

SECTION 10
ACCESS LEVEL CONTROL INTERFACE

This section describes the access level control interface with respect to the communication
protocol utilized by the MC68020 and the MC68851 during the type $01 module operations,
CALLM and RTM. This communications protocol includes electrical and command level
mechanisms that allow the MC68851 to extend the protection mechanism of the main
processor (refer to the MC68020 32-8it Microprocessor User's Manual).

10.1 ACCESS LEVEL CONTROL INTERFACE SIGNAL CONNECTION

Identical to the case of the coprocessor interface register set, the selection of the MC68851
access level interface register set is based upon an internally generated chip select signal
that is decoded from the logical address and function code inputs when the processor
initiates an access to this register set.

The MC68851 contains a set of access level control registers (ALCRs) by which the main
processor and MC68851 communicate during module operations. These registers are not
part of the programming model implemented by the MC68851. Rather, they are used as
communication ports that have specific functions associated with each register. The pro­
grammer is never required to explicitly access these interface registers, since the access
level control interface is implemented in the hardware and microcode of the MC68020 and
the MC68851. When the MC68020 is not used as the main processor, the MC68851 ALCRs
can be explicitly accessed by a software routine that emulates the behavior of the MC68020
with respect to the access level control interface.

For more information on the electrical interconnection between the main processor and
the MC68851, refer to APPENDIX B HARDWARE CONSIDERATIONS.

10.1.1 Selecting the MC68851

A portion of the CPU space, identified by the MC68020 address bus is dedicated to access
control functions. Figure 10-1 illustrates the required address bus encoding for access level
control accesses in the CPU address space. The bit positions' marked with an 'x' are zero­
filled by the MC68020 but are ignored by the MC68851.

During CPU space cycles, address bits A16-A19 indicate the CPU space function that the
main processor is performing. The MC68020 utilizes four of the possible 16 encodings of
A 16-A 19 as listed in Table 9-1.

FUNCTION
CODE

31

10 1 1 11 x x x x x x x x x x x x

19 15

000000000 MMU REGISTER

Figure 10-1. Access Level Control Interface Logical Address Bus Encoding

MC68851 USER'S MANUAL MOTOROLA
10-1

IE

The MMU register (ALCR select) field, AD-A15, is decoded by the MC68851 to select the
appropriate ALCR. Although the MC68851 decodes the full address range specified on
AO-A15, the MC68851 ALCRs occupy only the lower 128 bytes of this range. Any access
above this range (A7-A 15 = 0) is ignored for a write cycle and returns the null value (all
ones) for a read (the MC68851 terminates these accessses by asserting DSACKx). For a
map of the implemented MC68851 access control interface registers in the CPU address
space, refer to Figure 10-2. Since address bits A20-A31 are not present on all implemen­
tations of M68000 processors, these bits are not essential for decoding CPU space trans­
actions and are ignored for the purposes of decoding CPU space accesses.

$10000

$10004

$10008

$1000C

$10040

$10044

$10048

$1004C

$10050

$10054

$10058

$1005C

31

CL

ACCESS STATUS

IAL

DAL

23

(UNUSED, RESERVED)

(UNUSED. RESERVED)

(UNUSED, RESERVED)

(UNUSED, RESERVED)

FUNCTION CODE 0 DESCRIPTOR ADDRESS

FUNCTION CODE 1 DESCRIPTOR ADDRESS (USER DATA)

FUNCTION CODE 2 DESCRIPTOR ADDRESS (USER PROGRAM)

FUNCTION CODE 3 DESCRIPTOR ADDRESS (USER. RESERVED)

FUNCTION CODE 4 DESCRIPTOR ADDRESS (SUPERVISOR DATA)

FUNCTION CODE 5 DESCRIPTOR ADDRESS (SUPERVISOR PROGRAM)

FUNCTION CODE 6 DESCRIPTOR ADDRESS

FUNCTION CODE 7 DESCRIPTOR ADDRESS (CPU SPACE)

Figure 10-2. MC688S1 Access Level Control Interface Register Map

The internal MC68851 chip select decode for the access level control interface is therefore
based upon the function code signals (FCO-FC3) and the CPU space type field (A 16-A 19).
The MC68851 decodes the address bits AO-A6 (A7-A 15 must be zero) to determine the
function of any access level control access.

10.1.2 Access Level Control Interface Registers

Table 10-1 identifies the MC68851 access level control interface register locations in the
CPU space that are used for communications between the MC68020 and the MC68851.
Figure 10-2 illustrates the memory map of the ALCRs on a 32-bit bus. When an access level
control cycle is executed, the MC68851 decodes the ALCR select field of the address bus,
AO-A6 (A7-A 15 = 0), to select the appropriate access level control interface register.

The access level control interface registers of the MC68851 appear at the logical addresses
shown in Figure 10-2 and Table 10-1.

The following paragraphs describe the characteristics of each of the access level control
interface registers as implemented by the MC68851. In these descriptions, the read/write
attributes of each register are given. If a register is read-only, write accesses to that location
are ignored; read accesses of a write-only register always return all ones. In all cases, the

MOTOROLA
10-2

MC68851 USER'S MANUAL

Table 10-1. Access level' Control Interface
Register Characteristics

Register A6-AO Offset Width

CL 0000000 $00 8

Access Status 0000100 $04 8

IAL 0001000 $08 8

DAL 0001100 $OC 8

FCO Descriptor Address 10000xx $40 32

FC1 Descriptor Address 10001xx $44 32

FC2 Descriptor Address 10010xx $48 32

FC3 Descriptor Address 10011xx $4C 32

FC4 Descriptor Address 10100xx $50 32

FC5 Descriptor Address 10101xx $54 32

FC6 Descriptor Address 10110xx $58 32

FC7 Descriptor Address 10111xx $5C 32

Type

Read

Read

Write

Write

Write

Write

Write

Write

Write

Write

Write

Write

MC68851 asserts DSACKx in response to all CPU space cycles accessing the access level
control interface (FCO-FC3 = $7, CPU space type = $1) to terminate the bus cycle.

10.1.2.1 CURRENT lEVEL (Cl) AlCR ($00). When read by the CPU, this 8-bit read-only
register supplies the highest-order three bits of the CAL register in the most significant
three bits ibits [5-7]) and the highest-order three bits of the VAL register in bits [1-3]. This
register is read by the MC68020 during the execution of a CALLM instruction in order to
save the access information (CAL and VAL) of the calling module in the saved access level
field of the module call stack frame.

10.1.2.2 ACCESS STATUS (AS) AlCR ($04). This 8-bit read-only register contains the
status of an access level change that has been requested by the MC68020. During the
execution of a CALLM instruction, the MC68851 uses the information contained in the
current access level register (CAL), increase access level ALCR (lAL), and the stack change
control register (SCC) to determine whether or not the requested module call, is valid and
whether or not a stack change should occur before program control is passed to the called
module. This information is available in AS and is read by the processor to determine the
validity of the module operation.

During the execution of an RTM instruction, the MC68851 uses the information contained
in the CAL register and the decrease access level ALCR (DAL) to determine whether or not
the requested module return operation is valid.

The encodings for the AS ALCR are shown in Table 10-2. The algorithm used to calculate
the access status encoding for the CALLM instruction is shown in Figure 10-3.,

10.1.2.3 INCREASE ACCESS LEVEL (lAL) AlCR ($08). This 8-bit write-only register is the
register through which the MC68020 requests increased access rights during a module call
operation. When this register is written, the MC68851 compares the access level contained
in the highest-order bits of IAL (1, 2, or 3 bits as determined by the number of access levels

MC68851 USER'S MANUAL MOTOROLA
10-3

Table 10-2. Access Status Register Code

Value Validity Processor Action

00 Invalid Format Error

01 Valid No Change in Access Rights

02-03 Valid Change Access Rights with No Change of Stack Pointer

04-07 Valid Change Access Rights and Change Stack Pointer

Other Undefined Undefined (Take Format Error)

in use) against the corresponding bits in the CAL register. If the IAL field is less than or
equal to the CAL field (the call is to a module with equal or greater privilege), the requested
change is valid, the MC68851 transfers the contents ofthe CAL register to VAL and transfers
the new access level in IAL to CAL. If IAL is greater than CAL (the call is to a module with
less privilege), the module operation is invalid, no transfer between registers is made, and
the contents of the access status ALCR are updated to indicate that a format exception
should be taken by the CPU.

10.1.2.4 DECREASE ACCESS LEVEL (DAL) ALCR ($08). This 8-bit write-only register is
the register through which the MC68020 requests decreased access rights during a module
return operation.

When written by the CPU, the MC68851 compares the access level contained in the highest
order bits of DAL (1, 2, or 3 bits as determined by the number of access levels in use)
against the corresponding bits in the CAL register. If the DAL field is greater than or equal
to the CAL field (the return is to a module with equal or less privilege), the requested
change is valid, the highest-order three bits of DAL (bits [5-7]) are placed in bits [5-7] of
CAL and bits [1-3] of DAL are placed in bits [5-7] of VAL. If DAL is less than CAL, the return
operation is invalid, no transfer between registers is made, and the access status ALCR is
updated to indicate that a format exception should be taken by the CPU.

During the execution of an RTM instruction, the MC68020 writes the saved access level
field from the module call stack frame to the DAL register to reverse the operation per­
formed by reading the CL ALCR during the CALLM instruction.

10.1.2.5 DESCRIPTOR ADDRESS ALCRS ($40 THROUGH $5C). These eight 32-bit reg­
isters are used by the MC68020 to pass the module descriptor address to the MC68851
during a type $01 module call (requsting a change in access level). There is one descriptor
address ALCR corresponding to each of the eight MC68020 address spaces (as defined by
the function code outputs of the CPU).

During execution of the CALLM instruction, the MC68020 writes the logical address of the
module call descriptor to the descriptor address ALCR corresponding to the address space
in which the descriptor resides. If module operations are enabled (AC [7] = 1) and the
module de,scriptor size is set to a valid size (AC[0-1] = 0), the MC68851 checks the validity
of the descriptor. If any of the above conditions are not met, the access status ALCR is
updated to indicate that a format exception should be taken by the CPU.

In order to verify that the module descriptor address is valid, the logical address formed
by the contents of the descriptor address ALCR, and the function code implicitly associated

MOTOROLA
10-4

MC68851 USER'S MANUAL

MC68851 MC68020

~
DECODE INSTRUCTION AND READ FIRST WORD OF MODULE DESCRIPTOR
(CONTAINS CALLM OPTION ANI) TYPE)

CL[5-7] ...-- CAL[5-7]
CL[1-3] ...-- VAL[5-7] READ CURRENT LEVEL ALCR

SAVE CL VALUE IN MODULE STACK FRAME
'SAVED ACCESS LEVEL' FIELD

CHECK ATC FOR ENTRY m WRITE MODULE DESCRIPTOR ADDRESS TO
DESCRIPTOR ADDRESS ALCR

~fOR ADDRESS IN ATe

ENTRY FOR ADDRESS IN ATC -----.,

ISSUE RELINQUISH AND RETRY ttJ TERMINATE AND
RELEASE BUS

PERFORM TABLE SEARCH AND
CREATE ATC ENTRY

CHECK G & BERR BITS OF ATC ENTRY W
AND PERFORM MODULE DESCRIPTOR

ALIGNMENT CHECK

DTHERWIS~BERR" 0, ALIGNMENT CHECK
~. PASSED & AC[7] = 1--..,

CALLJiTATUS ..- 0 D CALIjiTATUS"'-- 1 D

COMPARE IAL TO CAL

CALCULATE ACCESS STATUS
(REFER TO FIGURE 10-4 FOR DETAIL)

4 ~ ACCESS STATUS ~ 7 ACCESS STATUS = 1

~ WRITE NEW ACCESS LEVEL TO IAL

ttl READ ACCESS STATUS

ACCESS STATUS = 2 OR 3 ACCESS STATUS = 0 OR > 7 ,--- r ~ ---,

O
PROCEED WITH MODULE CALL
(ACCESS LEVEL CHANGE AND
STACK POINTER CHANGE) 9J PROCEED WITH MODULE CALL

(NO ACCESS LEVEL CHANGE,
NO STACK POINTER CHANGE) 9J PROCEED WITH MODULE CALL

(ACCESS LEVEL CHANGE,
NO STACK POINTER CHANGE)

D
TAKE FORMAT
EXCEPTION

Figure 10-3. CALLM Instruction Dialog Flowchart

with that register are used by the MC68851 to perform a table search to locate the translation
descriptor corresponding to that address. As part of the execution of the CALLM instruction,
the MC68020 reads the first word of the module descriptor prior to writing its address to
the descriptor address ALCR, so the ATC will usually contain the required entry. However,
it may be necessary to perform an external search for the translation descriptor.

Me68851 USER'S MANUAL MOTOROLA
10-5

When the MC68851 locates the translation descriptor for the page containing the module
descriptor (either in the ATC or from a search of the external tables), it first checks to
ensure that the G bit of the page descriptor is set indicating that the page is allowed to
contain module descriptors. If this check passes, the MC68851 examines the low-order bits
of the module descriptor address to ensure that the descriptor begins on an appropriate
byte boundary as determined by the MDS field of the access control (AC) register (bits
[0-1]). For module descriptor sizes of 16, 32, and 64 bytes, the lowest order four, five, or
six bits, respectively, of a module descriptor address must be zero in order for that address
to be valid. If either of the above two conditions are not met, the access status ALCR is
updated to indicate that a format exception should be taken by the CPU.

If the MC68851 cannot locate a translation for the module descriptor (table search termi­
nated due to encountering an invalid descriptor or a bus error during the table search) the
access status ALCR is updated to indicate that a format exception should be taken by the
CPU.

10.2 CALLM AND RTM INSTRUCTIONS

The following paragraphs detail the communication dialog between the MC68020 and the
MC68851 during execution of the module call and return instructions with the type $01
attribute (requesting a change in access level). This discussion assumes that the reader is
familiar with the format of the module descriptors and stack frames. For further details
concerning the CALLM and RTM instructions refer to Appendix D Advanced Topics of the
MC68020 32-Bit Microprocessor User's Manual.

10.2.1 CALLM Instruction

The MC68020/MC68851 dialog for the CALLM type $01 instruction begins when the MC68020
reads the current access level information (CAL and VAL) from the MC68851 CL ALCR. The
value supplied by the MC68851 is placed in the saved access level field of the module call
stack frame.

The next operation performed is a verification of the validity of the module descriptor
address. The MC68020 writes the address ofthe module descriptor to the descriptor address
ALCR corresponding to the address space in which the descriptor is located .. If a valid
translation for the descriptor address can be located and module operations are allowed,
the MC68851 checks to ensure that the page is allowed to contain module descriptors (G
bit set) and that the module descriptor address resides on a proper byte boundary as
determined by the value of the access control register.

The MC68020 then requests that the current access level be updated by writing the new
access level, taken from the access level field of the module call descriptor, to the increase
access level ALCR. If the new access level is less than or equal to the current access level
contained in CAL (the called module has a privilege level that is the same as or higher
than the calling module), the change is allowed and VAL is updated to contain the privilege
level of the calling module (the old value of CAL), and CAL is updated with the contents
of IAL to contain the privilege level of the currently active module.

After completion of the access level change verification, the MC68851 uses the information
contained in the stack change control (SCC) register to determine whether or not the CPU
should change stack pointers before entering the called module. During configuration of
the MC68851, the operating system informs the MC68851 as to when stack pointer changes
must occur during module operations by the values set in the SCC register.

MOTOROLA
10-6

MC68851 USER'S MANUAL

There is one bit in SCC corresponding to each of the eight possible distinct access levels.
If bit n of SCC is set, all module calls from a less privileged access level m (m > n) to an
access level g of privilege n or higher (g ::s n) require a change of stack pointers before
the module call can be completed. Module calls that do not change access levels (m = g)
do not require stack pointer changes. Thus, the operating system can specify that stack
pointer changes are required for all module calls that require a change in access level by
setting SCC to all ones. Alternately, the operating system can specify that stack changes
are never required by clearing all of SCC or could chose any combination of change
requirements between these two extremes. For example, setting bit 3 of SCC causes the
MC68851 to signal the processor that it must perform a stack change before entering a
module at levels three, two, one, or zero when the calling module has a privilege level of
four or greater (lower privilege). Similarly, setting bit zero of SCC and leaving all others
clear dictates that a stack change must occur when a module operating at any lower
privilege level (zero·indicating highest priority) calls a level zero module. No other module
operations require a stack change.

The final action required to complete the module call dialog between the MC68851 and
the MC68020 is for the MC68020 to read the access status (AS) register to determine if the
call is valid and to determine whether or not a stack change should occur. The AS encodings
used by the MC68851 are shown in Table 10-2.

If any of the validity checks discussed above failed, the CAL and VAL registers are not
updated, and the access status register returns a format exception encoding. Otherwise,
one of the valid encodings is returned.

A flowchart of the MC68851/MC68020 dialog for the CALLM type $01 instruction is shown
in Figure 10-4.

ENTRY

~
CALL STATUS = 0 OR IAL > CAL CALL STATUS = 1 CALL STATUS = 1 & IAL < CAL r--- & IALI = CAL -----,

ACCESS STATUS .- $00 ACCESS STATUS .- $01 n .- IAL

m .- CAL

CHANGE..§TACK'- {SCC[n) v SCC[n+1) V ... V SCC[m)~

~
fGEJ:TACK " 0 CHANGLSTACK~

ACCESS STATUS .- $03 ACCESS STATUS .- $07

"V" IS THE LOGICAL OR OPERATOR

EXIT

Figure 10-4. Access Status Computation Flowchart

MC68851 USER'S MANUAL MOTOROLA
10-7

•

10.2.2 RTM Instruction

Providing that the MC68851 access level mechanism is enabled and module operations
are allowed, the MC68020/MC68851 dialog for the RTM instruction begins when the MC68020
writes the saved access level information (CAL and VAL) to the MC68851 DAL ALCR. The
value written to the MC68851 was placed in the saved access level field of the module call
stack frame by the CALLM instruction.

Following the write operation to DAL, the MC68851 compares the access level contained
in the highest order bits of DAL (one, two, or three bits as determined by the number of
access levels in use) against the corresponding bits in the CAL register. If the DAL field is
greater than or equal to the CAL field (the return is to a module with equal or less privilege),
the requested change is valid, the highest-order three bits of DAL (bits [5-7]) are placed
in bits [5--7J of CAL, and bits [1-3J of DAL are placed in bits [5--7J of VAL. If DAL is less
than CAL, the return operation is invalid, no transfer between registers is made, and the
access status ALCR is updated to indicate that a format exception should be taken by the
CPU. Otherwise, AS is set to $01 to indicate that the return operation is valid.

A flowchart of the MC68851/MC68020 dialog for the RTM instruction is shown in Figure
10-5.

MC68851 MC68020

rR
DECODE INSTRUCTION AND READ FIRST WORD OF MODULE
STACK FRAME (CONTAINS SAVED ACCESS lEVElI

COMPARE DAl TO CAL WRITE 'SAVED ACCESS lEVel FIELD' TO DAl AlCR

~
DAl ;;;. CAL DAl < CAL

ACCESS STATUS .- $01 ~~ l
CAl[5·7) DAl[5·7) ACCESS STATUS .-$00 U
VAl[5·7] DAL[I·3]

MOTOROLA
10-8

IT] READ ACCESS STATUS AlCR

~
ACCESS STATUS = I ACCESS STATUS = 0

r ~
D PROCEED WITH MODULE RETURN D TAKE FORMAT

EXCEPTION

Figure 10-5. RTM Instruction Dialog Flowchart

MC68851 USER'S MANUAL

SECTION 11
OPERATION TIMINGS

This section gives the instruction execution and operations (table searches, ... , etc.) times
for the MC68851 in terms of external clock cycles. This section provides the user with some
reasonably accurate execution and operations timing guidelines, not exact timings for every
possible circumstance. This approach is used since the exact execution time for an instruc­
tion or operation is highly dependent on such things as processor/coprocessor timing
relationships, memory speeds, and external table structures. The timing numbers pre­
sented in the following tables allow the assembly language programmer or compiler writer
to predict worse case timings needed to evaluate the performance of the MC68851. Ad­
ditionally, the timings for exception processing, context switching, and interrupt processing
are included so that designers of multitasking or real-time systems can predict such things
as task switch overhead and maximum interrupt latency due to the presence of the MC68851.

11.1 FACTORS AFFECTING EXECUTION TIMES

When investigating instruction execution timing for the MC68851, it is assumed that a
system designer requires the following information in order to make informed engineering
decisions:

• Best case instruction execution and operating timing for the MC68851, for determining
whether or not the MC68851-based system can meet certain performance criteria.

• The effects that an MC68851 might have on system related timings such as context
switch overhead time in multi-tasking systems or interrupt latency in real-time sys­
tems.

In this manual, instruction execution times are given in clock cycles to remove clock fre­
quency dependencies from the times given, and the following assumptions are used to
define the context of the times given.

• The main processor is an MC68020, acting as the host to the MC68851, and the two
devices use the same clock input.

• All operands in memory, as well as the system stack, are long word aligned.
• A 32-bit data bus is used for communications between the MC68020 and both the

MC68851 and system memory.
• All memory accesses occur with no wait states.
• No exceptions occur (except as specified).

11.2 ADDRESS TRANSLATION TABLE SEARCH TIMING

The time taken for an address translation table search by the MC68851 depends on the
configuration of the translation tables, the states' of U and M bits in the translation de­
scriptors, the length of time that a bus cycle takes, and other factors. Since there are a
large number of variables involved, a program is provided that calculates the time required
for the MC68851 to perform a table search. To allow the time to be determined for any
configuration, the following interactive program may be used. The program is a shell script
suitable for use with sh(1) on either UNIX® System V or BSD 4.2. To use this program, run

UNIX is a registered trademark of AT&T Bell Laboratories.

MC68851 USER'S MANUAL MOTOROLA
11-1

•

..

the script and answer questions regarding the system configuration and current state as
prompted by the program. When the routine prompts the user, the value in square brackets
at the end of a question line is the default value that will be used if a carriage return is
entered.

The shell script assumes that the data bus between the MC68851 and memory is 32 bits
wide. To calculate the table search time for buses narrower than 32 bits, supply the time
required for two bus cycles (16-bit data bus) or four bus cycles (8-bit data bus) when
prompted for the basic bus cycle time.

The times provided by this procedure include all phases of the table search (bus arbitration,
... , etc.).

Timings on various mask versions of the MC68851 may differ slightly from the values
calculated by the shell script.

This script is suitable for use with sh(1) on either System Vor
BSD 4.2. When run, it will prompt for several parameters, print a
configuration message, and then print the number of clocks and bus
cycles required for the table search. Questions may be answered with
a return, and the default in square brackets will be selected.

The following things should be noted by the user:

1. This script gives an approximation of the time taken for a table
search and associated overhead for a miss in the ATC. The exact
time may vary across different mask versions of the MC68851.

2. It does not give the time for table searches required by the PLOAD
and PTEST instructions. These will typically be longer.

3. It does not account for Delay Timeouts (OTOs) other than the default,
asyncronous operation with a master, write bus cycles of different
length than read bus cycles, or exception conditions that can
arise during a table search.

4. It does little error checking. It is possible to describe inconsistent
and impossible configurations to the script.

Note: On System V, the "-n" flag should be removed from the echo
commands

echo "Enter bus arbitration time (clocks from SO to first T1). "
echo -n "Minimum is 7 [7]:"
read busarb
if test! "$busarb"; then

busarb=7
fi

echo -n "Enter bus cycle time (in clocks) [3]: "
read bus
if test! "$bus"; then

bus=3
fi

echo "Enter 1 if bus arb proceeds in parallel"
echo -n "with startup, a otherwise [1]: II

read early
if test! "$early"; then

early=1
fi

MOTOROLA
11-2

MC68851 USER'S MANUAL

echo -n "Enter 1 if there is a function code lookup, a otherwise [0]: "
read fcl
if test! "$fcl"; then

fcl=O
fi

echo "Enter number of long descriptors (page and pointer), "
echo -n "including FCL ones [0]: "
read long
if test! "$Iong"; then

10ng=0
fi

echo "Enter number of short descriptors (page or pointer), "
echo -n "including FCL ones [0]: "
read short
if test! "$short"; then

short=O
fi

echo -n "Enter number of short to long transitions [0]: "
read s to I
if test !"$5_to_I"; then

s_to-'=O
fi

echo -n "Enter 1 if there is a long indirect descriptor, a otherwise [0]: "
read lind
if test! "$Und"; then

Ul'!d=O
fi

echo -n "Enter 1 if there is a short indirect descriptor, a otherwise [0]: "
read sind
if test !"$s_ind"; then

sjnd=O
fi

echo -n "Enter number of cleared ubits encountered in long pointers [0]: .,
read I-pointer_ubits
if test I "$I-pointer_ubits"; then

l-pointer_ubits=O
fi

echo -n "Enter number of cleared ubits encountered in short pointers [0]: "
read s-pointer_ubits
if test! "$s-pointer_ubits"; then

s-pointer_ubits=O
fi

echo -n "Enter 1 if the page descriptor ubit is set, a otherwise [1]: "
read page_ubit
if test! "$page_ubit"; then

page_ubn=1
fi

echo -n "Enter 1 if the page descriptor mbit is set, a otherwise [1]: "
read page_mbit
if test! "$page_mbit"; then

page_mbit=1
fi

MC68851 USER'S MANUAL MOTOROLA
11-3

a

..

echo "Enter 1 if the page descriptor is encountered unexpectedly,"
echo -n "0 otherwise [0]: "
read et
if test! "$et"; then

et=O
fi

echo "Enter 1 if the walk occurred due to a"
echo -n "write to an unmodified page [1]: II

read unmod
if test! "$unmod"; then

unmod=1
fi

echo -n "Enter 1 if the page descriptor is long, and not root pointer [0]: "
read 10ng.J)age
if test! "$long.J)age"; then

10ng.J)age=0
fi

Variables:

overhead - startup and termination overhead (boxes).
busarb - the time from lBROUT asserted to first box.
bus_accesses - number of bus accesses required.
s_to_l.J)enalty- dead time between a short to long transition.

Print Configuration message.

levels='expr $short + $Iong + $Und + $s_ind'

if test $fcl -eq 1 ; then
tmp1 =" one for FCl"

else
tmp1='"'

fi

out1 ="Configuration: $Ievels levels $tmp1

if test $Iong -ne 0 ; then
out1 ="$out1 $Iong long descriptors"
fi

if test $short -ne 0 ; then
out1 ="$out1 $short short descriptors"
fi

MOTOROLA
11-4

MC68851 USER'S MANUAL

if test $Und -eq 1 ; then
out1 ="$out1 long indirection"

elif test $s_ind -eq 1 ; then
out1 ="$out1 short indirection"

fi

out2="+"

if test $early -eq 0 ; then
out2="$out2 no early startup, "

fi

if test $s_to_1 -ne 0 ; then
out2="$out2 $s_to-' short to long transitions, "

fi

if test $I-pointer_ubits -ne 0 ; then
out2="$out2 $I-pointer_ubits long pointer ubits clear, "

fi

if test $s-pointer_ubits -ne 0 ; then
out2="$out2 $s-pointer_ubits short pointer ubits clear, ,.

fi

if test $page_ubit -eq 0 ; then
out2="$out2 page ubit clear, "

fi

if test $page_mbit -eq 0 ; then
out2="$out2 page mbit clear, ,.

fi

if test $et -eq 1 ; then
out2="$out2 early termination, ,.

fi

if test $unmod -eq 1 ; then
out2="$out2 write to unmodified page, ,.

fi

if test $Iong-page -eq 1 ; then
out2="$out2 page is long;"

else
out2="$out2 page is short;"

fi

out3="$bus clock bus cycle time; $busarb clock busarb."

echo
echo $out1
echo" ,. $out2
echo" ,. $out3

Me68851 USER'S MANUAL MOTOROLA
11-5

III

..

CalaJlate resutt.

time from BEGINNING of bus cycle which misses to first box, early mode.
cough=4

3 boxes of startup, when no FCL.
startup=6

3 boxes of termination.
termination=6

clocks between last box's T4 and SO of the 020's retry (typical?).
posCbusarb=4

Bus accesses begin sooner if FCL - no limit check.
if test $fcl -eq 1 ; then

startup='expr $startup - 2'
fi

overhead='expr $cough + $startup + $termination'

if test $early -eq 0 ; then
overhead='expr \($overhead + $busarb \) - $cough'

elif test $busarb -gt 'expr $startup + $cough' ; then
overhead='expr $busarb + $termination'

fi

overhead='expr $overhead + $posCbusarb'

bus_accesses='expr \($Iong * 2 \) + $short + \($Und * 2 \) + $s_ind'

if test $bus_accesses -eq 0 ; then
if test $et -ne 1 ; then

echo Error: 0 bus accesses implies unexpected page encountered.
fi

If the page is et, the startup + termination equals 14.
clocks='expr $overhead - \($startup + $termination \) + 14'

else

In transnions, DESCHL access is 4 clocks after DESCH access.
if test $bus -tt 4 ; then

s_to_l-penalty='expr 4 - $bus'
else

s_to J-penalty=O
fi

Lpointecubn_delay=2
if test $bus -tt 4; then

l-pointer_ubiCdelay='expr \(4 - $bus \) * 2'
fi

The next level's read dead time is hidden in the
current level's write time.

