/‘NV National
Semiconductor

User's Manual

NSC Tiny BASIC

Microcomputer Systems

Publication Number 420306319-001A
Order No. 420306319-001

November 1980

STARPLEX™

NSC Tiny BASIC
User's Manual

©1980 MNational Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, California 95051

REVISION

REVISION RECORD

RELEASE DATE SUMMARY OF CHANGES

11/80 First Release.
NSC Tiny BASIC, User's Manual
Publication Mo. 420306319-001

ii

Table of Contents
SECTION I

Page
Charter |

1.1 Brin01n0 UD The INSB@73'Systemooooooo.oaoc;oo.oo.o-oo‘*B
‘.2 Baud Rates'.........."'........................"...‘-3

Chapter 2
20' ““'IntrOdUCtionoooooooooooo-oooooooooo.ooouoooooo-eonao'l°5

Chapter 3

Introductionloiii.‘...ll..‘....‘0..0...........0000011-7
TrY/CRT Terminal..'....0....l..‘...........l..."....,—8
Beginning InstructionS.cceececceccrscsccscssossccsscceel =1
Start UD....000...0..‘.......‘....CO..'.0.0.......Q..'-la
The Print Instruction.eeeeececcosccccscoscscsasscnssncel=ll
Usinag The Computer As A CAlCllatOreieececvosscocccssssl=13
Use Of parenthesesoo........'.......O'......‘...l...."‘?
Migtakesooho0....‘0.....l..‘.Q..0.0....O..OO.....l...‘-?.w

Exercises.C...O.........."‘..‘..‘......'..‘..O'.....'-z‘

WWwWwww ww ww
o o o o o
VO ~NON DWN —

Chapter 4

variables......ﬂ.'.........‘.....0...‘.‘.‘..‘......."-23
ExerC1sesocoooooo-o.o-‘c.oloo;o.oo-.'oooccasootccoo-ol-zs
The Stored Proqram................'.....-...-.-......1-26
EX&?CiSeS..............-......................-......l*zo
The - GO TO - Statement....‘l....l'.'...‘.‘.l.‘.0.0‘.‘-Bﬂ
The - INPUT - Statementoooooo.oo.ooo--oo.ocao.ooooo.n‘-32
Exercise. .O....‘............'.........‘..Q....Q...‘..]—33
Informative Printinqooo-oo-coooo-ooo--ooooooo.-o-oo..‘-34
Multiole Statements Per Lineoooooooco-ooooooooo.ooo..l‘36
ExerCiSes....g..-......-..........-....-.-....--.....‘-38

* o L] . *

~OV~NOUV AW —

R

AbhdabdbpbbdbiAh

Chapter 5

Bits And Rytes.o-o-oo..o-.oooo.coo.to.ooooooo.-ooooooI—BQ

ExerC1seSQ.t..0.0000.000..000.000......000.0.-..000..1-4a
MemOTY Addressoonocoo.ooonooo..-.at.-ooo0..00.-.00000“4w
HexadeCI'nal Numb“!“ Syste"h...-...............o-......"’“q
More About Hexadecimal.eieseescsceccceccccoccscanssaal=43

errciSGOOC..‘Q........‘..'.‘.............Q..........'-48

(G200 NG G NG N0 LB e |
e o o & o o
OO WN —

Chapter 6

Thﬂ IF Statement..-..........o.-...............-.....'-49
Exercj'se...................“........“.'...’........"5'
A More Comoact prOQram..---..-....;............--...-'-56
Random Numbers And Comouter Games........-.........--1*60

Exercise..lii....t.ﬁ...I..'.........0..“...0......‘.‘_6‘

[o 3o We NNo o |
o o o ¢ o
DN A WN) -

]

TASL

Chanter 7

FE OF CONTENIS (Cont+d.) Paage

Proqram LOODSo.o.....oo-.o.bc.o...o...ouc..otoo.Qooo-‘-63
EXErCiSE...-....-........................-...........“66
IF LOODS.QQO.ooooo‘..ooooo.o.ooooo..ao.ol!'.o.oooo..o'-éé
EXPYC1535000ooouo-oooo-onooocooooo--..ooooo.-coo.oooo‘-éq
FOR NFXT LOODS’....'....................'............‘-68
ExerCiSes........."....'..................".....’..l—7?
Thp DO QtateMPnt.......-........................-....‘ 73

Subroutines........’......'..‘..‘...'.‘...........-..'-77
LINK Instr(JCtionO .4. ;;.,“..'....C...Q..'...'.‘..'.....'..“-79
DELAY.'..l....‘..............‘.......'.'....'...'....’-8m
The ON Statement......-.............-.....g..----....1-81
T’1e STAT Function...... ® & & &0 0 0O O OO O SO OO SO O|—82
Multiorocessing, INC (X), DEC (X) eeevoosescscssscsscsel =83

CLEAR..O‘.'.Q.O....‘..'...'O..OO.O............Q'.OIQ.l-83

Memory Orqanizationonooaoooooo-cocc.ooooooooooo0--000"85
Top Location. ...'...'.‘....‘......"...-.‘..'.‘....O.‘—R7
St rinqs Of CharaCt ers L B AR B BN BN L BY BN BN BN RE BN BN BE K BE BN BE N B BN B BN AR B BN BN N 3 ' —96

Exe'rc].-se.ooaooooooo.'.ou-o..o-....oo....ooo.ooo0000-01‘94

Chapter 10

1a.1
174.2
3.3
17,4
14.5

SECTION 11
Chapter |
lo1
Chanter 2
2.1

2.1.1
2.1.2

2.1.3

NN VNIV

NN NI N == ot e s

Interfacing Other Devices To NSC Tiny BASICeececocecoael =97
Hardware Interface.....'.‘.........'..........l.ll'...‘gg
Exalee System LED FlaSher...,..............o.o--....l“!ﬂ@
Proqrammino Thp Ci!’CUit...................-...-......l-lﬂ'

Exercises'...Q.............‘...I‘.......'............]-'ﬂ?

IntrOdUCtion...........‘............"...I'.....0000.2-3

Lanquaqp Fxnreqqinnso...QQ...O.............'.O....00.

variableS..- L IR BN IR IR R AKX BN BUBE BN 2R B 2R BN BN AR BE BN BRI IR BN BN BE B BN B B IR B BN BN BN B IR B R BN N 1

CongtanthOOOOQO000.".....'...-‘......O...........‘.
Relational Ooerators.................................
Arithmptic OnpratOYQQ..o.o.ooooooaa'ooa-to.oogooctooo
Loqical Ooerators..ioiﬁ..............O.....l....'....
Logical AND..
Loqical OQI’l.lt........O..OI‘....Q“..'.......‘0..'.
Loqical NOTO...Ol‘i..l"....l......Q...l....“.......
FUﬂCtiOhS..................................-.........
MOD (a b) Function.....l..C.'OC.........'......OIOCO.
RND (a b) Function..l...l...l.‘.‘...................‘
STAT Functlon.....l....l....l..0............0...0.0..
Status Register Bit FUNCtIiONS e eeeeoooesncccccncssceenl™

M\JM\;\)M\)\)\)\J'\J\J\J\J
G)@CD~J<~4«JO\OKNUHﬁUWm

iv

o

et e GV JOND N -

W —3

e & & ¢ & o & ¢ & 0o o ¢ o

L] » L] [] * L] L] L] L 2N [) L] L] [] L] [] . . L] L e o
L]

NN NNAJdOROR OO VAWWLERELWWWWLWWWW WWNN

.
.
BN -

NNV PONNDNVNNRONYN N LNV ON NN
DWN -

TABLE OF CONTENTS (Cont“d.)
Page

TOP FUHCtion.......-........-..........-.....-...-...2—‘“
[NC (X) And DEC (X) FunCtionS............-...........7°|m
Statements.........'..........-..'.....'............‘2-'a
INPUT Statement' ® @ & 0 00 O 0 5 SO OB NS O OO S OB OO s e S0 e s> .'.2“”
PRINT Statement (Outout) ® 06 60 00008 0O & 00O B OO SBSe eOS ..‘2-‘ '
LET Sta tement (A Ssianment) LN K BN BN BE N BN B R BN BE AR BRI BB BB R BN BE BN BN ...2-1 2
The GO TO Statement cceceesvccscvcosssecsccsccscscncsscel—l?
GOSUB,RETURN statements. e 6 6 860 0606000000 S0 ..i‘. ® oo e o» ...2-' ?—
IF/THEN Statement. ® 0 0000 005 tH NSO OSSO NI NS S0 00080 0B ...2-' 3
DOIUNTIL Statements 9 008 000 DO NP OO OO S OSSO POIOSSIBTE NS .'.2-‘ 3
FOR/NEXT Statmentq.. .".’..'........ LR B BN BE BN BN BN BN Y) .'....2 |4
LINK Statpment'.. ® 600 00O G SO SO OO O OO O POVEE OSSP OOE S PGPS ...2-Id
ON Statempnt ® 0 0 05 005 GO OA SO SO0 OSSO OESEOSOSOTPSDE . LI RN A B BE BRI B Y N .2 ' 5
STOP Statement ® 0 @ 00 00 200 0O PE SR OO ONEEDP RO SR N ..; e o0 e ..2.’ 5
DELAY Statpment ® 0 0 28 0000 050" PSP OSSOSO LOS Ve NGS SN PSS ..’2-l6
CLFAR Statement. ® 5 0 6 05 00 00 G 8 PSO O OSSNSO N OOSSS O ...2-16
IndireCt Operator ® 5068 006 00 OO OO SO NE O SO OEs LSOO SESS SN ...2—‘ 6
Multiple Statements On A Line....cceeececcceccssccsee2=l?
Strinq Handlinq. ® 5 0 00 0T 0 9 O O OO SO SO LN OO eSO O ...2—'8
strinq Outnut @ @ ¢ 06 000 00O TGO OSSO0 N OO SO e 00RO NEEe e '..2'-'8
Strinq ASSiqnmentO ® 5 0 5 00 500 SO 8OO OO0 SN T OSSO0 O Se ...'.z-l R
Strinq Move............‘.........‘..'........"......2-]8
String EXaAmDleS.ceeeeececccecccoscsosnscssssacasnassel=l9
Comandq.......".....................’........'..".2—‘9
NEw pxpr............"‘....“‘...."........“.......2“9
RUN.....'...'....................‘...................2 19

(‘ONT..........Q.OICOCOQC.............".‘QC..OQ.....Iz-zw

LIST (exor)....'.....’.Q.I.‘...I..Q..‘............CC.Z-zﬂ

SECTION III

Chapter 1|
1.
1.
1
1

1.

. °
\10 n H W N)—

1.
e

Chapter 2

L]

NN NN NN
DA BN —

IntYOdUCtion...........-...-........................3-3
An NSC Tiny BASIC Example System, Functional

.SpecificatioNiececcseeeea3=b
Hardware Design Of A Small INS8#73-Based System.....3-9
Addressing Requirements/Capabilities Of Each

System Component......3-12
Memory Maopina Constraints For All System

ComponentSeeeecesceceeeesld—13
System Generated InterruntS.eceeccccccsccccsscccsccsccseead—13
RS-23?/Current LOOD Interfaceo.-oooocoo0000.0-0000.03-'6

MM27'6 EPROM pquramminq Software...............-....3-‘7
COPY Command.....‘........'......'.......‘."........3.l7
PROGRAM Command'.oo.o.‘ot.ocoo.‘oltoo.n.oo'lo‘coa.o.o3-'8
VFRIFY Command...........-...........................3—'9
ERASE CHECK Command..............-.......-.-......‘..3‘|9
FILL Command.......‘.................................3*2“
DUMP Commando.oocobo.oooooooooccooooooo.ntvooco'ooo'o3-2w
[LOAD Command...........................-......-......3“21

TABLF OF CONTENTS (Cont“’d.)
Paage

Chapter 3

3.1 Loading The EPROM Programming Software Into FPROM,...3-23
o2 Loading NSC Tiny BASIC Programs Into PAM.ceececsssaosse3—23
3

3
3. Using The FPROM Programming Sof tware To Program
MM?716 FPROMS.eeeeeeee3=23

vi

Section 1

CHAPTER 1
l.1 Bringing Up The INS8A73 System

All the examples are based around the example system shown in Section
3, Figure (-4,

For those of you who have designed your own system, with heln from
Section 3 of this manual, it is assumed that vou have the experience

to internret the following instrucetions to suit your bwn system. The
sequence below tells how to hook the standard NSC Tiny BASIC card shown
in Section 3, Figure 1-4, to A power sunply and TIY or CRT to get it
running,

Things neededs

Power Supply? +5,
' . =}2V (For serial communications)

Optionally +25 (For PROM oroarammer)

A power supoly cable can be connected directly to the board at
the Pl mounting, or stake pins can be inserted and the power
suoply can be connected throuah a suitable connector, i.e.,
MOLEX MXI-9 6471, A cable or connector is attached to Power

Sunply in the following order:?

