

3.9 ASSIST05 DEBUG MONITOR

Debug monitor ASSIST05 is a monitor which is intended for use with the MC146805E2
Microprocessor Unit (MPU). The ASSIST05 monitor uses an RS·232 interface to allow
users to quickly perform hardware and software development and evaluation. Figure 3·16
contains a schematic diagram of one possible circuit that could be used to implement
ASSIST05. The program listing for ASSIST05 is provided in Figure 3·17.

The serial interface shown in Figure 3·16 is provided by an MC6850 ACIA. However, this
serial hardware, and the CHRIN and CHROUT subroutines of ASSIST05, could be reo
placed by hardware shown in Figure 3·4 and the GETC and PUTC subroutines of Figure
3·5. All M6805 HMOS/M146805 CMOS Family MCU evaluation devices include debug
monitors which can be used with an RS·232 interface as discussed in the Serial 110 Soft·
ware For RS·232 paragraph. If, in the case of an MC146805E2 MPU, a debug monitor that
does not require an RS·232 interface is desired, Motorola Application Note AN·823 or AN·
823A can be used. This application note describes a debug monitor for the MC146805E2
which uses a keypad and LCD for the user interface.

The ASSIST05 program includes commands which allow memory and register examine/
change, breakpoint set/point/display, single or multiple trace, and tape punchlload. In the
paragraphs which follow, each of the commands is described in greater detail, and some
of the routines in ASSIST05, which might be useful in other programs, are also discussed.

3.9.1 ASSIST05 Command Description

The ASSIST05 program is initialized by either a power·on or manual reset to the
MC146805E2. After a reset, "ASSIST05 1.0" is printed and the prompt character" >" is
displayed to indicate that commands may be entered.

Table 3·2 summarizes the commands which may be entered. Commands are entered by
typing the command, as shown in Table 3·2, followed by a carriage return.

Table 3·2. ASSIST05 Valid Display Commands

Command Usage

R Display all Register Contents
A Display/Change User Accumulator Contents
X Display/Change User Index Register Contents
C Display/Change User Condition Code Register Contents
P XXXX Change User Program Counter Contents
W XXXX yyyy Write Memory to Tape
B Display Breakpoints
B N XXXX Set Breakpoint #N
B NO Clear Breakpoint #N
T Trace One Instruction
T XXXX Trace XXXX Instruction
M XXXX Display/ Change Memory
G Continue Program Executive at Current Program Counter
GXXXX Execute Program at Address XXXX

52

01
(,.)

-=201 VSS

5V
"40

N
W
LD
o
f2
<j"

U
~

5V
• 120

Voo

C')
i'
C')
(fJ
-.J

00
01
02

0717

VSS·8

AO
A1
A2

5V

t4121

CD

~ 04 18
~ 05 17
~ 06 16

07 15

Figure 3·16. ASSIST05 Interface Schematic Diagram

5V

3

2
1
7

5
6
8

20

DIp
SWitch

F1 8 9600 9
F3 2 7 4800 10
F5 3 6 2400 11
F7 4 5 1200 12
F8 5 4 600 13
F9 7 3 300 14

XOUT F11 8 2 150 15
F1313 1 110 16

MC14411
Bit Rate

Generator

3.9.2 Detailed Command Description

Register Examine/Change
The current user register contents may be displayed all at once or individually (except
5P). The 5P may not be directly modified by the user. The PC may be modified with either
P or G commands.

R - Display Registers
Current user registers are displayed in the following format: PC A X C 5P. After the
registers have been displayed, the prompt character is returned.

A - Display/Change the Accumulator
This command begins by printing the current contents of the accumulator in hexadeci·
mal. The user may then enter a new value in hexadecimal or a carriage return to termi·
nate the command.

x - Display/Change the Index Register
This procedure is the same as the A command, but affects the index register instead.

C - Display/Change the Condition Code Register
This procedure is the same as the A command, but affects the condition code register
instead.

Tape Punch/Load
This allows the user to load a tape, via the R5·232 interface, in the Motorola 51·59 format.
Memory is then loaded with the data which is contained in the file on the tape. Files in
51·59 format have the destination addresses contained within the file. The format of this
command is: W XXXX YYYY. The memory contents of addresses XXXX to YYYY are out·
put to the R5·232 port. Data is then stored onto tape in the Motorola 51·59 format.

Breakpoints
Up to three breakpoints may be used to allow debugging of user programs. The program
execution can be halted at specified addresses so that the current user registers and
memory may be examined and evaluated. Whenever program execution reaches a break·
point address, program execution ceases, the current user registers are displayed, and
the prompt character is returned. Following this, the applicable breakpoint command
can then be entered. Breakpoints may only be entered from valid RAM addresses. The
current program counter is not displayed; however, it may be examined by using the R
command.

P - Display the Program Counter
This procedure is similar to the A command, but affects the program counter instead.
Note that this is a two·byte register.

NOTE
When the user program execution is initiated via the G command, instructions
up to and including the instruction at the breakpoint are executed. If the user
program execution is halted with a reset, all enabled breakpoint address loca·
tions will contain $83 and should be reloaded.

54

B - Display Breakpoints
This command allows all breakpoint addresses to be displayed and the prompt character
is returned.

B N XXX X - Set Breakpoint #N
This command enables breakpoint N, where N is a number 0-2 at address XXXX, and
where XXXX is the address of the last instruction to be executed before returning to
ASSIST05.

B N 0 - Clear Breakpoint #N
This command disables breakpoint N, where N is a number 0-2.

Instruction Trace
This command is used to execute one or more instructions, and is generally used after a
breakpoint is reached. Tracing may also be used to step through ROM-based programs;
however, unlike breakpoints, tracing is not done in real-time. To use the trace command
on ROM-based programs, the user must put a jump-to-the ROM entry address in RAM.
The user then sets a breakpoint at the jump instruction address. Once the breakpoint
address is encountered, the jump is executed and control is returned to ASSIST05. The
current user PC then points to the ROM entry address and tracing may then be used.

T - Trace One Instruction
With this command, a single instruction, located at the user PC, is executed and the
registers are then displayed. Control is then returned to ASSIST05.

T XXXX - Trace XXXX Instructions
With this command, XXXX instructions are executed, beginning at the current user PC.
After the specified number of instructions are executed, the registers are displayed and
control is returned to ASSIST05. The instructions executed during the trace instruction
are not executed in real-time. The P instruction may be used prior to tracing to point to
the first instruction to be executed.

Memory Examine/Change
This command allows memory, at the specified address XXXX, to be examined. Then, if
desired, the contents of that location may be changed, or the previous location or next
location may be examined.

M XXXX - Display/Change Memory
With this command, memory locations XXXX, XXXX - 1, or XXXX + 1 may be acted upon.
To do this or to return to ASSIST05, one of four terminal keys need be depressed. These
include:

f-to examine previous location (XXXX -1)
LF-to examine next location (XXXX + 1)
HH-to change contents of specified location XXX X
CR-to exit memory examine/change command and return to ASSIST05.

55

Execute User Program
Two execute commands are used to allow real-time execution of the user program.
Execution can continue either from the current user PC or begin at a specified address.

G - Continue Program Execution at Current PC
This command allows the user program to continue execution from the current user PC.
This command is usually used after a breakpoint has been executed or if the user has
previously altered the PC with the P instruction.

G XXXX - Execute Program at Address XXXX
This command results in the user PC being loaded with address XXXX. The user program
then starts execution from the new (current) user PC.

3.9.3 ASSIST05 Routines

The ASSIST05 program contains many useful routines and subroutines which might be
used in other programs. Some of the more unusual includes a routine that can find the
current SP (LOCSTK) and the trace routine which allows ROM-based code to be
debugged. For more information consult the complete listing which is in Figure 3-17.

56

PAGE 001 ASSIST05.SA:l ASSIST

00001

00003
00004
00005
00006

00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044

00046
00047
00048
00049 1800

NAM ASSIST05

* MONITOR FOR THE AUSTIN 6805 EVALUATION MODULE*
* (C) COPYRIGHT 1979 MOTOROLA INC. *

**

*
* THE MONITOR HAS THE FOLLOWING COMMANDS:
*

R PRINT REGISTERS *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A

X

C

P

DISPLAY/CHANGE A REGISTER

DISPLAY/CHANGE X REGISTER

DISPLAY/CHANGE CONDITION CODE

DISPLAY/CHANGE PROGRAM COUNTER

L

W XXXX yyyy

B
B N XXXX
B N a

T
T XXXX

LOAD TAPE FILE INTO MEMORY

WRITE MEMORY TO TAPE FILE

DISPLAY BREAKPOINTS
SET BREAKPOINT NUMBER N
CLEAR BREAKPOINT NUMBER N

TRACE ONE INSTRUCTION
TRACE XXX INSTRUCTIONS

* M XXXX MEMORY EXAMINE/CHANGE.
* TYPE: t TO EXAMINE PREVIOUS
* LF TO EXAMINE NEXT
* HH

CR
CHANGE TO HEX DATA
TERMINATE COMMAND *

*
*
*
*
*
*

G CONTINUE PROGRAM EXECUTION FROM
CURRENT PROGRAM COUNTER.

G XXXX GO EXECUTE PROGRAM AT SPECIFIED
ADDRESS.

* MC146805E2 GLOBAL PARAMETERS *

A MONSTR EQU $1800 START OF MONITOR

Figure 3·17. ASSIST05 Program Listing

57

PAGE 002 ASSIST05.SA:1 ASSIST

00050 001F A PCMASK EQU $lF MASK OFF FOR 8K ADDRESS SPACE (E2)
00051 0003 A NUMBKP EQU 3 NUMBER OF BREAKPOINTS
00052 17F8 A ACIA EQU $17F8 ACIA ADDRESS
00053 003E A PROMPT EQU '> PROMPT CHARACTER
00054 0008 A TIMER EQU 8 TIMER DATA REGISTER
00055 0009 A TIMEC EQU 9 TIMER CONTROL REGISTER

00057 ***
00058 * EQUATES *
00059 ***
00060 0004 A EOT EQU $04 END OF TEXT
00061 OOOD A CR EQU $OD CARRIAGE RETURN
00062 OOOA A LF EQU $OA LINE FEED
00063 0011 A DC1 EQU $11 READER ON CONTROL FUNCTION
00064 0012 A DC2 EQU $12 PUNCH ON CONTROL FUNCTION
00065 0013 A DC3 EQU $13 X-OFF CONTROL FUNCTION
00066 0014 A DC4 EQU $14 STOP CONTROL FUNCTION
00067 0020 A SP EQU $20 SPACE
00068 0007 A BELL EQU $07 CONTROL-G (BELL)
00069 0083 A SWIOP EQU $83 SOFTWARE INTERRUPT OPCODE
00070 OOCC A JMPOP EQU $CC EXTENDED JUMP OPCODE

00072 ***
00073 * MONITOR WORK AREA AT STACK BOTTOM
00074 ***
00075A 0041 ORG $41 BOTTOM OF STACK
00076 0038 A BKPTBL EQU *-3*NUMBKP BKPT TABLE UNDER STACK BOTTOM
00077A 0041 0001 A SWIFLG RMB 1 SWI FUNCTION FLAG
00078A 0042 0001 A WORK1 RMB 1 CHRIN/LOAD/STORE/PUTBYT
00079A 0043 0001 A WORK2 RMB 1 LOAD/STORE/PUTBYT
00080A 0044 0001 A ADDRH RMB 1 HIGH ADDRESS BYTE
00081A 0045 0001 A ADDRL RMB 1 LOW ADDRESS BYTE
00082A 0046 0001 A WORK3 RMB 1 LOAD/STORE/PUNCH
00083A 0047 0001 A WORK4 RMB 1 STORE/PUNCH
00084A 0048 0001 A WORK5 RMB 1 TRACE
00085A 0049 0001 A WORK6 RMB 1 TRACE
00086A 004A 0001 A WORK7 RMB 1 TRACE
00087A 004B 0001 A PNCNT RMB 1 PUNCH BREAKPOINT
00088A 004C 0002 A PNRCNT RMB 2 PUNCH
00089A 004E 0001 A CHKSUM RMB 1 PUNCH
00090A 004F OOOC A VECRAM RMB 12 VECTORS

00092A 1800 ORG MONSTR START OF MONITOR

Figure 3·17. ASSIST05 Program Listing (Continued)

58

PAGE 003 ASSIST05.SA:l ASSIST

00094 ***
00095 * MONITOR BASE STRING/TABLE PAGE
00096 * (MUST BE AT THE BEGINNING OF A PAGE)
00097 ***
00098 1800 A MBASE EQU * START OF WORK PAGE IN ROM
00099 * MSGUP MUST BE FIRST IN PAGE
00100A 1800 41 A MSGUP FCC /ASSIST05 1.1/FIREUP MESSAGE
00101A 180C 04 A MSGNUL FCB EaT END OF STRING
00102A 180D 3F A MSGERR FCC /? ERROR ?/
00103A 1816 04 A FCB EOT
00104A 1817 53 A MSGSI FCB '5, 'l,EOT Sl START RECORD TEXT
00105A 181A 53 A MSGS9 FCC /S9030000FC/
00106A 1824 OD A FCB CR S9 RECORD TEXT
00107A 1825 14 A MSGMOF FCB DC4, DC3, EOT MOTORS OFF TEXT
00108A 1828 49 A MSGWAS FCC /IS OPCODE/
00109A 1831 04 A FCB EOT
OOllOA 1832 CC A VECTAB FCB JMPOP
00111A 1833 lC85 A FDB TIRQ
001l2A 1835 CC A FCB JMPOP
001l3A 1836 lC85 A FDB TIRQ
001l4A 1838 CC A FCB JMPOP
00ll5A 1839 lCAl A FDB IRQ
OO1l6A 183B CC A FCB JMPOP
001l7A 183C lA94 A FDB SWI

00119 ***
00120 * GO --- START EXECUTION
00121 ***
00122A 183E CD 19A9 A CMDG JSR GETADR OBTAIN INPUT ADDRESS
00123A 1841 24 14 1857 BCC NEXT DO CONTINUE IF NONE
00124A 1843 B6 44 A LDA ADDRH CHECK ADDRESS BOUNDRIES
00125A 1845 Al 20 A CMP #$20 FOR OVERRUN
00126A 1847 25 03 184C BLO GADDR
00127A 1849 CC lA74 A JMP CMDERR ERROR IF $2000 OR LARGER
00128A 184C CD IB23 A GADDR JSR LOCSTK OBTAIN CURRENT STACK ADDRESS-3
00129A 184F B6 44 A LDA ADDRH LOAD PC HIGH
00130A 1851 E7 07 A STA 7,X INTO STACK
00131A 1853 B6 45 A LDA ADDRL LOAD PC LOW
00132A 1855 E7 08 A STA 8,X INTO STACK
00133A 1857 OE 47 03 185D NEXT BRSET 7,WORK4,CONT
00134A 185A CC lA26 A JMP CMD
00135A 185D CD lCC3 A CONT JSR SCNBKP INIT BREAKPOINT SCAN PARMS
00136A 1860 F6 GOINSB LDA ,X LOAD HI BYTE
00137A 1861 2B 10 1873 BMI GONOB BRA EMPTY
00l38A 1863 B7 44 A STA ADDRH STORE HI ADDRESS
00139A 1865 E6 01 A LDA 1,X LOAD LOW
00140A 1867 B7 45 A STA ADDRL STORE LOW
00141A 1869 CD 1943 A JSR LOAD LOAD OPCODE
00142A 186C E7 02 A STA 2,X STORE INTO TABLE
00143A 186E A6_83 A LDA #SWIOP REPLACE WITH OPCODE
00144A 1870 CD 1952 A JSR STORE STORE IN PLACE
00145A 1873 5C GONOB INCX TO
00146A 1874 5C INCX NEXT
00147A 1875 5C INCX BREAKPOINT
00148A 1876 3A 4B A DEC PNCNT COUNT DOWN
00149A 1878 26 E6 1860 BNE GOINSB LOOP IF MORE

Figure 3·17. ASSIST05 Program Listing (Continued)

59

PAGE 004 ASSIST05.SA:l ASSIST

00150A 187A 33 41
00151
00152A 187C 80

00154
00155
00156
00157
00158
00159
00160
00161A 187D AD OC
00162A 187F 24 57
00163A 1881 B7 43
00164A 1883 BB 4E
00165A 1885 B7 4E
00166A 1887 B6 43
00167A 1889 SA
00168A 188A 81

00170
00171
00172
00173
00174
00175
00176A 188B CD 198E
00177A 188E 24 OE
00178A 1890 48
00179A 1891 48
00180A 1892 48
00181A 1893 48
00182A 1894 B7 43
00183A 1896 CD 198E
00184A 1899 4D
00185A 189A 24 04
00186A 189C BA 43
00187A 189E 3F 43
00188A 18AO 81

00190
00191
00192
00193A 18Al CD 19DO
00194A 18A4 A6 11
00195A 18A6 CD 19EA
00196
00197A 18A9 CD 19DO
00198A 18AC Al 53
00199A 18AE 26 F9
00200A 18BO CD 19DO
00201A 18B3 Al 39

A COM SWIFLG FLAG BREAKPOINTS ARE IN
****RESET USERS TIMER ENVIRONMENT******

RTI RESTART PROGRAM

* CLBYTE - LOAD SUBROUTINE TO READ NEXT *
* BYTE, ADJUST CHECKSUM,
* DECREMENT COUNT.
* OUTPUT: A=BYTE
* CC=REFLECTS COUNT DECREMENT

*
*
*
*

188B CLBYTE BSR GETBYT

CMDMIN
WORK2
CHKSUM
CHKSUM
WORK2

OBTAIN NEXT BYTE
ERROR IF NONE
SAVE VALUE

18D8 BCC
A STA
A ADD
A
A

STA
LDA
DECX
RTS

ADD TO CHECKSUM
REPLACE
RELOAD BYTE VALUE
COUNT DOWN
RETURN TO CALLER

* GETBYT - READ BYTE IN HEX SUBROUTINE *
* OUTPUT: C=O, Z=l NO NUMBER *
* C=O, Z=O INVALID NUMBER *
* C=l, Z=l, A=BINARY BYTE VALUE *

A GETBYT JSR
189E BCC

GETBY2 ASLA
ASLA
ASLA
ASLA

A STA
A JSR

TSTA
18AO BCC

A ORA
A GETBRZ CLR

GETBRT RTS

GETNYB
GETBRZ

WORK2
GETNYB

GETBRT
WORK2
WORK2

GET HEX DIGIT
RETURN NO NUMBER
SHIFT
OVER
BY
FOUR
SAVE HIGH HEX DIGIT
GET LOW HEX
FORCE Z=O (DELIMITER IF INVALID)
RETURN IF INVALID NUMBER
COMBINE HEX DIGITS
SET Z=l
RETURN TO CALLER

* L -- LOAD FILE INTO MEMORY COMMAND *

A CMDL JSR CHRIN
#DCl
CHROUT

READ CARRIAGE RETURN
TURN ON READER A

A

A
A

18A9
A
A

LDA
JSR

* SEARCH FOR
CMDLT JSR
CMDLSS CMP

BNE
JSR
CMP

AN'S'
CHRIN
#'S
CMDLT
CHRIN
#'9

WITH DCl CONTROL CODE

READ A CHARACTER
? 'S'
LOOP IF NOT
READ SECOND CHARACTER
? 'S9' RECORD

Figure 3·17. ASSIST05 Program Listing (Continued)

60

PAGE 005 ASSIST05.SA:l ASSIST

00202A 18B5 27 24 18DB BEQ CLEOF BRANCH END OF FILE
00203A 18B7 Al 31 A CMP #'1 ? 'Sl' RECORD
00204A 18B9 26 Fl 18AC BNE CMDLSS NO, TRY 'S' AGAIN
00205 * READ ADDRESS AND COUNT
00206A 18BB 3F 4E A CLR CHKSUM ZERO CHKSUM
00207A 18BD AD BE 187D BSR CLBYTE OBTAIN SIZE OF RECORD
00208A 18BF 97 TAX START COUNTDOWN IN X REGISTER
00209A 18C0 AD BB 187D BSR CLBYTE OBTAIN START OF ADDRESS
00210A 18C2 B7 44 A STA ADDRH STORE IT
00211A 18C4 AD B7 187D BSR CLBYTE OBTAIN LOW ADDRESS
00212A 18C6 B7 45 A STA ADDRL STORE IT
00213 * NOW LOAD TEXT
00214A 18C8 AD B3 187D CLLOAD BSR CLBYTE NEXT CHARACTER
00215A 18CA 27 08 18D4 BEQ CLEOR BRANCH IF COUNT DONE
00216A 18CC CD 1952 A JSR STORE STORE CHARACTER
00217A 18CF CD 1962 A JSR PTRUPI UP ADDRESS POINTER
00218A 18D2 20 F4 18C8 BRA CLLOAD LOOP UNTIL COUNT DEPLETED
00219 * END OF RECORD
00220A 18D4 3C 4E A CLEOR INC CHKSUM TEST VALID CHECKSUM
00221A 18D6 27 C9 18Al BEQ CMDL CONTINUE IF SO
00222A 18D8 CC lA74 A CMDMIN JMP CMDERR ERROR IF INVALID
00223 * END OF FILE
00224A 18DB AD AO 187D CLEOF BSR CLBYTE READ S9 LENGTH
00225A 18DD 97 TAX PREPARE S9 FLUSH COUNT
00226A 18DE AD 9D 187D CLEOFL BSR CLBYTE SKIP HEX PAIR
00227A 18EO 26 FC 18DE BNE CLEOFL BRANCH MORE
00228A 18E2 AE 25 A LDX #MSGMOF-MBASE TURN MOTORS OUT
00229A 18E4 CC lA23 A JMP CMDPDT SEND AND END COMMAND

00231 ***
00232 * M -- EXAMINE/CHANGE MEMORY *
00233 * MCHNGE -- REGISTER CHANGE ENTRY POINT *
00234 ***
00235A 18E7 CD 19A9 A CMDM JSR GETADR OBTAIN ADDRESS VALUE
00236A 18EA 24 EC 18D8 BCC CMDMIN INVALID IF NO ADDRESS
00237A 18EC B6 44 A LDA ADDRH CHECK ADDRESS
00238A 18EE Al 20 A CMP #$20 FOR OVERRUN
00239A 18FO 25 03 18F5 BLO CMDMLP
00240A 18F2 CC lA74 A JMP CMDERR ERROR IF $2000 OF LARGER
00241A 18F5 CD IB16 A CMDMLP JSR PRTADR PRINT OUT ADDRESS AND SPACE
00242A 18F8 AD 49 1943 MCHNGE BSR LOAD LOAD BYTE INTO A REGISTER
00243A 18FA CD IBID A JSR CRBYTS PRINT WITH SPACE
00244A 18FD CD 198E A JSR GETNYB SEE IF CHANGE WANTED
00245A 1900 24 OD 190F BCC CMDMDL BRANCH NO
00246A 1902 AD 8C 1890 BSR GETBY2 OBTAIN FULL BYTE
00247A 1904 26 D2 18D8 BNE CMDMIN TERMINATE IF INVALID HEX
00248A 1906 24 07 190F BCC CMDMDL BRANCH IF OTHER DELIMITER
00249A 1908 AD 48 1952 BSR STORE STORE NEW VALUE
00250A 190A 25 CC 18D8 BCS CMDMIN BRANCH IF STORE FAILS
00251A 190C CD 19DO A JSR CHRIN OBTAIN DELIMITER
00252 * CHECK OUT DELIMITERS
00253A 190F Al OA A CMDMDL CMP #LF ? TO NEXT BYTE
00254A 1911 27 ID 1930 BEQ CMDMLF BRANCH IF SO
00255A 1913 Al 5E A CMP # 't ? TO PREVIOUS BYTE
00256A 1915 27 03 191A BEQ CMDMBK BRANCH YES
00257A 1917 CC lA29 A JMP CMDNNL ENTER COMMAND HANDLER

Figure 3·17. ASSIST05 Program Listing (Continued)

61

PAGE 006 ASSIST05.SA:1 ASSIST

00258A
00259A
00260A
00261A
00262A
00263A
00264A
00265A
00266A
00267A
00268A
00269A
00270A
00271A
00272A
00273A
00274A
00275A
00276A
00277A

00279
00280
00281
00282
00283
00284
00285
00286

191A
191C
191E
1920
1922
1924
1926
1928
192A
192C
192E
1930
1932
1935
1937
1939
193B
193D
193F
1941

3D 45
26 OC
3A 44
B6 44
A1 FF
26 04
A6 1F
B7 44
3A 45
AD 51
20 C5
A6 OD
CD 19F2
AD 2B
B6 44
A1 20
25 B8
3F 44
3F 45
20 B2

00287A 1943 BF 42
00288A 1945 AE C6

00290A 1947 BF 43
00291A 1949 AE 81
00292A 194B BF 46
00293A 194D BD 43
00294A 194F BE 42
00295A 1951 81

00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308A 1952 BF 42
00309A 1954 AE C7

A
192A

A
A
A

192A
A
A
A

1C)7F
18F5

A
A

1962
A
A

18F5
A
A

18F5

CMDMBK TST ADDRL ? LOW BYTE ZERO
BNE CMDMB2 NO, JUST DOWN IT
DEC ADDRH DOWN HIGH FOR CARRY
LDA ADDRH CHECK ADDRESS
CMP #$FF FOR UNDERFLOW
BNE CMDMB2
LDA #$lF CLEAR ADDRESS ON UNDERFLOW
STA ADDRH

CMDMB2 DEC ADDRL DOWN LOW BYTE
BSR PCRLF TO NEXT LINE
BRA CMDMLF TO NEXT BYTE

CMDMLF LDA #CR SEND JUST CARRIAGE RETURN
JSR CHROU2 OUTPUT IT
BSR PTRUP1 UP POINTER BY ONE
LDA ADDRH CHECK ADDRESS
CMP #$20 FOR OVERRUN
BLO CMDMLP
CLR ADDRH IF LARGER CLEAR
CLR ADDRL ADDRESS
BRA CMDMLP TO NEXT BYTE

**
* LOAD - LOAD INTO A FROM ADDRESS IN
* POINTER ADDRH/ADDRL
* INPUT: ADDRH/ADDRL=ADDRESS
* OUTPUT: A=BYTE FROM POINTED LOCATION
* X IS TRANSPARENT
* WORK1,WORK2,WORK3 USED

*
*
*
*
*
*

**
A LOAD
A

STX
LDX

WORK1
#$C6

SAVE X
C6=LDA 2-BYTE EXTENDED

A LDSTCM STX
A LDX
A STX
A JSR
A LDX

RTS

WORK2
#$81
WORK3
WORK 2
WORK1

PUT OPCODE IN PLACE
81=RTS
NOW THE RETURN
EXECUTE BUILT ROUTINE
RESTORE X
AND EXIT

**
* STORE - STORE A AT ADDRESS IN POINTER*
* ADDRH/ADDRL *
* INPUT: A=BYTE TO STORE *
* ADDRH/ADDRL=ADDRESS *
* OUTPUT: C=O STORE WENT OK *
* C=l STORE DID NOT TAKE (NOT RAM) *
* REGISTERS TRANSPARENT *
* (A NOT TRANSPARENT ON INVALID STORE) *
* WORK1,WORK2,WORK3,WORK4 USED *
**

A STORE STX
A LDX

WORK1
#$C7

SAVE X
C7=STA 2-EXTENDED

Figure 3·17. ASSIST05 Program Listing (Continued)

62

PAGE 007 ASSIST05.SA:1 ASSIST

00310A 1956 AD EF 1947 BSR LDSTCM CALL STORE ROUTINE
00311A 1958 B7 47 A STA WORK4 SAVE VALUE STORED
00312A 195A AD E7 1913 BSR LOAD ATTEMPT LOAD
00313A 195C B1 47 A CMP WORK4 ? VALID STORE
00314A 195E 27 01 1961 BEQ STRTS BRANCH IF VALID
00315A 1960 99 SEC SHOW INVALID STORE
00316A 1961 81 STRTS RTS RETURN

00318 ***
00319 * PTRUP1 - INCREMENT MEMORY POINTER *
00320 ***
00321A 1962 3C 45 A PTRUP1 INC ADDRL INCREMENT LOW BYTE
00322A 1964 26 02 1968 BNE ?RTRTS NON-ZERO MEANS NO CARRY
00323A 1966 3C 44 A INC ADDRH INCREMENT HIGH BYTE
00324A 1968 81 PRTRTS RTS RETURN TO CALLER

00326 ***
00327 * PUTBYT --- PRINT A IN HEX *
00328 * X TRANSPARENT *
00329 * WORK1 USED *
00330 ***
00331A 1969 B7 42 A PUTBYT STA WORK 1 SAVE A
00332A 196B 44 LSRA SHIFT TO
00333A 196C 44 LSRA LEFT HEX
00334A 196D 44 LSRA DIGIT
00335A 196E 44 LSRA SHIFT HIGH NYBBLE DOWN
00336A 196F AD 02 1973 BSR PUTNYB PRINT IT
00337A 1971 B6 42 A LDA WORK 1
00338 * FALL INTO PUTNYB

00340 ***
00341 * PUTNYB --- PRINT LOWER NYBBLE OF A IN HEX*
00342 * A,X TRANSPARENT *
00343 ***
00344A 1973 A4 OF A PUTNYB AND #$F MASK OFF HIGH NYBBLE
00345A 1975 AB 30 A ADD #'0 ADD ASCII ZERO
00346A 1977 A1 39 A CMP #'9 CHECK FOR A-F
00347A 1979 23 6F 19EA BLS CHROUT OK, SEND OUT
00348A 197B AB 07 A ADD #'A-'9-1 ADJUSTMENT FOR HEX A-F
00349A 197D 20 6B 19EA BRA CHROUT NOW SEND OUT

00351 **

Figure 3·17. ASSIST05 Program Listing (Continued)

63

PAGE 008 ASSIST05.SA:1 ASSIST

00352 * PDATA - PRINT MONITOR STRING AFTER CR/LF
00353 * PDATA1 - PRINT MONITOR STRING
00354 * PCRLF - PRINT CARRIAGE RETURN AND LINE FEED
00355 * INPUT: X=OFFSET TO STRING IN BASE PAGE (UNUSED FOR PCRL
00356 **
00357A 197F AE OC A PCRLF LDX #MSGNUL-MBASE LOAD NULL STRING ADDRESS
00358A 1981 A6 OD A PDATA LDA #CR PREPARE CARRIAGE RETURN
00359A 1983 AD 65 19EA PDLOOP BSR CHROUT SEND NEXT CHARACTER
00360A 1985 D6 1800 A PDATA1 LDA MBASE,X LOAD NEXT CHARACTER
00361A 1988 5C INCX BUMP POINTER UP ONE
00362A 1989 Al 04 A CMP #EOT ? END OF STRING
00363A 198B 26 F6 1983 BNE PDLOOP BRANCH NO
00364A 198D 81 RTS RETURN DONE

00366 **
00367 * GETNYB - OBTAIN NEXT HEX CHARACTER *
00368 * OUTPUT: C=O NOT HEX INPUT, A=DELIMITER *
00369 * C=l HEX INPUT, A=BINARY VALUE *
00370 * X TRANSPARENT *
00371 * WORKI IN USE *
00372 **
00373A 198E CD 19DO A GETNYB JSR CHRIN OBTAIN CHARACTER
00374A 1991 Al 30 A CMP #'0 ? LOWER THAN ZERO
00375A 1993 25 12 19A7 BLO GETNCH BRANCH NOT HEX
00376A 1995 Al 39 A CMP #'9 ? HIGHER THAN NINE
00377A 1997 23 OA 19A3 BLS GETNHX BRANCH IF 0 THRU 9
00378A 1999 Al 41 A CMPA #'A ? LOWER THAN AN "A"
00379A 199B 25 OA 19A7 BLO GETNCH BRANCH NOT HEX
00380A 199D Al 46 A CMPA # 'F ? HIGHER THAN AN "F"
00381A 199F 22 06 19A7 BHI GETNCH BRANCH NOT HEX
00382A 19A1 AO 07 A SUB #7 ADJUST TO $A OFFSET
00383A 19A3 A4 OF A GETNHX AND #$OF CLEAR ASCII BITS
00384A 19A5 99 SEC SET CARRY
00385A 19A6 81 RTS RETURN
00386A 19A7 98 GETNCH CLC CLEAR CARRY FOR NO HEX
00387A 19A8 81 RTS RETURN

00389 **
00390 * GETADR - BUILD ANY SIZE BINARY *
00391 * NUMBER FROM INPUT. *
00392 * LEADING BLANKS SKIPPED. *
00393 * OUTPUT: CC=O NO NUMBER ENTERED *
00394 * CC=1 ADDRH/ADDRL HAS NUMBER *
00395 * A=DELIMITER *
00396 * A,X VOLATILE *
00397 * WORKI IN USE
00398 **
00399A 19A9 CD 19E8 A GETADR JSR PUTSP
00400A 19AC 3F 44 A CLR ADDRH CLEAR HIGH BYTE
00401A 19AE AD DE 198E BSR GETNYB OBTAIN FIRST HEX VALUE
00402A 19BO 25 06 19B8 BCS GETGTD BRANCH IF GOT IT
00403A 19B2 Al 20 A CMP #' ? SPACE
00404A 19B4 27 F3 19A9 BEQ GETADR LOOP IF SO
00405A 19B6 98 CLC RETURN NO NUMBER

Figure 3·17. ASSIST05 Program Listing (Continued)

64

PAGE 009 ASSIST05.SA:l

00406A
00407A
00408A
00409A
00410A
00411A
00412A
00413A
00414A
00415A
00416A
00417A
00418A
00419A
00420A
00421A
00422A

00424
00425
00426
00427
00428
00429
00430
00431
00432A
00433A
00434A
00435A
00436A
00437A
00438A
00439A
00440A
00441A
00442A
00443A

00445
00446
00447
00448

19B7 81
19B8 B7
19BA AD
19BC 24
19BE 48
19BF 48
19CO 48
19C1 48
19C2 AE
19C4 48
19C5 39
19C7 39
19C9 5A
19CA 26
19CC 20
19CE 99
19CF 81

19DO C6
19D3 44
19D4 24
19D6 C6
19D9 A4
19DB 27
19DD Al
19DF 27
19E1 B7
19E3 AD
19E5 B6
19E7 81

45 A
D2 198E
10 19CE

04 A

45 A
44 A

F8 19C4
EC 19BA

17F8 A

FA 19DO
17F9 A
7F A
F3 19DO
7F A
EF 19DO
42 A
05 19EA
42 A

ASSIST

RTS RETURN
GETGTD STA ADDRL INITIALIZE LOW VALUE
GETALP BSR GETNYB OBTAIN NEXT HEX

BCC GETARG BRANCH IF NONE
ASLA OVER
ASLA FOUR
ASLA BITS
ASLA FOR SHIFT
LDX #4 LOOP FOUR TIMES

GETASF ASLA SHIFT NEXT BIT
ROL ADDRL INTO LOW BYTE
ROL ADDRH INTO HIGH BYTE
DECX COUNT DOWN
BNE GETASF LOOP UNTIL DONE
BRA GETALP NOW DO NEXT HEX

GETARG SEC SHOW NUMBER OBTAINED
RTS RETURN TO CALLER

**
* CHRIN OBTAIN NEXT INPUT CHARACTER
* OUTPUT: A=CHARACTER RECIEVED
* X IS TRANSPARENT
* NULLS AND RUBOUTS IGNORED
* ALL CHARACTERS ECHOED OUT
* WORKI USED *
**
CHRIN LDA ACIA LOAD STATUS REGISTER

LSRA CHECK FOR INPUT
BCC CHRIN LOOP UNTIL SOME
LDA ACIA+l LOAD CHARACTER
AND #$7F AND OFF PARITY
BEQ CHRIN IGNORE NULLS
CMP #$7F ? DEL
BEQ CHRIN IGNORE DELETES
STA WORKI SAVE CHARACTER
BSR CHROUT ECHO CHARACTER
LDA WORK 1 RESTORE CHARACTER
RTS RETURN TO CALLER

**
* PUTS --- PRINT A BLANK (SPACE) *
* X UNCHANGED *
**

00449A 19E8 A6 20
00450

A PUTSP LDA #SP LOAD SPACE

00452
00453
00454
00455

* FALL INTO CHROUT

**
* CHROUT
*
*

SEND CHARACTER TO TERMINAL. *
A CARRIAGE RETURN HAS AN *
ADDED LINE FEED. *

Figure 3·17. ASSIST05 Program Listing (Continued)