Lpointer_ubit_delay='expr $I-pointer_ubit_delay - 2'

MOTOROLA
11-6

MC68851 USER'S MANUAL

ET vector parallels last descl fetch if page is long.
if test $Iong-page -eq 1 ; then

if test $bus -tt 8 ; then
eLdelay='expr 8 - $bus'

fi
ET vector occurs after all fetches if page is short.

else
et_delay=8

fi

This code decides if a write or RMC needs to be done to set
the history bits in the page descriptor

if test \($page~ubit -eq 0 -a ! \
\($page_mbit -eq 0 -a $unmod -eq 0 \) \) \

-0\
\($page_ubit -eq 1 -a $page_mbit -eq 0 -a $unmod -eq 1 \) ; \

then
write-page=1

else

fi
write-page=O

if test $page_ubit -eq 0 -a $page_mbit -eq 0 -a $unmod -eq 0 ; then
rmc-page=1

else
rmc-page=O

fi

Perform the calculation.

fi

clocks='expr $overhead
+ \($Iong * \(2 + 2 * $bus \) \)
+ \($short * \(2 + $bus \) \)
+ \($s_to_1 * $s_toJ-penalty \)

\
\
\
\
\

+ \($Und * \(5 + \(2 * $bus \) + $unmod * 2 \) \) \
+ \($sjnd * \(5 + $bus + $unmod * 2 \) \) \
+ \($Lpointer_ubits * \($1J)ointer_ubit_delay + $bus \) \) \

+ \($sJ)Ointecubits * \(4 + $bus \) \) \
\

+ \($rmc-page * \(3 + \(2 * $bus \) + $unmod * 2 \) \) \
+ \($writeJ)age * \(4 + $bus + $unmod * 2 \) \) \

\
+ \($et * \($eLdelay + $unmod * 2 \) \) \

\
+ \($unmod * 8 \)'

MC68851 USER'S MANUAL MOTOROLA
11-7

III

•

out=" Clocks required from beginning of missed bus cycle: $clocks"
echo
echo $out

write_accesses='expr $Lpointer_ubits + $s_pointer_ubits + $write_page'

out="Bus Reads: $bus_accesses"
echo $out

prinLtotal=O
if test $write_accesses -ne 0 ; then

out="Bus Writes: $write_accesses"
echo $out
print_total= 1

fi

if test $rmc-page -eq 1; then
out=" Bus RMCs: 1"
echo $out
prinLtotal= 1

fi

bus_accesses='expr $bus_accesses + $write_accesses + \($rmc-page * 2 \)'

if test $prinLtotal -eq 1 ; then
out="Total Bus Cycles: $bus_accesses"
echo $out

fi

########

The following table gives some sample times obtained using the shell script. Each row of
the table indicates a translation table configuration. The identifier on each row consists of
five positions. Each position may have either an "x" meaning that there is no table at the
level, an "S" meaning that the table at the level is composed of short format descriptors,
or an "L" meaning that the table at the level is composed of long format descriptors. The
format of the entries is:

Function Code Table

Level A Table

Level B Table

Level C Table

Level D Table

xx I xxI xxI xxI xx

T

Each entry in the table consists of three numbers that give the number of clock cycles, the
number of bus reads, and the number of bus writes required for a table search. An RMC
cycle to set the U bit is counted as one read and one write. The format of the entries is:

MOTOROLA
11-8

MC68851 USER'S MANUAL

xxi xxi xx

Number of Clocks Cycles

Number of Read Bus Cycles

Number of Write Bus Cycles

The table is calculated based on the following assumptions:
• Bus Arbitration Time is Seven Clock Cycles
• Bus Cycle Time is Three Clock Cycles
• Bus Arbitration Proceeds in Parallel. with MC68851 Startup
• There are No Indirect Descriptors
• There are No Page Descriptors Encountered Unexpectedly (i.e., at the pointer table

level)
• The Data Bus Between the MC68851 and Memory is 32-Bits Wide

History Bit Maintenance Required by the Table Search

Table Format All U and M Bits Page U and M Bits Page U Bit Set No U or M Bits
Must be Set Only Must be Set with RMC Must be Set

LlLIx/x/x* 44/4/2 41/4/1 44/5/1 34/4/0

LlLlLlx/x* 55/6/3 49/6/1 52/7/1 42/6/0

LlLlLlLlx* 66/8/4 57/8/1 60/9/1 50/8/0

LlLlLlLlL 77/10/5 65/10/1 68/11/1 58/10/0

S/S/x/x/x* 42/2/2 35/2/1 38/3/1 28/2/0

S/S/S/x/x* 54/3/3 40/3/1 43/4/1 33/3/0

S/S/S/S/x* 66/4/4 45/4/1 48/5/1 38/4/0

S/S/S/S/SI 78/5/5 50/5/1 53/6/1 43/5/0

x/S/S/x/x 44/2/2 37/2/1 40/3/1 30/2/0

x/S/Llx/x 4813/2 41/3/1 44/4/1 34/3/0

xlLlS/x/x 43/3/2 40/3/1 43/4/1 33/3/0

x/LlLlx/x 46/4/2 43/4/1 46/5/1 36/4/0

x/SIS/Six 56/3/3 42/3/1 45/4/1 35/3/0

x/S/S/Llx 60/4/3 46/4/1 49/5/1 39/4/0

x/S/LIS/x 56/4/3 46/4/1 49/p/1 39/4/0

x/S/LlLlx 59/5/3 49/5/1 52/6/1 42/5/0

x/LIS/S/x 55/4/3 45/4/1 48/5/1 38/4/0

x/LIS/Llx 59/5/3 49/5/1 52/6/1 42/5/0

x/LlLlS/x 54/5/3 48/5/1 51/6/1 41/5/0

x/LlLlLlx 57/6/3 51/6/1 54/7/1 44/6/0

*For configurations without function code lookup and with one additional level (e.g., x/LlLlx/x instead of LlLlx/x/
x), add two clocks.

11.3 INSTRUCTION TIMING

In the following paragraphs, timing tables are presented that allow the calculation of worst
case execution times for any MC68851 instruction. The tables are based on the assumptions

MC68851 USER'S MANUAL MOTOROLA
11-9

•

..

stated above, and include the total execution time for each instruction, from the time when
an MC68020 begins execution of the coprocessor instruction (when the instruction has
been prefetched and loaded into the instruction decode register) to the time when the
MC68851and/or MC68020 completes execution of the instruction (when a read of the
response CIR indicates a null response, when conditional processing has been completed,
or when the last transfer to or from the MC68851 is completed).

Bus cycle activity is also indicated by the tables, and includes all bus cycles generated by
a particular operation. Note that instruction prefetch and operand write cycles requested
by the execution of a given instruction may not actually be executed during the execution
of the instruction, but are queued by the MC68020 bus interface unit for completion as
soon as the bus is available (refer to MC68020 32-8;t Microprocessor User's Manual for
more information on bus cycle overlap). When an MC68851 instruction is completed, a
prefetch request will have been generated by the MC68020 to replace each word of in­
struction stream used by the instruction or to refill the instruction pipe in the case of a
conditional branch taken, a trap taken, or an exception.

The execution time entries in the following tables contain six numbers. The leftmost number
is the total execution time for the instruction in clock cycles. In parenthesis is the bus cycle
activity, which indicates the number of instruction prefetch, operand read, operand write,
coprocessor read, and coprocessor write bus cycles that will be generated by the execution
of the instruction. The format of the entries is:

Total Execution Time

Number of Prefetch Bus Cycles

Number of Operand Read Bus Cycles

Number of Operand Write Bus Cycles

Number of Coprocessor Read Bus Cycles

Number of Coprocessor Write Bus Cycles

xx (xx I xxI xxI xxI xx)

______ T T

The set of tables provided in this section allow a quick determination ofthe typical execution
time for any MC68851 instruction when the MC68020 is used as the main processor. The
first table presented is for effective address calculations performed by the MC68020. Entries
from this table are added to the entries in the other tables in this subsection, if necessary,
to obtain the overall execution time for an operation. The assumptions for the following
tables are:

• The main processor is an MC68020 and operates on the same clock as the MC68851.
Instruction prefetches do not hit in the MC68020 cache (or it is disabled), and the
instruction is aligned such that a prefetch occurs before the command CIR is written
by the MC68020.

• A 32-bit memory interface is used, and memory accesses occur with zero wait states.
All memory operands, as well as the stack pointers, are long-word aligned.

• No instruction overlap is allowed, so the coprocessor interface overhead is 11 clocks.

• No exceptions occur.

MOTOROLA
11-10

Me68851 USER'S MANUAL

11.3.1 Effective Address Calculation

For any instruction that requires an operand external to the MC68851, an evaluate effective
address and transfer data response primitive is issued by the MC68851 during the dialog
for that instruction. The amount of time that is required by the MC68020 to calculate the
effective address while processing this primitive for each addressing mode, excluding the
transfer of the data to the MC68851, is shown below. The times given in this table include
all bus cycles required to perform the calculation (prefetches and memory indirect fetches).

The PMOVE, PFLUSHR, PScc, PLOAD, PTEST, PVALlD, PFLUSH, PFLUSHS, PRESTORE, and
PSAVE instructions require an effective address to be calculated although not all require
that data be transferred from that effective address. The following table is used for these
instructions to adjust the basic instruction time to reflect the addressing mode that is used.

Note that the following table applies only to the MC68020 effective address calculation
time for coprocessor instructions. The execution times included in this table are not the
same as the calculate effective address times given in the MC68020 32-Bit Microprocessor
User's Manual for non-coprocessor instruction execution.

Addressing Mode

Dn or An

(An)

(An)+

-(An)

(df6,An) or (d16,PC)

(xxx).w

(xxx).L

#(data)

(d8,An,Xn) or (d8,PC,Xn)

(d16~An,Xn) or (d16,PC,Xn)

(B)

(d16,B)

(d32,B)

([B],I)

([B],I,d16)

([B]'I,d32)

([d16,1~),I)

([d16,B],I,d16)

([d16,B]'I,d32)

([d32,B),I)

([d32,B],I,d16)

(d[d32,B],I,d32)

Me68851 USER'S MANUAL

Best Case Cache Case

o (010101010) o (010101010)

0(010101010) 2 (010101010)

3 (010101010) 6 (010101010)

3 (010101010) 6 (010101010)

o (010101010) 2 (010101010)

o (010101010) 2 (010101010)

1 (010101010) 4 (010101010)

o (010101010) 0(010101010)

1 (010101010) 4 (010101010)

3 (010101010) 6 (010101010)

3 (010101010) 6 (010101010)

5 (010101010) 8 (010101010)

11 (010101010) 14 (010101010)

8 (0/1/01010) 11 (0/1/01010)

8 (0/1/01010) 11 (0/1/01010)

10 (0/1/01010) 13 (0/1/01010)

10 (0/1/0/010) 13 (0/1/01010)

10 (0/1/01010) 13 (0/1/01010)

12 (0/1/01010) 15 (011/0/0/0)

16 (0/1 101010) 19 (0/1/0/010)

16 (0/1 101010) 19 (0/1/01010)

18 (011101010) 21 (0/1/010/0)

Worst Case

o (010101010)

2 (010101010)

6 (010101010)

6 (010101010)

3 (1/0101010)

3 (1/0101010)

5 (1/0101010)

o (010101010)

5 (1/0101010)

7 (1/0101010)

7 (1/0101010)

9 (1/0101010)

16 (2/0101010)

12 (1/1101010)

12 (1/1/01010)

15 (2/1/01010)

14 (1/1101010)

15 (2/1/01010)

17 (2/1/01010)

21 (2/1101010)

21 (2/1/01010)

24 (3/1101010)

MOTOROLA
11-11

a

•

11.3.2 General Instructions

The following tables give the worst-case instruction execution time for each MC68851
general instruction. This group of instructions includes all MC68851 instructions except
the conditionals andthe save/restore operations. For memory operands, the timing for the
appropriate effective addressing mode must be added to the numbers in this table to
determine the overall instruction execution times.

Instruction

PMOVE (to CRP, DRP, SRP)*

PMOVE (to TC)*

PMOVE (to CAL, VAL, scc, AC)*

PMOVE (to BADx, PSR, PCSR)*

PMOVE (to BACx)*

PMOVE (from CRP, DRP, SRP)*

PMOVE (from TC, CAL, VAL, SCC, AC)*

PMOVE (from BACx, BADx, PSR, PCSR)*

PFLUSHA

PFLUSH (fc),#(mask)

PFLUSH (fc),#(mask),(ea)*

PFLUSHR*

PLOAD**

PTEST (fc),(ea),#level**

PTEST (fc),(ea),#level,An**

PVALID VAL,(ea)*

PVALID An,(ea)*

*Add the appropriate effective address calculation time.
**Add the appropriate table search time .

Worst Case

108 (2/2/0/3/3)

155 (2/1/0/5/3)

54 (2/010/2/2)

54 (2/010/2/2)

156 (2/1/0/6/2)

84 (2/0/2/4/1)

70 (2/0/1/3/1)

70 (2/0/1/3/1)

40 (2/010/2/1)

76 (2/010/4/2)

108 (2/010/5/3)

86 (2/2/0/2/3)

100 (2/010/5/3)

110 (2/010/6/3)

136 (2/010/8/2)

68 (2/010/2/2)

78(2/010/3/3)

The following table gives the execution times for the MC68851 conditional instructions.
Each entry in this table, except those for the PScc instruction, is complete and does not
require the addition of values from any other table. For the PScc instruction, the only
additional factorthat must be included is the calculate effective address time for the operand
to be modified.

Since the conditional instructions are intrinsic to the M68000 Family coprocessor interface
(i.e., they are not defined by the MC68851 through the use of response primitives), the
MC68020 performs most of the processing associated with these instructions. The only
part of the instruction that is performed by the MC68851 is the evaluation of the conditional
predicate written to the condition CIR. Thus, the execution times given in the table below
are heavily dependent on the environment in which the main processor executes.

MOTOROLA
11-12

MC68851 USER'S MANUAL

Operation Comments Worst Case

PBcc.w Branch Taken 28 (2/0/0/2/1)

Branch Not Taken 24 (1/0/0/2/1)

PBcc.L Branch Taken 28 (2/0/0/2/1)

Branch Not Taken 26 (2/0/0/2/1)

PDBcc True, Not Taken 29 (2/0/0/2/1)

False, Not Taken 37 (4/0/0/2/1)

False, Taken 31 (3/0/0/2/1)

PScc Dn 26 (2/0/0/2/1)

(An) + or -(An)* 31 (2/0/1/2/1)

Memory** 28 (2/0/1/2/1)

PTRAPcc Trap Taken 52 (3/1/4/2/1)

Trap Not Taken 27 (?10/0/2/1)

PTRAPcc.w Trap Taken 50 (3/1/4/2/1)

Trap Not Taken 28 (2/0/0/2/1)

PTRAPcc.L Trap Taken 57 (4/1/4/2/1)

Trap Not Taken 32 (3/0/0/2/1)

*For condition true; subtract one clock for condition false.
**Add the appropriate effective address calculation time.

11.3.3 PSAVE and PRESTORE Instructions

The time required for a context save or restore operation is given in the table below. The
appropriate calculate effective address times must be added to the values in this table to
obtain the total execution time for these operations.

Operation State Frame Worst Case

PRESTORE Null 22(1/1/0/1/1)

Idle 76(1/101011/10)

Mid-Coprocessor 88(1/12/0/1/12)

Breakpoint Enabled 136(1/20/011 120)

PSAVE Null 18(1/0/111/0)

Idle 72(1 10/1 011 0/0)

Mid-Coprocessor 84(1/0f12/12/0)

Breakpoint Enabled 132 (1/0/20/20/0)

11.4 INTERRUPT LATENCY

In real-time systems, a very important factor pertaining to overall system performance is
the response time required for a processor to handle an interrupt. In the M68000 Family
of processors, interrupts are allowed to be asserted to the processor asynchronously, and
they are handled on the next instruction boundary. While the average interrupt latency for
the MC68020 is quite short, the maximum latency is often of critical importance, since real­
time interrupts cannot require servicing in less than the maximum interrupt latency. The
maximum interrupt latency for the MC68020 alone is approximately 250 clock cycles (for

MC68851 USER'S MANUAL MOTOROLA
11-13

•

..

the MOVEM.L ([d32,An],Xn,d32), DO-07/AO-A7 instruction where the last data fetch is
aborted with a bus error; refer to the MC68020 32-8it Microprocessor User's Manual for
more detailed information), but the use of a memory management unit such as the MC68851
may cause some operations to take several times longer to execute.

Interrupt latency in systems using the MC68851 will be affected by the length of main
processor instructions, the address translation table configuration, the number of address
translation table searches required by the instructions, the access time of main memory,
and the width of the data bus connecting the MC68851 with main memory. It is important
to note that the address translation table configuration is under software control and can
strongly affect the system interrupt latency. The maximum interrupt latency for a given
system configuration can be computed by adding the length of the longest main processor
instruction to the time required for the maximum number of address translation table
searches that the instruction could require. For the MC68020 microprocessor, two instruc­
tions are of interest. The first is a memory-to-memory move with memory indirect ad­
dressing for both the source and destination, with all of the code and data items crossing
page boundaries. The assembler syntax for this instruction is:

MOVE.L (od,[bd,An,Rm]),(od,[bd,An,Rm])

This instruction can cause ten address translation table searches (two for the instruction
stream, two for the source indirect address, two for the destination indirect address, two
for the source operand fetch, and two for the destination write). System software can
reduce the maximum number of table searches by placing additional restrictions on gen­
erated code. For example, if the language translators in the system only generate long
words aligned on long word boundaries, then the indirect address and operands can cause
only one table search each. This will reduce the number of table searches for the instruction
to a maximum of six.

In systems that use the MC68020 CALLM instruction:
CALLM #256,(od[bd,An,Rm])

with a stack copy indicated by the MC68851 SCC register can cause nine address translation
table searches (two for the instruction stream, one for the module descriptor, two for the
indirect address, and two each for the source and destination stack) and 64 bus cycles of
stack copying (on a 32-bit data bus) .

11.5 BUS ARBITRATION LATENCY

The bus arbitration latency in a system containing an MC68851 is affected by several factors.
The MC68851 will not arbitrate away either the logical or physical buses while the main
processor is performing an RMW (read-modify-write) operation (the TAS, CAS, or CAS2
instructions). The longest period of time that the bus can be locked in this fashion is for a
CAS2 instruction, which may perform eight bus cycles on a 32-bit bus, 12 bus cycles on a
16-bit bus, or 16 bus cycles on an 8-bit bus. Note that address translation table search time
is not added to these times because the MC68851 forces a bus error on an ATC miss for
these instructions in order to avoid causing a large delay in bus arbitration.

Bus arbitration may also be delayed by the MC68851 not asserting the OSACKx signals
during coprocessor instructions while it updates its internal state. The maximum delay
from this source is 23 clock cycles.

MOTOROLA
11-14

MC68851 USER'S MANUAL

SECTION 12
ELECTRICAL SPECIFICATIONS

This section contains the electrical specifications and associated timing information for the
MC68851.

12.1 MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage VCC -0.3 to +7.0 V

Input Voltage Vin -0.5 to +7.0 V

Operating Temperature TA o to 70 °c

Storage Temperature Tstg -55 to + 150 °c

12.2 THERMAL CHARACTERISTICS - PGA PACKAGE

Characteristic Symbol Value Rating

Thermal Resistance - Ceramic
Junction to Ambient 6JA 30* °C/W
Junction to Case 6JC 15* °C/W

*Estimated

12.3 POWER CONSIDERATIONS

This device contains protective circui­
try against damage due to high static
voltages or electrical fields; however,
it is advised that normal precautions
be taken to avoid application of any
voltages higher than maximum-rated
voltages to this high-impedance cir­
cuit. Reliability of operation is en­
hanced if unused inputs are tied to an
appropriate logic voltage level (e.g.,
either GND or VCC)'

The average chip junction temperature, T J, in °c can be obtained from:
T J = T A + (PD· 8JA)

where:
TA = Ambient Temperature, °C
8JA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD = PINT + PI/a .
PINT = ICC x VCC, Watts - Chip Internal Power
PI/a = Power Dissipation on Input and Output Pins - User Determined

For most applications PI/a < PINT and can be neglected.

An appropriate relationship between PD and T J (if PI/a is neglected) is:
PD = K -;- (TJ + 273°C)

Solving equations (1) and (2) for K gives:

(1)

(2)

K = PD ·(TA + 273°C) + 8JA· P02 (3)
where K is a constant pertaining to the particular device. K can be determined from equation
(3) by measuring Po (at equilibrium) for a known T A- Using this value for K the values of
PD and T J can be obtained by solving equations (1) and (2) iteratively for any value of TA.

MC68851 USER'S MANUAL MOTOROLA
12-1

II

The total thermal resistance of a package (6JA) can be separated in two components 6JC
and 6CA, representing the barrier to heat flow from the semiconductor junction to the
package (case), surface (OJC) and from the case to the outside ambient (6CA). These terms
are related by the equation:

SJA = 6JC + SCA (4)

6JC is device related and cannot be influenced by the user. However, SCA is user determined
and can be minimized by such thermal management techniques as heat sinks, ambient air
cooling and thermal convection. Thus, good thermal management on the part of the user
can significantly reduce SCA so that 6JA approximately equals SJC. Substitution of SJC for
6JA in equation (1) will result in a lower semiconductor junction temperature.

Values for thermal resistance presented in this document, unless estimated, were derived
using the procedur.e described in Motorola Reliability Report 7843, "Thermal Resistance
Measurement Method for MC68XX Microcomponent Devices," and are provided for design
purposes only. Thermal measurements are complex and dependent on procedure and
setup. User derived values for thermal resistance may differ.

12.4 DC ELECTRICAL CHARACTERISTICS
(V cc = 5.0 Vdc:t 5%; GNO = 0 Vdc; TA =0 to 70Q C; see Figure 12-1)

Characteristic

Input High Voltage

Input Low Voltage

Input Leakage Current (II 5.25 V CLK, RESET, LAS-LA31, LAS,
LBRI, LBGI, PBR. PBGACK, ASYNC

Hi-Z (Off-State) Input Current (((2.4 V/O.4 V OSACKO, OSACK1, 00-031,
FCO-FC3, SIZo-SIZ1, PAS, OS, RiW, RMC, BERR, HALT, LBGACK

Output High Voltage Ao-A7, OSACKO, OSACK1, 00-031,
(lOH == -400 IJ.~ FCo-FC3, SIZO-SIZ1, PAS, OS, R/W, RMC, BERR,

HALT, LBGACK, PAS-PA31, OBOIS, LBRO, LBGO, PBG, CLI

Output Low Voltage OSACKO, OSACK1, HALT, PAS, OS, R;W, RMC,
(lOL == 5.3 rnA) BERR, LBGACK, OBDlS, LBRO, LBGO, PGB, CLI

Output Low Voltage 00-031, Ao-A7, FCo-FC3,
(lOL = 3.2 rnA) SIZo-SIZ1, PAS-PA31

Power Dissipation

Capacitance* (Vin == 0, T A == 25°C, f == 1 MHz)

*Capacitar.ce is periodically sampled rather than 100% tested.

MOTOROLA
12-2

Symbol

VIH

VIL

lin

ITSI

VOH

VOL

VOL

Po

Cin

Min Max Unit

2.0 VCC V

GNO-0.5 O.S V

- 10 IJ.A

- 20 IJ.A

2.4 - V

- 0.5 V

- 0.5 V

- 1.50 W

- 20 pF

MC68851 USER'S MANUAL

TEST
POINT

CL = 130 pF (includes all parasitics)
RL = 6.0kO

+5 V

MMD7000
OR EOUIVAlENT

R 740 n for OSACKO, OSACK 1, 00-031, PAS, OS, R/W, RMC,
BERR, HALT, LBGACK, OBDlS, LBRO, LBGO, PBG, CLI

R = 1.22 kO for AO-A 7, FCO-FC3, SIZO/SIZ1, PA8-PA31

Figure 12-1. Test Loads

12.5 AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT
(VCC=5.0 Vdc:t5%; GND=O Vdc; TA=O to 70°C; see Figure 12-2)

MC68851 RC12 MC68851 RC16
No. Characteristic Symbol Min Max Min Max

Frequency of Operation f 8.0 12.5 8.0 16.67

1 Cycle Time tcyc 80 125 60 125

2, 3 Clock Pulse Width tCl' tCH 32 87 24 95

4, 5 Clock Rise and Fall Time tCr' tCf - 5 - 5

2.0 V

Figure 12-2. Clock Input Timing Diagram

Me6SSS1 USER'S MANUAL

MC68851 RC20

Min

10

50

19

-

Max Unit

20 MHz

100 ns

81 ns

5 ns

MOTOROLA
12-3

IE

Notes referenced to in the following table have been placed after the final entry (see pages
12-8 and 12-9).

The timing diagrams (Figures 12-3 through 12-11) are intended to provide parametric timing
information for the MC68851. For easy reference, these diagrams have been placed on foldout
pages at the end of this document. Effort has been made to ensure that the diagrams provide
correct functional signal relationships. However, not all relationships depicted are valid op­
erations for the MC68851. (e.g., during a CPU space access as shown in Figure 12-8, accesses
to the MC68851 will not cause assertion of CLI).

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS
(Vcc = 5.0 Vdc ± 5%; GND = 0 Vdc; TA = 0 to 70°C; see Figures 12-3 through 12-11)

MC68851 RC12 MC68851RC16 MC68851 RC20 Figure

No. Characteristic Mode Min Max Min Max Min Max Unit Ref.

6 Clock High to FC, Size, RMC, Physical Ad- Tb 0 40 0 30 0 25 ns 3,4
dress, Shared Address Valid (see Note a)

--
7 Clock High to FC, Size, RMC, T 0 40 0 30 0 25 ns 8

Data-Out, Physical Address, Shared
Address High Impedance

8 Clock High to FC, Size, RMC, Physical T 0 - 0 - 0 - ns 3,4
Address, Shared Address Invalid

9 Clock Transition to PAS Asserted T 0 35 0 25 0 20 ns 3,4

9Ak PAS to DS Assertion (Read) (Skew) T -20 20 -15 15 -10 10 ns 3
-

9B Clock Transition to DS Asserted T 0 40 0 30 0 25 ns 4

11P FC, Size, RMC, Physical Address, Shared T 20 - 15 - 10 - ns 3,4
Address Valid to PAS, DS Asserted

12 Clock Low to PAS Negated T 0 35 0 25 0 20 ns 3,4

12A Clock Low to DS Negated T 0 40 0 30 0 25 ns 3,4

13 PAS, DS Negated to FC, Size, RMC, T 20 - 15 - 10 - ns 3,4
Physical Address, Shared Address
Invalid (see Note u)

14
~-

T 120 100 85 3,4 PAS, DS (Read) Width Asserted - - - ns

14A DS Width Asserted (Write) T 50 - 40 - 35 - ns 4

15 PAS, DS Width Negated T 50 - 40 - 35 - ns 4

16 Clock High to PAS, DS, R;'W, T 0 40 0 30 0 25 ns 3
DBDIS High Impedance

17 PAS, DS Negated to R/W Invalid T 20 - 15 - 10 - ns 3,4
(Read or Write)

18 Clock High to R/W High (Read) T 0 40 0 30 0 25 ns 3

20 Clock High to R/W Low (Write) T 0 40 0 30 0 25 ns 4

21 R/W High to PAS Asserted T 20 - 15 - 10 0 ns 3

22 R/W Low to DS Asserted (Write) T 90 - 75 - 60 - ns 4

23 Clock High to Data-Out Valid T/O 0 40 0 30 0 25 ns 4,9

25 Os Negated to Data-Out Invalid T/O 20 - 15 - 10 - ns 4, 9

26 Data-Out Valid to DS Asserted T 20 - 15 - 10 - ns 4

27 Data-In Valid to Clock Low (Data Setup) T 10 - 5 - 5 - ns 3

MOTOROLA
12-4

MC68851 USER'S MANUAL

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued)

No. Characteristic Mode

27A BERR-i/HAL T-i Asserted to Clock Low (Late T
BERR/HAL T Setup Time) (see Note c)

-
29 DS Negated to Data-In Invalid T

(Data-In Hold Time)

29A TIs Negated to Data-In High Impedance T

31 1 DsAa<x Asserted to Data-In Valid T

31Am DSACKx Asserted to DSACKx Valid T
(Assertion Skew)

32 RESET Input Transition Time X
-

33 Clock Low to PBG Asserted X
-

34 Clock Low to PBG Negated X
- -

35A PBR Asserted to PBG Asserted T
(RMC Not Asserted)

35B PBR Asserted to PBG Asserted M
(RMC Not Asserted)

- -
36 PBR Negated to PBG Negated X

(Transient or Spurious Request)

37
~ -
PBGACK Asserted to PBG Negated X
-

39 PBG Width Negated X
-

39A PBG Width Asserted X

40A Clock High to DBDIS Negated (Read) T

40B Clock Low to DBDIS Negated (Write (T)) T/O
(Read (0))

41A Clock Low to DBDIS Asserted (Read (T)) T/O
(Write (0))

41B Clock High to DBDIS Asserted (Write) T

43
~ -
PBGACK Negated to PAS, Physical X

Address Impedance Change (see Note j)
-

44 R/W Asserted to DBDIS Negated T
(Read or Write)

45A DBDIS Width Negated (Read) T

45Bo DBDIS Width Negated (Write) T

46 R/W Width Asserted (Read or Write) T

47A Asynchronous Input Setup Time to T
Sampling Clock Edge
--

47B PAS, DS Negated to Asynchronous T
Input Negated

48n DSACKx-i Asserted to BERR-i/HAL T-i T
Asserted (Late Bus Error or Retry)

53 Data-Out Hold from Clock High T/O

53A Data-Out Hold from LAS Negated a
-

55 R/W Low to Data Bus Impedance Change T

MC68851 USER'S MANUAL

MC68851RC12 MC68851RC16

Min Max Min Max

25 60d 20 45d

0 - 0 -

0 80 0 60

- 60 - 50

- 20 - 15

- 2 - 2

0 40 0 30

0 40 0 30

1.5 3.5 1.5 3.5

1.5 5.5 1.5 5.5

1.5 3.5 1.5 3.5

1.5 3.5 1.5 3.5

1.5 - 1.5 -

1.5 - 1.5 -

0 40 0 30

0 40 0 30

0 40 0 30

0 40 0 30

0.5 2.5 0.5 2.5

20 - 15 -

80 - 60 -

160 - 120 -

180 - 150 -

10 60d 5 45d

0 100 0 80

- 40 - 30

0 - 0 -

0 - 0 -

40 - 30 -

MC68851 RC20

Min Max

15 35

0 -

0 50

- 40

- 10

- 2

0 25

0 25

1.5 3.5

1.5 5.5

1.5 3.5

1.5 3.5

1.5 -

1.5 -

0 25

0 25

0 25

0 25

0.5 2.5

10 -

50 -

100 -

125 -

5 35

0 65

- 25

0 -

0 -

25 -

Figure
Unit Ref.

ns 3

ns 3

ns 3

ns 3

ns 3,4

Clk Per 11

ns 8

ns 8

Clk Per 8

Clk Per 8

Clk Per 8

Clk Per 8

Clk Per 8

Clk Per 8

ns 3

ns 4

ns 3, 9

ns 4, 9

Clk Per 8

ns 3, 4

ns 3

ns 4

ns 3,4

ns 3,4,8

ns 3,4

ns 3,4

ns 4

ns 9

ns 4

MOTOROLA
12-5

•

II

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued)

No. Characteristic

56 DBDIS Asserted to Data Bus Impedance
Change

56A Data Bus Impedance Change to
DB DIS Negated

59 DBDIS High to Riw Low

60 SERR-i Negated to HAL T-i Invalid
(Hold Time for Retry)

63 55 Negated to DBDIS Asserted (Write)

64 DBDIS Negated to Data Bus
Impedance Change (Write)

65 Clock Low to LBGACK-o, LBGO Asserted

66 Clock Low to LBGACK-o, LBGO Negated

67 LBGACK-o Asserted to LBRO Negated

68
~ -
LBGACK-o Asserted to CLI Asserted

69 CLI Negated to LBGACK-o Negated

70 LBGACK-o Asserted to DBDIS Asserted

71
~ --
LBGI Asserted to LBGO Asserted

72 LBRi Negated to LBGO Negated

73 IBG5 Width Asserted

74 IBG5 Width Negated

75 li3Gi Negated to LBGO Negated

77 li3Gi Asserted to LBGACK-o Asserted

79 ~ Width Asserted
(VCC Active and Stable)

79A
~.

