
USER’S MANUAL

VR4100TM

64-BIT MICROPROCESSOR

(PRELIMINARY)

µµPD30100

Document No. U10050EJ3V0UM00 (3rd edition)
C NEC Corporation 1995 Date Published January 1996 P
C MIPS Technologies Inc. 1993 Printed in Japan

VR4000, VR4000PC, VR4100, VR4200, VR4400, and VR-Series are trademarks of NEC Corporation.
R3000, R4000, and R6000 are trademarks of MIPS Computer Systems, Inc.
MIPS is a trademark of MIPS Technologies, Inc.
MC68000 is a trademark of Motorola Inc.
IBM370 is a trademark of IBM Corp.
iAPX is a trademark of Intel Corp.
VAX is a trademark of Digital Equipment Corp.
UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

Exporting this product or equipment that includes this product may require a governmental license from
the U.S.A. for some countries because this product utilizes technologies limited by the export control
regulations of the U.S.A.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment,
 audio and visual equipment, home electronic appliances, machine tools, personal electronic
 equipment and industrial robots
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
 systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
 for life support)
 Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
 support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96. 5

NOTES FOR CMOS DEVICES

�� PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must
be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators
that easily build static electricity. Semiconductor devices must be stored and transported in an anti-
static container, static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with semiconductor devices on it.

�� HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to
the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.

�� STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does
not define the initial operation status of the device. Immediately after the power source is turned
ON, the devices with reset function have not yet been initialized. Hence, power-on does not
guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset
signal is received. Reset operation must be executed immediately after power-on for devices having
reset function.

PREFACE

Readers This manual targets users who intends to understand the functions of the VR4100

and to design application systems using this microprocessor.

Purpose This manual introduces the architecture and hardware functions of the VR4100 to

users, following the organization described below.

Organization This manual consists of the following contents:

� Introduction

� Pipeline operation

� Memory management system

� Exception processing

� Hardware

� Instruction set details

It is assumed that the reader of this manual has general knowledge in the fields of

electric engineering, logic circuits, and microcomputers.

The R4000TM in this manual represents the VR4000TM and the VR4400TM except for

Appendix B Difference between V R4100 and Other V R-Series Processors.

To learn about detailed function of a specific instruction,

-> Refer to Chapter 2 CPU Instruction Set Summary and Chapter 14 CPU

Instruction Set Details .

To learn about the overall functions of the VR4100,

-> Read this manual in sequential order.

To learn about electrical specifications,

-> Refer to Chapter 13 Electrical Characteristics .

Legend Data significance : Higher on left and lower on right

Active low :

xxx (bar over pin and signal names)

Numeric representation : binary ... xxxx or xxxx2

: decimal ... xxxx

: hexadecimal ... 0xxxxx

Revised point : star on the margin

How to read
this manual

[MEMO]

Chapter 1 Introduction

1

Introduction

1

The VR4100 microprocessor is a low-cost, low-power microprocessor that is

compatible with the MIPSTM I, MIPS II, and MIPS III Instruction Set Architecture

(ISA), except for the Floating-point operating instructions, LL/LLD instruction and

SC/SCD instruction.

The chip does not provide on-chip support for a secondary cache or

multiprocessing, and Floating-Point operation.

Chapter 1 Introduction

2

1.1 VR4100 Processor Characteristics
The VR4100 processor has the following characteristics:

ï 64-bit processing

ï 33-MHz internal clock, derived from an external 8.25-MHz clock

ïOptimized 5-stage pipeline, 2 Kbyte I-cache and 1 Kbyte D-cache size, and 32-double-entry TLB

size

ï 40-bit virtual address space, 32-bit physical address space

ï Low-voltage operation (3.3 volt)

ï Fully static circuit

ïWrite-back cache

ï Fast Multiply-and-Accumulate unit

ï Power management features, which include the following four operating modes

- Fully Speed mode

- Standby mode

- Suspend mode

- Hibernate mode

ï 100-pin thin plastic quad flat pack (TQFP)

ïNo Floating Point Unit

ïNo Secondary cache or multiprocessing

★

Chapter 1 Introduction

3

1.2 VR4100 Processor Implementation
This section describes the following:

ï the 64-bit architecture of the VR4100 processor

ï the CPU instruction pipeline (described in detail in Chapter 3)

ï an overview of the System interface (described in detail in Chapter 11)

ï an overview of the CPU registers (detailed in Chapters 4 and 5) and CPU instruction set (detailed in

Chapter 2 and Chapter 14)

ï data formats and byte ordering

ï the System Control Coprocessor, CP0

ï caches and memory, including a description of instruction and data caches, the memory

management unit (MMU), and the translation lookaside buffer (TLB).

Chapter 1 Introduction

4

64-bit Architecture

The natural mode of operation for the VR4100 processor is as a 64-bit microprocessor; however, 32-bit

applications may be run when the processor operates as a 64-bit processor.

Figure 1-1 is an internal block diagram of the VR4100 processor.

CPU

CP0
Instruction

Cache

Data

Cache
Bus I/F

Data/Address

Control

ID-bus

VA-bus

Master Clock

Clock
Generator

TLB

Figure 1-1 V R4100 Processor Internal Block Diagram

Chapter 1 Introduction

5

CPU has the hardware resources to execute integer and instructions. It has a 64-bit register file, 64-bit

integer datapath, and Multiply-and-Accumulator.

Coprocessor 0 (CP0) has the memory management unit (MMU) and handles exception processing.

The MMU handles address translation and checks memory accesses that occur between different

memory segments (user, supervisor, or kernel). The translation lookaside buffer (TLB) is used to

translate virtual to physical addresses.

Instruction Cache is direct-mapped, virtually-indexed, and physically-tagged.

Data Cache is a direct-mapped, virtually-indexed and physically-tagged write-back cache.

Bus Interface allows the processor to access external resources. It contains a 32-bit multiplexed

address/data bus, with per-byte parity, clock signals, interrupts, and various control signals.

Clock Generator quadruples the input clock (labeled MasterClock) frequency to produce the pipeline

clock. This clock is then divided to produce the System interface clock, according to

Div2 pin. The

processor uses a phase-locked loop (PLL) to generate the pipeline clock, that operates at quadruple

the frequency of the MasterClock .

VR4100 Instruction Pipeline

The VR4100 processor has a 5-stage instruction pipeline. Under normal circumstances, one instruction

is issued each cycle.

The instruction pipeline of the VR4100 processor operates at quadruple the frequency of the

MasterClock . The processor achieves high throughput by shortening register access times and

implementing virtually-indexed caches.

Processor Register Overview

The processor provides the following registers:

ï 32 64-bit general purpose registers, GPRs

In addition, the processor provides the following special registers:

ï 64-bit Program Counter, the PC register

ï 64-bit HI register, containing the integer multiply, divide and multiply-and-add upper doubleword

result

ï 64-bit LO register, containing the integer multiply, divide and multiply-and-add lower doubleword

result

★

Chapter 1 Introduction

6

Two of the CPU general purpose registers have assigned functions:

ï r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose

result is to be discarded. r0 can also be used as a source when a zero value is needed.

ï r31 is the link register used by Jump and Link instructions. It can be used by other instructions,

with caution.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the VR4100 processor

mode of operation.

Figure 1-2 shows the VR4100 processor registers.

• E
• E
• E
• E

r2

r1

General Purpose Registers

r0 = 0

031 Multiply and Divide Registers3263

r31 = Link address

r30

r29

HI

0313263

LO

Program Counter

0

PC

31

0

32

31

63

3263

Figure 1-2 V R4100 Processor Registers

The VR4100 processor has no Program Status Word (PSW) register as such; this is covered by the

Status and Cause registers incorporated within the System Control Coprocessor (CP0). CP0 registers

are described later in this chapter.

Chapter 1 Introduction

7

CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are three instruction formats:

ï immediate (I-type)

ï jump (J-type)

ï register (R-type)

I-Type (Immediate) rtrsop immediate

015162021252631

J-Type (Jump) op target

0252631

R-Type (Register) rtrs functop

015162021252631

sard

561011

Figure 1-3 CPU Instruction Formats

Each format contains a number of different instructions, which are described further in this chapter.

Fields of the instruction formats are described in Chapter 2.

Instruction decoding is greatly simplified by limiting the number of formats to these three. This limitation

means that the more complicated (and less frequently used) operations and addressing modes can be

synthesized by the compiler, using sequences of these same simple instructions.

Chapter 1 Introduction

8

The instruction set can be further divided into the following groupings:

ï Load and Store instructions move data between memory and general registers. They are all

immediate (I-type) instructions, since the only addressing mode supported is base register plus 16-

bit, signed immediate offset.

ïComputational instructions perform arithmetic, logical, shift, multiply, and divide operations on

values in registers. They include register (R-type, in which both the operands and the result are

stored in registers) and immediate (I-type, in which one operand is a 16-bit immediate value)

formats.

ï Jump and Branch instructions change the control flow of a program. Jumps are always made to a

paged, absolute address formed by combining a 26-bit target address with the high-order bits of the

Program Counter (J-type format) or register address (R-type format). Branches have 16-bit offsets

relative to the program counter (I-type). Jump And Link instructions save their return address in

register 31.

ïCoprocessor 0 (system coprocessor, CP0) instructions perform operations on CP0 registers to

control the memory-management and exception-handling facilities of the processor.

ï Special instructions perform system calls and breakpoint operations, or cause a branch to the

general exception-handling vector based upon the result of a comparison. These instructions occur

in both R-type (both the operands and the result are registers) and I-type (one operand is a 16-bit

immediate value) formats.

Chapter 2 provides a more detailed summary and Chapter 14 gives a complete description of each

instruction.

Chapter 1 Introduction

9

Data Formats and Addressing

The VR4100 processor uses four data formats: a 64-bit doubleword, a 32-bit word, a 16-bit halfword,

and an 8-bit byte. Byte ordering within all of the larger data formats -- halfword, word, doubleword --

can be configured in either big-endian or little-endian order through a dedicated pin, BigEndian .

Endianness refers to the location of byte 0 within the multi-byte data structure. Figures Figure 1-4 and

Figure 1-5 show the ordering of bytes within words and the ordering of words within multiple-word

structures for the big-endian and little-endian conventions.

When the VR4100 processor is configured as a big-endian system, byte 0 is the most-significant

(leftmost) byte, thereby providing compatibility with MC68000TM and IBM 370TM conventions. Figure 1-4

shows this configuration.

Lower
Address

Higher
Address

Word
Address

Bit #

12 15141312

01516 82324 731

8 111098

4 7654

0 3210

Figure 1-4 Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which

is compatible with iAPXTM x86 and DEC VAXTM conventions. Figure 1-5 shows this configuration.

Lower
Address

Higher
Address

Word
Address

Bit #

12 12131415

01516 82324 731

8 891011

4 4567

0 0123

Figure 1-5 Little-Endian Byte Ordering

Chapter 1 Introduction

10

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit designations are always little-

endian (although no instructions explicitly designate bit positions within words).

Figures Figure 1-6 and Figure 1-7 show little-endian and big-endian byte ordering in doublewords.

Least-significant byteMost-significant byte

Bit #

Bit #

Halfword Byte

Word

Byte # 01234567

03132 164748 1563

7 6 5 4 3 2 1 0

Bits in a Byte

56 55 40 39 24 23 8 7

Figure 1-6 Little-Endian Data in a Doubleword

Least-significant byteMost-significant byte

Bit #

Bit #

Halfword Byte

Word

Byte # 76543210

03132 164748 1563

7 6 5 4 3 2 1 0

Bits in a Byte

56 55 40 39 24 23 8 7

Figure 1-7 Big-Endian Data in a Doubleword

Chapter 1 Introduction

11

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following

alignment constraints:

ïHalfword accesses must be aligned on an even byte boundary (0, 2, 4...).

ïWord accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

ïDoubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).

The following special instructions load and store words that are not aligned on 4-byte (word) or 8-word

(doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned words. Addressing misaligned

data incurs one additional instruction cycle over that required for addressing aligned data.

Figures Figure 1-8 and Figure 1-9 show the access of a misaligned word that has byte address 3

Lower
Address

Higher
Address Bit #

654

01516 82324 731

3

Figure 1-8 Big-Endian Misaligned Word Addressing

Lower
Address

Higher
Address Bit #

56 4

01516 82324 731

3

Figure 1-9 Little-Endian Misaligned Word Addressing

Chapter 1 Introduction

12

Coprocessors (CP0-CP3)

The MIPS ISA defines four coprocessors (designated CP0 through CP3):

ïCoprocessor 0 (CP0) is incorporated on the CPU chip and supports the Figure 1-9 virtual memory

system and exception handling. CP0 is also referred to as the System Control Coprocessor.

ïCoprocessor 1 (CP1) is reserved for floating-point coprocessor operations.

ïCoprocessor 2 (CP2) is reserved for future definition by MIPS.

ïCoprocessor 3 (CP3) is no longer defined. CP3 opcodes are reserved for future extensions.

CP0 is described in the sections that follow.

System Control Coprocessor, CP0

CP0 translates virtual addresses into physical addresses and manages exceptions and transitions

between kernel, supervisor, and user states. CP0 also controls the cache subsystem, as well as

providing diagnostic control and error recovery facilities.

The CP0 registers shown in Figure 1-10 and described in Table 1-1 manipulate the memory-

management and exception-handling capabilities of the CPU.

Chapter 1 Introduction

13

0

Exception
Processing

Reg. #Register Name

Index

1Random

2EntryLo0

3EntryLo1

4Context

5PageMask

6Wired

7

8BadVAddr

9Count

10EntryHi

11Compare

12SR

13Cause

14EPC

15PRId

16

Reg. #Register Name

Config

17LLAddr

18WatchLo

19WatchHi

20Xcontext

21

22

23

24

25

26PErr

27CacheErr

28TagLo

29TagHi

30ErrorEPC

31

Memory
Management

Reserved

Figure 1-10 CP0 Registers

Chapter 1 Introduction

14

Number Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB aray (read only)

2 EntryLo0 Load half of TLB entry for even virtual address (VPN)

3 EntryLo1 Load half of TLB entry for odd virtual address (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit addressing mode

5 PageMask TLB Page Mask

6 Wired Number of wired TLB entries

7 - Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 EntryHi High half of TLB entry

11 Compare Timer Compare

12 SR Status Register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 LLAddr Reserved

18 WatchLo Memory reference trap address low bits

19 WatchHi Memory reference trap address high bits

20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode

21-25 - Reserved

26 PErr Cache parity bits

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 TagHi Cache Tag register

30 ErrorEPC Error Exception Program Counter

31 - Reserved

Table 1-1 System Control Coprocessor (CP0) Register Definitions

★★

Chapter 1 Introduction

15

Floating-Point Operation

The VR4100 inimplementes the Floating-point Unit (FPU) instruction set. Coprocessor unusable

exception will occur whenever any FPU instructions are excecuted. If needs, Floating-point instructions

should be emulated by software in exception handler.

Memory Management System (MMU)

The VR4100 processor has a 32-bit physical addressing range of 4 Gbytes. However, since it is rare for

systems to implement a physical memory space this large, the CPU provides a logical expansion of

memory space by translating addresses composed in the large virtual address space into available

physical memory addresses. The VR4100 processor supports the following two addressing modes:

ï 32-bit mode, in which the virtual address space is divided into 2 Gbytes per user process and 2

Gbytes for the kernel.

ï 64-bit mode, in which the virtual address is expanded to 1 Tbyte (240 bytes) of user virtual address

space.

A detailed description of these address spaces is given in Chapter 4.

Joint TLB

For fast virtual-to-physical address decoding, the VR4100 uses a large, fully associative TLB which 64

Virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of even-odd

entries, and maps a virtual address and address space identifier into the 4-GB physical address space.

The page size can be configured, on a per-entry basis, to map a page size of 1KB to 256KB (in

multiples of 4). A CP0 register is loaded with the page size of a mapping, and that size is entered into

the TLB when a new entry is written. Thus, operating systems can provide special purpose maps; for

example, a typical frame buffer can be memory mapped using only one TLB entry.

Converting a virtual address to a physical address begins by comparing the virtual address from the

processor with the virtual addresses in the TLB; there is a match when the virtual page number (VPN)

of the address is the same as the VPN field of the entry, and either the Global (G) bit of the TLB entry is

set, or the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the

processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in

memory.

Chapter 1 Introduction

16

Operating Modes

The VR4100 processor has three operating modes:

ïUser mode

ï Supervisor mode

ï Kernel mode

The manner in which memory addresses are translated or mapped depends on the operating mode of

the CPU; this is described in Chapter 4.

Instruction Cache

The VR4100 incorporates a direct-mapped on-chip instruction cache. This virtually indexed, physically

tagged cache is 2KB in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with

the cache access, thus further simultaneously. The tag holds a 22-bit physical address and valid bit,

and is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in a single processor cycle.

Instruction fetches require only 32 bits per cycle, for a peak instruction bandwidth of 132MB/sec. The

line size is four instructions (16 bytes).

Data Cache

For fast, single cycle data access, the VR4100 includes a 1KB on-chip data cache that is direct-mapped

with a fixed 16-byte (four words) line size.

The data cache is protected with byte parity and its tag is protected with a single parity bit. It is virtually

indexed and physically tagged to allow simultaneous address translation and data cache access.

The write policy is writeback, which means that a store to a cache line does not immediately cause

memory to be updated. This increases system performance by reducing bus traffic and eliminating the

bottleneck of waiting for each store operation to finish before issuing a subsequent memory operation.

Associated with the Data Cache is the store buffer. When the VR4100 executes a Store instruction, this

single-entry buffer gets written with the store data while the tag comparison is performed. If the tag

matches, then the data is written into the Data Cache in the next cycle that the Data Caches not

accessed (the next non-load cycle). The store buffer allows the VR4100 to execute a store ever

processor cycle and to perform back-to-back stores without penalty.

Chapter 1 Introduction

17

Bus Interface

Bus Interface allows the processor access to external resources required to satisfy internal

requirements. It contains a 32-bit wide, multiplexed address and data bus, clock signals, interrupts,

and a number of control signals.

Clock Generator

The VR4100 has 5 clocks that the user must be aware of. First, there is the pipeline clock, PClock.

This clock is used for the pipeline and pipeline related functions internal to the VR4100. It is four times

the MasterClock frequency. The next clock is MasterOut. This clock output is aligned with

MasterClock. And the next clock is the system interface clock, SClock. This is also an internal clock

and is used to sample data at the system interface and to clock data into the processor system

interface output registers. The SClock is a divided version of the PClock. The divisor is selected by

Div2 pin.

There is the TClock, Transmit clock. The TClock is used to clock the output registers (signals

transmitted to the VR4100) of the external agent and is at the same frequency as SClock.

★

Chapter 1 Introduction

18

[MEMO]

Chapter 2 CPU Instruction Set Summary

19

’‚l‚r

CPU Instruction Set Summary

2

This chapter is an overview of the central processing unit (CPU) instruction set; refer

to Chapter 14 for detailed descriptions of individual CPU instructions.

Chapter 2 CPU Instruction Set Summary

20

2.1 CPU Instruction Formats
Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three

instruction formats -- immediate (I-type), jump (J-type), and register (R-type) -- as shown in Figure 2-1.

The use of a small number of instruction formats simplifies instruction decoding, allowing the compiler

to synthesize more complicated (and less frequently used) operations and addressing modes from

these three formats as needed.

6-bit operation codeop

I-Type (Immediate)

rtrsop immediate

015162021252631

J-Type (Jump)

op target

0252631

R-Type (Register)

rtrs funct

6-bit function field

5-bit shift amount

5-bit destination register specifier

26-bit jump target address

16-bit immediate value, branch displacement or
address displacement

immediate

funct

sa

rd

target

5-bit target (source/destination) register or branch
condition

5-bit source register specifier

rt

rs

op

015162021252631

sard

561011

Figure 2-1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-dependent; see Chapter 14 for

details of individual Coprocessor 0 instructions.

Chapter 2 CPU Instruction Set Summary

21

Support of the MIPS ISA

The VR4100 processor does not support a multiprocessor operating environment, and the

synchronization support instructions defined in the MIPS II and MIPS III ISA -- the Load Linked and

Store Conditional instructions -- cause reserved instruction exception. The load link bit (LLbit) is

eliminated.

Note that the SYNC instruction is handled as a NOP since all load/store instructions in this processor

are executed in program order.

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general

registers. The only addressing mode that load and store instructions directly support is base register

plus 16-bit signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is

called a delayed load instruction. The instruction slot immediately following this delayed load instruction

is referred to as the load delay slot.

In the VR4100 processor, the instruction immediately following a load instruction can use the contents

of the loaded register, however in such cases hardware interlocks insert additional real cycles.

Consequently, scheduling load delay slots can be desirable, both for performance and VR-SeriesTM

processor compatibility. However, the scheduling of load delay slots is not absolutely required in the

VR4100.

Instruction PCycles Required

Load 1

Table 2-1 Load and Store Instruction Cycle Timing

Chapter 2 CPU Instruction Set Summary

22

Defining Access Types

Access type indicates the size of an VR4100 processor data item to be loaded or stored, set by the load

or store instruction opcode. Access types are defined in Chapter 14.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order

byte in the addressed field.

ï For a big-endian configuration, the low-order byte is the most-significant byte.

ï For a little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within

the addressed doubleword (shown in Table 2-2). Only the combinations shown in Table 2-2 are

permissible; other combinations cause address error exceptions.

See Chapter 14 for individual descriptions of CPU load and store instructions.

Chapter 2 CPU Instruction Set Summary

23

Access Type Low Bytes Accessed

Mnemonic Address Big endian Little endian

(Value) Bits (63.....31.....0)
Byte

(63.....31.....0)
Byte

Double word (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6) 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5) 0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4) 0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3) 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

TripleByte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

Table 2-2 Byte Access within a Doubleword

Chapter 2 CPU Instruction Set Summary

24

Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are

registers, or in immediate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

ï arithmetic

ï logical

ï shift

ïmultiply

ï divide

These operations fit in the following four categories of computational instructions:

ï ALU Immediate instructions

ï three-operand Register-Type instructions

ï shift instructions

ïmultiply and divide instructions

64-bit Operations

When operating in 64-bit mode, 32-bit operands must be sign extended. The result of operations that

use incorrectly-sign-extended 32-bit values is unpredictable.

Chapter 2 CPU Instruction Set Summary

25

Cycle Timing for Multiply and Divide Instructions

MFHI and MFLO Instructions(described in Chapter 14) are interlocked so that any attempt to read them

before prior instructions complete delays the execution of these instructions until the prior instructions

finish.

Table 2-3 gives the number of processor cycles(PCycles) required to resolve the interlock or stall

between various multiply or divide instructions and a subsequent MFHI or MFLO instruction.

Instruction PCycles Required

MULT 1

MULTU 1

DIV 35

DIVU 35

DMULT 4

DMULTU 4

DDIV 67

DDIVU 67

MADD16 1

DMADD16 1

Table 2-3 Multiply/Divide Instruction Cycle Timing

For more information about computational instructions, refer to the individual instruction as described in

Chapter 14.

Chapter 2 CPU Instruction Set Summary

26

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch� instructions

occur with a delay of one instruction: that is, the instruction immediately following the jump or branch

(this is known as the instruction in the branch delay slot) always executes while the target instruction is

being fetched from storage.

Instruction PCycles Required

Branch 1

Jump 1

Table 2-4 Jump and Branch Instruction Cycle Timing

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link

instructions, both of which are J-type instructions. In J-type format, the 26-bit target address shifts left 2

bits and combines with the high-order 4 bits of the current program counter to form an absolute

address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or

Jump and Link Register instructions. Both are R-type instructions that take the 32-bit or 64-bit byte

address contained in one of the general purpose registers.

For more information about jump instructions, refer to the individual instruction as described in Chapter

14.

� The target instruction of a taken Branch is fetched in the EX stage of the Branch instruction. Branch
comparison and target address calculation are done in phase 2 of RF of the Branch instruction. The
architecturally-defined branch delay slot of one cycle is still required. A Jump instruction also requires one
delay slot. Branch likely instructions which are not taken kill the delay slot instruction.

Chapter 2 CPU Instruction Set Summary

27

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the

delay slot to the 16-bit offset (shifted left 2 bits and sign-extended to 64 bits). All branches occur with a

delay of one instruction.

If a branch likely instruction is not taken, the instruction in its delay slot is nullified. For all other branch

instructions, the instruction in its delay slot is unconditionally executed.

For more information about branch instructions, refer to the individual instruction as described in

Chapter 14.

Special Instructions

Special instructions allow the software to initiate traps; they are always R-type. For more information

about special instructions, refer to the individual instruction as described in Chapter 14.

Coprocessor 0 (CP0) Instructions

CP0 instructions perform operations specifically on the System Control Coprocessor registers to

manipulate the memory management and exception handling facilities of the processor. Chapter 14

details CP0 instructions.

List of CPU Instructions

Tables 2-5 through 2-19 list CPU instructions common to MIPS R-Series processors, along with those

instructions that are extensions to the instruction set architecture. The extensions result in code space

reductions, multiprocessor support, and improved performance in operating system kernel code

sequences -- for instance, in situations where run-time bounds-checking is frequently performed. Table

2-18 lists CP0 instructions.

Chapter 2 CPU Instruction Set Summary

28

OpCode Description

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

Table 2-5 CPU Instruction Set: Load and Store Instructions

OpCode Description

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

ANDI AND Immediate

ORI OR immediate

XORI Exclusive OR Immediate

LUI Load Upper Immediate

Table 2-6 CPU Instruction Set: Computational (ALU Immediate) Instructions

Chapter 2 CPU Instruction Set Summary

29

OpCoce Description

ADD Add

ADDU Add Unsigned

SUB Subtract

SUBU Subtract Unsigned

SLT Set on Less Than

SLTU Set on Less Than Unsigned

AND AND

OR OR

XOR Exclusive OR

NOR NOR

Table 2-7 CPU Instruction Set: Computational (3-Operand, R-Type) and phase and

 phase 1 of EX 1 of EX

OpCode Description

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MTHI Move To HI

MFLO Move From LO

MTLO Move To LO

Table 2-8 CPU Instruction Set: Computational (Multiply and Divide)

Chapter 2 CPU Instruction Set Summary

30

OpCode Description

J Jump

JAL Jump And Link

JR Jump Register

JALR Jump And Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less Than or Equal to Zero

BGTZ Branch on Greater Than Zero

BLTZ Branch on Less Than Zero

BGEZ Branch on Greater Than or Equal to Zero

BLTZAL Branch on Less Than Zero And Link

BGEZAL Branch on Greater Than or Equal to Zero And Link

BC0T Branch on Coprocessor 0 True

BC0F Branch on Coprocessor 0 False

Table 2-9 CPU Instruction Set: Jump and Branch Instructions

OpCode Description

BEQL Branch on Equal Likely

BNEL Branch on Not Equal Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLTZL Branch on Less Than Zero Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero And Link Likely

BGEZALL Branch on Greater Than or Equal to Zero And Link
Likely

BC0TL Branch on Coprocessor 0 True Likely

BC0FL Branch on Coprocessor 0 False Likely

Table 2-10 CPU Instruction Set: Branch Likely Instructions

Chapter 2 CPU Instruction Set Summary

31

OpCode Description

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable

SRLV Shift Right Logical Variable

SRAV Shift Right Arithmetic Variable

Table 2-11 CPU Instruction Set: Shift Instructions Move To HI

OpCode Description

SYNC Synchronize memory references

SYSCALL System Call

BREAK Break

TGE Trap if Greater Than or Equal

TGEU Trap if Greater Than or Equal Unsigned

TLT Trap if Less Than

TLTU Trap if Less Than Unsigned

TEQ Trap if Equal

TNE Trap if Not Equal

TGEI Trap if Greater Than or Equal Immediate

TGEIU Trap if Greater Than or Equal Immediate Unsigned

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TEI Trap if Equal Immediate

TNEI Trap if Not Equal Immediate

Table 2-12 CPU Instruction Set: Special Instructions

Chapter 2 CPU Instruction Set Summary

32

OpCode Description

LD Load Doubleword

LDL Load Doubleword Left

LDR Load Doubleword Right

LWU Load Word Unsigned

SD Store Doubleword

SDL Store Doubleword Left

SDR Store Doubleword Right

Table 2-13 MIPS III Extensions: Load and Store Instructions

OpCode Description

DADDI Doubleword Add Immediate

DADDIU Doubleword Add Immediate Unsigned

Table 2-14 MIPS III Extensions: Computational (ALU Immediate)

OpCode Description

DADD Doubleword Add

DADDU Doubleword Add Unsigned

DSUB Doubleword Subtract

DSUBU Doubleword Subtract Unsigned

Table 2-15 MIPS III Extensions: Computational (3-operand, R-type)

Chapter 2 CPU Instruction Set Summary

33

OpCode Description

DMULT Doubleword Multiply

DMULTU Doubleword Multiply Unsigned

DDIV Doubleword Divide

DDIVU Doubleword Divide Unsigned

Table 2-16 MIPS III Extensions: Computational (Multiply and Divide)

OpCode Description

DSLL Doubleword Shift Left Logical

DSRL Doubleword Shift Right Logical

DSRA Doubleword Shift Right Arithmetic

DSLLV Doubleword Shift Left Logical Variable

DSRLV Doubleword Shift Right Logical Variable

DSRAV Doubleword Shift Right Arithmetic Variable

DSLL32 Doubleword Shift Left Logical + 32

DSRL32 Doubleword Shift Right Logical + 32

DSRA32 Doubleword Shift Right Arithmetic + 32

Table 2-17 MIPS III Extensions: Shift Instructions

Chapter 2 CPU Instruction Set Summary

34

OpCode Description

DMFC0 Doubleword Move From CP0

DMTC0 Doubleword Move To CP0

MTC0 Move to CP0

MFC0 Move from CP0

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

TLBP Probe TLB for Matching Entry

ERET Exception Return

CACHE Cache Operation

HIBERNATE Hibernate

SUSPEND Suspend

STANDBY Standby

Table 2-18 CP0 Instructions

OpCode Description

MADD16 Multiply and Add 16 bits

DMADD16 Doubleword Multiply and Add 16 bits

Table 2-19 VR4100 Extension Instructions

Chapter 3 The V R4100 Processor Pipeline

35

V‚l‚r

The VR4100 Processor Pipeline

3

This chapter describes the basic operation of the VR4100 processor pipeline, which

includes descriptions of the delay slots (instructions that follow a branch or load

instruction in the pipeline), interruptions to the pipeline flow caused by interlocks and

exceptions, CP0 hazards, and VR4100 implementation of a write buffer.

Chapter 3 The V R4100 Processor Pipeline

36

3.1 Pipeline Stages
The CPU has a five-stage instruction pipeline; each stage takes one PCycle (one cycle of PClock,

which runs at four times the frequency of MasterClock), and each PCycle has two phases: Φ1 and Φ2,

as shown in Figure 3-1. Thus, the execution of each instruction takes at least 5 PCycles. An

instruction can take longer -- for example, if the required data is not in the cache, the data must be

retrieved from main memory.

Cycle

Phase

PCycle

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

Figure 3-1 Pipeline Stages

The five pipeline stages are:

ï IF - Instruction Cache Fetch

ïRF - Register Fetch

ï EX - Execution

ïDC - Data Cache Fetch

ïWB - Write Back

Chapter 3 The V R4100 Processor Pipeline

37

Once the pipeline has been filled, five instructions are executed simultaneously. Figure 3-2 shows the

five stages of the instruction pipeline; the next section describes the pipeline stages.

Current
CPU Cycle

(5-Deep)PCycle

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

Figure 3-2 Instruction Execution in the Pipeline

Chapter 3 The V R4100 Processor Pipeline

38

Pipeline Activities

Figure 3-3 shows the activities that can occur during each pipeline stage; Table 3-1 describes these

pipeline activities.

Branch

Load/Store

ALU

I Fetch
and

Decode

Cycle

Phase

PCycle

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

ITLB

ICD

ITC

ICA

IDEC

WB

WB

DCWDTDSA

DVA

EX

BAC

RF

DCA DLA

DTLB DTC

IF1 IF2 RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

Figure 3-3 Pipeline Activities

Chapter 3 The V R4100 Processor Pipeline

39

Cycle Begins During this Phase Mnemonic Description

IF Φ1 ICD Instruction Cache Address Decode

ITLB Instruction Address Translation Match/Read

Φ2 ICA Instruction Cache array Access

ITC Instruction Tag Check

RF Φ1 IDEC Instruction Decode

Φ2 RF Register operand Fetch

BAC Branch Address Calculation

EX Φ1 EX Operation Stage

DVA Data Virtual Address calculation

SA Store Align

Φ2 DCA Data Cache Address Decode/array access

DTLB Data address Translation Match/Read

DC Φ1 DLA Data cache Load Align

DTC Data Tag Check

DTD Data Transmit to Data cache

WB Φ1 DCW Data Cache Write

WB Write Back to register file

Table 3-1 Description of Pipeline Showing Stage in Which Activities Commence

Chapter 3 The V R4100 Processor Pipeline

40

3.2 Branch Delay
The CPU pipeline has a branch delay of one cycle, as a result of the branch comparison logic operating

during the RF pipeline stage of the branch, producing an instruction address that is available in the IF

stage, two instructions later.

Figure 3-4 illustrates the branch delay and the location of the branch delay slot.

Branch Delay

(Branch Delay Slot)

Target

Branch IF RF EX DC W B

IF RF EX DC W B

IF RF EX DC W B Single branch
delay
instruction

Figure 3-4 CPU Pipeline Branch Delay

Chapter 3 The V R4100 Processor Pipeline

41

3.3 Load Delay
A load instruction that does not allow its result to be used by the instruction immediately following is

called a delayed load instruction. The instruction slot immediately following this delayed load instruction

is referred to as the load delay slot.

In the VR4100 processor, the instruction immediately following a load instruction can use the contents

of the loaded register, however in such cases hardware interlocks insert additional real cycles.

Consequently, scheduling load delay slots can be desirable, both for performance and VR-Series

processor compatibility. However, the scheduling of load delay slots is not absolutely required in the

VR4100.

3.4 Pipeline Operation
The operation of the pipeline is illustrated by the following examples that describe how typical

instructions are executed. The instructions described are: ADD, JALR, BEQ, TLT, LW, and SW. Each

instruction is taken through the pipeline and the operations that occur in each relevant stage are

described.

Chapter 3 The V R4100 Processor Pipeline

42

Add Instruction

ADD rd,rs,rt

IF stage In phase 1 of the IF stage, the eleven least-significant bits of the virtual address are used to

address the instruction cache. In phase 2 of the IF stage, the cache index is compared

with the page frame number and the cache data is read out. The virtual PC is incremented

by 4 so that the next instruction can be fetched.

RF stage During phase 2, the 2-port register file is addressed with the rs and rt fields and the register

data is valid at the register file output. At the same time, bypass multiplexers select inputs

from either the EX- or DC-stage output in addition to the register file output, depending on

the need for an operand bypass.

EX stage The ALU controls are set to do an A+B operation. The operands flow into the ALU inputs,

and the ALU operation is started. The result of the ALU operation is latched into the ALU

output latch during phase 1.

DC stage This stage is a NOP for this instruction. The data from the output of the EX stage (the

ALU) is moved into the output latch of the DC.

WB stage During phase 1, the WB latch feeds the data to the inputs of the register file, which is

addressed by the rd field. The file write strobe is enabled. By the end of phase 1, the data

is written into the file.

Chapter 3 The V R4100 Processor Pipeline

43

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC WBEXRF

Figure 3-5 Add Instruction Pipeline Activities

Chapter 3 The V R4100 Processor Pipeline

44

Jump and Link Register

JALR rd,rs

IF stage Same as the IF stage for the ADD instruction.

RF stage During phase 2 of the RF stage, the register addressed by the rs field is read out of the file.

The value of register rs is clocked into the virtual PC latch. This value is used in phase 1 to

fetch the next instruction.

The value of the virtual PC incremented during the IF stage is incremented again to

produce the link address PC+8 where PC is the address of the JALR instruction. The

resulting value is the PC to which the program will eventually return. This value is placed in

the Link output latch of the Instruction Address unit.

EX stage The PC+8 value is moved from the Link output latch to the output latch of the EX pipeline

stage.

DC stage The PC+8 value is moved from the output latch of the EX pipeline stage to the output latch

of the DC pipeline stage.

WB stage Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register

31 is used as the default. If rd is explicitly specified, it cannot be the same register

addressed by rs; if it is, the result of executing such an instruction is undefined.

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC WBEXRF

BAC

Figure 3-6 Jump and Link Register Instruction Pipeline Activities

★

Chapter 3 The V R4100 Processor Pipeline

45

Branch on Equal

BEQ rs,rt,offset

IF stage Same as the IF stage for the ADD instruction.

RF stage During phase 2, the register file is addressed with the rs and rt fields. During phase 2, a

check is performed to determine if each corresponding bit position of these two operands

has equal values. If they are equal, the PC is set to PC+target, where target is the sign-

extended offset field. If they are not equal, the PC is set to PC+4.

EX stage The next PC resulting from the branch comparison is valid at the beginning of phase 2 for

instruction fetch.

DC stage This stage is a NOP for this instruction.

WB stage This stage is a NOP for this instruction.

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC RF

BAC

Figure 3-7 Branch on Equal Instruction Pipeline Activities

★

Chapter 3 The V R4100 Processor Pipeline

46

Trap if Less Than

TLT rs,rt

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction.

EX stage ALU controls are set to do an A - B operation. The operands flow into the ALU inputs, and

the ALU operation is started. The result of the ALU operation is latched into the ALU

output latch during phase 1.

The sign bits of operands and of the ALU output latch are checked to determine if a less

than condition is true. If this condition is true, a Trap Exception occurs. The PC register is

loaded with the value of the exception vector and instructions following in previous pipeline

stages are killed.

DC stage No operation

WB stage The EPC register is loaded with the value of the PC if the less than condition was met in

the EX stage. The Cause register ExcCode field and BD bit are updated appropriately, as

is the EXL bit of the Status register. If the less than condition was not met in the DC stage,

no activity occurs in the WB stage.

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC RF EX

Figure 3-8 Trap if Less Than Instruction Pipeline Activities

★

Chapter 3 The V R4100 Processor Pipeline

47

Load Word

LW rt,offset(base)

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction. Note that the base field is in the same

position as the rs field.

EX stage Refer to the EX stage for the ADD instruction. For LW, the inputs to the ALU come from

GPR [base] through the bypass multiplexer and from the sign-extended offset field. The

result of the ALU operation that is latched into the ALU output latch in phase 1 represents

the effective virtual address of the operand (DVA).

DC stage The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry.

After passing through the load aligner, aligned data is placed in the DC output latch during

phase 2.

WB stage During phase 1, the cache read data is written into the file addressed by the rt field.

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC RF EX

DVA DCA DLA

DTLB DTC WB

Figure 3-9 Load Word Instruction Pipeline Activities

★

Chapter 3 The V R4100 Processor Pipeline

48

Store Word

SW rt,offset (base)

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the LW instruction.

EX stage Refer to the LW instruction for a calculation of the effective address. From the RF output

latch the GPR [rt] is sent through the bypass multiplexer and into the main shifter, where

the shifter performs the byte-alignment operation for the operand. The results of the ALU

are latched in the output latches during phase 1. The shift operations are latched in the

output latches during phase 2.

DC stage Refer to the LW instruction for a description of the cache access. Additionally, the merged

data from the load aligner is moved into the store data output latch during phase 1.

WB stage If there was a cache hit, the content of the store data output latch is written into the data

cache at the appropriate word location.

Note that all store instructions use the data cache for two consecutive PCycles. If the

following instruction requires use of the data cache, the pipeline is stalled for one PCycle to

complete the writing of an aligned store data.

IF1 IF2Cycle

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

RF1 RF2 EX1 EX2 DC1 DC2 WB1 WB2

ITLB

ICD

ITC

ICA

IDEC RF EX

DVA DTLB DTC

DCWSA DTD

Figure 3-10 Store Word Instruction Pipeline Activities

Chapter 3 The V R4100 Processor Pipeline

49

3.5 Interlock and Exception Handling
Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data

dependencies are detected. Interruptions handled using hardware, such as cache misses, are referred

to as interlocks, while those that are handled using software are called exceptions.