65

PAGE 010 ASSIST05.SA:l ASSIST

00456 * INPUT: A=ASCII CHARACTER TO SEND *
00457 * A NOT TRANSPARENT *
00458 **
00459A 19EA Al aD A CHROUT CMP #CR ? CARRIAGE RETURN
00460A 19EC 26 04 19F2 BNE CHROU2 BRANCH NOT
004~lA 19EE AD 02 19F2 BSR CHROU2 RECURSIVE CALL FOR CR
004 2A 19FO A6 OA A LDA #LF NOW SEND LINE FEED
00463A 19F2 C7 17F9 A CHROU2 STA ACIA+l STORE CHARACTER INTO PIC
00464A 19F5 C6 17F8 A CHROLP LDA ACIA LOAD STATUS REGISTER
00465A 19F8 AS 02 A BIT #$02 ? READY FOR NEXT
00466A 19FA 27 F9 19F5 BEQ CHROLP LOOP UNTIL READY
00467A 19FC 81 RTS AND RETURN

00469 **
00470 * RESET --- POWER ON RESET ROUTINE
00471 *
00472 * INITIALIZE ACIA, PUT OUT STARTUP MESSAGE
00473 **
00474A 19FD AE OB A RESET LDX Ul MOVE VECTOR TABLE
00475A 19FF D6 1832 A RST LDA VECTAB,X TO RAM USING A
00476A lA02 E7 4F A STA VECRAM,X BLOCK MOVE ROUTINE
00477A lA.Q4 SA DECX TO ALLOW CHANGES
00478A lAOS 2A F8 19FF BPL RST ON THE FLY
00479A lA07 A6 03 A LDA #3 RESET ACIA
00480A lA09 C7 17F8 A STA ACIA TO INITIALIZE
00481A lAOC A6 51 A LDA #$51 8 BITS-NO PARITY-2 STOP BITS
00482A lAOE C7 17F8 A STA ACIA SETUP ACIA PARAMETERS
00483A lAll CD lCC3 A JSR SCNBKP CLEAR BREAKPOINTS
00484A lA14 A6 FF A LDA #$FF TURN HIGH BIT ON
00485A lA16 F7 REBCLR STA ,X SHOW SLOT EMPTY
00486A lA17 5C INCX TO
00487A lA18 5C INCX NEXT
00488A lA19 5C INCX SLOT
00489A lAlA 3A 4B A DEC PNCNT COUNT DOWN
00490A lAIC 26 F8 lA16 BNE REBCLR CLEAR NEXT
0049lA lAlE 3F 41 A RESREN CLR SWIFLG SETUP MONITOR ENTRANCE VALUE
00492A lA20 83 SWI ENTER MONITOR
00493A lA2l 20 FB lAlE BRA RESREN REENTER IF "G"

00495 ***
00496 * COMMAND HANDLER *
00497 ***
00498A lA23 CD 1981 A CMDPDT JSR PDATA SEND MESSAGE OUT

00500A lA26 CD 197F A CMD JSR PCRLF TO NEW LINE
0050lA lA29 A6 3E A CMDNNL LDA #PROMPT READY PROMPT CHR
00502A lA2B AD BD 19EA BSR CHROUT SEND IT OUT
00503A lA2D CD lCA7 A JSR RRMBKP REMOVE BREAKPOINTS IF IN
00504A lA30 AD 9E 19DO BSR CHRIN GET NEXT CHARACTER
00505A lA32 SF CLRX ZERO FOR SOME COMMANDS
00506A lA33 Al 43 A CMPA # 'c ? DISPLAY/CHANGE C REGISTER
00507A lA35 27 49 lA80 BEQ CMDC BRANCH IF SO

Figure 3·17. ASSIST05 Program Listing (Continued)

66

PAGE all ASSISTOS.SA:l ASSIST

00S08A
00S09A
OOSlOA
OOSllA
00S12A
00S13A
00S14A
OOSlSA
00S16A
00S17A
OOSlSA
00S19A
00520A
00521A
00S22A
00S23A
00S24A
00525A
00526A
00527A
00528A
00529A
00530A
00531A
00532A
00533A
00534A
00535A
00536A
00537A
0053SA
00539A

00541
00542
00543

lA37 Al
lA39 27
lA3B Al
lA3D 27
lA3F Al
lA41 27
lA43 Al
lA4S 26
lA47 CC
lA4A Al
lA4C 26
lA4E IE
1A50 CC
lA53 Al
lASS 26
lAS7 CC
lA5A Al
lA5C 26
lASE CC
lA61 Al
lA63 26
lA65 CC
lA68 Al
lA6A 27
lA6C Al
lA6E 26
lA70 IF
lA72 20
lA74 AE
lA76 20
lA7S CC
lA7B CC

00544A lA7E 5C
00545

00547
0054S
00549
00550A lA7F 5C
00551

00553
00554
00555

58
43
41
40
52
35
4C
03
lSAl
47
as
47
lS3E
4D
03
lSE7
54
03
lC23
57
03
1B97
42
OF
50
04
47
DC
aD
AB
lAEE
1B35

00556A 1ASO CD 19E5
00557A lAS3 BF 42

A
lA7E

A
lA7F

A
lA7S

A
lA4A

A
A

lAS3
A
A
A

lASA
A
A

lAGl
A
A

lAGS
A
A

lA7B
A

lA74
A

lA50
A

lA23
A
A

CMPA # 'X ? DISPLAY/CHANGE X REGISTER
BEQ CMDX BRANCH IF SO
CMPA #'A ? DISPLAY/CHANGE A REGISTER
BEQ CMDA BRANCH IF SO
CMP #'R ? REGISTER DISPLAY
BEQ REGR BRANCH YES
CMP #'L ? LOAD FILE
BNE NOTL NOPE
JMP CMDL BRANCH YES

NOTL CMPA #'G ? GO COMMAND
BNE NOTG BRANCH NOT
BSET 7,WORK4

ISP JMP CMDG GO TO IT
NOTG CMP # 'M ? MEMORY COMMAND

BNE NOTM BRANCH NOT
JMP CMDM GO TO MEMORY DISPLAY/CHANGE

NOTM CMP # 'T ? TRACE
BNE NOTT ERROR IF NOT
JMP CMDT GO TO IT

NOTT CMP #'W ? WRITE MEMORY
BNE NOTW BRANCH NO
JMP CMDW GO TO IT

NOTW CMP # 'B ? BREAKPOINT COMMAND
BEQ BPNT YES
CMP #'P ? PC COMMAND
BNE CMDERR
BCLR 7,WORK4
BRA ISP

CMDERR LDX #MSGERR-MBASE LOAD ERROR STRING
TOCPDT BRA CMDPDT AND SEND IT OUT
REGR JMP CMDR
BPNT JMP CMDB

* X -- DISPLAY/CHANGE X REGISTER *

CMDX INCX INCREMENT INDEX
* FALL THROUGH

* A -- DISPLAY/CHANGE A REGISTER

CMDA INCX INCREMENT INDEX
* FALL THROUGH

* C -- DISPLAY/CHANGE CONDITION CODE REGISTER *

A CMDC
A

JSR
STX

PUTSP
WORK 1

SPACE BEFORE VALUE
SAVE INDEX VALUE

Figure 3·17. ASSIST05 Program Listing (Continued)

67

PAGE 012 ASSIST05.SA:1 ASSIST

00558A 1A85 CD 1B23 A JSR LOCSTK LOCATE STACK ADDRESS
00559A 1A88 9F TXA STACK-2 TO A
00560A 1A89 BB 42 A ADD WORK1 ADD PROPER OFFSET
00561A 1A8B AB 04 A ADD #4 MAKE UP FOR ADDRESS RETURN DIFFERE
00562A 1A8D 3F 44 A CLR ADDRH SETUP ZERO HIGH BYTE
00563A 1A8F B7 45 A STA ADDRL AND SET IN LOW
00564A 1A91 CC 18F8 A TOMCHG JMP MCHNGE NOW ENTER MEMORY CHANGE COMMAND

00566 ***
00567 * S W I HANDLER *
00568 * DETERMINE PROCESSING SWIFLG VALUE *
00569 ***
00570A 1A94 5F SWI CLRX DEFAULT TO STARTUP MESSAGE
00571A 1A95 3D 41 A TST SWIFLG IS THIS RESET
00572A 1A97 26 04 1A9D BNE SWICHK IF NOT REMOVE BREAKPOINTS
00573A lA99 3C 41 A INC SWIFLG SHOW WE ARE NOW INITIALIZED
00574A lA9B 20 86 1A23 BRA CMDPDT TO COMMAND HANDLER
00575A lA9D CD 1CC3 A SWICHK JSR SCNBKP
00576A lAAO F6 SWIREP LDA ,X RESTORE OPCODES
00577A lAAl 2B OB lAAE BMI SWINOB
00578A lAA3 B7 44 A STA ADDRH
00579A IM5 E6 01 A LDA 1,X
00580A IM7 B7 45 A STA ADDRL
00581A lAA9 E6 02 A LDA 2,X
00582A 1MB CD 1952 A JSR STORE
00583A IME 5C SWINOB INCX
00584A lAAF 5C INCX
00585A lABO 5C INCX
00586A lABl 3A 4B A DEC PNCNT
00587A lAB3 26 EB lAAO BNE SWIREP
00588 * TRACE ONE INSTRUCTION IF PC AT A BREAKPOINT
00589A lAB5 CD IB23 A JSR LOCSTK FIND STACK
00590A lAB8 E6 08 A LDA 8,X GET PC AND ADJUST
00591A lABA AO 01 A SUB #l
00592A lABC B7 47 A STA WORK4 SAVE PCL
00593A lABE E6 07 A LDA 7,X
00594A lACO A2 00 A SBC #0
00595A 1AC2 B7 46 A STA WORK 3 SAVE PCH
00596A lAC4 BF 48 A STX WORK5 SAVE SP
00597A lAC6 CD lCC3 A JSR SCNBKP
00598A lAC9 F6 SWITRY LDA O,X
00599A lACA 2B IB lAE7 BMI SWICMP
00600A 1ACC Bl 46 A CMP WORK3
00601A lACE 26 17 lAE7 BNE SWICMP
00602A lADO E6 01 A LDA 1,X
00603A lAD2 B1 47 A CMP WORK4
00604A 1AD4 26 11 lAE7 BNE SWICMP
00605A 1AD6 BE 48 A LDX WORK 5
00606A lAD8 E7 08 A STA 8,x
00607A lADA B6 46 A LDA WORK 3
00608A lADC E7 07 A STA 7,X
00609A lADE 3F 4A A CLR WORK7
00610A lAEO A6 01 A LDA #l
00611A 1AE2 B7 49 A STA \vORK6
00612A lAE4 CC lC32 A JMP TRACE
00613A lAE7 5C SWICMP INCX

Figure 3·17. ASSIST05 Program Listing (Continued)

68

PAGE 013 ASSIST05.SA:1 ASSIST

00614A lAE8 5C INCX
00615A lAE9 5C INCX
00616A lAEA 31'. 4B A DEC PNCNT
00617A lAEC 26 DB 1AC9 BNE SWITRY
00618 * FALL INTO REGISTER DISPLAY FOR BREAKPOINT

00620 **
00621 * R -- PRINT REGISTERS *
00622 **
00623A lAEE CD 19E8 A CMDR JSR PUTSP SPACE BEFORE DISPLAY
00624A lAFl AD 30 1B23 BSR LOCSTK LOCATE STACK-4
00625A lAF3 E6 07 A LDA 7,X OFFSET FOR PC HIGH
00626A 1AF5 E7 07 A STA 7,X RESTORE INTO STACK
00627A 1AF7 CD 1969 A JSR PUTBYT PLACE BYTE OUT
006~8A lAFA E6 08 A LDA 8,X OFFSET TO PC LOW
00629A 1AFC AD IF 1BID BSR CRBYTS TO HEX AND SPACE
00630A lAFE E6 05 A LDA 5,X NOW TO A REGISTER
00631A IBOO AD IB lB1D BSR CRBYTS TO HEX AND SPACE
00632A IB02 E6 06 A LDA 6,X NOW X
00633A IB04 AD 17 lB1D BSR CRBYTS HEX AND SPACE
00634A IB06 E6 04 A LDA 4,X NOW CONDITION CODE
00635A 1B08 AA EO A ORA #$EO SET ON UNUSED BITS
00636A IBOA E7 04 A STA 4,X RESTORE
00637A IBOC AD OF IBID BSR CRBYTS HEX AND SPACE
00638A IBOE 9F TXA STACK POINTER-3
00639A IBOF AB 08 A ADD #8 TO USERS STACK POINTER
00640A 1B11 AD OA lBlD BSR CRBYTS TO HEX AND SPACE
00641A IB13 CC lA26 A GTOCMD JMP CMD BACK TO COMMAND HANDLER
00642 * PRINT ADDRESS SUBROUTINE (X UNCHANGED)
00643A IB16 B6 44 A PRTADR LDA ADDRH LOAD HIGH BYTE
00644A IB18 CD 1969 A JSR PUTBYT SEND OUT AS HEX
00645A IBIB B6 45 A LDA ADDRL LOAD LOW BYTE
00646A IBID CD 1969 A CRBYTS JSR PUTBYT PUT OUT IN HEX
00647A IB20 CC 19E8 A JMP PUTSP FOLLOW WITH A SPACE

00649 ***
00650 * LOCSTK - LOCATE CALLERS STACK POINTER *
00651 * RETURNS X=STACK POINTER-3 *
00652 * A VOLATILE *
00653 ***
00654A IB23 AD 01 IB26 LOCSTK BSR LOCST2 LEAVE ADDRESS ON STACK
00655 001B A STKHI EQU */256 HI BYTE ON STACK
00656 0025 A STKLOW EQU *-(*/256)*256 LOW BYTE ON STACK
00657A IB25 81 RTS RETURN WITH RESULT
00658A IB26 AE 7F A LOCST2 LDX #$7F LOAD HIGH STACK WORD ADDRESS
00659A 1B28 A6 1B A LOCLOP LDA #STKHI HIGH BYTE FOR COMPARE
00660A IB2A 5A LOCDWN DECX TO NEXT LOWER BYTE IN STACK
00661A 1B2B F1 CMP ,X ? THIS THE SAME
00662A 1B2C 26 FC IB2A BNE LOCDWN IF NOT TRY NEXT LOWER
00663A IB2E A6 25 A LDA #STKLOW COMPARE WITH LOW ADDRESS BYTE
00664A IB30 El 01 A CMP 1,x ? FOUND RETURN ADDRESS
00665A IB32 26 F4 IB28 BNE LOCLOP LOOP IF NOT
00666A IB34 81 RTS RETURN WITH X SET

Figure 3·17. ASSIST05 Program Listing (Continued)

69

PAGE 014 ASSIST05.SA:1 ASSIST

00668 **
00669 * B -- BREAKPOINT CLEAR, SET, OR DISPLAY *
00670 **
00671A 1B35 CD 19DO A CMDB JSR CHRIN READ NEXT CHARACTER
00672A 1B38 Al 20 A CMP # • ? DISPLAY ONLY
00673A 1B3A 26 38 1B74 BNE BDSPLY BRANCH IF SO
00674A 1B3C AD 4F 1B8D BSR PGTADR OBTAIN BREAKPOINT NUMBER
00675A 1B3E 5D TSTX ? ANY HIGH BYTE VALUE
00676A 1B3F 26 49 1B8A BNE BKERR ERROR IF SO
00677A 1B41 4A DECA DOWN COUNT BY ONE
00678A 1B42 Al 03 A CMP #NUMBKP ? TO HIGH
00679A 1B44 24 44 1B8A BHS BKERR ERROR IF SO
00680A 1B46 48 ASLA TIMES TWO
00681A 1B47 BB 45 A ADD ADDRL PLUS ONE FOR THREE TIMES
00682A 1B49 AB 38 A ADD #BKPTBL FIND TABLE ADDRESS
00683A 1B4B 4A DECA
00684A 1B4C B7 43 A STA WORK2 SAVE ADDRESS
00685A 1B4E AD 3D 1B8D BSR PGTADR OBTAIN ADDRESS
00686A 1B50 A3 20 A CPX #$20
00687A 1B52 24 36 1B8A BHS BKERR
00688A 1B54 BE 43 A LDX WORK 2 RELOAD ENTRY POINTER
00689A 1B56 E7 01 A STA 1,X SAVE LOW ADDRESS
00690A 1B58 26 08 1B62 BNE BKNOCL BRANCH IF NOT ZERO
00691A 1B5A B6 44 A LDA ADDRH LOAD HIGH ADDRESS
00692A 1B5C 26 06 1B64 BNE BKNCR BRANCH NOT NULL
00693A 1B5E 4A DECA CREATE NEGATIVE VALUE
00694A 1BSF F7 STA ,X STORE AS HIGH BYTE
00695A 1B60 20 B1 1B13 BRA GTOCMD END COMMAND
00696A 1B62 B6 44 A BKNOCL LDA ADDRH LOAD HIGH ADDRESS
00697A 1B64 F7 BKNCR STA ,X STORE HIGH BYTE
00698A 1B65 CD 1943 A JSR LOAD LOAD BYTE AT THE ADDRESS
00699A 1B68 43 COMA INVERT IT
00700A 1B69 CD 1952 A JSR STORE ATTEMPT STORE
00701A 1B6C 25 1C 1B8A BCS BKERR ERROR IF DID NOT STORE
00702A 1B6E 43 COMA RESTORE PROPER VALUE
00703A 1B6F CD 1952 A JSR STORE STORE IT BACK
00704A 1B72 20 9F 1B13 BRA GTOCMD END COMMAND

00706 * DISPLAY BREAKPOINTS
00707A 1B74 CD 1CC3 A BDSPLY JSR SCNBKP PREPARE SCAN OF TABLE
00708A 1B77 F6 BDSPLP LDA ,X OBTAIN HIGH BYTE
00709A 1B78 2B 07 1B81 BMI BDSKP SKIP IF UNUSED SLOT
00710A 1B7A CD 1969 A JSR PUTBYT PRINT OUT HIGHT BYTE
00711A 1B7D E6 01 A LDA 1,X LOAD LOW BYTE
00712A 1B7F AD 9C IBID BSR CRBYTS PRINT IT OUT WITH A SPACE
00713A 1B81 5C BDSKP INCX TO
00714A 1B82 5C INCX NEXT
00715A 1B83 5C INCX ENTRY
00716A 1B84 3A 4B A DEC PNCNT COUNT DOWN
00717A 1B86 26 EF 1B77 BNE BDSPLP LOOP IF MORE
00718A 1B88 20 89 1B13 BRA GTOCMD END COMMAND

00720A 1B8A CC 1A74 A BKERR JMP CMDERR GIVE ERROR RESPONSE

00722 **
00723 * W -- WRITE MEMORY TO TAPE FILE Sl/S9 *

Figure 3·17. ASSIST05 Program Listing (Continued)

70

PAGE 015 ASSIST05.SA:l ASSIST

00724 **
00725A lB8D CD 19A9 A PGTADR JSR GETADR OBTAIN INPUT ADDRESS
00726A lB90 24 FB lBBA ncc mmrm ABORT IF NONE
00727A lB92 8E 44 A LDX ADDRH READY HIGH BYTE
00728A 1894 86 45 A LDA ADDRL READY LOW BYTE
00729A 1896 81 RTS BACK TO PUNCH COMMAND

00731A 1897 AD F4 188D CMDW BSR PGTADR GET STARTING ADDRESS
00732A lB99 A3 20 A CPX #$20
00733A lB9B 24 ED lB8A BHS BKERR
00734A lB9D B7 47 A STA WORK4 INTO WORK4
00735A lB9F BF 46 A STX WORK3 AND WORK3
00736A lBAl AD EA lB8D BSR PGTADR GET ENDING ADDRESS
00737A lBA3 A3 20 A CPX #$20
00738A lBA5 24 E3 lB8A BHS BKERR
00739A lBA7 4C INCA ADD ONE TO INCLUDE TOP BYTE
00740A lBA8 26 01 lBAB BNE PUPH BRANCH NO CARRY
00741A IBM 5C INCX UP HIGH BYTE AS WELL
00742A lBAB BO 47 A PUPH SUB WORK4 COMPUTE SIZE
00743A lBAD B7 4D A STA PNRCNT+l AND SAVE
00744A lBAF 9F TXA NOW
00745A lBBO B2 46 A SBC WORK3 SIZE HIGH BYTE
00746A lBB2 B7 4C A STA PNRCNT AND SAVE
00747A lBB4 B6 47 A LDA WORK4 MOVE
00748A lBB6 B7 45 A STA ADDRL TO
00749A lBB8 B6 46 A LDA WORK3 MEMORY
00750A lBBA B7 44 A STA ADDRH POINTER
00751 * ADDR->MEMORY START, PNRCNT=BYTE COUNT OF AREA
00752 * NOW TURN aN THE PUNCH
00753A lBBC A6 12 A LDA #DC2 PUNCH ON CONTROL
00754A lBBE CD 19EA A JSR CHROUT SEND OUT
00755 * NOW SEND CR FOLLOWED BY 24 NULLS AND 'Sl'
00756A lBCl AD 53 lC16 PREC BSR PNCRNL SEND CR/LF AND NULLS
00757A lBC3 AE 17 A LDX #MSGS1-MBASE POINT TO STRING
00758A lBC5 CD 1985 A JSR PDATAl SEND 'Sl' OUT
00759 * NOW SEND NEXT 24 BYTES OR LESS IF TO THE END
00760A lBC8 B6 4D A LDA PNRCNT+l LOW COUNT LEFT
00761A lBCA AO 18 A SUB #24 MINUS 24
00762A lBCC B7 4D A STA PNRCNT+l STORE RESULT
00763A lBCE 24 08 lBD8 BCC PALL24 IF NO CARRY THEN OK
00764A lBDO 3A 4C A DEC PNRCNT DOWN HIGH BYTE
00765A lBD2 2A 04 lBD8 BPL PALL24 ALL 24 OK
00766A lBD4 AB 18 A ADD #24 WAS LESS SO BACK UP TO ORIGINAL
00767A lBD6 20 02 lBDA BRA PGOTC GO USE COUNT HERE
00768A lBD8 A6 18 A PALL24 LDA #24 USE ALL 24
00769A lBDA B7 4B A PGOTC STA PNCNT COUNT FOR THIS RECORD
00770 * SEND THE FRAME COUNT AND START CHECKSUMMING
00771A lBDC 3F 4E A CLR CHKSUM
00772A lBDE AB 03 A ADD #3 ADJUST FOR COUNT AND ADDRESS
00773A lBEO AD 2B lCOD BSR PUNBYT SEND FRAME COUNT
00774 * SEND ADDRESS
00775A lBE2 B6 44 A LDA ADDRH HI BYTE
00776A lBE4 AD 27 lCOD BSR PUNBYT SEND IT
00777A lBE6 B6 45 A LDA ADDRL LOW BYTE
00778A lBE8 AD 23 lCOD BSR PUNBYT SEND IT
00779 * NOW SEND DATA
00780A lBEA CD 1943 A PUNLOP JSR LOAD LOAD NEXT BYTE
00781A lBED AD lE lCOD BSR PUNBYT SEND IT OUT

Figure 3·17. ASSIST05 Program Listing (Continued)

71

PAGE 016 ASSISTOS.SA:l ASSIST

00782A IBEF CD 1962
00783A IBF2 3A 4B
00784A IBF4 26 F4
00785
00786A IBF6 B6 4E
00787A IBF8 43
00788A IBF9 AD 12
00789
00790A IBFB B6 4C
00791A IBFD 2B 04
00792A IBFF BB 4D
00793A lCOl 26 BE
00794A lC03 AD 11
00795A lC05 AE lA
00796A lC07 CD 1985
00797A lCOA CC lA26

00799
00800A
00801A
00802A
,00803A
00804A

lCOD 97
lCOE BB 4E
lClO B7 4E
lC12 9F
lC13 CC 1969

00806
00807A lC16 CD 197F
00808A lC19 AE 18
00809A lClB 4F
00810A lClC CD 19EA
OOBllA lClF SA
00812A lC20 26 F9
00813A lC22 81

00815
00816
00817
00818A lC23 A6
00819A lC25 B7
00820A lC27 CD
00821A lC2A B6
00822A lC2C B7
00823A lC2E B6
00824A lC30 B7
00825
00826
00827A lC32 CD
00828A lC3S E6
00829A lC37 A4
00830A lC39 B7
00831A lC3B E6
00832A lC3D B7
00833A lC3F E6
00834A lC41 B7
00835A lC43 CD
00836A lC46 Al
00837A lC48 26

01
45
19A9
44
4A
45
49

lC32
IB23
04
08
48
07
44
08
45
1943
83
DE

A
A

IBEA

JSR PTRUP1 UP ADDRESS BY ONE
DEC PNCNT COUNT DOWN
BNE PUNLOP LOOP UNTIL ZERO

* SEND OUT THE CHECKSUM
A LDA CHKSUM LOAD CHECKSUM

COMA COMPLEMENT IT
lCOD BSR PUNBYT SEND IT OUT

* LOOP OR SEND S9
A LDA

lC03 BMI
A ADD

IBCl BNE
lC16 PNEND BSR

A LDX
A JSR
A JMP

PNRCNT ? MINUS
PNEND YES QUIT
PNRCNT+l ? ZERO
PREC NO, DO NEXT RECORD
PNCRNL SEND CR AND NULLS
#MSGS9-MBASE LOAD S9 TEXT
PDATA1 SEND AND TO COMMAND HANDLER
CMD TO COMMAND HANDLER

* SUB TO SEND BYTE IN
PUNBYT TAX

HEX AND ADJUST CHECKSUM
SAVE BYTE

A ADD CHKSUM
A STA CHKSUM

TXA
A JMP PUTBYT

ADD TO CHECKSUM
STORE BACK
RESTORE BYTE
SEND OUT IN HEX

* SUB TO SEND CR/LF AND 24 NULLS
A PNCRNL JSR PCRLF SEND CR/LF
A LDX #24 COUNT NULLS

PNULLS CLRA CREATE NULL
A JSR CHROUT SEND OUT

lClB
DECX
BNE
RTS

PNULLS
COUNT DOWN
LOOP UNTIL DONE
RETURN

**
* T--TRA~ ~~AND *
**

A CMDT LDA
A STA
A JSR
A LDA
A STA
A LDA
A STA

* SETUP TIMER
A TRACE EQU
A JSR
A LDA
A AND
A STA
A LDA
A STA
A LDA
A STA
A JSR
A CMP

lC58 BNE

#l
ADDRL
GETADR
ADDRH
WORK7
ADDRL
WORK6

DEFAULT COUNT
TO ONE *GETADR CLEARS ADDRH*
BUILD ADDRESS IF ANY
SAVE VALUE IN TEMPORARY
LOCATIONS FOR LATER
USE

TO TRIGGER INTERRUPT
*
LOCSTK
4,X
#8
WORKS
7,X
ADDRH
8,X
ADDRL
LOAD
#$83
TRACE3

GET CURRENT USER I-MASK

SAVE IT
GET CURRENT USER PC

GET OPCODE
SWI?
IF YES THEN

Figure 3·17. ASSIST05 Program Listing (Continued)

72

PAGE 017 ASSISTOS.SA:l ASSIST

00838A lC4A B6 45 A LDA ADDRL INC USER PC
00839A lC4C AB 01 A ADD #1
00840A lC4E E7 08 A STA 8,X
00841A lCSO B6 44 A LDA ADDRH
00842A lCS2 A9 00 A ADC #0
00843A lCS4 E7 07 A STA 7,X
00844A lCS6 20 2D lC8S BRA TIRO CONTINUE TO TRACE
0084SA lCS8 Al 9B A TRACE3 CMP #$9B SEI?
00846A lCSA 26 14 lC70 BNE TRACE2 IF YES
00847A lCSC E6 04 A LDA 4,X THEN SET IT IN THE STACK
00848A lCSE AA 08 A ORA #8
00849A lC60 E7 04 A STA 4,X
008S0A lC62 B6 45 A LDA ADDRL THEN INC USER PC
008S1A lC64 AB 01 A ADD #1
008S2A lC66 E7 08 A STA 8,x
008S3A lC68 B6 44 A LDA ADDRH
008S4A lC6A A9 00 A ADC #0
008SSA lC6C E7 07 A STA 7,X
008S6A lC6E 20 15 lC85 BRA TIRO CONTINUE TO TRACE
008S7A lC70 Al 9A A TRACE2 CMP #$9A CLI?
008S8A lC72 26 02 lC76 BNE TRACEl IF YES THEN
008S9A lC74 3F 48 A CLR WORKS
00860A lC76 E6 04 A TRACEl LDA 4,X
00861A lC78 A4 F7 A AND #$F7
00862A lC7A E7 04 A STA 4,X
00863A lC7C A6 10 A LDA #16 THEN SET UP TIMER
00864A lC7E B7 08 A STA TIMER
0086SA lC80 A6 08 A LDA #8
00866A lC82 B7 09 A STA TIMEC
00867A lC84 80 RTI EXECUTE ONE INSTRUCTION

00869 **
00870 * TIRO -- TIMER INTERRUPT ROUTINE *
00871 **
00872 lC8S A TIRO EOU *
00873 * RESTORE I-MASK TO PROPER STATE
00874A lC8S A6 40 A LDA #$40
0087SA lC87 B7 09 A STA TIMEC
00876A lC89 CD lB23 A JSR LOCSTK
00877A lC8C E6 04 A LDA 4,X
00878A lC8E BA 48 A ORA WORKS
00879A lC90 E7 04 A STA 4,X
00880 * SEE IF MORE TRACING IS DESIRED
00881A lC92 3A 49 A DEC WORK6
00882A lC94 26 9C lC32 BNE TRACE
00883A lC96 3D 4A A TST WORK7
00884A lC98 27 04 lC9E BEO DISREG
0088SA lC9A 3A 4A A DEC WORK7
00886A lC9C 20 94 lC32 BRA TRACE
00887A lC9E CC lAEE A DISREG JMP CMDR

00889 **
00890 * INT -- INTERRUPT ROUTINE *
00891 **

Figure 3·17. ASSIST05 Program Listing (Continued)

73

PAGE 018 ASSIST05.SA:l

00892
00893A lCAl CC

00895
00896
00897
00898
00899A lCA4 CC

00901
00902
00903
00904A lCA7
00905A lCA9
00906A lCAB
00907A lCAC
00908A ICAE
00909A ICBO
00910A lCB2
00911A lCB4
00912A lCB6
00913A lCB9
00914A lCBA
0091SA lCBB
00916A ICBC
00917A lCBE
00918A lCCO
00919A lCC2

00921
00922A lCC3
00923A lCC5
00924A lCC7
00925A lCC9
00926A lCCB

00928
00929
00930
00931A IFF6
00932A IFF6
00933A IFF8
00934A IFFA
00935A IFFC
00936A IFFE

00938

AD
2A
F6
2B
B7
E6
B7
E6
CD
5C
SC
5C
3A
26
33
81

A6
B7
AE
3D
81

lCAl
lA74

lCA4
lA74

lA
17

OB
44
01
45
02
1952

4B
EB
41

03
4B
38
41

004F
0052
0055
0058
19FD

A
A

A
A

ICC3
ICC2

ICB9
A
A
A
A
A

A
ICAB

A

A
A
A
A

A
A
A
A
A

ASSIST

IRQ EQU *
JMP CMDERR HARDWARE INTERRUPT UNUSED

~***

* TWIRQ - TIMER INTERRUPT ROUTINE (WAIT MODE)*
**
TWIRQ EQU *

JMP CMDERR TIMER WAIT INTERRUPT UNUSED

**
* DELBKP - DELETE BREAKPOINT SUBROUTINE *
**
REMBKP BSR SCNBKP SETUP PARAMETERS

BPL REMRTS RETURN IF NOT IN
REMLOP LDA ,X LOAD HIGH ADDRESS

BMI REMNOB SKIP IF NULL
STA ADDRH STORE HIGH ADDRESS
LDA 1,X LOAD LOW ADDRESS
STA ADDRL STORE IT
LDA 2,X LOAD OPCODE
JSR STORE STORE IT BACK OVER 'SWI'

REMNOB INCX TO
INCX NEXT
INCX ENTRY
DEC PNCNT COUNT DOWN
BNE REMLOP LOOP IF MORE
COM SWIFLG MAKE POSITIVE TO SHOW REMOVED

REMRTS RTS RETURN

* SETUP FOR BREAKPOINT TABLE SCAN
SCNBKP LDA #NUMBKP LOAD NUMBER OF BREAKPOINTS

STA PNCNT SETUP FOR COUNTDOWN
LDX #BKPTBL LOAD TABLE ADDRESS
TST SWIFLG TEST IF BREAKPOINTS IN ALREADY
RTS RETURN

**
* INTERRUPT VECTORS *
**

ORG MONSTR+$800-$A START OF VECTORS
FDB VECRAM TIMER INTERRUPT HANDLER (WAIT MODE
FDB VECRAM+3 TIMER INTERRUPT HANDLER
FDB VECRAM+6 INTERRUPT HANDLER
FDB VECRAM+9 SWI HANDLER
FDB RESET POWER ON VECTOR

END

Figure 3·17. ASSIST05 Program Listing (Concluded)

74

4.1 INTRODUCTION

CHAPTER 4
HARDWARE FEATURES

Each member of the M6805 HMOS/M146805 CMOS Family (except for the MC146805E2)
contains, on-chip, nearly all of the support hardware necessary for a complete processor
system. The block diagram of Figure 4-1 shows a Central Processing Unit (CPU) which is
identical for all members of the family, including the MC146805E2. There is one main dif­
ference in various family members and that is the size of the stack pointer and program
counter registers. Since the size of these two registers is determined by the amount of
device memory, they vary from 11 bits to 13 bits. Each family member contains an on-chip
oscillator which provides the processor timing, plus reset, and interrupt logic. Peripheral
1/0 such as a timer, some bidirectional 1/0 lines, RAM, and ROM (except for the
MC146805E2) are included on-chip in all family members. The peripherals and memory
are located in similar locations throughout the family; therefore, once the user is familiar
with any family device, he is familiar with all. In addition, new devices can be incor­
porated in the family by adding to andlor subtracting from the peripheral blocks
associated with the CPU. These peripheral blocks could include additional 1/0 lines,
more RAM, EPROM, AID converter, phase-lock-loop, or an external bus. The choice of us­
ing inexpensive HMOS or low-power, static CMOS is also available.

External
Address/ Data

Bus
........

........
........

........
.... ,

....
" ' ...

Additional RAM --------- RAM

Analog
to

Digital

~~
~"

I

Additional
Tlmer(s)

I
I
I

Timer

CPU

I/O Ports

I
I
I

Additional
I/O Ports

~~

~" 1,.0'

I
OSC

Control

1'
............

........

........
........

......

Phase
Lock Loop

Additional
Interrupt(s)

ROM with
Self-Check

or
EPROM with

Bootstrap ROM

Figure 4·1. M6805 HMOS/M146805 CMOS Family Block Diagram

75

The M6805 HMOS/M146805 CMOS Family of MCU/MPU devices are implemented using a
single address map, memory mapped I/O, and Von Neumann architecture. Peripheral I/O
devices (AID, timer, PLL, etc.) are accessed by the CPU via the peripheral control and/or
data registers which are located in the address map. Data is transferred to the peripheral
I/O devices with the same instructions that are used to access memory. The key to using
the M6805 HMOS/M146805 CMOS Family I/O features is in learning how the peripheral
registers effect the device operation. Since a second address map is not used, there is no
need for the system designer to learn a second set of specialized I/O instructions.

4.2 PROCESSING TECHNOLOGY

As stated above, system designers have the option of using either HMOS (M6805) or
CMOS (M146805) technology. Since each technology has its advantages, there are appli­
cations which will favor one over the other. Table 4-1 provides a comparison of repre­
sentative features between HMOS and CMOS.

Table 4·1. Comparison of Features Between HMOS and CMOS

HMOS CMOS

Inexpensive Due to Smaller Die Size Low Power Consumption

Fast Silicon-Gate Devices are as Fast as HMOS
Devices

Completely Static Operation
Wider Voltage Range (3-6 V)
Increased NOise Immunity

Consumes Ten Times More Power than CMOS More ExpenSive Since CMOS Cell IS Larger

Dynamic Operation Sensitive to SCR Latchup
(Requires Continuous Clock)
limited Voltage Range

4.3 TEMPORARY STORAGE (RAM)

Random Access Memory (RAM) is used as temporary storage by the CPU. The RAM is
temporary in that it is volatile and its contents are lost if power is removed. However,
since RAM can be read from or written to, it is best used for storing variables. All on-chip
RAM is contained in the first 128 memory locations and the top of RAM is presently used
by the processor as a program control stack. The stack is used to store return addresses
for subroutine calls and the machine state for interrupts. The stack pointer register is
used to keep track of (point to) the next free stack address location. The stack'operates
in a LIFO (Iast-in-first-out) mode so that operations may be nested. The actual stack size
varies between the different family members; however, in all cases, exceeding the stack
limit should be avoided. If the stack limit is exceeded, the stack pointer wraps around to
the top of the stack ($7F) and more than likely stack data is lost. Each interrupt requires
five bytes of stack space and each subroutine requires two bytes. If, at worst case, a pro­
gram requires five levels of subroutine nesting and one level of interrupt, then 15 bytes of
stack space should be reserved. Any unreserved stack RAM may be used for other
purposes.