CONDUCTOR PIN# I 2 3 4

——— A S Y . — — . W D T] S > — > I . - . E Y W w—— -

VOLTAGE +5 -12 +25 GND

If you’re using a TTY, it must be connected for 2¢mA current
looo, as described in its own manual, and will connect to the
edge connector fingers in the following manner:

PIN# 1 2 3 4 5 6

oy o w— o —— - s > —— T - A > G Vo w——

SIGNAL XNT+| XNT-| RCV+| RCV- RD RLY+| RD RLY-

Pin numbers are etched onto the board, remember that Pin 6
is the one closest to the edge of the card on the side with

the comnonenets,

If you’re using a CRT terminal, you should hook it uo with a
standard MALE-MALE cahle, (National’s 641385491-9241 will do
fust fine), to the RS-232 (D-tyne) connector on the board.
Make sure your terminal is set to RS—=232 (if that’s a switch
selectable option, if not, just assume it is an RS5-232 termin-
al)s and make certain unper case and full duplex are selected.

1.2 Baud Rates
Generally, the higher the Baud Rate, the better, as it means less

waiting time for yous however, if you are using a TIY you have no
choice. The Baud Rate must be set to 11@,

1-3

The way you set the Baud Rate is with the two ilumners FI8=-FI9, F16-F17.
Ne can call EI18=-FE19 D, and FI16-F17 DI. Set the Baud Rate on a
terminal to the highest rate, or 4879, which- ever is lower, set the
jumpers to match it as shown in the diagram below. A ¥YI¥ gignifies
that the jumper is missing, a #@" means that it is installed,

Fl16-F17 Fi8-Fl9
N2 DI
1o 0 0
......... - -
300 0 1
| 200 1 0
4800 1 1

After you have done all of this, and double checked it, connect the
board to the CRT terminal or TTY, warm up the terminal, hook up the
power supnly, then turn on the power.

If all went well, you should aget a right pointing caret (>) promot.

Push the RESET button and the orompt (>) should annear again., You are
now reardy to begin using vour 8A73 system.

1-4

CHAPTER 2

2.1 Introduction

The INS8A73 is a single-chin computer that directly executes NSC Tiny
BASIC, a high—level language. Writing orograms in NSC Tiny BASIC
offers the following Advantages over writing orograms in assembly
language?t

e Programs written in NSC Tiny BASIC eliminate the need for memory
consuming Editor, Assembler Monitor/Debuc nrograms.. All of these
functions are built in,

® Programs may be written and dehuqgged using a small, inexpensive
system. Purchase of an exnensive development system is not
required,

® Program debuoaing is fast and simole. Program execution may be
susoended, variabhles and other parameters examined/altered, errors
corrected, and execution resumed at the point where it was
suspended = all without the need to reassemble or reload the
program, (NSC Tiny BASIC programs do not have to be assembled.)

® Programs can be written in one tenth the time of eaquivalent assembly
lanquage proarams due to the power of the NSC Tiny BASIC lanquage,
its English-like simplicity and built in edit/debug caoability.

Programs are also easy to maintain because they are self documenting.

e Programs are relocatablet they may be loaded and executed anywherp ir

memory without modification.

® Program memory can be quickly checked for valid code because NSC Tiny

BASIC proagrams are stored as a sequence of ASCII characters.
(Executable assembly language programs are considerably more

difficult to check because they are stored in memory as a sequence of

binary numbers),

NSC Tiny BASIC was designed for use on the INS8A#73 single-chio micro-
interpreter, a nroduct of National Semiconductor Corporation. NSC
Tiny BASIC is a simplified version of the computer lanquage, BASIC,
"Beginners All-nurpose Symbolic Instruction Code", develoned by

Dr. John Kemeny and Dr. Thomas Kurtz at Dartmouth College in 1963,
BASIC has become the "People’s Comnuter Language® because it is
easy-to-learn and easy~-to—-use by people who are not computer
scientists or professional brogrammers. The users of BASIC are
engineers, technicians, scientists, statisticians, business people,
hobbyists, teachers, college students, and a vast multitude of
young people in elementary and secondary schools.

"The original NSC Tiny BASIC was desianed for apbplications auch as
integer arithmetic oroblems, comnuter games and teachina beainners
how to nroaram computers. NSC Tiny BASIC has extended canabilities
that make it a nowerful desiqgn tool for developing control Aaoplica-
tions.

1-5

Information on NIBL upon which NSC Tiny BASIC was first published in
People’s Computer Company, Volume 3, Number 4 (March 1975) and Volume
4, Number | (July 1975), " The best source of information on Tiny BASIC
is Dr. Dobb“’s Journal of Computer Calisthenics and Orthodontia,
beginning with Volume |, Number | (January 1976) and continuina through

several issuesg,

This book is designed to help you teach yourself how to use NSC Tiny
BASIC and the INS8A731 it consists of three major sectionss

SECTION 1t A primer designed for self study. This self teaching
orimer presents the elements of NSC Tiny BASIC in a step-by-step
manner, It is assumed that the reader has access to an INS8A73-based
system and will try out the examples and exercises as thev are
oresented in the orimer. It is Also assumed that the -reader has no
orevious computer prooramming training or exoerience, but is
exnerienced in electronic hardware desian using non-computerized

technioues.

SECTION 2t A quide that nrovides quick reference to information for
people who _have worked through the primer, or, who Aalready know how to
program in some form of BASIC,

SFCTION 3t A descriotion of a typical INS8A73 system$ details on
setting uo the comouter system and gettina NSC Tiny BASIC running.
Section 3 assumes that the reader has a orior knowledge of digital
electronicss and, this section gives schematics and a descrintion
of an example RA73 NIRL-II demonstrator card.

1-6

CHAPTER 3

3.1 Introduction

The INS8A73 is a #task-oriented® microinteroreter, NSC Tiny BASIC is
the language that instructs the system to perform various and sundry
functions.

The use of microcomputers to control electronic, electrical and

elec tromechanical devices is very-much an enaineer?s dream come true.
A computer works from a written out specification of what the
completed device is supposed to do. This specification, written in
a very exact and unambiguous style, is called a proaram. As with
specifications and schematics there are conventions about exactly
how a program is to ampear. This set of conventions is called a
language. The language used on this computer is a version of

BASIC called NSC Tiny BASIC.

When setting out a schematic for someone who is not up to your back-
ground in electronics, you have to spell everything out in more detail -
than you would for a colleaque who is right with you. Until a computer
knows as much as you want it to know, everything must be spelled out

in a meticulous and precise manner. Once these instructions are
spelled out - that“s it: the computer will henceforth do it right

every time,

Figure 3.1, INS8273 Based System

3.2 TTY/CRT Terminal

You will probably be using a Model 33 Teletype or a CRT (Cathode-
Ray-Tube) terminal to communicate with your INS8873. In the follow-
ing text, TTY (Teletype) and CRT (Cathode-Ray-Tube) are used inter—
changeably.

The letters of the Roman alphabet and Arabic numerals were invented
long before computers when nobody cared that the letter #0¥]looked
Just like a zero. It is, howevery very important for-the computer to
tell them aparts therefore, the numeral zero is written as an "0O#
with a slash through it (@), The letter #0" i{s left alone. Most
Teletypes will print the zero character with a slash and an %0¥%
without a slasht check your teletype to make sure it observes this
convention, '

When programming, sometimes you will type to the computer, sometimes
the computer will type to you. When it is the computer’s .turn,

it Jjust goes ahead and types., When the comouter is ¥thinking¥ it
acts as if you were not there. When it is your turn to type the
computer prompts you by typing the character ">* on the left margin
of the paper/screen, The right pointing caret (») is called the
"prompt¥ character. After typing the prompt, the computer will

wait patiently until you type something.

NSC Tiny BASIC recognizes only CAPITAL LETTERSs lower case letters are
not used at all. (The Model 33 Teletype doesn’t have any lower case
letters.) Your CRT may or may not have lower case$ If it does, switch
the upper/lowercase switch to upper case.

1-8

Figure 3.3 A Typical TTY

Figure 3,2. A Tynical CRT

1-9

3.3 Beginning Instructions

Think of something you know how to do like bicycling, skiina, playing
Yiano or designing circuitry. One thina is certain: there are no
Jooks in the world that can teach someone how to do any of these

things. BRooks can heln, but without getting on a bike, putting on
skis, practicing scales, or designing hundreds cf circuits and trying

them out, 8 novice can’t do any of these things. Same way with
oroqgramming.

The only way to learn orogramming is by doing it. With bicycling or
skiing vyou may end up with skinned shinss with nrogramming you may
experience a dented ego, Peop asn’t like to be told they’re wrongs
unfortunately for the novice p¥ogrammer, error messages are what he/she
will cet most frequently from ghe computer,

For your reference, the NSC Tiny BASIC FRROR CODFE SUMMARY is listed
oelows what it means is that if NSC Tiny BASIC encounters an error
condition in RUN command mode, it will orint out ERROR followed by an
error number, FError numbers aret

‘Table 3-1. NSC Tiny BASIC Error Code Summary

ERROR NBR. EXPLANATION

Out of memory

Statement used improoerly

Unexpected character (after legal statement)
Syntax error

Value (format) error

Ending quote missing from string

GO target line does not exist

RETURN without orevious GOSUR

Fxoression or FOR=-NEXT or DO-UNTIL nested too deeply
NEXT without previous matching FOR

UNTIL without nrevious DO

Division by zero

—— = 0D IO D WN -

N -

3.4 Start Un

Refore vou power-up, be certain that your system is oroperly connected
and that the Baud Rate Selector is set. Once you have turned on your
INS8A73 system, the TTY or CRT will tyoe a orompt character (>) to
indicate that it is ready to beain. When vyou are ready to enter a
nroaram with line numbers, type the followings?

>NEW #address thexadecimal address location)
NEW

The above command (NEW #address, NEW) is useds

1. To prepare the computer for a new program with line numbers.

2. For initial oower-un.

3. If you RESET your system in the middle of a programming session
you may have to use this command. Try to avoid this because you can
easily lose all orograms in your system’s memory.

4., If you wish to store several oroarams in memorv. Fach orogram
will have a different hexadecimal address location, for examples

Program | - NEW #1060
NEW

Program 2 - NEW #4852
NEW

Tne NEW (carriage return) command érases an old programs the LIST
command lists your oroqram and the RUN command runs your program,

Importantt when you are finished typina/talking to the computer, vou

signal by oressing the RETURN key. This indicates that you are
finished with your turn. o

Tyoe your name and then press the RETURN keyt the following is what
should haoppent

ERROR 4 The computer responds with FRROR 4, FERROR 4 is
: listed in this chanter and in Apperdix C under the
Error Code Summary and is a *Syntax Error®. This
is because NSC Tiny BASIC does not rpcooni7e your
name as a command,

> NSC Tiny BASIC then types a orompt (>) to let you
know it is still listening and that it is still your
turn to communicate.

This is the first examnle of an error message. It is the one you will
see most often, and it means only that vou have typed somethinag that
NSC Tiny BASIC doesn’t understand. NSC Tiny BASIC does not understand
your name simply because it is not in its repertory of commands.
Fxamine the following legal commands.

3.5 The Print Instruction

The computer gets jobs done by following instructions. If an in-
struction is correctly tyoed, the comnuter will execute i1t immediate-
ly. (Nhen a computer follows an instruction it is said to obey,

or execute that instruction.) One of the most useful instructions is
the one that tells the computer to PRINT a desired result or message.

In English we say that antelones have four legs, but we say that
“antelopes" has nine letters., One of the things we do by putting words

into quotes is to indicate that we are referring to the words
.themselves and not their meanings. The computer uses auotes the same
wavy.

For example, suobpose, in a boiler installation that the computer is
monitoring the water level. If the level begins to get low (but not
low enough to warrant automatic shut down) you might want the comoputer
to orintt *"Warning, the water level ‘is low.". The instruction you
desire to give the comouter is?

>PRINT "WARNING, THE WATER LEVEL IS LOW#

Don’t forget to press the RETURN button to. make the computer execute
the instruction.

You typet PRINT #WARNING, THE WATER LEVEL IS LOW#
The microinterpreter typest WARNING, THE WATER LEVEL IS LOW

NSC Tiny BASIC tyoed what you told it to types note that the message
was enclosed in ouotation marks, but they were not printed.

