

User’s Manual

Document No. U10278EJ4V0UM00 (4th edition)
Date Published March 2001 N CP(K)

 1995, 2001
© MIPS Technologies, Inc. 1994
Printed in Japan

V

R

10000 Series™

64-/32-bit Microprocessor

µ

PD30700 (V

R

10000™)

µ

PD30700L (V

R

10000L™)

µ

PD30710 (V

R

12000™)

µ

PD30710A (V

R

12000A™)

µ

PD30710L (V

R

12000L™)

2

User’s Manual U10278EJ4V0UM

[MEMO]

User’s Manual U10278EJ4V0UM

3

V

R

3000, V

R

4400, V

R

5000, V

R

10000, V

R

10000L, V

R

10000 Series, V

R

12000, V

R

12000A, and V

R

12000L are
trademarks of NEC Corporation.
R2000, R3000, and R6000 are trademarks of MIPS Computer Systems Inc.
MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.
R4400, R8000, R10000, and R12000 are trademarks of MIPS Technologies, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

4

User’s Manual U10278EJ4V0UM

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

M8E 00. 4

The information in this document is current as of January, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

User’s Manual U10278EJ4V0UM

5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J01.2

6

User’s Manual U10278EJ4V0UM

The mark shows major revised points.

 Main Revision in This Edition

Page Description

Throughout Addition of description about V

R

12000A

p. 59 Modification and addition in

Table 3-4 Test Interface Signals

p. 60 Addition of description in

Unused Inputs

of

3.4 Test Interface Signals

p. 67 Modification in

Figure 4-6 Organization of Secondary Cache

p. 96 Addition of description in

6.2 System Interface Frequencies

p. 99 Modification in

Figure 6-2 System Interface Connections for Uniprocessor System

p. 126 Modification in

Figure 6-6 Arbitration Signals for Uniprocessor System

p. 158 Modification in

Table 6-27 Action Taken for External Coherency Requests that Target the R10000
Processor

p. 176 Addition of description in

8.1 Initialization of Logical Registers

p. 181 Modification and addition in

Table 8-1 Mode Bits

p. 204 Addition of description in

10.1 Test Access Port (TAP)

p. 204 Modification and addition of description in

 TAP Controller (Input)

of

10.1 Test Access Port (TAP)

pp. 217 to 240 in the
previous edition

Deletion of

11. Electrical Specifications

 and

12. Packaging

p. 213 Modification of description in

Table 11-4 Description of EntryLo Registers’ Fields

p. 221 Addition of footnote in

Figure 11-11 Status Register

p. 224 Modification of

Figure 11-12 Diagnostic Status Field

p. 224 Addition of description in

Table 11-11 Status Register Diagnostic Status Bits

p. 230 Modification in

Table 11-15 Config Register Field Definitions

p. 230 Modification in

Figure 11-16 Config Register Format

p. 235 Modification in

Figure 11-21 Diagnostic Register Format

p. 236 Addition of description and

Table 11-18 Diagnostic Register Fields

 in

11.19 Diagnostic Register (22)

p. 247 Addition of

 R12000 Implementation

 in

11.20 Performance Counter Registers (25)

p. 345 Deletion of description about Config register bits 22:23 in

Appendix B Differences between R10000 and
R12000

p. 346 Modification in

Table B-1 Mode Bits 12:9 (SysClkDiv)

p. 346 Modification in

Table B-2 Mode Bits 21:19 (SCClkDiv)

p. 347 Modification of description in

B.2 DSD (Delay Speculative Dirty)

p. 356 Addition of

Appendix C Differences between R12000 and R12000A

User’s Manual U10278EJ4V0UM

7

PREFACE

Readers

This manual targets users who intends to understand the functions of the V

R

10000 and V

R

12000,
and to design application systems using this microprocessor.

Purpose

This manual introduces the architecture and hardware functions of the V

R

10000, V

R

12000 to users,
following the organization described below.

Organization

This manual consists of the following contents:
• Introduction
• Cache
• Hardware
• Coprocessor 0
• Floating-point unit
• Memory management system
• Exception processing
• Instruction set details

How to read this manual

It is assumed that the reader of this manual has general knowledge in the fields of electric
engineering, logic circuits, and microcomputers.

The R3000

™

in this manual represents the V

R

3000

™

.

The R4400

™

in this manual represents the V

R

4400

™

.

The R10000™

in this manual represents the V

R

10000 and V

R

10000L.

The R12000™

in this manual represents the V

R

12000, V

R

12000A, and V

R

12000L.

To learn about detailed function of a specific instruction.

→

Read

Chapter 12 Floating-Point Unit, Chapter 14 CPU Exceptions,

or refer

to

V

R

5000

TM

,V

R

10000 INSTRUCTION User’s Manual

 which is separately available.

To learn about the overall functions of the V

R

10000 and V

R

12000

→

Read this manual in sequential order.

To learn about electrical specifications,

→

Refer to

Data Sheet

 which is separately available.

Unless otherwise specified, the R10000 is treated as the representative model throughout
this document.

Legend

Data significance: Higher on left and lower on right
Active low: XXX*
Numeric representation: binary ... XXXX or XXXX

2

decimal ... XXXX
hexadecimal ... 0xXXXX

Important information Underlined

Related Documents

The related documents indicated here may include preliminary version. However, preliminary
versions are not marked as such.

• Data Sheet

µ

PD30700, 30700L, 30710 (V

R

10000, V

R

12000) Data Sheet U12703E

• User’s Manual
V

R

5000, V

R

10000 INSTRUCTION User’s Manual U12754E

CONTENTS

8

User’s Manual U10278EJ4V0UM

1. Introduction to the R10000 Processor

1.1 MIPS Instruction Set Architecture (ISA)..18
1.2 What is a Superscalar Processor?..19

Pipeline and Superpipeline Architecture ..19
Superscalar Architecture ..19

1.3 What is an R10000 Microprocessor? ..20
R10000 Superscalar Pipeline..21
Instruction Queues..22
Execution Pipelines ..22

Load/store dependency is speculatively ignored (R12000) ..22
64-bit Integer ALU Pipeline..22
Load/Store Pipeline ...23
64-bit Floating-Point Pipeline ...23

Functional Units ...25
Increase in pre-decode buffering (R12000) ..25

Primary Instruction Cache (I-cache) ..25
Primary Data Cache (D-cache)...25
Branch Target Address Cache (R12000)..26
Instruction Decode And Rename Unit ...26
Branch Unit ..26
External Interfaces..27

Additional cycles for System Interface transactions (R12000)...27
1.4 Instruction Queues ..28

FP and Integer-Queue Issue Policy (R12000)...28
Integer Queue ...28

Address calculation for load/store instructions uses integer queue (R12000) ..28
Floating-Point Queue..29
Address Queue..29

1.5 Program Order and Dependencies ..31
Instruction Dependencies ...31
Execution Order and Stalling ...31
Branch Prediction and Speculative Execution ...32
Resolving Operand Dependencies..32
Resolving Exception Dependencies ...33
Strong Ordering ..33

An Example of Strong Ordering ...34
1.6 R10000 Pipelines ..35

Stage 1 ..35
Stage 2 ..35
Stage 3 ..36
Stages 4-6 ...36

Floating-Point Multiplier (3-stage Pipeline) ...36
Floating-Point Divide and Square-Root Units ..36
Floating-Point Adder (3-stage Pipeline) ...36
Integer ALU1 (1-stage Pipeline) ...36
Integer ALU2 (1-stage Pipeline) ...36
Address Calculation and Translation in the TLB..37

1.7 Implications of R10000 Microarchitecture on Software...38
Superscalar Instruction Issue..38
Speculative Execution ..39

Side Effects of Speculative Execution ..39
Nonblocking Caches...43

User’s Manual U10278EJ4V0UM

9

1.8 Performance ..44
User Instruction Latency and Repeat Rate ...45
Other Performance Issues...47
Cache Performance...47

2. System Configurations

2.1 Uniprocessor Systems ...50
2.2 Multiprocessor Systems ..51

Multiprocessor Systems Using Dedicated External Agents ...51
Multiprocessor Systems Using a Cluster Bus ..52

3. Interface Signal Descriptions

3.1 Power Interface Signals...54
3.2 Secondary Cache Interface Signals ...55
3.3 System Interface Signals ...57
3.4 Test Interface Signals..59

Unused Inputs ...60

4. Cache Organization and Coherency

4.1 Primary Instruction Cache...62
4.2 Primary Data Cache ..64

DCache set locking relaxed (R12000) ..65
4.3 Secondary Cache...67

<R12000>...69
4.4 Cache Algorithms..70

Descriptions of the Cache Algorithms ...71
Uncached...71
Cacheable Noncoherent...71
Cacheable Coherent Exclusive..71
Cacheable Coherent Exclusive on Write...71
Uncached Accelerated...72

4.5 Relationship Between Cached and Uncached Operations ..73
4.6 Cache Algorithms and Processor Requests...74
4.7 Cache Block Ownership..75

5. Secondary Cache Interface

5.1 Tag and Data Arrays ...77
5.2 Secondary Cache Interface Frequencies ...78
5.3 Secondary Cache Indexing..79

Indexing the Data Array ...79
Indexing the Tag Array ..80

5.4 Secondary Cache Way Prediction Table...81
Increased the Way Prediction Table (MRU table) to 16K single-bit entries ..82
Direct Cache Test Mode..82

5.5 Secondary Cache Tag..83
SCTag(25:4), Physical Tag ..83
SCTag(3:2), PIdx..84

10

User’s Manual U10278EJ4V0UM

SCTag(1:0), Cache Block State..84
5.6 Read Sequences...85

4-Word Read Sequence ..86
8-Word Read Sequence ..87
16 or 32-Word Read Sequence...88
Tag Read Sequence ..89

5.7 Write Sequences..90
4-Word Write Sequence ...91
8-Word Write Sequence ...92
16 or 32-Word Write Sequence..93
Tag Write Sequence ...94

6. System Interface Operations

6.1 Request and Response Cycles...96
6.2 System Interface Frequencies ...96
6.3 Register-to-Register Operation ...96
6.4 System Interface Signals ...97
6.5 Master and Slave States ..97
6.6 Connecting to an External Agent ..97
6.7 Cluster Bus ..98
6.8 System Interface Connections...99

Uniprocessor System..99
Multiprocessor System Using Dedicated External Agents ..100
Multiprocessor System Using the Cluster Bus...101

6.9 System Interface Requests and Responses..102
Processor Requests ...102
External Responses...103
External Requests ...103
Processor Responses...103
Outstanding Requests and Request Numbers...103
Request and Response Relationship...104

6.10 System Interface Buffers...105
Cluster Request Buffer ...105
Cached Request Buffer...105
Incoming Buffer ...106
Outgoing Buffer..107
Uncached Buffer...108

6.11 System Interface Flow Control ...109
Processor Write and Eliminate Request Flow Control...109
Processor Read and Upgrade Request Flow Control ...109
Processor Coherency Data Response Flow Control ...109
External Request Flow Control ..109
External Data Response Flow Control ...109

6.12 System Interface Block Data Ordering ...110
External Block Data Responses..110
Processor Coherency Data Responses..110
Processor Block Write Requests ..110

6.13 System Interface Bus Encoding ..111
SysCmd[11:0] Encoding ..111

SysCmd[11] Encoding ..111
SysCmd[10:0] Address Cycle Encoding...111
SysCmd[10:0] Data Cycle Encoding ..115

User’s Manual U10278EJ4V0UM

11

SysCmd[11:0] Map ...117
SysAD[63:0] Encoding ..118

SysAD[63:0] Address Cycle Encoding...118
SysAD[63:0] Data Cycle Encoding ..120

SysState[2:0] Encoding ..120
SysResp[4:0] Encoding ..121

6.14 Interrupts ...121
Hardware Interrupts..121
Software Interrupts ...122
Timer Interrupt ...122
Nonmaskable Interrupt ...122

6.15 Protocol Abbreviations..123
6.16 System Interface Arbitration ...124

System Interface Arbitration Rules ..125
Uniprocessor System..126
Multiprocessor System Using Cluster Bus...127

6.17 System Interface Request and Response Protocol ..128
Processor Request Protocol ..128

Processor Block Read Request Protocol ...129
Processor Double/Single/Partial-Word Read Request Protocol..131
Processor Block Write Request Protocol ..133
Processor Double/Single/Partial-Word Write Request Protocol...135
Processor Upgrade Request Protocol ..137
Processor Eliminate Request Protocol ..139
Processor Request Flow Control Protocol ..141

External Response Protocol..143
External Block Data Response Protocol ...143
External Double/Single/Partial-Word Data Response Protocol..145
External Completion Response Protocol...146

External Request Protocol ..148
External Intervention Request Protocol ..149
External Allocate Request Number Request Protocol ..150
External Invalidate Request Protocol ..151
External Interrupt Request Protocol ..152

Processor Response Protocol..153
Processor Coherency State Response Protocol ...154
Processor Coherency Data Response Protocol..155

6.18 System Interface Coherency ...157
External Intervention Shared Request ..157
External Intervention Exclusive Request ...157
External Invalidate Request..157
External Coherency Request Action ..158
Coherency Conflicts ...159

Internal Coherency Conflicts ..159
External Coherency Conflicts ...160
External Coherency Request Latency ...162

SysGblPerf* Signal ..164
6.19 Cluster Bus Operation ...164
6.20 Support for I/O ..168
6.21 Support for External Duplicate Tags...168
6.22 Support for a Directory-Based Coherency Protocol ...169
6.23 Support for Uncached Attribute ..169
6.24 Support for Hardware Emulation ..170

12

User’s Manual U10278EJ4V0UM

7. Clock Signals

7.1 System Interface Clock and Internal Processor Clock Domains ..172
7.2 Secondary Cache Clock ..173
7.3 Phase-Locked-Loop ..174

8. Initialization

8.1 Initialization of Logical Registers...176
8.2 Power-On Reset Sequence ..176
8.3 Cold Reset Sequence...178
8.4 Soft Reset Sequence..179
8.5 Mode Bits ..180

9. Error Protection and Handling

9.1 Correctable Errors ...185
9.2 Uncorrectable Errors ...186
9.3 Propagation of Uncorrectable Errors ..187
9.4 Cache Error Exception ..188
9.5 CP0 CacheErr Register EW Bit ..189
9.6 CP0 Status Register DE Bit...189
9.7 CACHE Instruction...189
9.8 Error Protection Schemes Used by R10000..190

Parity...190
Sparse Encoding ...190
ECC ..190

9.9 Primary Instruction Cache Error Protection and Handling ...191
Error Protection ..191
Error Handling..191

9.10 Primary Data Cache Error Protection and Handling...192
Error Protection ..192
Error Handling..192

9.11 Secondary Cache Error Protection and Handling ...193
Error Protection ..193
Error Handling..193

Data Array ...193
Tag Array ..196

9.12 System Interface Error Protection and Handling ..197
Error Protection ..197
Error Handling..198

SysCmd(11:0) Bus ..198
SysAD(63:0) Bus ..199
SysState(2:0) Bus ..201
SysResp(4:0) Bus ..201

Protocol Observation ..202

10. JTAG Interface Operation

10.1 Test Access Port (TAP)...204
TAP Controller (Input) ...204

10.2 Instruction Register ...205

User’s Manual U10278EJ4V0UM

13

10.3 Bypass Register...205
10.4 Boundary Scan Register..206

11. Coprocessor 0

11.1 Index Register (0)..211
11.2 Random Register (1) ...212
11.3 EntryLo0 (2) and EntryLo1 (3) Registers ...213
11.4 Context Register (4) ..215
11.5 PageMask Register (5) ..216
11.6 Wired Register (6)...217
11.7 BadVAddr Register (8) ...218
11.8 Count and Compare Registers (9 and 11) ...218
11.9 EntryHi Register (10)..219
11.10 Status Register (12) ...220

Status Register Fields ...222
Diagnostic Status Field...223
Coprocessor Accessibility ..225

11.11 Cause Register (13) ...226
11.12 Exception Program Counter (14) ..228
11.13 Processor Revision Identifier (PRId) Register (15) ..229
11.14 Config Register (16)..230
11.15 Load Linked Address (LLAddr) Register (17) ...231
11.16 WatchLo (18) and WatchHi (19) Registers ..232
11.17 XContext Register (20) ...233
11.18 FrameMask Register (21)..234
11.19 Diagnostic Register (22) ...235
11.20 Performance Counter Registers (25)...238

R10000 Implementation ...238
Details of Counting Events ...241

R12000 Implementation ...247
Details of Counting Events ...257

11.21 ECC Register (26) ...262
11.22 CacheErr Register (27)..263

CacheErr Register Format for Primary Instruction Cache Errors ..263
CacheErr Register Format for Primary Data Cache Errors ..264
CacheErr Register Format for Secondary Cache Errors...265
CacheErr Register Format for System Interface Errors ...266

11.23 TagLo (28) and TagHi (29) Registers ...267
CacheOp is Index Load/Store Tag ...267

Primary Instruction Cache Operation..268
Primary Data Cache Operation ...268
Secondary Cache Operation ..270

CacheOp is Index Load/Store Data ..271
Primary Instruction Cache Operation..271
Primary Data Cache Operation ...272
Secondary Cache Operation ..272

11.24 ErrorEPC Register (30) ...273

12. Floating-Point Unit

12.1 Floating-Point Unit Operations ...275

14

User’s Manual U10278EJ4V0UM

12.2 Floating-Point Unit Control ..276
Eliminate traps for Denorm/NaN FP inputs (R12000)..276

12.3 Floating-Point General Registers (FGRs) ...277
32- and 64-Bit Operations ..277
Load and Store Operations ...278

12.4 Floating-Point Control Registers...281
Floating-Point Implementation and Revision Register ..281
Floating-Point Status Register (FSR) ...282

Bit Descriptions of the FSR ..283
Loading the FSR..284

13. Memory Management

13.1 Processor Modes ...286
Processor Operating Modes..286
Addressing Modes ..287

13.2 Virtual Address Space...287
 User Mode Operations...288

32-bit User Mode (useg) ...289
64-bit User Mode (xuseg) ...289

 Supervisor Mode Operations...290
32-bit Supervisor Mode, User Space (suseg) ..290
32-bit Supervisor Mode, Supervisor Space (sseg) ..291
64-bit Supervisor Mode, User Space (xsuseg) ..291
64-bit Supervisor Mode, Current Supervisor Space (xsseg) ...291
64-bit Supervisor Mode, Separate Supervisor Space (csseg)..291

 Kernel Mode Operations ...292
32-bit Kernel Mode, User Space (kuseg) ..293
32-bit Kernel Mode, Kernel Space 0 (kseg0)..293
32-bit Kernel Mode, Kernel Space 1 (kseg1)..293
32-bit Kernel Mode, Supervisor Space (ksseg)...293
32-bit Kernel Mode, Kernel Space 3 (kseg3)..293
64-bit Kernel Mode, User Space (xkuseg) ..294
64-bit Kernel Mode, Current Supervisor Space (xksseg) ...294
64-bit Kernel Mode, Physical Spaces (xkphys) ..294
64-bit Kernel Mode, Kernel Space (xkseg)...296
64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3) ...296

Address Space Access Privilege Differences Between the R4400 and R10000 ..296
13.3 Virtual Address Translation ..298

Virtual Pages ..298
Virtual Page Size Encodings ..298
Using the TLB ..299
Cache Algorithm Field ...299
Format of a TLB Entry ...299
Address Translation..300
Address Space Identification (ASID)...300
Global Processes (G) ..300
Avoiding TLB Conflict ..300

14. CPU Exceptions

14.1 Causing and Returning from an Exception ...302
14.2 Exception Vector Locations..302

User’s Manual U10278EJ4V0UM

15

14.3 TLB Refill Vector Selection ...303
Priority of Exceptions...305
Cold Reset Exception ...306
Soft Reset Exception ..307
NMI Exception ...309
Address Error Exception ..310
TLB Exceptions..311

TLB Refill Exception ..312
TLB Invalid Exception..313
TLB Modified Exception ..314

Cache Error Exception ...315
Virtual Coherency Exception ...315
Bus Error Exception ...316
Integer Overflow Exception ...317
Trap Exception ...318
System Call Exception ...319
Breakpoint Exception ...320
Reserved Instruction Exception..321
Coprocessor Unusable Exception...322
Floating-Point Exception..323
Watch Exception ..324
Interrupt Exception...325

14.4 MIPSIV Instructions ...326
14.5 COP0 Instructions ...327
14.6 COP1 Instructions ...327
14.7 COP2 Instructions ...327

15. Cache Test Mode

15.1 Interface Signals..329
15.2 System Interface Clock Divisor ..329
15.3 Entering Cache Test Mode..330
15.4 Exit Sequence..331
15.5 SysAD(63:0) Encoding ...332
15.6 Cache Test Mode Protocol ..333

Normal Write Protocol ...333
Auto-Increment Write Protocol ..334
Normal Read Protocol ..335
Auto-Increment Read Protocol...336

Appendix A Glossary

A.1 Superscalar Processor..338
A.2 Pipeline..338
A.3 Pipeline Latency..338
A.4 Pipeline Repeat Rate ...338
A.5 Out-of-Order Execution ..338
A.6 Dynamic Scheduling ...339
A.7 Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation ...339
A.8 Active List ...339
A.9 Free List and Busy Registers...340
A.10 Register Renaming ..340

16

User’s Manual U10278EJ4V0UM

A.11 Nonblocking Loads and Stores ...341
A.12 Speculative Branching ..342
A.13 Logical and Physical Registers ...343
A.14 Register Files...343
A.15 ANDES Architecture ..344

Appendix B Differences between R10000 and R12000

B.1 Mode bits changed in R12000...346
B.2 DSD (Delay Speculative Dirty) ..347
B.3 Changes in the Branch Diag Register ...348
B.4 Eliminate traps for Denorm/NaN FP inputs..349
B.5 Increase in pre-decode buffering...350
B.6 Increased penalty for indirect branches...350
B.7 Addition of a Branch Target Address Cache ..350
B.8 Use of global history in branch-prediction..351
B.9 Increase in branch prediction table size ..351
B.10 Address calculation for load/store instructions uses integer queue ..351
B.11 Load/store dependency is speculatively ignored...351
B.12 DCache set locking relaxed...352
B.13 SC refill blocking reduced ..352
B.14 Increased the Way Prediction Table (MRU table) to 16K single-bit entries ..352
B.15 Additional cycles for System Interface transactions...352
B.16 FP and Integer-Queue Issue Policy ...353
B.17 Active List entries are increased to 48 ..353
B.18 Cache Error inhibits graduation ..353
B.19 Changed Spare(1, 3) pins to NC (No Connection) ...353
B.20 CacheOp Index Write Back Invalidate(D)

also clears Primary Tag ...353
B.21 Summary of the differences ..354

Appendix C Differences between R12000 and R12000A

C.1 Mode bits changed in R12000A..357
C.2 Changes in the Performance Counter Registers..358
C.3 Summary of the differences ..358

Appendix D Index

User’s Manual U10278EJ4V0UM

17

1. Introduction to the R10000 Processor

This user’s manual describes the R10000 superscalar microprocessor for the system
designer, paying special attention to the external interface and the transfer protocols.

This chapter describes the following:

• MIPS™ ISA

• what makes a generic superscalar microprocessor

• specifics of the R10000 superscalar microprocessor

• implementation-specific CPU instructions

Chapter 1 Introduction to the R10000 Processor

18

User’s Manual U10278EJ4V0UM

1.1 MIPS Instruction Set Architecture (ISA)

MIPS has defined an instruction set architecture (ISA), implemented in the following sets
of CPU designs:

• MIPS I, implemented in the R2000™ and R3000

• MIPS II, implemented in the R6000™

• MIPS III, implemented in the R4400

• MIPS IV, implemented in the R8000™ and R10000

The original MIPS I CPU ISA has been extended forward three times, as shown in Figure
1-1; each extension is backward compatible. The ISA extensions are inclusive; each new
architecture level (or version) includes the former levels.

†

Figure 1-1 MIPS ISA with Extensions

The practical result is that a processor implementing MIPS IV is also able to run MIPS I,
MIPS II, or MIPS III binary programs without change.

† For more ISA information, please refer to the

MIPS IV Instruction Set

 Architecture, published
by MIPS Technologies, and written by Charles Price. Contact information is provided both
in the Preface, and inside the front cover, of this manual.

MIPS I

 MIPS II

MIPS III

MIPS IV

User’s Manual U10278EJ4V0UM 19

Chapter 1 Introduction to the R10000 Processor

1.2 What is a Superscalar Processor?

A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel.

Pipeline and Superpipeline Architecture

Previous MIPS processors had linear pipeline architectures; an example of such a linear
pipeline is the R4400 superpipeline, shown in Figure 1-2. In the R4400 superpipeline
architecture, an instruction is executed each cycle of the pipeline clock (PCycle), or each
pipe stage.

Figure 1-2 R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipeline is shown in Figure 1-3. At each stage, four
instructions are handled in parallel. Note that there is only one EX stage for integers.

Figure 1-3 4-Way Superscalar Pipeline

1 PCycle

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

1 Pipe
Stage

Instruction 4

Instruction 3

Instruction 2

Instruction 1

Instruction 1 IF ID IS EX WB

Instruction 2 IF ID IS EX WB

Instruction 3 IF ID IS EX WB

Instruction 4 IF ID IS EX WB

Instruction 5 IF ID IS EX WB

Instruction 6 IF ID IS EX WB

Instruction 7 IF ID IS EX WB

Instruction 8 IF ID IS EX WB

IF = instruction fetch

ID = instruction decode and dependency

IS = instruction issue

EX = execution (1 only)

WB = write back

Chapter 1 Introduction to the R10000 Processor

20 User’s Manual U10278EJ4V0UM

1.3 What is an R10000 Microprocessor?

The R10000 processor is a single-chip superscalar RISC microprocessor that is a follow-
on to the MIPS RISC processor family that includes, chronologically, the R2000, R3000,
R6000, R4400, and R8000.

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.

The R10000 processor has the following major features (terms in bold are defined in the
Glossary):

• it implements the 64-bit MIPS IV instruction set architecture (ISA)

• it can decode four instructions each pipeline cycle, appending them to one of
three instruction queues

• it has five execution pipelines connected to separate internal integer and
floating-point execution (or functional) units

• it uses dynamic instruction scheduling and out-of-order execution

• it uses speculative instruction issue (also termed “speculative branching”)

• it uses a precise exception model (exceptions can be traced back to the
instruction that caused them)

• it uses non-blocking caches

• it has separate on-chip 32-Kbyte primary instruction and data caches

• it has individually-optimized secondary cache and System interface ports

• it has an internal controller for the external secondary cache

• it has an internal System interface controller with multiprocessor support

User’s Manual U10278EJ4V0UM 21

Chapter 1 Introduction to the R10000 Processor

R10000 Superscalar Pipeline

The R10000 superscalar processor fetches and decodes four instructions in parallel each
cycle (or pipeline stage). Each pipeline includes stages for fetching (stage 1 in Figure 1-4),
decoding (stage 2) issuing instructions (stage 3), reading register operands (stage 3),
executing instructions (stages 4 through 6), and storing results (stage 7).

Figure 1-4 Superscalar Pipeline Architecture in the R10000

FMpy -1 FMpy - 2 Result

Data Cache

Result

Result

Issue RF

Issue RF ALU1

Issue RF

TLB

Addr.Calc.

ResultIssue RF ALU2

FMpy - 3

FAdd - 1 FAdd - 2 ResultIssue RF FAdd - 3

Stage 1
Fetch

Stage 3
Issue

Instruction
Cache

DecodePrimary
Instruction

Cache

FMpy -1 FMpy - 2 Result

Data Cache

Result

Result

Stage 4
Execute

Stage 5
Execute

Stage 6
Execute

Decode

Branch Unit

Issue RF

Issue RF ALU1

FP Multiply Pipeline

Integer ALU Pipeline

Load/Store Pipeline

Branch Address (one branch can be handled each cycle)

Issue RF

TLB

FAdd - 1 FAdd - 2 ResultIssue RFFP Add Pipeline

Instruction Fetch Pipeline Translation-Lookaside BufferRead operands from Floating-Point

Queues

Floating-Point Queue

Integer Register Operands

Addr.Calc.

2-way Interleaved Cache

Functional Units (Execute Instruction)

ResultIssue RF ALU2Integer ALU Pipeline

 and Registers

FAdd - 3

Stage 7
Store

FMpy - 3

7 Pipeline Stages

5
Execution
Pipelines

(Integer Queue)

(Integer Queue)

(Address Queue)

(FP Queue)

(FP Queue)

4 Instruction/Cycle Fetch and Decode

Stage 2
Decode

or Integer Register Files

Chapter 1 Introduction to the R10000 Processor

22 User’s Manual U10278EJ4V0UM

Instruction Queues

As shown in Figure 1-4, each instruction decoded in stage 2 is appended to one of three
instruction queues:

• integer queue

• address queue

• floating-point queue

Execution Pipelines

The three instruction queues can issue (see the Glossary for a definition of issue) one new
instruction per cycle to each of the five execution pipelines:

• the integer queue issues instructions to the two integer ALU pipelines

• the address queue issues one instruction to the Load/Store Unit pipeline

• the floating-point queue issues instructions to the floating-point adder and
multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the instruction
cache.

Load/store dependency is speculatively ignored (R12000)

When a load follows a store in program-order, and the address of the load is known to the
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue
the load to tag-check and data access. When the address of the store is determined, the AQ
can undo the effects of the load through the use of the “soft-exception” mechanism. Since
almost all loads which are actually dependent on previous stores use the same registers to
form their addresses, normally either the two instructions are independent, or their
addresses are resolved in program order, so the soft-exception should occur rarely.

64-bit Integer ALU Pipeline

The 64-bit integer pipeline has the following characteristics:

• it has a 16-entry integer instruction queue that dynamically issues instructions

• it has a 64-bit 64-location integer physical register file, with seven read and
three write ports (32 logical registers; see register renaming in the Glossary)

• it has two 64-bit arithmetic logic units:

- ALU1 contains an arithmetic-logic unit, shifter, and integer branch
comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and divider

User’s Manual U10278EJ4V0UM 23

Chapter 1 Introduction to the R10000 Processor

Load/Store Pipeline

The load/store pipeline has the following characteristics:

• it has a 16-entry address queue that dynamically issues instructions, and uses
the integer register file for base and index registers

• it has a 16-entry address stack for use by non-blocking loads and stores

• it has a 44-bit virtual address calculation unit

• it has a 64-entry fully associative Translation-Lookaside Buffer (TLB),
which converts virtual addresses to physical addresses, using a 40-bit physical
address. Each entry maps two pages, with sizes ranging from 4 Kbytes to 16
Mbytes, in powers of 4.

64-bit Floating-Point Pipeline

The 64-bit floating-point pipeline has the following characteristics:

• it has a 16-entry instruction queue, with dynamic issue

• it has a 64-bit 64-location floating-point physical register file, with five read
and three write ports (32 logical registers)

• it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle latency)
which also performs move instructions

• it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which handles
addition, subtraction, and miscellaneous floating-point operations

• it has separate 64-bit divide and square-root units which can operate
concurrently (these units share their issue and completion logic with the
floating-point multiplier)

A block diagram of the processor and its interfaces is shown in Figure 1-5, followed by a
description of its major logical blocks.

Chapter 1 Introduction to the R10000 Processor

24 User’s Manual U10278EJ4V0UM

Figure 1-5 Block Diagram of the R10000 Processor

E
xt

er
n

al
 A

g
en

t
o

r
C

lu
st

er
 C

o
o

rd
in

at
o

r

System Interface Secondary Cache Ctlr

32 Kbytes

Data Cache

2-way Set Associative

2 Banks

128-bit refill or writeback

64-bit load or store

32 Kbytes
Instruction Cache

2-way Set Associative

Unaligned access

128-bit refill

Four 32-bit instr. fetch

B
ra

n
ch

 U
n

it

R
eg

is
te

r
M

ap
p

in
g

In
st

ru
ct

io
n

 D
ec

o
d

e

Up to 4 R10000 Microprocessors may be directly connected.

Queue
Integer ALU1

Queue
FP

R
eg

is
te

rs
64

 F
lt

.P
t.

ALU2

Adder

Multiplier

Adr.Calc.

TLB
R

eg
is

te
rs

64
 In

te
g

er

Secondary Cache

Synchronous Static RAM

128+10

26+7

Secondary Cache

19+way SC Address

Tag

Data

Addr Addr

16-word blocks
8-word blocks

R10000

S
ys

te
m

 B
us

: 6
4-

bi
t d

at
a,

 8
-b

it
ch

ec
k,

 1
2-

bi
t c

om
m

an
d

E
dg

e
of

 K
no

w
n

W
or

ld

Switch

C
lo

ck
s

(512 Kbytes to 16 Mbytes)

(4-Mbyte cache requires
ten 256Kx18-bit

RAM chips)Queue
Address

User’s Manual U10278EJ4V0UM 25

Chapter 1 Introduction to the R10000 Processor

Functional Units

The five execution pipelines allow overlapped instruction execution by issuing instructions
to the following five functional units:

• two integer ALUs (ALU1 and ALU2)

• the Load/Store unit (address calculate)

• the floating-point adder

• the floating-point multiplier

There are also three “iterative” units to compute more complex results:

• Integer multiply and divide operations are performed by an Integer Multiply/
Divide execution unit; these instructions are issued to ALU2. ALU2 remains
busy for the duration of the divide.

• Floating-point divides are performed by the Divide execution unit; these
instructions are issued to the floating-point multiplier.

• Floating-point square root are performed by the Square-root execution unit;
these instructions are issued to the floating-point multiplier.

Increase in pre-decode buffering (R12000)

Up to 12 instruction may be buffered before being decoded. This should normally be
invisible to the end user, but can be important when debugging systems in uncached-mode,
since fetch and decode are now further de-coupled.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

• it contains 32 Kbytes, organized into 16-word blocks, is 2-way set associative,
using a least-recently used (LRU) replacement algorithm

• it reads four consecutive instructions per cycle, beginning on any word
boundary within a cache block, but cannot fetch across a block boundary.

• its instructions are predecoded, its fields are rearranged, and a 4-bit unit select
code is appended

• it checks parity on each word

• it permits non-blocking instruction fetch

Primary Data Cache (D-cache)

The primary data cache has the following characteristics:

• it has two interleaved arrays (two 16 Kbyte ways)

• it contains 32 Kbytes, organized into 8-word blocks, is 2-way set associative,
using an LRU replacement algorithm.

• it handles 64-bit load/store operations

• it handles 128-bit refill or write-back operations

• it permits non-blocking loads and stores

• it checks parity on each byte

Chapter 1 Introduction to the R10000 Processor

26 User’s Manual U10278EJ4V0UM

Branch Target Address Cache (R12000)

This 32-entry two-way set-associative cache holds the target addresses of previously-taken
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch
bubble with the R10000 experiences for every taken branch. However, if a branch which
hits in the BTAC is actually predicted not-taken, then a one cycle fetch bubble is introduced
where none was present before. Performance simulations indicate that the BTAC is a net
win, but because of its “mixed-blessing” nature, a mechanism has been provided to disable
it via software. (See description of changes to diag register).

Instruction Decode And Rename Unit

The instruction decode and rename unit has the following characteristics:

• it processes 4 instructions in parallel

• it replaces logical register numbers with physical register numbers (register
renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table that has
4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping table
that has 4 write and 16 read ports

• it has a 32-entry active list of all instructions within the pipeline.

Branch Unit

The branch unit has the following characteristics:

• it allows one branch per cycle

• conditional branches can be executed speculatively, up to 4-deep

• it has a 44-bit adder to compute branch addresses

• it has a 4-quadword branch-resume buffer, used for reversing mispredicted
speculatively-taken branches

• the Branch Return Cache contains four instructions following a subroutine
call, for rapid use when returning from leaf subroutines

• it has program trace RAM that stores the program counter for each instruction
in the pipeline

User’s Manual U10278EJ4V0UM 27

Chapter 1 Introduction to the R10000 Processor

External Interfaces

The external interfaces have the following characteristics:

• a 64-bit System interface allows direct-connection for 2-way to
4-way multiprocessor systems. 8-bit ECC Error Check and Correction is
made on address and data transfers.

• a secondary cache interface with 128-bit data path and tag fields. 9-bit ECC
Error Check and Correction is made on data quadwords, 7-bit ECC is made on
tag words. It allows connection to an external secondary cache that can range
from 512 Kbytes to 16 Mbytes, using external static RAMs. The secondary
cache can be organized into either 16- or 32-word blocks, and is 2-way set
associative.

Bit definitions are given in Chapter 3.

Additional cycles for System Interface transactions (R12000)

All transactions which go through the system interface unit (in particular, SCache refills
and writebacks) have one additional CPU-clock of latency added to them.

Chapter 1 Introduction to the R10000 Processor

28 User’s Manual U10278EJ4V0UM

1.4 Instruction Queues

The processor keeps decoded instructions in three instruction queues, which dynamically
issue instructions to the execution units. The queues allow the processor to fetch
instructions at its maximum rate, without stalling because of instruction conflicts or
dependencies.

Each queue uses instruction tags to keep track of the instruction in each execution pipeline
stage. These tags set a Done bit in the active list as each instruction is completed.

FP and Integer-Queue Issue Policy (R12000)

The integer and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banks in an alternating fashion. Each bank
independently nominates instructions for the functional units. For each FU, the banks
nominate the oldest instruction they contain which is ready to execute. If both banks
nominate an instruction for a given FU, a winner is chosen by a priority bit which alternates
between the two banks on each cycle.

Integer Queue

The integer queue issues instructions to the two integer arithmetic units: ALU1 and ALU2.

The integer queue contains 16 instruction entries. Up to four instructions may be written
during each cycle; newly-decoded integer instructions are written into empty entries in no
particular order. Instructions remain in this queue only until they have been issued to an
ALU.

Branch and shift instructions can be issued only to ALU1. Integer multiply and divide
instructions can be issued only to ALU2. Other integer instructions can be issued to either
ALU.

The integer queue controls six dedicated ports to the integer register file: two operand read
ports and a destination write port for each ALU.

Address calculation for load/store instructions uses integer queue (R12000)

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the
AQ and IQ units. The IQ treats the address-calculate unit as a third “ALU” and issues
instructions to it. When an instruction completes address calculation, the results are
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any
reason, address calculation is not redone. If the address queue is full, but the integer queue
has free entries at the time a load/store instruction is decoded, the load/store is sent only to
the integer queue. When the address queue has an available entry the calculated address is
forwarded to that entry and the remainder of the load/store execution continues.

User’s Manual U10278EJ4V0UM 29

Chapter 1 Introduction to the R10000 Processor

Floating-Point Queue

The floating-point queue issues instructions to the floating-point multiplier and the floating-
point adder.

The floating-point queue contains 16 instruction entries. Up to four instructions may be
written during each cycle; newly-decoded floating-point instructions are written into empty
entries in random order. Instructions remain in this queue only until they have been issued
to a floating-point execution unit.

The floating-point queue controls six dedicated ports to the floating-point register file: two
operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier’s issue port to issue instructions to the square-
root and divide units. These instructions also share the multiplier’s register ports.

The floating-point queue contains simple sequencing logic for multiple-pass instructions
such as Multiply-Add. These instructions require one pass through the multiplier, then one
pass through the adder.

Address Queue

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries. Unlike the other two queues, the address
queue is organized as a circular First-In First-Out (FIFO) buffer. A newly decoded load/
store instruction is written into the next available sequential empty entry; up to four
instructions may be written during each cycle.

The FIFO order maintains the program’s original instruction sequence so that memory
address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be deleted
immediately after being issued, since the load/store unit may not be able to complete the
operation immediately.

The address queue contains more complex control logic than the other queues. An issued
instruction may fail to complete because of a memory dependency, a cache miss, or a
resource conflict; in these cases, the queue must continue to reissue the instruction until it
is completed.

The address queue has three issue ports:

• First, it issues each instruction once to the address calculation unit. This unit
uses a 2-stage pipeline to compute the instruction’s memory address and to
translate it in the TLB. Addresses are stored in the address stack and in the
queue’s dependency logic. This port controls two dedicated read ports to the
integer register file. If the cache is available, it is accessed at the same time as
the TLB. A tag check can be performed even if the data array is busy.

Chapter 1 Introduction to the R10000 Processor

30 User’s Manual U10278EJ4V0UM

• Second, the address queue can re-issue accesses to the data cache. The queue
allocates usage of the four sections of the cache, which consist of the tag and
data sections of the two cache banks. Load and store instructions begin with
a tag check cycle, which checks to see if the desired address is already in
cache. If it is not, a refill operation is initiated, and this instruction waits until
it has completed. Load instructions also read and align a doubleword value
from the data array. This access may be either concurrent to or subsequent to
the tag check. If the data is present and no dependencies exist, the instruction
is marked done in the queue.

• Third, the address queue can issue store instructions to the data cache. A store
instruction may not modify the data cache until it graduates. Only one store
can graduate per cycle, but it may be anywhere within the four oldest
instructions, if all previous instructions are already completed.

The access and store ports share four register file ports (integer read and write, floating-
point read and write). These shared ports are also used for Jump and Link and Jump
Register instructions, and for move instructions between the integer and register files.

User’s Manual U10278EJ4V0UM 31

Chapter 1 Introduction to the R10000 Processor

1.5 Program Order and Dependencies

From a programmer’s perspective, instructions appear to execute sequentially, since they
are fetched and graduated in program order (the order they are presented to the processor
by software). When an instruction stores a new value in its destination register, that new
value is immediately available for use by subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and some results
may not be available for many cycles; yet the hardware must behave as if each instruction
is executed sequentially.

This section describes various conditions and dependencies that can arise from them in
pipeline operation, including:

• instruction dependencies

• execution order and stalling

• branch prediction and speculative execution

• resolving operand dependencies

• resolving exception dependencies

Instruction Dependencies

Each instruction depends on all previous instructions which produced its operands, because
it cannot begin execution until those operands become valid. These dependencies
determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in a typical pipelined
processor, instructions are executed only in program order. That is, the next sequential
instruction may begin execution during the next cycle, if all of its operands are valid.
Otherwise, the pipeline stalls until the operands do become valid.

Since instructions execute in order, stalls usually delay all subsequent instructions.

A clever compiler can improve performance by re-arranging instructions to reduce the
frequency of these stall cycles.

• In an in-order superscalar processor, several consecutive instructions may
begin execution simultaneously, if all their operands are valid, but the
processor stalls at any instruction whose operands are still busy.

• In an out-of-order superscalar processor, such as the R10000, instructions are
decoded and stored in queues. Each instruction is eligible to begin execution
as soon as its operands become valid, independent of the original instruction
sequence. In effect, the hardware rearranges instructions to keep its execution
units busy. This process is called dynamic issuing.

Chapter 1 Introduction to the R10000 Processor

32 User’s Manual U10278EJ4V0UM

Branch Prediction and Speculative Execution

Although one or more instructions may begin execution during each cycle, each instruction
takes several (or many) cycles to complete. Thus, when a branch instruction is decoded, its
branch condition may not yet be known. However, the R10000 processor can predict
whether the branch is taken, and then continue decoding and executing subsequent
instructions along the predicted path.

When a branch prediction is wrong, the processor must back up to the original branch and
take the other path. This technique is called speculative execution. Whenever the processor
discovers a mispredicted branch, it aborts all speculatively-executed instructions and
restores the processor’s state to the state it held before the branch. However, the cache state
is not restored (see the section titled “Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CP0 Diagnostic register. Branch Likely
instructions are always predicted as taken, which also means the instruction in the delay slot
of the Branch Likely instruction will always be speculatively executed. Since the branch
predictor is neither used nor updated by branch-likely instructions, these instructions do not
affect the prediction of “normal” conditional branches.

Resolving Operand Dependencies

Operands include registers, memory, and condition bits. Each operand type has its own
dependency logic. In the R10000 processor, dependencies are resolved in the following
manner:

• register dependencies are resolved by using register renaming and the
associative comparator circuitry in the queues

• memory dependencies are resolved in the Load/Store Unit

• condition bit dependencies are resolved in the active list and instruction
queues

User’s Manual U10278EJ4V0UM 33

Chapter 1 Introduction to the R10000 Processor

Resolving Exception Dependencies

In addition to operand dependencies, each instruction is implicitly dependent upon any
previous instruction that generates an exception. Exceptions are caused whenever an
instruction cannot be properly completed, and are usually due to either an untranslated
virtual address or an erroneous operand.

The processor design implements precise exceptions, by:

• identifying the instruction which caused the exception

• preventing the exception-causing instruction from graduating

• aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.
Effectively, all previous instructions are completed, but the faulting instruction and all
subsequent instructions do not modify any values.

Strong Ordering

A multiprocessor system that exhibits the same behavior as a uniprocessor system in a
multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering is implemented, although it does not
actually execute all memory operations in strict program order.

In the R10000 processor, store operations remain pending until the store instruction is ready
to graduate. Thus, stores are executed in program order, and memory values are precise
following any exception.

For improved performance however, cached load operations my occur in any order, subject
to memory dependencies on pending store instructions. To maintain the appearance of
strong ordering, the processor detects whenever the reordering of a cached load might alter
the operation of the program, backs up, and then re-executes the affected load instructions.
Specifically, whenever a primary data cache block is invalidated due to an external
coherency request, its index is compared with all outstanding load instructions. If there is
a match and the load has been completed, the load is prevented from graduating. When it
is ready to graduate, the entire pipeline is flushed, and the processor is restored to the state
it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when the
instruction is ready to graduate. This guarantees strong ordering for uncached accesses.

Since the R10000 processor behaves as if it implemented strong ordering, a suitable system
design allows the processor to be used to create a shared-memory multiprocessor system
with strong ordering.

Chapter 1 Introduction to the R10000 Processor

34 User’s Manual U10278EJ4V0UM

An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is, they are not in the
same cache block—an example of strong ordering is as follows:

• Processor A performs a store to location X and later executes a load from
location Y.

• Processor B performs a store to location Y and later executes a load from
location X.

The two processors are running asynchronously, and the order of the above two sequences
is unknown.

For the system to be strongly ordered, either processor A must load the new value of Y, or
processor B must load the new value of X, or both processors A and B must load the new
values of Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any conditions,
the system is not strongly ordered.

New Value Strongly
OrderedProcessor A Processor B

No No No

Yes No Yes

No Yes Yes

Yes Yes Yes

User’s Manual U10278EJ4V0UM 35

Chapter 1 Introduction to the R10000 Processor

1.6 R10000 Pipelines

This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in Figure 1-4.
The Fetch pipeline reads instructions from the instruction cache†, decodes them, renames
their registers, and places them in three instruction queues. The instruction queues contain
integer, address calculate, and floating-point instructions. From these queues, instructions
are dynamically issued to the five pipelined execution units.

Stage 1

In stage 1, the processor fetches four instructions each cycle, independent of their
alignment in the instruction cache — except that the processor cannot fetch across a 16-
word cache block boundary. These words are then aligned in the 4-word Instruction
register.

If any instructions were left from the previous decode cycle, they are merged with new
words from the instruction cache to fill the Instruction register.

Stage 2

In stage 2, the four instructions in the Instruction register are decoded and renamed.
(Renaming determines any dependencies between instructions and provides precise
exception handling.) When renamed, the logical registers referenced in an instruction are
mapped to physical registers. Integer and floating-point registers are renamed
independently.

A logical register is mapped to a new physical register whenever that logical register is the
destination of an instruction. Thus, when an instruction places a new value in a logical
register, that logical register is renamed (mapped) to a new physical register, while its
previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to determine if
any dependencies exist between the four instructions decoded during this cycle. After the
physical register numbers become known, the Physical Register Busy table indicates
whether or not each operand is valid. The renamed instructions are loaded into integer or
floating-point instruction queues.

Only one branch instruction can be executed during stage 2. If the instruction register
contains a second branch instruction, this branch is not decoded until the next cycle.

The branch unit determines the next address for the Program Counter; if a branch is taken
and then reversed, the branch resume cache provides the instructions to be decoded during
the next cycle.

† The processor checks only the instruction cache during an instruction fetch; it does not check
the data cache.

Chapter 1 Introduction to the R10000 Processor

36 User’s Manual U10278EJ4V0UM

Stage 3

In stage 3, decoded instructions are written into the queues. Stage 3 is also the start of each
of the five execution pipelines.

Stages 4-6

In stages 4 through 6, instructions are executed in the various functional units. These units
and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are executed in this
unit with a 2-cycle latency and a 1-cycle repeat rate. The multiplication is completed during
the first two cycles; the third cycle is used to pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and square-root operations can be executed in parallel
by separate units. These units share their issue and completion logic with the floating-point
multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are executed with
a 2-cycle latency and a 1-cycle repeat rate. Although a final result is not calculated until the
third pipeline stage, internal bypass paths set a 2-cycle latency for dependent add or
multiply instructions.

Integer ALU1 (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency and a
1-cycle repeat rate. This ALU also verifies predictions made for branches that are
conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a 1-cycle latency and a 1-cycle
repeat rate. Integer multiply and divide operations take more than one cycle.

User’s Manual U10278EJ4V0UM 37

Chapter 1 Introduction to the R10000 Processor

Address Calculation and Translation in the TLB

A single memory address can be calculated every cycle for use by either an integer or
floating-point load or store instruction. Address calculation and load operations can be
calculated out of program order.

The calculated address is translated from a 44-bit virtual address into a 40-bit physical
address using a translation-lookaside buffer. The TLB contains 64 entries, each of which
can translate two pages. Each entry can select a page size ranging from 4 Kbytes to 16
Mbytes, inclusive, in powers of 4, as shown in Figure 1-6.

Figure 1-6 TLB Page Sizes

Load instructions have a 2-cycle latency if the addressed data is already within the data
cache.

Store instructions do not modify the data cache or memory until they graduate.

4 Kbytes

212Exponent

16 Kbytes

214

64 Kbytes

216

256 Kbytes

218

1 Mbyte

220

4 Mbytes

222

16 Mbytes

224

VA(11) VA(13) VA(15) VA(17) VA(19) VA(21) VA(23)

Page Size

Virtual address

Chapter 1 Introduction to the R10000 Processor

38 User’s Manual U10278EJ4V0UM

1.7 Implications of R10000 Microarchitecture on Software

The R10000 processor implements the MIPS architecture by using the following
techniques to improve throughput:

• superscalar instruction issue

• speculative execution

• non-blocking caches

These microarchitectural techniques have special implications for compilation and code
scheduling.

Superscalar Instruction Issue

The R10000 processor has parallel functional units, allowing up to four instructions to be
fetched and up to five instructions to be issued or completed each cycle. An ideal code
stream would match the fetch bandwidth of the processor with a mix of independent
instructions to keep the functional units as busy as possible.

To create this ideal mix, every cycle the hardware would select one instruction from each
of the columns below. (Floating-point divide, floating-point square root, integer multiply
and integer divide cannot be started on each cycle.) The processor can look ahead in the
code, so the mix should be kept close to the ideal described below.

Data dependencies are detected in hardware, but limit the degree of parallelism that can be
achieved. Compilers can intermix instructions from independent code streams.

Column A Column B Column C Column D Column E

FPadd FP mul FPload add/sub add/sub

FPdiv FPstore shift mul

FPsqrt load branch div

store logical logical

User’s Manual U10278EJ4V0UM 39

Chapter 1 Introduction to the R10000 Processor

Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing
instructions even in the presence of unresolved conditional branches and possible
exceptions. Following are some suggestions for increasing program efficiency:

• Compilers should reduce the number of branches as much as possible

• “Jump Register” instructions should be avoided.

• Aggressive use of the new integer and floating-point conditional move
instructions is recommended.

• Branch prediction rates may be improved by organizing code so that each
branch goes the same direction most of the time, since a branch that is taken
50% of the time has higher average cost than one taken 90% of the time. The
MIPS IV conditional move instructions may be effective in improving
performance by replacing unpredictable branches.

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and executed.
Side-effects are harmless in cached coherent operations; however there are potential side-
effects with non-coherent cached operations. These side-effects are described in the
sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a cached
address initiate a Processor Block Read Request to the external interface if it misses in the
cache. The speculative operation may modify the cache state and/or data, and this
modification may not be reversed even if the speculation turns out to be incorrect and the
instruction is aborted.

Speculative Processor Block Read Request to an I/O Address

Accesses to I/O addresses often cause side-effects. Typically, such I/O addresses are
mapped to an uncached region and uncached reads and writes are made as double/single/
partial-word reads and writes (non-block reads and writes) in R10000. Uncached reads and
writes are guaranteed to be non-speculative.

However, if R10000 has a “garbage” value in a register, a speculative block read request to
an unpredictable physical address can occur, if it speculatively fetches data due to a Load
or Jump Register instruction specifying this register. Therefore, speculative block accesses
to load-sensitive I/O areas can present an unwanted side-effect.

Chapter 1 Introduction to the R10000 Processor

40 User’s Manual U10278EJ4V0UM

Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative Store
instruction is missing in the cache, the cache line is refilled and the state is marked to be
Dirty. However the refilled data may not be actually changed in the cache if this store
instruction is later aborted. This could present a side-effect in cases such as the one
described below:

• The processor is storing data sequentially to memory area A, using a code-loop
that includes Store and Cond.branch instructions.

• A DMA write operation is performed to memory area B.

• DMA area B is contiguous to the sequential storage area A.

• The DMA operation is noncoherent.

• The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following could
occur:

1. Due to speculative execution at the exit of the code-loop, the line of data beyond the
end of the memory area A — that is, the starting line of memory area B — is refilled
to the cache. This cache line is then marked Dirty.

2. The DMA operation starts writing noncoherent data into memory area B.

3. A cache line replacement is caused by later activities of the processor, in which the
cache line is written back to the top of area B. Thus, the first line of the DMA area B
is overwritten by old cache data, resulting in incorrect DMA operation and data.

The OS can restrict the writable pages for each user process and so can prevent a user
process from interfering with an active DMA space. The kernel, on the other hand, retains
xkphys and kseg0 addresses in registers. There is no write protection against the speculative
use of the address values in these registers. User processes which have pages mapped to
physical spaces not in RAM may also have side-effects. These side-effects can be avoided
if DMA is coherent.

Speculative Instruction Fetch

The change in a cache line’s state due to a speculative instruction fetch is not reversed if the
speculation is aborted. This does not cause any problems visible to the program except
during a noncoherent memory operation. Then the following side-effect exists: if a
noncoherent line is changed to Clean Exclusive and this line is also present in noncoherent
space, the noncoherent data could be modified by an external component and the processor
would then have stale data.

User’s Manual U10278EJ4V0UM 41

Chapter 1 Introduction to the R10000 Processor

Workarounds for Noncoherent Cached Systems

The suggestions presented below are not exhaustive; the solutions and trade-offs are system
dependent. Any one or more of the items listed below might be suitable in a particular
system, and testing and simulations should be used to verify their efficacy.

1. The external agent can reject a processor block read request to any I/O location in
which a speculative load would cause an undesired affect. Rejection is made by
returning an external NACK completion response.

2. A serializing instruction such as a cache barrier or a CP0 instruction can be used to
prevent speculation beyond the point where speculative stores are allowed to occur.
This could be at the beginning of a basic block that includes instructions that can cause
a store with an unsafe pointer. (Stores to addresses like stack-relative, global-pointer-
relative and pointers to non-I/O memory might be safe.) Speculative loads can also
cause a side-effect. To make sure there is no stale data in the cache as a result of
undesired speculative loads, portions of the cache referred by the address of the DMA
read buffers could be flushed after every DMA transfer from the I/O devices.

3. Make references to appropriate I/O spaces uncached by changing the cache coherency
attribute in the TLB.

4. Generally, arbitrary accesses can be controlled by mapping selected addresses through
the TLB. However, references to an unmapped cached xkphys region could have
hazardous affects on I/O. A solution for this is given below:

First of all, note that the xkphys region is hard-wired into cached and uncached regions,
however the cache attributes for the kseg0 region are programmed through the Config
register. Therefore, clear the KX bit (to a zero) and set (to ones) the SX and UX bits in
the Status register. This disables access to the xkphys region and restricts access to only
the User and Supervisor portions of the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol — but not
both. Therefore these cache attributes can be used by the external hardware to filter
accesses to certain parts of the kseg0 region. For instance, the cache attributes for the
kseg0 address space might be defined in the Config register to be cache coherent while
the cache attributes in the TLB for the rest of virtual space are defined to be cached-
noncoherent or uncached. The external hardware could be designed to reject all cache
coherent mode references to the memory except to that prior-defined safe space in
kseg0 within which there is no possibility of an I/O DMA transfer. Then before the
DMA read process and before the cache is flushed for the DMA read buffers, the cache
attributes in the TLB for the I/O buffer address space are changed from noncoherent
to uncached. After the DMA read, the access modes are returned to the cached-
noncoherent mode.

5. Just before load/store instruction, use a conditional move instruction which tests for the
reverse condition in the speculated branch, and make all aborted branch assignments
safe. An example is given below:

Chapter 1 Introduction to the R10000 Processor

42 User’s Manual U10278EJ4V0UM

bne r1, r0, label

movn ra, r0, r1 # test to see if r1 != 0; if r1 != 0 then branch

 # is mispredicted; move safe address (r0)
 # into ra

ld r4, 0 (ra) # Without the previous movn, this lld
 # could create damaging read.

label: -----

In the above example, without the MOVN the read to the address in register ra could
be speculatively executed and later aborted. It is possible that this load could be
premature and thus damaging. The MOVN guarantees that if there is a misprediction
(r1 is not equal to 0) ra will be loaded with an address to which a read will not be
damaging.

6. The following is similar to the conditional-move example given above, in that it
protects speculation only for a single branch, but in some instances it may be more
efficient than either the conditional move or the cache barrier workarounds.

This workaround uses the fact that branch-likely instructions are always predicted as
taken by the R10000. Thus, any incorrect speculation by the R10000 on a branch-
likely always occurs on a taken path. Sample code is:

beql rx, r1, label
nop
sw r2, 0x0(r1)

label: -----

The store to r1 will never be to an address referred to by the content of rx, because the
store will never be executed speculatively. Thus, the address referred to by the content
of rx is protected from any spurious write-backs.

User’s Manual U10278EJ4V0UM 43

Chapter 1 Introduction to the R10000 Processor

This workaround is most useful when the branch is often taken, or when there are few
instructions in the protected block that are not memory operations. Note that no
instructions in a block following a branch-likely will be initiated by speculation on that
branch; however, in the case of a serial instruction workaround, only memory
operations are prevented from speculative initiation. In the case of the conditional-
move workaround, speculative initiation of all instructions continues unimpeded. Also,
similar to the conditional-move workaround, this workaround only protects fall-
through blocks from speculation on the immediately preceding branch. Other
mechanisms must be used to ensure that no other branches speculate into the protected
block. However, if a block that dominates† the fall-through block can be shown to be
protected, this may be sufficient. Thus, if block (a) dominates block (b), and block (b)
is the fall-through block shown above, and block (a) is the immediately previous block
in the program (i.e., only the single conditional branch that is being replaced intervenes
between (a) and (b)), then ensuring that (a) is protected by serial instruction means a
branch-likely can safely be used as protection for (b).

Nonblocking Caches

As processor speed increases, the processor’s data latency and bandwidth requirements rise
more rapidly than the latency and bandwidth of cost-effective main memory systems. The
memory hierarchy of the R10000 processor tries to minimize this effect by using large set-
associative caches and higher bandwidth cache refills to reduce the cost of loads, stores, and
instruction fetches. Unlike the R4400, the R10000 processor does not stall on data cache
misses, instead defers execution of any dependent instructions until the data has been
returned and continues to execute independent instructions (including other memory
operations that may miss in the cache). Although the R10000 allows a number of
outstanding primary and secondary cache misses, compilers should organize code and data
to reduce cache misses. When cache misses are inevitable, the data reference should be
scheduled as early as possible so that the data can be fetched in parallel with other unrelated
operations.

As a further antidote to cache miss stalls, the R10000 processor supports prefetch
instructions, which serve as hints to the processor to move data from memory into the
secondary and primary caches when possible. Because prefetches do not cause dependency
stalls or memory management exceptions, they can be scheduled as soon as the data address
can be computed, without affecting exception semantics. Indiscriminate use of prefetch
instructions can slow program execution because of the instruction-issue overhead, but
selective use of prefetches based on compiler miss prediction can yield significant
performance improvement for dense matrix computations.

† In compiler parlance, block (a) dominates block (b) if and only if every time block (b) is
executed, block (a) is executed first. Note that block (a) does not have to immediately precede
block (b) in execution order; some other block may intervene.

Chapter 1 Introduction to the R10000 Processor

44 User’s Manual U10278EJ4V0UM

1.8 Performance

As it executes programs, the R10000 superscalar processor performs many operations in
parallel. Instructions can also be executed out of order. Together, these two facts greatly
improve performance, but they also make it difficult to predict the time required to execute
any section of a program, since it often depends on the instruction mix and the critical
dependencies between instructions.

The processor has five largely independent execution units, each of which are
individualized for a specific class of instructions. Any one of these units may limit
processor performance, even as the other units sit idle. If this occurs, instructions which
use the idle units can be added to the program without adding any appreciable delay.

User’s Manual U10278EJ4V0UM 45

Chapter 1 Introduction to the R10000 Processor

User Instruction Latency and Repeat Rate

Table 1-1 shows the latencies and repeat rates for all user instructions executed in ALU1,
ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply functional units
(definitions of latency and repeat rate are given in the Glossary). Kernel instructions are
not included, nor are control instructions not issued to these execution units.

Table 1-1 Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit Latency
Repeat
Rate

Comment

Integer Instructions
Add/Sub/Logical/Set ALU 1/2 1 1
MF/MT HI/LO ALU 1/2 1 1
Shift/LUI ALU 1 1 1
Cond. Branch Evaluation ALU 1 1 1
Cond. Move ALU 1 1 1
MULT ALU 2 5/6 6 Latency relative to Lo/Hi
MULTU ALU 2 6/7 7 Latency relative to Lo/Hi
DMULT ALU 2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU 2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU 2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU 2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit

Floating-Point Instructions
MTC1/DMTC1 ALU 1 3 1
Add/Sub/Abs/Neg/Round/Trunc/
Ceil/Floor/C.cond

FADD 2 1

CVT.S.W/CVT.S.L FADD 4 2 Repeat rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MFC1/DMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35

MADD FADD+FMPY 2/4 1
Latency is 2 only if the result is used as the
operand specified by fr of another MADD

LWC1/LDC1/LWXC1/LDXC1 LoadStore 3 1 Assuming cache hit

Chapter 1 Introduction to the R10000 Processor

46 User’s Manual U10278EJ4V0UM

Please note the following about Table 1-1:

• For integer instructions, conditional trap evaluation takes a single cycle,
like conditional branches.

