
VR4100 Series™
64-/32-bit Microprocessor

Architecture

 NEC Corporation 2002
 MIPS Technologies, Inc. 1997, 2001
Printed in Japan

Document No. U15509EJ2V0UM00 (2nd edition)
Date Published June 2002 NS CP(K)

User’s Manual

Target Device
 µ µ µ µPD30121 (VR4121TM)
 µ µ µ µPD30122 (VR4122TM)
 µ µ µ µPD30131 (VR4131TM)
 µ µ µ µPD30181 (VR4181TM)
 µ µ µ µPD30181A, 30181AY (VR4181ATM)

User’s Manual U15509EJ2V0UM2

[MEMO]

User’s Manual U15509EJ2V0UM 3

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

VR10000, VR12000, VR4000, VR4000 Series, VR4100, VR4100 Series, VR4110, VR4120, VR4121, VR4122,
VR4130, VR4131, VR4181, VR4181A, VR4300, VR4305, VR4310, VR4400, VR5000, VR5000A, VR5432, VR5500,
and VR Series are trademarks of NEC Corporation.
MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.
MC68000 is a trademark of Motorola Inc.
IBM370 is a trademark of IBM Corp.
Pentium is a trademark of Intel Corp.
DEC VAX is a trademark of Digital Equipment Corp.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

User’s Manual U15509EJ2V0UM4

Purchase of NEC I2C components conveys a license under the Philips I2C Patent Rights to use these

components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined

by Philips.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some
countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

M8E 00. 4

The information in this document is current as of April, 2002. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).

•

•

•

•

•

•

User’s Manual U15509EJ2V0UM 5

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

J02.4

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

User’s Manual U15509EJ2V0UM6

PREFACE

Readers This manual targets users who intend to understand the functions of the VR4100
Series, the RISC microprocessors, and to design application systems using them.

Purpose This manual introduces the architecture of the VR4100 Series to users, following the
organization described below.

Organization Two manuals are available for the VR4100 Series: Architecture User’s Manual (this
manual) and Hardware User’s Manual of each product.

Architecture
User's Manual

Hardware
User's Manual

• Pipeline operation
• Cache organization and memory

management system
• Exception processing
• Interrupts
• Instruction set

• Pin functions
• Physical address space
• Function of Coprocessor 0
• Initialization interface
• Peripheral units

How to read this manual It is assumed that the reader of this manual has general knowledge in the fields of
electric engineering, logic circuits, and microcomputers.

In this manual, the following products are referred to as the VR4100 Series.
Descriptions that differ between these products are explained individually, and
common parts are explained as for the VR4100 Series.

VR4121 (µPD30121)
VR4122 (µPD30122)
VR4131 (µPD30131)
VR4181 (µPD30181)
VR4181A (µPD30181A, 30181AY)

To learn in detail about the function of a specific instruction,
→ Read CHAPTER 2 CPU INSTRUCTION SET SUMMARY, CHAPTER 3

MIPS16 INSTRUCTION SET, CHAPTER 9 CPU INSTRUCTION SET
DETAILS, and CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT.

To learn about the overall functions of the VR4100 Series,
→ Read this manual in sequential order.

To learn about hardware functions,
→ Refer to Hardware User's Manual which is separately available.

To learn about electrical specifications,
→ Refer to Data Sheet which is separately available.

User’s Manual U15509EJ2V0UM 7

Conventions Data significance: Higher on left and lower on right
Active low: XXX# (trailing # after pin and signal names)
Note: Description of item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information
Numeric representation: binary/decimal ... XXXX

hexadecimal ... 0xXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):

K (kilo) ... 210 = 1024
M (mega) ...220 = 10242

G (giga) ... 230 = 10243

T (tera) ... 240 = 10244

P (peta) ... 250 = 10245

E (exa) ... 260 = 10246

Related Documents The related documents indicated here may include preliminary version. However,
preliminary versions are not marked as such.

Document name Document number

VR4100 Series Architecture User’s Manual This manual

VR4121 User’s Manual U13569E

µPD30121 (VR4121) Data Sheet U14691E

VR4122 User’s Manual U14327E

µPD30122 (VR4122) Data Sheet U16219E

VR4131 Hardware User’s Manual U15350E

µPD30131 (VR4131) Data Sheet To be prepared

VR4181 Hardware User’s Manual U14272E

µPD30181 (VR4181) Data Sheet U14273E

VR4181A Hardware User’s Manual To be prepared

µPD30181A, 30181AY (VR4181A) Data Sheet To be prepared

VR Series TM Programming Guide Application Note U10710E

User’s Manual U15509EJ2V0UM8

CONTENTS

CHAPTER 1 INTRODUCTION .. 17

1.1 Features .. 17

1.2 CPU Core .. 19

1.2.1 CPU registers .. 20

1.2.2 Coprocessors .. 21

1.2.3 System control coprocessor (CP0) .. 21

1.2.4 Floating-point unit (FPU) ... 23

1.2.5 Cache memory .. 23

1.3 CPU Instruction Set Overview .. 23

1.4 Data Formats and Addressing .. 26

1.5 Memory Management System .. 30

1.5.1 Translation lookaside buffer (TLB) .. 30

1.5.2 Processor modes ... 30

1.6 Instruction Pipeline .. 31

1.6.1 Branch prediction ... 31

1.7 Code Compatibility .. 32

CHAPTER 2 CPU INSTRUCTION SET SUMMARY ... 33

2.1 Instruction Set Architecture .. 33

2.2 CPU Instruction Formats ... 34

2.3 Instructions Added in the VR4100 Series ... 35

2.3.1 Product-sum operation instructions ... 35

2.3.2 Power mode instructions ... 35

2.4 Instruction Overview ... 36

2.4.1 Load and store instructions ... 36

2.4.2 Computational instructions .. 40

2.4.3 Jump and branch instructions .. 47

2.4.4 Special instructions .. 51

2.4.5 System control coprocessor (CP0) instructions ... 52

CHAPTER 3 MIPS16 INSTRUCTION SET ... 54

3.1 Outline ... 54

3.2 Features .. 54

3.3 Register Set .. 55

3.4 ISA Mode ... 56

3.4.1 Changing ISA mode bit by software .. 56

3.4.2 Changing ISA mode bit by exception ... 56

3.4.3 Enabling change ISA mode bit .. 57

3.5 Types of Instructions ... 57

3.6 Instruction Format ... 59

3.7 MIPS16 Operation Code Bit Encoding ... 64

3.8 Outline of Instructions ... 67

User’s Manual U15509EJ2V0UM 9

3.8.1 PC-relative instructions ... 67

3.8.2 Extend instruction .. 68

3.8.3 Delay slots ... 70

3.8.4 Instruction details .. 71

CHAPTER 4 PIPELINE ... 84

4.1 Pipeline Stages .. 84

4.1.1 VR4121, VR4122, VR4181A ... 84

4.1.2 VR4131 .. 87

4.1.3 VR4181 .. 89

4.2 Branch Delay .. 90

4.2.1 VR4121, VR4122, VR4181A ... 90

4.2.2 VR4131 .. 91

4.2.3 VR4181 .. 93

4.3 Branch Prediction .. 94

4.3.1 VR4122, VR4181A ... 95

4.3.2 VR4131 .. 97

4.4 Load Delay .. 101

4.5 Instruction Streaming .. 101

4.6 Pipeline Activities .. 102

4.7 Interlock and Exception .. 116

4.7.1 Exception conditions ... 119

4.7.2 Stall conditions .. 120

4.7.3 Slip conditions ... 121

4.7.4 Bypassing .. 123

CHAPTER 5 MEMORY MANAGEMENT SYSTEM .. 124

5.1 Processor Modes ... 124

5.1.1 Operating mode ... 124

5.1.2 Addressing mode .. 124

5.2 Translation Lookaside Buffer (TLB) .. 125

5.2.1 Format of a TLB entry ... 125

5.2.2 Manipulation of TLB .. 126

5.2.3 TLB instructions ... 127

5.2.4 TLB exceptions .. 127

5.3 Virtual-to-Physical Address Translation ... 128

5.3.1 32-bit mode address translation .. 131

5.3.2 64-bit mode address translation .. 132

5.4 Address Space .. 133

5.4.1 User mode virtual address space .. 133

5.4.2 Supervisor mode virtual address space .. 135

5.4.3 Kernel mode virtual address space ... 138

5.5 Memory Management Registers .. 146

5.5.1 Index register (0) ... 147

5.5.2 Random register (1) .. 147

5.5.3 EntryLo0 (2) and EntryLo1 (3) registers .. 148

User’s Manual U15509EJ2V0UM10

5.5.4 PageMask register (5) ... 149

5.5.5 Wired register (6) ... 150

5.5.6 EntryHi register (10) .. 151

5.5.7 Processor Revision Identifier (PRId) register (15) ... 152

5.5.8 Config register (16) .. 153

5.5.9 Load Linked Address (LLAddr) register (17) ... 155

5.5.10 TagLo (28) and TagHi (29) registers ... 156

CHAPTER 6 EXCEPTION PROCESSING ... 157

6.1 Exception Processing Overview .. 157

6.1.1 Precision of exceptions .. 157

6.2 Exception Processing Registers .. 158

6.2.1 Context register (4) .. 159

6.2.2 BadVAddr register (8) .. 160

6.2.3 Count register (9) ... 160

6.2.4 Compare register (11) ... 161

6.2.5 Status register (12) .. 161

6.2.6 Cause register (13) .. 165

6.2.7 Exception Program Counter (EPC) register (14) ... 167

6.2.8 WatchLo (18) and WatchHi (19) registers ... 168

6.2.9 XContext register (20) .. 169

6.2.10 Parity Error register (26) .. 170

6.2.11 Cache Error register (27) ... 170

6.2.12 ErrorEPC register (30) ... 171

6.3 Overview of Exceptions .. 173

6.3.1 Exception types ... 173

6.3.2 Exception vector locations ... 173

6.3.3 Priority of exceptions ... 175

6.4 Details of Exceptions ... 176

6.4.1 Cold Reset exception .. 176

6.4.2 Soft Reset exception ... 177

6.4.3 NMI exception .. 178

6.4.4 Address Error exception .. 179

6.4.5 TLB exceptions .. 180

6.4.6 Bus Error exception ... 183

6.4.7 System Call exception ... 184

6.4.8 Breakpoint exception ... 185

6.4.9 Coprocessor Unusable exception .. 186

6.4.10 Reserved Instruction exception ... 187

6.4.11 Trap exception ... 188

6.4.12 Integer Overflow exception .. 188

6.4.13 Watch exception .. 189

6.4.14 Interrupt exception ... 190

6.5 Exception Processing and Servicing Flowcharts ... 191

User’s Manual U15509EJ2V0UM 11

CHAPTER 7 CACHE MEMORY .. 198

7.1 Memory Organization .. 198

7.1.1 On-chip caches ... 199

7.2 Cache Organization ... 200

7.2.1 Instruction cache line .. 200

7.2.2 Data cache line .. 201

7.2.3 Placement of cache data ... 202

7.3 Cache Operations .. 202

7.3.1 Cache data coherency .. 203

7.3.2 Replacement of cache line .. 203

7.3.3 Accessing the caches ... 204

7.4 Cache States .. 205

7.4.1 Cache state transition diagrams .. 206

7.5 Cache Access Flow ... 207

7.6 Manipulation of the Caches by an External Agent ... 220

7.7 Initialization of the Caches ... 220

CHAPTER 8 CPU CORE INTERRUPTS .. 221

8.1 Types of Interrupt Request ... 221

8.1.1 Non-maskable interrupt (NMI) ... 221

8.1.2 Ordinary interrupts ... 221

8.1.3 Software interrupts generated in CPU core ... 222

8.1.4 Timer interrupt ... 222

8.2 Acknowledging Interrupts .. 222

8.2.1 Detecting hardware interrupts ... 222

8.2.2 Masking interrupt signals ... 223

CHAPTER 9 CPU INSTRUCTION SET DETAILS .. 224

9.1 Instruction Notation Conventions .. 224

9.2 Notes on Using CPU Instructions .. 226

9.2.1 Load and Store instructions ... 226

9.2.2 Jump and Branch instructions ... 227

9.2.3 System control coprocessor (CP0) instructions .. 228

9.3 CPU Instructions .. 228

9.4 CPU Instruction Opcode Bit Encoding .. 383

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT ... 386

CHAPTER 11 COPROCESSOR 0 HAZARDS ... 421

APPENDIX INDEX ... 427

User’s Manual U15509EJ2V0UM12

LIST OF FIGURES (1/3)

Fig. No. Title Page

1-1. CPU Core Internal Block Diagram .. 19

1-2. CPU Registers .. 21

1-3. CPU Instruction Formats (32-bit Length Instruction) ... 23

1-4. CPU Instruction Formats (16-bit Length Instruction) ... 25

1-5. Byte Address in Big-Endian Byte Order .. 27

1-6. Byte Address in Little-Endian Byte Order .. 28

1-7. Misaligned Word Accessing (Little-Endian) .. 29

2-1. CPU Instruction Formats ... 34

2-2. Byte Specification Related to Load and Store Instructions ... 37

4-1. Pipeline Stages (VR4121, VR4122, VR4181A) ... 85

4-2. Instruction Execution in the Pipeline (VR4121, VR4122, VR4181A) ... 86

4-3. Pipeline Stages (VR4131) .. 87

4-4. Instruction Execution in the Pipeline (VR4131) .. 88

4-5. Pipeline Stages (VR4181) .. 89

4-6. Instruction Execution in the Pipeline (VR4181) .. 89

4-7. Branch Delay (VR4121, VR4122, VR4181A) ... 90

4-8. Branch Delay (VR4131, MIPS III Instruction Mode) ... 91

4-9. Branch Delay (VR4131, MIPS16 Instruction Mode) ... 92

4-10. Branch Delay (VR4181) ... 93

4-11. Pipeline on Branch Prediction (VR4122, VR4181A) ... 95

4-12. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Lower Address) 97

4-13. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Higher Address) 99

4-14. Pipeline Activities .. 102

4-15. ADD Instruction Pipeline Activities (VR4121, VR4122, VR4181A) .. 104

4-16. ADD Instruction Pipeline Activities (VR4131) .. 105

4-17. ADD Instruction Pipeline Activities (VR4181) .. 105

4-18. JALR Instruction Pipeline Activities (VR4121, VR4122, VR4181A) ... 106

4-19. JALR Instruction Pipeline Activities (VR4131) ... 107

4-20. JALR Instruction Pipeline Activities (VR4181) ... 107

4-21. BEQ Instruction Pipeline Activities (VR4121, VR4122, VR4181A) .. 108

4-22. BEQ Instruction Pipeline Activities (VR4131) .. 109

4-23. BEQ Instruction Pipeline Activities (VR4181) .. 109

4-24. TLT Instruction Pipeline Activities (VR4121, VR4122, VR4181A) ... 110

4-25. TLT Instruction Pipeline Activities (VR4131) .. 111

4-26. TLT Instruction Pipeline Activities (VR4181) .. 111

4-27. LW Instruction Pipeline Activities (VR4121, VR4122, VR4181A) .. 112

4-28. LW Instruction Pipeline Activities (VR4131) .. 113

4-29. LW Instruction Pipeline Activities (VR4181) .. 113

4-30. SW Instruction Pipeline Activities (VR4121, VR4122, VR4181A) ... 114

4-31. SW Instruction Pipeline Activities (VR4131) .. 115

4-32. SW Instruction Pipeline Activities (VR4181) .. 115

4-33. Interlocks, Exceptions, and Faults .. 116

User’s Manual U15509EJ2V0UM 13

LIST OF FIGURES (2/3)

Fig. No. Title Page

4-34. Exception Detection ... 119

4-35. Data Cache Miss Stall .. 120

4-36. CACHE Instruction Stall ... 120

4-37. Load Data Interlock .. 121

4-38. MD Busy Interlock .. 122

5-1. Format of a TLB Entry .. 126

5-2. TLB Manipulation Overview ... 127

5-3. Virtual-to-Physical Address Translation ... 129

5-4. Address Translation in TLB .. 130

5-5. 32-bit Mode Virtual Address Translation .. 131

5-6. 64-bit Mode Virtual Address Translation .. 132

5-7. User Mode Address Space .. 134

5-8. Supervisor Mode Address Space .. 136

5-9. Kernel Mode Address Space ... 139

5-10. xkphys Area Address Space .. 140

5-11. Index Register .. 147

5-12. Random Register ... 147

5-13. EntryLo0 and EntryLo1 Registers .. 148

5-14. PageMask Register .. 149

5-15. Positions Indicated by the Wired Register ... 150

5-16. Wired Register ... 150

5-17. EntryHi Register ... 151

5-18. PRId Register ... 152

5-19. Config Register .. 153

5-20. LLAddr Register ... 155

5-21. TagLo Register .. 156

5-22. TagHi Register ... 156

6-1. Context Register ... 159

6-2. BadVAddr Register ... 160

6-3. Count Register .. 160

6-4. Compare Register... 161

6-5. Status Register ... 161

6-6. Status Register Diagnostic Status Field .. 163

6-7. Cause Register ... 165

6-8. EPC Register (When MIPS16 ISA Is Disabled) ... 167

6-9. EPC Register (When MIPS16 ISA Is Enabled) .. 168

6-10. WatchLo Register ... 168

6-11. WatchHi Register.. 168

6-12. XContext Register... 169

6-13. Parity Error Register ... 170

6-14. Cache Error Register .. 170

6-15. ErrorEPC Register (When MIPS16 ISA Is Disabled) ... 172

User’s Manual U15509EJ2V0UM14

LIST OF FIGURES (3/3)

Fig. No. Title Page

6-16. ErrorEPC Register (When MIPS16 ISA Is Enabled) ... 172

6-17. Common Exception Handling .. 192

6-18. TLB/XTLB Refill Exception Handling ... 194

6-19. Cold Reset Exception Handling .. 196

6-20. Soft Reset and NMI Exception Handling ... 197

7-1. Logical Hierarchy of Memory .. 198

7-2. On-chip Caches and Main Memory ... 199

7-3. Instruction Cache Line Format .. 200

7-4. Data Cache Line Format ... 201

7-5. Cache Index and Data Output ... 204

7-6. Instruction Cache State Diagram .. 206

7-7. Data Cache State Diagram ... 206

7-8. Flow on Instruction Fetch .. 207

7-9. Flow on Load Operations .. 208

7-10. Flow on Store Operations ... 209

7-11. Flow on Index_Invalidate Operations .. 210

7-12. Flow on Index_Writeback_Invalidate Operations .. 211

7-13. Flow on Index_Load_Tag Operations ... 211

7-14. Flow on Index_Store_Tag Operations ... 212

7-15. Flow on Create_Dirty Operations .. 212

7-16. Flow on Hit_Invalidate Operations .. 213

7-17. Flow on Hit_Writeback_Invalidate Operations .. 214

7-18. Flow on Fill Operations ... 215

7-19. Flow on Hit_Writeback Operations ... 216

7-20. Flow on Fetch_and_Lock Operations (VR4131 only) .. 217

7-21. Writeback Flow ... 218

7-22. Refill Flow .. 218

7-23. Writeback & Refill Flow ... 219

8-1. Non-maskable Interrupt Signal .. 221

8-2. Hardware Interrupt Signals ... 222

8-3. Masking of the Interrupt Request Signals ... 223

9-1. CPU Instruction Opcode Bit Encoding .. 383

User’s Manual U15509EJ2V0UM 15

LIST OF TABLES (1/2)

Table No. Title Page

1-1. Comparison of Functions of VR4100 Series ... 18

1-2. CP0 Registers .. 22

1-3. List of Instructions Supported by VR Series Processors .. 32

2-1. MACC Instructions (for VR4121, VR4122, VR4131, and VR4181A) ... 35

2-2. Product-Sum Operation Instructions (for VR4181) ... 35

2-3. Power Mode Instructions ... 35

2-4. Number of Delay Slot Cycles Necessary for Load and Store Instructions ... 36

2-5. Load/Store Instruction .. 38

2-6. Load/Store Instruction (Extended ISA) .. 39

2-7. ALU Immediate Instruction .. 40

2-8. ALU Immediate Instruction (Extended ISA) ... 41

2-9. Three-Operand Type Instruction .. 41

2-10. Three-Operand Type Instruction (Extended ISA) ... 42

2-11. Shift Instruction .. 42

2-12. Shift Instruction (Extended ISA) ... 43

2-13. Multiply/Divide Instructions .. 44

2-14. Multiply/Divide Instructions (Extended ISA) ... 44

2-15. Product-Sum Operation Instructions (for VR4121, VR4122, VR4131, and VR4181A) 45

2-16. Product-Sum Operation Instructions (for VR4181) ... 45

2-17. Number of Stall Cycles in Multiply and Divide Instructions .. 46

2-18. Jump Instructions ... 47

2-19. Branch Instructions .. 48

2-20. Branch Instructions (Extended ISA) ... 49

2-21. Special Instructions .. 51

2-22. Special Instructions (Extended ISA) .. 51

2-23. System Control Coprocessor (CP0) Instructions ... 52

3-1. General-purpose Registers .. 55

3-2. Special Registers ... 56

3-3. MIPS16 Instruction Set Outline .. 57

3-4. Field Definition ... 59

3-5. Bit Encoding of Major Operation Code (op) ... 64

3-6. RR Minor Operation Code (RR-Type Instruction) .. 64

3-7. RRR Minor Operation Code (RRR-Type Instruction) ... 65

3-8. RRI-A Minor Operation Code (RRI-Type ADD Instruction) .. 65

3-9. SHIFT Minor Operation Code (SHIFT-Type Instruction) .. 65

3-10. I8 Minor Operation Code (I8-Type Instruction) ... 65

3-11. I64 Minor Operation Code (64-bit Only, I64-Type Instruction) ... 66

3-12. Base PC Address Setting .. 67

3-13. Extendable MIPS16 Instructions .. 69

3-14. Load and Store Instructions ... 71

3-15. ALU Immediate Instructions ... 74

3-16. Two-/Three-Operand Register Type .. 76

3-17. Shift Instructions .. 78

User’s Manual U15509EJ2V0UM16

LIST OF TABLES (2/2)

Table No. Title Page

3-18. Multiply/Divide Instructions .. 80

3-19. Jump and Branch Instructions .. 82

3-20. Special Instructions ... 83

4-1. Description of Pipeline Activities during Each Stage ... 103

4-2. Correspondence of Pipeline Stage to Interlock and Exception Conditions ... 117

4-3. Pipeline Interlock ... 118

4-4. Description of Pipeline Exception .. 118

5-1. User Mode Segments ... 134

5-2. 32-bit and 64-bit Supervisor Mode Segments ... 137

5-3. 32-bit Kernel Mode Segments ... 141

5-4. 64-bit Kernel Mode Segments ... 143

5-5. Cacheability and the xkphys Address Space .. 144

5-6. CP0 Registers ... 146

5-7. Cache Algorithm .. 149

5-8. Mask Values and Page Sizes ... 149

5-9. System Interface Clock Ratio (to PClock) ... 154

5-10. Instruction Cache Sizes .. 155

5-11. Data Cache Sizes ... 155

6-1. CP0 Registers ... 158

6-2. Cause Register Exception Code Field .. 166

6-3. 32-Bit Mode Exception Vector Base Addresses .. 174

6-4. 64-Bit Mode Exception Vector Base Addresses .. 174

6-5. Exception Priority Order .. 175

7-1. Cache Size, Line Size, and Index ... 204

9-1. CPU Instruction Operation Notations .. 225

9-2. Load and Store Common Functions ... 226

9-3. Access Type Specifications for Loads/Stores ... 227

11-1. Coprocessor 0 Hazards .. 422

11-2. Calculation Example of CP0 Hazard and Number of Instructions Inserted ... 426

User’s Manual U15509EJ2V0UM 17

CHAPTER 1 INTRODUCTION

This chapter gives an outline of the VR4121 (µPD30121), the VR4122 (µPD30122), the VR4131 (µPD30131), the

VR4181 (µPD30181), and the VR4181A (µPD30181A, 30181AY), which are 64-/32-bit RISC microprocessors. In this

manual, these products are referred to as the VR4100 Series.

1.1 Features

The VR4100 Series, which is a part of the RISC microprocessor VR Series, is a group of products developed for PDAs.

The VR Series is high-performance 64-/32-bit microprocessors employing the RISC (reduced instruction set computer)

architecture developed by MIPSTM manufactured by NEC.

The VR4100 Series accommodates the ultra low power consumption CPU core provided with cache memory, a

high-speed product-sum operation unit, and an address management unit. The VR4100 Series also has interface

units for the peripheral circuits required for battery-driven portable information equipment (refer to Hardware User's

Manual of each product for details about on-chip peripheral functions).

The features of the VR4100 Series are described below.

Employs 64-bit RISC core as a CPU

Possible to operate in 32-bit mode

Optimized instruction pipeline

On-chip cache memory

Employs write-back cache

Reduces store operations using system bus

Physical address space: 32 bits

Virtual address space: 40 bits

Translation lookaside buffer (TLB) with 32-double entries

Instruction set: MIPS III (however, the FPU, LL, LLD, SC, and SCD instructions are removed), MIPS16

Supports high-speed product-sum operation instructions

Effective power management features, which include the four modes of Fullspeed, Standby, Suspend, and

Hibernate

On-chip PLL and clock generator

Variable on-chip peripheral functions ideal for potable information equipment

The functions of the VR4100 Series are listed as follows.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM18

Table 1-1. Comparison of Functions of VR4100 Series

Item VR4121 VR4122 VR4131 VR4181 VR4181A

Part number µPD30121 µPD30122 µPD30131 µPD30181 µPD30181A,

30181AY

CPU core VR4120TM core VR4130TM core VR4110TM core VR4120 core

Instruction set MIPS I, II, III

+ high-speed product-sum (32-bit)

+ MIPS16

MIPS I, II, III

+ high-speed product-

sum (16-bit)

+ MIPS16

MIPS I, II, III

+ high-speed product-

sum (32-bit)

+ MIPS16

Pipeline 5-/6-stage pipeline 2-way superscalar

6-/7-stage pipeline

5-stage pipeline 5-/6-stage pipeline

On-chip cache

memory

• Instruction: 16KB

• Data: 8KB

• Direct map

• Instruction: 32KB

• Data: 16KB

• Direct map

• Instruction: 16KB

• Data: 16KB

• 2-way set-

associative

• With line lock

function

• Instruction: 4KB

• Data: 4KB

• Direct map

• Instruction: 8KB

• Data: 8KB

• Direct map

On-chip peripheral

functions

• Memory controller

• Extension bus

interface (ISA)

• LCD interface

• Touch panel

interface

• Keyboard interface

• Communication

interface (UART,

CSI, IrDA (SIR,

MIR, FIR))

• Modem interface

• Audio interface

• LED controller

• DMA controller

• Timer, counter

• Watchdog timer

• General-purpose

port

• Clock generator

• Power management

unit

• A/D converter

• D/A converter

• Memory controller

• Extension bus interface (ISA, PCI)

• Communication interface (UART, CSI, IrDA

(SIR, MIR, FIR))

• LED controller

• Timer, counter

• General-purpose port

• Clock generator

• Power management unit

• Memory controller

• Extension bus

interface (ISA)

• LCD interface

• Touch panel

interface

• Keyboard interface

• Communication

interface (UART,

CSI, IrDA (SIR))

• CompactFlash

interface

• Audio interface

• LED controller

• DMA controller

• Timer, counter

• Watchdog timer

• General-purpose

port

• Clock generator

• Power management

unit

• A/D converter

• D/A converter

• Memory controller

• Extension bus

interface (ISA)

• LCD interface

• Touch panel

interface

• Keyboard interface

• Communication

interface (UART,

CSI, I2C, IrDA (SIR))

• CompactFlash

interface

• AC97/I2S audio

interface

• DMA controller

• USB host/function

controller

• PWM generator

• Timer, counter

• Watchdog timer

• General-purpose

port

• Clock generator

• Power management

unit

• A/D converter

• D/A converter

Other functions − • On-chip branch prediction function

• On-chip hardware debug function

− • On-chip branch

prediction function

• On-chip hardware

debug function

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 19

1.2 CPU Core

Figure 1-1 shows the internal block diagram of the CPU core.

In addition to the conventional high-performance integer operation units, this CPU core has a full-associative

format translation lookaside buffer (TLB), which has 32 entries that provide mapping to 2-page pairs for one entry.

Moreover, it also has instruction and data caches, and a bus interface.

Figure 1-1. CPU Core Internal Block Diagram

TLB

Virtual address bus

Internal data bus

Bus
interface

Data cache Instruction
cache

Clock
generator

CP0 CPU
Control (o)

Control (i)

Address/data (o)

Address/data (i)

Internal clock

(1) CPU

CPU is a block that performs integer calculations. This block includes a 64-bit integer data path, and product-

sum operator.

(2) Coprocessor 0 (CP0)

CP0 incorporates a memory management unit (MMU) and exception handling function. The MMU checks

whether there is an access between different memory segments (user, supervisor, and kernel) by executing

address conversion. The translation lookaside buffer (TLB) converts virtual addresses to physical addresses.

(3) Instruction cache

The instruction cache employs virtual index and physical tag formats. It is managed with direct mapping format

in the VR4121, VR4122, VR4181, and VR4181A, or with 2-way set-associative format in the VR4131.

(4) Data cache

The data cache employs virtual index, physical tag, and writeback formats. It is managed with direct mapping

format in the VR4121, VR4122, VR4181, and VR4181A, or with 2-way set-associative format in the VR4131.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM20

(5) CPU bus interface

The bus interface controls data transmission/reception between the CPU core and peripheral units. The bus

interface consists of two 32-bit multiplexed address/data buses (one for input, and the other for output), clock

signals, interrupt request signals, and various other control signals.

(6) Clock generator

The clock generator processes clock inputs and supplies them to internal units.

1.2.1 CPU registers

The CPU core has thirty-two 64-bit general-purpose registers (GPR).

In addition, it provides the following special registers:

• PC: Program counter (64 bits)

• HI register: Contains the integer multiply and divide higher doubleword result (64 bits)

• LO register: Contains the integer multiply and divide lower doubleword result (64 bits)

Two of the general-purpose registers are assigned the following functions:

• r0 is fixed to 0, and can be used as the target register for any instruction whose result is to be discarded. r0

can also be used as a source register when a zero value is needed.

• r31 is the link register used by link instructions such as JAL (jump and link) instructions. This register can be

used for other instructions. However, be careful that use of the register by a link instruction will not coincide

with use of the register for other operations.

The register group is provided within the CP0 (system control coprocessor), to process exceptions and to manage

addresses.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the processor operation mode.

The operation of the CPU register differs depending on what instructions are executed: 32-bit instructions or

MIPS16 instructions. For details, refer to CHAPTER 3 MIPS16 INSTRUCTION SET.

The VR4100 Series processors have no program status word (PSW) register as such; this is covered by the

Status and Cause registers incorporated within the system control coprocessor (CP0). For details of CP0 registers,

refer to Table 1-2 CP0 Registers.

Figure 1-2 shows the CPU registers.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 21

Figure 1-2. CPU Registers

063

HI

063

LO

0

PC

General-purpose registers

Multiply and divide registers

Program counter

0

63

63

r2

r1

r0 = 0

r31 = Link address

r30

r29

1.2.2 Coprocessors

MIPS ISA defines 4 types of coprocessors (CP0 to CP3).

• CP0 translates virtual addresses to physical addresses, switches the operating mode (Kernel, Supervisor, or

User mode), and manages exceptions. It also controls the cache subsystem to analyze a cause and to return

from the error state.

• CP1 is reserved for floating-point instructions.

• CP2 is reserved for future definition by MIPS.

• CP3 is no longer defined. CP3 instructions are reserved for future extensions.

The VR4100 Series implements the CP0 only.

1.2.3 System control coprocessor (CP0)

CP0 translates virtual addresses to physical addresses, switches the operating mode, controls the cache

memory, and manages exceptions. For detailed descriptions of these functions, refer to CHAPTER 5 MEMORY

MANAGEMENT SYSTEM and CHAPTER 6 EXCEPTION PROCESSING.

CP0 has thirty-two registers that have corresponding register number. The register number is used as an

operand of instructions to specify a CP0 register to be accessed. Table 1-2 shows simple descriptions of each

register.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM22

Table 1-2. CP0 Registers

Register

Number

Register Name Usage Description

0 Index Memory management Programmable pointer to TLB array

1 Random Memory management Pseudo-random pointer to TLB array (read only)

2 EntryLo0 Memory management Lower half of TLB entry for even VPN

3 EntryLo1 Memory management Lower half of TLB entry for odd VPN

4 Context Exception processing Pointer to virtual PTE table in 32-bit mode

5 PageMask Memory management Page size specification

6 Wired Memory management Number of wired TLB entries

7 − − Reserved for future use

8 BadVAddr Exception processing Virtual address where the most recent error occurred

9 Count Exception processing Timer count

10 EntryHi Memory management Upper half of TLB entry (including ASID)

11 Compare Exception processing Timer compare value

12 Status Exception processing Operation status

13 Cause Exception processing Cause of last exception

14 EPC Exception processing Exception program counter

15 PRId Memory management Processor revision identifier

16 Config Memory management Memory mode system specification

17 LLAddrNote1 Memory management Physical address for diagnostic purpose

18 WatchLo Exception processing Memory reference trap address lower bits

19 WatchHi Exception processing Memory reference trap address higher bits

20 Xcontext Exception processing Pointer to virtual PTE table in 64-bit mode

21 to 25 − − Reserved for future use

26 Parity ErrorNote2 Exception processing Cache parity bits

27 Cache ErrorNote2 Exception processing Index and status of cache error

28 TagLo Memory management Cache tag register (low)

29 TagHi Memory management Cache tag register (high)

30 ErrorEPC Exception processing Error exception program counter

31 − − Reserved for future use

Notes 1. This register is defined to maintain compatibility with the VR4000TM and VR4400TM. The contents of this

register are meaningless in the normal operation.

2. This register is defined to maintain compatibility with the VR4100TM. This register is not used in the normal

operation.

Caution When accessing the CP0 registers, some instructions require consideration of the interval time

until the next instruction is executed, because there is a delay from when the contents of the CP0

register change to when this change is reflected in the CPU operation. This time lag is called a CP0

hazard. For details, refer to CHAPTER 11 COPROCESSOR 0 HAZARDS.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 23

1.2.4 Floating-point unit (FPU)

The VR4100 Series does not support the floating-point unit (FPU). A coprocessor unusable exception will occur if

any FPU instructions are executed. If necessary, FPU instructions should be emulated by software in an exception

handler.

1.2.5 Cache memory

The VR4100 Series incorporates instruction and data caches, which are independent of each other. This

configuration enables high-performance pipeline operations. Both caches have a 64-bit data bus, enabling a one-

clock access. These buses can be accessed in parallel.

The caches are managed with direct mapping format in the VR4121, VR4122, VR4181, and VR4181A, or with 2-

way set-associative format in the VR4131. The data cache of the VR4131 has also the line lock function.

A detailed description of caches is given in CHAPETER 7 CACHE MEMORY.

1.3 CPU Instruction Set Overview

There are two types of CPU instructions: 32-bit length instructions (MIPS III) and 16-bit length instructions

(MIPS16). Use of the MIPS16 instructions is enabled or disabled by setting MIPS16EN pin during a reset.

(1) MIPS III instructions

All the CPU instructions are 32-bit length when executing MIPS III instructions, and they are classified into three

instruction formats as shown in Figure 1-3: immediate (I type), jump (J type), and register (R type). The fields of

each instruction format are described in CHAPTER 2 CPU INSTRUCTION SET SUMMARY.

Figure 1-3. CPU Instruction Formats (32-bit Length Instruction)

31 26 25 21 20 16 15 0

op rs rt immediateI - type (Immediate)

31 26 25 0

op targetJ - type (Jump)

31 26 25 21 20 16 15 0

op rs rt saR - type (Register)

11 10 6 5

rd funct

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM24

The instruction set can be further divided into the following five groupings:

(a) Load and store instructions move data between the memory and the general-purpose registers. They are all

immediate (I-type) instructions, since the only addressing mode supported is base register plus 16-bit,

signed immediate offset.