As shown in Figure 3-11, all interlock and exception conditions are collectively referred to as faults.

SlipStallsAbort

Exceptions Interlocks

Software Hardware

Faults

Figure 3-11 Interlocks, Exceptions, and Faults

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition

can be traced back to the particular instruction in the exception/interlock stage, as shown in Figure 3-

12. For instance, an LDI Interlock is raised in the RF stage.

Tables 3-2 through 3-4 describe the pipeline interlocks and exceptions listed in Figure 3-12.

Chapter 3 The V R4100 Processor Pipeline

50

Stall

Phase

PClock

Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1Φ2Φ1

WBDCEXRFIF

DTMITM

DCMICM

DCB

Slip WBDCEXRFIF

LDI

MDI

SLI

CP0

Exception WBDCEXRFIF

ResetTrapNMIIAErr

DTLBOVFITLB

TModDAErrIPErr

DPErrINTr

WATIBE

DBESYSC

BP

CUn

RSVD

Figure 3-12 Correspondence of Pipeline Stage to Interlock and Exception Condition

Chapter 3 The V R4100 Processor Pipeline

51

Stall Description

ITM Instruction TBL Miss

ICM Instruction Cache Miss

DTM Data TLB Miss

DCM Data Cache Miss

DCB Data Cache Busy

Table 3-2 Description of Pipeline Stall

Slip Description

LDI Load Data Interlock

MDI MD busy Interlock

SLI Store-Load Interlock

CP0 Coprocessor 0 Interlock

Table 3-3 Description of Pipeline Slip

Chapter 3 The V R4100 Processor Pipeline

52

Exception Description

IAErr Instruction Address Error

NMI Non-maskable Interrupt

ITLB Instruction Translation exception

IPErr Instruction Parity Error

INTr External Interrupt

IBE Instruction Bus Error

SYSC System Call

BP Breakpoint

CUn Coprocessor Unusable

RSVD Reserved Instruction

Trap Trap

OVF Integer Overflow

DAErr Data Address Error

Reset Reset

DTLB Data Translation exception

DTMod Data TLB Modified

DPErr Data Parity Error

WAT Watch exception

DBE Data Bus Error

Table 3-4 Description of Pipeline Exception

Chapter 3 The V R4100 Processor Pipeline

53

Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline

are cancelled. Accordingly, any stall conditions and any later exception conditions that may have

referenced this instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional conditions is detected for an instruction, the VR4100 will kill it and all following

instructions. When this instruction reaches the WB stage, the exception flag causes it to write various

CP0 registers with the exception state, change the current PC to the appropriate exception vector

address and clear the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all

subsequent instructions from completing. Thus the value in the EPC is sufficient to restart execution. It

also ensures that exceptions are taken in the order of execution; an instruction taking an exception may

itself be killed by an instruction further down the pipeline that takes an exception in a later cycle.

Figure 3-13 shows the exception detection procedure (e.g., a reserved instruction exception).

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

Exception Vector

Kill
I2

Exc

I1

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

1I 2I 1R 2R 1E 2E 1D 2D 1W 2W

Figure 3-13 Exception Detection

Chapter 3 The V R4100 Processor Pipeline

54

Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the RF pipe-stage. When a stall

occurs, the processor will resolve the condition and then the pipeline will continue. Figure 3-14 shows a

data cache miss stall, and Figure 3-15 shows a CACHE operation stall.

1

Detect Data Cache Miss

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

2 4

1

Start moving dirty cache line data to write buffer2

Get first doubleword into cache3

Load remainder of cache line into cache and restart pipeline4

3

Figure 3-14 Data Cache Miss Stall

If the cache line to be replaced is dirty -- the W bit is set -- the data is moved to the internal write buffer

in the next cycle. Then the write back data is written back to memory. The last word of data is returned

to the cache in 3 and the pipeline will then restart.

★

★

Chapter 3 The V R4100 Processor Pipeline

55

1

CACHE operation start

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

2

1

CACHE operation complete2

Figure 3-15 CACHE Operation Stall

When the CACHE operation enters the DC pipe-stage, the pipeline stalls while the CACHE operation is

serviced. The pipeline begins running again when the CACHE operation is complete, allowing the

instruction fetch to proceed.

Chapter 3 The V R4100 Processor Pipeline

56

Slip Conditions

During phase 2 of the RF and phase 1 of EX pipe-stages, internal logic will determine whether it is

possible to start the current instruction in this cycle. If all of the source operands are available (either

from the register file or via the internal bypass logic) and all the hardware resources necessary to

complete the instruction will be available at the necessary times(s), then the instruction “run”; otherwise,

the instruction will “slip”. Slipped instructions are retired on subsequent cycles until they issue. The

backend of the pipeline (stages DC and WB) will advance normally during slips in an attempt to resolve

the conflict. “NOPS” will be inserted into the bubble in the pipeline. Instructions killed by branch likely

instructions, ERET or exceptions will not cause slips.

1

add A B

Load B

Load A

Bypass

Detect Load Interlock

IF RF EX DC WB

IF RF EX DC WB

IF RF RF EX DC WB

IF RF EX DC WB

1

Get the target data2

2

Figure 3-16 Load Data Interlock

Load Data Interlock is detected in RF shown in as Figure 3-16 and the pipeline slips in its RF stage.

Load Data Interlock occurs when data fetched by a load instruction and data moved from HI, LO or CP0

register is required by the next immediate instruction. The pipeline begins running again when the

clock after the target of the load is read from the data cache, HI, LO and CP0 register. The data

returned at the end of the DC stage is input into the end of the RF stage, using the bypass multiplexers.

★

Chapter 3 The V R4100 Processor Pipeline

57

1

Bypass

MFHI/LO

Detect MD busy interlock

IF RF EX DC WB

IF RF RF EX DC WB

IF RF EX DC WB

1

Get the target data2

2

Figure 3-17 MD busy Interlock

MD Busy Interlock is detected in RF as shown in Figure 3-17 and the pipeline slips in its RF stage. MD

Busy Interlock occurs when Hi/Lo register is required by MFHi/Lo operation before finishing Mult/Div

execution. The pipeline begins running again the clock after finishing Mult/Div execution. The data

returned from the HI/LO register at the end of the DC stage is input into the end of the RF stage, using

the bypass multiplexers.

Store-Load Interlock is detected in EX stage and the pipeline slips in RF stage. Store-Load Interlock

occurs when Store operation followed by Load operation is detected. The pipeline begins running again

one clock after.

Coprocessor0 Interlock is detected in EX stage and the pipeline slips in RF stage. Coprocessor

Interlock occurs when MTC0 config/status operation is detected. The pipeline begins running again

one clock later.

★

Chapter 3 The V R4100 Processor Pipeline

58

Bypassing

In some cases, data and conditions produced in the EX and DC stages of the pipeline are made

available to the RF stage (only) through the bypass datapath.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or

conditions to be written to the register file at the WB stage. Instead, the Bypass Control Unit is

responsible for ensuring data and conditions from later pipeline stages are available at the appropriate

time for instructions earlier in the pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register

addresses supplied to the register file.

3.6 Code Compatibility
The VR4100 has been designed with consideration to program compatibility with other VR-Series

processors. However, its architecture differs in several points with that of other processors, so that

programs that can be executed on other processors may not run on the VR4100. Similarly, programs

that can be executed on the VR4100 cannot necessarily be run on other processors. Cautions that

should be noted when porting programs between the VR4100 and other processors are listed below.

� The VR4100 does not have a floating-point unit (FPU) and thus does not support FPU instructions.

� Product-sum instructions (DMADD16, MADD16) have been added to the VR4100.

� Power mode instructions (HIBERNATE, STANDBY, SUSPEND) have been added to the VR4100

because it supports Power mode.

� The VR4100 does not have the LL bit used for synchronization in a multiprocessor operating

environment. Therefore, the VR4100 does not support instructions which manipulate the LL bit (LL,

LLD, SC, SCD).

For more information on instructions, refer to Chapter 14 and the VR4000, VR4400, and VR4200TM

User's Manuals.

Chapter 4 Memory Management

59

’‚l‚r

Memory Management

4

The VR4100 processor provides a full-featured memory management unit (MMU)

which uses an on-chip translation lookaside buffer (TLB) to translate virtual

addresses into physical addresses.

This chapter describes the processor virtual and physical address spaces, the

virtual-to-physical address translation, the operation of the TLB in making these

translations, and those System Control Coprocessor (CP0) registers that provide the

software interface to the TLB.

Chapter 4 Memory Management

60

4.1 Translation Lookaside Buffer (TLB)
Mapped virtual addresses are translated into physical addresses using an on-chip TLB.� The TLB is a

fully-associative memory that holds 32 entries, which provide mapping to 32 odd/even page pairs (64

pages). When address mapping is indicated, each TLB entry is checked simultaneously for a match

with the virtual address that is extended with an ASID stored in the EntryHi register.

The address is mapped to a page ranges in size from 1 Kbytes to 256 Kbytes, in multiples of 4 -- that is

1K, 4K, 16K, 64K, 256K.

Hits and Misses

If there is a virtual address match, or “hit,” in the TLB, the physical page number is extracted from the

TLB and concatenated with the offset to form the physical address (see Figure 4-1).

If no match occurs (TLB “miss”), an exception is taken and software refills the TLB from the page table

resident in memory. Software can write over a selected TLB entry or use a hardware mechanism to

write into a random entry.

Multiple Matches

If more than one entry in the TLB matches the virtual address being translated, the operation is

undefined and the TLB may be disabled. The TLB-Shutdown (TS) bit in the Status register is set to 1 if

the TLB is disabled.

� There are virtual-to-physical address translations that occur outside of the TLB. For example, addresses in
the kseg0 and kseg1 spaces are unmapped translations. In these spaces the physical address is derived by
subtracting the base address of the space from the virtual address.

Chapter 4 Memory Management

61

4.2 Address Spaces
This section describes the virtual and physical address spaces and the manner in which virtual

addresses are converted or “translated” into physical addresses in the TLB.

Virtual Address Space

The processor virtual address can be either 32 or 64 bits wide✝, depending on whether the processor is

operating in 32-bit or 64-bit mode.

ï In 32-bit mode, addresses are 32 bits wide. The maximum user process size is 2 gigabytes (231).

ï In 64-bit mode, addresses are 64 bits wide. The maximum user process size is 1 terabyte (240).

Figure 4-1 shows the translation of a virtual address into a physical address.

Virtual address

The Offset, which does not pass
through the TLB, is then
concatenated to the PFN.

If there is a match, the page frame

number (PFN) representing the

upper bits of the physical address

(PA) is output from the TLB.

Physical address

TLB
Entry

3

2

TLB

1 G ASID OffsetVPN

OffsetPFN

G ASID VPN

PFN

Virtual address (VA) represented by

the virtual page number (VPN) is

compared with tag in TLB.

Figure 4-1 Overview of a Virtual-to-Physical Address Translation

✝ Figure 4-8 shows the 32-bit and 64-bit versions of the processor TLB entry.

Chapter 4 Memory Management

62

As shown in Figure 4-2 and Figure 4-3, the virtual address is extended with an 8-bit address space

identifier (ASID), which reduces the frequency of TLB flushing when switching contexts. This 8-bit

ASID is in the CP0 EntryHi register, described later in this chapter. The Global bit (G) is in the

EntryLo0 and EntryLo1 registers, described later in this chapter.

Physical Address Space

Using a 32-bit address, the processor physical address space encompasses 4 gigabytes. The section

following describes the translation of a virtual address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the

processor with the virtual addresses in the TLB; there is a match when the virtual page number (VPN)

of the address is the same as the VPN field of the entry, and either:

ï the Global (G) bit of the TLB entry is set, or

ï the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is taken by the

processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in

memory.

If there is a virtual address match in the TLB, the physical address is output from the TLB and

concatenated with the Offset, which represents an address within the page frame space. The Offset

does not pass through the TLB.

Virtual-to-physical translation is described in greater detail throughout the remainder of this chapter;

Figure 4-19 is a flow diagram of the process shown at the end of this chapter.

The next two sections describe the 32-bit and 64-bit address translations.

Chapter 4 Memory Management

63

32-bit Mode Address Translation

Figure 4-2 shows the virtual-to-physical-address translation of a 32-bit mode address. This figure

illustrates the two possible page sizes: a 1-Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

ï The top portion of Figure 4-2 shows a virtual address with a 10-bit, or 1-Kbyte, page size, labelled

Offset. The remaining 22 bits of the address represent the VPN, and index the 4M-entry page

table.

ï The bottom portion of Figure 4-2 shows a virtual address with a 18-bit, or 256-Kbyte, page size,

labelled Offset. The remaining 14 bits of the address represent the VPN, and index the 16K-entry

page table.

910

Bits 31, 30, and 29 of the
virtual address select user,
supervisor, or kernel
address spaces.

31

PFN

Virtual Address with 16K (214) 256-Kbyte pages

Virtual Address with 4M (222) 1-Kbyte pages

22 bits = 4M pages

Offset passed
unchanged to
physical memory

Virtual-to-physical
translation in TLB

Virtual-to-physical
translation in TLB

10228

0

02829313239

ASID

Offset

VPN Offset

TLB

14 bits = 16K pages

18148

017182829313239

ASID VPN Offset

TLB

32-bit Physical Address

Offset passed
unchanged to
physical memory

Figure 4-2 32-bit Mode Virtual Address Translation

Chapter 4 Memory Management

64

64-bit Mode Address Translation

Figure 4-3 shows the virtual-to-physical-address translation of a 64-bit mode address. This figure

illustrates the two possible page sizes: a 1-Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

ï The top portion of Figure 4-3 shows a virtual address with a 10-bit, or 1-Kbyte, page size, labelled

Offset. The remaining 30 bits of the address represent the VPN, and index the 1G-entry page

table.

ï The bottom portion of Figure 4-3 shows a virtual address with a 18-bit, or 256-Kbyte, page size,

labelled Offset. The remaining 22 bits of the address represent the VPN, and index the 4M-entry

page table.

91030 bits = 1G pages

Bits 62 and 63 of the
virtual address select
user, supervisor, or
kernel address spaces.

31

PFN

Virtual Address with 4M (222) 256-Kbyte pages

32-bit Physical Address

Offset passed
unchanged to
physical memory

Offset passed
unchanged to
physical memory

Virtual-to-physical
translation in TLB

Virtual-to-physical
translation in TLB

1022 308

0

039406162636471

ASID

Offset

TLB

22 bits = 4M pages

1822 228

0171839406162636471

ASID

TLB

0 or -1

0 or -1 VPN Offset

VPN Offset

Virtual Address with 1G (230) 1-Kbyte pages

Figure 4-3 64-bit Mode Virtual Address Translation

Chapter 4 Memory Management

65

Operating Modes

The processor has three operating modes that function in both 32- and 64-bit operations:

ïUser mode

ï Supervisor mode

ï Kernel mode

These modes are described in the next three sections.

User Mode Operations

In User mode, a single, uniform virtual address space -- labelled User segment -- is available; its size

is:

ï 2 Gbytes (231 bytes) in 32-bit mode (useg)

ï 1 Tbyte (240 bytes) in 64-bit mode (xuseg)

Figure 4-4 shows User mode virtual address space.

64-bit32-bit✝

0x 8000 0000

0x FFFF FFFF

Address
Error

0x 0000 0100 0000 0000

0x FFFF FFFF FFFF FFFF

Address
Error

0x 0000 0000

xuseguseg
2 GB

Mapped

0x 0000 0000 0000 0000

1 TB
Mapped

Figure 4-4 User Mode Virtual Address Space ✝✝

✝ The VR4100 uses 64-bit addresses internally. In Kernel mode, the processor saves, resets and initializes
each register before switching context. In 32-bit mode, addresses consist of 32 bits with bit 31 used as sign
extension for bits 32 to 63. Normally, 32-bit mode programs cannot generate invalid addresses. However,
when context switching occurs and Kernel mode is entered, values other than previously sign-extended 32-
bit addresses may be saved to 64-bit registers. In such a case, the User mode program may generate
invalid addresses.

Chapter 4 Memory Management

66

The User segment starts at address 0 and the current active user process resides in either useg (in 32-

bit mode) or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all

modes, and controls cache accessibility.�

The processor operates in User mode when the Status register contains the following bit-values:

ï KSU bits = 102

ï EXL = 0

ï ERL = 0

In conjunction with these bits, the UX bit in the Status register selects between 32- or 64-bit User mode

addressing as follows:

ïwhen UX = 0, 32-bit useg space is selected

ïwhen UX = 1, 64-bit xuseg space is selected

Table 4-1 lists the characteristics of the two user mode segments, useg and xuseg.

Address Bit
Values

Status Register
Vit Values

Segment Name Address Range Segment
Size

KSU EXL ERL UX

32-bit
A (31) = 0

102 0 0 0 useg 0x0000 0000
through

0x7FFF FFFF

2 Gbyte
(231 bytes)

64-bit
A (63:40) = 0

102 0 0 1 xuseg 0x0000 0000 0000 0000
through

0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

Table 4-1 32-bit and 64-bit User Mode Segments

� The cached (C) field in a TLB entry determines whether the reference is cached; see Figure 4-8.

Chapter 4 Memory Management

67

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is compatible with the 32-bit

addressing model shown in Figure 4-4, and a 2-Gbyte user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to 0; any attempt to

reference an address with the most-significant bit set while in User mode causes an Address Error

exception.

In 32-bit User mode addressing, the TLB refill exception vector is used for TLB misses.

The system maps all references to useg through the TLB, and bit settings within the TLB entry for the

page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is extended to the 64-bit

model shown in Figure 4-4. In 64-bit User mode, the processor provides a single, uniform address

space of 240 bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to reference an address

with bits 63:40 not equal to 0 causes an Address Error exception.

The extended addressing TLB refill exception vector is used for TLB misses.

Chapter 4 Memory Management

68

Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel runs in VR4100

Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the following bit-values:

ï KSU = 012

ï EXL = 0

ï ERL = 0

In conjunction with these bits, the SX bit in the Status register selects between 32- or 64-bit Supervisor

mode addressing:

ïwhen SX = 0, 32-bit supervisor space is selected

ïwhen SX = 1, 64-bit supervisor space is selected

Figure 4-5 shows Supervisor mode address mapping. Table 4-2 lists the characteristics of the

supervisor mode segments; descriptions of the address spaces follow.

Chapter 4 Memory Management

69

64-bit32-bit✝

0x E000 0000

0x C000 0000

0x FFFF FFFF Address
error

0x FFFF FFFF FFFF FFFF

suseg

sseg

0x 0000 0000

0x 8000 0000

xsuseg

csseg

xsseg

0x A000 0000

0x 4000 0000 0000 0000

0x 4000 0100 0000 0000

0.5 GB
Mapped

Address
Error

0.5 GB
Mapped

Address
error

1 TB
Mapped

Address
error

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

1 TB
Mapped

Address
error

Address
error

2 GB
Mapped

Figure 4-5 Supervisor Mode Address Space ✝✝

✝ The VR4100 uses 64-bit addresses internally. In 32-bit mode, addresses consist of 32 bits with bit 31 used
as sign extension for bits 32 to 63.
Normally, 32-bit mode programs cannot generate invalid addresses. However, when calculating addresses,
the base register + offset operation may generate a 2’s complement overflow. At such time, the generated
address is invalid and the result becomes undefined. Overflow may be caused in either of the following 2
cases.

• Offset bit 15 = 0, base register bit 31 = 0, (base register + offset) bit 31 = 1
• Offset bit 15 = 1, base register bit 31 = 1, (base register + offset) bit 31 = 0

Chapter 4 Memory Management

70

Address Bit
Values

Status Register
Bit Values

Segment Name Address Range Segment
Size

KSU EXL ERL SX

32-bit
A (31) = 0

012 0 0 0 suseg 0x0000 0000
through

0x7FFF FFFF

2 Gbyte
(231 bytes)

32-bit
A (31:29) = 1102

012 0 0 0 sseg 0xC000 0000
through

0xDFFF FFFF

512 Mbyte
(229 bytes)

64-bit
A (63:62) = 002

012 0 0 1 xsuseg 0x0000 0000 0000 0000
through

0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A (63:62) = 012

012 0 0 1 xsseg 0x4000 0000 0000 0000
through

0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A (63:62) = 112

012 0 0 1 csseg 0xFFFF FFFF C000 0000
through

0xFFFF FFFF DFFF FFFF

512 Mbyte
(229 bytes)

Table 4-2 32-bit and 64-bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant bit of the 32-bit virtual

address is set to 0, the suseg virtual address space is selected; it covers the full 231 bytes (2 Gbytes) of

the current user address space. The virtual address is extended with the contents of the 8-bit ASID

field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-significant bits of the 32-bit

virtual address are 1102, the sseg virtual address space is selected; it covers 229-bytes (512 Mbytes) of

the current supervisor address space. The virtual address is extended with the contents of the 8-bit

ASID field to form a unique virtual address.

Chapter 4 Memory Management

71

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to

002, the xsuseg virtual address space is selected; it covers the full 240 bytes (1 Tbyte) of the current

user address space. The virtual address is extended with the contents of the 8-bit ASID field to form a

unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 00FF

FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to

012, the xsseg current supervisor virtual address space is selected. The virtual address is extended

with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF

FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual address are set to

112, the csseg separate supervisor virtual address space is selected. If bits 31:29 of the virtual address

are set to 1102, addressing of the csseg is compatible with addressing sseg in 32-bit mode. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through 0xFFFF

FFFF DFFF FFFF.

Chapter 4 Memory Management

72

Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains one or more of the following

values:

ï KSU = 002

ï EXL = 1

ï ERL = 1

In conjunction with these bits, the KX bit in the Status register selects between 32- or 64-bit Kernel

mode addressing:

ïwhen KX = 0, 32-bit kernel space is selected

ïwhen KX = 1, 64-bit kernel space is selected

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode

until an Exception Return (ERET) instruction is executed and results in ERL and/or EXL = 0. The

ERET instruction restores the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the

virtual address, as shown in Figure 4-6. Table 4-3 lists the characteristics of the 32-bit kernel mode

segments, and Table 4-4 lists the characteristics of the 64-bit kernel mode segments.

Chapter 4 Memory Management

73

0.5Gbyte
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ È‚ µ

ƒ Lƒ ƒƒ bƒ Vƒ …‰ Â

TLB ƒ }ƒ bƒ sƒ “ƒ O‚ ‚ è
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ È‚ µ

(• Ú• ×‚ Í• Ÿ• Å• Q• Æ)
0.5Gbyte

TLB ƒ }ƒ bƒ sƒ “ƒ O‚ ‚ è

Address
error

32-bit�

0.5 GB
Mapped

0.5 GB
Mapped

0.5 GB
Unmapped
Uncached

64-bit

0x E000 0000

0x C000 0000

0x FFFF FFFF 0x FFFF FFFF FFFF FFFF

kuseg

kseg0

kseg1

ksseg

kseg3

0x 0000 0000

0x 8000 0000

xkuseg

xksseg

xkphys

xkseg

ckseg0

ckseg1

ckseg3

cksseg

0x FFFF FFFF A000 0000

0.5 GB
Unmapped
Cacheable

2 GB
Mapped

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x FFFF FFFF 8000 0000

0x C000 00FF 8000 0000

0.5Gbyte
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ ‚ è

0.5Gbyte
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ ‚ è

Unmapped
Uncached
(Refer to

Table 4-5)

Address
error

1 TB
Mapped

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x B800 0001 0000 0000

0x 4000 0100 0000 0000

0x 0000 0100 0000 0000

0x 4000 0000 0000 0000

0x A000 0000

Address
error

1 TB
Mapped

0.5Gbyte
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ È‚ µ

ƒ Lƒ ƒƒ bƒ Vƒ …• s‰ Â

0.5Gbyte
TLB ƒ }ƒ bƒ sƒ “ƒ O‚ ‚ è

0.5 GB
Mapped

0.5 GB
Mapped

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped
Cacheable

Address
error

Mapped

0x 0000 0000 0000 0000

Figure 4-6 Kernel Mode Address Space *

� The VR4100 uses 64-bit addresses internally. In 32-bit mode, addresses consist of 32 bits with bit 31 used
as sign extension for bits 32 to 63.
Normally, 32-bit mode programs cannot generate invalid addresses. However, when calculating addresses,
the base register + offset operation may generate a 2’s complement overflow. At such time, the generated
address is invalid and the result becomes undefined. Overflow may be caused in either of the following 2
cases.

• Offset bit 15 = 0, base register bit 31 = 0, (base register + offset) bit 31 = 1
• Offset bit 15 = 1, base register bit 31 = 1, (base register + offset) bit 31 = 0

Chapter 4 Memory Management

74

Address Bit
Values

Status Register
Bit Values

Segment Name Address Range Segment Size

KSU EXL ERL KX

A (31) = 0 KSU = 002

or
EXL = 1

0 kuseg 0x0000 0000
through

0x7FFF FFFF

2 Gbyte
(231 bytes)

A (31:29) =
1002

or
ERL = 1

0 kseg0 0x8000 0000
through

0x9FFF FFFF

512 Mbyte
(229 bytes)

A (31:29) =
1012

0 kseg1 0xA000 0000
through

0xBFFF FFFF

512 Mbyte
(229 bytes)

A (31:29) =
1102

0 ksseg 0xC000 0000
through

0xDFFF FFFF

512 Mbyte
(229 bytes)

A (31:29) =
1112

0 kseg3 0xE000 0000
through

0xFFFF FFFF

512 Mbyte
(229 bytes)

Table 4-3 32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of the virtual address,

A31, is cleared, the 32-bit kuseg virtual address space is selected; it covers the full 231 bytes (2 Gbytes)

of the current user address space. The virtual address is extended with the contents of the 8-bit ASID

field to form a unique virtual address.

Chapter 4 Memory Management

75

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the virtual

address are 1002, 32-bit kseg0 virtual address space is selected; it is the current 229-byte (512-Mbyte)

kernel physical space.

References to kseg0 are not mapped through the TLB; the physical address selected is defined by

subtracting 0x8000 0000 from the virtual address.

The K0 field of the Config register, described in this chapter, controls cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit

virtual address are 1012, 32-bit kseg1 virtual address space is selected; it is the current 229-byte (512-

Mbyte) kernel physical space.

References to kseg1 are not mapped through the TLB; the physical address selected is defined by

subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory (or memory-mapped I/O

device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit

virtual address are 1102, the ksseg virtual address space is selected; it is the current 229-byte (512-

Mbyte) supervisor virtual space. The virtual address is extended with the contents of the 8-bit ASID

field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three bits of the 32-bit

virtual address are 1112, the kseg3 virtual address space is selected; it is the current 229-byte (512-

Mbyte) kernel virtual space. The virtual address is extended with the contents of the 8-bit ASID field to

form a unique virtual address.

Chapter 4 Memory Management

76

Address Bit
Values

Status Register
Bit Values

Segment
Name

Address Range Segment
Size

KSU EXL ERL KX

A (63:62) = 002 KSU = 002

or
EXL = 1

1 xkuseg 0x0000 0000 0000 0000
through

0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A (63:62) = 012 or
ERL = 1

1 xksseg 0x4000 0000 0000 0000
through

0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A (63:62)= 102 1 xkphys 0x8000 0000 0000 0000
through

0xBFFF FFFF FFFF FFFF

8*232-byte
spaces

A (63:62) = 112 1 xkseg 0xC000 0000 0000 0000
through

0xC000 00FF 7FFF FFFF

240-231 bytes

A (63:62) = 112

A (61:31) = -1
1 ckseg0 0xFFFF FFFF 8000 0000

through
0xFFFF FFFF 9FFF FFFF

512 Mbyte
(229 bytes)

A (63:62) = 112

A (61:31) = -1
1 ckseg1 0xFFFF FFFF A000 0000

through
0xFFFF FFFF BFFF FFFF

512 Mbyte
(229 bytes)

A (63:62) = 112

A (61:31) = -1
1 cksseg 0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 Mbyte
(229 bytes)

A (63:62) = 112

A (61:31) = -1
1 ckseg3 0xFFFF FFFF E000 0000

through
0xFFFF FFFF FFFF FFFF

512 Mbyte
(229 bytes)

Table 4-4 64-bit Kernel Mode Segments

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 002,

the xkuseg virtual address space is selected; it covers the current user address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

Chapter 4 Memory Management

77

As a special feature for the Cache Error handler, if the ERL bit of the Status register is set, the user

address region becomes a 231-byte unmapped, uncached space. This allows the Cache Error

exception code to operate uncached using r0 as a base register.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 012,

the xksseg virtual address space is selected; it is the current supervisor virtual space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 102,

one of the two unmapped xkphys address spaces are selected, either cached or uncached. Accesses

with address bits 58:32 not equal to 0 cause an address error.

Chapter 4 Memory Management

78

Value (61:59) Cacheability and
Coherency Attributes

Starting Address

0 Cached 0x8000 0000 0000 0000
through

0x8000 0000 FFFF FFFF

1 Cached 0x8800 0000 0000 0000
through

0x8800 0000 FFFF FFFF

2 Uncached 0x9000 0000 0000 0000
through

0x9000 0000 FFFF FFFF

3 Cached 0x9800 0000 0000 0000
through

0x9800 0000 FFFF FFFF

4 Cached 0xA000 0000 0000 0000
through

0xA000 0000 FFFF FFFF

5 Cached 0xA800 0000 0000 0000
through

0xA800 0000 FFFF FFFF

6 Cached 0xB000 0000 0000 0000
through

0xB000 0000 FFFF FFFF

7 Cached 0xB800 0000 0000 0000
through

0xB800 0000 FFFF FFFF

Table 4-5 Cacheability and Coherency Attributes

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-bit virtual address are 112,

the address space selected is one of the following:

ï kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the

contents of the 8-bit ASID field to form a unique virtual address.

ï one of the four 32-bit kernel compatibility spaces, as described in the next section.

★

Chapter 4 Memory Management

79

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit virtual address are 112, and

bits 61:31 of the virtual address equal -1, the bits 30:29 of address, as shown in Figure 4-6, select one

of the following 512-Mbyte compatibility spaces.

ï ckseg0. This 64-bit virtual address space is an unmapped region, compatible with the 32-bit

address model kseg0. The K0 field of the Config register, described in this chapter, controls

cacheability and coherency.

ï ckseg1. This 64-bit virtual address space is an unmapped and uncached region, compatible with

the 32-bit address model kseg1.

ï cksseg. This 64-bit virtual address space is the current supervisor virtual space, compatible with

the 32-bit address model ksseg.

ï ckseg3. This 64-bit virtual address space is kernel virtual space, compatible with the 32-bit

address model kseg3.

Chapter 4 Memory Management

80

4.3 System Control Coprocessor
The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports

memory management, address translation, exception handling, and other privileged operations. CP0

contains the registers shown in Figure 4-7 plus a 32-entry TLB. The sections that follow describe how

the processor uses each of the memory management-related registers.

Each CP0 register has a unique number that identifies it; this number is referred to as the register

number. For instance, the Page Mask register is register number 5.

31

0

Used with exception
processing.
See Chapter 5 for details.

Used with memory
management system.

TLB

(“Safe” entries)
(See Random Register,
contents of TLB Wired)

127/255 0

EntryHi
10*

EntryLo0
2

Index
0*

Context
4*

BadVAddr
8*

Compare
11*

Count
9*

Random
1*

EntryLo1
3*

Page Mask
5*

Status
12*

Cause
13*

WatchLo
18*

EPC
14*

Wired
6*

PRId
15*

WatchHi
19*

XContest
20*

ErrorEPC
30*

CacheErr
27*

PErr
26

LLAddr
17*

TagLo
28*

TagHi
29*

Config
16*

* Register number

Figure 4-7 CP0 Registers and the TLB

Chapter 4 Memory Management

81

Format of a TLB Entry

Figure 4-8 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a

corresponding field in the EntryHi, EntryLo0, EntryLo1, or PageMask registers, as shown in Figure 4-9

and Figure 4-10; for example the Mask field of the TLB entry is also held in the PageMask register.

167168

114115 96127 107 106

32-bit Mode

0 MASK 0

82121

13 8 11

6495 75 74 73 72 71

VPN2 G 0 ASID

5960

224

3263 3738 35 34 33

0 PFN C D V 0

13 1 1

2728

224

031 56 3 2 1

0 PFN C D V 0

13 1 1

210211 192255 203 202

64-bit Mode

0 MASK 0

190 189

8212 22 29

45 8 11

128191 139 138 137 136 135

R 0 VPN2 G 0 ASID

9192

2236

64127 6970 67 66 65

0 PFN C D V 0

13 1 1

2728

2236

063 56 3 2 1

0 PFN C D V 0

13 1 1

128-bit TLB
entry in 32-
bit mode of
the VR4100
processor

256-bit TLB
entry in 64-
bit mode of
the VR4100
processor

Figure 4-8 Format of a TLB Entry

Chapter 4 Memory Management

82

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are nearly the same as the

TLB entry. The one exception is the Global field (G bit), which is used in the TLB, but is reserved in the

EntryHi register. Figures 4-9 and 4-10 describe the TLB entry fields shown in Figure 4-8.

78

22

11 103940

1819 031 11 10

PageMask Register

0 MASK 0

8321

13 8 11

031 11 8 7

VPN2

6162

2

063

R

3 8

32-bit
Mode

Mask Page comparison mask; see Table 4-9.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

EntryHi Reg ister

10

0 ASID

PFNFULL VPN2 0 ASID

29

VPN2Virtual page number divided by two (maps to two pages).
ASIDAddress space ID field. An 8-bit field that lets multiple processes share the

TLB; each process has a distinct mapping of otherwise identical virtual page
numbers.

R Region. (00 -> user, 01 -> supervisor, 11 -> kernel) used to match
vAddr63...62

Fill Reserved; 0 on read; Ignored on write.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

64-bit
Mode

Figure 4-9 Fields of the PageMask and EntryHi Registers

Chapter 4 Memory Management

83

2728
EntryLo0
32-bit Mode

224

031 56 3 2 1

0 PFN C D V G

13 1 1

2728

224

031 56 3 2 1

0 PFN C D V G

13 1 1

EntryLo0 and EntryLo1 Registers

2728

2236

063 56 3 2 1

0 PFN C D V G

13 1 1

2728

2236

063 56 3 2 1

0 PFN C D V G

13 1 1

EntryLo1
32-bit Mode

EntryLo0
64-bit Mode

EntryLo1
64-bit Mode

PFN Page frame number; the upper bits of the physical address.
C Specifies the TLB page attribute; see Table 4-6.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable.

This bit is actually a write-protect bit that software can use to prevent
alteration of data.

V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a
TLBL or TLBS miss occurs.

G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the
ASID during TLB lookup.

0 Must be written as zeroes, and returns zeroes when read.

Figure 4-10 Fields of the EntryLo0 and EntryLo1 Registers

Chapter 4 Memory Management

84

The TLB page coherency attribute (C) bits specify whether references to the page should be cached; if

cached, the algorithm selects between cached and uncached page attribute. Table 4-6 shows the page

attributes selected by the C bits.

C (5:3) Value Page Coherency Attribute

0 Cached

1 Cached

2 Uncached

3 Cached

4-7 Cached

Table 4-6 TLB Page (C) Bit Values

CP0 Registers

The following sections describe the CP0 registers, shown in Figure 4-7, that are assigned specifically

as a software interface with memory management (each register is followed by its register number in

parentheses).

ï Index register (CP0 register number 0)

ïRandom register (1)

ï EntryLo0 (2) and EntryLo1 (3) registers

ï PageMask register (5)

ïWired register (6)

ï EntryHi register (10)

ï PRId register (15)

ïConfig register (16)

ï LLAddr register (17)

ï TagLo (28) and TagHi (29) registers

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to index an entry in the TLB. The

high-order bit of the register shows the success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB Write Index

(TLBWI) instructions.

Chapter 4 Memory Management

85

Figure 4-11 shows the format of the Index register; Table 4-7 describes the Index register fields.

4530 031

P 0 Index

1 26 5

Index Register

Figure 4-11 Index Register

Field Description

P Probe failure. Set to 1 when the previous TLBProbe (TLBP)
instruction was unsuccessful

Index Index to the TLB entry affected by the TLBRead and TLBWrite
instructions.

0 Reserved. Must be written as zeroes, and returns zeroes when
read.

Table 4-7 Index Register Field Descriptions

Chapter 4 Memory Management

86

Random Register (1)

This register decrements as each instruction executes, and its values range between an upper and a

lower bound, as follows:

� A lower bound is set by the number of TLB entries reserved for exclusive use by the operating

system (the contents of the Wired register).

� An upper bound is set by the total number of TLB entries-1 (31).

The Random register specifies the entry in the TLB that is affected by the TLB Write Random

instruction. The register does not need to be read for this purpose; however, the register is readable to

verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon Cold Reset. This

register is also set to the upper bound when the Wired register is written.

Figure 4-12 shows the format of the Random register; Table 4-8 describes the Random register fields.

45 031

0 Random

27 5

Random Register

Figure 4-12 Random Register

Field Description

Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4-8 Random Register Field Descriptions

Chapter 4 Memory Management

87

EntryLo0 (2), and EntryLo1 (3) Registers

The EntryLo register consists of two registers that have identical formats:

�EntryLo0 is used for even virtual pages.

� EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold the physical page frame

number (PFN) of the TLB entry for even and odd pages, respectively, when performing TLB read and

write operations. Figure 4-10 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a

comparison mask that sets the page size for each TLB entry, as shown in Table 4-9. Page sizes must

be from 1 Kbytes to 256 Kbytes. The format of the PageMask register is shown in Figure 4-9.

TLB read and write operations use this register as either a source or a destination; when virtual

addresses are presented for translation into physical address, the corresponding bits in the TLB identify

which virtual address bits among bits 18:11 are used in the comparison. When the Mask field is not

one of the values shown in Table 4-9, the operation of the TLB is undefined.

Page Size Bit

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1 Kbytes 0 0 0 0 0 0 0 0

4 Kbytes 0 0 0 0 0 0 1 1

16 Kbytes 0 0 0 0 1 1 1 1

64 Kbytes 0 0 1 1 1 1 1 1

256 Kbytes 1 1 1 1 1 1 1 1

Table 4-9 Mask Field Values for Page Sizes

Chapter 4 Memory Management

88

Wired Register (6)

The Wired register is a read/write register that specifies the boundary between the wired and random

entries of the TLB as shown in Figure 4-13. Wired entries are fixed, nonreplaceable entries, which

cannot be overwritten by a TLBWR (TLB Write Random) operation. They can, however, be overwritten

by a TLBWI (TLB Write Indexed) instruction. Random entries can be overwritten.

0

31

Range of Wired entries

Wired
Register
boundary

Range of Random entries

Figure 4-13 Wired Register Boundary

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to

the value of its upper bound of 31 (see Random register, above). Figure 4-14 shows the format of the

Wired register; Table 4-10 describes the register fields.

45 031

0 Wired

27 5

Wired Register

Figure 4-14 Wired Register

Field Description

Wired TLB Wired boundary (the number of wired TLB entries)

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4-10 Wired Register Field Descriptions

Chapter 4 Memory Management

89

EntryHi Register (CP0 Register 10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random, TLB Write Indexed, and TLB

Read Indexed instructions.

Figure 4-9 shows the format of this register.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi register is loaded

with the virtual page number (VPN2) and the ASID of the virtual address that did not have a matching

TLB entry. (See Chapter 5 for more information about these exceptions.)

Chapter 4 Memory Management

90

Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the

implementation and revision level of the CPU and CP0. Figure 4-15 shows the format of the PRId

register; Table 4-11 describes the PRId register fields.

1516 78 031

0 Imp Rev

16 8 8

PRId Register

Figure 4-15 Processor Revision Identifier Register Format

Field Description

Imp Implementation number (0x0C for the VR4100)

Rev Revision number

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4-11 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order

byte (bits 15:8) is interpreted as an implementation number. The content of the high-order halfword

(bits 31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major revision number in bits 7:4

and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there is no guarantee that changes

to the chip will necessarily be reflected in the PRId register, or that changes to the revision number

necessarily reflect real chip changes. For this reason, these values are not listed and software should

not rely on the revision number in the PRId register to characterize the chip.

Chapter 4 Memory Management

91

Config Register (16)

The Config register specifies various configuration options selected on VR4100 processors; Table 4-12

lists these options.