• Branches and conditional moves are not conditionally issued.

• The repeat rate above for Load/Store does not include Load Link and
Store Conditional.

• Prefetch instruction is not included here.

• The latency for multiplication and division depends upon the next
instruction.

• An instruction using register Lo can be issued one cycle earlier than one
using Hi.

• For floating-point instructions, CP1 branches are evaluated in the
Graduation Unit.

• CTC1 and CFC1 are not included in this table.

• The repeat pattern for the CVT.S.(W/L) is “I I x x I I x x ...”; the repeat
rate given here, 2, is the average.

• The latency for MADD instructions is 2 cycles if the result is used as the
operand specified by fr of the second MADD instruction.

• Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD)
do not implicitly perform SYNC operations in the R10000. Any of the
following events that occur between a Load Linked and a Store
Conditional will cause the Store Conditional to fail: an exception;
execution of an ERET, a load, a store, a SYNC, a CacheOp, a prefetch, or
an external intervention/invalidation on the block containing the linked
address. Instruction cache misses do not cause the Store Conditional to
fail.

• Up to four branches can be evaluated at one cycle.†

For more information about implementations of the LL, SC, and SYNC instructions, please
see the section titled, R10000-Specific CPU Instructions, in this chapter.

† Only one branch can be decoded at any particular cycle. Since each conditional branch is
predicted, the real direction of each branch must be “evaluated.” For example,

beq r2,r3,L1
nop

A comparison of r2 and r3 is made to determine whether the branch is taken or not. If the
branch prediction is correct, the branch instruction is graduated. Otherwise, the processor
must back out of the instruction stream decoded after this branch, and inform the IFetch to
fetch the correct instructions. The evaluation is made in the ALU for integer branches and in
the Graduation Unit for floating-point branches. A single integer branch can be evaluated
during any cycle, but there may be up to 4 condition codes waiting to be evaluated for floating-
point branches. Once the condition code is evaluated, all dependant FP branches can be
evaluated during the same cycle.

User’s Manual U10278EJ4V0UM 47

Chapter 1 Introduction to the R10000 Processor

Other Performance Issues

Table 1-1 shows execution times within the functional units only. Performance may also
be affected by instruction fetch times, and especially by the execution of conditional
branches.

In an effort to keep the execution units busy, the processor predicts branches and
speculatively executes instructions along the predicted path. When the branch is predicted
correctly, this significantly improves performance: for typical programs, branch prediction
is 85% to 90% correct. When a branch is mispredicted, the processor must discard
instructions which were speculatively fetched and executed. Usually, this effort uses
resources which otherwise would have been idle, however in some cases speculative
instructions can delay previous instructions.

Cache Performance

The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the primary
data cache, otherwise there are significant delays for accessing the secondary cache or main
memory. Out-of-order execution and non-blocking caches reduce the performance loss due
to these delays, however.

The latency and repeat rates for accessing the secondary cache are summarized in Table 1-
2. These rates depend on the ratio of the secondary cache’s clock to the processor’s internal
pipeline clock. The best performance is achieved when the clock rates are equal; slower
external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle transfers
from the quadword-wide secondary cache. Latency runs to the time in which the processor
can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using 4-cycle
transfers.

Table 1-2 Latency and Repeat Rates for Secondary Cache Reads

‡ Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords (instruction
cache). Rate is valid for bursts of 2 to 3 cache misses; if more than three cache misses in a row, there can
be a 1-cycle “bubble.”

† Clock synchronization causes variability.

SCClkDiv
Mode

Latency‡

(PClk Cycles)

Repeat
Rate*

(PClk Cycles)

1 6
2 (data cache)

4 (instruction cache)

1.5 8-10† 3 (data cache)
6 (instruction cache)

2 9-12† 4 (data cache)
8 (instruction cache)

Chapter 1 Introduction to the R10000 Processor

48 User’s Manual U10278EJ4V0UM

The processor mitigates access delays to the secondary cache in the following ways:

• The processor can execute up to 16 load and store instructions speculatively
and out-of-order, using non-blocking primary and secondary caches. That is,
it looks ahead in its instruction stream to find load and store instructions
which can be executed early; if the addressed data blocks are not in the
primary cache, the processor initiates cache refills as soon as possible.

• If a speculatively executed load initiates a cache refill, the refill is completed
even if the load instruction is aborted. It is likely the data will be referenced
again.

• The data cache is interleaved between two banks, each of which contains
independent tag and data arrays. These four sections can be allocated
separately to achieve high utilization. Five separate circuits compete for
cache bandwidth (address calculate, tag check, load unit, store unit, external
interface.)

• The external interface gives priority to its refill and interrogate operations.
The processor can execute tag checks, data reads for load instructions, or data
writes for store instructions. When the primary cache is refilled, any required
data can be streamed directly to waiting load instructions.

• The external interface can handle up to four non-blocking memory accesses to
secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the secondary
cache, which make it difficult for the processor to mitigate their effect. Since main memory
accesses are non-blocking, delays can be reduced by overlapping the latency of several
operations. However, although the first part of the latency may be concealed, the processor
cannot look far enough ahead to hide the entire latency.

Programmers may use pre-fetch instructions to load data into the caches before it is needed,
greatly reducing main memory delays for programs which access memory in a predictable
sequence.

User’s Manual U10278EJ4V0UM 49

2. System Configurations

The R10000 processor provides the capability for a wide range of computer systems; this
chapter describes some of the uni- and multiprocessor alternatives.

Chapter 2 System Configurations

50 User’s Manual U10278EJ4V0UM

2.1 Uniprocessor Systems

In a typical uniprocessor system, the System interface of the R10000 processor connects in
a point-to-point fashion with an external agent. Such a system is shown in Figure 2-1. The
external agent is typically an ASIC that provides a gateway to the memory and I/O
subsystems; in fact, this ASIC may incorporate the memory controller itself.

If hardware I/O coherency is desired, the external agent may use the multiprocessor
primitives provided by the processor to maintain cache coherency for interventions and
invalidations. External duplicate tags can be used by the external agent to filter external
coherency requests.

Figure 2-1 Uniprocessor System Organization

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

To Other System Resources

Duplicate
Tags

Secondary Cache Interface

System Interface

User’s Manual U10278EJ4V0UM 51

Chapter 2 System Configurations

2.2 Multiprocessor Systems

Two types of multiprocessor systems can be implemented with R10000 processor:

• a dedicated external agent interfaces with each R10000 processor

• up to four R10000 processors and an external agent reside on a cluster bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing a dedicated
external agent for each processor; such a system is shown in Figure 2-2. The external agent
provides a path between the processor System interface and some type of coherent
interconnect. In such a system, the processor provides support for three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

Figure 2-2 Multiprocessor System Organization using Dedicated External Agents

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

Secondary Cache Interface

System Interface

Coherent Interconnect

To Other System Resources

R10000

Secondary
Cache

External
Agent

Duplicate
Tags

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

External
Agent

Duplicate
Tags

Secondary Cache Interface

System Interface

Directory
Structure

Chapter 2 System Configurations

52 User’s Manual U10278EJ4V0UM

Multiprocessor Systems Using a Cluster Bus

A multiprocessor system may be created with R10000 processors by using a cluster bus
configuration. Such a system is shown in Figure 2-3. A cluster bus is created by attaching
the System interfaces of up to four R10000 processors with an external agent (the cluster
coordinator). The cluster coordinator is responsible for managing the flow of data within
the cluster.

This organization can reduce the number of ASICs and the pin count needed for a small
multiprocessor systems.

The cluster bus protocol supports three coherency schemes:

• snoopy-based

• snoopy-based with external duplicate tags and control

• directory-based with external directory structure and control

Figure 2-3 Multiprocessor System Organization Using the Cluster Bus

Cluster
Coordinator

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

Cluster
Coordinator

Duplicate
Tags

Cluster Bus

To Other System Resources

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

R10000

Secondary
Cache

Secondary Cache Interface

System Interface

Directory
Structure

User’s Manual U10278EJ4V0UM 53

3. Interface Signal Descriptions

This chapter gives a list and description of the interface signals.

The R10000 interface signals may be divided into the following groups:

• Power interface

• Secondary Cache interface

• System interface

• Test interface

The following sections present a summary of the external interface signals for each of these
groups. An asterisk (*) indicates signals that are asserted as a logical 0.

Chapter 3 Interface Signal Descriptions

54 User’s Manual U10278EJ4V0UM

3.1 Power Interface Signals

Table 3-1 presents the R10000 processor power interface signals.

Table 3-1 Power Interface Signals

Signal Name Description Type

Vcc
Vcc core
Vcc for the core circuits.

Input

VccQSC
Vcc output driver secondary cache
Vcc for the secondary cache interface output drivers.

Input

VccQSys
Vcc output driver system
Vcc for the System interface output drivers.

Input

VrefSC
Voltage reference secondary cache
Voltage reference for the secondary cache interface input receivers.

Input

VrefSys
Voltage reference system
Voltage reference for the System interface input receivers.

Input

VrefByp
Voltage reference bypass
This pin must be tied to Vss (preferably) or VrefSys, through at least a 100 ohm
resistor.

Input

Vss
Vss
Vss for the core circuits and output drivers.

Input

VccPa
Vcc PLL analog
Vcc for the PLL analog circuits.

Input

VssPa
Vss PLL analog
Vss for the PLL analog circuits.

Input

VccPd
Vcc PLL digital
Vcc for the PLL digital circuits.

Input

VssPd
Vss PLL digital
Vss for the PLL digital circuits.

Input

DCOk
DC voltages are OK
The external agent asserts these two signals when Vcc,
VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk are stable.

Input

User’s Manual U10278EJ4V0UM 55

Chapter 3 Interface Signal Descriptions

3.2 Secondary Cache Interface Signals

Table 3-2 presents the R10000 processor secondary cache interface signals.

Table 3-2 Secondary Cache Interface Signals

‡ All cache static RAM (SRAM) are synchronous SRAM (SSRAM).

Signal Name Description Type

SSRAM‡ Clock Signals

SCClk(5:0)
SCClk*(5:0)

Secondary cache clock
Duplicated complementary secondary cache clock outputs.

Output

SSRAM Address Signals

SCAAddr(18:0)
SCBAddr(18:0)

Secondary cache address bus
SCBAddr is complementary SCAAddr 19-bit bus, which specifies the set address of the
secondary cache data and tag SSRAM that is to be accessed.

Output

SCTagLSBAddr
Secondary cache tag LSB address
Signal that specifies the least significant bit of the address for the secondary cache tag
SSRAM.

Output

SSRAM Data Signals

SCADWay
SCBDWay

Secondary cache data way
Duplicated signal that indicates the way of the secondary cache data SSRAM that is to
be accessed.

Output

SCData(127:0)
Secondary cache data bus
128-bit bus to read/write cache data from/to secondary cache data SSRAM.

Bidirectional

SCDataChk(9:0)
Secondary cache data check bus
A 10-bit bus used to read/write ECC and even parity from/to the secondary cache data
SSRAM.

Bidirectional

SCADOE*
SCBDOE*

Secondary cache data output enable
Duplicated signal that enables the outputs of the secondary cache data SSRAM.

Output

SCADWr*
SCBDWr*

Secondary cache data write enable
Duplicated signal that enables writing the secondary cache data SSRAM.

Output

SCADCS*
SCBDCS*

Secondary cache data chip select
Duplicated signal that enables the secondary cache data SSRAM.

Output

Chapter 3 Interface Signal Descriptions

56 User’s Manual U10278EJ4V0UM

Table 3-2 (cont.) Secondary Cache Interface Signals

Signal Name Description Type

SSRAM Tag Signals

SCTWay
Secondary cache tag way
Signal indicating the way of the secondary cache tag SSRAM to be accessed.

Output

SCTag(25:0)
Secondary cache tag bus
A 26-bit bus to read/write cache tags from/to the secondary cache tag SSRAM.

Bidirectional

SCTagChk(6:0)
Secondary cache tag check bus
A 7-bit bus used to read/write ECC from/to the secondary cache tag SSRAM.

Bidirectional

SCTOE*
Secondary cache tag output enable
A signal that enables the outputs of the secondary cache tag SSRAM.

Output

SCTWr*
Secondary cache tag write enable
A signal that enables writing the secondary cache tag SSRAM.

Output

SCTCS*
Secondary cache tag chip select
A signal which enables the secondary cache tag SSRAM.

Output

User’s Manual U10278EJ4V0UM 57

Chapter 3 Interface Signal Descriptions

3.3 System Interface Signals

Table 3-3 presents the R10000 processor System interface signals.

Table 3-3 System Interface Signals

Signal Name Description Type

System Clock Signals

SysClk
SysClk*

System clock
Complementary system clock input.

Input

SysClkRet
SysClkRet*

System clock return
Complementary system clock return output used for termination of the system
clock.

Output

System Arbitration Signals

SysReq*
System request
The processor asserts this signal when it wants to perform a processor request
and it is not already master of the System interface.

Output

SysGnt*
System grant
The external agent asserts this signal to grant mastership of the System interface
to the processor.

Input

SysRel*

System release
The master of the System interface asserts this signal for one SysClk cycle to
indicate that it will relinquish mastership of the System interface in the following
SysClk cycle.

Bidirectional

System Flow Control Signals

SysRdRdy*
System read ready
The external agent asserts this signal to indicate that it can accept processor read
and upgrade requests.

Input

SysWrRdy*
System write ready
The external agent asserts this signal to indicate that it can accept processor write
and eliminate requests.

Input

System Address/Data Bus Signals

SysCmd(11:0)
System command
A 12-bit bus for transferring commands between processor and the external
agent.

Bidirectional

SysCmdPar
System command bus parity
Odd parity for the system command bus.

Bidirectional

SysAD(63:0)
System address/data bus
A 64-bit bus for transferring addresses and data between R10000 and the
external agent.

Bidirectional

Chapter 3 Interface Signal Descriptions

58 User’s Manual U10278EJ4V0UM

Table 3-3 (cont.) System Interface Signals

Signal Name Description Type

System State Bus Signals

SysADChk(7:0)
System address/data check bus
An 8-bit ECC bus for the system address/data bus.

Bidirectional

SysVal*
System valid
The master of the System interface asserts this signal when it is driving valid
information on the system command and system address/data buses.

Bidirectional

SysState(2:0)
System state bus
A 3-bit bus used for issuing processor coherency state responses and also
additional status indications.

Output

SysStatePar
System state bus parity
Odd parity for the system state bus.

Output

SysStateVal*
System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a processor
coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)
System response bus
A 5-bit bus used by the external agent for issuing external completion responses.

Input

SysRespPar
System response bus parity
Odd parity for the system response bus.

Input

SysRespVal*
System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing an
external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset*
System reset
The external agent asserts this signal to reset the processor.

Input

SysNMI*
System non-maskable interrupt
The external agent asserts this signal to indicate a non-maskable interrupt.

Input

SysCorErr*
System correctable error
The processor asserts this signal for one SysClk cycle when a correctable error
is detected and corrected.

Output

SysUncErr*
System uncorrectable error
The processor asserts this signal for one SysClk cycle when an uncorrectable tag
error is detected.

Output

SysGblPerf*
System globally performed
The external agent asserts this signal to indicate that all processor requests have
been globally performed with respect to all external agents.

Input

SysCyc*
System cycle
The external agent may use this signal to define a virtual System interface clock
in a hardware emulation environment.

Input

User’s Manual U10278EJ4V0UM 59

Chapter 3 Interface Signal Descriptions

3.4 Test Interface Signals

Table 3-4 presents the R10000 processor test interface signals.

Table 3-4 Test Interface Signals

† The Spare (1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not be connected to anything.

Signal Name Description Type

JTAG Signals

JTDI
JTAG serial data input
Serial data input.

Input

JTDO
JTAG serial data output
Serial data output.

Output

JTCK
JTAG clock
Clock input.

Input

JTMS
JTAG mode select
Mode select input.

Input

JTRST
JTAG reset input (active low)
Asynchronous reset input (R12000A only)

Input

Miscellaneous Test Signals

TCA
Testability control A (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor.

Input

TCB
Testability control B (for manufacturing test only)
This signal must be tied to Vss, through a 100 ohm resistor.

Input

PLLDis
PLL disable (for manufacturing test only)
This signal must be tied to Vss through a 100 ohm resistor.

Input

PLLRC
PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.

PLLSpare(1:4) These four pins must be tied to Vss.

Spare(1,3)† These two pins must be tied to Vss, through a 100 ohm resistor.

TriState
3-state Control
The system asserts this signal to 3-state all outputs and input/output
pads except for SCClk, SCClk*, and JTDO.

Input

SelDVCO
Select differential VCO (for manufacturing test only)
This signal must be tied to Vcc.

Input

Chapter 3 Interface Signal Descriptions

60 User’s Manual U10278EJ4V0UM

Unused Inputs

Several input pins are unused during normal system operation, and should be tied to Vcc
through resistors:

• JTDI

• JTCK

• JTMS

• JTRST (for R12000A only)

Several input pins are unused during normal system operation, and should be tied to Vss
through 100 ohm resistors:

• TCA, TCB

• PLLDis

• Spare1, Spare3 (for R10000)

Several input pins are unused during normal system operation, and should be tied to Vss:

• PLLSpare1, PLLSpare2, PLLSpare3, PLLSpare4

• SelDVCO

The following input pins are unused during normal system operation, and should be left
open:

• Spare1, Spare3 (for R12000)

 The following input pins may be unused in certain system configurations, and each of them
should be tied to VccQSys, preferably, through a resistor of 100 ohms or greater value:

• SysNMI*

 The following input pins may be unused in certain system configurations, and each of them
should be tied to Vss, preferably, through a resistor of 100 ohms or greater value:

• SysRdRdy*

• SysWrRdy*

• SysGblPerf*

• SysCyc*

 The following input pins may be unused in certain system configurations, and each of them
should be tied (preferably) to Vss, or VccQSys, through a resistor of 100 ohms or greater
value:

• SysADChk(7:0)

User’s Manual U10278EJ4V0UM 61

4. Cache Organization and Coherency

The processor implements a two-level cache structure consisting of separate primary
instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses a write back protocol; that is, two cache
blocks are assigned to each set (as shown in Figure 4-1), and a cache store writes data into
the cache instead of writing it directly to memory. Some time later this data is
independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is supported
through a set of cache states and external coherency requests.

Chapter 4 Cache Organization and Coherency

62 User’s Manual U10278EJ4V0UM

4.1 Primary Instruction Cache

The processor has an on-chip 32-Kbyte primary instruction cache (also referred to simply
as the instruction cache), which is a subset of the secondary cache. Organization of the
instruction cache is shown in Figure 4-1.

The instruction cache has a fixed block size of 16 words and is two-way set associative with
a least-recently-used (LRU) replacement algorithm.†

The instruction cache is indexed with a virtual address and tagged with a physical address.

Figure 4-1 Organization of Primary Instruction Cache

Each instruction cache block is in one of the following two states:

• Invalid

• Valid

† The precise implementation of the LRU algorithm is affected by the speculative execution of
instructions.

150150Tag 0
Word WordData 0

Way 0 16 Kbytes

Word WordData 1

Way 1 16 Kbytes

Tag 1

Virtual
Index

Set

block

User’s Manual U10278EJ4V0UM 63

Chapter 4 Cache Organization and Coherency

An instruction cache block can be changed from one state to the other as a result of any one
of the following events:

• a primary instruction cache read miss

• subset property enforcement

• any of various CACHE instructions

• external intervention exclusive and invalidate requests

These events are illustrated in Figure 4-2, which shows the primary instruction cache state
diagram.

Figure 4-2 Primary Instruction Cache State Diagram

CACHE Hit Invalidate (I, S)

CACHE Index Invalidate (I)
CACHE Index Store Tag (I)

Invalid Read hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss

Valid

CACHE Index Store Tag (I)

Intervention exclusive hit
Invalidate hit

Subset enforcement

CACHE Index WriteBack Invalidate (S)

(I) Instruction cache
(S) Secondary cache

Chapter 4 Cache Organization and Coherency

64 User’s Manual U10278EJ4V0UM

4.2 Primary Data Cache

The processor has an on-chip 32-Kbyte primary data cache (also referred to simply as the
data cache), which is a subset of the secondary cache. The data cache uses a fixed block
size of 8 words and is two-way set associative (that is, two cache blocks are assigned to each
set, as shown in Figure 4-3) with an LRU replacement algorithm.†

Figure 4-3 Organization of Primary Data Cache

The data cache uses a write back protocol, which means a cache store writes data into the
cache instead of writing it directly to memory. Sometime later this data is independently
written to memory, as shown in Figure 4-4.

Figure 4-4 Write Back Protocol

Write back from the primary data cache goes to the secondary cache, and write back from
the secondary cache goes to main memory, through the system interface. The primary data
cache is written back to the secondary cache before the secondary cache is written back to
the system interface.

† The precise implementation of the LRU algorithm is affected by the speculative execution of
instructions.

Tag 0 Tag 170 70
Word WordData 0

Way 0 16 Kbytes

Word WordData 1

Way 1 16 Kbytes

Processor
Primary
Cache

write back Secondary
Cache

write back Main
Memory

Time

Virtual
Index

Set

User’s Manual U10278EJ4V0UM 65

Chapter 4 Cache Organization and Coherency

The data cache is indexed with a virtual address and tagged with a physical address. Each
primary cache block is in one of the following four states:

• Invalid

• CleanExclusive

• DirtyExclusive

• Shared

A primary data cache block is said to be Inconsistent when the data in the primary cache
has been modified from the corresponding data in the secondary cache. The primary data
cache is maintained as a subset of the secondary cache where the state of a block in the
primary data cache always matches the state of the corresponding block in the secondary
cache.

A data cache block can be changed from one state to another as a result of any one of the
following events:

• primary data cache read/write miss

• primary data cache write hit

• subset enforcement

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-5, which shows the primary data cache state
diagram.

DCache set locking relaxed (R12000)

In R10000, when an AQ entry accesses a DCache line, that line is locked into the cache until
the entry graduates, so that the entry will not be removed from the cache until the access
completes. If another entry which needs to access exactly the same line arrives in the AQ
before the first completes, the two may share the lock. In this way, a line is locked in the
cache until all access to it complete. In order to prevent a deadlock from arising, whenever
a cache line is locked in this way, only the oldest AQ entry can obtain a lock on the other
“way” of the same cache set, thus ensuring that forward progress can be made. This
algorithm can cause problems, because often the oldest entry in the AQ is the one which
already owns the lock on the first way - thus ensuring that no other entries can access the
second way of the cache for that set index. For some algorithms, most notably FFT’s, this
can cause severe performance degradation. R12000 allows an entry to obtain the lock on
the second way of a set if it is the oldest entry which does not already own a lock. Thus, any
entries which have already acquired a lock, including those locking the first way, will not
prevent another, younger, entry from accessing that second way.

Chapter 4 Cache Organization and Coherency

66 User’s Manual U10278EJ4V0UM

Figure 4-5 Primary Data Cache State Diagram

CACHE Index WriteBack Invalidate (D, S)
Subset enforcement

Invalid

Shared

Clean
Exclusive

Dirty
Exclusive

Read hit

Read hit
Write hit

W
rit

e
hi

t

Intervention shared hit

Intervention shared hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss obtained CleanExclusive

Read miss obtained Shared

Invalidate hit
Intervention exclusive hit

Write hit and Upgrade ACK

CACHE Index Store Tag (D)

CACHE Index Store Tag (D)

Subset enforcement
Write miss
Read miss obtained DirtyExclusive

CACHE Index Store Tag (D)

CACHE Hit Invalidate (D, S)

Read hit

Intervention shared hit

CACHE Hit WriteBack Invalidate (D, S)

CACHE Index Store Tag (D)

(S) Secondary cache
(D) Data cache

User’s Manual U10278EJ4V0UM 67

Chapter 4 Cache Organization and Coherency

4.3 Secondary Cache

The R10000 processor must have an external secondary cache, ranging in size from 512
Kbytes to 16 Mbytes, in powers of 2, as set by the SCSize mode bit. The SCBlkSize mode
bit selects a block size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are assigned to
each set, as shown in Figure 4-6) with an LRU replacement algorithm.†

The secondary cache uses a write back protocol, which means a cache store writes data into
the cache instead of writing it directly to memory. Some time later this data is
independently written to memory.

The secondary cache is indexed with a physical address and tagged with a physical address.

Figure 4-6 Organization of Secondary Cache

Each secondary cache block is in one of the following four states:

• Invalid

• CleanExclusive

• DirtyExclusive

• Shared

† The precise implementation of the LRU algorithm is affected by the speculative execution of
instructions.

0Tag 0 0Tag 115/31 15/31
Word WordData 0

Way 0 256 Kbytes to 8 Mbytes

Word WordData 1

Way 1 256 Kbytes to 8 Mbytes

Chapter 4 Cache Organization and Coherency

68 User’s Manual U10278EJ4V0UM

A secondary cache block can be changed from one state to another as a result of any of the
following events:

• primary cache read/write miss

• primary cache write hit to a Shared or CleanExclusive block

• secondary cache read miss

• secondary cache write hit to a Shared or CleanExclusive block

• a CACHE instruction

• external intervention shared request

• intervention exclusive request

• invalidate request

These events are illustrated in Figure 4-7, which shows the secondary cache state diagram.

Figure 4-7 Secondary Cache State Diagram

CACHE Index Store Tag (S)
CACHE Index WriteBack Invalidate (S)

Invalid

Shared

Clean
Exclusive

Dirty
Exclusive

Read hit

Read hit
Write hit

W
rit

e
hi

t

Intervention shared hit

Intervention shared hit

Legend:

Externally initiated action:
Internally initiated action:

Read miss obtained CleanExclusive

Read miss obtained Shared

Invalidate hit
Intervention exclusive hit

Write hit and Upgrade ACK

CACHE Hit Invalidate (S)

CACHE Index Store Tag (S)

Write miss
Read miss obtained DirtyExclusive
CACHE Index Store Tag (S)CACHE Index Store Tag (S)

CACHE Hit WriteBack Invalidate (S)

Read hit

Intervention shared hit

(S) Secondary cache

User’s Manual U10278EJ4V0UM 69

Chapter 4 Cache Organization and Coherency

<R12000>

Pad-ring clock slowed

The clock used to drive data to/from SC around the pad-ring has been slowed to a 2:3 clock
divisor, thus sometimes adding an additional cycle of latency to secondary-cache accesses.

SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external
interface sees an ACK to a line that is being refilled before the last words of the SCache line
are received by R10000, this means that several cycles can elapse during which SCache
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and
allowing other requests to proceed during breaks between the blocks, this effect could be
reduced. R12000 pulls in SCache lines with two “pause points.” This first occurs when
R12000 receives the ACK for a request. If the first two quad-words are already valid in the
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two,
and forward the results to the DCache or ICache at the same time as normal. The next two
quad-words will be refilled as they return, thus continuing to block any other access to the
SCache just as today. If however, when the initial ACK is received, the first two are not valid
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache
refill and wait for both of them to be brought in to the IB. Once the first half is filled in to
the SCache, R12000 will again check the IB to see if an additional 3 quad-words are valid
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB).

Until that is the case, R12000 will again “pause” the SCache refill and allow other accesses
to reach the SCache. These two pauses allow for other requests to slip in during an SCache
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

DCache writebacks never piggyback

In R10000 when a DCache line is written back to SCache, the following line in the DCache
might be written back in a “piggybacked” manner. In order for this to occur the following
line must have the same tag as the initially-written line, and must be in the “dirty
inconsistent” state. This feature is being dropped form R12000.

DCache writebacks never bypass

In R10000 when a DCache line is written back to SCache, if the SCache interface is not
otherwise occupied when the writeback begins, the writeback is bypassed directly to the
SCache interface, avoiding the cycles required to write the data into the writeback buffer.
This feature is being dropped form R12000.

Chapter 4 Cache Organization and Coherency

70 User’s Manual U10278EJ4V0UM

4.4 Cache Algorithms

The behavior of the processor when executing load and store instructions is determined by
the cache algorithm specified for the accessed address. The processor supports five different
cache algorithms:

• uncached

• cacheable noncoherent

• cacheable coherent exclusive

• cacheable coherent exclusive on write

• uncached accelerated

Cache algorithms are specified in three separate places, depending upon the access:

• the cache algorithm for the mapped address space is specified on a per-page
basis by the 3-bit cache algorithm field in the TLB

• the cache algorithm for the kseg0 address space is specified by the 3-bit K0
field of the CP0 Config register

• the cache algorithm for the xkphys address space is specified by VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB;
EntryLo0 and EntryLo1 registers; CP0 Config register K0 field for the kseg0 address space;
and VA[61:59] for the xkphys address space.

Table 4-1 Cache Algorithm Field Encodings

Value Cache Algorithm

0 Reserved

1 Reserved

2 Uncached

3 Cacheable noncoherent

4 Cacheable coherent exclusive

5 Cacheable coherent exclusive on write

6 Reserved

7 Uncached accelerated

User’s Manual U10278EJ4V0UM 71

Chapter 4 Cache Organization and Coherency

Descriptions of the Cache Algorithms

This section describes the cache algorithms listed in Table 4-1.

Uncached

Loads and stores under the Uncached cache algorithm bypass the primary and secondary
caches. They are issued directly to the System interface using processor double/single/
partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache misses
result in processor noncoherent block read requests. External agents containing caches
need not perform a coherency check for such processor requests.

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary cache
misses result in processor coherent block read exclusive requests. Such processor requests
indicate to external agents containing caches that a coherency check must be performed and
that the cache block must be returned in an Exclusive state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable
coherent exclusive cache algorithm except that load secondary cache misses result in
processor coherent block read shared requests. Such processor requests indicate to external
agents containing caches that a coherency check must be performed and that the cache
block may be returned in either a Shared or Exclusive state.

Store hits to a Shared block result in a processor upgrade request. This indicates to external
agents containing caches that the block must be invalidated.

Chapter 4 Cache Organization and Coherency

72 User’s Manual U10278EJ4V0UM

Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated. This
allows the kernel to mark the TLB entries for certain regions of the physical address space,
or certain blocks of data, as uncached while signalling to the hardware that data movement
optimizations are permissible. This permits the hardware implementation to gather a
number of uncached writes together, either a series of writes to the same address or
sequential writes to all addresses in the block, into an uncached accelerated buffer and then
issue them to the system interface as processor block write requests. The uncached
accelerated algorithm differs from the uncached algorithm in that block write gathering is
not performed.

There is no difference between an uncached accelerated load and an uncached load. Only
word or doubleword stores can take advantage of this mode.

Stores under the Uncached accelerated cache algorithm bypass the primary and secondary
caches. Stores to identical or sequential addresses are gathered in the uncached buffer,
described in Chapter 6, the section titled “Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System interface as
processor block write requests. Incompletely gathered uncached accelerated blocks are
issued to the System interface using processor double/single-word write requests; this is
also described in Chapter 6, the section titled “Uncached Buffer.”

User’s Manual U10278EJ4V0UM 73

Chapter 4 Cache Organization and Coherency

4.5 Relationship Between Cached and Uncached Operations

Uncached and uncached accelerated load and store instructions are executed in order, and
non-speculatively. Such accesses are buffered in the uncached buffer by the processor until
they can be issued to the System interface.

All uncached and uncached accelerated accesses retain program order within the uncached
buffer. The processor continues issuing cached accesses while uncached accesses are
queued in the uncached buffer.

NOTE: Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SYNC instruction from graduating. However buffered
uncached accelerated stores do not prevent a SYNC instruction from graduating. The
processor continues issuing cached accesses speculatively and out of order beyond a SYNC
instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of all
uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all cache
accesses and uncached stores have been globally performed as described in Chapter 6, the
section titled “SysGblPerf* Signal.”

An uncached load followed by a SYNC instruction may be used to guarantee that all cache
accesses, uncached accesses, and uncached accelerated accesses have been globally
performed.

Chapter 4 Cache Organization and Coherency

74 User’s Manual U10278EJ4V0UM

4.6 Cache Algorithms and Processor Requests

The cache algorithm determines the type of processor request generated for secondary
cache load misses, secondary cache store misses, and store hits.
Table 4-2 presents the relationship between the cache algorithm and processor requests.

Table 4-2 Cache Algorithms and Processor Requests

‡ Should not occur under normal circumstances. Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared state is not
normal.

Cache Algorithm Load Miss Store Miss Store Hit

Uncached Double/single/partial-word read
Double/single/partial-word
write

NA

Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared‡

Cacheable coherent
exclusive

Coherent block read exclusive Coherent block read exclusive Upgrade if Shared‡

Cacheable coherent
exclusive on write

Coherent block read shared Coherent block read exclusive Upgrade if Shared

Uncached accelerated Double/single/partial-word read

Gather identical or sequential
double/single-word stores in the
uncached buffer. Block write
for completely gathered blocks.
Double/single-word write for
incompletely gathered blocks.
Partial-word write for partial-
word stores.

NA

User’s Manual U10278EJ4V0UM 75

Chapter 4 Cache Organization and Coherency

4.7 Cache Block Ownership

The processor requires cache blocks to have a single owner at all times. The owner is
responsible for providing the current contents of the cache block to any requestor.

The processor uses the following ownership rules:

• The processor assumes ownership of a cache block if the state of the cache
block becomes DirtyExclusive. For a processor block read request, the
processor assumes ownership of the block after receiving the last doubleword
of a DirtyExclusive external block data response and an external ACK
completion response. For a processor upgrade request, the processor assumes
ownership of the block after receiving an external ACK completion response.

• The processor gives up ownership of a cache block if the state of the cache
block changes to Invalid, CleanExclusive, or Shared.

• CleanExclusive and Shared cache blocks are always considered to be owned
by memory.

76 User’s Manual U10278EJ4V0UM

5. Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal secondary
cache controller with a dedicated secondary cache port.

The cache’s tag and data arrays each consist of an external bank of industry-standard
synchronous SRAM (SSRAM). This SSRAM must have registered inputs and outputs,
asynchronous output enables, and use the late write protocol (data is expected one cycle
after the address).

User’s Manual U10278EJ4V0UM 77

Chapter 5 Secondary Cache Interface

5.1 Tag and Data Arrays

The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC bits + 1
parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC bits), as shown in Figure 5-1.
ECC is supported for both the data and tag arrays to improve data integrity.

Figure 5-1 Secondary Cache Data and Tag Array

The secondary cache is implemented as a two-way set associative, combined instruction/
data cache, which is physically addressed and physically tagged, as described in Chapter 4,
the section titled “Cache Organization and Coherency.”

The SCSize mode bits specify the secondary cache size; minimum secondary cache size is
512 Kbytes and the maximum secondary cache size is 16 Mbytes, in power of 2 (512
Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBlkSize mode bit specifies the secondary cache block size. When negated, the
block size is 16 words, and when asserted, the block size is 32 words.

10 Check Bits

26 Tag Bits

128 Data Bits

0127136

025

7 Check bits

32

Data
Array

Tag
Array

137

P ECC

ECC

Chapter 5 Secondary Cache Interface

78 User’s Manual U10278EJ4V0UM

5.2 Secondary Cache Interface Frequencies

The secondary cache interface operates at the frequency of SCClk, which is derived from
PClk. The SCClkDiv mode bits select a PClk to SCClk divisor of 1, 1.5, 2, 2.5, or 3, using
the formula described in Chapter 7, the section titled “Secondary Cache Clock.”

Synchronization between the PClk and SCClk is performed internally and is invisible to
the system. The processor supplies six complementary copies of the secondary cache clock
on SCClk(5:0) and SCClk(5:0)*.

The outputs and inputs at this interface are triggered by an internal SCClk. The relationship
between the internal SCClk and the external SCClk[5:0]/SCClk[5:0]* can be
programmed during boot time by setting the SCClkTap mode bits (see the section titled
“Mode Bits” in Chapter 8 for detail on mode bits).

User’s Manual U10278EJ4V0UM 79

Chapter 5 Secondary Cache Interface

5.3 Secondary Cache Indexing

The secondary cache data array width is one quadword, and therefore PA(3:0), which
specify a byte within a quadword, are unused by the Secondary Cache interface.

Indexing the Data Array

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each way
requires a maximum of 23 bits to index a byte within a selected way, or 19 bits to index a
quadword within a way. Consequently, the processor supplies PA(22:4) on
SC(A,B)Addr(18:0) to index a quadword within a way. The processor selects a secondary
cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache size; for
instance, a 4 Mbyte cache uses the 17 address bits, PA(20:4) on SC(A,B)Addr(16:0),
concatenated with the way bit, SC(A,B)DWay, to index a quadword within a 2 Mbyte way.

Table 5-1 Secondary Cache Data Array Index

SCSize
Mode
Bits

Secondary
Cache Size

Secondary Cache Data Array Index
Physical Address

Bits Used

0 512 Kbyte SC(A,B)DWay || SC(A,B)Addr(13:0) PA(17:4)

1 1 Mbyte SC(A,B)DWay || SC(A,B)Addr(14:0) PA(18:4)

2 2 Mbyte SC(A,B)DWay || SC(A,B)Addr(15:0) PA(19:4)

3 4 Mbyte SC(A,B)DWay || SC(A,B)Addr(16:0) PA(20:4)

4 8 Mbyte SC(A,B)DWay || SC(A,B)Addr(17:0) PA(21:4)

5 16 Mbyte SC(A,B)DWay || SC(A,B)Addr(18:0) PA(22:4)

Chapter 5 Secondary Cache Interface

80 User’s Manual U10278EJ4V0UM

Indexing the Tag Array

The processor supplies the secondary cache tag array’s least significant index bit on
SCTagLSBAddr to support two block sizes without system hardware changes. This signal
functions normally as a least significant index bit when the secondary cache block size is
16 words. However, when the secondary cache block size is 32 words, this signal is always
negated, since only half as many tags are required. The processor supplies the secondary
cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache size; it
shows each index is composed of a physical address loaded onto SC(A,B)Addr(),
concatenated with SCTWay and SCTagLSBAddr.

Table 5-2 Secondary Cache Tag Array Index

For a system design that only supports a secondary cache block size of 32 words, the
secondary cache tag array need not use SCTagLSBAddr as an index bit.

SCSize
Mode
Bits

Secondary
Cache Size

Secondary Cache Tag Array Index

0 512 Kbyte SCTWay || SC(A,B)Addr(13:3) || SCTagLSBAddr

1 1 Mbyte SCTWay || SC(A,B)Addr(14:3) || SCTagLSBAddr

2 2 Mbyte SCTWay || SC(A,B)Addr(15:3) || SCTagLSBAddr

3 4 Mbyte SCTWay || SC(A,B)Addr(16:3) || SCTagLSBAddr

4 8 Mbyte SCTWay || SC(A,B)Addr(17:3) || SCTagLSBAddr

5 16 Mbyte SCTWay || SC(A,B)Addr(18:3) || SCTagLSBAddr

User’s Manual U10278EJ4V0UM 81

Chapter 5 Secondary Cache Interface

5.4 Secondary Cache Way Prediction Table

The primary and secondary caches are two-way set associative. However, the
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays, corresponding to
each way in the cache, and then select the data based on the result of two parallel tag
compares.

The secondary cache does not use this implementation because it would either require too
many pins to read in two full copies of the data and tags, or add latency to externally
multiplex two banks of memory. Instead, a way prediction table is used to determine which
way to read from first.

The way prediction table is internal to the processor and has 8K one-bit entries, each entry
corresponding to a pair of secondary cache blocks. The bit entry indicates which way of the
addressed set has been most-recently used (MRU). When the secondary cache is accessed,
this prediction bit is used as an address bit; thus the two ways in the secondary cache are
shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits of the
physical address, based on both the secondary cache block size, and the secondary cache
size, as shown in Table 5-3. “0 || ” indicates a zero bit concatenated to the address to pad
the index out to a full 13-bits.

Table 5-3 Secondary Cache Way Prediction Table Index

SCSize
Mode Bits

Secondary Cache
Size

SCBlkSize
Mode Bit

Secondary Cache
Block Size

Secondary Cache
Way Prediction Table Index

0 512 Kbyte
0 16-word 0 || PA(17:6)

1 32-word 0 || 0 || PA(17:7)

1 1 Mbyte
0 16-word PA(18:6)

1 32-word 0 || PA(18:7)

2 to 5 2M to 16 Mbyte
0 16-word PA(18:6)

1 32-word PA(19:7)

Chapter 5 Secondary Cache Interface

82 User’s Manual U10278EJ4V0UM

Three states are possible in the way prediction table:

• the desired data is in the predicted way

• the desired data is in the non-predicted way

• the desired data is not in the secondary cache

The tags for both ways are read “underneath” the data access cycles in order to discern as
rapidly as possible which of these states are valid. This reading is possible because it takes
two accesses to read a primary data block (8 words) and 4 cycles to read a primary
instruction block (16 words); thus the bandwidth needed to read the tag array twice exists
in all cases. Only an extra address pin to the tag array is needed to make this operation
parallel and this is implemented by the SCTWay pin.

The three possible states are handled in the following manner:

• If, after reading the tags for both ways, it is discovered that the data exists in
the predicted way, the processor continues normally.

• If the data exists in the non-predicted way, the processor accesses this non-
predicted way in the secondary cache and updates the way prediction table to
point to this way.

• If the access misses in both ways of the secondary cache, the data is fetched
from the system interface. If the state of the predicted way is found to be
invalid, the fetched data is placed in it and the MRU is unchanged. However, if
the state of the predicted way is found to be valid then the fetched data is placed
into the non-predicted way, and the way prediction table is updated to point to
this way since it is now the most-recently-used.

The way prediction table can cover up to a 2 Mbyte secondary cache when the secondary
cache block size is 32 words. If the secondary cache exceeds this size, the accuracy of the
way prediction table diminishes slightly. However, the extremely large performance gain
made by making the secondary cache larger far outstrips any performance loss in the way
prediction table.

Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB caches with 128B lines
or 2MB caches with 64B lines can be fully mapped.

Direct Cache Test Mode

Due to the increase size of the Way Prediction Table, Direct Cache Test Mode have been
modified for testing the Way Prediction Table.

User’s Manual U10278EJ4V0UM 83

Chapter 5 Secondary Cache Interface

5.5 Secondary Cache Tag

The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three fields,
as shown in Figure 5-2 below.

Figure 5-2 Secondary Cache Tag Fields

SCTag(25:4), Physical Tag

The minimum secondary cache size is 512 Kbytes (256 Kbytes per way), so a minimum of
18 bits are required to index a data byte within a selected way. Since the processor supports
40 physical bits, a maximum of 22 bits are required for the physical tag:

 40 physical address bits - 18 minimum required = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on
SCTag(25:4) for the physical tag.

When the secondary cache is larger than the minimum size, the secondary cache tag array
must still maintain the full physical tag supplied by the processor, even though some bits
are redundant.

0

StatePhysical Tag

1225

22 2

34

2

PIdx

Chapter 5 Secondary Cache Interface

84 User’s Manual U10278EJ4V0UM

SCTag(3:2), PIdx

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, PIdx.

The PIdx field contains VA(13:12), which are the two lowest virtual address bits above the
minimum 4 Kbyte page size. This field is written into the secondary cache tag during a
secondary cache refill. For each processor-initiated secondary cache access, the virtual
address bits are compared with the PIdx field of the secondary cache tag. If a mismatch
occurs, a virtual coherency condition exists and the value of the PIdx field is used by
internal control logic to purge primary cache locations, so that all primary cache blocks
holding valid data have indices known to the secondary cache. This mechanism, unlike that
of the R4400 processor, is implemented in hardware. It helps preserve the integrity of
cached accesses to a physical address using different virtual addresses, an occurrence called
virtual aliasing. For each external coherency request, the PIdx field of the secondary cache
tag provides a mechanism to locate subset lines in the primary caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block state,
which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in Table 5-4.

Table 5-4 Secondary Cache Tag State Field Encoding

Since the secondary cache tags are updated immediately for stores to the primary data
cache, and all caches use a write back protocol, the data in the secondary cache may not
always be consistent with data in the primary cache even though the tags always reflect the
correct state of a secondary cache block.

SCTag(1:0) State

0 Invalid

1 Shared

2 CleanExclusive

3 DirtyExclusive

User’s Manual U10278EJ4V0UM 85

Chapter 5 Secondary Cache Interface

5.6 Read Sequences

There are five basic read sequences:

• a 4-word read

• an 8-word read

• a 16-word read

• a 32-word read

• a tag read

The SCClk referred in the secondary cache read and write timing diagrams is an internal
SCClk. The relationship between this internal SCClk and the external SCClk[5:0]/
SCClk[5:0]* can be programmed during boot time by setting the SCClkTap mode bits
(see the section titled “Mode Bits” in Chapter 8 for detail on mode bits).

Chapter 5 Secondary Cache Interface

86 User’s Manual U10278EJ4V0UM

4-Word Read Sequence

A 4-word read sequence is performed by a CACHE Index Load Data (S) instruction to read
a doubleword of data and 10 check bits from the secondary cache data array.

Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read from the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

The doubleword specified by VA(3) is then stored into the CP0 TagHi and TagLo registers,
and the corresponding check bits are stored into the CP0 ECC(9:0) register. The data may
be examined by copying the CP0 TagHi, TagLo, and ECC registers to the general registers
with the MTC0 instruction.

Figure 5-3 4-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0) Adr0

X

User’s Manual U10278EJ4V0UM 87

Chapter 5 Secondary Cache Interface

8-Word Read Sequence

An 8-word read sequence refills the primary data cache from the secondary cache after a
primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence. In it, SC(A,B)DWay and
SCTWay are driven with value X on the first address cycle, which is obtained from the way
prediction table.

On the next address cycle, SCTWay is complemented in order to read the tag from the non-
predicted way of the addressed set. SC(A,B)DWay is not changed since it is assumed that
the way prediction table is correct and the read is likely to hit in the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle as the
second quadword of data. Reads that miss in the predicted way, but hit in the non-predicted
way, are noted by the internal control logic and reissued to the secondary cache as soon as
possible.

Figure 5-4 8-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0)

DatX1

Adr0 Adr1

TagX TagX’

X X’

X

Chapter 5 Secondary Cache Interface

88 User’s Manual U10278EJ4V0UM

16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary cache
after a primary instruction cache miss. A 16-word read sequence is also performed when
the secondary cache block size is 16 words, and a DirtyExclusive secondary cache block
must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block size is 32 words,
and a DirtyExclusive secondary cache block must be written back to the System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence. This is similar to an 8-
word read sequence except that more addresses must be issued, in order to read the
appropriate number of quadwords.

Figure 5-5 16 or 32-Word Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DatX0

SCTCS*

SC[A,B]Addr(18:0)

DatX1 DatXN-1 DatXN

Adr0 Adr1 Adr2 AdrN

TagX TagX’

X X’

X

User’s Manual U10278EJ4V0UM 89

Chapter 5 Secondary Cache Interface

Tag Read Sequence

A tag read sequence is performed when the state of a secondary cache block is required, but
it is not necessary to access the data array. This sequence is used for the CACHE Index
Load Tag (S) instruction.

Figure 5-6 depicts a secondary cache tag read sequence.

Figure 5-6 Tag Read Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SCTCS*

SC[A,B]Addr(18:0)

TagX

X

Adr0

Chapter 5 Secondary Cache Interface

90 User’s Manual U10278EJ4V0UM

5.7 Write Sequences

There are five basic write sequences:

• a 4-word write.

• an 8-word write

• a 16-word write

• a 32-word write

• a tag write

The SCClk referred in the secondary cache read and write timing diagrams is an internal
SCClk. The relationship between this internal SCClk and the external SCClk[5:0]/
SCClk[5:0]* can be programmed during boot time by setting the SCClkTap mode bits
(see the section titled “Mode Bits” in Chapter 8 for detail on mode bits).

User’s Manual U10278EJ4V0UM 91

Chapter 5 Secondary Cache Interface

4-Word Write Sequence

A 4-word write sequence is performed by a CACHE Index Store Data (S) instruction to
store a quadword of data and 10 check bits into the secondary cache data array.

Figure 5-7 depicts a secondary cache 4-word write sequence. A quadword is written to the
index specified by PA(23:6), and the way specified by VA(0) of the CACHE instruction.

A doubleword specified by VA(3) is obtained from the CP0 TagHi and TagLo registers, and
the other half of the doubleword is padded to zeros. Normal ECC and parity generation is
bypassed and the check field of the data array is written with the contents of the CP0
ECC(9:0) register.

Figure 5-7 4-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0) Adr0

X

Chapter 5 Secondary Cache Interface

92 User’s Manual U10278EJ4V0UM

8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache to the
secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence. SC(A,B)DWay are driven
with the way bit obtained from the primary data cache tag. The secondary cache tag is not
written since it was previously updated when the primary data cache block was modified.

Figure 5-8 8-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0)

Dat1

Adr0 Adr1

X

User’s Manual U10278EJ4V0UM 93

Chapter 5 Secondary Cache Interface

16 or 32-Word Write Sequence

A 16- or 32-word write sequence refills a secondary cache block from the System interface
after a secondary cache miss. A 16-word write sequence is performed when the secondary
cache block size is 16 words, and a 32-word write sequence is performed when the
secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.

Figure 5-9 16/ 32-Word Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Dat0

SCTCS*

SC[A,B]Addr(18:0)

Dat1 DatN-1 DatN

Adr0 Adr1 AdrN-1 AdrN

Tag

X

X

Chapter 5 Secondary Cache Interface

94 User’s Manual U10278EJ4V0UM

Tag Write Sequence

A tag write sequence updates the secondary cache tag array without affecting the data array.
This sequence is used for the following:

• to reflect primary cache state changes in the secondary cache

• for external coherency requests

• for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.

Figure 5-10 Tag Write Sequence

Cycle

SCClk

SCData(127:0)

SCDataChk(9:0)

SCTag(25:0)

SCTWr*

SCTOE*

SCTagChk(6:0)

SC[A,B]DOE*

SC[A,B]DWay

SC[A,B]DCS*

SC[A,B]DWr*

SCTagLSBAddr

SCTWay

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SCTCS*

SC[A,B]Addr(18:0) Adr0

Tag

X

User’s Manual U10278EJ4V0UM 95

6. System Interface Operations

The R10000 System interface provides a gateway between processor, with its associated
secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the System
interface is referred to as the external agent.

Chapter 6 System Interface Operations

96 User’s Manual U10278EJ4V0UM

6.1 Request and Response Cycles

The System interface supports the following request and response cycles:

• Processor requests are generated by the processor, when it requires a system
resource.

• External responses are supplied by an external agent in response to a
processor request.

• External requests are generated by an external agent when it requires a
resource within the processor.

• Processor responses are supplied by the processor in response to an external
request.

6.2 System Interface Frequencies

The System interface operates at SysClk frequency, supplied by the external agent. The
internal processor clock, PClk, is derived from this same SysClk.

The SysClkDiv mode bits select a PClk to SysClk divisor using the formula described in
Chapter 7, the section titled “System Interface Clock and Internal Processor Clock
Domains.” The selectable divisors are 1, 1.5, 2, 2.5, 3, 3.5, and 4 in the R10000, or 2, 2.5,
3, 3.5, 4, 4.5, 5, 5.5, and 6 in the R12000 (7 is also selectable in the R12000A only).

6.3 Register-to-Register Operation

The System interface is designed to operate in the following register-to-register fashion
with the external agent:

• all System interface outputs are sourced directly from registers clocked on the
rising edge of SysClk

• all System interface inputs directly feed registers that are clocked on the rising
edge of SysClk

This allows the System interface to run at the highest possible clock frequency.

User’s Manual U10278EJ4V0UM 97

Chapter 6 System Interface Operations

6.4 System Interface Signals

The R10000 System interface is composed of:

• 3 arbitration signals

• 2 flow-control input signals

• a bidirectional 12-bit command bus

• a bidirectional 64-bit multiplexed address/data bus

• a 3-bit state output bus

• a 5-bit response input bus

6.5 Master and Slave States

At any time, the System interface is either in master or slave state.

In master state, the processor drives the bidirectional System interface signals and is
permitted to issue processor requests to the external agent.

In slave state, the processor tristates the bidirectional System interface signals and accepts
external requests from the external agent.

6.6 Connecting to an External Agent

In a uni- or multiprocessor system using dedicated external agents, the System interface
connects to a single external agent.

In a multiprocessor system using the cluster bus (see below), the system can connect up to
four R10000 processors to an external agent. This external agent is referred to as the
cluster coordinator.

Chapter 6 System Interface Operations

98 User’s Manual U10278EJ4V0UM

6.7 Cluster Bus

In a multiprocessor system using the cluster bus, the cluster coordinator performs the
cluster bus arbitration and data flow management. The arbitration scheme assures that
either one of the processors or the cluster coordinator is master at any given time, while the
remaining devices are slave.

A processor request issued by the master processor is observed as an external request by all
slave R10000 processors, as shown in Figure 6-1. Similarly, a processor coherency data
response issued by a master processor is observed as an external data response by the slave
processors.

Figure 6-1 Processor Request Master/Slave Status

In a multiprocessor system using the cluster bus, a mode bit specifies whether processor
coherent requests are to target the external agent only, or all processors and the external
agent. This allows systems with efficient snoopy, duplicate tag, or directory-based
coherency protocols to be created.

Cluster
Coordinator

R10000

Cluster
Coordinator

Cluster Bus

R10000

System Interface

R10000
R10000

System Interface
R10000

R10000

System Interface
R10000

R10000

System Interface

(Slave)(Master) (Slave)(Slave)

Processor Request External Request

User’s Manual U10278EJ4V0UM 99

Chapter 6 System Interface Operations

6.8 System Interface Connections

The major System interface connections required for various system configurations are
presented in this section.

Uniprocessor System

Figure 6-2 shows the major System interface connections required for a typical
uniprocessor system.

Figure 6-2 System Interface Connections for Uniprocessor System

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

Mem, I/O

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar

S
S

R
A

M
s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*SysRespVal*

Tag
D

ata

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

SysRdRdy*

Chapter 6 System Interface Operations

100 User’s Manual U10278EJ4V0UM

Multiprocessor System Using Dedicated External Agents

Figure 6-3 shows the major System interface connections required for a typical
multiprocessor system using dedicated external agents.

Figure 6-3 System Interface Connections for Multiprocessor using Dedicated External Agents

C
o

h
er

en
t

In
te

rc
o

n
n

ec
t

S
S

R
A

M
s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata
S

S
R

A
M

s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

External

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Agent

SysVal*

SysReq*

SysState(2:0)
SysStatePar
SysStateVal*

SysGnt*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

R10000

SysReq*
SysGnt*

SysRdRdy*

SysRdRdy*

User’s Manual U10278EJ4V0UM 101

Chapter 6 System Interface Operations

Multiprocessor System Using the Cluster Bus

Figure 6-4 presents the major System interface connections required for a typical
multiprocessor system using the cluster bus.

Figure 6-4 System Interface Connections for Multiprocessor Using the Cluster Bus

Cluster

SysCmd(11:0)
SysCmdPar

SysAD(63:0)
SysADChk(7:0)

Coordinator

SysVal*

SysReq1*

SysState1(2:0)
SysStatePar1
SysStateVal1*

Mem, I/O

SysReq0*

SysState0(2:0)
SysStatePar0
SysStateVal0*

SysGnt1*

SysGnt0*

SysRdRdy*
SysWrRdy*

SysRel*

SysResp(4:0)
SysRespPar
SysRespVal*

C
lu

st
er

 B
u

s

S
S

R
A

M
s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata
S

S
R

A
M

s

Wr*
CS*
OE*

Addr

Data

S
S

R
A

M
sWr*

CS*
OE*

Addr

Data

Tag
D

ata

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

SysGnt*
SysReq*

SysRdRdy*

R10000
SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar

SC(A,B)Addr(18:0)

SCTWr*
SCTCS*
SCTOE*

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCData(127:0)
SCDataChk(9:0)

SysWrRdy*

SysRel*

SCTagChk(6:0)
SCTag(25:0)

SysRespVal*

SCTWay

SC(A,B)DWay

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SCTagLSBAddr

R10000

SysReq*
SysGnt*

SysRdRdy*

R10000

SysReq*
SysGnt*

SysRdRdy*

Chapter 6 System Interface Operations

102 User’s Manual U10278EJ4V0UM

6.9 System Interface Requests and Responses

The System interface supports the following:

• processor request

• external response

• external request

• processor response

The following sections describe these request and response types, and their operations.

Processor Requests

Processor requests are generated by the processor when it requires a system resource. The
following processor requests are supported:

• coherent block read shared request

• coherent block read exclusive request

• noncoherent block read request

• double/single/partial-word read request

• block write request

• double/single/partial-word write request

• upgrade request

• eliminate request

Processor write and eliminate requests do not require or expect a response by the external
agent. However, if an external agent detects an error in a processor write or eliminate
request, it may use an interrupt to signal the processor. It is not possible to generate precise
exceptions for processor write and eliminate requests for which an external agent detects
an error.

Processor read and upgrade requests require some type of response by the external agent.

User’s Manual U10278EJ4V0UM 103

Chapter 6 System Interface Operations

External Responses

External responses are supplied by an external agent or another processor in response to a
processor request. The following external responses are supported:

• block data response

• double/single/partial-word data response

• completion response

External Requests

External requests are generated by an external agent when it requires a resource within the
processor. The following external requests are supported:

• intervention shared request

• intervention exclusive request

• allocate request number request

• invalidate request

• interrupt request

External intervention and invalidate requests require some type of response by the
processor.

Processor Responses

Processor responses are supplied by the processor in response to an external request. The
following processor responses are supported:

• coherency state response

• coherency data response

Outstanding Requests and Request Numbers

The processor allows requests and corresponding responses to be split transactions, which
enables additional processor and external requests to be issued while waiting for a prior
response. The System interface supports a request number field to link requests with their
corresponding responses, so responses can be returned out of order.

The processor allows a maximum of eight outstanding requests on the System interface
through a 3-bit request number. These outstanding requests may be composed of any mix
of processor and external requests.

An individual processor (as opposed to the System interface, above) supports a maximum
of four outstanding processor requests at any given time.

Chapter 6 System Interface Operations

104 User’s Manual U10278EJ4V0UM

Request and Response Relationship

The relationship between processor and external requests, and their acceptable responses,
is presented in Table 6-1. The data in this table is given with respect to a single processor,
in either a uni- or multiprocessor system (independent of cluster/non-cluster configuration).

Table 6-1 Request and Response Relationship

‡ External completion response is required to free the request number.

Request Acceptable Response Sequences

Processor block read request

External NACK or ERR completion response

0 or more external block data responses followed by a final external block data
response with a coincidental or subsequent external ACK, NACK, or ERR
completion response

Processor double/single/partial-word
read request

External NACK or ERR completion response

0 or more external double/single/partial-word data responses followed by a final
external double/single/partial-word data response with a coincidental or
subsequent external ACK, NACK, or ERR completion response

Processor block write request None

Processor double/single/partial-word
write request

None

Processor upgrade request

External ACK, NACK, or ERR completion response

0 or more external block data responses followed by a final external block data
response with a coincidental or subsequent external ACK, NACK, or ERR
completion response

Processor eliminate request None

External intervention request
Processor coherency state response followed by processor coherency data
response (if DirtyExclusive) with a coincidental or subsequent external ACK,
NACK, or ERR completion response‡

External allocate request number request External ACK, NACK, or ERR completion response‡

External invalidate request
Processor coherency state response followed by external ACK, NACK, or ERR
completion response‡

External interrupt request None

User’s Manual U10278EJ4V0UM 105

Chapter 6 System Interface Operations

6.10 System Interface Buffers

The processor contains the following five buffers to enhance the performance of the System
interface and to simplify the system design:

• cluster request buffer

• cached request buffer

• incoming buffer

• outgoing buffer

• uncached buffer

These buffers are described in the following sections.

Cluster Request Buffer

The System interface contains an 8-entry cluster request buffer. This buffer maintains the
status of the eight possible outstanding requests on the System interface. When the System
interface is in master state, and it issues the address cycle of processor read or upgrade
request, the processor places an entry into the cluster request buffer. When the System
interface is in slave state, and an external agent issues an external coherency or allocate
request number request, it places an entry into the cluster request buffer.

Once an entry is placed into the cluster request buffer, the associated request number
transitions from free to busy. An entry remains busy until the processor receives an external
completion response. Processor requests that are ready to be issued to the System interface
bus probe the cluster request buffer to detect conflict conditions.

Cached Request Buffer

The System interface contains a four-entry cached request buffer. This buffer holds the
status of the four possible outstanding processor cached requests, including processor block
read and upgrade requests. The relative order of the requests is maintained in the cached
request buffer.

External coherency requests probe the cached request buffer to detect conflict conditions.

Chapter 6 System Interface Operations

106 User’s Manual U10278EJ4V0UM

Incoming Buffer

The System interface contains an incoming buffer for external block and double/single/
partial-word data responses. The four 32-word entries of the incoming buffer correspond to
the four possible outstanding processor requests. Block data in each entry of the incoming
buffer is stored in subblock order, beginning with a quadword-aligned address.

The incoming buffer eliminates the need for the processor to flow-control the external agent
that is providing the external data responses. Regardless of the cache bandwidth or internal
resource availability, the external agent may supply external data response data for all
outstanding read and upgrade requests at the maximum System interface data rate.

The external agent may issue any number of external data responses for a particular request
number before issuing a corresponding external completion response. An external data
response remains in the incoming buffer until a corresponding external completion
response is received. A former buffered external data response for a particular request
number is over-written by a subsequent external data response for the same request number.

An external ACK completion response frees buffered data to be forwarded to the caches and
other internal resources while an external NACK or ERR completion response purges any
corresponding buffered data. For minimum latency, the external agent should issue an
external ACK completion response coincident with the first doubleword of an external data
response.

External coherency requests that target blocks residing in the incoming buffer are stalled
until the incoming buffer data is forwarded to the secondary cache, and the instruction that
caused the secondary miss is satisfied.

Each doubleword of the incoming buffer has an Uncorrectable Error flag. When an external
data response provides a doubleword, the processor asserts the corresponding incoming
buffer Uncorrectable Error flag if the data quality indicator, SysCmd[5], is asserted, or if
an uncorrectable ECC error is encountered on the system address/data bus and the ECC
check indication on SysCmd[0] is asserted.

When the processor forwards block data from an incoming buffer entry after receiving an
external ACK completion response, the associated incoming buffer Uncorrectable Error
flags are checked, and if any are asserted, a single Cache Error exception is posted. When
the processor forwards double/single/partial-word data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
Uncorrectable Error flag is checked, and if asserted, a Bus Error exception is posted.

User’s Manual U10278EJ4V0UM 107

Chapter 6 System Interface Operations

Outgoing Buffer

The System interface contains a five-entry outgoing buffer to provide buffering for the
following:

• DirtyExclusive blocks that are cast out of the secondary cache because of a
block replacement

• various CACHE instructions

• an external intervention request.