(b) Computational instructions perform arithmetic, logical, shift, and multiply and divide operations on values in

registers. They include R-type (in which both the operands and the result are stored in registers) and I-type

(in which one operand is a 16-bit signed immediate value) formats.

(c) Jump and branch instructions change the control flow of a program. Jumps are made either to an absolute

address formed by combining a 26-bit target address with the higher bits of the program counter (J-type

format) or register-specified address (R-type format). The format of the branch instructions is I type.

Branches have 16-bit offsets relative to the program counter. JAL instructions save their return address in

register 31.

(d) System control coprocessor (CP0) instructions perform operations on CP0 registers to control the memory-

management and exception-handling facilities of the processor.

(e) Special instructions perform system calls and breakpoint exceptions, or cause a branch to the general

exception-handling vector based upon the result of a comparison. These instructions occur in both R-type

and I-type formats.

For the operation of each instruction, refer to CHAPTER 2 CPU INSTRUCTION SET SUMMARY and CHAPTER

9 CPU INSTRUCTION SET DETAILS.

(2) Additional instructions

All the sum-of-products instructions and power mode instructions are 32-bit length.

(3) MIPS16 instructions

All the CPU instructions except for JAL and JALX are 16-bit length when executing MIPS16 instructions, and they

are classified into thirteen instruction formats as shown in Figure 1-4.

The fields of each instruction format are described in CHAPTER 3 MIPS 16 INSTRUCTION SET.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 25

Figure 1-4. CPU Instruction Formats (16-bit Length Instruction)

opI-type

RI-type

RR-type

RRI-type

RRR-type

RRI-A-type

Shift-type

I8-type

I8_MOVR32-type

I8_MOV32R-type

I64-type

RI64-type

JAL/JALX-type

immediate

01011

op immediate

01115

15

rx

10 8 7

op funct

01115

rx

10 8 7

ry

5 4

RRI immediate

01115

rx

10 8 7

ry

5 4

RRR F

01115

rx

10 8 7

ry

5 4

5 4

rz

2 1

RRI-A F

01115

rx

10 8 7

ry immediate

3

SHIFT F

01115

rx

10 8 7

ry Shamt

2 1

I8 immediate

01115

funct

10 8 7

I8 r32(4:0)

01115

funct

10 8 7

ry

I8 r32(2:0)funct rz

01115 10 8 7 3 2

I64 immediate

01115

funct

10 8 7

I64 immediate

01115

funct

10 8 7

ry

5 4

JALImmediate(15:0)

031

Immediate(25:21)X Immediate(20:16)

11 10 9 5 4

5 4

5 4

5 4

r32(4:3)

16 15

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM26

The instruction set can be further divided into the following four groupings:

(a) Load and store instructions move data between memory and general-purpose registers. They include RRI,

RI, I8, and RI64 types.

(b) Computational instructions perform arithmetic, logical, shift, and multiply and divide operations on values in

registers. They include RI-, RRIA, I8, RI64, I64, RR, RRR, I8_MOVR32, and I8_MOV32R types.

(c) Jump and branch instructions change the control flow of a program. They include JAL/JALX, RR, RI, I8, and I

types.

(d) Special instructions are SYSCALL, BREAK, and Extend instructions. The SYSCALL and BREAK instructions

transfer control to an exception handler. The Extend instruction extends the immediate field of the next

instruction. They are RR and I types. When extending the immediate field of the next instruction by using the

Extend instruction, one cycle is needed for executing the Extend instruction, and another cycle is needed for

executing the next instruction.

For more details of each instruction’s operation, refer to CHAPTER 3 MIPS16 INSTRUCTION SET and

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT.

1.4 Data Formats and Addressing

The VR4100 Series uses the following four data formats:

• Doubleword (64 bits)

• Word (32 bits)

• Halfword (16 bits)

• Byte (8 bits)

In the CPU core, if the data format is any one of halfword, word, or doubleword, the byte ordering can be set as

either big endian or little endian. In the VR4131, the setting of BIGENDIAN pin during a reset decides which byte

order is used. The VR4121, VR4122, VR4181, and VR4181A only support the little-endian order.

Endianness refers to the location of byte 0 within the multi-byte data structure. Figures 1-5 and 1-6 show the

configuration.

When configured as a big-endian system, byte 0 is always the most-significant (leftmost) byte, which is

compatible with MC68000TM and IBM370TM conventions.

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which is

compatible with PentiumTM and DEC VAXTM conventions.

In this manual, bit designations are always little endian.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 27

Figure 1-5. Byte Address in Big-Endian Byte Order

(a) Word data

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

31 24 23 16 15 8 7 0

12

8

4

0

Word
address

High-order
address

Low-order
address

(b) Doubleword data

16

8

0

17

9

1

18

10

2

19

11

3

63 0

16

8

0

Doubleword
address

High-order
address

Low-order
address

20

12

4

21

13

5

22

14

6

23

15

7

32 31 16 15 8 7

Word Halfword Byte

Remarks 1. The highest byte is the lowest address.

2. The address of word data is specified by the highest byte’s address.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM28

Figure 1-6. Byte Address in Little-Endian Byte Order

(a) Word data

15

11

7

3

14

10

6

2

13

9

5

1

12

8

4

0

31 24 23 16 15 8 7 0

12

8

4

0

Word
address

High-order
address

Low-order
address

(b) Doubleword data

23

15

7

22

14

6

21

13

5

20

12

4

16

8

0

Doubleword
address

High-order
address

Low-order
address

19

11

3

18

10

2

17

9

1

16

8

0

63 032 31 16 15 8 7

Word Halfword Byte

Remarks 1. The lowest byte is the lowest address.

2. The address of word data is specified by the lowest byte’s address.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 29

The CPU core uses the following byte boundaries for halfword, word, and doubleword accesses:

• Halfword: An even byte boundary (0, 2, 4...)

• Word: A byte boundary divisible by four (0, 4, 8...)

• Doubleword: A byte boundary divisible by eight (0, 8, 16...)

The following special instructions are used to load and store data that are not aligned on 4-byte (word) or 8-byte

(doubleword) boundaries:

• Word access: LWL, LWR, SWL, SWR

• Doubleword access: LDL, LDR, SDL, SDR

These instructions are used in pairs of L and R.

Accessing misaligned data requires one additional instruction cycle (1 PCycle) over that required for accessing

aligned data.

Figure 1-7 shows the access of a misaligned word that has byte address 3.

Figure 1-7. Misaligned Word Accessing (Little-Endian)

31 24 23 16 15 8 7 0

6 5 4

3

High-order address

Low-order address

Caution In the VR4131, data transfer to the internal I/O (register) space or to the PCI bus is performed with

data converted to little endian even during operation in big-endian mode. Therefore, the following

restrictions apply for access to these address spaces.

•••• Do not perform 3-byte access. When 3-byte access is executed, data is undefined.

•••• When 8-byte access is executed, the order of higher word and lower word is reversed.

•••• Do not use the LWR, LWL, LDR, and LDL instructions. Access by the LWR, LWL, LDR, or LDL

instruction causes erroneous data to be loaded.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM30

1.5 Memory Management System

The VR4100 Series has a 32-bit physical addressing range of 4 GB. However, since it is rare for systems to

implement a physical memory space as large as that memory space, the CPU provides a logical expansion of

memory space by translating addresses composed in the large virtual address space into available physical memory

addresses.

A detailed description of these address spaces is given in CHAPTER 5 MEMORY MANAGEMENT SYSTEM.

1.5.1 Translation lookaside buffer (TLB)

Virtual memory mapping is performed using the translation lookaside buffer (TLB). The TLB converts virtual

addresses to physical addresses. It runs by a full-associative method and has 32 entries, each mapping a pair of

two consecutive pages. The page size is variable between 1 KB and 256 KB, in powers of 4.

(1) Joint TLB (JTLB)

The JTLB holds both instruction and data addresses.

For fast virtual-to-physical address decoding, the VR4100 Series uses a large, fully associative TLB (joint TLB)

that translates 64 virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of

even-odd entries, and maps a virtual address and address space identifier (ASID) into the 4 GB physical

address space.

The page size can be configured, on a per-entry basis, to map a page size of 1 KB to 256 KB. A CP0 register

stores the size of the page to be mapped, and that size is entered into the TLB when a new entry is written.

Thus, operating systems can provide special purpose maps; for example, a typical frame buffer can be memory-

mapped using only one TLB entry.

Translating a virtual address to a physical address begins by comparing the virtual address from the processor

with the physical addresses in the TLB; there is a match when the virtual page number (VPN) of the address is

the same as the VPN field of the entry, and either the global (G) bit of the TLB entry is set, or the ASID field of

the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB miss exception is taken by the processor and

software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

1.5.2 Processor modes

(1) Operating modes

The VR4100 Series has three operating modes, User, Supervisor, and Kernel. The manner in which memory

addresses are mapped depends on these operating modes. Refer to CHAPTER 5 MEMORY MANAGEMENT

SYSTEM for details.

(2) Addressing modes

The VR4100 Series has two addressing modes, 64-bit and 32-bit. The manner in which memory addresses are

translated or mapped depends on these operating modes. Refer to CHAPTER 5 MEMORY MANAGEMENT

SYSTEM for details.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM 31

1.6 Instruction Pipeline

The VR4100 Series has a 5- to 7-stage instruction pipeline.

In the VR4121, VR4122, VR4181, and VR4181A, one instruction is issued each cycle under normal circumstances.

The VR4131 employs a 2-way superscalar mechanism so that two instructions can be executed simultaneously.

A detailed description of the pipeline is provided in CHAPTER 4 PIPELINE.

1.6.1 Branch prediction

The VR4122, VR4131, and VR4181A have a branch prediction mechanism to speed up branch operations. These

processors have a branch prediction table that holds branch instructions whose conditions were satisfied in the past,

and the target addresses of the instructions. If an instruction that is the same as the fetched instruction is in this

table (hit), execution branches without delay. If the corresponding branch instruction is not in the branch prediction

table (miss), the address of that instruction is loaded to the branch prediction table and then execution branches.

For the operations when a hit or a miss occurs, refer to CHAPTER 4 PIPELINE.

If the BP bit of the Config register of CP0 is cleared, branch prediction is performed. It is not performed if the BP

bit is set (1) or in the MIPS16 instruction mode.

CHAPTER 1 INTRODUCTION

User’s Manual U15509EJ2V0UM32

1.7 Code Compatibility

The CPU cores of the VR4100 Series are designed in consideration of the program compatibility to other VR-

Series processors. However since they have some differences from other processors on their architecture, they

cannot necessarily execute all programs that can be executed in other VR-Series processors, and also other VR-

Series processors cannot necessarily execute all programs that can be executed in the VR4100 Series.

Matters that should be paid attention to when porting programs between the VR4100 Series and other VR-Series

processors are listed below.

• A 16-bit length MIPS16 instruction set is added in the VR4100 Series.

• Multiply-add instructions are added in the VR4100 Series.

• Instructions for power modes (HIBERNATE, STANDBY, SUSPEND) are added in the VR4100 Series to

support power modes.

• Operations to lock a cache are added to the CACHE instruction in the VR4131.

• The VR4100 Series does not support floating-point instructions since it has no Floating-Point Unit (FPU).

• The VR4100 Series does not have the LL bit to perform synchronization of multiprocessing. Therefore, it does

not support instructions that manipulate the LL bit (LL, LLD, SC, SCD).

• The CP0 hazards of the VR4100 Series are equally or less stringent than those of the VR4000 (see Chapter 11

for details).

For more information about each instruction, refer to Chapters 9 and 3, and user's manuals of each product other

than the VR4100 Series.

Instructions supported by each of the VR Series processors are listed below.

Table 1-3. List of Instructions Supported by VR Series Processors

Products

Supported instructions

VR4121

VR4122

VR4181

VR4181A

VR4131 VR4300 TM

VR4305 TM

VR4310 TM

VR5000 TM

VR5000A TM

VR5432 TM

VR5500 TM

VR10000TM

VR12000TM

MIPS I A A A A A A

MIPS II A A A A A A

MIPS III A A A A A A

LL bit

manipulation

N/A N/A A A A A

MIPS IV N/A N/A N/A A A A

MIPS16 A A N/A N/A N/A N/A

Multiply-add A A N/A N/A A N/A

Floating-point operation N/A N/A A A A A

Power mode transition A A N/A A A

(VR5500)

N/A

User’s Manual U15509EJ2V0UM 33

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

This chapter is an overview of the CPU instruction set; refer to CHAPTER 9 CPU INSTRUCTION SET DETAILS

for detailed descriptions of individual CPU instructions.

2.1 Instruction Set Architecture

In the MIPS Instruction Set Architecture (ISA), five levels of instruction sets, from MIPS I through MIPS V, are

currently defined. An instruction set of larger level number includes that of smaller level number. In other words, a

processor implementing the MIPS IV instruction set is able to run MIPS I, MIPS II, or MIPS III binary programs without

change.

There are another instruction sets called ASE, Application-Specific Extension, that extend functions for specific

applications and MIPS16 is the one currently defined (refer to CHAPTER 3 MIPS16 INSTRUCTION SET for details).

The VR4100 Series implements MIPS III and MIPS16 instruction sets except for the following instructions:

(1) Synchronization support instructions

The VR4100 Series does not support a multiprocessor operating environment. Thus the instructions to support

synchronization of memory update defined in the MIPS II and MIPS III ISA - the load linked and store conditional

instructions - cause reserved instruction exception. The load link (LL) bit is eliminated.

Remark The SYNC instruction is handled as a NOP instruction since all load/store instructions in this processor

are executed in program order.

(2) Floating-point operation instructions

The VR4100 Series does not incorporate a floating-point unit (FPU). Thus the FPU instructions cause a

coprocessor unusable exception. FPU instructions should be emulated by software in an exception handler if

necessary.

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM34

2.2 CPU Instruction Formats

Each MIPS III ISA CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three

instruction formats - immediate (I-type), jump (J-type), and register (R-type) - as shown in Figure 2-1. The use of a

small number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize more

complicated and less frequently used instruction and addressing modes from these three formats as needed.

Figure 2-1. CPU Instruction Formats

op immediate

015162021252631

op target

0252631

rtrs

op

I-type (immediate)

J-type (jump)

R-type (register)

015162021252631

sard

561011

rtrs funct

op: 6-bit operation code

rs: 5-bit source register specifier

rt: 5-bit target (source/destination) register specifier or branch condition

immediate: 16-bit immediate value, branch displacement, or address displacement

target: 26-bit unconditional branch target address

rd: 5-bit destination register specifier

sa: 5-bit shift amount

func: 6-bit function field

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 35

2.3 Instructions Added in the VR4100 Series

In the VR4100 Series, instructions such as power mode instructions or product-sum operation instructions, which

are suitable for potable information equipment and multimedia field, are added. These instructions are not included

in the standard MIPS III instruction set.

2.3.1 Product-sum operation instructions

These instructions add a value in an accumulator to the result of multiplication and store it into a destination

register, using the HI register and LO register as an accumulator. A 64-bit accumulator consists of the low-order 32

bits of the HI register as high-order bits and the low-order 32 bits of the LO register as low-order bits. No overflow or

no underflow occurs by executing these instructions, and therefore, no exception occurs.

Of product-sum operation instructions, those that perform saturation processing or store data into a general-

purpose register by specifying options are called MACC instructions.

Table 2-1. MACC Instructions (for VR4121, VR4122, VR4131, and VR4181A)

Instruction Definition

MACC Multiply and Add Accumulate

DMACC Doubleword Multiply and Add Accumulate

Table 2-2. Product-Sum Operation Instructions (for VR4181)

Instruction Definition

MADD16 Multiply and Add 16-bit Integer

DMADD16 Doubleowrd Multiply and Add 16-bit Integer

2.3.2 Power mode instructions

These instructions stop the internal clock of the processor and set the processor in a low power consumption

mode. Three low power consumption modes are available, each of which can be set by a dedicated instruction.

Table 2-3. Power Mode Instructions

Instruction Definition

STANDBY Standby

SUSPEND Suspend

HIBERNATE Hibernate

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM36

2.4 Instruction Overview

The CPU instructions are classified into five classes. The product-sum operation instructions and power mode

instructions added in the VR4100 Series are also included in one of the five classes.

2.4.1 Load and store instructions

Loads and stores are immediate (I-type) instructions that move data between memory and the general-purpose

registers. The only addressing mode that load and store instructions directly support is base register plus 16-bit

signed immediate offset.

Tables 2-5 and 2-6 list the ISA-defined load/store instructions and extended-ISA instructions, respectively.

(1) Scheduling a load delay slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a

delayed load instruction. The instruction slot immediately following this delayed load instruction is referred to as

the load delay slot.

In the VR4100 Series, a load instruction can be followed directly by an instruction that accesses a register that is

loaded by the load instruction. In this case, however, an interlock occurs for a necessary number of cycles. Any

instruction can follow a load instruction, but the load delay slot should be scheduled appropriately for both

performance and compatibility with the VR Series microprocessors. For detail, see CHAPTER 4 PIPELINE.

(2) Store delay slot

When a store instruction is writing data to a cache, the data cache is kept busy at the DC and WB stages. If an

instruction (such as load) that follows directly the store instruction accesses the data cache in the DC stage, a

hardware-driven interlock occurs. To overcome this problem, the store delay slot should be scheduled.

Table 2-4. Number of Delay Slot Cycles Necessary for Load and Store Instructions

Instruction Necessary number of PCycles

Load 1

Store 1

(3) Defining access types

Access type indicates the size of a processor data item to be loaded or stored, set by the load or store instruction

opcode. Access types and accessed byte are shown in Figure 2-2.

Regardless of access type or byte ordering (endianness), the address given specifies the least significant byte in

the addressed field. For a big-endian configuration, the high-order byte is the least-significant byte, and for a

little-endian configuration the low-order byte.

The access type, together with the three low-order bits of the address, defines the bytes accessed within the

addressed doubleword (shown in Figure 2-2). Only the combinations shown in Figure 2-2 are permissible; other

combinations cause address error exceptions.

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 37

Figure 2-2. Byte Specification Related to Load and Store Instructions

Access type

(value)

Low-order

address

bits

Accessed byte

(big-endian)

Accessed byte

(little-endian)

2 1 0 63 0 63 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

7-byte (6) 0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

6-byte (5) 0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

5-byte (4) 0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3) 0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triple byte (2) 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1) 0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0) 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

Remark The big-endian order is supported by the VR4131 only.

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM38

Table 2-5. Load/Store Instruction

Instruction Format and Description

Load Byte LB rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The bytes of the memory location specified by the address are sign extended and loaded into register rt.

Load Byte Unsigned LBU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The bytes of the memory location specified by the address are zero extended and loaded into register rt.

Load Halfword LH rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The halfword of the memory location specified by the address is sign extended and loaded to register rt.

Load Halfword

Unsigned

LHU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The halfword of the memory location specified by the address is zero extended and loaded to register rt.

Load Word LW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The word of the memory location specified by the address is sign extended and loaded to register rt. In the

64-bit mode, it is further sign extended to 64 bits.

Load Word Left LWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the word whose address is specified so that the address-specified byte is at the left-

most position of the word. The result of the shift operation is merged with the contents of register rt

and loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Load Word Right LWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the word whose address is specified so that the address-specified byte is at the right-

most position of the word. The result of the shift operation is merged with the contents of register rt and

loaded to register rt. In the 64-bit mode, it is further sign extended to 64 bits.

Store Byte SB rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The least significant byte of register rt is stored to the memory location specified by the address.

Store Halfword SH rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The least significant halfword of register rt is stored to the memory location specified by the address.

Store Word SW rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The lower word of register rt is stored to the memory location specified by the address.

Store Word Left SWL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the contents of register rt so that the left-most byte of the word is in the position of the

address-specified byte. The result is stored to the lower word in memory.

Store Word Right SWR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the contents of register rt so that the right-most byte of the word is in the position of the

address-specified byte. The result is stored to the upper word in memory.

op base rt offset

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 39

Table 2-6. Load/Store Instruction (Extended ISA)

Instruction Format and Description

Load Doubleword LD rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The doubleword of the memory location specified by the address are loaded into register rt.

Load Doubleword Left LDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the double word whose address is specified so that the address-specified byte is at the

left-most position of the double word. The result of the shift operation is merged with the contents of

register rt and loaded to register rt.

Load Doubleword

Right

LDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the double word whose address is specified so that the address-specified byte is at

the right-most position of the double word. The result of the shift operation is merged with the contents

of register rt and loaded to register rt.

Load Word Unsigned LWU rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The word of the memory location specified by the address are zero extended and loaded into register rt

Store Doubleword SD rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

The contents of register rt are stored to the memory location specified by the address.

Store Doubleword Left SDL rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the right the contents of register rt so that the left-most byte of the double word is in the

position of the address-specified byte. The result is stored to the lower doubleword in memory.

Store Doubleword

Right

SDR rt, offset (base)

The offset is sign extended and then added to the contents of the register base to form the virtual address.

Shifts to the left the contents of register rt so that the right-most byte of the double word is in the

position of the address-specified byte. The result is stored to the upper doubleword in memory.

op base rt offset

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM40

2.4.2 Computational instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. Computational

instructions can be either in register (R-type) format, in which both operands are registers, or in immediate (I-type)

format, in which one operand is a 16-bit immediate.

Computational instructions are classified as:

(1) ALU immediate instructions

(2) Three-operand type instructions

(3) Shift instructions

(4) Multiply/divide instructions

In addition, product-sum operation instructions are added in the VR4100 Series.

To maintain data compatibility between the 64- and 32-bit modes, it is necessary to sign-extend 32-bit operands

correctly. If the sign extension is not correct, the 32-bit operation result is meaningless.

Table 2-7. ALU Immediate Instruction

Instruction Format and Description

Add Immediate ADDI rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit

result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. An

exception occurs on the generation of 2’s complement overflow.

Add Immediate

Unsigned

ADDIU rt, rs, immediate

The 16-bit immediate is sign extended and then added to the contents of register rs to form a 32-bit

result. The result is stored into register rt. In the 64-bit mode, the operand must be sign extended. No

exception occurs on the generation of integer overflow.

Set On Less Than

Immediate

SLTI rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both

operands as signed integers. If rs is less than the immediate, the result is set to 1; otherwise, the result

is set to 0. The result is stored to register rt.

Set On Less Than

Immediate Unsigned

SLTIU rt, rs, immediate

The 16-bit immediate is sign extended and then compared to the contents of register rt treating both

operands as unsigned integers. If rs is less than the immediate, the result is set to 1; otherwise, the

result is set to 0. The result is stored to register rt.

AND Immediate ANDI rt, rs, immediate

The 16-bit immediate is zero extended and then ANDed with the contents of the register. The result is

stored into register rt.

OR Immediate ORI rt, rs, immediate

The 16-bit immediate is zero extended and then ORed with the contents of the register. The result is

stored into register rt.

Exclusive OR

Immediate

XORI rt, rs, immediate

The 16-bit immediate is zero extended and then Ex-ORed with the contents of the register. The result

is stored into register rt.

Load Upper

Immediate

LUI rt, immediate

The 16-bit immediate is shifted left by 16 bits to set the lower 16 bits of word to 0. The result is stored

into register rt. In the 64-bit mode, the operand must be sign extended.

op rs rt immediate

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 41

Table 2-8. ALU Immediate Instruction (Extended ISA)

Instruction Format and Description

Doubleword Add
Immediate

DADDI rt, rs, immediate
The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.
An exception occurs on the generation of integer overflow.

Doubleword Add
Immediate Unsigned

DADDIU rt, rs, immediate
The 16-bit immediate is sign extended to 64 bits and then added to the contents of register rs to form a
64-bit result. The result is stored into register rt.
No exception occurs on the generation of overflow.

Table 2-9. Three-Operand Type Instruction

Instruction Format and Description

Add ADD rd, rs, rt
The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Add Unsigned ADDU rd, rs, rt
The contents of registers rs and rt are added together to form a 32-bit result. The result is stored into
register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Subtract SUB rd, rs, rt
The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. An exception occurs on the
generation of integer overflow.

Subtract Unsigned SUBU rd, rs, rt
The contents of register rt are subtracted from the contents of register rs. The 32-bit result is stored
into register rd. In the 64-bit mode, the operand must be sign extended. No exception occurs on the
generation of integer overflow.

Set On Less Than SLT rd, rs, rt
The contents of registers rs and rt are compared, treating both operands as signed integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

Set On Less Than
Unsigned

SLTU rd, rs, rt
The contents of registers rs and rt are compared treating both operands as unsigned integers. If the
contents of register rs is less than that of register rt, the result is set to 1; otherwise, the result is set to
0. The result is stored to register rd.

AND AND rd, rt, rs
The contents of register rs are logical ANDed with that of general register rt bit-wise. The result is
stored to register rd.

OR OR rd, rt, rs
The contents of register rs are logical ORed with that of general register rt bit-wise. The result is stored
to register rd.

Exclusive OR XOR rd, rt, rs
The contents of register rs are logical Ex-ORed with that of general register rt bit-wise. The result is
stored to register rd.

NOR NOR rd, rt, rs
The contents of register rs are logical NORed with that of general register rt bit-wise. The result is
stored to register rd.

op rs rt immediate

op rs rt functrd sa

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM42

Table 2-10. Three-Operand Type Instruction (Extended ISA)

Instruction Format and Description

Doubleword Add DADD rd, rt, rs

The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd.

An exception occurs on the generation of integer overflow.

Doubleword Add

Unsigned

DADDU rd, rt, rs

The contents of register rs are added to that of register rt. The 64-bit result is stored into register rd. No

exception occurs on the generation of integer overflow.

Doubleword Subtract DSUB rd, rt, rs

The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register

rd. An exception occurs on the generation of integer overflow.

Doubleword Subtract

Unsigned

DSUBU rd, rt, rs

The contents of register rt are subtracted from that of register rs. The 64-bit result is stored into register

rd. No exception occurs on the generation of integer overflow.

Table 2-11. Shift Instruction

Instruction Format and Description

Shift Left Logical SLL rd, rs, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.

The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Logical SRL rd, rs, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher

bits. The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Right Arithmetic SRA rd, rt, sa

The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.

The 32-bit result is stored into register rd. In the 64-bit mode, the operand must be sign extended.

Shift Left Logical

Variable

SLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower

five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit

mode, the operand must be sign extended.

Shift Right Logical

Variable

SRLV rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The

lower five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-

bit mode, the operand must be sign extended.

Shift Right Arithmetic

Variable

SRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower

five bits of register rs specify the shift count. The 32-bit result is stored into register rd. In the 64-bit

mode, the operand must be sign extended.

op rs rt functrd sa

op rs rt functrd sa

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 43

Table 2-12. Shift Instruction (Extended ISA)

Instruction Format and Description

Doubleword Shift Left

Logical

DSLL rd, rs, sa

The contents of register rt are shifted left by sa bits and zeros are inserted into the emptied lower bits.

The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical

DSRL rd, rs, sa

The contents of register rt are shifted right by sa bits and zeros are inserted into the emptied higher

bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic

DSRA rd, rt, sa

The contents of register rt are shifted right by sa bits and the emptied higher bits are sign extended.

The 64-bit result is stored into register rd.

Doubleword Shift Left

Logical Variable

DSLLV rd, rt, rs

The contents of register rt are shifted left and zeros are inserted into the emptied lower bits. The lower

six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical Variable

DSRLV rd, rt, rs

The contents of register rt are shifted right and zeros are inserted into the emptied higher bits. The

lower six bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic

Variable

DSRAV rd, rt, rs

The contents of register rt are shifted right and the emptied higher bits are sign extended. The lower six

bits of register rs specify the shift count. The 64-bit result is stored into register rd.

Doubleword Shift Left

Logical + 32

DSLL32 rd, rt, sa

The contents of register rt are shifted left by 32 + sa bits and zeros are inserted into the emptied lower

bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Logical + 32

DSRL32 rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and zeros are inserted into the emptied

higher bits. The 64-bit result is stored into register rd.

Doubleword Shift

Right Arithmetic + 32

DSRA32 rd, rt, sa

The contents of register rt are shifted right by 32 + sa bits and the emptied higher bits are sign

extended. The 64-bit result is stored into register rd.

op rs rt functrd sa

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM44

Table 2-13. Multiply/Divide Instructions

Instruction Format and Description

Multiply MULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The

64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be sign

extended.

Multiply Unsigned MULTU rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit unsigned integers.

The 64-bit result is stored into special registers HI and LO. In the 64-bit mode, the operand must be

sign extended.

Divide DIV rs, rt

The contents of register rs are divided by that of register rt, treating both operands as 32-bit signed

integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into

special register HI. In the 64-bit mode, the operand must be sign extended.

Divide Unsigned DIVU rs, rt

The contents of register rs are divided by that of register rt, treating both operands as 32-bit unsigned

integers. The 32-bit quotient is stored into special register LO, and the 32-bit remainder is stored into

special register HI. In the 64-bit mode, the operand must be sign extended.

Move from HI MFHI rd

The contents of special register HI are loaded into register rd.

Move from LO MFLO rd

The contents of special register LO are loaded into register rd.

Move to HI MTHI rs

The contents of register rs are loaded into special register HI.

Move to LO MTLO rs

The contents of register rs are loaded into special register LO.

Table 2-14. Multiply/Divide Instructions (Extended ISA)

Instruction Format and Description

Doubleword Multiply DMULT rs, rt

The contents of registers rt and rs are multiplied, treating both operands as signed integers. The 128-

bit result is stored into special registers HI and LO.

Doubleword Multiply

Unsigned

DMULTU rs, rt

The contents of registers rt and rs are multiplied, treating both operands as unsigned integers. The

128-bit result is stored into special registers HI and LO.

Doubleword Divide DDIV rs, rt

The contents of register rs are divided by that of register rt, treating both operands as signed integers.

The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into special

register HI.

Doubleword Divide

Unsigned

DDIVU rs, rt

The contents of register rs are divided by that of register rt, treating both operands as unsigned

integers. The 64-bit quotient is stored into special register LO, and the 64-bit remainder is stored into

special register HI.

op rs rt functrd sa

op rs rt functrd sa

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 45

Table 2-15. Product-Sum Operation Instructions (for VR4121, VR4122, VR4131, and VR4181A)

Instruction Format and Description

Multiply and Add

Accumulate

MACC{h}{u}{s} rd, rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The

result is added to the combined value of special registers HI and LO. The 64-bit result is stored into

special registers HI and LO.

If h=0, the same data as that stored in register LO is also stored in register rd; if h=1, the same data as

that stored in register HI is also stored in register rd.

If u is specified, the operand is treated as unsigned data.

If s is specified, registers rs and rd are treated as a 16-bit value (32 bits sign- or zero-extended), and

the value obtained by combining registers HI and LO is treated as a 32-bit value (64 bits sign- or zero-

extended). Moreover, saturation processing is performed for the operation result in the format specified

with u.

Doubleword Multiply

and Add Accumulate

DMACC{h}{u}{s} rd, rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 32-bit signed integers. The

result is added to value of special register LO. The 64-bit result is stored into special register LO.

If h=0, the same data as that stored in register LO is also stored in register rd; if h=1, undefined data is

stored in register rd.

If u is specified, the operand is treated as unsigned data.

If s is specified, registers rs and rd are treated as a 16-bit value (32 bits sign- or zero-extended), and

register LO is treated as a 32-bit value (64 bits sign- or zero-extended). Moreover, saturation

processing is performed for the operation result in the format specified with u.

Table 2-16. Product-Sum Operation Instructions (for VR4181)

Instruction Format and Description

Multiply and Add 16-

bit Integer

MADD16 rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by

sign extending to 64 bits). The result is added to the combined value of special registers HI and LO.

The 64-bit result is stored into special registers HI and LO.

Doubleword Multiply

and Add 16-bit Integer

DMADD16 rs, rt

The contents of registers rt and rs are multiplied, treating both operands as 16-bit signed integers (by

sign extending to 64 bits). The result is added to value of special register LO. The 64-bit result is stored

into special register LO.

funct

op rs rt functrd sa

op rs rt rd

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM46

MFHI and MFLO instructions after a multiply or divide instruction generate interlocks to delay execution of the next

instruction, inhibiting the result from being read until the multiply or divide instruction completes.

Table 2-17 gives the number of processor cycles (PCycles) required to resolve interlock or stall between various

multiply or divide instructions and a subsequent MFHI or MFLO instruction.

Table 2-17. Number of Stall Cycles in Multiply and Divide Instructions

Instruction Number of instruction cycles

MULT 1

MULTU 1

DIV 35

DIVU 35

DMULT 4

DMULTU 4

DDIV 67

DDIVU 67

MACC 0

DMACC 0

MADD16 1

DMADD16 1

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 47

2.4.3 Jump and branch instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a

delay of one instruction: that is, the instruction immediately following the jump or branch instruction (this is known as

the instruction in the delay slot) always executes while the target instruction is being fetched from memory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

 (1)Overview of jump instructions

Subroutine calls in high-level languages are usually implemented with J or JAL instructions, both of which are J-

type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-order 4

bits of the current program counter to form a 32-bit or 64-bit absolute address.

Returns, dispatches, and cross-page jumps are usually implemented with the JR or JALR instructions. Both are

R-type instructions that take the 32-bit or 64-bit byte address contained in one of the general-purpose registers.

Table 2-18. Jump Instructions

Instruction Format and Description

Jump J target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction.

Jump and Link JAL target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction. The

address of the instruction following the delay slot is stored into r31 (link register).

Instruction Format and Description

Jump and Link

Exchange

JALX target

The contents of 26-bit target address is shifted left by two bits and combined with the high-order four

bits of the PC. The program jumps to this calculated address with a delay of one instruction, and then

the ISA mode bit is reversed. The address of the instruction following the delay slot is stored into r31

(link register).

Instruction Format and Description

Jump Register JR rs

The program jumps to the address specified in register rs with a delay of one instruction.

Jump snd Link

Register

JALR rs, rd

The program jumps to the address specified in register rs with a delay of one instruction.

The address of the instruction following the delay slot is stored into rd.

op rs rt functrd sa

op target

op target

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM48

(2) Overview of branch instructions

A branch instruction has a PC-related signed 16-bit offset.

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to

the 16-bit offset (shifted left by 2 bits and sign-extended to 64 bits). All branches occur with a delay of one

instruction.

Calculation of the target address is performed at the RF stage and the EX stage of the instruction. The target

instruction of the branch is fetched at the EX stage of the branch instruction.

If the branch condition does not meet in executing a Likely instruction, the instruction in its delay slot is nullified.

For all other branch instructions, the instruction in its delay slot is unconditionally executed.

Table 2-19. Branch Instructions (1/2)

Instruction Format and Description

Branch on Equal BEQ rs, rt, offset

If the contents of register rs are equal to that of register rt, the program branches to the target address.

Branch on Not Equal BNE rs, rt, offset

If the contents of register rs are not equal to that of register rt, the program branches to the target

address.

Branch on Less Than

or Equal to Zero

BLEZ rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target address.

Branch on Greater

Than Zero

BGTZ rs, offset

If the contents of register rs are greater than zero, the program branches to the target address.

Instruction Format and Description

Branch on Less Than

Zero

BLTZ rs, offset

If the contents of register rs are less than zero, the program branches to the target address.

Branch on Greater

Than or Equal to Zero

BGEZ rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address.

Branch on Less Than

Zero and Link

BLTZAL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are less than zero, the program branches to the target address.

Branch on Greater

Than or Equal to Zero

and Link

BGEZAL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are greater than or equal to zero, the program branches to the target address.

Remark sub: Sub-operation code

op rs rt offset

REGIMM offsetrs sub

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 49

Table 2-19. Branch Instructions (2/2)

Instruction Format and Description

Branch on

Coprocessor 0 True

BC0T offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is true, the program branches to the target address with one-instruction delay.

Branch on

Coprocessor 0 False

BC0F offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is false, the program branches to the target address with one-instruction delay.

Remark BC: BC sub-operation code

br: branch condition identifier

Table 2-20. Branch Instructions (Extended ISA) (1/2)

Instruction Format and Description

Branch on Equal

Likely

BEQL rs, rt, offset

If the contents of register rs are equal to that of register rt, the program branches to the target address.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Not Equal

Likely

BNEL rs, rt, offset

If the contents of register rs are not equal to that of register rt, the program branches to the target

address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than

or Equal to Zero Likely

BLEZL rs, offset

If the contents of register rs are less than or equal to zero, the program branches to the target address.

