

8048 Family Applications Handbook

8048 Family Applications Handbook

The following are trademarks of Intel Corporation and may be used only to describe Intel products: Intel, Insite, Intellec, Library Manager, Megachassis, Micromap, Multibus, PROMPT, RMX/80, UPI, Intelevision, µScope, Promware, MCS, ICE, HSE, ISBC, BXP, ICS, and the combination of MCS, ICE, ISBC or ICS with a numerical suffix.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit Patent Licenses are Implied.

Table of Contents

Introduction	iii
--------------	-----

MCS-48[™] FAMILY

Single-Chip 8-Bit Microcomputer fills gap between Calculator Types and Powerful Multichip Processors	1-1
Application Techniques for the MCS-48 Family	2-1
Keyboard/Display Scanning with Intel's MCS-48 Microcomputers	3-1
Serial I/O and Math Utilities for the 8049 Microcomputer	4-1
A High-Speed Emulator for Intel MCS-48 Microcomputers	5-1
Microcontroller Includes A-D Converter for Lowest-Cost Analog Interfacing	6-1
Microcomputer's On-Chip Functions Ease Users' Programming Chores	7-1
Designing with Intel's 8022 Microcomputer	8-1

UPI-41

Introduction to the UPI-41A	9-1
Printer Control with the UPI-41 1	0-1
Using the 8295 Dot Matrix Printer Controller 1	1-1

GENERAL

Application of Intel's 5V EPROM and ROM Family for Microprocessor Systems	12-1
CRYSTALS: Specifications for Intel Components	13-1

INTRODUCTION

The MCS-48[™] family of single-chip-microcomputers has become an industry standard since the introduction of its original member (the 8748) in 1979. The family is now comprised of seven members (see table). All of these components share a common architecture; each of them has unique features which may prove beneficial in a given application.

This manual is a collection of the application information available for the MCS-48 family. Several items concerning Intel's UPI-41[™] family are also included. The UPI-41 family is a series of universal peripheral interface devices which have an architecture which almost duplicates that of the MCS-48. The only significant difference is that UPI-41 devices reside on a system bus as a slave device whereas MCS-48 components are typically bus masters. Because of the similarity between these two series of parts, application techniques can usually be applied equally well to members of both families. It is hoped that the inclusion of the application notes concerning the UPI-41 family will be useful to designers working with MCS-48 family components.

The material included in this manual is believed to be accurate; if you find any errors, or if you have any suggestions for future application notes for the MCS-48 family, we would appreciate hearing from you.

CHARACTERISTICS	COMPONENT							
	8021	8022	8035	8039	8048	8049	8748	
ROM SIZE (KILOBYTES)	1	2	_	_	1	2	1*	
RAM SIZE (BYTES)	64	64	64	128	64	128	64	
I/O PINS	21	28	15	15	27	27	27	
CYCLE TIME (MICRO SEC)	8.5	8.5	2.5	1.4	2.5	1.4	2.5	
A/D CHANNELS	-	2	-	—	-	-	-	
*Erasable EPROM								

أnt_أ

AR-31

December 1976

Single-chip 8-bit microcomputer fills gap between calculator types and powerful multichip processors

Capabilities range from stand-alone computing to high-power data processing; ultraviolet light erases programable ROM of one version

by Henry Blume, David Budde, Bill Morgan, Howard Raphael, Phil Salsbury, David Stamm, Intel Corp., Santa Clara, Calif.

1. Expandable. Although well able to run a stand-alone controller by itself, the new processor can also work with other family members for larger control systems or with 8080 peripherals to handle complex data processing. This configuration typifies the MCS-48 capability.

□ Putting an 8-bit microcomputer onto a single chip is achievement enough, but realizing performance nearly equal to multiple-chip devices gives a bonus of added flexibility for the new family. The two devices that are the heart of the family are really high-performance, single-chip microcomputers that fill the gap between 4bit calculator chips and the 8-bit multichip microprocessors. They can be used for the lowest levels of control, or, by being expanded with other ROM/RAM members of their family or with standard 8080 peripheral memory chips, they can be used in a wide range of high-powered data-processing systems.

The two versions of the microcomputer, the 8748 and the 8048, are like 4-bit calculator devices in that they each contain all the elements needed for stand-alone computing—central processing unit, program read-only memory, data random-access memory, input/output interface, plus clocks and timers. Yet they contain these elements in 8-bit configurations that vastly exceed the power of the calculator types and approach 8080 power.

Two ROM versions

The MCS-48 family is the first to offer a microprocessor with an erasable programable ROM, which will prove handy for low-volume applications and those in which periodic update of the program memory is required. The family also has a CPU-only chip, the 8035, which can be used with external memories.

The 8748 has a 2708-type, 8,192-bit EPROM with a program that can be changed by clearing with ultraviolet light and reprograming electrically in the usual way. The

8048 has an 8-k mask-programable ROM. Together they give the user new flexibility: he can develop the program and build the prototypes with the reprogramable chip and switch to mask ROMs for volume production.

The off-the-shelf 8748 also is perfect for quickturnaround users who require small volumes only, since it can be programed to meet any system specification in any quantity—in contrast to some single-chip controllers requiring mask programing at the factory, which is often available only in large quantities. Equally important, the 8748 can be used in control systems requiring periodic updating in the field, such as point-of-sale price-andinventory controls. New program data can be fed into the system without a new ROM.

The free-standing operations of the 8048 and 8748 are made possible by the 1,024-by-8-bit ROM or EPROM for program memory, a 64-by-9-bit RAM for scratchpad functions, an 8-bit CPU consisting of an arithmetic/logic unit and accumulator for all the binary and decimal arithmetic functions, and an input/output facility that includes three 8-bit 1/0 ports plus three test/interrupt ports directly controlled by program instructions.

Memory and input/output of the processors can be expanded to handle large control applications (Fig. 1). There's an inexpensive expander chip, 8243, which allows the processor chips to handle an additional 16 1/0 lines. Also included in the family are combination memory and 1/0 expanders, such as a 2,048-by-8-bit ROM with 16 1/0 lines (8355), a 2-k-by-8-bit EPROM with 16 1/0 lines (8755), and a 256-by-8-bit RAM with 22 1/0 lines (8155).

The MCS-48 components also work directly with all

2. Stacked. The 8748 or 8048 processor chip supplies all the functions needed for a stand-alone microcomputer. It has a CPU complete with arithmetic/logic unit and accumulator, a 256-bit RAM, an 8, 192-bit program ROM, a timer/event counter, and plenty of I/O capability.

the 8080 family of standard memory and peripheral parts, soon to number about 30 large-scale-integrated circuits. They include timers, programable 1/0 controllers, universal synchronous/asynchronous receiver/transmitters, decoders, and keyboard/display controllers.

One-chip advantages

The integration of all the basic blocks of a microcomputer system into one circuit brings about some architectural advantages. When the device is used as a standalone controller, it need interface only with its 1/0peripherals. This means that the execution speed of the processing is limited only by the speed of the chip, because there is no slowdown from transferring data between memory and CPU, as in multiple-chip designs.

Moreover, technological upgrades can give enhanced performance without waiting for similar upgrades of external components, as is usually the case with multichip families. More immediately, the inclusion of data and program memories, which otherwise would have to be added separately to the system, simplifies the user's interface problems. Having an active data store on the chip—the quasistatic 64-by-8-bit RAM—also simplifies system implementation, since all scratchpad operations simply became part of the CPU function. There is no need for refresh circuits operate the RAM; yet the device is dynamic in the sense that internal clocks are used for very fast, low-power access to the array.

The major objective was access to a RAM within a

		2.5	µs CYCL	E		1
S5	\$ ₁	\$2	S3	S4	S ₅	S 1
	INPUT INST.	DECODE	E	XECUTIO	N.	INPUT
JTPUT A	DDRESS	+		OUTPUT	ADDRESS	1
	W	·	NCREME	NT PROGE	AM COU	NTER

3. Simple. Operating the 8748/8048 is extremely straightforward, with each $2.5 \mu s$ cycle consisting of five states. Instruction inputs are made in state 1, decoding and program incrementing in state 2. Program executions begin in state 3 and run through 4 and 5.

4. Powerful. The on-chip RAM, part of which is reserved for one or two banks of 8-bit working registers, also accommodates the stack of subroutine addresses, which can be eight levels deep. Each stack location can handle the program counter and status data.

fraction of an instruction cycle, so that those indirect internal instructions that require multiple addresses could still be executed in one instruction cycle. (Indirect RAM instructions require three separate accesses: one to fetch the address of the memory location to be operated on, one to fetch the contents of the addressed location, and one to store the results of the operation.) Since the RAM is dynamic, its power dissipation, including all decoding and sense circuits, is a mere 75 milliwatts.

Similarly, the EPROM of the 8748 relies on internal clocks for better access and lower power consumption. In this case, however, only one access per instruction cycle is required, since there are no indirect instructions to be processed in program memory.

Having the EPROM on the chip allows for an easy method of verifying a program. To accomplish this, the 8748 can be put into a special instruction cycle (called the third-state mode) for programing and verification of the EPROM. The CPU executes a special double-cycle instruction that allows the address and data information to be transferred to their respective registers during controlled by asynchronous inputs.

Common architecture

The block diagram of the 8748/8048 (Fig. 2) shows how the common internal 8-bit data bus connects the major circuit blocks (shaded in the figure)—the data store, the program memory, the CPU with its ALU and accumulator, a timer/event counter, 1/0 structure, and control structure. To pack all the required computer elements onto a single chip, the CPU section has been designed with a minimum of logic redundancies.

For example, to eliminate a multitude of register files scattered throughout the chip, the 8-level subroutine stack and the directly addressable registers are found in the same addressing space as the scratchpad memory. This allows the programer maximum use of the RAM, yet gives minimum logic for the device. The programer can utilize unused areas of the subroutine stack or direct registers as common scratchpad memory, or he or she can modify the stack and flags under program control.

Likewise, the pipeline organization of memory fetches permits placement of the program counter (pc) with the internal timer/counter circuit block rather than in the RAM array. Both elements share the source incrementer, resulting in more efficient use of on-chip hardware.

In addition to executing the required functions of ADD. XOR. AND, and OR. the ALU also performs the bitcomparison operations necessary for conditional jump and test facilities. Through the use of a control-table ROM (which holds constant 8-bit values), and a zerodetect circuit on the ALU output, any bit in the accumulator can be examined and the program flow modified.

This setup is also used to test for any one of the many conditional jumps. Each of the conditional-jump flags and inputs is sent to the ALU as an 8-bit conditional word and tested with the same circuitry used to examine individual accumulator bits.

An internal oscillator also gives many system and device savings, such as the elimination of external components (except for a crystal or an RC network for setting the system's operating frequency). It also gives the chip designer maximum freedom in the structure of the internal clocking scheme, because there is no need for high-level, accurate clock inputs.

Through efficient use of internal bus transfers, most instructions can be executed in a single-cycle length. The exceptions are those instructions which require a second memory fetch or an external 1/0 transfer. In these cases, only a second cycle is required. Moreover, limiting instructions to two lengths reduces the complexity of the internal state generator. Since 70% of all instructions are executed in a single cycle, program-execution times and program-storage size are still minimized.

The multiplexed bus for address and data during external memory references maximizes the number of 1/0 pins available on a cost-effective 40-pin dual in-line package. For external program-memory references, bits of an additional 1/0 port are used for address lines, with the input/output data being restored after the memory

5. Latching on. Adding standard memories to the system is quickly done with external latch 8212, which allows standard memory parts to be hooked directly onto the 8748/8048 bus. Operation of the latch is under the control of signals from the processor.

8. Mixing it up. Besides the main system port, 0, the processor chip has two others, 1 and 2, which allow inputs and outputs to be mixed on the same port. Here, writing a 0 causes the pull-down devices to sink the TTL load; writing a 1 calls on the 50-kilohm pull-up resistor.

reference is finished with the address.

One key to the simple operation of the 8748/8048 chip is the straightforward program sequences and timing needed for executing an instruction cycle (Fig. 3). Each cycle consists of five states. Instruction input is made in state 1, and decoding and pc incrementing is made in state 2. State 3 starts the beginning of the program execution, which can run through states 4 and 5. Simultaneously, the next cycle's program address is made in state 3, a pipelining (paralleling) of operations that increases device throughput significantly.

Because the chip is built with depletion-load silicongate n-channel technology, it operates off a single 5-volt supply with inputs and outputs that are compatible with both transistor-transistor-logic and complementary metal-oxide-semiconductor devices. Instruction cycle time is a modest 2.5 microseconds and power consumption is a low 400 mW. Depletion-load techniques also pay off in practical chip sizes for volume production; the 8048 also is slightly over 200 mils on a side, while the 8748, with its big 8-k EPROM, is 221 by 261 mils.

Storing data in the scratchpad is simple, because part of the RAM can be reserved for one or two banks of 8-bit working registers—eight registers per bank (Fig. 4). The scratchpad also contains the subroutine address stack, which can be eight levels deep. Each location can accommodate the 12-bit pc and 4-bit status data.

Since all locations in the stack are indirectly address-

7. Going it alone. This one-chip scale controller is made possible by the extensive I/O capability of the 8748 processor, which can accommodate a 24-key keyboard and all the interfacing needed to control 14 seven-segment LED arrays, including a decimal point.

able, the second register bank and any portion of the stack may be used for data memory as well. This gives the user an option of having the data memory be 32 by 8 bits if all the stack and both register banks are used for program counting and status data, or 56 by 8 bits if only one register bank is used.

Program memory

The resident program memories on the 8048/8748 chips are handled so that they can be operated alone for programs of 1,024 bytes or less or combined with external ROM for expanded systems requiring larger programs. The program counter that feeds the memory is split into two parts. The low-order 8 bits can either address the resident 1-k ROM or be routed externally when addressing beyond 1,024 bits. (Since the 8035 contains no internal ROM, all address fetches are external.) The upper 4 bits of the program counter, located near port 2 (see Fig. 2), are gated out on that port for external reference. Two of these most significant 4 bits are then used for internal addressing requirements. There are two ways to expand program memory of the MCS-48 family. The special parts such as the 8755 2-k-by-8 EPROM or 8355 2-k-by-8 ROM may be used. Besides 1/0 lines, they also contain appropriate buffers to demultiplex the 8-bit bus from the microcomputer chips to receive address and send back program-memory instructions. Alternately, standard memory parts, such as a 2708 EPROM or 8308 ROM may be used (Fig. 5). An external latch, such as the 8212, would latch up the address from the bus (via a signal from the 8048 or 8748) so that data could be returned on the bus. The high-order 4 bits of the address do not have to be latched, since they are not on the multiplexed bus.

The ALU, in conjunction with the accumulator, provides a full array of binary-and-decimal arithmetic, logic, shift, and increment/decrement functions. For example, the accumulator may be exchanged between registers, data memory, and program memory. Both the timer/counter and the program-status word are also accessible to the accumulator, through a latch that facilitates the accumulator source/destination instruc-

8. Working together. Proof of the MSC-48's ability to handle large systems is this gas-pump controller. The 8243 I/O expander chips allow the processor to interface with 47 lines and a USART communicating with a central control unit inside the service station.

tions. Here, the ALU generates a carry output fully accessible to the programer under program control.

The timer/event counter is an 8-bit register that can operate in one of two modes, selectable under software control. As a timer, the device measures elapsed time. It is fed by the crystal frequency, divided by 280. At maximum frequency, the result is about 80 μ s per increment, or about 20 milliseconds over the counter range. As an event counter, a test line is designated to count 0 to 1 transitions of external events. As many as 256 transitions may be accommodated.

Both the timer and the counter indicate overflow by a maskable internal interrupt or by a testable flag bit. The internal interrupt may also be used to provide the system with a second external interrupt.

The input/output facilities of the 8048/8748 have been designed for maximum flexibility and expansion and are fully TTL-compatible. The basic facilities consist of three 8-bit 1/0 ports plus three test/interrupt inputs.

Port 0, called the bus, provides for system expansion. In essence, the port makes the bus completely compatible with an 8080 bus, so that all 8080 peripherals can be used with the MCS-48 family. In conjunction with four control and strobe lines, the port may be used for bidirectional interfacing to memories and 1/0 elements. For free-standing operations, it may be statically latched or used as a general input port.

The remaining two 1/0 ports, 1 and 2, are termed "quasi-bidirectional" (Fig. 6). They allow inputs and outputs to be mixed on the same port. When writing a 0 (low value) to these ports, the pull-down device sinks the TTL load. When writing a 1, a large current is supplied through both pull-up devices to allow a fast transition. After a short time, they shut off and the pull-up of the 50-kilohm resistor sustains the 1 level.

Applying the 8748/8048

Two applications show the range of complexity that can be accommodated with this family. Figure 7 shows a typical minimum-chip MCS-48 system, in this case, a drum printer controller. The three output ports allow the one-chip 8048 to control the printer position, ribbon shift, and line feed. Two interface drivers operate the solenoids.

Figure 8 shows a far more complex system, in which the MCS-48 implements a low-cost point-of-sale terminal. The 1/0 capability of the 8748/8048 chip can be expanded to control and monitor many cash-register operations. These might include cash in the drawer, key switch, totals, audio indicator, as well as matrix printer, cash-register keyboard, seven-segment display, and a variety of optional equipment.

August 1977

Application Techniques
for the MCS-48[™] FamilyContents
Introductio

Introduction	2-3
The MCS-48 [™] Family	2–3
Analog I/O	2–5
Table Lookup Techniques	2-9
Receiving Serial Codes— Basic Approaches	-10
Receiving Serial Code— A More Sophisticated Algorithm	-14
Transmitting Serial Code	-24
Generating Parity	-24
Conclusion	-25

INTRODUCTION

The INTEL[®] MCS- 48^{TM} family consists of a series of seven parts, including three processors, which take advantage of the latest advances in silicon technology to provide the system designer with an effective solution to a wide variety of design problems. The significant contribution of the MCS-48 family is that instead of consisting of integrated microcomputer components it consists of integrated microcomputer systems. A single integrated circuit contains the processor, RAM, ROM (or PROM), a timer, and I/O.

This application note suggests a variety of application techniques which are useful with the MCS-48. Rather than presenting the design of a complete system it describes the implementation of "subsystems" which are common to many microprocessor based systems. The subsystems described are analog input and output, the use of tables for function evaluation, receiving serial code, transmitting serial code, and parity generation. After an overview of the MCS-48 family these areas are discussed in a more or less independent manner.

THE MCS-48[™] FAMILY

The processors in the MCS-48 family all share an identical architecture. The only significant difference is the type of on board program storage which is provided. The 8748 (see Figure 1) includes 1024 bytes of erasable, programmable, ROM (EPROM), the 8048 replaces the EPROM with an equivalent amount of mask programmed ROM, and the 8035 provides the CPU function with no on board program storage. All three of these processors

MCS-48[™] Internal Structure

INSTRUCTION SET

	Mnemonic	Description	Bytes	Cycle		Mnemonic	Description	Bytes	Cycles
	ADD A,R	Add register to A	1	1	ine	CALL	Jump to subroutine	2	2
	ADD A, @R	Add data memory to A	1	1	Į	RET	Return	1	2
	ADD A, #data	Add immediate to A	2	2	ă	RETR	Return and restore status	1	2
	ADDC A, R	Add register with carry	1	1	3				
	ADDC A, @R	Add data memory with carry	1	1		CLR C	Clear Carry	1	1
	ADDC A, #data	Add immediate with carry	2	2		CPL C	Complement Carry	1	1
	ANL A, R	And register to A	1	1	S S	CLR F0	Clear Flag 0	1	1
	ANL A, @R	And data memory to A	1	1	Ē	CPL FO	Complement Flag 0	1	1
	ANLA, ≠data	And immediate to A	2	2	ł	CLR F1	Clear Flag 1	1	1
L .	ORLA, R	Or register to A	1	1		CPL F1	Complement Flag 1	1	1
at a	ORL A, @R	Or data memory to A	1	1					
	ORLA, #data	Or immediate to A	2	2		MOVAR			
5	XRL A, R	Exclusive Or register to A	1	1			Nove register to A		1
	XRL A, @R	Exclusive or data memory to A	1	1			Move data memory to A		1
	XRLA, #data	Exclusive or immediate to A	2	2		MOV A, #data	Nove immediate to A	2	2
	INC A	Increment A	1	1			Nove A to register		
	DEC A	Decrement A	1	1	۲,	MOV @R, A	Move A to data memory	1	1
	CLR A	Clear A	1	1	ð		Nove immediate to register	2	2
	CPL A	Complement A	1	1	Σ	MOV @R, #data	Move immediate to data memo	ry 2	2
	DA A	Decimal Adjust A	1	1	ata	MOV A, PSW	Move PSW to A		1
	SWAP A	Swap nibbles of A	1	1		MOV PSW, A	Move A to PSW	1	1
	RLA	Rotate A left	1	1			Exchange A and register		1
	RLC A	Rotate A left through carry	1	1			Exchange A and data memory	1	1
	RR A	Rotate A right	1	1			Exchange hibble of A and regis		
	RRC A	Rotate A right through carry	1	1			Nove external data memory to	A 1	2
-					-		Move to A from ourrent nemo	ry 1 1	2
	IN A, P	Input port to A	1	2			Move to A from current page		2
	OUTL P, A	Output A to port	1	2		NOVES A, WA	Nove to A from Fage 3		2
	ANL P, #data	And immediate to port	2	2					
Ĭ	ORL P, #data	Or immediate to port	2	2					
1 H	INS A, BUS	Input BUS to A	1	2	5	MOV A, T	Read Timer/Counter	1	1
9	OUTL BUS, A	Output A to BUS	1	2	Ę	ΜΟΥ Τ, Α	Load Timer/Counter	1	1
Ĩ	ANL BUS, #data	And immediate to BUS	2	2	្តី	STRT T	Start Timer	1	1
2	ORL BUS, ≠data	Or immediate to BUS	2	2		STRT CNT	Start Counter	1	1
	MOVD A, P	Input Expander port to A	1	2	<u>Ē</u>	STOP TONT	Stop Timer/Counter	1	1
	MOVD P, A	Output A to Expander port	1	2	⊢	EN TCNTI	Enable Timer/Counter Interrup	ot 1	1
	ANLD P, A	And A to Expander port	1	2		DIS TCNTI	Disable Timer/Counter Interru	ot 1	1
	ORLD P, A	Or A to Expander port	1	2	┣—	· · · · · ·			
lers	INC R	Increment register	1	1		ENI	Enable external interrupt	1	1
l is	INC @R	Increment data memory	1	1		DISI	Disable external interrupt	1	1
l æ	DEC R	Decrement register	1	1	ē	SEL RBO	Select register bank 0	1	1
					Ē	SEL RB1	Select register bank 1	1	1
	JMP addr	Jump unconditional	2	2	ပီ	SEL MB0	Select memory bank 0	1	1
	JMPP @A	Jump indirect	1	2		SEL MB1	Select memory bank 1	1	1
	DJNZ R, addr	Decrement register and skip	2	2		ENTO CLK	Enable Clock output on TO	1	1
	JC addr	Jump on Carry = 1	2	2					
	JNC addr	Jump on Carry = 0	2	2					
	J Z addr	Jump on A Zero	2	2		NOP	No Operation	1	1
	JNZ addr	Jump on A not Zero	2	2					
5	JT0 addr	Jump on T0 = 1	2	2					
E E	JNTO addr	Jump on T0 = 0	2	2					
ā	JT1 addr	Jump on T1 = 1	2	2					
	JNT1 addr	Jump on T1 = 0	2	2					
	JF0 addr	Jump on F0 = 1	2	2					
	JF1 addr	Jump on F1 = 1	2	2		Mnemonics	copyright Intel Corporation 197	6	
1	JTF addr	Jump on timer flag	2	2					
	JNI addr	Jump on $\overline{INT} = 0$	2	2					
	JBb addr	Jump on Accumulator Bit	2	2					

Figure 2. 8048/8748/8035 Instruction Set

operate from a single 5-volt power supply. The 8748 requires an additional 25-volt supply only while the on board EPROM is being programmed. When installed in a system only the 5-volt supply is needed. Aside from program storage, these chips include 64 bytes of data storage (RAM), an eight bit timer which can also be used to count external events, 27 programmable I/O pins and the processor itself. The processor offers a wide range of instruction capability including many designed for bit, nibble, and byte manipulation. The instruction set is summarized in Figure 2.

Aside from the processors, the MCS-48 family includes 4 devices: one pure I/O device and 3 combination memory and I/O devices. The pure I/O device is the 8243, a device which is connected to a special 4 bit bus provided by the MCS-48 processors and which provides 16 I/O pins which can be programmatically controlled.

The combination memory and I/O devices consist of the 8355, the 8755, and the 8155. The 8355 and the 8755 both provide 2,048 bytes of program storage and two eight bit data ports. The only difference between these devices is that the 8355 contains masked program ROM and the 8755 contains EPROM. The 8155 combines 256 bytes of data storage (RAM), two eight bit data ports, a six bit control port, and a 14 bit programmable timer.

Figure 3 shows the various system configurations which can be achieved using the MCS-48 family of parts. It should also be noted that eight of the processors' I/O lines have been configured as a bidirectional bus which can be used to interface to standard Intel peripheral parts such as the 8251 USART (for serial I/O), the 8255A PPI (provides 24 I/O lines) and the complete range of memory components.

More detailed information concerning the MCS-48 family can be obtained from the "MCS-48 Microcomputer User's Manual" which provides a complete description of the MCS-48 family and its members. A general familiarity with this document will make the application techniques which follow easier to understand.

ANALOG I/O

If analog I/O is required for a MCS-48[™] system there are many alternatives available from the makers of analog I/O modules. By searching through their catalogs it is possible to find almost any combination of features which is technically feasible. Perhaps the best example of such modules are the MP-10 and MP-20 hybrid modules recently introduced by Burr-Brown Research Corporation. The MP-10 provides two analog outputs and the MP-20 provides 16 analog inputs. Both of these units were

		[] N () Nui	umbe mber	r of Ava of Avail	ilable able I	Timers /O Line	5	
1088								
1K	8048		8035 8355 4-8155		8048 8355 4-8155		8035 2-8355 4-8155	
	[5]	(101)	[5]	(116)	[5]	(116)	[5]	(131)
832 768	_			or		40		
Ŵ	8048 3-8155		8035 8355 3-8155		80 83 3-8	8048 8355 3-8155		35 3355 3155
A B B B B B B B B B B B B B B B B B B B	[4]	(80)	[4]	(95)	[4]	(95)	[4]	(110)
≻ ^{5/8} ≝512	_							
MEM	8048 2 8155		8035 8355 2-8155		8355 2-8155		2-8355 2-8155	
A TA	[3]	(59)	[3]	(74)	[3]	(74)	[3]	(89)
a 320 256								
	8	048	8	035 355	8048 8355		8035 2-8355	
	8 [2]	155 (38)	8 [2]	155 (53)	8 [2]	155 (53)	81 [2]	55 (68)
64			8035		8048		8035	
	8	048	8	355	8	355	2-8	3355
	[1]	(24)	[1]	(28)	[1]	(28)	[1]	(43)
		1	к	2	к	3	к	41
		PRO	GRA	M MEMO	ORY	(ROM)		

Figure 3. The Expanded MCS-48[™] System

specifically designed to interface with microprocessors.

A block diagram of the MP-10 is shown in Figure 4. It consists of two eight bit digital to analog converters, two eight bit latches which are loaded from the data bus, and address decoding logic to determine when the latches should be loaded. The D/A converters each generate an analog output in the range of 10 volts with an output impedance of 1Ω . Accuracy is $\pm 0.4\%$ of full scale and the output is stable 25µsec after the eight bit binary data is loaded into the appropriate latch. The latches are loaded by the write pulse (\overline{WR}) whenever the proper address is presented to the MP-10. The lower two addresses (A0 and A1) are used internally by the device. Addresses A2 & A3 are compared with the address determination inputs B₂ and B3. If their signals are found to be equal, and if addresses A4-A13 are all high, then the device is selected and one of the latches will be loaded. Address bit A1 selects between output 1 and output 2. If address bit A₀ is set then the initialization channel of the DIA is selected. In order to prepare for operation a data pattern of 80H must

be output to this channel following the reset of the device.

A block diagram of the MP-20 analog to digital converter is shown in figure 5. This unit consists of a 16 input analog multiplexer, an instrumentation amplifier, an eight bit successive approximation analog to digital converter, and control logic. The 16 input multiplexer can be used to input either 16 single ended or 8 differential inputs. The output from the multiplexer is fed into the instrumentation amplifier which is configured so that it can easily be strapped for single ended 0-5 volt signals. Provisions are made for an external gain control resistor on the amplifier. The gain control equation is:

$$G = 2 + \frac{SORRE}{Rext}$$

5020

Figure 5. MP-20 Analog Subsystem

With no R_{ext} ($R_{ext} = \infty$) the gain is two and the input is 0-5 or ±5 volts full scale. Adding an external resistor results in higher gain so that low level (±50mV) signals from thermocouples and strain gauges can be accommodated. The output from the amplifier is applied to the actual A/D converter which provides an eight bit output with guaranteed monotonicity and an accuracy of ±0.4% of full scale. Note that this accuracy is specified for the entire module, not just for the converter itself. The control logic monitors address lines A15 through A4 to determine when the address of the unit has been selected. An address that the unit will respond to is determined by 11 address control pins, labeled $\overline{A4}$ through $\overline{A14}$. If one of these pins is tied to a logic 0 then the corresponding address pin must be high in order for the unit to be selected. If the pin is tied to a logic 1 then the corresponding address pin must be low. If the address of the module is selected when MEMR pulse occurs, the lower four addresses (A3-A0) are stored in a latch which addresses the multiplexer. The coincidence of the proper address and MEMR also initiates a conversion and gates the output of the converter on to the eight bit data bus.

The control logic of the MP-20 was designed to operate directly with an MCS-80TM system. When a MEMR occurs and a conversion is initiated the MP-20 generates a READY signal which is used to extend the cycle of the 8080A for the duration of the conversion. READY is brought high after the conversion is complete which allows the 8080A to initiate a conversion and read the resulting data in a single, albeit long, memory or I/O cycle. The conversion time of the MP-20 depends on the gain selected for the amplifier. With no external resistor (R = ∞) the gain is two and the conversion time is 35 µsec. For R = 510 Ω the gain is:

$$G = 2 + \frac{50k\Omega}{.51k\Omega} \cong 100$$

and the conversion time becomes 100μ sec. These settling times are specified in the MP-20 data sheet and range from 35 to 175 microseconds. The READY timing is controlled by an external capacitor. For a gain of 2 no external capacitor is required but if higher gains are selected a capacitor is needed to extend the timing.

A schematic showing both the MP-10 D/A and the MP-20 A/D connected to the 8748 is shown in Figure 6. This configuration, which consists of only four major components, gives an excellent example of what modern technology can do for

MCS-48[™] Based Analog Processor

the system designer. The four components provide:

- a. An eight bit microprocessor
- b. 64 bytes of RAM
- c. 1024 bytes of UV erasable PROM
- d. A timer/event counter
- e. 16 digital I/O pins
- f. 2 testable input pins
- g. An interrupt capability
- h. 16 eight bit analog inputs
- i. 2 eight bit analog outputs

The MCS-48 communicates with the D/A and A/D converters in a memory mapped mode (i.e., it treats the devices as if they were external RAM). By setting an address in either R0 or R1 and then executing a MOVX the software can transfer data between the accumulator and the analog I/O. When the MCS-48 executes the MOVX instruction it first sends the eight bit address out on the bus and strobes it into the 8212 latch with the ALE (Address Latch Enable) signal. After the address is latched, the MCS-48 uses the same bus to transfer data to or from the accumulator. If data is being sent out (MOVX ∂R_{i} , A) the \overline{WR} strobe is used; if the data is being moved into the accumulator (MOVX A. ∂R_j) the \overline{RD} strobe is used. The one shots on the \overline{WR} line are used to delay the write strobe of the MCS-48 to meet the data set up specifications of the MP-10.

In order to provide reset capability for the analog devices without dedicating an I/O pin from the MCS-48, special addresses are used as reset channels. Executing any MOVX with an address of 0XXXXXXX will reset the A/D module; a similar operation with an address of X1XXXXX will reset the D/A; a MOVX with an address of 01XXXXX will reset both devices. All data transfers are accomplished with the upper two bits of the address field equal to 10. A summary of the addressing of the analog devices is shown in Table 1. Notice that except for an initialization channel for the D/A (which must

Table 1. Analog Interface Addresses

	INPUT OR OUTPUT						
0 X X X	XXXX	Reset A/D					
X 1 X X	XXXX	Reset D/A					
	INPUT						
0011	nnnn	Read A/D Channel n n n n					
	OUTPL	JT					
1011	0001	Initialize D/A					
1011	0000	Write Channel 1					
1011	0010	Write Channel 2					

be written to following a reset to initialize its internal logic) all channels involve some form of data transfer.

As was mentioned previously, the MP-20 was designed to use the READY line of the 8080A. Obviously this presents a problem since the MCS-48 does not support a READY line (with its attendant requirement of entering WAIT state). The necessity of a READY input can be overcome by performing a read operation to set the channel address, waiting the required delay (35 usec for a gain of two) and then performing a second read to actually obtain the data. The second read will read in the data from the channel selected by the first read irrespective of the channel selected for the second read. Thus it is possible to use the second read to set up the channel for the third read. Each read can read in the current channel and select the next channel for conversion.

The MP-20 is shown in Figure 6 strapped to input 16 single ended ± 5 volts signals. Programs which were used to test this configuration are shown in Figure 7. The first of these programs uses the D/A converter to generate sawtooth waveforms by outputting an incrementing value to the D/A converters. The second program scans the analog inputs and stores their digital values in a table located in RAM.

LOC OBJ	SEQ SOURCE STATEMENT
	1
	1
	2 ;
	3 ; TEST PROGRAM FOR ANALOG DUTPUT
	4 ; THIS PROGRAM OUTPUTS A SAM-
	5 ; TOOTH WAVEFORM BY DUTPUTING
	6 ; AN INCREMENTING PATTERN.
	7 ;
	0
	10 ; EQUATES
	13
66B3	13 INITCH FOR BROW D/A INITIALIZATION CHANNEL
F#84	14 INITOT EQU BOH : D/A INITIALIZATION DATA
66B6	15 DATCH EQU BOH : D/A DATA CHANNEL
	16
	17 ;
	18 ; START OF TEST
	19 ;
6186	28 DRG 188H
	21 ; INITIALIZE D/A
0100 2380	22 START: MOV A, #INITDT
0102 9883	23 MOV RE,#INITCH
0104 90	24 MOVX ORD,A
	25 ; TEST LOOP-OUTPUT SAWTOOTH
0103 2020 0107 17	20 LUUF: FUV KE,#UATCH 97 INC A
6160 G4	27 INU N 39 MALY ADD A
6189 2465	29
	30 : END OF PROGRAM
	31 END

LOC 08J	SEQ	SOURCE STATEME	INT
	1		
	2 ;		
	3 (1E3) 4 . Th	PROUMPET FUR H	
	5. 44		RADINGS IN A TABLE
	6 51	ARTING AT RUFF	
	7		
	8		
	9 ;		
	18 ; EQUA	TES	
	11 ;		
	12 0055	500 9 6 0	- FTART OF THEFER
614F	14 MAXCH	FOU 15	, STRET OF BUFFER
AABA	15 AINCH	FOU BREN	: RASE ADDRESS OF ANALOG INPUTS
8885	16 TICK	EQU 5	EXECUTION TIME OF DUNZ
	17		
	18 ;		
	19 ; STAR	T OF TEST	
	20 :		
9199	21	DRG 1994	
6168 BR2F	23 51401.	MTV 91.4	SETUP TO SCHE HIMLOD THPOTS
\$182 BBAF	24	MOV 83.4	BOFF STRACT
0104 BBBF	25	MOV R8,4	CAINCH-MAXCH)
	26		; SELECT CHANNEL 15
8186 88	27	MOVX A, 🔿	RØ
	28		; WAIT >40 MICROSECONDS
8187 BC88	29	MOV R4, 1	40/TICK
8199 EC89	38	UUNZ 184,8	NON SCAN ANALOGE
#1#B CB	32 L00P:	DEC RE	, 104 3011 1042003
	33		; GET DATA
#1#C 8#	34	MOVX A, O	RØ
	35		; MOVE INTO BUFFER
BIND A1	36	MOV @R1	,A
8185 09	3/	DEC 01	; DECREPENT BUFFER POINT
	20	DEC R	· PAD 26 MICROSEC
818F BC84	48	HOV R4, 4	28/TICK
8111 EC11	41	DJHZ R4, S	5
	42		; LOOP UNTIL DONE
9113 EB68	43	DJNZ R3,L	.00P
ALLE 3444	44		; REPEAT TEST FOREVER
113 2400	10	Jan 2146	
			, LOU OF PRODUCT

Figure 7b. A/D Exercise Program

TABLE LOOKUP TECHNIQUES

In the previous section the interface between analog I/O devices and the MCS- 48^{TM} was discussed. In many applications involving analog I/O one quickly finds that nature is inherently nonlinear, and the mathematics involved in 'linearizing it' can tax the computational power of the microprocessor, particularly if it has other tasks to perform. Problems of this nature are good candidates for the use of tables.

As an example of how tables can be used as part of an analog output scheme, consider a system which requires an MCS-48 to output a variable frequency sinusoidal waveform. One method of performing this function would be to use the timer to generate an interrupt at a fixed rate of 256 times the desired output frequency. At each interrupt the appropriate value of the sine function could be calculated from the MacLaurin series:

Sin x = x -
$$\frac{x^3}{3!}$$
 + $\frac{x^5}{5!}$ - $\frac{x^7}{7!}$... $\frac{(-1)^k x^{2k+1}}{(2K+1)!}$

Where K is chosen to be large enough to provide the required accuracy.

The above calculation, although conceptually simple, would be time consuming and would severely limit the possible output frequencies which could be obtained. As an alternative to calculating these values in real time, the values could be precalculated off line and stored in a table. Upon each interrupt the MCS-48 would merely have to retrieve the appropriate value from the table and output it to the D/A converter. the MCS-48 provides a special instruction which can be used to access data in a table. If the table is stored in the last 256 bytes of the first kilobyte of MCS-48 memory then the table lookup can be performed by loading the independent variable (time in this case) into the accumulator and executing the instruction.

MOVP3 A, @ A

This instruction uses the initial contents of the accumulator to index into page 3 of program storage. The location pointed to is read and the contents placed in the accumulator. If (as is often the case) a table of fewer than 256 entries is required, then the table can be located in any page of program memory and the instruction:

MOVP A, @ A

can be used to retrieve data from the table. This instruction operates in the same manner as does the previous instruction except that the current page of program storage is assumed to contain the table.

If it is possible to devote slightly more of the microprocessor's time to the table look up process, then a much smaller table can often be utilized by taking advantage of interpolation to determine values of the function between values which are actual entries in the table. As an example of this

Figure 8. Flow Monitoring System

All mnemonics copyrighted © Intel Corporation 1976.

process consider the hypothetical system shown in Figure 8. The purpose of this system is to measure the flow through the three pipes, add them, and display the total flow on the control panel. The system consists of three flow meters which generate a differential voltage which is some function of flow, an A/D system with at least three differential inputs, an MCS-48, and a control panel. The schematic shown in Figure 6 could easily become part of this system, with the spare digital I/O of the MCS-48 used as an interface to the control panel. The simplicity of this system is clouded by the flow transducers, which are assumed to be not only nonlinear but also to require individual calibration (this is not an unreasonable assumption for a flow transducer). By using a table look up process and an 8748 the flow transducers can be calibrated and the results of the calibration tests stored directly in tables in the 8748. (The 8748 has a PROM in place of the ROM of the 8048 and thus makes such 'one off' programming practical.)

The results which might be obtained from calibrating one of the flow meters is shown in Figure 9. The results are plotted as gals/hour versus the measured voltage generated by the transducer. The voltage is shown in hexadecimal form so that it corresponds directly to the digital output of the analog to digital converter. The flow required to generate seventeen evenly spaced voltages (0H-100H in steps of 10H) has been measured and plotted. This information is shown in tabular form in Figure 10. It is necessary to generate a program which will convert any measured input from 00H to FFH into the flow in units which can be interpreted by a human operator. This can easily be done by simple interpolation.

The eight bits of independent variable (voltage) can be looked on as two four bit fields. The most significant four bits (7-4) will be used to retrieve one of the table values. The lower four bits (3-0) will be used to interpolate between this value and the value retrieved from the next higher location in the table. If the upper four bits are given the symbol I and the lower four bits the symbol N, then the interpolation can be expressed as:

$$F(x) = F(I) + \frac{N}{16} [F(I+1) - F(I)]$$

Where x is the measured voltage and F(x) is the corresponding flow.

If, as an example, the transducer voltage was measured as 48H then the flow (ref. Figure 10) would be:

$$F = 30 + \frac{8}{16} (34-30) = 32$$

A subroutine which implements this calculation is shown in Figure 11. Before it is called the independent variable (V) is placed in the accumulator and register R1 is set to point at the first value in the table. Aside from simple additions and subtractions the only arithmetic required is to multiply two values and then divide them by 16. The multiplication is handled via a subroutine which is also shown in Figure 11. The division by 16 can be performed by a four place right shift followed by a rounding operation. The routine shown will handle a monotonic increasing function of a single independent variable. Fairly simple modifications are required for nonmonotonic functions. Functions of two variables can be handled by interpolating on a plane rather than along a straight line. Although this is more time consuming, requiring an interpolation for each of the independent variables and a third to interpolate the final answer, it still provides a simple means of quickly calculating the required function. The use of tables can offer a powerful technique for function evaluation to the designer.

RECEIVING SERIAL CODE-BASIC APPROACHES

Many microprocessor based systems require some form of serial communication. Serial communication is extensively used because it allows two or more pieces of equipment to exchange information with a minimal number of interconnecting wires. The minimization of interconnecting wires results in simpler, cheaper, interconnects because fewer (or smaller) cables and connectors are required. Since the required number of drivers and receivers required is reduced, it can become economically feasible to provide much higher noise immunity

LOC OBJ	SEQ	SOURCE S	TATEMENT		LOC	OBJ	SEQ	9	SOURCE	STATEMENT	
		•••••	•••••	•••••	811	83	56		RET		
	1;						57				
	2;	APPROX					58				
	3;	AT E	NTRY R1 PO	INTSAT TABLE			59	1			
	4;		A HAS	INDEPENDENT VARIABLE			69	; MULTI	IPLY		
	5;						61	;			
	7						62				; SET UP COUNT AND AEX
	é					DA66	63	MULT:	MUV		**
	9 . 50	MATES			• * *				MUV	MCA , # 1	
	18 :				#12	97	66		CIR	c	, OLENK UNKKI
	11						67			•	: IF MULTIPLIER (D) () 1 THEN SHIFT PRODUCT
8498	12 RX8	EQU	RØ	; POINTER #	1 2	2 122B	68	LOOPB:	JBS	SSUM	
8981	13 RX1	EQU	R1	; POINTER1	12	AS 4	69		XCH	A, AEX	
888 2	14 AEX	EQU	R2	; EXTENSION OF A REGISTER	8125	5 67	78		RRC	A	
8883	15 COUN	T EQU	R3	; COUNTER	\$12	5 2A	71		XCH	A, AEX	
8884	16 TEMP	EQU	R4	; TEMP STORAGE	812	67	72		RRC	A	
	17						73				; LOOP UNTIL DONE
	18 ;		-		8 12	3 EB22	74		DJN2	COUNT,I	LOOPB
	19 ; 191	PRUATINHITTU			012	1 83	75		RET		
	20 ;		-				/6	COLM.			; ELSE ADD MULTIPLIER AND SHIFT PRODUCT
a 188	22	086	1884				70	55UM:		H, HEA	
	23			PRINT RX8 AT TEMP	612	67	79		PPC	A	•
8166 3884	24 APPR	DX: MOV	RX8.#TE	P	12	24	84		XCH	A 45 Y	
	25			TEMP-N AND OFH	12	67	81		RRC	A	
	26			A-P AND SFH		•.	82				: LOOP UNTIL DONE
0102 B000	27	MOV	@RX\$,#I	l i i i i i i i i i i i i i i i i i i i	Ø13	EB21	83		DJNZ	COUNT,	LOOPA
8184 38	28	XCHD	A, @RXS		Ø13	2 83	84		RET		
8185 47	29	SHAP	A				85				
	38			RX1-BASE+A			86				
0106 69	31	ADD	A,RX1				87	;			-
010/ HS	32	MUV	RA1,H	DY1-TAB ((D)			88	; TABLE	. TO TE	ST PROGRAM	
	33			- TAPLE (P. 1)			89	;			-
6168 63	35	MOVES	A. 0A	, H-INDEECT IV	830		31		000	2064	
119 29	36	XCH	A.RX1				92		UNO	3001	
\$1\$A 17	37	INC	A		#3R			TABLE :	DR		THIS TABLE IS FORM FIG 10
\$18B E3	38	MOVP3	A, OA		838	BA	94		DB	18	
	39		-	; A-TABLE (P+1)-TABLE(P)	138	2 16	95		DB	22	
\$1\$C 37	48	CPL	A		0383	B 1A	96		DB	26	
\$1\$D 69	41	ADD	A,RX1		138	1E	97		DB	36	
818E 37	42	CPL	A		038	5 22	99		DB	34	
A145 3410	43			; A-N*A/16	\$38	5 26	99		DB	38	
8111 10082	45	MOV	DYS WAC	•	138	28	100		DB	46	
6113 36	45	XCHD		•	0.358	29	101		198	11	
8114 47	47	SHAP	A		130	1 210	102		700	42	
8115 2A	48	XCH	A AEX		139	2 20	184		DR	45	
B116 7219	49	JBG	ADJUST		0380	38	185		DB	49	
#118 2A	58	XCH	A,AEX		0381	31	186		DB	49	
#119 2A	51 ADJU	ST: XCH	A, AEX		038	35	187		DB	53	
#11A 17	52	INC	A		#39	38	188		DB	56	
	53			; A-A+TABLE(P)	\$39	I 3F	189		DB	63	
0118 69	54	ADD	A,KX1				110				
	35			; KETUKA			111		END		
				Figure 11. Tab	le Lookup	With	n Inter	polati	on		

with more sophisticated (and expensive) line terminators. The final, and usually most persuasive, argument in favor of serial communication is that it may be the only method available to accomplish the job. The obvious example of this is telecommunications where it is necessary to encode parallel information into serial format in order to communicate via the telephone network. The intent of this section is to show how the facilities of the MCS-48TM can be brought to bear on the problem of serial communication.

Probably the most common form of serial communication is that used by the obiquitous Teletypeserial ASCII. This format, shown in Figure 12, consists of a START bit (0 or SPACE) followed by eight data bits which are in turn followed by two STOP bits (1 or MARK). In actual practice the eighth data bit usually consists of even parity on the remaining seven data bits; for the purposes of this discussion the eighth bit will be considered only as data. A minor variation of this format deletes one of the STOP bits. An algorithm which might be used to sample serial data under software control using a microprocessor is shown in Figure 13. The basic intent of this algorithm is to minimize the effects of distortion and transmission rate variations on the reliability of the communication by sampling each data bit as close to its center as possible. Upon entry to this routine the software first samples the incoming data in a tight loop until it is sensed as a MARK (logical one). As soon as a MARK is detected, a second loop is entered during which the software waits until the received data goes to a SPACE (logical zero). The purpose of this construction is to detect as accurately as possible the leading edge of the START bit. This instant of time will be used as a reference point for sampling all of the following bits in the character. After sensing the leading edge of the START bit a wait of one half the expected bit time is implemented. The period of the incoming signal is called P for convenience. At the end of this wait the serial line is tested-if it is MARK then the START bit was

All mnemonics copyrighted © Intel Corporation 1976.

Figure 13. Sample Serial Input Routine

invalid and the process is reinitialized. If the line is still a SPACE, then the START bit is assumed to be valid and a delay of one bit time is started. At the completion of the delay the first data bit is sampled and a new delay of one bit time is initiated. This process is repeated until all eight data bits have been sampled. The last bit sampled is checked to determine if it is a valid STOP bit (a MARK). If it is, the character is assumed to be valid; if it is not, the character has a framing error and is probably invalid. A listing of a program which implements the above procedure is shown in Figure 14.

A disadvantage of the approach outlined in Figure 13 is that while the processor is inputting data serially it must totally dedicate itself to this task. Accurate timing can only be maintained if the program remains in a tight wait loop without allowing itself to be diverted to other functions. During reception of a character from a Teletype

the processor will spend only a 100μ secs or so processing data and the rest of the 100 millisecs waiting to do the processing at the right time. This lack of efficiency (approximately 0.1%) in the utilization of processing power is why devices such as the 8251 USART find broad application in microprocessor systems.

FOC OB1	SEQ	SOURCE	STATEMENT	г					
s : ·····									
	1								
	2;	SIMPLE	SERIAL	INPUT					
	3 ; -THIS CODE ASSUMES RXD IS								
	4; CUMMECIED IU PIN IN								
	ē ; •••	•••••	•••••	•••••					
	8:								
	9 ; EQU	ATES							
	18 ;								
	11 12 COUNT	500	82						
8888	13 BUTNO	FQU	8	NO OF BITS TO RECEIVE					
8882	14 DLYHI	EQU	2	; HI DLY COUNT					
88A4	15 DLYLO	EQU	BA4H	; LO DLY COUNT					
	16								
8188	17	URG	189H	A LODA UNTIL BYD-MARK					
8188 2688	19 SERIN	: JNTB	s	, LODE ON TE RADEFARK					
	20		•	; NOW LOOP UNTIL RXD-SPACE					
8182 3682	21	JTB	\$						
	22			; WAIT 1/2 BIT TIME					
8184 3410	23	CALL	HBII	IE FAISE START PEINTIAL 170					
8186 3688	25	JTB	SERIN	, IT THESE START REINTHEIZE					
	26			; ELSE SET BIT COUNT					
8188 BA89	27	MOV	COUNT,	# BITND+1					
	28			; WAIT 1 BIT TIME					
#1#C 341C	29 LUUP:	CALL	HBIT						
	31			; DECREMENT COUNT					
	32			; -IF ZERD EXIT WITH CARRY SET ON					
	33			; -FRAMING ERROR					
8186 EA15	34		COUNT,L	LUAD					
8111 3614	36	JTØ	EXIT						
8113 A7	37	CPL	C						
8114 83	38 EXIT:	RET							
	39		•	; LOAD DATA					
115 97	40 LUHU:	INTA	1114						
8118 A7	42	CPL	C						
6119 67	43 LLLA:	RRC	A						
	44			; AND LOOP					
011A 240A	45	JMP	LDOP						
	47 :								
	48 ; DEL	AY ONE H	ALFBITT	TIME					
	49 ;								
	50								
811C DC82	51	MOL	D4 # N	SET OF LOOP					
BILL DODE	53	HUV	R4,#DC	: LOOP UNTIL TIME DONE					
SIIE BBA4	54 HL00P	: MOV	R3,#DL	YLO					
\$128 EB28	55	DJNZ	R3,\$	-					
#122 EC1E	56	DUNZ	R4,HL00	ч с					
124 GJ	58	KC I		: END OF PROGRAM					
	59	END							

Figure 14. Simple Serial Input

The 8251 USART is simple to interface to the MSC-48. Figure 15 shows such an interface. The USART requires a high speed clock (CLK), an initilization signal (RESET), data clocks (TxC and RxC), and data in order to operate. A circuit showing the connection of an 8748 to an 8251 USART is shown in Figure 15. In the circuit shown the high speed clock (which is used for internal sequencing by the USART) is provided by con-

Figure 15. MCS-48[™] to 8251 Interface

necting the CLK signal of the USART to the T₀ pin of the MCS-48. The T₀ pin of the MCS-48 can either be used as a directly testable input pin or it can become, under program control, an output pin which oscillates at one third of the crystal frequency. (Note that once this pin is designated by the software to be an output it will remain so until the system is reset.) In Figure 15 the crystal frequency is 5.9904 MHz so the clock provided to the 8251 is 1.9968 MHz, which conforms to its specifications.

The initialization signal to the USART (RESET) is provided programmatically by manipulation of bit 5 of port 2. It was necessary to place the reset of the 8251 under program control for two reasons. The first reason is that the MCS-48 does not supply a reset signal to other devices. The reason for this is that it was felt to be more useful to provide another pin of I/O function instead of a RESET OUT signal from the MCS-48. Although this situation could have been circumvented by the use of an externally generated reset which drove both the MCS-48 and the 8251, the second reason for program control of the reset to the USART still stands. The USART requires the presence of the CLK signal during reset in order to properly initialize itself. The ENTO CLK instruction which the MCS-48 must execute before the 8251 will receive the CLK can obviously not be executed until after the system reset has ended. Reset of the USART can be accomplished by the following code segment:

	ENT0	CLK	; TURN ON CLOCK
	ORL	P2, #00100000B	; START RESET
	MOV	R2, #DELAY	; DELAY USART
LOOP:	DJNZ	R2, LOOP	; RESET TIME
	ANL	P2, #11011111B	; END RESET

This code first enables the clock, then asserts the reset signal of a time period determined by the constant DELAY. The delay invoked is (10 + 5*DELAY) microseconds for DELAY >0. The USART requires a reset of approximately 6 CLK periods so DELAY is chosen to be 1 which ensures adequate reset timing. Note that for delays this short, NOP instructions could also be used to time the pulse.

The data clocks required by the USART are provided by the modem if the USART is operated in the synchronous mode. In the more common asynchronous mode, however, these clocks must be provided by circuitry associated with the 8251.

The 5.9904 MHz crystal was chosen because the resulting 1.9968 MHz clock to the USART can be evenly divided to provide transmit and receive clocks to the USART. Assuming the USART is in the x16 mode (i.e. it requires data clocks 16 times the baud rate) the 1.9968 MHz signal can be divided by 13 to generate the proper clock rate for 9600 baud operation. This 9600 baud clock can be further divided to give 4800, 2400, 1200, 600, and 300 baud signals. The 1200 baud signal can be divided by 11 to give a 109.1 baud signal which is within 1% of the 110 baud required by Teletypes.

The MCS-48 communicates with the 8251 in a memory mapped mode (i.e. as if the 8251 were external RAM). The instructions available to do this are MOVX ∂R_j , A which stores the contents of the accumulator at the external RAM location addressed by Rj (j=0 or 1), and its complement, the MOVX A, @ Rj instruction which moves data from the external RAM into the accumulator. Since the MCS-48 multiplexes addresses and data on the same eight bit bus an external latch would be required in order to address the USART with

	2 ; THI	S CODE I	NTIALIZES THE USART
	3; AND	TRANSMI	TS AN INCREMENTING
	4 ; PAT	TERN. HA	RDWARE SHOWN IF FIG 15.
	5;		
	6		
	7 ;		
	B ; EQUA	TES	
	9;	•••	
	10	-	THE ANT OFFET ADDRESS
0020	11 MCLR	EGU	20H ; USARI RESEL ADDRESS
	12 DL1	EQU	THE CONTROL ADDOCCC
88CE	14 MODE	COU	ACEN ISART CONTROL ADDREAS
8821	15 000	EQU	21H ISART MO
6475	16 STAT	FOU	7FH USART STATUS
4441	17 VA	FOU	P1 + TEST VALUE
A A REF	18 MASK	FOU	OFFH : CHANGES CMD TO DATA CHANNEL
	19		
8188	20	ORG	100H
	21		: TURN ON CLOCK
	22		AND RESET USART
8188 75	23 TEST:	ENTS	CLK
#1#1 8A2#	24	ORL	P2,#MCLR
8183 BA81	25	MOV	R2, #DLY
0105 EA05	26 LOOP:	DJNZ	R2,L00P
#1#7 9ADF	27	ANL	P2, # (NOT MCLR)
	29		; SELECT USART CONTROL
#1#9 237F	29	MOV	A, #UCON
#1#9 3A	30	OUTL.	P2,A
	31		; SEND MODE AND COMMAND
\$1\$C 23CE	32	MOV	A, #MODE
610E 90	33	MOVX	ORU,A ; (CONTENTS OF RU UNIMPORTANT)
U10F 2321	34		A, # CPD
8111 50	35	MUVA	OKS, H
	30		CELECT HEADT STATUS
	37		SELECT USART STATUS
	30		; IF (AD)
	44		
	41		INCREMENT VALUE:
	42		: END:
	43		END:
#112 237F	44 TLP:	MOV	A, #STAT
#114 3A	45	OUTL	P2,A
8115 88	46	MOVX	A, ORS ; (CONTENTS OF RE UNIMPORTANT)
\$116 67	47	RRC	A
\$117 E612	48	JNC	TLP
8119 F9	49	MOV	A,VAL
SIIA SABE	50	ANL	P2, # MASK
#11C 9#	51	MOVX	OKP,A
11D 19	52	INC	VAL
#11E 2412	53		ILP
	34 EE	END	; END OF PROUKAM
	22	ERD	

Figure 16. 8251 Test Program

R0 or R1. In order to minimize the circuitry in Figure 15 an approach utilizing some of the I/O pins of the MCS-48 to address the 8251 was chosen instead. By connecting the chip select (\overline{CS}) input of the 8251 to bit 7 of port 2 (P27) and similarly connecting the C/D address line of the 8251 to bit 6 of port 2 (P26) it is possible to address the 8251 without using R0 or R1. The instruction sequence to access the 8251 is to first reset P27 and set P26 to the appropriate state, use a MOVX instruction to perform the appropriate operation, and then finally set P27 to deselect the 8251. As a concrete example of this addressing, Figure 16 shows the code necessary to initialize the 8251 and output an incrementing test pattern on a status driven basis.

If more than one 8251 were to be added to the MCS48, or if other types of peripheral circuitry would be required (e.g. an 8253 timer to generate the data clocks) it would probably become desirable

All mnemonics copyrighted © Intel Corporation 1976.

of R0 or R1 to address the USART is shown in Figure 17. Note that only the changes to Figure 15 are shown. The additional component required is the 8212 eight bit latch. This latch is loaded, whenever a valid address is on the bus by the Address Latch Enable (ALE) signal provided by the MCS-48. During an external read or write cycle this address is used to address the 8251 in a linear select mode. In the circuit shown, the 8251 will be selected by any address with bit 1 a logical zero (XXXXXX0X) and the selection of control or data transfer (C/\overline{D}) will be based on bit zero of the address obtained from R0 or R1. Figure 18 shows the program of Figure 16 modified to utilize the addressing inherent in the MOVX instructions.

Figure 17. Modified MCS-48 to 8251 Interface

RECEIVING SERIAL CODE-A MORE SOPHISTICATED ALGORITHM

Although the USART does an admirable job of performing the serial I/O function for the MCS- 48^{TM} , there are some situations where it can not be used. These situations may be caused by economic factors, such as an extremely cost sensitive design, or because the code which must be utilized cannot be accommodated by the USART. An example of of such a code will be discussed later. Recall that the principal objection to the approach to serial input shown in Figure 13 was that it consumes much of the processor's power by merely spinning in loops in order to wait preset time delays.

L 0C	CBJ	SEQ	SOURCE S	TATEMENT
		● ; - 1 ; 5 2 ; 3 ; 4 ; 5 ; - 6 7; 8; E0 9;	ERIAL TEST THIS CODE II AND TRANSMI PATTERN, HAI	NTIALIZES THE USAAT TS AN INCREMENTING REMARE SHOWN IF FIG 17.
		1.		
882		11 MCL	R EQU	28H ; USART RESET ADDRESS
	1	12 DL1	EQU	81H ; USART RESET DELAY
	3	13 UCC	IN EQU	83H ; USART CONTROL ADDRESS
88C	E	14 MOE	E EQU	ICEH ; USART MODE
665	1	15 CM	EQU	21H ; USART CHD
	3	16 514	AT EQU	USH ; USART STATUS
		10 041		RT ; IEST VALUE
		19		Se ; Canel Delle HDDRC33
		28	ORG	188H
		21		; TURN ON CLOCK
		22		; AND RESET USART
818	8 75	23 TES	T: ENTS	CLK
818	1 BA28	24	ORL	P2,#MCLR
818	3 BAS1	25	MOV	R2, #DLY
818	S EAUS	26 L00	DP DUNZ	R2,L00P
	7 SADF	27	ANL	P2, # (NUT MCLR)
	C 9262	28	1075.7	SELECT USART CURTRUL
• • •	5 2305	30		SEND MODE AND COMMAND
818	B 23CE	31	MOV	A. #MODE
	D 94	32	MOVX	ORD A : (CONTENTS OF RO UNIMPORTANT)
	E 2321	33	MOV	A, # CHD
811	99	34	MOVX	QRI,A
		35		; DO FOREVER
		36		SELECT USART STATUS
		37		; IF TXRDY+1 THEN
		38		
		48		INCREMENT VALUE:
		41		: END:
		42		END:
#11	1 2383	43 TLI	P: MOV	A,#STAT
#11	388	44	MOVX	A, ORD ; (CONTENTS OF RE UNIMPORTANT)
.11	4 67	45	RRC	A
011	5 6611	46	JNC	TLP
	/ F3	47	HOV	R,VRL
		-6	HUV	AD2 4
	R 19	5	1NC	
	C 2411	51	JNP	TLP
		52		; END OF PROGRAM
		53	END	

Figure 18. Modified 8251 Test Program

The timer resident on the MCS-48 provides a solution to this problem. Instead of spinning in a loop the program can set the timer for a given interval, start it, and proceed to other tasks. When the timer overflows, an interrupt will be generated to notify the software that the present time period has elapsed. An extension of the algorithm of Figure 13 which uses the timer in this fashion in shown in Figure 19. This algorithm is identical to the preceding one up until the detection of the leading edge of the start bit. At this point the timer is set to one half of the bit time (P) and a return is made to the calling program which can start additional processing. At the completion of this time interval a timer overflow interrupt is generated. When the first interrupt is detected, the serial line is checked to ensure that it is in a spacing condition (valid START bit). If it is, the timer is set to P (to sample the middle of the first data bit) and a return is made to the program which was running when the

interrupt occurred. If the serial line has returned to the MARK state, a status flag is set to indicate an error and a return is made. On subsequent interrupt detection, the data is sampled, the timer is reinitiated, and control is returned to the program which was running when the interrupt occurred. When the last (i.e. STOP) bit is detected a completion flag is set and a return is made to the program running when the timer overflow occurred. By periodically checking the error and completion flags the running program can determine when the interrupt driven receive program has a character assembled for it.

Using the timer to implement time delays as shown in Figure 19 results in considerable savings in processing time; two problems remain, however, which must be solved before an adequate software solution to the problem of receiving serial code can be found. The first problem is that even though the delays between bit samples are implemented via the timer rather than program loops the loop construction is still used to detect the leading edge of the START bit. Although this results in the waste of processing power, the second problem is even more serious. For longer messages the required accuracy of the clocks becomes more and more stringent. Using the sampling technique discussed a cumulative error of one half a bit time in the time at which a bit sample is taken will result in erroneous reception. The maximum timing error which can be tolerated and yet still allow proper detection of an 11 bit ASCII character is then:

$$Emax = \frac{0.5*BIT TIME}{CHARACTER TIME} - \frac{0.5P}{11P} = 4.5\%$$

where P is the period of single bit. The corresponding calculation for a 32 bit character yields:

$$Emax = \frac{0.5P}{32P} = 1.6\%$$

Since this calculation does not allow for distortion on the signals, it is obvious that either extremely stable clocks will be required or a more tolerant algorithm must be devised. This problem is particularly serious at relatively high baud rates where the resolution of the counter (80μ secs with a 6 MHz crystal) becomes a significant percentage of the period of the received signal. At the 110 baud rate of the Teletype the 80μ sec resolution of the clock allows a maximum accuracy of 0.33%; at 2400 baud this figure is reduced to 3.8%.

┨┠ X1 X2 RD INT WR **BxD** PROG T₁ ALE P17 P₂₇ P16 P26 P15 P₂₅ P₁₄ PORT 1 P₁₃ P24 P₂₃ P12 P21 P11 P20 P10 D7 T₀ D₆ vcc D5 +5V V_{DD} D_4 BUS D_3 SS D2 PSEN D₁ D vss EΑ RESET

Both efficient detection of the start bit and increased timing accuracy can be obtained if the MCS-48 can detect edges on the incoming received data (RxD). A hardware construct which allows this is shown in Figure 20.

The received data (RxD) is Exclusive NORed with bit seven of port two and fed into the TEST (T1) pin of the MCS-48. By manipulating P27 the program can now cause T1 to be either RxD or RxD. (If P27 = 1 then T1 = RxD; if P27 = 0 then T1 = RxD.) Note that not only can T1 be tested directly by the software but that it is the input which is used when the MCS-48 timer is in the event counter mode. The significance of this will be discussed later. The relationship between T1, P27, and RxD is given by the Boolean expression:

$$\overline{T1} = P27 \cdot \overline{RxD} + \overline{P27} \cdot RxD$$

Figure 21 flowcharts a means of utilizing this hardware construct to avoid the necessity of wasting time in program loops to detect the leading edge of the start bit. The receive operation is initialized when the program desiring to receive serial data calls the INIT subroutine (Figure 21a). Since INIT is going to manipulate the timer the first action it performs is to disable the timer overflow interrupt. Its next step is to set P27 to a logical 1. Setting P27 in this manner causes the TEST 1 input to the MCS-48 to follow \overline{RxD} . By setting up the receive circuitry in this manner a high to low transition will occur on TEST 1 when the RxD goes from the MARKING to SPACING state (i.e. the START

Figure 21a. Interrupt Driven Serial Receive Flowchart

Figure 21b. Interrupt Driven Serial Receive Flowchart

Figure 21c.	Interrupt	Driven	Serial	Receive	Flowchart
-------------	-----------	--------	--------	---------	-----------

bit occurs). By setting the timer to $0FF_H$ and enabling it in the event count mode, the INIT routine sets up the MCS-48 to generate a timer overflow interrupt on the next MARK to SPACE transition of RxD (the TEST 1 input doubles as the event counter input). Before returning to the calling program the INIT routine sets a flag (RDF) which will be cleared by the receive program when the requested receive operation is complete. INIT also sets a value into a register called BCOUNT. The receive program interprets BCOUNT as follows:

In order to request the reception of the 11 bit ASCII code INIT would set BCOUNT to 11001011B. The start bit has been neither verified nor detected and 11 bits (1011B) are required.

After INIT is called the reception of the individual serial data bits will proceed on an interrupt driven basis until a complete character has been assembled. When this occurs the interrupt driven program will set the RDF (Receive Done Flag) to a zero to indicate that it has completed the requested operation and then terminate itself. The procedure which is used to accomplish this is shown in Figures 21b and 21c.

Since all operations of this program are the result of the occurence of a timer overflow interrupt, it is necessary to briefly review the interrupt structure of the MCS-48. There are two sources of interrupt; an external interrupt which is the result of a logical zero signal applied to the \overline{INT} pin of the MCS-48, and an internal interrupt which is caused by a timer overflow condition. The timer overflow occurs whenever the timer is incremented from OFF H to zero whether it be in the timer or event count mode. When one of these events occurs the hardware in the MCS-48 forces the execution of a CALL. This CALL has a preset address of location 3 if it is due to the external interrupt and location 7 if it is due to a timer overflow. If both of these

running program and its PSW (program status word) on a stack the hardware maintains in RAM locations 8-23. Although the hardware saves the program counter and PSW, it remains the responsibility of any interrupt driven software to make absolutely certain that it does not modify any memory locations or registers which are being used by the main program. The most convenient way of ensuring this in the MCS-48 is to dedicate the second bank of registers (RB1) to the interrupt driven program. One of these registers has to be used to save the accumulator (which is not part of the register bank) but seven registers remain; including two which can be used as pointers to the rest of the RAM (R0 and R1). Note that if this approach is taken then these registers have to be allocated between the program which services the external interrupt and the one which services the timer overflow. This problem is somewhat alleviated by a hardware lockout which prevents the timer overflow interrupt from interrupting the external interrupt service routine and vice versa. This is implemented by locking out new interrupts between the time an interrupt is recognized and the time a RETR instruction is executed. The RETR instruction is like a normal RET (return from subroutine) except that the PSW as well as the program counter is restored. The RETR instruction can be very much thought of as a return from interrupt instruction in the MCS-48.

The receive program under discussion uses register bank 1 in the manner described. Whenever a timer overflow occurs (e.g. on the next MARK to SPACE transition of RxD after INIT is called), control is passed (by the hardware generated CALL) to the point labled TIMER OFLO in Figure 21b. This program segment immediately selects register bank 1 (RB1) and then saves the accumulator (A) in a location called ATEMP which is actually R7 of RB1. The program then tests bit seven of BCOUNT (R6 of RB1) to find out if a START bit has been verified (i.e. the edge of the START bit has first been detected and then verified to still be a SPACE one-half a bit time later. If BCOUNT [7] is a zero the START has been verified and the program proceeds to set the timer to P (the period of the serial bit), get the current serial data into the carry bit, and then shift the carry bit into a buffer. After saving the data the program decrements BCOUNT and tests it for zero. If BCOUNT is zero the receive operation is complete so the program sets RDF to a zero and disables timer overflow interrupts. Whether or not BCOUNT is zero, control is passed to EXIT where A is loaded with ATEMP and a

the PSW, the execution of RETR automatically selects the register bank which was active when the interrupt occurred.

If BCOUNT [7] is still set when it is tested, control is passed to START (Figure 21c) where bit 6 is tested to determine if the START has been detected yet. If BCOUNT [6] is set it indicates that this is the first occurrence of a timer overflow since the receive process was initialized by the INIT subroutine. If this is so, the program assumes that the START bit has just started and therefore it sets the timer to one-half of a bit time (1/2 P), starts the timer in the timer mode, and clears BCOUNT [6] to indicate that the START bit has been detected. The next overflow will again result in the execution of the program in Figure 21b and again BCOUNT [7] will be found to be set. This time, however, BCOUNT [6] will be reset and the program will know that it should test the START bit to ensure that it is still a SPACE. This test is performed and if successful the timer is set for a bit period P and BCOUNT [7] is reset so that on the next occurrence of a timer overflow the program will know that it should start assembling serial bits into a character. If the test is unsuccessful, the subroutine INIT is used to reinitialize the receive program. In either case control is passed to EXIT where a return from interrupt mode occurs.

This receive program, listings of which appear in Figure 22, allows the reception of serial characters transparently to the main running software. After INIT is called the main program has only to check RDF periodically to find out if there is data in the buffer for it. It would be fairly easy to 'double buffer' this operation by providing a buffer which the receive program uses to deserialize the incoming code and a second buffer to store the assembled character. If the program would reinitialize itself upon completion, the reception of a string of characters could proceed in much the same way as it would if a status driven USART were being used.

Although this program solves the first problem of software controlled reception (lack of efficiency) the second problem-sensitivity to frequency variations-remains. An example of a code which would be susceptible to this problem is the 31,26 BCH code commonly used in supervisory control systems. (A supervisory control system is, in essence, a remote control system which allows a human or computer operator the control of a system via a serial communications link.) The BCH codes are used because of their error detection capabilities and are a class of cyclical redundancy

LOC 08J	SEQ	SOURCE	STATEMENT	r	0023	FE	71	START:	MOV	A, BCOUNT	
					0824	D237	72		JB6	SLLC	
	•						73			;	DO;
	1 1 *	•••••	••••••				74			; ;	IF TESTION THEN
	2 :			10140 THE HOE 40	0026	5635	/5		20	SCLD	D0 .
	3	JLK	IS CODE AS	SINES HAPPLAPE			77			:	TIMER-P:
	5	SH	OWN IN FIG	20. TO USE			78				START TIMER:
	6 :	TH	IS ROUTINE	CALL INIT.			79			i i	P27-0;
	7 ;	WH	EN RDF-8 1	THE ASSEMBLED			88			;	EN I
	8;	СН	ARACTER W	ILL BE IN SERBUF			81			;	BCOUNT(7)=#;
	9;						82			;	END;
	10 ; *	•••••	********	****************	9928	2307	83		MOV	A,#-P	
	11				882A	62	84		MOV	T,A	
	12 1 -				0029	55	85		AM	1 03 #754	
	13 ; 1	UMIES			8820	3R1/F	67		FM.	1	
	15				8825	66 66	80		MOV	A BOOLINT	
4447	16 ATE	MP FOU	R7	: STORAGE FOR A DURING INTERUPT	6636	537F	89		ANL	A. # 7FH	
8886	17 900	UNT EQU	RG	CONTAINS NUMBER OF BITS IN MSG	0032	AB	94		NUV	BCOUNT, A	
6882	18 COU	NT EQU	R2	; UTILITY COUNTER	8833	843F	91		JMP	SEXIT	
8994	19 RX8	EQU	RØ	; POINTER			92			;	ELSE
### 8	28 BIT	NO EQU	8	; NUMBER OF BITS			93			;	DO;
6659	21 P	EQU	41	; SAMPLE PERIOD			94			;	CALL INIT;
0820	22 SER	BUF EQU	264	; SERIAL BUFFER			95	~		;	END;
B124	23 RDF	Fan	24H	; RECEIVE DURE FLAG	0035	1441	30	SLLD:	CALL	1411	51 6F
	25									:	N1.
	26 0		SSED HERE	WHEN TIMER OFLD OCCURS						-	TIMER-P/2:
	27 ; -						188				START TIMER;
	28						181				BCOUNT(61=8;
8887	29	QRG	87H				182			:	END;
	38			; /*ENTER INTERRUPT MODE*/	8837	23EC	1#3	SLLC:	MOV	A,#-(P/2	9
0007 D5	31 JMM	EC: SEL	RB1		\$\$39	62	184		MOV	T,A	
8668 AF	32	MOV	ATEMP,	A	883A	55	185		STRT	T	
	33			; IF BCOUNT(7)=0 THEN	0038	FE	106			A, BCOUNT	
4444 F223	34	107	STAPT	11	6630	530F AF	140		MOV	BORNT A	
	36		5.141	: 00:			189				END:
	37			; TIMER-P;			118				/*EXIT INTERUPT MODE*/
SSSC 23D7	38	MOV	A,#-P		883F	FF	111	SEXIT:	MOV	A, ATEMP	
###E 62	39	MOV	T,A		8848	93	112		RETR		
	48			; START TIMER			113				
888F 55	41 SLL	B: STRT	T				114	1			
	42			; /*CARRY+RXD*/			115	I INTI	ALIZE	ROUTINE-	000000
	43	T M	A 83	; CHERT P27 ANDR 1EST1;			110		5144	CIS RECEIVE	-RUCE 35
8811 57	45	RLC	A				118	,			
6012 5615	46	JTI	TISRO				119			;	INIT:
8814 A7	47	CPL	c				128			:	PROCEDURE ;
	48			; /*SHIFT CARRY INTO BUFFER*/			121			:	D0;
	49			RX8-SERBUF:			122			;	DISABLE INTERRUPTS;
	50			; RSHFT MEM(RXU);			123			;	P27-1;
0015 H820	51 / 15	ND: MUV	RAB, # 5	12.KBU7			129				START EVENT COUNT.
6618 67	52 300	PPC	A				126			:	PDF+1:
8819 28	54	XCH	A. ORXI				127			-	BCOUNT-BCBH OR BITHO
	55			; BCOUNT=BCOUNT-1;			128				END;
	56			; IF BCOUNT-0 THEN			129			;	END INIT;
BB1A EEGF	57	DJNZ	BCOUN	T,SEXIT	8841	35	138	INIT:	DIS	TCNTI	
	58			; 00;	8842	8485	131		ORL.	P2,#88H	
	59				8844	23FF	132		HUV	A,#-1	
	61			END.	8847	46	133		STPT	CNT	
881C BB24	62	MOV	RX8.#5	DF	6848	8824	135		MOV	RX. #RDF	
881E 27	63	CLR	A		884A	B## 1	136		MOV	ORX8,#8	1H
BOIF AD	64	MQV	ORX8,4	•	584C	BB1E	137		MOV	RX8, # 16+	; POINT AT BOOUNT
8828 35	65	DIS	TONTI		884E	BICB	138		MOV	@RX8,#(BCBH OR BITND)
	66			; END;	8058	25	139		EŅ	TONTI	
8821 843F	67	JMP	SEXIT		0051	83	148		RET		
	68			; ELSE			141			;	END UF PROGRAM
	69			I DUI			142		CMD.		
	/			I IF BEUUNILEINE INEN			143		END		

codes such as those used in synchronous data communications (e.g. BISYNC or SDLC). BCH codes, named for their originators Bose, Chaudhuri, and Hocquenghem, are characterized by having a length of $n=2^{m}-1$. The number of redundant check bits can be mt where t is a positive integer (clearly mt $\leq n$). The 31,26 code fits this format with m=5 and and t=1. The length of each message is $n=2^{5}-1=31$ with 5*1 redundant bits, leaving 26 bits available for data transmission. With an appropriate polynominal BCH codes can detect all errors consisting of 2t error bits and all burst errors of mt or fewer bits. The 31,26 BCH code will therefore detect any erroneous messages with 1 or 2 errors or bursts of errors of less than 5 bits. The 31,26 format (shown in Figure 23) requires the reception of a start bit followed by 31 information bits, clearly beyond the capability of the USART but perhaps within reach of a program controlled approach using the MCS-48 itself.

All mnemonics copyrighted © Intel Corporation 1976.

Figure 23. 31,26 BCH Code

A concept which reduces sensitivity to frequency deviations and thus allows the reception of longer codes is shown pictorially in Figure 24. The first line of this timing chart shows an alternative ones and zeros pattern on the RxD with a period of 5 milliseconds. The second line shows that by sampling at a period of exactly 5 milliseconds the data can be properly interpreted. The third and fourth lines show the effects of sampling with a period of six and four milliseconds respectively. In either case, an error occurs at the third sample where both periods result in sampling on an edge of the RxD signal. The third line of Figure 24 shows a hybrid sampling scheme which, based on some additional information, switches sampling periods between the two values. As can be seen in Figure 24, the data is sampled with a 4 millisecond period until the sampling begins to fall behind the data; at this point the sampling period is increased to six milliseconds and the sampling first catches up and then passes the center point of the data. As soon as this happens, the sampling period reverts to the 4 millisecond period and the cycle repeats. It can be seen that this scheme sets up a pattern which repeats indefinitely and the data can be successfully sampled. Note that the sampling pattern established is alternating periods of four and six milliseconds. The average period of this pattern, as might be expected, is 5msec. Line 5 of Figure 24 shows the effect of a change in transmission speed to a period of 5.5 msec with no change in the sampling time. The sampling is again successful but the new sampling pattern is 4-6-6-6; 4-6-6-6, etc. Note that the average sample is again equal to the period of the received data (5.5). While this scheme

Figure 24. Various Sampling Alternatives

does seem to work, the question of what additional information is needed remains.

The MSC-48 must somehow decide when it is drifting out of synchronization and take corrective action. By referring back to Figure 24 it can be seen that if the MCS-48 could determine where the edges of RxD occurred with respect to its sampling times then the additional information would be available. As can be seen in the figure the choice of sampling period can be based on the following rule:

If an edge on the RxD line occurs during the first half of the current sampling period, then use the short period for the next sample. If an edge occurs during the second half of the period, then use the long sampling period for the next sample.

If the data on the RxD line does not change, of course, the MCS-48 will drift out of synchronization just as the original algorithum did. As long as edges occur on TxD, however, synchronization can be maintained. To maximize the allowable time between edges, the following addition could be made to the above rule:

If no edge occurs on the RxD line during a sample, then change sampling period from short to long or vice versa.

Note that this addition to the rule will result in using an average of the two sampling periods when no edge occurs for several bit times.

The edges of RxD can be easily detected by the use of the same structure (the Exclusive – NOR gate) which was added to the MCS-48 in Figure 20. This gate, which is used to detect the edge on RxD which begins the START bit, can naturally be used to detect any edge. Since the timer is being used to time the bit period, however, the event count input (T1) is not useful during the receive itself. By connecting the output of this gate, however, to the INT input to the MCS-48 (see Figure 25) it is possible to detect edges on RxD with the event counter when the program is trying to detect the START bit and by the external interrupt when the program is using the timer to control the sampling times.

Figure 25. Modified Edge Detection

A modification to the program of Figure 21 which implements this new sampling algorithm is shown in Figure 26. The first deviation from the original program is the addition of a routine (XISR, Figure 26a which is called when an external interrupt occurs (i.e. when an edge occurs on RxD). This routine saves the status of the running program and then stores the current value of the timer register in a location called SNAP (R5 of RB1). After doing these operations the program complements bit 7 of port 2. Manipulating P27 in this manner will cause the Exclusive NOR gate to turn off the external interrupt and will set it up to generate another interrupt when the RxD line changes again (has another edge).

Hybrid Sampling Flowchart

Because of this edge detection it is important to condition RxD with hardware filters to ensure that the edges of RxD are clean. Any ringing will cause repeated CALLs to XISR and probable erroneous operation. The changes to the START process (Figure 26c) are two-fold; first the TIMER is set to one half the average of the two sample periods when the START bit is first detected (BCOUNT [6] = 1), and second the processing of the edge information is initialized by presetting SNAP and clearing P27.

SNAP is preset so that when the reception of data actually begins (Figure 26b BCOUNT [7] = 0), the decision block which tests SNAP against LIMIT will be initialized. This block actually compares the value in SNAP with a LIMIT value which is used to determine if the sampling point is ahead or behind the actual midpoint of the serial data. If the sampling is ahead then the timer is set for TMIN; if the sampling is behind then the timer is set for

Hybrid Sampling Flowchart

TMAX. By presetting SNAP in the manner shown in the flowcharts the second rule of the algorithm, (if no edge appears on the RxD line during a sample, then change the sampling periods short to long or vice versa) is automatically met. If an edge occurs then XISR will modify SNAP, if XISR is not invoked between two samples then the choice of timer periods will alternate. The only other significant change to the algorithm is that the INIT routine must now lock out all interrupts, not just the timer overflow interrupt, while it is operating. A program which uses this algorithm to receive a 32 bit message is shown in Figure 27.

	2			
	3 :	SERIAL	INPUT US	ING MCS-48
	4	THIS	CODE ASS	SUMES HARDWARE
	5 ;	SHOWN	IN FIG	25. PROGRAM
	6;	15 51	MILAR TO	PREVIOUS
	7;	ONE,	A MORE 5	OPHISTICATED
	8;	SAMPL	ING ALGO	BRITHM IS USED
	9;			
	10 ; NOTE:	A PL/M	I LIKE LA	INGUAGE WAS USED
	11 :			IN THIS NOTE NO
	12 ;	COMPIN	FP FYIST	S FOR THE MCS-48.
	14 :	THE CO	MMENTS W	ERE 'HAND
	15 :	COMPIL	ED' INTO	ASSEMBLY CODE
	16 ;;			
	17 ; •••••		•••••	
	16			
	19 ;			
	20 ; EQUAT	ES		
	21 ;			
	22 ATEMP	FOU	P7	STOPAGE FOR A DURING INTERUPT
4446	24 RCOUNT	FOU	RG	CONTAINS NUMBER OF BITS IN MSG
4145	25 SNAP	EQU	RS	TAKES TIMER SNAP SHOT ON RXD EDGE
1112	26 COUNT	EQU	R2	UTILITY COUNTER
	27 RXO	EQU	RØ	; POINTER
8828	28 BITND	EQU	32	; NUMBER OF BITS
8814	29 LIMIT	EQU	28	; TEST VALUE FOR MIN/MAX SAMPLING
FFDS	30 TMAX	EQU	-43	; MAX SAMPLE PERIUD
FFD9	31 TMIN	EQU	-39	; MINIMUM SAMPLE PERIOD
FFEC	32 MALF	500	201	START OF SERIAL PREFER
8824	34 RDF	FOU	24H	RECEIVE DONE FLAG
	35	200	•	
	36 :			
	37 ; CONTR	OL PASS	ED HERE C	DN EXT. INT.
	38 ;			
	39			
0003	48	ORG	Ø3H	
	41		*100	; CALL SERVICE RUDIINE
4445 93	42 EIVEC:	PETP	ALDR	
	44			
	45 :			
	46 ; CONTR	OL PASS	D HERE W	WHEN TIMER OFLO OCCURS
	47 ;			
	48			
	49			; /*ENTER INTERUPT MODE*/
1116 D5	SD THVEC:	SEL RB	1	
888/ HP	51	1.04	HICH.,	. 15 DODINT(7) A THEN
AND FF	53	MOV	A. BCOU	NT
1009 F236	54	JB7	START	
	55			; DO;
	56			; IF SNAP & LIMIT THEN
SSOB FD	57	MOV	A, SNAP	
BBBC 8314	58	ADD	A,#L1M	11T
888E F217	59	J87	SLLA	20
	68			; DU;
	61			CNAD-I INITA1
	63			FND-
AN18 2309	64	MOV	A. # TMI	N
112 62	65	MOV	T.A	
8813 BD13	66	MOV	SNAP, #	LIMIT-1
8815 841C	67	JMP	SLLB	
	68			; ELSE
	69			; D0;
	70			; TIMER-TMAX;
	71			; SNAP=LIMIT-1;
	72	MCK/	A	; LND;
		-/		

Figure 27. Hybrid Sampling Program

FFD5 FFD9 FFEC

LOC 09J	SEQ	SOURCE	STATEMENT	LOC OBJ	SEQ	SOURCE	STATEMENT	
8819 62	74	MOV	T,A	884A 1456	143 SLLD	: CALL	INIT	
681A BD13	75	MOV	SNAP, #LIMIT-1		144			; ELSE
	76		; START TIMER;		145			; DU;
10 10 55	77 SLLB	: SIRI	1		146			; IIMER-CIMIN+IMMAJ/2;
	79		CAPPY=P27 YOP TEST1.		148			BCOUNT(61+#:
SEID BA	80	IN	A.P2		149			; END;
001E F7	81	RLC	A	\$84C 23EC	150 SLLC	: MOV	A,#HALF	
881F 4622	85	JNT1	TISRD	884E 62	151	MOV	T,A	
8821 A7	63	CPL	C	004F 55	152	STRT	T	
	84		; /*SHIFT CARRY INTO BUFFER*/	0050 FE	153	MOV	A, BCOUNT	
	85		; RXS-SERBUF;	8853 AF	154		PCONNT A	
	87		DO WHILE COUNTES	0033 MC	156			: END:
	66		RSHFT MEM(RXD)		157			/*EXIT INTERUPT MODE*/
	69		RX8-RX8+1;	\$854 FF	158 SEXI	T: MOV	A, ATEMP	
	98		; COUNT=COUNT-1;	ØØ55 93	159	RETR		
	91		; END;		169			
0022 BB20	92 TISRI	D: MOV	RXU, # SERBUF		161 ;	TIAL 17C 0		
1125 2R	94 51 006	P XCH	A PY6		162 ; 10	START	S RECEIVE	PROCESS
6027 67	95	RRC	A		164 :			
8828 28	96	XCH	A. ORXS		165			
0029 18	97	INC	RXS		166			; INIT:
882A EA26	98	DJNZ	COUNT, SLOOP		167			; PROCEDURE ;
	99		; BCOUNT-BCOUNT-1;		168			; DO;
8800 EEE4	100	D NZ	CONNT CEVIT		165			P27+1-
FFC C C C C C C C C C	182	DUNE	- DO-		171			TIMER-1:
	183		RDF-0;		172			START EVENT COUNT;
	184		DISABLE EX INT;		173			; RDF=1;
	185		; END;		174			; BCOUNT-SCOH OR BITND
002E BB24	186	MOV	RXS, #RDF		175			; END;
0030 2/ 0031 AB	187	GLR		88CC 1C	175	r. nic	,	; END INTI;
11 32 35	189	DIS	TCNTI	4457 35	178	DIS	TCNTI	
0033 15	118	DIS	1	##58 8A86	179	ORL	P2,#88H	
	111		; END;	\$\$5A 23FF	188	MOV	A,#-1	
0034 0454	112	JMP	SEXIT	##5C 62	181	MOV	T,A	
	113		; ELSE	885D 45	182	STRT	CNT	-
	114		; DU;	995E BB24	183	MOV	RX8, #RD	•
8836 FE	116 STAR	T: MOV	A. BCOUNT	8861 A8	185	MOV	ORXE.A	
8837 D24C	117	JB6	SLLC	\$962 25	186	EN	TCNT1	
	118		; 20;	8863 BEES	187	NOV	BCOUNT, a	# OCOH OR BITND
	119		IF TESTION THEN	\$\$ 65 83	188	RET		
8839 564A	120	JT1	SLLD		189			
	122		; DU; · TIMEP=THIN·		191 • ••			
	123		START TIMER:		192 : 17	TERUPT SE	RVICE ROUT	INE
	124		SNAP=LIMIT+1;		193 ;			
	125		; P27-0;		194			; XISR:
	126		; EN I		195			; PROCEDURE ;
	127		; BCDUNI[/]=#;		196			; DU;
\$838 2309	129	MOV	A. #TMIN		198			SNAP=TIMER:
##3D 62	138	MOV	T,A		199			P27-NOT P27;
003E 55	131	STRT	т		200			; END XISR;
883F ED15	132	MOV	SNAP, #LIMIT+1	8866 D5	201 XIS	R: SEL	RB1	
8841 9A7F	133	ANL	P2,#7FH	8867 AF	202	MOV	ATEMP, A	
8844 FF	135	MOV	A ROUNT	8869 AD	283	MOV	SNAP A	
6045 537F	136	ANL	A. #7FH	BIGA BA	285	IN	A.P2	
8847 AE	137	MOV	BCOUNT, A	666B D388	206	XRL	A,#89H	
8848 8454	138	JMP	SEXIT	886D 3A	287	OUTL	P2,A	
	139		; ELSE	BBGE FF	268	MOV	A, ATEMP	
	149		; DO;	886F 83	289	RET		
	141		; CALL INIT;		210	END		; ERU UF PRUGRAM
	176		,,		211	End		

Figure 27. Hybrid Sampling Program

TRANSMITTING SERIAL CODE

Serial transmission is conceptually far simpler than serial reception since no synchronization is required. All that is required is to use the timer to generate interrupts at the bit rate and present the character to be transmitted serially at an I/O pin. A program which does this is shown in Figure 28. The transmission of serial data becomes much more complicated if it must occur simultaneously with reception.

If both reception and transmission are to occur simultaneously then obviously contention will exist for the use of the timer. It is possible to allow the simultaneous reception and transmission of serial data using the timer as a general clock which controls software maintained timers. The attainable baud rates using such techniques are, however, limited and the use of a 8251 USART is probably indicated in all but the most cost sensitive applications. An exception to this rule occurs when the system, although full duplex in nature, actually transmits the same data as it receives. An example of this is a microprocessor driving a terminal such as a Teletype. Although the circuit to the terminal is full duplex, the data that is transmitted is generally the same as that received. A minor modification to the program shown in Figure 26 would implement this mode of operation. The modification would be to the XISR routine and it would add the code necessary to place the TxD I/O pin in the same state as the RxD line. Since any change in RxD results in a call to XISR, this modification would cause the retransmission of any received data. Whenever it becomes necessary to transmit data which is not being received, the program of Figure 28 could be used in a half duplex manner.

100 0D 1		auber (
LUC UBJ	SEU S	DOKCE 2	ALEMENT		LOC	OBJ	SEQ	SOURC	E STATEMENT
	8				8865	8A	37	IN	A. P2
	1 ;				8816	0388	39	X PI	A #88H
	2 ; SERIA	L TRANS	SMIT ON THE MCS48		8812	30	39	DUT	P2 A
	3 ; TD	USE PUT	A CHAR IN BUFF AND	0	8813	F619	48	JC	BITON
	4 ; SET	CHARAN	/ TO SFFH. WHEN THE		8819	SAFE	41	ANI	P2 #CBIT
	5 ; TRA	NSMITTE	R IS READY FOR ANOT	THER	661	841B	42	MP	FAIT
	6 : CHA	RITW	ILL CLEAR CHARAV. TH	Æ	8819	BA18	43 81	TON: ORI	P2.#SBIT
	7 ; TRA	NSMISSI	ION IS DOUBLE BUFFER	RED.	8812	FF	44 FX	IT: MOV	A ATEMP
	8 ;				8810	93	45	RET	R
	9						46		
	18 ;						47 ;		
	11 ; EQUAT	ES					48 ;	BIT ROUTI	NE
	12 ;						49	-PICKS TH	E NEXT BIT TO TRANSMIT
	13						58 ;		
8887	14 ATEMP	EQU	R7 : STORAGE	FOR A DURING INT.			51		
8886	15 PTOS	EQU	RG ; PARALLEL	. TO SERIAL CONVERTER	8812	FB	52 BI	T: MOV	A, COUNT
8885	16 BUFF	EQU	RS ; CHARACTE	ER BUFFER	8816	C627	53	JZ	IDLE
8884	17 CHARAV	EQU	R4 ; CHARACTE	ER AVAILABLE FLAG	9921	FE	54	MOV	A,PTOS
8883	18 COUNT	EQU	R3 ; BIT COUN	ITER	882	67	55	RRC	A
BBEF	19 CBIT	EQU	BEFH ; MASK TO	CLEAR TXD IN P24	8822	4388	56	ORL	А,#88Н
8818	28 SBIT	EQU	BIBH ; MASK TO	SET TXD IN P24	8824	AE	57	MOV	PTOS,A
FFD7	21 P	EQU	-41 ; PERIOD C	DF TXD	0025	CB	58	DEC	COUNT
	22				8826	6 83	59	RET	
	23 :						68		
	24 ; CONTR	OL PASS	SED HERE ON TIMER ON	/ERFLOW	882	97	61 ID	LE: CLR	C
	25 ;				9926	B FC	62	MOV	A, CHARAV
9887	26	ORG	87H		8829	962D	63	JNZ	GOTONE
	27		; ENTER IN	NTERUPT MODE	6621	3 A7	64	CPL	c
8887 05	28 TOFLO:	SEL	RB1		8820	83	65	RET	
BABS VI	29	MUV	ATEMP,A				66		
	30		; SET TIME	R FOR P	8821	FD FD	67 60	TONE: MOV	A, BUFF
8889 2307	31	MUV	A, #P		0026	AE	68	MDV	PTOS,A
9999 65	32	muv	1,A		882F	BBBA	69	MOV	COUNT, # 18
8880 55	33	STRT	1		883	BCBB	78	MOV	CHARAV, # B
	34		; GET BIT	INTO CARRY	8833	83	71	RET	
8880 141D	35	CALL	BII				72		; END OF PROGRAM
	36		; SET TXD	TU CARRY			73	END	

Figure 28. Serial Transmission

GENERATING PARITY

Many communications schemes require the generation and checking of parity. If a USART is used it can be programmed to automatically generate and check parity. If the communications is handled by software within the MCS- 48^{TM} then the program must perform parity calculations. Calculating parity is easy if one remembers what parity really means. A character has even parity if the number of one bits in it is even. A character has odd parity if it has an odd number of ones. The program segment shown in Figure 29 can be caused to calculate parity. It starts by setting a loop count to eight and

LOC	0BJ	SEQ S	OURCE STA	TEMENT	
		1 2; 3; 4; PARIT 5; TH 6; 0; 0; 0; 0; 0; 0; 0; 10; 11; 12; 13; 14; 15;	Y S PROGRAM THE ACCUM RRY WILL ES 	i generates par Nuator Be set 1f a ha	ITY S ODD PARITY
0002		16 COUNT 17	EQU	R2	
		18 PAR:	ORG	100H	
0188	BASS	19	MOV	COUNT,#8	; SET LOOP COUNT
8182	97	28	CLR	C	; INITIALIZE CARRY
		21			; FOR EACH ZERO BIT IN A
		22			; COMPLEMENT THE CARRY FLAG
0103	77	23 LOOP:	RR	A	
8184	1287	24	JBO	OVER	
8186	A7	25	CPL	C	
		27	-		; END OF PROGRAM
		28	FUD		

Figure 29. Parity Generation

clearing the CARRY flag. After this initialization a loop is executed eight times. During each execution the accumulator is rotated and the least significant bit is tested. If the bit is a zero the CARRY flag is complemented, if the bit is a one no further action is taken. Since an even number of zeros implies an even number of ones for an eight bit character, after all eight loops have been accomplished the CARRY bit will be set if an odd number of ones were encountered; it will be reset if the number were even. Since the RR instruction does not involve CARRY the net result of executing this program loop is to set CARRY if parity is odd without effecting the character in the accumulator.

CONCLUSION

This Application Note has presented a very small sampling of the application techniques possible with the MCS-48[™] family. The application of this new single chip computer system to tasks which have not yet yielded to the power of the microprocessor will present a fascinating challenge to the system designer.

June 1978

Keyboard ∕ Display Scanning With Intel®'s MCS-48[™] Microcomputers

Contents

Introduction	3-3
Hardware Schematic	3–6
Software Listing	3–7
Configuration Equates	3-11
Utility Subroutines	3-18
Assembly Cross Reference	3-25

INTRODUCTION

This application notes presents a software package for interfacing members of Intel's MCS-48TM family of single-chip microcomputers with keyboards and displays using a minimum of external components. Because of the similarity of the architectures of the various members of the family (the 8035, 8048, 8748, 8039, 8049, 8021, and 8022 microcomputers; also the 8041 and 8741 universal peripheral interfaces in the UPI-41[®] family), the code included here could run with minor modifications on any member of the family.

Since keyboard and display logic can be just one of several functions handled by a microprocessor, the added cost of including these functions in a system is minimal. In fact, considering the extremely low cost of standard X-Y matrix keyboards and integrated displays, their use is often more cost effective than even a handful of discrete switches and indicators. Thus, the additional flexibility of keyboard input and display output can be added to inexpensive consumer products (such as games, clocks, thermostats, tape recorders, etc.), while producing a net savings in system cost.

Since each potential application will have its own unique combination of keys and display characters, the program is written so that very little modification is needed to interface it with a wide variety of hadware configurations. In general, the only changes required are within the set of initial EQUates at the beginning of the program.

Along with the basic software for driving a multiplexed display and/or scanning and debouncing an X-Y matrix of key switches, a collection of utility subroutines is also included for implementing the most commonly used keyboard and display utility functions, such as copying simple messages onto the display or determining the encoded value of each key in the key matrix. As a result of the versatile architecture and applicationsoriented instruction set of the MCS-48 family, the entire package fits into about 250 bytes of internal program ROM or EPROM, leaving the rest of the ROM space for the program to cook the perfect piece of toast, or whatever. By tailoring the software to match a known hardware configuration, or by selecting only those functions needed for a given application, the program size could be even further reduced.

Since what is being presented in this application note is a software package, rather than the usual hardware/ software system design, the format of this note is somewhat different from most — it consists primarily of a long program listing reproduced in the following pages. For the most part, the listing is self-explanatory, with comments introducing each subroutine and major code segment. Some parts of this introduction are reproduced in the program listing itself, explaining the configuration of the prototype system. However, an additional bit of explanation would make the listing easier to understand, especially for those readers unfamiliar with the concept of multiplexed displays and keyboards. In traditional digital system design, various hardware registers or counters were used to hold binary or BCD values which had to be conveyed to the user. The standard way of presenting this information was by connecting each register to a seven-segment encoder (such as the 7447) driving a single display character, as represented by Figure 1. Thus, two ICs, seven current limiting resistors, and about 45 solder joints were required for each digit of output. Consider how traditional techniques might be (mis-)applied in designing a microprocessor system: the designer could add a latch, encoder, and resistors for each digit of the display. Still another latch and decoder could be used to turn on one of the decimal points (if used). The characters displayed could only be a sequence of decimal digits. In the same vein, a large matrix of key switches could be read by installing an MSI TTL priority encoder read by an additional input port. Not only would all this use a lot of extra I/O ports and increase the system price and part count drastically, but the flexibility and reliability of the system would be greatly reduced.

Instead, a scheme of time-multiplexing the display can be used to decrease costs, part count, and interconnections, while allowing a wider range of character types to be used on the display. The techniques used here are fairly typical of today's integrated subsystems designed especially for controlling keyboards and displays (such as in calculators or the Intel® 4269, 8278, and 8279 Keyboard/Display Controller Devices).

In a multiplexed display, all the segments of all the characters are interconnected in a regular two-dimensional array. One terminal of each segment is in common with the other segments of the same character; the other terminal is connected with the same segments of the other characters. This is represented schematically in Figure 2. A digit driver or segment driver is needed for each of these common lines.

Figure 2. Schematic Representation of 6-Digit, 7-Segment Common-Cathod LED Multiplexed Display

The various characters of the display are not all on at once; rather, only one character at a time is energized. As each character is enabled, some combination of segment drivers is turned on, with the result that a digit appears on the enabled character. (For example, in Figure 3, if segment drivers 'a', 'b', and 'c' were on when character position #6 was enabled, the digit '7' would appear in the left-most place.) Each character is enabled in this way, in sequence, at a rate fast enough to ensure that the display characters seem to be on constantly, with no appearance of flashing or flickering.

In the system presented here, these rapid modifications to the display are all made under the control of the MCS-48TM microcomputer. At periodic intervals the computer quickly turns off all display segments, disables the character now being displayed and enables the next, looks up the pattern of segments for the next character to be displayed, and turns on the appropriate segments. With the next character now turned on, the processor may now resume whatever it had been doing before. The whole display updating task consumes only a small fraction of the processor's time.

Figure 3. Segment and Digit Drivers used with 6-Position, 7-Segment LED Display

Moreover, since the computer rather than a standard decoder circuit is used to turn the segments off and on, patterns for characters other than decimal digits may be included in the display. Hexadecimal characters, special symbols, and many letters of the alphabet are possible. With sufficient imagination this feature can be exploited for some applications, as suggested by the examples in Figure 4.

Figure 4. Examples of Typical Messages Possible with Simple 7-Segment Displays As each character of the display is turned on, the same signal may be used to enable one row of the key matrix. Any keys in that row which are being pressed at the time will then pass the signal on to one of several "return lines", one corresponding to each column of the matrix. (See Figure 5.) By reading the state of these control lines, and knowing which row is enabled, it is possible to compute which (if any) of the keys are down. Note that the keys need not be physically arranged in a rectangular array; Figure 5 is merely a schematic.

Figure 5. Schematic of X-Y Matrix Multiplexed Keyboard

Since each character is on for only a small fraction of the total display cycle, its segments must be driven with a proportionately higher current so that their brightness averages out over time. This requires character and segment drivers which can handle higher than normal levels of current. Various types of drivers can be used, ranging from specially designed circuits to integrated or discrete transistor arrays. The selection depends on several factors, including the type of display being used (LED, vacuum flourescent, neon, etc.), its size, the number of characters, and the polarity of the individual segments. Some drivers have active high inputs, some active low. Some invert their input logic levels, some do not. Some require insignificant input currents, some present a considerable load. Some systems use external logic to enable one of N characters or to produce the appropriate segment pattern for a given digit, some systems implement these functions through software.

Because of these and the other variables which make each application unique, provisions are made in the first page of symbol EQUates to allow the user to specify such things as the number of characters in the display or the polarity of the drivers used, and the program will be assembled accordingly. The display is refreshed on each timer interrupt, which occurs every 32× (TICK) machine cycles. (One machine cycle occurs every 30 crystal oscillations for the 8021 and 8022, or every 15 oscillations for all other members of the family.) A more detailed explanation of these variables is included in the listing.

Port assignment is also at the discretion of the user all port references in the listing are "logical" rather than physical port names. The port used to specify which character is enabled is referred to as "PDIGIT". The output segment pattern is written to "PSGMNT" and the keyboard return lines are read by "PINPUT". These logical port names may be assigned to whichever ports the user pleases.

By way of example, the breadboard used to develop and debug this software used a matrix of 16 single-pole pushbuttons and an 8-character common-cathode LED display with right-hand decimal point. No decoders external to the 8748 microcomputer were used; all logic was handled through software. PDIGIT was the 8-bit bus, PSGMNT was port 1, and PINPUT was port 2. The drivers used were 75491 and 75492 logically noninverting buffers: high level inputs were used to turn a segment or character on. Pull-up resistors were used on the 8748 output lines to source the current levels needed by the buffers. The 8748 was socketed on the breadboard, and was driven with an inexpensive 3.59 MHz television crystal. The short test program included in this listing was used to echo key depressions as they were detected, and to invoke four demonstration subroutines. A summary of the subroutines included in this listing with a short explanation of the function of each is included in Figure 6; Figure 7 shows how the various utilities interact.

KBDIN	Keyboard Input. Waits until one keystroke input has been received from the keyboard: determines the meaning or legend of that key, and returns with the encoded value in the accumulator.
CLEAR	Blank out the display.
ENCACC	Encode accumulator with bit pattern corresponding to the segment pattern needed by the display to represent that symbol or character. Uses the value of the accumulator when called to access a table con- taining the patterns for all legal input values.
WDISP	Write into Display. Writes the bit pattern in the accumulator into the next character position of the display. Maintains a character position counter so that repeated calls will automatically write characters into sequential positions.
RENTRY	Right-hand Entry. Stores the accumulator segment pattern in the display in the right-most character position. Shifts all other characters to the left one place.
PRINT	Print a string of arbitrary characters onto the display. Useful for pro- mpting messages. warnings. etc. Uses a table of segment patterns in ROM, so that messages will not be restricted to numbers. letters, etc.
FILL	Fill the display with the character pattern in the accumulator. Useful for writing dashes, segment test patterns, etc., into all character positions.
ECHO	Wait for a key to be pressed by the operator and write that key onto the display. Used for providing feedback to the operator when enter- ing numeric data, etc.
RDPADD	Adds or deletes a decimal point to the character at the right-hand side of the display, for entering floating point numbers.
HOLD	Called when a key is known to be down. Does not return until all keys have been released. Used for organ-type keyboards, or when some action should not be initiated until the key invoking that action has been released.
DELAY	Provides a crude real-time delay corresponding to the value of the ac- cumulator when called. Can be used to cause display characters to blink, to momentarily flash information. to enable a buzzer, etc. Could also be used by the program when delays are needed, such as to slow down the computer reaction rate while playing a game against the human operator.
	Figure 6. Utility Subroutine Definitions

Figure 8 Prototype System Schematic

ISIS-II MCS-48/UPI-41 MACRU ASSEMBLER, V2.0 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX.

LOC OBJ SEQ SOURCE STRIEMENT

1 \$MACROFILE XREF 2 \$TITLE('AP40: INTEL MCS-48 KEYBORRD/DISPLAY APPLICATION NOTE APPENDIX') ζ; 4 : The Following Software package provides a seven segment display 5 ; INTERFACE FOR MICROCOMPUTERS IN THE INTEL MCS-48 FAMILY. 6 , THE CODE IS WRITTEN SO THAT VARIOUS HARDWARE 7 (CONFIGURATIONS CAN BE ACCOMODATED BY REDEFINING THE INITIAL WARTABLES. 8 / IN MOST SITURTIONS, THE KEYBORRD/DISPLAY INTERFACE WILL BE REQUIRED TO 9 JIMPLEMENT MORE SOPHISTICATED SINGLE-CHIP SYSTEMS (CALCULATORS, SCALES, CLOCKS, 10 (ETC.) WITH SECTIONS OF THE FOLLOWING CODE SELECTED AND MODIFIED AS NECESSARY 11 FOR EACH APPLICATION 12 ; 13 (A SINGLE SUBROUTINE (CALLED REFPSH) IS USED TO IMPLEMENT BOTH THE DISPLAY 14 : MULTIPLEXING AND KEYBOARD SCRIMING, USING THE SAME SIGNAL BOTH TO ENRICLE 15 JONE CHARACTER OF THE DISPLAY AND TO STROBE ONE ROW OF THE X-Y KEY MATRIX. 16 THE SUBROUTINE MUST BE CALLED SUFFICIENTLY OFTEN TO ENSURE THE DISPLAY 17 ; CHARACTERS DO NOT FLICKER- AT LEAST 50 COMPLETE DISPLAY SCANS PER SECOND. 18 : TO ACCOMODATE SHITCHES OF ARBITRARY CHEAPNESS. THE DEBOUNCE TIME CAN BE 19 ; SET TO BE ANY DESTRED NUMBER OF COMPLETE SCANS 29 ; Thus the debounce time is a function of both the scan rate and the value 21 ; OF CONSTRNT 'DEBNCE'. 22 ; 23 / IN THIS LISTING. THE INTERNAL TIMER IS USED TO GENERATE INTERRUPIS THAT 24 ; SERVE AS A TIME BASE FOR THE REFRESH SUBROUTINE. 25 / ALTERNATE TIME BASES MIGHT BE AN EXTERNAL OSCILLATOR (DRIVING THE INTERRUPT 26 (PIN OR POLLED BY A TEST OR INPUT PIN), A SOFTWARE DELAY LOOP IN THE BACKGROUND 27 (program, or periodic calls to the subroutine from throughout the user's program 28 ; AT APPROPRIATE PLACES. 29 ; IN THESE CASES, THE CODE STARTING AT LABEL TIINT (TIMER INTERRUPT) AND TIRET 30 (TTINT RETURN) COULD STILL BE USED TO SAVE AND RESTORE ACCUMULATOR CONTENTS. 31 ; THE INTERRUPT SERVICING ROUTINE SELECTS REGISTER BRNK 1 32 FOR THE NEEDED REGISTERS. 33 : 34 ; 35 ; WRITTEN BY JOHN WHARTON, INTEL SINGLE-CHIP COMPUTER APPLICATIONS 36 ; 37 \$EJECT

38 . IN THIS IMPLEMENTATION OF THE DISPLAY SCAN, IT IS ASSUMED THAT THERE WILL 39 ; BE RELATIVELY LITTLE 1/0 OTHER THAN FOR THE KEYBOARD/DISPLAY 40 ; 1F THIS IS THE CASE, THEN THERE IS NO NEED FOR FOR ANY ADDITIONAL EXTERNAL 41 (LOGIC (SUCH AS ONE-OF-FIGHT DECODERS OR SEVEN-SEGMENT ENCODERS). THOUGH 42 THERE WILL STILL BE A NEED FOR CURRENT OR VOLTAGE DRIVERS, ACCORDING TO 43 ; THE TYPE OF DISPLAY BEING USED. 44 ; 45 (IN THIS LISTING) THE PROCESSOR 1/0 PORTS ARE LOGICALLY DIVIDED AS FOLLOWS 46 ; 47 / FDIGIT-EIGHT BIT PORT USED TO ENABLE, ONE AT A TIME, THE INDIVIDUAL CHARACTERS OF AN EIGHT DIGIT SEVEN-SEGMENT DISPLAY. WHILE ALSO 48 : 49 . STROBING THE ROWS OF AN X-Y MATRIX KEYBOARD. 50 ; BIT7 ENABLES THE LEFTMOST CHARACTER AND THE BOTTOM ROW OF THE KBO. 51 🗧 BIT4 ENABLES THE TOP ROW OF THE 4X4 KED AND THE FOURTH CHARACTER, 52 : BITØ ENABLES THE RIGHTMOST CHARACTER 53 ; (A 4X8 KEYBOARD COULD BE STROBED BY ALSO USING BITZ-BITO 54 . AND EXTENDING OR ELIMINATING THE TABLE, "LEGNDS". > 55 7 THE ENABLING OF ONE BIT (ACTIVE HIGH OR LOW) IS ACCOMODATED BY 56 ACCESSING A LOOK-UP TABLE CHLLED CHRSTB. 57 👉 THIS TECHNIQUE TAKES ABOUT FOUR BYTES MORE ROM THAN A TECHNIQUE 58 ; OF ROTATING A 'ONE' THROUGH A FIELD OF 'ZERDES' IN THE ACC 59 ; AN APPROPRIATE NUMBER OF TIMES, BUT IT ALLOWS SOME ADDITIONAL 60 . FLEXABILITY: IF THE DRIVERS BEING USED HAVE A COMBINATORIAL INPUT 61 : (AS IN THE 7545X FAMILY OF HIGH-CURRENT, HIGH-VOLTAGE DRIVERS), 62 ; THE CHRSTB TABLE COULD PROVIDE ENCODED OUTPUTS. NINE DIGITS, FOR **6**3 ; EXAMPLE: COULD BE ENABLED WITH SIX BITS OF (BUFFERED) OUTPUT (001001, 001010, 001100, 010001, 010010, 010100, 100001, 100010, 100100) 64 ; 65 👉 IF 1/0 LINES NEED TO BE CONSERVED, OR IF MANY DIGITS 66 ; MUST BE DISPLAYED, AN EXTERNAL DECODER COULD BE ADDED TO THE SYSTEM. 67 👉 DURING CHARACTER TRANSITIONS & 'BLANK' CHARACTER IS 68 : EXPLICITLY WRITTEN TO THE DISPLAY. THUS 69 ÷ THERE WILL BE NO CHARACTER 'SHADOWING' CAUSED BY THE 79 : FACT THAT THE HARDWARE OR SOFTWARE DECODER KEEPS ONE 71 ; output, and thus one character, active at all times. 72 : 73 (PSGMNT-EIGHT BIT PORT TO ENABLE THE SEVEN SEGMENTS & D P OF A STRNDARD 74 ; DISPLAY 75 ÷ BIT7-BITØ CORRESPOND TO THE DP AND SEGMENTS & THROUGH A/ RESPECTIVELY. 76 ÷ IT IS POSSIBLE TO ACCOMODATE 77 ; DRIVERS WHICH ARE EITHER LOGICALLY INVERTING OR NON-INVERTING BY 78 ; SETTING VARIABLE 'SEGPOL' (SEGMENT POLARITY). 79 ; NOTE THAT BY HAVING ARBITRARY CONTROL OVER EACH SEGMENT, NON-NUMERIC 80. CHARACTERS CAN BE REPRESENTED ON A SEVEN SEGMENT DISPLAY. 81 AS SHOWN IN EXAMPLE SUBROUTINE (TEST21) 82 ; 83 \$EJECT

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC OBJ SEQ SOURCE STATEMENT 84 / PINPUT-FOUR HIGH-ORDER BITS USED AS INPUTS FROM THE KEYBOARD RETURN LINES ASSUMES THAT A KEY DOWN IN THE CURRENTLY ENABLED ROW WOULD RETURN. 85 🕫 86 : A LOW LEVEL. 87 ; IN THIS CASE, BIT7 RETURNS THE LEFTMOST COLUMN, BIT4 THE RIGHTMOST. S8 : THE HIGH-ORDER BITS ARE USED SO THAT IF AN OFF-CHIP DECODER 15 USED 89 ; TO ENABLE UP TO 16 CHARACTERS, FOR EXAMPLE, IT COULD BE DRIVEN BY 999 ; THE LOW ORDER BITS OF THE SAME PORT. **91** ; NOTE ALSO THAT IF A SIXTEEN KEY MATRIX WERE ELECTRICALLY ORGANIZED 92; IN A 2X8 ARRAY, ONLY TWO RETURN LINES WOULD BE NEEDED. 93 ; (IN THIS CASE, PERHAPS TO AND TI COULD BE USED FOR INPUT BITS.) 94 ; 95 ; Pull-up resistors on the return lines might be in order if there is any 96 (POSSIBILITY OF A HIGH-IMPEDENCE CONDUCTIVE PATH THROUGH THE SWITCH WHEN 97 / IT IS SUPPOSED TO BE 'OPEN'. 98 / (THIS PHENOMENON HAS ACTUALLY BEEN OBSERVED.) 99 j 100 , THE DRIVERS USED IN THE PROTOTYPE WERE ALL NON-INVERTING IN THAT 101 ; A HIGH LEVEL ON AN OUTPUT LINE IS USED TO TURN A CHARACTER OR SEGMENT ON. 102 ; THERE ARE A TOTAL OF SEVEN 1/0 LINES LEFT OVER. 103 / 104 ; THE ALGORITHM FOR DRIVING THE DISPLAY USES A BLOCK OF INTERNAL RAM 105 ; AS DISPLAY REGISTERS, WITH ONE BYTE CORRESPONDING TO EACH CHARACTER OF THE THE EIGHT BITS OF EACH BYTE CORRESPOND TO THE SEVEN SEGMENTS & DP 106 ; DISPLAY. 107 ; of each character. If an external encoder is used (such as a four-bit to 108 ; SEVEN-SEGMENT ENCODER OR A ROM FOR TRANSLATING ASCII TO 109 (SIXTEEN-SEGMENT "STARBURST" DISPLAY PATTERNS), THE TABLE ENTRIES WOULD HOLD 110 ; THE CHARACTER CODES. (IN THE FORMER CASE, AN UNUSED BIT COULD BE USED TO 111 ; ENRELE THE D. P.) 112 ; THUS, WRITING CHARACTERS TO THE DISPLAY FROM THE BACKGROUND PROGRAM 113 / REALLY ENTAILS WRITING THE APPROPRIATE SEGMENT 114 ; PATTERNS TO A DISPLAY REGISTER- THE ACTUAL OUTPUTTING IS AUTOMATIC. 115 ; THE LEFTMOST CHARACTER CORRESPONDS TO THE LAST BYTE OF THE DISPLAY 116 ; REGISTERS, AND IS ACCESSED BY NEXTPL=8 (SEE SOURCE); THE RIGHTMOST 117 ; CHARACTER IS THE FIRST DISPLAY BYTE, WHEN NEXTPL=1. 118 JUTILITY SUBROUTINES ARE INCLUDED HERE TO TRANSLATE FOUR BIT NUMBERS TO HEX 119 ; DIGIT PATTERNS, AND WRITE THEM INTO THE DISPLAY REGISTERS SEQUENTIALLY 120 ; (EITHER FILLING FROM THE LEFT- H.P. CALCULATOR STYLE OR FROM THE 121 (RIGHT- T. I. STYLE) SUBROUTINES WOISP AND RENTRY, RESPECTIVELY). 122 ; 123 ; THE KEYBOARD SCANNING ALGORITHM SHOWN HERE REQUIRES A KEY BE DOWN FOR 124 ; SOME NUMBER OF COMPLETE DISPLAY SCANS TO BE ACKNOWLEGED. SINCE IT IS 125 ; INTENDED FOR 'ONE-FINGER' OPERATION, TWO-KEY ROLLOVER/N-KEY LOCKOUT HAS 126 ; BEEN IMPLEMENTED. HOWEVER, MODIFICATIONS WOULD BE POSSIBLE TO ALLOW, FOR 127 ; EXAMPLE, ONE KEY IN THE MATRIX TO BE USED AS A SHIFT KEY OR CONTROL KEY 128 ; To be held down while another key in the matrix is pressed. (See note within 129 (THE BODY OF THE LISTING.) 130 ; 131 \$EJECT

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2 0 PAGE 4 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC OBJ SEQ SOURCE STATEMENT

132 ; (BE AWARE THAT NO MORE THAN TWO KEYS CAN EVER BE DOWN UNLESS DIDDES 133 FARE PLACED IN SERIES WITH ALL OF THE SWITCHES- CERTAINLY NOT THE CASE FOR EL 134 ; CHEAPO KEYBOARDS- BECAUSE SOME COMBINATIONS OF THREE KEYS DOWN WILL RESULT 135 ; IN A 'PHANTOM' FOURTH KEY BEING PERCEIVED. 136 ; THE PHANTOM KEY WOULD BE THE FOURTH "CORNER" WHEN THREE KEYS FORMING 137) A RECTANGULAR PATTERN (IN THE X-Y KEY MATRIX) ARE DOWN.) 138 ; IF DIODES ARE PLACED IN THE SCANNING ARRAY, CONSIDERATIONS MUST BE NADE 139 JABOUT HOW THE DIODE VOLTAGE DROP WILL AFFECT INPUT LOGIC LEVELS. 149 ; 141 WHEN A DEBOUNCED KEY IS DETECTED, THE NUMBER OF ITS POSITION IN THE KEY 142 (MATRIX (LEFT-TO-RIGHT) BOTTUM-TO-TOP) STARTING FROM 00) IS PLACED INTO 143 (RAM LOCATION (KBDBUF) AN INPUT SUBROUTINE THEN NEED ONLY READ THIS LOCATION 144 (Repeatedly to determine when a key has been pressed. When a key is detected. 145 (A SPECIAL CODE BYTE SHOULD BE WRITTEN BACK TO INTO "KBDBUF" TO PREVENT 146 ; REPEATED DETECTIONS OF THE SAME KEY. 147 (The Routine (KBDIN) demonstrates a typical input projocol, along with a method 148 (FOR TRANSLATING A KEY POSITION' TO ITS ASSOCIATED SIGNIFICANCE BY ACCESSING 149 ; TABLE 'LEGNDS' IN ROM. 150 👉 151 \$EJECT

ISIS-I	I MCS-48/UPI-	-41 MA	CRO ASS	EMBLER,	V2. 0	PAGE 5
HP40	INTEL MUS-48	KEYBU	HK07015	PLHY HPP	LICHIION	NUTE HIPPENDIX
ŁOC	08J	SEQ		source s	TATEMENT	
		152	; ******	****	*****	******
		153	÷			
		154	;	INITIAL	Equates	TO DEFINE SYSTEM CONFIGURATION
		155	;			
		156	; ******	******	*****	******
		157	;			
0010		158	PDIGIT	EQU	BUS	; USED TO ENABLE CHARACTERS AND STROBE ROWS OF KEYBOARD
NNNS		159	PSGMINT	EQU	F1	USED TO TURN ON SEGMENTS OF CURRENTLY ENHBLED DIGIT
0003		160	PINPUI	EWU	P2	PORT USED TO SCHN FOR KEY CLUSURES
		161				CONDENT OF THE PORT ALLOCHIUN USES THE HIGHER
		102				STORENS SUBCING HOLLIN OF THE BUS TO SHITCH ON THE
		103				ON 0042 DODT EVENNET IN THE CHETEM S
		104				IN 6243 FURI EARNNUER IN THE STOTED. /
0000		100	, DUCI UU	500	aau	
ANEE		167	NEGLOG	200	OCH	
0011		469		F.60	01111	
AAAA		169	CHREGI	Füll	POSLOG	Deetnes whether autput lines are active hi or low
0000		170	SEGPOL	FOIL	POSLOG	SEOR DRIVING CHARACTERS AND SEGMENT PATTERNS
00F9		171	INPMSK	EGU	REAH	DEFINES BITS USED AS INPUT
		172	;			
8098		173	CHARNO	200	8	NUMBER OF DIGITS IN DISPLAY
0004		174	NROWS	EQU	4	; rows of keys (less then or equal to charno)
0004		175	NCOLS	EQU	4	LESSER DIMENSION OF KEYBOARD MATRIX
		176	;			
FFF0		177	TICK	EQU	-10H	DETERMINES INTERRUPT INTERVAL
8884		178	DEBNCE	EQU	4	NUMBER OF SUCESSIVE SCANS BEFORE KEY CLOSURE ACCEPTED
0000		179	Blank	EQU	00H) code to blank display characters.
		180				GNOULD BE 20H IF ASCII DECODING ROM USED OR 0FH IF
		181				;7447-Type Seven-Segment Decoder External to 8748)
		182	3			
860F		183	ENCMSK	EQU	ØFH	SELECTS WHICH BITS ARE RELEVANT TO ENCACC SUBROUTINE
		184	·			
		185	\$EJECT			

All mnemonics copyrighted © Intel Corporation 1976.

rp40 :	INTEL	MCS-48	Keybo	DARD/DIS	SPLAY AF	PLICATION	Note A	PPENDIX		
LOC	OBJ		SEQ		Source	STATEMENT				
			186	; *****	in de la companya de	kakakakakakakakaka	okakakakaka	****	****	
			187	;						
			188	;	Brink (8 REGISTERS	5 USED			
			189	;						
			190	; POINTI	ers usei) FOR INDIR	ect RA	H ACCESSING:		
0000	3		191	PNTRØ	EQU	RØ				
000:	L		192	PNTR1	EQU	R1				
0007	7		193	NEXTPL	EQU	R7	; USED	to keep track of charac	CTER POSITION BEING	
			194				WRITH	EN INTO		
			195	;						
			196	;****	****	estatesta statesta de la constatesta d	*****	*****	****	
			197	;						
			198	;	BANK :	L REGISTER	ALLOCA	TION		
			199	j.						
			200	; PNTRØ	EQU	RØ	(ALREA	DY DEFINED)		
			201	; PNTR1	EQU	R1				
0002	2		202	ASAVE	EQU	R2	; HOLDS	ACCUMULATOR VALUE DUR	ING SERVICE ROUTINE	
000	4		203	ROTPAT	EQU	R4	; USED	to Hold Input Pattern B	Being Rotated Through Cy	
000	5		204	ROTCNT	EQU	R5	; COUNT:	5 NUMBER OF BITS ROTATE	ed through cy	
000	5		205	LASTKY	EQU	R6	; HOLDS	KEY POSITION OF LAST N	KEY DEPRESSION DETECTED	
866	7		206	CURDIG	EQU	R7	; HOLDS	POSITION OF NEXT CHARM	ACTER TO BE DISPLAYED	
			207	;						
			208	; *****	*****	*****	*****	*****	*****	
			209	;						
			210	;	data i	RAM ALLOCAT	FION			
			211	; 						
662			212	NREPTS	EQU	32	KEEPS	TRHCK OF SUCCESSIVE RI	EHDS OF SHITE KEYSTRUKE	
962	1		213	KEYLUC	EQU	کک	7 INCRE	MENTED HS SUCCESSIVE KI	EY LUCHIIONS SCHNNED	
6653	2		214	KBOBOH	EQU	34	CHIKKI	ES PUSITION OF DEBUUNCE	ED KEY FRUM REFRSM RUUTI	ME.
300	•		215		COL	7 5	JIN BHU	K TU BHUKGKUUNU PRUGRHI EDO LINEN DICELOU IN DE		
002.	5		216	RUELHY	EQU	22) NUN-2	ERU MHEN DISPLHY IN PRO	UUKEDD	
			217	,	THE I	oct reupone			COMENT DOTTEDNC	
			210	,			DZ REGI	SIERS HULD THE VISPLINT	SEGMENT PHILERNS	
007	,		217	, CECHOD	500		MON			
003	r		220	SEGUNAL	EQU	(BS-CHH	(NU)	A COULD DE ONUMEDI	KHY FUK VISPLAY FALLEKNS E IN INTERNOL DOMN	
			221					IN COULD BE HINYWHER	E IN INCERNAL KARD	
			222	ىر مەرىلەرلەرلەرلەر	وبالوطر والوطر بالوطر	ن مان مان مان مان مان مان مان مان مان ما	ملل مقد ماه ملد مان مان م	و های مله بوله مله مله مله مله مله مله مله مله مله م	بار	
			225		*****	******	******	*********	*******	
			224		NUTE	TUOT LOCTVL	, cuion			
			220			וחדו בחסוואז מדבוספוואסד דו	17 UCRU 1 TUR N	בעד בטון הדשבט הנפורניים בעד בטון הדשבט הבפורניים	DO MAU DE LICEN INI	
			220	,		TERRUTI IL	UTCODIE	EAL THE UTTER REUISIL	EKS INT DE USEV IN	
			220		1 11E U	LINNUC ALIC	INTERIO	FT DERVICING ROUFINE		
			220	e en strateste strateste	in de skrake skrake skra	فاحتدمك مقدمك مقدمك مكرمك مكرمك مقدمك		و الله الله الله الله الله الله الله الل	dendende die die die die die	
			227	, -	r ምምጥጥ ተዋ ሳ	rా ተዋጥዋዋ ሞ ዋ ቶ	rጥ ጥጥቶች	ኯ ዏኇኯኯኇኯ፟ቑኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯኯ	ኮሞጥ ሞዋዋዋዋ	
			230	SE IFOT						
			1دء	ALVEV!						

