = pulse current
- Rs = capacitor equivalent series resistance (ESR)
- L_s = capacitor equivalent series inductance (ESL)
- di/dt = rate of rise of transient current

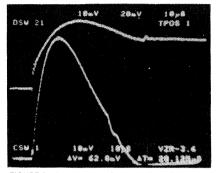


FIGURE 2—Capacitor waveform showing spike caused by current, and charge placed on capacitor (C1 = C2 = 650µF; Upper: 10V/div; Lower: 100A/div; Time: 10µs/div)

Measured voltage transients for some different capacitors when pulsed with 500A in the circuit of Figure 1 are shown in Table 1. With a 3000A pulse, overshoots of 6 times the values shown would occur. In all cases of 240V input, the transient voltage exceeds the typical 250V surge rating of a 200 volt capacitor. Even worse, the DC bus—possibly at about 400 volts because of high line, low load condition—is now up to at least 560 volts! No wonder power switch failures occur in seemingly well designed systems.

C1, C2	Туре	Input	Peak Transient Voltage	Charge Voltage
540µF	Mepco/Electra	120V	39V	30V
540µF	319DA541T250AMA1	240V	75V	58V
	Mepco/Electra	120V	33V	23V
650µF	3120EA651T200BHA1	240V	65V	46V
2100µF	General Electric	120V	12V	7V
2100µP	44A417052M21	240V	27V	16V

TABLE 1—Transient performance of the circuit of Figure 1 (Peak Pulse Current = 500A)

The spike could be clipped by a suitable TVS device but the charge voltage persists for too long and is not easily eliminated. The best solution is to minimize the amount of transient current being fed to the capacitor.

TRANSIENT PROTECTION TECHNIQUES

General principles of powerline transient protection have been described in a paper by Jacobus⁴. Almost concurrently, a specific module designed using these same principles which meets the 3000A specification of ANSI-IEEE C62.41 was described by Roehr and Clark⁵. Both papers deal with providing transient protection downstream from susceptible equipment. However, in a power supply, components which must be present for rectification and filtering may be used as part of the transient suppression network.

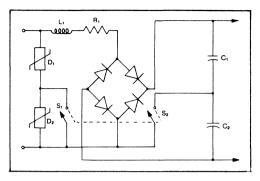


FIGURE 3—Basic circuit with MOV protection

When transient protection is used in a SMPS, it most often is nothing more than a single MOV across the line as shown in Figure 3. Table 2 shows test results taken in the circuit of Figure 3. Note that the worst transients occur in the 240V position when both switches are open. However, unless the MOV voltage is adjusted to fit the lower line voltage when used on 120V ac, (i.e., S1 is closed), a very large capacitor current flows. For example, with only .5 ohm impedance the 77 volt spike appears across only one capacitor; with 3000A of input current the spike would increase to 115V which could exceed the surge voltage rating of the capacitor. The 106 volt transient increases to about 150 volts when 3000A is applied, bringing the bus voltage to 550 volts.

R1 - L1	Input	S1	Peak Transient Voltage	Charge Voltage	Peak Capacitor Current
		Open	77V	54V	1080A
0.5Ω - 0µH	120V	Closed	24V	21V	440A
	240V	Open	106V	78V	780A
0.50 100.11	120V	Closed	18V	10V	190A
0.5Ω - 100µH	240V	Open	74V	47V	440A
1.0Ω - 100μH	120V	Closed	12V	7V	130A
1.052 - 100µH	240V	Open	53V	34V	300A

TABLE 2—Transient performance of the circuit of Figure 3 $(R_1 = 0.5\Omega, C_1 = C_2 = 540\mu$ F, Peak Pulse Current = 2000A)

To improve the transient suppression, the capacitor and/or the series impedance must be larger. The data in Table 2 taken with higher series impedances shows some improvement in lowering the transient levels but the transients are still higher than desired. For very low power supplies, the circuit of Figure 3 would be satisfactory if an appropriate series impedance and capacitor were chosen. For example, the data of Table 1 shows that the 2100μ F capacitor allowed only 27V of overshoot with a 500A pulse. This capacitor would be satisfactory if used in Figure 3 with the 0.5 ohm- 100μ H input network.

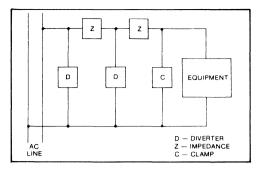


FIGURE 4—General topology for a protection network

A general topology for transient protectors is shown in Figure 4 using the notations of Jacobus. The diverter devices handle high currents but do not offer a precise control of voltage; gas tubes and metal oxide varistors (MOVs) are typical diverting elements. The clamp devices have lower impedance than the diverters but have lower energy handling capabilities. A Trans-Zorb® Voltage Suppressor (TVS) Diode is a typical clamping device. The series impedances shown semiisolate the various diverter and clamp stages by causing a voltage drop between them. To meet the requirements of ANSI-IEEE C62.41, Category B, and provide low output voltage clamping, the topology of Figure 4 has proven to be quite effective.

AN INTEGRATED RECTIFIER/SUPPRESSOR CIRCUIT

After some experimentation, the network of Figure 4 has been found to work quite well when the first diverter is a MOV, the first impedance is composed of the inrush current limiting resistance and an inductor, the second diverter is a silicon transient voltage suppressor and capacitor network, the second impedance is a series R-L circuit, the clampings devices is the filter capacitor.

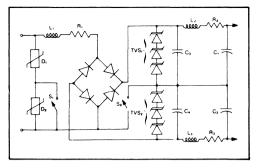


FIGURE 5 - Circuit providing a high level of protection

Figure 5 (patent pending) shows a practical implementation of the circuit of Figure 4 which is virtually immune to transients. The resulting T filter network also attenuates high frequency noise in both directions, thus easing EMI filter requirements. Performance is shown in Table 3 when pulsed with 2500A. The resulting 25V peak transient appearing at the output is low enough to allow the use of 450V rated transistors in the power switching section.

Input	Peak Transient Voltage	Charge Voltage	Peak Capacitor Current
120V	9V	5V	103A
240V	25V	16V	163A

(Pulse Current \approx 2500A, L₁ = L₂ = L₃ = 100 μ H, R₁ = R₂ = R₃ = 0.5 Ω TVS Stack; 5KP60)

CONCLUSION

Only by ensuring a clean dc bus can a switching power supply be a reliable piece of equipment. Attention must be given to the lowly line rectifier and filter system to dramatically reduce line voltage transients. The circuit of Figure 5 provides a satisfactory clean dc level.

Reference

- "Navy Power Supply Reliability—Design and Manufacturing Guidelines," NAVMAT P4855-1, Pg 27, NAVPUB-FORCEN, 5801 Tabor Ave., Philadelphia, PA 19120.
- "IEEE Guide for Surge Voltages in Low-Voltage AC Power Circuits," IEEE Standard 587-1980, Institute of Electrical and Electronic Engineers, 345 E. 47th St., New York, NY 10017
- Jon D. Paul and Bill Roehr, "The Use of Transient Voltage Suppressor Diodes With Power Mosfets," Official proceedings of the 9th International PCI '84 Conference,

Intertec Communications, Inc. 2472 Eastman Ave., Unit 34, Ventura, CA 93003.

- N.M. Jacobus, "Designing Power Line Transient Protection Circuits," Proceedings of Powercon 11, D-4 pp. 1-11., Power Concepts, Inc., P.O. Box 5226, Ventura, CA 93003.
- William D. Roehr and O. Melville Clark, "AC Power Line Protection for an IEEE 587 Class B Environment," NASA Conference Publication 2356.

AN EFFECTIVE TRANSIENT AND NOISE BARRIER FOR SWITCHING POWER SUPPLIES

by Bill Roehr

Originally presented at the Power Conversion International Conference, Munich, West Germany, June 1986. Also published in Power Conversion & Intelligent Motion, September, 1986.

Abstract

The power the transient environment and conduction emission requirements are described. Transient voltages of the DC output of off-line rectifier designs are shown. Various protection and filter schemes are discussed. An integrated rectifier/transient suppressor/EMI filter circuit is suggested as a cost effective means of rendering the DC bus virtually immune to power line (ac mains) transients as well as keeping EMI from the switching power supply out of the ac mains.

INTRODUCTION

Switching power supply designers are aware that the interface between the ac mains and the rectified DC bus must be designed to solve two problems.

- 1. Component failure caused by line voltage transients.
- 2. Excessive conducted noise into the mains.

Unexpected mains voltage transients are now being recognized as a significant factor in the failure of Switching Mode Power Supplies (SMPS). As stated in a recent United States Navy Publication1:

"The most predominant power supply failure modes are caused by peak instantaneous transients and subtle factors within and external to the power supply... The following is a list of key points to consider when designing and evaluating a switching-mode power supply design:

(1) Put voltage transient protection on the input power lines."

With the publication of IEEE Standard 587-1980², now ANSI-IEEE C62.42, power supplies can be designed with assurance that failure caused by power line transients are rare. The standard specifies that low impedances across the line in commercial and industrial environments should handle an 8/20 current waveshape (double exponential impulse 8*us* rise time, 20*us* decay to half of peak) having a peak amplitude of 3000A. The reason for dealing with current is that lightning induced transients propogate through a system as a current source seeking a low impedance path to ground. Most designers presently do not make provision for the rectifier and filter system to handle pulse currents up to 3000A without producing excessive dc bus voltage, but a conservative design philosophy indicates that this should be done.

Since the emissions from switching power supplies can cause serious interference with broadcast and telecommunications services, governments have imposed conducted noise limits on equipment connected to the ac mains. Despite efforts to control the noise sources within the SMPS, filtering is needed at the power input terminals.

In an off-line switcher without transient voltage suppressor (TVS) devices, the ripple filter capacitor must handle the line to neutral transient pulse current. However, the charge delivered by the input transient and the voltage drop across the capacitor's ESL and ESR combine to develop an overshoot voltage. Given enough transient current, the overshoot is high enough to cause breakdown failures in the power switches connected to the DC output from the rectifier system.

The ripple filter capacitor also filters differential mode (line-to-line) noise to a degree. However, it is not adequate as a high frequency filter because of its ESL and ESR failing to allow equipment to meet the modern emission standards. In addition, the capacitor does nothing to reduce common mode noise which is usually the major EMI problem. A common solution to the line transient problem is to add a transient voltage suppressor, usually a MOV, across the line and another MOV or two from neutral to ground and line to ground. However, to be effective, either an excessively large impedance must be placed between the MOV and the filter capacitor or an excessively large filter capacitor must be used.

The usual solution to the EMI problem is to add an ac mains filter to the power supply input. Often, on off-the-shelf item will permit compliance to the required agency regulations, but in some cases a custom design is required. Unfortunately, many filters cannot handle line transients without generating severe ringing or becoming damaged. The transient suppression and filtering requirements must be carefully coordinated if satisfactory results are to be obtained.

The material in the following sections will initially review the priciples of powerline transient suppression and filter circuits. Secondly, a way of integrating the two functions into a circuit which uses inductors to function both as current limiting impedances for transients and as filter reactors for EMI will be described.

REVIEW OF PROTECTION TECHNIQUES

The work in this paper is an extension of that reported in an earlier paper³. For completeness, the key findings and basic principles will be reviewed here and integrated into the newer material.

The voltage placed on the ripple filter capacitor by a transient consists of three components and is given approximately by Equation 1.

$$v_{c} = \frac{1}{C} \int i dt + i R_{s} + L_{s} \frac{di}{dt}$$
(1)

where

C = input filter capacitance

i = pulse current

- Rs = capacitor equivalent series resistance (ESR)
- L_s capacitor equivalent series inductance (ESL)
- di/dt = rate of rise of transient current

Measured output voltage transients in the typical rectifier circuit of Figure 1 are shown in Table 1. The voltage components developed across Rs and Ls are essentially in phase with the current wave but the voltage caused by the charge persists for a relatively long time after the input transient has subsided. Both the

FIGURE 1—Basic line rectifier & filter for SMPS operating from 120/240 lines

peak voltage and the charge component are noted in the table.

Two values of impedance were used for Z. Z1 consists of 10μ H (from a circuit breaker) in series with a ½ ohm resistor while Z2 consists only of a resistor. The small inductor caused a slight distortion of the 8/20 wave from the pulse generator as compared to the case when the ½ ohm resistor was used alone.

By studying the data in the table, several conclusions are evident:

- The 240V input connection produces about twice the transient voltage than does the 120V connection. This is to be expected since the capacitors are connected in series.
- 2. What might appear to be minor differences in waveshape can produce significant differences in transient voltage. This also is not surprising; Equation 1 indicates that the rate of current rise and the area under the current waveform effect the peak transient voltage for a fixed level of peak current.
- 3. Even with a transient current of 500A, a commonly encountered value, the transients developed across the smaller filter capacitors could cause power switch failure, particularly if a high line condition were simultaneously encountered. At the 3000A level of the standard, the transient voltages would be 6 times the values in the table, spelling disaster for the power supply.
- 4. The larger the filter capacitor, the better the situation. This point is also obvious from Equation 1 and serves to explain why low-power personal computers and their peripherals have such a poor field service record.

C1, C2	Туре	Input		ransient tage	Charge Voltage	
			Z 1	Z2	Z 1	Z2
540µF	Mepco/Electra	120V	39V	30V	30V	22V
540µF	319DA541T250AMA1	240V	75V	60V	58V	44V
050 F	Mepco/Electra	120V	33V	30V	23V	18V
650µF 3120EA	3120EA651T200BHA1	240V	65V	58V	46V	34V
2100µF	General Electric	120V	12V	13V	7V	6V
	44A417052M21	240V	27V	26V	16V	12V

TABLE 1—Transient performance of the circuit of Figure 1

 $(Z_1 = 10 \mu H + 0.5 \Omega, Z_2 = 0.5 \Omega)$

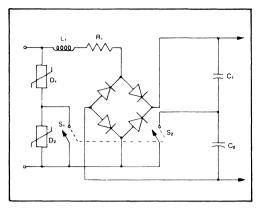


FIGURE 2—Basic circuit with MOV protection

Faced with this kind of evidence, many designers have concluded that transient voltage suppression devices are necessary. Quite often protection takes the form of little more than a single MOV across the line. Figure 2 shows another variation of the usual MOV protection circuit. In this circuit S1 provides a means to adjust the MOV voltage to fit the line voltage. If this is not done, a very large capacitor current flows when the input filter is configured for 120VAC operation. This is illustrated in Table 2 in the top row with S1 open and .5 ohm impedance. The large capacitor current produces a 77 volt spike across only one capacitor since the circuit operates as a voltage doubler: with 3000A of input current the spike would increase to 115V which could exceed the surge voltage rating of the capacitor. The 106 volt transient produced in the 240V circuit configuration increases to about 150 volts when 3000A is applied, bringing the bus voltage to 550 volts under a high line condition. A 550V bus is usually not acceptable.

To improve the transient suppression capability, the capacitor and/or the series impedance must be larger. Other data in Table 2 taken with higher series impedances shows some improvement in lowering the transient levels but the transients are still higher than desired. To obtain satisfactory transient performance with the circuit of Figure 2, it is necessary to further increase the series impedance and/or the filter capacitance. For example, the data of Table 1 shows that the 2100 μ F capacitor allowed only 27V of overshoot with a 500A pulse. This capacitor would be satisfactory if used in Figure 3 with a 0.5 ohm-100 μ H input network.

To improve transient suppression without using either excessively large series impedances or capacitors, a two-stage design proves to be cost effective. Further economies can be realized by placing the second stage TVS following the rectifier, because the output level is relatively constant regardless of whether 120V ac or 240V ac is applied to the input.

Figure 3 shows a practical circuit which is virtually immune to transients. The MOV TVS diverts most of the transient current back to the line. The series impedances limit the current available to the downstream devices. The TransZorb® avalanche diode TVS clamps at a low level which—together with the second inductor—prevents excessive transient current from entering the capacitor. When pulsed with 2500A, filter capacitor current measured 163A re-

R1 - L1	input	S1	Peak Transient Voltage	Charge Voltage	Peak Capacitor Current
		Open	77V	54V	1080A
0.5Ω - 0μΗ	120V	Closed	24V	21V	440A
	240V	Open	106V	78V	780A
0.50 100 11	120V	Closed	18V	10V	190A
0 5Ω - 100µH	240V	Open	74V	47V	440A
: 0Ω - 100µH	120V	Closed	12V	7V	130A
· 012 - 100µ11	240V	Oper.	53∖	34V	300A

TABLE 2—Transient performance of the circuit of Figure 3 ($R_1 = 0.5\Omega$, $C_1 = C_2 = 540\mu$ F, Peak Pulse Current = 2000A)

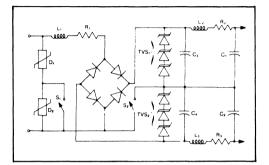


FIGURE 3-Circuit providing a high level of protection

sulting in a 25V peak transient voltage appearing at the output. This level is low enough to safely allow the use of 450V rated transistors in the power switching section.

LINE FILTER TOPOLOGIES

It is obvious that the network of Figure 3 also can serve as a high pass filter if capacitors are placed across the diverter and clamping devices. Under ideal matched conditions, rolloff is 24dB/octave, but should be at least 18dB/octave when working into powerline impedances. This type of filter charactersitic has been shown to be usually adequate if common mode filtering is also provided.

A recent paper⁴ has shown the frequency rejection characteristics of various filter connections when driven with a switching power supply. The circuit of Figure 4 with the common mode coil facing the power supply, proves to be the most useful topology for switchers, although it is not a commonly used configuration. In order for it to serve also as the topology for transient suppression, the common mode inductor must be designed to have a specific value or leakage inductance, or discrete inductors must be added in series with each coil as shown.

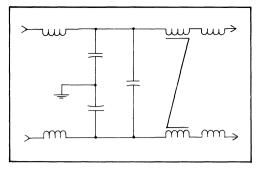


FIGURE 4-Useful filter topology for switchers

TRANSIENT & NOISE BARRIER

Using the suppressor topology of Figure 3, and the filter topology of Figure 4, the circuit of Figure 5 results. It is a bi-directional noise and transient barrier for switchers. Although the values used are somewhat different from that described in the earlier paper, the transient performance is similar. With a 3000A, 8/20 pulse on the ac input, the transient output voltage on the filter capacitors was a mere 10 volts. Common mode voltage (i.e., 3000A input on both ac lines with respect to ground, output from dc plus voltage to ground) only exhibited a 3 volt transient.

Frequency response of the filter constructed on a lab breadboard is shown in Figure 6. For differential mode tests, the ac mains were terminated with 50 ohms. The input RF signal was applied to the dc (+) and the (-) terminals with the ripple filter capacitors removed. For common mode tests, the ac lines were connected together. Output voltage was read across 50 ohms connected between the ac inputs and ground. Attenuation exceeds 120dB over a wide frequency range. The design challenge in a filter is to have well designed broad-band coils. They must maintain their inductance into the low frequency range and be wound to minimize shunt capacitance. The cut-off frequencies can of course be easily altered by changing the values of the common mode capacitors C1 and C2, or the differential mode capacitors C3 and C4.