Some configuration options, as defined by the EC and BE fields, are set by the hardware during Cold

Reset (as derived from the state of dedicated pins on the VR4100) and are included in the Config

register as read-only status bits for the software to access. Other configuration options are read/write

(AD, EP and K0 fields) and controlled by software; on Cold Reset these fields are undefined. Since

only a subset of the R4000 options are available in the VR4100 processor, some bits are set to

constants (e.g., bits 14:13) that were variable in the R4000. The Config register should be initialized by

software before caches are used.

Figure 4-16 shows the format of the Config register; Table 4-12 describes the Config register fields.

111 11

23

5 1 1

22 1718 1516 1314

1 3 4 3

2830 2427 3 2 031

0 EC EP AD 0 1 0 BE 1 0 K0

Config Register

Figure 4-16 Config Register Format

When the AD bit is clear to zero, processor read/write address cycle issue rate is max 4 TClock cycles

(ADxxADxx or ADDxADDx etc.).

When the AD bit is set to one, that is max 2 TClock cycles (ADAD or ADDADD etc.).

Chapter 4 Memory Management

92

Field Description

EC System clock ratio:
0 -> processor clock frequency divided by 2
1-6 -> Reserved
7 -> processor clock frequency divided by 1

EP Writeback data rate: Note 2

0 -> DDDD word every cycle
1 -> Reserved
2 -> Reserved
3 -> DxDxDxDx 2 words every 4 cycles
4 -> Reserved
5 -> Reserved
6 -> DxxDxxDxxDxx 2 words every 6 cycles
7 -> Reserved
8 -> DxxxDxxxDxxxDxxx 2 words every 8 cycles
9-15 Reserved

BE BigEndianMem
0 -> Little endian
1 -> Big endian

AD Accelerate Data ratio
0 -> R4x00 compatible mode
1 -> Accelerate mode

IC 0 on Read Note 1

DC 0 on Read Note 1

IB Primary I-cache line size
0 -> 16 bytes

DB Primary D-cache line size
0 -> 16 bytes

K0 Kseg0 coherency algorithm (see EntryLo0 and EntryLo1
registers)

Others Reserved. Returns indicated values when read.

Notes 1. In the VR4100, each primary I-cache/D-cache is less than 212 + IC bytes (212 + IC bytes is defined on

MIPS archtechture in IC or DC field).

Therefore, these field have no meaning.

2. The VR4100 may used immediately after last D cycle.

Table 4-12 Config Register Field

Chapter 4 Memory Management

93

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register is not used with the VR4100 processor except for

diagnostic purpose, and serves no function during normal operation.

LLAddr register is implemented just for a compatibility between the VR4100 to VR4000/4400.

031

PAddr (31:0)

32

LLAddr Register

Figure 4-17 LLAddr register

Chapter 4 Memory Management

94

Cache Tag Registers (TagLo (28) and TagHi (29))

The TagLo and TagHi registers are 32-bit read/write registers that hold the primary cache tag and parity

during cache initialization, cache diagnostics, or cache error processing. The Tag registers are written

by the CACHE and MTC0 instructions.

When the CE bit of the Status register is cleared to zero, the P fields of these registers are ignored on

Index Store Tag operations. Parity is computed by the store operation.

Figure 4-18 shows the format of these registers for primary cache operations. Table 4-13 lists the field

definitions of the TagLo and TagHi registers.

22

031 10 9 8 7 126

PTagLo V D W 0 W' P

11 1 16

22

031 10 9 8 1

PTagLo V 0 P

11 8

031

0

32

D-Cache

I-Cache

TagHi

TagLo

Figure 4-18 TagLo and TagHi Register Formats

Field Description

PTagLo Specifies the physical address bits 31:10.

W� Even Parity for the write-back bit

D Dirty bit

W Write-back bit (set if cache line has been written)

V Valid bit

P Specifies the primary tag even parity bit.

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4-13 Cache Tag Register Fields

Chapter 4 Memory Management

95

Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the

8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID of the TLB entry to see if

there is a match. One of the following comparisons are also made:

� In 32-bit mode, the highest 13 to 21 bits (depending upon the page size) of the virtual address are

compared to the contents of the TLB VPN2 (virtual page number divided by two).

� In 64-bit mode, the highest 24 to 29 bits (depending upon the page size) of the virtual address are

compared to the contents of the TLB VPN2 (virtual page number divided by two).

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from

the matching TLB entry. While the V bit of the entry must be set for a valid translation to take place, it

is not involved in the determination of a matching TLB entry.

Figure 4-19 illustrates the TLB address translation process.

★

★

Chapter 4 Memory Management

96

Virtual Address (Input)

VPN
and

ASID

Exception

Exception

Exception

Physical Address (Output)

Address
Error

No

Yes

Yes

YesNo

Yes

YesNo
Legal

Address?
Sup

Mode?
User

Mode?
Legal

Address?
Address

Error

Legal
Address?

Address
Error

No

No

Yes

Yes

Yes
Mapped

Address?

No
VPN

Match?

Dirty

Valid

Global
No

G = 1?

No

V = 1?

Yes

Yes

No

D = 1?

NoYes
Uncached

?

No
ASID

Match?

No
32-bit

Address?

Yes

Yes

TLB
Refill

XTLB
Refill

TLB
Invalid

No

No

Yes

Write?

TLB
Mod

Access Main
Memory

Access
Cache

For valid address space, see the
section describing Operating
Modes in this chapter.

Exception

Figure 4-19 TLB Address Translation

Chapter 4 Memory Management

97

TLB Misses

If there is no TLB entry that matches the virtual address, a TLB refill (miss) exception occurs.� If the

access control bits (D and V) indicate that the access is not valid, a TLB Modification or TLB Invalid

exception occurs. If the C bits equal 0102, the physical address that is retrieved accesses main

memory, bypassing the cache.

TLB Instructions

Table 4-14 lists the instructions that the CPU provides for working with the TLB. See Chapter 14 for a

detailed description of these instructions.

Op Code Description of instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 4-14 TLB Instructions

� TLB miss exceptions are described in Chapter 5.

Chapter 4 Memory Management

98

[MEMO]

Chapter 5 CPU Exception Processing

99

’‚l‚r

CPU Exception Processing

5

This chapter describes CPU exception processing, including an explanation of

exception processing, followed by the format and use of each CPU exception

register.

The chapter concludes with a description of each exception's cause, together with

the manner in which the CPU processes and services each exception.

Chapter 5 CPU Exception Processing

100

5.1 How Exception Processing Works
The processor receives exceptions from a number of sources, including translation lookaside buffer

(TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects an

exception, the normal sequence of instruction execution is suspended and the processor enters Kernel

mode (see Chapter 4 for a description of system operating modes).

The processor then disables interrupts and forces execution of a software exception process (called a

handler) located at a fixed address. The handler saves the context of the processor, including the

contents of the program counter, the current operating mode (User or Supervisor), and the status of the

interrupts (enabled or disabled). This context is saved so it can be restored when the exception has

been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a

location where execution can restart after the exception has been serviced. The restart location in the

EPC register is the address of the instruction that caused the exception or, if the instruction was

executing in a branch delay slot, the address of the branch instruction immediately preceding the delay

slot.

The VR4100 processor supports a supervisor mode and fast TLB refill for all address spaces. The

VR4100 provides a single interrupt enable (IE), a base operating mode (User, Supervisor, or Kernel), an

exception level (normal or exception, as indicated by the EXL bit in the Status register), and an error

level (normal or error, as indicated by the ERL bit in the Status register). Interrupts are enabled when

the interrupt enable bit, IE, is set to a 1, both EXL and ERL are 0, and the corresponding IM field bits in

the Status register are set to 1. The operating mode is specified by the base mode when the exception

level is normal (0), and is set to kernel mode when either the exception level or the error level is a 1.

Returning from an exception consists of resetting the exception level to normal (see the description of

the ERET instruction in Chapter 14).

The registers described later in the chapter assist in this exception processing by retaining address,

cause and status information.

For a description of the exception handling process, see the description of the individual exception

contained in this chapter, or the flowcharts at the end of this chapter.

Chapter 5 CPU Exception Processing

101

5.2 Precision of Exceptions
VR4100 exceptions are logically precise; the instruction that causes an exception and all those that

follow it are aborted and can be re-executed after servicing the exception. When succeeding

instructions are killed, exceptions associated with those instructions are also killed. Exceptions are not

taken in the order detected, but in instruction fetch order.

There is a special case in which the VR4100 processor may not be able to restart easily after servicing

an exception. When a Cache Data Parity Error (DPErr) exception occurs on a load with a cache hit, the

VR4100 processor does not prevent the cache data (with erroneous parity) from being written back into

the register file during the WB stage. The exception is still precise, since both the EPC and CacheErr

registers are updated with the correct virtual address pointing to the offending load instruction, and the

exception handler can still determine the cause of exception and its origin. The program can be

restarted by rewriting the destination register -- not automatically, however, as in the case of all the

other precise exceptions where no state change occurs.

Chapter 5 CPU Exception Processing

102

5.3 Exception Processing Registers
This section describes the CP0 registers that are used in exception processing. Table 5-1 lists these

registers, along with their number -- each register has a unique identification number that is referred to

as its register number. For instance, the PErr register is register number 26. The remaining CP0

registers are used in memory management, as described in Chapter 4.

Software examines the CP0 registers during exception processing to determine the cause of the

exception and the state of the CPU at the time the exception occurred. The registers in Table 5-1 are

used in exception processing, and are described in the sections that follow.

Register Name Reg. No.

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

WatchLo 18

WatchHi 19

XContext 20

PErr 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

Table 5-1 CP0 Exception Processing Registers

Chapter 5 CPU Exception Processing

103

Context Register (4)

The Context register is a read/write register containing the pointer to an entry in the kernel page table

entry (PTE) array; this array is an operating system data structure that stores virtual-to-physical address

translations. When there is a TLB miss, the CPU loads the TLB with the missing translation from the

PTE array. The Context register duplicates some of the information provided in the BadVAddr register,

but the information is arranged in a form that is more useful for a software TLB exception handler.

Figure 5-1 shows the format of the Context register; Table 5-2 describes the Context register fields.

Context Register

4217

0

24

242531 4 3

PTEBase BadVPN2 0
32-bit
Mode

42139

02563 4 3

PTEBase BadVPN2 0
64-bit
Mode

Figure 5-1 Context Register Format

Field Description

BadVPN2 This field is written by hardware on a miss. It contains the virtual page number (VPN) of the most
recent virtual address that did not have a valid translation.

PTEBase This field is a read/write field for use by the operating system. It is normally written with a value that
allows the operating system to use the Context register as a pointer into the current PTE array in
memory.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-2 Context Register Fields

The 21-bit BadVPN2 field contains bits 31:11 of the virtual address that caused the TLB miss; bit 10 is

excluded because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this

format can directly address the pair-table of 8-byte PTEs. For other page sizes, shifting and masking

this value produces the correct address.

Chapter 5 CPU Exception Processing

104

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that displays the most recent virtual

address that failed to have a valid translation, or that had an addressing error.

Figure 5-2 shows the format of the BadVAddr register.

BadVAddr Register

32

031

Bad Virtual Address
32-bit
Mode

64

063

Bad Virtual Address
64-bit
Mode

Figure 5-2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus errors, since bus errors are not

addressing errors.

Chapter 5 CPU Exception Processing

105

Count Register (9)

The read/write Count register acts as a timer, incrementing at a constant rate -- same the MasterOut

speed -- whether or not instructions are being executed, retired, or any forward progress is actually

made through the pipeline. When the register reaches all ones, it rolls over to zero and continues

counting. This register can be written for diagnostic purposes or system initialization.

Figure 5-3 shows the format of the Count register.

32

031

Count

Count Register

Figure 5-3 Count Register Format

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it maintains a stable value that

does not change on its own.

When the value of the Count register equals the value of the Compare register, interrupt bit IP(7) in the

Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt.

For diagnostic purposes, the Compare register is a read/write register. Figure 5-4 shows the format of

the Compare register.

32

031

Compare

Compare Register

Figure 5-4 Compare Register Format

★

Chapter 5 CPU Exception Processing

106

Status Register (12)

The Status register (SR) is a read/write register that contains the operating mode, interrupt enabling,

and the diagnostic states of the processor. The following list describes the more important Status

register fields; Figure 5-5 and Figure 5-6 show the format of the entire register, including descriptions of

the fields. Some of the important fields include:

ï The 8-bit Interrupt Mask (IM) field controls the enabling of up to eight individual interrupt conditions.

Only when:

- the interrupts are globally enabled (by setting the IE bit), and

- the individual interrupt condition is enabled (by setting its corresponding IM bit),

does the Interrupt exception, as indicated by the corresponding interrupt request bit (IP) in the

Cause register, occur. For more information, refer to the Interrupt Pending (IP) field of the Cause

register.

ïRegardless of the CU0 bit setting, CP0 is always usable in Kernel mode.

ï The 9-bit Diagnostic Status (DS) field is used for self-testing, and checks the cache and virtual

memory system.

ï The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the machine for the user task.

The system can be configured as either little-endian or big-endian at system reset by the BigEndian

pin, as follows:

- when RE = 1, kernel endianness is specified by the BigEndian pin and user endianness is the

opposite of the kernel

- when RE = 0, both kernel and user endianness are specified by the BigEndian pin.

Status Register Format

Figure 5-5 shows the format of the Status register. Table 5-3 describes the Status register fields.

Figure 5-6 and Table 5-4 provide additional information on the Diagnostic Status (DS) field. All bits in

the DS field except TS are readable and writable.

Chapter 5 CPU Exception Processing

107

29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 031

0 CU0 0 RE DS IM KX SX UX KSU ERL

1213 9

EXL IE

8 111211 1

Status Register

Figure 5-5 Status Register

Field Description

CU0 Controls the usability of the coprocessor unit. CP0 is always usable when in Kernel mode, regardless
of the setting of the CU0 bit.

1 -> usable
0 -> unusable

0 Reserved. Set to 0.

RE Reserve-Endian bit, valid in User mode.

DS Diagnostic Status field (See Figure 5-6 and Table 5-4).

IM Interrupt Mask: controls the enabling of each of the external, internal, and software interrupts. An
interrupt is taken if interrupts are enabled, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of the Cause register. IM[7]
correspond to Timer Interrupt, IM[6:2] to interrupts Int[4:0] and IM[1:0] to the software interrupts.

0 -> disabled
1 -> enabled

KX KX controls whether the TLB Refill Vector or the XTLB Refill Vector address is used for TLB misses on
kernel addresses.

0 -> TLB Refill Vector
1 -> XTLB Refill Vector

SX Enables 64-bit virtual addressing and operations in Supervisor mode. The extended-addressing TLB
refill exception is used for TLB misses on supervisor addresses.

0 -> 32-bit
1 -> 64-bit

Table 5-3 Status Register Fields

Chapter 5 CPU Exception Processing

108

Field Description

UX Enables 64-bit virtual addressing and operations in User mode. The extended-addressing TLB refill
exception is used for TLB misses on user addresses.

0 -> 32-bit
1 -> 64-bit

KSU Mode bits
102 -> User
012 -> Supervisor
002 -> Kernel

ERL Error Level
0 -> normal
1 -> error

EXL Exception Level
0 -> normal
1 -> exception

IE Interrupt Enable
0 -> disables interrupts
1 -> enables interrupts

Table 5-3 (cont.) Status Register Fields

Chapter 5 CPU Exception Processing

109

161718192021222324

0 BEV TS SR 0 CH CE DE

11111112

Diagnostic Status Field

Figure 5-6 Status Register DS Field

Field Description

BEV Controls the location of TLB refill and general exception vectors.
0 -> normal
1 -> bootstrap

TS Indicates TLB shutdown has occurred (read-only); used to avoid damage to the TLB if more than one
TLB entry matches a single virtual address. After TLB shutdown, the processor must be reset to
restore the TLB.

0 -> TLB shutdown has not occurred
1 -> TLB shutdown has occurred

SR 1 -> Indicates a soft reset or NMI has occurred.

CH CP0 condition bit. Read/write access by software only; not accessible to hardware.
0 -> False
1 -> True

CE Contents of the PErr register set or modify the check bits of the caches when CE = 1; see description
of the PErr register.

DE Specifies that cache parity errors cannot cause exceptions.
0 -> parity remains enabled
1 -> disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-4 Status Register Diagnostic Status Bits

Status Register Reset

The contents of the Status register are undefined after a Cold Reset, except for the following bits in the

Diagnostic Status field:

ï TS = 0, SR = 0

ï ERL and BEV = 1

The SR bit distinguishes between a Cold Reset and Soft Reset.

★

★

Chapter 5 CPU Exception Processing

110

Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the sections that follow.

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

ï IE = 1

ï EXL = 0

ï ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupts.

Operating Modes : The following CPU Status register bit settings are required for User, Kernel, and

Supervisor modes (see Chapter 4 for more information about operating modes).

ï The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.

ï The processor is in Supervisor mode when KSU = 012, EXL = 0, and ERL = 0.

ï The processor is in Kernel mode when KSU = 002, or EXL = 1, or ERL = 1.

32- and 64-bit Modes : The following CPU Status register bit settings select 32- or 64-bit operation for

User, Kernel, and Supervisor operating modes. Enabling 64-bit operation permits the execution of 64-

bit opcodes and translation of 64-bit addresses. 64-bit operation for User, Kernel and Supervisor

modes can be set independently.

ï 64-bit addressing for Kernel mode is enabled when KX = 1. 64-bit operations are always valid in

Kernel mode.

ï 64-bit addressing and operations are enabled for Supervisor mode when SX = 1.

ï 64-bit addressing and operations are enabled for User mode when UX = 1.

Kernel Address Space Accesses : Access to the kernel address space is allowed when the processor

is in Kernel mode.

Supervisor Address Space Accesses : Access to the supervisor address space is allowed when the

processor is in Kernel or Supervisor mode.

User Address Space Accesses : Access to the user address space is allowed in any of the three

operating modes.

Chapter 5 CPU Exception Processing

111

Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception.

Figure 5-7 shows the fields of this register; Table 5-5 describes the Cause register fields. A 5-bit

exception code (ExcCode) indicates one of the causes, as listed in Table 5-6.

All bits in the Cause register, with the exception of the IP(1:0) bits, are read-only; IP(1:0) are used for

software interrupts.

Field Description

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 -> delay slot
0 -> normal

CE Coprocessor unit number referenced when a Coprocessor Unusable exception is taken.

IP Indicates an interrupt is pending
1 -> interrupt pending
0 -> no interrupt

ExcCode Exception code field (see Table 5-6)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-5 Cause Register Fields

827 16 15 67 2 1 0

12 8 1 5 2

31 30 29 28

BD 0 CE

211

0 IP 0 ExcCode 0

Cause Register

Figure 5-7 Cause Register Format

Chapter 5 CPU Exception Processing

112

Exception Code Value Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14-22 - Reserved

23 WATCH Reference to WatchHi/Lo address

24-31 - Reserved

Table 5-6 Cause Register ExcCode Field

Chapter 5 CPU Exception Processing

113

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which

processing resumes after an exception has been serviced.

The EPC register contains either:

ï the virtual address of the instruction that was the direct cause of the exception, or

ï the virtual address of the immediately preceding branch or jump instruction (when the instruction is

in a branch delay slot, and the Branch Delay bit in the Cause register is set).

The EXL bit in the Status register is set to a 1 to keep the processor from overwriting the address of the

exception-causing instruction contained in the EPC register in the event of another exception.

Figure 5-8 shows the format of the EPC register.

EPC Register

32

031

EPC
32-bit
Mode

64

063

EPC
64-bit
Mode

Figure 5-8 EPC Register Format

Chapter 5 CPU Exception Processing

114

WatchLo (18) and WatchHi (19) Registers

The VR4100 processor provides a debugging feature to detect references to a selected physical

address; load and store operations to the location specified by the WatchLo and WatchHi registers

cause a Watch exception (described later in this chapter).

Figure 5-9 shows the format of the WatchLo and WatchHi registers; Table 5-7 describes the WatchLo

and WatchHi register fields.

29

3 2 1 031

PAddr0 0 R W

1 1 1

32

031

0

WatchLo Register

WatchHi Register

Figure 5-9 WatchLo and WatchHi Register Formats

Field Description

PAddr0 Bit 31:3 of the physical address

R Trap on read access if set to 1

W Trap on write access if set to 1

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-7 WatchHi and WatchLo Register Fields

Chapter 5 CPU Exception Processing

115

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the kernel page table entry (PTE)

array, an operating system data structure that stores virtual-to-physical address translations. When

there is a TLB miss, the operating system software loads the TLB with the missing translation from the

PTE array. The XContext register duplicates some of the information provided in the BadVAddr

register, and puts it in a form useful for a software TLB exception handler. The XContext register is for

use with the XTLB refill handler, which loads TLB entries for references to a 64-bit address space, and

is included solely for operating system use. The operating system sets the PTE base field in the

register, as needed. Figure 5-10 shows the format of the XContext register; Table 5-8 describes the

XContext register fields.

32

42 2929

035 34 3363 4 3

PTEBase R BadVPN2 0

XContext Register

Figure 5-10 XContext Register Format

The 29-bit BadVPN2 field has bits 39:11 of the virtual address that caused the TLB miss; bit 10 is

excluded because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this

format may be used directly to address the pair-table of 8-byte PTEs. For more than 4K byte page and

PTE sizes, shifting and masking this value produces the appropriate address.

Field Description

BadVPN2 The Bad Virtual Page Number/2 field contains the VPN of the most recent invalidly translated virtual
address, divided by 2.

R The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel

PTEBase The Page Table Entry Base read/write field indicates the base address of the PTE in the current user
address space.

Table 5-8 XContext Register Fields

Chapter 5 CPU Exception Processing

116

Parity Error (PErr) Register (26)

The read/write PErr register contains the cache data parity bits for cache initialization, cache

diagnostics, or cache error processing.

The PErr register is loaded by the Index Load Tag CACHE operation. All bit of the parity field are valid

on the data cache operation. But a LSB of the parity field is valid on the instruction cache operation.

The contents of the PErr register are:

ï written into the primary data cache on store instructions (instead of the computed parity) when the

CE bit of the Status register is set

ï substituted for the computed instruction parity for the CACHE operation Fill

Figure 5-11 shows the format of the PErr register; Table 5-9 describes the register fields.

824

031 8 7

0 Parity

PErr Register

Figure 5-11 PErr Register Format

Field Description

Parity An 8-bit field specifying the parity bits to be read from or written to a primary cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-9 PErr Register Fields

Chapter 5 CPU Exception Processing

117

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes parity errors in the primary cache. Parity errors

cannot be corrected by on-chip hardware.

The CacheErr register holds cache index and status bits that indicate the source and nature of the

error; it is loaded when a Cache Error exception is asserted.

Figure 5-12 shows the format of the CacheErr register and Table 5-10 describes the CacheErr register

fields.

31 30 29 28 27 26 25 24 11 10 0

14 11

ER 0 ED ET 0 EE EB 0 PIdx

1 1 1 1 1 1 1

CacheErr Register

Figure 5-12 CacheErr Register Format

Field Description

ER Type of reference
0 -> instruction
1 -> data

ED Indicates if a data field error occurred
0 -> no error
1 -> error

ET Indicates if a tag field error occurred
0 -> no error
1 -> error

EE This bit is set if the error occurred on the SysAD bus.

EB This bit is set if a data error occurred in addition to the instruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache after fixing the instruction error.

PIdx Index into the cache.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5-10 CacheErr Register Fields

Chapter 5 CPU Exception Processing

118

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC is used to store the program

counter (PC) on Cold Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction processing can

resume after servicing an error. This address can be:

ï the virtual address of the instruction that caused the exception

ï the virtual address of the immediately preceding branch or jump instruction, when the instruction

associated with the error exception is in a branch delay slot.

Figure 5-13 shows the format of the ErrorEPC register.

ErrorEPC Register

32

031

ErrorEPC
32-bit
Mode

64

063

ErrorEPC
64-bit
Mode

Figure 5-13 ErrorEPC Register Format

★

Chapter 5 CPU Exception Processing

119

5.4 Processor Exceptions
This section describes the processor exceptions -- it describes the cause of each exception, its

processing by the hardware, and servicing by a handler (software). The types of exceptions, with

exception processing operations, are described in the next section.

Exception Types

This section gives sample exception handler operations for the following exception types:

ïCold Reset

ï Soft Reset

ï nonmaskable interrupt (NMI)

ï cache error

ï remaining processor exceptions

When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating

mode is specified by the KSU bits in the Status register. When either the EXL or ERL bit is a 1, the

processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode.

After saving the appropriate state, the exception handler typically resets the EXL bit back to 0. While

restoring the state before restarting, the handler sets the EXL bit back to 1.

Returning from an exception also resets the EXL bit to 0 (see the ERET instruction in Chapter 14).

Chapter 5 CPU Exception Processing

120

Exception Vector Locations

The Cold Reset, Soft Reset, and NMI exceptions are always vectored to:

ï location 0xBFC0 0000 in 32-bit mode

ï location 0xFFFF FFFF BFC0 0000 in 64-bit mode

Addresses for the remaining exceptions are a combination of a vector offset and a base address.

E.g. TLB Refill vector: When BEV = 0, the vector base for the TLB Refill exception is in kseg0

(cached, unmapped space) (0x8000 0000 in 32-bit mode, 0xFFFF FFFF 8000 0000 in 64-bit mode).

When BEV = 1, the vector base for the TLB Refill exception is in kseg1 (uncached, unmapped space)

0xBFC0 0200 in 32-bit mode and 0xFFFF FFFF BFC0 0200 in 64-bit mode. This is an uncached and

unmapped space, allowing the exception to bypass the cache and TLB.

E.g. Cache Error vector: When BEV = 0, the vector base for the Cache Error exception is in kseg1

(uncached , unmapped space) (0xA000 0000 in 32-bit mode, 0xFFFF FFFF A000 0000 in 64-bit mode).

When BEV = 1, the vector base for the Cache Error exception is in kseg1 (uncached, unmapped

space) 0xBFC0 0200 in 32-bit mode and 0xFFFF FFFF BFC0 0200 in 64-bit mode.

Unlike the other exception vectors, the Cache Error exception vector must always lie in uncached

space.

64-bit mode exception vectors and their offsets are shown in Table 5-11.

Exception Vector Base Vector Offset

Cold Reset, Soft
Reset, and NMI

0xFFFF FFFF BFC0 0000 0x0000

Cache Error 0xFFFF FFFF A000 0000 (BEV = 0)
0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0100

TLB Refill, EXL = 0 0xFFFF FFFF 8000 0000 (BEV = 0)
0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0000

XTLB Refill, EXL = 0 0xFFFF FFFF 8000 0000 (BEV = 0)
0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0080

Other 0xFFFF FFFF 8000 0000 (BEV = 0)
0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0180

Table 5-11 64-Bit Mode Exception Vector Base Addresses

Chapter 5 CPU Exception Processing

121

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority shown in Table 5-12

with (certain of the exceptions, such as the TLB exceptions and Instruction/Data exceptions, grouped

together for convenience). While more than one exception can occur for a single instruction, only the

exception with the highest priority is reported.

Cold Reset (highest priority)

Soft Reset

Nonmaskable Interrupt (NMI)

Address error-- Instruction fetch

TLB/XTLB refill -- Instruction fetch

TLB invalid -- Instruction fetch

Cache error -- Instruction fetch

Bus error -- Instruction fetch

System Call

Breakpoint

Coprocessor Unusable

Reserved Instruction

Trap

Integer overflow

Address error -- Data access

TLB/XTLB refill -- Data access

TLB invalid -- Data access

TLB modified -- Data write

Cache error -- Data access

Watch

Bus error -- Data access

Interrupt (lowest priority)

Table 5-12 Exception Priority Order

Generally speaking, the exceptions described in the following sections are handled (“processed”) by

hardware; these exceptions are then serviced by software.

Chapter 5 CPU Exception Processing

122

Cold Reset Exception

Cause

The Cold Reset exception occurs when the

ColdReset � signal is asserted and then deasserted (

Reset

must be asserted along with

ColdReset). This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

ï location 0xBFC0 0000 in 32-bit mode

ï location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need

not initialize the TLB or the cache to process this exception. It also means the processor can fetch and

execute instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except for the

following register fields:

ï SR, and TS of the Status register are cleared to 0

ï ERL and BEV of the Status register are set to 1.

ï The Random register is initialized to the value of its upper bound.

ï The Wired register is initialized to 0.

ïEC field and bit 22:3 of the Config register are set.

All other bits are undefined.

Servicing

The Cold Reset exception is serviced by:

ï initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

ï performing diagnostic tests

ï bootstrapping the operating system

� In the following sections -- indeed, throughout this book -- a signal with a bar, such as

ColdReset , is low
active.

★

Chapter 5 CPU Exception Processing

123

Soft Reset Exception

Cause

A Soft Reset (sometimes called Warm Reset) occurs when the

ColdReset signal remains deasserted

while the

Reset pin goes from assertion to deassertion. For a Soft Reset to be valid there must be at

least one cycle during which neither

Reset nor

ColdReset were asserted.

A Soft Reset immediately resets all state machines, and sets the SR bit of the Status Register.

Execution begins at the reset vector when the reset is deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

ï location 0xBFC0 0000 in 32-bit mode

ï location 0xFFFF FFFF BFC0 0000 in 64-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need

not be initialized to process this exception. When a Soft Reset occurs, the SR bit of the Status register

is set to distinguish this exception from a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for:

ï ErrorEPC register, which contains the restart PC

ï TS of the Status register are cleared to 0

ïERL, SR, and BEV of the Status register are set to 1.

Because the Soft Reset can abort cache and bus operations, cache and memory state is undefined

when this exception occurs.

Servicing

The Soft Reset exception is serviced by saving the current processor state for diagnostic purposes, and

reinitializing for the Cold Reset exception.

Chapter 5 CPU Exception Processing

124

Nonmaskable Interrupt (NMI) Exception

Cause

The Nonmaskable Interrupt (NMI) exception occurs in response to the falling edge of the

NMI pin. An

NMI can also be set by an external write through the SysAD bus.

Unlike all other interrupts, this interrupt is not maskable; it occurs regardless of the settings of the EXL,

ERL, and the IE bits in the Status register.

Processing

The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

ï location 0xBFC0 0000 in 32-bit mode

ï location 0xFFFF FFFF BFC0 0000 in 64-bit mode

This vector is located within unmapped and uncached address space so that the cache and TLB need

not be initialized to process an NMI interrupt. When an NMI exception occurs, the SR bit of the Status

register is set to differentiate this exception from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction

boundaries. The state of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for:

ï ErrorEPC register, which contains the restart PC

ï TS of the Status register are cleared to 0

ïERL, SR, and BEV of the Status register are set to 1.

Servicing

The NMI exception is serviced by saving the current processor state for diagnostic purposes, and

reinitializing the system for the Cold Reset exception.

Chapter 5 CPU Exception Processing

125

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the following:

ï load or store a doubleword that is not aligned on a doubleword boundary

ï load or store a word that is not aligned on a word boundary

ï load or store a halfword that is not aligned on a halfword boundary

ï reference the kernel address space from User or Supervisor mode

ï reference the supervisor address space from User mode

ï reference an address not in Kernel, Supervisor, or User space in 64-bit Kernel, Supervisor, or User

mode

ï branch to an address that is not aligned on a word boundary .

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or AdES code in the Cause

register is set, indicating whether the instruction caused the exception with an instruction reference

(AdEL), load operation (AdEL), or store operation (AdES) shown by the EPC register and BD bit in the

Cause register.

When this exception occurs, the BadVAddr register retains the virtual address that was not properly

aligned or was referenced in protected address space. The contents of the VPN field of the Context

and EntryHi registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this

instruction is in a branch delay slot. If it is in a branch delay slot, the EPC register contains the address

of the preceding branch instruction and the BD bit of the Cause register is set as indication.

Servicing

The process executing at the time is handed a UNIXTM SIGSEGV (segmentation violation) signal. This

error is usually fatal to the process incurring the exception.

★

Chapter 5 CPU Exception Processing

126

TLB Exceptions

Three types of TLB exceptions can occur:

ï TLB Refill/Extended Addressing TLB Refill exception occurs when there is no TLB entry that

matches an attempted reference to a mapped address space.

ï TLB Invalid exception occurs when a virtual address reference matches a TLB entry that is marked

invalid.

ï TLB Modified exception occurs when a store operation virtual address reference to memory

matches a TLB entry which is marked valid but is not dirty (the entry is not writable). As a result,

this exception only occurs for the data cache, resulting in a lower priority for this exception.

The following three sections describe these TLB exceptions.

Chapter 5 CPU Exception Processing

127

TLB Refill/Extended Addressing TLB Refill Exception

Cause

The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address

space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit address spaces,

and one for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register

determine whether the user, supervisor or kernel address spaces referenced are 32-bit or 64-bit

spaces. All TLB Refill exceptions use these vectors when the EXL bit is set to 0 in the Status register.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register, indicating

whether the instruction, as shown by the EPC register and the BD bit in the Cause register, caused the

miss by an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual

address that failed address translation. The EntryHi register also contains the ASID from which the

translation fault occurred. The Random register normally contains a valid location in which to place the

replacement TLB entry. The contents of the EntryLo register are undefined. The EPC register contains

the address of the instruction that caused the exception, unless this instruction is in a branch delay slot,

in which case the EPC register contains the address of the preceding branch instruction and the BD bit

of the Cause register is set.

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual

address to fetch memory locations containing the physical page frame and access control bits for a pair

of TLB entries. The two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi and EntryLo

registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access control information

is on a page that is not resident in the TLB. This condition is processed by allowing a TLB Refill

exception in the TLB refill handler. This second exception goes to the common exception vector

because the EXL bit of the Status register is set.

Chapter 5 CPU Exception Processing

128

TLB Invalid Exception

Cause

The TLB Invalid exception occurs when a virtual address reference matches a TLB entry that is marked

invalid (TLB valid bit is cleared). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field

of the Cause register is set. This indicates whether the instruction, as shown by the EPC register and

BD bit in the Cause register, caused the miss by an instruction reference, load operation, or store

operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual

address that failed address translation. The EntryHi register also contains the ASID from which the

translation fault occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless this

instruction is in a branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction and the BD bit of the Cause register is set.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

ï a virtual address does not exist

ï the virtual address exists, but is not in main memory (a page fault)

ï a trap is desired on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLBP (TLB Probe),

and replaced by an entry with that entry's Valid bit set.

Chapter 5 CPU Exception Processing

129

TLB Modified

Cause

The TLB Modified exception occurs when a store operation virtual address reference to memory

matches a TLB entry that is marked valid but is not dirty and therefore is not writable. This exception is

not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual

address that failed address translation. The EntryHi register also contains the ASID from which the

translation fault occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless that

instruction is in a branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access

control information. The page identified may or may not permit write accesses; if writes are not

permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable by the kernel in its own data

structures. The TLBP instruction places the index of the TLB entry that must be altered into the Index

register. The EntryLo register is loaded with a word containing the physical page frame and access

control bits (with the D bit set), and the EntryHi and EntryLo registers are written into the TLB.

Chapter 5 CPU Exception Processing

130

Cache Error Exception

Cause

The Cache Error exception occurs when either a primary cache parity error or a System bus parity error

is detected. This exception is not maskable, but error detection may be disabled by the DE bit of the

Status register.

If a parity error is detected when the DE bit of Status register is not set, a cache error exception is taken

during one of the following operations:

ï an instruction fetch from instruction cache

ï a load from the data cache

ï tag parity check on a store

ïmain memory read by the processor

ïmost of the CACHE ops (no exception is taken for the CACHE ops Index Load Tag or Index Store

Tag)

In case of a parity or bus error on the second double word returned from memory for data cache, the

cache error exception is not taken and the cache line is marked invalid. This keeps the exceptions

precise, since the processor pipeline may have advanced after receipt of the critical word.

Processing

The processor sets the ERL bit in the Status register, saves the exception restart address in ErrorEPC

register, and then transfers to a special vector in uncached space.

If the BEV bit = 0, the vector is one of the following: 0xA000 0100 in 32-bit mode, or 0xFFFF FFFF

A000 0100 in 64-bit mode

If the BEV bit = 1, the vector is one of the following: 0xBFC0 0300 in 32-bit mode, or 0xFFFF FFFF

BFC0 0300 in 64-bit mode

No other registers are changed.

Servicing

All errors should be logged. To correct cache parity errors, the system uses the CACHE instruction to

invalidate the cache block, overwrites the old data through a cache miss, and resumes execution with

an ERET. Other errors are not correctable and are likely to be fatal to the current process.

Chapter 5 CPU Exception Processing

131

Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-out, backplane bus

parity errors, and invalid physical memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write

occurs synchronously; a Bus Error exception resulting from a buffered write transaction must be

reported using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode

field of the Cause register is set, signifying whether the instruction (as indicated by the EPC register

and BD bit in the Cause register) caused the exception by an instruction reference, load operation, or

store operation.

The EPC register contains the address of the instruction that caused the exception, unless it is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch

instruction and the BD bit of the Cause register is set.

Servicing

The physical address at which the fault occurred can be computed from information available in the

CP0 registers.

ï If the IBE code in the Cause register is set (indicating an instruction fetch reference), the virtual

address is contained in the EPC register (or 4 + the contents of the EPC register if the BD bit of the

Cause register is set).

ï If the DBE code is set (indicating a load or store reference), the instruction that caused the

exception is located at the virtual address contained in the EPC register (or 4 + the contents of the

EPC register if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by interpreting the instruction.

The physical address can be obtained by using the TLBP instruction and reading the EntryLo register to

compute the physical page number. The process executing at the time of this exception is handed a

UNIX SIGBUS (bus error) signal, which is usually fatal.

Chapter 5 CPU Exception Processing

132

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception

is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in

which case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Cause register is set; otherwise

this bit is cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-

execute; this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before

returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm, beyond the scope of

this description, may be required.

★

Chapter 5 CPU Exception Processing

133

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This

exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch delay slot, in

which case the EPC register contains the address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Cause register is set, otherwise the

bit is cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system routine.

Additional distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25:6),

and loading the contents of the instruction whose address the EPC register contains. A value of 4 must

be added to the contents of the EPC register (EPC register + 4) to locate the instruction if it resides in a

branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-

execute; this is accomplished by adding a value of 4 to the EPC register (EPC register + 4) before

returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is required to

resume execution.

★

Chapter 5 CPU Exception Processing

134

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor

instruction for either:

ï a corresponding coprocessor unit that has not been marked usable, or

ïCP0 instructions, when the unit has not been marked usable and the process executes in User or

Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the Cause register is

set. The contents of the Coprocessor Usage Error field of the coprocessor Cause register indicate

which of the four coprocessors was referenced. The EPC register contains the address of the

unusable coprocessor instruction unless it is in a branch delay slot, in which case the EPC register

contains the address of the preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the Coprocessor

Usage Error field, which results in one of the following situations:

ï If the process is entitled access to the coprocessor, the coprocessor is marked usable and the

corresponding state is restored to the coprocessor.

ï If the process is entitled access to the coprocessor, but the coprocessor does not exist or has

failed, interpretation of the coprocessor instruction is possible.

ï If the BD bit is set in the Cause register, the branch instruction must be interpreted; then the

coprocessor instruction can be emulated and execution resumed with the EPC register advanced

past the coprocessor instruction.

ï If the process is not entitled access to the coprocessor, the process executing at the time is handed

a UNIX SIGILL/ILL_PRIVIN_FAULT (illegal instruction/privileged instruction fault) signal. This error

is usually fatal.

Chapter 5 CPU Exception Processing

135

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following conditions occurs:

ï an attempt is made to execute an instruction with an undefined major opcode (bits 31:26)

ï an attempt is made to execute a SPECIAL instruction with an undefined minor opcode (bits 5:0)

ï an attempt is made to execute a REGIMM instruction with an undefined minor opcode (bits 20:16)

ï an attempt is made to execute 64-bit operations in 32-bit mode when in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status

register.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the Cause register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch delay slot, in

which case the EPC register contains the address of the preceding branch instruction and the BD bit of

the Cause register is set.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process executing at the time of this

exception is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault)

signal. This error is usually fatal.