PAGE

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

6

AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX LOC OBJ SEQ SOURCE STATEMENT 232; 234 ; 0000 235 ORG 000H 0000 0460 236 JMP INIT 237; 238 ; 240 ; 8667 241 ORG 007H 242 ; 243 ; TLINT TIMER INTERRUPT SUBROUTINE. CALL MADE TO LOC 007H WHEN TIMER TIMES OUT. 244 ; TIMER CAN BE RE-INITIALLIZED AT THIS POINT IF DESIRED. 245 ; USED HERE TO CAUSE THE DISPLAY REFRESH AND KEY SCAN ROUTINES TO 246 ; 247 ; BE CALLED PERIODICALLY. 0007 D5 248 TIINT: SEL **RB1** 0098 AA 249 MOV ASAVE, H 0009 23F0 MOV B. #TICK 250 ; RELORD TIMER INTERVAL 8968 62 251 MOV ЪĤ 252 ; 254 ; THE USER'S OWN TIMER INTERRUPT ROUTINE (IF IT EXISTS) COULD 255 ; 256 🥫 BE PLACED AT THIS POINT 257 ; 259 ; 000C 1410 260 CALL REFRSH ; CAUSE DISPLAY TO BE UPDATED 261 ; THE COMPLETE INTERRUPT ROUTINE SHOULD BE COPIED HERE 262 ; 263; TO SAVE A FULL LEVEL OF SUBROUTINE NESTING. 264 ; IT WAS WRITTEN AS A SUBROUTINE HERE FOR THE SAKE OF CLARITY. 265 ; 267 ; 268 / TIRET TIMER INTERRUPT RETURN CODE- RESTORES ACC VALUE **000E FA** 269 TIRET: MOV **A, ASAVE** 000F 93 270 RETR 271 ; 272 \$EJECT

PRGE

7

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC OBJ	SEQ	Source stat	ENENT						
	077								
	273 ; *****	*************	INTERNET OF AN AND THE CONTRACT FOR A CONTRACT OF AND						
	2(4)/KEFK3 275 -	EGCU COLLINE	TO NULTIFLE?	N DEVENTOEURENT VIDELNID. SVI AUGDGATED IN DE NICOLGUEN					
	275 :	ACCORDING	TO THE CONTEN	ITC OF THE CERMAN DERICTED ADDAU					
	277 ;	PEERSH SHO	HID BE CALLE	AT LEAST EVERY MSEC OR SO					
	278 ; ****	*****	*****	***************************************					
	279;								
0010 2300	280 REFRSH	i: Mov Av	#Blank Xor Se	GPOL					
0012 39	281	OUTL PS	gmnt, a	;WRITE BLANK PATTERN TO SEG DRIVERS					
0013 2357	282 REFR1:	MOV A.	#CHRSTB	JLOOK UP DIGIT ENABLE PATTERN					
0015 6F	283	ADD A.	CURDIG	ADD CURDIG DISPLACEMENT					
0016 A3	284	Movp A,	ea	ENABLE ONE BIT OF ACCUMULATOR					
0017 02	285	OUTL PD	IGIT, A	; ENERGIZE CHARACTER					
	286 ;								
	287			WRITE NEXT SEGMENT PHITERN					
0018 2337	288	MUY H,	#SEGMMP	CONDICATED A STATE CONTRACT OF A STATE OF A					
0010 00	289	HUU H. MOU DN	LUKUINI TDI C	HUD CURDIG DISPLHUMENT					
0010 H3	2.70	- 11UY FN MOU D		I NON ANY UT COMMENT PATTERN					
0010 F1	271		CMNT 2						
0010 35	297 :	0012 13	Ginter						
	294 ; ****	****	*****	****					
	295	THE NEXT C	Haracter is i	NOW BEING DISPLAYED.					
	296 ;	The Keyboa	RD SCAN ROUT	INE IS INTEGRATED INTO THE DISPLAY SCAN.					
	297 (WITH THE C	Urrent row ei	Hergized, Check if there are any inputs.					
	298 ;****	****	****	*******					
	299)								
001E B821	300 SCAN:	MOV PN	TRØ, #KEYLOC	SET POINTER FOR SEVERAL KEYLOC REFERENCE	æs.				
0020 0A	301	IN A,	PINPUT	; LOAD ANY SWITCH CLOSURES					
	302;								
	303 ; ####!		*****		****				
	304 ;## 205 : ##	THIS BLUCK	UF CUDE IS I	NUT NEEDED BY THE KEYBUHRD SCHN LOGIC.	***				
	500 j## 20/ i##	HUWEVER, I	15 INCLUSION	WOULD SPEED (HINGS OF H BIT BY	***				
	_3070 /## 7077 -##	TT USC OMT	VER RUMS IN P TTEN WEDE TO	CANCEDUE DOM COOCE DUT MICHT DE	***				
	307)## 200 - ##	DECTORED 1		VENDERVE KUN DENLE, BUI NIUNI DE VENDABRE (ECDECTAILU TURCE UITU EIRU)	***				
	200 / ##	KESTORED I	ר יכוגז נחוגטוב חנון פוסוב דה פו	USEN LITH THIS OF CONTINUE	777 444				
	300 / ## 710 : #####								
	311 : ##	CPL A		ANY CLOSHRES DETECTED ARE NOW ONE RITS	***				
	312 ; ##	ANI A	#TNPMSK		***				
	313 ; ##	JNZ SC	AN1 ;-IF A	KEY IN THE CURRENTLY ENABLED ROW IS DOWN	***				
	314 ; ##;	NO KEY IS	NOW DOWN SO 1	THE KEYLOC COUNT MAY BE UPDATED DIRECTLY	***				
	315 ; ##	MOY A,	epntrø		###				
	316 🔅 ##	ADD A,	INCOLS		###				
	317) ##	MOV BP	NTRO, A		***				
	318 ; ##	JMP SC	AN6		***				
	319 ; #####	*****	*****		***				
	320 ; ##	IF THIS CO	de is used, s	SUBSTITUTE THE 'JC SCAN5' FOUR LINES	***				
	321 ; ##	HENCE WITH	'JNC SCAN5	TO ACCOMODATE THE INVERTED POLARITY	***				
	322 ; #####	**** ********		,*************************************	****				
	323 se ject								

8

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE 9 AP40: INTEL MCS-48 KEYBORRD/DISPLAY APPLICATION NOTE APPENDIX

LOC	OBJ	SEQ	Source 9	TATEMENT	
		324 ;*****	******	****	******
		325 ;	ROTATE	BITS THROUGH THE	CY WHILE INCREMENTING KEYLOC.
		326 ; *****	*****	***	********
		32 7 (
69 21	8D04	328 SCAN1:	NOV	RUTCNT, #NCOLS	; set up for knools> loops through "nxtloc"
0023	F7	329 NXTLOC	: RLC	A	
00 24	AC .	330	MOV	Rotpat, a	; SAVE SHIFTED BIT PATTERN
00 25	F63F	331	JC	scan5	; ONE BIT IN CY INDICATES KEY NOT DOWN
		332 (
		333 ; ****	*****	***	*****
		334 ;			
		335 ;	AT THIS	5 POINT IT HAS JU	ist been determined that the value
		336)	of Keyl	OC IS THE POSITI	ON OF A KEY WHICH IS NOW DOWN.
		337 ;	THE FOL	LOWING CODE DEBO	Junces The Key, etc.
		338 ;	IF MODI	FICATIONS TO THE	Keyboard Logic, I.E. The Inclusion
		339 ;	OF A SH	IFT, CONTROL, OF	R MODE KEY IN THE KEY MATRIX ITSELF)
		340 ;	ARE DES	SIRED, THEY SHOUL	D BE MADE AT THIS POINT, BEFORE
		341;	THE DEE	ROUNCE LOGIC BEGI	INS. FOR EXAMPLE, AT THIS POINT
		342 ;	KEYLOC	COULD BE COMPARE	D AGRINST THE POSITION OF THE MODE
		343;	Key, An	ND IF THEY MATCH	set some flag bit and jump to
		344 ;	Label ('SCRIN5'. OR BY	COMPARING KEYLOC AGAINST THE LAST
		345 ;	Key dee	Sounced, Immediat	TE TWO-KEY ROLLOVER COULD BE
		346 ;	IMPLEME	ENTED.	
		347 🧯			
		348 ; ****	****	***	na ka na mana ka na man
		349 ;			
00 27	A5	350	CLR	F1	; MARK THAT AT LEAST ONE KEY WAS DETECTED
00 28	B5	351	CPL	F1	IN THE CURRENT SCAN
		352;			
		353 ;****	****	******	***********
		354 ;	A KEYSI	roke was detecte	D FOR THE CURRENT COLUMN. ITS
		355 ;	POSITIO	ON IS IN REGISTER	R KEYLOC. SEE 1F SAME KEY SENSED LAST CYCLE.
		356 ;*****	******	*****	**********
		357 :			
0029	F0	358	MON	a, epntrø	; PNTR0 STILL HOLDS #KEYLOC
002A	2E	359	XCH	r, lastky	
992B	DE	360	XRL	r, lastky	
002C	B820	361	MOA	FNTRØ, #NREPTS	; PREPARE TO CHECK AND/OR MODIFY REPEAT COUNT
802E	0634	362	JZ	SCRIN3	
		363 ;			
		364 \$EJECT			

200	000	C	SUUKLE	SIHIERENI	
		365 ;****	******	*****	*****
		366 🗯	A DIFF	erent key was rei	AD ON THIS CYCLE THAN ON THE PREVIOUS CYCLE.
		367 ;	SET NR	epts to the debo	unce parameter for a new countdown.
		368 ; ****	*****	****	****
		369 ;			
8038	B004	370	MOV	OPNTRO, #DEBNCE	
6932	043F	371	JMP	SCAN5	
		372 ;			
		373 ;****	*****	*****	*****
		374 ;	SAME K	ev was detected	AS ON PREVIOUS CYCLE
		375 (Look A	t NREPTS: IF ALR	EADY ZERO, DO NOTHING.
		376 ;	ELSE D	ECREMENT NREPTS.	
		377 ()	IF THI	S RESULTS IN ZER	0, move lastky info KBDBUF.
		378 ; ****	*******	*****	******
		379 i			
0034	F0	380 SCAN3	: Mov	a, epntrø	
0035	C63F	381	JZ	SCANS	; IF ALREADY ZERO
0037	07	382	DEC	A	; INDICATE ONE MORE SUCCESIVE KEY DETECTION
0038	A10	383	MOV	opntro, a	
0039	963F	384	JNZ	scan5	; IF DECREMENT DUES NOT RESULT IN ZERO
003B	FE	385	MOV	A, Lastky	
00 3C	8822	386	MOV	PNTRØ, #KBDBUF	
003E	89	387	MOY	epntrø, a	; to mark new key closure
		388 ;			
003F	B821	389 SCAN5	: Moy	PNTRØ, #KEYLOC	
0041	10	390	INC	@PNTR0	
0042	FC	391	MOA	A, Rotpat	
0043	ED23	392	DJNZ	ROTENT, NXTLOC	
		393 /			
		394 /			
0045	EF57	395 SCAN6	: DJNZ	CURDIG, SCAN9	
		396 🧯			
		397 \$EJEC	T		

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE 11 AP40: INTEL MCS-48 KEYBORRD/DISPLAY APPLICATION NOTE APPENDIX

LOC	OBJ	SEQ	SOURCE ST	RTEMENT	
		398 ;			
		399 ; *****	*****	*****	******
		400;	THE FOLL	OWING CODE SEGP	ENT IS USED BY THE KEYBOARD SCANNING ROUTINE.
		401)	IT IS EX	Ecuted only aft	ier a refresh sequence of all
		402;	THE CHINR	ACTERS IN THE D	DISPLAY IS COMPLETED
		403 ;*****	n	*****	******
		484 ;			
0047	8F08	405	MOY	CURDIG, #CHARNO	
8949	B900	486	MOV	epntrø, #0	PNTR0 STILL CONTAINS #KEYLOC
994 B	764F	407	JF1	scan8	; JUMP IF ANY KEYS WERE DETECTED
904D	BEFF	408	MOV	LASTKY, #OFFH	; Change (Lastky) when no keys are down
004F	R5	409 SCAN8:	CLR	F1	
		410			
		411 ; *****	*****	*****	******
		412 ;	THE NEXT	CODE SEGMENT 1	IS THE INTERRUPT-DRIVEN PORTION OF THE 'DELAY'
		413 (UTILITY.	IT DECREMENTS	RAM LOCATION 'RDELAY' ONCE PER DISPLAY SCAN
		414 🧯	IF 'RDEL	AY' IS NOT ALRE	eady zero.
		415 ; *****	*****	****	*****
		416 <i>i</i>			
0050	B92 3	417	MOY	PNTR1, #RDELAY	
005 2	F1	418	MOY	r, epntri	
005 3	C657	419	JZ	SCAN9	
0055	0 7	420	DEC	A	
005 6	R1	421	MOV	epntr1, a	
		422 ÷			
6657	83	423 SCRN9	RET		
		424 🧯			
		425 ; *****	******	*****	******
		426 ;			
		427 ⇒ CHRST	B IS THE B	hase for the pat	tterns to enable one-of-charno characters.
0057		428 CHRSTB	EQU	(\$-1) AND ØFFH	
0058	01	429	DB	(000000018 XOR	CHRPOL)
0059	82	400	DE	(00000010B XOR	CHRPOL)
005A	04	431	0 6	(00000100E XOR	CHRPOL)
005E	68	432	DB	(380910098 XOR	CHRPOL)
005 C	10	433	0B	(00010000B XOR	CHRPOL)
6625	20	434	DB	(00100000B XOR	CHRPOL)
885E	40	435	DB	(01000000B XOR	CHRPOL)
005F	80	436	DB	(10000000B XOR	CHRPOL)
		4 37 ·			
		438 \$EJECT			

1515-1 AP40:	i MCS-48/UP1 Intel MCS-48	-41 MACKO ASS 8 Keyboard/D19	sembler, Splay app	v2.0 Lication note af	PRGE 12 PENDIX
LOC	0BJ	SE0	source s	TATEMENT	
		439 ; INIT	INITIAL	izes processor r	ÆGISTERS
0060	D5	440 INIT:	SEL	RB1	
6661	BF08	441	MOV	CURD1G, #CHARNO	
8863	B822	442	MOV	PNTRØ, #KBDBUF	
8865	BØFF	443	MOY	ofntro, #offh	
8867	B821	444	MOY	FNTR8, #KEYLOC	
6669	8999	445	MOV	8PNTR0, #8	
8068	23F0	44E	MOM	A, #INPMSK	
00 6D	3A	447	OUTL	PINPUT, A	SET BIDIRECTIONAL INPUT LINES
006E	C5	448	SEL	R80	
806F	149E	449	CALL	CLEAR	JUTILITY FOR SETTING INITIAL DISPLAY REGISTERS.
6071	85	450	CLR	F1	
0072	23F0	451	MOV	R, #TICK	; LOAD INTERRUPT RATE VALUE
0074	62	452	MOY	T, A	
8875	55	453	STRT	T	
0076	25	454	EN	TENTI	FINABLE TIMER INTERRUPTS
		455 🧯			
		456 🧯			
		457 ; *****	******	*****	*******
		458 🤅			
		459 ; ECHO	Check f	or any new keyst	ROKES DETECTED.
		468	TRANSLA	te each keystrok	æ into a segment pattern
		461 ;	and MR1	TE IT INTO THE P	PPROPRIATE DISPLAY REGISTER.
		462 🕖			
		463) *****	******	*****	*******
		464 🤃			
8 977	1483	465 ECHO:	CALL	KBDIN	(GE) NEXT KEYSTROKE
0079	B281	466	JB5	FKEY	; JUMP IF KEY IN RIGHTHAND COLUMN
		467 🧯	SINCE T	he acc is used b	BY ENCACC AND RENTRY, ITS CONTENTS MUST
		468 i	be proc	essed or saved e	EFORE ENCACC IS CALLED
007B	14BA	469 ,	Call	ENCRCC	FORM APPROPRIATE SEGMENT PATTERN
0 070	1408	470	CALL	RENTRY	HRITE PATTERN INTO DISPLAY REGISTERS
0 07F	0477	471	JMP	ECHO	LOOP INDEFINITELY
		472 ;			
0 081	2400	473 FKEY:	JNP	FUNCTN	JUMP TO OFF-PAGE CODE TO CALL DEMO ROUTINE
		474 🧯			
		475 \$EJECT			

ISIS-11 MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE 13 AP40: INTEL MCS-48 KEYBORRD/DISPLAY APPLICATION NOTE APPENDIX LOC OBJ SEQ SOURCE STATEMENT 477 . 479 . THE FOLLOWING SUBROUTINES IMPLEMENT THE UTILITIES COMMONLY USED FOR 479 : MOST KEYBOARD/DISPLAY APPLICATIONS. 489 : They could be used exactly as shown here or adapted for special cases. 481 ; 483 ; 484 ; KBDIN KEYBOARD INPUT SUBROUTINE. 485 👉 COULD BE USED TO INTERFACE THE USER'S BACKGROUND PROGRAM WITH 486 ; THE INTERPUPT DRIVEN KEYBOARD SCANNER. 487 . RETURNS ONLY AFTER A NEW KEYSTROKE HAS BEEN DETECTED AND DEBOUNCED. 488 , ENCODED VALUE OF KEY (RATHER THAN ITS POSITION IN SWITCH MATRIX) IS 489 ; RETURNED IN THE ACCUMULATOR. 0083 8922 490 KBDIN YOM PNTR1, #KBDBUF 0085 2380 491 MOV A, #80H ; K8DBUF WILL BE MARKED AS CLEAR 0087 21 492 H- OPNTR1 XCH ; LORD BUFFER VALUE 0088 F283 493 **JB**7 KEDIN 008A 038E 494 HDD: ; ADD BASE OF KEY ENCODING TABLE A, #LEGNDS 668C A3 495 MOVP 8,00 **#OBTAIN BYTE REPRESENTING KEY SIGNIFICANCE** 006D 83 496 RET 497 : 498 ; 499 LEGNDS IS THE BASE FOR TABLE SHOWING KEY MATRIX SIGNIFICANCE FOR THE KEYBOARD USED IN THE PROTOTYPE. 500 : 501 ; KEY LAYOUT IS AS SHOWN TO THE RIGHT. 502 : 583 -NOTE THAT BITG-BIT4 MAY BE USED TO ENCODE KEY TYPE. IN THIS CASE: 594 ; BIT4 INDICATES REGULAR DECIMAL DIGITS, 505 ; BITS INDICATES RIGHT-COLUMN FUNCTION KEYS, 596 : BITG INDICATES PUNCTUATION MARKS (* AND *). 507 👉 608E 508 LEGNDS EQU (\$ AND ØFFH) **JUSE LOW ORDER BITS AS TABLE INDEX** 008E 4F 4FH 589 DВ 008F 10 510 9B 10H 0090 4E DВ 4EH 511 9091 28 512 DB. 28H ; PDIGIT4==> 2 3 B 1 8892 17 DB 17H 513 0093 18 514 DB. 18H ; PDIGITS==> 4 5 6 $\langle 2 \rangle$ 0094 19 515 DB 19H 8895 24 516 DB 24H ; PDIGIT6==> 7 8 9 (3)0096 14 517 DB 14H 0097 15 518 DB 15H PDIGIT7==> * R £ (4) 0098 16 519 DB 16H 8899 22 520 0B 22H t ۱ ۱ ŗ į 0098 11 521 ļ ÐÐ 11H 1 1 1 į 009B 12 522 DB 12H ٧ v ¥ ٧ j, **609C** 13 523 DB 13H PINPUT7 PINPUT6 PINPUT5 PINPUT4 į. 009D 21 524 21H DB 525 \$EJECT

LOC	OBJ	SEQ	Source statemen	T
		526 ; *****	****	***********
		527		
		528 / Clear	WRITES 'BLANK'	CHARACTERS INTO ALL DISPLAY REGISTERS.
		529	RETURNS WITH N	EXTPL SET TO LEFTMOST CHARACTER POSITION
		530 FILL	WRITES SEGMENT	PATTERN NOW IN ACC INTO ALL DISPLAY REGISTERS
009E	2300	531 CLEAR	MOV A, #BLA	NK XOR SEGPOL
00H0	6938	532 FILL	MOV PNTR1	#SEGMMP+1
UNH2	81-08	533	MOV NEXTPL	REALEND
0000	H1	534 ULR1	PUY UPNIK1	H STURE THE BLINK CUDE
NMH5	19	535	INC PNIR1	PUINT TO NEXT CHHRHCTER TO THE LEFT
NNH6	EFH4	536	DUNZ NEXTPL	
UNHS 0000	61-68	537	PIUV NEXTPL	, #CHINKNU
OOHH	ذ8	038 570 -	KE I	
		039 i 540 - Antoine	adaalaata kadaalaadaalaadaalaadaalaadaalaadaa	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		544 -	*****	₱ <i>₦₦₦₦₦₱₽₽₣₽₦₱</i> ₦₦₦₦₦₦₦₦₦₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
		JAT 1 240 - DDINI		COBU & CTRING OF BIT DATTEDNE EDON DON TO THE
		542 FRINI 547 -	NICOLOU DESICT	CUTT IS SIKING OF DIE FREIEKNO FRUN KUN EU ENC. ELC - CTDING CTADIC AT EAGATIAN DAINTEN TA DU DNTDA
		544	CONTINUES UNT	ERS. STRING STARTS AT LUCATION FUTNIED TO BE FAIRO.
		545 -	NOTE THAT THE	LAN ESCHTE COVE (OFFR/IS RENCHED. Puodorted Ctding Dif nit Mict de Largter an the Come
		546 :		UNRANCIER STRING FOI OUT HOST DE EOCHTED UN THE JAME -
		547 :		ADIC FITHER CHERRITINE /UNICE/ AD /DENTRY/
		549		CALLS EITHER SOURCOTTINE MUTST OK KENTRY
RAGER	FS	549 PPINT	MOV A. PNTP	A : : I NAD NEYT CHAPACTER ACATION
ARAC	87	550	MOVP 8.88	: I DAD RET PATTERN INDIPECT
ANNO	C684	551	JZ PRNT1	ESCAPE PATTERN
RAAF	1409	552	CALL HDISP	OUTPUT TO NEXT CHARACTER POSITION
••••		553 ; ##	(CALL RENTRY	INSTERD IF MESSAGE IS TO BE RIGHT JUSTIFIED)
00 81	18	554	INC PNTRR	INDEX POINTER
00B2	04AB	555	JMP PRINT	
0064	83	556 PRNT1	RET	; DONE
		557 ;		
		558 ; ****	****	*******
		559 ;		
		569 : JOHN	ARRAY HOLDS TH	e bit patterns for the letters (John) (see (test2))
		561 ;	(NOTE THAT 'OH	N' IS WRITTEN IN LOWER CASE LETTERS)
868 5		562 JOHN	EQU \$ AND	OFFH
00B5	1E	563	DE 999111	108 XOR SEGPOL
6686	50	564	DB 010111	00B XOR SEGPOL
00B7	74	565	DB 011101	998 XOR SEGPOL
00B8	54	566	DB 010101	00B XOR SEGPOL
00B9	60	567	DB 00	
	-	568		
		569 \$EJEC1		

All mnemonics copyrighted © Intel Corporation 1976.

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE 15 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC	0BJ	SEQ	SOURCE	STATEMENT
		570	; *********	*****
		571	;	
		572	; ENCACC ENCOD	es l'snibble of acc into hex bit pattern into acc
00BA	530F	573	ENCACC: FINL	A, #ENCHSK
008C	0300	574	ADU	a, #dgpats
ØØBE	A3	575	MOVP	R, 0A
008F	83	576	RET	
		577	DGPATS IS TH	e base for the table of segment patterns for the basic
		578	DIGITS. HER	E THE FULL HEX SET (0-F) IS INCLUDED.
		579	FOR MANY USE	r Applications, the character set may be Amended or Augmented
		580	TO INCLUDE A	DDITIONAL SPECIAL PURPOSE PATTERNS.
		581	; Format is	PGFEDCBA IN STANDARD SEVEN-SEGMENT ENCODING CONVENTION
		582	3	WHERE P REPRESENTS THE DECIMAL POINT
0000		583	Dopats Equ	\$ AND OFFH
0000	3F	584	DB	00111111B XOR SEGPOL
00C1	06 50	585	DB	000001106 XUR SEUPUL
0002	58	586	DB	91011011B XUR SEGPUL
0004	4F 77	387	00 00	BINDIIIIB XUR SEUPUL
0005	00	366	UB DD	011001100 AUK SEUFUL 044044040 VOD CEODOL
0000	00/ 20	J07 590		61101101D YOK SCOLOF
0000	AZ	594	00 NB	BRARRAIAR YOR CECEDI
AUC 8	75	592	00 DB	RIAIAAA YOR SEGERI
0000	67	597	DB	ATTANTA SECON
00CA	77	594	DB	811181118 XOR SEGPOL
00CB	70	595	DB	01111100B XOR SEGPOL
0000	39	596	DB	00111001E XOR SEGPOL
00CD	SE	597	DB	01011110B XOR SEGPOL
00CE	79	598	DB	01111901B XOR SEGPOL
89CF	71	599	DB	01110001B XOR SEGPOL
		688	;	
		601	; *********	~*************************************
		682	;	
		603	WDISP WRITE	IS BIT PATTERN NOW IN ACC INTO NEXT CHARACTER POSITION
		604	; OF TH	ie display (nextpl). Adjusts nextpl pointer value.
		605	RESUL	IS IN DISPLAY BEING FILLED LEFT TO RIGHT, THEN RESTARTING
NNDA	H9	686	WDISP HUV	PNIR1, H
0001	**	607	NUY	H, NEXTPL
0002	0557	608	HDU	
0004	29	689	XUH	H) FNIKI SCHIDA O
0000	FEDO	510	19UV	CENIKL R NEVTRI LINICO4
001/0	DCOO	611 642	DUNZ MOU	NEXTEL HULDEL NEXTEL #CHODNE
0000	87	612	LINICO4 DET	
000/1	05	614	i neista nei	
		615	SE JECT	
		010	464601	

1515-11 MCS-48/4	UPI-41 MACRO ASS -49 VEVENGER ATS	EMBLER, V2.0 PRGE 16
NEWD INTEL NUS	-40 KETBUMRU/VIJ	FERT REFEICHTION NOTE REFERENCE
LOC OBJ	SEQ	Source statement
	616 ; *****	***************
	617 ÷	
	618 / RENTRY	SUBRUUTINE TO ENTER HOU CONTENTS INTO THE RIGHTHOST DIGIT
0000 5020	513 - COR DENTRU-	HNV SHIFT EVERYTHING ELSE UNE FLHCE TO THE LEFT
0000 0000 0000 0000	620 KENIKY:	
9900 0000 9905 24	021 200 DENTRA	NUY NEATELY BUNKNU VCU O GOUTDA
0007 21 0050 40	622 RENIRI. 207	AURI DE VERTIEL INCI DATEA
00E0 13 00E1 EENE	625 674	
ARE? REAR	625	MOY NEXTED LEVEL
00E5 87	626	RET
5025 55	627	
	628 ; *****	***********
	629 (
	630 ; RDPADD	TOGGLE DECIMAL POINT IN LAST CHARACTER DISPLAY CHARACTER
	631 (DPADD	TOGGLES DECIMAL POINT IN THE CHARACTER POINTED TO BY THE ACC
	632 (
00E6 2301	633 RDPADD :	MOV A, #01H / SET INDEX TO RIGHTMOST POSITION
00E8 0337	634 DPADD	ADD A, #SEGMAP ; ACCESS DISPLAY REGISTER FOR DESIRED PLACE
00EA A9	635	MOV PNTR1, A
00EB F1	636	MOV A, PPNTR1
00EC 0380	637	XRL A, #80H
0022 H1	638	MUY (HYNIK1)H
00er 83	639 649	KE (
	040) 241 - 646444	······································
	642 :	·····································
	647.;HOLD	SUBROUTINE CRULED WHEN KEY IS KNOWN TO BE DOWN
	644	WILL NOT RETURN UNTIL KEY IS RELEASED
00F0 D5	645 HOLD:	SEL RB1
00F1 FE	646	MOV A/LASTKY / <lastky>=0FFH IFF NO KEYS DOWN</lastky>
00F2 C5	647	SEL RB0
00F3 37	648	CPL A
00F4 96F0	649	JNZ HOLD
00F6 83	650	RET
	651 (
	652 ; ******	***************************************
	653 ; (E4 : NEL OLL	CURRENTLY UNION UN FOR THE NUMBER OF ADMR. THE RICH OF COME FOUND
	604 / DELHY	SUBRUUTINE HHMUS OF FOR THE NUMBER OF COMPLETE DISPLAY SUMMS EQUAL.
00E7 8927	633) 656 MEI DU.	IV INCLUMIENTS OF THE POUGHOLTION WHEN UNLLED.
NAEG A4	657	NUY FRIELDY MOV GENTEA G
ANFA F1	658 DEL AV1 -	MOV A. GONTON
00FB 96FA	659	JNZ DELAY1
00FD 83	660	RET
	661 \$EJECT	

ISIS-II MCS-48/UFI-41 MACRO ASSEMBLER, V2.0 PAGE 17 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC	08J	SEQ	SOURCE ST	ATEMENT
0100		662 ORG	100H	
		663 :		
		664 ; ****	*****	***********
		665 ;		
		666 ; THE CI	DDE ON THI	is page is for demonstration purposes only-
		667 / 1 TRU	ely doubt	NHETHER ANY END USERS WOULD LIKE TO SEE A NAME
		668 ; POPP II	NG UP ON 1	THEIR CALCULATOR SCREENS.
		669 ; HOWEVI	er, the co	DE SHOWN HERE DOES INDICATE HOW THE UTILITY SUBROUTINES
		670 ; INCLU	ded here o	Could be accessed.
		671 ; THE RI	DUTINES TH	Hemselves are called when one of the four buttons
		672 : ON TH	e Right-HF	IND SIDE OF THE PROTOTYPE KEYBOARD IS PRESSED.
		673 ,		
		674 ; *****	*****	*******
		675 -		
		676 FUNCT	N ROUTINE	TO IMPLEMENT ONE OF FOUR DEMO UTILITIES, ACCORDING
		677 ;	TO WHICH	h of the four function keys was pressed
0100	1212	678 FUNCTN		FUNCT1
010 2	320E	679	JB1	FUNCT2
8104	520A	680	JB2	FUNCT3
		681 🔅		
0106	14E6	682 FUNCT4	CALL	RDPADD
0108	8477	683	JMP	ECHO
		684 ;		
010A	1 342E	685 FUNCT3	: Call	TEST3
0100	0477	686	jmp	ECHÙ
		687;		
010E	3424	688 FUNCT2	: CALL	1EST2
0110	0477	689	JHP	ECHU
		690 ;	0014	******
0112	3416	691 FUNCI1	: UHLL	IES/1
0114	04//	692	JP#P	EUNU
		693 (694		
		594 ; *****	****	*******************
		690 ((04 - 30674		
04 4 C	DEOC	076 (1E5/1	MOU	MEANT TO FILL DISPLAY REGISTERS WITH DIGITS DOWN TO '1'
0110	0000	290 (ED11.	NUA NUA	NEATED BUTTRING
0110	0000	670 290 TCT44 -	mut Minu	C NEVTO
0110		749	004 COU	הי אבא ורע. בארפרי
9110	4400	704	COLL	
0110	1400	702		
0117	COTU	702	MOU	
9127	27	704	DET	ITEA IT E/ WOTHTALINU
0123	20 4	705	AC I	
		706 4E 150T		
		100 PEJECI		

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 PAGE 18 AP40: INTEL MCS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC	OBJ	SEQ	SOURCE STATEMENT
		707 ;*****	**************************************
		708 ;	
		709 + TEST2	WRITES THE SEGMENT PATTERN FOR 'JOHN' ONTO THE DISPLAY/
		710 ;	WRITS FOR A WHILE, AND THEN CLEARS THE DISPLAY
0124	6885	711 TEST2:	MOV PNTRØ, #JOHN
0126	14AB	712	CALL PRINT
012 8	2364	713	MOV A, #100 ; SCAN DISPLAY FOR 100 CYCLES
012A	14F7	714	CALL DELAY
81 20	049E	715	JMP CLEAR
		716 (
		717 ; *****	·*************************************
		718 🧯	
		719 ; TEST3	SUBROUTINE TO FILL DISPLAY WITH DASHES
		720 ;	JUMPS INTO SUBROUTINE 'CLEAR'
		721 ;	as soon as the key is released.
012E	2340	722 TEST3	MOV A, #01000000B XOR SEGPOL ; PATTERN FOR '-'
0130	1480	723	CALL FILL
0132	14F0	724	CRILL HOLD
0134	049E	725	JMP CLEAR
		726 ;	
		727 ;*****	`*************************************
		728 ;	
		729 END	
USER S	YMBOLS		

BLANK 0000 CHARNO 0008 0004 CURDIG 0007 ASAVE 0002 CHRPOL 0000 CHRSTB 0057 CLEAR 009E CLR1 DEBNCE 0004 DELAY 00F7 DELAY1 00FA DGPATS 00C0 DPROD 00E8 ECHO 0077 ENCRCC 00BA ENCMSK 000F FKEY FUNCT2 010E FILL 0000 0081 FUNCT1 0112 FUNCT3 010A FUNCT4 0106 FUNCTN 0100 HOLD 00F0 INIT 0060 INPMSK 00F0 JOHN 8685 KBDBUF 0022 KBDIN 0083 KEYLOC 0021 LASTKY 0006 LEGNDS 008E NCOLS 0004 NEGLOG 00FF NEXTPL 0007 NREPTS 0020 NROWS 0004 NXTLOC 0023 PDIGIT 0010 PINPUT 0009 PNTR9 8890 PNTR1 0001 POSLOG 9098 PRINT 00AB PRNT1 0084 PSGMNT 0008 RDELAY 6023 RDPADD 00E6 REFR1 0013 REFRSH 0010 RENTR1 00DF RENTRY 800B ROTCNT 0005 ROTPRT 0004 SCAN 001E SCRN1 0021 SCAN3 0034 SCRN5 003F SCRN6 0045 SCRN8 004F SCRN9 0057 SEGHAP 0037 SEGPOL 0000 TEST1 0116 TEST2 0124 TEST3 012E TICK FFF0 TIINT 0007 TIRET 000E TST11 011A WDISP 0000 HD1SP1 00DR

ASSEMBLY COMPLETE, NO ERRORS

1515-11	Assemb	LER SYN	ibol. Cri	dss refe	RENCE	V2. 0			PAG	Æ 1						
ASAVE	282#	249	269													
BLANK	179#	280	531													
CHARNO	173#	220	405	441	533	537	612	621	625	697	698	703				
CHRPOL	169#	429	430	431	432	433	434	435	436							
CHRSTB	282	428#														
CLEAR	449	531#	715	725												
CLR1	534#	536														
CURDIG	296#	283	289	395	405	441										
DEBNCE	178#	370														
DELRY	656#	714														
DELRY1	658 #	659														
DGPRTS	574	583#														
DPADD	634#															
ECHO	465#	471	683	686	689	692										
ENCACC	469	573#	700													
ENCMSK	183#	573														
FILL	532#	723														
FKEY	466	473#														
FUNCT1	678	691#														
FUNCT2	679	688#														
FUNCT3	680	685#														
FUNCT4	682#															
FUNCTN	473	678#														
hold	645#	649	724													
INIT	236	440#														
INPMSK	171#	446														
JOHN	562#	711														
KBDBUF	214#	386	442	490												
KBDIN	465	490#	493													
KEYLOC	213#	366	389	444												
LHSTKY	265	359	360	382	408	646										
LEGNUS	494	508#														
NUULS	1/3#	328														
NEULUG	10/#	577	576	577	607	744	640	C 24	C 24	()F	<i>(</i> 07	600	707			
NDEDTC	173#	233	336	221	607	611	612	621	024	620	67/	677	103			
NOCLIC	4748	701														
NVTLOC	1148	702														
Phicit	1504	372														
PINPIN	168#	205	447													
PNTPA	191#	200	758	761	779	799	797	796	797	799	790	496	442	447	444	445
1 MINO	549	554	698	792	711	500	303	300	301	202	350	100	176	112		110
PNTP1	192#	299	291	417	418	421	499	492	572	574	575	686	689	619	620	622
THINE	627	635	636	678	656	657	658	176	UJE	004	030		005	010	ULU	
POSLOG	166#	169	179		000		000									
PRINT	5498	555	712													
PRNT1	551	556#														
PSGMNT	159#	281	292													
RDELAY	216#	417	656													
RDPADD	6378	682														
REFR1	282#															
REFRSH	269	288#														
RENTR1	6224	624														
RENTRY	478	628														
	•••															

		~~~														
SCHN	300#															
SCRN1	328#															
SCAN3	362	380#														
SCAN5	331	371	381	384	389#											
SCAN6	395#															
SCAN8	407	409#														
SCHN9	395	419	423#													
segmap	220#	288	532	608	620	634										
SEGPOL	178#	280	531	563	564	565	566	584	585	586	587	588	589	590	591	592
	593	594	595	596	597	596	599	722								
TEST1	691	697#														
TEST2	688	711#														
TEST3	685	722#														
TICK	177#	250	451													
TIINT	248#															
TIRET	269#															
TST11	699#	782														
WD1SP	552	606#	701													
WDISP1	611	613#														

CROSS REFERENCE COMPLETE

APPLICATION NOTE

**AP-49** 

January 1979



Application Techniques	Contents				
for the	Introduction				
8049 Microcomputer	Full Duplex Serial Communications				
	Multiply Algorithms				
	Divide Algorithms				
	Binary & B C D Conversions				
	Conclusion 4-24				

## INTRODUCTION

The Intel® MCS-48 family of microcomputers marked the first time an eight bit computer with program storage, data storage, and I/O facilities was available on a single LSI chip. The performance of the initial processors in the family (the 8748 and the 8048) has been shown to meet or exceed the requirements of most current applications of microcomputers. A new member of the family, however, has been recently introduced which promises to allow the use of the single chip microcomputer in many application areas which have previously required a multichip solution. The Intel® 8049 virtually doubles processing power available to the systems designer. Program storage has been increased from 1K bytes to 2K bytes, data storage has been increased from 64 bytes to 128 bytes, and processing speed has been increased by over 80%. (The 2.5 microsecond instruction cycle of the first members of the family has been reduced to 1.36 microseconds.)

It is obvious that this increase in performance is going to result in far more ambitious programs being written for execution in a single chip microcomputer. This article will show how several program modules can be designed using the 8049. These modules were chosen to illustrate the capability of the 8049 in frequently encountered design situations. The modules included are full duplex serial I/O, binary multiply and divide routines, binary to BCD conversions, and BCD to binary conversion. It should be noted that since the 8049 is totally software compatible with the 8748 and 8048 these routines will also be useful directly on these processors. In addition the algorithms for these programs are expressed in a program design language format which should allow them to be easily understood and extended to suit individual applications with minimal problems.

# FULL DUPLEX SERIAL COMMUNICATIONS

Serial communications have always been an important facet in the application of microprocessors. Although this has been partially due to the necessity of connecting a terminal to the microprocessor based system for program generation and debug, the main impetus has been the simple fact that a large share of microprocessors find their way into end products (such as intelligent terminals) which themselves depend on serial communication. When it is necessary to add a serial link to a microprocessor such as the Intel[®] MCS-85 or 86 the solution is easy; the Intel[®] 8251A USART or 8273 SDLC chip can easily be added to provide the necessary protocol. When it is necessary to do the same thing to a single chip microcomputer, however, the situation becomes more difficult.

Some microcomputers, such as the Intel 8048 and 8049 have a complete bus interface built into them which allows the simple connection of a USART to the processor chip. Most other single chip microcomputers, although lacking such a bus, can be connected to a USART with various artificial hardware and software constructs. The difficulty with using these chips, however, is more economic than technical; these same peripheral chips which are such a bargain when coupled to a microprocessor such as the MCS-85 or 86, have a significant cost impact on a single chip microcomputer based system. The high speed of the 8049, however, makes it feasible to implement a serial link under software control with no hardware requirements beyond two of the I/O pins already resident on the microcomputer.

There are many techniques for implementing serial I/O under software control. The application note "Application Techniques for the MCS-48 Family" describes several alternatives suitable for half duplex operation. Full duplex operation is more difficult, however, since it requires the receive and transmit processes to operate concurrently. This difficulty is made more severe if it is necessary for some other process to also operate while serial communication is occurring. Scanning a keyboard and display, for example, is a common operation of single chip microcomputer based system which might have to occur concurrently with the serial receive/transmit process. The next section will describe an algorithm which implements full duplex serial communication to occur concurrently with other tasks. The design goal was to allow 2400 baud, full duplex, serial communication while utilizing no more than 50% of the available processing power of the high speed 8049 microcomputer.

The format used for most asynchronous communication is shown in Figure 1. It consists of eight data bits with a leading 'START' bit and one or more trailing 'STOP' bits. The START bit is used to establish synchronization between the receiver and transmitter. The STOP bits ensure that the receiver will be ready to synchronize itself when the next start bit occurs. Two stop bits are normally used for 110 baud communication and one stop bit for higher rates.



The algorithm used for reception of the serial data is shown in Figure 2. It uses the on board timer of the 8049 to establish a sampling period of four times the desired baud rates. For 2400 baud operation a crystal frequency of 9.216 MHz was chosen after the following calculation:

f = 480N(2400)(4)

- where 480 is the factor by which the crystal frequency is divided within the processor to get the basic interrupt rate
  - 2400 is the desired baud rate
    - 4 is the required number of samples per bit time
    - N is the value loaded into the MCS-48 timer when it overflows
The value N was chosen to be two (resulting in f = 9.216 MHz) so that the operating frequency of the 8049 could be as high as possible without exceeding the maximum frequency specification of the 8049 (11 MHz).

```
;
START OF RECEIVE ROUTINE
1 IF RECEIVE FLAG=0 THEN
;2
      IF SERIAL INPUT=SPACE THEN
;3
         RECEIVE FLAG:=1
;3
         BYTE FINISHED FLAG:=0
;2
      ENDIF
;1 ELSE
           SINCE RECEIVE FLAG=1 THEN
      IF SYNC FLAG=0 THEN
;2
;3
         IF SERIAL INPUT=SPACE THEN
;4
            SYNC FLAG:=1
;4
            DRTA:=99H
;4
            SHIPLE CNTR =4
;3
         ELSE
                 SINCE SERIAL INPUT=HARK THEN
;4
            RECEIVE FLAG:=0
;3
         ENDIF
      E G
;2
              SINCE SYNC FLAG=1 THEN
;3
         SAMPLE COUNTER:=SAMPLE COUNTER-1
;3
         IF SAMPLE COUNTER=0 THEN
;4
            SAMPLE COUNTER:=4
:4
            IF BYTE FINISHED FLAG=0 THEN
;5
               CARRY:=SERIAL INPUT
;5
               SHIFT DATA RIGHT WITH CARRY
;5
               IF CRERY=1 THEN
;6
                   OKDATA:=DATA
;6
                   IF DATA READY FLAG=0 THEN
;7
                      BYTE FINISHED FLAG=1
;6
                   ELSE
;7
                      BYTE FINISHED FLAG:=1
:7
                      OVERRUN FLAG:=1
;6
                   ENDIE
;5
               ENDIF
;4
            ELSE
                    SINCE BYTE FINISHED FLAG=1 THEN
;5
               IF SERIAL INPUT=NARK THEN
;6
                   DATA READY FLAG:=1
;5
               FI GF
                       SINCE SERIAL INPUT=SPACE THEN
;6
                   ERROR FLAG:=1
;5
               ENDIF
;5
               RECEIVE FLAG:=0
;5
               SYNC FLAG:=0
:4
            ENDIF
;3
         ENDIF
      ENDIF
:2
;1 ENDIF
                     Figure 2
```

The timer interrupt service routine always loads the timer with a constant value. In effect the timer is used to generate an independent time base of four times the required baud rate. This time base is free running and is never modified by either the receive or transmit programs, thus allowing both of them to use the same timer. Routines which do other time dependent tasks (such as scanning keyboards) can also be called periodically at some fixed multiple of this basic time unit.

The algorithm shown in Figure 2 uses this basic clock plus a handful of flags to process the serial input data. Once the meaning of these flags are understood the operation of the algorithm should be clear. The Receive Flag is set whenever the program is in the process of receiving a character. The Synch Flag is set when the center of the start bit has been checked and found to be a SPACE (if a MARK is detected at this point the receiver process has been triggered by a noise pulse so the program clears the Receive Flag and returns to the idle state). When the program detects synchronization it loads the variable DATA with 80H and starts sampling the serial line every four counts. As the data is received it is right shifted into variable DATA; after eight bits have been received the initial one set into DATA will result in a carry out and the program knows that it has received all eight bits. At this point it will transfer all eight bits to the variable OKDATA and set the Byte Finished Flag so that on the next sample it will test for a valid stop bit instead of shifting in data. If this test is successful the Data Ready Flag will be set to indicate that the data is available to the main process. If the test is unsuccessful the Error Flag will be set.

The transmit algorithm is shown in Figure 3. It is executed immediately following the receive process. It is a simple program which divides the free running clock down and transmits a bit every fourth clock. The variable **TICK COUNTER** is used to do the division. The **Transmitting Flag** indicates when a character transmission is in progress and is also used to determine when the START bit should be sent. The **TICK COUNTER** is used to determine when to send the next bit (TICK COUNTER MOD-ULO 4 = 0) and also when the STOP bits should be sent (TICK COUNTER = 9 4). After the transmit routine completes any other timer based routines, such as a keyboard/display scanner or a real time clock, can be executed.

```
START OF TRANSMIT ROUTINE
;1
>1 TICK COUNTER:=TICK COUNTER+1
1 IF TICK COUNTER NOD 4-0 THEN
      IF TRANSMITTING FLAG=1 THEN
;2
         IF TICK COUNTER-00 1010 00 BINARY THEN
;3
;4
            TRANSMITTING FLAG:=0
;3
         ELSE
                 IF TICK COUNTER=00 1001 00 BINNRY THEN
;4
            send end hark
;4
            TRANSMITTING FLAG:=0
;3
         EL SE
                 SINCE TICK COUNTEROTHE REOVE COUNT THEN
;4
            SEND NEXT BIT
;3
         ENDIF
;2
      FI SF
              SINCE TRANSMITTING FLAG=0 THEN
;3
         IF TRANSMIT REQUEST FLAG=1 THEN
;4
            XHTBYT : = NXTBYT
            TRANSHIT REQUEST FLAG:=0
;4
:4
            TRANSMITTING FLAG:=1
;4
            TICK COUNTER:=0
;4
            SEND SYNC BIT (SPRCE)
         ENDIF
;3
      ENDIF
;2
;1 ENDIF
                        Figure 3
```

Figure 4 shows the complete receive and transmit programs as they are implemented in the instruction set of the 8049. Also included in Fig. 4 is a short routine which was used to test the algorithm.

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0 LOC 06J SEQ SOURCE STATEMENT 2;* THIS PROGRAM TESTS THE FULL DUPLEX CONMUNICATION SUFTWARE 3;* 4;* 6; 7 \$INCLUDE(:F1:URTEST. PDL) Ξ 8; 9; = START OF TEST ROUTINE = 10; = 11 ; = 12 ; Ξ 13 ; 14 ; = = 15 ; Ξ 16 ;1 ERROR COUNT := 0 = 17 ;1 REPEAT 18 ; 2 = PATTERN:=0 = 19 ; 2 INITIALIZE TIMER Ξ 28 ; 2 CLEAR FLAGBYTE 21 ; 2 Flag1=Mark -= 22 ; 2 REPERT 23 / 3 = IF TRANSMIT REQUEST FLAG=0 THEN 24:4 = NXTBYTE := PRTTERN -25 ; 4 TRANSMIT REQUEST FLAG=1 = 26:3 ENDIF = 27 3 IF DATA READY FLAG=1 THEN = 28:4 PATTERN : = OKDATA 29.74 DATA READY FLAG =0 -= 30 ; 3 ENDIF 31 ; 2 UNTIL ERROR FLAG OR OVERRUN FLAG = = 32:2 INCREMENT ERROR COUNT 33 #1 UNTIL FOREVER = 34 ; EOF 35 \$EJECT 0000 36 ORG Ø 37 ;1 SELECT REGISTER BANK 0 9999 C5 38 RB0 SEL 39 /1 GOTO TEST 0001 2400 40 JMP TEST 41 \$ INCLUDE (:F1:URRT) 42; = = 43; = 44 ; ASYNCHRONOUS RECEIVE/TRANSMIT ROUTINE 45; Ξ = 46 j THIS ROUTINE RECEIVES SERIAL CODE USING PIN TO AS RXD 47 ; = AND CONCURRENTLY TRANSMITS USING PIN P27 NOTE: = 48; = 49 ; THIS ROUTINE USES FLAG 1 TO BUFFER THE TRANSMITTED

#### Figure 4

		00		LINE. IF	no crim	N	NES THE JITTER THAT
	=	51	) 1 WOULD	) be crus	SED BY VA	RI	ATIONS IN THE RECEIVE
	=	52	:1 TIMIN	AG, NO 01	Ther proc	irf	M MAY USE FLAG 1 WHILE
	=	53	1 THE 1	TIMER INT	FRRIPT	١S	ENGELED
	_	54					
·	-	55					
	-	50					
	-	36	,				
	2	27	÷				
	Ξ	58	÷				
	=	59	;	REGISTER	r Assign	9EF	(IS-BHNK1
	=	60	i				
	=	61	;				
	=	62	;				
6667	Ξ	63	atemp	equ	R7	i	USED TO SAVE ACCUMULATOR CONTENTS DURING INTERRUPT
8886	=	64	FLGBYT	EQU	R6	į.	CONTAINS VARIOUS FLAGS USED 10 CONTROL THE RECEIVE
	Ξ	65				;	AND TRANSMIT PROCESS. SEE CONSTANT DEFINITIONS FOR
	Ξ	66				;	THE MEANING OF EACH BIT
8885	Ξ	67	SAMCTR	FOU	85	;	SAMPLE COUNTER FOR THE RECIEVE PROCESS
9994	=	68	TCKCTR	FOIL	R4		SAMPLE COUNTER FOR THE TRANSMIT PROCESS
9999	=	69	REGO	FOIL	RA	;	USED AS POINTER REGISTER
0000	-	70	:	200	1.0	ŕ	
	-	74		DOM DCC	TRAMENTS		
	_	70	,	NIN 199			
	-	72	,		****		
	=	15			000		OF OF THE DETUDIE HOLES DOTO IN THIS BUILD
8628	2	/4	PRUKDHT	EGU	204	1	RELEIVE RETURNS VALUE DATA IN THIS DITE
8821	=	$\overline{2}$	PROPERTY	EMO	218	÷	RECEIVE HOLOMULMIES DHIM IN IMIS BYIE
0022	Ξ	76	MXMTBY	EQU	22H	i	CONTRINS BYTE BEING TRANSMITTED
0023	Ξ	77	MINXTBY	equ	23H	į	CONTRINS THE NEXT BYTE TO BE TRHNSMITTED
	=	78	\$EJECT				
	=	79	;				
	=	80	;				
	=	81	;	CONSTRN	TS		
	Ξ	82	;		==		
	Ξ	83	;				
	=	84	;	THE FOL	LOWING C	ON	stants are used to access the FLAG Bits contained
	=	85	;	IN REGI	STER FLG	ĒΫ	T
	=	- 86	:	1	51210 1 20		'
0001	=	87	POVELG	FOU	ดาม	:	SET WHEN START BIT IS FIRST DETECTED
0001	=	99	NOTI LO	200	0111		PESET MAEN PECETVE PROFESS IS COMPLETE
0000	-	99		FOU	929	,	SET LINEN STOPT BIT IS VEDICIED
0002	-	90	5110 65	200	0211	1	DECET LILLEN DECEIVE DONCECE IC COMPLETE
0004	-	20	OUTINE	500	040		DESET MUCH RECEIVE PROCESS IS CONTLETE
0004	-	91	BIFMEL	EWU	0411	1	REDEL MAEN SHEMI DIE IS FINSE VEREUREN GET HUEN THE FIGHT NOTE DITC HOUS OF DEEN DEGETVEN
0000	-	72	NONICI	r ca i	0011	1	CHOLEN DE DECET DU MOIN DOCCOM UNEN DOTO IS OCCOPED
00000	=	25	URDAL	EQU	96H	į	SHUULU BE RESET BY HITH FRUGRAM AIREN UNIN IS DUCFTED
	2	94		<b>C</b> 211		i	SET BY RELEIVE PROCESS WHEN STOP BIT(S) HAVE VERIFIED
0010	=	95	ERKELG	END	19H	i	SHOULD BE RESET BY FILIN PRUGRAPH WHEN SHAPLED
	5	96				į	SET BY RECEIVE PROCESS IF A FRAMING ERROR IS DETECTED
0020	=	97	TRROFL	equ	29H	į	TESTED BY MAIN PROGRAM TO DETERMINE IF READY 10
	Ξ	98				;	TRANSMIT A NEW BYTE-SET TO INDICATE THAT NXTBYT
	z	99				j,	Has been loaded
	=	100				į	RESET BY TRANSMIT PROCESS WHEN BYTE IS ACCEPTED
0040	=	101	TRNGFL	EQU	40H	i	set when transmission of a byte starts
	=	102				į,	RESET WHEN STOP BIT IS TRANSMITTED
<b>6</b> 980	=	103	OVRUN	EQU	80H	;	SET BY RECEIVE PROCESS WHEN OVERUN OCCURRS
	=	104	-			;	SHOULD BE RESET BY MAIN PROGRAM WHEN SAMPLED

LOC	0BJ	SEQ	urce statement	
		= 105 ;		
		= 106 ;	ENERAL CONSTANTS	
		= 107 ;		
		= 108 ;		TO OFFERING MORY
0080		= 109 MHKK	190 8094 (USED	TO GENERATED A FINKK
++/+		= 110 SPHCE	EQUINUE NUE SUN ; USED	TU GENERATE A SPACE
0000		= 111 SIPBIS	1900 19 ÷ LONII	KULS THE NUMBER OF STOP BITS
		= 112	; 61	DENERHIES UNE STOP BIT
		= 113	<i>i</i> 1	GENERATES TWO STOP BITS
		= 114 ;		
		= 115 %EJECT		
		= 116 ;		
		= 117 ;	STRKT OF RECEIVE/TRHNS	MIT INTERRUPT SERVICE RUUTINE
		= 118 ;	#383232H2H24282####2222#222	\$*******##### <b>\$</b> \$\$\$\$\$\$\$\$\$\$\$\$
		= 119 ;		
8661		= 120	uku beriath	
		= 121 = 400 - 4 ENTE	THEFTODIOT MODE	
0007	4600	= 122 31 EN/E	INTERKUPT HOUL	
00000	1001	= 123 (15K) = 404	JIF UNKI DETO	
0002	73 NS	- 124 - 425 HODT		
9690	νo	= 120 UNK1: = 400 -4 COUR	DEL KDI OCCIMUNITOR CONTENTE	
0000	or	= 125 /1 SHYE	NOU OTENDO	
0000	nr	- 121	11UY 11(CIFF)11 6 TIMED	
agar	2755	- 129 /1 KELU	NOU DETTMONT	
DODE	62 62	= 123	NOV 1.8	
0000	02	= 130		
		= 131 /	OUTPUT TYD RUFFER (F1)	TO TXD 120 LINE (P27)
		= 177 ;		
		= 174 ;		
800F	7615	= 135	JF1 OMARK	
8011	987F	= 136 OSPACE	ANL P2, #SPACE	
0013	0417	= 137	JMP RCV000	
0015	8880	= 138 OMARK:	orl p2, #MARK	
		= 139 ;		
		= 140 ;	START OF RECEIVE ROUTI	NE
		= 141 ;		:23
		= 142 ;		
		= 143 ;1 IF I	Ceive Flag=0 then	
0017	FE	= 144 RCV000	Mov A, Flgbyt	
6618	1224	= 145	JBO RCV010	
		= 146 ; 2	SERIAL INPUT=SPACE TH	EN
001h	3664	= 147	JTO XMIT	
		= 148 ; 3	RECEIVE FLAG:=1	
<b>601</b> C	FE	= 149	MOV A, FLGBYT	
<b>991</b> D	4301	= 150	ORL A, #RCVFLG	
		= 151 ; 3	BYTE FINISHED FLAG:=0	
991F	53F8	= 152	ANL A, #NOT BYFNFL	
	05	= 153 ; 2		
8621	HL	= 154	NUV FLGBYI, A	
6622	0464	= 155		4 718751
		= 136 /1 ELS	SINCE RECEIVE FLHG=	1 IncN
0004	2020	= 107 02	SYNU FLHG-U IHEN	
0024	3238	= 158 KUVU10		- 1.UEN
		- 107 / 5	in pokim⊑ iNPUI≕SPHUb	. INLN

Figure 4 (	continued)	
------------	------------	--

LOC OBJ	SEQ S	OURCE STATEMENT
<b>0026 36</b> 33	= 160	JTO RCV020
	= 161 ; 4	SYNC FLAG:=1
0028 4302	= 162	ORL A, #SYNFLG
AA2A AF	= 163	MOV FIGRYT, B
00211 112	= 164 · 4	
0000 0004	- 165	MOU DO 8MLOTO
0020 0021	- 165	
9020 0000	- 100	
0005 0004	= 167 34	SHIPLE UNIK:=4
002F 8004	= 168	MUY SHAULA, #4
UUSI U464	= 169	JMP XP11
	= 170 / 3	ELSE SINCE SERIAL INPUT=MARK THEN
	= 171 ; 4	KECEIVE FLAG:=0
0033 53FE	= 172 RCV020:	ANL A, INOT RCVFLG
	= 173 / 3	ENDIF
0035 AE	= 174	MOV FLGBYT, A
0036 0464	= 175	JMP XMIT
	= 176 ; 2 E	LSE SINCE SYNC FLAG=1 THEN
	= 177 ; 3	SAMPLE COUNTER = SAMPLE COUNTER-1
RARS ED64	= 178 PCV979	DINZ SAMCTR. XMIT
0030 2001	= 179 : 3	TE SEMPLE COUNTER=0 THEN
	- 199 - 4	
0070 0004	- 100 ) 4	
0050 0004	- 101	
0020 5050	- 102 /4	
0030 3239 0035 07	= 183	DES REARDE
003E 97	= 184 - 465 5	
0005 0440	= 185 / 5	UNKRY = SEKINL INPUT
003F 2642	= 186	
0041 H7	= 187	
0042 B821	= 188 KLV040:	
U044 FU	= 189	
0045 67	= 190 ; 5	SHIFT DHTH RIGHT WITH CHRRY
0045 67	= 191	RRC R
UU46 HU	= 192	MUY ERG. A
	= 193 / 5	IF CARRY=1 THEN
UU47 E664	= 194	JNC XMIT
	= 195 ;6	okdata:=data
0049 B820	= 196	Mov Rø, #Mokdat
0048 A0	= 197	Mov ero, a
	<b>= 198</b> ;6	IF data ready flag=0 then
004C FE	= 199	MOV R/FLGBYT
004D 7254	= 200	JB3 RCV045
	= 201 7	BYTE FINISHED FLRG=1
884F 4384	= 202	ORL RJ #BYFNFL
0051 AE	= 203	Mov Flgbyt, A
0052 0464	= 204	JMP XMIT
	= 205 ;6	ELSE
	= 286 ; 7	BYTE FINISHED FLAG:=1
	= 297 ; 7	OVERRUN FLAG =1
	= 208 RCV045	an a successive of the second state of the sec
	= 209	; MOY R; FLGBYT
<b>0054</b> 4384	= 210	ORL A. # (BYENE) OR OVRUN)
0056 AE	= 211	MOV FLGBYT, A
	= 212 ;6	ENDIF
	= 217 :5	FNDTE
<b>995</b> 7 <b>94</b> 64	= 214	JMP XMIT

LOC OBJ	SEQ S	OURCE STATEMENT
	= 215 ; 4	ELSE SINCE BYTE FINISHED FLAG=1 THEN
	= 216 ; 5	IF SERIAL INPUT=MARK THEN
0059 265F	= 217 RCV050:	JNTØ RCV960
	= 218 ÷6	data ready flag:=1
0058 4308	= 219	ORL A, #DRDYFL
005D 0461	= 220	JMP RCV070
	= 221 ; 5	ELSE SINCE SERIAL INPUT=SPACE THEN
	= 222 ;6	ERROR FLAG.=1
005F 4310	= 223 RCV060:	ORL A, #ERRFLG
	= 224 35	ENDIF
	= 225 35	RECEIVE FLAG:=0
	= 226 ; 5	SYNC FLAG:=0
0061 53FC	= 227 RCV070;	ANL A, #NOT(SYNFLG OR RCVFLG)
0063 AE	= 228	MOV FLGBYT, A
	= 229 ; 4	ENDIF
	= 230 ; 3	ENDIF
	_= 231 ÷2 E	NDIF
	= 232 ;1 ENDI	F
	= 233 \$EJECT	
	= 234 ;	
	= 235 ;	start of transmit routine
	= 236 ;	
	= 237 ;	
	= 238 /1	
	= 239	; TRANSMITTER OUTPUT BIT IS P2-7
	= 240 ;1 TICK	( Counter:=Tick counter+1
<b>006</b> 4 1C	= 241 XMIT:	INC TCKCTR
	= 242 /1 IF 1	11CK COUNTER MOD 4=0 THEN
0065 2303	= 243	MOV A, #03H
0067 SC	= 244	ANL A, TCKCTR
0068 9697	= 245	JNZ RETURN
	= 246 ÷2	(F TRANSMITTING FLAG=1 THEN
006A FE	= 247	MOV A, FLGBYT
<b>0068 37</b>	= 248	CPL A
006C D286	= 249	JB6 XMT040
	= 250	IF STPBTS EQ 1
	= 251 ; 3	IF TICK COUNTER=00 1010 00 BINARY THEN
	= 252	MOV RJ#28H ; CONDITIONAL ASSEMBLY
	= 253	XRL A, TCKCTR ;
	= 254	JNZ XMT010 ;
	= 255 ; 4	TRANSMITTING FLAG:=0
	= 256	MOV A, FLGBYT ;
	= 257	ANL A, #NOT TRNGFL ;
	= 258	MOV FLGBYT, A ;
	= 259	JMP RETURN ;
	= 260	
00/F 0704	= 261 / 3	ELSE IF TICK COUNTER=00 1061 00 BINNRY THEN
006E 2324	= 262 XM1010:	RUY H, #24H
0070 00	= 263 - 264	
0071 967B	= 264	JNZ XATUZU CENDERAD MODIA
00774 05	= 265 ÷ 4	SENU END PHIKK
0074 P5	= 266	ULK F1 ; SET FLHG1 TU MHKK
0074 BD	= 267	
	= 268	
	= 269 ;4	180050111100 FLM0.70

LOC	OBJ	SEQ	source s	TRTEMENT	
0075	FE	= 270	MOV	A, Flgbyt	; CONDITIONAL ASSEMBLY
0076	53BF	= 271	ANL	A, #NOT TRNGFL	;
0078	Æ	= 272	MOY	Flgbyt, A	j
0079	8497	= 273	JMP	RETURN	;
		= 274	ENDIF		
		= 275 ; 3	ELSE	SINCE TICK COUNTE	R() The Above Count Then
		= 276 ;4	SEP	ND NEXT BIT	
007B	8822	= 277 XMT020	: MOV	Ro, #MXMTBY	
007D	F0	= 278	MOV	a, erø	
007E	67	= 279	RRC	A	
007F	HØ	= 280	MOV	ere, h	
0030	H5	= 281	ULR	F1 ; FLHG 1 W	THE BE USED TO BUFFER TXD
0081	105	= 282	JNC	RETURN ; GUTURE	FURN PUINT IF IXD=SPHCE (0)
0003	80	- 283	UPL TMD	PI / ELDE UUIT	PLEMENT FLHG 1 TU H HHKK
0004	0721	= 285 : 7	ENDIE	KE TUKN	
		= 286 ; 2		SINCE TRANSMITTING F	AG=0 THEN
		= 287 ; 3	IF TR	NSMIT REQUEST FLAG=	1 THEN
0086	8297	= 288 XMT040	: JB5	RETURN	FLAG BYTE THERE
		= 289 ; 4	XM	TBYT : =NXTBYT	
0088	B823	= 290	MOV	RO, #MINXTBY	
008F	FØ	= 291	MOV	A, ero	
008B	8822	= 292	MOA	ro. #MXMTBA	
0880	1 AØ	= 293	MOV	ero, a	2
0000		= 294 ;4	HOL IK	HNSHIT REQUEST FLHG:	-9
0000	: FL : 5205	= 290	PRUY CAUL	A SUNT TEORE	
0001	3307	- 230 = 297 : 4	- TP:	ANSMITTING FLAG	
8091	4340	= 298	ORL	AL #TRNGEL	
8093	ĤE	= 299	MOV	FLGBYT, A	
		= 300 ; 4	TI	ck counter :=0	
0094	BC00	= 301	MOV	TCKCTR, #0	
		= 302 ;4	SE	ND SYNC BIT (SPACE)	
0096	5 A5	= 303	CLR	F1 > SET FLAG	i 1 to cause a space
		= 304 ; 3	ENDIF		
		= 300 j2 7042 - 4 ENE			
		= 300 / 1 ENU = 207 DETUDN	1F  -		
		= 308 ;1 RES	Tore acci	UMULATOR	
8897	FF	= 309	MOV	A, ATEMP	
0098	93	= 310	RETR		
		311 \$EJECT			
		312 🧯			
		<b>31</b> 3 ;	start (	of test routine	
		314 ;	220223	*===========	
~ ~ ~ ~		315 :		5 / DOI /	
0168		516 247 TIMOUT	UKG	0100H	
004C	•	240 MELCON	EQU	-2	
0010		219 MSAMOT	FOU	104	
0010		320 MTCKCT	EQU	101	
		321 ;			
6667	,	322 ERRCNT	EQU	R7	•
0006		323 PRTT	EQU	R6	
		324 🧯			

LUC	0BJ	SEQ	source s	TATEMENT
		325 ;		
		326;		
		327 ;1 ER	ROR COUNT:	=0
0100	BF00	328 TEST:	MOY	ERRCNT, #9
		329 ; 1 RE	Peat	
		330 TLOP:		
		331 ; 2	PATTERN:=	0
0102	BE00	332	MOV	PATT, #00
		333 ; 2	INITIALIZ	ETIMER
0104	23FE	334	MOV	A, #TIMONT
0196	62	335	MOV	T, A
<b>010</b> 7	55	336	STRT	T
0108	25	337	EN	TCNTI
		338 2	CLEAR FLA	GBYTE
0109	881E	339	MOV	R0, #MFLGBY
010B	8000	340	MOY	ero, #0
		341 2	FLAG1=MAR	Ϋ́Κ
<b>910</b> 0	A5	342	CLR	F1
010E	85	343	CPL	F1
		344 ; 2	REPEAT	
		345 TILOP	•	
		346 ; 3	IF TRA	NSMIT REQUEST FLAG=0 THEN
010F	881E	347	MOY	RØ, #MFLGBY
0111	FØ	348	NOV	A, 9R0
<b>9112</b>	B224	349	JB5	TREC
		350 (4	NXT	Byte : = Pattern
8114	8923	351	MOV	R1, #HNXTBY
<b>011</b> 6	FE	352	MOA	A, PATT
<b>011</b> 7	R1.	353	MOA	eri A
		354 ; 4	TRA	NSMIT REQUEST FLAG=1
0118	35	355	DIS	TCNTI ; LOCK OUT TIMER INTERRUPT
		356		; SO THAT MUTUAL EXCLUSION IS MAINTAINED WHILE
	50	557	400	; THE FLHG BYTE IS BEING MUDIFIED
0119	1000	358	FIUY OD1	H, EKU
011H	4320	322	UKL	H, #IKKW-L
0110	HNU DE	360	FTU? T⊃U	eko, H Tentu
0110	20	361	ITC	
64.20	2424	302	311° 11400	
9120	1499	364 TESTA	U CALL	inget : Coll Hort reconse timer averet aller and the lackant
OICE	1101	365 : 7	ENDIE	OWN / CILLE OWN DECKOL TITER OVER ECHEP PORTING ECOROT
		366 : 3	IF DAT	a peany fiac-1 then
		767 TDEC.	1. 511	
94.24	59	307 TREU.	MOU	0 800
0124 0125	37	369	CPI	A A
9126	7278	305	187	
ULLU	1230	371 :4	PAT	TERN:=RKDATA
8128	B920	372	MOV	R1. #MOKDAT
012A	F1	373	NOV	A, @R1
012B	Æ	374	MOY	PATTA
		375 ; 4	DAT	A READY FLAG: =0
012C	35	376	DIS	TCNTI ; LOCK OUT TIMER INTERRUPT
		377		; SO THAT MUTUAL EXCLUSION IS MAINTIANED WHILE
		378		; THE FLAG BYTE IS BEING MODIFIED
<b>81</b> 2D	F0	379	MOV	A, eRØ

0130	110	381	MOV	ero, A
0131	25	382	EN	TCNTI
0132	1636	383	JTF	TESTB
0134	2438	384	JMP	TRECE
<b>81</b> 36	1490	385 TEST8:	CALL	UART ; CALL UART IF TIMER OVERFLOWED DURING LOCKOUT
		386 TRECE:		
		387 🕫	ENDIF	
		3 <b>88</b> ; 2 U	NTIL ERR	ror flag or overrun flag
<b>01</b> 38	F0	389	MOV	A, GRO
0139	5390	390	ANL	A,#(OVRUN OR ERRFLG)
013B	C60F	391	JZ	TILOP
		392;2 I	NCREMENT	t Error Count
013D	1F	393	INC	ERRCNT
		394 (1 UNTI	l forevei	ER
013E	2402	395	JMP	TLOP
		396 ; EOF		
		397	END	

USER S'	YMBOLS														
atemp	0007	84FNFL	8994	DRDYFL	0008	ERRCNT	0007	ERRFLG	0010	FLG8YT	0006	mark	0080	MDRTR	0021
MFLGBY	001E	MINXTBY	<b>992</b> 3	Mokdat	0020	MSAMCT	001D	MTCKCT	<b>801</b> C	MXMTBY	0022	omark	0015	OSPACE	0011
OVRUN	0080	PATT	0006	RCV000	9917	KCV010	8824	RCV020	0033	RCY030	0038	RCV040	0042	KCV045	0054
RCV050	0059	RCV060	005F	RCV070	<b>6</b> 961	RCVFLG	0001	REGO	6000	RETURN	0897	SAMCTR	0005	SPHCE	FF7F
STPBTS	0000	SYNFLG	0002	TCKCTR	0004	TEST	0100	TESTR	<b>81</b> 22	<b>IESTB</b>	0136	TILOP	010F	TIMENT	FFFE
TISR	0007	TLOP	0102	TREC	0124	TRECE	0138	TRNGFL	0040	TRROFL	<b>00</b> 20	UART	000A	XMI)	0064
XMT010	006E	XMT020	007B	XMT040	0086										

ASSEMBLY COMPLETE, NO ERRORS

#### Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

## MULTIPLY ALGORITHMS

Most microcomputer programmers have at one time or another implemented a multiply routine as part of a larger program. The usual procedure is to find an algorithm that works and modify it to work on the machine being used. There is nothing wrong with this approach. If engineers felt that they had to reinvent the wheel every time a new design is undertaken, that's probably what most of us would be doing—designing wheels. If the efficiency of the multiply algorithm, either in terms of code size or execution time is important, however, it is necessary to be reasonably familiar with the multiplication process so that appropriate optimizations for the machine being used can be made.

To understand how multiplication operates in the binary number system, consider the multiplication of two four bit operands A and B. The "ones and zeros" in A and B represent the coefficients of two polynomials. The operation  $A \times B$  can be represented as the following multiplication of polynomials:

x	A3*2 ³ B3*2 ³	+ +	A2*2 ² B2*2 ²	+ +	A1*2 ¹ B1*2 ¹	+ +	A0*2 ⁰ B0*2 ⁰	
---	----------------------------------------	--------	----------------------------------------	--------	----------------------------------------	--------	----------------------------------------	--

```
B0A0*2<sup>0</sup>
                                                                               B0A3*2<sup>3</sup>
                                                                                                     B0A2*22
                                                                                                                           B0A1*21
                                                                                                                                            +
                                                                                                                      +
                                                                            B1A2*23
                                                                                                  B1A1*2<sup>2</sup>
                                                                                                                        B1A0*2<sup>1</sup>
                                                                                                                  +
                                                                        B2A1*23
                                                                                              B2A0*2<sup>2</sup>
                            B2A3*25
                                                   R242*2
                                                                                         +
+ B3A3*2<sup>6</sup>
                                                                     B3A0*2<sup>3</sup>
                         B3A2*25
                                               B3A1*24
                                                               +
```

The sum of all these terms represents the product of A and B. The simplest multiply algorithm factors the above terms as follows:

 $A^*B = B0^*(A)^*2^0 + B1^*(A)^*2^1 + B2^*(A)^*2^2 + B3^*(A)^*2^3$ 

Since the coefficients of B (i.e., B0, B1, B2, and B3) can only take on the binary values of 1 or 0, the sum of the products can be formed by a series of simple adds and multiplications by two. The simplest implementation of this would be:

MULTIPLY: PRODUCT = 0 IF B0 = 1 THEN PRODUCT: = PRODUCT + A IF B1 = 1 THEN PRODUCT: = PRODUCT + 2*A IF B2 = 1 THEN PRODUCT: = PRODUCT + 4*A IF B3 = 1 THEN PRODUCT: = PRODUCT + 8*A END MULTIPLY

In order to conserve memory, the above straight line code is normally converted to the following loop:

MULTIPLY: PRODUCT:= 0 COUNT:= 4 REPEAT IF B[0] = 1 THEN PRODUCT:= PRODUCT + A ENDIF A:= 2*A B:= B/2 COUNT:= COUNT - 1 UNTIL COUNT:= 0 END MULTIPLY

The repeated multiplication of A by two (which can be performed by a simple left shift) forms the terms  $2^*A$ ,  $4^*A$ , and  $8^*A$ . The variable B is divided by two (performed by a simple right shift) so that the least significant bit can always be used to determine whether the addition should be executed during each pass through the loop. It is from these shifting and addition operations that the "shift and add" algorithm takes its common name.

The "shift and add" algorithm shown above has two areas where efficiency will be lost if implemented in the manner shown. The first problem is that the addition to the partial product is double precision relative to the two operands. The other problem, which is also related to double precision operations, is that the A operand is double precision and that it must be left shifted and then the B operand must be right shifted. An examination of the "longhand" polynomial multiplication will reveal that, although the partial product is indeed double precision, each addition performed is only single precision. It would be desirable to be able to shift the partial product as it is formed so that only single precision additions are performed. This would be especially true if the partial product could be shifted into the "B" operand since one bit of the partial product is formed during each pass through the loop and (happily) one bit of the "B" operand is vacated. To do this, however, it is necessary to modify the algorithm so that both of the shifts that occur are of the same type.

To see how this can be done one can take the basic multiplication equation already presented:

 $A^*B = B0^*(A^*2^0) + B1^*(A^*2^1) + B2^*(A^*2^2) + B3^*(A^*2^3)$ 

and factoring 2⁴ from the right side:

 $A^{*}B = 2^{4}[B0^{*}(A^{*}2^{-4}) + B1^{*}(A^{*}2^{-3})$  $+ B2^{*}(A^{*}2^{-2}) + B3^{*}(A^{*}2^{-1})]$ 

This operation has resulted in a term (within the brackets) which can be formed by right shifts and adds and then multiplied by  $2^4$  to get the final result. The resulting algorithm, expanded to form an eight by eight multiplication, is shown in figure 5. Note that although the result is a full sixteen bits, the algorithm only performs eight bit additions and that only a single sixteen bit shift operation is involved. This has the effect of reducing both the code space and the execution time for the routine.

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

LOC	0BJ	SEQ	SOURCE STATEMENT	
		1 \$MACRO	FILE	
		2 \$INCLU	DE(:F1:MPY8.HED)	
		= 3;*****	*******************	akakakak
		= 4;*		*
		= 5;*	MPY8X8	*
		= 6;*		*
		= 7;*====	######################################	****
		= 8;*		*
		= 9;*	THIS UTILITY PROVIDES AN 8 BY 8 UNSIGNED MULTIPLY	*
		= 10;*	AT ENTRY:	*
		= 11 ;*	A = LOWER EIGHT BITS OF DESTINATION OPERAND	*
		= 12;*	XR= DON'T CARE	*
		= 13;*	R1= POINTER TO SOURCE OPERAND (MULTIPLIER) IN INTERNAL MEMEORY	*
			Figure 5	

=	14;*			*
=	15 ; *	at ex	XIT:	*
=	16 ;*	A =	LOWER EIGHT BITS OF RESULT	*
=	17 /*	XA=	UPPER EIGHT BITS OF RESULT	*
=	18 ;*	C =	SET IF OVERFLOW ELSE CLEARED	*
Ξ	19;*			*
=	20;****	******	*****	***
	21;			
	22 :			
	27 \$TNCLU	DECIEN	MPV8 PD()	
=	24 :1 MPV	823	11 12 1967	
=	25 :1 NH	TIPLICA	NOT 15	
=	26:1.000	NT =8	NULTO CJ -0	
-	27 :1 PEP	FAT		
~	- 20 - 2	TC MINT		
-	20 72	IF NULT	TELCHNOLOG-O THEN DECIN TRI TEANN -MAN TIRI TEANN /2	
_	2273 70-2			
-	30 72 1	100 ОС 12 МИЛТ		
2	20.2	MINT	TELEMINELISTOS, HINE (TELEGINOLISTOSTICUL) TELEK TELEONIO, HINI TEDLICONIO (C.	
_			IFLIGHWV. HRULTIFLIGHWUV2	
-	2272   74-0	COUNT -	COINT 4	
-	- 39 7 2	CUUNT.=	1.00N1 ~1 IT_0	
-	- 50 - 1 UMA - 76 - 4 END	IL COUN		
-	35 1 ENV	197348		
	27 3	TCC		
	38 : EWUH	165		
	40			
	415 ;	500	P2	
	41 AH 40 COUNT	EQU	K2	
	42 COUNT	EQU	R3	
	43 IUNI 44 -	EQU	K4	
	44 ) 45 DICDO	FOU	2	
	45 UIGPK	EQU	د	
	45 /			
	40 ATHOLIN		HDUO:	
_	40 +1 MDLK	UE(:F1:) NVA.	nrys)	
-	50 MOLIONO	000.		
-	54 . 4 Mail 1	TTDL TOO	NC 45 01 -0	
-	ST / L MOL:	MOU	NU 10-8]:=0	
-	- 32 - 52 - 4 - 661#	MUV	XH) #00	
-	- JS ∻1 CUUI - 54	NI:≓8 MOU	COUNT NO	
-	04 CELA DEM	nuv Fot	CUUNI) #8	
=	50 / 1 KEP	LHI		
=	57 .0			
=	07 7 2 - 1 50	IF FIULI.	ITLICHNULUJ=U INEN BEUIN	
=	JØ 50.7	1RQ		
=	39 / S 70	MULI.	IPLICHNU:=HULICHNU/2	
Ξ	60	XCH	H, XH	

* * * *

0004 120E **000**6 28 0007 97 = 61 CLR C **600**8 67 RRC R = 62 8889 2A XCH A, XA = 63 800A 67 = 64 RRC Ĥ 000B EB94 COUNT, MPYSLP = 65 DJNZ = 66 = 67;2 **8990** 83 RET ELSE

Figure 5 (continued)

0000 BA00 0002 BE08

F0C	0B)	S	EQ	500	rce stat	TEMENT							
		=	68 M	PY8A:									
		=	69.)	3 M	NETIPLI	CANDE 15-8	]:=MULT	IPLICHNDE:	L5-8 ]+M	ULTIPLIER	1		
869E	28	=	70	XC	H A	XA							
090F	61	=	71	AC	D R	er1							
0010	67	Ŧ	72	RF	C R								
8811	28	=	73	XC	ж A	XA							
0012	67	=	74	RF	ic a								
8013	EB04	=	75	DJ	inz ci	DUNT, MPY8	LP						
0015	83	=	76	RE	T								
		Ξ	77;	3 P	ULTIPLI	CAND : = MUL	TIPLICA	ND/2					
		=	78 ;	2 ENDI	F								
		=	79;	2 COUM	it =coun	T-1							
		=	80 :	1 UNTIL C	:OUNT=0								
		=	81.)	1 END MPY	'SX8								
			82	END									
UCED C	омола с												
COLNIT	0007	ntenn	000		0004	MOLIOO	0005		0004	MENUSAD	(athera	yn.	0000
LUUNI	00613	DIGHT	UNK	IS ION	0004	REAR	6666E	nr Yoly	0004	11-1929	0000	۸H	0002
ASSEMB	и сомр	FTF.	NO FR	PARS									

All mnemonics copyrighted © Intel Corporation 1979.

## **DIVIDE ALGORITHMS**

In order to understand binary division a four bit operation will again be used as an example. The following algorithm will perform a four by four division:

```
DIVIDE:
 IF 16*DIVISOR> = DIVIDEND THEN
   SET OVERFLOW ERROR FLAG
 ELSE
   IF 8*DIVISOR> = DIVIDEND THEN
      QUOTIENT[3]: = 1
      DIVIDEND: = DIVIDEND - 8*DIVISOR
   ELSE
      QUOTIENT[3] := 0
   ENDIF
   IF 4*DIVISOR> = DIVIDEND THEN
      QUOTIENT[2]: = 1
      DIVIDEND: = DIVIDEND - 4*DIVISOR
   ELSE
      QUOTIENT[2]: = 0
   ENDIF
   IF 2*DIVISOR> = DIVIDEND THEN
      QUOTIENT[1]: = 1
      DIVIDEND: = DIVIDEND - 2* DIVISOR
   ELSE
      QUOTIENT[1]: = 0
   ENDIF
   IF 1*DIVISOR> = DIVIDEND THEN
      QUOTIENT[0]: = 1
      DIVIDEND: = DIVIDEND - 1*DIVISOR
   ELSE
      QUOTIENT[0]: = 0
   ENDIF
 ENDIE
END DIVIDE
```

The algorithm is easy to understand. The first test asks if the division will fit into the dividend sixteen times. If it will, the quotient cannot be expressed in only four bits so an overflow error flag is set and the divide algorithm ends. The algorithm then proceeds to determine if eight times the divisor fits, four times, etc. After each test it either sets or clears the appropriate quotient bit and modifies the dividend. To see this algorithm in action, consider the division of 15 by 5:

00001111	(15)
- 01010000	(16*5)
	Doesn't fit—no overflow
00001111	(15)
- 00101000	(8*5)
	Doesn't fit-Q[3] = 0
00001111	(15)
- 00010100	(4*5)
	Doesn't fit-Q[2]=0
00001111	(15)
- 00001010	(2*5)
00000101	Fits-Q[1] = 1
00000101	(15-2*5)
- 00000101	(1*5)
00000000	Fits-Q[0] = 1

The result is Q = 0011 which is the binary equivalent of 3—the correct answer. Clearly this algorithm can (and has been) converted to a loop and used to perform divisions. An examination of the procedure, however, will show that it has the same problems as the original multiply algorithm.

The first problem is that double precision operations are involved with both the comparison of the division with the dividend and the conditional subtraction. The second problem is that as the quotient bits are derived they must be shifted into a register. In order to reduce the register requirements, it would be desirable to shift them into the divisor register as they are generated since the divisor register gets shifted anyway. Unfortunately the quotient bits are derived most significant bits first so doing this will form a mirror image of the quotient—not very useful.

Both of these problems can be solved by observing that the algorithm presented for divide will still work if both sides of all the "equations" involving the dividend are divided by sixteen. The looping algorithm then would proceed as follows:

```
DIVIDE:
```

```
QUOTIENT: = 0
COUNT := 4
DIVIDEND: = DIVIDEND/16
IF DIVISOR> = DIVIDEND THEN
 OVERFLOW FLAG: = 1
ELSE
 REPEAT
  DIVIDEND: = DIVIDEND*2
  QUOTIENT: = QUOTIENT*2
  IF DIVISOR> = DIVIDEND THEN
   QUOTIENT: = QUOTIENT + 1/*SET QUOTIENT[0]*/
   DIVIDEND: = DIVIDEND - DIVISOR
  ENDIF
  COUNT: = COUNT - 1
 UNTIL COUNT = 0
ENDIE
END DIVIDE
```

When this algorithm is implemented on a computer which does not have a direct compare instruction the comparison is done by subtraction and the inner loop of the algorithm is modified as follows:

```
*
*
REPEAT
DIVIDEND: = DIVIDEND*2
QUOTIENT: = QUOTIENT*2
DIVIDEND: = DIVIDEND - DIVISOR
IF BORROW = 0 THEN
QUOTIENT: = QUOTIENT + 1
ELSE
DIVIDEND: = DIVIDEND + DIVISOR
ENDIF
COUNT: = COUNT - 1
UNTIL COUNT = 0
*
```

An implementation of this algorithm using the 8049 instruction set is shown in figure 6. This routine does an unsigned divide of a 16 bit quantity by an eight bit quantity. Since the multiply algorithm of figure 5 generates a 16 bit result from the multiplication of two eight bit operands, these two routines complement each other and can be used as part of more complex computations.

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

SEQ

LOC OBJ

SOURCE STATEMENT

	1 \$MACRO	FILE	
	2 \$INCLU	IDE(:F1:DIV16, HED)	
z	? ;*****	·*************************************	******
=	4;*		*
=	5;*	DIV16	*
=	6;*		*
=	7;*====	***************************************	*====*
z	8;*		*
=	9;*	THIS UTILITY PROVIDES AN 16 BY 8 UNSIGNED DIVIDE	*
Ŧ	10;*	AT ENTRY:	*
=	11 ;*	A = LOWER EIGHT BITS OF DESTINATION OPERAND	*
=	12 ;*	XR= UPPER EIGHT BITS OF DIVIDEND	*
=	13;*	R1= POINTER TO DIVISOR IN INTERNAL MEMORY	*
=	14 ;*		*
=	15 ;*	AT EXIT:	*
=	16 ;*	A = LOWER EIGHT BITS OF RESULT	*
=	17 ;*	XA= REMAINDER	*

LOC	OBJ	seq source statement	
		= 18; * C = SET IF OVERED	N ELSE CLEARED *
		= 19 ;*	*
		= 20 ; *******************	**********
		21 ;	
		22 ;	
		23 \$INCLUDE(:F1:DIV16.PDL)	
		= 24 /1 DIV16	
		= 25 +1 COUNT:=8	
		= 26 :1 DIVIDENDE15-81:=DIVIDENDE	15-8 J-DIVISOR
		= 27 ;1 IF BORROW=0 THEN /* IT FI	T5#/
		= 28 /2 SET UVERFLUW FLHG	
		= 27 /1 ELDE - 29 /2 DECTORE NTUTNENN	
		= 30 /2 RED:ORE DIVIDEND = 74 :0 DEDEAT	
		= 32 ; 3 DIVIDEND:=DIVIDEND	2
		= 33;3 QUOTIENT:=QUOTIENT:	2
		= 34 ; 3 DIVIDEND(15-8];=DIV	- IDENDI 15-8 1-DIVISOR
		= 35 ; 3 IF BORROW=1 THEN	
		= 36 ; 4 RESTORE DIVIDEND	
		= 37 / 3 ELSE	
		= 38 ; 4 QUOTIENT[0]:=1	
		= 39 ; 3 ENDIF	
		= 44;;≦ UUUNI:=UUUNI-1 - 44;:2 UNITI COUNT-0	
		= 42 : 2 CIEAD AVEDELAN ELAG	
		= 42 :1 FND!F	
		= 44 1 ENDDIVIDE	
		45 /	
		46 ; Equates	
		47 ; ======	
	-	48 ;	
000	2	49 XH EQU K2 FR COUNT FOU D2	
000	د	SUCCONTERU RS	
		52 <b>KE IE</b> CT	
		57 \$TNPLUDE(-E4-D)946)	
		= 54 ;1 DIV16	
8886	9 2 <del>1</del> 9	= 55 DIV16; XCH A, XA ; RO	JTINE WORKS MOSTLY WITH BITS 15-8
		= 56 ;1 COUNT:=8	
0001	L 8808	= 57 HOY COUNT,#8	
		= 58 (1 DIVIDEND(15-8):=DIVIDEND(	15-8 J-DIVISOR
000	3 37	= 59 CPL A	
000	4 61	= 60 ADD A, 0R1	
9993	72 ت	= 61 UPL H - 22:4 15 D00D004-0 TUEN /* 17 57	15+ /
000	S FGOD	- 62 JI IF DUKKUM=0 INEN /# 11 FI = 67 IF DIVIA	זיינ ו
0000	0.000	= 64 ; 2 SET OVERED ON FLAG	
900	8 87	= 65 CPL C	
009	9 8424	= 66 JMP DIVIB	
-		= 67 ;1 ELSE	
		= 68 DIVIA:	
		= 69 2 RESTORE DIVIDEND	
866	8 61	= 70 ADD A, @R1	
		= 71 ; 2 REPEAT	
		= 73 3 DIVIDEND:=DIVIDEND*	2

					000			ŤĊ								
800C	97	=	75		CLR	C										
6666	28	=	76		XCH	ii, XE	1									
800E	F7	=	77		RLC	R										
000F	28	=	78		XCH	A, XA	1									
8618	F7	=	79		RLC	Ĥ										
8011	E618	=	80		JNC	DIVI	E									
8013	37	=	81		CPL	Ĥ										
0014	61	Ξ	82		add	A, 69	21									
0015	37	=	83		CPL	Ĥ										
0016	8428	=	84		JMP	DIVI	(C									
		=	85	-3	DIV	IDEND[15	5-8]:=DI	VIDEND	15-83-0I	VISOR						
<b>601</b> 8	37	=	86	DIVIE	CPL	Ĥ										
0019	61	=	87		hdd	A, 🕪	81									
801A	37	=	88		CPL	A										
		=	68	- 3	IF I	SORROW=1	THEN									
001B	E620	Ŧ	90		JNC	DIVI	10									
		=	91	; 4		RESTORE	DIVIDEN	D								
001D	61	=	92		ADD	A, 96	8 <u>1</u>									
001E	9421	=	93	_	JMP	DIV	D									
		=	- 94	33	ELSI	E										
		=	95	DIVIC	-											
0000	40	=		74		QUOTIEN	101:=1									
0020	18	-	- 37	. 7	1NU CMB	XH										
		-	- 38 - 66	2	ENU	15 97	JT 4									
		-	. 22 400		UNITE I	NI -CUUF COINITO	11-1									
0004	5000	-	100	TUTS	040 HL 4	000013-40 0000	IT STUT	Б								
0021	EDOC	-	101	-2	CIERPI	nueden ur Nueden ur	1 FLAC	. <b>r</b>								
8827	97	=	102	• 2	CLER	۰۰۵،۲۵۰۵ ۲	• • • • • •									
		=	194	. 1. FN	DIF	· ·										
		=	105	:1 EN	DDIVIDE											
0024	28	=	106	DIVIB	: XCH	6. Xf	4									
0025	83	=	107		RET											
			108	END												
			100													
USER S'	YMBOLS															
COUNT Vo	0000	01910	5 0	nnn	DIVIA	NNAB	DIAIB	0024	DIAIC	0020	DIAID	0021	DIVIE	0018	DIVILF	, 000C
ΛH	0002															
ASSEMB	ly compl	LETE,	NO	ERRORS	;											

All mnemonics copyrighted © Intel Corporation 1979.

## **BINARY AND BCD CONVERSIONS**

The conversion of a binary value to a BCD (binary coded decimal) number can be done with a very straightforward algorithm:

CONVERT_TO_BCD: BCDACCUM: = 0 COUNT: = PRECISION REPEAT BIN: = BIN * 2 BCD: = BCD * 2 + CARRY COUNT: = COUNT - 1 UNTIL COUNT = 0 END CONVERT_TO_BCD

The variable BCDACCUM is a BCD string used to accumulate the result; the variable BIN is the binary number to be converted. PRECISION is a constant which gives the length, in binary bits of BIN. To see how this works, assume that BIN is a sixteen bit value with the most significant bit set. On the first pass through the loop the multiplication of BIN will result in a carry and this carry will be added to BCD. On the remaining passes through the loop BCD will be multiplied by two 15 times. The initial carry into BCD will be multiplied by 2¹⁵ or 32678, which is the "value" of the most significant bit of BIN. The process repeats with each bit of BIN being introduced to BCDACCUM and then being scaled up on successive passes through the loop. Figure 7 shows the implementation of this algorithm for the 8049.

## ISIS-11 MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

LOC	OBJ	SEQ	SOURCE STATEMENT					
		1 \$MAC	CROFILE					
		2 \$INC	CLUDE(:F1:CONBCD. HED)					
		= 3;***	********	****				
		= 4;*		*				
		= 5;*	CONBCD	*				
		= 6;*		*				
		= 7;*==		======*				
		= 8;*		*				
		= 9;*	THIS UTILITY CONVERTS A 16 BIT BINARY VALUE TO BCD	*				
		= 10 ;*	AT ENTRY.	*				
		= 11 ;*	H = LUNER EIGHT BINS OF BINNEY VELUE	*				
		= 12 ;*	ANT UMPER EIGHT BITS UN BINNKY YNLUE	*				
		= 13 ;*	ROT POINTER TO A PACKED BUD STRING	*				
		- 14 )*	0T EVIT.	*				
		= 15 ; *		*				
		= 17 :*	XA= INDEFINED	*				
		= 18 ;*	c = set te overeion ei se (1 erred)	*				
		= 19 ;*		*				
		= 20 :***	**************	***				
		21 ;						
		2 <b>2</b> ;						
		23 \$INC	CLUDE(:F1:CONBCD. PDL)					
		= 24 ;1 C	CONVERT_TO_BCD					
		= 25;1B	BCDACC := 0					
		= 26 /1 0	COUNT := 16					
		= 27,1 R	KEPERI ENNI GINIA					
		= 28;2	BIN:=BIN#2 DCD:=DCD::0.00DDU					
		- 29 - 2	БСЛ.=БСЛЛ#2+СЛЖКҮ ТЕ СОРБИ ЕВОМ ОСЛОСС СОТО СВРОЮ СУТТ					
		- 30,2						
		= 31 /2	INTTI CONNT-G					
		= 33 (1 E	END CONVERT TO BCD					
		34 ;						
		35 ; EQ	QUATES					
		36 ; ==	*****					
		37 ;						
<b>000</b> 2		38 XA	EQU R2					
0003		39 COUN	NT EQU R3					
<del>869</del> 4		40 ICNT	T EQU R4					
		41;						
NNRS		42 DIGP	PR ERU 3					
		45 ;	FC7					
		44 PEJE						
		40 \$1NC	CLODE((F1)CONBCD)					
0005		- +0 / = 47 TEMD	P1 SET P5					
0000		= 49 :						
		= 49 1 0	CONVERT_TO_BCD					
		= 50 CNBC	CD.					
		= 51 ;1 B	BCDACC : =0					
6666	28	= 52	XCH A, RO					

Figure 7

LOC	0 <b>B</b> J	SEQ	Source Str	rtexent	
0001	89	= 53	MOV R	R1. A	
8692	28	= 54	XCH F	A, RO	
6663	BC03	= 55	MOY 1	ICNT, #DIGPR	
0005	8100	= 56 BCDCCF	e MOV 6	0R1, #00	
0007	19	= 57	TNC F	R1	
94498	F095	= 58	DINE I	IONT, REDEDR	
0000	2000	= 59 ;1 COL	NT =16		
60(4 <b>8</b>	881.9	= 50	MOV i	198NT. #16	
00041	0010	= 61 :1 PFF	FAT	000477 #10	
		= 62 PCDCOP	2-11- )-		
		- 62 000000 - 67 0	/. 2/10 - −D110⊛≏	í	
aaar	97	- 53 - 64	010019442	Č	
0000	,77 57	- 04	DIC D	ι. Δ	
0000	57	- 60	KLU P		
0000	28	- 55	- AURI - P	n/ An	
9007	F7	= 67	KLL P		
9019	2H	= 68	XLH F	H/ XH	
0044	~~	= 69 ;2	EDD:=BCD*24	(FCHKKY)	
0011	28 00	= 70	KUR F		
8012	HY	= /1	PDJY R	R1, H	
0013	28	= /2	XCH H	H, R8	
0014	BCB3	= 73	MOY I	ICNT: #DIGPR	
0016	AD	= 74	MOV T	TEMP1. A	
0017	F1	= 75 BCDOC:	MOV R	R- 8R1	
<b>00</b> 18	71	= 76	ADDC A	A. 9R1	
9019	57	= 77	DA A	A	
001A	A1	= 78	MOV @	eri, A	
991B	19	= 79	INC R	R1	
<b>001</b> C	EC17	= 80	DJNZ I	ICNT/ BCDOC	
001E	FD	= 81	MOY A	A. TEMP1	
		= 82 ; 2	IF CARRY FR	ROM BCDACC GOTO ERROR EXIT	
001F	F624	= 83	JC E	BCDCOD	
		= 84;2	COUNT : = COUN	NT-1	
		= 85;1 UNT	IL COUNT=0	1	
9021	EBOC	= 86	DUINZ C	COUNT, BCDCOB	
0023	97	= 87	CLR C	CLEAR CARRY TO INDICATE NORMAL TERMINATION	
		= 88;1 END	CONVERT_TO	0_BCD	
6624	83	= 89 BCDCOD	RET		
		90 END			
INCED CV	MROLS				
BUDUND	2005	RODODE GOOD	2000000	A BEDDE ARA7 ENDED ARAA COUNT ARA? DICED ARA? ICHT	GLAGA
TEMD4	00000	20000000000000000000000000000000000000	000000 0029	A DENOC MATL ENDER MANA FOUNT MANY MANY MANY TENT	0004
I ELIE I	0000	00 0002			

ASSEMBLY COMPLETE, NO ERRORS

The conversion of a BCD value to binary is essentially the same process as converting a binary value to BCD.

> CONVERT_TO_BINARY BIN:=0COUNT: = DIGNO REPEAT BCDACCUM: = BCDACCUM * 10 BIN: = 10 * BIN + CARRY DIGIT COUNT: = COUNT - 1 UNTIL COUNT = 0 END CONVERT_TO_BINARY

The only complexity is the two multiplications by ten. The BCDACCUM can be multiplied by ten by shifting it left four places (one digit). The variable BIN could be multiplied using the multiply algorithm already discussed, but it is usually more efficient to do this by making the following substitution:

BIN = 10 * BIN = (2) * (5) * (BIN) = 2 * (2 * 2 + 1) * BIN

This implies that the value 10 * BIN can be generated by saving the value of BIN and then shifting BIN two places left. After this the original value of BIN can be added to the new value of BIN (forming 5 * BIN) and then BIN can be multiplied by two. It is often possible to implement the multiplication of a value by a constant by using such techniques. Figure 8 shows an 8049 routine which converts BCD values to binary. This routine differs slightly from the algorithm above in that the BCD digits are read, and converted to binary, two digits at a time. Protection has also been added to detect BCD operands which, if converted, would yield binary values beyond the range of the result.

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

£00	obj	SEQ	Source statement						
		1 \$1990	ROFILE						
		2 \$INCL	LUDE( F1:CONBIN. HED)						
		= 3 ; viologo	************						
		= 4;*		*					
		= 5;*	CONBIN	*					
		= 6;*		*					
		= 7;*==	£15228335552899999999999999999999999999999	***********					
		= 8;*		*					
		= 9;*	THIS UTILITY CONVERTS A 6 DIGIT BCD VALUE TO BINARY	*					
		= 10 ;*	AT ENTRY	*					
		= 11 ;*	R0= POINTER TO A PACKED BCD STRING	*					
		= 12 ;*		*					
		= 13 ;*	AT EXIT:	*					
		= 14;*	A = LOWER EIGHT BITS OF THE BINARY RESULT	*					
		= 15 ;*	XR= UPPER EIGHT BITS OF THE BINARY RESULT	*					
		= 16 ;*	C = SET IF OVERFLOW ELSE CLEARED	*					
		= 17 ;*		*					
		= 18;***	*************	*****					
		19 ;							
		20 ;							
		21 \$INC	LUDE(:F1:CUNBIN, PDL)						
		= 22;							
		= 23 ;							
		= 24 ;1 U							
		= 25 + 1 + 10	UINIERU:=PUINIERU+DIGIIPHIR-1						
		= 26 ; 1 U	JUNI (FUIGI (MAIR TNU-2						
		= 27 (1 B)							
		= 23 ;1 KI							
		= 29 (2	DIN = DINAIG DIN = DINAMEN/DONE 7 40						
		= 3072	DIN:=DINTER\KØ/L(-4] DIN:=DIN440						
		= 31/2	DIN -DINNEWADARS OF RIN:-RINNEWADARS OF						
		= 3232	BIN: =BIN+INER(KU)LS=US						

LOC	OBJ	Æ	Ø	5	Source st	atement				
		=	33	:2 F	OINTER0:	=POINTER0-1				
		=	34	34 2 COUNT := COUNT-1						
		=	35	⇒1 UNTI	L COUNT=	0				
		=	36 27	:1 END	ND CONVERT_TO_BINARY					
			38	, • FOUAT	FS					
			39	. 22223						
			49	1						
0002	2		41	XA	EQU	R2				
0003	Ç.		42	LOUNT	EQU	R3				
0004	,		43 44	ICNI ;	FAN	K4				
0003	2		45	DIGPR	EQU	3				
			46	;						
			47	\$EJECT						
			48	\$INCLUD	EC:F1:00	NBIN)				
		=	49	i -						
0005	i	=	50	TEMP1	SET	R5				
0006		=	51	TEMP2	SET	R6				
		=	52	j						
		=	53	;1 CONV	ERT_TO_B	INARY				
		=	54	CONBIN:						
		=	55	1 POIN	ITER0:=P0	INTER0+DIGITPAIR-1				
0000	F8	Ξ	56		MOV	A, RØ				
0001	0302	=	57		add	A, #D1GPR-1				
0003	HB	=	58		MOY	R0, A				
		=	59	;1 CUUN	H :=D161 H	PHIR				
<i>UU</i> U4	RRAZ	=	60		MOY	CUUNT, #DIGPR				
0007		-	61 (2)	)1 BIN	-0	0				
0000	27	-	52. 27			п 900				
0001	nn	-	63. 64		7107 107	AD/ D				
		-	65	CONRUP-						
		=	66	:2 R		10				
AAAA	142B	=	67	, 2 0	- 101 - 101 M-4. - 1061	CONR10				
0000	F628	=	68		JC	CONBER				
		=	69	;2 B	IN =BIN+	MEM(R0)[7-4]				
0000	RD	=	70		MOV	TEMP1, A				
0000	F0	=	71		MOV	A, 0R0				
000E	47	=	72		SWAP	8				
000F	530F	=	73		ANL	A, #0FH				
0011	6D	=	74		add	A, TEMP1				
0012	28	=	75		XCH	A, XA				
0013	1300	=	76		ADDC	A, #00				
0015	28	2	77		XCH	A, XA				
0016	F62A	=	78		JC	CONBER				
		=	79	;2 B	IN:=BIN*:	10				
0018	1428	=	80		CALL	CONB10				
001A	F628	=	81		JC	CONBER				
		=	82	;2 B	IN:=BIN+	MEM(R0)[3-0]				
801C	HD	=	83		MOY	TEMP1, A				
001D	F0	=	84 07		#10γ obs	H, CRO				
001E	1020F	=	80 07		HNL	H, HUHH				
0020	101/ 20	-	85 07		NUU VOU	ть (ENF1 о уо				
20021	20	-	Φŕ		70 <b>0</b>	Π/ Δ <b>Π</b>				

L0C	0B)	seq	SOURCE ST	atement								
8822	1300	= 88	ADDC	A, #00								
8924	28	= 89	XCH	A. XA								
8925	1629	= 90	IC I	CONSER								
0020	1027	= 94 : 2	POINTERA	=POINTEPO-1								
0007	00	- 00	DEC.	DO DO								
0927	60	- 72	COUNT -CO	R.0								
		= 93 ;2	UUTAI FUU	UNI-1								
	-	= 94 /1 04										
0028	EB08	= 95	DUNZ	COONT, CONB	LP							
		= 96 (1 E)	ID CONVERT_	TO_BINARY								
002A	83	= 97 CONBE	R: PET									
		= 98 \$EJE(	CT									
		= 99 ;										
		= 169 ;				_						
		= 101	UTILITY	TO MULTIPL	Y BIN BY 1	9						
		= 102 )	Carry M	ILL BE SET	IF OVERFLO	N OCCURS						
		= 103 ;										
0028	AD	= 104 CONB1	lo: Mov	TEMP1 A	Save a							
0020	28	= 105	XCH	A,XA ;	Save Xa							
<b>00</b> 2D	AE .	= 106	MOY	TEMP2, A								
002E	28	= 107	XCH	A, XA								
		= 108 ;										
882F	97	= 109	CLR	C								
0030	I F7	= 110	RLC	A ;	BIN:=BIN*2							
0031	. 2 <del>R</del>	= 111	XCH	A, XA								
<b>8</b> 932	! F7	= 112	RLC	A								
6633	28	= 113	XCH	A, XA								
0034	F646	= 114	JC	CONB1E ;	error on o	VERFLOW						
		= 115 👘										
<b>00</b> 36	F7	= 116	RLC	A ;	BIN:=BIN*4							
0037	28	= 117	XCH	A, XA								
0038	F7	= 118	RLC	Ĥ								
<b>80</b> 39	26	= 119	XCH	A, XA								
003H	F646	= 129	JC	CONB1E ;	Error on o	VERFLOW						
		= 121										
0030	60	= 122	ADD	R, TEMP1 ;	BIN:=BIN*5							
<b>00</b> 3D	28	= 123	XCH	A, XA								
003E	7E	= 124	ADDC	A, TEMP2								
003F	28	= 125	XCH	a, Xa								
0040	F646	= 126	JC	CONB1E ;	Error on o	VERFLOW						
		= 127 ;										
0042	: F7	= 128	RLC	A ;	BIN:=BIN+1	9						
0043	28	= 129	XCH	A. XA		-						
0044	F7	= 130	RLC	8								
0045	28	= 131	XCH	A, X8								
		= 132 ;										
0046	83	= 133 CONB1	LE: RET									
		= 134										
		= 175 :										
		136 END										
USER S	YMBOLS											
CONB10	002B	CONB1E 0046	CONBER 08	2a conbi	N 0000 (	CONBLP 0008	COUNT	0003	DIGPR	6663	1CNT	0004
TEMP1	0005	TEMP2 0006	XA 88	92								
ASSEMB	ly comple	ete, no errors	5									

real time available to the 8049 will be consumed by the serial link. This implies that an 8049 running full duplex serial I/O will still outperform earlier members of the family running without the serial I/O requirement. It is also possible to run this program in an 8048 or 8748 at 1200 baud with the same 42 percent CPU utilization.

The execution times for the other routines that have been discussed have been summarized in Table 1. All of these routines were written to maintain maximum useability rather than minimum code size or execution time. The resulting execution times and code size are therefore what the user can expect to see in a real application. The results that were obtained clearly show the efficiency and speed of the 8049. The equivalent times for the 8048 are also shown. It is clear that the 8049 represents a substantial performance advantage over the 8048. Considering, in most applications, that the 8048 is chip approach.

## EXECUTION TIME (MICROSECONDS)

	BYTES	8049	8048
MPY8	21	109	200
DIV 16	37	183 MIN 204 MAX	335 MIN 375 MAX
CONBCD	36	733	1348
CONBIN	70	388	713

Table 1. Program Performance

# **APPLICATION** NOTE



# A High-Speed Emulator for Intel MCS-48[™] Microcomputers

## Contents

I. Purpose and Scope	5–3
II. The HSE-49 [™] Development Tool	5–3
III. General Hardware Overview	5–3
IV. Interprocessor Communication	5–5
V. Command Description	5–6
VI. System Limitations	5–9
VII. Hardware Configurations	. 5–10
Appendix A. Schematic Diagrams	. 5–12
Appendix B. Monitor Listings	. 5–16
Appendix C. Command Summary	5-104
Appendix D. Error Messages	5-104

## I. PURPOSE AND SCOPE

This Application Note presents a description of the design and operation of a high-speed emulator for the Intel[®] MCS-48[™] family of single chip microcomputers. The HSE-49[™] emulator provides a simple and inexpensive means for executing and debugging 8049 programs which require the full 11-MHz operating speed of the part.

Section II of this Application Note describes some of the features of this development tool and how it may be used. Section III briefly discusses the hardware used to implement these features, while Section IV describes the manner in which program execution status is made available to the operator.

A detailed description of all of the operator commands is presented in Section V of this note, along with the modifiers and options which may be specified for each command. Known restrictions and limitations of the HSE-49 system are listed and explained in Section VI. Section VII shows how the basic circuit may be modified to provide options on memory organization, I/O configurations, etc.

Full schematics of the system hardware, as well as monitor software listings, are presented in Appendices A and B, respectively. A short summary of the command syntax is presented in Appendix C,. Appendix D explains the error message codes which may appear during use.

It is assumed that the reader is already familiar with the operation of the 8048 or 8049 microcomputers. Some knowledge of the 8048 architecture is needed to understand sections of the command and modifier descriptions. Most users will already have this background. Other readers are referred to the MCS-48 Microcomputer User's Manual, Intel publication number 9800270.

## II. THE HSE-49 DEVELOPMENT TOOL

In essence, the HSE-49 emulator provides the user a means for executing an MCS-48 program located in external RAM rather than internal ROM or EPROM. This allows programs being debugged to be modified easily and quickly during the debug cycle. A user's program may be entered into system RAM either manually or via a serial link from a host computer such as an Intellec[®] Microcomputer Development System. Once loaded, the program can be modified using an on-board keyboard and display, and executed in real-time in a number of breakpoint modes. The internal state of the processor, including RAM, accumulator, timer/counter, and status register contents, can also be read and modified through the keyboard.

Breakpoint and debug facilities are extremely flexible. The following execution modes are provided.

- · Programs may be run in full (11 MHz) real time;
- · Programs may be single-stepped;
- In break mode, programs run in full real time until break occurs;

- Breaks may be triggered by either program or external data RAM accesses;
- Any number of breakpoints may be used in any combination;
- "Auto-Step" operation causes the current program counter and Accumulator contents to be printed on the display for a short time on every instruction cycle;
- "Auto-Break" provides the above display only when a break flag is encountered, with real time operation otherwise;
- While running in non-break mode, a TTL-level pulse is generated whenever a break flag is encountered. This signal may be used to trigger an oscilloscope or Logic Analyzer to assist in hardware and software debug.
- While running in any mode, the keyboard and display are "alive". Execution may be suspended or terminated by commands from the keyboard.

## Intent of this Note

While the HSE-49 emulator can assist a new microcomputer user in becoming familiar with the 8048 and 8049 microcomputers, its inherent debug capabilities will also prove helpful to design engineers. The design could be used for new system development and verification or adapted for prototype production.

The main concern in designing the HSE-49 emulator was to keep the basic design simple, while maximizing the system's flexibility. The design allows the use of jumpers, hardware and software switches, etc. to allow the user to reconfigure the system according to the way he dedicates chip-select pins, I/O, etc. The emulator can be changed to fit each user's unique needs, rather than forcing the user to alter his needs to what is provided.

The primary intent of note is to provide the reader with the information needed to reconstruct and make full use of the HSE-49 emulator. Less emphasis is placed on describing how the hardware operates or how the commands are implemented. This information may be found in the schematic diagrams and software listings included in the Appendices.

#### III. GENERAL HARDWARE OVERVIEW

#### **User Program Emulation**

The actual emulation of the user's program is done using an 8039 microcomputer (IC29 on the schematics in Appendix A) executing a program stored in external RAM. The basic minimum configuration includes the 8039 microcomputer, an 8282 address latch (IC19), and 2K bytes of 2114 RAM to use for program development and real-time execution (ICs B1, C1, B2, and C2). Additional RAM may be added to allow the user to expand his program and data memory to 4K each. (If an 11-MHz crystal is used with the microcomputer, type 2114-3 RAMs must be used.) keyboard and display, interpret and implement commands, drive serial interfaces, etc. In general, the master processor is used to interface the execution processor's memory spaces with the outside world and control the operation of the execution processor. In this note the two processors will be abbreviated "MP" and "EP", respectively. Figure 1 shows how the two processors interrelate with the rest of the system. system.

## Keyboard/Display

The 33-key keyboard shown in Figure 2 includes a 16-key hexidecimal keypad and 17 special function keys for specifying commands and modifiers. Readers already

- ----- oyntan ine eigin au-

ditional keys are used to generalize and augment the PROMPT-48 capabilities, as described in Section V.

The eight-character seven-segment display (DS1-DS8) is used for displaying addresses, data, and pseudoalphanumeric messages. The display responses printed in Section V and throughout this note use a mix of upper and lower case letters to indicate what seven-segment patterns appear. An 8243 (IC9) and eight DIP packages (resistor packs, current buffers, etc.) are used for multiplexing the display and scanning the keyboard.

#### **Breakpoint Detection**

Breakpoints are specified and detected using a 2102A  $1K \times 8$  RAM corresponding to each pair of 2114s (ICs A1



Figure 1. HSE-49TM Emulator Signal Flow Diagram





and A2). In effect, each program or data address accesses a 9-bit word. Eight bits are used normally for code or data storage. The ninth bit, accessed in parallel with the other eight, is used to indicate if a breakpoint has been set for that address. This output, when asserted, is latched (IC27 and IC36) and used to halt the execution processor via the single-step input. (In other modes, the break logic can be reconfigured to set the break requested flip-flop on any EP machine cycle or any EP "MOVX" instruction.)

#### **Link Register**

An 8212 8-bit latch (IC18) is used to communicate data and commands between the master and control processors. Under control of the MP, this register, called the "Link" register, may be logically mapped into either the program or data RAM address spaces. When this is done, the 2114s in the respective memory space are disabled and the link responds to all accesses, regardless of address. The link will be discussed in greater detail in Section IV.

## **Control Logic**

In addition to the devices mentioned above, the minimum configuration requires about 10 additional ICs for bus arbitration, system control, and breakpoint and single-step logic. Additional parts may be optionally added for serial port interfacing, I/O reconstruction, etc.

## **MP Monitor**

The monitor program executed by the MP includes commands for filling, reading, or writing the various memory spaces, including the execution processor's program RAM, external ("MOVX") data RAM, accumulator, PSW, PC, timer/counter, working registers, and internal RAM; to execute the user's program from arbitrary addresses in various debugging modes; and to upload or download object or data files from diskettes using an Intellec® development system. No special software is needed for the Intellec® other than ISIS Version 3.4 or later. The data format is compatible with the standard Intel hex file format produced by ASM-4; the baud rate may be altered from 110 baud (default state) up to 2400 baud from the on-board keybad. Blocks of data may be transmitted to a CRT or printer and displayed in a tabular format.

## IV. INTERPROCESSOR COMMUNICATION

## Program Break Sequence

When the MP detects that the EP has been halted by the breakpoint hardware, or when the operator presses a key while the program is executing, the program break sequence is initiated. The low-order 23 bytes of user program memory is read into a buffer within the internal RAM of the MP. A short program for reading and transmitting internal EP status is written over the loworder program memory. (This is one of several "minimonitors" overlayed over the user program area.) The link register is mapped logically over the user program memory, and loaded with the 8049 machine code for a "CALL" instruction to the mini-monitor program area. The EP is then allowed to fetch a single instruction from the link, i.e., the "CALL" to the mini-monitor is forced onto the EP data bus.

From this point on, the EP executes code contained in the mini-monitor. The link is logically mapped over the data RAM address space (whether or not any 2114 data RAMs are present). A block diagram of the system at this point is shown in Figure 3. The break logic is reconfigured so that any "MOVX" (RD or WR) operation executed by the EP will cause it to halt.

For example, after entering the first mini-monitor, the EP executes a "MOVX @ R0,A" instruction. This writes the contents of the accumulator prior to the execution termination into the link, and causes the EP to halt. The MP may then read and retain the link contents to determine the EP accumulator value. The EP timer/counter and PSW are preserved in the same manner.

## Accessing EP Internal RAM

After reading and saving EP internal status, the MP loads a different mini-monitor into the same RAM area. This monitor allows the internal RAM of the EP to be read and written by the MP by passing address and data



Figure 3. Communication between EP & MP

values between the two processors using the link register.

This is needed for two reasons. First, the EP program counter prior to the forced "CALL" instruction may be derived from the EP stack contents, and may be modified to cause the EP to resume execution at any desired address. Secondly, the internal RAM of the EP may then be accessed and modified in the process of executing a number of the monitor commands.

#### **Resuming User Program Execution**

In order to resume user program execution, a statusrestoration mini-monitor is overlayed. This restores the EP internal status using a scheme analogous to the one in which the status was originally saved. The final step of the last mini-monitor is an "RETR" instruction, after which the EP is again halted. The low-order program memory saved earlier is rewritten into the appropriate area, the break logic is reconfigured for the desired execution mode, and the EP is released to run at full speed until the next break situation is encountered.

Note that all commands are implemented using "logical" rather than "physical" addressing. Thus the operator need not be concerned with the intricacies of the system design. For example, when any monitor command refers to low-order user program memory, the appropriate byte of storage within the MP internal RAM is accessed instead. If the location is altered, the internal RAM is modified appropriately. When program memory is reloaded prior to resuming user program execution, the modified version of the user program will be the one loaded.

Baud	HR06	HR07
110	93H	04H
150	96H	03H
300	45H	02H
600	9DH	01H
1200	44H	01H
2400	1AH	01H

Table 1. Serial Interface Data Rate Parameters

#### V. HSE-49 COMMAND DESCRIPTION

Whenever the characters "HSE-49" are present on the system display, a command string may be entered by the operator. In general, all command strings consist of a basic command initiator, an optional command modifier or type-designator, and a number of parameters or delimiters entered as hexidecimal digits. A command is executed, or a command in progress terminated, by pressing the [END/.] key. Logical default values are assumed for the modifier and parameters if either (or both) are omitted. A defualt parameter assumed for the command modifier will be presented on the display when the first parameter is entered.

Each parameter is a string of up to three hexidecimal digits. If more than three digits are entered, only the most recent three are considered. This allows an erroneous digit to be corrected without respecifying the entire command. A parameter is completed by pressing the [NEXT/,] key. Some commands may only need the

low order part of a parameter; i.e., a command incorporating a data byte (such as [FILL]) will use only the low-order 8 bits of the corresponding parameter; Internal RAM and hardware register addressing uses only seven. In each case, higher order bits are ignored.

A command string is terminated and the command invoked by pressing the [END/.] key. The command will also be invoked by pressing the [NEXT/,] key when no additional parameters are allowed. A command string may be aborted at any point before the command is invoked by pressing the [CLEAR/PREV] key, and the sign-on message will appear.

## Errors

An illegal command string, command terminator, or hardware failure will cause an error message and error code number to appear on the display (e.g., "Error-.3"). When this occurs, the monitor can be returned to command mode by pressing the [CLEAR] or [END/.] keys. An explanation of the various error codes is given in Appendix D.

## **Command Classes**

Commands for the HSE-49 emulator are divided into general classes, where all commands in each class have the same choice of options or modifiers. A brief description of each command, followed by a description of the allowed options, is presented below by class.

#### **Data Manipulation/Control Command Group**

Commands:

[EXAM/CHA]

Display Response - "ECh."

Function - Examine/change memory location.

Causes the memory address specified to be read and presented on the display. New data may be entered (if desired) from the hexidecimal keypad. New data is verified before appearing on the display. Subsequent or previous locations may be read by pressing the [NEXT/,] or [PREV] keys, respectively. Command terminated with [END/.] key.

[FILL]

Display Response -- "FIL."

Function — Fill range of memory addresses with a single data value.

Fill the appropriate memory space between the addresses specified by the first two parameters with the low-order byte of the third parameter. If second parameter less than first, only the location specified by the first is affected. If third parameter omitted, zero is assumed. If second and third parameters omitted, individual address specified is cleared. Command is useful for setting a large range of breakpoints; e.g., all of page 3 may be enabled for break with the command:

[FILL][PROG BRK]<300>[,]<3FF>[,]<1>[.]

All mnemonics copyrighted © Intel Corporation 1976.

## [LIST]

Display Response — "LSt."

Function — List memory to output device through HSE-49 serial port.

Display the contents of a range of addresses given by two parameters to a teletype or CRT screen. Data is formatted, 16 separated bytes per line, with the starting address of each line printed. If used with an Intellec[®] system, the operator first uses ISIS-II to transfer the TTY input to the CRT output ("COPY :TI: TO :CO:") then invokes this command from the keypad. Alternatively, any ISIS device or disk file name(:TO:, :LP:, :F1:HRDREG.SAV, etc.) may be used as the destination.

## [DNLOAD]

Display Response — "dnL."

Function — Download memory through HSE-49 serial port

Load data in hex file format through the serial input port. If used with Intellec[®] system, the operator first invokes this command from the keypad, then uses ISIS-II to transfer a disk file to the teletype port ("COPY : Fn:file.HEX TO :TO:").

The use of the checksum field for the download command is expanded slightly over the Intel hex file format standard. If the first character of the checksum field is a question mark ("?"), the checksum for that record will not be verified. This allows large object files produced by the assembler to be patched using the ISIS text editor without the necessity of manually recomputing the checksum value.

## [UPLOAD]

Display Response - "UPL."

Function — Upload memory through HSE-49 serial port.

Output the contents of a range of addresses specified by the two parameters through the HSE-49 serial port in standard Intel hex file format. If used with Intellec® system, the operator first uses ISIS-II to transfer the TTY input to a disk file ("COPY :TI: TO :Fn:file.HEX"), then invokes this command from the keypad.

#### Data types allowed:

#### [PROG MEM]

Display Response - "Pr."

Function — User program memory.

Memory used to develop and execute user program. Addresses 000 through 7FF are the execution processor's memory bank 0; 800 through FFF are memory bank 1.

## [REGISTER]

Display Response — "rG."

Function - Register memory and RAM.

Internal RAM of execution processor. Locations 0-7 are working register bank 0; 18-1F are working register bank 1. Only the low-order 7 bits of an address are considered.

## [DATA MEM]

Display Response - "dA."

Function — External data memory (if installed).

Memory accessed by execution processor "MOVX A,@Rr" or "MOVX @Rr,A" instructions. High-order 4 bits may or may not be relevant, depending on jumpering option selected (explained in Section VII of this note).

## [HARD REG]

Display Response — "Hr."

Function — Hardware registers.

The execution processor (EP) hardware registers (accumulator, timer/counter, etc.), as well as several parameters for controlling HSE-49 system status, are accessible through this catch-all memory space. Addresses are as follows:

- 00 EP accumulator.
- 01 EP PSW.

Bits correspond to 8049 PSW except that bit 3 (unused in the 8049) is used to monitor and alter the state of F1. Bits 2-0 correspond to the stack pointer value after the EP executes a CALL to the mini-monitor; i.e., one greater than when EP was running the user's program.

- 02 EP timer/counter.
- 03 EP internal RAM location 00. (This value is also accessible through [REGISTER] space.)
- 04 EP program counter (low byte).
- 05 EP program counter (high nibble).
- 06-07 HSE-49 serial interface baud rate parameters. Defaults to 110 baud; other rates may be selected by loading the values listed in Table 1.
- 08 HSE-49 automatic sequencing rate parameter. Used in [GO][AUTO STP] and [GO][AUTO BRK] execution commands. 00 → fastest; FF → slowest. Defaults to 20H; approximately two steps per second.
- 09 Monitor version/release number (packed BCD).
- 0A-0F Currently unused by the monitor program.
- 10-7F Variables used by master processor (MP) monitor. Should not be altered by operator.

## [PROG BRK]

Display Response — "Pb."

with breakpoints enabled ([GO][W/ BRK] and [GO][AUTOBRK]). Break will occur if enabled byte is read as the first or last byte of a 2-byte instruction, or read in executing a MOVP, MOVP3, or JMPP instruction. Memory is only 1 bit per location; 00 indicates continue, 01 causes a halt. Addresses 000 through 7FF are the execution processor's memory bank 0; 800 through FFF are memory bank 1.

#### [DATA BRK]

Display Response - "db."

Function — External data RAM breakpoint memory.

Memory space used to indicate points where data accesses should halt when running in a mode with breakpoints enabled ([GO][W/ BRK] and [GO][AUTOBRK]). Memory is only 1 bit per location; 00 indicates continue, 01 causes a halt. High-order 4 bits of breakpoint address may or may not be relevant, dependent on jumpering option selected for the corresponding data RAM (explained in Section VII of this note).

#### **User Program Execution Control Group**

Commands:

[GO]

Display Response - "Go."

Function — Begin execution.

If a parameter is given as part of the command string, execution will begin at that address. Otherwise, the EP program counter (hardware registers 04 and 05) will be used. These will contain the program counter from an earlier program execution break unless they have since been explicitly modified by the operator.

If command is terminated by [END/.], the EP's F1, PSW and stack pointer will be cleared. If command string is terminated by [NEXT/,], PSW will be taken from the EP PSW contents (hardware register 01).

While running the user's program, the characters "-run-." are written on the display. Execution may be halted and another command initiated by pressing the appropriate command key. Execution may be suspended at any time in any mode by pressing the [END/.] key. This will cause the current value of the execution processor program counter and accumulator to appear on the display in the form "PC.234-56". System status is saved in the appropriate hardware registers. At this point, or when an enabled breakpoint is encountered, pressing the [NEXT/,] key will cause the program to continue in the same mode as before. Any other command may be invoked by pressing the appropriate command string.

## [GO/RESET]

Display Response — "Gr."

All mnemonics copyrighted©Intel Corporation 1976.

user s program from location 000H. No parameters are allowed. F0, F1, PSW, stack printer, memory bank flip-flop, etc., are cleared.

Note that this command does not require the use of mini-monitors to initiate program execution. As the last phase of the program development cycle, the 2114 program RAMs and address decoder may be removed and replaced by a ROM or EPROM part (not shown in schematics). This command may be used to start execution when the program RAM has been removed. No interrogation of EP status or internal RAM may be done, nor are break or singlestep modes allowed in this case, though the 2102A breakpoint RAM outputs may still be used to trigger a logic analyzer.

Execution modes allowed:

[NO BRK]

Display Response -- "nb."

Function — Without breakpoints.

Full-speed execution without breakpoints enabled. Does not affect the state of the breakpoint memories.

## [SING STP]

Display Response - "SSt."

Function — Single Step.

Step through program one instruction at a time. After each instruction is executed, execution halts with the current value of the Execution Processor Program Counter and Accumulator appearing on the display in the form "PC.234-56". System status is saved in the appropriate Hardware Registers. At the point, [NEXT/,] will cause the program to execute one more instruction, or any other command may be invoked by pressing the appropriate command string. Does not affect the state of the Breakpoint Memories.

[W/ BRK]

Display Response - "br."

Function — With breakpoints.

Full-speed execution with breakpoints enabled. When a breakpoint is encountered, execution halts with the current value of the execution processor program counter and accumulator appearing on the display in the form "PC.234-56". System status is saved in the appropriate hardware registers. At this point, [NEXT.,] will cause the program to continue until the next breakpoint is reached, or any other command may be invoked by pressing the appropriate command string.

[AUTO STP]

Display Response - "ASt."

Function — Automatically sequence through a series of instructions.

Step through program one instruction at a time. After each instruction is executed, execution halts with the current value of the execution processor program counter and accumulator appearing on the display in the form "PC.234-56". System status is saved in the appropriate hardware registers. Execution resumes after a time determined by contents of hardware register 08. Does not affect the state of the breakpoint memories.

#### [AUTO BRK]

Display Response - "Abr."

Function — Automatically sequence between breakpoints.

Execute a series of instructions in real time between breakpoints. When breakpoint is encountered, halt EP temporarily while program counter and accumulator contents are displayed, then continue. Display is sustained after execution resumes. Does not affect the state of the breakpoint memories.

#### **Breakpoint Control Command Group**

Commands:

[B]

Display Response - "Stb."

Function - Breakpoint set.

Set breakpoint for the address given. Multiple breakpoints may be set by entering additional addresses, separated by the [NEXT/,] key. Command terminated by pressing [END/.]. Action taken is to fill the appropriate breakpoint memory locations with logical ones.

## [C]

Display Response - "CLb."

Function - Clear breakpoint.

Clear breakpoint for the address given. Multiple breakpoints may be cleared by entering additional addresses, separated by the [NEXT/,] key. Command terminated by pressing [END/.]. Action taken is to fill the appropriate breakpoint memory locations with logical zeroes.

Data types allowed:

[PROG MEM]

Display Response — "Pr."

Function — Break on program memory fetch.

Applies command to the program breakpoint memory space.

## [DATA MEM]

Display Response - "dA."

Function — Break on data memory access.

Applies command to the external data breakpoint memory space.

#### System Control Command Group

Command:

[SYS RST]

Display Response — "HSE-49."

Function - System reset.

Reset both the MP and EP and clear all breakpoints (requires approximately one second). CAUTION — If reset while EP is executing the user's program, the low order section of program memory (about 23 bytes) will be altered.

## VI. SYSTEM LIMITATIONS

In designing the HSE-49 emulator, certain compromises were made in an attempt to maximize the usefulness of the emulator while keeping the circuitry simple and inexpensive. As a result, the following limitations exist and must be taken into account when using the system.

- As explained in Section IV, user program execution is terminated (by single-stepping, breakpoints, pressing the [END/.] key, etc.) by forcing the execution processor to execute a "CALL" instruction to the mini-monitor. This uses one level of the EP subroutine stack. The EP PSW reflects the value of the stack pointer *after* processing this CALL. As a result, the value indicated for stack depth by examining the EP PSW (hardware register 01) is one greater than the depth when the break was initiated. The user program must not be using all eight levels of stack when a break is initiated or the bottom level will be destroyed.
- 2. User program is initiated (by the [GO] command or when resuming execution after a breakpoint, singlestepping, etc.) by forcing the EP to execute an "RETR" instruction. This will clear the EP interruptin-progress flip-flop. If the user program allows both external and timer interrupts to be enabled at the same time, care must be taken to avoid causing a break while the EP is within an interrupt servicing routine. No limitation is placed on breakpoints or single-stepping in the background program because of this.
- 3. When the user program execution is terminated (by a break, single-stepping, etc.) and later resumed, the EP timer/counter is restored to its value when the break occurred (unless modified by the user). The prescaler, however, will have changed. Thus, up to 31 machine cycles may be "lost" or "gained" if a break occurs while the timer is running.
- Timer interrupts occurring at the same time as an EP break may be ignored if the timer overflow occurs after breaking user program execution before the timer value is saved.
- 5. The 8049 "RET" and "RETR" instructions are each 1-byte, 2-cycle instructions. During the second cycle the byte following the return instruction is fetched and ignored. If a program breakpoint is set for a location following a "RET" or "RETR" instruction, a break will be initiated when the return is executed.

All mnemonics copyrighted © Intel Corporation 1976.

- Breakpoints should not be placed in the last 3 bytes of an EP memory bank (locations 7FDH-7FFH and 0FFDH-0FFFH). User program should not be singlestepped or auto-stepped through these locations.
- 7. Since I/O configuration is determined by external hardware rather than software, I/O modes may not be altered while a program is executing. (See Section VII for further details.)
- 8. The "ANL BUS,#nn" and "ORL BUS,#nn" instructions may not be used in the user program, as external hardware cannot properly restore these functions.
- 9. The memory bank select flag is not affected by the user program break sequence. Upon resuming execution with the [GO] command this flag will remain in the same state as before the preceding break. The flag may be cleared only by executing the [GO/RESET] or [SYS RST] commands.

## VII. HARDWARE CONFIGURATIONS

A number of control and status lines are available to the user. All are low-power Schottky TTL-compatible signals.

TP1 — Unused MP input.

TP2 - Unused MP output.

 $\ensuremath{\mathsf{TP3}}$  — User program suspended. Low when EP running user code. High when halted or running minimonitors.

TP4 — Breakpoint encountered. Normally low. Highlevel pulse generated when breakpoint passed. Useful for triggering logic analyzers, oscilloscopes, etc.

TP5 & TP6 — Memory matrix mode control. Select program vs. data RAM, link mapping configuration, etc. (See Appendix B for details.)

TP7 — Bus control. Low when MP controls common memory buses. High when EP controls memory buses.

The HSE-49 emulator hardware is designed to allow the user to reconfigure the system for a wide variety of different applications by installing or removing jumper wires or additional components. The schematics in Appendix A show the components needed for a variety of different configurations. In general, not all of the devices are required (or allowed) for any one configuration. The devices which are required are included in the following description.

The types of options allowed are divided below into several general classes and subdivided into mutuallyindependent features. Within some of these features there are numbered, mutually exclusive configurations; i.e., the serial interface (if desired) may use either current-loop or RS-232C current buffers, but not both at one time.

## **Standard Operating Configuration**

(Minimum system configurations — up to 4K program RAM; no data RAM; no serial interfaces; no execution processor I/O reconstruction.)

A. Basic 2K monitor from Appendix B:

Install resistors R4-R6 Install transistor Q1 Install crystals Y1-Y2 Install capacitors C5-C38 Install switches S1-S33 Install displays DS1-DS8 Install IC1-IC2 Install RP3-RP5 Install IC6-IC7 Install RP8 Install IC9 Install IC15-IC20 Install IC25-IC30 Install IC34 Install IC36-IC38 Install A1-A2 Install B1-B2 Install C1-C3 Install jumpers 13-15 Install jumpers 17-18 Install jumper 20

B. Expansion 2K monitor:

Install IC14 Remove jumper 17

## Serial Interface Buffer Selection

A. Current loop serial interfaces (4N46s) installed for use with full Intellec® Model 800 development system TTY port.

Install IC21-IC22 Install resistor R1-R3 Install jumpers 4-9 (Remove RS-232 jumpers)

B. RS-232C serial interfaces (MC1488 and MC1489) installed for use with CRT as output device for data dumps:

Install IC23-IC24 Install jumpers 1-3 Install jumpers 10-11 (Remove current-loop jumpers)

# External Data RAM Address Decoding Scheme for Execution Processor

A. Up to 16 pages of on-board external data RAM installed for execution processor (addresses 0 through 0FFFH = 4K bytes); port 2 used for addressing pages 0 through 15:

- Install jumpers 21-25 Install jumper 27 Install A5-A8 Install B5-B8 Install C5-C8
- B. One page of on-board external data RAM installed for execution processor (addresses 0 through 0FFH); port 2 not used for data addressing:

Install jumper 26 Install jumper 28 Install A5 Install B5 Install C5

Connect the outputs of IC20, pins 7, 9, 10, & 11 to the inputs of a 74LS21 AND gate (not shown). Connect the output to CE and CS inputs of A5-C5. (Note: these signals are all present at jumpers 21-24 on the schematics.)

## **Reconstructing I/O for Execution Processor**

- A. Application of port 2, pins P23-P20:
  - (1) Using P23-P20 for latched output data (used with "OUTL P2,A", "ANL P2,#data", and "ORL P2,#data" instructions):

Install IC31

(2) Using P23-P20 for interfacing to an 8243 in user's prototype:

Connect D3-D0 pins on IC31 socket to corresponding Q3-Q0 pins.

- B. Application of execution processor BUS:
  - (1) Use of BUS as latched output port ("OUTL BUS,A"):

Install IC32

# Appendix A Schematic Diagrams





Ram Memory



**Central Processor**
Appendix B Monitor Listings ASM48 HSE49, LNK PRINT(:LP:)

FIGE 1 ISIS-II MCS-48/UPI-41 MRCR0 ASSEMBLER, V3.0 HSE-49(TM) EMULATOR MONITOR VERSION 2.5 LOC OBJ LINE SOURCE STATEMENT 1 \$MRCROFILE NOGEN NOCOND XREF 2 \$TITLE("HSE-49(TH) EMULATUR MONITOR VERSION 2.5") 3. 5; 6 ; PROGRAM: HSE-49(TM) EMULITOR MONITOR YERS 2, 57789 7; 8 ; COPYRIGHT (C) 1979 9 ; 10 ; INTEL CORPORATION 11 ; 3665 BOMERS RVENUE 12; SONTA CLARA, CALIFORNIA 95851 13; 15 ; 16 : RESTRACT 17 ; ======= 18 ; 13 ; THIS PROGRAM CONTAINS THE SOFTWARE NECESSARY 10 RUN THE HSE-49(TM) 20 ; High-speed emulator for intel's MCS-48(TM) Frmily Frmily of Microcomputers. 21 ; THE ENGLATOR PROVIDES AN ASSORTMENT OF UTILITY FUNCTIONS FOR 22 ; DEVELOPING AND DEBUGGING 8049-BASED APPLICATIONS, INCLUDING THE 23 ; ABILITY TO ENTER AND MODIFY PROGRAMS IN PROGRAM RAM 24 : ALTER DATA: SINGLE-STEP SECTIONS OF A PROGRAM, AND EXECUTE PROGRAMS 25 ; RT SPEEDS OF UP TO 11 MHZ, WITH OK WITHOUT BREAKPOINTS ENGELED. 26 ; THE EMULATOR 15 DESCRIBED IN GREATER DEPTH IN INTEL'S APPLICATION NOTE 27 ; AP-55, "A HIGH-SPEED EMULATOR FOR INIEL MCS-48(TM) NICROCOMPUTERS." 28 . 29 : PROGRAM ORGANIZATION 31 ; 32 / THIS LISTING IS ORGANIZED AS FOLLOWS: 33 ; 34 ; INTRODUCTION AND KARDWARE OVERVIEW; 35 ; VARIABLE DECLARATION AND DEFINITION; 36 ; POWER-ON SYSTEM INITIALIZATION; 37 ; KEVBOARD COMMAND PARSER AND ASSOCIATED TABLES; 38 : IMPLEMENTATIONS OF THE PRIMARY CONMANDS; 39 ; DOTA ACCESSING UTILITY SUBROUTINES USED THROUGHOUT; 49 ; KEYBORKO SCANNING AND DISPLRY DRIVING SUBROUTINE; 41 ; KEYBOARD AND DISPLAY INTERFACING UTILITIES; 42 ; ROUTINES AND UTILITY SUBROUTINES WHICH INTERACT BETHEEN MP AND EP. 43 j 44 : 45 \$EJECT

## LUC ODJ LINE SUURCE STRIEMENT

4f. : 47 : INTRODUCTION AND HARDWARE OVERVIEW 42 : 322222322222 222 2222222 2222222 49 : 50 ; THE EMULATOR DESIGN USES TWO MICROPROCESSORS. ONE PROCESSOR CONTROLS 51 ; SYSTEM STATUS, INTERPRETS MONITOR COMMANDS, AND COMMUNICATES 52 ; with the outside world through the on-board keyboard, display, serial 53 ; INTERFACES, CONTROL SIGNALS, CTC. 54 / A SECOND PROCESSOR IS USED TO ACTUALLY 55 / EXECUTE THE USER'S PROGRAM UNDER THE CONTROL OF THE FIRST. 56 ; THESE PROCESSORS ARE REFERRED TO 57 ; THROUGHOUT THIS PROGRAM AS THE MASTER PROCESSOR (MP) AND EXECUTION 58 ; PROCESSOR (EP) RESPECTIVELY. 59 / 50 ; THE PROGRAM IN THIS LISTING IS EXECUTED BY THE MASTER PROCESSOR. 61 ; AT THE END OF THIS LISTING ARE SEVERAL SHORT "MINI-MONITOR OVERLAYS" 62 / WHICH THE EXECUTION PROCESSOR EXECUTES WHEN INTERHOTION BETWEEN THE 63 ; 100 PROCESSORS IS NECESSARY. 64 ; 65 ; THIS PROGRAM WAS WRITTEN USING A NUMBER OF MACROS TO HANDLE THE ALLOCATION 66 ; UF MPU RESOURCES (NORKING REGISTERS) INTERNAL RAM, AND MP MONITOR ROM 67 ; FOR CODE AND DATA STORAGE). THESE MACKO DEFINITIONS ARE INCLUDED IN A FILE 68 ; NAMED "ALLOC, MAC, " AND ARE PRINTED IN THIS LISTING FOR REFERENCE. 69 ; RNOTHER SET OF MACROS IS USED TO SIMPLIFY THE ACCESSING OF VARIABLES 79 ; STORED IN INTERNAL RAM (RS OPPOSED TO HORKING REGISTERS) BY USING R1 TO 71 : INDIRECTLY ADDRESS THE APPROPRIATE RAM LOCATION WHEN NECESSARY. 72 ; THESE MACROS ARE INCLUDED IN "MOPCOD. MAC", AND ARE ALSO PRINTED HERE. 73 ; COMPLETE UNDERSTRINDING OF THESE MACROS IS NOT REQUIRED TO UNDERSTRIND THE 74 ; MONITOR PROPER: ALL LINES WHICH ACTUALLY PRODUCE OBJECT CODE REPEAR IN 75 / THE LISTING ITSELF, INDENTED TWO SPACES FROM THE NORMAL THEOLATION COLUMNS. 76 ; THE ACTUAL MONITOR PROGRAM FOR THE EMULISTOR BEGINS AT APPROXIMATELY 77 ; SOURCE LINE NUMBER 500. 78 ; 79 ; LINES GENERATED BY MACRO EXPANSION ARE FLAGGED BY A PLUS SIGN ("+") 80 > IMMEDIATELY FOLLOWING THE SOURCE LINE NUMBER. 81 / A NUMBER OF LINES FROM THE VERIOUS MACRO DEFINITIONS WHICH DO NOT 32 / PRODUCE ANY OBJECT CODE ARE PROCESSED BY THE ASSEMBLER 83 : AS THESE MACROS ARE EXPANDED. WHEN THIS IS THE CASE, THESE LINES ARE 84 ; SUPPRESSED FROM THE LIST FILE. AS A RESULT, THE LINE NUMBERS AKE 85 / NOT ALWAY'S CONSECUTIVE WHERE A MACRO IS BEING INVOKED. 86 ; 87 ; NOTE: 88 ; ==== 89 ; "SOURCE-LINE" REFERS TO THE DECIMPL NUMBERS LEFT OF EACH INSTRUCTION. 90 ; RT THE END OF THE LISTING IS AN ASSEMBLY CROSS-REFERENCE THELE INDICATING 91 ; THE SEQUENTIAL SOURCE-LINE NUMBER OF ALL INSTANCES WHERE ANY VARIABLE 92 ; IS DEFINED OR REFERENCED. THIS WILL BE OF GREAT ASSISTANCE IN 93 > LOCATING SPECIFIC SUBROUTINES, ETC. IN THE LISTING. 94 ; 95 ; MNEMONICS COPYRIGHT (C) 1976 INTEL CORPORATION 96. : 97 \$EJECT

LOC	OBJ	LINE	Source statement
		98 \$	INCLUDE(:F0:RLLOC. NRC)
8666		= 99 ?R1	SET 0
		= 100 ;	
<b>9999</b>		= 101 ?RB9	EQU 0
0001		= 102 (?RB1	EQU 1
9692		= 193 ?RAM	EQU 2
0003		= 104 ?CONST	EQU 3
8884		= 195 ?8	EQU 4 ; Accumulator variable type
		= 185 ;	
		= 107 , THE FC	OLLOWING INITIBLIZES THE LINKED LIST POINTERS FOR
		= 108 ; The Re	EGISTER ALLOCATION AND DEALLOCATION ROUTINES.
		= 109 ;	
0003		= 110 ?B0R2	SET 3
0004		= 111 ?DØR3	SET 4
8865		= 112 ?80R4	SE1 5
8886		= 113 ?EØR5	SET 6
<b>800</b> 7		= 114 ?60R6	SET 7
9998		= 115 ?B9R7	SET 8
		= 116 ;	
0002		= 117 ?B0PNT	SET 2
		= 118 ;	
0003		= 119 ?61R2	SET 3
0004		= 120 ?B1R3	SET 4
0005	1	= 121 ?B1R4	SEI D
0000		= 122 %51K3	
00007		= 123 /B1KG	
0000	i	= 124 (D1K)	SEI 8
0001		- 12J ) - 40C 0040NT	CET 2
0002		= 120 (DIFN)	2 1.20
0000	1	- 120 000000	CET 090U
0000		- 120 OKOFO0	CT 4000
0100		= 129 OKOPOI = 139 OPOPO2	CET 2404
9290		= 171 066067	CTT (000H
8499		= 131 ORGPG4	SET 3001
8588		= 177 086965	SET SOUL
0688		= 134 ORGPG6	SET 600H
0700		= 135 ORGPG7	' SET 700H
		= 136 ;	
		= 137 \$EJECT	

	= 140 ; START OF ALLOCATION MACROS
	= 141 ;
	= 142 ; **********************************
	= 14? :
	= 144 2PSAVE MOORD SAMRON BANK, PNTYD
	- 145 TE ENTUGI FO 8
-	$= 140 \text{ Ir } \text{ (RIVIE Let 5)}$ $= 44C \qquad \text{(RIVIE Let 5)}$
-	- 140 Ennon 2 - 447 Evite
-	= 148 ENUT
	= 149 \$ SHYE UEN
•	= 150 SYTHOL SET REFINITION
-	= 151 \$ RESIDE
-	= 152 ?B&ERNK&PNT SET ?B&ERNK&R&FNTYHL
	= 153 ENDM
	= 154 /
	= 155 ;
982 <del>0</del>	= 156 (MINDX SET 20H
	= 157 ;
	= 158 ?MSRVE MACRO SYMBOL, LENGTH, RODR
	= 159 \$ SRVE GEN
••	= 160 SYMBOL EQU ADDR
-	= 161 \$ RESTORE
	= 162 ?MINDX SET ?MINDX+LENGTH
	= 163 FNDM
	= 164 :
	= 165 MRI OCK MACRO SYMBOL, LENGTH
_	
-	= 167 2MSRVE SVMRDL LENGTH, 22MINDX
	= 169 ENDM
	- 100 Linux
	- 1007 - 170 DECLOPE NOODO SUNDOL.TYPE
_	
-	
-	- 1/2 17 (%)TFEEX 2
-	
-	= 175 LNDIF
•	= 176 IF 2019PL EQ 0
-	= 177 ?KSRVE SYMBUL, 0, %?b0rn1
•	= 178 EXITM
-	= 179 ENDIF
	= 180 IF ?&TVPE EQ 1
••	= 181 ?RSRVE SYMBOL, 1, 2?B1PNT
-	= 182 EXITM
••	= 183 ENDIF
	= 184 ENDM
	= 185 ;
	= 186 \$ EJECY

LOC	OBJ	LINE	SOURCE S	TATEMENT				
		= 187 ;						
		= 188 ; R	EORG MACRO 1	O RESET THE INS	TRUCTION LOC	RTION COUNTER		
		= 189 ;	TO THE	FIRST FREE LOCK	ITIUNION THE	FIRST PHOE MU	DULL WILL	
		= 190 ;	FILWI	HIN.				
		= 191 KE	UKU MHUKU I DUC CEN	JUCHTION				
		- 122 +2	NYE GEN NPR	LOCATION				
		= 194 \$	FSTORF	LOCITION				
		= 195	ENDI					
		= 196 ;						
		= 197 ; 0	ODEBLK	MACRO TO FIND	A PAGE OF RO	M		
		= 198 ;	MHICH	This block of C	DE WILL FIT	WITHIN		
		= 199 CO	ideblik Mincro	LENGTH				
-		= 200 ?L	ENGTH SET	LENGTH				
		= 201 IF	HIGHO	CPG0+LENG(I+-1)	FF 0			
		= 202	KEUKU	AUKGPG8				
-		- 203 (1) - 204 EV	ARREST DEL	3				
		- 204 EA	1011F					
		= 200 L0		RGEGISLENGTH-1)	FR 1			
		= 207	REORG	ZORGFG1				
-		= 200 ??	START SET	\$				
		= 209 EX	am -					
-		= 210 EM	ND I F					
-		= 211 IF	F HIGH(O	RGPG2+LENGTH-1)	EQ 2			
		= 212	REORG	XORGPG2				
		= 213 ?	START SET	\$				
-		- 214 12	5118 0530					
		= 215 Lr = 216 18	101F F HTGH(O	POPG4+LENGTH-1)	F0 4			
•		= 210 11	REORG	2086964	Lu T			
-		= 218 ?	STRRT SET	\$				
		= 219 E	KITM					
		= 220 E	<b>VDIF</b>					
••		= 221 II	F HIGHKO	RGPG5+LENGTIH-1)	EQ 5			
		= 222	REORG	20RGPG5				
		= 223 ?	start set	\$				
••		= 224 E	KITM					
•		= 225 E			F0 (			
-		- 220 ll = 207	r HIUH(U DENDO	NUF 36*LENG (#*1/ 20000002	C& U			
-		- 221	TOPT SLT	2014 UF UD				
		= 220 :	2111X	*				
-		= 2%0 E	NDIF					
-		= 231 I	F HIGHCO	RGPG7+LENGTH-1)	EQ 7			
-		= 232	REURG	%ORGPG7				
-		= 233 ?	stari set	\$				
-		= 234 E	XITM					
		= 235 El	NDII					
-		= 236 II	F HIGH(C	RGPG3+LENGTH-1)	EQ 3			
•		= 237	REORG	ZURGPG3				
-		= 238 ?	SINKI SET	¢				
-		= 239 E	A11/7 NATE					
-		= 241	FRROP	Ø :***	INSUFFICIENT	SPACE FOR CO	de on any frige +	\$1;#
				-				

---..

LOC	obj	LINE	source st	RTEMENT					
		= 242	ENDH						
		= 243 ; DR	rablk	INSERTS	onto prge	3			
		= 244 DATA	iblk Macro	LENGTH					
-		= 245 ?LEI	NGTH SET	LENGTH					
••		= 246 IF	HIGH(ORG	PG3+LENG	TH-1) EQ 3	3			
		= 247	REORG	ZORGPG3					
		= 248 ?STI	ART SET	\$					
••		= 249 EXI	ſM						
-		= 250 END	lF						
-		= 251	ERROR	8	; ### INSUF	FICIENT SPACE	: for drtr	BLOCK ON PF	逛了***
		= 252	ENDM						
		= 253 ; ?5	IZE FRINTS F	LINE TO	THE SOURC	E FILE GIVING	g block st	<b>ZE</b>	
		= 254 ;	rind updr	ites appr	opriate of	RGPG#			
		= 255 ?SI	ze macro	BLK, PGE					
		= 256 \$\$81	VE GEN						
-		= 257 S	ize set bl	.K					
-		= 253 🤅							
-		= 259 ;**	******	******	****	****	******	*****	
•		= 260 IF	PLENGTH LT SI	ZE					
-		= 261	error	0	; *** SIZE	EXCEEDS SPACE	E CHECKED	for by codee	alk mincro
-		= 262 END	IF						
-		= 263 IF	H1GH(\$-1	.) NE HIG	H(?start)				
-		= 264	ERROR	0	;*≈≈ CODE	or data eloci	( ROLLED O	ver page bol	NDFRY ***
		= 265 END	IF						
-		= 266 \$RE	STORE						
••		= 267 ORG	PG&PGE	SET	\$				
		= 268	END						
		= 269 ; 51,	ZEUIK	CHECKS S	IZE OF FRE	LEDING BLUCK	PRINIS S	12E 10 . EST	FILE.
		= 270 512	LUNK MICKU			(A			
•		= 2/1	25124	%(\$~?51H	RID: ZHIGH	C2511RD			
		= 272	ENDM						
		= 273 ;							
		= 274 ;	N Dec		~ ~ ~				
		= 270 (KS	JUKLE	LUDE SPI	ILE HELUUN	HION SUMPRAY	SINUERLINI		
		= 275 KSU	UKUL MHUKU						
		= 277 3589	AF LISI OFN		00014-0-000			<u>т</u> а	
		= 278	PUSIZE	. SEI	UKUPU8-888	SH (BYIES	USED ON P	RULE 10	
-		= 279	PUSIZE	5E1	UKUPU1-100	SH JUYIES	USED UN M		
-		= 200	P05120		000002 200	9H (UY/ES	USED UN M	1NaL 2	
-		= 261	P05126	. 501	UKUPUS- 300	SH JBYIES	USED UN M	HULL J	
-		- 202	F05120		UKUPU9-908	971 (BY165	USED ON P	11012, 4 DOL 15	
		- 203	P05120	. 301 . CET	URUPU3~308	911 /BY1L5	USED ON M	nde J	
_		- 204	P05120	. DE1	000002.700	201 011C3	USED ON D		
-		- 200	FU3126		0601.01.166	971 (UTIES	USED ON PI	NUL (	
-		= 200 ¥EJI	STOPE						
		= 299	FUIN						
		- 200 - 200 AL 11	LIND11						
		- 209 <b>#C</b> JI							

LOC	uej	LINE	9	SOURCE ST	ATEMENT
		290	;		
		291	\$	INCLUDE	(FO: MOPCUD, MHC)
		= 292	;		
		= 293	; ?FURH1	nhcru	FOR GENERALIZING UPCODE INSTRUCTION
		= 294	;		
		= 295	?FORM1	MHCRU	OPCUDE, SKC
-		= 296	IF	?&SRC EQ	12
		= 297	\$	SHAF OFN	
•		= 298			KIJADAKU Companya
-		= 295	•	OFCODE	
-		= 3002	\$	RESTURE	
-		= 501	CHATC	EXIIM	
-		= 302	ENUIT		
		دلاد = 204 -	11	CONE CEN	A G UR / GEORG EG I
•		= _004	*		
-		- 200	*	UPUUUU	L TU DRU
-		= .900	*	FUTTH	
-		- 307	CHINTE	EVITU	
		= 308 - 700	LNUIF		n '/
-		- 369	ir A	COUT CON	n 7 7
		- 310	*		
-		- 311		DECTORE	
		- 242	*	EVITA	
		- 313		CUTIU	
		- 317	CHEATL	COOND	1
		= 313	FNDM	LANON	1
		= 310			
		= 718		MACRO	For general 121Ng noves from the ACC 10 A VARIABLE
		= 719	2F06142	NACRO	DES)
-		= 729	IF	24DEST E	EQ 2
•		= 321	\$	SAVE GET	N
-		= 322		MOV	R1, #DEST
-		= 323		MOV	eru A
-		= 324	\$	RESTORE	
-		= 325	i	EXITM	
-		= 326	ENDIF		
		= 327	IF	?&DEST I	EQ 0 OR ?&DEST EQ 1
		= 328	\$	SAVE GEI	N
-		= 329	:	MOY	DESTUR
-		= 338	\$	RESTORE	
-		= 331		EXITM	
		= 332	ENDIF		
-		= 333	;	ERROR	1
		= 334	ENDM		
		= 335	i ;		
		= 336	; ?Forms	MACRO	FOR GENERALIZING MOVES FROM THE ACC TO A VARIABLE
		= 337	';		NHEN IT IS KNOWN THAT R1 (IF NEEDED FOR INDIRECT ADDRESSING)
		= 338	; ;		IS ALREADY PRESET.
		= 339	PFORM3	MACRO	DEST
-		= 348	IF	?&DEST	EQ 2
-		= 341	\$	SRVE GE	N
-		= 342	2	MOA	eri, A
		= 343	3\$	RESTORE	
-		= 344	ł	EXITM	

= 346	IF 3	PADEST EQ 0 OR PADEST EQ 1
= 347	\$ 9	SAVE GEN
= 348		MOV DEST, A
= 349	\$ F	RESTORE
= 350	Ε	EXIIM
= 351	ENDIF	
= 352	E	EKROR 1
= 67	END#	
= 354	;	
= 355	: 2FORM4 1	NACRO FOR GENERALIZING YMOV AUSRCY INSTRUCTION
= 356	2F0814	MRCRO SKC
= 7572	IF	ZASRC FR 2
= 358	\$ (	CAVE DEN
= 350	• •	MANY R1.#SIAC
= 769		MOV A. MP4
- 200	* 1	DECT ORE
- 301	• •	REDIORE FYITM
- 302	ENDIE	
- 303 - 764	10 1	24CDC 50 0 00 24CDC 50 4
- 254	11 : • •	CONFICENT OF CONFICENT
- 360	* :	HOL O CTC
= <u>⊰</u> bb		NUY NI SKU
= 367	\$ 1	KESTORE
= 368		LXIIn
= 369	ENDIF	
= 370	IF	?&SRC EQ 3
= 371	\$	SAVE GEN
= 372		MOV A, #SRC
= 373	\$	RESTORE
= 374	I	EXITM
= 375	ENDIF	
= 376	I	ERROR 1
= 377	ENDM	
= 378	;	
= 379	; ?Forms I	MACRO FOR GENERALIZING NOVING A CONSTANT INTO A VARIABLE
= 380	?FORM5 I	MACKO DEST, CONST
= 381	1F (	PADEST ER 0 OR PADEST ER 1 OR PADEST ER 4
= 302	\$ 5	Save gen
= 383		MOY DEST, #CONST
= 384	\$ 1	RESTORE
= 385	1	EXITM
= 386	ENDIF	
= 387	IF	?&DEST EQ 2
= 798	\$ 0	SRVE GEN
= 369	•	MOV R1. MORST
= 399		NOV ALL ACONST
= 791	e s	PESTAPE
- 371	* r r	
- 202		
- 393	CNUIP r	CDD00 4
= 394	THE M	LKKUK 1
- CV2 =		
- 550	, MANDER -	HORDO - OFNITTRY INFO MOUT FROM CRO TO NECT
=	FINDUY P	nnuku – Genekrilizeu nuve ikun Sku iu desi
= 398	nanU∀ P	THUKU UESI/SKU
= 399	11- 1	YESKU EQ S

··· ··· ·-·-

> •• ... ••• _ ---•• ------_ ... ---.. -_ ••• • _

---

10C	0EJ	LINE	Source st	RIEMENT
		= 499	2EORM5	DEST. SRC
•-		= 491	EX) TM	
		= 402 FNDT	F	
-		= 447 1F	20DEST E	Q 4
		= 404	2FORM1	MOV, SRC
		= 495	EXITM	
-		= 486 ENDI	F	
-		= 407 IF	?&SRC EQ	4
		= 408	?FORM2	DEST
-		= 409	EXITM	
•·		= 410 ENDI	r	
-		= 411	?FORM1	MOV, SRC
-		= 412	2F <b>0RM</b> 2	DEST
		= 413 ENDM	1	
		= 414 ; 281	NOP MRCKO	GENERALIZES HRITHMETIC HND LUGICAL UPERRITUNS
		= 415 %BIM	NP PHECKU	OPCODE/DEST/SRC
-		= 416 11	PRDEST E	N 4
-		- 417	2 UNTEL	UPCUDE, SKU
		- 440 FMB	EVI (6	
-		- 412 LINUS - 420 IL	.r 20500 60	1 4
		= 424	2EODMA	OPPODE, DEST
		= 422	2FORMS	DECT
-		= 427	FXITH	
••		= 424 END)	F	
•-		= 425	2FORM1	MOV, SKC
-		= 426	?FORM1	OPCODE, DEST
		= 427	?Form3	DEST
		= 428 ENDA	1	
		= 429 ; MAL	XD MACRO	FOR GENERALIZING ROD INSTRUCTION
		= 430 MRDI	) Mikcro	DEST, SRC
-		= 431	?BINOP	RDD, DEST, SRC
		= 432	ENDM	
		= 433 ;		
		= 434 ; MHL	ADU MANUKU	FOR GENERALIZING HODU INSTRUCTION
		= 430 MHU	20 MHUKU 20 MOD	DEDIVERU
-		- 430	(DINUP)	NUUG DESTI SKU
		= 438 :	ENUT	
		= 439 ; MAI	กสาคพ แห	FOR GENERALIZING AN INSTRUCTION
		= 449 MAN	MACRO	DEST, SRC
		= 441	?BINOP	ANL, DEST, SRC
		= 442	ENDM	
		= 443 ;		
		= 444 ; MOI	rl Macro	FOR GENERALIZING ORL INSTRUCTION
		= 445 MORI	. MACRO	DEST, SRC
•		= 446	?BINOP	ORL: DEST; SRC
		= 447	ENDM	
		= 448 ;		
		= 449 ; MXI	al Mhero	FOR GENERALIZING XRL INSTRUCTION
		= 450 MXRI	MACRO	DEST, SRC
-		= 451	?BINOP	XRL, DEST, SRC
		= 452	ENDM	
		= 453 ; - 454		
		= 404 / MXI	um mhiuku	FUK GENERALIZING ACH INSTRUCTION

LOC	06j	LINE		SOURCE S	TRTEMENT	
		= 455	MXCH	MACRO	DEST, SRC	
-		= 456		?BINOP	XCH, DEST,	SRC
		= 457		ENDM		
		= 458	;			
		= 459	2UNRRY	MACRO	OPCODE, DE	ST
-		= 468		?FORM1	HOY, DEST	
-		= 461	\$SAVE (	GEN		
-		= 462		OPCOD	ε	A
-		= 463	\$RESTO	RE		
		= 464		?Form3	DEST	
		= 465		ENDM		
		= 466	;			
		= 467	MINC	MRCRO	dest	
-		= 468		?UNARY	INC, DEST	
		= 469		ENDM		
		= 470	;			
		= 471	MDEC	MACRO	DEST	
-		= 472		?UNARY	DEC, DEST	
		= 473		ENDM		
		= 474	;			
		= 475	MDJNZ	MACRO	Dest, addr	
-		= 476		?UNARY	DEC, DEST	
-		= 477	\$SHVE	GEN		
••		= 4/8		JNZ	ROOK	
••		= 4/9	\$KESTU	KE CARA		
		= 480		ENDI		
		= 481	j MDI	MOCEO	NECT	
		= 462	<b>NKL</b>	DINODU		
-		= 403 - 404		2 UNINK T	KL) VLDI	
		- 464 - 495		CONT		
		= 496	, MDD	MACEU	NECT	
		= 497	THENE.	210025	RR. DEST	
		= 403		ENDM		
		= 489	:	121 127 1		
		= 490	MRRC	NACEO	DEST	
-		= 491		?UNRRY	KRC, DEST	
		= 492		ENDM		
		= 493	;			
		= 494	MRLC	MACRO	DEST	
-		= 495		?UNARY	RLC, DEST	
		= 496		ENDM		
		= 497	;			
		= 498	\$EJECT			

LOC OBJ	LINE	Source 9	STRIEMENT	
	499 :			
	500 ;===	********		
	501 ;===	*******		24257355%£%2¥325277555542445555555
	582 ;		BEGINNING	of program proper
	503;===			119910120000000000000000000000000000000
	584 ;===	4952332233		zifilekeskezistzsskekssiste
	505 🗯			
	5 <b>86</b> (			
	507 ; ***		******	************
	588			
	5 <b>89</b> ;	RLLOCR	TION OF MP I	/O PORTS:
	510 ;			
	511 ; ***	****	*****	*****************
	512 ;	<b>5</b> -1-17		
	513 3	805	j U	SED FOR BIDIRECTIONNEL HOOKESS HAND DHIN TRANSFERS
	514 ;	11	j () . 11	SED IS INDIVIDUAL CONTROL COTPUTS AND BREAK LUGIC
	313 j 54/ .	P2	in	TOM-OKDER HOURESS HAV HOURESS SPRUE SELECTION
0000	J10 /		07 .11	CEN TO ENODIE CHOROCTERS OND STRORE DOLLS (15 VENDOUD)
GOOL	540 DCE0	11 EQU 11 EQU	ע אין	SED TO ENHALE CHARGERS AND STRUDE ROAD OF RETOURKD
9000 9000	549 PCE	30 E00	PS - 10	OPT FOR LOURD FOUR CERMENTS OF CORRECT ENHALLY VIGIT
AMAR	529 PINE	NI FOU	P4 :P	OPT INSEN TO SCIAN FOR KEV CLASINES
	521 :	UI Lao	14 71	or out of some for her ocounts
	522;***	*****	*****	*****
	523 ;			
	524 ;	INDIVI	DUAL PINS OF	PORT 1 USED AS FOLLOWS:
	525 ;			
	526 ; 🕬	****	*****	********
	527;			
0001	528 ENER	rnm Equ	00000001B	; p10 - HI Enribles break on break ran output signal
6662	529 ENBL	.NK EQU	<b>90069010</b> 5	; P11 - HI ENABLES BREAK ON RD OR HR TO LINK BY EP
	530			(NOTE: P11 & P10 BOTH HI ENABLES
	531			; Ereak on any EP instruction cycle)
0004	532 EPS9	STP EQU	00000100B	; P12 - LO FORCES EP SS INPUT LON
	533			; HI GRTES BREAKPOINT FLIP-FLOP TO EP SS INPUT.
0008	534 CLRE	FF EQU	88661066C	P13 - LO CLERRS BREAK FLIP-FLOP
	5.55			FIND ENHBLES AR CONTROL TO BREAKPOINT RIM.
0010	536 EPKS	21 EQU	6661.6666B	7P14 - HI RESETS EF
0020	537 MUUL 520	101 260	001000008	(11) - LU WHEN EP IS EXECUTING USER PROGRAM
0040	338 570 JTU		04000000	HI WHEN EF FRUZEN UK KUNNING UVENLING.
0010	540	01 660	OTOOOOOOO	PTO " DENINE, UUTPUT TU TTY UK UKT 1947 INNKED
	544			ALTU OUNDER
	542 6510	-CT		
	J72 \$2J0	.01		

544 ; 545 ; INDIVIDUAL PINS OF PORT 2 USED AS FOLLOWS: 546 ; 548 ; 549; #ADR11-ADK8 FOR ACCESSING PROGRAM OR DATA RAM ARRAY P23-P20 550 ; 000100008 ; P24 - MEMORY MATRIX CONTROL PIN 0 551 MØ EQU 552 M EQU 00100000B ; P25 - MEMORY MATRIX CONTROL PIN 1 010000008 ; P26 - HIGH WHEN MP IN CONTROL OF COMMON MEM ARRAY, 553 NPUSEL EQU LOW WHEN EP IN CONTROL. 554 ; 555 EXPMON EQU 10000008 #P27 - JUMPERED TO GROUND FOR STANDARD MONITOR, FLORTING WHEN EXPONSION MONITOR PRESENT. 556 į. 557 ; 558 ; 559 ; WHEN MP IN CONTROL OF MEMORY MATRIX M1-H0 USED AS FOLLOWS: 569 561 ; M1 M0 MODE 0 0 PROGRAM RAM ARRAY ENABLED FOR READ & WRITE 562 ; 0 1 DATA RAM HRRAY ENABLED FOR READ & WRITE 563 ; 1 X LINK REGISTER ENABLED FOR READ, RAM ARRRY'S DISABLED. 564 ; (NOTE: LINK REGISTER ALWAYS ENABLED FOR MP HRITES) 565 ; 566 ; 567 ; WHEN EP IN CONTROL OF MATRIX M1-M0 USED AS FOLLOWS: 568 ; 569 ; M1 M9 MODE 0 X EP HSEN FETCHES FROM LINK REGISTER (USED 10 FORCE OFCODES) 570 : 571 ; 1 0 EP PSEN FETCHES FROM PROGRAM RAM ARRAY, 572; EP RD & WR CONTROL DATA RAM ARRAY. 573 ; 1 1 EP PSEN FETCHES FROM PROGRAM RAM ARRAY, 574 🦻 RD & HR CONTROL LINK REGISTER. 575 ; 576 \$EJECT

6666

LOC	0B'ì	LINE	9	SOURCE S	STRTEMENT	
		577	j			
		578	;	*****	*****	***********
		579	;			
		580	;	SYSTEM	CONSTRNT	DEFINITIONS:
		581	;			
		582	; *****	******	lenkaj: skoslenkoskoskoskoskoskoskoskoskoskoskoskosko skoslena (* 1940) 1940 - Jan Sandar Sa	***********
		583	;			
		584	DECLARE	CHARNO,	CONST	; NUMBER OF DIGITS IN DISPLAY AND ROMS OF KEYS
0008	3	598		CHARNO	EWU	8
		599	;			
		600	DECLARE	NCOLS, (	CONST	LESSER DIMENSION OF KEVBORRD MATRIX
899	ţ	614		NCOLS	EQU	4
		615	;			
		616	DECLARE	DEBNCE	CONST	NUMBER OF SUCESSIVE SCRWS BEFORE KEY CLOSURE ACCEPTED
066	3	630		DEBNCE	EQU	8
		631	;			
		632	DECLARE	OVSIZE.	CONST	; SIZE OF LARGEST MINI-MONITOR OVERLAY FOR EP
<b>001</b>	7	646		OVSIZE	EQU	23
		647	;			
		648	DECLARE	DUFLEN	, CONST	LENGTH OF HEX FORMAT XMIT BUFFER (NAX RECORD LENGTH)
001	9	662		BUFLEN	EQU	16
		663	;			
		664	; ******	*****	*****	***********
		665	3			
		666	;	UTILIT	y constrik	IT DECLARATIONS
		667	i			
		668	;*****	*****	*******	***************************************
		669	;			
		679	DECLARE	ZERO, C	onst	
000	9	684	ZEKO	EQU	0	
		685	DECLARE	PLUS1,	CONST	
999	1	699	PLUS1	EQU	1	
		700	DECLARE	PLUS3,	CONST	
999	3	714	PLU53	lqu	3	
		715	DECLARE	NEG1, C	ONST	
FFF	F	729	NEG1	EQU	-1	
		730	;			
		731	\$EJECT			

LOC	08J	LINE	SOURCE STRTEMENT
		732 (	
		733 ; ***	************************
		73 <b>4</b> ;	
		735 (	BANK Ø REGISTER ALLOCATION:
		736	
		737 ; ***	***************************************
		738 i	
		739 DECL	, RRE LDATA, RB0 , DATA USED BY LOGICAL ADDRESSING READ/WRITE UTILITIES
0602		752+	ldrtr set r2
		756 DECL	are key, rog ; holds keycode returned from Ked input routine.
<b>880</b> 3	:	769+	KEY SET R3
		773 DECL	ARE ITMP, REØ COUNTER USED AS AN INDEX IN PARSER ROUTINE
8994	ļ	786+	INMP SET R4
		790 DECL	ARE CHKSUM RB0 ; CHECKSUM OF DATA DYTES TRANSMITTED IN HEX FILE FORMAT
0005		803+	CHKSUM SET R5
		807 DECL	ARE DSPTMP, RB0 ; TEMPORARY STORAGE FOR DISPLAY PRITERNS IN 'DSPHCU'
<b>000</b> G	5	820+	DSPTMP SET RG
	_	824 DECL	ARE XPCODE, REG ; EXPRISION MONITUR ROUTINE CODE NUMBER
0007	,	837+	XPUUDE SET R7
		841 ; 042 : http:	
		342 j#33	***************************************
		043 7	DONE 4 DECISIED OF OCOTION
		945	CONNY I REGISTER HELOCATION
		846 : sets	
		847 :	
		S48 DECL	ARE ROTPAT, RB1 ; USED TO HOLD INPUT PATTERN BEING ROTATED THROUGH CY
0002	2	865+	ROIPAT SET K2
	-	869 DECL	ARE ROTCHT, RB1 ; COUNTS NUMBER OF DITS ROTATED THROUGH CV
0003	2	886+	ROTONT SET K3
		890 DECL	ARE LASTRY, RB1 ; HOLDS KEY POSITION OF LAST KEY DEPRESSION DETECTED
0004	ļ	<b>997</b> +	LASTKY SET R4
		911 DECL	ARE CURDIG, RB1 ; HOLDS POSITION OF NEXT CHRRRCTER TO BE DISHLAYED
8885	5	928+	CURDIG SET R5
		932 DECL	ARE KEYFLG, RB1 ; FLAG TO DETECT NHEN ALL KEYS ARE RELEASED
8886	5	949+	KEYFLG SET RG
		953	(REGISTER 7 NUT USED FOR PRIMARY MONITOR)
		954 ;	
		955 ; ***	***************************************
		956 \$EJE	CT

LOC	OBJ	LINE	SOURCE STATEME	NT
		957 ;		
		958 ; xalakakak	****	************
		9 <b>5</b> 9 ;		
		960;	data RRM Allo	CRIION
		9 <b>61</b> ;		
		962 ; ######	******	*********************
		963 ;		
		964 Declare	EPACC, RAM	; storage in MP for EP accumulator
0020		969+	efacc equ	32
		973 Declare	EPPSN, RAM	; storage in MP for EP program status word
0021		978+	Eppsn Equ	33
		982 Declare	E EPTINR, RRM	; STORAGE IN MP FOR EP TIMER/COUNTER REGISTER
<b>00</b> 22		907+	EPTINR EQU	34
		991 DECLARI	e epro, ram	STORAGE IN MP FOR EP REGISTER 0 OF BRNK 0
<b>002</b> 3		996+	epro equ	35
		1000 DECLAR	e eppclo, kan	STORAGE IN MP FOR LOW BYTE OF EP PROGRAM COUNTER
0024		1995+	EPPCLO EQU	36
		1009 DECLAR	E EPPCHI, RAM	STORAGE IN MP FOR HIGH NIBBLE OF EP PRUGRAM COUNTER
<b>9</b> 925		1014+	EPPCIAL EQU	
-		1018 DECLAR	E HEITLO, RRM	PRRAMETER 1 FOR SERIAL LINK DHIH RHIE GENERBIUR
8626		1023+	HBIILO EGO	
		1027 DECLINK	E HISTINI, KHIM	PHARMETER 2 FOR SERING LINK DHIH KHIE GENERHIOK
0027		10.52+	RETIRI EQU	53 AND ALL AND ALL AND ALL AND ALL ADDRESS AND ALL AND ALL ADDRESS AND AND AND ALL ADDRESS AND
0000		1036 DECLAR		STARAMETER FOR HUTU-STEP AND HUTU-BREAK SEQUENCING RATE
0028		10414	USPTIN LOU	
		1045 DECLINA 4050	L YERSNU, KHIT	FIUNTIOK VERSION NUMBER
0029		10001	YEKSNU EGU	
0000		1004 DECLINK		
00211		10021	NREUN ENU	92
0020		1003 DEULINA 40001	LINKLOD/KRIR	, (UNUSED)
0020		10001	FUNCTOR DOM	• (INEKED)
0000		1072 020200	LINEGO ENH	
0020		10011	F HOFGD, DOM	······································
8926		19864	HAREON FOUL	45
ODED		1899 0501 69	F HREGE ROM	: (INISED)
8921		1995-	HREGE FOIL	46
OOLL		1999 DECLAP	F HEFRE, PRM	: (INISED)
8821		1104+	HREGE FOIL	47
		1198 DECLOR	E SMRLO, ROM	; PRIMRRY COMMAND STARTING MEMORY ADDRESS (LON BYTE)
8939		1113+	Shalu equ	48
		1117 DECLAR	E SMAHI, RAM	; PRIMARY COMMAND STARTING MEMORY ADDRESS (HIGH BYTE)
<b>00</b> 31		1122+	SMRKI EQU	49
		1126 DECLAR	e emplo, ram	; PRIMARY' COMMAND ENDING MEMORY' ADDRESS (LON BYTE)
8032		1131+	LMALO LQU	59
		1135 DECLAR	e email, ram	; PRIMARY COMMAND ENDING MEMORY ADDRESS (HIGH BYTE)
8633		1140+	emrhi equ	51
		1144 DECLAR	e menilo, ram	; Third Parser Parameter & Hex Record Address (Low)
<b>80</b> 34		1149+	MEMLO EQU	52
		1153 DECLAR	E MENHIJ RAM	; Third Parser Parameter & Hex Record Address (High)
<b>00</b> 35		1158+	MENHI EQU	53
		1162 DECLAR	E BCODE, RRM	; PRIMARY COMMAND NUMBER FROM PARSER TABLES (0-8)
9936		1167+	BCODE EQU	54
		1171 DECLAR	e type, rrm	; FRIMARY COMMAND MODIFIER/OPTION (0-5)
<b>00</b> 37		1176+	type equ	55

				AND A A A A A A A A A A A A A A A A A A
9979	44042		57	TREES FORMER ODED IN DERKINNE HIRDER HIDLED
0035	4400 0001 000	NEVIDI DOM	51	- CHORDONTED DOCITION FOR NICE OF UTILINIES TO HETE NEW
9970	12074		59	SUMMARIES TO STITUTION TO STOLEN ON ETTER TO MALE NEW
1 KOO	12031 1207 DECLOPE	KENDLE DOM		POSITION OF KEY DEBOUNCED BY SCRIMING SUPPORTING
997E	1201 DECENINE	KODOOL KIIII	50	STOSTION OF REP DEDOUCED BY SCHWING SOUROTINE
0030	1216 0501 055	KEVIOC DON	55	INCREMENTED OS SUCCESSIVE KEV LOCATIONS SCANNED
7599	12210 DECENTE	KEVLOC FOIL	69	TRAKENENTED INS SOCIESSIVE KET EGGITTORS SOMMED
0050	1225 DEDLARE	NEFETS, PRM		: KEEPS TRACK OF SUCCESSIVE READS OF SAME KEYSTROKE
0970	1220 02021112	NREPTS LOU	64	
0030	1234 DECLORE	ASAVE, 2RM	01	; Kolds action rator value during service routine
MARE	12794	ASAVE FOIL	62	
0032	1243 DECLARE	RDFLRV, ROM		COUNTER DECREMENTED WIEN OUTD-STEP DELAY IN PROGRESS
89%E	12483	RDFL 65' FRI	63	
00031	1252 DECLERE	STRTMP, RAM		; INDEX POINTER FOR DISPLAY CHARACTER STRING ACCESSING
9949	1257+	STRTMP FOIL	64	
	1261 DECLORE	RUFCNI, RBM	•.	COUNT OF DATE BYTES IN HEX FORMET RECORD BUFFER
9641	1266+	BUECNT FOIL	65	
	1270 DECLARE	RECTYP, RAM		; TYPE OF HEX FORMER RECORD (0 OR 1)
8842	1275+	RECTYP EQU	66	
	1279 DECLARE	B, RRM		BIT COUNTER FOR ASCIT SERIAL 1/0 UTILITY SUBROUTINES
0043	1284+	B EQU	67	
	1288 DECLARE	REGC, RPM	•	; CHARACTER BEING SHIFTED DURING SERIAL 1/0 PROCESS
8944	1293+	REGC EQU	68	
	1297 DECLARE	H RAM		; Counter in software delay data rate generator
0045	1302+	H EQU	69	
	1306 ;			
	1307 MBLOCK	SEGMAP, CHARM	10	REGISTER ARRAY FOR DISPLAY PATTERNS
8946	1311+	SEGNRP EQU	79	
	1314 ;			
	1315 MBLOCK	OVEUF, OVSIZE	-	LON-ORDER USER PROGRAM DURING MINI-MONITOR OVERLAYS
004E	1319+	OYBUF LQU	78	
	1322 ;			
	1323 MBLOCK	HEXBUF, BUFLE	EN .	; Allocate bluck of RAM for use as hex record buffer
9965	1327+	HEXBUF EQU	19	1
	1330;			
	1331 \$EJECT			

LOC	06)	LINE	source s	IRTEMENT		
		1332	Datably	40		
0300		1337+	ORG	768		
		1341 ; INVRL9	TRELE OF	F Consta	NTS 10 BE LORDED	INTO MP INTERNAL RAM VARIABLES
		1342 ;	<b>RS PART</b>	OF SYST	EN INITIALIZATIO	N PROCEDURE :
		1343 🗯				
		1344 ;	INITIAL	VALUE	VARIABLE	TYPE
		1345 ;	2222222		11957223	====
0300	00	1346 INVALS:	DB	00H	ROTPAT	KB1
0301	99	1347	DB	99H	> ROTONT	RB1
0302	<b>9</b> 9	1348	DB	99H	; lristky	RB1
0303	98	1349	08	CHARNO	; CURD1G	RB1
0304	<b>89</b>	1350	DE	00H	; KEYFLG	RB1
0305	00	1351	DR	<b>99</b> H	; <reg7></reg7>	RB1
8396	99	1352	DB	09H	; EPRCC	KHM
0307	01	1353	DB	01H	; EPPSN	RBM
0308	00	1354	DB	00K	FEPTIMR	RAM
0309	- 00	1355	DE	00K	; EPRO	RAM
030A	- 00	1356	DB	00H1	; EPPCLO	RAM
0308	80	1357	DB	00H	; EPPCHI	RBM
030C	93	1358	DE	93H	;HBITLO	RAM
0300	94	1359	DE	<b>04</b> K	;HBITHI	RAM
030E	20	1360	DE	20H	DSPTIM	RAM
030F	25	1361	DB	25H	; VERSNO	RAM
0310	99	1362	DB	00H	; hrega	RAM
0311	. 00	1363	DB	00H	; HREGB	RAM
0312	200	1364	DE	00K	; HREGC	RAM
0313	60	1365	DB	90H	; HIREGD	RAM
0314	66	1366	DB	00H	; HREGE	RHM
0315	60	1367	DE	00K	HREGF	RAM
0316	90	1368	DB	96H	; SMHLU	RHP
0317	. 88	1369	DE	86H	S SMERI	Khiri Form
0318	B FF	1370	06	METH	; EFFELU	RHT .
0315	104	13/1	DB DB	69FH	jEmmil	
0311	100	1372	DR	660K	; MEMLU	KHP
0316	6 666	1373	00	0001	J REPHI	
0310	. 1910	1379	015 NO	101011i		KNPI DOM
0311	· 104	13/3	ND	040		KNH DOM
0310	. 01	13/0	V6 N0	000		ROM
0316	00	13(7	00	20071 CLIODNO	ACTO	RDFI DOM
0320	100	1370	00	OCCU OCCU	/ NEATEL	NT#1 DOM
0321	L FT 5 00	1372	00	00011		KNH COM
00000		1200 MOUDIC	00	CONT C. TAUCH	C	K/W1
002.	•	1301 NUTRES	CT7CMB	** 100900L		
99277	,	1302	CET 7	5		
0023	•	17964 :	201 2	iu Iu		
		17874: ****	takakaka kakaka	n kakaka kaka kaka kaka kaka kaka kaka	****	
		1796 45 1501		******		
		4070 467601				

LOC	obj	LINE S	Source St	RTENENT
		1797 \$		( FRI PARSER MOD)
		=1398	CODEBLK	45
0000		=1403+	ORG	0
		=1407 ; INIT	INITIAL	izes processor registers
		=1495 ;	and Ram	LOCATIONS TO DEFINED VALUES.
9999	C5	=1409 INIT:	SEL	K30
0001	BF00	=1410	MOY	XPCODE, #0
0003	7401	=1411	Call	XPTEST
0005	27	=1412	CLR	A
8886	3D	=1413	MOVD	PSEGLO, R
0007	3E	=1414	MOYD	PSEGHL R
<b>800</b> 8	D81A	=1415	MOV	R0, #1AH ; START AT KC1 (REG2) = RRM LOC 1AH
889R	8923	=1416	MOV	R1, #LON NOVRLS
000C	BAGO	=1417	MOV	R2, HLON INVALS
999E	FA	=1418 INITLP:	MOY	A, R2
060F	E3	=1419	MOVP3	A 8A
0010	80	=1429	MOY	ero, r
<b>0011</b>	18	=1421	INC	RØ
<b>001</b> 2	1A	=1422	INC	K2
<b>001</b> 3	E90E	=1423	djnz	RL INITLP
<b>001</b> 5	55	=1424	STRT	T
<b>001</b> 6	744F	=1425	CRLL	eperk
<b>001</b> 8	1:886	=1426	MOV	R0,#LOW(OV1BRS+OVSIZE)
001R	74GR	=1427	Crill	OVLORD
001C	54E5	=1428	Call	CONFIL
001E	B937	=1429	MOV	R1, #TYPE
0020	11	=1430	INC	er1
0021	34F2	=1431	CHLL	INCSHR
0023	54E5	=1432	CALL	CONFIL
6925	99EF	=1433	ANL	P1, #(NOT EPRSET) ; REMOVE EP RESET SIGNAL.
0027	0429	=1434	JNP	MRIN
		=1435 ;		
		=1436	SIZECHK	
0029		=14394 SIZE	SET 4	1
		=1449+;		
		=1441+; ******	******	***************************************
		=1450 \$EJECT		

Source statement LINE =1451 ; =1452 ; Keyborrd Layout : =1453 ; ineralis irlens =1454 ; =1455 ; ------=1456 ; ! LIST !!GO/RESET!! GO !!EXAM/CHI!! C !! D !! E !! F ! =1457 ; 11 1 1 11 11 11 =1458 ; ! !! !! -----=1459 ; ----=1469 ; ! !!PROG_BRK!!PROG_MEN!!REGISTER! ! !! !! !! =1461 ; . ! UPLOAD !! ...... !! ...... !! ...... ! ! 8 !! 9 !! A !! B ! =1462 ; ! !!AUTO STP!!SING STP!! NO BRK ! ! !! !! !! =1463; =1464 ; -----=1465 ; ----!! !!DRTA DRK!!DRTA MEN!! =1466 ; =1467 ; ! DNLORD !! ----- !! CLR/PREV! ! 4 !! 5 !! 6 !! 7 ! =1468 ; ! !!AUTO BRK!!WITH BRK!! <u>. . . . . . .</u> I =1469 ; ----_ _ _ =1470 ; -- -..... =1471; ! !! !! !! !! !! 11 11 =1472; ! FILL !!HARD REG!! NEXT/; !! END/ ! ! 0 !! 1 !! 2 !! 3 ! **=1473**; ! !! !! !! !! !! !! !! !! ------=1474 ; ----=1475 ; =1476 \$LJECT

LOC OBJ

		100 11		CHARLES DETERMINES HUN THE PRISER INTERPRETS
	=1479 ;	VALUES	5 RETURNE	D BY THE KEYBORRD SCRINNING INFUT ROUTINE
	=1480 ;	HHEN	THE VARIO	lus keys of the Keyborrd are pressed.
	=1481 ;			
	=1482 ;			
	=1483 ; KEY0	EQU	00H	VALUE RETURNED FOR EACH KEY OF KEYBOARD MATRIX
	=1484 ; KEY1	EQU	01H	EN' KEYBURRD SCANNING SUBROUTINE "KEDIN".
	=1485 ; KEY2	EQU	02H	
	=1486 ; KEY3	EQU	03H	
	=1487 ; KEV4	EQU	84H	10 10 110 11E 11F 1 900 100 10E 10F 1
	=1488 ; KEY5	EGU	851	++++++++++-
	=1489 ; KEY6	EQU	96H	<u>! 18 ! 19 ! 18 ! 18 ! ! 08 ! 09 ! 00 ! 08 !</u>
	=1490 ; KEY7	EQU	07H	{
	=1491 ; KEY8	EQU	ØSH	<u>14   15   16   17     04   05   06   07  </u>
	=1492 ; KEY9	EQU	89K	*
	=1493 ; KEYA	EQU	ØRH	<u>18   11   12   13     90   91   92   93  </u>
	=1494 ; KEYE	EQU	ØBH	{=:===================================
	=1495 KEYC	EQU	0CH	
	=1496 ; KEYD	EQU	ØDH	
	=1497 ; KEYE	EQU	ØEH	
	=1498 ; KEYE	EQU	ØFH	
0010	=1499 KEYETI	EQU	100	;[FILL_COMMEND]
6612	=1500 KEYNXT	EQU	12H	(INEXT/) ]
0013	=1501 KEYEND	) EQU	13H	(END/ ]
8914	=1502 KEVREL	EQU	14H	F DOWNLORD COMMAND 1
0015	=1503 KEYPAT	equ	158	FLAUTOBREAK MODIFIER ]
0016	=1504 KEYDM	EQU	16H	I LURTR MEMORY NODIFIER]
8917	=1505 KEYCLE	EQU	171	; [ (LEAR/PREVIOUS ]
0018	=1506 KE\'REC	EQU	18H	; [UPLORD COMMEND]
0019	=1507 KEYTRE	EQU	191	( AUTOSTEP MODIFIER)
001A	=1508 KEYPM	EQU	188	[ PROGRAM MENORY MODIFIER ]
001B	=1509 KEYRE(	G EQU	184	FREGISTER MEMORY MODIFIER]
891C	=1510 KEYLS	r Equ	104	(Leornatted Data Output Command)
001D	=1511 KCORES	5 EQU	1DH	; Ego Fron Reset State Command]
001E	=1512 KEYGO	EQU	1EH	EGO COMMENDI
001F	=1513 KEYMOD	) EQU	1FK	( EXAMINE/HODIFY CONWAND ]
0006	=1514 KSETB	EQU	ØBH	(ISET BREAKPOINT COMMAND)
9990	=1515 KCLRB	EQU	9C11	I CLEAR BRERKPOINT COMMAND ]
	=1516 ;			
	=1517 ;			
0019	=1518 PBRK	EQU	19H	(IPROGRAM BREAKPOINT MEMURY MODIFIER)
0015	=1519 DERK	EQU	15H	LIDATR BREAKPOINT MEMORY MODIFIER ]
0011	=1520 RINT	EQU	11H	(LHARDWARE REGISTER MEMORY MODIFIER)
001B	=1521 NOBRK	EQU	10H	(WITHOUT EREAKPOINTS MODIFIER)
0016	=1522 MBRK	EQU	16H	(WITH BREAKPOINTS ENABLED MODIFIER)
001A	=1523 SING	EQU	100	ISINGLE STEP MODIFIER1
	=1524 ;			
	=1525 \$EJECT	r		

LOC	0EJ	LINE	source st	RTEMENT	
		=1526	CODEBLK	169	
0029		=1531+	ORG	41	
		=1535 ; MRIN	OUTPUT_N	ESSAGE(COMMAND_PROMPT)	
		=1536 ;	CRILL INF	UT_BALE(KEA)	
		=1537 ; MRIN2 =1538 ;	IF THE K	(EV=END GO TO MIRIN.	
<b>00</b> 29	8601	=1539 MRIN:	MOV	XPCODE: #1	
<b>00</b> 2B	74D1	=1540	Call	XPTEST	
<b>00</b> 2D	2391	=1541	MOV	A, #1	
992F	3400	=1542	CALL	OUTUIL	
0031	1420	=1543		INFREY	
0033	FB 6747	=1344 MMIN2:	UDV VDV	NO AVENING	
0034	0212	-1343	17	MOTN	
0030	0027	=1547 ;	52	101114	
		=1548 ; FINDOP	FIND OU	I IF THE KEY PRESSED IS	A LEGITIMATE CONMAND INITIATOR:
		=1549 ;	ITMP:=C	TAB	
		=1558 ;	BCODE :=	TYPE:=0	
		=1551 ;	WHILE C	TRB(ITMP)<>0	/CTRB EXHINISTED/
		=1552 ;	IF CT	RB(ITHP)=KEY GOTO MAINA	/Command Entry Found in CTAB/
		=1553 ;	ELSE	1THP:=1THP+COMMAND_E	INTRY_SIZE
		=1554 ;		BCODE:=BCODE+1	
		=1333 ;	COTO CO	<u>-</u>	
9979	RC27	=1336 /	BUTU ERI MINU	KUK ITMP: #PTOD	
0030	0023	=1558	MMOV	RCODE, ZERO	
<b>0</b> 030	8936	=1569+	MOV	R1, #BCODE	
003C	B100	=1570+	MOV	eri #ZERO	
		=1574	MHOY	TYPE, ZERU	
003E	<b>B9</b> 37	=1585+	MOA	R1, #TYPE	
0040	B169	=1586+	MOV	eri, #zero	
0042	FC	=1590 FINDOP:	MOV	A. ITHP	
0043	E3	=1591	MOVP3	R, CR	
0099	828L NO	=1392	782	D KEUK	
0040	0652	-1.353	77		
8849	Fr	=1595	MOV	A. 1740	
0846	0303	=1596	ADD	A #COMSIZ	
804C	AC	=1597	MOV	ITHP, R	
004D	B936	=1598	MOV	R1 #ECODE	
<b>004</b> F	11	=1599	INC	8R1	
0050	0442	=1600	JMP	FINDOP	
		=1601 ;			
		=1602 ;	OUTFUL	MESSHGE(STRCOM(BCODE))	/*PROMPT FOR THE CURKENT COMMEND*/
		=1683 ;	1:=1+1 ODTION		
		-1004 )	UF110N		
		=1696 ;	NONEP	REAMETERS = MEM(1)	
		=1607 ;	I:=3	reserved the flat Soft of the UNA?	
		=1608 ;			
		=1609 MRINR:	MHOV	A, BCODE	
0052	B936	=1618+	HOV	R1, #BCODE	
0054	F1	=1619+	MOA	H. <b>8R1</b>	
0055	031D	=1623	ridd	A, #STRCON	
8857	3402	=1624	Call	OUTCLR	

LOC	0EJ	LINE	Source	STATEMENT
8859	10	=1625	INC	TTMP
9458	FC	=1626	MOV	R. DNP
0050	F7	=1627	HOUP?	R. MA : GET OPTION POINTER
0000	23	-1620	MMOU	OPTION, O
0050	1070	-1020	MOU	0110011 04 6007100
0000	6737	-10414	MOU	
OODE	11	-10421		
1000	10	=1646	TMC	
0060	FC	=1647	MUY	
6661	ES	=1648	INUTI'S	HJEH ; GET NU UF FYIKNINETEKS
		=1649	INTUY	
8862	<b>B</b> 938	=1662+	HUY	K1, #NUPICUN
<b>00</b> 64	R1	=1663+	MOY	eri f
		=1667 ;		
		=1668;	FARAME	ETER_BUFFER(0=>5):=0
		=1669 ;		
0065	8996	=1670	MOA	R1,46 ; EACH PHRAM IS 2 BYTES
8867	BC30	=1671	MOV	Ro, #SMALO ; START OF PARAM BUFFERS
0069	6663	=1672 MAINB:	MOV	erg, #99H
006B	18	=1673	INC	RØ
<b>896C</b>	E969	=1674	djnz	KL; MAINB
996E	14EC	=1675	CALL	INPKEY
		=1676 ;		
		=1677 ;	WHILE	KEYCHEN(OPTION+TYPE)[6-0] DO
		=1678 ;	IF I	HEN(OPTION+TYPE)[7]=1 GOTO HRIND1
		=1679 ;	TYPE	E:=T\PE+1
		=1680 ;	ENDHR	ILE
		=1681 ;		
		=1682	MHOY	ITMP, OPTION
0070	B939	=1690+	MOY	RL, #OPTION
0072	F1	=1699+	MOY	R 6R1
0073	nc	=1712+	MOY	ITHE A
8974	10	=1715	INC	ITNP
	10	=1716 MRINC1	HHOV	R, ITMP
8875	FC	=172+	NOV	A. ITMP
9976	F7	=1736	MOVER	A. #A
8977	97	=1777	0.8	C
6079	F7	=1738	RIC	8
0070	77	=1729	DC	R STRIP RIT SEVEN INTO CARVY
9979	DP:	=1749	YDI	8. KEV
9070	r693	=1741	.12	MRTND
0070	E697	-1740	10	MOTING
0010	1.001	-1747	NTMC	
0070	6077	-17401	MOU	ITE STUDE
0011	633r E4	-11401	107	NLI #ITFE 0 BD4
00000	47	-1/477		
0002	17	=1/35+	100	Fi and a
0083	HI	=1/38%	MUY	
0084	10	=1/61	INC	
6685	0475	=1762	JMP	MHINC1
		=1763 ;		
		=1764 ;	MODIFI	ier not found so reset type index to defruit crse (zero).
		=1765 ;		
_		=1766 MRIND1	: Manoy	INPL, ZERO
0087	B937	=1777+	MOV	R1, #TYPE
0889	8100	=1778+	MUY	eR1, #ZERO
		=1782	MMOY	A, OPTION

LOC	0EJ	LINE	Source	STRTEMENT
<b>6688</b>	B939	=1791+	MOV	R1, #OPTION
0880	F1	=1792+	MOV	A, er.1
998E	E3	=1796	NOVP3	A. er
908F	3404	=1797	Call	OUTINSG
8891	049E	=1798	JMP	MRINBO
		=1799 ;		
		=1890 ;	CALL 0	DUTPUT_MESSAGE(NODIFIER)
		=1801 MRIND:	MMOY	A, OPTION
0093	8939	=1810+	MOV	R1. #OPTION
9995	F1	=1811+	MOV	R. 6R1
0096	E3	=1815	MOVP3	A, 8A
		=1816	MADD	a type
0097	8937	=1822+	MOV	R1. #TYPE
0099	61	=1823+	rdd	A. 6R1
009R	3484	=1827	CRLL	OUTHSG
889C	14EC	=1828	CRLL	INFKEY
		=1829 ;		
909E	EC00	=1830 MAINE0	: NOV	ITNP: #0
06F10	2330	=1831 MRINB1	: Mov	A, #SWALO
00R2	60	=1832	add	A, ITHP
00A3	60	=1833	add	A, ITMP
0064	88	=1834	MOV	R9, A
80R5	1400	=1835	CALL	INPADR
00R7	FGBR	=1836	JC	CHDINT
0019	10	=1837	INC	
00RA	6938	=1838	MOV	RL HNUTCON
66HC	F1	=1839	NCO	
0010	107 04	=1848	VEC	H BRM 0
0001	M1 0600	=1841	17	
0001	C001	-1042	JZ	
0001	FD 10747	-1045	701 VDI	
RARA	0.080	=1845	17	CNDINT
9986	1450	=1846	CALL	TNPKEV
8888	A490	=1040	THE	MOTNEY
0000	0110	=1849 :	318	
		=1849 ; CMDIN	T FNTER	THE COMMOND PROCESSOR WITH
		=1859 ;	BRSE_(	CODE=THE NRIN CONNEND 1YPE
		=1851 ;	TYPE=	SUBCONNIND TYPE
		=1852 ;	PARAME	eter(1)=FIRST ADDRESS
		=1853 ;	PARAME	eter(2)=second hooress
		=1854 ;	PREPH	ETER(3)=DATR
900R	4400	=1855 CHDINT	: JNP	INPLEN
		=1856;		
		=1857 ; HERRO	r error	ENCOUNTERED IN MAIN PARSING KOUTINE.
<b>00BC</b>	BA01	=1858 MERROR	: MOV	ldata, #1
90BE	249A	=1859	JMP	PERROR
		=1860	SIZEC	HK
8897		=1863+ SIZE	SET	151
		=1864+;		
		=1865+; ****	******	***************************************
		=1874 <b>\$</b> EJECT		

0525	=1880+	ORG	803	
	=1884 ;			
	=1885 ; ******	******	************************	************
	=1886;			
	=1887 ;	TRBLES	for parser	
	=1888 ;			
	=1889 ; ******	******	***************	*********
	=1890 ;			
	=1891 ;	THE CTR	B TRBLE CONTAINS (COMSIZ	> ENTRIES FOR EACH COMMAND. THE MEANING
	=1892 ;	OF THE	ENTRIES IS AS FOLLONS:	
	=1893 ;			
	=1894 ;	ENTRY 0	COMMEND KEY TO INITIRT	E
	=1895 ;	ENTRY 1	POINTER TO THE LIST OF	OPTIONS APPLICABLE 10 THIS COMMAND
	=1896 ;	ENTRY 2	NUMBER OF NUMERIC PARA	METERS REQUIRED BY THE COMMAND
	=1897 ;			
8823	=1898 CT88	EQU	\$ AND OFFI	
8883	=1899 COMSIZ	EQU	3	
	=19643 ;		-	
8727 1F	=1991	DE	KEYMOD, LOW OPTOBL, 1	; FXRM
8724 KF	=			
A725 A1	=			
8726 1F	=1982	DB	KEVOD, FOM OPTORS, 1	: 60
AZ27 49	=			
A728 A1	=			
8729 18	=1997	DR	KEVET LLON OPTORI. 7	:F111
9729 7F	-1,05		KENTE/LOW OF TIDE/S	
ATOR AT	=			
8720 10	=1984	DR	KEVEST, LOW OPTOR1, 2	: DINP
9320 10 9720 7F	=	00		,
A72F A2	=			
972F 18	=19 <b>9</b> 5	bB	KEVPEC, LOW OPTRES, 2	RECORD
0321 10 0770 7F	=1,05	00	REFRECTEDA OF HIDE'E	) ALCOND
A771 A2	=			
8772 14	=1996	DR .	KEVPELLOW OPTOPLA	: FFL 080
033C 11	=	00		
9774 AA	=			
8775 AD	=1907	NR	KSETR. LOW OPTOR2. 1	: SETTROM
0330 00 0776 46	=1.01	~	KOLID LOW OF THEET	) JEIDAK
A777 A1	-			
A778 AC	=1998	DR	KOLER, LOW OPTOR2, 1	: CL DRDK
9779 46	= 1,700	00	KOLKO LOW OF THEE I	CEREN
AZZA AN	=			
9778 1D	=1999	DR.	KRAPES, LOW APTORY A	CO FROM RESET STOTE
9776 49	-1.707	20	KOOKEDI LONE OF (1103) 0	JOU FROM REJET DIMIE
9770 AA	-			
0330 00 0775 EE	-	ND	OFFU	. ECMOD
033C FT	-1710	00	or r fi	) EBUUT
	-1511 ;			
	=1912 <b>\$</b> £J£U			

LOC	0EJ	LINE	SOURCE STATEMENT
		=1913 ;	
		=1914 ;	The option table gives the various options alloned for each
		=1915 ;	BRSIC COMMAND, RS FOLLOWS:
		=1916 ;	
		=1917 ;	ENTRY 0. START OF TABLE OF NODIFIER RESPONSES.
		=1918 ;	ENTRY 14. ALLOWED HODIFIER KEYSTROKES CORRESPONDING TO OPTIONS 0-5.
		=1919 ;	NOTE THAT THE LAST BYTE IN EACH OPTION GROUP HAS BIT
		<b>=1928</b> ;	seven set to indicate the end.
		=1921 ;	
033F	26	=1922 OPTAB1	: DB STRHEM
0340	18	=1923	db kevph, kevdn, kevreg, rint
0341	16	=	
0342	18	=	
0343	11	=	
0344	19	=1924	DB PBRK, DBRK OR 28H
0345	95	Ξ	
0346	26	=1925 Optab2	: DB STRMEM
0347	18	=1926	db Keypm, Keydm or 88H
0348	96	=	
0349	2C	=1927 OPTRB3	: DB STRGOC
034R	1B	=1928	DB NOBRK, WERK, SING
034B	16	3	
034C	18	=	
034D	15	=1929	dc Keyprt, Keytrr or Son
034E	99	=	
		=1930	SIZECHK
992C		=1933+ SIZE	SET 44
		=1934+;	
		=1935+; ****	***************************************
		=1944 \$EJECT	

LOC	0ej	LINE	source s	TRTEMENT	
		=1945	CODEBLK	130	
0100		=1955+	ORG	256	
		=1959 ; OUTUTL	. Output (	one of four util	ITY DISPLAY PROMPTS (LEFT JUSTIFIED)
		=1960;	ACCORDI	ng to acc conten	TS (0-3).
		=1961 ; OUTCLR	: Clear d	isplay and outpu	t Character String Starting
		=1962 ;	at the	RODRESS POINTED	to by byte at address in accumulator.
		=1963 ; OUTMSG	SUEROUT	ine to copy r st	RING OF BIT PATTERNS FROM ROM TO THE
		=1964 ;	DISPLAY	REGISTERS.	
		=1965 ;	STRING	selected is dete	rmined by ACC When Called.
		=1966 ;	on ente	ring outmsg, acc	CONTENTS ARE USED TO ADDRESS A BYTE IN A
		=1967 ;	LOOKUP	table on the cur	RENT PROF WHICH CONTRINS THE HOORESS OF
		=1968 ;	A STRIN	g of segment pat	tern data bytes to be printed unto the
		=1969;	DISPLAY		
		=1970 ;	THE END	OF THE STRING I	S INDICATED WHEN BIT7 =1.
		=1971 ;	CRLLS S	UEROUTINE 'HDISP	
		=1972 ;	to actu	ALLY EFFECT WRIT	ING INTO THE DISPLAY REGISTERS.
0100	0319	=1973 OUTUTL:	RDD	A, #STRUIL	
0102	B4F1	=1974 OUTCLR	CALL	CLERR	
0104	A3	=1975 OUTMSG	MOYP	A, en	
		=1976	HHOY	STRTMP; A	
0105	6940	=1989+	MOY	R1, #STRTMP	
0107	81	=1990+	MOV	eri, A	
		=1994 PRNT2:	HHUY	A, STRTAP	FLOHD NEXT CHARACTER LUCKTION
0108	8940	=2003+	MOV	R1, #STRTMP	
010A	F1	=2004+	MOY	A, 881	
0108	A3	=2998	MOYP	R, CR	LUND BIT PHITERN INDIRECT
0100	1217	=2009	JB7	PRNII	OUTOUT TO NEW CHODODIED DUCLIDED
010E	0408	=2010	UHILL	NU15P	(DUTPU) TU NEXT CHERRICTER PUSITION
	0040	=2011	MINC	SIRINP	; INDEX PUINTER
0110	6940	=2016+	PIUV	K1J #SIKIMP	
0112	1	=201/+	THO	њекі О	
0113	1/	=2021*	INU	11 AD4 0	
0114	0400	-20201	THUY THEO	EKL) II DONTO	
0113	2400	-2023 DONITA	JING	E'KN12	- DONE
0111	6400	-2030 PKN11.	JIII	MU15P	) DUNE
0040		-2031 / -2022 CTDUT	CON	1.00	
0017	74	-2032 SIKUIL	00		
0117	77	-2033		LONCDERKOR	
0440	20	-2034	ND	LON(DODNO)	UTILITY RESORCE 1 REVELSS
0110		-2030	110		ITTUITUITUINECCOSE 2 ONNECC
00110	44	-2030 -3077 CTDCOM	5011		JUTILITY RESSAUE 3 NUVKESS
0440	AC	-2037 518000	C.GU ING:		
0110	40	-2030	ND ND		LASIC CUMMEND & RESPONSE ADDRESS
0110	42 AD	-2033	ND ND		DOGIC COMMOND 2 DECOMPE DODDECC
011r	40 AC	-2040	00		DESTC COMMON 2 RESPONSE NUCKESS
0120	TL 54	-2011	50		DOCTO COMMOND A DECDONSE ODDDECC
0121	54	-2012			DOCTO COMMOND & DECDONCE ODIVICE
0122	57	-2043	00		- DOTE CONTINUE DECEMBER NUCLESS
0123	50	-2017	00 NG		DOTE COMMOND & REDONCE ONDERC
0124	งก 50	-2045 -2045	ND		DECTO COMPANY O RECOMMENDATION
0005	JU	-2090 -2047 CTDMEM	00 COU		OUDIO COMPANY & KEOLONDE NOOKEDD
0020	55	-2011 DIKIL			NOTO THE MONIFIED & DECOMPT ON STOR
04.07	ЭГ С4	-2040	1/15 ND		DUTIN THE MUNIPLEK & RESPURSE HUDKESS
0171	67	-2012			DOTO THE HOUTFIER 1 RESPONSE HUCKESS
0170	20	-2000	100	LUNCOKII)	JUNIN TYPE NUULFIEK 2 RESPONSE HOORESS

LOC	UBJ	LINE	SOURCE	STRTEMENT	
<b>812</b> 9	69	=2051	DB	LUN(DINTRG)	; data type modifier 3 response address
012A	65	=2952	DB	LUN(DPRERK)	DRTA TYPE MODIFIER 4 RESPONSE RODRESS
012E	67	=2053	DB	LON(DDABRK)	DRTR TYPE MODIFIER 5 RESPONSE HODRESS
862C		=2054	STRGOC EQU	LON \$	
012C	68	=2055	DB	LON(DNOBRK)	FXECUTION MODE MODIFIER 0
01.2D	60	=2956	DE	LUN(DNBRK)	EXECUTION MODE MODIFIER 1
012E	<i>G</i> F	=2857	DB	LON(DSS)	EXECUTION MODE MODIFIER 2
012F	72	=2058	DE	Lon(DPA)	EXECUTION MODE MODIFIER 3
0130	75	=2059	DE	LON(DTR)	FIXECUTION HODE NODIFIER 4
		=2060	;		
		=2961	; UTILI	ty output message	ES
		=2062	;		
		=2063	DERROR :		
<b>91</b> 31	79	=2064	DE	01111001B	; *E*
<b>81</b> 32	50	=2065	DB	<b>919169995</b>	; "R"
0133	59	<b>=206</b> 6	DB	01.01.0000C	; "R"
0134	5C	=2067	DB	01011100C	; "0"
<b>01</b> 35	58	=2968	DB	01010000B	; "R"
<b>8136</b>	C9	=2069	DC	110000000	у т-с. т
		=2070	DSGNON :		
0137	<b>89</b>	=2071	DB	00000008	;* *
<b>01</b> 38	76	=2072	DE	011101108	) "H"
0139	GD	=2073	DB	01101101E	; "S"
013R	79	=2074	DE	01111001E	; "E"
013B	40	=2075	DB	0100000E	; <b>**</b>
<b>013</b> C	66	=2076	DB	01100110C	; <b>"4"</b>
013D	E7	=2077	DB	11100111B	; "9. "(TH)
		=2078	DRUN :		
013E	88	=2079	DE	00000008	;* *
01.3F	40	=2060	DB	0100000B	; *- *
<b>0140</b>	59	=2081	DB	01010000B	; "R"
9141	10	=2082	DE	00011100E	; "U"
0142	54	=2083	DE	9191919 <del>96</del>	; "N"
0143	69	=2084	DB	110000008	2 **. *
		=2085	depart :		
<b>0144</b>	73	=2086	DB	01110011B	; "P"
0145	89	=2067	DB	10111001E	; "C. "
		=2968	\$EJECT		

		-2007 /			
		=2090;	PRIMARY	COMMAND RESPONSE STRING PRITERN	S
		=2091 ;			
		=2092 DMOD:			
0146	79	=2093	DB	01111001B, 00111001B, 11110100B	; "ECH. "
0147	39	=			
0148	F4	=			
		=2094 DG0:			
0149	3D	=2095	DB	00111101B, 11011100B	; "60. "
014A	DC	=			
		=2096 DFILL:			
814E	71	=2697	DB	01110001B, 00110000E, 10111000B	; "FIL "
014C	39	=			
014D	88	=			
		=2098 DLST:			
014E	38	=2899	DB	00111000B, 01101101E, 11111000B	; "LST. "
014F	60	2			
9159	F8	=			
		=2100 DREC			
0151	Œ	=2101	DB	00111110B, 01110011E, 10111000B	; "UPL. "
0152	73	=			
0153	BE	=			
		=2192 DRFI			
0154	SE.	=2103	DB	01011110E.0101008.10111008	; "DNI "
0155	54	=			
9156	68	=			
		=2194 DSR			
<b>015</b> 7	60	=2185	DB	011011018,01111000E,11111100E	; "STB "
0158	78	=			, ,,,,,
R159	FC	=			
		=2106 DCD			
<b>815</b> 0	79	=2197	DR	00111001D. 00111000D. 11111100D	: "CIR "
015R	78	=	00		, v.v.
015C	FC	=			
~~~~	. •	=2188 DGR			
815 0	70	=2199	90	00111101B.11010000B	• CD •
815F	DA	=			y un.
0106		-			

LOC	08J	LINE	SOURCE STRTEMENT
		=2111 ;	
		=2112 ;	NEMORY SPACE MODIFIER OPTION RESPONSE STRINGS
		=2113 ;	
		=2114 DFRMEN:	
015F	73	=2115	DB 01110011B, 11010000B ; "PR. "
0160	DØ	=	
		=2116 DDAMEM:	
0161	5E	=2117	DE 010111108, 111101118 ; "DA. "
8162	F7	=	
		=2118 DRM:	
816 3	50	=2119	DE 010100008, 101111018 ; "RG. "
0164	ED	2	
		=2120 DFRBRK	:
0165	73	=2121	DB 01110011B, 11111100B ; "PB. "
0166	FC	=	
		=2122 DORERK	
8167	SE .	=2123	DB 01011110B, 11111100B ; "DE."
0160	HC I		
~~~	70	=2124 VINIKU	
0103	175	=2123	UB BIIIBIIB, IIBIBBBB ; NK.
oton		= = 2126 :	
		=2120 ;	RESPONSE MESSAGES FOR AN CONDITION MODIFIERS
		=2128 ;	
		=2129 DNOBRK	:
016E	54	=2130	1/8 010101008, 111111006 ; "NB. "
0160	FC	=	
		=2131 DNDRK:	
<b>916</b>	) 7C	=2132	DB 011111098, 110100008 ; "BR. "
<b>01</b> CE	DØ 3	=	
		=2133 DSS:	
01CF	6D	=2134	DB 01101101B, 01101101B, 11111000B ; "SST. "
<b>017</b>	60 (	=	
0171	. F8	=	
		=2135 DPA:	
0172	2 77	=2136	DE 01110111E, 01111100E, 11010000E ; "RER. "
017.		3	
0174	F DØ	= -2437 NTD.	
04 75	. 77	=2137 VIK:	
0170	) (( 5 Gb	-2130	
0173	7 60	-	
OTU	10	- =2179 :	
		=2140	STZECHK
8975	3	=2147+ 517F	SET 129
	-	=2144+;	
		=2145+; *****	***************************************
		=2154 \$EJECT	

LOC	0BJ	LINE	source s	STATEMENT
		=2155	CODERI K	( 45
AACA		=2169+	ORG	192
0000		=2164 ; INPODE	INPLIT D	NATA INTO TWO-RYTE PARAMETER RUFFER INDICATED BY RA
		=2165 :	PECETVE	
		=2166 :	CHIET I	INTO ADDRESS RIFFED:
		=2167 :	DE-MOT	
		=2168 :		ne profession. Yer de convetants neeren 15 7570, na neu dadameters ade all'anen -
		=2169 :		SER OF CONSTRAINTS REEDED IS EERO. NO NEW THRINE TERS THE REEDHED.
aana	97	=2103 ) =2179 INPADE	ар	ſ
AMC1	87	=2171		
		=2172	MMOU	C. NEMPON
aaro	8979	=21.01+	MOU	D1. BUILDING
AAC4	5350 F1	=2192+	MOV	A. 804
9905	607	=24.96	17	
8867	FR	=2197 INPRO1 -	MOV	8. KEV
AACS	9207	=2189	104	FI CIEA
AACA	29	=2189	YLN XLN	A. <b>40</b> 9
AACE	47	=2199	CLIOP	A
AACC	29	=2191	XCH	8. 602
AACD	709	=2192	XCHD	A. 800
AACE	18	=2197	TNC	P9
AACE	79	=2194	XCHD	A, ERM
RADA	3478	=2195	CALL	IPDADR
8802	14FC	=2196	CALL	INPKEY
0904	97	=2197	0.6	с.
8905	8407	=2198	JMP	INPR01
	• • • •	=2199 ;	•••	
		=2200 ; ELSIF1	IF KEY=	='.' OR '.' THEN RETURN.
		=2201 ;		
0007	FB	=2202 LLSIF1;	MOY	fl, KEY
<b>8008</b>	D312	=2203	XRL	R #KEYNXT
990A	C6E5	=2204	JZ	ELSIF2
990C	FB	=2205	MOV	R, KEY
0000	D313	=2206	XRL	a, #Keyend
990F	CGE5	=2267	JZ	ELSIF2
		=2288;		
		=2 <b>20</b> 9;	ELSE GO	)TO PERROR.
		=2210 ;		
00E1	BR92	=2211	MOV	LDATA, #2
<b>80E</b> 3	2498	=2212	JMP	PERROR
99E5	6846	=2213 ELSIF2:	MOV	R9, #SEGMAP
00E7	8903	=2214	MOV	R1, #3
00E9	64F5	=2215	CALL	DELFINK
ØØEB	83	=2216	RET	
		=2217	SIZECHK	(
002C		=2220+ SIZE	SET 4	14
		=2221+;		
		=2222+; *****	*******	************
		=2231 \$EJECT		

LOC	OBJ	LINE	source s	TRTEMENT
		=2232	CODEBLK	35
<b>01</b> 78		=2242+	ORG	376
		=2246 ; UPDADA	UPDATE	Address field
		=2247 ;	(last t	HREE CHARACTERS OF DISPLAY) WITH ADDRESS BUFFER
		=2248 UPDADR:	MMOY	NEXTPL, PLU53
0178	B93A	=2259+	MOY	R1, #NEXTPL
<b>81</b> 7A	<b>D10</b> 3	=2260+	MOV	eri, #PLUS3
		=2264 ;	HRITE A	DOR INTO NEXT THREE BUFFER LOCRTIONS.
<b>01</b> 7C	F0	=2265 UPDRD1:	MOY	A, <b>ero</b>
017D	68	=2266	DEC	K0
017E	530F	=2267	anl	fu <b>#0</b> ГН
0180	968E	=2268	JNZ	DSPHI
0182	D4D8	=2269	Call	NDISP
0184	F0	=2270	NOV	fu erø
9185	47	=2271	SMAP	A
<b>018</b> 6	530F	=2272	RNL.	r. #9771
<b>018</b> 8	9692	=2273	jnz	DSPM1
<b>01</b> 8R	D4D8	=2274	CRLL	ND1SP
<b>91</b> 8C	2494	=2275	JMP	DSPLO
018E	D4D3	=2276 DSPHI:	CRLL	DSPACC
6190	F0	=2277 DSPNID	: Moy	r, ero
0191	47	=2278	SHRP	R
0192	D4D3	=2279 DSPM1:	Call	DSPRCC
0194	F0	=2280 DSPL0:	MOV	r. ero
0195	D4D3	=2281	Call	DSPRCC
0197	83	=2282	RET	
		=2283	SIZECH	
<b>88</b> 29		=2286+ SIZE	SET 3	2
		=22874;		
		=2280+; *****	*******	
		=2297 \$EJECT		

		EDIE / LENNON	•	NLICI
		=2313 ;	OUTPU	JT_MESSRGE(PERROR_FROMPT)
		=2314 ;	OUTPU	JT (LDATA)
		=2315 ;	Crill	INPUT_BYTE(KEY)
		=2316 ;	UNTIL K	Key="Clerk/tkey1005"
<b>019</b> 8	BRØ4	=2317 RERROR :	MOV	LDATA, #4
019A	BF02	=2318 PERROR:	MOY	XPCODE/ #2
019C	7401	=2319	CRLL	XPTEST
019E	27	=2320	CLR	A
019F	D7	=2321	MOV	PSH, A
0180	FB	=2322	MOV	R, KEY
01A1	D317	=2323	XRL	A, #KEYCLR
01A3	C626	=2324	JZ	EKROR2
91 <b>8</b> 5	27	=2325	CLR	A
91 AC	3400	=2726	CALL	
8168	FA	=2727	MOV	8.1 DATE
RIAG	0407	=2728	0911	DSP0C
01110	0105	=2%29	MMOV	KEDOLE, NEGI
91 8P	<b>897</b> 8	=2749+	MOU	PA. AKTORIE
64.60	RALE	=2741+	MOU	
0100	1450	-2745	001	
04.04	CD CD	-2746	MINU	
0402	0717	-2340	VDI	
0404	0000	-2371	1117	DEDODO
0104	2020	-2340 EDD000	TMD	
OTDO	0423	-2347 ERRUNZ.	UT70/19/	- FREATR
0000		-2300		× •
				V
0020		-2353+ 5126	JC1 3	
0020		=2354+;		~
0020		=2353+ 5122 =2354+; =2355+; ******	*****	~~ ***********************************
0020		=2353+ 5122 =2354+; =2355+; ****** =2364;	*****	~~ ***********************************
0020		=2354+; =2355+; ****** =2364; =2365	CODEBLK	 ***********************************
8288		=2354+; =2355+; ****** =2365; ****** =2365 =2389+	CODEBLK ORG	X 80 512 512
0200 0200	0.05	=2354+; =2355+; ****** =2365 ; =2365 =2380+ =2380+	CODEBLK ORG INPLEME	<pre>x 80 512 Ent COMMOND A Figure 2 </pre>
0200 0200	2396	=2355+ 5122 =2354+; =2355+; ****** =2364; =2365 =2380+ =2380+ =2385 INPLEM: =2305 INPLEM:	CODEBLK ORG INPLEME MOV	
8288 8288	2306	=2305+ 5122 =2354+; =2355+; ****** =2364; =2386+ =2386+ =2385 INPLEM: =2386	CODEBLK ORG INPLEME MOV MRDD	
8299 8299 8299	2306 B936	=2305+ 5122 =2354+; =2355+; ****** =2364; =2384; INPLEM =2385 INPLEM: =2386 =23924	CODEBLK ORG INPLEME MOV MRDD MOV	
6200 6200 6200 6202 6204	2306 B936 61	=2354; =2354; =2355; =2364; =2365 =2380+ =2384; INPLEM: =2385 =2392+ =2393+ =2393+	CODEBLK ORG INPLEME MOV MRDD MOV ADD	
8288 8288 8282 8284 8285	2306 8936 61 83	=2354; =2354; =2355; =2364; =2365 =2389; =2389; =2389; =2389; =2389; =2389; =2389; =2389; =2392; =2392; =2393; =2397; =2397; =2397; =2397; =2397; =2397; =2395; =2397; =2397; =2395; =2397; =2397; =2397; =2397; =2397; =2397; =2397; =2397; =2397; =2397; =2397; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =2395; =23	CODEBLK ORG INPLEME NOV MRDD MOV RDD JNPP	 **********************************
8299 8299 8299 8299 8294 8295	2306 8936 61 83	=2354; =2354; =2355; =2365; =2386; =2386; =2386; =2392; =2392; =2392; =2393; =2393; =2398;	CODEBLK ORG INPLEME NOV NRDD NOV RDD JNPP	 **********************************
8288 8288 8288 8284 8285	2306 8936 61 83	=2354; 5122 =2354; ==2355; #***** =2365; =2388+ =2385; INPLEM; =2386; =23924; =23924; =23934; =2397; =2398; =2399; JNPTBL;	CODEBLK ORG INPLEME NOV NRDD NOV RDD JNPP	
8298 8298 8289 8284 8285 8286	2306 8936 61 83 0F	=2354; 5122 =2354; ==23554; +++++++ =23654; ==23654; ==236864 =23864 ==23864 =239244 ==239244 =239244 ==239244 ==239244 =239244 ==239244 ==239244 =239244 ==239244 ==239244 ==239244 =239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==239244 ==2392444 ==2392444444 ==23924444 ==23924444444 ==239244444 ==23924444444 =	CODEBLK ORG INPLEME NOV NRDD NOV RDD JNPP DB	
8299 8299 8299 8294 8295 8295 8296 8296 8297	2306 B936 61 B3 OF 20	=2354; =2354; =23554; =23654; =23664; =23884 =23884; =23884 =23884; =23884; =23924 =23924 =23924 =23924 =23934; =2399; =2399; =2399; =2399; =2399; =2399; =2400; =2401; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =2354; =23554; =23554; =23554; =23554; =23554; =23554; =23554; =23554; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23555; =23557; =23555; =23575; =23575; =23575; =23575; =23575; =23595; =23595; =23595; =23575; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =23595; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24696; =24666; =24666; =24666; =24666; =24666; =24666; =24666; =24666; =24	CODEBLK ORG INPLEME NOV MRDD MOV RDD JMPP DB DB	
6266 6269 6262 6284 6285 6285 6286 6285	2306 B936 61 B3 OF 20 22	=2354; 5122 =2354; ==23554; ******* =23654; ==23684 =23884; INPLEM =2385 INPLEM =23855 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =23924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924 =24924	CODEBLK ORG INPLEME NOV MRDD MOV RDD JMPP DB DB DB DB	
8288 8288 8284 8284 8284 8285 8286 8286 8288 8289	2306 B936 61 B3 ØF 20 22 1R	=2354; =2354; =23554; =23654; =2364; =23864; =23864; =23864; =23864; =23864; =23864; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =23924; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =2406; =24	CODEBLK ORG INPLEME INPLEME NOV NRDD NRDD NRDD JNPP DB DB DB DB DB DB	
6296 6296 6296 6295 6295 6295 6295 6299 6299	2306 8936 61 83 0F 20 22 1R 11	-2335+ 5122 =2354+; =2355+; ******* =2365 =2380+ =2385 IMPLEM: =2385 IMPLEM: =2395 =2392+ =2393+ =2397 =2398; =2399 JMPTBL: =2400 =2401 =2402 =2403 =2404	CODEBLK ORG INPLEME INPLEME NROV NROD HOY RDD JNPP DB DB DB DB DB DB DB DB	
6206 6206 6206 6207 6205 6207 6208 6207 6208 6209 6209 6209 6209 6209	2306 B936 61 B3 ØF 20 22 1R 11 16	-2335+ 5122 =2354+; =2355+; +++++++ =2365; =2380+ =2386 inflement =2386 inflement =2386 =2392+ =2393+ =2397 =2398; =2399 inflement =2409 =2401 =2402 =2403 =2404 =2405	CODEBLK ORG INPLEME NOV NRDD NOV RDD JNPP DB DB DB DB DB DB DB DB DB DB	<pre> K( 80 512 ENT COMMUND A, #LOW(JNPTEL) A, BCODE A, BCODE A, BRL BA LOW(JTOMOD) LOW(JTOMOD) LOW(JTOFIL) LOW(JTOFIL) LOW(JTOREC) LOW(JTOREL)</pre>
6286 6286 6286 6287 6284 6285 6286 6285 6286 6287 6288 6289 6288 6286 6286	2306 61 83 0F 20 22 1R 11 16 20	-2335+ 5122 =2354+; =2355+; +++++++ =2365; =2380+ =2386+ =2382 =2382+ =2392+ =2392+ =2392+ =2393+ =2392; =2393; =2399 JMPTBL; =2400 =2401 =2402 =2403 =2404 =2405 =2406	CODEBLK ORG INPLEME MOV MRDD MOV RDD JMPP DB DB DB DB DB DB DB DB DB DB DB DB DB	<pre> ( 80 512 ENT COMMOND A. #LOW(JNPTEL) A. #CODE R1. #BCODE A. eR1 eR LOH(JTOMOD) LOH(JTOGO) LOH(JTOFIL) LOH(JTOREC) LOH(JTOREL) LOH(COMSBR)</pre>
6296 6296 6296 6297 6294 6295 6295 6295 6295 8299 8299 8299 8299 8290 8290 8290 8290	2306 8936 61 83 0F 20 22 1R 11 16 2C 28	-2353+ 5122 =2354+; =2355+; ******* =2365 =2380+ =2384 ; INPLEM =2385 INPLEM =2392 =2392+ =2392+ =2393 =2399 JMPTBL: =2490 =2400 =2402 =2404 =2405 =2406 =2407	CODEBLK ORG INPLEME MOV MRDD MOV MDD JMPP DB DB DB DB DB DB DB DB DB DB DB DB DB	
6200 6200 6200 6200 6200 6200 6200 6200	2306 B936 61 B3 0F 20 22 1R 11 16 2C 28 26	-2354; 5122 =2354; +++++++ =2355; ++++++++ =2365;	CODEBLK ORG INPLEME NOV NRDO NOV NDD JNPP DB DB DB DB DB DB DB DB DB DB DB DB DB	
6200 6200 6200 6200 6200 6200 6200 6200	2306 B936 61 B3 0F 20 22 1R 11 16 20 22 28 26	-2353+ 5122 =2354+; =2355+; ******* =2365 =2380+ =2385 INPLEM =2385 INPLEM =2385 =2392+ =2393+ =2397 =2398; =2399 JNPTEL: =2409 =2401 =2402 =2404 =2405 =2405 =2406 =2407 =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409; =2409;	CODEBLK ORG INPLEME NOV HRDD MOV HRDD MOV HDD JNPP DB DB DB DB DB DB DB DB DB DB DB DB DB	<pre>c c c c c c c c c c c c c c c c c c c</pre>
6200 6200 6200 6200 6200 6200 6200 6200	2306 B936 61 B3 0F 20 22 1R 11 16 22 22 28 26 444F	-2355+ 5122 =2355+ ; ****** =2365+ ; ****** =2365 =2389+ =2385 INPLEM =2385 INPLEM =2385 =2392+ =2393+ =2393 =2393 ; =2399 JNPTBL =2400 =2401 =2402 =2404 =2405 =2405 =2405 =2406 =2409 ; =2409 ; =2410 JTOMOD: =2410 JTOMOD:	CODEBLK ORG INPLEME MOV MRDO MOV ADD JMPP DB DB DB DB DB DB DB DB DB DB DB DB DB	<pre> x  x  x  x  x  x  x  x  x  x  x  x  x</pre>
6200 6200 6200 6200 6200 6200 6200 6200	2306 B936 61 B3 0F 20 22 1R 11 16 20 22 28 20 444F	-2335+ 5122 =2355+; ******* =2365+; ******* =2365 =2389+ =2385 INPLEM: =2385 =2392+ =2392+ =2393+ =2397 =2398; =2399 JNPTBL: =2490 =2401 =2402 =2404 =2405 =2405 =2406 =2407 =2408 =2409; =2410 JTOMOD: =2411;	JULY S CODEBLK ORG INPLEME MOV MBDD MOV MBDD MOV MDD JMPP DB DB DB DB DB DB DB DB DB DB DB DB DB	<pre>c c c c c c c c c c c c c c c c c c c</pre>

LOC	08J	LINE	Source st	IRTEMENT
9212	R472	=2417	CALL	HETLEN
R214	A429	=2414	THP	MAIN
	0.25	=2415 ;	•••	
8216	5497	=2416 JTOREL	CALL	HRECIN
R218	8429	=2417	INP	MRIN
		=2418 ;	••••	
821A	85	=2419 JTOLST:	CLR	FØ
921B	95	=2420	CPL	FØ
<b>821</b> C	6472	=2421	CALL	HFILEO
821E	8429	=2422	JMP	MAIN
		=2423 ;		
8220	8400	=2424 JT0G0:	ЛНР	EPRUN
		=2425 ;		
8222	54E5	=2426 JTOFIL:	CALL	CONFIL
0224	8429	=2427	JNP	MRIN
		=2428 ;		
0226	8461	=2429 JGORES:	JMP	CONGOR
		=2430 ;		
		=2431 ; ComcBr	COMMAND	to clear breakpoints
0228	BA00	=2432 COMCBR:	MOY	LDRTA, #0
0220	442E	=2433	JMP	BRKFIL
		=2434 ;		
		=2435 ; Comser	COMMAND	to set breakpoints
022C	BA01	=2436 COMSER:	MOY	LDATA, #1
022E	2384	=2437 BRKFIL:	MOY	A, #4
		=2438	MADD	TYPE A
0230	6937	=2448+	MUY	KL #TYPE
62.52	61	=2449+	HDD	
0233	K1	=2455+	<b>NUY</b>	
0234	- 14680 	=2459 BRKNXI:		
0230	5 FD	-2400	MUY VDI	
02.57	D212	-2401	AKL T/	
0237	4450	-2402	J2 (01)	
02.30	1420	-2464	MMOU	AND NET
8270	8978	=2475+	MOU	P1. SALECON
R27F	E191	=2476+	MOV	8P1. \$P1151
8241	8870	=2489	MOV	PR. #SMRI ()
8243	RAAA	=2481	NOV	ARA. #A
		=2482	MMOY	SNOH1, ZERO
8245	i B931	=2493+	MOY	R1, #SWHI
8247	' B100	=2494+	MOV	erl, #ZERO
0249	1400	=2498	CRLL	INPROR
024B	E634	=2499	JNC	BRKNXT
0240	0429	=2588 BRKEND	JMP	MRIN
		=2501	SIZECHK	
004F	;	=2504+ SIZE	SET 7	9
		=2585+;		
		=2586+; *****	ukakakakak	*************************************
		=2515 \$EJECT		

LOC OEJ	LINE	SOURCE S	TATEMENT
	=2516	CODERIX	75
924F	=25714	ORG	591
	=2575 ; FXRMI	n examine	ZNODIEV NENORY CONNOND
	=2576 ;	DISPLAY	IS NEWORY RODRESS SPACE OPTION, RODRESS VALUE, AND CURRENT DATA.
	=2537;	Reads K	EVBOARD AND INTERPRETS RESPONSE.
	=2538		
	=2539;	OUTFUT_	NESSAGE((NENORY_SPACE_OPTIONX/SHR)/=/(DATA_BY)E))
024F 85	=2540 EXAMIN	: CLR	FØ
	=2541 EXRM0:	MINOV	a, type
0250 B937	=2558+	MOV	R1. #TYPE
0252 F1	=2551+	NOV	A. <b>ER1</b>
8253 8326	=2555	rdd	R,#STRMEN ; OFFSET FOR FIRST MEMORY TYPE STRING
8255 3482	=2556	CALL	OUTCLR
0257 6831	=2557	MOV	R0,#SMALO+1
0259 347C	=2558	CALL	UPDAD1
025B 2348	=2559	MOV	fu #010010008 ; '='
025D D4D8	=2568	CALL	MD ISP
625F 14FC	=2561	CALL	LFETCH
0261 FA	=2562	MOA	a, ldrta
8262 47	=2563	SWAP	A
0263 D4D3	=2564	CALL	DSPACC
8265 FR	=2565	NOV	R, LUATA
0266 D4D3	=2566	Crill	DSPRCC
	=2567 ;		
	=2368 ;		
	=2369;		(EY(KEY)
	=2370 ; =2574 ;	11 (62)	TE (VEN-VENENIN) ON TO DODGED
	-23(1)		IF (KEY=KEYERU) OU FU FIKSEK
	-2312 3		
	-23(3)		COTO EXONTN
	=2575 :		ELCETE: (EEV=XEVEREVIAIRS)
	=2576 :		DEDEN (RETRET RETION)
	=2577 ;		ADTO FXAMIN
	=2578 ;		FI SE GOTO PERPOR
	=2579 ;		
8268 14EC	=2589	CALL	INPKEY
	=2581	NHOY	A KEY
0268 FB	=2597+	NOV	fu KEY
026B 927B	=2601	JB4	EXAM1
	=2682 ;		
	=2603 ;	APPEND	DALE WITH (LOWNIE_(KEY))
	=2684 ;	CALL LS	STORE
	=2685 ;	GOTO EX	KAMIN
	=2686;		
02GD FA	=2607	NOV	a, ldatr
026E 47	=26 <b>8</b> 8	SWAP	A
026F 53F0	=2689	ANL.	R, #9F8H
6271 B675	=2610	JF0	EXAMS
6273 27	=2611	CLR	H
0274 50 0275 (D	=2612	U11_	רט ארדו
9273 00 9376 00	=2013 EXHID:	HUU	
0270 HH 0377 E400	=2014 -2645	TUY COLU	
0211 F900 0270 AAED	=201J -2646	UNLL	
0612 4430	-2010	JIN	LATIN

LOC	OBJ	LINE	source s	TRTEMENT
		=2617 ;		
<b>827</b> 8	D313	=2618 EX9M1:	XRL	R, #(KEYEND)
827D	9681	=2619	jnz	EXAM2
827F	8429	=2629	JMP	MRIN
		=2621 ;		
0281	FB	=2622 EXRM2:	MOV	A, KEY
0282	D312	=2623	XRL	A, #KEYNXT
0284	968R	=2624	jnz	EXAM3
0286	34F2	=2625	Call	INCSHR
<b>028</b> 8	444F	=2626	JNP	EXAMIN
028A	FD	=2627 EXRM3:	MOV	A, KEY
0208	D317	=2628	XRL	R, #KEYCLR
02SD	9693	=2629	jnz	EX9N4
020F	54F4	=2630	Call	DECSNR
8291	444F	=2631	JMP	EXPMIN
0293	8003	=2632 EXRM4 :	MOY	ldata, #03h
8295	2499	=2633	JMP	PERROR
		=2634	SIZECHK	
0048	1	=2637+ SIZE	SET 7	2
		=2638+;		
		=26391; *****	******	***************************************
		=2648 ;		
		=2649	CODEBLK	<b>4</b>
99EC		=2654+	OKG	236
<b>99E</b> C	; D4C2	=2658 INPKEY:	Call	KBDIN ; RETURNS KEY DEPRESSION IN A
<b>OOEE</b>	AB	=2659	NOV	KEY, A
ØØEF	83	=2669	RET	
		=2661	SIZECH	
0004	ļ	=2664+ SIZE	SET 4	ł
		=2665+;		
		=2666+; *****	******	***************************************
		=2675 \$EJECT		
LOC	0B)	LINE	SOURCE ST	RTEMENT
--------------	-------------	-----------------	---------------	-------------------------------------------------------------
		2676 \$	INCLUDE	(:F0:GOCOM5. HOD)
		=2677	CODEELK	210
0400		=2697+	ORG	1824
		=2701 ; EPRUN	run emul	ATION MODE.
		=2782;	relord e	ep with system stritus and release.
		=2703 ;	SEQUENCE	IS RS FOLLOWS:
		=2704 ;	IF CUMM	IND WAS TERMINATED BY THE 'NEXT' KEY:
		=2785;	510	RE SNR INTO EP PC;
		=2/06 ;	STUKE E	" PC_INTU_TOP-OF-STHCK (RELRITYE TO EP PS#7);
		=2/8/ ;	PHSS EP	
		=2/86 ;	- 11155 EP	PORCE TIMETA
		=2769;	17155 127	LINEKG OCCUMENTOTOD
		=2(10)	rn55 cr	ACCONULATOR;
0400	0000	-2712 -2712	MOU	ñ #2
0400	7490	-2/12 LFKUN.	1101 (1211	10 #2 AITITI
0402	2400	=2714	NHOU	8. NIMCON
9494	8979	=27274	MOV	PL ANIMON
9496	E1	=2724+	MOV	9. 9P1
9497	9615	=2728	.INZ	FPCINT
0.01	2010	=2729	MHOV	EPPCLO, SHALO
9489	6930	=2745+	MOY	R1, #SHALO
040B	F1	=2746+	MOV	8, <b>6</b> 81
8480	8924	=2752+	NOV	R1, #EPPCLO
848E	R1	=27531	NOV	eru a
		=2756	MMOV	EPPCHIJ SMRHI
040F	6931	=2772+	MOY	R1, #SNAKI
9411	F1	=2773+	MOY	A, 871
0412	8925	=2779+	MOV	R1, #EPPCHI
0414	81	=2780+	MOV	8R1, R
9415	FE	=2783 EPCONT	: MOV	A, KEY
<b>041</b> 0	D312	=2784	XRL	r. #Keynxt
0418	C61F	=2785	JZ	EPCON1
041A	2301	=2786	MOV	A 401H ; STACK ONE LEVEL DEEP TO HOLD USER STARTING ADDRESS
		=2787	1940y	EPPSN, A
<b>041</b> C	8921	=28 <b>00</b> +	MOV	R1, #EPPSN
<b>041</b> E	. <b>A1</b>	=2801+	NOV	6R1, 6
		=2885 EPCON1	: MHOY	LDATR, EPPCLO
041F	6924	=2821+	MOV	R1, #EPPCLU
0421	. 11	=2822+	TUY	
0422	HH	=28351	MUY	LDHIR N
0400	0004	-2038	PERUY	H EFFON
0425	5921	=204/+	MOL	KLJ HENTON O ADM
0420	1 F1	-20901		
0420	5797	-2057	ONEL	ri 0. 4075
9429	5301	=2954	Di	
9420		=2055	ADD	 A. 14973H
UT611	0000	=2856	HHOV	SNRI 0. 8
942f	8930	=2869+	MOV	R1.#SNRL0
042E	A1	=2878+	NOV	eri a
942F	F4C3	=2874	CALL	EPSTOR
		=2875	MINC	SMPLO
0431	6930	=2889+	NOY	R1,#SMRL0
<b>8433</b>	F1	=2881+	MOV	R. 871

LOC	0EJ	LINE	Source	STATEMENT
0434	17	=2885+	INC	ß
9435	R1.	=2890+	HOY	ert, A
		=2893	HHOY	A EPPSH
<b>84</b> 36	8921	=2982+	HOV	R1, #EPPSN
<b>64</b> 38	F1	=2903+	HOV	A. eri
8439	53F0	=2907	ANL	r. Hofoh
		=2908	MORL	a, eppchi
043B	8925	=2914+	MOV	R1, #EPPCHI
843D	41	=2915+	ORL	A, eri
043E	AR .	=2919	MOV	ldata. A
043F	F4C3	=2928	CALL	EPSTOR
<b>044</b> 1	56D1	=2921 EPCNT :	MOV	R0, #LON(OV2BR5+OV5IZE)
<del>844</del> 3	746A	=2922	CALL	OVLORD
		=2923	NHOY	R. EPRO
0445	8923	=2932+	MOV	R1, #EPR0
6447	F1	=2933+	MUY	R. H.
6448	F400	=2937	CHLL	EPPIES
~~~~	0004	=29.98		NJ AFRICAL
0440	6921	=234/1	MUY	KL) TEITON
0440	F1 E400	-2052		N/ EKL
0990	F900	-2057	UNLL	
DAAE	8022	-2733	MOU	
4454	0722 F4	-22027	MOV	0.004
8452	FADA	=2967	CALL	FPRACS
UTUE		=2968	MMOV	a FPact
8454	8929	=2977+	NOV	R1, #EPACC
8456	F1	=2978+	HOY	R et l
8457	F408	=2982	CALL	EPPRSS
8459	8903	=2983	ORL.	P1, #99999911B
845B	F4DB	=2984	CALL	EPSTEP
045 0	745R	=2985	CALL	OVSHAP
045F	8468	=2986	JМР	CGO
		=2987;		
		=2988 ; CONGO	r go fr	on reset connrid
		=2969 ;	RESET	PROCESSOR
		=2990 ;	RELOA	d low order program bytes into program memory
		=2991 ;		
9461	2392	=2992 CONGOR	: MOV	R. #2
0463	3466	=2993	CHILL	
0465	8910	=2994	UKL	PL #EPKSET
0467	HCP/	=2995		
0463	3361	-2007	HINL.	PL F(NUT EPRSET)
		-277()		
		-2770 /	ст и	
		-2333 (000		F DREAK LUGIC FUR AFFRURKIATE DREAK CUMPITIONS)
		-3000) =7991 :		
		=3992 111	MIN	R. TYPE
84/32	8937	=3911+	NOU	P R1. STVPF
8460	F1	=3012+	MON	
046E	0371	=3916	RDD	R #LON GOTEL
8478	63	=3917	JHPP	
•		=3918 ;		
8471	70	=3019 GOTEL :	DE	LON(CGONE)