Suppose that the operator in the boiler installation was away from the
terminal, or taking a nao, or having a coffee break. In any of these
instances he may not see the warning message. The TITY has a bell which
may be used as an alarm., (Other terminals may have different audible
aAlarms - a click, been, buzz etc.) To sound the bell, hold down the key
narked CTRL, CNTRL or CONTROL and, while holdinag it down, press the G
key. On most TTYs, the G key has the word BELL on it as a reminder.

s dedede g dede gk ke ke ek ke Ak dk ok ek ke Ak Ak khh kA dkk k Ak

* : *
* To ring the bell, hold CTRL down and *
* press G *
* *

kded ok Kok dek d kg ke dedekek kokk K ek Ak ok dededk kdedok ek k ok kkk

‘

Hold the CTRL key down and press the G key several timess this will
allow you to ring the bell several times. You will note that the
bells are heard yet nothing is printed on the TIYs (Aopendix shows
other non=-nrinting characters which may be useful.)

Bells (CONTROL/G) can be included in a PRINT instruction. Let’s
use the example of the boiler installation again and orint the same
warning message, only this time add the bell to be certain that the
operator knows there’s an important messaget

You type?
PRINT “WARNING, WATER LEVEL IS LOW (CTRL GGGGGG)"

Don’t forget to press the RETURN key so that NSC Tiny BASIC knows yo
are through with your instruction,

NSC Tiny BASIC tyonest
WARNING, WATER LEVEL IS LOW and then rings the bell six times.

3.6 Using The Computer As A Calculator
NSC Tiny BASIC can do integer arithmetic. Try the following example’

on your INS8@73. Remember to oress the RETURN to finish a line of
tyoing.,

ADDITION

You tynet PRINT 2+3 Use #+8 to add.
NSC Tiny BASIC typest 5

SUBTRACTION

You types PRINT 7-4 Use #-4 to subtract.
NSC Tiny BASIC tyoes: 3

MULTIPLICATION

You tynet PRINT 4x7 Use ##¥# to multioly.
NSC Tiny BASIC typess 28

DIVISION

You typet PRINT 48/58 ‘Use /% to divide.
NSC Tiny BASIC tyoest 8 :

If you made no typing errors, the above four examples should actually
apoear on your TIY page as followst

>PRINT 2+3 The promots (>) were typed by NSC Tiny BASIC
5

>PRINT 7-4
3

>PRINT 47
28

>PRINT 48/6
8

>
Now try the following divisions,

>PRINT 23/4
5

>PRINT 3/2
!

>PRINT 4/5
0

Is NSC Tiny BASIC qgiving wrong answers? No. It is simply doina
integer arithmetic. In division, NSC Tiny BASIC onroduces -the integer
oart of the quotient.

Using the first example above, >PRINT 2374, this is what happenst

5 Quotient. This is what you get when you
4 / 23 tell NSC Tiny BASICs PRINT 2374
20 L <
3 " Remainder., You will be instructed later
- on in this manual how to compute the
remainder., ' »

Most industrial control aoolications, as well as tasks such as word
nrocessing and even the nrograms that make this lanquage work, need
only integers, A valve in a refinery may need to be set to one of a
hundred nositions (many anpnlications only require resolution of two
positions - opened and closed). These hundred nositions can be
renresented by the inteders 3 to 15 with @ being closed, 57 being
half opened, and 1@ allowing full flow.

In NSC Tiny BASIC, integers can range between the limits of -32768

and +32767, inclusive., This allows any measurement or control to be
accurate to one part in over 65,733, Few electrical or mechanical
devices in control systems require more accuracy. Yet, by aoprooriate
orogramming, greater accuracy can be obtained if it is necessary.

A good way to learn more about how NSC Tiny BASIC does arithmetic is
to use it as an integer desk calculator. As with any desk
calculator, it is possible to overflow if you calculate a number too
large or small.

NSC Tiny BASIC handles the problem in two wayss

1. If you try to type, not calculate but tfpe, a number greater than
32767 or less than =32767, NSC Tiny BASIC will print an error
message, For examplet

>PRINT 32768
ERROR 5 Error 5 = Value (format) error

>PRINT -=32768
ERROR 5 Error 5 = Value (format) error

2. If you calculate a number outside of this range, no error messaqge
will be generated:s the numbers just ®wrap around", This method
of handling overflow is handy on some occasions, but distressinq
at other times. For examplet

>PRINT 32766+1
32767 This is the exoected answer

>PRINT 32767+
-32768 This is NOT the expected answer

PRINT =32767~1
-32768 - " This is the expected answer

>PRINT =32767-2
32767 This is NOT the expected answer

>PRINT -=32768-1
€RROR 5 © Remember, you can“’t tyne =32768

Think of NSC Tiny BASIC numbers being arranged in a circles

=1 a1
-2 2
-3 3
-4 4
-5 5
-32764 32764
-32765 32765
-32766 32766
=32767 . 32767
-32768

From the ciscvic rvw wdn see that 32765+7 = =32764, (Moving in a
clockwise direction start at 32765 and count off seven placess

you should end un at =32764.) Try it on your system.

>PRINT 32765+7
32764 Correct

To subtract, move in a counter-clockwise direction. For example,
-32766-5 = 32765. Again, verify this on your system.

NOTEs

>PRINT -32766-5
32765

NSC Tiny BASIC didn“’t print the "correct"” answer (-32771)
because =-3277! 1s less than =32768. Calculated values will be
correct only if the correct value is in the ranage of =-32768 to
32767, inclusive.

Up to this point you have been shown simple problems with one
ooeration. The following examples are a bit more complicated. The
formal rules for how exnressions are evaluated are in this chanter in
section 3.7t you will understand them better if you experiment on
these examples first.

>PRINT 2%3+4
57

>PRINT 2%3-4
2

>PRINT 2%3+4%5
26

>PRINT 2#43-4%5
-14

>PRINT 2%3%4x5%6
120

SPRINT 2#3%4%5%6%7
5040

SPRINT 2#3%4%5%6%7%8

-25216~ - The correct answer is 4328, too big
for NSC Tiny BASIC., NSC Tinv BASIC
does not tell you that an incorrect
answer has occurred,

If you use only 4+, - and %, NSC Tiny BASIC will give correct results
unless the true result is less than -32768 or agreater than 32767,
Try some division problemss
>PRINT 720/2/3/74/5/6
| Correct. 720/2 = 360, 360A/3 = 120,
. 12074 = 30, 3A/5 = 6, and 6/6 = 1,

“ >PRINT 1/2+1/3+1/4

] The integer cuotients are all zero.

>PRINT 2/3%|@e2

o} ~ Incorrect. Two thirds of 1033 does
not give zero. Try it a different
way,

>PRINT 10001%2/3
666 Correct.

3.7 The Use of Parentheses

The following examoples illustrate the use of parentheses in numerical
expressions. Verify them on your INS8373,

SPRINT 2%(3#4)
14

PRINT (243)%(4+45)
45

SPRINT (2%3¢3)#8+7
79

>PRINT (47-23)/6
4

PRINT (243)/(4+5)
(%]

NSC Tiny BASIC does not tell you that a computed answer is incorrect
because the true result is outside the range, -32768 to 32767. For

examples

>PRINT 1303 %(39-72)
-32536 - The correct answer is 33000

An incorrect result can occur even if the true result is in NSC Tiny
BASIC”s range., This will haopen if an intermediate calculation lies
outside the range =32768 to 32767. For examoples

>PRINT 201%200/2
-12668 The correct answer is 2710@.

In the above example you got an incorrect result beécause NSC Tiny
BASIC first comouted 201%20@ which has a true result of 4920# and
"this is outside its range. NSC Tiny BASIC obtained =-25336 for this

result, then divided by 2.

>PRINT ?Wl*(ZGGIZ)
20100 Correct.

Parentheses were used to cause NSC Tiny BASIC to first compute 200/2,
then to multiply by 2A1.

3.7 Rules For Evaluatina Exnressions
Division by zero (@) stops everything and gives the message:?
ERROR 12
Expressions are evaluated (in the absence of parentheses) by doing
all multiplications and divisions from left to right. After they are
comnleted all additions and subtractions are done, again, from left

to right., Any fractional results from a division are simoly ignored
(truncated). The results are not rounded. For examples

2/ 3% B70

is evaluated to zero, since the integer oart of 2/3 is zero, and zero
times 1920 is zevro. Ruts

1 A0@*2/ 3

evaluates to 666 because 1022*2 is 237% and 2000/3 is 666.66666, (the
fractional sixes to the right of the decimal point are dropoed).

The expression 4+6/2+3 evaluates to Ih because the division is done
first yielding 4+3+43, and then the additions are done from left to
right. In other words, 4+6/3+3 1is evaluated:

4+46/2+3 = 4+43+3 = 743 = 10

The order in which overations are done is shown below in still
another way. The numbers in the circles show the orders

446/2+3
Parentheses override the normal rules. Anything inside a pair of
parentheses gets evaluated before that which is outside. This is the
normal algebraic convention., Thuss ° '
(446)/7(2+3)
evaluates to 2, thuslyt (4+6)/(2+3) = 18/(2+3) .= 10/5 = 2

'Shown below is the order in which ooerations are done by the use of
numbers in circles.

(4+6)/(2+3)

Parentheses may be nested as needed. This means you can have paren-
theses within parentheses.

12/2%12/2%3 = 6%12/2%3 = 72/2%3 = 36% 3 = |08
12/7(2%(12/(2%3))) = 12/(2%(1276)) = 12/(2%2) = 12/4 = 3
Or, using the circlest

? 99 99 99

12/2%] 2/2%3 versus 127(2%(12/¢()))

Check these in your head, and then on the computer,

Good programming practice avoids exnressions like 12/2%12/2*3 as they
are hard to read, It is clearer (and thus less error orone) to write
(C12/2%12)/2%3) using spacing and narentheses for clarity even if
they are not technically necessary.

Algebraic notation is used in NIBL, modified as necessary to fit on a
single line and, of course, to use proper NSC Tiny BASIC arithmetic
symbols.

ALGEBRAIC EXPRESSION NSC TINY BASIC FXPRESSION
36 " 36/(9+3)
9 + 3
12 x 58 (12%58) /(7425)
7 x 25
120 x 60 (120%63) /(1 20+60)

1200 + 60

There are 1imits to the orders of orecedence allowed in any one line.
These, however, are hard to exnlain, or even find. The rule of thumb
is that if you get an #ERROR 9% occurring after a varticularly long
exoression, try to break that exnression into two or more parts.

3.8 Mistakes

Perhaps the deadliest assumption in engineering desiagn is that any-
body usinag the equipment will use it correctly. NSC Tiny BASIC
orovides error messages after it is too late. If you &re working on
a TTY and are lucky enouah to catch yourself in the middle of a
statement, havinag just tyoed an incorrect character, you do not have
to throw away the good part and retype the whole thing.

The first mistake correcting facility is a sort of hackspace. Say

that you typed *PRINR® instead of MPRINT*, If, after the "R¥ you

held down the SHIFT key and nressed the letter "0 you would get a left
opointing arrow or underline. This means that the last letter you

typed (the "R®*) {s deleted and you can now type the correct letter
("T"), Try it a few times.

>PRINR 243
ERROR 4 PRINT missoelled
>PRINR_T 2+3 After tyning R, type __(SHIFT 0), which

erases the R. Then type the rest of the
line. Everything is OK to NSC Tiny BAbIC.
although it looks wrona on your TTY.

The backspace feature can be used repeatedly. It is up to you to
keep track of just how many letters have been obliterated.

>PRINT 3+2__5%98__ 5
25

A true backspace feature is provided for use with CRT terminals.
Pressinag the backspace key (or Control H) will erase the last
character from the screen and memory,

If you want to cancel an incorrect line entry without having to wait
for the error message, hold the CTRL button and strike the letter "U",
NSC Tiny BASIC will type “U, do a carriage return line feed, then it
will tyne the prompt (>).

>TYPE AN INCORRRCT LINE FNTRY AND PRESS “RETURN"™ and get
ERROR 4

>
>TYPE AN INCORRECT LINE ENTRY AND PRESS CONTROL U™U

> <4— No syntax error.

If you are lucky enough to be using a CRT, just backspace and retyoe
the offending character.

1-20

3.9 Exercises
Complete the followings

1. In NSC Tiny BASIC, numbers are integers in the range
to s Inclusive.

2. If you typet PRINT MTURN SWITCH NO 3 ON»
NSC Tiny BASIC will type:

3. If you types PRINT 77
NSC Tiny BASIC will types

4. -1f you types COME ON NSC TINY BASIC. GET WITH IT!