Chapter 5 CPU Exception Processing

136

Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI,

TEQI, or TNEI� instruction results in a TRUE condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the Cause register is set.

The EPC register contains the address of the instruction causing the exception unless the instruction is

in a branch delay slot, in which case the EPC register contains the address of the preceding branch

instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of a Trap exception is handed a UNIX SIGFPE/FPE_INTOVF_TRAP

(floating-point exception/integer overflow) signal. This error is usually fatal.

� See Appendix A for a description of these instructions.

Chapter 5 CPU Exception Processing

137

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB� instruction

results in a 2's complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code in the Cause register is set.

The EPC register contains the address of the instruction that caused the exception unless the

instruction is in a branch delay slot, in which case the EPC register contains the address of the

preceding branch instruction and the BD bit of the Cause register is set.

Servicing

The process executing at the time of the exception is handed a UNIX SIGFPE/FPE_INTOVF_TRAP

(floating-point exception/integer overflow) signal. This error is usually fatal to the current process.

� See Appendix A for a description of these instructions.

Chapter 5 CPU Exception Processing

138

Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physical address specified in

the WatchLo/WatchHi System Control Coprocessor (CP0) registers. The WatchLo/WatchHi registers

specify whether a load or store or both could have initiated this exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the EXL bit is set in the Status register, and Watch is only

maskable by setting the EXL bit in the Status register.

Processing

The common exception vector is used for this exception, and the Watch code in the Cause register is

set.

The EPC register contains the address of the load or store instruction unless it is in a branch delay slot,

in which case the EPC register contains the address of the preceding branch instruction and the BD bit

of the Cause register is set.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control to a

debugger, allowing the user to examine the situation.

To continue, the Watch exception must be disabled to execute the faulting instruction. The Watch

exception must then be reenabled. The faulting instruction can be executed either by interpretation or

by setting breakpoints.

Chapter 5 CPU Exception Processing

139

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions is asserted. The significance

of these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the Int-Mask field of the

Status register, and all of the eight interrupts can be masked at once by clearing the IE bit of the Status

register.

Processing

The common exception vector is used for this exception, and the Int code in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that more than one

of the bits can be simultaneously set (or even no bits may be set) if the interrupt is asserted and then

deasserted before this register is read.

The EPC register contains the address of the instruction which causes the exception unless it is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch

instruction and the BD bit of the Cause register is set.

Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or SW0), the interrupt

condition is cleared by setting the corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting the condition

causing the interrupt pin to be asserted.

Chapter 5 CPU Exception Processing

140

5.5 Exception Handling and Servicing Flowcharts
The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their

handlers:

ï general exceptions and their exception handler

ï TLB/XTLB miss exception and their exception handler

ï cache error exception and its handler

ïCold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by

software (SW).

Chapter 5 CPU Exception Processing

141

Exceptions other than Cold Reset, Soft Reset, NMI, CacheError, or TLB Refill

Note: Interrupts can be masked by IE or IMs

and Watch is postponed if EXL = 1

EXL <- 1

= 1 (bootstrap)= 0 (normal)

Check if exception within
another exception

EnHi, X/Context are set only
for *TBL-Invalid, Modified, &
Refill exceptions

Enhi <- VPN2, ASID
Context <- VPN2

Set Cause Register
EXCCode, CE

To General Exception Servicing Guidelines

Yes Instr.in
Br.Dly.Slot

?

EXL
(SR1)

BEV

PC <- 0x8000 0000 + 180
(unmapped, cached)

PC <- 0xBFC0 0200 + 180
(unmapped, uncached)

EXL
(SR1)

Cause 31 (BD) <- 1
EPC <- (PC - 4)

Cause 31 (BD) <- 0
EPC <- PC

(Base is sign extended for 64 bits)

BadVA is set only for TBL
Invalid, Modified, and Refill
exceptions
Note: Not set if Bus Error
Exception

Processor forced to Kernel
Mode & interrupt disabled

Comments

No

= 1

= 1

= 0
= 0

Figure 5-14 General Exception Handler (HW)

Chapter 5 CPU Exception Processing

142

Comments

Reset the processor

(optional - only to enable Interrupts while keeping Kernel Mode)

• After EXL = 0, all exceptions allowed.
(except interrupt if masked by IE or IM and CacheError if
masked by DE)

• Unmapped vector so TLBMod, TLBInv, TLB Refill
exceptions not possible

• EXL = 1 so Watch, Interrupt exceptions disabled
• OS/System to avoid all other exceptions
• Only CacheError, Cold Reset, Soft Reset, NMI

exceptions possible.

MTC0 -
(Set Status Bits:)
KSU <- 00
EXL <- 0
& IE = 1

MFC0 -
X/Context
EPC
Status
Cause

ERET

Service Code

Check CAUSE REG. & Jump to
appropriate Service Code

Status
bit 21 (TS)

= 0

= 1

• Save Register File

EXL = 1

MTC0 -
EPC
STATUS

• ERET is not allowed in the branch delay slot of another
Jump Instruction

• Processor does not execute the instruction which is in
the ERET’s branch delay slot

• PC <- EPC; EXL <- 0

Optional: Check only if 2nd-level TLB miss

Figure 5-15 General Exception Servicing Guidelines (SW)

Chapter 5 CPU Exception Processing

143

EXL <- 1
Processor forced to Kernel Mode &
interrupt disabled

= 1 (bootstrap)= 0 (normal)

Enhi <- VPN2, ASID
Context <- VPN2
Set Cause Reg.

EXCCode

To TLB/XTLB Exception Servicing Guidelines

Yes Instr.in
Br.Dly.Slot

?

BEV
(SR bit 22)

PC <- 0x8000 0000 + Vec.Off.
(unmapped, cached)

PC <- 0xBFC0 0200 + Vec.Off.
(unmapped, uncached)

Vec. Off. = 0x080 Vec. Off. = 0x000 Vec. Off. = 0x180

NY XTLB
Exception

?

No

EXL
(SR bit 1)

EXL
(SR bit 1)

Cause 31 (BD) <- 0
EPC <- PC

Cause 31 (BD) <- 1
EPC <- (PC-4)

Check if exception within
another exception

= 1

= 1

= 0

= 0

Points to Refill Exception Points to General Exception

(Base is sign extended for 64 bits)

Figure 5-16 TLB/XTLB Miss Exception Handler (HW)

Chapter 5 CPU Exception Processing

144

Comments

• Unmapped vector so TLBMod, TLBInv, TLB Refill
exceptions not possible

• EXL = 1 so Watch, Interrupt exceptions disabled
• OS/System to avoid all other exceptions
• Only CacheError, Cold Reset, Soft Reset, NMI

exceptions possible.

MFC0 -
CONTEXT

ERET

Service Code

• ERET is not allowed in the branch delay slot of another
Jump Instruction

• Processor does not execute the instruction which is in
the ERET’s branch delay slot

• PC <- EPC; EXL <- 0

• Load the mapping of the virtual address in X/Context
Reg. Move it to ENLO and Write into the TLB

• There could be a TLB miss again during the mapping of
the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

Figure 5-17 TLB/XTLB Exception Servicing Guidelines (SW)

Chapter 5 CPU Exception Processing

145

Note: Can be masked/disabled by DE (SR16) bit = 1

Check ERL; if ERL = 1, cache error is masked

ERL <- 1

= 1 (bootstrap)= 0 (normal)

Set CacheErr Reg.

= 1

ERL

Instr.in
Br.Dly.Slot?

BEV

PC <- 0xA000 0000 + 100
(unmapped, uncached)

PC <- 0xBFC0 0200 + 100
(unmapped, uncached)

• Unmapped Uncached vector so TLB related & Cache
Error Exception not possible

• ERL = 1 so Watch and Interrupt exceptions disabled
• OS/System to avoid all other exceptions
• Only Cold Reset, Soft Reset, NMI exceptions possible.

Service Code

ERET

• ERET is not allowed in the branch delay slot of another
Jump Instruciton

• Processor does not execute the instruction which is in
the ERET’s branch delay slot

• PC <- ErrorEPC; ERL <- 0

ErrEPC <- PCErrEPC <- (PC - 4)

= 0

Yes

No

(Base is sign extended for 64 bits)

S
er

vi
ci

ng
 G

u
id

el
in

es
 (

S
W

)
C

ac
he

 E
rr

or
 E

xc
e

p
ti

o
n

 H
an

d
lin

g
 (

H
W

)

Comments

Figure 5-18 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)

Chapter 5 CPU Exception Processing

146

ErrEPC <- (PC - 4)

Status:
BEV <- 1
TS <- 0
SR <- 1
ERL <- 1

ErrEPC <- PC

Soft Reset or NMI
Exception

= 1
ERL

= 0

NoYes Instr.in
Br.Dly.Slot?

PC <- 0xBFC0 0000

NMI Service Code

Cold Reset Service CodeSoft Reset Service Code

Note: There is no indication from
the processor to differentiate
between NMI & Soft Reset;
there must be a system level
indication.

ERET

ErrEPC <- (PC - 4)

Random <- TLBENTRIES - 1
Wired <- 0
Config <- Update (31:6) II Undef (5:0)
Status:

BEV <- 1
TS <- 0
SR <- 0
ERL <- 1

ErrEPC <- PC

Cold Reset
Exception

= 1
ERL

NoYes Instr.in
Br.Dly.Slot?

Yes
NMI?

No

= 0
Status bit
20 (SR)

= 1

= 0

(Optional)

C
ol

d
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (
S

W
)

C
ol

d
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)

Figure 5-19 Cold Reset, Soft Reset & NMI Exception Handling (HW) and

Servicing Guidelines (SW)

Chapter 6 V R4100 Processor Signal Descriptions

147

‚l‚r

VR4100 Processor Signal Descriptions

6

This chapter describes the signals used by and in conjunction with the VR4100

processor. The signals include the System interface, the Clock/Control interface,

the Interrupt interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing asterisk -- for

instance, the low-active External Request signal is

EReq. The signal description

also tells if the signal is an input (the processor receives it) or output (the processor

sends it out).

Figure 6-1 illustrates the functional groupings of the processor signals.

Chapter 6 V R4100 Processor Signal Descriptions

148

VR4100
Logic

Symbol

EValid
SysCmdP

SysCmd (4:0)
SysADC (3:0)
SysAD (31:0)

MasterOut
MasterClock

Div2
HizParity
VDDP

Interrupt
Interface

C
lock/C

ontrol Interface

In
iti

al
iz

at
io

n
In

te
rf

ac
e

S
ys

te
m

 In
te

rf
ac

e
BigEndian

GndP

Int (4:0)

NMI

32

5

4

TClock

5

PValid

EReq

PReq

ERdy

PMaster

Fault

ColdReset

Reset

Figure 6-1 V R4100 Processor Signals

Chapter 6 V R4100 Processor Signal Descriptions

149

6.1 VR4100 Signals

System Interface Signals

System interface signals provide the connection between the VR4100 processor and the other

components in the system.

Table 6-1 lists the system interface signals.

Name Definition Direction Description

SysAD (31:0) System address/data bus In/Out A 32-bit address and data bus for communication between the
processor and an external agent

SysADC (3:0) System address/data
check bus

In/Out A 4-bit bus containing check bits for the SysAD bus (one even-
parity bit per byte)

SysCmd (4:0) System command/data
identifier

In/Out A 5-bit bus for command and data identifier transmission
between the processor and an external agent

SysCmdP System command/data
identifier bus parity

In/Out A single, even-parity bit for the SysCmd bus

EValid External agent Valid In Signal that the external agent is driving a valid address or valid
data on the SysAD bus and a valid command or data identifier
on the SysCmd bus during this cycle

PValid Processor Valid Out Signal that the processor is driving a valid address or valid data
on the SysAD bus and a valid command or data identifier on the
SysCmd bus during this cycle

EReq External Request In Signal that the external agent requests system interface bus
ownership

PReq Processor Request Out Signal that the processor requests system interface bus
ownership

Table 6-1 System Interface Signals

Chapter 6 V R4100 Processor Signal Descriptions

150

Name Definition Direction Description

PMaster Processor Master Out Signal that the processor is the master of the system interface
bus

ERdy External Ready In Signal that an external agent is capable of accepting a
processor request

Fault Fault Out Signal that the SysCmd bus parity error occurred

Table 6-1 (cont.) System Interface Signals

Chapter 6 V R4100 Processor Signal Descriptions

151

Clock/Control Interface Signals

The Clock/Control interface signals make up the interface for clocking and maintenance. Table 6-2

lists the Clock/Control interface signals.

Name Definition Direction Description

TClock Transmit clock Out Transmit clock at the operational frequency of the System
interface

MasterClock Master clock In Master clock input that establishes the processor operating
frequency

MasterOut MasterClock Out Out Master clock output aligned with MasterClock

BigEndian BigEndian byte order In Indicates the System interface byte ordering of data

Div2 Divide frequency In Assertion of

Div2 causes the System interface to run at one-
half of the PClock. De-assertion of

Div2 causes the System
interface to run at the same frequency of the PClock.

HizParity Hi-Z parity mode In When asserted, this signal disconnects parity terminals
electrically and disenabled to detect bus parity error. VR4100
generates parity bits for the cache data.

VDDP Quiet VDD for PLL In Quiet VDD for the internal phaselocked loop.

GndP Quiet Gnd for PLL In Quiet Gnd for the internal phaselocked loop.

Table 6-2 Clock/Control Interface Signals

★

Chapter 6 V R4100 Processor Signal Descriptions

152

Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external agents to interrupt the VR4100.

Table 6-3 lists the Interrupt interface signals.

Name Definition Direction Description

Int [4:0] Interrupt In General processor interrupt

NMI Nonmaskable interrupt In Nonmaskable interrupt signal

Table 6-3 Interrupt Interface Signals

Initialization Interface Signals

The Initialization interface signals make up the interface by which an external agent initializes the

processor operating parameters. Table 6-4 lists the Initialization interface signals.

Name Definition Direction Description

ColdReset Cold Reset In This signal must be asserted for a Cold Reset. The clocks
SClock and TClock begin to cycle and are synchronized with
the de-asserted edge of ColdReset.

ColdReset must be de-
asserted synchronously with MasterOut.

Reset Soft Reset In This signal must be asserted for any reset sequence. It can be
asserted synchronously or asynchronously for a Cold Reset, or
synchronously to initiate a Soft Reset.

Reset must be de-
asserted synchronously with MasterOut.

Table 6-4 Initialization Interface Signals

Chapter 6 V R4100 Processor Signal Descriptions

153

6.2 Signal Summary
This section shows the pinouts and layouts for the VR4100.

Gnd
HizParity
Gnd
VDD

BigEndian
SysAD[0]
SysAD[1]
SysAD[2]
SysAD[3]
SysAD[4]
SysAD[5]
SysAD[6]
SysAD[7]
SysADC[0]
Gnd
VDD

SysAD[8]
Gnd
VDD

SysAD[9]
SysAD[10]
SysAD[11]
SysAD[12]
SysAD[13]
VDD

VDD

EReq

ERdy

EValid

PValid

PMaster
SysCmdP

SysCmd[4]
VDD

Gnd
SysCmd[3]
SysCmd[2]
SysCmd[1]

VDD

Gnd
SysCmd[0]
SysADC[3]

VDD

Gnd
SysAD[31]
SysAD[30]
SysAD[29]
SysAD[28]
SysAD[27]

Gnd

V
D

D

S
ys

A
D

[2
6]

S
ys

A
D

[2
5]

S
ys

A
D

[2
4]

S
ys

A
D

C
[2

]
S

ys
A

D
[2

3]
G

nd V
D

D

V
D

D

G
nd

S
ys

A
D

[2
2]

S
ys

A
D

[2
1]

S
ys

A
D

[2
0]

V
D

D

G
nd

S
ys

A
D

[1
9]

G
nd V
D

D

S
ys

A
D

[1
8]

S
ys

A
D

[1
7]

S
ys

A
D

[1
6]

S
ys

A
D

C
[1

]
S

ys
A

D
[1

5]
S

ys
A

D
[1

4]
G

nd

G
nd

__
__

__
__

_

P
R

eq
__

__
_

In
t

[4
]

__
__

_

In
t

[3
]

__
__

_

In
t

[2
]

__
__

_

In
t

[1
]

__
__

_

In
t

[0
]

__
__

__
__

F
au

lt
__

__
__

N
M

I
__

__
__

__
_

R
es

et
G

nd
V

D
D

G
nd

V
D

D
__

__
__

_

D
iv

2
M

as
te

rO
ut

M
as

te
rC

lo
ck

T
C

lo
ck

G
nd

N
C

__
__

__
__

__
__

__
__

__

C
ol

dR
es

et
G

nd
G

nd
P

V
D

D
P

V
D

D

µPD30100GC-40-7EA

100

76

75 51

50

26
251

Figure 6-2 V R4100 100-pin TQFP Pinout

Chapter 6 V R4100 Processor Signal Descriptions

154

[MEMO]

Chapter 7 Initialization Interface

155

‚l‚r‚l‚r

Initialization Interface

7

This chapter describes the VR4100 Initialization interface, and the processor modes.

This includes the reset signal description and types, and initialization sequence, with

signals and timing dependencies, and the user-selectable VR4100 processor

modes.

Signal names are listed in bold letters -- for instance the signal MasterClock

indicates the processor clock. Low-active signals are indicated by bar over the

signal name, such as

ColdReset the power-on/Cold Reset signal.

Chapter 7 Initialization Interface

156

7.1 Functional Overview

The VR4100 processor has the following two types of resets; they use the

ColdReset and

Reset input

signals.

ïCold Reset is asserted after the power supply is stable and then restarts all clocks. A Cold Reset

completely reinitializes the internal state machine of the processor without saving any state

information.

ï Soft Reset restarts processor, but does not affect clocks. A Soft Reset preserves the processor

internal state. The VR4100 processor differs from the R4000 in that only sixteen cycles of

Reset

assertion are required.

After reset, the processor is bus master and drives the SysAD bus.

Care must be taken to coordinate system reset with other system elements. In general, bus or parity

errors immediately before, during, or after a reset may result in unpredicted behavior. Also, a small

amount of processor state is guaranteed as stable after a reset of the VR4100 processor, so extreme

care must be taken to correctly initialize the processor through software.

The operation of each type of reset is described in sections that follow. Refer to Figure 7-1 and Figure

7-2 later in this chapter for timing diagrams of the Cold and Soft Resets.

★

Chapter 7 Initialization Interface

157

7.2 Reset Signal Description

This section describes the two reset signals,

ColdReset and

Reset .

ColdReset : the

ColdReset signal must be asserted✝ (low) to reset the processor. The clocks SClock ,

and TClock begin to cycle and are synchronized with the deasserted edge (high) of

ColdReset .

Reset: the

Reset signal is asserted synchronously to initiate a Soft Reset. The

Reset signal must be

deasserted synchronously with MasterOut .

Cold Reset

A Cold Reset is used to completely reset the processor, including processor clocks. During a Cold

Reset, there is no guarantee of any chip state, except for the following register bits :

� Status register: TS, SR, which are set to zero, and ERL and BEV, which are set to one.

�Random register: initialized with 31.

�Wired register: initialized with 0.

�Config register: bit 31-28, 22-3 are initialized.

Once power to the processor is established the

ColdReset signal is asserted for 64,000 MasterClock

cycles to ensure time for the processor clocks to lock to the input MasterClock .

Reset must be asserted whenever

ColdReset is asserted;

Reset must remain asserted for 16 cycles

after the deassertion of

ColdReset .

BigEndian must be fixed 100 MasterClock cycles before the deassertion of

ColdReset and never

changed after the deassertion of

ColdReset

Div2 and HizParity must be fixed before the power on and never changed after the power on.

Upon reset, the processor becomes bus master and drives the SysAD bus. After

Reset is deasserted,

the processor branches to the Reset exception vector and begins executing the reset exception code.

✝ Asserted means the signal is true, or in its valid state. For example, the low-active

Reset signal is said to be
asserted when it is in a low (true) state; the high-active BigEndian signal is true when it is asserted high.

★

★

Chapter 7 Initialization Interface

158

Soft Reset

A Soft Reset is used to reset the processor without affecting the clocks; in other words, a Soft Reset is

a logic reset. In a Soft Reset, the processor retains as much state information as possible; all state

information except for the following is retained:

ï the Count register is initialized with 0.

ï the Status register BEV and SR bits are set (to 1)

ï the Status register TS bit is cleared (to a 0)

ï the Cause register TimerInterrupt bit is cleared

ï any SysAD-generated interrupts are cleared

ïNMI is cleared

ïConfig register is initialized

Assertion of the

Reset signal resets the processor without disrupting the clocks, and allows the

processor to retain as much of its state as possible. Since a Soft Reset takes effect immediately upon

assertion of the

Reset signal, multicycle operations such as a cache miss may be aborted with the

result of some loss of data.

A Soft Reset is started by assertion of the

Reset pin.

Reset must be asserted for a minimum of 16

cycles, and must be deasserted synchronously with MasterOut . In general, data in the processor is

preserved for debugging purposes.

Upon reset, the processor becomes bus master and drives the SysAD bus. After

Reset is deasserted,

the processor branches to the Reset exception vector and begins executing the reset exception code.

If

Reset is asserted in the middle of a SysAD transaction, care must be taken to reset all external

agents to avoid SysAD bus contention.

Figure 7-1 and Figure 7-2 show the timing diagrams for the Cold and Soft Resets.

★

★

★★

★

Chapter 7 Initialization Interface

159

at
 le

as
t 6

4K
 M

C
lk

 c
yc

le
s

at
 le

as
t 1

00
 M

C
lk

 c
yc

le
s

at
 le

as
t 1

6
M

C
lk

 c
yc

le
s

tD
H

tD
H

tD
S

tD
S

U
nd

ef
in

ed

U
nd

ef
in

ed

V
D

D

M
as

te
rC

lo
ck

(M
C

lk
)

C
ol

dR
es

et

R
es

et

B
ig

E
nd

ia
n

D
iv

2

H
iz

P
ar

ity

M
as

te
rO

ut

T
C

lo
ck

C
ol

d
R

es
et

Figure 7-1 Cold Reset

Chapter 7 Initialization Interface

160

at
 le

as
t 1

6
M

C
lk

 c
yc

le
s

tD
H

V
D

D

M
as

te
rC

lo
ck

R
es

et

M
as

te
rO

ut

T
C

lo
ck

tD
S

S
of

t R
es

et

Figure 7-2 Soft Reset

Chapter 7 Initialization Interface

161

7.3 VR4100 Processor Modes
The VR4100 processor supports several user-selectable modes. All modes except DivMode, and

BypassPLL are set/reset by writing to the Status register and Config register.

Power Modes

The VR4100 supports four power modes: Full Speed, Standby, Suspend and Hibernate mode. This

section describes these four modes.

Full Speed Mode

Normally the processor clock (PClock) operates at quadruple the MasterClock speed, and the System

interface clock (SClock) operates at half of the PClock speed, making it the twice frequency as

MasterClock .

Default state is normal clocking, and the chip returns to default state after any reset.

Suspend Mode

The users may set the processor to Suspend mode with SUSPEND Instruction. In the Suspend mode,

the processor stalls the pipeline, and quits supplying clocks to all of the units except PLL and Interrupt

unit. At the time, the contents of the registers and caches are kept, and TClock output is stopped. The

processor will stay in Suspend mode until an interrupt, NMI, Soft Reset, or Cold Reset is received. On

receipt of the interrupt, NMI, Soft Reset, or Cold Reset the processor will enter Full Speed mode.

Hibernate Mode

The users may set the processor to Hibernate mode with HIBERNATE instruction. In the Hibernate

mode, the processor quits supplying clocks to all of the units. At the time, the contents of the registers

and caches are kept, and TClock and MasterOut output is stopped. The processor will stay in

Hibernate mode until a Cold Reset is received. On receipt of the Cold Reset, the processor will enter

Full Speed mode. In this mode, power consumption is 0 W.

Standby Mode

In Standby mode, all internal clocks, except Timer/Interrupt unit, are frozen at hi level.

To enter Standby mode from FullSpeed mode, first execute the STANDBY instruction. When the

STANDBY instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after then

the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and the

system interface clocks, TClock and MasterOut , will continue to run.

Once the VR4100 is in Standby mode, any interrupt, including the internally generated timer interrupt,

NMI, Soft Reset, or Cold Reset will cause the VR4100 to exit Standby mode and to enter FullSpeed

mode.

Chapter 7 Initialization Interface

162

Privilege Modes

The VR4100 supports three modes of system privilege: kernel, supervisor, and user extended

addressing. This section describes these three modes.

Kernel Extended Addressing

If the KX bit in the Status register is set, it enables MIPS III opcodes in Kernel mode and causes TLB

misses on kernel addresses to use the Extended TLB Refill exception vector.

Supervisor Extended Addressing

If the SX bit in the Status register is set, it enables MIPS III opcodes in Supervisor mode and causes

TLB misses on supervisor addresses to use the Extended TLB Refill exception vector.

User Extended Addressing

If the UX bit in the Status register is set, it enables MIPS III opcodes in User mode and causes TLB

misses on user addresses to use the Extended TLB Refill exception vector. If the bit is clear, it enables

MIPS II opcodes and 32-bit address translation.

Reverse Endianess

When the RE bit in the Status register is set, endianess as seen by user software is reversed.

Bootstrap Exception Vector

This bit is used when diagnostic tests cause exceptions to occur prior to verifying proper operation of

the cache and main memory system.

When set, the Bootstrap Exception Vector (BEV) bit in the Status register causes the TLB refill

exception vector to be relocated to a virtual address of 0xFFFF FFFF BFC0 0200 and the general

exception vector relocated to address 0xFFFF FFFF BFC0 0380.

When BEV is cleared, these vectors are located at 0xFFFF FFFF 8000 0000 (TLB refill) and 0xFFFF

FFFF 8000 0180 (general).

Chapter 7 Initialization Interface

163

Cache Error Check

The CE bit in the Status register substitutes the 8-bit field in the PErr register for computed parity. On

stores, this enables the user to directly write the parity bits in the data cache, rather than having

computed parity bits used. The parity bits in the instruction cache can be directly written from the PErr

register using the Fill CACHE op and setting the CE bit. If CE is set, the Tag parity bit is written from

the TagLo register rather than computed from the tag.

Disable Errors

When the DE bit in the Status register is set, it specifies that the processor does not take an exception

on a cache parity error.

Interrupt Enable

When this bit is clear, interrupts are not allowed, with the exception of reset and the nonmaskable

interrupt.

Chapter 7 Initialization Interface

164

[MEMO]

Chapter 8 Clock Interface

165

Clock Interface

8

This chapter describes the clock signals (“clocks”) used in the VR4100 processor.

The subject matter includes basic system clocks, system timing parameters,

connecting clocks to a phase-locked system, and connecting clocks to a system

without phase locking.

Chapter 8 Clock Interface

166

8.1 Signal Terminology
The following terminology is used in this chapter (and book) when describing signals:

ïRising edge indicates a low-to-high transition.

ï Falling edge indicates a high-to-low transition.

ïClock-to-Q delay is the amount of time it takes for a signal to move from the input of a device

(clock) to the output of the device (Q).

Figure 8-1 and Figure 8-2 illustrate these terms.

single clock cycle

1 2 3 4

high-to-low
transition

low-to-high
transition

Figure 8-1 Signal Transitions

Q
data in

clock input

Clock-to-Q
delay

data out

Figure 8-2 Clock-to-Q Delay

Chapter 8 Clock Interface

167

8.2 Basic System Clocks
The various clock signals used in the VR4100 processor are described below, starting with

MasterClock , upon which the processor bases all internal and external clocking.

MasterClock

The processor bases all internal and external clocking on the single MasterClock input signal. The

processor generates the clock output signal, MasterOut , at the same frequency as MasterClock .

MasterOut

The processor generates the clock output signal, MasterOut , at the same frequency as MasterClock .

MasterOut clocks external logic, such as the reset and interrupt logic. The edges of MasterOut align

with those of MasterClock immediately after

ColdReset is deasserted.

PClock

The processor generates an internal clock, PClock , it is normally four times the MasterClock

frequency and precisely aligns every other rising edge of PClock with the rising edge of MasterOut .

All internal registers and latches use PClock , which is the pipeline clock rate.

SClock

The VR4100 processor divides PClock by 2 programmed by

DIV2 pin to generate the internal clock

signal, SClock . The processor uses SClock to sample data at the system interface and to clock data

into the processor system interface output registers.

The first rising edge of SClock , after

ColdReset is deasserted, is aligned with the first rising edge of

MasterOut .

TClock

TClock (transmit clock) clocks the output registers of an external agent,� and can be a global system

clock for any other logic in the external agent.

� External agent is defined in Chapter 11.

Chapter 8 Clock Interface

168

TClock is identical to SClock . The edges of TClock align precisely with the edges of SClock .

tDS

tDH

tDM

tDO

Data Data Data Data

DDDD

21 3 4Cycle

MasterClock

MasterOut

PClock

SClock

TClock

SysAD Driven
by processor

SysAD Received
by processor

Figure 8-3 Processor Clocks, PClock-to-SClock Division by 2

Chapter 8 Clock Interface

169

8.3 System Timing Parameters
As shown in Figure 8-3 data provided to the processor must be stable a minimum of tDS nanoseconds

(ns) before the rising edge of TClock and be held valid for a minimum of tDH ns after the rising edge of

TClock .

Alignment to SClock

Processor data becomes stable a minimum of tDM ns and a maximum of tDO ns after the rising edge of

SClock . This drive-time is the sum of the maximum delay through the processor output drivers

together with the maximum clock-to-Q delay of the processor output registers.

Alignment to MasterOut

Certain processor inputs (specifically

ColdReset ,

Reset and

Int (4:0)) are sampled based on

MasterOut .

Phase-Locked Loop (PLL)

The processor aligns PClock , SClock , and TClock with internal phase-locked loop (PLL) circuits. By

their nature, PLL circuits are only capable of generating aligned clocks for MasterClock frequencies

within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or jitter; a clock aligned with

MasterClock by the PLL can lead or trail MasterClock by as much as the related maximum jitter

allowed by the individual vendor.

Chapter 8 Clock Interface

170

8.4 Connecting Clocks to a System without Phase Locking
When the VR4100 processor is used in a system in which the external agent cannot lock its phase to a

common MasterClock , the output clocks TClock can clock the remainder of the system. Two clocking

methodologies are described in this section: connecting to a gate-array device or connecting to discrete

CMOS logic devices.

Connecting to a Gate-Array Device

Figure 8-4 is a block diagram of a system without phase lock, using the VR4100 processor with an

external agent implemented as a gate array.

When connecting to a gate array device, TClock is used with the gate array. The gate array internal

buffers TClock and this buffered version of TClock should be the global system clock for the logic

inside the gate array and the clock for all registers that drive processor inputs, and sample processor

output.

Chapter 8 Clock Interface

171

State
Machine

VR4100

MasterClock

SysCmd

SysAD

TClock

MasterClock

Gate
Array

Controls

Figure 8-4 Gate-Array System without Phase Lock, using the V R4100 Processor

Chapter 8 Clock Interface

172

In a system without phase lock, the transmission time for a signal from the processor to an external

agent composed of gate arrays can be calculated from the following equation:

Transmission Time = (TClock period) - (tDO for VR4100)

+ (Minimum External Clock Buffer Delay)

- (External Sample Register Setup Time)

- (Maximum Clock Jitter for VR4100 Internal Clocks)

- (Maximum Clock Jitter for TClock)

The transmission time for a signal from an external agent composed of gate arrays to the processor in

a system without phase lock can be calculated from the following equation:

Transmission Time = (TClock period) - (tDS for VR4100)

- (Maximum External Clock Buffer Delay)

- (Maximum External Output Register Clock-to-Q Delay)

- (Maximum Clock Jitter for TClock)

- (Maximum Clock Jitter for VR4100 Internal Clocks)

Chapter 8 Clock Interface

173

Connecting to a CMOS Logic System

When processor output clock are supplied to many devices, use external clock buffers. Calculating the

transmission time needs clock buffer delay.

The transmission time for a signal from the processor to an external agent composed of discrete

CMOS logic devices can be calculated from the following equation:

Transmission Time = (TClock period) - (tDO for VR4100)

+ (Minimum Delay Mismatch for External ClockBuffer)

- (Setup Time for External Input Buffer)

- (Maximum Clock Jitter for VR4100 Internal Clocks)

- (Maximum Clock Jitter for TClock)

Figure 8-5 is a block diagram of a system without phase lock, employing the VR4100 processor and an

external agent composed of both a gate array and discrete CMOS logic devices.

★

Chapter 8 Clock Interface

174

State
Machine

VR4100

MasterClock

SysCmd

SysAD

TClock

MasterClock

Controls

Memory

Control Gate
Array

Figure 8-5 Gate Array and CMOS System without Phase Lock, using the V R4100 Processor

Chapter 8 Clock Interface

175

The transmission time for a signal from an external agent composed of discrete CMOS logic devices

can be calculated from the following equation:

Transmission Time = (TClock period) - (tDS for VR4100)

- (Maximum External Output Register Clock-to-Q Delay)

- (Maximum External Clock Buffer Delay)

- (Maximum Clock Jitter for VR4100 Internal Clocks)

- (Maximum Clock Jitter for TClock)

★

Chapter 8 Clock Interface

176

[MEMO]

Chapter 9 Power Mode

177

Power Mode

9

This chapter describes in detail the VR4100 Power modes: FullSpeed mode,

Standby mode, Suspend mode and Hibernate mode.

Chapter 9 Power Mode

178

9.1 VR4100 Power Mode
The VR4100 processor supports four power modes:

ï FullSpeed mode

ï Standby mode

ï Suspend mode

ïHibernate mode

These modes are described in the next sections.

Chapter 9 Power Mode

179

Power Mode State Machine

Figure 9-1 shows Power mode State machine.

To enter Standby mode, Suspend mode and Hibernate mode from FullSpeed mode, execute special

instructions, STANDBY, SUSPEND and HIBERNATE instructions.

To return FullSpeed mode from Standby mode or Suspend mode, generate interrupt or NMI, or execute

SoftReset or ColdReset sequence.

To return FullSpeed mode from Hibernate mode, execute ColdReset sequence.

Table 9-1 shows Power mode overview.

Standby mode

FullSpeed mode Suspend mode

Hibernate mode

STANDBY Instruction
& Pipeline Flush
& SysAD Idle state
& PClock High

(2) Int, NMI,
SoftReset
ColdReset

(3)

(4) Int, NMI, SoftReset, ColdReset

HIBERNATE Instruction
& Pipeline Flush
& SysAD Idle state
& PClock High
& TClock High
& MasterOut High

(5)

ColdReset

(1)

(6)

SUSPEND Instruction
& Pipeline Flush
& SysAD Idle state
& PClock High
& TClock High

(6)

(6)

State transition maximum time
(1) SysAD Idle time + 4 MasterClock cycles
(2) 4 MasterClock cycles
(3) SysAD Idle time + 4 MasterClock cycles
(4) 4 MasterClock cycles
(5) SysAD Idle time + 4 MasterClock cycles
(6) PLL Lock time + 16 MasterClock cycles
Note: PLL Lock time is about 8 [ms]
Condition: PClock frequency is 33MHz

Figure 9-1 Power Mode State Machine

Chapter 9 Power Mode

180

Mode PLL MasterOut Timer/Interrupt TClock
(Bus clock)

PClock
(Pipeline

clock)

Restart Event

FullSpeed ON ON ON ON ON ---

Standby ON ON ON ON OFF Int, NMI, SoftReset, ColdReset

Suspend ON ON ON OFF OFF Int, NMI, SoftReset, ColdReset

Hibernate OFF OFF OFF OFF OFF ColdReset

Table 9-1 Power Mode Overview

FullSpeed Mode

In FullSpeed mode, all internal clocks and all system interface clocks are active. In FullSpeed mode,

VR4100 can execute every functions.

Figure 9-2 shows FullSpeed mode Clocking.

PClock

TClock

MasterOut

MasterClock

Figure 9-2 FullSpeed Mode Timing Chart: In Div2 Mode

Chapter 9 Power Mode

181

Standby Mode

In Standby mode, all internal clocks, except Timer/Interrupt unit, are frozen at high level.

To enter Standby mode from FullSpeed mode, first execute the STANDBY instruction. When the

STANDBY instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after then

the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and the

system interface clocks, TClock and MasterOut, will continue to run.

Once the VR4100 is in Standby mode, any interrupt, including the internally generated timer interrupt,

NMI, SoftReset and ColdReset will cause the VR4100 to exit Standby mode and to enter FullSpeed

mode.

Note : When a interrupt, NMI, SoftReset or ColdReset is detected after RF pipeline stage of STANDBY

instruction but before clock stop, STANDBY instruction is nullified.

Figure 9-3 shows Standby mode timing chart.

PClock

TClock

MasterOut

MasterClock

Intn

Standby mode

Instruction Fetch Start

<4 MasterClock cycles

Figure 9-3 Standby Mode Timing Chart: In Div2 Mode

★

Chapter 9 Power Mode

182

Suspend Mode

In Suspend mode, all internal clocks, except Timer/Interrupt unit, and the TClock are frozen at high

level.

To enter Suspend mode from FullSpeed mode, first execute the SUSPEND instruction. When the

SUSPEND instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after then

the internal clocks and the TClock will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt

clocks and MasterOut, will continue to run.

Once the VR4100 is in Suspend mode, any interrupt, including the internally generated timer interrupt,

NMI, SoftReset and ColdReset will cause the VR4100 to exit Suspend mode and to enter FullSpeed

mode.

Note : When a interrupt, NMI, SoftReset or ColdReset is detected after RF pipeline stage of SUSPEND

instruction but before clock stop, SUSPEND instruction is nullified.

Figure 9-4 shows Suspend mode timing chart.

PClock

TClock

MasterOut

MasterClock

Intn

Suspend mode

Instruction Fetch Start

<4 MasterClock cycles

Figure 9-4 Suspend Mode Timing Chart: In Div2 Mode

★

Chapter 9 Power Mode

183

Hibernate Mode

In Hibernate mode, all internal clock, include Timer/Interrupt unit, and all system interface clocks are

frozen at high level.

To enter Hibernate mode from FullSpeed mode, first execute the HIBERNATE instruction. When the

HIBERNATE instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after

then the internal clocks and the system interface clocks will shut down, thus freezing the pipeline.

Once the VR4100 is in Hibernate mode, the ColdRest sequence will cause the VR4100 to exit Hibernate

mode and to enter FullSpeed mode.

Figure 9-5 shows Hibernate mode timing chart.

PClock

TClock

MasterOut

MasterClock

Reset

Hibernate mode

Instruction Fetch Start

>16 MasterClock cycles

ColdReset

PLL Lock time

Figure 9-5 Hibernate Mode Timing Chart: In Div2 Mode

Chapter 9 Power Mode

184

[MEMO]

Chapter 10 Cache Organization and Operation

185

‚l‚r

Cache Organization and Operation

10

This chapter describes in detail the cache memory: its place in the VR4100 memory

organization, and individual organization of the caches.

This chapter uses the following terminology:

• The data cache may also be referred to as the D-cache.

• The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Chapter 10 Cache Organization and Operation

186

10.1 Memory Organization
Figure 10-1 shows the VR4100 system memory hierarchy. In the logical memory hierarchy, the

caches lie between the CPU and main memory. They are designed to make the speedup of memory

accesses transparent to the user.

Each functional block in Figure 10-1 has the capacity to hold more data than the block above it. For

instance, physical main memory has a larger capacity than the caches. At the same time, each

functional block takes longer to access than any block above it. For instance, it takes longer to

access data in main memory than in the CPU on-chip registers.

Registers Registers

Cache

VR4100

C
ac

he
s

R
eg

is
te

rs

Main Memory

M
em

or
y

Disk, CD-ROM,
Tape, etc.

P
er

ip
he

ra
ls

Faster Access
Time

Increasing Data
Capacity

I-cache D-cache

Figure 10-1 Logical Hierarchy of Memory

The VR4100 processor has two on-chip caches: one holds instructions (the instruction cache), the

other holds data (the data cache). The instruction and data caches can be read in one PClock cycle.

Data writes are pipelined and can complete at a rate of one per PClock cycle. In the first stage of the

cycle, the store address is translated and the tag is checked; in the second stage, the data is written

into the data RAM.