RESET Width Asserted
(VCC Stable> 512 Clocks)

80 FfE'SET Asserted to Bus Control
Signals Negated (V CC Active and Stable)

81 ~ Negated to LAS Asserted

82 FfE'SET Negated to Mode Select Data
Invalid (Hold)

83 Mode Select Data Valid to RESET
Negated (Setup)

84 Clock Transition to HAL T/BERR/LBRO
Asserted (Logical Master Relinquish
and Retry)

86A LAS Asserted to HAL T/BERR/LBRO
Asserted (Logical Master Relinquish
and Retry)

86B lAs Asserted to HAL T/BERR/LBRO
Asserted (Logical Master Relinquish
and Retry)

89 HALf Negated to LBGACK-o Asserted

MOTOROLA
12-6

MC68851 RC12
Mode Min Max

0 15 -

0 0 -

T 20 -

T 0 -

T 20 -

T 20 -

X 0 40

X 0 40

T 20 60

T 0 80

T 0 80

T -20 20

X 1.5 12.5h

X 1.5 3.5

X 40 -

X 40 -

X 1.5 3.5

T 1.5 3.5

X 512 -

X 10 -

X 0 4

X 4 -

X 0 -

X 2 -

M 0 40

MS 0.5 1.59

MA 0.5 3.0f

M 20 60

MC68851RC16 MC68851 RC20 Figure

Min Max Min Max Unit Ref.

15 - 15 - ns 9

0 - 0 - ns 9

15 - 10 - ns 3

0 - 0 - ns 3

15 - 10 - ns 4

15 - 10 - ns 4

0 30 0 25 ns 6, 7

0 30 0 25 ns 6, 7

15 45 10 35 ns 6

0 60 0 50 ns 6

0 60 0 50 ns 6

-15 15 -10 10 ns 6

1.5 12.5h 1.5 12.5h Clk Per 7

1.5 3.5 1.5 3.5 Clk Per 7

30 - 25 - ns 7

30 - 25 - ns 7

1.5 3.5 1.5 3.5 Clk Per 7

1.5 3.5 1.5 3.5 Clk Per 6

512 - 512 - Clk Per 11

10 - 10 - Clk Per 11

0 4 0 4 Clk Per 11

4 - 4 - Clk Per 11

0 - 0 - ns 11

2 - 2 0 Clk Per 11

0 30 0 25 ns 5

0.5 1.59 0.5 1.59 Clk Per 6

0.5 3.0f .5 3.0f Clk Per 6

15 45 10 35 ns 6

MC68851 USER'S MANUAL

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Continued)
MC68851RC12 MC68851RC16TMc68851RC20 Figure

Ref. No. Characteristic Mode Min Max Min Max Min Max Unit

90 LAS Negated to BERR-o Negated
(Termination of Relinquish and Retry)

M o

91 Logical Address, FC, RMC, R/V\! Valid to MSOS 40
Clock High (Setup)

92A Logical Address, FC, RMC, R/V\!,
Valid to LAS Asserted

MS/OS 20

92B Logical Address, FC, RMC, RIW Valid to LAS MA!OA 0
Asserted

93A ill Negated to Logical Address, FC, RMC, MS/OS 20
R/V\! Invalid (Synch Mode)

93B LAS Negated to Logical Address, FC, RMC, MAiOA 0
R/V\! Invalid (Asynch Mode)

95 Logical Address Valid to Physical Address M
Valid (Translation Cache Hit or
CPU Space Cycle)

96 Size, Shared Address Valid to LAS as
Asserted (Access to MC68851 Register)

97 LAS Negated to Size, Shared Address as
Invalid (Access to MC68851 Register)

100 LAS Asserted to Clock Low (Setup Time) MS

103 LAS Width Asserted M

104 LAS, DS Width Negated MS

104A LAS, DS Width Negated MA

105 ASYNC Asserted to LAS, DS Asserted M

106 LAS, DS Negated to ASYNCH Negated M

107 AS'1i\i'CH Negated to LAS, DS Asserted (for M
Synchronous Next Cycle)

108 Data Valid to DS Asserted (Write Setup Time a
to MC68851)

109A DS Negated to Data Invalid (Write Hold Time a
to MC68851)

109B LAS Negated to Data High Impedance

110 ~-o Asserted to DSACKy-o Valid

111 Clock High to DSACKx-o Asserted

112A LAS Asserted to DSACKx-o Asserted

112B LAS Asserted to DSACKx-o Asserted

113 LAS Negated to DSACKx-o,
BERR-o Negated

114 tAs Negated to DSACKx-o, BERR-o
High Impedance

a
a
a
as

OA

a

a

115 Clock Low to PAS Asserted MS

116 Clock Transition (Rising or Falling Edge) to M
PAS Asserted

116A Clock Low to CLI Asserted M

MC68851 USER'S MANUAL

o

20

20

40

1.5

0.5

30

1.5

o

1.5

o

o

o

o

o

2.0

2.0

o

o

Oe

Oe

Oe

40

50S

80

40

23

26

40

60

o 30 o

30 25

15 10

o o

15 10

o o

o o

15 10

15 10

30 25

1.5 1.5

0.5 0.5

20 10

1.5 1.5

o o

1.5 1.5

o o

o o

o 60 o

o o

o 30 o

2.0 23 2.0

2.0 26 2.0

o 30 o

o 40 o

Oe Oe

oe Oe

oe Oe

25 ns 6

ns 5

ns 5,9, 10

ns 7,9,10

ns 5,9, 10

ns 7,9,10

38 ns 5,7,9,10

ns 9,10

ns 9,10

ns 5

Clk Per 5,7

Clk Per 5

ns 7

Clk Per 7

ns 5,7

Clk Per 5

ns 10

ns 10

50 ns 10

ns 9,10

25 ns 9,10

23 Clk Per 9,10

26 Clk Per 9, 10

25

30

20e

20e

ns 9,10

ns 9

ns 5

ns 5, 7

ns 5,9

MOTOROLA
12-7

•

II

12.6 AC ELECTRICAL SPECIFICATIONS - ALL BUS OPERATIONS (Concluded)

No. Characteristic Mode

117 LAS Asserted to PAS Asserted MS
(Synchronous Translation with ATC Hit)

118 LAS Negated to PAS Negated M

119 Physical Address Valid to PAS Asserted M

120A PAS Negated to Physical Address Invalid MS

1208 PAS Negated to Physical Address Invalid

121 LAS Asserted to PAS Asserted
(Asynchronous Operation Only)

MA

M

122 LAS Negated to PAS High Impedance (PBR M
Asserted by Alternate Physical Master)

123 Physical Address Valid to CLI Asserted (CPU M
Space Cycle Not Accessing MC68851)

124A LAS Asserted to CLI Asserted (CPU MA
Space Cycle Not Accessing MC68851)

1248 LAS Asserted to CLI Asserted (CPU Space MS
Cycle Not Accessing MC68851)

126 LAS Negated to CLI Negated (CPU Space
Cycle Not Accessing MC68851)

M

127 CLI Negated to Physical Address Invalid MS
(CPU Space Cycle Not Accessing
MC68851)

128 PAS Asserted to CLI Asserted M
(Not CPU Space Access)

129 PAS Negated CLI Negated (Not CPU Space M
Access)

NOTES:

MC68851RC12 MC68851RC16 MC68851RC20 Figure
Ref. Min Max Min Max Min Max Unit

0.59 1.59 0.59 1.59 0.59 1.59 Clk Per 5

o 20 o 15 o 10 ns 5, 7

20 15 10 ns 5

15 10 10 ns 7

o o o - ns 7

3.0i 3.0i 3.0i Clk Per 7

80 60 50 ns 5,8

20 15 10 ns 9,10

3.0v 0.5v 3.0v 0.5v 3.0v Clk Per 9, 10

1.5v 0.5v 1.5v Clk Per 9,10

o 40 o 30 o 25 ns 9,10

10 5 5 ns 9,10

20 15 10 ns 5

5 40 5 30 5 25 ns 5

a) In this specification the terms 'high', 'low', 'asserted', 'negated', 'valid', and 'invalid' are used frequently to describe
a signal state. For inputs to the MC68851, 'high'indicates that the signal conforms to the VIH voltage specification
while 'low' indicates that the VIL specification is satisfied. Similarly, a MC68851 output is 'high' if it conforms to the
VOH specification and 'low' if it conforms to the VOL parameter. An active low input (output) is asserted if it satisfies
the respective VIL (VoLl requirements and negated if it satisfies the VIH (VOH) specification. A signal is 'valid' if it
conforms to either the voltage high or the voltage low specifications and is an appropriate value for the current
operation (for example, R/W should output a valid low during an MC68851 initiated write cycle). A signal is 'invalid'
if it either does not conform to the VH or VL specifications or is an inappropriate value for the current operation as
above.

bl In order to better understand the parameters given, a 'mode' identification is included with each specification: X
indicates that this specification is valid in any operating mode whatever; T indicates that the MC68851 is the current
bus master and is performing a table walk operation; M indicates that the MC68851 is mapping translations for the
current bus master with the designation MS indicating that the master is operating synchronously with the MC68851,
MA indicating an asynchronous master, and MX indicating that the parameter is valid for any type of logical master;
o indicates that the parameter is valid for operations which access the internal registers of the MC68851.

c) Due to the numerous MC68851 signals that are used as inputs in one operating mode and as outputs in another,
some attempt has been made to clarify whether a particular signal is acting as an input or as an output in cases where
ambiguity is possible. The suffix "-0" indicates that the signal is an output ofthe MC68851 while the suffix "_i" indicates
that this signal is acting as an input to the MC68851.

d) The maximum value for parameter #47A is specified in order that the system designer may deterministically identify
the clock edge on which an asynchronous input to the MC68851 will be recognized. Any signal that meets the minimum
specified setup time to an appropriate clock edge (rising/falling) for that signal to be recognized on, and does not
exceed the maximum time, is guaranteed to be recognized as asserted on that edge. Signals that do not meet the
minimum setup time mayor may not be recognized; signals that exceed the maximum specified setup time may be
recognized on the previous rising/falling clock edge.

MOTOROLA
12-8

Me68851 USER'S MANUAL

e) The actual assertion delay from the low-going clock edge that causes the strobe(s) to assert includes the time specified
in the parameter plus any additional delay specified on D3/D4 during MC68851 configuration at RESET.

f) The actual assertion delay from the assertion of LAS when mapping in the asynchronous mode is the time specified
in the parameter plus any additional delay specified on D3/D4 during MC68851 configuration at RESET.

g) The actual assertion delay from the assertion of LAS is the time specified in the parameter plus any additional delay
specified on D31D4 during MC68851 configuration at RESET. This specification has a range of one clock period in order
to allow for cases in which the CPU exhibits a best-case (minimum) assertion delay for the LAS signal relative to the
clock while the MC68851 PAS or CLI outputs exhibit worst-case (maximum) assertion delays. When operating in the
synchronous translation mode, the MC68851 asserts PAS (CLI) on the falling edge ofthe clock (plus additional specified
delay) one clock period after the CPU drives LAS.

h) The worst case assertion delay for this specification can be reduced to 5.5 clock periods if the early processing startup
mode of operation is disabled (refer to 4.1.2.5 EARLY PROCESSING STARTUP (06)).

i) This maximum can be reduced to 2.5 clock periods if the logical address strobe (LAS) high time (negated period) is
one clock period or greater.

j) This specification also applies to the signals AO-A7, FCO-FC3, SIZO-SIZ1, and RMC if the MC68851 is awaiting the
negation of PBGACK to initiate or complete a table search operation.

k) This number can be reduced to ± 5 nanoseconds if the strobes have equal load.

I) If the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup (#31) and DSACKx
low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to clock low setup time (#27)
for the following clock cycle. BERR must only satisfy the late BERR low to clock low setup time (#27A) for the following
clock cycle.

m) This parameter specifies the maximum allowable skew between DSACKO to DSACK1 asserted or DSACK1 to DSACKO
asserted. Specification #47 must be met by either DSACKO or DSACK1.

n) In the absence of DSACKx, BERR is an asynchronous input using the asynchronous input setup time (#47).

0) DBDIS may stay asserted on consecutive write cycles (e.g., a retry of an MC68851 write operation).

p) Actual value depends on the clock input waveform.

q) This number can be reduced to 5 nanoseconds if CLI and PAS have equal loading.

r) This specification is valid only if the loading of the DSACKx outputs are equal (± 50 pF).

s) This specification can be reduced to 35 ns or 50 ns at 16.67 and 12.5 MHz, respectively for those bits of the logical
address that are not translated by the MC68851. This includes all bits of the logical address if the MC68851 translation
mechanism is disabled, and all bits, LAn, of the logical address (page size 2m) such that n ",; m.

u) This specification also applies to the signals AO-A7, FCO~FC3, and SIZO-SIZ1 if the MC68851 is granting physical bus
mastership to an alternate device during a table search operation.

v) The actual assertion delay from the assertion of LAS is the time specified in the parameter plus a delay derived from
the RESET configuration. Although the RESET configuration allows additional strobe delay in half clock increments,
CLI will always be asserted relative to the falling edge of the clock and so can only be delayed by full clock increments.
Therefore, if one or two 1/2 clock delay(s) is (are) specified in the RESET configuration, then CLI assertion will be
delayed by one full clock.

Me688S1 USER'S MANUAL MOTOROLA
12-9

II

II

Table 12-1. AC Electrical Specifications Reference Summary

Signal Function Signal Name Relevant AC Electrical Specifications

logical Address Bus lA8-LA31 91,92A, 92B, 93A, 93B, 95

Physical Address Bus PA8-PA31 6,7,8,11,13,43,95,119, 120A, 120B, 123,127

Shared Address Bus AD-A7 6,7,8,11,13,43,96,97

Function Codes FCD-FC3 6, 7, 8, 11, 13, 43, 91, 92A,92B, 93A, 938

Data Bus DD-D31 7,23,25,26,27,29, 29A, 31,53, 56A, 64,82,83,108, 109A,
109B

Size SIZD-SIZ1 6, 7, 8, 11, 13, 43, 96, 97

Cache load Inhibit CLI 68,69,116,123, 124A, 124B, 126, 127,128,129

Asynchronous Control ASYNC 105, 106, 107

Read-Modify-Write Cycle RMC 6,7,8,11,13,43,91, 92A, 92B,93A,93B

logical Address Strobe LAS 81,86A,86B,90, 92A,92B,93A,938,96,97, 100, 103,104
104A, 105, 106, 107, 112A, 112B,113, 117, 118, 121,122, 124A,
124B, 126

Physical Address Strobe PAS 9,9A,9B, 11,12, 12A, 13, 14, 15, 16,17,21,43,47B, 115, 116,
117,118,119, 120A, 120B, 121, 122, 128,129

Data Strobe DS 9A, 13, 14, 14A, 15, 16, 17,22,25,26, 29,29A,47B, 63,104,
104A, 108,109A, 109B

-
Read/Write R/W 16,19,20,22,44,46,55,59,91, 92A,92B, 93A, 93B

Data Transfer and Size Acknowledge DSACKD-DSACK1 31, 31A, 47A, 48,110,111, 112A, 112B, 113, 114

Data Bus Disable DBDIS 16,40A, 40B,41A,418,44,45A,45B, 56, 56A, 59, 63, 64

Bus Error BERR 27A,47A, 48, 60,84, 86A,86B,90, 113, 114

Halt HALT 27A,47A, 48, 60,84, 86A,86B,89

Reset RESET 32,47A, 79, 79A, 80,81, 82, 83

Physical Bus Request PBR 35A, 35B, 36, 47 A

Physical Bus Grant PBG 33,34, 35A, 35B, 36, 37,39, 39A

Physical Bus Grant Acknowledge PBGACK 37,43,47A

Logical Bus Request In LBRI 72,47A

Logical Bus Request Out LBRO 67, 84, 86A, 86B

Logical 8us Grant In lBGI 47A, 71, 75, 77

logical Bus Grant Out lBGO 65, 66, 71, 72, 73, 74, 75

logical Bus Grant Acknowledge LBGACK 47A, 65, 66,67, 68, 69, 70, 77, 89

Clock ClK 1,2,3,4,5

Power Supply VCC DC Only

Ground GND DC Only

12.7 AC ELECTRICAL SPECIFICATION DEFINITIONS

The AC specifications presented in the previous sub-section consist of output delays, input
setup and hold times, and signal skew times. All signals are specified relative to an apro­
priate edge of the MC68851 clock input and, possibly, relative to one or more other signals.

The measurement of the AC specifications is defined by the waveforms in Figure 12-12.
In order to test the parameters guaranteed by Motorola, inputs must be driven to the
voltage levels specified in Figure 12-12. Outputs of the MC68851 are specified with mini­
mum and/or maximum limits, as appropriate, and are measured as shown. Inputs to the

MOTOROLA
12-10

MC68851 USER'S MANUAL

MC68851 are specified with minimum and, as appropriate maximum setup and hold times,
and are measured as shown. Finally, the measurements for signal-to-signal specifications
are also shown.

Note that the teting levels used to verify conformance of the MC68851 to the AC specifi­
cations does not affect the guaranteed DC operation of the device as specified in 12.4 DC
ELECTRICAL CHARACTERISTICS.

DRIVE

elK

OUTPUTS 1 VALID
OUTPUT n

OUTPUTS 2

DRIVE --.

INPUTS 3
TO 2.4 V

DRIVE --.
TO 0.5 V

INPUTS4

All SIGNALS 5

Notes:

VALID
OUTPUT n+l

OUTPUT n

2.0 V VALID 2.0 V

0.8 V INPUT 0.8 V

2.0 V

0.8 V

MAX

2.0 V VALID
0.8 V OUTPUT n+l

..- OAIVE
TO 2.4 V

..- DRIVE
TO 0.5 V

1 - This output timing is applicable to all parameters specified relative to the rising edge of the clock
2 - This output timing is applicable to all parameters specified relative to the falling edge of the clock
3 - This input timing is applicable to all parameters specified relative to the rising edge of the clock
4 - This input timing is applicable to all parameters specified relative to the falling edge of the clock
5 - This timing is applicable to all parameters specified relative to the assertion/negation of another signal

Legend:
A - Maximum output delay specification
B - Minimum output delay specification
C - Minimum input setup time specification
D - Minimum input hold specification
E - Signal valid to signal valid specification (maximum or minimum)
F - Signal valid to signal invalid specification (maximum or minimum)

Figure 12-12. Drive Levels and Test Points for AC Specifications

Me68851 USER'S MANUAL MOTOROLA
12-11

..

fI

MOTOROLA
12-12

MC68851 USER'S MANUAL

SECTION 13
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68851. In
addition, detailed information is provided to be used when ordering.

13.1 STANDARD MC68851 ORDERING INFORMATION

Package Type

Pin Grid Array
RC Suffix

13.2 PIN ASSIGNMENTS

Frequency
(MHz)

12.5
16.7

Temperature

0° to 70°C
0° to 70°C

o 0 0 0 000 0 0 0 000
FCI LA26 LA25 LA22 LA2l LA18 LA17 LA16 LA13 LA12 LA9 LA8 025

o 0 0 0 0 0 0 0 0 0 000
Al LA30 LA29 LA27 LA23 LA19 Vcc LA15 LAII 031 029 028 021

000 0 0 000 0 0 000
A2 FC2 LA3l LA28 LA24 LA20 GNO LA14 LA10 030 027 024 020

00000
A5 AO FC3 FCO GNO

o 0 0 0
A6 A4 A3 VCC

000
PA9 PA8 A7

000
PA 10 VCC GNO

000
PAll PA12 PA13

o 0 0 0
PA14 PA16 PA17 GNO /'

BOTTOM
VIEW

000>:/0
PA15 PA20 PA2l" PA24

o 0 f:/ 0
PA18 PA22 , eLK PA27

o p/ 0 0
__ J'I!.!!!... -1 PA25 PA26 PA28

1
0 1 000

PA23 : PA29 PA30 DiS
I

Pin Group

Physical Address

VCC

000
PA3l LBGO GNO

000
PAS lBimR VCC

000
LBRO CBGi [Biii

Logical Address, Internal Logic

OOr031

Internal Logic, Clocks

MC68851 USER'S MANUAL

o 0 0 0 0
VCC 026 023 022 017

o

o 000
GNO 019 018 016

000
015 014 013

000
GNO VCC 012

000
09 010 011

o 000
VCC 05 06 08

000 0
GNO ASYNC 01 02 07

00000
BERR OSACK 1 R/W OBOIS 00

00000
HALT Piiii SIZO liS RMC

00000
EiJ PSG PBGACK OSACKO SIZI

10 11 12

Vec GND

05,G2,J4 E4, G3, K5

M7 L7

o
04

o
03

o
RESET

13

E10, G12, K9 09, G11, J10

87 C7

Order
Number

MC68851 RC12
MC68851 RC16

MOTOROLA
13-1

IE

II

13.3 MECHANICAL DATA

RC SUFFIX
PIN GRID ARRAY

CASE 7898-01

11
-FrK

A

14
~ ,

B J -+ ,
OD

!.-C .

NOTES:
1. A AND B ARE DATUMS AND T IS A DATUM

SURFACE.
2. POSITIONAL TOLERANCE FOR LEADS 1132 PLI.

1+11>0.1310.0051 ®! TIA®IB®I
3. DIMENSIONING AND TOLERANCING PER Y14.5M,

1982.
4. CONTROLLING DIMENSION: INCH.

MOTOROLA
13·2

G

N @ @)@)@)@) @)@)@)@) @) O~~-.L­
M @)@)@)@)@)@)@)@)@)@) o~~-~
L @)@)@)@)@)@)@)@)@)@)@) 0 0

K@)@)@)@)@) @)@)@)@)@)
J @)@)@)@) @)@)@)@)
H @)@)@) @)@)@)
G @)@)@) @)@)@)
F@)@)@) @)@)@)
E @)@)@)@) @)@)@)@)
D @)@)@)@)@) @)@)@)@)@)
c@)@)@)@)@)@)@)@)@)@)@)@)@)
B@)@)@)@)@)@)@)@)@)@)@)@)@)
A@)@)@)@)@)@)@)@)@)@)@)@)@

1 2 3 4 5 6 7 8 9 10 11 12 13

MIWMETERS INCHES
DIM MIN MAX MIN MAX
A 34.04 35.05 1.340 1.380
B 34.04 35.05 1.340 1.380
C 2.54 3.81 0.100 0.150
D 0.43 0.55 0.017 0.022
G 2.54 asc 0.100 asc
K 4.32 4.95 0.170 0.195

G

MC68851 US.ER'S MANUAL

APPENDIX A
INSTRUCTION SET

This appendix details the MC68851 instruction set using the Motorola assembly language
syntax and notation. The instructions are arranged in alphabetical order with the mnemonic
heading set in large bold type for easy reference. Also, included at the end of this appendix,
is a listing of the binary patterns of all the instructions.

A.1 MC68020/MC68851 ADDRESSING MODES

Due to the nature of the MC68020/MC68851 coprocessor interface, the MC68851 supports
all MC68020 addressing modes. The MC68020 effective address modes are categorized by
the manner in which the modes are used. The following classifications are used in the
instruction details.

Data

Memory

Alterable

Control

If an effective address is used to refer to data operands, it is considered a
data addressing mode.

If an effective address is used to refer to memory operands, it is considered
a memory addressing mode.

If an effective address is used to refer to alterable (writeable) operands, it is
considered an alterable addressing mode.

If an effective address is used to refer to memory operands that do not have
an associated size, it is considered a control addressing mode.

Table A-1 shows the various addressing categories of each addressing mode. These cat­
egories may be combined so that additional, more restrictive, classifications may be de­
fined. For example, the instruction descriptions use such classifications as memory alterable
or data alterable. The former refers to those addressing modes that are both memory and
alterable addresses (i.e., the intersection of the two sets of modes), and the latter refers
to addressing modes that are both data and alterable.

MC68851 USER'S MANUAL MOTOROLA
A-1

•

•

Table A-1. Effective Addressing Mode Categories

Assembler
Address Modes Mode Register Data Memory Control Alterable Syntax

Data Register Direct 000 reg. no. X - - X Dn

Address Register Direct 001 reg. no. - - - X An

Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect with Predecrement 100 reg. no. X X - X -(An)
Address Register Indirect with Displacement 101 reg. no. X X X X (d16,An)

Address Register Indirect with Index
(S-Bit Displacement) 110 reg. no. X X X X (ds,An,Xn)

Address Register Indirect with Index
(S-Bit Displacement) 110 reg. no. X X X X (ds,An,Xn)

Address Register Indirect with Index
(Base Displacement) 110 reg. no. X X X X (bd,An,Xn)

Memory Indirect Post-Indexed 110 reg. no. X X X X ([bd,Anl,Xn,od)
Memory Indirect Pre-Indexed 110 reg. no. X X X X ([bd,An,Xn],od)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L

Program Counter Indirect with Displacement 111 010 X X X - (d16,PC)
Program Counter Indirect with Index

(S-Bit Displacement) 111 010 X X X - (dS,PC,Xn)
Program Counter Indirect with Index

(Base Displacement) 111 011 X X X - (bd,PC,Xn)
PC Memory Indirect Post-Indexed 111 011 X X X - ([bd,PC1,Xn,od)
PC Memory Indirect Pre-Indexed 111 011 X X X - ([bd,PC,Xn]'od)

Immediate 111 100 X X - - #(data)

A.2 OPERATION DESCRIPTION DEFINITIONS

The following definitions are used for the operation description details of the instruction
set.

An

Dn

PC

PSR

d

cc

FC

(ea)

PMMU

(operand)

- Any Main Processor Address Register

- Any Main Processor Data Register

- The Main Processor Program Counter

- T,he MC68851 Status Register

- Displacement

- MC68851 Defined Condition Code

- Function Code

- The Operand Identified by the Specified Addressing Mode

- The MC68851

- The Contents of the Referenced Location of Register

#XXX or #data - Immediate Data Located with the Instruction is the Operand

A.3 INDIVIDUAL INSTRUCTION DESCRIPTIONS

The individual instruction descriptions are shown on the following pages.

MOTOROLA
A-2

MC68851 USER'S MANUAL

PBcc

Operation:

Assembler
Syntax:

Attributes:

Branch on PMMU Condition
(Privileged Instruction)

If Supervisor state
then if cc true

then PC + d • PC
else trap

PBcc.(size)(label)

Size = (Word, Long)

PBcc

Description: If the specified PMMU condition is met, execution continues at location
(PC) + displacement. The displacement is a two's complement integer which counts
the relative distance in bytes. The value in the PC is the address of the displacement
word(s). The displacement may be either 16 or 32 bits.

The condition specifier "CC" may specify the following conditions:

BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set _000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS W set 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

PSR: Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 a

1 1 1 1 I 0 a 0 1 a 1 I Size I MC68851 Condition

16-Bit Displacement, or Most Significant Word of 32-Bit Displacement

Least Significant Word of 32-Bit Displacement' (If Needed)

Instruction Fields:
Size field - specifies the size of the displacement.

0- The displacement is 16 bits.
1 - The displacement is 32 bits.

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

Word Displacement field - The shortest displacement form for MC68851 branches is
16 bits.

Long Word Displacement Field - Allows a displacement larger than 16 bits.

MC68851 USER'S MANUAL MOTOROLA
A-3

•

•

PDBcc

Operation:

Assembler
Syntax:

Attributes:

Test, Decrement, and Branch
(Privileged Instruction)

If supervisor state
then If cc false

then (On-1 • On; If On(> -1 then PC + d ~ PC)
else no operation

else trap

POBcc On, (label)

Size = (Word)

PDBcc

Description: This instruction is a looping primitive of three parameters: an MC68851
condition, a counter (an MC68020 data register), and a 16-bit displacement. The in­
struction first test the condition to determine if the termination condition for the loop
has been met, and if so, the main processor proceeds to execute the next instruction
in the instruction stream. If the termination condition is not true, the low order 16 bits
of the counter register are decremented by one. If the result is not -1, execution
continues at the location specified by the current value of the PC plus the sign extended
16-bit displacement. The value of the PC used in the branch address calculation is the
address of the POBcc instruction plus two.

The condition specifier "cc" may specify the following conditions:

BS B set 000000 BC

LS L set 000010 LC

SS S set 000100 SC

AS A set 000110 AC

WS W set 001000 WC

IS I set 001010 IC

GS G set 001100 GC

CS C set 001110 CC

PSR: Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6

1

0

MOTOROLA
A-4

1

0

1 1 I
0 0

0 0 o I 0 0 1

0 0 0 0 0 0

16-Bit Displacement

B clear 000001

L clear 000011

S clear 000101

A clear 000111

W clear 001001

I clear 001011

G clear 001101

C clear 001111

5 4 3 2 o

0 0 1 I Count Register

MC68851 Condition

Me6SS51 USER'S MANUAL

PDBcc

Instruction Fields:

Test, Decrement, and Branch
(Privileged Instruction)

PDBcc

Register field - Specifies the data register in the main processor to be used as the
counter.
MC68851 Condition field - Specifies the MC68851 condition to be tested. This field

is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

Displacement field - Specifies the distance of the branch (in bytes).

MC68851 USER'S MANUAL MOTOROLA
A-5

•

•

PFLUSH
PFLUSHA
PFLUSHS Invalidate Entries in the ATC

(Privileged Instruction)

PFLUSH
PFLUSHA
PFLUSHS

Operation: If Supervisor state
then ATC Entries for Destination Address are Invalidated
else trap

Assembler
Syntax:

PFLUSHA
PFLUSH (fc),#(mask)
PFLUSHS (fc),#(mask)
PFLUSH (fc),#(mask),(ea)
PFLUSHS (fc),#(mask),(ea)

Attributes: Unsigned

Description: PFLUSHA invalidates all entries in the ATC.

