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NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation.  Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred.  Environmental control

must be adequate.  When it is dry, humidifier should be used.  It is recommended to avoid using

insulators that easily build static electricity.  Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material.  All test and measurement

tools including work bench and floor should be grounded.  The operator should be grounded using

wrist strap.  Semiconductor devices must not be touched with bare hands.  Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction.  If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction.  CMOS devices behave differently than Bipolar or NMOS devices.  Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry.  Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin.  All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device.  Production process of MOS

does not define the initial operation status of the device.  Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized.  Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers.  Device is not initialized until the

reset signal is received.  Reset operation must be executed immediately after power-on for devices

having reset function.
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Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

M8E  00. 4

The information in this document is current as of January, 2001. The information is subject to 
change without notice.  For actual design-in, refer to the latest publications of NEC's data sheets or 
data books, etc., for the most up-to-date specifications of NEC semiconductor products.  Not all 
products and/or types are available in every country.  Please check with an NEC sales representative 
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior     
written consent of NEC.  NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of 
third parties by or arising from the use of NEC semiconductor products listed in this document or any other 
liability arising from the use of such products.  No license, express, implied or otherwise, is granted under any 
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative 
purposes in semiconductor product operation and application examples. The incorporation of these 
circuits, software and information in the design of customer's equipment shall be done under the full 
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third 
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers 
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely.  To minimize 
risks of damage to property or injury (including death) to persons arising from defects in NEC 
semiconductor products, customers must incorporate sufficient safety measures in their design, such as 
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific".  The "Specific" quality grade applies only to semiconductor products 
developed based on a customer-designated "quality assurance program" for a specific application.  The 
recommended applications of a semiconductor product depend on its quality grade, as indicated below.  
Customers must check the quality grade of each semiconductor product before using it in a particular 
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's 
data sheets or data books, etc.  If customers wish to use NEC semiconductor products in applications not 
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness 
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
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Regional Information
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•  Device availability

•  Ordering information
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•  Availability of related technical literature
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   components, host computers, power plugs, AC supply voltages, and so forth)

•  Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
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PREFACE

 

Readers

 

This manual targets users who intends to understand the functions of the V

 

R

 

10000 and V

 

R

 

12000,
and to design application systems using this microprocessor.

 

Purpose

 

This manual introduces the architecture and hardware functions of the V

 

R

 

10000, V

 

R

 

12000 to users,
following the organization described below.

 

Organization

 

This manual consists of the following contents:
• Introduction
• Cache
• Hardware
• Coprocessor 0
• Floating-point unit
• Memory management system
• Exception processing
• Instruction set details

 

How to read this manual

 

It is assumed that the reader of this manual has general knowledge in the fields of electric
engineering, logic circuits, and microcomputers.

The R3000

 

™

 

 

 

in this manual represents the V

 

R

 

3000

 

™

 

.

The R4400

 

™

 

 

 

in this manual represents the V

 

R

 

4400

 

™

 

.

The R10000™

 

 

 

in this manual represents the V

 

R

 

10000 and V

 

R

 

10000L.

The R12000™

 

 

 

in this manual represents the V

 

R

 

12000, V

 

R

 

12000A, and V

 

R

 

12000L.

To learn about detailed function of a specific instruction.

 

→

 

Read 

 

Chapter 12 Floating-Point Unit, Chapter 14 CPU Exceptions,

 

or refer

to 

 

V

 

R

 

5000

 

TM

 

,V

 

R

 

10000 INSTRUCTION User’s Manual

 

 which is separately available.

To learn about the overall functions of the V

 

R

 

10000 and V

 

R

 

12000

 

→

 

Read this manual in sequential order.

To learn about electrical specifications,

 

→

 

Refer to 

 

Data Sheet

 

 which is separately available.

Unless otherwise specified, the R10000 is treated as the representative model throughout
this document.

 

Legend

 

Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX
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decimal ... XXXX
hexadecimal ... 0xXXXX

Important information Underlined

 

Related Documents

 

The related documents indicated here may include preliminary version. However, preliminary
versions are not marked as such.

• Data Sheet

 

µ

 

PD30700, 30700L, 30710 (V

 

R

 

10000, V

 

R

 

12000) Data Sheet U12703E

• User’s Manual
V

 

R

 

5000, V

 

R

 

10000 INSTRUCTION  User’s Manual U12754E
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1. Introduction to the R10000 Processor

 

This user’s manual describes the R10000 superscalar microprocessor for the system 
designer, paying special attention to the external interface and the transfer protocols. 

This chapter describes the following:

• MIPS™ ISA

• what makes a generic superscalar microprocessor

• specifics of the R10000 superscalar microprocessor

• implementation-specific CPU instructions
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1.1  MIPS Instruction Set Architecture (ISA)

 

MIPS has defined an instruction set architecture (ISA), implemented in the following sets 
of CPU designs:

• MIPS I, implemented in the R2000™ and R3000

• MIPS II, implemented in the R6000™

• MIPS III, implemented in the R4400

• MIPS IV, implemented in the R8000™ and R10000

The original MIPS I CPU ISA has been extended forward three times, as shown in Figure 
1-1; each extension is backward compatible.  The ISA extensions are inclusive; each new 
architecture level (or version) includes the former levels.

 

†

 

Figure 1-1    MIPS ISA with Extensions

 

The practical result is that a processor implementing MIPS IV is also able to run MIPS I, 
MIPS II, or MIPS III binary programs without change.

 

† For more ISA information, please refer to the 

 

MIPS IV Instruction Set

 

 Architecture, published
by MIPS Technologies, and written by Charles Price.  Contact information is provided both
in the Preface, and inside the front cover, of this manual.

MIPS I

 MIPS II

MIPS III

MIPS IV
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1.2  What is a Superscalar Processor?

A superscalar processor is one that can fetch, execute and complete more than one 
instruction in parallel.

Pipeline and Superpipeline Architecture

Previous MIPS processors had linear pipeline architectures; an example of such a linear 
pipeline is the R4400 superpipeline, shown in Figure 1-2.  In the R4400 superpipeline 
architecture, an instruction is executed each cycle of the pipeline clock (PCycle), or each 
pipe stage.

Figure 1-2    R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipeline is shown in Figure 1-3.  At each stage, four 
instructions are handled in parallel.  Note that there is only one EX stage for integers.

Figure 1-3     4-Way Superscalar Pipeline

1 PCycle

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

1 Pipe
Stage

Instruction 4

Instruction 3

Instruction 2

Instruction 1

Instruction 1 IF ID IS EX WB

Instruction 2 IF ID IS EX WB

Instruction 3 IF ID IS EX WB

Instruction 4 IF ID IS EX WB

Instruction 5 IF ID IS EX WB

Instruction 6 IF ID IS EX WB

Instruction 7 IF ID IS EX WB

Instruction 8 IF ID IS EX WB

IF = instruction fetch

ID = instruction decode and dependency

IS = instruction issue

EX = execution (1 only)

WB = write back



Chapter 1  Introduction to the R10000 Processor

20 User’s Manual  U10278EJ4V0UM

1.3  What is an R10000 Microprocessor?

The R10000 processor is a single-chip superscalar RISC microprocessor that is a follow-
on to the MIPS RISC processor family that includes, chronologically, the R2000, R3000, 
R6000, R4400, and R8000.

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.

The R10000 processor has the following major features (terms in bold are defined in the 
Glossary):

• it implements the 64-bit MIPS IV instruction set architecture (ISA)

• it can decode four instructions each pipeline cycle, appending them to one of 
three instruction queues

• it has five execution pipelines connected to separate internal integer and 
floating-point execution (or functional) units

• it uses dynamic instruction scheduling and out-of-order execution

• it uses speculative instruction issue (also termed “speculative branching”)

• it uses a precise exception model (exceptions can be traced back to the 
instruction that caused them)

• it uses non-blocking caches

• it has separate on-chip 32-Kbyte primary instruction and data caches

• it has individually-optimized secondary cache and System interface ports

• it has an internal controller for the external secondary cache

• it has an internal System interface controller with multiprocessor support
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R10000 Superscalar Pipeline

The R10000 superscalar processor fetches and decodes four instructions in parallel each 
cycle (or pipeline stage).  Each pipeline includes stages for fetching (stage 1 in Figure 1-4), 
decoding (stage 2) issuing instructions (stage 3), reading register operands (stage 3), 
executing instructions (stages 4 through 6), and storing results (stage 7).

Figure 1-4    Superscalar Pipeline Architecture in the R10000
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Instruction Queues

As shown in Figure 1-4, each instruction decoded in stage 2 is appended to one of three 
instruction queues:

• integer queue

• address queue

• floating-point queue

Execution Pipelines

The three instruction queues can issue (see the Glossary for a definition of issue) one new 
instruction per cycle to each of the five execution pipelines:

• the integer queue issues instructions to the two integer ALU pipelines

• the address queue issues one instruction to the Load/Store Unit pipeline

• the floating-point queue issues instructions to the floating-point adder and 
multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the instruction 
cache.

Load/store dependency is speculatively ignored (R12000)

When a load follows a store in program-order, and the address of the load is known to the 
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue 
the load to tag-check and data access. When the address of the store is determined, the AQ 
can undo the effects of the load through the use of the “soft-exception” mechanism. Since 
almost all loads which are actually dependent on previous stores use the same registers to 
form their addresses, normally either the two instructions are independent, or their 
addresses are resolved in program order, so the soft-exception should occur rarely.

64-bit Integer ALU Pipeline

The 64-bit integer pipeline has the following characteristics:

• it has a 16-entry integer instruction queue that dynamically issues instructions

• it has a 64-bit 64-location integer physical register file, with seven read and 
three write ports (32 logical registers; see register renaming in the Glossary)

• it has two 64-bit arithmetic logic units:

- ALU1 contains an arithmetic-logic unit, shifter, and integer branch 
comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and divider
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Load/Store Pipeline

The load/store pipeline has the following characteristics:

• it has a 16-entry address queue that dynamically issues instructions, and uses 
the integer register file for base and index registers

• it has a 16-entry address stack for use by non-blocking loads and stores

• it has a 44-bit virtual address calculation unit

• it has a 64-entry fully associative Translation-Lookaside Buffer (TLB), 
which converts virtual addresses to physical addresses, using a 40-bit physical 
address.  Each entry maps two pages, with sizes ranging from 4 Kbytes to 16 
Mbytes, in powers of 4.

64-bit Floating-Point Pipeline

The 64-bit floating-point pipeline has the following characteristics:

• it has a 16-entry instruction queue, with dynamic issue

• it has a 64-bit 64-location floating-point physical register file, with five read 
and three write ports (32 logical registers)

• it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle latency) 
which also performs move instructions

• it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which handles 
addition, subtraction, and miscellaneous floating-point operations

• it has separate 64-bit divide and square-root units which can operate 
concurrently (these units share their issue and completion logic with the 
floating-point multiplier)

A block diagram of the processor and its interfaces is shown in Figure 1-5, followed by a 
description of its major logical blocks.
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Figure 1-5    Block Diagram of the R10000 Processor
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Functional Units

The five execution pipelines allow overlapped instruction execution by issuing instructions 
to the following five functional units:

• two integer ALUs (ALU1 and ALU2)

• the Load/Store unit (address calculate)

• the floating-point adder

• the floating-point multiplier

There are also three “iterative” units to compute more complex results:

• Integer multiply and divide operations are performed by an Integer Multiply/
Divide execution unit; these instructions are issued to ALU2.  ALU2 remains 
busy for the duration of the divide.

• Floating-point divides are performed by the Divide execution unit; these 
instructions are issued to the floating-point multiplier. 

• Floating-point square root are performed by the Square-root execution unit; 
these instructions are issued to the floating-point multiplier.

Increase in pre-decode buffering (R12000)

Up to 12 instruction may be buffered before being decoded. This should normally be 
invisible to the end user, but can be important when debugging systems in uncached-mode, 
since fetch and decode are now further de-coupled.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

• it contains 32 Kbytes, organized into 16-word blocks, is 2-way set associative, 
using a least-recently used (LRU) replacement algorithm

• it reads four consecutive instructions per cycle, beginning on any word 
boundary within a cache block, but cannot fetch across a block boundary.

• its instructions are predecoded, its fields are rearranged, and a 4-bit unit select 
code is appended

• it checks parity on each word

• it permits non-blocking instruction fetch

Primary Data Cache (D-cache)

The primary data cache has the following characteristics:

• it has two interleaved arrays (two 16 Kbyte ways)

• it contains 32 Kbytes, organized into 8-word blocks, is 2-way set associative, 
using an LRU replacement algorithm.

• it handles 64-bit load/store operations

• it handles 128-bit refill or write-back operations

• it permits non-blocking loads and stores

• it checks parity on each byte
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Branch Target Address Cache (R12000)

This 32-entry two-way set-associative cache holds the target addresses of previously-taken 
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch 
bubble with the R10000 experiences for every taken branch. However, if a branch which 
hits in the BTAC is actually predicted not-taken, then a one cycle fetch bubble is introduced 
where none was present before. Performance simulations indicate that the BTAC is a net 
win, but because of its “mixed-blessing” nature, a mechanism has been provided to disable 
it via software. (See description of changes to diag register).

Instruction Decode And Rename Unit

The instruction decode and rename unit has the following characteristics:

• it processes 4 instructions in parallel

• it replaces logical register numbers with physical register numbers (register 
renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table that has 
4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping table 
that has 4 write and 16 read ports

• it has a 32-entry active list of all instructions within the pipeline.

Branch Unit

The branch unit has the following characteristics:

• it allows one branch per cycle

• conditional branches can be executed speculatively, up to 4-deep

• it has a 44-bit adder to compute branch addresses

• it has a 4-quadword branch-resume buffer, used for reversing mispredicted 
speculatively-taken branches

• the Branch Return Cache contains four instructions following a subroutine 
call, for rapid use when returning from leaf subroutines

• it has program trace RAM that stores the program counter for each instruction 
in the pipeline
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External Interfaces

The external interfaces have the following characteristics:

• a 64-bit System interface allows direct-connection for 2-way to 
4-way multiprocessor systems.  8-bit ECC Error Check and Correction is 
made on address and data transfers.

• a secondary cache interface with 128-bit data path and tag fields.  9-bit ECC 
Error Check and Correction is made on data quadwords, 7-bit ECC is made on 
tag words.  It allows connection to an external secondary cache that can range 
from 512 Kbytes to 16 Mbytes, using external static RAMs.  The secondary 
cache can be organized into either 16- or 32-word blocks, and is 2-way set 
associative.

Bit definitions are given in Chapter 3.

Additional cycles for System Interface transactions (R12000)

All transactions which go through the system interface unit (in particular, SCache refills 
and writebacks) have one additional CPU-clock of latency added to them.
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1.4  Instruction Queues

The processor keeps decoded instructions in three instruction queues, which dynamically 
issue instructions to the execution units.  The queues allow the processor to fetch 
instructions at its maximum rate, without stalling because of instruction conflicts or 
dependencies.

Each queue uses instruction tags to keep track of the instruction in each execution pipeline 
stage.  These tags set a Done bit in the active list as each instruction is completed.

FP and Integer-Queue Issue Policy (R12000)

The integer and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banks in an alternating fashion. Each bank 
independently nominates instructions for the functional units. For each FU, the banks 
nominate the oldest instruction they contain which is ready to execute. If both banks 
nominate an instruction for a given FU, a winner is chosen by a priority bit which alternates 
between the two banks on each cycle.

Integer Queue

The integer queue issues instructions to the two integer arithmetic units: ALU1 and ALU2.

The integer queue contains 16 instruction entries.  Up to four instructions may be written 
during each cycle; newly-decoded integer instructions are written into empty entries in no 
particular order.  Instructions remain in this queue only until they have been issued to an 
ALU. 

Branch and shift instructions can be issued only to ALU1.  Integer multiply and divide 
instructions can be issued only to ALU2.  Other integer instructions can be issued to either 
ALU.

The integer queue controls six dedicated ports to the integer register file: two operand read 
ports and a destination write port for each ALU.

Address calculation for load/store instructions uses integer queue (R12000)

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the 
AQ and IQ units. The IQ treats the address-calculate unit as a third “ALU” and issues 
instructions to it. When an instruction completes address calculation, the results are 
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any 
reason, address calculation is not redone. If the address queue is full, but the integer queue 
has free entries at the time a load/store instruction is decoded, the load/store is sent only to 
the integer queue. When the address queue has an available entry the calculated address is 
forwarded to that entry and the remainder of the load/store execution continues.



User’s Manual  U10278EJ4V0UM 29

Chapter 1  Introduction to the R10000 Processor

Floating-Point Queue

The floating-point queue issues instructions to the floating-point multiplier and the floating-
point adder.

The floating-point queue contains 16 instruction entries.  Up to four instructions may be 
written during each cycle; newly-decoded floating-point instructions are written into empty 
entries in random order.  Instructions remain in this queue only until they have been issued 
to a floating-point execution unit.

The floating-point queue controls six dedicated ports to the floating-point register file: two 
operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier’s issue port to issue instructions to the square-
root and divide units.  These instructions also share the multiplier’s register ports.

The floating-point queue contains simple sequencing logic for multiple-pass instructions 
such as Multiply-Add.  These instructions require one pass through the multiplier, then one 
pass through the adder.

Address Queue

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries.  Unlike the other two queues, the address 
queue is organized as a circular First-In First-Out (FIFO) buffer.  A newly decoded load/
store instruction is written into the next available sequential empty entry; up to four 
instructions may be written during each cycle. 

The FIFO order maintains the program’s original instruction sequence so that memory 
address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be deleted 
immediately after being issued, since the load/store unit may not be able to complete the 
operation immediately.

The address queue contains more complex control logic than the other queues.  An issued 
instruction may fail to complete because of a memory dependency, a cache miss, or a 
resource conflict; in these cases, the queue must continue to reissue the instruction until it 
is completed.

The address queue has three issue ports:

• First, it issues each instruction once to the address calculation unit.  This unit 
uses a 2-stage pipeline to compute the instruction’s memory address and to 
translate it in the TLB.  Addresses are stored in the address stack and in the 
queue’s dependency logic.  This port controls two dedicated read ports to the 
integer register file.  If the cache is available, it is accessed at the same time as 
the TLB.  A tag check can be performed even if the data array is busy.
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• Second, the address queue can re-issue accesses to the data cache.  The queue 
allocates usage of the four sections of the cache, which consist of the tag and 
data sections of the two cache banks.  Load and store instructions begin with 
a tag check cycle, which checks to see if the desired address is already in 
cache.  If it is not, a refill operation is initiated, and this instruction waits until 
it has completed.  Load instructions also read and align a doubleword value 
from the data array.  This access may be either concurrent to or subsequent to 
the tag check.  If the data is present and no dependencies exist, the instruction 
is marked done in the queue.

• Third, the address queue can issue store instructions to the data cache.  A store 
instruction may not modify the data cache until it graduates.  Only one store 
can graduate per cycle, but it may be anywhere within the four oldest 
instructions, if all previous instructions are already completed.

The access and store ports share four register file ports (integer read and write, floating-
point read and write).  These shared ports are also used for Jump and Link and Jump 
Register instructions, and for move instructions between the integer and register files.
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1.5  Program Order and Dependencies

From a programmer’s perspective, instructions appear to execute sequentially, since they 
are fetched and graduated in program order (the order they are presented to the processor 
by software).  When an instruction stores a new value in its destination register, that new 
value is immediately available for use by subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and some results 
may not be available for many cycles; yet the hardware must behave as if each instruction 
is executed sequentially.

This section describes various conditions and dependencies that can arise from them in 
pipeline operation, including:

• instruction dependencies

• execution order and stalling

• branch prediction and speculative execution

• resolving operand dependencies

• resolving exception dependencies

Instruction Dependencies

Each instruction depends on all previous instructions which produced its operands, because 
it cannot begin execution until those operands become valid.  These dependencies 
determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in a typical pipelined 
processor, instructions are executed only in program order.  That is, the next sequential 
instruction may begin execution during the next cycle, if all of its operands are valid.  
Otherwise, the pipeline stalls until the operands do become valid.

Since instructions execute in order, stalls usually delay all subsequent instructions.

A clever compiler can improve performance by re-arranging instructions to reduce the 
frequency of these stall cycles.

• In an in-order superscalar processor, several consecutive instructions may 
begin execution simultaneously, if all their operands are valid, but the 
processor stalls at any instruction whose operands are still busy.

• In an out-of-order superscalar processor, such as the R10000, instructions are 
decoded and stored in queues.  Each instruction is eligible to begin execution 
as soon as its operands become valid, independent of the original instruction 
sequence.  In effect, the hardware rearranges instructions to keep its execution 
units busy.  This process is called dynamic issuing.
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Branch Prediction and Speculative Execution

Although one or more instructions may begin execution during each cycle, each instruction 
takes several (or many) cycles to complete.  Thus, when a branch instruction is decoded, its 
branch condition may not yet be known.  However, the R10000 processor can predict 
whether the branch is taken, and then continue decoding and executing subsequent 
instructions along the predicted path.

When a branch prediction is wrong, the processor must back up to the original branch and 
take the other path.  This technique is called speculative execution.  Whenever the processor 
discovers a mispredicted branch, it aborts all speculatively-executed instructions and 
restores the processor’s state to the state it held before the branch. However, the cache state 
is not restored (see the section titled “Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CP0 Diagnostic register.  Branch Likely 
instructions are always predicted as taken, which also means the instruction in the delay slot 
of the Branch Likely instruction will always be speculatively executed. Since the branch 
predictor is neither used nor updated by branch-likely instructions, these instructions do not 
affect the prediction of “normal” conditional branches.

Resolving Operand Dependencies

Operands include registers, memory, and condition bits.  Each operand type has its own 
dependency logic.  In the R10000 processor, dependencies are resolved in the following 
manner:

• register dependencies are resolved by using register renaming and the 
associative comparator circuitry in the queues

• memory dependencies are resolved in the Load/Store Unit

• condition bit dependencies are resolved in the active list and instruction 
queues
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Resolving Exception Dependencies

In addition to operand dependencies, each instruction is implicitly dependent upon any 
previous instruction that generates an exception.  Exceptions are caused whenever an 
instruction cannot be properly completed, and are usually due to either an untranslated 
virtual address or an erroneous operand.

The processor design implements precise exceptions, by:

• identifying the instruction which caused the exception

• preventing the exception-causing instruction from graduating

• aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.  
Effectively, all previous instructions are completed, but the faulting instruction and all 
subsequent instructions do not modify any values.

Strong Ordering

A multiprocessor system that exhibits the same behavior as a uniprocessor system in a 
multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering is implemented, although it does not 
actually execute all memory operations in strict program order.

In the R10000 processor, store operations remain pending until the store instruction is ready 
to graduate.  Thus, stores are executed in program order, and memory values are precise 
following any exception.

For improved performance however, cached load operations my occur in any order, subject 
to memory dependencies on pending store instructions.  To maintain the appearance of 
strong ordering, the processor detects whenever the reordering of a cached load might alter 
the operation of the program, backs up, and then re-executes the affected load instructions.  
Specifically, whenever a primary data cache block is invalidated due to an external 
coherency request, its index is compared with all outstanding load instructions.  If there is 
a match and the load has been completed, the load is prevented from graduating.  When it 
is ready to graduate, the entire pipeline is flushed, and the processor is restored to the state 
it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when the 
instruction is ready to graduate.  This guarantees strong ordering for uncached accesses.

Since the R10000 processor behaves as if it implemented strong ordering, a suitable system 
design allows the processor to be used to create a shared-memory multiprocessor system 
with strong ordering.
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An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is, they are not in the 
same cache block—an example of strong ordering is as follows:

• Processor A performs a store to location X and later executes a load from 
location Y. 

• Processor B performs a store to location Y and later executes a load from 
location X.

The two processors are running asynchronously, and the order of the above two sequences 
is unknown.

For the system to be strongly ordered, either processor A must load the new value of Y, or 
processor B must load the new value of X, or both processors A and B must load the new 
values of Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any conditions, 
the system is not strongly ordered.

New Value Strongly
OrderedProcessor A Processor B

No No No

Yes No Yes

No Yes Yes

Yes Yes Yes
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1.6  R10000 Pipelines

This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in Figure 1-4.  
The Fetch pipeline reads instructions from the instruction cache†, decodes them, renames 
their registers, and places them in three instruction queues.  The instruction queues contain 
integer, address calculate, and floating-point instructions.  From these queues, instructions 
are dynamically issued to the five pipelined execution units.

Stage 1

In stage 1, the processor fetches four instructions each cycle, independent of their 
alignment in the instruction cache — except that the processor cannot fetch across a 16-
word cache block boundary.  These words are then aligned in the 4-word Instruction 
register.

If any instructions were left from the previous decode cycle, they are merged with new 
words from the instruction cache to fill the Instruction register.

Stage 2

In stage 2, the four instructions in the Instruction register are decoded and renamed.  
(Renaming determines any dependencies between instructions and provides precise 
exception handling.)  When renamed, the logical registers referenced in an instruction are 
mapped to physical registers.  Integer and floating-point registers are renamed 
independently.

A logical register is mapped to a new physical register whenever that logical register is the 
destination of an instruction.  Thus, when an instruction places a new value in a logical 
register, that logical register is renamed (mapped) to a new physical register, while its 
previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to determine if 
any dependencies exist between the four instructions decoded during this cycle.  After the 
physical register numbers become known, the Physical Register Busy table indicates 
whether or not each operand is valid.  The renamed instructions are loaded into integer or 
floating-point instruction queues.

Only one branch instruction can be executed during stage 2.  If the instruction register 
contains a second branch instruction, this branch is not decoded until the next cycle.

The branch unit determines the next address for the Program Counter; if a branch is taken 
and then reversed, the branch resume cache provides the instructions to be decoded during 
the next cycle.

† The processor checks only the instruction cache during an instruction fetch; it does not check
the data cache.
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Stage 3

In stage 3, decoded instructions are written into the queues.  Stage 3 is also the start of each 
of the five execution pipelines.

Stages 4-6

In stages 4 through 6, instructions are executed in the various functional units.  These units 
and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are executed in this 
unit with a 2-cycle latency and a 1-cycle repeat rate.  The multiplication is completed during 
the first two cycles; the third cycle is used to pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and square-root operations can be executed in parallel 
by separate units.  These units share their issue and completion logic with the floating-point 
multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are executed with 
a 2-cycle latency and a 1-cycle repeat rate.  Although a final result is not calculated until the 
third pipeline stage, internal bypass paths set a 2-cycle latency for dependent add or 
multiply instructions.

Integer ALU1 (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency and a 
1-cycle repeat rate.  This ALU also verifies predictions made for branches that are 
conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a 1-cycle latency and a 1-cycle 
repeat rate.  Integer multiply and divide operations take more than one cycle.
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Address Calculation and Translation in the TLB

A single memory address can be calculated every cycle for use by either an integer or 
floating-point load or store instruction.  Address calculation and load operations can be 
calculated out of program order.

The calculated address is translated from a 44-bit virtual address into a 40-bit physical 
address using a translation-lookaside buffer.  The TLB contains 64 entries, each of which 
can translate two pages.  Each entry can select a page size ranging from 4 Kbytes to 16 
Mbytes, inclusive, in powers of 4, as shown in Figure 1-6.

Figure 1-6    TLB Page Sizes

Load instructions have a 2-cycle latency if the addressed data is already within the data 
cache.

Store instructions do not modify the data cache or memory until they graduate.
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1.7  Implications of R10000 Microarchitecture on Software

The R10000 processor implements the MIPS architecture by using the following 
techniques to improve throughput:

• superscalar instruction issue

• speculative execution

• non-blocking caches

These microarchitectural techniques have special implications for compilation and code 
scheduling.

Superscalar Instruction Issue

The R10000 processor has parallel functional units, allowing up to four instructions to be 
fetched and up to five instructions to be issued or completed each cycle.  An ideal code 
stream would match the fetch bandwidth of the processor with a mix of independent 
instructions to keep the functional units as busy as possible.

To create this ideal mix, every cycle the hardware would select one instruction from each 
of the columns below.   (Floating-point divide, floating-point square root, integer multiply 
and integer divide cannot be started on each cycle.)  The processor can look ahead in the 
code, so the mix should be kept close to the ideal described below. 

Data dependencies are detected in hardware, but limit the degree of parallelism that can be 
achieved.  Compilers can intermix instructions from independent code streams.

Column A Column B Column C  Column D Column E

FPadd FP mul FPload add/sub add/sub

FPdiv FPstore shift mul

FPsqrt load branch div

store logical logical
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Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing 
instructions even in the presence of unresolved conditional branches and possible 
exceptions.  Following are some suggestions for increasing program efficiency:

• Compilers should reduce the number of branches as much as possible

• “Jump Register” instructions should be avoided.

• Aggressive use of the new integer and floating-point conditional move 
instructions is recommended. 

• Branch prediction rates may be improved by organizing code so that each 
branch goes the same direction most of the time, since a branch that is taken 
50% of the time has higher average cost than one taken 90% of the time. The 
MIPS IV conditional move instructions may be effective in improving 
performance by replacing unpredictable branches.

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and executed. 
Side-effects are harmless in cached coherent operations; however there are potential side-
effects with non-coherent cached operations. These side-effects are described in the 
sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a cached 
address initiate a Processor Block Read Request to the external interface if it misses in the 
cache.  The speculative operation may modify the cache state and/or data, and this 
modification may not be reversed even if the speculation turns out to be incorrect and the 
instruction is aborted.

Speculative Processor Block Read Request to an I/O Address

Accesses to I/O addresses often cause side-effects. Typically, such I/O addresses are 
mapped to an uncached region and uncached reads and writes are made as double/single/
partial-word reads and writes (non-block reads and writes) in R10000.  Uncached reads and 
writes are guaranteed to be non-speculative.

However, if R10000 has a “garbage” value in a register, a speculative block read request to 
an unpredictable physical address can occur, if it speculatively fetches data due to a Load 
or Jump Register instruction specifying this register. Therefore, speculative block accesses 
to load-sensitive I/O areas can present an unwanted side-effect.
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Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative Store 
instruction is missing in the cache, the cache line is refilled and the state is marked to be 
Dirty.  However the refilled data may not be actually changed in the cache if this store 
instruction is later aborted. This could present a side-effect in cases such as the one 
described below:

• The processor is storing data sequentially to memory area A, using a code-loop 
that includes Store and Cond.branch instructions.

• A DMA write operation is performed to memory area B.

• DMA area B is contiguous to the sequential storage area A.

• The DMA operation is noncoherent.

• The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following could 
occur:

1. Due to speculative execution at the exit of the code-loop, the line of data beyond the 
end of the memory area A — that is, the starting line of memory area B — is refilled 
to the cache.  This cache line is then marked Dirty.

2. The DMA operation starts writing noncoherent data into memory area B.

3. A cache line replacement is caused by later activities of the processor, in which the 
cache line is written back to the top of area B. Thus, the first line of the DMA area B 
is overwritten by old cache data, resulting in incorrect DMA operation and data.

The OS can restrict the writable pages for each user process and so can prevent a user 
process from interfering with an active DMA space. The kernel, on the other hand, retains 
xkphys and kseg0 addresses in registers.  There is no write protection against the speculative 
use of the address values in these registers.  User processes which have pages mapped to 
physical spaces not in RAM may also have side-effects. These side-effects can be avoided 
if DMA is coherent.

Speculative Instruction Fetch

The change in a cache line’s state due to a speculative instruction fetch is not reversed if the 
speculation is aborted. This does not cause any problems visible to the program except 
during a noncoherent memory operation.  Then the following side-effect exists: if a 
noncoherent line is changed to Clean Exclusive and this line is also present in noncoherent 
space, the noncoherent data could be modified by an external component and the processor 
would then have stale data.
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Workarounds for Noncoherent Cached Systems

The suggestions presented below are not exhaustive; the solutions and trade-offs are system 
dependent. Any one or more of the items listed below might be suitable in a particular 
system, and testing and simulations should be used to verify their efficacy.

1. The external agent can reject a processor block read request to any I/O location in 
which a speculative load would cause an undesired affect.  Rejection is made by 
returning an external NACK completion response.

2. A serializing instruction such as a cache barrier or a CP0 instruction can be used to 
prevent speculation beyond the point where speculative stores are allowed to occur. 
This could be at the beginning of a basic block that includes instructions that can cause 
a store with an unsafe pointer. (Stores to addresses like stack-relative, global-pointer-
relative and pointers to non-I/O memory might be safe.) Speculative loads can also 
cause a side-effect. To make sure there is no stale data in the cache as a result of 
undesired speculative loads, portions of the cache referred by the address of the DMA 
read buffers could be flushed after every DMA transfer from the I/O devices.

3. Make references to appropriate I/O spaces uncached by changing the cache coherency 
attribute in the TLB.

4. Generally, arbitrary accesses can be controlled by mapping selected addresses through 
the TLB. However, references to an unmapped cached xkphys region could have 
hazardous affects on I/O. A solution for this is given below:

First of all, note that the xkphys region is hard-wired into cached and uncached regions, 
however the cache attributes for the kseg0 region are programmed through the Config 
register. Therefore, clear the KX bit (to a zero) and set (to ones) the SX and UX bits in 
the Status register. This disables access to the xkphys region and restricts access to only 
the User and Supervisor portions of the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol — but not 
both. Therefore these cache attributes can be used by the external hardware to filter 
accesses to certain parts of the kseg0 region. For instance, the cache attributes for the 
kseg0 address space might be defined in the Config register to be cache coherent while 
the cache attributes in the TLB for the rest of virtual space are defined to be cached-
noncoherent or uncached. The external hardware could be designed to reject all cache 
coherent mode references to the memory except to that prior-defined safe space in 
kseg0 within which there is no possibility of an I/O DMA transfer. Then before the 
DMA read process and before the cache is flushed for the DMA read buffers, the cache 
attributes in the TLB for the I/O buffer address space are changed from noncoherent 
to uncached.  After the DMA read, the access modes are returned to the cached-
noncoherent mode.

5. Just before load/store instruction, use a conditional move instruction which tests for the 
reverse condition in the speculated branch, and make all aborted branch assignments 
safe. An example is given below:
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bne r1, r0, label  
-----
-----
-----
-----
movn ra, r0, r1  # test to see if r1 != 0; if r1 != 0 then branch

 # is mispredicted; move safe address (r0)
 # into ra

ld r4, 0 (ra)   # Without the previous movn, this lld
 # could create damaging read.

-----
-----

label: -----
-----
-----

In the above example, without the MOVN the read to the address in register ra could 
be speculatively executed and later aborted. It is possible that this load could be 
premature and thus damaging. The MOVN guarantees that if there is a misprediction 
(r1 is not equal to 0) ra will be loaded with an address to which a read will not be 
damaging.

6. The following is similar to the conditional-move example given above, in that it 
protects speculation only for a single branch, but in some instances it may be more 
efficient than either the conditional move or the cache barrier workarounds.

This workaround uses the fact that branch-likely instructions are always predicted as 
taken by the R10000. Thus, any incorrect speculation by the R10000 on a branch-
likely always occurs on a taken path. Sample code is:

beql rx, r1, label    
nop                                    
sw r2, 0x0(r1)   

label: -----
-----

The store to r1 will never be to an address referred to by the content of rx, because the 
store will never be executed speculatively. Thus, the address referred to by the content 
of rx is protected from any spurious write-backs.
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This workaround is most useful when the branch is often taken, or when there are few 
instructions in the protected block that  are not memory operations. Note that no 
instructions in a block following a branch-likely will be initiated by speculation on that 
branch; however, in the case of a serial instruction workaround, only memory 
operations are prevented from speculative initiation. In the case of the conditional-
move workaround, speculative initiation of all instructions continues unimpeded. Also, 
similar to the conditional-move workaround, this workaround only protects fall-
through blocks from speculation on the immediately preceding branch. Other 
mechanisms must be used to ensure that no other branches speculate into the protected 
block. However, if a block that dominates† the fall-through block can be shown to be 
protected, this may be sufficient. Thus, if block (a) dominates block (b), and block (b) 
is the fall-through block shown above, and block (a) is the immediately previous block 
in the program (i.e., only the single conditional branch that is being replaced intervenes 
between (a) and (b)), then ensuring that (a) is protected by serial instruction means a 
branch-likely can safely be used as protection for (b).

Nonblocking Caches

As processor speed increases, the processor’s data latency and bandwidth requirements rise 
more rapidly than the latency and bandwidth of cost-effective main memory systems.  The 
memory hierarchy of the R10000 processor tries to minimize this effect by using large set-
associative caches and higher bandwidth cache refills to reduce the cost of loads, stores, and 
instruction fetches.  Unlike the R4400, the R10000 processor does not stall on data cache 
misses, instead defers execution of any dependent instructions until the data has been 
returned and continues to execute independent instructions (including other memory 
operations that may miss in the cache).  Although the R10000 allows a number of 
outstanding primary and secondary cache misses, compilers should organize code and data 
to reduce cache misses.  When cache misses are inevitable, the data reference should be 
scheduled as early as possible so that the data can be fetched in parallel with other unrelated 
operations.

As a further antidote to cache miss stalls, the R10000 processor supports prefetch 
instructions, which serve as hints to the processor to move data from memory into the 
secondary and primary caches when possible.  Because prefetches do not cause dependency 
stalls or memory management exceptions, they can be scheduled as soon as the data address 
can be computed, without affecting exception semantics.  Indiscriminate use of prefetch 
instructions can slow program execution because of the instruction-issue overhead, but 
selective use of prefetches based on compiler miss prediction can yield significant 
performance improvement for dense matrix computations.

† In compiler parlance, block (a) dominates block (b) if and only if  every time block (b) is
executed, block (a) is executed first. Note that block (a) does not have to immediately precede
block (b) in execution order; some other block may intervene.
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1.8  Performance

As it executes programs, the R10000 superscalar processor performs many operations in 
parallel.  Instructions can also be executed out of order.  Together, these two facts greatly 
improve performance, but they also make it difficult to predict the time required to execute 
any section of a program, since it often depends on the instruction mix and the critical 
dependencies between instructions.

The processor has five largely independent execution units, each of which are 
individualized for a specific class of instructions.  Any one of these units may limit 
processor performance, even as the other units sit idle.  If this occurs, instructions which 
use the idle units can be added to the program without adding any appreciable delay.



User’s Manual  U10278EJ4V0UM 45

Chapter 1  Introduction to the R10000 Processor

User Instruction Latency and Repeat Rate

Table 1-1 shows the latencies and repeat rates for all user instructions executed in ALU1, 
ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply functional units 
(definitions of latency and repeat rate are given in the Glossary).  Kernel instructions are 
not included, nor are control instructions not issued to these execution units.

Table 1-1    Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit Latency 
Repeat 
Rate

Comment

Integer Instructions
Add/Sub/Logical/Set ALU 1/2 1 1
MF/MT HI/LO ALU 1/2 1 1
Shift/LUI ALU 1 1 1
Cond. Branch Evaluation ALU 1 1 1
Cond. Move ALU 1 1 1
MULT ALU 2 5/6 6 Latency relative to Lo/Hi
MULTU ALU 2 6/7 7 Latency relative to Lo/Hi
DMULT ALU 2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU 2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU 2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU 2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit

Floating-Point Instructions
MTC1/DMTC1 ALU 1 3 1
Add/Sub/Abs/Neg/Round/Trunc/
Ceil/Floor/C.cond

FADD 2 1

CVT.S.W/CVT.S.L FADD 4 2 Repeat rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MFC1/DMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35

MADD FADD+FMPY 2/4 1
Latency is 2 only if the result is used as the 
operand specified by fr of another MADD

LWC1/LDC1/LWXC1/LDXC1 LoadStore 3 1 Assuming cache hit
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Please note the following about Table 1-1:

• For integer instructions, conditional trap evaluation takes a single cycle, 
like conditional branches.

• Branches and conditional moves are not conditionally issued.

• The repeat rate above for Load/Store does not include Load Link and 
Store Conditional.

• Prefetch instruction is not included here.

• The latency for multiplication and division depends upon the next 
instruction.

• An instruction using register Lo can be issued one cycle earlier than one 
using Hi. 

• For floating-point instructions, CP1 branches are evaluated in the 
Graduation Unit.

• CTC1 and CFC1 are not included in this table.

• The repeat pattern for the CVT.S.(W/L) is “I I x x I I x x ...”; the repeat 
rate given here, 2, is the average.

• The latency for MADD instructions is 2 cycles if the result is used as the 
operand specified by fr of the second MADD instruction.

• Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD) 
do not implicitly perform SYNC operations in the R10000. Any of the 
following events that occur between a Load Linked and a Store 
Conditional will cause the Store Conditional to fail: an exception; 
execution of an ERET, a load, a store, a SYNC, a CacheOp, a prefetch, or 
an external intervention/invalidation on the block containing the linked 
address.  Instruction cache misses do not cause the Store Conditional to 
fail.

• Up to four branches can be evaluated at one cycle.†

For more information about implementations of the LL, SC, and SYNC instructions, please 
see the section titled, R10000-Specific CPU Instructions, in this chapter. 

† Only one branch can be decoded at any particular cycle. Since each conditional branch is
predicted, the real direction of each branch must be “evaluated.”   For example,

beq  r2,r3,L1
nop

A comparison of r2 and r3 is made to determine whether the branch is taken or not.  If the
branch prediction is correct, the branch instruction is graduated.  Otherwise, the processor
must back out of the instruction stream decoded after this branch, and inform the IFetch to
fetch the correct instructions.  The evaluation is made in the ALU for integer branches and in
the Graduation Unit for floating-point branches. A single integer branch can be evaluated
during any cycle, but there may be up to 4 condition codes waiting to be evaluated for floating-
point branches. Once the condition code is evaluated, all dependant FP branches can be
evaluated during the same cycle.
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Other Performance Issues

Table 1-1 shows execution times within the functional units only.  Performance may also 
be affected by instruction fetch times, and especially by the execution of conditional 
branches. 

In an effort to keep the execution units busy, the processor predicts branches and 
speculatively executes instructions along the predicted path.  When the branch is predicted 
correctly, this significantly improves performance: for typical programs, branch prediction 
is 85% to 90% correct.  When a branch is mispredicted, the processor must discard 
instructions which were speculatively fetched and executed.  Usually, this effort uses 
resources which otherwise would have been idle, however in some cases speculative 
instructions can delay previous instructions.

Cache Performance

The execution of load and store instructions can greatly affect performance.  These 
instructions are executed quickly if the required memory block is contained in the primary 
data cache, otherwise there are significant delays for accessing the secondary cache or main 
memory.  Out-of-order execution and non-blocking caches reduce the performance loss due 
to these delays, however.

The latency and repeat rates for accessing the secondary cache are summarized in Table 1-
2.  These rates depend on the ratio of the secondary cache’s clock to the processor’s internal 
pipeline clock.  The best performance is achieved when the clock rates are equal; slower 
external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle transfers 
from the quadword-wide secondary cache.  Latency runs to the time in which the processor 
can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using 4-cycle 
transfers.

Table 1-2    Latency and Repeat Rates for Secondary Cache Reads

‡ Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords (instruction
cache).  Rate is valid for bursts of 2 to 3 cache misses; if more than three cache misses in a row, there can
be a 1-cycle “bubble.”

† Clock synchronization causes variability.

SCClkDiv
Mode

Latency‡

(PClk Cycles)

Repeat
Rate*

(PClk Cycles)

1 6
2 (data cache)

4 (instruction cache)

1.5 8-10† 3 (data cache)
6 (instruction cache)

2 9-12† 4 (data cache)
8 (instruction cache)
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The processor mitigates access delays to the secondary cache in the following ways:

• The processor can execute up to 16 load and store instructions speculatively 
and out-of-order, using non-blocking primary and secondary caches.  That is, 
it looks ahead in its instruction stream to find load and store instructions 
which can be executed early; if the addressed data blocks are not in the 
primary cache, the processor initiates cache refills as soon as possible.

• If a speculatively executed load initiates a cache refill, the refill is completed 
even if the load instruction is aborted.  It is likely the data will be referenced 
again.

• The data cache is interleaved between two banks, each of which contains 
independent tag and data arrays.  These four sections can be allocated 
separately to achieve high utilization.  Five separate circuits compete for 
cache bandwidth (address calculate, tag check, load unit, store unit, external 
interface.)

• The external interface gives priority to its refill and interrogate operations.  
The processor can execute tag checks, data reads for load instructions, or data 
writes for store instructions.  When the primary cache is refilled, any required 
data can be streamed directly to waiting load instructions.

• The external interface can handle up to four non-blocking memory accesses to 
secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the secondary 
cache, which make it difficult for the processor to mitigate their effect.  Since main memory 
accesses are non-blocking, delays can be reduced by overlapping the latency of several 
operations.  However, although the first part of the latency may be concealed, the processor 
cannot look far enough ahead to hide the entire latency.

Programmers may use pre-fetch instructions to load data into the caches before it is needed, 
greatly reducing main memory delays for programs which access memory in a predictable 
sequence.
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2. System Configurations

The R10000 processor provides the capability for a wide range of computer systems; this 
chapter describes some of the uni- and multiprocessor alternatives.
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2.1  Uniprocessor Systems

In a typical uniprocessor system, the System interface of the R10000 processor connects in 
a point-to-point fashion with an external agent.  Such a system is shown in Figure 2-1.  The 
external agent is typically an ASIC that provides a gateway to the memory and I/O 
subsystems; in fact, this ASIC may incorporate the memory controller itself.

If hardware I/O coherency is desired, the external agent may use the multiprocessor 
primitives provided by the processor to maintain cache coherency for interventions and 
invalidations.  External duplicate tags can be used by the external agent to filter external 
coherency requests.

  

Figure 2-1    Uniprocessor System Organization
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2.2  Multiprocessor Systems

Two types of multiprocessor systems can be implemented with R10000 processor:

• a dedicated external agent interfaces with each R10000 processor

• up to four R10000 processors and an external agent reside on a cluster bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing a dedicated 
external agent for each processor; such a system is shown in Figure 2-2.  The external agent 
provides a path between the processor System interface and some type of coherent 
interconnect. In such a system, the processor provides support for three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

  

Figure 2-2    Multiprocessor System Organization using Dedicated External Agents
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Multiprocessor Systems Using a Cluster Bus

A multiprocessor system may be created with R10000 processors by using a cluster bus 
configuration.  Such a system is shown in Figure 2-3.  A cluster bus is created by attaching 
the System interfaces of up to four R10000 processors with an external agent (the cluster 
coordinator). The cluster coordinator is responsible for managing the flow of data within 
the cluster.

This organization can reduce the number of ASICs and the pin count needed for a small 
multiprocessor systems.

The cluster bus protocol supports three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

   

Figure 2-3    Multiprocessor System Organization Using the Cluster Bus
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3. Interface Signal Descriptions

This chapter gives a list and description of the interface signals.

The R10000 interface signals may be divided into the following groups:

• Power interface

• Secondary Cache interface

• System interface

• Test interface

The following sections present a summary of the external interface signals for each of these 
groups.  An asterisk (*) indicates signals that are asserted as a logical 0.
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3.1  Power Interface Signals

Table 3-1 presents the R10000 processor power interface signals.

Table 3-1    Power Interface Signals

Signal Name Description Type

Vcc
Vcc core
Vcc for the core circuits.

Input

VccQSC
Vcc output driver secondary cache
Vcc for the secondary cache interface output drivers.

Input

VccQSys
Vcc output driver system
Vcc for the System interface output drivers.

Input

VrefSC
Voltage reference secondary cache
Voltage reference for the secondary cache interface input receivers.

Input

VrefSys
Voltage reference system
Voltage reference for the System interface input receivers.

Input

VrefByp
Voltage reference bypass
This pin must be tied to Vss (preferably) or VrefSys, through at least a 100 ohm 
resistor.

Input

Vss
Vss
Vss for the core circuits and output drivers.

Input

VccPa
Vcc PLL analog
Vcc for the PLL analog circuits.

Input

VssPa
Vss PLL analog
Vss for the PLL analog circuits.

Input

VccPd
Vcc PLL digital
Vcc for the PLL digital circuits.

Input

VssPd
Vss PLL digital
Vss for the PLL digital circuits.

Input

DCOk
DC voltages are OK
The external agent asserts these two signals when Vcc,
VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk are stable.

Input
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3.2  Secondary Cache Interface Signals

Table 3-2 presents the R10000 processor secondary cache interface signals.

Table 3-2     Secondary Cache Interface Signals

‡ All cache static RAM (SRAM) are synchronous SRAM (SSRAM).

Signal Name Description Type

SSRAM‡ Clock Signals

SCClk(5:0)
SCClk*(5:0)

Secondary cache clock
Duplicated complementary secondary cache clock outputs.

Output

SSRAM Address Signals

SCAAddr(18:0)
SCBAddr(18:0)

Secondary cache address bus
SCBAddr is complementary SCAAddr 19-bit bus, which specifies the set address of the 
secondary cache data and tag SSRAM that is to be accessed.

Output

SCTagLSBAddr
Secondary cache tag LSB address
Signal that specifies the least significant bit of the address for the secondary cache tag 
SSRAM.

Output

SSRAM Data Signals

SCADWay
SCBDWay

Secondary cache data way
Duplicated signal that indicates the way of the secondary cache data SSRAM that is to 
be accessed.

Output

SCData(127:0)
Secondary cache data bus
128-bit bus to read/write cache data from/to secondary cache data SSRAM.

Bidirectional

SCDataChk(9:0)
Secondary cache data check bus
A 10-bit bus used to read/write ECC and even parity from/to the secondary cache data 
SSRAM.

Bidirectional

SCADOE*
SCBDOE*

Secondary cache data output enable
Duplicated signal that enables the outputs of the secondary cache data SSRAM.

Output

SCADWr*
SCBDWr*

Secondary cache data write enable
Duplicated signal that enables writing the secondary cache data SSRAM.

Output

SCADCS*
SCBDCS*

Secondary cache data chip select
Duplicated signal that enables the secondary cache data SSRAM.

Output
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Table 3-2 (cont.)    Secondary Cache Interface Signals

Signal Name Description Type

SSRAM Tag Signals

SCTWay
Secondary cache tag way
Signal indicating the way of the secondary cache tag SSRAM to be accessed.

Output

SCTag(25:0)
Secondary cache tag bus
A 26-bit bus to read/write cache tags from/to the secondary cache tag SSRAM.

Bidirectional

SCTagChk(6:0)
Secondary cache tag check bus
A 7-bit bus used to read/write ECC from/to the secondary cache tag SSRAM.

Bidirectional

SCTOE*
Secondary cache tag output enable
A signal that enables the outputs of the secondary cache tag SSRAM.

Output

SCTWr*
Secondary cache tag write enable
A signal that enables writing the secondary cache tag SSRAM.

Output

SCTCS*
Secondary cache tag chip select
A signal which enables the secondary cache tag SSRAM.

Output
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3.3  System Interface Signals

Table 3-3 presents the R10000 processor System interface signals.

Table 3-3     System Interface Signals   

Signal Name Description Type

System Clock Signals

SysClk
SysClk*

System clock
Complementary system clock input.

Input

SysClkRet
SysClkRet*

System clock return
Complementary system clock return output used for termination of the system 
clock.

Output

System Arbitration Signals

SysReq*
System request
The processor asserts this signal when it wants to perform a processor request 
and it is not already master of the System interface.

Output

SysGnt*
System grant
The external agent asserts this signal to grant mastership of the System interface 
to the processor. 

Input

SysRel*

System release
The master of the System interface asserts this signal for one SysClk cycle to 
indicate that it will relinquish mastership of the System interface in the following 
SysClk cycle.

Bidirectional

System Flow Control Signals

SysRdRdy*
System read ready
The external agent asserts this signal to indicate that it can accept processor read 
and upgrade requests.

Input

SysWrRdy*
System write ready
The external agent asserts this signal to indicate that it can accept processor write 
and eliminate requests.

Input

System Address/Data Bus Signals

SysCmd(11:0)
System command
A 12-bit bus for transferring commands between processor and the external 
agent.