76

Low-power standby RAM for HMOS is available on the MC68D5P4. Although the pro­
cessor is dynamic, the RAM is static and may be powered from a separate standby
supply voltage which does not power any other part of the device, thus, lowering standby
supply CUiient iequiiements. The amount of standby RAM implemented is a mask option
and is determined by the minimum necessary for the particular application.

4.4 PERMANENT STORAGE (ROM OR EPROM)

All M68D5 HMOS/M1468D5 CMOS Family devices, except the MC1468D5E2, contain some
form of permanent, non-volatile memory. It may be either mask programmed ROM or UV­
light erasable EPROM; however, the M687D5 HMOS EPROM versions contain EPROM as
the main storage and a small mask ROM which is used to store the bootstrap program­
ming routines. Non-volatile memory is generally used to store the user programs as well
as tables and constants. The mask ROM versions are the most econom ical for large
quantities while the EPROM versions are best suited for limited quantities used for pro­
duction or prototyping. Currently three EPROM versions exist. Each has slightly more
storage and versatility than the current mask ROM versions; however, the EPROM ver­
sions can emulate the functions of more than one of the current mask ROM versions and
could be used for future mask ROM versions.

4.5 OSCILLATOR

This on-chip oscillator contained on every M68D5 HMOS/M1468D5 CMOS Family device
essentially generates the timing used by the device. The oscillator can be used in a
number of different modes as shown in Figure 4-2. Each mode has its advantages and the
basic trade-off is between economy and accuracy.

M6805
HMOS
Family

M146805
CMOS
Family

~ Source

* MC6805T2 Only

OSCl OSC2

D External
Source

T T

Uses Avail
~y'stem Clock

"" 25%
Accurate

+5V

tl
"" 10%

Accurate

Lowest Cost

"" 50%
Accurate

Figure 4·2. M6805 HMOS/M146805 CMOS Family Oscillator Modes

77

Except for the EPROM members of M6BD5 HMOS Family, a manufacturing mask option is
required to select either the crystal oscillator or the resistor oscillator circuit. The
oscillator frequency is internally divided by four to produce the internal system clocks.
The EPROM devices of the M6BD5 HMOS Family utilize the mask option register (MOR) to
select the crystal or resistor oscillator circuit.

The M146BD5 CMOS Family devices also use a manufacturing mask option to select
either the crystal or resistor circuit. However, a second manufacturing mask option pro­
vides either a divide-by-two or divide-by-four circuit to produce the internal system clock.
The EPROM devices of the M146BD5 CMOS Family also utilize the mask option register
(MOR) to select the crystal or resistor oscillator circuit.

4.6 RESETS

The M6BD5 HMOS/M146B05 CMOS Family processor can be reset in two ways: either by
the initial power-up or by the external reset input pin (RESET). Additionally, a low voltage
inhibit (LVI) circuit is included on some HMOS masked ROM versions to force a reset if
Vee falls to VLVI. Any of the reset methods allow an orderly start-up; additionally, the
RESET input can be used to exit the CMOS STOP and WAIT modes of program execution.
Both the LVI and external RESET inputs allow the processor to recover from otherwise
catastrophic errors. External reset (RESET) is implemented with a Schmitt trigger input
for improved noise immunity. Figure 4-3 illustrates the required timing and logic levels for
devices implemented with LVI. All M6BD5 HMOS Family members have the equivalent of
an internal pullup resistor as shown in Figure 4-4 so that the RESET pin will reflect the
drop in VCC.

5V

Vee
o v

RESET
Pin

Internal
Reset

Figure 4·3. Power and Reset Timing

Vee

Part Of
M6805 HMOS
Family MeU

:r: 1.0 I'F (TYPical)

Figure 4·4. Power up Reset Delay Circuit

7B

HMOS power-on reset circuitry includes the equivalent of an internal pullup resistor, so
that only a capacitor is required externally (see Figure 4-4). The power-on reset occurs
when a positive transition is detected on Vce. The power-on reset is used strictly for
power turn-on conditions and should not be used to detect any drops in the power supply
voltage. There is no provision for a power-down reset. For CMOS devices, the power-on
circuitry provides for a 1920 tcyc delay from the time of the first oscillator operation. If
the external RESET pin is low at the end of the 1920 tcyc time out, the processor remains
in the reset condition until the RESET pin goes high.

Any reset causes the following to occur:
1. All interrupt requests are cleared to "0".
2. All interrupt masks are set to "1".
3. All data direction registers are cleared to "0" (input).
4. The stack pointer is reset to $7F (top of stack).
5. The STOP and WAIT latches (M14680S CMOS only) are reset.
6. The reset vector is fetched and placed in the program counter.

(The reset vector contains the address of the reset routine.)

4.7 INTERRUPTS

4.7.1 General

The M680S HMOS/M14680S CMOS Family program execution may be interrupted in the
following ways:

1. Externally via the IRQ (CMOS) or INT (HMOS) pins. Additionally, some M680S
HMOS members include a second external interrupt (INT2). External interrupts
are maskable.

2. Internally with the on-chip timer. The timer interrupt is maskable.
3. Internally by executing the software interrupt instruction (SWI). The SWI is non-

maskable.
When an external or timer interrupt occurs, the interrupt is not immediately serviced
since the current instruction being executed is completed. Until the completion of the
current instruction, the interrupt is considered pending. After the current instruction
execution is completed, unmasked interrupts may be serviced. If both an external and a
timer interrupt are pending, the external interrupt is serviced first; however, the timer
interrupt request remains pending unless it is cleared during the external interrupt ser­
vice routine. The software interrupt is executed in much the same manner as any other in­
struction. The external interrupt pin (IRQ or INT) may be tested with the Bil or BIH condi­
tional branch instructions. These instructions may be used to allow the external interrupt
pins (except INT2) to be used as an additional input pin regardless of the state of the
interrupt mask in the condition code register.

79

4.7.2 Timer Interrupt

If the timer mask bit (TCR6) is cleared, then each time the timer decrements to zero (tran­
sitions from $01 to $00) an interrupt request is generated. The actual processor interrupt
is generated only if the interrupt mask bit of the condition code register is also cleared.
When the interrupt is recognized, the current state of the machine is pushed onto the
stack and the I bit in the condition code register is set, masking further interrupts until
the present one is serviced. The contents of the timer interrupt vector, containing the
location of the timer interrupt service routine, is then loaded into the program counter.

If the CMOS WAIT mode is enabled (M146805 CMOS Family only), the timer may be used
to exit the low-power mode and the timer WAIT vector is used instead of the normal timer
interrupt vector. Software must be used to clear the timer interrupt request bit (TCR?). At
the end of the timer interrupt service routine, the software normally executes an RTI in­
struction which restores the machine state and starts executing the interrupted program.
Note that if an external hardware interrupt is used to exit the WAIT mode, the timer inter­
rupt will vector to the normal timer vector instead of the timer WAIT vector.

4.7.3 External Interrupts

All external interrupts are maskable. If the interrupt mask bit (I bit) of the condition code
register is set, all interrupts are disabled. Clearing the I bit enables the external inter­
rupts. Additionally, INT2 requires that bit 6 of the miscellaneous register also be cleared.
The external interrupts recognize both level- and edge-sensitive trigger interrupts for the
M146805 CMOS Family as shown in Figure 4-5. The M6805 HMOS Family requires nega­
tive edge-sensitive trigger interrupts only. The level-sensitive line is mask optional on the
MC146805G2 and MC146805F2 (see Figure 4-5). The level':sensitive triggered interrupts
are generally used for multiple "wire-ORed" interrupt sources as shown in Figure 4-5b.
Edge-sensitive interrupts may be used for periodic interrupts; however, since the inter­
rupt request is latched by the processor, interrupt sources may return to other tasks.
Periodic interrupt requests require that the interrupt request line be held low for at least
one tcyc and not be repeated until the end of the service routine and the stacking opera­
tions are complete. This ensures that all requests are recognized. The interrupt line must
also be released high to allow the interrupt latch to be reset.

Upon servicing a pending interrupt request, the processor executes the following
sequences:

1. Mask all interrupts (set I bit).
2. Stack all CPU registers.
3. Load the program counter with the appropriate vector location contents (I NT2

uses the same vector location as does the timer).
4. Execute service routine.

80

(1)

(2)

-------------------- *

Voo ,.......--...

o Ot-------I

Interrupt Pin >-........ ---QC

External
Interrupt
Request

I Bit ICeR)

R

* Mask optional for M146805 CMOS Family

(a) Interrupt Functional Diagram

Power-On Reset

External Reset

External Interrupt
Being Serviced

I~Ol~~ ________ ~
•
•

IROn

Edge- or Level-Sensitive

}

Wire ORed Condition
If after servIcing an Interrupt the IRQ re­
mains low, then the next Interrupt IS
recognized

r-----

IRO----' IMPU) I~ ___________________ ~

IRQ~tILIH U
Ie tILlL---+l~1

(b) Interrupt Mode Diagram

Figure 4·5. External Interrupt

Edge-Sensitive Pulse Condition

The minimum pulse width ItILlH) IS one
tcyc The period tlLlL should not be less
than the number of tcye cycles It takes to
execute the Interrupt service routine plus
20 tcyc cycles

4.7.4 Software Interrupt (SWI)

The software interrupt is executed the same as any other instructon and as such will take
precedence over hardware interrupts only if the I bit is set (interrupts masked). The SWI
instruction is executed similar to the hardware interrupts in that the I bit is set, CPU
registers are stacked, etc. The SWI is executed regardless of the state of the interrupt
mask in the condition code register; however, when the I bit is clear and an external or
internal hardware interrupt is pending, the SWI instruction (or any other instruction) is
not fetched until after the hardware interrupts have been serviced. The SWI uses its own
unique vector location.

81

4.8 110 PORTS

At least 16 individually programmable, bidirectional I/O lines are included on each
member of the M6805 HMOS/M146805 CMOS Family; however, more than this exists on
most family members. Each line is individually programmable as either an input or an
output via its corresponding data direction register (DDR) bit as shown in Figure 4-6.
Table 4-2 provides a description of the effects of port data register operation. Data is writ­
ten into the port output data latch regardless of the state of the DDR; therefore, initial
output data should be written to the output data latch before programming the DDR.
After a port line has been configured as an output, the data on that line reflects the cor­
responding bit of the output data latch. A read of the port data register reflects the last
value written to the port output data latch for output lines and the current status of the
input pins. Note that the DDRs in the M6805 HMOS Family are write-only registers and
should not be used with any of the read-modify-write (RMW) instructions such as the bit
manipulation instructions. The M146805 CMOS Family DDRs are read/write registers and
may be used with RMW instructions.

Some devices include a number of input-only lines. These lines have no DDR and have
read-only data registers.

To
And
From
CPU

Figure 4·6. Typical Port 110 Circuitry

Table 4·2. Port Data Register Accesses

R/W DDR Bit Results

0 0 The I/O pin is In Input mode Data IS written into the output
data latch.

0 1 Data IS written Into the output data latch and output to
the I/O pin.

1 0 The state of the I/O pin IS read.

1 1 The I/O pin IS In an output mode The output data latch
IS read

-R/W IS an Internal line

82

4.9 TIMER DESCRIPTION

4.9.1 Genera!

All M6805 HMOS/M146805 CMOS Family devices contain at least one timer on chip. The
timer is basically composed of a 7·bit prescaler, an 8·bit counter, and interrupt logic. The
M6805 HMOS and M146805 CMOS devices differ slightly in two areas. First, the input to
the timer, as shown in Figures 4·7 and 4·8, is programmed differently. In the M146805
CMO,S Family, the input is selected by programming bits 4 and 5 of the timer control
register (TCR). In the M6805 HMOS Family they are mask programmable (except for the
MC6805R3 and MC6805U3). The second difference is the prescaler which is software pro·
grammable in the M146805 CMOS Family and mask programmable in the M6805 HMOS
Family.

Timer
Pin

Write

Timer Data Register (TOR)
8-Blt Counter

7-Blt Prescaler Select

I-----~ 1-of-8
Clear

Microcomputer Internal Bus

Q)
CJ)

Timer Control Register (TCR)

3

NOTE TCR3 always reads as a logical 0

Figure 4·7. M146805 CMOS Family Timer Block Diagram

83

Timer
Interrupt
Request

Read Write

8 8

fCIN Timer Data Register (TOR)

r/>2
(Internal)

r----,
1 of 2 I I

7-Blt
Prescaler

8-Blt Counter

---I
20

I

I
I

Mask I .,....,1,........+--__ ---1
Option I 1
Select I I _-.J

TIMER
Input r---1
Pin I I L ___ -l

Manufacturing
Mask Option

Clear 27 ___ --I
1 of 8

Mask Option
Select

Prescaler Clear
(See Note)

Microcomputer Internal Bus

Set

Timer Control Register (TCR)

Timer
Interrupt
Request

NOTE' The TCR3 prescaler clear bit IS not available In the MC6805P2, MC6805P4, and MC6805T2, however, It IS used as shown In all
other M6805 HMOS Family MCUs, The TCR3 bit always reads as a logical 0

Figure 4·8. M6805 HMOS Family Timer Block Diagram

The timer interrupt operates similarly to the external interrupts; however, users must
clear the interrupt request bit (TCR7) to prevent a second timer interrrupt service from oc­
curring.

Descriptions of the HMOS and CMOS timers follow in more detail. The EPROM versio.n~
allow either CMOS or HMOS timer operations via the programmable mask option register
(MOR).

4.9.2 M146805 CMOS Family

4.9.2.1 GENERAL. The MCU timer contains an 8-bit software programmable counter with
7-bit software selectable prescaler as shown in Figure 4-7. The counter may be pre­
loaded under program control and decrements toward zero. When the counter
decrements to zero, the timer interrupt request bit, Le., bit 7 of the timer control register
(TCR), is set. Then, if the timer interrupt is not masked, Le., bit 6 of the TCR and the I bit in

84

the condition code register are both cleared, the processor receives an interrupt. After
completion of the current instruction, the processor proceeds to store the appropriate
registers on the stack, and then fetches the timer vector address in order to begin servic­
ing.

The counter continues to count after it reaches zero, allowing the software to determine
the number of internal or external input clocks since the timer interrupt request bit was
set. The counter may be read at any time by the processor without disturbing the count.
The contents of the counter become stable prior to the read portion of a cycle and do not
change during the read. The timer interrupt request bit remains set until cleared by the
software. If a clear (write TCR? = 0) occurs before the timer interrupt is serviced, the inter­
rupt is lost. The TCR? bit may also be used as a scanned status bit in a non-interrupt
mode of operation (TCR6 = 1).

The prescaler is a ?-bit divider which is used to extend the maximum length of the timer.
Bit 0, bit 1, and bit 2 of the TCR are programmed to choose the appropriate prescaler out­
put which is used as the counter input. The processor cannot write into or read from the
prescaler; however, its contents are cleared to all "Os" by the write operation into TCR
when bit 3 of the written data equals 1. This allows for truncation-free counting.

The timer input can be configured in one of three different operating modes, plus a
disable mode, depending on the value written to the TCR4 and TCR5 control bits. Refer to
the Timer Control Register paragraph.

4.9.2.2 TIMER INPUT MODE 1. If TCR4 and TCR5 are both programmed to a "0", the input
to the timer is from an internal clock and the TIMER input pin is disabled. The internal
clock mode can be used for periodic interrupt generation, as well as a reference in fre­
quency and event measurement. The internal clock is the instruction cycle clock. During
a WAIT instruction, the internal clock to the timer continues to run at its normal rate.

4.9.2.3 TIMER INPUT MODE 2. With TCR4 = 1 and TCR5 = 0, the internal clock and the
TIMER input pin are ANDed to form the timer input signal. This mode can be used to
measure external pulse widths. The external pulse simply turns on the Internal clock for
the duration of the pulse. The resolution of the measurement in this mode is ± 1 clock.

4.9.2.4 TIMER INPUT MODE 3. If TCR4 = 0 and TCR5 = 1, then all inputs to the timer are
disabled.

4.9.2.5 TIMER INPUT MODE 4. If TCR4 = 1 and TCR5 = 0, the internal clock input to the
timer is disabled and the TIMER input pin becomes the input to the timer. In this mode,
the timer can be used to count external events as well as external frequencies for
generating periodic interrupts. The counter is clocked by the falling edge of the external
signal.

Figure 4-? shows a block diagram of the timer subsystem. Power-on reset and the STOP
instruction cause the counter to be set to $FO.

85

4.9.2.6 TIMER CONTROL REGISTER (TCR). The eight bits in the TCR are used to control
various functions such as configuring the operation mode, setting the division ratio of
the prescaler, and generating the timer interrupt request signal. A description of each
TCR bit function is provided below. All bits in this register except bit 3 are read/write bits.

7 6 5 432 1 0
I TCR7 I TCR6 I TCR5 I TCR4 I TCR3 I TCR2 I TCR1 I TCRO I

TCR7 - Timer interrupt request bit: bit used to indicate the timer interrupt when it is
logic "1".

1 - Set whenever the counter decrements to zero, or under program control.
0- Cleared on external reset, power-on reset, STOP instruction, or program control.

TCR6 - Timer interrupt mask bit: when this bit is a logic "1" it inhibits the timer interrupt
to the processor.

1 - Set on external reset, power-on reset, STOP instruction, or program control.
o - Cleared under program control.

TCR5 - External or internal bit: selects the input clock source to be either the external
TIMER pin or the internal clock. (Unaffected by reset.)

1 - Select external clock source.
o - Select internal clock source.

TCR4 - External enable bit: control bit used to enable the external timer pin (Unaffected
by reset.)

1 - Enable external timer pin.
o - Disable external timer pin.

Summary of Timer Clock Source Options
TCR5 TCR4 Option

0 0 Internal Clock to Timer
0 1 AND of Internal Clock and TIMER Pin to Timer
1 0 Inputs to Timer Disabled
1 1 TIMER Pin to Timer

Refer to Figure 4-7 for logic representation.

TCR3 - Timer prescaler Reset bit: writing a "1" to this bit resets the prescaler to zero. A
read of this location always indicates "0". (Unaffected by reset.)

TCR2, TCR1, TCRO - Prescaler select bits: decoded to select one of eight taps on the
prescaler. (Unaffected by reset.)

Prescaler
TCR2 TCR1 TCRO Result TCR2 TCR1 TCRO Result

0 0 0 +1 1 0 0 +16
0 0 1 +2 1 0 1 +32
0 1 0 +4 1 1 0 +64
0 1 1 +8 1 1 1 +128

86

4.9.3 M6805 HMOS Family Timer

The timer block diagram for these family members is shown in Figure 4-8. This timer con­
sists of an 8-bit soft'.AJare programmable counter (timer data register, TDR) '."Jhich is
decremented towards zero by a clock input from a prescaler. The prescaler clock input is
received either from the TIMER pin via an external source or from the internal ¢2 of the
MCU. The actual clock input to the prescaler is determined by a mask option when the
MCU is manufactured.

The mask option allows the prescaler to be triggered either directly from the external
TIMER pin or from a gated ¢2 internal clock. When ¢2 Signal is used as a clock source, it
is only applied whenever the TIMER pin is a logical high. This allows the user to perform a
pulse width measurement of the TIMER pin input pulse. In order to provide a continuous
¢2 input to the prescaler in this configuration, it is only necessary to connect the TIMER
pin to VCC.

The prescaler divide ratio is selected by a mask option which is determined when the
MCU is manufactured. This option allows the TOR to be triggered by every clock input to
the prescaler (20), by the 128th clock input to the prescaler (27), or by any other power of
two in between.

The TOR (8-bit counter) may be loaded under program control and is decremented
towards zero by each output from the prescaler. Once the TOR has decremented to zero,
it sets bit 7 of the timer control register (TCR) to generate a timer interrupt request. Bit 6
of the TCR can be software set to inhibit the timer interrupt request, or software cleared
to pass the interrupt request to the processor, provided the I bit is cleared. Since the 8-bit
counter (TOR) continues to count (decrement) after falling through $FF to zero, it can be
read any time by the processor without disturbing the count. This allows a program to
determine the length of time since a timer interrupt has occurred without disturbing the
counting process. Once the processor receives the timer interrupt, the MCU responds by
saving the present CPU state on the stack, fetching the timer vector, and executing the
interrupt routine. The processor is sensitive to the level of the timer interrupt request line;
therefore, if the interrupt is masked (I bit set), bit 7 of the TCR may be cleared by the timer
interrupt service routine without generating an interrupt. When servicing a timer inter­
rupt, bit 7 of the TCR must be cleared by the timer interrupt service routine in order to
clear the timer interrupt request.

At power up or reset, the prescaler and TOR (8-bit counter) are initialized with all logical
ones, TCR bit 7 is cleared, and TCR bit 6 is set.

NOTE
The above description does not fully apply to EPROM members of the M6805
HMOS/MC146805 CMOS Family (or the MC6805R3 and MC6805U3). This is
because EPROM MCUs use TCR bits 0-5 to select prescaler output divide ratio,
determine clocking source, and clear the prescaler. EPROM versions may also
be programmed, via the MOR, to allow the prescaler to be software programm­
ed.

87

4.10 ANALOG·TO·DIGITAL (AID) CONVERTER

The MC6805R2 MCU and MC68705R3 EPROM MCU both have an 8-bit AID converter
implemented on-chip. This AID converter uses a successive approximation technique, as
shown in Figure 4-9. Up to four external analog inputs, via port 0, may be connected to
the AID converter through a multiplexer. Four internal analog channels may be selected
for calibration purposes (VRH, VRL, VRH/2, and VRH/4). The accuracy of these internal
channels will not necessarily meet the accuracy specifications of the external channels.

D/A

10 k (Typical!
Control
Logic

Count

PD5IVRH
PD4IVRL --+---..

PDO/ANO

PD1/AN1

PD2/AN2

PD3/AN3

1-of-8
Select

Multiplexer

Result
Register
(AC R) \""';;""&""--"---I"--&..-...&..,.;::....I.-..;;...&......;::;....!

Control
Register

'--....&..-.....I---'-----'""'--..I....-.........&..--I (A R R)

Figure 4-9. AID Block Diagram

8

The multiplexer selection is controlled by the AID control register (ACR) bits 0,1, and 2;
see Table 4-3. This register is cleared during any reset condition.

Table 4·3. AID Input Multiplexer Selection

AI D Control Register
Input Selected

AID Output (Hex)

ACR2 ACR1 ACRO Min Typ Max

0 0 0 AND
0 0 1 AN1
0 1 0 AN2
0 1 1 AN3
1 0 0 VRH* FE FF FF
1 0 1 VRL* 00 00 01
1 1 0 VRH/4* 3F 40 41
1 1 1 VRH/2* 7F 80 81

* Internal (Calibration) levels

Whenever the ACR is written, the conversion in progress is aborted, the conversion com­
plete flag (ACR bit 7) is cleared, and the selected input is sampled and held internally.

The converter operates continuously using 30 machine cycles (including a 5-cycle
sample time) to complete a conversion of the sampled analog input. When conversion is
complete, the digitized sample or digital value is placed in the AID result register (ARR),
the conversion complete flag is set, the selected input is sampled again, and a new con-

88

version is started. Conversion data is updated during the part of the internal cycle that is
not used for a read. This ensures that valid, stable data is continuously available after
initial conversion.

NOTE
Negative transients on any analog lines during conversion will result in an
erroneous reading.

The A/D is ratiometric. Two reference voltages (VRH and VRL) are supplied to the con­
verter via port D pins. An input voltage greater than VRH converts to $FF and no overflow
indication is provided. For ratiometric conversions, the source of each analog input
should use VRH as the supply voltage and be referenced by VRL.

4.11 PHASE·LOCK·LOOP (PLL)

4.11.1 General

The MC6805T2 MCU contains (in addition to the normal ROM, RAM, timer, and I/O func­
tions) a phase-lock-loop (PLL). This feature, not normally found in an MCU, may be used
in applications ranging from television tuner control to public service scanner radios.

By providing a PLL which is part of the on-chip MCU circuitry, the functions of frequency
control and front panel indication are easily attained. The MC6805T2 contains sufficient
ROM and RAM for a program allowing for controlling all the necessary television chan­
nels currently used, plus a display showing the channel number.

Figure 4-10 contains a block diagram of a PLL system in an rf synthesizer and Figure 4-11
shows the on-chip MC6805T2 components. As shown, the system components internal to

VCO fVCO

¥Vancap

Band
Information

I" ;teWat;-j

I I

Vancap IS a trademark of TRW Semiconductor

-P
Prescaler
(Optional)

Comparator

Reference
DIVider
~R

DIVider

CPU

fm ..
I
I
I
I
I
I
I
I
I
I

MC6805T2 I - ___________ --1
4

Figure 4·10. Phase· Lock-Loop in an rf Synthesizer

89

the MC6805T2 MCU contain: a 14-bit binary variable divider (+ N), a fixed 10-stage
reference divider (+ R), a digital phase and frequency comparator with a three-state out­
put, and circuitry to avoid "back-lash" effects in phase lock condition. External to the
MCU, a suitable high-frequency prescaler (+ P) and an active integrator loop filter plus a
VCO rounds out the system.

READ PLLHI

WRITE PLLHI

CPU Data Bus

PLL LOW
Register $OOA

14-Bit Latch

Variable DIvider

Phase Comparator

/~---~~~----~

... -------- READ PLLLOW

1-4------.--- WRITE PLLLOW

Load
Synchronize

tl>COMP 0.....1------1 Comparator

Reference
Divider

r--,
I I Manufacturing
L _ .J Mask Option

r- - --,
I
I
I
I

26 I
fREF = feL

25 I
I

4x(21,22, 210)

24 '--v---"
I 1 out of 10 Mask Option

23 I
22

I I
21 L_J

Figure 4·11. MC6805T2 PLL Block Diagram

90

4.11.2 Reference Divider

Refer to Figure 4-11. This 10-stage binary counter generates a reference frequency which
is applied as a constant reference frequency to a phase comparator circuit. The
reference divider is mask programmable, thus, allowing the user a choice of reference
frequency at the time of manufacture.

4.11.3 Variable Divider

The variable divider (shown in Figure 4-11) is a 14-bit binary down counter which com­
municates with the CPU via two read/write registers located at address $OOA, for the LS
byte, and $008, for the MS byte. The upper two bits in register $008, always read as
logical "1s". When the variable divider count has reached zero, a preset pulse, fVAR, is
generated. The fVAR is applied to the phase comparator circuit together with the con­
stant frequency fREF signal. The phase/frequency difference between the two signals
results in an error signal output (cjJ COMP, pin 7) which is used to control the VCO fre­
quency. In addition, the fVAR signal is also used to reload the 14-blt divider latch as
shown in Figure 4-11.

Data transfers from registers $OOA and $008 to the latch occur outside the preset time
and only during a write operation performed on register $OOA. For example, a 6-bit data
transfer to register $008 is only transferred to the variable divider if followed by a write
operation to register $OOA. Figure 4-12 shows a typical error free manipulation of the
14-bit data in the fine tuning operations.

FTUP LDA
INCA
BNE
INC

TTl INC

FTDWN TST
BNE
DEC

TT2 DEC

PLLLOW

TTl
PLLLOW
PLLLOW

PLLLOW
TT2
PLLHI
PLLLOW

Check If LS Byte= $FF (Reg $OOA)
If Not Increment Only LS Byte
Increment MSB (Reg $OOB) Before LSB

Check if LS Byte= $00
If Not Decrement Only LS Byte
Decrement MSB Before LSB

Figure 4·12. Typical Fine Tune Software Example

The use of the 14-bit latch synchronizes the data transfer between two asynchronous
systems, namely, the CPU and the variable divider.

At power-up reset both the variable divider and the contents of the PLL registers are set
to logical "1 s".

The variable frequency input pin, fin, is self biased requiring an ac coupled Signal of
about 0.5 V. The input frequency range of fin allows the device, together with a suitable
prescaler, to cover the entire TV frequency spectrum.

91

4.11.4 Phase Comparator

The phase comparator compares the frequency and phase of fV AR and fREF, and
according to the phase relationship generates a three-level output (1, 0, or Hi-Z), c/>COMP,
as shown in Figure 4-13. The output waveform is then integrated, amplified, and the resul­
tant dc voltage is applied to the voltage controlled osci lIator.

fVAR

fREF --+---4

1-

4>COMP Hi-Z

0-

Phaselag Stable State ..
Figure 4-13. Phase Comparator Output Waveform

In practice, a linear characteristic around the steady-state region can not be achieved
due to internal propagation delays. Thus, phase comparators exhibit non-linear char­
acteristics and for systems which lock in phase, this results in a "backlash" effect­
creating sidebands and FM distortion. To avoid this effect, a very short pulse is injected
periodically into the system. The loop, in turn, attempts to cancel this interference and in
so doing brings the phase comparator to its linear zone.

4.12 MC146805E2 MICROPROCESSOR (MPU) EXTERNAL BUS DESCRIPTION

The MC146805E2 CMOS MPU does not contain on-chip non-volatile memory; however, by
using the external multiplexed address-then-data bus, additional memory and peri­
pherals may be added. In order to conserve pins, the MC146805E2 multiplexes the data
bus with the eight lower address bits. The lower address bits appear on the bus first and
are valid prior to the falling edge of address strobe (AS). Data is then transferred during
data strobe (OS) high. The MC146805E2 latches read data (RIW is high) on the falling edge
of OS.

The MC146805E2 bus timing is generated from the waveform at the OSC1 input. Figure
4-14 shows the relationship of the MC146805E2 bus timing to the OSC1 input. Because
the MC146805E2 is a completely static device, it may be operated at any frequency below
its maximum (1 MHz bus) rate. Since generating the timing specifications for all of the
possible frequencies is impossible, Figure 4-14 can be used to estimate the effects on
bus timing for the oscillator frequency (fosc). For instance, decreasing fosc increases

92

the multiplexed address hold time since the multiplexed bus does not switch until a half
OSC1 cycle after AS goes low. On the other hand, the required read data hold time is not
a function of fosc.

OSC1

AS

DS

AS-A12

R/W

80-87
MPU Read

80-87

MPU Wnte __ ---{ '------4' '---------------f

* Read data "latched" on DS fall

Figure 4·14. OSC1 to Bus Transitions

93

5.1 INTRODUCTION

CHAPTER 5
HARDWARE APPLICATIONS

When the initial microprocessors appeared in the marketplace, the actual on-chip cir­
cuitry was extremely limited. This required the use of a large number of devices just to
support the actual processor. However, as technology progressed much of the support
hardware was included on-chip with the processor. The M6805 HMOS/M146805 CMOS
Family now includes standard on-chip features such as: an oscillator, ROM, RAM, timer,
and a wide variety of I/O devices. Combining these standard features with other features
such as analog-to-digital conversion, phase-lock-loop, etc. onto a single chip simplifies
system design efforts while reducing production costs.

This chapter contains discussions and examples of applications which describe how
some of these on-chip hardware features may be used and enhanced. The first para­
graphs provide discussions of some of the features, whereas, the latter paragraphs
describe application examples which perform real tasks.

The evaluation ROM devices for each member of the M6805 HMOS/M146805 CMOS
Family contain evaluation examples which can be used to better understand the device.
Many of the evaluation examples have been used to perform real tasks, and many of
these are described in various Motorola application notes.

One paragraph of this chapter is dedicated to CMOS design considerations. This discus­
sion highlights the somewhat different design considerations required when designing a
system using CMOS.

5.2 1/0 EXPANSION

The M6805 HMOS/M146805 CMOS Family devices may require interfacing with other
peripherals. Several representative descriptions are provided in this paragraph, all of
which are in general terms except for the MC146805E2 MPU.

5_2.1 MC146805E2 Microprocessor Unit (MPU)

The MC146805E2 MPU is the only member of the M6805 HMOS/M146805 CMOS Family
that has no on-chip ROM; however, it does use a multiplexed address/data bus to inter­
face with external memory or peripherals. Multiplexed bus memory peripheral interfacing
techniques are discussed below. In addition, the MC146805E2 can also be interfaced
with non-multiplexed bus memory peripherals, and this technique is also discussed

95

below. In some applications it is necessary to interface the MC146805E2 with peripherals
which require longer access times ("slow memory"). A discussion of this technique is
also included as part of this paragraph.

5.2.1.1 INTERFACING MULTIPLEXED BUS MEMORY WITH PERIPHERALS. A multi­
plexed bus device is characterized by an address latch and an output enable signal. The
address latch captures the lower eight bits of the address from the multiplexed bus, and
the output enable signal is used to determine when data can be safely transferred. The
circuit in Figure 5-1 illustrates a typical multiplexed bus interface. This figure provides a
detailed representation of the minimum circuit required to use the CBUG05 debug
monitor which is contained in the MCM65516 2K x 8 CMOS ROM. A complete description
of the CBUG05 can be found in Motorola Application Note AN-823.

The circuit shown in Figure 5-1 consists entirely of CMOS devices. The system could be
expanded easily by adding CMOS RAM, ROM, EPROM, or peripherals such as MC146818
real time clock or the MC146823 CMOS peripheral interface.

The MCM65516 ROM uses the AS signal from the MC146805E2 to latch the multiplexed
address and the DS signal to transfer data. The data transfer direction is controlled by
the RIW signal. Since the MCM65516 ROM is a read-only device, RIW is used together
with A 11 and A 12 to provide the chip select and enable lines to ensure that an inadvertant
write does not cause a bus conflict. The chip enable and select lines on the MCM65516
are mask programmable as either active high or active low; therefore, no external
address decoding is necessary in this example. A second example is discussed below
which uses an MC146823 CMOS peripheral interface to emulate the C and D ports of the
MC146805G2.

5.2.1.2 INTERFACING NON·MULTIPLEXED BUS MEMORY WITH PERIPHERALS. Since
the majority of existing memory and peripheral devices use a non-multiplexed bus, an in­
terface with the MC146805E2 can be relatively simple. The main difference between
multiplexed and non-multiplexed memory and peripheral devices is the absence of an
address latch in non-multiplexed bus devices. The non-multiplexed bus devices require
that all address lines be valid for the entire cycle. In order to provide this valid address to
a non-multiplexed memory or peripheral device, the MC146805E2 multiplexed bus can be
demultiplexed merely by adding an external address latch. This is illustrated in Figure 5-2
which uses an MC74HC373 to demultiplex the bus for the non-multiplexed MCM27C16
EPROMs. The multiplexed address lines (BO-B7 of the MC146805E2) are latched in the
MC74HC373 by the falling edge of address strobe (AS). They remain latched until AS goes
high. The emulator shown in Figure 5-2 is further discussed in the Emulating The
MC146805G2 MCU paragraph.

96

PWR

BITRI AIOFFI SP ;rI '),cI yr/

3;;
61BCLI 91STI V M yc/ ;cI ;cI yc/
~ ...

2 yrJ 5 SIOTI.; L G

;c/ ~ ;rI yc/
.Jl

1 4 7 P ESC

1$1800-$1 FFFI

PAO~14~ __________________ ;--r-r~1.-1O~kJVvv-,

;0" ;cI ';0' ;cI ycl

PA1~13~ __________________ 4-~~ __ ~10~k~VV-f
PA2~12~ __________________ 4-~ ____ ~10~k~VV-f

11 10k v vv
PA3~-------------------4I--------'-:"=W\t-f 14 2 15 6 7 JPWR

MC146805E2 ~ 01 02 03 04 05 06
PA4~10~ __________________________________ ~10A VDD 16

PA5 ""9 ____________________________________ -'i13 B MC1402S 11

PA6 p<S ______ -. ____________________________ -"i12 C Decoder

PA7~ ~--'-r __________________________________ V_S~~~
((((((((} To LCD as Shown In

11 12 15 I E 17 Is 19 k ~-r---"7--r------ Figure 4 of AN-823

P~ FP11 FP~ FP~ FP: FP~ FP: FP; FP: FP: FP11~FP1\\Pll~ B~17 SP126 B~5 B~4 22

~ ~~t~ In OSCIN]

----...!1. Data Clock MU~~~~~~CD 200 k
12 Drivel .r- VSS OSCOUT 23

27 pF 5MHz 25 pF

VSS~
OSC1 OSC2 I ~
391 10MO 138

o

Figure 5·1. CBUG05 Debug Monitor Minimum CMOS Only System, Schematic Diagram

97

co
())

20pF

r

fij

i
u
~

VSS

1?0

PWR
140

TIMER 37 37 1100
PBO 36 12 TIMER
PBl 35 13 PBO
PB2 34 14 PBl
PB3 33 15 PB2

RESET IRO
11 12

RESET IRO

PB4 32 16 PB3
PB5 31 17 PB4 MC146805G2

PB6 30 PB5
PB7 29 18 PB6
PAO 14 19 PB7
PAl 13 11 PAO
PA2 12 10 PAl

PA3 11 ~ PA2
PA4 10 7 PA3
PA5 9 6 PA4
PA6 8 5 PA5
PA7 7 4 PA6

PA7

Cable
Socket

VSS
.,!JO

5·2. MC146805G2 Emulator Schematic Diagram

RESET PWR
\25 \40

RESET VOO

a::
u
r:3
~
U
~

23

CE ~4 ~ 23
R/W 22
CSl

5.2.1.3 INTERFACING WITH SLOW MEMORY AND PERIPHERAL DEVICES. At times, it is
desirable to use memory or peripheral devices which require both chip enable and output
enable. In these devices, the access time is calculated from when chip enable is valid,
whereas, output enable simply opens the gates to the external bus.