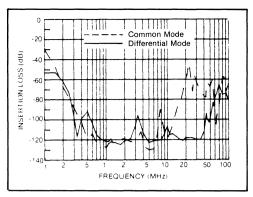


FIGURE 6-Insertion loss for circuit of Figure 5

Parts	Values/Manufacturer's Part Number
C1 - C2	.005µF, 600V
C3 - C4	.1µF, 600V
L1 - L4	50µH - Dale
L _{cm}	1.2mH - Coilcraft E3495
M1 - M4	V130LA20 - G.E.
R₁ - R₄	0.5 Ohm, 2W
TZ1 - TZ2	3 - 1.5KE75A - General Semiconductor Ind.

TABLE 3—Parts list for circuit of Figure 5

CONCLUSION

Only by ensuring a clean dc bus can a switching power supply be a reliable piece of equipment. Attention must be given to the lowly line rectifier and filter system to dramatically reduce line voltage transients. To meet government imposed conducted noise requirements, powerline filtering is needed. Most cost effective transient and noise reduction can be achieved by a circuit which integrates the rectifier/ filter, voltage limiting and high frequency filtering into a single circuit module.

FIGURE 5-Complete circuit for a bidirectional transient and noise barrier integrated with the rectifier/filter system

A COMPARISON OF ZENER DIODES VS TRANSZORB® TRANSIENT VOLTAGE SUPPRESSORS

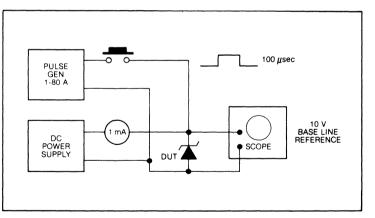
TransZorb Transient Voltage Suppressors (TVS) are silicon P-N junction devices which have been "designed, manufactured, specified, and tested" as transient voltage suppressors. TransZorb TVSs are characterized by their surge handling capability, fast response time, and low clamping voltage vs their small physical size.

Zener diodes are "designed, manufactured, specified and tested" as voltage regulators.Zener diodes inherently have a certain amount of surge capability, however, in most instances, the surge handling capability is not a specified parameter, and in situations where it is, its capability is normally characterized as typical.

Different Zener diode manufacturers use different manufacturing techniques in the formation of the junction. Both the process and the junction size are directly related to the surge performance, therefore, a standard JEDEC device purchased from one manufacturer may not have the same surge performance as the original prototype.

If zener diodes are going to be used in surge applications, the surge should be a specified parameter and part of the vendor gualification procedure.

A true test of comparison comes from actual evaluation of both zener diodes and TransZorb TVSs in the surge environment. As stated earlier, zener diodes do have surge handling capabilities, but are their response characteristics sufficiently adequate to protect the voltage sensitive circuitry???


TEST PROCEDURE

To perform this comparison, we selected a series of zener diodes

from various manufacturers and subjected them to a family of pulses. The response curves for each device were recorded on a memory oscilloscope. Figure 1 is a block diagram of our test setup. The following page contains the actual photographs.

Our test program consists of 5 types of 10 V zener diodes ranging from 400 mV to 10 W and a 10 V TransZorb in a 1 W axial lead package. Each 10 V zener was energized with a 1 milliamp current and the oscilloscope used this 10 V reference as the base line. The vertical sensitivity of the oscilloscope was 1 V per division. We then superimposed a 100μ s pulse on the "diode under test." The test pulse was sequentially increased from 1 amp, 2 amp, 5 amp, 10 amp, 20 amp, 40 amp to 80 amps or until the device failed. The pulses were at one minute intervals.

FIGURE 1-TEST DIAGRAM

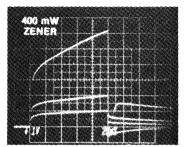
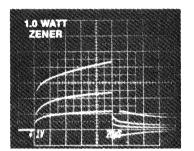
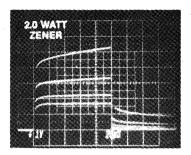
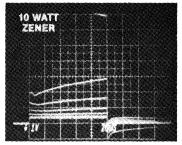


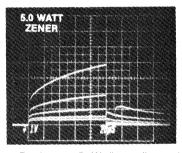
TABLE 1—SUMMARY OF TEST RESULTS

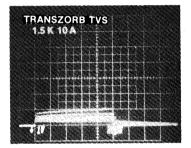

			Clamping Voltage @ Ipp in Amps						
Туре	Breakdown Voltage	1	2	5	10	20	40	80	Mig.
.4 W 1.0 W	10 10	11.0 11.2	12.0 12.4	16.2 14.3	*F *F	-	_	_	F
2.0 W	10	11.6	12.2	13.3	15.3	F	-	—	Ť
5.0 W	10	10.4	10.5	11.0	11.9	13.9	F	-	U
10.0 W	10	10.3	10.4	10.6	10.9	11.6	12.9	F	U 1/
1.5 K 10 A 1.0 W	10	10.2	10.2	10.3	10.4	10.5	10.7	11.0	GSI

*F-Failed


The change in clamping voltage is caused by both the resistance of the device and the thermal characteristics. The higher the slope, the higher the thermal performance.


The 400mW, 10 V zener was subjected to a 1 amp, 2 amp and 5 amp pulse. The clamping voltage at the end of 100μ s, 5 amp pulse was in excess of 16 V. Note the increase of the breakdown voltage caused by the thermal rise of the junction that occurs at the end of the 100μ s pulse. This device failed when subjected to a 10 amp pulse.


Depicts the 1 W, 10 V zener diode. There is a significant difference in the thermal slope of the clamping voltage due to the improved heat seeking capability of the 1 W package, however it is interesting to note that the dynamic resistance of this device is considerably higher than that of the 400mW zener indicating a smaller junction area. This device.


Depicts a 2 W, 10 V zener diode being subjected to 1 amp, 5 amp and 10 amp pulses. The unit failed at 20 amps. Again, it is interesting to note the difference of dynamic resistance and the thermal response curve which is appreciably different than the other two manufacturers. Packaging techniques do make a difference.

Depicts a 10 W zener diode. The discontinuity at the leading edge of the waveform is caused by package inductance where V is equal to $L_{di/dt}$. It is interesting again to compare the change caused by the thermal rise after the 100 μ s pulse. This device failed when subjected to 80 amps.

Depicts a 5 W "surge" rated zener diode. The clamping voltage at 20 amps was approximately 14 V. The device failed when subjected to a 40 amp pulse.

Depicts the 1.5K 10A TransZorb TVS over the entire family of pulse through 80 amps. The unit under test exhibited a clamping voltage of 11 V. The trailing curves also indicate the superb thermal characteristics of the package.

SUMMARY

Without a doubt, this series of tests graphically depict the differences between a zener diode and a TransZorb TVS. Transient surges caused by both the induced effects of lightning or by direct static discharge lie within the 40 to 80 amp spectrum, and therefore, the tests are applicable to actual environments.

OPTIMIZING PLACEMENT OF BOARD LEVEL TRANSIENT VOLTAGE SUPPRESSORS

O. Melville Clark and Timothy M. Dalsing

ABSTRACT

With the increasing sensitivity of communication ports on silicon based equipment, many manufacturers have incorporated transient voltage suppression at the board level to provide transient immunity. The effectiveness of transient suppressor devices is installation dependent and requires that certain rules be followed to provide optimum protection. Utilizing a SPICE circuit simulation program to model parasitic impedances, the relationship between board layout, transient suppressor device structure, and effectiveness of the transient suppression is investigated. The data indicates that circuit board and device design constraints for fast rise-time transients, such as ESD, are significantly greater than those for other waveforms. Recommendations for optimum protection are made based on the data presented.

INTRODUCTION

Generally the most vulnerable components subject to electrical overstress (EOS) conditions are interface devices used by electronic equipment to communicate with the outside world. This is due to the fabrication techniques employed in constructing integrated circuits, which results in structures sensitive to high currents and high voltages. ICs fabricated with CMOS topography are especially sensitive to voltage transients, due to the presence of extremely thin layers of silicon dioxide separating the gates from the sources and drains in the NMOS and PMOS devices within the IC. Not only are these devices susceptible to EOS transients, but the ready exposure of interfacing cables to transient sources increases the risk of occurrence. It has often been reported [1] [2] [3] that interface ICs are the most likely component to fail in the event of an overstressing transient voltage.

EOS originates from a number of sources. The two most common are electrostatic discharge (ESD), which results from the release of charge present in the capacitance of the human body, and induced lightning, usually resulting in induced voltages on cables exposed to nearby lightning strikes. Transient voltages are also associated with nuclear detonations and induction from nearby power mains. However, this paper concentrates on ESD and lightning caused EOS. The traditional criteria for proper PC board layout stresses minimum parasitic impedance in series with the Avalanche Junction Transient Voltage Suppressor (AJTVS) when placed across the protected IC. Black [4] has reported that silicon AJTVS devices clamp at excessively high voltages when subjected to the fast rise-times of ESD. He attributed this effect to unknown factors. Dalsing and Neill [5] found, through SPICE modeling, that for ESD transients impedance of the AJTVS, and the impedance of the load. They found that for low impedance loads characteristic of line drivers, the parasitic impedance of the circuit board traces was less critical than for the much higher impedance loads of line receivers. This was attributed to a resonant condition set up by the PCB traces, the parasitic impedance of the AJTVS, and the load impedance.

The object of this paper is to contrast the different methods for optimal PCB layout and transient suppressor design for protecting I/O ports from ESD and lightning threats. Techniques for maximizing the performance of the suppressor are analyzed using SPICE modeling.

SPICE MODELS AND PARAMETERS

A 386 based personal computer running PSPICE [6] was used for all simulations. The standard models that came with the software were used for all simulations.

Overview of SPICE Models for ESD Simulation

To model the characteristics of an TVS protected I/O port, an equivalent circuit was derived. A schematic of the circuit is shown in Figure 1. The major components of the circuit are:

- 1. ESD Generator: the model for the ESD generator is designed to meet the short circuit current waveform requirements of the highest severity level of the IEC 801-2 standard, defined by the International Electrotechnical Commission [7]. Figure 2 shows the short circuit current waveform produced by this circuit, where the peak current is 30A, the current at 30ns is 16A, and the current at 60ns is 8A.
- 2. Unprotected PCB Trace: line 1 represents the unprotected circuit board trace which is connected to peripherals or other devices in the external world. This line is described as a transmission line model using 25 discrete segments, where the inductance is the inductance of the PCB trace and the capacitance is the line to ground plane capacitance. The value of the components within the line are calculated using the line length and the per unit length inductance and capacitance.
- 3. Transient Voltage Suppressor: the TVS device is modeled using the standard diode models in PSPICE, as shown in Figure 3, with a series inductor included external to the model representing the inductance of the devices leads and other parasitics. A "bi-directional" device is modeled, which simply means the characteristics of the device are the same for both positive and negative polarities. This configuration and the values for the model parameter are common for TVS devices used to protect I/O ports, such as those used for RS-232 signal transmission.
- 4. *Protected PCB Trace:* line 2 represents the protected circuit board trace which is connected to the IC requiring protection. The same segmented model is used.
- 5. Load: the protected IC is modeled as a simple impedance, consisting of either a resistor or a resistor and capacitor in parallel. A typical RS-232 receiver is modeled by a 4k ohm resistor, and an RS-232 driver is modeled by a 300 ohm resistor in parallel with a 470 pF capacitor, which is externally connected to the line to limit the dv/dt of the driver.

The values for the parameters are given in Table I. For this study, a standard two-sided circuit board 0.063 inches thick was utilized. The PCB traces on the component side of the board are 0.010 inches wide, and the backside of the board is entirely covered with a ground plane. The parameter values for the PCB traces was directly measured utilizing an HP 4275A LCR meter.

Description of Model Parameters for ESD Simulation

For the evaluation of board layout techniques and TVS device structure the length of lines 1 and 2, and the value for the TVS inductance, were varied, as shown in Table II. The values for the line inductances and capacitances were calculated from the length and the per unit length values shown in Table I. The values for the TVS device inductances are representative of axial leaded, surface mount, and Kelvin type constructions. Two additional runs were made without the suppressor to evaluate its contribution. The diode model parameters represent typical values for a transient voltage suppressor device commonly selected for use in this application.

Overview of Model for Lightning Simulation

A typical model for an induced lightning surge is an exponential current waveform which rises to its peak in 1.2 μ seconds, then decays to half the peak value in 50 μ seconds. For this paper the open circuit voltage waveform described in the IEC 801-5 standard for data lines is used. Due to the low values of di/dt for this waveform parasitic inductances and capacitances on printed circuit boards become less significant and the parasitic resistances become dominant. For example, the maximum di/dt possible with the IEC 801-5 standard is 24A/1.2 μ second, or 20A/ μ second. The worst case voltage drop across a 10cm line (with L=105nH) is 5V. The simulations reveal that the worst case di/dt is actually about 18.2A/ μ second, for a voltage drop across a 10cm line of 4.6V, which is relatively small compared to the ~ 1100V capacitor voltage of the generator. Therefore, for the lightning surge case, the circuit board traces are modeled as simple resistors. A schematic of the circuit is shown in Figure 4. The short circuit current waveform is shown in Figure 5.

Description of Model Parameters for Lightning Simulations

In the same manner as the ESD models, the line lengths were varied to examine their effect on suppressor performance. The diode model resistance is also varied to show the effect of suppressor construction (i.e., size) on its effectiveness. Table III shows the values for the model parameters and Table IV gives the variable quantities.

RESULTS OF SPICE SIMULATIONS

Results for ESD Simulations

As observed in Table V, the peak voltages at the load with a 30V AJTVS protector diode ranged very broadly, from approximately 50V up to slightly less than 2,000V for the high impedance line receiver. The most critical parameter was LT, the parasitic impedance in the protector leads, with peak load voltages in excess of 1300V observed for 10nH, typical of an axial leaded device. Lower parasitic inductance in the surface mount suppressor provided greater reduction, with best results achieved with a Kelvin contact structure having a parasitic lead inductance well below 1 nH. This will be discussed in detail later.

Figure 6 summarizes the data in Table V for RL values of 4000 Ohms, characteristic of RS-232 line receivers. Each curve illustrates a specific layout of the component network. The effect of suppressor lead inductance, LT, is graphically illustrated in this group of curves. Note that there is some advantage to having a longer trace before the suppressor and followed by a short trace between the suppressor and the load as shown in the 10/1 plot.

Reductions in load voltages as a function of suppressor parasitic impedance is further illustrated in Figures 7, 8 and 9. Note in Figures 7 and 8, that the resultant pulse becomes a rapidly damped oscillation at about 1 GHz. The near zero value of LT, which produces the greatest protection effectiveness, reduces clamping voltages to levels well below failure thresholds as described in publications produced by The Reliability Analysis Center [9] in Rome, NY.

Without an AJTVS, the simulated ESD voltage component across the 4000 Ohm load approaches the source voltage as depicted in Figure 10.

For the lower impedance line driver supplemented with a 470pf capacitor (normally required to reduce the devices slew rate and EMI/RFI emission), there was, by comparison with the high impedance receiver, significantly lower voltages at the load for all test conditions as shown in Figure 11. There are a few anomalies in the load voltages attributed to variations in resonance in the total circuit; however the resultant effect of these differences are not significant as voltages are well below failure thresholds for ESD spikes.

Figure 12 depicts the load voltage for a 10 / 1 cm line configuration with the worst case LT value of 10 nH. Although peak voltage is 69V, protection provided would be well within an acceptable level.

Even without a protective device, there is significant attenuation of the incident ESD voltage when applied to the line driver configuration as shown in Figure 13. The test voltage of the ESD generator is reduced by 85% of its original value by the RLC network of this particular load.

Results for Lightning Simulations

The same circuit and component configurations for lightning surge produced entirely different results than those for ESD, as expected, due to the much slower rise times of lightning. The low voltages appearing across the loads, shown in Table VI, were almost identical for both line drivers and receivers under all conditions of varying trace lengths and LT.

The L(di/dt) effects of the PC board traces were small and insignificant, so the trace resistances were used in the SPICE model as explained earlier. The result is that the voltage across the load was limited only by the clamping voltage of the AJTVS, with all other components of the circuit having negligible effects.

The result of using lower power rated AJTVS devices is illustrated by simulations having higher values of RS (Diode). Peak voltages at the load are correspondingly increased as illustrated in the last three lines of Table VI with RS (Diode) values of 0.39, 0.96, and 1.12 Ω .

Recommendations

From the data shown above, one can expect significant differences in voltages developed across line drivers and line receivers depending on the transient source, the board layout, the parasitic inductance in the transient current path of the AJTVS and the load impedance. The slow rise times of lightning can be adequately suppressed even with relatively high values of parasitic inductance in the suppressor lead lengths, hence board layout is not as critical for lightning surge as it is for the much faster rise-times of ESD. Thus it can be concluded that a circuit which passes lightning surge tests may not necessarily be immune to ESD.

The importance of optimum performance of transient voltage suppressors is increasing with technological changes. For example, industry is rapidly converting bipolar signal communication ports with lower power consuming CMOS equivalent types. This contributes to higher vulnerability accompanied by lower threshold failure levels; however, even very sensitive devices can be protected to the threats defined in industry standards using the proper AJTVS devices and following good practice in PC board layout.

These guidelines include the following:

1. Include as much inductance in the PC board input to the suppressor device as the design will allow while maintaining minimum trace length between the suppressor and the protected IC.

2. Reduce parasitic inductance in the suppressor path to an absolute minimum. This includes conductor length on the suppressor, along with any transient current path included in a PC board trace.

3. Use surface mount devices where possible as these devices have inherently lower parasitic inductance than axial leaded devices.

4. Due to the high (about 1 Ghz) waveform produced with high impedance loads, traces connected to sensitive circuitry should be routed away from suppressed input lines.

5. ESD and other transients can damage precision resistors to out of tolerance levels and should not be overlooked when planning suppression.

Emerging transient protection technology can be expected to respond to industry needs by optimizing protector performance through the use of Kelvin contact structures as illustrated in Figure 14. A suppressor of this structure has been calculated to have parasitic inductance values of the order of .01 nH. As illustrated by the data in this report, such a device will provide adequate protection for the fast rise-times of ESD and relax some of the constraints in circuit board layout.

CONCLUSION

Performance of transient voltage protective devices can be enhanced by PC board layout. Trace inductance ahead of the AJTVS improves performance while the suppressor parasitic lead inductance plays the major role in overall performance.