NSC Tiny BASIC will types

Do the following in your head or with pamer and nencil, as you think
NSC Tiny BASIC would do them, Then, verify your answers.

5. 2%3+44546%7 =

6. 123%(42/127) =

T. 1000%1 0300

8., 22/7%1930a4

9. 1000%*22/7

You will find the answers to these exercise aquestions in Apbpendix A.

1-21

CHAPTER4

4,1 Variables
If, instead of typings
PRINT 12a/4/5
vou typed:
A=12074/5
the.result (which is 6, as the expression is evaluated from left
to right) would be given the name A, A is called a variable. The
instructiont
PRINT A
would “result in the value 6 being printed. The following is the en-
tire sequence of instructions as they might aonpear on your TIY page

or CRT screen.

>PRINT 12a/4/5
6

>A=|200/4/5

>PRINT A
6

Try another one.

>A=7 The value 7 was assigned to the variable
A and the value 5 to the variable B.
>B=5 Since A=7 and B=5, A+B will be 12.
>PRINT A+B
12

NSC Tiny BASIC now is instructed to know A=7 and B=5,

>PRINT A+B
35 A=7 times B=5 = 35

In NSC Tiny BASIC there are 26 variables, the letters of the alphabet

A through Z. Fach variable may be best considered as a pigeonhole in
which exactly one number can be stored, When it is stated that
K=4325, it means to replace any prior value that K may have had with
the new value 4325. The old value is lost. The instruction G=T
tells the computer to make a cooy of whatever value is in T and to
nlace that copy in nigeonhole G. In computer jargon the pigeonholes
are called "memory locations" because they can “remember" values.

1-23

Later you will see that hany more locations are available to store
data in, but for now there are only 26 variables in NSC Tiny BASICs

ABCDEFGHIJKLMNOPQRSTUVHNXYZ
Before a variable has been assigned a value (jargon for putting a
number into a pigeonhole), NSC Tiny BASIC qives it the value a. It
is as if just before you sat down to use the computer ,someone had
tyoeds ’
A=03 B=@AA C=01 etc.

When you first start NSC Tiny BASIC all the variables will contain
the value of zero (7).

Skeptical? Try it out on your system,

>PRINT A
?

>PRINT B
@

>PRINT C
?

and so on, if you wish, up to PRINT Z,

Up to now you have used PRINT statements that orint only one thing.

>PRINT 7 One thing (7).

7 One thing (7).
>PRINT 2+3 One thing (243).

5 One thing (value of 2+3).
>A=13
>PRINT A , One thing (A).

13 One thing (value of A).

The PRINT statement can print more than one thing:s

>PRINT 7,5 Two things (7 and 5).
7 5 Two things (7 and 5).
S>PRINT 7+5,7-5 Two things (7+5 and 7-5).
12 2 Two thinas (values of 745 and 7-5).,
>A=T7
>B=5

1-24

>PRINT A,.B Two things (A and B).
7 5 » Two things (values of A and B).

>PRINT 74#5,7=5,7%5,7/5 Four thinags.
12 2 3% 1 " Four things.

>

NOTEs PRINT 7+7,7-5,7%5:7/5

b A

COMMAS

You can orint two or more things orovided you separate each thing
to be printed with a comma in the PRINT statement.

4,2 Exercises

Pretend for a few minutes that you are the INSB@73 and that NSC Tiny
BASIC is the language you understand. Show what would hapoen if your
user typed the following?

ONE TWO

>A=7 >M=47

>B=5 ' >N=9

>PRINT A+B,A-B,AxB,A/B - >Q=M/N
>R=M=-N*Q

>PRINT M,N,Q,R

THREE | | FOUR

>A=2 >A=37

>B=3 >Q=A/ 1A
>C=4 | >R=A-10*Q
>D=5 : >B=17*R+Q
>PRINT A#B+C*D, (A+B)*(C+D) >PRINT A,B

1-25

FIVE

>RkR=32

>PRINT R*22/7,(R*R)*22/7

—— s w——

You will find the answers in Apnendix A

4,3 The Stored Program

Compute the souares of 23, 37, 53 and 88. Thét is, computes

2

23 , 37 , 53 and 88 .

>PRINT 23%23
529

>PRINT 37%37
1369

>PRINT 53%53
2809

>PRINT 88+88
7744

>

2

2 -

23 = 23 x 23
2

37 = 37 % 37
2

53 =53 % 53
2

88 = B8 * 88

You can give more of the work to NSC Tiny BASIC3 do this by storing
a orogram to compute the square of a number...don’t do it yet.

13 X=23
20 PRINT X#X

If you did type this is and got an ERROR
| message here, it’s because your RAM is
not At the default location. To remedy
this situation, vou must tell NSC Tiny
BASIC where your RAM is with a NEW
statement. If vour RAM is at
hexadecimal 1@423, then you would enter
NEW #1007% then NFWN again. For examolet

SNEW #1200
NEW

1-26

Notice that the above orogram consists of two statements and that
sach statement beains with a line number,

13 X=23

Line Number. A line number can be an integer from
A to 32767,

When statements with line numbers are typed, the statements are not
executed immediately. Instead, the statements are stored in memory
for later execution,

Refore you store the above program, clear out - or erase -~ any old
nrogram that might be in memory. To do this types

NEN #1000
NEW

NOTFt NEW #1003 sets the start of nroaram pointer at location #1207
hexadecimal. The number symbol (#) is important, this will
be fully discussed in Chapter 5.

It is important that the start of nprooram nointer is set to the
beginning of availabhle RAM, This allows the program lines to be
stored as they are typed in. If vour B@73 system differs from
the one described at length in Section 33 determine the start
address of the RAM in your system3 then, use that address in
your YNEW" command.

NSC Tiny BASIC will erase any old orogram in its memory and aget ready
to accept your new program. :

SNENW

> NSC Tiny BASIC is ready for a new
program.

Store the nrogram to compute the square of a number, Type the
following -(exceot for the promots - NSC Tiny BASIC does that for
you.).

>NEW

>10 X=23

>20 PRINT X=*X
>

_ The orogram is now stored in memory. To verify thist

Type LIST and press the RETURN key.

SLIST @ Khen you tyoe LIST, NSC Tiny BASIC
13 X=23 lists the program,

2A PRINT X*X
>

1-27

To get a cony of the nrogram currently stored in the

memory, type LIST and press the RETURN key. RUN the
>RUN
529
>
First NSC Tiny BASIC did this 4;’10 X=23
Then ' »27 PRINT

That’s all, so the INS8#73 stoonned.

Look over:<the last few inches of TIY papers you'max

somethifnig like the following. (Line spaces have been
it easier to read.)

INS8@737’s
program,

X*X

find it looks
added to make

>NFEW First you erased any old orogram in the
: system,
>10 X=23 Then you tyoed in this two line nrogram.
>28 PRINT X*X
>LIST Then you asked NSC Tiny BASIC to tyoe
the bprogram out. .
14 X=23 NSC Tiny BASIC obliged. (Notes No
20 PRINT X*X prompts.)
>RUN Then you gave the RUN command.

529 NSC Tiny BASIC ran the programs this

was the result,

> Having done its appointed task, NSC
Tiny BASIC typed a prompt...ready for

more work.

Change the value of X. To do this, type in a new Line 14, This will
replace the old Line 1@ with the new Line 18. After making this

change, LIST the modified program. Don’t tyoe NEW,

>13 X=37
>LIST

13 X=37 This is the new Line 14,
29 PRINT X=X and the old Line 24,

>

1-28

You can replace any line in the program by typing a new line with the
same line number., To delete any line from a proaram, simoly type in
that line’s number followed by a carriage return. When the nroaram is
listed, that line will no longer remain. RUN the modified nrogram.

>RUN
1369

>
4.4 Exercises

1. Change Line 18 to 1# X=53 then LIST the modified program and HUN
ito h

2. Chanqge Line 1# to
it.

1?@ X=88 then LIST the modified program and RUN

If you did everything on the orevious two nages without making any
typing errors, the TIY page will look like the following. (Again,
line spaces have been added for readability.)

REMEMBER

NEW 1. To erase any old program and get NSC Tiny

BASIC ready for a new program, tyne NEW and

>10 X=23
>27 PRINT X#*X

press RETURN.

>LIST 2. To qget a tyoed copy of the nrogram currently
>10 X=23 in the INS8#73’s memory, type LIST and
27 PRINT X=X nress RETURN,
>RUN 3. To tell NSC Tiny BASIC to execute the program
529 in its memory, type RUN and press RETURN.
>10 X=37 4, To reolace any single line of a orogram in
>LIST memory, tyne a statement with the same
line number,
18 X=37
234 PRINT X=X
>RUN
1369
>l X=53
>LIST
17 X=53

20 PRINT X*X

1-29

>RUN
2809

>I1 X=88
>LIST

10 X=88
2% PRINT X#*X

>RUN
7744

>

4.5 The - GO TO - Statement
If you typed the instructions
SPRINT “THE BOAT IS SINKING. MAN THE PUMPS!®
and pressed the RETURN key, the computer would prints
THE BOAT IS SINKING, MAN THE PUMPS! '
and then stop. In a situation where a boat was actually sinking, the

computer should be more insistent and repeat the message (complete

with bells) until somebody pays attention. There is a way to do
this., Type in the following program. First tyoe NEWN, (Don’t RUN

the program yet.)
>NENW
>1# PRINT “THF BOAT IS SINKING. MAN THE PUMPS! (CTRL GGGGGGG)*"

>2¢ GO TO 14
>

Before you RUN this program - you must know how to stop it. When you
type RUN and press the RETURN key, the TTY will begin running the pro-
gram and ringing bells., To stop a runaway computer, press BREAK (or
any other key) until the computer stops.

Tyoe RUN and press RETURN.
>RUN _
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING, MAN THE PUMPS! Bells

THE BOAT IS SINKING. MAN THE PUMPS! Bells
THE BOAT IS SINKING., MAN THE PUMPS! Bells

1-30

To STOP the program, press BREAK.

The following is a short analysis of the above program. Each line

has a number. The first line is numbered ten, the second twenty,

When you say "RUNY the computer starts to execute lines beainning

with the lowest numbered 1ine, In this case that is Line 14t the
computer orints “"THF BOAT IS SINKING. MAN THE PUMPS! Bells*" When it
is done with Line 172, it then executes the next highé€r numbered line,
In this case it is Line 20. Line 24 has a new instruction, the GO TO
instruction, it does the obvious thing and tells the comouter what line
to go to, i{.e., what line to execute next. The computer executes Line
13 again, then looks for the next higher niumbered line, and so forth.
The computer will not ston until it is either turned off or you stoo
it by. pressing the BREAK button.

If you are still unsure about how the GO TO proaram works, follow the
Arrowss

>RUN

1@ PRINT ®THE BOAT IS SINKING. MAN THE PUMPS. Bells"

28 GO TO 1@

This program is in the form of a loop. The computer goes around the
loon until you press the BREAK key.

After you’ve stopped the program by pressing the BREAK key, you can
start It again by typings

CONT (for continue) then press RETURN

The program starts where it left off and continues to orint the message
over and over again until the BREAK key is again pressed.

The implications of this little program are imoortant: It i1s a little
program, yet it produces a lot of output! Tell a computer to write,

"] will do my homework® a thousand times and it will do it uncomolain-
ingly. In an automobile, a microcomputer can be programmed to check
the air pressure in the tires, the manifold nressure, fuel flow,
hbattery voltage, the timing and so forth, a hundred times a minute,
every minute the car is in oneration. Repetitive jobs, however many
times they must be done, are usually no more difficult to oroqram than
jobs that must be done only once or twice.

1-31

4,6 The - INPUT - Statement

2
Revert back to the problem of computing the value of X for various

values of X. The INPUT statement is a handy method for feeding
values into variables, Follow along with the program to compute:

2 2 2 2 2
X . then use it to compute 23 , 37 , 53 , and 88 .

>NEW

>1?@ INPUT X (This is the INPUT statement)
3208 PRINT XX

>3 GO TO 1@

The above is a three statement program, including a new type of
statement called INPUT. RUN the progranmt

" >RUN
? (A new .kind of prompt.)

NSC Tiny BASIC is now doing the INPUT statement. It types a gquestion
mark, then waits. You must type a number and pbress RETURN. v

>RUN

? 23 {Tyoe 23 and press RETURN.)
529

? (NSC Tiny BASIC tyned another question mark to

show it“’s ready for more values of X. Continue

with 37, then 53, then 88,)
>RUN

? 23
529

? 37
1369

? 53
2809

v 88
7744

? NSC Tiny BASIC will keep prompting with ? until

you let it know that you are finished. To do
thiss

Press and hold CTRL and, while holding CTRL down, press C.