If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than Zero

BGTZL rs, offset

If the contents of register rs are greater than zero, the program branches to the target address. If the

branch condition is not met, the instruction in the delay slot is discarded.

op rs rt offset

COP0 offsetBC br

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM50

Table 2-20. Branch Instructions (Extended ISA) (2/2)

Instruction Format and Description

Branch on Less Than

Zero Likely

BLTZL rs, offset

If the contents of register rs are less than zero, the program branches to the target address. If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than or Equal to Zero

Likely

BGEZL rs, offset

If the contents of register rs are greater than or equal to zero, the program branches to the target

address. If the branch condition is not met, the instruction in the delay slot is discarded.

Branch on Less Than

Zero and Link Likely

BLTZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are less than zero, the program branches to the target address. If the branch

condition is not met, the instruction in the delay slot is discarded.

Branch on Greater

Than or Equal to Zero

and Link Likely

BGEZALL rs, offset

The address of the instruction that follows delay slot is stored to register r31 (link register). If the

contents of register rs are greater than or equal to zero, the program branches to the target address. If

the branch condition is not met, the instruction in the delay slot is discarded.

Remark sub: Sub-operation code

Instruction Format and Description

Branch on

Coprocessor 0 True

Likely

BC0TL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is true, the program branches to the target address with one-instruction delay. If the

branch condition is not met, the instruction in the delay slot is discarded.

Branch on

Coprocessor 0 False

Likely

BC0FL offset

Adds the 16-bit offset (shifted left by two bits and sign extended to 32 bits) to the address of the

instruction in the delay slot to calculate out the branch target address. If the conditional signal of the

coprocessor 0 is false, the program branches to the target address with one-instruction delay. If the

branch condition is not met, the instruction in the delay slot is discarded.

Remark BC: BC sub-operation code

br: branch condition identifier

REGIMM offsetrs sub

COP0 offsetBC br

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 51

2.4.4 Special instructions

Special instructions generate software exceptions. Their formats are R-type (Syscall, Break). The Trap instruction

is available only for the products that support the MIPS III instruction set or later. All the other instructions are

available for all VR Series.

Table 2-21. Special Instructions

Instruction Format and Description

Synchronize SYNC

Completes the load/store instruction executing in the current pipeline before the next load/store

instruction starts execution.

System Call SYSCALL

Generates a system call exception, and then transits control to the exception handling program.

Breakpoint BREAK

Generates a break point exception, and then transits control to the exception handling program.

Remark SYNC instruction is handled as a NOP instruction in the VR4100 Series.

Table 2-22. Special Instructions (Extended ISA) (1/2)

Instruction Format and Description

Trap If Greater Than

or Equal

TGE rs, rt

The contents of register rs are compared with that of register rt, treating both operands as signed

integers. If the contents of register rs are greater than or equal to that of register rt, an exception

occurs.

Trap If Greater Than

or Equal Unsigned

TGEU rs, rt

The contents of register rs are compared with that of register rt, treating both operands as unsigned

integers. If the contents of register rs are greater than or equal to that of register rt, an exception

occurs.

Trap If Less Than TLT rs, rt

The contents of register rs are compared with that of register rt, treating both operands as signed

integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Less Than

Unsigned

TLTU rs, rt

The contents of register rs are compared with that of register rt, treating both operands as unsigned

integers. If the contents of register rs are less than that of register rt, an exception occurs.

Trap If Equal TEQ rs, rt

If the contents of registers rs and rt are equal, an exception occurs.

Trap If Not Equal TNE rs, rt

If the contents of registers rs and rt are not equal, an exception occurs.

SPECIAL rs rt functrd sa

SPECIAL rs rt functrd sa

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM52

Table 2-22. Special Instructions (Extended ISA) (2/2)

Instruction Format and Description

Trap If Greater Than

or Equal Immediate

TGEI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers. If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap If Greater Than

or Equal Immediate

Unsigned

TGEIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers. If the contents of register rs are greater than or equal to 16-bit sign-

extended immediate data, an exception occurs.

Trap If Less Than

Immediate

TLTI rs, immediate

The contents of register rs are compared with 16-bit sign-extended immediate data, treating both

operands as signed integers. If the contents of register rs are less than 16-bit sign-extended immediate

data, an exception occurs.

Trap If Less Than

Immediate Unsigned

TLTIU rs, immediate

The contents of register rs are compared with 16-bit zero-extended immediate data, treating both

operands as unsigned integers. If the contents of register rs are less than 16-bit sign-extended

immediate data, an exception occurs.

Trap If Equal

Immediate

TEQI rs, immediate

If the contents of register rs and immediate data are equal, an exception occurs.

Trap If Not Equal

Immediate

TNEI rs, immediate

If the contents of register rs and immediate data are not equal, an exception occurs.

Remark sub: Sub-operation code

2.4.5 System control coprocessor (CP0) instructions

System control coprocessor (CP0) instructions perform operations specifically on the CP0 registers to manipulate

the memory management and exception handling facilities of the processor.

The power mode instructions added in the VR4100 Series are included in this instruction group.

Table 2-23. System Control Coprocessor (CP0) Instructions (1/2)

Instruction Format and Description

Move to System

Control Coprocessor

MTC0 rt, rd

The word data of general-purpose register rt in the CPU are loaded into general-purpose register rd in

the CP0.

Move from System

Control Coprocessor

MFC0 rt, rd

The word data of general-purpose register rd in the CP0 are loaded into general-purpose register rt in

the CPU.

Doubleword Move to

System Control

Coprocessor 0

DMTC0 rt, rd

The doubleword data of general-purpose register rt in the CPU are loaded into general-purpose register

rd in the CP0.

Doubleword Move

from System Control

Coprocessor 0

DMFC0 rt, rd

The doubleword data of general-purpose register rd in the CP0 are loaded into general-purpose

register rt in the CPU.

Remark sub: Sub-operation code

REGIMM immediaters sub

COP0 sub rt 0rd

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

User’s Manual U15509EJ2V0UM 53

Table 2-23. System Control Coprocessor (CP0) Instructions (2/2)

Instruction Format and Description

Read Indexed TLB

Entry

TLBR

The TLB entry indexed by the Index register is loaded into the EntryHi, EntryLo0, EntryLo1, or

PageMask register.

Write Indexed TLB

Entry

TLBWI

The contents of the EntryHi, EntryLo0, EntryLo1, or PageMask register are loaded into the TLB entry

indexed by the Index register.

Write Random TLB

Entry

TLBWR

The contents of the EntryHi, EntryLo0, EntryLo1, or PageMask register are loaded into the TLB entry

indexed by the Random register.

Probe TLB For

Matching Entry

TLBP

The address of the TLB entry that matches with the contents of EntryHi register is loaded into the Index

register.

Return From

Exception

ERET

The program returns from exception, interrupt, or error trap.

Remark CO: Sub-operation identifier

Instruction Format and Description

STANDBY STANDBY

The processor’s operating mode is transited from Fullspeed mode to Standby mode.

SUSPEND SUSPEND

The processor’s operating mode is transited from Fullspeed mode to Suspend mode.

HIBERNATE HIBERNATE

The processor’s operating mode is transited from Fullspeed mode to Hibernate mode.

Remark CO: Sub-operation identifier

Instruction Format and Description

Cache Operation Cache op, offset (base)

The 16-bit offset is sign extended to 32 bits and added to the contents of the register base, to form

virtual address. This virtual address is translated to physical address with TLB. For this physical

address, cache operation that is indicated by 5-bit sub-opcode is performed.

COP0 functCO

CACHE offsetbase op

COP0 functCO

User’s Manual U15509EJ2V0UM54

CHAPTER 3 MIPS16 INSTRUCTION SET

3.1 Outline

If the MIPS16 ASE (Application-Specific Extension), which is an expanded function for MIPS ISA (Instruction Set

Architecture), is used, system costs can be considerably reduced by lowering the memory capacity requirement of

embedded hardware. MIPS16 is an instruction set that uses the 16-bit instruction length, and is compatible with

MIPS I, II, III, IV, and VNote instruction sets in any combination. Moreover, existing 32-bit instruction length binary

data can be executed with MIPS16 without change.

Note The VR4100 Series currently supports the MIPS I, II, and III instruction sets.

MIPS16 instruction set is enabled or disabled in the VR4100 Series according to the state of MIPS16EN pin during

a reset.

3.2 Features

• 16-bit length instruction format

• Reduces memory capacity requirements to lower overall system cost

• MIPS16 instructions can be used with MIPS instruction binary

• Compatibility with MIPS I, II, III, IV, and V instruction sets

• Used with switching between MIPS16 instruction length mode and 32-bit MIPS instruction length mode.

• Supports 8-bit, 16-bit, 32-bit, and 64-bit data formats

• Provides 8 general-purpose registers and special registers

• Improved code generation efficiency using special 16-bit dedicated instructions

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 55

3.3 Register Set

Tables 3-1 and 3-2 show the MIPS16 register sets. These register sets form part of the register sets that can be

accessed in 32-bit instruction length mode. MIPS16 instructions can directly access 8 of the 32 registers that can be

used in the 32-bit instruction length mode.

In addition to these 8 general-purpose registers, the special instructions of MIPS16 reference the stack pointer

register (sp), return address register (ra), condition code register (t8), and program counter (pc). sp and ra are

mapped by fixing to the general-purpose registers in the 32-bit instruction length mode.

MIPS16 has 2 move instructions that are used in addressing 32 general-purpose registers.

Table 3-1. General-purpose Registers

MIPS16 register

encoding

32-bit MIPS

register encoding
Symbol Comment

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register

6 6 a2 General-purpose register

7 7 a3 General-purpose register

N/A 24 t8 MIPS16 condition code register. BTEQZ, BTNEZ,

CMP, CMPI, SLT, SLTU, SLTI, and SLTIU instructions

are implicitly referenced.

N/A 29 sp Stack pointer register

N/A 31 ra Return address register

Remarks 1. The symbols are the general assembler symbols.

2. The MIPS register encoding numbers 0 to 7 correspond to the MIPS16 binary encoding of the

registers, and are used to show the relationship between this encoding and the MIPS registers. The

numbers 0 to 7 are not used to reference registers, except within binary MIPS16 instructions.

Registers are referenced from the assembler using the MIPS name ($16, $17, $2, etc.) or the

symbol name (s0, s1, v0, etc.). For example, when register number 17 is accessed with the register

file, the programmer references either $17 or s1 even if the MIPS16 encoding of this register is 001.

3. The general-purpose registers not shown in this table cannot be accessed with a MIPS16

instruction set other than the Move instruction. The Move instruction of MIPS16 can access all 32

general-purpose registers.

4. To reference the MIPS16 condition code registers with this manual, either T, t8, or $24 has to be

used, depending on the case. These three names reference the same physical register.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM56

Table 3-2. Special Registers

Symbol Description

PC Program counter. The PC-relative Add instruction and Load
instruction can access this register.

HI The upper word of the multiply or divide result is inserted

LO The lower word of the multiply or divide result is inserted

3.4 ISA Mode

MIPS16 instruction set supports procedure calling, and returns from the MIPS16 instruction mode or the 32-bit

instruction length mode to the MIPS16 instruction mode or the 32-bit instruction length mode.

• The JAL instruction supports calling to the same ISA.

• The JALX instruction supports calling that inverses ISA.

• The JALR instruction supports calling to either ISA.

• The JR instruction supports also returning to either ISA.

MIPS16 instruction set also supports a return operation from exception processing.

• The ERET instruction, which is defined only in 32-bit instruction length mode, supports returning to ISA when an

exception has not occurred.

The ISA mode bit defines the instruction length mode to be executed. If the ISA mode bit is 0, the processor

executes only 32-bit instructions. If the ISA mode bit is 1, the processor executes only MIPS16 instructions.

3.4.1 Changing ISA mode bit by software

Only the JALX, JR, and JALR instructions change the ISA mode bit between the MIPS16 instruction mode and the

32-bit instruction length mode. The ISA mode bit cannot be directly overwritten by software. The JALX changes the

ISA mode bit to select another ISA mode. The JR instruction and JALR instruction load the ISA mode bit from bit 0 of

the general-purpose register that holds the target address. Bit 0 is not a part of the target address. Bit 0 of the target

address is always 0, and no address exception is generated.

Moreover, the JAL, JALR, and JALX instructions save the ISA mode bit to bit 0 of the general-purpose register that

acquires the return address. The contents of this general-purpose register are later used by the JR and JALR

instruction for return and restoration of the ISA mode.

3.4.2 Changing ISA mode bit by exception

Even if an exception occurs, the ISA mode does not change. When an exception occurs, the ISA mode bit is

cleared to 0 so that the exception is serviced with 32-bit code. Then the ISA mode status before the exception

occurred is saved to the least significant bit of the EPC register or the ErrorEPC register. During return from an

exception, the ISA mode before the exception occurred is returned to by executing the JR or ERET instruction with

the contents of this register. Moreover, the ISA mode bit is cleared to 0 after cold reset and soft reset of the CPU

core, and the 32-bit instruction length mode returns to its initial state.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 57

3.4.3 Enabling change ISA mode bit

Changing the ISA mode bit is valid only when MIPS16EN pin is set to active during the RTC reset, and the

MIPS16 instruction mode is enabled. The operation of the JALX, JALR, JR, and ERET instructions in the 32-bit

instruction mode, differs depending on whether the MIPS16 instruction mode is enabled or prohibited. If the MIPS16

instruction mode is prohibited, the JALX instruction generates a reserved instruction exception. The JR and JALR

instructions generate an address exception when bit 0 of the source register is 1. The ERET instruction generates an

address exception when bit 0 of the EPC or ErrorEPC register is 1. If the MIPS16 instruction mode is enabled, the

JALX instruction executes JAL, and the ISA mode bit is inverted. The JR and JALR instructions load the ISA mode

from bit 0 of the source register. The ERET instruction loads the ISA mode from bit 0 of the EPC or ErrorEPC

register. Bit 0 of the target address is always 0, and no address exception is generated even when bit 0 of the source

register is 1.

3.5 Types of Instructions

This section describes the different types of instructions, and indicates the MIPS16 instructions included in each

group.

Instructions are divided into the following types.

Load and Store instructions : Move data between memory and the general-purpose registers.

Computational instructions : Perform arithmetic operations, logical operations, and shift operations on values

in registers.

Jump and Branch instructions: Change the control flow of a program.

Special instructions : SYSCALL, BREAK, and Extend instructions. SYSCALL and BREAK transfer

control to an exception handler. Extend enlarges the immediate field of the next

instruction. Instructions that can be extended with Extend are indicated as Note 1

in Table 3-3 MIPS16 Instruction Set Outline.

Table 3-3. MIPS16 Instruction Set Outline (1/2)

Op Description Op Description

Load and Store instructions Multiply/Divide instructions

LBNote 1 Load Byte MULT Multiply

LBUNote 1 Load Byte Unsigned MULTU Multiply Unsigned

LHNote 1 Load Halfword DIV Divide

LHUNote 1 Load Halfword Unsigned DIVU Divide Unsigned

LWNote 1 Load Word MFHI Move From HI

LWUNotes 1, 2 Load Word Unsigned MFLO Move From LO

LDNotes 1, 2 Load Doubleword DMULTNote 2 Doubleword Multiply

SBNote 1 Store Byte DMULTUNote 2 Doubleword Multiply Unsigned

SHNote 1 Store Halfword DDIVNote 2 Doubleword Divide

SWNote 1 Store Word DDIVUNote 2 Doubleword Divide Unsigned

SDNotes 1, 2 Store Doubleword

Notes 1. Extendable instruction. For details, see 3.8.2 Extend instruction.

2. Can be used in 64-bit mode and 32-bit Kernel mode.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM58

Table 3-3. MIPS16 Instruction Set Outline (2/2)

Op Description Op Description

Arithmetic instructions: ALU immediate instructions Jump/Branch instructions

LINote 1 Load Immediate JAL Jump and Link

ADDIUNote 1 Add Immediate Unsigned JALX Jump and Link Exchange

DADDIUNotes 1, 2 Doubleword Add Immediate Unsigned JR Jump Register

SLTINote 1 Set on Less Than Immediate JALR Jump and Link Register

SLTIUNote 1 Set on Less Than Immediate Unsigned BEQZNote 1 Branch on Equal to Zero

CMPINote 1 Compare Immediate BNEZNote 1 Branch on Not Equal to Zero

BTEQZNote 1 Branch on T Equal to Zero

Arithmetic instructions: 2/3 operand register instructions BTNEZNote 1 Branch on T Not Equal to Zero

ADDU Add Unsigned BNote 1 Branch Unconditional

SUBU Subtract Unsigned

DADDUNote 2 Doubleword Add Unsigned Shift instructions

DSUBUNote 2 Doubleword Subtract Unsigned SLLNote 1 Shift Left Logical

SLT Set on Less Than SRLNote 1 Shift Right Logical

SLTU Set on Less Than Unsigned SRANote 1 Shift Right Arithmetic

CMP Compare SLLV Shift Left Logical Variable

NEG Negate SRLV Shift Right Logical Variable

AND AND SRAV Shift Right Arithmetic Variable

OR OR DSLLNotes 1, 2 Doubleword Shift Left Logical

XOR Exclusive OR DSRLNotes 1, 2 Doubleword Shift Right Logical

NOT Not DSRANotes 1, 2 Doubleword Shift Right Arithmetic

MOVE Move DSLLVNote 2 Doubleword Shift Left Logical Variable

DSRLVNote 2 Doubleword Shift Right Logical Variable

Special instructions DSRAVNote 2 Doubleword Shift Right Arithmetic Variable

EXTEND Extend

BREAK Breakpoint

SYCALL System Call

Notes 1. Extendable instruction. For details, see 3.8.2 Extend instruction.

2. Can be used in 64-bit mode and 32-bit Kernel mode.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 59

3.6 Instruction Format

The MIPS16 instruction set has a length of 16 bits and is located at the half-word boundary. One part of Jump

instructions and instructions for which the Extend instruction extends immediate become 32 bits in length, but

crossing the word boundary does not represent a problem.

The instruction format is shown below. Variable subfields are indicated with lower case letters (rx, ry, rz,

immediate, etc.).

In the case of special functions, constants are input to the two instruction subfields op and funct. These values

are indicated by upper case mnemonics. For example, in the case of the Load Byte instruction, op is LB, and in the

case of the Add instruction, op is SPECIAL, and function is ADD.

The constants of the fields used in the instruction formats are shown below.

Table 3-4. Field Definition

Field Definition

op 5-bit major operation code

rx 3-bit source/destination register specification

ry 3-bit source/destination register specification

immediate or imm 4-bit, 5-bit, 8-bit, or 11-bit immediate value,
branch displacement, or address displacement

rz 3-bit source/destination register specification

Funct or F Function field

I-type (immediate) instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op immediate

RI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx immediate

RR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry Funct

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM60

RRI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

RRR-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRR rx ry rz F

RRI-A type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRI-A rx ry F immediate

SHIFT instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry shamtNote F

Note The 3-bit shamt field can encode shift count numbers from 0 to 7. 0-bit shift (NOP) cannot be executed. 0

is regarded as shift count 8.

I8-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 Funct immediate

I8_MOVR32 instruction format (used only with MOVR32 instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 Funct ry r32[4:0]

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 61

I8_MOV32R instruction format (used only with MOV32R instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 Funct r32[2:0, 4:3]Note rz

Note The r32 field uses special bit encoding. For example, encoding of $7 (00111) is 11100 in the r32 field.

I64-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I64 Funct immediate

RI64-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I64 Funct ry immediate

JAL and JALX instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JAL X immediate(20:16) immediate(25:21)immediate(15:0)

JAL in case of X = 0 instruction

JALX in case of X = 1 instruction

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM62

EXT-I instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)MAJOR 0 0 0 0 0 0 immediate(4:0)

EXT-RI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)MAJOR rx 0 0 0 immediate(4:0)

EXT-RRI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)MAJOR rx ry immediate(4:0)

EXT-RRI-A instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:4) immediate(14:11)RRI-A rx ry immediate(3:0)F

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 63

EXT-SHIFT instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND shamt(4:0) S5Note 0 0 0 0 0SHIFT rx ry 0 0 F0

Note Only in the case of DSLL, the S5 bit is the most significant bit of the 6-bit shift count field (shamt).

In the case of all 32-bit extended shifts, S5 must be 0. For a normal shift instruction, the display of shift

count 0 is considered as shift count 8, but the extended shift instruction does not perform such mapping

changes. Therefore, 0-bit shift using the extended format is possible.

EXT-I8 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)I8 Funct 0 0 0 immediate(4:0)

EXT-I64 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)I64 Funct 0 0 0 immediate(4:0)

EXT-RI64 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate(10:5) immediate(15:11)I64 Funct ry immediate(4:0)

EXT-SHIFT64 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND shamt(4:0) S5Note 0 0 0 0 0RR 0 0 0 ry Function

Note The S5 bit is the most significant bit of the 6-bit shift count field (shamt). In the case of a normal shift

instruction, the display of shift count 0 is considered as shift count 8, but the extended shift instruction

does not perform such mapping changes.

Therefore, 0-bit shift using the extended format is possible.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM64

3.7 MIPS16 Operation Code Bit Encoding

This section describes encoding for major and minor opcode. Table 3-5 shows bit encoding of the MIPS16 major

operation code. Tables 3-6 to 3-11 show bit encoding of the minor operation code. The italic operation codes in the

tables are instructions for the extended ISA.

Table 3-5. Bit Encoding of Major Operation Code (op)

Instruction
bits

Instruction bits [13:11]

[15:14] 000 001 010 011 100 101 110 111

00 addiuspNote 1 addiupcNote 2 b jal(x)Note 3 beqz bnez SHIFT ld

01 RRI-A addiu8Note 4 slti sltiu l8 li cmpi sd

10 lb lh lwsp lw lbu lhu lwpc lwu

11 sb sh swsp sw RRR RR extend l64

Notes 1. addiusp : addiu rx, sp, immediate

2. addiupc : addiu rx, pc, immediate

3. jal(x) : jal instruction and jalx instruction

4. addiu8 : aadiu rx, immediate

Table 3-6. RR Minor Operation Code (RR-Type Instruction)

Instruction
bits

Instruction bits [2:0]

[4:3] 000 001 010 011 100 101 110 111

00 j(al)rNote 1 ∗ slt sltu sllv break srlv srav

01 dsrlNote 2 syscall cmp neg and or xor not

10 Mfhi ∗ mflo dsraNote 2 dsllv ∗ dsrlv dsrav

11 mult Multu div divu dmult dmultu ddiv ddivu

Notes 1. J(al)r: jr rx instruction (ry = 000)

jr ra instruction (ry = 001, rx = 000)

jalr ra, rx instruction (ry = 010)

2. dsrl and dsra use the rx register field to encode the shift count (8-digit shift for 0). In the case of the

extended version of these two instructions, the EXT-SHIFT64 format is used. Only these two RR

instructions can be extended.

Remarks The symbols in the figures have the following meaning.

∗ : Execution of operation code with an asterisk on the current VR4100 Series causes a reserved

instruction exception to be generated. This code is reserved for future extension.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 65

Table 3-7. RRR Minor Operation Code (RRR-Type Instruction)

Instruction bits [1:0]
00 01 10 11

daddu addu dsubu subu

Table 3-8. RRI-A Minor Operation Code (RRI-Type ADD Instruction)

Instruction bit [4]
0 1

addiuNote 1 daddiuNote 2

Notes 1. addiu : addiu ry, rx, immediate

2. daddiu : daddiu ry, rx immediate

Table 3-9. SHIFT Minor Operation Code (SHIFT-Type Instruction)

Instruction bits [1:0]
00 01 10 11

sll Dsll srl sra

Table 3-10. I8 Minor Operation Code (I8-Type Instruction)

Instruction bits [10:8]

000 001 010 011 100 101 110 111

bteqz btnez swraspNote 1 adjspNote 2 ∗ mov32r Note 3 ∗ movr32Note 4

Notes 1. swrasp : sw ra, immediate(sp)

2. adjsp : addiu sp, immediate

3. mov32r: move r32, rz

4. movr32: move ry, r32

Remark The symbols used in the figures have the following meaning.

∗ : Execution of operation code with an asterisk on the current VR4100 Series causes a reserved

instruction exception to be generated. This code is reserved for future extension.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM66

Table 3-11. I64 Minor Operation Code (64-bit Only, I64-Type Instruction)

Instruction bits [10:8]

000 001 010 011 100 101 110 111

ldspNote 1 sdspNote 2 sdraspNote 3 dadjspNote 4 ldpcNote 5 daddiu5Note 6 dadiupcNote 7 dadiuspNote 8

Notes 1. ldsp : ld ry, immediate

2. sdsp : sd ry, immediate

3. sdrasp : sd ra, immediate

4. dadjsp : daddiu sp, immediate

5. ldpc : ld ry, immediate

6. daddiu5 : daddiu ry, immediate

7. dadiupc : daddiu ry, pc, immediate

8. dadiusp : daddiu ry, sp, immediate

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 67

3.8 Outline of Instructions

This section describes the assembler syntax and defines each instruction. Instructions can be divided into the

following four types.

• Load and Store instructions

• Computational instructions

• Jump and Branch instructions

• Special instructions

3.8.1 PC-relative instructions

PC-relative instructions is the instruction format first defined among the MIPS16 instruction set. MIPS16 supports

both extension and non-extension through the Extend instruction for four PC-relative instructions.

Load Word LW rx, offset(pc)

Load Doubleword LD ry, offset(pc)

Add Immediate Unsigned ADDIU rx, pc, immediate

Doubleword Add Immediate Unsigned DADDIU ry, pc, immediate

All these instructions calculate the PC value of a PC-relative instruction or the PC value of the instruction

immediately preceding as the base address. The address calculation base using various function combinations is

shown next.

Table 3-12. Base PC Address Setting

Instruction Base PC value

Non-extension PC-relative instructions

not located in Jump delay slot

PC of instruction

Extension PC-relative instruction PC of Extend instruction

Non-extension PC-relative instruction in

Jump delay slot of JR or JALR

PC of JR instruction or JALR instruction

Non-extension PC-relative instruction in

Jump delay slot of JAL or JALX

PC of initial halfword of JAL or JALXNote

Note Because the JAL and JALX instruction length is 32 bits.

The PC value used as the base for address calculation for the PC-relative instruction outlines shown in tables 3-14

and 3-15 is called base PC value. The base PC value is defined so as to be equivalent to the exception program

counter (EPC) value related to the PC-relative instruction.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM68

3.8.2 Extend instruction

The Extend instruction can extend the immediate fields of MIPS16 instructions, which have fewer immediate fields

than equivalent 32-bit MIPS instructions. The Extend instruction must always precede (by one instruction) the

instruction whose immediate field you want to extend. Every extended instruction consumes four bytes in program

memory instead of two bytes (two bytes for Extend and two bytes for the instruction being extended), and it can cross

a word boundary.

For example, the MIPS16 instruction

LW ry, offset (rx)

contains a five-bit immediate. The immediate expands to 16 bits (000000000 || offset || 00) before execution in the

pipeline. This allows 32 different offset values of 0, 4, 8, and up through 124. Once extended, this instruction can

hold any of the normal 65,536 values in the range –32768 through 32767.

Shift instructions are extended to 5-bit unsigned immediate values. All other immediate instructions expand to

either signed or unsigned 16-bit immediate values. The only exceptions are

ADDIU ry, rx, immediate

DADDIU ry, rx, immediate

which can be extended only to a 15-bit signed immediate.

There is only one restriction. Extended instructions should not be placed in jump delay slots. Otherwise, the

results are unpredictable because the pipeline would attempt to execute one half the instruction.

Table 3-13 lists the MIPS16 extendable instructions, the size of their immediate, and how much each immediate

can be extended when preceded with the Extend instruction.

For the instruction format of the Extend instruction, see 3.6 Instruction Format.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 69

Table 3-13. Extendable MIPS16 Instructions

MIPS16 Instruction MIPS16 Immediate Instruction Format
Extended

Immediate

Instruction

Format

Load Byte 5 RRI 16 EXT-RRI

Load Byte Unsigned 5 RRI 16 EXT-RRI

Load Halfword 5 RRI 16 EXT-RRI

Load Halfword Unsigned 5 RRI 16 EXT-RRI

Load Word 5

8

RRI

RI

16

16

EXT-RRI

EXT-RI

Load Word Unsigned 5 RRI 16 EXT-RRI

Load Doubleword 5 RRI 16 EXT-RRI

Store Byte 5 RRI 16 EXT-RRI

Store Halfword 5 RRI 16 EXT-RRI

Store Word 5 (Other)

8 (SW rx, offset(sp))

8 (SW ra, offset(sp))

RRI

RI

I8

16

16

16

EXT-RRI

EXT-RI

EXT-I8

Store Doubleword 5 (SD ry, offset(rx))

8 (Other)

RRI

I64

16

16

EXT-RRI

EXT-I64

Load Immediate 8 RI 16 EXT-RI

Add Immediate Unsigned 4 (ADDIU ry, rx, imm)

8 (ADDIU sp, imm)

8 (Other)

RRI-A

I8

RI

15

16

16

EXT-RRI-A

EXT-I8

EXT-RI

Doubleword Add Immediate Unsigned 4 (DADDIU ry, rx, imm)

5 (DADDIU ry, pc, imm)

8 (Other)

RRI-A

RI64

I64

15

16

16

EXT-RRI-A

EXT-RI64

EXT-I64

Set on Less Than Immediate 8 RI 16 EXT-RI

Set on Less Than Immediate Unsigned 8 RI 16 EXT-RI

Compare Immediate 8 RI 16 EXT-RI

Shift Left Logical 3 SHIFT 5 EXT-SHIFT

Shift Right Logical 3 SHIFT 5 EXT-SHIFT

Shift Right Arithmetic 3 SHIFT 5 EXT-SHIFT

Doubleword Shift Left Logical 3 SHIFT 6 EXT-SHIFT

Doubleword Shift Right Logical 3 RR 6 EXT- SHIFT64

Doubleword Shift Right Arithmetic 3 RR 6 EXT- SHIFT64

Branch on Equal to Zero 8 RI 16 EXT-RI

Branch on Not Equal to Zero 8 RI 16 EXT-RI

Branch on T Equal to Zero 8 I8 16 EXT-I8

Branch on T Not Equal to Zero 8 I8 16 EXT-I8

Branch Unconditional 11 I 16 EXT-I

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM70

3.8.3 Delay slots

MIPS16 instructions normally execute in one cycle. However, some instructions have special requirements that

must be met to assure optimum instruction flow. The instructions include All Load, Branch, and Multiply/Divide

instructions.

(1) Load delay slots

MIPS16 operates with delayed loads. This is similar to the method used by 32-bit length instruction sets. If

another instruction references the load destination register before the load operation is completed, one cycle

occurs automatically. To assure the best performance, the compiler should always schedule load delay slots as

early as possible.

(2) Branch delay slots not supported

Unlike for 32-bit length instructions, there are no branch delay slots for branch instructions in MIPS16. If a

branch is taken, the instruction that immediately follows the branch (instruction corresponding to 32-bit length

instruction's delay slot) is cancelled. There are no restrictions on the instruction that follows a branch instruction,

and such instruction is executed only when a branch is not taken. Branches, jumps, and extended instructions

are permitted in the instruction slot after a branch.

(3) Jump delay slots

With MIPS16, there is a delay of one cycle after each jump instruction. The processor executes any instruction

in the jump delay slot before it executes the jump target instruction. Two restrictions apply to any instruction

placed in the jump delay slot:

1. Do not specify a branch or jump in the delay slot.

2. Do not specify an extended instruction (32 bits) in the delay slot. Doing so will make the results

unpredictable.

(4) Multiply and divide scheduling

Multiply and divide latency depends on the hardware implementation. If an MFLO or MFHI instruction references

the Multiply or Divide result registers before the result is ready, the pipeline stalls until the operation is complete

and the result is available. However, to assure the best performance, the compiler should always schedule

Multiply and Divide instructions as early as possible.

MIPS16 requires that all MFHI and MFLO instructions be followed by two instructions that do not write to the HI or

LO registers. Otherwise, the data read by MFLO or MFHI will be undefined. The Extend instruction is counted

singly as one instruction.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 71

3.8.4 Instruction details

(1) Load and store instructions

Load and Store instructions move data between memory and the general-purpose registers. The only

addressing mode that is supported is the mode for adding immediate offset to the base register.

Table 3-14. Load and Store Instructions (1/3)

Instruction Format and Description

Load Byte LB ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to

form the virtual address. The bytes of the memory location specified by the address are sign extended

and loaded into general-purpose register ry.

Load Byte Unsigned LBU ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to

form the virtual address. The bytes of the memory location specified by the address are zero extended

and loaded into general-purpose register ry

Load Halfword LH ry, offset (rx)

The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-

purpose register rx to form the virtual address. The halfword of the memory location specified by the

address is sign extended and loaded to general-purpose register ry.

If the least significant bit of the address is not 0, an address error exception is generated.

Load Halfword

Unsigned

LHU ry, offset (rx)

The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-

purpose register rx to form the virtual address. The halfword of the memory location specified by the

address is zero extended and loaded to general-purpose register ry.

If the least significant bit of the address is not 0, an address error exception is generated.

LW ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-

purpose register rx to form the virtual address. The word of the memory location specified by the

address is loaded to general-purpose register ry. In the 64-bit mode, it is further sign extended to 64

bits.

If either of the lower two bits is not 0, an address error exception is generated.

LW rx, offset (pc)

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked

BasePC value. The 8-bit immediate is shifted left two bits, zero extended, and then added to the

masked BasePC to form the virtual address. The contents of the word at the memory location specified

by the address are loaded to general-purpose register rx. In the 64-bit mode, it is further sign extended

to 64 bits.

Load Word

LW rx, offset (sp).

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-

purpose register sp to form the virtual address. The contents of the word at the memory location

specified by the address are loaded to general-purpose register rx. In the 64-bit mode, it is further sign

extended to 64 bits.

If either of the two lower bits of the address is 0, an address error exception is generated.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM72

Table 3-14. Load and Store Instructions (2/3)

Instruction Format and Description

Load Word Unsigned LWU ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended to 64 bits, and then added to the contents of

general-purpose register rx to form the virtual address. The word of the memory location specified by

the address is zero extended and loaded to general-purpose register ry.

If either of the two lower bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

LD ry, offset (rx)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents

of general-purpose register rx to form the virtual address. The 64-bit doubleword of the memory

location specified by the address is loaded to general-purpose register ry.

If any of the lower three bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

LD ry, offset (pc)

The lower three bits of the base PC value related to the instruction are cleared to form the masked

BasePC value.

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the masked

BasePC to form the virtual address. The 64-bit doubleword at the memory location specified by the

address is loaded to general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Load Doubleword

LD ry, offset (sp)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and added to the contents of

general-purpose register sp to form the virtual address. The 64-bit doubleword at the memory location

specified by the address is loaded to general-purpose register ry.

If any of the three lower bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 73

Table 3-14. Load and Store Instructions (3/3)

Instruction Format and Description

Store Byte SB ry, offset (rx)

The 5-bit immediate is zero extended and then added to the contents of general-purpose register rx to

form the virtual address. The least significant byte of general-purpose register ry is stored to the

memory location specified by the address.

Store Halfword SH ry, offset (rx)

The 5-bit immediate is shifted left one bit, zero extended, and then added to the contents of general-

purpose register rx to form the virtual address. The lower halfword of general-purpose register ry is

stored to the memory location specified by the address.

If the least significant bit of the address is not 0, an address error exception is generated.

SW ry, offset (rx)

The 5-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-

purpose register rx to form a virtual address. The contents of general-purpose register ry are stored to

the memory location specified by the address. If either of the two lower bits of the address is not 0, an

address error exception is generated.

SW rx, offset (sp)

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-

purpose register sp to form the virtual address. The contents of general-purpose register rx are stored

to the memory location specified by the address. If either of the two lower bits of the address is not 0,

and address error exception is generated.

Store Word

SW ra, offset (sp)

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of general-

purpose register sp to form the virtual address. The contents of general-purpose register ra are stored

to the memory location specified by the address. If either of the two lower bits of the address is not 0,

an address error exception is generated.