Bidirectional

SysCmdPar
System command bus parity
Odd parity for the system command bus.

Bidirectional

SysAD(63:0)
System address/data bus
A 64-bit bus for transferring addresses and data between R10000 and the 
external agent.

Bidirectional
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Table 3-3 (cont.)   System Interface Signals

Signal Name Description Type

System State Bus Signals

SysADChk(7:0)
System address/data check bus
An 8-bit ECC bus for the system address/data bus.

Bidirectional

SysVal*
System valid
The master of the System interface asserts this signal when it is driving valid 
information on the system command and system address/data buses.

Bidirectional

SysState(2:0)
System state bus
A 3-bit bus used for issuing processor coherency state responses and also 
additional status indications.

Output

SysStatePar
System state bus parity
Odd parity for the system state bus.

Output

SysStateVal*
System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a processor 
coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)
System response bus
A 5-bit bus used by the external agent for issuing external completion responses.

Input

SysRespPar
System response bus parity
Odd parity for the system response bus.

Input

SysRespVal*
System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing an 
external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset*
System reset
The external agent asserts this signal to reset the processor.

Input

SysNMI*
System non-maskable interrupt
The external agent asserts this signal to indicate a non-maskable interrupt.

Input

SysCorErr*
System correctable error
The processor asserts this signal for one SysClk cycle when a correctable error 
is detected and corrected.

Output

SysUncErr*
System uncorrectable error
The processor asserts this signal for one SysClk cycle when an uncorrectable tag 
error is detected.

Output

SysGblPerf*
System globally performed
The external agent asserts this signal to indicate that all processor requests have 
been globally performed with respect to all external agents.

Input

SysCyc*
System cycle
The external agent may use this signal to define a virtual System interface clock 
in a hardware emulation environment.

Input
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3.4  Test Interface Signals

Table 3-4 presents the R10000 processor test interface signals. 

Table 3-4    Test Interface Signals

† The Spare (1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not be connected to anything.

Signal Name Description Type

JTAG Signals

JTDI
JTAG serial data input
Serial data input.

Input

JTDO
JTAG serial data output
Serial data output.

Output

JTCK
JTAG clock
Clock input.

Input

JTMS
JTAG mode select
Mode select input.

Input

JTRST
JTAG reset input (active low)
Asynchronous reset input (R12000A only)

Input

Miscellaneous Test Signals

TCA
Testability control A (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor.

Input

TCB
Testability control B (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor.

Input

PLLDis
PLL disable (for manufacturing test only)
This signal must be tied to Vss through a 100 ohm resistor.

Input

PLLRC
PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.

PLLSpare(1:4) These four pins must be tied to Vss.

Spare(1,3)† These two pins must be tied to Vss, through a 100 ohm resistor.

TriState
3-state Control
The system asserts this signal to 3-state all outputs and input/output 
pads except for SCClk, SCClk*, and JTDO.

Input

SelDVCO
Select differential VCO (for manufacturing test only)
This signal must be tied to Vcc.

Input
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Unused Inputs

Several input pins are unused during normal system operation, and should be tied to Vcc 
through resistors:

• JTDI

• JTCK

• JTMS

• JTRST (for R12000A only)

Several input pins are unused during normal system operation, and should be tied to Vss 
through 100 ohm resistors:

• TCA, TCB

• PLLDis

• Spare1, Spare3 (for R10000)

Several input pins are unused during normal system operation, and should be tied to Vss:

• PLLSpare1, PLLSpare2, PLLSpare3, PLLSpare4

• SelDVCO

The following input pins are unused during normal system operation, and should be left 
open:

• Spare1, Spare3 (for R12000)

 The following input pins may be unused in certain system configurations, and each of them 
should be tied to VccQSys, preferably, through a resistor of 100 ohms or greater value:

•     SysNMI*

 The following input pins may be unused in certain system configurations, and each of them 
should be tied to Vss, preferably, through a resistor of 100 ohms or greater value:

•     SysRdRdy*

•     SysWrRdy*

•     SysGblPerf*

•     SysCyc*

 The following input pins may be unused in certain system configurations, and each of them 
should be tied (preferably) to Vss, or VccQSys, through a resistor of 100 ohms or greater 
value:

•     SysADChk(7:0)
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4. Cache Organization and Coherency

The processor implements a two-level cache structure consisting of separate primary 
instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses a write back protocol; that is, two cache 
blocks are assigned to each set (as shown in Figure 4-1), and a cache store writes data into 
the cache instead of writing it directly to memory.  Some time later this data is 
independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is supported 
through a set of cache states and external coherency requests.
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4.1  Primary Instruction Cache

The processor has an on-chip 32-Kbyte primary instruction cache (also referred to simply 
as the instruction cache), which is a subset of the secondary cache.  Organization of the 
instruction cache is shown in Figure 4-1.

The instruction cache has a fixed block size of 16 words and is two-way set associative with 
a least-recently-used (LRU) replacement algorithm.† 

The instruction cache is indexed with a virtual address and tagged with a physical address.

Figure 4-1    Organization of Primary Instruction Cache

Each instruction cache block is in one of the following two states: 

• Invalid

• Valid

† The precise implementation of the LRU algorithm is affected by the speculative execution of
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An instruction cache block can be changed from one state to the other as a result of any one 
of the following events:

• a primary instruction cache read miss

• subset property enforcement

• any of various CACHE instructions

• external intervention exclusive and invalidate requests

These events are illustrated in Figure 4-2, which shows the primary instruction cache state 
diagram.

Figure 4-2    Primary Instruction Cache State Diagram
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4.2  Primary Data Cache

The processor has an on-chip 32-Kbyte primary data cache (also referred to simply as the 
data cache), which is a subset of the secondary cache.  The data cache uses a fixed block 
size of 8 words and is two-way set associative (that is, two cache blocks are assigned to each 
set, as shown in Figure 4-3) with an LRU replacement algorithm.† 

Figure 4-3    Organization of Primary Data Cache

The data cache uses a write back protocol, which means a cache store writes data into the 
cache instead of writing it directly to memory.  Sometime later this data is independently 
written to memory, as shown in Figure 4-4. 

Figure 4-4    Write Back Protocol
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instructions. 
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The data cache is indexed with a virtual address and tagged with a physical address.  Each 
primary cache block is in one of the following four states: 

• Invalid

• CleanExclusive

• DirtyExclusive

• Shared

A primary data cache block is said to be Inconsistent when the data in the primary cache 
has been modified from the corresponding data in the secondary cache.  The primary data 
cache is maintained as a subset of the secondary cache where the state of a block in the 
primary data cache always matches the state of the corresponding block in the secondary 
cache.

A data cache block can be changed from one state to another as a result of any one of the 
following events:

• primary data cache read/write miss

• primary data cache write hit

• subset enforcement

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-5, which shows the primary data cache state 
diagram.

DCache set locking relaxed (R12000)

In R10000, when an AQ entry accesses a DCache line, that line is locked into the cache until 
the entry graduates, so that the entry will not be removed from the cache until the access 
completes. If another entry which needs to access exactly the same line arrives in the AQ 
before the first completes, the two may share the lock. In this way, a line is locked in the 
cache until all access to it complete. In order to prevent a deadlock from arising, whenever 
a cache line is locked in this way, only the oldest AQ entry can obtain a lock on the other 
“way” of the same cache set, thus ensuring that forward progress can be made. This 
algorithm can cause problems, because often the oldest entry in the AQ is the one which 
already owns the lock on the first way - thus ensuring that no other entries can access the 
second way of the cache for that set index. For some algorithms, most notably FFT’s, this 
can cause severe performance degradation. R12000 allows an entry to obtain the lock on 
the second way of a set if it is the oldest entry which does not already own a lock. Thus, any 
entries which have already acquired a lock, including those locking the first way, will not 
prevent another, younger, entry from accessing that second way.
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Figure 4-5    Primary Data Cache State Diagram
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4.3  Secondary Cache

The R10000 processor must have an external secondary cache, ranging in size from 512 
Kbytes to 16 Mbytes, in powers of 2, as set by the SCSize mode bit.  The SCBlkSize mode 
bit selects a block size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are assigned to 
each set, as shown in Figure 4-6) with an LRU replacement algorithm.† 

The secondary cache uses a write back protocol, which means a cache store writes data into 
the cache instead of writing it directly to memory.  Some time later this data is 
independently written to memory.

The secondary cache is indexed with a physical address and tagged with a physical address.

Figure 4-6    Organization of Secondary Cache
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• CleanExclusive

• DirtyExclusive

• Shared

† The precise implementation of the LRU algorithm is affected by the speculative execution of
instructions. 

0Tag 0 0Tag 115/31 15/31
Word WordData 0

Way 0     256 Kbytes to 8 Mbytes

Word WordData 1

Way 1     256 Kbytes to 8 Mbytes
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A secondary cache block can be changed from one state to another as a result of any of the 
following events:

• primary cache read/write miss

• primary cache write hit to a Shared or CleanExclusive block

• secondary cache read miss

• secondary cache write hit to a Shared or CleanExclusive block

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-7, which shows the secondary cache state diagram.

Figure 4-7     Secondary Cache State Diagram
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<R12000>

Pad-ring clock slowed

The clock used to drive data to/from SC around the pad-ring has been slowed to a 2:3 clock 
divisor, thus sometimes adding an additional cycle of latency to secondary-cache accesses.

SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via 
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external 
interface sees an ACK to a line that is being refilled before the last words of the SCache line 
are received by R10000, this means that several cycles can elapse during which SCache 
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and 
allowing other requests to proceed during breaks between the blocks, this effect could be 
reduced. R12000 pulls in SCache lines with two “pause points.” This first occurs when 
R12000 receives the ACK for a request. If the first two quad-words are already valid in the 
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two, 
and forward the results to the DCache or ICache at the same time as normal. The next two 
quad-words will be refilled as they return, thus continuing to block any other access to the 
SCache just as today. If however, when the initial ACK is received, the first two are not valid 
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache 
refill and wait for both of them to be brought in to the IB. Once the first half is filled in to 
the SCache, R12000 will again check the IB to see if an additional 3 quad-words are valid 
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB).

Until that is the case, R12000 will again “pause” the SCache refill and allow other accesses 
to reach the SCache. These two pauses allow for other requests to slip in during an SCache 
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

DCache writebacks never piggyback

In R10000 when a DCache line is written back to SCache, the following line in the DCache 
might be written back in a “piggybacked” manner. In order for this to occur the following 
line must have the same tag as the initially-written line, and must be in the “dirty 
inconsistent” state. This feature is being dropped form R12000.

DCache writebacks never bypass

In R10000 when a DCache line is written back to SCache, if the SCache interface is not 
otherwise occupied when the writeback begins, the writeback is bypassed directly to the 
SCache interface, avoiding the cycles required to write the data into the writeback buffer. 
This feature is being dropped form R12000.
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4.4  Cache Algorithms

The behavior of the processor when executing load and store instructions is determined by 
the cache algorithm specified for the accessed address. The processor supports five different 
cache algorithms:

• uncached

• cacheable noncoherent

• cacheable coherent exclusive

• cacheable coherent exclusive on write

• uncached accelerated

Cache algorithms are specified in three separate places, depending upon the access:

• the cache algorithm for the mapped address space is specified on a per-page 
basis by the 3-bit cache algorithm field in the TLB

• the cache algorithm for the kseg0 address space is specified by the 3-bit K0 
field of the CP0 Config register

• the cache algorithm for the xkphys address space is specified by VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB; 
EntryLo0 and EntryLo1 registers; CP0 Config register K0 field for the kseg0 address space; 
and VA[61:59] for the xkphys address space.

Table 4-1    Cache Algorithm Field Encodings 

Value Cache Algorithm

0 Reserved

1 Reserved

2 Uncached

3 Cacheable noncoherent

4 Cacheable coherent exclusive

5 Cacheable coherent exclusive on write

6 Reserved

7 Uncached accelerated
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Descriptions of the Cache Algorithms

This section describes the cache algorithms listed in Table 4-1.

Uncached

Loads and stores under the Uncached cache algorithm bypass the primary and secondary 
caches. They are issued directly to the System interface using processor double/single/
partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache misses 
result in processor noncoherent block read requests.  External agents containing caches 
need not perform a coherency check for such processor requests. 

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary cache 
misses result in processor coherent block read exclusive requests. Such processor requests 
indicate to external agents containing caches that a coherency check must be performed and 
that the cache block must be returned in an Exclusive state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable 
coherent exclusive cache algorithm except that load secondary cache misses result in 
processor coherent block read shared requests.  Such processor requests indicate to external 
agents containing caches that a coherency check must be performed and that the cache 
block may be returned in either a Shared or Exclusive state.

Store hits to a Shared block result in a processor upgrade request.  This indicates to external 
agents containing caches that the block must be invalidated.
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Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated.  This 
allows the kernel to mark the TLB entries for certain regions of the physical address space, 
or certain blocks of data, as uncached while signalling to the hardware that data movement 
optimizations are permissible.  This permits the hardware implementation to gather a 
number of uncached writes together, either a series of writes to the same address or 
sequential writes to all addresses in the block, into an uncached accelerated buffer and then 
issue them to the system interface as processor block write requests.  The uncached 
accelerated algorithm differs from the uncached algorithm in that block write gathering is 
not performed.

There is no difference between an uncached accelerated load and an uncached load.  Only 
word or doubleword stores can take advantage of this mode.

Stores under the Uncached accelerated cache algorithm bypass the primary and secondary 
caches.  Stores to identical or sequential addresses are gathered in the uncached buffer, 
described in Chapter 6, the section titled “Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System interface as 
processor block write requests.  Incompletely gathered uncached accelerated blocks are 
issued to the System interface using processor double/single-word write requests; this is 
also described in Chapter 6, the section titled “Uncached Buffer.”
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4.5  Relationship Between Cached and Uncached Operations

Uncached and uncached accelerated load and store instructions are executed in order, and 
non-speculatively.  Such accesses are buffered in the uncached buffer by the processor until 
they can be issued to the System interface.

All uncached and uncached accelerated accesses retain program order within the uncached 
buffer.  The processor continues issuing cached accesses while uncached accesses are 
queued in the uncached buffer.

NOTE:  Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SYNC instruction from graduating.  However buffered 
uncached accelerated stores do not prevent a SYNC instruction from graduating.  The 
processor continues issuing cached accesses speculatively and out of order beyond a SYNC 
instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of all 
uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all cache 
accesses and uncached stores have been globally performed as described in Chapter 6, the 
section titled “SysGblPerf* Signal.”

An uncached load followed by a SYNC instruction may be used to guarantee that all cache 
accesses, uncached accesses, and uncached accelerated accesses have been globally 
performed.
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4.6  Cache Algorithms and Processor Requests

The cache algorithm determines the type of processor request generated for secondary 
cache load misses, secondary cache store misses, and store hits.  
Table 4-2 presents the relationship between the cache algorithm and processor requests.

Table 4-2    Cache Algorithms and Processor Requests

‡ Should not occur under normal circumstances.  Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared state is not
normal.

Cache Algorithm Load Miss Store Miss Store Hit

Uncached Double/single/partial-word read
Double/single/partial-word 
write

NA

Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared‡

Cacheable coherent 
exclusive

Coherent block read exclusive Coherent block read exclusive Upgrade if Shared‡

Cacheable coherent 
exclusive on write

Coherent block read shared Coherent block read exclusive Upgrade if Shared

Uncached accelerated Double/single/partial-word read

Gather identical or sequential 
double/single-word stores in the 
uncached buffer.  Block write 
for completely gathered blocks. 
Double/single-word write for 
incompletely gathered blocks.  
Partial-word write for partial-
word stores.

NA
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4.7  Cache Block Ownership

The processor requires cache blocks to have a single owner at all times.  The owner is 
responsible for providing the current contents of the cache block to any requestor.

The processor uses the following ownership rules:

• The processor assumes ownership of a cache block if the state of the cache 
block becomes DirtyExclusive.  For a processor block read request, the 
processor assumes ownership of the block after receiving the last doubleword 
of a DirtyExclusive external block data response and an external ACK 
completion response.  For a processor upgrade request, the processor assumes 
ownership of the block after receiving an external ACK completion response.

• The processor gives up ownership of a cache block if the state of the cache 
block changes to Invalid, CleanExclusive, or Shared.

• CleanExclusive and Shared cache blocks are always considered to be owned 
by memory.
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5. Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal secondary 
cache controller with a dedicated secondary cache port. 

The cache’s tag and data arrays each consist of an external bank of industry-standard 
synchronous SRAM (SSRAM). This SSRAM must have registered inputs and outputs, 
asynchronous output enables, and use the late write protocol (data is expected one cycle 
after the address). 
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5.1  Tag and Data Arrays

The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC bits + 1 
parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC bits), as shown in Figure 5-1.  
ECC is supported for both the data and tag arrays to improve data integrity.

Figure 5-1    Secondary Cache Data and Tag Array

The secondary cache is implemented as a two-way set associative, combined instruction/
data cache, which is physically addressed and physically tagged, as described in Chapter 4, 
the section titled “Cache Organization and Coherency.”

The SCSize mode bits specify the secondary cache size; minimum secondary cache size is 
512 Kbytes and the maximum secondary cache size is 16 Mbytes, in power of 2 (512 
Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBlkSize mode bit specifies the secondary cache block size.  When negated, the 
block size is 16 words, and when asserted, the block size is 32 words.
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5.2  Secondary Cache Interface Frequencies

The secondary cache interface operates at the frequency of SCClk, which is derived from 
PClk.  The SCClkDiv mode bits select a PClk to SCClk divisor of 1, 1.5, 2, 2.5, or 3, using 
the formula described in Chapter 7, the section titled “Secondary Cache Clock.”

Synchronization between the PClk and SCClk is performed internally and is invisible to 
the system.  The processor supplies six complementary copies of the secondary cache clock 
on SCClk(5:0) and SCClk(5:0)*.

The outputs and inputs at this interface are triggered by an internal SCClk. The relationship 
between the internal SCClk and the external SCClk[5:0]/SCClk[5:0]* can be 
programmed during boot time by setting the SCClkTap mode bits (see the section titled 
“Mode Bits” in Chapter 8 for detail on mode bits).
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5.3  Secondary Cache Indexing

The secondary cache data array width is one quadword, and therefore PA(3:0), which 
specify a byte within a quadword, are unused by the Secondary Cache interface.

Indexing the Data Array

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each way 
requires a maximum of 23 bits to index a byte within a selected way, or 19 bits to index a 
quadword within a way.  Consequently, the processor supplies PA(22:4) on 
SC(A,B)Addr(18:0) to index a quadword within a way.  The processor selects a secondary 
cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache size; for 
instance, a 4 Mbyte cache uses the 17 address bits, PA(20:4) on SC(A,B)Addr(16:0), 
concatenated with the way bit, SC(A,B)DWay, to index a quadword within a 2 Mbyte way.

Table 5-1    Secondary Cache Data Array Index

SCSize 
Mode 
Bits

Secondary 
Cache Size

Secondary Cache Data Array Index
Physical Address 

Bits Used

0 512 Kbyte SC(A,B)DWay || SC(A,B)Addr(13:0) PA(17:4)

1 1 Mbyte SC(A,B)DWay || SC(A,B)Addr(14:0) PA(18:4)

2 2 Mbyte SC(A,B)DWay || SC(A,B)Addr(15:0) PA(19:4)

3 4 Mbyte SC(A,B)DWay || SC(A,B)Addr(16:0) PA(20:4)

4 8 Mbyte SC(A,B)DWay || SC(A,B)Addr(17:0) PA(21:4)

5 16 Mbyte SC(A,B)DWay || SC(A,B)Addr(18:0) PA(22:4)
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Indexing the Tag Array

The processor supplies the secondary cache tag array’s least significant index bit on 
SCTagLSBAddr to support two block sizes without system hardware changes.  This signal 
functions normally as a least significant index bit when the secondary cache block size is 
16 words.  However, when the secondary cache block size is 32 words, this signal is always 
negated, since only half as many tags are required.  The processor supplies the secondary 
cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache size; it 
shows each index is composed of a physical address loaded onto SC(A,B)Addr(), 
concatenated with SCTWay and SCTagLSBAddr.

Table 5-2    Secondary Cache Tag Array Index

For a system design that only supports a secondary cache block size of 32 words, the 
secondary cache tag array need not use SCTagLSBAddr as an index bit.

SCSize 
Mode 
Bits

Secondary 
Cache Size

Secondary Cache Tag Array Index

0 512 Kbyte SCTWay || SC(A,B)Addr(13:3) || SCTagLSBAddr

1 1 Mbyte SCTWay || SC(A,B)Addr(14:3) || SCTagLSBAddr

2 2 Mbyte SCTWay || SC(A,B)Addr(15:3) || SCTagLSBAddr

3 4 Mbyte SCTWay || SC(A,B)Addr(16:3) || SCTagLSBAddr

4 8 Mbyte SCTWay || SC(A,B)Addr(17:3) || SCTagLSBAddr

5 16 Mbyte SCTWay || SC(A,B)Addr(18:3) || SCTagLSBAddr
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5.4  Secondary Cache Way Prediction Table

The primary and secondary caches are two-way set associative. However, the 
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays, corresponding to 
each way in the cache, and then select the data based on the result of two parallel tag 
compares.

The secondary cache does not use this implementation because it would either require too 
many pins to read in two full copies of the data and tags, or add latency to externally 
multiplex two banks of memory.  Instead, a way prediction table is used to determine which 
way to read from first.

The way prediction table is internal to the processor and has 8K one-bit entries, each entry 
corresponding to a pair of secondary cache blocks. The bit entry indicates which way of the 
addressed set has been most-recently used (MRU).  When the secondary cache is accessed, 
this prediction bit is used as an address bit; thus the two ways in the secondary cache are 
shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits of the 
physical address, based on both the secondary cache block size, and the secondary cache 
size, as shown in Table 5-3.  “0 || ” indicates a zero bit concatenated to the address to pad 
the index out to a full 13-bits.

Table 5-3     Secondary Cache Way Prediction Table Index

SCSize
Mode Bits

Secondary Cache
Size

SCBlkSize
Mode Bit

Secondary Cache
Block Size

Secondary Cache
Way Prediction Table Index

0 512 Kbyte
0 16-word 0 || PA(17:6)

1 32-word 0 || 0 || PA(17:7)

1 1 Mbyte
0 16-word PA(18:6)

1 32-word 0 || PA(18:7)

2 to 5 2M to 16 Mbyte
0 16-word PA(18:6)

1 32-word PA(19:7)
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Three states are possible in the way prediction table:

• the desired data is in the predicted way

• the desired data is in the non-predicted way

• the desired data is not in the secondary cache

The tags for both ways are read “underneath” the data access cycles in order to discern as 
rapidly as possible which of these states are valid. This reading is possible because it takes 
two accesses to read a primary data block (8 words) and 4 cycles to read a primary 
instruction block (16 words); thus the bandwidth needed to read the tag array twice exists 
in all cases.  Only an extra address pin to the tag array is needed to make this operation 
parallel and this is implemented by the SCTWay pin.

The three possible states are handled in the following manner:

• If, after reading the tags for both ways, it is discovered that the data exists in 
the predicted way, the processor continues normally. 

• If the data exists in the non-predicted way, the processor accesses this non-
predicted way in the secondary cache and updates the way prediction table to 
point to this way.

• If the access misses in both ways of the secondary cache, the data is fetched 
from the system interface. If the state of the predicted way is found to be 
invalid, the fetched data is placed in it and the MRU is unchanged.  However, if 
the state of the predicted way is found to be valid then the fetched data is placed 
into the non-predicted way, and the way prediction table is updated to point to 
this way since it is now the most-recently-used.

The way prediction table can cover up to a 2 Mbyte secondary cache when the secondary 
cache block size is 32 words.  If the secondary cache exceeds this size, the accuracy of the 
way prediction table diminishes slightly.  However, the extremely large performance gain 
made by making the secondary cache larger far outstrips any performance loss in the way 
prediction table.

Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB caches with 128B lines 
or 2MB caches with 64B lines can be fully mapped.

Direct Cache Test Mode

Due to the increase size of the Way Prediction Table, Direct Cache Test Mode have been 
modified for testing the Way Prediction Table.
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5.5  Secondary Cache Tag

The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three fields, 
as shown in Figure 5-2 below.

   

Figure 5-2    Secondary Cache Tag Fields

SCTag(25:4), Physical Tag

The minimum secondary cache size is 512 Kbytes (256 Kbytes per way), so a minimum of 
18 bits are required to index a data byte within a selected way.  Since the processor supports 
40 physical bits, a maximum of 22 bits are required for the physical tag:

         40 physical address bits - 18 minimum required = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on 
SCTag(25:4) for the physical tag.

When the secondary cache is larger than the minimum size, the secondary cache tag array 
must still maintain the full physical tag supplied by the processor, even though some bits 
are redundant.
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SCTag(3:2), PIdx

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, PIdx.

The PIdx field contains VA(13:12), which are the two lowest virtual address bits above the 
minimum 4 Kbyte page size. This field is written into the secondary cache tag during a 
secondary cache refill.  For each processor-initiated secondary cache access, the virtual 
address bits are compared with the PIdx field of the secondary cache tag.  If a mismatch 
occurs, a virtual coherency condition exists and the value of the PIdx field is used by 
internal control logic to purge primary cache locations, so that all primary cache blocks 
holding valid data have indices known to the secondary cache.  This mechanism, unlike that 
of the R4400 processor, is implemented in hardware.  It helps preserve the integrity of 
cached accesses to a physical address using different virtual addresses, an occurrence called 
virtual aliasing.  For each external coherency request, the PIdx field of the secondary cache 
tag provides a mechanism to locate subset lines in the primary caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block state, 
which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in Table 5-4.  

Table 5-4    Secondary Cache Tag State Field Encoding 

Since the secondary cache tags are updated immediately for stores to the primary data 
cache, and all caches use a write back protocol, the data in the secondary cache may not 
always be consistent with data in the primary cache even though the tags always reflect the 
correct state of a secondary cache block.

SCTag(1:0) State

0 Invalid

1 Shared

2 CleanExclusive

3 DirtyExclusive
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5.6  Read Sequences

There are five basic read sequences: 

• a 4-word read

• an 8-word read

• a 16-word read

• a 32-word read

• a tag read

The SCClk referred in the secondary cache read and write timing diagrams is an internal 
SCClk.  The relationship between this internal SCClk and the external SCClk[5:0]/
SCClk[5:0]* can be programmed during boot time by setting the SCClkTap mode bits 
(see the section titled “Mode Bits” in Chapter 8 for detail on mode bits).
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4-Word Read Sequence

A 4-word read sequence is performed by a CACHE Index Load Data (S) instruction to read 
a doubleword of data and 10 check bits from the secondary cache data array.

Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read from the 
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

The doubleword specified by VA(3) is then stored into the CP0 TagHi and TagLo registers, 
and the corresponding check bits are stored into the CP0 ECC(9:0) register. The data may 
be examined by copying the CP0 TagHi, TagLo, and ECC registers to the general registers 
with the MTC0 instruction.

   

Figure 5-3    4-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0) Adr0

X
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8-Word Read Sequence

An 8-word read sequence refills the primary data cache from the secondary cache after a 
primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence.  In it, SC(A,B)DWay and 
SCTWay are driven with value X on the first address cycle, which is obtained from the way 
prediction table.

On the next address cycle, SCTWay is complemented in order to read the tag from the non-
predicted way of the addressed set.  SC(A,B)DWay is not changed since it is assumed that 
the way prediction table is correct and the read is likely to hit in the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle as the 
second quadword of data.  Reads that miss in the predicted way, but hit in the non-predicted 
way, are noted by the internal control logic and reissued to the secondary cache as soon as 
possible.

  

Figure 5-4    8-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0)

DatX1

Adr0 Adr1

TagX TagX’

X X’

X
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16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary cache 
after a primary instruction cache miss. A 16-word read sequence is also performed when 
the secondary cache block size is 16 words, and a DirtyExclusive secondary cache block 
must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block size is 32 words, 
and a DirtyExclusive secondary cache block must be written back to the System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence.  This is similar to an 8-
word read sequence except that more addresses must be issued, in order to read the 
appropriate number of quadwords.

   

Figure 5-5    16 or 32-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay
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Tag Read Sequence

A tag read sequence is performed when the state of a secondary cache block is required, but 
it is not necessary to access the data array.  This sequence is used for the CACHE Index 
Load Tag (S) instruction.

Figure 5-6 depicts a secondary cache tag read sequence. 
   

Figure 5-6    Tag Read Sequence
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5.7  Write Sequences

There are five basic write sequences: 

• a 4-word write.

• an 8-word write

• a 16-word write

• a 32-word write

• a tag write

The SCClk referred in the secondary cache read and write timing diagrams is an internal 
SCClk.  The relationship between this internal SCClk and the external SCClk[5:0]/
SCClk[5:0]* can be programmed during boot time by setting the SCClkTap mode bits 
(see the section titled “Mode Bits” in Chapter 8 for detail on mode bits).
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4-Word Write Sequence

A 4-word write sequence is performed by a CACHE Index Store Data (S) instruction to 
store a quadword of data and 10 check bits into the secondary cache data array.

Figure 5-7 depicts a secondary cache 4-word write sequence.  A quadword is written to the 
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction. 

A doubleword specified by VA(3) is obtained from the CP0 TagHi and TagLo registers, and 
the other half of the doubleword is padded to zeros.  Normal ECC and parity generation is 
bypassed and the check field of the data array is written with the contents of the CP0 
ECC(9:0) register.

   

Figure 5-7    4-Word Write Sequence
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8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache to the 
secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence.  SC(A,B)DWay are driven 
with the way bit obtained from the primary data cache tag. The secondary cache tag is not 
written since it was previously updated when the primary data cache block was modified.

   

Figure 5-8    8-Word Write Sequence
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16 or 32-Word Write Sequence

A 16- or 32-word write sequence refills a secondary cache block from the System interface 
after a secondary cache miss.  A 16-word write sequence is performed when the secondary 
cache block size is 16 words, and a 32-word write sequence is performed when the 
secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.
   

Figure 5-9    16/ 32-Word Write Sequence
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Tag Write Sequence

A tag write sequence updates the secondary cache tag array without affecting the data array. 
This sequence is used for the following:

• to reflect primary cache state changes in the secondary cache

• for external coherency requests

• for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.
   

Figure 5-10    Tag Write Sequence 
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6. System Interface Operations

The R10000 System interface provides a gateway between processor, with its associated 
secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the System 
interface is referred to as the external agent.
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6.1  Request and Response Cycles

The System interface supports the following request and response cycles:

• Processor requests are generated by the processor, when it requires a system 
resource. 

• External responses are supplied by an external agent in response to a 
processor request. 

• External requests are generated by an external agent when it requires a 
resource within the processor. 

• Processor responses are supplied by the processor in response to an external 
request.

6.2  System Interface Frequencies

The System interface operates at SysClk frequency, supplied by the external agent. The 
internal processor clock, PClk, is derived from this same SysClk. 

The SysClkDiv mode bits select a PClk to SysClk divisor using the formula described in 
Chapter 7, the section titled “System Interface Clock and Internal Processor Clock 
Domains.” The selectable divisors are 1, 1.5, 2, 2.5, 3, 3.5, and 4 in the R10000, or 2, 2.5, 
3, 3.5, 4, 4.5, 5, 5.5, and 6 in the R12000 (7 is also selectable in the R12000A only).

6.3  Register-to-Register Operation

The System interface is designed to operate in the following register-to-register fashion 
with the external agent:

• all System interface outputs are sourced directly from registers clocked on the 
rising edge of SysClk

• all System interface inputs directly feed registers that are clocked on the rising 
edge of SysClk

This allows the System interface to run at the highest possible clock frequency.
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6.4  System Interface Signals

The R10000 System interface is composed of:

• 3 arbitration signals

• 2 flow-control input signals

• a bidirectional 12-bit command bus

• a bidirectional 64-bit multiplexed address/data bus

• a 3-bit state output bus

• a 5-bit response input bus

6.5  Master and Slave States

At any time, the System interface is either in master or slave state. 

In master state, the processor drives the bidirectional System interface signals and is 
permitted to issue processor requests to the external agent. 

In slave state, the processor tristates the bidirectional System interface signals and accepts 
external requests from the external agent.

6.6  Connecting to an External Agent

In a uni- or multiprocessor system using dedicated external agents, the System interface 
connects to a single external agent.

In a multiprocessor system using the cluster bus (see below), the system can connect up to 
four R10000 processors to an external agent.  This external agent is referred to as the 
cluster coordinator.
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6.7  Cluster Bus

In a multiprocessor system using the cluster bus, the cluster coordinator performs the 
cluster bus arbitration and data flow management. The arbitration scheme assures that 
either one of the processors or the cluster coordinator is master at any given time, while the 
remaining devices are slave.

A processor request issued by the master processor is observed as an external request by all 
slave R10000 processors, as shown in Figure 6-1.  Similarly, a processor coherency data 
response issued by a master processor is observed as an external data response by the slave 
processors.

   

Figure 6-1    Processor Request Master/Slave Status

In a multiprocessor system using the cluster bus, a mode bit specifies whether processor 
coherent requests are to target the external agent only, or all processors and the external 
agent.  This allows systems with efficient snoopy, duplicate tag, or directory-based 
coherency protocols to be created.
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6.8  System Interface Connections

The major System interface connections required for various system configurations are 
presented in this section.

Uniprocessor System

Figure 6-2 shows the major System interface connections required for a typical 
uniprocessor system.

    

Figure 6-2    System Interface Connections for Uniprocessor System
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Multiprocessor System Using Dedicated External Agents

Figure 6-3 shows the major System interface connections required for a typical 
multiprocessor system using dedicated external agents.

    

Figure 6-3    System Interface Connections for Multiprocessor using Dedicated External Agents
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Multiprocessor System Using the Cluster Bus

Figure 6-4 presents the major System interface connections required for a typical 
multiprocessor system using the cluster bus.

    

Figure 6-4    System Interface Connections for Multiprocessor Using the Cluster Bus
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6.9  System Interface Requests and Responses

The System interface supports the following:

• processor request

• external response

• external request

• processor response

The following sections describe these request and response types, and their operations.

Processor Requests

Processor requests are generated by the processor when it requires a system resource. The 
following processor requests are supported:

• coherent block read shared request

• coherent block read exclusive request

• noncoherent block read request

• double/single/partial-word read request

• block write request

• double/single/partial-word write request

• upgrade request

• eliminate request

Processor write and eliminate requests do not require or expect a response by the external 
agent.  However, if an external agent detects an error in a processor write or eliminate 
request, it may use an interrupt to signal the processor.  It is not possible to generate precise 
exceptions for processor write and eliminate requests for which an external agent detects 
an error.

Processor read and upgrade requests require some type of response by the external agent.
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External Responses

External responses are supplied by an external agent or another processor in response to a 
processor request.  The following external responses are supported:

• block data response

• double/single/partial-word data response

• completion response

External Requests

External requests are generated by an external agent when it requires a resource within the 
processor. The following external requests are supported:

• intervention shared request

• intervention exclusive request

• allocate request number request

• invalidate request

• interrupt request

External intervention and invalidate requests require some type of response by the 
processor.

Processor Responses

Processor responses are supplied by the processor in response to an external request. The 
following processor responses are supported:

• coherency state response

• coherency data response

Outstanding Requests and Request Numbers

The processor allows requests and corresponding responses to be split transactions, which 
enables additional processor and external requests to be issued while waiting for a prior 
response. The System interface supports a request number field to link requests with their 
corresponding responses, so responses can be returned out of order.

The processor allows a maximum of eight outstanding requests on the System interface 
through a 3-bit request number.  These outstanding requests may be composed of any mix 
of processor and external requests. 

An individual processor (as opposed to the System interface, above) supports a maximum 
of four outstanding processor requests at any given time.
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Request and Response Relationship

The relationship between processor and external requests, and their acceptable responses, 
is presented in Table 6-1.  The data in this table is given with respect to a single processor, 
in either a uni- or multiprocessor system (independent of cluster/non-cluster configuration).

Table 6-1    Request and Response Relationship

‡ External completion response is required to free the request number.

Request Acceptable Response Sequences

Processor block read request

External NACK or ERR completion response

0 or more external block data responses followed by a final external block data 
response with a coincidental or subsequent external ACK, NACK, or ERR 
completion response

Processor double/single/partial-word 
read request

External NACK or ERR completion response

0 or more external double/single/partial-word data responses followed by a final 
external double/single/partial-word data response with a coincidental or 
subsequent external ACK, NACK, or ERR completion response

Processor block write request None

Processor double/single/partial-word 
write request

None

Processor upgrade request

External ACK, NACK, or ERR completion response

0 or more external block data responses followed by a final external block data 
response with a coincidental or subsequent external ACK, NACK, or ERR 
completion response

Processor eliminate request None

External intervention request
Processor coherency state response followed by processor coherency data 
response (if DirtyExclusive) with a coincidental or subsequent external ACK, 
NACK, or ERR completion response‡

External allocate request number request External ACK, NACK, or ERR completion response‡

External invalidate request
Processor coherency state response followed by external ACK, NACK, or ERR 
completion response‡

External interrupt request None
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6.10  System Interface Buffers

The processor contains the following five buffers to enhance the performance of the System 
interface and to simplify the system design:

• cluster request buffer

• cached request buffer

• incoming buffer

• outgoing buffer

• uncached buffer

These buffers are described in the following sections.

Cluster Request Buffer

The System interface contains an 8-entry cluster request buffer. This buffer maintains the 
status of the eight possible outstanding requests on the System interface.  When the System 
interface is in master state, and it issues the address cycle of processor read or upgrade 
request, the processor places an entry into the cluster request buffer.  When the System 
interface is in slave state, and an external agent issues an external coherency or allocate 
request number request, it places an entry into the cluster request buffer.

Once an entry is placed into the cluster request buffer, the associated request number 
transitions from free to busy.  An entry remains busy until the processor receives an external 
completion response.  Processor requests that are ready to be issued to the System interface 
bus probe the cluster request buffer to detect conflict conditions.

Cached Request Buffer

The System interface contains a four-entry cached request buffer.  This buffer holds the 
status of the four possible outstanding processor cached requests, including processor block 
read and upgrade requests.  The relative order of the requests is maintained in the cached 
request buffer.

External coherency requests probe the cached request buffer to detect conflict conditions.
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Incoming Buffer

The System interface contains an incoming buffer for external block and double/single/
partial-word data responses. The four 32-word entries of the incoming buffer correspond to 
the four possible outstanding processor requests.  Block data in each entry of the incoming 
buffer is stored in subblock order, beginning with a quadword-aligned address.

The incoming buffer eliminates the need for the processor to flow-control the external agent 
that is providing the external data responses.  Regardless of the cache bandwidth or internal 
resource availability, the external agent may supply external data response data for all 
outstanding read and upgrade requests at the maximum System interface data rate.

The external agent may issue any number of external data responses for a particular request 
number before issuing a corresponding external completion response.  An external data 
response remains in the incoming buffer until a corresponding external completion 
response is received.  A former buffered external data response for a particular request 
number is over-written by a subsequent external data response for the same request number. 

An external ACK completion response frees buffered data to be forwarded to the caches and 
other internal resources while an external NACK or ERR completion response purges any 
corresponding buffered data.  For minimum latency, the external agent should issue an 
external ACK completion response coincident with the first doubleword of an external data 
response.

External coherency requests that target blocks residing in the incoming buffer are stalled 
until the incoming buffer data is forwarded to the secondary cache, and the instruction that 
caused the secondary miss is satisfied.

Each doubleword of the incoming buffer has an Uncorrectable Error flag.  When an external 
data response provides a doubleword, the processor asserts the corresponding incoming 
buffer Uncorrectable Error flag if the data quality indicator, SysCmd[5], is asserted, or if 
an uncorrectable ECC error is encountered on the system address/data bus and the ECC 
check indication on SysCmd[0] is asserted.

When the processor forwards block data from an incoming buffer entry after receiving an 
external ACK completion response, the associated incoming buffer Uncorrectable Error 
flags are checked, and if any are asserted, a single Cache Error exception is posted.  When 
the processor forwards double/single/partial-word data from an incoming buffer entry after 
receiving an external ACK completion response, the associated incoming buffer 
Uncorrectable Error flag is checked, and if asserted, a Bus Error exception is posted.
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Outgoing Buffer

The System interface contains a five-entry outgoing buffer to provide buffering for the 
following:

• DirtyExclusive blocks that are cast out of the secondary cache because of a 
block replacement

• various CACHE instructions

• an external intervention request.

Four 32-word typical entries are associated with the four possible outstanding processor 
cached requests allowed by the processor.  One 32-word special entry is reserved for 
external intervention requests only.  The data is stored in each entry of the outgoing buffer 
in sequential order, beginning with a secondary cache block-aligned address.

An instruction or data access that misses in the secondary cache but targets an entry in the 
outgoing buffer is stalled until the outgoing buffer entry is issued as a processor block write 
request or coherency data response to the System interface bus.

External coherency requests probe the four typical outgoing buffer entries, with the 
following results:

• If an external intervention request hits a typical entry, that entry is converted 
from a processor block write request to a processor coherency data response.

• If an external invalidate request hits a typical outgoing buffer entry, that entry 
is deleted.

• If an external intervention request does not hit a typical outgoing buffer entry, 
but hits a DirtyExclusive block in the secondary cache, the special outgoing 
buffer entry is used to buffer the processor coherency data response.

A typical outgoing buffer entry containing a block write is ready for issue to the System 
interface bus when the first quadword is received from the secondary cache.  The processor 
allows data to stream from the secondary cache to the System interface bus through the 
outgoing buffer.

An outgoing buffer entry containing a coherency data response is ready for issue to the 
System interface bus when the quadword specified by the corresponding external 
intervention request is received from the secondary cache.  The processor then allows the 
data to stream from the secondary cache to the System interface bus through the outgoing 
buffer.
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Each quadword of the outgoing buffer maintains an Uncorrectable Error flag.  If an 
uncorrectable error is encountered while a block is being cast out of the secondary cache, 
the associated outgoing buffer quadword Uncorrectable Error flag is asserted.  When the 
processor empties an outgoing buffer entry by issuing a processor block write or coherency 
data response, the outgoing buffer Uncorrectable Error flags are reflected by the data 
quality indication on SysCmd[5].

Uncached Buffer

The System interface contains an uncached buffer to provide buffering for uncached and 
uncached accelerated load and store operations.  All operations retain program order within 
the uncached buffer.

The uncached buffer is organized as a 4-entry FIFO followed by a 2-entry gatherer. Each 
gathered entry has a capacity of 16 or 32 words, as specified by the SCBlkSize mode bit.

The uncached buffer begins gathering when an uncached accelerated double or singleword 
block-aligned store is executed.  Gathering continues if the subsequent uncached operation 
executed is an uncached accelerated double or singleword store to a sequential or identical 
address.  Once a second uncached accelerated store is gathered, the gathering mode is 
determined to be sequential or identical.  Gathering continues until one of the following 
conditions occurs:

• a complete block is gathered

• an uncached or uncached accelerated load is executed

• an uncached or uncached accelerated partial-word store is executed

• an uncached store is executed

• a change in the current gathering mode is observed

• a change in the uncached attribute is observed

When gathering terminates, the data is ready for issue to the System interface bus. A 
processor uncached accelerated block write request is used to issue a completely gathered 
uncached accelerated block.  One or more disjoint processor uncached accelerated double 
or singleword write requests are used to issue an incompletely gathered uncached 
accelerated block.

When gathering in an identical mode, uncached accelerated double or singleword stores 
may be freely mixed. The uncached buffer packs the associated data into the gatherer.  
When gathering in sequential mode, uncached accelerated singleword stores must occur in 
pairs, to prevent an address error exception.  For instance, SW, SW, SD, SW, SW is legal.  
SD, SW, SD, is not.

External coherency requests have no effect on the uncached buffer.

CACHE instructions have no effect on the uncached buffer.  SYNC instructions are 
prevented from graduating if an uncached store resides in the uncached buffer.
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6.11  System Interface Flow Control

The System interface supports a maximum request rate of one request per SysClk cycle, 
and a maximum data rate of one doubleword per SysClk cycle.

Various flow control mechanisms are provided to limit these rates, as described below.

Processor Write and Eliminate Request Flow Control

The processor can only issue a processor write or eliminate request if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

Processor Read and Upgrade Request Flow Control

The processor can only issue a processor read or upgrade request if:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the 
PrcReqMax mode bits is not exceeded

• there is a free request number

Processor Coherency Data Response Flow Control

The processor can only issue a processor coherency data response if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

External Request Flow Control

When the System interface is in Slave state, it is capable of accepting external requests.  An 
external agent may issue external requests in adjacent SysClk cycles.

External Data Response Flow Control

Since the processor has an incoming buffer, an external agent may supply external data 
response data in adjacent SysClk cycles, without regard to cache bandwidth or internal 
resource availability.



Chapter 6  System Interface Operations

110 User’s Manual  U10278EJ4V0UM

6.12  System Interface Block Data Ordering

During block data transfers on the System interface SysAD[63:0] bus, even doublewords 
(Dat0, Dat2,...) always correspond to SCData[127:64], and odd doublewords (Dat1, 
Dat3,...) always correspond to SCData[63:0].

External Block Data Responses

During the address cycle of processor block read and upgrade requests, the processor 
specifies a quadword-aligned address.  The processor expects the external block data 
response to be supplied in a subblock order sequence, beginning at the specified quadword-
aligned address.

Processor Coherency Data Responses

The address of external intervention requests are internally aligned by the processor to a 
quadword address.  If the processor determines that it must issue a processor coherency data 
response, it supplies the data in a subblock order sequence beginning at the quadword-
aligned address specified by the corresponding external coherency request.

Processor Block Write Requests

During the address cycle of processor block write requests, the processor specifies a cache 
block-aligned address.  During the subsequent data cycles for typical processor block write 
requests, the processor supplies the data in sequence, beginning with the secondary cache 
block-aligned address.



User’s Manual  U10278EJ4V0UM 111

Chapter 6  System Interface Operations

6.13  System Interface Bus Encoding

This section presents the encoding of the following four System interface buses:

• SysCmd[11:0]

• SysAD[63:0]

• SysState[2:0]

• SysResp[4:0]

SysCmd[11:0] Encoding

This section describes address and data cycle encodings for the system command bus, 
SysCmd[11:0].

SysCmd[11] Encoding

When SysVal* is asserted, SysCmd[11] indicates whether the SysAD[63:0] bus represents 
an address or a data cycle, as shown in Table 6-2.   

Table 6-2     Encoding of SysCmd[11]

SysCmd[10:0] Address Cycle Encoding

During the address cycle of processor read and upgrade requests, SysCmd[10:8] contain 
the request number, as shown in Table 6-3.  The request number provides a mechanism to 
associate an external response with the corresponding processor request.   

Table 6-3    Encoding of SysCmd[10:8] for Processor Read and Upgrade Requests   

SysCmd[11] Data/Address Cycle Indication

   0    SysAD[63:0] address cycle

   1    SysAD[63:0] data cycle

SysCmd[10:8] Request Number
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During the address cycle of processor requests, SysCmd[7:5] contain the command, as 
shown in Table 6-4. 

Table 6-4    Encoding of SysCmd[7:5] for Processor Requests 

During the address cycle of processor read requests, SysCmd[4:3] contain the read cause 
indication, as shown in Table 6-5.  This information is useful in handling the associated 
external response.

Table 6-5    Encoding of SysCmd[4:3] for Processor Read Requests  

During the address cycle of processor write requests, SysCmd[4:3] contain the write cause 
indication, as shown in Table 6-6.   This information is useful in handling the associated 
write data.

Table 6-6    Encoding of SysCmd[4:3] for Processor Write Requests

SysCmd[7:5] Command

   0    Coherent block read shared

   1    Coherent block read exclusive

   2    Noncoherent block read

   3    Double/single/partial-word read

   4    Block write

   5    Double/single/partial-word write

   6    Upgrade

   7    Special

SysCmd[4:3] Read Cause Indication

   0    Instruction access

   1    Data typical access

   2    Data LL/LLD access

   3    Data prefetch access

SysCmd[4:3] Write Cause Indication

   0    Reserved

   1    Data typical access

   2    Data uncached accelerated sequential access

   3    Data uncached accelerated identical access
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During the address cycle of processor upgrade requests, SysCmd[4:3] contain the upgrade 
cause indication, as shown in Table 6-7.  This information useful in handling the associated 
external response. 

Table 6-7    Encoding of SysCmd[4:3] for Processor Upgrade Requests

During the address cycle of processor special requests, SysCmd[4:3] contain the processor 
special cause indication, as shown in Table 6-8.  This information differentiates between 
the various processor special requests. 

Table 6-8     Encoding of SysCmd[4:3] for Processor Special Requests

During the address cycle of processor block read, typical block write, upgrade, and 
eliminate requests, SysCmd[2:1] contain the secondary cache block former state, as shown 
in Table 6-9.  This information may be useful for system designs implementing a duplicate 
tag or a directory-based coherency protocol. 

Table 6-9    Encoding of SysCmd[2:1] for Processor Block Read/Write, 
Upgrade, Eliminate Requests    

SysCmd[4:3] Upgrade Cause Indication

   0    Reserved

   1    Data typical access

   2    Data SC/SCD access

   3    Data prefetch access

SysCmd[4:3] Special Cause Indication

   0    Reserved

   1    Eliminate

   2    Reserved

   3    Reserved

SysCmd[2:1] Secondary Cache Block Former State

   0    Invalid

   1    Shared

   2    CleanExclusive

   3    DirtyExclusive
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During the address cycle of processor double/single/partial-word read and write requests, 
SysCmd[2:0] contain the data size indication, as shown in Table 6-10. 

Table 6-10    Encoding of SysCmd[2:0] for Processor Double/Single/Partial-Word Read/
Write Requests  

During the address cycle of external intervention and invalidate requests, SysCmd[10:8] 
contain the request number, as shown in Table 6-11.  The request number provides a 
mechanism to associate a potential processor coherency data response with the 
corresponding external coherency request. 

Table 6-11    Encoding of SysCmd[10:8] for External Intervention 
and Invalidate Requests

During the address cycle of external requests, SysCmd[7:5] contain the command, as 
shown in Table 6-12. 

Table 6-12    Encoding of SysCmd[7:5] for External Requests    

SysCmd[2:0] Data Size Indication

   0    One byte valid (Byte)

   1    Two bytes valid (Halfword)

   2    Three bytes valid (Tribyte)

   3    Four bytes valid (Word)

   4    Five bytes valid (Quintibyte)

   5    Six bytes valid (Sextibyte)

   6    Seven bytes valid (Septibyte)

   7    Eight bytes valid (Doubleword)

SysCmd[10:8] Request Number

SysCmd[7:5] Command

   0    Intervention shared

   1    Intervention exclusive

   2    Allocate request number

   3    Allocate request number

   4    NOP

   5    NOP

   6    Invalidate

   7    Special
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During the address cycle of external special requests, SysCmd[4:3] contain the external 
special cause indication, as shown in Table 6-13. This information is used to differentiate 
between the various external special requests.

Table 6-13    Encoding of SysCmd[4:3] for External Special Requests  

During external address cycles, SysCmd[0] specifies whether ECC checking and 
correcting is to be performed for the SysAD[63:0] bus, as shown in Table 6-14.  During the 
address cycle of processor block read, data typical block write, upgrade, and eliminate 
requests, the processor asserts SysCmd[0].  Consequently, in a multiprocessor system 
using the cluster bus, ECC checking and correcting is enabled for external coherency 
requests resulting from processor coherent block read and upgrade requests.

Table 6-14    Encoding of SysCmd[0] for External Address Cycles

SysCmd[10:0] Data Cycle Encoding

During the data cycles of an external data response or a processor coherency data response, 
SysCmd[10:8] contain the request number associated with the original request, as shown 
in Table 6-15. 

Table 6-15    Encoding of SysCmd[10:8] for Data Responses     

During data cycles, SysCmd[5] indicates the data quality, as shown in Table 6-16.