The emulator circuit of Figure 5-2 shows an interface with an MC146805E2 and an
MCM27C16; however, slow, single-supply SC682716 EPROMs could be used. Note that
the chip enable (E) of the MCM27C16 EPROM is continuously held low. This allows the
address to be gated by using the MC146805E2 OS signal to generate the output enable
(G). The OS signal is actually used in decoder SN74HC139 to generate three G inputs, one
for each EPROM. In this type of interface, the output enable time is the limiting factor
and it is typically much shorter than the access time. On most devices power consump­
tion increases when this type of interface is used.

5.2.1.4 EMULATING THE MC146805G2 MCU. The circuit shown in Figure 5-2 illustrates
the use of each of the three interfacing techniques to allow the MC146805E2 MCU to pro­
vide real-time emulation for the MC146805G2 Microcomputer (MCU). In the circuit of
Figure 5-2 all devices are CMOS; however, the actual MC146805G2 power consumption
will be approximately 20% of that consumed by the emulator. More information concern­
ing MC146805G2 emulation, as well as other MCUs, is contained in Motorola Application
Note AN-853.

5.2.2 Single·Chip Microcomputer (MCUs)

The increased circuit density of single-chip MCUs greatly reduces the need for additional
hardware external to the MCU itself. By combining as much I/O as needed on a single
integrated circuit device, the cost is lowered and reliability increased. Since the prob­
ability of system failure increases with each added system component, system reliability
increases as a result of more system components being designed into a single-chip
MCU.

The single-chip MCUs which are part of the M6805 HMOS/M146805 CMOS Family con­
tinue to grow in order to fill the diversity of I/O needs in the controller market; however,
some applications may require I/O functions that are not yet included, or are unsuitable
for inclusion, as part of the single-chip MCU. Whatever the reason, the MCU must provide
a means for using external devices in a system.

All M6805 HMOS/M146805 CMOS MCUs contain programmable bidirectional I/O lines;
however, the actual number of these I/O lines may vary between specific MCUs. Inall
cases an external interface may be.simulated by properly manipulating these lines. The
MC145000 LCO driver interface described in Chapter 3 is an example of such an
interface.

More complicated interfaces may be simulated as shown in Figure 5-3. This example
combines the MC146818 real-time clock with an M6805 HMOS/M146805 CMOS Family
MCU. Eleven I/O lines are used in this interface to provide the multiplexed bus required by
the MC146818. If an interface requiring more lines were used, a peripheral interface
adapter (PIA), latch, or input buffer could be added to increase the effective number of I/O
lines.

99

M146805 CMOS MC146818 RTC

PBO ADO
PB1 AD1
PB2 AD2
PB3 AD3
PB4 AD4
PB5 AD5
PB6 AD6
PB7
PCO AS
PC1 DS
PC2 R/W

I Power-Down ~ CE Circuit

Figure 5·3. MCU Interface With Multiplexed Bus Peripheral

All MCU interfaces require some amount of software overhead. The software require·
ment for the MC146818 interface is illustrated in Figure 5·4. The MC146818 multiplexed
bus requires that signals and transitions occur in specific order. The software of Figure
5·4 guarantees that these timing requirements are met.

INITIALIZATION OF I/O LINES
PORTB EOU 1
PORTC EOU 2
DDRB EOU 5
DDRC EOU 6
AS EOU 0
DS EOU 1
RW EOU 0
ADDR RMB 1
INIT ClR PORTC

ClR PORTB
lDA #$FF
STA DDRB
lDA #7
STA DDRC
RTS

READ MC146818

ADDRESS OF BYTE TO BE ACCESSED
CLEAR PORT C OUTPUT DATA lATCH
CLEAR PORT B OUTPUT DATA lATCH
CONFIGURE PBO-PB7 AS OUTPUT

CONFIGURE PCO-PC2 AS OUTPUTS

RETURN

READ BSET RW,PORTC FORCE R/W AND AS HIGH
BSET AS, PORTC
lDA ADDR
STA PORTB
BClR AS,PORTC
ClR DDRB
BSET DS,PORTC
lDA PORTB
STA DATA
BRA INIT
WRITE MC146818

PRESENT MUXED ADDRESS

FORCE AS lOW TO lATCH MUXED ADDRESS
CONFIGURE PORT B AS INPUTS
READ DS HIGH
READ DATA
STORE DATA IN RAM FOR lATER USE
REINITIALIZE LINES AND RETURN

WRITE BSET AS,PORTC FORCE AS HIGH
lDA ADDR PRESENT MUXED ADDRESS
STA PORTB
BClR AS,PORTC FORCE AS lOW TO lATCH MUXED ADDRESS
lDA DATA PRESENT WRITE DATA
STA PORTB
BSET DS,PORTC TOGGLE DS TO lATCH DATA INTO MC146818
BClR DS,PORTC
BRA INIT REINITIALIZE LINES AND RETURNS

Figure 5·4. MCU to MC146818 Interface Software

100

5.3 PERIODIC WAKE·UP FROM WAIT MODE

The timer may be used to generate a signal which causes a member of the M146805
CMOS Family to exit from the WAIT mode. The WAIT instruction (like the STOP instruc­
tion) places the MPU or MCU into a low-power mode which may be exited by using either
a reset or an external interrupt; however, unlike the STOP mode, the WAIT mode does not
disable the timer_ In the WAIT mode, the timer interrupt can also cause the processor to
exit the WAIT mode and begin execution of the program pOinted to by the timer wait inter­
rupt vector. This feature of using the timer interrupt to periodically "wake-up" the pro­
cessor, is extremely useful in systems that require the lowest possible power consump­
tion and at the same time require infrequent processor control. In these systems, the pro­
cessor is "put to sleep" and periodically "awakened" by the timer interrupt.

The example shown in Figure 5-5 is similar to the keyscan example described in Chapter
3. The main difference between the examples is that the keyscan routine uses the exter­
nal interrupt to exit the STOP mode; whereas, the example of Figure 5-5 uses the internal
bus frequency to exit the WAIT mode. Power consumption using the WAIT mode is
slightly higher than the STOP mode. This is because the timer is active and consumes
power during the WAIT mode. Also, in the example of Figure 5-5, the data at ports A and B
are compared (using the SUB instruction) and the difference is outputted at port C every
100 milliseconds. No external hardware, except as necessary to guard against possible
CMOS latch-up, is necessary.

PORTA EOU 0
PORTB EOU 1
PORTC EOU 2
DDRC EOU 6
TDR EOU 8
TCR EOU 9
RESET CLR PORTC INITIALIZE PORT C OUTPUT DATA LATCH

LDA #$FF CONFIGURE PORT C AS OUTPUT PINS
STA DDRC
LDA #$20 DISABLE TIMER
STA TCR

PAUSE LDA #F9 LOAD TIMER DATA REGISTER
STA TDR
LDA #$00 ENABLE TIMER INTERRUPT AND FOR INTERNAL INPUT
STA TCR
WAIT ENTER LOW-POWER WAIT MODE
BRA PAUSE RETURN HERE AFTER INTERRUPT IS SERVICED

TWIRO LDA TCR READ TIMER CONTROL REGISTER TO CLEAR INTERRUPT REQUEST
LDA PORTA READ PORT A REGISTER INPUT DATA
SUB PORTB FIND DIFFERENCE
STA PORTC OUTPUT DIFFERENCE TO PORT C
RTI RETURN FROM INTERRUPT

Figure 5-5. Timer Wait Mode Exit Software

5.4 INTERRUPTS

The IRQ or INT pins on the M6805 HMOS/M146805 CMOS Family may be used in many
different interrupt-type applications. An interrupt is used either as a request by a
peripheral for MPU/MCU service or as a flag to the MPU/MCU which indicates the occur­
rence of some event. The following paragraphs provide descriptions in which the inter­
rupt line is used as a flag for the processor.

101

5.4.1 Exiting From STOP Mode

The STOP instruction is used in the M146805 CMOS Family to enter a low-power
operating mode. In most MPU/MCU applications, there are intervals in which no process­
ing, except to wait for an event to occur, is required. The example described in Chapter 3
of the 4 x 4 keypad interface is a typical example. One of the features of this keypad
interface is that the processor enters the low-power STOP mode and remains there until
a valid keypad switch closure occurs. When a key is depressed, the IRQ line is pulled low.
This causes the processor to exit the STOP mode and enter the interrupt service routine.
The interrupt service routine polls (scans) the keypad rows and columns to determine
which key was depressed. After the depressed key location is verified, the interrupt ser­
vice routine is exited. Processing then continues at the instruction that follows the STOP
instruction that was last executed. .

The location of the depressed keypad key may be used in conjunction with a jump table
to initiate the execution of anyone of a number of routines, or a conversion table to
translate the key location into a value or a character. When keypad input is required, all
that need be done to accept it is to execute the STOP instruction. The interrupt mask is
automatically cleared by the STOP instruction, the depressed keypad key causes an
interrupt, and the depressed key location is returned in the accumulator.

5.4.2 60 Hz Interrupt For Time of Day Clock

By attenuating the 60 Hz standard 110 Vac power line and inputting this signal into the
M6805 HMOS/M146805 CMOS Family MCU as shown in Figure 5-6, a time of day clock
can be controlled. Since the 60 Hz line voltage is constantly monitored and regularly cor­
rected by the power company, its average frequency is maintained as close to 60 Hz as
possible. This accurate frequency and ready availability make the standard power line
ideal for accurate timekeeping. The circuit shown in Figure 5-6 first attenuates the line
voltage to a level that meets the maximum input voltage specification of the INT pin. The
capacitor serves to eliminate dc from the INT pin input and the diodes limit the peak-to­
peak voltage. A Schmitt trigger, which is internal to the MPU/MCU, ensures that noise
does not generate false interrupts. The diodes clamp the input ac voltage to ensure that
it does not exceed the rated peak-to-peak input, while, at the same time, providing 60 fail­
ing edges per second. Thus, the MPU/MCU enters the interrupt service routine 60 times
per second.

AC
Input

ItlNT Max)
RslMn -JVV~--'-~~~

AC Input
<!: 10 Vacp-p

Figure 5·6. Typical Zero Crossing Interrupt Circuit Schematic Diagram

102

The software illustrated in Figure 5-7 is necessary to count the number of interrupts and
convert that number to seconds, minutes, and hours. Also included in the software of
Figure 5-7 is a procedure that initializes the clock.

PAGE 001 CLOCK .SA:O

00001
00002
00003
00004A 0064
00005
00006A 0064
00007
00008
00009
00010
00011A 0080
00012
00013
00014
00015
00016
00017A 0080
00018A 0081
00019A 0082
00020A 0083
00021
00022
00023

0004
0064
0065
0066

00
3C
3C
3C

00024A 0084 AE 03
00025A 0086 6C 64
00026A 0088 E6 64
00027A 008A E1 80
00028A 008C 25 07
00029A 008E 6F 64
00030A 0090 SA
00031A 0091 2A F3
00032A 0093 3C 64
00033A 0095 80
00034
00035
00036
00037A 07FA
00038
00039A 07FA
00040
00041

0084

~< RAM VARIABLES
* ORG $64 ON CHIP RAH

* A CLOCK RMB 4 TIME-OF-DAY CLOCK
A HRS EQU CLOCK HOURS IN CLOCK
A MINS EQU CLOCK+1 MINUTES IN CLOCK
A SECS EQU CLOCK+2 SECONDS IN CLOCK

* ORG $80
* * MAXIMUM COUNTER VALUES FOR TIME OF DAY
* CHANGE 13 TO 24 FOR 24 HOUR CLOCK * CHANGE JIFFIES FROM 60 TO 50 FOR 50 Hz OPERATION.

* A MODULO FCB
A FCB
A FCB
A FCB

*

13
60
60
60

HOURS
MINUTES
SECONDS
JIFFIES (SIXTIETH)

* TICK --- 60 HZ INTERRUPT FOR TIME OF DAY CLOCK

A TICK
A TICK2
A
A

0095
A

LOX
INC
LDA
CMP
BLO
CLR
DECX

0086 BPL
A INC

CLKOUT RTI

*

#3 BEGIN AT LSB OF CLOCK
CLOCK,X BUMP THIS DIGIT
CLOCK,X SEE IF IT OVERFLm-lED
MODULO,X COMPARE WITH MODULO VALUES
CLKOUT DONE IF LOWER THAN MODULO
CLOCK,X RESET THIS COUNTER AND

GO TO NEXT WITH OVERFLOW
TICK2 WHILE NOT AT HOURS COUNTER
HRS REMOVE FOR 24 HOUR CLOCK

* INTERRUPT VECTOR
* ORG $7FA
* A FDB TICK 12/24 HOUR CLOCK VECTOR

* END

Figure 5-7. Time of Day Clock Software Listing

5.5 CMOS DESIGN CONSIDERATIONS

Digital devices may be implemented in any number of processing technologies, and, as
shown in Table 5-1, each processing technology has its advantages and disadvantages.
For applications requiring low power consumption, CMOS has been the dominant
technology; however, until recently, CMOS could not match the speeds found in other
processes. With the advent of Silicon-gate CMOS and the emerging high·density CMOS
(HCMOS) processes, CMOS technology is not only replacing NMOS in many designs, but
is responsible for a whole new field of products.

The M146805 CMOS Family of MPU/MCUs, and the M74HCXX Family of CMOS interface
logic, combine the CMOS low power consumption with the speeds of NMOS/HMOS and
TIL. However, since CMOS requires a larger silicon area than NMOS or HMOS, it is more
expensive.

103

Table 5·1. Comparison of Processing Techniques

Process Advantages Disadvantages Comments

TTL Fast with high drive Consumes more power than TTL has a high drive capability
capability. NMOS/HMOS, CMOS or compared to NMOS and IS used

HCMOS In interface devices.

NMOS/HMOS Fast, high density, InexpenSive, Restrictive voltage supply HMOS IS high-speed, high-density
consumes less power than TTL. requirements for portable version of NMOS

applications

CMOS Consumes very little power, More expensive than NMOS, CMOS densities are approaching
uses a wider voltage range than metal-gate versions are slow those of NMOS.
NMOS, SI-gate versions are as
fast as NMOS.

HCMOS Fast, dense, Inexpensive, Consumes more power than Currently available In 74HCXX
low-power CMOS but less than NMOS. series of CMOS interface logic.

Combines NMOS and CMOS
devices to get the best of both
processes.

The following two paragraphs provide a design criteria discussion that should be con·
sidered in order to use CMOS effectively and reliably. These discussions include: (1) fac·
tors that contribute to CMOS power consumption and how the effects of these factors
can be reduced, and (2) the phenomenon of CMOS latch-up and how it can be avoided.

5.5.1 Power Consumption

The two factors which greatly affect CMOS power consumption are supply voltage and
operating frequency. Reducing the supply voltage JVDD) proportionally reduces power
consumption since the EI product is lower. A "side effect" of lowering the supply voltage
is a reduction in the maximum operating frequency of the device. This is the result of
reduced internal drive caused by lowered VDD.

The power consumption of a CMOS device is primarily affected by capacitive loading
rather than resistive loading as for HMOS or NMOS. Each CMOS cell is basically com­
posed of two complementary transistors (a P channel and an N channel), and, in the
steady state, only one transistor is turned on. The active P-channel transistor sources
current when the output is a logic high, and presents a high impedance when the output
is a logic low. Thus, the overall result is extremely low power consumption because there
is no power loss through the active P-channel transistor. Since only one transistor is
turned on during the steady state, power consumption is determined by leakage
currents.

During a transition, both transistors pass through the active regions of their operating
characteristics. The actual time spent simultaneously in these active regions directly
affects the power consumption. The higher the operating frequency, the more time is
spent in these simultaneous active regions, thus, higher power consumpt'~on. By reduc­
ing the number of transitions within the CMOS device, power consumption can be
reduced. Also, since power consumption depends upon the time spent in tranSition, the
rise and fall times of the signals should be as fast as possible. This can be accomplished
by minimizing capacitive loading. It is important to note that although slower operating
frequencies have longer rise and fall times, the effects of this additional time are general­
ly negligible when compared to effects of reducing operating frequency.

104

5.5.2 CMOS Latch·Up

Due to the required layout of CMOS devices, a virtual semiconductor controlled rectifier
(SeR) may be formed when an input exceeds the supply voltage. Tho SeR that is formed
by this high input causes the device to become "latched" in a mode that may result in ex­
cessive current drain and eventual destruction of the device. Although the M146805
CMOS Family is implemented with input protection diodes, care should be exercised to
ensure that the maximum input voltage specification is not exceeded. Some systems
may require that the CMOS circuitry be isolated from voltage tranSients; others may re­
quire no additional circuitry.

5.6 32·kHz OSCILLATOR

The M146805 CMOS Family can operate at frequencies down to dc; however, the on-chip
oscillator cannot be used with series type crystals. Because low frequency crystals are
series type, additional circuitry is necessary. To generate this clock input, an external
oscillator similar to that shown in Figure 5-8 is required. The MC14069 CMOS hex inverter
was chosen for this circuit because of its low power consumption, and its ability to
operate in the linear region with reasonable stability. Only two resistors are required for
the oscillator: bias resistor R1 ensures linear operation and R2 provides current limiting
protection for the crystal. Two load capacitors (C1 and C2) ensure proper loading plus
correct start-up frequency. Variable capacitor C1 also allows limited tuning of the output
frequency.

Y1

C1 32768 kHz XTAL

0
=

U1a

R1 22 M

C2

R2 ~
330 k

MC14069

NOTE Connect unused
Inputs on the
MC14069 to VSS

Figure 5·8. 32.768 kHz Square Wave Oscillator Schematic Diagram

The 32-kHz oscillator described above functions properly and exhibits relatively good fre­
quency stability over ambient temperature ranges. However, there is a possibility of
minor frequency variations resulting from voltage fluctuation. The 32 kHz oscillator cir­
cuit, shown in Figure 5-8, will react only slightly to a decrease in VDD from 5 V down to 3.9
V. The actual change in frequency over this 1.1 V range would be about 0.1 Hz and could
result in an error of about 7.9 seconds per month.

With R2 as a 330 k resistor, the oscillator is very sensitive to the values of capacitors C1
and C2, and at times the R2 value must be chosen to match the crystal. With R2 removed
or decreased in value to 2 k, the oscillator is less sensitive to C1 and C2; however, it is
considerably more prone to frequency changes resulting from voltage variations. For
example, with R2 at a value of 2 k, a 1.1 volt change in VDD could result in a 1.2 Hz fre­
quency change. This amounts to an error of 87 seconds in a month.

105

In many cases, either of the above discussed errors (7.9 or 87 seconds) is not acceptable.
In these cases, there are two suggestions which might be helpful. The first, and possibly
the easiest to implement, is to keep the battery backup voltage equal to VOO. This would
require a slightly higher power consumption from the backup battery but the frequency
drift would be lessened or eliminated. A second method would be to use a voltage and
temperature compensated oscillator to provide a stable 32.768 kHz source. The latter
method is more complex and requires more power; however, in systems where accurate
time is a requirement, a simple oscillator is not adequate. Higher frequency crystals
exhibit similar voltage-frequency drift characteristics even when attached directly to an
M146805 CMOS Family device.

(Note 1)

5V

I

-L

....r::O
5V

5V TIL311

MC6805R2()1 --
3579545

MHz

0
I27PF

I 14

5

I
--

7

D C B A
5V 6 5 - - 12 13 2 3

XTAL EXTAL -
4 32

VCC PB7

10 k 1 VSS PB6
31

PB5
30

3_
INT 29

8 PB4
TIMER 28

9 PB3
PCO 27

PB2 - 10 26
PCl PBl

11 PC2 25
PBO

12 24
PC3 PDO/ANO

7
PDl / ANl

23
NUM

22
2 __ PD2/ AN2

RESET 21
PD3/AN3

1 JLF 19

I
-

PD5IVRH

10 k
(lO-Turn)

20
PD4IVRLt--...... --...... ----. VRL

PA31-3_6 ____ -{

5

TIL 311 5V

--

I I --

I I
7

--
D C B A

12 13 2 3

See Note 3

NOTES
1 Route Vee and VSS to

power supply separately from
other components

2 Analog channel AN3 IS

selected by PAO-PA2 con­
nection

3 VRH and VRL should be fur­
nished by a separate power
source (not Vee) The sum
of VRH and VRL must not
exceed Vee

Figure 5·9. Stand·Alone AID Converter Schematic Diagram

106

5.7 STAND·ALONE ANALOG·TO·DIGITAL CONVERTER (AN·869)

The stand-alone AID converter shown in Figure 5-9 is configured using an MC6805R2()1
MCU. The circuit uses three SPOT switches to control the multiplexer selection (a 1-of-8
on-chip select multiplexer which is controlled via the AID control register from inputs at
PAO-PA2). Table 5-2 lists the inputs to the AID control register which select either the
ANO-AN3 inputs or an internal calibration level. The eight bit result of the AID conversion
is output on port B (PBO-PB7). The output on PB3 may be used to indicate that the port B
data is valid.

Table 5-2. AID Control Inputs For Selecting ANO-AN3 and Calibration Channels

Channel PC2 PCl pca
ANa a a a

AN' a a ,
AN2 a 1 a

AN3 a 1 ,
VRH (Calibration) , a a

VRL (Calibration) 1 a ,
VRH/4 (Calibration) 1 1 a
VRH/2 (Calibration) , , ,

As shown in Figure 5-9, the output of the 10 k 10-turn potentiometer can be used to select
a voltage value between VRH and VRL. An input voltage to the selected ANO-AN3 input,
which is equal to VRH, converts to FF (full scale) on the LCD. Conversely an input which
is equal to VRL converts to 00 on the LCD. Input levels between VRH and VRL provide cor­
responding indications on the LCD. Figure 5-10 contains the program listing for the AID
conversion routine which is used in the MC6805R2()1.

5.8 FREQUENCY SYNTHESIZER USING THE MC6805T2L 1 (AN-871)

The MC6805T2L 1 Microcomputer Unit (MCU) contains seven distinct program modules,
one of which is referred to as the frequency synthesis program (synthesizer [PLL05]
mode). The synthesizer mode allows the MC6805T2L 1 to function in a phase-locked loop
(PLL), which controls the output frequency of a variable frequency oscillator (VFO). The
program is written in a way that it can be used to synthesize a complete set of TV chan­
nels for either Europe, Japan, or USA. The firmware program is located in masked ROM,
and automatically takes into account differences in intermediate frequencies, first and
last channel numbers, channel spacing,.etc., as they exist between the systems used in
those countries/lands. The desired mode option configuration is entered by selecting the
PLL-() country code shown in Table 5-3.

Figure 5-11 provides a schematic diagram of the MC6805T2L 1 used in a synthesizer mode
configuration (USA selected). All peripheral devices are shown, except for the VCO
(tuner) and prescaler (if used).

107

0000
0001
0002
0003
0004
0008
0009
000A
0"0E
"00F
004"
0080
07C0
1"00

0007
0007
0006

0DCS 17 00
0DC7 A6 08
0DC9 B7 04
0DCB A6 FF
0DCD B7 05
0DCF B6 00
0001 A4 07
0003 B7 0E
0005 0F 0E FD

0008
0008 B6 00
0DDA A4 07
0DDC BE 0F
0DDE B7 0E
0DE0 17 00
0DE2 BF 01
0DE4 16 00
0DE6 20 F0

*
*
*
*
*
*
*
*
*
*
*
*
*

SAD --- STAND ALONE ANALOG TO DIGITAL CONVERTER

IN THIS MODE, THE 680SR2 OPERATES AS AN 8 CHANNEL
MULTIPLEXED ANALOG TO DIGITAL CONVERTER. INPUT TO THE
CONVERTER IS VIA THREE CHANNEL SELECT LINES ON PORT A.
THE DESIRED CHANNEL IS TRANSFERRED TO THE A TO 0 CONTROL
REGISTER AND THE PROGRAM WAITS FOR A CONVERSION TO
COMPLETE. AFTER COMPLETION, THE RESULT REGISTER IS
TRANSFERRED TO PORT B. AN EXTERNAL END OF CONVERSION BIT
IS ALSO PROVIDED TO SYNCHRONIZE THE RESULTS ON PORT B.
THIS BIT (PORT A BIT 3) IS LOW WHEN THE OUTPUT OF PORT B
IS CHANGING AND HIGH OTHERWISE.
I/O REGISTER ADDRESSES

A PORTA EQU
A PORTB EQU
A PORTC EQU
A PORTO EQU
A DDR EQU
A TIMER EQU
A TCR EQU
A MISC EQU
A ADCSR EQU
A RESULT EQU
A RAM EQU
A ZROM EQU
A ROM EQU
A MEMSIZ EQU

$000
$001
$002
$003
4
$008
$009
$00A
$00E
$00F
$"40
$080
$7C"
$1000

I/O PORT 0
I/O PORT 1
I/O PORT 2
I/O PORT 3 (ALSO A/D INPUT STUFF)
DATA DIRECTION REGISTER OFFSET
8-BIT TIMER REGISTER
TIMER CONTROL REGISTER
MISCELLANEOUS REGISTER (INT2 FLAGS)
A TO 0 CONTROL/STATUS REGISTER
A TO D RESULT REGISTER
START OF ON-CHIP RAM AREA
START OF PAGE ZERO ROM
START OF MAIN ROM AREA
MEMORY ADDRESS SPACE SIZE

BITS IN VARIOUS CONTROL REGISTERS
*

A EOC EQU
A INT2F EQU
A INT2E EQU

*
A SAD
A
A
A
A
A
A
A

0005
A SADLP
A
A
A
A
A
A
A

0008

BCLR
LOA
STA
LOA
STA
LOA
AND
STA
BRCLR
EQU
LOA
AND
LOX
STA
BCLR
STX
BSET
BRA

7
7
6

END OF CONVERSION BIT IN ADCSR
INT2 FLAG BIT IN MISC
INT2 ENABLE BIT IN MISC

3,PORTA INITIALIZE OUTPUT INVALID
#%100" MAKE BIT 3 OUTPUT, 2-0 INPUTS
PORTA+DDR
#$FF AND MAKE B ALL OUTPUTS
PORTB+DDR
PORTA PICKUP CHANNEL
#%111 CLEAR GARBAGE
ADCSR START CONVERSION
EOC,ADCSR,* WAIT FOR IT TO FINISH
*
PORTA
n111
RESULT
ADCSR
3, PORTA
PORTB
3,PORTA
SADLP

GET NEXT CHANNEL
MASK GARBAGE
PICKUP LATEST RESULT
START NEXT CONVERSION
DATA ABOUT TO CHANGE
DATA CHANGING
DATA NOW VALID

Figure 5·10. AID Conversion Routine Software

Table 5·3. PLL Country/Land Selection Configuration

MC6805T2L 1 Pins Mode
PCO PC1 PC2 PBO PB1 Option
X 1 1 1 0 PLL-Europe

X 1 1 0 1 PLL-USA

X 1 1 1 1 PLL-Japan

108

T 01 From VCO Tuner

, "
/

+5V
...,

~
10k

11 16
I470nF

fin ~28
RESET MC6805T2L1

PA7
27 A7

28 A6
1 PA6

~ VSS
PA5

25 A5

+5V - 2 PA4 24 A4
TNT (Note 21--""3

PA3 23 A3
+5V- VCC

4 PA2 22 A2
EXTAL

Al

I1
20PFi. 40 PAl 21

D MHZ PAO 20 AO
20pF I 5

t/> Camp 7 XTAL

....&.

o +5V
<0 (Note

NOT
1 See
2 If

6

-=- NUM

rr. Data PCOITlmer PB6 18

PB7 19 CL
PCl

iH PB5 17 CS
PC2

PBO PB3 ~ J. ~ ~ PBl PB2

able 5-3 for Pll connection Shown here for PLL -USA
late control receiver IS used, Pin 2 of MC6805T2L1 IS con-
d as shown In detail A,

To P,n2

Detail A
MC6805T2

'-,,{= 8

TBA2110 15k Lines _

~. - +12V -==

./

./

./ -AAA

./
UAA2010

./ 3
+30V-

Filter 16

-± f+5V 15

1O~
-= -= 14

13

12

11
+5V-

+5V +5V

lOkf

118

MCl4499 10k
13

12

.g

:g
"0
>
'"
~

II
II

1

2
t---

9

6

7

5

4 Data
r-

5
t--
4

3

2

1

17

16

15

14

11

10

8

7

4.4 Keypad ,
: 27k ~ • 27k : 27k : 27k

LL - = SRCH STOP FTPL FTMIN I "0 "0

:::> ~ ~
15 yo' 14 ycl 13 yo' yo' m m

12
A7 .P .? ;0

CLR CH/FR

11 yd lOr 9 yo' 8 ~~cI
A6 J' ;0)

7 ycl 6 yd' 5 yo' yo +5V 4
A5 P jJ P)

lOOk •

3 yd' 2 yd 1 y~ yd' 0

'''H ±'">
A4 .? ~ .P

A3 A2 Al AO -= -- - +5V
Channel , Freq +5V ,

~ -~ -

" ",-"'-
10k

> 200 >200

10k ~ BC33B
~+5V

220 ohms
Each -= -=

,,-J'-.. HDSP-3533-C
a

b
.A 100 MHz 10 MHz MHz kHz Freq Moc

c Blank Blank Tens Units Channel ~

d [BJ[BJ[BJ[BJ e

f Llllllll 9

dp

I ~ ~~~ -(
Figure 5·1'1. Synthesizer Mode Configuration Schematic Diagram

'e
ode

By using a keypad and display, any channel from 00-99 may be selected and displayed.
The program calculates the frequency code (divide ratio) and stores it in the PLL registers
(Hi and Lo). The contents of the PLL register are then loaded into a variable divider where
it controls the fin division. The variable divider output frequency is then compared to a
reference divider frequency and the result of this comparison (cP COMP) is used to control
the synthesizer frequency. Actually, the VCO frequency is divided in a prescaler in order
to develop the fin input at pin 11. A complete list of all synthesized channels is shown in
Tables 5-4, 5-5, and 5-6.

In the synthesizer mode of operation configuration shown in Figure 5-11, the
MC6805T2L 1 program provides the following functions in conjunction with the 4 x 4
keypad.

1. channel select (keys 0-9)
2. channel or frequency display (CH/FR, key 10)
3. clear after one digit selected (CLEAR, key 11)
4. decrement frequency in 62.5 kHz steps (FTMIN, key 12)
5. increment frequency in 62.5 kHz steps (FTPL, key 13)
6. stop search (STOP, key 14)
7. channel search incrementing by one repeatedly (SRCH, key 15)

NOTE
In the description which follows, a European system is assumed. For USA and
Japan differences refer to Tables 5-5 and 5-6.

At reset, the system of Figure 5-11 synthesizes and displays channel number 00 (lowest
channel) and the channel indicator lights. Depressing the CH/FR key (10) causes the cor­
responding channel frequency (331.1) in MHz to appear on the 4-digit display, and the fre­
quency indicator lights. The value shown can now be incremented in 62.5 kHz steps by
depressing the FTMIN key (12). Only hundreds of kHz are displayed (331.125 displays as
331.1); therefore, the display might not change with each 62.5 kHz step.

A channel search operation can be activated by depressing the SRCH key (15). Depress­
ing the SRCH key starts the search at the current channel and increments the channel
every 350 milliseconds. When channel 99 (USA 83, Japan 62) is reached, the search cycle
is repeated from channel 00 (USA 02, Japan 01). While the channel number is advanced,
the corresponding frequency is also synthesized successively. Since the CH/FR key re­
mains active, either the channel or resultant frequency is visible. To stop the search, it is
only necessary to depress the STOP key (14).

For the USA and Japan PLL configurations, all channel numbers are not used; therefore,
entering a non-existant channel (for example, 98 or 00) is interpreted by the program as a
reset. After reset, the USA configuration display is 02 and the Japan configuration
display is 01. A channel search operation is only made on existing channels.

The CLR key (11) allows the first selected digit (tens) of the channel number to be cleared
in case of error during entry.