Chapter 10 Cache Organization and Operation

187

10.2 Cache Organization
This section describes the organization of the on-chip data and instruction caches. Figure 10-2

provides a block diagram of the VR4100 cache and memory model.

Main Memory

VR4100

Cache Controller

I-cache

D-cache

Caches
I-cache
D-cache

Instruction cache
Data cache

Figure 10-2 V R4100 Cache Support

Cache Line Lengths

A cache line is the smallest unit of information that can be fetched from main memory for the cache,

and that is represented by a single tag.�

The line size for the instruction/data cache is 4 words (16 bytes).

Cache Sizes

The VR4100 instruction cache is 2 Kbytes; the data cache is 1 Kbytes.

� Cache tags are described in the following sections.

Chapter 10 Cache Organization and Operation

188

Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (although it is actually an instruction, it is referred to as data to distinguish it

from its tag) has an associated 24-bit tag that contains a 22-bit physical address, a single Valid bit,

and a single Parity bit. Word parity is used on I-cache data (1 bit of parity per word).

The VR4100 processor I-cache has the following characteristics:

ï direct-mapped

ï indexed with a virtual address

ï checked with a physical tag

ï organized with a 4-word (16-byte) cache line.

Figure 10-3 shows the format of a 4-word (16-byte) I-cache line.

23 22

P V PTag

021

1 1 22

DataDataP

31 0

DataDataP

DataDataP

DataDataP

32

P
V
PTag

DataP
Data

Even parity for the PTag
Valid bit
Physical tag
(bits 31:10 of the physical address)
Even parity for the data
I-cache data

Figure 10-3 V R4100 4-Word I-Cache Line Format

Chapter 10 Cache Organization and Operation

189

Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 26-bit tag that contains a 22-bit physical address, a Valid

bit, a Parity bit, a Write-back bit, and a parity bit for Write-back.

The VR4100 processor D-cache has the following characteristics :

ïwrite-back

ï direct-mapped

ï indexed with a virtual address

ï checked with a physical tag

ï organized with a 4-word (16-byte) cache line.

Figure 10-4 shows the format of a 4-word (16-byte) D-cache line.

W' W P V PTag

25 24 23 22 0

0636471

1 1 1 1 22

Data

Data

DataP

DataP

W'
W

P
V
PTag

DataP
Data

Even parity for the write-back bit
Write-back bit
(set if cache line has been written)
Even parity for the PTag
Valid bit
Physical tag
(bits 31:10 of the physical address)
Even parity for the data
I-cache data

Figure 10-4 V R4100 4-Word Data Cache Line Format

Chapter 10 Cache Organization and Operation

190

Accessing the Caches

Figure 10-5 shows the virtual address (VA) index into the caches. The number of virtual address bits

used to index the instruction and data caches depends on the cache size.

For example, VA (9:4) accesses the 1-Kbyte page tag in the data cache with its 4-word line: VA (9)

addresses 1 Kbytes and VA (4) provides quadword resolution.

Similarly, VA (10:4) accesses an 4-word tag in a 2 Kbyte I-cache: VA (4) provides quadword resolution

and VA (10) addresses 2 Kbytes.

Tags

Tag line

Tags

Tags

Tags

Tag line

Data

Data line

Tags

Tags

Tag line

Tags

Tag line

P V Tag W

Data Instruction

64 32

VA (9:4) for 1 Kbyte D-cache
and

VA (10:4) for 2 Kbyte I-cache
VA (9:4)

to
VA (10:4)

Figure 10-5 Cache Data and Tag Organization

★

Chapter 10 Cache Organization and Operation

191

10.3 Cache Operations
As described earlier, caches provide fast temporary data storage, and they make the speedup of

memory accesses transparent to the user. In general, the processor accesses cache-resident

instructions or data through the following procedure:

1. The processor, through the on-chip cache controller, attempts to access the next instruction or

data in the appropriate cache.

2. The cache controller checks to see if this instruction or data is present in the cache.

ï If the instruction/data is present, the processor retrieves it. This is called a cache hit.

ï If the instruction/data is not present in the cache, the cache controller must retrieve it from

memory. This is called a cache miss.

3. The processor retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places simultaneously: main memory and cache. This

data is kept consistent through the use of a write-back methodology; that is, modified data is not

written back to memory until the cache line is to be replaced.

Instruction and data cache line replacement operations are described in the following sections.

Chapter 10 Cache Organization and Operation

192

Cache Write Policy

The VR4100 processor manages its data cache by using a write-back policy; that is, it stores write

data into the cache, instead of writing it directly to memory. Some time later this data is independently

written into memory. In the VR4100 implementation, a modified cache line is not written back to

memory until the cache line is to be replaced either in the course of satisfying a cache miss, or during

the execution of a write-back CACHE instruction.

When the processor writes a cache line back to memory, it does not ordinarily retain a copy of the

cache line, and the state of the cache line is changed to invalid.

Chapter 10 Cache Organization and Operation

193

10.4 Cache States
The three terms below are used to describe the state of a cache line:

ïDirty : a cache line containing data that has changed since it was loaded from memory.

ïClean : a cache line that contains data that has not changed since it was loaded from memory.

ï Invalid : a cache line that does not contain valid information must be marked invalid, and cannot

be used. For example, after a Soft Reset, software sets all cache lines to invalid. A cache line in

any other state than invalid is assumed to contain valid information.�

The data cache supports three cache states:

ï invalid

ï valid clean

ï valid dirty

The instruction cache supports two cache states:

ï invalid

ï valid

The state of a valid cache line may be modified when the processor executes a CACHE operation.

CACHE operations are described in Chapter 14.

� Cold or Soft Reset does not set the cache state to invalid. The invalidation of caches is left to software.

Chapter 10 Cache Organization and Operation

194

10.5 Cache State Transition Diagrams
The following section describes the cache state diagrams for the data and instruction caches. These

state diagrams do not cover the initial state of the system, since the initial state is system-dependent.

Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load or store operation

may include one or more of the atomic read and/or write operations shown in the state diagram below,

which may cause cache state transitions.

ïRead (1) indicates a read operation from memory to cache, inducing a cache state transition.

ïWrite (1) indicates a write operation from processor to cache, inducing a cache state transition

ïRead (2) indicates a read operation from cache to the processor, which induces no cache state

transition

ïWrite (2) indicates a write operation from processor to cache, which induces no cache state

transition

Invalid

Valid
Dirty

Valid
Clean

Write (1)

Write Back

Read (2)Read (2)
Write (2)

CACHE opCACHE op

Read (1)

CACHE op

Figure 10-6 Data Cache State Diagram

Chapter 10 Cache Organization and Operation

195

Instruction Cache State Transition

The following diagram illustrates the instruction cache state transition sequence.

ïRead (1) indicates a read operation from memory to cache, inducing a cache state transition.

ïRead (2) indicates a read operation from cache to the processor, which induces no cache state

transition.

Valid Invalid
CACHE op

Read (1)Read (2)

Figure 10-7 Instruction Cache State Diagram

Chapter 10 Cache Organization and Operation

196

10.6 Cache Data Integrity
The D- and I-cache data RAM arrays are protected by parity. D- and I-cache tag RAM arrays are also

protected by parity.

These parity bits are checked for errors on every cache read access. The processor takes a cache

error exception if it encounters a parity error during an instruction cache access, a data cache access,

or memory read access. The CacheErr register indicates the source of the error.

Figure 10-8 to Figure 10-22 shows the parity generation and checking operations for various cache

accesses.

Instruction Fetch

OK, DE = 1
or ERL = 1

Start

Error
TagParity Cache Error

Exception

TagCheck

Refill

Desigerd
Data Parity

Miss or
Invalid

(See Figure 10-21)

OK, DE = 1
or ERL = 1

TagCheck

Data Fetch

END

Cache Error
Exception

Hit

Error

Figure 10-8 Data flow on Instruction Fetch

Chapter 10 Cache Organization and Operation

197

Data Load

OK, DE = 1
or ERL = 1

Start

Error
TagParity

TagCheck

Writeback
& Refill

Desigerd
Data Parity

Miss or
Invalid

(See Figure 10-22)

OK, DE = 1
or ERL = 1

TagCheck

Data Load
to register

END

Cache Error
Exception

Hit

Error

Valid bit &
Wbit

Wbit
Parity

Error Cache Error
Exception

Error Cache Error
Exception

Refill (See Figure 10-21)

OK, DE = 1
or ERL = 1

V = 1 (valid) and
W = 1 (dirty)

V = 0 (invalid) or
W = 0 (clean)

Figure 10-9 Data Integrity on Load Operations

Chapter 10 Cache Organization and Operation

198

Data Store

OK, DE = 1
or ERL = 1

Start

Error
TagParity

TagCheck

Writeback
& Refill

CEbit of
SR

Miss

(See Figure 10-22)

= 0

TagCheck

Data Write to
D-Cache

END

Hit

= 1

Valid bit &
Wbit

Wbit
Parity

Error Cache Error
Exception

Error Cache Error
Exception

Refill (See Figure 10-21)

OK, DE = 1
or ERL = 1

V = 1 (valid) and
W = 1 (dirty)

V = 0 (invalid) or
W = 0 (clean)

Data Parity
Generate

Data Parity
from PErr reg.

Figure 10-10 Data Integrity on Store Operations

Chapter 10 Cache Organization and Operation

199

Index_Invalidate

OK, DE = 1
or ERL = 1

Start

Error
TagParity Cache Error

Exception

Valid bit clear

END

Figure 10-11 Data Integrity on Index_Invalidate Operations

Index_Writeback_Invalidate

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

Valid bit

Writeback Data
Parity

(See Figure 10-20)

Wbit

Valid bit and
Wbit clear

END

Cache Error
Exception

= 0 (Invalid)

Error

= 1 (valid)

= 1 (dirty)

OK, DE = 1
or ERL = 1

= 0 (clean)

Figure 10-12 Data Integrity on Index_Writeback_Invalidate Operations

Chapter 10 Cache Organization and Operation

200

Index_Load_Tag
Start

D-Cache
only

END

Tag and Tag Parity
Read to TagLo

Wbit and Wbit Parity
Read to TagLo

Figure 10-13 Data Integrity on Index_Load_Tag Operations

Index_Store_Tag

D-Cache
only

Start

= 1CEbit of
SR

Tag Parity
Generate

END

Wbit Parity
Generate

Tag Write from
TagLo

Tag Parity
from TagLo

Wbit Parity
from TagLo

= 0

Figure 10-14 Data Integrity on Index_Store_Tag Operations

Chapter 10 Cache Organization and Operation

201

Create_Dirty

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback

Data
Parity

(See Figure 10-20)

Valid bit &
Wbit

Valid bit and
Wbit set.
Tag write.
Wbit parity

and Tag parity
generate.

END

Cache Error
Exception

Hit or
Invalid

Error

Miss

V = 1 (valid) and
W = 1 (dirty)

OK, DE = 1
or ERL = 1

V = 0
(invalid) or
W = 0
(clean)

Figure 10-15 Data Integrity on Create_Dirty Operations

Chapter 10 Cache Organization and Operation

202

Hit_Invalidate

Hit

Start

Error
TagParity Cache Error

Exception

Valid bit clear.
Tag parity generate.

END

TagCheck

OK, DE = 1
or ERL = 1

Miss or
Invalid

Figure 10-16 Data Integrity on Hit_Invalidate Operations

Chapter 10 Cache Organization and Operation

203

Hit_Writeback_Invalidate

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback

Data
Parity

(See Figure 10-20)

Wbit

Valid bit clear.
Tag parity generate.

END

Cache Error
Exception

Miss or Invalid

Error

Hit

= 1 (dirty)

OK, DE = 1
or ERL = 1

= 0 (clean)

Data
Parity

Cache Error
Exception

Error

OK, DE = 1
or ERL = 1

Figure 10-17 Data Integrity on Hit_Writeback_Invalidate Operations

Fill
Start

Refill(See Figure 10-21)

END

Figure 10-18 Data Integrity on Fill Operations

Chapter 10 Cache Organization and Operation

204

OK, DE = 1
or ERL = 1

Hit_Writeback

OK, DE = 1
or ERL = 1

Start

ErrorTag Parity,
Wbit Parity

Cache Error
Exception

TagCheck

Writeback Data
Parity

(See Figure 10-20)

Wbit

Wbit clear

END

Cache Error
Exception

Miss or Invalid

Error

Hit

= 1 (dirty)

= 0 (clean)

Wbit Parity check is
D-Cache only

D-Cache only

D-Cache only

Figure 10-19 Data Integrity on Hit_Writeback Operations

Chapter 10 Cache Organization and Operation

205

Writeback flow

OK, DE = 1
or ERL = 1

ErrorWriteback
Data Parity

EOD?

Yes

Errornous
bit = 0

OK, DE = 1
or ERL = 1

Error existed in
writeback dataWriteback

Data Parity
Cache Error
Exception

Errornous
bit = 1

Writeback
to memory

No

Figure 10-20 Data Integrity on Writeback Flow

Chapter 10 Cache Organization and Operation

206

OK, DE = 1, ERL = 1,
HizParity = 1 or
DataCheck bit = 1

SysADC

OK

Errornous bit

Refill flow

OK

Error
SysCmdP

EOD?

Yes

Error existed in
refill data

Cache Error
Exception

Fault pin
assert

Write data
to cache

No

Cache line
Invalidate

Bus Error
Exception

Cache line
Invalidate

Error existed in
refill data

Figure 10-21 Data Integrity on Refill Flow

Chapter 10 Cache Organization and Operation

207

OK, DE = 1, ERL = 1,
HizParity = 1 or
DataCheck bit = 1

SysADC

OK

Errornous bit

EOD?

Writeback
Data Parity

OK, DE = 1 or
ERL = 1

Writeback & Refill flow

OK, DE = 1
or ERL = 1

ErrorWriteback
Data Parity

EOD?

Yes

Error existed in
refill data

Cache Error
Exception

Writeback
to memory

No

Cache line
Invalidate

Bus Error
Exception

Cache line
Invalidate

Error existed in
refill data

Errornous
bit = 0

Errornous
bit = 1

SysCmdP

Refill start

Writeback
Data Parity

Write data
to cache

Fault pin
assert

Yes

Error

OK, DE = 1,
HizParity = 1 or
DataCheck bit = 1 Error existed in

writeback data

OK, DE = 1
or ERL = 1

Cache Error
Exception

Error existed in
writeback data

No

Figure 10-22 Data Integrity on Writeback & Refill Flow

Chapter 10 Cache Organization and Operation

208

Write-back Procedure : On a store miss write-back, data and tag parity is checked and data parity is

transferred to the write buffer. Byte parity is generated for the physical address and transferred to

write buffer. If an error is discovered on the data field, the write back is not terminated; the erroneous

data is still written out. If an error is discovered in the tag field, the write-back bus cycle is not issued.

In both cases a cache error exception is taken.

If a tag parity error occurs during a CACHE operation, the Cache Error exception is taken and the

operation is not permitted to complete.

10.7 Manipulation of the Caches by an External Agent
The VR4100 does not provide any mechanisms for an external agent to examine and manipulate the

state and contents of the caches.

Chapter 11 System Interface

209

’‚l‚r‚l‚r

System Interface

11

The System interface allows the processor to access external resources needed to

satisfy cache misses and uncached operations, while permitting an external agent

access to some of the processor internal resources.

This chapter describes the System interface from the point of view of both the

processor and the external agent.

Chapter 11 System Interface

210

11.1 Terminology
The following terms are used in this chapter:

� An external agent is any logic device connected to the processor, over the System interface, that

allows the processor to issue requests.

� A system event is an event that occurs within the processor and requires access to external

system resources. System events include: a load that misses in the instruction cache; a load that

misses in the data cache; a store that misses in the data cache; an uncached load or store;

actions resulting from the execution of cache instructions.

� Sequence refers to the precise series of requests that a processor generates to service a system

event.

� Protocol refers to the cycle-by-cycle signal transitions that occur on the System interface pins to

assert a processor or external request.

� Syntax refers to the precise definition of bit patterns on encoded buses, such as the command

bus.

� Block indicates any transfer larger than 8 bytes across the System interface.

� Single indicates any transfer of 4 bytes across the System interface.

� Fetch refers to the retrieval of information from the instruction cache.

� Load refers to the retrieval of information from the data cache.

Chapter 11 System Interface

211

11.2 System Interface Description
The VR4100 processor supports a 32-bit address/data interface. The System interface consists of:

� 32-bit address and data bus, SysAD

� 4-bit SysAD check bus, SysADC

� 5-bit command bus, SysCmd

� 1-bit SysCmd check bus, SysCmdP

� six handshake signals:

-

ERdy

-

EReq,

PMaster ,

PReq

-

EValid ,

PValid

The processor uses the System interface to access external resources such as cache misses and

uncached operations.

Chapter 11 System Interface

212

Physical Addresses

Physical addresses are driven on SysAD (31:0) during address cycles.

Addresses associated with non-block read and write requests are aligned for the size of the data

element.

� For word requests, the low order two bits of the address are zero.

� For half-word requests, the low order bit of the address is zero.

� For byte and tribyte requests, the address provided is a byte address.

The address when a block read or block write request is issued is aligned in double word units.

Therefore, the low-order 3 bits of the address become 0.

During cache access, the cache block's start address (low-order bits of address) is not necessarily

output. Subblock ordering is used as the method for setting the retrieval sequence for block data. For

details, refer to Subblock Ordering at the end of this chapter.

Interface Buses

Figure 11-1 shows the primary communication paths for the System interface: a 32-bit address and

data bus, SysAD (31:0), and a 5-bit command bus, SysCmd (4:0) . These SysAD and the SysCmd

buses are bidirectional; that is, they are driven by the processor to issue a processor request, and by

the external agent to issue an external request (see Processor and External Requests, in this chapter,

for more information).

A request through the System interface consists of:

� an address

� a System interface command that specifies the precise nature of the request

� a series of data elements if the request is for a write or read response.

Chapter 11 System Interface

213

VR4100 External Agent

SysAD (31:0)

SysCmd (4:0)

Figure 11-1 System Interface Buses

Chapter 11 System Interface

214

Address and Data Cycles

The SysCmd bus identifies the contents of the SysAD bus during any cycle in which it is valid. Cycles

in which the SysAD bus contains a valid address are called address cycles. Cycles in which the

SysAD bus contains valid data are called data cycles. The most significant bit of the SysCmd bus is

always used to indicate whether the current cycle is an address cycle or a data cycle. Validity is

determined by the state of the

EValid and

PValid signals (described in Interface Buses, in this

chapter).

When the VR4100 processor is driving the SysAD and SysCmd buses, the System interface is in

master state. When the external agent is driving the SysAD and SysCmd buses, the System

interface is in slave state.

�When the processor is master, it asserts the

PValid signal when the SysAD and SysCmd buses

are valid.

�When the processor is slave, an external agent asserts the

EValid signal when the SysAD and

SysCmd buses are valid.

The SysADC bus provides even byte parity for the SysAD bus, and the SysCmdP signal provides

even parity over the five bits of the SysCmd bus. Parity is driven by the current master and checked

by the corresponding slave.

�During address cycles [SysCmd (4) = 0], the remainder of the SysCmd bus, SysCmd (3:0) ,

contains a System interface command (the encoding of System interface commands is detailed in

System Interface Commands and Data Identifiers, in this chapter).

�During data cycles [SysCmd (4) = 1], the remainder of the SysCmd bus, SysCmd (3:0) , contains

a data identifier (the encoding of data identifiers is detailed in System Interface Commands and

Data Identifiers, in this chapter).

Chapter 11 System Interface

215

Issue Cycles

There are two types of processor issue cycles:

� processor read request

� processor write request

The processor samples the input signal

ERdy to determine the issue cycle for both processor

read/write requests.

As shown in Figure 11-2,

ERdy must be asserted one cycles prior to the address cycle of the

processor request to define the address cycle as the issue cycle.

1 2 3 4

Addr

SCycle

SClock

SysAD Bus

ERdy

5 6

Figure 11-2 State of

ERdy Signal for Processor Requests

Chapter 11 System Interface

216

The processor repeats the address cycle for the request until the conditions for a valid issue cycle are

met. After the issue cycle, the data transmission begins. There is only one issue cycle for any

processor request.

The processor accepts external requests, even while attempting to issue a processor request, by

releasing the System interface to slave state in response to an assertion of

EReq by the external

agent.

Note that the rules governing the issue cycle of a processor request are strictly applied to determine

the action the processor takes. The processor either:

� completes the issuance of the processor request in its entirety before the external request is

accepted, or

� releases the System interface to slave state without completing the issuance of the processor

request.

In the latter case, the processor issues the processor request (provided the processor request is still

necessary) after the external request is complete. The rules governing an issue cycle again apply to

the processor request.

Handshake Signals

The processor manages the flow of requests through the following six control signals:

�

ERdy is used by the external agent to indicate when it can accept a new read or write transaction.

�

EReq,

PMaster and

PReq are used to transfer control of the SysAD and SysCmd buses.

EReq

is used by an external agent to indicate a need to control the interface.

PMaster is de-asserted by

the processor when it transfers control of the System interface to the external agent. And

PReq is

used by the processor to indicate a need to bus, when the processor is in slave state.

� The VR4100 processor uses

PValid and the external agent uses

EValid to indicate valid

command/data on the SysCmd/SysAD buses.

Chapter 11 System Interface

217

11.3 System Interface Protocols
Figure 11-3 shows the register-to-register operation of the System interface. That is, processor

outputs come directly from output registers and begin to change with the rising edge of SClock .�

Processor inputs are fed directly to input registers that latch these input signals with the rising edge of

SClock . This allows the System interface to run at the highest possible clock frequency.

Input data

VR4100

SClock

Output data

Figure 11-3 System Interface Register-to-Register Operation

Master and Slave States

When the VR4100 processor is driving the SysAD and SysCmd buses, the System interface is in

master state. When the external agent is driving the SysAD and SysCmd buses, the System

interface is in slave state.

In master state, the processor asserts the signal

PValid whenever the SysAD and SysCmd buses

are valid.

In slave state, the external agent asserts the signal

EValid whenever the SysAD and SysCmd buses

are valid.

� SClock is an internal clock used by the processor to sample data at the System interface and to clock data
into the processor System interface output registers; see Chapter 8 for more details.

Chapter 11 System Interface

218

Moving from Master to Slave State

The processor is the default master of the system interface. An external agent becomes master of

the system interface through arbitration, or by default after a processor read request. The external

agent returns mastership to the processor after an external request completes.

The System interface remains in master state unless one of the following occurs:

� The external agent requests and is granted the System interface (external arbitration).

� The processor issues a read request (uncompelled change to slave state).

The following sections describe these two actions.

Chapter 11 System Interface

219

External Arbitration

The System interface must be in slave state for the external agent to issue an external request

through the System interface. The transition from master state to slave state is arbitrated by the

processor using the System interface handshake signals

EReq and

PMaster . This transition is

described by the following procedure:

1. An external agent signals that it wishes to issue an external request by asserting

EReq.

2. When the processor is ready to accept an external request, it releases the System interface from

master to slave state by de-asserting

PMaster continually.

3. The System interface returns to master state as soon as the issue of the external request is

complete.

This process is described in External Arbitration Protocol, later in this chapter.

Chapter 11 System Interface

220

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System interface from master state to

slave state, initiated by the processor itself when a processor read request is pending.

PMaster is de-

asserted automatically after a read request. An uncompelled change to slave state occurs during the

next cycle of a read request.

The uncompelled release latency depends on the state of the cache. After an uncompelled change to

slave state, the processor returns to master state at the end of the next external request. This can be

a read response, or some other type of external request.

An external agent must note that the processor has performed an uncompelled change to slave state

and begin driving the SysAD bus along with the SysCmd bus. As long as the System interface is in

slave state, the external agent can begin an external request without arbitrating for the System

interface; that is, without asserting

EReq.

After the external request is complete and external agent does not asserted

EReq, the System

interface returns to master state.

Chapter 11 System Interface

221

11.4 Processor and External Requests
There are two broad categories of requests: processor requests and external requests. These two

categories are described in this section.

When a system event occurs, the processor issues a request or a series of requests through the

system interface to access some external resource to service this event. For this to occur, the system

interface must be connected to an external agent that coordinates the access to system resources.

An external agent requesting access to a processor status register generates an external request.

This access request passes through the System interface.

Processor requests include the following:

� read requests, which provide an address to an external agent

�write requests, which provide an address and a word or block of data to be written to an external

agent

External requests include the following:

� read responses, which provide a block or single transfer of data from an external agent in

response to read requests

�write requests, which provide an address and a word of data to be written to a processor resource

When an external agent receives a read request, it accesses the specified resource and returns the

requested data through a read response, which may be returned any time after the read request.

A processor read request is complete after the last transfer of response data has been received from

the external agent. A processor write request is complete after the last word of data has been

transmitted.

Processor read requests that have been issued, but for which data has not yet been returned, are said

to be pending. The processor will not issue another request while a read is pending.

System events and request cycles are shown in Figure 11-4.

Chapter 11 System Interface

222

VR4100 External Agent

External Requests
• Read response
• Write

Processor Requests
• Read
• Write

System Events
• Fetch Miss
• Uncached Fetch Miss
• Load Miss
• Store Miss
• Uncached Load/Store
• CACHE operations

Figure 11-4 Requests and System Events

Chapter 11 System Interface

223

Processor Requests

A processor request is a request or a series of requests, through the System interface, to access

some external resource. As shown in Figure 11-5, processor requests are either read or write

requests.

External AgentVR4100

Processor Requests

• Read

• Write

Figure 11-5 Processor Requests

Read request asks for a block, word, or partial word of data either from main memory or from another

system resource.

Write request provides a block, word, or partial word of data to be written either to main memory or to

another system resource.

The processor issues requests in a strict sequential fashion; that is, the processor is only allowed to

have one request pending at any time. For example, the processor issues a read request and waits

for a read response before issuing any subsequent requests. The processor submits a write request

only if there are no read requests pending.

The processor has the input signals

ERdy to allow an external agent to manage the flow of processor

requests.

The processor request cycle sequence is shown in Figure 11-6.

External Agent

2.External system
controls acceptance of
requests by asserting

ERdy.

VR4100
1. Processor issues

read or write request

Figure 11-6 Processor Request

Chapter 11 System Interface

224

Processor Read Request

When a processor issues a read request, the external agent must access the specified resource and

return the requested data. (Processor read requests are described in this section; external read

responses are described in External Requests, later on in this chapter.)

A processor read request can be split from the external agent's return of the requested data; in other

words, the external agent can initiate an unrelated external request before it returns the response data

for a processor read. A processor read request is completed after the last word of response data has

been received from the external agent.

Note that the data identifier (see System Interface Commands and Data Identifiers, in this chapter)

associated with the response data can signal that the returned data is erroneous, causing the

processor to take a bus error.

Processor read requests that have been issued, but for which data has not yet been returned, are said

to be pending. A read remains pending until the requested read data is returned.

The external agent must be capable of accepting a new processor read request any time the following

two conditions are met:

� There is no present processor read request pending.

� The signal

ERdy has been asserted for one or more cycles.

Chapter 11 System Interface

225

Processor Write Request

When a processor issues a write request, the specified resource is accessed and the data is written to

it. (Processor write requests are described in this section; external write requests are described in

External Requests, later on in this chapter.)

A processor write request is complete after the last word of data has been transmitted to the external

agent.

The external agent must be capable of accepting a new processor write request any time the following

two conditions are met:

� No present processor read request is pending.

� The signal

ERdy has been asserted for one or more cycles.

External Requests

External requests include read response, and write requests, as shown in Figure 11-7.

External AgentVR4100

External Requests

• Read response

• Write

Figure 11-7 External Requests

Read response returns data in response to a processor read request.

Write request provides data to be written to the processor's internal resource.

The processor controls the flow of external requests through the arbitration signals

EReq and

PMaster , as shown in Figure 11-8. The external agent must acquire mastership of the System

interface before it is allowed to issue an external request; the external agent arbitrates for mastership

of the System interface by asserting

EReq and then waiting for the processor to de-assert

PMaster .

Chapter 11 System Interface

226

VR4100

2.Processor grants mastership b y

de-asserting

PMaster.

4. Processor regains bus

mastership, it

EReq is de-
asserted.

External Agent

1. External system requests bus

mastership by asserting

EReq.

3. External system issues an
External Request

Figure 11-8 External Request

Mastership of the System interface returns to the processor, if the external agent will release the

System interface by de-asserting

EReq. The processor does not accept a subsequent external

request until it has completed the current request.

If there are no processor requests pending, the processor decides, based on its internal state,

whether to accept the external request, or to issue a new processor request. The processor can issue

a new processor request even if the external agent is requesting access to the System interface.

The external agent asserts

EReq indicating that it wishes to begin an external request. The external

agent then waits for the processor to signal that it is ready to accept this request by asserting

PMaster

. The processor signals that it is ready to accept an external request based on the criteria listed

below.

� The processor completes any processor request that is in progress.

�While waiting for the assertion of

ERdy to issue a processor read request, the processor can

accept an external request if the request is delivered to the processor one or more cycles before

ERdy is asserted. System interface:external requests:overview

�While waiting for the assertion of

ERdy to issue a processor write request, the processor can

accept an external request provided the request is delivered to the processor one or more cycles

before

ERdy is asserted.

� If waiting for the response to a read request after the processor has made an uncompelled

change to a slave state, the external agent can issue an external request before providing the

read response data.

Chapter 11 System Interface

227

External Write Request

When an external agent issues a write request, the specified resource is accessed and the data is

written to it. An external write request is complete after the word of data has been transmitted to the

processor.

The only processor resource available to an external write request is the Interrupt register.

Chapter 11 System Interface

228

Read Response

A read response returns data in response to a processor read request, as shown in Figure 11-9.

While a read response is technically an external request, it has one characteristic that differentiates it

from all other external requests -- it does not perform System interface arbitration. For this reason,

read responses are handled separately from all other external requests, and are simply called read

responses.

External Agent

2. Read response

VR4100

1. Read request

Figure 11-9 Read Response

Chapter 11 System Interface

229

11.5 Handling Requests
This section details the sequence, protocol, and syntax (See Terminology, in this chapter, for

definitions of these terms) of both processor and external requests. The following system events are

discussed:

� fetch miss

� uncached fetch miss

� load miss

� store miss

� uncached loads/stores

�CACHE operations

Fetch Miss

When the processor misses in the instruction cache on a fetch, it issues a read request for the cache

line and waits for an external agent to provide this data in a read response.

Uncached Fetch Miss

When the processor misses in uncached area on a fetch, it issues a single read request for the cache

line and waits for an external agent to provide this data in a read response.

Load Miss

When the processor misses in the data cache on a load, it issues a read request for the cache line

and waits for an external agent to provide the data in a read response.

If the cache data to be replaced is in the dirty valid state, this data is written out to memory. The read

starts after the dirty data is written out.

★★

Chapter 11 System Interface

230

Store Miss

If the processor store misses in the data cache, it issues a read request to the external agent to

retrieve the target cache line. After the target line has been retrieved by the external agent, it is

written into the cache, and then updated with the store data.

If the cache data to be replaced is in the dirty valid state, this data is written out to memory. The read

starts after the dirty data is written out.

When it is necessary to guarantee that cached data written by a store is consistent with main memory,

the corresponding cache line must be explicitly flushed from the cache using a CACHE operation.

CACHE operations are described in Chapter 14.

Uncached Loads or Stores

When the processor performs an uncached load, it issues a read request, and waits for a single or

block transfer of read response data from an external agent.

When the processor performs an uncached store, it issues a write request and provides a single or

block transfer of data to the external agent.

CACHE Operations

The processor provides a variety of CACHE operations to maintain the state and contents of the

primary caches. The processor can issue write requests during the execution of the CACHE

operation instructions.

Summary of Parity Check Operation

Parity check operation are summarized in the Table on next page.

Note : When cache writeback, cache data parity error is checked and if error is detected, cache data

is sent system bus and set errornouse bit.

When the bus error or parity error are detected in read data, even if that error is not caused

desired data word, processor caused exception and cache line marked invalid.

Chapter 11 System Interface

231

Bus Uncached Load Uncached Store Cache Fill Cache
Writeback

External Write
Req.

Processor Data From System
Interface

Not Checked From System
Interface

Not Checked NA

Cache Data Parity NA NA Generated Checked NA

Cache Tag Parity NA NA Generated Checked NA

System Interface
Address/Data on
Address Cycle

Generated Read
Address

Generated Write
Address

Generated Read
Address

Generated Write
Address

From External
Agent

System Interface
Address/Data
Parity on Address
Cycle

Generated Generated Generated Generated Not Checked

System Interface
Command on
Address Cycle

Generated Read
Request

Generated Write
Request

Generated Read
Request

Generated Write
Request

From External
Agent

System Interface
Command Parity
on Address Cycle

Generated Generated Generated Generated Not Checked;
Reported to the

Fault pin

System Interface
Address/Data on
Data Cycle

From External
Agent

From Processor From External
Agent

From Cache From External
Agent

System Interface
Address/Data
Parity on Data
Cycle

Checked Generated Checked Generated Checked

System Interface
Command on Data
Cycle

From External
Agent

From Processor From External
Agent

From Processor From External
Agent

System Interface
Command Parity
on Data Cycle

Not Checked;
Reported to the

Fault pin

Generated Not Checked;
Reported to the

Fault pin

Generated Not Checked;
Reported to the

Fault pin

Chapter 11 System Interface

232

11.6 Processor and External Request Protocols
The following sections contain a cycle-by-cycle description of the bus arbitration protocols for each

type of processor and external request. Table 11-1 lists the abbreviations and definitions for each of

the buses that are used in the timing diagrams that follow.

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus Addr Physical address

Data <n> Data element number n of a block of data

SysCmd bus Cmd An unspecified System interface command

Read A processor or external read request command

Write A processor or external write request command

EOD A data identifier for the last data element

Data A data identifier for any data element other than the last data element

Table 11-1 System Interface Requests

Processor Request Protocols

Processor request protocols described in this section include:

� read

� write

Note : In the timing diagrams, the two closely spaced, wavy vertical lines (such as those in SCycle 7,

Figure 11-18) indicate one or more identical cycles.

Chapter 11 System Interface

233

Processor Read Request Protocol

A processor read request is issued by driving a read command on the SysCmd bus, driving a read

address on the SysAD bus, and asserting

PValid . Only one processor read request may be pending

at a time; the processor must wait for an external read response before starting a subsequent read.

The processor makes an uncompelled change to slave state after the issue cycle of the read request

by de-asserting the

PMaster signal continuous. An external agent then returns the requested data

through a read response.

Once in slave state (starting at cycle 5 in Figure 11-10), the external agent can return the requested

data through a read response. The read response returns the requested data or, if the requested data

could not be successfully retrieved, the read response returns an indication that the returned data is

erroneous. If the returned data is erroneous, the processor takes a bus error exception.

Figure 11-10 illustrates a processor read request, coupled with an uncompelled change to slave state,

that occurs as the read request is issued.

Note : Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and

SysCmd buses, respectively.

The following sequence describes the protocol for a processor read request (the numbered steps

below corresponds to Figure 11-11).

1. With the System interface in master state, a processor read request is issued by driving a read

command on the SysCmd bus and a read address on the SysAD bus.

2. At the same time, the processor asserts

PValid for one cycle, indicating valid data is present on

the SysCmd and the SysAD buses.

Note : Only one processor read request can be pending at a time.

3. If

ERdy is de-asserted, the issue cycle will be delayed.

4. The processor makes an uncompelled change to slave state at the next cycle of the read request

by de-asserting the

PMaster signal continuous.

5. The processor releases the SysCmd and the SysAD buses at the same SCycle of the de-

assertion of

PMaster .

6. The external agent drives the SysCmd and the SysAD buses within the de-assertion of

PMaster .
★

Chapter 11 System Interface

234

1 2 3 4SCycle

SClock

SysAD Bus

PMaster

5 6 7 8 9 10

Addr

Master

6

11 12

SysCmd Bus Read

PValid

EValid

ERdy

5

2
1

Slave

4

3

from External Agent

from External Agent

Figure 11-10 Processor Read Request

SCycle

SClock

SysAD Bus

SysCmd Bus

PValid

EValid

ERdy

PMaster

Master Slave

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

1 2

3

4

5 6

Figure 11-11 Delayed Processor Read Request

Chapter 11 System Interface

235

Processor Write Request Protocol

A processor write request is issued by driving a write command on the SysCmd bus, driving a write

address on the SysAD bus, and asserting

PValid for one cycle. This is followed by driving the

appropriate number of data identifiers on the SysCmd bus, driving data on the SysAD bus, and

asserting

PValid . The processor drives data at the rate specified by the EP field in Config register.

The data identifier associated with the last data cycle must contain a last data cycle indication.

1. A processor block write request with DD data rate is illustrated in Figure 11-13. The processor

issues a write command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts

PValid .

3. If

ERdy is de-asserted, the issue cycle will be delayed.

4. The processor drives a data identifier on the SysCmd bus and data on the SysAD bus.

5. The processor asserts

PValid for a number of cycles sufficient to transmit the block of data.

6. The data identifier associated with the last data cycle must contain a last data cycle indication.

1 2 3 4SCycle

SClock

SysAD

5 6 7 8 9 10

Master

11 12

SysCmd

PValid 2

3

1

4

Addr Data0 Data1

Write Data EOD

5

ERdy

6

Figure 11-12 Processor Block Write Request with DD Data Rate

Chapter 11 System Interface

236

1 2 3 4SCycle

SClock

SysAD

5 6 7 8 9 10

Master

11 12

SysCmd

PValid 2
1

4

Addr Data0 Data1

Write Data EOD

5

3ERdy

5

Figure 11-13 Processor Block Write Request with Dxx Data Rate

Chapter 11 System Interface

237

Processor Request Flow Control

The signal

ERdy may be used by an external agent to control the flow of processor read requests.

While

ERdy is de-asserted the processor repeats the current address cycle until the external agent

signals it is ready by asserting

ERdy .

1.

ERdy is deasserted 2 cycles before the processor cycle, so it will be delayed and the address

cycles are not finished.

2.

ERdy is asserted 2 cycles before the processor cycle, so it will not be delayed and the address

cycles are finished.

Use of

ERdy is illustrated in Figure 11-14.

1 2 3 4SCycle

SClock

SysAD bus

5 6 7 8 9 10 11 12

SysCmd bus

PValid
<1>

Addr

Read

ERdy

PMaster

<2>

Figure 11-14 Delayed Processor Read Request

In Figures 11-14 and 11-15,

ERdy must be valid two cycles before the issue cycle.

The signal

ERdy is used by an external agent to control the flow of processor write requests, too.

While

ERdy is de-asserted the processor repeats the current address cycle until the external agent

signals it is ready by asserting

ERdy .

Two processor write requests in which the issue of the second is delayed for the assertion of

ERdy

are illustrated in Figure 11-15.

★

Chapter 11 System Interface

238

1 2 3 4SCycle

SClock

SysAD bus

5 6 7 8 9 10 11 12

SysCmd bus

PValid <2>

ERdy

Addr Data Addr Data

Write EOD Write EOD

PMaster

<1>

Figure 11-15 Two Processor Write Requests, with the Second Delayed

External Request Protocols

External requests can only be issued with the System interface in slave state. An external agent must

assert

EReq to arbitrate (see External Arbitration Protocol, below) for the System interface, and then

wait for the processor to release the System interface to slave state. If the System interface is already

in slave state -- that is, the processor has previously performed an uncompelled change to slave state

-- the external agent can begin an external request immediately.

After issuing an external request, the external agent must return the System interface to master state,

as described below.

Following the description of the arbitration protocol, this section describes the following external

request protocols:

�write

� read response

� de-assertion of

EReq

Chapter 11 System Interface

239

External Arbitration Protocol

System interface arbitration uses the signals

EReq,

PMaster , and

PReq to arbitrate for bus

mastership.

The transition from processor master to slave state is arbitrated by the processor using the system

interface handshake signals

EReq and

PMaster . When the processor is master, an external agent

acquires control of the system interface by asserting

EReq, and waiting for the processor to de-assert

PMaster when it is ready to relinquish the system interface.

When a processor read request is pending, the processor transitions to slave by de-asserting

PMaster , to allow an external agent to return read response data. The processor remains slave until

an external agent issues a read response and also de-asserts

EReq, when it then transitions to

master with the assertion of

PMaster .