The fast rise-times of ESD are significant in layout while the slower rise times of lightning appear to be a minor factor in inhibiting protector performance. Other threats, such as EFT with its 5ns rise time, would also be expected to influence board design.

Within the overall scope of transient voltage protection, the data presented in this report indicates that adequate protection can be implemented to meet the conditions as set forth by the international standards IEC 801-2 and IEC 801-5 for both ESD and lightning related surge threats.

REFERENCES

[1] M. Tetreault and F. Martzloff, " Characterization of Disturbing Transient Waveforms on Computer Data Communication Lines", EMC Proceedings, Zurich, March 1985, pp. 423-428.

[2] A. Urbeita, "Sensitivity Study to EOS/ESD of Bipolar Integrated Circuits", Proceedings of EOS/ESD Symposium, EOS-8, 1986, p.214.

[3] F. Martzloff, "Coupling, Propagation and Side Effects in an Industrial Building System", IEEE/IAS Conference Proceedings, Oct. 1988, p. 1467.

[4] E. Black, "Real Circuit Performance of ESD Protection Devices", Proceedings of EOS/ESD Symposium, EOS-8, Sept. 1991, pp. 15-17.

[5] T. Dalsing, and D. Neill, "Suppression of Defined IEC Waveform by PC Board and Silicon Avalanche Components," PCIM Power-Conversion Conference Proceedings, Oct. 1991, pp.305-320.

[6] MicroSim Corporation, Version 4.05a

[7] IEC 801-2, Electromagnetic Compatibility for Industrial Measurement and Control Equipment, Second Edition, Part 2: 1991-04.

[8] IEC 801-5, Electromagnetic Compatibility for Industrial Measurement and Control Equipment, draft, Jan, 1991.

[9] VZAP-91, Electrostatic Discharge Susceptibility Data, Reliability Analysis Center, Rome, New York, 1991.

<u>Circuit Module</u> ESD Generator	Parameter LK RK CK V _{CK} (Initial) LS RS CS V _{CS} (Initial)	Value 50 225 7.5 8 5.8 340 110 8	Units nH Ω pF kV uH Ω pF kV
Lines 1 and 2	L	10	nH/cm
	C	0.1	pF/cm
	(See Table II fo:	r line len	gths)
Transient Voltage Suppressor	BV	30	V
	IBV	1	mA
	IS	1	μA
	RS	0.2	Ω
	CJO	1000	pF
	LT	See Tal	ole II
Load	RL CL	See Tal See Tal	

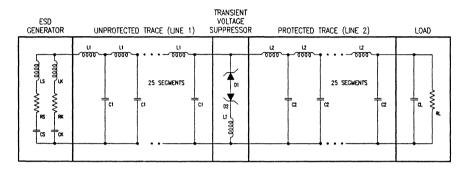
Table I - SPICE Parameters for ESD Simulation	Table	I -	SPICE	Parameters	for	ESD	Simulatio
---	-------	-----	-------	-------------------	-----	-----	-----------

Run Name	Line 1 (cm)	Line 2 (cm)	<u>LT (nH)</u>	<u>CL (Pf) RL (Ω)</u>	
ESD1	10	10	10	None	4000
ESD2	10	1.0	10	None	4000
ESD3	1.0	10	10	None	4000
ESD4	1.0	1.0	10	None	4000
ESD5	10	10	3.0	None	4000
ESD6	10	1.0	3.0	None	4000
ESD7	1.0	10	3.0	None	4000
ESD8	1.0	1.0	3.0	None	4000
ESD9	10	10	0.01	None	4000
ESD10	10	1.0	0.01	None	4000
ESD11	1.0	10	0.01	None	4000
ESD12	1.0	1.0	0.01	None	4000
ESD13	10	10	10	470	300
ESD14	10	1.0	10	470	300
ESD15	1.0	10	10	470	300
ESD16	1.0	1.0	10	470	300
ESD17	10	10	3.0	470	300
ESD18	10	1.0	3.0	470	300
ESD19	1.0	10	3.0	470	300
ESD20	1.0	1.0	3.0	470	300
ESD21	10	10	0.01	470	300
ESD22	10	1.0	0.01	470	300
ESD23	1.0	10	0.01	470	300
ESD24	1.0	1.0	0.01	470	300
ESD1A	10	10	No TVS Device	None	4000
ESD13A	10	10	No TVS Device	470	300

Table II - Values for Variable Parameters for ESD Simulation

Circuit Module	Parameter	Value	Units
Surge Generator	CS	10.0	μF
	RS	1.14	Ω
	LS	4.5	μH
	V _{cs} (Initial)	1.1	kV
	RW1	13.0	uH
	RW2	21.0	Ω
	RD	40.0	Ω
Lines 1 and 2	R	26	mΩ/cm
Transient Voltage Suppressor	BV	30	v
	IBV	1	mA
	IS	1	μA
	RS (Diode)	0.2	Ω
	CJO	1000	pF
			•
Load	RL	See Ta	ble IV
	CL	See Ta	ble IV

Table III - SPICE Parameters for Surge Simulation


Run Name	Line 1 (cm)	<u>Line 2 (cm)</u>	RS (Diode)	CL (pF)	RL_(Ω)	
SURGE1	10	10	0.2	None	4000	
SURGE2	10	1.0	0.2	None	4000	
SURGE3	1.0	10	0.2	None	4000	
SURGE4	1.0	1.0	0.2	None	4000	
SURGE5	10	10	0.2	470	300	
SURGE6	10	1.0	0.2	470	300	
SURGE7	1.0	10	0.2	470	300	
SURGE8	1.0	1.0	0.2	470	300	
SURGE1A	10	10	0.39	None	4000	
SURGE1B	10	10	0.96	None	4000	
SURGE1C	10	10	1.12	None	4000	
Table IV - Values for Variable Parameters for Surge Simulation						
	Table IV - Va	lues for Variable F	arameters for S	urge Simulatio	n	
Line 1 (cm)	Table IV - Va Line 2 (cm)			0	n Voltage at Load (V)	
<u>Line 1 (cm)</u> 10		<u>LT (nH)</u>	CL (pF)	0		
	Line 2 (cm)	<u>LT (nH)</u> 10	<u>CL (pF)</u> None	<u>RL(Ω)</u> <u>Peak</u> V	oltage at Load (V)	
10	<u>Line 2 (cm)</u> 10	<u>LT (nH)</u> 10 10	<u>CL (pF)</u> None None	<u>RL (Ω)</u> <u>Peak V</u> 4000	Voltage at Load (V) 1981.9	
10 10	<u>Line 2 (cm)</u> 10 1.0	LT (nH) 10 10 10	<u>CL (pF)</u> None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000	<u>Voltage at Load (V)</u> 1981.9 1326. 5	
10 10 1.0	<u>Line 2 (cm)</u> 10 1.0 10	LT (nH) 10 10 10 10	<u>CL (pF)</u> None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000	<u>Voltage at Load (V)</u> 1981.9 1326.5 1815.8	
10 10 1.0 1.0	<u>Line 2 (cm)</u> 10 1.0 10 1.0	LT (nH) 10 10 10 10 3.0	<u>CL (pF)</u> None None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000 4000	<u>Voltage at Load (V)</u> 1981.9 1326.5 1815.8 1665.8	
10 10 1.0 1.0 10	<u>Line 2 (cm)</u> 10 1.0 10 1.0 1.0	LT (nH) 10 10 10 10 3.0 3.0	<u>CL (pF)</u> None None None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000 4000 4000 4000	Voltage at Load (V) 1981.9 1326.5 1815.8 1665.8 674.7	
10 10 1.0 1.0 10 10	Line 2 (cm) 10 1.0 10 1.0 10 1.0	LT (nH) 10 10 10 10 3.0 3.0 3.0 3.0	<u>CL (pF)</u> None None None None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000 4000 4000 4000 4000	Voltage at Load (V) 1981.9 1326.5 1815.8 1665.8 674.7 441.7	
10 10 1.0 1.0 10 10 1.0	Line 2 (cm) 10 1.0 10 1.0 10 1.0 1.0 10	LT (nH) 10 10 10 10 3.0 3.0 3.0 3.0 3.0 3.0	CL (pF) None None None None None None None	<u>RL (Ω)</u> <u>Peak N</u> 4000 4000 4000 4000 4000 4000 4000 40	Voltage at Load (V) 1981.9 1326.5 1815.8 1665.8 674.7 441.7 660.2	
10 10 1.0 1.0 10 10 1.0 1.0	Line 2 (cm) 10 1.0 10 1.0 10 1.0 10 1.0 1.0	LT (nH) 10 10 10 10 3.0 3.0 3.0 3.0 3.0 0.01	CL (pF) None None None None None None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000 4000 4000 4000 4000 40	Voltage at Load (V) 1981.9 1326.5 1815.8 1665.8 674.7 441.7 660.2 582.0	
10 10 1.0 1.0 10 10 1.0 1.0 1.0	Line 2 (cm) 10 1.0 10 1.0 10 1.0 10 1.0 1.0 1.0 10	LT (nH) 10 10 10 3.0 3.0 3.0 3.0 3.0 0.01 0.01	CL (pF) None None None None None None None None	<u>RL (Ω)</u> <u>Peak V</u> 4000 4000 4000 4000 4000 4000 4000 40	Voltage at Load (V) 1981.9 1326.5 1815.8 1665.8 674.7 441.7 660.2 582.0 78.8	

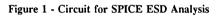

1.0	10	3.0	None	4000	660.2
1.0	1.0	3.0	None	4000	582.0
10	10	0.01	None	4000	78.8
10	1.0	0.01	None	4000	45.6
1.0	10	0.01	None	4000	79.3
1.0	1.0	0.01	None	4000	48.9
10	10	10	470	300	69.0
10	1.0	10	470	300	69.8
1.0	10	10	470	300	69.2
1.0	1.0	10	470	300	66.8
10	10	3.0	470	300	66.7
10	1.0	3.0	470	300	56.3
1.0	10	3.0	470	300	66.8
1.0	1.0	3.0	470	300	56.3
10	10	0.01	470	300	66.2
10	1.0	0.01	470	300	65.0
1.0	10	0.01	470	300	66.1
1.0	1.0	0.01	470	300	64.7
10	10	No TVS Device	None	4000	9271.6
10	10	No TVS Device	470	300	1251.5

Table V - SPICE Results for ESD Simulations

Line 1 (cm)	Line 2 (cm)	RS (Diode)	CL (pF)	<u>RL (Ω)</u>	Peak Voltage at Load (V)
10	10	0.2	None	4000	40.2
10	1.0	0.2	None	4000	40.2
1.0	10	0.2	None	4000	40.3
1.0	1.0	0.2	None	4000	40.2
10	10	0.2	470	300	40.2
10	1.0	0.2	470	300	40.2
1.0	10	0.2	470	300	40.2
1.0	1.0	0.2	470	300	40.2
10	10	0.39	None	4000	49.1
10	10	0.96	None	4000	74.8
10	10	1.12	None	4000	81.8

Table VI - SPICE Results for Surge Simulations

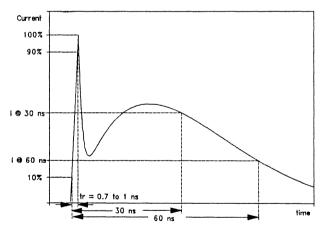
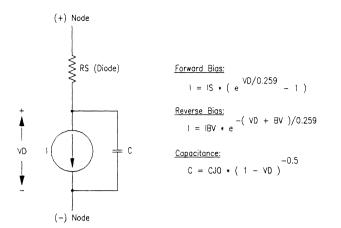



Figure 2 - IEC 801-2 Short Circuit Current Waveform

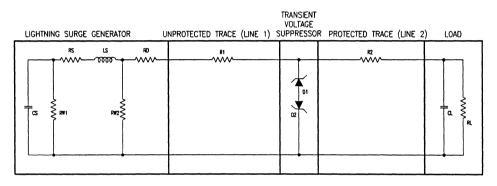
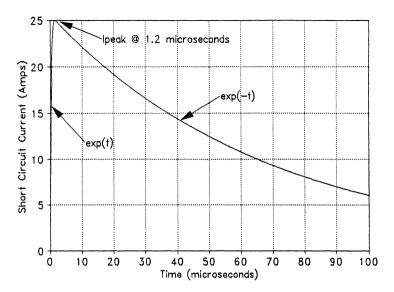



Figure 4 - Circuit for SPICE Surge Analysis

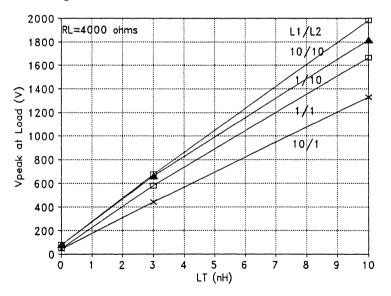


Figure 6 - Peak Voltage at Load vs. TVS Series Inductance ESD Simulations: Receiver Case

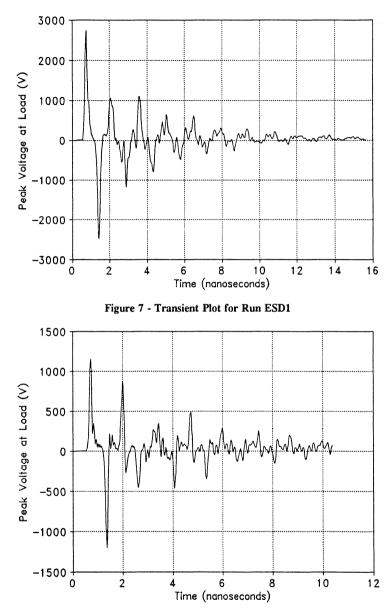


Figure 8 - Transient Plot for Run ESD5

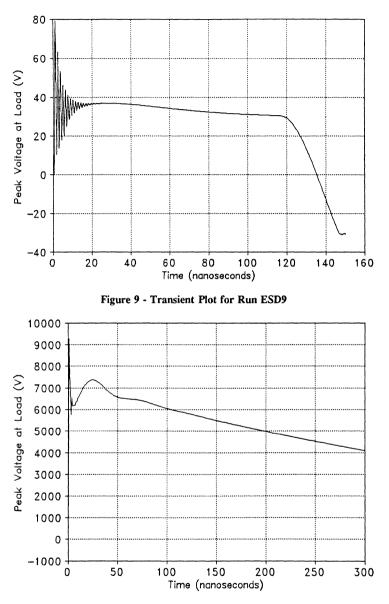


Figure 10 - Transient Plot for Run ESD1A

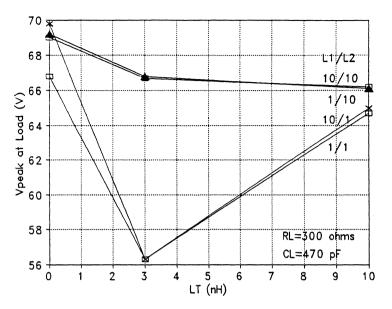
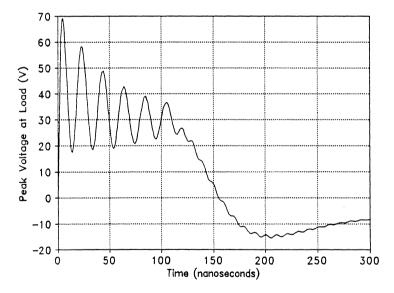
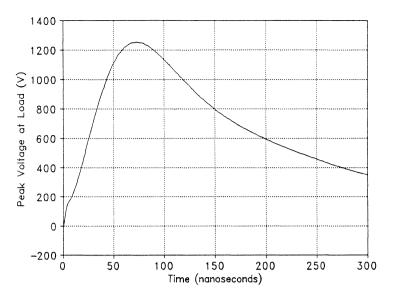
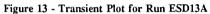





Figure 11 - Peak Voltage at Load vs. TVS Series Inductance ESD Simulations: Driver Case

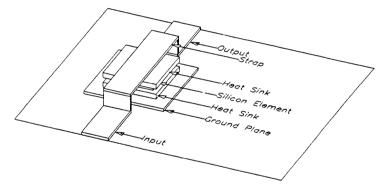
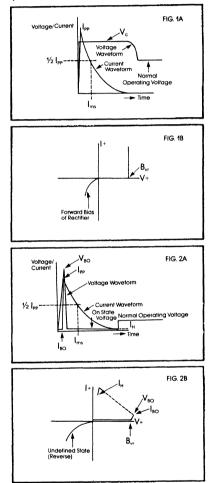


Figure 14 - Diagram of Ultra-low Inductance Transient Voltage Suppressor

Protection of Power Supply and Data Lines Via Thyristor Surge Suppressor and TVS Devices

by Jon Schleisner

The Power Semiconductor Division of General Instrument (PSD), a mainstay in the arena of axial rectifiers, Schottky diodes, TVS, and surface mount technology, has extended its product line. PSD has entered the exciting and growing market of solid state "crowbar" type protection products.


Protection of power supply and data lines against transients is an art still in evolution. The advent of microprocessor- driven telephone systems based on sensitive electronics (instead of charcoal compressive microphones) has changed the criteria for protection. MOVs, gas tubes, and carbon blocks have been the staple components for protection schemes for decades.

These older protection devices have several advantages and disadvantages versus their solid state counterparts. The common advantages are low cost and the ability to absorb tremendous amounts of energy. The disadvantages include slow turn-on times, lack of totally controllable breakover (gas tube) and avalanche (MOV, carbon block) voltages, and an inherent wear-out mechanism (use them and you lose them).

The advantages of the General Instrument's TVS and Thyristor Surge Suppressor devices are speed of response (pico- and nanoseconds), control of avalanche (Zener) voltage, and breakover voltage. Solid state protectors do not shift in parametric value unless stressed beyond their rated limits and driven to destruction The disadvantage of solid state protection are generally lower power handling capacity and higher costs.

The cost factor is rendered moot if the slow protection device (MOV or gas tube) acts too slowly to protect the system to which it is dedicated.

The power limitations can be overcome. to a great degree, with some imaginative engineering. Thyristor Surge Suppressors and TVS devices are specified differently. Table 1 lists all the pertinent TVS and Thyristor Surge Suppressor device parameters for comparison. While both devices are used for transient protection, their electrical behavior is quite different.

<u>TVS</u> $v_{(BR)}$ - The voltage at which the part goes into reverse breakdown at a specified test current, usually 1 or 10 milliamps. <u>Thyristor Surge Suppressor Bvn</u> - The voltage at which the Thyristor Surge Suppressor device begins to conduct current, equivalent to the TVS BVR.

Thyristor Surge Suppressor V_{BO}- The voltage at which, when reaching the specified IBO, causes the device to "fire" or "fold back" in the low-voltage forward mode.

Thyristor Surge Suppressor IBO - The required current at VBO that causes the devices to "break over or fold back".

<u>TVS Vc</u> - The maximum specified voltage at lpp, the TVS max clamping voltage.