Table 6-16    Encoding of SysCmd[5] for Data Cycles      

SysCmd[4:3] Special Cause Indication

   0    Reserved

   1    NOP

   2    Interrupt

   3    Reserved

SysCmd[0] ECC check indication

   0    ECC checking and correcting disable

   1    ECC checking and correcting enable

SysCmd[10:8] Request Number

SysCmd[5] Data quality indication

   0     Data is good

   1     Data is bad
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During data cycles, SysCmd[4:3] indicate the data type, as shown in Table 6-17.  Processor 
block write and double/single/partial-word write requests use request data and request last 
data type indications.  External data and processor coherency data responses use response 
data and response last data type indications.

Table 6-17    Encoding of SysCmd[4:3] for Data Cycles    

During data cycles of an external block data response or processor coherency data response, 
SysCmd[2:1] contain the state of the cache block, as shown in Table 6-18.

Table 6-18    Encoding of SysCmd[2:1] for Block Data Responses  

During data cycles, SysCmd[0] specifies whether ECC checking and correcting is to be 
performed for the SysAD[63:0] bus, as shown in Table 6-19.  During processor data cycles, 
the processor asserts SysCmd[0].  Consequently, in a multiprocessor system using the 
cluster bus, ECC checking and correcting will be enabled for external block data responses 
resulting from processor coherency data responses.

Table 6-19    Encoding of SysCmd[0] for External Data Cycles  

SysCmd[4:3] Data type Indication

   0    Request data

   1    Response data

   2    Request last

   3    Response last

SysCmd[2:1] Cache Block State

   0    Reserved

   1    Shared

   2    CleanExclusive

   3    DirtyExclusive

SysCmd[0] ECC check indication

   0    ECC checking and correcting disable

   1    ECC checking and correcting enable
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SysCmd[11:0] Map

Table 6-20 presents a map for the SysCmd[11:0] bus.

Table 6-20    SysCmd[11:0] Map      

Cycle 
Type

Command
SysCmd[11:0] Bit

11 10 9 8 7 6 5 4 3 2 1 0

Processor
address 
cycles

Coherent block read shared

0

Request number

0 0 0

Read cause
Block state 1Coherent block read exclusive 0 0 1

Noncoherent block read 0 1 0

Double/single/partial-word read 0 1 1 Data size

Block write
0

1 0 0
Write cause

Block state 1

Double/single/partial-word write 1 0 1 Data size

Upgrade Request number 1 1 0 Upgrade cause Block state 1

Special

Reserved Reserved

1 1 1

0 0 Reserved

Eliminate 0 0 1 Block state 1

Reserved Reserved
1 0

Reserved
1 1

Processor
data cycles

Double/single/partial-word write

1
0

0

0

Data type

0

1Block write Data
quality

Block state
Coherency data response Request number

External
address 
cycles

Intervention shared

0

Request number

0 0 0

X

ECC
Intervention exclusive 0 0 1

Allocate request number
0 1 0

X
0 1 1

NOP X
1 0 0

1 0 1

Invalidate Request number 1 1 0 ECC

Special

NOP

X 1 1 1

0 0

X

X
0 1

Interrupt 1 0 ECC

NOP 1 1 X

External
data cycles

Block data response

1 Request number X
Data

quality
Data type

Block state

ECCDouble/single/partial-word data 
response

X
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SysAD[63:0] Encoding

This section describes the system address/data bus encoding.

SysAD[63:0] Address Cycle Encoding

Table 6-21 presents the encoding of the SysAD[63:0] bus for address cycles.

Table 6-21    Encoding of SysAD[63:0] for Address Cycles

SysAD[63:60]

During the address cycle of processor noncoherent block read, double/single/partial-word 
read, block write, double/single/partial-word write, and eliminate requests, the processor 
always drives a target indication of 0 on SysAD[63:60]. This indicates that the request 
targets the external agent only.  When the CohPrcReqTar mode bit is negated, during the 
address cycle of processor coherent block read and upgrade requests, the processor also 
drives a target indication of 0 on SysAD[63:60].  However, when the CohPrcReqTar mode 
bit is asserted, during the address cycle of processor coherent block read and upgrade 
requests, the processor drives a target indication of 0xF on SysAD[63:60]. This indicates 
that the request targets all processors, together with the external agent, on the cluster bus.  
In multiprocessor systems using the cluster bus, the CohPrcReqTar mode bit is asserted 
for a snoopy-based coherency protocol, and negated for a duplicate tag or directory-based 
coherency protocol.

When the processor is in slave state, an external agent uses the target indication field to 
specify which processors are targets of an external request.

SysAD[59:58] Uncached Attribute

During the address cycle of processor double/single/partial-word read and write requests 
and during the address cycle of processor Uncached accelerated block write requests, the 
processor drives the uncached attribute onto SysAD[59:58].  See the section titled, Support 
for Uncached Attribute, in this chapter for more information.

SysAD[63:60] Target Indication

   SysAD[63] Target processor with DevNum = 3

   SysAD[62] Target processor with DevNum = 2

   SysAD[61] Target processor with DevNum = 1

   SysAD[60] Target processor with DevNum = 0

SysAD[59:58] Uncached attribute

SysAD[57] Secondary cache block way indication

SysAD[56:40] Reserved

SysAD[39:0] Physical address
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SysAD[57]

During the address cycle of processor block read, typical block write, upgrade, and 
eliminate requests, SysAD[57] contains the secondary cache block way indication. This 
information may be useful for system designs implementing a duplicate tag or a directory-
based coherency protocol.

SysAD[56:40]

When processor is in master state, it drives SysAD[56:40] to zero during address cycles.

SysAD[39:0]

During the address cycle of processor and external requests, SysAD[39:0] contain the 
physical address.

Table 6-22 presents the processor request address cycle address alignment.

Table 6-22    Processor Request Address Cycle Alignment 

Table 6-23 presents the external coherency request address cycle address alignment. 

Table 6-23    External Coherency Request Address Cycle Alignment

Processor Request Type Address Alignment
Address Bits Which 

Are Driven to 0

Block read Quadword 3:0

Doubleword read/write Doubleword 2:0

Singleword read/write Singleword 1:0

Halfword read/write Halfword 0

Byte, tribyte, quintibyte, sextibyte, 
septibyte read/write

Byte -

Block write Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

Upgrade Quadword 3:0

Eliminate Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

External Request Type Address Alignment
Address Bits Which

Are Ignored

Intervention Quadword 3:0

Invalidate Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)
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SysAD[63:0] Data Cycle Encoding

During System interface data cycles, when less than a doubleword is transferred on the 
SysAD[63:0] bus, the valid byte lanes depend on the request address and the MemEnd 
mode bit.

For example, consider the data cycle for a byte request whose address modulo 8 is 1. When 
MemEnd is negated (little endian), the SysAD[15:8] byte lane is valid. When MemEnd is 
asserted (big endian), the SysAD[55:48] byte lane is valid.

SysState[2:0] Encoding

The processor provides a processor coherency state response by driving the targeted 
secondary cache block tag quality indication on SysState[2], driving the targeted secondary 
cache block former state on SysState[1:0] and asserting SysStateVal* for one SysClk 
cycle. Table 6-24 presents the encoding of the SysState[2:0] bus when SysStateVal* is 
asserted.

Table 6-24    Encoding of SysState[2:0] when SysStateVal* Asserted     

When SysStateVal* is negated, SysState[0] indicates if a processor coherency data 
response is ready for issue. Table 6-25 presents the encoding of the SysState[2:0] bus when 
SysStateVal* is negated.

Table 6-25    Encoding of SysState[2:0] When SysStateVal* Negated 

SysState[2] Secondary cache block tag quality indication

    0     Tag is good

    1     Tag is bad

SysState[1:0] Secondary cache block former state

    0     Invalid

    1     Shared

    2     CleanExclusive

    3     DirtyExclusive

SysState[2:1] Reserved

0     Reserved

1

2

3

SysState[0] Processor coherency data response indication

    0     Not ready for issue

    1     Ready for issue
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SysResp[4:0] Encoding

An external agent issues an external completion response by driving the request number 
associated with the corresponding request on SysResp[4:2], driving the completion 
indication on SysResp[1:0], and asserting SysRespVal* for one SysClk cycle.  Table 6-26 
presents the encoding of the SysResp[4:0] bus.

Table 6-26    Encoding of SysResp[4:0]   

6.14  Interrupts

The processor supports five hardware, two software, one timer, and one nonmaskable 
interrupt.  The Interrupt exception is described in Chapter 15, the section titled “Interrupt 
Exception.”

Hardware Interrupts

Five hardware interrupts are accessible to an external agent via external interrupt requests.

An external interrupt request consists of a single address cycle on the System interface.  
During the address cycle, SysAD[63:60] specify the target indication, which allows an 
external agent to define the target processors of the external interrupt request.  If a processor 
determines it is an external interrupt request target, SysAD[20:16] are the write enables for 
the five individual Interrupt register bits and SysAD[4:0] are the values to be written into 
these bits, as shown in Figure 6-5.  This allows any subset of the Interrupt register bits to 
be set or cleared with a single external interrupt request.

The Interrupt register is an architecturally transparent, level-sensitive register that is 
directly readable as bits 14:10 of the Cause register. Since it is level-sensitive, an interrupt 
bit must remain asserted until the interrupt is taken, at which time the interrupt handler must 
cause a second external interrupt request to clear the bit.

The processor clears the Interrupt register during any of the reset sequences. 

SysResp[4:2] Request number

SysResp[1:0] Completion indication

    0    Acknowledge (ACK)

   1    Error (ERR)

   2    Negative acknowledge (NACK)

   3    Reserved
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Figure 6-5    Hardware Interrupts

Software Interrupts

The two software interrupts are accessible as bits 9:8 of the Cause register, as shown in 
Figure 6-5. An MTC0 instruction is used to write these bits.

Timer Interrupt

The timer interrupt is accessible as bit 15 of the Cause register, IP[7], as shown in Figure 
6-5.  This bit is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Nonmaskable Interrupt

A nonmaskable interrupt is accessible to an external agent as the SysNMI* signal. To post 
a nonmaskable interrupt, an external agent asserts SysNMI* for at least one SysClk cycle. 

The processor recognizes the nonmaskable interrupt on the first SysClk cycle that 
SysNMI* is asserted.  After the nonmaskable interrupt is serviced, an external agent may 
post another nonmaskable interrupt by first negating SysNMI* for at least one SysClk 
cycle, and reasserting SysNMI* for at least one SysClk cycle.

3 2 014

19 18 161720

SysAD(4:0)
Interrupt Value

SysAD(20:16)
Write Enables

Interrupt register
Cause(15:08)

9

8

Hardware
Interrupts

Software
Interrupts

15
Timer

Interrupt

12

11

10

14

13

IP[1]

IP[0]

IP[7]

IP[4]

IP[3]

IP[2]

IP[6]

IP[5]



User’s Manual  U10278EJ4V0UM 123

Chapter 6  System Interface Operations

6.15  Protocol Abbreviations

The following abbreviations are used in the System interface protocols:

SysCmd[11:0] Abbreviations

Cmd Unspecified command

BlkRd Block read request command

RdShd Coherent block read shared request command

RdExc Coherent block read exclusive request command

DSPRd Double/single/partial-word read command

BlkWr Block write request command

DSPWr Double/single/partial-word write request command

Ugd Upgrade request command

Elm Eliminate request command

IvnShd Intervention shared request command

IvnExc Intervention exclusive request command

Alc Allocate request number command

Ivd Invalidate request command

Int Interrupt request command

ExtCoh External coherency request command

ReqDat Request data

RspDat Response data

ReqLst Request last

RspLst Response last

Empty Empty; SysCmd(11:0) and SysAD(63:0) are undefined

SysAD[63:0] Abbreviations

Adr Physical address

Dat Unspecified data

Dat<n> Doubleword n of a block

SysState[2:0] Abbreviations

State Unspecified state

Ivd Invalid

Shd Shared

ClnExc CleanExclusive

DrtExc DirtyExclusive
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SysResp[4:0] Abbreviations

Rsp Unspecified completion response

ACK Acknowledge completion response

ERR Error completion response

NACK Negative acknowledge completion response

Master Abbreviations

EA External agent

Pn R10000 processor whose device number is n

- Dead cycle

6.16  System Interface Arbitration

The processor supports a simple System interface arbitration protocol, which relies on an 
external arbiter.  This protocol is used in uniprocessor systems, multiprocessor systems 
using dedicated external agents, and multiprocessor systems using the cluster bus.  System 
interface arbitration is handled by the SysReq*, SysGnt*, and SysRel* signals (request, 
grant, and release).

As described earlier in this chapter, the System interface resides in either master or slave 
state; the processor enters slave state during all of the reset sequences.

When mastership of the System interface changes, there is always one dead SysClk cycle 
during which the bidirectional signals are not driven; the processor ignores all bidirectional 
signals during this dead SysClk cycle.

The protocol supports overlapped arbitration which allows arbitration to occur in parallel 
with requests and responses. This results in fewer wasted cycles when mastership of the 
System interface changes.

Grant parking is also supported, allowing a device to retain mastership of the System 
interface as long as no other device requests the System interface.

In multiprocessor systems using the cluster bus, the external arbiter typically implements a 
round-robin priority scheme.
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System Interface Arbitration Rules

The rules for the System interface arbitration are listed below:

• If the System interface is in slave state, and a processor request or coherency 
data response is ready for issue, and the required resources are available (e.g. 
a free request number, SysRdRdy* asserted, etc.), the processor asserts 
SysReq*.  The processor will not assert SysReq* unless all of the above 
conditions are met.

• The processor waits for the assertion of SysGnt*.

• When the processor observes the assertion of SysGnt* it negates SysReq* 
two SysClk cycles later.  Once the processor asserts SysReq*, it does not 
negate SysReq* until the assertion of SysGnt*, even if the need for the 
System interface bus is contravened by an external coherency request.

• When the processor observes the assertion of SysRel*, it enters master state 
two SysClk cycles later, and begins to drive the System interface bus.  
SysRel* may be asserted coincidentally with or later than SysGnt*.

• Once in master state, the processor does not relinquish mastership of the 
System interface until it observes the negation of SysGnt*.

• The processor indicates it is relinquishing mastership of the System interface 
bus by asserting SysRel* for one SysClk cycle, two or more SysClk cycles 
after the negation of SysGnt*.  The processor may issue any type of processor 
request or coherency data response in the two SysClk cycles following the 
negation of SysGnt*.   This may delay the assertion of SysRel*.
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Uniprocessor System

Figure 6-6 shows how the System interface arbitration signals are used in a uniprocessor 
system. Note that this same configuration would be used in a multiprocessor system using 
dedicated external agents.

Figure 6-6    Arbitration Signals for Uniprocessor System

Figure 6-7 is an example of the operation of the System interface arbitration in a 
uniprocessor system.  The Master row in the following figures indicates which device is 
driving the System interface bidirectional signals (P0 and EA in 
Figure 6-7).  When this row contains a dash (-), as shown in Cycle 12 of Figure 6-7, 
mastership of the System interface is changing and no device is driving the System interface 
bidirectional signals for this one dead SysClk cycle.

The external agent generally asserts the SysGnt* signal, which allows the processor to 
issue requests at any time.

When the external agent needs to return an external data response, it negates SysGnt* for 
a minimum of one cycle, waits for the processor to assert SysRel*, and then begins driving 
the System interface bus after one dead SysClk cycle.

  

Figure 6-7    Arbitration Protocol for Uniprocessor System
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Multiprocessor System Using Cluster Bus

Figure 6-8 shows how the System interface arbitration signals are used in a four-processor 
system using the cluster bus.

 

Figure 6-8    Arbitration Signals for Multiprocessor System Using the Cluster Bus

Figure 6-9 is an example of the System interface arbitration in a four-processor system 
using the cluster bus.

 

Figure 6-9    Arbitration Protocol for Multiprocessor System Using the Cluster Bus
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6.17  System Interface Request and Response Protocol

The following sections detail the System interface request and response protocol. A 32-
word secondary cache block size is assumed in the examples below.

Processor Request Protocol

A processor request is generated when the R10000 processor requires a system resource.

The processor may only issue a processor request when the System interface is in master 
state.  If the System interface is in master state, the processor may issue a processor request 
immediately. Processor requests may occur in adjacent SysClk cycles.  If the System 
interface is not in master state, the processor must first assert SysReq*, and then wait for 
the external agent to relinquish mastership of the System interface bus by asserting 
SysGnt* and SysRel*.

When multiple, nonconflicting processor requests and/or coherency data responses are 
ready and meet all issue requirements, the processor uses the following priority:

• block read and upgrade requests have the highest priority, followed by

• processor coherency data responses,

• processor eliminate and typical block write requests,

• processor double/single/partial-word read/write and uncached accelerated 
block write requests, which have the lowest priority.
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Processor Block Read Request Protocol

A processor block read request results from a cached instruction fetch, load, store, or 
prefetch that misses in the secondary cache.  Before issuing a processor block read request, 
the processor changes the secondary cache state to Invalid. Additionally, if the secondary 
cache block former state was DirtyExclusive, a write back is scheduled. Note that if the 
processor block read request receives an external NACK or ERR completion response, the 
secondary cache block state remains Invalid.

The processor issues a processor block read request with a single address cycle. The 
address cycle consists of the following:

•  negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the block read command on SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor block read request address cycle when the 
following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles earlier

• there is no conflicting entry in the outgoing buffer

• the maximum number of outstanding processor requests specified by the 
PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external coherency 
request
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A single processor may have as many as four processor block read requests outstanding on 
the System interface at any given time.

Figure 6-10 depicts four processor block read requests. Since the System interface is 
initially in slave state, the processor must first assert SysReq* and then wait until the 
external agent relinquishes mastership of the System interface by asserting SysGnt* and 
SysRel*.

Figure 6-10    Processor Block Read Request Protocol
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Processor Double/Single/Partial-Word Read Request Protocol

A processor double/single/partial-word read request results from an uncached instruction 
fetch or load.

The processor issues a processor double/single/partial-word read request with a single 
address cycle. The address cycle consists of:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the double/single/partial-word read command on SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word read request address 
cycle when:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the 
PrcReqMax mode bits is not exceeded

• there is a free request number

A single processor may have a maximum of one processor double/single/partial-word read 
request outstanding on the System interface at any given time.
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Figure 6-11 depicts a processor double/single/partial-word read request.  Since the System 
interface is initially in slave state, the processor must first assert SysReq* and then wait 
until the external agent gives up mastership of the System interface by asserting SysGnt* 
and SysRel*.

   

Figure 6-11    Processor Double/Single/Partial-Word Read Request Protocol
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Processor Block Write Request Protocol

A processor block write request results from the following:

• replacement of a DirtyExclusive secondary cache block due to a load, store, or 
prefetch secondary cache miss

• a CACHE Index WriteBack Invalidate (S) or Hit WriteBack Invalidate (S) 
instruction

• a completely gathered uncached accelerated block

As shown in Figure 6-12, the processor issues a processor block write request with a single 
address cycle followed by 8 or 16 data cycles.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the block write command on SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

If the processor block write request results from the writeback of a secondary cache block, 
the Dirty Exclusive secondary cache block former state is driven on SysAD[2:1], the 
secondary cache block way is driven on SysAD[57] and SysCmd[0] is asserted. 

If the processor block write request results from a completely gathered uncached 
accelerated block, the uncached attribute is driven on SysAD[59:58] and SysCmd[0] is 
negated.

Each data cycle consists of the following:

• asserting SysCmd[11]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a request data type indication, and the last data cycle has 
a request last data type indication. 
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The processor may negate SysVal* between data cycles of a processor block write request 
only if the SCClk frequency is less than half of the SysClk frequency.

The processor may only issue a processor block write request address cycle when the 
following are true: 

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the processor is not the target of a conflicting outstanding external coherency 
request

Figure 6-12 depicts two adjacent processor block write requests.  Since the System 
interface is initially in slave state, the processor must first assert SysReq* and then wait 
until the external agent relinquishes mastership of the System interface by asserting 
SysGnt* and SysRel*.

 

Figure 6-12    Processor Block Write Request Protocol
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Processor Double/Single/Partial-Word Write Request Protocol

A processor double/single/partial-word write request results from an uncached store or 
incompletely gathered uncached accelerated block.

As shown in Figure 6-13, the processor issues a processor double/single/partial-word write 
request with a single address cycle immediately followed by a single data cycle.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the double/single/partial-word write command on SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The data cycle consists of the following:

• asserting SysCmd[11]

• driving the request last data type indication on SysCmd[4:3]

• driving the write data on SysAD[63:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word write request address 
cycle when the System interface is in master state and SysWrRdy* was asserted two 
SysClk cycles previously.
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Figure 6-13 depicts three processor double/single/partial write requests.  Since the System 
interface is initially in slave state, the processor must first assert SysReq* and then wait 
until the external agent relinquishes mastership of the System interface by asserting 
SysGnt* and SysRel*.

   

Figure 6-13    Processor Double/Single/Partial-Word Write Request Protocol
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Processor Upgrade Request Protocol

A processor upgrade request results from a store or prefetch exclusive that hits a Shared 
block in the secondary cache.

As shown in Figure 6-14, the processor issues a processor upgrade request with a single 
address cycle. This address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the upgrade command on SysCmd[7:5]

• driving the upgrade cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal* 

The processor may only issue a processor upgrade request address cycle when the 
following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the 
PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external coherency 
request

A single processor may have as many as four processor upgrade requests outstanding on 
the System interface at any given time.
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Figure 6-14 depicts four processor upgrade requests.  Since the System interface is initially 
in slave state, the processor must first assert SysReq* and then wait until the external agent 
relinquishes mastership of the System interface by asserting SysGnt* and SysRel*.

    

Figure 6-14    Processor Upgrade Request Protocol
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Processor Eliminate Request Protocol

A processor eliminate request results from the following:

• a cached instruction fetch, load, store, or prefetch that misses in the secondary 
cache and forces the replacement of a Shared or CleanExclusive secondary 
cache block

• a CACHE Index WriteBack Invalidate (S), Hit Invalidate (S), or Hit 
WriteBack Invalidate (S) instruction that forces the invalidation of a Shared or 
CleanExclusive secondary cache block

• a CACHE Hit Invalidate (S) instruction that forces the invalidation of a 
DirtyExclusive secondary cache block.

A processor eliminate request notifies the external agent that a Shared, CleanExclusive, or 
DirtyExclusive block has been eliminated from the secondary cache.  Such requests are 
useful for systems implementing a directory-based coherency protocol, and are enabled by 
asserting the PrcElmReq mode bit.

The processor issues a processor eliminate request with a single address cycle. This address 
cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the eliminate special cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address of the eliminated secondary cache block on 
SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor eliminate request address cycle when the 
following are true:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the PrcElmReq mode bit is asserted

• the processor is not the target of a conflicting outstanding external coherency 
request
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Figure 6-15 depicts three processor eliminate requests.  Since the System interface is 
initially in slave state, the processor must first assert SysReq* and then wait until the 
external agent relinquishes mastership of the System interface by asserting SysGnt* and 
SysRel*.

  

Figure 6-15    Processor Eliminate Request Protocol
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Processor Request Flow Control Protocol

The processor provides the signals SysRdRdy* and SysWrRdy* to allow an external agent 
to control the flow of processor requests.  SysRdRdy* controls the flow of processor read 
and upgrade requests whereas SysWrRdy* controls the flow of processor write and 
eliminate requests.  

The processor can only issue a processor read or upgrade request address cycle to the 
System interface if SysRdRdy* was asserted two SysClk cycles previously. Similarly, the 
processor can only issue the address cycle of a processor write or eliminate request to the 
System interface if SysWrRdy* was asserted two SysClk cycles previously.

To determine the processor request buffering requirements for the external agent, note that 
the processor can issue any combination of processor requests in adjacent SysClk cycles.  
Also, since the System interface operates register-to-register with the external agent, a 
round trip delay of four SysClk cycles occurs between a processor request address cycle 
which prompts the external agent for flow control, and the flow control actually preventing 
any additional processor request address cycles from occurring.  Consequently, if the 
maximum number of outstanding processor requests specified by the PrcReqMax mode 
bits is four, the external agent must be able to accept at least four processor read or upgrade 
requests.  Also, the external agent must be able to accept at least four processor eliminate 
requests, two processor double/single/partial-word write requests, or one processor block 
write request.

Figure 6-16 depicts three processor double/single/partial-word write requests and four 
processor block read requests.  After sensing the first processor double/single/partial-word 
write request, the external agent negates SysWrRdy*.  The external agent must have 
buffering sufficient for one additional processor write request before the flow control takes 
effect.

The external agent negates SysRdRdy* upon observing the first processor read request.  
The external agent must have buffering sufficient for three additional processor read 
requests before the flow control takes effect.
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Figure 6-16    Processor Request Flow Control Protocol
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External Response Protocol

The processor supports two classes of external responses:

• external data responses provide a double/single/partial-word of data or provide 
a block of data using the SysAD[63:0] bus

• external completion responses provide an acknowledge, error, or negative 
acknowledge indication using the SysResp[4:0] bus

An external agent may only issue an external data response to the processor when the 
System interface is in slave state.  If the System interface is not already in slave state, the 
external agent must first negate SysGnt* and then wait for the processor to assert SysRel*.  
If the System interface is already in slave state, the external agent may issue an external data 
response immediately.

External data responses may be accepted by the processor in adjacent SysClk cycles and in 
arbitrary order, relative to corresponding processor requests.

An external agent may issue an external completion response when the System interface is 
in either master or slave state.  External completion responses may be accepted by the 
processor in adjacent SysClk cycles and in arbitrary order, relative to the corresponding 
processor requests.

External Block Data Response Protocol

An external agent may issue an external block data response in response to a processor 
block read or upgrade request.

An external agent issues an external block data response with 8 or 16 data cycles. Each data 
cycle consists of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding processor 
request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the cache block state on SysCmd[2:1]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data cycle has 
a response last data type indication.  The external agent may negate SysVal* between data 
cycles of an external block data response.
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External block data response data must be supplied in subblock order, beginning with the 
quadword-aligned address specified by the corresponding processor request.

External block data responses for processor coherent block read shared or noncoherent 
block read requests may indicate a state of Shared, CleanExclusive, or DirtyExclusive.  
External block data responses for processor coherent block read exclusive or upgrade 
requests may indicate a state of CleanExclusive or DirtyExclusive.

Figure 6-17 depicts two processor block read requests and the corresponding external block 
data responses.

  

Figure 6-17    External Block Data Response Protocol
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External Double/Single/Partial-Word Data Response Protocol

An external agent may issue an external double/single/partial-word data response in 
response to a processor double/single/partial-word read request.

An external agent issues an external double/single/partial-word data response with a single 
data cycle; the data cycle consists of:

• asserting SysCmd[11]

• driving the request number associated with the corresponding processor 
request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the response last data type indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

Figure 6-18 depicts a processor double/single/partial-word read request and the 
corresponding external double/single/partial-word data response.

    

Figure 6-18    External Double/Single/Partial-Word Data Response Protocol
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External Completion Response Protocol

An external agent issues an external completion response to provide an acknowledge, error, 
or negative acknowledge to an outstanding request, and to free the associated request 
number.

An external agent issues an external completion response by driving the response on 
SysResp[4:0] and asserting SysRespVal* for one SysClk cycle.  SysResp[4:2] contains 
the request number associated with the corresponding outstanding request and 
SysResp[1:0] contains an acknowledge, error, or negative acknowledge indication, as 
described below:

• The external agent issues an external ACK completion response for a 
processor read or upgrade request to indicate that the request was successful.  
An external ACK completion response may only be issued for a processor 
read request if a corresponding external data response is coincidentally or 
previously issued.

• The external agent issues an external ERR completion response for a 
processor read or upgrade request to indicate that the request was 
unsuccessful. Upon receiving an external ERR completion response, the 
processor takes a Bus Error exception on the associated instruction. If the 
processor read or upgrade request was caused by a PREFETCH instruction, no 
exception is taken.  Also, if the request was caused by a speculative 
instruction, no exception is taken. 

• The external agent issues an external NACK completion response for a 
processor read or upgrade request to indicate that the request was not 
accepted. Upon receiving an external NACK completion response, the 
processor re-evaluates the associated instruction.  Due to the speculative 
nature of the R10000 processor, the re-evaluation may or may not result in the 
reissue of a similar processor request.

An external ERR or NACK completion response issued in response to an external 
intervention, allocate request number, or invalidate has no affect on the processor except to 
free the request number.
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Figure 6-19 depicts a processor upgrade request and a corresponding external completion 
response.

   

Figure 6-19    External Completion Response Protocol
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External Request Protocol

An external agent issues an external request when it requires a resource within the 
processor.  The external agent refers to any device attached to the processor system 
interface. It may be memory interface or cluster coordinator ASIC, or another processor 
residing on the cluster bus.

An external agent may only issue an external request to the processor when the System 
interface is in slave state.  If the System interface is not already in slave state, the external 
agent must first negate SysGnt* and then wait for the processor to assert SysRel*.  If the 
System interface is already in slave state, the external agent may issue an external request 
immediately.  The total number of outstanding external requests, including interventions, 
allocate request numbers, and invalidates, cannot exceed eight.

External requests may be accepted by the processor in adjacent SysClk cycles. External 
intervention and invalidate requests are considered external coherency requests.
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External Intervention Request Protocol

An external agent issues an external intervention request to obtain a Shared or Exclusive 
copy of a secondary cache block.

An external agent issues an external intervention request with a single address cycle; this 
address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the intervention command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external intervention request address cycle when the 
System interface is in slave state; typically a free request number is specified.  An external 
agent may have as many as eight external intervention requests outstanding on the System 
interface at any given time.

Figure 6-20 depicts three external intervention requests.  Since the System interface is 
initially in master state, the external agent must first negate SysGnt* and then wait until the 
processor relinquishes mastership of the System interface by asserting SysRel*.

  

Figure 6-20    External Intervention Request Protocol
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External Allocate Request Number Request Protocol

An external agent issues an external allocate request number request to reserve a request 
number for private use.  Once allocated, the processor is prevented from using the request 
number until an external completion response for the request number is received.

An external agent issues an external allocate request number request with a single address 
cycle; this address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the allocate request number command on SysCmd[7:5]

• asserting SysVal*

An external agent may only issue an external allocate request number request address cycle 
when the System interface is in slave state and there is a free request number.  The external 
agent may have as many as eight external allocate request number requests outstanding on 
the System interface at any given time.

Figure 6-21 depicts three external allocate request number requests.  Since the System 
interface is initially in master state, the external agent must first negate SysGnt* and then 
wait until the processor relinquishes mastership of the System interface by asserting 
SysRel*.

Figure 6-21    External Allocate Request Number Request Protocol
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External Invalidate Request Protocol

An external agent issues an external invalidate request to invalidate a secondary cache 
block.

An external agent issues an external invalidate request with a single address cycle. This 
address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the invalidate command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external invalidate request address cycle when the 
System interface is in slave state; typically a free request number is specified.  An external 
agent may have as many as eight external invalidate requests outstanding on the System 
interface at any given time.

Figure 6-22 depicts three external invalidate requests.  Since the System interface is initially 
in master state, the external agent must first negate SysGnt* and then wait until the 
processor relinquishes mastership of the System interface by asserting SysRel*.

  

Figure 6-22    External Invalidate Request Protocol
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External Interrupt Request Protocol

An external agent issues an external interrupt request to interrupt the normal instruction 
flow of the processor.

An external agent issues an external interrupt request with a single address cycle. This 
address cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the interrupt special cause indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the Interrupt register write enables on SysAD[20:16]

• driving the Interrupt register values on SysAD[4:0]

• asserting SysVal*

An external agent may only issue an external interrupt request address cycle when the 
System interface is in slave state.

Figure 6-23 depicts three external interrupt requests.  Since the System interface is initially 
in master state, the external agent must first negate SysGnt* and then wait until the 
processor relinquishes mastership of the System interface by asserting SysRel*.

   

Figure 6-23    External Interrupt Request Protocol
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Processor Response Protocol

Processor responses are supplied by the processor in response to external coherency 
requests that target the processor.  The R10000 processor issues a processor coherency state 
response for each external coherency request that targets the processor.  The processor 
issues a processor coherency data response for each external intervention request that 
targets the processor and hits a DirtyExclusive secondary cache block.

Processor coherency state responses are issued by the processor in the same order that the 
corresponding external coherency requests are received.  Processor coherency state and 
data responses may occur in adjacent SysClk cycles.



Chapter 6  System Interface Operations

154 User’s Manual  U10278EJ4V0UM

Processor Coherency State Response Protocol

A processor coherency state response results from an external coherency request that 
targets the processor.

The processor issues a processor coherency state response by driving the secondary cache 
block tag quality indication on SysState[2], driving the secondary cache block former state 
on SysState[1:0], and asserting SysStateVal* for one SysClk cycle.  The processor 
coherency state responses are issued in an order designated by the external coherency 
requests and will always be issued before an associated processor coherency data response.  
Note that processor coherency state responses can be pipelined ahead of the associated 
processor coherency data responses, and processor coherency data responses can be 
returned out-of-order. These cases typically arise from external coherency requests hitting 
outgoing buffer entries. 

Figure 6-24  depicts two external coherency requests and the resulting processor coherency 
state responses.

 

Figure 6-24    Processor Coherency State Response Protocol
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Processor Coherency Data Response Protocol

A processor coherency data response results from an external intervention request that 
targets the processor and hits a DirtyExclusive secondary cache block.

The processor issues a processor coherency data response with a single empty cycle 
followed by either 8 or 16 data cycles.  The empty cycle consists of negating SysVal* for a 
single SysClk cycle.  The data cycles consist of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding external 
coherency request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the state of the cache block on SysCmd[2:1]

• asserting SysCmd[0]

• driving the data on SysAD[63:0],

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data cycle has 
a response last data indication.  The processor may negate SysVal* between data cycles of 
a processor coherency data response only if the SCClk frequency is less than half of the 
SysClk frequency.

The processor may only issue a processor coherency data response when the System 
interface is in master state and SysWrRdy* was asserted two SysClk cycles previously.  
Note that the empty cycle is considered the issue cycle for a processor coherency data 
response.  If the System interface is not already in master state, the processor must first 
assert SysReq*, and then wait for the external agent to relinquish mastership of the System 
interface bus by asserting SysGnt* and SysRel*.  If the System interface is already in 
master state, the processor may issue a processor coherency data response immediately.
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When SysStateVal* is negated, SysState[0] provides the processor coherency data 
response indication. The processor asserts the processor coherency data response indication 
when there are one or more processor coherency data responses pending issue in the 
outgoing buffer.  Once asserted, the indication is negated when the first doubleword of the 
last pending issue processor coherency data response is issued to the system interface bus.  
The processor coherency data response indication is not affected by SysWrRdy*.  
However, as previously noted the processor may only issue a processor coherency data 
response when SysWrRdy* was asserted two SysClk cycles previously.

Processor coherency data response data is supplied in subblock order, beginning with the 
quadword-aligned address specified by the corresponding external coherency request.  
Processor coherency data responses are not necessarily issued in the same order as the 
external coherency requests; however each processor coherency data response always 
follows the corresponding processor coherency state response.  Note that more than one 
processor coherency state response may be pipelined ahead of the corresponding processor 
coherency data responses.

Figure 6-25 depicts one external coherency request and the resulting processor coherency 
state and data responses.

        

Figure 6-25     Processor Coherency Data Response Protocol
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6.18  System Interface Coherency

The System interface supports external intervention shared, intervention exclusive, and 
invalidate coherency requests.  These requests are used by an external agent or other 
R10000 processors on the cluster bus to maintain cache coherency.

Each external coherency request that targets an R10000 results in a processor coherency 
state response.  Additionally, each external intervention request that targets the R10000 and 
hits a DirtyExclusive secondary cache block results in a processor coherency data response.

External coherency requests and the corresponding processor coherency state responses are 
handled in FIFO order.

External Intervention Shared Request

An external intervention shared request is used by an external agent to obtain a Shared copy 
of a cache block.  If the desired block resides in the processor cache, it is marked Shared.

If the secondary cache block’s former state was DirtyExclusive, the processor issues a 
processor coherency data response.

External Intervention Exclusive Request

An external intervention exclusive request is used by an external agent to obtain an 
Exclusive copy of a cache block.  If the desired block resides in the processor cache, it is 
marked Invalid. 

If the secondary cache block’s former state was DirtyExclusive, the processor issues a 
processor coherency data response.

External Invalidate Request

An external invalidate request is used by an external agent to invalidate a cache block.  If 
the desired block resides in the processor cache, it is marked Invalid.

Under normal circumstances, the secondary cache block former state should not be 
CleanExclusive or DirtyExclusive.
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External Coherency Request Action

Table 6-27 indicates the action taken for external coherency requests that target the 
processor. 

Table 6-27    Action Taken for External Coherency Requests that Target the R10000 Processor†

‡ This should not occur under normal circumstances.

* The processor coherency data response must be written back to memory.

† These actions are taken in cases where there are no internal coherency conflicts. For
exceptions due to internal coherency conflicts, please refer to Table 6-28.

Secondary Cache 
Block

Former State

Type of
External Request

Secondary 
Cache Block 

New State

Processor Coher-
ency State Re-

sponse 
SysState[1:0]

Processor Co-
herency Data 
Response Re-

quired?

Processor Coher-
ency Data Re-
sponse State
SysCmd[2:1]

Invalid
Intervention shared
Intervention exclusive
Invalidate

Invalid
Invalid
Invalid

0
0
0

No
No
No

N/A
N/A
N/A

Shared
Intervention shared
Intervention exclusive
Invalidate

Shared
Invalid
Invalid

1
1
1

No
No
No

N/A
N/A
N/A

CleanExclusive
Intervention shared
Intervention exclusive
Invalidate‡

Shared
Invalid
Invalid

2
2
2

No
No
No

N/A
N/A
N/A

DirtyExclusive
Intervention shared*

Intervention exclusive∗

Invalidate

Shared
Invalid
Invalid

3
3
3

Yes
Yes
No

Shared
DirtyExclusive

N/A
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Coherency Conflicts

Coherency conflicts arise when a processor request and an external request target the same 
secondary cache block.  Coherency conflicts may be categorized as either internal or 
external, and are described in this section.

Internal Coherency Conflicts

A processor request is considered to be pending issue when it is buffered in the processor 
and has not yet been issued to the System interface bus. Internal coherency conflicts occur 
when the processor has a processor request pending issue and a conflicting external 
coherency request is received.  Internal coherency conflicts are unavoidable and cannot be 
anticipated by the external agent since it cannot anticipate when the processor will have 
processor requests pending issue.

Table 6-28 describes the manner in which the processor resolves internal coherency 
conflicts. 

Table 6-28    Internal Coherency Conflict Resolution 

‡ If the processor eliminate request that is pending issue has a DirtyExclusive state, a CleanExclusive processor coherency state response is
provided.

 Processor Request Pend-
ing Issue

Conflicting External Co-
herency Request

Resolution

Coherent block read

Intervention shared The processor allows the conflicting external 
coherency request to proceed and provides an Invalid 
processor coherency state response. The processor 
stalls the processor coherent block read request until 
the conflicting external coherency request has 
received an external completion response.

Intervention exclusive

Invalidate

Upgrade

Intervention shared The processor allows the conflicting external 
coherency request to proceed and provides a Shared 
processor coherency state response.  Once the 
conflicting external coherency request has received 
an external completion response, the processor 
internally NACKs the processor upgrade request that 
is pending issue.

Intervention exclusive

Invalidate

Block write

Intervention shared The processor provides a DirtyExclusive processor 
coherency state response and changes the processor 
block write request that is pending issue into a 
DirtyExclusive processor coherency data response.

Intervention exclusive

Invalidate
The processor provides a DirtyExclusive processor 
coherency state response and deletes the processor 
block write request that is pending issue.

Eliminate

Intervention shared The processor provides a Shared or CleanExclusive 
processor coherency state response and deletes the 
processor eliminate request that is pending issue.‡

Intervention exclusive

Invalidate
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External Coherency Conflicts

A processor request is considered to be pending response when it has been issued to the 
System interface bus but has not yet received an external data or completion response.  
External coherency conflicts occur when the processor has a processor request that is 
pending response and a conflicting external coherency request is received.  The processor 
relies on the external agent to detect and resolve external coherency conflicts.   If the 
external agent chooses to issue an external coherency request to the processor which causes 
an external coherency conflict, the external coherency request must be completed before an 
external response is given to the conflicting processor request.

External coherency conflicts may be avoided if the point of coherence is the processor 
System interface bus and only one request is allowed to be outstanding for any given 
secondary cache block.  However, in some system designs external coherency conflicts are 
unavoidable.

Processor block write and eliminate requests are never pending response, and therefore 
cannot cause external coherency conflicts.

Table 6-29 describes the manner in which the external agent resolves external coherency 
conflicts. 
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Table 6-29    External Coherency Conflict Resolution 

‡ Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor
will return an invalid processor coherency state response.

* Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor
will return a shared processor coherency state response.

 Processor Requests that 
are Pending Response

Conflicting External Co-
herency Request

Resolution

Coherent block read

Intervention shared The external agent responds to the external coherency 
requestor that the block is Invalid.  At some later time, 
the external agent supplies an external response to the 
processor coherent block read request that is pending 
response.‡

Intervention exclusive

Invalidate

Upgrade

Intervention shared

The external agent responds to the external coherency 
requestor that the block is Shared.  At some later time, 
the external agent supplies an external response to the 
processor upgrade request that is pending response.*

Intervention exclusive The external agent issues the conflicting external 
coherency request to the processor.  The processor 
allows the conflicting external coherency request to 
proceed and supplies a Shared processor coherency 
state response.  After observing the processor 
coherency state response, the external agent provides 
an external ACK completion response for the 
conflicting external coherency request.  At some later 
time, the external agent supplies an external response 
for the processor upgrade request that is pending 
response. This external response may not be an 
external ACK completion response unless it is 
associated with an external block data response.

Invalidate



Chapter 6  System Interface Operations

162 User’s Manual  U10278EJ4V0UM

External Coherency Request Latency

This section describes the R10000 external coherency request latency.   Figure 6-26 depicts 
the following:

• an external coherency request which targets the processor

• the resulting processor coherency state response

• the potential processor coherency data response

Two external coherency request latency parameters are also defined:

• the processor coherency state response latency, tpcsr, specifies the time from 
external coherency request to processor coherency state response

• the processor coherency data response latency, tpcdr, specifies the time from 
the external coherency request to the processor coherency data response if a 
master, or to the assertion of the processor coherency data response indication 
on SysState[0] if a slave.

        

Figure 6-26    External Coherency Request Latency Parameters
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The external coherency request latency is presented in Table 6-30.

Table 6-30    External Coherency Request Latency

‡ This latency assumes no other previously issued external coherency requests are outstanding.  1
to 3 additional PClk cycles may be required for synchronization with SysClk depending on the
SysClkDiv mode bits.

* This value assumes a 32-word secondary cache block size.

† This value assumes the external coherency request hits a cached or outgoing buffer entry.

‡‡ This value assumes the external coherency request does not hit a cached or outgoing buffer entry,
the secondary cache is not busy, and the external coherency request hits in the MRU way of the
secondary cache. If the external coherency request misses in the most-recently used (MRU) way
of the secondary cache, 1 to 3 additional PClk cycles are required to query the LRU way of the
secondary cache, depending on the SCClkDiv mode bits.

** This value assumes the external coherency request does not hit a cached or outgoing buffer entry,
the secondary cache just commenced an index-conflicting CACHE Hit WriteBack Invalidate (S),
and the external coherency request misses in the secondary cache MRU way.

†† This value assumes the external coherency request hits an outgoing buffer entry.

‡‡‡ This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cache is not busy, the external coherency request hits in the MRU way of the
secondary cache, no subset primary data cache blocks are inconsistent, and the external
coherency request is secondary cache block-aligned.  If the external coherency request misses in
the MRU way of the secondary cache, 1 to 3 additional PClk cycles are required to query the
LRU way of the secondary cache, depending on the SCClkDiv mode bits.

*** This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cache just commenced an index-conflicting CACHE Hit WriteBack
Invalidate (S), the external coherency request hits in the LRU way of the secondary cache, all
subset primary data cache blocks are inconsistent, and the external coherency request is not
secondary cache block-aligned.

Latency‡ (PClk cycles)

Processor Coherency State 
Response (tpcsr)

Processor Coherency Data Re-
sponse* (tpcdr)

SCClkDiv Min† Typ‡‡ Max** Min†† Typ‡‡‡ Max***

1 5 10 39 8 28 70

1.5 5 13 48 8 33 88

2 5 14 59 8 38 105

2.5 5 16 71 8 43 128

3 5 17 79 8 43 141
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SysGblPerf* Signal

The SysGblPerf* signal is provided for systems implementing a relaxed consistency 
memory model.  The external agent asserts this signal when all processor requests are 
globally performed, thereby allowing the processor to graduate SYNC instructions.  The 
external agent negates this signal when some processor requests are not yet globally 
performed, thereby preventing the processor from graduating SYNC instructions.

To prevent a SYNC instruction from graduating, the external agent must negate the 
SysGblPerf* signal no later than the same SysClk cycle in which it issued the external 
completion response for a processor read or upgrade request which is not yet globally 
performed.  Also, the external agent must negate the SysGblPerf* signal no later than two 
SysClk cycles after the address cycle of a processor double/single/partial-word write 
request which has not yet been globally performed.

The SysGblPerf* signal may be permanently asserted in systems implementing a 
sequential consistency memory model.

6.19  Cluster Bus Operation

A R10000 multiprocessor cluster may be created by directly attaching the System 
interfaces of 2 to 4 R10000 processors, and providing an external cluster coordinator to 
handle arbitration and coherency management.

The cluster coordinator arbitrates the multiprocessors using the SysReq*, SysGnt*, and 
SysRel* signals.

A processor request issued by an R10000 processor in master state is observed as an 
external request by any R10000 processors in the slave state on the cluster bus.  This is 
described Table 6-31. 

Table 6-31    Relationship Between Processor and External Requests for the Cluster Bus    

Processor Request External Request

Coherent block read shared Intervention shared

Coherent block read exclusive Intervention exclusive

Noncoherent block read Allocate request number

Double/single/partial-word read Allocate request number

Block write NOP

Double/single/partial-word write NOP

Upgrade Invalidate

Eliminate NOP
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In the same manner, a processor coherency data response issued by a processor in the 
master state is observed as an external block data response by any processors in the slave 
state.

External coherency requests that target a processor are handled in FIFO order and result in 
processor coherency state responses.  If an external coherency request that targets a 
processor hits a DirtyExclusive secondary cache block, the processor also provides a 
processor coherency data response.

Figure 6-27 presents an example of a processor read request with four R10000 processors 
residing on the cluster bus.  The CohPrcReqTar mode bit is asserted for a snoopy-based 
coherency protocol.  R100000 issues a processor coherent read exclusive request. This is 
observed as an external intervention exclusive request by R100001, R100002, and R100003.  
R100001 and R100003 respond with Invalid processor coherency state responses.  R100002 
responds with a DirtyExclusive processor coherency state response.  Based on these 
processor coherency state responses, the cluster coordinator allows R100002 to become 
master of the System interface so that it may provide a processor coherency data response, 
which will be observed as an external block data response by R100000.  Finally, the cluster 
coordinator issues an external ACK completion response to forward the external block data 
response and to free the request number.

Figure 6-28 presents an example of a processor upgrade request with four R10000 
processors residing on the cluster bus.  The CohPrcReqTar mode bit is asserted for a 
snoopy-based coherency protocol.  R100000 issues a processor upgrade request, observed 
as an external invalidate request by R100001, R100002, and R100003.  R100002 and 
R100003 provide Shared processor coherency state responses.  R100001 provides an 
Invalid processor coherency state response.  Based on these processor coherency state 
responses, the cluster coordinator issues an external ACK completion response for the 
processor upgrade request to indicate that the request was successful and to free the request 
number.
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Figure 6-27    R10000 Multiprocessor Cluster Processor Read Request Example
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Figure 6-28    R10000 Multiprocessor Cluster Processor Upgrade Request Example
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6.20  Support for I/O

The processor assumes a memory-mapped I/O model. Consequentially, no special System 
interface encodings are provided, or required to designate I/O accesses.  It is left to the 
programmer to ensure that I/O addresses have the appropriate TLB mappings.

The processor supports system designs utilizing hardware or software for coherent I/O.  
The external coherency requests are useful for creating systems with hardware I/O 
coherency, and the CACHE instruction is sufficient for creating a system with software I/O 
coherency.

6.21  Support for External Duplicate Tags

Some system designs implement an external duplicate copy of the secondary cache tags to 
reduce the coherency request latency and also filter out unnecessary external coherency 
requests made to the R10000 processor. 

For such systems, it must be remembered that blocks may reside in either the secondary 
cache or in the outgoing buffer.  During the address cycle of processor block read requests, 
the secondary cache block former state is provided. The external agent may use this 
information to maintain the external duplicate tags.

Typically, in a multiprocessor system using the cluster bus, the cluster coordinator specifies 
a free request number for an external coherency request.  However, in a system using a 
duplicate-tag or directory-based coherency protocol, where the CohPrcReqTar mode bit 
is negated, the cluster coordinator may specify a busy request number for an external 
coherency request, providing each targeted R10000 processor has the request number busy 
due to an outstanding processor coherency request from another processor.

For example, suppose the processor in master state issues a processor coherent block read 
or upgrade request.  The processors in slave state observe the processor request as an 
external coherency request that targets the external agent only, causing the associated 
request number to become busy.  The cluster coordinator checks the duplicate tag or 
directory structure to determine if the block resides in the cache of one of the processors 
that was in slave state.  If necessary, the cluster coordinator issues an external coherency 
request targeted at one or more of the processors that were in slave state.  By using the same 
request number as the original processor request, this external coherency request does not 
consume a free request number, and allows a potential processor coherency data response 
to be supplied as an external block data response to the original processor request.
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6.22  Support for a Directory-Based Coherency Protocol

Some system designs implement a directory-based coherency protocol.

For such systems, the processor provides the processor eliminate request cycle.  If the 
PrcElmReq mode bit is asserted, the processor issues a processor eliminate request 
whenever it intends to eliminate a Shared, CleanExclusive, or DirtyExclusive block from 
the secondary cache.  During the address cycle of the processor eliminate request, the 
physical address and the secondary cache block former state are provided.  The external 
agent may then use this information to maintain an external directory structure.

6.23  Support for Uncached Attribute

The processor supports a 2-bit user-defined Uncached Attribute, which is driven on 
SysAD[59:58] during the address cycle of the following:

• processor double/single/partial-word read requests

• double/single/partial-word write requests

• block write requests resulting from completely gathered uncached accelerated 
blocks

For unmapped accesses, the uncached attribute is sourced from VA[58:57].

For mapped accesses, the uncached attribute is sourced from the TLB Uncached Attribute 
field. The TLB Uncached Attribute field may be initialized in 64-bit mode using bits 63:62 
of the CP0 EntryLo0 and EntryLo1 registers.
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6.24  Support for Hardware Emulation

When using the R10000 processor in hardware emulation, it is desirable to operate the 
System interface at a relative low frequency (typically 1 MHz or below).  Since the R10000 
processor contains dynamic circuitry, an external agent cannot simply provide low 
frequency SysClk, so a SysCyc* input to the processor allows an external agent to define 
a virtual system clock, and yet supply a SysClk within the acceptable operating range.  The 
assertion of SysCyc* in a particular SysClk cycle creates a virtual system clock pulse four 
SysClk cycles later.  SysCyc* may be asserted aperiodically.

In a normal system environment, the SysCyc* input should be permanently asserted.

Figure 6-29 depicts the use of SysCyc* to create a virtual SysClk of one-third the normal 
SysClk frequency.

Figure 6-29    Hardware Emulation Protocol
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7. Clock Signals

The R10000 processor has differential PECL clock inputs, SysClk and SysClk*, from 
which all processor internal clock signals and secondary cache clock signals are derived.