PFLUSH invalidates a set of ATC entries whose function code bits satisfy the relation:
(ATC function code bits and (mask») = (fc) and (mask») for all entries whose task alias
matches the task alias currently active when the instruction is executed. With an
additional effective address argument, PFLUSH invalidates a set of ATC entries whose
function code satisfies the relation above, and whose effective address field matches
the corresponding bits of the evaluated effective address argument. In both of these
cases, ATC entries whose SG bit is set will not be invalidated unless the PFLUSHS is
specified.

The function code for this operation may be specified to be:

PSR:

1. Immediate - the function code is specified as four bits in the command word.
'2. Data Register - the function code is contained in the lower four bits in the

MC68020 data register specified in the instruction.
3. Source Function Code Register - the function code is contained in the source

function code (SFC) register in the CPU. Since the SFC of the MC68020 has only
three implemented bits, only function codes $0 through $7 can be specified in
this manner.

4. Destination Function Code Register - the function code is contained in the
destination function code (DFC) register in the CPU. Since the DFC of the MC68020
has only three implemented bits, only function codes $0 through $7 can be
specified in this manner .

Not affected

Instruction Format:

15 14 13 12 11 10

1

0

MOTOROLA
A-6

1 1

0 1

1 I 0 0

I Mode

9

0

I 0

8 7 6 5 4 3 2 o

0 0 o I Effective
l
Address

Mode Register

Mask J Fe

MC68851 USER'S MANUAL

PFLUSH
PFLUSHA
PFLUSHS

Instruction Fields:

Invalidate Entries in the ATe
(Privileged Instruction)

PFLUSH
PFLUSHA
PFLUSHS

Effective Address field - Specifies an address whose page descriptor is to be flushed
from (invalidated) the ATC. Only control alterable addressing modes are allowed
as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d 16,PC) - -

(d8,An,Xn) 110 reg number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn]'od) - -

([bd,An],Xn,od) 110 reg number:An ([bd,PC],Xn,od) - -

Note~ that the effective address field must provide the MC68851 with the effective
address of the entry to be flushed from the ATC, not the effective address describing
where the PFLUSH operand is located. For example, in order to flush the ATC entry
corresponding to a logical address that is temporarily stored on the top of the system
stack, the instruction 'PFLUSH [(SP)], must be used since 'PFLUSH (SP)' would inval­
idate the ATC entry mapping the system stack (i.e., the effective address passed to
the MC68851 is the effective address of the system stack, not the effective address
formed by the operand located on the top of the stack).

Mode field - Specifies how the ATC is to be flushed.
001 - Flush all entries
100 - Flush by function code only
101 - Flush by function code including shared entries
110 - Flush by function code and effective address
111 - Flush by function code and effective address including shared entries

Mask field -Indicates which bits are significant in the function code compare. A zero
indicates that the bit position is not significant, a one indicates that the bit position
is significant. If mode = 001 (flush all entries), mask must be 0000.

FC field - Function code of address to be flushed. If mode = 001 (flush all entries),
function code m~t be 00000

Otherwise:
1 DODD - Function code is specified as four bits DODD
01 RRR - Function code is contained in CPU data register RRR
00000 - Function code is contained in CPU SFC register
00001 - Function code is contained in CPU DFC. register

MC68851 USER'S MANUAL MOTOROLA
A-7

•

•

PFLUSHR Invalidate ATC and RPT Entries
(Privileged Instruction)

Operation: If Supervisor state

PFLUSHR

then the RPT entry (if any) matching the root pointer specified by (ea)
and corresponding ATC entries are invalidated

Assembler
Syntax:

Attributes:

else trap

PFLUSHR(ea)

Unsized

Description: The double long word pointed to by (ea) is taken to be a previously used
value of the CRP register. The RPT entry matching this CRP (if any) is flushed, and all
ATC entries loaded with this value of CRP (except for those that are globally shared)
are invalidated. If no entry in the RPT matches the operand of this instruction, then
no action is taken.

If the supervisor root pointer is not in use, the operating system should not issue the
PFLUSHR command to destroy a task identified by the current CRP. It should wait
until the CPR has been loaded with the root pointer identifying the next task until
using the PFLUSHR instruction. At any time, execution of the PFLUSHR instruction for
the current CRP causes the current task alias to be corrupted.

Instruction Format:
15 14 13 12 11 10 9 a 7 6 5 4 3 2 0

1 I 0 0 o I 0 0 0 I Effective, Address
Mode Register

0 1 I 0 0 0 0 0 0 0 0 0 0 0 0 0

Instruction Fields:
Effective Address field - Specifies the address of a previous value of the CRP register.

Only memory addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

On - - (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg nurnber:An #(data) 111 100

(An)+ 011 reg number:An

-(An) 100 reg number:An

(d16,An) 101 reg number:An (d16'PC) 111 010

(da,An,Xn) 110 reg number:An (d9,PC,Xn) 111 011

(bd,An,Xn) 110 reg nurnber:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg number:An ([bd,PC],Xn,od) 111 011

Note that the effective address usage of this instruction is different than that of other
PFLUSH variants.

MOTOROLA
A-8

Me68851 USER'S MANUAL

PLOAD

Operation:

Load an Entry into the ATC
(Privileged Instruction)

If Supervisor state

PLOAD

then search translation table and make ATC entry for effective address
else trap

Assembler
Syntax:

Attributes:

PLOADR (function code),(ea)
PLOADW (function code),(ea)

Unsized

Description: The translation table is searched for a translation for the specified effective
address. If one is found, it is flushed from the ATC, and an entry is made in the ATC
as if a bus master had run a bus cycle. Used and modified bits in the table are updated
as part of the table search. The MC68851 ignores the logical bus arbitration signals
during the flush and load phase at the end of this instruction preventing the possibility
of an entry temporarily disappearing from the ATC and causing a spurious table search.

This instruction will cause a PMMU illegal operation exception (vector $39) if the E
bit of the TC register is clear.

The function code for this operation may be specified to be:
1. Immediate - the function code is specified as four bits in the command word.
2. Data Register - the function code is contained in the lower four bits in the

MC68020 data register specified in the instruction.
3. Source Function Code - the function code is contained in the source function

code (SFC) register in the CPU. Since the SFC of the MC68020 has only three
implemented bits, only function codes $0 through $7 can be specified in this
manner.

4. Destination Function Code Register - the function code is contained in the
destination function code (DFC) register in the CPU. Since the DFC of the MC68020
has only three implemented bits, only function codes $0 through $7 can be
specified in this manner. '

The effective address field specifies the logical address whose translation is to be
loaded.

PLOADR causes U bits in the translation tables to be updated as if a read access had
taken place. PLOADW causes U and M bits in the translation tables to be updated as
if a write access had taken place.

PSR: Not affected

Instruction Format:
15 14 13 12 11 10 9

1 1 1 1 I 0 0 0

0 0 1 I 0 0 o I Rm

MC68851 USER'S MANUAL

8 7 6 5

0 0 o I
0 0 0 o I

4 3 2 o
Effective, Address

Mode Register

Fe

MOTOROLA
A-9

•

•

PLOAD

Instruction Fields:

Load an Entry into the ATC
(Privileged Instruction)

PLOAD

Effective Address field - Specifies the logical address whose translation is to be loaded
into the ATC. Only control alterable addressing modes are allows as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d 16'PC) - -

(dS,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn],od) - -

([bd,An]'Xn,od) 110 reg number:An ([bd,PC],Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective
address of the entry to be loaded into the ATC, not the effective address describing
where the PLOAD operand is located. For example, in order to load an ATC entry to
map a logical address that is temporarily stored on the system stack, the instruction
PLOAD [(SP)] must be used since PLOAD (SP) would load an ATC entry mapping the
system stack (i.e., the effective address passed to the MC68851 is the effective address
of the system stack, not the effective address formed by the operand located on the
top of the stack).

R/W field - Specifies whether the tables should be updated for a read or a write
1 - Read
0- Write

FC field - Function code of address to load
1 DDDD - Function code is specified as four bits DDDD
01 RRR - Function code is contained in CPU data register RRR
00000 - Function code is contained in CPU SFC register
00001 -:- Function code is contained in CPU DFC register

MOTOROLA
A-10

Me6S8S1 USER'S MANUAL

PMOVE Move PMMU Register
(Privileged Instruction)

PMOVE

Operation: If Supervisor state
then MC68851 Register. Destination or Source. MC68851 Register
else trap

Assembler
Syntax:

PMOVE (PMMU Register),(ea)
PMOVE (ea),(PMMU Register)

Attributes: Size = (Byte, Word, Long, Double Long)

Description: The contents of the MC68851 register is copied to the address specified by
(ea), or the data at (ea) is copied into the MC68851 register.

PMOVE is a double long (eight byte) operation for the following registers: CRP, SRP,
DRP.

PMOVE is a long (four byte) operation for the following register: TC.

PMOVE is a word (two byte) operation for the following registers: BAC, BAD, AC, PSR,
PCSR.

PMOVE is a byte (one byte) operation for the following registers: CAL, VAL, SCC.

This instruction has side effects when data is read into certain registers. These effects
are:

PSR:

CRP - Causes the internal root pointer table to be searched for the new value. If
a matching value is not found, an entry in the root pointer table is selected
for replacement, and a" ATC entries associated with the replaced entry
are invalidated.

SRP - Cause a" entries in the ATC that were formed with the SRP (even globa"y
shared entries) to be invalidated.

DRP - Causes a" entries in the ATC that were formed with the DRP (even globa"y
shared entries) to be invalidated.

TC - If data written to the TC register attempts to set the E bit (and the E bit
is currently clear), a consistency check is performed on the IS, TIA, TIB,
TIC, TID, and PS fields.

Not affected unless the PSR is written to by the instruction.

Instruction Format 1 (PMOVE to/from TC, CRP, DRP, SRP, CAL, VAL, SCC, AC):

15 14 13 12 11 10 9 8

1 1 1 1 I 0 0 0 0

0 1 o 1 P Reg l R/W 0

MC68851 USER'S MANUAL

7 6 5

0 o I
0 0 0

4 3 2 o
Effective

l
Address

Mode Register

0 0 0 0 0

MOTOROLA
A-11

-

•

PMOVE

Instruction Fields:

Move PMMU Register
(Privileged Instruction)

PMOVE

Effective Address field - for memory to register transfers, any addressing mode is
allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn* 000 reg number:Dn (xxx).w 111 000

An* 001 reg number:An (xxx).L 111 011

(An) 010 reg number:An #(data) 111 100

(An)+ 011 reg number:An

-(An) 100 reg number:An

(d16,An) 101 reg number:An (d16,PC) 111 010

(dS,An,Xn) 110 reg number:An (dS,PC,Xn) 111 011

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) 111 011

([bd,An,Xn),od) 110 reg number:An ([bd,PC,Xn),od) 111 011

([bd,Anj,Xn,od) 110 reg number:An ([bd,PC),Xn,od) 111 011

:*PMOVE to CRP, SRP, DRP not allowed with these modes.

For register to memory transfers, only alterable addressing modes are allowed as
shown:

Addr. Mode Mode Register

Dn* 000 reg number:Dn

An* 001 reg number:An

(An) 010 reg number:An

(An)+ 011 reg number:An

-(An) 100 reg number:An

(d16,An) 101 reg number:An

(dS,An,Xn) 110 reg mimber:An

(bd,An,Xn) 110 reg number:An

([bd,An,Xn),od) 110 reg number:An

([bd,An),Xn,od) 110 reg number:An

*PMOVE from CRP, SRP, DRP not allowed with these
modes.

Addr. Mode

(xxx).w

(xxx).L

#(data)

(d 16,PC)

(dS,PC,Xn)

(bd,PC,Xn)

([bd,PC,Xnj,od)

([bd,PC),Xn,od)

Register field - Specifies the MC68851 register
000 - TC
001 - DRP
010 - SRP
011 - CRP
100 - CAL
101 - VAL
110 - SCC
111 - AC

MOTOROLA
A-12

Mode Register

111 000

111 001

- -

- -

- -

- -
- -

- -

MC68851 USER'S MANUAL

PMOVE Move PMMU Register
(Privileged Instruction)

RIW field - Specifies the direction of transfer
0- Transfer (ea) to MC68851 register
1 - Transfer MC68851 register to (ea)

Instruction Format 2 (PMOVE to/from BADx, BACx):
15 14 13 12 11 10 9 8 7

1 1 1 1 I 0 0 0 0 0

0 1 1 I P Reg I Rm 0 0

Instruction Fields:
Effective Address field - Same as above

6

o l
0

5

o I

P Register field - Specifies the type of MC68851 register
100- BAD
101 - BAC

R/W field - Specifies the direction of transfer
0- Transfer (ea) to MC68851 register
1 - Transfer MC68851 register to (ea)

PMOVE

4 3 2 o
EffectiVjAdd ress

Mode Register

Num I 0 0

Num field - Specifies the number of the BACx or BADx register to be used

Instruction Format 3 (PMOVE to/from PSR, from PCSR):
15 14 13 12 11 10 9 8 7

1 1 1 1 I 0 0 0 0 0

0 1 1 I P Reg I RlW 0 0

Instruction Fields:
Effective Address field - Same as above

P Register field - Specifies the MC68851 register
000 - PSR
001 - PCSR

RIW field - Specifies direction of transfer
0- Transfer (ea) to MC68851 register

6

o I
0

5 4 3 2 o
Effective, Add ress

Mode Register

0 0 0 0 0 0

1 - Transfer MC68851 register to (ea) (must be one to access PCSR using this
format)

Me688S1 USER'S MANUAL MOTOROLA
A-13

•

,.

PRESTORE PMMU Restore Function
(Privileged Instruction)

PRESTORE

Operation:

Assembler
Syntax:

Attributes:

If Supervisor state
then MC68851 State Frame. Internal State, Programmer Registers
else trap

PRESTORE (ea>

Unsized, Privileged

Description: The MC68851 aborts execution of any operation it was performing, and a
new internal state and programmer registers are loaded from the state frame located
at the effective address. The first word at the specified address is the format word of
the state frame, which specifies the size of the frame and the revision number. of the
MC68851 that created it. The MC68020 will write the first word to the MC68851 restore
coprocessor interface register to initiate the restore operation and then read the re­
sponse coprocessor interface register to verify that the MC68851 recognizes the format
as valid. If the format word is invalid for this MC68851 (either because the size of the
frame is not recognized, or the revision number does not match the revision of this
MC68851), then the MC68020 is instructed to take a format exception, and the MC68851
returns to' the idle state with its user visible registers unchanged. If the format word
is valid, the appropriate state frame is loaded, starting at the specified location and
up through higher addresses.

The PRESTORE instruction restores the non-user visible state of the MC68851 as well
as the PSR, CRP, SRP, CAL, VAL, and SCC registers of the user programming model.
In addition, if any breakpoints are enabled, all BACx and BADx registers are restored.

This instruction is the inverse of the PSAVE instruction.

The current implementation of the MC68851 supports four state sizes. Refer to 6.2.7.3
STATE FORMATS for more information on the format of these states.

NULL: This state frame is four bytes long, with a format word of $0. A PRESTORE
with this size state frame places the MC68851 in the idle state with no coprocessor
or module operations in progress.

IDLE: This state frame is 36 ($24) bytes long. A PRESTORE with this size state frame
causes the MC68851 to place itself in an idle state with no coprocessor operations
in progress, and no breakpoints enabled. A module operation mayor may not
be in progress. The minimal set of MC68851 registers are restored by this state
frame.

MID·COPROCESSOR: This state frame is 44 ($2C) bytes long. A PRESTORE with this
size frame restores the MC68851 to a state with a coprocessor operation in prog­
ress, and no breakpoints enabled.

BREAKPOINTS ENABLED: This state frame is 76 ($4C) bytes long. A PRESTORE with
this size state frame restores all of the breakpoint registers, along with other state.
A coprocessor operation mayor may not be in progress.

MOTOROLA
A-14

MC68851 USER'S MANUAL

PRESTORE PMMU Restore Function
(Privileged Instruction)

PSR: Set according to restored data.

Instruction Format:
15 14 13 12 11 10 9 s 7 6

o o o o

Instruction Fields:

PRESTORE

5 4 3 2 o
Effective Address

Mode Register

Effective Address field - Specifies the source location. Only control or postincrement
addressing modes are allowed as shown:

Addr. Mode Mode Register

Dn - -

An - -

(An) 010 reg number:An

(An)+ 011 reg number:An

-(An) - -

(d16,An) 101 reg number:An

(dS,An,Xn) 110 reg number:An

(bd,An,Xn) 110 reg number:An

([bd,An,Xn],od) 110 reg number:An

([bd,An]'Xn,od) 110 reg number:An

Me688S1 USER'S MANUAL

Addr. Mode

(xxx).W

(xxx).L

#(data)

(d16,16)

(dS,PC,Xn)

(bd,PC,Xn)

([bd,PC,Xn],od)

([bd,PC]'Xn,od)

Mode

111

111

-

111

111

111

111

111

Register

000

001

-

010

011

011

011

011

MOTOROLA
A-15

•

PSAVE PMMU Save Function
(Privileged Instruction)

PSAVE

Operation: If Supervisor state
then MC68851 Internal State, Programmer Registers. State Frame
else trap

Assembler
Syntax: PSAVE (ea>

Attributes: Unsized, Privileged

Description: The MC68851 suspends execution of any operation that it was performing
and saves its internal state and certain programmer registers in a state frame located
at the effective address. The registers copied are: PSR, CRP, SRP, CAL, VAL, and SCC.
In addition, if any breakpoints are enabled, all BAC and BAD registers are copied. After
the save operation, the MC68851 is in an idle state waiting for another operation to
be requested. Programmer registers are not changed.

The state frame format saved by the MC68851 depends on its state at the time of the
PSAVE operation. In the current implementation, three format frames are possible.
For detailed information on the format of these frames, refer to 6.2.7.3 STATE FOR·
MATS.

PSR:

IDLE: This state frame is 36 ($24) bytes long. A PSAVE ofthis size state frame indicates
that the MC68851 was in an idle state with no coprocessor operations in progress,
and no breakpoints enabled. A module call operation mayor may not have been
in progress when this state frame was saved.

MID·COPROCESSOR: This state frame is 44 ($2C) bytes long. A PSAVE of this size
frame indicates that the MC68851 was in a state with a coprocessor or module
call operation in progress, and no breakpoints enabled.

BREAKPOINTS ENABLED: This state frame is 76 ($4C) bytes long. A PSAVE of this
size state frame indicates that one or more breakpoints were enabled. A copro­
cessor or module call operation mayor may not have been in progress.

Not affected

Instruction Format:
15 14 13 12 11 10 9

MOTOROLA
A-16

o o o

8 7 6

p o

5 4 3 2 o
Effective Address

Mode Register

MC68851 USER'S MANUAL

PSAVE

Instruction Fields:

PMMU Save Function
(Privileged Instruction)

PSAVE

Effective Address field - Specifies the destination location. Only control or predecre­
ment addressing modes are allows as shown:

Addr. Mode Mode Register

Dn - -

An - -

(An) 010 reg number:An

(An)+ - -

-(An) 100 reg number:An

(d 16,An) 101 reg number:An

(dS,An,Xn) 110 reg number:An

(bd,An,Xn) 110 reg number:An

([bd,An,Xn),od) 110 reg number:An

([bd,An)'Xn,od) 110 reg number:An

MC68851 USER'S MANUAL

Addr. Mode

(xxx).w

(xxx).L

#(data)

(d16,PC)

(dS,PC,Xn)

(bd,PC,Xn)

([bd,PC,Xn),od)

([bd,PC),Xn,od)

Mode

111

111

-

-
-

-
-
-

Register

000

001

-

-
-
-
-
-

MOTOROLA
A-17

•

•

PScc

Operation:

Assembler
Syntax:

Attributes:

Set on PMMU Condition
(Privileged Instruction)

If Supervisor state
then ifcc true

then 1 s • Destination
else Os • Destination

else trap

PScc <ea)

Size = (Byte)

PScc

Description: The specified MC68851 condition code is tested. If the condition is true,
the byte specified by the effective address is set to TRUE (all ones); otherwise, that
byte is set to FALSE (all zeros).

The condition code specifier "cc" may specify the following conditions:

BS B set

LS L set

SS S set

AS A set

WS Wset

IS I set

GS G set

CS C set

PSR: Not affected

Instruction Format:
15 14 13 12 11

1

0

MOTOROLA
A-18

1

0

1 1 J 0

0 0 0

000000

000010

000100

00110

001000

001010

001100

001110

10 9

0 o I
0 0

BC B clear 000001

LC L clear 000011

SC S clear 000101

AC A clear 000111

WC W clear 001001

IC I clear 001011

GC G clear 001101

CC C clear 001111

8 7 6 5 4 3 2 o

0 0 1 Effective
l
Address

Mode Register

0 0 0 MC68851 Condition

MC68851 USER'S MANUAL

PScc

Instruction Fields:

Set on PMMU Condition
(Privileged Instruction)

PScc

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allows as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

Dn 000 reg number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg number:An #(data) - -

(An)+ all reg number:An

-(An) 100 reg number:An

(d16,An) 101 reg number:An (d16,PC) - -
(d8,An,Xn) 110 reg number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn],od) 110 reg number:An ([bd,PC,Xn]'od) - ~

([bd,An]'Xn,od) 110 reg number:An ([bd,PC]'Xn,od) - -

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

MC68851 USER'S MANUAL MOTOROLA
A-19

•

PTEST

Operation:

Assembler
Syntax:

Attributes:

Get Information About Logical Address
(Privileged Instruction)

If Supervisor state
then Information about Logical Address. PSTATUS
else trap

PTESTR (function code),(ea),#(level)[,An]
PTESTW (function code),(ea),#(level)[,An]

Unsized

PTEST

Description: If Hie E bit of the TC register is set, information about the logical address
specified by (fc) and (ea) is placed in the PSR register. If the E bit of the TC register
is clear this instruction will cause a PMMU Illegal Operation Exception (vector $39).

The function code for this operation may be specified to be:
1. Immediate - the function code is specified as four bits in the command word.
2. Data Register - the function code is contained in the lower four bits in the

MC68020 data register specified in the instruction.
3. Source Function Code Register - the function code is contained in the source

function code (SFC) register in the CPU. Since the SFC of the MC68020 has only
three implemented bits, only function codes $0 through $7 can be specified in
this manner.

4. Destination Function Code Register - the function code is contained in the
destination function code (DFC) register in the CPU. Since the DFC of the MC68020
has only three implemented bits, only function codes $0 through $7 can be
specified in this manner.

The effective address field specifies the logical address to be tested.

The (level) parameter specifies the depth to which the translation table is to be searched.
A value of zero specifies a search of the ATC only. Values one through seven cause
the ATC to be ignored and specify the maximum number of descriptors to fetch. Note
that finding an ATC entry with (level) set to zero may result in a different value in the
PSR register than forcing a table search. Only the I, W, G, M, and C bits of the PSR
register are always the same in both cases.

Either PTESTR or PTESTW must be specified. The two instructions differ in the setting
of the A bit of the PSR (refer to 6.1.8.4 ACCESS LEVEL VIOLATION). For systems where
access levels are not in use, either PTESTR or PTESTW may be used. U and M bits in
the translation table are not modified by this instruction.

If an address register parameter is specified, the physical address of the last descriptor
successfully fetched is loaded into the address register. A descriptor is 'successfully'
fetched if, and only if, all portions of the descriptor can be read by the MC68851
without abnormal termination of the bus cycle. If the DT field of the root pointer used
indicates 'page descirptor', the returned address is $0.

MOTOROLA
A-20

MC68851 USER'S MANUAL

PTEST Get Information About Logical Address
(Privileged Instruction)

PTEST

The PTEST instruction continues searching the translation tables until the requested
level is reached or until a condition occurs that makes further searching impossible
(i.e., a DT field set to 'invalid', a limit violation, or a bus error from memory). The
information in the PSR register reflects the accumulated values.

PSR Register: Set as follows:
B Set if a bus error was received during a descriptor fetch, or if, (level) = 0 and an

entry was found in the ATC with its BERR bit set. Cleared otherwise.
L Set if the limit field of a long descriptor was exceeded. Cleared otherwise.
S Set if a long descriptor indicated supervisor-only access and the (fc) parameter

did not have bit [2] set. Cleared otherwise.
A If PTESTR was specified, set if the RAL field of a long descriptor would deny

access. If PTESTW was specified, set if a WAL or RAL field of a long descriptor
would deny access. Cleared otherwise.

W Set if the WP bit of a descriptor was set, or if a WAL field of a long descriptor
would deny access.

I Set if a valid translation was not available. Cleared otherwise.
M If the tested address is found in the ATC, then set to the value of the M bit in the

ATC. If the tested address is found in the translation table, set if the M bit of the
page descriptor is set, and cleared otherwise.

G If the tested address is found in the ATC, then set to the value of the G bit in the
ATC. If the tested address is found in the translation table, set if the G bit of the
page descriptor is set, and cleared otherwise.

C Set if the address is globally shared. Cleared otherwise.
N Set to the number of levels searched. A value of zero indicates an early termination

of the table search in the root pointer (DT = 'page descriptor') if the level spec­
ification was not zero. If the level specification was zero, N is always set to zero.

Instruction Format:

15 14 13 12 11 10 9

1 1 1 1 I 0 0 0

1 0 0 I Level I RIW

MC68851 USER'S MANUAL

8 7 6 5

0 0 o I
A Reg I

4 3 2 o
Effective

l
Address

Mode Register

Fe

MOTOROLA
A-21

•

•

PTEST

Instruction Fields:

Get Information About Logical Address
(Privileged Instruction)

PTEST

Effective Address field - Specifies the logical address about which information is
requested. Only control alterable addressing modes are allowed as shown:

Addr. Mode Mode Register Addr. Mode Mode Register

On - - (xxx).w 111 000

An _. - (xxx).L 111 001

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d 16,An) 101 reg number:An (d 16,PC) - -

(d8,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn]'od) 110 reg number:An ([bd,PC,Xn]'od) - -

([bd,An],Xn,od) 110 reg number:An ([bd,PC]'Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective
address of the logical address to be tested, not the effective address describing where
the PTEST operand is located. For example, in order to test a logical address that is
temporarily stored on the system stack, the instruction PTEST [(SP)] must be used
since PTEST (SP) would test the mapping of the system stack (i.e., the effective address
passed to the MC68851 is the effective address of the system stack, not the effective
address formed by the operand located on the top of the stack.

Level - Specifies the depth to which the translation table should be searched

R/W field - Specifies whether the A bit should be updated for a read or a write
1 - Read
0- Write

Areg - Specifies the address register in which to load the last descriptor address
Oxxx - Do not return the last descriptor address to an address register
1 RRR - Return the last descriptor address to address register RRR

NOTE
When the PTEST instruction specifies a level of zero, the Areg field must be 0000.
Otherwise, an F-line exception is generated .

FC field - Function code of address to test
1 DODD - Function code is specified as four bits DODD
01 RRR - Function code is contained in CPU data register RRR
00000 - Function code is contained in CPU SFC register
00001 - Function code is contained in CPU DFC register

MOTOROLA
A-22

MC68851 USER'S MANUAL

PTRAPcc Trap on PMMU Condition
(Privileged Instruction)

PTRAPcc

Operation:

Assembler
Syntax:

Attributes:

If Supervisor state
then if cc true then trap
else trap

PTRAPcc
PTRAPcc.W
PTRAPcc.L

#(data)
#(data)

Unsized or Size = (Word, Long)

Description: If the selected MC68851 condition is true, the processor initiates exception
processing. The vector number is generated to reference the cpTRAPcc exception
vector, the stacked program counter is the address of the next instruction. If the
selected condition is not true, no operation is performed, and execution continues
with the next instruction. The immediate data operand is placed in the next word(s)
following the MC68851 condition and is available for user definition for use within the
trap handler. Following the condition word may be a user-defined data operand spec­
ified as immediate data, to be used by the trap handler.

The condition specifier "cc" may specify the following conditions:

_BS B set 000000 BC B clear 000001

LS L set 000010 LC L clear 000011

SS S set 000100 SC S clear 000101

AS A set 000110 AC A clear 000111

WS Wset 001000 WC W clear 001001

IS I set 001010 IC I clear 001011

GS G set 001100 GC G clear 001101

CS C set 001110 CC C clear 001111

PSR: Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1 1 1 J 0 0 0 l 0 0 1 1 1 1 I Op-Mode

0 0 0 0 0 0 0 0 0 0 MC68851 Condition

16-Bit Operand or Most Significant Word of 32-Bit Operand (If Needed)

Least Significant Word of 32-Bit Operand (If Needed)

MC68851 USER'S MANUAL MOTOROLA
A-23

•

,.

PTRAPcc Trap on PMMU Condition
(Privileged Instruction)

PTRAPcc

Instruction Fields:
Op-Mode Field - Selects the instruction form

010 - Instruction is followed by one operand word
011 - Instruction is followed by two opearnd words
100 - Instruction has no following operand words

MC68851 Condition field - Specifies the coprocessor condition to be tested. This field
is passed to the MC68851, which provides directives to the main processor for
processing this instruction.

MOTOROLA
A-24

Me6SSS1 USER'S MANUAL

PVALID Validate a Pointer PVALID

Operation: If (source AL bits) > (destination AL bits) then Trap

Assembler
Syntax:

Attributes:

PVALID VAL,<ea)
PVALID An,<ea)

Size = (Long)

Description: The upper bits of the source (VAL or An) are compared with the upper bits
of the destination <ea). The number of bits compared is defined by the ALC field of
the AC register. If the upper bits of the source are numerically greater than (less
privileged than) the destination, they cause an MMU access level exception. Otherwise,
execution continues with the next instruction. If the MC field of the AC register is zero,
then this instruction always causes a PMMU access level exception.

PSR: Not affected.