8473 89	=3021	DE	LOW(CGOSS)	
8474 76	=3822	DB	Low(CGOPAT)	
8475 88	=3023	DB	Lon(Cgotra)	
	=3624 ;			
	=3025 CGOPAT:			
0476 99FD	=3026 CGONB:	ANL	P1, #NOT 00000010C	
6478 8901	=3827	ORL	P1, #0000001E	
047R 8482	=3628	JMP	EPRUN4	
	=3829;			
047C 99FC	=3030 CGONB :	ANL	P1, #NOT 00000011B	
847E 848 2	=3031	JМР	EPRUN4	
	=3032 ;			
	=3033 CGDTRA:			
0480 8903	=3034 CG055:	orl.	P1, #00000011B	
	=3035 ;			
	=3036 ; EPRUNA	SET UP	CONTROL LOGIC TO RUN USE	R'S Program.
	=3037;	RELEASE	PROCESSOR TO KUN.	
	=3038;			
9482 SH29	=3039 EPRUN4:	ORL	P2, #90100008	DISHBLE EP LINK REFERENCES.
0484 9HEF	=3040	HNL	P2, #NUT UGU100006	(SET HLL REFERENCES TO RHM HIRRHY.
0486 990+	=5641	HNL	P1, #NUT PUDUUT	
0408 F4F4	= 5042	UHILL	LINEL	
	= 5194.5 ;			
	= 3044 ;	NRII FU	IK KEYSTRUKE INPUT UK HINK	OWINKE BREINK TO OLCOK.
0400 5400		0011	YOEDOL	
	-3040 EFKURL	COLL	VDNDOL	
040C 77	-7040	CRI		
040C 57	-7949	1107		
0404 9600	-3047	TNT	EPDIN2	
8497 9499	=3050	THP	FDDINH	
0123 0101	=3652 ;			
	= 3957 ; FPRINT	R REVST	ROKE MRS DETECTED MHILE	EP MAS RUNNING
	=3854 ;	BREAK E	XECUTION.	
	=3055;	PROCESS	s Keystroke.	
0495 B400	=3856 EPRUN3 ;	CALL	STSRVE	
6497 84B3	=3057	JMP	EPRUN5	
	=3058 ;			
	=3859 ; EPRUN2	: AN ENAE	LED BREAK CONDITION OCCU	IRRED.
	=3060 ;	Break e	MULATION NODE	
	=3861 ;	CONTINU	ie according to go comman	id type.
0499 B400	=3062 EPRUN2:	CHILL	STSRVE	
	=3863	NHOV	A, TYPE	
849B B937	=30721	MOV	R1, #TYPE	
049D F1	=3073+	MOA	r. er1	
049E 03R1	=3077	RDD	R. HLON CNTTEL	
94R0 B3	=3078	JHPP	en	
	=3079 ;			
04A1 A6	=3080 CNTTBL:	DB	LON(BRKERR)	
04R2 BA	=3081	DB	LOW(EPRUNG)	
W4R3 BR	=3982	DB	LUN(EPRUNG)	
0484 HT	=3083	DB	LUN(CNTTRR)	
HH CHPN	= 506:4	DB	LUN(CNTTRR)	
	=_9663);			

LOC	OBJ	LINE	source s	TATEMENT	
		-2004 00/000	DDCOVDO	THE LOTEN HOE CO	
		-3000 / DANERA	NTCRIDU	THI FULCE MUD 25	A THOODY DREAKFOINTS NOT ENHOLED.
9496	RAR	=7000 7	NOV	IDATA MARH	
9499	2499	=3000 DRALAR.	TMP	PERDON	
0110	2470	-3007 =7499	V1 #	I LINDUN	
		=30,0 , =30,91 (NITTPA-	MMOV	A. DEPTIN	
9499	F929	=3051 CITTAL.	NOU	PI. SOSPTIM	
04APC	F1	=31001	MOV	8.664	
A4AD	94F2	=7101	0911	DELBY	
94FF	F48E	=3196	CRU	KBOPOL	
64B1	F241	=3107	JB7	EPCNT	; B7 SET INDICATES NO KEYSTROKE.
• •••=		=3108 ;			
		=3109 ; EPRUNS	INPUTCK	EY),	
		=3110 ;	IF KEY=	END GO TO PARSET	გ
		=3111 ;	INPUT K	EY,	
		=3112 ;	IF KEYK	NEXT GO TO PARS	SER,
		=3113 ;	CONTINU	e in same mode.	
		=3114 ;			
04B3	14EC	=3115 EPRUNS:	CALL	INPKEY	
8465	FB	=3116	MOY	A, KEY	
8486	D313	=3117	XRL	r, #Keyend	
04 88	9607	=3118	jnz	EPRET	
04DA	14EC	=3119 EPRUN6:	CALL	INFKEY	
84BC	FB	=3120	MOV	r. Key	
04ED	D312	=3121	XRL	r. #Keynxt	
046F	9607	=3122	JNZ	EPRET	
04C1	2382	=3123	MOY	ft #2	
84 C3	3499	=3124	CALL	OUTUTL	
04C5	8441	=3125	JMP	EPCNT	
		=3126 ;			
		=3127 ; EPRET	EXECUTI	on mode is to b	E TERMINRTED.
		=3128 ;	JUMP IN	no parser to in	terpret key already detected.
94 C7	8433	=3129 EPRET:	JMP	MRIN2	
		=51.50 ;			
		=5151	SIZEUHK		
00.9		=3134+ 51ZE	SET 2	101	
		-2426			
		-74.45 45 7507	*******	*************	╸╸╸╸╸╸╸┙┙┙┙┙┙╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸
		-5143 \$EJECI			

LOC	OBJ	LINE	Source St	IRTEMENT
		=3146	CODEBLK	115
0500		=3171+	ORG	1280
		=3175 ; STSAVE	EP STATI	is save subroutine.
		=3176 ;	FORCE C	ALL TO LOC 014H;
		=3177 ;	SAVE EP	ACC;
		=3178 ;	SAVE EP	TINER
		= (179 ;	SVE EP	PCII:
		=3189 :	SAVE FP	R9:
		=3181 ;	CRVF FP	TOP-OF-STACK IN EP PC;
		=7182 ;	RETURN	
8588	744F	=3183 STSRVE:	CALL	EPORK
8582	2303	=3184	MOV	R. #3
8584	3400	=3185	CALL	OUTUTL
0500	7456	=3186	CRLL	OVSHIP
0508	888F	=3187	MOV	k0, #LOW(OV0BRS+OV5IZE)
858R	7 46 8	=3188	CALL	OVLOAD
050C	8829	=3189	ORL	F2, #00100000B
050E	2314	=3190	MOV	R, #14H
8518	91	=3191	MOVX	ert. A
0511	. 9FIDF	=3192	ANL.	P2, #NOT 001000008
0513	8903	=3193	ori.	P1, #00000011B
0515	F4DB	=3194	CALL	EPSTEP
051 7	8820	=3195	ORL.	P2, #00100000B
8519	9 AEF	=3196	PINL	P2, #NOT 000100000
851 B	8903	=3197	ORL	P1_#(ENBRAM OR ENBLINK)
0510	F4DE	=3198	CALL	EPSTEP
		=3199 ;		
		=3299 ;	EXECUTI	on processor is now at location 009H internal with
		=3201 ;	(RETURN	Address+2) pushed on stack.
		=3202 ;		
051F	B8A5	=3203	MOY	rg, #lon(ov3brs+uvsize)
8521	. 746R	=3204	Crill	OVLOND
8523	F4D0	=3205	CALL	EPPRSS
		=3206	NHOY	EPACC, A
0525	i B920	=3219+	MOV	R1, #EPACC
0 527	' R1	=	MOY	erl r
8 528	F4D0	=3224	CRILL	EPPRSS
		=3225	MMOV	EPTINK, A
052R	B922	=3238+	MOV	R1, #EPTINR
8520	; A1.	=3239+	MOV	erl A
8520) F4D0	=3243	CALL	EPPRSS
		=3244	NHOY	EPPSN R
852F	B921	=3257+	NOY	R1, #EPPSW
0531	. 81	=3258+	MOA	erl A
0532	2 F4D0	=3262	CRLL	EPPRISS
		=3263	MINOY	EPRO, A
6534	6923	=3276+	NOV	K1_ #L/R0
6536	H1	=5277+	NOV	
6037	1000	=5281		KU, RLUN(UVIBH5+UY51ZE)
823S	F 796H	=3282		
06-20	0004	=3283		
0030	6721	-32727		
0230	71 07	-32357	NCC	
0035	. U/ . 5707	-3231		П 0.8070
47.00	1201	-7530	(WW.	n Horn

LOC	OBJ	LINE	SOURCE	STATEMENT	· · · · ·
8541	E7	=3299	RL	A	
8542	0308	=3300	ADD	A, #08H	
		=3391	MINOV	SHALO, A	
0544	B930	=3314+	MOV	R1 #SNRL0	
854 G	R1	=3315+	NOV	ert, A	
054 7	F487	=3319	CRLL	EPFET	
8549	03FE	=3320	ADD	R #-2	
054B	AA	=3321	HOV	LDATA, R	
		=3322	MMOV	EPPCLO, A	
054 C	8924	=3335+	NOV	R1, #EPPCLO	
854E	A1	=3336+	MOV	erl r	
054F	F4C3	=3340	CALL	EPSTOR	
8551	B930	=3341	MOV	R1. #SNALO	
0553	11	=3342	INC	8R1.	
0554	F487	=3343	CALL	EPFET	
0556	AR	=3344	NOV	LDATA A	
8557	53F0	=3345	ANL	R. #11110000B	
0559	28	=3346	XCH	r. Loata	
055A	13FF	=3347	ADDC	R, #-1	
855C	530F	=3348	RNL	R, #00001111B	
		=3349	MMOV	EPPCHI, A	
055E	8925	=3362+	MOV	R1. #EPPCHI	
6568	R1	=3363+	MOV	er1, A	
8561	4 A	=3367	ORL	r, ldata	
0562	AR	=3368	NOV	ldata, r	
8563	F4C3	=3369	CRLL	EPSTOR	
8565	B825	=3370	MOV	RO, #EPPCHI	
8567	347C	=3371	Call	UFDAD1	
0569	2340	=3372	MOV	r. #01000008	; "-" FOR DISPLAY
956B	D4D8	=3373	CALL	NDISP	
8 56D	8820	=3374	MOA	RØ, #EPACC	
056F	3490	=3375	CRILL	DSPNID	
8571	83	=3376	RET		
		=3377	SIZECH	K	
007 2		=338 0+ 512	te set	114	
		=3381+;			
		=3382+; ****	******	**********	*************************
		=3391 \$EJE0	Т		

	2216 4	INLOVE	1.FØ. NFILE, NW7	
0000	=3393 CHARCR	EQU	ØDH	; (CR)
000R	=3394 CHPRLF	EQU	ork	; (LF)
001A	=3395 CNTRLZ	equ	1RH	; Control-2
	=3396 ;			
	=3397	CODEBLK	89	
8297	=3412+	ORG	663	
	=3416 ; HRECI)	I HEXFILE	RECORD INFUT RO	UTINE
0297 34CD	=3417 HRECIN:	CRLL	CHRRIN	
0299 D31A	=3418	XRL	r, #CNTRLZ	
029B CGE0	=3419	JZ	DONE	
0290 D31A	=3420	XRL	A, #CNTRLZ	
029F D33A	=3421	XRL	凡事((':')	
82R1 9697	=3422	JNZ	HRECIN	
	=3423	MMOV	Chiksun, Zero	
02R3 6000	=3428+	MOY	CHKSUM, #ZERO	
02R5 14F0	=3432	CALL	BYTEIN	
	=3433	MMOV	BUFCNT, A	
02117 B941	=3446+	MOV	R1, #BUFCNT	
02A9 A1	=3447+	MOV	erl, A	
02RA 14F0	=3451	CALL	BYTEIN	
	=3452	HIMOV	SMAHI, A	
82AC 8931	=3465+	MOV	k1, #SMAHI	
02RE R1	=3466+	MOV	erl, A	
82AF 14F0	=3470	CALL	BYTEIN	
	=3471	MMOV	smrlo, a	
02E1 B930	=3484+	MOV	R1, #SMRL0	
0263 R1	=3485+	MOV	erl, A	
82B4 14F8	=3489	CALL	BYTEIN	
	=3490	MMOY	RECTYP, A	
82B6 B942	=3503+	MOY	R1, #RECTYP	
0288 At	=3594+	MOV	erl r	
	=3588 ;			
	=3509 ;HDATI	n hex dat	ra byte in	
	=3510 HDATIN	MMOY	R, BUFCNT	
82E9 B941	=3519+	MOV	R1, #BUFCNT	
9288 F1	=3520+	NOV	A, 8R1	
82BC CCCC	=3524	JZ	RECOON	
02BE 14F0	=3525	CALL	BYTEIN	
02C0 AA	=3526	MOV	ldrtr. A	
82C1 F400	=3527	CALL	LSTORE	
82C3 34F2	=3528	CALL	INCSHA	
	=3529	MDEC	BUFCNT	
82C5 8941	=3534+	MOY	R1, #BUFCNT	
02C7 F1	=3535+	MOV	A. 0R1	
02C8 07	=3539+	DEC	A	
A2C9 A1	=7544+	MOV	ert.a	
82C8 44R9	=7547	mp	HDATIN	
02011 1105	=7548 :		102111 414	
RUCC 34CD	=7549 REUDON	· 091	CHARIN	
ROLE DIG	=2559	XRI	A. #(/2/)	
8209 C608	=3551	.17	CKSHOK	
8202 0775	=7552	XRI	R.#(/?/)	SMITCH BACK TO DATA CHARACTER
RANA ZARA	=7557	C911	NTRIN2	: TOTA SURPOINTING ALBERTY IN PORTOCC
8206 1452	-3003	CALL	RVTF14	INTTO
JENO THE	-2004		W11646	7 W 4 1 1 W

LOC	OBJ	LINE	source s	TATEMENT	
		=3555			; (result for Non-1?1 characters is as if
		=3556			; BYTEIN WAS CALLED.)
		=3557	NHOV	A, CHKSUN	
0208	FD	=3573+	MOV	r, Chksun	
8209	96E1	=3577	jnz	CHKERR	
		=3578 CKSMOK	MINUY	A. RECTYP	
02DB	8942	=3587+	MOV	R1. #RECTYP	
02DD	F1	=3588+	MOY	A, er 1	
02DE	C697	=3592	JZ	HRECIN	
		=3593 ;			
		=3594 ; Done	HEX FIL	e correctly rece	IVED
02E0	83	=3595 DONE :	RET		
		=3596 ;			
		=3597 ; CHKER	r Checksu	n error in input	RECORD DETECTED
02E1	BABC	=3598 CHKERR	: MOV	ldata, #Och	
02E3	2498	=3599	JMP	PERROR	
		=3688	SIZECHK		
004E		=3603+ SIZE	SET 7	8	
		=3604+;			
		=3605+; *****	*******	*****	************
		=3614 ;			
		=3615	CODEBLK	12	
00F0		=3620+	ORG	240	
		=3624 ; BVTEI	n byte in	put subroutine.	
		=3625 ;	RECEIVE	s tho hexidecing	l characters from the tape input device
		=3626 ;	rind Ass	embles them into) a single byte of drta.
00F0	3468	=3627 BYTEIN	: Call	NIBIN	
00F2	47	=3628 BYTEI1	: Shap	A	
00F3	AA	=3629	MOY	ldata, a	
80 F4	3488	=3630	CALL	NIBIN	
		=3631	MORL	ldata, a	
99F6	48	=3648+	ORL	R. LDATA	
88-7	AH m	=3668+	HOY	LDATR, A	
99F8	60	=3664	RDD	r, Chksun	
99F9	RD	=3665	MOY	CHKSUN, R	
99FN	FR	=3666	MOV	r, ldrtr	
901-B	83	=3667	RET		
0000		=3668	SIZEUN		
0000		=36714 5126	561 3	2	
		=36(2+)			
		=3002 i	0000001	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
0400		-3663	CODEBLA	440	
0168		=3693+ ->207 . NIDIN			CHORDERTED ON DECKINGER O MORE FRAME BIT LICELE
		=303()NIBIN	KEUEIVE	DOOD CUTCKING IN	CHINKRULEN HIND PRODUCES IN PROKED FOUR BLI VALUE.
0400	7400	=3696 /	NUIL" E	KKUK CHECKING DU	WE TO VERTIX REXIDECTION AND TOTAL
0400	9300	=3677 NIBIN:		CHERKIN	
OTDU	0300	-3100 N181N2	. กมม	r⊮ #** <i>S</i> nn	CHORDONTERS & COLORDONNESS OF STATE
0404	560-2	-3/01	nic.	NTDT-2	CHARACTERS 2 . 2. LIKUNUGE UVENTEUN
0100	0750	-3702	JNC	NIDIS 0 A 7	
OLDE	5 (CO	-3703		f⊎∰**/ 0CCE DD	FINDER OF CHARGE TERMENT AND
0100	EDUX	-5/04	JINC	NOULNK	FERRUR IF UNINKRUTER BETNEEN '9' HND 'H'
		-3003 j -7704 .	000-05/	W	
		-3707 -	nuu≕01-t	n-con fuk un hkh l	ALKS OF T
		-5101 i			

LOC	OBJ	LINE	Source	statement	
81 C2	0 3FA	=3708 NIBI3:	RDD	R. #- 6	; RCC=0F0H_0FFH_FOR_CHARACTERS_101-1F1
81C4	0310	=3789	add	r. #19 H	; ACC=00H-0FH FOR CHARACTERS (0^-^F)
		=3710			; OVERFLOW IF REOVE 15 TRUE.
81C6	E6C9	=3711	JNC	ASCERR	
01CE	83	=3712	RET		
		=3713 ;			
		=3714 ; ASCERF	R ILLEGF	IL HEXIDECINF	il character received
0109	Erion	=3715 ASCERR:	: MOV	ldata, #0AH	1
01CB	2498	=3716	JMP	PERROR	
		=3717	Sizech	₩.	
9915		=3720+ SIZE	SET	21	
		=3721+;			
		=3722+; +++++	******	*******	* ************ *********************
		=3731 ;			
		=3732 ;			
		=3733	CODEBL	_K 5	
01CD		=3743+	ORG	461	
		=3747 ; Chirri	n Charag	cter inpu) ri	DUTINE.
		=3748 ;	RECEIV	ves one asci:	I CHARACTER FROM THE LOGICAL READER DEVICE.
01CD	D449	=3749 CHARIN	: Crill	CIN	
01CF	537F	=3750	ANL	A, #7FK	
01D1	83	=3751	RET		
		=3752	SIZECI	HK	
9995		=3755+ SIZE	SET	5	
		=3756+;			
		=3757+; *****	******	*********	******************************
		=3766 ;			
		=3767 ;			
		=3768 \$EJECT			

LOC	oej	LINE	SOURCE ST	RTEMENT
		=3769	CODEBLK ·	199
9572		=37941	OPG .	1744
0012		=3798 : HE IL FI	NEX FILF	
		=3799 :	LINEN CAL	ED WITH FREER OUTPUT IS STANDARD HEX FILE FORMAT
		=7999	LIVEN CRU	I ED WITH FOR OUT OF IS STRUCTURE NEW TILL FORMAT.
		= 2994 METLEN	· HENOLU	NENHIT, SNEHIT
9572	P074	=3001 14 1020	MANU I	P4. #CHOUT
0574	D731 E4	-70404	MOU	
0575	P075	-20201	MOU	ID ENL
9577	04	-30241	HOU	
0011		=30231	MNOV	NEXT (), SNRI ()
0570	8979	=3020	MOU	P1. #SNPI 0
8579	F1	=7545+	MOV	R. MM
9578	P974	=7851+	MOV	PL ANTIN O
8570	84	=3051+	NOV	
0010	14	=7955	HINOV	CHKSIN, 2FPD
957E	Phaa	=7868+	MOU	CHKSIN, #7FPD
8509	R865	=3864	MOV	PR. HEYRIF
		=7865 :		
		=3866 ; 108/T	F LORD NEX	t byte from memory into hex buffer
85 82	14FC	=3867 LD6YTE	CALL	LFETCH
0584	FA	=3868	NOV	R. LDATA
8585	80	=3869	MOV	ero, A
0586	18	=3870	INC	RØ
6587	B4E2	=3871	CREL	CHPHPS
6589	E696	=3872	JNC	ENDFIL
0588	34F2	=3873	CRLL	INCSNR
85ED	F8	=3874	MOV	A. R0
858E	0388	=3875	ridd	A, #- (BUFLEN+HEXBUF)
8598	E682	=3876	JNC	LDBYTE
8592	D400	=3877	CRLL	HRECO
8594	8472	=3878	JMP	HFILEO
		=3879;		
		=3880 ; ENDF1	il end hex	FILE TRANSMISSION:
		=3881;	PRINT OU	it Buffer for last data record
		=3882 ;	Print ol	JT CRNNED 'END-OF-FILE' RECORD
		=3883 ;	RETURN	
8596	D499	=3884 ENDFIL	: CALL	HRECO
8 598	B6R7	=3885	JF0	HEDONE
0 59A	3402	=3886	CRILL	TCRLF0
859C	BARE	=3887	MOY	R8,#(LON EOFREC)
059E	F8	=3888 ENDF1:	MOY	A. KO
859F	คร	=3689	HOVP	A. en
05A0	CGR7	=3890	JZ	HEDONE
05A2	B4BD	=3891	CALL	CHARO
05A4	18	=3892	INC	R0
85A5	H49E	=3893	JNP	LNDF1
6587	3402	=3894 HFDONE		
USH9	2318	=3895	INUV CON L	K, RANKLZ
USAB ACCAS	E460	=3896	CHILL	Chinku
(HCU	28	-2000	KE (
		=36598 ;		
		=_3039 ; EUFRE		EK SKIING FUK UNNNED END-UF-FILE KEUURD FUK
	00707070	-3300 ; -3004 EDEDEC	INFILL H	LA FILLE FUKTIFI DINNUNKU.
eon;	203113030	=3901 EUFKEL	. 00	. 000000111

UDURI UNU	=5962	DB	0	; END OF STRING CODE BYTE
	=3903	SIZECHK		
8649	=3906+ SIZE	SET 7	3	
	=3907+;			
	=3908+; *****	******	*****	******
	=3917 ;			
	=3918 ;			
	=7919	CODERI K	99	
8688	=7944+	ORG	1576	
	=7957 : HPECO	HEYIDEC	THE RECORD OUTE	NIT SEQUENCE
	=7954 :	HEY RIF	FEP & PEANY 1 OR	FD
0000 00	-7955 LIDECO ·	MOU	0.00	
0000 10	-3333 NREGO.	000		
0001 0370	-3930	MMOU		
0002 0044	-3731	MOUT		
0003 8741	-39/07	HOU		
8683 HI	=39714	17UY		
0606 3402	=3975	UHLL	ICKLEU	
8688 2.528	=3976	NUY	Hu #* '	
UGUR BAED	=3977	UHLL	CHHRU	
060C 8617	=3978	JFØ	FDUMP1	
060e 233A	=3979	MOV	₽ , #′:′	
0610 B4B0	=3980	CALL	Chiaro	
	=3981	MMOV	A, EUFCNT	
0612 B941	=3990+	MOY	R1, #BUFCNT	
9614 F1	=3991+	MOY	R, EK1	
0615 34DE	=3995	CRLL	eyteo	
	=3996 FDUMP1:	NNOV	R, MENHI	
0617 B935	=4885+	MOY	R1. #HENHI	
0619 F1	=4996+	MOV	R. 8R1	
061A 34DB	=4010	CALL	BYTEO	
	=4011	MHOV	a, nenlo	
861C 8934	=4020+	MOY	R1, #MEMLO	
061E F1	=4021+	NOV	A, er1	
961F 340B	=4825	CALL	BYTEO	
9621 B628	=4926	JF Ø	FDUMP2	
9623 27	=4927		A	
9624 34DR	=4929	CRU	RYTEN	
8626 6426	=4929	INP	DATO	
BC20 2720	-4070 ENIMO2.	MAU	0.4/=/	
0020 2330	-4074	0011	CU000	
0020 0400	-4070 -0070	NOTO ON	UNINKU	
0000 0005	-4032 /0110			
0020 0000	=4033 DAILU:		KO, HIEADUP	
902E 8032	=4034 DHIU1:	01U	FDURE D	
00500 0436	=4035	JIT	FOURPS	
0652 2520	=4036 FDUMP5:	MUY	凡書' ′	
0634 E4BD	=4037	CALL	CHIRO	
0636 F0	=4038 FDUMP3:	NOV	R, er ø	
0637 34DB	=4039	CALL	BYTEO	
0639 18	=4040	INC	RØ	
	=4041	hdjnz	BUFCNT, DATO1	
063R 8941	=4846+	NOV	R1. HBUFCNT	
963C F1	=4947+	NOV	R. ER1	
063D 07	=4951+	DEC	A	