Three major clock domains are in the processor:

• the System interface clock domain, which operates at the system clock 
frequency and controls the System interface signals

• the internal processor clock domain, which controls the processor core logic

• the secondary cache clock domain, which controls signals communicating 
with the external secondary cache synchronous SRAM

These domains are described in this chapter.
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7.1  System Interface Clock and Internal Processor Clock Domains

In high performance systems, PECL-level differential clocks are routinely used to 
minimize system clock skews.  The R10000 processor receives differential system clock 
signals at the SysClk and SysClk* pins; two additional pins, SysClkRet and SysClkRet*, 
are the return paths for termination of these signals.

SysClk and SysClk* are used to drive an on-chip phase-locked loop (PLL), which 
multiplies the system clock to create an internal processor clock, PClk.

The R10000 processor always communicates with the system at the SysClk frequency, and 
PClk always runs at a frequency-multiple of SysClk, according to the following formula:

PClk = SysClk*(SysClkDiv+1)/2

For example, in a 50 MHz system with SysClkDiv = 7 and SCClkDiv=2, 
PClk= 50*8/2 = 200 MHz.

NOTE:  It is preferred that the R10000 processor uses a differential PECL clock input.  
However, in a less-aggressive system, a CMOS/TTL single-ended clock can be used 
to drive the processor, provided its complementary clock input, SysClk*, is tied to an 
appropriate reference voltage (1.4V for TTL, Vcc/2 for CMOS).  In any case, the 
reference voltage applied to SysClk* should not be less than 1.2V.
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7.2  Secondary Cache Clock

The processor uses registered synchronous SRAMs for its secondary cache, to allow 
pipelined accesses.

The processor provides 6 pairs of differential clock outputs, SCClk(5:0) and SCClk*(5:0), 
to be used by the secondary cache synchronous SRAMs. These outputs swing between 
VccQSC and Vss.  The SCClkTap mode bits (Mode bits are described in Chapter 8, the 
section titled “Mode Bits.”) specify the alignment of SCClk(5:0) and SCClk*(5:0) relative 
to the internal secondary cache clock.  Note that the output buffer delay is not included.

The secondary cache interface clock is generated by dividing down the internal processor 
clock, PClk.

SCClk is related to SysClk according to the following formula:

 SCClk = SysClk*(SysClkDiv+1)/(SCClkDiv+1) 

For example, in a 50 MHz system with SysClkDiv=7 and SCClkDiv=2, 
SCClk = 50*8/3 = 133 MHz.
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7.3  Phase-Locked-Loop

The processor uses the internal PLL for clock generation and multiplication as shown in 
Figure 7-1.

Values of the termination resistors for the SysClkRet/SysClkRet* signals are system-
dependent.  The system designer must select a value based upon the characteristic 
impedance of the board, therefore it is beyond the scope of this manual to specify values 
for these termination resistors.

Figure 7-1    R10000 System and Secondary Cache Clock Interface
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8. Initialization

This section describes initialization of the R10000 processor, including initialization of 
logical registers.

Initialization of the processor occurs during a reset sequence.  The processor supports three 
separate reset sequences:

• Power-on reset

• Cold reset

• Soft reset

These sequences are described in this chapter. 

Also described are the mode bits.
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8.1  Initialization of Logical Registers

After a power-on or cold reset sequence, all logical registers (both in the integer and the 
floating-point register files) must be written before they can be read.  Failure to write any 
of these registers before reading from them will have an unpredictable result.

NOTE:  On the initialization of the FPU after a power-on or cold reset, a write for 
initialization of the busy-bit table can be performed by using MTC1 instruction with 
FR=1 (during the initialization only) or DMTC1 instruction.

8.2  Power-On Reset Sequence

The Power-on Reset sequence is used to reset the processor after the initial power-on, or 
whenever power or SysClk are interrupted.

The Power-on Reset sequence is as follows:

• The external agent negates DCOk.

• The external agent asserts SysReset*.

• The external agent negates SysGnt*.

• The external agent negates SysRespVal*.

• Once Vcc, VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk stabilize, 
the external agent waits at least 1ms and then asserts DCOk. 

• At this time, the System interface resides in slave state and all internal state is 
initialized.

• The SysClkDiv mode bits default to divide-by-1.

• The SCClkDiv mode bits default to divide-by-3.

• After waiting at least 100 ms for the internal clocks to stabilize, the external 
agent loads the mode bits into the processor by driving the mode bits on 
SysAD[63:0], waiting at least two SysClk cycles, and then asserting SysGnt* 
for at least one SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to restabilize, the 
external agent synchronizes all clocks internal to the processor.  This is 
performed by asserting SysRespVal* for one SysClk cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize, (a 
third 100 ms restabilization period) the external agent negates SysReset*.

• The external agent must retain mastership of the System interface, refrain 
from issuing external requests or nonmaskable interrupts, and ignore the 
system state bus until the processor asserts SysReq*.  The assertion of 
SysReq* indicates the processor is ready for operation.  In a cluster 
arrangement, all processors must assert SysReq*, indicating they are ready for 
operation.

NOTE:  If the virtual SysClk is used during the reset sequence, the mode bits, 
SysGnt*, SysRespVal*, and SysReset* should all be referenced to the virtual SysClk 
that is created with SysCyc*. This approach will cause the R10000 to come out of reset 
synchronously with the virtual SysClk, which will allow repeatable and lock-step 
operation (see Chapter 6, the section titled “Support for Hardware Emulation,” for 
description of virtual SysClk operation).
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During a Power-on Reset sequence, all internal state is initialized.  A Power-on Reset 
sequence causes the processor to start with the Reset exception.

Figure 8-1 shows the Power-on Reset sequence.
  

Figure 8-1    Power-On Reset Sequence
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8.3  Cold Reset Sequence

The Cold Reset sequence is used to reset the entire processor, and possibly alter the mode 
bits while power and SysClk are stable. 

The Cold Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts SysReset*.

• After waiting at least 100 ms, the external agent loads the mode bits into 
R10000. This is performed by driving the mode bits on SysAD[63:0], waiting 
at least two SysClk cycles, and then asserting SysGnt* for at least one 
SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to restabilize, the 
external agent synchronizes all processor internal clocks by asserting 
SysRespVal* for one SysClk cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize, (a 
third 100 ms restabilization period) the external agent negates SysReset*.

• The external agent must retain mastership of the System interface, refrain 
from issuing external requests or nonmaskable interrupts, and ignore the 
system state bus until the processor asserts SysReq*. The assertion of 
SysReq* indicates the processor is ready for operation.  In a cluster 
arrangement, all processors must assert SysReq*, indicating they are ready for 
operation.

During a Cold Reset sequence all processor internal state is initialized.  A Cold Reset 
sequence causes the processor to start with a Reset exception.

Figure 8-2 shows the cold reset sequence.
  

Figure 8-2    Cold Reset Sequence
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8.4  Soft Reset Sequence

A Soft Reset sequence is used to reset the external interface of the processor without 
altering the mode bits while power and SysClk are stable.

The Soft Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts SysReset* 
for at least 16 SysClk cycles.

• The external agent must retain mastership of the System interface, refrain 
from issuing external requests or nonmaskable interrupts, and ignore system 
state bus until the processor asserts SysReq*. The assertion of SysReq* 
indicates the processor is ready for operation.  In a cluster arrangement, all 
processors must assert SysReq*, indicating they are ready for operation.

During a Soft Reset sequence, all external interface state is initialized. The internal and 
secondary cache clocks are not affected by a Soft Reset sequence.  The general purpose, 
CP0, and CP1 registers are preserved, as well as the primary and secondary caches.

A Soft Reset sequence causes a Soft Reset exception, in which the Soft Reset exception 
handler executes instructions from uncached space and uses CACHE instructions to 
analyze and dump the contents of the primary and secondary caches.  To resume normal 
operation, a Cold Reset sequence must be initiated.

Figure 8-3 presents the Soft Reset sequence.
  

Figure 8-3    Soft Reset Sequence
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8.5  Mode Bits

The R10000 processor uses mode bits to configure the operation of the microprocessor.  
These mode bits are loaded into the processor from the SysAD[63:0] bus during a power-
on or cold reset sequence while SysGnt* is asserted.  The SysADChk[7:0] bus does not 
have to contain correct ECC during mode bit initialization.  During the reset sequence, the 
mode bits obtained from SysAD[24:0] are written into bits 24:0 of the CP0 Config register.

The mode bits are described in Table 8-1. 

Table 8-1      Mode Bits

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

2:0
Kseg0CA
Specifies the kseg0 cache algorithm.

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable noncoherent
Cacheable coherent exclusive
Cacheable coherent exclusive on write
Reserved
Uncached accelerated

4:3
DevNum
Specifies the processor device number.

0-3

5

CohPrcReqTar
Specifies the target of processor 
coherent requests issued on the System 
interface by the processor.

0
1

External agent only
Broadcast

6

PrcElmReq
Specifies whether to enable processor 
eliminate requests onto the System 
interface by the processor.

0
1

Disable
Enable

8:7

PrcReqMax
Specifies the maximum number of 
outstanding processor requests allowed 
on the System interface by the 
processor.

0
1
2
3

1 outstanding processor request
2 outstanding processor requests
3 outstanding processor requests
4 outstanding processor requests
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Table 8-1 (cont.)   Mode Bits

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

12:9

SysClkDiv
Sets PClk to SysClk ratio; determines the 
System interface clock frequency; see 
Chapter 7, the section titled “System 
Interface Clock and Internal Processor 
Clock Domains.”

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Result of division by 3.5
Result of division by 4
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Result of division by 2
Result of division by 2.5
Result of division by 3
Result of division by 3.5
Result of division by 4
Result of division by 4.5
Result of division by 5
Result of division by 5.5
Result of division by 6
Result of division by 7‡‡

Reserved
Reserved
Reserved

13
SCBlkSize
Specifies the secondary cache block size.

0
1

16-word
32-word

14
SCCorEn
Specifies the method of correcting 
secondary cache data array ECC errors.

0
1

Retry access through corrector
Always access through corrector

15
MemEnd
Specifies the memory system endianness.

0
1

Little endian
Big endian

18:16
SCSize
Specifies the size of the secondary cache.

0
1
2
3
4
5
6
7

512 Kbyte
1 Mbyte
2 Mbyte
4 Mbyte
8 Mbyte
16 Mbyte
Reserved
Reserved

21:19

SCClkDiv
Sets PClk to SCClk ratio; determines the 
secondary cache clock frequency; see 
Chapter 7, the section titled “System 
Interface Clock and Internal Processor 
Clock Domains.”

0
1
2
3
4
5
6
7

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Reserved
Reserved

Reserved
Reserved
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Reserved
Result of division by 4

24:22 Reserved

0
1
2
3
4

5
6
7

Reserved
Reserved
Reserved
Reserved
Delay Speculative Dirty - 
fix for speculative store†

Reserved
Reserved
Reserved
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Table 8-1 (cont.)   Mode Bits

‡‡ For R12000A only. This setting is reserved in the R12000 and R12000L.

† The Boot Mode bit 24 corresponds to the Config register[24] bit and this controls DSD during user mode. However, the DSD mode can also be enabled in
the kernel mode by setting the Status register[24] bit. Config register[24] is read-only and can be set only at boot time.

If the DSD mode is set –

a) R12000 will not set the Dirty bit for a secondary cache block until the store instruction is the oldest in the Active List and is about to be executed. (An
interrupt could cause a case where the dirty bit is set (store is no longer speculative), but the store does not immediately graduate. We believe this case
should not cause any problem. This mode does prevent speculative stores from setting the dirty bit.)

b) This mode will have slightly lower performance due to the delay in the setting of the Dirty bit. This delay will occur just once per block refill from main
memory, when it is necessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the processor will continue to overlap execution of
other instructions. Once a block becomes dirty in secondary cache, this mode has no performance effect.

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

28:25

SCClkTap
Specifies the alignment†† of SCClk[5:0] 
and SCClk*[5:0] relative to the internal 
secondary cache clock.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

SCClk same phase as internal clock
SCClk 1/12 PClk period earlier than internal clock
SCClk 2/12 PClk period earlier than internal clock
SCClk 3/12 PClk period earlier than internal clock
SCClk 4/12 PClk period earlier than internal clock
SCClk 5/12 PClk period earlier than internal clock
undefined
undefined
SCClk 6/12 PClk period earlier than internal clock
SCClk 7/12 PClk period earlier than internal clock
SCClk 8/12 PClk period earlier than internal clock
SCClk 9/12 PClk period earlier than internal clock
SCClk 10/12 PClk period earlier than internal clock
SCClk 11/12 PClk period earlier than internal clock
undefined
undefined

29‡ Reserved 0

30‡

ODrainSys
Specifies whether or not to configure 
select††† System interface bidirectional 
and output signals as open drain.

0
1

Push-pull
Open drain

31
CTM
Specifies whether or not to enable cache 
test mode.

0
1

Disable
Enable

63:32 Reserved 0
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c) In this mode, a miss in secondary cache, due to a store instruction which is not already the oldest in the pipeline, will cause a refill to the “clean exclusive”
state. A hit to a shared line will immediately cause an upgrade to “clean exclusive”. Thus, bus operations (which are relatively slow) will still begin
speculatively.

Independent of the DSD mode, R12000 will delay a “cached, non-coherent” load until it is the oldest instruction. This change is implemented because a
speculative load accessing an unmapped “xkphys” address as “cached, non-coherent” might bring data into the secondary cache without the proper
coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cache lines in shared or clean states except the “xkphys” case described above.

†† Does not include the output buffer delay.

†††SysReq*, SysRel*, SysCmd[11:0], SysCmdPar, SysAD[63:0], SysADChk[7:0], SysVal*, SysState[2:0], SysStatePar, SysStateVal*, 
SysCorErr*, SysUncErr*

‡ In the R12000A, the Boot Mode bits 30:29 are assigned to HSTL Mode bits as below;

SysAD Bit Name and Function Value Mode Setting

29
HSTL Mode
Specifies the HSTL class of output pins on the secondary cache 
interface.

0
1

HSTL 1
HSTL 2

30
HSTL Mode
Specifies the HSTL class of output pins on the System interface.

0
1

HSTL 1
HSTL 2
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9. Error Protection and Handling

This chapter presents the error protection and handling features provided by the R10000 
processor.

Two types of errors can occur in an R10000 system:

• correctable

• uncorrectable

The following two sections describe them.
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9.1  Correctable Errors

Correctable errors consist of:

• secondary cache tag array correctable ECC errors

• secondary cache data array correctable ECC errors

• System interface address/data bus correctable ECC errors

When the processor detects a correctable error, the error is automatically corrected, and 
normal operation continues.  Secondary cache array scrubbing is not performed.

The processor informs the external agent that a correctable error was detected and then 
corrected by asserting the SysCorErr* signal for one SysClk cycle.
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9.2  Uncorrectable Errors

Uncorrectable errors consist of:

• Primary instruction cache array parity errors

• Primary data cache array parity errors

• Secondary cache tag array uncorrectable ECC errors

• Secondary cache data array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus uncorrectable ECC errors

• System interface response bus parity errors

When the processor detects an uncorrectable error, a Cache Error exception is posted.  In 
general, the detection of an uncorrectable error does not disrupt any ongoing operations.  
However, the instruction fetch and load/store units never use data which contains an 
uncorrectable error.

To inform the external agent, the processor asserts SysUncErr* for one SysClk cycle 
whenever any of the following uncorrectable errors are detected:

• Primary instruction cache tag array parity errors

• Primary data cache tag array parity errors

• Secondary cache tag array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus external address cycle uncorrectable ECC 
errors

• System interface response bus parity errors.

The processor informs the external agent that an uncorrectable tag error has been detected 
by asserting SysUncErr* for one SysClk cycle.
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9.3  Propagation of Uncorrectable Errors

The processor assists the external agent in limiting the propagation of uncorrectable errors 
in the following manner:

• During external block data response cycles, if the data quality indication on 
SysCmd(5) is asserted, or if an uncorrectable ECC error is encountered on the 
system address/data bus while the ECC check indication on SysCmd(0) is 
asserted, the processor intentionally corrupts the ECC of the corresponding 
secondary cache quadword after receiving an external ACK completion 
response.

• During processor data cycles, the processor asserts the data quality indication 
on SysCmd(5) if the data is known to contain uncorrectable errors.  The 
System interface ECC is never intentionally corrupted; the SysCmd(5) bit is 
used to indicate corrupted data.

• If an uncorrectable cache tag error is detected, the processor asserts 
SysUncErr* for one SysClk cycle.

• An external coherency request that detects a secondary cache tag array 
uncorrectable error asserts the secondary cache block tag quality indication on 
SysState(2) during the corresponding processor coherency state response.

• If an external coherency request requires a processor coherency data response, 
and a primary data cache tag parity error is encountered during the primary 
cache interrogation, or a secondary cache tag array uncorrectable error is 
encountered during the secondary cache interrogation, the processor asserts 
the data quality indication on SysCmd(5) for all doublewords of the 
corresponding processor coherency data response.
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9.4  Cache Error Exception

The processor indicates an uncorrectable error has occurred by asserting a Cache Error 
exception.

The following four internal units detect and report uncorrectable errors:

• instruction cache

• data cache

• secondary cache

• System interface

Each of these four units maintains a unique local CacheErr register.

A Cache Error exception is imprecise; that is, it is not associated with a particular 
instruction.  When any of the four units post a Cache Error exception, completed 
instructions are graduated before the Cache Error exception is taken.  If there are Cache 
Error exceptions posted from more than one of the units, the exceptions are prioritized in 
the following order: 

1. instruction cache

2. data cache

3. secondary cache

4. System interface.

The corresponding local CacheErr register is transferred to the CP0 CacheErr register and 
the CP0 Status register ERL bit is asserted.  Instruction fetching begins from 0xa0000100 
or 0xbfc00300, depending on the CP0 Status register BEV bit. The CP0 ErrorEPC register 
is loaded with the virtual address of the next instruction that has not been graduated, so that 
execution can resume after the Cache Error exception handler completes.

When ERL=1, the user address region becomes a 2-Gbyte uncached space mapped directly 
to the physical addresses.  This allows the Cache Error handler to save registers directly to 
memory without having to use a register to construct the address.

The processor does not support nested Cache Error exception handling.  While the CP0 
Status register ERL bit is asserted, any subsequent Cache Error exceptions are ignored.  
However, the detection of additional uncorrectable errors is not inhibited, and additional 
Cache Error exceptions may be posted.†

† The hardware does not handle the case of multiple Cache Error exceptions in any special
manner; caches are refilled as normal, and data forwarded to the appropriate functional units.
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9.5  CP0 CacheErr Register EW Bit

When a unit detects an uncorrectable error, it records information about the error in its local 
CacheErr register and posts a Cache Error exception. If a subsequent uncorrectable error 
occurs while waiting for the Cache Error exception to be taken and transfer of the local 
CacheErr register to the CP0 CacheErr register to complete, the EW bit is set in its local 
CacheErr register.  Once the Cache Error exception is taken, the EW bit in the CP0 
CacheErr register is set and the Cache Error exception handler now determines that a 
second error has occurred.

Once the CP0 CacheErr register EW bit is set, it can only be cleared by a reset sequence.

9.6  CP0 Status Register DE Bit

Asserting the CP0 Status register DE bit suppresses the posting of future Cache Error 
exceptions. All local CacheErr registers are also prevented from being updated.  Unlike the 
R4400 processor architecture, when the DE bit is asserted, cache hits are not inhibited when 
an uncorrectable error is detected.  Correctable errors are handled normally when the DE 
bit is set.

NOTE:  Be careful when setting this bit, since it may cause erroneous data and/or 
instructions to be propagated.

9.7  CACHE Instruction

Uncorrectable error protection is suppressed for the Index Load Tag, Index Store Tag, Index 
Load Data, and Index Store Data CACHE instruction variations.  These four variations may 
be used within a Cache Error exception handler to examine the cache tags and data without 
the occurrence of further uncorrectable errors.
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9.8  Error Protection Schemes Used by R10000

Error protection schemes used in the R10000 processor are:

• parity

• sparse encoding

• ECC

These schemes are described in this section, and listed in Table 9-1.

Table 9-1    Error Protection Schemes Used in the R10000 Processor

Parity

Parity is used to protect the primary caches and various System interface buses. The 
processor uses both odd and even parity schemes:

• in an odd parity scheme, the total number of ones on the protected data and 
the corresponding parity bit should be odd

• in an even parity scheme, the total number of ones on the protected data and 
the corresponding parity bit should be even.

Sparse Encoding

A sparse encoding is used to protect the primary data cache state mod array.  In such a 
scheme, valid encodings are chosen so that altering a single bit creates an invalid encoding.

ECC

An error correcting code (ECC) is used to protect the secondary cache tag, the secondary 
cache data, and the System interface address/data bus.  A distinct single-bit error correction 
and double-bit error detection (SECDED) code is used for each of these three applications.

Error Detection Used What is Protected

Parity
Primary caches
Secondary cache data
System interface buses

Sparse encoding Primary data cache state mod array

ECC (SECDED)
Secondary cache tag
Secondary cache data
System interface address/data bus
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9.9  Primary Instruction Cache Error Protection and Handling

This section describes error protection and error handling schemes for the primary 
instruction cache.

Error Protection

The primary instruction cache arrays have the following error protection schemes, as listed 
in Table 9-2. 

Table 9-2    Primary Instruction Cache Array Error Protection 

Error Handling

All primary instruction cache errors are uncorrectable.  If an error is detected, the 
instruction cache unit posts a Cache Error exception and initializes the D, TA, TS, and PIdx 
fields in the local CacheErr register (see Chapter 11, the section titled “CacheErr Register 
(27),” for more information).  If an error is detected on the tag address or state array, the 
processor informs the external agent that an uncorrectable tag error was detected by 
asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 27-bit Even parity

Tag State 1-bit Even parity

Data 36-bit Even parity

LRU 1-bit None
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9.10  Primary Data Cache Error Protection and Handling

This section describes error protection and error handling schemes for the primary data 
cache.

Error Protection

The primary data cache arrays have the following error protection schemes, as listed in 
Table 9-3.

Table 9-3    Primary Data Cache Array Error Protection 

Error Handling

All primary data cache errors are uncorrectable.  If an error is detected, the data cache unit 
posts a Cache Error exception and initializes the EE, D, TA, TS, TM, and PIdx fields in the 
local CacheErr register (see Chapter 11, the section titled “CacheErr Register (27),” for 
more information).  If an error is detected on the tag address, state, or mod array, the 
processor informs the external agent that an uncorrectable tag error was detected by 
asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 28-bit Even parity

Tag State 3-bit Even parity

Tag Mod 3-bit Sparse encoding

Data 8-bit Even parity

LRU 1-bit None
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9.11  Secondary Cache Error Protection and Handling

This section describes error protection and error handling schemes for the secondary cache.

Error Protection

The secondary cache arrays have the following error protection schemes, as listed in Table 
9-4.

Table 9-4    Secondary Cache Array Error Protection 

Error Handling

This section describes error handling for the data array and the tag array.   As shown in Table 
9-4, errors are not detected for the way prediction table. 

Data Array

The 128-bit wide secondary cache data array is protected by a 9-bit wide ECC.  An even 
parity bit for the 128 bits of data is used for rapid detection of correctable (single-bit) errors; 
when a correctable parity error is detected, the data is sent through the data corrector.  The 
parity bit does not have any logical effect on the processor’s ability to either detect or 
correct errors. 

Whenever the processor writes the secondary cache data array, it drives the proper ECC on 
SCDataChk(8:0) and even parity on SCDataChk(9).

Array Width Error Protection

Data 128-bit 9-bit ECC + even parity

Tag 26-bit 7-bit ECC

MRU (Way prediction table) 1-bit None
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Data Array in Correction Mode

The secondary cache operates in correction mode when the SCCorEn mode bit is asserted.  
Whenever the processor reads the secondary cache data array in correction mode, the data 
is sent through a data corrector.

If a correctable error is detected, in-line correction is automatically made without affecting 
latency.  The processor informs the external agent that a correctable error was detected and 
corrected by asserting SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error exception 
and initializes the D and SIdx fields in the local CacheErr register (see Chapter 11, the 
section titled “CacheErr Register (27),” for more information).

In correction mode, secondary-to-primary cache refill latency is increased by two PClk 
cycles.  Multiple processors, operating in a lock-step fashion, remain synchronized in the 
presence of secondary cache data array correctable errors.

Table 9-5 presents the ECC matrix for the secondary cache data array. 
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Check Bit 8 7654 3210

Data Bit 1111
2222
7654

1111
2222
3210

1111
1111
9876

1111
1111
5432

1111
1100
1098

1111
0000
7654

1111
0000
3210

9999
9876

9999
5432

9988
1098

8888
7654

8888
3210

7777
9876

7777
5432

7766
1098

6666
7654

6666
3210

5555
9876

5555
5432

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432

11
1098 7654 3210

Number of ones 
per row

54
53
54

1
0
0

0000
1000
0100

0000
0000
0000

1111
1111
1000

1111
1111
0011

0000
1111
1111

0011
1111
1111

1111
0000
1111

1111
0011
1111

1110
0000
0000

0011
1111
0011

0000
1111
0000

0110
1111
0101

1111
0000
0000

1111
0111
0011

0000
0000
1111

0111
0011
1111

0010
1011
0101

0001
0010
1100

0110
0001
1000

0010
0000
0000

1101
0000
1000

0000
1000
0100

1011
0100
0000

0000
1000
0100

1101
1100
1100

0000
1000
0100

0000
0000
0011

0000
0010
1000

0010
1001
0100

0000
0000
1000

0010
1001
0100

0000
0000
1000

1000
0010
0101

0000
0000
0000

53
53
53

0
0
0

0010
0001
0000

0000
0000
1000

0100
0010
0001

0010
0001
0000

1000
0100
0010

0000
0000
0011

1000
0100
0010

0000
0011
0000

0001
1111
1000

0010
1111
0001

1111
1000
0100

1100
0000
0100

1111
1000
0100

1011
0000
0000

1111
1000
0100

1100
0100
0110

0011
1111
1011

1111
1111
1111

1111
1111
1111

1101
1111
1100

0110
0010
0011

0010
0001
1111

0000
0000
1101

0010
0001
1111

0010
0000
0011

0010
0001
1111

1000
1111
0100

0101
1111
1100

0000
1100
0000

0100
0010
0001

1100
0000
0000

0100
0010
0001

0000
1000
0100

1000
0100
0010

54
53
54

0
0
0

0000
0000
0000    

0100
0010
0001

0000
0000
0000

1010
0100
0001

0001
0000
0000

0010
1001
0100

0001
0000
0000

0010
1001
0100

0001
0100
0010

1000
0100
0000

0010
0001
0000

0011
0011
1011

0010
0001
0000

0000
0010
1101

0010
0001
0000

0001
0000
1011

0000
0000
0100

0000
1000
0111

1011
0100
0000

1010
1101
0100

1111
1100
1110

1111
0000
0000

1100
1110
1111

0000
0000
1111

1010
1111
0110

0000
1111
0000

1101
1110
1100

0000
0000
0011

1111
1100
1111

1111
0000
1111

1111
1111
1100

1111
1111
0000

1100
1111
1111

0001
1111
1111

Number of ones 
per column

1 1111 1111 3333 3355 3333 3355 3333 3355 3333 3355 3333 3555 3333 3355 3333 3555 3355 5555 5555 5533 5553 3333 5533 3333 5553 3333 5533 3333 5533 3333 5533 3333 5533 3333
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Data Array in Noncorrection Mode

When the SCCorEn mode bit is negated, the secondary cache operates in noncorrection 
mode.  Whenever the processor reads the secondary cache data array in noncorrection 
mode, it checks for even parity on SCDataChk(9).  If a parity error is detected, it is 
assumed that a correctable error has occurred, and the secondary cache block is again read 
through a data corrector.  During this re-read, the processor checks the SCDataChk(8:0) 
bus for the proper ECC.

If a correctable error is detected, correction is automatically performed in-line. To inform 
the external agent that a correctable error had been detected and corrected, the processor 
asserts SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error exception 
and initializes the D and SIdx fields in the local CacheErr register.

Secondary cache data array correctable errors are monitored with Performance Counter 0.

Tag Array

The 26-bit-wide secondary cache tag array is protected by a 7-bit-wide ECC.
Table 9-6 presents the ECC matrix for the secondary cache tag array.

Table 9-6    ECC Matrix for Secondary Cache Tag Array  

Whenever the processor reads the secondary cache tag array, it checks the SCTagChk(6:0) 
bus for the proper ECC.  If a correctable error is detected, correction is automatically 
performed in-line, without affecting latency.  The processor asserts SysCorErr* for one 
SysClk cycle to inform the external agent that a correctable error has been detected and 
corrected.  If an uncorrectable error is detected, the secondary cache unit posts a Cache 
Error exception and initializes the TA and SIdx fields in the local CacheErr register.  The 
processor asserts SysUncErr* for one SysClk cycle to inform the external agent that an 
uncorrectable tag error has been detected.

Whenever the processor writes the secondary cache tag array, it drives the proper ECC on 
the SCTagChk(6:0) bus.

Check Bit 0 12 34 56

Data Bit 2
5

222
432

22
10

11
98

11
76

1111
5432

11
1098 7654 3210

Number of 
ones per row

11
13
11

0
0
1

0100
1000
0010

1000
0100
1000

1000
0100
0001

0001
0010
1000

1111
1111
0000

1000
1111
1111

1000
0000
0100

1000
0100
0010

11
13
12
14

1
0
1
0

0100
1000
0010
1111

0100
0001
0010
1100

0010
1000
0100
1100

0100
1000
0100
1100

1000
0100
0010
0001

0100
0000
0010
0001

1111
1111
0010
0001

0000
1111
1111
0001

Number of ones 
per column

3 3331 3311 3311 3311 3333 3333 3333 3333



User’s Manual  U10278EJ4V0UM 197

Chapter 9  Error Protection and Handling

9.12  System Interface Error Protection and Handling

This section describes error protection and error handling schemes for the System interface.

Error Protection

The System interface buses have the following error protection schemes, as listed in Table 
9-7.

Table 9-7    System Interface Bus Error Protection 

Bus Width Error Protection

SysCmd 12-bit Odd parity

SysAD 64-bit 8-bit ECC

SysState 3-bit Odd parity

SysResp 5-bit Odd parity
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Error Handling

This section describes error handling on the system command bus, system address/data bus, 
system state bus, and system response bus.

SysCmd(11:0) Bus

The 12-bit wide system command bus, SysCmd(11:0), is protected by odd parity.

Whenever the processor is in master state and it asserts SysVal* to indicate that it is driving 
valid information on the SysCmd(11:0) bus, it also drives odd parity on the SysCmdPar 
signal.

Whenever the processor is in slave state and an external agent asserts SysVal* to indicate 
that it is driving valid information on the SysCmd(11:0) bus, the processor checks the 
SysCmdPar signal for odd parity.  If a parity error is detected, the processor ignores the 
SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle. The System interface unit 
posts a Cache Error exception and sets the SC bit in the local CacheErr register.   
Additionally, the processor informs the external agent by asserting SysUncErr* for one 
SysClk cycle.

Caution:  By ignoring the SysCmd(11:0) and SysAD(63:0) buses, the processor to 
become unsynchronized with other processors or the external agent on the cluster 
bus.
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SysAD(63:0) Bus

The 64-bit wide system address/data bus, SysAD(63:0), is protected by an 8-bit-wide ECC.

Processor in Master State

Whenever the processor is in master state and it asserts SysVal* to indicate it is driving 
valid information on the SysAD(63:0) bus, it also drives the proper ECC on the 
SysADChk(7:0) bus.

Processor in Slave State

Whenever the processor is in slave state, error checking is enabled with the assertion of 
SysCmd(0), and an external agent asserts SysVal* to indicate it is driving valid information 
on the SysAD(63:0) bus, the processor checks the SysADChk(7:0) bus for the proper ECC.

Correctable Error Detected 

If a correctable error is detected during an external address cycle, or during an external data 
cycle for a processor read or upgrade request originated by the R10000 processor, 
correction is automatically performed in-line without affecting latency. The processor 
asserts SysCorErr* for one SysClk cycle to inform the external agent that a correctable 
error has been detected and corrected.

Uncorrectable Error Detected

If an uncorrectable error is detected during an external address cycle, the processor ignores 
the SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle, and the System interface 
unit posts a Cache Error exception and sets the SA bit in the local CacheErr register.  
Additionally, the processor informs the external agent by asserting SysUncErr* for one 
SysClk cycle.

Caution:  By ignoring the SysCmd(11:0) and SysAD(63:0) buses, this processor 
may become unsynchronized with other processors or the external agent on the 
cluster bus.

If an uncorrectable error is detected or the data quality indication on SysCmd(5) is asserted 
during an external data cycle for a processor read or upgrade request originated by the 
processor, the R10000 asserts the corresponding incoming buffer uncorrectable error flag.

When the processor forwards block data from an incoming buffer entry after receiving an 
external ACK completion response, the associated incoming buffer uncorrectable error 
flags are checked, and if any are asserted, the System interface unit posts a single Cache 
Error exception and initializes the EE, D, and SIdx fields in the local CacheErr register.

When the processor forwards double/single/partial-word data from an incoming buffer 
entry after receiving an external ACK completion response, the associated incoming buffer 
uncorrectable error flag is checked and, if asserted, the System interface unit posts a Bus 
Error exception.

Table 9-8 presents the ECC matrix for the System interface address/data bus.   This ECC 
matrix is identical to that used by the R4X00 System interface. 
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Table 9-8    ECC Matrix for System Interface Address/Data Bus  

Check Bit 43 52 70 61

Data Bit 6666
3210

55
98

5555
7654

55
32

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432

11
10 987654 3210

Number of 
ones per row

27
27
27
27

1111
1111
0000
0000

1100
1000
1000
1010

1100
1000
1100
0100

1000
1000
1010
1100

1000
0100
0010
0001

0000
0000
1111
1111

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

0000
1111
1111
0000

1010
1100
1000
1000

0100
1100
1000
1100

1000
1010
1100
1000

1000
0100
0010
0001

27
27
27
27

1000
0100
0010
0001

0101
1100
0100
0100

0011
0010
0011
0001

0100
0101
1100
0100

0000
1111
1111
0000

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1111
1111
0000
0000

1000
0100
0010
0001

1100
0100
0100
0101

0001
0011
0010
0011

0100
0100
0101
1100

0000
0000
1111
1111

Number of ones 
per column

3333 5511 3333 5511 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 5511 3333 5511 3333
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SysState(2:0) Bus

The 3-bit wide system state bus, SysState(2:0), is protected by odd parity.   The processor 
drives odd parity on the SysStatePar signal.

SysResp(4:0) Bus

The 5-bit wide system response bus, SysResp(4:0), is protected by odd parity.

Whenever an external agent asserts SysRespVal* to indicate it is driving valid information 
on the SysResp(4:0) bus, the processor checks the SysRespPar signal for odd parity.  If a 
parity error is detected, the processor ignores the SysResp(4:0) bus for one SysClk cycle. 
The System interface unit posts a Cache Error exception and sets the SR bit in the local 
CacheErr register.  Additionally, the processor informs the external agent by asserting 
SysUncErr* for one SysClk cycle.

Caution:  If the processor ignores the SysResp(4:0) bus, it may become 
unsynchronized with other processors or the external agent on the cluster bus.  Also, 
the processor will “hang” if a parity error is detected on the SysResp[4:0] bus during 
an external completion response cycle for a processor double/single/partial-word 
read request originated by the processor.  The external agent may initiate a Soft Reset 
sequence to obtain the contents of the CacheErr register, and the CacheErr register 
will indicate a System interface uncorrectable system response bus error.
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Protocol Observation

The processor continuously observes the protocol on the System interface.  
Table 9-9 presents the supported protocol observations and the associated error handling 
sequence. 

Table 9-9    Protocol Observation

Protocol Observation Error Handling

External response data cycle with an unexpected request number 
during an external block data response for a processor block read 
or upgrade request originated by the processor.

Ignore the external response data cycle

External block data response specifying a Reserved cache block 
state for a processor block read or upgrade request originated by 
the processor.

Override the cache block state to CleanExclusive

External block data response specifying a Shared cache block 
state for a processor coherent block read exclusive or upgrade 
request originated by the processor.

Override the cache block state to CleanExclusive

External completion response specifying a Reserved completion 
indication.

Ignore the external completion response

External ACK completion response for a processor read request 
originated by the processor that has not received an external data 
response.

Override the external ACK completion response to a 
NACK
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10. JTAG Interface Operation

The JTAG interface is implemented according to the standard IEEE 1149.1 test access port 
protocol specifications.

The JTAG interface accesses the JTAG controller and instruction register as well as a 
boundary scan register.  The JTAG operation does not require DCOk to be asserted or 
SysClk to be running; however, if DCOk is asserted the SysClk must run at the specified 
minimum frequency or the core logic may be damaged.
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10.1  Test Access Port (TAP)

The test access port (TAP) consists of four interface signals.  These signals are used to 
control the serial loading and unloading of instructions and test data, as well as to execute 
tests.

The TAP consists of the following signals:

JTDI: Serial data input (Input signal)

JTDO: Serial data output (Output signal)

JTMS: Mode select (Input signal)

JTCK: Clock (Input signal)

JTRST: Reset input (Input signal, active low)

The timing and the relationship of the TAP signals follows the IEEE 1149.1 standard 
protocol.

TAP Controller (Input)

The R10000 processor implements the 16-state TAP controller specified by the IEEE 
1149.1 standard in the following manner:

• The JTMS signal operates the state machine synchronized by the JTCK 
signal.

• The TAP controller is reset by keeping the JTMS signal asserted through five 
consecutive edges of JTCK.  This reset condition sets the reset state of the 
controller.

• In the R12000, the TAP controller is also reset by asserting SysReset*.  This 
pin must not be asserted while using the boundary scan register.

• In the R12000A, the TAP controller is also reset by asserting JTRST. This 
signal can be asserted asynchronously.
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10.2  Instruction Register

The JTAG instruction register is four bits wide, permitting a total of 16 instructions to 
control the selection of the bypass register, the boundary scan register, and other data 
registers.

The encoding of the instruction register is given in Table 10-1:

Table 10-1    JTAG Instruction Register Encoding 

The 0001 value is provided to represent sample-preload, but also selects the boundary scan 
register.

During a reset of the TAP controller, the value 1111 is loaded into the parallel output of the 
instruction register, thus selecting the bypass register as the default.

During the Shift-IR state of the TAP controller, data is shifted serially into the instruction 
register from JTDI, and the LSB of the instruction register is shifted out onto JTDO.

During the Update-IR state, the current state of the instruction register is shifted to its 
parallel output for decoding.

10.3  Bypass Register

The bypass register is 1 bit wide.

When the bypass register is selected and the TAP controller is in the Shift-DR state, data on 
JTDI is shifted into the bypass register and the output of the bypass register is shifted out 
onto JTDO.

MSB...LSB Selected Data Register

 0000
 0001

Boundary Scan Register
Sample - Preload

 0010
   to

 1110
Data Register (not used)

 1111 Bypass Register
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10.4  Boundary Scan Register

The bypass register is 1 bit wide.

The boundary scan data register is selected by loading 0000 into the instruction register.  
The Shift-DR, Update-DR, and Capture-DR states of the TAP controller are used to operate 
the boundary scan register according to the IEEE 1149.1 standard specifications.

The boundary scan register provides serial access to each of the processor interface pins, as 
shown in Figure 10-1.  Hence, the boundary scan register can be used to load and observe 
specific logic values on the processor pins.

Figure 10-1    JTAG Boundary Scan Cells

The main application of the boundary scan register is board-level interconnect testing.

The use of the boundary scan register for applying data to and capturing data from the 
internal microprocessor circuitry is not supported.

The boundary scan register list for rev 1.2 of the fab is given in Table 10-2. The TriState 
signal will be eliminated from the BSR in rev 2.0 of the fab, and beyond.

An additional bit is provided in the boundary scan register to control the direction of 
bidirectional pins.  As it is loaded through JTDI, this bit is the first bit in the boundary scan 
chain.  The logic value of this bit is latched during the Update-DR state, and sets the 
direction of all bidirectional pins as follows:

The value is set to 0 during reset, setting all bidirectional pins to input prior to any boundary 
scan operations.

Value Direction

0 Input

1 Output

Boundary scan cells

IC package pin

Integrated 
Circuit 
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Table 10-2    Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
1. SCDataChk[1] 2. SCData[63] 3. SCData[62] 4. SCData[61] 5. SCData[60] 6. SCData[59]

7. SCData[58] 8. SCData[57] 9. SCData[56] 10. SCData[55] 11. SCData[54] 12. SCData[53]

13. SCData[52] 14. SCData[51] 15. SCData[50] 16. SCData[49] 17. SCData[48] 18. SCData[47]

19. SCData[46] 20. SCData[45] 21. SCData[44] 22. SCData[43] 23. SCData[42] 24. SCData[41]

25. SCData[40] 26. SCData[39] 27. SCData[38] 28. SCData[37] 29. SCData[36] 30. SCData[35]

31. SCData[34] 32. SCData[33] 33. SCData[32] 34. SysAD[0] 35. SysAD[1] 36. SysAD[2]

37. SysAD[3] 38. SysAD[4] 39. SysAD[5] 40. SysAD[6] 41. SysAD[7] 42. SysAD[8]

43. SysAD[9] 44. SysAD[10] 45. SysAD[11] 46. SysAD[12] 47. SysAD[13] 48. SysAD[14]

49. SysAD[15] 50. SCData[0] 51. SCData[1] 52. SCData[2] 53. SCData[3] 54. SCData[4]

55. SCData[5] 56. SCData[6] 57. SCData[7] 58. SCData[8] 59. SCData[9] 60. SCData[10]

61. SCData[11] 62. SCData[12] 63. SCData[13] 64. SCData[14] 65. SCData[15] 66. SCData[16]

67. SCData[17] 68. SCData[18] 69. SCData[19] 70. SCData[20] 71. SCData[21] 72. SCData[22]

73. SCData[23] 74. SCData[24] 75. SCData[25] 76. SCData[26] 77. SCData[27] 78. SCData[28]

79. SCData[29] 80. SCData[30] 81. SCData[31] 82. SCDataChk[0] 83. SCAAddr[18] 84. SCAAddr[17]

85. SCAAddr[16] 86. SCAAddr[15] 87. SCAAddr[14] 88. SCAAddr[13] 89. SCAAddr[12] 90. SCAAddr[11]

91. SCAAddr[10] 92. SCAAddr[9] 93. SCDataChk[2] 94. SCDataChk[4] 95. SCData[64] 96. SCData[65]

97. SCData[66] 98. SCData[67] 99. SCData[68] 100. SCData[69] 101. SCData[70] 102. SCData[71]

103. SCDataChk[9] 104. SysCyc* 105. SysAD[32] 106. SysAD[33] 107. SysAD[34] 108. SysAD[35]

109. SysAD[36] 110. SysAD[37] 111. SysAD[38] 112. SysAD[39] 113. SysAD[40] 114. SysAD[41]

115. SysAD[42] 116. SysAD[43] 117. SysAD[44] 118. SysAD[45] 119. SysAD[46] 120. SysAD[47]

121. SCData[72] 122. SCData[73] 123. SCData[74] 124. SCData[75] 125. SCData[76] 126. SCData[77]

127. SCData[78] 128. SCData[79] 129. SCAAddr[0] 130. SCAAddr[1] 131. SCAAddr[2] 132. SCAAddr[3]

133. SCAAddr[4] 134. SCAAddr[5] 135. SCAAddr[6] 136. SCAAddr[7] 137. SCAAddr[8] 138. SCADWay

139. SCADCS* 140. SCADOE* 141. SCADWr* 142. SCData[80] 143. SCData[81] 144. SCData[82]

145. SCData[83] 146. SCData[84] 147. SCData[85] 148. SCData[86] 149. SCData[87] 150. SCData[88]

151. SCData[89] 152. SCData[90] 153. SCData[91] 154. SCData[92] 155. SCData[93] 156. SCData[94]

157. SCData[95] 158. SCDataChk[6] 159. SCDataChk[8] 160. Spare1 161. SCTCS* 162. SCTOE*

163. SCTWr* 164. SCTag[25] 165. SCTag[24] 166. SCTag[23] 167. SCTag[22] 168. SCTag[21]

169. SCTag[20] 170. SCTag[19] 171. SCTag[18] 172. SCTag[17] 173. SCTag[16] 174. SCTag[15]

175. SCTag[14] 176. SCTag[13] 177. SCTag[12] 178. SCTag[11] 179. SCTag[10] 180. SCTag[9]

181. SCTag[8] 182. SCTag[7] 183. SCTag[6] 184. SCTag[5] 185. SCTag[4] 186. SCTag[3]

187. SCTag[2] 188. SCTag[1] 189. SCTag[0] 190. SCTagLSBAddr 191. TriState‡ 192. SCTWay

193. SCTagChk[6] 194. SCTagChk[5] 195. SCTagChk[4] 196. SCTagChk[3] 197. SCTagChk[2] 198. SCTagChk[1]

199. SCTagChk[0] 200. SysCmd[0] 201. SysCmd[1] 202. SysCmd[2] 203. SysCmd[3] 204. SysCmd[4]

205. SysCmd[5] 206. SysCmd[6] 207. SysCmd[7] 208. SysCmd[8] 209. SysCmd[9] 210. SysCmd[10]

211. SysCmd[11] 212. SysCmdPar 213. SysVal* 214. SysReq* 215. SysRel* 216. SysGnt*

217. SysReset* 218. SysRespVal* 219. SysRespPar 220. SysResp[4] 221. SysResp[3] 222. SysResp[2]

223. SysResp[1] 224. SysResp[0] 225. SysGblPerf* 226. SysRdRdy* 227. SysWrRdy* 228. SysStateVal*

229. SysStatePar 230. SysState[2] 231. SysState[1] 232. SysState[0] 233. SysCorErr* 234. SysUncErr*

235. SysNMI* 236. SCDataChk[7] 237. SCDataChk[5] 238. SCData[127] 239. SCData[126] 240. SCData[125]

241. SCData[124] 242. SCData[123] 243. SCData[122] 244. SCData[121] 245. SCData[120] 246. SCData[119]

247. SCData[118] 248. SCData[117] 249. SCData[116] 250. SCData[115] 251. SCData[114] 252. SCData[113]
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Table 10-2 (cont.)   Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
253. SCData[112] 254. SCBDWr* 255. SCBDOE* 256. SCBDCS* 257. SCBDWay 258. SCBAddr[8]

259. SCBAddr[7] 260. SCBAddr[6] 261. SCBAddr[5] 262. SCBAddr[4] 263. SCBAddr[3] 264. SCBAddr[2]

265. SCBAddr[1] 266. SCBAddr[0] 267. SCData[111] 268. SCData[110] 269. SCData[109] 270. SCData[108]

271. SCTag[8] 272. SCTag[7] 273. SCTag[6] 274. SCTag[5] 275. SCTag[4] 276. SCTag[3]

277. SCTag[2] 278. SCTag[1] 279. SCTag[0] 280. SCTagLSBAddr 281. TriState‡ 282. SCTWay

283. SCTagChk[6] 284. SCTagChk[5] 285. SCTagChk[4] 286. SCTagChk[3] 287. SCTagChk[2] 288. SCTagChk[1]

289. SCTagChk[0] 290. SysCmd[0] 291. SysCmd[1] 292. SysCmd[2] 293. SysCmd[3] 294. SysCmd[4]

295. SysCmd[5] 296. SysCmd[6] 297. SysCmd[7] 298. SysCmd[8] 299. SysCmd[9] 300. SysCmd[10]

301. SysCmd[11] 302. SysCmdPar 303. SysVal* 304. SysReq* 305. SysRel* 306. SysGnt*

307. SysReset* 308. SysRespVal* 309. SysRespPar 310. SysResp[4] 311. SysResp[3] 312. SysResp[2]

313. SysResp[1] 314. SysResp[0] 315. SysGblPerf* 316. SysRdRdy* 317. SysWrRdy* 318. SysStateVal*

319. SysStatePar 320. SysState[2] 321. SysState[1] 322. SysState[0] 323. SysCorErr* 324. SysUncErr*

325. SysNMI* 326. SCDataChk[7] 327. SCDataChk[5] 328. SCData[127] 329. SCData[126] 330. SCData[125]

331. SCData[124] 332. SCData[123] 333. SCData[122] 334. SCData[121] 335. SCData[120] 336. SCData[119]

337. SCData[118] 338. SCData[117] 339. SCData[116] 340. SCData[115] 341. SCData[114] 342. SCData[113]

343. SCData[112] 344. SCBDWr* 345. SCBDOE* 346. SCBDCS* 347. SCBDWay 348. SCBAddr[8]

349. SCBAddr[7] 350. SCBAddr[6] 351. SCBAddr[5] 352. SCBAddr[4] 353. SCBAddr[3] 354. SCBAddr[2]

355. SCBAddr[1] 356. SCBAddr[0] 357. SCData[111] 358. SCData[110] 359. SCData[109] 360. SCData[108]

361. SCData[107] 362. SCData[106] 363. SCData[105] 364. SCData[104] 365. SysAD[63] 366. SysAD[62]

367. SysAD[61] 368. SysAD[60] 369. SysAD[59] 370. SysAD[58] 371. SysAD[57] 372. SysAD[56]

373. SysAD[55] 374. SysAD[54] 375. SysAD[53] 376. SysAD[52] 377. SysAD[51] 378. SysAD[50]

379. SysAD[49] 380. SysAD[48] 381. SysADChk[7] 382. SysADChk[6] 383. SysADChk[5] 384. SysADChk[4]

385. SysADChk[3] 386. SysADChk[2] 387. SysADChk[1] 388. SysADChk[0] 389. SysAD[31] 390. SysAD[30]

391. SysAD[29] 392. SysAD[28] 393. SysAD[27] 394. SysAD[26] 395. SysAD[25] 396. SysAD[24]

397. SysAD[23] 398. SysAD[22] 399. SysAD[21] 400. SysAD[20] 401. SysAD[19] 402. SysAD[18]

403. SysAD[17] 404. SysAD[16] 405. SCData[103] 406. SCData[102] 407. SCData[101] 408. SCData[100]

409. SCData[99] 410. SCData[98] 411. SCData[97] 412. SCData[96] 413. SCDataChk[3] 414. SCBAddr[9]

415. SCBAddr[10] 416. SCBAddr[11] 417. SCBAddr[12] 418. SCBAddr[13] 419. SCBAddr[14] 420. SCBAddr[15]

421. SCBAddr[16] 422. SCBAddr[17] 423. SCBAddr[18]
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11. Coprocessor 0

This chapter describes the Coprocessor 0 operation, concentrating on the CP0 register 
definitions and the R10000 processor implementation of CP0 instructions.

The Coprocessor 0 (CP0) registers control the processor state and report its status.  These 
registers can be read using MFC0 instructions and written using MTC0 instructions.  CP0 
registers are listed in Table 11-1. 
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Table 11-1    Coprocessor 0 Registers 

Coprocessor 0 instructions are enabled if the processor is in Kernel mode, or if bit 28 (CU0) 
is set in the Status register.  Otherwise, executing one of these instructions generates a 
Coprocessor 0 Unusable exception.

Register No. Register Name Description

0 Index Programmable register to select TLB entry for reading or writing

1 Random Pseudo-random counter for TLB replacement

2 EntryLo0 Low half of TLB entry for even VPN (Physical page number)

3 EntryLo1 Low half of TLB entry for odd VPN (Physical page number)

4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode

5 PageMask Mask that sets the TLB page size

6 Wired Number of wired TLB entries (lowest TLB entries not used for random replacement)

7 Undefined Undefined

8 BadVAddr Bad virtual address

9 Count Timer count

10 EntryHi High half of TLB entry (Virtual page number and ASID)

11 Compare Timer compare

12 Status Processor Status Register

13 Cause Cause of the last exception taken

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration Register (secondary cache size, etc.)