Instruction Format 1 (VAL Contains Access Level to Test Against):

15 14 13 12 11 10 9 a 7 6 5 4 3 2 0

1 I 0 0 o I 0 0 o J Effective, Address
Mode Register

0 0 1 I 0 o I 0 0 0 0 0 0 0 0 0 0

Instruction Fields:
Effective Address field - Specifies the logical address to be evaluated and compared

against the VAL register. Only control alterable addressing modes are allowed as
shown:

Addr. Mode Mode Register

Dn - -

An - -

(An) 010 reg number:An

(An)+ - -

-(An) - -

(d16.An) 101 reg number:An

(da.An,Xn) 110 reg number:An

(bd.An,Xn) 110 reg number:An

([bd.An,Xn]'od) 110 reg number:An

([bd.An],Xn,od) 110 reg number:An

MC68851 USER'S MANUAL

Addr Mode

(xxx).W

(xxx).L

#(data)

(d16,PC)

(dS,PC,Xn)

(bd,PC,Xn)

([bd,PC,Xn),od)

([bd,PC]'Xn,od)

Mode

111

111

-

-
-
-
-
-

Register

000

001

-

-

-
-

-

-

MOTOROLA
A-25

.,

•

PVALID Validate a Pointer PVALID

Instruction Format 2 (Main Processor Register Contains Access Level to Test Against):

15 14 13 12 11 10 9 S 7 6 5 4 3 2 0

1 I 0 0 01 0 0 o I Effective
l
Address

Mode Register

0 0 1 I 0 1 I 0 0 0 0 0 0 o I Reg

Instruction Fields:
Effective Address field - Specifies the logical address to be evaluated and compared

against the specified main processor address register. Only control alterable ad-
dressing modes are allowed as shown: .

Addr. Mode Mode Register Addr. Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg number:An (d16,PC) - -

(ds,An,Xn) 110 reg number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg number:An (bd,PC,Xn) - -

([bd,An,Xn),od) 110 reg number:An ([bd,PC,Xn),od) - -

([bd,An),Xn,od) 110 reg number:An ([bd,PC),Xn,od) - -

Note that the effective address field must provide the MC68851 with the effective
address of the logical address to be validated, not the effective address describing
where the PVALID operand is located. For example, in order to validate a logical
address that is temporarily stored on the system stack, the instruction PVALID VAL,[(SP)]
must be used since PVLAID VAL,(SP) would validate the mapping on the system stack
(i.e., the effective address passed to the MC68851 is the effective address of the system
stack, not the effective address formed by the operand located on the top of the stack).

Reg field - Specifies the main processor address register to be used in the compare

MOTOROLA
A-26

MC68851 USER'S MANUAL

A.4 INSTRUCTION FORMAT DIAGRAMS

The instruction formats are summarized below.

PBcc

15 14 13 12 11 10 9 8 7 6 5 4 2 o

1 1 1 1 I 0 0 0 I 0 1 I Size I MC68851 Condition

16-Bit Displacement, or Most Significant Word of 32-Bit Displacement

PDBcc

15 14 13 12

1 1 1 1

0 0 0 0

PFLUSH

15 14 13 12

1 1 1 1

0 0 1 I

PFLUSHR

15 14 13 12

0 1 I 0

PLOAD

15 14 13 12

1 1 1 1

0 0 1 I 0

PMOVE (FORMAT 1)

15 14 13 12

1 1 1 1

0 1 0 I

MC68851 USER'S MANUAL

Least Significant Word of 32-Bit Displacement (If Needed)

11 10 9 8 7 6

I 0 0 0 1 0 0 1

0 0 0 0 0 0

16-Bit Displacement

11 10 9 8 7 6

I 0 0 0 0 0 0

Mode I 0 Mask

11 10 9 8 7 6

I 0 0 0 I 0 0 0

0 0 0 0 0 0

11 10 9 8 7 6

I 0 0 0 0 0 0

0 0 I R/W 0 0 0

11 10 9 8 7 6

I 0 0 0 0 0 0

P Reg I R/W 0 0 0

5

0

5

I
I

5

I
0

5

I
0 I

5

I
0

4 2 o

0 1 I Count Register

MC68851 Condition

4 3 2 o
Effective, Address

Mode Register

FC

4 3 2 0

Effective, Address
Mode Register

0 0 0 0 0

4 3 2 0

Effective, Address
Mode Register

FC

4 3 2 o
Effective, Address

Mode Register

0 0 0 0 0

MOTOROLA
A-27

.,

•

PMOVE (FORMAT 2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1 1 1 I 0 0 0 0 0 0 I
Effective

l
Address

Mode Register

0 1 1 I P Reg I R/W 0 0 0 0 I Num I 0 0

PMOVE (FORMAT 3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1 1 1 I 0 0 0 0 0 0 I
Effective

l
Address

Mode Register

0 1 1 I P Reg I RtW 0 0 0 0 0 0 0 0 0

PRESTORE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 Effective Address
Mode Register

PSAVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 Effective Address
Mode Register

PSCC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 1 1 1 I 0 0 0 I 0 0 1 Effective
l
Address

Mode Register

0 0 0 0 0 0 0 0 0 0 MC68851 Condition

PTEST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1 1 1 I 0 0 0 0 0 0 I Effective, Address
Mode Register

1 0 0 I Level I RtW A Reg I FC

PTRAPcc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1 1 1 I 0 0 0 I 0 0 1 1 1 1 I Op-Mode

0 0 0 0 0 0 0 0 0 0 MC68851 Condition

16-Bit Operand or Most Significant Word of 32-Bit Operand (If Needed)

MOTOROLA
A-28

Least Significant Word of 32-Bit Operand (If Needed)

Me688S1 USER'S MANUAL

PVALID (FORMAT 1)

15 14 13 12 11 10 9 8

1 I 0 o 01 0
o o 1 I 0 01 0 o

PVALID (FORMAT 2)

15 14 13 12 11 10 9 8

1 I 0 o 0 I 0

o o 1 I 0 1 I 0 0

MC68851 USER'S MANUAL

7 6 5

o o I
o o o

7 6 5

o o I
o o 0

4 3 2 o
Effective, Address

Mode I Register

o o o o

4 3 2 o
Effective, Address

Mode I Register

o 0 I Reg

MOTOROLA
A-29

•

•
MOTOROLA
A-30

Me68851 USER'S MANUAL

APPENDIX B
HARDWARE CONSIDERATIONS

This appendix discusses several aspects of the MC68851 that can simplify the task of the
system hardware designer.

B.1 SIMPLE SYSTEM CONFIGURATION

In this context, 'simple system' refers to a system composed of the MC68020, MC68851,
and any number of explicitly addressed physical address space devices (up to 2n devices,
where n is the number of physical address bits used). This system may include alternate
physical bus masters but, unless control signals shared between the logical and the physical
buses are buffered, concurrent logical and physical bus activity is not allowed. This system
may be considered to be a 'minimum configuration' since it includes only the circuitry
required to support basic MC68851 operations.

Figure B-1 illustrates the implementation of a simple system showing the connections
between the MC68020, MC68851, and the physical address space devices. In this figure,
several areas ofthe circuitry are labeled alphabetically to point out devices discussed below.

The circuitry in (A) provides a decode and strobe generation for CPU space accesses as
discussed in 4.2.3.5 TRANSLATION OF CPU SPACE ACCESSES. The active low output of
this logic is used to validate CPU space accesses. If coprocessors reside in the physical
address space of the system, address bits [13-15] and [16-19] (logical or physical) must
be further decoded to select an individual coprocessor or to signal an interrupt acknowledge
(refer to SECTION 9 COPROCESSOR INTERFACE). If no coprocessors reside in the physical
address space, the output of (A) can be used as an interrupt acknowledge signal without
fu rther decoae.

The inclusion or exclusion of latch (B) is dependent on the required hold time for the low­
order address bits of a particular system. During an address translation the MC68851 drives
the high-order physical address bits (PA8-PA31) and can guarantee a minimum hold time
for these outputs from the negation of PAS. However, the MC68851 does not drive the
low-order, shared address bits (AO-A7) during a translation and thus cannot provide a hold
time relative to PAS. The logical master drives these signals a'nd specifies a hold time from
the negation of its own address strobe (LAS). Since PAS is negated some time after LAS
(as given by AC specification #118) it is possible that insufficient hold time may be provided.
When LAS is negated, the low-order address bits are latched and held until LAS is again
driven low during the next bus cycle.

The data and address buffering (C) is typically required in a system in order to provide
increased current drive capability for a large number of physical address space devices.
In systems that do not load these buses in excess of the specified maximums, (C) may be
excluded. Note, however, that increased noise immunity and a reduction in transient current
requirements for the MC68851 can be obtained by reducing the capacitive loading on the
physical address and data buses and, therefore, sufficient buffering of these buses is highly
recommended.

Me688S1 USER'S MANUAL MOTOROLA
8-1

cps:
NO

-I o
::0
o
£:

:s:
n
0)
CO
CO
U'I
...a

c en
m
:a
en
:s: »
2
C » r-

iii

.:
MC6802li

FCO-FC2
SllO/SIZl

AO-A31

R/W
RMC

AS
OS

OSACKO/OSACK 1
BERR
HALT

RESET -
CLK

00-031

iiii
BIT

BGACK

~

SYSTEM --
RESET

CD """

1 I »
OV T_

SEE NOTE l. lJP~
CPU SPACE ADDRESS STROBE

MC68851
-'- ~

+5V - ASYNC
OV - FC3 , 0 74X373

FCO-FC2 .-- '--
SIZO/Slll

G®

I---.-
LA8-LA31 PA8-PA31 ... 8 fi PAO-PA7
AO-A7 ,

R/W
~r - 74X244

RMC

I
" 24 PA8-PA31

C> C[j ~

LAS PAS
...

PHYSICAL
OS D) 1+ 1 DEVICES

OBOIS - r PHYSICAL ADDRESS DECODE, (MEMORY, OSACKO/OSACK 1

0~ BERR STROBE GENERATION, +. 74X245
OMA,

1 HALT I AND BUS TIMING CONTROL I/O,

r---+- . RESET - I ~~
ETC,)

CLK I L r
00-031 + 0

+5V - LBRI PBR
LBRO PBG
LBGI PBGACK

NC- LBGO , 8
LBGACK o 00-07 ~ 74X244

<' -
~ J EN6
?

~
-

V I
? BUS INTERFACE

COPROCESSOR RESET ~ INITIALIZATION DATA ?

ysy thatt 9
is routed 'under' the MC68851 to the physical address space.

Figure 8-1. Example Simple MC68020/MC68851 Hardware Configuration

Logic block (0) contains the address decode, memory timing signal generation, and other
various system dependent devices (for example, watchdog timers, parity generator/check­
ers, ... , etc.) that are required by the system. This block also contains buffering for any
of the bus control signals that are heavily loaded. Additionally, (0) includes buffering for
any control signals that may be driven by an alternate physical bus master since gaining
control of the physical bus through arbitration does not imply that control signals shared
between the CPU and the MC68851 will be in the high-impedance state (i.e., they may be
driven by the CPU since it is not affected by physical bus arbitration).

The two gates marked (E) in the diagram are used to place buffers (B) and (C) in the high­
impedance state when an alternate physical bus master is active on the low-impedance
(output) side of these buffers. When the MC68851 completes a bus cycle and the physical
bus grant (PBG) output indicates that an alternate master will take control of the bus before
the MC68851 performs another cycle, these gates place the buffers in the high-impedance
state and maintain this state as long as PBGACK is asserted. If no alternate physical bus
master is present in the system, (E) is not required and the output of the buffers can always
remain in the low-impedance state. It is possible for an alternate physical master to share
the buffers for the high-order physical addresses (PA8-PA31) since these lines are placed
in the high-impedance state as a result of arbitration for the physical bus, in which case
the buffers can permanently remain in the low-impedance state. However, direct (unbuf­
fered) sharing of the low-order address, data, and control signal buses by an alternate
physical master is not allowed unless some provision is made to force the logical master
to also relinquish control of the bus in response to physical bus arbitration (for example,
arbitrating for both the logical and physical buses simultaneously).

Circuit (F) is used to gate configuration information into the MC68851 during reset as
described in 4.1.2 Bus Interface Initialization. This buffer is allowed to drive the MC68851
only during reset and only after the MC68851 is properly powered-up and asserts the
OBDIS signal. Both RESET and OBOIS must be used to control the impedance of this buffer
in order to avoid bus contention between (F) and any other data bus buffers during reset.
Note that this buffer is required only if a reset configuration other than the default config­
uration is necessary.

Finally, circuit (G) is presented to illustrate the recommended means of distributing the
RESET signal throughout a system. Since a coprocessor provides an integral part of the
system programming model (and state)' it is necessary to reset the coprocessor when, and
only when, the CPU itself is reset and not when the RESET signal is driven by the CPU
during a reset instruction. Additionally, resetting the MC68851 disables the translation,
breakpoint, and access level mechanisms; this is not typically desirable during instruction
execution.

B.2 ALTERNATE LOGICAL BUS MASTERS

An example of the inclusion of a logical address space DMA controller is presented in
Figure B-2. In this example, an MC68442 dual-channel OMA controller with a 32-bit address
bus is configured to provide low-latency 8- or 16-bit transfers. In Figure B-2, logic and
buffering described previously is included but has been reduced to blocks to simplify
discussion of additional circuitry.

Circuit (H), shown in detail in Figure B-3, demultiplexes the address/data outputs of the
MC68442 and also provides the multiplex control and routing required to allow the 16-bit
data bus of the MC68442 to interface to the 32-bit system bus. When an even word address

MC68851 USER'S MANUAL MOTOROLA
8-3

•

tps:
~O

--l o
:JJ
o
s;:

s:
C')
(7)
CC)
CC)

~
c
CJ)
m
:::D en
s:
l>
2:
C
l>
r-

iii
MC68020

FCO-FC2
SilO/Sill

AO-A31

R/W
RMC

AS
OS

OSACKO/oSACK I
BERR
HALT

RESET

ClK

00-031

SA
1iG

BGACK

MC68442

FC3
FCO-FC2
A24-A31

A8-A23/DO-DI6
AI-A7

cs
AS

RiW
UoS/AO
I'iiS/DS

oTACK

BECO-BEC2

OWN
UAS

OBEN
ODiR

HIBYTE -DEVICE ClK
CONTROL -INTERRUPT BR
CONTROL BG
~

BGACK

~ MC68851 =r@ FC3 (FROM MC684421
FC3 CPU SPACE ADDRESS STROBE

0 ASYNC _I
FCO-FC2 OWN (FROM MC684421
SilO/Sill

~
lA8-lA31 PA8-PA31 8

CD
PAO-PA 7

AO-A7 ...

RiW

~
RMC

III
24 PA8-PA31

CO ...
ViS PAS
OS

oBOIS -
DSACKO/OSACK 1 PHYSICAL ADDRESS DECODE. I ®
BERR STROBE GENERATION, 0
HALT I AND BUS TIMING CONTROL

-+- RESET -

~ ~ ClK

00-031

;-- - lBRI PBR
lBRO PSG
lBGI PBGACK

00-07" 8 I lBGO

II
lBGACK

~ ® CWJ ------ ADDRESS/DATA
REQUEST - CONDITIONING SYSTEM - DEMULTIPLEXER

lOGIC RESET --- (SEE FIGURE
(SEE FIGURE - B-31

4-341 CD

~
?

BUS EXCEPTION I r-4-ENCODING I ~~ lBGO_ 0 PR Q

.v,v
PMMU.MASTER

,vA
_v.v.y

ClR _v.v. v lAS
vv

~
LBGA".~

lBRO

RESET

Figure B-2. Example MC68020/MC68851 Hardware Configuration
with Single Alternate Logical Bus Master (MC68442)

----1-

PHYSICAL
DEVICES

(MEMORY,
DMA,
I/O,
ETC,

T

373.G

@

LAO-LA31

00-031

AO-A7

024-031

016-023

08-015

00-07

Figure B-3. AddresslData Bus Demultiplex Logic for Figure B-2

(A 1 = 0) is accessed by the MC68442, the multiplex logic routes the high-order (even) word
of the system data bus to the MC68442 shared address/data bus. Similarly, when an odd
word address is accessed (A 1 = 1) the low-order (odd) word of the system data bus is
routed to the MC68442. Although the additional hardware required to provide 8-bit single­
address transfers is not shown in this figure, it can be included easily (refer to Motorola
publication ADI-l002 MC68440 Dual-Channel Direct Memory Access Controller).

Circuit (I) provides the bus request conditioning logic as described in 4.4.1.1 ALTERNATE
MASTER REQUESTING THE LOGICAL BUS and prevents deadlocks ofthe logical bus should
the MC68851 be required to perform a table search operation from the DMA controller. In
a system incorporating multiple alternate logical masters, similar circuitry to perform this
same function must be included.

Circuit (J) demonstrates the use of the asynchronous control input (ASYNC). When the
alternate logical master asserts LBGACK indicating that it is going to perform bus activity,
ASYNC is asserted to indicate that the master does not present the same bus timings as
the MC68020. Note that this circuit also drives ASYNC low when the MC68851 is performing
table search operations. However, ASYNC is monitored only during address translation
and accesses to the MC68851 register set and is ignored during table search operations.

MC68851 USER'S MANltAL MOTOROLA
8-5

E

The only other major modifications required to include an alternate logical master are to
the p,hysical address space strobe generation and bus timing control circuitry (D). Since
the bus control signals for the MC68442 are different than those of the MC68020 and
MC68851, some provision must be made to incorporate these signals. Additionally, any
control signals not driven by the alternate master (e.g., RMC and DS) must be held inactive
with resistive pullups while the CPU signal buses are in the high-impedance state.

Note thatthe cont'rol circuitry for (8) is modified to account for the presence ofthe MC68442.
If an alternate logical bus master is employed that does not present an OWN signal, a
control circuitas shown in (Z) should be used to replace the G input control circuitry for
(8).

It is important to note that, while the inclusion of DMA hardware potentially provides for
low-latency response to external events, a DMA controller generating logical addresses
may not provide satisfactory response time unless certain conventions are adhered to by
the software controlling the DMA setup. First, both the source and destination of the
transfers should physically reside in the system (i.e., both should be currently allocated to
and reside in the physical address space and neither can be removed until the DMA
operation is complete). Second, translation descriptors for both the source and destination
operands should be pre-loaded into the MC68851 address translation cache using the
PLOAD instruction. Third, the translation descriptors should be locked into the ATC to
prevent their removal by the ATC replacement mechanism. Finally, the descriptors locked
into the ATC by previous DMA operations should be flushed from the ATC in order to
ensure that enough descriptors remain free to provide sufficient ATC performance for other
tasks.

B.3 LOGICAL ADDRESS SPACE DEVICES

Hardware devices are normally located in and accessed via the system's physical address
space. However, certain devices may reside in the logical address space and be accessed
using only logical address information.

The general class of device that qualifies for this type of organization is one that is accessed
via one of the address spaces that are unmapped by the MC68851. An 'unmapped' address
space.is one for which the MC68851 always provides a unity mapping (i.e., the physical
address is always equal to the logical address) and does not enforce any protection checking
on the accesses in this address space. Additionally, accesses via an unmapped address
space are passed directly through the MC68851 and thus do not require any intervention
from the ATC (i.e., translation descriptors for these accesses are neither created nor main­
tained). The only address space that is unmapped by the MC68851 is the CPU space
(FC = 7).

It is possible to create other address spaces that haye a unity mapping by setting the
descriptor type field of a root pointer register to 'page descriptor' (refer to SECTION 5
ADDRESS TRANSLATION). However, as opposed to the 'unmapped' address spaces men­
tioned above, accesses to other 'unity-mapped' address spaces are always monitored by
the MC68851 protection mechanism and do involve the creation and maintenance of ATC
entries although the entries (with one-to-one mappings) may be created by the MC68851
without reference to the external translation tables.

B.3.1 Logical Address Space Coprocessors

The MC68851 response to CPU space accesses differs from accesses to other address
spaces in that the accesses are always allowed (i.e., are never terminated by the MC68851

MOTOROLA
8-6

Me6SS51 USER'S MANUAL

except for accesses to the MC68851 register set) and the CLI signal, instead of the physical
address strobe (PAS), is used to validate these accesses on the phsyical address bus. Since
the logical address is always equal to the physical address, the logical address can be used
equivalently to access devices residing in these address spaces. Using the logical address
provides a performance benefit in that accesses are not subject to the translation overhead
of the MC68851 and, with sufficient buffering, also allows accesses to the logical address
space coprocessor to be performed while the physical bus is being used by an alternate
physical bus master.

Devices residing in the logical address space are accessed using only information from
the logical buses (address and control). The only further provisions that must be made are
to block propagation of the cycle to physical address space devices by forcing the CPU
space address strobe to remain negated and to ensure that transceivers on the system
data bus do not conflict with the bus drivers of the logical address space device.

Figure 8-4 illustrates the simplest method by which the MC68881 can be included in the
logical address space of an MC68020/MC68851 system. The chip-select for the MC68881
(L) is decoded directly from the logical address bus, and the bus control strobes of the
MC68020 are connected directly to the corresponding MC68881 signals. In this example,
the MC68881 is accessed using Cp-ID $2 (A15/A14/A13 = 010). The gate (K) is used to
block propagation of the CPU space address strobe to other devices when the MC68881
is accessed. Circuit (M) isolates the local data bus from the external bus transceivers by
forcing the transceivers into the high-impedance state unless either the physical or CPU
space address strobe is asserted.

B.3.2 Other Logical Address Space Devices

A more restricted class of devices can be considered that consists of those devices that
are accessed via an address space with a unity mapping. In these cases, the same general
criteria remain valid as discussed above but, additionally, the hardware designer must take
into account the possible MC68851 responses to accesses in these address spaces. Since
there is no provision for preventing the MC68851 from monitoring all logical bus activity
on a cycle-by-cycle basis (i.e., the synchronous timing specifications do not allow for
intervening logic between the CPU and the MC68851), any device that is accessed in a
logical address space other than the CPU space must be able to correctly respond to
MC68851 bus control signals (bus error or relinquish and retry).

The above requirement does not, in general, place any constraints on synchronous logical
devices since the MC68851 provides sufficiently fast assertion of the bus control strobes
to properly terminate any MC68020 bus cycle. However, due to extra synchronization
delays, the MC68851 may not be able to correctly terminate a minimum-period bus cycle
executed by an asynchronous logical bus master.

As an example of the application of logical address space devices, consider an operating
system that runs all supervisor code with a unity mapping. For this type of operation, the
MC68851 supervisor root pointer register is initialized with a value of $0000020100000000
(zero base offset, page descriptor, globally shared), and the SRE bit is set in the translation
control register (the SRP is used to translate all supervisor references). This setup provides
unity mapping of all supervisor references.

As above, since the physical address is always equal to the logical address, the logical
address can be used equivalently to access devices during supervisor bus cycles. The

MC68851 USER'S MANUAL MOTOROLA
8-7

CPS:
000

-l o
::0
o
r »

s:
(')
g,
co co
(11 .-
c
C/)
m
::0 en
s: »
2:
c » r-

I
MC68881

AO
Al-A4

00-031

AS
R/W

liS
CS

OSACKO/OSACK 1

SIZE
RESET

elK

MCB8020

FCO-FC2
SilO/Sill

AO-A31

R/W
RMC

AS
liS

OSACKO/OSACKI
BERR
HALT

RESET

ClK

00-031

liii
BG

BGACK

+5 V

~

-
CHIP-SElECT I
lOGIC (SEE

DETAil)

•
"T

A19
Al8
A17
AlB L~ ~1~3 "\
A13 ~] CP_CHIP SELECT

o V-
+5 V -

L.....e-

+5V -

NC -

I LL0]
SYSTEM

RESET

MC68851

U FC3
ASYNC
FCO-FC2
SilO/Sill
LA8-LA31 PA8-PA31
AO-A7

R/W
RMC

CIT
LAS PAS
liS

OBDIS I---
OSACKO/OSACKI
BERR
HALT
RESET -
ClK

00-031

lBRI PBR
lBRO PBG
IifGI PBGACK
LBGO
lBGACK

FC2~
FCI
FCO

COPROCESSOR CHIP SELECT DETAil

{>c>-

r& CPU SPACE ADDRESS STROBE

»T
8 PAO-PA 7

"' 0

III
... 24 PA8-PA31

®-"'

I I PHY~CAl ADDRESS DECDDE'lev -STROBE GENERATION. 0

~ 1 AND BUS TIMING CONTROL

~
I 0) I "C -

®

00-07" ~

~

Figure 8-4. Example MC68020/MC68851 Hardware Configuration with Logical
Address Space Device (MC68881 FPCP)

0

PHYSICAL
DEVICES

(MEMORY.
OMA.
I/O.
ETC)

hardware considerations are similar to those of placing a coprocessor on the logical bus:
the selection of the logical device (for example, ROM, RAM, ... , etc.) is based on a decode
of the logical address information, and this decode is used to block propagation of the
cycle to the physical address space (PAS must be blocked in this case).

The primary difference between the two cases is that the MC68851 does monitor all ac­
cesses in this case and the logical address space is sub-divided into logical pages each of
which must have a translation descriptor resident in the MC68851 ATC in order to be
referenced. Otherwise, the MC68851 issues a relinquish and retry (8ERR, HALT, and L8RO)
and internally generates a translation descriptor with a unity mapping for the referenced
page (the relinquish and retry is issued to allow the MC68851 time to create the ATC entry).

B.4 ACCESS TIME COMPUTATIONS

The following paragraphs discuss the various timing parameters that are useful in deter­
mining critical paths when designing interfaces between the logical bus master, the MC68851,
and memory devices.

B.4.1 CPU-to-Memory Access Time Computations

The paths that are typically critical in any memory interface are illustrated and defined in
Figure 8-5.

The type of device that is being interfaced to the bus master determines exactly which of
the paths is most critical. In general, the strobe asserted to DSACKx asserted path is most
critical for very fast devices since little time is available between the assertion of the strobe
and the point at which DSACKx must be asserted to terminate the bus cycle. The address­
to-data paths are typically the critical paths for static devices since there is no penalty for
initiating a cycle to these devices and later validating that access with the appropriate bus
control signal (LAS or PAS). Conversely, the address strobe-to-data valid path is usually
most critical for dynamic devices since the cycle must be validated before an access can
be initiated. For devices that signal termination of a bus cycle before data has been validated
(e.g., error detection and correction hardware) in order to improve performance, the critical
path may be from the address or strobes to the assertion of 8ERR (or 8ERR and HALT).
Finally, the use of the logical or physical assertion delays is usually governed by whether
the device resides on the logical or physical bus.

For the case of a synchronous master, the equations for determining the address times
presented in Figure 8-5 are shown in Table 8-1.

Example access time calculations for an MC68020 and an IViC68851 operating synchron­
ously at 16.67 MHz are shown in Table 8-2.

The access times for an asynchronous logical master can be calculated in a fashion similar
to the above case for synchronous masters. However, because the logical strobe to physical
strobe assertion delay is non-deterministic (dependent on whether or not setup times are
met) in the general, asynchronous case, the exact equations for the access times depends
on the particular asynchronous master.

B.4.2 MC68851-to-Memory Access Time Computations

Similar to the access paths evaluated above, the access times for MC68851 initiated-bus
cycles during table search operations can be calculated. As shown in Figure 8-6, there are

Me68851 USER'S MANUAL MOTOROLA
8-9

•

so S2 Sw S4 so

CLOCK

LAO·LA31. SilO/Sill.
FCO·FC3. R/W

PA8·PA31

00·031

Paramater Description Symbol Equation

-a Logical Address Valid to DSACKx Asserted tLAVDL 8-1

b Logical Address Strobe Asserted to DSACKx Asserted tLSADL 8-2

c Physical Address Valid to DSACKx Asserted tpAVDL 8-3

d Physical Address Strobe Asserted to DSACKx Asserted tpSADL 8-4

e Logical Address Valid to BERR/HALT Asserted (Late Termination) tLAVBHL 8-5

f Logical Address Strobe Asserted to BERR/HALT Asserted tLSABHL 8-6

g Physical Address Valid to 8ERR/HALT Asserted tpAVBHL 8-7

h Physical Address Strobe Asserted to BERR/HALT Asserted tpSABHL 8-8

i Logical Address Valid to Data Valid tLAVDV 8-9

j Logical Address Strobe Asserted to Data Valid tLSADV 8-10

k Physical Address Valid to Data Valid tpAVDV 8-11

I Physical Address Strobe Asserted to Data Valid tpSADV 8-12

Figure B-5. Access Time Computation Diagram

six parameters that are of interest in determining the critical paths to memory. Table 8-3
provides the equations required to calculate the MC68851-to-memory access times, and
Table 8-4 illustrates example calculations for these equations.

B.5 EXTERNAL CACHES

In order to provide lower average access times to memory, many systems implement
caches local to the main processor to store recently used instructions and/or data. With
reference to the MC68851, the primary decisions in determining a particular cache archi­
tecture are whether to place the cache in the logical or the physical address space and

MOTOROLA
8-10

Me68851 USER'S MANUAL

Table 8-1. CPU-to-Memory Access Time Equations

tLAVDL = tCYC + tCH - tCHAV - tAIST + n • tCYC

tLSADL = tCYC - tCLSA - tAIST + n • tCYC

tpAVDL = tCYC + tCH - tCHAV - tLAVPAV - tAIST + n. tCYC

tpSADL = n • tCYC - tCLPSL - tAIST

tLAvBHL = 2. tCYC + tCH - tCHAV - tBELCL + n. tCYC

tLSABHL = 2 • tCYC - tCLSA - tBELCL + n. tCYC

tpAVBHL = 2. tCYC + tCH - tCHAV - tLAVPAV - tBELCL + n • tCYC

tpSABHL = tCYC - tCLPSL - tBELCL + n • tCYC

tLAVDV = 2. tCYC + tCH - tCHAV - tDICL. + n • tCYC

tLSADV = 2 • tCYC - tCLSA - tDICL + n • tCYC

tpAVDV = 2. tCYC + tCH - tCHAV - tLAVPAV - tDICL + n. tCYC

tpSADV = tCYC - tCLPSL - tDICL + n • tCYC
Where:

tCYC = The Clock Period

tCH = The Clock High Time

tCHAV = The Clock High to Address Valid Delay

tAIST = The Asynchronous Input Setup Time

tCLSA = The Clock Low to Strobe Low Delay

tLAVPAV = The Logical Address to Physical Address Translation Time

tCLPSL = The Clock Low to PAS Low Assertion Delay

(MC68851 - #1)

(MC68851 - #3)

(MC68020 - #6)

(MC68020 - #47A)

(MC68020 - #9)

(MC68851 - #95)

(MC68851 - #115)

(MC68020 - #27A)

(MC68020 - #27)

tBELCL = The BERR/HAL T to Clock Low Setup Time

tDICL = The Data-In to Clock Low Setup Time

n = The Number of Wait States

Table 8-2. Example CPU-to-Memory Access Time Calculations
(MC68020 and MC68851 at 16.67 MHz, tCH = 30 ns,

Zero and One Wait State)

n = 0 n = 1

tLAVDL = 60 + 30 - 30 - 5 + n • 60 55 ns 115 ns (1)

tLSADL = 60 - 30 - 5 + n. 60 25 ns 85 ns (2)

tpAVDL = 60 + 30 - 30 - 45 - 5 + n. 60 10 ns 70 ns (3)

tpSADL = 0 - 25 - 5 + n. 60 30 ns (4)

tLAVBHL = 120 + 30 - 30 - 20 + n • 60 100 ns 160 ns (5)

tLSABHL = 120 - 30 - 20 + n .60 70 ns 130 ns (6)

tpAVBHL = 120 + 30 - 30 - 45 - 20 + n. 60 55 ns 115 ns (7)

tpSABHL = 60 - 25 - 20 + n ~ 60 15 ns 75 ns (8)

tLAVDV = 120 + 30 - 30 - 5 + n. 60 115 ns 175 ns (9)

tLSADV = 120 - 30 - 5 + n. 60 85 ns 145 ns

tpAVDV = 120 + 30 - 30 - 45 - 5 + n • 60 70 ns 130 ns (11)

tpSADV = 60 - 25 - 5 + n. 60 30 ns 90 ns (12)

MC68851 USER'S MANUAL

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

MOTOROLA
8-11

•

so S2 Sw S4 so

CLOCK

PA8-PA31. ,,---------------..... ~---
AO-A7 1Jii----------------..J"----

BERR. --------------------------1
HALT

00-031 ----------------------<,

Para mater Description Symbol Equation

a Physical Address Valid to DSACKx Asserted tpAVDL B-13

b Physical Address Strobe Asserted to DSACKx Asserted tPSADL B-14

c Physical Address Valid to BERR/HAL T Asserted tpAVBHL B-15

d Physical Address Strobe Asserted to BERR/HALT Asserted tPSABHL B-16

e Physical Address Valid to Data Valid tpAVDV B-17

f Physical Address Strobe Asserted to Data Valid tpSADV B-18

Figure 8-S. Access Time Computation Diagram - MCS8851 Initiated Accesses

whether the cache accesses are terminated early (before the cache look-up is complete)
or only after validation.