TVS I PPM - The max rated current to test the VC parameter.

Thyristor Surge Suppressor Vt - The voltage drop across the device at the specified It, after the device folds back.

It- The specified current at which Vt is tested.

 I_D - This is a leakage spec with V_{WM} set to less than BVR or $V_{(BR)}$ on TVS or Thyristor Surge Suppressor devices.

Thyristor Surge Suppressor IH - This is a spec. that is unique to "Thyristor Surge Suppressor" technology. After the device has been "fired," when the current starts to decay and passes below a critical value (usually several hundred milliamps), the device turns off and resumes its normal high impedance state

There is no TVS equivalent to IH (holding current). This function is important: it places certain critical limitations on application of the Thyristor Surge Suppressor device. Consider a power supply output with a 1-amp current limit. If this line is protected with a Thyristor Surge Suppressor device with an IH=500mA. problems will arise. If the is fired, it will never shut off. The available current from the power supply is greater than IH, hence the part will stay turned on until power is momentarily removed. This classic condition requires attention whenever designing in a Thyristor Surge Suppressor device in a protection system.

This aspect of Thyristor Surge Suppressor device performance makes it ideal for protection of data lines from lightning and other true transient voltage conditions. Typical data lines have current limiting set rather low. The telephone system in North America has a current limit of 250mA, so maintaining IH250mA will ensure device turn-off after the passage of the transient.

Fig. 1 & 2 highlight differences in TVS and Thyristor Surge Suppressor device performance.

The following figures provide an explanation of circuit applications:

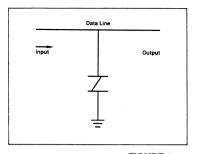


FIGURE 1.

The simplest and most direct application of a Thyristor Surge Suppressor device across a medium to slow data line. If a positive transient strike exceeds VBO with sufficient IBO, the Thyristor Surge Suppressor device will fire, absorbing the transient.

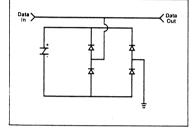
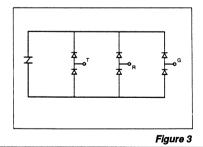



Figure 2

The same approach as Figure 1 with the addition of steering diodes to absorb bidirectional transients. Most transients are bidirectional in nature.

This is a further extension of Figure 2. With the terminals marked T (Tip), R (Ring), and G (Ground), this becomes the classic telephone line protection scheme.

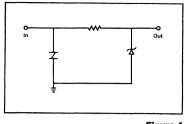


Figure 4

This is data line protection where the turn on transient approaching VBO (225 -260V) cannot be tolerated. The resistor limits the current through the TVS to VBO - VC/R, the duration of this pulse is typically less than 1 usec, so a small TVS can be used.

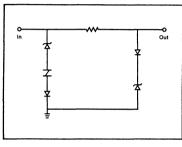
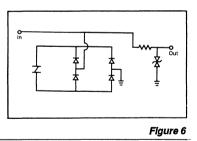
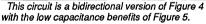




Figure 5

Similar to Figure 4, but designed to have reduced parasitic capacitance across the data line.

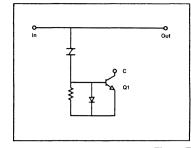


Figure 7

This is a power supply protection circuit. The open collector of Q1 is connected to the power source at the input and should be used to shut off the power supply output for a few milliseconds. This permits the current through the Thyristor Surge Suppressor device to fall below IH before restart beains.

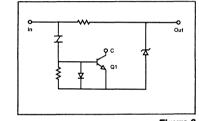
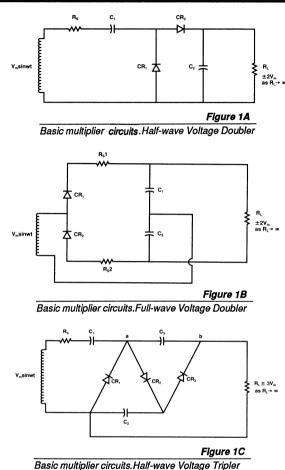


Figure 8

This circuit is equivalent to Figure 7 with the addition of TVS clamp at the output. This prevents VBO from appearing at the protection circuit's output.

General Instrument's Power Semiconductor Division will support your design efforts and assist in applying these new solid state protection devices. More protection performance for your dollarthat is our goal.

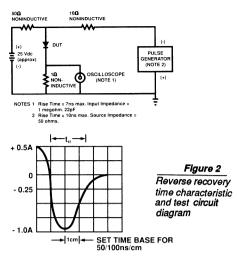

Using Rectifiers In Voltage MultiplierCircuits

By Joseph M. Beck Sr. Applications Engineer

Systems designs frequently call for a high voltage, low current power source that needs only minimal regulation. A few familiar examples are CRT circuits, electrostatic copiers, and photoflash applications. Required voltages typically range from 10 to 30KV and the current demand rarely exceeds 5 milliamperes.

When your design requires this type of power source, you may want to consider a voltage multiplier circuit. They are inexpensive, easy to design, versatile, and can provide virtually any output voltage that is an odd or even multiple of the input voltage.

This article explores the basic operation of multiplier circuits and discusses guidelines for electronic component selection. Since General Instrument Corporation is the industry's leading manufacturer of rectifier products, we will place special emphasis on selecting rectifier diodes for multiplier circuits.


Most voltage multiplier circuits, regardless of their topology, consist chiefly of rectifiers and capacitors. Figure 1 shows three basic multiplier circuits.

The operating principle of all three circuits is essentially the same. Capacitors connected in series are charged and discharged on alternate half-cycles of the supply voltage. Rectifiers and additional capacitors are used to force equal voltage increments across each of these series capacitors. The multiplier circuit's output voltage is simply the sum of these series capacitor voltages.

BASIC OPERATING PRINCIPLES

A wide variety of alternating signal inputs are used with multiplier circuits. The most popular are sine and square wave inputs. For simplicity, this discussion will be limited to sine wave inputs; the calculations become somewhat more involved with asymmetrical signals.

Voltage Doublers - Figure 1A shows a halfwave voltage doubler circuit. It functions as follows. On the negative half-cycle of the input voltage, capacitor C1 charges, through rectifier CR1, to a voltage of Vm. On the positive half-cycle, the input voltage, in series with the voltage of C1 (Vc1=Vm), charges capacitor C2

through rectifier CR2 to the desired output voltage of 2Vm. Capacitor C1, which aides in the charging of capacitor C2, sees alternating current ("AC Cap") while C2 sees only direct current ("DC cap"). In this circuit, the output voltage and the input signal have the same ripple frequency.

The same operating principle extends to the full-wave voltage doubler circuit of figure 1B. On the negative half-cycle of the input voltage, capacitor C2 is charged through rectifier CR2 to a voltage of Vm. On the positive half-cycle, capacitor C1 is also charged to a voltage of Vm, through rectifier CR1. The series voltages of capacitors C1 and C2 (Vc1=Vc2=Vm) yield the desired output voltage: 2Vm. In this case, capacitors C1 and C2 are "DC capacitors"; they see no alternating current. The output ripple frequency of the full-wave doubler is twice that of the input signal.

Voltage Tripler - Higher output voltages are possible through the use of a half-wave voltage tripler circuit, shown in figure 1C. This circuit operates as follows. On the negative half- cycle of the input voltage, capacitor C1 charges through rectifier CR1 to a voltage of Vm. On the positive half-cycle, the input voltage, in series with the stored voltage on C1 (Vc1=Vm), charges capacitor C2 through rectifier CR2 to a voltage of 2Vm. On the next negative half-cycle, the charge on C1 is replenished. At the same time, the input voltage, in series with the stored voltage on C2 (Vc2=2Vm), charges capacitor C3 through CR3 to a voltage of 2Vm (Vc3=Vb-Va=(Vm +Vc2)-Vc1=2Vm). Vc1 and Vc3, in series, provide the output voltage of 3Vm. In this case, the output ripple frequency is equal to that of the input signal.

Although half-wave and full-wave multiplier circuits can provide equivalent output voltages, there are some fundamental differences that should be considered. First, the full-wave circuit has the advantage of higher output ripple frequency (twice that of the halfwave circuit). In addition, the full-wave circuit provides better voltage regulation than the half-wave circuit, since the latter relies upon one capacitor (C1 in figure 1A) to provide the charging energy to a single DC load capacitor (C2 in figure 1A). The full-wave circuit, however, requires that the secondary side of the transformer be capable of withstanding high voltages (approximately 1/2 of the output voltage). For this reason, the half-wave multiplier is usually the preferred circuit when high voltage outputs (Vo=kilovolts) are required.

DESIGN GUIDELINES

Capacitor selection - The size of capacitors used in multiplier circuits is directly proportional to the frequency of the input signal. Capacitors used in off-line, 60Hz applications are usually in the range of 1.0 to 20uF while those used in higher frequency applications, say 10KHz, are typically in the range of .02 to .06uF. In practice, it is usually easier, and less costly, to use the same large capacitance value for all capacitors, both "AC" and "DC" type. The overall capacitive reactance of the circuit must be considered, however, to determine the largest permissible value.

The voltage rating of capacitors is determined solely by the type of multiplier circuit. In the half-wave doubler circuit of figure 1A, C1 must be capable of withstanding a maximum voltage of Vm, while C2 must withstand a voltage of 2Vm. In the full-wave doubler circuit of figure 1B, both C1 and C2 must withstand voltages of Vm. The half-wave voltage tripler of figure 1C requires C1 to withstand a voltage of Vm, and both C2 and C3 to withstand voltages of 2Vm. A good rule of thumb is to select capacitors whose voltage rating is approximately twice that of the actual peak applied voltage. For example, a capacitor which will see a peak voltage of 2Vm should have a voltage rating of approximately 4Vm.

Rectifier Diode Selection

Several basic device parameters should be considered:

Repetitive Peak Reverse Voltage (Vrrm) -Repetitive peak reverse voltage is the maximum allowable instantaneous value of reverse voltage across the rectifier diode. Applied reverse voltages below this maximum value will produce only negligible leakage cur-

rents through the device. Voltages in excess of this maximum value, however, can cause circuit malfunction --- and even permanent component damage --- because significant reverse currents will flow through the device. For example, General Instrument's GP02-40 rectifier diode has a peak reverse voltage rating (Vrrm) of 4,000 volts, maximum. Applied reverse voltages of 4KV or less will produce a maximum reverse leakage current, IR, of 5 microamperes through the device when operated at room temperature (25 ° C). In most cases, this leakage current is considered negligible, and the device is said to be completely blocking (IR=0).

In the case of the three circuits of figure 1, the maximum reverse voltage seen by each rectifier diode is 2Vm. So devices must be selected with reverse voltage (Vrrm) ratings of at least 2Vm.

Reverse Recovery Time (trr) - In general terms, reverse recovery time is a measure of the time needed for a rectifier diode to reach a state of complete blocking (IR=0) upon the application of a reverse bias. Ideally, this time should be zero. In reality, however, there's a finite period of time in which a stored charge at the diode junction must be "swept away" before the device can enter its blocking mode. This stored charge is directly related to the amount of forward current flowing through the device just prior to the application of the reverse bias. Fortunately, since operating currents are very low in multiplier circuits, reverse recovery times are kept to a minimum. Nevertheless, trr plays an important role in multiplier desian.

When selecting rectifier diodes, the frequency of the input signal to the multiplier network must be considered. For symmetrical signal inputs, the device chosen must be capable of switching at speeds faster than the rise and fall times of the input. If the reverse recovery time of the rectifier is too long, the efficiency and regulation of the circuit will suffer. In the worst case, insufficient recovery speeds will result in excessive device heating, as reverse power loses in the rectifier become significant. Continued operation in this mode usually results in permanent damage to the device.

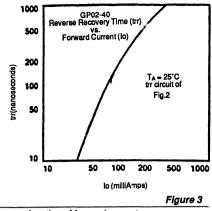

The reverse recovery time (trr) specification is very dependent upon the circuit and the conditions being used to make the measurement. Several industry standard trr test circuits exist (figure 2 is the test circuit used for the GP02-40). Therefore, it's very important to note which test circuit is being referenced, as the same device may measure differently on different test circuits. Furthermore, the trr specification should be used for qualitative. not quantitative purposes, since conditions specified for trr measurement rarely reflect those found in actual "real life" circuit operation. The trr specification is most valuable when comparing two or more devices that are measured on the same circuit, under the same conditions.

Figure 3 shows the relationship between forward current and trr in the GP02-40. As you can see, decreasing current flow in the multiplier circuit makes it possible to use higher input frequencies. An increase in current flow has the opposite effect. Ideally, the multiplier network load should draw no current.

Peak Forward Surge Current (Ifsm) - A peak forward surge current rating is given for most rectifier diodes. Most often, this rating corresponds to the maximum peak value of a single half- sine wave (50 or 60Hz) which, when superimposed upon the devices rated load current (JEDEC method), can be conducted, without damage by the rectifier. This rating becomes important when considering the large capacitance associated with multiplier circuitry.

Surge currents can develop in multiplier circuits, due to capacitive loading effects. The large step-up turns ratio between primary and secondary of most high voltage transformers causes the first multiplier capacitor (C1, secondary side) to be reflected as a much larger capacitance into the primary. For example, a transformer with a turns ratio of 25 will cause a 1.0 uF capacitance to be reflected into the primary circuitry as a capacitance of (1.0)(25) uF, or 625uF. At circuit turn-on, large currents will be developed in the primary side as this effective capacitance begins charging.

On the secondary side, significant surge currents can flow through the rectifiers during initial capacitor charging at turn-on. The addition of a series resistance (Rs in figure 1) can greatly reduce these current surges, as well

Trr as a function of forward current

as those in the primary circuitry. For example, the GP02-40 has a forward surge rating, Ifsm, of 15 amperes. Considering a maximum secondary voltage of 260 Vrms, 60Hz, the calculation of Rs is as follows:

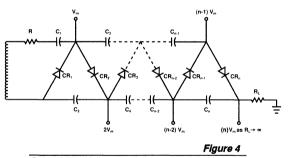
 $\begin{array}{ll} RS \geq V peak/If sm & eq.1 \\ RS \geq (1.41)(260)/15 \\ RS \geq 24.4 \ ohm \end{array}$

Other Parameters - Of lesser significance are the forward current rating, lo, and maximum forward voltage, Vf.

Forward current, Io - As stated earlier, in the ideal multiplier configuration the load will draw no current. Ideally, the only significant current flow through the rectifiers occurs during capacitor charging. Therefore, devices with very low current ratings (hundreds of milliamperes) can be used. It must be noted, however, that the forward current and forward surge current ratings are related, since both are a function of silicon die area. Generally speaking, devices with a high surge current rating, lfsm, will also have a high forward current, lo, rating, and vice versa.

Forward Voltage, Vf - In practice, the forward voltage drop, Vf, of the rectifiers does not have a significant effect on the multiplier network's overall efficiency. For instance, the GP02-40 has a typical forward drop of 2.0 volts when measured at a current of 100 milliamperes. A half wave doubler with an 8KV output will have less than .05 percent (2x2V/8KV) loss in efficiency due to the forward voltage drops.

HIGHER ORDER CASCADE MULTIPLIER


Still higher voltages are possible by using the cascade multiplier circuit shown in figure 4. The output voltage is calculated as:

Vo = (n)(Vm), as IL - 0 eq.2

where n = number of capacitors or diodes, assuming equal value capacitors, ideal diodes and symmetrical signal input.

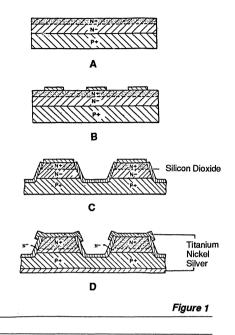
In theory, one can obtain any incremental output voltage increasing the value of n. In practice, however, voltage regulation and efficiency become increasingly poor as n increases. The potential for voltage arcing must also be considered as the value of n increases, and when higher output voltages are required. Careful mechanical design can minimize arcing, to a large extent.

From a pure circuits standpoint, voltage multipliers are relatively easy to design. The selection of circuit components, however, is one facet of the "overall design" that should not be taken for granted or trivialized. Careful consideration of all component parameters is the only way to ensure both reliable and predictable circuit performance. Put another way, ideal circuits require ideal circuit components.

Cascade multiplier

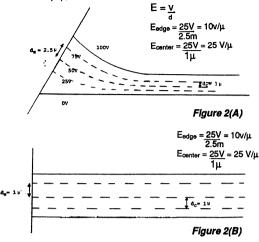
To find the ideal rectifier for your voltage multiplier, consult the General Instrument Power Semiconductor Division Data Book. You can obtain a copy by phoning 516-847-3000 or by writing to General Instrument Corp., Power Semiconductor Division, 10 Meiville Park Road, Meiville, NY 11747

Transient Voltage Suppressors Ideally Suited for Automotive Applications or Harsh Environments


Gloria M.Luna Automotive Applications Engineer

The combination of durability and high temperature performance has come together in the form of General Instrument's new, patented PAR (Passivated Anisotropic Rectifier)* process. Transient voltage suppressors produced by this process exhibit high temperature reverse bias stability, excellent transient energy capability, and low dynamic impedance, and are ideally suited for the harsh environments of automotive applications. In a standard diffused junction process, there are several conditions present that could affect the integrity of a device. These conditions become critical to the performance of the device as the junction temperature is increased and the device is stressed to the limits of its operation. They include the presence of a high field at the surface of the junction when a voltage is applied. The electric field (V/cm) that occurs over the depletion layer of a device determines the voltage capability of the device:

$$E(x) = \frac{dV(x)}{dx}$$


This field is not only present in the bulk of the device but also at the surface. When this electric field sees ionic contaminants on top of the surface and along the edge of the die, the contaminants will ionize and the resulting charge will distort the original field. This distortion can increase local leakage current and cause localized breakdown as well as thermal runaway. By growing an oxide directly on the surface of the junction layer, these contaminants can be eliminated. In addition, by employing a positive bevel angle construction, the field at the surface would be diminished to a point where it could not contribute to device degradation.General Instrument engineers have combined these features in a process that provides reliable devices under the high temperature conditions of the automotive environment as well as one that lends itself to state-of-the-art semiconductor manufacturing processes. Thus came the development of the PAR process.

*patented by General Instrument

PROCESS TECHNOLOGY

As illustrated in Figure 1(A), we begin with a P+ device and an N- surface layer. We then diffuse in a shallow N+ layer, deposit and subsequently etch a silicon nitride layer that functions as a mask as shown in Figure 1(B). The resulting pattern is then anisotropically etched to form a mesa structure on the top side of the wafer. By utilizing this anisotropic process we are able to achieve a uniform 45 degree angle all around each die.We oxidize the silicon surface where there is no nitride, which results in a grown silicon dioxide layer that is ten times as thick as the silicon nitride. This oxide laver forms around the mesas but not on the original nitride as shown in Figure 1(C). As the N+ layer is driven deeper into the junction, a phenomenon occurs which results in a curvature between the N+ and the N- surface layers as illustrated by Figure 1(D). This curvature is essential in achieving higher breakdown voltages. The final step includes the removal of the top silicon nitride layer and the sintering of a metalization layer composed of titanium, nickel, and silver deposited on the top and bottom surfaces. This is also illustrated in Figure 1(D).