17 LLAddr Load Linked memory address

18 WatchLo Memory reference trap address (low bits Adr[39:32])

19 WatchHi Memory reference trap address (high bits Adr[31:3])

20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode

21 FrameMask Mask the physical addresses of entries which are written into the TLB

22 Diagnostic Branch diagnostic register

23 Undefined Undefined

24 Undefined Undefined

25 Performance Counter Performance count and control

26 ECC Secondary cache ECC and primary cache parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register - low bits

29 TagHi Cache Tag register - high bits

30 ErrorEPC Error Exception Program Counter
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11.1  Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an entry in the 
TLB.  The high-order bit of the register shows the success or failure of a TLB Probe (TLBP) 
instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB 
Write Index (TLBWI) instructions.

Figure 11-1 shows the format of the Index register; Table 11-2 describes the Index register 
fields.

Figure 11-1    Index Register

Table 11-2    Index Register Field Descriptions

Field Description

P
Probe failure.  Set to 1 when the previous TLBProbe (TLBP) 
instruction was unsuccessful.

Index
Index to the TLB entry affected by the TLBRead and 
TLBWrite instructions

0
Reserved.   Must be written as zeroes, and returns zeroes when 
read.

Index Register

31 

1

30 6 5 0

25 6

    IndexP 0
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11.2  Random Register (1)

The Random register is a read-only register of which six bits index an entry in the TLB.  
This register decrements when any instruction graduates at that particular cycle, and its 
values range between an upper and a lower bound, as follows:

• The lower bound is set by the number of TLB entries reserved for exclusive 
use by the operating system (the contents of the Wired register).

• The upper bound is set by the total number of TLB entries minus 1 
(64 – 1 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write 
Random instruction.  The register does not need to be read for this purpose; however, the 
register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon system 
reset.  This register is also set to the upper bound when the Wired register is written. 

Figure 11-2 shows the format of the Random register; Table 11-3 describes the Random 
register fields.

Figure 11-2    Random Register

Table 11-3    Random Register Field Descriptions

Field Description

Random TLB Random index

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

Random Register
31 6 5 0

26 6

    Random0



User’s Manual  U10278EJ4V0UM 213

Chapter 11  Coprocessor 0

11.3  EntryLo0 (2) and EntryLo1 (3) Registers

The EntryLo register consists of two registers with identical formats: 

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers.   They hold the physical page 
frame number (PFN) of the TLB entry for even and odd pages, respectively, when 
performing TLB read and write operations.   Figure 11-3 shows the format of these 
registers. 

Figure 11-3    Fields of the EntryLo0 and EntryLo1 Registers

Table 11-4    Description of EntryLo Registers’ Fields  

Field Description

UC Uncached attribute

PFN Page frame number; the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D
Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. 
This bit is actually a write-protect bit that software can use to prevent 
alteration of data.

V
Valid.  If this bit is set, it indicates that the TLB entry is valid; otherwise, 
a TLBL or TLBS invalid exception occurs.

G
Global. If this bit is set in both Lo0 and Lo1, then the processor ignores 
the ASID during TLB lookup.

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

G
   28

63 

PFN C VD

3 1 1 1

0

EntryLo0 and EntryLo1 Registers

34 33 01235662 

UC

61
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The PFN fields of the EntryLo0 and EntryLo1 registers span bits 33:6 of the 40-bit physical 
address.

Two additional bits for the mapped space’s uncached attribute can be loaded into bits 63:62 
of the EntryLo register, which are then written into the TLB with a TLB Write.  During the 
address cycle of processor double/single/partial-word read and write requests, and during 
the address cycle of processor uncached accelerated block write requests, the processor 
drives the uncached attribute on SysAD[59:58].  The same EntryLo registers are used for 
the 64-bit and 32-bit addressing modes.  In both modes the registers are 64 bits wide, 
however when the MIPS III ISA is not enabled (32-bit User and Supervisor modes) only 
the lower 32 bits of the EntryLo registers are accessible.

MIPS III is disabled when the processor is in 32-bit Supervisor or User mode.  Loading of 
the integer registers is limited to bits 31:0, sign-extended through bits 63:32.  
EntryLo[33:31] or PFN[39:38] can only be set to all zeroes or all ones.  In 32- and 64-bit 
modes, the UC and PFN bits of both EntryLo registers are written into the TLB.  The PFN 
bits can be masked by setting bits in the FrameMask register (described in this chapter) but 
the UC bits cannot be masked or initialized in 32-bit User or Supervisor modes.  In 32-bit 
Kernel mode, MIPS III is enabled and 64-bit operations are always available to program the 
UC bits.

There is only one G bit per TLB entry, and it is written with EntryLo0[0] and EntryLo1[0] 
on a TLB write. 
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11.4  Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the page 
table entry (PTE) array; this array is an operating system data structure that stores virtual-
to-physical address translations.

When there is a TLB miss, the CPU loads the TLB with the missing translation from the 
PTE array.  Normally, the operating system uses the Context register to address the current 
page map which resides in the kernel-mapped segment, kseg3.  The Context register 
duplicates some of the information provided in the BadVAddr register, but the information 
is arranged in a form that is more useful for a software TLB exception handler.

Figure 11-4 shows the format of the Context register; Table 11-5 describes the Context 
register fields. 

Figure 11-4    Context Register Format

Table 11-5    Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB 
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair.  For a 
4-Kbyte page size, this format can directly address the pair-table of 8-byte PTEs.  For other 
page and PTE sizes, shifting and masking this value produces the appropriate address.

Field Description 

BadVPN2
This field is written by hardware on a miss.  It contains the 
virtual page number (VPN) of the most recent virtual address 
that did not have a valid translation.

0
Reserved. Must be written as zeroes, and returns zeroes when 
read.

PTEBase

This field is a read/write field for use by the operating system.  
It is normally written with a value that allows the operating 
system to use the Context register as a pointer into the current 
PTE array in memory.

Context Register 

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0
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11.5  PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; 
it holds a comparison mask that sets the variable page size for each TLB entry, as shown in 
Table 11-6.  Format of the register is shown in Figure 11-5.

TLB read and write operations use this register as either a source or a destination; when 
virtual addresses are presented for translation into physical address, the corresponding bits 
in the TLB identify which virtual address bits among bits 24:13 are used in the comparison.  
When the Mask field is not one of the values shown in Table 11-6, the operation of the TLB 
is undefined.  The 0 field is reserved; it must be written as zeroes, and returns zeroes when 
read.

Figure 11-5    PageMask Register

Table 11-6    Mask Field Values for Page Sizes

Page Size
(Mask)

Bit 

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

   12

31

13

0

MASK
7

25 24 13 12
PageMask Register

                   

0 0
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11.6  Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the wired and 
random entries of the TLB as shown in Figure 11-6.  Wired entries are fixed, 
nonreplaceable entries, which cannot be overwritten by a TLB write operation.  Random 
entries can be overwritten.

Figure 11-6    Wired Register Boundary

The Wired register is set to 0 upon system reset.  Writing this register also sets the Random 
register to the value of its upper bound (see Random register, above).  Figure 11-7 shows 
the format of the Wired register; Table 11-7 describes the register fields.

Figure 11-7    Wired Register

Table 11-7    Wired Register Field Descriptions

Field Description

Wired TLB Wired boundary

0
Reserved.  Must be written as zeroes, and returns zeroes 
when read.

63

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

This entry is Random, not Wired

Wired Register 
31 6 5 0

26 6

    Wired0
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11.7  BadVAddr Register (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most 
recent virtual address that caused either a TLB or Address Error exception.  The BadVAddr 
register remains unchanged during Soft Reset, NMI, or Cache Error exceptions.  Otherwise, 
the architecture leaves this register undefined.

Figure 11-8 shows the format of the BadVAddr register.

Figure 11-8    BadVAddr Register Format

11.8  Count and Compare Registers (9 and 11)

The Count and Compare registers are 32-bit read/write registers whose formats are shown 
in Figure 11-9.

The Count register acts as a real-time timer.  Like the R4400 implementation, the R10000 
Count register is incremented every other PClk cycle.  However, unlike the R4400, the 
R10000 processor has no Timer Interrupt Enable boot-mode bit, so the only way to disable 
the timer interrupt is to negate the interrupt mask bit, IM[7], in the Status register.  This 
means the timer interrupt cannot be disabled without also disabling the Performance 
Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular time, and 
is continually compared to the Count register.  Whenever their values equal, the interrupt 
bit IP[7] in the Cause register is set.  This interrupt bit is reset whenever the Compare 
register is written.

.

Figure 11-9    Count and Compare Registers
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11.9  EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write 
operations. 

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write 
Indexed, and TLB Read Indexed instructions.

Figure 11-10 shows the format of this register and Table 11-8 describes the register’s fields.

Figure 11-10    EntryHi Register

Table 11-8    EntryHi Register Fields  

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit virtual address. 

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used, so the 
format remains the same as in the R4400 processor’s 32-bit addressing mode.  The FILL 
field is ignored on write and read as zeroes, as it was in the R4400 implementation.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi 
register is loaded with the virtual page number (VPN2) and the ASID of the virtual address 
that did not have a matching TLB entry.

Field Description

VPN2
Virtual page number divided by two (maps to two pages); upper bits of 
the virtual address

ASID
Address space ID field.  An 8-bit field that lets multiple processes share 
the TLB; each process has a distinct mapping of otherwise identical 
virtual page numbers.

R
Region. (00 → user, 01 → supervisor, 11 → kernel) used to match 
vAddr63...62

Fill Reserved.  0 on read; ignored on write.

0 Reserved.  Must be written as zeroes, and returns zeroes when read.

EntryHi Register
63

VPN2
   31

0

5 8

ASID
1213 8 7

0
2
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11.10  Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode, interrupt 
enabling, and the diagnostic states of the processor.  The following list describes the more 
important Status register fields; Figure 11-11 shows the format of the entire register, and 
Table 11-10 describes the Status register fields.

Some of the important fields include:

• The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible 
coprocessors.  Regardless of the CU0 bit setting, CP0 is always usable in 
Kernel mode.  The XX bit enables the MIPS IV ISA in User mode.

• By default, the R10000 processor implements the same user instruction set as 
the R4400 processor. To enable execution of the MIPS IV instructions in User 
mode, the MIPS IV User Mode bit, (XX) of the CP0 Status register must be 
set.

The MIPS IV instruction extension uses COP1X as the opcode; this designation 
was COP3 in the R4400 processor.  For this reason the CU3 bit is omitted in the 
R10000 processor, and is used as the XX bit.  In Kernel and Supervisor modes, the 
state of the XX bit is ignored, and MIPS IV instructions are always available.

Mode bit settings are shown in Table 11-9; dashes in the table represent don’t 
cares.

Table 11-9    ISA and Status Register Settings for User, Supervisor and 
Kernel Mode Operations 

NOTE:  Operation with the MIPS IV ISA does not assume or require that the MIPS 
III instruction set or 64-bit addressing be enabled —  KX, SX and UX may all be set to 
zero.

Mode UX SX KX XX MIPS II MIPS III MIPS IV

User

0 - - 0 Yes No No

0 - - 1 Yes No Yes

1 - - 0 Yes Yes No

1 - - 1 Yes Yes Yes

Supervisor
- 0 - - Yes No Yes

- 1 - - Yes Yes Yes

Kernel - - - - Yes Yes Yes
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• The Reduced Power (RP) bit is reserved and should be zero.  The R10000 
processor does not define a reduced power mode.

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine.  
The processor can be configured as either little-endian or big-endian at system 
reset; reverse-endian selection is available in Kernel and Supervisor modes, 
and in the User mode when the RE bit is 0.  Setting the RE bit to 1 inverts the 
User mode endianness.

• The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the 
cache and virtual memory system.  This field is described in Table 11-11 and 
Figure 11-12.

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt 
conditions.  Interrupts must be enabled before they can be asserted, and the 
corresponding bits are set in both the Interrupt Mask field of the Status 
register and the Interrupt Pending field of the Cause register.

• The processor mode is undefined if the KSU field is set to 3 (112). The 
R10000 processor implements this as User mode.

  

Figure 11-11    Status Register
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Status Register Fields

Table 11-10 describes the Status register fields.

Table 11-10    Status Register Fields

Field Description

XX
Enables execution of MIPS IV instructions in User mode.

1 → MIPS IV instructions usable
0 → MIPS IV instructions unusable

CU

Controls the usability of each of the four coprocessor unit 
numbers.  CP0 is always usable when in Kernel mode, regardless 
of the setting of the CU0 bit.

1 → usable
0 → unusable

RP
In the R4400 processor, this bit enables reduced-power operation 
by reducing the internal clock frequency.  In the R10000 
processor, this bit should be set to zero.

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 11-12).

IM

Interrupt Mask: controls the enabling of each of the external, 
internal, and software interrupts.  An interrupt is taken if interrupts 
are enabled, and the corresponding bits are set in both the Interrupt 
Mask field of the Status register and the Interrupt Pending field of 
the Cause register. 

0 → disabled
1 → enabled

KX

Enables 64-bit addressing in Kernel mode.  The extended-
addressing TLB refill exception is used for TLB misses on kernel 
addresses.

0 → 32-bit
1 → 64-bit

SX

Enables 64-bit addressing and operations in Supervisor mode.  The 
extended-addressing TLB refill exception is used for TLB misses 
on supervisor addresses.

0 → 32-bit
1 → 64-bit

UX

Enables 64-bit addressing and operations in User mode.  The 
extended-addressing TLB refill exception is used for TLB misses 
on user addresses.

0 → 32-bit
1 → 64-bit
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Table 11-10 (cont.)   Status Register Fields

Diagnostic Status Field

The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache and 
virtual memory system.  This field is described in Table 11-11 and shown Figure 11-12.

Some of the important DS fields include:

• In the R4400, the TS bit of the diagnostic field indicates a TLB shutdown has 
occurred due to matching of multiple virtual page entries during address 
translation.  In the R10000 processor, the TS bit indicates a TLB write has 
introduced an entry that would allow matching of more than one virtual page 
entry during translation.  In this case, the TLB entries that allow the multiple 
matches, even in the Wired area, are invalidated before the new TLB entry is 
written. This prevents multiple matches during address translation.

The TS bit is updated for each TLB write. It can also be read and written by 
software (in the R4400, the TS bit is read-only); to clear the TS bit one needs to 
write a 0 into it.  As in the R4400, Reset/Soft Reset/NMI exceptions also clear the 
TS bit.

• The NMI bit is new to the R10000 processor; it distinguishes between Soft 
Reset and NMI exceptions. Both exceptions set the SR bit to 1; the NMI 
exception sets the NMI bit to 1, whereas the Soft Reset exception sets it to 0.

• The CE bit is reserved in the R10000 processor and should be a 0.

Field Description

KSU

Mode bits
112  → Undefined (implemented as User mode)
102  → User
012  → Supervisor
002  → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or 
Cache Error exception are taken.

0  → normal
1  → error

EXL

Exception Level; set by the processor when any exception other 
than Reset, Soft Reset, NMI, or Cache Error exception are taken.

0  → normal
1  → exception

IE
Interrupt Enable

0  → disable all interrupts
1 → enables all interrupts



Chapter 11  Coprocessor 0

224 User’s Manual  U10278EJ4V0UM

Figure 11-12    Diagnostic Status Field

Table 11-11    Status Register Diagnostic Status Bits

Bit Description

DSD

Specifies DSD mode (R12000 only). If this bit is set, the R12000 
will not set the Dirty bit for a secondary cache block until the store 
instruction is the oldest in the Active List and is about to be 
executed.

0 → normal
1 → delay speculative dirty (fix for speculative store)

BEV
Controls the location of TLB refill and general exception vectors.

0 → normal
1 → bootstrap

TS

This bit is set when a TLB write presents an entry that matches any 
other virtual page entry in the TLB.  Should this occur, any TLB 
entries that allow multiple matches, even in the Wired area, are 
invalidated before this new entry can be written into the TLB.  This 
prevents multiple matches during address translation.

0 → normal
1 → TLB shutdown has occurred.

SR 1 → Indicates a Soft Reset or NMI exception.

NMI
1 → Indicates a nonmaskable interrupt has occurred.  Used to 
distinguish between a Soft Reset and a nonmaskable interrupt in a 
Soft Reset exception.

CH

Hit (tag match and valid state) or miss indication for last CACHE 
Hit Invalidate, Hit Write Back Invalidate for a secondary cache.

0 → miss
1 → hit

CE Reserved in the R10000, and should be set to 0.

DE
Specifies that cache parity or ECC errors cannot cause exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved.   Must be written as zeroes, and returns zeroes when read.

24 22 21 20 19 18 17 16

TS SR CH CE DE

1 1 1 1 1 1 1

BEV

23

1

0* NMI0

1

* For R10000. This bit is used as DSD bit in the R12000.
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Coprocessor Accessibility

Three Status register CU bits control coprocessor accessibility: CU0, CU1, and CU2 enable 
coprocessors 0, 1, and 2, respectively.  If a coprocessor is unusable, any instruction that 
accesses it generates an exception.

The following describes the coprocessor implementations and operations on the R10000:

• Coprocessor 0 is always enabled in kernel mode, regardless of the CU0 bit. 

• Coprocessor 1 is the floating-point coprocessor.  If CU1 is 0 (disabled), all 
floating-point instructions generate a Coprocessor Unusable exception.  In 
MIPS IV, the COP3 instruction is replaced with a second floating-point 
instruction, COP1X.  In addition, new functions are added to COP1 (see 
VR5000, VR10000 INSTRUCTION User’s Manual).  The floating-point 
branch conditional and compare instructions are expanded to use the eight 
Floating-Point Status register condition bits, instead of the original single bit.  
If any of these extra bits are referenced (cc > 0) when not using the MIPS IV 
ISA, an Unimplemented Instruction exception is taken.  The integer 
conditional move (MOVC) instruction tests a floating-point condition bit; it 
causes a coprocessor unusable exception if coprocessor 1 is disabled.

• Coprocessor 2 is defined, but does not exist in the R10000; its instructions 
(COP2, LWC2, LDC2, SWC2, SDC2) always cause an exception, but the 
exception code depends upon whether the coprocessor, as indicated by CU2, 
is enabled.

• Coprocessor 3 has been removed from the MIPS III ISA, and is no longer 
defined.  If MIPS IV is disabled, the coprocessor 3 instruction (COP3) always 
causes a Reserved Instruction exception.
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11.11  Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 11-13 shows the fields of this register; Table 11-12 describes the Cause register 
fields.  A 5-bit exception code (ExcCode) indicates one of the causes, as listed in Table 11-
13.

All bits in the Cause register, with the exception of the IP[1:0] bits, are read-only; IP[1:0] 
are used for software interrupts.

Table 11-12    Cause Register Fields

Figure 11-13    Cause Register Format

Field Description

BD
Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor Unusable 
exception is taken.  This bit is undefined for any other exception.

IP

Indicates an interrupt is pending.  This bit remains unchanged for NMI, 
Soft Reset, and Cache Error exceptions.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 11-13)

0 Reserved.  Must be written as zeroes, and returns zeroes when read.
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Table 11-13    Cause Register ExcCode Field 

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 – Reserved

15 FPE Floating-Point exception

16–22 – Reserved

23 WATCH Reference to WatchHi/WatchLo address

24–30 – Reserved

31 – Reserved
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11.12  Exception Program Counter (14)

The Exception Program Counter (EPC)† is a read/write register that contains the address at 
which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause of the exception, 
or

• the virtual address of the immediately preceding branch or jump instruction 
(when the instruction is in a branch delay slot, and the Branch Delay bit in the 
Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status register is 
set to a 1.

Figure 11-14 shows the format of the EPC register.

Figure 11-14    EPC Register Format

† The ErrorEPC register provides a similar capability, described later in this chapter.

EPC Register
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64
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11.13  Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information 
identifying the implementation and revision level of the CPU and CP0.  Figure 11-15 shows 
the format of the PRId register; Table 11-14 describes the PRId register fields.

Figure 11-15    Processor Revision Identifier Register Format

Table 11-14    PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and 
the high-order byte (bits 15:8) is interpreted as an implementation number. The 
implementation number of the R10000 processor is 0x09.  The content of the high-order 
halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major revision number 
in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no guarantee 
that changes to the chip will necessarily be reflected in the PRId register, or that changes to 
the revision number necessarily reflect real chip changes.  For this reason, software should 
not rely on the revision number in the PRId register to characterize the chip.

Field Description

Imp Implementation number

Rev Revision number

0
Reserved.  Must be written as zeroes, and returns zeroes when 
read.

16 15

PRId Register
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11.14  Config Register (16)

The R10000 processor’s Config register has a different format from that of the R4400, since 
the R10000 processor has different mode bits and configurations, however some fields are 
still compatible: K0, DC, IC, and BE.  The value of bits 24:0 are taken directly from the 
Mode bit settings during a reset sequence; refer to Table 8-1 for these bit definitions.  Table 
11-15 shows the R10000 Config register fields, along with values which are hardwired into 
the register at boot time; Figure 11-16 shows the Config register format.

Table 11-15      Config Register Field Definitions

Figure 11-16    Config Register Format

Field Bits
Name Hardwired 

ValuesR10000 R12000

K0 2:0

Coherency algorithm
0002  → reserved
0012  → reserved
0102  → uncached
0112  → cacheable noncoherent
1002  → cacheable coherent exclusive
1012  → cacheable coherent exclusive on write
1102  → reserved
1112  → uncached accelerated

DN 4:3 Device number
CT 5 CohPrcReqTar
PE 6 PrcElmReq
PM 8:7 PrcReqMax
EC 12:9 SysClkDiv
SB 13 SCBlkSize
SK 14 SCCorEn
BE 15 MemEnd
SS 18:16 SCSize
SC 21:19 SCClkDiv

25:22

Reserved

0

DC 28:26 Primary data cache size (hardwired to 0112) 32 Kbytes
IC 31:29 Primary instruction cache size (hardwired to 0112) 32 Kbytes

Field Bit Name

DSD 24 Delay Speculative Dirty
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* For R10000. This bit is used as DSD bit in the R12000.
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11.15  Load Linked Address (LLAddr) Register (17)

Physical addresses for Load Link instructions are no longer written into this register.  
LLAddr is implemented as a read/write scratch register used for NT compatibility.

Figure 11-17 shows the format of the LLAddr register.

Figure 11-17    LLAddr Register Format
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11.16  WatchLo (18) and WatchHi (19) Registers

WatchHi and WatchLo are 32-bit read/write registers which contain a physical address of a 
doubleword location in main memory.  If enabled, any attempt to read or write this location 
causes a Watch exception.  This feature is used for debugging.

Bits 7:0 of the WatchHi register contain bits 39:32 of the trap physical address, shown in 
Figure 11-18.  The WatchLo register contains physical address bits 31:3.  The remaining 
bits of the register are ignored on write and read as zero. 

Table 11-16 describes the WatchLo and WatchHi register fields.

Figure 11-18    WatchLo and WatchHi Register Formats

Table 11-16    WatchHi and WatchLo Register Fields

Field Description

PAddr1 Bits 39:32 of the physical address

PAddr0 Bits 31:3 of the physical address

R Trap on load references if set to 1

W Trap on store references if set to 1

0 Ignored on write and read as zero.

 WatchLo Register
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R WPAddr0

1 1
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WatchHi Register
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24 8

8 07

0 PAddr1

0



User’s Manual  U10278EJ4V0UM 233

Chapter 11  Coprocessor 0

11.17  XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE) 
array, an operating system data structure that stores virtual-to-physical address translations.  
When there is a TLB miss, the operating system software loads the TLB with the missing 
translation from the PTE array.  The XContext register no longer shares the information 
provided in the BadVAddr register, as it did in the R4400.

The XContext register is for use with the XTLB refill handler, which loads TLB entries for 
references to a 64-bit address space, and is included solely for operating system use.  The 
operating system sets the PTE base field in the register, as needed.  Normally, the operating 
system uses the Context register to address the current page map, which resides in the 
kernel-mapped segment kseg3. 

Figure 11-19 shows the format of the XContext register; Table 11-17 describes the XContext 
register fields. 

Figure 11-19    XContext Register Format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual address that caused the TLB miss; 
bit 12 is excluded because a single TLB entry maps to an even-odd page pair.  For a 4-Kbyte 
page size, this format may be used directly to address the pair-table of 8-byte PTEs.  For 
other page and PTE sizes, shifting and masking this value produces the appropriate address.

Table 11-17    XContext Register Fields

Field Description

BadVPN2
The Bad Virtual Page Number/2 field is written by hardware on a miss.  It contains the VPN of the most 
recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel. 

0 Reserved.   Must be written as zeroes, and returns zeroes when read.

PTEBase
The Page Table Entry Base read/write field is normally written with a value that allows the operating 
system to use the Context register as a pointer into the current PTE array in memory.

XContext Register 
35 34 4 363 0

27

PTEBase BadVPN2

31 4

0R
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37 36
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11.18  FrameMask Register (21)

The FrameMask register is new with the R10000 processor.  It masks bits of the EntryLo0 
and EntryLo1 registers so that these masked bits are not passed to the TLB while doing a 
TLB write (either TLBWI or TLBWR).

A zero in the FrameMask register allows its corresponding bit in the EntryLo[1,0] registers 
to pass to the TLB; a one in the FrameMask register masks off its corresponding bit in the 
EntryLo registers and passes a zero to the TLB.  Bits 15:0 of the FrameMask register 
control bits 33:18 of the EntryLo registers.

The remaining bits of this register are ignored on write and read as zeroes.  The content of 
this register is set to zero after a processor reset or a power-up event. 

Figure 11-20 shows the FrameMask register format.

Figure 11-20    FrameMask Register Format
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11.19  Diagnostic Register (22)

CP0 register 22, the Diagnostic register, is a new 64-bit register for processor-specific 
diagnostic functions.  (Since this register is designed for local use, the diagnostic functions 
are subject to change without notice.)  Currently, this register helps test the ITLB, branch 
caches, and the branch prediction scheme.  In addition, it provides choices for branch 
prediction algorithms, to help diagnostic program writing. 

Figure 11-21 shows the format of the Diagnostic register.

Figure 11-21    Diagnostic Register Format
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R12000.
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Table 11-18 describes the Diagnostic register fields.

Table 11-18    Diagnostic Register Fields

Field
Description

R10000 R12000

ITLBM
This field is a 4-bit read-only counter. This field is incremented by one for each ITLB miss, and any overflow 
is ignored. Its value is undefined during reset, and its value is meaningless when used in an unmapped space.

BSIdx
This field defines the entry in the branch stack to be used for the latest conditional branch decoded. Its value 
is meaningless if the latest branch was an unconditional branch.

DBRC This field disables the use of the branch return cache (BRC).

BRCV
This field indicates whether or not the branch return cache (BRC) is valid. BRC has only one entry (four 
instructions).

BRCW
This field indicates whether or not the latest branch (JAL, JALR rx, BGEZAL, BGEZALL, BLTZAL, or 
BLTZALL) caused a write into BRC. It is not affected by any other type of branch.

BRCH
This field indicates whether or not the latest branch (JR r31 or JALR rx,r31) has a BRC hit. It is not affected 
by any other type of branch.

MP This field indicates whether or not the latest conditional branch verified was mispredicted.

BPMode

This is a read-write field for branch prediction algorithm control.
002 → 2-bit counter scheme
012 → All conditional branches are predicted not taken
102 → All conditional branches are predicted taken
112 → Forward conditional branches are predicted not taken and backward conditional branches are

predicted taken.
The default mode is 00 on processor reset.

BPState
This field contains the new 2-bit state for a conditional branch after it is verified. It is also used to hold the 2-
bit state to read/write when a branch prediction table read/write operation is executed.

BPIdx

Contains the index to the Branch Prediction Table 
(BPT) for BPT read/write/initialization operations. 
This field should contain VA(11:3) of the branch for 
BPT read/write/initialization operations. The upper 
six bits of this field contain the line address for BPT 
line initialization operation; the lower three bits of 
this field are ignored.

Contains the index to the Branch Prediction Table 
(BPT) for BPT read/write/initialization operations. 
This field should contain VA(13:3) of the branch for 
BPT read/write/initialization operations. The upper 
eight bits of this field contain the line address for BPT 
line initialization operation; the lower three bits of 
this field are ignored.

BPOp

Indicates the following BPT operations:
002 → BPT read
012 → BPT write
102 → Initializes BPT line to all zeroes (strongly not taken)
112 → Initializes BPT line to all ones (strongly taken)

0 Reserved. Must be written as zeroes, and returns zeroes when read.
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In R12000 two fields are added to the Diagnostic Register - CP0 Register 22. One field 
is “ghistory enable”, bits 26:23. The other is “BTAC disable”, bit 27.

The definitions are:

Ghistory enable:
If bit 26 is set, branch prediction uses all eight bits of the global history register. 
If bit 26 is not set, then bits 25:23 specify a count of the number of bits of global 
history to be used. Thus if bits 26:23 are all zero, global history is disabled.

The global history contains a record of the taken/not-taken status of recently 
executed branches, and when used is XOR’ed with the PC of a branch being 
predicted to produce a hashed value for indexing the BPT. Some programs with 
small “working set of conditional branches” benefit significantly from the use of 
such hashing, some see slight performance degradation.

BTAC disable:
If bit 27 is set, the use of the Branch Target Address Cache (BTAC) is disabled. 
The BTAC is used to reduce the instruction fetch penalty of taken branches by 
providing the target address of fixed-address branch and jump instructions.

There are two ways to read the branch prediction state from the Branch Prediction Table 
(BPT):

• Place an mfc0 rx, C0_Diag (a Move From Diagnostic register to GPR rx) in 
the delay slot of the conditional branch.  This read of the Diagnostic register 
returns the next predicted state from the branch stacks before the BPT is 
updated.

• Move the Index and the BPT read operation into the Idx and BPOp field of the 
Diagnostic register. This mtc0 into CP0_Diag graduates as soon as the write is 
completed; however, there could be a significant delay in transferring the data 
from BPT to CP0_Diag. This delay occurs because C0_Diag has a lower 
priority to access the BPT as compared to the accesses by IFETCH and other 
processes. Thus, the prediction state read from the C0_Diag may not reflect 
the content of the BPT. Use the code sequence shown below to get the correct 
prediction state from the BPT:

li rx # rx has index and BPT read for 
# Idx and BPOp, respectively.

mtc0 rx, C0_Diag # Set the Diagnostic register for reading the BPT
la ry, label # ry !=r31; la could be replaced by a dla for 64-bits
jr ry # This gives priority for C0_Diag to access BPT

label: mfc0 rz, C0_Diag # rz holds the state from BPT entry pointed by Idx
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11.20  Performance Counter Registers (25)

R10000 Implementation

The R10000 processor defines two performance counters and two associated control 
registers, which are mapped into CP0 register 25.  An encoding in the MTC0/MFC0 
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the 
countable event, specified in its associated control register, occurs.  Each counter can 
independently count one type of event at a time.

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31) becomes one 
(the counter overflows) and the associated performance control register enables the 
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

The format of the control registers are shown in Figure 11-22.

Figure 11-22    Control Register Format (R10000)
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The fields of the Control register are:

• The Event field specifies the event to be counted, listed in Table 11-19.

Table 11-19    Counter Events (R10000)

NOTE:  Note that the updated material reflects the functionality of silicon revision 3.0 
and later. The status of earlier silicon revisions are documented as silicon errata 
available on www.sgi.com.

• The IE bit enables the assertion of IP[7] when the associated counter 
overflows.

• The U, S, K, and EXL bits indicate the processor modes in which the event is 
counted: U is user mode; S is supervisor mode; K is kernel mode when EXL 
and ERL both are set to 0; the system is in kernel mode and handling an 
exception when EXL is set to 1, as shown in Table 11-23.

• 0: Reserved.   Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set all four bits to count a 
certain event in all processor modes except during a cache error exception.

Event Counter 0 Counter 1

0 Cycles Cycles

1 Instructions issued Instructions graduated

2 Load/prefetch/sync/CacheOp issued Load/prefetch/sync/CacheOp graduated

3 Stores (including store-conditional) issued Stores (including store-conditional) graduated

4 Store conditional issued Store conditional graduated 

5 Failed store conditional Floating-point instructions graduated

6 Branches resolved Quadwords written back from primary data cache

7 Quadwords written back from secondary cache TLB refill exceptions

8 Correctable ECC errors on secondary cache data Branches mispredicted

9 Instruction cache misses
Secondary cache load/store and cache-ops 
operations

10 Secondary cache misses (instruction) Secondary cache misses (data)

11 Secondary cache way mispredicted (instruction) Secondary cache way mispredicted (data)

12 External intervention requests
External intervention request is determined to have 
hit in secondary cache

13 External invalidate requests
External invalidate request is determined to have hit 
in secondary cache

14 Functional unit completion cycles
Stores or prefetches with store hint to 
CleanExclusive secondary cache blocks

15 Instructions graduated
Stores or prefetches with store hint to Shared 
secondary cache blocks
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The performance counters and associated control registers are written by using an MTC0 
instruction, as shown in Table 11-20.

Table 11-20    Writing Performance Registers Using MTC0 (R10000)  

The performance counters and associated control registers are read by using a MFC0 
instruction, as shown in Table 11-21.

Table 11-21    Reading Performance Registers Using MFC0 (R10000)

The format of the performance control registers are shown in Table 11-22.

Table 11-22    Performance Control Register Format (R10000)  

The count enable field specifies whether counting is to be enabled during User, Supervisor, 
Kernel, and/or Exception level mode.  Any combination of count enable bits may be 
asserted.

All unused bits in the performance control registers are reserved.

All counting is disabled when the ERL bit of the CP0 Status register is asserted.

Table 11-23 defines the operation of the count enable bits of the performance control 
registers. 

Table 11-23    Count Enable Bit Definition (R10000)

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move to Performance Control 0

11001 01 Move to Performance Counter 0

11001 10 Move to Performance Control 1

11001 11 Move to Performance Counter 1

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move from Performance Control 0

11001 01 Move from Performance Counter 0

11001 10 Move from Performance Control 1

11001 11 Move from Performance Counter 1

Bits Definition

8:5 Event select

4 IP[7] interrupt enable

3:0 Count enable (U/S/K/EXL)

Count Enable Bit Count Qualifier (CP0 Status Register Fields)

U KSU = 2 (User mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0
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The following rules apply:

• The performance counter registers may be preloaded with an MTC0 
instruction, and counting is enabled by asserting one or more of the count 
enable bits in the performance control registers.

• The interrupt enable bit must be asserted to cause IP[7].

• To determine the cause of the interrupt, the interrupt handler routine must 
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of 
both counters

• If neither of the counters caused the interrupt, IP[7] must be the result of the 
CP0 Count register matching the CP0 Compare register.

Details of Counting Events

In describing the rules that are applied for the counting of each events listed in Table 11-
19, following terminology is used:

Done is defined as the point at which the instruction is successfully executed by the 
functional unit but is not yet graduated. 

Graduated is defined as the point in time when the instruction is successfully executed 
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up 
to four internally-generated and one-externally generated secondary cache 
transactions are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-16:

Event 0 for Counter 0 and Counter 1: Cycles

The counter is incremented on each PClk cycle.



Chapter 11  Coprocessor 0

242 User’s Manual  U10278EJ4V0UM

Event 1 for Counter 0: Instructions Issued

The counter is incremented on each cycle by the sum of the three following events: 

• Integer operations marked as done on the cycle.  0, 1 or 2 such operations can 
be marked on each cycle.  Since these operations (all except for MUL and DIV) 
are marked done on the cycle following their being issued to a functional unit, 
this number is nearly identical to the number issued.  The only difference is that 
re-issues are not counted.

• Floating point operations marked done in the active list. Possible values are 0, 1 
or 2. Since these operations take more than one cycle to complete, it is possible 
for an instruction to be issued and then aborted before it is counted, due to a 
branch-misprediction or exception rollback.

• Load/store instructions first issued to the address calculation unit on the 
previous cycle.  Possible values are 0 or 1. Prefetch instructions are counted as 
issued. Load/store instructions are counted as being issued only once, even 
though they may have been issued more than one time.†   Any instruction which 
does not go to the load/store unit, integer functional unit, or FP functional is 
counted.  Some of those not counted are: nops, bc1{f,t,fl,tl}, break, syscall, j, 
jal, jr, jalr, cp0 instructions.

Event 1 for Counter 1: Instruction Graduation.

The counter is incremented by the number of instructions that were graduated on the 
previous cycle. When an integer multiply or divide instruction graduates, it is counted as 
two instructions.

Event 2 for Counter 0: Load/Prefetch/Sync/CacheOp Issue.

Each of these instructions are counted as they are issued.  A load instruction is only counted 
once, even though it may have been issued more than one time.†

Event 2 for Counter 1: Load/Prefetch/Sync/CacheOp Graduation.

Each of these instructions are counted as they are graduated.  Up to four loads can graduate 
in one cycle.

† This could be a result of DCache Tag being busy or four Instruction or Data cache misses
already present and waiting to be processed in the Secondary Cache Transaction Processing
(SCTP) logic.
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Event 3 for Counter 0: Stores (Including Store-Conditional) Issued.

The counter is incremented on the cycle after a store instruction is issued to the address-
calculation unit. Note that a store can only be counted as having been issued once, even 
though it may actually be issued more than once due to DCache Tag being busy or there 
already being four load/store cache misses waiting in the SCTP logic.

Event 3 For Counter 1: Store (Including Store-Conditional) Graduation.

Each graduating store (including SC) increments the counter.  At most one store can 
graduate per cycle.

Event 4 for Counter 0: Store-Conditional Issued.

This counter is incremented on the cycle after a store conditional instruction is issued to the 
address-calculation unit. Note that an SC can only be counted as having been issued once, 
even though it may actually be issued more than once due to DCache Tag being busy or 
there already being four load/store cache misses waiting in the SCTP logic.

Event 4 for Counter 1: Store-Conditional Graduation.

At most, one store-conditional can graduate per cycle. This counter is incremented on the 
cycle following the graduation of a store-conditional instruction. 

Event 5 for Counter 0: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails.

Event 5 for Counter 1: Floating-Point Instruction Graduation.

This counter is incremented by the number of FP instructions which graduated on the 
previous cycle. Any instruction that sets the FP Status register bits (EVZOUI) is counted as 
a graduated floating point instruction. There can be 0 to 4 such instructions each cycle.

Event 6 for Counter 0: Conditional Branch Resolved

This counter is incremented when a conditional branch is determined to have been 
“resolved.”†  Note that when multiple floating-point conditional branches are resolved in a 
single cycle, this counter is still only incremented by one.  Although this is a rare event, in 
this case the count would be incorrect.

†  In other words, this count is the sum of the conditional branches that are known to be both
correctly predicted and mispredicted.
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Event 6 for Counter 1: Quadwords Written Back From Primary Data Cache

This counter is incremented once each cycle that a quadword of data is written from 
primary data cache to secondary cache.

Event 7 for Counter 0: Quadwords Written Back From Secondary Cache

This counter is incremented once each cycle that a quadword of data is written back from 
the secondary cache to the outgoing buffer located in the on-chip system-interface unit. 
(Note that data from the outgoing buffer could be invalidated by an external request and not 
sent out of the processor.)

Event 7 for Counter 1: TLB Refill Exception (Due To TLB Miss)

This counter is incremented on the cycle after the TLB miss handler is invoked. All TLB 
misses are counted, whether they occur in the native code or within the TLB handler.

Event 8 for Counter 0: Correctable ECC Errors On Secondary Cache Data.

This counter is incremented on the cycle after the correction of a single-bit error on a 
quadword read from the secondary cache data array.

Event 8 for Counter 1: Branch Misprediction.

This counter is incremented on the cycle after a branch is restored because of misprediction. 
Note that the misprediction is determined on the same cycle that the conditional branch is 
resolved. The misprediction rate is the ratio of branch mispredicted count to conditional 
branch resolve count.

Event 9 for Counter 0: Primary Instruction Cache Misses.

This counter is incremented one cycle after an instruction refill request is sent to the SCTP 
logic.

Event 9 for Counter 1: Secondary Cache Load/Store and Cache-ops Operations

This counter is incremented one cycle after a request is entered into the SCTP logic, 
provided the request was initially targeted at the primary data cache. Such requests fall into 
three categories:

•  primary data cache misses

•  requests to change the state of primary and secondary and primary data cache 
lines from Clean to Dirty, due to stores hitting a clean line in the primary data 
cache

• requests initiated by Cache-op instructions
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Event 10 for Counter 0: Secondary Cache Misses (Instruction)

This counter is incremented the cycle after the last quadword of a primary instruction cache 
line is written from the main memory, while the secondary cache refill continues.

Event 10 for Counter 1: Secondary Cache Misses (Data)

This counter is incremented the cycle after the second quadword of a data cache line is 
written from the main memory, while the secondary cache refill continues.

Event 11 for Counter 0: Secondary Cache Way Misprediction (Instruction)

This counter is incremented when the secondary cache controller begins to retry an access 
to the secondary cache after it hit in the non-predicted way, provided the secondary cache 
access was initiated by the primary instruction cache.

Event 11 for Counter 1: Secondary Cache Way Misprediction (Data)

This counter is incremented when the secondary cache controller begins to retry an access 
to the secondary cache because it hit in the non-predicted way, provided the secondary 
cache access was initiated by the primary data cache.

Event 12 for Counter 0: External Intervention Requests

This counter is incremented on the cycle after an external intervention request enters the 
SCTP logic.

Event 12 for Counter 1: External Intervention Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external intervention request is 
determined to have hit in the secondary cache.

Event 13 for Counter 0: External Invalidate Requests

This counter is incremented on the cycle after an external invalidate request enters the 
SCTP logic.

Event 13 for Counter 1: External Invalidate Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external invalidate request is determined 
to have hit in the secondary cache.
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Event 14 for Counter 0: Functional Unit Completion Cycles

This counter is incremented once on the cycle after at least one of the functional units — 
ALU1, ALU2, FPU1, or FPU2 — marks an instruction as done.

Event 14 for Counter 1: Stores, or Prefetches with Store Hint to Clean Exclusive Secondary Cache
Blocks.

This counter is incremented on the cycle after a request to change the Clean Exclusive state 
of the targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.

Event 15 for Counter 0: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on the 
previous cycle. When an integer multiply or divide instruction graduates, it is counted as 
two graduated instructions.

Event 15 for Counter 1: Stores or Prefetches with Store Hint to Shared Secondary Cache Blocks.

This counter is incremented on the cycle after a request to change the Shared state of the 
targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.
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R12000 Implementation

The R12000 processor defines four performance counters and four associated control 
registers, which are mapped into CP0 register 25. An encoding in the MTC0/MFC0 
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the 
countable event, specified in its associated control register, occurs. Each counter can 
independently count one type of event at a time.

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31) becomes one 
(the counter overflows) and the associated performance control register enables the 
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

Due to cycle time constraints, events counts are updated 2 cycles later in R12000, compared 
to similar events in R10000. Also when setting a count mode by writing a performance 
monitor control register, it is necessary to insert a ‘delay’ instruction between the ‘mtc0 
r25’ which does the write, and any initialization of the count register itself.

The format of the control registers are shown in Figure 11-23.

Figure 11-23    Control Register Format (R12000)
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The fields of the Control register are:

• The Event field specifies the event to be counted, listed in Table 11-24.

Table 11-24    Counter Events (R12000)

Event Description

0 Cycles

1 Decoded instructions

2 Decoded loads

3 Decoded stores

4 Miss Handling Table Occupancy

5 Failed store conditional

6 Resolved conditional branches

7 Quadwords written back from secondary cache

8 Correctable ECC errors on secondary cache data

9 Instruction cache misses

10 Secondary cache misses (instruction) 

11 Secondary cache way mispredicted (instruction)

12 External intervention requests

13 External invalidate requests

14 Not Used

15 Instructions graduated

16 Executed prefetch instructions

17 Primary data cache misses by prefetch instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary cache misses (data)

27 Misprediction from scache way prediction table (data)

28 State of external intervention hit in secondary cache

29 State of external invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache
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• The IE bit enables the assertion of IP[7] when the associated counter 
overflows.

• The U, S, K, and EXL bits indicate the processor modes in which the event is 
counted: U is user mode; S is supervisor mode; K is kernel mode when EXL 
and ERL both are set to 0; the system is in kernel mode and handling an 
exception when EXL is set to 1, as shown in Table 11-28.

• 0: Reserved.   Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set all four bits to count a 
certain event in all processor modes except during a cache error exception.

The performance counters and associated control registers are written by using an MTC0 
instruction, as shown in Table 11-25.

Table 11-25    Writing Performance Registers Using MTC0 (R12000) 

The performance counters and associated control registers are read by using a MFC0 
instruction, as shown in Table 11-26.

Table 11-26    Reading Performance Registers Using MFC0 (R12000) 

Opcode[15:11] Opcode[2:0] Operation

11001 000 Move to Performance Control 0

11001 001 Move to Performance Counter 0

11001 010 Move to Performance Control 1

11001 011 Move to Performance Counter 1

11001 100 Move to Performance Control 2

11001 101 Move to Performance Counter 2

11001 110 Move to Performance Control 3

11001 111 Move to Performance Counter 3

Opcode[15:11] Opcode[2:0] Operation

11001 000 Move from Performance Control 0

11001 001 Move from Performance Counter 0

11001 010 Move from Performance Control 1

11001 011 Move from Performance Counter 1

11001 100 Move from Performance Control 2

11001 101 Move from Performance Counter 2

11001 110 Move from Performance Control 3

11001 111 Move from Performance Counter 3
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The format of the performance control registers are shown in Table 11-27.

Table 11-27    Performance Control Register Format (R12000)  

The count enable field specifies whether counting is to be enabled during User, Supervisor, 
Kernel, and/or Exception level mode. Any combination of count enable bits may be 
asserted.

All unused bits in the performance control registers are reserved.

All counting is disabled when the ERL bit of the CP0 Status register is asserted.

Table 11-28 defines the operation of the count enable bits of the performance control 
registers. 

Table 11-28    Count Enable Bit Definition (R12000) 

The following rules apply:

• The performance counter registers may be preloaded with an MTC0 
instruction, and counting is enabled by asserting one or more of the count 
enable bits in the performance control registers.

• The interrupt enable bit must be asserted to cause IP[7].

• To determine the cause of the interrupt, the interrupt handler routine must 
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of 
both counters

• If neither of the counters caused the interrupt, IP[7] must be the result of the 
CP0 Count register matching the CP0 Compare register.

Bits Definition

16 (Performance control register 0) Open Trigger

15 (Performance control register 0) One Shot Trigger

15 (Performance control register 3) L1/L2 select

14 Invert conditional count

13 Conditional count

12:10 Conditional count value

9:5 Event select

4 IP[7] Interrupt enable

3:0 Count enable (U/S/K/EXL)

Count Enable Bit Count Qualifier (CP0 Status Register Fields)

U KSU = 2 (User mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0
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Counters may each count any of 32 event types

All four counters are able to count any of 32 performance events. Access to these events is 
provided by extending the  ‘event select’ field in the Performance Control Register. In 
R12000, bits[9:5] of the Performance Control Register specify the event to be counted. 

Conditional counting

All four counters can be set to count an event only when the value of that event is equal to, 
or not equal to, a specific value. This is called ‘conditional’ or ‘inverted conditional’ 
counting.

• Conditional counting is enabled for a counter by setting bit[13] of the 
corresponding performance control register.

• Inverted conditional counting is enabled by setting bit[14] of the performance 
control register.

• If both bits[13] and [14] are set, inverted conditional counting is enabled.

• The value to be compared against is set in bit[12:10] in the performance 
control register.

If bit[13] is set, and bit[14] is not set, on every cycle the value of the selected event is 
compared to the value of bits[12:10]. If the two values are equal, then the counter is 
incremented by 1.

If bit[14] is set, regardless of the state of bit[13], the counter is incremented by 1 if the two 
values are not equal.

Special case for intervention/invalidate hit events

A special case is used for events 28 and 29, external intervention and invalidate hits. The 
default of non-conditional counting does not make sense for those events because they 
encode cache-line state information and so should not be summed as usual. For those two 
events, the sense of bit [14] is reversed. When a performance control register specifies event 
28 or 29, then if bit [14] in the control register is ‘0’, inverted conditional counting is 
enabled. Similarly, when monitoring events 28 or 29, if bit[14] is ‘1’ then conditional 
counting is enabled by bit [13], as usual. Thus, for these two event types, the normal 
‘default’ of setting control register bits [14:10] to ‘00000’ enables inverted conditional 
counting with a target value of zero, In this case corresponding count register is 
incremented by one whenever a non-zero state is seen on the event lines. Such a counter 
presents a count of ‘generic’ intervention or invalidation hits, since any hit will set the event 
to a non-zero value, and any miss will leave the value at zero. Consider an example. If a 
user is interested in obtaining a count of the number of intervention hits to dirty-exclusive 
cache-lines, then the control register should be set to a value of:
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Table 11-29     Performance Control Register 1 Value

Given this setting, the counter will test the event value on each cycle, and increment on 
those cycles where the value is equal to ‘011’. Since an invalidate hit to a dirty-exclusive 
line will set the event to ‘011’, the counter will contain a count of the number of such hits. 
The default setting of 0’s for all bits [14:10] means that the counter will increment by one 
on each cycle that a line in any state (except invalid) is hit by an external intervention.

Triggered counting

The operation of monitor register 0 can be selectively tied to that of registers 1 and 2. When 
bits [15] or [16] in control register 0 are set, then the performance event selected by control 
register 1is used as a ‘window count’ and the event selected by control register 2 is used as 
a ‘trigger’. This feature allows a user to set up counter register 0 to correlate the occurrence 
of different types of events. Because of the generality of the control mechanism, several 
ways to use this mode result. 

Two bits are used to specify this mode because there are two variants that are supported. 
The operation of the system when bit [15] is set is described in detail, and then the 
differences for what happens when bit [16] is set are given. When either bit [15] or bit [16] 
of performance control register 0 is set, the performance counters are said to be in 
‘triggering mode’. When in triggering mode, then the event selected by control register 2 is 
used to enable counting of events in register 0 and 1. When an event monitored by register 
2 occurs, bits [15:0] of counter register 1 are reloaded with the last values written into those 
bits of that register by the execution of an MTC0 instruction. Bit [16] of counter register 1 
is set to 1, and bits [31:17] are incremented as if they were a 15-bit unsigned integer. Also, 
when a'register 2' event occurs, counters 0 and 1 begin counting their respective events. 
Counting continues until the carry out of the low-order 16 bits of counter 1 causes bit [16] 
in counter 1 becomes a ‘0’, at which point counting in registers 0 and 1 ceases. Counting 
restarts in registers 0 and 1 when a new event is seen on register 2.

NOTE:  for the purpose of triggering the count mode, the triggering event monitored 
on register 2 must simply be non-zero. For event types that allow values other than zero 
or one, counter 2 will continue to count normally, but the window will open only once, 
and for the same number of counter 1'window' events, regardless of the value on 
counter 2 which was the trigger. If conditional counting is enabled by setting bits [13] 
(or [14]) in control register 2, then the triggering event must be equal to (or not equal 
to) the values set in bits [12:10] of control register 2. In order to use this mode, the user 
should first load monitor register 1 with a value of (216 - {windowsize}), so that when 
{windowsize} events have been counted by count register 1, bit [16] of count register 

Bits Definition Value

16 Reserved 0

15 Reserved 0

14 Invert conditional count 1

13 Conditional count 1

12:10 Conditional count value 011

9:5 Event select 11100

4 IP[7] Interrupt enable 0

3:0 Count enable (U/S/K/EXL) 1000
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1 will be set and counting will stop. Then the user should load monitor registers 0 and 
2 with a value of 0. The three control registers should be set to count the events of 
interest, and bit [15] should be set in control register 0 at the time that register is 
written. When controlled by bit [15], trigger mode works in a ‘one shot’ manner. That 
is, once counting is enabled by a trigger event, any further trigger events are ignored 
until the window closes because bit 16 of count register 1 has become true. Only after 
that occurs will a new trigger event cause the window to'reopen' and counting to begin 
again. If bit [16] is used to arm the trigger mode rather than bit [15], then a slightly 
different scheme results. In this case, whenever a trigger event occurs, the lower half 
of count register 1 has its value reset to the initial value, so that the window ‘remains 
open’, in a sense.