110

Table 5·4. Channel Characteristics for Europe

Channel Band Divide Ratio Osc. Frequency
No. I III UHF Hex Decimal MHz

00 0 1 0 1402 5298 331.125
01 1 0 0 0552 1362 85.125
02 1 0 0 572 1394 87125
03 1 0 0 5E2 1506 94.125
04 1 0 0 652 1618 101 125
05 0 1 0 062 3426 214125

06 0 1 0 002 3538 221 125
07 0 1 0 E42 3650 228125
08 0 1 0 EB2 3762 235125
09 0 1 0 F22 3874 242.125
10 0 1 0 F92 3986 249.125

11 0 1 0 1002 4098 256125
12 0 1 0 1072 4210 263.125
13 1 0 0 5CA 1482 92.625
14 1 0 0 652 1618 101 125
15 1 0 0 792 1938 121.125

16 0 1 0 062 3426 214125
17 0 1 0 OEA 3554 222.125
18 0 1 0 E72 3698 231 125
19 0 1 0 F02 3842 240125
20 0 1 0 F92 3986 249.125

21 0 0 1 lFE2 8162 510125
22 0 0 1 2062 8290 518.125
23 0 0 1 20E2 8418 526125
24 0 0 1 2162 8546 534.125
25 0 0 1 21E2 8674 542 125

26 0 0 1 2262 8802 550 125
27 0 0 1 22E2 8930 558 125
28 0 0 1 2362 9058 566.125
29 0 0 1 23E2 9186 574 125
30 0 0 1 2462 9314 582.125

31 0 0 1 24E2 9442 590 125
32 0 0 1 2562 9570 598125
33 0 0 1 25E2 9698 606 125
34 0 0 1 2662 9826 614.125
35 0 0 1 26E2 9954 622 125

36 0 0 1 2762 10082 630125
37 0 0 1 27E2 10210 638.125
38 0 0 1 2862 10338 646125
39 0 0 1 28E2 10466 654 125
40 0 0 1 2962 10594 662.125
41 0 0 1 29E2 10722 670125
42 0 0 1 2A62 10850 678125
43 0 0 1 2AE2 10978 686125
44 0 0 1 2BC2 11106 694 125
45 0 0 1 2BE2 11234 702125

46 0 0 1 2C62 11362 710125
47 0 0 1 2CE2 11490 718125
48 0 0 1 2062 11618 726125
49 0 0 1 20E2 11746 734 125
50 0 0 1 2E62 11874 742 125

111

Table 5·4. Channel Characteristics for Europe (Continued)

Channel Band Divide Ratio Osc. Frequency

No. I III UHF Hex Decimal MHz

51 0 0 1 2EE2 12002 750 125
52 0 0 1 2F62 12130 758 125

53 0 0 1 2FE2 12258 766125

54 0 0 1 3062 13386 774125

55 0 0 1 30E2 12514 782125

56 0 0 1 3162 12642 790125

57 0 0 1 31E2 12770 798125

58 0 0 1 3262 12898 806125
59 0 0 1 32E2 13026 814125
60 0 0 1 3362 13154 822 125
61 0 0 1 33E2 13282 830125
62 0 0 1 3462 13410 838 125
63 0 0 1 34E2 13538 846 125
64 0 0 1 3562 13666 854 125
65 0 0 1 35E2 13794 862 125
66 0 0 1 3662 13922 870125
67 0 0 1 36E2 14050 878 125

68 0 0 1 3762 14178 886125
69 0 0 1 37E2 14306 894 125
70 1 0 0 602 1538 96125

71 1 0 0 672 1650 103125

72 1 0 0 7D2 2002 125125
73 1 0 0 862 2146 134 125
74 1 0 0 8D2 2258 141 125
75 0 1 0 B12 2834 177 125

76 0 1 0 F82 3970 248125

77 0 1 0 FF2 4082 255125
78 1 0 0 6C2 1730 108125
79 1 0 0 732 1842 115125

80 1 0 0 7A2 1954 122125

81 1 0 0 902 2306 144 125
82 0 1 0 972 2418 151 125

83 0 1 0 9E2 2530 158125
84 0 1 0 A52 2642 165125
85 0 1 0 AC2 2754 172 125

86 0 1 0 B32 2866 179125
87 0 1 0 BA2 2978 186125
88 0 1 0 C12 3090 193125
89 0 1 0 C82 3202 200125
90 0 1 0 CF2 3314 207 125

91 0 1 0 10E2 4322 270125
92 0 1 0 1152 4434 277 125
93 0 1 0 l1C2 4546 284 125
94 0 1 0 1232 4658 291 125
95 0 1 0 12A2 4770 298125

96 0 1 0 1312 4882 305125
97 0 1 0 1382 4994 312125
98 0 1 0 13F2 5106 319125
99 0 1 0 1462 5218 326125

112

Table 5·5. Channel Characteristics for USA

Channel Band Divide Ratio Osc. Frequency
No. I III UHF Hex Decimal MHz

02 1 a a 650 1616 101.000
03 1 a a 6BO 1712 107000
04 1 a a 710 1808 113.000
05 1 a a 7BO 1968 123.000

06 1 a a 810 2064 129.000
07 a 1 a 000 3536 221 000
08 a 1 a E30 3632 227000
09 a 1 a E90 3728 233.000
10 a 1 a EFO 3824 239000

11 a 1 a F50 3920 245.000
12 a 1 a FBO 4016 251 000
13 a 1 a 1010 4112 257000
14 a a 1 2050 8272 517.000
15 a a 1 20BO 8368 523000

16 a a 1 2110 8464 529000
17 a a 1 2170 8560 535000
18 a a 1 2100 8656 541 000
19 a a 1 2230 8752 547.000
20 a a 1 2290 8848 553000

21 a a 1 22FO 8944 559000
22 a a 1 2350 9040 565000
23 a a 1 23BO 9136 571.000
24 a a 1 2410 9232 577000
25 a a 1 2470 9328 583.000

26 a a 1 2400 9424 589000
27 a a 1 2530 9520 595.000
28 a a 1 2590 9616 601.000
29 a a 1 25FO 9712 607.000
30 a a 1 2650 9808 613000

31 a a 1 26BO 9904 619000
32 a a 1 2710 10000 625 000
33 a a 1 2770 10096 631 000
34 a 0 1 2700 10192 637.000
35 a a 1 2830 10288 643000

36 0 0 1 2890 10384 649.000
37 0 0 1 28FO 10480 655000
38 0 0 1 2950 10576 661 000
39 a a 1 29BO 10672 667.000
40 0 0 1 2Al0 10768 673000

41 0 0 1 2A70 10864 679000
42 a a 1 2AOO 10960 685 000
43 0 0 1 2B30 11056 691 000
44 a 0 1 2B90 11152 697000
45 a a 1 2BFO 11248 703000

46 a 0 1 2C50 11344 709000
47 a 0 1 2CBO 11440 715000
48 a 0 1 2010 11536 721.000
49 a a 1 2070 11632 727000
50 a 0 1 20DO 11728 733.000

51 0 0 1 2E30 11824 739000
52 a 0 1 2E90 11920 745.000
53 0 0 1 2EFO 12016 751 000
54 0 0 1 2F50 12112 757.000
55 a 0 1 2FBO 12208 763000

56 0 0 1 3010 12304 769000
57 0 0 1 3070 12400 775000
58 a 0 1 30DO 12496 781.000
59 a 0 1 3130 12592 787000
60 0 0 1 3190 12688 793000

113

Table 5·5. Channel Characteristics for USA (Continued)

Channel Band Divide Ratio Osc. Frequency
No. I III UHF Hex. Decimal MHz
61 a a 1 31FO 12784 799 000
62 a a 1 3250 12880 805 000
63 a a 1 3280 12976 811000
64 a a 1 3310 13072 817000
65 a a 1 3370 13168 823000

66 a a 1 33DO 13264 829000
67 a a 1 3430 13360 835 000
68 a a 1 3490 13456 841 000
69 a a 1 34FO 13552 847 000
70 a a 1 3550 13648 853 000

71 a a 1 3580 13744 859 000
72 a a 1 3610 13840 865 000
73 a a 1 3670 13936 871 000
74 a a 1 36DO 14032 877 000
75 a a 1 3730 14128 883000

76 a a 1 3790 14224 889 000
77 a a 1 37FO 14320 895 000
78 a a 1 3850 14416 901 000
79 a a 1 3880 14512 907 000
80 a a 1 3910 14608 913 000

81 a a 1 3970 14704 919000
82 a a 1 39DO 14800 925 000
83 a 0 1 3A30 14896 931000

114

Table 5·6. Channel Characteristics for Japan

Channel Band Divide Ratio Osc. Frequency
No. I III UHF Hex. Decimal MHz

01 1 0 0 960 2400 150000
02 1 0 0 9CO 2496 156000
03 1 0 0 A20 2592 162000
04 0 1 0 E60 3680 230000
05 0 1 0 ECO 3776 236000

06 0 1 0 F20 3872 242000
07 0 1 0 F80 3968 248 000
08 0 1 0 FCO 4032 252000
09 0 1 0 1020 4128 258.000
10 0 1 0 1080 4224 264 000

11 0 1 0 10EO 4320 270000
12 0 1 0 1140 4416 276000
13 0 0 1 2120 8480 530000
14 0 0 1 2180 8576 536000
15 0 0 1 21EO 8672 542000

16 0 0 1 2240 8768 548 000
17 0 0 1 22AO 8864 554 000
18 0 0 1 2300 8960 560000
19 0 0 1 2360 9056 566000
20 0 0 1 23CO 9152 572 000

21 0 0 1 2420 9248 578000
22 0 0 1 2480 9344 584 000
23 0 0 1 24EO 9440 590000
24 0 0 1 2540 9536 598000
25 0 0 1 25AO 9632 602000

26 0 0 1 2600 9728 608000
27 0 0 1 2660 9824 614000
28 0 0 1 26CO 9920 620000
29 0 0 1 2720 10016 626000
30 0 0 1 2780 10112 632000

31 0 0 1 27EO 10208 638000
32 0 0 1 2840 10304 644.000
33 0 0 1 28AO 10400 650000
34 0 0 1 2900 10496 656000
35 0 0 1 2960 10592 662000

36 0 0 1 29CO 10688 668000
37 0 0 1 2A20 10784 674000
38 0 0 1 2A80 10880 680000
39 0 0 1 2AEO 10976 686.000
40 0 0 1 2B40 11072 692000

41 0 0 1 2BAO 11168 698000
42 0 0 1 2COO 11264 704 000
43 0 0 1 2C60 11360 710000
44 0 0 1 2CCO 11456 716000
45 0 0 1 2D20 11552 722000

46 0 0 1 2D80 11648 728.000
47 0 0 1 2DEO 11744 734 000
48 0 0 1 2E40 11840 740000
49 0 0 1 2EAO 11936 746000
50 0 0 1 2FOO 12032 752000

115

Table 5·6. Channel Characteristics for Japan (Continued)

Channel Band Divide Ratio Osc. Frequency
No. I III UHF Hex. Decimal MHz

51 0 0 1 2F60 12128 758000
52 0 0 1 2FCO 12224 764 000
53 0 0 1 3020 12320 770.000
54 0 0 1 3080 12416 776000
55 0 0 1 30EO 12512 782000

56 0 0 1 3140 12608 788000
57 0 0 1 31AO 12704 794.000
58 0 0 1 3200 12800 800000
59 0 0 1 3260 12896 806.000
60 0 0 1 32CO 12992 812000
61 0 0 1 3320 13088 818.000
62 0 0 1 3380 13184 824.000

A flowchart showing the main synthesizer (PLL05) mode routine is shown in Figure 5·12
and selection of the various programs in the MC6805T2L1 is shown in Figure 5·13. Note
that in Figure 5·13 the reset routine will exit to one of the eight modes depending upon
the configuration of PBO, PB1, PCO, PC1, and PC2 per Table 1.

5.9 KEYLESS ENTRY SYSTEM USING THE MC146805F2()1 (AN·863)

5.9.1 Introd~tion

The keyless entry system (also referred to as a digital lock) is a dedicated
MC146805F2()1 Microcomputer Unit (MCU), executing a program, that can control a
larger configuration to form a security system. Figure 5·14 contains a schematic diagram
of the digital lock complete with keypad and liquid crystal display.

NOTE
The keyless entry system using the MC146805F2()1 8·Bit Microcomputer Unit is
not intended to be used by itself in a secure entry system. It is intended to be
used only as an aid in better understanding the MC146805F2 MCU and how it
can fit into a secure entry system.

The digital lock accepts inputs from the 3 x 4 keypad, and, if the inputs are in the cor·
rently coded sequence, generates an output which indicates the lock is open. The digital
lock MCU has a feature which protects against "trial·and·error" attempts to gain entry. If
two incorrect code combinations are entered, an alarm output is generated (PB2 goes
high). The alarm condition remains active until the combination is entered or power is
disconnected.

The user interfaces with the digital lock MCU through a 3 x 4 keypad and a "wake·up"
pushbutton. This allows multiple users to gain access to a secure area without the
necessity of carrying a key. The LCD displays a dash for each keypad entry. This ensures
that the user knows how many of the required keypad entries have been made. Once the
correct combination has been entered via the keypad, the LCD spells out the word OPEN.
From this time, the user has eight seconds to open the door or other locked device.

116

Figure 5·12. Main Synthesizer (PLL05) Routine Flowchart

117

Go To
SLAVE

Configure
Port B

(5 Out, 3 In)

Print
Start Up
Message

Go To
MONITOR

Stop Timer
TCR Bit

4 Equal 1

Set Up
Table

For Europe

Go to
PLL05

y

y

No

Figure 5·13. Reset Routine Flowchart

118

Go To
MORSE

Initialize &
Start

MIND05

Configure
Port B As

5 Out, 3 In

+5V

28 14

VDD VSS PAD 6

PAl 7

PA2
8

PA3 9
3579545 PA4 10

MHz
PA5

11
DSCl

PA6
12

PA7 13 NC

10M

'----+_-+---'15
OSC2

MC146805F2L 1

+5V

+5V

P/O
MC14011B

+5V

3 NUM

+5V

AD

Al

A2

A3

A4

A5

A6

Slave

~

8-Dlglt LCD IGE69D3R091

Master
/I

1k

1.

1k

1k

I B6 A6 B5 A5 B4 A4 B3 A3 B2 A2 B 1 A 1 \

8Pl

BP2

3 4 1 2 rfF;P~12~.=3==4=5==6======~~~~~~
FSI 16 21 FSD

20 DOUT

OS

Data

Alarm
IndicatIOn
Logical 1

19

MC145000

OSC

DIN

Figure 5·14. Digital Lock System Schematic Diagram

5.9.2 Initialization

1 2 3

4 5 6

7 8 9

* 0 I

Keypad
Panel

When power is initially applied or if power is lost and then reapplied, the a-digit combina­
tion code is lost in RAM. It now becomes necessary to enter a new a-digit combination.
This can be done by performing the procedure outlined in the Changing The Coded
Sequence paragraph.

5.9.3 Operation

Two operating modes are described below. One is the normal user procedure to open the
digital lock and the other describes a method to change the coded sequence
combination.

119

5.9.3.1 OPENING THE DIGITAL LOCK. To open the digital lock proceed as follows:
1. Press the "wake-up" pushbutton and check that the LCD is clear.
2. Use the keypad to enter the 8-digit combination code. Note that each time a key­

pad switch is depressed a dash will appear, on the LCD, to indicate that a digit
is entered. The total number of digits entered is equal to the total number of
dashes.

3. Once the correct 8-digit combination code is entered, the LCD displays the word
"OPEN". The open signal is then active for approximately eight seconds. If the
user fails to mechanically open the door (or other entry device) during the
8-second time period, the above procedure must be repeated to again gain entry.

NOTE
If an incorrect code is entered for the second time, the alarm signal becomes
active. The alarm will stay active until the correct code is entered, as described
above, or power is removed.

5.9.3.2 CHANGING THE CODED SEQUENCE. To change the digital lock coded sequence
(combination), proceed as follows:

1. Press the "wake-up" pushbutton and check that the LCD is clear.
2. Use the keypad to enter the 8-digit "change combination code" number 14680502.

Note that each time a keypad switch is depressed, a dash will appear, on the
LCD, to indicate that a digit is entered. Once all eight digits are entered, the
LCD goes blank.

3. Use the keypad to enter the new 8-digit combination code. As before, a dash
appears each time a keypad switch is depressed.

4. Once the eight new digits are entered, the word "VERIFY" appears on the LCD.
This is a prompt for the user to enter the same 8-digit combination code as in 3
above. If the second 8-digit entry is not exactly the same as the first, the word
"ERROR" is displayed on the LCD. In this case, the user must repeat the proce­
dure from 3 above.

NOTE
Changing the combination coded sequence does not open the lock. Once the
new code has been verified, the LCD goes blank. The lock can then be opened
as described above in the Opening The Digital Lock paragraph.

5.10 BICYCLE COMPUTER USING THE MC146805G2()1 (AN-858)

5.10.1 Introduction

In the configuration shown in Figure 5-15, the MC146805G2()1 is used as a bicycle com­
puter. Features provided by the bicycle computer include: (1) instantaneous speed, (2)
average speed, (3) resettable trip odometer, (4) resettable long distance odometer, (5)
cadence (pedal crank revolutions per minute), (6) selection of English or metric units, and
(7) calibration for wheel size.

120

C4 VOO lJ -1-20
~R3

1M n VOO=3-6V

VOO 0 R4
VOO MHI 10M IU'" VOO 001 SWllch

T C5 -= I'F

Rl R2 20 pF
1M • 1M -

......
N

.--
~ -~" C3 --

-""'001
01I Reed I'F I'F

SWI1ch MCI46805G2()1

ICI VOO
40

1 39
Wheellnpu1 ~ RESET ascI ~ ~

IRO OSC2 -== R7 3 37

~ NUM TIMER
~ r-nn~nnnnn rVFl PA7 P07 rlrl rlrlrlrl 5 PA6 P06 35

6 PA5 P05 34 X W Gl FI Al Bl L G2 F2 A2 B2 G3 F3 A3

7 PA4 P04 33 ~ DISplay

8 PA3 P03 32

W~8jj8jjR 9 PA2 P02 31 o K Fl Bl F2 B2 F3 B3
10 PAl POI 30

~ Gl i G2 1 G3
II PAO POO 29

12 PBO PCO 28 Cadence Inpu1

13 PBI PCI 27 Function SWI ~ '" 'DP' ~ DP3 ~ DP'" "
14 PB2 PC2 26 Se1 SW2 ~ D 0 01 J 0 02 J 0 I 03 j
15 PB3 PC3 25 -
16 PB4 PC4 24

BP Y K Bl B2 E I 01 C I B3 E2 02 C2 E3 03 C3 B3

~PB5 PC5 23 -== Y Y l J Y U U U If l J l J l J Y l ~ l J l J l ~ l,ll J L,I L,I
~PB6 PC6 22 I -

PC7~ I J
.[PB7 VSS 10 M R6

NC -:!:-20 ~VOO
10 M R5

Figure 5·15. Bicycle Computer Schematic Diagram-

a. Parts Location

b. Circuit Board Art
(Actual Size)

Figure 5·16. Bicycle Computer Circuit Board

5.10.2 Hardware Configuration

A schematic diagram for the bicycle computer is shown in Figure 5-15 and Figure 5-16
shows a parts layout diagram plus circuit board art. As shown on the schematic diagram,
the MC146805G2()1 and the liquid crystal display (LCD) are the only major components
required for the bicycle computer. All necessary drive signals for the LCD are contained
in firmware. Two pushbutton switches (51 and 52, function and set) are required to fur­
nish two momentary ground inputs, and two sensor inputs (one from the wheel and one

122

from the pedal crank) are required as an interrupt and to pulse certain counters. Each
sensor is a normally-open switch which is activated by a magnet mounted on the wheel
and pedal crank.

Figure 5-15 shows the layout of a PCB that may be used when assembling the bicycle
computer. The printed circuit board (PCB) is designed to fit in a Wonder-Lite case. The
Wonder-Lite is designed to mount on a bicycle and provide nighttime illumination.
Dimensions for this bord are 4.5" x 2.5" and could require some tailoring before fitting
into the mounting case. However, an equivalent size wire-wrap type board using the wire­
wrap connections and mounting sockets could be used with an equivalently sized case.

5.10.3 Bicycle Computer Function

When power is initially applied to the circuit or when the MC146805G2()1 is reset, the
bicycle computer program is selected and the bicycle computer displays the current
instantaneous speed on the display (Function 1). Each time the "function" button (51) is
pushed, the bicycle computer will step to the next function. The functions are:

1. instantaneous speed
2. average speed
3. resettable trip odometer
4. resettable long distance odometer
5. cadence
6. English or metric units selection
7. wheel size calibration

Each time the function switch is pushed, the program steps to the next function;
however, after function 7 it returns to function 1. Some functions may require resetting.
For example, at the beginning of each bicycle trip it may be desirable to reset the trip
odometer to zero for miles or kilometers. The "set" pushbutton (52) is provided to per­
form this task. If the set button is pushed while in function 3, the trip odometer is reset to
zero. However, it is not desirable to have the "set" button enabled at all times. For
example, if the "set" button were accidentally pushed during a trip, the trip odometer
would be reset to zero. Therefore, the "set" button is only enabled for the first five
seconds after a new function is selected. Pushing the "set" button after five seconds will
not affect the function. During the five seconds that the "set" button is enabled, the
bicycle computer displays a fixed function identification display. For example, the trip
odometer will display" cdc " during this function 3 time. After five seconds the
selected function value is displayed and remains displayed until the "function" button is
again pushed, stepping to the next function. Complete descriptions for these functions
are provided in Motorola Application Note AN-858.

Wonder-Lite is a trademark of Wonder Corp. of America

123

5.11 AVAILABLE APPLICATION NOTES

Several application notes for the M6805 HMOS/M146805 CMOS Family are (or will be)
available as of the printing of this users manual. A list of these application notes is pro­
vided in Table 5-7.

Table 5·7. List of Available Application Notes

AN# Title

823 CBUG05 Monitor Program for MC146805E2 Microprocessor Unit

852 Monitor for the MC146805G2L 1 Microcomputer

853 M146805 CMOS Family Emulators

855 Versatile Thermostat uSing CMOS MC146805E2 MPU

857 MC68705P3/R3/U3 EPROM Microcomputer Programming Module

858 Bicycle Computer using the MC146805G2L 1 Microcomputer

863 Keyless Entry System using an MC146805F2()1 8-Bit Microcomputer Unit

869 Application Summary for the MC6805R2()1 Single-Chip Microcomputer With AID Converter

871 AN Applications Summary for the MC6805T2L 1 Single-Chip Microcomputer With Phase-Lock-Loop

883 A Radio Set Phase-Lock-Loop (PLU uSing an MC6805T2()2 Single-Chip Microcomputer

In addition, the TWX, TELEX, DITEL, and telephone numbers plus the mailing address of
the Literature Distribution Center (where the application notes are available) are listed
below.

The Literature Distribution Center, located in Phoenix, Arizona, offers a method by which
a sales office or customer can order the application notes listed in Table 5-7. A listing of
various methods to communicate with the Literature Distribution Center is shown below.

Phone:
TWX:
DITEL:
Mail Drop:
Address:

Literature Distribution Center
(MOT SEM I PHX)
(Motorola Facilities)
Broadway Bldg. (BB100)
Motorola Semiconductors Products, Inc.
Literature Distribution Center
P. O. Box 20924
Phoenix, Az 85036

124

602-994-6561
901-951-1334 (LDC)

234-6561

6.1 INTRODUCTION

6.1.1 General

CHAPTER 6
EPROM PROGRAMMING

The M6805 HMOS/M146805 CMOS Family of MCUs uses either on-chip masked ROM or
on-chip EPROMs for program storage. Erasable Programmable Read Only Memory
(EPROM) devices allow programs to be written into memory and, if desired, later erased
with ultraviolet light and revised. These features give the user an alterable, non-volatile
memory. Each EPROM in this family includes a bootstrap routine in masked ROM, which
makes programming relatively easy. Currently, four EPROM devices exist, three of which
are implemented in the M6805 HMOS Family with the fourth being implemented in the
M146805 CMOS Family. * These devices may be used to emulate various masked ROM
versions of other members of the family. The EPROM devices have more capabilities
than do the masked ROM versions, thus allowing some EPROM devices to emulate more
than one masked ROM version.

Each EPROM includes a Mask Option Register (MOR) which is implemented in EPROM.
The MOR is located at address $784 in the MC68705P3, $F38 in the MC68705R3, $F38 in
the MC68705U3, and $1 FF5 in the MC1468705G2. The M6805 HMOS Family MOR is used
to determine which of the timer options are to be used and to select the clock oscillator
circuit (crystal or RC); whereas, the M146805 CMOS Family MOR is used to select the
clock osci lIator circuit, divide ratio of the clock oscillator, and type of interrupt trigger in­
put. The MOR, like all EPROM locations, contains all zeros after erasing. Table 6-1 gives a
description of the function of each MOR bit used in the M6805 HMOS Family and Table
6-2 provides equivalent MOR information for the MC1468705G2.

6.1.2 M6805 HMOS Family Bootstrap

Each member of the M6805 HMOS Family of EPROM devices contains a bootstrap pro­
gram which is implemented in on-chip masked ROM. The bootstrap program clocks an
external counter which is used to generate an address. The address is then used to read
a location in an external memory. The data from the external memory is presented to the
EPROM via an 1/0 port. After data from that location is loaded into the EPROM, the

*At the initial printing of this manual, four different M6805 HMOS/M146805 CMOS Family EPROM types are available;
however, others are scheduled to follow.

125

bootstrap routine clocks the counter to increment the address and read the next loca­
tion. After the data from all locations are loaded into the EPROM, its contents are com­
pared to those in external memory. The programming status is indicated by two LEOs
(see Table 6-3 and Figure 6-1).

b7, ClK

b6, TOPT

b5, ClS

b4

b3

b2, P2
b1, P1
bO, PO

Table 6·1. M6805 HMOS Family Mask Option Register

.--_b;;..7_.,-~b6~;;;b..;.5_.-_b4~"""'T_.;;..b3~;;;b..;.2_y--_b_1_.,-~bO;...-,Mask Option

I...-_C_lK_..L-T_O_P_T---I,---C_l_S_.L... __ ..L-__ ..J..._P_2_.L....._P_1_..L-_P0---lIReglster

Clock Oscillator Type
1= RC
0= Crystal

NOTE

VIHTP on the TIMER/BOOT Pin (8) forces the crystal mode

Timer Option
1 = M6805 HMOS Family type tlmer/prescaler. All bitS, except 3,6, and 7, of the timer control register (TCR) are in-

vIsible to the user. Bits 5, 2, 1, and 0 of the mask option register determine the equivalent M6805 HMOS Family
mask options
0= All TCR bits are implemented as a software programmable timer. The state of MaR bits 5,4,2, 1, and 0 sets the
initial values of their respective TCR bits (TCR IS then software controlled after initializatIOn)

Timer/Clock Source
1 = External TIMER pin
0= Internal t/J2

Not used If MaR TOPT = 1
Sets Initial value of TCR TIE If MaR TOPT = 0

Not used

Prescaler Option-the logical levels of these bitS, when decoded, select one of eight taps on the timer prescaler
The division resulting from decoding combinations of these three bits IS shown here

P2 P1 PO Prescaler Division

0 0 0 1 (Bypass Prescalerl
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

126

Table 6·2. M1468705G2 Mask Option Register

b7 b6 b5 b4 b3 b2 b1 bO M~~~n Op

L-C_l_K--1_D_IV_....L..-___ L--_IN_T-I __ ---L __ --L.. __ ..l.-_----l1 Register

b7, ClK Clock OSCillator Type
1 = RC
0= Crystal

b6, DIV Determines DIvIsion of Clock OSCillator
1 = Dlvlde-by-2 OSCillator clock
0= Dlvlde-by-4 OSCillator clock

b5, Not used

b4,INT Determines type of Interrupt Trigger Input
1 = Both Edge-sensitive and level-senSitive triggered Interrupt
0= Edge-sensitive triggered Interrupt only

bO, b1, Not used.
b2, b3

Table 6·3. M6805 HMOS EPROM LED Results

LED Function

DS1 (PB1) Turned on (when PB1 goes low) to Indicate EPROM deVice IS programmed

DS2 (PB2) Turned on (when PB2 goes low) to indicate EPROM contents are successfully verified (approximately two seconds
after DS1 IS turned on) Programming and verification are now complete

Two examples for programming the M6805 HMOS Family MOR are discussed below.

Example 1 When emulating an MC6805P2 (using an MC68705P3) to verify your pro­
gram with an RC oscillator and an event counter input for the timer with
no prescaling, the MOR should be programmed to '11111000". To write
the MOR, it is simply programmed as any other EPROM byte. (The same
criteria is applicable when using the MC68705R3 to emulate the
MC6805R2 or the MC68705U3 to emulate the MC6805U2.)

Example 2 Suppose you wish to use the EPROM programmable prescaler functions,
and you wish the initial condition of the prescaler to be a divide-by-64,
with the input disabled and an internal clock source. If the clock
oscillator is to be in the crystal mode, the MOR would be programmed to
"00001110".

127

-'-
I\.)
(Xl

+5 V Astec f ...-AOIP26A05

L-J-<> VR'

~I +5V

01

rim
rlVSS

(Y)
"­
LO a

:;~
U
~

t 1N4001 7
...---------';TlMER

12 PSO 01
Rl100n 2N222.7

""" ~~--~+_~-------J6 VPP

R2 47 k
.--__ 28 ~ESET

'V\Iv

Of] 22 V

....1...Cl

I 01"F

I R:l'
o"p~7k

Sl - 02
2N2222

D3} lN4001

04
lN4001

VR2 -=-
MC78L12

4: --'

+ C2 8 ~
T10"F 4 5

D~
1~3pE:L 1 OYJHz

L-.l6
--' --'
4: 4:
I- I-
~ x

2 RESET
7

VPP
25 PSO (Y)

R"~, i R~' ~
NO:
::::>~

~
u
~

8 TIMER

C4 ...J..i -L+ C5

lO"T IT' 0,'

• o+5V

t
Venfled

~ OS2

PAO 20 - 00
21 , 101

01
'11

02
'31 03
'41 04
'51 05
'61

06
'71 07

~il~ 1111 III. :' I

~~:ru 111111 f r I
<t (Y)
<Il <Il

~-rli"5

29 128

~ ~
"- "-

+5V

+5V

24

~ E/All
18 1012

> AO 8 9 01
C;; A17 702 -::::>

~M
A2

6 6 03
R~

A3 5 5 04 ~r--
(Y)u~

A44 3 05 ::::>~u
;;~

A5 3 206
~f3
~N A6 2 407
u~
~u A71 13

08 ~

A8
23 12

09

A9 22 14 010

IC:J EA10 19 15 011

20 12

Count

Clear

I

VCc4 +5 V
__ 3
INT

c,hc, MC78L12

Out~ln

VSS 1 10"FI Il0"F

Figure 6·1. MC68705P3/R3/U3 Programming Module Schematic Diagram

h VOO 8 +5 V

VSS

<Il

<t~
::::>~

u
~

11

47k 47k f R6 ~ R7

+5V

26A05 (Top V,ewl

o
b+ 5V

GNO
o

o
+26 V

GNO
o

6.1.3 M146805 CMOS Family Bootstrap

The MC1468705G2 MCU EPROM device also contains a bootstrap program which is im·
plemented in on-chip masked ROM. However, in this program no external counter is re­
quired to generate the address. Instead, the address is generated internally and applied
via port A and port D lines to read the location in external memory. As with the M6805
HMOS Family, the data from external memory is presented to an 110 port. After data from
that location is loaded into the EPROM, the bootstrap routine increments the output ad­
dress and reads the next location. Two LEDs provide an indication of the programming
status (see Table 6-4 and Figure 6-2).

Table 6·4. MC1468705G2 EPROM LED Results

LED Function

DS2 (PD6) Turned on (when PD6 goes low) to indicate EPROM device IS being programmed

DS1 (PD5) Turned on (when PD5 goes low) to Indicate EPROM contents are successfully verified Programming and verifica-
tion are now complete

An example for programming the MC1468705G2 EPROM MOR is as follows: when
emulating an MC146805G2 (using an MC1468705G2) to verify your program with a crystal
oscillator, a divide-by-4 oscillator clock, and both edge-sensitive and level-sensitive trig­
gered inputs, the MOR should be programmed to "00010000".

6.2 PROGRAMMING

6.2.1 M6805 HMOS Family

Figure 6-1 contains a schematic diagram of a circuit which can be used to program the
MC68705P3, MC68705R3, and MC68705U3 EPROM Microcomputer Unit devices. Since
the routine required to program the EPROM MCU is actually located within the device,
only a small number of parts are required to build the circuit for programming the EPROM
MCU. Figure 6-3 shows a parts layout of the printed circuit board and Table 6-5 provides a
parts list.

Except for the socket used for mounting the EPROM MCU device the use of either a 2K
(MCM2716) or 4K (MCM2532) EPROM for U2, programming either of the EPROM MCUs is
basically the same. Because of this similarity, the procedure for programming the
MC68705P3 is described first, followed by the MC68705R3/U3 procedure.

6.2.1.1 MC68705P3 Programming. Prior to programming the MC68705P3 EPROM, it
should be erased by exposing it to a high-intensity ultraviolet (UV) light with a wavelength
of 2537 angstroms. The recommended dose (UV intenSity x exposure time) is 15 Ws/cm2.
The UV lamps should be used without shortwave filters and the MC68705P3 should be
positioned about one inch from the UV tubes. Be sure the EPROM window is shielded
from light except when eraSing.

129

...L
C".)
o

+5VO-O Q)

VE
(Note

J"'t.

Eo----o Sl 1 O~Hz ~.r £ _UJ~
2) ~ 0 - ;r;20 -v v---

~ C~ L R2 I. ~ C5 ' ~ 9 DO AO 8 AO
27 pF~ ~",yy I 27 pF I\... 10 Dl A1 7 A1'

_ 1M - ' 39 38 - ~ 11 D2 A2 6 A2

Rl OSCl OSC2 '\.. 13 N 5 A3 '
100 k V 40 D3 f2 A3 "'\

r----t-----....-.1V't.f'V---4-~------....:l~iRRiE:<;S:i=-i'ET DD DO-D7/8 '" 14 D4 ~ S A4 4 A4
C2 -I~ JS2 .L

IC3
19 D7 / I ~ 15 u r-- 3 A5-"" 01 PB7 --- D5 ~ ~ A51-"---:"":':::""

. = f =0.1 18 D6 ~ 16 ::; 0 ~ 2 A6'
Reset Run PB6~ '\.. 17 D6 <0 u A6 , PB5~ D7 ;:::~ A71 A\

= PB4~ ~ 0 AS
23

AS
Rl1 15 D3 ~ t---<~@~ ~ A9 22 A9
lk 2 PB3--' v;::;::::-@ ~ , Ir ---------4.--......J\fVv.---..!JfIRORQ PB2i11---.QU Ala 19 Ala

C1I P81~.i 18 @ CS~
01= PBO.1L...J2Q./ =24VCC VSS Al1~'~

,....: cs 112
R5 Q2 11 AO Io 1 High -= ..2..
30 2N2222 _ 3 ~ PAO, = . Memo - = -CSl

Q3 ~ PA4 7 /\4 C) C) 11 D2 Alt-
7

R7 4 2N3905 ~ PCO 6 A5" C"l ~ ~ ~ 0 ,,13 D3 A2 6 ' Dl PA5 a: ~.> a: ~ > ,

f~Y ~Ri~ ±~ Vpp sl :::0 :~ +5V +5V ~ 1~~~" ~20 AD. :

82k IN4184 ~PCl 5 A6' '\.. 14D4 ~ A31-'-5----..:... _ P A6 -.... <0 0 "'\ 4~ - ~PC2 4 A7 ' 15 D5 N~ ~ A41-'4 ___ _
I OQ~ Ql r1 25 PA7" ~ 16 ::J ~ ~ 3 '

RS 2N3905 ~ PC3 PDO 29 AS D6 u.r:: A5t-----
.. 3k ~ 30 A9' g' ~ 17D7 ~ Ql 2 '
." 23 PC4 PDl E 21 ~ A6

On 0 4~ PC5 PD2 31 AlO '0 E F VPP A7'''''1----~ - 4~ PC6 32 CSO" ~ ~,DSl ~~,DS2 23 '
__]:)-4. 21 PD3 , w....;~,~ o....;~ 24 VCC AS
S30ft 4~ PC7 PD4 33 CSl > ~~a: '\4..':4.. A9t-2"'-2---..... 1

20 V 34' I e7 - 19 R9 .~ SS PD5 _ 01 E/P VSS Al0~---... 1

L..
_______ ~SI/I2"kr__---.....:..,,-=-'="....::3!2l6 PD6 35 - \lS 112

• PD7 37 s: TIMERF------t--------...J ~ /
'\.. AO-A 10, CSO, CSl / NOTE

1. Unless otherwise indicated; capacitor values are In microfarads; resistor values are In ohms
2. The value of VEE should be such as to provide the appropriate Vpp required VEE must not

exceed - 14 Vdc.
3. SWitches Sl and S2 are shown In the open (off) position and S3 IS shown In the closed (off)

position.

Figure 6·2. MC1468705G2 Programming Circuit Schematic Diagram

3

Figure 6·3. MC68705P3/R3/U3 Programming Module Parts Layout

Table 6·5. MC68705P3/R3/U3 Programming Module Parts List

Rl 1000 01 2N2222 or EqUiv
R2 47 kO 02 2N2222 or Equlv.
R3 47 kO Yl 1 MHz (AT-Cut Parallel Resonance, 100 0 Max.)
R4 5100 Ul MC68705P3 Only Use One
R5 5100 U2 MC68705R3/U3 Only Use One
R6 4.7 kO U3 MCM2716 or MCM2532
R7 4.7 kO U4 MC14040B
Cl O.l/LF VRl ASTEC Voltage Converter 26A05
C2 10/LF VR2 MC78L 12
C3 100 pF OSl Red LED
C4 1.0/LF OS2 Green LED
C5 1 OIiF PCBl Pnnted CirCUit Board
C6 lOI'F MIsc. 1 - 40 Pm Low Insertion Force Socket
C7 10/LF 1 - 28 Pin Low Insertion Force Socket
01 lN4001 1 - 24 Pm Low Insertion Force Socket
02 22V Zener-l N4748A or Equlv 1 - 16 Pm Solder Tall Socket
03 lN4001 2 - SPOT SWitches
04 lN4001

131

The MCM2716 UV EPROM is used for U3 when programming the MC68705P3. Before the
MC68705P3 can be programmed, the MCM2716 UV EPROM must first be programmed
with an exact duplicate of the information that is to be transferred to the MC68705P3.

NOTE
The first 128 bytes of EPROM (MCM2716) are ignored; location $80 of the
EPROM is placed in location $80 of the MC68705P3.

Step 1-Close switches S1 and S2 and be sure that voltage (+ 5 V in this case) is not ap­
plied to the circuit board.

Step 2-lnsert the MCM2716 into the socket for U3 and insert the MC68705P3 into the U1
socket.

Step 3-Apply + 5 V to the circuit board.

Step 4-0pen switch 81 to apply Vpp to the MCU and then open switch 82 to remove
reset.

NOTE
Once the MCU comes out of reset, the CLEAR output control line (PB4) goes
high and then low, then the MC14040B counter is clocked by the PB3 output
(COUNT). The counter selects the MCM2716 EPROM byte which is to load the
equivalent MC68705P3 EPROM byte selected by the MCU bootstrap program.
Once data is programmed, COUNT increments the counter to the next location.
This continues until the MCU is completely programmed.

Step 5-Check that the programmed LED indicator is lit followed by lighting of the veri­
fied indicator LED. This signals that the EPROM MPU has been correctly pro­
grammed.

Step 6-Close switch 81 to remove Vpp and VIHTP. Close switch 82 to reset the MCU.

Step 7-Disconnect (or turn off) the + 5 V input to the circuit board and then remove the
newly programmed EPROM MCU from its socket.

Step 8-Remove the U3 EPROM from its socket if no further programming is required.

6.2.1.2 MC68705R3/MC68705U3 Programming. Programming either of these MCU
EPROMs is similar to that described above for the MC68705P3 with three minor excep­
tions. These three exceptions are:

1. The MCM2532 UV EPROM is used for U3 when programming either the
MC68705R3 or MC68705U3 EPROM MCU. This UV EPROM must be programmed
with an exact duplicate of the information being transferred to MC68705R3 or
MC68705U3.

132

2. In step 2 the MCM2532 is inserted into the U3 socket and the MC68705R3 or
MC68705U3 is inserted into the U2 socket.

3. In the note under step 4, operation of the MCM2532 and MC68705R3/U3 is identi­
cal to that described for the MCM2716 and MC68705P3.