When the processor is master, an external agent acquires control of the system interface by asserting

EReq, and waiting for the processor to de-assert

PMaster when it is ready to relinquish the system

interface. When the processor is ready to go slave state, it will de-assert

PMaster . If the processor is

not asserting

PReq, it is guaranteed to release the bus two cycles after the external agent asserts

EReq. The system interface will return to master state when the issue of the external request is

complete and

EReq is de-asserted. Having asserted

EReq, an external agent must not de-assert

EReq until the processor de-asserts

PMaster . Once the external agent has become master with an

EReq, it may continue to assert

EReq until it is ready to relinquish the bus. Normally this would be on

the same cycle as it signals end of data. Upon completing its transaction, it may continue to drive the

bus and issue more transactions by continuing to hold the

EReq line. That is, once the external agent

has become bus master, it can remain master as long as it wants by simply continuing to assert

EReq.

If the processor is in slave state and needs the bus, it may assert the

PReq line to let the external

agent know that it wants the bus. When the processor sees

EReq de-asserted, it resumes ownership,

asserts the

PMaster line, and can issue its command. The processor will become master two cycles

after

EReq is de-asserted.

Upon assertion of

Reset or

ColdReset , the processor becomes bus master and the external agent

must become slave.

This protocol guarantees that either the processor or the external agent is always bus master. The

master should never 3-state the bus, except when giving up ownership of the bus under the rules of

the protocol.

Chapter 11 System Interface

240

Figure 11-16 is a timing diagram of the arbitration protocol, in which slave and master states are

shown. The arbitration cycle consists of the following steps:

1. The external agent asserts

EReq when it wishes to submit an external request.

2. The processor waits until it is ready to handle an external request, whereupon it de-asserts

PMaster .

3. The processor sets the SysAD and SysCmd buses to 3-state.

4. The external agent must begin driving the SysAD bus and the SysCmd bus one cycles after the

de-assertion of

PMaster .

5. The external agent continues to assert

EReq until it is ready to relinquish the bus.

6. The external agent sets the SysAD and the SysCmd buses to 3-state at the completion of an

external request.

The processor can start issuing a processor request one cycle after the external agent sets the bus to

3-state.

Note : Timings for the SysADC and SysCmdP buses are the same as those of the SysAD and

SysCmd buses, respectively.

1 2 3 4SCycle

SClock

SysAD Bus

5 6 7 8 9 10 11 12

SysCmd Bus

EValid

3
Addr

EReq

PMaster

Master Slave Master

Data0

Cmd EOD

2

4

51

6

Figure 11-16 External Request Arbitration Protocol

Chapter 11 System Interface

241

External Write Request Protocol

External write requests are similar to a processor single write except that the signal

EValid is asserted

in place of the signal

PValid .

An external write request consists of driving a write command on the SysCmd bus and a write

address on the SysAD bus and asserting

EValid for one cycle. This is followed by driving a data

identifier on the SysCmd bus and data on the SysAD bus and asserting

EValid for one more cycle.

The data identifier associated with the data cycle must contain a last data cycle indication.

After the data cycle is issued, the write request is complete and the external agent releases the

SysCmd and SysAD buses and allows the system interface to return to master state.

An external write request with the processor initially in master state is illustrated in Figure 11-17.

1 2 3 4SCycle

SClock

SysAD Bus

5 6 7 8 9 10 11 12

SysCmd Bus

EValid

Addr

EReq

PMaster

Master Slave Master

Data

Write EOD

PValid

Figure 11-17 External Write Request Protocol

Note: The only writable resources are processor interrupts.

Chapter 11 System Interface

242

External Read Response Protocol

An external agent returns data to the processor in response to a processor read request by waiting for

the processor to move to slave state, and then returning the data through a single data cycle or a

number of data cycles sufficient for the requested data.

The read response is complete and the external agent releases the SysCmd and SysAD buses after

the last data cycle is issued. The external agent then allows the processor to return to master state.

The data identifier associated with a data cycle may indicate that data transmitted during that cycle is

erroneous; however, an external agent must return a data block of the correct size whether or not the

data is erroneous. If a read response includes one or more erroneous data cycles, the processor

takes a bus error.

Read response data can only be delivered to the processor when a processor read request is

pending. If a read response is presented to the processor while no processor read is pending, the

behavior of the processor is undefined.

A processor single read request followed by a read response is illustrated in Figure 11-18 and Figure

11-20. A read response for a processor block read with the system interface already in slave state is

illustrated in Figure 11-20.

Chapter 11 System Interface

243

SCycle

SClock

SysAD Bus

SysCmd Bus

PValid

EValid

EReq

PMaster

Master Slave

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

Master

Data

EOD

Figure 11-18 Single Read Request Followed by a Read Response

1 2 3 4SCycle

SClock

SysAD Bus

5 6 7 8 9 10 11 12

SysCmd Bus

EValid

EReq

PMaster

Slave

PValid

Data0

Master

Data1 Data2 Data3

Data Data Data EOD

Figure 11-19 Block Read Response, with the System Interface Already in Slave State

(I-cache block refill)

Chapter 11 System Interface

244

SCycle

SClock

SysAD Bus

SysCmd Bus

PValid

EValid

EReq

PMaster

Master Slave

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

Master

Data

EOD

Figure 11-20 Processor Read Request Followed by Read Response

Chapter 11 System Interface

245

Successive Processor Writes

Successive processor write requests (a processor write followed by another processor write) are

followed by next request without any wait states, as shown in Figure 11-21. Processor write request

timing is the same as that described in the prior section, Processor Write Request Protocol.

Addr Data0 Data1 Addr

Proc. WriteProc. Write

Data0 Data1

Figure 11-21 Processor Write Request Followed by Another Processor Block Write Request

Addr Data Wait Wait Addr Data Wait Wait

Single Write Request Single Write Request

Figure 11-22 Processor Single Write Request Followed by Another Processor Write Request

Processor Write Followed by a Processor Read Request

A processor write request followed by a processor read request are shown in Figure 11-23. Timings

are the same as those described in the prior sections, Processor Write Request Protocol, and

Processor Read Request Protocol.

Addr Data0 Data1 Addr

Proc. Write Proc. Read Req

0...n
wait

states
Data

Master Slave

Figure 11-23 Processor Write Request Followed by a Processor Read Request

★

★

Chapter 11 System Interface

246

11.7 Data Flow Control
The system interface supports a maximum data rate of one word per cycle.

An external agent may deliver data to the processor at the maximum data rate of the System

interface. The rate at which data is delivered to the processor can be controlled by the external agent,

which asserts

EValid whenever data is available. The processor only accepts cycles as valid when

EValid is asserted and the SysCmd bus contains a data identifier; thereafter, the processor continues

to accept data until it receives the data word tagged as the last one.

The rate at which the processor transmits data to an external agent is programmable through the EP

field in Config Register. Data patterns are specified using the letters D and x, where D indicates a

data cycle and x indicates maintaining last D cycle value. For example, a Dxx data pattern indicates a

data rate of one doubleword every three cycles.

An external read response with a DDx data pattern (two doublewords every three cycles) is shown in

Figure 11-24.

1 2 3 4SCycle

SClock

SysAD Bus

5 6 7 8 9 10 11 12

EValid

EReq

PMaster

Slave

PValid

Data0

Master

Data1 Data2 Data3

Data Data Data EODSysCmd Bus

Figure 11-24 External Read Response with DDx Data Rate Pattern

★

Chapter 11 System Interface

247

The Accelerated Data mode can be selected by setting the AD field of Config Register. In AD mode,

the processor insert no idle cycle between a cycle and a following cycle.

Figure 11-25 shows Accelerated data cycle.

SCycle

SClock

SysAD Bus

SysCmd Bus

PValid

EValid

ERdy

PMaster

1 2 3 4 5 6 7 8 9 10 11 12

Addr

Read

Addr

Write

Data

EOD

Data

EOD

Data

EOD

Addr

Write

Addr

Write

Figure 11-25 Accelerated Data Write Cycle

Chapter 11 System Interface

248

Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection, running from the processor to a

bidirectional registered transceiver residing in an external agent. For these applications, the SysAD

bus has only two possible drivers, the processor or the external agent.

Certain applications may require connection of additional drivers and receivers to the SysAD bus, to

allow transmissions over the SysAD bus that the processor is not involved in. These are called

independent transmissions. To effect an independent transmission, the external agent must

coordinate control of the SysAD bus by using arbitration handshake signals and null requests.

An independent transmission on the SysAD bus follows this procedure:

1. The external agent requests mastership of the SysAD bus, to issue an external request.

2. The processor releases the System interface to slave state.

3. The external agent then allows the independent transmission to take place on the SysAD bus,

making sure that

EValid is not asserted while the transmission is occurring.

4. When the transmission is complete, the external agent must de-assert

EReq to return the System

interface to master state.

To implement multiple drivers, separate Valid lines are required to allow the non-processor chips to

communicate.

System Endianness

The endianness of the system is set by the BigEndian Pin: byte order is big endian when the value is

“1” and little endian when the value is “0”.

Software can set the reverse endian (RE) bit in the Status register to reverse the User mode byte

ordering.

★★

Chapter 11 System Interface

249

11.8 System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for various processor transactions and

for the processor response time to external requests. Processor requests themselves are constrained

by the System interface request protocol, and request cycle counts can be determined by examining

the protocol. The following System interface interactions can vary within minimum and maximum

cycle counts:

�waiting period for the processor to release the System interface to slave state in response to an

external request (release latency)

The remainder of this section describes and tabulates the minimum and maximum cycle counts for

these System interface interactions.

Release Latency

Release latency is generally defined as the number of cycles the processor can wait to release the

System interface to slave state for an external request. When no processor requests are in progress,

internal activity can cause the processor to wait some number of cycles before releasing the System

interface. Release latency is therefore more specifically defined as the number of cycles that occur

between the assertion of

EReq and the de-assertion of

PMaster .

There are three categories of release latency:

�Category 1: when the external request signal is asserted two cycles before the last cycle of a

processor request.

�Category 2: when the external request signal is not asserted during a processor request, or is

asserted during the last cycle of a processor request.

Table 11-2 summarizes the minimum and maximum release latencies for requests that fall into

categories 1 and 2. Note that the maximum and minimum cycle count values are subject to change.

Category Minimum PCycle Maximum PCycle

1 TBD TBD

2 TBD TBD

Table 11-2 Release Latency for External Requests

Chapter 11 System Interface

250

11.9 System Interface Commands and Data Identifiers
System interface commands specify the nature and attributes of any System interface request; this

specification is made during the address cycle for the request. System interface data identifiers

specify the attributes of data transmitted during a System interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of System interface

commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier should be set to 1 for System

interface commands and data identifiers associated with external requests. For System interface

commands and data identifiers associated with processor requests, reserved bits and reserved fields

in the command and data identifier are undefined.

Chapter 11 System Interface

251

Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 5 bits and are transmitted on the

SysCmd bus from the processor to an external agent, or from an external agent to the processor,

during address and data cycles.

Bit 4 (the most-significant bit) of the SysCmd bus determines whether the current content of the

SysCmd bus is a command or a data identifier and, therefore, whether the current cycle is an address

cycle or a data cycle. For System interface commands, SysCmd (4) must be set to 0. For System

interface data identifiers, SysCmd (4) must be set to 1.

For commands and data identifiers associated with external requests, reserved bits and reserved

fields in the command or data identifier must be set to 1. For system interface commands and data

identifiers associated with processor requests, reserved bits and reserved fields in the command or

data identifier are undefined.

System Interface Command Syntax

This section describes the SysCmd bus encoding for System interface commands. Figure 11-26

shows a common encoding used for all System interface commands.

4

0 Request
Type

Request Specific

3 2 0

Figure 11-26 System Interface Command Syntax Bit Definition

SysCmd (4) must be set to 0 for all System interface commands.

★

Chapter 11 System Interface

252

SysCmd (3) specify the System interface request type which may be read, write, or null, as listed in

Table 11-3.

SysCmd (3) Command

0 Read Request

1 Write Request

Table 11-3 Encoding of SysCmd (3) for System Interface Commands

SysCmd (2:0) are specific to each type of request and are defined in each of the following sections.

Read Requests

For read requests, the encoding of the SysCmd (4:0) bits specify the specific attributes of the read.

Figure 11-27 shows the format of a SysCmd read request.

4

0

3 2 0

0 Read Request Specific
(see tables)

Figure 11-27 Read Request SysCmd Bus Bit Definition

Chapter 11 System Interface

253

Table 11-4 through Table 11-6 list the encodings of SysCmd (2:0) for read requests.

SysCmd (2) Read Attributes

0 Single read

1 Block read

Table 11-4 Encoding of SysCmd (2) for Read Requests

SysCmd (1:0) Read Block Size

0 2 words

1 4 words

2 Reserved

3 Reserved

Table 11-5 Encoding of SysCmd (1:0) for Block Read Request

SysCmd (1:0) Read Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

Table 11-6 Encoding of SysCmd (1:0) for Single Read Request

Chapter 11 System Interface

254

Write Requests

The encoding of SysCmd (2:0) for write commands is shown below.

Figure 11-28 shows the format of a SysCmd write request.

Table 11-7 lists the write attributes encoded in bits SysCmd (2) . Table 11-9 lists the block write

replacement attributes encoded in bits SysCmd (1:0) . Table 11-8 lists the single write request bit

encodings in SysCmd (1:0) .

4

0

3 2 0

1 Write Request Specific
(see tables)

Figure 11-28 Write Request SysCmd Bus Bit Definition

SysCmd (2) Write Attributes

0 Single write

1 Block write

Table 11-7 Encoding of SysCmd (2) for Write Requests

SysCmd (1:0) Write Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

Table 11-8 Encoding of SysCmd (1:0) for Single Write Request

Chapter 11 System Interface

255

SysCmd (1:0) Write Block Size

0 2 words

1 4 words

2 Reserved

3 Reserved

Table 11-9 Encoding of SysCmd (1:0) for Block Write Request

Chapter 11 System Interface

256

System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for System interface data identifiers. Figure 11-

29 shows a common encoding used for all System interface data identifiers.

4

1 Last
Data

3 12

Resp
Data

Data
Chk

Err
Data

0

Figure 11-29 Data Identifier SysCmd Bus Bit Definition

SysCmd (4) must be set to 1 for all System interface data identifiers.

Chapter 11 System Interface

257

Data Identifier Bit Definitions

SysCmd (3) marks the last data element.

SysCmd (2) indicates whether or not the data is response data, for both processor and external data

identifiers. Response data is data returned in response to a read request.

SysCmd (1) indicates whether or not the data element is error free. Erroneous data contains an

uncorrectable error and is returned to the processor, forcing a bus error. The processor delivers data

with the good data bit de-asserted if a parity error is detected for a transmitted data item.

SysCmd (0) indicates to the processor whether or not to check the data and check bits for this data

element.

Table 11-10 lists the encodings of SysCmd (3:0) for processor data identifiers. Table 11-11 lists the

encodings of SysCmd (3:0) for external data identifiers.

Chapter 11 System Interface

258

SysCmd (3) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd (2) Response Data Indication

0 Data is response data

1 Data is not response data (will always be
set to 1; there is no processor response
data)

SysCmd (1) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd (0) Reserved

Table 11-10 Processor Data Identifier Encoding of SysCmd (3:0)

SysCmd (3) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd (2) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd (1) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd (0) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

Table 11-11 External Data Identifier Encoding of SysCmd (3:0)

Chapter 11 System Interface

259

11.10 System Interface Addresses

System interface addresses are full 32-bit physical addresses presented on the SysAD bus during

address cycles.

Addressing Conventions

Addresses associated with word, or partial word transactions are aligned for the size of the data

element. The system uses the following address conventions:

� Addresses associated with block requests are aligned to double-word boundaries; that is, the

low-order 3 bits of address are 0.

�Word requests set the low-order 2 bits of address to 0.

�Halfword requests set the low-order bit of address to 0.

� Byte, tribyte, requests use the byte address.

Subblock Ordering

All block read and write bus cycles are managed in subblock order.

Table 11-12 show the block read data address ordering. Table 11-13 show the block write data

ordering. First read/write address are marked bold font.

Note : CACHE instruction for I cache used same ordering of D cache access.

target address
lower 4 bits

I cache refill address
lower 4 bits

D cache refill
address lower 4 bits

uncache double word
load address lower 4 bits

0 C - 8 - 4 - 0 8 - C - 0 - 4 0 - 4

4 8 - C - 0 - 4 C - 8 - 4 - 0 NA

8 4 - 0 - C - 8 0 - 4 - 8 - C 8 - C

C 0 - 4 - 8 - C 4 - 0 - C - 8 NA

Table 11-12 Block Read Data Address Ordering

target address
lower 4 bits

I cache writeback
address lower 4 bits

D cache writeback
address lower 4 bits

uncache double word
store address lower 4

bits0 C - 8 - 4 - 0 8 - C - 0 - 4 0 - 4

4 8 - C - 0 - 4 C - 8 - 4 - 0 NA

8 4 - 0 - C - 8 0 - 4 - 8 - C 8 - C

C 0 - 4 - 8 - C 4 - 0 - C - 8 NA

Table 11-13 Block Write Data Address Ordering

★★

Chapter 11 System Interface

260

[MEMO]

Chapter 12 V R4100 Processor Interrupts

261

VR4100 Processor Interrupts

12

Four types of interrupt are available on the VR4100. These are:

• one non-maskable interrupt, NMI

• five external interrupts

• two software interrupts

• one timer interrupt

These are described in this chapter.

Chapter 12 V R4100 Processor Interrupts

262

12.1 Nonmaskable Interrupt

The nonmaskable interrupt is signaled by asserting the

NMI pin (low), forcing the processor to branch

to the Reset Exception vector. This pin is latched into an internal register by the rising edge of

MasterOut , as shown in Figure 12-1. An NMI can also be set by an external write through the SysAD

bus. On the data cycle, SysAD (22) acts as the write enable for SysAD (6) , which is the value to be

written as the interrupt.

NMI only takes effect when the processor pipeline is running. Thus NMI can be used to recover the

processor from a software hang (for example, in an infinite loop) but cannot be used to recover the

processor from a hardware hang (for example, no read response from an external agent). NMI

cannot cause drive contention on the SysAD bus and no reset of external agents is required.

This interrupt cannot be masked.

Figure 12-1 shows the internal derivation of the NMI signal. The

NMI pin is latched into an internal

register by the rising edge of MasterOut . Bit 6 of the Interrupt register is then ORed with the inverted

value of

NMI to form the nonmaskable interrupt.Interrupt registerregisters, CPU:Interrupt

6 Interrupt register (6)

NMI

NMI

(Internal register)

MasterOut

(Internal)

Inverter OR gate

Figure 12-1 V R4100 Nonmaskable Interrupt Signal

Chapter 12 V R4100 Processor Interrupts

263

12.2 External Interrupts

External interrupts are set by asserting the external interrupt pins

Int (4:0) . They also may be set by

an external write through the SysAD bus. During the data cycle, SysAD (20:16) are the write enables

for bits SysAD (4:0) , which are the values to be written as interrupts.

These interrupts can be masked with the IM, IE, and EXL fields of the Status register.

12.3 Software Interrupt
Software interrupts use bits 1 and 0 of the interrupt pending, IP, field in the Cause register. These

may be written by software, but there is no hardware mechanism to set or clear these bits.

These interrupts are maskable through the IM, IE, and EXL fields of the Status register.

12.4 Timer Interrupt
The timer interrupt signal is bit 15 of the Cause register, which is bit 7 of the interrupt pending, IP,

field. The timer interrupt is set whenever the value of the Count register equals the value of the

Compare register.

This interrupt is maskable through the IM field of the Status register.

★

Chapter 12 V R4100 Processor Interrupts

264

12.5 Asserting Interrupts
External writes to the CPU are directed to various internal resources, based on an internal address

map of the processor. An external write to any address writes to an architecturally transparent

register called the Interrupt register; this register is available for external write cycles, but not for

external reads.

During a data cycle, SysAD (20:16) are the write enables for the five individual Interrupt register bits

and SysAD (4:0) are the values to be written into these bits. This allows any subset of the Interrupt

register to be set or cleared with a single write request. Figure 12-2 shows the mechanics of an

external write to the Interrupt register, along with the nonmaskable interrupt described earlier.

Note : If the SysAD Parity Error or Bus Error detected on the external write cycles, contents of

Interrupt registers are never changed.

4

SysAD(20:16)
Write Enables

3 2 1 0

20 19 18 17 16

0

1

2

3

4

Interrupt register

See Figures
Figure 12-3 and
Figure 12-4.

See Figure
12-1

6

22

SysAD(22)

Nonmaskable Interrupt

SysAD(4:0)
Interrupt Value

SysAD(6)

Figure 12-2 Interrupt Register Bits and Enables

Chapter 12 V R4100 Processor Interrupts

265

Figure 12-3 shows how the VR4100 hardware interrupts are readable through the Cause register.

ï The timer interrupt signal, IP7, is directly readable as bit 15 of the Cause register.

ï Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of the interrupt pins

Int

[4:0] and the result is directly readable as bits 14:10 of the Cause register.

IP (1:0) of the Cause register, which are described in Chapter 5, are software interrupts. There is no

hardware mechanism for setting or clearing the software interrupts.

4 3 2 1 0 Interrupt register (4:0)

IP2

IP3

IP5

IP4

IP6

IP7

4 3 2 1 0

Int4	 Int2	 Int0
Int3	 Int1

See Figure 12-4.

Cause
register (15:10)

(Internal
register)

TimerInterrupt

MasterOut

15
14

12
13

11
10

Figure 12-3 V R4100 Hardware Interrupt Signals

★

Chapter 12 V R4100 Processor Interrupts

266

Figure 12-4 shows the masking of the VR4100 interrupt signals.

ïCause register bits 15:8 (IP7-IP0) are AND-ORed with Status register interrupt mask bits 15:8

(IM7-IM0) to mask individual interrupts.

ï Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with the output of the AND-OR

logic to produce the VR4100 interrupt signal. The EXL bit in the Status register also enables these

interrupts.

Timer interrupt

IM0

IE

Software
interrupts

Status register
SR(0)

IM1
IM2
IM3
IM4

IM5
IM6
IM7

IP0
IP1
IP2
IP3
IP4
IP5
IP6
IP7

External
interrupts

Status register
SR(15:8)

Cause register
(15:8)

8

AND-OR
function

AND
function

1 1
VR4100 Interrupt

8

Figure 12-4 Masking of the V R4100 Interrupts

Chapter 13 Electrical Characteristics

267

Electrical Characteristics

13

This chapter describes the processor electrical characteristics.

Chapter 13 Electrical Characteristics

268

13.1 Electrical Characteristics

LVCMOS

VR4100 will meet and exceed the JEDEC standard for low-voltage CMOS-compatible VLSI digital

circuit (LVCMOS).

Maximum Ratings

(Operation beyond the limits set forth in this table may impair the useful life of the device.)

(TA = 25 oC)

Parameter Symbol Test Conditions Minimum Typical Maximum Units

Supply Voltage VDD -0.5 4.0 V

Input Voltage VI -0.5 min (4.0,
VDD + 0.3)

V

Storage
Temperature

Tstg -65 150 oC

Table 13-1 Maximum Ratings

Recommended Operating Conditions

Parameter Symbol Test Conditions Minimum Typical Maximum Units

Operating
Ambient
Temperature

TA -10 +70 oC

Supply Voltage VDD +2.2 +3.6 V

Table 13-2 Recommended Operating Conditions

Chapter 13 Electrical Characteristics

269

DC Characteristics

(TA = -10 to +70 oC, VDD = 2.7 to 3.6 V)

Parameter Symbol Conditions Minimum Typical Maximum Units

Output HIGH
Voltage

VOH IOH = -2 mA
IOH = -20 µA

0.8VDD

VDD - 0.1
V

Output LOW
Voltage

VOL IOL = 2 mA
IOL = 20 µA

0.4
0.1

V

Clock Output
HIGH Voltage3

VOHC IOH = -2 mA
IOH = -20 µA

0.8VDD

VDD - 0.1
V

Clock Output
LOW Voltage3

VOLC IOL = 2 mA
IOL = 20 µA

0.4
0.1

V

Input HIGH
Voltage2

VIH 2.0 VDD + 0.3 V

Input LOW
Voltage2

VIL -0.3 0.3VDD V

MasterClock
Input HIGH
Voltage

VKH 0.7VDD VDD + 0.3 V

MasterClock
Input LOW
Voltage

VKL -0.3 0.3VDD V

Operating
Current (the
inside chip)

IDD VDD = 3.3 V
TA = 25 oC

1f1 2f1 mA

Input Leakage ILI VDD = 3.6 V
VI = VDD, 0 V

±5 µA

Output
Leakage

ILO VDD = 3.6 V
VO = VDD, 0 V

±5 µA

Notes : (1) f = PClock Frequency (MHz).
(2) Except for MasterClock input.
(3) Applies to TClock and MasterOut output.

Table 13-3 DC Characteristics

Chapter 13 Electrical Characteristics

270

Capacitance

(TA = 25 oC, VDD = 3.6 V)

Parameter Symbol Conditions Minimum Typical Maximum Units

Input
Capacitance

CI fC = 1 MHz 15 pF

Input/Output
Capacitance

CIO fC = 1 MHz 15 pF

Table 13-4 Capacitance

AC Characteristics

Note : All output timings are given assuming 40 pF of capacitive load. Output timings should be

derated where appropriate as per the table below.

MasterClock and Clock Parameters

Parameter Symbol Conditions Minimum Typical Maximum Units

MasterClock
High

tKKH Transition ≤ 5
ns

45 ns

MasterClock
Low

tKKL Transition ≤ 5
ns

45 ns

MasterClock
Freq1

1 10 MHz

MasterClock
Period

tCYK 100 1000 ns

Clock Jitter tJitter ±2 ns

MasterClock
Rise Time

tKR 5 ns

MasterClock
Fall Time

tKF 5 ns

Note : (1) Operation of VR4100 is only guaranteed with the Phase Lock Loop enabled. When the PLL work on self
oscillation mode, this minimum frequency is 0 MHz (DC).

Table 13-5 MasterClock and Clock Parameters (T A = -10 to +70 oC,VDD = 2.7 to 3.6V)

Chapter 13 Electrical Characteristics

271

Parameter Symbol Conditions Minimum Typical Maximum Units

MasterClock
High

tKKH Transition ≤ 5
ns

90 ns

MasterClock
Low

tKKL Transition ≤ 5
ns

90 ns

MasterClock
Freq1

1 5 MHz

MasterClock
Period

tCYK 200 1000 ns

Clock Jitter tJitter ±2 ns

MasterClock
Rise Time

tKR 10 ns

MasterClock
Fall Time

tKF 10 ns

Note : (1) Operation of VR4100 is only guaranteed with the Phase Lock Loop enabled. When the PLL work on self
oscillation mode, this minimum frequency is 0 MHz (DC).

Table 13-6 MasterClock and Clock Parameters (2.2 < V DD < 2.7)

Chapter 13 Electrical Characteristics

272

System Interface Parameters

Parameter Symbol Conditions Minimum Typical Maximum Units

Data Active
Delay1

tDO 3 15 ns

Data Inactive
Delay1

tDM 3 ns

Data Setup1 tDS 5 ns

Data Hold1 tDH 2 ns

MasterOut Rise
Time

tMOR 6 ns

MasterOut Fall
Time

tMOF 6 ns

MasterOut High
Time

tMOH 50 ns

MasterOut Low
Time

tMOL 50 ns

TClock Rise
Time

tTCR 3 ns

TClock Fall
Time

tTCF 3 ns

TClock High
Time

tTCH 10 ns

TClock Low
Time

tTCL 10 ns

Notes : (1) See the Figure 13-5 SysAD Data.
(2) Capacitive load for all output timings is 40 pF.
(3) Data Output, Data Setup, and Data Hold apply to all logic signals driven out of or driven into the VR4100 on

the system interface. Clocks are specified separately.
(4) TClock.

Table 13-7 System Interface Parameters (V DD = 2.7 to 3.6 V)

Chapter 13 Electrical Characteristics

273

Parameter Symbol Conditions Minimum Typical Maximum Units

Data Active
Delay1

tDO 3 15 ns

Data Inactive
Delay1

tDM 3 ns

Data Setup1 tDS 5 ns

Data Hold1 tDH 2 ns

MasterOut Rise
Time

tMOR TBD ns

MasterOut Fall
Time

tMOF TBD ns

MasterOut High
Time

tMOH TBD ns

MasterOut Low
Time

tMOL TBD ns

TClock Rise
Time

tTCR TBD ns

TClock Fall
Time

tTCF TBD ns

TClock High
Time

tTCH TBD ns

TClock Low
Time

tTCL TBD ns

Notes : (1) See the Figure 13-5 SysAD Data.
(2) Capacitive load for all output timings is 40 pF.
(3) Data Output, Data Setup, and Data Hold apply to all logic signals driven out of or driven into the VR4100 on

the system interface. Clocks are specified separately.
(4) TClock.

Table 13-8 System Interface Parameters (2.2 < V DD < 2.7)

Capacitive Load Deration

Parameter Symbol Minimum Typical Maximum Units

Load Deration CLD 5 ns/20 pF

Table 13-9 Capacitive Load Deration

Chapter 13 Electrical Characteristics

274

Timing Diagrams

tKKHtCYK

tKKL tKR tKF

0.7VDD

0.3VDD

MasterClock

Figure 13-1 MasterClock

tMOH

tMOL tMOR tMOF

0.7VDD

0.8

MasterOut

Figure 13-2 MasterOut

tTCH

tTCL tTCR tTCF

0.7VDD

0.8

TClock

Figure 13-3 TClock

Chapter 13 Electrical Characteristics

275

tJittertJitter

0.5VDD

0.5VDD

MasterClock

TClock/MasterOut

Figure 13-4 Clock Jitter

0.7VDD

0.7VDD

0.8

0.8

2.0

0.3VDD

TClock

tDM

tDO

tDH

tDS

Data

Data

Data

SysAD, SysADC
SysCmd, SysCmdP
	 (Driven)
PValid
PMaster
PReq

SysAD, SysADC
SysCmd, SysCmdP
	 (Received)
EValid
EReq
ERdy

Figure 13-5 System Interface

Chapter 13 Electrical Characteristics

276

0.7VDD

2.0

0.8

0.3VDD

0.7VDD

0.8

MasterOut
 (Driven)

tDM

tDO

tDH

tDS

Data

Data

Data

Int [4:0]
NMI
Reset
ColdReset
(Received)

Fault

Figure 13-6

Int [4:0],

NMI,

Reset,

ColdReset and

Fault Interface

Chapter 14 CPU Instruction Set Details

277

ƒ‚l‚r

CPU Instruction Set Details

14

This chapter provides a detailed description of the operation of each VR4100

instruction in both 32- and 64-bit modes. The instructions are listed in alphabetical

order.

Exceptions that may occur due to the execution of each instruction are listed after

the description of each instruction. Descriptions of the immediate cause and

manner of handling exceptions are omitted from the instruction descriptions in this

chapter.

Figures at the end of this chapter list the bit encoding for the constant fields of each

instruction, and the bit encoding for each individual instruction is included with that

instruction.

Chapter 14 CPU Instruction Set Details

278

14.1 Instruction Classes
CPU instructions are divided into the following classes:

ï Load and Store instructions move data between memory and general registers. They are all I-

type instructions, since the only addressing mode supported is base register + 16-bit immediate

offset.

ïComputational instructions perform arithmetic, logical and shift operations on values in registers.

They occur in both R-type (both operands are registers) and I-type (one operand is a 16-bit

immediate) formats.

ï Jump and Branch instructions change the control flow of a program. Jumps are always made to

absolute 26-bit word addresses (J-type format), or register addresses (R-type), for returns and

dispatches. Branches have 16-bit offsets relative to the program counter (I-type). Jump and

Link instructions save their return address in register 31.

ïCoprocessor zero (CP0) instructions manipulate the memory management and exception

handling facilities of the processor.

ï Special instructions perform a variety of tasks, including movement of data between special and

general registers, trap, and breakpoint. They are always R-type.

★

Chapter 14 CPU Instruction Set Details

279

14.2 Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a word boundary and the major

instruction formats are shown in Figure 14-1.

2526

I-Type (Immediate)

031 2021 16 15

op

op6-bit operation code
rs5-bit source register specifier
rt5-bit target (source/destination) or branch condition
immediate ... 16-bit immediate, branch displacement or address displacement
target26-bit jump target address
rd5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

rs rt immediate

2526

J-Type (Jump)

031

op target

2526

R-Type (Register)

031 2021 16 15

op rs rt

11 10 6 5

rd sa funct

Figure 14-1 CPU Instruction Formats

Chapter 14 CPU Instruction Set Details

280

14.3 Instruction Notation Conventions
In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown

in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of specific

instructions. For example, we use rs = base in the format for load and store instructions. Such an

alias is always lower case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter, and

the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation performed by

each instruction using a high-level language notation. The VR4100 can operate as either a 32- or 64-

bit microprocessor and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 14-1.

Chapter 14 CPU Instruction Set Details

281

Symbol Meaning

<- Assignment.

|| Bit string concatenation.

xy Replication of bit value x into a y-bit string. Note: x is always a single-bit value.

xy:z Selection of bits y through z of bit string x. Little-endian bit notation is always used. If y is less than z,
this expression is an empty (zero length) bit string.

+ 2's complement or floating-point addition.

- 2's complement or floating-point subtraction.

* 2's complement or floating-point multiplication.

div 2's complement integer division.

mod 2's complement modulo.

/ Floating-point division.

< 2's complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR [x] General-Register x. The content of GPR [0] is always zero. Attempts to alter the content of GPR [0]
have no effect.

CPR [z, x] Coprocessor unit z, general register x.

CCR [z, x] Coprocessor unit z, control register x.

COC [z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 -> Little, 1 -> Big). Specifies the endianness of the memory
interface (see LoadMemory and StoreMemory), and the endianness of Kernel and Supervisor mode
execution.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode
only, and is effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SR25 and User mode).

BigEndianCPU The endianness for load and store instructions (0 -> Little, 1 -> Big). In User mode, this endianness
may be reversed by setting SR25. Thus, BigEndianCPU may be computed as BigEndianMem XOR
ReverseEndian.

T + i: Indicates the time steps between operations. Each of the statements within a time step are defined to
be executed in sequential order (as modified by conditional and loop constructs). Operations which are
marked T + i: are executed at instruction cycle i relative to the start of execution of the instruction.
Thus, an instruction which starts at time j executes operations marked T + i: at time i + j. The
interpretation of the order of execution between two instructions or two operations which execute at the
same time should be pessimistic; the order is not defined.

Table 14-1 CPU Instruction Operation Notations

Chapter 14 CPU Instruction Set Details

282

Instruction Notation Examples

The following examples illustrate the application of some of the instruction notation conventions:

Example #1:

GPR [rt] <- immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically
16 bits), and the 32-bit string (with the lower 16 bits set to zero) is
assigned to General-Purpose Register rt.

Example #2:

(immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit
positions, and the result is concatenated with bits 15 through 0 of the
immediate value to form a 32-bit sign extended value.

Chapter 14 CPU Instruction Set Details

283

14.4 Load and Store Instructions
In the VR4100 implementation, the instruction immediately following a load may use the loaded

contents of the register. In such cases, the hardware interlocks, requiring additional real cycles, so

scheduling load delay slots is still desirable, although not required for functional code.

In the load and store descriptions, the functions listed in Table 14-2 are used to summarize the

handling of virtual addresses and physical memory.

Function Meaning

Address Translation Uses the TLB to find the physical address given the virtual address. The function fails and an
exception is taken if the required translation is not present in the TLB.

Load Memory Uses the cache and main memory to find the contents of the word containing the specified
physical address. The low-order three bits of the address and the Access Type field indicates
which of each of the four bytes within the data word need to be returned. If the cache is enabled
for this access, the entire word is returned and loaded into the cache.

Store Memory Uses the cache, write buffer, and main memory to store the word or part of word specified as
data in the word containing the specified physical address. The low-order three bits of the
address and the Access Type field indicates which of each of the four bytes within the data word
should be stored.

Table 14-2 Load and Store Common Functions

As shown in Table 14-3, the Access Type field indicates the size of the data item to be loaded or

stored. Regardless of access type or byte-numbering order (endianness), the address specifies the

byte which has the smallest byte address in the addressed field. For a big-endian machine, this is the

leftmost byte and contains the sign for a 2's complement number; for a little-endian machine, this is

the rightmost byte.

★

Chapter 14 CPU Instruction Set Details

284

Access Type Mnemonic Value Meaning

DOUBLEWORD
SEPYIBYTE
SEXTIBYTE
QUINTIBYTE
WORD
TRIPLEBYTE
HALFWORD
BYTE

7
6
5
4
3
2
1
0

8 bytes (64 bits)
7 bytes (56 bits)
6 bytes (48 bits)
5 bytes (40 bits)
4 bytes (32 bits)
3 bytes (24 bits)
2 bytes (16 bits)
1 byte (8 bits)

Table 14-3 Access Type Specifications for Loads/Stores

The bytes within the addressed doubleword which are used can be determined directly from the

access type and the three low-order bits of the address.

14.5 Jump and Branch Instructions
All jump and branch instructions have an architectural delay of exactly one instruction. That is, the

instruction immediately following a jump or branch (that is, occupying the delay slot) is always

executed while the target instruction is being fetched from storage. A delay slot may not itself be

occupied by a jump or branch instruction; however, this error is not detected and the results of such

an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the

hardware sets the EPC register to point at the jump or branch instruction that precedes it. When the

code is restarted, both the jump or branch instructions and the instruction in the delay slot are

reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be

restartable. Therefore, when a jump or branch instruction stores a return link value, register 31 (the

register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction

must use a register which contains an address whose two low-order bits are zero. If these low-order

bits are not zero, an address exception will occur when the jump target instruction is subsequently

fetched.

Chapter 14 CPU Instruction Set Details

285

14.6 System Control Coprocessor (CP0) Instructions
There are some special limitations imposed on operations involving CP0 that is incorporated within

the CPU. Although load and store instructions to transfer data to/from coprocessors and to move

control to/from coprocessor instructions are generally permitted by the MIPS architecture, CP0 is

given a somewhat protected status since it has responsibility for exception handling and memory

management. Therefore, the move to/from coprocessor instructions are the only valid mechanism for

writing to and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB entries and to modify the

operating modes in preparation for returning to User mode or interrupt-enabled states.

Chapter 14 CPU Instruction Set Details

286

ADD Add ADD

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
ADD

1 0 0 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

ADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result.

The result is placed into general register rd. In 64-bit mode, the operands must be valid sign-

extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2ís complement overflow).

The destination register rd is not modified when an integer overflow exception occurs.

Operation:

T: temp <- GPR [rs] + GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:

Integer overflow exception

Chapter 14 CPU Instruction Set Details

287

ADDI Add Immediate ADDI

rs
ADDI

0 0 1 0 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the

result. The result is placed into general register rt. In 64-bit mode, the operand must be valid sign-

extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2ís complement overflow). The

destination register rt is not modified when an integer overflow exception occurs.

Operation:

T: temp <- GPR [rs] + (immediate15)48 || immediate15...0

GPR [rt] <- (temp31)32 || temp31...0

Exceptions:

Integer overflow exception

Chapter 14 CPU Instruction Set Details

288

ADDIU Add Immediate Unsigned ADDIU

rs
ADDIU

0 0 1 0 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the

result. The result is placed into general register rt. No integer overflow exception occurs under any

circumstances. In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an

overflow exception.

Operation:

T: temp <- GPR [rs] + (immediate15)48 || immediate15...0

GPR [rt] <- (temp31)32 || temp31...0

Exceptions:

None

Chapter 14 CPU Instruction Set Details

289

ADDU Add Unsigned ADDU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
ADDU

1 0 0 0 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result.

The result is placed into general register rd. No overflow exception occurs under any circumstances.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an

overflow exception.

Operation:

T: temp <- GPR [rs] + GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:

None

Chapter 14 CPU Instruction Set Details

290

AND And AND

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
AND

1 0 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise

logical AND operation. The result is placed into general register rd.