Note that when the performance monitor is used in triggering mode, the sum of trigger 
events is available in counter 2, and the number of ‘window closings’ is available in the 
upper half of counter 1. These two values may be different if the event which is used a 
trigger can potentially take on values > 1 during a single cycle, or if multiple triggers can 
occur during a window interval.

Data-cache miss-address recording

Access to the miss-address information is provided by using opcode bit [3] in the MTC0 
instruction to specify the miss-address register when accessing CP0 register 25. If bit [3] is 
set in the opcode of an MTC0 instruction which accesses register 25, then the values of 
opcode bits [2:0] are ignored. When an MTC0-r25 instruction is executed with bit [3] of the 
opcode set, the address of the most recently-refilled cache miss is transferred from a 
holding register into performance monitor register 3. From there it can be read via a 
DMFC0-r25 instruction with bits [0:1] set, so that it refers to performance counter register 
3. This “arm then read” sequence is necessary due to implementation constraints. The use 
of a “double move-from C0” instruction is necessary because 35 bits are retrieved from the 
address holding register. The miss address holding register itself (unlike the other 
performance monitor registers) is not writable, and there is no control register associated 
with this register, either. There is no way to take an interrupt when the register is written or 
to test the value or than by reading it. This address value in the holding register is updated 
asynchronously to other operations of the processor, and so it does not necessarily represent 
the last data miss that was generated. The mechanism that is used closely approximates this. 
The actual address held in the register is the address of the last line of the primary data 
cache to be refilled. Bit [15] in performance control register 3 determines whether the 
address recorded corresponds to any primary cache miss or only those cache accesses 
which also missed in the Scache. If bit [15] of the control register is set then only those 
refills corresponding to primary cache misses which also miss in the secondary cache will 
have their addresses recorded.

Table 11-30     Format of the “Arm Cache-miss Register” Instruction.

Opcode[15:11] Opcode[3] Opcode[2:0] Operation

11001 1 xxx Move to DCache miss-address control
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The address information is 35 bits in size, and corresponds to the address of the cache-line 
that was refilled. Thus it is a physical address and has a granularity of 32 bytes. The address 
is output in a split format. The least significant bit returned by the cache-miss register is 
always zero. Bits [31:1] represent bits [35:5] of the physical address. Bits [51:48] represent 
bits [39:36] of the physical address.

Syndrome bits

In R12000A, the syndrome bits that are generated from the data coming into the processor 
from the SCache are captured in a 9-bit register whenever there is a single or multiple bit 
error. Therefore this register will always contain the syndrome bits generated for the most 
recent error encountered. The register is uninitialized on power up and is not writable by 
any other means. Architecturally, the 9-bit register appears as bits 31:23 of the CP0 
Performance Counter (Cop 25) Control register 0. These bits were previously unused. 
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome bits are generated for Secondary to Primary refills and Secondary to Main 
memory writebacks, but not for CacheOp reads from Secondary cache.

The following are the equations used by the R12000A to generate the 9 syndrome bits:

DK0SyndrmP[8] := Parity(
        SCData[127:120] || SCData[113:112] || SCData[111:104] ||
        SCData[103:101] || SCData[97: 96] || SCData[90: 89] ||
        SCData[87: 80] || SCData[74: 72] || SCData[69] ||
        SCData[64] || SCData[62: 61] || SCData[57] ||
        SCData[55: 54] || SCData[52] || SCData[47] ||
        SCData[45: 44] || SCData[39: 38] || SCData[36] ||
        SCData[21] || SCData[13] || SCData[7] ||
        SCDataChk[8]
                    );

DK0SyndrmP[7] := Parity(
        SCData[127:120] || SCData[119:112] || SCData[105:104] ||
        SCData[99: 96] || SCData[95: 88] || SCData[82: 80] ||
        SCData[73: 72] || SCData[71] || SCData[ 69: 68] ||
        SCData[65] || SCData[60] || SCData[51] ||
        SCData[46] || SCData[43] || SCData[39: 38] ||
        SCData[35] || SCData[25] || SCData[23] ||
        SCData[20] || SCData[15] || SCData[12] ||
        SCData[5] ||
        SCDataChk[7]
                    );
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DK0SyndrmP[6] := Parity(
        SCData[127] || SCData[121:120] || SCData[119:112] ||
        SCData[111:104] || SCData[97: 96] || SCData[90] ||
        SCData[88] || SCData[81: 80] || SCData[79: 72] ||
        SCData[70] || SCData[68: 66] || SCData[63] ||
        SCData[55] || SCData[50] || SCData[42] ||
        SCData[39: 38] || SCData[34] || SCData[29: 27] ||
        SCData[22] || SCData[19] || SCData[14] ||
        SCData[11] || SCData[6] || SCData[4] ||
        SCDataChk[6]
                    );

DK0SyndrmP[5] := Parity(
        SCData[126] || SCData[121] || SCData[119] ||
        SCData[111] || SCData[100] || SCData[97] ||
        SCData[95: 90] || SCData[87: 83] || SCData[81: 80] ||
        SCData[79: 74] || SCData[69: 64] || SCData[63: 58] ||
        SCData[56] || SCData[54: 53] || SCData[49] ||
        SCData[41] || SCData[37] || SCData[33] ||
        SCData[31] || SCData[26] || SCData[24] ||
        SCData[18] || SCData[15: 14] || SCData[10] ||
        SCData[3] ||
        SCDataChk[5]
                   );

DK0SyndrmP[4] := Parity(
        SCData[125] || SCData[120] || SCData[118] ||
        SCData[110] || SCData[105:104] || SCData[103: 96] ||
        SCData[95] || SCData[87] || SCData[79] ||
        SCData[74] || SCData[71: 64] || SCData[63: 56] ||
        SCData[53] || SCData[48] || SCData[40] ||
        SCData[32] || SCData[31: 24] || SCData[23: 22] ||
        SCData[17] || SCData[9] || SCData[7] ||
        SCData[2] ||
        SCDataChk[4]
                   );
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DK0SyndrmP[3] := Parity(
        SCData[124] || SCData[117] || SCData[113:112] ||
        SCData[109] || SCData[103] || SCData[96] ||
        SCData[94] || SCData[90] || SCData[86] ||
        SCData[78] || SCData[74: 73] || SCData[71] ||
        SCData[69: 64] || SCData[63: 58] || SCData[53: 48] ||
        SCData[47: 46] || SCData[44: 40] || SCData[37: 32] ||
        SCData[30] || SCData[27: 26] || SCData[16] ||
        SCData[8] || SCData[6] || SCData[1] ||
        SCDataChk[3]
                   );

DK0SyndrmP[2] := Parity(
        SCData[123] || SCData[121] || SCData[116] ||
        SCData[113] || SCData[108] || SCData[105] ||
        SCData[100: 99] || SCData[93] || SCData[89: 88] ||
        SCData[85] || SCData[77] || SCData[72] ||
        SCData[63] || SCData[61: 59] || SCData[57] ||
        SCData[55: 48] || SCData[47: 46] || SCData[39] ||
        SCData[37] || SCData[31: 30] || SCData[28] ||
        SCData[23: 16] || SCData[15: 8] || SCData[7: 6] ||
        SCData[0] ||
        SCDataChk[2]
                   );

DK0SyndrmP[1] := Parity(
        SCData[122] || SCData[115] || SCData[112] ||
        SCData[107] || SCData[104] || SCData[102] ||
        SCData[98] || SCData[92] || SCData[89: 88] ||
        SCData[84] || SCData[81] || SCData[76] ||
        SCData[67] || SCData[62] || SCData[59: 58] ||
        SCData[56] || SCData[55: 54] || SCData[47: 45] ||
        SCData[39: 32] || SCData[31: 29] || SCData[23: 22] ||
        SCData[15: 8] || SCData[7: 0] ||
        SCDataChk[1]
                   );
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DK0SyndrmP[0] := Parity(
        SCData[120] || SCData[114] || SCData[106] ||
        SCData[101] || SCData[91] || SCData[89: 88] ||
        SCData[83: 82] || SCData[80] || SCData[75] ||
        SCData[73: 72] || SCData[70] || SCData[66: 64] ||
        SCData[58] || SCData[55: 53] || SCData[47: 40] ||
        SCData[38: 37] || SCData[31: 30] || SCData[25: 24] ||
        SCData[23: 16] || SCData[15: 14] || SCData[7: 0] ||
        SCDataChk[0]
                   );

Details of Counting Events

In describing the rules that are applied for the counting of each events listed in Table 11-24, 
following terminology is used:

Done  is defined as the point at which the instruction is successfully executed by the 
functional unit but is not yet graduated. 

Graduated is defined as the point in time when the instruction is successfully executed 
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up 
to four internally-generated and one-externally generated secondary cache transactions 
are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-24:

Event 0: Cycles

The counter is incremented on each PClk cycle.

Event 1: Decoded instructions

The counter is incremented by the total number of instructions decoded on the previous 
cycle. Since decoded instructions may later be killed (for a variety of reasons) this count 
reflects the overhead due to incorrectly speculated branches and exception processing.

Event 2: Decoded loads

This counter is incremented when a load instruction was decoded on the previous cycle. 
Prefetch, cache-op and sync instructions are not included in the count of decoded loads.

Event 3: Decoded stores

The counter is incremented if a store instruction was decoded on the previous cycles. Store-
conditionals are included in this count.

Event 4: Miss Handling Table Occupancy

This counter is incremented on each cycle by the number of currently valid entries in the 
Miss Handling Table (MHT). The MHT has five entries. Four entries are used for internally 
generated accesses; the fifth entry is reserved for externally-generated events. All five 
entries are included in this count. See event 8 for a related definition.
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Event 5: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails. A failed store-
conditional instruction will, in the normal course of events, graduate; so this event 
represents a subset of the store-conditional instructions counted on event 20 (graduated 
store-conditionals).

Event 6: Resolved Conditional Branch

This counter is incremented each time a branch is determined to have been mispredicted, 
and each time a branch is determined to have been correctly predicted. This determination 
of a branch-prediction’s accuracy is know as the branch being ‘resolved’. This counter 
correctly reflects the case of multiple FP-conditional branches being resolved in a single 
cycle.

Event 7: Quadwords Written Back From Secondary Cache

This counter is incremented on each cycle that the data for a quadword is written back from 
the secondary cache to the outgoing buffer located in the on-chip system-interface unit. 
(Note that data from the outgoing buffer could be invalidated by an external request and not 
sent out of the processor.)

Event 8: Correctable ECC Errors On Secondary Cache Data.

This counter is incremented on the cycle following the correction of a single-bit error in a 
quadword read from the secondary cache data array.

Event 9: Primary Instruction Cache Misses.

This counter is incremented one cycle after an instruction-fetch request is entered into the 
Miss Handling Table.

Event 10: Secondary Cache Misses (Instruction)

This counter is incremented the cycle after a refill request is sent to the system-interface 
module of the CPU. This is normally just after the secondary cache tags are checked and a 
miss is detected, but can be delayed if the system interface module is busy with another 
request.

Event 11: Secondary Cache Way Misprediction (Instruction)

This counter is incremented when the secondary cache controller begins to retry an access 
because it hit in the not-predicted way, provided the access that initiated the access was an 
instruction fetch.

Event 12: External Intervention Requests

This counter is incremented on the cycle after an external intervention request is entered 
into the Miss Handling Table, provided that the intervention is not an invalidate type.

Event 13: External Invalidate Requests

This counter is incremented on the cycle after an external invalidate request is entered into 
the Miss Handling Table, provided that the intervention is an invalidate type.
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Event 14: Not Used

 This counter is not counting any event.

Event 15: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on the 
previous cycle. When an integer multiply or divide instruction graduates, it is counted as 
two graduated instructions.

Event 16: Executed prefetch instructions

This counter is incremented on the cycle after a prefetch instruction does its tag-check, 
regardless of whether a primary data cache line refill is initiated.

Event 17: Primary data cache misses by prefetch instructions

This counter is incremented on the cycle after a prefetch instruction does its tag-check and 
a refill of the corresponding primary data cache line is initiated.

Event 18: Graduated loads

This counter is incremented by the number of loads which graduated on the previous cycle. 
Prefetch instructions are included in this count. Up to four loads can graduate in one cycle.

Event 19: Graduated stores

This counter is incremented on the cycle after a store graduates. At most one store can 
graduate per cycle. Store-conditional’s are included in this count.

Event 20: Graduated store conditionals

This counter is incremented on the cycle following the graduation of a store-conditional 
instruction. Both failed and successful store-conditional instructions are included in this 
count; so successful store-conditionals can be determined as the difference between this 
event and event 5 (failed store-conditionals).

Event 21: Graduated floating point instructions

This counter is incremented by the number of FP instructions which graduated on the 
previous cycle. There can be 0 to 4 such instructions.

Event 22: Quadwords written back from primary data cache

This counter is incremented on each cycle that a quadword of data is valid and being written 
from primary data cache to secondary cache.

Event 23: TLB misses

This counter is incremented on the cycle after the TLB miss handler is invoked.
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Event 24: Mispredicted branches

This counter is incremented on the cycle after a branch is “restored” because it was 
mispredicted.

Event 25: Primary data cache misses

This counter is incremented one cycle after a request is entered into the SCTP logic, 
provided that the request was initially targeted at the primary data cache. Such requests fall 
into three categories:

• Primary data cache misses.

• Requests to change the state of secondary and primary data cache lines from 
clean to dirty (“update” requests) due to stores that hit a clean line in the 
primary data cache.

• Requests initiated by cache-op instructions.

Event 26: Secondary cache misses (data)

This counter is incremented the cycle after a refill request is sent to the system-interface 
module of the CPU. This is normally just after the secondary cache tags are checked and a 
miss is detected, but can be delayed if the system interface module is busy with another 
request.

Event 27: Misprediction from secondary cache way prediction table (data)

This counter is incremented when the secondary cache control begins to retry an access 
because it hit in the not-predicted way, provided the access that initiated the access was not 
an instruction fetch.

Event 28: Store of external intervention hit in secondary cache

This event is set on the cycle after an external intervention is determined to have hit in the 
secondary cache. The value of the event is equal to the state of the secondary cache line 
which was hit.

Table 11-31    State of external intervention hit in secondary cache

Setting a performance control register to select this event has a special effect on the 
conditional-counting behavior. If event 28 or 29 is selected, the sense of the “Negated 
conditional counting” bit is inverted. See the description of conditional counting for details.

Event value State of secondary cache

00 Invalid, no hit seen

01 Clean, Shared

10 Clean, Exclusive

11 Dirty, Exclusive
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Event 29: State of external invalidation hits in secondary cache

This event is set on the cycle after an external invalidate requests determined to have hit in 
the secondary cache. It’s value is equivalent to that described for event 28.

Event 30: Store/prefetch exclusive to clean block in secondary cache

This counter is incremented on the cycle after an update request is issued for a clean line in 
the secondary cache. 

Event 31: Store/prefetch exclusive to shared block in secondary cache

This counter is incremented on the cycle after an update request is issued for a shared line 
in the secondary cache. 
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11.21  ECC Register (26)

The R10000 processor implements a 10-bit read/write ECC register which is used to read 
and write the secondary cache data ECC or the primary cache data parity bits. (Tag ECC 
and parity are loaded to and stored from the TagLo register.)  Unlike the R4400, the only 
CacheOps that use ECC register are Index Load Data and Index Store Data. 

In the R4400, both the primary instruction and data caches are parity byte-protected.

In the R10000 processor, the following protection schemes are used:

• The primary instruction cache is word-protected (where one word contains 36 
bits), and one parity bit is used for each instruction word (IP in Figure 11-24). 

• The primary data cache is byte-protected, with four bits used for each 32-bit 
data word (DP in Figure 11-24).

• Each quadword of the secondary cache data uses nine bits of ECC and one bit 
of parity (SP and ECC in Figure 11-24).

The primary instruction CacheOps load or store one instruction word at a time; therefore, 
one bit is used in the ECC register.  The primary data CacheOps load or store four bytes at 
a time; therefore, four bits are used in the ECC register.  The secondary CacheOps use 
ECC[9] as the parity bit and ECC[8:0] as the 9-bit ECC. For the Index Store Data 
CacheOps, the unused bits are ignored.  For Index Load Data CacheOps, the unused a bits 
are with zeroes.

Figure 11-24 shows the format of the ECC register; Table 11-32 describes the register 
fields.

Figure 11-24    ECC Register Format

Table 11-32    ECC Register Fields

Field Description

SP
A 1-bit field specifying the parity bit read from or written to a secondary 
cache.

ECC
An 9-bit field specifying the ECC bits read from or written to a secondary 
cache.

DP
An 4-bit field specifying the parity bits read from or written to a primary 
data cache.

IP
An 1-bit field specifying the parity bit read from or written to a primary 
instruction cache.

0 Reserved.  Must be written as zeroes, and returns zeroes when read.
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11.22  CacheErr Register (27)

The CacheErr register is a 32-bit read-only register that handles ECC errors in the 
secondary cache or system interface, and parity errors in the primary caches.  

R10000 processor correction policy is as follows:

• Parity errors cannot be corrected.

• Single-bit ECC errors can be corrected by hardware without taking a Cache 
Error exception.

• Double-bit ECC errors can be detected but not corrected by hardware. 

• All uncorrectable errors take Cache Error exceptions unless the DE bit of the 
Status register is set.

• As in the R4400, cache errors are imprecise.

The CacheErr register provides cache index and status bits which indicate the source and 
nature of the error; it is loaded when a Cache Error exception is taken.

CacheErr Register Format for Primary Instruction Cache Errors

Figure 11-25 shows the format of the CacheErr register when a primary instruction cache 
error occurs.

Figure 11-25    CacheErr Register Format for Primary Instruction Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: data array error (way1 ||  way0)

TA: tag address array error (way1 ||  way0)

TS: tag state array error (way1 ||  way0)

PIdx: primary cache virtual block index, VA[13:6]

0: Reserved.   Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for Primary Data Cache Errors

Figure 11-26 shows the format of the CacheErr register when a primary data cache error 
occurs.

Figure 11-26    CacheErr Register Format for Primary Data Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: tag error on an inconsistent block

D: data array error (way1 | | way0)

TA: tag address array error (way1 | | way0)

TS: tag state array error (way1 | | way0)

TM: tag mod array error (way1 | | way0)

PIdx: primary cache virtual double word index, VA[13:6]

0: Reserved.   Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for Secondary Cache Errors

Figure 11-27 shows the format of the CacheErr register when a secondary cache error 
occurs.

Figure 11-27    CacheErr Register Format for Secondary Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: uncorrectable data array error (way1 | | way0)

TA: uncorrectable tag array error (way1 | | way0)

SIdx: secondary cache physical block index (PA[22:6] for 16-word block size or PA[22:7] 
for 32-word block size)

0: Reserved.   Must be written as zeroes, and returns zeroes when read.
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CacheErr Register Format for System Interface Errors

Figure 11-28 shows the format of the CacheErr register when a System interface error 
occurs.

Figure 11-28    CacheErr Register Format for System Interface Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: data error on a CleanExclusive or DirtyExclusive

D: uncorrectable system block data response error (way1 | | way0)

SA: uncorrectable system address bus error

SC: uncorrectable system command bus error

SR: uncorrectable system response bus error

SIdx: secondary cache physical block index

0: Reserved.   Must be written as zeroes, and returns zeroes when read.
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11.23  TagLo (28) and TagHi (29) Registers

The TagHi and TagLo registers are 32-bit read/write registers used to hold the following:†

• the primary cache tag and parity

• the secondary cache tag and ECC

• the data in primary or secondary caches for certain CacheOps

TagHi/Lo formats in the R10000 processor differ from those in the R4400 due to changes 
in CacheOps and cache architecture.  R10000 formats depend on the type of CacheOp 
executed and the cache to which it is applied. The reserved fields are read as zeroes after 
executing an Index Load Tag or an Index Load Data CacheOp and ignored when executing 
an Index Store Tag or an Index Store Data CacheOp.

To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit read/write 
register.  The value written by an MTC0 instruction can be retrieved by a MFC0 instruction, 
unless an intervening CACHE instruction has modified the content.

This section gives the TagLo and TagHi register formats for the following CacheOp and 
cache combinations:

• CacheOp is Index Load/Store Tag

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

• CacheOp is Index Load/Store Data

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

CacheOp is Index Load/Store Tag

This section describes the three states of the TagLo and TagHi registers, when the CacheOp 
is an Index Load/Store Tag for the following operations:

• primary instruction cache operation

• primary data cache operation 

• secondary cache operation

† To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit read/write
register. The value written by a MTC0 instruction can be retrieved by a MFC0 instruction,
unless intervening CACHE instructions modify the content.
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Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Tag for a primary instruction cache operation, the 
fields of the TagHi and TagLo registers are defined as follows:

PTag0: contains physical address bits [35:12] stored in the cache tag

PState: contains the primary instruction cache state for the line, as follows:

1 = Valid 

0 = Invalid

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field

TP: tag even parity bit. 

PTag1: contains physical address bits [39:36] stored in the cache tag

0: Reserved.   Must be written as zeroes, and returns zeroes when read.

Figure 11-29 shows the fields of the TagHi and TagLo registers.

Figure 11-29    TagHi/Lo Register Fields in Primary Instruction Cache 
When CacheOp is Index Load/Store Tag

Primary Data Cache Operation

If the CacheOp is an Index Load/Store Tag for primary data cache operations, the fields of 
the TagHi and TagLo registers are defined as follows:

State Modifier: holds the status of the line, as follows:

0012 = neither refilled or written

0102 = this line may have been written and inconsistent from the secondary cache (W 
bit)

1002 = this line is being refilled (Refill bit).
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PState: together with the Refill bit of the State Modifier in the TagHi register, PState 
determines the state of the cache block in the primary data cache, as shown in Table 11-33.

Table 11-33    PState Field Definition in TagHi/Lo Registers, For Primary Data Cache Operation 
When CacheOp is Index Load/Store Tag

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field and the Way bit

Way: indicates which secondary cache set contains the primary cache line for this tag

TP: tag even parity bit. 

0: Reserved.   Must be written as zeroes, and returns zeroes when read.

Figure 11-30 shows the fields of the TagHi and TagLo registers.

Figure 11-30    TagHi/Lo Register Fields in Primary Data Cache 
When CacheOp is Index Load/Store Tag
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Secondary Cache Operation

If the CacheOp is an Index Load/Store Tag for secondary cache operations, the fields of the 
TagHi and TagLo registers are defined as follows:

STag0: contains physical address bits [35:18] stored in the cache tag

SState: contains the secondary cache state of the line, as follows:

002 = Invalid

012 = Shared

102 = Clean Exclusive

112 = Dirty Exclusive

VIndex (virtual index): contains only two bits of significance since the32 Kbyte 2-way set 
associative primary caches are addressed using only two untranslated address bits 
(VA[13:12]) plus the offset within the virtual page. 

ECC: contains the ECC for the STag, SState and VIndex fields. 

MRU: indicates which way was the most recently used in the set.

STag1: contains the physical address bits [39:36] stored in the cache tag.

0: Reserved.   Must be written as zeroes, and returns zeroes when read.

Figure 11-31 shows the fields of the TagHi and TagLo registers.

Figure 11-31    TagHi/Lo Register Fields in Secondary Cache 
When CacheOp is Index Load/Store Tag
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CacheOp is Index Load/Store Data

This section describes the following three states of the TagLo and TagHi registers, when the 
CacheOp is an Index Load/Store Data:

• primary instruction cache operation

• primary data cache operation 

• secondary cache operation

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Data for the primary instruction cache, the TagHi 
register stores the most significant four bits of a 36-bit instruction, as shown in Figure 11-
32; the rest of the instruction is stored in the TagLo register.

Figure 11-32    TagHi/Lo Register Fields in Primary Instruction Cache 
When CacheOp is Index Load/Store Data
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Primary Data Cache Operation

If the CacheOp is Index Load/Store Data for primary data cache, the TagHi register is not 
used.  The TagLo registers contains a 32-bit data word for the cache operation, as shown in 
Figure 11-33.

Figure 11-33    TagHi/Lo Register Fields in Primary Data Cache 
When CacheOp is Index Load/Store Data

Secondary Cache Operation

If the CacheOp is Index Load/Store Data for the secondary cache, a doubleword of data is 
required for the CacheOp.  The TagHi register stores the upper 32 bits of the doubleword 
and the TagLo register stores the lower 32 bits, as shown below in Figure 11-34.

Figure 11-34    TagHi/Lo Register Fields in Secondary Cache 
When CacheOp is Index Load/Store Data
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11.24  ErrorEPC Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on ECC 
and parity error exceptions.  It is also used to store the program counter (PC) on Reset, Soft 
Reset, and nonmaskable interrupt (NMI) exceptions. 

The read/write ErrorEPC register contains the virtual address at which instruction 
processing can resume after servicing an error.   Figure 11-35 shows the format of the 
ErrorEPC register.

Figure 11-35    ErrorEPC Register Format
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12. Floating-Point Unit

This section describes the operation of the FPU, including the register definitions.

The Floating-Point unit consists of the following functional units:

• add unit

• multiply unit

• divide unit

• square-root unit

The add unit performs floating-point add and subtract, compare, and conversion 
operations.  Except for Convert Integer To Single-Precision (float), all operations have a 2-
cycle latency and a 1-cycle repeat rate. 

The multiply unit performs single-precision or double-precision multiplication with a 2-
cycle latency and a 1-cycle repeat rate.

The divide and square-root units do single- or double-precision operations.  They have 
long latencies and low repeat rates (20 to 40 cycles).
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12.1  Floating-Point Unit Operations

The floating-point add, multiply, divide, and square-root units read their operands and store 
their results in the floating-point register file.  Values are loaded to or stored from the 
register file by the load/store and move units. 

A logic diagram of floating-point operations is shown in Figure 12-1, in which data and 
instructions are read from the secondary cache into the primary caches, and then into the 
processor.  There they are decoded and appended to the floating-point queue, passed into 
the FP register file where each is dynamically issued to the appropriate functional unit.  
After execution in the functional unit, results are stored, through the register file, in the 
primary data cache.

Figure 12-1    Logical Diagram of FP Operations

The floating-point queue can issue one instruction to the adder unit and one instruction to 
the multiplier unit.  The adder and multiplier each have two dedicated read ports and a 
dedicated write port in the floating-point register file.  
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issue port.  Instead, they decode instructions issued to the multiplier unit, using its operand 
registers and bypass logic.  They appropriate a second cycle later for storing their result.

When an instruction is issued, up to two operands are read from dedicated read ports in the 
floating-point register file.  After the operation has been completed, the result can be written 
back into the register file using a dedicated write port.  For the add and multiply units, this 
write occurs four cycles after its operands were read.
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12.2  Floating-Point Unit Control

The control of floating-point execution is shared by the following units:

• The floating-point queue determines operand dependencies and dynamically 
issues instructions to the execution units.  It also controls the destination 
registers and register bypass.

• The execution units control the arithmetic operations and generate status.

• The graduate unit saves the status until the instructions graduate, and then it 
updates the Floating-Point Status register.

Eliminate traps for Denorm/NaN FP inputs (R12000)

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or 
Denorm as an input. R12000 suppresses these traps whenever the FS bit is set in the FCSR 
(ref. VR5000, VR10000 INSTRUCTION User’s Manual). R12000 simply passes through 
NaN’s and Denorm’s when the bit is set. This change in no way affects the handling of 
QNaNs and Denorms when they are produced, it only changes the way they are handled 
when they are received as input operands.

Case of Denorm when the FS bit is set to 1: A Denorm received as an input to the FP unit 
is flushed to zero before the FP unit begins to process the operand. The behavior of the unit 
(when FS is 1) will be exactly that seen when the input is zero. Specifically, if the zero input 
would itself cause a trap (due to divide by zero, for example) then the that zero-generated 
trap will be taken.
When a Denorm is seen at the input, the Inexact bit is set, except in the cases described 
below:

The Inexact bit will not be set, even if FS=1 and a Denorm is seen on input, if the other 
input to the FP operation is a value which pre-determines the FP result (e.g. QNaN). When 
the result is not affected by the presence or absence of the Denorm input, the result is 
EXACT. Hence the Inexact bit should not be set, even if Flush to Zero mode is ON.

Case of QNaNs when the FS bit is set to 1: A QNaN received as an input operand for an FP 
unit will cause the unit to produce the standard QNaN (which is not necessarily same as the 
input QNaN). Note that FP units will not propagate the QNaN to the output, but will always 
produce the same, standard, QNaN.

When the FS bit is set to zero, the behavior will be exactly as in R10000.
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12.3  Floating-Point General Registers (FGRs)

The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the MIPS IV 
Instruction Set Architecture.  The MIPS IV ISA defines 32 logical floating-point general 
registers (FGRs), as shown in Figure 12-2.  Each FGR is 64 bits wide and can hold either 
32-bit single-precision or 64-bit double-precision values.  The hardware actually contains 
64 physical 64-bit registers in the Floating-Point Register File, from which the 32 logical 
registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR.  These logical 
numbers are mapped to physical registers by the rename unit (in pipeline stage 2), before 
the Floating-Point Unit executes them.  Physical registers are selected using 6-bit 
addresses. 

32- and 64-Bit Operations

The FR bit (26) in the Status register determines the number of logical floating-point 
registers available to the program, and it alters the operation of single-precision load/store 
instructions, as shown in Figure 12-2.

• FR is reset to 0 for compatibility with earlier MIPS I and MIPS II ISAs, and 
instructions use only the 16 physical even-numbered floating-point registers 
(32 logical registers).  Each logical register is 32 bits wide.

• FR is set to 1 for normal MIPS III and MIPS IV operations, and all 32 of the 
64-bit logical registers are available.

  

Figure 12-2    Floating-Point Registers

0

Status Bit FR=1

Thirty-two 64-bit Registers

6332 0

FGR = #0

Sixteen 64-bit Physical Registers

63 31

063

063

063

32 063 31

(Register is not implemented.)

(Register is not implemented.)

063

063

32 063 31

(Register is not implemented.)

FGR = #1

FGR = #3

FGR = #31 FGR = #30

FGR = #2

Status Bit FR= 0

(MIPS I and MIPS II compatible)

FGR = #0

FGR = #1

FGR = #2

FGR = #3

FGR = #30

FGR = #31

(MIPS III and MIPS IV only)

FGR = #0

Thirty-two 32-bit Logical Registers
Physical Register

Register #0

Register #1

Register #2

Register #3

Register #30

Register #31



Chapter 12  Floating-Point Unit

278 User’s Manual  U10278EJ4V0UM

Load and Store Operations

When FR = 0, floating-point load and stores operate as follows:

• A doubleword load or store is handled the same as if the FR bit was set to 1, 
as long as the register selected is even (0, 2, 4, etc.).

• If the register selected is odd, the load/store is invalid.

These operations are shown in Figure 12-3.  Singleword loads/stores to even and odd 
registers are also shown.

   

Figure 12-3    Loading and Storing Floating-Point Registers in 16-Register Mode
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When FR = 1, floating-point load and stores operate as follows:

• Single-precision operands are read from the low half of a register, leaving the 
upper half ignored.  Single-precision results are written into the low half of 
the register.  The high half of the result register is architecturally undefined; in 
the R10000 implementation, it is set to zero.

• Double-precision arithmetic operations use the entire 64-bit contents of each 
operand or result register.

Because of register renaming, every new result is written into a temporary register, and 
conditional move instructions select between a new operand and the previous old value.  
The high half of the destination register of a single-precision conditional move instruction 
is undefined (shown in Figure 12-5), even if no move occurs.

Singleword and doubleword loads and stores with the FPU in 32-register mode (FR=1) are 
shown in Figure 12-4.

   

Figure 12-4    Loading and Storing Floating-Point Registers in 32-Register Mode
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Doubleword load, store and move to/from instructions load or store an entire 64-bit 
floating-point register, as shown in Figure 12-5.

Figure 12-5    Operators on Floating-Point Registers
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12.4  Floating-Point Control Registers

The MIPS IV ISA permits up to 32 control registers to be defined for each coprocessor, but 
the Floating-Point Unit uses only two:

• Control register 0, the FP Implementation and Revision register

• Control register 31, the Floating-Point Status register (FSR)

Floating-Point Implementation and Revision Register

The following fields are defined for control register 0 in Coprocessor 1, the FP 
Implementation and Revision register, as shown in Figure 12-6:

• The Implementation field holds an 8-bit number, 0x09, which identifies the 
R10000 implementation of the floating-point coprocessor.

• The Revision field is an 8-bit number that defines a particular revision of the 
floating-point coprocessor.  Since it can be arbitrarily changed, it is not 
defined here.

Figure 12-6    FP Implementation and Revision Register Format
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Floating-Point Status Register (FSR)

Figure 12-7 shows the Floating-Point Status register (FSR), control register 31 in 
Coprocessor 1.  It is implemented in the graduation unit rather than the Floating-Point Unit, 
because it is closely tied to the active list.

Bits 22:18 are unimplemented and must be set to zero.   All other bits may be read or written 
using Control Move instructions from or to Coprocessor 1 (subfunctions CFC1 or CTC1).  
These move instructions are fully interlocked; they are delayed in the decode stage until all 
previous instructions have been graduated, and no subsequent instruction is decoded until 
they have been completed.

   

Figure 12-7    Floating-Point Status Register (FSR)
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Bit Descriptions of the FSR

Description of the bits in the FSR are as follows:

Condition Bits [31:25,23]:  The Condition bits indicate the result of floating-point compare 
instructions.  The active list keeps track of these bits.

Cause Bits [17:12]:  Each functional unit can detect exceptional cases in their function 
codes, operands, or results.  These cases are indicated by setting one of six specific Cause 
bits.  The Cause bits indicate the status of the floating-point arithmetic instruction which 
graduated most recently or caused an exception to be taken. The FSR is not modified by 
load, store, or move instructions.  All cause bits, except E, have corresponding Enable and 
Flag bits in the FSR.

E Unimplemented operation: the execution unit does not perform the specified 
operation.  This exception is always enabled.

V Invalid operation: this operation is not valid for the given operands.

Z Division by zero: (divide unit only) the result of division by zero is not 
defined.

O Overflow: the result is too large in magnitude to be correctly represented in 
the result format.

U Underflow: the result is too small in magnitude to be correctly represented in 
the result format.

I Inexact Result: the result cannot be represented exactly.

NOTE:   The FSR is modified only for instructions issued by the floating-point queue.  
Move From (MFC or DMFC) instructions never set the Cause field; status bits from 
the functional unit (multiplier) must be ignored.  Move or Move Conditional 
instructions can set the Unimplemented Operation exception only in the Cause field.  
Load and store instructions are issued by the address queue.) 

The functional units generate the Cause bits and send them to the graduation unit when the 
operation is completed.

Enable Bits [11:7]: The five Enable bits individually enable (when set to a 1) or disable 
(when set to a 0) exceptions when the corresponding Cause bit is set.

Flag Bits [6:2]: One of the five Flag bits is set when a floating-point arithmetic instruction 
graduates, if the corresponding Cause bit is set.  The Flag bits are sticky and remain set 
until the FSR is written.  Thus, the Flag bits indicate the status of all floating-point 
instructions graduated since the FSR was last written.  The Flag bits are not modified for 
any instructions which cause an exception to be taken.
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Round Mode [1:0]: RM bits select one of the four IEEE rounding modes.  Most floating-
point results cannot be precisely represented by the 32-bit or 64-bit register formats, and 
must be truncated and rounded to a representable value.  The modes selected by the RM bit 
values are: 

0: RN, round to nearest representable value.  If two values are equally near, set the 
lowest bit to zero.

1: RZ, round toward zero.  Round to the closest value whose magnitude is not greater 
than the result.

2: RP, round to plus infinity.   Round to the closest value whose magnitude is not less 
than the result.

3: RM, round to minus infinity.  Round to the closest value whose magnitude is not 
greater.

The Round and Enable bits only change when the FSR is written by a CTC1 (Move To 
Coprocessor 1 Control Register) instruction.  Each CTC1 instruction is executed 
sequentially, after all previous floating-point instructions have been completed, so these 
FSR bits do not change while any floating-point instruction is active.  These bits are 
broadcast from the graduation unit to all the floating-point functional units.

When a Cause bit is set and its corresponding Enable bit is also set, an exception is taken 
on the instruction.  The result of the instruction is not stored, and the Flag bits are not 
changed.  If no exception is taken, the corresponding Flag bits are set.

The Cause and Flag bits may be read or written.  If a CTC1 instruction sets both a Cause 
bit and its Enable bit, an exception is taken immediately.  The FSR is written, but the 
exception is reported on the move instruction.

Loading the FSR

The FSR may be loaded from an integer register by a CTC1 instruction which selects 
control register 31.  This instruction is executed serially; that is, it is delayed during decode 
until the entire pipeline has emptied, and it is completed before the next instruction is 
decoded.  This instruction writes all FSR bits.

If any Cause bit and its corresponding Enable bit are both set, an exception is taken after 
FSR has been modified.  The CTC1 instruction is aborted; it does not graduate, even though 
it has changed the processor state.
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13. Memory Management

This section describes the R10000 processor memory management, including:

• processor modes and exceptions

• virtual address space

• virtual address translation
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13.1  Processor Modes

The R10000 has three operating modes and two addressing modes.  All are described in this 
section.

Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel mode (highest system privilege): can access and change any register.  
The innermost core of the operating system runs in kernel mode.   

• Supervisor mode: has fewer privileges and is used for less critical sections of 
the operating system.

• User mode (lowest system privilege): prevents users from interfering with one 
another.

Selection between the three modes can be made by the operating system (when in Kernal 
mode) by writing into Status register’s KSU field.  The processor is forced into Kernel mode 
when the processor is handling an error (the ERL bit is set) or an exception (the EXL bit is 
set).  Table 13-1 shows the selection of operating modes with respect to the KSU, EXL and 
ERL bits.

Table 13-1 also shows how different instruction sets and addressing modes are enabled by 
the Status register’s XX, UX, SX and KX bits.  A dash ( “-” )  in this table indicates a “don’t 
care.”  For detailed information on the address spaces available in each mode, refer to 
section titled, “Virtual Address Space,” in this chapter.

The R10000 processor was designed for use with the MIPS IV ISA; however, for 
compatibility with earlier machines, the useable ISAs can be limited to either MIPS III or  
MIPSI/II.

Table 13-1    Processor Modes 

‡ No means the ISA is disabled; Yes means the ISA is enabled.

* Dashes (-) are “don’t care.”

XX
31

KX
7

SX
6

UX
5

KSU
4:3

ERL
2

EXL
1

Description
ISA‡

III
ISA‡

IV
Addressing Mode

32-Bit/64-Bit

0
1
0
1

-*

-
-
-

-
-
-
-

0
0
1
1

10
10
10
10

0
0
0
0

0
0
0
0

User mode.

No
No
Yes
Yes

No
Yes
No
Yes

32
32
64
64

-
-

-
-

0
1

-
-

01
01

0
0

0
0

Supervisor mode.
No
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

00
00

0
0

0
0

Kernel mode.
Yes
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

0
0

1
1

Exception Level
Yes
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

1
1

X
X

 Error Level.
Yes
Yes

Yes
Yes

32
64
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Addressing Modes

The processor’s addressing mode determines whether it generates 32-bit or 64-bit memory 
addresses.

Refer to Table 13-1 for the following addressing mode encodings:

• In Kernel mode the KX bit allows 64-bit addressing; all instructions are 
always valid.

• In Supervisor mode, the SX bit allows 64-bit addressing and the MIPS III 
instructions.  MIPS IV ISA is enabled all the time in Supervisor mode.

• In User mode, the UX bit allows 64-bit addressing and the MIPS III 
instructions; the XX bit allows the new MIPS IV instructions.

13.2  Virtual Address Space

The processor uses either 32-bit or 64-bit address spaces, depending on the operating and 
addressing modes set by the Status register.  Table 13-1 lists the decoding of these modes.

The processor uses the following addresses:

• virtual address VA[43:0]

• region bits VA[63:59]

If a region is mapped, virtual addresses are translated in the TLB.  Bits VA[58:44] are not 
translated in the TLB and are sign extensions of bit VA[43].

In both 32-bit and 64-bit address mode, the memory address space is divided into many 
regions, as shown in Figure 13-3.  Each region has specific characteristics and uses. The 
user can access only the useg region in 32-bit mode, or xuseg in 64-bit mode, as shown in 
Figure 13-1.  The supervisor can access user regions as well as sseg (in 32-bit mode) or 
xsseg and csseg (in 64-bit mode), shown in Figure 13-2.  The kernel can access all regions 
except those restricted because bits VA[58:44] are not implemented in the TLB, as shown 
in Figure 13-3.

The R10000 processor follows the R4400 implementation for data references only, 
ensuring compatibility with the NT kernel.  If any of the upper 33 bits are nonzero for an 
instruction fetch, an Address Error is generated.  Refer to Table 13-2 for delineation of the 
address spaces.
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 User Mode Operations

In User mode, a single, uniform virtual address space—labelled User segment—is 
available; its size is:

• 2 Gbytes (231 bytes) in 32-bit mode (useg)

• 16 Tbytes (244 bytes) in 64-bit mode (xuseg)

Figure 13-1 shows User mode virtual address space.

Figure 13-1     User Mode Virtual Address Space

The User segment starts at address 0 and the current active user process resides in either 
useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all references 
to useg/xuseg from all modes, and controls cache accessibility.
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Error
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Mapped
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32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is compatible with 
the 32-bit addressing model shown in Figure 13-1, and a 2-Gbyte user address space is 
available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to 0; any 
attempt to reference an address with the most-significant bit set while in User mode causes 
an Address Error exception. 

The system maps all references to useg through the TLB, and bit settings within the TLB 
entry for the page determine the cacheability of a reference. 

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is extended to the 
64-bit model shown in Figure 13-1.  In 64-bit User mode, the processor provides a single, 
uniform virtual address space of 244 bytes, labelled xuseg. 

All valid User mode virtual addresses have bits 63:44 equal to 0; an attempt to reference an 
address with bits 63:44 not equal to 0 causes an Address Error exception. 

Although the system may be in 32-bit mode, address logic still generates 64-bit values.  In 
this case the high 32 bits must equal the sign bit (31), or an Address Error exception is 
taken.
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 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel runs in 
processor Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the 
Supervisor-mode bit-values shown in Table 13-1.

Figure 13-2 shows Supervisor mode address mapping.

Figure 13-2    Supervisor Mode Address Space

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant bit of the 
32-bit virtual address is set to 0, the suseg virtual address space is selected; it covers the full 
231 bytes (2 Gbytes) of the current user address space.  The virtual address is extended with 
the contents of the 8-bit ASID field to form a unique virtual address. 

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.
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32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-significant bits 
of the 32-bit virtual address are 1102, the sseg virtual address space is selected; it covers 
229-bytes (512 Mbytes) of the current supervisor address space.  The virtual address is 
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address 
are set to 002, selection of the xsuseg virtual address space is dependent upon the UX bit.

• if UX = 1, the entire space from 0x0000 0000 0000 0000 through 0000 0FFF 
FFFF FFFF (16 Tbytes) is selected.

• If UX = 0, the address space 0x0000 0000 0000 0000 through 0000 0000 
7FFF FFFF (2 Gbytes) is selected.  Addressing the space ranging from 0000 
0000 8000 0000 through 0000 0FFF FFFF FFFF will cause an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique 
virtual address.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address 
are set to 012, the xsseg current supervisor virtual address space is selected.  The virtual 
address is extended with the contents of the 8-bit ASID field to form a unique virtual 
address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 
0x4000 0FFF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address 
are set to 112, the csseg separate supervisor virtual address space is selected.  Addressing 
of the csseg is compatible with addressing sseg in 32-bit mode.  The virtual address is 
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through 
0xFFFF FFFF DFFF FFFF.
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 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains the Kernel-mode 
bit-values shown in Table 13-1.

Kernel mode virtual address space is divided into regions differentiated by the high-order 
bits of the virtual address, as shown in Figure 13-3.

Figure 13-3    Kernel Mode Address Space

NOTE:  If ERL = 1, the selected 2 Gbyte space becomes uncached and unmapped.
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32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of the 
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is selected; it covers 
the full 231 bytes (2 Gbytes) of the current user address space. The virtual address is 
extended with the contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of 
the virtual address are 1002, 32-bit kseg0 virtual address space is selected; it is the 229-byte 
(512-Mbyte) kernel physical space.  References to kseg0 are not mapped through the TLB; 
the physical address is selected by subtracting 0x8000 0000 from the virtual address.   The 
K0 field of the Config register determines cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of 
the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space is selected; it is the 
229-byte (512-Mbyte) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address is selected by 
subtracting 0xA000 0000 from the virtual address. 

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of 
the 32-bit virtual address are 1102, the ksseg virtual address space is selected; it is the 
current 229-byte (512-Mbyte) supervisor virtual space.  The virtual address is extended with 
the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through the TLB. 

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of 
the 32-bit virtual address are 1112, the kseg3 virtual address space is selected; it is the 
current 229-byte (512-Mbyte) kernel virtual space. The virtual address is extended with the 
contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through the TLB. 
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64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual 
address are 002, selection of the xkuseg virtual address space is dependent upon the UX and 
ERL bits.

• if UX = 1 and ERL = 0, the entire space from 0x0000 0000 0000 0000 through 
0000 0FFF FFFF FFFF (16 Tbytes) is selected.

• If UX = 0 or ERL = 1, the address space 0x0000 0000 0000 0000 through 
0000 0000 7FFF FFFF (2 Gbytes) is selected.  Addressing the space ranging 
from 0000 0000 8000 0000 through 0000 0FFF FFFF FFFF will cause an 
address error.  Moreover, if ERL=1, the selected 2-Gbyte address space 
becomes unmapped and uncached.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique 
virtual address.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual 
address are 012, selection of the xksseg virtual address space is dependent upon the SX bit.

• if SX = 1, the entire space from 0x4000 0000 0000 0000 through 4000 0FFF 
FFFF FFFF (16 Tbytes) is selected.

• If SX = 0, access to any address in the space ranging from 0x4000 0000 0000 
0000 through 4000 0FFF FFFF FFFF causes an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique 
virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual 
address are 102, the xkphys virtual address space is selected; it is a set of eight kernel 
physical spaces.  Each kernel physical space contains either one or four 240-byte physical 
pages.

References to this space are not mapped; the physical address selected is taken directly 
from bits 39:0 of the virtual address.  Bits 61:59 of the virtual address specify the cache 
algorithm, described in Chapter 4, the section titled “Cache Algorithms.”  If the cache 
algorithm is either uncached or uncached accelerated (values of 2 or 7) the space contains 
four physical pages; access to addresses whose bits 56:40 are not equal to 0 cause an 
Address Error exception.  Address bits 58:57 carry the uncached attribute (described in 
Chapter 6, the section titled “Support for Uncached Attribute”), and are not checked for 
address errors.

If the cache algorithm is neither uncached nor uncached accelerated, the space contains a 
single physical page, as on the R4400 processor.  In this case, access to addresses whose 
bits 58:40 are not equal to a zero cause an Address Error exception, as shown in Figure 13-
4.



User’s Manual  U10278EJ4V0UM 295

Chapter 13  Memory Management

Figure 13-4    xkphys Virtual Address Space

‡ Accessing a reserved space results in undefined behavior.

0X B F F F F F F F F F F F F F F F
Address Error

0X 9 F F F F F F F F F F F F F F F
Address Error

0X B E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B E 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 8 0 0 0 0 F F F F F F F F F F
Cacheable Noncoherent

0X B E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B D F F F F F F F F F F F F F F
Address Error

0X 9 7 F F F F F F F F F F F F F F
Address Error

0X B C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B C 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 6 0 0 0 0 F F F F F F F F F F
Uncached

0X B C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B B F F F F F F F F F F F F F F
Address Error

0X 9 5 F F F F F F F F F F F F F F
Address Error

0X B A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B A 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 4 0 0 0 0 F F F F F F F F F F
Uncached

0X B A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 9 F F F F F F F F F F F F F F
Address Error

0X 9 3 F F F F F F F F F F F F F F
Address Error

0X B 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 8 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 2 0 0 0 0 F F F F F F F F F F
Uncached

0X B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 7 F F F F F F F F F F F F F F
Address Error

0X 9 1 F F F F F F F F F F F F F F
Address Error

0X B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 0 0 0 0 0 F F F F F F F F F F
Reserved‡ 0X 9 0 0 0 0 0 F F F F F F F F F F

Uncached
0X B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A F F F F F F F F F F F F F F F
Address Error

0X 8 F F F F F F F F F F F F F F F
Address Error

0X A 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 8 0 0 0 0 F F F F F F F F F F
Cacheable Exclusive Write

0X 8 8 0 0 0 0 F F F F F F F F F F
Reserved‡

0X A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A 7 F F F F F F F F F F F F F F
Address Error

0X 8 7 F F F F F F F F F F F F F F
Address Error

0X A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 0 0 0 0 0 F F F F F F F F F F Cacheable Exclusive
0X 8 0 0 0 0 0 F F F F F F F F F F

Reserved‡
0X A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Chapter 13  Memory Management

296 User’s Manual  U10278EJ4V0UM

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual 
address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual address 
is extended with the contents of the 8-bit ASID field to form a unique virtual 
address 

• one of the four 32-bit kernel mode compatibility spaces (described below).

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual address 
are 112, and bits 61:31 of the virtual address equal –1, the lower two bytes of address, as 
shown in Figure 13-3, select one of the following 512-Mbyte compatibility spaces.

• ckseg0.  This 64-bit virtual address space is an unmapped region, compatible 
with the 32-bit address model kseg0.  The K0 field of the Config register 
controls cacheability and coherency.

• ckseg1.  This 64-bit virtual address space is an unmapped and uncached 
region, compatible with the 32-bit address model kseg1. 

• cksseg.  This 64-bit virtual address space is the current supervisor virtual 
space, compatible with the 32-bit address model ksseg.

• ckseg3.  This 64-bit virtual address space is kernel virtual space, compatible 
with the 32-bit address model kseg3.

Address Space Access Privilege Differences Between the R4400 and R10000

In the R4400, the 64-bit Supervisor mode can access the entire xsuseg space, and the 64-bit 
Kernel mode can access the entire xksseg and xkuseg spaces.  Access privileges in the 
R10000 are also dependent on the UX and SX bits:

• Access to the 64-bit user space in 64-bit Supervisor or Kernel mode (xsuseg 
or xkuseg) is controlled by the UX bit.  If UX=0, the 64-bit Supervisor and 
Kernel modes can only access the 32-bit user space (suseg or kuseg).

• Access to the 64-bit supervisor space in Kernel mode (xksseg) is controlled by 
the SX bit.  If SX=0, the 64-bit Kernel mode can only access the 32-bit 
supervisor space (ksseg).

An Address Error exception is taken on an illegal access.

The R10000 processor implements the same access privileges for 32-bit processor modes 
as in the R4400. The Table 13-2 summarizes the access privileges for all processor modes 
in the R10000 processor.
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Table 13-2    Access Privileges for User, Supervisor and Kernel Mode Operations

‡ For data references, the upper 32 bits of the virtual addresses are cleared before checking access privilege and TLB translation.