1-32

? CTRL/C NSC Tiny BASIC has stopped running the program

STOP at 19 and waits for the next command,
>

Remember, NSC Tiny BASIC statements are done in line order number,
unless a GO TO breaks that order. In the preceding orogram, the
statements are done in the order shown below, Again, follow the
arrowst

>RUN

14 INPUT X Program loops around until you stop it
' by typing CTRL arnd C together — CTRL/C

27 PRINT X#»X
3a TO 19

The following program computes the value of AX+B for INPUT values
of A, X, and B,

>NEW

>1% INPUT A

>27@ INPUT B

>33 INPUT X

>4¢) PRINT AxX+B ,

>57 PRINT uwn . This prints an *%empty line". You could also
>6¢ GO TO 10 use the expression without the quotes. They
>RUN only serve to make the output orettier,

SR

———— —B

—————

...... — A%X+B
~===—-~---Line space printed by Line 5@.

W) W W
VW WRWwN

LS IS RN]

19
? CTRL (™) /C

STOP AT 10
>

4,7 Exercise

How would you modify the program so that, after typing RUN, you
could supply one set of values for A and B, followed by several
“values of X? \

See Anppendix A for the answers,

1-33

4,8 Informative Printing
A program to orint squares of numbers could print answers thusly:
>RUN

?7 23
529

7 37
1369

?7 53
2809

? 88
7744

? and so forth

The following would be more preferables
>RUN
COMPUTE X SQUARED

WHAT IS X? 23
X SQUARED = 529

WHAT IS X? 37
X SQUARED = 1369

WHAT IS X? 653
X SQUARED = 2809

WHAT IS X? 88
X SQUARED = 7744

WHAT IS X?
«ssand so on until someone types CTRL/C.

This program identifies the desired input and the comouted and orinted
output.

The following are the first two statementss

I1# PRINT "COMPUTE X SQUARED%
20 PRINT nu

Line 1@ causes NSC Tiny BASIC to print the message COMPUTE X SQUARFD.
Line 2@ orints a Line Feed,

The two statementss

3@ PRINT “WHAT IS X?¥3 ««<===—Note the semicolon.
49 INPUT X

Cause NSC Tiny BASIC to typet

WHAT IS X?
and wait for a value of X. The ‘question mark is thé promot from the
INPUT statement. Did you observe the semicolon at the end of the
PRINT statement? 1t prevents a carriaqge return and line feed from
occurrina. If vou don’t use a semicclon the following would hanpen:

3% PRINT “WHAT IS X" =mem———m —No semicélon.
4% INPUT X

Wi thout the semicolon, NSC Tiny BASIC tynest
WHAT IS X
?

For this porogram, remember to use the semicolon at the right end of
the PRINT statement.

53 PRINT X SQUARED =%} —======Semicolon.

674 PRINT X#»X
Together these two statements cause NSC Tiny BASIC to print the
message "X SQUARED =% followed by the value of X*X., For examole, if
X = 23, NSC Tiny BASIC will tyoes

X SQUARED = 529

Remember to note the semicolon on the right end of Line 52. Had it
been omitted the following is what would hanpent

5@ PRINT "X SQUARFD =" —==<~<~-—No semicolon,
64 PRINT XX

If X = 23, NIBL will type

X SQUARED =
529

One more statement:?

7% GO TO 20

1-35

The following is everything put together in a complete programs

1@ PRINT “COMPUTE X SQUARED*
20 PRINT wa

30 PRINT ®WHAT IS X%

49 INPUT X

5¢ PRINT #X SQUARED="j

60 PRINT XX

70 GO TO 2@

Load the above program into your INS8#73 and RUN it. Try it for
X = 23, 37, 53 and 88.

4.9 Multiple Statements Per Line

‘The following instructions explain how to put two or more statements
on one line, "

Instead ofs 374 PRINT MWHAT IS X¥3
- 4¢ INPUT X

You can out both statements on one linets

3@ PRINT “WHAT IS X ¢ INPUT X
(first statement) (second statement)

(The statements are seoarated by a colon)

To put more than two statements on a single line, follow the same
format as above and be certain to separate each statement with A
colon (8), ‘
Instead ofs

20 PRINT wu

39 PRINT ®WHAT IS X3

4@ INPUT X

Put all three statements on one lines

2@ PRINT w» s PRINT #WHAT IS X3 s INPUT X

Ist 2nd 3rd
statement statement statement

colon colon

1-36

The following is an examople of four statements on one line.
47 INPUT Xs PRINT ®X SQUARED=%3s INPUT X 2 PRINT X*X s GO TO 2%
Instead ofs

44 INPUT X

572 PRINT "X SQUARED=#g
65 PRINT XxX

7% GO TO 2@

2
. the following is a M“compact® program to comoute X , featurinc the use
of multinle statements per linet

12 PRINT “COMPUTE X SQUARFED¥

200 PRINT w& ¢ PRINT #WHAT IS X#3 s INPUT X
5@ PRINT “X SQUARFD ="3 s PRINT X*X t GO TO 20

Try it.on your INS84A73,
Follow the arrows to see how the program works.

RUN

1@ PRINT ®COMPUTE X SQUARFD#%

274 PRINT ™ ¢ PRINT ¥WHAT IS X*3 ¢ . INPUT X

59 PRfNT #Y SQUARED ="3 s PRINT XxX ¢ GO TO @

As per standard, NSC Tiny BASIC does lines in line number order,
first Line 18, then to Line 28, then Line 54. NSC Tinv RASIC does
all statements on a line in left to right order before movina on to
the next l'ine. Since Line 57 ends with a GO TO 20 statement, NSC
Tiny BASIC, indeed, goes to Line 20 and continues, after finishing

Line 5%,

In order to emphasize that multiple statements per line are separated
by colons (%), a space on each side of the colon has been addeds this
is optional and Line 2 could have been tyoeds

27 PRINT "“sPRINT "WHAT IS X"3:INPUT X

1-37

Some statements such as PRINT and INPUT can take multinle arguments.
This allows several statements to be added together into one, VFtor
examples

1OPAINT X3sPRINT 43:PRINT “DOMINO"sINPUT AsINPUT B
can be shrunk tot

18 PRINT X,Y, "DOMINO*$INPUT A,B

4,172 Exercises

l. Write two programs to compute the value of AX+B for input values
of A, X and B, as illustrated by the following RUN of our orogram,

>RUN
PROGRAM TO COMPUTE AxX+B

A=? 2
B=? 3
X=2 5
AxX+B = |3
X=2 8
AxX+B = 19
X=? 12
AxX+B = 27

X=? ...and so on...oress and@to abort program.

A. Program No. |. Do not use multiple statements pner line.

B. Program No. 2, Use multiple statements per line.

Answers are in Appendix A

1-38

CHAPTERS

5.1 Bits and Bytes

We assume that you are using an INS8273 with at least 256 memory
locationss this is the minimum confiquration to run NSC Tiny BASIC.

o Each memory location holds, or stores, one byte of
information,

o One byte consists of eight binary diagits commonly called
bits. BIT = BINARY DIGIT

o One byte = 8 bits.
o A binary digit (bit) is either # or 1.

You can think of a memory location as shown in the following diagram:

The number, 73, is stored
in binary.

| BYTE = 8 BITS = | MEMORY LOCATION

Each bit must be @ or 1. Below are some numbers shown stored in bytess:

NUMBER (DECIMAL) STORED AS A BYTE (BINARY)
1 njlaja|¢|la|a]|0 |7
! njiogl|la|la|la|lajla]l
2 alalaja|lala]ll | A
4 L I/ I O O O
8 alala|all |a|]a]|@
16 glo|jg|t|a|le|a]|a
32 2|1l |alo|0|@a|@
64 agli|o|a|e|o|o|o
128 | l1|dglajla|a|d|a]|9

1-39

5.2 Exercises

Figure out how 3, 6, 7 and 29 would be stbréd. What is the largest
that can be stored in one byte?

Answers are in Appendix A
5.3 Memory Address

Each memory location has a unique numeric address. The NSC Tiny
BASIC program in the INS8#73 system occupies locations with addresses
A to 2559, : '

An expanded INSB8A73 system might have more memory locations. For ex-
ample, your system may have 8192 locations, or 12288 locations... and
so on, up to a maximum of 65535 locations, which includes *locations?
that are really ports for peripoheral devices.

"Memory addresses might run from @ to 4495 or @ to 8191, or @ to 12287,
and so on,

o Memory locations @ to 2559 hold NSC Tiny BASIC in the
- on=chip ROM (Read Only Memory) of the INS8a73.

0 Addresses 256@ throuah 65471 are yours to use. When you
type in an NSC Tiny BASIC oroqram, you use some of these., The

longer your nroaram, the more you use. If you wire up some
interesting electronic gadgets to the system, you will most

likely use some of these addresses. Not all of these memorvy
locations will actually be there in a typical system.
5.4 Hexadecimal Number System
To understand the literature, you are going to have to learn hexa-
decimal. The hexadecimal (base sixteen) number system is a handy
shorthand for talking about bits and bytes and memory addresses.
In hexadecimal, addresses ranqge from #@0?@ to #FFFF,
The number sign (#) is used to tell you that the number is hexadecimal
instead of decimal. This is the notation used in NSC Tiny BASIC% other
notations exist in other literature.
This is a decimal number: 28673
This is a hexadecimal numbers #7001
The hexadecimal system has more digits than the decimal system.
Decimal digits:s 21 234567829

Hexadecimal diaitss @1 23456789 ABCDETF

1-40

Just as in the decimal system, each hexadecimal digit has a nositional
(or olace) value. The digit occuoying any oosition is multiplied by

the value of that particular onosition. These products are then added
together to obtain the value of the number.

Hexadecimal position values are expressed as powers of sixteen (rather
than 18 as in the decimal system). Positions are numbered from right
to left according to the increasing powerss

POSITION POSITION LPOSITION POSITION
3 2 ! »
3 2 N @
16 16 16 16

The decimal values of the powers of sixteer ares

0 | 2 3
16 =1 16 =16 16 = 256 16 = 4096 -

Check the decimal equivalents of the the following hexadecimal numbers.

3 2 1 o

#7091 = (7 x 16) + (3 x 16) + (@ x 16) + (1 x 16)

= (7 x 4096) + @3 + 3 + |

= 28672 + A + A + | = 28673
#7002 = 28672 + @ + @ + 2 = 28674
#7074 = 28672 + A + B + 4 = 28676
#7018 = 28672 + @ + 16 + @ = 28688
#7020 = 28672 + 0 + 32 + A4 = 28704

(Remember, # in front of a number means it is hexadecimal.)

You will notice that in Section 3 a hexadecimal number is referred to
by preceding the number with an ®"X4* instead of the "#" sign, for ex-
amplet

X’8a09

This is a more standard notation for hexadecimal numbers, but NSC Tiny

BASIC does not like it.

1-41

If we ask the INSR@73 in NSC Tiny BASIC to print a hexadecimal number,
NSC Tiny BASIC orints the decimal equivalent.

>PRINT #7001
28673

>PRINT #A
19

>PRINT #8B
1

>PRINT #C
12

>PRINT #
13 -

>PRINT #E
14

>PRINT #F
15

>PRINT #1060
16

And so on...

The following is a table of hexadecimal digits vs. decimal values,

HEXADECIMAL DECIMAL
DIGIT VALUE
@ 2
)]

2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A 19
B i
Cc 12
D 13
E 14
F 15

1-42

You may-wish to use the following small program for further exoeriment-
ationt,

>NENW

>1 7% REMARK HEXADECIMAL TO DECIMAL

>11@ PRINT wu

>127 PRINT WHEXADECIMAL NUMBER"ssINPUT H

>133 PRINT ¥“DECIMAL FQUIVALENT IS*,H - This is a multiole PRINT

>4 GO TO 115 statement, see section
4.8,

>RUN

HEXADFCIMAL NUMBER? #7021
DECIMAL EQUIVALENT IS 28673

HEXADFCIMAL NUMBER?...And so on. If you type a decimal number
(without #), you will get
the decimal equivalent of
your decimal number,

You may have noticed something new in Line 18@. Any line that beagins
with the word YREMARK® is ignored by NSC Tiny BASIC, even {f it
contains another statement preceded by 3 colon., These REMARKS are used
to help document the orograms and, REMARK statements will be found in

great abundance in the programs that follow in this porimer,

5.5 More About Hexadecimal

The hexadecimal numbers #7 to #7FFF. inclusive, are equivalent to the
decimal numbers, # to 32767, inclusive, You can obtain the decimal
equivalent of any hexadecimal number in the above range bv usina the
proaram on this nage.