Four 32-word typical entries are associated with the four possible outstanding processor
cached requests allowed by the processor. One 32-word special entry is reserved for
external intervention requests only. The data is stored in each entry of the outgoing buffer
in sequential order, beginning with a secondary cache block-aligned address.

An instruction or data access that misses in the secondary cache but targets an entry in the
outgoing buffer is stalled until the outgoing buffer entry is issued as a processor block write
request or coherency data response to the System interface bus.

External coherency requests probe the four typical outgoing buffer entries, with the
following results:

• If an external intervention request hits a typical entry, that entry is converted
from a processor block write request to a processor coherency data response.

• If an external invalidate request hits a typical outgoing buffer entry, that entry
is deleted.

• If an external intervention request does not hit a typical outgoing buffer entry,
but hits a DirtyExclusive block in the secondary cache, the special outgoing
buffer entry is used to buffer the processor coherency data response.

A typical outgoing buffer entry containing a block write is ready for issue to the System
interface bus when the first quadword is received from the secondary cache. The processor
allows data to stream from the secondary cache to the System interface bus through the
outgoing buffer.

An outgoing buffer entry containing a coherency data response is ready for issue to the
System interface bus when the quadword specified by the corresponding external
intervention request is received from the secondary cache. The processor then allows the
data to stream from the secondary cache to the System interface bus through the outgoing
buffer.

Chapter 6 System Interface Operations

108 User’s Manual U10278EJ4V0UM

Each quadword of the outgoing buffer maintains an Uncorrectable Error flag. If an
uncorrectable error is encountered while a block is being cast out of the secondary cache,
the associated outgoing buffer quadword Uncorrectable Error flag is asserted. When the
processor empties an outgoing buffer entry by issuing a processor block write or coherency
data response, the outgoing buffer Uncorrectable Error flags are reflected by the data
quality indication on SysCmd[5].

Uncached Buffer

The System interface contains an uncached buffer to provide buffering for uncached and
uncached accelerated load and store operations. All operations retain program order within
the uncached buffer.

The uncached buffer is organized as a 4-entry FIFO followed by a 2-entry gatherer. Each
gathered entry has a capacity of 16 or 32 words, as specified by the SCBlkSize mode bit.

The uncached buffer begins gathering when an uncached accelerated double or singleword
block-aligned store is executed. Gathering continues if the subsequent uncached operation
executed is an uncached accelerated double or singleword store to a sequential or identical
address. Once a second uncached accelerated store is gathered, the gathering mode is
determined to be sequential or identical. Gathering continues until one of the following
conditions occurs:

• a complete block is gathered

• an uncached or uncached accelerated load is executed

• an uncached or uncached accelerated partial-word store is executed

• an uncached store is executed

• a change in the current gathering mode is observed

• a change in the uncached attribute is observed

When gathering terminates, the data is ready for issue to the System interface bus. A
processor uncached accelerated block write request is used to issue a completely gathered
uncached accelerated block. One or more disjoint processor uncached accelerated double
or singleword write requests are used to issue an incompletely gathered uncached
accelerated block.

When gathering in an identical mode, uncached accelerated double or singleword stores
may be freely mixed. The uncached buffer packs the associated data into the gatherer.
When gathering in sequential mode, uncached accelerated singleword stores must occur in
pairs, to prevent an address error exception. For instance, SW, SW, SD, SW, SW is legal.
SD, SW, SD, is not.

External coherency requests have no effect on the uncached buffer.

CACHE instructions have no effect on the uncached buffer. SYNC instructions are
prevented from graduating if an uncached store resides in the uncached buffer.

User’s Manual U10278EJ4V0UM 109

Chapter 6 System Interface Operations

6.11 System Interface Flow Control

The System interface supports a maximum request rate of one request per SysClk cycle,
and a maximum data rate of one doubleword per SysClk cycle.

Various flow control mechanisms are provided to limit these rates, as described below.

Processor Write and Eliminate Request Flow Control

The processor can only issue a processor write or eliminate request if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

Processor Read and Upgrade Request Flow Control

The processor can only issue a processor read or upgrade request if:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the
PrcReqMax mode bits is not exceeded

• there is a free request number

Processor Coherency Data Response Flow Control

The processor can only issue a processor coherency data response if:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

External Request Flow Control

When the System interface is in Slave state, it is capable of accepting external requests. An
external agent may issue external requests in adjacent SysClk cycles.

External Data Response Flow Control

Since the processor has an incoming buffer, an external agent may supply external data
response data in adjacent SysClk cycles, without regard to cache bandwidth or internal
resource availability.

Chapter 6 System Interface Operations

110 User’s Manual U10278EJ4V0UM

6.12 System Interface Block Data Ordering

During block data transfers on the System interface SysAD[63:0] bus, even doublewords
(Dat0, Dat2,...) always correspond to SCData[127:64], and odd doublewords (Dat1,
Dat3,...) always correspond to SCData[63:0].

External Block Data Responses

During the address cycle of processor block read and upgrade requests, the processor
specifies a quadword-aligned address. The processor expects the external block data
response to be supplied in a subblock order sequence, beginning at the specified quadword-
aligned address.

Processor Coherency Data Responses

The address of external intervention requests are internally aligned by the processor to a
quadword address. If the processor determines that it must issue a processor coherency data
response, it supplies the data in a subblock order sequence beginning at the quadword-
aligned address specified by the corresponding external coherency request.

Processor Block Write Requests

During the address cycle of processor block write requests, the processor specifies a cache
block-aligned address. During the subsequent data cycles for typical processor block write
requests, the processor supplies the data in sequence, beginning with the secondary cache
block-aligned address.

User’s Manual U10278EJ4V0UM 111

Chapter 6 System Interface Operations

6.13 System Interface Bus Encoding

This section presents the encoding of the following four System interface buses:

• SysCmd[11:0]

• SysAD[63:0]

• SysState[2:0]

• SysResp[4:0]

SysCmd[11:0] Encoding

This section describes address and data cycle encodings for the system command bus,
SysCmd[11:0].

SysCmd[11] Encoding

When SysVal* is asserted, SysCmd[11] indicates whether the SysAD[63:0] bus represents
an address or a data cycle, as shown in Table 6-2.

Table 6-2 Encoding of SysCmd[11]

SysCmd[10:0] Address Cycle Encoding

During the address cycle of processor read and upgrade requests, SysCmd[10:8] contain
the request number, as shown in Table 6-3. The request number provides a mechanism to
associate an external response with the corresponding processor request.

Table 6-3 Encoding of SysCmd[10:8] for Processor Read and Upgrade Requests

SysCmd[11] Data/Address Cycle Indication

 0 SysAD[63:0] address cycle

 1 SysAD[63:0] data cycle

SysCmd[10:8] Request Number

Chapter 6 System Interface Operations

112 User’s Manual U10278EJ4V0UM

During the address cycle of processor requests, SysCmd[7:5] contain the command, as
shown in Table 6-4.

Table 6-4 Encoding of SysCmd[7:5] for Processor Requests

During the address cycle of processor read requests, SysCmd[4:3] contain the read cause
indication, as shown in Table 6-5. This information is useful in handling the associated
external response.

Table 6-5 Encoding of SysCmd[4:3] for Processor Read Requests

During the address cycle of processor write requests, SysCmd[4:3] contain the write cause
indication, as shown in Table 6-6. This information is useful in handling the associated
write data.

Table 6-6 Encoding of SysCmd[4:3] for Processor Write Requests

SysCmd[7:5] Command

 0 Coherent block read shared

 1 Coherent block read exclusive

 2 Noncoherent block read

 3 Double/single/partial-word read

 4 Block write

 5 Double/single/partial-word write

 6 Upgrade

 7 Special

SysCmd[4:3] Read Cause Indication

 0 Instruction access

 1 Data typical access

 2 Data LL/LLD access

 3 Data prefetch access

SysCmd[4:3] Write Cause Indication

 0 Reserved

 1 Data typical access

 2 Data uncached accelerated sequential access

 3 Data uncached accelerated identical access

User’s Manual U10278EJ4V0UM 113

Chapter 6 System Interface Operations

During the address cycle of processor upgrade requests, SysCmd[4:3] contain the upgrade
cause indication, as shown in Table 6-7. This information useful in handling the associated
external response.

Table 6-7 Encoding of SysCmd[4:3] for Processor Upgrade Requests

During the address cycle of processor special requests, SysCmd[4:3] contain the processor
special cause indication, as shown in Table 6-8. This information differentiates between
the various processor special requests.

Table 6-8 Encoding of SysCmd[4:3] for Processor Special Requests

During the address cycle of processor block read, typical block write, upgrade, and
eliminate requests, SysCmd[2:1] contain the secondary cache block former state, as shown
in Table 6-9. This information may be useful for system designs implementing a duplicate
tag or a directory-based coherency protocol.

Table 6-9 Encoding of SysCmd[2:1] for Processor Block Read/Write,
Upgrade, Eliminate Requests

SysCmd[4:3] Upgrade Cause Indication

 0 Reserved

 1 Data typical access

 2 Data SC/SCD access

 3 Data prefetch access

SysCmd[4:3] Special Cause Indication

 0 Reserved

 1 Eliminate

 2 Reserved

 3 Reserved

SysCmd[2:1] Secondary Cache Block Former State

 0 Invalid

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

Chapter 6 System Interface Operations

114 User’s Manual U10278EJ4V0UM

During the address cycle of processor double/single/partial-word read and write requests,
SysCmd[2:0] contain the data size indication, as shown in Table 6-10.

Table 6-10 Encoding of SysCmd[2:0] for Processor Double/Single/Partial-Word Read/
Write Requests

During the address cycle of external intervention and invalidate requests, SysCmd[10:8]
contain the request number, as shown in Table 6-11. The request number provides a
mechanism to associate a potential processor coherency data response with the
corresponding external coherency request.

Table 6-11 Encoding of SysCmd[10:8] for External Intervention
and Invalidate Requests

During the address cycle of external requests, SysCmd[7:5] contain the command, as
shown in Table 6-12.

Table 6-12 Encoding of SysCmd[7:5] for External Requests

SysCmd[2:0] Data Size Indication

 0 One byte valid (Byte)

 1 Two bytes valid (Halfword)

 2 Three bytes valid (Tribyte)

 3 Four bytes valid (Word)

 4 Five bytes valid (Quintibyte)

 5 Six bytes valid (Sextibyte)

 6 Seven bytes valid (Septibyte)

 7 Eight bytes valid (Doubleword)

SysCmd[10:8] Request Number

SysCmd[7:5] Command

 0 Intervention shared

 1 Intervention exclusive

 2 Allocate request number

 3 Allocate request number

 4 NOP

 5 NOP

 6 Invalidate

 7 Special

User’s Manual U10278EJ4V0UM 115

Chapter 6 System Interface Operations

During the address cycle of external special requests, SysCmd[4:3] contain the external
special cause indication, as shown in Table 6-13. This information is used to differentiate
between the various external special requests.

Table 6-13 Encoding of SysCmd[4:3] for External Special Requests

During external address cycles, SysCmd[0] specifies whether ECC checking and
correcting is to be performed for the SysAD[63:0] bus, as shown in Table 6-14. During the
address cycle of processor block read, data typical block write, upgrade, and eliminate
requests, the processor asserts SysCmd[0]. Consequently, in a multiprocessor system
using the cluster bus, ECC checking and correcting is enabled for external coherency
requests resulting from processor coherent block read and upgrade requests.

Table 6-14 Encoding of SysCmd[0] for External Address Cycles

SysCmd[10:0] Data Cycle Encoding

During the data cycles of an external data response or a processor coherency data response,
SysCmd[10:8] contain the request number associated with the original request, as shown
in Table 6-15.

Table 6-15 Encoding of SysCmd[10:8] for Data Responses

During data cycles, SysCmd[5] indicates the data quality, as shown in Table 6-16.

Table 6-16 Encoding of SysCmd[5] for Data Cycles

SysCmd[4:3] Special Cause Indication

 0 Reserved

 1 NOP

 2 Interrupt

 3 Reserved

SysCmd[0] ECC check indication

 0 ECC checking and correcting disable

 1 ECC checking and correcting enable

SysCmd[10:8] Request Number

SysCmd[5] Data quality indication

 0 Data is good

 1 Data is bad

Chapter 6 System Interface Operations

116 User’s Manual U10278EJ4V0UM

During data cycles, SysCmd[4:3] indicate the data type, as shown in Table 6-17. Processor
block write and double/single/partial-word write requests use request data and request last
data type indications. External data and processor coherency data responses use response
data and response last data type indications.

Table 6-17 Encoding of SysCmd[4:3] for Data Cycles

During data cycles of an external block data response or processor coherency data response,
SysCmd[2:1] contain the state of the cache block, as shown in Table 6-18.

Table 6-18 Encoding of SysCmd[2:1] for Block Data Responses

During data cycles, SysCmd[0] specifies whether ECC checking and correcting is to be
performed for the SysAD[63:0] bus, as shown in Table 6-19. During processor data cycles,
the processor asserts SysCmd[0]. Consequently, in a multiprocessor system using the
cluster bus, ECC checking and correcting will be enabled for external block data responses
resulting from processor coherency data responses.

Table 6-19 Encoding of SysCmd[0] for External Data Cycles

SysCmd[4:3] Data type Indication

 0 Request data

 1 Response data

 2 Request last

 3 Response last

SysCmd[2:1] Cache Block State

 0 Reserved

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

SysCmd[0] ECC check indication

 0 ECC checking and correcting disable

 1 ECC checking and correcting enable

User’s Manual U10278EJ4V0UM 117

Chapter 6 System Interface Operations

SysCmd[11:0] Map

Table 6-20 presents a map for the SysCmd[11:0] bus.

Table 6-20 SysCmd[11:0] Map

Cycle
Type

Command
SysCmd[11:0] Bit

11 10 9 8 7 6 5 4 3 2 1 0

Processor
address
cycles

Coherent block read shared

0

Request number

0 0 0

Read cause
Block state 1Coherent block read exclusive 0 0 1

Noncoherent block read 0 1 0

Double/single/partial-word read 0 1 1 Data size

Block write
0

1 0 0
Write cause

Block state 1

Double/single/partial-word write 1 0 1 Data size

Upgrade Request number 1 1 0 Upgrade cause Block state 1

Special

Reserved Reserved

1 1 1

0 0 Reserved

Eliminate 0 0 1 Block state 1

Reserved Reserved
1 0

Reserved
1 1

Processor
data cycles

Double/single/partial-word write

1
0

0

0

Data type

0

1Block write Data
quality

Block state
Coherency data response Request number

External
address
cycles

Intervention shared

0

Request number

0 0 0

X

ECC
Intervention exclusive 0 0 1

Allocate request number
0 1 0

X
0 1 1

NOP X
1 0 0

1 0 1

Invalidate Request number 1 1 0 ECC

Special

NOP

X 1 1 1

0 0

X

X
0 1

Interrupt 1 0 ECC

NOP 1 1 X

External
data cycles

Block data response

1 Request number X
Data

quality
Data type

Block state

ECCDouble/single/partial-word data
response

X

Chapter 6 System Interface Operations

118 User’s Manual U10278EJ4V0UM

SysAD[63:0] Encoding

This section describes the system address/data bus encoding.

SysAD[63:0] Address Cycle Encoding

Table 6-21 presents the encoding of the SysAD[63:0] bus for address cycles.

Table 6-21 Encoding of SysAD[63:0] for Address Cycles

SysAD[63:60]

During the address cycle of processor noncoherent block read, double/single/partial-word
read, block write, double/single/partial-word write, and eliminate requests, the processor
always drives a target indication of 0 on SysAD[63:60]. This indicates that the request
targets the external agent only. When the CohPrcReqTar mode bit is negated, during the
address cycle of processor coherent block read and upgrade requests, the processor also
drives a target indication of 0 on SysAD[63:60]. However, when the CohPrcReqTar mode
bit is asserted, during the address cycle of processor coherent block read and upgrade
requests, the processor drives a target indication of 0xF on SysAD[63:60]. This indicates
that the request targets all processors, together with the external agent, on the cluster bus.
In multiprocessor systems using the cluster bus, the CohPrcReqTar mode bit is asserted
for a snoopy-based coherency protocol, and negated for a duplicate tag or directory-based
coherency protocol.

When the processor is in slave state, an external agent uses the target indication field to
specify which processors are targets of an external request.

SysAD[59:58] Uncached Attribute

During the address cycle of processor double/single/partial-word read and write requests
and during the address cycle of processor Uncached accelerated block write requests, the
processor drives the uncached attribute onto SysAD[59:58]. See the section titled, Support
for Uncached Attribute, in this chapter for more information.

SysAD[63:60] Target Indication

 SysAD[63] Target processor with DevNum = 3

 SysAD[62] Target processor with DevNum = 2

 SysAD[61] Target processor with DevNum = 1

 SysAD[60] Target processor with DevNum = 0

SysAD[59:58] Uncached attribute

SysAD[57] Secondary cache block way indication

SysAD[56:40] Reserved

SysAD[39:0] Physical address

User’s Manual U10278EJ4V0UM 119

Chapter 6 System Interface Operations

SysAD[57]

During the address cycle of processor block read, typical block write, upgrade, and
eliminate requests, SysAD[57] contains the secondary cache block way indication. This
information may be useful for system designs implementing a duplicate tag or a directory-
based coherency protocol.

SysAD[56:40]

When processor is in master state, it drives SysAD[56:40] to zero during address cycles.

SysAD[39:0]

During the address cycle of processor and external requests, SysAD[39:0] contain the
physical address.

Table 6-22 presents the processor request address cycle address alignment.

Table 6-22 Processor Request Address Cycle Alignment

Table 6-23 presents the external coherency request address cycle address alignment.

Table 6-23 External Coherency Request Address Cycle Alignment

Processor Request Type Address Alignment
Address Bits Which

Are Driven to 0

Block read Quadword 3:0

Doubleword read/write Doubleword 2:0

Singleword read/write Singleword 1:0

Halfword read/write Halfword 0

Byte, tribyte, quintibyte, sextibyte,
septibyte read/write

Byte -

Block write Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

Upgrade Quadword 3:0

Eliminate Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

External Request Type Address Alignment
Address Bits Which

Are Ignored

Intervention Quadword 3:0

Invalidate Secondary cache block
5:0 (SCBlkSize = 0)
6:0 (SCBlkSize = 1)

Chapter 6 System Interface Operations

120 User’s Manual U10278EJ4V0UM

SysAD[63:0] Data Cycle Encoding

During System interface data cycles, when less than a doubleword is transferred on the
SysAD[63:0] bus, the valid byte lanes depend on the request address and the MemEnd
mode bit.

For example, consider the data cycle for a byte request whose address modulo 8 is 1. When
MemEnd is negated (little endian), the SysAD[15:8] byte lane is valid. When MemEnd is
asserted (big endian), the SysAD[55:48] byte lane is valid.

SysState[2:0] Encoding

The processor provides a processor coherency state response by driving the targeted
secondary cache block tag quality indication on SysState[2], driving the targeted secondary
cache block former state on SysState[1:0] and asserting SysStateVal* for one SysClk
cycle. Table 6-24 presents the encoding of the SysState[2:0] bus when SysStateVal* is
asserted.

Table 6-24 Encoding of SysState[2:0] when SysStateVal* Asserted

When SysStateVal* is negated, SysState[0] indicates if a processor coherency data
response is ready for issue. Table 6-25 presents the encoding of the SysState[2:0] bus when
SysStateVal* is negated.

Table 6-25 Encoding of SysState[2:0] When SysStateVal* Negated

SysState[2] Secondary cache block tag quality indication

 0 Tag is good

 1 Tag is bad

SysState[1:0] Secondary cache block former state

 0 Invalid

 1 Shared

 2 CleanExclusive

 3 DirtyExclusive

SysState[2:1] Reserved

0 Reserved

1

2

3

SysState[0] Processor coherency data response indication

 0 Not ready for issue

 1 Ready for issue

User’s Manual U10278EJ4V0UM 121

Chapter 6 System Interface Operations

SysResp[4:0] Encoding

An external agent issues an external completion response by driving the request number
associated with the corresponding request on SysResp[4:2], driving the completion
indication on SysResp[1:0], and asserting SysRespVal* for one SysClk cycle. Table 6-26
presents the encoding of the SysResp[4:0] bus.

Table 6-26 Encoding of SysResp[4:0]

6.14 Interrupts

The processor supports five hardware, two software, one timer, and one nonmaskable
interrupt. The Interrupt exception is described in Chapter 15, the section titled “Interrupt
Exception.”

Hardware Interrupts

Five hardware interrupts are accessible to an external agent via external interrupt requests.

An external interrupt request consists of a single address cycle on the System interface.
During the address cycle, SysAD[63:60] specify the target indication, which allows an
external agent to define the target processors of the external interrupt request. If a processor
determines it is an external interrupt request target, SysAD[20:16] are the write enables for
the five individual Interrupt register bits and SysAD[4:0] are the values to be written into
these bits, as shown in Figure 6-5. This allows any subset of the Interrupt register bits to
be set or cleared with a single external interrupt request.

The Interrupt register is an architecturally transparent, level-sensitive register that is
directly readable as bits 14:10 of the Cause register. Since it is level-sensitive, an interrupt
bit must remain asserted until the interrupt is taken, at which time the interrupt handler must
cause a second external interrupt request to clear the bit.

The processor clears the Interrupt register during any of the reset sequences.

SysResp[4:2] Request number

SysResp[1:0] Completion indication

 0 Acknowledge (ACK)

 1 Error (ERR)

 2 Negative acknowledge (NACK)

 3 Reserved

Chapter 6 System Interface Operations

122 User’s Manual U10278EJ4V0UM

Figure 6-5 Hardware Interrupts

Software Interrupts

The two software interrupts are accessible as bits 9:8 of the Cause register, as shown in
Figure 6-5. An MTC0 instruction is used to write these bits.

Timer Interrupt

The timer interrupt is accessible as bit 15 of the Cause register, IP[7], as shown in Figure
6-5. This bit is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Nonmaskable Interrupt

A nonmaskable interrupt is accessible to an external agent as the SysNMI* signal. To post
a nonmaskable interrupt, an external agent asserts SysNMI* for at least one SysClk cycle.

The processor recognizes the nonmaskable interrupt on the first SysClk cycle that
SysNMI* is asserted. After the nonmaskable interrupt is serviced, an external agent may
post another nonmaskable interrupt by first negating SysNMI* for at least one SysClk
cycle, and reasserting SysNMI* for at least one SysClk cycle.

3 2 014

19 18 161720

SysAD(4:0)
Interrupt Value

SysAD(20:16)
Write Enables

Interrupt register
Cause(15:08)

9

8

Hardware
Interrupts

Software
Interrupts

15
Timer

Interrupt

12

11

10

14

13

IP[1]

IP[0]

IP[7]

IP[4]

IP[3]

IP[2]

IP[6]

IP[5]

User’s Manual U10278EJ4V0UM 123

Chapter 6 System Interface Operations

6.15 Protocol Abbreviations

The following abbreviations are used in the System interface protocols:

SysCmd[11:0] Abbreviations

Cmd Unspecified command

BlkRd Block read request command

RdShd Coherent block read shared request command

RdExc Coherent block read exclusive request command

DSPRd Double/single/partial-word read command

BlkWr Block write request command

DSPWr Double/single/partial-word write request command

Ugd Upgrade request command

Elm Eliminate request command

IvnShd Intervention shared request command

IvnExc Intervention exclusive request command

Alc Allocate request number command

Ivd Invalidate request command

Int Interrupt request command

ExtCoh External coherency request command

ReqDat Request data

RspDat Response data

ReqLst Request last

RspLst Response last

Empty Empty; SysCmd(11:0) and SysAD(63:0) are undefined

SysAD[63:0] Abbreviations

Adr Physical address

Dat Unspecified data

Dat<n> Doubleword n of a block

SysState[2:0] Abbreviations

State Unspecified state

Ivd Invalid

Shd Shared

ClnExc CleanExclusive

DrtExc DirtyExclusive

Chapter 6 System Interface Operations

124 User’s Manual U10278EJ4V0UM

SysResp[4:0] Abbreviations

Rsp Unspecified completion response

ACK Acknowledge completion response

ERR Error completion response

NACK Negative acknowledge completion response

Master Abbreviations

EA External agent

Pn R10000 processor whose device number is n

- Dead cycle

6.16 System Interface Arbitration

The processor supports a simple System interface arbitration protocol, which relies on an
external arbiter. This protocol is used in uniprocessor systems, multiprocessor systems
using dedicated external agents, and multiprocessor systems using the cluster bus. System
interface arbitration is handled by the SysReq*, SysGnt*, and SysRel* signals (request,
grant, and release).

As described earlier in this chapter, the System interface resides in either master or slave
state; the processor enters slave state during all of the reset sequences.

When mastership of the System interface changes, there is always one dead SysClk cycle
during which the bidirectional signals are not driven; the processor ignores all bidirectional
signals during this dead SysClk cycle.

The protocol supports overlapped arbitration which allows arbitration to occur in parallel
with requests and responses. This results in fewer wasted cycles when mastership of the
System interface changes.

Grant parking is also supported, allowing a device to retain mastership of the System
interface as long as no other device requests the System interface.

In multiprocessor systems using the cluster bus, the external arbiter typically implements a
round-robin priority scheme.

User’s Manual U10278EJ4V0UM 125

Chapter 6 System Interface Operations

System Interface Arbitration Rules

The rules for the System interface arbitration are listed below:

• If the System interface is in slave state, and a processor request or coherency
data response is ready for issue, and the required resources are available (e.g.
a free request number, SysRdRdy* asserted, etc.), the processor asserts
SysReq*. The processor will not assert SysReq* unless all of the above
conditions are met.

• The processor waits for the assertion of SysGnt*.

• When the processor observes the assertion of SysGnt* it negates SysReq*
two SysClk cycles later. Once the processor asserts SysReq*, it does not
negate SysReq* until the assertion of SysGnt*, even if the need for the
System interface bus is contravened by an external coherency request.

• When the processor observes the assertion of SysRel*, it enters master state
two SysClk cycles later, and begins to drive the System interface bus.
SysRel* may be asserted coincidentally with or later than SysGnt*.

• Once in master state, the processor does not relinquish mastership of the
System interface until it observes the negation of SysGnt*.

• The processor indicates it is relinquishing mastership of the System interface
bus by asserting SysRel* for one SysClk cycle, two or more SysClk cycles
after the negation of SysGnt*. The processor may issue any type of processor
request or coherency data response in the two SysClk cycles following the
negation of SysGnt*. This may delay the assertion of SysRel*.

Chapter 6 System Interface Operations

126 User’s Manual U10278EJ4V0UM

Uniprocessor System

Figure 6-6 shows how the System interface arbitration signals are used in a uniprocessor
system. Note that this same configuration would be used in a multiprocessor system using
dedicated external agents.

Figure 6-6 Arbitration Signals for Uniprocessor System

Figure 6-7 is an example of the operation of the System interface arbitration in a
uniprocessor system. The Master row in the following figures indicates which device is
driving the System interface bidirectional signals (P0 and EA in
Figure 6-7). When this row contains a dash (-), as shown in Cycle 12 of Figure 6-7,
mastership of the System interface is changing and no device is driving the System interface
bidirectional signals for this one dead SysClk cycle.

The external agent generally asserts the SysGnt* signal, which allows the processor to
issue requests at any time.

When the external agent needs to return an external data response, it negates SysGnt* for
a minimum of one cycle, waits for the processor to assert SysRel*, and then begins driving
the System interface bus after one dead SysClk cycle.

Figure 6-7 Arbitration Protocol for Uniprocessor System

SysReq*

SysGnt*

SysRel*

R10000 External
Agent

SysReq*

SysGnt*

SysRel*

Cycle

SysClk

SysReq*

SysGnt*

1 2 3 4 5 10 11 12 13 14 15 16

SysRel*

SysVal*

SysCmd(11:0)

Master

BlkRd BlkRd BlkRd

6 7 8 9 17

BlkRd RspDat BlkRdRspDat RspLstReqLst

P0 P0 P0 P0 P0 P0 P0 - EA EA EAP0 P0 P0 - P0P0

DSPWr

Minimum of 1 Cycle

User’s Manual U10278EJ4V0UM 127

Chapter 6 System Interface Operations

Multiprocessor System Using Cluster Bus

Figure 6-8 shows how the System interface arbitration signals are used in a four-processor
system using the cluster bus.

Figure 6-8 Arbitration Signals for Multiprocessor System Using the Cluster Bus

Figure 6-9 is an example of the System interface arbitration in a four-processor system
using the cluster bus.

Figure 6-9 Arbitration Protocol for Multiprocessor System Using the Cluster Bus

SysReq*

SysGnt*

SysRel*

R100000

SysReq*

SysGnt*

SysRel*

R100001

SysReq*

SysGnt*

SysRel*

R100002

SysReq*

SysGnt*

SysRel*

R100003

External
Agent

SysReq0*

SysGnt0*

SysReq1*

SysGnt1*

SysReq2*

SysGn2*

SysReq3*

SysGnt3*

SysRel*

Cycle

SysClk

SysReq0*

SysGnt0*

1 2 3 4 5 10 11 12 13 14 15 16

SysRel*

SysVal*

SysCmd(11:0)

Master EA EA EA - P0 P0 - P2 - EA EAEA

BlkRd

6 7 8 9 17

P1 - EA EAP2

BlkRd

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

BlkRd RspDat RspDat RspDatRspDat

Chapter 6 System Interface Operations

128 User’s Manual U10278EJ4V0UM

6.17 System Interface Request and Response Protocol

The following sections detail the System interface request and response protocol. A 32-
word secondary cache block size is assumed in the examples below.

Processor Request Protocol

A processor request is generated when the R10000 processor requires a system resource.

The processor may only issue a processor request when the System interface is in master
state. If the System interface is in master state, the processor may issue a processor request
immediately. Processor requests may occur in adjacent SysClk cycles. If the System
interface is not in master state, the processor must first assert SysReq*, and then wait for
the external agent to relinquish mastership of the System interface bus by asserting
SysGnt* and SysRel*.

When multiple, nonconflicting processor requests and/or coherency data responses are
ready and meet all issue requirements, the processor uses the following priority:

• block read and upgrade requests have the highest priority, followed by

• processor coherency data responses,

• processor eliminate and typical block write requests,

• processor double/single/partial-word read/write and uncached accelerated
block write requests, which have the lowest priority.

User’s Manual U10278EJ4V0UM 129

Chapter 6 System Interface Operations

Processor Block Read Request Protocol

A processor block read request results from a cached instruction fetch, load, store, or
prefetch that misses in the secondary cache. Before issuing a processor block read request,
the processor changes the secondary cache state to Invalid. Additionally, if the secondary
cache block former state was DirtyExclusive, a write back is scheduled. Note that if the
processor block read request receives an external NACK or ERR completion response, the
secondary cache block state remains Invalid.

The processor issues a processor block read request with a single address cycle. The
address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the block read command on SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor block read request address cycle when the
following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles earlier

• there is no conflicting entry in the outgoing buffer

• the maximum number of outstanding processor requests specified by the
PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external coherency
request

Chapter 6 System Interface Operations

130 User’s Manual U10278EJ4V0UM

A single processor may have as many as four processor block read requests outstanding on
the System interface at any given time.

Figure 6-10 depicts four processor block read requests. Since the System interface is
initially in slave state, the processor must first assert SysReq* and then wait until the
external agent relinquishes mastership of the System interface by asserting SysGnt* and
SysRel*.

Figure 6-10 Processor Block Read Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkRd BlkRd BlkRd BlkRd

Adr Adr Adr Adr

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

User’s Manual U10278EJ4V0UM 131

Chapter 6 System Interface Operations

Processor Double/Single/Partial-Word Read Request Protocol

A processor double/single/partial-word read request results from an uncached instruction
fetch or load.

The processor issues a processor double/single/partial-word read request with a single
address cycle. The address cycle consists of:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the double/single/partial-word read command on SysCmd[7:5]

• driving the read cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word read request address
cycle when:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the
PrcReqMax mode bits is not exceeded

• there is a free request number

A single processor may have a maximum of one processor double/single/partial-word read
request outstanding on the System interface at any given time.

Chapter 6 System Interface Operations

132 User’s Manual U10278EJ4V0UM

Figure 6-11 depicts a processor double/single/partial-word read request. Since the System
interface is initially in slave state, the processor must first assert SysReq* and then wait
until the external agent gives up mastership of the System interface by asserting SysGnt*
and SysRel*.

Figure 6-11 Processor Double/Single/Partial-Word Read Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPRd

Adr

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

User’s Manual U10278EJ4V0UM 133

Chapter 6 System Interface Operations

Processor Block Write Request Protocol

A processor block write request results from the following:

• replacement of a DirtyExclusive secondary cache block due to a load, store, or
prefetch secondary cache miss

• a CACHE Index WriteBack Invalidate (S) or Hit WriteBack Invalidate (S)
instruction

• a completely gathered uncached accelerated block

As shown in Figure 6-12, the processor issues a processor block write request with a single
address cycle followed by 8 or 16 data cycles.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the block write command on SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

If the processor block write request results from the writeback of a secondary cache block,
the Dirty Exclusive secondary cache block former state is driven on SysAD[2:1], the
secondary cache block way is driven on SysAD[57] and SysCmd[0] is asserted.

If the processor block write request results from a completely gathered uncached
accelerated block, the uncached attribute is driven on SysAD[59:58] and SysCmd[0] is
negated.

Each data cycle consists of the following:

• asserting SysCmd[11]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a request data type indication, and the last data cycle has
a request last data type indication.

Chapter 6 System Interface Operations

134 User’s Manual U10278EJ4V0UM

The processor may negate SysVal* between data cycles of a processor block write request
only if the SCClk frequency is less than half of the SysClk frequency.

The processor may only issue a processor block write request address cycle when the
following are true:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the processor is not the target of a conflicting outstanding external coherency
request

Figure 6-12 depicts two adjacent processor block write requests. Since the System
interface is initially in slave state, the processor must first assert SysReq* and then wait
until the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.

Figure 6-12 Processor Block Write Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkWr ReqDat ReqDat ReqLst

Adr Dat0 Dat14 Dat15

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

BlkWr ReqDat ReqDat ReqLst

Adr Dat0 Dat14 Dat15

SysRespVal*

User’s Manual U10278EJ4V0UM 135

Chapter 6 System Interface Operations

Processor Double/Single/Partial-Word Write Request Protocol

A processor double/single/partial-word write request results from an uncached store or
incompletely gathered uncached accelerated block.

As shown in Figure 6-13, the processor issues a processor double/single/partial-word write
request with a single address cycle immediately followed by a single data cycle.

The address cycle consists of the following:

• negating SysCmd[11]

• driving the double/single/partial-word write command on SysCmd[7:5]

• driving the write cause indication on SysCmd[4:3]

• driving the data size indication on SysCmd[2:0]

• driving the target indication on SysAD[63:60]

• driving the uncached attribute on SysAD[59:58]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The data cycle consists of the following:

• asserting SysCmd[11]

• driving the request last data type indication on SysCmd[4:3]

• driving the write data on SysAD[63:0]

• asserting SysVal*

The processor may only issue a processor double/single/partial-word write request address
cycle when the System interface is in master state and SysWrRdy* was asserted two
SysClk cycles previously.

Chapter 6 System Interface Operations

136 User’s Manual U10278EJ4V0UM

Figure 6-13 depicts three processor double/single/partial write requests. Since the System
interface is initially in slave state, the processor must first assert SysReq* and then wait
until the external agent relinquishes mastership of the System interface by asserting
SysGnt* and SysRel*.

Figure 6-13 Processor Double/Single/Partial-Word Write Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPWr DSPWr ReqLst DSPWr ReqLst

Adr Adr Dat Adr Dat

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

ReqLst

Dat

SysRespVal*

User’s Manual U10278EJ4V0UM 137

Chapter 6 System Interface Operations

Processor Upgrade Request Protocol

A processor upgrade request results from a store or prefetch exclusive that hits a Shared
block in the secondary cache.

As shown in Figure 6-14, the processor issues a processor upgrade request with a single
address cycle. This address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the upgrade command on SysCmd[7:5]

• driving the upgrade cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor upgrade request address cycle when the
following are true:

• the System interface is in master state

• SysRdRdy* was asserted two SysClk cycles previously

• the maximum number of outstanding processor requests specified by the
PrcReqMax mode bits is not exceeded

• there is a free request number

• the processor is not the target of a conflicting outstanding external coherency
request

A single processor may have as many as four processor upgrade requests outstanding on
the System interface at any given time.

Chapter 6 System Interface Operations

138 User’s Manual U10278EJ4V0UM

Figure 6-14 depicts four processor upgrade requests. Since the System interface is initially
in slave state, the processor must first assert SysReq* and then wait until the external agent
relinquishes mastership of the System interface by asserting SysGnt* and SysRel*.

Figure 6-14 Processor Upgrade Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Ugd

Adr

Ugd

Adr

Ugd

Adr

User’s Manual U10278EJ4V0UM 139

Chapter 6 System Interface Operations

Processor Eliminate Request Protocol

A processor eliminate request results from the following:

• a cached instruction fetch, load, store, or prefetch that misses in the secondary
cache and forces the replacement of a Shared or CleanExclusive secondary
cache block

• a CACHE Index WriteBack Invalidate (S), Hit Invalidate (S), or Hit
WriteBack Invalidate (S) instruction that forces the invalidation of a Shared or
CleanExclusive secondary cache block

• a CACHE Hit Invalidate (S) instruction that forces the invalidation of a
DirtyExclusive secondary cache block.

A processor eliminate request notifies the external agent that a Shared, CleanExclusive, or
DirtyExclusive block has been eliminated from the secondary cache. Such requests are
useful for systems implementing a directory-based coherency protocol, and are enabled by
asserting the PrcElmReq mode bit.

The processor issues a processor eliminate request with a single address cycle. This address
cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the eliminate special cause indication on SysCmd[4:3]

• driving the secondary cache block former state on SysCmd[2:1]

• asserting SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the secondary cache block way on SysAD[57]

• driving the physical address of the eliminated secondary cache block on
SysAD[39:0]

• asserting SysVal*

The processor may only issue a processor eliminate request address cycle when the
following are true:

• the System interface is in master state

• SysWrRdy* was asserted two SysClk cycles previously

• the PrcElmReq mode bit is asserted

• the processor is not the target of a conflicting outstanding external coherency
request

Chapter 6 System Interface Operations

140 User’s Manual U10278EJ4V0UM

Figure 6-15 depicts three processor eliminate requests. Since the System interface is
initially in slave state, the processor must first assert SysReq* and then wait until the
external agent relinquishes mastership of the System interface by asserting SysGnt* and
SysRel*.

Figure 6-15 Processor Eliminate Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Elm

Adr

EA EA EA EA - P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Elm

Adr

Elm

Adr

User’s Manual U10278EJ4V0UM 141

Chapter 6 System Interface Operations

Processor Request Flow Control Protocol

The processor provides the signals SysRdRdy* and SysWrRdy* to allow an external agent
to control the flow of processor requests. SysRdRdy* controls the flow of processor read
and upgrade requests whereas SysWrRdy* controls the flow of processor write and
eliminate requests.

The processor can only issue a processor read or upgrade request address cycle to the
System interface if SysRdRdy* was asserted two SysClk cycles previously. Similarly, the
processor can only issue the address cycle of a processor write or eliminate request to the
System interface if SysWrRdy* was asserted two SysClk cycles previously.

To determine the processor request buffering requirements for the external agent, note that
the processor can issue any combination of processor requests in adjacent SysClk cycles.
Also, since the System interface operates register-to-register with the external agent, a
round trip delay of four SysClk cycles occurs between a processor request address cycle
which prompts the external agent for flow control, and the flow control actually preventing
any additional processor request address cycles from occurring. Consequently, if the
maximum number of outstanding processor requests specified by the PrcReqMax mode
bits is four, the external agent must be able to accept at least four processor read or upgrade
requests. Also, the external agent must be able to accept at least four processor eliminate
requests, two processor double/single/partial-word write requests, or one processor block
write request.

Figure 6-16 depicts three processor double/single/partial-word write requests and four
processor block read requests. After sensing the first processor double/single/partial-word
write request, the external agent negates SysWrRdy*. The external agent must have
buffering sufficient for one additional processor write request before the flow control takes
effect.

The external agent negates SysRdRdy* upon observing the first processor read request.
The external agent must have buffering sufficient for three additional processor read
requests before the flow control takes effect.

Chapter 6 System Interface Operations

142 User’s Manual U10278EJ4V0UM

Figure 6-16 Processor Request Flow Control Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPWr DSPWr ReqLst DSPWr ReqLst

Adr Adr Dat Adr Dat

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

ReqLst

Dat

BlkRd

Adr

BlkRd

Adr

BlkRd

Adr

BlkRd

Adr

SysRespVal*

User’s Manual U10278EJ4V0UM 143

Chapter 6 System Interface Operations

External Response Protocol

The processor supports two classes of external responses:

• external data responses provide a double/single/partial-word of data or provide
a block of data using the SysAD[63:0] bus

• external completion responses provide an acknowledge, error, or negative
acknowledge indication using the SysResp[4:0] bus

An external agent may only issue an external data response to the processor when the
System interface is in slave state. If the System interface is not already in slave state, the
external agent must first negate SysGnt* and then wait for the processor to assert SysRel*.
If the System interface is already in slave state, the external agent may issue an external data
response immediately.

External data responses may be accepted by the processor in adjacent SysClk cycles and in
arbitrary order, relative to corresponding processor requests.

An external agent may issue an external completion response when the System interface is
in either master or slave state. External completion responses may be accepted by the
processor in adjacent SysClk cycles and in arbitrary order, relative to the corresponding
processor requests.

External Block Data Response Protocol

An external agent may issue an external block data response in response to a processor
block read or upgrade request.

An external agent issues an external block data response with 8 or 16 data cycles. Each data
cycle consists of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding processor
request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the cache block state on SysCmd[2:1]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data cycle has
a response last data type indication. The external agent may negate SysVal* between data
cycles of an external block data response.

Chapter 6 System Interface Operations

144 User’s Manual U10278EJ4V0UM

External block data response data must be supplied in subblock order, beginning with the
quadword-aligned address specified by the corresponding processor request.

External block data responses for processor coherent block read shared or noncoherent
block read requests may indicate a state of Shared, CleanExclusive, or DirtyExclusive.
External block data responses for processor coherent block read exclusive or upgrade
requests may indicate a state of CleanExclusive or DirtyExclusive.

Figure 6-17 depicts two processor block read requests and the corresponding external block
data responses.

Figure 6-17 External Block Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

BlkRd BlkRd RspDat RspDat RspLst

Adr Adr Dat0 Dat14 Dat15

P0 P0 P0 P0 P0 P0 P0 P0 - EA P0-EAEA EA EAEA

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

User’s Manual U10278EJ4V0UM 145

Chapter 6 System Interface Operations

External Double/Single/Partial-Word Data Response Protocol

An external agent may issue an external double/single/partial-word data response in
response to a processor double/single/partial-word read request.

An external agent issues an external double/single/partial-word data response with a single
data cycle; the data cycle consists of:

• asserting SysCmd[11]

• driving the request number associated with the corresponding processor
request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the response last data type indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the data on SysAD[63:0]

• asserting SysVal*

Figure 6-18 depicts a processor double/single/partial-word read request and the
corresponding external double/single/partial-word data response.

Figure 6-18 External Double/Single/Partial-Word Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

DSPRd RspLst

Adr Dat

P0 P0 P0 P0 P0 - EA -P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Chapter 6 System Interface Operations

146 User’s Manual U10278EJ4V0UM

External Completion Response Protocol

An external agent issues an external completion response to provide an acknowledge, error,
or negative acknowledge to an outstanding request, and to free the associated request
number.

An external agent issues an external completion response by driving the response on
SysResp[4:0] and asserting SysRespVal* for one SysClk cycle. SysResp[4:2] contains
the request number associated with the corresponding outstanding request and
SysResp[1:0] contains an acknowledge, error, or negative acknowledge indication, as
described below:

• The external agent issues an external ACK completion response for a
processor read or upgrade request to indicate that the request was successful.
An external ACK completion response may only be issued for a processor
read request if a corresponding external data response is coincidentally or
previously issued.

• The external agent issues an external ERR completion response for a
processor read or upgrade request to indicate that the request was
unsuccessful. Upon receiving an external ERR completion response, the
processor takes a Bus Error exception on the associated instruction. If the
processor read or upgrade request was caused by a PREFETCH instruction, no
exception is taken. Also, if the request was caused by a speculative
instruction, no exception is taken.

• The external agent issues an external NACK completion response for a
processor read or upgrade request to indicate that the request was not
accepted. Upon receiving an external NACK completion response, the
processor re-evaluates the associated instruction. Due to the speculative
nature of the R10000 processor, the re-evaluation may or may not result in the
reissue of a similar processor request.

An external ERR or NACK completion response issued in response to an external
intervention, allocate request number, or invalidate has no affect on the processor except to
free the request number.

User’s Manual U10278EJ4V0UM 147

Chapter 6 System Interface Operations

Figure 6-19 depicts a processor upgrade request and a corresponding external completion
response.

Figure 6-19 External Completion Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysRespVal*

Rsp

Chapter 6 System Interface Operations

148 User’s Manual U10278EJ4V0UM

External Request Protocol

An external agent issues an external request when it requires a resource within the
processor. The external agent refers to any device attached to the processor system
interface. It may be memory interface or cluster coordinator ASIC, or another processor
residing on the cluster bus.

An external agent may only issue an external request to the processor when the System
interface is in slave state. If the System interface is not already in slave state, the external
agent must first negate SysGnt* and then wait for the processor to assert SysRel*. If the
System interface is already in slave state, the external agent may issue an external request
immediately. The total number of outstanding external requests, including interventions,
allocate request numbers, and invalidates, cannot exceed eight.

External requests may be accepted by the processor in adjacent SysClk cycles. External
intervention and invalidate requests are considered external coherency requests.

User’s Manual U10278EJ4V0UM 149

Chapter 6 System Interface Operations

External Intervention Request Protocol

An external agent issues an external intervention request to obtain a Shared or Exclusive
copy of a secondary cache block.

An external agent issues an external intervention request with a single address cycle; this
address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the intervention command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external intervention request address cycle when the
System interface is in slave state; typically a free request number is specified. An external
agent may have as many as eight external intervention requests outstanding on the System
interface at any given time.

Figure 6-20 depicts three external intervention requests. Since the System interface is
initially in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.

Figure 6-20 External Intervention Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnShd

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

IvnExc

Adr

IvnShd

Adr

Chapter 6 System Interface Operations

150 User’s Manual U10278EJ4V0UM

External Allocate Request Number Request Protocol

An external agent issues an external allocate request number request to reserve a request
number for private use. Once allocated, the processor is prevented from using the request
number until an external completion response for the request number is received.

An external agent issues an external allocate request number request with a single address
cycle; this address cycle consists of the following:

• negating SysCmd[11]

• driving a free request number on SysCmd[10:8]

• driving the allocate request number command on SysCmd[7:5]

• asserting SysVal*

An external agent may only issue an external allocate request number request address cycle
when the System interface is in slave state and there is a free request number. The external
agent may have as many as eight external allocate request number requests outstanding on
the System interface at any given time.

Figure 6-21 depicts three external allocate request number requests. Since the System
interface is initially in master state, the external agent must first negate SysGnt* and then
wait until the processor relinquishes mastership of the System interface by asserting
SysRel*.

Figure 6-21 External Allocate Request Number Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Alc

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Alc Alc

User’s Manual U10278EJ4V0UM 151

Chapter 6 System Interface Operations

External Invalidate Request Protocol

An external agent issues an external invalidate request to invalidate a secondary cache
block.

An external agent issues an external invalidate request with a single address cycle. This
address cycle consists of the following:

• negating SysCmd[11]

• driving a request number on SysCmd[10:8]

• driving the invalidate command on SysCmd[7:5]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the physical address on SysAD[39:0]

• asserting SysVal*

An external agent may only issue an external invalidate request address cycle when the
System interface is in slave state; typically a free request number is specified. An external
agent may have as many as eight external invalidate requests outstanding on the System
interface at any given time.

Figure 6-22 depicts three external invalidate requests. Since the System interface is initially
in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.

Figure 6-22 External Invalidate Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ivd

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Ivd

Adr

Ivd

Adr

Chapter 6 System Interface Operations

152 User’s Manual U10278EJ4V0UM

External Interrupt Request Protocol

An external agent issues an external interrupt request to interrupt the normal instruction
flow of the processor.

An external agent issues an external interrupt request with a single address cycle. This
address cycle consists of the following:

• negating SysCmd[11]

• driving the special command on SysCmd[7:5]

• driving the interrupt special cause indication on SysCmd[4:3]

• driving the ECC check indication on SysCmd[0]

• driving the target indication on SysAD[63:60]

• driving the Interrupt register write enables on SysAD[20:16]

• driving the Interrupt register values on SysAD[4:0]

• asserting SysVal*

An external agent may only issue an external interrupt request address cycle when the
System interface is in slave state.

Figure 6-23 depicts three external interrupt requests. Since the System interface is initially
in master state, the external agent must first negate SysGnt* and then wait until the
processor relinquishes mastership of the System interface by asserting SysRel*.

Figure 6-23 External Interrupt Request Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Int

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

SysRespVal*

Int

Adr

Int

Adr

User’s Manual U10278EJ4V0UM 153

Chapter 6 System Interface Operations

Processor Response Protocol

Processor responses are supplied by the processor in response to external coherency
requests that target the processor. The R10000 processor issues a processor coherency state
response for each external coherency request that targets the processor. The processor
issues a processor coherency data response for each external intervention request that
targets the processor and hits a DirtyExclusive secondary cache block.

Processor coherency state responses are issued by the processor in the same order that the
corresponding external coherency requests are received. Processor coherency state and
data responses may occur in adjacent SysClk cycles.

Chapter 6 System Interface Operations

154 User’s Manual U10278EJ4V0UM

Processor Coherency State Response Protocol

A processor coherency state response results from an external coherency request that
targets the processor.

The processor issues a processor coherency state response by driving the secondary cache
block tag quality indication on SysState[2], driving the secondary cache block former state
on SysState[1:0], and asserting SysStateVal* for one SysClk cycle. The processor
coherency state responses are issued in an order designated by the external coherency
requests and will always be issued before an associated processor coherency data response.
Note that processor coherency state responses can be pipelined ahead of the associated
processor coherency data responses, and processor coherency data responses can be
returned out-of-order. These cases typically arise from external coherency requests hitting
outgoing buffer entries.

Figure 6-24 depicts two external coherency requests and the resulting processor coherency
state responses.

Figure 6-24 Processor Coherency State Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnExc

Adr

P0 P0 P0 P0 P0 - EA EA EA EA EAEAEAEA EA EAEA

Ivd

SysRespVal*

Shd

IvnShd

Adr

User’s Manual U10278EJ4V0UM 155

Chapter 6 System Interface Operations

Processor Coherency Data Response Protocol

A processor coherency data response results from an external intervention request that
targets the processor and hits a DirtyExclusive secondary cache block.

The processor issues a processor coherency data response with a single empty cycle
followed by either 8 or 16 data cycles. The empty cycle consists of negating SysVal* for a
single SysClk cycle. The data cycles consist of the following:

• asserting SysCmd[11]

• driving the request number associated with the corresponding external
coherency request on SysCmd[10:8]

• driving the data quality indication on SysCmd[5]

• driving the data type indication on SysCmd[4:3]

• driving the state of the cache block on SysCmd[2:1]

• asserting SysCmd[0]

• driving the data on SysAD[63:0],

• asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data cycle has
a response last data indication. The processor may negate SysVal* between data cycles of
a processor coherency data response only if the SCClk frequency is less than half of the
SysClk frequency.

The processor may only issue a processor coherency data response when the System
interface is in master state and SysWrRdy* was asserted two SysClk cycles previously.
Note that the empty cycle is considered the issue cycle for a processor coherency data
response. If the System interface is not already in master state, the processor must first
assert SysReq*, and then wait for the external agent to relinquish mastership of the System
interface bus by asserting SysGnt* and SysRel*. If the System interface is already in
master state, the processor may issue a processor coherency data response immediately.

Chapter 6 System Interface Operations

156 User’s Manual U10278EJ4V0UM

When SysStateVal* is negated, SysState[0] provides the processor coherency data
response indication. The processor asserts the processor coherency data response indication
when there are one or more processor coherency data responses pending issue in the
outgoing buffer. Once asserted, the indication is negated when the first doubleword of the
last pending issue processor coherency data response is issued to the system interface bus.
The processor coherency data response indication is not affected by SysWrRdy*.
However, as previously noted the processor may only issue a processor coherency data
response when SysWrRdy* was asserted two SysClk cycles previously.

Processor coherency data response data is supplied in subblock order, beginning with the
quadword-aligned address specified by the corresponding external coherency request.
Processor coherency data responses are not necessarily issued in the same order as the
external coherency requests; however each processor coherency data response always
follows the corresponding processor coherency state response. Note that more than one
processor coherency state response may be pipelined ahead of the corresponding processor
coherency data responses.

Figure 6-25 depicts one external coherency request and the resulting processor coherency
state and data responses.

Figure 6-25 Processor Coherency Data Response Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

IvnExc

Adr

EA EA EA EA EA EA EA EA - P0 P0P0P0P0 P0 P0P0

DrtExc

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

10 00

Empty

User’s Manual U10278EJ4V0UM 157

Chapter 6 System Interface Operations

6.18 System Interface Coherency

The System interface supports external intervention shared, intervention exclusive, and
invalidate coherency requests. These requests are used by an external agent or other
R10000 processors on the cluster bus to maintain cache coherency.

Each external coherency request that targets an R10000 results in a processor coherency
state response. Additionally, each external intervention request that targets the R10000 and
hits a DirtyExclusive secondary cache block results in a processor coherency data response.

External coherency requests and the corresponding processor coherency state responses are
handled in FIFO order.

External Intervention Shared Request

An external intervention shared request is used by an external agent to obtain a Shared copy
of a cache block. If the desired block resides in the processor cache, it is marked Shared.

If the secondary cache block’s former state was DirtyExclusive, the processor issues a
processor coherency data response.

External Intervention Exclusive Request

An external intervention exclusive request is used by an external agent to obtain an
Exclusive copy of a cache block. If the desired block resides in the processor cache, it is
marked Invalid.

If the secondary cache block’s former state was DirtyExclusive, the processor issues a
processor coherency data response.

External Invalidate Request

An external invalidate request is used by an external agent to invalidate a cache block. If
the desired block resides in the processor cache, it is marked Invalid.

Under normal circumstances, the secondary cache block former state should not be
CleanExclusive or DirtyExclusive.

Chapter 6 System Interface Operations

158 User’s Manual U10278EJ4V0UM

External Coherency Request Action

Table 6-27 indicates the action taken for external coherency requests that target the
processor.

Table 6-27 Action Taken for External Coherency Requests that Target the R10000 Processor†

‡ This should not occur under normal circumstances.

* The processor coherency data response must be written back to memory.

† These actions are taken in cases where there are no internal coherency conflicts. For
exceptions due to internal coherency conflicts, please refer to Table 6-28.

Secondary Cache
Block

Former State

Type of
External Request

Secondary
Cache Block

New State

Processor Coher-
ency State Re-

sponse
SysState[1:0]

Processor Co-
herency Data
Response Re-

quired?

Processor Coher-
ency Data Re-
sponse State
SysCmd[2:1]

Invalid
Intervention shared
Intervention exclusive
Invalidate

Invalid
Invalid
Invalid

0
0
0

No
No
No

N/A
N/A
N/A

Shared
Intervention shared
Intervention exclusive
Invalidate

Shared
Invalid
Invalid

1
1
1

No
No
No

N/A
N/A
N/A

CleanExclusive
Intervention shared
Intervention exclusive
Invalidate‡

Shared
Invalid
Invalid

2
2
2

No
No
No

N/A
N/A
N/A

DirtyExclusive
Intervention shared*

Intervention exclusive∗

Invalidate

Shared
Invalid
Invalid

3
3
3

Yes
Yes
No

Shared
DirtyExclusive

N/A

User’s Manual U10278EJ4V0UM 159

Chapter 6 System Interface Operations

Coherency Conflicts

Coherency conflicts arise when a processor request and an external request target the same
secondary cache block. Coherency conflicts may be categorized as either internal or
external, and are described in this section.

Internal Coherency Conflicts

A processor request is considered to be pending issue when it is buffered in the processor
and has not yet been issued to the System interface bus. Internal coherency conflicts occur
when the processor has a processor request pending issue and a conflicting external
coherency request is received. Internal coherency conflicts are unavoidable and cannot be
anticipated by the external agent since it cannot anticipate when the processor will have
processor requests pending issue.

Table 6-28 describes the manner in which the processor resolves internal coherency
conflicts.

Table 6-28 Internal Coherency Conflict Resolution

‡ If the processor eliminate request that is pending issue has a DirtyExclusive state, a CleanExclusive processor coherency state response is
provided.

 Processor Request Pend-
ing Issue

Conflicting External Co-
herency Request

Resolution

Coherent block read

Intervention shared The processor allows the conflicting external
coherency request to proceed and provides an Invalid
processor coherency state response. The processor
stalls the processor coherent block read request until
the conflicting external coherency request has
received an external completion response.

Intervention exclusive

Invalidate

Upgrade

Intervention shared The processor allows the conflicting external
coherency request to proceed and provides a Shared
processor coherency state response. Once the
conflicting external coherency request has received
an external completion response, the processor
internally NACKs the processor upgrade request that
is pending issue.

Intervention exclusive

Invalidate

Block write

Intervention shared The processor provides a DirtyExclusive processor
coherency state response and changes the processor
block write request that is pending issue into a
DirtyExclusive processor coherency data response.

Intervention exclusive

Invalidate
The processor provides a DirtyExclusive processor
coherency state response and deletes the processor
block write request that is pending issue.

Eliminate

Intervention shared The processor provides a Shared or CleanExclusive
processor coherency state response and deletes the
processor eliminate request that is pending issue.‡

Intervention exclusive

Invalidate

Chapter 6 System Interface Operations

160 User’s Manual U10278EJ4V0UM

External Coherency Conflicts

A processor request is considered to be pending response when it has been issued to the
System interface bus but has not yet received an external data or completion response.
External coherency conflicts occur when the processor has a processor request that is
pending response and a conflicting external coherency request is received. The processor
relies on the external agent to detect and resolve external coherency conflicts. If the
external agent chooses to issue an external coherency request to the processor which causes
an external coherency conflict, the external coherency request must be completed before an
external response is given to the conflicting processor request.

External coherency conflicts may be avoided if the point of coherence is the processor
System interface bus and only one request is allowed to be outstanding for any given
secondary cache block. However, in some system designs external coherency conflicts are
unavoidable.

Processor block write and eliminate requests are never pending response, and therefore
cannot cause external coherency conflicts.

Table 6-29 describes the manner in which the external agent resolves external coherency
conflicts.

User’s Manual U10278EJ4V0UM 161

Chapter 6 System Interface Operations

Table 6-29 External Coherency Conflict Resolution

‡ Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor
will return an invalid processor coherency state response.

* Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the processor
will return a shared processor coherency state response.

 Processor Requests that
are Pending Response

Conflicting External Co-
herency Request

Resolution

Coherent block read

Intervention shared The external agent responds to the external coherency
requestor that the block is Invalid. At some later time,
the external agent supplies an external response to the
processor coherent block read request that is pending
response.‡

Intervention exclusive

Invalidate

Upgrade

Intervention shared

The external agent responds to the external coherency
requestor that the block is Shared. At some later time,
the external agent supplies an external response to the
processor upgrade request that is pending response.*

Intervention exclusive The external agent issues the conflicting external
coherency request to the processor. The processor
allows the conflicting external coherency request to
proceed and supplies a Shared processor coherency
state response. After observing the processor
coherency state response, the external agent provides
an external ACK completion response for the
conflicting external coherency request. At some later
time, the external agent supplies an external response
for the processor upgrade request that is pending
response. This external response may not be an
external ACK completion response unless it is
associated with an external block data response.

Invalidate

Chapter 6 System Interface Operations

162 User’s Manual U10278EJ4V0UM

External Coherency Request Latency

This section describes the R10000 external coherency request latency. Figure 6-26 depicts
the following:

• an external coherency request which targets the processor

• the resulting processor coherency state response

• the potential processor coherency data response

Two external coherency request latency parameters are also defined:

• the processor coherency state response latency, tpcsr, specifies the time from
external coherency request to processor coherency state response

• the processor coherency data response latency, tpcdr, specifies the time from
the external coherency request to the processor coherency data response if a
master, or to the assertion of the processor coherency data response indication
on SysState[0] if a slave.

Figure 6-26 External Coherency Request Latency Parameters

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

ExtCoh

Adr

EA EA EA EA EA EA EA EA EA EA P0P0P0P0 P0 P0-

DrtExc

RspDat RspDat RspLst

Dat0 Dat14 Dat15

SysRespVal*

10 00

Empty

tpcdr

tpcsr

User’s Manual U10278EJ4V0UM 163

Chapter 6 System Interface Operations

The external coherency request latency is presented in Table 6-30.

Table 6-30 External Coherency Request Latency

‡ This latency assumes no other previously issued external coherency requests are outstanding. 1
to 3 additional PClk cycles may be required for synchronization with SysClk depending on the
SysClkDiv mode bits.

* This value assumes a 32-word secondary cache block size.

† This value assumes the external coherency request hits a cached or outgoing buffer entry.

‡‡ This value assumes the external coherency request does not hit a cached or outgoing buffer entry,
the secondary cache is not busy, and the external coherency request hits in the MRU way of the
secondary cache. If the external coherency request misses in the most-recently used (MRU) way
of the secondary cache, 1 to 3 additional PClk cycles are required to query the LRU way of the
secondary cache, depending on the SCClkDiv mode bits.

** This value assumes the external coherency request does not hit a cached or outgoing buffer entry,
the secondary cache just commenced an index-conflicting CACHE Hit WriteBack Invalidate (S),
and the external coherency request misses in the secondary cache MRU way.

†† This value assumes the external coherency request hits an outgoing buffer entry.

‡‡‡ This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cache is not busy, the external coherency request hits in the MRU way of the
secondary cache, no subset primary data cache blocks are inconsistent, and the external
coherency request is secondary cache block-aligned. If the external coherency request misses in
the MRU way of the secondary cache, 1 to 3 additional PClk cycles are required to query the
LRU way of the secondary cache, depending on the SCClkDiv mode bits.