6.2.1.3 Printed Circuit Board. The PCB is a double-sided board with plated through holes.
However, a single-sided board requiring only 10 wire jumpers could be used. The wire
jumpers would be in place of the wiring shown in the a section of Figure 6-4. Component
tolerances are generally not critical. The 5-to-26 volt converter (VR1) is manufactured by
ASTEC International under part number ADIP26A05; however, if this part is not available,
+ 26 Vdc may be applied to the soldering feed through which is adjacent to the C4 +
soldering feed through (PCB ground must also be connected for this supply).

Figure 6-3 is a parts layout detail as shown from the component side of the board. Figure
6-4 contains the circuit board (both component side and circuit side) detail. These are
actual sizes and can be used for developing a double-sided board.

6.2.2 MC1468705G2 Programming

Figure 6-2 contains a schematic diagram of a circuit which can be used to program the
MC1468705G2 EPROM Microcomputer Unit, and Table 6-6 contains a parts list. Since the
routine required to program the EPROM MCU plus the address to select the data is
actually located in the device, only a small number of parts are required to build the cir­
cuit for programming the EPROM MCU. The procedure for programming the
MC1468705G2 is described below.

Table 6·6. MC1468705G2 MCU EPROM Programming Circuit Parts List

R1 100 kO C8 0.1/LF
R2 1 MO C7 o 1/LF
R3 4700 01 1N4148
R4 4700 01 2N3905 or Equiv.
R5 300 02 2N2222 or Equlv.
R6 1 kO Q3 2N3905 or Equlv.
R7 82 kO Y1 1 MHz (AT-Cut Parallel Resonance. 100 0 Max.)
R8 3 kO U1 MCM2716
R9 82 kO U2 MCM2716
R10 15 kO U3 MC1468705G2
R11 1 kO OS1 LED
C1 o 1/LF OS2 LEO
C2 0.1/LF PB1 Pnnted CirCUit Board
C3 o 1/LF Mlsc 1 - 40 Pin Low Insertion Force Socket
C4 27 pF 2 - 24 Pin Low Insertion Force Socket
C5 27 pF 2 - SPOT SWitches
C6 o O1/LF 1 - OPOT SWitch

133

i
0 j ;

L - -- -- -- § --0 - -
0 -- -0 0 - -............ - -- -

Figure 6·4. MC68705P3/R3/U3 Programming Module Circuit Board Art

134

OGNOO

VRl 0+5 C4
U3 0-0

0+26~
U4

1 1

0 - - - -0 - - - -- - 0-0 - -- - - -- - - -- - I - -- - - -0 0 - - - -- -a - -RESET - -+
0 C6 0 a S2 - -

I G 0 RUN a 0-0 VR2 0 0 0
a a

0 0 OC2 0
+ C5 P3 + R3/U3

Rl 0 0 0 a a
R2 0 0 C3 1 1

II - - - -0 - - - -o C - - - -01 0 - - - -0 6 - - - -Vl 0 - - - -0 E - - 0 - -CD - - -
0 - - - -- - 0 - -- - - - + C7 - 01 - - 0 0 -- - - - 00

Cl 0 0
OC - - - -0 - - R6 R7

02 0 0 0 - -R3 0 0 0 6
Sl - - 0 0

VERF R4 R5 OE
0 0 - -0 04 GO 03 0 DDD 0 - -02 0 0

0 - - la

GMOTOROLA
PROG

MC68705 P31 R3/U3 PROGRAMMER

Figure 6·4. MC68705P3/R3/U3 Programming Module Circuit Board Art (Continued)

135

The schematic diagram of Figure 6-2 provides connections for using two MCM2716
(2K x 8) EPROMs or one MCM2532 (4K x 8) EPROM or one MCM68764 (8K x 8) EPROM.
Since each of these EPROM devices are 24 pin devices, the 24-pin low insertion force
socket connector for U1 can be used for all three devices with only minor jumper
modifications. Jumper connections only need be changed for three different pins
depending on the EPROM device being used: pins 18, 20, and 21. These jumper connec­
tions are labeled 1 through 6 on the schematic diagram and the table below provides
jumpering connection for each EPROM device.

NOTE
When using the MCM2532 or MCM68764 EPROM devices, be sure that nothing
is plugged into the socket designated for U2 on the schematic diagram of
Figure 6-2.

EPROM Jumper Connections
Device 1 2 3 4 5 6

MCM2716 In Out Out In In Out
MCM2532 Out In In Out In Out
MCM68764 Out In In Out Out In

Since the actual EPROM memory used in the MC1468705G2 is 2106 bytes, the EPROM
device(s) used in programming only needs 4K bytes of memory location. Figure 6-5 shows
the memory location in which the MC1468705G2 program should be stored.

Prior to programming the MC1468705G2 EPROM, it should be erased by exposure to high­
intensity ultraviolet (UV) light with a wavelength of 2537 angstroms. The recommended
integrated dose (UV intensity x exposure time) is 15 Ws/cm2. The UV lamps should be us­
ed without shortwave filters and the MC1468705G2 should be positioned about one inch
from the UV tubes. Be sure the EPROM window is shielded from light except when
erasing.

CAUTION
Be sure that S1 is open, and S2 and S3 are closed when inserting the
MC1468705G2 and/or MCM2716, MCM2532, or MCM68764 EPROM(s) into their
respective sockets. This ensures that RESET is held low and power is not ap­
plied when inserting the device(s).

Step 1-Close S1 (to apply VDD, VEE, and to provide a positive voltage to the TIMER pin
and a negative voltage to the IRQ pin).

NOTE
The following steps are applicable to the MCM2532 and MCM68764 EPROMs as
well as MCM2716 EPROMS.

Step 2-0pen S3 (to provide VPP voltage) and open S2 (to remove reset).

136

NOTE
Once the MCU comes out of reset, the Vpp control line (P07) goes low and the
Vpp voltage is applied to pin 3 provided 53 is open. With Vpp applied, the
EPROM is programmed one byte at a time with the corresponding data in the
MCM2716 EPROMs. The MC1468705G2 bootstrap provides the address and chip
select (C50/C51) signals to permit complete self programming.

Step 3-Check that the programming LED is turned on and remains on throughout the
programming sequence.

NOTE
Transfer of the entire contents of both MCM2716 EPROMs requires approxi­
mately 200 seconds. The internal counter is then cleared and the loop is
repeated to verify that the programmed data is precisely the same as the incom­
ing data from the two MCM2716 EPROMs.

Step 4-Check that the programming LED turns off and the verified LED is turned on.
This signals that the MC1468705G2 has been correctly programmed.

Step 5-Close 52 (to reset the MC1468705G2), close 53 (to prevent Vpp from being ap­
plied), and open 51 (to remove VEE and VDO) prior to removing any device (MCU
or EPROM) from its socket.

MCM2716
(Low Memory)

FF
$000

Erased State
1-------1 $07F

$OBO

MC1468705G2
Program

$0080-$07FF

10...-___ ---" $7FF

MCM2716
(High Memory)

MC1468705G2
Program

$OBOO-$08AF

FF
Erased State

MC1468705G2
MaR & Vectors

$1FF5-$1FFF

$000

$OAF
$OBO

$7F4
$7F5

$7FF

MCM68764{
Only

MC2532 or
MCM6B764

FF
Erased State

MC146B705G2
Program

$OOBO-$OBA F

FF
Erased State

MC1468705G2
MaR & Vectors

$1 FF5-$1 FFF
FF

Erased State
(Don't Care)

$000

$07F
$OBO

$8AF
$BBO

$FF4
$FF5

$FFF
$1000

$1 FFF

Figure 6-5. MC1468705G2 Program Memory Location In
MCM2716, MCM2532, or MCM68764

137

7.1 INTRODUCTION

CHAPTER 7
SELF-CHECK

One of the advanced architectural features of the M6805 HMOS/M146805 CMOS Family
of microcomputers is the ability to test itself, using on-chip firmware. These firmware
programs are commonly referred to as self-check routines and subroutines, which are us­
ed for quick go/no-go functional tests of the individual microcomputer (MCU).

The additional components and terminal connections necessary to support the self­
check of each MCU are shown in their respective data sheets. In these cases, the self­
checks are initiated by application of power to the test set-up, or by actuation of the reset
switch. These self-check subroutines are initiated and automatically sequenced through
their pre-determined programs with individual results as noted in the data sheets.

Several of the self-check subroutines can be initiated by the user program. These user­
callable subroutines are RAM, ROM, timer (provided the timer is clocked by the internal
clock), and the 4-channel A/D (where applicable) tests. One extremely valuable feature of
the self-check is that it can be incorporated into the acceptance test of all M6805
HMOS/M146805 CMOS Family devices (except MC146805E2) to provide go/no-go indica­
tions for the particular device.

The tests shown for the devices listed in Table 7-1 can be part of the normal power-up se­
quence, or included in the regular preventive maintenance schedule as well as the repair/
service schedule for the user system. These self-check subroutines can be called by the
user and merged into the overall system program, without additional components or ter­
minal connections. Table 7-1 contains a list of microcomputers which have this self­
check firmware. Also, the address to enter and exit each user-callable self-check
subroutine is listed with appropriate comments. Each self-check subroutine ends with
the RTS instruction, and must be called by the BSR/JSR instruction from the users main
program. .

Table 7·1. Subroutine Enter/Exit Addresses

MCU RAM Test ROM Test AID Timer Test*
MC6805R2 $OF6F/$OF89 $OF8A/$OFA3 $OFA4/$OFBE $OFCF/$OFDE

MC6805U2 $OF6F/$OF89 $OF8A/$OFA3 - 10FCF/$OFDE

MC146805G2 $1 F87/$1 FAO $1FA1/$1FBA - $1FBB/$1FDA

MC146805F2 $078B/$07A3 $07 A4/$07BD - $07BE/$07DC

* The clocking source must be the Internal cp2 clock

139

Seven devices in the current M6805 HMOS/M146805 CMOS Family do not have the user­
callable self-check feature. These include: (1) MC6805P2, MC6805P4 and MC6805T2-
these devices do have the self-check feature but it is not user-callable, (2) MC68705P3,
MC68705R3, MC68705U3, and MC146805G2-these EPROM devices contain a bootstrap
routine instead of self-check, and (3) MC146805E2-this microprocessor device has no
on-chip ROM for firmware.

7.2 SELF·CHECK DESCRIPTION

7.2.1 RAM Self·Check

This test is the walking-bit diagnostic pattern, and when completed, the Z bit is cleared if
any error was detected. If no error was detected, the Z bit is set. When the RAM self­
check is completed, the contents of RAM are not valid and are assumed to be lost.

7.2.2 ROM Self·Check

This test is an exclusive OR (odd parity) checksum method and returns with the Z bit
clear if any error was detected. If no error was detected, the Z bit is set. The RAM used in
the checksum is the stack RAM except for the upper two bytes which contain the return
memory address.

7.2.3 Timer Self·Check

The timer self-check subroutine counts the number of times the clock counts in 128 MCU
cycles. The number must be a power of two, since the prescaler is a power of two. If not,
the timer is not counting correctly. The routine also detects a non-running timer
condition.

In order to work correctly as a user subroutine, the internal clock must be the clocking
source, and the interrupts must be disabled. Upon completion of this test, the Z bit is
cleared, if any error is detected; or set if no error is detected. The A and X register con­
tents are lost during this test, and upon exit, the clock is left running and the interrupt
mask is cleared; thus, the user must protect the main program of the system if deemed
necessary.

7.2.4 AID Self·Check

The A and X register contents are lost during this test. When called from a user program,
the X register must be configured to $04 before the call. Upon return X = 8, and AID chan­
nel seven is selected. This AID test uses the internal reference voltages and confirms the
port connections. The Z bit is cleared if any error is detected, or set if no error is found.

140

7.2.S Flowchart Example

An example of the timer test for the MC146805G2 is shown flowcharted in Figure 7-1. The
pass/fail result can be utilized by the user program for system go/no-go considerations.
Note that previous values in the accumulator and index registers are lost.

Disable Timer Input and
Set Prescaler to + 128

Enable Timer Input for
Countdown to $00

Compare TDR Data to
Index Register Data

(Do They Track)
Uses SIX Cycles.

Uses Three Cycles

Is The Timer Self-Check
Complete (All 128x 256).

Uses Five Cycles.

Uses Two Cycles

Provides
102-Cycle Delay Loop

Provides
7-Cycle Delay Loop

Total of 128 Cycles
Here Should Insure

TDR=X

Figure 7·1. MC14680SG2 MPU Timer Test (TIMTST) Flowchart

141

APPENDIX A
M6805 HMOS/M146805 CMOS FAMILY

COMPATIBILITY WITH MC6800

A.1 INTRODUCTION

Strictly speaking, the M68D5 HMOS/M1468D5 CMOS Family is neither source- nor object­
code compatible with the MC68DD; but it is very similar to all M68DD Family processors.
An experienced MC68DD programmer should have little difficulty adapting to the M68D5
HMOS/M1468D5 CMOS Family instruction set. The following paragraphs enumerate the
difference between the MC68DD and the M68D5 HMOS/M1468D5 CMOS Family.

A.2 REMOVED B·REGISTER

In order to free up valuable opcode space, the B register is removed in the M68D5 HMOS/
M1468D5 CMOS Family. Therefore, none of the register/memory or read/modify/write
instructions have a B-register form. Several other instructions are also not available in
the M68D5 HMOS/M1468D5 CMOS Family, including:

SBA, CBA, TAB, TBA, ABA, PSHB, and PUlB

A.3 REMOVED V·FLAG

The V-flag bit and the logic to set it is removed in the M68D5 HMOS/M1468D5 CMOS
Family. This was done because usage of the small controller does not generally require
signed arithmetic operations. However, unsigned arithmetic operations are still
available. Without the V-flag bit, the following Me68DD instructions are not available in
the M68D5 HMOS/M1468D5 CMOS Family.

SEV, ClV, BVC, BVS, BGE, BlT, BGT, and BlE
In the M68D5/M1468D5 CMOS Family, unsigned inequalities are still available using BHS
(BeC) and BlO (BeS).

A.4 REDUCED STACK CONTROL

Instructions relating to the manipulation of the SP are greatly reduced in the M68D5
HMOS/M1468D5 CMOS Family. On reset, or upon execution of the RSP instruction, the
SP is initialized to $7F. Other instructions that were deleted include:

lOS, STS, INS, DES, PSHA, PULA, TXS, TSX, and WAI
Do not confuse the WAIT instruction used with the M1468D5 CMOS Family with the WAI
instruction used by the MC68DD.

143

A.S REMOVED DAA

The DAA has been deleted in the M6805 HMOS/M146805 CMOS Family members. The H
bit, however, is retained and two additional branches are added to branch if the H bit is
set or cleared (BHCS, BHCC). These branches can be used to write software subroutines
accomplishing DAA (remember, ROM is much cheaper than the DAA).

A.6 CHANGED REGISTER LENGTHS

The X register is reduced to eight bits, the SP to eight bits or less, and the PC to 16 bits or
less in the M6805 HMOS/M146805 CMOS Family. The change in the X register size from
16 to eight bits required changes in the addressing modes; these are described in the
Addressing Modes paragraph of Chapter 2. Also, since the X and A registers are equal in
size, two new instructions are added to transfer X to A and A to X (TXA, TAX).

A.7 BIT MANIPULATION

Bit manipulation instructions are added to the M6805 HMOS/M146805 CMOS Family
because they are extremely useful for low-end applications. Two classes of bit manipula­
tion instructions were added: bit set/clear and test and branch on bit set/clear.

(a) Bit Set/Clear
These instructions allow any bit in page zero, including bits in the I/O ports (but not
always the data direction registers), to be set or cleared with one 2-byte instruction. Page
zero includes the first 256 addressable memory locations from $00 through $FF.

(b) Test and Branch on Bit Set/Clear
These instructions test any bit in page zero (including I/O, RAM, and ROM) and will cause
a branch, if the bit is set or cleared. In addition, the C bit of the condition code register
contains the state of the bit tested.

A.S NEW BRANCHES

Several new branches are added to facilitate low-end type programs in the M6805
HMOS/M146805 CMOS Family. The BHCS and BHCC are useful in BCD additions. A
branch, if interrupt mask bit is set or cleared (BMS/BMC), is also added. This eliminates
the need for TAP and TPA since each bit in the condition code register can be tested by a
branch. Two more branches are added that branch on the logic condition of the interrupt
line (high or low): BIH/BIL. These allow the interrupt line to be used as an additional input
in systems not using interrupts.

A.9 NEW ADDRESSING MODES

The addressing modes of the MC6800 were optimized for the M6805 HMOS/M146805
CMOS Family. For more details see the Addressing Modes paragraph in Chapter 2 of this
manual.

144

A.10 READ/MODIFYIWRITE THE X REGISTER

By utilizing the column in the opcode map vacated by the 8 register for read/modify/write,
and since the X register is now eight bits, all of these operations are available to the X
register. For example:

ROLX, INCX, CLRX, NEGX, etc.
This eliminated the traditional INX, DEX. However, mnemonics INX and DEX are still
recognized by the assembler for compatibility.

A.11 CONVENIENCE MNEMONICS

These are not new M6805 HMOS/M146805 CMOS Family instructions, but only represent
improvements to the M6805 HMOS/M146805 CMOS assembler that allows existing
instructions to be recognized by more than one mnemonic.

(a) lSl (logical Shifl left)
Since logical and arithmetic left shifts are identical, LSL is equivalent to ASL.

(b) BHS (Branch Higher or Same)
After a compare or subtract, the carry is cleared if the register argument was higher or
equal to the memory argument; hence, the BHS is equivalent to BCC.

(c) BlO (Branch if lower)
After a compare or subtract, the carry is set if the register argument was lower than the
memory argument; hence, the BLO is equivalent to BCS.

145

APPENDIX B
RASM05 MACRO ASSEMBLER

SYNTAX AND DIRECTIVES

B.1 ASSEMBLY LANGUAGE SYNTAX AND ASSEMBLER DIRECTIVES

This appendix provides information concerning the assembly language syntax and
assembler directive for the M6805 HMOS/M146805 CMOS Family. This information is
more thoroughly discussed in Macro Assemblers Reference Manual M68MASA(D2) for
M6800, 6801, 6805, and 6809; Motorola Literature Distribution Center, Phoenix, Az.

M6805 Family assembly language source statements follow the same format as M68DO
source statements. See Macro Assembler Reference Manual M68MASA(D2) for detailed
MC6805 HMOS/M146805 CMOS Family syntax. Highlights of syntax and assembler direc­
tives are discussed in the following paragraphs.

B.2 OPERATION FIELD SYNTAX

All instruction mnemonics for the M6805 HMOS/M146805 CMOS Family are three, four, or
five characters long. Examples are:

LOA
JSA
INC
BHCC
BASET

If the accumulator or index register is used as the operand of readlmodifylwrite instruc­
tions, then the register is appended to the operation field. For example:

NEGA
AOAX
INCX
DECA
TSTA

147

B.3 OPERAND FIELD SYNTAX

B.3.1 Inherent

Inherent instructions are the only type which do not include information in the operand
field. All information necessary is incorporated in the operation field. Some examples are
listed below. Note that an "A" or an "X" is added to the opcode for the register reference
inherent instructions.

RTS
CLC
INCA
RORA
INCX
RORX

B.3.2 Immediate

The immediate value appears in the operand field preceded by a "#". Example:
LOA #30
LOX #$49
CPX #$FF
LOA #AOOR

B.3.3 Direct Addressing

The direct address appears in the operand field. If, on any pass through the source pro­
gram, the assembler finds an unresolved (undefined) forward reference, the longer ex­
tended adressing mode is chosen instead of the direct addressing mode even if the
address is subsequently found to be on page zero. To ensure direct addressing for direct
variables, always define the variable before using it. In read/modify/write instructions all
addresses are assumed to be direct since extended addressing is illegal with this mode.
Examples:

LOA
STA
CPX
ROL

CAT
$30
DOG
$01

Where CAT and DOG have addresses < $1 00.

148

B.3.4 Extended Addressing

The extended address appears in the operand field. This mode is only legal when
executing register/memory instructions. Examples:

LOA BIG
LOA $325
STA COW

Where BIG and COW have addresses >$100.

B.3.5 Indexed - No Offset

The characters comma and X appear in the operand field. For example:
LOA ,X
COM ,X
STA ,X
INC ,X
TST ,X

B.3.6 Indexed - One Byte Offset

The offset appears followed by a comma and "X". The offset must have a value <$100.
Examples:

LOA 3, X
LOA TABLE, X
INC 50, X

Where TABLE <$100.

B.3.7 Indexed - Two Byte Offset

The offset appears followed by a comma and "X". The offset would normally have a value
>$100. Examples:

LOA 300, X
LOA ZOT, X
COM 500, X

Where ZOT >$100.

149

B.3.8 Bit Set/Clear

The bit set and clear instructions contain the bit number followed by a comma and the
address. Examples:

BSET 3, CAT
BClR 4, $30
BClR 5,DOG

Where CAT and DOG are < $1 00.

B.3.9 Bit Test and Branch

The bit test and branch instructions contain the bit number, a comma, the address to be
tested, a comma, and the location to branch to if the test was successful. Examples:

PIG BRSET 3, CAT, DOG
DOG BRClR 4, CAT, PIG

Where CAT <$100, DOG and PIG are relative addresses similar to those explained in the
next paragraph.

B.3.10 Relative Addressing

The operand field contains the label of the address to be loaded into the program counter
if the branch is taken. The branch address must be in the range -126 to + 129.
Examples:

BEQ
BNE
BRA

CAT
DOG
PIG

B.4 ASSEMBLER DIRECTIVE SUMMARY

The assembler directives are instructions to the assembler rather than instructions
which are directly translated into object code. Detailed descriptions are provided in the
M68MASR(D2) reference manual.

B.4.1 Assembly Control Directives

END Program end
FAil Programmer generated errors
NAM Assign program name
ORG Origin program counter

150

8.4.2 Symbol Definition Directives

ENOM
EQU
MACR
SET

Macro definition end
Assign permanent value
Macro definition start
Assign temporary value

8.4.3 Data Definition/Storage Allocation Directives

BSZ Block storage of zero; single bytes
FCB Form constant byte
FCC Form constant character string
FOB Form constant double byte
RMB Reserve memory; single bytes

8.4.4 Program Relocation Directives

ASCT
BSCT
COMM
CSCT
OSCT
IONT
PSCT
OPT REL
XOEF
XREF

Absolute section
Base section
Named common section
Blank common section
Data section
Identification record
Program section
Relocatable output selected
External symbol definition
External symbol reference

B.4.5 Conditional Assembly Directives

ENOC
IFC
IFEQ
IFGE
IFGT
IFLE
IFLT
IFNC
IFNE

End of current level of conditional asssembly
Assemble if strings compare
Assemble if expression is equal to zero
Assemble if expression is greater than or equal to zero
Assemble if expression is greater than zero
Assemble if expression is less than or equal to zero
Assemble if expression is less than zero
Assemble if strings do not compare
Assemble if expression is not equal to zero

151

8.4.6. Listing Control Directives

OPT ABS
OPTCl
OPT NOCl
OPT CMO
OPT NOCMO

OPT CRE
OPTG
OPT NOG
OPT l
OPT NOl
OPT llE= n
OPT lOAD
OPT M
OPTMC
OPT NOMC
OPT MD
OPT NOMD
OPT MEX
OPT NOMEX
OPT 0
OPT NOO
OPT P= n
OPT NOP
OPT REl
OPTS
OPTSE
OPTU
OPT NOU
PAGE
SPC
TTL

Select absolute MDOS-Ioadable object output
Print conditional assembly directives
Don't print conditional assembly directives
Allow CMOS instructions STOP and WAIT (M146805 CMOS only)
Don,'t allow CMOS instructions STOP and WAIT (M146805 CMOS
only)
Print cross reference table
Print generated lines of FCB, FCC, and FOB directives
Don't print generated lines of FCB, FCC, and FOB directives
Print source listing from this point
Inhibit printing of source listing from this point
Change Ii ne length
Select absolute EXORciser-loadable object output
Creat object output in memory
Print macro calls
Don't print macro calls
Print macro definitions
Don't print macro definitions
Print macro expansions
Don't print macro expansions
Create object output file
Do not create object output file
Change page length
Inhibit paging and printing of headings
Select relocatable object output
Print symbol table
Print user-supplied sequence numbers
Print unassembled code from conditional directives
Don't print unassembled code from conditional directives
Print subsequent statements on top of next page
Skip lines
Initialize heading for source listing

152

APPENDIX C
INSTRUCTION SET

DETAILED DEFINITION

C.1 INTRODUCTION

In the pages that follow this section, the various accumulator and memory operations,
together with the respective mnemonic, provides a heading for each of the executable in­
structions. The STOP and WAIT instructions apply only to the M146805 CMOS Family.
The pages are arranged in alphabetical order of the mnemonic. A brief description of the
operation is provided along with other applicable pertinent information, including: condi­
tion code status, Boolean formula, source forms, usable addressing modes, number of
execution cycles (for both HMOS and CMOS), number of bytes required, and the opcode
for each usable addressing mode. Paragraph C.2 contains a listing of the various
nomenclature (abbreviations and signs) used in the operations.

C.2 NOMENCLATURE

The following nomenclature is used in the executable instructions which follow this
paragraph.

(a) Operators:
() indirection, i.e., (SP) means the value pointed to by SP

is loaded with (read: "gets")
boolean AND

v boolean (inclusive) OR
e boolean EXCLUSIVE OR

boolean NOT
negation (twos complement)

(b) Registers in the M PU:
ACCA Accumulator (shown as A in Boolean formula for condition codes and

CC
X
PC
PCH
PCl
SP

source forms)
Condition Code Register
Index Register
Program Counter
Program Counter High Byte
Program Counter low Byte
Stack Pointer

153

(c) Memory and Addressing:
M Contents of any memory location (one byte)
Rei Relative address (Le., the twos complement number stored in the second

byte of machine code in a branch instruction)

(d) Bits in the Condition Code Register:
C Carry/Borrow, Bit 0
Z Zero Indicator, Bit 1
N Negative Indicator, Bit 2
I Interrupt Mask, Bit 3
H Half Carry Indicator, Bit 4

(e) Status of Individual Bits BEFORE Execution of an Instruction
An Bit n of ACCA (n = 7,6,5,4,3,2,1,0)
Xn Bit n of X (n = 7, 6, 5, 4, 3, 2, 1, 0)
Mn Bit n of M (n = 7, 6, 5, 4, 3, 2, 1, 0). In read/modify/write instructions, Mn

is used to represent bit n of M, A or X.

(f) Status of Individual Bits AFTER Execution of an Instruction:
Rn Bit n of the result (n = 7, 6, 5, 4, 3, 2, 1, 0)

(g) Source Forms:
P Operands with IMMediate, DIRect, EXTended and INDexed (0, 1,2 byte

offset) addressing modes
Q Operands with DIRect, INDexed (0 and 1 byte offset) addressing modes
dd Relative operands
DR Operands with DIRect addressing mode only.

(h) iff abbreviation for jf-and-only-if.

154

ADC Add with Carry ADC

Operation: ACCA - ACCA + M + C
Description: Adds the contents of the C bit to the sum of the contents of ACCA and M,

and places the result in ACCA.

Condition
Codes: H: Set if there was a carry from bit 3; cleared otherwise.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there was a carry from the most significant bit of the result;
cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

H = A3.M3vM3.R3vR3.A3
N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = A7.M7vM7.R7vR7.A7

ADC P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative "------
Accumulator
Index Register
Immediate 2 2 2 A9
Direct 4 3 2 B9
Extended 5 4 3 C9
Indexed 0 Offset 4 3 1 F9
Indexed 1-Byte 5 4 2 E9
Indexed 2-Byte 6 5 3 09

155

ADD Add ADD
Operation: ACCA - ACCA + M

Description: Adds the contents of ACCA and the contents of M and places the result in
ACCA.

Condition
Codes: H: Set if there was a carry from bit 3; cleared otherwise.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there was a carry from the most significant bit of the result;
cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

H = A3.M3vM3.R3vR3.A3
N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = A7.M7vM7.R7vR7.A7

ADD P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AB
Direct 4 3 2 BB
Extended 5 4 3 CB
Indexed 0 Offset 4 3 1 FB '
Indexed 1·Byte 5 4 2 EB
Indexed 2·Byte 6 5 3 DB

156

AND Logical AND AND
Operation: ACCA - ACCA • M

Description: Performs logical AND between the contents of ACCA and the contents of
M and places the result in ACCA. Each bit of ACCA after the operation will
be the logical AND result of the corresponding bits of M and of ACCA
before the operation.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5·R4.R3.R2.R1.RO

AND P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A4
Direct 4 3 2 B4
Extended 5 4 3 C4
Indexed 0 Offset 4 3 1 F4
Indexed 1·Byte 5 4 2 E4
Indexed 2·Byte 6 5 3 04

157

ASL Arithmetic Shift Left ASL
Operation: ~ b_7 1 ________ "---"'--..a.-...... l_b--'o~ 0

Description: Shifts all bits of ACCA, X or M one place to the left. Bit 0 is loaded with a
zero. The C bit is loaded from the most significant bit of ACCA, X or M.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = b7 (before operation)

Comments: Same opcode as LSL

Source
Form(s): ASL Q, ASLA, ASLX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 1 48
Index Register 4 3 1 58
Immediate
Direct 6 5 2 38
Extended
Indexed 0 Offset 6 5 1 78
Indexed 1-Byte 7 6 2 68
Indexed 2-Byte

158

ASR Arithmetic Shift Right ASR
)

Operation: L...1 b_7 1----L.----'_'---..a...-....&...-.....II_b--'o ~
Description: Shifts all bits of ACCA, X or M one place to the right. Bit 7 is held constant.

Bit 0 is loaded into the C bit.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = bO (before operation)

ASR Q, ASRA, ASRX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 47
Index Register 4 3 57
Immediate
Direct 6 5 2 37
Extended
Indexed 0 Offset 6 5 1 77
Indexed 1-Byte 7 6 2 67
Indexed 2-Byte

159

Bee Branch if Carry Clear Bee
Operation: PC - PC + 0002 + Rei iff C = 0

Description: Tests the state of the C bit and causes a branch iff C is clear. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BHS

Source
Form(s): BCC dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

4 3 2 24

160

BCLRn Clear Bit In Memory BCLRn
Operation: Mn - 0

Description: Clear bit n (n = 0, 7) in location M. All other bits in M are unaffected.

Condition
Codes: Not affected.

Source
Form(s): BClR n, DR

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

7 5 2 11 + 2.n

161

Bes Branch if Carry Set Bes
Operation: PC - PC + 0002 + Rei iff C = 1

Description: Tests the state of the C bit and causes a branch iff C is set. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BLO

Source
Form(s): BCS dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 25

162

BEQ Branch if Equal BEQ
Operation: PC - PC + 0002 + Rei iff Z = 1

Description: Tests the state of the Z bit and causes a branch iff Z is set. Following a
compare or subtract instruction BEQ will cause a branch if the arguments
were equal. See BRA instruction for further details of the execution of the
branch.

Condition
Codes: Not affected.

Source
Form(s): BEQ dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 27

163

BHCC Branch if Half Carry Clear BHCC
Operation: PC - PC + 0002 + Rei iff H = 0

Description: Tests the state of the H bit and causes a branch iff H is clear. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHCC dd

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 28

164

BHCS Branch if Half Carry Set - BHCS
Operation: PC - PC + 0002 + Rei iff H = 1

Description: Tests the state of the H bit and causes a branch iff H is set. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHCS dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 29

165

BHI Branch if Higher BHI
Operation: PC - PC + 0002 + Rei iff (C v Z) = 0

Le., if ACCA > M (unsigned binary numbers)

Description: Causes a branch iff both C and Z are zero. If the BHI instruction is
executed immediately after execution of either of the CMP or SUB
instructions, the branch will occur if and only if the unsigned binary
number represented by the minuend (Le., ACCA) was greater than the
unsigned binary number represented by the subtrahend (Le., M). See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHI dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 22

166

BHS Branch if Higher or Same BHS
Operation: PC - PC + 0002 + Rei iff C = 0

Description: Following an unsigned compare or subtract, BHS will cause a branch iff
the register was higher than or the same as the location in memory. See
BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BCC

Source
Form(s): BHS dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

4 3 2 24

167

BIH Branch if Interrupt Line is High BIH
Operation: PC - PC + 0002 + Rei iff INT = 1

Description: Tests the state of the external interrupt pin and branches iff it is high. See
BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: In systems not using interrupts, this instruction and Bil can be used to
create an extra 1/0 input bit. This instruction does NOT test the state of the
interrupt mask bit nor does it indicate whether an interrupt is pending. All it
does is indicate whether the INT line is high.

Source
Form(s): BIH dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
I ndex Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

4 3 2 2F

168

Bil Branch if Interrupt Line is Low Bil
Operation: PC - PC + 0002 + Rei iff I NT = 0

Description: Tests the state of the external interrupt pin and branches iff it is low. See
BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: In systems not using interrupts, this instruction and BIH can be used to
create an extra 1/0 input bit. This instruction does NOT test the state of the
interrupt mask bit nor does it indicate whether an interrupt is pending. All it
does is indicate whether the INT line is low.

Source
Form(s): Bil dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 2E

169

BIT Bit Test Memory with Accumulator BIT
Operation: ACCA. M

Description: Performs the logical AND comparison of the contents of ACCA and the
contents of M and modifies the condition codes accordingly. The contents
of ACCA and M are unchanged.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
C:

Set if the most significant bit of the result of the AND is set; cleared
otherwise.
Set if all bits of the result of the AND are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

Source
Form(s): BIT P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A5
Direct 4 3 2 B5
Extended 5 4 3 C5
Indexed 0 Offset 4 3 1 F5
Indexed 1·Byte 5 4 2 E5
Indexed 2·Byte 6 5 3 D5

170

BlO Branch if Lower BlO
Operation: PC - PC + 0002 + Rei iff C = 1

Description: Following a compare, BlO will branch iff the register was lower than the
memory location. See BRA instruction for further details of the execution
of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BCS

Source
Form(s): BlO dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
I ndex Reg ister
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 25

171

BLS Branch if Lower or Same BLS
Operation: PC - PC + 0002 + Rei iff (C v Z) = 1

i.e., if ACCA ~ M (unsigned binary numbers)

Description: Causes a branch if (C is set) OR (Z is set). If the BLS instruction is executed
immediately after execution of either of the instructions CMP or SUB, the
branch will occur if and only if the unsigned binary number represented by
the minuend (Le., ACCA) was less than or equal to the unsigned binary
number represented by the subtrahend (Le., M). See BRA instruction for fur­
ther details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BLS dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 23

172

BMC Branch if Interrupt Mask is Clear BMC
Operation: PC - PC + 0002 + Rei iff I = 0

Description: Tests the state of the I bit and causes a branch iff I is clear. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: This instruction does NOT branch on the condition of the external interrupt
line. The test is performed only on the interrupt mask bit.

Source
Form(s): BMC dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

4 3 2 2C

173

BMI Branch if Minus BMI
Operation: PC - PC + 0002 + Rei iff N = 1

Description: Tests the state of the N bit and causes a branch iff N is set. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s) BMI dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 2B

174

BMS Branch if Interrupt Mask Bit is Set BMS
Operation: PC - PC + 0002 + Rei iff I = 1

Description: Tests the state of the I bit and causes a branch iff I is set. See BRA instruc­
tion for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: This instruction does NOT branch on the condition of the external interrupt
line. The test is performed only on the interrupt mask bit.

Source
Form(s): BMS dd

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4

175

3 2 2D

BNE Branch if Not Equal BNE
Operation: PC - PC + 0002 + Rei iff Z = 0

Description: Tests the state of the Z bit and causes a branch iff Z is clear. Following a
compare or subtract instruction BNE will cause a branch if the arguments
were different. See BRA instruction for further details of the execution of
the branch.

Condition
Codes: Not affected.

Source
Form(s): BNE dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 26

176

BPL Branch if Plus BPL
Operation: PC - PC + 0002 + Rei iff N = 0

Description: Tests the state of the N bit and causes a branch iff N is clear. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BPL dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 2A

177

BRA Branch Always BRA
Operation: PC - PC + 0002 + Rei

Description: Unconditional branch to the address given by the foregoing formula, in
which Rei is the relative address stored as a twos complement number in
the second byte of machine code corresponding to the branch instruction.

Condition

NOTE: The source program specifies the destination of any branch instruc­
tion by its absolute address, either as a numerical value or as a symbol or
expression which can be evaluated by the assembler. The assembler ob­
tains the relative address Rei from the absolute address and the current
value of the program counter.

Codes: Not affected.

Source
Form(s): BRA dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 20

178

BRCLR n Branch if Bit n is Clear BRCLR n
Operation: PC - PC + 0003 + Rei iff bit n of M is zero

Description: Tests bit n (n = 0, 7) of location M and branches iff the bit is clear.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Set if Mn = 1; cleared otherwise.