LOC	OBJ	LINE	Source si	TRTEMENT
963E	R1.	=4856+	MOV	erl A
863F	962E	=4068+	JNZ	DAT01
		= 49 62 ;		
		=4063 ; ENDREC	END RECO	ORD BEING TRANSMITTED
9641	B648	=4064 ENDREC:	JF0	FDUNP4
		=4065	MHOY	r, Chksun
964 3	FD	=4081+	MOV	a, chksun
0644	37	=4085	CPL	8
0645	17	=4066	INC	
0040	3908	=4687		BYIEU
0040	83	=4088 FUUTP4:	KEI CT7COUK	
0049		-4007 =4092+ C17E	GLT 2	7
0015		=4997+:	эст r.	2
		=4094+; *****		*********
		=4103 ;		
		=4104	CODEDLK	9
01 D2		=4114+	ORG	466
		=4118 ; TCRLF0	TRPE (C	rXLF> output
01 D2	2300	=4119 TCRLF0:	NOV	r, #Charcr
01D4	6480	=4128	CRLL	CHARO
01D 6	2306	=4121	NOV	R, #CHARLF
01D8	B4BD	=4122	Call	CHARO
01DA	83	=4123	RET	
~~~~		=4124	SIZECHK	
0003		=412/+ 512L	5E1 9	
			*******	******
		=4178 :		
		=4179	CODERI K	11
01DB		=4149+	OKG	475
		=4153 ; BYTEO	BYTE OU	TPUT
01DB	86	=4154 BYTEO:	MOV	LDATR, A
01DC	60	=4155	RDD	A, CHKSUN
<b>01</b> DD	RD	=4156	MOV	Chiksum, A
01DE	FA	=4157	NOV	a, ldata
01DF	47	=4158	SWAP	A
01E0	B4EB	=4159	CALL	NIGO
01E2	FR	=4169	MOV	R. LDATA
MIES	8468	=4161		NIBU
01F2	28	=4162	KEI	
0000		-44664 6176	SIZEUNK	4
0000		-41007 5122	261 13	1
		=4168+: ******	****	*****
		=4177 ;		
		=4178	CODEBLK	12
<b>01E</b> 6		=4188+	ORG	486
		=4192 ; HEXRSC	HEXIDEC:	INAL NIBBLE TO ASCII CHARACTER CONVERSION
01E6	539F	=4193 HEXRSC:	ANL	r, <b>#0</b> FH
<b>01</b> E8	03F6	=4194	add	ft #(-19)
<b>91E</b> A	FGEF	=4195	JC	HEXNIB
<b>91EC</b>	033A	=4196	RDD	R, #(10+'8')
01EE	83	=4197	RET	
Ø1EF	0341	=4198 HEXNIB:	ridd	R, #('R')

LOC	OBJ	LINE	SOURCE	STATEMENT
<b>01</b> F1	83	=4199	RET	
		=4200	SIZEC	ł <b>K</b>
888C		=4203+ SIZE	SET	12
		=4204+;		
		=4205+; *****	******	************
		=4214 ;		
		=4215 ;		
		=4216 DECLAR	E BITSO	CONST
000B		=4230 BITS0	EQU	11 ; DRTA BITS FUT OUT (INCLUDING THO STOP BITS)
		=4231 ;		
		=4232	CODEB	LK 30
<b>84C</b> 9		=4252+	ORG	1225
		=4256 ; HBDLR	i HALF-I	BIT TIME DELAY
		=4257 HBDLRY	: Hhoy	H, HBITHI
04C9	<b>B92</b> 7	=4273+	MOV	R1,#HBITHI
<b>94CB</b>	F1	=4274+	MOA	' R, <b>er</b> 1
<b>84CC</b>	8945	=4280+	HOV	/ R1, #H
<b>84CE</b>	A1	=4281+	MOV	/ erl. A
		=4284	MMOY	R1, HBITLO
94CF	B926	=4300+	MOV	RL #HBITLO
04D1	F1	=4301+	MOA	/ A, <b>6K1</b>
04D2	A9	=4314+	MOY	/ RLA
<b>84</b> 03	8407	=4317	JMP	HB01
9405	8900	=4318 HBD2:	HOV	R1, #0
04D7	E907	<b>=4319 HED1</b> :	DJNZ	R1, HBD1
		=4320	MDJNZ	H, HBD2
8409	8945	=4325+	HOY	' R1, #H
04DB	F1	=4326+	HOY	R, eR1
84DC	<b>0</b> 7	=43301	DEC	A
04DD	R1	=4335+	HOY	ert, a
84DE	9605	=43394	JNZ	K HB02
04E0	83	=4341	RET	
		=4342	SIZEC	HK .
0018		=4345+ SIZE	SET	24
		=4346+;		
		=4347+; *****	*****	***************************************
		=4.556 ;		
		=4.557 \$Eject		

LOC	OBJ	LINE	SOURCE :	state <b>hen</b> t	
		=4358	CODEBLI	K 48	
<b>858E</b>		=4383+	ORG	1467	
		=4387 ; NIBO	MRSK R	CC TO NAK	e hex nibble. Translate to ascii and output
<b>0588</b>	3 <b>4E</b> 6	=4388 NIBO: =4389 ;	CRLL	HEXRSC	
		=4799 ; (34980	CONSOLU	F OUTPUT	SIRPOUTINE
		=4791 ;	MRITES	THE CONT	ENTS OF THE ACC TO THE OPT DISPLAY SOMETH
		=4392 (HAR)	HINDY	REGC. 8	
85BD	R944	=4495+	MOV	P1. 4P	FAC
85BF	81	=4496+	NOV	AP1.0	
		=4418	HHOV	E. BITSO	SET NUMBER OF RETS TO BE TREMSHITTED
<b>85C</b> 9	6943	=4421+	NDV	R1, #8	
<b>65C2</b>	6108	=4422+	HOV	881.#	BLTSO
<b>05C4</b>	97	=4426	CLR	с	CLEAR CARRY
<b>85C5</b>	F6CB	=4427 CO1:	JC	C02	
0507	998F	=4428	FINL.	P1. #NOT	TTYOUT
8509	RACE	=4429	JMP	CO3	
05CB	8948	=4430 CO2:	ORL	PL #TTY	OUT
85CD	88	=4431	NOP		Feven out two branch execution times
85CE	80	=4432	NOP		
85CF	9409	=4433 C03:	CALL	HEDLAY	
85D1	9409	=4434	CALL	KEDLAY	
<b>05</b> D3	97	=4435	CLR	C	SET WHAT WILL EVENTUALLY BECOME A STOP BIY
<b>05</b> D4	87	=4436	CPL	C	
		=4437	MRRC	REGC	; Rotate character right one bit,
0505	B944	=4442+	NOV	RL #R	EGC
05D7	F1	=4443+	MOV	A, OR1	
6508	67	=44471	RRC	R	
8509	R1	=4452+	NOV	eri, A	
		=4455			3 NOVING NEXT DATA BIT INTO CARRY
		=4456	MDJNZ	B, CO1	CHECK IF CHARACTER (AND STOP BIT(S)) DONE
85DR	B943	=4461+	HOV	R1. #8	
85DC	F1	=4462+	MOM	R. <b>er</b> 1	
<b>05DD</b>	07	=4466+	DEC	A	
<b>85DE</b>	A1.	=4471+	NOV	erl, a	
850F	9605	=4475+	jnz	C01	
05E1	83	=4477	RET		
		=4478	SIZECH	K	
0027		=4481+ SIZE	SET	39	
		=4482+;			
		=4483+; +++++	******	******	***************
		=4492 ;			
		=4493	CODEBL	K 47	
8649		=4523+	ORG	1609	
		=4527 ; CIN	CONSOL	INFUT SU	BROUTINE WRITS FOR A KEYSTROKE AND
		=4528 ;	RETURN	S WITH 8 I	BITS IN REG ACC.
0049	0543	=4529 CIN:	HU¥ ₩011	R1. #8	
0040	0100 464D	-4524 010	NUY NUT4	EK1. #5	JUNIN BITZ IN BE KEND
0040	4040	-4531 (10:	JNI1	010	
0097	404V	-4352	JNI1	010	
00031	JOJ1 5/54	-4033 UI1:	J11	UI1	
0033	JUJ1 0400	-4354	J11 0011		
0000	2463 5654	-4526		HERATIN,	
0007	0400	-4350	J11 COL1		
0033	<b>246</b> 2	-1337 UIZ:	UILL	HOULHY'	

							anger 76an Augusta Phanka
865F	97	=4540	CLR	0	; DATH B)	IT I	N CY
0660	C465	=4541	JNP	CI4			
0662	97	=4542 CI3:	CLR	C			
8663	87	=4543	CPL	C			
8664	99	=4544	NOP		; EVEN OL	UT B	RRNCH EXECUTION TIMES
0665	89	=4545 CI4:	NOP				
8666	00	=4546	NOP				
9667	89	=4547	NOP				
		=4548	HRRC	REGC			
9668	B944	=4553+	NOV	rl #R	EGC		
<b>866</b> R	F1	=4554+	HOV	A. 8R1			
966B	67	=4558+	RRC	A			
<b>966C</b>	R1.	=4563+	MOY	erl, A			
		=4566	MDJNZ	B, CI2			
966D	<b>B94</b> 3	=4571+	MOA	R1. #B			
<b>066</b> F	F1	=4572+	HOV	A. eri			
<b>0670</b>	87	=4576+	DEC	A			
9671	R1	=4581+	MOV	eri, A			
<b>067</b> 2	9659	=4585+	jnz	CI2			
		<b>=45</b> 87	HHOY	A. REGC			
8674	8944	=4596+	MOA	RL #R	EGC		
<b>0</b> 676	F1	=4597+	HOV	A. OR1			
<b>067</b> 7	83	=4601	RET		; CHARAC	ter	COMPLETE
		=4682	SIZECHK				
062F		=4685+ SIZE	SET 4	7			
		=4686+;					
		=46871; *****	******	******	****	***	
		=4616 \$EJECT					

LOC	OBJ	LINE	source st	IRTEMENT
		4617 \$	INCLUDE	(:F0:NENREF. NOD)
		=4618	CODEBLK	15
02E5		=4633+	ORG	741
		=4637 ; CONFIL	COMMEND	TO FILL ROORESS SPACE BETWEEN SHR AND ENR WITH DRIF
		=4638 ;	IN LON F	RYTE OF MEM
		=4639 COMETH -	NHOV	LDATA, NEW A
ROF5	R974	=4655+	HOV	R1. #NENLO
92E7	F1	=4656+	MOV	8. <b>6</b> 81
82E8	RA	=4669+	NOV	LDATA. A
82E9	F400	=4672 LFILL:	CALL	LSTORE
02EB	84E2	=4673	CALL	CHPNRS
82ED	E6F3	=4674	JNC	LFILL1
<b>82EF</b>	34F2	=4675	CALL	INCSHR
82F1	44E9	=4676	JMP	FILL
82F3	83	=4677 LFILL1:	RET	
		=4678	Sizechk	
000F		=4681+ SIZE	SET 1	5
		=4682+;		
		=4683+; *****		************
		=4692 ;		
		=4693	CODEBLK	4
00FC		=4698+	ORG	252
		=4702 ; Li etci	i fetaies	CONTENTS OF LOGICAL NEMORY ADDRESS DETERMINED BY
		=4703 ;	(TYPE),	(SNAHI), & (SNALO) INTO (LDRTA).
OOFC	D478	=4704 LFETCH	: Call	RFETCH
OOFE	. AA	=4785	MOY	ldata, r
00FF	83	=4706	RET	
		=4/8/	SIZEUHK	
0004	•	=4/10+ SIZE	SEI 4	
		=4/11+;		
		=4/12+; +++++		***************************************
		-4722		* *
9670		-47524	ODC 000	4656
0010	•	-4756	OKG	1030
		=4757 : REFT()		FETCH CIRCUITINE
		=4758 :	FETCHS	Contents of Variaus Nenary Spaces to Acc
		=4759 REFTCH	- NHINU	A. TYPE
9678	B977	=4768+	NOV	R1. #TVPF
867A	F1	=4769+	HOV	R. 8R1
967B	037E	=4773	ADD	R, #LOW LFETBL
<b>967</b> D	83	=4774	JHPP	89
		=4775 ;		
<b>867E</b>	: 84	=4776 LFETBL	: DB	LON LFEPH
867F	98	=4777	DB	LOW LFEDN
8688	90	=4778	DB	LOW LFEREG
9681	R9	=4779	9C	LOW LFEINT
0682	2 61	=4780	æ	Low lfebrk
<b>0</b> 683	B1	=4781	DB	Lon lfebrk
		=4782 ;		
		=4783 LFEPH:	HHOY	a, swaki
0684	B931	=4792+	MOV	R1, #SNAHI
0686	5 F1	=4793+	MOV	R, <b>ER1</b>
8687	' <b>%9</b> 8	=4797	JNZ	LFEDM
		=4798	HHOY	A, SMALO

LOC	0 <b>B</b> J	LINE	Source 9	STATEMENT
0689	8938	=4897+	MOV	R1, #SWRLO
3336	F1	=4808+	MOY	A. ER1
3336	<b>83E9</b>	=4812	ridd	R, #-0V51ZE
968E	F698	=4813	JC	LFEDM
		=4814	MHOY	r. Shalo
8698	8930	=4823+	MOV	R1, #SWALO
8692	F1	=4824+	NOV	A. 881.
<b>069</b> 3	034E	=4828	add	r, Hovbuf
8695	A9	=4829	NOV	R1, A
<b>8696</b>	F1	=4830	MOV	r. er:
<b>869</b> 7	83	=4831	RET	
<b>969</b> 8	94E1	=4832 LFEDM:	CALL	LPGSEL
069R	81	=4833	NOAX	R, eri
<b>869</b> 8	83	=4834	KET	
		=4835 ;		
		=4836 LFEREG:	MMOY	r, shalo
<b>069C</b>	8930	=4845+	MOA	RLJ #SNALO
<b>669E</b>	F1	=4846+	HOV	a eri
969F	537F	=4850	ANL	A, #01111111B ; CHECK IF LON 7 BITS =0
06R1	C6F5	=4851	JZ	LFERØ
06R3	E4B7	=4852	JMP	EPFET
		=4853 ;		
		=4854 LFER0:		H, LPRU
0640	8923	=4253+	TUY	
000117	F1 07	-4000	NUY	
80HR	23	=9068	KEI	
		-4002 /		0 51401 0
0000	<b>D070</b>	-4070	MOU	D4 40100 0
96AR	6736 F4	=4999+	MOV	8.691
9690	A22A	=4884	ADD	A. #FPACT
ACAF	09	=4995	HOV	P1.6
RAF	F1	=4886	HOV	8.62
06B0	83	=4887	RET	
		=4880 ;		
		=4889 ; LFEBRK	LOGICR	l Fetch of Break-Point Data
96B1	94E1	=4890 LFEERK:	CALL	LPGSEL
06E3	99F7	=4891	ANL	P1, #NOT 00001000E
<b>968</b> 5	3968	=4892	ORL	P1, #000010008
96E7	99FD	=4893	ANL	P1, #NOT 000000108
8689	8991	=4894	ORL	P1, #0000001B
<b>0688</b>	81	=4895	MOAX	R. 6R1
<b>86BC</b>	2391	=4896	MOV	r. <b>#01</b> H
068E	8601	=4897	JNI	LFEBR1
9609	27	=4898	CLR	A
96C1	83	=4899 LFEBR1:	RET	
		=4988	SIZECH	K
004R		=4903+ SIZE	SET 7	74
		=4904+;		
		=4965+; *****	<del>chine</del>	**************
		=4914 <b>\$</b> Eject		

LOC	OBJ	LINE	SOURCE	STATEMENT	
		=4915	CODEBL	K 85	
0700		=4958+	ORG	1792	
		=4954 ; =4055 (1 CTOPE			
		=4956 ;	STORES	Contents of Lorta	INTO VARIOUS NEMORY SPACES.
		=4957 LSTORE:	HINOY	A TYPE	
<b>9799</b>	<b>B9</b> 37	=4966+	MOV	R1. #TYPE	
0702	F1	=4967+	MOY	A. 0R1	
0703	8396	=4971	ADD	A, HLOW LSTTEL	
9,62	83	=4972	JAPP	त्ता	
8786	RC.	=4974 LSTTRL	DB	LON LISTEN	
0707	21	=4975	DB	LOH LSTDH	
8796	26	=4976	DB	LOW LSTREG	
8789	34	=4977	DB	LOW LISTINI	
0704	30	=4978	DB	LOW LSTBRK	
0706	<b>S</b> D	=4979	DB	LUN LSTBRK	
		=4980 ; =4984   CTPH-	MNDV	r. shrit	
878C	6931	=49901 251111.	NOV	R1. #SNAHI	
070E	F1	=4991+	HOY	A. 6R1	
070F	9621	=4995	jnz	LSTDH	
		=4996	MHOY	r, shalo	
0711	B930	=5005+	YON	R1, #SNALO	
0713	F1 9709	=3000+ =5010	900 900	15 EK1. 9. 8-095175	
8716	F621	-5010	JC	LSTDH	
		=5012	HHOY	A, SHALO	
8718	B930	=5821+	MOV	R1, #SNRLO	
071A	F1	=5022+	MOY	A, eri	
071E	034E	=5826	RIDD	A, HOYBUF	
0710	F9	=3627 =5829	MOV	KLUH ALINATA	
971F	RL	-5829	NOV	ert a	
8729	83	=5030	RET		
		=5031 ;			
0721	94E1	=5032 LSTDN:	CREL	LPGSEL	
0723	FR	=5033	MOV	r, ldatr	
0724	97	-5075	DCT	ekt, H	
OIEJ	03	≕59336 ;			
		=5037 LSTREG	: HHOY	r, snrlo	
8726	B930	=5946+	MOY	RL #SHALO	
0728	F1	=5047+	MOV	A, er1	
0729	537F	=5851	ANL	A, 401111111B	; CHECK IF LON OKDER BITS = 0
0720	5407	-5852	JZ TMED		
0120	2763	-5055 =5854 :	ALM.	COTOK	
		=5055 LSTR0:	NHOV	EPRO, LDATA	
072F	FA	=5078+	MOV	A. LORTR	
0730	<b>B92</b> 3	=5064+	HOV	R1. #EPR9	
0732	H1	=5085+	MOV	erl, A	
0733	28	≍3688 5000	KL I		
		=5090 LSTINT	: MHOV	r, snalo	
			-		

0130 11	=5166+	NOV	A. 8R1
0737 0320	=51 <del>04</del>	add	A #EPACC
8739 R9	=5105	MOV	RL A
0738 FR	-5186	MOY	r. Lorta
0738 A1	=5197	HOV	ert. A
873C 83	=5188	RET	
	=5109;		
	=5110 ; LSTBRK	LOGICAL	STORE OF BREAK-POINT DATA
073D 94E1	=5111 LSTBRK:	CALL	LPGEL
073F FA	=5112	MOV	K LDATA
0740 1246	=5113	JE9	LSTBR1
8742 8991	=5114	orl.	P1, #99999991B
0744 E448	=5115	JMP	LSTBR2
0746 99FE	=5116 LSTBR1:	ANL	F1, #NOT 00000001B
8748 99F7	=5117 LSTBR2:	ANL.	P1, #NOT 000010008
074R 81	=5118	NOVX	A, 8R1
074B 8908	=5119	orl.	P1, #00001000B
074D 83	=5120	RET	
	=5121	SIZECHK	
804E	=5124+ SIZE	SET 7	8
	=5125+;		
	=5126+; +++++	*******	***************************************
	=5135 ;		
	=5136	CODEBLK	17
04E1	=5156+	ORG	1249
	=5169 ; LPGSEL	LOGICAL	PRGE SELECT.
	=5161 ;	sets up	Port 2 to address appropriate byte of RAM Block.
	=5162 LPGSEL:	MHOY	R, TYPE
04E1 B937	=5171+	MOV	R1. #T\PE
04E3 F1	=5172+	HOV	R. 881.
84E4 5381	=5176	ANL	A #0000001B ; MRSK OFF DATA TYPE SELECTOR BIT
<b>84E6 47</b>	=5177	SHAP	A
	=5178	MORL	r, shrhi
04E7 B931	=5184+	MOV	R1, #SNAH1
04E9 41	=5185+	ORL	A 6R1
04ER 4340	=5189	orl	R. #01000008
04EC 3A	=5190	OUTL	P2, A
	=5191	MMOY	A, SMALO
94ED B930	=5290+	MOY	R1, #SWALO
04EF F1	=5201+	MOY	R. 6R1.
04F0 R9	=5285	MOV	RL A
04F1 83	=5286	RET	
	=5207	SIZECHK	_
9911	=5210+ SIZE	SET 1	7
	=5211+;		
	=5212+; ******	******	
	=5221 ;		
	=5222 \$Eject		

All mnemonics copyrighted © Intel Corporation 1976.

LOC	0ej	LINE	Source statement
		<b>-522</b> 3	CODEBLK 11
<b>01</b> F2		=5233+	ONG 498
		=5237 ; INCSN	I INCREMENT STARTING MEMORY ADDRESS WORD.
<b>01</b> F2	B930	=5238 INCSMR:	NOV R1, #SHRLO
01F4	11	=5239 INCH:	INC er1
01F5	F1	=5249	MOV A, er1
01F6	96FC	=5241	JNZ INCHI
01F8	19	=5242	INC R1
01F9	F1	=5243	NOY A, er1
01FA	17	=5244	INC A
<b>01FB</b>	31	=5245	XCHD R. 6R1
01FC	83	=5246 INCH1:	RET
		=5247	SIZECHK
888E		=5250+ SIZE	SET 11
		=5251+;	
		=5252+; *****	*************
		=5261 ;	
		=5262	CODEBLK 12
02F4		=5277+	ORG 756
		=5281 ; DECSN	r decrement shr word.
82F4	8930	=5282 DECSMA	: MOV R1_#SNALO
<b>82F</b> 6	F1	=5283	NOV AJER1
02F7	07	=5284	DEC R
82F8	21	=5285	XCH ALER1
82F9	96FF	=5286	jnz decsni
<b>02</b> FB	19	=5287	INC R1
02FC	F1	=5268	NOV R. BR1.
82FD	07	=5289	DEC A
<b>02FE</b>	31	=5290	XCHD D. GR1
82FF	83	=5291 DECSM1	: RET
		=5292	SIZECHK
000C		=5295+ SIZE	SET 12
		=5296+;	
		=5297+; +++++	***************************************
		=5396 ;	
		=5307	CODEBLK 15
<b>05E</b> 2		=5332+	ORG 1506
		=5336 ; Chifyir	5 Compare Memory Addresses
		=5337 ;	Compare shr bytes with enr bytes to determine relative hagnitude.
		=5338;	returns with chrry=1 iff (swr) >= (ewr).
		=5339;	is called after action has been performed on (SNR) to determine. If
		=5340;	TASK IS COMPLETED:
		=5341 ;	IF Cy=0 then (SNR> >= (ENR> ==> ) 1erminate task.
		=5342 ;	IF CY=1 THEN (SHR) ( (ENR) ==> INC SHR AND REPEAT.
		=5343 CMPMRS	: MNOV AJ SMALO
85E2	B930	=5352+	NOV R1, #SNALO
85E4	F1	=5353+	NOV A. er.1.
05E5	37	=5357	CPL A
		=5358	NRDD RJENALO
<b>05E</b> 6	8932	=5364+	NOY R1, #ENRLO
<b>85</b> E8	61	=5365+	ADD A. BR1
		=5369	NNOV A, SNAHI
85E9	8931	=5378+	NOV RL #SWRHI
05EB	F1	=5379+	NOV A. ER1.
<b>Ø</b> 5EC	37	=5383	CPL A

OBJ	LINE	SOURCE STRIEMENT
	=5384	NRODC A, ENRHI
B933	=539 <del>0</del> +	MOV R1, #EMRHI
71	=5391+	ADDC A. ER1
83	=5395 CHPRET :	RET
	=5396	SIZECHK
	=5399+ SIZE =5400+; =5401+; *******	92T 15
	0BJ 89333 71 83	08J LINE =5384 8933 =5390+ 71 =5391+ 83 =5395 CMPRET =5396 =5399+ SIZE =5400+; =5400+; =5401+; ******

LOC	083	LINE	Source st	IRTEMENT	
		5411 \$	INCLUDE	(:F0:KBD, MOD)	
		=5412	CODEBLK	189	
074E		=5447+	ORG	1870	
		=5451 ;			
		=5452 ;	KEYBOAR	) and display pro	CESSING ROUTINE
		=5453 ;	CRILLED I	ERIODICALLY WHEN	i KBD AND DISPLAY ARE TO BE ALIVE.
074E	05	=5454 TIINT:	SEL	RB1	
		=5455	MHOY	RSRVE, R	
074F	893E	=5468+	MOY	R1, #RSRVE	
0751	A1.	=5469+	MOY	erl, a	
0752	23F0	=5473	MOV	ብ #(-18K)	
8754	62	=5474	MOV	τA	; RELOAD TIMER INTERVAL
0755	27	=5475	CLR	R	
0756	3E	=5476	MOVD	PSEGHI, R	; Write Elrnk Pattern to seg drivers
0757	30	=5477	NOVD	PSEGLO, A	
0758	FD	=5478	MOV	R, CURDIG	
0759	07	=5479	DEC	A	
075A	3F	=5480	MOYD	PDIGIT, A	; ENERG) ZE CHARACTER
075B	9C	=5481	MOVD	A. PINPUT	; LOAD ANY SWITCH CLOSURES
075C	AA	=5482	MOY	Rotprt, A	
		=5483			FIRITE NEXT SEGNENT PRITERN
0750	FD	=5484	NOV	r, curdig	
075E	07	=5485	DEC	A	
075F	0346	=5486	ridd	r, #segnap	; add curdig displacment to base
0761	RE	=5487	NOV	RO, A	
0762	F0	=5488	MOV	A, ero	; Lord ACC H/ Next segment pattern
0763	30	=5489	NOVD	PSEGLO, A	; Enhble appropriate segments
0764	47	=5490	SWAP	R	
8765	Æ	=5491	HOYD	PSEGHI, R	
		=5492;			
		=5493 ; *****	*****	***********	
		=0494 ;	THE NEX	T CHIRCLER IS N	UN BEING DISPLAYED.
		=0490;	INE KEY	BUHRD SCHN RUUTT	NE IS INTEGRATED INTO THE DISPLAY SUMM.
		=0456 ; =E407 ;	MIN IN	e lukkent kun en	ERGIZED, CHECK IF THERE HIRE HIRY INPUTS.
		-5497 ; *****	********		
		-3436 /	DOTOTE		
		-5500	RUINIE	BITS INKOUGH THE	CY MHILE INCREMENTING REVEOU.
9766	DD64	-3300 /	MINU	DOTONT ANON C	
0100	0004	=5592 NYTI OC	· NODC	POTDOT	SET OF FOR CHUCES? LOUPS INKOUGH INVILOU
8769	FR	=5514+	MOU	9. POTPOT	
0769	67	-5518+	PPC		
A76A	80	=5529+	MOU	POTPET, R	
976B	F698	=5572	TC	CCON5	ONE DIT IN OUTNOTES NEW NOT DOWN
076D	PERI	=5577	NOU	VENELC. #4	HODE DIT IN CT INDICHTED RET NOT DOWN
0100	OLDI	=5574	101	KEIFLO WI	THINK INTI IN LEAST ONE KET WITS DETECTED
		=5575 :			JA IN THE CONNENT JUNIT
		=5576 : *****	*******	****	******
		=5577 :	A KHACI	ROKE WAS DETECTED	D FOR THE CHERENT COLUMN TTS
		=55'68 :	POSITIO	N IS IN DERICTED	KEANUL CRE LE CUME NER CENTEN FUCL UNUE
		=5539 : *****	******	******	TRETEND. JEE IT JERE KET JERDER ENDT UTUEE.
		=5540 :			
		=5541	MINOV	A. KEVLOC	
076F	893C	=5558+	MOV	RL #KEYLOC	
0771	. F1	=5551+	MOV	A 981	
	-				

0773 DC	=5556	XRL	r, lastky	
0774 C67C	=5557	JZ	scrn3	
	=5558 ;			
	=5559;*****	****	*****	<del>tattettettettettettettettettettettettett</del>
	=5568 ;	A DIFFE	Rent Key was rea	o on this cycle than on the previous cycle.
	=5561 ;	SET NRE	PTS TO THE DEBOU	nce parameter for a new countdown.
	=5562 ; *****	*******	*****	******
	=5567			
9776 893D	=5564	MOV	R1. INREPTS	
9778 B196	=5565	MOV	<b>8R</b> 1, <b>8</b> 6	
9779 F498	=5566	TMP	SCAN5	
OTTIL L'HOD	=5567 :	<b>718</b>		
	-5520 ++++++	ie de ste ste ste ste ste ste ste	instruction and a standard contract of colorado all colorado all	ale a le ste ste ste ste ste ste ste ste ste st
	=5569 :	COME KI	V LIAS DETENTED 7	S ON PREVIOUS CYCLE
	-5570		ING DELECTED S	DOU 7000 DO NOTHING
	-33(0)		PREFID. IF HERE	ADT ZERO, 50 NOTITIRE
	-JJ11 /		COREMENT WREFTS.	MOUT LOCTVU INTO KONSUE
	-3372 /	16 1013	S RESULTS IN ZERU	DING LADINT INTO NORDOF.
	-5574 :	kakatan panana	*********	************************************
	=00/4 ; _EETE COMP.			
0770 0070	=0070 SUMMUS:	MANA	HUNKEPIS	
0770 8930	=3364+	MUY	KI, WWEP15	
0//E +1	=5585+	7UY	Hi UK1	15 AL 550ALL 350A
077F C68B	=5589	JZ	SCHNO	; IF ALKENDY ZEKU
0781 07	=5590	DEC	A	; INDICATE ONE MORE SUCCESIVE KEY DETECTION
	=5591	MINOV	NREPTS, R	
0782 5930	=5684+	MOY	R1, #NREPTS	
0784 R1	=5685+	MOY	eri, A	
0785 9688	=5689	JNZ	scrints	; IF DECREMENT DOES NOT RESULT IN ZERU
	=5610	MMOV	KBDBUF, LASTKY	; to mark new key closure
0787 FC	=5633+	MOV	r, lastky	
0788 B93B	=5639+	MOY	R1, #KEDEUF	
078R A1	=5640+	NOA	erl r	
	=5643 ;			
078B 893C	=5644 scrint:	MOY	R1, #KEYLOC	
0780 11	=5645	INC	eri	
078E ED68	=5646	DJNZ	ROTONT, NXTLOC	
0790 EDRS	=5647	DJNZ	CURDIG, TIRET1	
0792 8008	=5648	MOY	CURDIG, #CHARNO	
	=5649 ;			
	=5659 ; ****	****	********	at dag dag ya
	=5651 ;	THE FO	LONING CODE SEGN	ENT IS USED BY THE KEYBORRD SCRINING ROUTINE.
	=5652 ;	IT IS I	executed only aft	ER R REFRESH SEQUENCE IS COMPLETED
	=5653 ; *****	******	*****	******
	=5654 ;			
	=5655	MMOY	KEYLOC, ZERO	
8794 B930	=5666+	MOV	R1. #KEYLOC	
0/96 B100	=5667+	MOV	AR1. #7FR0	
8298 FF	=5671	MOV	A. KEYELG	
8799 969D	=5672	1N7	CLANA	: TUMP IF ANY KEYS WERE DETERIED
0.33 3030	=567?	MMAU	LIGETEV, MECH	CHONCE ALL ACTIVES HERE DETECTED
AZAR BULL	-5678+	MOU	LACIEV. HALCH	FOR AND ALIGHT IN ALIGHT AND ALIGHT AND ALIGHT
AZAD BEAR	-5692 LIMDUD.	MOU	VEUELG, 40	
OT AV DE 00	-JOOZ JUNNO. -5207 -	ΠŲΥ	NETFLO TO	
	-3063 j -5/04 saturation			
	=3694   *****	k Marija Serie Marij		<del>al na ana ana ana ana ana ana ana ana an</del>

LOC	OBJ	LINE	Source s	TATEMENT
		=5685 ;		
		=5686 ;	KBD/DIS	P Return code- restores system status.
		=5687	mmov	A, RDELAY
079F	<b>89</b> 3F	=5696+	MOV	R1, #RDELAY
07R1	F1	=5697+	MOV	R, <b>CR1</b>
07R2	CGA8	=5701	JZ	TIRET1
0764	07	=5702	DEC	A
		=5703	mmov	KDELAY, A
07A5	B93F	=5716+	Moy	R1, #RDELAN
07A7	R1.	=5717+	Mov	erl r
		=5721 TIRET1:	MMOV	A, RSAVE
0768	893E	=5730+	MOV	R1, #ASAVE
07AA	F1	=5731+	MOV	A, <b>BR1</b>
07RB	93	=5735	RETR	
		=5736 ;		
		=5737 ;		
		=5738 ; TOFPOL	TIMER O	VERFLOW POLLING SUBROUTINE.
		=5739;	CRILLED	REPEATEDLY FROM WHEREVER KBD/DISP MUST BE ALIVE.
		=5740 ;	MONITOR	s the timer overflow flag (tof) and calls service
		=5741 ;	ROUTINE	WHEN APPROPRIATE.
87RC	164E	=5742 TOFPOL:	JTF	TIINT
6711년	83	=5/43	KE I	
		=5744	SIZECHK	
6661		=5747+ SIZE	SET 9	<i>Y</i>
		=3/48+;		
		-5750 45 1507	******	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
		=3738 \$EJECT		

LOC	OBJ	LINE	source st	RTEMENT
		=5759	CODEBLK	17
0602		=5789+	ORG	1730
		=5793 ;		
		=5794 ; KBDIN	KEYBOHRL	) INPUT SUBRUUTINE.
		=5795 ;	RETURNS	UNLY IN TER H NEW KEYSTRUKE ANS BEEN DETECTED AND DEBOUNDED
		=5796 ;	VALUE OF	- KEY FUSITION IN SWITCH PRETRIX 15
		=5797 ;	KE TUKNEL	AN THE NOUTHOUTHOR.
		=5738;	DISPLHY	CHRANCTER NUR UN BLIMKED BEFURE RETURNING.
0002	13F103 174154	=3799 KBUIN:	COLL	APOUL: #S
0004	(401 E400	-3000 -50014	COLL	
9000	F 4716	-3001 NDUII.	MMOU	
0000	0070	-3002	MOV	D4 ##/DNet#C
0000	6230	-5012:	10V MDU	0. BD1
0000	E206	-50127	IR7	KRD14
0000	27	=5817	CL R	A
ACCE	21	=5017	MOVD	PSTGHI. A
ALCE	. JL 70	=5819	MOVD	PSEGLO. A
acto	77	=5012	CPI	8
ACD1	21	=5821	XCH	A. MP1
86D2	93	=5822	RET	
	. 05	=5823	SIZECHK	
8911		=5826+ SIZE	SET 1	7
		=5827+;		
		=5828+; ****	******	**********
		=5837 ;		
		=5838	CODEBLK	15
85F1		=5863+	ORG	1521
		=5867 ; Clerr	<b>HRITES</b>	'BLANK' CHARACTERS INTO ALL DISPLAY REGISTERS.
		=5868 ;	RETURNS	WITH NEXTPL SET TO LEFTMOST CHARACTER POSITION
		=5869 ;	does no	T REFECT ACC OR CY.
05F1	. B846	=5870 CLERR:	MOV	RØ, #SEGMAP
05F3	B908	=5871	Mov	R1, HCHARNO
05F5	i 8000	=5872 DBLANK	: Mov	ero, #0 ; store the blank code
05F7	' 18	=5873	INC	RØ ; POINT TO NEXT CHARACTER TO THE LEFT
05F8	E9F5	=5874	DJNZ	R1, DBLANK
		=5875	MMOY	NEXTPL, CHRRND
05FA	B93A	=5886+	MOY	R1, #NEXTPL
05FC	C108	=5887+	MOV	erl, #Chirrio
80FF	: 83	=5891	KE I	
		=5892	SIZECHK	
UUUL		=58954 512E	5EI 1	4
		=3836+;	dente den bestenden bestenden	
		=389(+; *****	****	***************************************
		-5007		44
0(1)7	,	-5307	ODC	4747
0003	•	-5044 -00000	טאש ה הזכסו מט	ATTI Voline de louinterie de môc
94117	5705	-3741 / 000000	· ANI	A BACH
0003	9755	=5947	ADD	9. #NCDATC
0000 045117	9321	-5944	MOVP	A. 89
0001		=5945 : LIDTOP	WRITES	BIT PAITERN NOW IN ACC INTO NEXT (HARACTER POSITION
		=5946	OFTHE	DISPLAY (NEXTPL) INCREMENTS NEXTPL
		=5947 ;	RESULTS	IN DISPLAY BEING FILLED LEFT TO RIGHT, THEN RESTARTING
96D8	AE	=5948 HDISP:	MOV	DSPTNP, R

LOC	oej	LINE	source st	RTEMENT	
86D9	BF04	=5949	MOV	XPCODE, #4	
ØGDB	74D1	=5950	CALL	XPTEST	
		=5951	MMOY	R, NEXTPL	
06DD	893A	=5960+	MOV	R1, #NEXTPL	
<b>BGDF</b>	F1	=5961+	MOV	r, <b>er</b> 1	
96E9	0345	=5965	add	R, #SEGMRP-1	
06E2	A9	=5966	MOV	R1, A	
06E3	FE	=5967	MOV	A, DSPTMP	
06E4	81	=5968	MOV	8R1, A	
		=5969	MDJNZ	NEXTPL: NDISP1	
06E5	893A	=5974+	MOV	R1, #NEXTPL	
06E7	F1	=5975+	MOV	A, 9R1	
<b>96E</b> 8	07	=5979+	DEC	ß	
06E9	R1	=5984+	MOV	eri, A	
06EA	96EE	=5988+	JNZ	WDISP1	
<b>ØGEC</b>	B108	=5990	MOY	er1, #Charno	
06EE	83	=5991 WDISP1:	ret		
		=5992 ;			
		=5993 (DGPH15	IS HE	BHSE FUR THE THB	LE OF SEGMENT PHILERNS FOR MEX DIGITS.
		=5994 ; HEKE	RE FULL	HEX SET (10++) 15	INCLUDED.
0000		=3993; -E006 DCD076	500		
ØØEF		=5996 DUPHIS	EGO	1 HIND OFFIC	
		-3337 ) -5000 · COOMOT	• <b>1</b> C	DECENCED	TH CTONNOON CEVEN. CLAMENT ENPOYTNG CONVENTION
		-5200 · OKINI	15	FOFEDED	LUEDE P DEPORTS THE AFAINARY PAINT
ACEC	75	-5999 ;	DR.	99111111R	SECNENT PATTERN FOR DIGIT 'A'
ACER	- SF - 196	=60000 =6001	DE	88999111110	SEGMENT PATTERN FOR DIGIT '1'
R6F1	58	=6882	08	01011011E	SEGMENT PATTERN FOR DIGIT '2'
86F2	4F	=6003	DB	01001111E	SEGMENT PATTERN FOR DIGIT '3'
96F3	66	=6804	DB	01100110E	SEGNENT PATTERN FOR DIGIT '4'
<b>86</b> F4	60	=6005	DE	01101101E	SEGNENT PRITERN FOR DIGIT 151
86F5	70	=6006	DE	01111101B	SEGMENT PRITERN FOR DIGIT 161
<b>06</b> F6	07	=6897	DE	00000111B	SEGMENT PRITERN FOR DIGIT '7'
06F7	' <b>7</b> F	<b>=699</b> 8	DB	01111111B	SEGMENT PRITERN FOR DIGIT '8'
06F8	67	=6009	DB	01100111B	SEGMENT PATTERN FOR DIGIT '9'
<b>06</b> F9	77	=6010	DB	01110111B	SEGMENT PRITERN FOR DIGIT 'A'
<b>06F</b> R	70	=6011	DE	011111006	; segnent pattern for digit 'b'
<b>86</b> FE	39	=6012	DB	00111001B	; segment pritern for digit 'C'
<b>86</b> FC	5E	=6013	DB	01011110E	SEGMENT PHTTERN FOR DIGIT 'D'
06FD	79	=6014	DB	01111001E	; SEGMENT PATTERN FOR DIGIT 'E'
06FE	71	=6915	DE	01110001B	SEGMENT PRITTERN FOR DIGIT 'F'
		=6016	SIZECHK		
0020		=6019+ SIZE	SEI 4	4	
		=0020+; =0020+;	والمعاومة والمعاومة والمعاومة		والوالوالية المحمد والمحالية
		-00211) ++++++	*****	·** <del>***</del> **********	a na ang ang ang ang ang ang ang ang ang
		-0030 ) -6974	CODERN	40	
R4F2	,	=6851+	OPG	1266	
~ 1 6	•	=6855 : DFLAV	SUBRUIT	THE WAITS FOR TH	e Number of Complete
		=6856 :	DISPLAY	SCANS CORRESPON	DING TO THE ACC CONTENTS
		=6057 ;	USED NT	TH CRUDE HIMON T	NTERFROES- AS WHEN OPERATOR SHOULD SEE
		=6058	SOME DT	Splay change lint	LE IT IS CHANGING.
		=6859 DELAY:	MMOY	RDELAY, H	
84F2	893F	=6072+	MOV	R1, #RDELAY	
<b>84</b> F4	R1	=6073+	MOA	8R1, 8	

0417 093F	=6087+	MOV R1, #RDELAY
04F9 F1	=6088+	NOV RJERI
84FA 96F5	=6892	JNZ DELRY1
84FC 83	=6093	RET
	=6894	SIZECHK
9998	=6097+ SIZE	SET 11
	=6098+;	
	=6899+; ******	******************
	=6198 ;	
	=6109	CODEBLK 8
07RF	=6144+	ORG 1967
	=6148 ; KEDPOL	Poll status of Keyboard Input Routine.
	=6149 ;	RETURN WITH ACC BIT 7 = 0 IF KEYBOARD INPUT HAS BEEN RECEIVED.
07RF 8F05	=6150 KBDPOL:	NOV XPCODE, #5
07B1 74D1	=6151	CALL XPTEST
	=6152	MMOY A, KBDBUF
07B3 B93B	=6161+	NOV R1_#KEDBUF
0785 F1	=6162+	NOV RJER1
<b>076</b> 6 83	=6166	RET
	=6167	SIZECHK
8998	=6170+ SIZE	SET 8
	=6171+;	
	=6172+; ******	***************************************
	=6181 \$EJECT	

LOC	OBJ	LINE	Source	statement
		6182 \$	INCLUD	)e(:f0:link.mod)
		=6183	CODEDL	K 15
<b>07</b> 67		=6218+	ORG	1975
		=6222 ; EPFET	FETCH	DRTR BYTE FROM EP INTERNAL RAM RODRESSED BY SHALO.
		=6223 EPFET :	HHOV	A, SNALO
<b>07</b> 87	B930	=6232+	MOY	R1, #SMALO
<b>07</b> 89	F1	=6233+	MOA	A, 8R1
07BA	F4D0	=6237	CALL	EPPASS
07BC	2380	=6238	MOV	A #1000000B
07BE	F4D0	=6239	Call	EPPRSS
0700	F4D0	=6249	CALL	EPPRSS
8702	83	=6241	RET	
		=6242	SIZEC	ĸ
889C		=6245+ SIZE	SET	12
		=6246+;		
		=6247+; ******	*****	***************
		=6256 ;		
		=6257	CODEEL	LK 15
<b>07</b> C3		=62924	ORG	1987
		=6296 ; EPSTOR	STORE	data in loata in ep internal ram at (snalo)
<b>0</b> 7C3	FR	=6297 EPSTOR:	MOV	r, ldrtr
07C4	F4D0	=6298	CALL	EPPASS
		=6299	MMOV	a, snalo
07C6	8930	=6398+	HOY	R1, #SMRLO
0708	F1	=6389+	NOV	A, CRL
0709	537F	=6313	anl	A, #011111116
07CE	F400	=6314	Call	EPPASS
07CD	F4D0	=6315	Call	EPPRSS
<b>07</b> CF	83	=6316	RET	
		=6317	Sizeci	IK
000D		=6320+ SIZE	SET	13
		=6321+;		
		=6322+; *****	*****	*************
		=6331 \$EJECT		

LOC OBJ	LINE	source s	TRTEMENT	
	=6332 ; =6333 ;	the fol	LOWING UTILITIES IN	Volve interchanges between the MP and EP.
	=6334	CODEBLK	11	
0700	=6369+	ORG	2000	
	=6373 ; EPPRS	5 PRSSES	h single prrameter i	Byte to the ep through the link.
	=6374 ;	WRITE T	he contents of the i	ACC TO THE LINK;
	=6375 ;	RELEASE	The ep;	
	=6376 ;	read th	e link into the acc.	i
	=6377 ;	RETURN.		
07D0 8R30	=6378 EPPRSS	: Orl	P2, <b>#00</b> 1100008	; ENRBLE LINK MRITES.
0702 91	=6379	MOVX	eri a	HRITE ACC TO LINK.
07D3 99FE	=6389	ANL.	P1_ #NOT ENBRAM	; DISABLE BREAKPOINTS.
8705 8982	=6381	URL	P1, #ENBLAK	SET TO BREAK ON LINK REFERENCE.
0707 F408	=6.482	UHLL	EPSIEP	
8703 81	-5823-	NUYX OFT	H, EK1	
870H 83	=6.584	KEI CIRCUM	,	
0000	-7520 -777			
0000	=63884 5125	561 3	1	
	-03021/	de aleraleraleraleraleraleraleral		****
	=6799 :	********		
	=0355 ; =::::::::::::::::::::::::::::::::::::	CODERIN	25	
870R	=6475+	1202000	2911	
0100	=6479 : FPSTF	P RELEASE	S FP TO RIN IN PRES	ENT MODE UNTIL AN ANTICIPALIED
	=6449 ;	HARDWAR	e break occurs	
	=6441 ;	(DUE TO	) SINGLE STEPPING, L	1NK OPCODE FETCH, OR LINK DRTR FETCH. )
	=6442 ;	HUST OC	CUR WITHIN & FINITE	NUMBER OF CYCLES ((40 MP CYCLES)
	=6443 ;	OR HATC	HOOG TIMER WILL RSS	UNE A CONMUNICATIONS ERROR
	=6444 ;	BETHEEN	I THE MP AND EP.	
070B F4F4	=6445 EPSTEP	: Call	EPREL	
07DD B90A	=6446	NOV	R1, #10	
87DF 86F1	=6447 EPSTE1	: JNI	EPSTE2	
07E1 E90H	=6448	djnz	R1, EPSTE1	
07E3 8910	=6449	ORL	P1. #EPRSET	
07E5 744F	=6450	Call	eperk	
87E7 B868	=6451	MOV	RU, HLON(OV1BRS+OVS	12E)
07E9 746A	=6452	CALL	ovlord	
07EB 99EF	=6453	anl.	P1_ #NOT_EPRSET	
87ED BAGE	=6454	MOY	ldatr, <b>#0</b> eh	
07EF 249A	=6455	JMP	PERROR	
07F1 744F	=6456 EPSTE2	CALL	el-Brk	
Ø7F3 83	=6457	RET		
004.0	=6458	SIZEUHK	-	
0019	=6461+ 512E	5ET 2	5	
	-040343 ######	*******	~~ <del>~~~~~~~~~~~</del> ********	<del>, , , , , , , , , , , , , , , , , , , </del>
	-04(2)			
	-UTIT PLJEUI			

LOC	OBJ	LINE	source st	IATEMENT	
		=6475	CODEBLK	9	
07F4		=6518+	ORG	2036	
		=6514 ; EPREL	RELEASES	5 ep to RUN in present	NODE.
		=6515 ;	SEQUENCE	is as follows:	
		=6516 ;	PUT NEN	orn' array in ep mode;	
		=6517;	RAISE /	SSTEP;	
		=6518 ;	RETURN.		
07F4	99F7	=6519 EPREL :	ANL	P1, #NOT CLRBFF	; Clear Break F/F.
07F6	8988	=6529	ORL	P1, #CLRBFF	; re-enrible break f/f.
07F8	9ABF	=6521	anl.	P2, #NOT 010000008	; Enable ep control of men array
87FA	8984	=6522	orl	P1, #000001008	; Free EP to run until break.
07FC	83	=6523	ret		
		=6524	SIZECHK		
9969	1	=6527+ SIZE	SET 9		
		=6528+;			
		=6529+; *****	******	*******************	******
		=6530;			
		=6539;			
		=6540	CODEBLK	11	
034F		=6580+	ORG	847	
		=6584 ; EPBRK	REGAIN	Control of Memory Array	from EP.
		=6585 ;	DROP /S	STEP;	
		=6586 ;	WRIT 30	USECS. ;	
		=6587 ;	put hen	ory array in MP Mode;	
		=6508;	RETURN		
034F	99FB	=6589 EPBRK:	ANL	F1, #NOT 00000100E	FREEZE EMULATION PROCESSOR.
0351	. 8920	=6598	ORL	P1, #MODOUT	SIGNAL EP IS NOT RUNNING USER CODE.
0353	8995	=6591	MOY	R1, #5	
8355	E955	=6592	DJNZ	R1. \$	; DELAY FOR EP TO FINISH INSTRUCTION.
0357	8840	=6593	ORL	P2, <b>#0100000B</b>	; seize control of men Arrry.
8359	83	=6594	RET		
		=6595	SIZECHK	_	
9996	8	=6596+ SIZE	SET 1	1	
		=6599+;			
		=6688+; ****	****		*******
		=6689;			
		=6610 ;			
0750		=6611	CODEBLK	16	
NC20H		=6651+	UKG	556	
		=6655 ; UVSNH	P UVERLHY	SHP.	
	-	=6636 ;	SMHPS B	LUCK OF DRINBYTES (USE)	('s prugrhf) between np rhf & ep pt.
HCCD	1 6860	=6657 UV5MMP		KU, HUYBUF+UVSIZE	
0.500	5 B917	3699=	AUX.	R1 #0Y51ZE	
USOL	2340	=6659	ITUY (NUT)	For FUTURE AND A	
0360	N2 I	=6060	DUIL	P2.H	
0361	. 68	=6661 UY5M1:	DEL	KU CI	
0362	: U7 • 04	-0002		KL 0. envi	
0303	01	-0005		ruerka. 0.000	
0364	20	=0004	XLK	No <b>EKU</b>	
0365	) <b>71</b>	=0000 =0000	INUYX	enci: H	
0366	17	=6666	MUY	H, K1	
0367	9661	=6667	jnz	OVSW1	
0369	83	=6668	RET		
		=6669	SIZECHK	_	
0010	1	=6672+ SIZE	SET 1	6	

			************
	=6683 ;		
	=6684	CODEBLK	14
036A	=6724+	ORG	874
	=6728 ; OVLORD	OVERLAY	LORD.
	=6729 ;	MOVES B	Lock of Databytes (rssembled source) from PG3 to ep pm.
	=6739;	TOP OF	drtr block londed and block length determined by RØ and R1.
036R E917	=6731 OVLORD:	MOV	R1, #OVSIZE
036C 2340	=6732	NUV	R, #01000000E
036E 3A	=6733	OUTL	F2. A
036F C8	=6734 MML01:	DEC	R0
0370 C9	=6735	DEC	R1
0371 F8	=6736	MOV	ቤ <b>R0</b>
0372 E3	=6737	MOVP3	A. 8A
0373 91	=6738	MOYX	eri. A
0374 F9	=6739	MOV	ቤ R1
8375 966F	=6749	JNZ	MML01
0377 83	=6741	ret	
	=6742	51ZECHK	
999E	=6745+ SIZE	SET 1	4
	=6746+;		
	=6747+; *****	*******	***************************************
	=6756 \$Eject		

LOC OBJ	LINE	SOURCE STATEMENT
	=6757;	
	=6/58 ;======	
	=6/39;	
	=6768 ;	THE REST OF THIS MODULE CONTRINS THE MINI-MONITORS WHICH OVERLAY
	=6761 ;	The enolation processor program ram to give the
	=6762 ;	MRSTER PROCESSOR ACCESS 10 INTERNAL REGISTERS AND RAM OF THE EP.
	=6763 ;	
	=6764 ; =====	1886 i 27 5 5 2 5 3 5 7 5 7 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5
	=6765 ;	
	=6766	DATABLK 22
0378	=6771+	0RG 888
	=6775 ;	
	=6776 ; 049-	overlay to break ep execution and jump to location 009H.
	=6777 ;	location 885H reached with Top-of-Stack = return address+2
	=6778 ;	DUE TO FORCED "CRLL" DURING WHICH PC WRS INCREMENTED.
	=6779;	Locs 003h & 007h Call 009h to sinulate same condition
	=6789;	IF BREAK OCCURS DURING INTERRUPT CYCLE.
	=6781 ;	Source code for Mini-Honiyor overlayed over Low order program ram.
	=6782 ;	
8378	=6783 0 <b>V0B</b> RS	EQU \$
0378	=6784 ORG	OVUBRS
0378 1409	=6785	CALL 669H
037A 00	=6786	NOP
	=6787 ;	
037B	=6788 ORG	0V98AS+903H
037B 1409	=6789	CALL 009H
037D 00	=67 <b>90</b>	NOP
037E 00	=6791	NOP
	=6792 ;	
037F	=6793 ORG	0406A5+007H
037F 1409	=6794	Crill 009H
0381 00	=6795	NOP
0382 00	=6796	NOP
0383 00	=6797	NOP
0384 00	=6798	NOP
0385 00	=6799	NOP
0386 00	<b>=6899</b>	NOP
0387 00	=6891	NOP
0388 00	=6882	NOP
0389 00	=6803	NOP
038A 00	=6894	NOP
0388 00	=6885	NOP
	=6886 ;	
038C	=6807 URG	0V0BRS+014K
038C 0409	=6808	JMP 009H
	=6809;	
	=6810	SIZECHK
<b>991</b> 6	=6813+ SIZE	SET 22
	=6814+;	
	=6815+; *****	*************
	=6824 SEJECT	

LOC	0 <b>B</b> J	LINE	source st	TATEMENT
		=6825	Datablik	22
038E		=6830+	ORG	910
		=6834 ;		
		=6835 ; 0V3-	OVERLAY	to save status data after break.
		=6836 ;	ACC, TH	ER/COUNTER, PSN (WITH F1), & RRN LOC 0 PRSSED SEQUENTIALLY
		=6837 ;	10 MP.	
		=6838;	SOURCE (	CODE FOR MINI-MONITOR OVERLAYED OVER LOW ORDER PROGRAM RAIL
		=6839 ;		
038E		=6840 0V3BR5	EQU	\$
036E		=6841 ORG	OV3BRS	
038E	0400	=6842	JMP	996H
0390	99	=6843	NOP	
		=6844 ;		
0391		=6845 ORG	OV3BRS+	903H
0391	83	=6846	RET	
0392	88	=6847	NOP	
0393	88	=6848	NOP	
0394	- <b>89</b>	=6849	NOP	
		=6850;		
0395		=6851. ORG	OV3BAS+	907K
0395	83	=6852	RET	
0396	00	=6853	NOP	
		=6854 ;		
0397	,	=6855 ORG	OV3BAS+	809H
0397	98	=6856	HOYX	exe, a
0398	42	=6857	MOV	A.T
0399	90	=6858	MOAX	ero, A
839A	C7	=6859	NOV	RJ PSW
0398	7611	=6860	JF1	07381
0390	53F7	=6861	ANL	R #1110111B
0311		=6862 UV381	EWU	\$- (LUN UV30H5)
039F	90	=6863	NUVX	<b>eR9</b> , K
USHU	1.5	=6864	SEL	KB0
U.SHI	1 FU	=6863	TUY	H, KU
USH2	0409	=6866	JHP	UC3H
		=6867 ;		
		-6868	SIZEUHK	
0016		=06/1+ 51ZE	SEI 2	4
		-00/2+;		
		-00/313	*******	┑ <b>┊╤╤┶┲╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤╤</b>
		=0882 \$EJEU1		

LOC	OBJ	LINE	source s	TATEMENT
		=6883	Datablik	22
03A4		=6888+	ORG	932
		=6892 ;		
		=6893 ; 041-	OVERLAY	' 1 To give MP access to EP RAM Locs. 01H-7FH.
		=6894 ;	SOURCE	CODE FOR MINI-MONITOR OVERLAYED OVER LOW ORDER PROGRAM RAM.
		=6895 ;		
03R4		=6896 0V1885	EQU	\$
		=6897 ;		
03A4	<b>848</b> R	=6898	JMP	0V1B1
03/16	98	=6899	NOP	
		=6990 ;		
0387		=6901 ORG	OV1BRS+	<del>1</del> 903H
0387	83	=6982	RET	
83R8	88	=6993	NOP	
93H9	88	=6984	NOP	
03AN	88	=6905	NOP	
		=6906 ;		
03A6		=6907 ORG	OV1BRS+	<del>199</del> 711
03AB	83	=6988	RET	
03RC	89	=6989	NOP	
		=6910 ;		
03RD	1	=6911 ORG	OV1BRS	H089H
03RD	96	=6912	MOVX	ero, a
		=6913 ;		
<b>899</b> A		=6914 0V1B1	EQU	\$-0Y1885
		=6915 ;		
03RE	89	=6916	MOVX	A. <b>erg</b>
03RF	- A8	=6917	MOY	R0, A
0380	88	=6918	MOAX	A. 8R9
0381	F213	=6919	JB7	0V1B2
<b>03</b> 83	28	<b>≈6920</b>	XCH	A. R0
0384	RØ	=6921	MOV	ero, A
0385	0409	=6922	JMP	98SH
		=6923 ;		
0313	1	=6924 0V182	EQU	\$-LON OV1BR5
		=6925 ;		
0387	' F0	=6926	MOV	A. 6R9
0388	6489	=6927	JNP	009H
		=6928 ;		
		=6929	S1ZECH	<
<b>001</b> 6	5	=6932+ SIZE	SET 2	22
		=6933+;		
		=6934+; *****	*******	***************************************
		=6943 \$EJECT		

		WALLAND MARKED	
03BA	=6949+	ORG	954
	=6953 ;		
	=6954 ; 0V2	OVERLAY	to restore ep status saved on break and resume user's prugrhi.
	=6955 ;	Source (	CODE FOR MINI-MONITOR OVERLAYED OVER LUW ORDER PROGRAM RAM.
	=6956;		
03BA	=6957 0v28AS	EQU	\$
03BH	=6958 ORG	ov2Brs	
038a 0400	=6959	JMP	899H
03EC 00	=6968	NOP	
	=6961 ;		
038D	=6962 ORG	0V2BRS+	003H
03ED 83	<b>=696</b> 3	RET	
038E 00	=6964	NOP	
038F 00	=6965	NOP	
03C0 00	=6966	NOP	
	=6967 ;		
03C1	=6968 ORG	OV2BRS+	967H
<b>03C1</b> 83	=6969	RET	
83C2 68	=6970	NOP	
	=6971 ;		
0303	=6972 ORG	OV2BRS+	<b>60</b> 9H
03C3 90	=6973	HOYX	ero, A
	=6974 ;		
03C4 80	=6975	MOYX	A, ero
03C5 A8	=6976	MOY	R9, A
0306 80	=6977	MOAX	A, erg
03C7 D7	=6978	MOY	PSNL R
03C8 A5	=6979	CLR	F1
03C9 E5	=6980	CPL	F1
03CA 7213	=6981	JB3	0V2E1
03CC /15	=6982	CLR	F1
	=6933 ;		
<b>0313</b>	=6904 0V2B1	EQU	\$-LOW OV28RS
	=6985 ;		
03CD 80	=6986	MOVX	R. <b>erg</b>
03CE 62	=6987	NOV	T,A
03CF 80	=6988	MOAX	A. erg
0300 93	=6989	RETR	
	=6990	SIZECIK	
0017	=6993+ SIZE	SET 2	3
	=6994+;		
	=6995+; *****	*****	******************
	=7004 \$EJECT		

All mnemonics copyrighted © Intel Corporation 1976.

LOC	OBJ	LINE	SOURCE STATEMENT
		7995;	
		7896	CODEFLK 11
03D1		7946+	086 977
03D1	9889	7850 XPTEST	ORL P2. #88H
0303	08	7851	IN R/P2
<b>93</b> D4	987F	7852	ANL P2, #(NOT 80H)
0306	F2D9	7053	JB7 \$+3
8308	83	7054	RET
8309	F5	7855	SEL MB1
030A	8490	7856	JNP 899H
		7857	SIZECHK
966B		7060+ SIZE	SET 11
		7061+;	
		7862+; *****	************
		7071;	
		7872	CODEBLK 13
03DC		7112+	URG 988
03DC	28432931	7116	DB ((C)1979 INTEL)
03E0	39373920		
03E4	494E5445		
03E8	4C		
		7117	SIZECHK
999D		7120+ SIZE	SET 13
		7121+;	
		7122+; ****	
		7131 ;	
		7132 ;	
		7133	RSOURCE
0100		7135+	PGS1ZE SET ORGPG9-000K ; BYTES USED ON PRGE 0
ØØFD		7136+	PGSIZE SET ORGPG1-100H ; BYTES USED ON PRGE 1
8100		7137+	PUSIZE SET URGPUZ-2001 (BYTES USED UN PHGE 2
UUE9		7138+	PUSIZE SET URGPG3-3888 ; BYTES USED UN PHGE 3
66FD		/139+	PUSIZE SET ORGEGA-486H ; BYTES USED ON PROE 4
1001		7140+	PUSIZE SET UKUPUS-SUUH / BYTES USED UN PHUE S
00FF		(141+	PUSIZE SET UKUPUG-GUURI (BYTES USED UN PRICE 6
961-D		71424	Pusize set ukupu?~?vvir (bytes used un phie ?
		(143+SEJEC)	
LOC OBJ	LINE SOURCE STRTEMENT		
----------	---------------------------------------------------------------		
	7145;************************************		
	7147; FILL HLL UNUSED HEHUKI LUCHTIONS WITH HUF UPCODES		
	/140 ; 74 <i>4</i> 0 · · · · · · · · · · · · · · · · · · ·		
	7450 ·		
	(1.00) 7454 4551		
	7152		
RIED	7150 / OPG OPGPG1		
0110	7161 REPT (2004 - ORGPG1)		
_	7162 DB 0		
	7163 ENDH		
81FD 88	7164+ DB 0		
01FE 00	7165+ DB 0		
01FF 00	7166+ DB 0		
	7168 ;		
	7175 ;		
03E9	7177 ORG ORGPG3		
	7178 REPT (400H - ORGPG3)		
•	7179 08 0		
	7180 ENUM		
0359 00	(181+ UU U 7400) DD 0		
0300 00	71021 DD 0		
03ED 00	7194+ NK R		
8750 88	71854 DB A		
AGEF AA	7186+ 08 0		
83EF 88	7187+ DB 0		
03F0 00	7188+ DE 0		
93F1 89	7189+ DE Ø		
03F2 00	7198+ DE 0		
03F3 00	7191+ D6 0		
03F4 00	7192+ DB 0		
03F5 00	7193+ DC 0		
03F6 00	7194+ DB 0		
03F7 80	7195+ D6 0		
031-8 00	/156+ DB B		
0319 00	719/† UG 6 7400- ND 6		
03FD 00	74001 NO 9		
03FD 00	72994 NR A		
ASED AR	7281+ DC 8		
03FE 00	7292+ 08 0		
03FF 00	7293+ DB 0		
	7285 ;		
84FD	7297 ORG ORGPG4		
	7208 REPT (500K - ORGPG4)		
-	7209 DE 0		
	7210 ENDM		
04FD 08	7211+ D8 0		
84FE 00	7212+ DE 0		
04FF 00	7213+ DB 0		
OFT	(213 ; 2017 000 000005		
HC9	(21.( UKU UKU UKU UKU UKU UKU UKU UKU UKU UK		
	7210 KEPI (6000H - UKGPUD)		

LOC OBJ	LINE	SOURCE	STATEMENT	
-	7219	DE	0	
	7220	ENDH		
05FF 00	7221+	DB	0	
	7223 ;			
ØGFF	7225	ORG	ORGPG6	
	7226	REPT	(700H - OR	GPG6)
-	7227	DB	0	
	7228	ENDM		
86FF 88	7229+	DE	0	
	7231 ;			
07FD	7233	ORG	ORGPG7	
	7234	REPT	(899H - OR	(GPG7)
	7235	DB	9	
	7236	ENDM		
87FD 00	7237+	DE	0	
07FE 00	7238+	DB	8	
07FF 00	7239+	DB	0	
	7241 ;			
	7242 \$EJEC	T		

LS16K2	5115	5117#														
LSTBRK	4978	4979	5111#													
LSTDH	4975	4995	5011	5032#												
LSTINT	4977	50904														
LSTORE	2459	2615	3527	4672	4957#											
LSTPM	4974	4981#														
LSTR0	5852	5955#														
LSTREG	4976	5037#														
LSTTBL	4971	4974#														
119	551#															
M1	552															
MADD	438	1816	2386	2438	5358											
MADOC	435#	5384														
MAIN	1434	1539#	1546	2349	2414	2417	2422	2427	2580	2620						
HAIN2	1544#	3129														
MAINA	1594	1689#														
MAINB	1672	1674														
MAINEO	1798	1830														
HRINB1	1831#	1847														
MAINC1	1716#	1762														
MAIND	1741	1891#														
MAIND1	1742	1766#														
MANL	440#															
NELOCK	165#	1307	1315	1323												
MDEC	471#	<b>.</b> 529														
MDJNZ	475	4041	4320	4456	4566	5969										
MEMHI	1158#	3824	4005													
MENLO	1149#	3851	4020	4655												
MERROR	1592	1858														
MINC	467#	1743	2011	2875												
MML01	6734#	6748														
MHOV	398#	1558	1574	1609	1628	1649	1682	1716	1766	1782	1891	1976	1994	2172	2248	2329
	2464	2482	2541	2531	2714	2729	2756	2787	2895	2838	2856	2893	2923	2938	2953	2968
	3882	3063	3091	3296	3225	5244	3263	3283	3301	3322	3349	3423	3433	3452	3471	3490
	3510	3557	3578	3801	3828	3855	3957	3981	3996	4011	4065	4257	4284	4392	4410	4587
	4639	4759	<b>478</b> 3	4798	4814	4836	4854	4870	4957	4961	4996	5012	5037	5055	5090	5162
	5191	5343	5369	5455	5541	5575	5591	5610	5655	5673	5687	5703	5721	5892	5875	5951
	6859	6978	6152	6223	6299											
NODOUT	537#	3041	6590													
MORL	445#	2968	3631	5178												
<b>NPUSEL</b>	553#															
MRL.	482															
MRLC	494															
TIKK .	486	4477	45.40													
MKKU .	4500	4437	4048	2265												
	433															
NCOLC	4007	FEOA														
NUULS	014¥	0001	5/30													
	(25# 4007#	2341	36/8	5000	E:00-C	50/0	5074									
NTDTO	1203#	2205	2239	2626	3666	3766	3974									
MIDIS	5/102	5/00#														
NIGIN	3027	3030 *****	2022#													
HIDIN2	2222	2100														

nibo Nobrk Novals	4159 1521# 1381#	4161 1928 1416	4389#	5004												
NUMCON	1185#	1662 5646	1838	2181	2469	2475	2723									
OPTABL	1901 1997	1903	1994 1925#	1985	1906	1922#										
OPTRB2	1902	1999	1927#													
OPTION	1194	1641	1698	1791	1810											
ORGPGØ	128	1499	1491	1449	1528	1529	1873	1947	2157	2158	2230	2234	2399	2367	2518	2651
	2652	2674	2679	3148	3399	3617	3618	3681#	3685	3735	3771	3921	4106	4141	4189	4234
	4360	4495	4620	4695	4696	4720#	4724	4917	5138	5225	5264	5389	5414	5761	5840	5989
	6033	6111	6185	6259	6336	6482	6477	6542	6613	6686	7998	7074	7135	7152	7153	
ORGPG1	129#	1952	1953	2153#	2239	2249	2296	2365	2306	2363#	2372	2523	2684	3153	3494	3690
	3691	3730#	3740	3741	3765#	3776	3926	4111	4112	4137#	4146	4147	4176#	4185	4186	4213#
	4239	4365	4500	4625	4729	4922	5143	5230	5231	5260#	5269	5314	5419	5766	5845	5914
	6038	6116	6190	6264	6341	6407	6482	6547	6618	6691	7013	7079	7136	7159	7160	4770
UKGPG2	1.90	23//	2378	2014	2528	2529	264/#	2689	3136 5075	3409 57054	5410	561.5#	5781	5951	4244	45/10
	4000	40.50	4631	4691¥ 6746	9159	4721 6497	J198 (552	3219	3213	7040	7004	3929 2472	J//1 74/0	2630	3717	0093
000007	474#	6193	6207	47054	6412 4077	0407	49476	6577	6670	(010	(004 6640	6649	(107 6497#	6724	6772	67558
ukaras	6768	6769	6927a	6927	6828	1010	6995	6996	69428	6946	6947	79978	7947	7944	79798	7199
	7119	71398	7178	7176	7177	00018			07464	0540	<b>9</b> 271	10034	1015	1011	10100	1 205
ORGPG4	132	2694	2695	3144	3163	3786	3936	4249	4258	4355#	4375	4510	4739	4932	5153	5154
	5220#	5324	5429	5776	5855	5924	6048	6949	6107#	6126	6200	6274	6351	6417	6492	6557
	6628	6701	7023	7889	7139	7206	7207									
ORGPG5	133#	3168	3169	3390#	3791	3792	3916	3941	4380	4381	4491#	4515	4744	4937	5329	5330
	5409#	5434	5781	5860	5861	5905#	5929	6131	6295	6279	6356	6422	6497	6562	6633	6706
	7028	7094	7140	7216	7217											
ORGPG6	134#	3946	3947	4192	4520	4521	4615#	4749	4758	4913#	4942	5439	5786	5787	5836#	5934
	5935	6829	6136	6210	6284	6361	6427	6582	6567	6638	6711	7033	7899	7141	7224	7225
URGPG7	135#	4947	4948	5134	5444	5445	5757#	6141	6142	6189	6215	6216	6255#	6289	6298	6330
	6366	6367	6328#	64.52	6433	64/1#	6567	6568	6537#	6572	6643	6716	78287	/104	/142	1252
	1624	40748	2554													
DITTICER	1797	1827	2000 1975±													
OUTUTL	1542	1973#	2326	2713	2993	3124	3185									
OVERS	3187	6783#	6784	6788	6793	6807										
OV1B1	6898	6914#														
0V1B2	6919	6924#														
OV1BRS	1426	3281	6451	6896#	6901	6907	6911	6914	6924							
0V2E1	6981	6 <b>984</b> #														
OV2BAS	2921	6957#	6958	6962	6968	6972	6984									
07381	6860	6862#														
UVSERS	52103	6849	6841	6845	6851	6855	6862									
UVBUP	1319	4828	5026	6657		6 4 <b>5</b> 0										
	1921	4:04	3188	3204	3282	6452	6731#	4040	1040	C 454			-			
NUCLH	66648	1521	1420	2721	3167	202	3281	9812	0010	6431	6637	6636	6731			
UNCTOD	2965	2995	24.90	66578												
PERK	1518	1924	2100	0001 1												
PDIGIT	517	5489														
PERROR	1859	2212	2318#	2633	3889	3599	3716	6455								
PGSIZE	7135#	7136	7137#	7138#	7139	7140	7141#	7142#								
PINPUT	520#	5481														
PLUS1	6 <b>9</b> 9#	2476														

PLUS3 PRNT1 PRNT2	714# 2009 1994#	2260 2030# 2029														
PSEGH1	518	1414	5476	5491	5818											
PSEGL0	519	1413	5477	5489	5819											
RDELAY	1248#	56%	5716	6972	6987											
RECDON	3524	3549#														
RECTYP	1275	3583	3587													
regc	1293#	4485	4442	4553	4596											
REORG	191#	1335	1401	1529	1878	1948	1953	2158	2235	2240	2361	2306	2368	2373	2378	2519
	2524	2529	2652	2689	2685	2690	2695	3149	3154	3159	3164	3169	3400	3485	3410	3618
	3686	3691	3736	3741	3772	3777	3782	3787	3792	3922	3927	3932	3937	3942	3947	4107
	4112	4142	4147	4181	4186	4235	4240	4245	4250	4361	4366	4371	4376	4381	4496	4501
	4506	4511	4516	4521	4621	4626	4631	4696	4725	4730	4735	4740	4745	4750	4918	4923
	4928	4933	4938	4943	4948	5139	5144	5149	5154	5226	5231	5265	5270	5275	5310	5315
	5.520	5525	5330	5415	5420	5425	54.38	5435	5449	5445	5762	5767	5772	5777	5782	5/8/
	3641	3846	3631	3836	3661	5910	3913	5920	3923	59.50	2272	6834	6839	6044	6049 2025	6112
	6117	6122	6127	6132	6137	6142	6180	6191	6196	6201	6200	6211	6216	6200	6260	0210
	0273	6477	626J	6497	C400	0342 6497	0341 CAGO	6332	6337 4590	0302 6547	0307	6983	6466	6413	6410	6577
	6579	6614	6619	6624	6629	6674	6470	6505	6000	6607	6292	6303	6330	6303	6742	6747
	6722	6769	6929	6886	6947	20034	7944	2919	7924	7929	00 <i>72.</i> 79°(4	2027	7944	2/975	79669	2995
	7898	7995	7199	7195	7110	1005	1011	1017	TOLT	I OL	1034	1035	1011	1010	1000	1000
RERROR	2317#	2348	. 100	. 200												
RINT	1520#	1923														
ROTON	886#	5501	5646													
ROTPRT	865#	5482	5507	5514	5529											
RSOURC	276	7133														
scan3	5557	5575#														
scrints	5532	5566	5589	5689	5644#											
scan8	5672	5682#														
SEGNAP	1311#	2213	5486	5870	5965											
SING	1523#	1928														
SIZE	1385	1388	1439#	1442	1863	1866	1933	1936	2143	2146	2220	2223	2286	2289	2353	2356
	25048	2507	263/#	2640	2664	2667	51.54#	51.57	3.5884	2282	36038	3686	36/1#	3674	3/208	5125
	3730# AC05#	3738	32004	3909 ACOA	40324	4050	41278	41.50	4100#	9163	92038 50404	9200	4390¥	9398	9981#	9989 5000
	57008	4000 5492	4001# 5747#	4004 5750	50268	9713	47034	4200	J1248 204.06	5121	J2100	J213 6499	24704	5235	J27J8 62458	J230 6340
	67294	6727	67998	6794	5461	5025 6464	5070#	J020 6579	65998	6622	66728	6675	67458	6749	624.78	6916
	6971#	6974	69728	6975	6997#	6996	79698	7967	71294	7427	00124	0013	01404	0140	00134	0010
STZECH	2798	1782	1476	1868	1970	2149	2217	2287	2759	2591	2674	2661	7171	7777	7699	7668
	3717	3752	3903	4869	4124	4163	4200	4342	4478	4692	4678	4707	4989	5121	5297	5247
	5292	5396	5744	5823	5892	6916	6894	6167	6242	6317	6385	6458	6524	6595	6669	6742
	6818	6868	6929	6990	7857	7117										
SHAHI	1122#	2487	2493	2772	3465	3817	4792	4990	5184	5378						
SHALO	1113	1671	1831	2480	2557	2745	2869	2889	3314	3341	3484	3844	4897	4823	4845	4879
	5005	5021	5046	5099	5200	5238	5282	5352	6232	6388						
STRCOM	1623	2037#														
STRGUC	1927	2054#														
STRHEN	1922	1925	2847#	2555												
STRTAP	1257	1989	2003	2016												
SIRUTL	1973	2032														
SISHVE	3006	3062	3183													
TITET	50005 54544	5024	2212	41198												
TIDET4	5647	J142 5704	57244													
TOFPOL	2046	57428	5004	6977												

TTYOUT 539# 4428 4430 TYPE 1176# 1429 1579 1585 1748 1771 1777 1822 2448 2558 3811 3872 4768 4966 5171 UPDHD1 2265# 2558 3371 UPDADR 2195 2248# **VERSHO 1056#** MBRK 1522# 1928 NDISP 2010 2030 2269 2274 2560 3373 5948# HDISP1 5988 5991# XPCODE 837# 1419 1539 2318 5799 5949 6150 XPTEST 1411 1548 2319 5899 5950 6151 78581 ZERO 6848 1570 1586 1778 2494 3428 3860 5667

CROSS REFERENCE COMPLETE

BYTE11	3554	3628														
BYTEIN	3432	3451	3470	3489	3525	3627#						,				
8YTE0	3995	4010	4025	4828	4039	4087	4154									
CGO	2986	3002														
CGONB	3019	3030#														
CCOPAT	3822	3025#														
CGOSS	3821	30344														
CGOTRR	3823	3033#														
CGOMB	3820	3026														
CHARCR	22924	4119														
CHARTN	3417	7549	7699	37495												
CHINRIE	77948	4121														
CHARNO	599#	1717	1749	1778	5648	5871	5097	5990								
CHARD	7894	7296	7977	7980	4971	4977	4129	4122	47928							
CHKERE	2577	2598	2211	5500	1031	1021	1220									
UNKOW	9974	7429	7566	7577	76.64	7665	7960	4974	496:1	4155	4156					
CTR	4574	4574	4572	5015	3004	3000	5000	TUT	1001	4100	7100					
C10	45778	4577	4574	4576												
012	45778	4505	4034	4030												
012	4570	45404														
013	4544	43428														
CTN CTN	7740	45008														
CIN	3(49	43239														
UKSINUK	3001	3376#														
ULEIR	1974	28/64														
ULKBH	534#	6519	6520													
CHDINI	1836	1842	1845	1855#												
CHPHHS	3871	4673	5343#													
CHIFRET	5395															
CNTRL2	3395	3418	3420	3895												
CNTTBL	3077	3060#														
CNTTRR	3083	3084	3091#													
C01	4427#	4475														
C02	4427	4430#														
CO3	4429	4433#														
CODEBL	199#	1398	1526	1945	2155	2232	2298	2365	2516	2649	2677	3146	3397	3615	3683	3733
	3769	3919	4194	4139	4178	4232	4358	4493	4618	4693	4722	4915	5136	5223	5262	5307
	5412	5759	5838	5907	6031	6109	6183	6257	6334	6499	6475	6540	6611	6684	7996	7072
COMCBR	2407	2432#														
CONFIL	1428	1432	2426	4639#												
CONGOR	2429	2992														
COMSER	2406	2436#														
COMSIZ	1596	1899#														
CTAB	1557	1898														
CURDIG	928#	5478	5484	5647	5648											
Databl	244	1332	1875	6766	6825	6883	6944									
DALO	4029	4033#														
DAT01	4034#	4060														
DBLANK	2215	5872#	5874													
DBPNT	2036	2085#														
DBRK	1519#	1924														
DCB	2045	2186#														
DDABRK	2053	2122														
DORMEN	2849	2116														

DEBNCE	6394															
DECLAR	178	584	690	616	632	648	670	685	700	715	739	756	773	790	897	824
	848	869	890	911	932	964	973	982	<b>991</b>	1999	1009	1018	1827	1036	1945	1054
	1063	1072	1081	1890	1099	1108	1117	1126	1135	1144	1153	1162	1171	1189	1189	1198
	1207	1216	1225	1234	1243	1252	1261	1270	1279	1288	1297	4216				
DECSHI	5286	5291														
DECSINH	2630	5282														
DELHY	\$105	66059#														
DELINI	60778	6092														
DERKUR	2033	2005#														
DC0	2090	20304														
DODD	5947	5000														
DG9	2946	21,055														
DINTRG	2951	2124														
DLST	2941	2098														
DHOD	2038	2092														
DNOBRK	2955	2129														
DONE	3419	3595#														
DPA	2858	2135														
DPRBRK	2052	2120#														
DPRMEM	2048	2114														
DREC	2042	2100#														
DREL	2843	2102														
DRH	2859	2118														
drun	2035	2078#														
DSB	2044	2104														
DSGNON	2034	2070#														
DSPACC	2276	2279	2261	2328	2564	2566	5942									
DSTHI	2268	2276														
DSPLU	2275	2280														
USHT11	2273	22/98														
VEPTIN	22(14	3370														
DOP 110	1091#	5040	5067													
DSS	2057	3240 2477#	J967													
DTR	2959	2133														
DUBRK	2956	21718														
ELSIFI	2186	2188	2282													
ELSIF2	2294	2297	2213													
Emahi	1140	5390														
EMALO	1131#	5364														
ENGLINK	529#	3197	6381													
ENERRH	528	3197	6380													
ENDF1	3888#	3893														
ENDFIL	3872	3884#														
ENDREC	4064#															
EOFREC	3887	3901#														
EPACC	969#	2977	3219	3374	4884	5104										
EPERK	1425	3183	6458	6456	6589#											
EPUNT	2021	3107	3125													
EPUUNI	2/85	2080														
COCTT	2720	2763#	4051	6007#												
EFFLI	2077 7007	3343 2052	9652	0225¥ 2002	2005	7224	-	· <b>/)</b> (*)	C'07	(1)0	CD40	<b>6000</b>	(7)4.4	(7)4E	(7770=	
600001	40444	2772	6.701 2044	2702	32000 77770	5664	242	3202	0251	6233	0240	64276	6514	6313	63/8 <b>8</b>	
FPPCIA	1019#	21(7)	2719 2024	3302	0)55											
	1000	CI JE	LOCI	ىددد												

EPPSN	978 <b>#</b>	2899	2647	2982	2947	3257	3292				
EPR0	996#	2932	3276	4863	5084						
EPREL	3042	6445	6519#								
EPRET	3118	3122	3129#								
EPRSET	536 <b>#</b>	1433	2994	29%	6449	6453					
EPRUN	2424	2712									
EPRUN1	3046#	3851									
EPRUN2	3859	3062#									
EPRUN3	3849	30568									
EPRUN4	3028	3031	3039#								
EPRUN5	3057	3115#									
EPRUN6	3981	3082	3119								
EPSSTP	532#										
EPSTE1	6447 <b>#</b>	6448									
EPSTE2	6447	6456#									
EPSTEP	2964	3194	3198	6382	6445 <b>#</b>						
EPSTOR	2874	2920	3349	3369	5053	6297#					
EPTIMR	987#	2962	3238								
ERROR	748	765	782	799	816	833	861	862	903	924	945
EKROR2	2324	2349#									
EXAM0	2541#	2616									
EXRM1	2601	2618									
EXAM2	2619	2622#									
EXAMI	2624	2627#									
EXH14	2629	26.52									
EXHID	2610	261.3	0000	0674							
EXHIBIN	2410	2046	2626	2631							
EXPTION	2020	200/8									
FDUNP1	3978	3990# 4020#									
CNIND2	4020	40208									
	4050	40.000									
FDUNE 4	4004	40004									
FINDOP	15994	1699									
SOTR	3916	20119									
H	1382	4289	4325								
HB01	4317	4319	4319								
HBD2	4318	4339									
HEDLAN	42574	4433	4434	4535	4537	4538					
HBITHI	1032#	4273									
HEITLO	1023#	4300									
HDATIN	3518#	3547									
HEXRSC	4193#	4388									
HEXBUF	1327#	3864	3875	3956	4033						
HEXNIB	4195	4198#									
HEDONE	3885	3890	3894#								
HFILEO	2413	2421	3691#	3678							
HRECIN	2416	3417#	3422	3592							
HRECO	3877	3884	3955#								
HREGA	1059#										
HREGB	1968#										
HREGC	1077#										
HREGD	10864										
HREGE	1095										
HIKELI	1104	-									
INCLU	1600	2,965	7674	2072	A/	50305					
1002001	1451	2023	22520	د رود	40/3	J77704					

INCH INCHI INIT INITLP INPADI INPADI	5239 <b>#</b> 5241 1409 <b>#</b> 1418 <b>#</b> 2187 <b>#</b> 1975	5246 <b>#</b> 1423 2198 2178#	2492													
INPKEY	1543 1346#	1675	1828	1846	2196	2345	2463	2589	2658#	3115	3119					
ITMP	786 <b>#</b> 1832	1557 1833	1590 1837	1595	1597	1625	1626	1646	1647	1785	1712	1715	1725	1732	1761	1830
JGORES	2498	2429#														
JIOFIL	2482	2426														
JT0G0	2401	2424#														
JUOR	2403	2419														
JTOMOD	2400	2410														
TOPE	2404	2412#														
KBDBUF	1212	2334	2340	5639	5811	6161										
KB011	5891#	5816														
KBDIN	2658	5799#														
KBOPOL	3047	3106	6150													
KULKB	10107	1988	4597	4740	4047	2407	2202	2205	2222	2746	2460	<b>2500</b>	2597	2647	<i>')(')</i> )	2627
NL I	2659	2783	3116	7129	1042	2101	2202	2200	2362	2340	2400	2370	2371	2013	2022	2021
KEYCLR	1505#	2323	2628													
Keydh	1504#	1923	1926													
Keyend	1501#	1545	1844	2206	2347	2461	2618	3117								
KEYFIL	1499	1903		F. (00)												
KEYFLU	949# 4549#	3333	3671	3682												
KEYLOC	1221#	5550	5644	5668	5666											
KEYLST	1518	1984														
Ke\%00	1513	1991														
KEYNXI	15004	2203	2623	2784	3121											
KEYPRT	1503#	1929	4000													
KEVPEC	1500#	1923	1926													
KEYREG	15894	1923														
KEYREL	1502	1906														
Keytra	1507#	1929														
KGORES	1511#	1909														
KSEIB	1514#	1907 EEEE	EEE/	Erne	5/77	E/70										
LIDATR	70/#	1258	2211	2717	2522	3070 2472	2476	2542	2545	2607	2644	2672	26:20	2025	204.0	7000
	3321	3344	3346	3367	3368	3526	3598	3629	3641	3648	3668	3666	3715	3868	4154	4157
	4160	4662	4669	4705	5828	5033	5071	5078	5186	5112	6297	6454				
LDBYTE	3867#	3876														
LFEBRI	4897	4899#														
	4780	4781	4890	40205												
LIEFINT	4779	4727 4979#	4613	4832#												
LFEPM	4776	4783														
LFERO	4851	4854#														
LFEREG	4778	4836#														
LFEIBL	4773	4776														
LFETCH	2561	3867	4784 <b>#</b>													

strutl UPDAD1	<b>001</b> 9 017C	stsrve Updridr	<b>0500</b> 0178	tcrlf0 Versno	01D2 0029	tiint HBRK	074E 0016	1 IRET1 HD1SP	07788 06D8	TOFPOL HDISP1	078C 06EE	TI YOUT	0020 0040 0007	DIKINF TYPE XPTEST	0040 0037 0301
ZERO	0000														

RSSEMBLY COMPLETE, NO ERRORS

ISIS-I	i rssen	BLER S	VMEDIL CR	oss ref	ERENCE,	V2. 1			PH	GE 1						
28	185#	1614	1629	1637	1650	1658	1721	1787	1866	1818	1977	1985	<b>199</b> 9	2177	2388	2444
	2546	2586	2719	2788	2796	2843	2857	2865	2898	2910	2928	2943	2958	2973	3007	3068
	3896	3207	3215	3226	3234	3245	3253	3264	3272	3288	3302	3310	3323	3331	3350	3358
	3434	3442	3453	3461	3472	3480	3491	3499	3515	3562	3583	3637	3958	3966	3986	4991
	4016	4070	4393	4491	4592	4764	4788	4803	4819	4841	4859	4875	4962	4986	5001	5017
	5042	5095	5167	5180	5196	5348	5360	5374	5386	5456	5464	5546	5589	5592	5680	5692
	5794	5712	5726	5807	5956	6868	6868	6083	6157	6228	6304					
?RSRVE	1235	5468	5466	5722	5728											
?B	1280#	4413	4413	4413	4419	4459	4469	4569	4579							
?DOFNT	117#	746	754#	763	771#	780	788#	797	805#	814	822	831	839#			
?E9R2	110#	754														
?B9R3	111#	771														
?69R4	112	788														
?BØR5	113#	295														
?80R6	114#	822														
?60R7	115#	839														
?B1PNT	126	859	867#	888	888#	901	909#	922	930#	943	951#					
?81R2	119#	867														
?B1R3	120#	888														
?B1R4	121#	989														
?B1R5	122#	930														
?61R6	123	951														
?E1R7	124#															
?ECODE	1163#	1561	1561	1561	1567	1610	1616	2390								
?BINOF	9 <b>415#</b>	1817	2387	2439	2989	3632	5179	5359	5385							
?BITS0	) 4217#	4411														
?BUFCN	1262#	3438	3444	3511	3517	3532	3542	3962	3968	3982	3988	4944	4054			
?BUFLE	E 649#															
?CHARM	585#	5876														
?CHKSL	J 791#	3426	3426	3426	3558	3564	3571	3571	3628	3858	3858	4066	4072	4079	4079	
?CONST	i 1 <b>94</b> #	585	586	590	594	691	682	686	610	617	618	622	626	633	634	638
	642	649	650	654	658	671	672	676	680	686	687	691	695	791	702	796
	710	716	717	721	725	4217	4218	4222	4226							
?CURD1	[ 912 <b>#</b>															
?DEENO	: 617#															
?DSPT1	1037#	3092	3098													
?DSPTI	1 808#															
?EMAH)	1136	5388														
?ENALC	0 1127#	5362														
?EPAC	: 965 <b>₽</b>	2969	2975	3211	3217											
?EPPCi	1 1010#	2761	2777	2912	3354	3360										
?EPPU	. 1001#	2734	2750	2866	2814	2819	3521	2222								
2015	4 9/48	2792	2798	2839	2845	2894	2966	2939	2945	5249	5255	5284	52.90			
?EPR0	9924	2924	2930	3268	3274	4655	4861	5060	5662							
?EPTI	9834	2954	2968	52.50	5236				43.00	4007	1010			~~~	(11 70	0.00
21-0813	L 295#	1615	1634	1655	1688	1695	1/22	1/45	1/80	1807	1819	1982	2000	2013	21/8	2,989
	2441	2445	2547	2587	2720	27.55	2/42	2762	2769	2793	2811	2618	2044	2862	2877	2833
	2011	2929	2944	2959	23/4	3008	3863	3897	5212	5251	5200	3269	3269	5507	3328	2002
	5959	3695	34//	5456	5016	12021	5365	5084	5654	82.82	1002	5614	42.52	5641	5505	5561
	4002	4017	4643	40/1	4263	4270	4290	4297	4522	4356	44.55	4456	4000	4368	4372	4645
	4652	4765	4789	46394	4820	4842	4860	4876	4563	4987	3662	3018	5043	3661	2668	3056
	5168	5181	5197	5349	5361	23/2	5387	5461	0004	5547	2281	222/	3616	3623	2693	5/69
-	3727	2666	5957	39/1	6865	6884	6158	6229	6365	~~~~~	0.8.7		~~-	20//		7174
/TUKI	≤ 315₩ 2084	1658	1639	1692	1/62	1986	2159	2/49	2/60	2//6	2191	2013	2020	2000	5210	5250
	5239	5215	1122	5552	4050	5445	5462	1645	5000	3811	3621	8585	3848	5301	42b/	9211
	4294	4.504	4462	4649	4609	3663	3661	3465	3661	3620	3636	5/13	6869			
T UKIL	s 339#	1755	2023	2452	2667	_5541	<i>3</i> 651	4853	4332	4449	4468	4560	4578	225	5581	

All mnemonics copyrighted © Intel Corporation 1976.

?FORM4	356#															
?Forms	380#	1560	1576	1611	1630	1651	1684	1718	1768	1784	1893	1978	1996	2174	2250	2331
	2466	2484	2543	2583	2716	2731	2750	2789	2897	2840	2858	2895	2925	2940	2955	2978
	3004	3865	3093	3286	3227	3246	3265	3285	3303	3324	3351	3425	3435	3454	3473	3492
	SJ12 AGA1	3339 4764	4795	3003	5858 A946	5637 4070	3939 4056	5385 4077	3398 4050	401.5	4007	4239	4200 5420	4594	4412 5000	4369
	5197	5745	5771	5457	4010	4030 5577	40.00	4012 5612	4202	4703	4770 5400	J019 5705	5727	5004	5072	J164 5057
	6961	6969	6154	6225	6794	00/1	5575	JUIE	3001	3013	3005	5165	5123	3004	JOFF	3333
28	1298#	4262	4278	4323	4333											
?HBITH	1828	4258	4266	4271												
?HBITL	1019#	4285	4293	4298												
?HEXEU	1324															
?HREGA	1055#															
211REGB	1064															
2UDECD	1073#															
2HPEGE	1991#															
?HREGF	1100															
?ITMP	774	1687	1703	1710	1710	1717	1723	1730	1730							
?KBDEU	1208#	2332	2332	2332	2338	5615	5637	5883	5889	6153	6159					
?KEY	757#	2582	2588	2595	2595											
?KEYFL	933#															
?KEYL0	1217	5542	5548	5658	5658	5658	5664	6. <b>//7/</b>	5/3/							
PLICHK	891¥ 7404	3611 2046	3619	3024 3077	3631 2022	3631 2622	2676	3676 7646	3676 7646	7652	7650	7650	АСЛА	ACC0	4667	ACC7
:LPHIN	5956	5964	2020	5076	5976	2022	2022	2040	3040	2015	3000	3030	-07-1	4000	1001	1001
?LENGT	1333#	1388	1399	1442	1527#	1866	1876	1936	1946	2146	2156	2223	2233	2289	2299#	2356
	23664	2507	2517#	2640	26500	2667	2678	3137	3147#	3383	3398#	3686	3616#	3674	3684	3723
	3734#	3758	3779#	3909	3920	4095	4185#	4130	4140	4169	4179#	4206	4233#	4348	4359#	4484
	4494#	4608	4619#	4684	4694#	4713	4723#	4996	4916	5127	5137#	5213	5224#	5253	5263#	5298
	5300#	5402	5413#	5750	5760	5829	5839#	5898	5906#	6822	6832#	6100	6110#	6173	6184#	6248
	6258	6323	6335#	6391	6401#	6464	6476	6530	6541#	6691	6612#	6675	6685#	6748	6767#	6816
OWTHER	68264	68/4	6884	6950	65458	6996	7997#	7963	707.58	7123						
2012/01/1	11348	2000	3022	3931	4042	4640	ACAQ	4657								
2HINDX	156	967	971#	971	976	989#	989	985	989#	989	994	998#	998	1003	1007#	1997
	1012	1016#	1016	1021	1825#	1025	1030	1034#	1034	1039	1043#	1043	1848	1052#	1852	1057
	1861#	1061	1966	1070	1070	1075	1079#	1879	1664	1088#	1088	1093	1097#	1897	1182	1196#
	1106	1111	1115#	1115	1120	1124#	1124	1129	1133#	1133	1138	1142#	1142	1147	1151#	1151
	1156	1160#	1160	1165	1169#	1169	1174	1178	1178	1183	1187#	1187	1192	1196#	1196	1201
	1205	1205	1210	1214	1214	1219	1223	1223	1228	1232	1232	1237	1241#	1241	1246	12500
	1230	1200	1232#	1237	1204	1200	1268	12/3	12//#	12//	1202	1200#	1286	1291	1293	1233
2MSRVF	158	597	697	619	675	651	677	699	797	718	742	759	776	797	810	807
	851	872	893	914	935	967	976	985	994	1993	1812	1821	1030	1039	1048	1857
	1966	1075	1084	1893	1102	1111	1120	1129	1138	1147	1156	1165	1174	1183	1192	1201
	1210	1219	1228	1237	1246	1255	1264	1273	1282	1291	1399	1309	1317	1325	4219	
?NCOLS	601#															
?NEG1	716#	2330	5674													
?NEXTP	11991	2251	2251	2251	2257	5878	5878	5678	5864	5952	5958	5972	5962			
2MRCHT	1226	3376	3382	3396	3662	2467	74/7	2467	1477	17A =	3704					
200710	1101#	1677	1679	1697	21(3 1601	2401 1696	2407	2907 1790	2975 4992	2713	2121					
20VBUF	1316	1033	1033	1003	1071	1070	102	1102	1000	1000						
20VSIZ	6334															
?FLU51	686#	2465														
?PLU53	701#	2249														

204	004	4200	4705	4740	4747											
260	37 <del>0</del>	9282	C024P	9312	9312	007	004	. 000	007	4 0 0 4	4000	4040	4044	4040	4004	4000
(15/117)	1038	4977	4070	2/4 404C	373 4047	203	204 495C	772 40CA	375	1001	1002	1010	4007	1019	1020	1020
	1023	1031	1050	1040	1097	1000	1000	1004	1000	10/3	10/4	1002	1003	1071	1072 4464	4472
	1101	1107	4400	4400	1119	1127	1120	1130	4260	1193	4240	4226	4227	1103	4076	4244
	1113	1101	1102	4000	1171	4074	4070	4200	1207	1211	4200	4200	4200	1621	1230	1244
0000	1293	1233	1239	1202	1263	12/1	1272	1200	1281	1289	1270	1250	1233	000	000	047
(KD8)	1014	(40	(91	740	121	738	762	((4	(13	(13	791	(32	(30	000	007	613
0004	823	826	828	054		070	074	0.15	070		~~~		~~~	040	043	~~~
2681	102#	849	856	854	308	878	8/1	873	879	891	892	8%	966	912	213	917
	921	222	954	9.58	942											
ROFTH	1244	5688	5694	5/68	5/14	6864	661.6	6879	6662							
RECTY	12/1#	3450	3581	\$579	382		45.6.4	4500	4504							
:NEUL	12659	4397	4403	4446	4430	4331	4361	4368	4024							
RUIUN	878		FF40	<b>6</b> 7.46		CE03	<b>FF</b> 07									
2RUIPH	845#	3565	5512	5512	5521	5527	5527	-						~~~	<i>cc</i>	
?KSHVE	1448	591	595	687	611	623	627	639	643	635	659	6//	681	692	6%	107
	711	722	726	746	763	760	797	814	831	855	859	876	880	897	901	918
	922	339	943	4223	4227											
?SEGNA	1308															
?SIZE	255	1383	1437	1861	1931	2141	2218	2284	2351	2582	2635	2662	3132	3378	3601	3669
	3718	3753	3984	4890	4125	4164	4201	4343	4479	4683	4679	4708	4961	5122	5268	5248
	5293	5397	5745	5824	5893	6017	6895	6168	6243	6318	6386	6459	6525	6596	6670	6743
	6811	6869	6930	6991	7058	7118										
?5 <b>11</b> 11	1118	2485	2485	2485	2491	2757	2765	2770	3457	3463	3882	3810	3815	4784	4790	4982
	4988	5182	5370	5376												
?SNALO	1109	2730	2736	2743	2861	2867	2878	2888	3386	3312	3476	3482	3829	3837	3842	4799
	4895	4815	4821	4837	4843	4871	4877	4997	5003	5013	5919	5038	5944	5091	5097	5192
	5198	5344	5350	6224	6230	6300	6386									
?START	1339#	1383	1383	1391	1485#	1437	1437	1445	1533#	1861	1861	1869	18824	1931	1931	1939
	1957#	2141	2141	2149	2162	2218	2218	2226	2244#	2204	2284	2292	2310	2351	2351	2359
	2382	2582	2582	2518	2533#	2635	2635	2643	2656#	2662	2662	2670	2699#	3132	312	3140
	3173#	3378	3378	3386	3414#	3691	3601	3689	3622	3669	3669	3677	3695#	3718	3718	3726
	3745#	3753	3753	3761	3796#	3904	3904	3912	3951#	4090	4090	<b>40</b> 96	4116#	4125	4125	4133
	4151#	4164	41.64	4172	4190	4201	4201	4209	4254#	4343	4343	4351	4385	4479	4479	4487
	4525#	4683	4603	4611	4635#	4679	4679	4687	4799#	4788	4796	4716	4754#	4901	4961	4909
	4952	5122	5122	51.30	5158#	5298	5208	5216	5235#	5248	5248	5256	5279#	5293	5293	5301
	5334#	5397	5397	5485	5449	5745	5745	5753	5791#	5824	5824	5832	5865#	5893	5893	5901
	5939#	6817	6917	6825	6853#	6095	6895	6193	6146 <b>#</b>	6168	6168	6176	6228#	6243	6243	6251
	6294	6318	6318	6326	6371#	6386	6386	6394	6437#	6459	6459	6467	6512#	6525	6525	6533
	6582#	6596	6596	6684	6653#	6670	6670	6678	6726#	6743	6/43	6751	6773#	6811	6811	6819
	68324	6869	6869	6877	689 <b>8</b> #	6930	6930	6938	6951#	6991	6991	6999	7048 <b>#</b>	7958	7958	7066
	7114#	7118	7118	7126												
?STRTM	1253#	1961	1987	1995	2991	2014	2024									
?TYPE	1172#	1577	1577	1577	1583	1746	1756	1769	1769	1769	1775	1829	2449	2446	2453	2542
	2548	3003	3889	3964	3070	4760	4766	4958	4964	5163	5169					
?UNARY	459#	1744	2912	2876	3530	4842	4321	4438	4457	4549	4567	5503	5970			
?VERSN	1046#															
?XPCOD	825#															
?2Ek0	671#	1559	1575	1767	2483	3424	3856	5656								
RFETCH	4784	4759#														
rsrve	1239	5468	5730													
ASCERR	3794	3711	3715#													
B	1284#	4415	4421	4461	4529	4571										
BCODE	1167#	1563	1569	1598	1618	2392										
BITSO	4230#	4422														
BRKEND	2462	2588#														
BRKERR	3080	10880														

LOC 083

LINE

7243

Source strtement

END

<b>?</b> 8	8884	?RSRVE	<b>990</b> 2	?B	<b>999</b> 2	?BOPNT	8868	? <b>B9</b> K2	0003	<b>?89K</b> 3	0004	?80R4	0005	?E9R5	<b>000</b> 6
?B9R6	9997	?B0R7	8996	?B1PNT	0007	?B1R2	8883	?B1R3	0004	?B1k4	0005	?B1R5	0006	?B1R6	<b>868</b> 7
?81R7	3999	?BCODE	0002	?BINOP	0022	?BITS0	8883	?BUFCN	8862	?BUFLE	6663	?CHARN	0003	?CHKSU	0000
?CONST	0003	?CURDI	<b>9991</b>	?DEBNC	0003	?DSPTI	8982	20SPTM	9999	?ENRHI	6662	?EMALO	6662	?EPACC	0002
?EPPCH	0002	?EPPCL	0002	?EPPSN	9992	?EPR0	0002	?EPTIM	0002	?FORM1	<b>991</b> 6	?FORM2	<b>991</b> 8	?FORM3	<b>001</b> A
?FORM4	<b>991</b> C	?FORM5	001E	?H	0002	?HBITH	8982	?HEITL	6682	?HEXEU	<b>899</b> 3	?hrega	0002	?HREGE	8882
?HREGC	0002	?HREGD	8982	?HREGE	0002	?HREGF	8682	?ITMP	0000	?KEDBU	0002	?KEY	0000	?KEYFL	<b>0001</b>
?KEYLO	0092	?LASTK	0001	?LDRTA	8998	?LENGT	0990	?HENH1	0002	?HENLO	9992	?HINDX	6875	?HSRVE	<b>9991</b>
?NCOLS	0003	?NEG1	8663	?NEXTP	6992	?NREPT	8992	?NUMCO	6992	?0PTI0	0062	?OVBUF	8883	?0V51Z	0003
?PLUS1	0003	?PLU53	<b>999</b> 3	?R1	8898	289M	6682	?RE8	8899	?RB1	0001	?RDELA	<b>99</b> 92	?REC1Y	8882
?REGC	9992	?ROTCN	0001	?ROTPA	0001	?RSRVE	6666	?SEGIIA	0003	?SIZE	3998E	?SNAHI	8992	?SNRL0	<b>888</b> 2
2START	03DC	?STRTM	0002	?TYPE	<b>898</b> 2	?UNARY	<b>88</b> 2R	?VERSN	0092	?XPCOD	9999	?ZERO	0003	AFETCH	<b>867</b> 8
RSAVE	003E	RSCERR	<b>81</b> C9	B	0043	BCODE	<b>8036</b>	BITSO	3996	BRKEND	824D	BRKERR	04AC	BRKF IL	022E
BRKNXT	8234	BUFCNT	0041	BUFLEN	0010	BYTE I1	00F2	BYTEIN	00F0	eyteo	01D8	CGO	6468	CGONB	<b>047</b> C
CGOPAT	<b>84</b> 76	CGOSS	8489	CGOTRA	6480	CGOMB	6476	CHARCE	0990	CHARIN	01CD	CHARLF	000A	CHARNO	6668
CHARO	85BD	CHIKERR	82E1	CHKSUM	0005	C10	064D	CI1	8651	C12	8659	CI3	0662	CI4	8665
CIN	8649	CKSHOK	<b>9208</b>	CLEAR	85F1	CLRBFT	3999	CHDINT	00BR	CHIFTINGS	85E2	CIMPRET	65F0	CNIRLZ	001A
CNTTBL	84A1	CNTTRR	04AA	C01	8505	CO2	95CE	CO3	05CF	CODEEL	0006	CONCER	0228	CONFIL	02E5
COMGOR	8461	COMSER	022C	COMSIZ	6663	CTAB	8823	CURDIG	0005	DRITABL	999C	DALO	0620	DAL01	862E
DELANK	85F5	DBPNT	8144	DERK	0015	DCB	015A	DDABRK	0167	DDAMEN	9161	DEBNCE	3999	DECLAR	0003
DECSM1	02FF	DECSMA	82F4	DELAY'	84F2	DELAMI	84F5	DERROR	8131	DFILL	<b>014</b> B	DGO	0149	DGPRTS	ØØEF
DGR	015D	DINTRG	<b>81</b> 69	DLST	014E	DHOD	6146	DNOERK	<b>816</b> B	DONE	82E9	DPR	0172	DPRERK	0165
DPRMEM	015F	DREC	0151	DREL	0154	DRM	0163	DRUN	013E	DSE	0157	DSGNON	<b>013</b> 7	DSPACE	86D3
DSPHI	918E	DSPLO	<b>8194</b>	DSPH1	8192	DSPMID	0190	DSPTIM	8828	DSPTNP	8886	DSS	016F	DTR	<b>01</b> 75
DHBRK	<b>816</b> D	ELSIF1	9907	ELSIF2	80E5	EMAHI	0033	EMALO	8832	ENGLNK	9992	ENBRAM	<b>0001</b>	ENDF1	859E
ENDFIL	8596	ENDREC	8641	EOFREC	05AE	EPACC	8828	EPERK	034F	EPCNT	8441	EPCONL	841F	EPCONT	0415
EPFET	97B7	EPPRSS	07D0	EPPCHI	8825	EPPCLO	8824	EPPSH	9921	EPRO	<b>882</b> 3	EPREL	07i 4	EPRET	<b>64</b> C7
EPRSET	0010	EPRUN	8499	EPRUNI	<b>048</b> A	EPRUN2	8499	EPRUN3	8495	EPRUN4	8482	EPRUN5	<b>84</b> 83	EPRUN6	04BA
EPSSTP	0004	EPSTE1	97DF	EPSTE2	07F1	EPSTEP	07DB	EFSTOR	<b>07</b> C3	EPTIMR	8822	ERROK2	01B6	EXAMO	0250
EXAML	<b>027</b> B	EXRM2	8281	EXAM3	028R	EXAM4	0293	EXAM5	8275	EXAMIN	824F	EXPHON	0080	FDUNP1	9617
FDUMP2	9628	FDUMP3	0636	FDUMP4	8648	FDUMP5	8632	FINDOP	0042	GOTEL	0471	К	8845	HBD1	84D7
HBD2	9405	HEDLAY	8409	HBITHI	8827	HBITLO	8826	HDATIN	0269	HEXASC	<b>91E</b> 6	HEXEUF	0065	HEXNIB	<b>01</b> EF
HEDONE	<b>85</b> 87	HFILEO	8572	HRECIN	8297	HRECO	0600	HRECA	<b>99</b> 28	HRLGB	002B	HKEGC	882C	HREGD	6620
HREGE	002E	HREGF	662F	INPLEN	8299	INCSHR	01F2	INCH	01F4	INCHL	01FC	INIT	0000	INITLP	<b>000E</b>
INPR01	89C7	INPROR	8908	INPKEY	ØØEC	INVALS	0300	1TMP	0004	JGORES	6226	JMP TBL	0206	JTOFIL	8222
JTOGO	0220	JTOLST	021A	JTOHOD	828F	JTOREC	8211	JTOREL	8216	KBDEUF	003B	KBD11	8606	KBD1N	<b>66C2</b>
<b>KBDPOL</b>	07AF	KCLRB	999C	KEY	0003	KEYCLR	9917	KEYDH	<b>001</b> 6	KEVEND	9913	<b>KEYFIL</b>	8818	KEYFLG	0006
Ke.ygo	001E	KEYLOC	993C	KEYLST	001C	KEYNOD	001F	KEYNXI	8812	KEYPAT	0015	KEYPH	001A	KEYREC	0018
KEYREG	991B	KEYREL	0014	KEYTRA	0019	KGORES	991D	KSETB	<b>8996</b>	LASTKY	8884	LDATA	0062	LDEYTE	<b>858</b> 2
LFEBR1	96C1	LFEBRK	96E1	LFEDH	8698	LFEINT	<b>86</b> 89	LFEPH	0684	LFER0	86R5	LFEREG	069C	LFETEL	067E
LFETCH	80FC	LFILL	02E9	LFILL1	82F3	LPGSEL	04E1	LSTBR1	0746	LSTER2	0748	LSTBRK	073D	LSTDM	0721
LSTINT	0734	LSTORE	0700	LSTPH	078C	LSTR0	072F	LSTREG	0726	LSTIBL	8786	N9	8910	M1	9929
NADD	8824	NADDC	0825	MRIN	0029	MAIN2	0033	MAINA	0052	MAINB	8869	MAINBO	909E	MAINB1	99A9
MRINC1	6675	MRIND	0093	MRIND1	0087	MRNL.	8826	MBLOCK	8882	MDEC	662C	MDJN2	8920	MEMILI	0035
HENLO	0034	MERROR	00BC	HINC	<b>992</b> B	MHL01	036F	HHOY	9929	HODOUT	0020	HORL	6827	<b>MPUSEL</b>	8848
MRL	002E	HRLC	<b>88</b> 31	MRR	962F	MRRC	0030	MXCH	8829	MXRL	0028	NCOLS	0004	NEG1	FFFF
NEXTPL	003H	NIBI3	01C2	NIBIN	01B8	NIBIN2	01BA	NIBO	<b>858</b> B	NUERK	991B	NOVALS	0823	NREPTS	903D
NUNCON	0038	NXTLOC	0768	OPTRE1	033F	OPTAB2	0346	OPTAB3	0349	OFTION	0039	ORGPG8	0100	URGPG1	61FD
ORGPG2	0300	ORGPG3	03E9	ORGPG4	84FD	ORGPG5	05FF	<b>ORGPG6</b>	86FF	ORGPG7	07FD	OUTCLR	0102	OUTHSG	0104
OUTUTL	0100	OVOERS	<b>0</b> 378	OV1B1	999R	0V1B2	0313	OV1BRS	03R4	0V2B1	0313	OV2BRS	038A	0V3E1	0311
OV3BR5	038E	OVBUF	884E	OVLORD	836R	OVSIZE	0017	OVSHI	0361	OVSHAP	035A	PBRK	0019	PDIGIT	9996
PERROR	019R	PGSIZE	ØØFD	PINPUT	999B	PLUS1	0001	PLUS3	0003	FRNT1	0117	PKNT2	0108	PSEGHI	000D
			-												

Appendix C and D

# APPENDIX C COMMAND SUMMARY

The following is a summary of the commands implemented by the HSE-49 emulator monitor. Within each command group, tokens in each column indicate options the user has when invoking those commands.

Tokens in square brackets indicate dedicated keys on the keyboard (some keys having shared functions); angle brackets enclose hex digit strings used to specify an address or data parameter. Parameters in parentheses are optional, with the effects explained above. The notation used is as follows:

<SMA> -- Starting Memory Address for block command,

<EMA> — Ending Memory Address for block command,

<LOC> - LOCation for individual accesses,

<DATA> - DATA byte.

Asterisks (*) indicate the default condition for each command; thus that token is optional and serves to regularize the command syntax.

Program/data entry and verification commands:

[EXAM]	[PROG MEM]*	<loc></loc>	[,]	[NEXT
	[DATA MEM]			[PREV]
	[REGISTER]			[.]
	[HWRE REG]			
	[PROG BRK]			
	[DATA BRK]			

Program/data initialization commands:

[FILL] [PROG MEM]* <SMA> [,] <EMA> [,] <DATA> [.] [DATA MEM] [REGISTER] [HWRE REG] [PROG BRK] [DATA BRK]

Intellec[®] development system or TTY interface commands (for transferring HEX format files):

[UPLOAD] [PROG MEM]* <SMA> [,] <EMA> [.] [DATA MEM] [REGISTER] [HWRE REG] [PROG BRK] [DATA BRK] [DNLOAD] [PROG MEM]* [.] [DATA MEM] [REGISTER]

Formatted data dump to TTY or CRT:

[HWRE REG]

[PROG BRK]

[DATA BRK]

[LIST] [PROG MEM]* <SMA> [,] <EMA> [.] [DATA MEM] [REGISTER] [HWRE REG] [PROG BRK] [DATA BRK] Program execution commands:

[GO]	[NO BREAK]* [W/ BREAK] [SING STP]	( <sma>)</sma>	[.] [,]
	[AUTO BRK] [AUTO STP]		

[GO/RST] [NO BREAK]" [.] [W/ BREAK] [SING STP] [AUTO BRK] [AUTO STP]

Breakpoint setting and clearing:

- [SET BRK] [PROG MEM]* <LOC> ([,] <LOC> ... ) [.] [DATA MEM]
- [CLR BRK] [PROG MEM]* <LOC> ([,] <LOC> ... ) [.] [DATA MEM]

# APPENDIX D ERROR MESSAGES

The following error message codes are used by the monitor software to report an operator or hardware error. Errors may be cleared by pressing [CLR/PREV] or [END/.]. The format used for reporting errors is "Error – .n" where "n" is a hex digit.

# **Operator Errors**

- 1. Illegal command initiator.
- 2. Illegal command modifier or parameter digit.
- 3. Illegal terminator for Examine command.
- 4. Illegal attempt to clear Error mode.
- 5-9. Not used.

# **Hardware Errors**

- A. ASCII error non-hex digit encountered in data field of hex format record.
- B. Breakpoint error. Break logic activated though breakpoints not enabled.
- C. Hex format record checksum error. Note the checksum will not be verified if the first character of the checksum field is a question mark ("?") rather than a hexidecimal digit. This allows object files to be patched using the ISIS text editor without the necessity of manually recomputing the checksum value.
- D. Not used.
- E. Execution processor failed to respond to a command or parameter passed to it by the master processor. EP automatically reset. EP internal status may be lost. Program memory not affected.
- F. Not used.









.

# Microcontroller includes a-d converter for lowest-cost analog interfacing

Adding hardware for analog-to-digital conversion to a single-chip microcomputer cuts interface software and component count for high-volume control applications

by W. Check, E. Cheng, G. Hill, M. Hollen, and J. Miller, Intel Corp., Santa Clara, Calif.

□ Microcomputers' plunging size and cost are creating a rising new market: low-cost controllers that end up in automobiles, appliances, and consumer products. Now that the technology is available to integrate a highperformance 8-bit analog-to-digital converter and a microcomputer on a single chip, the tremendous need for low-cost analog interfacing has hastened the development of just such a device: the 8022. By integrating the a-d converter and other useful features, the chip achieves the minimum system cost possible for high-volume controller applications involving analog signals.

The heart of the 8022 is the 8021 general-purpose



1. All aboard. The first single-chip microcomputer with a built-in 8-bit analog-to-digital converter is Intel's 8022. Around a foundation of the 8021, the chip packs several features that suit it to control applications: two multiplexed analog inputs, a zero-crossing detector, two 7-mA digital outputs that are part of Port 1, and a total of 26 digital input/output lines, eight of which have voltage-comparator inputs.

Reprinted from Electronics/ May 25, 1978 Copyright Cahners Publishing Co., Inc. 1977. All rights reserved.



2. The converter. The 8022's a-d converter uses successive approximation. A multiplexer selects either of two inputs, which is sampled and held. The successive-approximation register holds a byte that taps off a voltage from a 256-resistor divider through decoding logic. Input is compared with tapped voltage; when the two are equal, the held byte is sent to the conversion-result register.

microcomputer with built-in read-only and randomaccess memories, which go a long way since many functions are carried out in hardware or require minimal software. The 8021's modular design facilitates its use as a cornerstone for more highly integrated designs like the 8022. This new design, like the 8021, is a member of the MCS-48 family of single-chip microcomputers, and its on-chip a-d converter makes the family even more useful in such high-volume, cost-sensitive application areas as household appliances.

#### A microcomputer plus

Operating on a single + 5-volt power supply, the 8022 contains all the functions necessary for digital processing, plus digital or analog control. On the chip, as diagrammed in Fig. 1, are 2 kilobytes of ROM, 64 bytes of RAM, an 8-bit central processor with more than 70 instructions (a subset of the higher-performance 8048), an internal timer/event counter, a clock and oscillator, the 8-bit a-d converter with two analog inputs, and 26 digital input/output lines.

All parts of the a-d converter are integrated onto the chip-no external components are required. Conversion

is performed entirely with hardware by a successiveapproximation technique and takes 40 microseconds to complete. The only software is three single-byte instructions: select analog-input 0 (SEL AN0), select analoginput 1 (SEL AN1), and read the analog-to-digital conversion result (RAD).

# Flexible I/O lines

The 26 digital input/output lines are organized into three 8-bit general-purpose ports and two test pins,  $T_0$ and  $T_1$ . The three ports are quasi-bidirectional—each line can be programmed for input or output. Adding to the flexibility is an optional mask operation that eliminates the pull-up resistor for the metal-oxide-semiconductor drive transistor on each line, creating an opendrain output. The open drains are useful in driving analog circuits and for certain loads such as keyboards.

Port 0 also has variable-threshold voltage-comparator inputs with a common reference pin  $(V_{th})$ . This setup can accommodate such input situations as high noise margins, low-voltage (10-to-15-v) touch switching, and expansion of the analog inputs. Two input/output pins (Pl₀ and Pl₁) provide for high-current drive; each sinks



3. Low-voltage touch. Because port 0 has variable-threshold comparator inputs on each of its eight lines, new input configurations are possible, such as this low-voltage touch switch. Touching the panel momentarily pulls down the comparator input. The high-voltage driver, which may be a single transistor or part of a hex driver, then recharges the panel. The port is read by the microcomputer as is any other.

7 milliamperes, more than four times the 1.6-mA load of standard transistor-transistor-logic outputs. In many applications of the 8022, 7 mA can eliminate the need for discrete drive transistors.

The lower half of port 2, in addition to serving as general input/output, may be hooked up as a bus for attaching 1/0 expander units, such as the 8243, or discrete TTL parts for low-cost 1/0 expansion. Operations of the 8243 are synchronized by the port-expander strobe pin, a feature that is especially useful for input/output expansions designed with standard transistor-transistor logic gates.

The two test-pin inputs can be tested directly with two conditional-branch instructions.  $T_0$  can interrupt the system, while  $T_1$  also can detect the zero crossing of ac signals—a plus when it comes to firing triacs for phase control of motors.

# The a-d converter

The 8022's a-d converter has two multiplexed input channels. Channel selection by either the SEL ANO or SEL ANI restarts the conversion sequence. A valid digital value can be read with the RAD instruction during the fourth instruction cycle after a select instruction. Conversions occur continuously, and RAD may be executed at any time with confidence that the sample is no more than 40  $\mu$ s old. Typical software for reading two sequential a-d conversions would be:

SEL ANO	Starts conversion
MOV R0,#24	Setup memory pointer
RAD	First conversion to accumulator
MOV @R0,A	Store first value
INC R0	Ready for next conversion
RAD	Second conversion to accumulator
MOV @R0,A	Store second value

As shown in Fig. 2, the conversion hardware itself has

three parts: a series string of resistors, a voltage comparator, and successive-approximation logic. The string of 256 resistors divides the voltage between  $V_m$  and  $V_{DLI}$ (the reference pin) into 256 voltage steps. This configuration gives the converter inherent monotonicity. Decode logic selects the appropriate tap and transfers that voltage to the comparator block.

# The conversion logic

The comparator amplifies the difference between the analog input and the voltage tap. This difference is presented to the successive-approximation logic. Eight comparisons result in a fully converted byte being transferred to the conversion-result register. All comparisons are performed automatically by on-chip hardware; executing the RAD instruction moves the contents of the CRR to the accumulator.

Novel circuit design (see "The a-d converter: how it was done," p. 27) gives the converter 8-bit resolution over the full input range of  $V_{ss}$  to  $V_{cc}$ . This capability simplifies direct connection to sensors, reduces software, and provides fast, 40-microsecond conversions. The separate power-supply pins complete the analog block and keep the converter isolated from digital-noise sources.

# The instruction set

To conserve memory and maximize throughput, most instructions in the 8022 are single-byte and single-cycle; no instructions are longer than 2-byte, two-cycle. The cycle time is  $10 \ \mu s$ .

The overall efficiency of the instruction set is enhanced for control applications by the extensive conditional-branch logic that has been built into the microprocessor. For example, the instruction to decrement a register and jump if not zero (DJNZ) allows loops to be formed in one 2-byte instruction. Similarly, the instruction to move to the accumulator from the current page (MOVP A, @ A) allows table look-up for constants or display formatting with just a single 2-byte instruction.

The 64-byte RAM integrates the hardware stack and data memory. The first eight memory locations are designated as working registers and are addressable by any of the 11 direct-register instructions. Besides increasing the variety of operations that can be performed on data in memory, this approach further reduces the number of instruction bytes required for processing. Working registers 0 and 1 also may be used as pointers to indirectly address all locations in memory, using the indirect-register instructions.

The next 16 bytes of RAM may be used as the address stack to enable the processor to keep track of the return addresses generated from call instructions and to handle interrupts. Since each address is 11 bits long, 2 bytes are needed to store each address. Thus, the 16 bytes of address stack allow a total of altogether eight levels of subroutine nesting.

A 3-bit stack pointer supplies the locations that are loaded with the next return address generated. This stack pointer is incremented when a return address is stored and decremented when an address is fetched during a return. If an application does not require all eight levels of subroutine nesting, the free portion of the address stack may be used as standard RAM.

# Other on-chip features

The 8022 contains its own clock and oscillator circuitry and requires only an external timing control element to generate all internal timing signals. For highly cost-sensitive applications an inductor may be used as this element. If a more precise clock is required, the designer may specify a crystal or external clock for the application.

To further reduce the user's system cost and to permit use of the chip in noisy environments, the power-supply tolerance has been increased, permitting a range from 4.5 to 6.5 v. Less filtering and regulation is necessary, therefore, and the microcomputer's immunity to noisy power supplies is greater, as well.

The programmable 8-bit timer/event counter accurately monitors elapsed time, avoiding the software overhead of timing loops. Once it has been loaded with the contents of the accumulator, its divide-by-32 prescaler is incremented for each system clock cycle and at prescaler overflow. A timer flag is set at overflow. Once activated, it can be tested by a conditional-branch instruction to generate an interrupt. Total count capacity is 8,192 instruction cycles or 81.9 milliseconds, for the 10- $\mu$ s cycle time.

The timer may also be used as an event counter where the test pin  $T_1$  serves as a counter input. Upon command, the chip will respond to a low-to-high transition on the pin by incrementing its timer.

## **Comparator inputs**

The input/output port 0 of the 8022 has several properties that ease analog interfacing problems. Two of these features are moderate-gain voltage comparators and pull-up resistors on each line that either may serve as standard TTL outputs or may be masked out to give open-drain outputs.



4. Zero-crossing detector. Useful in timing the firing of triacs for ac phase control of appliances or getting a real-time clock, the 8022's T₁ test pin detects the crossing of a waveform's dc level by its rising edge. One hundred millivolts of hysteresis prevents chattering, and the ac frequency is limited to 1 kilohertz.

The comparators are especially handy for troublesome inputs. The comparator at each pin accurately compares that line to the threshold-voltage reference pin,  $V_{th}$ , within about 100 millivolts in the range from  $V_m$  to  $V_m/2$ . Allowed to float,  $V_{th}$  will bias itself to the digital switch point of the other ports, and port 0 then behaves as a set of conventional digital inputs.

However, the switch point can be both tightly controlled and adjusted by specially biasing  $V_{\rm th}$ . Uses for this would include high-noise-margin inputs (up to  $V_{\rm cc}/2$ ), unusual logic-level inputs as from a diode-isolated keyboard, analog-channel extension, and direct interfacing of capacitive touch panels. The comparator action is automatic, and the port is read just as is any other port.

# Three advantages

Since the on-chip comparators allow small voltage changes to be detected, a cost-effective and safe touch panel can be built. Many appliances using touch panels have as much as 100 volts at the panel, albeit with extremely low power. The comparators in the 8022, however, permit appliance touch panels to be operated in the 10-to-15-v range.

The advantages of a low-voltage touch panel are three. First, it costs less to generate and switch the lower voltage. Then, since the keyboard operates at below 30 v, it is an Underwriters Laboratories' class II system, which can sharply cut the time required for approval. Finally, the possible product-liability problems associated with high-voltage operation disappear.

Simplified capacitive touch-panel operation is shown in Fig. 3. Contact with the panel drives both the voltage buffer and input to ground. When port 0 is read, a 0 on any line indicates a touched switch. The microcomputer drives the voltage buffer to recharge the panel. Matrix



5. Oven controller. The use of the 8022 is demonstrated in this controller for a combination microwave and conventional oven. The chip needs no assistance in figuring temperatures from thermistors connected to its analog inputs, reading inputs from a touch panel, detecting zero-crossing of ac for firing triacs and gating clocks and timers, direct-driving an alarm, and storing cooking-time instructions.

switch panels may also be sensed by the comparators.

Each pin on port 0 may or may not have an internal pull-up resistor: the option is chosen during selection of the ROM program code. If a resistor is left out for a given pin, the output appears as a true open drain for the range  $V_{\rm u}$  to  $V_{\rm co}$ . There is no temporary low-impedance drive to  $V_{\rm co}$ , as is the case with the remaining quasi-bidirectional ports. With open drains, accurate output waveforms can be generated, and operational amplifiers can be driven directly, for example.

# The zero-crossing detector

Although the  $T_1$  test pin on the 8022 may be driven directly by a digital input, it has special circuitry to detect an ac signal crossing its average direct-current level. The signal required for the zero-cross detection mode must be 2 to 4 v peak to peak and have a maximum frequency of 1 kilohertz. It couples to  $T_1$ through an external capacitor.

Figure 4 shows the waveforms for zero-crossing detection. The internal digital state of  $T_1$  is sensed as a 0, until the wave's rising edge crosses the average dc level, when it becomes a 1. The digital transition takes place within a 5° phase from the zero point. The digital level then remains at 1 until the input goes approximately 100 mv below the zero point on the falling edge. The 100-mv hysteresis keeps noise from causing chattering of the internal signal.

The zero-crossing detection capability allows the applications designer to make the 60-hertz power signal the basis for system timing. All timing routines, including time of day, can be implemented with the signal and just a few conditional jump instructions.

Moreover, since  $T_1$  is also an input to the external event counter, the detection feature may be combined with this counter to interrupt processing at the critical zero-crossing point. Thus the user can trigger phasesensitive devices, such as triacs and silicon-controlled rectifiers, and use the 8022 in such applications as shaftangle measurement and speed control of motors anywhere that the zero crossing of a waveform provides timing information.

# An oven controller

The 8022's high level of functional integration provides a single-chip solution to sophisticated, highvolume controller applications that have required relatively expensive multichip designs. An example is a controller (Fig. 5) for a stove with a combined microwave and conventional oven and range-top burners.

# The a-d converter: how it was done

The drive to increase the density of large-scale integration leads to continually improving control of small geometries. In fact, self-aligned silicon-gate processes now allow arrays of identical resistors and access transistors to be almost as densely packed as memory arrays.

The resistive ladder on the 8022 is a string of 256 matched diffusion resistors with access gates to each tap. Process geometry and resistivity control matches these within 8-bit accuracy without trimming or special processing. Any mismatched resistors simply expand or contract the voltage between taps. Even shorted resistors cannot cause nonmonotonic voltage outputs.

Design of the voltage comparator requires offset voltages smaller than could be expected from the standard memory/microprocessor process. So a chopperstabilized design is used to compensate for offset inherently. Similarly, the low supply voltage of 4.5 to 6.5 volts does not allow sufficient gain or operating range from a differential stage. Thus a single-ended approach is used to increase gain. Carefully devised circuit tricks are enough to convert this stage into a differential comparator.

As shown, the basic gain stage is a logic element biased into its linear-gain region. Biasing is done while the input voltage is forced to the other side of the sample capacitor. When the bias gate is turned off and the ladder voltage is selected, the stage essentially amplifies the difference between the two voltage levels.

A string of these stages forms the comparator block. The input voltage has no effect on the amplifier bias point and therefore will not affect gain. This allows comparison down to voltages as low as V_a.

Comparison with  $V_{cc}$  was made possible by judicious use of bootstrap circuitry. To limit bootstrap drivers, the voltage comparison actually occurs at half this external level. This allows all ladder select voltages to be simply  $V_{cc}$  or  $V_{cc}$ . Both resistive and capacitive dividers are used to drop the two comparison voltages to their internal level.

Finally, the capacitors inherent in the amplifier become the sample-and-hold mechanism that allows only one voltage sample to be taken per conversion.



Twenty keys enter timing and cooking instructions, and a four-digit display shows cooking time, temperature, and the time of day. Two temperature-sensing thermistors are employed, one for standard use and the other for microwave use.

While such a system could be controlled by a conventional 4-bit or 8-bit microcomputer, external circuitry would be required to interface the keyboard, convert the analog signals to digital data, drive an audio alarm, and determine the zero-crossing point of the 60-Hz power wave for timing functions and magnetron control. The 8022 reduces this multichip system to a single chip. The computer-plus-converter chip can save the oven maker upwards of several dollars in parts costs.

In this application, the 8022 program memory stores all control programs, cooking and power-cycling algorithms, and timing routines. Its 2-kilobyte ROM is large enough to provide for easy expansion of oven features and product differentiation. The on-chip RAM stores temperatures, power-level and timing settings, and all intermediate computational results.

The analog signals from the conventional temperature sensor and the microwave meat probe feed directly into the two analog inputs on the 8022 without any additional circuitry. What's more, the chip's 8-bit a-d converter gives more accurate temperature sensing than most existing discrete configurations.

The keyboard interfaces directly to the device through port 0. The keyboard in this application can be either a capacitive touch panel or a conventional switch type, since the 8022 directly interfaces either.

The  $T_1$  pin in the zero-crossing detection mode establishes an accurate time base for all timing routines, including cooking cycles, presetting functions, and time of day. To accomplish this, the chip detects a zero crossing using the two conditional-jump instructions associated with  $T_1$ : JT1 and JNT1. Then it increments a register in data memory, effectively keeping track of elapsed time. Using this technique, a time-of-day routine can be written for most applications in less than 30 bytes of code.

# **Control of the magnetron**

The zero-crossing detection capability also efficiently controls the microwave's magnetron. To minimize current surges through the system, the magnetron should be fired at the peak of the ac wave (90°). To achieve this performance, the 8022 detects the zero crossing point with its  $T_1$  pin and delays the 90° phase shift with the internal timer.

The high-current drive pins,  $Pl_0$  and  $Pl_1$ , are tied together to directly drive a piezoelectric alarm, which requires 10 to 15 mA of current. The remaining 1/0 lines are used to drive the display and status indicators, to monitor the door interlock, and to control the triacs that switch the burner and oven heating elements. The internal timer controls the refreshing of the displays and the scanning of the keyboard.



**AR-63** 



# Microcomputer's on-chip functions ease users' programming chores

The one-chip 8022 includes hardware, such as an a-d converter, that combines with the instruction set for easy development of routines

by William F. Ittner and Jeffrey A. Miller.	Intel Corp., Santa Clara, Cali	f.
---------------------------------------------	--------------------------------	----

□ A single-chip microcomputer that incorporates analog-to-digital conversion, comparator inputs, and ac zero-crossing detection is a strong candidate for lowcost, high-volume applications. Moreover, to maintain its front-runner position, the new 8022 has been designed for ease of programming: many common routines are invisible to the user because they are performed in on-chip hardware.

The 8022's instruction set, in conjunction with its hardware features, affords programming ease in the development of routines for translating analog signal levels, monitoring temperatures, reading capacitivetouch-panel inputs, controlling phase-sensitive thyristors, and calculating the time of day. For example, performing an a-d conversion requires software only to select the appropriate analog input; the actual conversion is performed entirely in hardware. This leaves room in the program memory for additional system functions. Furthermore, the instruction set accommodates bit handling, binary and binary-coded-decimal arithmetic, and direct table look-up, and it has extensive facilities for input selection and input-based program jumps.

The 8022 [Electronics, May 25, p. 122] is the first general-purpose single-chip microcomputer to offer an on-chip a-d converter. While retaining the 8-bit central processing unit, 64 bytes of random-access memory, clock, zero-crossing detection, and timer/event counter featured in its 8021 predecessor, the new chip doubles the read-only memory to 2 kilobytes and provides comparator inputs on eight input/output lines, five more digital 1/0 lines (including an extra test pin), full interrupt capability, and two 8-bit a-d input channels. Such a decrease in system component count cannot help but minimize cost and increase reliability.

# Easy a-d conversion

The 8022's a-d converter has two multiplexed channels, selectable with the SEL ANO (select analog input 0) or SEL ANI (select analog input 1) instructions. Built-in successive-approximation hardware accomplishes the conversion. The select instructions and the RAD command (read a-d conversion result) are the only software instructions necessary. The select instructions restart the continuously occurring conversion process, but do not affect the conversion-result register. The new valid digital value can be read from the CRR during the fourth cycle after a select instruction and every fourth instruction cycle thereafter.

An application that points up the advantages of this easy-to-use on-chip converter is monitoring temperature in an oven controller. The temperature is sensed by a thermistor probe located in the oven (Fig. 1). In such a system, noisy analog signals are apt to prevail, obscuring the readings. But since so few instructions are needed for each sampling, a software filtering technique can be added at little expense for increased accuracy. One software filtering method is to average each reading with the previous samples:

SEL ANO	;Start conversion
MOV R0, #30	;Point to storage location of previous
	a-d sample average
RAD	;Read second sample result
ADD A, @R0	;Add last sample to new sample
RRC A	;Divide by 2
MOV @R0.A	Store new average

Excessive noise may require averaging of many readings taken over a short period of time. Program 1 illustrates a method of computing the average of 16 readings. In such averaging, it is necessary to select the



**1. Talk about simple.** To sense temperature with the 8022, all that is needed is a thermistor pulled up to the supply. Simpler yet are the instructions to sense the voltage divider's potential: select analog input 0 (SEL AN₀), and read conversion-result register (RAD).

	PROGRA	M 1 16 CON OF SAME A	ISECUTIVE READINGS NALOG INPUT
	NOV NOV NOV SEL NOV	R4, #00 R0, #26 OR0, #00 ANO R2, #16	clear temp. MSB result register set up pointer clear result register select & start conversion 16 readings
LOOP:	RAD ADD MOV CLR ADDC MOV DJNZ SWAP XCH SWAP XCHD	A, ORO ORO, A A A, R4 R4, A R2, LOOP A A, ORO A A, ORO	reed result LS8 save new LS8 MSB add carry to R4 save new MSB next reading MSB into MSN divide by 16 location 26 in RAM now contains the average value of 16 conversions over a period of 1.44 msec

appropriate analog channel only once. Thereafter, a new conversion result is available every four instruction cycles.

Often noise on the analog input is due to 60-hertz ac pickup. To minimize this interference, analog signals should be synchronized with the line voltage, accomplished in the 8022 by the on-board zero-crossingdetection circuitry. The combination of line synchronization with simple filtration renders digital values impervious to line-generated noise.

Signal averaging may be used for more than noise filtering. Since it can be applied to either channel 1 or channel 0 (whichever is selected with a SEL ANX instruction), each channel may monitor different functions in one system, such as temperature and pressure in a process-control application. The fast a-d conversion time permits rapid switching between the two channels.

A similar software technique permits measuring the same variable in two different locations and comparing the two results, as in checking the internal and external temperatures in an automotive climate-control application. Program 2 shows the coding that is required to perform a magnitude comparison between the two analog channels. The time elapsed between channel switching is a mere 50 microseconds.

# **Comparator inputs**

To ease interfacing with devices presenting troublesome 1/0 links, the 8022's port 0 incorporates comparator inputs controlled by a common voltage-reference pin and an option of a pull-up resistor or an open-drain output. Each of port 0's eight pins has a moderate-gain voltage comparator, which compares to a common reference pin  $(V_{th})$  with  $\pm 100$ -millivolt accuracy, within a analog reference voltage range of  $V_{th}$  to  $V_{cc}/2$ . The biased  $V_{th}$  pin will ensure a tightly controlled switching point.

A typical use for port 0 is in the interfacing with the capacitive touch panels on microwave ovens and other new appliances. A touch-panel switch consists of two capacitors in series. One lead is attached to a high-

PROGR	AM 2 MAGNITUE	E-COMPARISON ROUTINE
SÉL	ANG	start conversion
MOV	R0, #24	set up pointer
RAD		read conversion result
SEL	AN1	start other conversion
CPL	Α	
INC	A	
MOV	ØRO, A	save first conversion
RAD		read second conversion
ADD	A, <b>Q</b> R0	add first conversion A equals the differential
17	FOLIAL	
32	LECTUN	
30	LEGITIN	

voltage buffer (10 to 30 volts). The other is attached to the port 0 sense input. As a finger touches the common point, the drive signal is shunted by body capacitance, attenuating the signal reaching the input.

Low-voltage touch-panel operation (less than 30 v) is possible, since the comparators allow small voltage changes to be detected. Most of the present touch-panel designs require a 50-to-100-v drive on the touch panel.

Capacitive touch panels can be multiplexed in the same manner as can mechanical keyboards (Fig. 2). The vacuum fluorescent display and the touch panel are integrated to optimize hardware through shared highvoltage buffers.

Program 3 lists the software that is necessary to refresh the display and scan the touch-panel matrix. This routine could be adapted to serve as part of a timer/interrupt scheme that would generate an interrupt at precise intervals for a flicker-free display. Another portion of the software would check for any touched input pads, test for valid entry, and enter key-depression codes into the main program.

# **Correcting pad imbalance**

A common problem with capacitive touch panels is their imbalance. Layout process, aging, and surface impurities all cause the capacitance to vary from touch pad to touch pad, resulting in a family of curves (Fig. 3a) of voltage levels from each column of touch pads reaching the sense inputs. As the curves show, if threshold voltage  $V_{tbl}$  alone were used, one column would always appear touched; if  $V_{tb2}$  were used exclusively, three of the columns would never appear touched.

To compensate for such varying capacitance levels, the on-chip analog-input circuit may be used to allow multiple input voltage levels. Figure 3b depicts the 8022 version of such a circuit. ANO and  $V_{tb}$  are tied together with a capacitor to line 0 of port 0. The pull-up resistor option is used on line 0 to provide an RC timing network connected to ANO,  $V_{tb}$ , and PO₀. The remaining seven lines of port 0 are the sense lines for the touch panel and use the open-drain-cutput option.

Handling the different voltage levels would begin with initializing the data by plotting the family of curves with the ANO input. This is done by writing a 0 to PO₀ (grounding PO₀) which initializes V_{th} to 0 v. A logic 1 is then written to PO₀, which begins to pull the RC network

7-4



2. Multiplexed touch panel. A capacitive touch panel and high-voltage display may be combined in much the same way as a mechanical keyboard and light-emitting-diode array. To save hardware, an obvious choice is to share the high-voltage drivers.

	PROGI	GAM 3 - DISPLAY REFRESH B	FYBOARD SCAN ROUTLE
	CLR	A 81 A	
	OUTL	P0, A	turn off digit drivers and panel strobes and initialize same input to ground
	MOV	A, #0FH P0, A	flast series inputs
		A, 143 PO, A A, PO	new strabe position turn on strabe read sense insurts
		R4, A	sive case inputs RAM jostion of MBR of 7 segment estimat
	MOV	A, <b>R3</b> PO, A	strobe pasition into A GND sense inputs
LOOP:	RLC	A	rotate digit strabe into carvy
	JNC	LOOP	loop until cerry
	MOV OUTL	A, ORG 2 P1, A	retrieve pettern frem RAM new segment pettern

toward 5 v. As  $V_{tb}$  ramps upward, the sense lines are monitored for input changes, which will go from 1 to 0 as the not-touched voltage curve for each input is intersected. As the changes occur, the a-d value for each sense line can be read and stored.

Thus the threshold reference voltage for each sense line can be determined by establishing the not-touched voltage levels and by placing the threshold reference voltage below this level. As each row of the keyboard is scanned, the RC network is initialized to 0 v and ramps upward, varying the  $V_{th}$  level. The a-d converter monitors this level looking for the calculated threshold points. As the points are intersected, the corresponding sense inputs are read, with a 0 indicating a touched input and a 1 indicating a not-touched input. Thus, a multiplexed capacitive touch panel can be scanned and balanced without adding external components to the inputs.

For systems requiring more than two analog inputs to



**3.** Belancing. Dissimilar pad capacitances are represented by the curves in (a). With a fixed reference ( $V_{n1}$  or  $V_{n2}$ ), false sensing will occur. Individual thresholds can be determined using (b): a rising edge is placed on P0₀ through software; AN0 is then read until switching.

		PROGRAM 4 - 90° PHASE AND	SEE ROUTINE
NINDEG	EQU	13	13x32x10 usec = 4.160M msec
LOC 7:	хсн	A, R7	save Acc and get flag byte
	INC	Α	
	JNZ	NINETY	is it zero cross or 90 deg.
	MOV	A, #NINDEG	zero cross"
	MOV	Т, А	set up for ninety degrees interrupt
	STRT	т	
	хсн	A, R7	load R7 with non-FF number
	RETI		and restore A"
NINETY:			
	IN	A, P1	
	MOV	A, #11101111B	set P14 low (TRIAC PORT)
	OUTL	P1, A	
	MOV	A, #OFFH	set up for zero cross interrupt
	MOV	Т, А	next time"
	STRT	CNT	
	ХСН	A, R7	load FF into R7 and resotre Acc
	RETI		

the 8022, port 0's comparator may be reconfigured to permit forming of pseudo-analog inputs from variablethreshold digital inputs. The hardware configuration can be identical to that of Fig. 3b. In this scheme, sense inputs act as additional analog inputs of less accuracy than AN0 and AN1 (about 6 bits).

The sequence for implementing the extension is essentially the same found in the variable-threshold touch panel. As  $V_{th}$  ramps upward, a port 0 bit is monitored for a change from 1 to 0. At the change, ANO is read,

corresponding to the value of the analog input into port 0 (with some error due to the time lag, which can be subtracted). This configuration can be utilized when it is possible to trade off accuracy for cost improvements: one analog input with 8-bit accuracy and seven analog inputs with 6-bit accuracy. Such may be the case in a range controller that monitors temperature in two ovens, a meat probe, and two of the four burners, all to an accuracy within  $10^{\circ}$ F.

To establish a reliable time base and to switch ac

PROGRAMS COMPUTING THE TELE OF DAY					
				1. 1.	
	ORG	7	T1 timer interrupt vector		
	MOV	A, #OFFH	initialize timer		
	MOV	T, A			
	MOV	RO, #TIME0 - 1	TIME0 = LSB of timer register		
	MOV	R1, #TABLE	LSB of ROM look-up	ng sanat	
LOOP:					
	INC	RO	point to next byte		
	MOV	A, @R0	retrieve BCD byte		
	ADD	A, #1	incrament		
	DA	A	decimal adjust		
	MOV	@R0, A	restore BCD byte		
	MOV	A, R1	test for carry		
	MOVP	A, @A	using table entry		
	XRL	A, @R0	and"		
	INC	R1	bump pointer		
	JNZ	DONE	no carry, wait for next tick		
	XCH	A, @R0	carry, set digit pair to 00	ъ.	
	ANL	A, #1	was overflow hours?		
	JZ	LOOP	no, increment next byte		
	MOV	@R0, A	yes, set hours to 1		
DONE:					
	RETI	I			
TABLE:					
	DB	60 H	sixtieth		
	DB	60 H	minutes		
	DB	13 H	hours use 25 for 24 hour operation		

loads, the 8022 has circuitry built into the  $T_1$  pin to detect an ac signal crossing its average dc level. The switching is at predetermined points of the sine wave to reduce inrush currents or radio-frequency interference.

## **Zero-crossing detection**

There are several methods by which software can monitor the input. The simplest method involves the jump instructions  $JT_1$  and  $JNT_1$ , which correspond to jump on  $T_1$  high, and jump on  $T_1$  low, respectively. The rising edge of the  $T_1$  input is the most accurate: the falling edge contains 100 mv of hysteresis to increase noise margin. The two jump instructions can be used back to back to find this zero-crossing point:

HERE1: JT1 HERE1	;Wait here if line high
HERE2: JNT1HERE2	;Wait here if line low
	; Zero cross

To reduce loop time, the  $T_1$  pin may also be coupled to the event counter. The start-counting instruction couples the rising edge into the 8022's internal 8-bit timer. With each rising edge, the timer increments by one, and when it increments from FF Hex to 00, an overflow flag is set. If the interrupt line is activated, an interrupt vector at location 7 will occur. Since the timer may be preloaded with any value, it is possible to cause an interrupt to occur on the next zero crossing rather than waiting in the jump loop.

The following routine will initialize the timer to accomplish this. All other processing may be performed

while waiting for the zero crossing. The timer could be reloaded with FF Hex during the interrupt routine to generate an interrupt on each zero crossing.

MOV A, #0FFH	;Full count into accumulator
MOV T,A	;Load timer
STRT CNT	; $T_1$ pin is source to timer
EN TCNTI	;Enable timer interrupt

Of course, the zero crossing is not always the best point to gate a control device. For example, an application involving a highly inductive device such as a magnetron transformer will produce inrush currents that are at their maximum at the zero-crossing point.

# Low inrush

To minimize inrush in such a system, the triac is turned on at a 90° phase angle in the 60-Hz sine wave. Program 4 provides the software necessary to accomplish this task. The timer detects the zero-crossing point and times out to the 90° point, where the leading current will just be at a minimum. An interrupt occurs at both the zero and 90° points to prevent interference with normal processing. Both interrupts use the same interrupt vector location. Software determines the source of the interrupt and acts accordingly.

Another use of the  $T_1$  input is generating the timing base for a time-of-day routine. The software implementing this routine is in program 5. The time parameters listed in the accompanying data table could be modified to accommodate either 12- or 24-hour operation.

# intel

**MARCH 1979** 



# Designing With Intel®'s 8022 Microcomputer

# Contents

Introduction	<b>8–3</b>
Product Overview	8–3
Product Features System Clock Inductor Mode Crystal Mode Which One? Timer / Counter Test and Interrupt Inputs Zero Cross Detect Analog to Digital Converter Software Noise Rejection Port 0 Comparator Inputs	8-5 8-5 8-5 8-5 8-7 8-8 8-9 8-10 8-12 8-13
Application Ideas Power Supply Controller DC Motor Control Automotive Dashboard Darkroom Timer Conclusion	.8–15 .8–15 .8–17 .8–18 .8–18 .8–19 .8–19





# INTRODUCTION

Taking advantage of the latest advances in silicon technology, Intel has developed a complete control system on a chip, the 8022, the first 8-bit microcomputer with an A/D converter on-chip. Whereas in the past microcomputers relied on external circuits for analog interfacing, it is now possible to build a one chip control system with analog interfacing, digital interfacing, and computer processing capabilities. Tackling the high volume, low cost controller market, the Intel 8022 microcomputer fits cost and space sensitive applications such as automobiles, appliances, and consumer products previously dominated by electromechanical controls. Its use, however, is not confined only to these applications. In medium volume applications, the 8022 provides the system designer with a simplified solution to many control problems. No longer is it necessary to expend valuable engineering time designing wheel spokes and axles; the whole cart is available.

This note is intended to answer some design questions concerning the 8022 and to suggest to the reader possible applications and system configurations. The reader should refer to the 8022 Data Sheet for electrical specifications and details. It is also suggested that the reader consult with the MCS-48 User's Manual (July 1978 or later) for a complete description of the entire MCS-48 family of microprocessors of which the 8022 is the newest member.

The note is divided into two main sections. The first is a product description of the 8022, including a detailed discussion of the main features, their characteristics and how to use them, The second section discusses several possible applications, their configurations and design considerations.

# **Product Overview**

The heart of the 8022 is the Intel 8021, a general purpose single chip microcomputer, which is a lower performance, lower cost version of the 8048. Added to this central core are interrupts, additional I/O, and linear functions. Like the 8021, the 8022 is designed to operate over a power supply range of 4.5 to 6.5 volts.

The 8022 instruction set contains over 70 instructions and is a subset of the 8048 instruction set. To conserve memory and maximize throughput, most instructions are singlebyte, single-cycle. No instructions are longer than twobyte, two-cycle. The instruction cycle time is 10 microseconds at a 3MHz clock rate. Extensive conditional branch logic is built into the processor to increase the overall efficiency of the instruction set for control applications. As examples, the DJNZ instruction (decrement register and jump if not zero) allows loops to be formed in just one instruction and the MOVP A, @A allows single instruction table look-up of constants from program storage. Program storage in the 8022 consists of 2048 eight bit bytes of mask programmable ROM.

Hardware stack and data memory are integrated in the 64 byte RAM to enhance processing flexibility and memory utilization. The first eight RAM locations are designated as working registers and are directly addressable by any of the 11 direct register instructions. Besides increasing the variety of operations that can be performed on data in memory, this approach further reduces the number of instruction bytes required for processing. In addition to being used as working registers, Registers 0 and 1 can be used as Pointer registers to indirectly address all locations in memory using the indirect register instructions.


Figure 3. 8022 Block Diagram

The next 16 bytes of RAM may be used as the address stack to enable the processor to keep track of the return addresses generated from instructions and in handling interrupts. Since two bytes are needed to store each address, the 16 bytes of address stack allow up to a total of eight levels of subroutine nesting. A 3-bit stack pointer supplies the address of the locations to be loaded with the next return address generated. This stack pointer is incremented when a return address is stored and decremented when an address is fetched during a subroutine or interrupt return. If all eight levels of subroutine nesting are not required by an application, the unused portion of the address stack may be used as standard RAM.

The 8022 has an extremely flexible and powerful I/O structure. The 26 digital I/O lines are configured into three 8-bit general-purpose ports and two test pins, T0 and T1. All three ports are quasi-bidirectional, meaning all lines are useable as inputs or outputs on a line-by-line basis under software control.

To increase the user's flexibility, any line of Port 0 can also be designated an open drain output by removing the pullup device present on the line via mask option. This is useful in driving analog circuits and interfacing to high impedance digital I/O. In addition to the open drain option, Port 0 has voltage comparator inputs with a common reference pin (V_{TH}). In appliance control and other applications, this allows direct glass touchpanel interfacing with relatively low voltage (10-15V) drive, thus limiting product liability problems and easing U.L. approval. The Port 0 comparator inputs are also generally useful in many other ways from expanding analog inputs to maximizing margin on noisy signals.

To further increase user flexibility and reduce system cost, two I/O pins (P10 and P11) have been designated as high current drive pins with the ability to sink 7ma each, instead of the standard TTL load of 1.6ma. This can eliminate the need for discrete drive transistors in many applications.



Figure 4. Adding an I/O Expander to the 8022

The lower half of Port 2, in addition to serving as a generalpurpose I/O port, is used as a "bus" for attaching the Intel 8243 I/O expander units. The Port Expander Strobe is used in conjunction with Port 2 to synchronize the 8243 operations. Figure 4 shows such a configuration.

Note that the quasi-bidirectional structure and the Port 2 expansion bus are consistent with all MCS-48 products and are fully described in the MCS-48 User's Manual.

Frequently in control applications, the state of one or two signals must be monitored so that a fast response can be accomplished. The 8022's two test pins offer this capability. Both test pins, T0 and T1, are directly testable via two conditional branch instructions. The T0 pin can also cause an interrupt. The T1 pin, in addition to being directly testable, has the ability to detect the zero crossing of slowly moving AC inputs. This is useful in controlling 50/60Hz power. It also enables the 8022 to precisely control phase sensitive devices, such as triacs and SCRs. Again external circuitry is reduced.

The 8022 contains its own clock and oscillator circuitry and requires only an external timing control element to generate all internal timing signals. An inductor, a crystal, or an external clock may be used as the timing control device.

The programmable 8-bit timer/event counter enables the user to accurately monitor elapsed time by providing a hardware replacement for software overhead such as timing loops. Total count capacity is 8192 instruction cycles or 81.9 msec at a 10 microsecond cycle time. The timer may also be used as an event counter where the Test

1 input serves as a counter input. After a STRT CNT command, low to high transitions on the T1 pin will cause the timer/counter to be incremented. When the timer counter overflows (FFH to 00), the timer flag will be set and an interrupt generated if enabled.

The analog to digital converter is designed to simplify and cost reduce interfacing to analog sources. All parts of the converter are integrated onto the chip, with the exception of the voltage reference. Conversion is completely hardware controlled using a successive approximation technique and occurs in four instruction cycles or 40 microseconds. Three single byte instructions, SEL AN0 (select analog input 0), SEL AN1 (select analog input 1), and RAD (read A/D conversion result) are added to the 8021 instruction set to allow the programmer to interface to the converter conveniently.

#### **Product Features**

This next section will delve deeper into some of the functions which comprise the 8022 architecture. Chip architecture will be discussed along with design considerations, software routines, and hardware configurations. The specific items covered are CPU timing, the Timer/ Counter, the TEST and Interrupt inputs, Zero Cross detection, the A/D converter, and the Port 0 comparator inputs.

#### System Clock

One of the first considerations in the system design is what frequency source should be used. The on-board oscillator can use a variety of elements to determine system frequency. Depending on the accuracy needed, the element can be an inductor and capacitor, or a crystal and resistor. If necessary, the oscillator inputs can also be driven by an external source.

It should be noted that the values given in this section are approximate values based on a sampling of parts. In no case are these to be interpreted as guaranteed specifications. They are here as an aid in system design. Consult the final Data sheet or contact Intel direct if more information is needed for a critical design.

#### Inductor Mode

Figure 5 shows the proper configuration for the inductor mode. A parallel capacitor of 20 to 50pf is recommended for best frequency tolerance.



Table 1 shows the effects of changes in parameters based on a sampling of parts. Part to part input capacitance differences (Cstray) will effect the tolerance. A less than 0.2% part to part tolerance can be expected with a parallel capacitance of 50pf. (see fig. #5). An additional 0.5% variation comes about when only 20pf is used in the tank circuit. This is because the stray capacitance in the 8022 and the PCB becomes a larger proportion of the total capacitance.

Vcc =	4.5v	5.5v	6.5v
f =	±0.2%	0	≂ 0.2%
Temp =	-40°C	25°C	85° C
f =	±0.6%	0	≂0.6%
	Table 1. Indu	ctor Mode	

To determine the inductance and capacitance required for a given frequency, the equation

$$f = \frac{1}{2\pi\sqrt{LC}}$$

can be used. Due to the effects of stray capacitance the calculated frequency may be slightly high. It should be noted that the tolerances given in Table 1 do not include the tolerances of the inductor and capacitor used in the system. Mathematical analysis of the above equation will show that the frequency will change roughly proportional to the tolerances of L and C on a worst case situation. That is if both L and C are  $\pm 5\%$  parts, the frequency will vary approximately  $\pm 5\%$ .

#### Crystal Mode

Figure 6 shows the proper installation of a crystal. A one meg-ohm parallel resistor is required for operation with an 8021 or 8022. Application note AP-35 "CRYSTALS: Specifications for Intel Components" should be consulted for information on using and specifying crystals.

A 20pf capacitor is optional, but recommended, on X2. It has been found that using the capacitor increases the immunity of the microcomputer to line transient noise or spurious signals which may find their way into the system.



#### Which One?

Which timing source to use is dependent on several factors. In most applications cost is of primary importance. The lowest cost device, but one which still gets the job accomplished, is the logical choice. Selecting the device which gets the job accomplished is the next task.

#### A Case Study

To exemplify the design tradeoffs in choosing a timing element consider the detection of 50Hz or 60Hz line frequency as may be needed in many consumer products being sold in the U.S. and overseas. Traditionally two products are produced, one for the U.S. market and one for the overseas market. A jumper selection to tell the processor which frequency source is being used is the only difference. This costs one I/O pin plus the costs of insertion and inventorying two products. All of these costs can be saved by allowing the processor to compute which frequency is coming in on the T1 pin. Figure 7 lists the software which could be used during a power-up routine to determine whether 50Hz or 60Hz timing should be used.

The timer is used to time the interval of one line cycle. If everything were perfectly accurate, one count would equal 50Hz while another count would equal 60 Hz, but it's not. The power company frequency may shift slightly, plus the 8022 oscillator may drift as discussed earlier. The maximum allowable oscillator change must be calculated from the input source. Assuming the power companies may drift  $\pm 2$  cycles, then the processor must be able to detect a difference of 58Hz-52Hz = 6Hz or less than 10.3% change. This means that the oscillator frequency itself cannot change more than 10.3% or  $\pm 5.15\%$ . The crystal would definitely work but may be overkill. The Inductor/ capacitor combination could be the most economical solution. The equation

$$\frac{\frac{1}{LF}}{\frac{1 \times 30 \times 32}{f}} = count$$
where LF = line freq,  
f = osc. freq.

will give the value of the time at the end of one line cycle. Plugging in the values for an oscillator of  $3MHz \pm 5\%$  and a  $\pm 2$  cycle deviation in line freqency, the counter will yield counts of:

Inductor and capacitor components could be picked to yield the required tolerance, saving the costs previously mentioned.

#### **Timer/Counter**

An 8-bit interval timer/counter is available to enable the user to keep track of time elapsed or number of events occured while normal program execution and flow continues. The Auto 50/60Hz detection routine previously discussed is one of many possible applications of the timer/counter.

The timer/counter consists of a divide by 32 prescaler (only used in the timer mode) and an eight bit main timer. The STRT T command clears the prescaler and thereafter it increments once each 30 input clocks (once each single cycle instruction, twice each double cycle instruction). At the (11111) to (00000) transition the timer is incremented. A timer overflow from (FFH) to (00H) will set the timer flag along with the timer interrupt, if enabled (see below). A conditional branch instruction (JTF) is available for testing

LOC	OBJ	LINE	SOURCE S	TATEMENT	
		1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	AUTO 50,	/60HZ DE	TECTION ON POWER UP
0000 0001	27 Ø414	5 PWRUP: 6 7 8 ;	CLR JMP	A PWRDET	;CLEAR ACCM ;JUMP AROUND INTERRUPT ROUTINES
		9 10; 11;	INTERRU	PT ROUTII	NES HERE
ØØ14		12;	ORG	20	
		14 ; 15 ; 16 ;	MEASURE	ONE LIN	E CYCLE
0014 0016 0018 0019 001A 001E 001E 0020 0020 0024 0026 0028 002A	5614 4616 62 55 561A 461C 65 42 Ø3P1 E62C Ø3F4 F62C	16; 17 18 PWRDET: 19 20 LINLOW: 22 23 24 LINEHI: 26 RISEDG: 27 28 29 30 31 32 33 34 35 36 HZ50: 37 8 HZ60: 39	JT1 MOV STRT JT1 JT1 STOP MOV ADD JNC ADD JNC ADD JC	PWRDET LINLÓW T,A T LINEHI RISEDG TCNT A,T-47 ORANGE A,#-10 HZ60 A,#-12 ORANGE	;WAIT FOR NEXT RISING EDGE ;WAIT FOR NEXT RISING EDGE ;CLEAR TIMER ;START TIMER ;WAIT HERE FOR LINE TO GO LOW ;WAIT HERE FOR RISING EDGE ;STOP TIMER AT END OF ONE LINE CYCLE READ TIMER VALUE ;SUBTRACT 47 ;ERROR-NOT WITHIN RANGE ;SUBTRACT 10 ;JUMP TO 60HZ ROUTINE ;SUBTRACT 12 ;ERROR-NOT WITHIN RANGE ;SET 50HZ FLAG ;SET 60HZ FLAG
		40 ORANGE: 41 42 43 44 45			;LINE FREQUENCY ABNORMAL TRY AGAIN

Figure 7.

All mnemonics copyrighted © Intel Corporation 1976.

this flag, the flag being reset each test. This instruction must also be used to initialize the timer overflow flag after a RESET, as RESET does not perform this function. Total count capacity for the timer is  $25 \times 28 = 8192$  or 81.9 ms at a 10 micro second cycle time. Contents of the timer are moved to the accumulator by the MOV A,T instruction without disturbing the counting process. Conversely, the MOV T,A instruction loads the timer with the contents of the accumulator. Notice that the 8-bit timer can be read from and written to. The prescaler, however, can not. It is a separate 5-bit counter which is cleared only by a STRTT command.

The timer may also be used as an event counter. After a STRT CNT command the 8022 will respond to low-to-high transitions on the Test 1 pin by incrementing the timer. Transitions can occur no faster than once each three instruction cycles (every 30 microseconds when using a 3 MHz clock)—there is no minimum frequency. In this mode the prescaler is not used. The timer will contain the number of positive transitions occuring on T1 since a STRT CNT command.

The timer and event counter functions are mutually exclusive. Counting or timing may be started (STRT CNT, STRT T) or stopped (STOP TCNT) under program control.

The T1 pin, besides being an input to the counter, can also function as a testable input, detect the zero crossing of an AC signal, and interrupt processing. These functions, as well as those of the Test 0 pin and the interrupt structure, will be discussed in the next section.

#### **Test And Interrupt Inputs**

In addition to the 24 general purpose I/O lines which comprise ports 0, 1, and 2, the 8022 has two special inputs, T0 and T1, which are testable via conditional jump instructions. These pins allow inputs to cause program branches without the necessity to load an input port into the accumulator. The instructions JT0, JNT0, JT1, JNT1 will cause program flow to be modified depending on the state of the T0 or T1 pin. For instance, JT0 will cause a jump to the specified address if the T0 pin is high (a 1 level). Conversely, JNT0 will jump if T0 is low (a 0 level). If the jump does not occur, program flow continues with the next instruction.

The Test 0 pin serves as an external interrupt input as well as a testable input. An interrupt sequence is initiated by applying a low "0" level input to the T0 pin when the external interrupt is enabled (EN I). The interrupt is level triggered and active low to allow "WIRE ORING" of several interrupt sources at the input pin. When an interrupt is detected it causes a "call to subroutine" to location 3 in program memory as soon as all other cycles of the current instruction are complete. At this time, the program counter contents are saved in the program counter stack, but the remaining status of the processor is not.

Unlike the 8048, the 8022 does not contain a program status word. Thus, when appropriate, the carry and auxili-

ary carry flags must be saved by the software, as must be the accumulator. The routine shown below saves the accumulator and the carry flags.

Instructions	Comments
MOV R6,A	;save accumulator in register 6
CLR A	;clear accumulator
DA A	;convert carry flags into sixes
MOV R7,A	;save representation of carry flags

The end of an interrupt service subroutine is marked by the execution of a Return from Interrupt instruction (RETI). Prior to returning from the interrupt subroutine however, the status of the accumulator and the carry flags must be restored. The following routine restores the status of the accumulator and the carry flags, which were previously saved by the above program segment.

Instructions	Comments
MOV A,R7	;restore carry flags status to
ADD A,#0AAH	accumulator and set/clear;
	;carry flags
MOV A,R6	;restore accumulator
RETI	;return from interrupt

An interrupt or CALL to a subroutine causes the contents of the program counter to be stored in one of the eight register pairs of the Program Counter Stack. During a CALL instruction the program counter, when saved, points to the second byte of the CALL instruction (or the return address minus one). The stack contents are then incremented before being loaded into the program counter during a return (RET) from subroutine. During an interrupt the program counter, when saved, points directly to the return address. Thus, during a return (RET) from interrupt, the stack contents are not incremented but loaded directly into the program counter. This difference makes it imperative to use only RETI's to return from interrupts, and RET's to return from subroutines.

The interrupt system is single level in that once an interrupt is detected all further interrupt requests are ignored until execution of a RETI re-enables the interrupt input logic. This sequence holds true also for an internal interrupt generated by timer overflow. If an external interrupt and an internal timer/counter generated interrupt are detected at the same time, the external source will be recognized first, if enabled. The timer/counter interrupt will be recognized, if enabled, after the return (RETI) from the external interrupt. Timer/counter generated internal interrupts and T0 generated external interrupt will vector to location 3, whereas an internal interrupt will vector to location 7.

If needed, a second external interrupt can be created by enabling the timer/counter interrupt (EN TCNTI), loading FFH into the counter (one less than terminal count) and enabling the event counter mode (STRT CNT). A low-tohigh transition on the T1 input will then cause an interrupt vector to location 7.

#### Zero Cross Detect

The Test 1 pin, in addition to being a testable input and a counter input, also serves one other important function. It can be used to detect the zero crossing point of slow moving AC signals. Execution of the STRT CNT instruction puts the T1 pin in the counter input mode by connecting T1 to the counter and enabling the counter. Subsequent low-to-high transitions on T1 will cause the counter to increment. Note that this operation differs from the rest of the MCS-48 devices, which increment the counter on high-to-low transitions. This change was made on the 8022 to take advantage of the accuracy of the rising edge detection on the zero cross circuitry.

When driven directly, this pin responds as a normal digital input. To utilize the zero cross detection mode, an AC signal of approximately 1-3 VAC p-p magnitude and a maximum frequency of 1kHz is coupled through an external capacitor (1 microfarad) to the T1 pin. The internal digital state is sensed as a zero until the rising edge crosses the DC average level, when it becomes a one. This is accomplished by the self-biasing high gain amplifier which is included in the T1 input. This circuit biases the T1 input exactly at its switching point, such that a small change will cause a digital transition to occur. This digital transition takes place within 5 degrees of the zero point.

The digital value of T1 remains a one until the falling edge of the AC input drops approximately 100mV below the switching point of the rising edge (100mV below the zero point, if the digital transition occured exactly at the zero point). The 100 mV offset is created by hysterisis and eliminates chattering of the internal signal caused by external noise.

The accuracy of the zero crossing will be a function of the capacitor used (see Fig. 10). On critical systems the capacitor can be adjusted to improve overall accuracy.



Figure 8. Interrupt Logic



The phase angle at the T1 input can be expressed as

$$\Theta = \arctan \frac{X_C}{R}$$

where  $X_C = \frac{1}{2\pi fC}$ 

Solving the equation using the recommended one microfarad capacitor and 60Hz

$$X_{C} = \frac{1}{2\pi (60) (1\mu f)}$$
  
=2652.6  
$$\Theta = \arctan \frac{2652.6}{150 K\Omega}$$
  
=-1.010

shows the voltage at the pin slightly leading the true AC voltage. Internally the circuit adds up to another five degrees before the processor can detect that a zero crossing occured. Software can also add several degrees before outputing a signal. To compensate for all of this delay, a smaller capacitor could be chosen to give a -5 degree shift in hardware before the processor.

The zero cross detection capability allows the user to make the 50/60 Hz power signal the basis for his system timing. All timing routines, including time-of-day, can be implemented using the zero cross detection capability of T1 and its conditional jump instructions. In addition, the zero cross detection feature can be used in conjunction with the timer interrupt, as discussed earlier, to interrupt processing at the zero voltage point. This enables the user to control voltage phase sensitive devices such as triacs and SCRs, and to use the 8022 in applications such as shaft speed and angle measurement.



#### Analog To Digital Converter

The T1 zero cross function is only one of the linear functions incorporated into the 8022 architecture. The most noted linear function is that of a complete analog to digital converter.

The analog to digital converter is a complete successive approximation converter with two multiplexed input channels. Either channel is selected by software with the SEL AN0 or SEL AN1 instruction. These instructions also restart the conversion sequences. A valid digital value can be read with the RAD (read A/D) instruction during the fourth instruction cycle following a select instruction. Conversions occur continuously, and RAD may be executed at any time with confidence that the sample is no more than 40 microseconds old.

The converter hardware has three parts as shown in Figure 11, a series string of resistors, a voltage comparator, and successive approximation logic. A series string of 256 matched resistors divides the voltage between AVss and V_{AREF} (the reference pin) into 256 voltage steps. This configuration gives the converter its inherent monotonicity.

The voltage tap on the series resistor string is selected by

the resistor ladder decoder. This decoder is driven by the 8-bit successive approximation register (SAR). Each bit of the SAR is set in succession MSB to LSB and a voltage comparison between the selected resistor ladder voltage and the analog input voltage is performed after the setting of each bit. The result of each comparison determines whether the particular bit will remain set or be reset. All



comparisons are performed automatically by the on-chip A/D hardware. At the end of eight comparisons the SAR contains a valid digital representation of the analog voltage. This result is then latched into the conversion result registor (CRR). The RAD instruction can then load the conversion result from the CRR to the accumulator.

To insure maximum accuracy from the A/D converter, separate power supply pins (Avcc and Avss) and a substrate pin (SUBST) have been provided. Unless there is excessive noise on the digital power supply, both Vcc and Avcc can be tied together and still maintain maximum accuracy. Figure 12 shows a typical analog configuration for sensing temperature in two thermistors. The substrate has both low frequency and high frequency bypass for noise immunity. The power supply pins (Vcc, Avcc) are bypassed with a.01 microfarad capacitor close to the chip. All other analog signals are bypassed with .001 microfarad capacitors for added noise rejection. (See also Software Noise Rejection)

As figure 11 shows,  $V_{AREF}$  is connected to the top of the resistive ladder. When the selected analog channel is equal to or greater than  $V_{AREF}$  the conversion result will equal 255 decimal (FF hexadecimal). The  $V_{AREF}$  voltage can be generated in a number of ways depending on the



system. It could be connected directly to Vcc giving a A/D range of GND to Vcc, or a simple resistor divider could be used to balance the reference voltage with the analog signals as in Figure 12. In calculating the impedance of the divider, the ladder impedance must be considered (see Figure 13). The total impedance of the ladder ranges from approximately 15K to 20K. This includes part to part differences and variance as a function of temperature. The resistor impedance is a small percentage of the divider impedance.

Input impedance of the converter can also be an important



factor. Figure 14 is an equivalent circuit of an analog input. Capacitance C1 is package capacitance which may range from 1pf to 3pf. Capacitance C2 is the sample and hold capacitance of 1.2pf to 1.4pf. This capacitance is only connected into the circuit by the sample and hold switch. The switch is closed for 0.3 tcy every four instruction cycles. Resistor R1 is package leakage which is approximately 2.5-5.0M ohms.

#### Software Noise Rejection



Noise can be a problem in any system. Capacitors can be used to filter the noise but may not filter all of it. Capacitors also add cost to the system but can be eliminated by software filtering. One technique is simply to average two readings:

$$\frac{V_{IN1} + V_{IN2}}{2} = V_{OUT}$$

or keep a running average by averaging each reading with the previous average:

SEL ANO	Start conversion
MOV R0,#30	;Point to storage location
RAD	;Read current A/D sample
ADD A,@R0	;Add current sample to previous average
RRC A	;Divide by two
MOV @R0,A	Store new average

This method will eliminate small fluctuations in the input voltage and reduce the effect of large fluctuations. Often, however, noise may be more severe. Excessive noise may require averaging of many readings taken over a short period of time.

$$\frac{\mathsf{V}_{\mathsf{IN1}} + \mathsf{V}_{\mathsf{IN2}} + \dots + \mathsf{V}_{\mathsf{IN16}}}{16} = \mathsf{V}_{\mathsf{OUT}}$$

Figure 15 lists the software required to average 16 successive A/D samples, as the above equation suggests. In such averaging, it is necessary to select the appropriate channel only once. Thereafter, a new conversion result is available every four instruction cycles.

Still another type of filtering is "exponential averaging." Similar to the running average method, current readings are averaged with the previous average.

$$\frac{V_{IN} - Voldavg}{K} + Voldavg = Vavg$$

Where Vavg = current average Voldavg = previous average Vin = current reading K = constant

This method has the advantage of large signal to noise ratios, but has slower dynamic response. In many systems, especially those involving temperature measurement, dynamic response is not a problem. Signal noise will be of a much higher frequency than any change in temperature. The constant, K, can be chosen to yield any desired signal to noise ratio. The larger the constant, the higher the ratio. The lower the constant, the higher the dynamic response.

To increase the effectiveness in reducing line generated noise, any of the above methods should be synchronized to the line frequency. As previously discussed, an interrupt can be generated when the 50Hz or 60Hz line frequency crosses AC zero. The A/D filtering routine should be part of the interrupt routine. Reading of the A/D will then occur at the same point of each line cycle, thus ignoring any line generated fluctuations in the analog inputs.

roc	OBJ	LINE	SOURCE S	TATEMENT	
		47 ; 48 ; 49 ;	AVERAGE	16 A/D I	READINGS
002CE 0030 0032 0033 0035 0035 0035 0035 0035	BC00 B81A 85 BA10 80 60 27 7C A0 EA35 47 30	51 AVG16: 52 53 54 55 55 56 57 LOOP: 58 60 61 62 63 64 62 63 64 65 66 65 66 67 68 67 70 71 72	MOV MOV SEL MOV RAD ADD MOV CLR ADDC MOV DJNZ SWAP XCH SWAP XCHD	R4, #00 R0, #26 @R0, #00 AN0 R2, #16 A, @R0 @R0, A A A, A R4, A R2, LOOP A A, @R0 A A, @R0 A A, @R0	CLEAR TEMP. MSB RESULT REGISTER SET UP POINTER CLEAR RESULT REGISTER SELECT AND START CONVERSION 16 READINGS READ RESULT LSB SAVE NEW LSB ADD CARRY TO MSB SAVE NEW MSB NEXT READING MSB INTO MSN DIVIDE BY 16 LOCATION 26 NOW CONTAINS THE AVERAGE
			Fig	ure 15.	

All mnemonics copyrighted © Intel Corporation 1976.

#### Port 0 Comparator Inputs

Intel, in its commitment to add analog features to microcomputers, did not stop with A/D conversion and zero cross detection. Also added to the 8022 were eight comparators for easing the interface to non-digital inputs.

Port 0 has been modified from the standard guasibidirectional structure to allow an optional open drain configuration with comparator inputs. The low impedance pullup device has been eliminated and the high impedance pullup is optional. Thus, the user can choose via a mask programmable selection each line of Port 0 to be either quasi-bidirectional with a high impedance or true open-drain. The open drain configuration allows the line to sink current through the low impedance pulldown device or to float in the high output state. More importantly, the open drain configuration makes Port 0 very easy to drive when it is used as inputs. The input circuitry for each line of Port 0 includes a voltage comparator which amplifies the voltage difference between the input port line and the Port 0 threshold reference pin (VTH). The voltage gain of the comparator is sufficient to sense a 100mV input differential within the range Vss to Vcc/2.

If  $V_{TH}$  is allowed to float, it will bias itself to the digital switch point of the other ports, and Port 0 behaves as a set of normal digital inputs. However, by biasing  $V_{TH}$ , the switch point can be both tightly controlled and adjusted.

Common uses for this would include unusual logic level inputs as from a diode isolated keyboard, analog channel expansion, and direct capacitive touchpanel interface. The comparator action is automatic and the port is read just as any other port.

A typical use for Port 0 is in the interfacing with capacitive touch panels on microwave ovens and other new appliances. A touch-panel switch consists of two capacitors in series. One lead is attached to a high voltage buffer (10 to 30 volts). The other is attached to the Port 0 sense input. As a finger touches the common point, the drive signal is shunted by body capacitance, attenuating the signal reaching the input.

Low-voltage touch-panel operation (less than 30V) is possible, since the comparators allow small voltage changes to be detected. Most of the present touch-panel designs require a 50-100V drive on the touch panel.

Capacitive touch panels can be multiplexed in the same manner as mechanical keyboards (Fig. 16). The vacuum flourescent display and the touch panel drivers are integrated to optimize hardware through shared high voltage buffers.

Figure 17 lists the software necessary to refresh the display and scan the touch-panel matrix. This routine could be adapted to serve as part of a timer/interrupt



Figure 16. Typical Keyboard/Display Schematic



scheme that would generate an interrupt at precise intervals for a flicker-free display. Another portion of the software would check for any touched input pads, test for valid entry, and enter key-depression codes into the main program.

#### Correcting Pad Imbalance

A common problem with capacitive touch panels is their imbalance. Layout, process, aging, and surface impurities all cause the capacitance to vary from touch pad to touch pad, resulting in a family of curves (Fig. 18) of voltage levels from each column of touch pads reaching the sense inputs. As the curves show, if threshold voltage Vth1 alone were used, one column would always appear touched; if Vth2 were used exclusively three of the columns would never appear touched.

To compensate for such varying capacitance levels, the on-chip analog input circuit may be used to allow multiple input voltage levels. Figure 19 depicts the 8022 version of such a circuit. ANO and  $V_{TH}$ , are tied together with a capacitor to line 0 of Port 0. The pull-up resistor and capacitor are used on line 0 to provide an RC timing network connected to ANO, VTH, and P00. The remaining seven lines of Port 0 are the sense lines for the touch panel and use the open drain output option.







All mnemonics copyrighted © Intel Corporation 1976.

Figure 18.

8-14

the points are intersected, the corresponding sense inputs are read, with a 0 indicating a touched input and a 1 indicating a not-touched input. Thus, a multiplexed capacitive touch panel can be scanned and balanced without adding external components to the inputs.

For systems requiring more than two analog inputs to the 8022, Port 0 comparator inputs may be reconfigured to permit formation of pseudo-analog inputs from variable threshold digital inputs. The hardware configuration can be identical to that of Fig. 19. In this scheme, sense inputs act as additional analog inputs of less accuracy than AN0 and AN1 (about 6 bits).

The sequence for implementing the extension is essentially the same found in the variable-threshold touch panel. As  $V_{TH}$  ramps upward, a Port 0 bit is monitored for a change from 1 to 0. At the change, AN0 is read corresponding to the value of the analog input into Port 0 (with some error due to the time lag, which can be subtracted). This configuration can be utilized when it is possible to trade off accuracy for such cost improvements: one analog input with 8-bit accuracy and seven analog inputs with 6-bit accuracy. Such may be the case in a range controller that monitors temperature in two ovens, a meat probe, and two of the four burners, all to an accuracy within 10° F.

# **Application Ideas**

This section will discuss some possible applications of the 8022. These applications are discussed in general terms and are believed to be feasible applications of the 8022. None of these applications, however, have been built and checked out.

#### Power Supply Controller

The three terminal voltage regulator, with its built-in current limiting and overload protection, has vastly simplified the task of designing small power supplies. Power supplies for large systems, with requirements for brown out protection, power fail warnings, etc., have not yet yielded to the design simplicity of the integrated voltage regulator. The combination of an 8022 microcomputer and these same regulators, however, may make it feasible to simplify these larger power supply systems.

There are several requirements of larger power supplies which have to be met outside of the regulation itself. Typical of these are:

- 1. Sequencing the turn on and shut down of several supplies.
- 2. Providing an early warning to the system that power is failing.
- 3. The ability to hold the system in a reset state during power supply sequencing.
- 4. Generation of a line frequency clock to the system.
- 5. Provisions for remote start up and shut down.
- Sufficient energy storage to keep the system running long enough to provide an orderly shut down.
- 7. High efficiencies to minimize power requirements and heat dissipation.

These requirements can be met by a combination of raw DC supply, multiple three-terminal regulators, and an 8022 microcomputer. Figure 20 shows a raw supply which is capable of generating DC voltages suitable for regulation to five, plus twelve, and minus twelve voltages. (These are arbitrary, but common voltages). In addition, a separate winding is provided which generates a five-volt supply which will be used to supply power to the 8022 itself. The normal rectifiers in the RAW5 and RAW12 supplies are replaced by silicon controlled rectifiers which will be phase angle controlled by the 8022.

Figure 21 shows the connections to the 8022. The RAW5 and RAW12 supplies are applied to simple voltage dividers which feed the analog inputs of the 8022. The signal



LINEFREQ is taken from a convenient winding of a transformer, divided down, and applied to the zero cross input of the 8022. A strap is provided to configure the unit for 50/60 Hz operation. In addition to being connected to the basic power supply, the 8022 is also connected to the system receiving the power. The on/off switch becomes an input to the 8022. The 8022 provides outputs for a 10Hz interrupt, a power fail interrupt, cold/warm indicator and system reset.

The 8022 can perform many of the functions normally done by hardware sequencers in the power supply. On power-up, it can hold off the three main supplies until the main supply is firmly established. This prevents the system from responding to short power restorations which frequently occur during power outages. Having determined that it is safe to power up the system, the 8022 can assert the reset signal and the cold start signal. The cold start indication tells the system that power was interrupted at the mains rather than by the OFF switch—a useful function if any amount of battery backed up RAM exists in the system. Having set up these signals, the 8022 waits for



a zero crossing (to minimize inrush) and then turns on the SCRs for the three supplies one at a time (again to minimize inrush). Any sequencing of the three supplies that is required by the system can also be allowed for. After some programmable time delay, the reset signal can be released and the system allowed to start operation.

During normal operation the 8022 can monitor the two major raw supplies and use phase angle control of the SCRs to regulate them. The regulation would be used to ensure that the three terminal regulators had minimum input voltage requirements met under all line voltage variations while at the same time minimizing the voltage drop across them. This increases the efficiency of the power supply and allows it to be capable of handling brown outs without dissipating excessive power in the regulators.

The line frequency input is used not only for the basis for the phase angle control, but also for two other functions; power fail detect and generation of the 10 Hz interrupt. The 10Hz interrupt can be generated by simply dividing the power line frequency by 5 for 50 Hz and 6 for 60 Hz operation. Performing this division in the power supply itself allows the system to be run on 50 or 60 cycle power with no change external to the power supply. In some situations it should even be possible to have the power supply adapt to either of these inputs by measuring the period of the incoming power on startup (see section "Which One?"). This would be an easy function to incorporate in the software and would require no additional hardware since provision is already made for zero cross detect.

Power fail detection can be done by running the timer while waiting for the line to zero cross. If an excessive time elapses it can be assumed that the power has failed and the power fail interrupt asserted. Note that this will detect total power failure but not a dip in the line voltage below the specifications of the power supply. This condition can be detected by keeping track of the phase angle that is required to maintain the RAW supplies at the proper level. If the SCR's have to be turned on for too high a portion of the total line cycle it is an indication of a brown-out condition and the powerfail interrupt should be generated. Whenever the powerfail interrupt is generated the 8022 should turn on the SCRs continuously to ensure maximum possible energy storage in the filter capacitors. After generation of the powerfail interrupt, the 8022 can again delay (depending, of course, on the energy storage of the power supply) and then assert reset. Once reset is asserted the SCRs are turned off, and left off, until the supplies have dropped down to a point which guarantees that any reset circuitry residing outside of the power supply will see a full power transition when power is reapplied. If the power is shut down by the 8022 in response to the on/off switch, the sequence would be similar except that the cold/warm start signal would indicate a warm start.

The above discussion should make it clear that the 8022 would make the task of designing a power supply system far easier, particularly for those designers more familiar with digital than analog design. If, in addition, the 8022 supply were put on a battery back-up, it would be possible to add many features to the system at virtually zero cost. The 8022 could be programmed to become the system clock and send, perhaps in serial ASCII, the time of day and the date to the main system on demand or periodically. This function would require that a crystal be used as a timing reference to the 8022 so that the power supply could still track real time even if the incoming power fails. Other possibilities would have the system shut down unless some external event required its attention, or the incorporation of system diagnostic checks within the code of the 8022. The comparator inputs on PORT 0 of the 8022 would even allow some capability of parametric testing as part of these diagnostics. The possibilities bring a new dimension to the term "Programmable Power Supply".

#### DC Motor Control

Figure 22 shows the 8022 used to control the speed of a permanent magnet DC motor. A seven segment display and keyboard are provided which allow the user to enter the parameters required by the control algorithm. The display is also used to display the speed of the motor

during operation. Other data (for example root mean squared error) could also be displayed upon demand. The motor is driven by a constant frequency pulse width modulated signal which is generated programatically. Port 11 (which is one of the two high current outputs) is used to drive a photoisolator which provides level shifting as well as isolation. The circuit shown allows both the speed and torque of the motor to be measured for use by the control algorithm. The torque generated by a PM DC motor is proportional to the armature current. This curent, and hence the torque, can be measured by reading the voltage drop across the shunt resistor. The voltage generated across the motor is the sum of the IR drop in the armature and a term which is proportional to the angular speed of the motor. The armature current is already known from the torque measurement, so the speed can easily be determined from the two analog measurements shown. The DC resistance of the armature, the speed constant, and torque constant would, of course, have to be known or entered by the operator.



Figure 22. DC Motor Control

distributor points allows the engine RPM and point dwell to be measured. Outputs are provided to control the ignition and starter (allowing the ignition switch to be eliminated in favor of a combination lock). Drive to a temperature guage depending on the current desire of the driver. There are several uncommitted I/O pins which could be used to implement functions such as intermittent action windshield wipers or delayed action light circuits.



#### Darkroom Timer

A darkroom timer based on the 8022 is shown in Figure 24. In addition to the keyboard and display this diagram incorporates drive to two TRIACs, an input to monitor the line frequency crossings, and two analog measurements. The analog inputs are used to monitor and display the temperature of the chemical bath and the light output of the enlarger, both of which can be controlled by the microcomputer. The 8022 could be used to run several timers concurrently while also maintaining the temperature of the chemical bath at the required level. Several uncommitted I/O pins are available for additional functions.





### Conclusions

This application note has introduced the reader to the Intel 8022 microcomputer. It has described the main features of the 8022 and discussed some of the design considerations encountered in designing with the 8022.

The reader has also been exposed to several possible applications which show the versatility and cost effectiveness of a microcomputer with on-board analog features.

# **APPLICATION** NOTE



© Intel Corporation, 1978

# Introduction to the UPI-41A

Contents	
Introduction	9–3
UPI/Master Protocol	<b>9–3</b>
Example Applications 8-Digit Multiplexed LED Display Controller Sensor Matrix Controller Combination I/O Device	9–9 9–11 9–14 9–18
Debug Techniques	9–25
Appendix A1	<b>9–27</b>
Appendix A2	9–34
Appendix B1	9–36
Appendix B2	9–44
Appendix C1	9–46
Appendix C2	9–61
Conclusion	9–26

#### INTRODUCTION

Since the introduction in 1974 of the second generation of microprocessors, such as the 8080, a wide range of peripheral interface devices have appeared. At first, these devices solved application problems of a general nature; i.e., parallel interface (8255). serial interface (8251), timing (8253), interrupt control (8259). However, as the speed and density of LSI technology increased, more and more intelligence was incorporated into the peripheral devices. This allowed more specific application problems to be solved, such as floppy disk control (8271), CRT control (8275), and data link control (8273). The advantage to the system designer of this increased peripheral device intelligence is that many of the peripheral control tasks are now handled externally to the main processor in the peripheral hardware rather than internally in the main processor software. This reduced main processor overhead results in increased system throughput and reduced software complexity.

In spite of the number of peripheral devices available, the pervasiveness of the microprocessor has been such that there is still a large number of peripheral control applications not yet satisfied by dedicated LSI. Complicating this problem is the fact that new applications are emerging faster than the manufacturers can react in developing new, dedicated peripheral controllers. To address this problem, a new microcomputer-based Universal Peripheral Interface (UPI-41A) device was developed.

In essence, the UPI-41A acts as a slave processor to the main system CPU. The UPI contains its own processor, memory, and I/O, and is completely user programmable; that is, the entire peripheral control algorithm can be programmed locally in the UPI, instead of taxing the master processor's main memory. This distributed processing concept allows the UPI to handle the real-time tasks such as encoding keyboards, controlling printers, or multiplexing displays, while the main processor is handling non-real-time dependent tasks such as buffer management or arithmetic. The UPI relies on the master only for initialization, elementary commands, and data transfers. This technique results in an overall increase ter CPU and the slave UPI — are working in parallel.

This application note presents three UPI-41A applications which are roughly divided into two groups: applications whose complexity and UPI code space requirements allow them to either stand alone or be incorporated as just one task in a "multi-tasking" UPI, and applications which are complete UPI applications in themselves. Applications in the first group are a simple LED display and sensor matrix controllers. A combination serial/parallel I/O device is an application in the second group. Each application illustrates different UPI config-

# UPI-41 vs. UPI-41A

The UPI-41A is an enhanced version of the UPI-41. It incorporates several architectural features not found on the "non-A" device:

- · Separate Data In and Data Out data bus buffer registers
- User-definable STATUS register bits
- · Programmable master interrupts for the OBF and IBF flags
- · Programmable DMA interface to external DMA controller.

The separate Data In (DBBIN) and Data Out (DBBOUT) registers greatly simplify the master/UPI protocol compared to the UPI-41. The master need only check IBF before writing to DBBIN and OBF before reading DBBOUT. No data bus buffer lock-out is required.

The most significant nibble of the STATUS register, undefined in the UPI-41, is user-definable in UPI-41A. It may be loaded directly from the most significant nibble of the Accumulator (MOV STS, A). These extra four STATUS bits are useful for transferring additional status information to the master. This application note uses this feature extensively.

A new instruction, EN FLAGS, allows OBF and IBF to be reflected on Port 2 bit 4 and Port 2 bit 5 respectively. This feature enables interrupt-driven data transfers when these pins are interrupt sources to the master.

By executing an EN DMA instruction Port 2 bit 6 becomes a DRQ (DMA Request) output and Port 2 bit 7 becomes DACK (DMA Acknowledge). Setting DRQ requests a DMA cycle to an external DMA controller. When the cycle is granted, the DMA controller returns DACK plus either RD (Read) or WR (Write). DACK automatically forces  $\overline{CS}$  and A0 low internally and clears DRQ. This selects the appropriate data buffer register (DBBOUT for DACK and RD, DBBIN for DACK and WR) for the DMA transfer.

Like the "non-A", the UPI-41A is available in both ROM (8041A) and EPROM (8741A) Program Memory versions. This application note deals exclusively with the UPI-41A since the applications use the "A"s enhanced features.

urations and features. However, before the application details are presented, a section on the UPI/master protocol requirements is included. These protocol requirements are key to UPI software development. It is suggested that the reader not already familiar with the architecture and instruction set of the UPI-41A read the "Intel UPI-41 User's Manual" before proceeding with this document. For convenience, the UPI block diagram and instruction set summary are reproduced in Figures 1 and 2.



Figure 1A. Program Memory Map

Figure 1B. Data Memory Map



Figure 1C. UPI-41A Block Diagram

# **UPI INSTRUCTION SET**

Anemonic	Description	Bytes	Cyci	<b>es</b>			•	2
ACCUMULATO	8			_	ORL Pp.#data	OR immediate to port	2	2
ACCOMOLATO	n				IN A.UDD	Output A to DPP, cet OPF	÷	÷
ADD A.Rr	Add register to A	1		1		locut Excender port to A	1	2
ADD A.@Rr	Add data memory to A	1		1	MOVD A.FP	Output A to Expander port	1	2
ADD A.#data	Add immediate to A	2		2		AND A to Expander port	1	2
ADDC A.Rr	Add immed. to A with carry	1		1	ANLU PP.A	OR A to Expander port	-	2
ADDC A.@Rr	Add immed, to A with carry	1		1	UKLU PP.A	OR A to Expander port		2
ADDC A,#data	Add immed, to A with carry	2		2	DATA MOVES			
ANL A,Rr	AND register to A	1		1	MON A Dr	Nove register to A	1	1
ANL A,@Rr	AND data memory to A	1		1		Nove data memory to A	1	
ANL A,#data	AND immediate to A	2		2	MOV A data	Move used intentory to A	2	2
ORL A.Rr	OR register to A	1		1	MUV A.#Gata	Move immediate to A	2	2
ORL A @Rr	OR data memory to A	1		1	MUV HIA	Move A to register	-	
ORL A #data	OR immediate to A	2		2	MUV @Rr.A	Move A to data memory	1	2
XRI A Br	Exclusive OR register to A	1		1	MUV Hr.#data	Move immediate to register	2	2
YOL A MPr	Exclusive OR data memory to	A 1		1	MOV @Rr.#data	Move immediate to data memory	2	Z
YPI A #data	Exclusive OR immediate to A			2	MOV A.PSW	Move PSW to A	1	1
	Increment A	1		1	MOV PSW.A	Move A to PSW	1	1
	Decrement A	1		1	XCH A.Rr	Exchange A and register	1	1
	Close A			1	XCH A.@Rr	Exchange A and data memory	1	1
	Ciedi A			•	XCHD A.@Rr	Exchange digit of A and register	1	1
	Complement A				MOVP A.@A	Move to A from current page	1	2
DAA	Decimal Adjust A				MOVP3, A.@A	Move to A from page 3	1	2
SWAP A	Swap digits of A	1		1				
RLA	Rotate A left	1		1				
ALC A	Rotate A left through carry	1		1	TIMER/COUNTE	R		
RR A	Rotate A right	1		1	MOVAT	Deed Times (Country		•
RRC A	Rotate A right through carry	1		1	NOV A.I	head Times (Counter	-	-
					MUV I,A	Load Timer/Counter		
INPUT/OUTPU	т				SINI	Start limer	1	1
				•	STATUNI	Start Counter	1	1
IN A PP	Input port to A	1		2	STOP ICNT	Stop Timer/Counter	1	1
OUTL Pp.A	Output A to port	1		2	EN TONTI	Enable Timer/Counter Interrupt	!	1
ANL Pp.#data	AND immediate to port	2		2	DISTONI	Disable fimer/Counter Interrupt	1	1
Inemonic	Description	8	lytes	Cycles	Mnemonic	Description	_	Bytes
ONTROL					CLR F1	Clear F1 Flag		1
EN DMA	Enable DMA Handshake Lines	3	1	1	CPL F1	Complement F1 Flag		1
EN I	Enable IBF Interrupt		1	1	MOV STS,	A A4-A7 to Bits 4-7 of Status	5	1,
DIS I	Disable IBF Interrupt		1	1				
EN FLAGS	Enable Master Interrupts		1	1				
SEL RBO	Select register bank 0		1	1	BRANCH			
SEL RB1	Select register bank 1		1	1	IMP addr	lume unconditional		2
NOP	No Operation		1	1		lump indirect		1
						Idr Decrement register and ski	n	2
REGISTERS					JC addr	Jump on Carry = 1	۲	2
NC Rr	Increment register		1	1	INC addr	lump on Carry = 0		5
NC @Rr	Increment data memory		1	1	Jivo aldur	Jump on A Zero		2
DEC Rr	Decrement register		1	1	JZ AUDI	jump on A pot Zero		5
					110 addr	lump on T0 = 1		5
	• • •		~	•	UNTO addr	sump on T0 = 0		5
JALL addr	Jump to subroutine		2	2	JNIU addr	Jump on TU = 0		2
RET	Return		1	2	JII addr	Jump on T = 1		4
RETR	Return and restore status		1	2	JNII addr	Jump on 11=0		2
FLAGS					JFU addr	Jump on FU Flag = 1		2
	Clear Carp			1	JII addr	Jump on F1 Flag=1	or Elec	2
	Crear Carry		1		JIF addr	Jumpon imer⊩iagi≃ 1, Cle	ar Hag	2
	Class Flag 0		-		JNIBE ADD	ar Jump on 18+ Flag=0		2
JLR FU	Clear Flag U		1		JOBF add	r jump on ∪B⊢⊢lag=1		2

Figure 2. UPI-41A Instruction Set Summary

JBb addr

1

1

# **UPI/MASTER PROTOCOL**

CPL F0

As in most closely coupled multiprocessor systems, the various processors communicate via a shared resource. This shared resource is typically specific locations in RAM or in registers through which status and data are passed. In the case of a master processor and a UPI-41A, the shared resource is 3 separate, masteraddressable, registers internal to the UPI. These registers are the STATUS register (STATUS), the Data Bus Buffer Input register (DBBIN), and the Data Bus Output register (DBBOUT). [Data Bus Buffer direction is relative to the UPI]. To illustrate this register interface. consider the 8085A/UPI system in Figure 3.

Complement Flag 0



Jump on Accumulator Bit

2

2

Looking into the UPI from the 8085A, the 8085A sees only the three registers mentioned above. If the 8085A wishes to issue a command to the UPI, it does so by writing the command to the DBBIN register according to the decoding of Figure 4. Data for the UPI is also passed via the DBBIN register. (The UPI differentiates commands and data by examining the A0 pin. Just how this is done is covered shortly.) Data from the UPI for the 8085A is passed in the DBBOUT register. The 8085A may interrogate the UPI's status by reading the UPI's STATUS register. Four bits of the STATUS register act as flags and are used to handshake data and commands into and out of the UPI. The STATUS register format is shown in Figure 5.

Bit 0 is OBF (Output Buffer Full). This flag indicates to the master when the UPI has placed data in the DBBOUT register. OBF is set when the UPI writes to DBBOUT and is reset when the master reads DBBOUT. The master finds meaningful data in the DBBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag is bit 1. The UPI uses this flag as an indicator that the master has written to the DBBIN register. The master uses IBF to indicate when the UPI has accepted a particular command or data byte. The master should examine IBF before outputting anything to the UPI. IBF is set when the master writes to DBBIN and is reset when the UPI reads DBBIN. The master must wait until IBF = 0 before writing new data or commands to DBBIN. Conversely, the UPI must ensure IBF = 1 before reading DBBIN.

The third STATUS register bit is F0 (Flag 0). This is general purpose flag that the UPI can set, reset, and test. It is typically used to indicate a UPI error or busy condition to the master.

Flag 1 (F1) is the final dedicated STATUS bit. Like F0 the UPI can set, reset, and test this flag. However, in addition, F1 reflects the state of the A0 pin whenever the master writes to the DBBIN register. The UPI uses this flag to delineate between master command and data writes to DBBIN.

ĈŜ	A0	RD	WR	REGISTER
0	0	0	1	READ DBBOUT
0	1	0	1	READ STATUS
0	0	1	0	WRITE DBBIN (DATA)
0	1	1	0	WRITE DBBIN (COMMAND)
_ 1	x	x	x	NO ACTION

Figure	A	Regist	ar Decod	ina
rigure	ч.	negist	al nacon	mg.

STATUS	DECISTED	



Figure 5. Status Register Format

The remaining four STATUS register bits are user definable. Typical uses of these bits are as status indicators for individual tasks in a multitasking UPI or as UPI generated interrupt status. These bits find a wide variety of uses in the upcoming applications.

Looking into the 8085A from the UPI, the UPI sees the two DBB registers plus the IBF, OBF, and F1 flags. The UPI can write from its accumulator to DBBOUT or read DBBIN into the accumulator. The UPI cannot read OBF, IBF, or F1 directly, but these flags may be tested using conditional jump instructions. The UPI should make sure that OBF is reset before writing new data into DBBOUT to ensure that the master has read previous DBBOUT data. IBF should also be tested before reading DBBIN since DBBIN data is valid only when IBF is set. As was mentioned earlier, the UPI uses F1 to differentiate between command and data contents in DBBIN when IBF is set. The UPI may also write the upper 4-bits of its accumulator to the upper 4-bits of the STATUS register. These bits are thus user definable.

The UPI can test the flags at any time during its internal program execution. It essentially "polls" the STATUS register for changes. If faster response is needed to master commands and data, the UPI's internal interrupt structure can be used. If IBF interrupts are enabled, a master write to DBBIN (either command or data) sets IBF which generates an internal CALL to location 03H in program memory. At this point, working register contents can be saved using bank switching, the accumulator saved in a spare working register, and the DBBIN register read and serviced. The interrupt logic for the IBF interrupt is shown in Figure 6. A few observations concerning this logic are appropriate. Note that if the master writes to DBBIN while the UPI is still servicing the last IBF interrupt (a Return (RETR) instruction has not been executed), the IBF Interrupt Pending line is made high which causes a new CALL to 03H as soon as the first RETR is executed. No EN I (Enable Interrupt) instruction is needed to rearm the interrupt logic as is needed in an 8080 or 8085A system; the RETR performs this function. Also note that executing a DIS I to disable further IBF interrupts does not clear a pending interrupt. Only a CALL to location 03H or RESET clears a pending **IBF** interrupt.

Keeping in mind that the actual master/UPI protocol is dependent on the application, probably the best way to illustrate correct protocol is by example. Let's consider using the UPI as a simple parallel I/O device. (This is a trivial application but it embodies all of the important protocol considerations.) Since the UPI may be either interrupt or non-interrupt driven internally, both cases are considered.

Let's take the easiest configuration first; using the UPI Port 1 as an 8-bit output port. From the UPI's point-ofview, this is an input-only application since all that is required is that the UPI input data from the master. Once the master writes data to the UPI, the UPI reads the DBBIN register and transfers the data to Port 1. No testing for commands vs data is needed since the UPI "knows" it only performs one task — no commands are needed.





Non-interrupt driven UPI software is shown in Figure 7A while Figure 7B shows interrupt based software. For Figure 7A, the UPI simply waits until it sees IBF go high indicating the master has written a data byte to DBBIN. The UPI then reads DBBIN, transfers it to Port 1, and returns to waiting for the next data. For the interruptdriven UPI, Figure 7B, once the EN I instruction is executed, the UPI simply waits for the IBF interrupt before handling the data. The UPI could handle other tasks during this waiting time. When the master writes the data to DBBIN, an IBF interrupt is generated which performs a CALL to location 03H. At this point the UPI reads DBBIN (no testing of IBF is needed since an IBF interrupt implies that IBF is set), transfers the data to Port 1, and executes an RETR which returns program flow to the main program.

Software for the master 8085A is included in Figure 7C. The only requirement for the master to output data to the UPI is that it check the UPI to be sure the previous data had been taken before writing new data. To accomplish this the master simply reads the STATUS register looking for IBF = 0 before writing the next data.

> UPI INPUT ONLY EXAMPLE - PORT 1 USED AS OUTPUT PORT UPI POLLS IBF FOR DATA

IN A, DBB ; INPUT THERE, SO REA	AD IT
OUTL P1, A ; TRANSFER DATA TO	PORT 1
JMP RESET ; GO WAIT FOR NEXT [	DATA

Figure 7A. Single Output Port Example — Polling

UPI INP	UT ONLY	EXAMPLE · PO	RT 1 USED AS OUTPUT PORT
	DATA INP	UT IS INTERRU	IPT-DRIVEN ON IBF
;	EN	I	; ENABLE IBF INTERRUPTS
RESET:	JMP	RESET + 1	: LOOP WAITING FOR INPUT
IBFINT:	IN OUTL RETR	A, DBB P1, A	READ DATA FROM DBBIN TRANSFER DATA TO PORT 1 RETURN WITH RESTORE



; (	DATA FO	R OUTPUT IS	PASSED IN REG. C
UPIOUT:	IN	STATUS	: READ UPI STATUS
	ANI	IBF	; LOOK AT IBF
	JNZ	UPIOUT	; WAIT FOR IBF = 0
	MOV	A.C	: GET DATA FROM C
	OUT	DBBIN	: OUTPUT DATA TO DBB
	RET		DONE, RETURN

Figure 7C. 8085A Code for Single Output Port Example

Figure 8A illustrates the case where UPI Port 2 is used as an 8-bit input port. This configuration is termed UPI output-only as the master does not write (input) to the UPI but simply reads either the STATUS or the DBBOUT registers. In this example only the OBF flag is used. OBF signals the master that the UPI has placed new port data in DBBOUT. The UPI loops testing OBF. When OBF is clear, the master has read the previous data and UPI then reads its input port (Port 2) and places this data in DBBOUT. It then waits on OBF until the master reads DBBOUT before reading the input port again. When the master wishes to read the input port data, Figure 8B, it simply checks for OBF being set in the STATUS register before reading DBBOUT. While this technique illustrates proper protocol, it should be noted that it is not meant to be a good method of using the UPI as an input port since the master would never get the newest status of the port.

The above examples can easily be combined. Figure 9 shows UPI software to use Port 1 as an output port simultaneously with Port 2 as an input port. The program starts with the UPI checking IBF to see if the master has written data destined for the output port into DBBIN. If IBF is set, the UPI reads DBBIN and transfers the data to the output port (Port 1). If IBF is not set or once the data is transferred to the output port if it was, OBF is tested. If OBF is reset (indicating the master has read DBBOUT), the input port (Port 2) is read and transferred to DBBOUT. If OBF is set, the master has yet to read DBBOUT so the program just loops back to test IBF.

UPI OU	PORT DA	Y EXAMPLE TA IS AVAI	E · PORT 2 USED AS INPUT PORT LABLE IN DBBOUT
RESET	JOBF	RESET	: LOOP IF OBF = 1 (DATA NOT READ)
	IN	A, P2	: DBBOUT CLEAR, READ PORT
	OUT	DBB, A	: TRANSFER PORT DATA TO DBBOUT

RESET

JMP

Figure	8A.	Single	Input	Port	Example

WAIT FOR MASTER TO READ DATA

;8085 S ;	INPUT	IE FOR UPI O DATA RETUR	NED IN REG. A
; UPIIN:	IN ANI JZ IN RET	STATUS OBF UPIIN DBBOUT	: READ UPI STATUS : LOOK AT OBF : WAIT UNTIL OBF = 1 : READ DBBOUT : RETURN WITH DATA IN A

Figure 8B. 8085A Single Input Port Code

The master software is identical to the separate input/ output examples; the master must test IBF and OBF before writing output port data into DBBIN or before reading input port data from DBBOUT respectively.

In all of the three examples above, the UPI treats information from the master solely as data. There has been no need to check if DBBIN information is a command rather than data since the applications do not require commands. But what if both Port 1 and 2 were used as output ports? The UPI needs to know into which port to put the data. Let's use a command to select which port.

Recall that both commands and data pass through DBBIN. The state of the A0 pin at the time of the write to DBBIN is used to distinguish commands from data. By convention, DBBIN writes with A0 = 0 are for data, and those with A0 = 1 are commands. When DBBIN is written into, F1 (Flag 1) is set to the state of A0. The UPI tests F1 to determine if the information in the DBBIN register is data or a command.

For the case of two output ports, let's assume that the master selects the desired port with a command prior to writing the data. (We could just use F1 as a port select but that would not illustrate the subtle differences between commands and data.) Let's define the port select commands such that bit 1 = 1 if the next data is for Port 1 (Write Port  $1 = 0000\ 0010$ ) and bit 2 = 1 if the next data is for Port 2 (Write Port  $2 = 0000\ 0100$ ). (The number of the set bit selects the port.) Any other bits are ignored. This assignment is completely arbitrary; we could use any command structure, but this one has the advantage of being simple.

Note that the UPI must "remember" from DBBIN write to write which port has been selected. Let's use F0 (Flag 0) for this purpose. If a Write Port 1 command is received, F0 is reset. If the command is Write Port 2, F0 is set. When the UPI finds data in DBBIN, F0 is interrogated and the data is loaded into the previously selected port. The UPI software is shown in Figure 10A.

:			
: UPI DU	AL OUTPUT	PORT EX	AMPLE · BOTH PORT 1 AND 2 OUTPUTS
:	COMMAN	D SELECTS	S DESIRED PORT
: ·	WRITE PO	ORT 1 · 0000	0010 (02H)
	WRITE PO	ORT 2 - 0000	0100 (04H)
-			
	FLAG 0 U	SED TO RE	MEMBER WHICH PORT WAS SELECTED
-	BY LAST	COMMAND	
-			
RESET:	JNIBF	RESET	: WAIT FOR MASTER INPUT
	IN	A. DBB	READ INPUT
	JF1	CMD	: IF F1=1. COMMAND INPUT
	JFO	PORT2	INPUT IS DATA, TEST FO
	OUTL	P1. A	F0 = 0. SO OUTPUT TO PORT 1
	JMP	RESET	WAIT FOR NEXT INPUT
PORT2:	OUTL	P2. A	: F0 = 1. SO OUTPUT TO PORT 2
	JMP	RESET	WAIT FOR NEXT INPUT
CMD:	JB1	PT1	: TEST COMMAND BITS (BIT 1)
	JB2	PT2	TEST BIT 2
	JMP	RESET	NEITHER BIT SET, WAIT FOR INPUT
PT1:	CLR	FO	; PORT 1 SELECTED, CLEAR FO
	JMP	RESET	WAIT FOR INPUT
PT2:	CLR	FO	PORT 2 SELECTED, SET FO
	CPL	F0	
	JMP	RESET	: WAIT FOR INPUT

	101	INDUT/OUTDUT	EVAMPLE .	DODT 1	DUITOUIT	DODT 2 INDUI
L	JPI	INPUT/OUTPUT	EXAMPLE	PURII	OUTPUT.	PURI 2 INPU

, RESET:	JNIBF	OUT1	; IF IBF = 0, DO OUTPUT
	IN	A, DBB	IF IBF = 1, READ DBBIN
	OUTL	PI, A	TRANSFER DATA TO PORT 1
OUT1:	JOBF	RESET	; IF OBF = 1, GO TEST IBF
	IN	A, P2	; IF OBF = 0, READ PORT 2
	OUT	DBB, A	TRANSFER PORT DATA TO DBBOUT
	JMP	RESET	GO CHECK FOR INPUT

Figure 10A. Dual Output Port Example

Initially, the UPI simply waits until IBF is set indicating the master has written into DBBIN. Once IBF is set, DBBIN is read and F1 is tested for a command. If F1=1, the DBBIN byte is a command. Assuming a command, bit 1 is tested to see if the command selected port 1. If so, F0 is cleared and the program returns to wait for the data. If bit 1=0, bit 2 is tested. If bit 2 is set, Port 2 is selected so F0 is set. The program then loops back waiting for the next master input. This input is the desired port data. If bit 2 was not set, F0 is not changed and no action is taken.

When IBF = 1 is again detected, the input is again tested for command or data. Since it is necessarily data, DBBIN is read and F0 is tested to determine which port was previously selected. The data is then output to that port, following which the program waits for the next input. Note that since F0 still selects the previous port, the next input could be more data for that port. The port selection command could be thought of as a port select flip-flop control; once a selection is made, data may be repeatedly written to that port until the other port is selected. Master software, Figure 10B, simply must check IBF before writing either a command or data to DBBIN. Otherwise, the master software is straightforward.

For the sake of completeness, UPI software for implementing two input ports is given in Figure 11. This case is simpler than the dual output case since the UPI can assume that all writes to DBBIN are port selection commands so no command/data testing is required. Once the Port Read command is input, the selected port is read and the port data is placed in DBBOUT. Note that in this case F0 is used as a UPI error indicator. If the master happened to issue an invalid command (a command without either bit 1 or 2 set), F0 is set to notify the master that the UPI did not know how to interpret the command. F0 is also set if the master commanded a port read before it had read DBBOUT from the previous command. The UPI simply tests OBF just prior to loading DBBOUT and if OBF = 1, F0 is set to indicate the error.

All of the above examples are, in themselves, rather trivial applications of the UPI although they could easily be incorporated as one of several tasks in a UPI handling multiple small tasks. We have covered them primarily to introduce the UPI concept and to illustrate some master/UPI protocol. Before moving on to more realistic UPI applications, let's discuss two UPI features that do not directly relate to the master/UPI protocol but greatly enhance the UPI's data transfer capability.

In addition to the OBF and IBF bits in the STATUS register, these flags can also be made available directly on two port pins. These port pins can then be used as interrupt sources to the master. By executing an EN FLAGS instruction, Port 2 pin 4 reflects the condition of OBF and Port 2 pin 5 reflects the inverted condition of IBF (IBF). These dedicated outputs can then be enabled or disabled via their respective port bit values; i.e., P24 reflects OBF as long as an instruction is executed which sets P24 (i.e. ORL P2,#10H). The same action applies to the IBF output except P25 is used. Thus P24 may serve as a DATA AVAILABLE interrupt output. Likewise for P25 as a READY-TO-ACCEPT-DATA interrupt. This greatly simplifies interrupt-driven master-slave data transfers.

	THIS BO	UTINE WRITES	S DATA IN REG. C TO PORT 1
	(SAME R	OUTINE FOR	PORT 2 - JUST CHANGE COMMAND)
; PORT1:	IN	STATUS	; READ UPI STATUS
	ANI	IBF	; LOOK AT IBF
	JNZ	PORT1	; WAIT UNTIL IBF = 0
	MVI	A. 00000010	B ; LOAD WRITE PORT1 CMD
	OUT	UPICMD	; OUTPUT TO UPI COMMAND PORT
P1:	IN	STATUS	; READ UPI STATUS AGAIN
	ANI	IBF	LOOK AT IBF
	JNZ	P1	; WAIT UNTIL COMMAND ACCEPTER
	MOV	A.C	GET DATA FROM C
	OUT	DBBIN	OUTPUT TO DBBIN
	RET		DONE, RETURN

Figure 10B. 8085A Dual Output Port Example Code

UPI DUAL INPUT PORT EXAMPLE - BOTH PORT 1 AND 2 INPUTS
COMMAND SELECTS WHICH PORT IS TO BE READ
ELAG A USED AS ERROR ELAG

RESET:	JNIBF CLR IN	RESET F0 A, DBB	; WAIT FOR INPUT ; CLEAR ERROR FLAG ; READ INPUT (COMMAND)			
	JB1	PT1	; TEST BIT 1 (PORTI)			
	JB2	P12	; TEST BIT 2 (PORT2)			
ERROR:	CPL	FO	; ERROR · COMPLEMENT FU			
	JMP	RESET	; WAIT FOR INPUT			
PT1:	IN	A, P1	; READ PORT 1			
	JOBF	ERROR	; TEST OBF BEFORE LOADING DBBOUT			
	OUT	DBB, A	; LOAD PORTI DATA INTO DBBOUT			
	JMP	RESET	; WAIT FOR INPUT			
PT2:	IN	A, P2	; READ PORT 2			
	JOBF	ERROR	; TEST OBF BEFORE LOADING DBBOUT			
	OUT	DBB. A	LOAD PORT2 DATA INTO DBBOUT			
	JMP	RESET	WAIT FOR INPUT			
	Figure 11. Dual Input Port Example					

The UPI also supports a DMA transfer interface. If an EN DMA instruction is executed, Port 2 pin 6 becomes a DMA Request (DRQ) output and P27 becomes a high impedance DMA Acknowledge (DACK) input. Any instruction which would normally set P26 now sets DRQ. DRQ is cleared when DACK is low and either RD or WR is low. When DACK is low, CS and A0 are forced low internally which allows data bus transfers between DBBOUT or DBBIN to occur, depending upon whether WR or RD is true. Of course, the function requires the use of an external DMA controller.

Now that we have discussed the aspects of the UPI protocol and data transfer interfaces, let's move on to the actual applications.

# **EXAMPLE APPLICATIONS**

Each of the following three sections present the hardware and software details of a UPI application. Each application utilizes one of the protocols mentioned in the last section. The first example is a simple 8-digit LED display controller. This application requires only that the UPI perform input operations from the DBBIN; DBBOUT is not used. The reverse is true for the second application: a sensor matrix controller. The final application involves both DBBOUT and DBBIN operations: a combination serial/parallel I/O device.

The core master processor system with which these applications were developed is the iSBC 80/30 single board computer. This board provides an especially convenient UPI environment since it contains a dedicated socket specifically interfaced for the UPI-41A. The 80/30 uses the 8085A as the master processor. The I/O and peripheral compliment on the 80/30 include 12 vectored priority interrupts (8 on an 8259 Programmable Interrupt Controller and 4 on the 8085A itself), an 8253 Programmable Interval Timer supplying three 16-bit programmable timers (one is dedicated as a programmable baud rate generator), a high speed serial channel provided by a 8251 Programmable USART, and 24 parallel I/O lines implemented with an 8255A Programmable Parallel Interface. The memory compliment contains 16K bytes of RAM using 2117 16K bit Dynamic RAMs and the 8202 Dynamic RAM Controller, and up to 8K bytes of ROM/EPROM with sockets compatible with 2716, 2758, or 2332 devices. The 80/30's RAM uses a dual port architecture. That is, the memory can be considered a global system resource, accessible from the on-board 8085A as well as from remote CPUs and other devices via the MULTIBUS. The 80/30 contains MULTIBUS control logic which allows up to 16 80/30s or other bus masters to share the same system bus. (More detailed information on the iSBC 80/30 and other iSBC products may be found in the latest Intel Systems Data Catalog.)

A block diagram of the iSBC 80/30 is shown in Figure 12. Details of the UPI interface are shown in Figure 13. This interface decodes the UPI registers in the following format:

Register	Operations	
Read STATUS	IN E5H	
Write DBBIN (command)	OUT E5H	
Read DBBOUT (data)	IN E4H	
Write DBBIN (data)	OUT E4H	



Figure 12. ISBC 80/30 Block Diagram



Figure 13. UPI Interface on ISBC 80/30

#### 8-Digit Multiplexed LED Display

The traditional method of interfacing an LED display with a microprocessor is to use a data latch along with a BDC-to-7-segment decoder for each digit of the display. Thus two ICs, seven current limiting resistors, and about 45 connections are required for each digit. These requirements are, of course, multiplied by the total number of digits desired. The obvious disadvantages of this method are high parts count and high power dissipation since each digit is "ON" continuously. Instead, a scheme of time multiplexing the display can be used to decrease both parts count and power dissipation.

Display multiplexing basically involves connecting the same segment (a, b, c, d, e, f, or g) of each digit in parallel and driving the common digit element (anode or cathode) of each digit separately. This is shown schematically in Figure 14. The various digits of the display are not all on at once; rather, only one digit at a time is energized. As each digit is energized, the appropriate segments for that digit are turned on. Each digit is enabled in this way, in sequence, at a rate fast enough to ensure that each digit appears to be "ON" continuously. This implies that the display must be "refreshed" at periodic intervals to keep the digits flicker-free. If the CPU had to handle this task, it would have to suspend normal processing, go update the display, and then return to its normal flow. This extra burden is ideally handled by a UPI. The master CPU could simply give characters to the UPI and let the UPI do the actual segment decoding, display multiplexing, and refreshing.



As an example of this technique, Figure 15 shows the UPI controlling an 8-digit LED display. All digit segments are connected in parallel and are driven through segment drivers by the UPI's Port 1. The lower 3 bits of Port 2 are inputs to a 3-to-8 decoder which selects an individual digit through a digit driver. A fourth Port 2 line is used as a decoder enable input. The remaining Port 2 lines plus the T0 and T1 inputs are available for other tasks.

Internally, the UPI uses the counter/timer in the interval timer mode to define the interval between display refreshes. Once the timer is loaded with the desired interval and started, the UPI is free to handle other tasks. It is only when a timer overflow interrupt occurs that the UPI handles the short display multiplexing routine. The display multiplexing can be considered a background task which is entirely interrupt-driven. The amount of time spent multiplexing is such that there is ample time to handle a non-timer task in the UPI foreground. (We'll discuss this timing shortly.)

When a timer interrupt occurs, the UPI turns off all digits via the decoder enable. The next digit's segment contents are retrieved from the internal data memory and output via Port 1 to the segment drivers. Finally, the next digit's location is placed on Port 2 (P20-P22) and the decoder enabled. This displays the digit's segment information until the next interrupt. The timer is then restarted for the next interval. This process continues repeatedly for each digit in sequence.

As a prelude to discussing the UPI software, let's examine the internal data memory structure used in this application, Figure 16. This application requires only 14 of the 64 total data memory locations. The top eight locations are dedicated to the Display Map; one location for each digit. These locations contain the segment and decimal point information for each character. Just how characters are loaded into this section of memory is covered shortly. Register R7 of Register Bank 1 is used as the temporary Accumulator store during the interrupt service routines. Register R3 stores the digit number of the next digit to be displayed. R2 is a temporary storage register for characters during the character input routine. R0 is the offset pointer pointing to the Display Map location of the next digit. That makes 12 locations so far. The remaining two locations are the two stack locations required to store the return address plus status during the timer and input interrupt service routines. The remaining unused locations, all of Register Bank 0, 14 bytes of stack, 4 in Register Bank 1, and 24 general purpose RAM locations, are all available for use by any foreground task.



Figure 16. LED Display Controller Data Memory Allocation



Figure 15. UPI Controlled 8-Digit LED Display

The UPI software consists of only three short routines. One, INIT, is used strictly during initialization. DISPLA is the multiplexing routine called at a timer interrupt. INPUT is the character input handler called at an IBF interrupt. The flow charts for these routines are shown in Figures 17A thru 17C.



Figure 17A. INIT Routine Flow



Figure 17B. INPUT Routine Flow



Figure 17C. DISPLA Routine Flow

INIT initializes the UPI by simply turning off all segment and digit drivers, filling the Display Map with blank characters, loading and starting the timer, and enabling both timer and IBF interrupts. Although the flow chart shows the program looping at this point, it is here that the code for any foreground task is inserted. The only restrictions on this foreground task are that it not use I/O lines dedicated to the display and that it not require dedicated use of the timer. It could share the timer if precautions are taken to ensure that the display will still be refreshed at the required interval.

The INPUT routine handles the character input. It is called when an IBF interrupt occurs. After the usual swapping of register banks and saving of the accumulator, DBBIN is read and stored in register R2. DBBIN contains the Display Data Word. The format for this word, Figure 18, has two fields: Digit Select and Character Select. The Digit Select field selects the digit number into which the character from the Character Select field is placed. Notice that the character set is not limited strictly to numerics, some alphanumeric capability is provided. Once DBBIN is read, the offset for the selected digit is computed and placed in the Display Map Pointer R0. Next the segment information for the selected character is found through a look-up table starting in page 3 of the program memory. This segment information is then stored at the location pointed at by the Display Map Pointer. If the Character Select field specified a decimal point, the segment correponding the decimal point is ANDed into the present segment information for that digit. After the accumulator is restored, execution is returned to the main program.

	DISPLAY DATA WORD							
7	1		5	4	3	2	1 0	
D	IGI	T 81	LE	CT				
7	7 6 5 DIGIT							
0	0	0		1				
Ĭ	1	6		3				
ŏ	÷.	1		Ă.				
1	0	0		5				
	0	1		7	1			
li	÷	1		8	1			
	CH.	AR/	ACT	ER S	BELE	CT		
4	3	2	1	0	CI	HAR	4	
0	0	0	0	0		0		
	ň	0	1			2		
ŏ	ŏ	ŏ	÷	1		3		
0	0	1	0	0		4		
	0	1	•	1	1	5		
	ŏ	÷	÷	1		ז		
Ō	1	ò	ò	ò		8		
0	1	0	0	1		9		
	1	0	1	0		R		
l ö	÷	Ť	ò	ò		č		
Ō	1	1	Ó	1		đ		
0	1	1	1	0		Ē		
1	1	1				-		
1	ō	ō	õ	1		6		
1	0	0	1	0		н		
1	0	0	1	1		·.		
li	ŏ	i	ŏ	ĭ		ĭ		
1	0	1	1	0		~		
1	0	1	1	1	1	•		
	ł	ŏ	ŏ	1		۳ ۲	1	
1	1	Ő	1	Ó		È		
1	1	0	1	1		U		
	1	1	0	0		3		
	i	i	ĭ	ò	1			
11	1	1	1	1	Ы	ank		

Figure 18. LED Display Controller Display Data Word Format

The DISPLA routine simply implements the multiplexing actions described earlier. It is called whenever a timer interrupt occurs. After saving pre-interrupt status by switching register banks and storing the Accumulator, all digit drivers are turned off. The Display Map Pointer is then updated using the Current Digit Register to point at that digit's segment information in the Display Map. This information is output to Port 1: the segment drivers. The number of the current digit, R3, is then sent to the digit select decoder and the decoder is enabled. This turns on the current digit. The digit counter is incremented and tested to see if all eight digits have been refreshed. If so, the digit counter is reset to zero. If not, nothing is done. Finally, the timer is loaded and restarted, the Accumulator is restored, and the routine returns execution to the main program. Thus DISPLA refreshes one digit each time it is CALLed by the timer interrupt. The digit remains on until the next time **DISPLA** is executed.

The UPI software listing is included as Appendix A1. Appendix A2 shows the 8085A test routine used to display the contents of a display buffer on the display. The 8085A software takes care of the display digit numbering. Since the application is input-only for the UPI, the only protocol required is that the master must test IBF before writing a Display Data Word into DBBIN.

On the iSBC 80/30, the UPI frequency is at 5.5296 MHz. To obtain a flicker-free display, the whole display must be refreshed at a rate of 50 Hz or greater. If we assume a 50 Hz refresh rate and an 8-digit display, this means the DISPLA routine must be CALLed  $50 \times 8$  or 400 times/ sec. This translates, using the timer interval of  $87 \ \mu s$  at 5.5296 MHz, to a timer count of 227. (Recall from the UPI-41 User's Manual that the timer is an "8-bit up-counter".) Hence the TIME equate of 227D in the UPI listing. Obviously, different frequency sources or display lengths would require that this equate be modified.

With the UPI running at 5.5296 MHz, the instruction cycle time is 2.713  $\mu$ s. The DISPLA routine requires 28 instruction cycles, therefore, the routine executes in 76  $\mu$ s. Since DISPLA is CALLed 400 times/sec, the total time spent refreshing the display during one second is then 30 ms or 3% of the total UPI time. This leaves 97.0% for any foreground tasks that could be added.

While the basic UPI software is useful just as it stands, there are several enhancements that could be incorporated depending on the application. Autoincrementing of the digit location could be added to the input routine to alleviate the need for the master to keep track of digit numbers. This could be (optionally) either right-handed or left-handed entry a la TI or HP calculators. The character set could be easily modified by simply changing the lookup table. The display could be expanded to 16 digits at the expense of one additional Port 2 digit select line, the replacement of the 3-to-8 decoder with a 4-to-16 decoder, and 8 more Display Map locations.

Now let's move on to a slightly more complex application that is UPI output-only — a sensor matrix controller.

#### Sensor Matrix Controller

Quite often a microprocessor system is called upon to read the status of a large number of simple SPST switches or sensors. This is especially true in a process or industrial control environment. Alarm systems are also good examples of systems with a large sensor population. If the number of sensors is small, it might be reasonable to dedicate a single input port pin for each sensor. However, as the number of sensors increase, this technique becomes very wasteful. A better arrangement is to configure the sensors in a matrix organization like that shown in Figure 19. This arrangement of 16 sensors requires only 4 input and 4 output lines; half the number needed if dedicated inputs were used. The line saving becomes even more substantial as the number of sensors increases.

In Figure 19, the basic operation of the matrix involves scanning individual row select lines in sequence while reading the column return lines. The state of any particular sensor can then be determined by decoding the row and column information. The typical configuration pulls up the column return lines and the selected row is held low. Deselected rows are held high. Thus a return line remains high for an open sensor on the selected row and is pulled low for a closed sensor. Diode isolation is used to prevent a phantom closure which would occur when a sensor is closed on a selected row and there are two or more closures on a deselected row. Germanium diodes are used to provide greater noise margin at the return line input.

If the main processor was required to control such a matrix it would periodically have to output at the row port and then read the column return port. The processor would need to maintain in memory a map of the previous state of the matrix. A comparison of the new return information to the old information would then be made to determine whether a sensor change had occurred. Any changes would be processed as needed. A row counter and matrix map pointer also require maintenance each scan. Since in most applications sensors change very slowly compared to most processing actions, the processor probably would scan the rows only periodically with other tasks being processed between scans.

Rather than require the processor to handle the rather mundane tasks of scanning, comparing, and decoding the matrix, why not use a dedicated processor? The UPI is perfect.

Figure 20 shows a UPI configuration for controlling up to 128 sensors arranged in a 16 x 8 matrix. The 4-to-16 line decoder is used as the row selector to save port pins and provides the expansion to 128 sensors over the maximum of 64 sensors if the port had been used directly. It also helps increase the port drive capability. The column return lines go directly into Port 1. Features of this design include complete matrix management. As the UPI scans the matrix it compares its present status to the previous scan. If any change is detected, the location of the change is decoded and loaded, along with the sensor's present state, into DBBOUT. This byte is called a Change Word. The Master processor has only to read one byte to determine the status and coordinate of a changed sensor. If the master had not read a previous Change Word in DBBOUT (OBF = 1) before a new sensor change is detected, the new Change Word is loaded into an internal FIFO. This FIFO buffers up to 40 changes before it fills. The status of the FIFO and OBF is made available to the master either by polling the UPI STATUS register, Figure 21A, or as interrupt sources on port pins P24 and P25 respectively, Figure 20. The FIFO NOT EMPTY pin and bit are true as long as there are changes not yet read in the FIFO. As long as the FIFO is not empty, the UPI monitors OBF and loads new Change Words from the FIFO into DBBOUT. Thus, the UPI provides complete FIFO management.







Figure 19. 4 × 4 Sensor Matrix

Internally, the matrix scanning software is programmed to run as a foreground task. This allows the timer/ counter to be used by any background task although the hardware configuration leaves only 2 inputs (T0 and T1) plus 2 I/O port pins available. Also, to add a background task, the FIFO would have to be made smaller to accommodate the needed register and data memory space. (It would be possible however to turn the table here and make the scanning software timer/counter interruptdriven where the timer times the scan interval.)

The data memory organization for this application is shown in Figure 22. The upper 16 bytes form the Matrix Map and store the sensor states from the previous scan; one bit for each sensor. The Change Word FIFO occupies the next 40 locations. (The top and bottom addresses of this FIFO are treated as equate variables in the program so that the FIFO size may easily be changed to accommodate the register needs of other tasks.) Register R0 serves as a pointer into the matrix map area for comparisons and updates of the sensor status. R1 is a general FIFO pointer. The FIFO is implemented as a circular buffer with In and Out pointer registers which are stored in R4 and R5 respectively. These registers are moved into FIFO pointer R1 for actual transfers into or out of the FIFO. R2 is the Row Select Counter. It stores the number of the row being scanned.



Register R3 is the Column Counter. This counter is normally set to 00H; however, when a change is detected somewhere in a particular row, it is used to inspect each sensor status bit individually for a change. When a changed sensor bit is found, the Row Select Counter and Column Counter are combined to give the sensor's matrix coordinate. This coordinate is temporarily stored in the Change Word Store, register R6. Register R7 is the Compare Result. As each row is scanned, the return information is Exclusive-OR'd with the return information from the previous scan of that row. The result of this operation is stored in R7. If R7 is zero, there have been no changes on that row. A non-zero result indicates at least one changed sensor.

The basic program operation is shown in the flow chart of Figure 23. At RESET, the software initializes the working registers, the ports, and clears the STATUS register. To get a starting point from which to perform the sensor comparisons, the current status of the matrix is read and stored in the Matrix Map. At this point, the UPI begins looking for changed sensors starting with the first row.

Before delving further into the flow, let's pause to describe the general format of the operation. The UPI scans the matrix one row at a time. If no changes are detected on a particular row, the UPI simply moves to the next row after checking the status of DBBOUT and the FIFO. If a change is detected, the UPI must check each bit (sensor) within the row to determine the actual sensor location. (More than one sensor on the scanned row could have changed.) Rather than test all 8 bits of the row before checking the DBBOUT and FIFO status again, the UPI performs the status check in between each of the bit tests. This ensures the fastest response to the master reading previous Change Words from DBBOUT and the FIFO.

With this general overview in mind, let's go first thru the flow chart assuming we are scanning a row where no changes have occurred. Starting at the Scan-and-Compare section, the UPI first checks if the entire matrix has been scanned. If it has, the various pointers are reset. If not, the address of the next row is placed on Port 20 thru 23. This selects the desired row. The state of the row is then read on Port 1; the column return lines. This present state is compared to the previous state by retrieving the previous state from the matrix map and performing an Exclusive-OR with the present state. Since we are assuming that no change has occurred, the result is zero. No coordinate decoding is needed and the flow branches to the FIFO-DBBOUT Management section.

The FIFO-DBBOUT Management section simply maintains the FIFO and loads DBBOUT whenever Change Words are present in the FIFO and DBBOUT is clear (OBF = 0). The section first tests if the FIFO is full. (If we assume our "no-change" row is the first row scanned, the FIFO obviously would not be full.) If it is, the UPI waits until OBF = 0, at which point the next Change Word is retrieved from the FIFO and placed in DBBOUT. This "unfills" the FIFO making room for more Change Words. At this point, the Column Counter, R3, is checked. For rows with no changes, the Column



Figure 23. Sensor Matrix Controller Flow Chart

Counter is always zero so the test simply falls through. (We cover the case for changes shortly.) Now the FIFO is tested for being empty. If it is, there is no sense in any further tests so the flow simply goes back up to scan the next row. If the FIFO is not empty, DBBOUT is tested again through OBF. If a Change Word is in DBBOUT waiting for the master to read it, nothing can be done and the flow likewise branches up for the next row. However, if the DBBOUT is free and remembering that the previous test showed that the FIFO was not empty, DBBOUT is loaded with the next Change Word and the last two conditional tests repeat.

Now let's assume the next row contains several changed sensors. Like before, the row is selected, the return lines read, and the sensor status compared to the previous scan. Since changes have occurred, the Exclusive-OR result is now non-zero. Any 1s in the result reflect the positions of the changed sensors. This nonzero result is stored in the Compare Result register, R7. At this point, the Column Counter is preset to 8. To determine the changed sensors' locations, the Compare Result register is shifted bit-by-bit to the left while decrementing the Column Counter. After each shift, bit 7 of the result is tested. If it is a one, a changed sensor has been found. The Column Counter then reflected the sensor's matrix column position while the Scan Row Select register holds it row position. These registers are then combined in R6, the Change Word Store, to form the sensor's matrix coordinate section of the Change Word. The 8th bit of the Change Word Store is coded with the sensor's present state (Figure 21). This byte forms the complete Change Word. It is loaded into the next available FIFO position. If bit 7 of the Compare Result had been a zero, that particular sensor had not changed and the coordinate decoding is not performed.

In between each shift, test, and coordinate encode (if necessary), the FIFO-DBBOUT Management is performed. It is the Column Counter test within this section that routes the flow back up to the Change Word Encoding section if the entire Compare Result (row) has not been shifted and tested.

The FIFO is implemented as a circular buffer with IN and OUT pointers (R4 and R5 respectively). The operations of the FIFO is best understood using an example, Figure 24. This series of figures show how the FIFO, DBBOUT, and OBF interact as changes are detected and Change Words are read by the master. The letters correspond to sequential Change Words being loaded into the FIFO. Note that the figures show only a 4 × 8 FIFO however, the principles are the same in the 40 × 8 FIFO.

Figure 24A shows the condition where no Change Words have been loaded into the FIFO or DBBOUT. In Figure 24B a change, "A", has been detected, decoded, and loaded into the FIFO at the location equal to the value of the FIFO-IN pointer. The FIFO-IN pointer is then incremented and the FIFO-OUT pointer is reset to the bottom of the FIFO since it had reached the FIFO top. Now that a Change Word is in the FIFO, OBF is checked to see if DBBOUT is empty. Because OBF = 0, DBBOUT is empty and the Change Word is loaded from the FIFO location pointed at by the FIFO-OUT pointer. This is shown in Figure 24C. Loading DBBOUT automatically OBF. This allows the next Change Word to be loaded into DBBOUT. Note that each time the FIFO is loaded, the FIFO-IN pointer increments. Each time DBBOUT is read the FIFO-OUT pointer increments unless there are no more Change Words in the FIFO. Both pointers wraparound to the bottom once they reach the FIFO top. The remaining figures show more Change Words being loaded into the FIFO. When the entire FIFO fills and DBBOUT can not be loaded (OBF = 1), scanning stops until the master reads DBBOUT making room for more Change Words.



Interrupt simply reflects OBF and is handled automatically by the UPI since an EN FLAGS instruction is executed during initialization. The FIFO NOT EMPTY interrupt is generated and cleared as appropriate, each pass through the FIFO management code.

No debouncing is provided although it could be added. Rather, the scan time is left as an equate variable so that it could be varied to account for both debounce time and expected sensor change rates. The minimum scan time for this application is 2 msec when using a 6 MHz clock. Since the matrix controller is coded as a foreground task, scan time simply uses a software delay loop.

The UPI software is included as Appendix B1. Appendix B2 is 8085A test software which builds a Change Word buffer starting at BUFSRT. This software simply polls the STATUS register looking for Change Word Ready to go true. DBBOUT is then read and loaded into the buffer. Now let's move on to an application which combines both the foreground and background concepts.

#### **Combination I/O Device**

The final UPI application was designed especially to add additional serial and parallel I/O ports to the iSBC 80/30. This UPI simulates a full-duplex UART (Universal Asynchronous Receiver/Transmitter) combined with an 8-bit parallel I/O port. Features of the UART include: software selectable baud rates (110, 300, 600, or 1200 baud), double buffering for both the transmitter and receiver, and receiver testing for false state bit, framing, and overrun errors. For parallel I/O, one 8-bit port is programmable for either input or output. The output port is statically latched and the input port is sampled.

Figure 25 shows the interface of this combination I/O device to the dedicated UPI socket on the iSBC 80/30. The only external requirement is a 76.8 kHz source which serves as the baud rate standard. The internal baud rates are generated as multiples of this external clock. This clock is obtained from one of the 8253 counters. Otherwise, an RS-232 driver and receiver already available for UPI use in serial I/O applications. Sockets are also provided for termination of the parallel port.



Figure 24A-J. FIFO Operation Example

Figure 25. Combination I/O Device

There are three commands for this application. Their format is shown in Figure 26. The CONFIGURE command specifies the serial baud rate and the parallel I/O direction. Normally this command is issued once during system initialization. The I/O command causes a parallel I/O operation to be performed. If the parallel port direction is output, the UPI expects the data byte immediately following an I/O command to be data for the output port. If the port is in the input direction, an I/O command causes the port to be read and the data placed in DBBOUT. The RESET ERROR command resets the serial receiver error bits in the STATUS register.

The STATUS register format is shown in Figure 27. Looking at each bit, bit 0 (OBF) is the DATA AVAILABLE flag. It is set whenever the UPI places data into DBBOUT. Since the data may come from either the receiver or the parallel input port, the F0 and F1 flags (bits 2 and 3) code the source. Thus, when the master finds OBF set, it must decode F0 and F1 to determine the source.

Bit 1 (IBF) functions as a busy bit. When IBF is set, no writes to DBBIN are allowed. Bit 5 is the TxINT (Transmitter Interrupt) bit. It is asserted whenever the transmitter buffer register is empty. The master uses this bit to determine when the transmitter is ready to accept a data character.

	COMMAND FORMAT									
C	7	6	5	4	3	2	1	0	CONFIGURE COMMAND	
	0	0	0	A	B	c	D	P	A - 1200 BAUD SELECT B - 600 BAUD SELECT C - 300 BAUD SELECT D - 110 BAUD SELECT P - PARALLEL VO DIRECTION O-INPUT 1-OUTPUT	
	1	0	0	0	0	0	0	0	I/O COMMAND	
	1	1	0	0	0	0	0	0	RESET ERROR COMMAND	

Figure 26.	Combination I/O	<b>Command Format</b>	ł
------------	-----------------	-----------------------	---



Bits 6 and 7 are receiver error flags. The framing error flag, bit 6, is set whenever a character is received with an invalid stop bit. Bit 7, overrun error, is set if a character is received before the master has read a previous character. If an overrun occurs, the previous character is overwritten and lost. Once an error occurs, the error flag remains set until reset by a RESET ERROR command. A set error flag does not inhibit receiver operation however.

Figure 28 shows the port pin definition for this application. Port 1 is the parallel I/O port. The UART uses Port 2 and the Test inputs. P20 is the transmitter data out pin. It is set for a mark and reset for a space. P23 is a transmitter interrupt output. This pin has the same timing as the TxINT bit in the STATUS register. It is normally used in interrupt-driven systems to interrupt the master processor when the transmitter is ready to accept a new data character.

The OBF flag is brought out on P24 as a master interrupt when data is available in DBBOUT. P26 is a diagnostic pin which pulses at four times the selected baud rate. (More about this pin later.) The receiver data input uses the T0 input. One of the Port 2 pins could have been used, however, the software can test the T0 in one instruction without first reading a port.

The T1 input is the baud rate external source. The UART divides this input to determine the timing needed for the selected baud rate. The input is a non-synchronous 76.8 kHz source.

Internally, when the CONFIGURE command is received and the selected baud rate is determined, the internal timer/counter is loaded with a baud rate constant and started in the event counter mode. Timer/counter interrupts are then enabled. The baud rate constant is selected to provide a counter interrupt at four times the desired baud rate. At each interrupt, both the transmitter and receiver are handled. Between interrupts, any new commands and data are recognized and executed.

		PORT PIN DEFINITION		
	PORT	<u>BIT</u>	FUNCTION	
_	1	0-7	PARALLEL I/O	
E	2	0 1 2 3 4 5 6 7	Tx DATA NOT USED Tx INTERRUPT OBF INTERRUPT NOT USED NOT USED (TICK SAMPLE) NOT USED	
	то		Rx DATA	
	т1		EXTERNAL CLOCK (76.8 kHz)	

Figure 27. STATUS Register Format
As a prelude to discussing the flow charts, Figure 29 shows the register definition. Register Bank 0 serves the UART receiver and parallel I/O while Register Bank 1 handles the UART transmitter and commands. Looking at RB0 first, R3 is the receiver status register, RxSTS. Reflected in the bits of this register is the current receiver status in sequential order. Figure 30 shows this bit definition. Bit 0 is the Rx flag. It is set whenever a possible start bit is received. Bit 1 signifies that the start bit is good and character construction should begin with the next received bit. Bit 1 is the Good Start flag. Bit 2 is the Byte Finished flag. When all data bits of a character are received, this flag is set. When all the bits, data and stop bits are received, the assembled character is loaded into the holding register (R4 in Figure 29) bit 3, the Data Ready flag, is set. The foreground routine which looks for commands and data continuously, looks at this bit to determine when the receiver has received a character. Bits 4 and 5 signify any error conditions for a particular character.

The parallel I/O port software uses bits 6 and 7. Bit 6 codes the I/O direction specified by the last CON-FIGURE command. Bit 7 is set whenever an I/O command is received. The foreground routine tests this bit to determine when an I/O operation has been requested by the master.

As was mentioned, R4 is the receiver holding register. Assembled characters are held in this register until the foreground routine finds DBBOUT free, at which time the data is transferred from R4 to DBBOUT. R5 is the receiver tick counter. Recall that counter interrupts occur at four times the baud rate. Therefore, once a start bit is found, the receiver only needs to look at the data every four interrupts or tick counts. R5 holds the current tick count.

63	USER RAM		
32	(NOT USED)		
31	AC TEMP. STORE	R7	
30	COMMAND STORE	R6	
29	Tx STATUS-TxSTS	R5	
28	Tx BUFFER	R4	REGISTER
27	Tx SERIALIZER	R3	BANK 1
26	Tx TICK COUNTER	R2	
25	BAUD RATE CONSTANT	R1	
24	NOT USED	RO	
23	STACK		
8	(ONE LEVEL USED)		
7	STATUS STORE	R7	
6	Rx DESERIALIZER	R6	
5	Rx TICK COUNTER	R5	
4	Rx HOLDING	R4	REGISTER
3	Rx STATUS-RxSTS	R3	BANK 0
2	NOT USED	R2	
<b>۱</b> [	NOT USED	R1	
•	NOT USED	RO	

Figure 29. Combination I/O Register Map





R6 is the receiver de-serializing register. Data characters are assembled in this register. R6 is preset to 80H when a good start bit is received. As each bit is sampled every four timer ticks, they are rotated into the leftmost bit of R6. The software knows the character assembly is complete when the original preset bit rotates into the carry.

An image of the upper 4 bits of the STATUS register is stored in R7. These bits are the TxINT, Framing and Overrun bits. This image is needed since the UPI may load the upper 4 STATUS register bits from its accumulator; however, it cannot read STATUS directly.

In Register Bank 1 (Figure 29), R1 holds the baud rate constant which is found from decoding the baud rate select bits of the CONFIGURE command. The counter is reloaded with this constant every timer tick. Like the receiver, the transmitter only needs to update the transmitter output every four ticks. R2 holds the transmitter tick count. The value of R2 determines which portion of the data is being transmitted; start bit, data bits, or stop bit. The transmit serializer is R3. R3 holds the data character as each character bit is transmitted.

R4 is the transmitter holding register. It provides the double buffering for the transmitter. While transmitting one character, it is possible to load the next character into R4 via DBBIN. The TxINT bit in STATUS and pin on Port 2 reflect the "fullness" of R4. If the holding register is empty, the interrupt bit and pin are set. They are reset when the master writes a new data byte for the transmitter into DBBIN. The transmitter Status register (Tx-STS) is R5. Like RxSTS, TxSTS contains flag bits which indicate the current state of the transmitter. This flag bit format is shown in Figure 31.

TxSTS bit 0 is the Tx flag. It is set whenever the transmitter is transmitting a character. It is set from the beginning of the start bit until the end of the stop bit. Bit 1 is the Tx Request flag. This bit is set by the foreground routine when it transfers a new character from DBBIN to the Tx Holding register, R4. The transmitter software uses this flag to tell if new data is available. It is reset when the transmitter transfers the character from the holding register to the serializer.

Bit 2 is the Pipelined Tx Data Bit. The transmitter uses a pipelining technique which sets up the next output level in bit 2 after processing the current timer tick. The output level is always changed at the same point after a timer tick interrupt. This technique ensures that no bit timing distortion results from different length processing paths through the receiver and transmitter routines.



Figure 31. TxSTS Register

Bit 3 of TxSTS is the Start Bit flag. It is set by the transmitter when the start bit space is set up in the Pipelined Data Bit. This allows the transmitter to differentiate between the start bit and data bits on following timer ticks. The flow charts for this application are shown in Figures 32A-F. At reset, the INIT routine is executed which initializes the registers and port pins. After initialization, IBF and OBF are tested in MNLOOP. These flags are tested continually in this loop. If IBF is set, F1 is tested for command or data and execution is transferred to the appropriate routine (CMD or DATA). If IBF = 0, OBF is checked. If OBF = 0 (DBBOUT is free), the Rx Data Ready and I/O flags in RxSTS are tested. If Rx Data Ready is set, the received data is retrieved from the Rx Holding register and transferred to DBBOUT. Any error flags associated with that data are also transferred to STATUS. If the I/O flag is set and the I/O direction is input, Port 1 is read and the data transferred to DBBOUT. In either case, F0 and F1 are set to indicate the data source.

If IBF is set by a command write to DBBIN, CMD reads the command and decodes the desired operation. If an



Figure 32A. INIT Flow Chart



Figure 32B. CMD Flow Chart

I/O operation is specified, the I/O flag is set to indicate to the MNLOOP and DATA routines that an I/O operation is to be performed. If the command is a CONFIGURE command, the constant for the selected baud rate is loaded into both Baud Rate Constant register and the timer/counter. The timer/counter is started in the event counter mode and timer/counter interrupts are enabled. In addition, the I/O port is initialized to all 1's if the I/O direction bit specifies an input port. If the command is a RESET ERROR command, the two error flags in STATUS are cleared.

If the IBF flag is set by a data write, the DATA routine reads DBBIN and places the data in the appropriate place. If the I/O flag is set, the data is for the output port so the port is loaded. If the I/O flag is reset, the data is for the UART transmitter. Data for the transmitter resets the TxINT bit and pin plus sets the Tx Request flag in TxSTS. The data is transferred to the Tx Holding register, R4.

Once a CONFIGURE command is received and the counter started, timer/counter interrupts start occurring at four times the selected baud rate. These interrupts cause a vector to the TIMINT routine, Figure 32D. A 76.8 kHz counter input provides a  $13.02 \ \mu$ s counter resolution. Since it requires several UPI instruction cycles to reload the counter, the counter is set to two counts less than the desired baud rate and the counter is reloaded in TIMINT synchronous with the second low-going transition after the interrupt. Once the counter is reloaded, an output port (P26) is toggled to give an external indication of internal counter interval. This is a helpful diag-

nostic feature. After the tick sample output, the pipelined transmitter data in TxSTS is output to the TxD pin. Although this occurs every timer tick, the pipelined data is changed only every fourth tick.



Figure 32C. Data Flow Chart



Figure 32D. TIMINT Flow Chart

The receiver is now handled, Figure 32E. The RX flag in RxSTS is examined to see if the receiver is currently in the process of receiving a character. If it is not, the RxD input is tested for a space condition which might indicate a possible start bit. If the input is a mark, no start bit is possible and execution branches to the transmitter flow, XMIT. If the input is a space, the Rx flag is set before proceeding with XMIT.

If the Rx flag is found set when entering RCV, the receiver is in the process of receiving a character. If so, the Start Bit flag is then tested to determine If a good start bit so the Start Bit flag is set, the Rx Tick Counter is initialized to four, and the Rx De-serializer initialized to 80H. A mark indicates a bad start bit so the Rx flag is reset to abort the reception.

start bit so the Start Bit flag is set, the Rx tick counter is initialized to four, and the Rx deserializer initialized to 80H. A mark indicates a bad start bit so the Rx flag is reset to abort the reception.

If the Start Bit flag is set, the program is somewhere in the middle of the received character. Since the data should be sampled every fourth timer tick, the Tick Counter is decremented and tested for zero. If non-zero no sample is needed and execution continues with



Figure 32E. RCV Flow Chart

XMIT. If zero, the tick counter is reset to four. Now the Byte Finished flag is tested to determine if the data sample is a data or stop bit. If reset, the sample is a data bit. The sample is done and the new bit rotated into the Rx deserializer. If this rotate sets the carry, that data bit was the last so the Byte Finished flag is set. If the carry is reset, the data bit is not the last so execution simply continues with XMIT.

Had the Byte Finished flag been set, this sample is for the stop bit. The RxD input is tested and if a space, the Framing Error flag is set. Otherwise, it is reset. Next, the Rx Data Ready flag is tested. If it is set, the master has not read the previous character so the Overrun Error flag is set. Then the Rx Data Ready flag is set and the received data character is transferred into the Rx Holding register. The Rx, Start Bit, and Byte Finished flags are reset to get ready for the next character. Execution of the transmitter routine, XMIT, follows the receiver, Figure 32F. The transmitter starts by checking the Start Bit flag in TxSTS. Recall that the actual transmit data is output at the beginning of the timer routine. The Start Bit flag indicates whether the current timer tick interrupt started the start bit. If it is set, the pipelined data output earlier in the routine was the start of the start bit so the flag is reset and the Tx tick counter is initialized. Nothing else is done this timer tick so the routine returns to the foreground.

If the Start Bit flag is reset, the Tx tick counter is incremented and tested. The test is performed module 4. If the counter mod 4 is not zero, it has not been four ticks since the transmitter was handled last so the routine simply returns. If the counter mod 4 is zero, it is time to handle the transmitter and the Tx flag is tested.



Figure 32F. XMIT Flow Chart

The Tx flag indicates whether the transmitter is active. If the transmitter is inactive, no character is currently being transmitted so the Tx Request flag is tested to see if a new character is waiting in the Tx buffer. If no character is waiting (Tx Request Flag = 0), the Tx interrupt pin and bit are set before returning to the foreground. If there is a character waiting, it is retrieved from the buffer and placed in the Tx serializer. The Tx Request flag is reset while the Tx and Start Bit flags are set. A space is placed in the Tx Pipelined Data bit so a start bit will be output on the next tick. Since the Tx buffer is now empty, the Tx interrupt bit and pin are set to indicate the availability of the buffer to the master. The routine then returns to the foreground.

If the tick counter mod 4 is zero and the Tx flag indicates the transmitter is in the middle of a character, the tick counter is checked to see what transmitter operation is needed. If the counter is 28H (40D), all data bits plus the stop bits are complete. The character is therefore done and the Tx flag is reset. If the counter is 24H (36D), the data bits are complete and the next output should be a mark for the stop bit so a mark is loaded into the Tx Pipelined Data bit.

If neither of the above conditions are met for the counter, the transmitter is some place in the data field, so the next data bit is rotated out of the Tx serializer into the Pipelined Data bit. The next tick outputs this bit.

At this point the program execution is returned to the foreground.

That completes the discussion of the combination I/O device flow charts. The UPI software listing is shown in Appendix C1. Appendix C2 is example 8085A driver software.

Several observations concerning the drivers are appropriate. Notice that since the receiver and input port of the UPI use the OBF flag and interrupt output, the interrupt and flag are cleared when the master reads DBBOUT. This is not true for the transmitter. There is always some time after a master write of new transmitter data before the transmitter interrupt bit and pin are cleared. Thus in an interrupt-driven system, edgesensitive interrupts should be used. For polled-systems, the software must wait after writing new data for IBF = 0 before re-examining the Tx Interrupt flag in STATUS.

Notice that this application uses none of the user Data Memory above Register Bank 1 and only 361 bytes of Program Memory. This leaves the door open for many improvements. Improvements that come to mind are increased buffering of the transmit or received data, modem control pins, and parallel port handshaking inputs.

This completes our discussion of specific UPI applications. Before concluding, let's look briefly at two debug techniques used during the development of these applications that you might find useful in your own designs.

#### **DEBUG TECHNIQUES**

Since the UPI is essentially a single-chip microcomputer, the classical data, address, and control buses are not available to the outside world during normal operation. This fact normally makes debugging a UPI design difficult; however, certain "tricks" can be included in the UPI software to ease this task.

If a UPI is handling multiple tasks, it is usually easier to code and debug each task individually. This is fairly standard procedure. Since each task usually utilizes only a subset of the total number of I/O pins, coding only one task leaves some I/O pins free. Port output instructions can then be added in the task code being debugged which toggle these unused pins to determine which section of task code is being executed at any particular time. The task can also be made to "wait" at various points by using an extra pin as an input and adding code to loop until a particular input condition is met.

One example of using an extra pin as an output is included in the combination serial/parallel device code. During initial development the receiver was not receiving characters correctly. Since this could be caused by incorrect sampling, three lines of code were added to toggle bit 6 of Port 2 at each tick of the sample clock. This code is at lines 184 and 185 of the listing. Thus by looking at the location of the tick sample pulse with respect to the received bit, the UPI sampling interval can be observed. The tick sample time was incorrect and the code was modified accordingly. Similar techniques could be applied at other locations in the program.

The EPROM version of the UPI (8741A) also contains another feature to aid in debug: the capability to single step thru a program. The user may step thru the program instruction-by-instruction. The address of the next instruction to be fetched is available on Port 1 and the lower 2 bits of Port 2. Figure 33 shows the timing used in the discussion below. When the Single Step input, SS, is brought low, the internal processor responds by stopping during the fetch portion of the next instruction. This action is acknowledged by the processor raising the SYNC output. The address of the instruction to be fetched is then placed on the port pins. This state may be held indefinitely. To step to the next instruction, SS is raised high, which causes SYNC to go low, which is then used to return SS low. This allows the processor to advance to the next instruction. If SS is left high, the processor continues to execute at normal speed until SS goes low.



Figure 33. Single Step Timing

the UPI executes normally. When switched to STOP, the preset is removed and the next low-going transition of SYNC causes the 7474 to clear, lowering  $\overline{SS}$ . While SYNC is low, the port data is valid and the current instruction is executing. Low SYNC is also used to enable the tri-state buffers when the ports are used as inputs. When execution is complete, SYNC goes high. This transition latches the valid port data in the 74LS374s. SYNC going high also signifies that the address of the next instruction will appear on the port pins. This state can be held indefinitely with the address data displayed on the LEDs.

When the S2 is depressed, the 7474 is set which causes SS to go high. This allows the processor to fetch and execute the instruction whose address was displayed. SYNC going low during execution, clears the 7474 lowering SS. Thus the processor again stops when execution is complete and the next fetch is started.

All UPI functions continue to operate while single stepping (the processor is actually executing NOPs internally while stopped). Both IBF and timer/counter interrupts can be serviced. The only change is that the interval timer is prescaled on single stepped instructions and, of course, will not indicate the correct intervals in real time. The total number of instructions which would have been executed during a given interval is the same however. mine when to run and stop. If you would like to step thru a particular section of code, an extra port pin could replace switch S1. Extra instructions would then be added to lower the port when entering the code section and raise the port when exiting the section. The program would then stop when that section of code is reached allowing it to be stepped through. At the end of the section, the program would execute at normal speed.

#### CONCLUSION

Well, that's it. Machine readable (floppy disk or paper tape) source listings of UPI software for these applications are available in Insite, the Intel library of userdonated programs. Also available in Insite are the source listings for some of Intel's pre-programmed UPI products. These products are:

- 8278 Keyboard Display Controller
- 8295 Dot Matrix Printer Controller.

Other pre-programmed UPIs are the 8294 Data Encryption Unit and the 8292 GPIB (IEEE-488) Controller.

For information about Insite, write to:

Insite Intel Corp. 3065 Bowers Ave. Santa Clara, Ca 95051



Figure 34. Single Step External Circuitry

Appendix A1

ISIS-II NCS-48/UPI-41 MACRO ASSEMBLER, V2.0

LOC	OBJ	SEQ	Source statem	ENT						
		1;	******	*****	***					
		2;	* UPI-41	LER +						
		3;	********	*********************	*****					
		4;								
		5;								
		6;								
		7 ; THI	5 PROGRAM USES T	HE UPI-41 AS A LED DISPLAY	CONTROLLER					
		8 ; HHI	CH SCANS AND REF	RESHES EIGHT SEVEN-SEGNENT	LED DISPLAYS.					
		9;THE	CHARACTERS ARE	Defined by input from a hrs	TER CPU IN THE					
		10 ; FOR	1 OF ONE EIGHT B	IT WORD PER DIGIT-CHARACTER	SELECTION					
		11 ;								
		12 ;								
		13 ;								
		 14 ;************************************								
		15 ;								
		16 REGISTER DEFINITIONS:								
		17;	REGISTER	<b>R</b> 81	RBØ					
		18;								
		19;	RO	DISPLAY MAP POINTER	NOT USED					
		29;	R1	NOT USED	NOT USED					
		21;	R2	Data Hord and Character	STORAGE NOT USED					
		22;	R3	DIGIT COUNTER	NOT USED					
		23;	R4	NOT USED	NOT USED					
		24;	R5	NOT USED	NOT USED					
		25;	R6	NOT USED	NOT USED					
		26 ;	R7	Accumulator storage	NUT USED					
		27 ; ***	******	******						
		28;								
		29 ; POR	F PIN DEFINITION	S:						
		30 ;	PIN	PORT 1 FUNCTION	PORT 2 FUNCTION					
		31 ;								
		32;	P9-7	SEGNENT DRIVER CONTROL	DIGIT DRIVER CONTROL					
		33 ;								
		34 \$EJE(	CT							

SEQ	SOURCE	STATE	MENT								
75			****				******				
50			<del>7777</del> 217	NEE I	<del>****</del>	INN -	*********	*****	*****	******	
		HUKP	011	FIN	0111 0110	NI.					
79											
70	, . Ω			сна	00(-1		EL ECT				
37	; 5-7			DIG	IT C		T				
44	, <u> </u>			~10	11 2		• 1				
42	, CHODOCTED CEL	ECT ·									
47	:	DAL	50	02	м	DR	CHARACTER				
44	;	ต์	A	A	A	ด้	A A				
45	;	õ	õ	õ	8	1	1				
46		Ö	0	0	1	0	2				
47	;	0	0	0	1	1	3				
48	;	9	ø	1	0	ē	4				
49	;	0	0	1	0	1	5				
50	;	0	0	1	1	9	6				
51	;	0	0	1	1	1	7				
52	;	0	1	0	0	0	· 8				
53	;	0	1	0	0	1	9				
54	;	0	1	0	1	0	Â				
55	;	0	1	8	1	1	8				
56	;	0	1	1	0	0	Ċ				
57	;	0	1	1	0	1	D				
58	;	0	1	1	1	0	ε				
59	;	0	1	1	1	1	F				
60	i	1	0	8	0	0					
61	;	1	0	0	8	1	G				
62	;	1	8	0	1	9	н				
63	j	1	0	0	1	1	I				
64	;	1	0	1	0	0	J				
65	;	1	0	1	0	1	L				
66	;	1	8	1	1	6	N				
67	;	1	0	1	1	1	0				
68	;	1	1	0	0	0	P				
69	;	1	1	0	0	1	R				
70	;	1	1	0	1	8	T				
71	;	1	1	0	1	1	U				
72	;	1	1	1	0	0	Ŷ				
73	;	1	1	1	0	1	-				
74	i	1	1	1	1	0	'				
75	;	1	1	1	1	1	"Blank"	I			
76											
77	;										
78	DIGIT SELECT	:									
79	;	D7	D6	05	D	IGIT	NUMBER				
80	;	0	0	0		1					
81	;	0	0	1		í	?				
82	j.	0	1	0		3	\$				
83	j.	0	1	1		4	ł				
84	i	1	0	0			5				
85	;	1	0	1		6	5				
86	;	1	1	0		7					
87	;	1	1	1		8	}				
88	; **********	*****	iskaje je j	akiaki	akakaka Kataka	<b>iski</b> sk	*********	*****	*****	*****	*******
89	SEJECT										

LOC OBJ

LOC	OBJ	SEQ	SOURCE	STATEMENT	
		98 ; ####	******	*****	***
		91 :		FOI	ALEC
		92 ; THE	FOLLOWIN	g code destrand	TES "TINE" AS A VARIABLE THIS
		97 : 60.11	STS THE	AMOUNT OF CVCI	
		94 : 8 11	HEP INTE		ND DEEDECHEC THE NICH OU ODDINYTHATELU
		05 - 50 1	THEC DED		NV REFREDRED THE VIDFENT. HEFROAINHTELT
ECE4		96 TIME	CON CON	_051 . 11	NER HOLLE O ENCER
		97 · ****	******		
		00 :	******	**************************************	
		90. · TUTO		OF MEMORY TC	ENNORT DRANGAING NENIGOTEN EGD HEE DE DECET ONN
		1994 : INTE	DOUD DOUD	GNOUTING LANEN T	LE INTERRIPTE ARE ENABLED THE
		124 : CODE	AT THE	FOLLOWING DECT	CNOTEN CONTE ADE EVENITEN JUEN A
		192 : 0555	т по от		C
0000		102 / 102		9	э. ,
8888	9499	194	THP	STOPT	, : DECET
8882	99	195	NOP	JUNKI	:
9667	8478	196	TMP	TNPIT	
8885	88	197	NOP	114 01	:
8886	88	198	NOP		;
8887	841F	100	.DAP	DISPLA	TIMER INTERPIRT
	• • •	110 ; ****	******	******	
		111 ;		INT	TIALIZATION
		112 ; THE	FOLLOWIN	g code sets up	THE UPT-41 AND DISPLAY HARDWARE
		113 ; INTO	OPERATI	onal format. T	HE DISPLAY IS THRNED OFF, THE DISPLAY
		114 ; NAP	IS FILLE	D WITH "BLANK"	CHARACTERS, THE LINER SET AND THE
		115 ; INTE	RRUPTS A	re enabled.	
		116 ;			
8889	D5	117 START	: SEL	RB1	
999A 8	8888	118	ORL	P2, <b>198</b> H	JURN DIGIT DRIVERS OFF
899C (	8838	119	MOV	RØ, #38H	DISPLAY HAP POINTER, BOTTOM OF DISPLAY HAP
999E 3	23FF	120 BLKMR	P: NOV	A. #0FFH	; FF="Blank"
8010	A9	121	MOV	erø, a	BLANK TO DISPLAY MAP
0011 :	18	122	INC	RØ	; Increment Display Map Pointer
<b>001</b> 2	F8	123	HOV	A. R0	; Display hap pointer to accumulator
0013	829E	124	JB5	Blkmap	; BLANK DISPLAY MAP TILL FILLED
<b>001</b> 5	8800	125	MOY	R3, #00H	SET DIGIT COUNTER TO 0
0017 3	23F1	126	NOV	AJ #TIME	; TIMER VALUE
0019 (	62	127	MOV	T. H	;LORD TIMER
661A :	55	128	STRT	Т	\$ START TINER
<b>991</b> B 2	25	129	EN	TCNTI	FINABLE TIMER INTERRUPT
<b>891</b> C (	85	130	EN	I	; ENRIBLE IBF INTERRUPT
		131 ;****	******	*****	*******
		132;		USE	r program
		133 ; A US	ers prog	RAM HOULD INIT:	IALIZE AT THIS POINT. THE FOLLOWING
		134 ; CODE	IS USED	to take the pi	ace of a possible user program
		135 ;			
		<b>136</b> ;			
001D (	941D	137 LOOP:	JNP	LOOP	; WAIT FOR INTERRUPT
		138 ; ****	******	****	*********
		139 \$EJEC	T		

LOC	OBJ	SEQ	source str	TEMENT	
		148 ; ******	*******	***	*************
		141 ;		DISPLAY	ROUTINE
		142 ; THIS	PORTION OF	THIS PROGRAM I	s an interkupt routine which is
		143 ; ACTED	upon hhen	THE TIMER COUNT	is completed. The routime updates
		144 ; ONE DI	SPLAY DIGI	IT FROM THE DISP	Lay Map per interrupt sequentially,
		145 ; THUS E	IGHT TIMES	INTERRUPTS HIL	l have refreshed the entire display.
		146 ; REGIST	ER BANK 1	IS SELECTED AND	The Accumulator is saved upon
		147 ; ENTERI	ng the rou	ITINE. ONCE THE	DISPLAY HAS BEEN REFRESHED THE TIMER
		148 ; IS RES	et and the	e accumulator an	id pre-interrupt register lank is restored.
		149 ;			
<b>001</b> F	05	150 DISPLA:	SEL F	81	; REGISTER BANK 1
8829	AF	151	NOY F	R7, A	; SAVE ACCUMULATOR
8821	8998	152	ORL F	°2, <b>#08H</b>	; TURN DIGIT DRIVERS OFF
0023	FB	153	HOY F	ъ R3	; digit counter to accumulator
<b>88</b> 24	4338	154	ORL P	1, #38H	; "OR" TO GET DISPLAY MAP ADDRESS
8826	A8	155	NOV F	89, A	; DISPLAY MAP POINTER
<b>00</b> 27	F0	156	HOY F	1. erg	GET CHARACTER FROM DISPLAY MAP
0028	39	157	OUTL F	ካ <mark>የ</mark>	; OUTPUT CHARACTER TO SEGMENT DRIVERS
0029	FB	158	MOY F	1. R3	; digit counter value to accumulator
002A	38	159	OUTL F	P2, A	; OUTPUT TO DIGIT DRIVERS
<b>992</b> 8	1B	169	INC F	ช	; INCREMENT DIGIT COUNTER
<b>082</b> C	D307	161	XRL P	1. <b>#0</b> 7H	; CHECK IF AT LAST DIGIT
<b>002E</b>	9632	162	JNZ S	SETINE	; RESET TIMER IN NOT LAST DIGIT
<b>0030</b>	BHOO	163	NOV F	R3, <b>800H</b>	; RESET DIGIT COUNTER
<b>80</b> 32	23F1	164 SETIME:	MOY F	B #TINE	; TIMER VALUE
0034	62	165	MOV 1	Б <b>Я</b>	; LORD TIMER
0035	55	166	STRT	Г	; start timer
<b>00</b> 36	FF	167	HOY F	1. R7	; restore accumulator
0037	93	168	RETR		; RETURN
		169 ; ******	******	*****	***********
		179 \$EJECT			

LOC OBJ	SEQ	Source Stat	TEMENT	
	171 ;			
	172 ; *****	a a a a a a a a a a a a a a a a a a a	*****	***************************************
	173 ;	I	NPUT CHARACTER	AND DIGIT ROUTINE
	174 ; THIS	PORTION OF	THE PROGRAM IS	5 AN INTERRUPT ROUTINE WHICH
	175 ; IS AC	red upon hh	en the IBF bit	IS SET. THE ROUTINE GETS THE
	176 ; DISPLI	ny data wor	d from the dbb	AND DEFINES BOTH THE DIGIT AND
	177 ; The Ci	<b>HRACTER</b> TO	BE DISPLAYED.	This is done by means of a
	178 ; CHARA	cter loop-u	p table and a i	DISPLAY MAP FOR DIGIT AND CHARACTER
	179 ; LOCAT	ion. Specia	l consideratio	N IS TAKEN FOR A DECIMAL POINT WHICH IS
	180 ; SIMPLY	Added to	THE EXISTING C	HARACTER IN THE DISPLAY MAP. REGISTER
	<b>181 ; BRNK</b> :	I IS SELECT	ed and the acci	UNULATOR IS SAVED UPON ENTERING
	182 ; THE R	DUTINE. ONC	e the data wor	d has been fully defined the accumulator
	183 ; AND TI	ie pre-inte	RRUPT REGISTER	BRINK IS RESTORED.
	184 ;		-	
00038 05	185 INPUI:	SEL R	81	; REGISTER BHNK 1
0039 HF	186	л∪ү к тн о	77 H	SHVE HOLUHULHIUK
003H 22	187	IN H	5 DBB	GUEL DHIN
0035 MH	188	ΠUΥ Κ.	2) H	SHYE UNIN NUKU
0036 47	187	- 2007 11 00 00		
0030 (/ 0075 5707	190	KK 11	807U	,
003E J307	191	ηπι, π. ηρι Δ	670U	,
9942 89	197		9	DIGIT LOCATION IN DIGIT POINTER
AB47 FR	194	MOV A	. 92	SAVED DATA MORD TO ACCIMINATOR
9944 531F	195	ANL A	. #1FH	; DEFINE CHERROTER   OOK-UP-TABLE   OC
8846 ET	196	HOVP3 A	, <b>69</b>	GET CHARACTER
8847 AR	197	NOV R	2.8	SAVE CHARACTER
0048 D37F	198	XRL A	. #7FH	IS CHARACTER DECIMAL POINT
994A C659	199	JZ D	POINT	;
004C FR	299	MOV A	6 R2	; Saved Character to accumulator
004D A0	201	MOV 8	R8, A	; Character to display hap
004E 0453	202	JMP R	eturn	j
0050 FA	203 DPOINT	: NOV A	6 R2	; Saved Character to accumulator
0051 50	284	ANL A	. ero	; "AND" with old character
8852 RB	205	NOV e	R0, A	; BACK TO DISPLAY MAP
0053 FF	206 RETURN	: MOV - R	J R7	Frestore Accumulator
0054 93	207	RETR		
	208;*****	******	*****	**********
	289 \$EJECT			

Loc orj ser source statement	
~~~	
212 ; THIS LOOK-UP TABLE OPIGINATES IN PAGE 3 OF THE UPI-41 PRIGRAM	
212) HIS LOOK OF HIGLE ORIGINALS IN THE 3 OF HIG OF 42 HOURDAN	
213 MEMORY. IT IS USED TO DEFINE THE CORRECT ELEVEL OF EACH DEGILITY	
214 THE DECIME FORT OF INSELECTED GREATER FROM THE MOTION CONTRACT.	
215 STATELED LOUIS IS DEALED DEALED TO THE DEALED TO BATTLE DATABASET IN THE	
218 : *******SEGMENTS*******	
93999 219 ORG 3990H ; DPGFEDCBA	
0300 C0 220 CH0: DB 0C0H ;1 1 0 0 0 0 0	
0301F9 221CH1: D8 0F9H ;1 1 1 1 1 0 0 1	
0382 A4 222 CH2: DB 0A4H ;1 0 1 0 0 1 0 0	
0303 B0 223 CH3: DB 0B0H ;1 0 1 1 0 0 0	
0304 99 224 CH4: DB 99H ;1 0 0 1 1 0 0 1	
0305 92 225 CH5: D8 92H ;1 0 0 1 0 0 1 0	
030682 226CH6: DB 82H ;1 0 0 0 0 1 0	
9397F8 227CH7: DB 9F8H ;11111000	
0308 80 228 CH8: D8 30H ;1 0 0 0 0 0 0	
0309 98 229 CH9: D8 98H ;1 0 0 1 1 0 0	
039A 88 230 CHA: D6 88H ;1 0 0 0 1 0 0	
0398 83 231 CHB: D8 83H ;1 0 0 0 0 1 1	
030C C6 232 CHC: D8 0C6H ;1 1 0 0 0 1 1 0	
0380 A1 233 CHD: D8 0A1H ;1 0 1 0 0 0 1	
0308E86 234 CHE: D8 86H ;1 0 0 0 0 1 1 0	
030F8E 235 CHF: DB 8EH ;1 0 0 0 1 1 1 0	
0310 7F 236 CHOP: D8 7FH ;0 1 1 1 1 1 1	
0311 C2 237 CHG: D8 0C2H ;1 1 0 0 0 1 0	
0312 89 238 CHH: D8 89H ;1 0 0 0 1 0 0 1	
0313 FB 239 CHI: D8 0FBH ;1 1 1 1 1 0 1 1	
0314 E1 240 CHJ: D8 0E1H ;1 1 1 0 0 0 0 1	
6316 HB 242 CHN: D8 6HBH ;1 6 1 6 1 1	
6318 8C 244 CHP: D8 8CH ;1 6 6 6 1 1 6 6	
0310 07 240 UNI: US 87N ;1 0 0 0 1 1 1 0740 C4 247 CMU, ND 9C4U .4 4 0 0 0 4	
0314 DF 247 (NUMBER, DD 00FH 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
031F FF 2010LINN. 00 0FFF 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2,22 , ********************************	
INSER SVIRALS	
אים געים לענים לענים איניים לאוגע איניים לאוגע איניים איניים איניים איניים איניים איניים איניים איניים איניים א אינים געים איניים לאוגע איניים אינ	M (145 9795
CH6 9396 CH7 9397 CH8 9398 CH9 9392 CH2 9392 CH2 9392 CH3 9395 CH9 93	
	0 UNU 030U
LTD/ NAME LTD/TATING NAME AND NAME AND	גונס נחו ש
ירים יוער שאפע האשרים אוין איירא אוייר אוייר אייר אוייר איירא אויירא אויירא אויירא איירא אויירא איירא איירא איי אייר איירא איירא איירא איירא אויירא איירא אייר	9 (14) 9749
CHU 0300 CHUMON 0310 CHUM 0310 CHE 030E CHE 030E CHG 0311 CHH 03: CHJ 0314 CHL 0315 CHN 0316 CHO 0317 CHP 0318 CHR 0319 CH7 033 CHY 031C DISPLA 081F DPDINT 0859 INPUT 04733 INDE 0410 DETION 0457 CETTME 043	IA CHU 031B