*** This value assumes the external coherency request does not hit a cached or outgoing buffer
entry, the secondary cache just commenced an index-conflicting CACHE Hit WriteBack
Invalidate (S), the external coherency request hits in the LRU way of the secondary cache, all
subset primary data cache blocks are inconsistent, and the external coherency request is not
secondary cache block-aligned.

Latency‡ (PClk cycles)

Processor Coherency State
Response (tpcsr)

Processor Coherency Data Re-
sponse* (tpcdr)

SCClkDiv Min† Typ‡‡ Max** Min†† Typ‡‡‡ Max***

1 5 10 39 8 28 70

1.5 5 13 48 8 33 88

2 5 14 59 8 38 105

2.5 5 16 71 8 43 128

3 5 17 79 8 43 141

Chapter 6 System Interface Operations

164 User’s Manual U10278EJ4V0UM

SysGblPerf* Signal

The SysGblPerf* signal is provided for systems implementing a relaxed consistency
memory model. The external agent asserts this signal when all processor requests are
globally performed, thereby allowing the processor to graduate SYNC instructions. The
external agent negates this signal when some processor requests are not yet globally
performed, thereby preventing the processor from graduating SYNC instructions.

To prevent a SYNC instruction from graduating, the external agent must negate the
SysGblPerf* signal no later than the same SysClk cycle in which it issued the external
completion response for a processor read or upgrade request which is not yet globally
performed. Also, the external agent must negate the SysGblPerf* signal no later than two
SysClk cycles after the address cycle of a processor double/single/partial-word write
request which has not yet been globally performed.

The SysGblPerf* signal may be permanently asserted in systems implementing a
sequential consistency memory model.

6.19 Cluster Bus Operation

A R10000 multiprocessor cluster may be created by directly attaching the System
interfaces of 2 to 4 R10000 processors, and providing an external cluster coordinator to
handle arbitration and coherency management.

The cluster coordinator arbitrates the multiprocessors using the SysReq*, SysGnt*, and
SysRel* signals.

A processor request issued by an R10000 processor in master state is observed as an
external request by any R10000 processors in the slave state on the cluster bus. This is
described Table 6-31.

Table 6-31 Relationship Between Processor and External Requests for the Cluster Bus

Processor Request External Request

Coherent block read shared Intervention shared

Coherent block read exclusive Intervention exclusive

Noncoherent block read Allocate request number

Double/single/partial-word read Allocate request number

Block write NOP

Double/single/partial-word write NOP

Upgrade Invalidate

Eliminate NOP

User’s Manual U10278EJ4V0UM 165

Chapter 6 System Interface Operations

In the same manner, a processor coherency data response issued by a processor in the
master state is observed as an external block data response by any processors in the slave
state.

External coherency requests that target a processor are handled in FIFO order and result in
processor coherency state responses. If an external coherency request that targets a
processor hits a DirtyExclusive secondary cache block, the processor also provides a
processor coherency data response.

Figure 6-27 presents an example of a processor read request with four R10000 processors
residing on the cluster bus. The CohPrcReqTar mode bit is asserted for a snoopy-based
coherency protocol. R100000 issues a processor coherent read exclusive request. This is
observed as an external intervention exclusive request by R100001, R100002, and R100003.
R100001 and R100003 respond with Invalid processor coherency state responses. R100002
responds with a DirtyExclusive processor coherency state response. Based on these
processor coherency state responses, the cluster coordinator allows R100002 to become
master of the System interface so that it may provide a processor coherency data response,
which will be observed as an external block data response by R100000. Finally, the cluster
coordinator issues an external ACK completion response to forward the external block data
response and to free the request number.

Figure 6-28 presents an example of a processor upgrade request with four R10000
processors residing on the cluster bus. The CohPrcReqTar mode bit is asserted for a
snoopy-based coherency protocol. R100000 issues a processor upgrade request, observed
as an external invalidate request by R100001, R100002, and R100003. R100002 and
R100003 provide Shared processor coherency state responses. R100001 provides an
Invalid processor coherency state response. Based on these processor coherency state
responses, the cluster coordinator issues an external ACK completion response for the
processor upgrade request to indicate that the request was successful and to free the request
number.

Chapter 6 System Interface Operations

166 User’s Manual U10278EJ4V0UM

Figure 6-27 R10000 Multiprocessor Cluster Processor Read Request Example

Cycle

SysClk

SysReq0*

SysGnt0*

SysVal*

SysStateVal0*

SysStatePar0

SysState0(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

RdExc RspDat RspDat RspLst

Adr Dat0 Dat14 Dat15

P0 P0 P0 P0 P0 P0 P0 P0 P0 P2P2P2P2 P2 P2

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

SysStateVal1*

SysStatePar1

SysState1(2:0)

SysStateVal2*

SysStatePar2

SysState2(2:0)

SysStateVal3*

SysStatePar3

SysState3(2:0)

Ivd

Ivd

DrtExc

SysResp(4:0)

SysRespPar

SysRespVal*

ACK

-P0

0

0

0

0

10 0

0

0

Empty

User’s Manual U10278EJ4V0UM 167

Chapter 6 System Interface Operations

Figure 6-28 R10000 Multiprocessor Cluster Processor Upgrade Request Example

Cycle

SysClk

SysReq0*

SysGnt0*

SysVal*

SysStateVal0*

SysStatePar0

SysState0(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

Ugd

Adr

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 P0P0P0P0 P0 P0P0

SysReq1*

SysGnt1*

SysReq2*

SysGnt2*

SysReq3*

SysGnt3*

SysStateVal1*

SysStatePar1

SysState1(2:0)

SysStateVal2*

SysStatePar2

SysState2(2:0)

SysStateVal3*

SysStatePar3

SysState3(2:0)

Ivd

Shd

Shd

SysResp(4:0)

SysRespPar

SysRespVal*

ACK

0

0

0

0

0

0

0

Chapter 6 System Interface Operations

168 User’s Manual U10278EJ4V0UM

6.20 Support for I/O

The processor assumes a memory-mapped I/O model. Consequentially, no special System
interface encodings are provided, or required to designate I/O accesses. It is left to the
programmer to ensure that I/O addresses have the appropriate TLB mappings.

The processor supports system designs utilizing hardware or software for coherent I/O.
The external coherency requests are useful for creating systems with hardware I/O
coherency, and the CACHE instruction is sufficient for creating a system with software I/O
coherency.

6.21 Support for External Duplicate Tags

Some system designs implement an external duplicate copy of the secondary cache tags to
reduce the coherency request latency and also filter out unnecessary external coherency
requests made to the R10000 processor.

For such systems, it must be remembered that blocks may reside in either the secondary
cache or in the outgoing buffer. During the address cycle of processor block read requests,
the secondary cache block former state is provided. The external agent may use this
information to maintain the external duplicate tags.

Typically, in a multiprocessor system using the cluster bus, the cluster coordinator specifies
a free request number for an external coherency request. However, in a system using a
duplicate-tag or directory-based coherency protocol, where the CohPrcReqTar mode bit
is negated, the cluster coordinator may specify a busy request number for an external
coherency request, providing each targeted R10000 processor has the request number busy
due to an outstanding processor coherency request from another processor.

For example, suppose the processor in master state issues a processor coherent block read
or upgrade request. The processors in slave state observe the processor request as an
external coherency request that targets the external agent only, causing the associated
request number to become busy. The cluster coordinator checks the duplicate tag or
directory structure to determine if the block resides in the cache of one of the processors
that was in slave state. If necessary, the cluster coordinator issues an external coherency
request targeted at one or more of the processors that were in slave state. By using the same
request number as the original processor request, this external coherency request does not
consume a free request number, and allows a potential processor coherency data response
to be supplied as an external block data response to the original processor request.

User’s Manual U10278EJ4V0UM 169

Chapter 6 System Interface Operations

6.22 Support for a Directory-Based Coherency Protocol

Some system designs implement a directory-based coherency protocol.

For such systems, the processor provides the processor eliminate request cycle. If the
PrcElmReq mode bit is asserted, the processor issues a processor eliminate request
whenever it intends to eliminate a Shared, CleanExclusive, or DirtyExclusive block from
the secondary cache. During the address cycle of the processor eliminate request, the
physical address and the secondary cache block former state are provided. The external
agent may then use this information to maintain an external directory structure.

6.23 Support for Uncached Attribute

The processor supports a 2-bit user-defined Uncached Attribute, which is driven on
SysAD[59:58] during the address cycle of the following:

• processor double/single/partial-word read requests

• double/single/partial-word write requests

• block write requests resulting from completely gathered uncached accelerated
blocks

For unmapped accesses, the uncached attribute is sourced from VA[58:57].

For mapped accesses, the uncached attribute is sourced from the TLB Uncached Attribute
field. The TLB Uncached Attribute field may be initialized in 64-bit mode using bits 63:62
of the CP0 EntryLo0 and EntryLo1 registers.

Chapter 6 System Interface Operations

170 User’s Manual U10278EJ4V0UM

6.24 Support for Hardware Emulation

When using the R10000 processor in hardware emulation, it is desirable to operate the
System interface at a relative low frequency (typically 1 MHz or below). Since the R10000
processor contains dynamic circuitry, an external agent cannot simply provide low
frequency SysClk, so a SysCyc* input to the processor allows an external agent to define
a virtual system clock, and yet supply a SysClk within the acceptable operating range. The
assertion of SysCyc* in a particular SysClk cycle creates a virtual system clock pulse four
SysClk cycles later. SysCyc* may be asserted aperiodically.

In a normal system environment, the SysCyc* input should be permanently asserted.

Figure 6-29 depicts the use of SysCyc* to create a virtual SysClk of one-third the normal
SysClk frequency.

Figure 6-29 Hardware Emulation Protocol

Cycle

SysClk

SysReq*

SysGnt*

SysVal*

SysRespPar

SysResp(4:0)

SysStateVal*

SysStatePar

SysState(2:0)

SysWrRdy*

SysRdRdy*

SysRel*

Master

SysCmdPar

SysCmd(11:0)

SysAD(63:0)

SysADChk(7:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

P0 P0 P0 P0 P0 P0 P0 P0 P0 P0 EAEAEA- - -P0

SysRespVal*

SysCyc*

DSPWr ReqLst DSPRd RspLst

Virtual SysClk

Adr Dat Adr Dat

User’s Manual U10278EJ4V0UM 171

7. Clock Signals

The R10000 processor has differential PECL clock inputs, SysClk and SysClk*, from
which all processor internal clock signals and secondary cache clock signals are derived.

Three major clock domains are in the processor:

• the System interface clock domain, which operates at the system clock
frequency and controls the System interface signals

• the internal processor clock domain, which controls the processor core logic

• the secondary cache clock domain, which controls signals communicating
with the external secondary cache synchronous SRAM

These domains are described in this chapter.

Chapter 7 Clock Signals

172 User’s Manual U10278EJ4V0UM

7.1 System Interface Clock and Internal Processor Clock Domains

In high performance systems, PECL-level differential clocks are routinely used to
minimize system clock skews. The R10000 processor receives differential system clock
signals at the SysClk and SysClk* pins; two additional pins, SysClkRet and SysClkRet*,
are the return paths for termination of these signals.

SysClk and SysClk* are used to drive an on-chip phase-locked loop (PLL), which
multiplies the system clock to create an internal processor clock, PClk.

The R10000 processor always communicates with the system at the SysClk frequency, and
PClk always runs at a frequency-multiple of SysClk, according to the following formula:

PClk = SysClk*(SysClkDiv+1)/2

For example, in a 50 MHz system with SysClkDiv = 7 and SCClkDiv=2,
PClk= 50*8/2 = 200 MHz.

NOTE: It is preferred that the R10000 processor uses a differential PECL clock input.
However, in a less-aggressive system, a CMOS/TTL single-ended clock can be used
to drive the processor, provided its complementary clock input, SysClk*, is tied to an
appropriate reference voltage (1.4V for TTL, Vcc/2 for CMOS). In any case, the
reference voltage applied to SysClk* should not be less than 1.2V.

User’s Manual U10278EJ4V0UM 173

Chapter 7 Clock Signals

7.2 Secondary Cache Clock

The processor uses registered synchronous SRAMs for its secondary cache, to allow
pipelined accesses.

The processor provides 6 pairs of differential clock outputs, SCClk(5:0) and SCClk*(5:0),
to be used by the secondary cache synchronous SRAMs. These outputs swing between
VccQSC and Vss. The SCClkTap mode bits (Mode bits are described in Chapter 8, the
section titled “Mode Bits.”) specify the alignment of SCClk(5:0) and SCClk*(5:0) relative
to the internal secondary cache clock. Note that the output buffer delay is not included.

The secondary cache interface clock is generated by dividing down the internal processor
clock, PClk.

SCClk is related to SysClk according to the following formula:

 SCClk = SysClk*(SysClkDiv+1)/(SCClkDiv+1)

For example, in a 50 MHz system with SysClkDiv=7 and SCClkDiv=2,
SCClk = 50*8/3 = 133 MHz.

Chapter 7 Clock Signals

174 User’s Manual U10278EJ4V0UM

7.3 Phase-Locked-Loop

The processor uses the internal PLL for clock generation and multiplication as shown in
Figure 7-1.

Values of the termination resistors for the SysClkRet/SysClkRet* signals are system-
dependent. The system designer must select a value based upon the characteristic
impedance of the board, therefore it is beyond the scope of this manual to specify values
for these termination resistors.

Figure 7-1 R10000 System and Secondary Cache Clock Interface

SRAM

SysClk

SysClk*

SysClkRet*

SysClkRet

Termination resistors

R10000 PECL differential

SCClk(5:0)

SCClk(5:0)*

PLL
clock
generators

input system clock

HSTL differential
output clocks

Replicated

PClk

SRAM

User’s Manual U10278EJ4V0UM 175

8. Initialization

This section describes initialization of the R10000 processor, including initialization of
logical registers.

Initialization of the processor occurs during a reset sequence. The processor supports three
separate reset sequences:

• Power-on reset

• Cold reset

• Soft reset

These sequences are described in this chapter.

Also described are the mode bits.

Chapter 8 Initialization

176 User’s Manual U10278EJ4V0UM

8.1 Initialization of Logical Registers

After a power-on or cold reset sequence, all logical registers (both in the integer and the
floating-point register files) must be written before they can be read. Failure to write any
of these registers before reading from them will have an unpredictable result.

NOTE: On the initialization of the FPU after a power-on or cold reset, a write for
initialization of the busy-bit table can be performed by using MTC1 instruction with
FR=1 (during the initialization only) or DMTC1 instruction.

8.2 Power-On Reset Sequence

The Power-on Reset sequence is used to reset the processor after the initial power-on, or
whenever power or SysClk are interrupted.

The Power-on Reset sequence is as follows:

• The external agent negates DCOk.

• The external agent asserts SysReset*.

• The external agent negates SysGnt*.

• The external agent negates SysRespVal*.

• Once Vcc, VccQ[SC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk stabilize,
the external agent waits at least 1ms and then asserts DCOk.

• At this time, the System interface resides in slave state and all internal state is
initialized.

• The SysClkDiv mode bits default to divide-by-1.

• The SCClkDiv mode bits default to divide-by-3.

• After waiting at least 100 ms for the internal clocks to stabilize, the external
agent loads the mode bits into the processor by driving the mode bits on
SysAD[63:0], waiting at least two SysClk cycles, and then asserting SysGnt*
for at least one SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to restabilize, the
external agent synchronizes all clocks internal to the processor. This is
performed by asserting SysRespVal* for one SysClk cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize, (a
third 100 ms restabilization period) the external agent negates SysReset*.

• The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore the
system state bus until the processor asserts SysReq*. The assertion of
SysReq* indicates the processor is ready for operation. In a cluster
arrangement, all processors must assert SysReq*, indicating they are ready for
operation.

NOTE: If the virtual SysClk is used during the reset sequence, the mode bits,
SysGnt*, SysRespVal*, and SysReset* should all be referenced to the virtual SysClk
that is created with SysCyc*. This approach will cause the R10000 to come out of reset
synchronously with the virtual SysClk, which will allow repeatable and lock-step
operation (see Chapter 6, the section titled “Support for Hardware Emulation,” for
description of virtual SysClk operation).

User’s Manual U10278EJ4V0UM 177

Chapter 8 Initialization

During a Power-on Reset sequence, all internal state is initialized. A Power-on Reset
sequence causes the processor to start with the Reset exception.

Figure 8-1 shows the Power-on Reset sequence.

Figure 8-1 Power-On Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

≥100ms

SysReq*

Master - - - - EA EA EA EA EA EA EA EA EA EA EA - Pn

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

≥1ms

Modes

Vcc[Pa,Pd]

≥100ms

SysRespVal*

≥100ms

Chapter 8 Initialization

178 User’s Manual U10278EJ4V0UM

8.3 Cold Reset Sequence

The Cold Reset sequence is used to reset the entire processor, and possibly alter the mode
bits while power and SysClk are stable.

The Cold Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts SysReset*.

• After waiting at least 100 ms, the external agent loads the mode bits into
R10000. This is performed by driving the mode bits on SysAD[63:0], waiting
at least two SysClk cycles, and then asserting SysGnt* for at least one
SysClk cycle.

• After waiting at least another 100 ms for the internal clocks to restabilize, the
external agent synchronizes all processor internal clocks by asserting
SysRespVal* for one SysClk cycle.

• After waiting at least 100 ms for the internal clocks to again restabilize, (a
third 100 ms restabilization period) the external agent negates SysReset*.

• The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore the
system state bus until the processor asserts SysReq*. The assertion of
SysReq* indicates the processor is ready for operation. In a cluster
arrangement, all processors must assert SysReq*, indicating they are ready for
operation.

During a Cold Reset sequence all processor internal state is initialized. A Cold Reset
sequence causes the processor to start with a Reset exception.

Figure 8-2 shows the cold reset sequence.

Figure 8-2 Cold Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

≥100ms

SysReq*

Master X X X - EA EA EA EA EA EA EA EA EA EA EA - Pn

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

Modes

Vcc[Pa,Pd]

≥100ms

SysRespVal*

≥100ms

User’s Manual U10278EJ4V0UM 179

Chapter 8 Initialization

8.4 Soft Reset Sequence

A Soft Reset sequence is used to reset the external interface of the processor without
altering the mode bits while power and SysClk are stable.

The Soft Reset sequence is as follows:

• The external agent negates SysGnt* and SysRespVal*.

• After waiting at least one SysClk cycle, the external agent asserts SysReset*
for at least 16 SysClk cycles.

• The external agent must retain mastership of the System interface, refrain
from issuing external requests or nonmaskable interrupts, and ignore system
state bus until the processor asserts SysReq*. The assertion of SysReq*
indicates the processor is ready for operation. In a cluster arrangement, all
processors must assert SysReq*, indicating they are ready for operation.

During a Soft Reset sequence, all external interface state is initialized. The internal and
secondary cache clocks are not affected by a Soft Reset sequence. The general purpose,
CP0, and CP1 registers are preserved, as well as the primary and secondary caches.

A Soft Reset sequence causes a Soft Reset exception, in which the Soft Reset exception
handler executes instructions from uncached space and uses CACHE instructions to
analyze and dump the contents of the primary and secondary caches. To resume normal
operation, a Cold Reset sequence must be initiated.

Figure 8-3 presents the Soft Reset sequence.

Figure 8-3 Soft Reset Sequence

DCOk

SysGnt*

SysAD(63:0)

SysReset*

SysReq*

Master X X X X X X X X X X - EA EA EA EA - Pn

SysRel*

Vcc

VccQ[SC,Sys]

Vref[SC,Sys]

SysClk

Vcc[Pa,Pd]

SysRespVal*

≥ 16 SysClk
 cycles

Chapter 8 Initialization

180 User’s Manual U10278EJ4V0UM

8.5 Mode Bits

The R10000 processor uses mode bits to configure the operation of the microprocessor.
These mode bits are loaded into the processor from the SysAD[63:0] bus during a power-
on or cold reset sequence while SysGnt* is asserted. The SysADChk[7:0] bus does not
have to contain correct ECC during mode bit initialization. During the reset sequence, the
mode bits obtained from SysAD[24:0] are written into bits 24:0 of the CP0 Config register.

The mode bits are described in Table 8-1.

Table 8-1 Mode Bits

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

2:0
Kseg0CA
Specifies the kseg0 cache algorithm.

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable noncoherent
Cacheable coherent exclusive
Cacheable coherent exclusive on write
Reserved
Uncached accelerated

4:3
DevNum
Specifies the processor device number.

0-3

5

CohPrcReqTar
Specifies the target of processor
coherent requests issued on the System
interface by the processor.

0
1

External agent only
Broadcast

6

PrcElmReq
Specifies whether to enable processor
eliminate requests onto the System
interface by the processor.

0
1

Disable
Enable

8:7

PrcReqMax
Specifies the maximum number of
outstanding processor requests allowed
on the System interface by the
processor.

0
1
2
3

1 outstanding processor request
2 outstanding processor requests
3 outstanding processor requests
4 outstanding processor requests

User’s Manual U10278EJ4V0UM 181

Chapter 8 Initialization

Table 8-1 (cont.) Mode Bits

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

12:9

SysClkDiv
Sets PClk to SysClk ratio; determines the
System interface clock frequency; see
Chapter 7, the section titled “System
Interface Clock and Internal Processor
Clock Domains.”

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Result of division by 3.5
Result of division by 4
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
Reserved
Reserved
Result of division by 2
Result of division by 2.5
Result of division by 3
Result of division by 3.5
Result of division by 4
Result of division by 4.5
Result of division by 5
Result of division by 5.5
Result of division by 6
Result of division by 7‡‡

Reserved
Reserved
Reserved

13
SCBlkSize
Specifies the secondary cache block size.

0
1

16-word
32-word

14
SCCorEn
Specifies the method of correcting
secondary cache data array ECC errors.

0
1

Retry access through corrector
Always access through corrector

15
MemEnd
Specifies the memory system endianness.

0
1

Little endian
Big endian

18:16
SCSize
Specifies the size of the secondary cache.

0
1
2
3
4
5
6
7

512 Kbyte
1 Mbyte
2 Mbyte
4 Mbyte
8 Mbyte
16 Mbyte
Reserved
Reserved

21:19

SCClkDiv
Sets PClk to SCClk ratio; determines the
secondary cache clock frequency; see
Chapter 7, the section titled “System
Interface Clock and Internal Processor
Clock Domains.”

0
1
2
3
4
5
6
7

Reserved
Result of division by 1
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Reserved
Reserved

Reserved
Reserved
Result of division by 1.5
Result of division by 2
Result of division by 2.5
Result of division by 3
Reserved
Result of division by 4

24:22 Reserved

0
1
2
3
4

5
6
7

Reserved
Reserved
Reserved
Reserved
Delay Speculative Dirty -
fix for speculative store†

Reserved
Reserved
Reserved

Chapter 8 Initialization

182 User’s Manual U10278EJ4V0UM

Table 8-1 (cont.) Mode Bits

‡‡ For R12000A only. This setting is reserved in the R12000 and R12000L.

† The Boot Mode bit 24 corresponds to the Config register[24] bit and this controls DSD during user mode. However, the DSD mode can also be enabled in
the kernel mode by setting the Status register[24] bit. Config register[24] is read-only and can be set only at boot time.

If the DSD mode is set –

a) R12000 will not set the Dirty bit for a secondary cache block until the store instruction is the oldest in the Active List and is about to be executed. (An
interrupt could cause a case where the dirty bit is set (store is no longer speculative), but the store does not immediately graduate. We believe this case
should not cause any problem. This mode does prevent speculative stores from setting the dirty bit.)

b) This mode will have slightly lower performance due to the delay in the setting of the Dirty bit. This delay will occur just once per block refill from main
memory, when it is necessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the processor will continue to overlap execution of
other instructions. Once a block becomes dirty in secondary cache, this mode has no performance effect.

SysAD Bit Name and Function Value
Mode Setting

R10000 R12000

28:25

SCClkTap
Specifies the alignment†† of SCClk[5:0]
and SCClk*[5:0] relative to the internal
secondary cache clock.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

SCClk same phase as internal clock
SCClk 1/12 PClk period earlier than internal clock
SCClk 2/12 PClk period earlier than internal clock
SCClk 3/12 PClk period earlier than internal clock
SCClk 4/12 PClk period earlier than internal clock
SCClk 5/12 PClk period earlier than internal clock
undefined
undefined
SCClk 6/12 PClk period earlier than internal clock
SCClk 7/12 PClk period earlier than internal clock
SCClk 8/12 PClk period earlier than internal clock
SCClk 9/12 PClk period earlier than internal clock
SCClk 10/12 PClk period earlier than internal clock
SCClk 11/12 PClk period earlier than internal clock
undefined
undefined

29‡ Reserved 0

30‡

ODrainSys
Specifies whether or not to configure
select††† System interface bidirectional
and output signals as open drain.

0
1

Push-pull
Open drain

31
CTM
Specifies whether or not to enable cache
test mode.

0
1

Disable
Enable

63:32 Reserved 0

User’s Manual U10278EJ4V0UM 183

Chapter 8 Initialization

c) In this mode, a miss in secondary cache, due to a store instruction which is not already the oldest in the pipeline, will cause a refill to the “clean exclusive”
state. A hit to a shared line will immediately cause an upgrade to “clean exclusive”. Thus, bus operations (which are relatively slow) will still begin
speculatively.

Independent of the DSD mode, R12000 will delay a “cached, non-coherent” load until it is the oldest instruction. This change is implemented because a
speculative load accessing an unmapped “xkphys” address as “cached, non-coherent” might bring data into the secondary cache without the proper
coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cache lines in shared or clean states except the “xkphys” case described above.

†† Does not include the output buffer delay.

†††SysReq*, SysRel*, SysCmd[11:0], SysCmdPar, SysAD[63:0], SysADChk[7:0], SysVal*, SysState[2:0], SysStatePar, SysStateVal*,
SysCorErr*, SysUncErr*

‡ In the R12000A, the Boot Mode bits 30:29 are assigned to HSTL Mode bits as below;

SysAD Bit Name and Function Value Mode Setting

29
HSTL Mode
Specifies the HSTL class of output pins on the secondary cache
interface.

0
1

HSTL 1
HSTL 2

30
HSTL Mode
Specifies the HSTL class of output pins on the System interface.

0
1

HSTL 1
HSTL 2

184 User’s Manual U10278EJ4V0UM

9. Error Protection and Handling

This chapter presents the error protection and handling features provided by the R10000
processor.

Two types of errors can occur in an R10000 system:

• correctable

• uncorrectable

The following two sections describe them.

User’s Manual U10278EJ4V0UM 185

Chapter 9 Error Protection and Handling

9.1 Correctable Errors

Correctable errors consist of:

• secondary cache tag array correctable ECC errors

• secondary cache data array correctable ECC errors

• System interface address/data bus correctable ECC errors

When the processor detects a correctable error, the error is automatically corrected, and
normal operation continues. Secondary cache array scrubbing is not performed.

The processor informs the external agent that a correctable error was detected and then
corrected by asserting the SysCorErr* signal for one SysClk cycle.

Chapter 9 Error Protection and Handling

186 User’s Manual U10278EJ4V0UM

9.2 Uncorrectable Errors

Uncorrectable errors consist of:

• Primary instruction cache array parity errors

• Primary data cache array parity errors

• Secondary cache tag array uncorrectable ECC errors

• Secondary cache data array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus uncorrectable ECC errors

• System interface response bus parity errors

When the processor detects an uncorrectable error, a Cache Error exception is posted. In
general, the detection of an uncorrectable error does not disrupt any ongoing operations.
However, the instruction fetch and load/store units never use data which contains an
uncorrectable error.

To inform the external agent, the processor asserts SysUncErr* for one SysClk cycle
whenever any of the following uncorrectable errors are detected:

• Primary instruction cache tag array parity errors

• Primary data cache tag array parity errors

• Secondary cache tag array uncorrectable ECC errors

• System interface command bus parity errors

• System interface address/data bus external address cycle uncorrectable ECC
errors

• System interface response bus parity errors.

The processor informs the external agent that an uncorrectable tag error has been detected
by asserting SysUncErr* for one SysClk cycle.

User’s Manual U10278EJ4V0UM 187

Chapter 9 Error Protection and Handling

9.3 Propagation of Uncorrectable Errors

The processor assists the external agent in limiting the propagation of uncorrectable errors
in the following manner:

• During external block data response cycles, if the data quality indication on
SysCmd(5) is asserted, or if an uncorrectable ECC error is encountered on the
system address/data bus while the ECC check indication on SysCmd(0) is
asserted, the processor intentionally corrupts the ECC of the corresponding
secondary cache quadword after receiving an external ACK completion
response.

• During processor data cycles, the processor asserts the data quality indication
on SysCmd(5) if the data is known to contain uncorrectable errors. The
System interface ECC is never intentionally corrupted; the SysCmd(5) bit is
used to indicate corrupted data.

• If an uncorrectable cache tag error is detected, the processor asserts
SysUncErr* for one SysClk cycle.

• An external coherency request that detects a secondary cache tag array
uncorrectable error asserts the secondary cache block tag quality indication on
SysState(2) during the corresponding processor coherency state response.

• If an external coherency request requires a processor coherency data response,
and a primary data cache tag parity error is encountered during the primary
cache interrogation, or a secondary cache tag array uncorrectable error is
encountered during the secondary cache interrogation, the processor asserts
the data quality indication on SysCmd(5) for all doublewords of the
corresponding processor coherency data response.

Chapter 9 Error Protection and Handling

188 User’s Manual U10278EJ4V0UM

9.4 Cache Error Exception

The processor indicates an uncorrectable error has occurred by asserting a Cache Error
exception.

The following four internal units detect and report uncorrectable errors:

• instruction cache

• data cache

• secondary cache

• System interface

Each of these four units maintains a unique local CacheErr register.

A Cache Error exception is imprecise; that is, it is not associated with a particular
instruction. When any of the four units post a Cache Error exception, completed
instructions are graduated before the Cache Error exception is taken. If there are Cache
Error exceptions posted from more than one of the units, the exceptions are prioritized in
the following order:

1. instruction cache

2. data cache

3. secondary cache

4. System interface.

The corresponding local CacheErr register is transferred to the CP0 CacheErr register and
the CP0 Status register ERL bit is asserted. Instruction fetching begins from 0xa0000100
or 0xbfc00300, depending on the CP0 Status register BEV bit. The CP0 ErrorEPC register
is loaded with the virtual address of the next instruction that has not been graduated, so that
execution can resume after the Cache Error exception handler completes.

When ERL=1, the user address region becomes a 2-Gbyte uncached space mapped directly
to the physical addresses. This allows the Cache Error handler to save registers directly to
memory without having to use a register to construct the address.

The processor does not support nested Cache Error exception handling. While the CP0
Status register ERL bit is asserted, any subsequent Cache Error exceptions are ignored.
However, the detection of additional uncorrectable errors is not inhibited, and additional
Cache Error exceptions may be posted.†

† The hardware does not handle the case of multiple Cache Error exceptions in any special
manner; caches are refilled as normal, and data forwarded to the appropriate functional units.

User’s Manual U10278EJ4V0UM 189

Chapter 9 Error Protection and Handling

9.5 CP0 CacheErr Register EW Bit

When a unit detects an uncorrectable error, it records information about the error in its local
CacheErr register and posts a Cache Error exception. If a subsequent uncorrectable error
occurs while waiting for the Cache Error exception to be taken and transfer of the local
CacheErr register to the CP0 CacheErr register to complete, the EW bit is set in its local
CacheErr register. Once the Cache Error exception is taken, the EW bit in the CP0
CacheErr register is set and the Cache Error exception handler now determines that a
second error has occurred.

Once the CP0 CacheErr register EW bit is set, it can only be cleared by a reset sequence.

9.6 CP0 Status Register DE Bit

Asserting the CP0 Status register DE bit suppresses the posting of future Cache Error
exceptions. All local CacheErr registers are also prevented from being updated. Unlike the
R4400 processor architecture, when the DE bit is asserted, cache hits are not inhibited when
an uncorrectable error is detected. Correctable errors are handled normally when the DE
bit is set.

NOTE: Be careful when setting this bit, since it may cause erroneous data and/or
instructions to be propagated.

9.7 CACHE Instruction

Uncorrectable error protection is suppressed for the Index Load Tag, Index Store Tag, Index
Load Data, and Index Store Data CACHE instruction variations. These four variations may
be used within a Cache Error exception handler to examine the cache tags and data without
the occurrence of further uncorrectable errors.

Chapter 9 Error Protection and Handling

190 User’s Manual U10278EJ4V0UM

9.8 Error Protection Schemes Used by R10000

Error protection schemes used in the R10000 processor are:

• parity

• sparse encoding

• ECC

These schemes are described in this section, and listed in Table 9-1.

Table 9-1 Error Protection Schemes Used in the R10000 Processor

Parity

Parity is used to protect the primary caches and various System interface buses. The
processor uses both odd and even parity schemes:

• in an odd parity scheme, the total number of ones on the protected data and
the corresponding parity bit should be odd

• in an even parity scheme, the total number of ones on the protected data and
the corresponding parity bit should be even.

Sparse Encoding

A sparse encoding is used to protect the primary data cache state mod array. In such a
scheme, valid encodings are chosen so that altering a single bit creates an invalid encoding.

ECC

An error correcting code (ECC) is used to protect the secondary cache tag, the secondary
cache data, and the System interface address/data bus. A distinct single-bit error correction
and double-bit error detection (SECDED) code is used for each of these three applications.

Error Detection Used What is Protected

Parity
Primary caches
Secondary cache data
System interface buses

Sparse encoding Primary data cache state mod array

ECC (SECDED)
Secondary cache tag
Secondary cache data
System interface address/data bus

User’s Manual U10278EJ4V0UM 191

Chapter 9 Error Protection and Handling

9.9 Primary Instruction Cache Error Protection and Handling

This section describes error protection and error handling schemes for the primary
instruction cache.

Error Protection

The primary instruction cache arrays have the following error protection schemes, as listed
in Table 9-2.

Table 9-2 Primary Instruction Cache Array Error Protection

Error Handling

All primary instruction cache errors are uncorrectable. If an error is detected, the
instruction cache unit posts a Cache Error exception and initializes the D, TA, TS, and PIdx
fields in the local CacheErr register (see Chapter 11, the section titled “CacheErr Register
(27),” for more information). If an error is detected on the tag address or state array, the
processor informs the external agent that an uncorrectable tag error was detected by
asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 27-bit Even parity

Tag State 1-bit Even parity

Data 36-bit Even parity

LRU 1-bit None

Chapter 9 Error Protection and Handling

192 User’s Manual U10278EJ4V0UM

9.10 Primary Data Cache Error Protection and Handling

This section describes error protection and error handling schemes for the primary data
cache.

Error Protection

The primary data cache arrays have the following error protection schemes, as listed in
Table 9-3.

Table 9-3 Primary Data Cache Array Error Protection

Error Handling

All primary data cache errors are uncorrectable. If an error is detected, the data cache unit
posts a Cache Error exception and initializes the EE, D, TA, TS, TM, and PIdx fields in the
local CacheErr register (see Chapter 11, the section titled “CacheErr Register (27),” for
more information). If an error is detected on the tag address, state, or mod array, the
processor informs the external agent that an uncorrectable tag error was detected by
asserting SysUncErr* for one SysClk cycle.

Array Width Error Protection

Tag Address 28-bit Even parity

Tag State 3-bit Even parity

Tag Mod 3-bit Sparse encoding

Data 8-bit Even parity

LRU 1-bit None

User’s Manual U10278EJ4V0UM 193

Chapter 9 Error Protection and Handling

9.11 Secondary Cache Error Protection and Handling

This section describes error protection and error handling schemes for the secondary cache.

Error Protection

The secondary cache arrays have the following error protection schemes, as listed in Table
9-4.

Table 9-4 Secondary Cache Array Error Protection

Error Handling

This section describes error handling for the data array and the tag array. As shown in Table
9-4, errors are not detected for the way prediction table.

Data Array

The 128-bit wide secondary cache data array is protected by a 9-bit wide ECC. An even
parity bit for the 128 bits of data is used for rapid detection of correctable (single-bit) errors;
when a correctable parity error is detected, the data is sent through the data corrector. The
parity bit does not have any logical effect on the processor’s ability to either detect or
correct errors.

Whenever the processor writes the secondary cache data array, it drives the proper ECC on
SCDataChk(8:0) and even parity on SCDataChk(9).

Array Width Error Protection

Data 128-bit 9-bit ECC + even parity

Tag 26-bit 7-bit ECC

MRU (Way prediction table) 1-bit None

Chapter 9 Error Protection and Handling

194 User’s Manual U10278EJ4V0UM

Data Array in Correction Mode

The secondary cache operates in correction mode when the SCCorEn mode bit is asserted.
Whenever the processor reads the secondary cache data array in correction mode, the data
is sent through a data corrector.

If a correctable error is detected, in-line correction is automatically made without affecting
latency. The processor informs the external agent that a correctable error was detected and
corrected by asserting SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error exception
and initializes the D and SIdx fields in the local CacheErr register (see Chapter 11, the
section titled “CacheErr Register (27),” for more information).

In correction mode, secondary-to-primary cache refill latency is increased by two PClk
cycles. Multiple processors, operating in a lock-step fashion, remain synchronized in the
presence of secondary cache data array correctable errors.

Table 9-5 presents the ECC matrix for the secondary cache data array.

U
ser’s M

anual U
10278E

J4V
0U

M
195

C
hapter 9 E

rror P
rotection and H

andling

Table 9-5 E
C

C
 M

atrix for Secondary C
ache D

ata A
rray

Check Bit 8 7654 3210

Data Bit 1111
2222
7654

1111
2222
3210

1111
1111
9876

1111
1111
5432

1111
1100
1098

1111
0000
7654

1111
0000
3210

9999
9876

9999
5432

9988
1098

8888
7654

8888
3210

7777
9876

7777
5432

7766
1098

6666
7654

6666
3210

5555
9876

5555
5432

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432

11
1098 7654 3210

Number of ones
per row

54
53
54

1
0
0

0000
1000
0100

0000
0000
0000

1111
1111
1000

1111
1111
0011

0000
1111
1111

0011
1111
1111

1111
0000
1111

1111
0011
1111

1110
0000
0000

0011
1111
0011

0000
1111
0000

0110
1111
0101

1111
0000
0000

1111
0111
0011

0000
0000
1111

0111
0011
1111

0010
1011
0101

0001
0010
1100

0110
0001
1000

0010
0000
0000

1101
0000
1000

0000
1000
0100

1011
0100
0000

0000
1000
0100

1101
1100
1100

0000
1000
0100

0000
0000
0011

0000
0010
1000

0010
1001
0100

0000
0000
1000

0010
1001
0100

0000
0000
1000

1000
0010
0101

0000
0000
0000

53
53
53

0
0
0

0010
0001
0000

0000
0000
1000

0100
0010
0001

0010
0001
0000

1000
0100
0010

0000
0000
0011

1000
0100
0010

0000
0011
0000

0001
1111
1000

0010
1111
0001

1111
1000
0100

1100
0000
0100

1111
1000
0100

1011
0000
0000

1111
1000
0100

1100
0100
0110

0011
1111
1011

1111
1111
1111

1111
1111
1111

1101
1111
1100

0110
0010
0011

0010
0001
1111

0000
0000
1101

0010
0001
1111

0010
0000
0011

0010
0001
1111

1000
1111
0100

0101
1111
1100

0000
1100
0000

0100
0010
0001

1100
0000
0000

0100
0010
0001

0000
1000
0100

1000
0100
0010

54
53
54

0
0
0

0000
0000
0000

0100
0010
0001

0000
0000
0000

1010
0100
0001

0001
0000
0000

0010
1001
0100

0001
0000
0000

0010
1001
0100

0001
0100
0010

1000
0100
0000

0010
0001
0000

0011
0011
1011

0010
0001
0000

0000
0010
1101

0010
0001
0000

0001
0000
1011

0000
0000
0100

0000
1000
0111

1011
0100
0000

1010
1101
0100

1111
1100
1110

1111
0000
0000

1100
1110
1111

0000
0000
1111

1010
1111
0110

0000
1111
0000

1101
1110
1100

0000
0000
0011

1111
1100
1111

1111
0000
1111

1111
1111
1100

1111
1111
0000

1100
1111
1111

0001
1111
1111

Number of ones
per column

1 1111 1111 3333 3355 3333 3355 3333 3355 3333 3355 3333 3555 3333 3355 3333 3555 3355 5555 5555 5533 5553 3333 5533 3333 5553 3333 5533 3333 5533 3333 5533 3333 5533 3333

Chapter 9 Error Protection and Handling

196 User’s Manual U10278EJ4V0UM

Data Array in Noncorrection Mode

When the SCCorEn mode bit is negated, the secondary cache operates in noncorrection
mode. Whenever the processor reads the secondary cache data array in noncorrection
mode, it checks for even parity on SCDataChk(9). If a parity error is detected, it is
assumed that a correctable error has occurred, and the secondary cache block is again read
through a data corrector. During this re-read, the processor checks the SCDataChk(8:0)
bus for the proper ECC.

If a correctable error is detected, correction is automatically performed in-line. To inform
the external agent that a correctable error had been detected and corrected, the processor
asserts SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error exception
and initializes the D and SIdx fields in the local CacheErr register.

Secondary cache data array correctable errors are monitored with Performance Counter 0.

Tag Array

The 26-bit-wide secondary cache tag array is protected by a 7-bit-wide ECC.
Table 9-6 presents the ECC matrix for the secondary cache tag array.

Table 9-6 ECC Matrix for Secondary Cache Tag Array

Whenever the processor reads the secondary cache tag array, it checks the SCTagChk(6:0)
bus for the proper ECC. If a correctable error is detected, correction is automatically
performed in-line, without affecting latency. The processor asserts SysCorErr* for one
SysClk cycle to inform the external agent that a correctable error has been detected and
corrected. If an uncorrectable error is detected, the secondary cache unit posts a Cache
Error exception and initializes the TA and SIdx fields in the local CacheErr register. The
processor asserts SysUncErr* for one SysClk cycle to inform the external agent that an
uncorrectable tag error has been detected.

Whenever the processor writes the secondary cache tag array, it drives the proper ECC on
the SCTagChk(6:0) bus.

Check Bit 0 12 34 56

Data Bit 2
5

222
432

22
10

11
98

11
76

1111
5432

11
1098 7654 3210

Number of
ones per row

11
13
11

0
0
1

0100
1000
0010

1000
0100
1000

1000
0100
0001

0001
0010
1000

1111
1111
0000

1000
1111
1111

1000
0000
0100

1000
0100
0010

11
13
12
14

1
0
1
0

0100
1000
0010
1111

0100
0001
0010
1100

0010
1000
0100
1100

0100
1000
0100
1100

1000
0100
0010
0001

0100
0000
0010
0001

1111
1111
0010
0001

0000
1111
1111
0001

Number of ones
per column

3 3331 3311 3311 3311 3333 3333 3333 3333

User’s Manual U10278EJ4V0UM 197

Chapter 9 Error Protection and Handling

9.12 System Interface Error Protection and Handling

This section describes error protection and error handling schemes for the System interface.

Error Protection

The System interface buses have the following error protection schemes, as listed in Table
9-7.

Table 9-7 System Interface Bus Error Protection

Bus Width Error Protection

SysCmd 12-bit Odd parity

SysAD 64-bit 8-bit ECC

SysState 3-bit Odd parity

SysResp 5-bit Odd parity

Chapter 9 Error Protection and Handling

198 User’s Manual U10278EJ4V0UM

Error Handling

This section describes error handling on the system command bus, system address/data bus,
system state bus, and system response bus.

SysCmd(11:0) Bus

The 12-bit wide system command bus, SysCmd(11:0), is protected by odd parity.

Whenever the processor is in master state and it asserts SysVal* to indicate that it is driving
valid information on the SysCmd(11:0) bus, it also drives odd parity on the SysCmdPar
signal.

Whenever the processor is in slave state and an external agent asserts SysVal* to indicate
that it is driving valid information on the SysCmd(11:0) bus, the processor checks the
SysCmdPar signal for odd parity. If a parity error is detected, the processor ignores the
SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle. The System interface unit
posts a Cache Error exception and sets the SC bit in the local CacheErr register.
Additionally, the processor informs the external agent by asserting SysUncErr* for one
SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, the processor to
become unsynchronized with other processors or the external agent on the cluster
bus.

User’s Manual U10278EJ4V0UM 199

Chapter 9 Error Protection and Handling

SysAD(63:0) Bus

The 64-bit wide system address/data bus, SysAD(63:0), is protected by an 8-bit-wide ECC.

Processor in Master State

Whenever the processor is in master state and it asserts SysVal* to indicate it is driving
valid information on the SysAD(63:0) bus, it also drives the proper ECC on the
SysADChk(7:0) bus.

Processor in Slave State

Whenever the processor is in slave state, error checking is enabled with the assertion of
SysCmd(0), and an external agent asserts SysVal* to indicate it is driving valid information
on the SysAD(63:0) bus, the processor checks the SysADChk(7:0) bus for the proper ECC.

Correctable Error Detected

If a correctable error is detected during an external address cycle, or during an external data
cycle for a processor read or upgrade request originated by the R10000 processor,
correction is automatically performed in-line without affecting latency. The processor
asserts SysCorErr* for one SysClk cycle to inform the external agent that a correctable
error has been detected and corrected.

Uncorrectable Error Detected

If an uncorrectable error is detected during an external address cycle, the processor ignores
the SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle, and the System interface
unit posts a Cache Error exception and sets the SA bit in the local CacheErr register.
Additionally, the processor informs the external agent by asserting SysUncErr* for one
SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, this processor
may become unsynchronized with other processors or the external agent on the
cluster bus.

If an uncorrectable error is detected or the data quality indication on SysCmd(5) is asserted
during an external data cycle for a processor read or upgrade request originated by the
processor, the R10000 asserts the corresponding incoming buffer uncorrectable error flag.

When the processor forwards block data from an incoming buffer entry after receiving an
external ACK completion response, the associated incoming buffer uncorrectable error
flags are checked, and if any are asserted, the System interface unit posts a single Cache
Error exception and initializes the EE, D, and SIdx fields in the local CacheErr register.

When the processor forwards double/single/partial-word data from an incoming buffer
entry after receiving an external ACK completion response, the associated incoming buffer
uncorrectable error flag is checked and, if asserted, the System interface unit posts a Bus
Error exception.

Table 9-8 presents the ECC matrix for the System interface address/data bus. This ECC
matrix is identical to that used by the R4X00 System interface.

Chapter 9 Error Protection and Handling

200 User’s Manual U10278EJ4V0UM

Table 9-8 ECC Matrix for System Interface Address/Data Bus

Check Bit 43 52 70 61

Data Bit 6666
3210

55
98

5555
7654

55
32

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432

11
10 987654 3210

Number of
ones per row

27
27
27
27

1111
1111
0000
0000

1100
1000
1000
1010

1100
1000
1100
0100

1000
1000
1010
1100

1000
0100
0010
0001

0000
0000
1111
1111

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

0000
1111
1111
0000

1010
1100
1000
1000

0100
1100
1000
1100

1000
1010
1100
1000

1000
0100
0010
0001

27
27
27
27

1000
0100
0010
0001

0101
1100
0100
0100

0011
0010
0011
0001

0100
0101
1100
0100

0000
1111
1111
0000

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

1111
0000
1111
0000

1111
0000
0000
1111

0000
1111
0000
1111

1111
1111
0000
0000

1000
0100
0010
0001

1100
0100
0100
0101

0001
0011
0010
0011

0100
0100
0101
1100

0000
0000
1111
1111

Number of ones
per column

3333 5511 3333 5511 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 5511 3333 5511 3333

User’s Manual U10278EJ4V0UM 201

Chapter 9 Error Protection and Handling

SysState(2:0) Bus

The 3-bit wide system state bus, SysState(2:0), is protected by odd parity. The processor
drives odd parity on the SysStatePar signal.

SysResp(4:0) Bus

The 5-bit wide system response bus, SysResp(4:0), is protected by odd parity.

Whenever an external agent asserts SysRespVal* to indicate it is driving valid information
on the SysResp(4:0) bus, the processor checks the SysRespPar signal for odd parity. If a
parity error is detected, the processor ignores the SysResp(4:0) bus for one SysClk cycle.
The System interface unit posts a Cache Error exception and sets the SR bit in the local
CacheErr register. Additionally, the processor informs the external agent by asserting
SysUncErr* for one SysClk cycle.

Caution: If the processor ignores the SysResp(4:0) bus, it may become
unsynchronized with other processors or the external agent on the cluster bus. Also,
the processor will “hang” if a parity error is detected on the SysResp[4:0] bus during
an external completion response cycle for a processor double/single/partial-word
read request originated by the processor. The external agent may initiate a Soft Reset
sequence to obtain the contents of the CacheErr register, and the CacheErr register
will indicate a System interface uncorrectable system response bus error.

Chapter 9 Error Protection and Handling

202 User’s Manual U10278EJ4V0UM

Protocol Observation

The processor continuously observes the protocol on the System interface.
Table 9-9 presents the supported protocol observations and the associated error handling
sequence.

Table 9-9 Protocol Observation

Protocol Observation Error Handling

External response data cycle with an unexpected request number
during an external block data response for a processor block read
or upgrade request originated by the processor.

Ignore the external response data cycle

External block data response specifying a Reserved cache block
state for a processor block read or upgrade request originated by
the processor.

Override the cache block state to CleanExclusive

External block data response specifying a Shared cache block
state for a processor coherent block read exclusive or upgrade
request originated by the processor.

Override the cache block state to CleanExclusive

External completion response specifying a Reserved completion
indication.

Ignore the external completion response

External ACK completion response for a processor read request
originated by the processor that has not received an external data
response.

Override the external ACK completion response to a
NACK

User’s Manual U10278EJ4V0UM 203

10. JTAG Interface Operation

The JTAG interface is implemented according to the standard IEEE 1149.1 test access port
protocol specifications.

The JTAG interface accesses the JTAG controller and instruction register as well as a
boundary scan register. The JTAG operation does not require DCOk to be asserted or
SysClk to be running; however, if DCOk is asserted the SysClk must run at the specified
minimum frequency or the core logic may be damaged.

Chapter 10 JTAG Interface Operation

204 User’s Manual U10278EJ4V0UM

10.1 Test Access Port (TAP)

The test access port (TAP) consists of four interface signals. These signals are used to
control the serial loading and unloading of instructions and test data, as well as to execute
tests.

The TAP consists of the following signals:

JTDI: Serial data input (Input signal)

JTDO: Serial data output (Output signal)

JTMS: Mode select (Input signal)

JTCK: Clock (Input signal)

JTRST: Reset input (Input signal, active low)

The timing and the relationship of the TAP signals follows the IEEE 1149.1 standard
protocol.

TAP Controller (Input)

The R10000 processor implements the 16-state TAP controller specified by the IEEE
1149.1 standard in the following manner:

• The JTMS signal operates the state machine synchronized by the JTCK
signal.

• The TAP controller is reset by keeping the JTMS signal asserted through five
consecutive edges of JTCK. This reset condition sets the reset state of the
controller.

• In the R12000, the TAP controller is also reset by asserting SysReset*. This
pin must not be asserted while using the boundary scan register.

• In the R12000A, the TAP controller is also reset by asserting JTRST. This
signal can be asserted asynchronously.

User’s Manual U10278EJ4V0UM 205

Chapter 10 JTAG Interface Operation

10.2 Instruction Register

The JTAG instruction register is four bits wide, permitting a total of 16 instructions to
control the selection of the bypass register, the boundary scan register, and other data
registers.

The encoding of the instruction register is given in Table 10-1:

Table 10-1 JTAG Instruction Register Encoding

The 0001 value is provided to represent sample-preload, but also selects the boundary scan
register.

During a reset of the TAP controller, the value 1111 is loaded into the parallel output of the
instruction register, thus selecting the bypass register as the default.

During the Shift-IR state of the TAP controller, data is shifted serially into the instruction
register from JTDI, and the LSB of the instruction register is shifted out onto JTDO.

During the Update-IR state, the current state of the instruction register is shifted to its
parallel output for decoding.

10.3 Bypass Register

The bypass register is 1 bit wide.

When the bypass register is selected and the TAP controller is in the Shift-DR state, data on
JTDI is shifted into the bypass register and the output of the bypass register is shifted out
onto JTDO.

MSB...LSB Selected Data Register

 0000
 0001

Boundary Scan Register
Sample - Preload

 0010
 to

 1110
Data Register (not used)

 1111 Bypass Register

Chapter 10 JTAG Interface Operation

206 User’s Manual U10278EJ4V0UM

10.4 Boundary Scan Register

The bypass register is 1 bit wide.

The boundary scan data register is selected by loading 0000 into the instruction register.
The Shift-DR, Update-DR, and Capture-DR states of the TAP controller are used to operate
the boundary scan register according to the IEEE 1149.1 standard specifications.

The boundary scan register provides serial access to each of the processor interface pins, as
shown in Figure 10-1. Hence, the boundary scan register can be used to load and observe
specific logic values on the processor pins.

Figure 10-1 JTAG Boundary Scan Cells

The main application of the boundary scan register is board-level interconnect testing.

The use of the boundary scan register for applying data to and capturing data from the
internal microprocessor circuitry is not supported.

The boundary scan register list for rev 1.2 of the fab is given in Table 10-2. The TriState
signal will be eliminated from the BSR in rev 2.0 of the fab, and beyond.

An additional bit is provided in the boundary scan register to control the direction of
bidirectional pins. As it is loaded through JTDI, this bit is the first bit in the boundary scan
chain. The logic value of this bit is latched during the Update-DR state, and sets the
direction of all bidirectional pins as follows:

The value is set to 0 during reset, setting all bidirectional pins to input prior to any boundary
scan operations.

Value Direction

0 Input

1 Output

Boundary scan cells

IC package pin

Integrated
Circuit

User’s Manual U10278EJ4V0UM 207

Chapter 10 JTAG Interface Operation

Table 10-2 Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
1. SCDataChk[1] 2. SCData[63] 3. SCData[62] 4. SCData[61] 5. SCData[60] 6. SCData[59]

7. SCData[58] 8. SCData[57] 9. SCData[56] 10. SCData[55] 11. SCData[54] 12. SCData[53]

13. SCData[52] 14. SCData[51] 15. SCData[50] 16. SCData[49] 17. SCData[48] 18. SCData[47]

19. SCData[46] 20. SCData[45] 21. SCData[44] 22. SCData[43] 23. SCData[42] 24. SCData[41]

25. SCData[40] 26. SCData[39] 27. SCData[38] 28. SCData[37] 29. SCData[36] 30. SCData[35]

31. SCData[34] 32. SCData[33] 33. SCData[32] 34. SysAD[0] 35. SysAD[1] 36. SysAD[2]

37. SysAD[3] 38. SysAD[4] 39. SysAD[5] 40. SysAD[6] 41. SysAD[7] 42. SysAD[8]

43. SysAD[9] 44. SysAD[10] 45. SysAD[11] 46. SysAD[12] 47. SysAD[13] 48. SysAD[14]

49. SysAD[15] 50. SCData[0] 51. SCData[1] 52. SCData[2] 53. SCData[3] 54. SCData[4]

55. SCData[5] 56. SCData[6] 57. SCData[7] 58. SCData[8] 59. SCData[9] 60. SCData[10]

61. SCData[11] 62. SCData[12] 63. SCData[13] 64. SCData[14] 65. SCData[15] 66. SCData[16]

67. SCData[17] 68. SCData[18] 69. SCData[19] 70. SCData[20] 71. SCData[21] 72. SCData[22]

73. SCData[23] 74. SCData[24] 75. SCData[25] 76. SCData[26] 77. SCData[27] 78. SCData[28]

79. SCData[29] 80. SCData[30] 81. SCData[31] 82. SCDataChk[0] 83. SCAAddr[18] 84. SCAAddr[17]

85. SCAAddr[16] 86. SCAAddr[15] 87. SCAAddr[14] 88. SCAAddr[13] 89. SCAAddr[12] 90. SCAAddr[11]

91. SCAAddr[10] 92. SCAAddr[9] 93. SCDataChk[2] 94. SCDataChk[4] 95. SCData[64] 96. SCData[65]

97. SCData[66] 98. SCData[67] 99. SCData[68] 100. SCData[69] 101. SCData[70] 102. SCData[71]

103. SCDataChk[9] 104. SysCyc* 105. SysAD[32] 106. SysAD[33] 107. SysAD[34] 108. SysAD[35]

109. SysAD[36] 110. SysAD[37] 111. SysAD[38] 112. SysAD[39] 113. SysAD[40] 114. SysAD[41]

115. SysAD[42] 116. SysAD[43] 117. SysAD[44] 118. SysAD[45] 119. SysAD[46] 120. SysAD[47]

121. SCData[72] 122. SCData[73] 123. SCData[74] 124. SCData[75] 125. SCData[76] 126. SCData[77]

127. SCData[78] 128. SCData[79] 129. SCAAddr[0] 130. SCAAddr[1] 131. SCAAddr[2] 132. SCAAddr[3]

133. SCAAddr[4] 134. SCAAddr[5] 135. SCAAddr[6] 136. SCAAddr[7] 137. SCAAddr[8] 138. SCADWay

139. SCADCS* 140. SCADOE* 141. SCADWr* 142. SCData[80] 143. SCData[81] 144. SCData[82]

145. SCData[83] 146. SCData[84] 147. SCData[85] 148. SCData[86] 149. SCData[87] 150. SCData[88]

151. SCData[89] 152. SCData[90] 153. SCData[91] 154. SCData[92] 155. SCData[93] 156. SCData[94]

157. SCData[95] 158. SCDataChk[6] 159. SCDataChk[8] 160. Spare1 161. SCTCS* 162. SCTOE*

163. SCTWr* 164. SCTag[25] 165. SCTag[24] 166. SCTag[23] 167. SCTag[22] 168. SCTag[21]

169. SCTag[20] 170. SCTag[19] 171. SCTag[18] 172. SCTag[17] 173. SCTag[16] 174. SCTag[15]

175. SCTag[14] 176. SCTag[13] 177. SCTag[12] 178. SCTag[11] 179. SCTag[10] 180. SCTag[9]

181. SCTag[8] 182. SCTag[7] 183. SCTag[6] 184. SCTag[5] 185. SCTag[4] 186. SCTag[3]

187. SCTag[2] 188. SCTag[1] 189. SCTag[0] 190. SCTagLSBAddr 191. TriState‡ 192. SCTWay

193. SCTagChk[6] 194. SCTagChk[5] 195. SCTagChk[4] 196. SCTagChk[3] 197. SCTagChk[2] 198. SCTagChk[1]

199. SCTagChk[0] 200. SysCmd[0] 201. SysCmd[1] 202. SysCmd[2] 203. SysCmd[3] 204. SysCmd[4]

205. SysCmd[5] 206. SysCmd[6] 207. SysCmd[7] 208. SysCmd[8] 209. SysCmd[9] 210. SysCmd[10]

211. SysCmd[11] 212. SysCmdPar 213. SysVal* 214. SysReq* 215. SysRel* 216. SysGnt*

217. SysReset* 218. SysRespVal* 219. SysRespPar 220. SysResp[4] 221. SysResp[3] 222. SysResp[2]

223. SysResp[1] 224. SysResp[0] 225. SysGblPerf* 226. SysRdRdy* 227. SysWrRdy* 228. SysStateVal*

229. SysStatePar 230. SysState[2] 231. SysState[1] 232. SysState[0] 233. SysCorErr* 234. SysUncErr*

235. SysNMI* 236. SCDataChk[7] 237. SCDataChk[5] 238. SCData[127] 239. SCData[126] 240. SCData[125]

241. SCData[124] 242. SCData[123] 243. SCData[122] 244. SCData[121] 245. SCData[120] 246. SCData[119]

247. SCData[118] 248. SCData[117] 249. SCData[116] 250. SCData[115] 251. SCData[114] 252. SCData[113]

Chapter 10 JTAG Interface Operation

208 User’s Manual U10278EJ4V0UM

Table 10-2 (cont.) Boundary Scan Register Pinlist, rev 1.2

‡ Will be eliminated after rev. 1.2.

Signal Signal Signal Signal Signal Signal
253. SCData[112] 254. SCBDWr* 255. SCBDOE* 256. SCBDCS* 257. SCBDWay 258. SCBAddr[8]

259. SCBAddr[7] 260. SCBAddr[6] 261. SCBAddr[5] 262. SCBAddr[4] 263. SCBAddr[3] 264. SCBAddr[2]

265. SCBAddr[1] 266. SCBAddr[0] 267. SCData[111] 268. SCData[110] 269. SCData[109] 270. SCData[108]

271. SCTag[8] 272. SCTag[7] 273. SCTag[6] 274. SCTag[5] 275. SCTag[4] 276. SCTag[3]

277. SCTag[2] 278. SCTag[1] 279. SCTag[0] 280. SCTagLSBAddr 281. TriState‡ 282. SCTWay

283. SCTagChk[6] 284. SCTagChk[5] 285. SCTagChk[4] 286. SCTagChk[3] 287. SCTagChk[2] 288. SCTagChk[1]

289. SCTagChk[0] 290. SysCmd[0] 291. SysCmd[1] 292. SysCmd[2] 293. SysCmd[3] 294. SysCmd[4]

295. SysCmd[5] 296. SysCmd[6] 297. SysCmd[7] 298. SysCmd[8] 299. SysCmd[9] 300. SysCmd[10]

301. SysCmd[11] 302. SysCmdPar 303. SysVal* 304. SysReq* 305. SysRel* 306. SysGnt*

307. SysReset* 308. SysRespVal* 309. SysRespPar 310. SysResp[4] 311. SysResp[3] 312. SysResp[2]

313. SysResp[1] 314. SysResp[0] 315. SysGblPerf* 316. SysRdRdy* 317. SysWrRdy* 318. SysStateVal*

319. SysStatePar 320. SysState[2] 321. SysState[1] 322. SysState[0] 323. SysCorErr* 324. SysUncErr*

325. SysNMI* 326. SCDataChk[7] 327. SCDataChk[5] 328. SCData[127] 329. SCData[126] 330. SCData[125]

331. SCData[124] 332. SCData[123] 333. SCData[122] 334. SCData[121] 335. SCData[120] 336. SCData[119]

337. SCData[118] 338. SCData[117] 339. SCData[116] 340. SCData[115] 341. SCData[114] 342. SCData[113]

343. SCData[112] 344. SCBDWr* 345. SCBDOE* 346. SCBDCS* 347. SCBDWay 348. SCBAddr[8]

349. SCBAddr[7] 350. SCBAddr[6] 351. SCBAddr[5] 352. SCBAddr[4] 353. SCBAddr[3] 354. SCBAddr[2]

355. SCBAddr[1] 356. SCBAddr[0] 357. SCData[111] 358. SCData[110] 359. SCData[109] 360. SCData[108]

361. SCData[107] 362. SCData[106] 363. SCData[105] 364. SCData[104] 365. SysAD[63] 366. SysAD[62]

367. SysAD[61] 368. SysAD[60] 369. SysAD[59] 370. SysAD[58] 371. SysAD[57] 372. SysAD[56]

373. SysAD[55] 374. SysAD[54] 375. SysAD[53] 376. SysAD[52] 377. SysAD[51] 378. SysAD[50]

379. SysAD[49] 380. SysAD[48] 381. SysADChk[7] 382. SysADChk[6] 383. SysADChk[5] 384. SysADChk[4]

385. SysADChk[3] 386. SysADChk[2] 387. SysADChk[1] 388. SysADChk[0] 389. SysAD[31] 390. SysAD[30]

391. SysAD[29] 392. SysAD[28] 393. SysAD[27] 394. SysAD[26] 395. SysAD[25] 396. SysAD[24]

397. SysAD[23] 398. SysAD[22] 399. SysAD[21] 400. SysAD[20] 401. SysAD[19] 402. SysAD[18]

403. SysAD[17] 404. SysAD[16] 405. SCData[103] 406. SCData[102] 407. SCData[101] 408. SCData[100]

409. SCData[99] 410. SCData[98] 411. SCData[97] 412. SCData[96] 413. SCDataChk[3] 414. SCBAddr[9]

415. SCBAddr[10] 416. SCBAddr[11] 417. SCBAddr[12] 418. SCBAddr[13] 419. SCBAddr[14] 420. SCBAddr[15]

421. SCBAddr[16] 422. SCBAddr[17] 423. SCBAddr[18]

User’s Manual U10278EJ4V0UM 209

11. Coprocessor 0

This chapter describes the Coprocessor 0 operation, concentrating on the CP0 register
definitions and the R10000 processor implementation of CP0 instructions.