SD ry, offset (rx)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents

of general-purpose register rx to form the virtual address. The 64 bits of general-purpose register ry are

stored to the memory location specified by the address. If any of the lower three bits of the address is

not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

SD ry, offset (sp)

The 5-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents

of general-purpose register sp to form the virtual address. The 64 bits of general-purpose register ry

are stored to the memory location specified by the address.

If any of the lower three bits of the address is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Store Doubleword

SD ra, offset (sp).

The 8-bit immediate is shifted left three bits, zero extended to 64 bits, and then added to the contents

of general-purpose register sp to form the virtual address. The 64 bits of general-purpose register ra

are stored to the memory location specified by the memory. If any of the three lower bits of the address

is not 0, an address error exception is generated.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM74

(2) Computational instructions

Computational instructions perform arithmetic, logical, and shift operations on values in registers. There are four

categories of Computational instructions: ALU Immediate, Two/Three-Operand Register-Type, Shift, and

Multiply/Divide.

Table 3-15. ALU Immediate Instructions (1/2)

Instruction Format and Description

Load Immediate LI rx, immediate

The 8-bit immediate is zero extended and loaded to general-purpose register rx.

ADDIU ry, rx, immediate

The 4-bit immediate is sign extended and then added to the contents of general-purpose register rx to

form a 32-bit result. The result is placed into general-purpose register ry. No integer overflow exception

occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by

sign-extending a 32-bit value.

ADDIU rx, immediate

The 8-bit immediate is sign extended and then added to the contents of general-purpose register rx to

form a 32-bit result. The result is placed into general-purpose register rx. No integer overflow exception

occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by

sign-extending a 32-bit value.

ADDIU sp, immediate

The 8-bit immediate is shifted left three bits, sign extended, and then added to the contents of general-

purpose register sp to form a 32-bit result. The result is placed into general-purpose register sp. No

integer overflow exception occurs under any circumstances. In the 64-bit mode, the operand must be a

64-bit value formed by sign-extending a 32-bit value.

ADDIU rx, pc, immediate

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked

BasePC value. The 8-bit immediate is shifted left two bits, zero extended, and then added to the

masked BasePC value to form the virtual address. This address is placed into general-purpose register

rx. No integer overflow exception occurs under any circumstances.

Add Immediate

Unsigned

ADDIU rx, sp, immediate

The 8-bit immediate is shifted left two bits, zero extended, and then added to the contents of register

sp to form a 32-bit result. The result is placed into general-purpose register rx. No integer overflow

exception occurs under any circumstance. In the 64-bit mode, the operand must be a 64-bit value

formed by sign-extending a 32-bit value.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 75

Table 3-15. ALU Immediate Instructions (2/2)

Instruction Format and Description

DADDIU ry, rx, immediate

The 4-bit immediate is sign extended to 64 bits, and then added to the contents of register rx to form a

64-bit result. The result is placed into general-purpose register ry. No integer overflow exception occurs

under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU ry, immediate

The 5-bit immediate is sign extended to 64 bits, and then added to the contents of register ry to form a

64-bit result. The result is placed into general-purpose register ry. No integer overflow exception occurs

under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU sp, immediate

The 8-bit immediate is shifted left three bits, sign extended to 64 bits, and then added to the contents

of register sp to form a 64-bit result. The result is placed into general-purpose register sp. No integer

overflow exception occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

DADDIU ry, pc, immediate

The two lower bits of the BasePC value associated with the instruction are cleared to form the masked

BasePC value. The 5-bit immediate is shifted left two bits, zero extended, and added to the masked

BasePC value to form the virtual address. This address is placed into general-purpose register ry. No

integer overflow exception occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Add

Immediate Unsigned

DADDIU ry, sp, immediate

The 5-bit immediate is shifted left two bits, zero extended to 64 bits, and then added to the contents of

register sp to form a 64-bit result. This result is placed into register ry. No integer overflow exception

occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Set on Less Than

Immediate

SLTI rx, immediate

The 8-bit immediate is zero extended and subtracted from the contents of general-purpose register rx.

Considering both quantities as signed integers, if rx is less than the zero-extended immediate, the

result is set to 1; otherwise, the result is set to 0. The result is placed into register T ($24).

Set on Less Than

Immediate Unsigned

SLTIU rx, immediate

The 8-bit immediate is zero extended and subtracted from the contents of general-purpose register rx.

Considering both quantities as signed integers, if rx is less than the zero-extended immediate, the

result is set to 1; otherwise, the result is set to 0. The result is placed into register T ($24).

Compare Immediate CMPI rx, immediate

The 8-bit immediate is zero extended and exclusive ORed in 1-bit units with the contents of general-

purpose register rx. The result is placed into register T ($24).

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM76

Table 3-16. Two-/Three-Operand Register Type (1/2)

Instruction Format and Description

Add Unsigned ADDU rz, rx, ry

The contents of general-purpose registers rx and ry are added together to form a 32-bit result. The

result is placed into general-purpose register rz. No integer overflow exception occurs under any

circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by sign-extending a 32-

bit value.

Subtract Unsigned SUBU rz, rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose

register rx. The 32-bit result is placed into general-purpose register rz. No integer overflow exception

occurs under any circumstances. In the 64-bit mode, the operand must be a 64-bit value formed by

sign-extending a 32-bit value.

Doubleword Add

Unsigned

DADDU rz, rx, ry

The contents of general-purpose register ry are added to the contents of general-purpose register rx.

The 64-bit result is placed into register rz. No integer overflow exception occurs under any

circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Subtract

Unsigned

DSUBU rz, rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose

register rx. The 64-bit result is placed into general-purpose register rz. No integer overflow exception

occurs under any circumstances.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Set on Less Than SLT rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose

register rx. Considering both quantities as signed integers, if the contents of rx are less than the

contents of ry, the result is set to 1; otherwise, the result is set to 0. The result is placed into register T

($24).

No integer overflow exception occurs. The comparison is valid even if the subtraction overflows.

Set on Less Than

Unsigned

SLTU rx, ry

The contents of general-purpose register ry are subtracted from the contents of general-purpose

register rx. Considering both quantities as unsigned integers, if the contents of rx are less than the

contents of ry, the result is set to 1; otherwise, the result it set to 0. The result is place in register T

($24).

No integer overflow exception occurs. The comparison is valid even if the subtraction overflows.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 77

Table 3-16. Two-/Three-Operand Register Type (2/2)

Instruction Format and Description

Compare CMP rx, ry

The contents of general-purpose register ry are Exclusive-ORed with the contents of general-purpose

register rx. The result is placed into register T ($24).

Negate NEG rx, ry

The contents of general-purpose register ry are subtracted from zero to form a 32-bit result. The result

is placed in general-purpose register rx.

AND AND rx, ry

The contents of general-purpose register ry are logical ANDed with the contents of general-purpose

register rx in 1-bit units. The result is placed in general-purpose register rx.

OR OR rx, ry

The contents of general-purpose register ry are logical ORed with the contents of general-purpose

register ry. The result is placed in general-purpose register rx.

Exclusive OR XOR rx, ry

The contents of general-purpose register ry are Exclusive-ORed with the contents of general-purpose

register rx in 1-bit units. The result is placed in general-purpose register rx.

NOT NOT rx, ry

The contents of general-purpose register ry are inverted in 1-bit units and placed in general-purpose

register rx.

MOVE ry, r32

The contents of general-purpose register r32 are moved to general-purpose register ry. R32 can

specify any one of the 32 general-purpose registers.

Move

MOVE r32, rz

The contents of general-purpose register rz are moved to general-purpose register r32. r32 can specify

any one of the 32 general-purpose registers

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM78

Table 3-17. Shift Instructions (1/2)

Instruction Format and Description

Shift Left Logical SLL rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted left and zeros are inserted into the

emptied low-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is interpreted as

a shift count of 8. The result is placed in general-purpose register rx. In the 64-bit mode, the value that

is formed by sign-extending shifted 32-bit value is stored as the result.

Shift Right Logical SLR rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted right, and zeros are inserted into the

emptied high-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is interpreted

as a shift count of 8. The result is placed in general-purpose register rx. In the 64-bit mode, the value

that is formed by sign-extending shifted 32-bit value is stored as the result.

Shift Right Arithmetic SRA rx, ry, immediate

The 32-bit contents of general-purpose register ry are shifted right and the emptied high-order bits are

sign extended. The 3-bit immediate specifies the shift count. A shift count of 0 is interpreted as a shift

count of 8. In the 64-bit mode, the value that is formed by sign-extending shifted 32-bit value is stored

as the result.

Shift Left Logical

Variable

SLLV ry, rx

The 32-bit contents of general-purpose register ry are shifted left, and zeros are inserted into the

emptied low-order bits. The five low-order bits of general-purpose register rx specify the shift count.

The result is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-

extending shifted 32-bit value is stored as the result.

Shift Right Logical

Variable

SRLV ry, rx

The 32-bit contents of general-purpose register ry are shifted right, and the emptied high-order bits are

sign extended. The five lower-order bits of general-purpose register rx specify the shift count. The

register is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-

extending shifted 32-bit value is stored as the result.

Shift Right Arithmetic

Variable

SRAV ry, rx

The 32-bit contents of general-purpose register ry are shifted right, and the emptied high-order bits are

sign extended. The five low-order bits of general-purpose register rx specify the shift count. The result

is placed in general-purpose register ry. In the 64-bit mode, the value that is formed by sign-extending

shifted 32-bit value is stored as the result.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 79

Table 3-17. Shift Instructions (2/2)

Instruction Format and Description

Doubleword Shift Left

Logical

DSLL rx, ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted left, and zeros are inserted

into the emptied low-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is

interpreted as a shift count of 8. The 64-bit result is placed in general-purpose register rx.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift

Right Logical

DSRL ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted right, and zeros are inserted

into the emptied high-order bits. The 3-bit immediate specifies the shift count. A shift count of 0 is

interpreted as a shift count of 8.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift

Right Arithmetic

DSRA ry, immediate

The 64-bit doubleword contents of general-purpose register ry are shifted right, and the emptied high-

order bits are sign extended. The 3-bit immediate specifies the shift count. A shift count of 0 is

interpreted as a shift count of 8.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift Left

Logical Variable

DSLLV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted left, and zeros are inserted

into the emptied low-order bits. The six low-order bits of general-purpose register rx specify the shift

count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift

Right Logical Variable

DSRLV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted right, and zeros are inserted

into the emptied high-order bits. The six low-order bits of general-purpose register rx specify the shift

count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Shift

Right Arithmetic

Variable

DSRAV ry, rx

The 64-bit doubleword contents of general-purpose register ry are shifted right, and the emptied high-

order bits are sign extended. The six low-order bits of general-purpose register rx specify the shift

count. The result is placed in general-purpose register ry.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM80

Table 3-18. Multiply/Divide Instructions (1/2)

Instruction Format and Description

Multiply MULT rx, ry

The contents of general-purpose registers rx and ry are multiplied, treating both operands as 32-bit

two's complement values. No integer overflow exception occurs.

In the 64-bit mode, the operand must be a 64-bit value formed by sign-extending a 32-bit value.

The low-order 32-bit word of the result are placed in special register LO, and the high-order 32-bit word

is placed in special register HI. In the 64-bit mode, each result is sign extended and then stored.

If either of the two immediately preceding instructions is MFHI or MFLO, their transfer instruction

execution result becomes undefined. To obtain the correct result, insert two or more other instructions

between the MFHI, MFLO instructions, and the MULT instruction.

Multiply Unsigned MULTU rx, ry

The contents of general-purpose registers rx and ry are multiplied, treating both operands as 32-bit

unsigned values. No integer overflow exception occurs. In the 64-bit mode, the operand must be a 64-

bit value formed by sign-extending a 32-bit value. The low-order 32-bit word of the result is placed in

special register LO, and the high-order 32-bit word is placed in special register HI. In the 64-bit mode,

each result is sign extended and stored.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the MULTU instruction.

Divide DIV rx, ry

The contents of general-purpose register rx are divided by the contents of general-purpose register ry,

treating both operands as 32-bit two's complement values. No integer overflow exception occurs. The

result when the divisor is 0 is undefined. The 32-bit quotient is placed in special register LO, and the

32-bit remainder is placed in special register HI. In the 64-bit mode, the result is sign extended.

Normally, this instruction is executed after instructions checking for division by zero and overflow.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DIV instruction.

Divide Unsigned DIVU rx, ry

The contents of general-purpose register rx are divided by the contents of general-purpose register ry,

treating both operands as unsigned values. No integer overflow exception occurs. The result when the

divisor is 0 is undefined. The 32-bit quotient is placed in special register LO, and the 32-bit remainder is

placed in special register HI. In the 64-bit mode, the result is sign extended.

Normally, this instruction is executed after instructions checking for division by zero.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DIVU instruction.

Move from HI MFHI rx

The contents of special register HI are loaded into general-purpose register rx.

To ensure correct operation when an interrupt occurs, do not use an instruction that changes the HI

register (MULT, MULTU, DIV, DIVU, DMULT, DMULTU, DDIV, DDIVU) for the two instructions after

the MFHI instruction.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 81

Table 3-18. Multiply/Divide Instructions (2/2)

Instruction Format and Description

Move from LO MFLO rx

The contents of special register LO are loaded into general-purpose register rx.

To ensure correct operation when an interrupt occurs, do not use an instruction that changes the HI

register (MULT, MULTU, DIV, DIVU, DMULT, DMULTU, DDIV, DDIVU) for the two instructions after

the MFLO instruction.

Doubleword Multiply DMULT rx, ry

The 64-bit contents of general-purpose register rx and ry are multiplied, treating both operands as two's

complement values. No integer overflow exception occurs. The low-order 64 bits of the result are

placed in special register LO, and the high-order 64 bits are placed in special register HI.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DMULT instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Multiply

Unsigned

DMULTU rx, ry

The 64-bit contents of general-purpose registers rx and ry are multiplied, treating both operands as

unsigned values. No integer overflow exception occurs. The low-order 64 bits of the result are placed in

special register LO, and the high-order 64 bits of the result are placed in special register HI.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DMULTU instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword divide DDIV rx, ry

The 64-bit contents of general-purpose registers rx are divided by the contents of general-purpose

register ry, treating both operands as two's complement values. No integer overflow exception occurs.

The result when the divisor is 0 is undefined. The 64-bit quotient is placed in special register LO, and

the 64-bit remainder is placed in special register HI. Normally, this instruction is executed after

instructions checking for division by zero and overflow.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DDIV instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

Doubleword Divide

Unsigned

DDIVU rx, ry

The 64-bit contents of general-purpose register rx are divided by the contents of general-purpose

register ry, treating both operands as unsigned values. No integer overflow exception occurs. The

result when the divisor is 0 is undefined. The 64-bit quotient is placed in special register LO, and the

64-bit remainder is placed in special register HI. Normally, this instruction is executed after an

instruction checking for division by zero.

If either of the two immediately preceding instructions is MFHI or MFLO, the result of execution of

these transfer instructions is undefined. To obtain the correct result, insert two or more other

instructions between the MFHI, MFLO instructions and the DDIVU instruction.

This operation is defined in the 64-bit mode and the 32-bit kernel mode. When this instruction is

executed in the 32-bit user/supervisor mode, a reserved instruction exception is generated.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM82

(3) Jump and branch instructions

Jump and Branch instructions change the control flow of a program.

All Jump instructions occur with a one-instruction delay. That is, the instruction immediately following the jump is

always executed.

Branch instructions do not have a delay slot. If a branch is taken, the instruction immediately following the branch

is never executed. If the branch is not taken, the instruction immediately following the branch is always

executed.

Table 3-19 shows the MIPS16 Jump and Branch instructions.

Table 3-19. Jump and Branch Instructions (1/2)

Instruction Format and Description

Jump and Link JAL target

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the

address of the delay slot. The program unconditionally jumps to this calculated address with a delay of

one instruction. The address of the instruction immediately following the delay slot is placed in register

ra. The ISA Mode bit is left unchanged. The value stored in ra bit 0 will reflect the current ISA Mode bit.

Jump and Link

Exchange

JALX target

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the

address of the delay slot. The program unconditionally jumps to this calculated address with a delay of

one instruction. The address of the instruction immediately following the delay slot is placed in register

ra. The ISA Mode bit is inverted with a delay of one instruction. The value stored in ra bit 0 will reflect

the ISA Mode bit before execution of the Jump execution.

JR rx

The program unconditionally jumps to the address specified in general-purpose register rx, with a delay

of one instruction. The instruction sets the ISA Mode bit to the value in rx bit 0. If the Jump target

address is in the MIPS16 instruction length mode, no address exception occurs when bit 0 of the

source register is 1 because bit 0 of the target address is 0 so that the instruction is located at the

halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target

address is fetched if the two low-order bits of the target address are not 0.

Jump Register

JR ra

The program unconditionally jumps to the address specified in register ra, with a delay of one

instruction. The instruction sets the ISA Mode bit to the value in ra bit 0. If the Jump target address is in

the MIPS16 instruction length mode, no address exception occurs when bit 0 of the source register is 1

because bit 0 of the target address is 0 so that the instruction is located at the halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target

address is fetched if the two low-order bits of the target address are not 0.

Jump and Link

Register

JALR ra, rx

The program unconditionally jumps to the address contained in register rx, with a delay of one

instruction. This instruction sets the ISA Mode bit to the value in rx bit 0. The address of the instruction

immediately following the delay slot is placed in register ra. The value stored in ra bit 0 will reflect the

ISA mode bit before the jump execution is executed.

If the Jump target address is in the MIPS16 instruction length mode, no address exception occurs

when bit 0 of the source register is 1 because bit 0 of the target address is 0 so that the instruction is

located at the halfword boundary.

If the 32-bit length instruction mode is changed, an address exception occurs when the jump target

address is fetched if the two low-order bits of the target address are not 0.

CHAPTER 3 MIPS16 INSTRUCTION SET

User’s Manual U15509EJ2V0UM 83

Table 3-19. Jump and Branch Instructions (2/2)

Instruction Format and Description

Branch on Equal to

Zero

BEQZ rx, immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the

instruction after the branch to form the target address. If the contents of general-purpose register rx are

equal to zero, the program branches to the target address. No delay slot is generated.

Branch on Not Equal

to Zero

BNEZ rx, immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the

instruction after the branch to form the target address. If the contents of general-purpose register rx are

not equal to zero, the program branches to the target address. No delay slot is generated.

Branch on T Equal to

Zero

BTEQZ immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the

instruction after the branch to form the target address. If the contents of special register T ($24) are not

equal to zero, the program branches to the target address. No delay slot is generated.

Branch on T Not

Equal to Zero

BTNEZ immediate

The 8-bit immediate is shifted left one bit, sign extended, and then added to the address of the

instruction after the branch to form the target address. If the contents of special register T ($24) are not

equal to zero, the program branches to the target address. No delay slot is generated.

Branch Unconditional B immediate

The 11-bit immediate is shifted left one bit, sign extended, and then added to the address of the

instruction after the branch to form the target address. The program branches to the target address

unconditionally.

(4) Special instructions

Special instructions unconditionally perform branching to general exception vectors. Special instructions are of

the R type. Table 3-20 shows three special instructions.

Table 3-20. Special Instructions

Instruction Format and Description

Breakpoint BREAK immediate

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handler.

By using a 6-bit code area, parameters can be sent to the exception handler. If the exception handler

uses this parameter, the contents of memory including instructions must be loaded as data.

Extend EXTEND immediate

The 11-bit immediate is combined with the immediate in the next instruction to form a larger immediate

equivalent to 32-bit MIPS. The Extend instruction must always precede (by one instruction) the

instruction whose immediate field you want to extend. Every extended instruction consumes four bytes

in program memory instead of two bytes (two bytes for Extend and two bytes for the instruction being

extended), and it can cross a word boundary. (For details, see 3.8.2 Extend instruction.)

System Call SYSCALL

A system call trap occurs, immediately and unconditionally transferring control to the exception

handler.

User’s Manual U15509EJ2V0UM84

CHAPTER 4 PIPELINE

This chapter describes the basic operation of the VR4100 Series processor pipeline, which includes descriptions

of the delay slots (instructions that follow a branch or load instruction in the pipeline), and interrupts to the pipeline

flow caused by interlocks and exceptions.

4.1 Pipeline Stages

In the VR Series, an instruction execution system called a pipeline is adopted. In the pipeline, instruction

execution processing is delimited into several stages. Instruction execution is complete when each stage is passed.

When processing of one instruction in one stage of the pipeline is complete, the next instruction enters that stage.

When the pipeline is full, it means that instructions equaling the number of pipeline stages are being executed

simultaneously.

The pipeline clock is called the PClock. Each cycle of the PClock is called a PCycle. Instructions are read in

synchronization with the PClock. Each stage of the pipeline is executed in one PCycle. Therefore, executing an

instruction requires as many PCycles as the number of pipeline stages. When the required data has not been cached

and must instead be fetched from the main memory, the execution requires more cycles than the number of pipeline

stages.

4.1.1 VR4121, VR4122, VR4181A

The pipeline of the VR4121, VR4122, or VR4181A has five stages in the MIPS III (32-bit length) instruction mode,

or six stages in the MIPS16 (16-bit length) instruction mode.

The name and meanings of each stage are as follows.

• IF - Instruction cache fetch

• IT - Instruction translation (in MIPS16 instruction mode only)

• RF - Register fetch

• EX - Execution

• DC - Data cache fetch

• WB - Writeback

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 85

Figure 4-1. Pipeline Stages (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF EX DC WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT EX DC WBRF

Figure 4-2 shows instruction execution in the pipeline. In this figure, a row indicates the execution process of each

instruction, and a column indicates the processes executed simultaneously.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM86

Figure 4-2. Instruction Execution in the Pipeline (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

(5-deep)

Current CPU
cycle

PCycle

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

(b) MIPS16 instruction mode

PCycle

IT RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF RF EX DC WB

IF

IT RFIF

IT RFIF

IT RFIF

IT RFIF

IT RFIF

(6-deep)

Current CPU
cycle

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 87

4.1.2 VR4131

The pipeline of the VR4131 employs the 2-way superscalar mechanism that can execute two instructions each in

the same stage. Each pipeline has six stages in the MIPS III (32-bit length) instruction mode, or seven stages in the

MIPS16 (16-bit length) instruction mode.

The name and meanings of each stage are as follows.

• IF - Instruction cache fetch

• IT - Instruction translation (in MIPS16 instruction mode only)

• RF - Register fetch

• EX - Execution

• DC1 - Data cache fetch

• DC2 - Data read

• WB - Writeback

Figure 4-3. Pipeline Stages (VR4131)

(a) MIPS III instruction mode

PCycle

IF RF EX DC1 DC2 WB

PClock

Stage

(b) MIPS16 instruction mode

PCycle

IF IT RF EX DC1 DC2 WB

PClock

Stage

Figure 4-4 shows instruction execution in the pipeline. In this figure, a row indicates the execution process of each

instruction, and a column indicates the processes executed simultaneously.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM88

Figure 4-4. Instruction Execution in the Pipeline (VR4131)

(a) MIPS III instruction mode

PCycle
(6-deep)

Current CPU
cycle

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

(b) MIPS16 instruction mode

PCycle (7-deep)

Current CPU
cycle

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

IF

IF

IT

IT

RF

RF

EX

EX

DC1

DC1

DC2

DC2

WB

WB

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 89

4.1.3 VR4181

The pipeline of the VR4181 has five stages regardless the instruction set modes. Each stage has two phases: Φ1

and Φ2.

The name and meanings of each stage are as follows.

• IF - Instruction cache fetch

• RF - Register fetch

• EX - Execution

• DC - Data cache fetch

• WB - Write back

Figure 4-5. Pipeline Stages (VR4181)

Φ1

PCycle

PClock

Stage

Phase

IF RF EX DC WB

Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

Figure 4-6 shows instruction execution in the pipeline. In this figure, a row indicates the execution process of each

instruction, and a column indicates the processes executed simultaneously.

Figure 4-6. Instruction Execution in the Pipeline (VR4181)

(5-deep)

Current CPU
cycle

PCycle

RF1 EX1 DC1 WB1IF1 RF2 EX2 DC2 WB2IF2

RF1 EX1 DC1 WB1IF1 RF2 EX2 DC2 WB2IF2

RF1 EX1 DC1 WB1IF1 RF2 EX2 DC2 WB2IF2

RF1 EX1 DC1 WB1IF1 RF2 EX2 DC2 WB2IF2

RF1 EX1 DC1 WB1IF1 RF2 EX2 DC2 WB2IF2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM90

4.2 Branch Delay

During a VR4100 Series' pipeline operation, a branch delay occurs when:

• Target address is calculated by a Jump instruction

• Branch condition of branch instruction is met and then logical operation starts for branch-destination

comparison

The instruction location immediately following a Jump/Branch instruction is referred to as the branch delay slot.

4.2.1 VR4121, VR4122, VR4181A

The instruction address generated at the EX stage in the Jump/Branch instruction is available in the IF stage two

instructions later.

In the VR4121, VR4122, and VR4181A, two cycles of branch delay occurs during MIPS III (32-bit length) instruction

mode, or three cycles during MIPS16 (16-bit length) instruction mode, when a branch condition is met. An instruction

in the branch delay slot is executed during MIPS III instruction mode (except for Branch Likely instructions), though it

is discarded during MIPS16 instruction mode.

Figure 4-7 illustrates the branch delay and the location of the branch delay slot.

Figure 4-7. Branch Delay (VR4121, VR4122, VR4181A)

(a) MIPS III Instruction mode

PCycle

IF RF EX DC WB

IFTarget RF EX DC WB

IF

Jump/Branch

Branch delay

(Branch delay slot) RF EX DC WB

(b) MIPS16 instruction mode

Target

Jump/Branch

Branch delay

(Branch delay slot)

PCycle

IF IT EX DC WB

IF EX DC WB

RF

IT RF

IF IT EX DC WBRF

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 91

4.2.2 VR4131

The instruction address prefetched at the RF stage in the Jump/Branch instruction is available in the IF stage two

instructions later.

Since the VR4131 employs the 2-way superscalar mechanism, the manipulation of succeeding instructions differs

depending that the address of a Jump/Branch instruction is higher or not than that of the instruction in the other way

when it is fetched.

(1) MIPS III instruction mode

In the VR4131, two cycles of branch delay occurs when a branch condition is met. An instruction in the branch

delay slot is executed (except for Branch Likely instructions).

Figure 4-8 illustrates the branch delay and the location of the branch delay slot.

Figure 4-8. Branch Delay (VR4131, MIPS III Instruction Mode)

(a) When Jump/Branch has lower address

PCycle

Jump/Branch IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF

IF RF

4

8

C

0

(Branch delay slot)

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

0

4

Target

(b) When Jump/Branch has higher address

PCycle

Jump/Branch IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF

4

C

8(Branch delay slot)

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB4

0Target

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM92

(2) MIPS16 instruction mode

In the VR4131, three cycles of branch delay occurs when a branch condition is met. An instruction in the branch

delay slot is discarded.

Figure 4-9 illustrates the branch delay and the location of the branch delay slot.

Figure 4-9. Branch Delay (VR4131, MIPS16 Instruction Mode)

(a) When Jump/Branch has lower address

3

1

PCycle

Jump/Branch

Target

IF RF EX DC1 DC2 WB

IF RF

IT

IT EX

IT RF

IT

IF

IF RF

3

1

7

5

IT

IT

IF

IFB

9

IT RF EX DC1 DC2 WB

IT

IF

IF RF EX DC1 DC2 WB

(Branch delay slot)

(b) When Jump/Branch has higher address

PCycle

Jump/Branch

Target

IF RF EX DC1 DC2 WBIT

IT RF

IT

IF

IF RF

3

7

5

IT

IT

IF

IFB

9

IT RF EX DC1 DC2 WB

IT

IF

IF RF EX DC1 DC2 WB3

1

(Branch delay slot)

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 93

4.2.3 VR4181

The instruction address generated at the RF stage in the Jump/Branch instruction are available in the IF stage,

two instructions later.

In the VR4181, one cycle of branch delay occurs when a branch condition is met in MIPS III instruction mode. An

instruction in the branch delay slot is executed (except for Branch Likely instructions).

No branch delay due to a branch instruction occurs in MIPS16 instruction mode. When a branch condition is met,

the instruction representing a delay slot is discarded.

Figure 4-10 illustrates the branch delay and the location of the branch delay slot.

Figure 4-10. Branch Delay (VR4181)

PCycle

IF RF EX DC WB

IFTarget RF EX DC WB

IF

Jump/Branch

Branch delay

(Branch delay slot) RF EX DC WB

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM94

4.3 Branch Prediction

The VR4122, VR4131, and VR4181A have a branch prediction mechanism to speed up branch instruction

processing.

The VR4122, VR4131, and VR4181A have a full-associative virtual address cache called a branch prediction table.

This table holds the history of the branches that have been satisfied recently, using the address of the Branch

instruction as a tag and the branch destination address as data.

The VR4122, VR4131, and VR4181A reference the branch prediction table when they fetch a Branch instruction. If

the same Branch instruction is in the table (hit), they branch to the branch destination address in the table rather than

calculating the branch destination address. If the corresponding Branch instruction is not in the table (miss), they

recalculate the branch destination address. If the condition of a missed Branch instruction is satisfied, that Branch

instruction and the address of the branch destination are stored in the branch prediction table. New history is written

over the entry stored earliest (LRU (least recently used) algorithm).

The branch prediction table of the VR4122 and VR4181A can hold four entries, and that of the VR4131 can hold

eight entries.

Whether the branch prediction mechanism is to be used can be specified by using the BP bit of the Config register

of CP0. Branch prediction is executed when the BP bit is cleared to 0; it is not executed when the bit is set to 1. The

BP bit is cleared to 0 by default.

Branch prediction is not executed in the MIPS16 instruction mode and debug mode. The BP bit is automatically

set to 1.

Because the branch prediction table is a virtual address cache, it is invalid if the contents of a physical address

corresponding to a virtual address change. When performing an operation that rewrites the text area (such as

changing the bank or downloading), therefore, either disable branch prediction (by setting the BP bit to 1) or clear the

history of the branch prediction table immediately before. Clear the history regardless of whether the VR4122,

VR4131, or VR4181A operates in the virtual address mode. The VR4122, VR4131, and VR4181A clear the history of

the branch prediction table in the following cases.

 - Writing to EntryHi register

 - Writing to Config register (VR4131 only)

 - Execution of TLBWI instruction

 - Execution of TLBWR instruction

 - Execution of TLBR instruction

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 95

4.3.1 VR4122, VR4181A

The VR4122 and VR4181A reference the branch prediction table in the IF stage of a Branch instruction. If a hit

occurs when the branch condition is decoded in the RF stage, the instruction at the branch destination address

output from the branch prediction table is fetched.

When the branch condition is checked in the EX stage and it has been ascertained that a branch is to occur, the

pipeline processing of the instruction at the branch destination continues. If it has been found that a branch is not to

occur, the processing of the instruction at the branch destination is stopped, and the next instruction in the branch

delay slot is fetched in the DC stage.

If it is found that the condition of a Branch instruction missed in the branch prediction table is satisfied and that a

branch is to occur, the branch prediction table is updated in the DC stage.

The figure below illustrates the pipeline operation when branch prediction is performed.

Figure 4-11. Pipeline on Branch Prediction (VR4122, VR4181A) (1/2)

(a) When branch prediction misses and no branch is to occur

PCycle

IF RF EX DC WB

IF
Instruction following

branch delay slot
RF EX DC WB

IF

Branch

(Branch delay slot) RF EX DC WB

(b) When branch prediction misses and branch is to occur

PCycle

IF RF EX DC WB

IFTarget RF EX DC WB

IF

Branch

(Branch delay slot) RF EX DC WB

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM96

Figure 4-11. Pipeline on Branch Prediction (VR4122, VR4181A) (2/2)

(c) When branch prediction hits and no branch is to occur

PCycle

IF RF EX DC WB

IFTarget

IF

Branch

(Branch delay slot) RF EX DC WB

IF
Instruction following

branch delay slot
RF EX DC WB

(d) When branch prediction hits and branch is to occur

PCycle

IF RF EX DC WB

IFTarget RF EX DC WB

IF

Branch

(Branch delay slot) RF EX DC WB

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 97

4.3.2 VR4131

The VR4131 references the branch prediction table in the IF stage of a Branch instruction. If a hit occurs, the

instruction at the branch destination address output from the branch prediction table is fetched.

When the branch condition is checked in the EX stage and it has been ascertained that a branch is to occur, the

pipeline processing of the instruction at the branch destination continues. If it has been found that a branch is not to

occur, the processing of the instruction at the branch destination is stopped, and the next instruction in the branch

delay slot is fetched in the DC stage.

If it is found that the condition of a Branch instruction missed in the branch prediction table is satisfied and that a

branch is to occur, the branch prediction table is updated in the DC stage.

The figure below illustrates the pipeline operation when branch prediction is performed.

Figure 4-12. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Lower Address) (1/2)

(a) When branch prediction misses and no branch is to occur

PCycle

Branch IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

8

C

0

(Branch delay slot)

(b) When branch prediction misses and branch is to occur

PCycle

Branch

Target

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF

IF

IF

IF

RF

4

8

C

0

14

0

4

10

(Branch delay slot)

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM98

Figure 4-12. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Lower Address) (2/2)

(c) When branch prediction hits and no branch is to occur

PCycle

Branch

Target

Instruction following
branch delay slot

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF

IF

4

4

8

0

C

8

(Branch delay slot)

(d) When branch prediction hits and branch is to occur

PCycle

Branch

Target

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

4

0

C

8

(Branch delay slot)

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 99

Figure 4-13. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Higher Address) (1/2)

(a) When branch prediction misses and no branch is to occur

PCycle

Branch IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

C

8(Branch delay slot)

(b) When branch prediction misses and branch is to occur

PCycle

Branch

Target

IF RF EX DC1 DC2 WB

IF RF

RF

EX DC1 DC2 WB

IF

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

C

8

4

0

(Branch delay slot)

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM100

Figure 4-13. Pipeline on Branch Prediction (VR4131, When the Branch Is in the Higher Address) (2/2)

(c) When branch prediction hits and no branch is to occur

PCycle

Branch

Instruction following
branch delay slot

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

C

8

0

C

(Branch delay slot)

(d) When branch prediction hits and branch is to occur

PCycle

Branch

Target

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

IF

IF RF EX DC1 DC2 WB

IF RF EX DC1 DC2 WB

4

C

8

4

0

(Branch delay slot)

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 101

4.4 Load Delay

The instruction location immediately following a load instruction is referred to as the load delay slot.

The instruction in a load delay slot can use the contents of the loaded register, however in such cases hardware

interlocks insert additional delay cycles. Consequently, scheduling load delay slots can be desirable, both for

performance and VR-Series processor compatibility.

In the VR4121, VR4122, and VR4181A, two cycles of DC stage are necessary during a load instruction execution

for data read from the data cache and data alignment, and therefore hardware automatically causes interlock.

4.5 Instruction Streaming

If a miss occurs in the instruction cache, a cycle to refill instructions from the main memory to the instruction

cache is started. At this time, the VR4122, VR4131, and VR4181A continue pipeline processing while writing data

(instructions) to the instruction cache and bypassing the data (instructions) to the instruction decoder of the CPU.

Therefore, processing can be resumed earlier from a stall that takes place if a miss occurs in the instruction cache.

This instruction data bypassing function is called streaming.

The instruction streaming function is enabled or disabled by the IS bit of the Config register of CP0. Instruction

streaming is executed when the IS bit is cleared to 0; it is not executed when the bit is set to 1. The IS bit is cleared

to 0 by default.

If instruction streaming is not executed, the pipeline is stalled until refilling the instruction cache has been

completed.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM102

4.6 Pipeline Activities

Figure 4-14 shows the activities that can occur during each pipeline stage; Table 4-1 describes these pipeline

activities.