The MC68020 late BERR/HAIT facility allows an external device to signal completion of a
bus cycle by asserting DSACKx and later (approximately one clock period) aborting or
retrying that cycle if an error condition is detected. As one critical access path in many
memory structures is asserting DSACKx in sufficient time to avoid additional wait states,
the late termination capability allows the memory controller to terminate a bus cycle before
data has been validated with the expectation that the data will be valid before it is latched
by the processor. If the data validation fails, the memory controller can then abort (BERR)
or retry (BERR/HAL T) the cycle. This technqiue is useful in memory error detection schemes
where the cycle can be terminated as soon as data becomes available and the error checking
can take place during the period between the signaling of termination of the cycle and the
latching of data by the processor with a late retry or abort signaled upon error indication.
Likewise, this technique can be used in cache implementations where the cache tag vali­
dation cannot be completed before termination of the cycle must be signaled but can be
completed before late termination must be indicated.

The major consideration that must be evaluated in choosing whether or not to utilize late
cycle termination is the overhead involved in retrying a bus cycle after the cycle has missed
in the cache. The minimum penalty is the three clock periods required to retry the cycle
plus the two idle clocks before the retry, assuming that the bus control strobes (BERR and
HALT) are negated soon enough after the completion of the aborted cycle that the next
cycle can begin immediately. In evaluating this overhead, the projected cache miss rate

MOTOROLA
8-12

MC68851 USER'S MANUAL

Table 8-3. MC68851-to-Memory Access Time Equations

tpAVDL = tCYC + tCH - tCHAV - tAIST + n. tCYC

tpSADL = - tCLSA - tAIST + n. tCYC

tpAVBHL = 2. tCYC + tCH - tCHAV - tBELCL + n • tCYC

tpSABHL = 2. tCYC - tCLSA - tBELCL + n. tCYC

tpAVDV = 2. tCYC + tCH - tCHAV - tDICL + n. tCYC

tpSADV = 2 • tCYC - tCLSA - tDICL + n • tCYC
Where:

tCYC

tCH

tCHAV

tAIST

tCLSA

tBELCL

tDICL

= The Clock Period

= The Clock High Time

= The Clock High to Physical Address Valid Delay

= The Asynchronous Input Setup Time

= The Clock Low to PAS Low Delay

= The BERR/HAL T to Clock Low Setup Time

= The Data-In to Clock Low Setup Time

n = The Number of Wait States

(MC68851 - #1)

(MC68851 - #3)

(MC68851 - #6)

(MC68851 - #47A)

(MC68851 - #9)

(MC68851 - #27A)

(MC68851 - #27)

Table 8-4. Example MC68851-to-Memory Access Time
Calculations

(MC68851 at 16.67 MHz, tCH = 30 ns,
Zero and One Wait State)

n=O n = 1

tpAVDL = 60 + 30 - 30 - 5 + n • 60 55 ns 115 ns

tpSADL = 60 - 25 - 5 + n • 60 30 ns 90 ns

tpAVBHL = 120 + 30 - 30 - 20 + n. 60 100 ns 160 ns

tpSABHL = 120 ~ 25 - 20 + n • 60 75 ns 135 ns

tpAVDV = 120 + 30 - 30 - 5 + n. 60 115 ns 175 ns

tpSADV = 120 - 25 - 5 + n. 60 90 ns 150 ns

(13)

(14)

(15)

(16)

(17)

(18)

(13)

(14)

(15)

(16)

(17)

(18)

determines the percentage of cycles that must be retried. Additionally, the degree of par­
allelism in the system should be considered. If, after a cache miss, it is possible to continue
the memory cycle to main memory while the processor is retrying the cycle, it is possible
to avoid some, or all, of the performance penalty associated with late termination (although
the control circuitry required becomes more complex).

The logical versus physical decision should be based on several design considerations. As
shown by the access time calculations in Table B-2, for the same performance on a cycle­
by-cycle basis (as measured by the number of wait states), use of logical information
provides significantly more access time for performing the tag lookup, compare and cycle
termination than is available with physical address information. Thus, for the same cycle­
by-cycle performance, the logical cache can utilize slower, lower-cost components; or, with
the increased access time available, can tolerate increased buffering delays and, hence,
construct a larger cache. Additionally, in systems that employ physical address space DMA
controllers, a logical cache significantly reduces the physical bus bandwidth requirements
of the processor and thus can reduce the performance degradation associated with multiple
bus masters sharing a common bus.

The primary benefit of a physical cache over a logical cache is the ability to easily maintain
entries for multiple tasks simultaneously and the removal of the requirement to flush the
cache on each context switch. Since each task in a system may have its own unique mapping
of the logical address space, a logical cache (except as described below) must be flushed

MC68851 USER'S MANUAL MOTOROLA
B-13

•

of all entries whenever the logical-to-physical mapping of the system changes as occurs
during a context switch. Since there is only a single physical address space, this problem
does not occur with a physical cache as all references to a particular operand must utilize
the same physical address. However, the intended cache size should be evaluated when
considering the utility of allowing mutliple tasks to maintain cache entries. If the cache
size is relatively small, and the time between context switches is large, each task will tend
to fill the cache and to remove all entries created during the execution of previous tasks.
Conversly, if the cache size is relatively large and the period between context switches is
relatively small, the cache may provide an efficient sharing of entries.

The MC68851 provides the system designer with the ability to construct a logical cache
that maintains entries for multiple tasks simultaneously by using the task alias of the
MC68851. To implement this type of logical cache, the current value of the task alias is
stored in the tag field of each entry loaded into the cache. The current task alias is also
stored in a hardware register and is compared, during each bus cycle, against the value
stored in the tag array. Only entries that are associated with the current task alias generate
valid cache hits. In order to maintain cache consistency, the TA field of the MC68851 PCSR
is checked after each write to the CRP register, and, if the MC68851 indicates that entries
with the current task alias have been flushed, then the logical cache is also flushed of
entries with that task alias.

B.5.1 Logical Cache Implementation

An example organization of a logical data cache is shown in Figure 8-7. As with the
coprocessor example discussed in B.3.1 Logical Address Space Coprocessors, the cache
uses only logical address information to identify an element in its tag or data stores.

When a bus cycle is initiated, a cache lookup begins in parallel with address translation
by the MC68851. Thisis done in order to reduce the penalty for cache misses by overlapping
the MC68851 translation time with the cache lookup. With this organization, the cache
timing controller does not terminate a bus cycle until the cache has had sufficient time to
validate the access as a 'hit' or a 'miss'; When a 'hit' decision is made, the cache controller
asserts the DSACKx signals and also blocks propagation of the physical address strobe
(0). If the cache decision cannot be completed before PAS would normally be asserted by
the MC68851, some provision must be made to delay the propagation of PAS until the
decision is valid. Otherwise, spurious assertions of the PAS signal are likely to occur.

The cache control circuit (N) contains all logic required to clear or create cache entries.
Also contained in (N) is the decision logic requi~ed to determine whether a hit or miss has
occurred and the timing logic that is required to prevent propagation of the 'hit' signal
until the lookup and compare circuitry has had sufficient time to generate a valid decision.
The critical path in the design of this cache is from the output of valid address by the CPU
to the assertion of DSACKx by the cache controller (equation 8-1). After the decision has
been made that a cache-hit has occurred, the hit signal propagates through a single level
of open-collector logic (P) to drive the DSACKx signals (assuming that the cache is always
organized as a 32-bit port). Operating at 16.67 MHz, 55 nanoseconds are available from
the presentation of valid address by the CPU to the assertion of DSACKx by the cache
controller while 115 nanoseconds are available from valid address to data valid at the
processor inputs.

If the access times cannot be met due to the particular cache architecture, size, cost, or
other consideration, the system designer may chose to utilize an early termination ap­
proach, as discussed above, that increases the decision time available to the cache con­
troller by making the critical path from address valid to 8ERR/HAL T low (Equation 8-5).

MOTOROLA
B-14

MC68851 USER'S MANUAL

3:
n
~
~
~

c
(J)
m
:xJ
en
3: »
:2
C »
r-

s:
o
-I o
::0 roo

~~

OATA
STORE

I l

MC68020

FCO-FC2
SIZO/SIZl

AO-A31

R/W
RMC

AS
OS

OSACKO/OSACK 1
BERR
HALT

RESET

CLK

00-031

BR
iiG

BGACK

I

OUTPUT U,,"," VI

ENABLE TAG STORE.
COMPARE.

WRITE AND
CONTROL 0

LAS -c>o- 0
~
> ~

--~ ~ OSACKl ~ ;\CH J.
.>

.• >
OSACKO .> D-

OV -
+5V -

L-...-

0 1

SYSTEM
RESET

+5 V -

NC -

CACHE HIT (ACTIVE HIGH)
~AS_OUT - -PAS IN - 0

MC68851

FC3
ASYNC
FCO-FC2
SIZO/SIZl
LA8-LA31 PA8-PA31
AO-A7

R/W
RMC

Cil
LAS PAS ~ ~

TIS
OBDIS PHYSICAL ADDRESS SPACE

OSACKO/OSACK 1 DEVICES. CONTROL. AND BUFfERING
BERR (REFER TO FIGURES B-1 THROUGH
HALT

B-4 FOR DETAIL) RESET

CLK

00-031

LBRI PBR
LBRO PBG
LBGI PBGACK
LBGO .
LBGACK

I

Figure 8-7. Example MC68020/MC68851 Hardware Configurtion with Logical Data Cache

The only required changes to the cache structure shown in Figure B-7 is to the cycle
termination logic (P). Figure B-8 shows an example circuit that could replace (P) to provide
the early-termination/late-retry function.

Normally, as soon as LAS is asserted, circuit (Q) immediately asserts the DSACKx signals
to terminate the bus cycle assuming that the cache will produce a valid 'hit' later in the
cycle. Circuit (R) prevents the early termination from occurring from those cycles that access
operands that are non-cacheable or had missed in the cache on the previous cycle (and
have already been retried). In this example, (R) prevents early termination of all CPU space
accesses, all write cycles (assuming a write through cache is implemented), and all cycles
that missed in the cache on the previous cycle and were not accesses to non-cacheable
locations. The flip-flop (V) latches the termination condition of the current bus cycle at the
falling edge of bus state 54 to be used during the next cycle. Other conditions to suppress
early termination may be included as required by a particular system but propagation
delays must be carefully considered in order that the output of (R) be valid when LAS is
asserted in order to avoid spurious assertions of the DSACKx signals. Alternately, LAS
could be delayed to allow more time for address decode but the combination of these
signals must be valid before the DSACKx signals are sampled (see Equation 4-2).

The late-termination timing chain is formed by the flip-flop (5) and gate (T). After the falling
edge of bus state 52, the first clock edge on which BERR or HALT is sampled, the Q output
of (5) is driven high to enable the late cycle termination by (T). If the current cycle is
accessing a cacheable location, as determined by the output of (R), if a cache hit has not
occurred, and if the Q output of (5) is high, then the BERR and HALT signals are driven
low (U).

Note that the logic depicted in Figure B-8 is designed to support a cache o'perating with
no wait states. A provision for generating wait states may be included by placing additional
timing stages in (5) to delay propagation of this output by the required number of clock
periods.

R/W

CLK

MOTOROLA
8-16

CACHE HIT
(ACTIVE LOW)

FC3
FC2
FC1
FCO

CACHE HIT
(ACTIVE LOW)

Figure B-8. Example Early-Termination Control Circuit

Me688S1 USER'S MANUAL

In order to minimize the potential for delays in retrying a bus cycle, the negation path of
the bus error and halt signals should be carefully controlled. Light capacitive loading of
these signal lines as well as use of a properly sized pullup resistor for the open-collector
drivers, or some equivalent method, is recommended.

The available cache tag lookup, compare, and logic delay (T and U) time for this imple­
mentation is given by Equation 4-5 (100 nanoseconds at 16.67 MHz).

A further design consideration for implementation of an early termination cache controller
is the response of the controller to bus cycles that satisfy the MC68851 conditions for
signaling either a bus error or a relinquish and retry. The cache controller must allow the
MC68851 to correctly terminate those bus cycles. The controller depicted in Figure 8-8
allows the processor to accept a relinquish and retry from the MC68851 on the first bus
cycle of any access and to accept a bus error from the MC68851 on the first cycle of an
access that hits in the logical cache or on the retry of an access that misses in the logical
cache (the bus error asserted by the MC68851 is initially masked by the retry signaled by
the cache controller).

Finally, the system designer should consider the response of the physical memory con­
troller to accesses that miss in the logical cache (and hit in the MC68851 ATC) and are
retried by the CPU. During a retry operation, and in the absence of arbitration for the logical
bus, the MC68020 continuously drives the address bus with the address that caused the
retry to be signaled. Likewise, as long as the logical master is continuously driving the
logical address bus, the MC68851 continuously drives the physical address bus with the
logical-to-physical mapping corresponding to the logical address (provided that there is
no arbitration for the physical bus). This presents the designer with the opportunity to
utilize this information in order to continue (or initiate) the access in the physical address
space (by latching the state of the PAS signal during the initial bus cycle and holding it
asserted for the duration of the retry) and thus decreasing the overhead associated with
retrying the cycle.

B.S.2 Physical Cache Implemtation

The general design considerations for a physical address space cache are similar to those
of a logical cache except that the primary control signal is the physical address strobe
(PAS).

Figure 8-9 illustrates a block diagram of a physical cache similar to the logical cache shown
in Figure 8-7. The major differences in the two implementations is the removal of the
function code signals from the cache tag compare circuitry (X) (they do not provide mean­
ingful address information in the physical address space) and the use of PAS to condition
the termination of bus cycles instead of LAS (V).

Similar to the case discussed for the logical cache, the 'cache hit' signal must be conditioned
by timing control logic to prevent assertion of the hit signal before the tag compare circuitry
has had adequate time to generate a valid decision. Otherwise, spurious assertions of the
conditioned PAS signal at (W) are likely to occur. For this cache configuration, the critical
path is from the presentation of valid physical address to the assertion of DSACKx by the
cache controller. This time is given by Equation 8-3 (70 nanoseconds at 16.67 MHZ with
one wait state).

MC68851 USER'S MANUAL MOTOROLA
8-17

•

In general, a physical cache does not exhibit as high a degree of parallelism of activity as
does a logical cache since the tag lookup and compare for a physical cache does not begin
until the address translation has been completed by the MC68851 (while the logical cache
performs these two activities simultaneously). However, certain cache implementations
can regain this parallelism if the size of the cache is equal to or less than the physical page
size.

With a physical address space of 2m bytes and a page size of 2n bytes, m-n bits of the
physical address are used to uniquely identify one of 2m-n pages and n bits are used as
an index within the page. The n index bits are not translated by the MC68851 and, if the
size of the physical address space cache (or the size of the sets in the cache for a semi­
associative cache) is equal to or less than the page size, these n bits can be routed directly
from the CPU to the cache; allowing the index into the tag array to occur simultaneously
with the address translation. Immediately upon completion of the address translation, the
physical address can be compared against the tag(s) to determine whether or not the
required entry is contained in the cache. This type of implementation removes the tag
retrieval time from the critical decision path and provides a potential performance benefit
or cost reduction.

Identical to the case discussed for the early-termination of logical cache accesses, the same
technique shown in Figure 8-8 can be used with a physical cache in order to change the
critical path from the address valid to DSACKx asserted to address valid to 8ERR/HALT
asserted. In this case the critical path time is given by Equation 8-7 (55 nanoseconds at
16.67 MHz, no wait states).

The design considerations discussed previously concerning bus cycle retry control are
equally vand for both logical and physical caches.

B.5.3 A Note on "Instruction-Only" Cache Implementations

In some cases, particularly in multi-processing systems where cache coherence is a con­
cern, it is desirable to store only instruction operands since they are not considered to be
alterable and, hence, do not contribute to the coherence problem. In general, this is not
feasible with the M68000 architecture since the M68000 Family processors do not provide
a clear distinction between instruction fetches and data accesses to the program space.

The ability to generate program counter (PC) relative data accesses makes distinguishing
between data accesses and instruction fetches impossible. For example, consider the in­
struction:

MOVE.L 8(PC),DO

This instruction uses an offset of eight bytes from the program counter to access a data
operand in the program space (i.e., the function code used for the operand read cycle is
either one or five, indicating one of the program spaces) and loads it into data register DO.
An "instruction-only" cache would load this operand into the cache creating the potential
that another processor might modify this data in the main memory and cause the cached
value to become inconsistent (which may not be detectable by the cache controller).

The only method by which a true instruction-only cache can be implemented is to disallow
all forms of PC relative data addressing, requiring that all code generators for the system
and all ported software not use that addressing mode.

MOTOROLA
8-18

MeSSS51 USER'S MANUAL

s:
(")
en co co c.n
...;a

c
en
m
::J:I en
3: »
:2
C »
r-

s:
o
~ o
::XI roo

~r­(,0»

MC68020

FCO-FC2
SllO/Slll

AO-A31

R/W
RMC

AS
liS

DSACKO/DSACKI
BERR
HALT

RESET

eLK

00-031

Bii
BG

BGACK

II

~

ov -
+5V -

L-e.

+5 V-

NC -

~
SYSTEM

RESET

u-®(1
'l)

PASjlUT

MC68851

FC3
ASYNC
FCO-Fe2
SllO/Slll
LA8-LA31 PA8-PA31
AO-A7

R/W
RMC

CD
LAS PAS
os

DBDlS
DSACKO/DSACK 1
BERR
HALT
RESET

eLK

00-031

LBRI PBR
LBRO PBG
LBGI PBGACK
LBGO
lBGACK

uUlrul

TAG STORE, ENABLE
CACHE HIT (ACTIVE HIGH) COMPARE, DATA

AND WRITE STORE
CONTROL 0

PAS

H ~ t o :> DSACKI - - ~
~ n ~ DSACKO

- 0

PHYSICAL ADDRESS SPACE
DEVICES, CONTROL. AND BUFFERING

(REFER TO FIGURES B-1 THROUGH
B-4 FOR DETAIL)

' \

J

Figure 8-9. Example MC68020/MC68851 Hardware Configuration with Physical Data Cache

II

8.6 POWER AND GROUND CONSIDERATIONS

The MC68851 is fabricated in Motorola's advanced HCMOS processor, contains approxi­
mately 115,000 transistors, and is capable of operating at clock frequencies of 20 MHz.
While the use of CMOS for a device containing such a large number of transistors allows
significantly reduced power consumption in comparison to an equivalent NMOS device,
the high clock speed makes the characteristics of power supplied to the part quite important.
The power supply must be able to supply large amounts of instantaneous current when
the MC68851 performs certain operations, and it must remain within the rated specifications
at all times. In order to meet these requirements, more detailed attention must be given
to the power supply connection to the MC68851 than is required for NMOS devices that
operate at slower clock rates.

In order to supply a solid power supply interface, eight VCC pins and eight GND pins are
provided. This allows three VCC and GND pins to supply the power for the physical address
bus, three VCC and GND pins to supply the data bus, while the remaining two VCC and
GND pins are used by the internal logic, the logical address input buffers, and the clock
generation circuitry. Table 8-5 lists the VCC and GND pin assignments.

Table 8-5. VCC and GND Pin Assignments

Pin Group vcc GND

Physical Address D5, G2, J4 E4, G3, K5

Logical Address, Internal Logic M7 L7

OOrD31 E10, G12, K9 09, G11, J10

Internal Logic, Clocks B7 C7

In order to reduce the amount of noise in the power supplied to the MC68851 and to provide
for instantaneous current requirements, common capacitive decoupling techniques should
be observed. 'While there is no recommended layout for this capacitive decoupling, it is
essential that the inductance between these devices and the MC68851 be minimized in
order to provide sufficiently fast response time to satisfy momentary current demands and
to maintain a constant supply voltage. It is suggested that a combination of low, middle,
and high frequency, high quality capacitors be placed as close to the MC68851 as possible
(for example, a set of 10 microfarad, 0.1 microfarad, and 330 picofarad capacitors in parallel
provides filtering for most frequencies prevalent in a digital system). These decoupling
techniques should also be observed for other VLSI devices in the system.

In addition to the capacitive decoupling of the power supply, care must be taken to ensure
a low-impendace connection between all MC68851 VCC and GND pins and the system
power supply planes. Failure to provide connections of sufficient quality between the
MC68851 power supply pins and the system supplies will result in increased assertion
delays for external signals, decreased voltage noise margins, and potential faults in internal
logic.

8.7 TEST EQUIPMENT CONSIDERATIONS

A final factor that system designers should consider when observing the operation of the
MC68851 in a system is that appropriate test equipment must be used in order to avoid

MOTOROLA
8-20

MC68851 USER'S MANUAL

adversely affecting the operation of the MC68851 by altering critical system characteristics
(for example, load capcitance on signal lines and buses).

Low-capacitance oscilloscope and logic analyzer probes should be used when observing
signals that exhibit fast rise and fall times or that have loads approaching the specified
maximums.

When using invasive test equipment (for example, logic analyzer probes that are placed
between the MC68851 and the system under test), care must be taken to minimize the
capacitive loading of signal lines and buses and also to minimize the addition of inductance
between the power and ground pins of the MC68851 and the system power supply.

Me6SSS1 USER'S MANUAL MOTOROLA
8-21

lEI

MOTOROLA
8-22

MC68851 USER'S MANUAL

APPENDIX C
SOFTWARE CONSIDERATIONS

This appendix provides a discussion of several considerations for operating system pro­
grammers using the MC68851. This Appendix assumes that the reader is familiar with the
MC68851 as discussed in previous sections of this manual and is also familiar with the
MC68020.

C.1 CONTEXT SAVE AND RESTORE CONSIDERATIONS

The state of the MC68851 can be saved using the PSAVE and PRESTORE instructions.
These instructions save/restore the internal state of the MC68851 and the state of the
coprocessor interface, the breakpoint registers (if any are enabled), and the MC68851 root
pointer registers.

In the general case, all exception handlers that can modify the state of the MC68851 or
that can pass program execution control to a routine which can alter the MC68851 state,
must save the state of the MC68851 prior to performing any MC68851 instruction and must
restore the saved state before returning program control to the routine that generated the
exception. If this protocol is not followed, it is possible to permanently lose the state of
an MC68851 instruction that has been temporarily suspended (for example, has experi­
enced a page fault) resulting in a nonrecoverable error. Additionally, performing the state
save and restore obviates operating system maintenance ofthe breakpoint and root pointer
(SRP and CRP) registers during context switch operations.

To summarize, there are three major reasons for saving the state of the MC68851:

• To prevent losing the state of faulted MC68851 coprocessor instructions (applies to
all exception handlers that may be invoked during coprocessor communication and
that may cause execution of an MC68851 instruction),

• To maintain breakpoints that have been setup for a user task (applies only to context
switch operations), and

• To maintain CRP and SRP registers associated with a particular user task (applies
only to context switch operations).

In certain system implementations, the requirement for performing the save and restore
operations can be removed. This is possible if, and only if, constructs of the operating
system prevent the possibility of abnormal termination of any MC68851 instruction (for
example, an instruction aborted by a bus error or a protocol violation) and the operating
system also explicitly maintains breakpoints set up for user tasks during context switch
operations.

The potential for having MC68851 instructions aborted due to a bus error can be avoided
if the operating system ensures that several constraints are followed. First, the code con-
taining the MC68851 instructions must be completely resident in memory priorto execution E
in order to prevent multi-word instructions that cross page boundaries from being partially
paged out. Second, the operating system either must not page out its system tables and

MC68851 USER'S MANUAL MOTOROLA
C-l

•

stacks (i.e., the memory areas containing data operands to be loaded into the MC68851)
or must validate the residence of these areas prior to use. Third, the operating system
must not attempt to write to write-protected areas while executing MC68851 instructions
as this results in the assertion of the bus error signal by the MC68851. Finally, while the
above constraints prevent the operating system from causing faults during execution of
MC68851 instructions, some provision must be made to account for faults generated by
execution of the PVALID instruction in the user mode. If module operations are allowed
(bit [7] of AC register set), the PSAVE and PRESTORE instructions must be used as described
above. If module operations are not enabled, execution of the PVALID instruction by a user
task is terminated by an access violation exception. However, the MC68851 does not signal
this exception until after the 'evaluate and transfer effective address' primitive has been
issued which makes it possible for a page fault to occur during execution of this instruction.
The operating system can perform one of several actions to circumvent this situation, it
can prevent all code generators from generating the PVALID opcode, or it can treat faults
of the PVALID instruction in the user mode as access violations resulting in a fatal termi­
nation ofthe user task that attempted execution ofthe instruction. Alternately, the operating
system could allow module operations (nc bit of AC register set and the ALC field clear),
thus making all PVALID instructions legal (i.e., no traps will be generated).

C.2 LOGICAL DMA CONSIDERATIONS

When employing a DMA controller that generates logical addresses, there are several
factors that the operating system programmer should consider in order to optimize DMA
performance.

C.2.1 Use of the Land SG Bits

In applications requiring very fast response time from the logical DMA device, it is necessary
for the translation descriptors that map the source and destination of the DMA operation
be preloaded into the MC68851 ATC prior to initiation of the channel operation. The MC68851
PLOAD instruction provides an easy means for these entries to be loaded. Additionally,
these entries should be locked into the ATC to prevent removal by the MC68851 replacement
algorithms. This can be accomplished by setting the Land SG bits in the descriptors that
map the channel operation. Setting the L bit prevents removal of the entry by the ATC
replacement circuitry and setting the SG bit prevents removal of the entry by the RPT
replacement algorithm (refer to 5.2 ADDRESS TRANSLATION CACHE). Finally, in order to
maintain maximum performance of the MC68851 ATC, the operating system must take
care to explicitly flush locked entries from the ATC after a channel operation is complete
by using the PFLUSHS instruction. Otherwise, it is very likely that locked entries will pre­
dominate in the ATC leaving only a small number of entries available for mapping of other
activities.

The 'shared globally' attribute can be assigned to a single page or to a contiguous logical
address range while the 'locked' attribute can be assigned only at the page level.

C.2.2 Mapping of DMA Activities

The DMA root pointer is used to map address translations whenever the MC68851 observes
a high level (logical one) on the FC3 input. In this manner, the translation tables for DMA
activity may be maintained separately from, and selectively intermixed with, those of user
and supervisor tasks for the CPU .

As an example of the use of the DRP register, consider a system using four channels of
logical DMA with each channel assigned its own 16 megabyte virtual address space. The

MOTOROLA
C-2

MC68851 USER'S MANUAL

top level of the DMA translation tree (indexed by the function codes) is used to distinguish
between user and supervisor activities (there is no distinction between program and data
spaces in this example). When a process issues an liD request to a channel, the upper
portion of the DMA translation tree corresponding to the selected channel can simply point
to the translation table of the requester and the data transfer can begin with minimal
overhead.

To further develop this example, consider a situation in which a DMA operation is requested
by a process that wishes to transfer 20,000 bytes from an liD device with a starting virtual
address of $1000 in the requester's buffer. Channel two of the DMA controller, occupying
the DMA virtual slot from 16 to 32 megabytes, is currently idle and is selected for the
operation. The operating system alters the portion of the translation tree corresponding
to the channel two's virtual slot to simply point to the same tables that map the first 16
megabytes of the requester's memory. This causes memory references generated by chan­
nel two to be identical to those generated by the requester but having a 16 megabyte
offset, allowing each DMA channel to, in effect, have is own mapping. Thus, channel two
will be instructed to transfer 20,000 bytes starting at address $10010000 and the physical
memory will be that of the requester's buffer. In order to perform this operation, the liD
handler of the operating system only needs to set up one (or a small number) of pointers
in the top level DMA translation table.

C.3 CAllM/RTM PROGRAMMING EXAMPLE

The following paragraphs provide a simple example of the CALLM and RTM instructions
when utilizing the access level control interface (CALLM type one).

In this example a user task operating at access level three (four access levels in use) calls
a sorting routine that operates at access level one (a type one call). The stack change
control register is set to $FF indicating that stack pointers must be changed before any
change in access level can occur during a module call.

The sort module requires three parameters to be passed on the stack below the module
stack frame': the starting address of the list to be sorted, the number of items in the list,
and the length of each item. Prior to executing the module call, the calling routine pushes
these arguments onto the stack and, after completion of the sort operation, the three
parameters are returned to the calling routine. The location of the list is not altered, and
the called module does not require its own data area (the module data area field of the
module descriptor is not used).