RSSEMBLY COMPLETE, NO ERRORS

Appendix A2

LOC 08J	SEQ	SOURCE	STATEMENT	
	1; 2;8085 3;ATT 4;LED 5;	a subrout He locati Display.	fine to displi Ion pointed a	Ry The 8-digit Buffer Starting T by MSGSRT on the UPI-controlled
	6;INPU 7;DEST 8;CRLL 9;	ts:nsqsrt Roys: A, S: Outchi	f - Message s' F/F/s ?	TART LOCATION POINTER
4000	10	ORG	4 000H	
00E5	11 statu	s equ	ØESH	; upi status port
8882	12 IBF	EQU	02H	; UP1 IBF FLAG MASK
80E 4	13 DBBIN 14 ;	EQU	0E4H	; upi debin port
4000 E5	15 DSPLA	y: push	H	; SRVE HL
4001 C5	16	PUSH	В	; SRVE BC
4002 282840	17	LHLD	MSGSRT	; LORD HE WITH MESSAGE START ADR
4885 8688	18	NVI	B, COH	; INITIALIZE DIGIT COUNTER
4007 7E	19 S1:	MOY	A, M	GET CHR FROM BUFFER
4008 E61F	20	HNI	1FH	HIRKE IT 5 BITS
400H 80	21	HDD	B	ADD IN DIGIT COUNTER
4008 41	22	FUY	C, H	SHVE TOTAL IN C
4000 001040	23	UNLL		JUDIPUT CHR PLUS LUCHTION TO UPI
400F (0 4040 (6220	29	PIUY PINT	10.0	JUET DIGIT COUNTER
4010 0020	23	TC 10	200	- DONE TE CODDU CET
4015 47	20	30 MAQ		DUNE IF GREAT DET
4916 27	21	TMY	0/11 Li	The MESCORE DIGIT COUNTER
4017 C30740	29 29	JHP	51	GO GET NEXT CHR
4918 01	34 FXIT-	POP	R	PESTOPE RC
401B E1	20	POP	н	RESTORE H
4010 09	33	RET		RETURN
	34 ;			
	35 ; SUBR	OUTINE TO	o output chr	to upi
491D DBF5	37 0100	R·TN	STATIS	PEAD UPT STATUS
401F E602	38	ANI	IBF	LOOK AT THE
4021 C21D40	39	JNZ	OUTCHR	;WAIT UNTIL IBF=0
4024 79	40	MOV	A.C	JGET CHR
4025 D3E4	41	OUT	DBBIN	OUTPUT CHR TO UPI DEBIN
4 8 27 C9	42	RET		; RETURN
	43;			
0002	44 MSGSR	T: DS	02H	; Location of Hessage Start Pointer
	45 j			
	46 END			

Appendix B1

-

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2.0

LOC	OBJ	SEQ	Source state	MENT			
		1;		*******	*****	****	
		2;	* UPI	-418 SENSOR	MATRIX CON	Troller +	
		3;	********	********	*****	*****	
		4;					
		5;	THIS PROGRA	n uses the I	upi-41a as i	9 SENSOR MATRIX CONTRO	JLLER.
		6 ; IT	HRS MONITORING	CAPABILITIE	SOF UP TO :	l28 Sensors. The Cour	OINATE
		7 ; AND	SENSOR STATUS	of each deti	ected Chang	e is available to the	MASTER
		8 ; MIC	ROPROCESSOR IN I	A SINGLE BY	te. r 40x 8	FIFO QUEUE IS PROVIDE	ed for
		9 ; DAT	'a Buffering. B	oth hardwar	e or polled	INTERRUPT METHODS CRI	I BE USED
		10 ; TO	NOTIFY THE MAST	er of a deti	ected senso	r Change.	
		11;					
		<u>12</u> ;***	******	*********	*******	******	*******
		13 ;					
		14 ; REG	ISTER DEFINITIO	NS:			
		15;	REGISTER	R	BQ	RBI	
		16 ;					
		17;	R0	MATRIX M	AP POINTER	NOT USED	
		18;	R1	FIFO POI	nter	NOT USED	
		19 ;	R2	scrn ron	SELECT	NOT USED	
		219 j	R3	COLUMN COUNTER		NOT USED	
		21;	R4	FIFO-IN		NOT USED	
		22;	R5	FIFO-OUT		NOT USED	
		23;	R6	Change H	ord	NOT USED	
		24;	R7	Compare		NOT USED	
		25;					
		26 ; ***	*****	******	*******	*****	****
		27;					
		28 ; POR	T PIN DEFINITIO	NS:			
		29 ;					
		30 ; PIN	I PORT 1 F	UNCTION	PIN	PORT 2 FUNCTION	
		31 ;					
		32 ; P0-	7 COLUMN L	INE INPUTS	P 0- 3	ROW SELECT OUTPUTS	
		33;			P4	FIFO NOT EMPTY INTER	RUPT
		34;			P5	obf interrupt	
		35 ;			P6-7	NOT USED	
		36;					
		37 ; ***	*****	******	*******	******	*******
		38;					
		39 \$ EJE	СТ				

	12 / UNIX HUL PURU D		I.
	45 ;		
	44 ;	BII	FUNCTION
	40 ;		
	46 <i>i</i>	D6-6	SENSUR COURDINNIE
	47 3	DY	SENSUR STATUS
	48 ;		
	49 ; ***********		***************************************
	50 ; 54 (TOTHE DEGV)		
	51 / STHIUS REGIST	EK BIT DEFIN	I LUN:
	52 ;		
	53 ;	BII	FUNCTION
	54 (
	55 <i>i</i>	Des	
	56;	01-3	IBF, F8, F1 (NUT USED)
	57 ;	D4	FIFO NOT EMPTY
	58 ;	D5-7	USED DEFINED (NO) USED)
	59 i		
	60 ; ***********		****************
	61 ;		
	62 ;		EQUATES
	63 ;		
	64 ; THE FOLLOWING	G CODE DESIGN	ites three variables; scanta, fifoba
	65 ; AND FIFOTA.	scrinth ridjus	is the length of a delay between
	66 ; Scrinning Shit	CH. THIS SI	IULATES DEBOUNCE FUNCTIONS. FIFOBR
	67 ; IS THE BOTTON	I ADDRESS OF	THE FIFO. FIFOTA IS THE 10P ADDRESS
	68 ; OF THE FIFO.	THIS NEKES I	Possible to have a fifo 3 to 40
	69 ; BYTES IN LENG	ith.	
	70 ;		
	71 ; ***********************************		*************************************
	72;		
000F	73 scrinth Equ	ØFH	SCAN TINE ADJUST
9998	74 FIFOBA EQU	08H	FIFO BOTTON ADDRESS
002F	75 FIFOTA EQU	2FH	FIFD TOP ADDRESS
	76 ;		
	77 \$EJECT		

LOC	0 B J	SEQ	SOURCE	STATEMENT	
		78 ; **** *	*****	*****	*************
		79 ;			
		849;		INI	TIALIZATION
		81 ;			
		82 ; THE P	rogram 5	tarts at the fo	LLOWING CODE UPON RESET. WITHIN
		83 ; THIS	INITIALI	ZATION SECTION	THE REGISTERS THAT MAINTAIN THE MATRIX
		84 ; NAP, F	ifo and I	ron scrinning ar	e set up. Port 1 is set high for use
		85 ; AS AN	INPUT P	ort for the col	unn status. Bit 4 of status register is
		86 ; HRITT	en to co	nvey a fifo enp	TY CONDITION. THE INITIAL COLUMN STATUS
		87;0FAL	l the ro	ns in the senso	R MATRIX IS THEN READ INTO THE MATRIX
		88 ; MAP.	once th	e matrix map is	FILLED THE OBF INTERRUPT (PORT 2-4) IS
		89 ; Enabl	ED.		
		90 i			
		91 ; *****	******	************	***************************************
		92 ;			
8868		93	ORG	0	
9999	883F	94 INITAX	: MOV	R0, #3FH	; MATRIX MAP POINTER REGISTER, 10P ADDRESS
0002	Brief	95	MOV	R2, #8 FH	; SCAN ROW SELECT REGISTER, TOP ROW
8884	BC88	96	HOV	R4, #FIFOBA	FIFO INPUT ADDRESS REGISTER, BOTTOM OF FIFO
0006	BD2F	97	MOV	R5, #FIFOTA	FIFO OUTPUT ADDRESS REGISTER, TOP OF FIFO
6668	89FF	98	orl	P1, #8 FFH	; INITIALIZE PORT 1 HIGH FOR INPUTS
999R	2388	99	MOV	A, 190 H	; INITIALIZE STATUS REGISTER; FIFO EMPTY
999C	98	100	HOV	STS, A	HRITE TO STATUS REGISTER, BITS 4-7
999D	FA	101 FILLM	: HOV	A, R2	; SCAN RON SELECT TO ACCUMULATOR
999E	38	162	OUTL	P2, A	Foutput scan row select to port 2
999F	6 9	103	IN	л Р1	; Input Column Status Port 1
0010	A9	104	MOY	eru, A	; Lord Hatrix Map with Column Status
0011	FR	165	MOV	A, R2	CHECK SCAN RON SELECT REGISTER VALUE FOR 0
001 2	C618	106	JZ	OBFINT	; IF 0 ENABLE OBF INTERRUPT
0014	C8	167	DEC	R0	; DECREMENT TO NEXT MATRIX MAP ADDRESS
0015	CA	198	DEC	R2	; decrement to scrn next row
891 6	049D	189	JHP	FILLMX	FILL NEXT MATRIX MAP ADDRESS
9918	BA10	110 OBFINI	: HOV	R2, #10H	BIT 4 HIGH IN ROW SCAN SELECT REGISTER
991A	FA	111	MOV	A. R2	; Ron Scan Select value to accumulator
001B	38	112	OUTL	P2, A	; Initialize Port 2, Bit 4 For "En Flags"
801 C	F5	113	EN	FLAGS	; Enable obf interrupt port 2, bit 4
		114 ;			
		115 \$EJECT			

LOC C)BJ	SEQ	source st	atement	
		116 ; ***** *	*******	*****	*************
		117 ;			
		118;		scrin and (Compare
		119;			
		120 ; THE FU	LLOHING C	UDE IS THE SCHN	HND COMPHRE SECTION OF THE PROGRAM.
		121 ; UPUN E	NTERING T	HIS SECTION A CH	HECK IS NHDE TO SEE IF THE ENTIRE NHTRIX
		122 ; HHS BE	EN SUHIME	D. IF SU THE RE	EGISTERS THEI MEINTHIN THE METRIX MEP HIND RUN
		123 / SUHNNI 424 - MOTDIN	NU HKE KE	SET TO THE BEGIN	WNING UP THE SENSOR PHIKIX. IF THE ENTIRE
		124 J THIRIA	UTC DOTUT	EN SUMMED THE P	REGISTERS INUREMENT TO SUMM THE NEXT RUN.
		120 JFKUR I 404 - DITC 0	HIS PUINI	UN THE KUN SUM	A DAN 5 COD THE EVITEDNOL INTERDURING SUBJECT OF THE PURCHASE
		427 .011 10		ANNIALINU AND DIIS	4 NNU J FUK INC CATEKNIL INTERKUFTD. INUSLT
		420 OFFECT	רושב טר וח דעוב בוואר	TION NECTOEN (NUME BY LUGICALLY ANDRALMS IT SO AS TO UNLY
		120 / HFFEUT	HATPIY 1	C COMMEN O N	UNCE THE REGISTERS HAR RESETS UNE KUN UT THE ELOU IS EVENTIER TO ONTIKE FOD SOON TIME
		179 : (DERON	NUCI) 0	DUTE OF COLUMN (ETATING TO THEN DEAD TWITH THE MATDIX MOD
		174 : AT THE	TTHE THE	NEW COLUMN STR	THE IS COMPAPED TO THE OLD THE DESULT IS
		172 : STORED	TN THE C	THERE DEGISTER	THE PROGRAM IS THEN ROLITED ACCORDING 10
		177 : LINETHE	จกคุณกา	a change lias de	TECTED
		174 ;			
		175 : ******	*****	*****	******
		136 ;			
881D F	FR	137 RDJREG:	NOV	A. R2	; SCAN RON SELECT TO ACCUMULATOR
001E 5	530F	138	ANL	r. Hof h	CHECK FOR & SCAN VALUE ONLY, NOT INTERRUPT
0020 (C626	139	JZ	RSETRG	; IF 0 RESET REGISTERS
0022 (C8	140	DEC	R0	; DECREMENT MATRIX MAP POINTER
9923 (CR	141	DEC	R2	DECREMENT SCHN RON SELECT
0024 6	842C	142	JHP	SCRIMX	; SCAN MATRIX
0026 E	883F	143 RSETRG:	MOV	R0, #3FH	RESET MATRIX MAP POINTER REGISTER, TOP ADDRESS
0028 F	FA	144	MOY	A, R2	; SCAN ROW SELECT TO ACCUMULATOR
0029 4	430F	145	orl	rj Hof h	; RESET SCAN ROW SELECT, NO INTERRUPT CHANGE
002B f	R A	146	MOV	R2. A	; SCRN ROW SELECT REGISTER
002C F	FA	147 SCRIMX:	MOV	A, R2	SCAN RON SELECT TO ACCUMULATOR
002 D 1	38	148	outl	P2. A	JOUTPUT SCAN ROW SELECT TO PORT 2
902E 8	889F	149	MOV	R3, #Scanth	; set delay for output scan time
0030 E	EB30	150 DELAY2:	djnz	R3, DELAY2	; DELRY
0032 (89	151	IN	A, P1	FINPUT COLUMN STATUS FROM PORT 1 TO ACCUMULATOR
0033 2	29	152	XCH	A, ero	STORE NEW COLUMN STRTUS SAVE OLD IN ACCUMULATOR
0034 [D 9	153	XRL	a, ero	FCONPARE OLD WITH NEW COLUMN STATUS
0035 f	R F	154	HOY	R7, A	; SAVE COMPARE RESULT IN COMPARE REGISTER
0036 (C669	155	JZ	Chifful	; IF THE SAME, CHECK IF FIFO IS FULL
		156 ;			
		157 \$ EJECT			

LOC	OBJ	SEQ	Source s	TATEMENT	
		158 ; ***	*********	*****	************
		159 ;			
		160 ;		Change I	HORD ENCODING
		161 ;			
		162 ; THE	FOLLOWING	CODE IS THE CHI	RINGE WORD ENCODING SECTION. THIS
		163 ; SEC	TION IS ONL	y executed if (a change has detected. The column counter
		164 ; IS	set and dec	Remented to des	Signate each of the 8 columns. The compare
		165 ; REG	ister is lo	ioked at one bi	T AT A TIME TO FIND THE EXACT LOCATION OF
		166 ; The	Change(s).	when a chang	E IS FOUND IT IS ENCODED BY GIVING IT A
		167 ;COO	rdinate for	ITS LOCATION	THIS IS DONE BY COMBINING THE PRESENT VALUE
		168 ; IN	THE RON SCR	n select regis	ter and the column counter. The actual status
		169;0F	That sensor	IS ESTABLISHE	d by looking at the corresponding byte in
		170 ; THE	: NATRIX NAF	p. This status	IS CONBINED WITH THE COORDINATE TO ESTABLISH
		171 ; THE	Chringe Hor	80. The Change	WORD IS THEN STORED IN THE CHANGE WORD REGISTER.
		172 ;			
		173 ; ***	*******	*********	***************************************
		174 ;			
0038	B898	175	MOV	R3, #08H	; set column counter register to 8
80 3R	CB	176 RRL0	iok: dec	R3	; decrement column counter
903E	F0	177	HOV	a, erø	; Column status to accumulator
00 30	77	178	RR	A	; Rotate column status right
803 0	- NØ	179	HOV	ero, a	; Rotated Column Status Back 10 Matrix Map
003E	FF	180	MOY	A, R7	; Compare register value to accumulator
003F	77	181	RR	A	; Rotate compare value right
0049	HF	182	NOV	R7, A	; rothted compare value to compare register
8941	F245	18 3	JB7	ENCODE	; 1EST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD
8843	0469	184	JNP	CHIFFUL	; IF NO CHANGE IS DETECTED CHECK FOR FIFO FULL
8945	FA	185 ENCO	ide: Mov	R, R2	; SCAN RON SELECT TO ACCUNULATOR 80000XXX
0046	530F	186	ANL	r, 19 Fh	; Rotate only scan value
004 8	E7	187	RL.	A	; ROTATE LEFT 000XXXX0
0049	E7	188	RL.	A	; ROTATE LEFT 98XXXX99
004f	i E7	189	RL.	ล	; ROTATE LEFT 8XXXX899
004E	48	198	ORL	A, R3	; ESTABLISH MATRIX COORDINANT @XXXXXXX
		191			; (OR) COLUNN COUNTER VALUE WITH ACCUMULATOR
8840	: AE	192	MOV	R6, A	; SAVE COORDINANT IN CHANGE WORD REGISTER
004 C	FØ	193	NOV	A, erg	; Column status from matrix map to accumulator
804E	5380	194	ANL	r, #89H	;0 ALL BIIS BUT BIT 7
0056	4E	195	ORL	A. R6	; (or) sensor status with coordinate for completed change word
8851	.RE	196	MOV	R6, A	; SRVE CHRINGE WORD XXXXXXXX
		197 ;			

198 \$EJECT

ETED-DRBOUT NONAGEMENT 201; 282; 203 ; THE FOLLOWING CODE IS THE FIFO-DOBOUT NEWROGENENT SECTION OF THE 204 ; PROGRAM. THIS SECTION TAKES AN ENCODED CHANGE WORD AND LOADS IT INTO 285 ; THE FIFO. THE FIFO NOT EMPTY INTERRUPT IS THEN SET AND THE FIFO-IN 286 ; POINTER GETS UPDATED. A FIFO FULL CONDITION IS THEN CHECKED FOR AND 287 ; ROUTED ACCORDINGLY. IF BOTH THE FIFO AND OBF HAVE CHANGE WORDS THE 288 ; PROGRAM LOCKS UP UNTIL THIS HAS CHANGED. IF THE FIFO ISN'T FULL COLUMN 289 ; COUNTER= 8, FIFO EMPTY AND OBF CONDITIONS ARE CHECKED. THE FIFO-OUT 210 ; POINTER IS SET AND DBBOUT IS LOADED IF THE FIFO ISN'T EMPTY AND OBF ISN'T 211 ; Set. IF THIS ISN'T THE SITURTION, PROGRAM FLOW IS ROUTED BACK 10 THE 212 ; The Scrin and Compare Section to Scrin the Next Roal 213; 215; 8852 FC 216 LORDFF: MOV FIFO INPUT RODRESS TO ACCUMULATOR A, R4 8853 R9 217 HOV RL A FIFO POINTER USED FOR INPUT 0054 FE R. R6 ; CHANGE HORD TO ACCUMULATOR 218 NOV 8855 RL 219 erl a ; LORD FIFO RT FIFO INPUT ADDRESS HOY 0056 2310 228 STATNE: HOV R. #10H **; BIT 4 FOR FIFO NOT EMPTY** 6658 98 ; HRITE TO STATUS REGISTER, FIFO NOT EMPTY 221 MIN STS, A FIFO NOT EMPTY INTERRUPT PORT 2-5 HIGH 9959 8R29 222 INTRH1: ORL P2, #20H 0058 FA FROM SCAN SELECT TO ACCUMULATOR 223 HOY fl, R2 885C 4328 224 ND1 R, #20H ; SAVE INTERRUPT, NO CHANGE TO SCAN VALUE 005E AA 225 MOV ; ROW SCAN SELECT REGISTER R2. A 226 RDJFIN: MOV FIFO TOP ADDRESS TO ACCUNULATOR 005F 232F A. #FIFOTA 8861 DC 227 XRL 8, R4 COMPARE WITH CURRENT FIFO INPUT RODRESS ; IF THE SAME RESET FIFO INPUT REGISTER 0062 C667 228 JZ RSFFIN 8864 10 229 INC R4 HEXT FIFO INPUT ADDRESS 8865 8469 230 JHP CHEFFUL ; CHECK FIFO FULL 9967 BC98 231 RSFFIN: HOV R4, #FIFOBR RESET FIFO INPUT REGISTER, BOTTON OF FIFO FIFO INPUT ADDRESS TO ACCUMULATOR 0069 FC 232 CHEFFUL: NOV A. R4 996A DD 233 XRL R, R5 ; COMPARE INPUT WITH OUTPUT FIFO ADDRESS 0068 9670 234 JIZ CHCNTR FIF NOT SAME CHECK COLUMN COUNTER VALUE 006D 866D 235 CHOBF1: JOBF ; IF OBF IS 1 THEN CHECK OBF CHOBF1 886F 272F 236 ADJFOT: MOV A. #FIFOTA FIFO TOP ADDRESS TO ACCUMULATOR 6071 DD 237 XRL ; COMPARE TOP TO OUTPUT FIFO ADDRESS A, R5 **0072 C677** 238 JZ RSFF0T **#1F THE SRME RESET FIFO OUTPUT REGISTER** 0074 1D 239 INC R5 **; NEXT FIFO OUTPUT RODRESS** JNP 8875 8479 249 LORDDB ; LORD DBBOUT 9977 BD98 241 RSFFOT: MOV R5, #FIFOBA ; RESET FIFO OUTPUT ADDRESS TO BOTTOM OF FIFO 8879 FD 242 LOHDDB: HOV **; OUTPUT FIFO ADDRESS TO ACCUMULATOR** A, R5 007A A9 243 MOV RL A FIFO POINTER USED FOR OUTPUT 0078 F1 244 HOV ; Change word to accumulator A. 8R1 997C 92 245 OUT DBB, A ; CHRINGE WORD TO DEBOUT 667D FB 246 CHONTR: MOV A, R3 ; Column Counter to accumulator 887E 963A 247 JNZ RRLOOK ; IF NOT 0 FINISH CHRINGE HORD ENCODING 0080 2308 248 CHEFEN: MOV A #FIFOBA FIFO BOTTOM ADDRESS TO ACCUMULATOR 0082 DC 249 XRL R, R4 ; COMPARE FIFO INPUT ADDRESS WITH FIFO BOTTON ADDRESS 0083 C68C 250 JZ **ADJFEN** ; IF THE SAME ADJUST TO CHECK FOR FIFO EMPTY 0085 FC NOV FIFO INPUT RODRESS TO ACCUMULATOR 251 R. R4 9986 97 ; decrement fifo input address in accumulator 252 DEC A

253

XRL

8, R5

8987 DD

; CONPARE INPUT TO OUTPUT FIFO ADDRESSES

LOC	obj	SEQ	SOURCE	STRTEMENT	
9988	C691	254	JZ	STRIMT	; if same, write status register for FIFO empty
008A	049C	255	JMP	CHOBF2	; CHECK OBF
899 C	232F	256 Adjfen:	MOV	A. #FIFOTA	FIFO TOP ADDRESS 10 ACCUNULATOR
008E	DD	257	XRL.	A. R5	COMPARE TOP TO OUTPUT FIFU ADDRESS
888F	969C	258	JNZ	CHOBF2	; IF NOT SAME THEN FIFO IS NOT EMPTY, CHECK OBF
0091	2300	259 Statint :	HOV	A, #80H	CLEAR BIT 0 FOR FIFO EMPTY
8893	90	260	HOV	STS, A	; HRITE TO STATUS REGISTER
8894	9RDF	261 INTRL0:	ANL	P2, #00FH	; FIFO ENPTY, INTERRUPT PORT 2-5 LON
0096	FA	262	MOV	A, R2	; SCAN RON SELECT 10 ACCUMULATOR
0097	530F	263	ANL	R, #90FH	; SAVE INTERRUPT, NO CHANGE TO SCAN VALUE
0099	AA	264	MOV	R2, A	; SCAN RON SELECT REGISTER
009A	041D	265	JNP	ADJREG	; ADJUST REGISTERS
009C	861D	266 CHOBF2:	JOBF	ADJREG	; IF OBF=1 THEN ADJUST REGISTERS
009E	046F	267	JMP	ADJFOT	; Adjust FIFO out address to load debout
		268 ;			
		269	END		

USER SYMBOLS

Adjfen øørc	rdjfin 005f	ADJFOT 886F	ADJREG 001D	CHCNTR 007D	CHIFFEM 0080	CHIFFUL 0069	CH08F1 006D
CHOBF2 009C	DELRY2 0030	ENCODE 0045	FIFOBA 0008	FIFOTA 002F	FILLMX 0000	INITMX 0000	INTRHI 0059
INTRLO 0094	LORDDB 0079	LORDFF 0052	OBFINT 0018	RRLOOK 003A	RSETRG 0026	RSFFIN 8067	RSFF0T 9977
SCRIMIX 882C	SCRINTH 000F	STATMT 0091	STATNE 0056				

RSSEMBLY COMPLETE, NO ERRORS

Appendix B2

ISIS-II 8080/808 8085R/UPI SENSOR	5 NACRO ASSEMBL NATRIX CONTROL	er, X108 Ler	MODULE	PRGE 1
LOC OBJ	SEQ	source s	TATEMENT	
	1;			
	2; Subro	JTINE TO	read all changes	IN THE UPI AND BUILD A BUFFER
	3 ; START	ing at Bu	FSRT. REG. B CO	NTRINS THE NUMBER OF CHRINGES
	4 ; UPON I	EXIT. TH	e heximum number	OF CHANGES IN HWY UNE CHLL
	5 : 15 25) .		
	6 ;			
	7 3 INPUE	S: NUTHIN	li E 1990 - Diferen <i>d</i> i	O FORT
	8 3001P0	IS: UNHING	E HURD BUFFER HI	BUFSKI
	9; 40.000.00		E MURU CUUNI IN	KEU. B
	10 JUNELS			
4000	12	OPC	40000	
4000	17 510116	FOU	9550	
9954	14 DRROUT	FOL	9F4H	: UPT DEBOUT POPT
661.9	15 EIE0	FOU	104	FIED NOT EMPTY NASK
8991	16 OBF	FOIL	91H	: ORF MRSK
4388	17 BUFSRT	EQU	43884	BUFFER START LOCATION
	18;			
4000 210043	19 START:	LXI	H, BUFSRT	; INITIALIZE BUFFER POINTER
4003 0600	28	MVI	B, 80H	; Clear Change Hord Counter
4005 DBE5	21 POLL1:	IN	STATUS	; READ UPI STATUS
4007 E611	22	ANI	FIFO OR OBF	; test fifo not empty and obf
4009 C8	23	RZ		Return if Zero
400R DBE5	24	IN	status	READ UPI STATUS
400C E601	25	ANI	obf	; test obf flag
400E CR0540	26	JZ	POLL1	; WRIT IF NOT READY
4011 DBE4	27	IN	Deedut	; read change hord
4013 77	28	HOV	n a	; LOAD BUFFER WITH CHANGE WORD
4014 23	29	INX	н	; INC BUFFER POINTER
4015 04	30	INR	B	; INC CHANGE HORD COUNTER
4016 C8	31	RZ		; EXIT IF COUNTER = 256
4017 C30540	32	JMP	PULL1	; Check IF MORE CHANGE NORDS
	33;			
	34 END			

Appendix C1

ISIS-II NCS-48/UPI-41 NACRO ASSEMBLER, V2.0 AP-41 COMBINATION 1/0 DEVICE

```
LOC OBJ
 SEØ
           SOURCE STRTEMENT
    1 $M0042
    3;
    4 ; THIS UPI-41 PROGRAM INPLEMENTS A FULL-DUPLEX URRT WITH ON-CHIP
    5 ; BAUD RATE GENERATION IN COMBINATION WITH AN 8-BIT PARALLEL 1/0
    6 ; PORT. THE BRUD RATE IS SELECTABLE FROM 110 10 1280 BRUD. THE
    7 ; parallel 1/0 port 15 programmable for either input or output.
    8;
    9 ; Interrupt outputs are available for data available on the receiver
   10 ; AND PARALLEL INPUT. THE STATUS REGISTER MUST BE READ TO DETERMINE
   11 ; WHICH SOURCE CRUSED THE INTERRUPT. THE FLAGS FO AND F1 CODE THE
   12 ; INTERRUPT SOURCE. FO AND F1 ALSO GIVE AN INDICATION OF COMMAND
   13 ; ERRORS.
   14;
   16;
   17 ; REGISTER DEFINITION
   18;
                   R80
                                      RB1
   19;
   20;
                   NOT USED
                                      NOT USED
            0
   21;
            1
                   NOT USED
                                      BAUD RATE CONSTANT
   22;
                   NOT USED
            2
                                      TX TICK COUNTER
   23;
            3
                   RX STRTUS (RXSTS)
                                      TX SERIALIZER
   24 ;
            4
                   RX HOLDING
                                      TX BUFFER
            5
   25;
                   RX TICK COUNTER
                                      TX STATUS (TXSTS)
    26;
                   RX DESERIALIZER
                                      COMMEND STORE
            6
    27;
                                      ACC. INTERRUPT SAVE
            7
                   STATUS REG STORE
    28;
    390;
    31 $EJECT
```

LOC	OBJ	SEQ	SOURCE	STRTEMEN	п
		32;			
		33 ;***	*******	******	***************************************
		34;			
		35 ; COM	IANDS		
		36;			
		37;	CONFI	gure: 0 0	IØABCDP
		38;			A - 1200 BAUD SELECT
		39;			8 - 600 BHUD SELECT
		40 ;			c - 390 Brud Select
		41;			D - 110 BRUD SELECT
		42;			E - PARALLEL 1/0 DIRECTION
		43;			0 - 1NPUT
		44;			1 - OUTPUT
		45 j			
		46 j	I/0:	1 (000000 (PERFORM 1/0 OPERATION)
		47;	RESET	ERROR:1 1	1000000 (RESET RX ERROR IN STATUS)
		48;			
		49 ; ####	******	i kakakaka kaka	******
		50;			
		51 ; Stat	IUS REGIS	TER DEFINI	ITION
		52;			
		53;	BIT		DEFINITION
		54;			
		55 ;	0		obf - Data Available
		56 ;	1		IBF - BUSY
		57;	2		FØ
		58;	3		F1
		59 ;	4		NOT USED
		60 ;	5		TXINT - TX INTERRUPT
		61;	6		FRAMING ERROR
		62;	7		overrun Erkor
		63;			
		64;	F0	F1	OPERATION
		65 j			
		66 ;	8	8	X
		67 ;	0	1	PARALLEL 1/0 DATA AVAILABLE
		6 8;	1	0	serial 1/0 data available
		69 ;	1	1	Command Error
		70;			
		71 ; ***	****	******	************
		72;			
		73 \$ EJE	CT		

LOC	OBJ	SEQ	SOUR	ce statement		
		74 ;				
		75 :	, *********	********	*****	******
		76	;			
		77	; status reg	ISTER DEFINI	TIONS	
		78	i			
		79	;		RXSTS	TXSTS
		89	;			
		81	;	9	rx flag - space	TX FLAG - TRANSMITTING CHR
		82	;	1	Start Flag - Good Start	REQUEST BYTE - CHR IN BUFFER
		83	;	2	BYTE FINISHED	TX PIPELINED DATA BIT
		84	;	3	data Ready	start bit flag
		85	j.	4	FRAMING ERROR	NOT USED
		86	;	5	Overrun Error	NOT USED
		87	;	6	10 DIRECTION	NOT USED
		88	;	7	10 Flag	NOT USED
		89	i			
		90	;*****	****	ka sistemis in the initial cale and	*****
		91	;			
		92	PORT 2 DEF	INITIONS		
		93	j			
		94	; BI	Г	DEFINITION	
		95	;	-		
		%	; Ū		tx data	
		97	; 1		NOT USED	
		98	; 2		NOT USED	
		99	; 3		TX INTERRUPT	
		100	; 4		UBF INTERRUPT (RX OR 1/	o data available)
		101	, Տ		NOT USED	
		102	; 6		NOT USED (TICK SAMPLE)	
		103	; 7		NOT USED	
		104	;			
		105	;*******	******	*****	********************
		106	i			
		107	; MISC.			
		108	;			
		109	; RX	Data	TO INPUT	
		110	; EX	t clock	T1 INPUT 76. 8KHZ (1. 228	38NHZ/16)
		111	j.			
		112	;******	****		kk************
		113	;			
		114	\$EJECT			

····

	117;		
	118 ; SYSTEM EQU	ATES:	
	119 /		
9991	120 RXFLG EQU	01H	; RECEIVE FLAG IN RXSTS
8892	121 SRIFLG EQU	82H	START BIT FLAG IN RXSTS
8884	122 BFFLG EQU	i 04H	BYTE FINISHED FLAG IN RXSTS
0008	123 DATROY EQU	J 08H	; data ready flag in rxs1s
0010	124 FRAMER EQU) 1 0H	FRAMING ERROR FLAG IN RXSTS
0020	125 OVRUN EQU) 20H	; Overrun Error Flag in Rxsts
0040	126 10DIR EQ	J 40H	; I/O DIRECTION FLAG IN RXS15
0880	127 IOFLG EQU	J 80H	; 1/0 request flag in rxsts
6991	128 TXFLG EQU	j 9 1h	FTX FLAG IN TXSTS
0082	129 REOFLG EQU	J 82H	Request byte flag in TXSTS
0040	130 TICOUT EQU	j 40h	; TICK SAMPLE BIT IN PORT 2
9989	131 RXINTL EQU	J 80H	; RX DESERIALIZER INITIALIZATION
889 4	132 TICSRT EQU	J 04H	TICK INITIALIZATION
007F	133 ASCHSK EQU	J 7FH	ASCII MASK
0003	134 TXTIC EQU	J 03H	1X TICK MOD NRSK
99 28	135 TXEND EQ	J 400	; TICK COUNT AT END OF TX CHARACTER
0024	136 STPEND EQU	J 36D	Fick count at end of the data
0004	137 MARK EQU	J 04H	HARK OUTPUT
OOFB	138 SPACE EQ	j ofbh	SPACE OUTPUT
0000	139 ZERO EG	j 00H	Figeneral Clear
0008	140 TXINT EQ	J 08H	; TX INTERRUPT OUTPUT IN PORT 2
0020	141 TXBIT EQ	J 20H	TX INTERRUPT BIT IN STATUS
8626	142 TIMCON EQ	J 320	TIMER CONSTANT RAM LOCATION
003F	143 RSTERR EQ	j 3FH	RESET ERROR MASK FOR STATUS
8848	144 FESTS EQ	J 49H	FRAMING ERROR BIT IN STATUS
0880	145 OVSTS EQ	J 80H	OVERRUN EKROR BIT IN STATUS
0001	146 MKOUT EQ	J 01H	MARK OUTPUT TO PORT
ØØFE	147 SPOUT EQ	J ØFEH	SPACE OUTPUT TO PORT
0008	148 SBIT EQ	J 08H	; 1x start bi'i flag
0003	149 RXSTS EQ	U R3	RX STATUS REGISTER
UU0 5	150 TXSTS EQ	U R5	; IX STRTUS REGISTER
	151 ;		
	152 \$EJECT		

LOC	OBJ	SEQ	SOUR	ice str	RTEMENT	
		153 ; •	****	ka k	*****	*****
		154 ;				
		155 ; }	RESET VEC.	ior lo	CATION	
		156 ;	ala ala ala ala ala ala ala ala ala a	والمراجعة والمعالم والم		
		107)* 459 :	*****	*****	***	***************************************
0000	1	459	00	6	00000	
0000		169 :	<u> </u>	9	00001	
0000	105	161 R	eset: se	L	RHØ	; Get into RB0 at reset
0001	4400	162	JM	P	INIT	GO TO INITIALIZATION
		163;				
		164 ;:	*****	***	okatokatokat	
		165 ;				
		166 ;)	TIMER INT	Errupt	LOCATION	- TIMER IS SET TO 4 TIMES THE BRUD RATE. THE
		167 ;	RECEIVER	and tr	RNSMITTER	ARE SERVICED EVERY FOUR TIMER TICKS. SOFTWARE
		168 ; [Delay Loo	PISU	ISED FOR 1	IMING FINE-TUNING. RB1 R1 PUINTS AT DELAY
		169 ;	Constant	AT INT	errupt.	R1-1 Points at timer constant.
		1/0;				
		1/1 /	atakatakan kata ata	at all all all all all all all all all a	aktokokokokoko	an a
0007	,	177	09	G	9997H	
0001		174 ;				
8007	' D5	175 T	'IMINT: SE	L	RB1	; INTERRUPT PROCESSING IN RB1
8998	8 AF	176	MC	Ŵ	R7, A	SAVE ACCUMULATOR IN R7
0005	9 F9	177	MC	V	A, R1	; GET TIMER CONSTANT
000f	90	178	NC	P		; DELAY TO GET INTO 11 HIGH
8996	3 5608	179 I	INT1: J1	1	IN11	;WAIT UNTIL T1 IS LOW
8000) 62	180	MC	γ	T, A	; Then Lohd Counter
		181 ;				
		182;	TICK SHIM	'LE 00	IPUI	
000		183 ;		a a	DO 4007 1	r i coutr
0000	2 2000 7 2040	185		н И	P2.#TTCN	Π
0010		186 :			12741100	
		187;	****	ojojojojo	***	******************* *****************
		188;				
		189;	TRANSMIT	ier ou	TPUT - TII	re Critical Tasks done First. Data bit output
		190;	PIPELINE) IN T	XSTS BI1 :	2 IS OUTPUT NOW.
		191 ;				
		192;	*****	***	******	**************************************
004		193 ;				CET TY CTOTIC
0014	2 5049	405	1AUUI. 114 13	14 20	MOUT	TEST PIPELINED NATA
001	5 98FF	196		×2.	P2.#SP04	
861	7 0418	197	 J	P	RCV	DO RECEIVER
001	9 8801	198	NUT: OF	a.	P2, ##KOU	r ; output Mark is set
		199;				
		200;	****	nicicicic	,	******
		201;				
		202;	STHRT OF	RECEI	VER FLOW	- RXSTS REGISTER
		203;	HOLDS RE	æ i ver	status.	
		204 ;			ساسان بال بال بال بال بال	ﯩﻠﻪﺧﻪﺧﻪﺧﻪﻧ ﺋﻪﺋﻪﻧﻪ ﺋﻪﺋﻪﻧﻪﻧﻪ ﺋﻪﺋﻪﻧﻪ ﺋﻪﺋﻪﻧﻪ ﺋﻪﺋﻪ
		2000 /	, 	₽ኆኆኆቾቾ	┯ ┯┯ ┯ ╇ ╄ ╇╇	ŦŦŦŦŢŢŢŢŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ
201	R (15	200 /	העי כו	FI	PRA	Shitch to RX RAMK
001	~ ~~	201 7		an tan	110707	2 WEALTHE CO. INC. MILITAL

LOC	OBJ	SEQ	Source s	TATEMENT	
001C	FB	208	MOV	A, RXSTS	; Get RXSTS
691D	1226	289	JB9	RCV1	; test receive flag
		210			;0 - NO CHR BEING RECEIVED
		211			;1 - POSSIBLE START BIT, DO TEST
001F	3668	212	JT0	XMIT	; TEST RXD INPUT
		213			;0 - SPACE, SET RX FLAG
		214			1 - MARK, GO CHECK XMIT
8821	4301	215	ORL	AJ #RXFLG	; space - set rx flag
8823	AB	216	MOV	RXSTS, A	; Restore RXSTS
8824	8468	217	JMP	XMIT	; go handle xntr
		218;			
		219 ; STAR1	BIT TEST	ſ	
		220 ;			
89 26	3238	221 RCV1:	J B1	RCV3	FIRST TEST START BIT FLAG
0028	3633	222	JT0	RCV2	; TEST RXD INPUT
		223			;0 - Space, good start bit
		224			1 - HARK, BAD START BI), IGNORE
002H	4382	225	ORL	A, #SRTFLG	; GOOD START - SET START BIT FLAG
88 20	AB	226	MOV	RXSTS, A	RESTORE RXSTS
00 2D	BE89	227	MOV	R6, #RXINTL	; setup RX deserializer
002F	BD04	228	NOV	R5, #TICSRT	FLORD RX 1 ICK COUNTER
0031	0468	229	JMP	XMIT	; go handle xmtr
		230;			
		231 ; BAD 5	TART BIT	- Reset Flags	
		232;			
00 33	53FE	233 RCV2:	ANL.	r, #Not RXFLG	; RESET RECEIVE FLAG
0035	AB	234	MOY	RXSTS, A	RESTORE RXSTS
0036	0468	235	JNP	XMIT	; go hfindle XMTR
		236 /			
		237 ; IN MI	DOLE OF	unik – Shimitle Eve	KY 4 TIMER TICKS
(4070	ENCO	238 ;	0.1117	OS VHIT	- UNIT INTEL ATH TICK
0030	004	233 RUTS. 240	MOU	NJI ANTI NS. ATTOSPT	: PFLORD PX TICK (SUNTER
0031	5240	241	IR2	PCV5	TEST RVTE FINISHED FLAG
0030	JETV	242	JUE	NOTO	: A - MIDDLE DE CHR. CONTINUE
		247			1 - DONE WITH STOP BITS
997	97	244	CLR	С	CLEAR CHRRY BEFORE ROTATE
893	2642	245	JNTØ	RCV4	FIEST RXD INPUT
0041	. 87	246	CPL	C	; RXD IS NARK; SET CARRY
0042	FE	247 RCV4:	MOV	A. R6	GET DESERIALIZER
6643	3 67	248	RRC	A	; Rotate in Nen Bit
6644	I AE	249	MOV	R6, A	; RLSTORE DESERIALIZER
884	5 E668	250	JNC	XMIT	; Test carry after rotate
		251			;0 - MIDDLE OF CHR
		252			1 - STOP BIT COMING NEXT
6647	FB	253	MOV	A, RXSTS	Figet RXSTS
0048	3 4384	254	ORL	A, #BFFLG	SET BYTE FINISHED FLAG
884	a AB	255	MOV	RXSTS, A	RESTORE RXSTS
004	3 0468	256	JMP	XMIT	GO HANDLE XATR
		257;			
		258 ; Byte	FINISHED	- DO STOP BIT 1	1551
		259;	_		
004	2668	260 RCV5:	JNT0	RCV8	TEST RXD INPUT
		261			U - SPHCE INVALID STOP BIT
		262			;1 - MHRK; VHLID STOP BIT

LOC	OBJ	SEQ	2	Source st	irtement	
004F	53EF	263 264	;	anl.	A, #NOT FRAMER	; No Franting Error, reset flag
		265 266	; Overru ;	n test -	IF KX DATA READ	y still set, overrun error
6651	7264	267	RCV6:	JB3	RCY9	; IF DATA READY STILL SET, ERROR
8853	530F	268		ANL	A, #NOT OVRUN	; NO OVERRUN, RESET FLAG
		269	;			
		270 271	; Clean ;	up Rxsts	AT CHR COMPLETE	
8655	4308	272	RCV7:	orl	A, #DATRD\'	; set data ready
0057	53F8	273		anl.	A, #NOT (RXFLG O	r Srthlg or Bfflg) ; reset other flags
0059	AB	274		MOV	RXSTS, A	FRESTORE RXSTS
985A	FE	275		MOV	A, R6	GET DESERIALIZER REG
0058	537F	276		anl	r, Hrschsk	; MAKE IT 7 BI1S
005D	AC	277		NOV	R4, A	; put data into holding reg
005E	0468	278 279	;	JMP	XMIT	; go handle xmtr
		280 281	; BAD st ;	op – set	FRAMING ERROR FI	LAG
0060	4310	282	RCV8 :	orl	A, #FRAMER	; set framing error flag
8962	8451	283		JMP	RCV6	CONTINUE
		284	; ouropu			
		280	UVERKU	n erkur	- SET UVERRUN FL	HG
0004	4700	200	j DCUD.	001		
0004	4320	207	KUY9:	UKL. TMD	NU TUYKUN DOU7	JOET UYERRUN FLHG
0000	0400	200		JIN	RUTT	CONTINUE
		299	, ; skokokokoko	a ka	nikalenikai esienikai esienikai esienikai esienikai	
		291	;			
		292	; ; START	of trans	MITTER FLOW - TR	ANSMITTER IS SERVICED EVERY 4 TICKS.
		293	; THE TX	тіск со	UNTER SERVES AS	THE TX BIT COUNTER. TRANSMITTER STATUS
		294	; IS HEL	D IN THE	TXSTS REGISTER.	
		295	;			
		296	; *****	*****	****	*****
		297	;			
0068	D5	298	XMIT:	SEL	R81	BE SURE HE'RE IN RB1
0069	FD	299		MOV	r, TXSTS	; get tx status
006H	(283	300		JB3	SRTBIT	; THIS IS START OF START BIT
0060	1H	.981		INC	R2	JINC 1X TICK COUNTER
0000	2303	302		71UY ONI	15 #1X110	FIEST FICK COUNTER MUD 4
0000	3m 90090	204		11NL 11/2	N/ KZ	
0010	7000	204		JNZ MOU	A TYCTC	VEDO CET IVETE
9977	77	200		nu+ nu+		A COMPLEMENT FOR A TEST
0013	37 4290	300 707		TDO	n VMT4	TECT TY ELOC
0017	16.70	700		500		
		200				
8976	2328	710		MOV	A. #1XEND	(HF(1K FOR FNI) OF DATE AND STOP
0978	DA	311		XRI	A. R2	XOR WITH CHRRENT TICK COMPA
6979	9681	312		JNZ	XIII 1	INDE DONE, CONTINUE
697B	FD	313		NOV	A, TXSTS	DONE GET TXSTS
007C	53FE	314		ANL	A, #NOT TXFLG	RESET TX FLAG
007E	AD	315		MOV	TXSTS, A	RESTORE TXSTS
007F	04B0	316		JMP	RETURN	;GO EXIT
		317	;			

			AFF		O mmueur
0081	2324	320 XNT1:	MOV	A, #STPEND	CHECK FOR STOP BIT TIME
0083	DA	721	XRL	8, R2	CONPARE WITH LICK COUNTER
0084	9680	702	JNZ	XMT2	NOT TIME, DO NEXT BIT
0001		707 :	0142		
		704 · TDO		רזס	
		224 / 1607		DIF	
0000	50	323) 776	MOU		OLT TY CTOTIC
0000	4704	320	001	0 40000	
00007	4564	321	UKL		SELUE FIFELINED STUE DIT
0065	HU	328	NUY	18515/8	FRESTURE IN STHIUS
NNSH	6466	\$29	JHP	RETURN	; RETURN
		3310;			
		331 ; IN P	1100LE OF C	hr - Transmit Ne>	KT BII
		332;			
968C	FB	333 XMT2:	MOV	A, R3	; GE1 TX SERIALIZER
0880	67	334	RRC	A	FROTATE NEXT BIT INTO CARRY
908E	HB	335	MOV	R3, A	; Restore serializer
868F	FD	336	NOV	r. TXSTS	GET TX STATUS FOR PIPELINED DATA
0090	F697	337	JC	XM13	; output a mark if 1
0092	53FB	338	ANL.	r, #Space	RESET TXDATA BIT
8894	AD	339	MOV	TXSTS, A	RESTORE TX STATUS
0095	9489	340	JNP	RETURN	GO EXIT
8897	4304	341 XM13	ORL	A, SMARK	SET IXDATA BII
6699	RD	342	MOV	TXSTS. A	
009A	04B0	343	THP	RETURN	
		344 ;			JO LAT
		345 ; TES	t request p	lag since not cu	RENTLY TRANSMUTTING
		346 ;			
009C	3288	347 XMT4	; JB1	XMT5	; Test TX request flag
		348			;0 - NO CHR WRITING IN BUFFER
		349			1 - CHR WRITING IN BUFFER
889E	FC	350	MOV	A, R4	; CHR WAITING, GET IT FROM HOLDING
889F	AB	351	MOV	R3, A	; PUT IN SERIALIZER
8888	FD	352	HOV	R. TXSTS	GET TXSTS
00A1	53FD	353	ANL	A, #NOT REOFLG	RESET REQUEST FLAG
00A3	4309	354	ORL	A #TXFLG OR SBI	T ; SET TX AND START BIT FLAGS
0085	53FB	355	ANL	R, #SPACE	SETUP TXDATA FOR START BIT
8887	AD .	356	MOV	TXSTS, A	RESTORE TXSTS
•••••		357 ;			
		358 ; TX	BUFFER EMPT	IV - SET TXINT PI	N AND BIT
		359			
	8998	760 YMT5	- 0PI	P2 STVINT	CET TYINT DIN
99999	05	264		DDD	
AAAR	FF	762	NOV	A. 97	BET STS
AGAC	4729	767	001	A. STYRTT	SET TYINT RIT
AGOE	AF	764	NOU	P7.9	: DESTADE STS
GOOF	96	265	NOV	STS. 8	:1090 STATUS
0018		766 :	1101		
		267 : ***		******	
		769 -	**********		
		720 500			
		307 / EAL 770 ·	I POK LINC	A INTERRUPT RUUTI	RE FUIRI
		370) 774 - 444		ىلى مەرىپىيە بەر مەرىپىيە بەر يەر يەر يەر يەر يەر يەر يەر يەر يەر ي	**************************************
		311) ### 770 -	~~~ ~~~~~~~~ ***		***************************************
		512 1			

LOC	obj	SEQ	SOURCE	STRIEMENT	
99B9	D5	373 Retur	N: SEL	RB1	; MAKE SURE HE'RE IN RB1
0081	FF	374	MOV	A, R7	; restore a
0082	93	375	RETR		; RETURN WITH RESTORE
		376 ;			
		377 ; ****	*****	*****	************************************
		378;			
		379 ; GET	HERE IF	INTERRUPT IS FI	rst for start bit - Clear Start bit flag in
		389 ; TX51	is and se	TUP 1X TICK COU	NTER.
		381;			
		382 ; ***	alalalalajaja	****	*****
		383;			
0083	53F7	384 SRTB1	IT: ANL	A, #NOT SBIT	; reset start bit flag in txSTS
8885	6 AD	385	MOV	TXSTS, A	Restore TX Status
6686	5 BR91	386	HOV	R2, #01H	FINITIALIZE TX TICK COUNTER
0088	8 0480	387	JMP	RETURN	; RETURN
		388 ;			
		389 \$EJE	т		
LOC OBJ	SEQ	SOURCE	STATEMENT		
----------------------	--	--------------	---	--	
	390 ; 391 ; ****** 392 ; 393 ; COMM	nn reco	:	FROM IBF WRITE WITH F1 SET. COMMAND	
	394 ; IS S	ORED IN	R6. BRUD RATE S	ELECTION BITS ARE EVALUATED RIGHT TO LEFT.	
	395 ; THE I	FIRST SE	t bit found deter	MINES THE BRUD RATE. IF AN INVALID COMMAND	
	396 ; IS D	TECTED,	BOTH F1 AND F0 A	RE SET AND NO ACTION IS TAKEN.	
	397 ; THE	INNER BH	UD RHIE CUNSTANT	IS SET TO THE COUNTS LESS THEN THE DESTRED	
	398 (NUMB)	:K.			
	399 j 400 . sestes		4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	494 :	******	********		
91 9 9	492	0PG	01 (aca)		
0100	497 :	UNU	01001		
0100 D5	494 (140)	9 91	RF1	: SELECT DRI	
0101 22	405	IN	A, DBB	READ CONNENS	
0102 AE	496	MOV	R6, A	; SAVE COMMAND IN RG	
0103 F227	407	JB7	IOER	; IF BIT 7 SET, 10 OPERATION	
0105 53E0	408	ANL	A, #0E0H	TEST TOP 3 BITS	
0107 963R	409	JNZ	ERROR	; IF NON-ZERO, ERROR	
0109 C5	410	SEL	RBØ	; IO FLAG IN RBO	
010A 1221	411	JB0	CMD2	; IF BIT 0=1, OUTPUT PORT	
618C 89FF	412	ORL	P1, #0FFH	; INPU) PORT, SET ALL HIGH	
WINE FB	413	MOV	A, RXSTS	GET RXSTS	
010F 338F	414	HNL	A #NOT IDDIR	RESET ID DIRECTION FLAG	
8112 D5	415 CMD4 -	NUY CEI	RASIS/H 004	RESTURE RASIS	
8117 8929	417	MOV	NDL D4. STINCON	- DOTAT OT TIMED CONCTONT LOCATION	
0115 FE	418	MOV	A. R6	GET COMMAND	
0116 323E	419	JB1	8110	; 110 BAUD SELECTED	
0118 5242	420	JB2	8399	300 BRUD SELECTED	
011A 7246	421	JB3	B600	; 600 BRUD SELECTED	
011C 924A	422	JB4	B1299	; 1200 BRUD SELECTED	
011E B5	423	CPL	F1	RESET F1	
011F 4414	424	JNP	MNLP1	; Done, Jump Brick to Main Loop	
	425 ;	10 00 0			
	426 J PUKI	IS SELE	LIEV AS OUTPUT PU	IKI - SET TU DIRECTION FLHG	
9121 FR	428 CMD2-	MOV	A. PYSTS	SET PYCTC	
0122 4348	429	ORL	A #IODIR	SET ID DIRECTION FLAG	
0124 AB	430	NOV	RXSTS, A	RESTORE RXSTS	
0125 2412	431	JMP	CMD1	CONTINUE	
	432 ;				
	433 ; HERE	WITH EI	THER IO OR RESET	ERROR COMMEND	
	434 ;				
0127 0231	435 IOER:	JB6	ERRST	; IF BIT 6 SET, RESET ERROR FLAGS	
0129 05	436	SEL	KBO	; 10 FLHG IN RXSTS	
012H FB 0400 4700	430	11UY	N/ KASIS		
912D 9380 912D 98	م د ہ 479	UKL. HINU	DYCTC.0	DECTORE DVCTC	
A12F R5	449	CPI	F1	RESET FI	
012F 4414	441	JMP	NH P1	DONE. THE BACK TO MATH LOOP	
	442 ;	418		A DOWN OVER DRIVE TO TELLE LOUR	
	443 RESE	t Error	COMMEND		
	444 ;				

LOC OF	រ	SEQ	9	Source	Statement	
0131 C	5	445	FIRST	GE1	202	CTC IN LOG
8132 F	F	446		MOV	A. 97	STS IN KDØ
0133 5	33F	447		AN	A. ARSTERR	SPECIFIC EDUND ELONG
9135 A	F	448		MOV	P7.A	PRESET EXROR FERES
8136 9	A	449		MOV	STS. A	1 090 ST9716
R137 R	5	459		CPI	F1	PECET E4
P1 78 4	414	451		THP	MNI PH	DONE DOCK TO MOTH LOOD
		452	:			FORE BROK TO HATH LOOP
		453	COMMON	D FRRAG	- Set Roth e1 AN	D F9
		454	;			5.0
6139 8	5	455	FRROR	CL R	FA	SET FO
A178 9	5	456		CPI	FA	, SET TO
R17C 4	- 414	457		JHP	NNE P1	DONE, ROCK TO MOTH LOOP
		459				Source Brok to failly Ebo
		459	, :119 BA	HD CONS	TANTS	
		469	:			
AH VE B	954	461	, R110-	NOV	₽1.#-(1740-20)	
013C 0	441	462	ULLU.	THE		- CONFILE BOOF CONSTANT
		467	:	~~~		Sub Shiri Hiner
		464	, 1700 BB	UD CONS	TANTS	
		465	:			
8142 B	902	466	R398	MOV	₽1. #-(640-20)	I LIAN 200 BOLD CONSTANT
R144 2	440	467		THEP		: CO STOPI CONTER
v211 C		468	:		211218	Juo Sinki Courtek
		469	. 699 RA	ID CONS	TANTS	
		479	;		114112	
8146 8	9E2	471	8699	HOV	R1.8-(720-20)	: LORD 688 BRUD CONSTRUCT
0148 2	44C	472		JNP	STTINR	GO START COUNTER
		473	;	•••		
		474	; ;1299 B	aud com	Istants	
		475	;			
014A B	9F2	476	B1299 :	NOV	R1, #-(16D-2D)	; LORD 1200 BRUD CONSTRAT
		477	;			
		478	START	COUNTER	2	
		479	;		•	
814C F	9	490	STTIMR:	MOV	A. R1	; get counter constant
014 0 6	2	481		HOV	T.A	LOND COUNTER
014E 4	5	482		STRT	CNT	START COUNTER
014F 2	5	483		EN	TENTI	ENABLE TIMER INTERRUPTS
0150 B	5	484		CPL	F1	RESET F1
0151 4	414	485		JNP	MNLP1	DONE, BACK TO MAIN LOOP
•		486	;			
		487	\$EJECT			

APPENDIX C1 (Continued)

.