The Coprocessor 0 (CP0) registers control the processor state and report its status. These
registers can be read using MFC0 instructions and written using MTC0 instructions. CP0
registers are listed in Table 11-1.

Chapter 11 Coprocessor 0

210 User’s Manual U10278EJ4V0UM

Table 11-1 Coprocessor 0 Registers

Coprocessor 0 instructions are enabled if the processor is in Kernel mode, or if bit 28 (CU0)
is set in the Status register. Otherwise, executing one of these instructions generates a
Coprocessor 0 Unusable exception.

Register No. Register Name Description

0 Index Programmable register to select TLB entry for reading or writing

1 Random Pseudo-random counter for TLB replacement

2 EntryLo0 Low half of TLB entry for even VPN (Physical page number)

3 EntryLo1 Low half of TLB entry for odd VPN (Physical page number)

4 Context Pointer to kernel virtual PTE table in 32-bit addressing mode

5 PageMask Mask that sets the TLB page size

6 Wired Number of wired TLB entries (lowest TLB entries not used for random replacement)

7 Undefined Undefined

8 BadVAddr Bad virtual address

9 Count Timer count

10 EntryHi High half of TLB entry (Virtual page number and ASID)

11 Compare Timer compare

12 Status Processor Status Register

13 Cause Cause of the last exception taken

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration Register (secondary cache size, etc.)

17 LLAddr Load Linked memory address

18 WatchLo Memory reference trap address (low bits Adr[39:32])

19 WatchHi Memory reference trap address (high bits Adr[31:3])

20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode

21 FrameMask Mask the physical addresses of entries which are written into the TLB

22 Diagnostic Branch diagnostic register

23 Undefined Undefined

24 Undefined Undefined

25 Performance Counter Performance count and control

26 ECC Secondary cache ECC and primary cache parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register - low bits

29 TagHi Cache Tag register - high bits

30 ErrorEPC Error Exception Program Counter

User’s Manual U10278EJ4V0UM 211

Chapter 11 Coprocessor 0

11.1 Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an entry in the
TLB. The high-order bit of the register shows the success or failure of a TLB Probe (TLBP)
instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions.

Figure 11-1 shows the format of the Index register; Table 11-2 describes the Index register
fields.

Figure 11-1 Index Register

Table 11-2 Index Register Field Descriptions

Field Description

P
Probe failure. Set to 1 when the previous TLBProbe (TLBP)
instruction was unsuccessful.

Index
Index to the TLB entry affected by the TLBRead and
TLBWrite instructions

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

Index Register

31

1

30 6 5 0

25 6

 IndexP 0

Chapter 11 Coprocessor 0

212 User’s Manual U10278EJ4V0UM

11.2 Random Register (1)

The Random register is a read-only register of which six bits index an entry in the TLB.
This register decrements when any instruction graduates at that particular cycle, and its
values range between an upper and a lower bound, as follows:

• The lower bound is set by the number of TLB entries reserved for exclusive
use by the operating system (the contents of the Wired register).

• The upper bound is set by the total number of TLB entries minus 1
(64 – 1 maximum).

The Random register specifies the entry in the TLB that is affected by the TLB Write
Random instruction. The register does not need to be read for this purpose; however, the
register is readable to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon system
reset. This register is also set to the upper bound when the Wired register is written.

Figure 11-2 shows the format of the Random register; Table 11-3 describes the Random
register fields.

Figure 11-2 Random Register

Table 11-3 Random Register Field Descriptions

Field Description

Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Random Register
31 6 5 0

26 6

 Random0

User’s Manual U10278EJ4V0UM 213

Chapter 11 Coprocessor 0

11.3 EntryLo0 (2) and EntryLo1 (3) Registers

The EntryLo register consists of two registers with identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page
frame number (PFN) of the TLB entry for even and odd pages, respectively, when
performing TLB read and write operations. Figure 11-3 shows the format of these
registers.

Figure 11-3 Fields of the EntryLo0 and EntryLo1 Registers

Table 11-4 Description of EntryLo Registers’ Fields

Field Description

UC Uncached attribute

PFN Page frame number; the upper bits of the physical address.

C Specifies the TLB page coherency attribute.

D
Dirty. If this bit is set, the page is marked as dirty and, therefore, writable.
This bit is actually a write-protect bit that software can use to prevent
alteration of data.

V
Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise,
a TLBL or TLBS invalid exception occurs.

G
Global. If this bit is set in both Lo0 and Lo1, then the processor ignores
the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

G
 28

63

PFN C VD

3 1 1 1

0

EntryLo0 and EntryLo1 Registers

34 33 01235662

UC

61

Chapter 11 Coprocessor 0

214 User’s Manual U10278EJ4V0UM

The PFN fields of the EntryLo0 and EntryLo1 registers span bits 33:6 of the 40-bit physical
address.

Two additional bits for the mapped space’s uncached attribute can be loaded into bits 63:62
of the EntryLo register, which are then written into the TLB with a TLB Write. During the
address cycle of processor double/single/partial-word read and write requests, and during
the address cycle of processor uncached accelerated block write requests, the processor
drives the uncached attribute on SysAD[59:58]. The same EntryLo registers are used for
the 64-bit and 32-bit addressing modes. In both modes the registers are 64 bits wide,
however when the MIPS III ISA is not enabled (32-bit User and Supervisor modes) only
the lower 32 bits of the EntryLo registers are accessible.

MIPS III is disabled when the processor is in 32-bit Supervisor or User mode. Loading of
the integer registers is limited to bits 31:0, sign-extended through bits 63:32.
EntryLo[33:31] or PFN[39:38] can only be set to all zeroes or all ones. In 32- and 64-bit
modes, the UC and PFN bits of both EntryLo registers are written into the TLB. The PFN
bits can be masked by setting bits in the FrameMask register (described in this chapter) but
the UC bits cannot be masked or initialized in 32-bit User or Supervisor modes. In 32-bit
Kernel mode, MIPS III is enabled and 64-bit operations are always available to program the
UC bits.

There is only one G bit per TLB entry, and it is written with EntryLo0[0] and EntryLo1[0]
on a TLB write.

User’s Manual U10278EJ4V0UM 215

Chapter 11 Coprocessor 0

11.4 Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the page
table entry (PTE) array; this array is an operating system data structure that stores virtual-
to-physical address translations.

When there is a TLB miss, the CPU loads the TLB with the missing translation from the
PTE array. Normally, the operating system uses the Context register to address the current
page map which resides in the kernel-mapped segment, kseg3. The Context register
duplicates some of the information provided in the BadVAddr register, but the information
is arranged in a form that is more useful for a software TLB exception handler.

Figure 11-4 shows the format of the Context register; Table 11-5 describes the Context
register fields.

Figure 11-4 Context Register Format

Table 11-5 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a
4-Kbyte page size, this format can directly address the pair-table of 8-byte PTEs. For other
page and PTE sizes, shifting and masking this value produces the appropriate address.

Field Description

BadVPN2
This field is written by hardware on a miss. It contains the
virtual page number (VPN) of the most recent virtual address
that did not have a valid translation.

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

PTEBase

This field is a read/write field for use by the operating system.
It is normally written with a value that allows the operating
system to use the Context register as a pointer into the current
PTE array in memory.

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

Chapter 11 Coprocessor 0

216 User’s Manual U10278EJ4V0UM

11.5 PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB;
it holds a comparison mask that sets the variable page size for each TLB entry, as shown in
Table 11-6. Format of the register is shown in Figure 11-5.

TLB read and write operations use this register as either a source or a destination; when
virtual addresses are presented for translation into physical address, the corresponding bits
in the TLB identify which virtual address bits among bits 24:13 are used in the comparison.
When the Mask field is not one of the values shown in Table 11-6, the operation of the TLB
is undefined. The 0 field is reserved; it must be written as zeroes, and returns zeroes when
read.

Figure 11-5 PageMask Register

Table 11-6 Mask Field Values for Page Sizes

Page Size
(Mask)

Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

 12

31

13

0

MASK
7

25 24 13 12
PageMask Register

0 0

User’s Manual U10278EJ4V0UM 217

Chapter 11 Coprocessor 0

11.6 Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the wired and
random entries of the TLB as shown in Figure 11-6. Wired entries are fixed,
nonreplaceable entries, which cannot be overwritten by a TLB write operation. Random
entries can be overwritten.

Figure 11-6 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also sets the Random
register to the value of its upper bound (see Random register, above). Figure 11-7 shows
the format of the Wired register; Table 11-7 describes the register fields.

Figure 11-7 Wired Register

Table 11-7 Wired Register Field Descriptions

Field Description

Wired TLB Wired boundary

0
Reserved. Must be written as zeroes, and returns zeroes
when read.

63

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

This entry is Random, not Wired

Wired Register
31 6 5 0

26 6

 Wired0

Chapter 11 Coprocessor 0

218 User’s Manual U10278EJ4V0UM

11.7 BadVAddr Register (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most
recent virtual address that caused either a TLB or Address Error exception. The BadVAddr
register remains unchanged during Soft Reset, NMI, or Cache Error exceptions. Otherwise,
the architecture leaves this register undefined.

Figure 11-8 shows the format of the BadVAddr register.

Figure 11-8 BadVAddr Register Format

11.8 Count and Compare Registers (9 and 11)

The Count and Compare registers are 32-bit read/write registers whose formats are shown
in Figure 11-9.

The Count register acts as a real-time timer. Like the R4400 implementation, the R10000
Count register is incremented every other PClk cycle. However, unlike the R4400, the
R10000 processor has no Timer Interrupt Enable boot-mode bit, so the only way to disable
the timer interrupt is to negate the interrupt mask bit, IM[7], in the Status register. This
means the timer interrupt cannot be disabled without also disabling the Performance
Counter interrupt, since they share IM[7].

The Compare register can be programmed to generate an interrupt at a particular time, and
is continually compared to the Count register. Whenever their values equal, the interrupt
bit IP[7] in the Cause register is set. This interrupt bit is reset whenever the Compare
register is written.

.

Figure 11-9 Count and Compare Registers

BadVAddr Register

63 0

64

Bad Virtual Address

32-bit Counter (incremented every processor cycle)

32-bit Compare Value

32-bit Equal-to Comparator

31 0

Count (9)

Compare (11)

32-bit Counter (incremented every processor cycle)

31 0

32-bit Compare Value

32-bit Equal-to Comparator

Set IP7 in Cause Register

User’s Manual U10278EJ4V0UM 219

Chapter 11 Coprocessor 0

11.9 EntryHi Register (10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write
operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write
Indexed, and TLB Read Indexed instructions.

Figure 11-10 shows the format of this register and Table 11-8 describes the register’s fields.

Figure 11-10 EntryHi Register

Table 11-8 EntryHi Register Fields

In 64-bit addressing mode, the VPN2 field contains bits 43:13 of the 44-bit virtual address.

In 32-bit addressing mode only the lower 32 bits of the EntryHi register are used, so the
format remains the same as in the R4400 processor’s 32-bit addressing mode. The FILL
field is ignored on write and read as zeroes, as it was in the R4400 implementation.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register is loaded with the virtual page number (VPN2) and the ASID of the virtual address
that did not have a matching TLB entry.

Field Description

VPN2
Virtual page number divided by two (maps to two pages); upper bits of
the virtual address

ASID
Address space ID field. An 8-bit field that lets multiple processes share
the TLB; each process has a distinct mapping of otherwise identical
virtual page numbers.

R
Region. (00 → user, 01 → supervisor, 11 → kernel) used to match
vAddr63...62

Fill Reserved. 0 on read; ignored on write.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryHi Register
63

VPN2
 31

0

5 8

ASID
1213 8 7

0
2

62 61 44 43

18

FillR

Chapter 11 Coprocessor 0

220 User’s Manual U10278EJ4V0UM

11.10 Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode, interrupt
enabling, and the diagnostic states of the processor. The following list describes the more
important Status register fields; Figure 11-11 shows the format of the entire register, and
Table 11-10 describes the Status register fields.

Some of the important fields include:

• The 4-bit Coprocessor Usability (CU) field controls the usability of 4 possible
coprocessors. Regardless of the CU0 bit setting, CP0 is always usable in
Kernel mode. The XX bit enables the MIPS IV ISA in User mode.

• By default, the R10000 processor implements the same user instruction set as
the R4400 processor. To enable execution of the MIPS IV instructions in User
mode, the MIPS IV User Mode bit, (XX) of the CP0 Status register must be
set.

The MIPS IV instruction extension uses COP1X as the opcode; this designation
was COP3 in the R4400 processor. For this reason the CU3 bit is omitted in the
R10000 processor, and is used as the XX bit. In Kernel and Supervisor modes, the
state of the XX bit is ignored, and MIPS IV instructions are always available.

Mode bit settings are shown in Table 11-9; dashes in the table represent don’t
cares.

Table 11-9 ISA and Status Register Settings for User, Supervisor and
Kernel Mode Operations

NOTE: Operation with the MIPS IV ISA does not assume or require that the MIPS
III instruction set or 64-bit addressing be enabled — KX, SX and UX may all be set to
zero.

Mode UX SX KX XX MIPS II MIPS III MIPS IV

User

0 - - 0 Yes No No

0 - - 1 Yes No Yes

1 - - 0 Yes Yes No

1 - - 1 Yes Yes Yes

Supervisor
- 0 - - Yes No Yes

- 1 - - Yes Yes Yes

Kernel - - - - Yes Yes Yes

User’s Manual U10278EJ4V0UM 221

Chapter 11 Coprocessor 0

• The Reduced Power (RP) bit is reserved and should be zero. The R10000
processor does not define a reduced power mode.

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine.
The processor can be configured as either little-endian or big-endian at system
reset; reverse-endian selection is available in Kernel and Supervisor modes,
and in the User mode when the RE bit is 0. Setting the RE bit to 1 inverts the
User mode endianness.

• The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the
cache and virtual memory system. This field is described in Table 11-11 and
Figure 11-12.

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight interrupt
conditions. Interrupts must be enabled before they can be asserted, and the
corresponding bits are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause register.

• The processor mode is undefined if the KSU field is set to 3 (112). The
R10000 processor implements this as User mode.

Figure 11-11 Status Register

RP FR RE IM (8 bits) KX SX UX R
X

L

IEE
R

L

KSUXX 0 SR 0 CH CE DETS

B
E

V

C
U

0

C
U

1

C
U

2

0RP

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Register

FR RE IM (8 bits) KX SX UX E
X

L

IEE
R

L

KSUXX 0 SR NMI CH CE DETS

B
E

V

Diagnostic Status Fields

C
U

0

C
U

1

C
U

2

Coprocessor
Usable

0*

* For R10000. This bit is used as DSD bit in the R12000.

Chapter 11 Coprocessor 0

222 User’s Manual U10278EJ4V0UM

Status Register Fields

Table 11-10 describes the Status register fields.

Table 11-10 Status Register Fields

Field Description

XX
Enables execution of MIPS IV instructions in User mode.

1 → MIPS IV instructions usable
0 → MIPS IV instructions unusable

CU

Controls the usability of each of the four coprocessor unit
numbers. CP0 is always usable when in Kernel mode, regardless
of the setting of the CU0 bit.

1 → usable
0 → unusable

RP
In the R4400 processor, this bit enables reduced-power operation
by reducing the internal clock frequency. In the R10000
processor, this bit should be set to zero.

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 11-12).

IM

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if interrupts
are enabled, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of
the Cause register.

0 → disabled
1 → enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on kernel
addresses.

0 → 32-bit
1 → 64-bit

SX

Enables 64-bit addressing and operations in Supervisor mode. The
extended-addressing TLB refill exception is used for TLB misses
on supervisor addresses.

0 → 32-bit
1 → 64-bit

UX

Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception is used for TLB misses
on user addresses.

0 → 32-bit
1 → 64-bit

User’s Manual U10278EJ4V0UM 223

Chapter 11 Coprocessor 0

Table 11-10 (cont.) Status Register Fields

Diagnostic Status Field

The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache and
virtual memory system. This field is described in Table 11-11 and shown Figure 11-12.

Some of the important DS fields include:

• In the R4400, the TS bit of the diagnostic field indicates a TLB shutdown has
occurred due to matching of multiple virtual page entries during address
translation. In the R10000 processor, the TS bit indicates a TLB write has
introduced an entry that would allow matching of more than one virtual page
entry during translation. In this case, the TLB entries that allow the multiple
matches, even in the Wired area, are invalidated before the new TLB entry is
written. This prevents multiple matches during address translation.

The TS bit is updated for each TLB write. It can also be read and written by
software (in the R4400, the TS bit is read-only); to clear the TS bit one needs to
write a 0 into it. As in the R4400, Reset/Soft Reset/NMI exceptions also clear the
TS bit.

• The NMI bit is new to the R10000 processor; it distinguishes between Soft
Reset and NMI exceptions. Both exceptions set the SR bit to 1; the NMI
exception sets the NMI bit to 1, whereas the Soft Reset exception sets it to 0.

• The CE bit is reserved in the R10000 processor and should be a 0.

Field Description

KSU

Mode bits
112 → Undefined (implemented as User mode)
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset, NMI, or
Cache Error exception are taken.

0 → normal
1 → error

EXL

Exception Level; set by the processor when any exception other
than Reset, Soft Reset, NMI, or Cache Error exception are taken.

0 → normal
1 → exception

IE
Interrupt Enable

0 → disable all interrupts
1 → enables all interrupts

Chapter 11 Coprocessor 0

224 User’s Manual U10278EJ4V0UM

Figure 11-12 Diagnostic Status Field

Table 11-11 Status Register Diagnostic Status Bits

Bit Description

DSD

Specifies DSD mode (R12000 only). If this bit is set, the R12000
will not set the Dirty bit for a secondary cache block until the store
instruction is the oldest in the Active List and is about to be
executed.

0 → normal
1 → delay speculative dirty (fix for speculative store)

BEV
Controls the location of TLB refill and general exception vectors.

0 → normal
1 → bootstrap

TS

This bit is set when a TLB write presents an entry that matches any
other virtual page entry in the TLB. Should this occur, any TLB
entries that allow multiple matches, even in the Wired area, are
invalidated before this new entry can be written into the TLB. This
prevents multiple matches during address translation.

0 → normal
1 → TLB shutdown has occurred.

SR 1 → Indicates a Soft Reset or NMI exception.

NMI
1 → Indicates a nonmaskable interrupt has occurred. Used to
distinguish between a Soft Reset and a nonmaskable interrupt in a
Soft Reset exception.

CH

Hit (tag match and valid state) or miss indication for last CACHE
Hit Invalidate, Hit Write Back Invalidate for a secondary cache.

0 → miss
1 → hit

CE Reserved in the R10000, and should be set to 0.

DE
Specifies that cache parity or ECC errors cannot cause exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved. Must be written as zeroes, and returns zeroes when read.

24 22 21 20 19 18 17 16

TS SR CH CE DE

1 1 1 1 1 1 1

BEV

23

1

0* NMI0

1

* For R10000. This bit is used as DSD bit in the R12000.

User’s Manual U10278EJ4V0UM 225

Chapter 11 Coprocessor 0

Coprocessor Accessibility

Three Status register CU bits control coprocessor accessibility: CU0, CU1, and CU2 enable
coprocessors 0, 1, and 2, respectively. If a coprocessor is unusable, any instruction that
accesses it generates an exception.

The following describes the coprocessor implementations and operations on the R10000:

• Coprocessor 0 is always enabled in kernel mode, regardless of the CU0 bit.

• Coprocessor 1 is the floating-point coprocessor. If CU1 is 0 (disabled), all
floating-point instructions generate a Coprocessor Unusable exception. In
MIPS IV, the COP3 instruction is replaced with a second floating-point
instruction, COP1X. In addition, new functions are added to COP1 (see
VR5000, VR10000 INSTRUCTION User’s Manual). The floating-point
branch conditional and compare instructions are expanded to use the eight
Floating-Point Status register condition bits, instead of the original single bit.
If any of these extra bits are referenced (cc > 0) when not using the MIPS IV
ISA, an Unimplemented Instruction exception is taken. The integer
conditional move (MOVC) instruction tests a floating-point condition bit; it
causes a coprocessor unusable exception if coprocessor 1 is disabled.

• Coprocessor 2 is defined, but does not exist in the R10000; its instructions
(COP2, LWC2, LDC2, SWC2, SDC2) always cause an exception, but the
exception code depends upon whether the coprocessor, as indicated by CU2,
is enabled.

• Coprocessor 3 has been removed from the MIPS III ISA, and is no longer
defined. If MIPS IV is disabled, the coprocessor 3 instruction (COP3) always
causes a Reserved Instruction exception.

Chapter 11 Coprocessor 0

226 User’s Manual U10278EJ4V0UM

11.11 Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 11-13 shows the fields of this register; Table 11-12 describes the Cause register
fields. A 5-bit exception code (ExcCode) indicates one of the causes, as listed in Table 11-
13.

All bits in the Cause register, with the exception of the IP[1:0] bits, are read-only; IP[1:0]
are used for software interrupts.

Table 11-12 Cause Register Fields

Figure 11-13 Cause Register Format

Field Description

BD
Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE
Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken. This bit is undefined for any other exception.

IP

Indicates an interrupt is pending. This bit remains unchanged for NMI,
Soft Reset, and Cache Error exceptions.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 11-13)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0

User’s Manual U10278EJ4V0UM 227

Chapter 11 Coprocessor 0

Table 11-13 Cause Register ExcCode Field

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 – Reserved

15 FPE Floating-Point exception

16–22 – Reserved

23 WATCH Reference to WatchHi/WatchLo address

24–30 – Reserved

31 – Reserved

Chapter 11 Coprocessor 0

228 User’s Manual U10278EJ4V0UM

11.12 Exception Program Counter (14)

The Exception Program Counter (EPC)† is a read/write register that contains the address at
which processing resumes after an exception has been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause of the exception,
or

• the virtual address of the immediately preceding branch or jump instruction
(when the instruction is in a branch delay slot, and the Branch Delay bit in the
Cause register is set).

The processor does not write to the EPC register when the EXL bit in the Status register is
set to a 1.

Figure 11-14 shows the format of the EPC register.

Figure 11-14 EPC Register Format

† The ErrorEPC register provides a similar capability, described later in this chapter.

EPC Register

63 0

EPC

64

User’s Manual U10278EJ4V0UM 229

Chapter 11 Coprocessor 0

11.13 Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information
identifying the implementation and revision level of the CPU and CP0. Figure 11-15 shows
the format of the PRId register; Table 11-14 describes the PRId register fields.

Figure 11-15 Processor Revision Identifier Register Format

Table 11-14 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and
the high-order byte (bits 15:8) is interpreted as an implementation number. The
implementation number of the R10000 processor is 0x09. The content of the high-order
halfword (bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major revision number
in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no guarantee
that changes to the chip will necessarily be reflected in the PRId register, or that changes to
the revision number necessarily reflect real chip changes. For this reason, software should
not rely on the revision number in the PRId register to characterize the chip.

Field Description

Imp Implementation number

Rev Revision number

0
Reserved. Must be written as zeroes, and returns zeroes when
read.

16 15

PRId Register

31 0

16

Imp (0x09)

8 8

0

8

Rev

7

Chapter 11 Coprocessor 0

230 User’s Manual U10278EJ4V0UM

11.14 Config Register (16)

The R10000 processor’s Config register has a different format from that of the R4400, since
the R10000 processor has different mode bits and configurations, however some fields are
still compatible: K0, DC, IC, and BE. The value of bits 24:0 are taken directly from the
Mode bit settings during a reset sequence; refer to Table 8-1 for these bit definitions. Table
11-15 shows the R10000 Config register fields, along with values which are hardwired into
the register at boot time; Figure 11-16 shows the Config register format.

Table 11-15 Config Register Field Definitions

Figure 11-16 Config Register Format

Field Bits
Name Hardwired

ValuesR10000 R12000

K0 2:0

Coherency algorithm
0002 → reserved
0012 → reserved
0102 → uncached
0112 → cacheable noncoherent
1002 → cacheable coherent exclusive
1012 → cacheable coherent exclusive on write
1102 → reserved
1112 → uncached accelerated

DN 4:3 Device number
CT 5 CohPrcReqTar
PE 6 PrcElmReq
PM 8:7 PrcReqMax
EC 12:9 SysClkDiv
SB 13 SCBlkSize
SK 14 SCCorEn
BE 15 MemEnd
SS 18:16 SCSize
SC 21:19 SCClkDiv

25:22

Reserved

0

DC 28:26 Primary data cache size (hardwired to 0112) 32 Kbytes
IC 31:29 Primary instruction cache size (hardwired to 0112) 32 Kbytes

Field Bit Name

DSD 24 Delay Speculative Dirty

Config Register
31

1

BE0*

1619 715

1

DNCT

1

4 2 0

IC DC

3 3

28 26 25

1

23 22 21

0

2

 SS

3

SK

14

SB

2

13

EC

4

12

1

9

3

8 6

PE

5 3

21

K0

24

0

1

SC

3

PM

1829

* For R10000. This bit is used as DSD bit in the R12000.

User’s Manual U10278EJ4V0UM 231

Chapter 11 Coprocessor 0

11.15 Load Linked Address (LLAddr) Register (17)

Physical addresses for Load Link instructions are no longer written into this register.
LLAddr is implemented as a read/write scratch register used for NT compatibility.

Figure 11-17 shows the format of the LLAddr register.

Figure 11-17 LLAddr Register Format

LLAddr Register
31 0

R/W (NT)

32

Chapter 11 Coprocessor 0

232 User’s Manual U10278EJ4V0UM

11.16 WatchLo (18) and WatchHi (19) Registers

WatchHi and WatchLo are 32-bit read/write registers which contain a physical address of a
doubleword location in main memory. If enabled, any attempt to read or write this location
causes a Watch exception. This feature is used for debugging.

Bits 7:0 of the WatchHi register contain bits 39:32 of the trap physical address, shown in
Figure 11-18. The WatchLo register contains physical address bits 31:3. The remaining
bits of the register are ignored on write and read as zero.

Table 11-16 describes the WatchLo and WatchHi register fields.

Figure 11-18 WatchLo and WatchHi Register Formats

Table 11-16 WatchHi and WatchLo Register Fields

Field Description

PAddr1 Bits 39:32 of the physical address

PAddr0 Bits 31:3 of the physical address

R Trap on load references if set to 1

W Trap on store references if set to 1

0 Ignored on write and read as zero.

 WatchLo Register
31

29 1

R WPAddr0

1 1

3 01

WatchHi Register

2

31

24 8

8 07

0 PAddr1

0

User’s Manual U10278EJ4V0UM 233

Chapter 11 Coprocessor 0

11.17 XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE)
array, an operating system data structure that stores virtual-to-physical address translations.
When there is a TLB miss, the operating system software loads the TLB with the missing
translation from the PTE array. The XContext register no longer shares the information
provided in the BadVAddr register, as it did in the R4400.

The XContext register is for use with the XTLB refill handler, which loads TLB entries for
references to a 64-bit address space, and is included solely for operating system use. The
operating system sets the PTE base field in the register, as needed. Normally, the operating
system uses the Context register to address the current page map, which resides in the
kernel-mapped segment kseg3.

Figure 11-19 shows the format of the XContext register; Table 11-17 describes the XContext
register fields.

Figure 11-19 XContext Register Format

The 31-bit BadVPN2 field holds bits 43:13 of the virtual address that caused the TLB miss;
bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a 4-Kbyte
page size, this format may be used directly to address the pair-table of 8-byte PTEs. For
other page and PTE sizes, shifting and masking this value produces the appropriate address.

Table 11-17 XContext Register Fields

Field Description

BadVPN2
The Bad Virtual Page Number/2 field is written by hardware on a miss. It contains the VPN of the most
recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

PTEBase
The Page Table Entry Base read/write field is normally written with a value that allows the operating
system to use the Context register as a pointer into the current PTE array in memory.

XContext Register
35 34 4 363 0

27

PTEBase BadVPN2

31 4

0R

2

37 36

Chapter 11 Coprocessor 0

234 User’s Manual U10278EJ4V0UM

11.18 FrameMask Register (21)

The FrameMask register is new with the R10000 processor. It masks bits of the EntryLo0
and EntryLo1 registers so that these masked bits are not passed to the TLB while doing a
TLB write (either TLBWI or TLBWR).

A zero in the FrameMask register allows its corresponding bit in the EntryLo[1,0] registers
to pass to the TLB; a one in the FrameMask register masks off its corresponding bit in the
EntryLo registers and passes a zero to the TLB. Bits 15:0 of the FrameMask register
control bits 33:18 of the EntryLo registers.

The remaining bits of this register are ignored on write and read as zeroes. The content of
this register is set to zero after a processor reset or a power-up event.

Figure 11-20 shows the FrameMask register format.

Figure 11-20 FrameMask Register Format

0

0 Mask bits, PA[39:24]

0151631

16 16

FrameMask Register

User’s Manual U10278EJ4V0UM 235

Chapter 11 Coprocessor 0

11.19 Diagnostic Register (22)

CP0 register 22, the Diagnostic register, is a new 64-bit register for processor-specific
diagnostic functions. (Since this register is designed for local use, the diagnostic functions
are subject to change without notice.) Currently, this register helps test the ITLB, branch
caches, and the branch prediction scheme. In addition, it provides choices for branch
prediction algorithms, to help diagnostic program writing.

Figure 11-21 shows the format of the Diagnostic register.

Figure 11-21 Diagnostic Register Format

BS
Idx

0
BRC

HW
MP

Mode Op0IdxState 0V

 0171831

BS
Idx

BRC

HW
MP

BP

Mode Op0Idx

12311 12 13141516192021222728

21922214 1 1 14

State 0***V

0 0

324863

12 16

475152

4

ITLBM

23

0** DBRC

1

26

0*

1

* For R10000. This bit is used as “BTAC disable” bit in the R12000.
** For R10000. This field is used as “ghistory enable” field in the R12000.
*** For R10000. These two bits are used as the high-order bits of the Idx field in the

R12000.

Chapter 11 Coprocessor 0

236 User’s Manual U10278EJ4V0UM

Table 11-18 describes the Diagnostic register fields.

Table 11-18 Diagnostic Register Fields

Field
Description

R10000 R12000

ITLBM
This field is a 4-bit read-only counter. This field is incremented by one for each ITLB miss, and any overflow
is ignored. Its value is undefined during reset, and its value is meaningless when used in an unmapped space.

BSIdx
This field defines the entry in the branch stack to be used for the latest conditional branch decoded. Its value
is meaningless if the latest branch was an unconditional branch.

DBRC This field disables the use of the branch return cache (BRC).

BRCV
This field indicates whether or not the branch return cache (BRC) is valid. BRC has only one entry (four
instructions).

BRCW
This field indicates whether or not the latest branch (JAL, JALR rx, BGEZAL, BGEZALL, BLTZAL, or
BLTZALL) caused a write into BRC. It is not affected by any other type of branch.

BRCH
This field indicates whether or not the latest branch (JR r31 or JALR rx,r31) has a BRC hit. It is not affected
by any other type of branch.

MP This field indicates whether or not the latest conditional branch verified was mispredicted.

BPMode

This is a read-write field for branch prediction algorithm control.
002 → 2-bit counter scheme
012 → All conditional branches are predicted not taken
102 → All conditional branches are predicted taken
112 → Forward conditional branches are predicted not taken and backward conditional branches are

predicted taken.
The default mode is 00 on processor reset.

BPState
This field contains the new 2-bit state for a conditional branch after it is verified. It is also used to hold the 2-
bit state to read/write when a branch prediction table read/write operation is executed.

BPIdx

Contains the index to the Branch Prediction Table
(BPT) for BPT read/write/initialization operations.
This field should contain VA(11:3) of the branch for
BPT read/write/initialization operations. The upper
six bits of this field contain the line address for BPT
line initialization operation; the lower three bits of
this field are ignored.

Contains the index to the Branch Prediction Table
(BPT) for BPT read/write/initialization operations.
This field should contain VA(13:3) of the branch for
BPT read/write/initialization operations. The upper
eight bits of this field contain the line address for BPT
line initialization operation; the lower three bits of
this field are ignored.

BPOp

Indicates the following BPT operations:
002 → BPT read
012 → BPT write
102 → Initializes BPT line to all zeroes (strongly not taken)
112 → Initializes BPT line to all ones (strongly taken)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

User’s Manual U10278EJ4V0UM 237

Chapter 11 Coprocessor 0

In R12000 two fields are added to the Diagnostic Register - CP0 Register 22. One field
is “ghistory enable”, bits 26:23. The other is “BTAC disable”, bit 27.

The definitions are:

Ghistory enable:
If bit 26 is set, branch prediction uses all eight bits of the global history register.
If bit 26 is not set, then bits 25:23 specify a count of the number of bits of global
history to be used. Thus if bits 26:23 are all zero, global history is disabled.

The global history contains a record of the taken/not-taken status of recently
executed branches, and when used is XOR’ed with the PC of a branch being
predicted to produce a hashed value for indexing the BPT. Some programs with
small “working set of conditional branches” benefit significantly from the use of
such hashing, some see slight performance degradation.

BTAC disable:
If bit 27 is set, the use of the Branch Target Address Cache (BTAC) is disabled.
The BTAC is used to reduce the instruction fetch penalty of taken branches by
providing the target address of fixed-address branch and jump instructions.

There are two ways to read the branch prediction state from the Branch Prediction Table
(BPT):

• Place an mfc0 rx, C0_Diag (a Move From Diagnostic register to GPR rx) in
the delay slot of the conditional branch. This read of the Diagnostic register
returns the next predicted state from the branch stacks before the BPT is
updated.

• Move the Index and the BPT read operation into the Idx and BPOp field of the
Diagnostic register. This mtc0 into CP0_Diag graduates as soon as the write is
completed; however, there could be a significant delay in transferring the data
from BPT to CP0_Diag. This delay occurs because C0_Diag has a lower
priority to access the BPT as compared to the accesses by IFETCH and other
processes. Thus, the prediction state read from the C0_Diag may not reflect
the content of the BPT. Use the code sequence shown below to get the correct
prediction state from the BPT:

li rx # rx has index and BPT read for
Idx and BPOp, respectively.

mtc0 rx, C0_Diag # Set the Diagnostic register for reading the BPT
la ry, label # ry !=r31; la could be replaced by a dla for 64-bits
jr ry # This gives priority for C0_Diag to access BPT

label: mfc0 rz, C0_Diag # rz holds the state from BPT entry pointed by Idx

Chapter 11 Coprocessor 0

238 User’s Manual U10278EJ4V0UM

11.20 Performance Counter Registers (25)

R10000 Implementation

The R10000 processor defines two performance counters and two associated control
registers, which are mapped into CP0 register 25. An encoding in the MTC0/MFC0
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the
countable event, specified in its associated control register, occurs. Each counter can
independently count one type of event at a time.

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31) becomes one
(the counter overflows) and the associated performance control register enables the
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

The format of the control registers are shown in Figure 11-22.

Figure 11-22 Control Register Format (R10000)

0

0

 31

23

K

1

U

3

1 1

9

EXLEvent

5

IE

4

1

8 2

S

1 14

User’s Manual U10278EJ4V0UM 239

Chapter 11 Coprocessor 0

The fields of the Control register are:

• The Event field specifies the event to be counted, listed in Table 11-19.

Table 11-19 Counter Events (R10000)

NOTE: Note that the updated material reflects the functionality of silicon revision 3.0
and later. The status of earlier silicon revisions are documented as silicon errata
available on www.sgi.com.

• The IE bit enables the assertion of IP[7] when the associated counter
overflows.

• The U, S, K, and EXL bits indicate the processor modes in which the event is
counted: U is user mode; S is supervisor mode; K is kernel mode when EXL
and ERL both are set to 0; the system is in kernel mode and handling an
exception when EXL is set to 1, as shown in Table 11-23.

• 0: Reserved. Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set all four bits to count a
certain event in all processor modes except during a cache error exception.

Event Counter 0 Counter 1

0 Cycles Cycles

1 Instructions issued Instructions graduated

2 Load/prefetch/sync/CacheOp issued Load/prefetch/sync/CacheOp graduated

3 Stores (including store-conditional) issued Stores (including store-conditional) graduated

4 Store conditional issued Store conditional graduated

5 Failed store conditional Floating-point instructions graduated

6 Branches resolved Quadwords written back from primary data cache

7 Quadwords written back from secondary cache TLB refill exceptions

8 Correctable ECC errors on secondary cache data Branches mispredicted

9 Instruction cache misses
Secondary cache load/store and cache-ops
operations

10 Secondary cache misses (instruction) Secondary cache misses (data)

11 Secondary cache way mispredicted (instruction) Secondary cache way mispredicted (data)

12 External intervention requests
External intervention request is determined to have
hit in secondary cache

13 External invalidate requests
External invalidate request is determined to have hit
in secondary cache

14 Functional unit completion cycles
Stores or prefetches with store hint to
CleanExclusive secondary cache blocks

15 Instructions graduated
Stores or prefetches with store hint to Shared
secondary cache blocks

Chapter 11 Coprocessor 0

240 User’s Manual U10278EJ4V0UM

The performance counters and associated control registers are written by using an MTC0
instruction, as shown in Table 11-20.

Table 11-20 Writing Performance Registers Using MTC0 (R10000)

The performance counters and associated control registers are read by using a MFC0
instruction, as shown in Table 11-21.

Table 11-21 Reading Performance Registers Using MFC0 (R10000)

The format of the performance control registers are shown in Table 11-22.

Table 11-22 Performance Control Register Format (R10000)

The count enable field specifies whether counting is to be enabled during User, Supervisor,
Kernel, and/or Exception level mode. Any combination of count enable bits may be
asserted.

All unused bits in the performance control registers are reserved.

All counting is disabled when the ERL bit of the CP0 Status register is asserted.

Table 11-23 defines the operation of the count enable bits of the performance control
registers.

Table 11-23 Count Enable Bit Definition (R10000)

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move to Performance Control 0

11001 01 Move to Performance Counter 0

11001 10 Move to Performance Control 1

11001 11 Move to Performance Counter 1

Opcode[15:11] Opcode[1:0] Operation

11001 00 Move from Performance Control 0

11001 01 Move from Performance Counter 0

11001 10 Move from Performance Control 1

11001 11 Move from Performance Counter 1

Bits Definition

8:5 Event select

4 IP[7] interrupt enable

3:0 Count enable (U/S/K/EXL)

Count Enable Bit Count Qualifier (CP0 Status Register Fields)

U KSU = 2 (User mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0

User’s Manual U10278EJ4V0UM 241

Chapter 11 Coprocessor 0

The following rules apply:

• The performance counter registers may be preloaded with an MTC0
instruction, and counting is enabled by asserting one or more of the count
enable bits in the performance control registers.

• The interrupt enable bit must be asserted to cause IP[7].

• To determine the cause of the interrupt, the interrupt handler routine must
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of
both counters

• If neither of the counters caused the interrupt, IP[7] must be the result of the
CP0 Count register matching the CP0 Compare register.

Details of Counting Events

In describing the rules that are applied for the counting of each events listed in Table 11-
19, following terminology is used:

Done is defined as the point at which the instruction is successfully executed by the
functional unit but is not yet graduated.

Graduated is defined as the point in time when the instruction is successfully executed
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up
to four internally-generated and one-externally generated secondary cache
transactions are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-16:

Event 0 for Counter 0 and Counter 1: Cycles

The counter is incremented on each PClk cycle.

Chapter 11 Coprocessor 0

242 User’s Manual U10278EJ4V0UM

Event 1 for Counter 0: Instructions Issued

The counter is incremented on each cycle by the sum of the three following events:

• Integer operations marked as done on the cycle. 0, 1 or 2 such operations can
be marked on each cycle. Since these operations (all except for MUL and DIV)
are marked done on the cycle following their being issued to a functional unit,
this number is nearly identical to the number issued. The only difference is that
re-issues are not counted.

• Floating point operations marked done in the active list. Possible values are 0, 1
or 2. Since these operations take more than one cycle to complete, it is possible
for an instruction to be issued and then aborted before it is counted, due to a
branch-misprediction or exception rollback.

• Load/store instructions first issued to the address calculation unit on the
previous cycle. Possible values are 0 or 1. Prefetch instructions are counted as
issued. Load/store instructions are counted as being issued only once, even
though they may have been issued more than one time.† Any instruction which
does not go to the load/store unit, integer functional unit, or FP functional is
counted. Some of those not counted are: nops, bc1{f,t,fl,tl}, break, syscall, j,
jal, jr, jalr, cp0 instructions.

Event 1 for Counter 1: Instruction Graduation.

The counter is incremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two instructions.

Event 2 for Counter 0: Load/Prefetch/Sync/CacheOp Issue.

Each of these instructions are counted as they are issued. A load instruction is only counted
once, even though it may have been issued more than one time.†

Event 2 for Counter 1: Load/Prefetch/Sync/CacheOp Graduation.

Each of these instructions are counted as they are graduated. Up to four loads can graduate
in one cycle.

† This could be a result of DCache Tag being busy or four Instruction or Data cache misses
already present and waiting to be processed in the Secondary Cache Transaction Processing
(SCTP) logic.

User’s Manual U10278EJ4V0UM 243

Chapter 11 Coprocessor 0

Event 3 for Counter 0: Stores (Including Store-Conditional) Issued.

The counter is incremented on the cycle after a store instruction is issued to the address-
calculation unit. Note that a store can only be counted as having been issued once, even
though it may actually be issued more than once due to DCache Tag being busy or there
already being four load/store cache misses waiting in the SCTP logic.

Event 3 For Counter 1: Store (Including Store-Conditional) Graduation.

Each graduating store (including SC) increments the counter. At most one store can
graduate per cycle.

Event 4 for Counter 0: Store-Conditional Issued.

This counter is incremented on the cycle after a store conditional instruction is issued to the
address-calculation unit. Note that an SC can only be counted as having been issued once,
even though it may actually be issued more than once due to DCache Tag being busy or
there already being four load/store cache misses waiting in the SCTP logic.

Event 4 for Counter 1: Store-Conditional Graduation.

At most, one store-conditional can graduate per cycle. This counter is incremented on the
cycle following the graduation of a store-conditional instruction.

Event 5 for Counter 0: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails.

Event 5 for Counter 1: Floating-Point Instruction Graduation.

This counter is incremented by the number of FP instructions which graduated on the
previous cycle. Any instruction that sets the FP Status register bits (EVZOUI) is counted as
a graduated floating point instruction. There can be 0 to 4 such instructions each cycle.

Event 6 for Counter 0: Conditional Branch Resolved

This counter is incremented when a conditional branch is determined to have been
“resolved.”† Note that when multiple floating-point conditional branches are resolved in a
single cycle, this counter is still only incremented by one. Although this is a rare event, in
this case the count would be incorrect.

† In other words, this count is the sum of the conditional branches that are known to be both
correctly predicted and mispredicted.

Chapter 11 Coprocessor 0

244 User’s Manual U10278EJ4V0UM

Event 6 for Counter 1: Quadwords Written Back From Primary Data Cache

This counter is incremented once each cycle that a quadword of data is written from
primary data cache to secondary cache.

Event 7 for Counter 0: Quadwords Written Back From Secondary Cache

This counter is incremented once each cycle that a quadword of data is written back from
the secondary cache to the outgoing buffer located in the on-chip system-interface unit.
(Note that data from the outgoing buffer could be invalidated by an external request and not
sent out of the processor.)

Event 7 for Counter 1: TLB Refill Exception (Due To TLB Miss)

This counter is incremented on the cycle after the TLB miss handler is invoked. All TLB
misses are counted, whether they occur in the native code or within the TLB handler.

Event 8 for Counter 0: Correctable ECC Errors On Secondary Cache Data.

This counter is incremented on the cycle after the correction of a single-bit error on a
quadword read from the secondary cache data array.

Event 8 for Counter 1: Branch Misprediction.

This counter is incremented on the cycle after a branch is restored because of misprediction.
Note that the misprediction is determined on the same cycle that the conditional branch is
resolved. The misprediction rate is the ratio of branch mispredicted count to conditional
branch resolve count.

Event 9 for Counter 0: Primary Instruction Cache Misses.

This counter is incremented one cycle after an instruction refill request is sent to the SCTP
logic.

Event 9 for Counter 1: Secondary Cache Load/Store and Cache-ops Operations

This counter is incremented one cycle after a request is entered into the SCTP logic,
provided the request was initially targeted at the primary data cache. Such requests fall into
three categories:

• primary data cache misses

• requests to change the state of primary and secondary and primary data cache
lines from Clean to Dirty, due to stores hitting a clean line in the primary data
cache

• requests initiated by Cache-op instructions

User’s Manual U10278EJ4V0UM 245

Chapter 11 Coprocessor 0

Event 10 for Counter 0: Secondary Cache Misses (Instruction)

This counter is incremented the cycle after the last quadword of a primary instruction cache
line is written from the main memory, while the secondary cache refill continues.

Event 10 for Counter 1: Secondary Cache Misses (Data)

This counter is incremented the cycle after the second quadword of a data cache line is
written from the main memory, while the secondary cache refill continues.

Event 11 for Counter 0: Secondary Cache Way Misprediction (Instruction)

This counter is incremented when the secondary cache controller begins to retry an access
to the secondary cache after it hit in the non-predicted way, provided the secondary cache
access was initiated by the primary instruction cache.

Event 11 for Counter 1: Secondary Cache Way Misprediction (Data)

This counter is incremented when the secondary cache controller begins to retry an access
to the secondary cache because it hit in the non-predicted way, provided the secondary
cache access was initiated by the primary data cache.

Event 12 for Counter 0: External Intervention Requests

This counter is incremented on the cycle after an external intervention request enters the
SCTP logic.

Event 12 for Counter 1: External Intervention Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external intervention request is
determined to have hit in the secondary cache.

Event 13 for Counter 0: External Invalidate Requests

This counter is incremented on the cycle after an external invalidate request enters the
SCTP logic.

Event 13 for Counter 1: External Invalidate Requests Hits In Secondary Cache

This counter is incremented on the cycle after an external invalidate request is determined
to have hit in the secondary cache.

Chapter 11 Coprocessor 0

246 User’s Manual U10278EJ4V0UM

Event 14 for Counter 0: Functional Unit Completion Cycles

This counter is incremented once on the cycle after at least one of the functional units —
ALU1, ALU2, FPU1, or FPU2 — marks an instruction as done.

Event 14 for Counter 1: Stores, or Prefetches with Store Hint to Clean Exclusive Secondary Cache
Blocks.

This counter is incremented on the cycle after a request to change the Clean Exclusive state
of the targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.

Event 15 for Counter 0: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two graduated instructions.

Event 15 for Counter 1: Stores or Prefetches with Store Hint to Shared Secondary Cache Blocks.

This counter is incremented on the cycle after a request to change the Shared state of the
targeted secondary cache line to Dirty Exclusive is sent to the SCTP logic.

User’s Manual U10278EJ4V0UM 247

Chapter 11 Coprocessor 0

R12000 Implementation

The R12000 processor defines four performance counters and four associated control
registers, which are mapped into CP0 register 25. An encoding in the MTC0/MFC0
instructions on register 25 indicates which counter or control register is used.

Each counter is a 32-bit read/write register and is incremented by one each time the
countable event, specified in its associated control register, occurs. Each counter can
independently count one type of event at a time.

The counter asserts an interrupt, IP[7], when its most significant bit (bit 31) becomes one
(the counter overflows) and the associated performance control register enables the
interrupt.

The counting continues after counter overflow whether or not an interrupt is signalled.

Due to cycle time constraints, events counts are updated 2 cycles later in R12000, compared
to similar events in R10000. Also when setting a count mode by writing a performance
monitor control register, it is necessary to insert a ‘delay’ instruction between the ‘mtc0
r25’ which does the write, and any initialization of the count register itself.

The format of the control registers are shown in Figure 11-23.

Figure 11-23 Control Register Format (R12000)

 31

15

1

5

1 15

KSUIEEvent

0123459101213141516

Cond.
Count
ValueIn

ve
rt

C
on

d.
C

ou
nt

O
ne

S
ho

t
T

rig
ge

r

O
pe

n
T

rig
ge

r

17

1 131111

EXL
C

on
d.

C
ou

nt

 31

15 11 15

KSUIEEvent

0123459101213141516

Cond.
Count
ValueIn

ve
rt

C
on

d.
C

ou
nt

17

1 131111

EXL

C
on

d.
C

ou
nt

 31

15 11 15

KSUIEEvent

0123459101213141516

Cond.
Count
ValueIn

ve
rt

C
on

d.
C

ou
nt

17

1 131111

EXL

C
on

d.
C

ou
nt

 31

15 11 15

KSUIEEvent

0123459101213141516

Cond.
Count
ValueIn

ve
rt

C
on

d.
C

ou
nt

17

1 131111

EXL

C
on

d.
C

ou
nt

Performance control register 1

Performance control register 2

Performance control register 3

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

R
es

er
ve

d

L1
/L

2
S

el
ec

t

0

0

0

0*

Performance control register 0

* For R12000 and R12000L. Bits 31:23 are used as syndrome bits in the R12000A.

Chapter 11 Coprocessor 0

248 User’s Manual U10278EJ4V0UM

The fields of the Control register are:

• The Event field specifies the event to be counted, listed in Table 11-24.

Table 11-24 Counter Events (R12000)

Event Description

0 Cycles

1 Decoded instructions

2 Decoded loads

3 Decoded stores

4 Miss Handling Table Occupancy

5 Failed store conditional

6 Resolved conditional branches

7 Quadwords written back from secondary cache

8 Correctable ECC errors on secondary cache data

9 Instruction cache misses

10 Secondary cache misses (instruction)

11 Secondary cache way mispredicted (instruction)

12 External intervention requests

13 External invalidate requests

14 Not Used

15 Instructions graduated

16 Executed prefetch instructions

17 Primary data cache misses by prefetch instructions

18 Graduated loads

19 Graduated stores

20 Graduated store conditionals

21 Graduated floating point instructions

22 Quadwords written back from primary data cache

23 TLB misses

24 Mispredicted branches

25 Primary data cache misses

26 Secondary cache misses (data)

27 Misprediction from scache way prediction table (data)

28 State of external intervention hit in secondary cache

29 State of external invalidation hits in secondary cache

30 Store/prefetch exclusive to clean block in secondary cache

31 Store/prefetch exclusive to shared block in secondary cache

User’s Manual U10278EJ4V0UM 249

Chapter 11 Coprocessor 0

• The IE bit enables the assertion of IP[7] when the associated counter
overflows.

• The U, S, K, and EXL bits indicate the processor modes in which the event is
counted: U is user mode; S is supervisor mode; K is kernel mode when EXL
and ERL both are set to 0; the system is in kernel mode and handling an
exception when EXL is set to 1, as shown in Table 11-28.

• 0: Reserved. Must be written as zeroes, and returns zeroes when read.

These modes can be set individually; for example, one could set all four bits to count a
certain event in all processor modes except during a cache error exception.

The performance counters and associated control registers are written by using an MTC0
instruction, as shown in Table 11-25.

Table 11-25 Writing Performance Registers Using MTC0 (R12000)

The performance counters and associated control registers are read by using a MFC0
instruction, as shown in Table 11-26.

Table 11-26 Reading Performance Registers Using MFC0 (R12000)

Opcode[15:11] Opcode[2:0] Operation

11001 000 Move to Performance Control 0

11001 001 Move to Performance Counter 0

11001 010 Move to Performance Control 1

11001 011 Move to Performance Counter 1

11001 100 Move to Performance Control 2

11001 101 Move to Performance Counter 2

11001 110 Move to Performance Control 3

11001 111 Move to Performance Counter 3

Opcode[15:11] Opcode[2:0] Operation

11001 000 Move from Performance Control 0

11001 001 Move from Performance Counter 0

11001 010 Move from Performance Control 1

11001 011 Move from Performance Counter 1

11001 100 Move from Performance Control 2

11001 101 Move from Performance Counter 2

11001 110 Move from Performance Control 3

11001 111 Move from Performance Counter 3

Chapter 11 Coprocessor 0

250 User’s Manual U10278EJ4V0UM

The format of the performance control registers are shown in Table 11-27.

Table 11-27 Performance Control Register Format (R12000)

The count enable field specifies whether counting is to be enabled during User, Supervisor,
Kernel, and/or Exception level mode. Any combination of count enable bits may be
asserted.

All unused bits in the performance control registers are reserved.

All counting is disabled when the ERL bit of the CP0 Status register is asserted.

Table 11-28 defines the operation of the count enable bits of the performance control
registers.

Table 11-28 Count Enable Bit Definition (R12000)

The following rules apply:

• The performance counter registers may be preloaded with an MTC0
instruction, and counting is enabled by asserting one or more of the count
enable bits in the performance control registers.

• The interrupt enable bit must be asserted to cause IP[7].

• To determine the cause of the interrupt, the interrupt handler routine must
query the following:

- the performance counter register

- the interrupt enable bit of the associated performance control register of
both counters

• If neither of the counters caused the interrupt, IP[7] must be the result of the
CP0 Count register matching the CP0 Compare register.

Bits Definition

16 (Performance control register 0) Open Trigger

15 (Performance control register 0) One Shot Trigger

15 (Performance control register 3) L1/L2 select

14 Invert conditional count

13 Conditional count

12:10 Conditional count value

9:5 Event select

4 IP[7] Interrupt enable

3:0 Count enable (U/S/K/EXL)

Count Enable Bit Count Qualifier (CP0 Status Register Fields)

U KSU = 2 (User mode), EXL = 0, ERL = 0

S KSU = 1 (Supervisor mode), EXL = 0, ERL = 0

K KSU = 0 (Kernel mode), EXL = 0, ERL = 0

EXL EXL = 1, ERL = 0

User’s Manual U10278EJ4V0UM 251

Chapter 11 Coprocessor 0

Counters may each count any of 32 event types

All four counters are able to count any of 32 performance events. Access to these events is
provided by extending the ‘event select’ field in the Performance Control Register. In
R12000, bits[9:5] of the Performance Control Register specify the event to be counted.

Conditional counting

All four counters can be set to count an event only when the value of that event is equal to,
or not equal to, a specific value. This is called ‘conditional’ or ‘inverted conditional’
counting.

• Conditional counting is enabled for a counter by setting bit[13] of the
corresponding performance control register.

• Inverted conditional counting is enabled by setting bit[14] of the performance
control register.

• If both bits[13] and [14] are set, inverted conditional counting is enabled.

• The value to be compared against is set in bit[12:10] in the performance
control register.

If bit[13] is set, and bit[14] is not set, on every cycle the value of the selected event is
compared to the value of bits[12:10]. If the two values are equal, then the counter is
incremented by 1.

If bit[14] is set, regardless of the state of bit[13], the counter is incremented by 1 if the two
values are not equal.

Special case for intervention/invalidate hit events

A special case is used for events 28 and 29, external intervention and invalidate hits. The
default of non-conditional counting does not make sense for those events because they
encode cache-line state information and so should not be summed as usual. For those two
events, the sense of bit [14] is reversed. When a performance control register specifies event
28 or 29, then if bit [14] in the control register is ‘0’, inverted conditional counting is
enabled. Similarly, when monitoring events 28 or 29, if bit[14] is ‘1’ then conditional
counting is enabled by bit [13], as usual. Thus, for these two event types, the normal
‘default’ of setting control register bits [14:10] to ‘00000’ enables inverted conditional
counting with a target value of zero, In this case corresponding count register is
incremented by one whenever a non-zero state is seen on the event lines. Such a counter
presents a count of ‘generic’ intervention or invalidation hits, since any hit will set the event
to a non-zero value, and any miss will leave the value at zero. Consider an example. If a
user is interested in obtaining a count of the number of intervention hits to dirty-exclusive
cache-lines, then the control register should be set to a value of:

Chapter 11 Coprocessor 0

252 User’s Manual U10278EJ4V0UM

Table 11-29 Performance Control Register 1 Value

Given this setting, the counter will test the event value on each cycle, and increment on
those cycles where the value is equal to ‘011’. Since an invalidate hit to a dirty-exclusive
line will set the event to ‘011’, the counter will contain a count of the number of such hits.
The default setting of 0’s for all bits [14:10] means that the counter will increment by one
on each cycle that a line in any state (except invalid) is hit by an external intervention.

Triggered counting

The operation of monitor register 0 can be selectively tied to that of registers 1 and 2. When
bits [15] or [16] in control register 0 are set, then the performance event selected by control
register 1is used as a ‘window count’ and the event selected by control register 2 is used as
a ‘trigger’. This feature allows a user to set up counter register 0 to correlate the occurrence
of different types of events. Because of the generality of the control mechanism, several
ways to use this mode result.

Two bits are used to specify this mode because there are two variants that are supported.
The operation of the system when bit [15] is set is described in detail, and then the
differences for what happens when bit [16] is set are given. When either bit [15] or bit [16]
of performance control register 0 is set, the performance counters are said to be in
‘triggering mode’. When in triggering mode, then the event selected by control register 2 is
used to enable counting of events in register 0 and 1. When an event monitored by register
2 occurs, bits [15:0] of counter register 1 are reloaded with the last values written into those
bits of that register by the execution of an MTC0 instruction. Bit [16] of counter register 1
is set to 1, and bits [31:17] are incremented as if they were a 15-bit unsigned integer. Also,
when a'register 2' event occurs, counters 0 and 1 begin counting their respective events.
Counting continues until the carry out of the low-order 16 bits of counter 1 causes bit [16]
in counter 1 becomes a ‘0’, at which point counting in registers 0 and 1 ceases. Counting
restarts in registers 0 and 1 when a new event is seen on register 2.

NOTE: for the purpose of triggering the count mode, the triggering event monitored
on register 2 must simply be non-zero. For event types that allow values other than zero
or one, counter 2 will continue to count normally, but the window will open only once,
and for the same number of counter 1'window' events, regardless of the value on
counter 2 which was the trigger. If conditional counting is enabled by setting bits [13]
(or [14]) in control register 2, then the triggering event must be equal to (or not equal
to) the values set in bits [12:10] of control register 2. In order to use this mode, the user
should first load monitor register 1 with a value of (216 - {windowsize}), so that when
{windowsize} events have been counted by count register 1, bit [16] of count register

Bits Definition Value

16 Reserved 0

15 Reserved 0

14 Invert conditional count 1

13 Conditional count 1

12:10 Conditional count value 011

9:5 Event select 11100

4 IP[7] Interrupt enable 0

3:0 Count enable (U/S/K/EXL) 1000

User’s Manual U10278EJ4V0UM 253

Chapter 11 Coprocessor 0

1 will be set and counting will stop. Then the user should load monitor registers 0 and
2 with a value of 0. The three control registers should be set to count the events of
interest, and bit [15] should be set in control register 0 at the time that register is
written. When controlled by bit [15], trigger mode works in a ‘one shot’ manner. That
is, once counting is enabled by a trigger event, any further trigger events are ignored
until the window closes because bit 16 of count register 1 has become true. Only after
that occurs will a new trigger event cause the window to'reopen' and counting to begin
again. If bit [16] is used to arm the trigger mode rather than bit [15], then a slightly
different scheme results. In this case, whenever a trigger event occurs, the lower half
of count register 1 has its value reset to the initial value, so that the window ‘remains
open’, in a sense.

Note that when the performance monitor is used in triggering mode, the sum of trigger
events is available in counter 2, and the number of ‘window closings’ is available in the
upper half of counter 1. These two values may be different if the event which is used a
trigger can potentially take on values > 1 during a single cycle, or if multiple triggers can
occur during a window interval.

Data-cache miss-address recording

Access to the miss-address information is provided by using opcode bit [3] in the MTC0
instruction to specify the miss-address register when accessing CP0 register 25. If bit [3] is
set in the opcode of an MTC0 instruction which accesses register 25, then the values of
opcode bits [2:0] are ignored. When an MTC0-r25 instruction is executed with bit [3] of the
opcode set, the address of the most recently-refilled cache miss is transferred from a
holding register into performance monitor register 3. From there it can be read via a
DMFC0-r25 instruction with bits [0:1] set, so that it refers to performance counter register
3. This “arm then read” sequence is necessary due to implementation constraints. The use
of a “double move-from C0” instruction is necessary because 35 bits are retrieved from the
address holding register. The miss address holding register itself (unlike the other
performance monitor registers) is not writable, and there is no control register associated
with this register, either. There is no way to take an interrupt when the register is written or
to test the value or than by reading it. This address value in the holding register is updated
asynchronously to other operations of the processor, and so it does not necessarily represent
the last data miss that was generated. The mechanism that is used closely approximates this.
The actual address held in the register is the address of the last line of the primary data
cache to be refilled. Bit [15] in performance control register 3 determines whether the
address recorded corresponds to any primary cache miss or only those cache accesses
which also missed in the Scache. If bit [15] of the control register is set then only those
refills corresponding to primary cache misses which also miss in the secondary cache will
have their addresses recorded.

Table 11-30 Format of the “Arm Cache-miss Register” Instruction.