Figure 4-14. Pipeline Activities (1/2)

(a) VR4121, VR4122, and VR4181A

ALU

Load/Store

Branch

IF

PCycle

PClock

Stage

Instruction fetch

Instruction translation
& decode

RF EX DC DC

ITCICA

IDEC

WBEX

RF

ITLB

IT

ITR

WB

DCADVA

DTLB

DLA

DTC WB

DSA DTD DCW

BAC

ITCNote

(b) VR4131

PCycle

PClock

ALU

Stage

Instruction fetch

Load/Store

Branch

IF IT RF

ICA ITC ITCNote

EX DC1 DC2 WB

ITLB

IDEC

RF

EX

DVA DCA

DTLB

DSA

BAC

DLA

DTC

DTD

WB

WB

DCW

ITR
Decode

Note When MIPS III instruction mode

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 103

Figure 4-14. Pipeline Activities (2/2)

(c) VR4181

ALU

Load/Store

Branch

IF1

PCycle

PClock

Stage

Instruction fetch &

decode ITC

IDEC

WB

EX

RF

ITLB

DCADVA

DTLB

DLA

DTC

WBSA DTD

DCWBAC

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

ICAIDC

Table 4-1. Description of Pipeline Activities during Each Stage

Mnemonic Description

IDC Instruction cache address decode

ITLB Instruction address translation

ICA Instruction cache array access

ITR Instruction translation

ITC Instruction tag check

IDEC Instruction decode

RF Register operand fetch

BAC Branch address calculation

EX Execution stage

DVA Data virtual address calculation

SA/DSA Store align

DCA Data cache address decode/array access

DTLB Data address translation

DLA Data cache load align

DTC Data tag check

DTD Data transfer to data cache

DCW Data cache write

WB Write back to register file

The operation of the pipeline is illustrated by the following examples that describe how typical instructions are

executed. Each instruction is taken through the pipeline and the operations that occur in each relevant stage are

described.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM104

(1) Add instruction (ADD rd, rs, rt)

IF stage The eleven least-significant bits of the virtual address are used to access the instruction cache.
Then the cache index is compared with the page frame number and the cache data is read out.
The virtual PC is incremented by 4 so that the next instruction can be fetched.

IT stage A MIPS16 instruction is translated into a 32-bit length instruction (VR4121, VR4122, VR4131, and
VR4181A only).

RF stage The 2-port register file is addressed with the rs and rt fields and the register data is valid at the
register file output. At the same time, bypass multiplexers select inputs from either the EX- or DC-
stage output in addition to the register file output, depending on the need for an operand bypass.

EX stage The operands flow into the ALU inputs, and the ALU operation is started. The result of the ALU
operation is latched into the ALU output latch.

DC stage This stage is a NOP for this instruction. The data from the output of the EX stage (the ALU) is
moved into the output latch of the DC.

WB stage The WB latch feeds the data to the inputs of the register file, which is accessed by the rd field. The
data is written into the file.

Figure 4-15. ADD Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

IFStage

PCycle

PClock

RF EX DC WB

ITC

ICA IDEC

WBEXITLB RF

(b) MIPS16 instruction mode

IFStage

PCycle

PClock

IT EX DC WB

ITC

ICA IDEC

WBEXRFITLB

RF

ITR

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 105

Figure 4-16. ADD Instruction Pipeline Activities (VR4131)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX WB

ITC

EX DC1 DC2 WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT RF

ICA

ITLB

ITR IDEC

RF EX WB

ITC

EX DC1 DC2 WB

Figure 4-17. ADD Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC WBEXRFITLB

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM106

(2) Jump and Link Register instruction (JALR rd, rs)

IF stage Same as the IF stage for the ADD instruction.

IT stage Same as the IT stage for the ADD instruction (VR4121, VR4122, VR4131, and VR4181A only).

RF stage A register specified in the rs field is read from the file, and the value read from the rs register is
input to the virtual PC latch synchronously. This value is used to fetch an instruction at the jump
destination. The value of the virtual PC incremented during the IF stage is incremented again to
produce the link address PC + 8 (PC + 4 in MIPS16 instruction mode) where PC is the address of
the JALR instruction. The resulting value is the PC to which the program will eventually return.
This value is placed in the Link output latch of the Instruction Address unit.

EX stage The PC + 8 (PC + 4 in MIPS16 instruction mode) value is moved from the Link output latch to the
output latch of the EX stage.

DC stage The PC + 8 (PC + 4 in MIPS16 instruction mode) value is moved from the output latch of the EX
stage to the output latch of the DC stage.

WB stage Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register 31 is
used as the default. If rd is explicitly specified, it cannot be the same register addressed by rs; if it
is, the result of executing such an instruction is undefined.

Figure 4-18. JALR Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

BAC

IFStage

PCycle

PClock

RF EX DC WB

ITC

ICA IDEC

WBEXRFITLB

(b) MIPS16 instruction mode

BAC

IFStage

PCycle

PClock

RF EX DC WB

ITC

ICA IDEC

WBEXRFITLB

IT

ITR

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 107

Figure 4-19. JALR Instruction Pipeline Activities (VR4131)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX

BAC

WB

ITC

EX DC1 DC2 WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT RF

ICA

ITLB

ITR IDEC

RF EX

BAC

WB

ITC

EX DC1 DC2 WB

Figure 4-20. JALR Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC WBEXRFITLB

BAC

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM108

(3) Branch on Equal instruction (BEQ rs, rt, offset)

IF stage Same as the IF stage for the ADD instruction.

IT stage Same as the IT stage for the ADD instruction (VR4121, VR4122, VR4131, and VR4181A only).

RF stage The register file is addressed with the rs and rt fields. A check is performed to determine if each
corresponding bit position of these two operands has equal values. If they are equal, the PC is
set to PC + target, where target is the sign-extended offset field. If they are not equal, the PC is
set to PC + 4.

EX stage The next PC resulting from the branch comparison is valid at the beginning of instruction fetch.

DC stage This stage is a NOP for this instruction.

WB stage This stage is a NOP for this instruction.

Figure 4-21. BEQ Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

BAC

IF

PClock

RF EX DC WB

ITC

ICA IDEC

WBEXRFITLB

PCycle

Stage

(b) MIPS16 instruction mode

BAC

IFStage

PClock

RF EX DC WB

ITC

ICA IDEC

WBEXRFITLB

IT

ITR

PCycle

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 109

Figure 4-22. BEQ Instruction Pipeline Activities (VR4131)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX

BAC

WB

ITC

EX DC1 DC2 WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT RF

ICA

ITLB

ITR IDEC

RF EX

BAC

WB

ITC

EX DC1 DC2 WB

Figure 4-23. BEQ Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC EXRFITLB

BAC

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM110

(4) Trap if Less Than instruction (TLT rs, rt)

 Remark TLT instruction is not included in the MIPS16 instruction set.

IF stage Same as the IF stage for the ADD instruction.

RF stage Same as the RF stage for the ADD instruction.

EX stage ALU controls are set to do an A – B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch.
The sign bits of operands and of the ALU output latch are checked to determine if a less than
condition is true. If this condition is true, a Trap exception occurs. The value in the PC register is
used as an exception vector value, and from now on any instruction will be invalid.

DC stage This stage is a NOP for this instruction.

WB stage The EPC register is loaded with the value of the PC if the less than condition was met in the EX
stage. The Cause register ExCode field and BD bit are updated appropriately, as is the EXL bit of
the Status register. If the less than condition was not met in the EX stage, no activity occurs in
the WB stage.

Figure 4-24. TLT Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

IF

PClock

RF EX DC WB

ITC

ICA IDEC

EXRFITLB

PCycle

Stage

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 111

Figure 4-25. TLT Instruction Pipeline Activities (VR4131)

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX

ITC

EX DC1 DC2 WB

Figure 4-26. TLT Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC EXRFITLB

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM112

(5) Load Word instruction (LW rt, offset (base))

IF stage Same as the IF stage for the ADD instruction.

IT stage Same as the IT stage for the ADD instruction (VR4121, VR4122, VR4131, and VR4181A only).

RF stage Same as the RF stage for the ADD instruction. Note that the base field is in the same position as
the rs field.

EX stage Refer to the EX stage for the ADD instruction. For LW, the inputs to the ALU come from
GPR[base] through the bypass multiplexer and from the sign-extended offset field. The result of
the ALU operation that is latched into the ALU output latch represents the effective virtual address
of the operand (DVA).

DC stage The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry. After
passing through the load aligner, aligned data is placed in the DC output latch.

DC2 stage After passing through the load aligner, aligned data is placed in the DC2 output latch (VR4121,
VR4122, VR4131, and VR4181A only).

WB stage The cache read data is written into the register file addressed by the rt field.

Figure 4-27. LW Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

DVA

DCA DLA

DTLB DTC

IF

PClock

RF EX DC DC2

ITC

ICA IDEC

WBEXRFITLB

WB

PCycle

Stage

(b) MIPS16 instruction mode

DVA

DCA DLA

DTLB DTC

IFStage

PCycle

PClock

RF EX DC DC2

ITC

ICA IDEC

WBEXRFITLB

WBIT

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 113

Figure 4-28. LW Instruction Pipeline Activities (VR4131)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX

DVA

DCA

DTLB

DLA

DTC

WB

ITC

EX DC1 DC2 WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT RF

ICA

ITLB

IDEC

RF EX

DVA

DCA

DTLB

DLA

DTC

WB

ITC

EX DC1 DC2 WB

Figure 4-29. LW Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC

WB

EXRFITLB DCA

DVA DTLB

DLA

DTC

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM114

(6) Store Word instruction (SW rt, offset (base))

IF stage Same as the IF stage for the ADD instruction.

IT stage Same as the IT stage for the ADD instruction (VR4121, VR4122, VR4131, and VR4181A only).

RF stage Same as the RF stage for the LW instruction.

EX stage Refer to the LW instruction for a calculation of the effective address. From the RF output latch,
the GPR[rt] is sent through the bypass multiplexer and into the main shifter. The results of the
ALU are latched in the output latches.

DC stage Refer to the LW instruction for a description of the cache access. The store data is aligned.

DC2 stage Refer to the LW instruction for a description of the cache access (VR4121, VR4122, VR4131, and
VR4181A only).

WB stage If there was a cache hit, the content of the store data output latch is written into the data cache at
the appropriate word location.
Note that all store instructions use the data cache for two consecutive PCycles. If the following
instruction requires use of the data cache, the pipeline is slipped for one PCycle to complete the
writing of an aligned store data.

Figure 4-30. SW Instruction Pipeline Activities (VR4121, VR4122, VR4181A)

(a) MIPS III instruction mode

DVA

DCA DLA

DTLB DTC

IF

PClock

RF EX DC DC2

ITC

ICA IDEC

WBEXRFITLB

WB

DSA DTD

Stage

PCycle

(b) MIPS16 instruction mode

DVA

DCA DLA

DTLB DTC

IFStage

PClock

RF EX DC DC2

ITC

ICA IDEC

WBEXRFITLB

WBIT

DSA DTD

PCycle

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 115

Figure 4-31. SW Instruction Pipeline Activities (VR4131)

(a) MIPS III instruction mode

PCycle

PClock

Stage IF RF

ICA

ITLB

IDEC

RF EX

DVA

DCA

DTLB

DLA

DTC

DSA DTD

WB

ITC

EX DC1 DC2 WB

(b) MIPS16 instruction mode

PCycle

PClock

Stage IF IT RF

ICA

ITLB

IDEC

RF EX

DVA

DCA

DTLB

DLA

DTC

DSA DTD

WB

ITC

EX DC1 DC2 WB

Figure 4-32. SW Instruction Pipeline Activities (VR4181)

IF1

PCycle

PClock

Stage

ITC

ICAIDC

IDEC EXRFITLB

DVA DTLB DTC

SA DTD DCW

RF1 EX1 DC1 WB1IF2 RF2 EX2 DC2 WB2

Φ1Phase Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2 Φ1 Φ2

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM116

4.7 Interlock and Exception

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies are

detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks, while those that

are handled using software are called exceptions. As shown in Figure 4-33, all interlock and exception conditions are

collectively referred to as faults.

Figure 4-33. Interlocks, Exceptions, and Faults

Software Hardware

Faults

Exceptions

Abort Stall Slip

Interlocks

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be

traced back to the particular instruction in the exception/interlock stage, as shown in Table 4-2. For instance, an LDI

Interlock is raised in the Register Fetch (RF) stage.

Tables 4-3 and 4-4 describe the pipeline interlocks and exceptions listed in Table 4-2.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 117

Table 4-2. Correspondence of Pipeline Stage to Interlock and Exception Conditions

Stage IF RF EX DC WB

Status (IT)

Interlock Stall − ITM

ICM

− DTM

DCM

DCB

−

Slip − LDI

MDI

SLI

CP0

− − −

Exception IAErr NMI

ITLB

INTr

IBE

SYSC

BP

CUn

RSVD

Trap

OVF

DAErr

Reset

DTLB

DTMod

WAT

DBE

NMI (VR4131)

INTr (VR4131)

−

Remark In the above table, exception conditions are listed up in higher priority order.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM118

Table 4-3. Pipeline Interlock

Interlock Description

ITM Interrupt TLB Miss

ICM Interrupt Cache Miss

LDI Load Data Interlock

MDI MD Busy Interlock

SLI Store-Load Interlock

CP0 Coprocessor 0 Interlock

DTM Data TLB Miss

DCM Data Cache Miss

DCB Data Cache Busy

Table 4-4. Description of Pipeline Exception

Exception Description

IAErr Instruction Address Error exception

NMI Non-maskable Interrupt exception

ITLB ITLB exception

INTr Interrupt exception

IBE Instruction Bus Error exception

SYSC System Call exception

BP Breakpoint exception

CUn Coprocessor Unusable exception

RSVD Reserved Instruction exception

Trap Trap exception

OVF Overflow exception

DAErr Data Address Error exception

Reset Reset exception

DTLB DTLB exception

DTMod DTLB Modified exception

WAT Watch exception

DBE Data Bus Error exception

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 119

4.7.1 Exception conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are

cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this

instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional condition is detected for an instruction, the VR4100 Series will kill it and all following

instructions. When this instruction reaches the WB stage, the exception flag and various information items are

written to CP0 registers. The current PC is changed to the appropriate exception vector address and the exception

bits of earlier pipeline stages are cleared.

This implementation allows all preceding instructions to complete execution and prevents all subsequent

instructions from completing. Thus the value in the EPC is sufficient to restart execution. It also ensures that

exceptions are taken in the order of execution; an instruction taking an exception may itself be killed by an instruction

further down the pipeline that takes an exception in a later cycle.

Figure 4-34. Exception Detection

2

: Killed stage

: Cancellation

Instruction
causing exception

1

IF RF EX DC WB

IF RF

IF

EX DC WB

RF EX DC WB

IF RF EX DC WBException vector

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM120

4.7.2 Stall conditions

Stalls are used to stop the pipeline for conditions detected after the RF stage. When a stall occurs, the processor

will resolve the condition and then the pipeline will continue. Figure 4-35 shows a data cache miss stall, and Figure

4-36 shows a CACHE instruction stall.

Figure 4-35. Data Cache Miss Stall

<1>

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

<2> <3>

<1> Data cache miss

<2> Start moving data cache line to write buffer

<3> Get last word into cache and restart pipeline

If the cache line to be replaced is dirty the W bit is set the data is moved to the internal write buffer in the

next cycle. The write-back data is returned to memory. The last word in the data is returned to the cache at <3>, and

pipelining restarts.

Figure 4-36. CACHE Instruction Stall

<1>

IF RF EX DC WB WB WB WB WB

IF RF EX DC DC DC DC DC WB

IF RF EX EX EX EX EX DC WB

IF RF RF RF RF RF EX DC WB

<2>

<1> CACHE instruction start

<2> CACHE instruction complete

When the CACHE instruction enters the DC pipe-stage, the pipeline stalls while the CACHE instruction is

executed. The pipeline begins running again when the CACHE instruction is completed, allowing the instruction fetch

to proceed.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 121

4.7.3 Slip conditions

During the RF stage and the EX stage, internal logic will determine whether it is possible to start the current

instruction in this cycle. If all of the source operands are available (either from the register file or via the internal

bypass logic) and all the hardware resources necessary to complete the instruction will be available whenever

required, then the instruction “run”; otherwise, the instruction will “slip”. Slipped instructions are retired on

subsequent cycles until they issue. The backend of the pipeline (stages DC and WB) will advance normally during

slips in an attempt to resolve the conflict. NOPs will be inserted into the bubble in the pipeline. Instructions killed by

branch likely instructions, ERET or exceptions will not cause slips.

Figure 4-37. Load Data Interlock

(a) VR4121, VR4122, VR4131, VR4181A

<1>

Add A,B

Load B

Load A IF RF EX DC

IF RF EX DC

IF RF RF RF EX

RF EX DC WB

<2>

DC2

DC

IF

DC2

Bypass

WB

WB

WB

<1>

(b) VR4181

<1>

Add A,B

Load B

Load A IF RF EX DC

IF RF EX DC

IF RF RF EX DC

RF EX DC WB

<2>

WB

WB

IF

WB

Bypass

<1> Detect load data interlock

<2> Get target data

Load Data Interlock is detected in the RF stage and also the pipeline slips in the stage. Load Data Interlock

occurs when data fetched by a load instruction and data moved from HI, LO or CP0 register is required by the next

immediate instruction. The pipeline begins running again at the clock after the target of the load is read from the data

cache, HI, LO and CP0 registers. The data returned at the end of the DC stage is input into the end of the RF stage,

using the bypass multiplexers.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM122

Figure 4-38. MD Busy Interlock

(a) VR4121, VR4122, VR4131, VR4181A

MFHI/MFLO

IF RF EX DC WB

RF RFRFIF

<1>

IF RF EX EX EX

<2>

Bypass

MULT/DIV

EX DC WB

EX DC WBRF

<1> <1> <1>

Multiply/Divide

(b) VR4181

MFHI/MFLO

IF RF EX DC WB

EX DC WBRFIF

<1>

IF RF RF EX DC

<2>

WB

Bypass

<1> Detect MD busy interlock

<2> Get target data

MD Busy Interlock occurs when HI/LO register is required by MFHI/MFLO instruction before finishing

Multiply/Divide execution. The pipeline begins running again at the clock after finishing Multiply/Divide execution.

In the VR4121, VR4122, VR4131, and VR4181A, MD Busy Interlock is detected in the EX stage and also the

pipeline slips in the stage. The data returned from the HI/LO register at the end of the DC stage is input into the end

of the EX stage, using the bypass multiplexer.

In the VR4181, MD Busy Interlock is detected in the RF stage and also the pipeline slips in the stage. The data

returned from the HI/LO register at the end of the DC stage is input into the end of the RF stage, using the bypass

multiplexer.

Store-Load Interlock is detected in the EX stage and the pipeline slips in the RF stage. Store-Load Interlock

occurs when store instruction followed by load instruction is detected. The pipeline begins running again one clock

later.

Coprocessor 0 Interlock is detected in the EX stage and the pipeline slips in the RF stage. Coprocessor Interlock

occurs when an MTC0 instruction for the Config or Status register is detected. The pipeline begins running again one

clock later.

CHAPTER 4 PIPELILNE

User’s Manual U15509EJ2V0UM 123

4.7.4 Bypassing

In some cases, data and conditions produced in the EX, DC and WB stages of the pipeline are made available to

the EX stage (only) through the bypass data path.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or conditions to

be written to the register file at the end of the WB stage. Instead, the Bypass Control Unit is responsible for ensuring

data and conditions from later pipeline stages are available at the appropriate time for instructions earlier in the

pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register addresses supplied

to the register file.

User’s Manual U15509EJ2V0UM124

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

The VR4100 Series provides a memory management unit (MMU) which uses a translation lookaside buffer (TLB)

to translate virtual addresses into physical addresses. This chapter describes the virtual and physical address

spaces, the virtual-to-physical address translation, the operation of the TLB in making these translations, and the

CP0 registers that provide the software interface to the TLB.

5.1 Processor Modes

5.1.1 Operating mode

The processor has three operating modes, and accessible address spaces are determined by these modes.

• User mode

• Supervisor mode

• Kernel mode

User and Kernel modes are common to all VR-Series processors. Generally, Kernel mode is used to executing the

operating system, while User mode is used to run application programs. The VR4000 Series TM and later processors

have a third mode, which is called Supervisor mode and categorized in between User and Kernel modes. This mode

is used to configure a high-security system.

When an exception occurs, the CPU enters Kernel mode, and remains in this mode until an exception return

instruction (ERET) is executed. The ERET instruction brings back the processor to the mode in which it was just

before the exception occurs.

Access to the kernel address space is allowed when the processor is in Kernel mode.

Access to the supervisor address space is allowed when the processor is in Kernel or Supervisor mode.

Access to the user address space is allowed in any of the three operating modes.

5.1.2 Addressing mode

In the VR4100 Series, 32- or 64-bit mode is independently selectable for User, Supervisor, and Kernel operating

modes. A processor in 64-bit mode translates 64-bit addresses and processes data in 64-bit unit.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 125

5.2 Translation Lookaside Buffer (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB. The on-chip TLB is a fully-

associative memory that holds 32 entries, which provide mapping to 32 odd/even page pairs for one entry. The

pages can have five different sizes, 1 K, 4 K, 16 K, 64 K, and 256 K, and can be specified in each entry. If it is

supplied with a virtual address, each of the 32 TLB entries is checked simultaneously to see whether they match the

virtual addresses that are provided with the ASID field and saved in the EntryHi register.

If there is a virtual address match, or “hit,” in the TLB, the physical page number is extracted from the TLB and

concatenated with the offset to form the physical address.

If no match occurs (TLB “miss”), an exception is taken and software refills the TLB from the page table resident in

memory. The software writes to an entry selected using the Index register or a random entry indicated in the

Random register.

If more than one entry in the TLB matches the virtual address being translated, TLB operations are not performed

correctly. In the VR4181, the TLB-Shutdown (TS) bit of the Status register is set to 1, and the TLB becomes unusable

(an attempt to access the TLB results in a TLB Refill exception regardless of whether there is an entry that hits). The

TS bit can be cleared only by a reset. The VR4121, VR4122, VR4131, and VR4181A have no TS bit, and their

operation is undefined if more than one entry in the TLB matches.

Note that virtual addresses may be converted to physical addresses without using a TLB, depending on the

address space that is being subjected to address translation. For example, address translation for the kseg0 or

kseg1 address space does not use mapping. The physical addresses of these address spaces are determined by

subtracting the base address of the address space from the virtual addresses.

5.2.1 Format of a TLB entry

Each TLB entry has fields corresponding to the EntryHi, EntryLo0, EbtryLo1, and PageMask registers. The format

of the EntryHi, EntryLo0, EbtryLo1, and PageMask registers are nearly the same as the TLB entry. However, the bit

in the EntryHi register that corresponds to the TLB G bit is a reserved bit (0), and the bit in the TLB entry that

corresponds to the G bit of the EntryLo register is reserved to 0. For details about other bits, refer to the descriptions

of each register.

Figure 5-1 shows the TLB entry formats for both 32- and 64-bit modes.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM126

Figure 5-1. Format of a TLB Entry

127

0 MASK

(a) 32-bit Mode

(b) 64-bit Mode

0

115 114

95

VPN2

63 60 59 38 37 35 34 33 32

PFN C D V 00

31 28 27 6 5 3 2 1 0

PFN C D V 00

63 28 27 6 5 3 2 1 0

PFN C D V 00

127 92 91 70 69 67 66 65 64

PFN C D V 00

191 168 167190 189 139 137138 136 135 128

VPN2 G 0 ASID0R

G 0 ASID

75 73 72 71 6474

107 106 96

255

0 MASK 0

211 210 203 202 192

5.2.2 Manipulation of TLB

The contents of each TLB entry can be read or written through the EntryHi, EntryLo0, EbtryLo1, and PageMask

registers with TLB manipulation instructions, as shown in Figure 5-2. An entry specified through the Index register or

indicated in the Random register is used as a target.

The TLB must also be initialized and set after reset. Refer to VR Series Programming Guide Application Note

for details about procedures and program examples of initialization.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 127

Figure 5-2. TLB Manipulation Overview

TLB entry specified
by Index register or
Random register

31

PageMask EntryHi EntryLo1 EntryLo0

0

TLB

0127/255

5.2.3 TLB instructions

The instructions used for TLB control are described below. Refer to Chapter 9 for details about each instruction.

(1) Translation lookaside buffer probe (TLBP)

The translation lookaside buffer probe (TLBP) instruction loads the Index register with a TLB number that

matches the content of the EntryHi register. If there is no TLB number that matches the TLB entry, the highest-

order bit of the Index register is set.

(2) Translation lookaside buffer read (TLBR)

The translation lookaside buffer read (TLBR) instruction loads the EntryHi, EntryLo0, EntryLo1, and PageMask

registers with the content of the TLB entry indicated by the content of the Index register.

(3) Translation lookaside buffer write index (TLBWI)

The translation lookaside buffer write index (TLBWI) instruction writes the contents of the EntryHi, EntryLo0,

EntryLo1, and PageMask registers to the TLB entry indicated by the content of the Index register.

(4) Translation lookaside buffer write random (TLBWR)

The translation lookaside buffer write random (TLBWR) instruction writes the contents of the EntryHi, EntryLo0,

EntryLo1, and PageMask registers to the TLB entry indicated by the content of the Random register.

5.2.4 TLB exceptions

If there is no TLB entry that matches the virtual address, a TLB Refill exception occurs. If the access control bits

(D and V) indicate that the access is not valid, a TLB Modified or TLB Invalid exception occurs. If the C bit is 010, the

retrieved physical address directly accesses main memory, bypassing the cache.

See Chapter 6 for details of the TLB Miss exception.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM128

5.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor

with the virtual addresses of all entries in the TLB. Either of the following comparisons is performed for the virtual

page number (VPN):

• In 32-bit mode, the high-order bitsNote of the 32-bit virtual address are compared to the contents of the VPN2

(virtual page number divided by two) of each TLB entry.

• In 64-bit mode, the high-order bitsNote of the 64-bit virtual address are compared to the contents of the VPN2

(virtual page number divided by two) and R of each TLB entry.

Note The number of bits differs from page sizes. The table below shows the examples of high-order bits of

the virtual address in page size of 256 KB and 1 KB.

Page size

Mode

256 KB 1 KB

32-bit mode bits 31 to 19 bits 31 to 11

64-bit mode bits 63, 62, 39 to 19 bits 63, 62, 39 to 11

It is a match when there is an entry whose VPN field is the same as that of virtual address, and either:

• the Global (G) bit of the TLB entry is set to 1, or

• the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit.

If a TLB entry matches, the physical address and access control bits (C, D, and V) are retrieved from the matching

TLB entry. While the V bit of the entry must be set to 1 for a valid address translation to take place, it is not involved

in the determination of a matching TLB entry. The offset is concatenated to the retrieved physical address. An

offset, which indicates an address within the page frame space, is the low-order bits of the virtual address and is

output without passing through the TLB.

If there is no match, a TLB Refill exception is taken by the processor and software is allowed to refill the TLB from

a page table of virtual/physical addresses in memory.

Figure 5-3 illustrates an outline of the address translation, and Figure 5-4 illustrates the TLB address translation

flow.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 129

Figure 5-3. Virtual-to-Physical Address Translation

ASID VPN

G

1 VPN (virtual page number, high-order
 bits of virtual address) is compared
 with that in TLB.

2 If there is a match, PFN (page frame
 number, high-order bits of physical
 address) is output from TLB.

3 The offset, which does not pass
 through TLB, is concatenated to PFN.

ASID

PFN

PFN

Physical address

TLB

VPN
TLB
entry

Virtual address

Offset

Offset

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM130

Figure 5-4. Address Translation in TLB

No

No

Yes

Yes

Address
OK?

Virtual address
input

Physical address
output

User mode?

Mapped
adderss?

Address Error
exception

No

No

Yes

VPN match?

No

Yes

G bit = 1?

No

Yes

V bit = 1?

No

Yes

D bit = 1?

No

Yes

Uncached?

No

Yes

No

Yes

No

Yes

Yes

No

Write?

No

Yes

No

Yes

ASID match?

TLB Invalid
exception

Physical address
output

Address
OK?

Supervisor
mode?

Address
OK?

Address Error
exception

Address Error
exception

Yes

32-bit
address?

TLB Refill
exception

XTLB Refill
exception

TLB Modified
exception

Access main memory Access cache

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 131

5.3.1 32-bit mode address translation

Figure 5-5 shows the virtual-to-physical-address translation of a 32-bit mode address. The pages can have five

different sizes between 1 KB (10 bits) and 256 KB (18 bits), each being 4 times as large as the preceding one in

ascending order, that is 1 K, 4 K, 16 K, 64 K, and 256 K. This figure illustrates the two possible page sizes: a 1 KB

page (10 bits) and a 256 KB page (18 bits).

• Shown at the top of Figure 5-5 is the virtual address space in which the page size is 1 KB and the offset is 10

bits. The 22 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a

page table of 4 M entries.

• Shown at the bottom of Figure 5-5 is the virtual address space in which the page size is 256 KB and the offset

is 18 bits. The 14 bits excluding the ASID field represents the VPN, enabling selecting a page table of 16 K

entries.

Figure 5-5. 32-bit Mode Virtual Address Translation

39

TLB

TLB

22 bits = 4M pages

Virtual-to-physical address
translation in TLB

Note

Offset passed unchanged
and used for physical address

Offset passed unchanged
and used for physical address

Virtual address with
4M (222) 1KB pages

32-bit physical
address

14 bits = 16K pages

PFN Offset

ASID VPN Offset

32 31

31 0

29 28 10 9 0

39

ASID VPN Offset

32 31 29 28 18 17 0
Virtual address with
16K (214) 256KB pages

Virtual-to-physical address
translation in TLB

Note

Note Bits 31 to 29 of the virtual address select user, supervisor, or kernel address spaces.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM132

5.3.2 64-bit mode address translation

Figure 5-6 shows the virtual-to-physical-address translation of a 64-bit mode address. The pages can have five

different sizes between 1 KB (10 bits) and 256 KB (18 bits), each being 4 times as large as the preceding one in

ascending order, that is 1 K, 4 K, 16 K, 64 K, and 256 K. This figure illustrates the two possible page sizes: a 1 KB

page (10 bits) and a 256 KB page (18 bits).

• Shown at the top of Figure 5-6 is the virtual address space in which the page size is 1 KB and the offset is 10

bits. The 30 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a

page table of 1 G entry.

• Shown at the bottom of Figure 5-6 is the virtual address space in which the page size is 256 KB and the offset

is 18 bits. The 22 bits excluding the ASID field represents the VPN, enabling selecting a page table of 4 M

entries.

Figure 5-6. 64-bit Mode Virtual Address Translation

71 64 63 62 61 40 39 10 9 0

TLB

TLB

PFN Offset

ASID 0 or -1 VPN Offset

31 0

71

ASID 0 or -1 VPN Offset

64 63 62 61 18 1740 39 0

30 bits = 1G pages

Virtual address with
1G (230) 1KB pages

22 bits = 4M pages

Virtual address with
4 M (222) 256KB pages

Virtual-to-physical address
translation in TLB

Offset passed unchanged
and used for physical address

Offset passed unchanged
and used for physical address

32-bit physical
address

Virtual-to-physical address
translation in TLB

Note

Note

Note Bits 63 and 62 of the virtual address select user, supervisor, or kernel address spaces.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 133

5.4 Address Spaces

The address space of the CPU is extended in memory management system, by converting (translating) huge

virtual memory addresses into physical addresses.

The physical address space of the VR4100 Series is 4 GB and 32-bit width addresses are used.

For the virtual address space, up to 2 GB (231 bytes) are provided as a user’s area and 32-bit width addresses are

used in the 32-bit mode. In the 64-bit mode, up to 1 TB (240 bytes) is provided as a user’s area and 64-bit width

addresses are used. For the format of the TLB entry in each mode, refer to 5.2.1.

As shown in Figures 5-5 and 5-6, the virtual address is extended with an address space identifier (ASID), which

reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0 EntryHi register, and

the Global (G) bit is in the EntryLo0 and EntryLo1 registers, described later in this chapter.

5.4.1 User mode virtual address space

During User mode, a 2 GB (231 bytes) virtual address space (useg) can be used in the 32-bit mode. In the 64-bit

mode, a 1 TB (240 bytes) virtual address space (xuseg) can be used.

As shown in Tables 5-5 and 5-6, each virtual address is extended independently as another virtual address by

setting an 8-bit address space ID area (ASID), to support user processes of up to 256. The contents of TLB can be

retained after context switching by allocating each process by ASID. useg and xuseg can be referenced via TLB.

Whether a cache is used or not is determined for each page by the TLB entry (depending on the C bit setting in the

TLB entry).

The User segment starts at address 0 and the current active user process resides in either useg (in 32-bit mode)

or xuseg (in 64-bit mode). The TLB identically maps all references to useg/xuseg from all modes, and controls cache

accessibility.

The processor operates in User mode when the Status register contains the following bit-values:

• KSU = 10

• EXL = 0

• ERL = 0

In conjunction with these bits, the UX bit in the Status register selects 32- or 64-bit User mode addressing as

follows:

• When UX = 0, 32-bit useg space is selected.

• When UX = 1, 64-bit xuseg space is selected.

Figure 5-7 shows the address mapping for the User mode, and Table 5-1 lists the characteristics of each user

segment (useg and xuseg).

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM134

Figure 5-7. User Mode Address Space

0xFFFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

0xFFFF FFFF FFFF FFFF

0x0000 0100 0000 0000
0x0000 00FF FFFF FFFF

0x0000 0000 0000 0000

useg xuseg

64-bit Mode32-bit ModeNote

Address Error

2GB
TLB Mapped

Address Error

1TB
TLB Mapped

Note The VR4100 Series uses 64-bit addresses within it. When the processor is running in Kernel mode, it

saves the contents of each register or restores their previous contents to initialize them before

switching the context. For 32-bit mode addressing, bit 31 is sign-extended to bits 32 to 63, and the

resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode programs to

generate invalid addresses. If context switching occurs and the processor enters Kernel mode,

however, an attempt may be made to save an address other than the sign-extended 32-bit address

mentioned above to a 64-bit register. In this case, user-mode programs are likely to generate an

invalid address.

Table 5-1. User Mode Segments

Mode Address bit Status register bit value Segment Address range Size

value KSU EXL ERL UX name

32-bit A31 = 0 10 0 0 0 useg 0x0000 0000

to

0x7FFF FFFF

2 GB

(231 bytes)

64-bit A(63:40) = 0 10 0 0 1 xuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 TB

(240 bytes)

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 135

(1) useg (32-bit mode)

In User mode, when UX = 0 in the Status register and the most significant bit of the virtual address is 0, this

virtual address space is labeled useg.

Any attempt to reference an address with the most-significant bit set while in User mode causes an Address

Error exception (see CHAPTER 6 EXCEPTION PROCESSING).

The TLB Refill exception vector is used for TLB misses.

(2) xuseg (64-bit mode)

In User mode, when UX = 1 in the Status register and bits 63 to 40 of the virtual address are all 0, this virtual

address space is labeled xuseg.

Any attempt to reference an address with bits 63:40 equal to 1 causes an Address Error exception (see

CHAPTER 6 EXCEPTION PROCESSING).

The XTLB Refill exception vector is used for TLB misses.

5.4.2 Supervisor mode virtual address space

Supervisor mode is designed for layered operating systems in which a true kernel runs in Kernel mode, and the

rest of the operating system runs in Supervisor mode.

All of the suseg, sseg, xsuseg, xsseg, and csseg spaces are referenced via TLB. Whether cache can be used or

not is determined by bit C of each page’s TLB entry.

The processor operates in Supervisor mode when the Status register contains the following bit-values:

• KSU = 01

• EXL = 0

• ERL = 0

In conjunction with these bits, the SX bit in the Status register selects 32- or 64-bit Supervisor mode addressing as

follows:

• When SX = 0, 32-bit supervisor space is selected.

• When SX = 1, 64-bit supervisor space is selected.