Operation:

T: GPR [rd] <- GPR [rs] and GPR [rt]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

291

ANDI And Immediate ANDI

rs
ANDI

0 0 1 1 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-

wise logical AND operation. The result is placed into general register rt.

Operation:

T: GPR [rt] <- 048 || (immediate and GPR [rs]15...0)

Exceptions:

None

Chapter 14 CPU Instruction Set Details

292

BC0F Branch On Coprocessor 0 False BC0F

BC
0 1 0 0 0

COP0
0 1 0 0 0 0

BCF
0 0 0 0 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BC0F offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If coprocessor 0's condition signal

(CpCond: Status register bit-18 CHfield), as sampled during the previous instruction, is false, then the

program branches to the target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one

instruction between this instruction and a coprocessor instruction that changes the condition line.

Operation:

T-1: condition <- not SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

endif

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

293

BC0FL Branch On Coprocessor 0 False Likely BC0FL

BC
0 1 0 0 0

COP0
0 1 0 0 0 0

BCFL
0 0 0 1 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BC0FL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of coprocessor 0's

condition line, as sampled during the previous instruction, is false, the target address is branched to

with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one

instruction between this instruction and a coprocessor instruction that changes the condition line.

Operation:

T-1: condition <- not SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentlnstruction

endif

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

294

BC0T Branch On Coprocessor 0 True BC0T

BC
0 1 0 0 0

COP0
0 1 0 0 0 0

BCT
0 0 0 0 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BC0T offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the coprocessor 0's condition signal

(CpCond: Status register bit-18 CHfield) is true, then the program branches to the target address, with

a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one

instruction between this instruction and a coprocessor instruction that changes the condition line.

Operation:

T-1: condition <- SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

endif

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

295

BC0TL Branch On Coprocessor 0 True Likely BC0TL

BC
0 1 0 0 0

COP0
0 1 0 0 0 0

BCTL
0 0 0 1 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BC0TL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of coprocessor 0's

condition line, as sampled during the previous instruction, is true, the target address is branched to

with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one

instruction between this instruction and a coprocessor instruction that changes the condition line.

Operation:

T-1: condition <- SR18

T: target <- (offset15)46 || offset || 02

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

296

BEQ Branch On Equal BEQ

rs
BEQ

0 0 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and

the contents of general register rt are compared. If the two registers are equal, then the program

branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

297

BEQL Branch On Equal Likely BEQL

rs
BEQL

0 1 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and

the contents of general register rt are compared. If the two registers are equal, the target address is

branched to, with a delay of one instruction. If the conditional branch is not taken, the instruction in

the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] = GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

298

BGEZ Branch On Greater Than Or Equal To Zero BGEZ

rs
REGIMM

0 0 0 0 0 1
BGEZ

0 0 0 0 1
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs have

the sign bit cleared, then the program branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

299

BGEZAL Branch On Greater Than Or Equal To Zero And Link BGEZAL

rs
REGIMM

0 0 0 0 0 1
BGEZAL
1 0 0 0 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the

instruction after the delay slot is placed in the link register, r31. If the contents of general register rs

have the sign bit cleared, then the program branches to the target address, with a delay of one

instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An

attempt to execute this instruction is not trapped, however.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

300

BGEZALL Branch On Greater Than Or Equal To Zero And Link Likely BGEZALL

rs
REGIMM

0 0 0 0 0 1
BGEZALL
1 0 0 1 1

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the

instruction after the delay slot is placed in the link register, r31. If the contents of general register rs

have the sign bit cleared, then the program branches to the target address, with a delay of one

instruction. General register rs may not be general register 31, because such an instruction is not

restartable. An attempt to execute this instruction is not trapped, however. If the conditional branch is

not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

301

BGEZL Branch On Greater Than Or Equal To Zero Likely BGEZL

rs
REGIMM

0 0 0 0 0 1
BGEZL

0 0 0 1 1
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs have

the sign bit cleared, then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

302

BGTZ Branch On Greater Than Zero BGTZ

rs
BGTZ

0 0 0 1 1 1
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs are

compared to zero. If the contents of general register rs have the sign bit cleared and are not equal to

zero, then the program branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0) and (GPR [rs] ≠ 064)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

303

BGTZL Branch On Greater Than Zero Likely BGTZL

rs
BGTZL

0 1 0 1 1 1
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs are

compared to zero. If the contents of general register rs have the sign bit cleared and are not equal to

zero, then the program branches to the target address, with a delay of one instruction. If the

conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 0) and (GPR [rs] ≠ 064)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

304

BLEZ Branch On Less Than Or Equal To Zero BLEZ

rs
BLEZ

0 0 0 1 1 0
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs are

compared to zero. If the contents of general register rs have the sign bit set, or are equal to zero,

then the program branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1) or (GPR [rs] = 064)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

305

BLEZL Branch On Less Than Or Equal To Zero Likely BLEZL

rs
BLEZL

0 1 0 1 1 0
0

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs is

compared to zero. If the contents of general register rs have the sign bit set, or are equal to zero,

then the program branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1) or (GPR [rs] = 064)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

306

BLTZ Branch On Less Than Zero BLTZ

rs
REGIMM

0 0 0 0 0 1
BLTZ

0 0 0 0 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs have

the sign bit set, then the program branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

307

BLTZAL Branch On Less Than Zero And Link BLTZAL

rs
REGIMM

0 0 0 0 0 1
BLTZAL
1 0 0 0 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the

instruction after the delay slot is placed in the link register, r31. If the contents of general register rs

have the sign bit set, then the program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An

attempt to execute this instruction with register 31 specified as rs is not trapped, however.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

308

BLTZALL Branch On Less Than Zero And Link Likely BLTZALL

rs
REGIMM

0 0 0 0 0 1
BLTZALL
1 0 0 1 0

offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the

instruction after the delay slot is placed in the link register, r31. If the contents of general register rs

have the sign bit set, then the program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An

attempt to execute this instruction with register 31 specified as rs is not trapped, however. If the

conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

GPR [31] <- PC + 8

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

309

BLTZL Branch On Less Than Zero Likely BLTZL

rs
REGIMM

0 0 0 0 0 1
BLTZL

0 0 0 1 0
offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. If the contents of general register rs have

the sign bit set, then the program branches to the target address, with a delay of one instruction. If the

conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs]63 = 1)

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Note : The results of arithmetic operations are sign-extended from 32 to 64 bits and stored destination

registers. Therefore, GPR [rs]63 generally indicates the sign of data on 32-bit mode the same

as GPR [rs]31.

Chapter 14 CPU Instruction Set Details

310

BNE Branch On Not Equal BNE

rs
BNE

0 0 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and

the contents of general register rt are compared. If the two registers are not equal, then the program

branches to the target address, with a delay of one instruction.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC <- PC + target

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

311

BNEL Branch On Not Equal Likely BNEL

rs
BNEL

0 1 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot

and the 16-bit offset, shifted left two bits and sign-extended. The contents of general register rs and

the contents of general register rt are compared. If the two registers are not equal, then the program

branches to the target address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target <- (offset15)46 || offset || 02

condition <- (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC <- PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

312

BREAK Breakpoint BREAK

code
SPECIAL
0 0 0 0 0 0

BREAK
0 0 1 1 0 1

31 26 25 6 5 0

6 20 6

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception

handler.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: BreakpointException

Exceptions:

Breakpoint exception

Chapter 14 CPU Instruction Set Details

313

CACHE Cache CACHE

base
CACHE

1 0 1 1 1 1
op offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The virtual address is translated to a physical address using the TLB, and the 5-bit sub-

opcode specifies a cache operation for that address.

If CP0 is not usable (User or Supervisor mode) and the CP0 enable bit in the Status register is clear, a

coprocessor unusable exception is taken. The operation of this instruction on any operation/cache

combination not listed below, or on a secondary cache, is undefined. The operation of this instruction

on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache block.

For a primary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag, vAddrCACHEBITS...LINEBITS specifies

the block.

Index Load Tag also uses vAddrLINEBITS...3 to select the doubleword for reading parity. When the CE

bit of the Status register is set, Fill Cache op uses the PErr register to store parity values into the

cache.

The Hit operation accesses the specified cache as normal data references, and performs the

specified operation if the cache block contains valid data with the specified physical address (a hit). If

the cache block is invalid or contains a different address (a miss), no operation is performed.

Chapter 14 CPU Instruction Set Details

314

CACHE Cache CACHE
(Continued)

Write back from a primary cache goes to memory. The address to be written is specified by the

cache tag and not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations (where the

physical address is used to index the cache but need not match the cache tag) unmapped addresses

may be used to avoid TLB exceptions. This operation never causes a TLB Modified exception.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache

0 I Primary instruction

1 D Primary data

2 - 3 NA Undefined

Chapter 14 CPU Instruction Set Details

315

CACHE Cache CACHE
(Continued)

Bits 20...18 (this value is listed under the Code column) of the instruction specify the operation as

follows:

Code Cache Name Operation

0 I Index Invalidate Set the cache state of the cache block to Invalid.

0 D Index Write-
Back Invalidate

Examine the cache state and W bit of the primary data cache block at the index
specified by the virtual address. If the state is not Invalid and the W bit is set, then
write back the block to memory. The address to write is taken from the primary
cache tag. Set cache state of primary cache block to Invalid.

1 I, D Index Load Tag Read the tag for the cache block at the specified index and place it into the TagLo
CP0 registers, ignoring parity errors. Also load the data parity bits into the ECC
register.

2 I, D Index Store Tag Write the tag for the cache block at the specified index from the TagLo and TagHi
CP0 registers.

3 D Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory when writing
new contents into an entire cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back to the memory. In all cases,
set the cache state to Dirty.

4 I, D Hit Invalidate If the cache block contains the specified address, mark the cache block invalid.

5 D Hit WriteBack
Invalidate

If the cache block contains the specified address, write back the data if it is dirty,
and mark the cache block invalid.

5 I Fill Fill the primary instruction cache block from memory. If the CE bit of the Status
register is set, the contents of the ECC register is used instead of the computed
parity bits for addressed doubleword when written to the instruction cache.

6 D Hit WriteBack If the cache block contains the specified address, and the W bit is set, write back
the data to memory and clear the W bit.

6 I Hit WriteBack If the cache block contains the specified address, write back the data
unconditionally.

Chapter 14 CPU Instruction Set Details

316

CACHE Cache CACHE
(Continued)

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

TLB Refill exception

TLB Invalid exception

Bus Error exception

Address Error exception

Cache Error exception

Chapter 14 CPU Instruction Set Details

317

DADD Doubleword Add DADD

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DADD

1 0 1 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result.

The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2's complement overflow).

The destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rd] <- GPR [rs] + GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

318

DADDI Doubleword Add Immediate DADDI

rs
DADDI

0 1 1 0 0 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the

result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2's complement overflow). The

destination register rt is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rt] <- GPR [rs] + (immediate15)48 || immediate15...0

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

319

DADDIU Doubleword Add Immediate Unsigned DADDIU

rs
DADDIU

0 1 1 0 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the

result. The result is placed into general register rt. No integer overflow exception occurs under any

circumstances.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes

an overflow exception.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rt] <- GPR [rs] + (immediate15)48 || immediate15...0

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

320

DADDU Doubleword Add Unsigned DADDU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DADDU

1 0 1 1 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result.

The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is that DADDU never causes an

overflow exception.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rd] <- GPR [rs] + GPR [rt]

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

321

DDIV Doubleword Divide DDIV

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0
DDIV

0 1 1 1 1 0

31 26 25 21 20 16 15 6 5 0

6 5 5 10 6

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both

operands as 2's complement values. No overflow exception occurs under any circumstances, and

the result of this operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor and for

overflow.

When the operation completes, the quotient word of the double result is loaded into special register

LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by two or more

instructions. This is defined in this manner to take account of the R4000 hazards (for code

compatibility) as well as the VR4100ís own hazards.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- GPR [rs] div GPR [rt]

HI <- GPR [rs] mod GPR [rt]

Exceptions:

Reserved instruction exception

Chapter 14 CPU Instruction Set Details

322

DDIVU Doubleword Divide Unsigned DDIVU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DDIVU
0 1 1 1 1 1

6 5

6

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both

operands as unsigned values. No integer overflow exception occurs under any circumstances, and

the result of this operation is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the

programmer.

When the operation completes, the quotient word of the double result is loaded into special register

LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by two or more

instructions.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: LO <- (0 || GPR [rs]) div (0 || GPR [rt])

HI <- (0 || GPR [rs]) mod (0 || GPR [rt])

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

323

DIV Divide DIV

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DIV
0 1 1 0 1 0

6 5

6

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both

operands as 2's complement values. No overflow exception occurs under any circumstances, and

the result of this operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor and for

overflow.

When the operation completes, the quotient word of the double result is loaded into special register

LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by two or more

instructions.

Chapter 14 CPU Instruction Set Details

324

DIV Divide DIV
(Continued)

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: q <- GPR [rs]31...0 div GPR [rt]31...0

r <- GPR [rs]31...0 mod GPR [rt]31...0

LO <- (q31)32 || q31...0

HI <- (r31)32 || r31...0

Exceptions:

None

Chapter 14 CPU Instruction Set Details

325

DIVU Divide Unsigned DIVU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DIVU
0 1 1 0 1 1

6 5

6

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both

operands as unsigned values. No integer overflow exception occurs under any circumstances, and

the result of this operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special register

LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by two or more

instructions.

Chapter 14 CPU Instruction Set Details

326

DIVU Divide Unsigned DIVU
(Continued)

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: q <- (0 || GPR [rs]31...0) div (0 || GPR [rt]31...0)

r <- (0 || GPR [rs]31...0) mod (0 || GPR [rt]31...0)

LO <- (q31)32 || q31...0

HI <- (r31)32 || r31...0

Exceptions:

None

Chapter 14 CPU Instruction Set Details

327

DMADD16 Doubleword Multiply and Add 16-bit intege r DMADD16

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMADD16
1 0 1 0 0 1

6 5

6

Format:

DMADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2's

complement values. The operand[62:15] must be valid 15-bit, sign-extended values. If not, the result

is unpredictable.

This multiplied result and the 64-bit data joined of special register LO is added to form the result as a

signed integer.

No integer overflow exception occurs under any circumstances.

When the operation completes, the double result is loaded into special register LO.

The following Table are hazard cycles between DMADD16 and other instructions.

MULT/MULTU -> DMADD16 1 Cycle

DMULT/DMULTU -> DMADD16 4 Cycles

DIV/DIVU -> DMADD16 36 Cycles

DDIV/DDIVU -> DMADD16 68 Cycles

MFHI/MFLO -> DMADD16 2 Cycles

MADD16 -> DMADD16 0 Cycle

DMADD16 -> DMADD16 0 Cycle

Chapter 14 CPU Instruction Set Details

328

DMADD16 Doubleword Multiply and Add 16-bit integer DMADD16
(Continued)

DMADD16 -> MULT/MULTU 0 Cycle

DMADD16 -> DMULT/DMULTU 0 Cycle

DMADD16 -> DIV/DIVU 1 Cycle

DMADD16 -> DDIV/DDIVU 1 Cycle

DMADD16 -> MFHI/MFLO 0 Cycle

DMADD16 -> DMADD16 0 Cycle

DMADD16 -> MADD16 0 Cycle

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: temp <- GPR [rs] * GPR [rt]

LO <- temp + LO

HI <- undefined

Exceptions:

Reserved Instruction Exception (VR4100 in 32-bit user mode

VR4100 in 32-bit supervisor mode)

Chapter 14 CPU Instruction Set Details

329

DMFC0 Doubleword Move From System Control Coprocessor DMFC0

DMF
0 0 0 0 1

COP0
0 1 0 0 0 0

rt rd

31 26 25 21 20 16 15 0

6 5 5 5

0
0 0 0 0 0 0 0 0 0 0 0

11 10

11

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined for the VR4100 operating in 64-bit mode and in 32-bit kernel mode.

Execution of this instruction in 32-bit user or supervisor mode causes a reserved instruction

exception. All 64-bits of the general register destination are written from the coprocessor register

source. The operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

T: data <- CPR [0, rd]

T+1: GPR [rt] <- data

Exceptions:

Coprocessor unusable exception (user mode and supervisor mode if CP0 not enabled)

Reserved instruction exception (VR4100 in 32-bit user mode

VR4100 in 32-bit supervisor mode)

Chapter 14 CPU Instruction Set Details

330

DMTC0 Doubleword Move To System Control Coprocessor DMTC0

DMT
0 0 1 0 1

COP0
0 1 0 0 0 0

rt rd

31 26 25 21 20 16 15 0

6 5 5 5

0
0 0 0 0 0 0 0 0 0 0 0

11 10

11

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the VR4100 operating in 64-bit mode or in 32-bit kernel mode. Execution

of this instruction in 32-bit user or supervisor mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general register source. The operation of

DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the

operation of load instructions, store instructions, and TLB operations immediately prior to and after

this instruction are undefined.

Operation:

T: data <- GPR [rt]

T+1: CPR [0, rd] <- data

Exceptions:

Coprocessor unusable exception: (In user and supervisor mode if CP0 not enabled)

Reserved exception: (VR4100 in 32-bit user mode

VR4100 in 32-bit supervisor mode)

Chapter 14 CPU Instruction Set Details

331

DMULT Doubleword Multiply DMULT

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMULT
0 1 1 1 0 0

6 5

6

Format:

DMULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 2ís complement

values. No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register

LO, and the high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by a minimum of two

other instructions.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs] * GPR [rt]

LO <- t63...0

HI <- t127...64

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

332

DMULTU Doubleword Multiply Unsigned DMULTU

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMULTU
0 1 1 1 0 1

6 5

6

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both

operands as unsigned values. No overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register

LO, and the high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by a minimum of two

instructions.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- (0 || GPR [rs]) * (0 || GPR [rt])

LO <- t63...0

HI <- t127...64

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

333

DSLL Doubleword Shift Left Logical DSLL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSLL

1 1 1 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 0 || sa

GPR [rd] <- GPR [rt](63 - s)...0 || 0s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

334

DSLLV Doubleword Shift Left Logical Variable DSLLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSLLV

0 1 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the low-order six

bits contained in general register rs, inserting zeros into the low-order bits. The result is placed in

register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- GPR [rs]5...0

GPR [rd] <- GPR [rt](63 - s)...0 || 0s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

335

DSLL32 Doubleword Shift Left Logical + 32 DSLL32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSLL32

1 1 1 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into the low-order

bits. The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 1 || sa

GPR [rd] <- GPR [rt](63 - s)...0 || 0s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

336

DSRA Doubleword Shift Right Arithmetic DSRA

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRA

1 1 1 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits. The

result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 0 || sa

GPR [rd] <- (GPR [rt]63)s || GPR [rt] 63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

337

DSRAV Doubleword Shift Right Arithmetic Variable DSRAV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSRAV

0 1 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six

bits of general register rs, sign-extending the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- GPR [rs]5...0

GPR [rd] <- (GPR [rt]63)s || GPR [rt] 63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

338

DSRA32 Doubleword Shift Right Arithmetic + 32 DSRA32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRA32

1 1 1 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the high-order bits.

The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 1 || sa

GPR [rd] <- (GPR [rt]63)s || GPR [rt]63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

339

DSRL Doubleword Shift Right Logical DSRL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRL

1 1 1 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits.

The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 0 || sa

GPR [rd] <- 0s || GPR [rt]63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

340

DSRLV Doubleword Shift Right Logical Variable DSRLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSRLV

0 1 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six

bits of general register rs, inserting zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- GPR [rs]5...0

GPR [rd] <- 0s || GPR [rt]63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

341

DSRL32 Doubleword Shift Right Logical + 32 DSRL32

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
DSRL32

1 1 1 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros into the high-order

bits. The result is placed in register rd.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: s <- 1 || sa

GPR [rd] <- 0s || GPR [rt]63...s

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

342

DSUB Doubleword Subtract DSUB

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSUB

1 0 1 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a

result. The result is placed into general register rd.

The only difference between this instruction and the DSUBU instruction is that DSUBU never traps on

overflow.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ 2's complement

overflow). The destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

343

DSUBU Doubleword Subtract Unsigned DSUBU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
DSUBU

1 0 1 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a

result. The result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never traps on

overflow. No integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: GPR [rd] <- GPR [rs] - GPR [rt]

Exceptions:

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

344

ERET Exception Return ERET

CO

1

COP0
0 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET
0 1 1 0 0 0

31 26 25 24 6 5 0

6 1 19 6

Format:

ERET

Description:

ERET is the VR4100 instruction for returning from an interrupt, exception, or error trap. Unlike a

branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC and clear the

ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from the EPC, and clear the

EXL bit of the Status register (SR1).

Operation:

T: if SR2 = 1 then

PC <- ErrorEPC

SR <- SR31...3 || 0 || SR1...0

else

PC <-EPC

SR <- SR31...2 || 0 || SR0

endif

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

345

HIBERNATE Hibernate HIBERNATE

CO

1

COP0
0 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HIBERNATE
1 0 0 0 1 1

31 26 25 24 6 5 0

6 1 19 6

Format:

HIBERNATE

Description:

In Hibernate mode, all internal clock, include Timer/Interrupt unit, and all system interface clocks are

frozen at hi level.

To enter Hibernate mode from Fullspeed mode, first execute the HIBERNATE instruction. When the

HIBERNATE instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after

then the internal clocks and the system interface clocks will shut down, thus freezing the pipeline.

Once the VR4100 is in Hibernate mode, the ColdRest sequence will cause the VR4100 to exit

Hibernate mode and to enter Fullspeed mode.

Operation:

T:

T+1: hibernate operation ()

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

346

J Jump J

J
0 0 0 0 1 0

target

31 26 25 0

6 26

Format:

J target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the

address of the delay slot. The program unconditionally jumps to this calculated address with a delay

of one instruction.

Operation:

T: temp <- target

T+1: PC <- PC63...28 || temp || 02

Exceptions:

None

Chapter 14 CPU Instruction Set Details

347

JAL Jump And Link JAL

JAL
0 0 0 0 1 1

target

31 26 25 0

6 26

Format:

JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the

address of the delay slot. The program unconditionally jumps to this calculated address with a delay

of one instruction. The address of the instruction after the delay slot is placed in the link register, r31.

Operation:

T: temp <- target

GPR [31] <- PC + 8

T+1: PC <- PC63...28 || temp || 02

Exceptions:

None

Chapter 14 CPU Instruction Set Details

348

JALR Jump And Link Register JALR

rs
SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0

rd
0

0 0 0 0 0
JALR

0 0 1 0 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

JALR rs

JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one

instruction. The address of the instruction after the delay slot is placed in general register rd. The

default value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the same

effect when re-executed. However, an attempt to execute this instruction is not trapped, and the

result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a target

register (rs) which contains an address whose two low-order bits are zero. If these low-order bits are

not zero, an address error exception will occur when the jump target instruction is subsequently

fetched.

Operation:

T: temp <- GPR [rs]

GPR [rd] <- PC + 8

T+1: PC <- temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

349

JR Jump Register JR

rs
SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 0

6 5 15

JR
0 0 1 0 0 0

6 5

6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one

instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target register

(rs) which contains an address whose two low-order bits are zero. If these low-order bits are not zero,

an address error exception will occur when the jump target instruction is subsequently fetched.

Operation:

T: temp <- GPR [rs]

T+1: PC <- temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

350

LB Load Byte LB

base
LB

1 0 0 0 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the byte at the memory location specified by the effective address are sign-

extended and loaded into general register rt.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor BigEndianCPU3

GPR [rt] <- (mem7 + 8* byte)56 || mem7 + 8* byte...8* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

351

LBU Load Byte Unsigned LBU

base
LBU

1 0 0 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the byte at the memory location specified by the effective address are zero-

extended and loaded into general register rt.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor BigEndianCPU3

GPR [rt] <- 056 || mem7 + 8* byte...8* byte

Exceptions:

TLB refill exception Bus error exception

TLB invalid exception Address error exception

Chapter 14 CPU Instruction Set Details

352

LD Load Doubleword LD

base
LD

1 1 0 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the 64-bit doubleword at the memory location specified by the effective

address are loaded into general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address error

exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

data <- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR [rt] <- data

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit user mode

VR4100 in 32-bit supervisor mode)

Chapter 14 CPU Instruction Set Details

353

LDL Load Doubleword Left LDL

base
LDL

0 1 1 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register with eight

consecutive bytes from memory, when the bytes cross a doubleword boundary. LDL loads the left

portion of the register with the appropriate part of the high-order doubleword; LDR loads the right

portion of the register with the appropriate part of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which can specify an arbitrary byte. It reads bytes only from the doubleword in

memory which contains the specified starting byte. From one to eight bytes will be loaded, depending

on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-

most) byte of the register; then it loads bytes from memory into the register until it reaches the low-

order byte of the doubleword in memory. The least-significant (right-most) byte(s) of the register will

not be changed.

address 8

address 0

memory
(big-endian)

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 A B C D E F G H

3 4 5 6 7 F G H

before

after

$24

$24

register

LDL $24, 3 ($0)

Chapter 14 CPU Instruction Set Details

354

LDL Load Doubleword Left LDL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following

LDL (or LDR) instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...3 || 03

endif

byte <- vAddr2...0 xor BigEndianCPU3

mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR [rt] <- mem7 + 8* byte...0 || GPR [rt]55 - 8* byte...0

Chapter 14 CPU Instruction Set Details

355

LDL Load Doubleword Left LDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LDL

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

P B C D E F G H
O P C D E F G H
N O P D E F G H
MN O P E F G H
L M N O P F G H
K L M N O P G H
J K L M N O P H
I J K L M N O P

0
1
2
3
4
5
6
7

0 7
0 6
0 5
0 4
0 3
0 2
0 1
0 0

I J K L M N O P
J K L M N O P H
K L M N O P G H
L M N O P F G H
MN O P E F G H
N O P D E F G H
O P C D E F G H
P B C D E F G H

7
6
5
4
3
2
1
0

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

356

LDR Load Doubleword Right LDR

base
LDR

0 1 1 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register with eight

consecutive bytes from memory, when the bytes cross a doubleword boundary. LDR loads the right

portion of the register with the appropriate part of the low-order doubleword; LDL loads the left portion

of the register with the appropriate part of the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which can specify an arbitrary byte. It reads bytes only from the doubleword in

memory which contains the specified starting byte. From one to eight bytes will be loaded, depending

on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-

most) byte of the register; then it loads bytes from memory into the register until it reaches the high-

order byte of the doubleword in memory. The most significant (left-most) byte(s) of the register will

not be changed.

address 8

address 0

memory
(big-endian)

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 A B C D E F G H

A B C 0 1 2 3 4

before

after

$24

$24

register

LDR $24, 4 ($0) register

Chapter 14 CPU Instruction Set Details

357

LDR Load Doubleword Right LDR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following

LDR (or LDL) instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...3 || 03

endif

byte <- vAddr2...0 xor BigEndianCPU3

mem <- LoadMemory (uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)

GPR [rt] <- GPR [rt]63...64 - 8* byte || mem63...8* byte

Chapter 14 CPU Instruction Set Details

358

LDR Load Doubleword Right LDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LDR

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

I J K L M N O P
A I J K L M N O
A B I J K L M N
A B C I J K L M
A B C D I J K L
A B C D E I J K
A B C D E F I J
A B C D E F G I

7
6
5
4
3
2
1
0

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

A B C D E F G I
A B C D E F I J
A B C D E I J K
A B C D I J K L
A B C I J K L M
A B I J K L M N
A I J K L M N O
I J K L M N O P

0
1
2
3
4
5
6
7

7 0
6 0
5 0
4 0
3 0
2 0
1 0
0 0

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

359

LH Load Halfword LH

base
LH

1 0 0 0 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the halfword at the memory location specified by the effective address are

sign-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- (mem15 + 8* byte)48 || mem15 + 8* byte...8* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

360

LHU Load Halfword Unsigned LHU

base
LHU

1 0 0 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the halfword at the memory location specified by the effective address are

zero-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

GPR [rt] <- 048 || mem15 + 8* byte...8* byte

Exceptions:

TLB refill exception Bus Error exception

TLB invalid exception Address error exception

Chapter 14 CPU Instruction Set Details

361

LUI Load Upper Immediate LUI

0
0 0 0 0 0

LUI
0 0 1 1 1 1

rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed

into general register rt. In 64-bit mode, the loaded word is sign-extended.

Operation:

T: GPR [rt] <- (immediate15)32 || immediate || 016

Exceptions:

None

Chapter 14 CPU Instruction Set Details

362

LW Load Word LW

base
LW

1 0 0 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the word at the memory location specified by the effective address are

loaded into general register rt. In 64-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error

exception occurs.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- (mem31 + 8* byte)32 || mem31 + 8* byte...8* byte

Exceptions:

TLB refill exception Bus error exception

TLB invalid exception Address error exception

Chapter 14 CPU Instruction Set Details

363

LWL Load Word Left LWL

base
LWL

1 0 0 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register with four

consecutive bytes from memory, when the bytes cross a word boundary. LWL loads the left portion of

the register with the appropriate part of the high-order word; LWR loads the right portion of the register

with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which can specify an arbitrary byte. It reads bytes only from the word in

memory which contains the specified starting byte. From one to four bytes will be loaded, depending

on the starting byte specified. In 64-bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-

most) byte of the register; then it loads bytes from memory into the register until it reaches the low-

order byte of the word in memory. The least-significant (right-most) byte(s) of the register will not be

changed.

address 4

address 0

memory
(big-endian)

4 5 6 7

0 1 2 3 before

after

$24

$24

register

LWL $24, 1 ($0)

A B C D

1 2 3 D

Chapter 14 CPU Instruction Set Details

364

LWL Load Word Left LWL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following

LWL (or LWR) instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...3 || 03

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp <- mem31 + 32* word - 8* byte...32* word || GPR [rt]23 - 8* byte...0

GPR [rt] <- (temp31)32 || temp

Chapter 14 CPU Instruction Set Details

365

LWL Load Word Left LWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LWL

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

S S S S P F G H
S S S S O P G H
S S S S N O P H
S S S S M N O P
S S S S L F G H
S S S S K L G H
S S S S J K L H
S S S S I J K L

0
1
2
3
0
1
2
3

0 7
0 6
0 5
0 4
4 3
4 2
4 1
4 0

S S S S I J K L
S S S S J K L H
S S S S K L G H
S S S S L F G H
S S S S M N O P
S S S S N O P H
S S S S O P G H
S S S S P F G H

3
2
1
0
3
2
1
0

4 0
4 1
4 2
4 3
0 4
0 5
0 6
0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

366

LWR Load Word Right LWR

base
LWR

1 0 0 1 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register with four

consecutive bytes from memory, when the bytes cross a word boundary. LWR loads the right portion

of the register with the appropriate part of the low-order word; LWL loads the left portion of the register

with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which can specify an arbitrary byte. It reads bytes only from the word in

memory which contains the specified starting byte. From one to four bytes will be loaded, depending

on the starting byte specified. In 64-bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-

most) byte of the register; then it loads bytes from memory into the register until it reaches the high-

order byte of the word in memory. The most significant (left-most) byte(s) of the register will not be

changed.

address 4

address 0

memory
(big-endian)

4 5 6 7

0 1 2 3 before

after

$24

register

LWR $24, 4 ($0)

A B C D

A B C 4

Chapter 14 CPU Instruction Set Details

367

LWR Load Word Right LWR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is

needed between an immediately preceding load instruction which specifies register rt and a following

LWR (or LWL) instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 1 then

pAddr <- pAddrPSIZE - 1...3 || 03

endif

byte <- vAddr1...0 xor BigEndianCPU2

word <- vAddr2 xor BigEndianCPU

mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp <- GPR [rt]31...32 - 8* byte...0 || mem32 + 32* word - 32* word + 8* byte

GPR [rt] <- (temp31)32 || temp

Chapter 14 CPU Instruction Set Details

368

LWR Load Word Right LWR
(Continued)

Given a word in a register and a word in memory, the operation of LWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

LWR

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

S S S S M N O P
S S S S E M N O
S S S S E F M N
S S S S E F G M
S S S S I J K L
S S S S E I J K
S S S S E F I J
S S S S E F G I

0
1
2
3
0
1
2
3

0 4
1 4
2 4
3 4
4 0
5 0
6 0
7 0

S S S S E F G I
S S S S E F I J
S S S S E I J K
S S S S I J K L
S S S S E F G M
S S S S E F M N
S S S S E M N O
S S S S M N O P

0
1
2
3
0
1
2
3

7 0
6 0
5 0
4 0
3 4
2 4
1 4
0 4

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

369

LWU Load Word Unsigned LWU

base
LWU

1 0 1 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of the word at the memory location specified by the effective address are

loaded into general register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error

exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte <- vAddr2...0 xor (BigEndianCPU || 02)

GPR [rt] <- 032 || mem31 + 8* byte...8* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

370

MADD16 Multiply and Add 16-bit integer MADD16

rs
SPECIAL
0 0 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 10

DMADD16
1 0 1 0 0 0

6 5

6

Format:

MADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2's

complement values. The operand[62:15] must be valid 15-bit, sign-extended values. If not, the

results is unpredictable.

This multiplied result and the 64-bit data joined special register HI to LO are added to form the result.

No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register

LO, and the high-order word of the double result is loaded into special register HI.

The following Table are hazard cycles between MADD16 and other instructions.

MULT/MULTU -> MADD16 1 Cycle

DMULT/DMULTU -> MADD16 4 Cycles

DIV/DIVU -> MADD16 36 Cycles

DDIV/DDIVU -> MADD16 68 Cycles

MFHI/MFLO -> MADD16 2 Cycles

DMADD16 -> MADD16 0 Cycle

MADD16 -> MADD16 0 Cycle

Chapter 14 CPU Instruction Set Details

371

MADD16 Multiply and Add 16-bit integer MADD16
(Continued)

MADD16 -> MULT/MULTU 0 Cycle

MADD16 -> DMULT/DMULTU 0 Cycle

MADD16 -> DIV/DIVU 1 Cycle

MADD16 -> DDIV/DDIVU 1 Cycle

MADD16 -> MFHI/MFLO 0 Cycle

MADD16 -> DMADD16 0 Cycle

MADD16 -> MADD16 0 Cycle

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: temp1 <- GPR [rs] * GPR [rt]

temp2 <- temp1 + (HI31...0 || LO31...0)

LO <- (temp231)32 || temp231...0

HI <- (temp263)32 || temp263...32

Exceptions:

None

Chapter 14 CPU Instruction Set Details

372

MFC0 Move From System Control Coprocessor MFC0

MF
0 0 0 0 0

COP0
0 1 0 0 0 0

rt
0

0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 16 15 0

6 5 5 5

11 10

11

rd

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

When using a register used by the MFC0 by means of instructions before and after it, refer to

Appendix A V R4100 Coprocessor 0 Hazards and place the instructions in the appropriate location.

Operation:

T: data <- CPR [0, rd]

T+1: GPR [rt] <- (data31)32 || data31...0

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CP0 not enabled)

Chapter 14 CPU Instruction Set Details

373

MFHI Move From HI MFHI

0
0 0 0 0 0 0 0 0 0 0

SPECIAL
0 0 0 0 0 0

31 26 25 11 1016 15 0

6 10 5 6

rd
0

0 0 0 0 0
MFHI

0 1 0 0 0 0

5

6 5

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFHI

instruction may not be any of the instructions which modify the HI register: MULT, MULTU, DIV, DIVU,

MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

T: GPR [rd] <- HI

Exceptions:

None

Chapter 14 CPU Instruction Set Details

374

MFLO Move From LO MFLO

0
0 0 0 0 0 0 0 0 0 0

SPECIAL
0 0 0 0 0 0

31 26 25 11 1016 15 0

6 10 5 6

rd
0

0 0 0 0 0
MFLO

0 1 0 0 1 0

5

6 5

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFLO

instruction may not be any of the instructions which modify the LO register: MULT, MULTU, DIV,

DIVU, MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

T: GPR [rd] <- LO

Exceptions:

None

Chapter 14 CPU Instruction Set Details

375

MTC0 Move To Coprocessor0 MTC0

0
0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

31 26 25 11 1016 15 0

6 1155

rt rd
MT

0 0 1 0 0

5

21 20

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of coprocessor 0.

Because the state of the virtual address translation system may be altered by this instruction, the

operation of load instructions, store instructions, and TLB operations immediately prior to and after

this instruction are undefined.

When using a register used by the MTC0 by means of instructions before and after it, refer to

Appendix A V R4100 Coprocessor 0 Hazards and place the instructions in the appropriate location.

Operation:

T: data <- GPR [rt]

T+1: CPR [0, rd] <- data

Exceptions:

Coprocessor unusable exception (user and supervisor mode if CP0 not enabled)

Chapter 14 CPU Instruction Set Details

376

MTHI Move To HI MTHI

rs
SPECIAL
0 0 0 0 0 0

MTHI
0 1 0 0 0 1

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 615

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any

MFLO, MFHI, MTLO, or MTHI instructions, the contents of special register HI are undefined.

Operation:

T-2: HI <- undefined

T-1: HI <- undefined

T: HI <- GPR [rs]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

377

MTLO Move To LO MTLO

rs
SPECIAL
0 0 0 0 0 0

MTLO
0 1 0 0 1 1

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 615

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any

MFLO, MFHI, MTLO, or MTHI instructions, the contents of special register LO are undefined.

Operation:

T-2: LO <- undefined

T-1: LO <- undefined

T: LO <- GPR [rs]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

378

MULT Multiply MULT

rs
SPECIAL
0 0 0 0 0 0

MULT
0 1 1 0 0 0

0
0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 610

rt

5

16 15

Format:

MULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 32-bit 2's

complement values. No integer overflow exception occurs under any circumstances. In 64-bit mode,

the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register

LO, and the high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by a minimum of two

other instructions.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs]31...0 * GPR [rt]31...0

LO <- (t31)32 || t31...0

HI <- (t63)32 || t63...32

Exceptions:

None

Chapter 14 CPU Instruction Set Details

379

MULTU Multiply Unsigned MULTU

rs
SPECIAL
0 0 0 0 0 0

MULTU
0 1 1 0 0 1

0
0 0 0 0 0 0 0 0 0 0

31 26 25 21 20 6 5 0

6 5 610

rt

5

16 15

Format:

MULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both

operands as unsigned values. No overflow exception occurs under any circumstances. In 64-bit

mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register

LO, and the high-order word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are

undefined. Correct operation requires separating reads of HI or LO from writes by a minimum of two

instructions.

Operation:

T-2: LO <- undefined

HI <- undefined

T-1: LO <- undefined

HI <- undefined

T: t <- GPR [rs]31...0 * GPR [rt]31...0

LO <- (t31)32 || t31...0

HI <- (t63)32 || t63...32

Exceptions:

None

Chapter 14 CPU Instruction Set Details

380

NOR Nor NOR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
NOR

1 0 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise

logical NOR operation. The result is placed into general register rd.

Operation:

T: GPR [rd] <- GPR [rs] nor GPR [rt]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

381

OR Or OR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
OR

1 0 0 1 0 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise

logical OR operation. The result is placed into general register rd.

Operation:

T: GPR [rd] <- GPR [rs] or GPR [rt]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

382

ORI Or Immediate ORI

rs
ORI

0 0 1 1 0 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-

wise logical OR operation. The result is placed into general register rt.

Operation:

T: GPR [rt] <- GPR [rs]63...16 || (immediate or GPR [rs]15...0)

Exceptions:

None

Chapter 14 CPU Instruction Set Details

383

SB Store Byte SB

base
SB

1 0 1 0 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The least-significant byte of register rt is stored at the effective address.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian3))

byte <- vAddr2...0 xor BigEndianCPU3

data <- GPR [rt]63 - 8* byte...0 || 08* byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

384

SD Store Doubleword SD

base
SD

1 1 1 1 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of general register rt are stored at the memory location specified by the

effective address.

If either of the three least-significant bits of the effective address are non-zero, an address error

exception occurs.

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

data <- GPR [rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit user mode

VR4100 in 32-bit supervisor mode)

Chapter 14 CPU Instruction Set Details

385

SDL Store Doubleword Left SDL

base
SDL

1 0 1 1 0 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register into eight

consecutive bytes of memory, when the bytes cross a doubleword boundary. SDL stores the left

portion of the register into the appropriate part of the high-order doubleword of memory; SDR stores

the right portion of the register into the appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which may specify an arbitrary byte. It alters only the word in memory which

contains that byte. From one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in

memory; then it copies bytes from register to memory until it reaches the low-order byte of the word in

memory.