Opcode[15:11] Opcode[3] Opcode[2:0] Operation

11001 1 xxx Move to DCache miss-address control

Chapter 11 Coprocessor 0

254 User’s Manual U10278EJ4V0UM

The address information is 35 bits in size, and corresponds to the address of the cache-line
that was refilled. Thus it is a physical address and has a granularity of 32 bytes. The address
is output in a split format. The least significant bit returned by the cache-miss register is
always zero. Bits [31:1] represent bits [35:5] of the physical address. Bits [51:48] represent
bits [39:36] of the physical address.

Syndrome bits

In R12000A, the syndrome bits that are generated from the data coming into the processor
from the SCache are captured in a 9-bit register whenever there is a single or multiple bit
error. Therefore this register will always contain the syndrome bits generated for the most
recent error encountered. The register is uninitialized on power up and is not writable by
any other means. Architecturally, the 9-bit register appears as bits 31:23 of the CP0
Performance Counter (Cop 25) Control register 0. These bits were previously unused.
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome bits are generated for Secondary to Primary refills and Secondary to Main
memory writebacks, but not for CacheOp reads from Secondary cache.

The following are the equations used by the R12000A to generate the 9 syndrome bits:

DK0SyndrmP[8] := Parity(
 SCData[127:120] || SCData[113:112] || SCData[111:104] ||
 SCData[103:101] || SCData[97: 96] || SCData[90: 89] ||
 SCData[87: 80] || SCData[74: 72] || SCData[69] ||
 SCData[64] || SCData[62: 61] || SCData[57] ||
 SCData[55: 54] || SCData[52] || SCData[47] ||
 SCData[45: 44] || SCData[39: 38] || SCData[36] ||
 SCData[21] || SCData[13] || SCData[7] ||
 SCDataChk[8]
);

DK0SyndrmP[7] := Parity(
 SCData[127:120] || SCData[119:112] || SCData[105:104] ||
 SCData[99: 96] || SCData[95: 88] || SCData[82: 80] ||
 SCData[73: 72] || SCData[71] || SCData[69: 68] ||
 SCData[65] || SCData[60] || SCData[51] ||
 SCData[46] || SCData[43] || SCData[39: 38] ||
 SCData[35] || SCData[25] || SCData[23] ||
 SCData[20] || SCData[15] || SCData[12] ||
 SCData[5] ||
 SCDataChk[7]
);

User’s Manual U10278EJ4V0UM 255

Chapter 11 Coprocessor 0

DK0SyndrmP[6] := Parity(
 SCData[127] || SCData[121:120] || SCData[119:112] ||
 SCData[111:104] || SCData[97: 96] || SCData[90] ||
 SCData[88] || SCData[81: 80] || SCData[79: 72] ||
 SCData[70] || SCData[68: 66] || SCData[63] ||
 SCData[55] || SCData[50] || SCData[42] ||
 SCData[39: 38] || SCData[34] || SCData[29: 27] ||
 SCData[22] || SCData[19] || SCData[14] ||
 SCData[11] || SCData[6] || SCData[4] ||
 SCDataChk[6]
);

DK0SyndrmP[5] := Parity(
 SCData[126] || SCData[121] || SCData[119] ||
 SCData[111] || SCData[100] || SCData[97] ||
 SCData[95: 90] || SCData[87: 83] || SCData[81: 80] ||
 SCData[79: 74] || SCData[69: 64] || SCData[63: 58] ||
 SCData[56] || SCData[54: 53] || SCData[49] ||
 SCData[41] || SCData[37] || SCData[33] ||
 SCData[31] || SCData[26] || SCData[24] ||
 SCData[18] || SCData[15: 14] || SCData[10] ||
 SCData[3] ||
 SCDataChk[5]
);

DK0SyndrmP[4] := Parity(
 SCData[125] || SCData[120] || SCData[118] ||
 SCData[110] || SCData[105:104] || SCData[103: 96] ||
 SCData[95] || SCData[87] || SCData[79] ||
 SCData[74] || SCData[71: 64] || SCData[63: 56] ||
 SCData[53] || SCData[48] || SCData[40] ||
 SCData[32] || SCData[31: 24] || SCData[23: 22] ||
 SCData[17] || SCData[9] || SCData[7] ||
 SCData[2] ||
 SCDataChk[4]
);

Chapter 11 Coprocessor 0

256 User’s Manual U10278EJ4V0UM

DK0SyndrmP[3] := Parity(
 SCData[124] || SCData[117] || SCData[113:112] ||
 SCData[109] || SCData[103] || SCData[96] ||
 SCData[94] || SCData[90] || SCData[86] ||
 SCData[78] || SCData[74: 73] || SCData[71] ||
 SCData[69: 64] || SCData[63: 58] || SCData[53: 48] ||
 SCData[47: 46] || SCData[44: 40] || SCData[37: 32] ||
 SCData[30] || SCData[27: 26] || SCData[16] ||
 SCData[8] || SCData[6] || SCData[1] ||
 SCDataChk[3]
);

DK0SyndrmP[2] := Parity(
 SCData[123] || SCData[121] || SCData[116] ||
 SCData[113] || SCData[108] || SCData[105] ||
 SCData[100: 99] || SCData[93] || SCData[89: 88] ||
 SCData[85] || SCData[77] || SCData[72] ||
 SCData[63] || SCData[61: 59] || SCData[57] ||
 SCData[55: 48] || SCData[47: 46] || SCData[39] ||
 SCData[37] || SCData[31: 30] || SCData[28] ||
 SCData[23: 16] || SCData[15: 8] || SCData[7: 6] ||
 SCData[0] ||
 SCDataChk[2]
);

DK0SyndrmP[1] := Parity(
 SCData[122] || SCData[115] || SCData[112] ||
 SCData[107] || SCData[104] || SCData[102] ||
 SCData[98] || SCData[92] || SCData[89: 88] ||
 SCData[84] || SCData[81] || SCData[76] ||
 SCData[67] || SCData[62] || SCData[59: 58] ||
 SCData[56] || SCData[55: 54] || SCData[47: 45] ||
 SCData[39: 32] || SCData[31: 29] || SCData[23: 22] ||
 SCData[15: 8] || SCData[7: 0] ||
 SCDataChk[1]
);

User’s Manual U10278EJ4V0UM 257

Chapter 11 Coprocessor 0

DK0SyndrmP[0] := Parity(
 SCData[120] || SCData[114] || SCData[106] ||
 SCData[101] || SCData[91] || SCData[89: 88] ||
 SCData[83: 82] || SCData[80] || SCData[75] ||
 SCData[73: 72] || SCData[70] || SCData[66: 64] ||
 SCData[58] || SCData[55: 53] || SCData[47: 40] ||
 SCData[38: 37] || SCData[31: 30] || SCData[25: 24] ||
 SCData[23: 16] || SCData[15: 14] || SCData[7: 0] ||
 SCDataChk[0]
);

Details of Counting Events

In describing the rules that are applied for the counting of each events listed in Table 11-24,
following terminology is used:

Done is defined as the point at which the instruction is successfully executed by the
functional unit but is not yet graduated.

Graduated is defined as the point in time when the instruction is successfully executed
(done), and it is the oldest instruction.

Secondary Cache Transaction Processing (SCTP) logic is on-chip logic in which up
to four internally-generated and one-externally generated secondary cache transactions
are queued to be processed.

The following rules apply for the counting of each event listed in Table 11-24:

Event 0: Cycles

The counter is incremented on each PClk cycle.

Event 1: Decoded instructions

The counter is incremented by the total number of instructions decoded on the previous
cycle. Since decoded instructions may later be killed (for a variety of reasons) this count
reflects the overhead due to incorrectly speculated branches and exception processing.

Event 2: Decoded loads

This counter is incremented when a load instruction was decoded on the previous cycle.
Prefetch, cache-op and sync instructions are not included in the count of decoded loads.

Event 3: Decoded stores

The counter is incremented if a store instruction was decoded on the previous cycles. Store-
conditionals are included in this count.

Event 4: Miss Handling Table Occupancy

This counter is incremented on each cycle by the number of currently valid entries in the
Miss Handling Table (MHT). The MHT has five entries. Four entries are used for internally
generated accesses; the fifth entry is reserved for externally-generated events. All five
entries are included in this count. See event 8 for a related definition.

Chapter 11 Coprocessor 0

258 User’s Manual U10278EJ4V0UM

Event 5: Failed Store Conditional.

This counter is incremented when a store-conditional instruction fails. A failed store-
conditional instruction will, in the normal course of events, graduate; so this event
represents a subset of the store-conditional instructions counted on event 20 (graduated
store-conditionals).

Event 6: Resolved Conditional Branch

This counter is incremented each time a branch is determined to have been mispredicted,
and each time a branch is determined to have been correctly predicted. This determination
of a branch-prediction’s accuracy is know as the branch being ‘resolved’. This counter
correctly reflects the case of multiple FP-conditional branches being resolved in a single
cycle.

Event 7: Quadwords Written Back From Secondary Cache

This counter is incremented on each cycle that the data for a quadword is written back from
the secondary cache to the outgoing buffer located in the on-chip system-interface unit.
(Note that data from the outgoing buffer could be invalidated by an external request and not
sent out of the processor.)

Event 8: Correctable ECC Errors On Secondary Cache Data.

This counter is incremented on the cycle following the correction of a single-bit error in a
quadword read from the secondary cache data array.

Event 9: Primary Instruction Cache Misses.

This counter is incremented one cycle after an instruction-fetch request is entered into the
Miss Handling Table.

Event 10: Secondary Cache Misses (Instruction)

This counter is incremented the cycle after a refill request is sent to the system-interface
module of the CPU. This is normally just after the secondary cache tags are checked and a
miss is detected, but can be delayed if the system interface module is busy with another
request.

Event 11: Secondary Cache Way Misprediction (Instruction)

This counter is incremented when the secondary cache controller begins to retry an access
because it hit in the not-predicted way, provided the access that initiated the access was an
instruction fetch.

Event 12: External Intervention Requests

This counter is incremented on the cycle after an external intervention request is entered
into the Miss Handling Table, provided that the intervention is not an invalidate type.

Event 13: External Invalidate Requests

This counter is incremented on the cycle after an external invalidate request is entered into
the Miss Handling Table, provided that the intervention is an invalidate type.

User’s Manual U10278EJ4V0UM 259

Chapter 11 Coprocessor 0

Event 14: Not Used

 This counter is not counting any event.

Event 15: Instruction Graduation.

This counter is incremented by the number of instructions that were graduated on the
previous cycle. When an integer multiply or divide instruction graduates, it is counted as
two graduated instructions.

Event 16: Executed prefetch instructions

This counter is incremented on the cycle after a prefetch instruction does its tag-check,
regardless of whether a primary data cache line refill is initiated.

Event 17: Primary data cache misses by prefetch instructions

This counter is incremented on the cycle after a prefetch instruction does its tag-check and
a refill of the corresponding primary data cache line is initiated.

Event 18: Graduated loads

This counter is incremented by the number of loads which graduated on the previous cycle.
Prefetch instructions are included in this count. Up to four loads can graduate in one cycle.

Event 19: Graduated stores

This counter is incremented on the cycle after a store graduates. At most one store can
graduate per cycle. Store-conditional’s are included in this count.

Event 20: Graduated store conditionals

This counter is incremented on the cycle following the graduation of a store-conditional
instruction. Both failed and successful store-conditional instructions are included in this
count; so successful store-conditionals can be determined as the difference between this
event and event 5 (failed store-conditionals).

Event 21: Graduated floating point instructions

This counter is incremented by the number of FP instructions which graduated on the
previous cycle. There can be 0 to 4 such instructions.

Event 22: Quadwords written back from primary data cache

This counter is incremented on each cycle that a quadword of data is valid and being written
from primary data cache to secondary cache.

Event 23: TLB misses

This counter is incremented on the cycle after the TLB miss handler is invoked.

Chapter 11 Coprocessor 0

260 User’s Manual U10278EJ4V0UM

Event 24: Mispredicted branches

This counter is incremented on the cycle after a branch is “restored” because it was
mispredicted.

Event 25: Primary data cache misses

This counter is incremented one cycle after a request is entered into the SCTP logic,
provided that the request was initially targeted at the primary data cache. Such requests fall
into three categories:

• Primary data cache misses.

• Requests to change the state of secondary and primary data cache lines from
clean to dirty (“update” requests) due to stores that hit a clean line in the
primary data cache.

• Requests initiated by cache-op instructions.

Event 26: Secondary cache misses (data)

This counter is incremented the cycle after a refill request is sent to the system-interface
module of the CPU. This is normally just after the secondary cache tags are checked and a
miss is detected, but can be delayed if the system interface module is busy with another
request.

Event 27: Misprediction from secondary cache way prediction table (data)

This counter is incremented when the secondary cache control begins to retry an access
because it hit in the not-predicted way, provided the access that initiated the access was not
an instruction fetch.

Event 28: Store of external intervention hit in secondary cache

This event is set on the cycle after an external intervention is determined to have hit in the
secondary cache. The value of the event is equal to the state of the secondary cache line
which was hit.

Table 11-31 State of external intervention hit in secondary cache

Setting a performance control register to select this event has a special effect on the
conditional-counting behavior. If event 28 or 29 is selected, the sense of the “Negated
conditional counting” bit is inverted. See the description of conditional counting for details.

Event value State of secondary cache

00 Invalid, no hit seen

01 Clean, Shared

10 Clean, Exclusive

11 Dirty, Exclusive

User’s Manual U10278EJ4V0UM 261

Chapter 11 Coprocessor 0

Event 29: State of external invalidation hits in secondary cache

This event is set on the cycle after an external invalidate requests determined to have hit in
the secondary cache. It’s value is equivalent to that described for event 28.

Event 30: Store/prefetch exclusive to clean block in secondary cache

This counter is incremented on the cycle after an update request is issued for a clean line in
the secondary cache.

Event 31: Store/prefetch exclusive to shared block in secondary cache

This counter is incremented on the cycle after an update request is issued for a shared line
in the secondary cache.

Chapter 11 Coprocessor 0

262 User’s Manual U10278EJ4V0UM

11.21 ECC Register (26)

The R10000 processor implements a 10-bit read/write ECC register which is used to read
and write the secondary cache data ECC or the primary cache data parity bits. (Tag ECC
and parity are loaded to and stored from the TagLo register.) Unlike the R4400, the only
CacheOps that use ECC register are Index Load Data and Index Store Data.

In the R4400, both the primary instruction and data caches are parity byte-protected.

In the R10000 processor, the following protection schemes are used:

• The primary instruction cache is word-protected (where one word contains 36
bits), and one parity bit is used for each instruction word (IP in Figure 11-24).

• The primary data cache is byte-protected, with four bits used for each 32-bit
data word (DP in Figure 11-24).

• Each quadword of the secondary cache data uses nine bits of ECC and one bit
of parity (SP and ECC in Figure 11-24).

The primary instruction CacheOps load or store one instruction word at a time; therefore,
one bit is used in the ECC register. The primary data CacheOps load or store four bytes at
a time; therefore, four bits are used in the ECC register. The secondary CacheOps use
ECC[9] as the parity bit and ECC[8:0] as the 9-bit ECC. For the Index Store Data
CacheOps, the unused bits are ignored. For Index Load Data CacheOps, the unused a bits
are with zeroes.

Figure 11-24 shows the format of the ECC register; Table 11-32 describes the register
fields.

Figure 11-24 ECC Register Format

Table 11-32 ECC Register Fields

Field Description

SP
A 1-bit field specifying the parity bit read from or written to a secondary
cache.

ECC
An 9-bit field specifying the ECC bits read from or written to a secondary
cache.

DP
An 4-bit field specifying the parity bits read from or written to a primary
data cache.

IP
An 1-bit field specifying the parity bit read from or written to a primary
instruction cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

0

31

22

ECC9

9

89 0

DP4
IP1SP1

10

1

User’s Manual U10278EJ4V0UM 263

Chapter 11 Coprocessor 0

11.22 CacheErr Register (27)

The CacheErr register is a 32-bit read-only register that handles ECC errors in the
secondary cache or system interface, and parity errors in the primary caches.

R10000 processor correction policy is as follows:

• Parity errors cannot be corrected.

• Single-bit ECC errors can be corrected by hardware without taking a Cache
Error exception.

• Double-bit ECC errors can be detected but not corrected by hardware.

• All uncorrectable errors take Cache Error exceptions unless the DE bit of the
Status register is set.

• As in the R4400, cache errors are imprecise.

The CacheErr register provides cache index and status bits which indicate the source and
nature of the error; it is loaded when a Cache Error exception is taken.

CacheErr Register Format for Primary Instruction Cache Errors

Figure 11-25 shows the format of the CacheErr register when a primary instruction cache
error occurs.

Figure 11-25 CacheErr Register Format for Primary Instruction Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: data array error (way1 || way0)

TA: tag address array error (way1 || way0)

TS: tag state array error (way1 || way0)

PIdx: primary cache virtual block index, VA[13:6]

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

 28

2

TA

2

0

 29

1

EW

 30

1

00

 31

2

PIdx

6 13

8

0

5

6

0

24

8

1426 21

TS

2

27 23 2225

Chapter 11 Coprocessor 0

264 User’s Manual U10278EJ4V0UM

CacheErr Register Format for Primary Data Cache Errors

Figure 11-26 shows the format of the CacheErr register when a primary data cache error
occurs.

Figure 11-26 CacheErr Register Format for Primary Data Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: tag error on an inconsistent block

D: data array error (way1 | | way0)

TA: tag address array error (way1 | | way0)

TS: tag state array error (way1 | | way0)

TM: tag mod array error (way1 | | way0)

PIdx: primary cache virtual double word index, VA[13:6]

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

TA

2

D

 29

2

EW

 30

1

01

 31

2

PIdx

2 13

11

0

3

0

6

14 3

TS

2

19222426 28

EE

1 2

20

TM

27 25 23 21

User’s Manual U10278EJ4V0UM 265

Chapter 11 Coprocessor 0

CacheErr Register Format for Secondary Cache Errors

Figure 11-27 shows the format of the CacheErr register when a secondary cache error
occurs.

Figure 11-27 CacheErr Register Format for Secondary Cache Errors

EW: set when CacheErr register is already holding the values of a previous error

D: uncorrectable data array error (way1 | | way0)

TA: uncorrectable tag array error (way1 | | way0)

SIdx: secondary cache physical block index (PA[22:6] for 16-word block size or PA[22:7]
for 32-word block size)

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

2

0

 29

1

EW

 30

1

10

 31

2

SIdx

5 22

17 6

27 26 23

0

6

1

28

TA

2

25 24

0

Chapter 11 Coprocessor 0

266 User’s Manual U10278EJ4V0UM

CacheErr Register Format for System Interface Errors

Figure 11-28 shows the format of the CacheErr register when a System interface error
occurs.

Figure 11-28 CacheErr Register Format for System Interface Errors

EW: set when CacheErr register is already holding the values of a previous error

EE: data error on a CleanExclusive or DirtyExclusive

D: uncorrectable system block data response error (way1 | | way0)

SA: uncorrectable system address bus error

SC: uncorrectable system command bus error

SR: uncorrectable system response bus error

SIdx: secondary cache physical block index

0: Reserved. Must be written as zeroes, and returns zeroes when read.

0

D

2

EE

 29

1

EW

 30

1

11

 31

2

SIdx

5 22

17

25

0

628

6

SA

 27

1

SC

1

SR

1

24 2326

User’s Manual U10278EJ4V0UM 267

Chapter 11 Coprocessor 0

11.23 TagLo (28) and TagHi (29) Registers

The TagHi and TagLo registers are 32-bit read/write registers used to hold the following:†

• the primary cache tag and parity

• the secondary cache tag and ECC

• the data in primary or secondary caches for certain CacheOps

TagHi/Lo formats in the R10000 processor differ from those in the R4400 due to changes
in CacheOps and cache architecture. R10000 formats depend on the type of CacheOp
executed and the cache to which it is applied. The reserved fields are read as zeroes after
executing an Index Load Tag or an Index Load Data CacheOp and ignored when executing
an Index Store Tag or an Index Store Data CacheOp.

To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit read/write
register. The value written by an MTC0 instruction can be retrieved by a MFC0 instruction,
unless an intervening CACHE instruction has modified the content.

This section gives the TagLo and TagHi register formats for the following CacheOp and
cache combinations:

• CacheOp is Index Load/Store Tag

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

• CacheOp is Index Load/Store Data

- primary instruction cache operation

- primary data cache operation

- secondary cache operation

CacheOp is Index Load/Store Tag

This section describes the three states of the TagLo and TagHi registers, when the CacheOp
is an Index Load/Store Tag for the following operations:

• primary instruction cache operation

• primary data cache operation

• secondary cache operation

† To ensure NT kernel compatibility, the TagLo register is implemented as a 32-bit read/write
register. The value written by a MTC0 instruction can be retrieved by a MFC0 instruction,
unless intervening CACHE instructions modify the content.

Chapter 11 Coprocessor 0

268 User’s Manual U10278EJ4V0UM

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Tag for a primary instruction cache operation, the
fields of the TagHi and TagLo registers are defined as follows:

PTag0: contains physical address bits [35:12] stored in the cache tag

PState: contains the primary instruction cache state for the line, as follows:

1 = Valid

0 = Invalid

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field

TP: tag even parity bit.

PTag1: contains physical address bits [39:36] stored in the cache tag

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-29 shows the fields of the TagHi and TagLo registers.

Figure 11-29 TagHi/Lo Register Fields in Primary Instruction Cache
When CacheOp is Index Load/Store Tag

Primary Data Cache Operation

If the CacheOp is an Index Load/Store Tag for primary data cache operations, the fields of
the TagHi and TagLo registers are defined as follows:

State Modifier: holds the status of the line, as follows:

0012 = neither refilled or written

0102 = this line may have been written and inconsistent from the secondary cache (W
bit)

1002 = this line is being refilled (Refill bit).

PTag1: contains physical address bits [39:36] stored in the cache tag

PTag0: contains physical address bits [35:12] stored in the cache tag

PTag1

0 3

4

0

4 31

28

TagHi

0

PTag0

 31

24

0

1

LRU

3

1 1

8

TPPState

6

0

4

2

7

1

2

SP

1 1

TagLo0

1

5

User’s Manual U10278EJ4V0UM 269

Chapter 11 Coprocessor 0

PState: together with the Refill bit of the State Modifier in the TagHi register, PState
determines the state of the cache block in the primary data cache, as shown in Table 11-33.

Table 11-33 PState Field Definition in TagHi/Lo Registers, For Primary Data Cache Operation
When CacheOp is Index Load/Store Tag

LRU: indicates which way is the least recently used of the set.

SP: state even parity bit for the PState field and the Way bit

Way: indicates which secondary cache set contains the primary cache line for this tag

TP: tag even parity bit.

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-30 shows the fields of the TagHi and TagLo registers.

Figure 11-30 TagHi/Lo Register Fields in Primary Data Cache
When CacheOp is Index Load/Store Tag

PState Refill=0 Refill=1

002 Invalid Refill clean (block is being
refilled)

012 Shared
Upgrade Share (converting
shared to dirty)

102 Clean
Exclusive

Upgrade Clean (converting
clean to dirty).

112

Dirty
Exclusive

Refill dirty (block is being
refilled for a store)

PTag1

0 3

4

0

 31

25

28

3

State
Modifier TagHi

29

0

PState

6

PTag0

 31

24

Way

1

1

0

4

2

SP

2

1

LRU

3

1 1

78

TP

2

TagLo

Chapter 11 Coprocessor 0

270 User’s Manual U10278EJ4V0UM

Secondary Cache Operation

If the CacheOp is an Index Load/Store Tag for secondary cache operations, the fields of the
TagHi and TagLo registers are defined as follows:

STag0: contains physical address bits [35:18] stored in the cache tag

SState: contains the secondary cache state of the line, as follows:

002 = Invalid

012 = Shared

102 = Clean Exclusive

112 = Dirty Exclusive

VIndex (virtual index): contains only two bits of significance since the32 Kbyte 2-way set
associative primary caches are addressed using only two untranslated address bits
(VA[13:12]) plus the offset within the virtual page.

ECC: contains the ECC for the STag, SState and VIndex fields.

MRU: indicates which way was the most recently used in the set.

STag1: contains the physical address bits [39:36] stored in the cache tag.

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 11-31 shows the fields of the TagHi and TagLo registers.

Figure 11-31 TagHi/Lo Register Fields in Secondary Cache
When CacheOp is Index Load/Store Tag

STag1

0 3

4

0

4 31

27

30

MRU

1

TagHi

ECC

0 6

7

VIndex

7 8

2

SState

10 11

2

STag0

14 31

18

0

1

9

TagLo

13

0

2

12

User’s Manual U10278EJ4V0UM 271

Chapter 11 Coprocessor 0

CacheOp is Index Load/Store Data

This section describes the following three states of the TagLo and TagHi registers, when the
CacheOp is an Index Load/Store Data:

• primary instruction cache operation

• primary data cache operation

• secondary cache operation

Primary Instruction Cache Operation

If the CacheOp is an Index Load/Store Data for the primary instruction cache, the TagHi
register stores the most significant four bits of a 36-bit instruction, as shown in Figure 11-
32; the rest of the instruction is stored in the TagLo register.

Figure 11-32 TagHi/Lo Register Fields in Primary Instruction Cache
When CacheOp is Index Load/Store Data

0: Reserved. Must be written as zeroes, and returns zeroes when read.

Inst[35:32]

0 3

4

0

4 31

28

TagHi

Inst[31:0]

0 31

32

TagLo

Chapter 11 Coprocessor 0

272 User’s Manual U10278EJ4V0UM

Primary Data Cache Operation

If the CacheOp is Index Load/Store Data for primary data cache, the TagHi register is not
used. The TagLo registers contains a 32-bit data word for the cache operation, as shown in
Figure 11-33.

Figure 11-33 TagHi/Lo Register Fields in Primary Data Cache
When CacheOp is Index Load/Store Data

Secondary Cache Operation

If the CacheOp is Index Load/Store Data for the secondary cache, a doubleword of data is
required for the CacheOp. The TagHi register stores the upper 32 bits of the doubleword
and the TagLo register stores the lower 32 bits, as shown below in Figure 11-34.

Figure 11-34 TagHi/Lo Register Fields in Secondary Cache
When CacheOp is Index Load/Store Data

Not Used

0 31

32

TagHi

Data Word[31:0]

0 31

32

TagLo

Doubleword[63:32]

0 31

32

TagHi

Doubleword[31:0]

0 31

32

TagLo

User’s Manual U10278EJ4V0UM 273

Chapter 11 Coprocessor 0

11.24 ErrorEPC Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used on ECC
and parity error exceptions. It is also used to store the program counter (PC) on Reset, Soft
Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction
processing can resume after servicing an error. Figure 11-35 shows the format of the
ErrorEPC register.

Figure 11-35 ErrorEPC Register Format

ErrorEPC Register

63 0

ErrorEPC

64

274 User’s Manual U10278EJ4V0UM

12. Floating-Point Unit

This section describes the operation of the FPU, including the register definitions.

The Floating-Point unit consists of the following functional units:

• add unit

• multiply unit

• divide unit

• square-root unit

The add unit performs floating-point add and subtract, compare, and conversion
operations. Except for Convert Integer To Single-Precision (float), all operations have a 2-
cycle latency and a 1-cycle repeat rate.

The multiply unit performs single-precision or double-precision multiplication with a 2-
cycle latency and a 1-cycle repeat rate.

The divide and square-root units do single- or double-precision operations. They have
long latencies and low repeat rates (20 to 40 cycles).

User’s Manual U10278EJ4V0UM 275

Chapter 12 Floating-Point Unit

12.1 Floating-Point Unit Operations

The floating-point add, multiply, divide, and square-root units read their operands and store
their results in the floating-point register file. Values are loaded to or stored from the
register file by the load/store and move units.

A logic diagram of floating-point operations is shown in Figure 12-1, in which data and
instructions are read from the secondary cache into the primary caches, and then into the
processor. There they are decoded and appended to the floating-point queue, passed into
the FP register file where each is dynamically issued to the appropriate functional unit.
After execution in the functional unit, results are stored, through the register file, in the
primary data cache.

Figure 12-1 Logical Diagram of FP Operations

The floating-point queue can issue one instruction to the adder unit and one instruction to
the multiplier unit. The adder and multiplier each have two dedicated read ports and a
dedicated write port in the floating-point register file.

Because of their low repeat rates, the divide and square-root units do not have their own
issue port. Instead, they decode instructions issued to the multiplier unit, using its operand
registers and bypass logic. They appropriate a second cycle later for storing their result.

When an instruction is issued, up to two operands are read from dedicated read ports in the
floating-point register file. After the operation has been completed, the result can be written
back into the register file using a dedicated write port. For the add and multiply units, this
write occurs four cycles after its operands were read.

Flt.Pt.
Mult.

Divide
& SQRT.

FP
Adder

Prefetch
and

Predecode

Secondary
Cache

(512 Kbyte to 16 Mbyte)

2-way associative
32 Kbyte

Prefetch
and

Predecode

Primary
Instruction Cache

Branch Cache

Branch Address

System Bus

Prefetch
and

FP Queue
(16-entry)

Prefetch
and

PredecodeRegister
Rename

Map

Active and
Free Lists

Prefetch
and

Predecod
e

FP
Register

File
(64-by-64)

FP
Adder

FP.
Multiply.

FP Divide
& SQRT.

Primary
Data

Cache

Refill / Copyback

2-way associative
32 Kbyte

Prefetch
and

Predecode

Instruction
Decode/
Rename/
Branch

Unit

Chapter 12 Floating-Point Unit

276 User’s Manual U10278EJ4V0UM

12.2 Floating-Point Unit Control

The control of floating-point execution is shared by the following units:

• The floating-point queue determines operand dependencies and dynamically
issues instructions to the execution units. It also controls the destination
registers and register bypass.

• The execution units control the arithmetic operations and generate status.

• The graduate unit saves the status until the instructions graduate, and then it
updates the Floating-Point Status register.

Eliminate traps for Denorm/NaN FP inputs (R12000)

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or
Denorm as an input. R12000 suppresses these traps whenever the FS bit is set in the FCSR
(ref. VR5000, VR10000 INSTRUCTION User’s Manual). R12000 simply passes through
NaN’s and Denorm’s when the bit is set. This change in no way affects the handling of
QNaNs and Denorms when they are produced, it only changes the way they are handled
when they are received as input operands.

Case of Denorm when the FS bit is set to 1: A Denorm received as an input to the FP unit
is flushed to zero before the FP unit begins to process the operand. The behavior of the unit
(when FS is 1) will be exactly that seen when the input is zero. Specifically, if the zero input
would itself cause a trap (due to divide by zero, for example) then the that zero-generated
trap will be taken.
When a Denorm is seen at the input, the Inexact bit is set, except in the cases described
below:

The Inexact bit will not be set, even if FS=1 and a Denorm is seen on input, if the other
input to the FP operation is a value which pre-determines the FP result (e.g. QNaN). When
the result is not affected by the presence or absence of the Denorm input, the result is
EXACT. Hence the Inexact bit should not be set, even if Flush to Zero mode is ON.

Case of QNaNs when the FS bit is set to 1: A QNaN received as an input operand for an FP
unit will cause the unit to produce the standard QNaN (which is not necessarily same as the
input QNaN). Note that FP units will not propagate the QNaN to the output, but will always
produce the same, standard, QNaN.

When the FS bit is set to zero, the behavior will be exactly as in R10000.

User’s Manual U10278EJ4V0UM 277

Chapter 12 Floating-Point Unit

12.3 Floating-Point General Registers (FGRs)

The Floating-Point Unit is the hardware implementation of Coprocessor 1 in the MIPS IV
Instruction Set Architecture. The MIPS IV ISA defines 32 logical floating-point general
registers (FGRs), as shown in Figure 12-2. Each FGR is 64 bits wide and can hold either
32-bit single-precision or 64-bit double-precision values. The hardware actually contains
64 physical 64-bit registers in the Floating-Point Register File, from which the 32 logical
registers are taken.

FP instructions use a 5-bit logical number to select an individual FGR. These logical
numbers are mapped to physical registers by the rename unit (in pipeline stage 2), before
the Floating-Point Unit executes them. Physical registers are selected using 6-bit
addresses.

32- and 64-Bit Operations

The FR bit (26) in the Status register determines the number of logical floating-point
registers available to the program, and it alters the operation of single-precision load/store
instructions, as shown in Figure 12-2.

• FR is reset to 0 for compatibility with earlier MIPS I and MIPS II ISAs, and
instructions use only the 16 physical even-numbered floating-point registers
(32 logical registers). Each logical register is 32 bits wide.

• FR is set to 1 for normal MIPS III and MIPS IV operations, and all 32 of the
64-bit logical registers are available.

Figure 12-2 Floating-Point Registers

0

Status Bit FR=1

Thirty-two 64-bit Registers

6332 0

FGR = #0

Sixteen 64-bit Physical Registers

63 31

063

063

063

32 063 31

(Register is not implemented.)

(Register is not implemented.)

063

063

32 063 31

(Register is not implemented.)

FGR = #1

FGR = #3

FGR = #31 FGR = #30

FGR = #2

Status Bit FR= 0

(MIPS I and MIPS II compatible)

FGR = #0

FGR = #1

FGR = #2

FGR = #3

FGR = #30

FGR = #31

(MIPS III and MIPS IV only)

FGR = #0

Thirty-two 32-bit Logical Registers
Physical Register

Register #0

Register #1

Register #2

Register #3

Register #30

Register #31

Chapter 12 Floating-Point Unit

278 User’s Manual U10278EJ4V0UM

Load and Store Operations

When FR = 0, floating-point load and stores operate as follows:

• A doubleword load or store is handled the same as if the FR bit was set to 1,
as long as the register selected is even (0, 2, 4, etc.).

• If the register selected is odd, the load/store is invalid.

These operations are shown in Figure 12-3. Singleword loads/stores to even and odd
registers are also shown.

Figure 12-3 Loading and Storing Floating-Point Registers in 16-Register Mode

NOTE: Move (MOV) and conditional move (MOVC, MOVN, MOVZ are included
in these arithmetic operations, although no arithmetic is actually performed.

32 063 31

Load 32-bit Unchanged

031

Memory†

LWC1 ft,address

031

Memory†

SWC1 ft,address

3263

Sign extend reg.

(MFC1 rt,fs)

(MTC1 ft,rs)

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

Singleword Load/Store when Register is Odd

32 063 31

Unchanged Load 32-bit

031

Memory†

LWC1 ft,address (MTC1 ft,rs)

031

Memory†

SWC1 ft,address (MFC1 rt,fs)

FR=0 16-Register Mode

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

3263

Sign extend reg.

Doubleword Load/Store
 Same as FR=1 if register is even, else invalid.

Singleword Load/Store when Register is Even

User’s Manual U10278EJ4V0UM 279

Chapter 12 Floating-Point Unit

When FR = 1, floating-point load and stores operate as follows:

• Single-precision operands are read from the low half of a register, leaving the
upper half ignored. Single-precision results are written into the low half of
the register. The high half of the result register is architecturally undefined; in
the R10000 implementation, it is set to zero.

• Double-precision arithmetic operations use the entire 64-bit contents of each
operand or result register.

Because of register renaming, every new result is written into a temporary register, and
conditional move instructions select between a new operand and the previous old value.
The high half of the destination register of a single-precision conditional move instruction
is undefined (shown in Figure 12-5), even if no move occurs.

Singleword and doubleword loads and stores with the FPU in 32-register mode (FR=1) are
shown in Figure 12-4.

Figure 12-4 Loading and Storing Floating-Point Registers in 32-Register Mode

63 0

Memory† (or 64-bit register)

63 0

Load 64-bit Value

LDC1 ft,address

031

32-bit Value

3263

Undefined

031

Memory†

zero (dup)

LWC1 ft,address

031

Memory†

63 0

Memory† (or 64-bit register)

SDC1 ft,address

FR=1 32-Register Mode

Doubleword Load/Store Singleword Load/Store

(DMFC1 rt,fs)

(DMTC1 ft,rs)

SWC1 ft,address

(MTC1 ft,rs)

(MFC1 rt,fs)

†Move to/from selects an integer register instead.

Moved 32-bit data is sign-extended in 64-bit register.

3263

Sign extend reg.

Chapter 12 Floating-Point Unit

280 User’s Manual U10278EJ4V0UM

Doubleword load, store and move to/from instructions load or store an entire 64-bit
floating-point register, as shown in Figure 12-5.

Figure 12-5 Operators on Floating-Point Registers

In MIPS I and MIPS II ISAs, all arithmetic instructions, whether single- or double-
precision, are limited to using even register numbers. Load, store and move instructions
transfer only a single word. Even and odd register numbers are used to access the low and
high halves, respectively, of double-precision registers. When storing a floating-point
register (SWC1 or MFC1), the processor reads the entire register but writes only the
selected half to memory or to an integer register.

Because the register renaming scheme creates a new physical register for every destination,
it is not sufficient just to enable writing half of the Floating-Point register file when loading
(LWC1 or MTC1); the unchanged half must also be copied into the destination. This old
value is read using the shared read port, it is then merged with the new word, and the merged
doubleword value is written. (A write to the register file writes all 64 bits in parallel.)

When instructions are renamed in MIPS I or II, the low bit of any FGR field is forced to
zero. Thus, each even/odd logical register number pair is treated as an even-numbered
double-precision register. Odd numbered logical registers are not used in the mapping
tables and dependency logic, but they remain mapped to their latest physical registers.

031

32-bit Value

031

32-bit Value

3263

Unused

3263

Undefined

031

Functional Unit

63 0

64-bit Operand Value

63 0

Functional Unit

63 0

64-bit Result Value

zero

64-bit Double-Precision32-bit Single-Precision

In MIPS 1 and II ISA, arithmetic operations are valid only for even-numbered registers.

User’s Manual U10278EJ4V0UM 281

Chapter 12 Floating-Point Unit

12.4 Floating-Point Control Registers

The MIPS IV ISA permits up to 32 control registers to be defined for each coprocessor, but
the Floating-Point Unit uses only two:

• Control register 0, the FP Implementation and Revision register

• Control register 31, the Floating-Point Status register (FSR)

Floating-Point Implementation and Revision Register

The following fields are defined for control register 0 in Coprocessor 1, the FP
Implementation and Revision register, as shown in Figure 12-6:

• The Implementation field holds an 8-bit number, 0x09, which identifies the
R10000 implementation of the floating-point coprocessor.

• The Revision field is an 8-bit number that defines a particular revision of the
floating-point coprocessor. Since it can be arbitrarily changed, it is not
defined here.

Figure 12-6 FP Implementation and Revision Register Format

16 15

Implementation and Revision Register

31 0

16

Imp (0x09)

8 8

0

8

Rev

7

Chapter 12 Floating-Point Unit

282 User’s Manual U10278EJ4V0UM

Floating-Point Status Register (FSR)

Figure 12-7 shows the Floating-Point Status register (FSR), control register 31 in
Coprocessor 1. It is implemented in the graduation unit rather than the Floating-Point Unit,
because it is closely tied to the active list.

Bits 22:18 are unimplemented and must be set to zero. All other bits may be read or written
using Control Move instructions from or to Coprocessor 1 (subfunctions CFC1 or CTC1).
These move instructions are fully interlocked; they are delayed in the decode stage until all
previous instructions have been graduated, and no subsequent instruction is decoded until
they have been completed.

Figure 12-7 Floating-Point Status Register (FSR)

V Z O U I7 6 5 4 3 2 1 F 0 zero E V Z O U I V Z O U I RMV Z O U I7 6 5 4 3 2 1 FS 0 0

31

E V Z O U I V Z O U I RM

Cause Enables FlagsCondition Bits 7..0

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Condition bits are True/False values set by floating-point compare instructions.
Flush (FS) bit: 0: A denormalized result causes an Unimplemented Operation exception.

 1: A denormalized result is replaced with zero. No exception is flagged.
Cause bits indicate the status of each floating-point arithmetic instruction. (Not by load, store, or move.)
Enable bits enable an exception if the corresponding Cause bit is set.
Flag bits are set whenever the corresponding Cause bit is a 1. These bits are cumulative. Once a bit is set, it
remains set until the FSR is written by a CTC1 instruction.

E Unimplemented operation. This exception is always enabled.
 IEEE 754 Exception bits: The following bits may be individually enabled:

V Invalid operation.
Z Division by zero. (Divide unit only.)
O Overflow.
U Underflow.
I Inexact operation. (Result can not be stored precisely.)

Round Mode (RM): (IEEE specification)
0: RN, Round to nearest representable value. If two values are equally near,

set the lowest bit to zero.
1: RZ, Round toward Zero. Round to the closest value whose magnitude is not greater than

the result.
2: RP, Round to Plus Infinity. Round to the closest value whose magnitude is not less than

the result.
3: RM, Round to Minus Infinity. Round to the closest value whose magnitude is not greater.

FP Status Register

1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

User’s Manual U10278EJ4V0UM 283

Chapter 12 Floating-Point Unit

Bit Descriptions of the FSR

Description of the bits in the FSR are as follows:

Condition Bits [31:25,23]: The Condition bits indicate the result of floating-point compare
instructions. The active list keeps track of these bits.

Cause Bits [17:12]: Each functional unit can detect exceptional cases in their function
codes, operands, or results. These cases are indicated by setting one of six specific Cause
bits. The Cause bits indicate the status of the floating-point arithmetic instruction which
graduated most recently or caused an exception to be taken. The FSR is not modified by
load, store, or move instructions. All cause bits, except E, have corresponding Enable and
Flag bits in the FSR.

E Unimplemented operation: the execution unit does not perform the specified
operation. This exception is always enabled.

V Invalid operation: this operation is not valid for the given operands.

Z Division by zero: (divide unit only) the result of division by zero is not
defined.

O Overflow: the result is too large in magnitude to be correctly represented in
the result format.

U Underflow: the result is too small in magnitude to be correctly represented in
the result format.

I Inexact Result: the result cannot be represented exactly.

NOTE: The FSR is modified only for instructions issued by the floating-point queue.
Move From (MFC or DMFC) instructions never set the Cause field; status bits from
the functional unit (multiplier) must be ignored. Move or Move Conditional
instructions can set the Unimplemented Operation exception only in the Cause field.
Load and store instructions are issued by the address queue.)

The functional units generate the Cause bits and send them to the graduation unit when the
operation is completed.

Enable Bits [11:7]: The five Enable bits individually enable (when set to a 1) or disable
(when set to a 0) exceptions when the corresponding Cause bit is set.

Flag Bits [6:2]: One of the five Flag bits is set when a floating-point arithmetic instruction
graduates, if the corresponding Cause bit is set. The Flag bits are sticky and remain set
until the FSR is written. Thus, the Flag bits indicate the status of all floating-point
instructions graduated since the FSR was last written. The Flag bits are not modified for
any instructions which cause an exception to be taken.

Chapter 12 Floating-Point Unit

284 User’s Manual U10278EJ4V0UM

Round Mode [1:0]: RM bits select one of the four IEEE rounding modes. Most floating-
point results cannot be precisely represented by the 32-bit or 64-bit register formats, and
must be truncated and rounded to a representable value. The modes selected by the RM bit
values are:

0: RN, round to nearest representable value. If two values are equally near, set the
lowest bit to zero.

1: RZ, round toward zero. Round to the closest value whose magnitude is not greater
than the result.

2: RP, round to plus infinity. Round to the closest value whose magnitude is not less
than the result.

3: RM, round to minus infinity. Round to the closest value whose magnitude is not
greater.

The Round and Enable bits only change when the FSR is written by a CTC1 (Move To
Coprocessor 1 Control Register) instruction. Each CTC1 instruction is executed
sequentially, after all previous floating-point instructions have been completed, so these
FSR bits do not change while any floating-point instruction is active. These bits are
broadcast from the graduation unit to all the floating-point functional units.

When a Cause bit is set and its corresponding Enable bit is also set, an exception is taken
on the instruction. The result of the instruction is not stored, and the Flag bits are not
changed. If no exception is taken, the corresponding Flag bits are set.

The Cause and Flag bits may be read or written. If a CTC1 instruction sets both a Cause
bit and its Enable bit, an exception is taken immediately. The FSR is written, but the
exception is reported on the move instruction.

Loading the FSR

The FSR may be loaded from an integer register by a CTC1 instruction which selects
control register 31. This instruction is executed serially; that is, it is delayed during decode
until the entire pipeline has emptied, and it is completed before the next instruction is
decoded. This instruction writes all FSR bits.

If any Cause bit and its corresponding Enable bit are both set, an exception is taken after
FSR has been modified. The CTC1 instruction is aborted; it does not graduate, even though
it has changed the processor state.

User’s Manual U10278EJ4V0UM 285

13. Memory Management

This section describes the R10000 processor memory management, including:

• processor modes and exceptions

• virtual address space

• virtual address translation

Chapter 13 Memory Management

286 User’s Manual U10278EJ4V0UM

13.1 Processor Modes

The R10000 has three operating modes and two addressing modes. All are described in this
section.

Processor Operating Modes

The three operating modes are listed in order of decreasing system privilege:

• Kernel mode (highest system privilege): can access and change any register.
The innermost core of the operating system runs in kernel mode.

• Supervisor mode: has fewer privileges and is used for less critical sections of
the operating system.

• User mode (lowest system privilege): prevents users from interfering with one
another.

Selection between the three modes can be made by the operating system (when in Kernal
mode) by writing into Status register’s KSU field. The processor is forced into Kernel mode
when the processor is handling an error (the ERL bit is set) or an exception (the EXL bit is
set). Table 13-1 shows the selection of operating modes with respect to the KSU, EXL and
ERL bits.

Table 13-1 also shows how different instruction sets and addressing modes are enabled by
the Status register’s XX, UX, SX and KX bits. A dash (“-”) in this table indicates a “don’t
care.” For detailed information on the address spaces available in each mode, refer to
section titled, “Virtual Address Space,” in this chapter.

The R10000 processor was designed for use with the MIPS IV ISA; however, for
compatibility with earlier machines, the useable ISAs can be limited to either MIPS III or
MIPSI/II.

Table 13-1 Processor Modes

‡ No means the ISA is disabled; Yes means the ISA is enabled.

* Dashes (-) are “don’t care.”

XX
31

KX
7

SX
6

UX
5

KSU
4:3

ERL
2

EXL
1

Description
ISA‡

III
ISA‡

IV
Addressing Mode

32-Bit/64-Bit

0
1
0
1

-*

-
-
-

-
-
-
-

0
0
1
1

10
10
10
10

0
0
0
0

0
0
0
0

User mode.

No
No
Yes
Yes

No
Yes
No
Yes

32
32
64
64

-
-

-
-

0
1

-
-

01
01

0
0

0
0

Supervisor mode.
No
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

00
00

0
0

0
0

Kernel mode.
Yes
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

0
0

1
1

Exception Level
Yes
Yes

Yes
Yes

32
64

-
-

0
1

-
-

-
-

-
-

1
1

X
X

 Error Level.
Yes
Yes

Yes
Yes

32
64

User’s Manual U10278EJ4V0UM 287

Chapter 13 Memory Management

Addressing Modes

The processor’s addressing mode determines whether it generates 32-bit or 64-bit memory
addresses.

Refer to Table 13-1 for the following addressing mode encodings:

• In Kernel mode the KX bit allows 64-bit addressing; all instructions are
always valid.

• In Supervisor mode, the SX bit allows 64-bit addressing and the MIPS III
instructions. MIPS IV ISA is enabled all the time in Supervisor mode.

• In User mode, the UX bit allows 64-bit addressing and the MIPS III
instructions; the XX bit allows the new MIPS IV instructions.

13.2 Virtual Address Space

The processor uses either 32-bit or 64-bit address spaces, depending on the operating and
addressing modes set by the Status register. Table 13-1 lists the decoding of these modes.

The processor uses the following addresses:

• virtual address VA[43:0]

• region bits VA[63:59]

If a region is mapped, virtual addresses are translated in the TLB. Bits VA[58:44] are not
translated in the TLB and are sign extensions of bit VA[43].

In both 32-bit and 64-bit address mode, the memory address space is divided into many
regions, as shown in Figure 13-3. Each region has specific characteristics and uses. The
user can access only the useg region in 32-bit mode, or xuseg in 64-bit mode, as shown in
Figure 13-1. The supervisor can access user regions as well as sseg (in 32-bit mode) or
xsseg and csseg (in 64-bit mode), shown in Figure 13-2. The kernel can access all regions
except those restricted because bits VA[58:44] are not implemented in the TLB, as shown
in Figure 13-3.

The R10000 processor follows the R4400 implementation for data references only,
ensuring compatibility with the NT kernel. If any of the upper 33 bits are nonzero for an
instruction fetch, an Address Error is generated. Refer to Table 13-2 for delineation of the
address spaces.

Chapter 13 Memory Management

288 User’s Manual U10278EJ4V0UM

 User Mode Operations

In User mode, a single, uniform virtual address space—labelled User segment—is
available; its size is:

• 2 Gbytes (231 bytes) in 32-bit mode (useg)

• 16 Tbytes (244 bytes) in 64-bit mode (xuseg)

Figure 13-1 shows User mode virtual address space.

Figure 13-1 User Mode Virtual Address Space

The User segment starts at address 0 and the current active user process resides in either
useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all references
to useg/xuseg from all modes, and controls cache accessibility.

Address
Error

2 GB
Mapped

Address
Error

2 GB
Mapped

Address
Error

2 Gbytes
Mapped

0x 0000 0000

0x 7FFF FFFF
0x 8000 0000

0x FFFF FFFF

useg

KSU = 102 and
EXL = 0 and
ERL = 0 and

KSU = 102 and
EXL = 0 and
ERL = 0 and

UX = 0 UX = 1

Address
Error

16 Tbytes
Mapped

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x FFFF FFFF FFFF FFFF

xuseg

32-bit 64-bit

User’s Manual U10278EJ4V0UM 289

Chapter 13 Memory Management

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is compatible with
the 32-bit addressing model shown in Figure 13-1, and a 2-Gbyte user address space is
available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to 0; any
attempt to reference an address with the most-significant bit set while in User mode causes
an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within the TLB
entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is extended to the
64-bit model shown in Figure 13-1. In 64-bit User mode, the processor provides a single,
uniform virtual address space of 244 bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63:44 equal to 0; an attempt to reference an
address with bits 63:44 not equal to 0 causes an Address Error exception.

Although the system may be in 32-bit mode, address logic still generates 64-bit values. In
this case the high 32 bits must equal the sign bit (31), or an Address Error exception is
taken.

Chapter 13 Memory Management

290 User’s Manual U10278EJ4V0UM

 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel runs in
processor Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the
Supervisor-mode bit-values shown in Table 13-1.

Figure 13-2 shows Supervisor mode address mapping.

Figure 13-2 Supervisor Mode Address Space

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant bit of the
32-bit virtual address is set to 0, the suseg virtual address space is selected; it covers the full
231 bytes (2 Gbytes) of the current user address space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

Address
Error

Address
Error

2 Gbytes
Mapped

0.5 Gbytes
Mapped

suseg

sseg

0x 0000 0000

0x 7FFF FFFF
0x 8000 0000

0x BFFF FFFF
0x C000 0000

0x DFFF FFFF

0x FFFF FFFF

0x E000 0000

Address
Error

Address
Error

Address
Error

16 Tbytes
Mapped

16 Tbytes
Mapped

0.5 Gbytes
Mapped

xsuseg

xsseg

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x 4000 0000 0000 0000
0x 3FFF FFFF FFFF FFFF

0x 4000 0FFF FFFF FFFF
0x 4000 1000 0000 0000

0x FFFF FFFF BFFF FFFF
0x FFFF FFFF C000 0000

0x FFFF FFFF DFFF FFFF

0x FFFF FFFF FFFF FFFF

0x FFFF FFFF E000 000032-bit

64-bit

KSU = 01 and
EXL = 0 and
ERL = 0 and
SX = 0

KSU = 01 and
EXL = 0 and
ERL = 0 and
SX = 1

csseg

0x 0000 0000 7FFF FFFF
0x 0000 0000 8000 0000

Address Error if UX=0

User’s Manual U10278EJ4V0UM 291

Chapter 13 Memory Management

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-significant bits
of the 32-bit virtual address are 1102, the sseg virtual address space is selected; it covers
229-bytes (512 Mbytes) of the current supervisor address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address
are set to 002, selection of the xsuseg virtual address space is dependent upon the UX bit.

• if UX = 1, the entire space from 0x0000 0000 0000 0000 through 0000 0FFF
FFFF FFFF (16 Tbytes) is selected.

• If UX = 0, the address space 0x0000 0000 0000 0000 through 0000 0000
7FFF FFFF (2 Gbytes) is selected. Addressing the space ranging from 0000
0000 8000 0000 through 0000 0FFF FFFF FFFF will cause an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address
are set to 012, the xsseg current supervisor virtual address space is selected. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through
0x4000 0FFF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address
are set to 112, the csseg separate supervisor virtual address space is selected. Addressing
of the csseg is compatible with addressing sseg in 32-bit mode. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through
0xFFFF FFFF DFFF FFFF.

Chapter 13 Memory Management

292 User’s Manual U10278EJ4V0UM

 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains the Kernel-mode
bit-values shown in Table 13-1.

Kernel mode virtual address space is divided into regions differentiated by the high-order
bits of the virtual address, as shown in Figure 13-3.

Figure 13-3 Kernel Mode Address Space

NOTE: If ERL = 1, the selected 2 Gbyte space becomes uncached and unmapped.

32-bit

64-bit

(KSU = 00 or EXL = 1 or ERL = 1)
and KX = 0

0.5 Gbytes
Mapped

0.5 Gbytes
Mapped

0.5 Gbytes
Unmapped
Uncached

0.5 Gbytes
Unmapped

Cached

kseg3

ksseg

kseg1

kseg0

0x FFFF FFFF

0x E000 0000

0x C000 0000
0x BFFF FFFF

0x A000 0000

0x 9FFF FFFF

0x 8000 0000
0x 7FFF FFFF

2 Gbytes

Mapped

kuseg

0x 0000 0000

0.5 Gbytes
Mapped

0.5 Gbytes
Mapped

0.5 Gbytes
Unmapped
Uncached
0.5 Gbytes
Unmapped

Cached

Address
Error

Mapped

Unmapped

Address
Error

16 Tbytes
Mapped

Address
Error

16 Tbytes
Mapped

ckseg3

cksseg

ckseg1

ckseg0

xkseg

xkphys

xksseg

xkuseg

0x FFFF FFFF FFFF FFFF

0x FFFF FFFF E000 0000
0x FFFF FFFF DFFF FFFF

0x FFFF FFFF C000 0000
0x FFFF FFFF BFFF FFFF

0x FFFF FFFF A000 0000
0x FFFF FFFF 9FFF FFFF

0x FFFF FFFF 8000 0000
0x FFFF FFFF 7FFF FFFF

0x C000 0FFF 0000 0000
0x C000 0FFE FFFF FFFF

0x C000 0000 0000 0000
0x BFFF FFFF FFFF FFFF

0x 8000 0000 0000 0000
0x 7FFF FFFF FFFF FFFF

0x 4000 1000 0000 0000
0x 4000 0FFF FFFF FFFF

0x 4000 0000 0000 0000

0x 0000 0000 0000 0000

0x 0000 0FFF FFFF FFFF
0x 0000 1000 0000 0000

0x 3FFF FFFF FFFF FFFF

(KSU = 00 or EXL = 1 or ERL = 1)
and KX = 1

Address Error if UX=0
or ERL = 1

0x 0000 0000 7FFF FFFF
0x 0000 0000 8000 0000

Address Error if SX=0

(See Note below)

User’s Manual U10278EJ4V0UM 293

Chapter 13 Memory Management

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of the
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is selected; it covers
the full 231 bytes (2 Gbytes) of the current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the virtual address are 1002, 32-bit kseg0 virtual address space is selected; it is the 229-byte
(512-Mbyte) kernel physical space. References to kseg0 are not mapped through the TLB;
the physical address is selected by subtracting 0x8000 0000 from the virtual address. The
K0 field of the Config register determines cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space is selected; it is the
229-byte (512-Mbyte) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address is selected by
subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-
mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the 32-bit virtual address are 1102, the ksseg virtual address space is selected; it is the
current 229-byte (512-Mbyte) supervisor virtual space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through the TLB.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of
the 32-bit virtual address are 1112, the kseg3 virtual address space is selected; it is the
current 229-byte (512-Mbyte) kernel virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through the TLB.

Chapter 13 Memory Management

294 User’s Manual U10278EJ4V0UM

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 002, selection of the xkuseg virtual address space is dependent upon the UX and
ERL bits.

• if UX = 1 and ERL = 0, the entire space from 0x0000 0000 0000 0000 through
0000 0FFF FFFF FFFF (16 Tbytes) is selected.

• If UX = 0 or ERL = 1, the address space 0x0000 0000 0000 0000 through
0000 0000 7FFF FFFF (2 Gbytes) is selected. Addressing the space ranging
from 0000 0000 8000 0000 through 0000 0FFF FFFF FFFF will cause an
address error. Moreover, if ERL=1, the selected 2-Gbyte address space
becomes unmapped and uncached.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 012, selection of the xksseg virtual address space is dependent upon the SX bit.

• if SX = 1, the entire space from 0x4000 0000 0000 0000 through 4000 0FFF
FFFF FFFF (16 Tbytes) is selected.

• If SX = 0, access to any address in the space ranging from 0x4000 0000 0000
0000 through 4000 0FFF FFFF FFFF causes an address error.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 102, the xkphys virtual address space is selected; it is a set of eight kernel
physical spaces. Each kernel physical space contains either one or four 240-byte physical
pages.

References to this space are not mapped; the physical address selected is taken directly
from bits 39:0 of the virtual address. Bits 61:59 of the virtual address specify the cache
algorithm, described in Chapter 4, the section titled “Cache Algorithms.” If the cache
algorithm is either uncached or uncached accelerated (values of 2 or 7) the space contains
four physical pages; access to addresses whose bits 56:40 are not equal to 0 cause an
Address Error exception. Address bits 58:57 carry the uncached attribute (described in
Chapter 6, the section titled “Support for Uncached Attribute”), and are not checked for
address errors.

If the cache algorithm is neither uncached nor uncached accelerated, the space contains a
single physical page, as on the R4400 processor. In this case, access to addresses whose
bits 58:40 are not equal to a zero cause an Address Error exception, as shown in Figure 13-
4.

User’s Manual U10278EJ4V0UM 295

Chapter 13 Memory Management

Figure 13-4 xkphys Virtual Address Space

‡ Accessing a reserved space results in undefined behavior.

0X B F F F F F F F F F F F F F F F
Address Error

0X 9 F F F F F F F F F F F F F F F
Address Error

0X B E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B E 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 8 0 0 0 0 F F F F F F F F F F
Cacheable Noncoherent

0X B E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B D F F F F F F F F F F F F F F
Address Error

0X 9 7 F F F F F F F F F F F F F F
Address Error

0X B C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B C 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 6 0 0 0 0 F F F F F F F F F F
Uncached

0X B C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B B F F F F F F F F F F F F F F
Address Error

0X 9 5 F F F F F F F F F F F F F F
Address Error

0X B A 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B A 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 4 0 0 0 0 F F F F F F F F F F
Uncached

0X B A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 9 F F F F F F F F F F F F F F
Address Error

0X 9 3 F F F F F F F F F F F F F F
Address Error

0X B 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 8 0 0 0 0 F F F F F F F F F F
Uncached Accelerated

0X 9 2 0 0 0 0 F F F F F F F F F F
Uncached

0X B 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X B 7 F F F F F F F F F F F F F F
Address Error

0X 9 1 F F F F F F F F F F F F F F
Address Error

0X B 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X B 0 0 0 0 0 F F F F F F F F F F
Reserved‡ 0X 9 0 0 0 0 0 F F F F F F F F F F

Uncached
0X B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A F F F F F F F F F F F F F F F
Address Error

0X 8 F F F F F F F F F F F F F F F
Address Error

0X A 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 8 0 0 0 0 F F F F F F F F F F
Cacheable Exclusive Write

0X 8 8 0 0 0 0 F F F F F F F F F F
Reserved‡

0X A 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0X A 7 F F F F F F F F F F F F F F
Address Error

0X 8 7 F F F F F F F F F F F F F F
Address Error

0X A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0X A 0 0 0 0 0 F F F F F F F F F F Cacheable Exclusive
0X 8 0 0 0 0 0 F F F F F F F F F F

Reserved‡
0X A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0X 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 13 Memory Management

296 User’s Manual U10278EJ4V0UM

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual
address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual
address

• one of the four 32-bit kernel mode compatibility spaces (described below).

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual address
are 112, and bits 61:31 of the virtual address equal –1, the lower two bytes of address, as
shown in Figure 13-3, select one of the following 512-Mbyte compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region, compatible
with the 32-bit address model kseg0. The K0 field of the Config register
controls cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached
region, compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor virtual
space, compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space, compatible
with the 32-bit address model kseg3.

Address Space Access Privilege Differences Between the R4400 and R10000

In the R4400, the 64-bit Supervisor mode can access the entire xsuseg space, and the 64-bit
Kernel mode can access the entire xksseg and xkuseg spaces. Access privileges in the
R10000 are also dependent on the UX and SX bits:

• Access to the 64-bit user space in 64-bit Supervisor or Kernel mode (xsuseg
or xkuseg) is controlled by the UX bit. If UX=0, the 64-bit Supervisor and
Kernel modes can only access the 32-bit user space (suseg or kuseg).

• Access to the 64-bit supervisor space in Kernel mode (xksseg) is controlled by
the SX bit. If SX=0, the 64-bit Kernel mode can only access the 32-bit
supervisor space (ksseg).

An Address Error exception is taken on an illegal access.

The R10000 processor implements the same access privileges for 32-bit processor modes
as in the R4400. The Table 13-2 summarizes the access privileges for all processor modes
in the R10000 processor.

User’s Manual U10278EJ4V0UM 297

Chapter 13 Memory Management

Table 13-2 Access Privileges for User, Supervisor and Kernel Mode Operations

‡ For data references, the upper 32 bits of the virtual addresses are cleared before checking access privilege and TLB translation.