To find out about the hexadecimal numbers from #BAM@ to #FFFF, use the
program on this page. Enter that program and type RUN,

>RUN

HEXADECIMAL NUMBER? #8000
NECIMAL EQUIVALENT IS -32768

HEXADECIMAL NUMBFER? #8001
DECIMAL FQUIVALENT IS -32767

HEXADECIMAL NUMBER? #FFFF
DECIMAL EQUIVALENT IS -1

HEXADECIMAL NUMBFER? #FFFE
DFCIMAL EQUIVALENT IS -2

And sO ON...

1-43

Remember the number circle in Chaonter 3?2 It works in hexadecimal toot

#9
#FFFF #1
FFFE #2
#FFFD #3
#FFFC #4
#FFFB #5
#8005 .
#8090 # TFFC
#8073 #7FFD
#8002 #7FFE '
#8001 #7FFF
#8000

- Compare the hexadecimal number circle with the decimal circle in Chap-
ter 3. Below is a table showing some of the equivalences between
decimal and hexadecimal NSC Tiny BASIC numberss

- POSITIVE NUMBERS NEGATIVE NUMBFERS
Hexadecimal Decimal Hexadecimal Decimal

#1 1 #8000 ~-32768
#2 2 #8001 -32767
#3 3 #8002 ‘ -32766
#4 4 #8007 3 ~-32765
#7FFD 32765 #FFED 23
#7FFE 32766 #FFFE -2
#7FFF 32767 ‘ #FFFF -}

NSC Tiny BASIC automatically converts numbers from hexadecimal to
decimal during orint outs however, there is no built-in method for
printing numbers directly in hexadecimal. The following examples
illustrate the method used to convert decimal numbers @ to 255 to
hexadecimal? '

o, |
16/ 73_—_—‘5\\31
64 = 49

Checks 4 x 16 + 9 = 73

9__/
16/ 95’——_-\\\n
88 = #5F Checkt 5 x 16 + 15 = 95
15 :
16/ 255——-—‘“‘\\§
16
—95 = #FF Checks 15 x 16 + 15 = 255
89

15 #F = 15 #F = 15

1-44

You can convert any decimal number, # to 255, to hexadecimal as
followss

1. Divide the decimal number by 16, obtaining the quotient Q
and remainder R.

2. For decimal numbers in the range @ to 255, the aquotient Q
and the remainder R will each be numbers 1n the range 9 to
15, Inclusive.

3. The hexadecimal number is #Q“R’ where Q’ and R’ are the hexa-

gecimaé digits (@ through F) corresoonding to the values of
and R,

‘The following is a program to compute Q and R, this program features a
new function, called MOD, for comouting R.

>NEW

>1 97 REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
>112 PRINT "4:PRINT "YOUR NUMBER"3sINPUT N

>12A R=MOD(N, 16)

>1374 Q=N/16

>140 PRINT #HEXADECIMAL DIGIT VALUESs#+,Q,R

>154 GO TO 112

>RUN

YOUR NUMBER? 73

HEXADECIMAL DIGIT VALUES: 4 9 Therefore, 73 #49

"

YOUR NUMBER? 95
HEXADECIMAL DIGIT VALUESt 5 15 Therefore, 95 = #5F

YOUR NUMBFR? 255
HEXADECIAL DIGIT VALUES: 15 5 Therefore, 255 = #FF

In Line 123, the function MOD(N,16) computes the remainder on division
of N by 16,

The following illustrates the method used to convert decimal numbers

in the range @ to 32767 to four diait hexadecimal numbers. Check it
over very carefullys

16 fZ%%é' 3‘/‘27 /1_8/)234

146 l3l 2
| 44 128 .
20 3
_16 -

4

The above 1s the conversion for 4667 to #1234

1-45

1792 12—y ————~—--\\\’
16 28673 2 379? us/uz 28673 7001
112
l?é 19 _/

112 16
147 32
144 32

33 2
32

The above is the conversion for 28673 to #7471

You try to convert 6844 to hexadecimal.

16/ 6844 16/ 16/ 6844 = #

(The check your conversion of 6844 to hexadecimal, look at the next
program,)

The following orogram will work for numbers in the range # to 32767,
inclusive.,

>LIST

137 REMARK CONVERT DECIMAL TO HEXADECIMAL, SORT OF
113 PRINT "“:PRINT "YOUR NUMBER*3sINPUT N

1200 X=MOD(N, i16)

130 N=N/16

14% W=MOD(N,16)

154 N=N/16

16 V=MOD(N,16)

174 U=N/16

183 PRINT “HEXADECIMAL DIGIT VALUES:"U,V,W,X

1960 GO TO 119
>RUN

YOUR NUMBER? 4669
HEXADECIMAL DIGIT VALUES: | 2 3 44—4667 = #1234

YOUR NUMBER? 28683
HEXADECIMAL DIGIT VALUESt 7 7 0 14—28673 = #7001

YOUR NUMBER? 6844
HEXADECIMAL DIGIT VALUES: 1| 19 11 124-6844 = #1ARC

YOUR NUMBER? 255
HEXADECIMAL DIGIT VALUES: @ @ 15 154—255 = #00FF = #FF

1-46

YOUR NUMBER? 32767
HEXADECIMAL DIGIT VALUESt 7 15 15 154-32767 = #7FFF

YOUR NUMBER? -1
HEXADECIMAL DIGIT VALUESs 0 9 @ -14—Beware of negative numbers!

YOUR NUMBER? -32767 ,
HEXADECIMAL DIGIT VALUES: -7 <15 =15 =15

YOUR NUMBFR? #7031

HEXADECIMAL DIGIT VALUES:t 7 @ @ | - Hexadecimal is converted to
hexadecimal, provided. the
number is in the range #2 to
.#1FFF.,

YOUR NUMBER #8009

HEXADECIMAL DIGIT VALUES? -8 @ @ @ Other hexadecimal numbers qgive
funny results. A complete ex—
planation will not be attemot-.
ed in this orimer.,

YOUR NUMBER? (No GO TO statement at end of pbrogram)

In case you haven’t figured out how the program works, follow along as
the program for N = 4669 is traced. The following trace shows the

values of variables after the statement on the same line has been
executed,

STATEMENT N] v W X
114 INPUT N 4660
120 X=MOD(N,16) 4660 4
133 N=N/16 291 4
140 W=MOD(N,16) 291 3 4
15@ N=N/16 18 3 4
168 V=MOD(N,16) 18 2 3 4
178 U=N/16 18 | 2 3 4

180 Prints the values of U,V,N, and X

190 REPEAT THE PROGRAM AD INFINITUM

1-47

5.6 Exercise

Trace the program for N = 68441

1o
120
130
140
150
}éﬂ

170

STATEMENT
INPUT N
= MOD (N,16)

N/16
= MOD (N,16)
N/Z16

MOD (N,16)

ant < Z X Z X
"

N/16

Answers are in Anpendix A

1-48

CHAPTERG
6.1 The I1F Statement

The useful and powerful IF statement overmits programs to be written
in which the computer makes simole decisions.

The following is an IF statements
IF P=14 THEN PRINT “AIR PRESSURE IS NORMAL*"

This statement tells the computer #IF the value of P is equal to four-
teen, then print the message #AIR PRESSURE IS NORMAL.%, Not stated,

but implied, is that IF P is not equal to fourteen. the message is
not printed.

The following is an example of ‘the IF statement used in a short
nrograms

143 REM AIR PRESSURE MONITOR

113 PRINT uwwsPRINT #WHAT IS AIR PRESSURE"s$:INPUT P
1260 IF P = 14 THEN PRINT “AIR PRESSURE IS NORMAL*
132 GO TO 1o

You may have noticed that an abbreviated form of the "Remark" state-
ment was used Iin Line 183, NSC Tiny BASIC only needs the first three
letters to recoanize the words “REM® can be used as an abbreviation
for the word REMARK.

Next, run the program and suoply several values for air oressure,
P.

>RUN

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 14
AIR PRESSURE IS NORMAL

WHAT IS AIR PRESSURE? 23
WHAT IS AIR PRESSURE? 20 —-No message is printed

WHAT IS AIR PRESSURE? 2

WHAT IS AIR PRESSURE? © C4—(Control/C was pressed)
STOP AT 110

>

1-49

It would be better to have NSC Tiny BASIC print messages and ring
bells when the air pressure is NOT normal. Repnlace Line 120 with the
following IF statement:?

120 IF P «> 14 THEN PRINT ®AIR PRESSURE IS NOT NORMAL bells*
In NSC Tiny BASIC, <> means...not equal to...
The following is the complete programs

107 REM AIR PRESSURE MONITOR AND ALARM
116 PRINT "#:PRINT “WHAT IS AIR PRFESSURE"3$¢INPUT P
124 IF P <> 14 THEN PRINT #AIR PRESSURE IS NOT NORMAL bells*

136 GO TO 1@

>RUN

WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRFSSURE? 14
WHAT IS AIR PRESSURE? 14

WHAT IS AIR PRESSURE? 50 (Trouble!)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRFSSURE? 12
AIR PRESSURE IS NOT NORMAL Bells

And so on.

In a situation where air oressure was actually being monitored, Line
115 would be replaced with a a method for automatically acquiring the
value of the air pressure P$ probably by means of an analog to digital
converter wired into the INS8473’s memory. For now, however, you will
simulate the acquisition of data by means of INPUT statements and
concentrate on the structure of the orogram itself.

Requiring P to be exactly 14 is a tight controls loosen things uo a
little and let normal oressure be anythinag from 13 to 15, inclusive.
Ygu want a warning orinted whenever P is less than 13 or greater than
15,

127 REM AIR PRESSURF MONITOR AND ALARM

11@ PRINT "w:PRINT #WHAT IS AIR PRESSURE*ssINPUT P

124 IF P < 13 THEN PRINT “AIR PRESSURE IS NOT NORMAL Bells"
1332 IF P > 15 THEN PRINT “AIR PRESSURE IS NOT NORMAL Bells®
149 GO TO 1@

If P is less than 13, Line 1200 will cause a warning/Zalarm to be

printeds and, if P is agreater than 15, Line 137 will cause the
messaae to be printed. If P is 13, 14 or 15, no message will occur.

1-50

>RUN
WHAT IS AIR PRESSURE? 14
WHAT 1S AIR PRESSURE? 13

WHAT IS AIR PRESSURE? 15

WHAT IS AIR PRESSURE? 124—(Pressure is less than 13)
AIR PRESSURE IS NOT NORMAL Bells

WHAT IS AIR PRESSURE? 164—(Pressure is more than 15)
AIR PRESURE IS NOT NORMAL Bells

And so on.,..
6.2 Exercise

Modify the ahove program, with just two small changes, so that when air
pressure is not normal NSC Tiny BASIC will tell you whether it is too
high or too low. A RUN might look like the following, change the last
orogram to do this. Answers are in Aopendix A

>RUN
WHAT IS AIR PRESSURE? 14
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRESSURE? 15

WHAT IS AIR PRESSURE? 16
WARNING! AIR PRESSURE TOO HIGH

WHAT IS AIR PRESSURE? 12
WARNING! AIR PRESSURE TOO LOW

And SO0 ON,..

Since you are monitoring air pressure between limits, change the
program to give yourself a little more flexibility in setting the
limitss

103 REM AIR PRESSURE MONITOR AND ALARM

11 REM L=LOWFR LIMIT, U=UPPER LIMIT FOR NORMAL PRESSURE
1260 L=13

130 U=15

1443 REM ACQUIRE ACTUAL AIR PRESSURE, P

15 PRINT "wsPRINT ®WHAT IS AIR PRESSURE"s s INPUT P

164 REM IF P IS OUTSIDE NORMAL LIMITS, PRINT MESSAGE
173 IF P<L THEN PRINT "WARNING! AIR PRESSURE TOO LOW"
133 IF P>U THEN PRINT “WARNING! AIR PRESSURE TOO HIGH"
199 REM GO GET ANOTHER VALUE OF P

299 GO TO 150

1-51

Try the'precedinq programs then, change the lower limit (L) and upoer
limit (U) in Lines 120 and 13?% and try the program again.

Also try thist Combine Lines 1980 and 273 as follows?
19 GO TO 15AsREM GO GET ANOTHER VALUE OF P

Line 192 now contains two statements, a GO TO which tells NSC Tiny
BASIC what to do, and a REM (remark) which tells you what is haooening.