Figure 5-8 shows the supervisor mode address space, and Table 5-2 lists the characteristics of the Supervisor

mode segments.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM136

Figure 5-8. Supervisor Mode Address Space

0xFFFF FFFF

0xC000 0000
0xBFFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

0xE000 0000
0xDFFF FFFF

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF C000 0000
0xFFFF FFFF BFFF FFFF

0xFFFF FFFF E000 0000
0xFFFF FFFF DFFF FFFF

0x4000 0000 0000 0000
0x3FFF FFFF FFFF FFFF

0x4000 0100 0000 0000
0x4000 00FF FFFF FFFF

0x0000 0000 0000 0000

0x0000 0100 0000 0000
0x0000 00FF FFFF FFFF

suseg

sseg csseg

xsseg

xsuseg

0.5GB
TLB Mapped

0.5GB
TLB Mapped

64-bit Mode32-bit ModeNote

Address Error

2GB
TLB Mapped

Address Error

1TB
TLB Mapped

Address Error Address Error

Address Error

1TB
TLB Mapped

Note The VR4100 Series uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-

extended to bits 32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible

for 32-bit mode programs to generate invalid addresses. In an operation of base register + offset for

addressing, however, a two’s complement overflow may occur, causing an invalid address. Note that

the result becomes undefined. Two factors that can cause a two’s complement follow:

• When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset”

is 1

• When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register + offset”

is 0

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 137

Table 5-2. 32-bit and 64-bit Supervisor Mode Segments

Mode Address bit Status register bit value Segment Address range Size

value KSU EXL ERL SX name

32-bit A31 = 0 01 0 0 0 suseg 0x0000 0000

to

0x7FFF FFFF

2 GB

(231 bytes)

32-bit A(31:29) = 110 01 0 0 0 sseg 0xC000 0000

to

0xDFFF FFFF

512 MB

(229 bytes)

64-bit A(63:62) = 00 01 0 0 1 xsuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

1 TB

(240 bytes)

64-bit A(63:62) = 01 01 0 0 1 xsseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

1 TB

(240 bytes)

64-bit A(63:62) = 11 01 0 0 1 csseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

512 MB

(229 bytes)

(1) suseg (32-bit Supervisor mode, user space)

When SX = 0 in the Status register and the most-significant bit of the virtual address space is set to 0, the suseg

virtual address space is selected; it covers 2 GB (231 bytes) of the current user address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped

space starts at virtual address 0x0000 0000 and runs through 0x7FFF FFFF.

(2) sseg (32-bit Supervisor mode, supervisor space)

When SX = 0 in the Status register and the three most-significant bits of the virtual address space are 110, the

sseg virtual address space is selected; it covers 512 MB (229 bytes) of the current supervisor virtual address

space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs through 0xDFFF FFFF.

(3) xsuseg (64-bit Supervisor mode, user space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 00, the xsuseg

virtual address space is selected; it covers 1 TB (240 bytes) of the current user address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped

space starts at virtual address 0x0000 0000 0000 0000 and runs through 0x0000 00FF FFFF FFFF.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM138

(4) xsseg (64-bit Supervisor mode, current supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 01, the xsseg virtual

address space is selected; it covers 1 TB (240 bytes) of the current supervisor virtual address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped

space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

(5) csseg (64-bit Supervisor mode, separate supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 11, the csseg

virtual address space is selected; it covers 512 MB (229 bytes) of the separate supervisor virtual address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This

mapped space begins at virtual address 0xFFFF FFFF C000 0000 and runs through 0xFFFF FFFF DFFF FFFF.

5.4.3 Kernel mode virtual address space

If the Status register satisfies any of the following conditions, the processor runs in Kernel mode.

• KSU = 00

• EXL = 1

• ERL = 1

The addressing width in Kernel mode varies according to the state of the KX bit of the Status register, as follows:

• When KX = 0, 32-bit kernel space is selected.

• When KX = 1, 64-bit kernel space is selected.

The processor enters Kernel mode whenever an exception is detected and it remains in Kernel mode until an

exception return (ERET) instruction is executed and results in ERL and/or EXL = 0. The ERET instruction restores

the processor to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual

address, as shown in Figure 5-9. Table 5-3 lists the characteristics of the 32-bit Kernel mode segments, and Table

5-4 lists the characteristics of the 64-bit Kernel mode segments.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 139

Figure 5-9. Kernel Mode Address Space

0xFFFF FFFF

0xC000 0000
0xBFFF FFFF

0xA000 0000
0x9FFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

0xE000 0000
0xDFFF FFFF

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF A000 0000
0xFFFF FFFF 9FFF FFFF

0xFFFF FFFF E000 0000
0xFFFF FFFF DFFF FFFF

0xFFFF FFFF C000 0000
0xFFFF FFFF BFFF FFFF

0xC000 00FF 8000 0000
0xC000 00FF 7FFF FFFF

0xFFFF FFFF 8000 0000
0xFFFF FFFF 7FFF FFFF

0x0000 0000 0000 0000

0xC000 0000 0000 0000
0xBFFF FFFF FFFF FFFF

0x8000 0000 0000 0000
0x7FFF FFFF FFFF FFFF

0x4000 0100 0000 0000
0x4000 00FF FFFF FFFF

0x4000 0000 0000 0000
0x3FFF FFFF FFFF FFFF

0x0000 0100 0000 0000
0x0000 00FF FFFF FFFF

kuseg

kseg3

ksseg

kseg1

kseg0

ckseg3

cksseg

ckseg1

ckseg0

xkseg

xkphys

xksseg

xkuseg

TLB Mapped

TLB Unmapped
(Refer to Figure 5-10)

0.5 GB
TLB Mapped

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Uncached

0.5 GB
TLB Unmapped
CacheableNote2

0.5 GB
TLB Mapped

0.5 GB
TLB Mapped

0.5 GB
TLB Unmapped

Uncached

0.5 GB
TLB Unmapped
CacheableNote2

64-bit Mode32-bit ModeNote1

Address Error

2 GB
TLB Mapped

Address Error

1 TB
TLB Mapped

Address Error

1 TB
TLB Mapped

Notes 1. The VR4100 Series uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-

extended to bits 32 to 63, and the resulting 32 bits are used for addressing. Usually, a 64-bit

instruction is used for the program in 32-bit mode. In an operation of base register + offset for

addressing, however, a two’s complement overflow may occur, causing an invalid address. Note

that the result becomes undefined. Two factors that can cause a two’s complement follow:

• When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register +

offset” is 1

• When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation “base register +

offset” is 0

2. The K0 field of the Config register controls cacheability of kseg0 and ckseg0.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM140

Figure 5-10. xkphys Area Address Space

0xBFFF FFFF FFFF FFFF

0xB800 0000 0000 0000
0xB7FF FFFF FFFF FFFF

0xB000 0001 0000 0000
0xB000 0000 FFFF FFFF

0xB000 0000 0000 0000
0xAFFF FFFF FFFF FFFF

0xA800 0001 0000 0000
0xA800 0000 FFFF FFFF

0xA800 0000 0000 0000
0xA7FF FFFF FFFF FFFF

0xA000 0001 0000 0000
0xA000 0000 FFFF FFFF

0xA000 0000 0000 0000
0x9FFF FFFF FFFF FFFF

0x9800 0001 0000 0000
0x9800 0000 FFFF FFFF

0x9800 0000 0000 0000
0x97FF FFFF FFFF FFFF

0x9000 0001 0000 0000
0x9000 0000 FFFF FFFF

0x9000 0000 0000 0000
0x8FFF FFFF FFFF FFFF

0x8800 0001 0000 0000
0x8800 0000 FFFF FFFF

0x8800 0000 0000 0000
0x87FFF FFFF FFFF FFFF

0x8000 0001 0000 0000
0x8000 0000 FFFF FFFF

0x8000 0000 0000 0000

0xB800 0001 0000 0000
0xB800 0000 FFFF FFFF 4 GB

TLB Unmapped
Cacheable

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Uncached

4 GB
TLB Unmapped

Cacheable

4 GB
TLB Unmapped

Cacheable

Address Error

Address Error

Address Error

Address Error

Address Error

Address Error

Address Error

Address Error

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 141

Table 5-3. 32-bit Kernel Mode Segments

Address bit value Status register bit value Segment Virtual address Physical Size

KSU EXL ERL KX name Address

A31 = 0 0 kuseg 0x0000 0000

to

0x7FFF FFFF

TLB map 2 GB

(231 bytes)

A(31:29) = 100 0 kseg0 0x8000 0000

to

0x9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(31:29) = 101 0 kseg1 0xA000 0000

to

0xBFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(31:29) = 110 0 ksseg 0xC000 0000

to

0xDFFF FFFF

TLB map 512 MB

(229 bytes)

A(31:29) = 111

KSU = 00

or

EXL = 1

or

ERL = 1

0 kseg3 0xE000 0000

to

0xFFFF FFFF

TLB map 512 MB

(229 bytes)

(1) kuseg (32-bit Kernel mode, user space)

When KX = 0 in the Status register, and the most-significant bit of the virtual address space is 0, the kuseg

virtual address space is selected; it is the current 2 GB (231-byte) user address space.

The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so

that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using

r0 as a base register.

(2) kseg0 (32-bit Kernel mode, kernel space 0)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 100, the

kseg0 virtual address space is selected; it is the current 512 MB (229-byte) physical space.

References to kseg0 are not mapped through TLB; the physical address selected is defined by subtracting

0x8000 0000 from the virtual address.

The K0 field of the Config register controls cacheability (refer to 5.5.8).

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM142

(3) kseg1 (32-bit Kernel mode, kernel space 1)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 101, the

kseg1 virtual address space is selected; it is the current 512 MB (229-byte) physical space.

References to kseg1 are not mapped through TLB; the physical address selected is defined by subtracting

0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and main memory (or memory-mapped I/O device

registers) is accessed directly.

(4) ksseg (32-bit Kernel mode, supervisor space)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 110, the

ksseg virtual address space is selected; it is the current 512 MB (229-byte) virtual address space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to ksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(5) kseg3 (32-bit Kernel mode, kernel space 3)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 111, the

kseg3 virtual address space is selected; it is the current 512 MB (229-byte) kernel virtual space. The virtual

address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

References to kseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 143

Table 5-4. 64-bit Kernel Mode Segments

Address bit Status register bit value Segment Virtual address Physical Size

value KSU EXL ERL KX name address

A(63:62) = 00 1 xkuseg 0x0000 0000 0000 0000

to

0x0000 00FF FFFF FFFF

TLB map 1 TB

(240 bytes)

A(63:62) = 01 1 xksseg 0x4000 0000 0000 0000

to

0x4000 00FF FFFF FFFF

TLB map 1 TB

(240 bytes)

A(63:62) = 10 1 xkphys 0x8000 0000 0000 0000

to

0xBFFF FFFF FFFF FFFF

0x0000 0000

to

0xFFFF FFFF

4 GB

(232 bytes)

A(63:62) = 11 1 xkseg 0xC000 0000 0000 0000

to

0xC000 00FF 7FFF FFFF

TLB map 240 - 231 bytes

A(63:62) = 11

A(63:31) = -1

1 ckseg0 0xFFFF FFFF 8000 0000

to

0xFFFF FFFF 9FFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(63:62) = 11

A(63:31) = -1

1 ckseg1 0xFFFF FFFF A000 0000

to

0xFFFF FFFF BFFF FFFF

0x0000 0000

to

0x1FFF FFFF

512 MB

(229 bytes)

A(63:62) = 11

A(63:31) = -1

1 cksseg 0xFFFF FFFF C000 0000

to

0xFFFF FFFF DFFF FFFF

TLB map 512 MB

(229 bytes)

A(63:62) = 11

A(63:31) = -1

KSU = 00

or

EXL = 1

or

ERL = 1

1 ckseg3 0xFFFF FFFF E000 0000

to

0xFFFF FFFF FFFF FFFF

TLB map 512 MB

(229 bytes)

(6) xkuseg (64-bit Kernel mode, user space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 00, the xkuseg virtual

address space is selected; it is the 1 TB (240-byte) current user address space. The virtual address is extended

with the contents of the 8-bit ASID field to form a unique virtual address.

References to xkuseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

If the ERL bit of the Status register is 1, the user address space is assigned 2 GB (231 bytes) without TLB

mapping and becomes unmapped (with virtual addresses being used as physical addresses) and uncached so

that the cache error handler can use it. This allows the Cache Error exception code to operate uncached using

r0 as a base register.

(7) xksseg (64-bit Kernel mode, current supervisor space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 01, the xksseg address

space is selected; it is the 1 TB (240-byte) current supervisor address space. The virtual address is extended

with the contents of the 8-bit ASID field to form a unique virtual address.

References to xksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM144

(8) xkphys (64-bit Kernel mode, physical spaces)

When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 10, the virtual address

space is called xkphys and selected as either cached or uncached. If any of bits 58 to 32 of the address is 1, an

attempt to access that address results in an address error.

Whether cache can be used or not is determined by bits 59 to 61 of the virtual address. Table 5-5 shows

cacheability corresponding to 8 address spaces.

Table 5-5. Cacheability and the xkphys Address Space

Bits 61 to 59 Cacheability Address range

0 Cached 0x8000 0000 0000 0000

to

0x8000 0000 FFFF FFFF

1 Cached 0x8800 0000 0000 0000

to

0x8800 0000 FFFF FFFF

2 Uncached 0x9000 0000 0000 0000

to

0x9000 0000 FFFF FFFF

3 Cached 0x9800 0000 0000 0000

to

0x9800 0000 FFFF FFFF

4 Cached 0xA000 0000 0000 0000

to

0xA000 0000 FFFF FFFF

5 Cached 0xA800 0000 0000 0000

to

0xA800 0000 FFFF FFFF

6 Cached 0xB000 0000 0000 0000

to

0xB000 0000 FFFF FFFF

7 Cached 0xB800 0000 0000 0000

to

0xB800 0000 FFFF FFFF

(9) xkseg (64-bit Kernel mode, kernel spaces)

When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 11, the virtual address

space is called xkseg and selected as either of the following:

• Kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the

contents of the 8-bit ASID field to form a unique virtual address

References to xkseg are mapped through TLB. Whether cache can be used or not is determined by bit C

of each page’s TLB entry.

• one of the four 32-bit kernel compatibility spaces, as described in the next section.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 145

(10)64-bit Kernel mode compatible spaces (ckseg0, ckseg1, cksseg, and ckseg3)

If the conditions listed below are satisfied in Kernel mode, ckseg0, ckseg1, cksseg, or ckseg3 (each having 512

Mbytes) is selected as a compatible space according to the state of the bits 30 and 29 (two low-order bits) of the

address.

• The KX bit of the Status register is 1.

• Bits 63 and 62 of the 64-bit virtual address are 11.

• Bits 61 to 31 of the virtual address are all 1.

(a) ckseg0

This space is an unmapped region, compatible with the 32-bit mode kseg0 space. The K0 field of the Config

register controls cacheability and coherency (refer to 5.5.8).

(b) ckseg1

This space is an unmapped and uncached region, compatible with the 32-bit mode kseg1 space.

(c) cksseg

This space is the current supervisor virtual space, compatible with the 32-bit mode ksseg space.

References to cksseg are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

(d) ckseg3

This space is the current supervisor virtual space, compatible with the 32-bit mode kseg3 space.

References to ckseg3 are mapped through TLB. Whether cache can be used or not is determined by bit C of

each page’s TLB entry.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM146

5.5 Memory Management Registers

This section describes the CP0 registers that are accessed by the memory management system and software.

Table 5-6 lists the CP0 registers. About the exception processing registers of the CP0 registers, refer to CHAPTER 6

EXCEPTION PROCESSING.

Table 5-6 CP0 Registers

(a) Memory Management Registers (b) Exception Processing Registers

Register name Register number Register name Register number

Index register 0 Context register 4

Random register 1 BadVAddr register 8

EntryLo0 register 2 Count register 9

EntryLo1 register 3 Compare register 11

PageMask register 5 Status register 12

Wired register 6 Cause register 13

EntryHi register 10 EPC register 14

PRId register 15 WatchLo register 18

Config register 16 WatchHi register 19

LLAddr register Note1 17 XContext register 20

TagLo register 28 Parity Error register Note2 26

TagHi register 29 Cache Error register Note2 27

− − ErrorEPC register 30

Notes 1. This register is defined to maintain compatibility with the VR4000 and VR4400. The

content of this register is meaningless in the normal operation.

2. This register is defined to maintain compatibility with the VR4100. This register is

not used in the normal operation.

Details about each register are explained below. The parenthesized number in section titles is the register

number (refer to 1.2.3).

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 147

5.5.1 Index register (0)

The Index register is a 32-bit, read/write register containing five low-order bits to index an entry in the TLB. The

most-significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB read (TLBR) or TLB write index (TLBWI)

instructions.

The contents of the Index register after reset are undefined so that it must be initialized by software.

Figure 5-11. Index Register

31

P 0 Index

30 5 4 0

P : Indicates whether probing is successful or not. It is set to 1 if the latest TLBP instruction fails. It is

cleared to 0 when the TLBP instruction is successful.

Index : Specifies an index to a TLB entry that is a target of the TLBR or TLBWI instruction.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

5.5.2 Random register (1)

The Random register is a read-only register. The low-order 5 bits are used in referencing a TLB entry. This

register is decremented each time an instruction is executed. The values that can be set in the register are as

follows:

• The lower bound is the content of the Wired register.

• The upper bound is 31.

The Random register specifies the entry in the TLB that is affected by the TLBWR instruction. The register is

readable to verify proper operation of the processor.

The Random register is set to the value of the upper bound upon Cold Reset. This register is also set to the upper

bound when the Wired register is written. Figure 5-12 shows the format of the Random register.

Figure 5-12. Random Register

31

0 Random

5 4 0

Random : TLB random index

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM148

5.5.3 EntryLo0 (2) and EntryLo1 (3) registers

The EntryLo register consists of two registers that have identical formats: EntryLo0, used for even virtual pages

and EntryLo1, used for odd virtual pages. The EntryLo0 and EntryLo1 registers are both read-/write-accessible.

They are used to access the built-in TLB. When a TLB read/write operation is carried out, the EntryLo0 and EntryLo1

registers hold the contents of the low-order 32 bits of TLB entries at even and odd addresses, respectively.

The contents of these registers after reset are undefined so that they must be initialized by software.

Figure 5-13. EntryLo0 and EntryLo1 Registers

(a) 32-bit Mode

(b) 64-bit Mode

31 28 27 6 5 3 2 1 0

PFN C D V G0EntryLo0

31 28 27 6 5 3 2 1 0

PFN C D V G0EntryLo1

63 28 27 6 5 3 2 1 0

PFN C D V G0EntryLo0

63 28 27 6 5 3 2 1 0

PFN C D V G0EntryLo1

PFN : Page frame number; high-order bits of the physical address.

C : Specifies the TLB page attribute (see Table 5-7).

D : Dirty. If this bit is set to 1, the page is marked as dirty and, therefore, writable. This bit is actually

a write-protect bit that software can use to prevent alteration of data.

V : Valid. If this bit is set to 1, it indicates that the TLB entry is valid; otherwise, a TLB Invalid

exception (TLBL or TLBS) occurs.

G : Global. If this bit is set in both EntryLo0 and EntryLo1, then the processor ignores the ASID during

TLB lookup.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The coherency attribute (C) bits are used to specify whether to use the cache in referencing a page. When the

cache is used, whether the page attribute is “cached” or “uncached” is selected by algorithm.

Table 5-7 lists the page attributes selected according to the value in the C bits.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 149

Table 5-7. Cache Algorithm

C bit value Cache algorithm

0 Cached

1 Cached

2 Uncached

3 Cached

4 Cached

5 Cached

6 Cached

7 Cached

5.5.4 PageMask register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a comparison

mask that sets the page size for each TLB entry, as shown in Table 5-8. Page sizes must be from 1 KB to 256 KB.

TLB read and write instructions use this register as either a source or a destination; Bits 18 to 11 that are targets

of comparison are masked during address translation.

The contents of the PageMask register after reset are undefined so that it must be initialized by software.

Figure 5-14. PageMask Register

31 19 18 11 10 0

MASK 00

MASK : Page comparison mask, which determines the virtual page size for the corresponding entry.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Table 5-8 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB behaves

unexpectedly.

Table 5-8. Mask Values and Page Sizes

Page size Bit

18 17 16 15 14 13 12 11

1 KB 0 0 0 0 0 0 0 0

4 KB 0 0 0 0 0 0 1 1

16 KB 0 0 0 0 1 1 1 1

64 KB 0 0 1 1 1 1 1 1

256 KB 1 1 1 1 1 1 1 1

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM150

5.5.5 Wired register (6)

The Wired register is a read/write register that specifies the lower boundary of the random entry of the TLB as

shown in Figure 5-15. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be

overwritten by a TLBWI instruction. Random entries can be overwritten by both instructions.

Figure 5-15. Positions Indicated by the Wired Register

31

Wired register value

0

Range specified
by Random register

Range of wired entries

TLB

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to the value of

its upper bound (see 5.5.2 Random register (1)). Figure 5-16 shows the format of the Wired register.

Figure 5-16. Wired Register

31 5 4 0

0 Wired

Wired : TLB wired boundary

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 151

5.5.6 EntryHi register (10)

The EntryHi register is write-accessible. It is used to access the built-in TLB. The EntryHi register holds the high-

order bits of a TLB entry for TLB read and write operations. If a TLB Refill, TLB Invalid, or TLB Modified exception

occurs, the EntryHi register holds the high-order bit of the TLB entry. The EntryHi register is also set with the virtual

page number (VPN2) for a virtual address where an exception occurred and the ASID. See Chapter 6 for details of

the TLB exception.

The ASID is used to read from or write to the ASID field of the TLB entry. It is also checked with the ASID of the

TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBWI, and TLBR instructions.

The contents of the EntryHi register after reset are undefined so that it must be initialized by software.

Figure 5-17. EntryHi Register

31 11 10 8 7 0

(a) 32-bit Mode

(b) 64-bit Mode

VPN2 0 ASID

63 62 61 11 1040 39 8 7 0

Fill VPN2R 0 ASID

VPN2 : Virtual page number divided by two (mapping to two pages)

ASID : Address space ID. An 8-bit ASID field that lets multiple processes share the TLB; each process

has a distinct mapping of otherwise identical virtual page numbers.

R : Space type (00 → user, 01 → supervisor, 11 → kernel). Matches bits 63 and 62 of the virtual

address.

Fill : Reserved. Ignored on write. When read, returns zero.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM152

5.5.7 Processor Revision Identifier (PRId) register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains information identifying the

implementation and revision level of the CPU and CP0. Figure 5-18 shows the format of the PRId register.

Figure 5-18. PRId Register

31 16 15 8 7 0

0 Imp Rev

Imp : CPU core processor ID number (0x0C for the VR4100 Series)

Rev : CPU core processor revision number

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The processor revision number is stored as a value in the form y.x, where y is a major revision number in bits 7 to

4 and x is a minor revision number in bits 3 to 0.

The processor revision number identifies the revision of a CPU core. The major revision number (bits 7 to 4)

identifies the VR4100 Series processors as follows:

Processor Rev field

VR4121 0110xxxx

VR4122 0111xxxx (xxxx may be 0010 or less)

VR4131 1000xxxx

VR4181 0101xxxx

VR4181A 0111xxxx (xxxx may be 0011 or greater)

The minor revision number (bits 3 to 0) may be different even though the same processor names.

There is no guarantee that changes to the CPU core will necessarily be reflected in the PRId register, or changes

to the revision number necessarily reflect real CPU core changes. Therefore, create a program that does not depend

on the processor revision number field.

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 153

5.5.8 Config register (16)

The Config register specifies various configuration options selected on VR4100 Series processors.

Some configuration options, as defined by the EC, M16, and BE fields, are set by the hardware during Cold Reset

and are included in the Config register as read-only status bits for the software to access. Other configuration

options are read/write (AD, EP, and K0 fields) and controlled by software; on Cold Reset these fields are undefined.

Since only a subset of the VR4000 Series options are available in the VR4100 Series, some bits are set to constants

(e.g., bits 14 to 13) that were variable in the VR4000 Series. The Config register should be initialized by software

before caches are used. Figure 5-19 shows the format of the Config register.

The contents of writable fields except for IS and BP bits in the Config register after reset are undefined so that they

must be initialized by software.

Figure 5-19. Config Register (1/2)

(a) VR4121, VR4181

31 30 28 27 24 23 22 21 2019 18 17 16 15 14 13 12 11 9 8 6 5 3 2 0

0 EC EP AD 0 M16 0 1 0 BE 10 CS IC DC 0 K0

(b) VR4122

31 30 28 27 24 23 22 21 2019 18 17 16 15 14 13 12 11 9 8 6 5 3 2 0

IS EC EP AD 0 M16 0 1 BP BE 10 CS IC DC 0 K0

4

IB

(c) VR4131, VR4181A

31 30 28 27 24 23 22 21 2019 18 17 16 15 14 13 12 11 9 8 6 5 3 2 0

IS EC EP AD 0 M16 0 1 BP BE 10 CS IC DC 0 K0

4

IB DB

IS : Instruction streaming function (VR4122, VR4131, VR4181A only)

 0 → ON (default value)

 1 → OFF

EC : System clock ratio (see Table 5-9)

EP : Transfer data pattern (cache write-back pattern) setting

 0 → DD: 1 word/1 cycle

 Others → Reserved

AD : Accelerate data mode

 0 → VR4000 Series compatible mode

 1 → Reserved

M16 : MIPS16 ISA mode enable/disable indication (read only)

 0 → MIPS16 instruction cannot be executed

 1 → MIPS16 instruction can be executed

BE : Endian mode of memory and a kernel.

 0 → Little endian

 1 → Big endian (VR4131 only)

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM154

Figure 5-19. Config Register (2/2)

CS : Cache size mode indication (n = IC, DC). Fixed to 1 in the VR4100 Series.

 0 → Reserved

 1 → 2(n+10) bytes

IC : Instruction cache size indication. 2(IC+10) bytes in the VR4100 Series (see Table 5-10).

DC : Data cache size indication. 2(DC+10) bytes in the VR4100 Series (see Table 5-11).

IB : Instruction cache refill size setting (VR4122, VR4131, and VR4181A only, and fixed to 1 in the

VR4181A).

 0 → 4 words (16 bytes)

 1 → 8 words (32 bytes)

DB : Data cache refill size setting (VR4131 and VR4181A only, and fixed to 1 in the VR4181A).

 0 → 4 words (16 bytes)

 1 → 8 words (32 bytes)

K0 : kseg0 cache coherency algorithm

 010 → Uncached

 Others → Cached

1 : 1 is returned when read.

0 : 0 is returned when read.

Caution Be sure to set the EP field and the AD bit to 0. If they are set with any other values, the

processor may behave unexpectedly.

(1) Instruction streaming function (VR4122, VR4131, and VR4181A only)

Instruction streaming can shorten the period during which the pipeline is stalled. Usually, the pipeline is stalled

until the cache line is refilled if an instruction cache miss occurs. With the VR4122, VR4131, and VR4181A,

however, the stalled pipeline is resumed, even if refilling is not completed, as soon as the instruction to be

fetched has been read from the external memory.

(2) Indication of clock frequency ratio

The EC area indicates the ratio of the internal peripheral function operating clock frequency to the pipeline clock

(PClock) frequency. The frequency ratio to be indicated differs depending on the processor, as follows.

Table 5-9 System Interface Clock Ratio (to PClock)

EC field VR4121 VR4122 VR4131 VR4181 VR4181A

0 1/1.5 Reserved 1/2 Reserved

1 1/2 1/3 1/2

2 1/2.5 Reserved 1/4 Reserved

3 1/3 Reserved 1/3

4 1/4 Reserved 1/4

5 1/5 Reserved 1/5

6 1/6 Reserved 1/6

7 1/1 Reserved 1/1

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM 155

(3) Branch prediction function (VR4122, VR4131, and VR4181A only)

Usually, a branch delay of at least 1 clock occurs in order to check the branch condition and calculate the branch

destination address when a branch instruction is fetched. The VR4122, VR4131, and VR4181A can reduce the

occurrence of this delay using branch prediction.

The VR4122, VR4131, and VR4181A have a branch prediction table to which branch instructions whose branch

conditions have been satisfied and their branch destination addresses are registered. When the next branch

instruction is fetched, this branch prediction table is referenced. If the same branch instruction is in the table

(hit), an instruction is fetched from the branch destination address in the table. This branch prediction is

performed and branch instructions can be executed without delay if the BP bit is cleared to 0.

(4) Indication of cache size

The IC and DC fields indicate the respective capacities of the instruction cache and data cache. Because the

capacities of the caches differ depending on the processor, these fields are fixed to the value corresponding to

the processor.

Table 5-10 Instruction Cache Sizes

Processor Size IC field

VR4121 16 KB 4

VR4122 32 KB 5

VR4131 16 KB 4

VR4181 4 KB 2

VR4181A 8 KB 3

Table 5-11 Data Cache Sizes

Processor Size DC field

VR4121 8 KB 3

VR4122 16 KB 4

VR4131 16 KB 4

VR4181 4 KB 2

VR4181A 8 KB 3

5.5.9 Load Linked Address (LLAddr) register (17)

The read/write Load Linked Address (LLAddr) register is not used with the VR4100 Series processor except for

diagnostic purpose, and serves no function during normal operation.

LLAddr register is implemented just for compatibility between the VR4100 Series and VR4000/VR4400.

The contents of the LLAddr register after reset are undefined.

Figure 5-20. LLAddr Register

31 0

PAddr

PAddr : 32-bit physical address

CHAPTER 5 MEMORY MANAGEMENT SYSTEM

User’s Manual U15509EJ2V0UM156

5.5.10 TagLo (28) and TagHi (29) registers

The TagLo and TagHi registers are 32-bit read/write registers that hold the primary cache tag during cache

initialization, cache diagnostics, or cache error processing. The TagLo and TagHi registers are written by the CACHE

and MTC0 instructions.

Figures 5-21 and 5-22 show the format of these registers.

The contents of these registers after reset are undefined.

Figure 5-21. TagLo Register

(a) VR4121, VR4122, VR4181, VR4181A

31 10 9 8 7 6 0

PTagLoFor data cache V D W 0

31 10 9 8 0

PTagLoFor instruction cache V 0

(b) VR4131

31 10 9 8 7 6 0

PTagLoFor data cache V D W 0

31 10 9 8 0

PTagLoFor instruction cache V 0

5 4 3

0 L R

6

0

5 4 3

L R

PTagLo : Specifies physical address bits 31 to 10.

V : Valid bit

D : Dirty bit. However, this bit is defined only for the compatibility with the VR4000 Series processors,

and does not indicate the status of cache memory in spite of its readability and writability. This bit

cannot change the status of cache memory. In the VR4131, a write to this bit is ignored and the

same value as the V bit is read on read.

W : Write-back bit (set if cache line has been updated)

L : Lock bit. If this bit is set, the cache line is not refilled on cache misses.

R : LRU bit. Indicates the way to be refilled on cache misses.

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Figure 5-22. TagHi Register

31 0

0

0 : Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

User’s Manual U15509EJ2V0UM 157

CHAPTER 6 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of hardware that processes

exceptions, followed by the format and use of each CPU exception register.

6.1 Exception Processing Overview

The processor receives exceptions from a number of sources, including translation lookaside buffer (TLB) misses,

arithmetic overflows, I/O interrupts, and system calls. When the CPU detects an exception, the normal sequence of

instruction execution is suspended and the processor enters Kernel mode (see Chapter 5 for a description of system

operating modes). If an exception occurs while executing a MIPS16 instruction, the processor stops the MIPS16

instruction execution, and shifts to the 32-bit instruction execution mode. The processor then disables interrupts and

transfers control for execution to the exception handler (located at a specific address as an exception handling

routine implemented by software). The handler saves the context of the processor, including the contents of the

program counter, the current operating mode (User or Supervisor), statuses, and interrupt enabling. This context is

saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a location where

execution can restart after the exception has been serviced. The restart location in the EPC register is the address of

the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of the

branch instruction immediately preceding the delay slot. Note that no branch delay slot generated by executing a

branch instruction exists when the processor operates in the MIPS16 mode.

When MIPS16 instructions are enabled to be executed, bit 0 of the EPC register indicates the operating mode in

which an exception occurred. It indicates 1 when in the MIPS16 instruction mode, and indicates 0 when in the MIPS

III instruction mode.

The VR4100 Series processors have registers other than above that retain address, cause, or status information

during exception processing. Details about these registers are described in 6.2 Exception Processing Registers.

For detailed descriptions about exception processing, refer to 6.4 Details of Exceptions.

6.1.1 Precision of exceptions

VR4100 Series exceptions are logically precise; the instruction that causes an exception and all those that follow it

are aborted and can be re-executed after servicing the exception. When succeeding instructions are killed,

exceptions associated with those instructions are also killed. Exceptions are not taken in the order detected, but in

instruction fetch order.

The exception handler can still determine exception and its origin. The cause of the program can be restarted by

rewriting the destination register - not automatically, however, as in the case of all the other precise exceptions where

no status change occurs.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM158

6.2 Exception Processing Registers

This section describes the CP0 registers that are used in exception processing. Table 6-1 lists the CP0 registers.

About the memory management registers of the CP0 registers, refer to CHAPTER 5 MEMORY MANAGEMENT

SYSTEM.

Table 6-1. CP0 Registers

(a) Exception Processing Registers (b) Memory Management Registers

Register name Register

number

Register name Register

number

Context register 4 Index register 0

BadVAddr register 8 Random register 1

Count register 9 EntryLo0 register 2

Compare register 11 EntryLo1 register 3

Status register 12 PageMask register 5

Cause register 13 Wired register 6

EPC register 14 EntryHi register 10

WatchLo register 18 PRId register 15

WatchHi register 19 Config register 16

XContext register 20 LLAddr registerNote2 17

Parity Error register Note1 26 TagLo register 28

Cache Error register Note1 27 TagHi register 29

ErrorEPC register 30 − −

Notes 1. This register is defined to maintain compatibility with the VR4100. This register is

not used in the normal operation.

2. This register is defined to maintain compatibility with the VR4000 and VR4400. The

content of this register is meaningless in the normal operation.

Software examines the CP0 registers during exception processing to determine the cause of the exception and the

state of the CPU at the time the exception occurred.

Details about each register are explained below. The parenthesized number in section titles is the register

number (refer to 1.2.3).

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 159

6.2.1 Context register (4)

The Context register is a read/write register containing the pointer to an entry in the page table entry (PTE) array

on the memory; this array is a table that stores virtual-to-physical address translations. When there is a TLB miss,

the operating system loads the unsuccessfully translated entry from the PTE array to the TLB. The Context register

is used by the TLB Refill exception handler for loading TLB entries. The Context register duplicates some of the

information provided in the BadVAddr register, but the information is arranged in a form that is more useful for a

software TLB exception handler. Figure 6-1 shows the format of the Context register.

Figure 6-1. Context Register

(a) 32-bit Mode

(b) 64-bit Mode

0

24

242531 4 3

PTEBase BadVPN2 0

02563 4 3

PTEBase BadVPN2 0

PTEBase: The PTEBase field is a base address of the PTE entry table.

BadVPN2: The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)

obtained by halving the virtual page number of the most recent virtual address for which

translation failed.

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The PTEBase field is used by software as the pointer to the base address of the PTE table in the current user

address space.

The 21-bit BadVPN2 field contains bits 31 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded

because a single TLB entry maps to an even-odd page pair. For a 1 KB page size, this format can directly address

the pair-table of 8-byte PTEs. When the page size is 4 KB or more, shifting or masking this value produces the

correct PTE reference address.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM160

6.2.2 BadVAddr register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that saves the most recent virtual address that

failed to have a valid translation, or that had an addressing error. Figure 6-2 shows the format of the BadVAddr

register.

Caution This register saves no information after a bus error exception, because it is not an address error

exception.

Figure 6-2. BadVAddr Register

(a) 32-bit Mode

031

BadVAddr

(b) 64-bit Mode

063

BadVAddr

BadVAddr: Most recent virtual address for which an addressing error occurred, or for which address

translation failed.

6.2.3 Count register (9)

The read/write Count register acts as a timer. It is incremented in synchronization with the MasterOut clock

(internal clock), regardless of whether instructions are being executed, retired, or any forward progress is actually

made through the pipeline.

This register is a free-running type. When the register reaches all ones, it rolls over to zero and continues

counting. This register is used for self-diagnostic test, system initialization, or the establishment of inter-process

synchronization.

Figure 6-3 shows the format of the Count register.