Boolean Formulae for Condition Codes:
C = Mn

Comments: The C bit is set to the state of the bit tested. Used with an appropriate
rotate instruction, this instruction is an easy way to do serial to parallel
conversions.

Source
Form(s): BRCLR n, DR, dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

10 5 3 01 + 2-n

179

BRN Branch Never BRN
Description: Never branches. Branch never is a 2 byte 4 cycle NOP.

Condition
Codes: Not affected.

Comments: BRN is included here to demonstrate the nature of branches on the M6805
HMOS/M146805 CMOS Family. Each branch is matched with an inverse
that varies only in the least significant bit of the opcode. BRN is the inverse
of BRA. This instruction may have some use during program debugging.

Source
Form(s): BRN dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
I ndex Reg ister
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4 3 2 21

180

BRSET n Branch if Bit n is Set BRSET n
Operation: PC - PC + 0003 + Rei iff Bit n of M is not zero

Description: Tests bit n (n = 0, 7) of location M and branches iff the bit is set.

Condition
Codes: H:

I:
N:
Z:
c:

Not affected.
Not affected.
Not affected.
Not affected.
Set if Mn = 1; cleared otherwise. I

Boolean Formulae for Condition Codes:
C = Mn

Comments: The C bit is set to the state of the bit tested. Used with an appropriate
rotate instruction, this instruction is an easy way to provide serial to
parallel conversions.

Source
Form(s): BRSET n, DR, dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

10 5 3

181

BSEln Set Bit in Memory BSEln
Operation: M n - 1

Description: Set bit n (n = 0, 7) in location M. All other bits in M are unaffected.

Condition
Codes: Not affected.

Source
Form(s): BSET n, DR

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

7 5 2

182

BSR Branch to Subroutine

Operation: PC - PC + 0002
(SP) - PCl; SP - SP - 0001
(SP) - PCH; SP - SP - 0001
PC - PC + Rei

BSR

Description: The program counter is incremented by 2. The least (low) significant byte of
the program counter contents is pushed onto the stack. The stack pointer
is then decremented (by one). The most (high) significant byte of the pro­
gram counter contents is then pushed onto the stack. Unused bits in the
program counter high byte are stored as 1 s on the stack. The stack pointer
is again decremented (by one). A branch then occurs to the location
specified by the relative offset. See the BRA instruction for details of the
branch execution.

Condition
Codes: Not affected.

Source
Form(s): BSR dd

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

8 6 2 AD

183

CLC Clear Carry Bit CLC
Operation: C bit - 0-

Description: Clears the carry bit in the processor condition code register.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Cleared.

Boolean Formulae for Condition Codes:
C=O

Source
Form(s): CLC

Cycles
Addressing Mode HMOS CMOS

Inherent 2 2
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

184

Bytes Opcode

1 98

Cli Clear Interrupt Mask Bit Cli
Operation: I bit - 0

Description: Clears the interrupt mask bit in the processor condition code register. This
enables the microprocessor to service interrupts. Interrupts that were
pending while the I bit was set will now begin to have effect.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Cleared
Not affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:
1=0

Source
Form(s): CLI

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 2 9A
Relative
Accumulator
Index Registers
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

185

CLR
Operation: X - 00 or,

ACCA - 00 or,
M - 00

Clear

Description: The contents of ACCA, X, or M are replaced with zeroes.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Cleared.
Set.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = 0
Z = 1

CLR Q, CLRA, CLRX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 1 4F
Index Register 4 3 1 5F
Immediate
Direct 6 5 2 3F
Extended
Indexed 0 Offset 6 5 1 7F
Indexed 1-Byte 7 6 2 6F
Indexed 2-Byte

186

CLR

CMP Compare Accumulator with Memory CMP
Operation: ACCA - M

Description: Compares the contents of ACCA and the contents of M and sets the condi·
tion codes, which may then be used for controlling the conditional
branches. Both operands are unaffected.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:

C:

Set if the most significant bit of the result of the subtraction is set;
cleared otherwise.
Set if all bits of the result of the subtraction are cleared; cleared
otherwise.
Set if the absolute value of the contents of memory is larger than
the absolute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = A7.M7vM7.R7vR7.A7

CMPP

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A1
Direct 4 3 2 B1
Extended 5 4 3 C1
Indexed 0 Offset 4 3 1 F1
Indexed 1·Byte 5 4 2 E1
Indexed 2·Byte 6 5 3 01

187

COM Complement

Operation: X - -X = $FF - X or,
ACCA - - ACCA = $FF - ACCA or,
M - -M = $FF - M

COM

Description: Replaces the contents of ACCA, X, or M with the ones complement. Each
bit of the operand is replaced with the complement of that bit.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = 1

COM Q, COMA, COMX

Cycles .
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 43
Index Register 4 3 53
Immediate
Direct 6 5 2 33
Extended
Indexed 0 Offset 6 5 1 73
Indexed 1·Byte 7 6 2 63
Indexed 2·Byte

188

CPX Compare Index Register with Memory CPX
Operation: X - M

Description: Compares the contents of X to the contents of M and sets the condition
codes, which may then be used for controlling the conditional branches.
Both operands are unaffected.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:

C:

Set if the most significant bit of the result of the subtraction is set;
cleared otherwise.
Set if all bits of the result of the subtraction are cleared; cleared
otherwise.
Set if the absolute value of the contents of memory is larger than
the absolute value of the index register; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.RS.R4.R3.R2.R1.'RQ
C = X7.M7vM7.R7vR7.X7

CPX P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A3
Direct 4 3 2 B3
Extended S 4 3 C3
Indexed 0 Offset 4 3 1 F3
Indexed 1-Byte S 4 2 E3
Indexed 2-Byte 6 S 3 D3

189

DEC
Operation: X - X - 01 or,

ACCA - ACCA - 01 or,
M - M-01

Decrement DEC

Description: Subtract one from the contents of ACCA, X, or M. The Nand Z bits are set or
reset according to the result of this operation. The C bit is not affected by
this operation.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

DEC Q, DECA, DECX, (DEX is recognized by the Assembler as DECX)

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator 4 3 1 4A
Index Register 4 3 1 5A
Immediate
Direct 6 5 2 3A
Extended
Indexed 0 Offset 6 5 1 7A
Indexed 1·Byte 7 6 2 6A
Indexed 2·Byte

190

EOR Exclusive Or Memory with Accumulator EOR
Operation: ACCA - ACCA E9 M

Description: Performs the logical EXCLUSIVE OR between the contents of ACCA and
the contents of M, and places the result in ACCA. Each bit of ACCA after
the operation will be the logical EXCLUSIVE OR of the corresponding bit of
M and ACCA before the operation.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

EOR P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A8
Direct 4 3 2 B8
Extended 5 4 3 C8
Indexed 0 Offset 4 3 1 F8
Indexed 1-Byte 5 4 2 E8
Indexed 2-Byte 6 5 3 08

191

INC
Operation: X - X + 01 or,

ACCA - ACCA + 01 or,
M - M + 01

Increment INC

Description: Add one to the contents of ACCA, X, or M. The Nand Z bits are set or reset
according to the result of this operation. The C bit is not affected by this
operation.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

INC Q, INCA, INCX (INX is recognized by the Assembler as INCX)

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator 4 3 4C
Index Register 4 3 5C
Immediate
Direct 6 5 2 3C
Extended
Indexed 0 Offset 6 5 1 7C
Indexed 1·Byte 7 6 2 6C
Indexed 2·Byte

192

JMP Jump JMP
Operation: PC - effective address

Description: A jump occurs to the instruction stored at the effective address. The effec·
tive address is obtained according to the rules for EXTended, DIRect or IN·
Dexed addressing.

Condition
Codes: Not affected.

Source
Form(s): J M P P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 3 2 2 BC
Extended 4 3 3 CC
Indexed 0 Offset 3 2 1 FC
Indexed 1·Byte 4 3 2 EC
Indexed 2·Byte 5 4 3 DC

193

JSR Jump to Subroutine

Operation: PC - PC + N
(SP) - PCl; SP - SP - 0001
(SP) - PCH ; SP - SP - 0001
PC - effective address

JSR

Description: The program counter is incremented by N (N = 1, 2, or 3 depending on the
addressing mode), and is then pushed onto the stack (least significant byte
first). Unused bits in the program counter high byte are stored as 1 s on the
stack. The stack pointer points to the next empty location on the stack. A
jump occurs to the instruction stored at the effective address. The effec­
tive address is obtained according to the rules for EXTended, DIRect, or
INDexed addressing.

Condition
Codes: Not affected.

Source
Form(s): JSR P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 7 5 2 BD
Extended 8 6 3 CD
Indexed 0 Offset 7 5 1 FD
Indexed 1-Byte 8 6 2 ED
Indexed 2-Byte 9 7 3 DD

194

LOA Load Accumulator from Memory LOA
Operation: ACCA - M

Description: Loads the contents of memory into the accumulator. The condition codes
are set according to the data.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
C:

Set if the most significant bit of the accumulator is set; cleared
otherwise.
Set if all bits of the accumulator are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R5.R4.R3.R2.R1.RO

LOA P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A6
Direct 4 3 2 B6
Extended 5 4 3 C6
Indexed 0 Offset 4 3 1 F6
Indexed 1-Byte 5 4 2 E6
Indexed 2-Byte 6 5 3 06

195

LOX Load Index Register from Memory LOX
Operation: X - M

Description: Loads the contents of memory into the index register. The condition codes
are set according to the data.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
c:

Set if the most significant bit of the index register is set; cleared
otherwise.
Set if all bits of the index register are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

LDX P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AE
Direct 4 3 2 BE
Extended 5 4 3 CE
Indexed 0 Offset 4 3 1 FE
Indexed 1·Byte 5 4 2 EE
Indexed 2·Byte 6 5 3 DE

196

LSL Logical Shift Left LSL
Operation: ~_b_7 1 --'-----L---'_~-'-...&..I_bo r-o

Description: Shifts all bits of the ACCA, X or M one place to the left. Bit 0 is loaded with a
zero. The C bit is loaded from the most significant bit of ACCA, X or M.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·R5.R4.R3.R2.R1.RO
C = b7 (before operation)

Comments: Same as ASL

Source
Form(s): LSL Q, LSLA, LSLX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 48
Index Register 4 3 58
Immediate
Direct 6 5 2 38
Extended
Indexed 0 Offset 6 5 1 78
Indexed 1-Byte 7 6 2 68
Indexed 2-Byte

197

LSR Logical Shift Right LSR
Operation: o--+l b_7 1----L.----' ___ ..&...--'----""I_bO ~
Description: Shifts all bits of ACCA, X or M one place to the right. Bit 7 is loaded with a

zero. Bit 0 is loaded into the C bit.

Condition
Codes: H: Not affected.

Not affected.
Cleared.

I:
N:
Z:
C:

Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = 0
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = bO (before operation)

LSR Q, LSRA, LSRX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 44
Index Register 4 3 54
Immediate
Direct 6 5 2 34
Extended
Indexed 0 Offset 6 5 1 74
Indexed 1-Byte 7 6 2 64
Indexed 2-Byte

198

NEG Negate NEG
Operation: X - - X (Le., 00 - X) or,

ACCA - - ACCA (Le., 00 - ACCA) or,
M - - M (Le., 00 - M)

Description: Replaces the contents of ACCA, X or M with its twos complement. Note
that $80 is left unchanged.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there would be a borrow in the implied subtraction from zero;
the C bit will be set in all cases except when the contents of ACCA,
X or M before the NEG is 00.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = R7vR6vR5vR4vR3vR2vR1vRO

NEG Q, NEGA, NEGX

Cycles
. Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 1 40
Index Register 4 3 1 50
Immediate
Direct 6 5 2 30
Extended
Indexed 0 Offset 6 5 1 70
Indexed 1·Byte 7 6 2 60
Indexed 2·Byte

199

NOP No Operation NOP
Description: This is a single-byte instruction which causes only the program counter to

be incremented. No other registers are changed.

Condition
Codes: Not affected.

Source
Form(s): NOP

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 2 9D
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

200

ORA Inclusive OR ORA
Operation: ACCA - ACCA v M

Description: Performs logical OR between the contents of ACCA and the contents of M
and places the result in ACCA. Each bit of ACCA after the operation will be
the logical (inclusive) OR result of the corresponding bits of M and ACCA
before the operation.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6·R5·R4.R3.R2.R1.RO

ORA P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AA
Direct 4 3 2 BA
Extended 5 4 3 CA
Indexed 0 Offset 4 3 1 FA
Indexed 1-Byte 5 4 2 EA
Indexed 2-Byte 6 5 3 DA

201

ROL Rotate Left thru Carry ROL
Operation: ~ b_7.&..1----I1o...o-....a....----i.---,-_&.....-.... I_b0--lr--0

Description: Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the most significant bit of ACCA, X, or M.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6.R5.R4.R3.R2.R1.RO
C = b7 (before operation)

ROL Q, ROLA, ROLX
Cycles Addressing Mode

HMOS CMOS
Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed 1-Byte 7 6
Indexed 2-Byte

202

Bytes Opcode

49
59

2 39

1 79
2 69

ROR Rotate Right Thru Carry ROR
Operation: 0--1l....b_7_1-----._"""---....I....-.......... ---'-_____ I b_0 ~
Description: Shifts all bits of ACCA, X, or M one place to the right. Bit 7 is loaded from

the C bit. Bit 0 is loaded into the C bit.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or
M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = bO (before operation)

ROR Q, RORA, RORX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 46
Index Register 4 3 56
Immediate
Direct 6 5 2 36
Extended
Indexed 0 Offset 6 5 1 76
Indexed 1·Byte 7 6 2 66
Indexed 2·Byte

203

RSP Reset Stack Pointer RSP
Operation: SP - $7F

Description: Resets the stack pointer to the top of the stack.

Condition
Codes: Not affected.

Source
Form(s): RSP

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 2 9C
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

204

RTI Return from Interrupt

Operation: SP - SP + 0001 ; CC - (SP)
SP - SP + 0001 ; ACCA - (SP)
SP - SP + 0001 ; X - (SP)
SP - SP + 0001 ; PCH - (SP)
SP - SP + 0001 ; PCL - (SP)

RTI

Description: The condition codes, accumulator, index register, and the program counter
are restored according to the state previously saved on the stack. Note that
the interrupt mask bit (I bit) will be reset if and only if the corresponding bit
stored on the stack is zero.

Condition
Codes: Set or cleared according to the first byte pulled from the stack.

Source
Form(s): RTI

Cycles
Addressing Mode HMOS CMOS

Inherent 9 9
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

205

Bytes Opcode

1 80

RTS Return from Subroutine

Operation: SP - SP + 0001 ; PCH - (SP)
SP - SP + 0001 ; PCl - (SP)

RTS

Description: The stack pointer is incremented (by one). The contents of the byte of
memory, pointed to by the stack pointer, are loaded into the high byte of the
program counter. The stack pointer is again incremented (by one). The byte
pOinted to by the stack pointer is loaded into the low byte of the program
counter.

Condition
Codes: Not affected.

Source
Form(s): RTS

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

6 6 1 81

206

SBC Subtract with Carry SBC
Operation: ACCA - ACCA - M - C

Description: Subtracts the contents of M and C from the contents of ACCA, and places
the result in ACCA.

Condition
Codas: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if the absolute value of the contents of memory plus the
previous carry is larger than the absolute value of the accumulator;
cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6·R5·R4·R3.R2.R1.RO
C = A7.M7vM7.R7vR7.A7

SBC P

1 Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A2
Direct 4 3 2 B2
Extended 5 4 3 C2
Indexed 0 Offset 4 3 1 F2
Indexed 1-Byte 5 4 2 E2
Indexed 2-Byte 6 5 3 D2

207

SEC Set Carry Bit

Operation: C bit - 1

Description: Sets the carry bit in the processor condition code register.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Set.

Boolean Formulae for Condition Codes:
C = 1

Source
Form(s): SEC

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 2 99
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

208

SEC

SEI Set Interrupt Mask Bit SEI
Operation: I bit - 1

Description: Sets the interrupt mask bit in the processor condition code register. The
microprocessor is inhibited from servicing interrupts, and will continue
with execution of the instructions of the program until the interrupt mask
bit is cleared.

Condition
Codes: H:

I:
N:
Z:
c:

Not affected.
Set
Not affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:
I = 1

Source
Form(s): SEI

Cycles
Addressing Mode HMOS CMOS

Inherent 2 2
Relative
Accumulator
I ndex Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·8yte
Indexed 2·8yte

209

Bytes Opcode

1 98

STA Store Accumulator in Memory STA
Operation: M - ACCA

Description: Stores the contents of ACCA in memory. The contents of ACCA remain the
same.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
C:

Set if the most significant bit of the accumulator is set; cleared
otherwise.
Set if all bits of the accumulator are clear; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = A7
Z = A7.A6.A5.A4.A3.A2.A1.AO

STA P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 5 4 2 B7
Extended 6 5 3 C7
Indexed 0 Offset 5 4 1 F7
Indexed 1-Byte 6 5 2 E7
Indexed 2-Byte 7 6 3 D7

210

STOP Enable IRQ, Stop Oscillator STOP
Description: Reduces power consumption by eliminating all dynamic power dissipation.

Condition

Results in: (1) timer prescaler to clear, (2) disabling of timer interrupts, (3)
timer interrupt flag bit to clear, (4) external interrupt request enabling, and
(5) inhibiting of oscillator.

When RESET or IRQ input goes low: (1) oscillator is enabled, (2) a delay of
1920 instruction cycles allows oscillator to stabilize, (3) the interrupt re­
quest vector is fetched, and (4) service routine is executed.

External interrupts are enabled following the RTI command.

Codes: H: Not affected.
Cleared.

Source
Form(s):

I:
N:
Z:
c:

STOP

Not affected.
Not affected.
Not affected.

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

2 BE

211

STX Store Index Register in Memory STX
. Operation: M - X

Description: Stores the contents of X in memory. The contents of X remain the same.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
C:

Set if the most significant bit of the index register is set; cleared
otherwise.
Set if all bits of the index register are clear; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = X7
Z = X7.X6.X5.X4.X3.X2.X1.XO

STX P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 5 4 2 BF
Extended 6 5 3 CF
Indexed 0 Offset 5 4 1 FF
Indexed 1-Byte 6 5 2 EF
Indexed 2-Byte 7 6 3 DF

212

SUB Subtract SUB
Operation: ACCA - ACCA - M

Description: Subtracts the contents of M from the contents of ACCA and places the
result in ACCA.

Condition
Codes: H: Not affected.

Not affected. I:
N:
Z:
C:

Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the results are cleared; cleared otherwise.
Set if the absolute value of the contents of memory are larger than
the absolute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO
C = A7.M7vR7.R7vR7.A7

SUB P

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AO
Direct 4 3 2 BO
Extended 5 4 3 CO
Indexed 0 Offset 4 3 1 FO
Indexed 1-Byte 5 4 2 EO
Indexed 2-Byte 6 5 3 DO

213

SWI Software Interrupt SWI
Operation: PC - PC + 0001

(SP) - PCl ; SP - SP - 0001
(SP) - PCH ; SP - SP - 0001
(SP) - X; SP - SP - 0001
(SP) - ACCA ; SP - SP - 0001
(SP) - CC ; SP - SP - 0001
I bit - 1
PCH - n - 0003
PCl - n - 0002

Description: The program counter is incremented (by one). The program counter, index
register and accumulator are pushed onto the stack. The condition code
register bits are then pushed onto the stack with bits H, I, N, Z, and C going
into bit positions 4 through 0 with the top three bits (7, 6 and 5) containing
ones. The stack pointer is decremented by one after each byte is stored on
the stack.

Condition

The interrupt mask bit is then set. The program counter is then loaded with
the address stored in the software interrupt vector located at memory loca­
tions n - 0002 and n - 0003, where n is the address corresponding to a
high state on all lines of the address bus.

Codes: H: Not affected.
Set. I:

N:
Z:
C:

Not affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:

Caution:

Source
Form(s):

I = 1

This instruction is used by Motorola in some of its software products and
may be unavailable for general use.

SWI

214

SWI Software Interrupt
(Continued)

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1·Byte
Indexed 2·Byte

11 10 83

215

SWI

TAX Transfer Accumulator to Index Register TAX
Operation: X - ACCA

Description: Loads the index register with the contents of the accumulator. The con­
tents of the accumulator are unchanged.

Condition
Codes: Not affected.

Source
Form(s): TAX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator
I ndex Reg ister
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

2 2 1 97

216

TST
Operation: X - 00 or,

ACCA - 00 or,
M - 0

Test for Negative or Zero TST

Description: Sets the condition codes Nand Z according to the contents of ACCA, X, or
M.

Condition
Codes: H: Not affected.

Not affected. I:
N:

Z:
C:

Set if the most significant bit of the contents of ACCA, X, or M is
set; cleared otherwise.
Set if all bits of ACCA, X, or M are clear; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = M7
Z = M7.M6.M5.M4.M3·M2.M1.MO

TST Q, TSTA, TSTX

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent
Relative
Accumulator 4 3 1 4D
Index Register 4 3 1 5D
Immediate
Direct 6 4 2 3D
Extended
Indexed 0 Offset 6 4 1 7D
Indexed 1-Byte 7 5 2 6D
Indexed 2-Byte

217

TXA Transfer Index Register to Accumulator TXA
Operation: ACCA - X

Description: Loads the accumulator with the contents of the index register. The con­
tents of the index register are unchanged.

Condition
Codes: Not affected.

Source
Form(s): TXA

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 2 9F
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

218

WAIT Enable Interrupt, Stop Processor WAIT
Description: Reduces power consumption by eliminating dynamic power dissipation in

all circuits except the timer and timer prescaler. Causes enabling of exter­
nal interrupts and stops clocking or processor circuits.

Condition

Timer interrupts may be enabled or disabled by programmer prior to execu­
tion of WAIT.

When RESET or IRQ input goes low, or timer counter reaches zero with
counter interrupt enabled: (1) processor clocks are enabled, and (2) inter­
rupt request, reset, and timer interrupt vectors are fetched.

Interrupts are enabled following the RTI command.

Codes: H: Not affected.
Cleared. I:

N:
Z:
C:

Source

Not affected.
Not affected.
Not affected.

Form(s): WAIT

Cycles
Addressing Mode HMOS CMOS Bytes Opcode

Inherent 2 8F
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

219

APPENDIX D
INSTRUCTION SET

ALPHABETICAL LISTING

This appendix provides an alphabetical listing of the mnemonic instruction set, together
with addressing modes used and the effects on the condition code register.

Addressing Modes Condition Codes

Bit Bit
Indexed Indexed Indexed Set/ Test &

Mnemonic Inherent Immediate Direct Extended Relative (No Offset) (8 Bits) (16 Bits) Clear Branch H I N Z C

ADC X X X X X X A · A A A

ADD X X X X X X A · A A A

AND X X X X X X · · A A ·
ASl X X X X · · A A A

ASR X X X X · · A A A

BCC X · · · · ·
BClR X · · · · ·
BCS X · · · · · BEQ X · · · · ·
BHCC X · · · · ·
BHCS X · · · · ·
BHI X · · · · ·
BHS X · · · · ·
BIH X · · · · ·
Bil X · · · · ·
BIT X X X X X X · · A A ·
BlO X · · · · ·
BlS X · · · · · BMC X · · · · ·
BMI X · · · · · BMS X · · · · ·
BNE X · · · · ·
BPl X · · · · ·
BRA X · · · · · BRN X · · · · · BRClR X · · · · A

BRSET X · · · · A

BSET X · · · · · BSR X · · · · · ClC X · · · · 0

CLI X · 0 · · · ClR X X X X · · 0 1 ·
CMP X X X X X X · · A A A

COM X X X X · · A A 1

CPX X X X X X X · · A A A

221

Mnemonic Inherent Immediate Direct Extended

DEC X X

EOR X X

INC X X

JMP X

JSR X

LDA X X

LDX X X

LSL X X

LSR X X

NEQ X X

NOP X

ORA X X

ROL X X

RSP X

RTI X

RTS X

SBC X X

SEC X

SEI X

STA X

STX X

STOP X

SUB X X

SWI X
TAX X

TST X X

TXA X

WAIT X

Condition Code Symbols
H Half Carry (From Bit 3)
I Interrupt Mask
N Negative (Sign Bit)
Z Zero
C Carry/Borrow
A Test and Set If True, Cleared Otherwise

Not Affected
Load CC Register From Stack

1 Set
o Clear

X

X

X

X

X

X

X

X

X

X

Addressing Modes

Indexed Indexed
Relative (No Offset) (8 Bits)

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

222

Condition Codes

Bit Bit
Indexed Setl Test &
(16 Bits) Clear Branch H I N Z C

• · A A · X • · A A · · · A A · X · · · · · X · • · · · X · · A A · X · · A A · • · A A A

· · 0 A A

· · A A A

· · • · · X · · A A · · · A A A

· · · · · ? ? ? ? ?

· · · · • X • · A A A

· · · · 1

· 1 · · · X · · A A •
X · · A A •

· 1 · · • X · · A A A

· 1 · • · · · · · · · · A A · · · · · · · 1 · · ·

APPENDIX E
INSTRUCTION SET

FUNCTIONAL LISTING

This instruction set contains a list of functions which are categorized as to the type of in­
struction. It provides five different categories of instructions and provides the following
information for each function: (1) corresponding mnemonic, (2) addressing mode, (3) op
code, (4) number of bytes, and (5) number of cycles.

Branch Instructions

Relative Addressing Mode

Function Mnemonic
Op # HMOS/CMOS

Code Bytes # Of Cycles

Branch Always BRA 20 2 4/3

Branch Never BRN 21 2 4/3

Branch IFF Higher BHI 22 2 4/3

Branch IFF Lower or Same BLS 23 2 4/3

Branch IFF Carry Clear BCC 24 2 4/3

(Branch IFF Higher or Same) (BHS) 24 2 4/3

Branch IFF Carry Set BCS 25 2 4/3

(Branch IFF Lower! (BLO) 25 2 4/3

Branch IFF Not Equal BNE 26 2 4/3

Branch IFF Equal BEQ 27 2 4/3

Branch IFF Half Carry Clear BHCC 28 2 4/3

Branch IFF Half Carry Set BHCS 29 2 4/3

Branch IFF Plus BPL 2A 2 4/3

Branch IFF Minus BMI 2B 2 4/3

Branch IFF Interrupt Mask Bit IS Clear BMC 2C 2 4/3

Branch IFF Interrupt Mask Bit IS Set BMS 2D 2 4/3

Branch IFF Interrupt Line IS Low BIL 2E 2 4/3

Branch IFF Interrupt Line is High BIH 2F 2 4/3

Branch to Subroutine BSR AD 2 8/6

223

Bit Manipulation Instructions

Addressing Modes

Bit Set/ Clear Bit Test and Branch

Function Mnemonic
Op I HMOS/CMOS Op # HMOS/CMOS

Code Bytes lof Cycles Code Bytes I of Cycles

Branch IFF Bit n IS set BRSET n (n = 0 7) - - - 2-n 3 10/5

Branch IFF Bit n is clear BRClR n (n = 0 7) - - - 01+2-n 3 10/5

Set Bit n BSET n (n = 0 7) 10 + 2 - n 2 7/5 - - -
Clear bit n BClR n (n = 0 7) 11 + 2 - n 2 7/5 - - -

Control Instructions

Inherent

Function Mnemonic
Op I HMOS/CMOS

Code Bytes I of Cycles

Transfer A to X TAX 97 1 2/2

Transfer X to A TXA 9F 1 2/2

Set Carry Bit SEC 99 1 2/2

Clear Carry Bit ClC 98 1 2/2

Set Interrupt Mask Bit SEI 9B 1 2/2

Clear Interrupt Mask Bit CLI 9A 1 2/2

Software Interrupt SWI 83 1 11/10

Return from Subroutine RTS 81 1 6/6

Return from Interrupt RTI 80 1 9/9

Reset Stack POinter RSP 9C 1 2/2

No-Operation NOP 9D 1 2/2

Enable IRO, Stop OSCillator STOP 8E 1 -/2

Enable Interrupt, Stop Processor WAIT 8F 1 -/2

224

I\)
I\)
01

Read/ModifylWrite Instructions

Addressing Modes

Inherent (A) Inherent (X) Direct
Indexed Indexed

(No Offset) (S-Bit Offset)

Function Mnem.
Op # Cycles Op # Cycles Op # Cycles Op # Cycles Op # Cycles

Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note)

Increment INC 4C 1 4/3 5C 1 4/3 3C 2 6/5 7C 1 6/5 6C 2 7/6

Decrement DEC 4A 1 4/3 5A 1 4/3 3A 2 6/5 7A 1 6/5 6A 2 7/6

Clear CLR 4F 1 4/3 5F 1 4/3 3F 2 6/5 7F 1 6/5 6F 2 7/6

Complement COM 43 1 4/3 53 1 4/3 33 2 6/5 73 1 6/5 63 2 7/6

Negate (2's complement) NEG 40 1 4/3 50 1 4/3 30 2 6/5 70 1 6/5 60 2 7/6

Rotate Left Thru Carry ROL 49 1 4/3 59 1 4/3 39 2 6/5 79 1 6/5 69 2 7/6

Rotate Right Thru Carry ROR 46 1 4/3 56 1 4/3 36 2 6/5 76 1 6/5 66 2 7/6

Logical Shift Left LSL 48 1 4/3 58 1 4/3 38 2 6/5 78 1 6/5 68 2 7/6

Logical Shift Right LSR 44 1 4/3 54 1 4/3 34 2 6/5 74 1 6/5 64 2 7/6

ArithmetiC Shift Right ASR 47 1 4/3 57 1 4/3 37 2 6/5 77 1 6/5 67 2 7/6

Test for Negative or Zero TST 40 1 4/3 50 1 4/3 30 2 6/4 70 1 6/4 60 2 7/5

NOTE: The cycles column actually shows the number of HMOS/CMOS cycles (e g., 4/3 indicates 4 HMOS cycles or 3 CMOS cyclesl.

I\)
I\)
C»

Register/Memory Instructions

Addressing Modes

Immediate Direct Extended Indexed Indexed
(No Offset) (S-Bit Offset)

Function Mnem.
Op # Cycles Op # Cycles Op # Cycles Op # Cycles Op # Cycles

Code Bytes (see note) Code Bvtes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note)

Load A from Memory LOA A6 2 2/2 B6 2 4/3 C6 3 5/4 F6 1 4/3 E6 2 5/4

Load X from Memory LOX AE 2 2/2 BE 2 4/3 CE 3 5/4 FE 1 4/3 EE 2 5/4

Store A In Me:mory STA - - - B7 2 5/4 C7 3 6/5 F7 1 5/4 E7 2 6/5

Store X In Memory ST.X - - - BF 2 5/4 CF 3 6/5 FF 1 5/4 EF 2 6/5

Add Memory to A ADD AB 2 212 BB 2 4/3 CB 3 5/4 FB 1 4/3 EB 2 5/4

Add Memory and
AOC A9 2 2/2 B9 2 4/3 C9 3 5/4 F9 1 4/3 E9 2 5/4

Carry to A

Subtract Memory SUB AO 2 2/2 BO 2 4/3 SO 3 5/4 FO 1 4/3 EO 2 5/4

Subtract Memory from
SBC A2 2 2/2 B2 2 4/3 C2 3 5/4 F2 1 4/3 E2 2 5/4

A With Borrow

AND Memory to A AND A4 2 2/2 B4 2 4/3 C4 3 5/4 F4 1 4/3 E4 2 5/4

OR Memory With A ORA AA 2 2/2 BA 2 4/3 CA 3 5/4 FA 1 4/3 EA 2 5/4

ExclUSive OR Memory
EOR A8 2 2/2 B8 2 4/3 C8 3 5/4 F8 1 4/3 E8 2 5/4

With A

ArithmetiC Compare A
CMP A1 2 2/2 B1 2 4/3 C1 3 5/4 F1 1 4/3 E1 2 5/4

With Memory

ArithmetiC Compare X
CPX A3 2 2/2 B3 2 4/3 C3 3 5/4 F3 1 4/3 E3 2 5/4

With Memory

Bit Test Memory With
BIT A5 2 2/2 B5 2 4/3 C5 3 5/4 F5 1 4/3 E5 2 5/4

A (Logical Compare)

Jump Unconditional JMP - - - BC 2 3/2 CC 3 4/3 FC 1 3/2 EC 2 4/3

Jump to Subroutine JSR - - - SO 2 7/5 CD 3 8/6 FO 1 7/5 ED 2 8/6
NOTE. The cycles column actually shows the number of HMOS/CMOS cycles (e.g., 4/3 indicates 4 HMOS cycles or 3 CMOS cycles),

Indexed
(1S-Bit Offset)

Op # Cycles
Code Bytes (see note)

06 3 6/5

DE 3 6/5

07 3 7/6

OF 3 7/6

DB 3 6/5

09 3 6/5

DO 3 6/5

02 3 6/5

04 3 6/5

OA 3 6/5

08 3 6/5

01 3 6/5

03 3 6/5

05 3 6/5

DC 3 5/4

DD 3 9/7

APPENDIX F
INSTRUCTION SET

NUMERICAL LISTING

This appendix provides a numerical listing of the operation codes used with the M6805
HMOS/M146805 CMOS Family. In addition, the corresponding mnemonic, mode, number
of MCU/MPU cycles required to complete the instruction, and the number of bytes con­
tained in the instruction are also included. Symbols and abbreviations used in the
appendix are listed below.