You may wish to change Lines 129 and 137 to INPUT statements. In that
case, a RUN might look like the followingt

>RUN

LOWER LIMIT FOR NORMAL AIR PRESSURE? |
UPPER LIMIT FOR NORMAL AIR PRESSURE? 1

3
5
WHAT IS AIR PRFSSURE? 14
WHAT IS AIR PRESSURE? 13

WHAT IS AIR PRFSSURE? 16
WARNING! AIR PRESSURE T0OO HIGH

WHAT IS AIR PRFSSURE? 12
WARNING! AIR PRESSURE TOO LOW

And so on...
In general, the IF statement has the form of THFNs
IF condition - THEN statement

For examnle, the following are two IF statements you’ve already seent

IF P = 14 THEN PRINT "AIR PRESSURE IS NORMAL®
—_—

Condition Statement

IF P<L THEN PRINT ®“WARNING! AIR PRESSURE TOO LOW"
| I
Condition Statement
The following is an IF statement that you will be using soon.
IF F>23 THEN GO TO 514 -
S T
Condition Statement

1-52

The condition is frequently a comparison between two quantities. Here
is a handy table of comparisons that can be used in IF statements:?

NIBL Symbol - Meaning Math Symbol

Is equal to

Is less than

Is greater than

Is less than or equal to

= Is greater than or equal to

> Is not equal to, i.e., greater’
or less than

AVAVAL
]
 MMiavau

The auantities being compared can be numbers.'variables or algebraic
expressions, The comparison can be TRUE or FALSE.

Below -are comparisons and their trutH-Values. TRUE or FALSE:

3 +5 > 6 is TRUF, always.

If A =8 and B = 33, then 4%A <= B is FALSE
‘If A =8 and B = 32, then 4%A <= B is TRUE
If A =8 and B = 40, then 4%«A <= B is TRUE

If the comparison is TRUE, then the next statement on the same line as
the IF is executed. It can be any kind of statement: A PRINT, a GO
TO, another IF, or even those kinds of statements yet to be introduced,.
If the comoarison is FALSE, then the statement following the comparison
is ignored and the next highest numbered statement is executed.,

IF P<L THEN PRINT ®#WARNING! AIR PRESSURE TOO LOW"

Do this if the condition P < L is TRUE.
Don’t do this if P <« L is FALSE.

That’s all there is to IF statements, except that the word THEN may
be omitted if you wish, For example, instead of writings

IF P=14 THEN PRINT ®"AIR PRESSURE IS NORMAL™"
you can omit the word THEN and write?
IF P=14 PRINT ¥AIR PRESSURE IS NORMAL"

Sometimes the word THEN makes the program easier to read. Use it if
it feels comfortable,) :

Be careful to avoid making multiple statements separated by colons

on a line with an IF statement. Remember that when an IF condition
is found to be FALSE, the entire rest of the line is ignored. There-
fore, for the following program, a zero will be nrinted.

1-563

19 A=01B=99
27 IF B> 1000 THEN PRINT %BIG B#sA=|
30 PRINT A

The following orogram has several REM’s to help you read and under-
stand it

7@ REM DIALYSIS FLON MONITOR PROGRAM

11@ REM GET FLOW RATE, F
1200 PRINT "MsPRINT "FLOW*§3®INPUT F

13 REM CHECK IF FLOW RATE CRITICALLY HIGH
14 1F F>20 THEN GO TG 51@

I15A REM CHECK IF FLOW RATE CRITICALLY LOW
164 IF F<1a THEN GO TO 510

17% REM CHECK IF FLOW RATE ABNORMALLY HIGH
183 IF F>17 THEN GO TO 71@

19 REM CHECK IF FLOW RATE ABNORMALLY LOW
200 IF F<13 THEN GO TO 719

217 REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
220 PRINT "FLOW OK%":GO TO 120

500 REM FLOW RATE CRITICALLY HIGH OR LOW, SOUND BELLS
517 PRINT "DANGER! FLOW RATE CRITICAL BellssGO TO 124

703 REM FLOW RATF IS ABNORMALLY HIGH OR LOW, PRINT MFSSAGE
710 PRINT “WARNINGt FLOW RATE ABNORMAL":GO TO 120

Try this nrogram, make sure it works for all oossible conditions. Try
the following flow rates as test cases.

FLOW OKs 13, 14, 15, 16, 17
ABNORMAL: 144, 11, 12, 18, 19, 2@
CRITICAL® 7, 8, 9, 21, 22, 23

After you have convinced yourself that this orogram works, read the
following analysis of it.

Follow along and trace through the program for a few specific values of
F. First, suppose F = 25, The condition in Line 140 (F>20) is TRUE$
therefore, NSC Tiny BASIC will ao to 514. Line 519 directs NSC Tiny
.BASIC to print the message ¥DANGER! FLOW RATE CRITICAL", ring the TTY
bell several times, then GO TO 127 for A new value of F. This will
continue to happen for as lona as F remains aqreater than 20.

1-54

Suppose F = 9, The condition in Line 148 (F>20) is FALSE, so NSC Tiny
BASIC qoes on to Line 168, In Line 160, the condition (F<¢1@) is TRUE,
so NSC Tiny BASIC will go to 510, print the danger message, ring the
bell, then GO TO 127 for still another value of F.

Suppose F = 18, The condition in Lines 140 and 169 are both FALSE.,
(Check them yourself,) Therefore, NSC Tiny BASIC arrives at Line |84,
The condition in Line 184 (F>17) is TRUE, so NSC Tiny BASIC does GO TO
714 and, as directed by Line 718 prints the message, "WARNING: FLOW
RATE ABNORMAL®, then goes back to Line 12 for another value of F,

The above has traced three nossible paths throuah the orogramt there
are two more, try these for F = 12 and F = 15, As there are five
nossible paths in all, you may wish to choose your favorite colors of

felt tip pens and actually draw the paths.

Flowchart

START

140 |
GO TO 519
510
DANGER! FLOW
1 »| RATE CRITICAL —>
(BELLS)
GO TO 120
163
GO TO 518 [
180 |
GO TO 719 ,
710

WARNING! FLOW | o
> RATE ABNORMAL

GO TO 2@

200
GO TO 714 |—

220 .
FLOW OK »
GO TO 128

1-55

In the flowchart, or logic diagram, of the Dialysis Flow Monitor Pro-

ram, the diamond shaned boxes corresnond to the IF statements.

The numbers at the top of each box corresoond to line numbers in the
proaram. Compare the flowchart with the program. Trace through the
flowchart for several values of F., Make sure you trace each of the

five possible naths through the nrogram. For example, try it for F =
25, 9, 18, 12 and 15. (Again, please note that it would be heloful to

mark each path with a different color,)

6.3 A More Comnact Program

In looking over the Dialysis Flow Monitor Program, we note the
followings

1. If F>20 or F<l@, the program should have a danger message olus
alarm, ,

2. If the above is not true, and if F>17 or F<i3, then the orogram
should have an "abnormal" message, but not an alarm.

3. [If neither of the above are true and everything is OK, a "FLOW
OK" message will suffice.

NSC Tiny BASIC permits the use of logical operators AND, OR and NOT.
Use is made of the OR operator in the following revision of the

dialysis nrogram.

|99 REM DIALYSIS FLOW MONITOR PROGRAM

11@ REM GET FLOW RATE
1200 PRINT "#: PRINT "FLOW™3sINPUT F

133 REM CHECK IF FLOW RATE CRITICALLY HIGH OR LOW
4@ IF (F>28) OR (F<1@) THEN GO TO 514

17 REM CHECK IF FLOW RATE ABNORMALLY HIGH OR LOW
182 IF (F>17) OR (F<13) THEN GO TO 719

217 REM IF FLOW RATE IS NEITHER TOO HIGH NOR TOO LOW, IT IS OK
220 PRINT "FLOW OK*:GO TO 12a

503 RFM FLON RATE CRITICALLY HIGH OR LOW, SOUND BFLLS
512 PRINT ®DANGFR! FLOW RATE CRITICAL Rells:GO TO 120

790@ REM FLOW RATE IS ABNORMALLY HIGH OR LOW, PRINT MESSAGE
718 PRINT WWARNING: FLOW RATE ABNORMAL":GO TO 120

1-56

Suppose F=25, Then the compound condition (F>2A) OR (F<iA) in Line 1479
is TRUE. In this case NSC Tiny BASIC will GO TO 518. If F=9, the
compound condition is also TRUE and NSC Tiny BASIC will GO TO 514,

Suppose F=18. The compound condition (F>2@) OR (F<1A) in Line 149

is FALSE, so NSC Tiny BASIC continues on to Line 184. Remember, F is
now equal to 18, so the condition (F>17) OR (F<13) in Line 130 is TRUE,
NSC Tiny BASIC does a GO TO 71@.

* * *The parentheses enclosing F>20, F<1# and so on,
are necessary$ without them, the orogram will
not work, because logical ooerators, as arithmetic
operators, are evaluated. from the left side of the
expression to the rioht. Parentheses are used to give
precedence.,* % %

The following is a flowchart of the condensed dialysis oroqram.

START
(120 \
INPUT </}

140
F>2@ OR

510
DANGER! FLOW
RATE CRITICAL
{BELLS)

GO TO 120

710
WARNING! FLOW |

RATE ABNORMAL »
GO TO 120

F>17 OR
<13

220
FLOW OK . >
GO TO 120

1-57

Have you noticed that both programs tested for the most danger-
ous condition first? Then tested for the second most dangerous,
simply as a matter of life-saving priorities. In this case, a few
milliseconds nrobably won’t make much differencet however, in many
real time applications, a few milliseconds do make a difference,

To illustrate to you that programs usually can be improved upon, the
following is a suoer-condensed Dialysis Flow Monitor Program:

120 PRINT "wsPRINT #FLOW"3sINPUT F
148 IF (F>20) OR (F<1@) PRINT ”DANGFR' FLOW RATE CRITICAL"s
GO TO 12m
1680 IF (F>17) OR (F<13) PRINT “WARNINGs FLOW RATE ABNORMAL*3
GO TO 12a
. 220 PRINT ™FLOW OK*$50 “TO: 120

The AND, OR and NOT operators need not he limited to use in IF state-
ments. They are loagical onerators and onerate Bit-by-Bit on any con-
stant or variable. This will be illustrated later on in this manual
with an example on some 1/0 bits.

-

The following program implements the function indicated in the graph
beneath it:

127 REM HASTILY CONSTRUCTED PROGRAM TO ILLUSTRATE USE OF "AND"
113 PRINT #wsPRINT #X=432INPUT X

120 IF (@<=X) AND (X<=103) PRINT "Y=",XsGO TO 110

130 IF (13A<X) AND (X<=203) PRINT “Y=4,10a:G0 TO i

149 IF (20@@<X) AND (X<=409) PRINT "Y=%,15A:G0 TO 119

153 PRINT ®#Y IS NOT DEFINED FOR X=%,X

NOTE*t The parentheses around A<=X, X<=10A, and so on in the
IF statement are necessary. Without them, the program
will not work. This is because of the multlolicity in the
conditions being checked.

Y = f(x)

150

100

Iﬂﬁl 26%‘ 400

X for O < X < 109
= f(x) = 1074 for 100 < X < 200

153 for 200 ¢ X < 490

1-58

The following is a RUN of the precedina nrogram. All critical points
have been checked.

RUN

X=? =i
Y IS NOT .DEFINED FOR X=-1

X=2 0
Y= @

X=? 37
Y= 37

X=7 99
Y= 99

X=2 109
Y= 100

X=2? 141
Y= 101

X=2? 199
Y= 100

X=? 200
Y= 100

X=2 291
= 150

X=2 299
Y= 150

X=?7 300
Y= 150

X=? 301
Y- 158

X=? 399
Y- 150

X=?7 490
Y- 150

X=? 47|
Y IS NOT DEFINED FOR X = 40l

And SO ON...

1-59

6.4 Random Numbers and Comoputer Games
Another useful feature in NSC Tiny BASIC is a random generator.

Sometimes it is useful to generate random numbers between. specific
limits. A trivial use is to imitate a pair of dice. The statementt

D = RND(1,6)
will make D some number between | and 6 inclusive, with equal
orobability for each of the possibilities. The following program
simulates a pair of dice: :

12 PRINT RND(1,6), RND(1,6)
2% GO TO 10

RUN the program for a while:

RUN

WWw=w=—WwWwWwObWww=—wWN by
NWOWBBEBNUIN =N == N =

TOP AT 10

v W

In general, the expressions

RND(A,B)
is a random integer between A and B, inclusive. A and B may be
algebraic exoressions, simple variables or constants. RND may be
used wherever a variahle may be used,

Random numbers are widely used to test nrograms, and to do Monte Carlo
method solutions to probhlems. Many games use a random number genera—

tor.