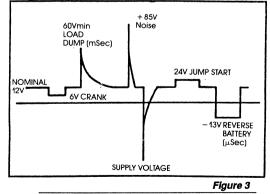
This process is notable for the following reasons:

1. Reverse current measurements remain stable and uniform.

2. Complete stability during high temperature reverse bias and thermal cycling

3. Low electrical contact resistance.

This process results in several important features unique to the PAR construction. First, particle contamination is virtually eliminated by the use of a grown oxide to passivate the junction. Second, by utilizing a positive bevel angle construction, we are able to lower the field at the surface. Due to the fact that the reverse breakdown voltage of a device is determined by the width of the high ohmic region, the curvature of the N+/N- junction becomes an important design criteria in obtaining higher breakdown voltages at the surface of the silicon. This promotes a breakdown along the bulk of the junction rather than at the edge . As illustrated in Figure 2(A),


the curviture of the junction results in an increase in the distances of the equipotential lines at the surface. By calculation, all of the breakdown occurs at the bulk of the device rather than at the edge because the field at the edge does not excede the critical value of the layers of material outside of the silicon near the junction (greater than 10V/u). In contrast, the equipotential lines for a standard diffused junction device are illustrated in Figure 2(B). With the breakdown occuring at the edge of the junction, the incidence of high leakage and localized breakdown associated with field distortion is increased, particularly when the device is exposed to extreme environmental and operating conditions. In addition, this tailored junction affords the following advantages:

1. By having the breakdown occur over the large bulk area of the device, large energy surges can be safely handled without damage or deterioration to the device.

2. By modifying the edge of the device, the results under high temperature reverse bias are excellent.

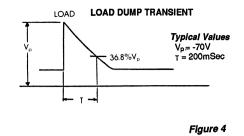
AUTOMOTIVE TRANSIENTS

Electronic devices that operate in the automotive environment are subjected to very extreme conditions. Temperature, humidity, exposure to various liquids, vibration, voltage changes, and surge voltages are just some of the factors to be considered in the automotive environment. Temperatures can rise to as high as 200 degrees C in the engine compartment and as low as -20 degrees C. As a result, it is necessary that any electronic device be able to withstand these conditions and operate within reasonable limits so as not to degrade the performance of any system it may be operating in Transients in the automotive environment cover a wide range of energy levels and time durations, as illustrated in Figure 3. These transients are distributed throughout the electrical system of an automobile and can occur at any time.

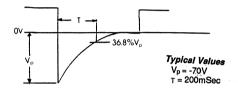
Possible automotive supply voltage variations

Some of the most serious types of transients are:

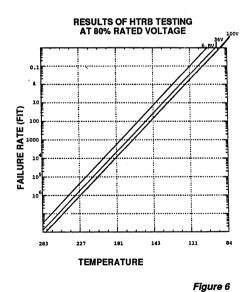
1. A load dump transient occurs when the alternator load is suddenly dropped due to battery disconnection. Voltages can range from 30 to 125V for up to 400 ms. This is considered the worst of all types of transients and was made a test requirement for all electrical systems and modules designed for the automotive industry back in the 1970's. See Figure 4


2. Transient voltages generated when the inductive loads (relays, solenoids, and switches) are turned off. See Figure 5.

3. Transient voltages generated when the ignition switch is turned off.4. Transient voltages generated by inductive or capacitive coupling when electrical equipment (such as the ignition system) is turned on.


By connecting a transient voltage suppressor across the output of a circuit or connecting them within the circuit, you can protect delicate components and systems by clamping these transient voltages. Because the failure threshold level of a system is determined by its weakest component, it is wise to insure that a TVS would be able to withstand all of these conditions.

RELIABILITY


Due to this increased focus on reliability under harsh environmental conditions. the ability to quantify reliability has become an important criteria in selecting components Failure modes fall into two broad categories--those related to defects in the silicon die, and those related to packaging of the die. Die defects relate to field distortion, oxide defects, surface charge or microcracking. By using devices manufactured with the PAR process, the incidence of these types of failures is greatly reduced. These failures can be provoked by high temperature reverse bias testing. In this test, the devices are reverse biased by applying 80% of the rated reverse voltage to the device and heating the device to at least 150 degrees C. This test can run anywhere from 250 to 1000 hours to insure device durability.Shown in Figure 6 are the results of HTRB testing on PAR produced transient voltage suppressors

INDUCTIVE LOAD TRANSIENT

Definition: Failures > 5µA I_R at 25°C Failure Rate = - fails / 10⁹hi

rated at 6.8V. 36V, and 100V. In addition, reverse leakage remains within a very tight distribution and very little drift is observed in values before and after test.Packaging defects can occur from fatiguing of the bond or the presence of atmospheric vapor onto the die surface. Particularly in the automotive environment, semiconductor devices can be subject to thermal and electrical stress causing cracking, separation or voiding of the bond between the die and the lead. These conditions can lead to degrading operation and eventually, thermal runaway.By thermally cycling the device from low (typically -65 degrees C) to elevated temperatures (typically 150 degrees to 170 degrees C) with a dwell time of 5 minutes at each temperature. the bond can be stressed to the point of failure to insure the integrity of the device. The results of temperature cycling for PAR devices is shown in Figure 7.

PART NUMBERS

The devices are available in three different power ranges utilizing the following part numbers:

P4KA (400 Watts) 6.8V to 43V P6KA (600 Watts) 6.8V to 43V 1.5KA (1500 Watts) 6.8V to 43V 6KA24 (6500 Watts) 24V TPSMA (400 Watts Surface Mount) 6.8V to 43V TPSMB (600 Watts Surface Mount) 6.8V to 43V TPSMC (1500 Watts Surface Mount) 6.8V to 43V

RESULTS OF TEMPERATURE CYCLING TESTING

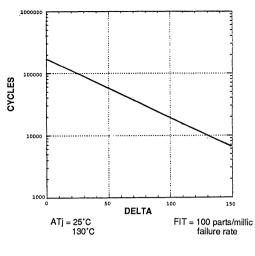
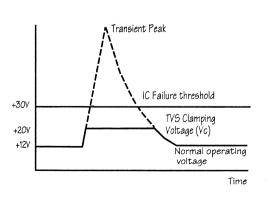


Figure 7

QUIKNOTES TM

What is a Silicon Transient Voltage Suppressor? and How Does It Work?

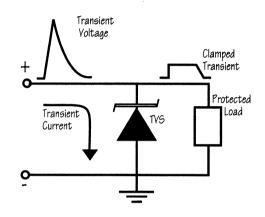

O.M. Clark and F.B. Hartwig

Transient voltage suppressors (TVSs) are devices used to protect vulnerable circuits from electrical overstress such as that caused by electrostatic discharge, inductive load switching and induced lightning. Within the TVS, damaging voltage spikes are limited by clamping or avalanche action of a rugged silicon pn junction which reduces the amplitude of the transient to a nondestructive level.

In a circuit, the TVS should be "invisible" until a transient appears. Electrical parameters such as breakdown voltage ($V_{(BR)}$), standby (leakage) current (I_D), and capacitance should have no effect on normal circuit performance.

The TVS breakdown voltage is usually 10% above the reverse standoff voltage (V_R), which approximates the circuit operating voltage to limit standby current and to allow for variations in V_(BR) caused by the temperature coefficient of the TVS. When a transient occurs, the TVS clamps instantly to limit the spike voltage to a safe level, called the clamping voltage (V_C), while conducting potentially damaging current away from the protected component.

Fig 1.

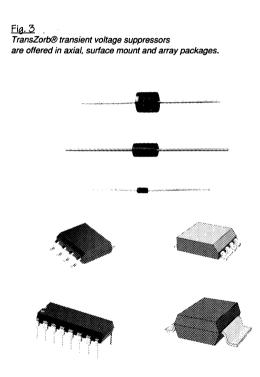


Transients of several thousand volts can be'clamped' to a safe level by the TVS.

TransZorb[®] is a registered trademark of General Instrument

Fia 2.

Transient current is diverted to ground through TVS; the voltage seen by the protected load is limited to the clamping voltage level of the TVS.


TVSs are designed, specified and tested for transient voltage protection, while a zener diode is designed and specified for voltage regulation. For transient protection, the designer's choice is a TVS.

The surge power and surge current capability of the TVS are proportional to its junction area. Surge ratings for silicon TVS families are normally specified in kilowatts of peak pulse power (P_P) during a given waveform. Early devices were specified with a 10/1000µs waveform (10µs rise to peak and 1000µs exponential decay to one half peak), while more recent product introductions are rated for an 8/20µs test waveform. Power ratings range from 5kW for 10/1000µs, down to 400W for 8/20µs. This power is derived from the product of the peak voltage across the TVS and the peak current conducted through the device.

(continued)

What is a Silicon Transient Voltage Suppressor? <u>and How Does It Work?</u> (cont.)

Packaging covers a broad spectrum according the need. Discrete axial leaded components are available in peak pulse power ratings of 400W, 500W, 600W, 1.5kW and 5kW. The higher power devices are most frequently used across power buses.

For lower power, high density applications, suppressor arrays are available in both DIP and small outline surface mount configurations. Arrays are normally used across data lines for protecting I/O ports from static discharge. Specialized low capacitance TVSs are available for use in high data rate circuits to prevent signal attenuation.

TVSs have circuit operating voltages available in increments from 5V up through 376V for some types. Because of the broad range of voltages and power ratings available, (as well as the universal presence of transient voltages) TVSs are used in a remarkably wide variety of circuits and applications.

Integrated circuits normally feature on-chip protection which is usually provided by internal resistor- diode networks or SCRs. There is insufficient space on a microchip to provide more than minimal protection, so the higher power, external protection of a TVS should be added in those applications where damaging transient voltage threats exist.

The loss to US industry due to transient voltages exceeds \$10 billion per year. TVS devices are an important part of the solution.

General Instrument and General Semiconductor Industries Inc. have combined to become the world's leading supplier of silicon TVS protection.

Determining Clamping Voltage Levels for a Broad Range of Pulse Currents

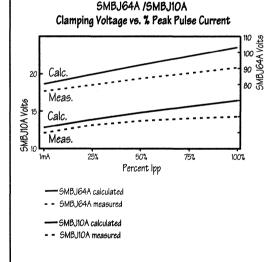
O.M. Clark and F.B. Hartwig

In TransZorb[®] transient voltage suppressor (TVS) data sheets, all clamping voltage (V_C) levels are specified at maximum rated peak pulse current (I_{PP}). How do you interpolate the V_C levels for transient currents (I_P) other than the rated maximum?

This figure is easily calculated using the parameters on the data sheet with the formula:

 $V_{C} = (I_{P}/I_{PP})(V_{C} \max - V_{(BR)} \max) + V_{(BR)} \max$

Where: $I_P = test$ pulse current $I_{PP} = max$ rated pulse current $V_C max = maximum$ specified clamping voltage $V_{(BR)} max =$ upper limit of breakdown voltage


This calculation assumes a linear increase in V_C between V_(BR) and V_C max, which is realistic. Figure 1 illustrates the Δ V_C vs Δ I_P relationship for two voltage levels, 10V and 64V, in the SMB 600W series between V_(BR) and V_C as determined by this formula. Results are linear as expected. V_(BR) max is used in this calculation as it is the upper limit of specified breakdown voltage.

In those instances where V_(BR) max is not given on the data sheet, it can be closely approximated. For "A" suffix parts, multiply the minimum V_(BR) by 1.11 and for nonsuffix parts, multiply by 1.22 to obtain the maximum V_(BR).

The curves derived from measured data are compared with calculated values in figure 1. Surge tests were performed for a 30 piece sample at 25°C ambient with a 10/1000µs waveform.

Note that the curves based on actual surge data have a more shallow slope than those from the calculation, indicating that the devices are conservatively rated and that the formula shown provides a sufficient level of confidence for worst- case design.

Fig 1. V_C vs I_P for SMBJ10A and SMBJ64A Calculated and Measured

Using the Power vs Time Curve

O.M. Clark and F.B. Hartwig

How can the maximum transient power and current capability for silicon transient voltage suppressors (TVS) be derived for conditions other than the 10/1000µs pulse specified on data sheets?

Most TransZorb[®] TVSs are rated for 10/1000µs non-repetitve pulse waveforms (10µs being the front time and 1000µs being the time from start to decay to one- half of the peak value), which is an early telecom transient waveform. Real world transients will have varying pulse widths depending on the source. Various standards describe other waveforms to reflect these origins. For example, IEC 801- 5 describes a lightning threat to data lines approximating 1.2/50µs.

The graph in figure 1 relates peak pulse power with time for 600W suppressors; similar curves exist for TVSs rated at other power levels. At 1000µs

Eia 1. Peak Pulse Power vs Pulse Time

td - Pulse Time - sec

the maximum pulse power (P_P) is 600W, the rating condition of the device. The graph illustrates that at 50µs, the rating is 2100W and at 10,000µs (10ms), P_P rating is down to approximately 200W. This applies to all devices in the 600W series regardless of their operating voltage.

Under shorter pulse widths a TVS will sustain higher pulse currents (I_P). For a width of 50µs, for example, a TVS will sustain 3.5 times its rated I_P at 1000µs, 600W. Thus the peak I_P of an SMBJ12A would increase from 30.2A at 10/1000µs to 105.7A at 1.2/50µs. The current rating of an SMBJ64A would increase from 5.8A to 20.3A.

Increasing the pulse width to $10,000\mu$ s will reduce the I_P rating by a factor of .33 since the P_P is reduced to 200W. An SMBJ12A with an I_P of 30.2A at 1000µs would be reduced to an I_P of 9.9A for a 10,000µs duration.

This method can be applied to derive the P_P and the I_P of a TVS from any other series (such as 400W, 500W, 1.5kW, 5kW,) using its published power vs pulse time curve.

Most TVSs, including the examples shown here, are rated for 10/1000µs double exponential waveforms. For one-half sine wave pulses, derate to 75% of the exponential waveform value and for square wave pulses, derate to 66%.

TransZorb[®] is a registered trademark of General Instrument

Protecting Low Current Loads in Harsh Electrical Environments

O. M. Clark and F. B. Hartwig

Today's sophisticated electronic systems feature sensors, transducers and microcontrollers which are often placed in harsh environments having exposure to lightning, heavy load switching and other damaging transients.

To protect these vulnerable circuit elements from electrical overstress, high power silicon transient voltage suppressors (TVSs) are usually the first choice as illustrated in figure 1.

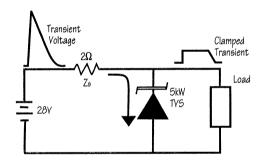
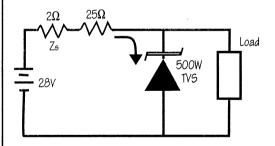


Figure 1.

A 5kW TVS is required to handle the high surge current.


Consider as an example, a pressure transducer which operates at 28V, placed in an environment in which it encounters a transient voltage of 140V peak, having a source impedance of 2 ohms and a duration of 10/1000µs. The failure threshold of the transducer is 40V, therefore the TVS must clamp at 40V or less. The current delivered by this transient is:

$$I = (140V - 40V)/2\Omega = 50A$$

Note that the voltage clamping action of the TVS results in a voltage divider whereby the open circuit level of the transient appears across the combination of the source impedance and the TVS device. Thus the TVS clamping voltage is subtracted from the transient voltage leaving a net source voltage of 100V. When the clamping voltage is high compared to the transient peak voltage, the surge current is significantly reduced.

This circuit can be protected with a 5kWrated suppression device such as the 5KP28A TransZorb[®] TVS which will easily sustain the surge current.

An alternate and more economical approach is to add a series resistor to effectively increase the source impedance thus limiting surge current as illustrated in figure 2. Since the current drawn by the transducer under normal operation is small (<20mA typical), performance is not adversely affected by reduction in supply current.

Series resistor reduces transient current allowing a much smaller TVS to be used.

Protecting Low Current Loads in Harsh Electrical Environments

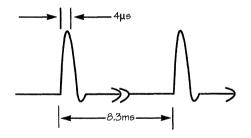
For a small load current, 10mA, the voltage drop across the added resistance is minimal, about .25V for a 25 ohm resistor. Adding this resistor reduces the surge current to:

$I = (140V-40V)/(2\Omega + 25\Omega) = 3.7A$

This is less than one-tenth the surge current without the resistor. A TVS with lower power rating is able to handle the resulting current. In this case a 500W suppressor, such as the SA28A TransZorb[®] TVS, replaces the 5kW device, saving board space and cost.

An SA28A was chosen in this example since its current rating for a $10/1000\mu$ s pulse is 11A, easily withstanding the 3.7A surge calculated above. Although the maximum clamping voltage for the SA28A is given on the data sheet as 45.4V, the reduced surge current is 33% of the suppressor's peak capability, hence the clamping voltage would be approximately 38V, within our stated limit. (Reference QuikNote™ No.101)

Carbon composition resistors are recommended for this application, as they have sufficient energy capability for the pulse condition. Steady state power dissipated by the resistor (E \times I) is 0.25W requiring a 0.5W rated resistor for adequate margin.


The examples given are for 25°C ambients. For elevated temperatures, derate accordingly. Protected circuits derived within these guidelines should be fully evaluated under operating and threat conditions before use.

Protecting for Repetitive Transient Voltages

O.M. Clark and F. B. Hartwig

While lightning may not strike twice in the same place, in circuits which involve power switching, relays, or motor control, components may be continually subjected to very short transient voltages occurring at regular intervals. A TransZorb[®] transient voltage suppressor (TVS) will effectively limit the transient voltage to a safe level, but some guidelines are needed for selecting the TVS which must handle this repetitive stress.

The average steady state power which the TVS will dissipate can be calculated for recurring short pulse widths. This average power must be within the steady state power rating of the TVS selected for the application. For example, in a motor drive circuit, the switching of current through the inductance of the motor winding continuously generates a pulse which has a 4 μ s duration and a 25A peak current at a frequency of 120 Hz.

In this application a surface mount TVS, part number SMBJ6.5A, is initially selected to protect the control inputs of the motor drive circuitry because it will clamp the single-pulse voltage to a maximum level of 11.2 volts. But will this suppressor survive the continuous (120 times per second) application of this transient?