Miscellaneous Symbols
OP Operations Code (Hexadecimal)

Number of MPU Cycles
Number of Program Bytes
MNEM Mnemonic Abbreviation

Abbreviations for Address Modes
INH Inherent
A Accumulator
X Index Register
IMM Immediate
DIR Direct
REL Relative
BSC Bit Set/Clear
BTB Bit Test and Branch
IX Indexed (No Offset)
IX1 Indexed, 1-Byte (8-Bit) Offset
IX2 Indexed, 2-Byte (16-Bit) Offset
EXT Extended

227

INSTRUCTION SET NUMERICAL LISTING

OP MNEM MODE HMOS CMOS #
00 BRSETO BTB 10 5 3
01 BRCLRO BTB 10 5 3
02 BRSET1 BTB 10 5 3
03 BRCLR1 BTB 10 5 3
04 BRSET2 BTB 10 5 3
05 BRCLR2 BTB 10 5 3
06 BRSET3 BTB 10 5 3
07 BRCLR3 BTB 10 5 3
08 BRSET4 BTB 10 5 3
09 BRCLR4 BTB 10 5 3
OA BRSET5 BTB 10 5 3
OB BRCLR5 BTB 10 5 3
OC BRSET6 BTB 10 5 3
00 BRCLR6 BTB 10 5 3
OE BRSET7 BTB 10 5 3
OF BRCLR7 BTB 10 5 3
10 BSETO BSC 7 5 2
11 BCLRO BSC 7 5 2
12 BSET1 BSC 7 5 2
13 BCLR1 BSC 7 5 2
14 BSET2 BSC 7 5 2
15 BCLR2 BSC 7 '5 2
16 BSET3 BSC 7 5 2
17 BCLR3 BSC 7 5 2
18 BSET4 BSC 7 5 2
19 BCLR4 BSC 7 5 2
1A BSET5 BSC 7 5 2
1B BCLR5 BSC 7 5 2
1C BSET6 BSC 7 5 2
10 BCLR6 BSC 7 5 2
1E BSET7 BSC 7 5 2
1F BCLR7 BSC 7 5 2
20 BRA REL 4 3 2
21 BRN REL 4 3 2
22 BHI REL 4 3 2
23 BLS REL 4 3 2
24 BCC REL 4 3 2
25 BCS REL 4 3 2
26 BNE REL 4 3 2
27 BEQ REL 4 3 2
28 BHCC REL 4 3 2
29 BHCS REL 4 3 2
2A BPL REL 4 3 2
2B BMI REL 4 3 2
2C BMC REL 4 3 2

228

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP MNEM MODE HMOS CMOS #
2D BMS REL 4 3 2
2E BIL REL 4 3 2
2F BIH REL 4 3 2
30 NEG DIR 6 5 2
33 COM DIR 6 5 2
34 LSR DIR 6 5 2
36 ROR DIR 6 5 2
37 ASR DIR 6 5 2
38 LSL DIR 6 5 2
39 ROL DIR 6 5 2
3A DEC DIR 6 5 2
3C INC DIR 6 5 2
3D TST DIR 6 4 2
3F CLR OIR 6 5 2
40 NEGA INH 4 3 1
43 COMA INH 4 3 1
44 LSRA INH 4 3 1
46 RORA INH 4 3 1
47 ASRA INH 4 3 1
48 LSLA INH 4 3 1
49 ROLA INH 4 3 1
4A DECA INH 4 3 1
4C INCA INH 4 3 1
40 TSTA INH 4 3 1
4F CLRA INH 4 3 1
50 NEGX INH 4 3 1
53 COMX INH 4 3 1
54 LSRX INH 4 3 1
56 RORX INH 4 3 1
57 ASRX INH 4 3 1
58 LSLX INH 4 3 1
59 ROLX INH 4 3 1
5A DECX INH 4 3 1
5C INCX INH 4 3 1
5D TSTX INH 4 3 1
5F CLRX INH 4 3 1
60 NEG IX1 7 6 2
63 COM IX1 7 6 2
64 LSR IX1 7 6 2
66 ROR IX1 7 6 2
67 ASR IX1 7 6 2
68 LSL IX1 7 6 2
69 ROL IX1 7 6 2
6A DEC IX1 7 6 2
6C INC IX1 7 6 2

229

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP MNEM MODE HMOS CMOS #
6D TST IX1 7 5 2
6F CLR IX1 7 6 2
70 NEG IX 6 5 1
73 COM IX 6 5 1
74 LSR IX 6 5 1
76 ROR IX 6 5 1
77 ASR IX 6 5 1
78 LSL IX 6 5 1
79 ROL IX 6 5 1
7A DEC IX 6 5 1
7C INC IX 6 5 1
7D TST IX 6 4 1
7F CLR IX 6 5 1
80 RTI INH 9 9 1
81 RTS INH 6 6 1
83 SWI INH 11 10 1
8E STOP INH 2 1
8F WAIT INH 2 1
97 TAX INH 2 2 1
98 CLC INH 2 2 1
99 SEC INH 2 2 1
9A CLI INH 2 2 1
9B SEI INH 2 2 1
9C RSF INH 2 2 1
9D NOP INH 2 2 1
9F TXA INH 2 2 1
AO SUB IMM 2 2 2
A1 CMP IMM 2 2 2
A2 SBC IMM 2 2 2
A3 CPX IMM 2 2 2
A4 AND IMM 2 2 2
A5 BIT IMM 2 2 2
A6 LDA IMM 2 2 2
A8 EOR IMM 2 2 2
A9 ADC IMM 2 2 2
AA ORA IMM 2 2 2
AB ADD IMM 2 2 2
AD BSR IMM 8 6 2
AE LDX IMM 2 2 2
BO SUB DIR 4 3 2
B1 CMP DIR 4 3 2
B2 SBC DIR 4 3 2
B3 CPX DIR 4 3 2
B4 AND DIR 4 3 2
B5 BIT DIR 4 3 2
B6 LDA DIR 4 3 2

230

INSTRUCTION SET NUMERICAL LISTING (CONTINUED)

OP iviNEivi iviODE HiviOS !""'\
vMUO;) ;;

B7 STA DIR 4 4 2
B8 EOR DIR 4 3 2
B9 ADC DIR 4 3 2
BA ORA DIR 4 3 2
BB ADD DIR 4 3 2
BC JMP DIR 3 3 2
BD JSR DIR 7 5 2
BE LDX DIR 4 3 2
BF STX DIR 5 4 2
CO SUB EXT 5 4 3
C1 CMP EXT 5 4 3
C2 SBC EXT 5 4 3
C3 CPX EXT 5 4 3
C4 AND EXT 5 4 3
C5 BIT EXT 5 4 3
C6 LDA EXT 5 4 3
C7 STA EXT 6 5 3
C8 EOR EXT 5 4 3
C9 ADC EXT 5 4 3
CA ORA EXT 5 4 3
CB ADD EXT 5 4 3
CC JMP EXT 4 4 3
CD JSR EXT 8 6 3
CE LDX EXT 4 4 3
CF STX EXT 5 5 3
DO SUB IX2 6 5 3
D1 CMP IX2 6 5 3
D2 SBC IX2 6 5 3
D3 CPX IX2 6 5 3
D4 AND IX2 6 5 3
D5 BIT IX2 6 5 3
D6 LDA IX2 6 5 3
D7 STA IX2 7 6 3
D8 EOR IX2 6 5 3
D9 ADC IX2 6 5 3
DA ORA IX2 6 5 3
DB ADD IX2 6 5 3
DC JMP IX2 5 5 3
DD JSR IX2 9 7 3
DE LDX IX2 6 5 3
DF STX IX2 7 6 3
EO SUB IX1 5 4 2
E1 CMP IX1 5 4 2
E2 SBC IX1 5 4 2
E3 CPX IX1 5 4 2

231

INSTRUCTION SET NUMERICAL LISTING (CONCLUDED)

OP MNEM MODE HMOS CMOS #
E4 AND IX1 5 4 2
E5 BIT IX1 5 4 2
E6 LDA IX1 5 4 2
E7 STA IX1 6 5 2
E8 EOR IX1 5 4 2
E9 ADC IX1 5 4 2
EA ORA IX1 5 4 2
EB ADD IX1 5 4 2
EC JMP IX1 4 4 2
ED JSR IX1 8 6 2
EE LDX IX1 5 4 2
EF STX IX1 6 5 2
FO SUB IX 4 3 1
F1 CMP IX 4 3 1
F2 SBC IX 4 3 1
F3 CPX IX 4 3 1
F4 AND IX 4 3 1
F5 BIT IX 4 3 1
F6 LDA IX 4 3 1
F7 STA IX 5 4 1
F8 EOR IX 4 3 1
F9 ADC IX 4 3 1
FA ORA IX 4 3 1
FB ADD IX 4 3 1
FC JMP IX 3 3 1
FD JSR IX 7 5 1
FE LDX IX 4 3 1
FF STX IX 5 4 1

232

APPENDIX G
INSTRUCTION SET CYCLE·BY·CYCLE

OPERATION SUMMARY

This appendix provides a detailed description of the cycle-by-cycle operation for each in­
struction. The information is contained in two tables: one for the M146805 CMOS Family
and the other for the M6805 HMOS Family. Each table contains information which in­
cludes the total number of cycles required to execute the instruction, plus a step-by-step
breakdown of each cycle. All of the M6805 HMOS Family and, except for the MC146805E2
Microprocessor Unit (MPU), all of the M146805 CMOS Family are Microcomputer Units
(MCUs). This means that only the MC146805E2 has an external address bus, RIW pin, and
data bus. In all others, these are internal to the MCU and are not connected to any exter­
nal pin(s).

The information contained in these two tables is useful in comparing actual with
expected results, while debugging both software and hardware, during control program
execution. The information is categorized in groups according to the addressing mode
and number of cycles per instructions.

233

Table G1. M146805 CMOS Family Summary of Cycle·by·Cycle Operation

Instructions Cycles Cycle # Address Bus* R/W Data Bus*

INHERENT

ASL ASR CLR COM 1 Opcode Address 1 Opcode
DEC INC LSL LSR 3 2 Opcode Address + 1 1 Opcode Next Instruction
NEG ROL ROR TST 3 Opcode Address + 1 1 Opcode Next Instruction

CLC CLI NOP RSP 2 1 Opcode Address 1 Opcode
SEC SEI TAX TXA 2 Opcode Address + 1 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

RTS 6 3 Stack Pointer 1 Return Address (HI Byte) * * *
4 Stack Pointer + 1 1 Return Address (LO Byte) * * *
5 Stack Pointer + 2 1 Irrelevant Data
6 New Opcode Address 1 New Opcode

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 Stack POinter 0 Return Address (LO Byte)
4 Stack Pointer - 1 0 Return Address (HI Byte)
5 Stack Pointer - 2 0 Contents of Index Register

SWI 10 6 Stack POinter - 3 0 Contents of Accumulator
7 Stack Pointer - 4 0 Contents of CC Register
8 Vector Address $1 FFC* * 1 Address of Interrupt Routine

(HI Byte)
9 Vector Address $1FFD* * 1 Address of Interrupt Routine

(LO Byte)
10 Interrupt Routine Starting 1 Interrupt Routine First Opcode

Address

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 Stack Pointer 1 Irrelevant Data
4 Stack Pointer + 1 1 Contents of CC Register* * *

RTI 9 5 Stack Pointer + 2 1 Contents of Accumulator* * *
6 Stack Pointer + 3 1 Contents of Index Register* * *
7 Stack Pointer + 4 1 Return Address (HI Byte) * * *
8 Stack POinter + 5 1 Return Address (LO Byte) * * *
9 New Opcode Address 1 New Opcode

IMMEDIATE

ADC ADD AND BIT
CMP CPX EOR LDA 2 1 Opcode Address 1 Opcode
LDX ORA SBC SUB 2 Opcode Address + 1 1 Operand Data

BIT SET/CLEAR

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

BSET n 5 3 Address of Operand 1 Operand Data
BCLR n 4 Address of Operand 1 Operand Data

5 Address of Operand 0 Manipulated Data

BIT TEST AND BRANCH

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

BRSET n 5 3 Address of Operand 1 Operand Data
BRCLR n 4 Opcode Address + 2 1 Branch Offset

5 Opcode Address + 2 1 Branch Offset

234

Table G1. M146805 CMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus* R/W Data Bus

RELATIVE

BCC(BHS) BCS(BLO) 1 Opcode Address 1 Opcode
BEG BHCC BHCS BHI 3 2 Opcode Address + 1 1 Branch Offset
BIH Bil BLS BMC BMI 3 Opcode Address + 1 1 Branch Offset
BMS BNE BPL BRA BRN

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Branch Offset
3 Opcode Address + 1 1 Branch Offset

BSR 6 4 Subroutine Starting Address 1 1st Subroutine Opcode
5 Stack Pointer 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (HI Byte)

DIRECT

JMP 2 1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Jump Address

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LOA 3 2 Opcode Address + 1 1 Address of Operand
LOX ORA SBC SUB 3 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

TST 4 3 Address of Operand 1 Operand Data
4 Opcode Address + 2 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
STA 4 2 Opcode Address + 1 1 Address of Operand
STX 3 Opcode Address + 1 1 Address of Operand

4 Address of Operand 0 Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Address of Operand
LSL LSR NEG 5 3 Address of Operand 1 Current Operand Data
ROL ROR 4 Address of Operand 1 Current Operand Data

5 Address of Operand 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Subroutine Address (LO Byte)

JSR 5 3 Subroutine Starting Address 1 1st Subroutine Opcode
4 Stack Pointer 0 Return Address (LO Byte)
5 Stack Pointer - 1 0 Return Address (HI Byte)

EXTENDED

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Jump Address (HI Byte)

3 Opcode Address + 2 1 Jump Address (LO Byte) * *
ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Address of Operand (HI Byte)
EOR LOA lOX 4 3 Opcode Address + 2 1 Address of Operand (LO Byte)
ORA SSC SUB 4 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand (HI Byte)

STA 5 3 Opcode Address + 2 1 Address of Operand (LO Byte)
STX 4 Opcode Address + 2 1 Address of Operand (LO Byte)

5 Address of Operand 0 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Addr of Subroutine (HI Byte)
3 Opcode Address + 2 1 Addr of Subroutine (LO Byte)

JSR 6 4 Subroutine Starting Address 1 1st Subroutine Opcode
5 Stack Pointer 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (HI Byte) * *

235

Table G1. M146805 CMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus* R/W Data Bus

INDEXED, NO-OFFSET

JMP 2 1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LDA 3 2 Opcode Address + 1 1 Opcode Next Instruction
LDX ORA SBC SUB 3 Index Register 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

TST 4 3 Index Register 1 Operand Data
4 Opcode Address + 1 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
STA 2 Opcode Address + 1 1 Opcode Next Instruction
STX 4 3 Opcode Address + 1 1 Opcode Next Instruction

4 Index Register 0 Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Opcode Next Instruction
LSL LSR NEG 5 3 Index Register 1 Current Operand Data
ROLROR 4 Index Register 1 Current Operand Data

5 Index Register 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

JSR 5 3 Index Register 1 1st Subroutine Opcode
4 Stack Pointer 0 Return Address (LO Byte)
5 Stack POinter - 1 0 Return Address (HI Byte)

INDEXED, 8-BIT OFFSET

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Offset

3 Opcode Address + 1 1 Offset

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 4 2 Opcode Address + 1 1 Offset
EOR LDA LDX 3 Opcode Address + 1 1 Offset
ORA SBC SUB 4 Index Register + Offset 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

STA 5 3 Opcode Address + , 1 Offset
STX 4 Opcode Address + 1 1 Offset

5 Index Register + Offset 0 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

TST 5 3 Opcode Address + 1 1 Offset
4 Index Register + Offset 1 Operand Data
5 Opcode Address + 2 1 Opcode Next Instruction

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Offset
LSL LSR NEG 6 3 Opcode Address + 1 1 Offset
ROL ROR 4 Index Register + Offset 1 Current Operand Data

5 I ndex Register + Offset 1 Current Operand Data
6 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

JSR 6 3 Opcode Address + 1 1 Offset
4 Index Register + Offset 1 1st Subroutine Opcode
5 Stack POinter 0 Return Address (LO Byte)
6 Stack Pointer - 1 0 Return Address (HI Byte) * *

236

Table G1. M146805 CMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus* R/W Data Bus

INDEXED, 16-OIT OFFSET

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset (HI Byte)

JMP 4 3 Opcode Address + 2 1 Offset (LO Byte)
4 Opcode Address + 2 1 Offset (LO Byte)

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Offset (HI Byte)
EOR LOA LDX 5 3 Opcode Address + 2 1 Offset (LO Byte)
ORA SBC SUB 4 Opcode Address + 2 1 Offset (LO Byte)

5 Index Register + Offset 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset (HI Byte)

STA 6 3 Opcode Address + 2 1 Offset (LO Byte)
STX 4 Opcode Address + 2 1 Offset (LO Byte)

5 Opcode Address + 2 1 Offset (LO Byte)
6 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset (HI Byte)
3 Opcode Address + 2 1 Offset (LO Byte)

JSR 7 4 Opcode Address + 2 1 Offset (LO Byte)
5 Index Register + Offset 1 1st Subroutine Opcode
6 Stack POinter 0 Return Address (LO Byte)
7 Stack POinter - 1 0 Return Address (HI Byte) * *

237

Table G1. M14680S·CMOS Family Summary of Cycle·by·Cycle Operation (Concluded)

RESET AND INTERRUPT

Instructions Cycles Cycle # Address Bus* Reset R/W Data Bus*

$1FFE* * 0 1 Irrelevant Data
$1FFE* * 0 1 Irrelevant Data

1 $1FFE** 1 1 Irrelevant Data
Hardware Reset 5 2 $1FFE** 1 1 Irrelevant Data

3 $1FFE* * 1 1 Vector (HI Byte)
4 $1FFF* * 1 1 Vector (LO Byte)
5 Reset Vector 1 1 Opcode

1 $1FFE 1 1 Irrelevant Data

· • · · · • · · · · • • · · · Power on Reset 1922 1919 $1 FFE* * 1 1 Irrelevant Data
1920 $1FFE* * 1 1 Vector (HI Byte)
1921 $1FFF* * 1 1 Vector (LO Byte)
1922 Reset Vector 1 1 Opcode

HARDVVAREINTERRUPTS

Instructions Cycles Cycle # Address Bus* IRQ R/VV Data Bus*

Last Cycle of Previous 0 X X
Instruction

1 Next Opcode Address 0 1 Irrelevant Data
2 Next Opcode Address X 1 Irrelevant Data
3 Stack Pomter X 0 Return Addr. (LO Byte)

IRO Interrupt 10 4 Stack Pointer - 1 X 0 Return Addr. (HI Byte)
(Vector HI: $1 FFA, * * 5 Stack Pointer - 2 X 0 Contents Index Reg
Vector LO: $1FFB* *) 6 Stack Pointer - 3 X 0 Contents Accumulator
Timer Interrupt (Vector HI: 7 Stack Pointer - 4 X 0 Contents CC Register
$1 FF9* * , Vector LO: 8 $1FFA* * X 1 Vector (HI Byte)
$1FF8**) 9 $1FFB* * X 1 Vector (LO Byte)

10 IRO Vector X 1 Interrupt Routine First

* Except for the MC146805E2 MPU, the address bus, R/VV, and data bus are internal to the device.

* * All values given are for devices with 13-bit program counters (e.g., MC146805E2 and MC146805G21. For devices with 11-bit pro­
gram counters (MC146805F2), the HI byte IS "07" instead of "1F"

X Indicates don't care.

* * * On the MC146805E2 the data bus is external and, since the stack is on-chip, data on the external bus is ignored during the RTI and
RTS instructions

238

Table G2. M6S0S HMOS Family Summary of Cycle·by·Cycle Operation

Instructions Cycles Cycle # Address Bus R/iN Data Bus

INHERENT

ASL ASR CLR COM 1 Opcode Address 1 Opcode
DEC INC LSL LSR 2 Opcode Address + 1 1 Opcode Next Instruction
NEG ROL ROR TST 4 3 Opcode Address + 2 1 Byte Following Next Opcode

4 Opcode Address + 2 1 Byte Following Next Opcode

CLC CLI NOP RSP 1 Opcode Address 1 Opcode
SEC SEI TAX TXA 2 2 Opcode Address + 1 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

RTS 6 3 Stack Pointer 1 Irrelevant Data
4 Stack POinter + 1 1 Return Address (HI Byte)
5 Stack POinter + 2 1 Return Address (LO Byte)
6 Stack POinter + 3 1 Irrelevant Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 Stack POinter 0 Return Address (LO Byte)
4 Stack POinter - 1 0 Return Address (HI Byte)
5 Stack POinter - 2 0 Contents of Index Register

SWI 11 6 Stack Pointer - 3 0 Contents of Accumulator
7 Stack POinter - 4 0 Contents of CC Register
8 Stack POinter - 5 1 Irrelevant Data
9 Vector Address $7FC* 1 Addr. of Int. Routine (HI Byte)
10 Vector Address $7FD* 1 Addr. of Int. Routine (LO Byte)
11 Interrupt Routine Starting 1 Interrupt Routine First Opcode

Address

1 Opcode Address 1 Opcode
2 ,Opcode Address + 1 1 Opcode Next Instruction
3 Stack Pointer 1 Irrelevant Data
4 Stack POinter + 1 1 Contents of CC Register

RTI 9 5 Stack Pointer + 2 1 Contents of Accumulator
6 Stack POinter + 3 1 Contents of Index Register
7 Stack POinter + 4 1 Return Address (HI Byte)
8 Stack Pointer + 5 1 Return Address (LO Byte)
9 Stack POinter + 6 1 Irrelevant Data

IMMEDIATE

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LDA 2 2 Opcode Address + 1 1 Operand Data
LOX ORA SBC SUB

BIT SET/CLEAR

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand
3 $07F 1 Data at $07F (Unused)

BSET n 7 4 Address of Operand 1 Operand Data
BCLR n 5 Address of Operand 1 Operand Data

6 Address of Operand 1 Operand Data
7 Address of Operand 0 Manipulated Data

BIT TEST AND BRANCH

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand
3 $07F 1 Data at $07F (Unused)
4 Address of Operand 1 Operand Data

BRSET n 10 5 Address of Operand 1 Operand Data
BRCLR n 6 Address of Operand 1 Operand Data

7 Address of Operand 1 Operand Data
8 Opcode Address + 2 1 Branch Offset
9 Opcode Address + 3 1 Opcode Next Instruction
10 Opcode Address + 3 1 Opcode Next Instruction

239

Table G2. M6805 HMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus R/W Data Bus

RELATIVE

BCC IBHS) BCS (BLO) 1 Opcode Address 1 Opcode
BEG BHCC BHCS BHI 4 2 Opcode Address + 1 1 Branch Offset
BIH BIL BLS BMC BMI 3 Opcode Address + 2 1 Opcode Next Instruction
BMS BNE BPL BRA BRN 4 Opcode Address + 2 1 Opcode Next Instruction

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Branch Offset
3 Opcode Address + 2 1 Opcode Next Instruction
4 Opcode Address + 2 1 Opcode Next Instruction

BSR 8 5 Subroutine Starting Address 1 1st Subroutine Opcode
6 Stack POinter 0 Return Address (LO Byte)
7 Stack POinter - 1 0 Return Address (HI Byte)
8 Stack Pointer - 2 1 Irrelevant Data

DIRECT

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Jump Address

3 $07F 1 Data at $07F (Unused)

ADC ADD AND BIT 1 Opcode Address 1 Opcode
CMP CPX EOR LDA 4 2 Opcode Address + 1 1 Address of Operand
LDX ORA SBC SUB 3 $07F 1 Data at $07F (Unused)

4 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

TST 6 3 $07F 1 Data at $07F (Unused)
4 Address of Operand 1 Operand Data
5 Address of Operand 1 Operand Data
6 Address of Operand 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand

STA 5 3 $07F 1 Data at $07F (Unused)
STX 4 Address of Operand 1 Current Operand Data

5 Address of Operand 0 New Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Address of Operand
LSL LSR NEG 6 3 $07F 1 Data at $07F (Unused)
ROL ROR 4 Address of Operand 1 Current Operand Data

5 Address of Operand 1 Current Operand Data
6 Address of Operand 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Subroutine Address (LO Byte)
3 $07F 1 Data at $07F (Unused)

JSR 7 4 Subroutine Starting Address 1 1st Subroutine Opcode
5 Stack POinter 0 Return Address (LO Byte)
6 Stack POinter - 1 0 Return Address (HI Byte)* *
7 Stack POinter - 2 1 Irrelevant Data

240

I

Table G2. M6805 HMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus* R/W Data Bus

EXTENDED

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Address of Operand (HI Byte)

STA 6 3 Opcode Address + 2 1 Address of Operand (LO Byte)
STX 4 XFF 1 Data at $XFF (Unused)

5 Address of Operand 1 Current Operand Data
6 Address of Operand 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Addr of Subroutine (HI Byte)
3 Opcode Address + 2 1 Addr of Subroutine (LO Byte)

JSR 8 4 $XFF 1 Data at $XFF (Unused)
5 Subroutine Starting Address 1 1st Subroutine Opcode
6 Stack POinter 0 Return Address (LO Byte)
7 Stack POinter - 1 0 Return Address (HI Byte) * *
8 Stack POinter - 2 1 Irrelevant Data

INDEXED NO OFFSET

1 Opcode Address 1 Opcode
JMP 3 2 Opcode Address + 1 1 Opcode Next Instruction

3 $07F 1 Data at $07F (Unused)

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 4 2 Opcode Address + 1 1 Opcode Next Instruction
EOR LDA LOX 3 $07F 1 Data at $07F (Unused)
ORA SBC SUB 4 Index Register 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

TST 6 3 $07F 1 Data at $07F (Unused)
4 Index Register 1 Operand Data
5 Index Register 1 Operand Data
6 Index Register 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction

STA 5 3 $07F 1 Data at $07F (Unused)
STX 4 Index Register 1 Current Operand Data

5 Index Register 0 New Operand Data

1 Opcode Address 1 Opcode
ASL ASR CLR 2 Opcode Address + 1 1 Opcode Next Instruction
COM DEC INC 6 3 $07F 1 Data at $07F (Unused)
LSL LSR NEG 4 Index Register 1 Current Operand Data
ROLROR 5 Index Register 1 Current Operand Data

6 Index Register 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Opcode Next Instruction
3 $07F 1 Data at $07F (Unused)

JSR 7 4 Index Register 1 1st Subroutine Opcode
5 Stack POinter 0 Return Address (LO Byte)
6 Stack POinter - 1 0 Return Address (HI Byte) * *
7 Stack POinter - 2 1 Irrelevant Data

241

Table G2. M6805 HMOS Family Summary of Cycle·by·Cycle Operation (Continued)

Instructions Cycles Cycle # Address Bus R/W Data Bus

INDEXED 8-BIT OFFSET

1 Opcode Address 1 Opcode
JMP 4 2 Opcode Address + 1 1 Offset

3 $07F 1 Data at $07F (Unused)
4 $07F 1 Data at $07F (Unused)

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Offset
EOR LDA LDX 5 3 $07F 1 Data at $07F (Unused)
ORA SSC SUB 4 $07F 1 Data at $07F (Unused)

5 Index Register + Offset 1 Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset

STA 6 3 $07F 1 Data at $07F (Unused)
STX 4 $07F 1 Data at $07F (Unused)

5 Index Register + Offset 1 Current Operand Data
6 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset
3 $07F 1 Data at $07F (Unused)

TST 7 4 $07F 1 Data at $07F (Unused)
5 Index Register + Offset 1 Operand Data
6 Index Register + Offset 1 Operand Data
7 Index Register + Offset 1 Operand Data

ASL ASR CLR 1 Opcode Address 1 Opcode
COM DEC INC 2 Opcode Address + 1 1 Offset
LSL LSR NEG 3 $07F 1 Data at $07F (Unused)
ROL ROR 7 4 $07F 1 Current Operand Data

5 Index Register + Offset 1 Current Operand Data
6 Index Register + Offset 1 Current Operand Data
7 Index Register + Offset 0 New Operand Data

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset
3 $07F 1 Data at $07F (Unused)

JSR 8 4 $07F 1 Data at $07F (Unused)
5 Index Register + Offset 1 1st Subroutine Opcode
6 Stack POinter 0 Return Address (LO Byte)
7 Stack Pointer - 1 0 Return Address (HI Byte)* *
8 Stack Pointer - 2 1 Irrelevant Data

INDEXED 16-BIT OFFSET

1 Opcode Address 1 Opcode
2 Opcode Address + 1 1 Offset (HI Byte)

JMP 5 3 Opcode Address + 2 1 Offset (LO Byte)
4 $XFF 1 Data at $XFF (Unused)
5 $XFF 1 Data at $XFF (Unused)

ADC ADD AND 1 Opcode Address 1 Opcode
BIT CMP CPX 2 Opcode Address + 1 1 Offset (HI Byte)
EOR LDA LDX 6 3 Opcode Address + 2 1 Offset (LO Byte)
ORA SBC SUB 4 $XFF 1 Data at $XFF (Unused)

5 $XFF 1 Data at $XFF (Unused)
6 Index Register + Offset 1 Operand Data

242

Table G2. M6805 HMOS Family Summary of Cycle·by·Cycle Operation (Concluded)

RESET FUNCTION

In::;truct:cn:: Cycles Cycle # Address Bus Reset R/W Data Bus

Irrelevant Address 0 X Irrelevant Data
Irrelevant Address 0 X Irrelevant Data

1 $7FE* 1 1 Reset Vector (HI Byte)
Hardware Reset 8 2 $7FE* 1 1 Reset Vector (HI Byte)
Power-on Reset 3 $7FE* 1 1 Reset Vector (HI Byte)

4 $7FE* 1 1 Reset Vector (HI Byte)
5 $7FE* 1 1 Reset Vector (HI Byte)
6 $7FE* 1 1 Reset Vector (HI Byte)
7 $7FF* 1 1 Reset Vector (LO Byte)
8 $000 1 1 Data at $000 (Unusable)

HARDWARE INTERRUPTS

Instructions Cycles Cycle # Address Bus IRQ R/W Data Bus

Last Cycle of Previous 0 X Data from Last Cycle
Instruction

1 Next Opcode Address 0 1 Next Opcode
2 Next Opcode Address X 1 Next Opcode
3 Stack POinter X 0 Return Addr (LO Byte)

IRQ Interrupt 11 4 Stack POinter - 1 X 0 Return Addr. (HI Byte) * *
(Vector HI: $7FA * , 5 Stack POinter - 2 X 0 Contents of Index Register
Vector LO: $7FB *) 6 Stack POinter - 3 X 0 Contents of Accumulator
Timer Interrupt 7 Stack Pointer - 4 X 0 Contents of CC Register
(Vector HI: $7F8*, 8 Stack POinter - 5 X 1 Data at Stack Pointer - 5
Vector LO. $7F9*) (Unused)

9 Vector Address HI X 1 Vector (HI Byte)
10 Vector Address LO X 1 Vector (LO Byte)
11 Vector Address LO + 1 X 1 Data at Vector LO

(Unusable)

NOTES'
* Ali values given are for devices with 11-blt program counters (e.g., MC6805P2, MC6805P4, MC68705P3, etc) For devices with 12-blt

program counters (e.g, MC6805R2, MC6805U2, MC68705R3, MC68705U3, etc) the HI byte IS "OF" Instead of "or

* * For storing the HI byte of the PC on the stack, unused bits are stored as 1s, e.g, a PCH of "03" IS stored as "FB" on devices with
11-blt PCs and a PCH of "03" IS stored as F3 on devices with a 12-blt PC.

X Indicates don't care.

243

APPENDIX H
ASCII HEXADECIMAL CODE

CONVERSION CHART

This appendix shows the equivalent alphanumeric characters for the equivalent ASCII
hexadecimal code.

Hex ASCII Hex ASCII Hex ASCII Hex ASCII Hex ASCII
00 nul 1C fs 38 8 54 T 70 P
01 soh 1D gs 39 9 55 U 71 q
02 stx 1E rs 3A 56 V 72 r
03 etx 1F us 38 , 57 W 73 s
04 eot 20 sp 3C < 58 X 74 t
05 enq 21 ! 3D = 59 Y 75 u
06 ack 22 " 3E > 5A Z 76 v
07 bel 23 # 3F ? 58 [77 w
08 bs 24 $ 40 @ 5C \ 78 x
09 ht 25 % 41 A 5D] 79 Y
OA nl 26 & 42 8 5E A 7A z
08 vt 27 , 43 C 5F - 78 {

OC ff 28 (44 D 60
, 7C I

OD cr 29) 45 E 61 a 7D }

OE so 2A * 46 F 62 b 7E -
OF si 28 + 47 G 63 c 7F del
10 die 2C , 48 H 64 d
11 dc1 2D - 49 I 65 e
12 dc2 2E 4A J 66 f
13 dc3 2F I 48 K 67 9
14 dc4 30 0 4C L 68 h
15 nak 31 1 4D M 69 i
16 syn 32 2 4E N 6A j
17 etb 33 3 4F 0 68 k
18 can 34 4 50 P 6C I
19 em 35 5 51 Q 6D m
1A sub 36 6 52 R 6E n
18 esc 37 7 53 S 6F 0

245

APPENDIX I
INSTRUCTION SET

OPCODE MAP

The opcode map contains a summary of opcodes used with the M6805 HMOS and
M146805 CMOS Family. The map is outlined by two sets (O-F) of hexadecimal numbers:
one horizontal and one vertical. The horizontal set represents the MSD and the vertical
set represents the LSD. For example, a 25 opcode represents a BCS (located at the 2 and
5 coordinates) used in the relative mode. There are five different opcodes for COM, each
in a different addressing mode (direct; accumulator; indexed; indexed, one-byte offset;
and indexed, two-byte offset). A legend is provided, as part of the map, to show the infor­
mation contained in each coordinate square. The legend represents the coordinates for
opcode FO (SUB). Included in the legend is the opcode binary equivalent, the number of
execution cycles required for both the M6805 HMOS and M146805 CMOS Family, the re­
quired number of bytes, the address mode, and the mnemonic.

247

M6805 HMOS/M146805 CMOS

Bit Manipulation Branch Readl Modify IWrite
BTB BSe REL DIR A X IX1 IX

~ 0 1 2 3 4 5 6 7
Low I 0000 0001 0010 0011 0100 0101 0110 0111

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
0 BRSETO BSETO BRA NEG NEG NEG NEG NEG

0000 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3
1 BRCLRO BCLRO BRN

0001 3 BTB\ 2 Bse 2 REL

10 5 7 5 4 3
2 BRSET1 BSET1 BHI

0010 3 BTB 2 Bse 2 REL

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
3 BRCLR1 BCLR1 BLS COM COM COM COM COM

0011 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
4 BRSET2 BSET2 BCC LSR LSR LSR LSR LSR

0100 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3
5 BRCLR2 BCLR2 BCS

0101 3 BTB 2 Bse 2 REL

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
6 BRSET3 BSET3 BNE ROR ROR ROR ROR ROR

0110 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
7 BRCLR3 BCLR3 BEQ ASR ASR ASR ASR ASR

0111 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
8 BRSET4 BSET4 BHCC LSL LSL LSL LSL LSL

1000 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
9 BRCLR4 BCLR4 BHCS ROL ROL ROL ROL ROL

1001 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
A BRSET5 BSET5 BPL DEC DEC DEC DEC DEC

1010 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3
B BRCLR5 BCLR5 BMI

lOll 3 BTB 2 Bse 2 REL

10 5 7 5 4 3 6 5 4 3 4 3 7 6 6 5
C BRSET6 BSET6 BMC INC INC INC INC INC

1100 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 5 7 5 4 3 6 4 4 3 4 3 7 5 6 4
D BRCLR6 BCLR6 BMS TST TST TST TST TST

1101 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

10 7 7 5 4 3
E BRSET7 BSET7 BIL

1110 3 BTB 2 Bse 2 REL

10 7 7 5 4 3 6 5 4 3 4 3 7 6 6 5
F BRCLR7 BCLR7 BIH CLR CLR CLR CLR CLR

1111 3 BTB 2 Bse 2 REL 2 DIR 1 A 1 X 2 IXl 1 IX

Abbreviations for Address Modes

INH
A
X
IMM
DIR

Inherent
Accumulator
Index Register
Immediate
Direct

EXT
REL
BSC
BTB

Extended IX
Relative IX1
Bit Set/Clear IX2
Bit Test and Branch *

248

Indexed (No Offset)
Indexed, 1 Byte (8-Bit) Offset
Indexed, 2 Byte (16-Bitl Offset
M146805 CMOS Family Only

Family Instruction Set Opcode Map

Control Register / Memory
INH INH liviivi DIR EXT 1X2 IX1 IX
8 9 A B C D E F

~ 1000 1001 1010 1011 1100 1101 1110 1111 I Low
9 9 2 2 4 3 5 4 6 5 5 4 4 3

RTI SUB SUB SUB SUB SUB SUB 0
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0000

6 6 2 2 4 3 5 4 6 5 5 4 4 3
RTS CMP CMP CMP CMP CMP CMP 1

1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0001

2 2 4 3 5 4 6 5 5 4 4 3

SBC SBC SBC SBC SBC SBC 2
2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0010

11 10 2 2 4 3 5 4 6 5 5 4 4 3
SWI CPX CPX CPX CPX CPX CPX 3

1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0011

2 2 4 3 5 4 6 5 5 4 4 3
AND AND AND AND AND AND 4

2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0100

2 2 4 3 5 4 6 5 5 4 4 3
BIT BIT BIT BIT BIT BIT 5

2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0101

2 2 4 3 5 4 6 5 5 4 4 3
LDA LDA LDA LDA LDA LDA 6

2 IMM 2 Dlr 3 EXT 3 IX2 2 IXl 1 IX 0110

2 2 5 4 6 5 7 6 6 5 5 4

TAX STA STA STA STA STA 7
1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0111

2 2 2 2 4 3 5 4 6 5 5 4 4 3
CLC EOR EOR EOR EOR EOR EOR 8

1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1000

2 2 2 2 4 3 5 4 6 5 5 4 4 3

SEC ADC ADC ADC ADC ADC ADC 9
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1001

2 2 2 2 4 3 5 4 6 5 5 4 4 3

CLI ORA ORA ORA ORA ORA ORA A
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1010

2 2 2 2 4 3 5 4 6 5 5 4 4 3

SEI ADD ADD ADD ADD ADD ADD B
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1011

2 2 3 2 4 3 5 4 4 3 3 2

RSP JMP JMP JMP JMP JMP C
1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1100

2 2 8 6 7 5 8 6 9 7 8 6 7 5
NOP BSR JSR JSR JSR JSR JSR D

1 INH 2 REL 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1101

* 2 2 2 4 3 5 4 6 5 5 4 4 3
STOP LOX LOX LOX LDX LDX LDX E

1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1110

* 2 2 2 5 4 6 5 7 6 6 5 5 4

WAIT TXA STX STX STX -STX STX F
1 INH 1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1111

LEGEND

F ... --+--------70pcode in Hexadecimal

Cycles, M6805 HMOS ------;~ 4

Mnemonic----+~
Opcode in Binary

Bytes ----It..2._-J.~~_~~:...-J
Cycles, M146805 CMOS ------ "---------Address Mode

249

Providing users with concise, up-to-date information on Motorola's M6805
HMOS/M146805 CMOS family, this manual shows how various family
members can be used for design of control and instrumentation as well as
other diverse applications. Basic design differences between 15 of the
family devices are listed in this easy-to-use manual:

MC6805P2
MC6805P4
MC6805P6
MC6805R2
MC6805R3
MC6805T2
MC6805U2
MC6805U3

MC68705P3
MC68705R3
MC68705U3
MC1468705G2
MC146805E2
MC146805F2
MC146805G2

This versatile family of microcomputers and a microprocessor offers many
versions for diverse applications with the latest features including EPROM
for easy prototype system design, low power versions, low cost, and
powerful architecture.

Detailed information on software (descriptions and applications) and hard­
ware (features and applications) is provided in the main chapters. Also
included are chapters on the EPROM programmer and on the self-test, the
on-chip firmware test capability. Appendices are included to provide
d~signers with the latest M6805 HMOS/M146805 CMOS family
programming information.

PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632

ISBN 0-13-541383-4