	489 ; ******	cicición in	******	***********
	490 ;			
	491 ; DATA R	DUTINE	- Get Here With 1	BE WELLE WITH F1 KESEL. INTS KUULINE
	492 (F1K5)	1515 1	F THE 1/U FLHG IS	SET IN THE KASTS REUISTER. IF SUSTINE WITH THE MATA TO EARLY THE DATA TO EARLY THE TRANSMITTED AND
	493 ; 15 FUK	INE UU	IPUI PUKI. UINEN	WIDE THE WITH IS FOR THE INDUSTRIES THE
	494 ; 15 PLH	LED IN	THE IN BUFFER REL	IDIEK. INC IAINI DII NNU FIN NKE KEDET.
	490 j 400 j			
	407 -	******		
8157.05	498 DATA	99	889	; data handled mostly in RB0
2454 FR	499	NOV	A. RXSTS	GET RXSIS
9155 F267	599	JB7	IODATA	; IF ID FLAG SET, DATA IN FOR 1/0
9157 FE	591	HOV	A, R7	GET STS
9158 570F	562	ANL	A #NOT TXBIT	RESET TXINT BIT IN STS
9158 BE	593	HOV	R7. A	RESTORE STS
815B 98	594	NOV	STS. A	ILORD STATUS
015C 99F7	585	ANL	P2. INDT TXINT	RESET TXINT PIN
015E D5	586	SEL	RB1	TXSTS IN RRI
015F 22	507	IN	A DBB	READ DATA
0160 AC	508	MOV	R4, A	; Put data in tx Buffer
8161 FD	509	HOY	A, TXSTS	GET 1XSTS
8162 4382	510	ORL	A, #REQFLG	; SET REQUEST FLAG IN TXSTS
0164 AD	511	NOV	TXSTS, A	RESTORE 1XSTS
8165 4414	512	JNP	MNLP1	; BACK TO MAIN LOOP
	513 i			
	514 ; 10 DAT	'a routi	NE	
	515 ;			
0167 537F	516 Iodata:	ANL.	a, #Not Ioflg	RESET IO FLAG
0169 AB	517	MOY	RXSTS, A	RESTORE RXSTS
016A 22	518	IN	A. D68	; Read 10 data from debin
016B 39	519	OUTL	P1, A	OUTPUT TO PORT 1
016C 4414	520	JNP	mlP1	JOINES BHCK TO MHIN LOUP
	521;			
	522 SEJECT			

APPENDIX C1 (Continued)

LOC OBJ	SEQ	Source statement	
	527 ;		
	524 ; ****	kaikaikaikaikaikaikaikaikaikaikaikaikaik	
	525 ;		
	526 ; INIT.	IALIZATION - GET HERE	AT RESET. THIS ROUTINE RESETS THE INTERRIPT
	527 ; OUTP	uts and enables them,	AND CLEARS THE APPROPRIATE STATUS AND DATA
	528 ; REGI:	sters.	
	529;		
	539 ; ****	****	n a se an
	531 ;		
8288	532	ORG 0200H	
	533 ;		
0200 9AF7	534 INIT:	ANL P2, #8F7H	; RESET TXIN) PIN
0202 F5	535	EN FLAGS	ENABLE INTERRUPTS OUTPUT
0203 2300	536	RUY RU #ZERO	; CLEAR A
0203 HB	237	MUY KX515,H	ULEHR RXSTS
0200 HU 9397 OC	338	MON 02.0	CLEHR RX FICK COUNTER
0207 HF 0209 D5	J35 540	NUY KAH	GUERK SIS
0200 US	544	NUU DCO	SHITCH BREAS
R2RR RDR4	542	MOV TYSTS #MOD	CLERK CORFIGURE STORE
	543 ;		
	544 ; ****	*****	****
	545		
	546 ; MAIN	LOOP - IBF AND OBF A	RE HANDLED IN THIS LOOP. IF IBF=1, THE
	547 ; APPR	opriate command or da	TA ROUTINE IS ACCESSED. IF IBF=0, THEN OBF
	548 ; 15 T	ested. If OBF=1_ IBF	Is tested again. As soon as obf=0, rxsts
	549 ; IS E	XRMINED TO SEE IF DAT	a is waiting for output. When RX data
	550 ; Read	y is set, fo is set a	ND F1. IS Cleared, and the data is transferred
	551 ; From	THE RX HOLDING REGIS	TER INTO DBBOUT AFTER TESTING FOR ERROR
	552 ; Flag	5. Any error flags s	et are transferred to the status register.
	553 ; IF T	HE 1/0 FLAG IS SET, T	he port is read and the data transferred to
	554 ; 0680	UT.	
	333 /		
	336;****	akakakakakakakakakakakakakakakakakakak	***************************************
0000 DC14	337 J 550 MM 00		
0200 0014 0206 7612	550 ANLOU	ISA CMOTA	- 100-0, 100, 000 - 100-4 TECT 54 500 (0000000)
020E 7012 0210 2457	569	THE LATE	- E4 TIME TO GOTO DOUTTINE
8212 2499	561 CHD.11	· JNP CND	: OUT-OF-PROF COMMAND UMP
0214 860C	562 NNL P1	JOBE MINLOOP	HAIT INTIL DEBOIT IS FREE
0216 C5	563	SEL RB0	RXSTS IN R80
0217 FB	564	MOY & RXSTS	GET RXSTS
0218 721E	565	JB3 RXRDY	; TEST RX DATA READY FLAG
821A F23C	566	JB7 IOFLAG	; TEST IO FLAG
821C 448C	567	JMP MNLOOP	; L00P
	568 ;		
	569 ; RX D	A1A READY - TRANSFER	to debout
	570 ;		
021E 85	571 RXRDY	: CLR F0	;SET FØ
821F 95	572	CPL F0	
0220 R5	573	CLR F1	RESET F1
0221 922E	574	JB4 RXF	; Check Framing Error Flag
6223 FB	575 RXRDY	1: NOV A, RXSTS	GET RXSTS
0224 B235	576	JBS RXO	; CHECK FOR OVERRUN ERROR
0226 FB	577 RXRDY	2: MOV A, RXSTS	; get RXSTS Again

APPENDIX C1 (Continued)

LOC	OBJ	SEG	1	Source	STATEM	ent											
6227	5307	57	78	ANL	R. #N)t (datri	DY OF	r Fran	ier or	OVRUN)	; R	eset s	ome fl	.Ags	l		
8229	AB	57	' 9	MOV	RXST:	5, A	i	RESTO	DRE RX	STS							
822A	FC	58	80	MOY	R, R4		i	GET C	Data f	rom holi	DING REG	i					
922B	8 2	58	H	OUT	D68, I	7	j	; put 1	in dee	OUT							
0 22C	449C	58	2	JMP	MNLO)P	i	; LOOP									
		50	337 34 - EDOM1			CL T											
		55	2777N101 25:														
822E	FF	58	BG RXF:	HOV	A, R7		i	;GET 9	STS								
822F	4340	58	37	ORL	A, #FI	ests	j	SET F	RAMIN	ig error	FLAG						
8231	AF .	56	38	MOY	R7, A			REST	ore st	S							
8232	99	58	39	NOV	SIS	A		; LOAD	STATU	5							
8233	4423	59	99	JNP	RXRD	71		; CONT)	INJE	-							
		59	91;														
		59	92 ; Overn	NUN ERRO	r flag :	SET											
		59	33;														
8235	FF	59	4 RXD:	MOV	A. R7		i	GETS	515								
8236	4389	59	5	ORL	A. #0	VSTS	;	; set (IVERRU	n error	FLAG						
8238	AF .	59	Ж	MOY	R7, A		i	REST	dke st	5							
8239	90	59	97	HOV	STS,	A	i	; load	STATU	15							
023A	4426	59	78	JNP	RXRD	Y2		; CONT)	INJE								
		59	99;														
		66	30 ; IO FL	.AG Set	- TEST I	DIRECTIO	N										
		66	91.;														
6230	FB 0000	66	82 IOFLAC	i: MOV	A, RX	515	i	GETF	RXSIS								
0230	0200	61	0.S D.4	J86	INLU	0P		PORT	ISOU	лрул -	NO ACTIO)N					
9249	6J 95		27) 26		F0 54			I KESE	1 70 C4								
9241	n5 R5	6	95 94	CLK	F4			, 361 1	-1								
9242	537E	6	97 97	ANI	A. M	ot topic		: PECE	ם הניד	71 AC							
8244	AR .	6	88	MOV	RXST	5.8		REST	NRF RS								
0245	89	6	89	IN	R P1			READ	PORT	1							
8246	82	6	10	OUT	DBB,	Ĥ		PUT	DATA	in debou	л						
8247	448C	6	11	JMP	MNLO	OP		; L00P	•								
		6	12;														
		6	13	END													
USER S	YMBOLS																
ASCHISK	987F	B110	013E	B1200	014A	8300	0142	2 B	600	014 6	8FFLG	8884	CHID		0100	CHD1	0112
CMD2	0121	CHDJ1	8212	data	8153	DATEDY	0009) E	rror	013A	ERRST	8131	FES	TS	0048	FRAMER	0010
INIT	8298	INT1	9998	IODATA	8167	IODIR	8848) [OER	9127	IOFLAG	023C	IOF	LG	0060	hark	0004
MKOUT	9991	MNLOOP	829C	HNLP1	8214	HOUT	0019) 0	VRUN	8829	OVSTS	0080	RCV		991B	RCV1	0026
RCV2	0033	RCV3	8038	RCV4	8942	RCV5	664D	R	CV6	0051	RCV7	0055	KCV	8	8969	RCV9	0064
REGFLG	0002	RESET	9999	RETURN	99999	KSTERR	003F	R	XF	022E	RXFLG	8991	RXI	NTL	0080	RXO	0235
RXRDY	021E	RXRDY1	8223	RXRDY2	8226	RXSTS	0003	; S	BIT	9998	SPACE	00FB	SPO	บา	OOFE	SRIBIT	0083
SRTFLG	9992	STPEND	9924	STTIMR	014C	TICOUT	8848) T	ICSRT	8884	TINCON	9929	TIN	INT	9997	IXBIT	0020
TXEND	0028	TXFLG	0001	TXINT	0008	TXOUT	8912	2 1	XSTS	0005	IXTIC	999 3	XMI	T	0068	XM11	0081
XH12	OUBL	XIIIS	9697	XIII (4	009C	XH15	UUHE	s Z	EKU	0008							

RSSEMBLY COMPLETE, NO ERRORS

Appendix C2

LOC OBJ	SEQ	SOURCE	STATEMENT	
	1; 2;TEST	ROUTINE	NHICH OUTPUTS TH	e ascii character set to the
	3 ; UPI 1	RANSMIT	ter and displays	on the 88/39 console any
	4 ; CHARF	icters ri	ECEIVED BY THE UP	I RECEIVER.
	5;			
	6 ; INPU	s: Noth	ING	_
	7 ; OUTPL	nts: Chr	RACTERS TO CONSOL	E
	8 ; CHLLS	5: NUTHI	NG	
4000	9; 49	000	40000	
4000	10 11 100557	EQU	ADEN	: 9257 CONTROL DODT
9900	12 CNTR	FOIL	RDCH	: 8257 CNT A PORT
99E5	13 CHD	FOIL	AF5H	IPI CONNEND POPT
00E5	14 STATIK	FOU	RESH	(IP) STATUS PORT
00E4	15 DBBIN	EQU	8E4H	UPT DRRIN PORT
00E4	16 DBBOUT	EQU	0E4H	UPI DEBOUT PORT
0029	17 TXINI	EQU	29H	TXINT NRSK
9991	18 OBF	EQU	91 H	; OBF NRSK
8982	19 IBF	EQU	82H	; IBF NRSK
99ED	20 STAT51	EQU	ØEDH	;8251 STATUS Purt
OOEC	21. DATA51	EQU	ØECH	; 8251 Data Port
9661	22 TXRDY 23 ;	EQU	01H	; 8251. TXRDY MRSK
4000 3E36	24 start:	: MVI	r, 36h	; 8253 CNTO MODE WORD
4002 D3DF	25	OUT	NODE53	; 8253 CONTRUL PORT
4004 3E10	26	MVI	A. 10H	DIVIDE BY 16D
4996 D3DC	27	OUT	CNTB	;8253 CNTO PORT LSB
4008 SE00	28	INI OUT	AL 81814	; .0252.0576.0007.000
4990 9500	29		0.000	1823 UNIU PURI IISB
4000 0020	24	NUT	07201 0.404	CONFICURE COMMOND - 4200 DOUD
4919 0755	70	011	CMD	(10) (10000) DODT
4012 DBE5	37 P0111-	TN	STATIC	
4014 E621	34	ANI	TXINT OR ORE	TEST TXINT AND ORF
4016 CR1240	35	JZ	POLL1	HATT INTEL ONE IS SET
4019 DBE5	36	IN	STATUS	READ UPI STATUS AGAIN
401B E601	37	ANI	OBF	; WRS IT OBF?
401D C23840	38	jnz	RX	; YES, GO DO RECEIVER
	39			; NO, MUST BE TRANSMITTER
4629 78	40	NOV	A.B	Get next chr for output
4821 D3E4	41	OUT	DBBIN	; OUTPUT 10 UPI DBBIN
4025 FEDH	42	CPI	⁷ Z ⁷	; HAS IT LAST CHR?
4023 LHSS40 4020 04	95	JZ	NENB D	YES, RESET REG. B
4020 04	45 00112	. TM		TEET IS INC STILL SET
4828 F692	45 FULLZ	. 114 GNT	185	TEST IF IDF STILL SET
4620 (22949	47	JNZ	P0112	; WATT UNTIL TRE=A
4030 C31240	48	JMP	POLL1	BEFORE LOOKING AT STATUS AGAIN
	49 ;			
4033 0620	50 NEHB	NVI	B, 28H	RESET REG. B
4035 C32940	51	JHP	POLL2	; GO BACK
	52;			

APPENDIX C2 (Continued)

LOC	OBJ	SEQ	SOURCE	STATEMENT	
4038	DBE4	53 RX:	IN	DBBOUT	; Read debout for received chr
403A	4F	54	MOV	C, A	; SAVE IT IN C
403B	DBED	55 RX1.:	IN	STAT51	; READ 8251 STATUS
403D	E691	56	ANI	TXRDY	; TEST TXRDY
403F	CR3840	57	JZ	RX1	; WRIT UNTIL READY
4042	79	58	MOV	A, C	; get chr
4043	D3EC	59	OUT	DATA51	; output chr to console
4045	C31248	68	JNP	POLL1	; go test upi again
		61 ;			
		62 END			

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SI	mbols												
CMD	A 00E5	CNTØ	A 000C	DATA51	A GOEC	DBBIN	R 88E4	DEBOUT	A GOE4	16F	H 6992	HODE53	A 00DF
NEHB	A 4033	OBF	A 8091	POLL1	A 4012	POLL2	A 4829	RX	A 4038	RX1	R 4038	START	A 4868
stat51	A 88ED	STATUS	A 88E5	TXINT	A 9929	TXRDY	A 0001						

ASSEMBLY COMPLETE, NO ERRORS

APPLICATION NOTE

August 1977 Printiple

UPI-41[™]

Introduction
The LRC Printer
Interface Signals
Timing
Software
Details of the Buffer Manager
Printer Service Routines
Conclusion
Appendix

INTRODUCTION

The UPI-41 is a low-cost, single-chip microcomputer designed to be used as a universal peripheral interface device in a microcomputer system. The device is based on a completely self-contained 8-bit microcomputer with program memory, data memory, CPU, I/O, event timer, and clock oscillator, in a single 40-pin package. A bus interface is included which enables the UPI-41 to be used as a peripheral controller in MCS-48, MCS-80, MCS-85 and other 8-bit microcomputer families. The device is designed for keyboard scanning, printer control, display multiplexing and similar applications which involve interfacing peripheral devices to microcomputer systems.

The UPI-41 is fabricated with N-channel MOS technology and requires only a single 5-volt supply for operation. It has 1K words of program memory and 64 words of data memory on-chip. Both ROM (8041) and EPROM (8741) versions are available and the two are completely pin compatible. The instruction set of the UPI-41 is almost identical to that of the MCS-48. A single byte data register on the UPI-41 interfaces directly to an 8-bit master processor bus to handle asynchronous data transfer to and from the master system. A separate 4-bit register is used to indicate the status of data transfer. Two 8-bit TTL-compatible I/O ports plus two single-bit test inputs are available. I/O can be expanded further by using the 8243 I/O expander device. A separate register in the UPI-41 is used as an event counter or interval timer.

Because it is a complete microcomputer, the UPI-41 provides more power and flexibility than conventional LSI interface devices. For instance, the UPI-41 can be programmed as a peripheral interface for any of the low-cost drum or dot matrix printers currently on the market. In addition to controlling the printer, the UPI-41 can handle zero suppression, limit-checking, formatting and other computations, thereby unburdening the master processor. This type of distributed intelligence, made possible by the UPI-41, greatly enhances overall system capability while reducing cost and development time.

This application note describes how the UPI-41 can be used to implement an interface to a matrix printer. The printer chosen is fairly typical of a large class of printers which minimize total system cost by reducing the mechanical content at the expense of more sophisticated electronic requirements. The UPI-41, with its high degree of capability, is ideal for this type of application. It is suggested that the reader not already familiar with the UPI-41 read the "Intel UPI-41 User's Manual" before proceeding in this document.

THE LRC PRINTER

The LRC Model 7040 printer is a matrix printer manufactured by LRC Inc. of Riverton, Wyoming. Capable of printing up to 40 columns of alphanumeric information, this printer is mechanically simple and should be ideal for a variety of applications such as point of sale terminals and data logging. While this note concentrates on the Model 7040 printer, the techniques discussed should be applicable to a variety of similar printers which are currently available.

The printer (Figure 1) consists of four major subassemblies, the frame, the print head, the main drive, and the paper handling components. The frame is an aluminum extrusion which provides a suitable base for mounting the various components of the printer. The print head consists of seven solenoids which each drive stiff wires to impact the paper through the inked ribbon. At the solenoid end of the print head these wires are arranged in a circular fashion. Where these wires impact the printer, however, the wires are arranged in a vertical column. To see how this arrangement can be used to print alphanumeric characters refer to Figure 2. The figure shows a 5×7 matrix of "dots". The columns are labeled C1 through C5: the rows are labeled as Row 1 through Row 7. Each row corresponds to one of the solenoiddriven wires. The entire print head assembly is moved left to right across the paper so that at T_1 it is over C1, at T₂ it is over C2, and so on. If the correct solenoids are activated at each of these times (T_1-T_5) then a character can be formed. Figure 2 shows the character "A" formed. At T_1 solenoids one through five were active, at T₂ solenoids four and six were active, and so on until the complete character was formed. The complete character is formed by choosing the correct pattern of active solenoids for each of five instants in time.

The print head is moved across the paper by the main drive. The main drive consists of a 24-pole synchronous motor which drives a rotating plastic drum. The drum has a spiral groove molded into it. A pin attached to the print head rests in this groove so that as the drum rotates at a constant speed the print head is driven back and forth across the paper. Printing is accomplished by controlling the activation of the solenoids as the print head is driven from left to right across the paper. When the end of the print area occurs the spiral groove reverses the direction of the head motion. As the left-hand edge of the paper is reached a cam attached to the drum activates the HOME microswitch and the groove again reverses the motion of the head. When the print head is again over the print area and travelling in the left to right direction the microswitch is deactivated. The printer controller uses the trailing edge of the signal generated by the microswitch to initiate the printing of a new line of information.

Paper feed is accomplished by a second synchronous motor which can be activated to feed paper through the mechanism. A switch is provided which is activated while the actual line feed is occurring. The control logic can use the trailing edge of the signal generated by this switch to turn off the line feed motor. A version of the printer with automatic line feed is available.

INTERFACE SIGNALS

The interface signals to the printer consists of a pair of wires for each solenoid, a pair of wires for each motor (main drive and line feed), a pair of wires returning the state of the HOME microswitch, and a pair of wires returning the state of the LINEFEED microswitch.

The solenoids must be driven from a 40 \pm 4 volt source. The peak current is approximately 3.6A, the average current is approximately 0.5A. A circuit providing the required drive is shown in Figure 3. The output stage, consisting of the 2N6045 Darlington transistor, the 1N4002 catching diode, and the 20-ohm damping resistor, is the

Figure 1. LRC Model 7040 Printer

one suggested by the manufacturer of the printer. The input stage is a discrete implementation of a DTL gate. Note that the base-emitter junction of the 2N6045 will protect the 2N2222A transistor from over-voltage on its collector. This circuit has several features which are important to the printer interface:

- 1. All solenoid power (including the power used to drive the base of the power transistor) is derived from the 40-volt supply.
- 2. Disconnecting the drivers from the UPI-41 or the loss of the 5-volt supply to the UPI-41 will result in the solenoids being turned off.

The first feature of the drivers will minimize the impact of the printer and its interface on the 5-volt supply of the system. The second feature prevents the activation of the solenoids erroneously during power on/off cycles or during system checkout. This is an important point since the solenoids will be damaged if left activated continuously. (During the debug of the design described in this note fuses were added to the solenoid drivers to protect them from mishap.)

The two motors can each be driven as shown in Figure 4. The Monsanto MCS-6200 is an opticallycoupled TRIAC which is ideal for driving the small synchronous motors in the printer. Coupled with a buffer this part provides a simple means of controlling the motor without sacrificing the isolation required for safe and reliable operation.

Figure 5 shows a UPI-41 used as an interface between an Intel[®] 8085 and an LRC Model 7040 printer. The drivers which have already been described have been used to interface the TTL outputs of the 8741 to the levels required by the printer. The two contact closure outputs from the printer (PAPERFEED and HOME) have been filtered and applied to the TESTO and TEST1 inputs of the UPI-41. Bit 5 of output port 2 has been designated as an interrupt pin which will be used to request service from the 8085.

TIMING

The relative timing of the interface signals to the printer is shown in Figure 6. Actual printing commences when the main drive switch signal goes into the print ready state. This edge indicates that the print head is scanning across the paper in the left to right direction and that the printer is ready to start the actual printing of characters. When this edge occurs the UPI-41 must start transmitting pulses to each of the seven solenoids. The timing for these pulses is shown on the last line of Figure 6. A pulse of about 400 microseconds is used to generate a dot on the paper; a pause of about 900 microseconds between these pulses satisfies the duty cycle restrictions of the solenoids and provides a space between dots. Since the printer does not provide any feedback to the UPI-41 which would indicate the position of the print head, it is necessary for the UPI-41 to decide when to fire each solenoid based on timing information it maintains internally. The specifications of the printer allow 310 milliseconds for the print head to traverse the print area. The maximum repetition rate at which the solenoids can be fired is once every 1.3 milliseconds. The maximum number of dots that can be printed in the available print area is then 310/1.3 = 238. After the last dot has been printed the line feed motor can be activated. The motor should remain activated until the line feed switch makes the off to on to off transition; this takes about 200 milliseconds. After the line feed motor is deactivated the next time of interest is when the main drive signal goes to the inactive state. At this point the printing of a complete line, including the necessary line feed, has been accomplished and the UPI-41 must prepare itself for the reactivation of the main drive switch. The activation of this switch will indicate that the printing of the next line can commence.

SOFTWARE

The software system necessary to drive the LRC printer can be thought of as two main parts, each with an associated data structure. A block diagram of the system is shown in Figure 7. All the items shown above the dotted line are associated with the BUFFER MANAGER (BMGR) program part. All items shown below the dotted line are associated with a PRINTER SERVICE ROUTINE (PSR).

The BUFFER MANAGER is responsible for all interaction with the master processor (i.e., the 8085 in Figure 5). The data structure associated with BMGR is a 40-character buffer which is used to store the characters as they are received from the master processor. BMGR maintains two pointers which are used to access the buffer; these pointers are shown as INPUT POINTER and OUT-PUT POINTER in the diagram and are implemented as UPI-41 registers R₀ and R₁, respectively. The input pointer (INPNT) is kept pointing to the last character loaded into the buffer, the output pointer (OUTPNT) is kept pointing to the next character to be printed. BMGR has two major interfaces, the INPUT BUFFER, which is used to communicate with the master processor, and the register shown in the figure as OUTPUT BUFFER. This register, which is implemented with register R_3 of the UPI-41, is used to communicate with the printer service routine (PSR). A character to be printed is placed in the output buffer (OBUF). When PSR is ready to print the character it moves it from OBUF to its own buffer (PBUF) which is labeled as PRINT BUFFER in the diagram. After the character is moved the output buffer is overwritten by a predetermined value which indicates that PSR has accepted the character. BMGR will load a character into the output buffer only if it currently is equal to this value.

The printer service routine utilizes the TIMER to keep track of the current position of the print head. At the appropriate times it causes the solenoid drivers to be pulsed so that the character stream it sees in PBUF is printed. Based on the contents of PBUF and the contents of ICNT, which indicates the active column of the current character, PSR looks up the appropriate column data to be printed in the character generator tables. This data is stored in the HAMMER BUFFER until the precise time that it should be presented to the hammer drivers via the I/O bits in PORT 1. ICNT and the HAMMER BUFFER are implemented as UPI-41 registers 5 and 7, respectively.

DETAILS OF THE BUFFER MANAGER

Before BMGR can be discussed in detail, the manner'in which it utilizes the character buffer must be understood. Figure 8 shows the operation of the buffer while two lines of data are input to the UPI-41 and subsequently printed. In order to keep the discussion manageable, this figure is drawn as if the printer were capable of printing only four characters per line. The two lines of characters to be printed are:

It should be noted that the buffer contains 5 bytes, one more than the number of print positions. The extra byte is a "phantom address" which, when pointed to by the output pointer, indicates that the section of BMGR which services the printer service routine is inactive. This state must be allowed because the actual print operation cannot begin until the complete line has been input to the buffer. If this rule were not enforced, some underrun protocol would have to be established to handle the situation of the input stream from the master processor failing to keep up with the print head.

Figure 8a shows the buffer in its initial state. The input pointer is set to the last real position in the buffer and the output pointer is set to the phantom position. Figures 8b through 8f show the operation of the pointers as the characters "A", "B", "C", and "D" are loaded. In each case the

input pointer is incremented to point to the next available location and then that location is loaded with the character. The position of the output pointer is not changed until the last position of the buffer has been loaded. When this occurs, the output pointer is set to point at the first character of the buffer. The operation of the pointers thus far can be described by the following algorithm:

```
INITIAL:

INPOINT:=BUFFER_MAX;

OUTPOINT:=BUFFER_MAX+1;

...

LOOP:

IF CHARACTER_AVAILABLE THEN

BEGIN

INPOINT:=(INPOINT+1) MOD BUFFER_LENGTH;

BUFFER(INPOINT):=CHARACTER;

IF INPOINT=BUFFER_MAX THEN OUTPOINT:=BUFFER_MIN;

END;

GOTO LOOP;

END;
```

Obviously, if this loop were allowed to continue, the buffer would be overwritten by the next line of text before the first could be printed. This can be prevented by modifying the algorithm as follows:

```
LOOP:

LOOP:

IF CHARACTER_AVAILABLE THEN

BEGIN

TEMP:=(INPOINT+1) MOD BUFFER_LENGTH;

IF TEMP<>OUTPOINT THEN

BEGIN

INPOINT:=TEMP;

BUFFER(INPOINT):=CHARACTER;

IF INPOINT:=BUFFER_MAX THEN OUTPOINT:=BUFFER_MIN;

END;

END;

GOTO LOOP;
```

This modification will "freeze the action" at Figure 8f until the output pointer is incremented. When this occurs the input procedure will immediately load the input data over the character that was just printed (assuming that data is available to the procedure at a higher rate than can be printed). The defined interface with the printer service routine allows a character to be removed from the buffer and placed in the output buffer whenever the output buffer contains the value placed there by the PSR, indicating that it has accepted the character that was previously in the output buffer. If this value is called EMPTY_FLAG then the complete buffer handling procedure can be defined as follows:

INITIAL: INPOINT:=BUFFER_MAX; OUTPOINT:=BUFFER MAX+1: LOOP: IF CHARACTER_AVAILABLE THEN BEGIN TEMP:=(INPOINT+1) MOD BUFFER_LENGTH; IF TEMP<>OUTPOINT THEN BEGIN INPOINT:=TEMP: BUFFER(INPOINT):=CHARACTER; IF INPOINT=BUFFER_MAX THEN OUTPOINT:=BUFFER_MIN; END: IF OUTPUT_BUFFER=EMPTY_FLAG THEN BEGIN IF OUTPOINT<=BUFFER_MAX THEN BEGIN OUTPUT_BUFFER:=BUFFER(OUTPOINT); OUTPOINT:=OUTPOINT+1; END: END: END:

GOTO LOOP:

Examination of Figures 8g through 8r will show how this algorithm maintains the buffer. If there is an open position and a character is available, it is placed in the buffer. When a complete line is in the buffer, printing is initialized by setting the output pointer to BUFFER_MIN. As the last character of a line is printed, the output pointer is incremented to point at the "phantom location" until the next line is completely entered. It should also be noted that if the input stream is faster than the print operation, then after the last character of a line is printed only one character need be input before printing can resume (see Figures 81, m, and n). Frame r shows that after all available characters have been printed the state of the buffer is the same as it is initially. This is obviously a desirable feature.

The flowcharts for the complete BUFFER MANA-GER are shown in Figures 9a and 9b. The corresponding code can be found starting at label BMGR of the program listings (see appendix). The flowcharts follow the algorithm that has been discussed very closely. Some additions have been made to implement logic not associated with the buffer. The first difference is that when a byte is in the input buffer it is tested to determine whether it is a command byte or a data character before further action is taken. Only two commands are recognized; one to set, and one to reset, the internal interrupt enable flag. This flag, which is implemented as bit zero of PORT2 determines whether or not the UPI-41 will assert an interrupt to the master processor when it is able to accept a new character. Two additional deviations can be noted in Figure 9a: the first is that the motor of the printer will be turned on whenever a data character is received, the second is that if an end of line code (i.e., an ASCII line feed) is received, then, instead of storing it in the buffer, a mode is entered which fills the remaining buffer locations with space characters. This mode is enabled by bit one of PORT2. Note that utilizing otherwise unused bits of PORT2 for program status allows convenient testing and setting by the software and also enables external monitoring of the program operation.

Figure 9a. Buffer Manager Flowchart

The last addition to the algorithm can be seen in Figure 9b where instead of going directly back to the start of the program after servicing the printer, a test is made to determine if the interrupt to the master processor should be asserted. This interrupt is set if the enable bit is set and there is also room in the buffer for at least one more character. After this test, control is passed back to the beginning of BMGR.

PRINTER SERVICE ROUTINES

The Printer Service Routine must convert the characters given to it by the Buffer Manager into an appropriately timed stream of pulses to the solenoids. Because the PSR is extremely timedependent, it was implemented as an interruptdriven routine which is given control when the timer overflow occurs. This allows exact timing of the solenoid firings without requiring software delay loops. If the timing had been generated by such loops, synchronization would have been lost when the delay loops were interrupted in order to service the master processor. If a hardware design of a controller for the printer were being undertaken, a convenient place to start would be to generate a state transition diagram which shows all the states that can be entered and how control can transfer from state to state. This hardware design technique is often useful in software design and was, in fact, used to develop the PSR. The state diagram of the PSR is shown in Figure 10. A total of eight states are necessary to implement the printer control function. Before discussing this diagram further, each of these states must be defined.

- WPA: The WPA (Wait for Print Area) state is the state in which the system waits for the input from the printer which indicates that it is ready to start the actual printing of data.
- TPA: During the TPA (Test Print Area) state the system digitally filters the signal from the printer to ensure that contact bounce is not causing an erroneous indication that the print area has started.
- IPO: Transfer to the IPO (Initialize Print Operation) state occurs after the positioning of the print head over the print area has been verified. During this state the system initializes itself to start printing a line of text.
- ICOL: The ICOL (Inter Column) state is used to time the period between the activation of the hammers. During this state the space between the dots of the characters is generated.

- PCOL: During the PCOL (Print Column) state the hammers are energized if the particular character being printed requires a dot in the corresponding position.
- ICHAR: The ICHAR (Inter Character) state is active between characters on a given line.
- WFON: During the WFON (Wait for Feed On) state the system waits for the assertion of the feed pulse from the printer. This signal indicates that the process of feeding paper is occurring.
- WFOFF: The system remains in the WFOFF (Wait for Feed Off) until the feed pulse goes inactive. This indicates that the required paper feed operation has been completed.

The state diagram, in addition to defining the allowable states, also defines how state to state transitions can be made. The general structure of this diagram shows that PSR is initiated by the occurrence of the timer overflow interrupt. When the interrupt occurs the contents of the HAMDAT (HAMmer DATa) register are immediately transferred to PORT1 which causes the hammer solenoids to be activated. Each of the eight possible states sets data into the register which should be output at the next timer overflow occurrence and starts the timer operating in a mode which will result in the main program (BMGR) being interrupted at the proper time. The following paragraphs describe the operation of each of the states

Figure 10. Print Control State Transition Diagram

in detail. The flowcharts of the routines can be found in Figure 11.

The WPA, CPA, and IPO states are all associated with the detection of the valid start of the print area. The WPA state sets the timer in the event count mode so that the edge of the print area signal can be detected, the CPA state digitally filters this input once it has been detected to ensure that noise has not caused a false input, and finally, the IPO state initializes the system to start the actual printing of data. The flowchart shows that the WPA state accomplishes the following actions:

- 1. Turns off the paper feed motor
- 2. Sets the filter count (for the CPA state)
- 3. Sets HAMDAT to zero
- 4. Sets STATE to one.

The timer is set to event count with an initial value of 0FFH. This will cause a timer overflow interrupt the next time a negative transition occurs on the TEST1 input. Since this input is tied to the signal from the PRINT AREA switch, this interrupt should occur when the start of the print area is reached. The WPA state sets the STATE register to cause the TPA state to be entered when this interrupt occurs. Each time the TPA (Test Print Area) state is activated the software checks to ensure that the print area switch is in the proper state; if it is not, then all the actions of state zero are repeated (except turning off the motor), since a false start of print area has occurred. If the test reveals that the print area switch is in the proper state, then the filter count is reduced by one and the timer is started with an initial value of 0FFH, the minimum attainable timer increment. The STATE register is set to repeat the TPA state unless the filter count has reached zero; when this occurs the IPO state is selected. The IPO state, which is responsible for the initialization of the actual print operation, first tests the output buffer register to determine if there is any data for it to print. If this test is unsuccessful the printer main drive motor is turned off, the TPA state is reinvoked and the timer is started in the event count mode so that it can detect the next start of print area. At first glance this seems somewhat fruitless since the event required cannot happen if the motor is not turning. By referring back to Figure 9, however, it can be seen that BMGR turns on the motor whenever it has a data character from the master computer. The reception of a character will always allow the PSR to find the next print area. If, when the IPO state makes its

test, there is data in the output buffer then the data is moved to the print buffer and the output buffer is set to the empty value. After this is accomplished, a counter is set to the number of columns to be printed per character (seven in this case – see comment by CGEN label in program listing), the STATE register is set to the ICOL state and the timer is set to time the intercolumn time. (The intercolumn time is the time that elapses between each possible column of the character.) Before exiting from this state the first column of data for the hammbers is generated by the COLUMN routine and placed in the HAMDAT register.

The three states already discussed set the printer up so that it is ready to print. The next three states are repeated sequentially until the entire line of data has been printed. The ICOL state is probably the simplest of the states. When it is invoked the hammers have just been fired by the entry into the PSR. All that the ICOL state does is to set the timer to time the proper duration of the hammer strikes, clear the HAMDAT register, and set the STATE register to the PCOL state. The PCOL state, only slightly more complicated than the ICOL state, first decrements the column count. If the end of a character is detected (count equal zero), the HAMDAT register is cleared and the STATE register is set to invoke the ICHAR state. If the end of a character is not detected then the COLUMN routine is again used to determine the next data to be sent to the hammers and the ICOL state is reinvoked. When the ICOL state is active two things can happen, depending on whether there is more data to print. If there is data in the output buffer then a series of actions similar to those of the IPO state occur to reinitialize the printing of a character; if there is no more data in the line then the paper feed motor is turned on, HAMDAT is cleared, and the STATE register is set to the WFON state. The timer is set for approximately one millisecond so that the state of the paper feed switch can be sampled periodically by the WFON and WFOFF states.

The WFON and WFOFF states continue to set the timer to the one millisecond sample rate, the WFON state reinvokes itself until the paper feed switch input is detected and then it invokes the WFOFF state. The WFOFF state reinvokes itself until the paper feed switch is detected in the off state and then invokes the WPA state. The sole purpose of the WFON and WFOFF states is to ensure that an off to on to off transition occurs on the next line of data.

CONCLUSION

The UPI-41 has been shown to be easily capable of controlling the LRC matrix printer with no external logic other than drivers and receivers. The program listings which implement the algorithms discussed are shown in Appendix A. It should be noted that no attempt has been made to minimize the amount of code in the program; the emphasis significantly reduce the amount of code space needed, especially in the printer service routine which duplicates much code in each STATE. Even with this relatively loose coding the printer control function, including the complete character tables, easily fit within the memory available in the UPI-41. The extra room in memory could be used to implement such extra features as tabulation, printing prestored messages, or even limited graphic capabilities. The power and flexibility of the UPI-41 make such features easy to implement. Appendix

Figure 11. PSR Flowchart

ISIS-I	I 8048 ASSE	MBLER, VI LRC PRINT	.1 ER CONTROLLER	2 7/14/7
LOC	obj	SEQ	SOURCE S	TATEMENT
		12345678991234567 112345678991234567	UPI-41 THIS PH LRC PRI UPI-41 TO ENAF FOR ANG POR ANG BY OUTT BY OUTT IS IMPI NOTE: A PL/M	LRC PRINTER CONTROLLER OGRAM IMPLEMENTS THE CONTROL OF THE MITER WITH THE UPI-41. DATA IS INPUT TO THE AS SIX BIT ASCII. COMMANDS ARE PROVIDED LE OR DISABLE THE GENERATION OF AN IPT WHEN THE UNIT IS READY THER DATA CHARACTER. THE INTERRIPT IS ENABLED WITING 03H TO THE CONTROL CHANNEL AND DISABLED WITING 03H TO THE CONTROL CHANNEL AND DISABLED WITING 03H TO THE CONTROL CHANNEL AND DISABLED UTING 03H TO THE CONTROL THE INTERRUPT. LIKE LANGUAGE WAS USED TO COMMENT
		18 19 20 21 22 22 23 24	THIS PH THE CON ASSEMBI	CGRAM. NO COMPILER EXISTS FOR THE UPI-41. MEMTS WERE 'HAND COMPILED' INTO UPI-41 Y LANGUAGE.
		25 26 ;*	**********	**********************
		27 28 29 30 31	REGISTE	R ASSIGNMENTS
0007 00065 0004 0004 0002 0002 0001 0000		32 33 HAI 34 STI 35 ICI 36 PB 37 OB 37 OB 38 TE 39 OU 40 IN 41	MLAT EQU ATE EQU VT EQU UF EQU UF EQU STR EQU IPNT EQU PNT EQU	R7 R6 R4 R3 R3 R2 R1 RØ
		43 44;* 45; 46; 47;*	**************************************	**************************************
00a0 FFFE FFFD FFF8 FFFA 0004		49 50 TI 51 TH 52 TH 53 TI 54 TI 55 FI	CK EQU ON EQU OFF EQU VIER EQU FEED EQU LIV EQU	160 -320/TICK -480/TICK -1280/TICK -1900/TICK 640/TICK
		57 58 59 60 5 61 5 *	PROGRAM	**************************************
00FF 0007FF 0007FF 00021 00022 00220 00220 00220 00220 00220 0020 0020 00218 00218 00218		63 64 EM 65 EM 66 PF 67 MO 68 IN 69 FM 70 EX 71 EX 73 EX 73 EX 74 OP 75 BM 76 BM 77	TFLG EQU AX EQU EED EQU TENA EQU TENA EQU L EQU L EQU LAIM EQU REQ EQU REQ EQU IN EQU IN EQU IN EQU	ØFFH Ø7H 7FH ØEFH ØLH Ø2H Ø2H Ø2H 20H 20H 18H 18H 18H
		79 ş	EJECT	

LOC	OBJ	SEQ	SOURCE	STATEMENT	
993 993 993 993 993 993 993 993	2 BEØ2 4 ED38 6 BEØ1 8 23FF A 62 55 C 23ØØ F 2F	158 159 160 161 163 164 165 166 167 168 169 170 171	CIELS: MOV DJN2 MOV CILA: MOV STRI MOV CIEND: YCH	STATE, #2 ICNT, C1LA STATE, #1 A, #-1 T, A A, #0 A HAMDAT	ELSE DO; ICNT=ICNT-1; IF ICNT=0 THEN STATE=2 ELSE STATE=1; TIME(-1); HAMMER\$DATA=0; END; END; /*END OF CASE1 */
003	F 93	173 174	RETH	A, HAMLAI	
		175 176 177 178 179 180 181 182 183 183		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DO; /*CASE 2, INITIALIZE PRINT OPERATION */ IF OBUF<>EMPTY\$FLAG THEN DO; TIME (HAMMER\$OFF); PBUF=OBUF; OBUF=EMPT\$FLAG; I=IMAX; STATE=3; HAMMER\$DATA=CØLUMN(PBUF,I);
004 004 004 004 004 004 004 004 004 004	Ø FB 1 D3FF 3 C655 5 23FD 8 55 9 FB 8 BBFF 9 FB 8 BBFF 1 BEØ3 3 Ø45F	1886 1887 1888 1899 1991 1993 1993 1994 1995 1997 1997	CASE2: MOV XRL JZ MOV MOV STRI MOV MOV MOV MOV MOV MOV MOV JMP	A, OBUF A, #EMTFIG C2ELS A, #THOFF T, A T A, OBUF PBUF, A OBUF, #EMTFIG ICNT, #IMAX STATE, # 3 COLUMN C2END	ENU;
445	5 0041	199 200 201 202 203 204 204	CODE C. NOV		ELSE DO; STATE=1; WAIT(FRINT\$AREA); MOTOR=OFF; HAMMER\$DATA=0; END;
005 005 005 005 005	7 23FF 9 62 A 45 B 8A40 D 2300	205 206 207 208 209 210 210	MOV MOV STRI ORL MOV	A, $\#=1$ T, A CNT P2, $\#NOT$ MOTON A, $\#0$	END. /*END OF CASE 2 */
005 006	F 2F Ø 93	212 213	C2END: XCH RETH	A, HAMDAT	
9966 9966 9966 9966	1 23FE 3 62 4 55 5 2300 7 BE04 9 2F 9 2F	214 215 217 217 228 229 2221 2221 2221 2223 2224 225 226	CASE3: MOV MOV STRU MOV MOV XCH RETT	A, #THON T,A T STATE,#4 A,HAMDAT	DO; /*CASE 3, HAMMER OFF CYCLE */ TIME(HAMMER\$ON); HAMMER\$DATA=0; STATE=4; END; /*END OF CASE 3 */
000	n 93	227	\$ EJEC	T	

LOC	obj	SEQ	SOURCE	STATEMENT	
006B 006D 006E	23FD 62 55	228 229 230 CASE4: 232 233 233 234 235	MOV MOV STRT	A, #THOFF	DO; /*CASE 4, PRINTING COL I OF CHAR */ TIME (HAMMERSOFF); I=I-1: IF I=0 THEN
006F 0071 0073 0075	ED77 BEØ5 2300 Ø47B	2336 2337 2389 240 241 242 243 2445	DJNZ MOV MOV JMP	ICNT,C4ELS STATE,#5 A,#0 C4END	ELSE DO; STATE=3; END ELSE DO; STATE=3; HAMMEPSCATA=COLUMN(PRUE I);
ØØ77 ØØ79	BEØ3 54EØ	246 247 C4ELS: 248	MOV CALL	STATE, #3 COLUMN	END;
007B 007C	2F 93	250 C4END: 251 252	XCH RETR	A, HAMDAT	DO: /*CASE 5. INTERCHARACTER SPACE */
007D 007F 0080	23F8 62 55	253 254 255 255 256 257 258	MOV MOV STRT	A,#TINTER T,A T	TIME (INTERSCHAR);
0081 0082 0084 0086 0088 0088 0088 0088 0088 0088	FB D3FF FB AC BBFF BDØ7 BEØ3 5420	258 259 260 261 262 263 264 265 266 265 266 266 268 268 268 268 268 271 271 273 273	MOV XRL JZ MOV MOV MOV CALL	A, OBUF A, #EMTFLG CSELS A, OBUF PBUF, A OBUF, #EMTFLG ICNT, #IMAX STATE, #3 COEUMN CELUMN	DO; PBUF=OBUF; OBUF=EMPTY\$FLAG; I=IMAX; STATE=3; HAMMER\$DATA=COLUMN(PBUF,I); END;
0092 0094 0095 0096	23FA 62 9A7F 9A7F	2/4 275 276 277 278 279 280 281 C5ELS: 282 283 283	MOV MOV STRT ANL	A, #TLFEED	ELSE DO; TIME(LINE\$FEED); PAPER\$FEED=ON; STATE=6; HAMMER\$DATA=0; END;
0098 009A 009C 009D	2300 2F 93	285 286 287 288 C5END: 289 290 291 \$	MOV MOV XCH RETR EJECT	STATE, #6 A, #0 A, HAMDAT	END; /* END OF CASE 5*/

- - -

LOC	OBJ	SEQ	SOURCE	STATEMENT	
		292 293 294 295 296 297		; DO; /*CASE 6,WAITING FOR FEED ON */ ; TIME (LINESFEED); ; IF PFS=1 THEN ; DO; ; STATE=7; FEND;	
009e 00a0 00a1 00a2 00a2 00a4	23FA 62 55 26A8 BEØ7 Ø4AA	298 CASE6: 299 300 301 302 303 304 304	: MOV MOV STRT JNTØ MOV JMP	A, #TLFEED T/A T C6ELS STATE, #7 C6END ; ELSE_DO;	
ØØA8	BEØ6	305 306 307 C6ELS: 308	: MOV	; STATE=6; ; END; STATE,#6 HAMMEPSDaTa=0.	
00AA 00AC 00AD	2300 2F 93	309 310 C6END: 311 312 313	MOV XCH RETR	; END; /*END OF CASE 6 */ A,#Ø A,HAMDAT	
		314 315 316 317 318		; DO; /*CASE 7, WAITING FOR FEED OFF */ ; TIME (LINE\$FEED); ; IF PFS=0 THEN ; DO; ; STATE=0;	
00AE 00B0 00B1 00B2 00B4 00B6	23FA 62 55 36B8 BEØØ Ø4BA	319 320 CASE7: 321 322 323 323 324 325	: MOV MOV STRT JTØ MOV JMP	A, #TLFEED T,A T T C7ELS STATE, #0 C7END	
		326 327 328 329 330		; ELSE DO; STATE=7; ; END; ; END; ; HAMMER\$DATA=0; ; END: /*END OF CASE 7 */	
0088 008A 008C 008D	BEØ7 2300 2F 93	331 C7ELS: 332 C7END: 333 334 335	MOV MOV XCH RETR	STATE,#7 A,#0 A,HAMDAT	
		336 337 338 339 340		; END; /* END OF CASE BLOCK */	
		341 ;***** 342 ;	******	***************************************	****
		343 ; BMGF 344 ; 345 ; THIS 346 ; CONT	R SEGMENT TROLLER A	CONTROLS THE HANDSHAKING BETWEEN THE	
		347 348 ;****	******	*****	****
		350 351		; /BMGR-BUFFER MANAGER*/	
		352 353 354		; DO; ; IF IBF=FULL THEN	
		355 356 357 358 359		; DO; ; IF TYPE=DATA THEN ; DO; ; MOTOR=ON; ; MOTOR=ON; ; TEMPE INCOPT (INPAT);	
Ø100		360 361 362	ORG	1008	
0100 0102 0104 0106 0107	D647 7636 9ABF F8 3470	363 364 BMGR: 365 366 367 368	JNIBF JF1 ANL MOV CALL	BBPRT BBCMD P2,#MOTON A, INPNT TNCOPT	

LOC OBJ	SEQ	SOURCE S	STATEMENT	
	369 370 372 373 374 375 377 376 377 377 378 377 378 388 388 388 388 388			IF TEMP<>OUT\$POINT THEN D; IN\$POINT=TEMP; IF FILL\$MODE=ON THEN DO; TEMP=SPACE; ELSE DO; TEMP=EOL THEN DO; IF TEMP=EOL THEN DO; FILL\$MODE=ON; TEMP=SPACE; END; IF TEMP=CONTROL\$CODE THEN TEMP='1'; BUFFER(IN\$POINT=BUFFER\$MAX THEN DO; FILL\$MODE=OFF; OUT\$POINT=BUFFER\$MAX THEN DO; FILL\$MODE=OFF; OUT\$POINT=BUFFER\$MIN; END; END;
0109 D9 010A C647 010C D9 010D A8 010F 3216 0111 22 0112 9ADF 0114 2418 0114 2418 0118 D30A 0118 D30A 0118 D30A 0118 D30A 0118 D30A 0112 2428 0126 2321 0128 A0 0126 233F 0126 233F 0126 233F 0126 233F 0128 A0 0126 9AFD 0132 B918 0134 2447	394 BBL1: 395 396 397 398 399 400 401 402 403 FILL: 404 BBL1A 406 407 408 BBL1B 406 407 408 BBL1B 409 411 412 BBL1C 413 414 415 416 417 418 419 420 421 422 423 424	XRL JZ XRL MOV IB1 IN1L JMOV XRL JB5 MOV XRL JB5 MOV XRL JNZ MOV JMP	A, OUTPNT BBPRT A, OUTPNT INPNT, A A, P2 FILL A, DBB P2, #NOT (EXREQ) BBLIA A, #SPACE A, #SPACE A, #SOL BBLIC BBLIC BBLIC A, #EXCLAIM A, HENT, A A, INPNT, A A, INPNT, FMODE OUTPNT, #BMIN BBPRT ; ; ;	ELSE DO; /*TYPE IS COMMAND*/ INTERRUPT=OFF; IF (PORTØ AND 3)=2 THEN INTENA=OFF; IF (PORTØ AND 3)=3 THEN INTENA=ON; END;
0136 22 0137 9ADF 0139 5303 013B 323F 013D 2447 013F 1245 0141 9AFE 0143 2447 0145 8A01	425 426 BBCMD 427 428 429 430 431 BBL2: 432 433 433 433 435 \$	IN ANL JB1 JB0 JB0 ANL JMP ORL EJECT	A, DBB P2, #NOT (EXREQ) A, #3 BBL2 BBPRT BBL3 P2, #NOT INTENA BBPRT P2, #INTENA	,

LOC OBJ	SEQ SOURCE STATEMENT
Ø2EØ	525 526 ; 527 ; 527 ; 528 ; AND PBUFF EQL TO THE CLARACTER TO BE CONVERTED. 529 ; COLUMN RETURNS THE APPROPRIATE COLUMN OF DATA FROM THE 530 ; CHARACTER GENERATER TABLE. 531 ; FOLLOWING THE FIRST HALF OF THE TABLE. 533 ; 534 ; 534 ; 535 ; 536 ORG 2EØH
	537 ; PROCEDURE COLUMN (PRINT\$BUFFER, ICNT); 538 ; D0; 539 ; FLAGØ=NOT PRINT\$BUFFER[5]; 540 ; PRINT\$BUFFER[5]=Ø; 541 ; TEMP=7* (PBUF+1) - ICNT 542 ; IF FLAGØ=OFF THEN 543 ; D0; 544 ; D0; 545 ; PRINT\$BUFFER[5]=1; 546 ; END; 547 ; ELSE D0; 548 ; END; 549 ; END;
02E0 FC 02E1 85 02E2 82E5 02E4 95 02E5 531F 02E7 AC 02E8 E7 02E8 E7 02E8 E7 02E8 E7 02E8 E7 02E8 37 02EC 6C 02EE 37 02EF 0307 02EF 0307 02EF 0307 02EF 83 02F5 4320 02F5 4320 02F7 83 02F8 83 02F9 A3 02FA 83	550 ; END; 551 COLUMN: MOV A, PBUF 552 CLR FØ 553 JB5 NOSET 554 CPL FØ 555 NOSET: ANL 556 MOV PBUF, A 557 RL A 559 RL A 561 ADD A, PBUF 562 ADD A, CNT 563 CPL A 564 ADD A, 47 565 JFØ PAG2 566 MOVP3 A, 42 566 MOVP3 A, 42 567 XCH A, #20H 568 ORL A, #20H 569 XCH A, PBUF 570 RET 711 571 PAG2: MOVP 573 RET 712 574 575 576
	 CHARACTER GENERATER TABLES. CHARACTER GENERATER TABLES. THE FIRST HALF OF THESE TABLES IS IN PAGE 2. FOLLOWING THIS HALF THE FIRST HALF OF THESE TABLES IS IN PAGE 2. FOLLOWING THIS HALF IS THE COLUMN SUBBOUTNE. THE SECOND HALF OF THE TABLE IS ADVANTAGE OF THE MCS-41 MOVP AND MOVP3 INSTRUCTIONS. THE CHARACTERS ARE FORMED BY A SEVEN BY SEVEN MATRIX OF DOTS. EACH DOT POSITION CORRESPONDS TO ONE HALF THE NORMAL DOT SPACING OF THE ICC PRINTER. TO ONE HALF THE NORMAL DOT SPACING OF THE SOLENOIDS THE CHARACTERS ARE FORMED SO THAT THE SAME SOLENOID IS NOT PREVENT EXCEEDING THE "BANDWIDTH" OF THE SOLENOIDS THE CHARACTERS ARE FORMED SO THAT THE SAME SOLENOID IS NORTHLED TWICE IN SUCCESSION. CONSTRUCTING THE TABLE IN THIS MANNER ALLOWS THE FORMATION OF A CHARACTER IN ONLY Y A PRINT COLUMNS SINCE THREE OF THE DOTS WILL APPEAR BETWEEN NORWAL COLUMN POSITIONS. THE COMMENT FIELD OF THE TABLE SHOWS THE BIT PATTERN OF THE THE COMMENT FIELD OF THE TABLE SHOWS THE BIT PATTERN OF THE THE COMMENT FIELD OF THE TABLE SHOWS THE BIT PATTERN OF THE SHOT FLE COMMENT FIELD OF THE TABLE SHOWS THE BIT PATTERN OF THE SHOT THE CHARACTERS. THE SPACING OF THE PRINTER CHARACTERS CAUSES SHOT THE CHARACTERS THE SPACING OF THE PRINTER NIS STILL DISCERNABLE. SHOT DISTORTION OF THE CHARACTERS BUT THE PATTERN IS STILL DISCERNABLE. SHOT PATTERNATION OF THE CHARACTERS BUT THE PATTERN IS STILL DISCERNABLE.

LOC	OBJ	SEQ	SOURCE S	STATEMENT	,		
Ø2ØØ		601 602 603	ORG	200H			
0200 0201 0202 0203 0204 0204 0205 0206	0C 222 41 58 01 48 00	605 606 607 608 609 610 611	DB DB DB DB DB DB DB	0СН 22Н 41Н 58Н 01Н 48Н 00Н	*** * * * * * * *	;	(AT)
0207 0208 0209 020A 020A 020B 020C 020C	0F 10 24 40 24 10 0F	614 615 616 617 618 619 620	DB DB DB DB DB DB DB DB	0FH 10H 24H 40H 24H 10H 0FH	**** * * * * * * * * * *	;	[A]
020E 020F 0210 0211 0212 0213 0213 0214	7F ØØ 49 ØØ 98 55 22	622 623 624 625 626 627 628 628	DB DB DB DB DB DB DB DB	7FH ØØH 49H ØØH 88H 55H 22H	******* * * * * * * * * *	;	(B)
0215 0216 0217 0218 0219 0218 0218 0218	3E 41 40 41 00 41 22	631 632 633 633 634 635 636 636	DB DB DB DB DB DB DB	3EH 41H ØØH 41H ØØH 41H 22H	***** * * * * * *	;	[C]
021C 021D 021E 021F 0220 0221 0221 0222	7F 90 41 90 90 41 3E	638 639 640 641 642 643 643 644	DB DB DB DB DB DB DB	7FH 00H 41H 00H 00H 41H 3EH	****** * * * * * *	;	[D]
0223 0224 0225 0226 0227 0228 0228 0229	7F 00 49 00 49 00 41	646 647 6489 650 651 652	DB DB DB DB DB DB DB	7FH 00H 49H 00H 49H 00H 41H	; ****** ; * * * ; * * * ; * * *	;	[E]
022A 022B 022C 022D 022E 022E 022F 0230	7F 48 00 48 00 48 00	655 655 656 658 659 661	DB DB DB DB DB DB DB	7FH ØØH 48H ØØH 48H ØØH 40H	******	;	[F]
0231 0232 0233 0234 0235 0236 0237	3E 41 00 41 04 41 26	362 663 665 665 666 667 668 668	DB DB DB DB DB DB DB	3EH 41H ØØH 41H Ø4H 41H 26H	; ***** ; * * ; * * ; * * ; * * ; * *	;	[G]
		670 Ş	EJECT				

023A 08 023B 00 023C 08 023D 00 023E 7F	673 674 675 676 677 678	DB DB DB DB DB	08H 00H 08H 00H 7FH	* * ******	
023F 00 0240 41 0241 00 0242 7F 0243 00 0244 41 0245 00	679 680 681 682 683 684 684 685	DB DB DB DB DB DB DB	00H 41H 00H 7FH 00H 41H 00H	; * * ; ****** ; * *	; [I]
0246 02 0247 01 0248 00 0249 01 024A 00 024B 01 024B 01 024C 7E	687 688 689 690 691 692 693	DB DB DB DB DB DB DB	02H 01H 00H 01H 00H 01H 7EH	; * ; * ; * ; * ; *	; [J]
024D 7F 024E 00 024F 04 0250 14 0251 22 0252 41 0253 00	695 696 697 698 699 700 701	DB DB DB DB DB DB DB DB	7FH 00H 04H 14H 22H 41H 00H	; ****** ; * ; * * ; * *	; [K]
0254 7F 0255 00 0256 01 0257 00 0258 01 0259 00 0258 01	702 703 704 705 706 706 708 708 708	DB DB DB DB DB DB DB DB	7FH 00H 01H 00H 01H 00H 01H	; ****** ; * ; * ; *	; [L]
025B 7F 025C 40 025D 20 025E 18 025F 20 0260 40 0261 3F	710 711 712 713 714 715 716 716 717 718	DB DB DB DB DB DB DB	7FH 40H 20H 18H 20H 40H 3FH	****** * ** ** **	; [M]
0262 7F 0263 20 0264 10 0265 08 0266 08 0266 04 0267 00 0268 7F	719 720 721 722 723 724 725 726	DB DB DB DB DB DB DB	7FH 20H 10H 08H 04H 00H 7FH	; ****** * * *	; [N]
0269 3E 026A 41 026B 00 026C 41 026C 00 026E 41 026F 3E	727 728 729 730 731 732 732 733 734	DB DB DB DB DB DB DB	3eh 41h 00h 41h 00h 41h 3eh	; ***** ; * * ; * * ; * *	; [0]
0270 37 0271 00 0272 48 0273 00 0274 00 0275 48 0275 30	736 737 738 739 740 741 742	DB DB DB DB DB DB DB	37H ØØH 48H ØØH ØØH 48H 3ØH	; *** ** ; * * ; * *	; [P]
0277 3E 0278 41 0279 00 027A 40 027B 05 027C 42 027D 3D	743 744 745 746 747 748 749 750	DB DB DB DB DB DB DB	3EH 41H ØØH 40H Ø5H 42H 3DH	; ***** ; * * ; * * ; * *	; [Q]

LOC	OBJ	SEQ	SOURCE	STATEMENT			
027E 027F 0280 0281 0282 0283 0283 0284	7F 00 48 00 04 4A 31	751 753 753 754 755 756 757 757 758	DB DB DB DB DB DB DB DB	7FH ØØH 48H ØØH Ø4H 4AH 31H	; ****** ; * * ; * ; ; * * ; * **	;	[R]
Ø285 Ø286 Ø287 Ø288 Ø289 Ø288 Ø28B	32 49 ØØ 49 ØØ 49 26	760 761 762 763 764 765 766 767 768	DB DB DB DB DB DB DB	32H 49H ØØH 49H ØØH 49H 26H	; * ** ; * * * ; * * * ; * * * ; * * * ; ** *	;	[S]
028C 028D 028E 028F 0290 0291 0291 0292	40 40 45 40 40 40	769 770 771 772 773 774 774 775	DB DB DB DB DB DB DB DB	40H 00H 3FH 40H 00H 40H	; * ; * ; ***** ; * ; *	;	[T]
0293 0294 0295 0296 0297 0298 0298 0299	7C Ø2 Ø1 Ø1 Ø2 7C	717 778 779 780 781 782 783	DB DB DB DB DB DB DB DB	7CH Ø2H Ø1H Ø0H Ø1H Ø2H 7CH	; **** ; * ; * ; * ; * ; * ; *	;	(U)
029A 029B 029C 029D 029E 029E 029F 02A0	78 04 02 01 02 04 78	785 786 787 788 789 790 790 791	DB DB DB DB DB DB DB DB	78H Ø4H Ø2H Ø1H Ø2H Ø4H 78H	; **** ; * ; * ; * ; * ; * ; * ; *	;	[V]
02A1 02A2 02A3 02A4 02A5 02A6 02A7	7E Ø1 Ø2 Ø2 Ø2 Ø1 7E	793 793 794 795 796 797 798 798 798	DB DB DB DB DB DB DB DB	7EH Ø2H Ø2H Ø2H Ø2H Ø1H 7EH	; ***** ; * ; * ; * ; * ; * ; *	;	[W]
02A8 02A9 02AA 02AB 02AC 02AC 02AD 02AE	41 22 14 08 14 22 41	801 802 803 804 805 806 806 807	DB DB DB DB DB DB DB DB	41H 22H 14H Ø8H 14H 22H 41H	; * * ; * * ; * * ; * * ; * * ; * * ; * *	;	[X]
02AF 02B0 02B1 02B2 02B3 02B3 02B4 02B5	40 20 10 9F 10 20 40	809 810 811 812 813 814 815 816 816 817 S	DB DB DB DB DB DB DB DB	40H 20H 10H 0FH 10H 20H 40H	; * ; * ; * ; **** ; * ; * ; *	;	[¥]
		01/ 9	ENERT				
LOC	OBJ	SEQ	SOURCE S	TATEMENT			
--	--	---	--	--	---	-------	-------------
Ø2B6 Ø2B7 Ø2B8 Ø2B9 Ø2BA Ø2BB Ø2BC	41 Ø2 45 Ø8 51 20 41	818 819 821 821 823 823 824 823	DB DB DB DB DB DB DB DB	41H Ø2H 45H Ø8H 51H 2ØH 41H	; * * * ; * * * ; * * * ; * * * ; * *	;	[2]
02BD 02BE 02BF 02C0 02C1 02C2 02C3	7F 00 41 00 41 00 41	826 827 828 829 829 830 831 831 832	DB DB DB DB DB DB DB	7FH 00H 41H 00H 41H 00H 41H	; ****** ; * * ; * * *	;	(1)
02C4 02C5 02C6 02C7 02C8 02C9 02C8	40 20 10 08 04 02 01	8334 8335 8336 8337 8338 8339 8339 8349	DB DB DB DB DB DB DB	40H 20H 10H 08H 04H 02H 01H	** ** **	;	[\]
02CB 02CC 02CD 02CE 02CF 02CF 02D0 02D1	41 00 41 00 41 00 7F	841 843 843 845 845 846 846 846 848	DB DB DB DB DB DB DB	41H 00H 41H 00H 41H 00H 7FH	* *	;	[]]
Ø2D2 Ø2D3 Ø2D4 Ø2D5 Ø2D6 Ø2D7 Ø2D8	00 04 08 10 08 08 04 09	859 851 852 853 854 855 855 855 855	DB DB DB DB DB DB DB	00H 04H 08H 10H 08H 08H 04H 04H	; * ; * ; * ; *	;	[UA]
Ø2D9 Ø2DA Ø2DB Ø2DC Ø2DD Ø2DE Ø2DF	01 00 01 00 01 00 01	857 859 860 862 863 863 864 865 865 865 865	DB DB DB DB DB DB DB	01H 00H 01H 00H 01H 00H 00H 01H	* * *	;	U
		868 869 870	***********	******	********	*****	******
		871 872	START OF SECO	ND HALF (OF CGEN TABLE		
ø300		873 874 875 876	ORG	300H			***********
0300 0301 0302 0303 0304 0305 0306	00 00 00 00 00 00	877 878 878 889 881 881 882 883 883 883	DB DB DB DB DB DB DB	00H 00H 00H 00H 00H 00H 00H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	;	[]
0307 0308 0309 030A 030B 030B 030C 030D	00 00 7D 00 00 00	885 886 888 889 890 891 891 892 893	DB DB DB DB DB DB DB	00H 00H 00H 7dh 00H 00H 00H	; * *****	;	[1]
		894	\$ EJECT				

LOC	OBJ	SEQ	SOURCE	STATEMENT			
030E 030F 0310 0311 0312 0313 0314	00 20 40 20 20 40 00	895 896 897 898 899 900 900 901	DB DB DB DB DB DB DB DB	00H 20H 40H 00H 20H 40H 90H	; * ; * ; *	;	["]
Ø315 Ø316 Ø317 Ø318 Ø319 Ø31A Ø31B	14 00 7F 00 7F 00 14	903 904 905 906 906 907 908 908	DB DB DB DB DB DB DB DB	14H ØØH 7FH ØØH 7FH ØØH 14H	* * ******* ******* ; * *	;	[#]
Ø31C Ø31D Ø31E Ø31F Ø32Ø Ø321 Ø322	00 32 49 36 49 26 00	910 911 913 914 914 916 916 916	DB DB DB DB DB DB DB	00H 32H 49H 36H 49H 26H 00H	* ** * * * ** ** ** *	;	[\$]
Ø323 Ø324 Ø325 Ø326 Ø327 Ø328 Ø329	51 Ø2 54 98 15 20 45	919 919 920 921 922 922 923 924 924 925	DB DB DB DB DB DB DB DB	51H Ø2H Ø8H 15H 20H 45H	; * * * * ; * * * ; * * * ; * * * ; * * *	;	[*]
Ø32A Ø32B Ø32C Ø32D Ø32E Ø32F Ø33Ø	26 49 10 49 26 Ø1 Ø5	927 927 928 930 9310 9312 932 933	DB DB DB DB DB DB DB DB	26H 49H 10H 49H 26H 01H 05H	; ** * ; * * * ; * * ; * * ; * ; *	;	[&]
0331 0332 0333 0334 0335 0336 0337	00 00 10 20 40 00	934 935 937 938 939 939 941 941 942	DB DB DB DB DB DB DB DB	00H 00H 10H 20H 40H 00H 00H	; ; * ; * ;	;	[']
Ø338 Ø339 Ø33A Ø33B Ø33C Ø33D Ø33E	1C 22 41 00 00 00	943 944 945 945 947 947 949 949 950	DB DB DB DB DB DB DB	1CH 22H 41H ØØH ØØH ØØH ØØH	; *** ; * * ; * *	;	[(]
Ø33F Ø340 Ø341 Ø342 Ø343 Ø343 Ø344	00 00 00 41 22 1C	912 953 954 955 955 955 955 957 957 957	DB DB DB DB DB DB DB DB	00H 00H 00H 41H 22H 1CH	* * * *	;	[)]
0346 0347 0348 0349 034A 034B 034B 034C	49 22 1C 77 1C 22 49	267 961 962 963 963 964 965 965 965 965	DB DB DB DB DB DB DB DB	49H 22H 1CH 77H 1CH 22H 49H	* * * *** *** *** * *	;	[*]
034D 034E 034F 0350 0351 0352 0353	Ø8 Ø8 3E Ø8 Ø8 Ø8	266 969 970 971 972 973 973 974	DB DB DB DB DB DB DB DB	Ø8H Ø8H 3EH Ø8H Ø8H Ø8H Ø8H	; * ; * ; * ; * ; * ; *	;	[+]

0355 0356 0357 0358 0358 0359 035A	00 00 00 00 00 00	977 978 979 980 981 982 982	DB DB DB DB DB DB DB DB	00H 00H 00H 01H 06H 00H 00H	; ; ; * ; **	;	[,]
035B 035C 035D 035E 035F 0360 0361	04 04 04 04 04 04 04 04	984 985 986 987 988 989 989 990 990	DB DB DB DB DB DB DB	04H 04H 04H 04H 04H 04H 04H	* * * * * *	;	[-]
0362 0363 0364 0365 0366 0366 0368	00 00 00 00 00 00 00	992 993 994 995 996 997 998 998	DB DB DB DB DB DB DB DB DB	00H 00H 01H 00H 00H 00H 00H	; ; * ; ;	;	[.]
Ø369 Ø36A Ø36B Ø36C Ø36C Ø36E Ø36E	01 02 04 08 10 20 40	1001 1002 1003 1004 1005 1006 1006	DB DB DB DB DB DB DB DB DB DB	Ø1H Ø2H Ø4H Ø8H 1ØH 2ØH 40H	; * ; * ; * ; * ; * ; *	;	[/]
0370 0371 0372 0373 0373 0374 0375 0376	1D 22 45 98 51 52 52 50	1008 1009 1010 1011 1012 1013 1014 1014	DB DB DB DB DB DB DB DB DB	1DH 22H 45H Ø8H 51H 22H 5CH	; * *** ; * * ; * * ; * * ; * ; * *	;	[0]
Ø377 Ø378 Ø379 Ø37A Ø37B Ø37C Ø37C	00 21 40 7F 00 01 00	1017 1017 1018 1019 1020 1021 1022 1023	DB DB DB DB DB DB DB DB DB	00H 21H 40H 7FH 00H 01H 00H	; * * ; *******	;	[1]
Ø37E Ø37F Ø38Ø Ø381 Ø382 Ø383 Ø383	23 44 Ø1 48 Ø1 48 31	1025 1026 1027 1028 1029 1030 1031	DB DB DB DB DB DB DB DB DB DB	23H 44H Ø1H 48H Ø1H 48H 31H	; ** * ; * * ; * * ; * * ; * *	;	[2]
0385 0386 0387 0388 0389 0388 0388 038B	42 Ø1 50 Ø1 50 29 46	1033 1034 1035 1036 1037 1038 1039 1040	DB DB DB DB DB DB DB DB DB	42H Ø1H 50H 91H 50H 29H 46H	; * * ; * * ; * * ; * * ; * * *	;	[3]
		1041 \$	EJECT				

LOC	OBJ	SEQ	SOURCE S	TATEMENT			
Ø38C Ø38D Ø38E Ø38F Ø39Ø Ø391 Ø392	04 08 14 20 5F 00 04	1042 1043 1044 1045 1046 1046 1047 1048	DB DB DB DB DB DB DB DB	04H 08H 14H 20H 5FH 00H 04H	; * * * * *	;	[4]
0393 0394 0395 0396 0397 0398 0398 0399	72 Ø1 50 Ø1 40 11 4E	1050 1051 1052 1053 1054 1055 1055 1055	DB DB DB DB DB DB DB DB	72H Ø1H 50H Ø1H 40H 11H 4EH	; * *** * * * ; * * ; * * ; * *	;	[5]
039A 039B 039C 039D 039E 039F 03A0	17 21 40 99 40 09 46	1057 1058 1059 1060 1061 1062 1063 1064	DB DB DB DB DB DB DB DB	17H 21H 40H 09H 40H 09H 46H	*** * * * * * * * * *	;	[6]
03A1 03A2 03A3 03A4 03A5 03A6 03A6	40 00 47 08 50 20 40	1065 1066 1067 1068 1069 1070 1071 1072	DB DB DB DB DB DB DB DB	40H 00H 47H 08H 50H 20H 40H	; * ; *** * ; * * ; *	;	[7]
03A8 03A9 03AA 03AB 03AC 03AC 03AD 03AE	36 49 00 49 00 49 36	1073 1074 1075 1076 1077 1078 1079 1080	DB DB DB DB DB DB DB DB	36H 49H ØØH 49H ØØH 49H 36H	** ** * * * * * * * * *	;	[8]
03AF 03B0 03B1 03B2 03B3 03B4 03B5	30 48 01 48 01 42 3C	1082 1083 1084 1085 1086 1087 1088 1088	DB DB DB DB DB DB DB DB	30H 48H 01H 48H 01H 42H 3CH	; ** * * * * * * * *	;	[9]
Ø3B6 Ø3B7 Ø3B8 Ø3B9 Ø3BA Ø3BB Ø3BC	00 00 00 14 00 00 00	1090 1091 1092 1093 1094 1095 1096 1097	DB DB DB DB DB DB DB	00H 00H 14H 00H 00H 00H 00H	* *	;	[:]
Ø3BD Ø3BE Ø3CØ Ø3C0 Ø3C1 Ø3C2 Ø3C3	00 00 02 14 00	1098 1099 1100 1101 1102 1103 1104 1105	DB DB DB DB DB DB DB	00H 00H 01H 02H 14H 00H 00H	; ; ; ; ; ; ; ;	;	[;]
03C4 03C5 03C6 03C7 03C8 03C9 03C9 03CA	00 08 14 22 41 00 00	1107 1108 1109 1110 1111 1111 1112 1113	DB DB DB DB DB DB DB DB	00H 08H 14H 22H 41H 00H 00H	* * * * * *	;	[<]
03CB 03CC 03CD 03CE 03CF 03D0 03D0 03D1	00 14 00 14 00 14 00	1115 1116 1117 1118 1119 1120 1121	DB DB DB DB DB DB DB	00H 14H 00H 14H 00H 14H 00H	; * * ; * * ; * *	;	[=]

LOC	OBJ	SEQ	SOURCE	STATEMENT			
Ø3D2 Ø3D3 Ø3D4 Ø3D5	00 00 41 22	1122 1123 1124 1125 1126	DB DB DB DB	00H 00H 41H 22H	* *	;	[>]
Ø3D6 Ø3D7 Ø3D8	14 08 00	1127 1128 1129 1130	DB DB DB	14H Ø8H ØØH	; * * ; *		
Ø3D9 Ø3DA Ø3DB Ø3DC Ø3DD Ø3DE Ø3DE	00 20 40 40 48 30 48	1131 1132 1133 1134 1135 1136 1137	DB DB DB DB DB DB DB	00H 20H 40H 05H 48H 30H	; * ; * ; * * ; * *	;	[?]
UJDI	00	1138 1139	END	UUN	;		

APPLICATION NOTE

AP-54

April 1979

Intel Corporation, 1979

Using the 8295 Contents Dot Matrix **Printer Controller**

Introduction	1–3
The 82951	1–3
The LRC 7040 Printer 1	1–3
8295/Printer Interface1	1-5
8295 Command Software 1	1-6
Parallel Interface	1–7
Serial Interface	i–13
8295 Software	I–15
Conclusion	1–16
Appendix A11	I–17

INTRODUCTION

Many microprocessor systems require the real-time control of a peripheral device such as a printer, keyboard, or alpha-numeric display, etc. These medium speed but still real-time tasks can be rather mundane, time-consuming, and require a fair amount of system software overhead. Of course, any time spent by the main processor in servicing these I/O devices is unavailable for other, possibly more important, tasks. This processor burden can largely be removed by isolating the real-time portion of the task to a dedicated peripheral-control processer.

Until recently, this approach was usually not cost effective due to the large number of components required by the dedicated processor: CPU, RAM, ROM, I/O, etc. To help make the approach more cost effective. Intel borrowed the I/O processing concepts found in many mainframe and minicomputers; put all the hardware in one package; and introduced a family of Universal Peripheral Interface controllers—the UPI-41ATM family. The basic family consists of the 8041A and the 8741A. These two devices are essentially single-chip microcomputers with a standard microprocessor bus interface. They have onchip RAM, ROM (8041A) or EPROM (8741A), CPU, timer/counter, and I/O. Using one of the UPI family, the designer simply codes his custom or proprietary peripheral control algorithm into the UPI device itself rather than the main system software. The UPI device then takes over the peripheral control task while the host processor simply issues commands and transfers data. More information on the UPI family is available in the documents referenced opposite the table of contents.

Illustrating the UPI concept as both design examples and actual products, a number of pre-programmed 8041As are available. These devices are the 8278 Keyboard/Display Controller, the 8294 Data Encryption Unit, the 8292 GPIB Controller, and the 8295 Dot Matrix Printer Controller. Data sheets for these devices are found in the Peripheral Design Handbook and their source listings (except for the 8294) are available in Insite, Intel's User's library. This application note deals with the 8295.

THE 8295

The 8295 Dot Matrix Printer Controller is a device specifically designed to interface microprocessors to the LRC 7040 Series of dot matrix impact printers. It offers complete solenoid and motor drive timing and contains an on-chip 7×7 character generator accommodating 64 ASCII characters. An on-chip FIFO buffers up to 40 ASCII characters before printing. Character density, width, and print intensity are all programmable. Three programmable tabulations and two general purpose outputs are also provided. Four data transfer methods are possible: polling, interrupt-driven, and Direct Memory

Access (DMA) are available when in parallel data transfer mode and asynchronous serial is available in serial mode. The data transfer mode is hardware selectable.

Let's first look at the LRC printer itself and its interface to the 8295.

THE LRC 7040 PRINTER

The LRC Model 7040 printer is manufactured by LRC, Inc. of Riverton, Wyoming. Capable of printing 40 columns of characters at a speed of 1.25 lines/sec, the 7040 is mechanically simple and is ideal for point-of-sale or data logging terminals.

It is an impact printer whose print head consists of seven solenoids which each drives a stiff wire to impact the paper through an inked ribbon. While the wires are arranged in a circular fashion at the solenoid end, they form a vertical column at the ribbon impact point. Characters are formed by firing the solenoids to form a 5×7 or 7×7 matrix of "dots" (impacts of the wires). Figure 1 shows how the character A is formed using a 7×7 matrix. The columns are labeled C1 thru C7 and the rows R1 thru R7. The print head moves left to right across the paper so at time T1, the head is over column C1. If the correct solenoids are activated at each time Tx for each column Cx, the character is formed.

The print head is moved across the paper by the main motor drive. The main motor drive consists of a 24-pole synchronous motor which drives a rotating plastic drum. The drum has a spiral groove molded into it and a pin on the print head rests in the groove so that the print head traverses the paper as the drum rotates. Characters are printed by firing the solenoids during the left-to-right traverse. At the end of the print area, the spiral groove reverses the direction of the print head returning it to its home position. A HOME microswitch riding on a cam attached to the plastic drum provides the only feedback as to the print head position. When the print head is in its home resting position the HOME switch is inactive. To start a print cycle, the main motor drive is activated which starts the print head motion. As the print head reaches the beginning of the print area, the cam activates the HOME switch as a signal to the printer controller to commence firing the solenoids. The controller then activates the solenoids as appropriate for each character in the line. The print area is defined as the 310ms immediately after HOME goes active. Solenoid timing is the responsibility of the controller; the printer mechanism supplies no character-position information.

After the line is printed and the print head has traversed right to left, the HOME switch is deactivated. This transition signals the controller to turn off the main motor drive since the home position has been reached. A new print cycle may start immediately if data is ready.

Paper feed is accomplished with a second synchronous motor and a PFEED (Paper Feed) microswitch. In the quiescent state, the PFEED switch is inactive. Activating the paper feed motor drive starts the line feed cycle. The switch becomes active at some point during the cycle (typically about 48ms later) and is deactivated when the cycle is complete. The controller uses the active-toinactive transition to remove the paper feed motor drive. The paper feed operation is independent of the print cycle so the two could occur simultaneously. Figure 2 shows the timing required by the printer for a print cycle followed by a line feed.

Figure 2. LRC 7040 Motor Drive Timing

Solenoid timing determines the location of any given "dot" and its intensity. The LRC 7040 printer specification states a 400µs maximum solenoid "ON" time and a 1.3ms typical period. Since the print area is 310ms "long," this timing allows a total of 240 dots (310ms/1.3ms per dot) in one row or 40 characters on a 5×7 matrix with a one dot space between characters. While 5×7 characters have acceptable readability, their distinctness and format can be improved with a 7×7 matrix, however, 40 7×7 characters translate to 320 dots per row or a 0.97ms solenoid period. This violates the solenoid duty cycle spec if the solenoids are fired for every column. The best way to get around this dilemma and still retain the improved readability of the 7×7 format is to simply fire the solenoid every other column. The 8295 uses this technique and the "every-other" column spacing is reflected in Figure 1. The 8295 character set is included in Figure 3.

Hex Code	Print Char.						
20	space	30	0	40	0	50	Р
21	1	31	1	41	Ā	51	Q
22	"	32	2	42	В	52	R
23	#	33	3	43	С	53	S
24	\$	34	4	44	D	54	Т
25	%	35	5	45	E	55	U
26	&	36	6	46	F	56	v
27		37	7	47	G	57	w
28	(38	8	48	н	58	x
29		39	9	49	1	59	Y
2A	•	ЗA	:	4A	J	5A	z
2B	+	3B	;	4B	ĸ	5B	[
2C	•	зC	<	4C	L L	5C	Ň
2D	-	ЗD	=	4D	м	5D]
2E	.	3E	>	4E	N	5E	l t
2F	/	4F	?	4F	0	5F	

CHARACTER SET

Figure 3. 8295 Character Set

8295/Printer Interface

It's the job of the 8295/Printer interface to convert the TTL-compatible outputs of the 8295 to the motor and solenoid drive levels. Since the printer side of the 8295 is independent of the system side, this same 8295/Printer interface is used for all examples discussed in the later sections.

For solenoid drive, the 8295 supplies seven solenoid outputs, $\overline{S1}$ thru $\overline{S7}$, plus a solenoid strobe, STB. STB modulates the S1-S7 outputs externally to supply the actual solenoid "ON" time. This time is software programmable. Figure 4 shows the recommended S1-S7/STB gating.

Figure 4. Solenoid and Motor Gating

The solenoids must be driven from a $40 \pm 10\%$ volt source. The peak current is approximately 3.6A, the average current is approximately 0.5A. A circuit providing the required drive is shown in Figure 5. The output stage, consisting of the 2N6045 Darlington transistor, the 1N4002 catching diode, and the 100-ohm damping resistor, is the one suggested by the manufacturer. The input stage is a discrete implementation of a DTL gate. Note that the base-emitter junction of the 2N6045 protects the 2N2222A transistor from overvoltage on its collector. This circuit has several features which are important to the printer interface:

- 1. All solenoid power (including the power used to drive the base of the power transistor) is derived from the 40-volt supply.
- 2. Disconnecting the drivers from the 8295 or the loss of the 5-volt supply to the 8295 results in the solenoids turning off.

The first feature of the drivers minimizes the impact of the printer and its interface on the 5-volt supply. The second feature prevents the activation of the solenoids erroneously during power on/off cycles or during system checkout. This an important point since the solenoids will be damaged if left activated continuously. The fuses is series with the solenoids help protect them from mishap.

The two motors can each be driven as shown in Figure 6. The Monsanto MCS-6200 is an optically-coupled TRIAC which is ideal for driving the small synchronous motors in the printer. Coupled with a buffer this part provides a simple means of controlling the motors without sacrificing the isolation required for safe and reliable operation.

These driver circuits were borrowed from the Intel application note AP-27 "Printer Control With the UPI-4!" (The 8295 development was inspired by the success of the AP-27 design.) Other solenoid and motor driver circuits are described in the LRC Interface Guide available from the manufacturer.

Figure 5. Solenoid Driver

Figure 6. Motor Driver

pin to a logic low state. After power on it is automatically set high.

- 01 Clear GP2. Same as the above but for GP2.
- 02 Set GP1. Sets GP1 pin to a logic high state, inverse of command 00.
- 03 Set GP2. Same as above but for GP2. Inverse command 01.
- 04 Software Reset. This is a pacify command. This command is not effective immediately after commands requiring a parameter, as the Reset command will be interpreted as a parameter.
- 05 Print 10 characters/in. density.
- 06 Print 12 characters/in. density.
- 07 Print double width characters. This command prints characters at twice the normal width, that is, at either 17 or 20 characters per line.
- 08* Enable DMA mode; must be followed by two bytes specifying the number of data characters to be fetched. Least significant byte accepted first.
- 09 Tab character.
- 0A Line feed.
- 0B* Multiple Line Feed; must be followed by a byte specifying the number of line feeds.
- 0C Top of Form. Enables the line feed output until the Top of Form input is activated.

enables the printer to start printing.

- 0E* Set Tab #1, followed by tab position byte.
- 0F* Set Tab #2, followed by tab position byte. Should be greater than Tab #1.
- 10* Set Tab #3, followed by tab position byte. Should be greater than Tab #1.
- 11 Print Head Home on Right. On some printers the print head home position is on the right. This command would enable normal left to right printing with such printers.
- 12* Set Strobe Width; must be followed by strobe width selection byte. This command adjusts the duration of the strobe activation.

D7-D3	D2	D1	D0	Solenoid on (µs)
0	0	0	0	200
0	0	0	1	240
0	0	1	0	280
0	0	1	1	320
0	1	0	0	360
0	1	0	1	400
0	1	1	0	440
0	1	1	1	480

*parameter(s) required

Figure	7.	8295	Command	Set
--------	----	------	---------	-----

8295 Command Software

The software control of the 8295 is very straightforward. The host processor simply issues ASCII characters to the 8295. The printable characters, 20H thru 5FH, are stored in the on-chip FIFO for printing while the non-printable codes, 00H thru 12H, serve as 8295 commands. (Codes 13H thru 1FH are treated as no-ops.) The 8295 command set is shown in Figure 7. Note that some of the commands require an extra byte or two of information (parameters). These additional parameters must follow the command otherwise data and parameters might be confused. Commands and data may be mixed at any time although while the data is stored in the FIFO, commands take effect immediately. Commands do not "pass-thru" the FIFO.

All printable characters are entered into the FIFO. The FIFO is printed when either a Carriage Return command is received or the FIFO becomes full. In either case, the FIFO is printed, however there is no automatic line feed unless the printer happens to be so equipped mechanically. Thus, a Line Feed command should be issued after each Carriage Return or after the last character to fill the FIFO. The FIFO is printed as soon as the character that filled it is accepted. If the character immediately following this filling character is a Carriage Return, the 8295 ignores it to prevent a useless print cycle.

Some commands clear the FIFO. The Carriage Return command effectively clears the FIFO since it causes the FIFO contents to be printed. The character density and width commands also clear the FIFO however they do not print its contents; the FIFO size is adjusted by these commands. Obviously, a 10 chr/in density with double width printing would not allow 40 characters per line. The 8295 recognizes this fact and modifies internally the FIFO size limits. The FIFO size is modified according to the table below. For example, if the density is 10 char/in, single width printing, the 8295 accepts only 33 printable characters before starting a print cycle. Since these commands take effect as soon as they are accepted, this prevents mixing different character densities or widths on a given line. Any such commands must precede the data for a line.

DENSITY	WIDTH	BUFFER SIZE
12	SINGLE	40
12	DOUBLE	20
10	SINGLE	33
10	DOUBLE	17

The Software Reset command clears the FIFO, resets the density to 12 chr/in and selects single width printing. It does not effect the solenoid strobe width, the tab positions, or the general purpose outputs. This command should be issued only when the 8295 is expecting a command or data. Issuing it when the 8295 is expecting a parameter causes it to be interpreted as the parameter and not the intended software reset.

A hardware reset causes the 8295 to default into the following states:

- 1. Clears the FIFO
- 2. GP1 and GP2 set high
- 3. 12 chr/in density
- 4. single width prining
- 5. 320µs strobe width
- 6. tab positions indeterminate.

Parallel Interfaces

The 8295 has the option of using serial or parallel communication with the main processor. The choice must be made early in the design cycle since it is a hardware, not a software, selection. Let's look at the parallel options first.

In parallel mode, the 8295 has the traditional microprocessor bus interface: data, control, etc. The parallel mode is selected by not grounding the IRQ/\overline{SER} pin. To the main processor, the 8295 in parallel mode appears as two registers: the Input Data register and the Output Status register. The main processor writes commands and data into the Input Data register while it reads the 8295 status from the Output Status register.

The Output Status register format is shown in Figure 8. The Input Buffer Full bit (IBF) indicates whether the 8295 has accepted the previous command or data byte. IBF is automatically set when the host processor writes to the 8295 and it is reset when the 8295 accepts the data or command. If IBF = 1, no writes to the Input Data register are allowed. Only when IBF = 0 may a Input Data register write be done. The DMA Enable bit (DE) is set whenever the 8295 is performing DMA data transfers. When the specified number of transfers has been made, the DE bit is cleared. Since DMA cycles are usually transparent to the main processor, the DE bit tells the processor when the DMA block transfer is complete.

The processor does not always have to read the Output Status register, checking IBF, before loading the Input Data register. An interrupt output (IRQ) pin is available to interrupt the processor whenever the 8295 is ready to receive new data or commands. The fact that IRQ is set implies that IBF = 0, so it's not necessary for the processor to read the 8295 status when interrupted; it can just write the next byte.

Figure 8. Output Status Register Format

Figure 9 shows the system schematic for using the 8295 in polled-parallel mode in an 8085A system; ie the IRQ line is not used. The 8085A/8295 interface is standard as for any Intel peripheral. \overline{CS} is decoded from the high-order address lines. \overline{RD} and \overline{WR} are the 8085A read and write control lines. \overline{RESET} is the system reset.

Example 8085A polling software is shown in Figure 10. This routine simply outputs the print buffer starting at the location pointed to in PRTSRT. The system software builds the buffer, terminates it with a 0FFH character, and loads PRTSRT before calling PRINT.

PRINT is not very efficient with respect to processing time. Since the 8295 does not accept data while in a print or line feed cycle, if the buffer contained more printable characters than the FIFO size, the processor would sit in the PRT2 loop during the 800ms print and 200ms line feed cycles. That is obviously not too efficient. The obvious way around this problem is to restrict the buffer size to less than that of the FIFO however this could complicate the system software since more buffer building is required. A better approach is to use interrupts.

By connecting the 8295's IRQ output to one of the 8085A RST interrupt inputs (dotted line in Figure 9), the processor is interrupted only when the 8295 is able to take another character. Figure 11 shows such interrupt-driven software assuming the RST 6.5 interrupt input is used for IRQ.

To further enhance the bus efficiency and processor overhead at the expense of slightly more complex hardware, use the 8295 DMA interface. This DMA interface is compatible with the 8257 DMA Controller. With such an interface all that's necessary is for the processor to load the DMA Controller with the print buffer starting address and write the Enable DMA command and length parameters into the 8295. The 8295 does the rest by requesting data directly from memory thru the DMA Controller. It keeps track of the number of characters to request. As long as there are characters remaining to be transferred, the DE bit in the Output Status register is set. After the last byte is transferred into the 8295, the DE bit is reset and the IRQ is made active. Either event is used to tell the processor that DMA is complete and the 8295 is ready for the next block. It is not necessary to restrict the DMA block size to 40 characters, the Enable DMA command parameters allow for up to 65k byte block sizes. The block size given the 8295 must reflect both data plus commands and parameters.

Figure 9. 8295 Parallel Interface

ASM80 : F1:95F10. SRC TITLE('8295 AP NOTE FIGURE 10')

ISIS-11 8295 AF	8080/8085 Note Figur	MACRO Re 10	rssembl	ER, X108	1	MODULE	
LOC	OBJ	SEQ		source s	FATEMENT		
		4	*MODOF				
		2	⇒nubaa :				
		2	SVGTEN	FOUNTES			
2000		4	PRISET	FRH	2000		POINTER STOROGE
0002		5	IBF	EQU	02H		SIBE FLAG MASK
0031		6	STS95	EQU	318		38295 STATUS REGISTER FORT
0031		7	DATA95	EQU	31H		38295 DATA REGISTER PORT
		8	;				
2030		9		ORG	2030H		
		10	;				
		11	FRINT	BUFFER U	utput sub	ROUTINE	- THIS ROUTINE PRINTS THE BUFFER
		12	; STARTI	NG AT TH	E POINTER	STORED	AT PRISET. THE ROUTINE RETURNS WHEN
		13) a offh	IS FETC	hed from	THE BUFF	FER.
0020		14	j DDTNT.	60.0711			
2030	EJ 05	10	PRINT:	PUSH	n D		
2031	260929	10		LHID	PRICET		BET RIFELD POINTER
2032	2F	18	PRT1 ·	MOV	8.M		GET CHARACTER ERIM BHEEFR
2036	47	19		MOY	B, A		SAVE IT IN B
2037	FEFF	20		CPI	UFFH		IS IT THE BUFFER END?
2039	CA4820	21		JZ	PEX11		; YES, GO EXIT
203C	DB31	22	PRT2:	IN	STS95		(NO) READ 8295 STATUS
203E	E602	23		AN1	IBE		; LOOK AT IBF FLAG
2040	C23C20	24		jnz	PRT2		;WAIT UNTIL IBF=0
2043	78	25		Mov	A, B		; RECOVER CHARACTER
2044	D331	26		OUT	Data95		; OUTPUT TO 8295
2046	23	27		INX	H		; BUMP BUFFER POINTER
2047	633020	28 29		JMP	PRII		(GE) NEXI UNHKHUIEK
2048	C1	30	PEXIT	POP	в		RESTORE BC
204B	E1	31		POP	н		RESTORE HL
204C	C9	32		RET			; RETURN
		33	;				
		34		END			
PUBLIC	symbols						
Externi	il symbols						
	MROIS						
DATA95	A 0031 1	(DF	A 0002	PEXIT	A 204A	PRINT	[A 2030 PRT1 A 2035 PRT2 A 2030 PR15RT A 2000
STS95	A 0031						
Assembl	Y COMPLETE,	NO E	RRORS				

Figure 10. 8085A/8295 Polling Subroutine

8295 AP NOTE FIGURE 11

LOC	0 B J	SEQ	500	JRCE ST	ATEMENT	
		1 \$	10085			
		2;				
		3 : 5	ysten e(DUATES		
2000		4 PR	RTSRT E	20	20D0H	> POINTER STORAGE
8662		5 IB	8F Ε(20	02H	/ 18F Flag Mask
8931		6 ST	rs95 E(90	318	\$8295 STATUS REGISTER PORT
8931		7 DA	1 17895 E(9U	31H	(8295 DATH REGISTER POR)
		8;				
		9;				
		10 ; R	IST6. 5 11	NTERRUF	T VECTOR LOCATE	ON - JUMP TO PRINTER SUBROUTINE
		11 /				
80 34		12	0	RG	34H	
		13 ;				
0034	C33020	14 RS	5T65: JI	٩P	PRINT	GO TO PRINT ROUTINE
		15 ;				
		16)				
2030		17	01	RG	2030H	
		18 i				
		19 i F	RINTER	OUTPUT	SUBROUTINE FOR	INTERRUPT-DRIVEN SYSTEM - OUTPUTS
		20 ; 0	HR POIN	ted at	BY PRTSRT. 1F	CHR IS OFFH, THE BUFFER IS COMPLETE
		21 / F	IND THE I	RST6. 5	INTERRUPT IS MA	SKED. THE MAIN PROGRAM MUST UNMASK
		22 ; R	rst6. 5 hi	FTER II	r Builds <mark>a new</mark> B	UFFER PRINT BUFFER STATUS IS REFLECTED
		23 ; 1	ro the m	AIN PRO	DGRAM BY THE RST	6.5 MASK BIT IN RIM INSTRUCTION.
		24;				
2030	E5	25 PF	RINT: P	USH	н) SAVE HL
2031	F5	26	P	USH	PSH) SAVE PSH
2032	2RD6/20	27	Ł	hld	PRTSRT	GET BUFFER POINTER
2035	7E	28	M	OV	A, M	JUET NEXT CHR
2036	FEFF	29	CI	PI	ØFFH	, TEST IF BUHFER COMPLETE
2038	CA4520	30	J	Z	EXIT	; YES, GO EXI) WITH RST MASKED
203B	D331	31	0	UT	Datr95	, NO, OUTPUT CHR TO 8295
203D	23	32	I	NX	н	BUMP POINTER
203E	220020	33	S	HILD	PRTSRT	RESTORE FOINTER
2041	F1	34 PR	RT1: PI	0P	PSW	RESTORE PSW
2042	E1	55	HI A	0P -	н	KESTURE HE
2043	FB	6 ک	E	1		RE-ENHBLE INTERRUPTS
2044	69	51	R	El) RETURN
		- 38 i				
2045	SEUH	39 EX	KII: M	¥1	H, KHH	(INFSK RS16. 5
2047	50	40	<u>ک</u>	16	0074	(SET INTERKUP) PHORE
2048	U34120	41	J	W	PRIL	GUEXII MIIM MHOK IN PLHUE
		42;	-			
		43	E	NU		
PUBLIC	SYMBOLS					
extern	il symbols					
USER SV	MBOLS					
DATA95	A 8931	EX11 A	2845	IBF	8 0002 PPIN	it a 2030 - Frt1 - A 2041 - Prtsrt a 2000 - Rst65 - A 0034
			2010	1.04	TOUL INT	
				Figur	e 11. 8085A/829	5 Interrupt-Driven Software

Figure 12. 8295/DMA Interface

LOC 08J 9038 9036 9037 9092 9020 9020 2030 2030 2030 2030 2030 2032 2032 2032 2032 2032 2032 2032 2032 2032 2032 2033 2035 2035 2035 2035 2035 2035 2035 2035 2035 2035 2036 2037 2035 2036 2037 2038 2037 2038 2037 2038 2037 2038 2037 2038 2037 2038 2037 2038 2039 2040 2040 2040 2042 2048 204	1 17 16 16	5EQ 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	\$MOD85 ; ; SYSTEM MODE57 CH3RDR CH3RD IBF STS95 DATA95 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Source Equ Equ Equ Equ Equ Equ Equ ORG UILDIN TION OF PRINT MOV OUT MOV	STATEMENT 25: 38H 36H 36H 20H 20H 20H 20H 20H 20H 20H 20	ne - The Buffer Dari Blu Prised	;8257 C0 ;8257 CH ;8257 CH ;18F MAS ;8295 ST ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8257 CD ;6E1 ADR ;8257 CH	Introl Port 13 Adr Port 13 TC Port 14 US Port 14 US Port 15 THE SUBROUTINE 19 THE 8295 DE BIT FOR 16 THE 8295 DE BIT FOR 17 THE STARTING ADDRESS 18 REGISTER PAIR, THE COUNT IN 10 MA CH3 19 OFF CH3
9038 9036 9037 9092 9029 9029 2039 2039 2039 2032 2032	17 78 16 16	1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	\$M0085 ; ; System Mode57 (H3R0R (H3R0R (H3R0R (STS95 DATR95 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	EQUATE EQU EQU EQU EQU EQU ORG TION OF PRINT MVI OUT MOV OUT	25: 38H 36H 37H 92H 20H 20H 20H 2030H RINT ROUTI NG A PRINT F THE LAST BUFFER 15 A, 07H MODES7 A, E CHSADR B, 0	ne – The Buffer DMA Blû Passed	;8257 C0 ;8257 CH ;8257 CH ;8257 CH ;8295 ST ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8257 CH ;01588LE ;8257 CH ;8257 CH	Introl Port 13 Adv Port 13 TC Port 14 17 Jus Port 16 Port 16 Port 19 The 8295 de bit for 19 The 8295 de bit for 19 The 8295 de bit for 19 The Starting Address 19 Register Pair, the Count in 10 DMA CH3 10 TROL Port 2 LSB
9038 9036 9037 9092 9020 9020 2030 2030 2030 2030 2032 2032	17 18 16 16	2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	; ;SVSTEM MODE57 CH3ADR CH3TC IBF STS95 DATA95 ; ;DMA-DF ;AFTER ;OMPLE ; ; PRINT :	I EQUATE EQU EQU EQU EQU EQU EQU EQU ORG IVEN PR BUILDIN TION OF PRINT MOV OUT MOV	25: 38H 36H 37H 02H 20H 20H 2030H RINT ROUTI G A PRINT F THE LAST BUFFER 1S A, 07H MODE57 A, E CHSADR B, 0	ne - The Buffer Dha blu Prissed	;8257 CO ;8257 CH ;8257 CH ;18F MAS ;8295 ST ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8257 CH ;8257 CH ;8257 CH	Introl Port 13 Adv Port 13 TC Port 14 TC Port 15 TC Port 16 Port 16 Port 19 THE 8295 de bit for 19 The 8295 de bit for 10 The 8295 de bit
9038 9036 9037 9092 9020 9020 2030 2030 2030 2030 2032 2032	17 18 16 16	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	; SYSTEM MODES7 CH3RDR CH3TC IBF STS95 DATA95 ; DMA-DR ; AFTER ; COMPLE ; FRINT :	I EQUATE EQU EQU EQU EQU EQU EQU EQU ORG IVEN PR EQUILDIN TION OF PRINT MOV OUT MOV	25: 38H 36H 37H 02H 20H 20H 2030H 2030H 2030H 2030H 2030H 2030H 2030H 2030H 2030H 2030H 2030H 204 204 205 205 0 0 0 0 0 0 0 0 0 0 0 0 0	ne - The Buffer Dha blo Prissed	;8257 C0 ;8257 CH ;8257 CH ;18F MAS ;8295 ST ;8295 DH : MAIN FRO AND TESTI CK TRANSF IN THE DE ;DISABLE ;8257 CD ;GET ADR ;8257 CH	Introl Port 13 Adr Port 13 TC Port 14 TC Port 14 TA Port 16 Port 16 THE 8295 de bit for 17 THE 8295 de bit for 18 THE 8295 de bit for 18 THE STARTING ADDRESS 2 REGISTER PAIR, THE COUNT IN 10 DHA CH3 10 TROL PORT 2 LSB
9038 9036 9037 9092 9020 9020 2030 2030 2030 2030 2032 2032	17 18 16 16	4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	NODE57 CH3RDR CH3TC IBF STS95 DATR95 , DMA-DF , RFTER ; OMA-DF ; FTHE ; PRINT:	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	38H 36H 37H 02H 20H 20H 2030H RINT ROUTI G A PRINT 5 THE LAST BUFFER 1S A, 07H MODE57 A, E CHSADR B, D	ne - The Buffer Dha blù Passed	;8257 C0 ;8257 CH ;8257 CH ;18F MAS ;8295 ST ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8257 CH ;8257 CD ;6E1 ADR ;8257 CH	Introl Port Is Adr Port Is Adr Port Is TC Port Is TC Port Is TC Port Is Port Is Port Is The 8295 de bit for Ter. The Starting Address Is Register Prir, The Count in Introl Port Is SB Is Off Dari Is O
9936 9937 9939 9929 9029 2039 2039 2039 2039 2030 2030	17 18 16 16	5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	CH3RDR CH3TC IBF STS95 DATA95 , DHA-DF , AFTER ; COMPLE ; FRINT :	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	36H 37H 92H 20H 20H 2030H RINT ROUTI G A PRINT F THE LAST BUFFER 1S A 07H NODES7 A E CHSADR B U	ne - The Buffer Dha blo Passed	;8257 CH ;8257 CH ;18F MAS ;8295 ST ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8295 DH ;8257 DH ;015ABLE ;8257 CH ;8257 CH	13 ADR PORT 13 TC PORT 14 15 TC PORT 16 17 PORT 17 PORT 18 19 19 19 19 19 19 19 19 19 19
9937 9992 9929 9029 2039 2039 2039 2030 2030	17 18 16 16	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	CH3TC IBF STS95 DATA95 , DHA-DF , RFTER ; CHPLE ; FTHE ; PRINT:	EQU EQU EQU ORG IVEN PK TION OF PRINT MVI OUT MOV OUT	37H 82H 20H 20H 2030H RINT ROUTI G A PRINT F THE LAST BUFFER 1S A 07H NODES7 A E CHSADR B U	ne - The Buffer Dha blù Passed	; 8257 CH ; 18F MAS ; 8295 ST ; 8295 DH ; 8257 CH ; 8257 CH ; 8257 CH	13 TC Port JK TAIUS Port ITA Port JGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS E REGISTER PAIR, THE COUNT IN . DMA CH3 INTROL PORT 2 LSB 2 OFF DEDL
0002 0020 0020 2030 2030 2030 2030 2032 2032 2032 2032 2032 2032 2032 2035 2036 2037 78 2038 2038 2038 2038 2038 2038 2032 2032	17 18 16 16	7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	IBF STS95 DATA95 , DMA-DA , RFTER ; COMPLE ; OF THE ; PRINT :	EQU EQU ORG TIVEN PR BUILDIN TION OF PRINT MYI OUT MOV OUT MOV	82H 20H 20H 20J0H 2030H RINT ROUTI G A PRINT THE LAST BUFFER 1S A, 07H NODES7 A, E CHSADR B, U	ne - The Buffer Dha blù Passed	; 18F MAS ; 8295 ST ; 8295 DH ; 8295 DH ; 8295 DH ; 8295 DH ; 8257 DH ; 8257 CD ; 6E1 ADR ; 8257 CH	JK TAIUS PORT ITA PORT ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS E REGISTER PAIR, THE COUNT IN . DMA CH3 INTROL PORT E LSB
0020 0020 2030 2030 2030 2032 2032 2032	17 18 16 16	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	STS95 DATA95 , ,DMA-DA ,RTER ;COMPLE ;OF THE ; PRINT:	EQU EQU ORG TIVEN PR DUILDIN TION OF PRINT MVI OUT MOV OUT MOV	20H 20J 20J 2030H RINT ROUTI G A PRINT THE LAST BUFFER 1S A, 07H MODES7 A, E CHSADR B, U	ne – The Buffer Dha blù Passed	;8295 ST ;8295 DH : MAIN FRO AND TESTI CK TRANSF IN THE DE ; DISABLE ; BISABLE ; GET ADR ;8257 CH	Taius Port Ita Port Dgram Calls This Subroutine Ing The 8295 de bit for Ter. The Starting address : Register Pair, The Count in . Dha Ch3 INTROL Port 2 LSB
2030 2030 2030 2032 2032 2032 2032 2032	17 38 36 36	9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	DATA95 , DMA-DA , RFTER ; COMPLE ; OF THE ; PRINT:	EQU ORG IVEN PR EUILDIN TION OF PRINT MVI OUT HOV OUT HOV	20H 2030H RINT ROUTI IG A PRINT THE LAST BUFFER 1S A, 07H MODES7 A, E CHSADR B, U	ne – The Buffer Dha blù Passed	;8295 DH MAIN FRO AND TESTI CK TRANSF IN THE DE ;0ISABLE ;8257 CD ;8257 CH	ITA PORT DGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS : REGISTER PAIR, THE COUNT IN . DMA CH3 INTROL PORT 2 LSB
2030 2030 3E07 2032 0338 2034 78 2035 0336 2037 7A 2038 0336 2037 3EFF 203C 0337 2038 3EFF 203C 0337 2038 3EFF 203C 0337 2038 1036 2048 0337 2042 1608 2044 CD54 2048 50 204C CD54 204F 3E0F	17 78 16 16	10 11 12 13 14 15 16 17 18 19 20 21 22 23	, , dma-dr , rfter ; comple ; of the ; print:	ORG IVEN PR EUILDIN TION OF PRINT MVI OUT HOV OUT HOV	2030H RINT ROUTI ING A PRINT THE LAST BUFFER 1S A, 07H MODES7 A, E CHSADR B, U	ne - The Buffer DMA blû Prissed	Main Fro And Testi CK Transf In The De ; Disable ; 8257 CO ; Gei Adr ; 8257 CH	DGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS : REGISTER PAIR, THE COUNT IN . DWA CH3 INTROL PORT 2 LSB
2030 3E07 2032 3E07 2032 0338 2034 78 2035 0336 2037 7A 2038 0336 2038 3EFF 203C 0337 2032 3EBF 203C 0337 2032 3EBF 2040 0337 2042 1608 2044 CD54 2048 50 204C CD54 204F 3E0F	17 18 16 16	11 12 13 14 15 16 17 18 19 20 21 22 23	, , dhr-dr , rfter , comple , of the ; print:	ORG EIVEN PR DUILDIN TION OF PRINT MVI OUT MOV OUT HOV	2030H RINT ROUTI NG A PRINT F THE LAST BUFFER 1S A, 07H MODES7 A, E CHSADR B, U	ne - The Buffer Dhia Blù Passed	Main Fro And Testi CK Transf In The De ; Disable ; 8257 CO ; Gei Adr ; 8257 CH	DGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS : REGISTER PAIR, THE COUNT IN . DWA CH3 INTROL PORT 2 LSB
2030 3E07 2032 D338 2034 78 2035 D336 2037 7A 2038 D336 2038 3EFF 203C D337 2032 3EBF 2040 D337 2042 1608 2044 CD54 2048 CD54 2048 50 204C CD54 204F 3E0F	17 18 16 16	12 13 14 15 16 17 18 19 20 21 22 23	, , dha-dr , rfter , comple , of the ; print:	IVEN PR DUILDIN TION OF PRINT MVI OUT HOV OUT	RINT ROUTI NG A PRINT THE LAST BUFFER 1S A, 07H MODES7 A, E CHSADR B, U	ne - The Buffer Dha blù Passed	Main Fro And Testi CK Transf In The De ; Disable ; 8257 CO ; Get Adr ; 8257 CH	DGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS E REGISTER PAIR, THE COUNT IN . DWA CH3 INTROL PORT E LSB
2030 3E07 2032 0338 2034 78 2035 0336 2037 78 2038 0336 2038 0336 2038 0337 2032 3E8F 2030 0337 2042 1608 2044 0054 2048 0054 2048 50 2040 0054 2046 3E0F	17 18 16 16	13 14 15 16 17 18 19 20 21 22 23	, dnn-dr , rfter ; comple ; of the ; print:	IVEN PR DUILDIN TION OF PRINT WVI OUT HOV OUT	RINT ROUTI NG A PRINT THE LAST BUFFER 1S A, 07H MODES7 A, E CH3ADR B, U	ne - The Buffer Dha blù Prissed	: Main Fro And Testi (K Transf In The De ; Disable ; 8257 CO ; Get Adr ; 8257 CH	JGRAM CALLS THIS SUBROUTINE ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS E REGISTER PAIR, THE COUNT IN . DMA CH3 INTROL PORT E LSB
2030 3E07 2032 0338 2034 78 2035 0336 2037 78 2038 0336 2038 0336 2038 3EFF 2030 0337 2042 1608 2044 0054 2044 0054 2048 50 2046 50 2040 0054 2046 3E0F	17 18 16	14 15 16 17 18 19 20 21 22 23	> RFTER > COMPLE > OF THE > PRINT:	EUILDIN TION OF PRINT MVI OUT MOV OUT MOV	ng a print The last Buffer 1s A, 07h Modes7 A, E Ch3Adr A, D	Buffer Dhia blù Passed	And Testi CK Transf In The De ; Disable ; 8257 CO ; Get Adr ; 8257 CH	ING THE 8295 DE BIT FOR TER. THE STARTING ADDRESS E REGISTER PAIR, THE COUNT IN . DMA CH3 INTROL PORT E LSB E ORD, FORM
2030 3E07 2032 0338 2034 78 2035 0336 2037 78 2038 0336 2038 3EFF 203C 0337 2032 3EBF 2032 0337 2042 1608 2044 C054 2048 C054 2048 50 2040 C054 204F 3E0F	17 18 16	15 16 17 18 19 20 21 22 23	; Comple ; of the ; print:	TION OF PRINT MVI OUT MOV OUT MOV	F THE LAST BUFFER 1S A. 07H MODE57 A. E CH3ADR B. U	dha blù Passed	(K 1RANSF 1N THE DE ; DISABLE ; S257 CO ; GE1 ADR ; 8257 CH	Ter. The starting address Register Pair, the count in . DMA CH3 INTROL PORT 2 LSB 2 000 5000
2030 3E07 2032 0338 2034 78 2035 0336 2037 78 2038 0336 2038 0336 2038 3E8F 2030 0337 2042 1608 2040 054 2048 0054 2048 50 2046 0054 2046 3E0F	17 18 16	16 17 18 19 20 21 22 23	; of the ; print:	PRINT NVI OUT NOV OUT NOV	BUFFER 15 AJ 07H MODE57 AJ E CH3ADR BJ U	Prised	IN THE DE ; DISABLE ; S257 CO ; GE1 ADR ; 8257 CH	: Register Prir, the count in . DNA CH3 Introl Port ELSB 2005 5000
2030 3E07 2032 0338 2034 78 2035 0336 2037 7A 2038 0336 2038 0336 2038 3EFF 2030 0337 2032 3E8F 2040 0337 2042 1608 2044 0D54 2047 51 2048 50 2046 50 2040 0554 2046 3E0F	17 18 16 16	17 18 19 20 21 22 23	; Print:	ivn Tuo Von Tug Von	aj 07h Nodes7 aj e Chisadr Bjø		; Disable ; 8257 co ; Get Adr ; 8257 ch	. DNA CH3 Introl Port LSB
2030 3E07 2032 0338 2034 78 2035 0336 2037 7A 2038 0336 2038 0336 2038 3EFF 2030 0337 2032 3E8F 2040 0337 2042 1608 2044 0D54 2048 0054 2048 50 2040 0D54 2046 3E0F	17 18 16 16	18 19 20 21 22 23	PRINT:	ivn Tuo Nov Tug Yuy	A, 07h Modes7 A, e Ch3adr B, d		; DISABLE ; 8257 CO ; GE1_ADR ; 8257_CH	. DNA CH3 INTROL PORT R LSB
2032 0338 2034 78 2035 0336 2037 78 2038 0336 2038 3EFF 2030 0337 2032 3EBF 2040 0337 2042 1608 2044 0D54 2048 0D54 2048 50 2040 0D54 2046 3E0F	8 16 16	19 20 21 22 23		out Mov Dut Mov	Nodes7 A, E Ch3adr B, D		⇒ 8257 CO ⇒ GE1_ RDR ⇒ 8257_CH	NTROL PORT
2034 78 2035 0336 2037 78 2038 0336 2038 3EFF 2030 0337 203E 3EBF 2040 0337 2042 1608 2044 CD54 2048 CD54 2048 50 2040 CD54 204F 3E0F	6 16	20 21 22 23		yon Jut Yon	a, e Chisadr B, d		; GE1_RDR ; 8257_CH	LSB
2035 0336 2037 7A 2038 0336 2038 3EFF 2030 0337 2032 3EBF 2040 0337 2042 1608 2044 0054 2047 51 2048 0054 2048 50 2040 0054 2046 3E0F	6 16	21 22 23		out Mov	CH3 ADR Bada		: 8257 CH	0.055 5001
2037 7A 2038 0336 2038 3EFF 2030 0337 2032 3EBF 2040 0337 2042 1608 2044 0054 2047 51 2048 0054 2048 50 2046 0054 204F 3E0F	6	22 23		MOV	8.0		70E01 00	IS HUK PURI
2038 0336 2038 3EFF 2030 0337 203E 3EBF 2040 0337 2042 1608 2044 0D54 2047 51 2048 0D54 2048 0D54 2048 50 2040 0D54 204F 3E0F	ж.	23					; get adr	MSB
2038 3EFF 2030 0337 203E 3EBF 2040 0337 2042 1608 2044 0D54 2047 51 2048 0D54 2048 50 2040 0D54 2046 3E0F				OUT	CH3RDR		⇒8257 CH	13 ADR PORT
203C 0337 203E 3EBF 2040 0337 2042 1608 2044 CD54 2047 51 2048 CD54 2048 50 204C CD54 204F 3E0F	F	- 24		MVI	r. Offi		; MAKE (CH	IB 10 FFFFN
203E 3EBF 2040 0337 2042 1608 2044 CD54 2047 51 2048 CD54 2048 50 204C CD54 204F 3E0F	7	25		OUT	CHETC		⇒8257 CH	IS TO PORT
2040 D337 2042 1608 2044 CD54 2047 51 2048 CD54 2048 CD54 2048 50 204C CD54 204F 3E0F	F	26		MVI	A, OBFH		; DMA DIR	ECTION IS MEMORY READ
2042 1608 2044 CD54 2047 51 2048 CD54 2048 CD54 2046 50 204C CD54 204F 3E0F	7	27		OUT	CH3TC		⇒8275 CH	is to port
2044 CD54 2047 51 2048 CD54 2048 50 2046 CD54 2046 CD54 204F 3E0F	8	- 28		MVI	D, OSH		ENABLE	DHA COMMAND 10 8295
2047 51 2048 CD54 2048 50 204C CD54 204F 3E0F	420	29		CALL	00795		; OUTPUT	10 8295
2048 CD54 2048 50 204C CD54 204F 3E0F		30		MOV	D, C		GET LSB	OF COUNT
2046 50 2040 CD54 204F 3E0F	420	31		CALL	00195		; OUTPUT	T0 8295
2040 CD54 204F 3E0F		32		MOV	0, B		GET MSB	OF COUNT
204F 3E0F	420	33		CHLL	0UT95		; OUTPUT	T0 8295
	F	34		MVI	a, of h		; Enable	CH3 DMR
2051 D338	8	35		OUT	HUDE57		38257 00	NTROL PORT
2053 C9		36 37		RET			RETURN	
2054 0820	0	38	0UT95	IN	ST595		; READ 82	95 status
2056 E602	2	39		6N)	18F		LUOK BT	IDE FLAG
2058 0254	420	40		JNZ	00195		HATT IN	11L 18E=0
2058 7A		41		MOV	H, D		GET DAT	A
205C D320	Ø	42		OUT	DATA95		OUTPUD	 10.8295 PORT
205E C9		43		RET			RETHEN	
		44	,					
		45		END				
				2.10				
550NQ1 CU1	DOI C							

Figure 13. 8295 DMA Subroutine

Figure 12 illustrates an 8257/8295 interface and Figure 13 shows example software for handling the system. This software assumes that the 8295 is doing the counting of the transfers hence the Terminal Count of the 8257 DMA channel is loaded with the maximum value while the 8295 receives the actual block size. The 8295 simply stops making requests once the requested number of transfers have been made.