The module descriptor location is specified by the label 'SORT', and the module entry word
is specified by the label 'SORT_IT'. The following code illustrates how the module call
could be accomplished.

MC68851 USER'S MANUAL MOTOROLA
C-3

II

.***
* THIS CODE PROVIDES AN EXAMPLE USAGE OF THE MC68020/MC68851 MODULE CALL
* OPERATIONS.

ENTRY: CAL = $3
VAL =$3
SCC =$FF
MODULE DESCR "SORT": OPT = 0

TYPE = 1
ACCESS LEVEL = 1
ENTRY WORD POINTER = SORT IT
DATA AREA POINTER = XX -
MODULE STACK POINTER = NEW STACK

MODULE ENTRY WORD = $FOOO -
SP = $10000
PC = $40000

****.* * ** ** * ******* ** *** *** ** .*** *** * ** ** * ** ** * ** ** * ** ** * ** **. ** ** * ** ** *** ** * ** ** * ** ** * *** * * ** ** * ** ** * ** * * * * * ** *
* USER TASK IS PREPARING FOR THE MODULE CALL

PEA LIST
MOVE.L LIST _LEN,-(SP)

PUSH LIST ADDRESS ONTO THE STACK (1)
PUT NBR OF LIST ENTRIES ON THE STACK

(2)

(3)
MOVE.L ITEM_LEN,-(SP) PUT NBR OF BYTES/ITEM ON THE STACK

CALLM 12,SORT PASS 12 BYTES TO MODULE "SORT" (4)

*THE CALL IS COMPLETE AND THE ROUTINE PROCEEDS WITH THE NEXT INSTRUCTION

ADDI.L #12,SP THROW AWAY OLD PARAMETERS (5)

* ** *** * ** * * * ** ** 'I' *** ****** *** *** ** ** *** *** ** ** * **** *** ** * ** ** * ** *** ** ** ****** **** *** ** * **** * ** ** * ** * * * ** ** * ** ** *
THE FOLLOWING IS A FRAGMENT SECTION OF THE CALLED MODULE "SORT IT"
* ** *** * ** *** ** **. ** ***** ** * ** ** * ** ** *** *. * ** ** * **** *** ** * **** * ** ** * ** ** * ** *** ** ** * **** * ** ** *** ** * * * ** * ** ** * ** ** *
SORT IT DC.L $FOOO

PVALID VAL,([20,SP])
THIS IS THE MODULE ENTRY WORD
VALIDATE THE LIST POINTER

PERFORM THE SORT OPERATION

RTM A7 RETURN TO CALLING ROUTINE (6)

* ** * 'I' * * ** ** *.* ** * ** ** * ** ** * **** * ***. * ** ** * ** ** * *. **. ** ** ***** * ** ** *.* ***** * * * ** ** * ** ** * ** * * * ** * * * •• * * * *. **. ** •••
NOTES FOR EXAMPLE EXECUTION:

(1) SP'" SP-4

(2) SP'" SP-4

(3) SP'" SP-4

(4) SP'" SP - $18
VAL'" $3
CAL'" $1
PC ... SORT_IT + 2

(5) SP'" SP+12

(6) SP'" SP + $18
VAL'" $3
CAL'" $3
PC ... RET

*************************************.**

MOTOROLA
C-4

Me688S1 USER'S MANUAL

C.4 MULTIPROCESSING CONSIDERATIONS

The following paragraphs discuss several aspects of multiprocessing pertaining to the use
of the MC68851.

C.4.1 Sharing of Translation Table Structures

In a multiprocessing environment it may be desirable to have two or more processing
elements (processor and memory management unit pair) share the same translation tables.
The protocol employed by the MC68851 when searching translation tables (refer to 4.3.2.3
READ-MODIFY-WRITE CYCLE) allows multiple MC68851s to share the same table structure
and prevents the devices from potentially corrupting status information maintained in the
tables (used and modified indicators). However, it is possible to cause loss of coherency
between the MC68851 ATC and the translation tables in physical memory if a remote bus
master (other than an MC68851) is allowed to access and modify the translation tables.

In order to avoid problems with ATC coherence, any time that any alteration is made to
the translation tables utilized by the MC68851 (whether by local or remote master), the
ATC of all MC68851s sharing that table must be explicitly flushed of the mapping that was
altered.

C.4.2 Globally Shared Data Areas

The MC68851 'cache inhibit' function allows multiprocessing systems to share data (read/
write) areas among several different processing elements without causing coherency prob­
lems with local data caches.

When the operating system allocates an area of shared data, the descriptor mapping that
area in each translation table (if there are more than one) should have its CI bit set to
indicate to local hardware that the data associated with that particular address is non­
cacheable. When the MC68851 observes an access to the shared area, the CLI (cache load
inhibit) signal is asserted and local caches can be forced to allow the access to proceed to
the main store.

C.4.3 Remote Manipulation of MC688S1

In multiprocessing systems, it is not uncommon for a remote master (or even an alternate
logical master) to require access to the instruction processing capabilities of an MC68851
for which it is not the main processor. For example, if the remote master has altered an
entry in a shared table structure, then the master must instruct all MC68851 s sharing this
table structure to flush the corresponding entry from their ATCs.

Care must be exercised in the design of this type of system if multiple devices are capable
of accessing the MC68851 via the coprocessor, access level control, or breakpoint interfaces.
For such systems, there are two primary restrictions. First, all interleaved communications
must be bounded by PSAVE and PRESTORE instructions. Second, the PSAVE and PRES­
TORE instructions themselves may not be interleaved and, thus, some other form of in­
terprocessor communication must exist to properly synchronize these instructions. Note
that, for the case of the coprocessor interface alone, adhering to the second criterion for
all MC68851 instructions (rather than just the context save and restore instructions) re­
moves the requirement for the first restriction. Thus, if the breakpoint and access level
control interfaces are not in use, then synchronizing coprocessor interface accesses by
multiple processors to instruction boundaries provides sufficient protection to avoid spu- .s
rious processor/coprocessor protocol violations. ...

MC68851 USER'S MANUAL MOTOROLA
C-5

In order to prevent the operations by a remote master from causing a protocol violation
(refer to 6.3.2.2 PROTOCOL VIOLATION), some external means for synchronization of in­
structions must be enforced. Synchronizing accesses to the MC68851 on instruction bound­
aries is one simple way to implement this function. For example, associated with each
MC68851 there can be a 'PMMU_Busy' flag in shared memory. Prior to execution of any
MC68851 instruction, the CPU (whether remote or local) must check this flag to ensure
that the MC68851 is not currently processing an instruction. If the flag is set, the CPU waits
until it is clear. If the flag is clear, the CPU sets the flag, performs the MC68851 instruction,
and then clears the flag indicating that the MC68851 isnow available. One example of this
protocol is as follows:

P_INSTR TAS
BNE.S
PFLUSH
CLR.B

PMMU_BUSY
P_INSTR
(ea)
PMMU_BUSY

TEST THE FLAG, SET IF CLEAR
IF WAS SET, TRY AGAIN
DO THE INSTRUCTION
RESET THE FLAG

By ensuring that all MC68851 instructions are enveloped by a synchronizing protocol, the
operating system can guarantee that spurious processor/coprocessor communication er­
rors do not occur.

Additionally, operating system designers should give consideration to sequences of MC68851
instructions that must operate uninterrupted. For example, if a logical cache utilizes the
task alias maintained by the MC68851, then a change of root pointers (via a PMOVE xxx,CRP)
is usually followed by a read of the cache status register (with a PMOVE PCSR,xxx) to
obtain the next task alias. This type of system should force both PMOVE instructions to
operate without interruption in order that the task alias not be altered by some alternate
master between the update of the root pointer register and the read of the task alias. The
following code sequence could be used to protect these instructions:

P_INSTR TAS
BNE.S
PMOVE
PMOVE

CLR.B

PMMU_BUSY
P_INSTR
(ea),CRP
PCSR,(ea)

TEST THE FLAG, SET IF CLEAR
IF WAS SET, TRY AGAIN
UPDATE CPU ROOT POINTER
GET THE NEW TASK ALIAS
UPDATE TA OF LOGICAL CACHE AND FLUSH
IF NEEDED
RESET THE FLAG

C.5 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM

There are numerous factors to consider when determining how the MC68851 is to be used
by an operating system. The MC68851 provides the system programmer with great flex­
ibility such that the O.S. can be optimized for a particular system implementation. Some
of the important issues are presented in the example implementation of an MC68851 system
described in C.6 EXAMPLE MC68851 PAGING SYSTEM IMPLEMENTATION.

C.5.1 CPU and Supervisor Root Pointer Registers

The decision whether to use both the supervisor and the CPU root pointers or only the
CPU root pointer is dependent on the complexity of the memory layout by the O.S. If the
supervisor root pointer is not used, then the tables pointed to be all CPU root pointers
must also map all supervisor references.

MOTOROLA
C-6

MeS8851 USER'S MANUAL

The function of separating supervisor and user translation tables can be realized by using
both the supervisor and CPU root pointers or, alternately, by using the CPU root pointer
alone with a function code lookup as the first index into the translation tables. With proper
structuring of the translation tables, both of these methods can provide the same func­
tionality although there are separate advantages for both approaches.

Using the CPU root pointer together with function code lookup separates supervisor and
user accesses at the first (highest) level of the translation tree and allows a different
supervisor/user mapping for each task in the system. Alternately, the entries in the function
code table corresponding to the supervisor spaces for each task can all point to the same
tables thus providing a common mapping for all supervisor references.

If the mapping of the supervisor address space is identical for all tasks, then the supervisor
root pointer can be used in conjunction with the CPU root pointer to provide a more simple
and efficient way to describe the mapping. Using this method, the function code lookup
is suppressed (unless distinct mappings are required for the program and data spaces)
and user and supervisor accesses are separated at the root pointer level of the translation
tables. This allows a single translation table to be defined that maps all supervisor accesses
without maintaining a large number of pointers in the translation tables for each task.

Note that the use of the 'shared globally' attribute (refer to 6.1.1.3 SHARED GLOBALLY
(SG)) can significantly effect the performance ofthe MC68851 ATC for both cases described
above.

C.S.2 Task Memory Map Definition

The MC68851 provides several different means by which the supervisor can access the
user address space. The M68000 Family MOVES (move space) instruction can be used by
the supervisor to access any user address regardless of how the virtual space is partitioned.
Some systems may wish to give each user task the image of a complete virtual memory
map ranging from zero to four gigabytes. Indeed, for operating systems that run other
operating systems in a virtual machine environment, this must be done since the full
addressing range must be accurately emulated for the subordinate O.S.

On the other hand, the extremely wide address space of the M68000 Family easily allows
for each individual or all user tasks to appear within the same memory space as the O.S.
itself. This can be done in several ways, and one of these methods is chosen for the
comprehensive example presented later. One advantage to sharing a common address
space is that the O.S. has direct access to user data items since they may appear as part
of the supervisor address space. Another advantage in providing a shared virtual space is
the ease with which code can be shared. Common routines such as file I/O handlers and
arithmetic conversion packages could be written reentrently and restricted to read-only
access from all tasks in the system. Another advantage to the system-wide sharing of
selected code and data areas is the fact that translation table entries can indicate this
shared status, and, once these entries are loaded into the ATC, the MC68851 automatically
uses the same entries for all tasks in the system.

The simplest example of a shared virtual space system 'is that in which each user and
supervisor process is given a unique virtual address range within a single large virtual
space ranging from zero to four gigabytes. In other words, there is only one linear virtual
address space in the system with all processes running somewhere in that space. This
requires only a single translation table for the entire system, but individual tables could

Me688S1 USER'S MANUAL MOTOROLA
C-7

IE

•

be assigned for each task, if desired. The advantage of a common table is that the 0.5.
has easy and immediate access to any item owned by any task in the system without
having to modify the root pointer register. Otherwise, only the currently active task is
immediately accessible (although this may be totally adequate). Task switching requires
only updating of the user program and user data pointers in the highest level translation
table indexed by the function code so that tasks can have access only to their own data.
The advantages with this basic scheme are the simplicity of table management and the
ease of sharing common items (for example, shared items would all have the same virtual
address for all tasks in the system). Operating systems that do not require a great deal of
complexity in memory management facilities, such as real-time systems, might find this
scheme ideal.

The next logical step towards increased 0.5. complexity, with shared user and supervisor
virtual memory maps, is to keep the supervisor addresses separate as before, but to give
each and every user task its own use of the rest of the virtual space. For example, each
user task could have the virtual memory space from zero to 512 megabytes, and the 0.5.
would occupy the remainder of the space with its program and data residing at virtual
addresses from 512 megabytes up to four gigabytes. This example requires that each user
task have its own set of translation tables, although the supervisor root pointer mayor
may not be used depending on whether the user tables also map the supervisor. Similar
to the previous example, when this approach is used the user would not see the 0.5.
extension to its space unless the 0.5. desired it or wanted to share common routines. The
advantages of this scheme is that a much larger virtual space is available for anyone user
task and no 'virtual fragmentation' problems will ever develop. The disadvantage of this
approach is a slightly more complex table management. Also, the fact that the 0.5. has
direct access only to the current user task.

In order to demonstrate that there are very few absolute rules when using the MC68851,
re-examine the last statement above. As a general case it is true, however, that a capable
0.5. designed may actually allow the supervisor to 'see' each user task space as a distinct
portion of its own supervisor map. This can be accomplished by use of the tremendously
large M68000 Family linear addressing space and, similar to the DMA scheme discussed
in C.2.2 Mapping of DMA Activities, cross mapping address space. If each user task is
limited to a 16-megabyte virtual space and the supervisor only requires a 16-megabyte
space of its own, then there are 256 s.uch spaces that can be simultaneously mapped. The
supervisor translation table could 'see' each of these spaces within its own and, by using
the indexed addressing mode with a register that contains the proper 16-megabyte constant
for a particular task, the supervisor can readily use addresses of that task. The constant
used as index provides a supervisor-to-user virtual address conversion. With a little imag­
ination, the flexibility of the MC68851 can be used to provide some very sophisticated
functions.

The most complex systems (including those implementing virtual machine capability) sup­
port complete virtual address separation between the supervisor and all user tasks or even
between individual supervisor tasks running in the same 0.5. This scenario has each task,
whether supervisor or user, seeing its own virtual memory space starting at zero and going
up to four gigabytes. The M68000 Family separation of program and data space via the
function code mechanism may be further exploited to provide a 4-gigabyte space for
program code and another 4-gigabyte space for data for all supervisor and user tasks.
Distinct CPU and supervisor root pointers would most likely be used in this case since
there is no sharing between the various spaces. The 0.5. would exclusively use the MOVES
instruction to interact with the user space. The advantages of this implementation are the

MOTOROLA
C-8

MC68851 USER'S MANUAL

maximum availability of the virtual space (required for virtual machine implementations)
and a complete logical separation of addresses (i.e., supervisor as well as user programs
need not be concerned with unavailable 'holes' in the virtual address space that effect such
things as program linkage conventions). The disadvantages of this approach are the more
complex table management and more restrictive accesses to other address spaces.

In deciding how task memory spaces are to be arranged, the hierarchical protection mech­
anism must be considered. The MC68020 and the MC68851 provide an extension to the
normal user mode of execution that allows partitioning of code and data into eight distinct
access levels. Instructions for module call and return (CALLM and RTM) are provided that
allow a lower privilege level routine to call a higher level routine. Each level is nested
outside of the other higher levels such that all items owned by one level are available to
routines at the higher levels. To accomplish this all virtual addresses must be distinct for
each and every task and data item.

The hierarchical protection mechanism is discussed in detail in SECTION 7 PROTECTION
and in C.3 CALLM/RTM PROGRAMMING EXAMPLE.

C.5.3 MC68851 Features and Their Impact on Table Definition

There are several features provided by the MC68851 that impact table definition and these
are usually considered after the method for describing task memory maps has been de­
cided. However, for a few systems, these features may make a significant impact on the
major mapping decision and so should be included in that analysis.

C.5.3.1 NUMBER OF TABLE LEVELS. The MC68851 provides the ability to use from zero
to five levels of indexing for the translation tables. Zero levels imply that, for the root
pointer signaling early termination, the virtual address is taken to be the literal physical
address (plus a constant offset, if any). The primary use of this function is in systems that
need to provide for limit checks on the ranges of physical addresses generated.

Single level tables are appropriate for systems that either support large page sizes or
require only limited amounts of virtual memory space. For systems that are primarily
numerically intensive (j.e., primarily involved in arithmetic manipulations as oppposed to
data movement operations), where the overhead of virtual managed page faults and paging
liD must be minimized, a single level table with 32K page sizes may be the best choice.
Such a system can map a 16-megabyte virtual address space with just 2K bytes of page
table space. Additionally, the 64 entries maintained in the MC68851 ATC directly map two
megabytes of active virtual memory space. With this wide range of mapped address space,
MC68851 table search time becomes increasingly insignificant.'

At another extreme, consider a single-user business system that only needs to provide for
a virtual address space of two megabytes. In this case, a 512-byte page size might be quite
appropriate, especially since this exactly matches the standard block size formats of several
Winchester hard disk file systems. A page table that completely maps the entire two
megabytes is only 16K bytes in size, and the ATC entries directly map 32K of virtual space
at anyone time. For both this and the example discussed above, the page tables are so
small that they would be permanently allocated in the supporting O.S. data areas and thus
would incur no management or swapping overhead.

Two level translation tables provide a lower page level to map the ranges as described in
the previous two examples and, in addition, provide a second level of direction at the

MC68851 USER'S MANUAL MOTOROLA
C-9

E

higher level. For example, in a system using 32K-byte pages and 512-entry page tables,
the upper level translation table contains 256 entries (1 K bytes for the pointer table) and
each of the entries at the upper level maps a 16-megabyte region of the virtual address
space. The real advantage of this type of approach for a large 'number-crunching' system
is that it allows the O.S. designer to make a trade-off between page size and table size.
The system designer may choose to go to a smaller page size to more accurately fit the
block sizes on available 110 devices, yet keep the tables manageable. At the same time,
the designer must also consider the performance penalty associated with smaller page
sizes due to higher frequency of descriptor faults (and resultant table search time) and
increased paging 110. The MC68851 allows the designer to strike a balance rather than
forcing only one page size and table structure on the system architecture.

Three level translation tables are useful when the operating system makes heavy use of
shared memory spaces andlor shared page tables. Sophisticated systems very frequently
need to share translation tables or program and data areas pointed to at the page table
level. The fact that a table entry can point to another translation table used by a different
task enables efficient sharing. The discussion presented in 6.1.2 Task Memory Map Defi­
nition concerning sharing the virtual memory of a task with DMA or supervisor space
provides one example of a system in which table sharing is implemented. The direct access
by the supervisor or user address spaces is another case.

Some artificial intelligence (AI) systems have the characteristic that a very large virtual
address space is required, and yet only small fragments of memory are normally allocated
among these widely differing addresses. The fragmentation occurs because very complex
and recursive actions are performed on lists of data that require sophisticated pointers and
linked lists to be constantly allocated and freed in the memory map. The fragmentation
indicates that a small page size should be used so that large amounts of real physical
memory pages are not wasted. However, the need for a large virtual map when coupled
to small pages produces relatively large translation table requirements. For example, the
page table alone to map four gigabytes of virtual address space with 256 byte pages (the
smallest that the MC68851 will support) would be 64 megabytes in size! By going to a
three or four level table structure, the amount of actual translation table entries required
would be drastically reduced. One reason for this compression is the limit function allowed
on table entries (refer to C.S.3.4 LIMIT FIELDS). The above factors, combined with the fact
that the tables themselves can be paged, provides a reasonable tradeoff in table manage­
ment overhead.

C.S.3.2 INITIAL SHIFT COUNT. The IS field of the translation control (TC) register is pri­
marily used to strip off the high-order bits of logical addresses when the hierarchical
protection mechanism is in use since the upper one to three bits determine a protection
level instead of a true address (although these bits can be used to provide both). Another
use of the IS field is to decrease the size requirement for translation tables if it is known
that a full 32 bits of virtual address space is not needed. This is particularly true in systems
that could save space by leaving out the extra address lines in a board design. However,
it is recommended that such a system still translate the full 32-bit logical address and set
up the root pointers such that the limit fields are used to restrict all addresses to the
maximum value desired. In this way, if any large (illegal) addresses are generated, they
can be properly faulted.

C.5.3.3 LOCKING ENTRIES IN THE ATC. By setting the lock bit (L) in a page descriptor,
the O.S. can insure that, once loaded, the descriptor remains in the ATC and any access

MOTOROLA
C-10

MC68851 USER'S MANUAL

to that page will never require a table search (assuming that the SG bit is also set). This
can be very important for real-time systems that must guarantee minimum latency for I/O
exception handlers or other special-purpose code that must be executed without delay.
Another example where locked descriptors are useful is where an extremely high-speed
DMA-type transfer is to be executed that cannot afford any interruption caused by a table
search.

With 64 descriptor entries in the MC68851 ATC, a few can be allocated for less critical
entries than discussed above, but locking them can greatly improve system efficiency. For
example, by default an O.S. may decide to 'lock down' the entries to its primary exception
routines. Or, if there is a table or area of memory that is widely accessed for one reason
or another, then it may have a descriptor locked in the ATC as well.

C.5.3.4 LIMIT FIELDS. The fact that the MC68851 allows lower level tables to be only
partially present provides for considerable flexibility and memory savings by the O.S. When
a limit field is used in a descriptor, the next lower table may have its high- or low-order
portions deleted (i.e., non-resident or unallocated) since the limit values can apply to either
a maximum or minimum value for the table index at the next level. This saves considerable
memory for table storage for most operating systems since seldom are the maximum
number of virtual pages possible allocated to a task.

For example, consider an O.S. using a page size of 4K running numerous small tasks, each
averaging 80K bytes in size. A 20-entry page table is required to map each task. This means
that only 80 bytes are required for the task's page table entries if the upper level tables
utilize the limit feature. Without the limit feature, such an O.S. running only ten such tasks
would require 40K bytes of space just for the page tables! If the limit feature is used,
however, a total of only 800 bytes of page table entries are required.

The decrease in memory required for translation table storage when using limit fields is
especially significant for artificial intelligence applications where a massive virtual memory
map is usually required. As the virtual space grows, each page table need only be as large
as the number of entries being used within it. And, as each higher level table grows, it
need only be expanded by the size of the entries being used within it, facilitating the use
of three and four level tables that would otherwise be difficult to manage.

C.5.3.S PAGE TABLES AT OTHER THAN THE LOWEST THREE LEVEL. When the MC68851
encounters an early page descriptor in a table search, this descriptor maps an entire block
of pages as a consecutive reference (a contiguous virtual a-ddress range). For example,
consider an O.S. that has a 32K byte area reserved for special supervisor liD peripheral
devices. This area can be mapped using a single upper level descriptor saving translation
table space and table search overhead. Note that the limit fields mentioned previously can
also be used such that the block of pages referenced can be less than the total of the virtual
space represented by descriptors at that level of the translation tree. Note also that multiple
ATC entries may be created for a single descriptor with it's DT field set to 'page descriptor'
if that descriptor maps a range of pages.

Additionally, there is another way that early page descriptors can be used to impact the
system memory model. Since such descriptors map contiguous blocks of memory, they
can be matched one-for-one to all program and data blocks or segments in the environment.
Thus each program and data segment can be treated as a block of contiguous memory

MC68851 USER'S MANUAL MOTOROLA
C-11

E

II

mapped by a single descriptor with each block being relocatable (via the logical-to-physical
base address in the descriptor). This scheme is useful in systems where tasks consist of
only one or a few sequential blocks of memory. The blocks could be swapped as a complete
group, and the 0.5. memory map could treat the entire address space within these blocks
as a uniform virtual space common to all tasks. This requires only one translation table
for the whole system. In effect, instead of a two-level translation table, only the upper level
is present and, by use of the limit fields and early page descriptors, complete segments
of memory are mapped.

C.S.3.6 INDIRECT DESCRIPTORS. If, at the page descriptor level, the descriptor type of
an entry indicates a pointer instead of a page descriptor, this is treated as an additional
memory indirection to the primary page descriptor. It is in this fashion that page descriptors
for common program and data areas used by several tasks in the system are made 'com­
mon'. An access by any task to a shared common page automatically insures that only the
primary used bit(U) is set, and any write to a common page also sets one and only one
modified (M) bit. Thus, the 0.5. need only peruse the primary descriptors when dealing
with page swapping heuristics. If this page descriptor sharing was not permitted, the O.S.
would face a formidable undertaking in determining shared page status. In essence, the
0.5. would have to scan most or all of the page tables of all tasks sharing the common
pages before it could determine the used or modified status of any such pages.

The MC68851 affords yet another shared memory efficiency. Recalling that, for system­
wide common program and data areas, the MC68851 can cache non-task-specific trans­
lation entries with the 'shared globally' (SG) attribute. This indicates that the logical-to­
physical address translation for a particular address range is identical for all tasks in the
system and thus only a single descriptor for each page in this range need to be kept in
the ATC.

C.S.3.7 UNUSED DESCRIPTOR BITS. For almost all descriptor types there are bits that
are never used by the MC68851 that can be used for any purpose by the 0.5. Additionally,
when the descriptor is set to a type of 'invalid', all but two bits can be used by the 0.5. A
very common example is the use of the address field of a non-resident (paged-out) page
to hold the disk block address of the page image. Then, the next time a task faults on the
page, the supervisor has ready access to the disk location.

One important 0.5. use of the unused bits of a valid page entry (resident page) is for
determining page residency status, be it frequency of use or time since last use. Since a
paging 0.5. must occasionally 'steal' pages from one task for use by another, it is prudent
to try to take pages whose removal will have the least impact on system efficiency. Pages
taken first would, of course, be real page frames that are not in use by any other task. The
next group would be pages that have aged the most time since their last use. If a page
has the modified (M) bit set then, before it is re-used, its image must be written to a paging
store on auxiliary memory. Thus, when stealing pages, it is usually better to take a write­
protected page or a page that has not been modified since it can be re-used without delay.

One way for an 0.5. to determine the 'age' of a page is for the 0.5. to periodically go
through the page tables (for example, once every 10 seconds) and increment a few of the
unused bits kept as an age clock. If the page has been referenced since the last 'tick' then
the bits are reset. Otherwise, once a page descriptor's bits overflow, that page could be
put on a special queue indicating that it is ripe for removal when another page is required

MOTOROLA
C-12

MC68851 USER'S MANUAL

by the system. Some operating systems may have several such queues with one queue,
for example, containing pointers to unused page frames, the next to unmodified (write­
protected) pages, ... , etc.

The O.S. designer has great leeway in deciding the page reclamation heuristics. One op­
erating system may simply scan the page tables starting at the lowest priority task and
'steal' aged pages as they are found. Another may keep a system-wide list of all page
frames as they are used and then simply scan starting at the oldest and steal aged pages
as they are encountered. A sophsiticated system may keep a special 'working set' model
of the active pages for each individual task such that it can swap in and out complete
blocks of pages en-mass with a single I/O operation. Page reclamation heuristics can have
a dramatic impact on limiting the page faulting overhead of a very heavily used multi-user
system.

C.6 EXAMPLE MC68851 PAGING SYSTEM IMPLEMENTATION

In order to illustrate some of the MC68851 features useful for operating systems a sample
design of one such implementation is developed in the following paragraphs. This example
demonstrates several features in order that potential variations of the design can be easily
understood. In particular, by illustrating the algorithms to allocate a block of memory for
a task, the basic code for the memory management services of an O.S. can be derived.
The MC68851 access level protection mechanism is not used in this example.

Assume that the target system requires execution of predominantly numerically intensive
processing tasks, and towards that end, the ability to map a large virtual memroy task
space is required. Average tasks do not need more than 16 megabytes of memory, but
occasionally a larger virtual space is needed - up to a maximum of 496 megabytes. In
order to minimize thrashing and translation table searches, a relatively large page size of
8K bytes is used. The larger page size allows a smaller number of descriptors to map a
larger area of virtual space and, for any given amount of CPU time, results in fewer der-

'scriptor misses in the ATC (and therefore fewer MC68851 table searches). Of course, with
larger pages, the paging liD will be transferring larger blocks of data (equal to the page
size) and, at times, only a fraction of a page may be actually used by the task. However,
having performed preliminary software model simulations it has been found that for the
type of processing required for this example system, 8K pages provide the optimum per­
formance.

For this system, although very large tasks may occasionally be run, the average task is a
compiler or text editor that only requires 192K of memory. Thus, only 24 short page
descriptors (96 bytes) are required to map the average task. This allows the operating
system to take advantage of a unique MC68851 feature (limit fields) that allows sub-tables
to reside at the start of any 16-byte boundary and take no more room than required. Because
of this, the translation tables are very small, and the O.S. does not need to be concerned
with the paging of table areas (i.e., they are small enough to be completely resident in
physical memory).

The paging hardware of many computer systems requires that pointers to lower level
tables always point to a page boundary, meaning that each of those tables must occupy
at least a complete page. However, with the MC68851, the O.S. can provide table storage
with an address granularity of 16 bytes and, any memory obtained in this manner can be
used for memory management tables. The savings in memory utilization are dramatic
since, instead of needing 80K of page tables for 10 average tasks (10 tasks times the 8K

MC68851 USER'S MANUAL MOTOROLA
C-13

E

minimal page table size), only 960 byte (10 times 96 bytes) is needed. Of course, there may
be some fragmentation in allocating the ten small blocks, but that is insignificant to the
80K byte otherwise required (this 80K does not take into account the memory used by
tables at higher levels). If each level of a two-level tree required a minimum of one page
then the ten average tasks would require a minimum of 160K bytes of table area.

The translation tree for the example system consists of an upper and a lower table level.
The upper level is a fixed table with 32 entries, with each of these entries consisting of a
long descriptor optionally pointing to a lower level page table. Each lower level table maps
up to 16 megabytes of the virtual address space. Since the upper level table is so small,
it is convenient to let it reside entirely in the main control block of the task. When a new
task is dispatched, the MC68851 CRP register is loaded with a pointer to the upper level
table corresponding to that task. Each lower level page table consists of from zero to 2048
short-format page descriptors. The first level entries use limit fields to determine the size
of each page table. Thus, the average task of 192K usually has only one entry of its upper
level table valid for user access, and this entry points to a lower level table with an average
size of 96 bytes. Tasks that require over 16 megabytes of memory have more than one of
the high-level table entries in use for user memory.