64-bit
Virtual Address

32-bit Mode 64-bit Mode

User‡ Supervisor Kernel User Supervisor
Kernel &
ERL=0

Kernel &
ERL=1

FFFFFFFF E0000000
TO

FFFFFFFF FFFFFFFF

AddrErr

AddrErr

OK

AddrErr

AddrErr

OK OK

FFFFFFFF C0000000
TO

FFFFFFFF DFFFFFFF
OK OK

FFFFFFFF A0000000
TO

FFFFFFFF BFFFFFFF

AddrErr

AddrErr

FFFFFFFF 80000000
TO

FFFFFFFF 9FFFFFFF

C0000FFF 00000000
TO

FFFFFFFF 7FFFFFFF

AddrErr

AddrErr AddrErr

C0000000 00000000
TO

C0000FFE FFFFFFFF
OK OK

80000000 00000000
TO

BFFFFFFF FFFFFFFF
OK OK

40001000 00000000
TO

7FFFFFFF FFFFFFFF
AddrErr AddrErr

40000000 00000000
TO

40000FFF FFFFFFFF
OK

AddrErr if
SX=0

AddrErr if
SX=0

00001000 00000000
TO

3FFFFFFF FFFFFFFF
AddrErr AddrErr AddrErr

00000000 80000000
TO

00000FFF FFFFFFFF
OK

AddrErr if
UX=0

AddrErr if
UX=0

AddrErr

00000000 00000000
TO

00000000 7FFFFFFF
OK OK OK OK OK OK

Chapter 13 Memory Management

298 User’s Manual U10278EJ4V0UM

13.3 Virtual Address Translation

Programs can operate using either physical or virtual memory addresses:

• physical addresses correspond to hardware locations in main memory

• virtual addresses are logical values only, and do not correspond to fixed
hardware locations

Virtual addresses must first be translated (finding the physical address at which the virtual
address points) before main memory can be accessed. This translation is essential for
multitasking computer systems, because it allows the operating system to load programs
anywhere in main memory independent of the logical addresses used by the programs.

This translation also implements a memory protection scheme, which limits the amount of
memory each program may access. The scheme prevents programs from interfering with
the memory used by other programs or the operating system.

Virtual Pages

Translated virtual addresses retrieve data in blocks, which are called pages. In the R10000
processor, the size of each page may be selected from a range that runs from 4 Kbytes to
16 Mbytes inclusive, in powers of 4 (that is, 4 Kbytes, 16 Kbytes, 64 Kbytes, etc.).

The virtual address bits which select a page (and thus are translated) are called the page
address. The lower bits which select a byte within the selected page are called the offset
and are not translated. The number of offset bits varies from 12 to 24 bits, depending on
the page size.

Virtual Page Size Encodings

Page size is defined in each TLB entry’s PageMask field. This field is loaded or read using
the PageMask register, as described in Chapter 11, the section titled “PageMask Register
(5).”

Each entry translates a pair of physical pages. The low bit of the virtual address page is not
compared, because it is used to select between these two physical pages.

User’s Manual U10278EJ4V0UM 299

Chapter 13 Memory Management

Using the TLB

Translations are maintained by the operating system, using page tables in memory. A
subset of these translations are loaded into a hardware buffer called the translation-
lookaside buffer or TLB. The contents of this buffer are maintained by the operating
system; if an instruction needs a translation which is not already in the buffer, an exception
is taken so the operating system can compute and load the needed translation. If all the
necessary translations are present, the program is executed without any delays.

The TLB contains 64 entries, each of which maps a pair of virtual pages. Formats of TLB
entries are shown in Figure 13-5.

Cache Algorithm Field

The Cache Algorithm fields of the TLB, EntryLo0, EntryLo1, and Config registers indicate
how data is cached. Cache algorithms are described in Chapter 4, the section titled “Cache
Algorithms.”

Format of a TLB Entry

Figure 13-5 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an
entry has a corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers,
as shown in Chapter 11; for example the PFN and uncached attribute (UC) fields of the TLB
entry are also held in the EntryLo registers.

Figure 13-5 Format of a TLB Entry

 12

255

13

192

MASK 0

191

VPN2 G

 31

128

1 4 8

ASID

140141

 28

127 64

PFN

63 0

39

0

139136 135

98 97

C VD

3 1 1

6566676970

0

1

 28

PFN

34 33

30

C VD

3 1 1

12356

0

1

0

0

30

0

171172

R

190 189

18

0

2

204205216217

UC

125

UC

61

2

2

Chapter 13 Memory Management

300 User’s Manual U10278EJ4V0UM

Address Translation

Because a 64-bit address is unnecessarily large, only the low 44 address bits are translated.
The high two virtual address bits (bits 63:62) select between user, supervisor, and kernel
address spaces. The intermediate address bits (61:44) must either be all zeros or all ones,
depending on the address region. The TLB does not include virtual address bits 61:59,
because these are decoded only in the xkphys region, which is unmapped.

For data cache accesses, the joint TLB (JTLB) translates addresses from the address
calculate unit. For instruction accesses, the JTLB translates the PC address if it misses in
the instruction TLB (ITLB). That entry is copied into the ITLB for subsequent accesses.
The ITLB is transparent to system software.

Address Space Identification (ASID)

Each independent task, or process, has a separate address space, assigned a unique 8-bit
Address Space Identifier (ASID). This identifier is stored with each TLB entry to
distinguish between entries loaded for different processes. The ASID allows the processor
to move from one process to another (called a context switch) without having to invalidate
TLB entries.

The processor’s current ASID is stored in the low 8 bits of the EntryHi register. These bits
are also used to load the ASID field of an entry during TLB refill.

The ASID field of each TLB entry is compared to the EntryHi register; if the ASIDs are
equal or if the entry is global (see below), this TLB entry may be used to translate virtual
addresses. The ASID comparison is performed only when a new value is loaded into the
EntryHi register; the one-bit result of the match is stored in a static Enable latch. (This bit
is set whenever a new entry is loaded.)

Global Processes (G)

A translation may be defined as global so that it can be shared by all processes. This G bit
is set in the TLB entry and enables the entry independent of its ASID value.

Avoiding TLB Conflict

Setting the TS bit in the Status register indicates an entry being presented to the TLB
matches more than one virtual page entry in the TLB. Any TLB entries that allow multiple
matches, even in the Wired area, are invalidated before the new entry can be written into the
TLB. This prevents multiple matches during address translation.

User’s Manual U10278EJ4V0UM 301

14. CPU Exceptions

This chapter describes the processor exceptions—a general view of the cause and return of
an exception, exception vector locations, and the types of exceptions that are supported,
including the cause, processing, and servicing of each exception.

Chapter 14 CPU Exceptions

302 User’s Manual U10278EJ4V0UM

14.1 Causing and Returning from an Exception

When the processor takes an exception, the EXL bit in the Status register is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the exception
handler typically changes the KSU bits in the Status register to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler restores the previous
value of the KSU field and sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to 0 (see the ERET instruction in
VR5000, VR10000 INSTRUCTION User’s Manual).

14.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to the dedicated Cold
Reset exception vector at an uncached and unmapped address. Addresses for all other
exceptions are a combination of a vector offset and a base address.

The boot-time vectors (when BEV = 1 in the Status register) are at uncached and unmapped
addresses. During normal operation (when BEV = 0) the regular exceptions have vectors
in cached address spaces; Cache Error is always at an uncached address so that cache error
handling can bypass a suspect cache.

The exception vector assignments for the R10000 processor shown in Table 14-1; the
addresses are the same as for the R4400.

Table 14-1 Exception Vector Addresses

BEV Exception Type
Exception Vector Address

32-bit 64-bit

Cold Reset/Soft Reset/
NMI

0xBFC00000 0xFFFFFFFF BFC00000

BEV=0

TLB Refill (EXL=0) 0x80000000 0xFFFFFFFF 80000000

XTLB Refill (EXL=0) 0x80000080 0xFFFFFFFF 80000080

Cache Error 0xA0000100 0xFFFFFFFF A0000100

Others 0x80000180 0xFFFFFFFF 80000180

BEV=1

TLB Refill (EXL=0) 0xBFC00200 0xFFFFFFFF BFC00200

XTLB Refill (EXL=0) 0xBFC00280 0xFFFFFFFF BFC00280

Cache Error 0xBFC00300 0xFFFFFFFF BFC00300

Others 0xBFC00380 0xFFFFFFFF BFC00380

User’s Manual U10278EJ4V0UM 303

Chapter 14 CPU Exceptions

14.3 TLB Refill Vector Selection

In all present implementations of the MIPS III ISA, there are two TLB refill exception
vectors:

• one for references to 32-bit address space (TLB Refill)

• one for references to 64-bit address space (XTLB Refill)

Table 14-2 lists the exception vector addresses.

The TLB refill vector selection is based on the address space of the address (user,
supervisor, or kernel) that caused the TLB miss, and the value of the corresponding
extended addressing bit in the Status register (UX, SX, or KX). The current operating mode
of the processor is not important except that it plays a part in specifying in which address
space an address resides. The Context and XContext registers are entirely separate page-
table-pointer registers that point to and refill from two separate page tables, however these
two registers share BadVPN2 fields (see Chapter 11 for more information). For all TLB
exceptions (Refill, Invalid, TLBL or TLBS), the BadVPN2 fields of both registers are
loaded as they were in the R4400.

In contrast to the R10000, the R4400 processor selects the vector based on the current
operating mode of the processor (user, supervisor, or kernel) and the value of the
corresponding extended addressing bit in the Status register (UX, SX or KX). In addition,
the Context and XContext registers are not implemented as entirely separate registers; the
PTEbase fields are shared. A miss to a particular address goes through either TLB Refill or
XTLB Refill, depending on the source of the reference. There can be only be a single page
table unless the refill handlers execute address-deciphering and page table selection in
software.

NOTE: Refills for the 0.5 Gbyte supervisor mapped region, sseg/ksseg, are controlled
by the value of KX rather than SX. This simplifies control of the processor when
supervisor mode is not being used.

Chapter 14 CPU Exceptions

304 User’s Manual U10278EJ4V0UM

Table 14-2 lists the TLB refill vector locations, based on the address that caused the TLB
miss and its corresponding mode bit.

Table 14-2 TLB Refill Vectors

Space Address Range Regions Exception Vector

Kernel

0xFFFF FFFF E000 0000
to

0xFFFF FFFF FFFF FFFF kseg3

Refill (KX=0)
or

XRefill (KX=1)

Supervisor

0xFFFF FFFF C000 0000
to

0xFFFF FFFF DFFF FFFF sseg, ksseg

Refill (KX=0)
or

XRefill (KX=1)

Kernel

0xC000 0000 0000 0000
to

0xC000 0FFE FFFF FFFF
xkseg XRefill(KX=1)

Supervisor

0x4000 0000 0000 0000
to

0x4000 0FFF FFFF FFFF
xsseg, xksseg XRefill (SX=1)

User

0x0000 0000 8000 0000
to

0x0000 0FFF FFFF FFFF
xsuseg, xuseg,
xkuseg

XRefill (UX=1)

User

0x0000 0000 0000 0000
to

0x0000 0000 7FFF FFFF

useg, xuseg, suseg,
xsuseg, kuseg,
xkuseg

Refill (UX=0)
or

XRefill (UX=1)

User’s Manual U10278EJ4V0UM 305

Chapter 14 CPU Exceptions

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority shown in
Table 14-3 (with certain of the exceptions, such as the TLB exceptions and Instruction/Data
exceptions, grouped together for convenience). While more than one exception can occur
for a single instruction, only the exception with the highest priority is reported. Some
exceptions are not caused by the instruction executed at the time, and some exceptions may
be deferred. See the individual description of each exception in this chapter for more detail.

Table 14-3 Exception Priority Order

Generally speaking, the exceptions described in the following sections are handled
(“processed”) by hardware; these exceptions are then serviced by software.

‡ These exceptions are interrupt types, and may be imprecise. Priority may not be followed when
considering a specific instruction.

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)‡

Cache error –– Instruction cache‡

Cache error –– Data cache‡

Cache error –– Secondary cache‡

Cache error –– System interface‡

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved Instruction,
Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Watch‡

Bus error –– Data access

Interrupt (lowest priority)‡

Chapter 14 CPU Exceptions

306 User’s Manual U10278EJ4V0UM

Cold Reset Exception

Cause

The Cold Reset exception is taken for a power-on or “cold” reset; it occurs when the
SysGnt* signal is asserted while the SysReset* signal is also asserted.† This exception is
not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the
hardware need not initialize the TLB or the cache to process this exception. It also means
the processor can fetch and execute instructions while the caches and virtual memory are
in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except
for the following register fields:

• In the Status register, SR and TS are cleared to 0, and ERL and BEV are set to
1. All other bits are undefined.

• Config register is initialized with the boot mode bits read from the serial input.

• The Random register is initialized to the value of its upper bound.

• The Wired register is initialized to 0.

• The EW bit in the CacheErr register is cleared.

• The ErrorEPC register gets the PC.

• The FrameMask register is set to 0.

• Branch prediction bits are set to 0.

• Performance Counter register Event field is set to 0.

• All pending cache errors, delayed watch exceptions, and external interrupts
are cleared.

Servicing

The Cold Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches, and the
memory system

• performing diagnostic tests

• bootstrapping the operating system

† If SysGnt* remains deasserted (high) while SysReset* is asserted, the processor interprets
this as a Soft Reset exception.

User’s Manual U10278EJ4V0UM 307

Chapter 14 CPU Exceptions

Soft† Reset Exception

Cause

The Soft Reset exception occurs in response to a Soft Reset (See Chapter 8, the section
titled “Soft Reset Sequence”).

A Soft Reset exception is not maskable.

The processor differentiates between a Cold Reset and a Soft Reset as follows:

• A Cold Reset occurs when the SysGnt* signal is asserted while the SysReset*
signal is also asserted.

• A Soft Reset occurs if the SysGnt* signal remains negated when a SysReset*
signal is asserted.

In R4400 processor, there is no way for software to differentiate between a Soft Reset
exception and an NMI exception. In the R10000 processor, a bit labelled NMI has been
added to the Status register to distinguish between these two exceptions. Both Soft Reset
and NMI exceptions set the SR bit and use the same exception vector. During an NMI
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit is set to 0.

Processing

When a Soft Reset exception occurs, the SR bit of the Status register is set, distinguishing
this exception from a Cold Reset exception.

When a Soft Reset is detected, the processor initializes minimum processor state. This
allows the processor to fetch and execute the instructions of the exception handler, which
in turn dumps the current architectural state to external logic. Hardware state that loses
architectural state is not initialized unless it is necessary to execute instructions from
unmapped uncached space that reads the registers, TLB, and cache contents.

The Soft Reset can begin on an arbitrary cycle boundary and can abort multicycle
operations in progress, so it may alter machine state. Hence, caches, memory, or other
processor states can be inconsistent: data cache blocks may stay at the refill state and any
cached loads/stores to these blocks will hang the processor. Therefore, CacheOps should be
used to dump the cache contents.

After the processor state is read out, the processor should be reset with a Cold Reset
sequence.

† Soft Reset is also known colloquially as Warm Reset.

Chapter 14 CPU Exceptions

308 User’s Manual U10278EJ4V0UM

A Soft Reset exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for
a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

A Soft Reset exception is intended to quickly reinitialize a previously operating processor
after a fatal error.

It is not normally possible to continue program execution after returning from this
exception, since a SysReset* signal can be accepted anytime.

User’s Manual U10278EJ4V0UM 309

Chapter 14 CPU Exceptions

NMI Exception

Cause

The NMI exception is caused by assertion of the SysNMI* signal.

An NMI exception is not maskable.

In R4400 processor, there is no way for software to differentiate between a Soft Reset
exception and an NMI exception. In the R10000 processor, a bit labelled NMI has been
added to the Status register to distinguish between these two exceptions. Both Soft Reset
and NMI exceptions set the SR bit and use the same exception vector. During an NMI
exception, the NMI bit is set to 1; during a Soft Reset, the NMI bit is set to 0.

Processing

When an NMI exception occurs, the SR bit of the Status register is set, distinguishing this
exception from a Cold Reset exception.

An exception caused by an NMI is taken at the instruction boundary. It does not abort any
state machines, preserving the state of the processor for diagnosis. The Cause register
remains unchanged and the system jumps to the NMI exception handler (see Table 14-1).

An NMI exception preserves the contents of all registers, except for:

• ErrorEPC register, which contains the PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1 on Soft Reset or an NMI; 0 for
a Cold Reset

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

• clears any pending Cache Error exceptions

Servicing

The NMI can be used for purposes other than resetting the processor while preserving cache
and memory contents. For example, the system might use an NMI to cause an immediate,
controlled shutdown when it detects an impending power failure.

It is not normally possible to continue program execution after returning from this
exception, since an NMI can occur during another error exception.

Chapter 14 CPU Exceptions

310 User’s Manual U10278EJ4V0UM

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the
following:

• reference to an illegal address space

• reference the supervisor address space from User mode

• reference the kernel address space from User or Supervisor mode

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch, or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code in the
Cause register is set, indicating whether the instruction caused the exception with an
instruction reference, load operation, or store operation shown by the EPC register and BD
bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not
properly aligned or that referenced protected address space. The contents of the VPN field
of the Context, XContext, and EntryHi registers are undefined, as are the contents of the
EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless
this instruction is in a branch delay slot. If it is in a branch delay slot, the EPC register
contains the address of the preceding branch instruction and the BD bit of the Cause register
is set as indication.

Servicing

The process executing at the time is handed a UNIXTM SIGSEGV (segmentation violation)
signal. This error is usually fatal to the process incurring the exception.

User’s Manual U10278EJ4V0UM 311

Chapter 14 CPU Exceptions

TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an attempted
reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a TLB entry that
is marked invalid.

• TLB Modified occurs when a store operation virtual address reference to
memory matches a TLB entry which is marked valid but is not dirty (the entry
is not writable).

The following three sections describe these TLB exceptions.

NOTE: TLB Refill vector selection is also described earlier in this chapter, in the
section titled, TLB Refill Vector Selection.

Chapter 14 CPU Exceptions

312 User’s Manual U10278EJ4V0UM

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit
address spaces, and one for references to 64-bit address spaces. The UX, SX, and KX bits
of the Status register determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces; the TLB refill vector is selected based upon the
address space of the address causing the TLB miss (user, supervisor, or kernel mode
address space), together with the value of the corresponding extended addressing bit in the
Status register (UX, SX, or KX). The current operating mode of the processor is not
important except that it plays a part in specifying in which space an address resides. An
address is in user space if it is in useg, suseg, kuseg, xuseg, xsuseg, or xkuseg (see the
description of virtual address spaces in Chapter 13). An address is in supervisor space if it
is in sseg, ksseg, xsseg or xksseg, and an address is in kernel space if it is in either kseg3 or
xkseg. Kseg0, kseg1, and kernel physical spaces (xkphys) are kernel spaces but are not
mapped.

All references use these vectors when the EXL bit is set to 0 in the Status register. This
exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold
the virtual address that failed address translation. The EntryHi register also contains the
ASID from which the translation fault occurred. The Random register normally contains a
valid location in which to place the replacement TLB entry. The contents of the EntryLo
register are undefined. The EPC register contains the address of the instruction that caused
the exception, unless this instruction is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the BD bit of the Cause
register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as a
virtual address to fetch memory locations containing the physical page frame and access
control bits for a pair of TLB entries. The two entries are placed into the EntryLo0/
EntryLo1 register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control
information is on a page that is not resident in the TLB. This condition is processed by
allowing a TLB refill exception in the TLB refill handler. This second exception goes to
the common exception vector because the EXL bit of the Status register is set.

User’s Manual U10278EJ4V0UM 313

Chapter 14 CPU Exceptions

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference matches a TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the
ExcCode field of the Cause register is set. This indicates whether the instruction, as shown
by the EPC register and BD bit in the Cause register, caused the miss by an instruction
reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The Random register
normally contains a valid location in which to put the replacement TLB entry. The contents
of the EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the exception unless
this instruction is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a
reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP
(TLB Probe), and replaced by an entry with that entry’s Valid bit set.

Chapter 14 CPU Exceptions

314 User’s Manual U10278EJ4V0UM

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address reference to
memory matches a TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the Cause
register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers
contain the virtual address that failed address translation. The EntryHi register also
contains the ASID from which the translation fault occurred. The contents of the EntryLo
register are undefined.

The EPC register contains the address of the instruction that caused the exception unless
that instruction is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit write
accesses; if writes are not permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its
own data structures. The TLBP instruction places the index of the TLB entry that must be
altered into the Index register. The EntryLo register is loaded with a word containing the
physical page frame and access control bits (with the D bit set), and the EntryHi and
EntryLo registers are written into the TLB.

User’s Manual U10278EJ4V0UM 315

Chapter 14 CPU Exceptions

Cache Error Exception

The Cache Error exception is described in Chapter 9, the section titled “Cache Error
Exception”.

Virtual Coherency Exception

The Virtual Coherency exception is not implemented in the R10000 processor, since the
virtual coherency condition is handled in hardware. When the hardware detects the Virtual
Coherency exception, it invalidates the lines in all other segments of the primary cache that
could cause aliasing. This takes six cycles more than that needed to refill the primary cache
line (the refill would have occurred even if there was no Virtual Coherency exception
detected).

In the R4400 processor, a Virtual Coherency exception occurs when a primary cache miss
hits in the secondary cache but VA[14:12] are not the same as the PIdx field of the
secondary cache tag, and the cache algorithm specifies that the page is cached. When such
a situation is detected in the R10000 processor, the primary cache lines at the old virtual
index are invalidated and the PIdx field of the secondary cache is written with the new
virtual index.

Chapter 14 CPU Exceptions

316 User’s Manual U10278EJ4V0UM

Bus Error Exception

Cause

A Bus Error exception occurs when a processor block read, upgrade, or double/single/
partial-word read request receives an external ERR completion response, or a processor
double/single/partial-word read request receives an external ACK completion response
where the associated external double/single/partial-word data response contains an
uncorrectable error. This exception is not maskable.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in
the ExcCode field of the Cause register is set, signifying whether the instruction (as
indicated by the EPC register and BD bit in the Cause register) caused the exception by an
instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception, unless
it is in a branch delay slot, in which case the EPC register contains the address of the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information
available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch
reference), the instruction that caused the exception is located at the virtual
address contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

• If the DBE code is set (indicating a load or store reference), the instruction
that caused the exception is located at the virtual address contained in the
EPC register (or 4+ the contents of the EPC register if the BD bit of the Cause
register is set).

The virtual address of the load and store reference can then be obtained by interpreting the
instruction. The physical address can be obtained by using the TLBP instruction and
reading the EntryLo registers to compute the physical page number. The process executing
at the time of this exception is handed a UNIX SIGBUS (bus error) signal, which is usually
fatal.

User’s Manual U10278EJ4V0UM 317

Chapter 14 CPU Exceptions

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a 2’s complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception unless
the instruction is in a branch delay slot, in which case the EPC register contains the address
of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is
usually fatal to the current process.

Chapter 14 CPU Exceptions

318 User’s Manual U10278EJ4V0UM

Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI,
TLTI, TLTUI, TEQI, or TNEI instruction results in a TRUE condition. This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause
register is set.

The EPC register contains the address of the instruction causing the exception unless the
instruction is in a branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/
FPE_INTOVF_TRAP (floating-point exception/integer overflow) signal. This error is
usually fatal.

User’s Manual U10278EJ4V0UM 319

Chapter 14 CPU Exceptions

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set;
otherwise this bit is cleared.

Servicing

When the System Call exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the Code field of the SYSCALL
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains.

To resume execution, the EPC register must be altered so that the SYSCALL instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond
the scope of this description, may be required.

Chapter 14 CPU Exceptions

320 User’s Manual U10278EJ4V0UM

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the Cause
register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set,
otherwise the bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be made by analyzing the Code field of the BREAK
instruction (bits 25:6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does
not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC register
+ 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is
required to resume execution.

User’s Manual U10278EJ4V0UM 321

Chapter 14 CPU Exceptions

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions occurs:

• an attempt is made to execute an instruction with an undefined major opcode
(bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an undefined minor
opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an undefined minor
opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in User
or Supervisor modes

• an attempt is made to execute a COP1X when the MIPS IV ISA is not enabled

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in
the Status register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the Cause
register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch
delay slot, in which case the EPC register contains the address of the preceding branch
instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing at the
time of this exception is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/
reserved operand fault) signal. This error is usually fatal.

Chapter 14 CPU Exceptions

322 User’s Manual U10278EJ4V0UM

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either:

• a corresponding coprocessor unit (CP1 or CP2) that has not been marked
usable, or

• CP0 instructions, when the unit has not been marked usable and the process
executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code in the Cause
register is set. The contents of the Coprocessor Usage Error field of the coprocessor
Control register indicate which of the four coprocessors was referenced. The EPC register
contains the address of the unusable coprocessor instruction unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch
instruction.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the
Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is marked
usable and the corresponding user state is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does
not exist or has failed, interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process executing
at the time is handed a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal
instruction/privileged instruction fault) signal. This error is usually fatal.

User’s Manual U10278EJ4V0UM 323

Chapter 14 CPU Exceptions

Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor. This exception is
not maskable.

Processing

The common exception vector is used for this exception, and the FPE code in the Cause
register is set.

The contents of the Floating-Point Control/Status register indicate the cause of this
exception.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point Control/
Status register.

Chapter 14 CPU Exceptions

324 User’s Manual U10278EJ4V0UM

Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physical address
specified in the WatchLo/WatchHi System Control Coprocessor (CP0) registers. The
WatchLo register specifies whether a load or store initiated this exception.

A Watch exception violates the rules of a precise exception in the following way: If the load
or store reference which triggered the Watch exception has a cacheable address and misses
in the data cache, the line will then be read from memory into the secondary cache if
necessary, and refilled from the secondary cache into the data cache. In all other cases,
cache state is not affected by an instruction which takes a Watch exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if either the EXL or ERL bit is set in the Status register.
If either bit is set, the instruction referencing the WatchLo/WatchHi address is executed and
the exception is delayed until the delay condition is cleared; that is, until ERL and EXL both
are cleared (set to 0). The EPC contains the address of the next unexecuted instruction.

A delayed Watch exception is cleared by system reset or by writing a value to the WatchLo
register.†

Watch is maskable by setting the EXL or ERL bits in the Status register.

Processing

The common exception vector is used for this exception, and the Watch code in the Cause
register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control
to a debugger, allowing the user to examine the situation.

To continue program execution, the Watch exception must be disabled to execute the
faulting instruction. The Watch exception must then be reenabled. The faulting instruction
can be executed either by interpretation or by setting breakpoints.

† An MTC0 to the WatchLo register clears a delayed Watch exception.

User’s Manual U10278EJ4V0UM 325

Chapter 14 CPU Exceptions

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The
significance of these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the
Interrupt-Mask (IM) field of the Status register, and all of the eight interrupts can be masked
at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code in the Cause
register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that
more than one of the bits can be simultaneously set (or even no bits may be set) if the
interrupt is asserted and then deasserted before this register is read.

On Cold Reset, an R4400 processor can be configured with IP[7] either as a sixth external
interrupt, or as an internal interrupt set when the Count register equals the Compare register.
There is no such option on the R10000 processor; IP[7] is always an internal interrupt that
is set when one of the following occurs:

• the Count register is equal to the Compare register

• either one of the two performance counters overflows

Software needs to poll each source to determine the cause of the interrupt (which could
come from more than one source at a time). For instance, writing a value to the Compare
register clears the timer interrupt but it may not clear IP[7] if one of the performance
counters is simultaneously overflowing. Performance counter interrupts can be disabled
individually without affecting the timer interrupt, but there is no way to disable the timer
interrupt without disabling the performance counter interrupt.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (described in
Chapter 6, the section titled “Software Interrupts”), the interrupt condition is cleared by
setting the corresponding Cause register bit, IP[1:0], to 0. Software interrupts are
imprecise. Once the software interrupt is enabled, program execution may continue for
several instructions before the exception is taken. Timer interrupts are cleared by writing
to the Compare register. The Performance Counter interrupt is cleared by writing a 0 to bit
31, the overflow bit, of the counter.

Cold Reset and Soft Reset exceptions clear all the outstanding external interrupt requests,
IP[2] to IP[6].

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the
condition causing the interrupt pin to be asserted.

Chapter 14 CPU Exceptions

326 User’s Manual U10278EJ4V0UM

14.4 MIPSIV Instructions

The system must either be in Kernel or Supervisor mode, or have set the XX bit of the Status
register to a 1 in order to use the MIPS IV instruction set. In User mode, if XX is a 0 and
an attempt is made to execute MIPS IV instructions, an exception will be taken. The type
of exception that will be taken depends upon the type of instruction whose execution was
attempted; a list is given in Table 14-4. Note that operating with MIPS IV instructions does
not require that MIPS III instruction set or 64-bit addressing is enabled.

MIPS IV instructions that use or modify the floating-point registers (CP1 state) are also
affected by the CU1 bit of the CP0 Status register. If CU1 is not set, a Coprocessor
Unusable exception may be signaled.

The Reserved Instruction (RI), Coprocessor Unusable (CU), and Unimplemented
Operation (UO) exceptions for MIPS IV instructions are listed in the Table 14-4 below.

Table 14-4 MIPS IV Instruction Exceptions

Exceptions Instructions CU1 MIPS4

RI CPU (undefined) - -

RI MOVN,Z - 0

RI
MOVT,F

- 0

CU 0 1

RI PREF - 0

CU COP1 (all instructions) 0 -

UO (undefined) 1 -

RI BC (cc>0) 1 0

UO C (cc>0) 1 0

UO MOVN,Z,T,F 1 0

UO RECIP, RSQRT 1 0

RI COP1X (all instructions) - 0

CU (all instructions) 0 1

RI (undefined) 1 1

User’s Manual U10278EJ4V0UM 327

Chapter 14 CPU Exceptions

14.5 COP0 Instructions

Execution of an RFE instruction causes a Reserved Instruction exception in the R10000
processor.

The execution of undefined COP0 functions is undefined in the R10000 processor.

14.6 COP1 Instructions

The R10000 and R4400 processors do not generate the same exceptions for undefined
COP1 instructions. In the R4400 processor, undefined opcodes or formats in the sub field
take an Unimplemented Operation exceptions. In the R10000 processor, undefined
opcodes (bits 25:24 are 0 or 1) take Reserved Instruction exceptions and undefined formats
(bits 25:24 are 2 or 3) take Unimplemented Operation exceptions.

In MIPS II on an R4400 processor, the execution of DMTC1, DMFC1, and L format take
Unimplemented Operation exceptions. In MIPS II on the R10000 processor, the execution
of DMTC1 and DMFC1 take Reserved Instruction exceptions

The attempted execution of the L format takes an Unimplemented Operation exception
when the MIPS III mode is not enabled.

A CTC1 instruction that sets both Cause and Enable bits also forces an immediate floating-
point exception; the EPC register points to the offending CTC1 instruction.

14.7 COP2 Instructions

If the CU2 bit of the CP0 Status register is not set during an attempted execution of such
Coprocessor 2 instructions as COP2, LWC2, SWC2, LDC2, and SDC2, the system takes a
Coprocessor Unusable exception.

In the R4400 processor, if the CU2 bit is set, COP2 instructions are handled as NOPs; the
operations of Coprocessor 2 load/store instructions are undefined. In the R10000
processor, an execution of a Coprocessor 2 instruction takes a Reserved Instruction
exception when CU2 bit is set.

328 User’s Manual U10278EJ4V0UM

15. Cache Test Mode

The R10000 processor provides a cache test mode that may be used during manufacturing
test and system debug to access the following internal RAM arrays:

• data cache data array

• data cache tag array

• instruction cache data array

• instruction cache tag array

• secondary cache way predication table

User’s Manual U10278EJ4V0UM 329

Chapter 15 Cache Test Mode

15.1 Interface Signals

Cache test mode is accessed by using a subset of the system interface signals. By not
requiring the use of any secondary cache interface signals, the internal RAM arrays may be
accessed for single-chip LGA as well as R10000/secondary cache module configurations.

The following system interface signals are used during cache test mode:

• SysAD(57:0)

• SysVal*

Any input signals not listed above are ignored by the processor when it is operating in cache
test mode, and any output signals not listed above are undefined during cache test mode.

15.2 System Interface Clock Divisor

Cache test mode is supported for all system interface clock speeds. However, since cache
test mode repeat rates and latencies are expressed in terms of PClk cycles, the external
agent must take care when operating at any system interface clock divisor other than
Divide-by-1.

Chapter 15 Cache Test Mode

330 User’s Manual U10278EJ4V0UM

15.3 Entering Cache Test Mode

In order for the processor to enter cache test mode, the external agent must begin a Power-
on or Cold Reset sequence.

Rather than negating SysReset* at the end of the reset sequence, the external agent loads
the mode bits into the processor by driving the mode bits (with the CTM signal asserted)
on SysAD(63:0), waits at least two SysClk cycles, and then asserts SysGnt* for at least
one SysClk cycle.

After waiting at least another 100 ms, the external agent may issue the first cache test mode
command.

Figure 15-1 shows the cache test mode entry sequence.

Figure 15-1 Cache Test Mode Entry Sequence

SysAD(63:0)

SysVal*

Cycle

SysClk

Master

SysGnt*

SysReset*

Assert CTM mode bit First cache test mode command

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Modes

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*

≥100ms ≥100ms

Cmd

User’s Manual U10278EJ4V0UM 331

Chapter 15 Cache Test Mode

15.4 Exit Sequence

To leave cache test mode, the external agent does the following:

• loads the mode bits into the processor by driving the mode bits (with the
CTM mode bit negated) on SysAD(63:0)

• waits at least two SysClk cycles

• asserts SysGnt* for at least one SysClk cycle

After at least one SysClk cycle, the external agent may negate SysReset* to end the reset
sequence.

Figure 15-2 shows the cache test mode exit sequence.

Figure 15-2 Cache Test Mode Exit Sequence

SysAD(63:0)

SysVal*

EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Cycle

SysClk

Master

SysGnt*

Modes

SysReset*

Negate CTM mode bit

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

SysRespVal*

Chapter 15 Cache Test Mode

332 User’s Manual U10278EJ4V0UM

15.5 SysAD(63:0) Encoding

Encoding of the SysAD(63:0) bus during cache test mode is shown in Table 15-1.
“Unused” fields are read as “undefined,” and must be written as zeroes.

Table 15-1 Cache Test Mode SysAD(63:0) Encoding

SysAD Bit
Data

Cache Data
Array

Data
Cache Tag

Array

Instruction
Cache Data

Array

Instruction
Cache Tag

Array

Secondary
Cache Way
Predication

Array

0

Data

Tag parity

Data

Tag parity MRU

1 SCWay Unused

Unused

2 State parity State parity

3 LRU LRU

4
Unused Unused

5

6
State

State

7 Unused

31:8
Tag Tag

35:32 Data parity

36

Unused
StateMod

Data parity

Unused38:37
Unused

39 Unused

42:40
0 1 2 3 4

Array select

43 Write/Read select

44 Auto-increment select

45 Way

57:46 Address

63:58 Unused

User’s Manual U10278EJ4V0UM 333

Chapter 15 Cache Test Mode

15.6 Cache Test Mode Protocol

This section describes the cache test mode protocol in detail, including:

• normal write protocol

• auto-increment protocol

• normal read protocol

• auto-increment read protocol

Normal Write Protocol

A cache test mode normal write operation writes a selected RAM array. The write address,
way, array, and data are specified in the write command.

The external agent issues a normal write command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• driving the write data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle

Normal writes have a repeat rate of 8 PClk cycles.

Figure 15-3 depicts two cache test mode normal writes.

Figure 15-3 Cache Test Mode Normal Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

NrmWr NrmWr

SysReset*

SysGnt*

Chapter 15 Cache Test Mode

334 User’s Manual U10278EJ4V0UM

Auto-Increment Write Protocol

A cache test mode auto-increment write operation writes a selected RAM array. The write
address is obtained by incrementing the previous write address, and the write way is
obtained from the previous write way.

 If an overflow occurs when incrementing the previous write address, the address wraps to
0, and the way is toggled.

The write data is identical to the previous write data.

For proper results, an auto-increment write must always be proceeded by a normal or auto-
increment write.

The external agent issues an auto-increment write command by:

• asserting the auto-increment select on SysAD(44)

• asserting the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle

Auto-increment writes have a repeat rate of one PClk cycle.

Figure 15-4 depicts three cache test mode auto-increment writes.

Figure 15-4 Cache Test Mode Auto-Increment Write Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA EA EA EA EA EA EA EA EAEAEAEA EA EAEA

IncWr IncWr IncWr

SysReset*

SysGnt*

User’s Manual U10278EJ4V0UM 335

Chapter 15 Cache Test Mode

Normal Read Protocol

A cache test mode normal read operation reads a selected RAM array. The read address,
way, and array are specified by the read command.

The external agent issues a normal read command by:

• driving the address on SysAD(57:46)

• driving the way on SysAD(45)

• negating the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Normal reads have a repeat rate of 17 PClk cycles.

Figure 15-5 depicts two cache test mode normal reads.

Figure 15-5 Cache Test Mode Normal Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P0 ---EA - --

NrmRd NrmRdRdRsp

SysReset*

SysGnt*

Chapter 15 Cache Test Mode

336 User’s Manual U10278EJ4V0UM

Auto-Increment Read Protocol

A cache test mode auto-increment read operation reads a selected RAM array. The read
address is obtained by incrementing the previous access address, and the read way is
obtained from the previous access way.

If an overflow occurs when incrementing the previous access address, the address wraps to
0, and the way is toggled.

The external agent issues an auto-increment read command by:

• asserting the auto-increment select on SysAD(44)

• negating the Write/Read select on SysAD(43)

• driving the array select on SysAD(42:40)

• asserting SysVal* for one SysClk cycle.

After a read latency of 15 PClk cycles, the processor provides the read response by:

• entering Master state

• driving the read data on SysAD(39:0)

• asserting SysVal* for one SysClk cycle.

In the following SysClk cycle, the processor reverts to Slave state.

Auto-increment reads have a repeat rate of 17 PClk cycles.

Figure 15-6 depicts two cache test mode auto-increment reads.

Figure 15-6 Cache Test Mode Auto-Increment Read Protocol

Cycle

SysClk

SysVal*

Master

SysAD(63:0)

1 2 3 4 5 10 11 12 13 14 15 166 7 8 9 17

EA EA EA - - - - - - P0 ---EA - --

IncRd IncRdRdRsp

SysReset*

SysGnt*

User’s Manual U10278EJ4V0UM 337

Appendix A Glossary

The following terms are defined in this Glossary:

• superscalar processor

• pipeline

• pipeline latency

• pipeline repeat rate

• out-of-order execution

• dynamic scheduling

• instruction fetch, decode, issue, execution, completion, and graduation

• active list

• free list and busy registers

• register renaming and unnaming

• nonblocking loads and stores

• speculative branching

• logical and physical registers

• register files

• ANDES architecture

Appendix A Glossary

338 User’s Manual U10278EJ4V0UM

A.1 Superscalar Processor

A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel. By implication, a superscalar processor has more than one pipeline
(see below).

A.2 Pipeline

In the processor pipeline, the execution of each instruction is divided into a sequence of
simpler suboperations. Each suboperation is performed by a separate hardware section
called a stage, and each stage passes its result to a succeeding stage.

Normally, each instruction only remains in each stage for a single cycle, and each stage
begins executing a new instruction as previous instructions are being completed in later
stages. Thus, a new instruction can often begin during every cycle.

Pipelines greatly improve the rate at which instructions can be executed, as long as there
are no dependencies. The efficient use of a pipeline requires that several instructions be
executed in parallel, however the result of any instruction is not available for several cycles
after that instruction has entered the pipeline. Thus, new instructions must not depend on
the results of instructions which are still in the pipeline.

A.3 Pipeline Latency

The latency of an execution pipeline is the number of cycles between the time an
instruction is issued and the time a dependent instruction (which uses its result as an
operand) can be issued.

In the R10000 processor, most integer instructions have a single-cycle latency, load
instructions have a 2-cycle latency for cache hits, and floating-point addition and
multiplication have a 2-cycle latency. Integer multiply, floating-point square-root, and all
divide instructions are computed iteratively and have longer latencies.

A.4 Pipeline Repeat Rate

The repeat rate of the pipeline is the number of cycles that occur between the issuance of
one instruction and the issuance of the next instruction to the same execution unit. In the
R10000 processor, the main five pipelines all have repeat rates of one cycle, but the iterative
units have longer repeat delays.

A.5 Out-of-Order Execution

The “program order” of instructions is the sequence in which they are fetched and decoded.
In the R10000 processor, instructions may be issued, executed, and completed out of
program order. They are always graduated in program order.

Appendix A Glossary

User’s Manual U10278EJ4V0UM 339

A.6 Dynamic Scheduling

The R10000 processor can issue instructions to functional units out of program order; this
capability is known as dynamic scheduling or dynamic issuing.

The R10000 processor can dynamically issue an instruction as soon as all its operands are
available and the required execution unit is not busy. Thus, an instruction is not delayed by
a stalled previous instruction unless it needs the results of that previous instruction.

A.7 Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation

In general, instructions are fetched, decoded, and graduated in their original program order,
but may be issued, executed, and completed out of program order, as shown in Figure A-1.

• Instruction fetching is the process of reading instructions from the instruction
cache.

• Instruction decode includes register renaming and initial dependency checks.
For branch instructions, the branch path is predicted and the target address is
computed.

• An instruction is issued when it is handed over to a functional unit for
execution.

• An instruction is complete when its result has been computed and stored in a
temporary physical register.

• An instruction graduates when this temporary result is committed as the new
state of the processor. An instruction can graduate only after it and all
previous instructions have been successfully completed.

Figure A-1 Dynamic Scheduling

A.8 Active List

The R10000 processor’s active list is a program-order list of decoded instructions. For
each instruction, the active list indicates the physical register which contained the previous
value of the destination register (if any). If this instruction graduates, that previous value
is discarded and the physical register is returned to the free list. The active list records
status, such as those instructions that have completed, or those instructions that have
detected exceptions. Instructions are appended to the bottom of the list as they are decoded
and instructions are removed from the top as they graduate.

In order

Fetch Decode

Issue Execute Complete

Graduate

Out of order

Time

In order

Instruction

Appendix A Glossary

340 User’s Manual U10278EJ4V0UM

<R12000>

 Active List entries are increased to 48:

 The active list has been enlarged so that it now contains 48 entries.

 Active list accepts conservatively

 The read pointer for the active list is now evaluated on four-instruction blocks at a time.
 This has two effects:

 a) There may be up to 11 empty slots in the active list and yet it will report to the decode
unit that it cannot accept any new instructions. However this level of blockage only lasts
for a single cycle. At most three empty slots will remain empty for more than one cycle.
The time at which instructions are removed from the active list has also been changed.
Integer and load/store instructions now remain in the list for one cycle after they gradu-
ate. This will be compensated for by the increased size of the active list.

 b) The graduation of some instructions will be delayed, as the read pointer will not ad-
vance past the end of a four-instruction block during a cycle. Thus less than the maxi-
mum number of instructions might be graduated because the read pointer can get to them
that cycle.

A.9 Free List and Busy Registers

A busy-bit table indicates whether or not a result has been written into each of the physical
registers. Each register is initially defined to be busy when it is moved from the free list to
the active list; the register becomes available (“not busy”) when its instruction completes
and its result is stored in the register file.

The busy-bit table is read for each operand while an instruction is decoded, and these bits
are written into the queue with the instruction. If an operand is busy, the instruction must
wait in the queue until the operand is “not busy.” The queues determine when an operand
is ready by comparing the register number of the result coming out of each execution unit
with the register number of each operand of the instructions waiting in the queue.

With a few exceptions, the integer and address queues have integer operand registers, and
the floating-point queue has floating-point operand registers.

A.10 Register Renaming

As it executes instructions, the processor generates a myriad of temporary register results.
These temporary values are stored in register files together with permanent values. The
temporary values become new permanent values when their corresponding instructions
graduate.

Register renaming is used to resolve data dependencies during the dynamic execution of
instructions.

To ensure each instruction is given correct operand values, the logical register numbers
(names) used in the instruction are mapped to physical registers. Each time a new value is
put in a logical register, it is assigned to a new physical register. Thus, each physical
register has only a single value. Dependencies are determined using these physical register
numbers.

Appendix A Glossary

User’s Manual U10278EJ4V0UM 341

An example of register renaming is shown below. The following Doubleword Shift Left
Logical instruction,

has one register operand (r2) plus a 5-bit shift count of value two stored in the sa field; the
value in r2 is shifted left by two and this value is stored in r3.

The physical execution of the instruction above, with register renaming, is given below:

Physical execution Rename operation

p3←p2 shift left 2 r3 = p3

When the DSLL instruction is executed, the logical destination register r3 is assigned a new
physical register, p3, from the free list.

Register renaming also allows exceptions to be handled in a precise manner. Out-of-order
execution means that an instruction can change its result register even before all prior
instructions have been completed. However, if any of the prior instructions cause an
exception, the original register value must be restored. Since each new register value is
loaded into a new physical register (physical register values are not overwritten until the
physical register is placed in the free list), previous values remain unchanged in the original
physical registers and these previous values can be restored.†

An instruction can be aborted up until the time it graduates, and all register and memory
values can be restored to a precise state following any exception. This state is restored by
unnaming the temporary physical registers assigned to subsequent instructions.

Registers are unnamed by writing the old destination register into the mapping table and
returning the new destination register to the free list. Unnaming is done in reverse program
order, in case a logical register was used more than once. After renaming, the register files
contain only the permanent values which were created by instructions prior to the
exception.

Once an instruction has graduated, all previous values are lost.

A.11 Nonblocking Loads and Stores

Loads and stores are nonblocking; that is, cache misses do not stall the processor. All other
parts of the processor may continue to work on non-dependent instructions while as many
as four cache misses are being processed.

† This same technique is used to reverse mispredicted speculative branches.

DSLL r3,r2,2

opcode rs rt dest sa function

spec - r2 r3 2 DSLL

Appendix A Glossary

342 User’s Manual U10278EJ4V0UM

A.12 Speculative Branching

Normally, about one of every six instructions is a branch. Since four instructions are
fetched each cycle, the R10000 processor encounters, on average, a branch instruction
every other cycle, as shown in Figure A-2.

Figure A-2 Speculative Branching

When a branch instruction was encountered in previous processors, the instruction fetch
and instruction issue halted until it was determined whether or not to take the branch. For
instance, a branch delay slot was designed into the MIPS architecture to handle the intrinsic
delay of a branch and to keep the pipeline filled.

Since the processor fetches up to four instructions each clock cycle, there is not enough
time to resolve branches without stalling the fetch/decode circuitry. The processor
therefore predicts the outcome of every branch and speculatively executes the branch
based on this branch prediction.

The branch prediction circuit consists of a 512-entry RAM, using a 2-bit prediction
scheme: two bits are assigned to a branch instruction, and indicate whether or not the
branch was taken the last time it occurred. The four possible prediction states are: strongly
taken, weakly taken, weakly not taken, strongly not taken. If the branch was taken the last
two times, there is a good probability it will be taken this time too — or the inverse.†

The R10000 processor can speculate up to four branches deep. Shadow copies of the
mapping tables are kept every time a prediction is made, allowing the R10000 processor to
recover from a mispredicted branch in a single cycle.

† Simulations have shown the R10000 branch prediction algorithm to be over 90% accurate.

Cycle 0

On average, one of out

I3

I4

I7

I8

Cycle 1

every six instructions
is a Branch

I1

I2

I5

I6

Appendix A Glossary

User’s Manual U10278EJ4V0UM 343

<R12000>

 Use of global history in branch-prediction:

The history register is 8 bits wide, and implements the ‘gshare’ predictor (reference to
paper that defines will be provided later). The history register is updated speculatively,
with a one cycle delay after a prediction before the results are available for use in forming
another prediction index. As mentioned earlier, some programs with small “working set
of conditional branches” benefit significantly from the use of such hashing; however, a
slightly variable number of previously-executed branches may be omitted from the
predictions made for any given branch. This will reduce prediction accuracy somewhat.
Global history register is enabled via bits 26:23 of the Diag Register (CP0 register 22). If
bit 26 is set, branch prediction uses all eight bits of the global history register. If bit 26 is
not set, then bits 25:23 specify a count of the number of bits of global history register to
be used.

 Increase in branch prediction table size:

The table size is increased to 2048 2-bit entries.

A.13 Logical and Physical Registers

Register renaming (described above) distinguishes between logical registers, which are
referenced within instruction fields, and physical registers, which are actually located in
the hardware register file. The programmer is only aware of logical registers; the
implementation of physical registers is entirely transparent.

Logical register numbers are dynamically mapped onto physical register numbers. This
mapping uses mapping tables which are updated after each instruction is decoded; each
new result is written into a new physical register. This value is temporary and the previous
contents of each logical register can be restored if its instruction must be aborted following
an exception or a mispredicted branch.

Register renaming simplifies dependency checks. Logical register numbers can be
ambiguous when instructions are executed out of order, since a succession of different
values may be assigned to the same register. But physical register numbers uniquely
identify each result, making dependency checking unambiguous.

The queues and execution units use physical register numbers. Integer and floating-point
registers are implemented with separate renaming hardware and multi-port register files.

A.14 Register Files

The R10000 processor has two 64-bit-wide register files to store integer and floating-point
values. Each file contains 64 registers. The integer register file has seven read and three
write ports; the floating-point register file has five read and three write ports.

The integer and floating-point pipelines each use two dedicated operand ports and one
dedicated result port in the appropriate register file. The Load/Store unit uses two dedicated
integer operand ports for address calculation. It must also load or store either integer or
floating-point values, sharing a result port and a read port in both register files.

Appendix A Glossary

344 User’s Manual U10278EJ4V0UM

These shared ports are also used to move data between the integer and floating-point
register files, to store branch and link return addresses, and to read the target address for
branch register instructions.

A.15 ANDES Architecture

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.

User’s Manual U10278EJ4V0UM 345

Appendix B Differences between R10000 and
R12000

The following items are described in this Appendix:

• Mode bits changed in R12000

• DSD (Delay Speculative Dirty)

• Changes in the Branch Diag Register

• Eliminate traps for Denorm/NaN FP inputs

• Increase in pre-decode buffering

• Increased penalty for indirect branches

• Addition of a Branch Target Address Cache

• Use of global history in branch-prediction

• Increase in branch prediction table size

• Address calculation for load/store instructions uses integer queue

• Load/store dependency is speculatively ignored

• DCache set locking relaxed

• SC refill blocking reduced

• Increased the Way Prediction Table (MRU table) to 16K single-bit entries

• Additional cycles for System Interface transactions

• FP and Integer-Queue Issue Policy

• Active List entires are increased to 48

• Cache Error inhibits graduation

• Changed Spare (1, 3) pins to NC (No Connection)

• CacheOp Index Write Back Invalidate (D) also clears Primary Tag

• Summary of the differences

Appendix B Differences between R10000 and R12000

346 User’s Manual U10278EJ4V0UM

B.1 Mode bits changed in R12000

† For R12000 and R12000L. This code can be set in the R12000A (See C.1).

Table B-1 Mode Bits 12:9 (SysClkDiv)

Code Divisor SysClk (for PClk = 300 MHz)

0000 - Reserved

0001 - Reserved

0010 - Reserved

0011 2 150 MHz

0100 2.5 120 MHz

0101 3 100 MHz

0110 3.5 85.70 MHz

0111 4 75.00 MHz

1000 4.5 66.00 MHz

1001 5 60.00 MHz

1010 5.5 54.55 MHz

1011 6 50.00 MHz

1100 - Reserved†

1101 - Reserved

1110 - Reserved

1111 - Reserved

Table B-2 Mode Bits 21:19 (SCClkDiv)

Code Divisor SCClk (for PClk = 300 MHz)

000 - Reserved

001 - Reserved

010 1.5 200MHz

011 2 150 MHz

100 2.5 120 MHz

101 3 100 MHz

110 - Reserved

111 4 75 MHz (added for testing silicon)

Appendix B Differences between R10000 and R12000

User’s Manual U10278EJ4V0UM 347

B.2 DSD (Delay Speculative Dirty)

The Boot Mode bit 24 corresponds to the Config register[24] bit and this controls DSD
during user mode. However, the DSD mode can also be enabled in the kernel mode by
setting the Status register[24] bit. Config register[24] is read-only and can be set only at
boot time.

 If the DSD mode is set -

 a) R12000 will not set the Dirty bit for a secondary cache block until the store instruction
is the oldest in the Active List and is about to be executed. (An interrupt could cause a
case where the dirty bit is set (store is no longer speculative), but the store does not
immediately graduate. We believe this case should not cause any problem. This mode
does prevent speculative stores from setting the dirty bit.)

 b) This mode will have slightly lower performance due to the delay in the setting of the
Dirty bit. This delay will occur just once per block refill from main memory, when it
is necessary to set the dirty bit. Setting the bit requires about ten cycles; but usually the
processor will continue to overlap execution of other instructions. Once a block
becomes dirty in secondary cache, this mode has no performance effect.

 c) In this mode, a miss in secondary cache, due to a store instruction which is not already
the oldest in the pipeline, will cause a refill to the “clean exclusive” state. A hit to a
shared line will immediately cause an upgrade to “clean exclusive”. Thus, bus
operations (which are relatively slow) will still begin speculatively.

Independent of the DSD mode, R12000 will delay a “cached, non-coherent” load until
it is the oldest instruction. This change is implemented because a speculative load
accessing an unmapped “xkphys” address as “cached, non-coherent” might bring data
into the secondary cache without the proper coherency checks.

R12000 is doing no changes to prevent it from speculatively refilling cache lines in
shared or clean states except the “xkphys” case described above.

Table B-3 Mode Bits 24:22

Code Name Comments

000 - Reserved

001 - Reserved

010 - Reserved

011 - Reserved

100 DSD Delay Speculative Dirty - fix for speculative store (see B.2)

101 - Reserved

110 - Reserved

111 - Reserved

Appendix B Differences between R10000 and R12000

348 User’s Manual U10278EJ4V0UM

B.3 Changes in the Branch Diag Register

In R12000 two fields are added to the “Diag Register” - CP0 Register 22. One field is
“ghistory enable”, bits 26:23. The other is “BTAC disable”, bit 27.

The definitions are:

• Ghistory enable:

• If bit 26 is set, branch prediction uses all eight bits of the global history register.

• If bit 26 is not set, then bits 25:23 specify a count of the number of bits of
global history to be used.

Thus if bits 26:23 are all zero, global history is disabled.

The global history contains a record of the taken/not-taken status of recently executed
branches, and when used is XOR’ed with the PC of a branch being predicted to produce a
hashed value for indexing the BPT. Some programs with small “working set of conditional
branches” benefit significantly from the use of such hashing, some see slight performance
degradation.

• BTAC disable:

If bit 27 is set, the use of the Branch Target Address Cache (BTAC) is disabled. The BTAC
is used to reduce the instruction fetch penalty of taken branches by providing the target
address of fixed-address branch and jump instructions.

Appendix B Differences between R10000 and R12000

User’s Manual U10278EJ4V0UM 349

B.4 Eliminate traps for Denorm/NaN FP inputs

The R10000 currently takes Unimplemented Exception when an FPU gets a NaN or
Denorm as an input. R12000 suppresses these traps whenever the FS bit is set in the FCSR.
R12000 simply passes through NaN’s and Denorm’s when the bit is set. This change in no
way affects the handling of QNaNs and Denorms when they are produced, it only changes
the way they are handled when they are received as input operands.

Case of Denorm when the FS bit is set to 1: A Denorm received as an input to the FP unit
is flushed to zero before the FP unit begins to process the operand. The behavior of the unit
(when FS is 1) will be exactly that seen when the input is zero. Specifically, if the zero input
would itself cause a trap (due to divide by zero, for example) then the that zero-generated
trap will be taken. When a Denorm is seen at the input, the Inexact bit is set, except in the
cases described below:

 The Inexact bit will not be set, even if FS=1 and a Denorm is seen on input, if the other
input to the FP operation is a value which pre-determines the FP result (e.g. QNaN).
When the result is not affected by the presence or absence of the Denorm input, the
result is EXACT. Hence the Inexact bit should not be set, even if Flush to Zero mode
is ON.

Case of QNaNs when the FS bit is set to 1: A QNaN received as an input operand for an FP
unit will cause the unit to produce the standard QNaN (which is not necessarily same as the
input QNaN). Note that FP units will not propagate the QNaN to the output, but will always
produce the same, standard, QNaN.

When the FS bit is set to zero, the behavior will be exactly as in R10000.

When Denorms or QNaNs are produced by an FP operation, the behavior will be exactly
as in R10000, regardless of the FS bit setting.

Handling of signalling NaNs will be unaffected by this change. Only the handling of input
quiet NaNs and Denorms will be affected.

Arithmetic instructions (like add/sub/madd/cvt/div/sqrt/recip/rsqrt) will follow the above
behavior in all respects.

There are some instructions that deserve special mention:

• Mov, conditional mov will not be affected by this mode, i.e. no exceptions based
on QNaNs and Denorms. Denorms and QNaNs will be moved without
generating an exception, regardless of the FS state. This behavior is unchanged
from that of R10000.

• When FS=1, the Abs, Neg and Compare instructions will flush Denorm inputs to
zero just as the arithmetic operations do. This is different from the behavior of
the R8000, R4400 and R10000. In all cases where flushing the Denorm to
zero made a difference in the result, the and inexact trap will be taken or the
Inexact bit will be set. Compatibility with R4400 and R10000 can be achieved
by setting FS=0.

Appendix B Differences between R10000 and R12000

350 User’s Manual U10278EJ4V0UM

• The behavior of FP to INT conversion instructions will change in that when
FS=1, an input Denorm will be flushed to zero and the Inexact bit will be set.
With other inputs, FP to INT conversion will not be affected by the FS mode
bit. Previously, R10000 took an unimplemented exception whenever a
conversion from an FP value would result in a value that cannot be represented
in the target format. This will continue to be the case, with the noted exception
of Denorm inputs.

• FP to FP convert instructions will be affected in the same way as arithmetic
operations. That is, cvt FP to FP will not take exceptions on qNaN or Denorm
inputs, if and only if FS=1.

The above changes in R12000 will allow the compilers and applications can do more
aggressive optimizations during loop unrolling like if-conversion, speculative load
execution and speculative code motion by making use of this feature. The change is gated
by the FS bit so that strict IEEE-compliance is possible, as before, by setting the FS bit to
zero.

B.5 Increase in pre-decode buffering

Up to 12 instruction may be buffered before being decoded. This should normally be
invisible to the end user, but can be important when debugging systems in uncached-mode,
since fetch and decode are now further de-coupled.

B.6 Increased penalty for indirect branches

Indirect branches, which were already an expensive operation, have become even more so.
Instruction fetch now stalls for a minimum of 5 cycles, rather than the 4 for the R10000.
This additional cycle of delay is seen by both jr and jalr instructions.

B.7 Addition of a Branch Target Address Cache

This 32-entry two-way set-associative cache holds the target addresses of previously-taken
branches. When a branch is executed a hit in the BTAC eliminates the one-cycle fetch
bubble with the R10000 experiences for every taken branch. However, if a branch which
hits in the BTAC is actually predicted not-taken, then a one cycle fetch bubble is introduced
where none was present before. Performance simulations indicate that the BTAC is a net
win, but because of its “mixed-blessing” nature, a mechanism has been provided to disable
it via software. (See description of changes to diag register)

Appendix B Differences between R10000 and R12000

User’s Manual U10278EJ4V0UM 351

B.8 Use of global history in branch-prediction

The history register is 8 bits wide, and implements the ‘gshare’ predictor (reference to
paper that defines will be provided later). The history register is updated speculatively, with
a one cycle delay after a prediction before the results are available for use in forming
another prediction index. As mentioned earlier, some programs with small “working set of
conditional branches” benefit significantly from the use of such hashing; however, a slightly
variable number of previously-executed branches may be omitted from the predictions
made for any given branch. This will reduce prediction accuracy somewhat. Global history
register is enabled via bits 26:23 of the Diag Register (CP0 register 22). If bit 26 is set,
branch prediction uses all eight bits of the global history register. If bit 26 is not set, then
bits 25:23 specify a count of the number of bits of global history register to be used.

B.9 Increase in branch prediction table size

The table size is increased to 2048 2-bit entries.

B.10 Address calculation for load/store instructions uses integer queue

When load, store, cacheop, or prefetch instructions are decoded, they are sent to both the
AQ and IQ units. The IQ treats the address-calculate unit as a third “ALU” and issues
instructions to it. When an instruction completes address calculation, the results are
forwarded to the AQ. Unlike previously, if an address instruction must be retried for any
reason, address calculation is not redone. If an the address queue is full, but the integer
queue has free entries at the time a load/store instruction is decoded, the load/store is sent
only to the integer queue. When the address queue has an available entry the calculated
address is forwarded to that entry and the remainder of the load/store execution continues.

B.11 Load/store dependency is speculatively ignored

When a load follows a store in program-order, and the address of the load is known to the
Address Queue (AQ) before the address of the store, then the AQ may speculatively issue
the load to tag-check and data access. When the address of the store is determined, the AQ
can undo the effects of the load through the use of the “soft-exception” mechanism. Since
almost all loads which are actually dependent on previous stores use the same registers to
form their addresses, normally either the two instructions are independent, or their
addresses are resolved in program order, so the soft-exception should occur rarely.

Appendix B Differences between R10000 and R12000

352 User’s Manual U10278EJ4V0UM

B.12 DCache set locking relaxed

In R10000, when an AQ entry accesses a Dcache line, that line is locked into the cache until
the entry graduates, so that the entry will not be removed from the cache until the access
completes. If another entry which needs to access exactly the same line arrives in the AQ
before the first completes, the two may share the lock. In this way, a line is locked in the
cache until all access to it complete. In order to prevent a deadlock from arising, whenever
a cache line is locked in this way, only the oldest AQ entry can obtain a lock on the other
“way” of the same cache set, thus ensuring that forward progress can be made. This
algorithm can cause problems, because often the oldest entry in the AQ is the one which
already owns the lock on the first way - thus ensuring that no other entries can access the
second way of the cache for that set index. For some algorithms, most notably FFT’s, this
can cause severe performance degradation. R12000 allows an entry to obtain the lock on
the second way of a set if it is the oldest entry which does not already own a lock. Thus, any
entries which have already acquired a lock, including those locking the first way, will not
prevent another, younger, entry from accessing that second way.

B.13 SC refill blocking reduced

In R10000, during the time that an SCache line is being refilled from system interface via
the “incoming buffer (IB)”, no other accesses to the SCache are allowed. If the external
interface sees an ACK to a line that is being refilled before the last words of the SCache line
are received by R10000, this means that several cycles can elapse during which SCache
access is blocked. By breaking the SCache refill transaction into 64-byte blocks, and
allowing other requests to proceed during breaks between the blocks, this effect could be
reduced. R12000 pulls in SCache lines with two “pause points.” This first occurs when
R12000 receives the ACK for a request. If the first two quad-words are already valid in the
Incoming Buffer at that time, then R12000 will proceed to refill the SCache with those two,
and forward the results to the DCache or ICache at the same time as normal. The next two
quad-words will be refilled as they return, thus continuing to block any other access to the
SCache just as today. If however, when the initial ACK is received, the first two are not valid
(i.e., either 0 or 1 quad-words are valid at that time) then R12000 will “pause” the SCache
refill and wait for both of them to be brought in to the IB. Once the first half is filled in to
the SCache, R12000 will again check the IB to see if an additional 3 quad-words are valid
(thus 7 out of the 8 quad-words in the SCache line should have arrived into the IB). Until
that is the case, R12000 will again “pause” the SCache refill and allow other accesses to
reach the SCache. These two pauses allow for other requests to slip in during an SCache
refill. Using only two pauses both simplifies the logic and reduces bus turnarounds.