Serial Interface

In addition to the parallel interface options, the 8295 supports a "stand-alone" serial interface. In this mode, the only communication with the main processor is via a serial link. This configuration is perfect for remote printer applications; only three wires are required compared to 12 or 13 for the parallel interfaces.

The serial mode is envoked by simply grounding the IRQ/SER pin. See Figure 14. The internal 8295 software interrogates this pin upon power-on and reconfigures the function of several pins if it's grounded. The DACK/SIN pin becomes the serial data input (SIN) and the DR-Q/CTS pin becomes the hardware data holdoff, Clear-to-Send. The lower three Data Bus pins become the Baud Rate Select inputs. Note that it is necessary to ground \overline{CS} and \overline{WR} , and pull \overline{RD} high. This enables the "input" direction of the Data Bus pins so that the 8295 may read the baud rate. All standard baud rates from 110 to 4800 baud are accommodated.

After power-on the 8295 looks at IRQ/SER and if it's grounded, the data bus pins are read to determine the baud rate. Data from the serial input is requested by lowering $\overline{\text{CTS}}$. $\overline{\text{CTS}}$ stays low until during the eight bit of the serial data character at which point it goes high (inactive). After the character is assembled and interpreted, $\overline{\text{CTS}}$ again goes active to request the next character. The 8295 does not check for parity and characters with invalid start bits or framing errors (stop bit wrong polarity) are ignored. $\overline{\text{CTS}}$ is normally connected to the UART's $\overline{\text{CTS}}$ input. An inactive CTS holds off the UART transmitter from transmitting characters.

In serial mode, the command and data definitions still apply as in parallel mode. Commands and data may be mixed although commands take effect immediately when received.

Figure 15 shows example software to drive an 8251A Programmable Serial Interface when connected to an 8295. This software is similar to Figure 10 except it assumes that the 8251A has the same 1/O port addresses as the 8295 had in Figure 9. Note that the TXE (Transmitter Empty) flag is used to load data into the 8251A transmitting both characters in the transmitter (the transmitter is double buffered) if CTS goes inactive. The TXE flag allows only one character at a time in the transmitter so CTS going inactive simply finishes off the current character. The 8295 accepts only one character at a time.

Figure 14. 8295 Serial Interface

ASM60 (F1:95F15, SRC TITLE(18295 AP NOTE FIGURE 151)

ISIS-II 8080/8085 MACRO ASSEMBLER/ X108 HODULE PAGE 1 8295 AP NOTE FIGURE 15 LOC OBJ SEQ SOURCE STHTEMENT 1 \$M0D85 2^{+} ; 3 - System Equates 2900 4 PRTSRT EQU 2000H + POINTER STORAGE 0004 5 TXE EQU 04H FLAG MASK 8931 6 STS51 EQU 31H +8251 STATUS REGISTER PORT 0031 7 DATA51 EQU 31H 38251 DATA REGISTER PORT 8; 2030 9 ORG 2030H 10 ; 11 (PRINT BUFFER OUTPUT SUBROUTINE - THIS ROUTINE PRINTS THE BUFFER 12 ; STARTING AT THE POINTER STORED AT PRISRIE. THE ROUTINE RETURNS WHEN 13 (A OFFH IS FETCHED FROM THE BUFFER. 14; 2030 E5 15 PRINT: PUSH Н SAVE HL 2031 05 16 PUSH: 6 F SAVE BC 2032 200020 17 LHLD PRTSRT GET BUFFER POINTER 2035 7E 18 PRT1: MOV A, M **JGET CHARACTER FROM BUFFER** MOV 2036 47 19 B, A F SAVE IT IN B 2037 FEFF 20 CPI ØFFH ; IS IT THE BUFFER END? 2039 CR4R20 21 JZ PEXIT #YES# GO EXIT 2030 DB31 22 PRT2: 1N STS51 NO, READ 8251 STRTUS 203E E604 23 **HNI** TXE FLOOK AT THE FLAG 2040 CR3C20 24 JZ PRT2 ; WAIT UNTIL THE=1 2043 78 25 FRECOVER CHARACTER MOY A. 8 2844 D331 26 OUT DRTR51 : OUTPUT TO 8251 2646 23 27 INX BUMP BUFFER POINTER H 2047 033520 28 JMP PRT1 GET NEXT CHARACTER 29; 2048 C1 30 PEXI1: FUP B FRESTORE BC 2048 E1 31 POP Η FRESTORE HL 2040 09 32 RET ; RETURN 33; END 34 PUBLIC SYMBOLS

EXTERNAL SYMBOLS

user symbols Data51 a 0031 - Pexit a 204a - Print a 2030 - Prt1 a 2035 - Prt2 a 2030 - Prt5rt a 2000 - St551 a 0031 TXE - A 0004

ASSEMBLY COMPLETE, NO ERRORS

Figure 15. 8251A Subroutine

Figure 16. 8295 Flow Chart

8295 SOFTWARE

For those readers using the 8295 as a design example for UPI software, the flow charts for the program are shown in Figure 16 and the 8295 source listing is included as Appendix A. (Machine readable source listings are available through Insite, the Intel User's Library.) As an aid to understanding this software, the following observations can be made:

- 1. The 8295 uses only Register Bank 0. The function of registers R6 and R7 is determined by the mode. In parallel mode they are concantenated to form the 16 bit DMA count register. In serial mode, R6 is a counter during character reception.
- 2. Characters and commands are input from the Input Data register via the INPUT subroutine. The routine defines the input mode, fetches the data, and stores it in R2. If the DMA mode is enabled, the block count in R6 and R7 is decremented by the DECR routine each time a data transfer occurs until the count is exhausted.
- 3. Characters are decoded by routine P6A which also detects any illegal characters by the INPUT routine. R0 is assigned as the character buffer pointer and R4 is designated as the buffer size limit. The commands which affect the buffer size will affect R0 and R4.

uncer jump table. The command routines are easy to understand from the listing hence they are not included in Figure 16 but simply referenced.

 Register R3 is the bit-oriented command register. Each bit of R3 represents an operating mode. This definition is shown below.

6. After the character buffer has reached its limit (R0 = R4) or a CR character is received, the contents of the buffer are printed. Subroutine PRINT loads R0 with the address of the character to be printed and R2 serves as an index to keep track of the current column within the character. Subroutine CHAR determines which ASCII table is accessed by setting or clearing flag F0.

the 32 characters on Page 1 or 2 of the Program Memory ASCII table. The column index, R2, is then added to the result to address the current column. Each character is represented by 7 bytes. R2 indexes thru each byte to select the appropriate solenoid information.

8. Subroutine COL8 fetches the solenoid on-time and off-time constants from a table starting at location OF8H. The time is represented by a hex number which is used as a loop counter in a software timing loop. No character input is allowed while printing is in progress.

CONCLUSION

The 8295 is an excellent example of what can be done with the UPI-41A family. As a printer controller, it completely relieves the main processor of all the real-time tasks associated with the control of the printer plus valuable system ROM space is not required to store the ASCII-to-dot matrix conversion table or the timing software since it's all done in the 8295 itself. As a UPI design example, the 8295 illustrates the variety of data transfer interfaces available. If the 8295 itself does not fit your printer controller requirements, feel free to modify the 8295 software contained in this application note or that in AP-27 and program your own 8741A. Appendix A

APPENDIX A

R5N48 :F	1:8295. SRC		
1515-11	CEDIEC PDINTED	ICRU HSSEMBLER, V2. 0	PHOE 1
LKC (040	JERIES FRIMIER	CONTROLLER SOURCE C	ØE.
LOC 0	BJ SEQ	Source state	IENT
	1	\$HOD42 TITLE('LRC 7	140 Series Printer Controller Source Code ()
	2		
	3	; ***************	*******
	4	3** 8295 - LRC 704	SERIES PRINTER CONTROLLER **
	5	3** REV. 0 FOR 7	7 CHARACTER MATRIX **
	6	, ************************************	***************************************
	8		
	9		
	10	COPYRIGHT (C) 1978	
	11	FINTEL CORPORATION	
	12	3865 BOWERS AVE.	
	13	J SANTH CLARA, CR. 9	#51
	14		
	16		
	17	; ********	******
	18	: ** PAGEO CONTAINS	HE INITIALIZATION SEQUENCE, THE OUTPUTING **
	19	; ** OF DATA TO THE :	OLENIODS, THE SERIAL INPUT ROUTINE, THE **
	20	; ** PAPER FEED ROUT	NE, AND THE SOLENIOD FIRETIME ROUTINE **
	21	;*************************************	********
	22	SE TECT	
		*20201	
ISIS-II	1C5-48/UPI-41 N	icro assembler, v2 a	PAGE 2
LRC 7040	SERIES PRINTER	CONTROLLER SOURCE CI	DE
LOC O	₹1 5F0	Source State	ENT
		Source Shirle	
	24		
	25		
	26		
	27	;**********************	***************************************
	20	;** :PFI	ISTER ASSIGNMENT TARLE ##
	30	;**	**
	31	;*******	***********************************
	32	; **	**
	33	;** RØ	INPUT BUFFER POINTER **
	34	;## <u>R1</u>	TEMPORARY STORAGE **
	30	;** KZ	
	ەد 77	;** R3 ;** R4	BIFFER SIZE **
	38	;≠≠ R5	TENPORARY STURAGE FOR DELAY ROUTINE **
	39	;** R6	LOW ORDER DWA COUNTER **
	48	;** R7	HIGH ORDER DMA COUNTER **
	41	;** TIM	r temporary storage **
	42	;**	**
	43 44	; ~~~~~ ~~~~**********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	45		
	46	\$EJECT	

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER, V2. 0 PAGE 3 LRC 7040 SERIES PRINTER CONTROLLER SOURCE CODE

LOC OBJ SEQ SOURCE STATEMENT

47;;*	*****	****		*
48;*	*		+	ŧ
49;*	* RAM	RSSIGNMENT	1ABLE +	
- 50 ;≭	*		*	ŧ
51;*	*****	******	*****	*
52;*	*		+	ŧ
-53 ; *	* RAM	ADDRESS	FUNCTION +	ŧ
-54 ; *	*		+	
55 ;*	* 00-0	37H	REGISTER BRNK 1 *	*
-56 ;*	* 08-:	L4H	PROGRAM STACK +	ŧ
57;*	* 15-:	17H	THB POSITION STORAGE +	ŧ
58 ; *	* 18-4	46H	Character Buffer +	*
59;*	*		*	*
68;*	*****	*****	******	*
61				
62 \$ E	JECT			

ISIS	-11	ICS-48/1	JPI-41 ₩	ACRO Assembl	ER, V2.	0	PRGE	4
LRC	7040	SERIES	PRINTER	CONTROLLER	SOURCE	CODE		

LOC	0BJ	SEQ	SOURCE	STATEMENT		
		63				
		64 ; ***	*****	*****	******	****
		65 ; **				**
		66 ; **		COMMEND	REGISTER DEFINITION	**
		67 ; **				**
		68 ; ***	******	*****	******	*****
		69 ; * *				**
		70;**		BIT 7	SERIAL MODE FLAG	**
		71 ; **		BIT 6	dha hode flag	**
		72;**		BIT 5	DOUBLE NIDE FLAG	**
		73 ; **		BIT 4	32 COLUMNS/LINE	**
		74 ; **		BIT 3	RIGHT JUSTIFIED PRINT	**
		75 ; **		BITS 2	1,0 INDICATE SOLENOID ON TIME	**
		76 ; **				**
		77 ; ***	*****	******	*******	******
		78 \$EJE	CT			

				00806-31	TILLILNI	
6666		79		org	000H	
		80				
		81				
0000	02	82	INIT	001	DBB, H	SET UBP
0001	UA .	ک8		IN	K) P2	CHECK SERIAL STRAP
0002	8208	84		J85	PHRH	
0004	BB83	85		MOV	R3, #83H	SET SERIAL BIT IN CAD
NNN	U4UE	86		JAP	ULK1	
00000	9HB1-	87	FHKH -	HNL	PZ WEEFH	
UUUH I	F3	88		EN	FLRG5	
00006	EJ	89		EN	DTH-	
0000	BBO3		01. D4	MUY CLD	KS/#USH A	OLEOD PHO DUCH FLOC
UNNE .	2(91	ULM1	ULK MOU	H CTC 0	CLEMK DAM BUSY FLMG
0040	90 2010	92	01.000	MOU .	515/M	
6616	BC40 DO40	93	OCOTH-	MOD	1042-184601 100-14400	JINITIALIZE DUFFER
0012	6518 07	294	HOM THE	NUY	0.4100	DECET CTOCK DO COUE TODE
0014	21 107	90 00		MOR	n DCU A	$(\mathbf{RLSE}) = \mathbf{S}(\mathbf{RLS}) + \mathbf{S}(\mathbf{S}) + $
0010	U(744.4	36	BFCO	(OL) MUA	FOR-IT	· STRUK = 0. NEL FLADS = 0
0015	3414 2400	27	DECO	COLL	INFUT NCO	DECODE DOTO
0010	3460	- 20 - 60		MOV	0.04	
0010	FC 100	22 100		POY VDI	0 00	
0010	0616 9616	100		IN7	0440 0 5 00	
0010	2010	401		<i>3142</i>	0200	
001F	ED.	107	PRINT	MOV	A. 27	
001C	re re	104	1 10 1111	DEC	60 C.S.	. LOCATE LAST CHRACTER INPUT IF R .1
8929	7224	105		JEC	<u>NN</u>	CHECK FOR RIGHT JUST
8822	6818	186		MOV	R0, #18H	PRINT FROM THE ORIGIN
AA24	9AEF	107	ON	ANI	P2. #0EF)	TURN DRIVE MOTUR ON
0026	4626	198	NHOME	JNT1	NHOME	WAIT FOR HOME SWITCH
0028	2340	109		MOV	A, #40H	STALL
002H	54F8	110		CALL	WAIT	
002 C	8606	111	XFER	MOV	R2, #06K	FRO COL. INDEX
002E	FB	112		MOV	A, F3	CHECK FOR RJ
002F	7233	113		JB2	CHAK	; RJ_TRUE
0031	8600	114		NOV	R2, #80H	, INDEX FOR NORM. PRINTING
88 33	FØ	115	Char:	MOY	a, 9r0	, Fetch Character
8034	85	116		CLR	F0	FO DETERMINES WHICH CHARACTER TABLE
88 35	8238	117		JB5	Page	
8037	95	118		CPL	FØ	
88 38	54E0	119	Page :	CALL	XS2	FETCH COL. FROM TRBLE
003A	A9	120		MOV	R1, A	
0 03B	FB	121		MOY	A, R3	FCHECK FOR D. W.
003C	823F	122		JB5	NOTS	
003E	95	123		CPL	FØ	FO INDICATES D. H. MODE
003F	F9	124	NOTS:	MOV	A, R1	
0040	1478	125		CALL	FIRE	FRINT COL.
0042	FB	126		MUY	H/R3	CHEUK RJ
6643	7240	127		JB3	KJP A ROTT	
6645	2396	128		NUY VDI	H) #U6H	
0047	40	129		AKL	nt KZ	
0048	1H 0C77	1.50		1NL 1877	KZ CUOD	LIDTHI MEYT COL
0049	2022 0450	131		JNZ TMO		FRINT NEXT COL.
0040	9732 97	132	010	JIMP CLD	L3100L	
004V	21	133	RJF (OLK	п	FUREUR RUFFIRE UULD. IN REVERSE URDER

ISIS-II MCS-48/UPI-41	MACRO ASSEMBLER, V2. 0
LRC 7040 SERIES PRINTE	R CONTROLLER SOURCE CODE

PRGE 6

LOC	OBJ	SEQ	source s	TATEMENT	
00 4F	••			a m	
004E	UH 00	134	XKL	HJ KZ	
0041	CH	135	DEC	KZ	
0050	9633	136	JNZ	CHINR	
0052	8656	137 LSICOL:	JFØ	H4	
0054	1480	138	CALL	COL8	
00 56	237F	139 R4 :	NOV	A, #7FH	CLERR STB & DATA PINS
86 58	39	140	outl	P1, A	
0059	2319	141	MOV	A, #19H	
005B	54F8	142	Call	WAIT	
005 D	FB	143	MOV	A, R3	
005E	7264	144	JB 3	RJ2	
0060	FC	145	MOV	A, R4	
0061	18	146	INC	RØ	FINCE POINTER
8862	8467	147	JMP	CK	
0064	2317	148 RJ2:	MOV	R, #17H	
0066	C8	149	DEC	RØ	DECR POINTER
8967	D8	150 CK	XRL	A, RØ	
0068	9620	151	JNZ	XFER	FRETURN FOR NEXT CHAR.
006A	5668	152 HOME:	JT1	HOME	SENSE HOME LON?
606 C	2320	153	MOV	A, #20H	STALL
006E	54F8	154	CALL	HAIT	
8879	8A10	155	ORL	P2, #10H	STOP DRIVE NOTOR
0072	8412	156	JMP	AGAIN	INEXT LINE
		157			
0074	FB	158 DMRIN	MOY	A, R3	FXIT IF SERIAL MODE
0075	F278	159	JB7	SERROR	SERIAL CHD EKROR
8977	0677	160 INBUF:	JNIBF	INBUF	HAIT FOR DHA PARAMS.
8979	22	161	IN	A. DBB	
007A	93	162 SERROR:	RETR		
		163			
		164			
		165			
997B	867F	166 FIRE	JFØ	SGLE	
897D	A9	167	IN	A. P1	D M AND PREVIOUS COL
007E	59	168	RN	A. P1	
AA7F	39	169 SGLE	0.00	P1.8	DUTPUT TO SOL
8888	FR	179 0018	MOV	A. 83	A GETS ON TIME
8981	4358	171	021	A. #AFSH	Shi deli Sidi Tine
0087	A7	172	MOVP	A. 64	
0084	STAF	173	AN	A. AREH	
0086	8980	174	ORI	P1. #994	STRORE SOLENOTOS
8888	54F8	175	CALL	LIGIT	STROLE SOLENOIDS
8888	997F	176	ANI CALL	P4. #7EU	
RRRC	FR	177	MOU	0.07	A CET DEL TIME
ARRD	4759	179	0.01	0 80000	An der offertine
AGOE	43-10 97	470	MOUD	nu woron 0.000	
2000	47	100	CLIDE	n, en	
0000	5705	194		П 0 #0ГU	
0071	20	101	NEU	0.90711 0.07	
0073	20 9299	102		10 K.S C40	
0074	26.77	107	704 VCU	L10 L D7	
0070	20	104		10 K.S 2000	
0071	20-70- 20	100 010-	JIW VCU	ເປກ ຊີ່ຍາ	
0077	20 0706	100 010		Π/R.\$ Ω 80/Ω	- TURDEDCE DIOC FOD APPLIT
0000	0200	100 000	100		- INURCHISE BINS FUR 100/1
007J	COU?	T00 CON:	JEQ	DIND	A DE LE SINULE

ISIS-II LRC 704	i MCS-48/UPI- 10 series pri	41 Macro assi Nter controli	embler, ' Ler sour	v2. 0 Ce code	PAGE 7
LOC	0 B J	SEQ	source s	TATEMENT	
009E	0314	189	ridd	A, #14H	; ADD 7 TO OFFTIME IF D. H.
00A0	29	190	XCH	R, R1	FRVE PREVIOUS COL.
00A1	39	191	OUTL	P1, R	; SAVE PREVIOUS COL.
00R2	29	192	XCH	A, R1	
00A3	44F8	193 SING	JMP	WAIT	
		194			
		195			
		196 ; *****	*****	*****	*********
		197 : SERI	AL ROUTI	NE, Asseme	Bles the desired data from the
		198 : SERI	AL INPUT	and plac	e the data in the accumulator.
		199 ; *****	*****	*****	*************
0005		200			
00010	5HBF 90	201 UIS	MINL.	12, #0511	
0000	671 5007	202 UNC 202	1N 107	n⊭r∠ ∩NE	LOUP UNTIL START BIT FOUND
0000	P200	203	JD/ MOU	014E	DECET TEND DEC
9990	8599	207	MAN	P2. #004	CET TNNEY
RADE	89	200	TN	A. P1	- BIRS
RARE	74F9	200	0911	HRTT	SMATT 1/2 OVCLE
0081	88	298	IN	A. P2	CHECK FOR STORT BIT
9982	F287	209	JB7	ONE	ANRONG STHET BIT
0084	BE03	210	MOV	R6. #93H	
998 6	EEB6	211 LZ:	djnz	R6, LZ	
0088	EACE	212 CONT:	djnz	R2, LORD	LOAD THE EIGHT BITS
00BA	8840	213	ORL	P2, #46H	(DISABLE /CTS
80BC	BE06	214	MOV	R6, #06H	; BIAS
ØØBE	EEBE	215 W14:	djnz	R6, W14	; WAIT
9909	7460	216	CALL	HBIT	
0002	74EU 60	217	CHILL	HBII	
99004	971 27	218	1N CDI	H) P2	CHECK CTOP DIT
99000	5797	217	IR7	UNIC .	UPONC STOP DIT
8903	F9	221	MOV	A.R1	
0009	F7	222	RLC	A	
89CA	537F	223	ANL	R, #7FH	
3366	AA	224	MOV	R2- A	
99CD	93	225	RETR		
		226			
		227			
OOCE	74E0	228 LOAD	CALL	HEIT	DELAY 1 CYCLE
0000	74E0	229	CHILL	HBIT	
8902	BE03	230	MOV	R6, #03H	
0004	EEU4	231 L1:	DJNZ	R6, L1	
9900	00	232	NUP TH	0.00	INDUT CEDIOL DIT
89097	5799	233	74k	0 8000	- INFUT DERINE BIT
RADA	49	275	nn⊾ ∩Dt	n/ #00n 0. 04	
ØØDR	67	236	RRC	8	AND THE TOOD DITD
990C	R9	237	MOY	R1. 0	
0000	0488	238	JMP	CONT	FINISH JOB
		239			
00DF	9AFE	240 PF:	ANL	P2, #0FEH	FIF HIGTOR ON
80E1	890A	241	MOV	R1. #0AH	
80E3	2388	242 P30	MOV	ñ, #08 8H	
00E5	54F8	243	CALL	HRIT	

ISIS-11 LRC 704	i MCS-48/UPI- 10 series pri	41 MACRO ASSI NTER CONTROLI	embler, v .er sourd	/2.0 Ce code		PAGE	8
LOC	OBJ	SEQ S	Source st	Tatement			
00E 7	E9E 3	244	djnz	R1, P3C			
80E9	F8	245 IT0:	MOV	r. R0	; DELRY (ONTRNT	=BUFF POINTER (18H TO 40H)
00EA	26EA	246 IT1:	jntø	171			
ØØEC	54F8	247	CALL	HAIT	; DELAY =	1MS TO 2	2. 5HS
60EE	36E9	248	JT0	110			
00F0	2 3 F3	249	NOV	р. #0 F3H	; stall		
90F2	54F8	258	CALL	HAIT			
00F4	8601	251	ORL	P2, #0 1H	; PF MOTO	NR OFF	
NRI-P	93	252 P3F	REIR				
0050		273	OPC	acou			KETONITC
00000	м	234 255	ND	OF ON DOMU	> 200 UN	NITTME	
0010	04 05	200	ND	00-40 00-50	· 240	AN LINE	
USES -	R6	257	NR NR	ARCH	: 299		
RAFE	87	258	DB	9971	: 729	: DEFRUE 1	r
ANFC	98	259	DR	98H	: 369	, ver noer	
00FD	89	260	DB	898	: 400		
ØØFE	78	261	DB	79H	440		
80FF	68	262	DB	6BH	. 489		
		263					
		264					
		265 ; *****	*******	******	chalcelated a	****	
		266 ; PAGE :	1 INPUTS.	DECODES	5, AND EX	ecutes (commands and data.
		267 : *****	******	******	*******	****	******
04.00		268	-	4000			
0160	00	269	URG	16694			
0100	00	270	NUP DD	/CO4 040	OCTUN		
0101 0102	82	272	NB NB	(SO2 DND	A DEENA	· FUUKED: · CO2	S FUR SET UUIPUL 1
A1A3	BB	273	DR	(RO1 AND) REFH)	; 202 ; 201	
9194	B8	274	D6	(RO2 AND	(AFFH)	: 102	
0105	BE	275	DB	(RESET P	IND OFFH))	RESET
0106	AS	276	DB	(832 AND	() () () () () () () () () () () () () (; B32	
0107	E4	277	DB	(849 AND	9FFH)	; B40	
0108	EA	278	08	(dade an	(D) (OFFH)	DHIDE	
0109	C9	279	DB	(SDMA AN	id offh)	; SDMA	
010a	ĤØ	280	06	(SSOL AM	() (OFFH)	; SSOL	
010B	88	281	06	(SLF AND) OFFH)	; SLF	
0100	81	282	08	(MLF AND) OFFH)	; MLF	
0100	84	283	DB	(10+ HND	OFFFH)	FIDE	
010C	72	289	105 105	CUR MINU	OCCUS	JUK	
0104 0110	72	200	NO NO	(T2 AND	OCCU:	· T2	
A111	72	200	DR	(T2 AND	REFNS	: 17	
0112	F9	288	DB	(PT AND	REFH)	:PT	
0113	80	289	DR	(SSOL BL	ID REFH)	:550	
		290				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		291					
		292					
8114	FB	293 INPUT	NOV	A. R3			
0115	F226	294	JB7	YME			
0117	37	295	CPL	A			
0118	0210	296	JB6	NODECR			
011A	onard DCAC	297	UKL	12, 140H	SET DRO	FURDIN	1
611 U	1010	298 NODELR:	NIR F	NUDECR	; SHHKED	RA NHKH	LEL & DMH

1515-11 MCS-48/UPI-41 MACRO ASSEMBLER, V2 0 PRGE 9 LRC 7040 SERIES PRINTER CONTROLLER SOURCE CODE LOC OBJ SEQ SOURCE STRITEMENT 011E 22 299 IN A, DEB 011F 537F RAA ANL. 8. #7FH 0121 AA 301 MOY R2, A 8122 3462 302 CALL DECR DEC DMR COUNT FOR DMR & PARALLEL 0124 FA 303 MOV 8, R2 ; DATA STORED IN A & R2 8125 93 304 FRET & RESTORE FLAGS RETR 0126 04R5 305 YME: JM₽ 615 SERIAL USE SERIAL INPUT ROUTINE 306 0128 74ED 307 P6A CALL SPCR FUNECK FOR SPECIAL CASE CR 0128 D24E 308 J86 CHECK5 012C 8250 309 JB5 DHTA FOR VALID CHAR. 012E D309 310 A, #09H > 1AB ? XRL 0130 9656 311 JNZ CHD : COMMAND 0132 B915 312 TRB: R1 #15H / R1 GETS TRBEID MOY 0134 BR03 313 MOV R2-#03H 0136 F1 314 P688 MOY 8, er1 CHECK TRB 0137 F24D 315 JB7 TERROR (LIMIT THE TO EMHX TEEROR 0139 D24D 316 JB6 **0138** 37 CPL 317 A 0130 17 318 INC Ĥ 013D 68 319 RDD H, KO 013E F1 320 MOV A. 8R1 #8 GET THE LOC 013F E645 P6AA 321 JNC FIND WHICH THE 0141 19 322 INC R1 8142 E836 327 D INZ R2-P688 8144 FC 324 SPRL MOV A, R4 ; EXCEED ALL TAB; FILL IN BLANKS 0145 AH 325 P6AH: MOV R2, A 0146 B020 326 RTAB: MOY 8R0, #20H 0148 18 327 INC RØ 0149 FA 328 MOY A, R2 0148 DS 329 XRL A. RØ FILL IN BLANKS 014B 9646 330 JNZ RTAB 614D 93 331 TERROR: RETR 332 014E B255 333 CHECK5: JB5 SEND 9159 FR 334 DATA MOV A. R2 0151 A0 335 MOV erg, A 0152 18 336 INC RØ 0153 54ED 337 CALL PEON **FSET SPECIAL FLAG FOR LAST DATA CHARACTER** 0155 93 338 SEND: KETR 339 0156 8914 340 CMD: MOV R1 #14H ; R1 EQ INDEX 0158 FA 341 P7C: MOV A, R2 ; A Gets CMD 0159 17 342 INC A 815A D9 343 XRL A, R1 015B C660 344 JZ FOUND > MATCH ? 015D E958 345 DJNZ R1, P7C 815F 93 346 RETR 347 0160 F9 348 FOUND: MOY A, R1 **0161 B**3 349 JMPP 89 JUMP INDIRECT TO CHD ROUTINE 350 0162 FE 351 DECR: MOV A, R6 0163 9670 352 JNZ LARS ; DEC R6, R7 AS REG. PAIR, RET ON 0 0165 4F 353 ORL A, R7

1515-11 LRC 7 0 4	: MCS-48/UPI 10 SERIES PR:	-41 MACRO AS: Inter contro	sembler, Ller sour	v2. Ø Ce code	FAGE 10
LOC	08J	SEQ	source s	TATEMENT	
8166	966F	754	IN7	NEST	
9168	28	755	XCH	8. R7	
8169	538F	356	RA	A. HOBEH	
016B	28	357	XCH	A. R3	
0160	90	358	NOV	STS, A	
016D	3820	359	ORL	P2, #20H	FENERAL INTERVET PIN
016F	CF	360 NRST:	DEC	R7	
8178	ίε	361 LAPS:	DEC	R6	
0171	93	362	RETR		
		363			
		364			
		365 , *****	******	*****	*******
		366 ; COMM	rnd look	up thele.	
		367 ; *****	******	****	******
		365			
		357 770 T4	a - an	പറപറേഷം	N TIMED THIOME LODIE
		774 12		t∨r ∪r ∪nt 4 ∩o⊃ a	Jumm IN CRU (NOLC
9172	17	372 13	TNC	A	: 8≕8. 1. 02. 2H
R173	5797	377	AN	A. #07H	MARSIC STGNIFTCANT RITS
0175	0315	374	ADD	A #15H	RCCUN = 15, 16, OR 17H - (RAN LOCATIONS FOR TABS)
0177	62	375 STAB:	MOV	T. A	TENP STORAGE FOR THE
61 78	3414	376	CALL	INPUT	
017A	9318	377	ADD	A, #1SH	
017 C	R9	378	MOV	P1. A	
01 70	42	379	MOV	R, T	
017E	29	380	XCH	A, R1	
017F	A1	381	MOV	er1, A	
0180	93	382	PETP		
~~~		383	~ ~		
0181	85	_084 MLF: 2015	ULK	10	, MULTIPLE LINE FEED
0182	2488	280 202	JIMP	LF	
94 94	97	300 297 TOE	CL P	r	TOP OF FORM
9185	87	288	CER.	r r	FIGE OF FORM
0100 0186	2488	789	IMP	IF	: I FINE
	2.000	390		-	
0188	85	391 SLF	CLR	FØ	SINGLE LINE FEED
<b>01</b> 89	95	392	CPL	FØ	
<b>01</b> 8A	F69C	393 LF.	JC	P126	; LFUTOF
<b>01</b> 8C	B693	394	JF0	P128	SINGLE LF
018E	3414	395	CALL	INPUT	
0190	AA	396	MOV	R2, A	
0191	C698	397	JZ	P12C	
0193	1407	398 P12H:		PF D4:00	
0173 0407	PC020	377 400	JC 150	F128 P420	
0100	F897	400	<b>リアダ</b> 10月117	P126	
01.75 01.9P	97	482 0120	RETE	NE) ( 161	FUELON, W OF LINES
0190	0A	403 P128	IN	A. P2	
8190	3293	494	JB1	P128	
019F	93	405	RETR		
		496			
01A0	3414	407 SSOL :	CALL	INPUT	FETCH SOL. ON TIME
01A2	28	408	XCH	A. R3	

	JL 12	DUURUE	STHIERENT
01A3 53F8	409	<b>SNL</b>	A, #0FSH : CLEAR PREV SOL TIME
0185 6B	410	ADD	A, R3
01A6 28	411	XCH	A, R3
01A7 93	412	RETR	
	413		
01A8 FB	414 B32	MOV	A, R3 : 32 CHARACTER BUFFER
01R9 4310	415	ORL	A, #10H
81AB 53DF	416	ANL	R, <b>#00</b> FH
01AD AB	417	MOV	R3/ A
01AE BC39	418	MOV	R4, #39H ; 33 CHAR. /LINE
01B0 0412	419	JMP	AGAIN
	420		
01B2 8R04	421 502:	ORL	P2, #94H - SET G02
<b>9184 9</b> 3	422	RETR	
	423		
<b>0185 8808</b>	424 501:	ORL	P2, #88H ; SET G01
01B7 93	425	RETR	
	426		
0188 9 <b>nf</b> 8	427 R02:	ANL.	P2; #0F6H ; RESET_G02
01BA 93	428	RETR	
	429		
0188 99F7	430 R01	ANL	P2,#9F7H
01BD 93	431	RETR	
	432		
01BE 89FF	433 RESET:	orl	P1/#0FFH /RESET PORT 1
01C0 23BF	434	MON	A, #08FH
01C2 3A	435	OUTL	P2, A ; RESET PORT 2
01C3 FB	436	MOV	A, R3 RESET CHD EXCEPT FOR SERIAL & SOL
01C4 5387	437	ANL	R, #97H
01C6 AB	438	MOV	R3/ A
01C7 048E	439	Л¶Р	CLR1 ; CLEAR STS & RESET STACK
0109 1474	440 SDMH:	CHEL	DMHIN
VILB HE	441	PIUY	R67 H (LOHD DHH CUUNTERS
01UL 1974	442	CHLL	
BILE SHUP	443	HINL	P2/HOUFH / CLEHK INT PIN
0100 MF	444	MUY .	R7/H
0101 4E	440	UKL	H, K6
0102 L002	440	32	NEGR
0104 3402	44(	VCU	
011/0 2D 04107 4740	440		NUKS D BARK JET DNO ELOC
8409 28	442	VCU	0.67
0103 20 0109 2740	4.50	MOU	D/K3 0.8400 - CET ELGO EOD TELL UNCT NMO ON
840C 68	452	MOV	TINE AND A DET FLAG FUR TELL HUST VARIANT
R100 97	457	PETP	010/11
0100 73	454	NC IN	
01DE 42	455 CR	MOV	A.T ; CHECK RHAX+1 FLAG
01DF 0300	456	XRI	R. HADH : IF RHEF PRINTED HITO, NO CR
01E1 9644	457	JNZ	SPRL
01E3 93	458	RETR	
-	459		
	460		
01E4 FB	461 B40	HOV	A, R3 ; 49 CHARACTER BUFFER
01E5 53CF	462	ANL	A, #9CFH
01E7 AB	463	NOV	R3, A

All mnemonics copyrighted © Intel Corporation 1976.

11-26

_ - - -

_ _ _ _

ISIS-II MCS-48/UPI-41 MACRO RSSEMBLER, V2.0 PAGE 12 LRC 7840 SERIES PRINTER CONTROLLER SOURCE CODE

LOC	OBJ	SEQ	source s	TRTEMENT	
<b>01</b> E8	<b>0</b> 410	464	JMP	CLEAR	
		465			
		466			
		467			
01EA	2320	468 DMDE :	MOV	A, #20H	DOUBLE WIDE PRINT MODE
01EC	4B	469	orl.	A, R3	SET DW BIT
01ED	AB	470	MOV	R3/ A	
01EE	<b>B</b> 818	471	MON	R0, #18H	CLEAR BUFFER POINTER
01F0	FC	472	NOV	A, R4	
01F1	D2F6	473	JB6	X0	
81F3	BC2R	474	NUV	R4>#2HH	<i>) s</i> z unnk. Buffek
01F5	93	4/5	REIR		
01F6	BC2C	476 XØ.	NOV	R4, #20H	749 CHHR. BUFFER
011-8	ذ 9	4//	RETR		
0450	50	4/8 470 DT	MON	0.07	CET DI DIT IN CHO
01179	FØ 4700	473 KJ; 400	NDI NUY	D #00U	SEL KJ BIL IN UNU
0450	4300	400	MOU	n ( 1000 n	
OTLC	1100 07	401	DCTD	827.0	
0110	<b>3</b> 3	402	REIR		
		403			
		485			
		486 : ******	*****	k sik sik sik sik sik sik sik sik sik si	*****
		487 ; HB11	ମ୍ୟାୟରେ ନ	and the da	ATA CONSTANTS ARE IN PAGE 3
		488 *****	******	******	*******
		489			
03E0		490	ORG	3E0H	
		491			
03E0	22	492 HBIT	IN	A, DBB	Check D88 For Burd Rate
03E1	43F8	<b>49</b> 3	ORL	A) #0F8H	
<b>03E</b> 3	A3	494	NOVP	A, 9A	
03E4	Æ	495	MOV	R6, A	
03E5	<b>BF0</b> 3	496 L00P1:	HOV	P7, #03H	25US PER LOOP PAIR
03E7	EFE7	497 L00P2	d.inz	R7; L00P;	2
03E9	EEE5	498	d.jnz	R6, LOOP:	1
03EB	ØR	499	IN	A, P2	
03EC	93	500	RETR		
		501			
03ED	D30D	582 SPCR:	XRL	R, #90H	CHECK CR FLAG EXIT IF TRUE
0.3EF	96F5	503	JNZ	XCR	
03+1	JANE	504			
0313	BHT-F	303 EAC VCD.	MON	R2/198711	H 3DU NOT EXECUTE OF INDIC
02570	гп 60	300 AUK. 507	NOU	Π/Κ <u>Ζ</u> ΤΟ	
0360	97	500	DCTD	174	
034.0	33	500	KEIR		
0750		549	000	700	
0 10		511	UKU	sron	
RSED	R2	512	DB	AR2H	:110- 5910
ASEd	84	517	DB	002H	.159
03FA	40	514	DB	40H	; 388
03FB	1F	515	DB	1FH	; 699
03FC	ØE	516	DB	ØEH	; 1200
03FD	86	517	DB	96H	; 2488
03FE	82	518	DB	82H	i <b>4800</b>

All mnemonics copyrighted © Intel Corporation 1976.

ISIS-11 LRC 704	MCS-48/UPI-4 0 SERIES PRIM	41 MACRO F NTER CONTR	issembler, v Roller souri	v2. 0 Ce: code	PAGE	13
LOC	08J :	SEQ	Source s	TATEMENT		
03FF	<b>8</b> 2	519 520	0B	02H	; <b>4800</b>	
		521 ; ***	****	******	*****	******
		522 ; 01	Ther then c	HAR TABLE	e hait and XS2	ROUTINES EXISTIN PAGE2
		523 ; ****	******	******	*****	*****
		524				
02E0		525	ORG	2E0H		
02EC	531F	526 XS2	ANL	R, #1FH	FIND & ADJUST	CHARACTER INDEX
02E2	H9	527	RUV Di	R1, H	FRUCTIPLY INDE	X BY /
DOEA	E/ 57	328 530	RL	н 0		
9265	E7 69	323 579	RL ADD	П 9. Р1		
ROFE	69	530	800	A. 21		
62E7	69	532	ADD	A. R1		
02E8	68	533	RDD	A. P.2	ADD COLUMN IN	idex to character index
02E9	86F5	534	JFØ	PRGE3		
<b>82EB</b>	E3	535	MOVP3	R- 8A		
02EC	83	536	RET			
02ED	FC	537 PEON:	MOV	A, R4	FSET SPECIAL C	R Flag IF Last Char is data
02EE	D8	538	XRL	A, RØ		
02EF	96F4	539	JNZ	FSPA		
02F1	2300	540	MOV	R. #ODH		
0213	62 97	341 543 ECDO		!• <b>H</b>		
0254	33	- 392 83591 - 542	RETR			
		544				
82F5	<b>A</b> 3	545 PROFT	. MOVP	8.88		
02F6	85	546	CLR	FØ		
82F7	83	547	RET			
02F8	8006	548 WAIT:	MOV	R5, #06H		
82FA	edfa	549 CONX:	DJNZ	R5, CONX	#48US PER COUN	IT OF ACC
02FC	07	550	DEC	A		
02FD	96F8	551	JNZ	MAIL		
8211	93	552	RETR			
		003 554				
		JJ4 555				
		556 : ****	*****	*******	******	****
		557 ; CH	HRACTER TA	BLE IN PF	NGE 2.	
		558 ; MS	B IS IGNOR	ED. DATA	INVERTED	
		559 i S	EE EXAMPLE	(A)		
		560 ; ****	*****	*******	*****	*****
		561				
8298		562	ORG	200H		
~~~~		563			•	
0200	91 70	364 5/5	DB	41H 2011)e	
0201 0202	27 22	JOJ 544	NC NC	3FH 600		
0202	75	567	NB NB	020 751		
8294	62	568	DB	62H		
0205	 3F	569	DB	3FH		
8296	43	570	DB	43H		
		571		-		
0207	78	572	DB	70H	;A	**
6268	6F	573	DB	6FH	;	

LKU (19	40 SEKIE	S PRINTER CUN	HRULLER SU	URCE CUDI	Ł		LKU 7040 SEKI	ES PRINTER CON	TROLLER SU	URCE CUDE		
LOC	08J	SEQ	SOURCE	STRTENE	NT		LOC OBJ	SEQ	Source	STRTEMENT		
0209	58	574	DB	5BH	;	**-	0239 7F	629	DB	7FH	şΗ	
020A	3F	575	DB	3FH	,	-*	023H 77	630	DB	77H		
020B	58	576	DB	58H	÷	**-	0238 7F	631	DB	7FH		
020C	6F	577	DB	6FH	•	*	0230 77	632	DB	77H		
0200	70	578	DE	70H	;	****	023D 7F	633	DB	7FH		
		579					023E 00	634	DB	00H		
020E	3E	589	DB	3EH	÷В			635				
020F	41	581	DB	41H			023F 7F	636	DB	7FH	4 I	
0210	3 E	582	DB	3EH			0240 3E	637	DB	3EH		
8211	77	583	DB	77H			8241 7F	678	DB	7FH		
0212	3E	584	08	3EH			8242 88	639	DB	09H		
0213	77	585	DB	77H			8243 ZF	649	DR	7EH		
9214	49	586	DB	49H			R244 %F	641	DR	754		
		587					8245 ZE	642	NP.	7EH		
0215	41	588	DB	41H	36		0240 11	647	10	1471		
9216	3E	539	DB	3EH			0246 7D	643	ħΡ	704	,	
0217	7F	590	DE	7FH			9240 10	645	NO NO	701	, ,	
0218	3E	591	D/B	3EH			0247 TE	64.J	00	754		
8219	7F	592	DB	7EH			0240 70	640	1/0	70		
8218	3E	593	DB	3EH			0243 (E 0240 7E	647 CAC	05	70		
921R	50	594	06	50H			024H /F	646	1/6 00	754		
		595					0290 (E	647 (TO	118	(EM		
8210	3F	596	08	2EH	. Б		0246 01	600	DR.	01H		
0210	31	597	DR	414				631				
- 0210 - 021E	75	599	NP	751			6240 66	652	DB	HAH	∍K.	
0210	70	599	00	3EN 7Cu			024E 7F	653	DB	7FH		
8229	75	500	00 00	750			024F 6F	654	DB	6FH		
0220	3C 7C	600	NO	201			0250 77	655	DB	77H		
0221	44	601	00	441			0251 58	656	DE	5BH		
0222	41	502	ve	410			6252 70	657	DB	70H		
9777	00	603	50	0011	. r		8253 3E	658	DB	3EH		
0223	70	004	1/15 ND	2001	٠c			659				
0224	20	500	V15 ND	764			0254 00	660	DB	08H		
0223	30	600	00	300			0255 7F	661	DB	7FH		
0220	77 77	687	06	768			0256 7E	662	DB	7EH	βL	
0227	- 7	666	08	364			0257 7F	663	DB	7FH		
9228	11	689	1/6	768			0258 7E	664	DB	7EH		
0223	SE	510	DB	SEH			0259 7F	665	06	7FH		
0000		611			-		025A 7E	666	DB	7EH		
2000	200	612	DB	668	_, ⊁			667				
0228	i (∦* - ⊐=	613	06	758			025B 40	668	DB	46H	- M	
0220	51	614	DB	37H			025C 3F	669	DB	3FH		
0220	17	615	DB	758			8250 SF	670	DB	SFH		
0225	51	616	DB	37H			025E 67	671	DB	67H		
0221	/+ 	617	DB	7FH			025F 5F	672	DB	5FH		
62.50	-R∠	618	06	3FH			0260 3F	673	DB	3FH		
		619					8261 49	674	DB	48H		
6231	41	629	0B	41H	÷G			675				
M232	3E	621	96	3EH			8262 28	676	DB	20H		
0233	7F	622	DB	7FH			9263 SF	677	DB	SFH	; N	
8234	3E	623	DB	3EH			0264 6F	678	DB	6FH		
0235	7 B	624	D6	7BH			8265 77	679	DB	77H		
8236	3E	625	DB	3EH			0266 7B	688	DB	7BH		
82 37	59	626	DB	59H			8267 70	681	DB	7DH		
		627					0268 02	682	DB	82H		
02 38	89	628	DB	00H				687				
								005				

ISIS-I LRC 70	I MCS-48/UP 40 SERIES P	PI-41 MACRO AS RINTER CONTRO	sembler: Iller sour	V2. 0 RCE CODE	PAGE 16	ISIS-1 LRC 70	I MCS-48/UPI-4 40 SERIES PRI	41 MACRO A59 NTER CONTROL	embler, .Ler sour	v2. 0 ICE code	F	AGE	17
LOC	OBJ	SEQ	SOURCE 3	TATEMENT		LOC	OBJ :	SEQ	source s	TATEMENT			
8269	41	684	DB	41H	:0			779					
8268	7F	685	DE	7EH		8299	97	749	ne.	07U	U		
026B	7E	696	DR DR	751		02.20	70	744	ND ND	200			
9200	75	600	100	761		02.30	70	740	00	700			
0200	36	607	1/0	SER		0290	70	(42	08	70H			
0260	7F	688	DE	768		0290	<u>~</u>	745	DB	7EH			
026E	SE	689	DB	SEH		029E	70	744	DB	7DH			
026F	41	690	DB	41H		029F	7B	745	DB	7BH			
		691				02R0	87	746	DB	07H			
0270	00	692	DB	90H				747					
6271	7F	693	DB	7FH	4P	92A1	01	748	DB	01H			
8 272	37	694	06	37H		02A2	Æ	749	DB	7eh			
8 273	75	695	08	7FH		02A3	70	750	08	7DH			
0274	37	696	DB	37H		8 264	73	751	DB	73H			
8275	7F	697	DB	7FH		02R5	70	752	DB	7DH			
0276	4F	698	DB	4FH		02A6	7E	753	DB	7EH	; H		
		699				0287	91	754	DB	й1H			
8277	41	799	DB	41H	:0			755		•••			
8278	3F	701	08	3FH		8288	35	256	DE	3EH	: X		
A279	75	792	DR .	764		8269	50	257	NB:	รกม	• 0		
02170	75	702	NO	754		6200	50/ 619	750	ND	200			
0211	- 31° - 70	704	00	200 700		0200	27	750	ND	01011 771U			
0210	20	705	NC ND	201		0000	77 50	7.0		((11)			
0270	42	700	1/15	SUR		0200	00	760	UB DB	66H			
0270	42	796 107	0B	42H		02HU	50 50	761	U6	DOR DOR			
		707			-	DEHE	λ£	/62	DB	SEH			
827E	00	708	DB	99H	÷R			763					
827F	7F	709	DB	7FH		02AF	3F	764	DB	3FH	٠¥		
0280	37	710	DB	37H		0280	5F	765	DB	SFH			
0281	7F	711	DB	7FH		0261	6F	766	DB:	6FH			
0282	33	712	DB	33H		0282	70	767	0 8	70H			
8 283	70	713	DB	7DH		0283	6F	768	DB	6FH			
0284	4E	714	D6	4EH		0284	5F	769	DB	5FH			
		715				0285	3F	779	08	3FH			
8285	4D	716	DB	4DH	7 S			771					
8286	36	717	DB	36H		02B6	3E	772	08	3EH			
0287	7F	718	DB	2FH		0287	70 .	773	DB	70 H	÷Z		
0288	36	719	DB	36H		0283	38	774	08	388			
0289	7F	720	DB	7FH		8289	77	775	DB	77H			
0288	36	721	DB	36H		0268	2E	776	DB	2EH			
0288	59	722	DB	59H		0288	5F	777	DB	5FH			
		723				N2BC	75	778	08	SEH			
8280	3F	724	DB	3EH				779	00	Jen			
8290	75	725	DR DR	7EH		0200	20	700	no	000	r		
0200	715	725	NP NP	754		0200	70	704	100 100	700	×1		
0200		720	00		٠T	0200	70	101	00	250			
0200	70	720	ND ND	7000 7000	<i>,</i> 1	0200	м 7	(92 707	00	JEN			
02.70	- SF - TF	720	20	21711	Ì	0200	/r >r	201	<i>V</i> 6	(11)			
0271	in ne	729	NB	7111 2011		9201	3E 7E	784	1/E	SEH			
6292	-12	750	06	71-H		0212	7F 	785	DE	7FH			
	~	(31		0 41 ¹		0203	(†	786	DE	<i>በ</i> ተዘ			
0293	81 	732	DB	81H	÷0			787					
0294	7E	733	DB	7EH	1	0204	3F	785	DB	3FH	i\$ –		
0295	<u>Æ</u>	734	DB	7FH		0205	55	789	D18	5FH			
8296	7E	735	DB	7EH		8206	6F	790	DB	6FH			
8297	7F	736	DB	7FH	1	0207	77	791	DB	77H			
8298	Æ	737	DB	7eh		0208	7B	792	DB	76H			
8299	01	738	DB	01H		8209	70	793	06	70H			

LUC DUC GUC SED SURCE STATEMENT UCC GUC SED SURCE STATEMENT 6202 77 794 0.6 7H 1 8031 7F 849 0.6 7H 6202 77 796 0.6 7H 1 8031 7F 851 0.6 7H 6202 77 797 0.6 7H 1 8031 76 853 0.6 7H 6202 77 799 0.6 7H 8031 76 855 0.6 7H 6202 77 894 0.6 7H 8031 76 855 0.6 7H 6202 77 894 0.6 7H 1 74 9319 0.6 7H 1 6202 77 894 0.6 7H 1 74 9319 0.6 7H 1 6202 77 894 0.6 7H 1 911 911 911 911 911 911 <t< th=""><th>ISIS-II MCS-48 LRC 7040 SERIE</th><th>/UPI-41 MRCRO S PRINTER COM</th><th>) Assembler, Itroller sou</th><th>V2.0 JRCE CODE</th><th>:</th><th>PAGE 18</th><th>ISIS-I LRC 70</th><th>i MCS-48/ 40 series</th><th>UPI-41 MACRO PRINTER CON</th><th>Assembler Troller So</th><th>, v2.0 Urce cod</th><th>page E</th><th>19</th></t<>	ISIS-II MCS-48 LRC 7040 SERIE	/UPI-41 MRCRO S PRINTER COM) Assembler, Itroller sou	V2.0 JRCE CODE	:	PAGE 18	ISIS-I LRC 70	i MCS-48/ 40 series	UPI-41 MACRO PRINTER CON	Assembler Troller So	, v2.0 Urce cod	page E	19
BCCR /FC 794 D6 7CH BS11 7T B49 D8 7TH BCCB /F 726 D6 7TH 1 BS12 871 858 D8 7TH BCCD /F 727 D6 TTH BS13 7T 851 D8 TTH BCCD /F 729 D6 TTH BS13 7T 857 D8 TTH BCCD /F 729 D6 TTH BS13 7T 857 D8 TTH BS13 7T BS7 D8 D8 PTH BCD2 /T B84 D6 TTH BS13 7T BS7 D8 D8 PTH BCD2 /T B84 D6 TTH BS13 D8 D8 D8 PTH BCD2 /T B84 D8 TTH BS13 D8 D8 PTH BS13 D8 D8 D7H D8 D8 D8 D8 D8 D8 D8	LOC OBJ	SEQ	SOURCE	STATEMEN	п		LOC	0 B J	SEQ	SOURCE	STATEME	NT	
Clair PSI2 PF PSI2 PF PSI2 PF PF BCCE 77 795 D6 774 1 BSI2 PF BSI2 PF	8208.7E	794	NR	7FH			8311	7F	849	DB	7EH		
BCDD PTH PTH PTH PTH BCDD PT PST PTH PST PTH BCDD PTT PST PST PST PST BCDD PTT PST PST PST PST BCDD PTT PST PST PST PST BCDD PTT PST PST PST PST PST BCDD PTT PST	5200 F2	295	20				0312	ØF	850	DE	ØFH		
1202 77 108 771 852 08 774 1200 127 739 108 774 853 66 674 1 1200 127 739 108 774 853 68 06 684 1 1 1201 127 739 108 774 851 676 854 06 684 1 1 1201 77 884 108 774 831 676 856 06 684 774 831 768 68 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 831 774 832 774 832 774 832 774 832 774	02CB 7F	796	DB	7EH	; 1		0313	7	851	DB	7FH		
1200 bit 798 103 320 H 100 853 100 644 1 620E 77 799 08 77H 801 56 08 67H 6315 66 854 08 67H 620E 77 804 08 77H 851 68 77H 855 08 77H 6202 77 804 08 77H 100 851 68 866 08 66H 6202 77 804 08 77H 100 851 68 864 68H 68H <td>82CC 7F</td> <td>797</td> <td>DB</td> <td>7F) </td> <td></td> <td></td> <td>0314</td> <td>7F</td> <td>852</td> <td>DB</td> <td>7FH</td> <td></td> <td></td>	82CC 7F	797	DB	7F)			0314	7F	852	DB	7FH		
1202 F7 799 16 77H 6015 57F 855 06 77H 6207 72 864 06 22H 6315 67 855 06 77H 6207 72 864 08 77H 6315 66 68 06H 77H 6202 77 864 08 77H 6316 67 855 08 77H 6202 77 864 08 77H 6316 47 8516 08 66H 6202 67 865 08 77H 6316 40 862 08 77H 6205 67 869 08 57H 6312 40 862 08 37H 6207 67 869 08 77H 8312 40 8312 47 864 88 7FH 6207 77 814 08 77H 8314 8314 8314 8314 834 834 834 834 834 6207 77 812 08 77H 8323 867 88 87H	02CD 3E	798	D3	3EH					853		;		
PCF 32: POP DC TH PC13 77 PC35 DC TH PC20 77 881 DD TH PC13 77 PC55 DE PCH PC20 77 884 DB TH PC13 77 PC55 DE PCH PC20 77 884 DB TH PC13 77 PC1 PC1 77	02CE 7F	799	DB	7FH			0315	6B	854	DB	6BH	;#	
6200 $7T$ 801 DS TT 0317 875 DS $0B$ $0BH$ 6201 090 082 DB $090H$ 0319 987 857 DB $09H$ 6202 77 894 DB $77H$ \cdot° 9318 78 858 DB $69H$ 6204 577 896 DB $57H$ 9318 868 086 $69H$ 6205 2897 DB CPH 0312 690 855 DB $97H$ 6206 $57H$ 813 DB $77H$ 0312 690 855 DB $96H$ 6207 67 889 DB $77H$ 6322 877 864 DB $77H$ 6207 812 DB $77H$ 6322 877 $B6$ $89H$ 6207 813 DB $77H$ 6324	02CF 3E	800	DE	3EH			0316	7F	855	DB	7FH		
6201 68 70 77 71 6319 76 75 76 77 6202 77 384 08 77 1 9319 76 853 08 964 6202 77 384 08 77 4531 77 553 08 694 6204 57 886 08 553 08 694 77 6205 57 886 08 554 651 661 574 6206 57 899 08 674 6316 77 865 08 774 6207 67 899 08 774 6316 77 865 08 774 6208 77 812 08 774 6322 59 868 08 774 6207 77 812 08 774 632 66 774 632 66 774 632 66 774	02D0 7F	801	DB	7FH			0317	00	856	DB	00H		
B03 U B03 B04 FTH FTH 6202 77 886 D6 6FH 8318 68 860 D6 6FH 6204 987 896 D6 6FH 8318 68 860 D6 6FH 6204 987 D6 28H 651.0 40 862 D6 36H 6205 28 987 D6 28H 651.0 40 862 D6 36H 6205 77 81.0 D6 77H 63.0 36 663 D6 77H 6206 77 81.0 D6 77H 63.0 77H 866 D6 77H 6207 7 81.0 D6 77H 862.0 D6 77H 6206 77 81.5 D6 77H 862.0 B7 81.0 D6 77H 6206 77 81.5 D6 77H 863.0	02D1 00	892	DB	00H			0318	7F	857	DB	7FH		
6402 777 894 DB 774 7 873 853 0B 674 6203 67 896 DB 674 831 68 860 DB 6604 6205 57 896 DB 574 631 63 DB 364 6205 57 899 DB 574 631 563 DB 364 6207 77 890 DB 774 631 766 08 774 6208 77 810 DB 774 6321 36 08 774 6208 77 813 DB 774 6321 36 774 98 094 774 6208 77 813 DB 774 6323 66 77 78 36 08 774 6207 72 813 DB 774 6323 67 08 684 774 6207 </td <td></td> <td>803</td> <td></td> <td></td> <td></td> <td></td> <td>0319</td> <td>00</td> <td>858</td> <td>08</td> <td>00H</td> <td></td> <td></td>		803					0319	00	858	08	00H		
4203 6F 995 0F 6FH 9318 663 860 08 66H 6204 5F 996 0B 5FH 6310 40 852 0B 40H ; \$ 6205 6F 986 0B 5FH 6310 40 852 0B 30H ; \$ 6206 7F 986 0B 7FH 6310 46 0B 7FH 6208 77 819 0B 7FH 6322 75 866 0B 7FH 6208 77 813 0B 7FH 6322 75 865 0B 86H 7FH 6206 7C 815 0B 7FH 6322 77 873 0B 7FH 6206 7C 815 0B 7FH 6323 76 0B 76H 832 76 77 73 78 77H 72 88 77H 77H	02D2 77	804	DB	77H	: ^		931A	7F	859	DB	7FH		
1204 FF 996 967 DB 54H 6310 40 962 DB 40H <i>i</i> 6205 57 989 DB 57H 6310 26 983 DB 36H	82D3 6F	805	DE	6FH			031B	68	860	DB	6BH		
4205 20 997 P6 20H 631/2 40 862 P6 40H ; \$ 6206 5F 986 DB 5FH 6310 35 963 DB 3GH 6208 77 819 DB 7FH 6312 76 864 DB 7FH 6208 77 819 DB 7FH 6321 35 867 DH 3GH 6208 77 812 DB 7FH 9322 59 868 DB 7FH 6208 77 812 DB 7FH 9322 59 868 DB 7FH 6207 72 815 DB 7FH 8324 70 871 DB 7CH 6200 72 816 DB 7FH 6324 70 871 DB 7CH 6205 77 817 DB 7FH 6325 77 873 DB SFH 6202 77 813 DB 7FH 6324 77 873 DB SFH 6207 77 813 DB 7FH </td <td>82D4 5F</td> <td>806</td> <td>DB</td> <td>5FH</td> <td></td> <td></td> <td></td> <td></td> <td>861</td> <td></td> <td></td> <td></td> <td></td>	82D4 5F	806	DB	5FH					861				
4266 5F 988 08 5FH 4311 7F 864 08 37H 4207 6F 389 08 6FH 8311 7F 864 08 77H 811 77H 8320 7F 866 08 77H 811 7FH 8322 75 866 08 77H 8209 7C 812 08 77H 8322 59 868 08 59H 8206 7E 813 08 77H 8322 66 872 08 96H :// 8206 7E 813 08 7FH 8322 66 872 08 97H 98 98H 77H 8206 7E 813 08 7EH 8325 66 872 08 97H 98 98H 98H 98H 7H 980 7H 980 7H 980 7H 980 7H 980 98H	02D5 20	807	DB	20H			031 C	4D	862	DB	4DH	÷\$	
	82D6 5F	808	DB	5FH			031D	36	863	DB	36H		
6226 7.7 818 DB 7.74 631.F 6631.F 665 DB 674 6209 7C 812 DB 7.74 813 DB 7.74 832.2 DB 867 DB 574 6206 7C 813 DB 7.74 815 DB 7.74 815 DB 7.74 6200 7C 815 DB 7.74 815 DB 7.74 815 DB 7.74 6200 7C 813 DB 7.74 832.5 DB 871 DB 774 6207 7.8 813 DB 7.74 832.5 DB 7.74 BS 7.74 BS 7.74 S.74 BS 7.74 BS 7.74 BS 7.74 BS S.74 BS S.74 BS S.74 BS S.74 BS S.74 S.74 S.74 S.74 S.74 S.74 S.74 S.74 S	02D7 6F	809	DB	6FK			031E	7F	864	DB	7FH		
811 920 $7F$ 866 06 $7F$ 6209 7C 812 06 $7F$ 832 36 06 $36H$ 6206 7C 813 06 $7F$ 822 56 867 06 $36H$ 6200 7C 816 06 $7F$ 873 06 $7F$ 873 06 $7F$ 6200 7C 816 06 $7F$ 833 06 $7F$ 873 06 $7F$ 620F 7E 813 06 $7F$ 873 06 $77H$ 77 06 $77H$ 820 $7F$ 813 06 $7FH$ 9327 68 874 06 $68H$ 820 $7FH$ 8325 677 873 06 $87H$ 823 877 881 98 $89H$ ia	02D8 77	810	DB	77H			031F	00	865	DB	90H		
4209 7.E 812 0.8 7.E. 8221 3.6 9.67 0.8 5.9H 6206 7.E 813 0.8 7.F.H 0.822 5.9 8.68 0.8 5.9H 6200 7.C 815 0.8 7.H 0.822 5.9 8.68 0.8 6.9 6200 7.C 815 0.8 7.H 0.822 5.7 0.8 7.0H 6200 7.C 816 0.8 7.E.H 0.822 66 8.72 0.8 60H 6205 7.E 813 0.6 7.C.H 0.825 7.7 8.7 0.8 63H 6206 7.E 813 0.6 7.C.H 0.825 8.75 0.8 63H 821 3.2 1.8 0.8 7.C.H 1.822 3.8 7.6 0.8 3.6H 821 3.2 1.6 N.P.MCE 1.822 3.6 8.7H 8.2 3.6H 7.H 8.2 3.6H 8.2		811					0320	7F	866	DB	7FH		
8208 7F 813 0.8 7FH 8322 59 863 D8 59H 6208 7E 814 D8 7EH 862 869 869 869 869 869 869 869 869 869 869 869 869 869 869 871 D8 76H 822 77 873 D8 76H 822 869 877 873 D8 670 873 58 671 873 86 874 98 584 822 822 822 878 587 875 878 875 88 98 364 384 363 761 334 822 373 881 58 574 822 365 876 D8 364 364 364 364 364 364 364 364 364 364 374	02D9 7E	812	DB	7EH	<i>i</i> _		0321	36	867	DB	36H		
4206 7E 814 0.8 7EH 9629 6200 7F 815 0.8 7FH 9323 9670 971 0.8 7CH 6200 7C 815 0.8 7FH 9323 9670 971 0.8 7CH 920E 7F 817 0.8 7FH 9325 976 977 98 96H 920E 7F 813 0.8 7FH 9326 977 873 0.8 77H 820 7EH 9326 874 0.8 68H 989 98 77H 821 98 7EH 9326 97 98 58H 98 <td< td=""><td>02DA 7F</td><td>813</td><td>08</td><td>7FH</td><td></td><td></td><td>0322</td><td>59</td><td>868</td><td>DB</td><td>59H</td><td></td><td></td></td<>	02DA 7F	813	08	7FH			0322	59	868	DB	59H		
4200 7F 815 D8 7FH 6222 622 979 D8 6FH :2 6200 7C 816 D8 7EH 6324<70	02DB 7E	814	DB	7EH					869				
6200 7C 31.6 D8 7EH 6324 70 87.1 D8 70H 620F 7E 81.7 D8 7FH 6325 66 87.2 D8 66H 620F 7E 81.3 D8 7EH 6325 66 87.4 D8 66H 81.9 6326 87.4 D8 63H 63H <td>02DC 7F</td> <td>815</td> <td>DB</td> <td>7FH</td> <td></td> <td></td> <td>0323</td> <td>ØE</td> <td>870</td> <td>DB</td> <td>ØEH</td> <td>; %</td> <td></td>	02DC 7F	815	DB	7FH			0323	ØE	870	DB	ØEH	; %	
420E 7F 917 06 7FH 6325 66 972 08 66H 620F 7E 913 06 7EH 6326 77 873 08 77H 813 0.6 7EH 6326 77 873 08 57H 813 0.6 7EH 6326 57 875 08 57H 820	0200 7C	816	DB	7EH			0324	7D	871	DB	7DH		
820F 7E 813 D6 7CH 6326 77 873 D6 77H 819 0327 68 874 D8 63H 820 6328 57 875 D8 5FH 821 8329 33 876 D8 38H 822 ; **********************************	02DE 7F	817	DB	7FH			0325	6 B	872	DB	ØBH		
819 6327 63 74 06 634 820 9328 57 875 08 5FH 821 9329 33 875 08 5FH 822; ***********************************	020F 7E	813	DB	7EH			0326	77	873	DB	77H		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		819				•	0327	68	874	DB	68H		
321 932 876 D6 38H 922 ; ##################################		820					0328	SF	875	08	SFH		
822 ; ##################################		821					0329	38	876	DB	38H		
823 ; CHRR. TRELE ON PROE 3 932H 49 978 DB 494 ; & 824 ; MSB IS IGNOREJ. DATA INVERTED 932B 36 879 DB 364 825 ; SEE EXAMPLE (A) IN PROE 2 OF ROM 932C 77 880 DB 7FH 826 ; ***********************************		822 ; **	*****	******	*****	****			877				
324 : MSB IS IGNORED: DATA INVERTED 932B 36 879 D8 364 825 : SEE EXAMPLE (A) IN PAGE 2 OF ROM 932C 7F 880 D8 7FH 827 932B 37 881 DC 374 9300 7F 833 D8 7DH 9300 7F 833 D8 7DH 9300 7F 833 D8 7DH 9300 7F 833 D6 7FH 9330 72 984 D8 7DH 9300 7F 833 D6 7FH 9330 72 984 D8 7DH 9301 7F 831 D6 7FH 9331 7F 986 D8 7FH 9302 7F 832 D8 7FH 9333 7F 988 D8 7FH 9304 7F 833 D8 7FH 9335 7T 989 D8 7FH 9306 7F 833 D8 7FH 9335 7T 899 D8 7FH 9306 7F 833 D8 7FH 9338 7F 891 D8 7FH 9306 7F 833		823 /	Char. Table	e on page	3.		0329	49	878	DB	49H	; &	
825 : SEE EXHMPLE (A) IN PAGE 2 OF ROM 932C /r 880 D8 7/H 826 ; ************************************		824 ;	MSB IS IGNO	red, data	INVERTE	Ð	032B	36	879	DB	36H		
826 ; ###################################		825 ;	see example	(A) IN	PAGE 2 0	if rom	0320	/ł ∵ব	880	DB	7FH		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		826;**	************	****	*****	*********	0320	57	881	06	S/H		
6369 828 070 883 08 704 883 08 704 6390 7 829 6324 70 883 08 724 6390 7F 839 06 7FH 984 08 724 6390 7F 831 06 7FH 6331 7F 886 08 7FH 6390 7F 832 06 7FH 6332 7F 887 08 7FH 6390 7F 833 06 7FH 6332 7F 888 08 7FH 6393 7F 833 06 7FH 6332 7F 889 08 7FH 6394 7F 833 06 7FH 6335 7F 899 08 7FH 6305 7F 836 08 7FH 6335 7F 891 08 7FH 6306 7F 835 08 7FH 933 7F 891 08 7FH 6306 7F 83	0200	827	000	2001			0525	DH 20	882	DR			
6390 7F 839 D8 7FH ; BLANK 884 D8 7CH 6390 7F 831 D6 7FH ; BLANK 885 175 6390 7F 831 D6 7FH 932 7F 886 D8 7FH 933 7F 887 D8 7FH 6390 7F 833 D8 7FH 933 7F 888 D8 7FH 6304 7F 834 D8 7FH 9334 9F 899 D8 9FH 6305 7F 835 D8 7FH 9336 7F 899 D8 7FH 6306 7F 936 D8 7FH 9336 7F 891 D8 7FH 9306 7F 936 D8 7FH ; ! 9337 7F 891 D8 7FH 9307 7F 838 D8 7FH ; ! 9337 7F 891 D8 7FH 9308 7F 838 D8 7FH ; ! 9337 7F 894 D8 7FH 9309 7F 840 D8 7FH	0200	828	0KP	<u> (nnh</u>			0521	70 70	883	DB ND	708		
0300 7F 330 05 7FH 381 06 7FH 981 7F 885 0301 7F 831 06 7FH 031 7F 886 08 7FH 1 0302 7F 832 06 7FH 0332 7F 887 08 7FH 0303 7F 833 06 7FH 0333 7F 888 08 7FH 0305 7F 835 08 7FH 0335 7F 899 08 06H 0305 7F 836 08 7FH 0335 7F 899 08 06H 0306 7F 936 08 7FH 0336 7F 891 08 7FH 0307 7F 892 08 7FH 937 0337 7F 892 08 7FH 0308 7F 839 08 7FH 91 08 7FH 93 0308 7F 839 08 7FH 93 08 7FH 93 0309 7F 840 08 7FH 93 08 63H (0300 7F	0200 70	829	00	751	54 (34.8/		0220	12	884	UB	(2H		
0302 7F 331 00 7FH 0332 7F 088 08 7FH 0302 7F 832 06 7FH 0332 7F 887 08 7FH 0303 7F 833 06 7FH 0332 7F 888 08 7FH 0304 7F 833 06 7FH 0333 7F 888 08 7FH 0305 7F 835 08 7FH 0335 7F 899 08 0FH 0305 7F 936 0B 7FH 0335 7F 899 08 0FH 0306 7F 936 0B 7FH 0335 7F 899 08 7FH 9306 7F 936 0B 7FH 0337 7F 892 0B 7FH 9307 7F 838 0B 7FH ; ! 933 933 933 0308 7F 839 0B 7FH ; ! 933 93 93 93 0308 7F 840 0B 7FH 933 93 93 94 94 94 94 94 94	0300 /F 0704 7E	020	05	751	BEHNK		9774	π	883	00	701	. /	
0302 11 032 06 7FH 0332 17 067 07H 0303 7F 833 06 7FH 0333 7F 888 08 7FH 0304 7F 834 06 7FH 0334 0F 899 08 0FH 0304 7F 835 08 7FH 0334 0F 899 08 0FH 0305 7F 835 08 7FH 0335 7F 899 08 0FH 0306 7F 936 0B 7FH 0335 7F 899 08 7FH 0306 7F 936 0B 7FH 937 0337 7F 899 08 7FH 0307 7F 838 0B 7FH ; ! 933 933 933 933 0308 7F 839 0B 7FH 933 0B 7FH 934 93 934 94 93 934 94 934 94 934 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94	0301 7F	031	1/0 DP	751			0331	75	000	1/10	760		
0304 7F 834 DB 7FH 0333 7F 899 DB 0FH 0304 7F 834 DB 7FH 0334 0F 899 DB 0FH 0305 7F 835 DB 7FH 0335 7F 899 DB 0FH 0306 7F 936 DB 7FH 0335 7F 899 DB 7FH 0306 7F 936 DB 7FH 937 0337 7F 892 DB 7FH 0307 7F 838 DB 7FH 91 DB 7FH 0308 7F 839 DB 7FH 983 08 7FH 0308 7F 839 DB 7FH 983 08 7FH 0308 7F 839 DB 7FH 938 895 DB 6341 ; (0308 7F 840 DB 7FH 938 28 20H	0302 11 0307 2F	877	DB DB	250 250			0332 0777	75	999	ND	700 200		
6305 7F 835 05 7FH 6335 7F 899 08 7FH 6305 7F 835 08 7FH 6335 7F 899 08 7FH 6305 7F 836 08 7FH 6335 7F 899 08 7FH 9306 7F 836 08 7FH /! 6335 7F 891 08 7FH 6307 7F 838 08 7FH /! 893 893 7FH 891 08 7FH 6308 7F 839 08 7FH /! 893 893 893 7FH 894 08 7FH 6309 7F 840 08 7FH /! 8338 3E 895 08 634 ; (6308 7F 842 08 7FH //! 0338 3E 897 08 3EH 6300 7F 842 08 7FH //! 0330 7F 898 08 7FH 6300 7F 844 08 7FH /! 9300 7F 899 08 7FH 6300 7F 846	0305 11 0304 7F	874	DB	7FH			0333	AF.	889	DR	04E1U		
0306 7F 336 08 7FH 0336 7F 891 08 7FH 0307 7F 938 08 7FH 7F 892 08 7FH 0308 7F 839 08 7FH 7F 893 08 7FH 0308 7F 839 08 7FH 938 7F 894 08 7FH 0309 7F 840 08 7FH 0339 63 895 08 63H (0308 7F 840 08 7FH 0339 63 895 08 63H (0308 7F 840 08 7FH 0338 7F 894 08 7FH 0308 7F 840 08 7FH 0339 63 895 08 63H (0308 7F 840 08 7FH 0338 3E 897 08 5DH 0308 7F 842 08 7FH 0330 7F 898 08 7FH 0300 7F 844 08 7FH 900 08 7FH 030F 7F 846	0304 11 0305 7F	875	08	2EH			0334	75	898	NR INR	7EU		
337 837 892 08 7FH 9387 7F 838 08 7FH 933 893 9398 7F 839 08 7FH 9338 7F 894 08 7FH 9399 7F 840 08 7FH 9339 63 895 08 63H ; (9399 7F 840 08 7FH 9339 63 895 08 63H ; (9399 7F 840 08 7FH 9339 63 895 08 63H ; (9309 7F 840 08 7FH 9338 895 08 63H ; (9308 7F 842 08 7FH 9338 897 08 3EH 9300 7F 843 08 7FH 9330 7F 898 08 7FH 9300 7F 844 08 7FH ; " 9330 7F 999 08 7FH 9306 7F <t< td=""><td>8306 7F</td><td>836</td><td>DB</td><td>258</td><td></td><td></td><td>AX36</td><td>75</td><td>891</td><td>DR</td><td>7FH</td><td></td><td></td></t<>	8306 7F	836	DB	258			AX36	75	891	DR	7 FH		
0307 7F 838 DB 7FH ; ! 893 0308 7F 839 DB 7FH ; ! 893 0308 7F 839 DB 7FH 9338 7F 894 DB 7FH 0309 7F 840 DB 7FH 9339 63 895 DB 6314 ; (0309 7F 840 DB 7FH 9339 63 895 DB 6314 ; (9306 62 841 D3 92H 9338 2E 897 DB 5DH 9306 7F 843 DB 7FH 9330 7F 898 DB 7FH 9300 7F 844 DB 7FH 9330 7F 899 DB 7FH 9306 7F 846 DB 7FH ; " 901 9310 7F 942 DB 7FH ;) 9310 9F 848 DE 0FH 9340 7F 993 DB <t< td=""><td></td><td>837</td><td></td><td></td><td></td><td></td><td>9777</td><td>7F</td><td>892</td><td>DB</td><td>7FH</td><td></td><td></td></t<>		837					9777	7F	892	DB	7FH		
0308 7F 839 D8 7FH 0338 7F 894 D8 7FH 0309 7F 840 D8 7FH 0338 7F 894 D8 7FH 0309 7F 840 D8 7FH 0339 63 895 D8 63H ; (0308 62 841 D8 02H 0338 3E 897 D8 5DH 0308 7F 842 D8 7FH 0338 3E 897 D8 3EH 0300 7F 843 D8 7FH 0330 7F 898 D8 7FH 0300 7F 844 D8 ?FH 0330 7F 899 D8 7FH 0300 7F 844 D8 ?FH 0332 7F 899 D8 7FH 0300 7F 846 D8 7FH 901 901 901 0300 7F 847 D8 7FH 983 D8 7FH ;)	0307 7F	838	DB	7FH	; 1		00001		893				
0309 7F 840 DB 7FH 0339 63 895 DB 63H ; (0304 02 841 DB 02H 0339 63 895 DB 63H ; (0306 02 841 DB 02H 0339 63 895 DB 63H ; (0308 7F 842 DB 7FH 0338 3E 897 DB 3EH 0300 7F 843 DB 7FH 0330 7F 898 DB 7FH 0300 7F 844 DB ?FH 0330 7F 899 DB 7FH 0306 7F 846 DB 7FH ; " 901 901 0306 7F 847 DB 7FH 903 DB 7FH ;) 0310 0F 848 DB 0FH 0340 7F 903 DB 7FH ;)	0308 7F	839	DB	2FH			0338	7F	894	DB	7FH		
030A 02 841 D8 02H 033A 5D 896 D8 5DH 030B 7F 842 D8 7FH 033B 3E 897 D8 3EH 030C 7F 843 D8 7FH 033C 7F 898 D8 7FH 030D 7F 844 D8 7FH 033D 7F 899 D8 7FH 030E 7F 844 D8 7FH 033D 7F 899 D8 7FH 030E 7F 846 D8 7FH ; " 901 901 030F 7F 847 D8 7FH 933F 7F 962 D8 7FH ;) 0310 0F 848 D6 0FH 0340 7F 963 D8 7FH ;)	0309 7F	840	DB	7FH			0339	ត	895	DB	63H	; (
030B 7F 842 DB 7F1; 033B 3E 897 DB 3EH 030C 7F 943 DB 7FH 033C 7F 898 DB 7FH 030D 7F 844 DB 7FH 033D 7F 899 DB 7FH 030E 7F 844 DB 7FH 033D 7F 899 DB 7FH 030E 7F 846 DB 7FH ; " 901 901 030F 7F 847 DB 7FH 033F 7F 902 DB 7FH ;) 0310 0F 848 DB 0FH 0340 7F 903 DB 7FH ;)	030A 02	841	DB	02H			033R	50	896	DB	5DH		
030C 7F 943 DB 7FH 033C 7F 898 DB 7FH 030D 7F 844 DB 7FH 033D 7F 899 DB 7FH 030D 7F 844 DB 7FH 033D 7F 899 DB 7FH 030E 7F 846 DB 7FH ;" 901 901 030F 7F 847 DB 7FH 033F 7F 902 DB 7FH ;) 0310 0F 848 DE 0FH 0340 7F 903 DB 7FH ;)	030B 7F	842	DB	· 7F1			033B	3E	897	DB	3EH		
0300 7F 844 DB 7FH 0330 7F 899 DB 7FH 845 033E 7F 900 DB 7FH 030E 7F 846 DB 7FH 901 030F 7F 847 DB 7FH 902 DB 7FH ;) 030F 7F 847 DB 7FH 903 DB 7FH ;) 0310 0F 848 DB 0FH 0340 7F 903 DB 7FH	030C 7F	843	DB	7FH			033C	7F	898	DB	7FH		
845 033E 7F 900 DB 7FH 030E 7F 846 DB 7FH 901 901 030F 7F 847 DB 7FH 933F 7F 962 DB 7FH ;) 0310 0F 848 DB 0FH 0340 7F 963 DB 7FH	0300 7F	844	DB	2FH			033D	7F	899	DB	7FH		
030E 7F 846 DB 7FH ; " 901 030F 7F 847 DB 7FH 033F 7F 902 DB 7FH ; > 0310 0F 848 DB 0FH 0340 7F 903 DB 7FH		845					033E	7F	900	DB	7FH		
030F7F 847 DB 7FH (033F7F 962 DB 7FH ;) 0310 0F 848 DB 0FH (0340 7F 963 DB 7FH	030E 7F	846	DB	7FH	; "				901				
0310 0F 848 DB 0FH ^I 0340 7F 903 DB 7FH	030F 7F	847	DB	7FH			033F	7F	902	DB	7FH	;)	
	0310 OF	848	DB	ØFH			0340	7F	903	DB	7FH		
LOC	0 B J	SEQ	SOURCE	STRIEMENT		LOC	0BJ	SEQ	SOURCE	STRTEMENT			
--------------	--------------	-------------	----------	------------------	------------	--------------	------------	-------------	--------	--------------------	---		
0341	7F	904	DE	7FH		0371	Æ	959	DB	7FH			
0342	3E	985	DB	3EH		0372	38	960	DB	384			
0343	5D	906	DB	5DH		0373	77	961	DB	77H			
0344	63	907	D8	63H		0374	2E	962	DB	2EH			
0345	71-	968	DB	7FH		8375	7F	963	DB	7FH			
		989				0376	41	964	DB	41H			
0346	77	910	DB	77H	;*			965					
0347	50	911	D/B	5DH		0377	7F	966	DB	7FH ;1			
0348	68	91 2	DB	6BH		0378	SE 🛛	967	DB	5EH			
0349	14	913	DB	14H		0379	7F	968	DB	7FH			
034A	68	914	DB	6BH		037R	8 9	969	DB	00H			
034B	5D	915	DB	5DH		0378	7F	970	DB	7FH			
034C	77	916	DB	77H		037C	Æ	971	DB	7EH			
		917				037D	7F	972	DB	7FH			
034D	77	918	DB	77H	;+			973					
034E	7F	919	DB	7FH		037E	5C	974	DB	5CH ; 2	?		
034F	77	920	DB	77H		037F	38	975	DB	38H			
0350	49	921	DB	49 11		0380	76	976	DB	7EH			
0351	77	922	DB	77H		0381	37	977	DB	37H			
0352	7F	923	DB	7FH		0382	7E	978	DB	7EH			
0353	77	924	DB	77H		0383	37	979	DB	37H			
		925				0384	4£	986	DB	4EH			
0354	7F	926	DB	711	;,	6705	70	981	50	2011 . 2	,		
0,555	<u>~</u>	927	DB	77 H		0380	30	262	1/15	30H 33	÷		
03226	<u>^</u>	928	08	768		0207	/E >E	763	06	7EH 2CH			
0307	7E 70	929	08	764		0307	сг Г	204	1/0	250			
0308	() 75	930	UB ND	(271		0300	11 20	26.3	00	7EP 200			
0333	(F 745	931	00	761		0303	2r 56	200	NO	500			
620H	(F	332 977	00	(FA		9798	79	988	DB	79H			
9750	70	933	ND	700	·	0300	3.7	989	00	3.011			
8750	75	975	DR	71.11	,	8780	76	999	DB	7RH ; 4			
9750	73	976	DR	78K		8 38D	77	991	DB	771			
ASE	75	977	DB	7FH		038E	6B	992	DB	6BH			
035F	78	978	DE	7BU		038F	5F	99 3	DB	5FH			
0360	π	939	DB	2 F H		0390	20	994	DB	20H			
0361	7B	940	DE	7BH		0391	7F	995	DB	7FH			
	. –	941				8392	7B	396	DC	7BH			
0362	7F	942	DE	7FH	<i>i</i> .			997					
8363	7F	94 3	DB	7FH		0393	00	998	DB	90H ;5	j		
0364	7F	944	DB	7FH		0394	7E	999	DB	7EH			
0365	7E	945	DE	7EH		0395	2F	1008	DB	2FH			
0366	7F	946	DB	7FH		0396	7E	1091	DB	7EH			
8367	7F	947	DB	7FH		0397	3F	1002	DB	3FH			
036 8	7F	948	DB	7FH		0396	6E	1003	DB	6EH			
		949				0399	31	1994	DB	31H			
0369	Æ	950	DB	7EH	37			1005					
036A	70	951	DB	7DH		039R	79	1006	DB	79H /6	•		
036B	7B	952	DB	7BH		0398	76	1007	DB	76H			
036C	77	953	DB	77H		0390	61	1008	DB	6FH			
036D	6F	954	DB	6F.K		0390	36 25	1669	VB	26H			
036E	5F	955	DB	5FH		10.5%	5F 7C	1010	06	<i>ያ</i> ተዝ 7ርህ			
036F	3F	956	DB	3FH		032	70 70	1011	1/6	701			
		957			-	UHR 0	(9	1912	UB	(9H			
0370	41	958	DB	41H	;0	'		1013					

All mnemonics copyrighted © Intel Corporation 1976.

ISIS-II MCS-48/ LRC 7040 SERIES	/UPI-41 MACRO 5 PRINTER CON	ASSEMBLER, TROLLER SOL	v2.0 Urce code	PRGE E	22	1515-1 LRC 70	i MCS-48 40 serie	20191-41 NRCRO IS PRINTER CONT	assembler Roller so	, v2.0 Urce code	PRGE	23
LOC OBJ	SEQ	SOURCE	STATEMEN	NT		LOC	OBJ	SEQ	SOURCE	STATEMEN	т	
0381 3F	1014	DB	3FH	;7				1969				
03A2 7F	1015	DB	7FH			9702	75	1979	NR	754	: >	
0393 38	1016	DB	388			0302	75	1074	ND	750		
03NJ 30	1917	NR	7714			0204	(F 76	10/1	ND	250		
0795 2E	1919	ND ND	254			0304	32	1672	DR DR	SER		
0365 ZF	4040	00 NO	SCU			0305	50	10/3	DB	SDH		
0307 JF	1013	<i>V1</i> 0	JEN			0306	68	1074	DB	6EH		
USH/ SF	1020	<i>U</i> B	SEM			0307	77	1075	DB	7 7H		
	1021					0308	7F	1076	DB	7FH		
USH8 49	1022	DB	491	;8				1077				
USHY 36	1023	DB	36H			03D9	7F	1078	DB	7FK	;?	
03 RA 7F	1024	DB	7FH			03DA	5F	1079	DB	SFH		
03fib 36	1025	DB	36H			03DB	3F	1080	DB	3FK		
03AC 7F	1026	DB	7FH			03DC	78	1081	DB	7 0H		
03AD 36	1027	DB	36H			0300	37	1082	DB	37H		
03RE 49	1028	DB	49H			Ø3DE	4F	1083	DB	4FI:		
	1029					93DF		1084	DB	7FH		
03AF 4F	1030	DB	4FH	; 9		0.001		1995				
0380 37	1031	DB	37H					1996				
03B1 7F	1032	DB	7FH					1000	6147			
A182 76	1077	DB	RCH									
A383 20	1874	DB	20H									
0784 7B	1075	DB	ZRH									
0301 30 0385 47	1036	DB	479									
0300 41	1035	00	400									
9796 75	1031	D.D.	76.0									
0300 (1	1030	00	70									
0301 11 0700 70	1037		751									
0300 (1	1040	<i>V</i> 6 60	(11)									
0303 00	1041	00	6BH									
030H (F	1042	UB	768									
0388 75	1045	08	7611									
USBC /F	1044	DB	7FH									
	1045											
0360 7-	1046	DB	7FH	<i>;;</i>								
03BE 7F	1047	DB	7F8									
038F 7E	1648	DB	7EH									
03C0 69	1049	DE	69H									
03C1 7F	1050	DB	7FH									
03C2 7F	1051	DB	7FK									
03C3 7F	1052	DB	7FH									
	1053											
03C4 7F	1054	DB	7FH	3 C								
03C5 77	1055	DB	77H		1							
03C6 6B	1056	DB	6DH									
93C7 5D	1057	DB	5DH									
03C8 3E	1058	DB	3EH									
83C9 7F	1059	DB	7FH		l							
03CR 7F	1060	DB	7FH									
	1061	. –										
03CB 68	1062	DB	68H	;=								
03CC 7F	1063	DB	7FH									
03CD 68	1864	DB	6RH		ļ							
03CE 7F	1065	DR	7FH									
Ø3CF 6B	1866	DR	6RH									
AZDA 75	1967	NR	754		-							
9704 40	4960	00	200									
0341 00	7000	100	007									

USER S	YMBOLS														
84	0056	AGRIN	001 2	B32	01A8	840	01E4	C10	0099	CHAR	003 3	CHECKS	014E	CK	896 7
CLEAR	0010	CLR1	000E	CMID	0156	COF 8	6689	CON	0090	CONT	008 8	CONX	02FA	CR	01DE
CTS	2085	DATA	0150	DECO	881 6	DECR	016 2	DMRIN	0074	DHIDE	01EA	FIRE	007B	FOUND	0160
FSPA	02F4	HBIT	03E0	HOME	906A	INBUF	0077	INIT	9999	INPUT	0114	11 0	00E9	IT1	ØØER
L1	0004	LARS	0170	LF	018A	LORD	69CE	L00P1	03E5	L00P2	03E7	LSTCOL	6652	LZ	008 6
MLF	0181	NHOME	0026	NODECR	011C	NOTS	003F	NRST	016F	ON	0924	ONE	00R7	P128	019 3
P128	8190	P12C	0198	P30	00E3	P3F	80F 6	P6R	0128	P6AA	0145	P6BB	0136	P7C	0158
PAGE	80 38	PAGE3	02F5	Para	8008	PEON	02ED	PF	890F	PRINT	891E	RESET	01BE	RJ	01F9
RJ2	8964	rjp	004D	R01	818B	R02	0188	rtab	0146	SDMR	01 C9	SEND	0155	SERROR	007A
SGLE	887F	SING	00A3	SLF	0183	501	01B5	S02	91B 2	SPCR	03ED	SPRL	0144	SSOL.	01A0
stab	81 77	T1	0172	T2	0172	T3	0172	TAB	0132	TERROR	014D	TOF	0184	W14	898E
MAIL	8 2F8	XØ	01F6	XCR	03F5	XFER	00 20	XS2	02E0	YNE	012 6				

ASSEMBLY COMPLETE, NO ERRORS

Application of Intel's 5V EPROM and ROM Family for Microprocessor Systems

Contents

						 	12-3
Pinout Evolution						 	12-3
System Architecture						 	12-3
Bus Contention						 	12-4
The Microprocessor/Memory	Inte	ərfa	ice)		 	12-5
Terminology						 	12-5
The New Intel Family						 	12-6
Pin Devices and Pin Sites						 	12-7
Printed Circuit Board Design						 	12-8

INTRODUCTION

This Application Note discusses how the new Intel family of 5 volt EPROMs and ROMs can be used with microprocessor systems. The pinout evolution and philosophy are explored in detail, which leads directly to system architecture. Particular emphasis will be placed on the pitfalls of bus contention and the microprocessor/memory interface. Finally, an actual printed circuit board layout is presented.

PINOUT EVOLUTION

As EPROM/ROM technology has evolved, there are often periods of confusion over EPROM and ROM pinouts, as ROM density usually leads EPROM density by a factor of two, but ultimately users want any given EPROM to have a ROM compatible part. As we have seen, after the 2716 16K EPROM was introduced, a new ROM pinout emerged and "triumphed" over an earlier "standard." The reason this ROM pinout change occurred is that as codes stabilize in user's systems and equipment, many users opt for the less expensive ROMs, which are mask programmable devices. At the same time, users often use the highest available density ROM so they combine modular firmware and minimize device count. Of course, many users never do go to the ROM stage with their equipment, preferring to minimize inventory levels and utilize standard designs that can be customized for final equipment configurations, but they always want the capability to do so if desired.

In addition, over the past few years, the development of microprocessors has been intimately entwined with both ROMs and EPROMS.

The 1702A and its ROM counterpart, the 1302, were completely adequate to support the requirements of the 4004 series of microprocessors. In order to support the 5 volt, 3MHz 8085A and 5MHz 8086, it is desirable to use a compatible device such as the Intel 5 volt 2716, whose 450ns access time is compatible with the microprocessor requirements. Some high performance versions of these processors may require selected versions of the 2716 (such as the 2716-1 with t_{ACC} = 350ns, or the 2716-2 with t_{ACC} = 390ns) depending on the actual system configuration.

Summarizing these events since the introduction of the Intel 1702A, which was the first EPROM, we can postulate the following hypothesis: at any point in time, the present EPROM determines the pinout for the next generation ROM. And, if the subsequent larger density EPROM is not ROM compatible, the ROM will change. Also, it can be seen that ROMs and EPROMs must evolve along with microprocessor developments—so memory performance does not limit system performance.

The devices which are discussed in this Application Note represent an extension of the 5 volt compatible family to 32K bit and 64K bit densities, while improving performance as discussed above. It also follows that the pinout

for the 32K devices must be derived from the 2716 in order to maintain socket compatibility. This 16K to 32K pinout evolution is shown in Figure 1.

SYSTEM ARCHITECTURE

As higher performance microprocessors have become available, the architecture of microprocessor systems has been evolving, again placing demands on memory. For many years, system designers have been plagued with the problem of bus contention when connecting multiple memories to a common data bus. There have been various schemes for avoiding the problem, but device manufacturers have been unable to design internal circuits that would guarantee that one memory device would be "off" the bus before another device was selected. With small memories (512x8 and 1Kx8), it has been traditional to connect all the system address lines together and utilize the difference between t_{ACC} and t_{CO} to perform a decode to select the correct device (as shown in Figure 2).

Figure 2. Single Control Line Architecture

processor required that the corresponding numbers be reduced to $t_{ACC} = 450$ ns and $t_{CO} = 120$ ns. This allowed a substantial improvement in performance over the 4004 series of microprocessors, but placed a substantial burden on the memory. The 2708 was developed to be compatible with the 8080 both in access time and power supply requirements. A portion of each 8080 machine cycle time had to be devoted to the architecture of the system decoding scheme used. This devoted portion of the machine cycle included the time required for the system controller (8224) to perform its function before the actual decode process could begin.

Let's pause here and examine the actual decode scheme that was used so we can understand how the control functions that a memory device requires are related to system architecture.

The 2708 can be used to illustrate the problem of having a single control line. The 2708 has only one read control function, chip select (\overline{CS}), which is very fast ($t_{CO} = 120$ ns) with respect to the overall access time ($t_{ACC} = 450$ ns) of the 2708. It is this time difference (330ns) that is used to perform the decode function, as illustrated in Figure 3. The scheme works well and does not limit system performance, but it does lead to the possibility of bus contention.

BUS CONTENTION

There are actually two problems with the scheme described in the previous section. First, if one device in a multiple memory system has a relatively long deselect time, and a relatively fast decoder is used, it would be possible to have another device selected at the same time. If the two devices thus selected were reading opposite data; that is, device number one reading a HIGH and device number two reading a LOW, the output transistors of the two memory devices would effectively produce a short circuit, as Figure 4 illustrates. In this case, the current path is from V_{CC} on device number one to GND on device number two. This current is limited only by the "on" impedance of the MOS output transistors and can reach levels in excess of 200mA per device. If the MOS transistors have a lot of "extra" margin, the current is usually not destructive; however, an instantaneous load of 400mA can produce "glitches" on the V_{CC} supply — glitches large enough to cause standard TTL devices to drop bits or otherwise malfunction, thus causing incorrect address decode or generation.

The second problem with a single control line scheme is more subtle. As previously mentioned, there is only one control function available on the 2708 and any decoding scheme must use it out of necessity. In addition, any inadvertent changes in the state of the high order address lines that are inputs to the decoder will cause a change in

Figure 3. Single Line Control Architecture

the device that is selected. The result is the same as before — bus contention, only from a different source. The deselected device cannot get "off" the bus before the selected one is "on" the bus as the addresses rapidly change state. One approach to solving this problem would be to design (and specify as a maximum) devices with t_{DF} time less than t_{CO} time, thereby assuring that if one device is selected while another is simultaneously being deselected, there would be some small (20ns) margin. Even with this solution, the user would not be protected from devices which have very fast t_{CO} times (t_{CO} is specified as a maximum).

The only sure solution appears to be the use of an external bus driver/transceiver that has an independent enable function. Then that function, not the "device selecting function," or addresses, could control the flow of data "on" and "off" the bus, and any contention problems would be confined to a particular card or area of a large card. In fact, many systems are implemented that way the use of bus drivers is not at all uncommon in large systems where the drive requirements of long, highly capacitive interconnecting lines must be taken into consideration — it also may be the reason why more system designers were not aware of the bus contention problem until they took a previously large (multicard) system and, using an advanced microprocessor and higher density memory devices, combined them all on one card, thereby eliminating the requirement for the bus drivers, but experiencing the problem of bus contention as described above.

THE MICROPROCESSOR/MEMORY INTERFACE

From the foregoing discussion, it becomes clear that some new concepts, both with regard to architecture and performance are required. A new generation of two control line EPROM devices is called for with general requirements as listed below:

1. Complete ROM pin and function compatibility.

2. A power control function that allows the device to enter a low-power standby mode when deselected. This function can be used as the primary device selecting function, independent of the output control.

3. Capability to control the data "on" and "off" the system bus, independent of the device selecting function identified above.

4. Access time compatible with the high performance microprocessors that are currently available.

Now let's examine the system architecture that is required to implement the two line control and prevent bus contention. This is shown in the form of a timing diagram (Figure 5). As before, addresses are used to generate the unique device selecting function, but a separate and independent Output Enable (OE) control is now used to gate data "on" and "off" the system data bus. With this scheme, bus contention is completely eliminated as the processor determines the time during which data must be present on the bus and then releases the bus by way of the Output Enable line, thus freeing the bus for use by other devices, either memories or peripheral devices. This type of architecture can be easily accomplished if the memory devices have two control functions, and the system is implemented according to the block diagram shown in Figure 6. It differs from the previous block diagram (shown in Figure 2) in that the control bus, which is connected to all memory Output Enable pins, provides separate and independent control over the data bus. In this way, the microprocessor is always in control of the system; while in the previous system, the microprocessor passed control to the particular memory device and then waited for data to become available. Another way to look at it is, with a single control line the system is always asynchronous with respect to microprocessor/memory communications. By using two control lines, the memory is synchronized to the processor.

TERMINOLOGY

Some of the terminology applied to the functions of the Intel 5 volt compatible family may be confusing or unfamiliar to many EPROM/ROM users, so the various terms are defined here. Actually, the nomenclature was developed by various standards groups and is reiterated here to avoid confusion as we begin a detailed discussion of the devices themselves.

First of all, Chip Enable (CE) must be defined, as it is the primary device selection pin. By agreed standards, that function which substantially affects power dissipation is called CE. Any memory device that has a CE function has both an active and standby power level associated with it.

Output Enable (OE) is the signal that controls the output. The fundamental purpose of OE is to provide a completely separate means of controlling the output buffer of the memory device, thereby eliminating bus contention.

Chip Select (CS) is a signal that gets logically ANDed with addresses. In a completely static device, CS must remain stable throughout the entire device cycle, and its function is equivalent to Output Enable (OE).

THE NEW INTEL FAMILY

Figure 7 shows the new Intel 5 volt compatible family of EPROMs and ROMs. In order to take advantage of the modular compatibility offered by the family, the functional compatibility of device pins 18, 19 and 21 must be understood. (Shaded area in Figure 7.)

First, we must examine the compatibility of the two oldest EPROM members of the 5 volt family — the 8K (2758) and the 16K (2716).

Pin 21 (V_{PP}) is normally connected to V_{CC} for read only applications of both devices, and pin 19 is either at GND (V_{IL}) for the 8K 2758 or connected to A₁₀ for the 16K 2716. Further details on either of these devices can be found in Section 9 of the 1977 Edition of the Intel Memory Design Handbook, or Section 4 of the 1978 Intel Data Catalog.

The 32K (4Kx8) devices, which have identical pinouts for both the ROM and EPROM, will now be discussed. Pin 18 is \overline{CE} . Pin 19 is A₁₀, while pin 20 is \overline{OE} . As was pointed out before, Output Enable is the function which allows independent control of the data "on" and "off" the output bus. As Figure 7 indicates, V_{PP} (the programming voltage for the 2732 EPROM) is now multiplexed with \overline{OE} on pin 20. Pin 21 becomes A₁₁, which is the additional address bit that is required as the density increases from 16K to 32K.

Pin 21 is the only pin that requires any special consideration when designing a system to accept the 8K, the 16K, or the 32K device. With the 8K and the 16K devices, pin 21 must be connected to V_{CC} , while with the 32K and higher density devices, it must be connected to A_{11} . This is easily accomplished by making sure the printed circuit trace links all pin 21's together as though they were an address line and allowing for a jumper that will connect pin 21 to either V_{CC} or A_{11} at the edge of the array (this technique can be seen in the "Printed Circuit Board Design" section and in Figure 8). Connecting the pin 21's together in this manner is acceptable as the read current requirement for V_{PP} is 4mA maximum per device — low enough to be handled by a signal trace, but too high for an address driver to provide directly. The highest density member of the family is a 64K ROM which is also shown in Figure 7. In order to maintain total compatibility it is packaged in a standard 28-pin package.

It may seem as though the 28 pin package is not compatible with the rest of the family, but referring again to Figure 7, note that the lower 24 pins are identical to the 24 pin 8K, 16K and 32K devices. To allow for total compatibility within the family: printed circuit boards must be laid out to accommodate 28 pin sites; a jumper must be included to accommodate pin 21 as shown in Figure 8, and when using 64K devices, CS₂ (Pin 26) must be mask coded active high. This compatibility can also be seen graphically in Figures 9 and 10. The upper portion of the figure shows how 24 pin devices are used in the 28 pin sites. The two control lines (\overline{CE} and \overline{OE}) remain unchanged as discussed earlier, and A₁₂, the next address bit required for a 64K bit device, is connected to pin 2 of the 28 pin site. The lower portion of the figure illustrates the use of 28 pin devices. Address bit A_{12} is already connected to the right pin, and the chip selects (CS₁ and CS₂) are connected to the V_{CC} power distribution grid. This configuration would require that both CS₁ and CS₂ be coded active high.

24 Pin Devices and 28 Pin Sites

 CS_1 ; CS_2 should be coded active high in order to preserve total compatibility.

To summarize, the selection of a 28 pin package for 64K devices has several benefits of importance to present and future system designs:

1. Two line control philosophy (separate \overline{CE} and \overline{OE} functions) is preserved at the 64K bit level.

2. 64K EPROM compatibility is allowed for by maintaining a pin for the V_{PP} function.

3. The next generation (128K bit ROM) must be in a 28 pin package.

If CS_2 (pin 26) is mask coded to be active high and connected to V_{CC} , and the jumper provision for pin 21 is included on the card as described above, any member of the family can be plugged into the same socket — 1K, 2K, 4K or 8K bytes — without any card modification or redesign. In addition, future devices of higher density will fit in the same pinout.

PRINTED CIRCUIT BOARD DESIGN

The I_{CC} waveform for the 2332 and the 2364 is shown in Figure 10. The supply current, I_{CC}, has three segments that are of concern to the system designer - the standby level, active level and the transient peaks that are produced on the rising and falling edges of Chip Enable. The transient currents must be suppressed by properly selected decoupling capacitors. High quality, high frequency ceramic capacitors of small physical size with low inherent inductance should be used. In addition, bulk decoupling must be provided, usually near where the power supply is connected to the array. The purpose of the bulk decoupling is to overcome the voltage droop caused by the inductive effects of the PC board traces. Electrolytic or tantalum capacitors are suitable for bulk decoupling. The following capacitance values and locations are recommended for the 2332 and 2364:

1. A $0.1\mu F$ ceramic capacitor between V_{CC} and GND at every other device.

2. A 4.7μ F electrolytic capacitor between V_{CC} and GND for each eight devices.

A printed circuit board layout for a total array of 16 devices is shown in Figure 11. This printed circuit layout incorporates a power supply distribution system such that the power supply and ground traces on the PC board are

ing capacitors. Provisions are included for all address inputs, output enable inputs, data outputs and decoded chip enable inputs. The 0.1μ F capacitors referred to above are included for every other device (indicated by the legend C2) while the bulk decoupling capacitor is shown at the upper left-hand corner (indicated by the legend C1). The layout consists of four rows of four 28-pin device sites each and embodies all of the concepts explained above. Note that pins 28, 27 and 26 are all connected to V_{CC}. This requires that when ordering mask programmed 2364 64K ROMs, the order must specify that CS_1 and CS_2 be coded active HIGH. The single jumper provision discussed in the previous section is also included at the upper lefthand corner of the array (indicated by A, B, and C). Pad B is connected to pin 21 of all devices in the array; pad A should be connected to the A11 address driver and pad C is connected to V_{CC}. For use with 32K bit or larger devices, a jumper must be installed between pads A and B; for use with the 2716 (16K) or the 2758 (8K), the jumper must be installed between pads B and C.

A full size (2x) artwork film is included on the last page of this Application Note. The entire array, or segments of it can be photographed and used directly as part of a system board.

Figure 10. Typical I_{CC} Current vs Time

Figure 11. Printed Circuit Board Layout of 16 Devices

·

intel

.

Intel Components

Introduction	13–3
Crystal Operation — Brief Theoretical Explanation	13–3
Circuit Configurations From Various Manuals/Explanation Series 10 pF Capacitor Parallel 20 pF Capacitor to Ground 8224 Overtone Application (Tank Circuit) Precise Timing Applications	13-4 13-4 13-4 13-4 13-5
What If I Use a Crystal Other Than Specified	13–5
Specifications Intel Component Crystal Requirements Suggested Suppliers, Part Numbers	13-5 13-5 13-6

INTRODUCTION

The following brief note is intended to answer the simpler questions on crystal specifications and their operation with the various Intel components. First, a theoretical explanation of the crystal is given to aid the user in understanding crystal operation. This includes a discussion of the parameters necessary for proper specification to the vendor. Following this section are explanations of the various crystal-capacitor configurations seen in the Intel User's Manuals and data sheets; why they are suggested for proper crystal operation and what might happen if they weren't there.

The final section of this note provides a list of suggested crystal specifications, suppliers, and part numbers for the highest frequency crystals possible for the various intel components that require them. In no way does this list represent the only crystals or suppliers available. This section is conveniently preceded by a discussion of problem areas that may result if a user is using the wrong crystal required for the component.

CRYSTAL OPERATION — BRIEF THEORETICAL EXPLANATION

Understanding Crystal Operation

Crystals are piezoelectric devices which transform voltage energy to mechanical vibrations and voltage oscillations. The frequency of the crystal is largely dependent on its thickness, with thinner crystals producing a higher frequency.

Crystals are generally specified as being series or parallel resonant, but all crystals are in actuality both. Vendors supply crystals as series or parallel resonant based on the desired frequency and the crystal's relative ability to generate the frequency in that mode. On a conceptual basis, when using a crystal as series resonant, its output is in phase with its input, whereas using the crystal as parallel resonant will result in a phase shift from its input to output.

Different LSI components prefer different crystals due to the nature of their internal oscillator design. In general, Intel bipolar components have a non-inverting, bidirectional drive oscillator, whereas NMOS components use an inverting oscillator. Non-inverting oscillators prefer series resonant crystals (as the series resonant crystal has 0 degree net phase shift), while inverting oscillators prefer crystals which are parallel resonant. Since a crystal has both a series and parallel operating frequency, many times any crystal will seem to work when connected to a component.

When giving the specifications to a crystal vendor for a crystal, it is helpful to understand its equivalent circuit as shown in Figure 1. The impedance of this circuit (neglecting R to simplify matters for conceptual purposes) can be calculated and plotted against frequency (Figure 2). This frequency-impedance plot illustrates the two different operating modes of crystal. ω_s (series resonance) occurs when the impedance (reactance) is zero and ω_p (parallel resonance) occurs when the impedance goes to infinity and appears inductive.

When operating at series resonance (ω_s) the equivalent circuit of the crystal becomes a simple resistor Rs (Figure 3; remember, R was neglected in the impedance calculation). This Rs value must be specified to the crystal vendor when buying a crystal.

This parameter becomes a problem with lower frequency or overtone crystals (thicker, more resistance) and a buffer that doesn't have sufficient gain to drive those crystals (i.e., loop gain becomes less than 1). Overtone crystals also have Rs problems as their Rs is associated with the fundamental frequency of the crystal, not the 3rd harmonic or overtone. The 8224 is particularly sensitive to Rs with 27 MHz overtone applications.

Conversely, if operating at ωp (parallel resonance), the crystal appears inductive in the circuit (Figure 4). Since the crystal appears inductive, any changes in reactance that the crystal sees will have the effect of pulling the frequency of the crystal. As a result of this, the amount of load capacitance seen by the crystal in the circuit configuration becomes important. This load capacitance, CL, is the dynamic capacity of the total circuit measured across the terminals of the crystal. The amount of this capacitance should always be specified to the crystal vendor if the crystal will be operating at parallel resonance.

CIRCUIT CONFIGURATIONS FROM VARIOUS MANUALS/EXPLANATIONS

Series 10 pF Capacitor Included (Figure 5)

This additional capacitor is recommended at times to debias the crystal. Due to the component's internal circuit, a small DC bias may exist across the crystal which would strain the crystalline structure. It is also provided for trimming the frequency of the crystal to compensate for the loading effects of the component.

Parallel 20 pF Capacitors to Ground (Figure 6)

Crystals can oscillate at several different frequencies, each emanating from a different direction of vibration in the crystal. For a crystal to oscillate during startup in its fundamental frequency, it is best for the crystal to see the slew rate (Figure 7) of the pulse provided from the oscillator to be as close to the operating frequency as possible.

These 20 pF capacitors act as a high frequency filter to create a slew rate closer to the fundamental frequency of the crystal. As can be guessed, lower frequency crystals are more susceptible to the problem of not starting up in the fundamental frequency.

Capacitors are placed on both sides of the crystal as some components have bidirectional drive buffers (i.e., 1/2 of cycle drive from one side, other half from opposite side). A crystal that needs these extra 20 pFs to ground will be characterized by starting up at a 3rd or 5th harmonic instead of the fundamental frequency. The CL specifications in the specification section takes into consideration these extra 20 pF capacitors required for some Intel components for proper operation.

Tank Circuit

On some Intel components, provision is made for a tank circuit. This is for the use of an overtone crystal; i.e., one that is working at a harmonic (generally its 3rd). The tank circuitry is a filter to bypass the lower and higher, unwanted frequencies to ground while appearing "open" to the desired frequency. It is necessary to use tank circuits and overtone crystals when in the 25 + MHz range and above. Fundamental crystals are difficult to make in this frequency range as the crystal must be thinner for higher frequencies.

A circuit that has been used for the 8224 in 27 MHz overtone crystal applications is shown in Figure 8.

This filter can be approximated through formulas where afterwards it will be necessary to tweak the component values for optimization. The formula used to get the original component values is:

$$f = \frac{1}{2\pi\sqrt{L_1C_1}}$$
 where $f =$ overtone frequency

13-4

Precise Timing Applications

For applications where precise timing is required, using an external drive could produce better results. The accuracy of the component clock over temperature will be as accurate as the external drive. It is difficult to guarantee the temperature stability of the output frequency of the Intel component as fabrication process parameters vary, causing large ranges of input impedance and hence a large range of loading for the crystal.

WHAT IF I USE A CRYSTAL OTHER THAN SPECIFIED?

Series vs. Parallel

As discussed in the theoretical section, all crystals have a series and parallel operating mode. Placing a series crystal on a device requiring a parallel (i.e., there is an inverting oscillator between the two inputs) will force the crystal to oscillate in its parallel mode (and vice versa). A system with the wrong crystal will exhibit its clock frequency shifted a small percentage (about 320 to 350 parts per million) from the specified crystal frequency. When using the wrong crystal, any attempts to trim the frequency to its specified value by using small parallel (series if series crystal) variable capacitors will cause the crystal to stop oscillating, as predicted by theory. If the correct crystal is being used, trimming can be done.

In applications where accuracy is not important, series crystals are sometimes substituted for parallel in the circuit. For instance, the 8048 has been characterized to be compatible with the series color burst TV crystal (3.579545 MHz). If this crystal is used, a small frequency shift will occur, as noted above.

Insufficient Drive Level

The drive level specified is the maximum amount of power that is expected for the crystal to dissipate. If the crystal can't handle this level, frequency drift may occur or possible fracture of the crystal. In other words, if the crystal used cannot handle the oscillator drive level, long term reliability problems may occur.

Rs Too High

The higher Rs is, the higher the drive capability of the oscillator has to be to get the crystal to oscillate. Too much Rs may result in the oscillator not being able to drive the crystal; i.e., the loop gain is less than one. Overtone applications are particularly sensitive to this as thicker crystals are used (lower fundamental frequency, more resistance).

SPECIFICATIONS

Intel Component Crystal Requirements

The following is a list of suggested specifications for crystals to be used with Intel components. In most instances the upper frequency limit is given, with exceptions being footnoted.

_	Component (Function)	Process	Component Divide By	Crystal Type	Fundamental Overtone	Upper Limit Frequency
1.	4201A (Clock Generator)	смоѕ	_	Series	f	5.185 MHz
2.	8035/48/49, 8748 (8-Bit CPU)	NMOS	15	Parallel	f	6.0 MHz
3.	8748/8035-8 (8-Bit CPU)	NMOS	15	Parallel	f	3.6 MHz
4.	8041/8741 (Universal Peripheral Interface)	NMOS	15	Parallel	f	6.0 MHz
5.	8085A (8-Bit CPU)	NMOS	2	Parallel	f	6.25 MHz/6.144 MHz ⁽¹⁾
6.	8085A-2 (8-Bit CPU)	NMOS	2	Parallel	f	10.0 MHz
7.	8202 (Dynamic RAM Controller)	Bipolar	-	Series	f	25 MHz
8.	8224 (8080A Clock Generator)	Bipolar	_	Series	f/o	27 MHz/18.432 MHz ⁽²⁾
9.	8284 (8086 Clock Generator)	Bipolar	3	Series	f	24 MHz/15 MHz ⁽³⁾

Additional suggested specifications:

Frequency Tolerance:	± 0.005% (up to the user)					
CL (Load Capacitance):	= 20-35 pF (not necessary when specifying series)					
Rs (Equivalent Series Resistance):	<75 ohms					
Cs (Shunt Capacitance):	<7 pF					
Drive Level:	<10 MHz crystal 10 milliwatts					
	>10 MHz crystal 5 milliwatts					

Notes: 1. 6.144 MHz is commonly used as convenient baud rates can be generated from this frequency.

2. 27 MHz is max. 18.432 is common crystal used which gives maximum clock rate for 8080A. Fundamental crystal should be used for the 18.432 MHz application.

3. Used for either a 8 or 5 MHz output clock, respectively.

Holder specifications are up to the user. A standard popular one that provides ample lead length is HC-33/U (0.750"W \times 0.765"H, 1.5" lead length with spacing of 0.486") and can be used for frequencies up to 4 MHz. After 4 MHz a smaller holder can be used such as HC-18/U (0.435"W \times 0.530"H, 1.5" lead length with spacing of 0.192"). All crystals listed in the following table will fit in the HC-33/U holder. Other standard holders are available.

Suggested Suppliers, Part Numbers

The following are two vendors (which are among many) that supply crystals to the specifications given earlier and their part numbers (given in order of frequency). The user should make sure that the holder type associated with these part numbers is acceptable in their application.

f	Parailel/ Series	Crystek ⁽¹⁾ Corp.	CTS Knight, Inc.		
3.6 MHz	P	**	**		
5.185 MHz	S	CY8A	**		
6.0 MHz	Р	**	MP060		
6.144 MHz	Р	**	MP061		
6.25 MHz	Р	**	MP062		
10.0 MHz	Р	**	MP10A		
15.0 MHz	S	CY15A	MP150		
18.432	S	CY19B*	MP184*		
24.0 MHz	S	**	MP240		
25.0 MHz	S	**	MP250		
27.0 MHz	S (overtone)	CY27A	MP270		

*Intel also supplies a crystal numbered 8801 for this application. **Contact vendor with the appropriate specifications.

Notes: 1. Address: 1000 Crystal Drive, Fort Meyers, Florida 33901 2. Address: 400 Reimann Ave., Sandwich, Illinois The user is not limited to these vendors or frequencies. The frequency chosen by the user should take into consideration convertibility to desired baud rates and the system timings that must be met.

In summary, to obtain a crystal for the user's application, it is necessary to give the crystal vendor the following information:

Series or parallel Fundamental or overtone Rs (series), Cs (shunt) CL if parallel Drive Level Frequency tolerance Holder type

For a select few crystals, vendor numbers were given for two different vendors. With the above information, most vendors can make the desired crystal whether or not they have it as a standard part.