1-60

13 REM GUESS THE NUMBER GAME

20 X=8ND (1,100)sREM X IS THE SECRET NUMBER FROM | TO 109
3@ PRINT#W:PRINT #WHAT IS YOUR GUESS*"3

49 INPUT GsREM G WILL BE THE GUESS

5@ IF G<X THEN PRINT "YOUR GUESS IS TOO SMALL#

68 IF G>X THEN PRINT “YOUR GUESS IS TOO BIG*

79 1G G=X THEN GO TO 94

82 GO TO 3@tREM NOT A CORRECT GUESS, GET NEXT GUESS

97 PRINT #YOU WIN, LET“S PLAY AGAIN.®

1080 GO TO 2A:REM GET A NEW SECRET NUMBER

>RUN

WHAT IS YOUR GUESS? 5@
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 25
YOUR GUESS IS TOO BIG

WHAT IS YOUR GUESS? 12
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 18
YOUR GUESS IS TOO SMALL

WHAT IS YOUR GUESS? 24
YOU WIN. LET~“S PLAY AGAIN.

And so on.,,.

6.5 Exercise

Rewrite Line 7% to combine the functions of Lines 7@ and 87 making the
program one statement shorter.

Answers are in Anpendix A

1-61

CHAPTER 7

7.1 Program Loops

This section of the primer deals with Proaram Loopns. The following
orogram causes NSC Tiny BASIC to orint out the first ten positive
integers and the saquares of those integers. While not exactly
intriquing in its mathematical subtlety, it helps point out a few
useful techniques Iin nrogramming.

The following is an example of a.cumbersome way to achieve the results
described aboves:

>PRINT 1
1.

>PRINT x|
1

>PRINT 2
2

SPRINT 2%2
4

>PRINT 3
3

>PRINT 3+3
9

And so on until...

>PRINT 10
19

>PRINT 10*10
1 07

>

The foregoing would get the results, interspersed with PRINT state-
mentst or, a orogram could be written as follows?

13 REM PRINT THE FIRST TEN NUMBERS AND THEIR SQUARES
27 PRINT 1

37 PRINT 1#l

49 PRINT 2

53 PRINT 2%2

63 PRINT 3

7% PRINT 3%3

1-63

And so on until...

188 PRINT 9

190 PRINT 9%9
200 PRINT 19
213 PRINT 1010

RUN the programs the following is what your RUN should look likes

>RUN

Not a very readable chart, is it? Results that are hard to read or
interpret decrease the value of the outnut. The answer must be
communicated to those who need the results. By using a comma to keep
the number and its square on the same line, and by using a PRINT
statement you can write a much imoroved orogram,

Note, in the followina, the use of a comma in PRINT statements to
separate the number and the number sauared:?

1% REM TABLF OF NUMBERS AND THEIR SQUARFES
2 PRINT # N N SQUARED ®
37 PRINT 1, 1%l

40 PRINT 2,2+2

57 PRINT 3,3%3

67 PRINT 4,4%4

70 PRINT 5,5%5

874 PRINT 6,6%6

9% PRINT 7,7%7

190 PRINT B,8%8

119 PRINT 9,9%9

127 PRINT 10,1010

If vou store the above nrogram in the INS8873“s memory and RUN it,
the results would bet

1-64

v
[t
4

=V PVNdONDUWN—=ZD

N SQUARED
|

4
9

1.6
25

36
49

64
81
3 109

v

The above program is much easier to read than the first two presented
in this chapter,.#Each number' is printed side by side with its squdfe
in the order they -apnear inthe PRINT statement. "For examplet

The statement, PRINT 7,7%7

Causes NSC Tiny BASIC to orint, 7 49
You now have enough tools to write a very short program to print
numbers and their squares. The idea is to write short oroarams that do
a lot of work. Read the following noroaram, and then try it on your
computer., Type in all of the RFEMarks as they will help to explain what

is haopening. Remember, REMarks are for peonlet$ the computer simnly
ignores them.

1@ REM A PROGRAM TO PRINT SUCCESSIVE INTEGERS AND THEIR SOUARES
15 REM PRINT A HFEADING

17 PRINT » T I SQUARED*

27 REM USE A VARIABLE, I, TO HOLD THE VALUE OF THE NUMBER

3% REM TO BF SQUARED. START THE VALUE AT ONE

49 1=

5@ REM NOW THAT I HAS A VALUE, PRINT IT AND ITS SQUARE

6@ PRINT I, IxI
74 REM ADD ONE TO THE VALUF OF I, TO CREATE THE NEXT LARGER

80 REM INTEGER, SO THAT IT AND ITS SQUARE CAN BE PRINTED
97 REM UP IN LINE 60

1298 I=1+1

11@ REM NOWN THAT THF VALUE OF I IS ONE LARGER, GO TO LINE 69

120 GO TO 64

1-65

After yolus understand how it works, type in the program (or at least
this abbreviated form) without the RFEMarks.

Try the following short form of the program on your INS8473t

17 PRINT # I I SQUARED*

47 =1

674 PRINT 1,1l
1900 I=1+1

126 GO TO 69

Do you see what is going to happen? Did you remember to clear out any
old program with NEW?

Do you have the program fiqured out®**¥f not, follow the arrows?

>RUN
17 PRINT » I I SQUARFD®

49 1=1 Lines 17 and 49 are done once.

60 PRINT I,Ix] Lines 60, 132 and 120 are "in the
‘looo’*, They are repeated again
and again ...(until you press the

106 I=1+1 BREAK key).

126 GO TO 6@

7.2 Exercises

le If Line 17 is changed to read 17 PRINT % N N SQUAREDY" how would
this change the results?

2. When you RUN the program, does NSC Tiny BASIC automatically stoo
after printinag the first ten positive integers and their squares?

3. What is the largest value of I for which the proagram will qgive the
correct answers?

Answers are in Appendix A

7.3 IF Loops

The program does not satisfy the initial requirements, that is, to
orint the squares of the first ten positive integers. Agreed, it does
oprint the ten positive integers and their squarest but then it just
keens on going. You want it to stoo automatically after printing 10
and 10 squared. The IF statement will heln you to achieve your goal.

1-66

Instead of 120 GO TO 6@
Use 120 IF 1 < 11 GO TO 6@

17 PRINT » I T SQUARED#
49 I=1

67 PRINT I,II
108 I=1+1
123 IF I<11 GO TO 69

The IF statement (Line 120) can be readt MIf I is less than eleven
then GO TO Line 60." Not stated, but implied, is that if [is not less
than 11, in particular.if it is 1l or more, then DO NOT GO to Line 64,
but just go-on to the¥™next line. There is no next line, so-.the program
will stop.. o

To make the program more complete, add the STOP statement. This
statement, when executed, stops the program. Of course, as you have
seen, the program stops if there is nothing else to do. Occasionally
it is necessary to deliberately stoo a program. It is also useful to
nut a STOP statement at the end of a program just to mark the end of
that program., Add a STOP statement to the end of the orogram to
compute sgquares.

17 PRINT # I I SQUARED%

49 PRINT I=I

6@ PRINT I,I*I
100 I=1+]
128 1F I<11 GO TO 6%
999 STOP L, . The STOP statement.

Any line number from 12! to 32767 could have been used for the STOP
statement, 999 was arbitrarily chosen. It is often used to save the
programmer’s having to retype the entire ¥STOPY statement if he wants
to add to the bottom of the existing oroaoram. The following is a RUN
of the above program.

>RUN

I SQUARED

|

4

% NSC Tiny BASIC computed and printed I and I squared
16 for I=1, 2, 3...18 and then stopped automatically.
25

36

49

64

81

16 109

STOP At 999

VD NN WN) —~

1-67

7.4 Exercises

|. What will hapoen if you change Line 120 to 1200 IF I < = 18 GO TO 60
and RUN the porogram again? (Try it on your system.)

2. Nhat will haooen if you change Line 120 to 1244 IF I < 17 GO TO 6@
and RUN the program again? :

3. WKhat will haooen if you mistyoe Line 120 as 1200 IF I < 11 GO TO
44 and ran the program again?

4, What would be ;ﬁe results of RUNning the following orogram?

18 I=1
20 PRINT I,IxIsI=1%#{sIF I<1l GO TO 2@
.99 SToP

For answers, see Appendix A

7.5 FOR NEXT Loops

When a nrogram contains a statement that is executed more than once,
then that program contains a LOOP. Nearly all the orograms in this
book contains loons. In fact, it is the loop that makes orogramming
so powerful, If each statement could only be used once,.then pro-
gramming would be exceedingly tedious. As has been seen, proagrammers
tend to write statements that can be used reoeatedly rather than only
once.

The very simple loop:

12 PRINT 4
20 GO TO 1@

will run and print 44s indefinitely. Most loops have some facility for
endina aracefully. What does the following brogram do?

10 1=0

20 I=I+1

3@ PRINT I3

47 IF I < 1» THEN GO. TO 24

The following nrogram does the same thingt
10 1=| ’
2% PRINT I3

30 I=I+I
49 IF I < 11 THEN GO TO 2@

1-68

Loobs are so common that NSC Tiny BASIC provides a shorthand for
writing them., The next program does exactly the same thing as the

previous twos

16 FOR I=! TO 1@ STEP
20 PRINT It :]—-This is a FOR NEXT looo.
30 NEXT I

RUN the FOR NEXT loop:

>RUN
1 23456789 1@ The FOR NEXT loop caused NSC Tiny

> . BASIC to print values of I for:s
I equals one. (1) to
I&;ouals ten,(lﬂ)
in steos. or increments, of cne.

The numbers go across the paae instead of down because the PRINT
statement ends with a semicolon (3). Try the program with a PRJANT
statement that doesn’t end with a semicolon and you will get the
followings

>RUN

NONA WN -

- O 0

>

The FOR statement sets up the loop. It soecifies what tne variable
(often called the control variable for the loop) is to have for its
initial value, then the final value and finally how much it is to be

incremented each time through the loobo.

The NEXT statement is the bottom of the loop, and says to find the next
value of the control variable and continue execution at the statement

immediately AFTER the corresponding FOR statement, if the control
variable has not yvet passed the final value,

To print the odd numbers from | to 18 (obviously 1@ itself will not be
one of them) the following looo could he used.

I FOR I=1 TO {» STEP 2 ;
Semicolon causes numbers to be printed

20 PRINT It <« Se ¢ ; ¢
3% NEXT 1 ‘r’////,/f///"across the line,
1 3656789 < NSC Tiny BASIC 1is STEPning by 2.

>

1-69

The step §ize can be neqgatives

14 FOR I=56 TO 42 STEP -3

20 PRINT I3
3?3 NEXT I

Before running this proaram, figure what its outout should be. The

rule iss the FOR NEXT

loop always starts exactly at the first value,

and will not go beyond the second. FEach time through the loopn the STEP

is added to the index,.

In these simple orograms the variable I has

been the index. (0Of course, if the STEP is negative, adding it to the
index makes the index smaller.)

The last orogram printss

56 53 50 47 44

You don’t always have to use I. You can use any variable in a FOR
‘statement as long as you use the same variable in the corresoonding

NEXT statement.

18 FOR K=1 TO 3 STEP 1
27 PRINT #HIP HIP HOORAY"®

33 NEXT K

>RUN

HIP HIP HOORAY
HIP HIP HOORAY
HIP HIP HOORAY

>

If the STEP size 1is one,
12 FOR A=@ TO 7
2% PRINT ags
32 NEXT A
>RUN

@1 2345617
>

the STFP clause can be omitted.

The FOR NEXT loon makes it easy to run off tables, such as the table

of 1 and [SQUARED.

1# PRINT » T I SQUARED"

20 FOR I=1 TO 5
30 PRINT I, I*I
40 NEXT I

------ ——=Since STEP size is |, it’s omitted.

1-70

>RUN

I I SQUARED

11 To get a table for I=1, 2, 3,ce¢.,10,

2 4 change Line 22 tot 2@ FOR I=1 TO 1@

3 9

4 16 To get a table running from 103 to 129
5 25 change Line 20 tos 2@ FOR I=10@ TO 120

>

Additionally, the starting and endina values can be variables or
expressions., Here are two examplest

19 A=| 18 L=2
2# B=5 26 U=3
- 3@ FOR X=A TO B 3@ FOR S=L*L TO UsU
474 PRINT X3 49:PRINT Ss.
5@ NEXT X 5@ NEXT S
>RUN ' >RUN
1 2345 45678