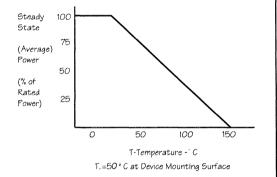
Pulse interval, the inverse of the frequency, is:

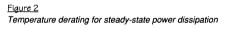
1/120 pulse/sec = .0083 sec

Peak pulse power is the clamping voltage multiplied by the pulse current:

 $Pp = 11.2V \times 25A = 280W$

Average power can be closely estimated by multiplying the peak power times the ratio of the pulse width to its interval:


P avg = 280W × (.000004s / .0083s) = 0.134W


The SMBJ6.5A will dissipate at least one watt steady state on a typical printed circuit board. Thus the calculation shows that the suppressor safely dissipates the average power generated in the motor drive, and clamps the transient voltage to a safe level. The SMAJ6.8A device is another option for this application.

Protecting for Repetitive Transient Voltages (cont.)

Circuit board layout and engineering practices which provide adequate heat sinking for the suppressor should be observed. Higher power dissipation can be achieved by sizing mounting pads proportionately. Where this is not practical, or if calculation results in average dissipation greater than can be safely handled, a transient suppressor with a higher steady state power rating should be selected.

Derating must be observed for operation at elevated temperatures since all electrical ratings are normally specified at 25°C. For the described electrical conditions an ambient temperature of 75°C will provide 60% of the rated steady state capability.

The average power calculation shown here is generally valid for pulses up to 10µs in duration, occurring at intervals in the range of 100 to 1000µs. Longer pulse durations approaching 1ms or more may be sustained only if the interval increases correspondingly.

It may not be possible to determine the exact conditions (current amplitude, pulse width, etc.) in repetitive pulse environments, so some experimentation may be required to optimize the suppressor selection.

PACKAGING BULK AND REEL

ALSO

RECOMMENDED SOLDERING PROCEDURES AND SURFACE MOUNT PAD SIZES

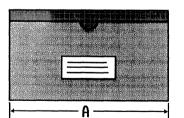
PACKAGE CODE

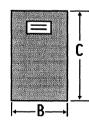
PACKAGING DESCRIPTION

1	Bulk
2	SMB, 12mm Tape, 7" Diameter Plastic Reel
3	26mm Horizontal Taping and Ammo Packing
4	52.4mm Horizontal Tape, 13" Diameter Paper Reel Class I
5	SMB, 12mm Tape, 13" Diameter Paper Reel
6	Avisert, Cathode Up, Cathode First Off Reel
7	SMC, 16mm Tape, 7" Diameter Plastic Reel
8	Avisert, Cathode Up, Cathode First Off Ammo Pack
9	SMC, 16mm Tape, 13" Diameter Paper Reel
10	Avisert, Cathode Down, Anode First Off Reel
11	SMA, 12mm Tape, 7" Diameter Plastic Reel
12	Avisert, Cathode Down, Anode First Off Ammo Pack
13	SMA, 12mm Tape, 13" Diameter Paper Reel
14	Panasert, Cathode Up, Cathode First Off Reel
15	Panasert, Cathode Up, Anode Off First, Ammo Pack
16	Panasert, Cathode Up, Cathode First Off Ammo Pack
17	GF1, 12mm Tape, 7" Diameter Plastic Reel
18	Panasert, Cathode Down, Anode First Off Reel
19	GF1, 12mm Tape, 13" Diameter Paper Reel
20	Panasert, Cathode Down, Anode First Off Ammo Pack
21	Panasert, Cathode Up, Cathode First of Reel, Lead Coat (Plastic DO-204AL only)
22	Bulk Pack for Special Axial-Leaded Formed Devices
23	52.4mm Horizontal Tape Ammo Pack, Class I
24	Panasert, Cathode Up, Cathode First out of Ammo Box, Lead Coat (Plastic DO-204AL only)
26	GL41 SMD 12mm Tape, 13" Diameter Paper Reel
27	DFS Bridge,16mm Tape, 13" Diameter Paper Reel
28	Special Carton Packing method for Tube Packaging Products
30	0.5A Bridge SMD, 8mm Tape, 13" Diameter Paper Reel
32	GL34 SMD, 8mm Tape, 7" Diameter Paper Reel
35	Bulk, Axial-Leaded Conductive Packaging
36	Standard Horizontal Reel, Class I (Metric 52.4mm) Conductive Packaging
37	Bulk, TO220, TO3P Conductive Tubes
38	Bulk, Conductive Packaging for Bridge Rectifier
39	Miscellaneous Non-Standard T&R Packaging
40	Euroform, Reel, Cathode First Off Reel, Lead Coated
41	Euroform, Ammo Pack, Cathode First Out of Box, Lead Coated
42	Euroform, Reel, Cathode Last Off Reel, Lead Coated
43	Euroform, Ammo Pack, Cathode Last Out of Box , Lead Coated
44	52.4mm Horizontal Tape, 13" Diameter Paper Reel, 5mm Component Spacing
	for DO201 Packages
45	Anti-Static Tube Packaging for TO220, TO3P, DFM, SMDA and Arrays
46	GL41 SMD 12mm Tape, 7" Diameter Plastic Reels
48	GL34 SMD 8mm Tape, 7 " Diameter Plastic Reels
50	MPG06 Pseudo Radial Tape, Cathode First Out of Ammo Pack

Also available for all packaging Electro-Static-Protection by adding the number "50" to the existing codes. For example, "51" would be Bulk, Electro-Static Packaging. "54" would be T/R, Electro-Static Packaging.

TABLE 3


GI TAIWAN BULK PACKAGING


	PAC	KAGING	BOX	SIZE	QUANTITY PER PACKAGING	GROSS W	EIGHT
******		IN	CHES	CM	EA.	LBS.	KG
GL34 SURFACE M	MOUNT PAR	PER BOX 8.0 x	3.5 x 1.0	20.3 x 8.8 x 2.54	8000	0.55	0.25
GL41 SURFACE M	MOUNT PAF	ER BOX 8.0 x	3.5 x 1.0	20.3 x 8.8 x 2.54	4000	1.03	0.47
GF1 SURFACE M	IOUNT PAF	ER BOX 8.0 x	3.3 x.87	20.3 x 8.4 x 2.2	2000	0.76	1.67
SMA SURFACE N	MOUNT PAF	ERBOX 8.0 x	3.3 x .87	20.3 x 8.4 x 2.2	2000	0.77	1.69
SMB SURFACE M	Mount Paf	ER BOX 8.0 x	3.3 x .87	20.3 x 8.4 x 2.2	2000	0.77	1.69
SMC SURFACE	Mount Pap	ER BOX 8.0 x	3.3 x .87	20.3 x 8.4 x 2.2	1000	0.87	1.92
DO15	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	4000	3.85	1.75
DO201 AD	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	1500	4.41	2.0
DO204AP	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	4000	3.75	1.7
DO204MB	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	5000	3.15	1.43
DO41/MPG06	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	5000	2.38/2.20	1.08/1.0
G4/G3	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	3000/2000	5.07 / 5.29	2.3/2.4
GP20	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	1500	3.75	1.7
P600	PAF	PER BOX 11.75 x	5.125 x 2.5	29.8 x 13.0 x 6.3	750	3.7 2	1.69
P6KE	PA	PER BOX 11.75	x 3.5 x 1.0	29.8 x 8.8 x 2.54	2000	1.93	0.87
DF-M/DF-S	ANTI-STATIC PLASTIC TUB	ES 19.0	LENGTH	48.2 LENGTH	50	0.12	0.05
TO-220, CT	ANTI-STATIC PLASTIC TUE	ES 20.5	LENGTH	52.0 LENGTH	50	0.306	0.14
TO3P	ANTI-STATIC PLASTIC TUB	ES 20.5	LENGTH	52.0 LENGTH	30	0.572	0.26
WG	PLASTIC BAGS		•	•	100	0.37	0.17
KBPM/2KBPM	ANTI-STATIC PVC TRAY	12.5	x 6.5 x 1.25	31.7 x 16.5 x 3.17	120	0.53	0.24
GBU4.6.8	ANTI-STATIC PVC TRAY	12.5	x 6.1 x 1.0	30.9 x 15.5 x 2.5	250	2.42	1.1
GBL	ANTI-STATIC PVC TRAY	12.5	x 6.1 x 1.0	30.9 x 15.5 x 2.5	400	2.20	1.0
GBPC12-35W	PAPER BOX	12.5	x 12.5x 1.7	31.7 x 31.7 x 4.3	100	4.63	2.1
GBPC1,GBPC6	PAPER BOX	7.5 x	7.5 x 1.43	19.0 x 19.0 x 3.6	100	1.26/1.48	.57/.67
KBL	ANTI-STATIC PVC TRAY	12.2	x 6.1 x 1.5	30.9 x 15.5 x 3.8	300	4.19	1.9
GBPC12-35	PAPER BOX	12.5	(12.5 x 1.7	31.7 x 31.7 x 4.3	100	4.85	2.2
KBU4.6.8	ANTI-STATIC PVC TRAY	12.2	x 6.1 x 1.5	30.9 x 15.5 x 3.8	250	4.63	2.1

GI IRELAND BULK PACKAGING

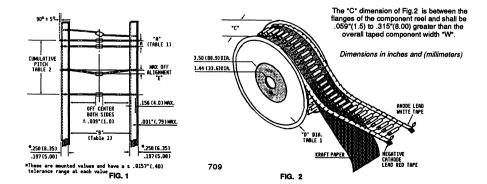
AMMO BOX PACKAGING

DEVICE TYPE	PACKAGING	BOX	SIZE	QUANTITY PER PACKAGING	GROSS	VEIGHT
		INCHES	CM	EA.	LBS.	KG
CASE 1 (DO201A)	PAPER BOX	8.8 x 3.1 x 1.8	22.5 x 8.0 x 4.5	1000	1.23	.56
CASE 7 (DO15)	PAPER BOX	8.8 x 3.1 x 1.8	22.5 x 8.0 x 4.5	1500	1.38	.626
CASE 25 (DO15)	PAPER BOX	8.8 x 3.1 x .1.8	22.5 x 8.0 x 4.5	1500	1.50	.677
SMDA (SO - 8)	ANTI-STATIC PLASTIC TUBES	19.7 x .125	50 x .32	100	.032	.014
PIN DIP ARRAY	ANTI-STATIC PLASTIC TUBES	19.7 x .62	50 x 1.6	50	.101	.046
6 PIN DIP ARRAY	ANTI-STATIC PLASTIC TUBES	19.7 x .62	50 x 1.6	25	.104	.047

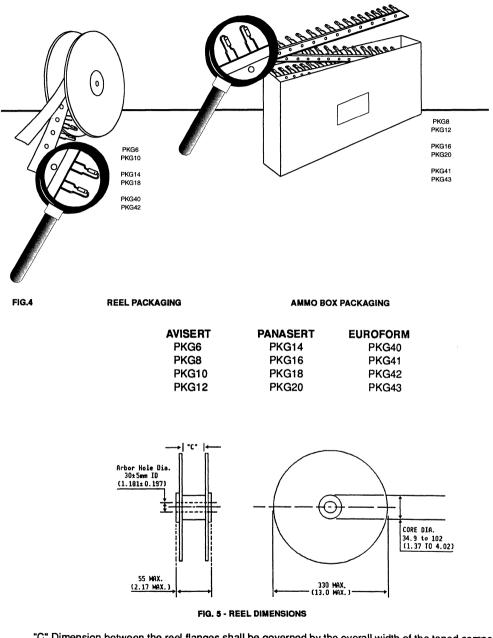
TABLE 4

Packaging	Available Product Outlines	Packaging Codes	Dimension "A"	Dimension "B"	Dimension "C"	Quantity Box
26mm Horizontal	DO-41,MPG06		9.7"	1.7	"3.7"	3.0K
Tape, Ammo Pack	DO204AP, DO-15	Pkg 3	(247mm)	(44mm)	(95mm)	1.5K
52mm Horizontal	DO204AP, DO-41,					3.0K
Tape, Ammo Pack	MPG06, DO15	Pkg 23	10.0"	3.1"	4.3"	2.0K
	DO201AD, G3,G4,GP20		(254mm)	(79mm)	(110mm)	1.0K
	P600					0.3K
Radial (Avisert,	GP10-E, RGP10-E	Pkg 8,15,				
Panasert, Euroform)	DO-41	41	13.4"	1.8"	7.9"	2.5K
Tape, Ammo Pack			(340mm)	(47mm)	(200mm)	
Pseudo /Radial	MPG06	Pkg 50	13.4"	1.8"	7.9"	2.5k
Tape, Ammo Pack			(340mm)	(47mm)	(200mm)	1

GI TAIWAN HORIZONTAL TAPE-REEL PACKAGING

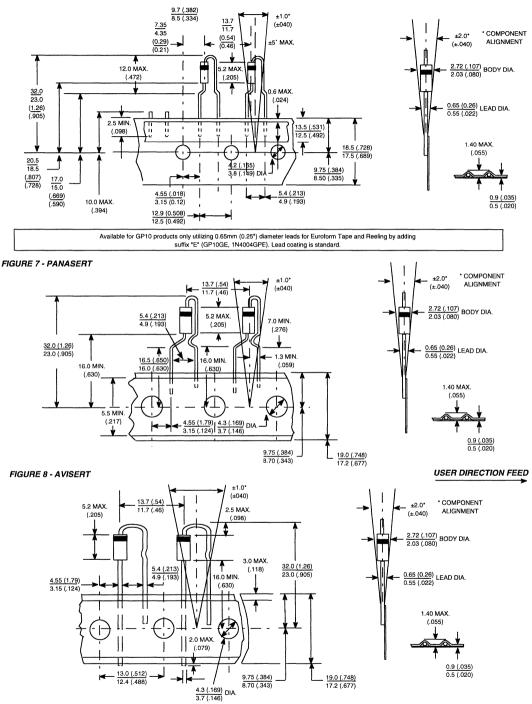

All Axial leaded devices are packed in accordance with EIA Standard RS-296-E and the diagrams given below which refer to these specifications.