No address error exceptions due to alignment are possible.

address 8

address 0

memory
(big-endian)

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7
A B C D E F G H

before

after

$24

register

SDL $24, 1 ($0)

address 8

address 0

8 9 10 11 12 13 14 15

0 A B C D E F G

Chapter 14 CPU Instruction Set Details

386

SDL Store Doubleword Left SDL
(Continued)

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddr31...3 || 03

endif

byte <- vAddr2...0 xor BigEndianCPU3

data <- 056 - 8* byte || GPR [rt]63...56 - 8* byte

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

Chapter 14 CPU Instruction Set Details

387

SDL Store Doubleword Left SDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SDL

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

I J K L M N O A
I J K L M N A B
I J K L M A B C
I J K L A B C D
I J K A B C D E
I J A B C D E F
I A B C D E F G
A B C D E F G H

0
1
2
3
4
5
6
7

0 7
0 6
0 5
0 4
0 3
0 2
0 1
0 0

A B C D E F G H
I A B C D E F G
I J A B C D E F
I J K A B C D E
I J K L A B C D
I J K L M A B C
I J K L M N A B
I J K L M N O A

7
6
5
4
3
2
1
0

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

388

SDR Store Doubleword Right SDR

base
SDR

1 0 1 1 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register into eight

consecutive bytes of memory, when the bytes cross a boundary between two doublewords. SDR

stores the right portion of the register into the appropriate part of the low-order doubleword; SDL

stores the left portion of the register into the appropriate part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which may specify an arbitrary byte. It alters only the word in memory which

contains that byte. From one to eight bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the

specified byte in memory; then it copies bytes from register to memory until it reaches the high-order

byte of the word in memory. No address error exceptions due to alignment are possible.

address 8

address 0

memory
(big-endian)

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7
A B C D E F G H

before

after

$24

register

SDR $24, 4 ($0)

address 8

address 0

8 9 10 11 12 13 14 15

E F G H 4 5 6 7

memory
(big-endian)

Chapter 14 CPU Instruction Set Details

389

SDR Store Doubleword Right SDR
(Continued)

This operation is only defined for the VR4100 operating in 64-bit mode. Execution of this instruction in

32-bit mode causes a reserved instruction exception.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...3 || 03

endif

byte <- vAddr2...0 xor BigEndianCPU3

data <- GPR [rt]63 - 8* byte || 08* byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

Chapter 14 CPU Instruction Set Details

390

SDR Store Doubleword Right SDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SDR

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

A B C D E F G H
B C D E F G H P
C D E F G H O P
D E F G H N O P
E F G H M N O P
F G H L M N O P
GH K L M N O P
H J K L M N O P

7
6
5
4
3
2
1
0

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0

H J K L M N O P
GH K L M N O P
F G H L M N O P
E F G H M N O P
D E F G H N O P
C D E F G H O P
B C D E F G H P
A B C D E F G H

0
1
2
3
4
5
6
7

7 0
6 0
5 0
4 0
3 0
2 0
1 0
0 0

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 in 32-bit mode)

Chapter 14 CPU Instruction Set Details

391

SH Store Halfword SH

base
SH

1 0 1 0 0 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an

unsigned effective address. The least-significant halfword of register rt is stored at the effective

address. If the least-significant bit of the effective address is non-zero, an address error exception

occurs.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

byte <- vAddr2...0 xor (BigEndianCPU2 || 0)

data <- GPR [rt]63 - 8* byte...0 || 08* byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

392

SLL Shift Left Logical SLL

rs
SPECIAL
0 0 0 0 0 0

rt rd sa
SLL

0 0 0 0 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign

extended for all shift amounts, including zero; SLL with zero shift amount truncates a 64-bit value to

32 bits and then sign extends this 32-bit value. SLL, unlike nearly all other word operations, does not

require an operand to be a properly sign-extended word value to produce a valid sign-extended word

result.

Note: SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels. If using SLL with a zero shift to truncate 64-bit values, check the assembler

you are using.

Operation:

T: s <- 0 || sa

temp <- GPR [rt]31 - s...0 || 0s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

393

SLLV Shift Left Logical Variable SLLV

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLLV

0 0 0 1 0 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five bits

contained in general register rs, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign

extended for all shift amounts, including zero; SLLV with zero shift amount truncates a 64-bit value to

32 bits and then sign extends this 32-bit value. SLLV, unlike nearly all other word operations, does

not require an operand to be a properly sign-extended word value to produce a valid sign-extended

word result.

Note: SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels. If using SLLV with a zero shift to truncate 64-bit values, check the

assembler you are using.

Operation:

T: s <- 0 || GP [rs]4...0

temp <- GPR [rt](31 - s)...0 || 0s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

394

SLT Set On Less Than SLT

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLT

1 0 1 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.

Considering both quantities as signed integers, if the contents of general register rs are less than the

contents of general register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction used during the comparison overflows.

Operation:

T: if GPR [rs] < GPR [rt] then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

395

SLTI Set On Less Than Immediate SLTI

rs
SLTI

0 0 1 0 1 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs.

Considering both quantities as signed integers, if rs is less than the sign-extended immediate, the

result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction used during the comparison overflows.

Operation:

T: if GPR [rs] < (immediate15)48 || immediate15...0 then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

396

SLTIU Set On Less Than Immediate Unsigned SLTIU

rs
SLTIU

0 0 1 0 1 1
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs.

Considering both quantities as unsigned integers, if rs is less than the sign-extended immediate, the

result is set to one; otherwise the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction used during the comparison overflows.

Operation:

T: if (0 || GPR [rs]) < (0 || (immediate15)48 || immediate15...0) then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

397

SLTU Set On Less Than Unsigned SLTU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SLTU

1 0 1 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.

Considering both quantities as unsigned integers, if the contents of general register rs are less than

the contents of general register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the

subtraction used during the comparison overflows.

Operation:

T: if (0 || GPR [rs]) < 0 || GPR [rt] then

GPR [rd] <- 063 || 1

else

GPR [rd] <- 064

endif

Exceptions:

None

Chapter 14 CPU Instruction Set Details

398

SRA Shift Right Arithmetic SRA

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
SRA

0 0 0 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

T: s <- 0 || sa

temp <- (GPR [rt]31)s || GPR [rt]31...s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

399

SRAV Shift Right Arithmetic Variable SRAV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SRAV

0 0 0 1 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order

five bits of general register rs, sign-extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

T: s <- GPR [rs]4...0

temp <- (GPR [rt]31)s || GPR [rt]31...s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

400

SRL Shift Right Logical SRL

0
0 0 0 0 0

SPECIAL
0 0 0 0 0 0

rt rd sa
SRL

0 0 0 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

T: s <- 0 || sa

temp <- 0s || GPR [rt]31...s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

401

SRLV Shift Right Logical Variable SRLV

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SRLV

0 0 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order

five bits of general register rs, inserting zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

T: s <- GPR [rs]4...0

temp <- 0s || GPR [rt]31...s

GPR [rd] <- (temp31)32 || temp

Exceptions:

None

Chapter 14 CPU Instruction Set Details

402

STANDBY Standby STANDBY

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

STANDBY
1 0 0 0 0 1

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

STANDBY

Description:

In Standby mode, all internal clocks, except Timer/Interrupt unit, are frozen at high level.

To enter Standby mode from Fullspeed mode, first execute the STANDBY instruction. When the

STANDBY instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after

then the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and

the system interface clocks, TClock and MasterOut, will continue to run.

Once the VR4100 is in Standby mode, any interrupt, including the internally generated timer interrupt,

NMI, SoftReset, and ColdReset will cause the VR4100 to exit Standby mode and to enter Fullspeed

mode.

Operation:

T:

T+1: standby operation ()

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

403

SUB Subtract SUB

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SUB

1 0 0 0 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a

result. The result is placed into general register rd. In 64-bit mode, the operands must be valid sign-

extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU never traps on

overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ 2's complement

overflow). The destination register rd is not modified when an integer overflow exception occurs.

Operation:

T: temp <- GPR [rs] - GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:

Integer overflow exception

Chapter 14 CPU Instruction Set Details

404

SUBU Subtract Unsigned SUBU

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
SUBU

1 0 0 0 1 1

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a

result.

The result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU never traps on

overflow. No integer overflow exception occurs under any circumstances.

Operation:

T: temp <- GPR [rs] - GPR [rt]

GPR [rd] <- (temp31)32 || temp31...0

Exceptions:

None

Chapter 14 CPU Instruction Set Details

405

SUSPEND Suspend SUSPEND

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

SUSPEND
1 0 0 0 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

SUSPEND

Description:

In Suspend mode, all internal clocks, except Timer/Interrupt unit, and the TClock are frozen at high

level.

To enter Suspend mode from Fullspeed mode, first execute the SUSPEND instruction. When the

SUSPEND instruction finishes the WB stage, the VR4100 wait by the SysAD bus is idle state, after

then the internal clocks and the TClock will shut down, thus freezing the pipeline. The PLL,

Timer/Interrupt clocks and MasterOut, will continue to run.

Once the VR4100 is in Suspend mode, any interrupt, including the internally generated timer interrupt,

NMI, SoftReset and ColdReset will cause the VR4100 to exit Suspend mode and to enter Fullspeed

mode.

Operation:

T:

T+1: suspend operation ()

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

406

SW Store Word SW

base
SW

1 0 1 0 1 1
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual

address. The contents of general register rt are stored at the memory location specified by the

effective address.

If either of the two least-significant bits of the effective address are non-zero, an address error

exception occurs.

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte <- vAddr2...0 xor (BigEndianCPU || 02)

data <- GPR [rt]63 - 8* byte || 08* byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

407

SWL Store Word Left SWL

base
SWL

1 0 1 0 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into four

consecutive bytes of memory, when the bytes cross a word boundary. SWL stores the left portion of

the register into the appropriate part of the high-order word of memory; SWR stores the right portion

of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which may specify an arbitrary byte. It alters only the word in memory which

contains that byte. From one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in

memory; then it copies bytes from register to memory until it reaches the low-order byte of the word in

memory.

No address error exceptions due to alignment are possible.

address 4

address 0

memory
(big-endian)

4 5 6 7

0 1 2 3
before

after

$24

register

SWL $24, 1 ($0)

A B C D

address 4

address 0

4 5 6 7

0 A B C

Chapter 14 CPU Instruction Set Details

408

SWL Store Word Left SWL
(Continued)

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddr31...2 || 02

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || 024 - 8* byte || GPR [rt]31...24 - 8* byte

else

data <- 024 - 8* byte || GPR [rt]31...24 - 8* byte || 032

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Chapter 14 CPU Instruction Set Details

409

SWL Store Word Left SWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SWL

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

I J K L M N O E
I J K L M N E F
I J K L M E F G
I J K L E F G H
I J K E M N O P
I J E F M N O P
I E F G M N O P
E F G H M N O P

0
1
2
3
0
1
2
3

0 7
0 6
0 5
0 4
4 3
4 2
4 1
4 0

E F G H M N O P
I E F G M N O P
I J E F M N O P
I J K E M N O P
I J K L E F G H
I J K L M E F G
I J K L M N E F
I J K L M N O E

3
2
1
0
3
2
1
0

4 0
4 1
4 2
4 3
0 4
0 5
0 6
0 7

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

410

SWR Store Word Right SWR

base
SWR

1 0 1 1 1 0
rt offset

31 26 25 21 20 16 15 0

6 5 5 16

Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a register into four

consecutive bytes of memory, when the bytes cross a boundary between two words. SWR stores the

right portion of the register into the appropriate part of the low-order word; SWL stores the left portion

of the register into the appropriate part of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register base to

form a virtual address which may specify an arbitrary byte. It alters only the word in memory which

contains that byte. From one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the

specified byte in memory; then copies bytes from register to memory until it reaches the high-order

byte of the word in memory.

No address error exceptions due to alignment are possible.

address 4

address 0

memory
(big-endian)

4 5 6 7

0 1 2 3
before

after

$24

register

SWR $24, 1 ($0)

A B C D

address 4

address 0

D 5 6 7

0 1 2 3

Chapter 14 CPU Instruction Set Details

411

SWR Store Word Right SWR
(Continued)

Operation:

T: vAddr <- ((offset15)48 || offset15...0) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddrPSIZE - 1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

pAddr <- pAddrPSIZE - 1...2 || 02

endif

byte <- vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then

data <- 032 || GPR [rt]31 - 8* byte...0 || 08* byte

else

data <- GPR [rt]31 - 8* byte || 08* byte || 032

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

Chapter 14 CPU Instruction Set Details

412

SWR Store Word Right SWR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

SWR

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination type offset

LEM BEM LEM BEM

0
1
2
3
4
5
6
7

I J K L E F G H
I J K L F G H P
I J K L G H O P
I J K L H N O P
E F G H M N O P
F G H L M N O P
GH K L M N O P
H J K L M N O P

3
2
1
0
3
2
1
0

0 4
1 4
2 4
3 4
4 0
5 0
6 0
7 0

H J K L M N O P
GH K L M N O P
F G H L M N O P
E F G H M N O P
I J K L H N O P
I J K L G H O P
I J K L F G H P
I J K L E F G H

0
1
2
3
0
1
2
3

7 0
6 0
5 0
4 0
3 4
2 4
1 4
0 4

LEM Little-endian memory (BigEndianMem = 0)

BEM BigEndianMem = 1

Type AccessType (see Table 2-2) sent to memory

Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Chapter 14 CPU Instruction Set Details

413

SYNC Synchronize SYNC

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 26 25 6 5 0

6 20

SYNC
0 0 1 1 1 1

6

Format:

SYNC

Description:

The SYNC instruction is executed as a NOP on the VR4100. This operation maintains compatibility

with code compiled for the R4000.

Exceptions:

None

Chapter 14 CPU Instruction Set Details

414

SYSCALL System Call SYSCALL

SPECIAL
0 0 0 0 0 0

Code

31 26 25 6 5 0

6 20

SYSCALL
0 0 1 1 0 0

6

Format:

SYSCALL

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception

handler.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: SystemCallException

Exceptions:

System Call exception

Chapter 14 CPU Instruction Set Details

415

TEQ Trap If Equal TEQ

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TEQ
1 1 0 1 0 0

6

6 5

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of general

register rs are equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if GPR [rs] = GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

416

TEQI Trap If Equal Immediate TEQI

rs
REGIMM

0 0 0 0 0 1
TEQI

0 1 1 0 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the

contents of general register rs are equal to the sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR [rs] = (immediate15)48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

417

TGE Trap If Greater Than Or Equal TGE

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TGE
1 1 0 0 0 0

6

6 5

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering

both quantities as signed integers, if the contents of general register rs are greater than or equal to the

contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if GPR [rs] > GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

418

TGEI Trap If Greater Than Or Equal Immediate TGEI

rs
REGIMM

0 0 0 0 0 1
TGEI

0 1 0 0 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

Considering both quantities as signed integers, if the contents of general register rs are greater than

or equal to the sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR [rs] > (immediate15)48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

419

TGEIU Trap If Greater Than Or Equal Immediate Unsigned TGEIU

rs
REGIMM

0 0 0 0 0 1
TGEIU

0 1 0 0 1
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

Considering both quantities as unsigned integers, if the contents of general register rs are greater

than or equal to the sign-extended immediate, a trap exception occurs.

Operation:

T: if (0 || GPR [rs]) > (0 || (immediate15)48 || immediate15...0) then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

420

TGEU Trap If Greater Than Or Equal Unsigned TGEU

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TGEU
1 1 0 0 0 1

6

6 5

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering

both quantities as unsigned integers, if the contents of general register rs are greater than or equal to

the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if (0 || GPR [rs]) > (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

421

TLBP Probe TLB For Matching Entry TLBP

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBP
0 0 1 0 0 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of

the EntryHi register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction

immediately after a TLBP instruction, nor is the operation specified if more than one TLB entry

matches.

Operation:

T: Index <- 1 || 025 || Undefined6

for i in 0...TLBEntries - 1

if (TLB [i]167...141 and not (015 || TLB [i]216...205))

= (EntryHi39...13) and not (015 || TLB [i]216...205)) and

(TLB [i]140 or (TLB [i]135...128 = EntryHi7...0)) then

Index <- 026 || i5...0

endif

endfor

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

422

TLBR Read Indexed TLB Entry TLBR

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBR
0 0 0 0 0 1

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLo0 and

EntryLo1 registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the

contents of the TLB Index register. The operation is invalid (and the results are unspecified) if the

contents of the TLB Index register are greater than the number of TLB entries in the processor.

Operation:

T: PageMask <- TLB [Index5...0]255...192

EntryHi <- TLB [Index5...0]191...128 and not TLB [Index5...0]255...192

EntryLo1 <- TLB [Index5...0]127...65 || TLB [Index5...0]140

EntryLo0 <- TLB [Index5...0]63...1 || TLB [Index5...0]140

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

423

TLBWI Write Indexed TLB Entry TLBWI

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBWI
0 0 0 0 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBWI

Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the

EntryHi and EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1

registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index register are

greater than the number of TLB entries in the processor.

Operation:

T: TLB [Index5...0] <-

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

424

TLBWR Write Random TLB Entry TLBWR

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COP0
0 1 0 0 0 0

TLBWR
0 0 0 1 1 0

31 26 25 6 5 0

6 19 6

CO

1

1

24

Format:

TLBWR

Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of

the EntryHi and EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1

registers.

Operation:

T: TLB [Random5...0] <-

PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

Chapter 14 CPU Instruction Set Details

425

TLT Trap If Less Than TLT

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TLT
1 1 0 0 1 0

6

6 5

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering both quantities

as signed integers, if the contents of general register rs are less than the contents of general register

rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if GPR [rs] < GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

426

TLTI Trap If Less Than Immediate TLTI

rs
REGIMM

0 0 0 0 0 1
TLTI

0 1 0 1 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

Considering both quantities as signed integers, if the contents of general register rs are less than the

sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR [rs] < (immediate15)48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

427

TLTIU Trap If Less Than Immediate Unsigned TLTIU

rs
REGIMM

0 0 0 0 0 1
TLTIU

0 1 0 1 1
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

Considering both quantities as unsigned integers, if the contents of general register rs are less than

the sign-extended immediate, a trap exception occurs.

Operation:

T: if (0 || GPR [rs]) < (0 || (immediate15)48 || immediate15...0) then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

428

TLTU Trap If Less Than Unsigned TLTU

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TLTU
1 1 0 0 1 1

6

6 5

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering both quantities

as unsigned integers, if the contents of general register rs are less than the contents of general

register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if (0 || GPR [rs]) < (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

429

TNE Trap If Not Equal TNE

rs
SPECIAL
0 0 0 0 0 0

rt code

31 26 25 21 20 16 15 0

6 5 5 10

TNE
1 1 0 1 1 0

6

6 5

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of general

register rs are not equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler

only by loading the contents of the memory word containing the instruction.

Operation:

T: if GPR [rs] ≠ GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

430

TNEI Trap If Not Equal Immediate TNEI

rs
REGIMM

0 0 0 0 0 1
TNEI

0 1 1 1 0
immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the

contents of general register rs are not equal to the sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR [rs] ≠ (immediate15)48 || immediate15...0 then

TrapException

endif

Exceptions:

Trap exception

Chapter 14 CPU Instruction Set Details

431

XOR Exclusive Or XOR

rs
SPECIAL
0 0 0 0 0 0

rt rd
0

0 0 0 0 0
XOR

1 0 0 1 1 0

31 26 25 21 20 16 15 11 10 6 5 0

6 5 5 5 5 6

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise

logical exclusive OR operation.

The result is placed into general register rd.

Operation:

T: GPR [rd] <- GPR [rs] xor GPR [rt]

Exceptions:

None

Chapter 14 CPU Instruction Set Details

432

XORI Exclusive OR Immediate XORI

rs
XORI

0 0 1 1 1 0
rt immediate

31 26 25 21 20 16 15 0

6 5 5 16

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-

wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

T: GPR [rt] <- GPR [rs] xor (048 || immediate)

Exceptions:

None

Chapter 14 CPU Instruction Set Details

433

14.7 CPU Instruction Opcode Bit Encoding
The remainder of this Appendix presents the opcode bit encoding for the CPU instruction set (ISA and

extensions), as implemented by the VR4100. Figure 14-2 lists the VR4100 Opcode Bit Encoding.

28...26 Opcode

31...29 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 π π * BEQL BNEL BLEZL BGTZL

3 DADDIε DADDIUε LDLε LDRε * * * *

4 LB LH LWL LW LBU LHU LWR LWUε

5 SB SH SWL SW SDLε SDRε SWR CACHEδ

6 * π π * * π π LDε

7 * π π * * π π SDε

2...0 SPECIAL function

5...3 0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV

1 JR JALR * * SYSCALL BREAK * SYNC

2 MFHI MTHI MFLO MTLO DSLLVε * DSRLVε DSRAVε

3 MULT MULTU DIV DIVU DMULTε DMULTUε DDIVε DDIVUε

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 MADD16 DMADD16 SLT SLTU DADDε DADDUε DSUBε DSUBUε

6 TGE TGEU TLT TLTU TEQ * TNE *

7 DSLLε * DSRLε DSRAε DSLL32ε * DSRL32ε DSRA32ε

18...16 REGIMM rt

20...19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL * * * *

1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 * * * * * * * *

23...21 COP0 rs

25, 24 0 1 2 3 4 5 6 7

0 MF DMFε γ γ MT DMTε γ γ

1 BC γ γ γ γ γ γ γ

2

3
MULTU

Figure 14-2 V R4100 Opcode Bit Encoding

CO

Chapter 14 CPU Instruction Set Details

434

18...16 COP0 rt
20...19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL γ γ γ γ

1 γ γ γ γ γ γ γ γ

2 γ γ γ γ γ γ γ γ

3 γ γ γ γ γ γ γ γ

2...0 CP0 Function

5...3 0 1 2 3 4 5 6 7

0 φ TLBR TLBWI φ φ φ TLBWR φ

1 TLBP φ φ φ φ φ φ φ

2 ξ φ φ φ φ φ φ φ

3 ERET χ φ φ φ φ φ φ φ

4 φ STANDBY SUSPEND HIBERNATE φ φ φ φ

5 φ φ φ φ φ φ φ φ

6 φ φ φ φ φ φ φ φ

7 φ φ φ φ φ φ φ φ

Figure 14-2 (cont.) VR4100 Opcode Bit Encoding

Key:

* Operation codes marked with an asterisk cause reserved instruction exceptions in all current

implementations and are reserved for future versions of the architecture.

γ Operation codes marked with a gamma cause a reserved instruction exception. They are

reserved for future versions of the architecture.

δ Operation codes marked with a delta are valid only for VR4100 processors with CP0 enabled, and

cause a reserved instruction exception on other processors.

φ Operation codes marked with a phi are invalid but do not cause reserved instruction exceptions in

VR4100 implementations.

ξ Operation codes marked with a xi cause a reserved instruction exception on VR4100 processors.

χ Operation codes marked with a chi are valid on R4x00 and VR4100 processors, not R3000TM or

R6000TM.

ε Operation codes marked with epsilon are valid when the processor operating as a 64-bit

processor. These instructions will cause a reserved instruction exception if 64-bit operation is not

enabled.

π Operation codes marked with a pi are invalid and cause coprocessor unusable exception.

Appendix A V R4100 Coprocessor 0 Hazards

435

VR4100 Coprocessor 0 Hazards

A

The VR4100 CP0 hazards are equally or less stringent than those of the R4000;

Table A-1 lists the VR4100 Coprocessor 0 hazards. Code which complies with these

hazards will run without modification on the R4000.

In this table, the number of instructions required between instruction A (which places

a value in a CP0 register) and instruction B (any instruction which uses the same

register as a source) is computed by the following formula :

(Destination Hazard number of A) -

[(Source Hazard number of B) + 1]

As an example, to compute the number of instructions required between an MTC0

and a subsequent MFC0 instruction, this is:

(5) - (3 + 1) = 1 instructions

Appendix A V R4100 Coprocessor 0 Hazards

436

Instruction or Event CP0 Data Used, Stage Used CP0 Data Written, Stage Available

MTC0/DMTC0 CPR [0, rd] 5

MFC0/DMFC0 CPR [0, rd] 3

TLBR Index, TLB 2 PageMask, EntryHi, EntryLo0, EntryLo1 5

TLBWI
TLBWR

Index or Random, PageMask, EntryHi,
EntryLo0, EntryLo1

2 TLB 5

TLBP PageMask, EntryHi 2 Index 6

ERET EPC or ErrorEPC, TLB 2 Status [EXL, ERL] 4

Status 2

Index Load Tag TagLO, TagHi, PErr 5

Index Store Tag TagLo, TagHi, PErr 3

CACHE ops cache line (see note) 3 cache line (see note) 5

Load/Store EntryHi [ASID], Status [KSU, EXL, ERL,
RE], Config [K0], TLB

3

Config [AD, EP] 3

WatchHi, WatchLo 3

Load/Store exception EPC, Status, Cause, BadVAddr, Context,
XContext

5

Instruction fetch EPC, Status 4

exception Cause, BadVAddr, Context, XContext 5

Instruction fetch EntryHi [ASID], Status [KSU, EXL, ERL,
RE], Config [K0]

2

TLB (mapped address) 2

Coproc. usable test Status [CU, KSU, EXL, ERL] 2

Interrupt signals
sampled

Cause [IP], Status [IM, IE, EXL, ERL] 2

TLB shutdown Status [TS] 2 (Inst.),
4 (Data)

Table A-1 V R4100 Coprocessor 0 Hazards

Appendix B Difference between V R4100 and Other V R-Series Processors

437

��l�r

Difference between VR4100 and Other VR-Series

Processors

B

Appendix B Difference between V R4100 and Other V R-Series Processors

438

Note : All tables and figures in this section are not guaranteed operation of the VR4200 and the

VR4400.

Cache

Item VR4200 VR4400 VR4100

Cache Sizes I-Cache: 16KB
D-Cache: 8KB

I-Cache: 16KB
D-Cache: 16KB

I-Cache: 2KB
D-Cache: 1KB

Cache Line Sizes I-Cache: 32 Bytes
D-Cache: 16 Bytes

Software selectable between
16B and 32B

I-Cache: 16 Bytes
D-Cache: 16 Bytes

Cache Organization Direct mapped Direct mapped Direct mapped

Cache Index I: vAddr [13:0]
D: vAddr [12:0]

vAddr [13:0] I: vAddr [10:0]
D: vAddr [9:0]

Cache Tag pAddr [32:12] pAddr [35:12] pAddr [31:10]

Data Cache Write Policy Write-allocate and write-
back

Write-allocate and write-
back

Write-allocate and write-
back

Data order for block reads Sub-block ordering Same Sub-block ordering

Data order for block writes Sequential ordering Same Sub-block ordering

Instruction Cache miss
restart

Restart after all data
received and written to
cache

Same Restart at the same time last
data received and written to
cache

Data Cache miss restart Early restart on first
doubleword.

Restart after all data
received and written to
cache

Restart at the same time last
data received and written to
cache

Instruction cache parity 1 parity bit per 1 byte 1 parity bit per 1 byte 1 parity bit per 1 word

Data cache parity 1 parity bit per 1 byte 1 parity bit per 1 byte 1 parity bit per 1 byte

Appendix B Difference between V R4100 and Other V R-Series Processors

439

TLB

Item VR4200 VR4400 VR4100

Instruction virtual address
translation

2-entry ITLB 2-entry ITLB 4-entry ITLB

Data virtual address
translation

JTLB JTLB 4-entry DTLB

JTLB 32 entries of even/odd page
pairs, fully associative

48 entries of even/odd page
pairs, fully associative

32 entries of even/odd page
pairs, fully associative

Page sizes 4KB, 16KB, 64KB, 256KB,
1MB, 4MB, 16MB

Same 1KB, 4KB, 16KB, 64KB,
256KB

Multiple entry match in JTLB Sets TS in Status and
disables TLB until Reset to
prevent damage

Same Same

Address Sizes VSIZE = 40
PSIZE = 33

VSIZE = 40
PSIZE = 36

VSIZE = 40
PSIZE = 32

Appendix B Difference between V R4100 and Other V R-Series Processors

440

Pipeline

Item VR4200 VR4400 VR4100

CPU/FPU Logically separate; datapath
shared

Logically and physically
separate

Unimplemented FPU

ALU Latency 1 cycle 1 cycle 1 cycle

Load Latency 2 cycles 3 cycles 2 cycles

Branch Latency 2 cycles 4 cycles 2 cycles

Store Buffer 2 doublewords 2 doublewords 2 doublewords

Uncached Store Buffer 2 doublewords (1 address)
doubles as write buffer

1 doubleword 1 doubleword (1 address)
doubles as write buffer

Integer Multiply Done in adder/shifter, 12
cycles to issue

Integer multiply hardware, 1
cycle to issue

Integer multiply-divide
hardware, 1 cycle to issue

Integer Divide Done in common
adder/shifter, 36 cycles to
issue

Done in integer datapath
adder, 69 cycles to issue

Integer multiply-divide
hardware, 1 cycle to issue

Integer Multiply HI and LO available at the
same time

HI and LO available at the
same time

HI and LO available at the
same time

Integer Multiply and
accumulator

None None 0 latency

Integer Divide HI and LO available at the
same time

Same Same

HI and LO Hazards Yes, at least a one-cycle
hazard. Assume two-cycle
hazard (same as
VR4000PCTM) until further
notice.

Yes, HI and LO written early
in pipeline

Yes, at least a one-cycle
hazard. Assume two-cycle
hazard (same as VR4000PC)
until further notice.

MFHI/MFLO Latency 1 cycle 1 cycle 2 cycles

SLLV, SRLV, SRAC 1 cycle 2 cycles 1 cycle

DSLL, DSRL, DSRA,
DSLL32, DSRL32, DSRA32,
DSLLV, DSRLCV, DSRAC

1 cycle 2 cycles 1 cycle

Appendix B Difference between V R4100 and Other V R-Series Processors

441

System Interface

Item VR4200 VR4400 VR4100

I/O Level LVCMOS LVCMOS (3 V)
TLL-compatible

LVTTL (LVCMOS)

Package 179-pin PGA/208-pin PQFP 179-pin PGA/447-pin PGA 100-pin TQFP

JTAG Yes Yes No

Block transfer sizes 32 bytes (Instruction)
16 bytes (Data)

16 bytes or 32 bytes 16 bytes (Instruction)
16 bytes (Data)

Master Clock Input 40 MHz 75 MHz/100 MHz DC - 8.25 MHz

SClock Divisor 2, 3, or 4 2, 3, 4, 6, or 8 1 or 2

Non-block write Max throughput of 1 per 3
sclock cycles

Max throughput of 1 per 4
sclock cycles

Select the Max throughput of
1 per 2 or 1 per 4 sclock
cycles

Serial Configuration All configurations are
specific by special pin

As described in R4000/4400
User's Guide

Set default value. Some
configurations are specified
by special pin. Ohters are
set default value
(programmable on software)

Upper address bits on reads
and write

Bits 63...36 are Zero Bits 63...33 are Zero Bits 63...32 are not defined

Uncached and write-through
stores

Uncached stores buffered in
1-entry write buffer

Uncached stores buffered in
1-entry dedicated uncached
store buffer

Uncached stores buffered in
1-entry write buffer

SysAD bus 64-bit 64-bit 32-bit

SysCmd bus 9-bit 9-bit 5-bit

SysADC bus 8-bit parity only 8-bit parity only 4-bit parity only

SysADC for nondata cycles Zero Parity Parity

SysCmdP for nondata cycles Zero Parity Parity

Parity Error during writeback Use Cache Error Exception Use Cache Error Exception Use Cache Error Exception

Error bit in data identifier of
read responses

Bus error if error bit set for
any doubleword

Same Any word

Parity error on read data Use Cache error Exception Same Same

System Interface Arbitration Handshake by

ExtRqst,

Release
Handshake by

ExtRqst,

Release
Handshake by

EReq,

PReq,

PMaster

Block Write 0 cycle between address
and data

1-2 null cycle between
address and data

0 cycle between address
and data

Release after Read Request Variable latency 0 latency 0 latency

SysAD value for x cycles of
writeback data pattern

Data bus maintains last D
cycle value

Data bus undefined Data bus maintains last D
cycle value

SysAD bus used after last D
cycle

Unused for trailing x cycles Undefined Unused for trailing x cycles

Appendix B Difference between V R4100 and Other V R-Series Processors

442

Item VR4200 VR4400 VR4100

Interrupt

Int[4:0],

NMI

Int[5:0],

NMI

Int[4:0],

NMI

Output slew rate Simple CMOS output buffers Dynamic feedback control Simple CMOS output buffers

IOOut output No external pins are
assigned

Output slew rate control
feedback loop output

No external pins are
assigned

IOIn input No external pins are
assigned

Output slew rate control
input

No external pins are
assigned

Power Management

Item VR4200 VR4400 VR4100

Low-power mode 1) Reduced-power mode
(1/4 speed)

2) Instant-off mode

No 1) Suspend-mode
(1/10 Power)

2) Hibernate mode
(0 mW)

3) Standby mode

Exception Processing

Item VR4200 VR4400 VR4100

CP1, CP2 instruction No exception No exception Coprocessor unusable
exception

LL/LLD/SC/SCD instruction No exception No exception Reserved instruction
exception

★

Appendix B Difference between V R4100 and Other V R-Series Processors

443

Index register (0)

0P Index

0563031

6251

0P Index

0453031

5261

VR4200 0P Index

0563031

VR4400

6251

VR4100

Random (1)

0 Random

05631

626

0 Random

04531

527

VR4200 0 Random

05631

VR4400

626

VR4100

Appendix B Difference between V R4100 and Other V R-Series Processors

444

EntryLo0 (2)

0

01263

34

PFN C GVD

324 1 1 1

35630 29

0

01263

36

PFN C GVD

322 1 1 1

35628 27

VR4200 0

01263

VR4400

34

VR4100

Rsvd PFN C GVD

321 1 1 1

35630 29 27 26

EntryLo1 (3)

0

01263

34

PFN C GVD

324 1 1 1

35630 29

0

01263

36

PFN C GVD

322 1 1 1

35628 27

VR4200 0

01263

VR4400

34

VR4100

Rsvd PFN C GVD

321 1 1 1

35630 29 27 26

Appendix B Difference between V R4100 and Other V R-Series Processors

445

Context (4)

PTEBase 0

03463

441

BadVPN2

19

2223

PTEBase 0

03463

439

BadVPN2

21

2425

VR4200 PTEBase 0

03463

VR4400

441

VR4100

BadVPN2

19

2223

PageMask (5)

0 0

0121331

137

MASK

12

2425

0 0

0101131

1113

MASK

8

1819

VR4200 0 0

0121331

VR4400

137

VR4100

MASK

12

2425

Appendix B Difference between V R4100 and Other V R-Series Processors

446

Wired (6)

0 Wired

05631

626

0 Wired

04531

527

VR4200 0 Wired

05631

VR4400

626

VR4100

EntryHi (10)

FillR ASID

0786263

5272

VPN2 0

22 8

61 3940 1213

FillR ASID

0786263

3292

VPN2 0

22 8

61 3940 1011

VR4200 FillR ASID

0786263

VR4400

5272

VR4100

VPN2 0

22 8

61 3940 1213

Appendix B Difference between V R4100 and Other V R-Series Processors

447

Status (12)

CPU
(CU3 - CU0)

01331

4

DS IEEXLERL

28 1 1 1

45628 27 24

KSUUXSXKXIMREFR0

26 25 16 15 8 7 2

1 1 1 9 1 1 1

0

01331

3

DS IEEXLERL

28 1 1 1

45629 28 24

KSUUXSXKXIMRE0CU0

26 25 16 15 8 7 2

1 2 1 9 1 1 1

VR4200 CPU
(CU3 - CU0)

01331

VR4400

4

VR4100

DS IEEXLERL

28 1 1 1

45628 27 24

KSUUXSXKXIMREFRRP

26 25 16 15 8 7 2

1 1 1 9 1 1 1

Status DS Field

ITS

24

1

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1 1

ITS

24

1

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1 1

ITS

24

1

0 BEV TS SR 0 CH CE DE

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1 1

24

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

24

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

24

2

0 BEV TS SR 0 CH CE DE

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

24

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

24

ITS ITS ITS ITS ITS ITS ITS ITS

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

24

2

0 BEV TS SR 0 CH CE DE

23 22 21 20 19 18 17 16

1 1 1 1 1 1 1

VR4200

VR4400

VR4100

Appendix B Difference between V R4100 and Other V R-Series Processors

448

Config (16)

02331

1

CUDBIB

32 1 1 1

491128 22 20

DC0EBEMEPECCM

21 1918 17 16 12 5

3 4 2 1 1 1 3

K0

3

IC

14

SMSC

15

1 1

13

BE

1

SW

1

EWSS

1

SB

6823242730

02

3

K0

02

3

K00

331

1

AD

11

28 27 24

0

16 15 14

3 6 1

EC 0

23

EP 1 0 BE 1

4 1 1 1 1

30 22 18 17 13

VR4200 0

331

VR4400

4

VR4100

00000010 CU

11 1

28 27 24

BE

16 15 14

4 8 1

EP 11001000110

23 4

WatchHi (19)

0 PAddr1

03431

329

0

031

32

VR4200 0 PAddr1

0131

VR4400

131

VR4100

Appendix B Difference between V R4100 and Other V R-Series Processors

449

XContext (20)

0BadVPN2

03463

231 4

PTEBase R

27

3233 3031

0BadVPN2

03463

229 4

PTEBase R

29

3435 3233

VR4200 0BadVPN2

03463

VR4400

231 4

VR4100

PTEBase R

27

3233 3031

CacheErr (27)

31

Sldx

3

30 28 25

PldxEEESET

27 26 3 2

1 1 1 19

EDECER

1 1 1

EB

1

29 24 0

31

0

11

30 28 25

PldxEE0ET

27 26 11 10

1 1 1 14

ED0ER

1 1 1

EB

1

29 24 0

22

EWEI

23

1 1

0

1

21

VR4200

31

VR4400

VR4100

0

13

30 28 25

PldxEE0ET

27 26 13 12

1 1 1 12

ED0ER

1 1 1

EB

1

29 24 0

Appendix B Difference between V R4100 and Other V R-Series Processors

450

TagLo (28)

PState

01631

52

PTagLo P

24 1

78

0

V

01631

61

PTagLo P

22 1

910

0D W W’

1

78 2

V

0131

81

PTagLo P

22 1

910

0

8

I-Cache

VR4200 0 PState

0162931

VR4400

523

VR4100

PTagLo P

21 1

28 78

0

D-Cache

Appendix B Difference between V R4100 and Other V R-Series Processors

451

Cycle Timing for Multiply and Divide Instructions

VR4400

Instruction Pcycles Required

MULT 10

MULTU 10

DIV 69

DIVU 69

DMULT 20

DMULTU 20

DDIV 133

DDIVU 133

MADD16 -

DMADD16 -

VR4200

Instruction Pcycles Required

MULT 12

MULTU 13

DIV 39

DIVU 39

DMULT 23

DMULTU 24

DDIV 71

DDIVU 71

MADD16 -

DMADD16 -

VR4100

Instruction Pcycles Required

MULT 1

MULTU 1

DIV 35

DIVU 35

DMULT 4

DMULTU 4

DDIV 67

DDIVU 67

MADD16 1

DMADD16 1

Appendix B Difference between V R4100 and Other V R-Series Processors

452

[MEMO]

	Cover
	1 Introduction
	2 CPU Instruction Set Summary
	3 The VR4100 Processor Pipeline
	4 Memory Management
	5 CPU Exception Processing
	6 VR4100 Processor Signal Descriptions
	7 Initialization Interface
	8 Clock Interface
	9 Power Mode
	10 Cache Organization and Operation
	11 System Interface
	12 VR4100 Processor Interrupts
	13 Electrical Characteristics
	14 CPU Instruction Set Details
	Appendix A - VR4100 Coprocessor 0 Hazards
	Appendix B - Difference between VR4100 and Other VR-Series