64-bit
Virtual Address 

32-bit Mode 64-bit Mode

User‡ Supervisor Kernel User Supervisor
Kernel & 
ERL=0

Kernel & 
ERL=1

FFFFFFFF E0000000 
TO

FFFFFFFF FFFFFFFF

AddrErr

AddrErr

OK

AddrErr

AddrErr

OK OK

FFFFFFFF C0000000 
TO

FFFFFFFF DFFFFFFF
OK OK

FFFFFFFF A0000000 
TO

FFFFFFFF BFFFFFFF

AddrErr

AddrErr

FFFFFFFF 80000000
TO

FFFFFFFF 9FFFFFFF

C0000FFF 00000000
TO

FFFFFFFF 7FFFFFFF

AddrErr

AddrErr AddrErr

C0000000 00000000
TO

C0000FFE FFFFFFFF
OK OK

80000000 00000000
TO

BFFFFFFF FFFFFFFF
OK OK

40001000 00000000
TO

7FFFFFFF FFFFFFFF
AddrErr AddrErr

40000000 00000000
TO

40000FFF FFFFFFFF
OK

AddrErr if 
SX=0

AddrErr if 
SX=0

00001000 00000000
TO

3FFFFFFF FFFFFFFF
AddrErr AddrErr AddrErr

00000000 80000000
TO

00000FFF FFFFFFFF
OK

AddrErr if 
UX=0

AddrErr if 
UX=0

AddrErr

00000000 00000000
TO

00000000 7FFFFFFF
OK OK OK OK OK OK
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13.3  Virtual Address Translation

Programs can operate using either physical or virtual memory addresses:

• physical addresses correspond to hardware locations in main memory

• virtual addresses are logical values only, and do not correspond to fixed 
hardware locations

Virtual addresses must first be translated (finding the physical address at which the virtual 
address points) before main memory can be accessed.  This translation is essential for 
multitasking computer systems, because it allows the operating system to load programs 
anywhere in main memory independent of the logical addresses used by the programs.

This translation also implements a memory protection scheme, which limits the amount of 
memory each program may access.  The scheme prevents programs from interfering with 
the memory used by other programs or the operating system.

Virtual Pages

Translated virtual addresses retrieve data in blocks, which are called pages.  In the R10000 
processor, the size of each page may be selected from a range that runs from 4 Kbytes to 
16 Mbytes inclusive, in powers of 4 (that is, 4 Kbytes, 16 Kbytes, 64 Kbytes, etc.).

The virtual address bits which select a page (and thus are translated) are called the page 
address.  The lower bits which select a byte within the selected page are called the offset 
and are not translated.  The number of offset bits varies from 12 to 24 bits, depending on 
the page size.

Virtual Page Size Encodings

Page size is defined in each TLB entry’s PageMask field.  This field is loaded or read using 
the PageMask register, as described in Chapter 11, the section titled “PageMask Register 
(5).”

Each entry translates a pair of physical pages.  The low bit of the virtual address page is not 
compared, because it is used to select between these two physical pages.
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Using the TLB

Translations are maintained by the operating system, using page tables in memory.   A 
subset of these translations are loaded into a hardware buffer called the translation-
lookaside buffer or TLB.  The contents of this buffer are maintained by the operating 
system; if an instruction needs a translation which is not already in the buffer, an exception 
is taken so the operating system can compute and load the needed translation.  If all the 
necessary translations are present, the program is executed without any delays.

The TLB contains 64 entries, each of which maps a pair of virtual pages.  Formats of TLB 
entries are shown in Figure 13-5.

Cache Algorithm Field

The Cache Algorithm fields of the TLB, EntryLo0, EntryLo1, and Config registers indicate 
how data is cached.  Cache algorithms are described in Chapter 4, the section titled “Cache 
Algorithms.”

Format of a TLB Entry

Figure 13-5 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an 
entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers, 
as shown in Chapter 11; for example the PFN and uncached attribute (UC) fields of the TLB 
entry are also held in the EntryLo registers.

Figure 13-5    Format of a TLB Entry
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Address Translation

Because a 64-bit address is unnecessarily large, only the low 44 address bits are translated.  
The high two virtual address bits (bits 63:62) select between user, supervisor, and kernel 
address spaces.  The intermediate address bits (61:44) must either be all zeros or all ones, 
depending on the address region.  The TLB does not include virtual address bits 61:59, 
because these are decoded only in the xkphys region, which is unmapped.

For data cache accesses, the joint TLB (JTLB) translates addresses from the address 
calculate unit.  For instruction accesses, the JTLB translates the PC address if it misses in 
the instruction TLB (ITLB).  That entry is copied into the ITLB for subsequent accesses.  
The ITLB is transparent to system software.

Address Space Identification (ASID)

Each independent task, or process, has a separate address space, assigned a unique 8-bit 
Address Space Identifier (ASID).  This identifier is stored with each TLB entry to 
distinguish between entries loaded for different processes.  The ASID allows the processor 
to move from one process to another (called a context switch) without having to invalidate 
TLB entries.

The processor’s current ASID is stored in the low 8 bits of the EntryHi register.  These bits 
are also used to load the ASID field of an entry during TLB refill. 

The ASID field of each TLB entry is compared to the EntryHi register; if the ASIDs are 
equal or if the entry is global (see below), this TLB entry may be used to translate virtual 
addresses.  The ASID comparison is performed only when a new value is loaded into the 
EntryHi register; the one-bit result of the match is stored in a static Enable latch.  (This bit 
is set whenever a new entry is loaded.)

Global Processes (G)

A translation may be defined as global so that it can be shared by all processes.  This G bit 
is set in the TLB entry and enables the entry independent of its ASID value. 

Avoiding TLB Conflict

Setting the TS bit in the Status register indicates an entry being presented to the TLB 
matches more than one virtual page entry in the TLB.  Any TLB entries that allow multiple 
matches, even in the Wired area, are invalidated before the new entry can be written into the 
TLB.  This prevents multiple matches during address translation.
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14. CPU Exceptions

This chapter describes the processor exceptions—a general view of the cause and return of 
an exception, exception vector locations, and the types of exceptions that are supported, 
including the cause, processing, and servicing of each exception.
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14.1  Causing and Returning from an Exception

When the processor takes an exception, the EXL bit in the Status register is set to 1, which 
means the system is in Kernel mode.  After saving the appropriate state, the exception 
handler typically changes the KSU bits in the Status register to Kernel mode and resets the 
EXL bit back to 0.  When restoring the state and restarting, the handler restores the previous 
value of the KSU field and sets the EXL bit back to 1. 

Returning from an exception also resets the EXL bit to 0 (see the ERET instruction in 
VR5000, VR10000 INSTRUCTION User’s Manual).

14.2  Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to the dedicated Cold 
Reset exception vector at an uncached and unmapped address.  Addresses for all other 
exceptions are a combination of a vector offset and a base address.

The boot-time vectors (when BEV = 1 in the Status register) are at uncached and unmapped 
addresses.  During normal operation (when BEV = 0) the regular exceptions have vectors 
in cached address spaces; Cache Error is always at an uncached address so that cache error 
handling can bypass a suspect cache. 

The exception vector assignments for the R10000 processor shown in Table 14-1; the 
addresses are the same as for the R4400.

Table 14-1    Exception Vector Addresses

BEV Exception Type
Exception Vector Address

32-bit 64-bit

Cold Reset/Soft Reset/
NMI

0xBFC00000 0xFFFFFFFF BFC00000

BEV=0

TLB Refill (EXL=0) 0x80000000 0xFFFFFFFF 80000000

XTLB Refill (EXL=0) 0x80000080 0xFFFFFFFF 80000080

Cache Error 0xA0000100 0xFFFFFFFF A0000100

Others 0x80000180 0xFFFFFFFF 80000180

BEV=1

TLB Refill (EXL=0) 0xBFC00200 0xFFFFFFFF BFC00200

XTLB Refill (EXL=0) 0xBFC00280 0xFFFFFFFF BFC00280

Cache Error 0xBFC00300 0xFFFFFFFF BFC00300

Others 0xBFC00380 0xFFFFFFFF BFC00380
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14.3  TLB Refill Vector Selection

In all present implementations of the MIPS III ISA, there are two TLB refill exception 
vectors: 

• one for references to 32-bit address space (TLB Refill) 

• one for references to 64-bit address space (XTLB Refill)

Table 14-2 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user, 
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding 
extended addressing bit in the Status register (UX, SX, or KX).  The current operating mode 
of the processor is not important except that it plays a part in specifying in which address 
space an address resides.  The Context and XContext registers are entirely separate page-
table-pointer registers that point to and refill from two separate page tables, however these 
two registers share BadVPN2 fields (see Chapter 11 for more information).  For all TLB 
exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields of both registers are 
loaded as they were in the R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the current 
operating mode of the processor (user, supervisor, or kernel) and the value of the 
corresponding extended addressing bit in the Status register (UX, SX or KX).  In addition, 
the Context and XContext registers are not implemented as entirely separate registers; the 
PTEbase fields are shared. A miss to a particular address goes through either TLB Refill or 
XTLB Refill, depending on the source of the reference.  There can be only be a single page 
table unless the refill handlers execute address-deciphering and page table selection in 
software.

NOTE:  Refills for the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are controlled 
by the value of KX rather than SX.  This simplifies control of the processor when 
supervisor mode is not being used. 
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Table 14-2 lists the TLB refill vector locations, based on the address that caused the TLB 
miss and its corresponding mode bit.

Table 14-2    TLB Refill Vectors

Space Address Range Regions Exception Vector

Kernel

0xFFFF FFFF E000 0000
to

0xFFFF FFFF FFFF FFFF kseg3

Refill (KX=0)
or

XRefill (KX=1)

Supervisor

0xFFFF FFFF C000 0000
to

0xFFFF FFFF DFFF FFFF sseg, ksseg

Refill (KX=0)
or

XRefill (KX=1)

Kernel

0xC000 0000 0000 0000
to

0xC000 0FFE FFFF FFFF
xkseg XRefill(KX=1)

Supervisor

0x4000 0000 0000 0000
to

0x4000 0FFF FFFF FFFF
xsseg, xksseg XRefill (SX=1)

User

0x0000 0000 8000 0000
to

0x0000 0FFF FFFF FFFF
xsuseg, xuseg, 
xkuseg

XRefill (UX=1)

User

0x0000 0000 0000 0000
to

0x0000 0000 7FFF FFFF

useg, xuseg, suseg, 
xsuseg, kuseg, 
xkuseg

Refill (UX=0)
or

XRefill (UX=1)
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Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority shown in 
Table 14-3 (with certain of the exceptions, such as the TLB exceptions and Instruction/Data 
exceptions, grouped together for convenience).   While more than one exception can occur 
for a single instruction, only the exception with the highest priority is reported.  Some 
exceptions are not caused by the instruction executed at the time, and some exceptions may 
be deferred.  See the individual description of each exception in this chapter for more detail.

Table 14-3    Exception Priority Order

Generally speaking, the exceptions described in the following sections are handled 
(“processed”) by hardware; these exceptions are then serviced by software.

‡ These exceptions are interrupt types, and may be imprecise.  Priority may not be followed when
considering a specific instruction.

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)‡

Cache error –– Instruction cache‡

Cache error –– Data cache‡

Cache error –– Secondary cache‡

Cache error –– System interface‡

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction, 
Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Watch‡

Bus error –– Data access

Interrupt (lowest priority)‡
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Cold Reset Exception

Cause

The Cold Reset exception is taken for a power-on or “cold” reset; it occurs when the 
SysGnt* signal is asserted while the SysReset* signal is also asserted.†  This exception is 
not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the 
hardware need not initialize the TLB or the cache to process this exception.  It also means 
the processor can fetch and execute instructions while the caches and virtual memory are 
in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except 
for the following register fields:

• In the Status register, SR and TS are cleared to 0, and ERL and BEV are set to 
1.  All other bits are undefined.

• Config register is initialized with the boot mode bits read from the serial input.

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.

• The EW bit in the CacheErr register is cleared.

• The ErrorEPC register gets the PC.

• The FrameMask register is set to 0.

• Branch prediction bits are set to 0.

• Performance Counter register Event field is set to 0.

• All pending cache errors, delayed watch exceptions, and external interrupts 
are cleared.

Servicing

The Cold Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and the 
memory system

• performing diagnostic tests

• bootstrapping the operating system

† If SysGnt* remains deasserted (high) while SysReset* is asserted, the processor interprets
this as a Soft Reset exception.
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Soft† Reset Exception

Cause

The Soft Reset exception occurs in response to a Soft Reset (See Chapter 8, the section 
titled “Soft Reset Sequence”).

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

• A Cold Reset occurs when the SysGnt* signal is asserted while the SysReset* 
signal is also asserted.

• A Soft Reset occurs if the SysGnt* signal remains negated when a SysReset* 
signal is asserted.

In R4400 processor, there is no way for software to differentiate between a Soft Reset 
exception and an NMI exception.  In the R10000 processor, a bit labelled NMI has been 
added to the Status register to distinguish between these two exceptions.  Both Soft Reset 
and NMI exceptions set the SR bit and use the same exception vector.  During an NMI 
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit is set to 0.

Processing

When a Soft Reset exception occurs, the SR bit of the Status register is set, distinguishing 
this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state.  This 
allows the processor to fetch and execute the instructions of the exception handler, which 
in turn dumps the current architectural state to external logic.  Hardware state that loses 
architectural state is not initialized unless it is necessary to execute instructions from 
unmapped uncached space that reads the registers, TLB, and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort multicycle 
operations in progress, so it may alter machine state.  Hence, caches, memory, or other 
processor states can be inconsistent: data cache blocks may stay at the refill state and any 
cached loads/stores to these blocks will hang the processor. Therefore, CacheOps should be 
used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold Reset 
sequence.

† Soft Reset is also known colloquially as Warm Reset.
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A Soft Reset exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for 
a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

A Soft Reset exception is intended to quickly reinitialize a previously operating processor 
after a fatal error.

It is not normally possible to continue program execution after returning from this 
exception, since a SysReset* signal can be accepted anytime.
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NMI Exception

Cause

The NMI exception is caused by assertion of the SysNMI* signal.

An NMI exception is not maskable.

In R4400 processor, there is no way for software to differentiate between a Soft Reset 
exception and an NMI exception.  In the R10000 processor, a bit labelled NMI has been 
added to the Status register to distinguish between these two exceptions.  Both Soft Reset 
and NMI exceptions set the SR bit and use the same exception vector.  During an NMI 
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit is set to 0.

Processing

When an NMI exception occurs, the SR bit of the Status register is set, distinguishing this 
exception from a Cold Reset exception.

An exception caused by an NMI is taken at the instruction boundary.  It does not abort any 
state machines, preserving the state of the processor for diagnosis.  The Cause register 
remains unchanged and the system jumps to the NMI exception handler (see Table 14-1).

An NMI exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for 
a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

The NMI can be used for purposes other than resetting the processor while preserving cache 
and memory contents.  For example, the system might use an NMI to cause an immediate, 
controlled shutdown when it detects an impending power failure.

It is not normally possible to continue program execution after returning from this 
exception, since an NMI can occur during another error exception.
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Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the 
following:

• reference to an illegal address space

• reference the supervisor address space from User mode

• reference the kernel address space from User or Supervisor mode

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch, or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

Processing

The common exception vector is used for this exception.  The AdEL or AdES code in the 
Cause register is set, indicating whether the instruction caused the exception with an 
instruction reference, load operation, or store operation shown by the EPC register and BD 
bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not 
properly aligned or that referenced protected address space.  The contents of the VPN field 
of the Context, XContext, and EntryHi registers are undefined, as are the contents of the 
EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless 
this instruction is in a branch delay slot.  If it is in a branch delay slot, the EPC register 
contains the address of the preceding branch instruction and the BD bit of the Cause register 
is set as indication.

Servicing

The process executing at the time is handed a UNIXTM SIGSEGV (segmentation violation) 
signal. This error is usually fatal to the process incurring the exception.
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TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an attempted 
reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TLB entry that 
is marked invalid.

• TLB Modified occurs when a store operation virtual address reference to 
memory matches a TLB entry which is marked valid but is not dirty (the entry 
is not writable).

The following three sections describe these TLB exceptions.

NOTE:  TLB Refill vector selection is also described earlier in this chapter, in the 
section titled, TLB Refill Vector Selection.
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TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a 
mapped address space.  This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit 
address spaces, and one for references to 64-bit address spaces.  The UX, SX, and KX bits 
of the Status register determine whether the user, supervisor or kernel address spaces 
referenced are 32-bit or 64-bit spaces; the TLB refill vector is selected based upon the 
address space of the address causing the TLB miss (user, supervisor, or kernel mode 
address space), together with the value of the corresponding extended addressing bit in the 
Status register (UX, SX, or KX).  The current operating mode of the processor is not 
important except that it plays a part in specifying in which space an address resides.  An 
address is in user space if it is in useg, suseg, kuseg, xuseg, xsuseg, or xkuseg (see the 
description of virtual address spaces in Chapter 13).  An address is in supervisor space if it 
is in sseg, ksseg, xsseg or xksseg, and an address is in kernel space if it is in either kseg3 or 
xkseg.  Kseg0, kseg1, and kernel physical spaces (xkphys) are kernel spaces but are not 
mapped.

All references use these vectors when the EXL bit is set to 0 in the Status register.  This 
exception sets the TLBL or TLBS code in the ExcCode field of the Cause register.  This code 
indicates whether the instruction, as shown by the EPC register and the BD bit in the Cause 
register, caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold 
the virtual address that failed address translation. The EntryHi register also contains the 
ASID from which the translation fault occurred.  The Random register normally contains a 
valid location in which to place the replacement TLB entry.  The contents of the EntryLo 
register are undefined.  The EPC register contains the address of the instruction that caused 
the exception, unless this instruction is in a branch delay slot, in which case the EPC 
register contains the address of the preceding branch instruction and the BD bit of the Cause 
register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as a 
virtual address to fetch memory locations containing the physical page frame and access 
control bits for a pair of TLB entries.  The two entries are placed into the EntryLo0/
EntryLo1 register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control 
information is on a page that is not resident in the TLB. This condition is processed by 
allowing a TLB refill exception in the TLB refill handler.  This second exception goes to 
the common exception vector because the EXL bit of the Status register is set.
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TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry 
that is marked invalid (TLB valid bit cleared).  This exception is not maskable.

Processing

The common exception vector is used for this exception.  The TLBL or TLBS code in the 
ExcCode field of the Cause register is set.  This indicates whether the instruction, as shown 
by the EPC register and BD bit in the Cause register, caused the miss by an instruction 
reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers 
contain the virtual address that failed address translation.  The EntryHi register also 
contains the ASID from which the translation fault occurred.  The Random register 
normally contains a valid location in which to put the replacement TLB entry.  The contents 
of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless 
this instruction is in a branch delay slot, in which case the EPC register contains the address 
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a 
reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP 
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.
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TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address reference to 
memory matches a TLB entry that is marked valid but is not dirty and therefore is not 
writable.  This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the Cause 
register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers 
contain the virtual address that failed address translation.  The EntryHi register also 
contains the ASID from which the translation fault occurred.  The contents of the EntryLo 
register are undefined.

The EPC register contains the address of the instruction that caused the exception unless 
that instruction is in a branch delay slot, in which case the EPC register contains the address 
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the 
corresponding access control information.  The page identified may or may not permit write 
accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its 
own data structures. The TLBP instruction places the index of the TLB entry that must be 
altered into the Index register. The EntryLo register is loaded with a word containing the 
physical page frame and access control bits (with the D bit set), and the EntryHi and 
EntryLo registers are written into the TLB.
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Cache Error Exception

The Cache Error exception is described in Chapter 9, the section titled “Cache Error 
Exception”.

Virtual Coherency Exception 

The Virtual Coherency exception is not implemented in the R10000 processor, since the 
virtual coherency condition is handled in hardware.  When the hardware detects the Virtual 
Coherency exception, it invalidates the lines in all other segments of the primary cache that 
could cause aliasing. This takes six cycles more than that needed to refill the primary cache 
line (the refill would have occurred even if there was no Virtual Coherency exception 
detected).

In the R4400 processor, a Virtual Coherency exception occurs when a primary cache miss 
hits in the secondary cache but VA[14:12] are not the same as the PIdx field of the 
secondary cache tag, and the cache algorithm specifies that the page is cached.  When such 
a situation is detected in the R10000 processor, the primary cache lines at the old virtual 
index are invalidated and the PIdx field of the secondary cache is written with the new 
virtual index.
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Bus Error Exception

Cause

A Bus Error exception occurs when a processor block read, upgrade, or double/single/
partial-word read request receives an external ERR completion response, or a processor 
double/single/partial-word read request receives an external ACK completion response 
where the associated external double/single/partial-word data response contains an 
uncorrectable error.  This exception is not maskable.

Processing

The common interrupt vector is used for a Bus Error exception.  The IBE or DBE code in 
the ExcCode field of the Cause register is set, signifying whether the instruction (as 
indicated by the EPC register and BD bit in the Cause register) caused the exception by an 
instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception, unless 
it is in a branch delay slot, in which case the EPC register contains the address of the 
preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information 
available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch 
reference), the instruction that caused the exception is located at the virtual 
address contained in the EPC register (or 4+ the contents of the EPC register 
if the BD bit of the Cause register is set). 

• If the DBE code is set (indicating a load or store reference), the instruction 
that caused the exception is located at the virtual address contained in the 
EPC register (or 4+ the contents of the EPC register if the BD bit of the Cause 
register is set). 

The virtual address of the load and store reference can then be obtained by interpreting the 
instruction.  The physical address can be obtained by using the TLBP instruction and 
reading the EntryLo registers to compute the physical page number.  The process executing 
at the time of this exception is handed a UNIX SIGBUS (bus error) signal, which is usually 
fatal.
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Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or 
DSUB instruction results in a 2’s complement overflow.  This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the Cause 
register is set.

The EPC register contains the address of the instruction that caused the exception unless 
the instruction is in a branch delay slot, in which case the EPC register contains the address 
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is 
usually fatal to the current process.
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Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, 
TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This exception is not 
maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause 
register is set.

The EPC register contains the address of the instruction causing the exception unless the 
instruction is in a branch delay slot, in which case the EPC register contains the address of 
the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is 
usually fatal.
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System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction.  
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the Cause 
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch 
delay slot, in which case the EPC register contains the address of the preceding branch 
instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set; 
otherwise this bit is cleared.

Servicing

When the System Call exception occurs, control is transferred to the applicable system 
routine.  Additional distinctions can be made by analyzing the Code field of the SYSCALL 
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC 
register contains. 

To resume execution, the EPC register must be altered so that the SYSCALL instruction 
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC 
register + 4) before returning. 

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond 
the scope of this description, may be required.
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Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.  
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the Cause 
register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch 
delay slot, in which case the EPC register contains the address of the preceding branch 
instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set, 
otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system 
routine.  Additional distinctions can be made by analyzing the Code field of the BREAK 
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC 
register contains.  A value of 4 must be added to the contents of the EPC register (EPC 
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does 
not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC register 
+ 4) before returning. 

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is 
required to resume execution.
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Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions occurs:

• an attempt is made to execute an instruction with an undefined major opcode 
(bits 31:26) 

• an attempt is made to execute a SPECIAL instruction with an undefined minor 
opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an undefined minor 
opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in User 
or Supervisor modes

• an attempt is made to execute a COP1X when the MIPS IV ISA is not enabled

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in 
the Status register. 

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the Cause 
register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch 
delay slot, in which case the EPC register contains the address of the preceding branch 
instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted.  The process executing at the 
time of this exception is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/
reserved operand fault) signal. This error is usually fatal.
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Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a 
coprocessor instruction for either:

• a corresponding coprocessor unit (CP1 or CP2) that has not been marked 
usable, or

• CP0 instructions, when the unit has not been marked usable and the process 
executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code in the Cause 
register is set.  The contents of the Coprocessor Usage Error field of the coprocessor 
Control register indicate which of the four coprocessors was referenced.  The EPC register 
contains the address of the unusable coprocessor instruction unless it is in a branch delay 
slot, in which case the EPC register contains the address of the preceding branch 
instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the 
Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is marked 
usable and the corresponding user state is restored to the coprocessor. 

• If the process is entitled access to the coprocessor, but the coprocessor does 
not exist or has failed, interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be 
interpreted; then the coprocessor instruction can be emulated and execution 
resumed with the EPC register advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process executing 
at the time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal 
instruction/privileged instruction fault) signal. This error is usually fatal.
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Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor.  This exception is 
not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the Cause 
register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this 
exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/
Status register.
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Watch Exception 

Cause

A Watch exception occurs when a load or store instruction references the physical address 
specified in the WatchLo/WatchHi System Control Coprocessor (CP0) registers.  The 
WatchLo register specifies whether a load or store initiated this exception.

A Watch exception violates the rules of a precise exception in the following way: If the load 
or store reference which triggered the Watch exception has  a cacheable address and  misses 
in the data cache, the line will then be read from memory into the secondary cache if 
necessary, and refilled from the secondary cache into the data cache.  In all other cases, 
cache state is not affected by an instruction which takes a Watch exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if either the EXL or ERL bit is set in the Status register.  
If either bit is set, the instruction referencing the WatchLo/WatchHi address is executed and 
the exception is delayed until the delay condition is cleared; that is, until ERL and EXL both 
are cleared (set to 0).  The EPC contains the address of the next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing a value to the WatchLo 
register.†

Watch is maskable by setting the EXL or ERL bits in the Status register.

Processing

The common exception vector is used for this exception, and the Watch code in the Cause 
register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control 
to a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute the 
faulting instruction.  The Watch exception must then be reenabled.  The faulting instruction 
can be executed either by interpretation or by setting breakpoints.

† An MTC0 to the WatchLo register clears a delayed Watch exception.
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Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The 
significance of these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the 
Interrupt-Mask (IM) field of the Status register, and all of the eight interrupts can be masked 
at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the Cause 
register is set.

The IP field of the Cause register indicates current interrupt requests.  It is possible that 
more than one of the bits can be simultaneously set (or even no bits may be set) if the 
interrupt is asserted and then deasserted before this register is read.

On Cold Reset, an R4400 processor can be configured with IP[7] either as a sixth external 
interrupt, or as an internal interrupt set when the Count register equals the Compare register.  
There is no such option on the R10000 processor; IP[7] is always an internal interrupt that 
is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which could 
come from more than one source at a time).  For instance, writing a value to the Compare 
register clears the timer interrupt but it may not clear IP[7] if one of the performance 
counters is simultaneously overflowing.  Performance counter interrupts can be disabled 
individually without affecting the timer interrupt, but there is no way to disable the timer 
interrupt without disabling the performance counter interrupt. 

Servicing

If the interrupt is caused by one of the two software-generated exceptions (described in 
Chapter 6, the section titled “Software Interrupts”), the interrupt condition is cleared by 
setting the corresponding Cause register bit, IP[1:0], to 0.  Software interrupts are 
imprecise.  Once the software interrupt is enabled, program execution may continue for 
several instructions before the exception is taken.  Timer interrupts are cleared by writing 
to the Compare register.  The Performance Counter interrupt is cleared by writing a 0 to bit 
31, the overflow bit, of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt requests, 
IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the 
condition causing the interrupt pin to be asserted.
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14.4  MIPSIV Instructions

The system must either be in Kernel or Supervisor mode, or have set the XX bit of the Status 
register to a 1 in order to use the MIPS IV instruction set.  In User mode, if XX is a 0 and 
an attempt is made to execute MIPS IV instructions, an exception will be taken.  The type 
of exception that will be taken depends upon the type of instruction whose execution was 
attempted; a list is given in Table 14-4.  Note that operating with MIPS IV instructions does 
not require that MIPS III instruction set or 64-bit addressing is enabled.

MIPS IV instructions that use or modify the floating-point registers (CP1 state) are also 
affected by the CU1 bit of the CP0 Status register. If CU1 is not set, a Coprocessor 
Unusable exception may be signaled. 

The Reserved Instruction (RI), Coprocessor Unusable (CU), and Unimplemented 
Operation (UO) exceptions for MIPS IV instructions are listed in the Table 14-4 below.

Table 14-4     MIPS IV Instruction Exceptions

Exceptions Instructions CU1 MIPS4

RI CPU (undefined) - -

RI MOVN,Z - 0

RI
MOVT,F

- 0

CU 0 1

RI PREF - 0

CU COP1 (all instructions) 0 -

UO (undefined) 1 -

RI BC (cc>0) 1 0

UO C (cc>0) 1 0

UO MOVN,Z,T,F 1 0

UO RECIP, RSQRT 1 0

RI COP1X (all instructions) - 0

CU (all instructions) 0 1

RI (undefined) 1 1
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14.5  COP0 Instructions

Execution of an RFE instruction causes a Reserved Instruction exception in the R10000 
processor.

The execution of undefined COP0 functions is undefined in the R10000 processor.

14.6  COP1 Instructions

The R10000 and R4400 processors do not generate the same exceptions for undefined 
COP1 instructions.  In the R4400 processor, undefined opcodes or formats in the sub field 
take an Unimplemented Operation exceptions.  In the R10000 processor, undefined 
opcodes (bits 25:24 are 0 or 1) take Reserved Instruction exceptions and undefined formats 
(bits 25:24 are 2 or 3) take Unimplemented Operation exceptions. 

In MIPS II on an R4400 processor, the execution of DMTC1, DMFC1, and L format take 
Unimplemented Operation exceptions.  In MIPS II on the R10000 processor, the execution 
of DMTC1 and DMFC1 take Reserved Instruction exceptions

The attempted execution of the L format takes an Unimplemented Operation exception 
when the MIPS III mode is not enabled.

A CTC1 instruction that sets both Cause and Enable bits also forces an immediate floating-
point exception; the EPC register points to the offending CTC1 instruction.

14.7  COP2 Instructions

If the CU2 bit of the CP0 Status register is not set during an attempted execution of such 
Coprocessor 2 instructions as COP2, LWC2, SWC2, LDC2, and SDC2, the system takes a 
Coprocessor Unusable exception.

In the R4400 processor, if the CU2 bit is set, COP2 instructions are handled as NOPs; the 
operations of Coprocessor 2 load/store instructions are undefined.  In the R10000 
processor, an execution of a Coprocessor 2 instruction takes a Reserved Instruction 
exception when CU2 bit is set. 
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15. Cache Test Mode

The R10000 processor provides a cache test mode that may be used during manufacturing 
test and system debug to access the following internal RAM arrays:

• data cache data array

• data cache tag array

• instruction cache data array

• instruction cache tag array

• secondary cache way predication table
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15.1  Interface Signals

Cache test mode is accessed by using a subset of the system interface signals.  By not 
requiring the use of any secondary cache interface signals, the internal RAM arrays may be 
accessed for single-chip LGA as well as R10000/secondary cache module configurations.

The following system interface signals are used during cache test mode:

• SysAD(57:0)

• SysVal*

Any input signals not listed above are ignored by the processor when it is operating in cache 
test mode, and any output signals not listed above are undefined during cache test mode.

15.2  System Interface Clock Divisor

Cache test mode is supported for all system interface clock speeds.   However, since cache 
test mode repeat rates and latencies are expressed in terms of PClk cycles, the external 
agent must take care when operating at any system interface clock divisor other than 
Divide-by-1.
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15.3  Entering Cache Test Mode

In order for the processor to enter cache test mode, the external agent must begin a Power-
on or Cold Reset sequence.

Rather than negating SysReset* at the end of the reset sequence, the external agent loads 
the mode bits into the processor by driving the mode bits (with the CTM signal asserted) 
on SysAD(63:0), waits at least two SysClk cycles, and then asserts SysGnt* for at least 
one SysClk cycle.

After waiting at least another 100 ms, the external agent may issue the first cache test mode 
command.

Figure 15-1 shows the cache test mode entry sequence.

Figure 15-1    Cache Test Mode Entry Sequence

SysAD(63:0)

SysVal*

Cycle

SysClk

Master

SysGnt*

SysReset*

Assert CTM mode bit First cache test mode command

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Modes

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*

≥100ms ≥100ms

Cmd
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15.4  Exit Sequence

To leave cache test mode, the external agent does the following:

• loads the mode bits into the processor by driving the mode bits (with the 
CTM mode bit negated) on SysAD(63:0)

• waits at least two SysClk cycles

• asserts SysGnt* for at least one SysClk cycle

After at least one SysClk cycle, the external agent may negate SysReset* to end the reset 
sequence.

Figure 15-2 shows the cache test mode exit sequence.

Figure 15-2    Cache Test Mode Exit Sequence

SysAD(63:0)

SysVal*

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Cycle

SysClk

Master

SysGnt*

Modes

SysReset*

Negate CTM mode bit

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*
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15.5  SysAD(63:0) Encoding

Encoding of the SysAD(63:0) bus during cache test mode is shown in Table 15-1.  
“Unused” fields are read as “undefined,” and must be written as zeroes.

Table 15-1    Cache Test Mode SysAD(63:0) Encoding

SysAD Bit
Data

Cache Data 
Array

Data
Cache Tag 

Array

Instruction 
Cache Data 

Array

Instruction
Cache Tag 

Array

Secondary 
Cache Way 
Predication 

Array

0

Data

Tag parity

Data

Tag parity MRU

1 SCWay Unused

Unused

2 State parity State parity

3 LRU LRU

4
Unused Unused

5

6
State

State

7 Unused

31:8
Tag Tag

35:32 Data parity

36

Unused
StateMod

Data parity

Unused38:37
Unused

39 Unused

42:40
0 1 2 3 4

Array select

43 Write/Read select

44 Auto-increment select

45 Way

57:46 Address

63:58 Unused
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15.6  Cache Test Mode Protocol

This section describes the cache test mode protocol in detail, including:

• normal write protocol

• auto-increment protocol

• normal read protocol

• auto-increment read protocol

Normal Write Protocol

A cache test mode normal write operation writes a selected RAM array.  The write address, 
way, array, and data are specified in the write command.

The external agent issues a normal write command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• driving the write data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle

Normal writes have a repeat rate of 8 PClk cycles. 

Figure 15-3 depicts two cache test mode normal writes.

Figure 15-3    Cache Test Mode Normal Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

NrmWr NrmWr

SysReset*

SysGnt*
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Auto-Increment Write Protocol

A cache test mode auto-increment write operation writes a selected RAM array.  The write 
address is obtained by incrementing the previous write address, and the write way is 
obtained from the previous write way.

 If an overflow occurs when incrementing the previous write address, the address wraps to 
0, and the way is toggled.

The write data is identical to the previous write data.

For proper results, an auto-increment write must always be proceeded by a normal or auto-
increment write.

The external agent issues an auto-increment write command by:

• asserting the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle

Auto-increment writes have a repeat rate of one PClk cycle.

Figure 15-4 depicts three cache test mode auto-increment writes.

Figure 15-4    Cache Test Mode Auto-Increment Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

IncWr IncWr IncWr

SysReset*

SysGnt*
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Normal Read Protocol

A cache test mode normal read operation reads a selected RAM array.  The read address, 
way, and array are specified by the read command.

The external agent issues a normal read command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Normal reads have a repeat rate of 17 PClk cycles.

Figure 15-5 depicts two cache test mode normal reads.

Figure 15-5    Cache Test Mode Normal Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P0 ---EA - --

NrmRd NrmRdRdRsp

SysReset*

SysGnt*
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Auto-Increment Read Protocol

A cache test mode auto-increment read operation reads a selected RAM array. The read 
address is obtained by incrementing the previous access address, and the read way is 
obtained from the previous access way.

If an overflow occurs when incrementing the previous access address, the address wraps to 
0, and the way is toggled.

The external agent issues an auto-increment read command by:

• asserting the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Auto-increment reads have a repeat rate of 17 PClk cycles.

Figure 15-6 depicts two cache test mode auto-increment reads.

Figure 15-6    Cache Test Mode Auto-Increment Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P0 ---EA - --

IncRd IncRdRdRsp

SysReset*

SysGnt*
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Appendix A  Glossary

The following terms are defined in this Glossary:

• superscalar processor

• pipeline

• pipeline latency

• pipeline repeat rate

• out-of-order execution

• dynamic scheduling

• instruction fetch, decode, issue, execution, completion, and graduation

• active list

• free list and busy registers

• register renaming and unnaming

• nonblocking loads and stores

• speculative branching

• logical and physical registers

• register files

• ANDES architecture
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A.1  Superscalar Processor

A superscalar processor is one that can fetch, execute and complete more than one 
instruction in parallel.  By implication, a superscalar processor has more than one pipeline 
(see below).

A.2  Pipeline

In the processor pipeline, the execution of each instruction is divided into a sequence of 
simpler suboperations.   Each suboperation is performed by a separate hardware section 
called a stage, and each stage passes its result to a succeeding stage.

Normally, each instruction only remains in each stage for a single cycle, and each stage 
begins executing a new instruction as previous instructions are being completed in later 
stages.  Thus, a new instruction can often begin during every cycle.    

Pipelines greatly improve the rate at which instructions can be executed, as long as there 
are no dependencies.  The efficient use of a pipeline requires that several instructions be 
executed in parallel, however the result of any instruction is not available for several cycles 
after that instruction has entered the pipeline.  Thus, new instructions must not depend on 
the results of instructions which are still in the pipeline.

A.3  Pipeline Latency

The latency of an execution pipeline is the number of cycles between the time an 
instruction is issued and the time a dependent instruction (which uses its result as an 
operand) can be issued.

In the R10000 processor, most integer instructions have a single-cycle latency, load 
instructions have a 2-cycle latency for cache hits, and floating-point addition and 
multiplication have a 2-cycle latency.  Integer multiply, floating-point square-root, and all 
divide instructions are computed iteratively and have longer latencies.

A.4  Pipeline Repeat Rate

The repeat rate of the pipeline is the number of cycles that occur between the issuance of 
one instruction and the issuance of the next instruction to the same execution unit.  In the 
R10000 processor, the main five pipelines all have repeat rates of one cycle, but the iterative 
units have longer repeat delays. 

A.5  Out-of-Order Execution

The “program order” of instructions is the sequence in which they are fetched and decoded.  
In the R10000 processor, instructions may be issued, executed, and completed out of 
program order.  They are always graduated in program order.
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A.6  Dynamic Scheduling

The R10000 processor can issue instructions to functional units out of program order; this 
capability is known as dynamic scheduling or dynamic issuing.

The R10000 processor can dynamically issue an instruction as soon as all its operands are 
available and the required execution unit is not busy.  Thus, an instruction is not delayed by 
a stalled previous instruction unless it needs the results of that previous instruction.

A.7  Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation

In general, instructions are fetched, decoded, and graduated in their original program order, 
but may be issued, executed, and completed out of program order, as shown in Figure A-1.

• Instruction fetching is the process of reading instructions from the instruction 
cache.

• Instruction decode includes register renaming and initial dependency checks.  
For branch instructions, the branch path is predicted and the target address is 
computed.

• An instruction is issued when it is handed over to a functional unit for 
execution.

• An instruction is complete when its result has been computed and stored in a 
temporary physical register.

• An instruction graduates when this temporary result is committed as the new 
state of the processor.  An instruction can graduate only after it and all 
previous instructions have been successfully completed.

Figure A-1    Dynamic Scheduling

A.8  Active List

The R10000 processor’s active list is a program-order list of decoded instructions.  For 
each instruction, the active list indicates the physical register which contained the previous 
value of the destination register (if any).  If this instruction graduates, that previous value 
is discarded and the physical register is returned to the free list.  The active list records 
status, such as those instructions that have completed, or those instructions that have 
detected exceptions.  Instructions are appended to the bottom of the list as they are decoded 
and instructions are removed from the top as they graduate.
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<R12000>

 Active List entries are increased to 48:

  The active list has been enlarged so that it now contains 48 entries.

 Active list accepts conservatively

   The read pointer for the active list is now evaluated on four-instruction blocks at a time. 
   This has two effects:

    a) There may be up to 11 empty slots in the active list and yet it will report to the decode 
unit that it cannot accept any new instructions. However this level of blockage only lasts 
for a single cycle. At most three empty slots will remain empty for more than one cycle. 
The time at which instructions are removed from the active list has also been changed. 
Integer and load/store instructions now remain in the list for one cycle after they gradu-
ate. This will be compensated for by the increased size of the active list.

    b) The graduation of some instructions will be delayed, as the read pointer will not ad-
vance past the end of a four-instruction block during a cycle. Thus less than the maxi-
mum number of instructions might be graduated because the read pointer can get to them 
that cycle.

A.9  Free List and Busy Registers

A busy-bit table indicates whether or not a result has been written into each of the physical 
registers.  Each register is initially defined to be busy when it is moved from the free list to 
the active list; the register becomes available (“not busy”) when its instruction completes 
and its result is stored in the register file.

The busy-bit table is read for each operand while an instruction is decoded, and these bits 
are written into the queue with the instruction.  If an operand is busy, the instruction must 
wait in the queue until the operand is “not busy.”  The queues determine when an operand 
is ready by comparing the register number of the result coming out of each execution unit 
with the register number of each operand of the instructions waiting in the queue.

With a few exceptions, the integer and address queues have integer operand registers, and 
the floating-point queue has floating-point operand registers.

A.10  Register Renaming

As it executes instructions, the processor generates a myriad of temporary register results.  
These temporary values are stored in register files together with permanent values.  The 
temporary values become new permanent values when their corresponding instructions 
graduate.

Register renaming is used to resolve data dependencies during the dynamic execution of 
instructions.

To ensure each instruction is given correct operand values, the logical register numbers 
(names) used in the instruction are mapped to physical registers.  Each time a new value is 
put in a logical register, it is assigned to a new physical register.  Thus, each physical 
register has only a single value.  Dependencies are determined using these physical register 
numbers.
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An example of register renaming is shown below.  The following Doubleword Shift Left 
Logical instruction, 

has one register operand (r2) plus a 5-bit shift count of value two stored in the sa field; the 
value in r2 is shifted left by two and this value is stored in r3.

The physical execution of the instruction above, with register renaming, is given below:

Physical execution Rename operation

p3←p2 shift left 2 r3 = p3

When the DSLL instruction is executed, the logical destination register r3 is assigned a new 
physical register, p3, from the free list.

Register renaming also allows exceptions to be handled in a precise manner.  Out-of-order 
execution means that an instruction can change its result register even before all prior 
instructions have been completed.  However, if any of the prior instructions cause an 
exception, the original register value must be restored.   Since each new register value is 
loaded into a new physical register (physical register values are not overwritten until the 
physical register is placed in the free list), previous values remain unchanged in the original 
physical registers and these previous values can be restored.†

An instruction can be aborted up until the time it graduates, and all register and memory 
values can be restored to a precise state following any exception.  This state is restored by 
unnaming the temporary physical registers assigned to subsequent instructions.

Registers are unnamed by writing the old destination register into the mapping table and 
returning the new destination register to the free list.  Unnaming is done in reverse program 
order, in case a logical register was used more than once.  After renaming, the register files 
contain only the permanent values which were created by instructions prior to the 
exception.

Once an instruction has graduated, all previous values are lost.

A.11  Nonblocking Loads and Stores

Loads and stores are nonblocking; that is, cache misses do not stall the processor.  All other 
parts of the processor may continue to work on non-dependent instructions while as many 
as four cache misses are being processed.

† This same technique is used to reverse mispredicted speculative branches.

DSLL r3,r2,2

opcode rs rt dest sa function

spec - r2 r3 2 DSLL
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A.12  Speculative Branching

Normally, about one of every six instructions is a branch.  Since four instructions are 
fetched each cycle, the R10000 processor encounters, on average, a branch instruction 
every other cycle, as shown in Figure A-2.

Figure A-2    Speculative Branching

When a branch instruction was encountered in previous processors, the instruction fetch 
and instruction issue halted until it was determined whether or not to take the branch.  For 
instance, a branch delay slot was designed into the MIPS architecture to handle the intrinsic 
delay of a branch and to keep the pipeline filled.

Since the processor fetches up to four instructions each clock cycle, there is not enough 
time to resolve branches without stalling the fetch/decode circuitry.  The processor 
therefore predicts the outcome of every branch and speculatively executes the branch 
based on this branch prediction.

The branch prediction circuit consists of a 512-entry RAM, using a 2-bit prediction 
scheme: two bits are assigned to a branch instruction, and indicate whether or not the 
branch was taken the last time it occurred.  The four possible prediction states are: strongly 
taken, weakly taken, weakly not taken, strongly not taken.  If the branch was taken the last 
two times, there is a good probability it will be taken this time too — or the inverse.† 

The R10000 processor can speculate up to four branches deep.  Shadow copies of the 
mapping tables are kept every time a prediction is made, allowing the R10000 processor to 
recover from a mispredicted branch in a single cycle.

† Simulations have shown the R10000 branch prediction algorithm to be over 90% accurate.

Cycle 0

On average, one of out

I3

I4

I7

I8

Cycle 1

every six instructions 
is a Branch

I1

I2

I5

I6



Appendix A  Glossary

User’s Manual  U10278EJ4V0UM 343

<R12000>

 Use of global history in branch-prediction:

The history register is 8 bits wide, and implements the ‘gshare’ predictor (reference to 
paper that defines will be provided later). The history register is updated speculatively, 
with a one cycle delay after a prediction before the results are available for use in forming 
another prediction index. As mentioned earlier, some programs with small “working set 
of conditional branches” benefit significantly from the use of such hashing; however, a 
slightly variable number of previously-executed branches may be omitted from the 
predictions made for any given branch. This will reduce prediction accuracy somewhat. 
Global history register is enabled via bits 26:23 of the Diag Register (CP0 register 22). If 
bit 26 is set, branch prediction uses all eight bits of the global history register. If bit 26 is 
not set, then bits 25:23 specify a count of the number of bits of global history register to 
be used.

 Increase in branch prediction table size:

The table size is increased to 2048 2-bit entries.

A.13  Logical and Physical Registers

Register renaming (described above) distinguishes between logical registers, which are 
referenced within instruction fields, and physical registers, which are actually located in 
the hardware register file.  The programmer is only aware of logical registers; the 
implementation of physical registers is entirely transparent.

Logical register numbers are dynamically mapped onto physical register numbers.  This 
mapping uses mapping tables which are updated after each instruction is decoded; each 
new result is written into a new physical register.  This value is temporary and the previous 
contents of each logical register can be restored if its instruction must be aborted following 
an exception or a mispredicted branch.

Register renaming simplifies dependency checks.  Logical register numbers can be 
ambiguous when instructions are executed out of order, since a succession of different 
values may be assigned to the same register.  But physical register numbers uniquely 
identify each result, making dependency checking unambiguous.

The queues and execution units use physical register numbers.  Integer and floating-point 
registers are implemented with separate renaming hardware and multi-port register files.

A.14  Register Files

The R10000 processor has two 64-bit-wide register files to store integer and floating-point 
values.  Each file contains 64 registers. The integer register file has seven read and three 
write ports; the floating-point register file has five read and three write ports.

The integer and floating-point pipelines each use two dedicated operand ports and one 
dedicated result port in the appropriate register file.  The Load/Store unit uses two dedicated 
integer operand ports for address calculation.  It must also load or store either integer or 
floating-point values, sharing a result port and a read port in both register files.
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These shared ports are also used to move data between the integer and floating-point 
register files, to store branch and link return addresses, and to read the target address for 
branch register instructions.

A.15  ANDES Architecture

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.
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Appendix B  Differences between R10000 and 
R12000

The following items are described in this Appendix:

• Mode bits changed in R12000

• DSD (Delay Speculative Dirty)

• Changes in the Branch Diag Register

• Eliminate traps for Denorm/NaN FP inputs

• Increase in pre-decode buffering

• Increased penalty for indirect branches

• Addition of a Branch Target Address Cache

• Use of global history in branch-prediction

• Increase in branch prediction table size

• Address calculation for load/store instructions uses integer queue

• Load/store dependency is speculatively ignored

• DCache set locking relaxed

• SC refill blocking reduced

• Increased the Way Prediction Table (MRU table) to 16K single-bit entries

• Additional cycles for System Interface transactions

• FP and Integer-Queue Issue Policy

• Active List entires are increased to 48

• Cache Error inhibits graduation

• Changed Spare (1, 3) pins to NC (No Connection)

• CacheOp Index Write Back Invalidate (D) also clears Primary Tag

• Summary of the differences
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B.1  Mode bits changed in R12000

† For R12000 and R12000L. This code can be set in the R12000A (See C.1).

Table B-1   Mode Bits 12:9 (SysClkDiv)

Code Divisor SysClk (for PClk = 300 MHz)

0000 - Reserved

0001 - Reserved

0010 - Reserved

0011 2 150 MHz

0100 2.5 120 MHz

0101 3 100 MHz

0110 3.5 85.70 MHz

0111 4 75.00 MHz

1000 4.5 66.00 MHz

1001 5 60.00 MHz

1010 5.5 54.55 MHz

1011 6 50.00 MHz

1100 - Reserved†

1101 - Reserved

1110 - Reserved

1111 - Reserved

Table B-2   Mode Bits 21:19 (SCClkDiv)

Code Divisor SCClk (for PClk = 300 MHz)

000 - Reserved

001 - Reserved

010 1.5 200MHz

011 2 150 MHz

100 2.5 120 MHz

101 3 100 MHz

110 - Reserved

111 4 75 MHz (added for testing silicon)
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B.2  DSD (Delay Speculative Dirty)

The Boot Mode bit 24 corresponds to the Config register[24] bit and this controls DSD 
during user mode. However, the DSD mode can also be enabled in the kernel mode by 
setting the Status register[24] bit. Config register[24] is read-only and can be set only at 
boot time.

  If the DSD mode is set -

   a) R12000 will not set the Dirty bit for a secondary cache block until the store instruction 
is the oldest in the Active List and is about to be executed. (An interrupt could cause a 
case where the dirty bit is set (store is no longer speculative), but the store does not 
immediately graduate. We believe this case should not cause any problem. This mode 
does prevent speculative stores from setting the dirty bit.)

   b) This mode will have slightly lower performance due to the delay in the setting of the 
Dirty bit. This delay will occur just once per block refill from main memory, when it 
is necessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the 
processor will continue to overlap execution of other instructions. Once a block 
becomes dirty in secondary cache, this mode has no performance effect.

   c) In this mode, a miss in secondary cache, due to a store instruction which is not already 
the oldest in the pipeline, will cause a refill to the “clean exclusive” state. A hit to a 
shared line will immediately cause an upgrade to “clean exclusive”. Thus, bus 
operations (which are relatively slow) will still begin speculatively.

Independent of the DSD mode, R12000 will delay a “cached, non-coherent” load until 
it is the oldest instruction. This change is implemented because a speculative load 
accessing an unmapped “xkphys” address as “cached, non-coherent” might bring data 
into the secondary cache without the proper coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cache lines in 
shared or clean states except the “xkphys” case described above. 

Table B-3   Mode Bits 24:22

Code Name Comments

000 - Reserved

001 - Reserved

010 - Reserved

011 - Reserved

100 DSD Delay Speculative Dirty - fix for speculative store (see B.2)

101 - Reserved

110 - Reserved

111 - Reserved
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B.3  Changes in the Branch Diag Register

In R12000 two fields are added to the “Diag Register” - CP0 Register 22. One field is 
“ghistory enable”, bits 26:23. The other is “BTAC disable”, bit 27.

The definitions are:

• Ghistory enable:

• If bit 26 is set, branch prediction uses all eight bits of the global history register.

• If bit 26 is not set, then bits 25:23 specify a count of the number of bits of 
global history to be used.

Thus if bits 26:23 are all zero, global history is disabled.

The global history contains a record of the taken/not-taken status of recently executed 
branches, and when used is XOR’ed with the PC of a branch being predicted to produce a 
hashed value for indexing the BPT. Some programs with small “working set of conditional 
branches” benefit significantly from the use of such hashing, some see slight performance 
degradation.

• BTAC disable:

If bit 27 is set, the use of the Branch Target Address Cache (BTAC) is disabled. The BTAC 
is used to reduce the instruction fetch penalty of taken branches by providing the target 
address of fixed-address branch and jump instructions.
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B.4  Eliminate traps for Denorm/NaN FP inputs

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or 
Denorm as an input. R12000 suppresses these traps whenever the FS bit is set in the FCSR. 
R12000 simply passes through NaN’s and Denorm’s when the bit is set. This change in no 
way affects the handling of QNaNs and Denorms when they are produced, it only changes 
the way they are handled when they are received as input operands.