UNITS PER REEL	SPA	CING	SPAC	CING	DIME	SION	ALIGN	MENT		WEIGHT REEL
өа.	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg.
2000	.200	5.0	2.06	52.4	13.0	330	.047	1.2	7.1	3.2
4000	.200	5.0	2.06	52.4	13.0	330	.047	1.2	5.00	2.29
1400	.395	10.0	2.06	52.4	13.0	330	.047	1.2	4.9	2.22
4500	.200	5.0	2.06	52.4	13.0	330	.047	1.2	5.4	2.44
5000	.200	5.0	2.06	52.4	13.0	330	.047	1.2	4.6	2.07
5500	.200	5.0	2.06	52.4	13.0	330	.047	1.2	5.5	2.51
1500	.472	12.0	-	-	13.0	330	See Fig. 1	2	1.95	.885
1600/2000	.395	10.0	2.06	52.4	13.0	330	.047	1.2	5.2/4.4	2.36/2.02
.500/1500	.157	4.0	-	-	7/13.0	178/330	See Fig. 12	2	.31/1.39	.14/.63
2500	.157	4.0	-	-	7/13.0	178/330	See Fig. 12	2	.471	.214
1500/5000	.157	4.0	-	-	7/13.0	178/330	See Fig. 12	2	.62/1.49	.281/.68
2500	.500	12.7	•	-	13.0	330	.079	2.0	3.0	1.34
5500	.200	5.0	2.06	52.4	13.0	330	.047	1.2	4.4	1.99
1400	.395	10.0	2.06	52.4	13.0	330	.047	1.2	4.9	2.22
5500	.200	5.0	2.06	52.4	13.0	330	.047	1.2	3.8	1.71
2500	.500	12.7	-	-	-	-	.080	2.0	3.0	1.34
800	.395	10.0	2.06	52.4	13.0	330	.047	1.2	5.3	2.39
1800/7500	.157	4.0	-	-	7.0/13.0	178/330	See Fig. 12	2	.24/.99	.11/.45
750/3200	.157	4.0	•	-	7.0/13.0	178/330	See Fig. 12	2	.24/.99	.11/.45
850/3500	.472	12.0	•	-	7.0/330	178/13.0	See Fig. 12	2	.44/1.39	.20/.63
	PER REEL 98. 2000 4000 1400 4500 5500 1500 5500 1500/1500 2500 1500/5000 2500 1500/5000 2500 1400 5500 2500 1400 2500 800 1800/7500	UNITS PER REEL SPA "A" 98. In. 2000 .200 4000 .200 1400 .395 4500 .200 5500 .200 5500 .200 1500 .472 1600/2000 .395 .500/1500 .157 2500 .500 5500 .200 5500 .200 5500 .200 5500 .200 5500 .200 5500 .200 5500 .200 .5500 .200 .2500 .500 .200 .200 .2500 .500 .800 .395 .1800/7500 .157 750/3200 .157	PER REEL "Å" FIG. 1 In. 98. In. mm 2000 200 5.0 4000 200 5.0 4000 200 5.0 1400 395 10.0 4500 200 5.0 5000 200 5.0 5500 200 5.0 1500 472 12.0 1600/2000 395 10.0 5500 157 4.0 2500 .157 4.0 2500 .157 4.0 2500 .500 12.7 5500 .200 5.0 1400 .395 10.0 5500 .200 5.0 2500 .500 12.7 800 .395 10.0 1800/7500 .157 4.0 1800/7500 .157 4.0	UNITS PER REEL SPACING "A" FIG. 1 In. SPAC "B" FIG. 1 In. 2000 200 5.0 2.06 4000 200 5.0 2.06 1400 395 10.0 2.06 4500 200 5.0 2.06 5000 200 5.0 2.06 5500 200 5.0 2.06 1500 472 12.0 - 1600/2000 395 10.0 2.06 5500 157 4.0 - 2500 157 4.0 - 2500 500 12.7 - 5500 200 5.0 2.06 1400 395 10.0 2.06 5500 200 5.0 2.06 5500 200 5.0 2.06 5500 200 5.0 2.06 5500 200 5.0 2.06 5500 5.0 2.06 5500 5.0 <td>UNITS PER RELL SPACING "A" FIG.1 SPACING "B" FIG.1 98. In. mm In. mm 2000 200 5.0 2.06 52.4 4000 200 5.0 2.06 52.4 4000 200 5.0 2.06 52.4 4500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 1500 .472 12.0 - - 1600/2000 .395 10.0 2.06 52.4 .500/1500 .157 4.0 - - 2500 .157 4.0 - - 2500 .500 12.7 - - 5500 .200 5.0 2.06 52.4 14</td> <td>UNITS PER REL 98. SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIME "D" "B" 98. In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 4000 200 5.0 2.06 52.4 13.0 1400 395 10.0 2.06 52.4 13.0 4500 200 5.0 2.06 52.4 13.0 5500 200 5.0 2.06 52.4 13.0 5500 200 5.0 2.06 52.4 13.0 1500 472 12.0 - - 13.0 1600/2000 395 10.0 2.06 52.4 13.0 5500 157 4.0 - - 7/13.0 2500 157 4.0 - - 7/13.0 1500/5000 157 4.0 - - 13.0 2500 500 12.7 -</td> <td>UNITS PER RELL SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIMENSION "B" FIG. 1 98. In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 330 4000 200 5.0 2.06 52.4 13.0 330 1400 395 10.0 2.06 52.4 13.0 330 4500 200 5.0 2.06 52.4 13.0 330 5500 200 5.0 2.06 52.4 13.0 330 5500 200 5.0 2.06 52.4 13.0 330 1500 4.72 12.0 - - 13.0 330 1600/2000 395 10.0 2.06 52.4 13.0 330 2500 .157 4.0 - - 7/13.0 178/330 2500 .157 4.0 - - 13.0 330</td> <td>UNITS PER RELL SPACING ("A" FIG. 1 SPACING ("B" FIG. 1 DIMENSION ("B" FIG. 1 ALIGN ("E"FIFICAL e8. In. mm In. Mixing 10.0 330 .047 330 .047 1500 .047 1500 .047 1500 .047 .040 </td> <td>UNITS PER RELL SPACING "A" FIG. 1 In. SPACING mm SPACING "B" FIG. 1 "B" FIG. 1 In. DIMENSION TO" FIG. 2 In. ALIGNMENT "E"FIG. 1 In. 98. In. mm In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 330 .047 1.2 4000 200 5.0 2.06 52.4 13.0 330 .047 1.2 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 4500 200 5.0 2.06 52.4 13.0 330 .047 1.2 5000 200 5.0 2.06 52.4 13.0 330 .047 1.2 1500 472 12.0 - - 13.0 330 .047 1.2 1600/2000 395 10.0 2.06 52.4 13.0 330 .047 1.2 1500/1500 .157 4.0 -<!--</td--><td>UNITS PER RELL SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIMENSION "D" FIG.2 ALIGNMENT "E"FIG. 1 GROSS PER e8. In. mm In. mm In. mm In. mm Is. PER 2000 200 5.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.5 1500 4.72 12.0 - - 13.0 330 .047 1.2 5.2/4.4 .500/1500 1.57 4.0 - - 7/13.0 178/330</td></td>	UNITS PER RELL SPACING "A" FIG.1 SPACING "B" FIG.1 98. In. mm In. mm 2000 200 5.0 2.06 52.4 4000 200 5.0 2.06 52.4 4000 200 5.0 2.06 52.4 4500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 5500 .200 5.0 2.06 52.4 1500 .472 12.0 - - 1600/2000 .395 10.0 2.06 52.4 .500/1500 .157 4.0 - - 2500 .157 4.0 - - 2500 .500 12.7 - - 5500 .200 5.0 2.06 52.4 14	UNITS PER REL 98. SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIME "D" "B" 98. In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 4000 200 5.0 2.06 52.4 13.0 1400 395 10.0 2.06 52.4 13.0 4500 200 5.0 2.06 52.4 13.0 5500 200 5.0 2.06 52.4 13.0 5500 200 5.0 2.06 52.4 13.0 1500 472 12.0 - - 13.0 1600/2000 395 10.0 2.06 52.4 13.0 5500 157 4.0 - - 7/13.0 2500 157 4.0 - - 7/13.0 1500/5000 157 4.0 - - 13.0 2500 500 12.7 -	UNITS PER RELL SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIMENSION "B" FIG. 1 98. In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 330 4000 200 5.0 2.06 52.4 13.0 330 1400 395 10.0 2.06 52.4 13.0 330 4500 200 5.0 2.06 52.4 13.0 330 5500 200 5.0 2.06 52.4 13.0 330 5500 200 5.0 2.06 52.4 13.0 330 1500 4.72 12.0 - - 13.0 330 1600/2000 395 10.0 2.06 52.4 13.0 330 2500 .157 4.0 - - 7/13.0 178/330 2500 .157 4.0 - - 13.0 330	UNITS PER RELL SPACING ("A" FIG. 1 SPACING ("B" FIG. 1 DIMENSION ("B" FIG. 1 ALIGN ("E"FIFICAL e8. In. mm In. Mixing 10.0 330 .047 330 .047 1500 .047 1500 .047 1500 .047 .040	UNITS PER RELL SPACING "A" FIG. 1 In. SPACING mm SPACING "B" FIG. 1 "B" FIG. 1 In. DIMENSION TO" FIG. 2 In. ALIGNMENT "E"FIG. 1 In. 98. In. mm In. mm In. mm In. mm 2000 200 5.0 2.06 52.4 13.0 330 .047 1.2 4000 200 5.0 2.06 52.4 13.0 330 .047 1.2 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 4500 200 5.0 2.06 52.4 13.0 330 .047 1.2 5000 200 5.0 2.06 52.4 13.0 330 .047 1.2 1500 472 12.0 - - 13.0 330 .047 1.2 1600/2000 395 10.0 2.06 52.4 13.0 330 .047 1.2 1500/1500 .157 4.0 - </td <td>UNITS PER RELL SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIMENSION "D" FIG.2 ALIGNMENT "E"FIG. 1 GROSS PER e8. In. mm In. mm In. mm In. mm Is. PER 2000 200 5.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.5 1500 4.72 12.0 - - 13.0 330 .047 1.2 5.2/4.4 .500/1500 1.57 4.0 - - 7/13.0 178/330</td>	UNITS PER RELL SPACING "A" FIG. 1 SPACING "B" FIG. 1 DIMENSION "D" FIG.2 ALIGNMENT "E"FIG. 1 GROSS PER e8. In. mm In. mm In. mm In. mm Is. PER 2000 200 5.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.00 1400 395 10.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.4 5000 2.00 5.0 2.06 52.4 13.0 330 .047 1.2 5.5 1500 4.72 12.0 - - 13.0 330 .047 1.2 5.2/4.4 .500/1500 1.57 4.0 - - 7/13.0 178/330


GI IRELAND HORIZONTAL TAPE / REEL PACKAGING

COMPONENT CASE TYPE	UNITS PER REEL	SPA	Ponent .Cing Fig. 1		PE CING FIG. 1	RE DIMEI "D" I	ISION	MAX ALIGN "E"F	MENT	GROSS W PER RI	
	ea.	in.	mm	in.	mm	in.	mm	in.	mm	lbs.	kg.
CASE 1 (1.5KE)	1400	.395	10	2.06	52.4	14.0	356	.047	1.2	4.9	2.22
CASE 7 / DO15	4000	.200	5.0	2.06	52.4	14.0	356	.047	1.2	5.0	2.29
CASE 25 / DO15	4000	.200	5.0	2.06	52.4	14.0	356	.047	1.2	5.0	2.29
DO214AA / 215AA (SMB)	1000/3000	.157	4.0	•	-	7.0/13.0	178/330	see f	ig. 12	1.43	.65
DO214AB/ 215AB (SMC)	3000	.472	12.0	-	•	13.0	330	see f	ig. 12	1.43	.65
SMDA (SO-8)	1000/2500	.315	8.0	-	-	7.0/13.0	178/330	see f	g. 12	.73/1.12	.33/.51
.5A BRIDGE (SMD)	3000	.315	8.0	-	-	13.0	330	see f	ig. 12	1.43	.65

TABLE 2	COMPON	NENT AND INS	IDE TAPE SPACING
Component	Components Spacing	Inside Tape	Cumulative
Body Diameter	"A"(Lead to Lead)	Spacing "B"	Pitch Tolerance
0mm to 5mm	5.0mm ± 0.5mm	26mm ± 0.75mm	NI-44-
(0" to .197")	(.197"± .020")	(1.024" ± .030)	
0mm to 5mm (0" to 197")	5.0mm ± 0.5mm (197" ± .020")	52.4mm ± 1.5mm (2.062" ± .059")	Not to Exceed 1.5mm (.059") over
5.01mm to 10mm	10mm ± 0.5mm	52.4mm± 1.5mm	6 Consecutive
(.197" to .394")	(.394" ± .020")	(2.062" ±. 059")	


PACKAGING FOR RADIAL TAPING

"C" Dimension between the reel flanges shall be governed by the overall width of the taped components and shall be 1.5mm(0.057) to 8.0mm(0.315") greater than the overall width

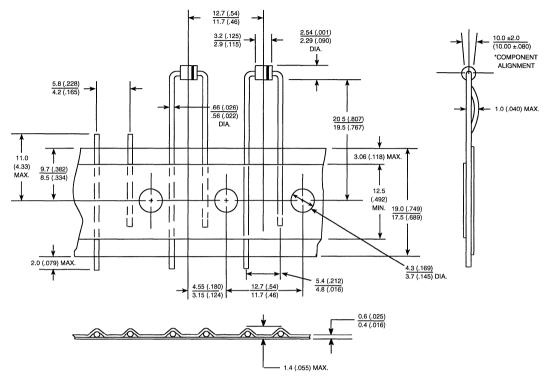
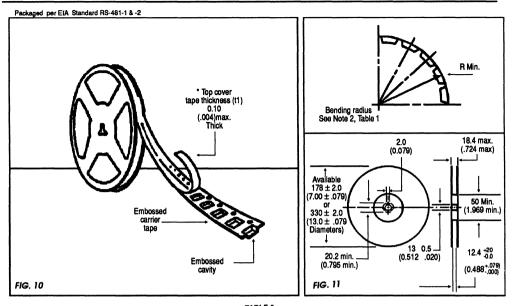
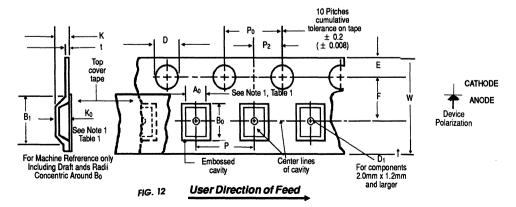

Package per EIA Standard RS-468-A. Available on reels or fan fold box (ammo pack). All dimensions in millimeters and (inches)

FIGURE 6 - EUROFORM

Available only for D-41 style products utilizing 0.65mm (0.25°) or 0.76mm (.030) diameter leads for Panasert and Avisert Tape and Reeling. Lead coating is not available.

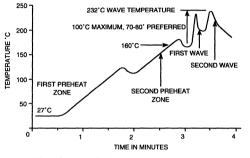

Standard polarity cathode oriented away from sprocket holes (Optional polarity cathode oriented toward sprocket holes)

Dimensions in inches and (millimeters)


Available only for MP606 product utilizing 0.6mm diameter leads. Maximum cumulative pitch tolerance: 1.0mm/20 pitch.

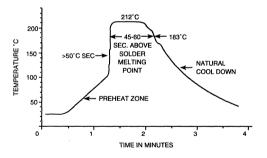
SURFACE TAPE REEL MOUNT PACKAGING

	TABLE 5									
	8,12,16 MN	Embossed		All Dimensions in Millimeters and (Inches)						
	Tape Size	D	E	Po	l t	Ao Bo Ko				
	8, 12,16 MM	1.5+18 (.059) <u>.</u> 88	1.75± 0.10 (.069±.004)	4.0 ± 10 (.157± .004)	0.400 (.016)	See Note 1 Table 2				Constant Dimensions
Product Type	Size صرب ۱	Max. B ¹	Min. D ¹	F	Max. K	P2	Min. R	w	P	
GL34	8MM	4.2 (.165)	1.0 (.39)	3.5±0.051 (.138±.002)	2.4 (.094)		25 (.984)	8.0±.30 (.315±.012)		
GL41					4.5 (.177)			12.0±.30 (.472±.012)	4.0± 0.10 (1.57±.004)	
GF1		8.2		5.5± 0.051	3.15±.10 (1.24±.004)	2.0±0.051			(Variable
SMA	12MM	(.323)	1.5	(.217±.002)	2.54 ± .10 (.100±.004)	(.079±.002)	30 (1.81)	12.0 ± .008 (473 ± .008)		Dimensions
SMB			(.059)		2.67±.10		((4,01.000)	8.0 ± .10	
.5A Bridge SMDA					(.105±.004)			[(.315±.004)	
SMC	16MM	12.1		7.5±0.051	2.5 ± 0.10 (.100±.004)	4.0 ± 0.10		16.0±0.2	1	
DFS		(.476)		(.295 ± .002)	3.8±0.07 (.150±.003)	(.57±.004)		(.630 ±. 008)	12.0±0.10 (.472±.004)	


NOTES: 1. Ao Bo Ko are determined by component size. The clearance between the component and the cavity must be within 0.05 min. to 0.5 max. for 8MM tape and 0.05 min. to 0.650 max. for 18MM tape. In addition, the components cannot rotate more than 20 within the determined cavity. 2. Tape and components will pass around radius "R" without damage.

GI RECOMMENDED SOLDERING PROCESSING FOR SURFACE MOUNT AND AXIAL-LEADED COMPONENTS

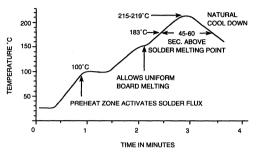
WAVE SOLDERING


Wave soldering has the highest solder temperatures and heat transfer rates that are imposed by small resin molded parts like transistors, integrated circuits and surface mount components. The profile has short dwell time in the solder pot and high preheat to minimize thermal shock in ceramic components and temperature problems with resin molded parts.

Wave Soldering Profile

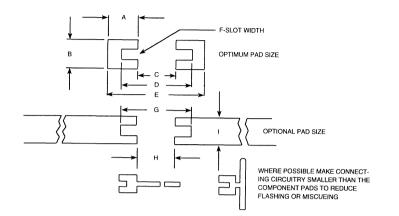
VAPOR PHASE REFLOW SOLDERING

Vapor phase soldering has the second highest heat transfer rate so care must be used. Preheating the assembly and minimizing the dwell time above the solder liquidus temperature is needed for minimum defects.



Vapor Phase Profile

General Instrument Recommended Soldering Processes for Surface Mount and Axial-Leaded Components

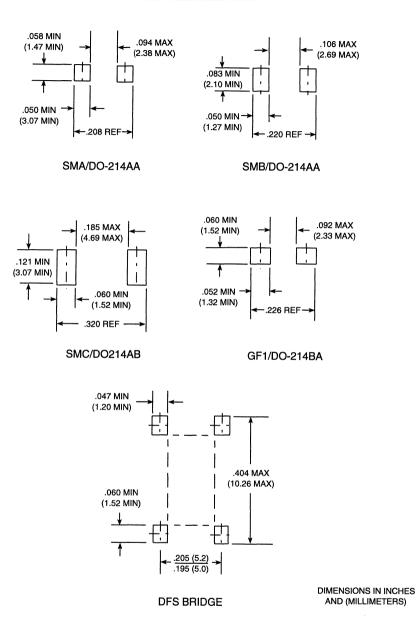

INFRARED REFLOW SOLDERING (IR)

Soldering with IR has the highest yields due to controlled heating rates and solder liquidus times. Only the dwell time and peak temperature limitations of resin molded components need to be considered.

IR Reflow Solder Profile

GI RECOMMENDED MINIMUM MOUNTING PAD LAYOUT SIZES FOR THE MELF SURFACE MOUNT RECTIFIER

Π		
U		
	U	


FOR LARGE BUSS ATTACH-MENT USE A SOLDER MASK TO REDUCE EFFECTIVE PAD SIZE

DIMENSION	GL34 DO-213AA	GL41 DO-213AB
A B C D E F G H	.069 (1.75) .063 (1.60) .069 (1.75) .138 (3.50) .207 (5.26) .016 (.406) .138 (3.50) .035 to .080 (.89 to 2.03) .048 (1.22) min	.100 (2.54) .100 (2.54) .100 (2.54) .200 (5.08) .300 (7.62) .025 (.635) .200 (5.08) .050 to .125 (1.27 to 3.17)
	()	.075 (1.90) min

NOTE: ALL DIMENSIONS IN INCHES AND (MILLIMETERS)

General Instrument Recommended Minimum Mounting Pad Layout Sizes for the MELF Surface Mount Rectifiers

GI RECOMMENDED MINIMUM MOUNTING PAD LAYOUT SIZES FOR THE SURFACE MOUNT RECTIFIER AND THE FLAT PACK

General Instrument Recommended Minimum Mounting Pad Layout Sizes for the Flat Pack Surface Mount Rectifiers

HEADQUARTERS:

10 Melville Park Road, Melville, NY 11747 Tel: (516) 847-3000

Northeast Regional Sales Office

General Instrument Corporation 10 Melville Park Road Melville, NY 11747 Tel: (516) 847-3200

Southeast Regional Sales Office

General Instrument Corporation 6855 Jimmy Carter Blvd. Suite 2250 Norcross, GA 30071 Tel: (404) 446-1265 Fax: (404) 446-1286

ALABAMA

Group 2000 Sales 655 Gallatin Street Suite 100 Huntsville, 35801 Tel: (205) 536-2000 Fax: (205) 533-5525

ARIZONA

O'Donnell Assoc. S.W. Inc. 2432 West Peoria Ave. Suite 1026 Phoenix, 85029 Tel: (602) 944-9542 Fax: (602) 861-2615

O'Donnell Assoc. S.W. Inc. 11449 N. Copper Springs Trail, Tucon, 85737 Tel: (602) 797-2047 Fax: (602) 742-6039

CALIFORNIA

Ewing-Foley Inc. 895 Sherwood Ave. Los Altos, 94022 Tel: (415) 941-4525 Fax: (415) 941-5109

Ewing-Foley Inc. 185 Linden Ave. Auburn, 95603 Tel: (916) 885-6591 Fax: (916) 885-6594

ProSales 8745 Magnolia Ave. Suite D Santee, 92071-4592 Tel: (619) 596-2190 Fax: (619) 596-2194

CALIFORNIA (cont.)

Select Electronics 14730 Beach Blvd. Suite 106, Bldg. F La Mirada, 90638 Tel: (714) 739-8891 Fax: (714) 739-1604

Solid State Sales 1770 Orange Ave. Costa Mesa, 92627 Tel: (714) 650-8414 Fax: (714) 650-8415

CANADA

Pipe-Thompson Ltd. 5468 Dundas St. West Suite 206 Islington, Ontario M9B 6E3 Tel: (416) 236-2355 Fax: (416) 236-3387

Pipe-Thompson Ltd. 17 Brandy Creek Cresent Kanata, Ontario K2M 2B8 Tel: (613) 591-1821 Fax: (613) 591-0461

Davetek Marketing 107-3738 North Fraser Way Burnaby, British Columbia V5J 5G1 Tel: (604) 430-3680 Fax: (604) 435-5490

COLORADO

UNITED STATES

Meridian Marketing, Inc. 6801 South Emporia St. Suite 203 Englewood, 80112 Tel: (303) 790-7171 Fax: (303) 790-2744

FLORIDA

Graham Assoc. Inc. 9123 North Military Trail Suite 103 Palm Beach Gardens, 33410 Tel: (407) 622-4049 Fax: (407) 622-4595

Graham Assoc. Inc. P.O. Box 771628 Winter Garden, 34777-1628 Tel: (407) 656-9369 Fax: (407) 656-6972

Graham Assoc. Inc. P.O. Box 397 Melbourne, 32902-0397 Tel: (407) 773-6631 Fax: (407) 773-6576

Graham Assoc. Inc. 14101 Martin Sr. Drive Dade City, 33525 Tel: (904) 523-0996 Fax: (904) 523-0998

Central Regional Sales Office

General Instrument Corporation 85 West Algonquin Rd. Suite 300 Arlington Heights, IL 60005 Tel: (708) 364-5880 Fax: (708) 364-0649

Western Regional Sales Office

General Instrument Corporation 8222 South 48th St. Suite 250 Phoenix, AZ 85044 Tel: (602) 438-6840 Fax: (602) 438-6844/6836

FLORIDA (cont.)