B.14 Increased the Way Prediction Table (MRU table) to 16K single-bit entries

The size of the table has been increased to 16K entries, so that 4MB caches with 128B lines
or 2MB caches with 64B lines can be fully mapped.

B.15 Additional cycles for System Interface transactions

All transactions which go through the system interface unit (in particular, SCache refills
and writebacks) have one additional CPU-clock of latency added to them.

Appendix B Differences between R10000 and R12000

User’s Manual U10278EJ4V0UM 353

B.16 FP and Integer-Queue Issue Policy

The integer and floating-point queues are altered so that they are now composed of two 8-
entry banks. Instructions are issued into the two banks in an alternating fashion. Each bank
independently nominates instructions for the functional units. For each FU, the banks
nominate the oldest instruction they contain which is ready to execute. If both banks
nominate an instruction for a given FU, a winner is chosen by a priority bit which alternates
between the two banks on each cycle.

B.17 Active List entries are increased to 48

The active list has been enlarged so that it now contains 48 entries.

B.18 Cache Error inhibits graduation

When a cache error is detected, all instruction graduation is inhibited on the following
cycle. Since cache errors are rare, and an exception will occur soon afterwards, this should
have minimal impact on performance.

B.19 Changed Spare(1, 3) pins to NC (No Connection)

The Spare(1, 3) are used in R12000 for diagnostic purpose and thus for R12000 should not
be connected to anything.

B.20 CacheOp Index Write Back Invalidate(D) also clears Primary Tag

As a result of the CacheOp Index Write Back Invalidate(D) instruction, the Primary Tag is
also cleared (set to zero) in addition to setting the cache state bits to zeros or (invalid) as
described in VR5000, VR10000 INSTRUCTION User’s Manual.

Appendix B Differences between R10000 and R12000

354 User’s Manual U10278EJ4V0UM

B.21 Summary of the differences

• Higher operation frequency.

• Core operating voltage for R12000 2.6V.

• Max case temperature for R12000 70°C.

• Less Power consumption.

• Increased options for PClk to SysClk and PClk to SCClk ratios.
• Added boot-time mode bits to allow processor upgrade without change in

system interface and secondary cache interface frequency.

• Added a mode in which the side effects of “Speculative Load/
Stores” are avoided.

• Speculative load/stores could cause problems in a system with non-
coherent I/O. In this mode prevents the behavior that causes the side-
effects with some trade-off in performance. This mode is optional and can
be selected during boot-time.

• Added an optional Branch Target Address Cache to reduce instruc-
tion fetch penalty.

• Since there are trade-offs, this feature can be disabled.

• Added an optional “Global History Table” to improve branch pre-
diction.

• Since not all the program benefit from this feature; so the feature can be
disabled.

• Added an option to eliminate traps for Denorm/NAN FP inputs
• This allows the compilers and applications to do more aggressive

optimization. The change is optional if IEEE compliance is needed.

• Quadrupled the branch prediction table size.

• Doubled the MRU table for SCache way prediction to improve
SCache hit rate.

Appendix B Differences between R10000 and R12000

User’s Manual U10278EJ4V0UM 355

• Improved performance monitoring system.

• Increased Active list to 48 entries to improve performance.

• Changed the Spare(1,3) pins to NC (No Connection).

• Other miscellaneous changes to improve performance and simplify
logic.

356 User’s Manual U10278EJ4V0UM

Appendix C Differences between R12000 and
R12000A

The following items are described in this Appendix:

• Mode bits changed in R12000A

• Changes in the Performance Counter Registers

• Summary of the differences

Appendix C Differences between R12000 and R12000A

User’s Manual U10278EJ4V0UM 357

C.1 Mode bits changed in R12000A

NOTE: The selectable divisors of PClk to SCClk in the R12000A are the same as
those in the R12000. Table C-2 is only for indication of actual frequencies of SCClk
when each divisor is selected.

Table C-1 Mode Bits 12:9 (SysClkDiv)

Code Divisor SysClk (for PClk = 400 MHz)

0000 - Reserved

0001 - Reserved

0010 - Reserved

0011 2 200 MHz

0100 2.5 160 MHz

0101 3 133.3 MHz

0110 3.5 114.3 MHz

0111 4 100 MHz

1000 4.5 88.89 MHz

1001 5 80 MHz

1010 5.5 72.73 MHz

1011 6 66.67 MHz

1100 7 57.14 MHz

1101 - Reserved

1110 - Reserved

1111 - Reserved

Table C-2 Mode Bits 21:19 (SCClkDiv)

Code Divisor SCClk (for PClk = 400 MHz)

000 - Reserved

001 - Reserved

010 1.5 266.7 MHz

011 2 200 MHz

100 2.5 160 MHz

101 3 133.3 MHz

110 - Reserved

111 4 100 MHz (added for testing silicon)

Appendix C Differences between R12000 and R12000A

358 User’s Manual U10278EJ4V0UM

C.2 Changes in the Performance Counter Registers

In the R12000A, the syndrome bits that are generated from the data coming into the
processor from the SCache are captured in a 9-bit register whenever there is a single or
multiple bit error. Therefore this register will always contain the syndrome bits generated
for the most recent error encountered. The register is uninitialized on power up and is not
writable by any other means. Architecturally, the 9-bit register appears as bits 31:23 of the
CP0 Performance Counter (Cop 25) Control register 0. These bits were previously unused.
These 9 bits are read only bits. A write to this control register will not affect these bits.

The syndrome bits are generated for Secondary to Primary refills and Secondary to Main
memory writebacks, but not for CacheOp reads from Secondary cache.

For details, see 11.20 Performance Counter Registers (25).

C.3 Summary of the differences

• Higher operation frequency.

• Core operating voltage for R12000A 1.9V.

• Increased an option for PClk to SysClk ratio.

• Added options for HSTL modes of output pins.

• Added an error indication mechanism for received secondary
cache data.

• Changed the packaging to plastic BGA.

• Added JTRST signal for asynchronous initialization of the TAP
controller in the JTAG interface.

Table C-3 Mode Bits 30:29 (HSTL Mode)

Code Comments

00
HSTL 1 on the outputs of the System interface
HSTL 1 on the outputs of the secondary cache interface

01
HSTL 1 on the outputs of the System interface
HSTL 2 on the outputs of the secondary cache interface

10
HSTL 2 on the outputs of the System interface
HSTL 1 on the outputs of the secondary cache interface

11
HSTL 2 on the outputs of the System interface
HSTL 2 on the outputs of the secondary cache interface

User’s Manual U10278EJ4V0UM 359

Appendix D Index

Numerics

16-word, cache refill

read sequence ... 88

write sequence ... 93

32-bit

address space ... 287

mode, TLB entry format ... 299

32-word, cache refill

read sequence ... 88

write sequence ... 93

4-word, cache refill

read sequence ... 86

write sequence ... 91

64-bit

address space ... 287

mode, TLB entry format ... 299

8-word, cache refill

read sequence ... 87

write sequence ... 92

A

access privileges, address space ... 296

ACK completion response ... 146

ACK, signal ... 106

active list, definition of ... 339

add unit, FPU ... 274

address

encodings, mode ... 287

Kernel mode ... 292

mapping

Kernel mode ... 292

Supervisor mode ... 290

User mode ... 288

mode ... 287

page ... 298

queue ... 22, 29

instruction graduation ... 29

issue ports ... 29

number of entries ... 29

number of instructions written per cycle ... 29

organized as FIFO ... 29

sequencing ... 29

space

access privileges ... 296

kernel ... 287

supervisor ... 287

user ... 287

virtual ... 287

Supervisor mode ... 290

translation ... 300

User mode ... 288

Address Error exception ... 310

Address Space Identifier, see also ASID ... 300

address/data bus signals ... 57

AdEL, indication ... 310

AdES, indication ... 310

algorithms

cache, five types of ... 70, 74

aliasing, virtual ... 84

allocate request number requests, external ... 150

ALU (arithmetic logic unit)

No. 1 ... 36

No. 2 ... 36

ALU1 ... 25, 28

ALU2 ... 25, 28

ANDES, Architecture with Non-sequential Dynamic Execution
Scheduling ... 20, 344

arbitration protocol, System interface ... 124

Appendix D Index

360 User’s Manual U10278EJ4V0UM

arbitration rules, System interface ... 125

arbitration signals ... 57

arbitration, cluster bus ... 98

Architecture with Non-sequential Dynamic Execution Scheduling,
see also ANDES ... 344

arithmetic instructions, FPU ... 283

arithmetic logic unit, see also ALU ... 36

array ... 79

array, page table entry (PTE) ... 215

ASID (Address Space Identifier)

context switch ... 300

relationship to Global (G) bit in TLB entry ... 300

stored in EntryHi register ... 300

ASID, field ... 219

auto-increment read, cache test mode ... 336

auto-increment write, cache test mode ... 334

B

Bad Virtual Address register (BadVAddr) ... 218

BadVAddr register ... 215, 233, 310

BadVPN2, field ... 215, 233

BD, (branch delay) bit ... 226, 228

BE, (memory endianness) bit ... 230

BEV, (boot exception vector) bit ... 188, 224, 302

block

instruction cache ... 25

primary data cache ... 25

secondary cache ... 27

size

primary data cache ... 64

primary instruction cache ... 62

secondary cache ... 67

block data transfers ... 110

external block data responses ... 110

processor block write requests ... 110

processor coherency data responses ... 110

boundary scan register, JTAG ... 206

BPIdx, field ... 236

BPMode, field ... 236

BPOp, field ... 236

BPState, field ... 236

branch

determining next address ... 35

instruction, limits on execution ... 35

prediction ... 32, 47, 342

prediction rates, improving ... 39

speculative ... 342

unit ... 26, 35

BRCH, field ... 236

BRCV, field ... 236

BRCW, field ... 236

Breakpoint exception ... 320

BSIdx, field ... 236

BTAC disable, bit ... 237

buffer

cached request ... 105

cluster request ... 105

incoming ... 105, 106

outgoing ... 105, 107

uncached ... 105, 108

bus

SysAD ... 118

SysCmd ... 111

SysResp ... 121

SysState ... 120

Bus Error exception ... 316

busy-bit table ... 340

bypass register, JTAG ... 205

C

C, (coherency attribute) bit ... 213

cache... 20

algorithms ... 70

and processor requests ... 74

cacheable coherent exclusive on write, description of ... 71

cacheable coherent exclusive, description of ... 71

cacheable noncoherent, description of ... 71

fields, encoding of ... 70

for kseg0 address space ... 70

for mapped address space ... 70

for xkphys address space ... 70

uncached accelerated, description of ... 72

uncached, description of ... 71

where specified ... 70

associativity ... 61

block ownership ... 75

misses ... 43

address recording ... 253

nonblocking ... 41, 43

ordering constraints ... 33

pages ... 298

primary ... 20

primary data ... 25

block size ... 64

Appendix D Index

User’s Manual U10278EJ4V0UM 361

changing states ... 65

description of ... 64

diagram, state ... 66

error handling ... 192

index and tag ... 65

interleaving ... 48

refill ... 47

state diagram ... 66

states ... 65

subset of secondary cache ... 65

write back protocol ... 64

primary instruction ... 25

block size ... 62

description of ... 62

diagram, state ... 63

error handling ... 191

error protection ... 191

index and tag ... 62

refill ... 47

state diagram ... 63

states ... 62

rules, ownership of a cache block ... 75

secondary ... 20

associativity ... 27, 67

block size ... 67

block state ... 84

blocks ... 27

changing states ... 68

clock domain ... 173

data array ... 77

data array width ... 79

description of ... 67

diagram, state ... 68

ECC ... 27

error handling ... 193

index and tag ... 67

indexing ... 79

indexing the data array ... 79

indexing the tag array ... 80

interface frequencies ... 78

sizes ... 27

specifying block size ... 77

specifying cache size ... 77

state diagram ... 68

states ... 67

syndrome bits ... 254

tag ... 83

tag and data array ECC ... 77

tag array ... 77

way prediction ... 81

way prediction table ... 80

write back protocol ... 67

strong ordering

example of ... 34

structure, two-level ... 61

Cache Error exception... 188, 315

precision ... 188

prioritization ... 188

Cache Error handler ... 188

CACHE instructions ... 189

support for I/O ... 168

cache miss stalls ... 43

cache test mode

entry ... 330

exit ... 331

cacheable coherent exclusive on write, cache algorithm ... 70, 71

cacheable coherent exclusive, cache algorithm ... 70, 71

cacheable noncoherent, cache algorithm ... 70, 71

cached request buffer ... 105

CacheErr register ... 188, 189, 191, 192, 263

cause bits, FPU ... 283

Cause register ... 121, 122, 218, 226, 228

Cause, field (FP) ... 283

CE, bit ... 223, 224, 226

CH, bit ... 224

chip revisions, R10000 ... 229

ckseg0 space ... 296

ckseg1 space ... 296

ckseg3 space ... 296

cksseg space ... 296

clock

domain

in secondary cache ... 173

internal processor clock domain ... 171

secondary cache clock domain ... 171

System interface clock domain ... 171

signal

PClk ... 172

SCClk ... 173

SysClk ... 171

SysClkRet ... 172

signals, overview of ... 57

clock divisor, system interface ... 96, 329

cluster bus ... 52, 98

operation ... 164

cluster coordinator ... 97, 98

Appendix D Index

362 User’s Manual U10278EJ4V0UM

cluster request buffer ... 105

coherency conflicts ... 159

coherency protocol, directory-based ... 169

coherency request, external ... 154, 156

coherency schemes ... 52

coherency, System interface

external intervention exclusive request ... 157

external intervention shared request ... 157

external invalidate request ... 157

CohPrcReqTar, mode bit ... 118, 165, 168, 180

cold reset ... 175

sequence ... 178

Cold Reset exception ... 302

Compare register ... 122, 218

completing, an instruction ... 339

completion, definition of ... 341

condition bit dependencies ... 32

Condition, field (FP) ... 283

Config register ... 230

conflicts

coherency ... 159

internal ... 159

TLB, avoiding ... 300

Context register ... 215, 233

context switch ... 300

control registers, FPU ... 281

controller, TAP ... 204

coordinator, cluster ... 97

COP1 instructions ... 327

COP2 instructions ... 327

Coprocessor 0, see also CP0 ... 209

Coprocessor 1 see also CP1, COP1 ... 225

Coprocessor 2 see also CP2, COP2 ... 225

Coprocessor 3 see also CP3, COP3 ... 225

Coprocessor Unusable exception ... 322

correctable error ... 185

Count register ... 122, 218

CP0 (coprocessor 0) ... 209

instructions ... 327

registers, list of ... 210

csseg space ... 291

CT, bit ... 230

CTM, mode bit ... 182, 330, 331

CU, (coprocessor usability) field ... 220, 222, 225

D

D, (dirty) bit ... 213

data cache

see also cache, primary data ... 64

data dependencies ... 38

data path, secondary cache ... 27

data quality indication ... 108

DBRC, field ... 236

DC, (data cache size) field ... 230

DCOk, signal ... 54, 176

DE, bit ... 189, 224

debugging, and Watch registers ... 232

decoding, an instruction ... 339

dependencies

condition bit ... 32

exception ... 33

instruction ... 31

memory ... 32

pipeline ... 31

register ... 32, 343

DevNum, mode bits ... 180

Diagnostic register ... 235

directory-based coherency protocol ... 169

divide unit, FPU ... 274

division by zero, FP ... 283

divisor, clock, system interface ... 96, 329

DN, (device number) field ... 230

Done, bit ... 28

done, see also completion ... 341

DP, (primary data cache parity) field ... 262

DS, (diagnostic status) field ... 221, 222, 223

DSD, (delay speculative dirty) bit ... 224, 230

DSD, mode bits ... 181

duplicate, external ... 50

dynamic issue ... 31, 339

dynamic scheduling ... 339

E

EC, field ... 230

ECC (error correcting code)

matrix for secondary cache data array ... 194

matrix for secondary cache tag array ... 196

matrix for System interface ... 199

register ... 262

secondary cache ... 27

Appendix D Index

User’s Manual U10278EJ4V0UM 363

ECC register ... 86, 91

ECC, field ... 262

efficiency, program, suggestions for increasing ... 39

Enable, field (FP) ... 283

EntryHi register ... 219, 299

ASID field in ... 300

EntryLo registers, and FrameMask register ... 234

EntryLo0 register ... 213, 299

EntryLo1 register ... 213, 299

EPC register ... 228

ERL, (error level) bit ... 188, 223, 286

ERR completion response ... 146

ERR, signal ... 106

error

correctable ... 185

handling ... 184

protocol ... 202

levels, in the Status register ... 286

protection ... 184

schemes used in R10000 ... 190

protection schemes, used in R10000

ECC ... 190

parity ... 190

sparse encoding ... 190

uncorrectable ... 186

handling an ... 188

limiting the propagation of ... 187

units that detect and report uncorrectable errors ... 188

error correcting code see also ECC ... 190

Error Exception Program Counter (ErrorEPC) register ... 273

Event, field ... 239, 248

EW, bit in CacheErr register ... 189

ExcCode, field ... 226, 227

exception levels, in the Status register ... 286

exception processing, CPU

exception types

Address Error ... 310

Breakpoint ... 320

Bus Error ... 316

Cache Error ... 188, 315

Coprocessor Unusable ... 322

Floating-Point ... 323

Integer Overflow ... 317

Interrupt ... 325

NMI ... 309

Reserved Instruction ... 321

Soft Reset ... 307

System Call ... 319

TLB ... 311

TLB Invalid ... 311, 313

TLB Modified ... 311, 314

TLB Refill ... 311, 312

Trap ... 318

Virtual Coherency ... 315

Watch ... 324

exception vector location

Reset ... 302

TLB Refill ... 302

exception vector selection ... 303

precise handling ... 33

priority of ... 303, 305

TLB refill vector locations ... 304

Exception Program Counter (EPC) register ... 228

executing, an instruction ... 339

execution order ... 31

execution pipelines ... 22

execution units, iterative ... 344

execution, speculative ... 38, 342

EXL, (exception level) bit ... 223, 228, 286, 302

external ACK completion response ... 106, 146

external agent ... 50, 51, 95

also referred to as cluster coordinator ... 97

connecting to ... 97

external allocate request number request protocol ... 150

external block data response ... 110, 144

protocol ... 143

external coherency conflicts ... 160

external coherency request latency ... 162

external coherency requests, action taken ... 158

external completion response ... 147

protocol ... 146

external double/single/partial-word data response protocol ... 145

external duplicate tags, support for ... 168

external interface ... 27

memory accesses ... 48

priority operations ... 48

external interrupt request ... 121

protocol ... 152

external intervention exclusive request ... 157

external intervention request ... 149

protocol ... 149

external intervention shared request ... 157

external invalidate requestt ... 157

Appendix D Index

364 User’s Manual U10278EJ4V0UM

protocol ... 151

external NACK completion response ... 146

external request ... 96, 103

protocol ... 148

external response ... 96, 103

protocol ... 143

F

fetch pipeline ... 22, 35

fetching, an instruction ... 339

FGR (Floating-Point General register)

32-bit operations ... 277

5-bit select ... 277

64-bit operations ... 277

load operations ... 278

operations ... 277

Status register FR bit ... 277

store operations ... 278

Fill, field ... 219

flag

uncorrectable error ... 106

Flag, field (FP) ... 283

floating-point

adder ... 36

adder pipeline ... 22

divide ... 36, 275

multiplier ... 36

pipeline ... 23

queue ... 22, 29

instructions written each cycle ... 29

number of allowable entries ... 29

ports ... 29

sequencing ... 29

registers ... 277

rounding mode ... 284

square root ... 36

Floating-Point exception ... 323

Floating-Point Status register see also FSR ... 282

Floating-Point Unit, see also FPU ... 274

flow control ... 109

external data response ... 109

external request ... 109

processor coherency data response ... 109

processor eliminate request ... 109

processor read request ... 109

processor upgrade request ... 109

processor write request ... 109

signals ... 57

format, TLB entry ... 299

FPU ... 274

Active List, control of FSR ... 282

add unit ... 274

arithmetic instructions ... 283

cause bits, FSR ... 283

changing rounding mode using a CTC1 ... 284

compare ... 283

condition bits ... 283

control registers ... 281

divide unit ... 274

FGRs (general registers) ... 277

FSR, (Status register in FPU) ... 282

graduation, control of FSR ... 282

latency ... 274

logic diagram ... 275

move to floating-point ... 280

multiply unit ... 274

operations ... 275

queue

controlling units ... 276

move unit, FPU ... 275

read ports ... 275

register file ... 275

repeat rate ... 274

rounding modes ... 284

serial dependency circuit ... 280

square-root unit ... 274

FR, field ... 222

FrameMask register ... 214, 234

free list ... 340

freeing the request number, with completion response ... 146

FSR (Floating-Point Status register)

cause bits ... 283

condition bits ... 283

division by zero ... 283

enable bits ... 283

flag bits ... 283

inexact result ... 283

invalid operation ... 283

load exceptions ... 284

loading the FSR ... 284

overflow ... 283

RM, round to minus infinity ... 284

RN, round to nearest representable value ... 284

RP, round to plus infinity ... 284

RZ, round toward zero ... 284

underflow ... 283

Appendix D Index

User’s Manual U10278EJ4V0UM 365

unimplemented operation ... 283

functional unit ... 25

branch ... 26

floating-point adder ... 25

floating-point multiplier ... 25

instruction decode and rename ... 26

integer ALU ... 25

iterative ... 25

Load/Store Unit ... 25

G

G, (Global) bit in TLB ... 214, 300

gathering data, in identical mode ... 108

gathering data, in sequential mode ... 108

ghistory enable, bit ... 237

global processes (G bit in TLB) ... 300

graduation

definition of ... 341

of an instruction ... 339

Grant parking ... 124

H

hardware emulation, support for ... 170

hardware interrupts ... 121

HSTL Mode, mode bits ... 183

I

I/O, support for ... 168

IC, (instruction cache size) field ... 230

IE, (interrupt enable) bit ... 223, 239, 249

IM, (interrupt mask) field ... 221

implementation number, R10000 processor ... 229

incoming buffer ... 105, 106

Index Load Tag instruction ... 89

Index register ... 211

Index Store Data CACHE instruction ... 91

Index Store Tag CACHE instruction ... 94

indexing, the secondary cache ... 79

inexact result (FP) ... 283

initialization ... 175

instruction

CACHE, see also CACHE instructions ... 189

completion ... 38, 339

COP0 see also CP0 ... 327

COP1 ... 327

COP2 ... 327

decoding ... 339

dependencies ... 31

DMFC1 ... 283

execution ... 339

fetching ... 339

graduation ... 339

issue ... 38, 339

superscalar ... 38

latencies ... 45

MFC1 ... 280, 283

prefetch ... 43

queue ... 28, 35

repeat rates ... 45

serializing ... 41

SWC1 ... 280

SYNC ... 73, 164

instruction cache, block size see also cache, primary instruction ...
62

instruction register, JTAG ... 205

integer

queue 28

branch instructions ... 28

divide instructions ... 28

multiply instructions ... 28

ports ... 28

shift instructions ... 28

integer ALU pipeline ... 22

Integer Overflow exception ... 317

integer queue ... 22

interface, external ... 27

internal coherency conflicts ... 159

internal processor clock domain ... 172

Interrupt exception ... 325

interrupt mask, bit ... 218

Interrupt register ... 121

interrupt request, external ... 121

interrupts ... 121

hardware ... 121

nonmaskable ... 122

software ... 122

timer ... 122

invalid operation, FP ... 283

invalidate request, external ... 151

IP, (interrupt pending) bit ... 226, 262

ISA (Instruction Set Architecture)

MIPS I ... 18

Appendix D Index

366 User’s Manual U10278EJ4V0UM

MIPS II ... 18

MIPS III ... 18

MIPS IV ... 18, 277

issue, dynamic ... 339

issuing, an instruction ... 339

iterative execution units ... 344

ITLB (instruction TLB) ... 300

ITLBM, field ... 236

J

JTAG

boundary scan register ... 206

bypass register ... 205

Capture-DR state ... 206

instruction register ... 205

interface ... 203

instruction register ... 205

JTCK signal ... 204

JTDI signal ... 204

JTDO signal ... 204

JTMS signal ... 204

JTRST signal ... 204

Tap controller ... 204

test access port ... 204

Shift-DR state ... 205, 206

signals ... 59

Update-DR state ... 206

Update-IR state ... 205

JTCK, signal ... 59, 60, 204

JTDI, signal ... 59, 60, 204, 205

JTDO, signal ... 59, 204, 205

JTLB (joint TLB) ... 300

JTMS, signal ... 59, 60, 204

JTRST, signal ... 59, 60, 204

K

K0, field ... 230

Kernel mode ... 286

address mapping ... 292

ckseg0 space ... 296

ckseg1 space ... 296

ckseg3 space ... 296

cksseg space ... 296

kseg0 space ... 293

kseg1 space ... 293

kseg3 space ... 293

ksseg space ... 293

kuseg space ... 293

operations ... 292

xkphys space ... 294

xkseg space ... 296

xksseg space ... 294

xkuseg space ... 294

kseg0 space ... 293

Kseg0CA, mode bits ... 180

kseg1 space ... 293

kseg3 space ... 293

ksseg space ... 293

KSU, field ... 221, 223, 302

kuseg space ... 293

KX, bit ... 222, 286

L

latency ... 45

accessing secondary cache ... 47

definition of ... 338

external coherency request ... 162

FPU ... 274

least-recently used replacement algorithm (LRU) ... 25

list, free ... 340

LLAddr register ... 231

load operations, FPU registers ... 278

Load/Store Unit pipeline ... 22

loads

nonblocking ... 341

logic diagram, FPU ... 275

logical register

initialization (necessity for) ... 176

logical register, see also physical register ... 343

LRU (least-recently used) replacement algorithm ... 25

M

mapped, virtual address region ... 287

mapping table ... 343

Mask, field ... 216

master state ... 97

and flow control ... 109

matches, multiple, in TLB ... 300

MemEnd, mode bits ... 181

memory dependencies ... 32

memory ordering ... 33

memory protection ... 298

Appendix D Index

User’s Manual U10278EJ4V0UM 367

MIPS III ISA, disabled and enabled ... 214

MIPS IV, instruction set see also ISA ... 326

miscellaneous system signals ... 58

mispredicted branch ... 47

mode

addressing ... 287

addressing, encodings ... 287

Kernel mode ... 287

Supervisor mode ... 287

User mode ... 287

operating ... 286

mode bits ... 180

CohPrcReqTar ... 118, 165, 168, 180

CTM ... 182, 330, 331

DevNum ... 180

DSD ... 181

HSTL Mode ... 183

Kseg0CA ... 180

MemEnd ... 181

ODrainSys ... 182

PrcElmReq ... 139, 169, 180

PrcReqMax ... 109, 129, 131, 137, 141, 180

SCBlkSize ... 67, 77, 108, 181

SCClkDiv ... 78, 172, 176, 181

SCClkTap ... 173, 182

SCCorEn ... 181, 194, 196

SCSize ... 67, 77, 181

SysClkDiv ... 96, 172, 176, 181

MP, field ... 236

MTC0, instruction ... 86

multiple matches, in TLB ... 300

multiplier pipeline ... 22

multiply unit, FPU ... 274

multiprocessor system ... 51

arbitration ... 127

cluster bus ... 51

with external agent ... 51

multiprocessor system, using dedicated external agents ... 100

multiprocessor system, using the cluster bus ... 101

N

NACK completion response ... 146

NACK, signal ... 106

NMI see also nonmaskable interrupt ... 273

NMI, bit ... 223, 224

nonblocking cache ... 43

nonblocking, loads and stores ... 341

Nonmaskable Interrupt (NMI) exception ... 122, 302, 309

normal read, cache test mode ... 335

normal write, cache test mode ... 333

NT compatibility, LLAddr register ... 231

number, request ... 103

O

ODrainSys, mode bit ... 182

offset, in page address ... 298

operating mode

Kernel ... 286, 292

Supervisor ... 286, 290

User ... 286, 288

operations, FPU ... 275

ordering, memory ... 33

ordering, strong ... 33

out of program order, execution ... 338

outgoing buffer ... 105, 107, 108

outstanding requests ... 103

overflow (FP) ... 283

P

PAddr0, field ... 232

PAddr1, field ... 232

page

address ... 298

offset ... 298

size

code ... 298

defined ... 298

virtual ... 298

page table entry (PTE) array ... 215

PageMask register ... 216, 298, 299

parity protection ... 190

PClk, signal ... 78, 96, 335, 336

PE, bit ... 230

performance

branch prediction ... 47

cache ... 47

R10000 ... 44, 47

Performance Counter interrupt ... 218

Performance Counter register ... 238

permanent register ... 340

PFN

bits ... 214

Appendix D Index

368 User’s Manual U10278EJ4V0UM

fields, in EntryLo registers ... 214

phase-locked loop ... 174

physical memory addresses ... 298

physical page frame number ... 213

physical register, see also logical register ... 343

PIdx, primary cache index ... 84

pipeline ... 35

definition of ... 338

fetch ... 22, 35

floating-point ... 23

floating-point multiplier ... 22

integer ALU ... 22

latency ... 338

Load/Store Unit ... 22

out of order execution ... 338

repeat rate ... 338

sequence ... 338

stage (definition) ... 338

stage 1 ... 35, 36

stage 2 ... 35

stages 4-6 ... 36

stalls ... 31

PLL ... 174

PLLDis, signal ... 59, 60

PM, field ... 230

power interface signals, see also individual signals ... 54

power-on reset ... 175

sequence ... 176

PrcElmReq, mode bit ... 139, 169, 180

PrcReqMax, mode bits ... 109, 129, 131, 137, 141, 180

precise exceptions ... 33

prediction, branch ... 342

prediction, secondary cache, way ... 80

prefetch instruction ... 43

primary data cache, see also cache, primary data ... 25

primary instruction cache, see also cache, primary instruction ... 25

processor block read request protocol ... 129

processor block write request ... 110

protocol ... 133

processor coherency data response ... 110

protocol ... 155

processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ... 131

processor double/single/partial-word write request protocol ... 135

processor eliminate request protocol ... 139

processor request ... 96, 102

flow control protocol ... 141

protocol ... 128

processor response ... 96, 103

protocols ... 153

Processor Revision Identifier (PRId) register ... 229

processor upgrade request ... 147

protocol ... 137

program order ... 31

dynamic execution ... 31

instruction completion ... 339

instruction decoding ... 339

instruction execution ... 339

instruction fetching ... 339

instruction graduation ... 339

instruction issue ... 339

protection

ECC ... 190

memory ... 298

parity ... 190

SECDED ... 190

sparse encoding ... 190

protocol

arbitration, System interface ... 124

error handling ... 202

write back ... 61

write invalidate cache coherency ... 61

PTE (page table entry) ... 215

PTEBase, field ... 215, 233

Q

queue

address ... 22

instruction ... 35

integer ... 22

R

R, (region) field ... 219, 233

R, bit ... 232

R10000 processor

ANDES architecture ... 20

caches ... 20

execution pipelines ... 22

overview ... 20

pipeline stages ... 21

superscalar pipeline ... 21

R4000 superpipeline ... 19

Random entries ... 217

Appendix D Index

User’s Manual U10278EJ4V0UM 369

Random register ... 212

RE, (reverse endian) bit ... 221

read port, FPU ... 275

read sequences ... 85

16-word ... 88

32-word ... 88

4-word ... 86

8-word ... 87

tag ... 89

register

BadVAddr ... 215, 218, 233, 310

boundary scan, JTAG ... 206

bypass, JTAG ... 205

CacheErr ... 188, 189, 191, 192, 263

Cause ... 121, 122, 218, 226, 228

Compare ... 122, 218

Config ... 230

Context ... 215, 233

Count ... 122, 218

CP0 (description of) ... 209

dependency ... 32, 343

Diagnostic ... 235

ECC ... 86, 91, 262

EntryHi ... 219

EntryLo0 ... 213

EntryLo1 ... 213

EPC ... 228

Error Exception Program Counter (ErrorEPC) ... 273

Exception Program Counter (EPC) ... 228

file

FPU ... 275

ports ... 343

FrameMask ... 214, 234

Index ... 211

instruction, JTAG ... 205

LLAddr ... 231

logical, see also physical register ... 35, 343

PageMask ... 216, 298

Performance Counter ... 238

permanent ... 340

physical, see also logical register ... 35, 343

Processor Revision Identifier (PRId) ... 229

Random ... 212

renaming ... 32, 340

Status ... 188, 189

ERL bit ... 286

EXL bit ... 286

SX bit ... 296

TS bit ... 300

USL field ... 286

UX bit ... 296

TagHi ... 86, 91, 267

TagLo ... 86, 91, 267

temporary ... 340

unnamed ... 341

WatchHi ... 232

WatchLo ... 232

Wired ... 212, 217

write before reading (necessity for) ... 176

XContext ... 233

renaming, register ... 340

repeat rate ... 45

accessing secondary cache ... 47

definition of ... 338

FPU ... 274

replacement algorithm, cache ... 25

request cycle ... 96

request number ... 103

freeing with completion response ... 146

request, outstanding ... 103

Reserved Instruction exception ... 321

reset

cold ... 175, 178

power-on ... 175, 176

soft (warm) ... 175, 179

response bus signals ... 58

response cycle ... 96

revision number, R10000 processor ... 229

RM, field (FP) ... 284

RN, field (FP) ... 284

rounding modes, in FSR ... 284

RP, (reduced power) bit ... 221

RP, field (FP) ... 284

rules, arbitration for System interface ... 125

RZ, field (FP) ... 284

S

SB, (secondary cache block size) bit ... 230

SC(A,B)Addr, signals ... 55, 79, 80

SC(A,B)DWay, signals ... 55, 79, 87, 92

SC, bit ... 230

SCADCS, signal ... 55

SCADOE, signal ... 55

SCADWr, signal ... 55

SCBDCS, signal ... 55

Appendix D Index

370 User’s Manual U10278EJ4V0UM

SCBDOE, signal ... 55

SCBDWr, signal ... 55

SCBlkSize, mode bits ... 67, 77, 108, 181

SCClk frequency ... 134, 155

SCClk, signal ... 55, 78, 173

SCClkDiv, mode bits ... 78, 172, 176, 181

SCClkTap, mode bits ... 173, 182

SCCorEn, mode bits ... 181, 194, 196

SCData, signal ... 55

SCDataChk, bus ... 193, 196

SCDataChk, signal ... 55

scheduling, dynamic ... 339

SCSize, mode bits ... 67, 77, 181

SCTag, signals ... 56, 83

SCTagChk, bus ... 196

SCTagChk, signal ... 56

SCTagLSBAddr, signal ... 55, 80

SCTCS, signal ... 56

SCTOE, signal ... 56

SCTWay, signal ... 56, 80, 82, 87

SCTWr, signal ... 56

SECDED ... 190

secondary cache interface signals, see also individual signals ... 55

secondary cache, see also cache, secondary ... 67

SelDVCO, signal ... 59, 60

serial operations ... 41

serializing instruction ... 41

signals

power interface, see also individual signals ... 54

secondary cache interface, see also individual signals ... 55

System interface, see also individual signals ... 57

test interface, see also individual signals ... 59

size, page in memory ... 298

SK, bit ... 230

slave state ... 97

and flow control ... 109

soft (warm) reset ... 175, 179

Soft Reset

exception ... 307

Soft Reset exception ... 302

software interrupts ... 122

SP, bit ... 262

sparse encoding protection ... 190

special interrupt vector ... 306

speculative branching ... 342

speculative execution ... 32, 39, 342

square-root unit, FPU ... 274

SR, bit ... 224, 307, 309

SS, (secondary cache size) field ... 230

sseg space ... 291

SSRAM ... 76, 81

address signals ... 55

clock signals ... 55

data signals ... 55

tag signals ... 56

stage, definition of ... 338

stalls, improving performance ... 31

state

master ... 97

slave ... 97

state bus signals ... 58

Status register ... 188

in FPU, see also FSR ... 277

store operations, FPU registers ... 278

stores

and uncached buffer ... 72

nonblocking ... 341

strong ordering ... 33

example of ... 34

superpipeline, architecture ... 19

superpipeline, R4000 ... 19

superscalar

pipeline ... 19

processor

definition of ... 19, 338

superscalar processor ... 31

Supervisor mode ... 286

address mapping ... 290

csseg space ... 291

operations ... 290

sseg space ... 291

suseg space ... 290

xsseg space ... 291

xsuseg space ... 291

suseg space ... 290

switch, context ... 300

SX, bit ... 222, 286, 296

SYNC

instruction ... 73, 164

prevented from graduating ... 108

Appendix D Index

User’s Manual U10278EJ4V0UM 371

SysAD, bus signals ... 57, 111, 116, 118, 198, 199, 329, 331, 332,
333, 334, 335, 336

SysAD[20:16]

interrupt register ... 121

SysAD[39:0]

during address cycle ... 119

SysAD[56:40]

during address cycle ... 119

SysAD[57]

secondary cache block way indication ... 119

SysAD[59:58]

uncached attribute ... 118

SysAD[63:0]

address cycle encoding ... 118

data cycle encoding ... 120

SysAD[63:60]

address cycle ... 118

interrupt ... 121

SysADChk, bus ... 199

SysADChk, signal ... 58, 180

SysClk cycle ... 109, 143, 164

SysClk, signal ... 57, 96, 120, 122, 124, 125, 129, 137, 141, 170,
171, 335, 336

SysClkDiv, mode bits ... 172, 176, 181

SysClkRet, signal ... 57, 172, 174

SysCmd, bus ... 57, 111, 187, 198, 199

SysCmd[0] ... 106

ECC ... 116

processor data cycles ... 116

SysCmd[10:8] ... 111

data response ... 115

external intervention and invalidate requests ... 114

SysCmd[11] ... 111

map ... 117

protocol ... 123

SysCmd[2:0]

processor write requests ... 114

SysCmd[2:1]

block data response ... 116

processor requests ... 113

SysCmd[4:3]

data cycles ... 116

external special requests ... 115

processor read requests ... 112

processor upgrade requests ... 113

SysCmd[5], bit... 106

data cycles ... 115

SysCmd[7:5]

external requests ... 114

processor requests ... 112

SysCmdPar, signal ... 57, 198

SysCorErr, signal ... 58, 185, 194, 196, 199

SysCyc, signal ... 58, 170

SysGblPerf, signal ... 58, 73, 164

SysGnt, signal ... 57, 124, 125, 126, 128, 130, 132, 134, 136,
138, 140, 143, 148, 149, 150, 151, 152, 155, 164, 176,
178, 179, 306, 307, 330, 331

SysNMI, signal ... 58, 122, 309

SysRdRdy, signal ... 57, 125, 129, 131, 137, 141

and flow control ... 109

SysRel, signal ... 57, 124, 126, 128, 130, 132, 134, 136, 138, 140,
143, 148, 149, 150, 151, 152, 155, 164

SysReq, signal ... 57, 124, 125, 128, 130, 132, 134, 136, 138,
140, 155, 164, 178

SysReset, signal ... 58, 176, 178, 179, 204, 306, 307, 308, 330,
331

SysResp, bus ... 58, 111, 121, 201

SysResp[4:0]

external completion response ... 146

SysResp[4:2]

driving completion indication ... 121

SysRespPar, signal ... 58, 201

SysRespVal, signal ... 58, 146, 176, 178, 179, 201

SysState, bus ... 58, 111, 120, 187, 201

SysState[0]

processor coherency data response ... 162

SysState[2:0]

encoding ... 120

SysStatePar, signal ... 58, 201

SysStateVal, signal ... 58, 120

System Call exception ... 319

system configuration

multiprocessor ... 51

uniprocessor ... 50

System interface

arbitration

in a cluster bus system ... 98, 127

in a uniprocessor system ... 126

protocol ... 124

rules ... 125

block write request protocol ... 133

buffers ... 105

bus encoding

description of buses ... 111

Appendix D Index

372 User’s Manual U10278EJ4V0UM

SysAD ... 118

SysCmd ... 111

SysResp ... 121

SysState ... 120

cached request buffer ... 105

clock domain ... 172

cluster bus ... 98

cluster request buffer ... 105

coherency ... 157

coherency conflicts, action taken ... 159

connecting to an external agent ... 97

connections to various system configurations ... 99

directory-based coherency protocol ... 169

error handling

on buses ... 198

on SysAD bus ... 199

on SysCmd bus ... 198

on SysResp bus ... 201

on SysState bus ... 201

schemes ... 197

error protection

for buses ... 197

schemes ... 197

external agent ... 95

external allocate request number request protocol ... 150

external block data response protocol ... 143

external coherency requests, action taken ... 158

external completion response protocol ... 146

external data response flow control ... 109, 110

external double/single/partial-word data response protocol ...
145

external duplicate tags, support for ... 168

external interrupt request protocol ... 152

external intervention exclusive request ... 157

external intervention request protocol ... 149

external intervention shared request ... 157

external invalidate request ... 157

protocol ... 151

external request ... 96, 103

flow control ... 109

protocol ... 148

external response ... 96, 103

protocol ... 143

flow control ... 109

frequencies ... 96

grant parking ... 124

hardware emulation, support for ... 170

I/O ... 168

incoming buffer ... 106

internal coherency conflicts ... 159

interrupts ... 121

master state ... 97

multiprocessor connections

with cluster bus ... 101

with dedicated external agents ... 100

outgoing buffer ... 107

outstanding processor requests ... 103

outstanding requests on the System interface ... 103

port ... 20

processor block read request protocol ... 129

processor coherency data response protocol ... 155

processor coherency state response protocol ... 154

processor double/single/partial-word read request protocol ...
131

processor double/single/partial-word write request protocol ...
135

processor eliminate request protocol ... 139

processor request ... 96, 102

flow control protocol ... 141

protocol ... 128

processor response ... 96, 103

protocols ... 153

processor upgrade request protocol ... 137

register-to-register operation ... 96

request ... 102

cycle ... 96

number field ... 103

protocol ... 128

response ... 102

cycle ... 96

protocol ... 128

signals ... 57, 97

slave state ... 97

split transaction ... 103

support for I/O ... 168

uncached attribute ... 169

uncached buffer ... 108

uniprocessor connections ... 99

System interface ... 27, 95

SysUncErr, signal ... 58, 186, 187, 191, 192, 196

SysVal, signal ... 58, 129, 131, 133, 135, 137, 139, 143, 145,
149, 150, 151, 152, 155, 198, 329, 333, 334, 335, 336

SysWrRdy, signal ... 57, 134, 135, 139, 141, 155

and flow control ... 109

T

table

busy-bit ... 340

mapping ... 343

Appendix D Index

User’s Manual U10278EJ4V0UM 373

tag bus, secondary cache, SCTag ... 83

tag read sequence ... 89

tag write sequence ... 94

TagHi register ... 86, 91, 267

TagLo register ... 86, 91, 267

tags, external, duplicate ... 168

TAP controller ... 204, 205

TCA, signal ... 59, 60

TCB, signal ... 59, 60

temporary register ... 340

test access port (TAP) ... 204

test interface signals, see also individual signals ... 59

test mode, cache ... 330, 331

test signals, miscellaneous ... 59

Timer interrupt ... 122

disabling ... 218

TLB ... 299

32-bit-mode entry format ... 299

64-bit-mode entry format ... 299

address

translation, avoiding multiple matches ... 300

ASID field ... 300

avoiding conflict ... 300

Cache Algorithm fields ... 299

entry formats ... 299

exceptions ... 311

Global (G) bit ... 300

ITLB ... 300

misses ... 215

multiple matches, avoiding ... 300

number of entries ... 299

page size code ... 298

used with Context register ... 215

TLB (Translation Lookaside Buffer) ... 23

JTLB ... 300

TLB Invalid exception ... 311, 313

TLB Modified exception ... 311, 314

TLB Probe (TLBP) instruction ... 211, 219

TLB Read (TLBR) instruction ... 211

TLB Read Indexed (TLBR) instruction ... 219

TLB Refill ... 303

TLB Refill exception ... 311, 312

TLB Write Indexed (TLBWI) instruction ... 211, 219

TLB Write Random instruction ... 212, 219

Translation Look-Aside Buffer, see also TLB ... 299

translation, virtual address ... 298, 300

Trap exception ... 318

trap physical address, and Watch registers ... 232

TriState, signal ... 206

TS, (TLB shutdown) bit ... 223, 224

TS, bit, in Status register ... 300

two-level cache structure ... 61

U

UC, (uncached attribute) bit ... 213

uncached

accelerated

blocks, completely gathered ... 72

blocks, incompletely gathered ... 72

stores ... 72

attribute, support for ... 169

buffer ... 105, 108

cache algorithm ... 70, 71

uncached accelerated ... 214

uncached accelerated, cache algorithm ... 70, 72

uncached attribute ... 214

uncorrectable error ... 186

detection, suppressed ... 189

flag ... 106, 108

underflow (FP) ... 283

unimplemented operation (FP) ... 283

uniprocessor system ... 50, 99

arbitration rules ... 126

unnaming, register ... 341

useg space ... 288, 289

User mode ... 286

address mapping ... 288

operations ... 288

useg space ... 289

xuseg space ... 289

UX, bit ... 222, 286, 296

V

V, (valid) bit ... 213

Vcc, signal ... 54

VccPa, signal ... 54

VccPd, signal ... 54

VccQSC, signal ... 54

VccQSys, signal ... 54

vector locations, TLB refill ... 304

vector, special interrupt ... 306

Appendix D Index

374 User’s Manual U10278EJ4V0UM

virtual address

space ... 287

translation ... 298

virtual aliasing ... 84

Virtual Coherency exception ... 315

virtual memory addresses ... 298

VPN2, field ... 219

VrefByp, signal ... 54

VrefSC, signal ... 54

VrefSys, signal ... 54

Vss, signal ... 54

VssPa, signal ... 54

VssPd, signal ... 54

W

W, bit ... 232

Watch exception ... 324

WatchHi register ... 232

WatchLo register ... 232

way prediction table, secondary cache ... 81

Wired entries ... 217

Wired register ... 212, 217

write back protocol ... 61

primary data cache ... 64

write sequences ... 90

16-word ... 93

32-word ... 93

4-word ... 91

8-word ... 92

tag ... 94

X

XContext register ... 233

xkphys

decoding virtual address bits VA(61:59) ... 300

space ... 294

xkseg space ... 296

xksseg space ... 294

xkuseg space ... 294

xsseg space ... 291

xsuseg space ... 291

XTLB Refill ... 303

XTLB refill handler, used with XContext register ... 233

xuseg space ... 288, 289

XX, (MIPS IV User mode) bit ... 220, 222, 286, 326

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we’ve taken, you may
encounter problems in the documentation.
Please complete this form whenever
you’d like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: +886-2-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 01.2

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Main Revision in This Edition
	PREFACE
	1. Introduction to the R10000 Processor
	1.1 MIPS Instruction Set Architecture (ISA)
	1.2 What is a Superscalar Processor?
	Pipeline and Superpipeline Architecture
	Superscalar Architecture

	1.3 What is an R10000 Microprocessor?
	R10000 Superscalar Pipeline
	Instruction Queues
	Execution Pipelines
	Load/store dependency is speculatively ignored (R12000)
	64-bit Integer ALU Pipeline
	Load/Store Pipeline
	64-bit Floating-Point Pipeline

	Functional Units
	Increase in pre-decode buffering (R12000)

	Primary Instruction Cache (I-cache)
	Primary Data Cache (D-cache)
	Branch Target Address Cache (R12000)
	Instruction Decode And Rename Unit
	Branch Unit
	External Interfaces
	Additional cycles for System Interface transactions (R12000)

	1.4 Instruction Queues
	FP and Integer-Queue Issue Policy (R12000)
	Integer Queue
	Address calculation for load/store instructions uses integer queue (R12000)

	Floating-Point Queue
	Address Queue

	1.5 Program Order and Dependencies
	Instruction Dependencies
	Execution Order and Stalling
	Branch Prediction and Speculative Execution
	Resolving Operand Dependencies
	Resolving Exception Dependencies
	Strong Ordering
	An Example of Strong Ordering

	1.6 R10000 Pipelines
	Stage 1
	Stage 2
	Stage 3
	Stages 4-6
	Floating-Point Multiplier (3-stage Pipeline)
	Floating-Point Divide and Square-Root Units
	Floating-Point Adder (3-stage Pipeline)
	Integer ALU1 (1-stage Pipeline)
	Integer ALU2 (1-stage Pipeline)
	Address Calculation and Translation in the TLB

	1.7 Implications of R10000 Microarchitecture on Software
	Superscalar Instruction Issue
	Speculative Execution
	Side Effects of Speculative Execution

	Nonblocking Caches

	1.8 Performance
	User Instruction Latency and Repeat Rate
	Other Performance Issues
	Cache Performance

	2. System Configurations
	2.1 Uniprocessor Systems
	2.2 Multiprocessor Systems
	Multiprocessor Systems Using Dedicated External Agents
	Multiprocessor Systems Using a Cluster Bus

	3. Interface Signal Descriptions
	3.1 Power Interface Signals
	3.2 Secondary Cache Interface Signals
	3.3 System Interface Signals
	3.4 Test Interface Signals
	Unused Inputs

	4. Cache Organization and Coherency
	4.1 Primary Instruction Cache
	4.2 Primary Data Cache
	DCache set locking relaxed (R12000)

	4.3 Secondary Cache
	<R12000>

	4.4 Cache Algorithms
	Descriptions of the Cache Algorithms
	Uncached
	Cacheable Noncoherent
	Cacheable Coherent Exclusive
	Cacheable Coherent Exclusive on Write
	Uncached Accelerated

	4.5 Relationship Between Cached and Uncached Operations
	4.6 Cache Algorithms and Processor Requests
	4.7 Cache Block Ownership

	5. Secondary Cache Interface
	5.1 Tag and Data Arrays
	5.2 Secondary Cache Interface Frequencies
	5.3 Secondary Cache Indexing
	Indexing the Data Array
	Indexing the Tag Array

	5.4 Secondary Cache Way Prediction Table
	Increased the Way Prediction Table (MRU table) to 16K single-bit entries
	Direct Cache Test Mode

	5.5 Secondary Cache Tag
	SCTag(25:4), Physical Tag
	SCTag(3:2), PIdx
	SCTag(1:0), Cache Block State

	5.6 Read Sequences
	4-Word Read Sequence
	8-Word Read Sequence
	16 or 32-Word Read Sequence
	Tag Read Sequence

	5.7 Write Sequences
	4-Word Write Sequence
	8-Word Write Sequence
	16 or 32-Word Write Sequence
	Tag Write Sequence

	6. System Interface Operations
	6.1 Request and Response Cycles
	6.2 System Interface Frequencies
	6.3 Register-to-Register Operation
	6.4 System Interface Signals
	6.5 Master and Slave States
	6.6 Connecting to an External Agent
	6.7 Cluster Bus
	6.8 System Interface Connections
	Uniprocessor System
	Multiprocessor System Using Dedicated External Agents
	Multiprocessor System Using the Cluster Bus

	6.9 System Interface Requests and Responses
	Processor Requests
	External Responses
	External Requests
	Processor Responses
	Outstanding Requests and Request Numbers
	Request and Response Relationship

	6.10 System Interface Buffers
	Cluster Request Buffer
	Cached Request Buffer
	Incoming Buffer
	Outgoing Buffer
	Uncached Buffer

	6.11 System Interface Flow Control
	Processor Write and Eliminate Request Flow Control
	Processor Read and Upgrade Request Flow Control
	Processor Coherency Data Response Flow Control
	External Request Flow Control
	External Data Response Flow Control

	6.12 System Interface Block Data Ordering
	External Block Data Responses
	Processor Coherency Data Responses
	Processor Block Write Requests

	6.13 System Interface Bus Encoding
	SysCmd[11:0] Encoding
	SysCmd[11] Encoding
	SysCmd[10:0] Address Cycle Encoding
	SysCmd[10:0] Data Cycle Encoding
	SysCmd[11:0] Map

	SysAD[63:0] Encoding
	SysAD[63:0] Address Cycle Encoding
	SysAD[63:0] Data Cycle Encoding

	SysState[2:0] Encoding
	SysResp[4:0] Encoding

	6.14 Interrupts
	Hardware Interrupts
	Software Interrupts
	Timer Interrupt
	Nonmaskable Interrupt

	6.15 Protocol Abbreviations
	6.16 System Interface Arbitration
	System Interface Arbitration Rules
	Uniprocessor System
	Multiprocessor System Using Cluster Bus

	6.17 System Interface Request and Response Protocol
	Processor Request Protocol
	Processor Block Read Request Protocol
	Processor Double/Single/Partial-Word Read Request Protocol
	Processor Block Write Request Protocol
	Processor Double/Single/Partial-Word Write Request Protocol
	Processor Upgrade Request Protocol
	Processor Eliminate Request Protocol
	Processor Request Flow Control Protocol

	External Response Protocol
	External Block Data Response Protocol
	External Double/Single/Partial-Word Data Response Protocol
	External Completion Response Protocol

	External Request Protocol
	External Intervention Request Protocol
	External Allocate Request Number Request Protocol
	External Invalidate Request Protocol
	External Interrupt Request Protocol

	Processor Response Protocol
	Processor Coherency State Response Protocol
	Processor Coherency Data Response Protocol

	6.18 System Interface Coherency
	External Intervention Shared Request
	External Intervention Exclusive Request
	External Invalidate Request
	External Coherency Request Action
	Coherency Conflicts
	Internal Coherency Conflicts
	External Coherency Conflicts
	External Coherency Request Latency

	SysGblPerf* Signal

	6.19 Cluster Bus Operation
	6.20 Support for I/O
	6.21 Support for External Duplicate Tags
	6.22 Support for a Directory-Based Coherency Protocol
	6.23 Support for Uncached Attribute
	6.24 Support for Hardware Emulation

	7. Clock Signals
	7.1 System Interface Clock and Internal Processor Clock Domains
	7.2 Secondary Cache Clock
	7.3 Phase-Locked-Loop

	8. Initialization
	8.1 Initialization of Logical Registers
	8.2 Power-On Reset Sequence
	8.3 Cold Reset Sequence
	8.4 Soft Reset Sequence
	8.5 Mode Bits

	9. Error Protection and Handling
	9.1 Correctable Errors
	9.2 Uncorrectable Errors
	9.3 Propagation of Uncorrectable Errors
	9.4 Cache Error Exception
	9.5 CP0 CacheErr Register EW Bit
	9.6 CP0 Status Register DE Bit
	9.7 CACHE Instruction
	9.8 Error Protection Schemes Used by R10000
	Parity
	Sparse Encoding
	ECC

	9.9 Primary Instruction Cache Error Protection and Handling
	Error Protection
	Error Handling

	9.10 Primary Data Cache Error Protection and Handling
	Error Protection
	Error Handling

	9.11 Secondary Cache Error Protection and Handling
	Error Protection
	Error Handling
	Data Array
	Tag Array

	9.12 System Interface Error Protection and Handling
	Error Protection
	Error Handling
	SysCmd(11:0) Bus
	SysAD(63:0) Bus
	SysState(2:0) Bus
	SysResp(4:0) Bus

	Protocol Observation

	10. JTAG Interface Operation
	10.1 Test Access Port (TAP)
	TAP Controller (Input)

	10.2 Instruction Register
	10.3 Bypass Register
	10.4 Boundary Scan Register

	11. Coprocessor 0
	11.1 Index Register (0)
	11.2 Random Register (1)
	11.3 EntryLo0 (2) and EntryLo1 (3) Registers
	11.4 Context Register (4)
	11.5 PageMask Register (5)
	11.6 Wired Register (6)
	11.7 BadVAddr Register (8)
	11.8 Count and Compare Registers (9 and 11)
	11.9 EntryHi Register (10)
	11.10 Status Register (12)
	Status Register Fields
	Diagnostic Status Field
	Coprocessor Accessibility

	11.11 Cause Register (13)
	11.12 Exception Program Counter (14)
	11.13 Processor Revision Identifier (PRId) Register (15)
	11.14 Config Register (16)
	11.15 Load Linked Address (LLAddr) Register (17)
	11.16 WatchLo (18) and WatchHi (19) Registers
	11.17 XContext Register (20)
	11.18 FrameMask Register (21)
	11.19 Diagnostic Register (22)
	11.20 Performance Counter Registers (25)
	R10000 Implementation
	Details of Counting Events

	R12000 Implementation
	Details of Counting Events

	11.21 ECC Register (26)
	11.22 CacheErr Register (27)
	CacheErr Register Format for Primary Instruction Cache Errors
	CacheErr Register Format for Primary Data Cache Errors
	CacheErr Register Format for Secondary Cache Errors
	CacheErr Register Format for System Interface Errors

	11.23 TagLo (28) and TagHi (29) Registers
	CacheOp is Index Load/Store Tag
	Primary Instruction Cache Operation
	Primary Data Cache Operation
	Secondary Cache

	CacheOp is Index Load/Store Data
	Primary Instruction Cache Operation
	Primary Data Cache Operation
	Secondary Cache Operation

	11.24 ErrorEPC Register (30)

	12. Floating-Point Unit
	12.1 Floating-Point Unit Operations
	12.2 Floating-Point Unit Control
	Eliminate traps for Denorm/NaN FP inputs (R12000)

	12.3 Floating-Point General Registers (FGRs)
	32- and 64-Bit Operations
	Load and Store Operations

	12.4 Floating-Point Control Registers
	Floating-Point Implementation and Revision Register
	Floating-Point Status Register (FSR)
	Bit Descriptions of the FSR
	Loading the FSR

	13. Memory Management
	13.1 Processor Modes
	Processor Operating Modes
	Addressing Modes

	13.2 Virtual Address Space
	User Mode Operations
	32-bit User Mode (useg)
	64-bit User Mode (xuseg)

	Supervisor Mode Operations
	32-bit Supervisor Mode, User Space (suseg)
	32-bit Supervisor Mode, Supervisor Space (sseg)
	64-bit Supervisor Mode, User Space (xsuseg)
	64-bit Supervisor Mode, Current Supervisor Space (xsseg)
	64-bit Supervisor Mode, Separate Supervisor Space (csseg)

	Kernel Mode Operations
	32-bit Kernel Mode, User Space (kuseg)
	32-bit Kernel Mode, Kernel Space 0 (kseg0)
	32-bit Kernel Mode, Kernel Space 1 (kseg1)
	32-bit Kernel Mode, Supervisor Space (ksseg)
	32-bit Kernel Mode, Kernel Space 3 (kseg3)
	64-bit Kernel Mode, User Space (xkuseg)
	64-bit Kernel Mode, Current Supervisor Space (xksseg)
	64-bit Kernel Mode, Physical Spaces (xkphys)
	64-bit Kernel Mode, Kernel Space (xkseg)
	64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

	Address Space Access Privilege Differences Between the R4400 and R10000

	13.3 Virtual Address Translation
	Virtual Pages
	Virtual Page Size Encodings
	Using the TLB
	Cache Algorithm Field
	Format of a TLB Entry
	Address Translation
	Address Space Identification (ASID)
	Global Processes (G)
	Avoiding TLB Conflict

	14. CPU Exceptions
	14.1 Causing and Returning from an Exception
	14.2 Exception Vector Locations
	14.3 TLB Refill Vector Selection
	Priority of Exceptions
	Cold Reset Exception
	Soft Reset Exception
	NMI Exception
	Address Error Exception
	TLB Exceptions
	TLB Refill Exception
	TLB Invalid Exception
	TLB Modified Exception

	Cache Error Exception
	Virtual Coherency Exception
	Bus Error Exception
	Integer Overflow Exception
	Trap Exception
	System Call Exception
	Breakpoint Exception
	Reserved Instruction Exception
	Coprocessor Unusable Exception
	Floating-Point Exception
	Watch Exception
	Interrupt Exception

	14.4 MIPSIV Instructions
	14.5 COP0 Instructions
	14.6 COP1 Instructions
	14.7 COP2 Instructions

	15. Cache Test Mode
	15.1 Interface Signals
	15.2 System Interface Clock Divisor
	15.3 Entering Cache Test Mode
	15.4 Exit Sequence
	15.5 SysAD(63:0) Encoding
	15.6 Cache Test Mode Protocol
	Normal Write Protocol
	Auto-Increment Write Protocol
	Normal Read Protocol
	Auto-Increment Read Protocol

	Appendix A Glossary
	A.1 Superscalar Processor
	A.2 Pipeline
	A.3 Pipeline Latency
	A.4 Pipeline Repeat Rate
	A.5 Out-of-Order Execution
	A.6 Dynamic Scheduling
	A.7 Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation
	A.8 Active List
	A.9 Free List and Busy Registers
	A.10 Register Renaming
	A.11 Nonblocking Loads and Stores
	A.12 Speculative Branching
	A.13 Logical and Physical Registers
	A.14 Register Files
	A.15 ANDES Architecture

	Appendix B Differences between R10000 and R12000
	B.1 Mode bits changed in R12000
	B.2 DSD (Delay Speculative Dirty)
	B.3 Changes in the Branch Diag Register
	B.4 Eliminate traps for Denorm/NaN FP inputs
	B.5 Increase in pre-decode buffering
	B.6 Increased penalty for indirect branches
	B.7 Addition of a Branch Target Address Cache
	B.8 Use of global history in branch-prediction
	B.9 Increase in branch prediction table size
	B.10 Address calculation for load/store instructions uses integer queue
	B.11 Load/store dependency is speculatively ignored
	B.12 DCache set locking relaxed
	B.13 SC refill blocking reduced
	B.14 Increased the Way Prediction Table (MRU table) to 16K single-bit entries
	B.15 Additional cycles for System Interface transactions
	B.16 FP and Integer-Queue Issue Policy
	B.17 Active List entries are increased to 48
	B.18 Cache Error inhibits graduation
	B.19 Changed Spare(1, 3) pins to NC (No Connection)
	B.20 CacheOp Index Write Back Invalidate(D) also clears Primary Tag
	B.21 Summary of the differences

	Appendix C Differences between R12000 and R12000A
	C.1 Mode bits changed in R12000A
	C.2 Changes in the Performance Counter Registers
	C.3 Summary of the differences

	Appendix D Index