Case of Denorm when the FS bit is set to 1: A Denorm received as an input to the FP unit 
is flushed to zero before the FP unit begins to process the operand. The behavior of the unit 
(when FS is 1) will be exactly that seen when the input is zero. Specifically, if the zero input 
would itself cause a trap (due to divide by zero, for example) then the that zero-generated 
trap will be taken. When a Denorm is seen at the input, the Inexact bit is set, except in the 
cases described below:

 The Inexact bit will not be set, even if FS=1 and a Denorm is seen on input, if the other 
input to the FP operation is a value which pre-determines the FP result (e.g. QNaN). 
When the result is not affected by the presence or absence of the Denorm input, the 
result is EXACT. Hence the Inexact bit should not be set, even if Flush to Zero mode 
is ON.

Case of QNaNs when the FS bit is set to 1: A QNaN received as an input operand for an FP 
unit will cause the unit to produce the standard QNaN (which is not necessarily same as the 
input QNaN). Note that FP units will not propagate the QNaN to the output, but will always 
produce the same, standard, QNaN.

When the FS bit is set to zero, the behavior will be exactly as in R10000.

When Denorms or QNaNs are produced by an FP operation, the behavior will be exactly 
as in R10000, regardless of the FS bit setting.

Handling of signalling NaNs will be unaffected by this change. Only the handling of input 
quiet NaNs and Denorms will be affected.

Arithmetic instructions (like add/sub/madd/cvt/div/sqrt/recip/rsqrt) will follow the above 
behavior in all respects.

There are some instructions that deserve special mention:

• Mov, conditional mov will not be affected by this mode, i.e. no exceptions based 
on QNaNs and Denorms. Denorms and QNaNs will be moved without 
generating an exception, regardless of the FS state. This behavior is unchanged 
from that of R10000.

• When FS=1, the Abs, Neg and Compare instructions will flush Denorm inputs to 
zero just as the arithmetic operations do. This is different from the behavior of 
the R8000, R4400 and R10000. In all     cases where flushing the Denorm to 
zero made a difference in the result, the and inexact trap will be taken or the 
Inexact bit will be set. Compatibility with R4400 and R10000 can be achieved 
by setting FS=0.
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• The behavior of FP to INT conversion instructions will change in that when 
FS=1, an input Denorm will be flushed to zero and the Inexact bit will be set. 
With other inputs, FP to INT conversion will not be affected by the FS mode 
bit. Previously, R10000 took an unimplemented exception whenever a 
conversion from an FP value would result in a value that cannot be represented 
in the target format. This will continue to be the case, with the noted exception 
of Denorm inputs.

• FP to FP convert instructions will be affected in the same way as arithmetic 
operations. That is, cvt FP to FP will not take exceptions on qNaN or Denorm 
inputs, if and only if FS=1.

The above changes in R12000 will allow the compilers and applications can do more 
aggressive optimizations during loop unrolling like if-conversion, speculative load 
execution and speculative code motion by making use of this feature. The change is gated 
by the FS bit so that strict IEEE-compliance is possible, as before, by setting the FS bit to 
zero.

B.5  Increase in pre-decode buffering

Up to 12 instruction may be buffered before being decoded. This should normally be 
invisible to the end user, but can be important when debugging systems in uncached-mode, 
since fetch and decode are now further de-coupled.

B.6  Increased penalty for indirect branches

Indirect branches, which were already an expensive operation, have become even more so. 
Instruction fetch now stalls for a minimum of 5 cycles, rather than the 4 for the R10000. 
This additional cycle of delay is seen by both jr and jalr instructions.

B.7  Addition of a Branch Target Address Cache

This 32-entry two-way set-associative cache holds the target addresses of previously-taken 
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch 
bubble with the R10000 experiences for every taken branch. However, if a branch which 
hits in the BTAC is actually predicted not-taken, then a one cycle fetch bubble is introduced 
where none was present before. Performance simulations indicate that the BTAC is a net 
win, but because of its “mixed-blessing” nature, a mechanism has been provided to disable 
it via software. (See description of changes to diag register) 
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B.8  Use of global history in branch-prediction

The history register is 8 bits wide, and implements the ‘gshare’ predictor (reference to 
paper that defines will be provided later). The history register is updated speculatively, with 
a one cycle delay after a prediction before the results are available for use in forming 
another prediction index. As mentioned earlier, some programs with small “working set of 
conditional branches” benefit significantly from the use of such hashing; however, a slightly 
variable number of previously-executed branches may be omitted from the predictions 
made for any given branch. This will reduce prediction accuracy somewhat. Global history 
register is enabled via bits 26:23 of the Diag Register (CP0 register 22). If bit 26 is set, 
branch prediction uses all eight bits of the global history register. If bit 26 is not set, then 
bits 25:23 specify a count of the number of bits of global history register to be used. 

B.9  Increase in branch prediction table size

The table size is increased to 2048 2-bit entries.

B.10  Address calculation for load/store instructions uses integer queue

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the 
AQ and IQ units. The IQ treats the address-calculate unit as a third “ALU” and issues 
instructions to it. When an instruction completes address calculation, the results are 
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any 
reason, address calculation is not redone. If an the address queue is full, but the integer 
queue has free entries at the time a load/store instruction is decoded, the load/store is sent 
only to the integer queue. When the address queue has an available entry the calculated 
address is forwarded to that entry and the remainder of the load/store execution continues. 

B.11  Load/store dependency is speculatively ignored

When a load follows a store in program-order, and the address of the load is known to the 
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue 
the load to tag-check and data access. When the address of the store is determined, the AQ 
can undo the effects of the load through the use of the “soft-exception” mechanism. Since 
almost all loads which are actually dependent on previous stores use the same registers to 
form their addresses, normally either the two instructions are independent, or their 
addresses are resolved in program order, so the soft-exception should occur rarely.
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B.12  DCache set locking relaxed

In R10000, when an AQ entry accesses a Dcache line, that line is locked into the cache until 
the entry graduates, so that the entry will not be removed from the cache until the access 
completes. If another entry which needs to access exactly the same line arrives in the AQ 
before the first completes, the two may share the lock. In this way, a line is locked in the 
cache until all access to it complete. In order to prevent a deadlock from arising, whenever 
a cache line is locked in this way, only the oldest AQ entry can obtain a lock on the other 
“way” of the same cache set, thus ensuring that forward progress can be made. This 
algorithm can cause problems, because often the oldest entry in the AQ is the one which 
already owns the lock on the first way - thus ensuring that no other entries can access the 
second way of the cache for that set index. For some algorithms, most notably FFT’s, this 
can cause severe performance degradation. R12000 allows an entry to obtain the lock on 
the second way of a set if it is the oldest entry which does not already own a lock. Thus, any 
entries which have already acquired a lock, including those locking the first way, will not 
prevent another, younger, entry from accessing that second way.

B.13  SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via 
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external 
interface sees an ACK to a line that is being refilled before the last words of the SCache line 
are received by R10000, this means that several cycles can elapse during which SCache 
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and 
allowing other requests to proceed during breaks between the blocks, this effect could be 
reduced. R12000 pulls in SCache lines with two “pause points.” This first occurs when 
R12000 receives the ACK for a request. If the first two quad-words are already valid in the 
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two, 
and forward the results to the DCache or ICache at the same time as normal. The next two 
quad-words will be refilled as they return, thus continuing to block any other access to the 
SCache just as today. If however, when the initial ACK is received, the first two are not valid 
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache 
refill and wait for both of them to be brought in to the IB. Once the first half is filled in to 
the SCache, R12000 will again check the IB to see if an additional 3 quad-words are valid 
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB). Until 
that is the case, R12000 will again “pause” the SCache refill and allow other accesses to 
reach the SCache. These two pauses allow for other requests to slip in during an SCache 
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

B.14  Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB caches with 128B lines 
or 2MB caches with 64B lines can be fully mapped.

B.15  Additional cycles for System Interface transactions

All transactions which go through the system interface unit (in particular, SCache refills 
and writebacks) have one additional CPU-clock of latency added to them.
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B.16  FP and Integer-Queue Issue Policy

The integer and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banks in an alternating fashion. Each bank 
independently nominates instructions for the functional units. For each FU, the banks 
nominate the oldest instruction they contain which is ready to execute. If both banks 
nominate an instruction for a given FU, a winner is chosen by a priority bit which alternates 
between the two banks on each cycle.

B.17  Active List entries are increased to 48

The active list has been enlarged so that it now contains 48 entries.

B.18  Cache Error inhibits graduation

When a cache error is detected, all instruction graduation is inhibited on the following 
cycle. Since cache errors are rare, and an exception will occur soon afterwards, this should 
have minimal impact on performance. 

B.19  Changed Spare(1, 3) pins to NC (No Connection)

The Spare(1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not 
be connected to anything.

B.20  CacheOp Index Write Back Invalidate(D) also clears Primary Tag

As a result of the CacheOp Index Write Back Invalidate(D) instruction, the Primary Tag is 
also cleared (set to zero) in addition to setting the cache state bits to zeros or (invalid) as 
described in VR5000, VR10000 INSTRUCTION User’s Manual.
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B.21  Summary of the differences

• Higher operation frequency.

• Core operating voltage for R12000 2.6V.

• Max case temperature for R12000 70°C.

• Less Power consumption.

• Increased options for PClk to SysClk and PClk to SCClk ratios.
• Added boot-time mode bits to allow processor upgrade without change in 

system interface and secondary cache interface frequency.

• Added a mode in which the side effects of “Speculative Load/
Stores” are avoided.

• Speculative load/stores could cause problems in a system with non-
coherent I/O. In this mode prevents the behavior that causes the side-
effects with some trade-off in performance. This mode is optional and can 
be selected during boot-time.

• Added an optional Branch Target Address Cache to reduce instruc-
tion fetch penalty.

• Since there are trade-offs, this feature can be disabled.

• Added an optional “Global History Table” to improve branch pre-
diction.

• Since not all the program benefit from this feature; so the feature can be 
disabled.

• Added an option to eliminate traps for Denorm/NAN FP inputs
• This allows the compilers and applications to do more aggressive 

optimization. The change is optional if IEEE compliance is needed.

• Quadrupled the branch prediction table size.

• Doubled the MRU table for SCache way prediction to improve 
SCache hit rate.
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• Improved performance monitoring system.

• Increased Active list to 48 entries to improve performance.

• Changed the Spare(1,3) pins to NC (No Connection).

• Other miscellaneous changes to improve performance and simplify 
logic.
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Appendix C  Differences between R12000 and 
R12000A

The following items are described in this Appendix:

• Mode bits changed in R12000A

• Changes in the Performance Counter Registers

• Summary of the differences
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C.1  Mode bits changed in R12000A

NOTE: The selectable divisors of PClk to SCClk in the R12000A are the same as 
those in the R12000. Table C-2 is only for indication of actual frequencies of SCClk 
when each divisor is selected.

Table C-1   Mode Bits 12:9 (SysClkDiv)

Code Divisor SysClk (for PClk = 400 MHz)

0000 - Reserved

0001 - Reserved

0010 - Reserved

0011 2 200 MHz

0100 2.5 160 MHz

0101 3 133.3 MHz

0110 3.5 114.3 MHz

0111 4 100 MHz

1000 4.5 88.89 MHz

1001 5 80 MHz

1010 5.5 72.73 MHz

1011 6 66.67 MHz

1100 7 57.14 MHz

1101 - Reserved

1110 - Reserved

1111 - Reserved

Table C-2   Mode Bits 21:19 (SCClkDiv)

Code Divisor SCClk (for PClk = 400 MHz)

000 - Reserved

001 - Reserved

010 1.5 266.7 MHz

011 2 200 MHz

100 2.5 160 MHz

101 3 133.3 MHz

110 - Reserved

111 4 100 MHz (added for testing silicon)
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C.2  Changes in the Performance Counter Registers

In the R12000A, the syndrome bits that are generated from the data coming into the 
processor from the SCache are captured in a 9-bit register whenever there is a single or 
multiple bit error. Therefore this register will always contain the syndrome bits generated 
for the most recent error encountered. The register is uninitialized on power up and is not 
writable by any other means. Architecturally, the 9-bit register appears as bits 31:23 of the 
CP0 Performance Counter (Cop 25) Control register 0. These bits were previously unused. 
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome bits are generated for Secondary to Primary refills and Secondary to Main 
memory writebacks, but not for CacheOp reads from Secondary cache.

For details, see 11.20 Performance Counter Registers (25).

C.3  Summary of the differences

• Higher operation frequency.

• Core operating voltage for R12000A 1.9V.

• Increased an option for PClk to SysClk ratio.

• Added options for HSTL modes of output pins.

• Added an error indication mechanism for received secondary 
cache data.

• Changed the packaging to plastic BGA.

• Added JTRST signal for asynchronous initialization of the TAP 
controller in the JTAG interface.

Table C-3   Mode Bits 30:29 (HSTL Mode)

Code Comments

00
HSTL 1 on the outputs of the System interface
HSTL 1 on the outputs of the secondary cache interface

01
HSTL 1 on the outputs of the System interface
HSTL 2 on the outputs of the secondary cache interface

10
HSTL 2 on the outputs of the System interface
HSTL 1 on the outputs of the secondary cache interface

11
HSTL 2 on the outputs of the System interface
HSTL 2 on the outputs of the secondary cache interface
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Appendix D  Index

Numerics

16-word, cache refill

read sequence ... 88

write sequence ... 93

32-bit

address space ... 287

mode, TLB entry format ... 299

32-word, cache refill

read sequence ... 88

write sequence ... 93

4-word, cache refill

read sequence ... 86

write sequence ... 91

64-bit

address space ... 287

mode, TLB entry format ... 299

8-word, cache refill

read sequence ... 87

write sequence ... 92

A

access privileges, address space ... 296

ACK completion response ... 146

ACK, signal ... 106

active list, definition of ... 339

add unit, FPU ... 274

address

encodings, mode ... 287

Kernel mode ... 292

mapping

Kernel mode ... 292

Supervisor mode ... 290

User mode ... 288

mode ... 287

page ... 298

queue ... 22, 29

instruction graduation ... 29

issue ports ... 29

number of entries ... 29

number of instructions written per cycle ... 29

organized as FIFO ... 29

sequencing ... 29

space

access privileges ... 296

kernel ... 287

supervisor ... 287

user ... 287

virtual ... 287

Supervisor mode ... 290

translation ... 300

User mode ... 288

Address Error exception ... 310

Address Space Identifier, see also  ASID ... 300

address/data bus signals ... 57

AdEL, indication ... 310

AdES, indication ... 310

algorithms

cache, five types of ... 70, 74

aliasing, virtual ... 84

allocate request number requests, external ... 150

ALU (arithmetic logic unit)

No. 1 ... 36

No. 2 ... 36

ALU1 ... 25, 28

ALU2 ... 25, 28

ANDES, Architecture with Non-sequential Dynamic Execution 
Scheduling ... 20, 344

arbitration protocol, System interface ... 124
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arbitration rules, System interface ... 125

arbitration signals ... 57

arbitration, cluster bus ... 98

Architecture with Non-sequential Dynamic Execution Scheduling, 
see also ANDES ... 344

arithmetic instructions, FPU ... 283

arithmetic logic unit, see also  ALU ... 36

array ... 79

array, page table entry (PTE) ... 215

ASID (Address Space Identifier)

context switch ... 300

relationship to Global (G) bit in TLB entry ... 300

stored in EntryHi register ... 300

ASID, field ... 219

auto-increment read, cache test mode ... 336

auto-increment write, cache test mode ... 334

B

Bad Virtual Address register (BadVAddr) ... 218

BadVAddr register ... 215, 233, 310

BadVPN2, field ... 215, 233

BD, (branch delay) bit ... 226, 228

BE, (memory endianness) bit ... 230

BEV, (boot exception vector) bit ... 188, 224, 302

block

instruction cache ... 25

primary data cache ... 25

secondary cache ... 27

size

primary data cache ... 64

primary instruction cache ... 62

secondary cache ... 67

block data transfers ... 110

external block data responses ... 110

processor block write requests ... 110

processor coherency data responses ... 110

boundary scan register, JTAG ... 206

BPIdx, field ... 236

BPMode, field ... 236

BPOp, field ... 236

BPState, field ... 236

branch

determining next address ... 35

instruction, limits on execution ... 35

prediction ... 32, 47, 342

prediction rates, improving ... 39

speculative ... 342

unit ... 26, 35

BRCH, field ... 236

BRCV, field ... 236

BRCW, field ... 236

Breakpoint exception ... 320

BSIdx, field ... 236

BTAC disable, bit ... 237

buffer

cached request ... 105

cluster request ... 105

incoming ... 105, 106

outgoing ... 105, 107

uncached ... 105, 108

bus

SysAD ... 118

SysCmd ... 111

SysResp ... 121

SysState ... 120

Bus Error exception ... 316

busy-bit table ... 340

bypass register, JTAG ... 205

C

C, (coherency attribute) bit ... 213

cache... 20

algorithms ... 70

and processor requests ... 74

cacheable coherent exclusive on write, description of ... 71

cacheable coherent exclusive, description of ... 71

cacheable noncoherent, description of ... 71

fields, encoding of ... 70

for kseg0 address space ... 70

for mapped address space ... 70

for xkphys address space ... 70

uncached accelerated, description of ... 72

uncached, description of ... 71

where specified ... 70

associativity ... 61

block ownership ... 75

misses ... 43

address recording ... 253

nonblocking ... 41, 43

ordering constraints ... 33

pages ... 298

primary ... 20

primary data ... 25

block size ... 64
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changing states ... 65

description of ... 64

diagram, state ... 66

error handling ... 192

index and tag ... 65

interleaving ... 48

refill ... 47

state diagram ... 66

states ... 65

subset of secondary cache ... 65

write back protocol ... 64

primary instruction ... 25

block size ... 62

description of ... 62

diagram, state ... 63

error handling ... 191

error protection ... 191

index and tag ... 62

refill ... 47

state diagram ... 63

states ... 62

rules, ownership of a cache block ... 75

secondary ... 20

associativity ... 27, 67

block size ... 67

block state ... 84

blocks ... 27

changing states ... 68

clock domain ... 173

data array ... 77

data array width ... 79

description of ... 67

diagram, state ... 68

ECC ... 27

error handling ... 193

index and tag ... 67

indexing ... 79

indexing the data array ... 79

indexing the tag array ... 80

interface frequencies ... 78

sizes ... 27

specifying block size ... 77

specifying cache size ... 77

state diagram ... 68

states ... 67

syndrome bits ... 254

tag ... 83

tag and data array ECC ... 77

tag array ... 77

way prediction ... 81

way prediction table ... 80

write back protocol ... 67

strong ordering

example of ... 34

structure, two-level ... 61

Cache Error exception... 188, 315

precision ... 188

prioritization ... 188

Cache Error handler ... 188

CACHE instructions ... 189

support for I/O ... 168

cache miss stalls ... 43

cache test mode

entry ... 330

exit ... 331

cacheable coherent exclusive on write, cache algorithm ... 70, 71

cacheable coherent exclusive, cache algorithm ... 70, 71

cacheable noncoherent, cache algorithm ... 70, 71

cached request buffer ... 105

CacheErr register ... 188, 189, 191, 192, 263

cause bits, FPU ... 283

Cause register ... 121, 122, 218, 226, 228

Cause, field (FP) ... 283

CE, bit ... 223, 224, 226

CH, bit ... 224

chip revisions, R10000 ... 229

ckseg0 space ... 296

ckseg1 space ... 296

ckseg3 space ... 296

cksseg space ... 296

clock

domain

in secondary cache ... 173

internal processor clock domain ... 171

secondary cache clock domain ... 171

System interface clock domain ... 171

signal

PClk ... 172

SCClk ... 173

SysClk ... 171

SysClkRet ... 172

signals, overview of ... 57

clock divisor, system interface ... 96, 329

cluster bus ... 52, 98

operation ... 164

cluster coordinator ... 97, 98



Appendix D  Index

362 User’s Manual  U10278EJ4V0UM

cluster request buffer ... 105

coherency conflicts ... 159

coherency protocol, directory-based ... 169

coherency request, external ... 154, 156

coherency schemes ... 52

coherency, System interface

external intervention exclusive request ... 157

external intervention shared request ... 157

external invalidate request ... 157

CohPrcReqTar, mode bit ... 118, 165, 168, 180

cold reset ... 175

sequence ... 178

Cold Reset exception ... 302

Compare register ... 122, 218

completing, an instruction ... 339

completion, definition of ... 341

condition bit dependencies ... 32

Condition, field (FP) ... 283

Config register ... 230

conflicts

coherency ... 159

internal ... 159

TLB, avoiding ... 300

Context register ... 215, 233

context switch ... 300

control registers, FPU ... 281

controller, TAP ... 204

coordinator, cluster ... 97

COP1 instructions ... 327

COP2 instructions ... 327

Coprocessor 0, see also CP0 ... 209

Coprocessor 1 see also CP1, COP1 ... 225

Coprocessor 2 see also CP2, COP2 ... 225

Coprocessor 3 see also CP3, COP3 ... 225

Coprocessor Unusable exception ... 322

correctable error ... 185

Count register ... 122, 218

CP0 (coprocessor 0) ... 209

instructions ... 327

registers, list of ... 210

csseg space ... 291

CT, bit ... 230

CTM, mode bit ... 182, 330, 331

CU, (coprocessor usability) field ... 220, 222, 225

D

D, (dirty) bit ... 213

data cache

see also cache, primary data ... 64

data dependencies ... 38

data path, secondary cache ... 27

data quality indication ... 108

DBRC, field ... 236

DC, (data cache size) field ... 230

DCOk, signal ... 54, 176

DE, bit ... 189, 224

debugging, and Watch registers ... 232

decoding, an instruction ... 339

dependencies

condition bit ... 32

exception ... 33

instruction ... 31

memory ... 32

pipeline ... 31

register ... 32, 343

DevNum, mode bits ... 180

Diagnostic register ... 235

directory-based coherency protocol ... 169

divide unit, FPU ... 274

division by zero, FP ... 283

divisor, clock, system interface ... 96, 329

DN, (device number) field ... 230

Done, bit ... 28

done, see also completion ... 341

DP, (primary data cache parity) field ... 262

DS, (diagnostic status) field ... 221, 222, 223

DSD, (delay speculative dirty) bit ... 224, 230

DSD, mode bits ... 181

duplicate, external ... 50

dynamic issue ... 31, 339

dynamic scheduling ... 339

E

EC, field ... 230

ECC (error correcting code)

matrix for secondary cache data array ... 194

matrix for secondary cache tag array ... 196

matrix for System interface ... 199

register ... 262

secondary cache ... 27
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ECC register ... 86, 91

ECC, field ... 262

efficiency, program, suggestions for increasing ... 39

Enable, field (FP) ... 283

EntryHi register ... 219, 299

ASID field in ... 300

EntryLo registers, and FrameMask register ... 234

EntryLo0 register ... 213, 299

EntryLo1 register ... 213, 299

EPC register ... 228

ERL, (error level) bit ... 188, 223, 286

ERR completion response ... 146

ERR, signal ... 106

error

correctable ... 185

handling ... 184

protocol ... 202

levels, in the Status register ... 286

protection ... 184

schemes used in R10000 ... 190

protection schemes, used in R10000

ECC ... 190

parity ... 190

sparse encoding ... 190

uncorrectable ... 186

handling an ... 188

limiting the propagation of ... 187

units that detect and report uncorrectable errors ... 188

error correcting code see also ECC ... 190

Error Exception Program Counter (ErrorEPC) register ... 273

Event, field ... 239, 248

EW, bit in CacheErr register ... 189

ExcCode, field ... 226, 227

exception levels, in the Status register ... 286

exception processing, CPU

exception types

Address Error ... 310

Breakpoint ... 320

Bus Error ... 316

Cache Error ... 188, 315

Coprocessor Unusable ... 322

Floating-Point ... 323

Integer Overflow ... 317

Interrupt ... 325

NMI ... 309

Reserved Instruction ... 321

Soft Reset ... 307

System Call ... 319

TLB ... 311

TLB Invalid ... 311, 313

TLB Modified ... 311, 314

TLB Refill ... 311, 312

Trap ... 318

Virtual Coherency ... 315

Watch ... 324

exception vector location

Reset ... 302

TLB Refill ... 302

exception vector selection ... 303

precise handling ... 33

priority of ... 303, 305

TLB refill vector locations ... 304

Exception Program Counter (EPC) register ... 228

executing, an instruction ... 339

execution order ... 31

execution pipelines ... 22

execution units, iterative ... 344

execution, speculative ... 38, 342

EXL, (exception level) bit ... 223, 228, 286, 302

external ACK completion response ... 106, 146

external agent ... 50, 51, 95

also referred to as cluster coordinator ... 97

connecting to ... 97

external allocate request number request protocol ... 150

external block data response ... 110, 144

protocol ... 143

external coherency conflicts ... 160

external coherency request latency ... 162

external coherency requests, action taken ... 158

external completion response ... 147

protocol ... 146

external double/single/partial-word data response protocol ... 145

external duplicate tags, support for ... 168

external interface ... 27

memory accesses ... 48

priority operations ... 48

external interrupt request ... 121

protocol ... 152

external intervention exclusive request ... 157

external intervention request ... 149

protocol ... 149

external intervention shared request ... 157

external invalidate requestt ... 157
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protocol ... 151

external NACK completion response ... 146

external request ... 96, 103

protocol ... 148

external response ... 96, 103

protocol ... 143

F

fetch pipeline ... 22, 35

fetching, an instruction ... 339

FGR (Floating-Point General register)

32-bit operations ... 277

5-bit select ... 277

64-bit operations ... 277

load operations ... 278

operations ... 277

Status register FR bit ... 277

store operations ... 278

Fill, field ... 219

flag

uncorrectable error ... 106

Flag, field (FP) ... 283

floating-point

adder ... 36

adder pipeline ... 22

divide ... 36, 275

multiplier ... 36

pipeline ... 23

queue ... 22, 29

instructions written each cycle ... 29

number of allowable entries ... 29

ports ... 29

sequencing ... 29

registers ... 277

rounding mode ... 284

square root ... 36

Floating-Point exception ... 323

Floating-Point Status register see also FSR ... 282

Floating-Point Unit, see also FPU ... 274

flow control ... 109

external data response ... 109

external request ... 109

processor coherency data response ... 109

processor eliminate request ... 109

processor read request ... 109

processor upgrade request ... 109

processor write request ... 109

signals ... 57

format, TLB entry ... 299

FPU ... 274

Active List, control of FSR ... 282

add unit ... 274

arithmetic instructions ... 283

cause bits, FSR ... 283

changing rounding mode using a CTC1 ... 284

compare ... 283

condition bits ... 283

control registers ... 281

divide unit ... 274

FGRs (general registers) ... 277

FSR, (Status register in FPU) ... 282

graduation, control of FSR ... 282

latency ... 274

logic diagram ... 275

move to floating-point ... 280

multiply unit ... 274

operations ... 275

queue

controlling units ... 276

move unit, FPU ... 275

read ports ... 275

register file ... 275

repeat rate ... 274

rounding modes ... 284

serial dependency circuit ... 280

square-root unit ... 274

FR, field ... 222

FrameMask register ... 214, 234

free list ... 340

freeing the request number, with completion response ... 146

FSR (Floating-Point Status register)

cause bits ... 283

condition bits ... 283

division by zero ... 283

enable bits ... 283

flag bits ... 283

inexact result ... 283

invalid operation ... 283

load exceptions ... 284

loading the FSR ... 284

overflow ... 283

RM, round to minus infinity ... 284

RN, round to nearest representable value ... 284

RP, round to plus infinity ... 284

RZ, round toward zero ... 284

underflow ... 283
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unimplemented operation ... 283

functional unit ... 25

branch ... 26

floating-point adder ... 25

floating-point multiplier ... 25

instruction decode and rename ... 26

integer ALU ... 25

iterative ... 25

Load/Store Unit ... 25

G

G, (Global) bit in TLB ... 214, 300

gathering data, in identical mode ... 108

gathering data, in sequential mode ... 108

ghistory enable, bit ... 237

global processes (G bit in TLB) ... 300

graduation

definition of ... 341

of an instruction ... 339

Grant parking ... 124

H

hardware emulation, support for ... 170

hardware interrupts ... 121

HSTL Mode, mode bits ... 183

I

I/O, support for ... 168

IC, (instruction cache size) field ... 230

IE, (interrupt enable) bit ... 223, 239, 249

IM, (interrupt mask) field ... 221

implementation number, R10000 processor ... 229

incoming buffer ... 105, 106

Index Load Tag instruction ... 89

Index register ... 211

Index Store Data CACHE instruction ... 91

Index Store Tag CACHE instruction ... 94

indexing, the secondary cache ... 79

inexact result (FP) ... 283

initialization ... 175

instruction

CACHE, see also CACHE instructions ... 189

completion ... 38, 339

COP0 see also CP0 ... 327

COP1 ... 327

COP2 ... 327

decoding ... 339

dependencies ... 31

DMFC1 ... 283

execution ... 339

fetching ... 339

graduation ... 339

issue ... 38, 339

superscalar ... 38

latencies ... 45

MFC1 ... 280, 283

prefetch ... 43

queue ... 28, 35

repeat rates ... 45

serializing ... 41

SWC1 ... 280

SYNC ... 73, 164

instruction cache, block size see also cache, primary instruction ... 
62

instruction register, JTAG ... 205

integer

queue 28

branch instructions ... 28

divide instructions ... 28

multiply instructions ... 28

ports ... 28

shift instructions ... 28

integer ALU pipeline ... 22

Integer Overflow exception ... 317

integer queue ... 22

interface, external ... 27

internal coherency conflicts ... 159

internal processor clock domain ... 172

Interrupt exception ... 325

interrupt mask, bit ... 218

Interrupt register ... 121

interrupt request, external ... 121

interrupts ... 121

hardware ... 121

nonmaskable ... 122

software ... 122

timer ... 122

invalid operation, FP ... 283

invalidate request, external ... 151

IP, (interrupt pending) bit ... 226, 262

ISA (Instruction Set Architecture)

MIPS I ... 18
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MIPS II ... 18

MIPS III ... 18

MIPS IV ... 18, 277

issue, dynamic ... 339

issuing, an instruction ... 339

iterative execution units ... 344

ITLB (instruction TLB) ... 300

ITLBM, field ... 236

J

JTAG

boundary scan register ... 206

bypass register ... 205

Capture-DR state ... 206

instruction register ... 205

interface ... 203

instruction register ... 205

JTCK signal ... 204

JTDI signal ... 204

JTDO signal ... 204

JTMS signal ... 204

JTRST signal ... 204

Tap controller ... 204

test access port ... 204

Shift-DR state ... 205, 206

signals ... 59

Update-DR state ... 206

Update-IR state ... 205

JTCK, signal ... 59, 60, 204

JTDI, signal ... 59, 60, 204, 205

JTDO, signal ... 59, 204, 205

JTLB (joint TLB) ... 300

JTMS, signal ... 59, 60, 204

JTRST, signal ... 59, 60, 204

K

K0, field ... 230

Kernel mode ... 286

address mapping ... 292

ckseg0 space ... 296

ckseg1 space ... 296

ckseg3 space ... 296

cksseg space ... 296

kseg0 space ... 293

kseg1 space ... 293

kseg3 space ... 293

ksseg space ... 293

kuseg space ... 293

operations ... 292

xkphys space ... 294

xkseg space ... 296

xksseg space ... 294

xkuseg space ... 294

kseg0 space ... 293

Kseg0CA, mode bits ... 180

kseg1 space ... 293

kseg3 space ... 293

ksseg space ... 293

KSU, field ... 221, 223, 302

kuseg space ... 293

KX, bit ... 222, 286

L

latency ... 45

accessing secondary cache ... 47

definition of ... 338

external coherency request ... 162

FPU ... 274

least-recently used replacement algorithm (LRU) ... 25

list, free ... 340

LLAddr register ... 231

load operations, FPU registers ... 278

Load/Store Unit pipeline ... 22

loads

nonblocking ... 341

logic diagram, FPU ... 275

logical register

initialization (necessity for) ... 176

logical register, see also physical register ... 343

LRU (least-recently used) replacement algorithm ... 25

M

mapped, virtual address region ... 287

mapping table ... 343

Mask, field ... 216

master state ... 97

and flow control ... 109

matches, multiple, in TLB ... 300

MemEnd, mode bits ... 181

memory dependencies ... 32

memory ordering ... 33

memory protection ... 298
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MIPS III ISA, disabled and enabled ... 214

MIPS IV, instruction set see also ISA ... 326

miscellaneous system signals ... 58

mispredicted branch ... 47

mode

addressing ... 287

addressing, encodings ... 287

Kernel mode ... 287

Supervisor mode ... 287

User mode ... 287

operating ... 286

mode bits ... 180

CohPrcReqTar ... 118, 165, 168, 180

CTM ... 182, 330, 331

DevNum ... 180

DSD ... 181

HSTL Mode ... 183

Kseg0CA ... 180

MemEnd ... 181

ODrainSys ... 182

PrcElmReq ... 139, 169, 180

PrcReqMax ... 109, 129, 131, 137, 141, 180

SCBlkSize ... 67, 77, 108, 181

SCClkDiv ... 78, 172, 176, 181

SCClkTap ... 173, 182

SCCorEn ... 181, 194, 196

SCSize ... 67, 77, 181

SysClkDiv ... 96, 172, 176, 181

MP, field ... 236

MTC0, instruction ... 86

multiple matches, in TLB ... 300

multiplier pipeline ... 22

multiply unit, FPU ... 274

multiprocessor system ... 51

arbitration ... 127

cluster bus ... 51

with external agent ... 51

multiprocessor system, using dedicated external agents ... 100

multiprocessor system, using the cluster bus ... 101

N

NACK completion response ... 146

NACK, signal ... 106

NMI see also nonmaskable interrupt ... 273

NMI, bit ... 223, 224

nonblocking cache ... 43

nonblocking, loads and stores ... 341

Nonmaskable Interrupt (NMI) exception ... 122, 302, 309

normal read, cache test mode ... 335

normal write, cache test mode ... 333

NT compatibility, LLAddr register ... 231

number, request ... 103

O

ODrainSys, mode bit ... 182

offset, in page address ... 298

operating mode

Kernel ... 286, 292

Supervisor ... 286, 290

User ... 286, 288

operations, FPU ... 275

ordering, memory ... 33

ordering, strong ... 33

out of program order, execution ... 338

outgoing buffer ... 105, 107, 108

outstanding requests ... 103

overflow (FP) ... 283

P

PAddr0, field ... 232

PAddr1, field ... 232

page

address ... 298

offset ... 298

size

code ... 298

defined ... 298

virtual ... 298

page table entry (PTE) array ... 215

PageMask register ... 216, 298, 299

parity protection ... 190

PClk, signal ... 78, 96, 335, 336

PE, bit ... 230

performance

branch prediction ... 47

cache ... 47

R10000 ... 44, 47

Performance Counter interrupt ... 218

Performance Counter register ... 238

permanent register ... 340

PFN

bits ... 214
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fields, in EntryLo registers ... 214

phase-locked loop ... 174

physical memory addresses ... 298

physical page frame number ... 213

physical register, see also logical register ... 343

PIdx, primary cache index ... 84

pipeline ... 35

definition of ... 338

fetch ... 22, 35

floating-point ... 23

floating-point multiplier ... 22

integer ALU ... 22

latency ... 338

Load/Store Unit ... 22

out of order execution ... 338

repeat rate ... 338

sequence ... 338

stage (definition) ... 338

stage 1 ... 35, 36

stage 2 ... 35

stages 4-6 ... 36

stalls ... 31

PLL ... 174

PLLDis, signal ... 59, 60

PM, field ... 230

power interface signals, see also individual signals ... 54

power-on reset ... 175

sequence ... 176

PrcElmReq, mode bit ... 139, 169, 180

PrcReqMax, mode bits ... 109, 129, 131, 137, 141, 180

precise exceptions ... 33

prediction, branch ... 342

prediction, secondary cache, way ... 80

prefetch instruction ... 43

primary data cache, see also cache, primary data ... 25

primary instruction cache, see also cache, primary instruction ... 25

processor block read request protocol ... 129

processor block write request ... 110

protocol ... 133

processor coherency data response ... 110

protocol ... 155

processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ... 131

processor double/single/partial-word write request protocol ... 135

processor eliminate request protocol ... 139

processor request ... 96, 102

flow control protocol ... 141

protocol ... 128

processor response ... 96, 103

protocols ... 153

Processor Revision Identifier (PRId) register ... 229

processor upgrade request ... 147

protocol ... 137

program order ... 31

dynamic execution ... 31

instruction completion ... 339

instruction decoding ... 339

instruction execution ... 339

instruction fetching ... 339

instruction graduation ... 339

instruction issue ... 339

protection

ECC ... 190

memory ... 298

parity ... 190

SECDED ... 190

sparse encoding ... 190

protocol

arbitration, System interface ... 124

error handling ... 202

write back ... 61

write invalidate cache coherency ... 61

PTE (page table entry) ... 215

PTEBase, field ... 215, 233

Q

queue

address ... 22

instruction ... 35

integer ... 22

R

R, (region) field ... 219, 233

R, bit ... 232

R10000 processor

ANDES architecture ... 20

caches ... 20

execution pipelines ... 22

overview ... 20

pipeline stages ... 21

superscalar pipeline ... 21

R4000 superpipeline ... 19

Random entries ... 217
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Random register ... 212

RE, (reverse endian) bit ... 221

read port, FPU ... 275

read sequences ... 85

16-word ... 88

32-word ... 88

4-word ... 86

8-word ... 87

tag ... 89

register

BadVAddr ... 215, 218, 233, 310

boundary scan, JTAG ... 206

bypass, JTAG ... 205

CacheErr ... 188, 189, 191, 192, 263

Cause ... 121, 122, 218, 226, 228

Compare ... 122, 218

Config ... 230

Context ... 215, 233

Count ... 122, 218

CP0 (description of) ... 209

dependency ... 32, 343

Diagnostic ... 235

ECC ... 86, 91, 262

EntryHi ... 219

EntryLo0 ... 213

EntryLo1 ... 213

EPC ... 228

Error Exception Program Counter (ErrorEPC) ... 273

Exception Program Counter (EPC) ... 228

file

FPU ... 275

ports ... 343

FrameMask ... 214, 234

Index ... 211

instruction, JTAG ... 205

LLAddr ... 231

logical, see also physical register ... 35, 343

PageMask ... 216, 298

Performance Counter ... 238

permanent ... 340

physical, see also logical register ... 35, 343

Processor Revision Identifier (PRId) ... 229

Random ... 212

renaming ... 32, 340

Status ... 188, 189

ERL bit ... 286

EXL bit ... 286

SX bit ... 296

TS bit ... 300

USL field ... 286

UX bit ... 296

TagHi ... 86, 91, 267

TagLo ... 86, 91, 267

temporary ... 340

unnamed ... 341

WatchHi ... 232

WatchLo ... 232

Wired ... 212, 217

write before reading (necessity for) ... 176

XContext ... 233

renaming, register ... 340

repeat rate ... 45

accessing secondary cache ... 47

definition of ... 338

FPU ... 274

replacement algorithm, cache ... 25

request cycle ... 96

request number ... 103

freeing with completion response ... 146

request, outstanding ... 103

Reserved Instruction exception ... 321

reset

cold ... 175, 178

power-on ... 175, 176

soft (warm) ... 175, 179

response bus signals ... 58

response cycle ... 96

revision number, R10000 processor ... 229

RM, field (FP) ... 284

RN, field (FP) ... 284

rounding modes, in FSR ... 284

RP, (reduced power) bit ... 221

RP, field (FP) ... 284

rules, arbitration for System interface ... 125

RZ, field (FP) ... 284

S

SB, (secondary cache block size) bit ... 230

SC(A,B)Addr, signals ... 55, 79, 80

SC(A,B)DWay, signals ... 55, 79, 87, 92

SC, bit ... 230

SCADCS, signal ... 55

SCADOE, signal ... 55

SCADWr, signal ... 55

SCBDCS, signal ... 55
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SCBDOE, signal ... 55

SCBDWr, signal ... 55

SCBlkSize, mode bits ... 67, 77, 108, 181

SCClk frequency ... 134, 155

SCClk, signal ... 55, 78, 173

SCClkDiv, mode bits ... 78, 172, 176, 181

SCClkTap, mode bits ... 173, 182

SCCorEn, mode bits ... 181, 194, 196

SCData, signal ... 55

SCDataChk, bus ... 193, 196

SCDataChk, signal ... 55

scheduling, dynamic ... 339

SCSize, mode bits ... 67, 77, 181

SCTag, signals ... 56, 83

SCTagChk, bus ... 196

SCTagChk, signal ... 56

SCTagLSBAddr, signal ... 55, 80

SCTCS, signal ... 56

SCTOE, signal ... 56

SCTWay, signal ... 56, 80, 82, 87

SCTWr, signal ... 56

SECDED ... 190

secondary cache interface signals, see also individual signals ... 55

secondary cache, see also cache, secondary ... 67

SelDVCO, signal ... 59, 60

serial operations ... 41

serializing instruction ... 41

signals

power interface, see also individual signals ... 54

secondary cache interface, see also individual signals ... 55

System interface, see also individual signals ... 57

test interface, see also individual signals ... 59

size, page in memory ... 298

SK, bit ... 230

slave state ... 97

and flow control ... 109

soft (warm) reset ... 175, 179

Soft Reset

exception ... 307

Soft Reset exception ... 302

software interrupts ... 122

SP, bit ... 262

sparse encoding protection ... 190

special interrupt vector ... 306

speculative branching ... 342

speculative execution ... 32, 39, 342

square-root unit, FPU ... 274

SR, bit ... 224, 307, 309

SS, (secondary cache size) field ... 230

sseg space ... 291

SSRAM ... 76, 81

address signals ... 55

clock signals ... 55

data signals ... 55

tag signals ... 56

stage, definition of ... 338

stalls, improving performance ... 31

state

master ... 97

slave ... 97

state bus signals ... 58

Status register ... 188

in FPU, see also FSR ... 277

store operations, FPU registers ... 278

stores

and uncached buffer ... 72

nonblocking ... 341

strong ordering ... 33

example of ... 34

superpipeline, architecture ... 19

superpipeline, R4000 ... 19

superscalar

pipeline ... 19

processor

definition of ... 19, 338

superscalar processor ... 31

Supervisor mode ... 286

address mapping ... 290

csseg space ... 291

operations ... 290

sseg space ... 291

suseg space ... 290

xsseg space ... 291

xsuseg space ... 291

suseg space ... 290

switch, context ... 300

SX, bit ... 222, 286, 296

SYNC

instruction ... 73, 164

prevented from graduating ... 108
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SysAD, bus signals ... 57, 111, 116, 118, 198, 199, 329, 331, 332, 
333, 334, 335, 336

SysAD[20:16]

interrupt register ... 121

SysAD[39:0]

during address cycle ... 119

SysAD[56:40]

during address cycle ... 119

SysAD[57]

secondary cache block way indication ... 119

SysAD[59:58]

uncached attribute ... 118

SysAD[63:0]

address cycle encoding ... 118

data cycle encoding ... 120

SysAD[63:60]

address cycle ... 118

interrupt ... 121

SysADChk, bus ... 199

SysADChk, signal ... 58, 180

SysClk cycle ... 109, 143, 164

SysClk, signal ... 57, 96, 120, 122, 124, 125, 129, 137, 141, 170, 
171, 335, 336

SysClkDiv, mode bits ... 172, 176, 181

SysClkRet, signal ... 57, 172, 174

SysCmd, bus ... 57, 111, 187, 198, 199

SysCmd[0] ... 106

ECC ... 116

processor data cycles ... 116

SysCmd[10:8] ... 111

data response ... 115

external intervention and invalidate requests ... 114

SysCmd[11] ... 111

map ... 117

protocol ... 123

SysCmd[2:0]

processor write requests ... 114

SysCmd[2:1]

block data response ... 116

processor requests ... 113

SysCmd[4:3]

data cycles ... 116

external special requests ... 115

processor read requests ... 112

processor upgrade requests ... 113

SysCmd[5], bit... 106

data cycles ... 115

SysCmd[7:5]

external requests ... 114

processor requests ... 112

SysCmdPar, signal ... 57, 198

SysCorErr, signal ... 58, 185, 194, 196, 199

SysCyc, signal ... 58, 170

SysGblPerf, signal ... 58, 73, 164

SysGnt, signal ... 57, 124, 125, 126, 128, 130, 132, 134, 136, 
138, 140, 143, 148, 149, 150, 151, 152, 155, 164, 176, 
178, 179, 306, 307, 330, 331

SysNMI, signal ... 58, 122, 309

SysRdRdy, signal ... 57, 125, 129, 131, 137, 141

and flow control ... 109

SysRel, signal ... 57, 124, 126, 128, 130, 132, 134, 136, 138, 140, 
143, 148, 149, 150, 151, 152, 155, 164

SysReq, signal ... 57, 124, 125, 128, 130, 132, 134, 136, 138, 
140, 155, 164, 178

SysReset, signal ... 58, 176, 178, 179, 204, 306, 307, 308, 330, 
331

SysResp, bus ... 58, 111, 121, 201

SysResp[4:0]

external completion response ... 146

SysResp[4:2]

driving completion indication ... 121

SysRespPar, signal ... 58, 201

SysRespVal, signal ... 58, 146, 176, 178, 179, 201

SysState, bus ... 58, 111, 120, 187, 201

SysState[0]

processor coherency data response ... 162

SysState[2:0]

encoding ... 120

SysStatePar, signal ... 58, 201

SysStateVal, signal ... 58, 120

System Call exception ... 319

system configuration

multiprocessor ... 51

uniprocessor ... 50

System interface

arbitration

in a cluster bus system ... 98, 127

in a uniprocessor system ... 126

protocol ... 124

rules ... 125

block write request protocol ... 133

buffers ... 105

bus encoding

description of buses ... 111
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SysAD ... 118

SysCmd ... 111

SysResp ... 121

SysState ... 120

cached request buffer ... 105

clock domain ... 172

cluster bus ... 98

cluster request buffer ... 105

coherency ... 157

coherency conflicts, action taken ... 159

connecting to an external agent ... 97

connections to various system configurations ... 99

directory-based coherency protocol ... 169

error handling

on buses ... 198

on SysAD bus ... 199

on SysCmd bus ... 198

on SysResp bus ... 201

on SysState bus ... 201

schemes ... 197

error protection

for buses ... 197

schemes ... 197

external agent ... 95

external allocate request number request protocol ... 150

external block data response protocol ... 143

external coherency requests, action taken ... 158

external completion response protocol ... 146

external data response flow control ... 109, 110

external double/single/partial-word data response protocol ... 
145

external duplicate tags, support for ... 168

external interrupt request protocol ... 152

external intervention exclusive request ... 157

external intervention request protocol ... 149

external intervention shared request ... 157

external invalidate request ... 157

protocol ... 151

external request ... 96, 103

flow control ... 109

protocol ... 148

external response ... 96, 103

protocol ... 143

flow control ... 109

frequencies ... 96

grant parking ... 124

hardware emulation, support for ... 170

I/O ... 168

incoming buffer ... 106

internal coherency conflicts ... 159

interrupts ... 121

master state ... 97

multiprocessor connections

with cluster bus ... 101

with dedicated external agents ... 100

outgoing buffer ... 107

outstanding processor requests ... 103

outstanding requests on the System interface ... 103

port ... 20

processor block read request protocol ... 129

processor coherency data response protocol ... 155

processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ... 
131

processor double/single/partial-word write request protocol ... 
135

processor eliminate request protocol ... 139

processor request ... 96, 102

flow control protocol ... 141

protocol ... 128

processor response ... 96, 103

protocols ... 153

processor upgrade request protocol ... 137

register-to-register operation ... 96

request ... 102

cycle ... 96

number field ... 103

protocol ... 128

response ... 102

cycle ... 96

protocol ... 128

signals ... 57, 97

slave state ... 97

split transaction ... 103

support for I/O ... 168

uncached attribute ... 169

uncached buffer ... 108

uniprocessor connections ... 99

System interface ... 27, 95

SysUncErr, signal ... 58, 186, 187, 191, 192, 196

SysVal, signal ... 58, 129, 131, 133, 135, 137, 139, 143, 145, 
149, 150, 151, 152, 155, 198, 329, 333, 334, 335, 336

SysWrRdy, signal ... 57, 134, 135, 139, 141, 155

and flow control ... 109

T

table

busy-bit ... 340

mapping ... 343
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tag bus, secondary cache, SCTag ... 83

tag read sequence ... 89

tag write sequence ... 94

TagHi register ... 86, 91, 267

TagLo register ... 86, 91, 267

tags, external, duplicate ... 168

TAP controller ... 204, 205

TCA, signal ... 59, 60

TCB, signal ... 59, 60

temporary register ... 340

test access port (TAP) ... 204

test interface signals, see also individual signals ... 59

test mode, cache ... 330, 331

test signals, miscellaneous ... 59

Timer interrupt ... 122

disabling ... 218

TLB ... 299

32-bit-mode entry format ... 299

64-bit-mode entry format ... 299

address

translation, avoiding multiple matches ... 300

ASID field ... 300

avoiding conflict ... 300

Cache Algorithm fields ... 299

entry formats ... 299

exceptions ... 311

Global (G) bit ... 300

ITLB ... 300

misses ... 215

multiple matches, avoiding ... 300

number of entries ... 299

page size code ... 298

used with Context register ... 215

TLB (Translation Lookaside Buffer) ... 23

JTLB ... 300

TLB Invalid exception ... 311, 313

TLB Modified exception ... 311, 314

TLB Probe (TLBP) instruction ... 211, 219

TLB Read (TLBR) instruction ... 211

TLB Read Indexed (TLBR) instruction ... 219

TLB Refill ... 303

TLB Refill exception ... 311, 312

TLB Write Indexed (TLBWI) instruction ... 211, 219

TLB Write Random instruction ... 212, 219

Translation Look-Aside Buffer, see also TLB ... 299

translation, virtual address ... 298, 300

Trap exception ... 318

trap physical address, and Watch registers ... 232

TriState, signal ... 206

TS, (TLB shutdown) bit ... 223, 224

TS, bit, in Status register ... 300

two-level cache structure ... 61

U

UC, (uncached attribute) bit ... 213

uncached

accelerated

blocks, completely gathered ... 72

blocks, incompletely gathered ... 72

stores ... 72

attribute, support for ... 169

buffer ... 105, 108

cache algorithm ... 70, 71

uncached accelerated ... 214

uncached accelerated, cache algorithm ... 70, 72

uncached attribute ... 214

uncorrectable error ... 186

detection, suppressed ... 189

flag ... 106, 108

underflow (FP) ... 283

unimplemented operation (FP) ... 283

uniprocessor system ... 50, 99

arbitration rules ... 126

unnaming, register ... 341

useg space ... 288, 289

User mode ... 286

address mapping ... 288

operations ... 288

useg space ... 289

xuseg space ... 289

UX, bit ... 222, 286, 296

V

V, (valid) bit ... 213

Vcc, signal ... 54

VccPa, signal ... 54

VccPd, signal ... 54

VccQSC, signal ... 54

VccQSys, signal ... 54

vector locations, TLB refill ... 304

vector, special interrupt ... 306
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virtual address

space ... 287

translation ... 298

virtual aliasing ... 84

Virtual Coherency exception ... 315

virtual memory addresses ... 298

VPN2, field ... 219

VrefByp, signal ... 54

VrefSC, signal ... 54

VrefSys, signal ... 54

Vss, signal ... 54

VssPa, signal ... 54

VssPd, signal ... 54

W

W, bit ... 232

Watch exception ... 324

WatchHi register ... 232

WatchLo register ... 232

way prediction table, secondary cache ... 81

Wired entries ... 217

Wired register ... 212, 217

write back protocol ... 61

primary data cache ... 64

write sequences ... 90

16-word ... 93

32-word ... 93

4-word ... 91

8-word ... 92

tag ... 94

X

XContext register ... 233

xkphys

decoding virtual address bits VA(61:59) ... 300

space ... 294

xkseg space ... 296

xksseg space ... 294

xkuseg space ... 294

xsseg space ... 291

xsuseg space ... 291

XTLB Refill ... 303

XTLB refill handler, used with XContext register ... 233

xuseg space ... 288, 289

XX, (MIPS IV User mode) bit ... 220, 222, 286, 326
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