Graham Assoc. Inc. 11190 N.W. 40th St. Coral Springs, 33065 Tel: (305) 341-5102 Fax: (305) 341-5118

GEORGIA

Group 2000 Sales 655 Engineering Dr. Suite 140 Norcross, 30092 Tel: (404) 729-1889 Fax: (404) 729-1896

LLINOIS

Metcom Assoc. Two Talcott Rd. Park Ridge, 60068 Tel: (708) 696-1490 Fax: (708) 696-2568

INDIANA

Valentine Assoc. Inc. 1030 Summit Drive Carmel, 46032 Tel: (317) 846-0008 Fax: (317) 846-0255

IOWA

Lorenz Sales, Inc. 5270 North Place N.E. Cedar Rapids, 52402 Tel: (319) 377-4666 Fax: (319) 377-2273

PSD SALES OFFICE cont.

KANSAS

Lorenz Sales, Inc. 8645 College Boulevard, Suite 220 Overland Park, 66210 Tel: (913) 469-1312 Fax: (913) 469-1238

Lorenz Sale, Inc. 1530 Maybelle Wichita, 67212 Tel: (316) 721-0500 Fax*: (316) 721-0566

KENTUCK Y Valentine Assoc. 3215 Brentwood Dr., Henderson, 42420 Tel: (502) 826-9444 Fax: (502) 826-9108

MASSACHUSETTS

Power Component Sales, Inc. 352 Boston Turnpike Shrewsbury, 01545 Tel: (508) 754-9840 Fax: (508) 754-9858

MICHIGAN

Rathsburg Assoc. 41100 Bridge Street Novi, 48375 Tel: (810) 615-4000 Fax: (810) 615-4001

MINNESOTA

Hanna-Lind Ltd. 5909 Baker Rd. Suite 510 Minnetonka, 55345 Tel: (612) 931-1242 Fax: (612) 931-3015

MISSOURI

Lorenz Sales, Inc. 10176 Corporate Square Dr. St. Louis, 63132 Tel: (314) 997-4558 Fax: (314) 997-5829

NEBRASKA 2801 Garfield St. Lincoln, 68502 Tel: (402) 475-4660 Fax: (402) 474-7094

NEW MEXICO

O'Donnell Assoc. Southwest Inc. 3200 Carlisle Blvd. N.E. Suite 104 Albuquerque 87110 Tel: (505) 889-4522 Fax: (505) 889-4598

NEW YORK

Neptune Electronics Co. Inc. 255 Executive Dr. Suite 211 Plainview, 11803 Tel: (516) 349-1600 Fax: (516) 349-1343

Quality Components 116 East Fayette St. Manlius, 13104 Tel: (315) 682-8885 Fax: (315) 682-2277

Quality Components 3343 Harlem Rd. Buffalo, 14225 Tel: (716) 837-5430 Fax: (716) 837-0662

NORTH CAROLINA

Group 2000 Sales 875 Walnut Street Suite 310 Cary, 27511 Tel: (919) 481-1530 Fax: (919) 481-1958

OHIO

Makin & Assoc. 3165 Linwood Rd. Cincinnati, 45208 Tel: (513) 871-2424 Fax: (513) 871-2524

Makin & Assoc. 32915 Aurora Rd. Solon, 44139 Tel: (216) 248-7370 Fax: (216) 248-7372

Makin & Assoc. 6400 Riverside Dr. Bldg. A Dublin, 43017 Tel: (614) 793-9545 Fax: (614) 793-0256

OKLAHOMA

Comptech Sales 18700 Woodbriar Lane Catoosa, 74015 Tel: (918) 266-1966 Fax: (918) 266-1808

OREGON

Electronic Sources Inc. 6700 S.W. 105th Suite 305 Beaverton, 97005 Tel: (503) 627-0838 Fax: (503) 627-0238

PENNSYLVANIA

Bresson Assoc. 107 Forrest Ave. Narberth, 19072 Tel: (215) 664-6460 Fax: (215) 664-7020

PUERTO RICO

Isla Caribe Electro Sales Inc. Calle Alejandrino C#5 Villa Clementina Guaynabo, 00657 Tel: (809) 720-4430 Fax: (809) 720-1097

TEXAS

Comptech Sales 2401 Gateway Dr. Suite 114 Irving, 75063 Tel: (214) 751-1181 Fax: (214) 550-8113

Comptech Sales 11130 Jollyville Rd. Suite 200 Austin, 78759 Tel: (512) 343-0300 Fax: (512) 345-2530

Comptech Sales 15415 Katy Freeway Suite 209 Houston, 77094 Tel: (713) 492-0005 Fax: (713) 492-6116

TEXAS (cont.)

Comptech Sales 1325 South 77th Sunshine Strip Apt. E-2 Harlingen, 78550 Tel: (512) 421-4501 Fax: (512) 421-3265

O'Donnell Assoc. Southwest Inc. 5959 Gateway West Suite 558 El Paso, 79925 Tel: (915) 778-6429 Fax: (915) 778-2581

WASHINGTON

Electronic Sources Inc. 1603 116th Ave. N.E. #115 Suite 115 Bellevue, 98004 Tel: (206) 451-3500 Fax: (206) 451-1038

WISCONSIN

Metcom Assoc. 237 South Curtis Rd. West Allis, 53214 Tel: (414) 476-1300 Fax: (414) 476-4368

MEXICO

Ciber Electronica S.A.DE C.V. Arbol 207 Colonia Chapalita Sur C.P. 45000 Guadalajara, Jalisco Tel: 52-36-47-5217 Fax: 52-36-22-9394

AUSTRIA

Key Components Elektronik Handelsges. mbH Heiligenkreuzerstr. 51 A- 2393 Sittendorf (Vienna) Tel.: 02/237 83 61- 0 Telefax: 02/23 76 63

Burisch Elektronik- Bauteile GmbH Leopoldauerstr. 29 A- 1210 Vienna Tel.: 02/772 00 Telex: 11 10 82 Telefax: 02/772 02 77

BELGIUM / HOLLAND Rodelco B.V. Takkebijsters 2 NL- 4817 Breda Tel.: 076/78 49 11 Telex: 54 195

Telefax: 076/71 00 29

Rodelco N.V./S.A. Limburg Stirum 243 B- 1780 Wemmel Tel.: 002/460 05 60 Telex: 246 10 Telefax: 02/460 02 71

CZECH REPUBLIC

Semitech spol s.r.o. Electronic Distribution K prokopavce 19 32321 Pilsen

DENMARK

Tech Partner A/S Sylbaekvej 33 DK- 8230 Aabyhoj Tel.: 086/25 00 55 Telefax; 086/25 28 55

FINLAND

ITT Electronic Components Distribution GmbH 7 Co. Tyopajakatu 5 SF- 00581 Helsinki Tel: 07/391 00 Telex: 12 53 56 Telefax: 07/01 56 39 FRANCE C.C.I. 5 Rue Marcellin Berthelot 92164 Antony Tel.: (1) 46 74 47 00 Telex: 203881 Telefax: (1) 40 96 92 96

3D

6 9 Rue Ambroise Croizat 91120 Palaiseau Tel: (1) 64 47 29 29 Telex: 603341 Telefax: (1) 64 47 00 84 CP Electronique BP No 01 78 420 Carrieres/Seine Tel: (1) 30 86 22 00 Telefax: (1) 39 14 61 36

SILEC D.E.L. 8, Rue des Freres Bertrand B.P. 59 69632 Venissieux Cedex Tel.: (16) 78 00 86 97 Telex: 340189 Telefax: (16) 78 09 02 91

Dicel 24, Ave J. Masset 69009 Lyon Tel.: 78 83 40 20 Telefax: 78 43 41 05

GERMANY

Betronik GmbH Grunewaldstr. 39A 12165 Berlin Tel.: 030/7 91 28 89 Telefax: 030/7 92 76 60

Enatechnik GmbH Schillerstr. 14 25451 Quickborn Tel.: 041 06/6 12- 0 Telefax: 041 06/61 22 68

RSC- Halbleiter GmbH Industriestr. 2 75228 Ispringen Tel.: 072 31/80 10 Telefax: 072 31/822 82

Sinus Electronic GmbH Schleifweg 6 74257 Untereisesheim Tel.: 071 32/49 41 44 Telefax: 071 32/437 50 GERMANY cont. Spoerle Electronic Max- Planck- Str. 1- 3 63303 Dreieich Tel.: 061 03/30 40 Telefax: 06 103/30 43 44

Semitron W.Rock GmbH Im Gut 1 79790 Kussaberg Tel.: 077 42/80 01- 0 Telefax: 077 42/69 01

GREECE Ledar 9, L.Koromila GR- 11745 Athens Tel: 09/21 94 05 Telex: 22 15 27 Telefax: 09/23 96 98

ISRAEL Rapac Electronics Ltd. 7Kehilat Saloniki Street IL- 69513 Tel- Aviv Tel.: 034/932 72 Telefax: 034/932 72

ITALY Distributors: Adimpex S.r.I. SS.16- Via Adriatica km

314 P.O. Box 116 60022 Castelfidardo (AN) Tel.: 071/781 90 12 r.a. Telefax: 071/781 90 77

Alta Via Matteo di Giovanni, 6 50143 Firenze Tel.: 055/71 74 02 Telefax: 055/70 56 58

Consystem S.r.l. Via Gramsci, 156 20037 Paderno Dugnano (MI) Tel.: 02/99 04 19 77/8 Telefax: 02/99 04 19 81

Distrel S.r.l. Via Rizzo, 8 20151 Milano Tel.: 02/38 00 10 87 Telefax: 02/38 00 11 54 **ITALY cont.** Idac Camel S.r.I. Via Savelli, 3 35129 Padova Tel.: 049/8075616 Fax: 049/8075626

Scel S.r.l. Via Stelvio, 9 20026 Novate Milanese (MI) Tel.: 02/354 62 52 Telefax: 02/354 22 62

NORWAY Bexab Norge A/S Slynga 2 N- 2001 Lillestrom Tel.: 063/83 38 00 Telefax: 063/83 20 07

PORTUGAL COMPONENTA Lda Rua Luis de Camoes 128 1300 Lisboa Tel.: 13 62 12 83/84 Telex: 61562 Telefax: 13 63 76 55

SOUTH AFRICA HI- Q Electronics 97 Bedford Avenue Benoni 1500 Tel.: 011/420 29 11 Telefax: 011/420 29 14

SPAIN Amitron S.A. Avda de Valladolid 47D 28008 Madrid Tel.: (91) 542 09 06/541 54 02 Telex: 45550 Telefax: (91) 2 48 79 58

AQL

General Palanca 26 28045 Madrid Tel.: (910 467 75 12 Telefax: (91) 530 29 34

SUTELCO S.A. Pilar de Zaragoza 23 28028 Madrid Tel.: (91) 355 86 03/02/01 Telefax: (91) 355 81 20

SWEDEN

Bexab Sweden AB Kemistvagen 10A S- 18325 Taby Tel.: 08/630 88 00 Telefax: 08/732 70 58

EUROPEAN DISTRIBUTORS AND AGENCIES

SWITZERLAND

Elbatex AG Hardstr. 72 CH- 5'430 Wettingen Tel.: 056/27 51 11 Telefax: 056/27 19 24

UNITED KINGDOM Distributors:

Famell Electronic Components Armley Road Leeds LS12 2QQ Tel.: 05 32/79 01 01 Tel/stax: 05 32/63 34 04

Future House Poyle Road Colnbrock SL3 OEZ Tel.: 07 53/68 70 00 Telefax: 07 53/68 91 00

Hunter Electronic Components Ltd. Unit 3, Central Estate Denmark Street Maidenhead Berks SL6 7BN Tel.: 06 28/759 11 Telefax: 06 28/756 11

Polar Electronics Ltd. Cherry Court Way Leighton Buzzard Beds LU7 8YY Tel.: 05 25/37 70 93 Telex: 825238 Telefax: 05 25/37 83 67

Polar North 14 Howard Court Manorpark Avenue Manorpark Runcorn Cheshire WA7 1SJ Tel.: 09 28/57 90 09 Telefax: 09 28/57 91 23

UNITED KINGDOM

cont. Young ECC Electronics Knaves Beech Estate High Wycombe Bucks HP10 9QY Tel.: 06 28/81 07 27 Telex: 848661 HYE UK Telefax: 06 28/81 08 07

RS Components Ltd. Po Box 99 Corby Northants NN17 9RS Tel.: 05 36/20 12 34 Telex: 34 25 12 Telefax: 05 36/20 15 01

UNITED KINGDOM

Agents: Rodgers Agencies 124 Orby Drive Belfast BT5 6BB Northem Ireland Tel.: (Belfast) 70 49 65 Telefast; (Belfast) 79 25 63

🛈 General Instrument

POWER SEMICONDUCTOR DIVISION N.A. AUTHORIZED DISTRIBUTORS

DISTRIBUTOR	ADDRESS	CITY/STATE	TELEPHONE NO.
ACI Electronics	200 Newtown Road	Plainview, NY 11803	(516) 293-6630
Advent Electronics	1865 Miner St.	Des Plaines, IL 60016-8416	(708) 298-4210
All American	16085 N.W. 52nd Avenue	Miami, FL 33014	(305) 621-8282
Arrow Electronics	25 Hub Drive	Melville, NY 11746	(516) 391-1300
Bell Industries	11812 San Vicente, Suite 300	Los Angeles, CA 90049	(310) 826-2355
Digi-Key Corp.	701 Brooks Ave. S.	Thief River Falls, MN 56701	(218) 681-6674
Future Electronics	237 Hymus Boulevard	Pointe Claire, CN H9R5C7	(514) 694-7710
Garrett Instruments	3130 Skyway Dr. Suite 701	Santa Maria, CA 93455	(805) 922-0594
Hamilton/Hallmark Electronics	11333 Pagemill Road	Dallas, TX 75243-8399	(214)343-5000
Hammond Electronics	1230 W. Central Avenue	Orlando, FL 32805	(407) 849-6060
Jaco Electronics	145 Oser Avenue	Hauppauge, NY 11788	(516) 273-5500
Newark Electronics	4801 N. Ravenswood	Chicago, IL 60640	(312) 784-5100
NEP Electronics	805 Mittle Drive	Wood Dale, IL 60191	(708) 595-8500
Nu-HorizonsElectronics	6000 New Horizons Blvd.	Amityville, NY 11701	(516) 226-6000
Pioneer-Standard Electronics	4800 E. 131st Street	Cleveland, OH 44105	(216) 587-3600
Pioneer-Technologies, Inc.	15810 Gaither Drive	Gaithersberg, MD 20877	(301) 921-3864
Solid State	46 Ferrand Street	Bloomfield, NJ 07003	(201) 429-8700
Seymour Electronics	357 Crossways Park Drive	Woodbury, NY 11797-2042	(516) 496-7474
Taitron Components Inc.	25202 Anza Drive	Valencia, CA 91355	(800) 247-2232
Taylor Electronics	1000 W. Donges Bay Road	Mequon, WI 53092	(414) 241-4321

Note: AS OF AUGUST 1994, THE SINGAPORE SALES OFFICE ADDRESS WILL BE:

80, Marine Parade Road #07-09 Parkway Parade Singapore 1544 (the telephone and fax numbers will remain unchanged)

GENERAL INSTRUMENT CORPORATION

Power Semiconductor Division Headquarters: 10 Melville Park Road, Melville, N.Y. 11747 Tel: 516-847-3000

NORTH AMERICAN SALES OFFICES

North Eastern Regional Sales Office: 10 Melville Park Road, Melville N.Y. 11747 Tel: 516-847-3200 South Eastern Regional Sales Office: 6855 Jimmy Carter Blvd., Suite 2250, Norcross, 6A, 30071 (404)446-1265 ·FAX: 404-446-1286 Central Regional Sales Office: 85 W. Algonquin Road, Suite 300, Artington Heights, IL Gooto (708)364-5880 FAX: 708-364-0649 Western Regional Sales Office: 8222 South 44th Street, Suite 250, Phoenix, AZ 85044 (602) 438-6840 · FAX: 602-438-6844

EUROPEAN SALES OFFICES

European Headquarters, German Sales Office *: General Instrument Deutschland GmbH, Freischützstrasse 96, 81927 München, Fed. Rep. of Germany Tel: 49 (0) 89/95997-0 · Telex: 26 2435 FAX: 49 (0) 89/957-0489 France, Spain, and Portugal: General Instrument France, 9/11 Rue G. Enesco, 94008 Créteil Cedex, France Tel: 33 (1) 43771263 FAX: 33 (1) 43991524 Italy, Greece and Turkey: General Instrument Italia S.r.l., Via Cantu 11, 20092 Cinisello Balsamo, Milano, Italy Tel: 39 (02) 66010274/285/287 · Telex: 32 03 48 FAX: 39 (02) 66010324 United Kingdom and Ireland: General Instrument (UK) Ltd., Power Semiconductor Div., Colne House Business Centre, Colne House, Highbridge Estate, Uxbridge, UB8 1LX, United Kingdom Tel: 44 (0) 895/272911 ·Telex: 919084 EURO G FAX: 44 (0) 895/270049

FAR EAST SALES OFFICES

Taiwan:

General Instrument of Taiwan, Ltd., 233 Pao Chiao Road, Hsin Tien, Taipei, Taiwan Tel: 9113860 FAX: 9-011-8862-917-5991 Hong Kong:

General Instrument H.K. Ltd., Unit 211, Tower II, South Seas Centre, 75 Mody Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 722-6577 FAX: (852) 723-9239 Japan:

General Instrument Japan, Ltd., 5F, 4-1-13 Toranomon, Minato-ku, Tokyo, Japan 105 Tel: 81-3-3437-0281 · FAX: 81-3-3434-3938 Singapore:

General Instrument S'Pore PTE Ltd., 1 Marine Parade Central, #03-09 Parkway Builder's Centre, Singapore, 1544 Tel: (65) 3444711 Telex: RS 24424 - Fax: (64) 3446878

*Any European countries not listed, please contact the European Headquarters