Figure 6-3. Count Register

031

Count

Count: 32-bit up-date count value that is compared with the value of the Compare register.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 161

6.2.4 Compare register (11)

The Compare register causes a timer interrupt; it maintains a stable value that does not change on its own.

When the value of the Count register (see 6.2.3) equals the value of the Compare register, the IP7 bit in the

Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register should be only used

for a write. Figure 6-4 shows the format of the Compare register.

Figure 6-4. Compare Register

031

Compare

Compare: Value that is compared with the count value of the Count register.

6.2.5 Status register (12)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic

states of the processor. Figure 6-5 shows the format of the Status register.

Figure 6-5. Status Register (1/2)

(a) VR4121, VR4122, VR4181, VR4181A

29 28 27 26 25 24 16 15 8 7 6 5 3 2 1 031

0 CU0 0 RE DS IM UX KSU ERL IEKX SX EXL

4

(b) VR4131

29 28 27 26 25 24 16 15 8 7 6 5 3 2 1 031

0 CU0 0 RE DS IM UX KSU ERL IEKX SX EXL

430

XX

XX: Write 0 in a write operation. When this bit is read, 0 is read (VR4131 only).

CU0: Enables/disables the use of the coprocessor (1 → Enabled, 0 → Disabled).

CP0 can be used by the kernel at all times.

RE: Enables/disables reversing of the endian setting in User mode (0 → Disabled, 1 → Enabled). This bit

must be set to 0 in the VR4100 Series.

DS: Diagnostic Status field (see Figure 6-6).

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM162

Figure 6-5. Status Register (2/2)

IM: Interrupt Mask field used to enable/disable interrupts (0 → Disabled, 1 → Enabled). This field consists

of 8 bits that are used to control eight interrupts. The bits are assigned to interrupts as follows:

IM7: Masks a timer interrupt.

IM(6:2): Mask ordinary interrupts (Int(4:0)Note). However, Int3Note occurs in the VR4121 and VR4181A

only, and Int4Note in the VR4181A only.

IM(1:0): Mask software interrupts.

Note Int(4:0) are internal signals of the CPU core. For details about connection to the on-chip

peripheral units, refer to Hardware User's Manual of each processor.

KX: Enables 64-bit addressing in Kernel mode (0 → 32-bit, 1 → 64-bit).

SX: Enables 64-bit addressing and operation in Supervisor mode (0 → 32-bit, 1 → 64-bit).

UX: Enables 64-bit addressing and operation in User mode (0 → 32-bit, 1 → 64-bit).

KSU: Sets and indicates the operating mode (00 → Kernel, 01 → Supervisor, 10 → User).

ERL: Sets and indicates the error level (0 → Normal, 1 → Error).

EXL: Sets and indicates the exception level (0 → Normal, 1 → Exception).

IE: Sets and indicates interrupt enabling/disabling (0 → Disabled, 1 → Enabled).

0: Reserved for future use. Write 0 in a write operation. When this bit is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 163

Figure 6-6 shows the details of the Diagnostic Status (DS) field. All DS field bits other than the TS bit are readable

and writable.

Figure 6-6. Status Register Diagnostic Status Field

(a) VR4181

161718192021222324

0 BEV TS SR 0 CH CE DE

(b) VR4121, VR4122, VR4131, VR4181A

161718192021222324

0 BEV 0 SR 0 CH CE DE

BEV: Specifies the base address of a TLB Refill exception vector and common exception vector (0 →
Normal, 1 → Bootstrap).

TS: Occurs the TLB to be shut down (VR4181 only) (0 → Not shut down, 1 → Shut down). This bit is

read only and used to avoid any problems that may occur when multiple TLB entries match the same

virtual address. After the TLB has been shut down, reset the processor to enable restart. Note that

the TLB is shut down even if a TLB entry matching a virtual address is marked as being invalid (with

the V bit cleared).

SR: Occurs a Soft Reset or NMI exception (0 → Not occurred, 1 → Occurred).

CH: CP0 condition bit (0 → False, 1 → True). This bit can be read and written by software only; it cannot

be accessed by hardware.

CE, DE: These are prepared to maintain compatibility with the VR4100, and are not used in the VR4100

Series hardware.

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM164

The Status register has the following fields where the modes and access status are set.

(1) Interrupt enable

Interrupts are enabled when all of the following conditions are true:

• IE bit is set to 1.

• EXL bit is cleared to 0.

• ERL bit is cleared to 0.

• The appropriate bit of the IM field is set to 1.

(2) Operating modes

The following Status register bit settings are required for User, Kernel, and Supervisor modes.

• The processor is in User mode when KSU field = 10, EXL bit = 0, and ERL bit = 0.

• The processor is in Supervisor mode when KSU field = 01, EXL bit = 0, and ERL bit = 0.

• The processor is in Kernel mode when KSU field = 00, EXL bit = 1, or ERL bit = 1.

Access to the kernel address space is allowed when the processor is in Kernel mode.

Access to the supervisor address space is allowed when the processor is in Supervisor or Kernel mode.

Access to the user address space is allowed in any of the three operating modes.

(3) Addressing modes

The following Status register bit settings select 32- or 64-bit operation for User, Kernel, and Supervisor

operating modes. Enabling 64-bit operation permits the execution of 64-bit opcodes and translation of 64-bit

addresses. 64-bit operation for User, Kernel and Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX bit = 1. If this bit is set, an XTLB Refill exception

occurs if a TLB miss occurs in the Kernel mode address space. 64-bit operations are always valid in Kernel

mode.

• 64-bit addressing and operations are enabled for Supervisor mode when SX bit = 1. If this bit is set, an

XTLB Refill exception occurs if a TLB miss occurs in the Supervisor mode address space.

• 64-bit addressing and operations are enabled for User mode when UX bit = 1. If this bit is set, an XTLB

Refill exception occurs if a TLB miss occurs in the User mode address space.

(4) Status after reset

The contents of the Status register are undefined after Cold resets, except for the following bits in the

diagnostic status field.

• TS bit is cleared to 0 (VR4181 only).

• SR bit is cleared to 0.

SR bit is 0 after Cold reset, and is 1 after Soft reset or NMI exception.

• ERL and BEV bits are both set to 1.

Remark Cold reset and Soft reset are CPU core reset. For details, refer to Hardware User's Manual of

each processor.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 165

6.2.6 Cause register (13)

The 32-bit read/write Cause register holds the cause of the most recent exception. A 5-bit exception code

indicates one of the causes (see Table 6-2). Other bits holds the detailed information of the specific exception. All

bits in the Cause register, with the exception of the IP1 and IP0 bits, are read-only; IP1 and IP0 are used for software

interrupts. Figure 6-7 shows the fields of this register; Table 6-2 describes the Cause register codes.

Figure 6-7. Cause Register

827 16 15 67 2 1 031 30 29 28

BD 0 CE 0 IP 0 ExcCode 0

BD: Indicates whether the most recent exception occurred in the branch delay slot (1 → In delay slot, 0

→ Normal).

CE: Indicates the coprocessor number in which a Coprocessor Unusable exception occurred.

This field will remain undefined for as long as no exception occurs.

IP: Indicates whether an interrupt is pending (1 → Interrupt pending, 0 → No interrupt pending).

The bits are assigned to interrupts as follows:

IM7: A timer interrupt.

IM(6:2): Ordinary interrupts (Int(4:0)Note). However, Int3Note occurs in the VR4121 and VR4181A

only, and Int4Note in the VR4181A only.

IM(1:0): Software interrupts. Only these bits cause an interrupt exception, when they are set to

1 by means of software.

Note Int(4:0) are internal signals of the CPU core. For details about connection to the on-chip

peripheral units, refer to Hardware User's Manual of each processor.

ExcCode: Exception code field (see Table 6-2).

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM166

Table 6-2. Cause Register Exception Code Field

Exception code Mnemonic Description

0 Int Interrupt exception

1 Mod TLB Modified exception

2 TLBL TLB Refill exception (load or fetch)

3 TLBS TLB Refill exception (store)

4 AdEL Address Error exception (load or fetch)

5 AdES Address Error exception (store)

6 IBE Bus Error exception (instruction fetch)

7 DBE Bus Error exception (data load or store)

8 Sys System Call exception

9 Bp Breakpoint exception

10 RI Reserved Instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14 to 22 Reserved for future use

23 WATCH Watch exception

24 to 31 Reserved for future use

The VR4100 Series has eight interrupt request sources, IP7 to IP0, that are used for the following purpose. For

the detailed description of interrupts, refer to Chapter 8.

(1) IP7

This bit indicates whether there is a timer interrupt request.

It is set when the values of Count register and Compare register match.

(2) IP6 to IP2

IP6 to IP2 reflect the state of the interrupt request signal of the CPU core.

(3) IP1 and IP0

These bits are used to set/clear a software interrupt request.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 167

6.2.7 Exception Program Counter (EPC) register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing

resumes after an exception has been serviced. The contents of this register change depending on whether execution

of MIPS16 instructions is enabled or disabled. Setting the MIPS16EN pin after RTC reset specifies whether

execution of the MIPS16 instructions is enabled or disabled.

When the MIPS16 instruction execution is disabled, the EPC register contains either:

• Virtual address of the instruction that caused the exception, or

• Virtual address of the immediately preceding branch or jump instruction (when the instruction associated with

the exception is in a branch delay slot, and the BD bit in the Cause register is set to 1).

When the MIPS16 instruction execution is enabled, the EPC register contains either:

• Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs, or

• Virtual address of the immediately preceding branch or jump instruction and ISA mode at which an exception

occurs (when the instruction associated with the exception is in a branch delay slot of the jump instruction, and

the BD bit in the Cause register is set to 1).

When the 16-bit instruction is executed, the EPC register contains either:

• Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs, or

• Virtual address of the immediately preceding Extend or jump instruction and ISA mode at which an exception

occurs (when the instruction associated with the exception is in a branch delay slot of the jump instruction or in

the instruction following the Extend instruction, and the BD bit in the Cause register is set to 1).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting the address of the exception-

causing instruction contained in the EPC register in the event of another exception.

The EPC register never indicates the address of the instruction in branch delay slot.

Figure 6-8 shows the EPC register format when MIPS16 ISA is disabled, and Figure 6-9 shows the EPC register

format when MIPS16 ISA is enabled.

Figure 6-8. EPC Register (When MIPS16 ISA Is Disabled)

031

EPC

(a) 32-bit Mode

(b) 64-bit Mode

063

EPC

EPC: Restart address after exception processing.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM168

Figure 6-9. EPC Register (When MIPS16 ISA Is Enabled)

1 031

EPC EIM

EPC: Bits 31 to 1 of restart address after exception processing.

EIM: ISA mode at which an exception occurs.

(1 → when MIPS16 SIA instruction is executed, 0 → when MIPS III ISA instruction is executed.)

1 063

EPC EIM

EPC: Bits 63 to 1 of restart address after exception processing.

EIM: ISA mode at which an exception occurs.

(1 → when MIPS16 SIA instruction is executed, 0 → when MIPS III ISA instruction is executed.)

6.2.8 WatchLo (18) and WatchHi (19) registers

The VR4100 Series processor provides a debugging feature to detect references to a selected physical address;

load and store instructions to the location specified by the WatchLo and WatchHi registers cause a Watch exception.

Figures 6-10 and 6-11 show the format of the WatchLo and WatchHi registers.

The contents of these registers after reset are undefined so that they must be initialized by software.

Figure 6-10. WatchLo Register

3 2 1 031

PAddr0 0 R W

PAddr0: Specifies physical address bits 31 to 3.

R: Specifies detection of watch address references when load instructions are executed (1 →
Detect, 0 → Not detect).

W: Specifies detection of watch address references when store instructions are executed (1 →
Detect, 0 → Not detect).

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Figure 6-11. WatchHi Register

031

0

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 169

6.2.9 XContext register (20)

The read/write XContext register contains a pointer to an entry in the page table entry (PTE) array, an operating

system data structure that stores virtual-to-physical address translations. If a TLB miss occurs, the operating system

loads the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form

useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in the

register, as needed. Figure 6-12 shows the format of the XContext register.

Figure 6-12. XContext Register

32 035 34 3363 4 3

PTEBase R BadVPN2 0

PTEBase: The PTEBase field is a base address of the PTE entry table.

R: Space type (00 → User, 01→ Supervisor, 11 → Kernel). The setting of this field matches virtual

address bits 63 and 62.

BadVPN2: This field holds the value (VPN2) obtained by halving the virtual page number of the most recent

virtual address for which translation failed.

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The 29-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded

because a single TLB entry maps to an even-odd page pair. For a 1 KB page size, this format may be used directly

to address the pair-table of 8-byte PTEs. For 4 KB-or-more page and PTE sizes, shifting or masking this value

produces the appropriate address.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM170

6.2.10 Parity Error register (26)

The Parity Error (PErr) register is a readable/writable register. This register is defined to maintain software-

compatibility with the VR4100, and is not used in hardware because the VR4100 Series has no parity.

Figure 6-13 shows the format of the PErr register.

Figure 6-13. Parity Error Register

08 731

0 Diagnostic

Diagnostic: 8-bit self diagnostic field.

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

6.2.11 Cache Error register (27)

The Cache Error register is a readable/writable register. This register is defined to maintain software-compatibility

with the VR4100, and is not used in hardware because the VR4100 Series has no parity.

Figure 6-14 shows the format of the Cache Error register.

Figure 6-14. Cache Error Register

31 0

0

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 171

6.2.12 ErrorEPC register (30)

The Error Exception Program Counter (ErrorEPC) register is similar to the EPC register. It is used to store the

Program Counter value at which the Cold Reset, Soft Reset, or NMI exception has been serviced.

The read/write ErrorEPC register contains the virtual address at which instruction processing can resume after

servicing an error. The contents of this register change depending on whether execution of MIPS16 instructions is

enabled or disabled. Setting the MIPS16EN pin after RTC reset specifies whether the execution of MIPS16

instructions is enabled or disabled.

When the MIPS16 ISA is disabled, this address can be:

• Virtual address of the instruction that caused the exception, or

• Virtual address of the immediately preceding branch or jump instruction, when the instruction associated with

the error exception is in a branch delay slot.

When the MIPS16 instruction execution is enabled during a 32-bit instruction execution, this address can be:

• Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs, or

• Virtual address of the immediately preceding branch or jump instruction and ISA mode at which an exception

occurs when the instruction associated with the exception is in a branch delay slot.

When the MIPS16 instruction execution is enabled during a 16-bit instruction execution, this address can be:

• Virtual address of the instruction that caused the exception and ISA mode at which an exception occurs, or

• Virtual address of the immediately preceding jump instruction or Extend instruction and ISA mode at which an

exception occurs when the instruction associated with the exception is in a branch delay slot of the jump

instruction or is the instruction following the Extend instruction.

The contents of the ErrorEPC register do not change when the ERL bit of the Status register is set to 1. This

prevents the processor when other exceptions occur from overwriting the address of the instruction in this register

which causes an error exception.

There is no branch delay slot indication for the ErrorEPC register.

Figure 6-15 shows the format of the ErrorEPC register when the MIPS16ISA is disabled. Figure 6-16 shows the

format of the ErrorEPC register when the MIPS16ISA is enabled.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM172

Figure 6-15. ErrorEPC Register (When MIPS16 ISA Is Disabled)

(a) 32-bit Mode

031

ErrorEPC

(b) 64-bit Mode

063

ErrorEPC

ErrorEPC: Program counter that indicates the restart address after Cold reset, Soft reset, or NMI

exception.

Figure 6-16. ErrorEPC Register (When MIPS16 ISA Is Enabled)

(a) 32-bit mode
1 031

ErrorEPC ErIM

ErrorEPC: Bits 31 to 1 of virtual restart address after Cold reset, Soft reset, or NMI exception.

ErIM: ISA mode at which an error exception occurs (1 → MIPS16 ISA, 0 → MIPS III ISA).

(b) 64-bit mode
1 063

ErrorEPC ErIM

ErrorEPC: Bits 63 to 1 of virtual restart address after Cold reset, Soft reset, or NMI exception.

ErIM: ISA mode at which an error exception occurs (1 → MIPS16 ISA, 0 → MIPS III ISA).

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 173

6.3 Overview of Exceptions

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode. After

saving the appropriate state, the exception handler typically resets the EXL bit back to 0. The exception handler sets

the EXL bit to 1 so that the saved state is not lost upon the occurrence of another exception while the saved state is

being restored.

Returning from an exception also resets the EXL bit to 0. For details, see CHAPTER 9 CPU INSTRUCTION SET

DETAILS.

Remark When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating

mode is specified by the KSU bits in the Status register. When either the EXL or ERL bit is set to 1,

the processor is in Kernel mode.

6.3.1 Exception types

Exceptions are classified to as follows according to the internal status of the processor retained at the occurrence

of an exception.

• Cold Reset

• Soft Reset, NMI

• Remaining processor exceptions (common exceptions)

6.3.2 Exception vector locations

When an exception occurs, the exception vector address is set to the program counter and the processing

branches to there from the main program. A program called exception handler that processes exceptions must be

placed at the location of the exception vector address.

A vector address is calculated by adding a vector offset to a base address. Each exception type has a different

vector address.

64-/32-bit mode exception vectors and their offsets are shown below.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM174

Table 6-3. 32-Bit Mode Exception Vector Base Addresses

Exception Vector base address (virtual) Vector offset

Cold Reset

Soft Reset

NMI

0xBFC0 0000

(BEV is automatically set to 1)

0x0000

TLB Refill (EXL = 0) 0x0000

XTLB Refill (EXL = 0) 0x0080

Others

0x8000 0000 (BEV = 0)

0xBFC0 0200 (BEV = 1)

0x0180

Table 6-4. 64-Bit Mode Exception Vector Base Addresses

Exception Vector base address (virtual) Vector offset

Cold Reset

Soft Reset

NMI

0xFFFF FFFF BFC0 0000

(BEV is automatically set to 1)

0x0000

TLB Refill (EXL = 0) 0x0000

XTLB Refill (EXL = 0) 0x0080

Others

0xFFFF FFFF 8000 0000 (BEV = 0)

0xFFFF FFFF BFC0 0200 (BEV = 1)

0x0180

(1) Vector of Cold Reset, Soft Reset, and NMI exceptions

The Cold Reset, Soft Reset, and NMI exceptions are always branched to the following reset exception vector

address (virtual). This address is in an uncached, unmapped space.

• 0xBFC0 0000 in 32-bit mode

• 0xFFFF FFFF BFC0 0000 in 64-bit mode

(2) TLB Refill exception vector

When BEV bit = 0, the vector base address (virtual) for the TLB Refill exception is in kseg0 (unmapped) space.

• 0x8000 0000 in 32-bit mode

• 0xFFFF FFFF 8000 0000 in 64-bit mode

When BEV bit = 1, the vector base address (virtual) for the TLB Refill exception is in kseg1 (uncached,

unmapped) space.

• 0xBFC0 0200 in 32-bit mode

• 0xFFFF FFFF BFC0 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and TLB.

(3) Common exception vector

Addresses for the remaining exceptions are a combination of a vector offset and a base address.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 175

6.3.3 Priority of exceptions

While more than one exception can occur for a single instruction, only the exception with the highest priority is

reported. Table 6-5 lists the priorities.

Table 6-5. Exception Priority Order

Priority Exceptions

High

↑

↓

Low

Cold Reset

Soft Reset

NMI

Address Error (instruction fetch)

TLB/XTLB Refill (instruction fetch)

TLB Invalid (instruction fetch)

Bus Error (instruction fetch)

System Call

Breakpoint

Coprocessor Unusable

Reserved Instruction

Trap

Integer Overflow

Address Error (data access)

TLB/XTLB Refill (data access)

TLB Invalid (data access)

TLB Modified (data write)

Watch

Bus Error (data access)

Interrupt (other than NMI)

Hereafter, handling exceptions by hardware is referred to as “process”, and handling exception by software is

referred to as “service”.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM176

6.4 Details of Exceptions

6.4.1 Cold Reset exception

Cause

The Cold Reset exception occurs when the ColdReset# signal (internal) is asserted and then deasserted. This

exception is not maskable. The Reset# signal (internal) must be asserted along with the ColdReset# signal (for

details, see Hardware User's Manual of each processor).

Processing

The CPU provides a special interrupt vector for this exception:

• 0xBFC0 0000 (virtual) in 32-bit mode

• 0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need not

initialize the TLB or the cache to process this exception. It also means the processor can fetch and execute

instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception occurs, except for the following register

fields:

• When the MIPS16 instruction execution is disabled while the ERL of Status register is 0, the PC value at

which an exception occurs is set to the ErrorEPC register.

When the MIPS16 instruction execution is enabled while the ERL of Status register is 0, the PC value at

which an exception occurs is set to the ErrorEPC register and the ISA mode in which an exception occurs is

set to the least significant bit of the ErrorEPC register.

• TS (VR4181 only) and SR of the Status register are cleared to 0.

• ERL and BEV of the Status register are set to 1.

• The Random register is initialized to the value of its upper bound (31).

• The Wired register and the Count register are initialized to 0.

• R and W of the WatchLo register are cleared to 0 (other than VR4181).

• IS and BP of the Config register are cleared to 0 (VR4122, VR4131, and VR4181A only).

• In the VR4121 and VR4181, bits 31 to 28 and bits 22 to 3 of the Config register are set to fixed values.

• In the VR4122, bits 30 to 28, bits 22 to 17, bits 15 to 6, bit 4, and bit 3 of the Config register are set to fixed

values.

• In the VR4131 and VR4181A, bits 30 to 28, bits 22 to 17, bits 15 to 6, and bit 3 of the Config register are set to

fixed values.

• All other bits are undefined.

Servicing

The Cold Reset exception is serviced by:

• Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system

• Performing diagnostic tests

• Bootstrapping the operating system

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 177

6.4.2 Soft Reset exception

Cause

A Soft Reset (sometimes called Warm Reset) occurs when the ColdReset# signal remains deasserted while the

Reset# signal goes from assertion to deassertion (for details, see Hardware User's Manual of each processor).

A Soft Reset immediately resets all state machines, and sets the SR bit of the Status register. Execution begins at

the reset vector when the Reset# is deasserted. This exception is not maskable.

Caution In the VR4100 Series, a Soft Reset never occurs.

Processing

The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

• 0xBFC0 0000 (virtual) in 32-bit mode

• 0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need not be

initialized to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception from

a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

• When the MIPS16 instruction execution is disabled, the PC value at which an exception occurs is set to the

ErrorEPC register.

When the MIPS16 instruction execution is enabled, the PC value at which an exception occurs is set to the

ErrorEPC register and the ISA mode in which an exception occurs is set to the least significant bit of the

ErrorEPC register.

• TS bit of the Status register is cleared to 0 (VR4181 only).

• ERL, SR, and BEV bits of the Status register are set to 1.

• R and W of the WatchLo register are cleared to 0 (other than VR4181).

During a Soft Reset, access to the operating cache or system interface may be aborted. This means that the

contents of the cache and memory will be undefined if a Soft Reset occurs.

Servicing

The Soft Reset exception is serviced by:

• Preserving the current processor states for diagnostic tests

• Reinitializing the system in the same way as for a Cold Reset exception

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM178

6.4.3 NMI exception

Cause

The Nonmaskable Interrupt (NMI) exception occurs when the NMI signal (internal) becomes active. This interrupt

is not maskable; it occurs regardless of the settings of the EXL, ERL, and the IE bits in the Status register (for

details, see CHAPTER 8 CPU CORE INTERRUPTS).

Processing

The CPU provides a special interrupt vector for this exception:

• 0xBFC0 0000 (virtual) in 32-bit mode

• 0xFFFF FFFF BFC0 0000 (virtual) in 64-bit mode

This vector is located within unmapped and uncached address space so that the cache and TLB need not be

initialized to process an NMI interrupt. The SR bit of the Status register is set to 1 to distinguish this exception

from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundaries. The

states of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

• When the MIPS16 instruction execution is disabled, the PC value at which an exception occurs is set to the

ErrorEPC register.

When the MIPS16 instruction execution is enabled, the PC value at which an exception occurs is set to the

ErrorEPC register and the ISA mode in which an exception occurs is set to the least significant bit of the

ErrorEPC register.

• The TS bit of the Status register is cleared to 0 (VR4181 only).

• The ERL, SR, and BEV bits of the Status register are set to 1.

Servicing

The NMI exception is serviced by:

• Preserving the current processor states for diagnostic tests

• Reinitializing the system in the same way as for a Cold Reset exception

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 179

6.4.4 Address Error exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the following. This exception is

not maskable.

• Execution of the LW, LWU, SW, or CACHE instruction for word data that is not located on a word boundary

• Execution of the LH, LHU, or SH instruction for half-word data that is not located on a half-word boundary

• Execution the LD or SD instruction for double-word data that is not located on a double-word boundary

• Referencing the kernel address space in User or Supervisor mode

• Referencing the supervisor space in User mode

• Referencing an address that does not exist in the kernel, user, or supervisor address space in 64-bit Kernel,

User, or Supervisor mode

• Branching to an address that was not located on a ward boundary when the MIPS16 instruction is disabled

• Branching to address whose least-significant 2 bits are 10 when the MIPS16 instruction is enabled

Processing

The common exception vector is used for this exception. The AdEL or AdES code in the Cause register is set. If

this exception has been caused by an instruction reference or load operation, AdEL is set. If it has been caused

by a store operation, AdES is set.

When this exception occurs, the BadVAddr register stores the virtual address that was not properly aligned or was

referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers are

undefined, as are the contents of the EntryLo register.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

The kernel reports the UNIXTM SIGSEGV (segmentation violation) signal to the current process, and this exception

is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM180

6.4.5 TLB exceptions

Three types of TLB exceptions can occur:

• A TLB Refill exception occurs when there is no TLB entry that matches a referenced address.

• A TLB Invalid exception occurs when a TLB entry that matches a referenced virtual address is marked as

being invalid (with the V bit set to 0).

• A TLB Modified exception occurs when a TLB entry that matches a virtual address referenced by the store

instruction is marked as being valid (with the V bit set to 1) though a write to it is disabled (with the D bit set to

0).

The following three sections describe these TLB exceptions.

 (1) TLB Refill exception (32-bit space mode)/XTLB Refill exception (64-bit space mode)

Cause

The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address space.

This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit address spaces, and one

for references to 64-bit address spaces. The UX, SX, and KX bits of the Status register determine whether the

user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. When the EXL bit of the Status

register is set to 0, either of these two special vectors is referenced. When the EXL bit is set to 1, the common

exception vector is referenced.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. If this exception has been

caused by an instruction reference or load operation, TLBL is set. If it has been caused by a store operation,

TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual address that

failed address translation. The EntryHi register also contains the ASID from which the translation fault occurred.

The Random register normally contains a valid location in which to place the replacement TLB entry. The

contents of the EntryLo register are undefined.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 181

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to fetch

memory words containing the physical page frame and access control bits for a pair of TLB entries. The memory

word is written into the TLB entry by using the EntryLo0, EntryLo1, or EntryHi register.

It is possible that the physical page frame and access control bits are placed in a page where the virtual address

is not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the TLB Refill

exception handler. In this case, the common exception vector is used because the EXL bit of the Status register is

set to 1.

(2) TLB Invalid exception

Cause

The TLB Invalid exception occurs when the TLB entry that matches with the virtual address to be referenced is

invalid (the V bit is set to 0). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of the

Cause register is set. If this exception has been caused by an instruction reference or load operation, TLBL is set.

If it has been caused by a store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the virtual address

that failed address translation. The EntryHi register also contains the ASID from which the translation fault

occurred. The Random register normally stores a valid location in which to place the replacement TLB entry. The

contents of the EntryLo register are undefined.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

Usually, the V bit of a TLB entry is cleared in the following cases:

• When the virtual address does not exist

• When the virtual address exists, but is not in main memory (a page fault)

• When a trap is required on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with a TLBP (TLB Probe) instruction,

and replaced by an entry with its V bit set to 1.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM182

(3) TLB Modified exception

Cause

The TLB Modified exception occurs when the TLB entry that matches with the virtual address referenced by the

store instruction is valid (bit V is 1) but is not writable (bit D is 0). This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the ExcCode field of the Cause

register is set.

When this exception occurs, the BadVAddr, Context, XContext, and EntryHi registers contain the virtual address

that failed address translation. The EntryHi register also contains the ASID from which the translation fault

occurred. The contents of the EntryLo register are undefined.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access control bits.

The page identified may or may not permit write accesses; if writes are not permitted, a write protection violation

occurs.

If write accesses are permitted, the page frame is marked dirty (i.e. writable) by the kernel in its own data

structures.

The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The word data

containing the physical page frame and access control bits (with the D bit set to 1) is loaded to the EntryLo

register, and the contents of the EntryHi and EntryLo registers are written into the TLB.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 183

6.4.6 Bus Error exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors, and

invalid physical memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write occurs

synchronously.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode field of the

Cause register is set, signifying whether the instruction caused the exception by an instruction reference, load

operation, or store operation.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Note that the EPC register may indicate a succeeding instruction instead of the instruction that caused the

exception if the Instruction Streaming function is on in the VR4122, VR4131, and VR4181A.

Servicing

The physical address at which the fault occurred can be computed from information available in the System

Control Coprocessor (CP0) registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is contained in

the EPC register.

• If the DBE code is set (indicating a load or store), the virtual address of the instruction that caused the

exception is saved to the EPC register.

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The

physical address can be obtained by using the TLBP instruction and reading the EntryLo register to compute the

physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS (bus error) signal to the current process, but the

exception is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM184

6.4.7 System Call exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not

maskable.

Processing

The common exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in a branch delay slot, in which

case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit is

cleared.

Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this

is accomplished by adding a value of 4 to the EPC register before returning.

If a SYSCALL instruction is in a branch delay slot, interpretation of the branch instruction is required to resume

execution.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 185

6.4.8 Breakpoint exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is not

maskable.

Processing

The common exception vector is used for this exception, and the BP code in the ExcCode field of the Cause

register is set.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status register is set to 1; otherwise this bit is

cleared.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system routine. Additional

distinctions can be made by analyzing the unused bits of the BREAK instruction (bits 25 to 6), and loading the

contents of the instruction whose address the EPC register contains. A value of 4 must be added to the contents

of the EPC register to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this is

accomplished by adding a value of 4 to the EPC register before returning.

When a Breakpoint exception occurs while executing the MIPS16 instruction, a valve of 2 should be added to the

EPC register before returning.

If a BREAK instruction is in a branch delay slot, interpretation (decoding) of the branch instruction is required to

resume execution.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM186

6.4.9 Coprocessor Unusable exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for

either:

• a corresponding coprocessor unit that has not been marked usable (Status register bit, CU0 = 0), or

• CP0 instructions, when the unit has not been marked usable (Status register bit, CU0 = 0) and the process

executes in User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CpU code in the ExcCode field of the Cause

register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

The coprocessor unit to which an attempted reference was made is identified by the CE bit of the Cause register.

One of the following processing is performed by the handler:

• If the process is entitled access to the coprocessor, the coprocessor is marked usable and the corresponding

state is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,

interpretation of the coprocessor instruction is possible.

• If the BD bit in the Cause register is set to 1, the branch instruction must be interpreted; then the coprocessor

instruction can be emulated and execution resumed with the EPC register advanced past the coprocessor

instruction.

• If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT

(illegal instruction/privileged instruction fault) signal to the current process, and this exception is fatal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 187

6.4.10 Reserved Instruction exception

Cause

The Reserved Instruction exception occurs when an attempt is made to execute one of the following instructions:

• Instruction with an undefined major opcode (bits 31 to 26)

• SPECIAL instruction with an undefined minor opcode (bits 5 to 0)

• REGIMM instruction with an undefined minor opcode (bits 20 to 16)

• 64-bit instructions in 32-bit User or Supervisor mode

• RR instruction with an undefined minor op code (bits 4 to 0) when executing the MIPS16 instruction

• I8 instruction with an undefined minor op code (bits 10 to 8) when executing the MIPS16 instruction

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status register. This

exception is not maskable.

Processing

The common exception vector is used for this exception, and the RI code in the ExcCode field of the Cause

register is set.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

All currently defined MIPS ISA instructions can be executed. The process executing at the time of this exception

is handled by a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This error is

usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM188

6.4.11 Trap exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI

instruction results in a TRUE condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the trap instruction causing the exception unless the instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the

BD bit of the Cause register is set to 1.

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, but the exception is usually fatal.

6.4.12 Integer Overflow exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI, or DSUB instruction results in a

2’s complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause

register is set.

The EPC register contains the address of the instruction that caused the exception unless the instruction is in a

branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the

BD bit of the Cause register is set to 1.

Servicing

At the time of the exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point

exception/integer overflow) signal to the current process, and this exception is usually fatal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 189

6.4.13 Watch exception

Cause

A Watch exception occurs when a load or store instruction references the physical address specified by the

WatchLo/WatchHi registers. The WatchLo/WatchHi registers specify whether a load or store or both could have

initiated this exception.

• When the R bit of the WatchLo register is set to 1: Load instruction

• When the W bit of the WatchLo register is set to 1: Store instruction

• When both the R bit and W bit of the WatchLo register are set to 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed while the EXL bit in the Status register is set to 1, and Watch exception is

maskable by setting the EXL bit in the Status register to 1 or by setting the R or W bit in the WatchLo register to 0.

Processing

The common exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause

register is set.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control to a debugger, allowing

the user to examine the situation. To continue, once the Watch exception must be disabled to execute the faulting

instruction. The Watch exception must then be reenabled. The faulting instruction can be executed either by the

debugger or by setting breakpoints.

The contents of the WatchLo/WatchHi register after reset are undefined so that they, especially the R and W bits,

must be initialized by software, otherwise a Watch exception may occur after reset.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM190

6.4.14 Interrupt exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditionsNote is asserted. In the VR4100 Series,

interrupt requests from internal peripheral units first enter the ICU and are then notified to the CPU core via one of

five interrupt sources (Int(4:0)) or NMI.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status register,

and all of the eight interrupts can be masked at once by clearing the IE bit of the Status register or setting the

EXL/ERL bit.

Note They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.

Of the five ordinary interrupts, Int3 becomes active in the VR4121 and VR4181A only, and Int4 in the VR4181A

only.

For details about the Interrupt Control Unit (ICU), refer to Hardware User's Manual of each processor.

Processing

The common exception vector is used for this exception, and the Int code in the ExcCode field of the Cause

register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the bits

can be simultaneously set (or cleared) if the interrupt request signal is asserted (or deasserted) before this register

is read.

When the MIPS16 instruction is disabled, the EPC register contains the address of the instruction that caused the

exception. However, if this instruction is in a branch delay slot, the EPC register contains the address of the

preceding jump or branch instruction, and the BD bit of the Cause register is set to 1.

When the MIPS16 instruction is enabled, the EPC register contains the address of the instruction that caused the

exception, and the least significant bit stores the ISA mode in which an exception occurs. However, if this

instruction is in a branch delay slot or is the instruction following the Extend instruction, the EPC register contains

the address of the preceding jump or Extend instruction, and the BD bit of the Cause register is set to 1.

Servicing

If the interrupt is caused by one of the two software-generated exceptions, the interrupt condition is cleared by

setting the corresponding Cause register bit to 0.

If the interrupt is caused by hardware, the interrupt condition is cleared by deactivating the corresponding interrupt

request signal.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 191

6.5 Exception Processing and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• Common exceptions and a guideline to their exception handler

• TLB/XTLB Refill exception and a guideline to their exception handler

• Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM192

Figure 6-17. Common Exception Handling (1/2)

(a) Processing by hardware

EXL bit ← 1

Normal Bootstrap

EntryHi ← VPN2, ASID
XContext/Context ← VPN2
Set ExcCode, CE fields

BD bit ← 1
EPC ← PC−4

BD bit ← 0
EPC ← PC

Yes

EXL bit = 0?
No

No

Yes

BEV bit = 0?

M16 bit = 0?

Instruction
in branch delay

slot?

PC ← 0xFFFF FFFF 8000 0000+180
(Unmapped, cacheable)

PC ← 0xFFFF FFFF BFC0 0200+180
(Unmapped, uncacheable)

No

BD bit ← 1
EPC ← PC−4Note1

EIM bit ← 0/1

BD bit ← 0
EPC ← PCNote2

EIM bit ← 0/1

No

Yes

Yes

EntryHi, XContext/Context registers
are set when a TLB Refill, TLB Invalid,
or TLB Modified exception occurs.