One type of memory allocation that the O.S. must control is that for physical memory (a
page frame) to hold a virtual memory page. The entire physical memory available in a
system is divided into page size pieces or frames. A system with four megabytes of real
memory could therefore be divided into 512 8K frames and could theoretically hold 512
pages of active virtual memory at anyone time. Usually though, parts of the O.S. such as
the exception handlers, kernel code, and the O.S. private memory pool are permanently
resident and non-pageable. Only the remaining frames can be considered to be available
for holding virtual pages.

An O.S. keeps a linked list of all free unallocated frames. This is simple since a free frame
can contain the pointer within itself to the next free frame on the list. Therefore, when a
page frame needs to be allocated, the first one on the list is taken (all frames being treated
alike). The function GetFrame is now defined, and later expanded, as the O.S. primitive
that returns the physical real address of a free frame. If there are no free frames, GetFrame
obtains one by stealing one from another task. GetFrame first looks for an unmodified
frame to steal, since these can be stolen without waiting for them to be written back to an
external storage device that holds all non-resident virtual page images (normally called
the paging device or backing store). If no unmodified pages are available, a frame must
be stolen that must be swapped out before it is returned. It is assumed that GetFrame can
wait on behalf of the caller and let other tasks execute until a frame is free to be passed
back.

Next, the second type of physical memory management (that used to allocate and free
supervisor pieces of work memory) is developed. GetReal and ReturnReal are the routines
to request and return supervisor memory utilizing physical (non-virtual) addresses. The
allocation routine must return pieces of memory with addresses on a boundary of at least
modulo 16 due to the fact that all MC68851 tables must start on such an offset. Usually,
supervisor work memory is parcelled out in minimum chunks of some multiple bytes in
order to fight fragmentation problems.

The above routines handle the allocation of physical memory. The next development for
the example system is to handle allocation of virtual memory for all tasks. The first step
in this process is to determine the system's view of the virtual memory map of a task and

MOTOROLA
C-14

MC68851 USER'S MANUAL

how such memory is to be accounted for since there must be some way of keeping track
of which virtual memory addresses are free to be assigned to the task. Each system hard­
ware design has two views - the physical map view and the virtual map view. The physical
view represents actual physical addresses of all hardware components (64K boot/diagnostic
ROM, 64K liD area, 1 megabyte of RAM) in the system and is as follows:

Low Memory

o I BOOT AND DIAGNOSTICS ROM
64 K ... -----------.....

UNMAPPED

1 M r--------------,
HARDWARE I/O

2 M I------------~

SYSTEM RAM

3 M '---------------.1

The virtual memory map is what all programs see after the MC68851 has been initialized
and it is as follows:

Low Memory
0

O.S. KERNEL

1M

HARDWARE I/O

2M

DIRECT MAPPED
(LOGICAL = PHYSICAL)

3M

UNUSED

16M

USER PROGRAM / DATA I STACK
(496 M)

528 M

Note that user programs can only 'see' virtual addresses starting at 16 megabytes and
higher. This is the area where the code, data and stack areas for the user tasks are allocated
in virtual memory. Supervisor programs 'see' the entire virtual map that directly accesses
the 1/0 ports as well as the entire physical memory at untranslated addresses (in other
words, the tables are set up such that virtual addresses equal physical addresses for the

MC68851 USER'S MANUAL MOTOROLA
C-15

IE

II

supervisor between one and three megabytes). This 'folding' of the physical space into
the virtual space allows for greatly simplified operation when the physical addresses must
be handled (such as with page frames). Note that the folding does not necessarily keep
the virtual addresses the same as the physical. For example, the boot/diagnostic ROM at
physical address zero could easily appear in the virtual address space starting at three
megabytes. However, any external bus masters or circuitry (such as breakpoint registers)
resident on the physical side of the bus must be provided with physical addresses (re­
introducing the overhead of O.S. code handling address translation).

An additional advantage of the virtual mapping presented in this example is that all ad­
dresses are unique between the supervisor and user maps, and thus all supervisor routines
can directly access any user area with no restrictions as to instructions or addressing modes.
The separate maps at first suggest that two MC68851 root pointers be used, one for the
supervisor map anq one for the user map. However, a closer look shows that the supervisor
must be provided with access to the user translation tables for proper access of user data
items. With separate root pointers, the supervisor table structure must be linked to that of
the user. This can be done but only at the expense of forcing an extra level of table lookup
(such as including the function code lookup).

Instead, a simpler scheme is used for this example. The CPU root pointer alone is used,
however, and the first entry of the upper level table (representing the first 16 megabytes
of the virtual map - the supervisor portion) for each task (each task having its own
translation tree) points to the same lower level table. This common lower table indicates
supervisor-only access and maps the entire virtual O.S., and physical 110 and real memory
areas. Also, each entry in the common table is marked as 'globally shared' so that task
switches do not invalidate any ATC-resident descriptors used by the O.S. This scheme
conveniently avoids the requirement for extra lookup levels or pointer manipulations during
a task switch to furnish correct access across the user/supervisor boundary. The only
overhead is the simple setting of the first upper-level table entry to point to the common
page table of the supervisor whenever the translation tree for a new task is created.

Returning to the problem of how to account for the virtual memory areas that have been
assigned to a user task, the technique used is to simply let the existing translation tables
for the task be the indication of what virtual memory has already been assigned. In other
words, if a valid table entry exists for a given virtual address (page), then that 8K of virtual
memory has been allocated. Certainly, if tasks continuously obtain and free virtual memory
space during their lifetimes this would be inefficient due to the 8K granularity and some
other scheme would be used (such as the creation of auxiliary tables to indicate virtual
space availability). The allocation scheme used here provides only 'chunks' of memory in
multiples of the page size (8K) but, the tasks in this system rarely, if at all, request any
extensions to their memory space and when they do it is for large chunks, so this scheme
suffices. Note that this is similar to most kinds of applications and utilities running in the
UNIX@) environment.

The O.S. primitive GetVirtual is now defined which is passed a block size, in bytes, and
returns the virtual address of the new block for the task. GetVirtual first checks to insure
the request isn't too large. It then starts scanning the translation tables looking for a virtual
'hole' big enough to hold the block requested. If none is found, an attempt is made to
'grow' the page table to its maximum size. Still, if no virtual space is found, an error is
returned. If virtual space for the block is found, the new page entries are set to virgin status
('page invalid but allocated') so that when the pages are first used, a page fault is generated.
This indicates to the O.S. that no page images exist on backing store to be read in (most

MOTOROLA
C-16

Me68851 USER'S MANUAL

page faults do require that a page image be read from the backing store). Only a page
frame would need to be allocated for that page entry, and the task can then be continued
with the now present page in place.

When SwapinPage is called, it points to the MC68851 table entry that contains the disk
address of the page to be read in and restored. After reading in the page (and before
returning), the routine replaces the disk address with the physical page address and sets
the appropriate flags so that the entry is immediately ready for use by the MC68851.

Although this example provides many of the functions required by an O.S., a complete
operating system must have a complement function for each of the routines mentioned
to perform the opposite action. These routines usually perform the same steps but in
reverse order and meaning. GetVirtual would have a ReturnVirtual and SwapinPage would
have the partner SwapOutPage. These counterparts are easily derived since they normally
perform identical steps but in reverse order.

A loose high-level language syntax is used for the code presented in subsequent descrip­
tions and many liberties are taken to enhance readability. For example, return status values
are assigned descriptive strings instead of a binary value as would be the normal. Since
loops that scan tables have obvious subscripts these are abbreviated to empty brackets U.
For example:

for Upper_Table_Index = 1 to 31 do
if Upper_Table [Upper_Table_Index]. Status = Invalid then ...

the second line becomes:
if Upper_Table_Index U. Status = Invalid then ...

Flag operations are assumed to be system-defined and may imply more complex opera­
tions than simple bit manipulations. For example, the page table status of 'invalid_virgin'
can be implemented with the MC68851 page table entry DT field indicating 'invalid' and a
software flag bit showing that it is allocated but not swapped out (has never been used).

The virtual address for the example system is sub-divided as follows:

31 0
xxxu uuuu 111111111110 0000 0000 0000

3 bits x = ignored
5 bits u = upper level table index - [maps 32 long table entries]

11 bits I = lower level table index - [maps 2048 short page entries]
13 bits a = page offset

The translation table structure for the system is described as follows:
CRP. upper level table area in task control block of 32 long pointers

[0] • lower level table common to all tasks and mapping all O.S. areas (first four
megabytes of virtual space). This common table is 512 short page entries in
size (2K bytes).

[1] • lower level table for first 16 megabytes of user program/data/stack area
[2] • lower level table for second 16 megabytes of user program/data/stack area

[31] • lower level table for last 16 megabytes (of 496 total) of user program/datal
stack area

MC68851 USER'S MANUAL MOTOROLA
C-17

IE

II

C.6.1 O.S. Allocation Modules for Example System

The following paragraphs detail the routine 'Vallocate' which is the central module and is
used by all user programs to obtain memory. The required memory size in bytes is an
input parameter for Vallocate. Status information and the user's virtual address to the start
of the area (if the allocation was successful) are the outputs.

The code for Vallocate is simplified in that the amount of memory returned is always a
mUltiple ofthe system page size and blocks are never allocated across 16-megabyte bound­
aries. The first restriction could be removed if a control structure that subdivides pages
was implemented but care would have to be taken since the user could corrupt such
structures if they resided within the allocated pages themselves. The second restriction
could be circumvented by adding code that keeps track of consecutive free blocks found
when scanning the low level tables (each block representing 16 megabytes of address
space). Once the total area is found, each block is allocated in order returning only the
address of the first (lowest) block).

The 32 upper-level table entries are long pointer types and each represent 16 megabytes
of virtual space. They are either 'Invalid' meaning they have no lower page tables or
'Allocated' meaning they do have lower tables and that the limit field indicates how large
these tables are. The first entry always exists since, by convention, it maps the supervisor
address space and is always restricted to supervisor-only references. The first entry is
never touched by this routine. The 31 entries after that are available for user space allo­
cation.

Note that a routine similarto this could be written that grows or linearly extends a previously
allocated memory block. Since the M68000 supports stack notions, the O.S. can allocate
the top of memory (the thirty-second upper level table entry) as a stack and always grow
it in the reverse direction. Such a system can support mUltiple large stacks by allocating
each at a different upper level (16 megabyte) boundary and setting software flags indicating
that it is a stack that grows downward.

The logic of Vallocate is as follows:
1) Validate the request and find number of pages required.
2) Scan each upper table entry's lower page tables (where they exist) looking for an

unallocated group of pages large enough.
3) If no space found, see if the lower table is less than its maximum size and if the block

can be allocated by expanding it at the end.
4) If still no space found, use the next free upper table entry and initialize its new lower

level page table to allocate the block here.
5) Set allocated page entries to indicate virgin status (not swapped out, allocated, and

invalid).
6) Return status and virtual address (if OK).

MOTOROLA
C-18

MC68851 USER'S MANUAL

The procedure is defined as follows:

Vallocate (SizelnBytes, VirtualAddressReturned, Status);

1* The following are global to all routines

1* Symbolically define the upper level pointer table

Declare Upper_ Table[32] Record of
Status=(unallocated, allocated),
LimiCField=(O to 4k),
Pointer;

1* Symbolically define the lower level page table

Declare Lower_ Table[O to LimiCField] Record of
Status=(invalid_unallocated,

invalid_paged_out,
invalid_virgin,
valid_in_memory) ,

Pointer;

Declare NumPages;

Status = "Out of virtual Memory";

if SizelnBytes > 16 megabytes then exit Vallocate;

/* lower table here or not
/* limit for lower page table
I*address of lower page table if allocated

*j

*j

*j
*j
*j

*j

/*not allocated to User *j
I*allocated but paged out *j
/*allocated but not yet used *j
/*allocated and in memory *j
/*physical address or disk address of page *j

I*table indexes *j

1* number of pages required to hold request *j

/* default result status to this error *j

NumPages = (SizelnBytes+PageSize-1)jPageSize; 1* Pages needed *j

1* Scan User eligible page tables

for Upper_Table_Index = 1 to 31 do
If Uppec Table[].Status = allocated then call SearchPageTable;
If Status = "OK" then Exit Vallocate;
end;

*j

1* Block not found so find upper level entry unallocated and call SearchPageTable that will 'expand' *j
1* the null table to hold the block. *j

for Upper_Table_Index = 1 to 31
If Upper_Table[].Status = unallocated then call SearchPage1able;

1* No more virtual space, exit leaving Status = "out of virtual memory"

exit Vallocate;

Procedure SearchPageTable;

*j

1* Scan table pointed to by upper level index to see if it can hold the block. If not, see if it can be *j
1* be expanded. If successful then set flags in the page entries, set status to "OK" and return *j
1* User's virtual address *j

Declare Maxfound;

MC68851 USER'S MANUAL

/* Count of consecutive free blocks found *j

MOTOROLA
C-19

Maxfound = 0;
For LowecLeveUndex = 0 to Upper_Table[].Limit_Field

/* count consecutive free pages until Maxfound met or not */
If Lower_ Table[].Status = invalid_unallocated then do

Maxfound = Maxfound+ 1 ;
if Maxfound >= NumPages then do
/* Go Back and Allocate Found Pages */

/* Found! Now flag the page entries, update the MC68851 and */
/* return the User's virtual address */

end;

end;

while (Maxfound > 0) do
Lower_ Table[].Status = invalid_virgin;
Lower_LeveUndex = Lower_LeveUndex-1 ;
Decrement Maxfound;

Status = "OK";
VirtualAddressReturned =

Upper_LeveUndex*16Meg +
Lower Level Index*8k;

exit SearchPageTables;
end;

/* allocated page hit so start counting from zero again */
else Maxfound = 0;

/* If we get here there was not enough room. See if we can expand the page table to hold the
new block */
/* If so grow it and set the new page entries as virgin * /

If Upper_ Table[J.Limit + NumPages < 4k· then do
NewLimit = Upper_Table[].Limit + NumPages;

/* We can grow the page table! First get area for new table
Call GetReal(4·NewLimit, NewPageTable);

/* Now copy the first part of the old table into the new
(poir'lter use indicated by "->" symbol)
for Lower_Table_Index = 0 to Upper_ Table[].Limit

NewPage Table->Lower_ Table[] = Lower_ Table[]

/* Return the old table and install the new table pointer
Call ReturnReal(4·Upper_Table[].Limit, Upper_ Table[].Pointer};

Upper_Table[].Pointer = NewPageTable;

./

./

*/

/* Set returned virtual address and load it replacing the old ./
VirtualAddressReturned = Upper_LeveUndex·16Meg + Lower_LeveUndex·8k;

/* Set all the new entries at the end to virgin status ./
While (Lower_Table_Index < NewLimit) do

Lower Table Index = Lower Table Index + 1;
Lower~)ableIT.Status = invalkCvirgin;
end;

r Set OK status and return with it */
Status = "OK";
exit SearchPageTables;
end;

/* cannot expand the table. retum with status unchanged (failed) */
end SearchPageTables;

MOTOROLA
C-20

MC68851 USER'S MANUAL

C.6.2 0.5. Paging System Bus Error Handler Example

The most critical part of an O.S. supporting demand-paged memory is the page-fault
handling portion of the supervisor program. The major activity of this handler is to deter­
mine the validity of the page fault and perform necessary processing. The MC68851 PTEST
instruction provides the facility for investigating the cause of a bus fault by reflecting the
status of an address in the PSR register (refer to 6.1.8 PMMU Status Register (PSR)).

The PTEST instruction may signal that no error was detected for the tested address indi­
cating that the system most likely had a true bus error (for example, a transient memory
failure occurred) and it is up to the O.S. to handle this case.

The table search performed by the MC68851 during the PTEST instruction may cause a
bus error implying that the MC68851 tables are not properly setup or main memory has
hada failure (either transient or permanent).

Three types of return status from the PTEST instruction: 'supervisor violation', 'access level
violation', and 'write protected' usually indicate that the interrupt task has attempted to
access an area of the virtual space that is not a legal part of the address space of the task.
The O.S. usually recovers from such an error by terminating (aborting) the task.

The 'invalid' status indicates that a page fault has indeed occurred. The O.S., at this point,
must decide more specifically what the page fault means. If the 'limit violation' bit is also
set, this indicates that there was no descriptor representing the faulted address (since it
was outside of the tables representing the valid virtual space). In this O.S. example system,
encountering an 'limited violation' error forces the task to terminate since it is trying to
access beyond the allocated portion of one of the existing lower page tables. However,
other operating systems may very well take this to mean an implicit request for more
memory, particularly if the memory reference is considered to be within a stack area.

If the limit violation bit is not set, then there is a descriptor that had its DT type set to
'invalid'. Again, it is up to O.S. conventions, but typically the descriptor will contain software
flags indicating further disposition. The example O.S. first checks to see if the invalid
descriptor was in the upper or lower level of tables. If the descriptor is in the upper table,
then it was a long pointer descriptor that was unallocated on behalf of the task. This
indicates that the address used is a non-existent virtual address and that the task should
be terminated. If the invalid descriptor was a page descriptor then software flags further
indicate what action should be taken by the O.S.

One of the indications provided by the 'invalid' page descriptor is an unallocated page.
This is yet another method of indicating that the address was invalid for the task. Next, it
could be an allocated but virgin page which means it has been assigned to the task but
has not yet been accessed. Note that if this is a read request, the O.S., may still consider
this invalid since it would be abnormal for a task to access virgin memory with a read of
data that has an unknown value. The duties for theO.S. in this case areto find a physical
page frame and assign it to the task for use. Some systems may automatically clear (zero)
virgin pages when they are first used and, in this case, it may be valid to let the first access
to such pages be a read instead of a write.

The software flags can also indicate that the page is allocated but paged-out and residing
on an external storage medium (such as a disk). In this case, not only must the O.S. find
a page frame, but it must read in the page (swap it in) before returning to the interrupted
task. Finally, software flags may indicate unique handling such as treating the memory in ~
the page as a virtual I/O device area for virtual machine simulation. ~

MC68851 USER'S MANUAL MOTOROLA
C-21

The fetching of a physical page frame to hold the virtual page for a task may seem like an
obvious and simple operation. However, what happens if there are no idle physical memory
frames left to assign? The answer is that one must be found and stolen from another (or
the same) task. The task from which it is stolen must have its translation table page entry
altered to reflect that it is now missing (invalid) and swapped out. Typically, in the entry,
there is a pointer left in place of the old physical address that indicates where the old page
image resides in external storage.

The method by which an O.S. selects a page to 'steal' is very dependent on the particular
system implementation. A very simple system may simply 'steal' a page from the lowest
priority task. More advanced systems attempt to keep track of page frame aging; they try
to keep track of which frames have been idle (not used) the longest time. This can be done
in a variety of ways. One method to 'age' pages is to dedicate some software-reserved
bits in the page entries as an aging counter. Every so often (say once every five or ten
seconds), the O.S. can run through all page tables and, by examining the U (used) bits,
increment those entries that have not been used. When entries reach the maximum count
or overflow they can be remembered by building a queue of pointers to them. The queue
can then be used by the routine GetFrame when there are no free page frames available.

Some systems may even keep more than one queue. It is obvious that once a page of
memory that is read-only (no task can write to it) is swapped out (copied) to external
memory then that external image always represents the data in the virtual page. Therefore,
if that page is in memory and stolen for use by another task, it does not need to be written
out before it is taken. An operating system that supports read-only page swaps can have
a queue with just read-only pages that are more efficient to steal.

The design of page stealing heuristics is more of an art than a craft and depends widely
on the nature of the tasks in execution and other dynamics of a system such as I/O activity.
Consideration can be given to task priority, read-only page status, working-set determi­
nations, number of tasks executing, thrashing level, and other factors.

The code presented below is much more general than Vall ocate since it relies on several
O.S.-dependent items. The variable pointer VictimTask is assumed to point to a table from
the task that is having a page stolen. This must be done since it cannot be assumed that
the control block layout or method of searching and finding other tasks in an operating
system is known. Another simplification is the ignoring of the function code value and
read/write status of the address given to the bus error procedure since they don't effect
the basic logic of the program.

MOTOROLA
C-22

MC68851 USER'S MANUAL

1* Paging Bus Error Handler for example O.S.

Procedure BusErrorHandler (BusErrAddress);

1* Global Variables to all code

Declare TableEntry; I*Pointer returned by PTEST instruction
1* pointing to the lowest level entry in the
1* translation tables.

*/

*/

*/
*/
*/

1* Use MC68851 PTEST instruction to get fault status and table entry */
case PTEST (BusErrAddress,TableEntry) of

/* Bus Error - translation table is invalid or memory hardware problems. Terminate the task. */
B: AbortTask("lnvalid table or memory hardware error");

/* Supervisor Violation - task tried accessing restricted memory */
S: AbortTask("Attempted access of Supervisor-only memory");

/* Access Level Violation - task tried accessing higher privilege level. Note that for our example */
/* O.S. this should never occur. */
A: AbortTask("Attempted access of higher privileged memory");

1* Write Protected - tried writing into read-only memory */
W: AbortTask("Attempted write into read-only memory");

/* Limit Violation - tried accessing unmapped virtual space. This happens in our example */
/* O.S. when accessing within a 16 megabyte segment in User memory beyond what is */
/* currently allocated for the lower page table as determined by the upper level limit field. */
L: AbortTask("lnvalid address");

/* Invalid - pointer indicates invalid. Must determine status. */
I: begin

1* If upper level entry then that 16 Meg chunk of the virtual space is unallocated */
/* and has no page tables. */
If TableEntry is upper level then AbortTask("lnvalid address");

1* We are at a page table entry. Look at software flags. */

/* If this page unallocated to the User then abort task */
If EntryStatus=invalid_unallocated then

AbortTask("lnvalid Address");

1* If this page is virgin then assign to it a physical frame */
if EntryStatus = invalid_virgin then do

GetFrame(TableEntry); /* a,ddress returned in entry */
PLOAD (BusErrAddress); /* update MC68851 entry */
exit BusErrorHandler; /* done so continu~ task */
end do;

1* If this page is swapped out then read it back in
if EntryStatus = invalid_swapped_out then do

/* first get a frame to hold the new page
DiskAddress = Table Entry.Pointer;

GetFrame(TableEntry) ;

/* disk location

/* address returned in entry

*/

*/
*/

*/

MC68851 USER'S MANUAL MOTOROLA
C-23

II

1* Now read in the virtual page image */
call SwapPage I n(Table Entry, DiskAddress);
PLOAD (BusErrAddress); 1* update MC68851 entry */
exit BusErrorHandler; 1* done so continue task */
end do;

end begin;

1* No MC68851 status bits on. Must be memory malfunction or RMW cycle with no */
I*ATC entry */

Otherwise: If Stack_Frame shows RMW instruction (SSW) then

end case;

MOTOROLA
C-24

I*ATC did not have descriptor loaded and MC68851 cannot */
I*search tables to load it. Explicitly load it and allow the task to */
I*continue normally */

Begin
PLOAD (BusErrAddress); I*update ATC */
exit BusErrorHandler; I*done so re-execute instruction */
end Begin

Else: AbortTask ("Memory Malfunction");

MC68851 USER'S MANUAL

Procedure GetFrame(FrameTableEntry);

r This module returns the address of a physical frame in the passed table entry. It obtains one */
r from the free frame list. If none there, ~ scans a queue pointing to pages that have been */
r recorded as having aged by not being accessed frequently. It first tries to find a read-only */
/* page in the queue but if none, it returns the first (oldest) entry after swapping the page out */
/* to disk and altering the translation tables of the owning task. If nothing in the queue it waits */
/* for some other task to free a frame by terminating or deallocating memory */

Restart:
if Free Frame Queue NOT null then

- Dequeue first entry and return its value.

if Aged_Frame_Queue NOT null then begin

/* First try to find a read-only page
If scanning finds read-only page then use and dequeue it

else dequeue the first entry (which is the oldest);

Find owning task and the frame's current page entry;

*/

r Invalidate owning task's page */
PFLUSH (User_Space, VictimTask.VirtuaIAddress);

/* If modified page, swap it out. SwapPageOut either gives control to other tasks */
/* during the I/O or copies the page returning immediately. */
If modified then call SwapPageOut(VictimTask.TableEntry);
r Disk address now in Victim's page entry */

/* Now set the old task's page status and return the frame */
VictimTask.TableEntry.Status = invalid_swapped_out;
return physical frame value;
end do;

/* At this point we can use some other stealing method but we just wait until another task frees */
/* a frame by terminating or freeing memory. */
call wait (Free_Frame);
go to Restart;

end GetFrame;

Procedure SwapPageln (SwapinTableEntry,DiskAddress);
/* This procedure takes the disk address and reads the page from the paging external media */
/* into the physical address residing in the table entry painter. */
end SwapPageln;

Procedure SwapPageOut(SwapoutTableEntry);
/* This procedure performs output on the external paging device and then replaces the */
/* physical page frame address in the page entry pointer field with the disk address of the */
/* block holding the image of the page. */
end SwapPageOut;

Procedure AbortTask(TerminationMsg);
/* This procedure terminates the current task and issues a diagnostic message. */
end AbortTask;

end BusErrorHandler;

MC68851 USER'S MANUAL MOTOROLA
C-25

Introd uction

Overview of System Operation

Signal Description

Bus Operation Description

Address Translation

Instruction Set Processor

Protection

Breakpoints

Coprocessor Interface

• Access Level Control Interface

.. Operation Timings

fill Electrical Specifications

• Ordering Information and Mechanical Data

• Instruction Set

• Hardware Considerations

II Software Considerations

1ATX31318-0 Printed in USA 4/93 COURIER USER'S MANUALS 650761,000 MPU YGABAA MC68851 USER'S MANUAL

SO S2 S4 SO

CLOCK

PA8-PA31. AO-A 7.
SIZO/SIZI. FCO-FC3

RMC

CLI

PAS

OS

Riw

DBDIS

DSACKx

DSACKx

DATA

BERR

HALT

ALL ASYNC
INPUTS

Key: Indicates that the signal is driven by the MC68851
Indicates that the signal is driven by the Main Processor
Indicates that the signal is driven by an external device or
alternate bus master

Note: The Clock Signal is always depicted with a normal width line

Figure 12-3. MC68851 Initiated Read Cycle

Foldout-1

I SO S2 S4 SO

~ CLOCK

:1.

~) PAO-PA31, LAO-LAS,
SIZO/SIZI. FCO-FC3

II

,il RMC

PAS

Os

R/W

DBDlS

DSACKx

DSACKx

DATA

BERR

HALT

ALL ASYNC
INPUTS

Figure 12-4. MC68851 Initiated Write Cycle

Foldout-2

SO S2 S4 SO

CLOCK

LA8-LA31. FCO-FC3.
SIZO/SIZl. RMC. R/iii

LAS

DSACKx

PA8-PA31

PAS

I, ASYNC

I :1

I
BERR. HALT I,'

LBRO

11('

I Ct:i
:1

Figure 12-5. Synchronous Mode Translation

,I

I
'll';

I:,

I
1-............................. ·F·OI·dO·U·t-·3

SO S2 S4 SO
,.---... r----"'\. I r---.. ,--

CLOCK

LA8-LA3l, FCO-FC3,
SilO/Sill, RMC, R/W

LAS

PA8-PA3l

PAS

CD

'TI - OBOIS
0
c::
0 s.

I BERR
~

HALT

LBRO

LBGO

LBRI

I- G
LBGI

LBGACK

Figure 12-6. Logical Master Relinquish and Retry Timing Diagram

"'=;c -----=_~ ~~=~- =----___
.... --:--:'~!tp~...: -,-~-- ~.

SO S2 S4

CLOCK

LA8·LA3l. AD·A7.
FCO·FC3. SIZO/SIZ1. R/Vi. RMC

LAS

DBDIS

DSACKx

PA8·PA3l

" I 0
0: PAS
0
c:
'1
(11

LBRI

LBRO

LBGI

LBGO

LBGACK

,- @
ASYNC

Figure 12-7. Logical Bus Arbitration by Asynchronous Master Timing Diagram

." o
c:
o
S­
a,

~~~~--~~,c.~- -~ 
.,,--::~.:--~-~--=;,-. 

SO SI S2 S3 S4 S5 

CLOCK 

PAO·PA3]' AD·A 7. R/Vii. 
SIZO/SIZ 1. RMC 

LAS (SEE NOTE 1) 

PAS 

liS 

R/W 

DSACKx 

DBOIS 

DATA 

PBR 

PBG 

PBGACK 

Note 1. This depiction of LAS is inconsistent with the MC68851 bus c:ycle depicted but is included to show signal relationships 
when the MC68851 is performing a translation. 

Figure 12-8. Physical Bus Arbitration Timing Diagram 

~""",",~~-:~~~'--.-

SO 





CLOCK 

LA8-LA31. AO-A7, 
SilO/Sill 

FCO-FC2 
(FC3=0) 

Riw 

LAS 

OS 

DBDIS 

DATA 

DSACKx 

DSACKx 

PA8-PA31 

ftj 

I 

SO S2 Sw Sw S4 SO 

Figure 12-9. CPU Space Read From MC68851 or From Other Coprocessor 
(CLI Asserted by MC68851) Timing Diagram 

Foldout-7 





." o 
c: 
o 
c:: 
.-+ 

00 

CLOCK 

LA8·LA3l. AO·A 7. 
SIZO/SIZl 

FCO-FC2 
(FC3=O) 

Riw 

LAS 

os 

DBDIS 

DATA 

DSACKx 

DSACKx 

PA8·PA3l 

Cij 

:.~ .-~~-~~-~ 

so S2 Sw Sw Sw S4 so 

Figure 12-10. CPU Space Write To MC68851 or To Other Coprocessor 
(CLI Asserted by MC68851) Timing Diagram 





'II 

11 

E 
m .. 
C) 
m 
C 
C) 
c 
's 
t= 
~ 
(,) 
Q) 

Q) 
en 
Q) 

"'C 
0 
~ 
"'C 
C 
m 
~ 
Q) 
tn 
Q) 

a: 
....: .-
N .-
Q) .. 
:::s 
C) 

i.i: 

> 
'" + 

~ u 

Ii 
U) U) 5 Is u c :::> 

9 > co co ex: 
f-

u 0 ~ 2: 
<t 8 0 

U) 
:::> co 

Foldout-9 







PRENTICE HALL, Englewood Cliffs, N.J. 07632 

ISBN 0-13-566993-

MC68851 UM/, 

1111111111111111111111111111111111111111111111111111111111111111111 