Kernel mode is set and interrupts
are disabled.

BadVAddr register is set only when
a TLB Refill, TLB Invalid, or TLB
Modified exception occurs
(it is not set when a Bus Error
exception occurs).

Check for multiple exceptions

Start

A

Instruction
in branch delay

slot?

No

Yes

Notes 1. PC – 2 when the JR or JALR instruction of MIPS16 instructions

2. PC – 2 when the Extend instruction of MIPS16 instructions

Remark The interrupts can be masked by setting the IE or IM bit. The Watch exception can be set to

pending state by setting the EXL bit to 1.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 193

Figure 6-17. Common Exception Handling (2/2)

(b) Servicing by software

Execute MFC0 instruction
 XContext/Context register
 EPC register
 Status register
 Cause register

Execute MTC0 instruction
(Status register setting)
 KSU bits ← 00
 EXL bit ← 0
 IE bit ← 1

Execute MTC0 instruction
 EPC register
 Status register

Servicing by each exception routine

Check the Cause register,
and jump to each routine

Yes

No

EXL bit = 1

The occurrence of TLB Refill, TLB Invalid, and TLB Modified
exceptions is disabled by using an unmapped space.

The occurrence of the Watch and Interrupt exceptions is
disabled setting EXL = 1.

Other exceptions are avoided in the OS programs.

The execution of the ERET instruction is disabled in the
delay slots for the other jump instructions.

The processor does not execute an instruction in the branch
delay slot for the ERET instruction.

PC ← EPC register, EXL bit ← 0

The Cold Reset, Soft Reset, and NMI exceptions are
enabled.

In Kernel mode, interrupts are enabled.

After EXL = 0 is set, all exceptions are enabled (although
the interrupt exception can be masked by the IE and IM bits).

The register files are saved.

TS bit = 0?

Execute ERET instruction

The processor is reset.

A

VR4181 only.

End

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM194

Figure 6-18. TLB/XTLB Refill Exception Handling (1/2)

(a) Processing by hardware

Yes

No

No

Yes

BEV bit = 0?

No

Yes

XTLB
exception?

XTLB Refill
Vector offset = 0x080

TLB Refill
Vector offset = 0x000

TLB Refill
Vector offset = 0x180

No

No

Yes

Yes

EXL bit ← 1

Normal Bootstrap

Check for multiple exceptions

BD bit ← 1
EPC ← PC−4

BD bit ← 0
EPC ← PC

PC ← 0xFFFF FFFF 8000 0000 + Vector offset
(Unmapped, cacheable)

PC ← 0xFFFF FFFF BFC0 0200 + Vector offset
(Unmapped, uncacheable)

BD bit ← 1
EPC ← PC−4Note1

EIM bit ← 0/1

BD bit ← 0
EPC ← PCNote2

EIM bit ← 0/1

EntryHi ← VPN2, ASID
XContext/Context ← VPN2
Sets ExcCode, CE fields

Start

B

EXL bit = 0?

M16 bit = 0?

Instruction
in branch delay

slot?
Instruction

in branch delay
slot?

No

Yes

Kernel mode is set and interrupts
are disabled.

Notes 1. PC – 2 when the JR or JALR instruction of MIPS16 instructions

2. PC – 2 when the Extend instruction of MIPS16 instructions

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 195

Figure 6-18. TLB/XTLB Refill Exception Handling (2/2)

(b) Servicing by software

Execute MFC0 instruction
 XContext/Context register

Servicing
by each exception routineNote

The occurrence of TLB Refill, TLB Invalid, and TLB
Modified exceptions is disabled by using an unmapped space.

The occurrence of the Watch and Interrupt exceptions is
disabled by setting EXL = 1.

Other exceptions are avoided in the OS programs.

The execution of the ERET instruction is not allowed in the
branch delay slots for other jump instructions.

The processor does not execute an instruction in the branch
delay slot for the ERET instruction.

PC ← EPC register, EXL bit ← 0

However, the Cold Reset, Soft Reset, and NMI exceptions
are enabled.

The physical address for a virtual address that is loaded into
the Context register is loaded into the EntryLo register and written
to the TLB.

Execute ERET instruction

B

End

Note As long as a data/instruction address exists in the mapping space, another TLB Refill exception may

occur. In such a case, EXL = 1 is set, causing a jump to the common exception vector. In this case, the

common exception handler handles the TLB miss, the ERET instruction returns control to the user

program, then a TLB Refill exception is generated again.

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM196

Figure 6-19. Cold Reset Exception Handling

PC ← 0xFFFF FFFF BFC0 0000

Servicing by NMI
exception routine

Servicing by Soft Reset
exception routine

Servicing by Cold Reset
exception routine

Yes

No

No

Yes

Yes

Software

Hardware

NMI?
No

Yes

No

No

Yes

BD bit ← 1
ErrorEPC ← PC−4

BD bit ← 0
ErrorEPC ← PC

BD bit ← 1
ErrorEPC ← PC−4Note1

ErIM bit ← 0/1

BD bit ← 0
ErrorEPC ← PCNote2

ErIM bit ← 0/1

Random register ← 31
Wired register ← 0
Count register ← 0
Update Config register bits
Set WatchLo register
 R bit ← 0
 W bit ← 0
Set Status register
 BEV bit ← 1 SR bit ← 0
 TS bit ← 0 ERL bit ← 1

The processor provides no means
of distinguishing between an NMI
exception and Soft Reset exception,
so that this must be determined at
the system level.

Execute ERET instruction

End

SR bit = 1?

ERL bit = 0?

M16 bit = 0?

Instruction
in branch delay

slot?

Instruction
in branch delay

slot?

Yes

No

Start

Refer to 6. 4. 1 about Config register
bits to be updated.

Manipulation of TS bit is for VR4181 only.

Setting WatchLo register is for
processors other than VR4181.

Notes 1. PC – 2 when the JR or JALR instruction of MIPS16 instructions

2. PC – 2 when the Extend instruction of MIPS16 instructions

CHAPTER 6 EXCEPTION PROCESSING

User’s Manual U15509EJ2V0UM 197

Figure 6-20. Soft Reset and NMI Exception Handling

Yes

No

No

Yes

Yes

Software

Hardware

NMI?
No

No

Yes

Yes

No

BD bit ← 1
ErrorEPC ← PC−4Note1

ErIM bit ← 0/1

BD bit ← 0
ErrorEPC ← PCNote2

ErIM bit ← 0/1

PC ← 0xFFFF FFFF BFC0 0000

BD bit ← 1
ErrorEPC ← PC−4

BD bit ← 0
ErrorEPC ← PC

Set WatchLo register
 R bit ← 0
 W bit ← 0
Set Status register
 BEV bit ← 1 SR bit ← 1
 TS bit ← 0 ERL bit ← 1

SR bit = 1?

ERL bit = 0?

M16 bit = 0?

Instruction
in branch delay

slot?

Instruction
in branch delay

slot?

Servicing by NMI
exception routine

Servicing by Soft Reset
exception routine

Servicing by Cold Reset
exception routineExecute ERET instruction

End

Yes

No

The processor provides no means of
distinguishing between an NMI
exception and Soft Reset exception,
so that this must be determined at the
system level.

Manipulation of TS bit is for VR4181 only.

Start

Setting WatchLo register (only for Soft
 Reset) is for processors other than
VR4181.

Notes 1. PC – 2 when the JR or JALR instruction of MIPS16 instructions

2. PC – 2 when the Extend instruction of MIPS16 instructions

User’s Manual U15509EJ2V0UM198

CHAPTER 7 CACHE MEMORY

This chapter describes in detail the cache memory of the VR4100 Series: its place in the CPU core memory

organization, and individual organization of the caches.

This chapter uses the following terminology:

• The data cache may also be referred to as the D-cache.

• The instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

7.1 Memory Organization

Figure 7-1 shows the CPU core system memory hierarchy. In the logical memory hierarchy, the caches lie

between the CPU and main memory. They are designed to make the speedup of memory accesses transparent to

the user.

Each functional block in Figure 7-1 has the capacity to hold more data than the block above it. For instance,

physical main memory has a larger capacity than the caches. At the same time, each functional block takes longer to

access than any block above it. For instance, it takes longer to access data in main memory than in the CPU on-chip

registers.

Figure 7-1. Logical Hierarchy of Memory

CPU core

Register Register

Cache

Register

Memory

Faster access
time

Increasing data
capacity

Media

Instruction
cache

Data
cache

Main memory

Disks, CD-ROMs,
tapes, etc.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 199

7.1.1 On-chip caches

The CPU core has two on-chip caches: one holds instructions (the instruction cache), the other holds data (the

data cache). The instruction and data caches can be read in one PClock cycle.

2 PCycles are needed to write data. However, data writes are pipelined and can complete at a rate of one per

PClock cycle. In the first stage of the cycle, the store address is translated and the tag is checked; in the second

stage, the data is written into the data RAM.

Figure 7-2 provides a relationship between cache and memory.

Figure 7-2. On-chip Caches and Main Memory

CPU core

Cache controller

Data
cache

Instruction
cache

Main memory

On-chip caches have the following characteristics:

• indexed with a virtual address

• holds physical address with a tag

• maintains coherency to memory with writeback

The cache data of the VR4121, VR4122, VR4181, and VR4181A are directly mapped; on the other hand those of

the VR4131 are mapped in 2-way set associative format. In addition, the caches of the VR4131 have line lock

function.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM200

7.2 Cache Organization

This section describes the organization of the on-chip data and instruction caches.

A cache consists of blocks called cache lines, which is the smallest unit of information that can be fetched from

main memory to a cache. A cache line itself has tag and data fields. Two types of line size can be selectable by

setting the Config register of the CP0 for the instruction cache line of the VR4122 and for the instruction/data cache

line of the VR4131.

7.2.1 Instruction cache line

Figure 7-3 shows the format of a 4-word (16-byte) I-cache line.

Figure 7-3. Instruction Cache Line Format

(a) VR4121, VR4122, VR4181

22 21

PTagV

0

Data

127 31 0

DataDataData

3263649596

Data

Tag

(b) VR4131

23 22

PTagV

0

Data

127 31 0

DataDataData

3263649596

Data

Tag

21

L

V : Valid bit (line status)

L : Lock bit (line lock status)

Ptag : Physical tag (bits 31 to 10 of physical address)

Data : Cache data

Remarks 1. In the VR4181A, the data field has 256 bits since the line size is 8 words (32 bytes), though the tag

format is the same as that of the VR4121, VR4122, and VR4181.

2. When the line size is specified as 8 words (32 bytes) in the VR4122 or VR4131, the data field

becomes 256 bits wide.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 201

7.2.2 Data cache line

Figure 7-4 shows the format of a 4-word (16-byte) D-cache line.

Figure 7-4. Data Cache Line Format

(a) VR4121, VR4122, VR4181

24 23

PTagW

022 21

V D

127 0

DataData

6364

Data

Tag

(b) VR4131

24 23

PTagW

022 21

V L

127 0

DataData

6364

Data

Tag

W : Write-back bit (set if cache line has been written)

V : Valid bit (line status)

D : Dirty bit (write status)

L : Lock bit (line lock status)

Ptag : Physical tag (bits 31 to 10 of physical address)

Data : D-cache data

Remarks 1. In the VR4181A, the data field has 256 bits since the line size is 8 words (32 bytes), though the tag

format is the same as that of the VR4121, VR4122, and VR4181.

2. When the line size is specified as 8 words (32 bytes) in the VR4131, the data field becomes 256 bits

wide.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM202

7.2.3 Placement of cache data

The cache data of the VR4121, VR4122, VR4181, and VR4181A are directly mapped; on the other hand those of

the VR4131 are mapped in 2-way set associative format.

(1) Direct mapping

In this format, a cache is dealt with one block of memory space, and cache lines are placed linearly.

(2) 2-way set associative

In this format, the memory space of a cache is divided into two blocks (ways), and two cache lines are placed in

the same index (of different ways).

7.3 Cache Operations

As described earlier, caches provide fast temporary data storage, and they make the speedup of memory

accesses transparent to the user. In general, the CPU core accesses cache-resident instructions or data through the

following procedure:

1. The CPU core, through the on-chip cache controller, attempts to access the next instruction or data in the

appropriate cache.

2. The cache controller checks to see if this instruction or data is present in the cache.

• If the instruction/data is present, the CPU core retrieves it. This is called a cache hit.

• If the instruction/data is not present in the cache, the cache controller must retrieve it from memory. This is

called a cache miss.

3. The CPU core retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places simultaneously: main memory and cache. This data is kept

consistent through the use of a writeback methodology; that is, modified data is not written back to memory until the

cache line is to be replaced.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 203

7.3.1 Cache data coherency

The CPU core of the VR4100 Series manages its data cache by using a writeback policy; that is, it stores write

data into the cache, instead of writing it directly to memory. Some time later this data is independently written into

memory. In the VR4100 Series implementation, a modified cache line is not written back to memory until the cache

line is to be replaced.

When the CPU core writes a cache line back to memory, it does not ordinarily retain a copy of the cache line, and

the state of the cache line is changed to invalid.

Remark Contrary to the writeback, the write-through cache policy stores write data into the memory and cache

simultaneously.

(1) VR4121, VR4122, VR4181, and VR4181A

On a store miss writeback, data tag is checked and data is transferred to the write buffer. If an error is detected

in the data field, the writeback is not terminated; the erroneous data is still written out to main memory. If an

error is detected in the tag field, the writeback bus cycle is not issued.

The cache data may not be checked during CACHE operation.

(2) VR4131

On a store miss writeback, data tag is checked, a refill request is issued, and data is transferred to the write

buffer. The writeback is performed after the refill is completed.

7.3.2 Replacement of cache line

When a cache miss occurs or when the Fill operation (for instruction cache only) or the Fetch_and_Lock operation

(for VR4131 only) of CACHE instruction is executed, one of the cache lines is overwritten with data that is read from

main memory. Such an overwriting is called replacement of a cache line.

The on-chip caches of the VR4131 are 2-way set associative memory where two cache lines are placed to one

index. When a cache miss occurs, the way to be replaced is determined by the LRU (Least recently used) algorithm.

It is indicated in the TagLo register of the CP0.

The on-chip caches of the VR4131 also have the line lock function. If a line is set locked on its placement, it will

not be replaced even when a cache miss occurs. Cache line locking is set or cancelled with CACHE instruction, and

locking status is indicated in the TagLo register of the CP0.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM204

7.3.3 Accessing the caches

CACHE instruction is used to change cache line states or to write back cache data (for details, refer to CHAPTER

9 CPU INSTRUCTION SET DETAILS).

Some bits of the virtual address (VA) are used to index into the caches. The number of virtual address bits used

to index the instruction and data caches depends on the cache size. In addition, bit 13 of the virtual address

specifies the way to be accessed in the VR4131.

Table 7-1. Cache Size, Line Size, and Index

Processor Cache Cache size Line size Index

VR4121 Instruction 16 KB 4 words VA(13:4)

Data 8 KB 4 words VA(12:4)

VR4122 Instruction 32 KB 4 words or 8 words VA(14:4)

Data 16 KB 4 words VA(13:4)

VR4131 Instruction 16 KB 4 words or 8 words VA(12:4)

Data 16 KB 4 words or 8 words VA(12:4)

VR4181 Instruction 4 KB 4 words VA(11:4)

Data 4 KB 4 words VA(11:4)

VR4181A Instruction 8 KB 8 words VA(12:5)

Data 8 KB 8 words VA(12:5)

Figure 7-5 shows index into caches and data output.

Figure 7-5. Cache Index and Data Output

D V W DataPTag 64 (data cache)/
32 (instruction cache)

Cache memory

Tag line Data line

L

Internal address bus

Cache index

Internal data bus

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 205

7.4 Cache States

There are three cache line states that indicate validity and consistency with main memory of line data.

(1) Instruction cache

The instruction cache supports two cache states:

• Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used.

• Valid: a cache line that contains valid data.

 (2) Data cache

The data cache supports three cache states:

• Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used.

• Valid clean: a cache line that contains data that has not changed since it was loaded from memory.

• Valid dirty: a cache line containing data that has changed since it was loaded from memory.

The state of a valid cache line may be modified when the processor executes some operations of CACHE

instruction. CACHE instruction and its operations are described in CHAPTER 9 CPU INSTRUCTION SET DETAILS.

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM206

7.4.1 Cache state transition diagrams

The following section describes the cache state diagrams for the data and instruction cache lines. These state

diagrams do not cover the initial state of the system, since the initial state is system-dependent.

(1) Instruction cache state transition

The following diagram illustrates the instruction cache state transition sequence.

• Read (1) indicates a read operation from main memory to cache, inducing a cache state transition.

• Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

Figure 7-6. Instruction Cache State Diagram

Valid Read (1)

CACHE instruction

Read (2) Invalid

 (2) Data cache state transition

The following diagram illustrates the data cache state transition sequence. A load or store operation may include

one or more of the atomic read and/or write operations shown in the state diagram below, which may cause cache

state transitions.

• Read (1) indicates a read operation from main memory to cache, inducing a cache state transition.

• Write (1) indicates a write operation from CPU core to cache, inducing a cache state transition.

• Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

• Write (2) indicates a write operation from CPU core to cache, which induces no cache state transition.

Figure 7-7. Data Cache State Diagram

Write (1)

CACHE instruction

Write-back

Read (2)Read (2)
Write (2)

CACHE instruction

Write (1) Read (1)

CACHE instruction
Invalid

Valid
Dirty

Valid
Clean

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 207

7.5 Cache Access Flow

Figures 7-8 to 7-23 show operation flows for various cache accesses.

Figure 7-8. Flow on Instruction Fetch

Start

End

Miss

Hit

Refill
(see Figure 7-22)

Data fetch

Tag check

(a) VR4121, VR4122, VR4181, VR4181A

Start

End

Miss

Hit

Refill
(see Figure 7-22)

Data fetch

Tag check

(b) VR4131

R bit update

R bit check

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM208

Figure 7-9. Flow on Load Operations

Miss or
Invalid

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

Hit

Start

End

Tag check

V bit,
W bit

Writeback and refill
(see Figure 7-23)

Data write
to register

Refill
(see Figure7-22)

(a) VR4121, VR4122, VR4181, VR4181A

Miss or
invalid

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

Hit

Start

End

Tag check

V bit,
W bit

Writeback and refill
(see Figure 7-23)

Data write
to register

Refill
(see Figure 7-22)

(b) VR4131

R bit check

R bit update

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 209

Figure 7-10. Flow on Store Operations

Miss

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

Hit

Start

End

Tag check

V bit,
W bit

Writeback and refill
(see Figure 7-23)

Data write
to data cache

Refill
(see Figure 7-22)

(a) VR4121, VR4122, VR4181, VR4181A

Miss

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

Hit

Start

End

Tag check

V bit,
W bit

Writeback and refill
(see Figure 7-23)

Data write
to data cache

Refill
(see Figure7-22)

(b) VR4131

R bit check

R bit update

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM210

Figure 7-11. Flow on Index_Invalidate Operations

Start

End

V bit clear

(a) VR4121, VR4122, VR4181, VR4181A

Start

End

(b) VR4131

R bit update

V bit clear

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 211

Figure 7-12. Flow on Index_Writeback_Invalidate Operations

= 1 (Valid)

= 0 (Invalid)

= 0 (Clean)

= 1 (Dirty)

Start

End

V bit

W bit

Writeback
(see Figure 7-21)

V bit and W bit
clear

(a) VR4121, VR4122, VR4181, VR4181A

= 1 (Valid)

= 0 (Invalid)

= 0 (Clean)

= 1 (Dirty)

Start

End

V bit

W bit

(b) VR4131

R bit update

Writeback
(see Figure 7-21)

V bit and W bit
clear

Figure 7-13. Flow on Index_Load_Tag Operations

For data cache

Start

End

Tag read
to TagLo

W bit read
to TagLo

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM212

Figure 7-14. Flow on Index_Store_Tag Operations

Start

End

Tag write
from TagLo

Figure 7-15. Flow on Create_Dirty Operations

Hit

Miss

Start

End

Writeback
(see Fitgure 7-21)

Tag check

V bit and W bit set
Tag write

(a) VR4121, VR4122, VR4181, VR4181A

V bit,
W bit

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

Hit

Miss

Start

End

Writeback
(see Figure 7-21)

Tag check

V bit,
W bit

(b) VR4131

R bit check

V = 1 (Valid) and
W = 1 (Dirty)

V = 0 (Invalid) or
W = 0 (Clean)

V bit and W bit set
Tag write

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 213

Figure 7-16. Flow on Hit_Invalidate Operations

Hit

Miss or invalid

Start

End

V bit clear

Tag check

(a) VR4121, VR4122, VR4181, VR4181A

Hit

Miss or invalid

Start

End

Tag check

(b) VR4131

R bit update

V bit clear

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM214

Figure 7-17. Flow on Hit_Writeback_Invalidate Operations

Miss or invalid

Hit

= 0 (Clean)

= 1 (Dirty)

Start

End

W bit

Writeback
(see Figure 7-21)

Tag check

V bit clear

(a) VR4121, VR4122, VR4181, VR4181A

Miss or invalid

Hit

= 0 (Clean)

= 1 (Dirty)

Start

End

W bit

Writeback
(see Figure 7-21)

Tag check

(b) VR4131

R bit update

V bit clear

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 215

Figure 7-18. Flow on Fill Operations

Start

End

Refill
(see Figure 7-22)

(a) VR4121, VR4122, VR4181, VR4181A

Start

End

Refill
(see Figure 7-22)

(b) VR4131

Hit

Miss or invalid

Tag check

R bit check

R bit update

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM216

Figure 7-19. Flow on Hit_Writeback Operations

Hit

Miss or invalid

For data cache

For data cache

= 0 (Clean)

= 1 (Dirty)

Start

End

W bit

Writeback
(see Figure 7-21)

Tag check

W bit clear

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 217

Figure 7-20. Flow on Fetch_and_Lock Operations (VR4131 only)

Miss or invalid

Hit

For data cache

For data cache

= 0 (Clean)

= 1 (Dirty)

Start

End

W bit

Writeback
(see Figure 7-21)

Tag check

W bit clear

For data cache

Refill
(see Figure 7-22)

L bit set

R bit update

R bit check

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM218

Figure 7-21. Writeback Flow

No

Yes

Writeback
to memory

EOD?

Figure 7-22. Refill Flow

Error

No

Yes

No error

Data write
to cache

EOD?

Erroneous bit

Cache line
invalidate

Bus Error exception

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM 219

Figure 7-23. Writeback & Refill Flow

No

Yes

No

Yes

Error

No error

Writeback
to memory

EOD?

Refill start

Erroneous bit

Data write
to cache

EOD?

Cache line
invalidate

Bus Error exception

(a) VR4121, VR4122, VR4181, VR4181A

No

Yes

No

Yes

Error

No error

EOD?

Refill request

Erroneous bit

Data write
to cache

EOD?

Cache line
invalidate

Bus Error exception

(b) VR4131

Writeback
to memory

CHAPTER 7 CACHE MEMORY

User’s Manual U15509EJ2V0UM220

7.6 Manipulation of the Caches by an External Agent

The VR4100 Series does not provide any mechanisms for an external agent to examine and manipulate the state

and contents of the caches.

7.7 Initialization of the Caches

The caches of the VR4100 Series also need an initialization on reset or such cases. For procedures and program

examples of initialization, refer to VR Series Programming Guide Application Note.

User’s Manual U15509EJ2V0UM 221

CHAPTER 8 CPU CORE INTERRUPTS

Four types of interrupt are available on the CPU core of the VR4100 Series. These are:

• one non-maskable interrupt, NMI

• five ordinary interrupts

• two software interrupts

• one timer interrupt

For the interrupt request input to the CPU core from on-chip peripheral units, see Hardware User's Manual of

each product.

8.1 Types of Interrupt Request

8.1.1 Non-maskable interrupt (NMI)

The non-maskable interrupt is acknowledged by asserting the NMI signal (internal), forcing the processor to

branch to the Reset Exception vector. This signal is latched into an internal register at the rising edge of MasterOut

(internal), as shown in Figure 8-1.

NMI only takes effect when the processor pipeline is running.

This interrupt cannot be masked.

Figure 8-1 shows the internal service of the NMI signal. The NMI signal is latched into an internal register by the

rising edge of MasterOut. The latched signal is inverted to be transferred to inside the device as an NMI request.

Figure 8-1. Non-maskable Interrupt Signal

NMI requestNMI

MasterOut

(Internal register)

8.1.2 Ordinary interrupts

Ordinary interrupts are acknowledged by asserting the Int(4:0) signals (internal). However, Int3 occurs in the

VR4121 and VR4181A only, and Int4 in the VR4181A only.

This interrupt request can be masked with the IM (6:2), IE, EXL, and ERL fields of the Status register.

CHAPTER 8 CPU CORE INTERRUPTS

User’s Manual U15509EJ2V0UM222

8.1.3 Software interrupts generated in CPU core

Software interrupts generated in the CPU core use bits 1 and 0 of the IP (interrupt pending) field in the Cause

register. These may be written by software, but there is no hardware mechanism to set or clear these bits.

After the processing of a software interrupt exception, corresponding bit of the IP field in the Cause register must

be cleared before enabling multiple interrupts or until the operation returns to normal routine.

This interrupt request is maskable through the IM (1:0), IE, EXL, and ERL fields of the Status register.

8.1.4 Timer interrupt

The timer interrupt uses bit 7 of the IP (interrupt pending) field of the Cause register. This bit is set automatically

whenever the value of the Count register equals the value of the Compare register, and an interrupt request is

acknowledged.

This interrupt is maskable through IM7, IE, EXL, and ERL fields of the Status register.

8.2 Acknowledging Interrupts

8.2.1 Detecting hardware interrupts

Figure 8-2 shows how the hardware interrupts are readable through the Cause register.

• The timer interrupt signal of the CPU core is directly readable as bit 15 (IP7) of the Cause register.

• The Int(4:0) signals are directly readable as bits 14 to 10 (IP(6:2)) of the Cause register.

IP(1:0) of the Cause register are used for software interrupt requests. There is no hardware mechanism for setting

or clearing the software interrupts.

Figure 8-2. Hardware Interrupt Signals

IP2

IP3

IP4

IP5

IP6
4

3

2

1

0

IP7

Int4

Int3

Int2

Int1

Int0 10

11

12

13
See Figure 8-3

Cause register
bits 15 to 10

(Internal register)

MasterOut Timer interrupt

14

15

Remark Int3 occurs in the VR4121 and VR4181A only, and Int4 in the VR4181A only.

CHAPTER 8 CPU CORE INTERRUPTS

User’s Manual U15509EJ2V0UM 223

8.2.2 Masking interrupt signals

Figure 8-3 shows the masking of the CPU core interrupt signals.

• Cause register bits 15 to 8 (IP(7:0)) are AND-ORed with Status register interrupt mask bits 15 to 8 (IM(7:0)) to

mask individual interrupts.

• Status register bit 0 is a global Interrupt Enable (IE) bit. It is ANDed with the output of the AND-OR logic to

produce the CPU core interrupt signal. The EXL bit in the Status register also enables these interrupts.

Figure 8-3. Masking of the Interrupt Request Signals

IM0

IE

Status register
bit 0

Software interrupts
of CPU core

Ordinary interrupts

Timer interrupt

IM1
IM2
IM3
IM4
IM5
IM6
IM7

IP0
IP1
IP2
IP3
IP4
IP5
IP6
IP7

8

AND-OR
block

AND block

1 1
CPU core interrupt

8

8

Status register
bits 15 to 8

Cause register
bits 15 to 8

9
10
11
12
13
14
15

8
9

10
11
12
13
14
15

Bit Function Setting

IE Whole interrupts enable 1 : Enable

0 : Disable

IM(7:0) Interrupt mask Each bit 1 : Enable

0 : Disable

IP(7:0) Interrupt request Each bit 1 : Pending

0 : Not pending

User’s Manual U15509EJ2V0UM224

CHAPTER 9 CPU INSTRUCTION SET DETAILS

This chapter provides a detailed description of the operation of each VR4100 Series instruction in both 32- and 64-

bit modes. The instructions are listed in alphabetical order.

9.1 Instruction Notation Conventions

In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown in

lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.

For example, we use rs = base in the format for load and store instructions. Such an alias is always lower case,

since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter (9.4 CPU

Instruction Opcode Bit Encoding), and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation performed by each

instruction using a high-level language notation. The VR4100 Series can operate as either a 32- or 64-bit

microprocessor and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 9-1.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 225

Table 9-1. CPU Instruction Operation Notations

Symbol Meaning

<- Assignment.

|| Bit string concatenation.

xy Replication of bit value x into a y-bit string. x is always a single-bit value.

xy…z Selection of bits y through z of bit string x. Little-endian bit notation is always used. If y is less than z, this

expression is an empty (zero length) bit string.

+ 2’s complement or floating-point addition.

- 2’s complement or floating-point subtraction.

* 2’s complement or floating-point multiplication.

div 2’s complement integer division.

mod 2’s complement modulo.

/ Floating-point division.

< 2’s complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR [x] General-Register x. The content of GPR [0] is always zero. Attempts to alter the content of GPR [0] have

no effect.

CPR [z, x] Coprocessor unit z, general register x.

CCR [z, x] Coprocessor unit z, control register x.

COC [z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big). Specifies the endianness of the memory

interface (see Table 9-2), and the endianness of Kernel and Supervisor mode execution.

However, this value is always 0 in the VR4121, VR4122, VR4181, and VR4181A since they support the little

endian order only.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode

only, and is effected by setting the RE bit of the Status register. Thus, ReverseEndian may be computed

as (SR25 and User mode).

However, this value is always 0 since the VR4100 Series does not support the reverse of the endianness.

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big). In User mode, this endianness may

be reversed by setting SR25. Thus, BigEndianCPU may be computed as BigEndianMem XOR

ReverseEndian.

However, this value is always 0 in the VR4121, VR4122, VR4181, and VR4181A since they support the little

endian order only.

T + i : Indicates the time steps between operations. Each of the statements within a time step are defined to be

executed in sequential order (as modified by conditional and loop constructs). Operations which are

marked T + i : are executed at instruction cycle i relative to the start of execution of the instruction. Thus,

an instruction which starts at time j executes operations marked T + i : at time i + j. The interpretation of

the order of execution between two instructions or two operations that execute at the same time should be

pessimistic; the order is not defined.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM226

The following examples illustrate the application of some of the instruction notation conventions:

Example #1:

GPR [rt] ← immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the 32-bit string (with

the lower 16 bits set to zero) is assigned to General-purpose register rt.

Example #2:

(immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the result is concatenated

with bits 15 through 0 of the immediate value to form a 32-bit sign extended value.

9.2 Notes on Using CPU Instructions

9.2.1 Load and Store instructions

In the VR4100 Series implementation, the instruction immediately following a Load may use the loaded contents of

the register. In such cases, the hardware interlocks, requiring additional real cycles, so scheduling load delay slots is

still desirable, although not required for functional code.

In the Load and Store descriptions, the functions listed in Table 9-2 are used to summarize the handling of virtual

addresses and physical memory.

Table 9-2. Load and Store Common Functions

Function Meaning

Address Translation Uses the TLB to find the physical address given the virtual address. The function fails and an

exception is taken if the required translation is not present in the TLB.

Load Memory Uses the cache and main memory to find the contents of the word containing the specified

physical address. The low-order three bits of the address and the Access Type field indicate which

of each of the four bytes within the data word need to be returned. If the cache is enabled for this

access, the entire word is returned and loaded into the cache. If the specified data is short of word

length, the data position to which the contents of the specified data is stored is determined

considering the endian mode and reverse endian mode.

Store Memory Uses the cache, write buffer, and main memory to store the word or part of word specified as data

in the word containing the specified physical address. The low-order three bits of the address and

the Access Type field indicate which of each of the four bytes within the data word should be

stored. If the specified data is short of word length, the data position to which the contents of the

specified data is stored is determined considering the endian mode and reverse endian mode.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 227

As shown in Table 9-3, the Access Type field indicates the size of the data item to be loaded or stored.

Regardless of access type or byte-numbering order (endianness), the address specifies the byte that has the

smallest byte address in the addressed field. For a big-endian machine, this is the leftmost byte and contains the

sign for a 2's complement number; for a little-endian machine, this is the rightmost byte.

Table 9-3. Access Type Specifications for Loads/Stores

Access type mnemonic Value in

internal

command

Meaning

DOUBLEWORD

SEPTIBYTE

SEXTIBYTE

QUINTIBYTE

WORD

TRIPLEBYTE

HALFWORD

BYTE

7

6

5

4

3

2

1

0

8 bytes (64 bits)

7 bytes (56 bits)

6 bytes (48 bits)

5 bytes (40 bits)

4 bytes (32 bits)

3 bytes (24 bits)

2 bytes (16 bits)

1 byte (8 bits)

The bytes within the addressed doubleword that are used can be determined directly from the access type and the

three low-order bits of the address.

9.2.2 Jump and Branch instructions

All Jump and Branch instructions have an architectural delay of exactly one instruction. That is, the instruction

immediately following a Jump or Branch (that is, occupying the delay slot) is always executed while the target

instruction is being fetched from storage. A delay slot may not itself be occupied by a Jump or Branch instruction;

however, this error is not detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the

EPC register to point at the Jump or Branch instruction that precedes it. When the code is restarted, both the Jump

or Branch instructions and the instruction in the delay slot are reexecuted.

Because Jump and Branch instructions may be restarted after exceptions or interrupts, they must be restartable.

Therefore, when a Jump or Branch instruction stores a return link value, register r31 (the register in which the link is

stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a

register which contains an address whose two low-order bits (low-order one bit in the 16-bit mode) are zero. If these

low-order bits are not zero, an address exception will occur when the jump target instruction is subsequently fetched.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM228

9.2.3 System control coprocessor (CP0) instructions

There are some special limitations imposed on operations involving CP0 that is incorporated within the CPU.

Although Load and Store instructions to transfer data to/from coprocessors and to move control to/from coprocessor

instructions are generally permitted by the MIPS architecture, CP0 is given a somewhat protected status since it has

responsibility for exception handling and memory management. Therefore, the move to/from coprocessor

instructions are the only valid mechanism for writing to and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB entries and to modify the operating

modes in preparation for returning to User mode or interrupt-enabled states.

9.3 CPU Instructions

This section describes the functions of CPU instructions in detail for both 32-bit address mode and 64-bit address

mode.

The exception that may occur by executing each instruction is shown in the last of each instruction’s description.

For details of exceptions and their processes, see CHAPTER 6 EXCEPTION PROCESSING.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 229

ADD Add ADD

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
ADD

1 0 0 0 0 0

Format:

ADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s complement overflow). The

destination register rd is not modified when an integer overflow exception occurs.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T: GPR [rd] ← GPR [rs] + GPR [rt]

64 T: temp ← GPR [rs] + GPR [rt]

GPR [rd] ← (temp31)
32

 || temp31…0

Exceptions:

Integer overflow exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM230

ADDI Add Immediate ADDI

ADDI

31 26 25 21 20 16 15 0

rs0 0 1 0 0 0 rt immediate

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The

result is placed into general register rt. In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s complement overflow). The destination

register rt is not modified when an integer overflow exception occurs.

Restrictions:

If the value of general register rs is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: GPR [rt] ← GPR [rs] + (immediate15)
16

 || immediate15…0

64 T: temp ← GPR [rs] + (immediate15)
48

 || immediate15…0

GPR [rt] ← (temp31)
32

 || temp31…0

Exceptions:

Integer overflow exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 231

ADDIU Add Immediate Unsigned ADDIU

ADDI

31 26 25 21 20 16 15 0

rs0 0 1 0 0 1 rt immediate

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The

result is placed into general register rt. No integer overflow exception occurs under any circumstances. In 64-bit

mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an integer

overflow exception.

Restrictions:

If the value of general register rs is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: GPR [rt] ← GPR [rs] + (immediate15)
16

 || immediate15…0

64 T: temp ← GPR [rs] + (immediate15)
48

 || immediate15…0

GPR [rt] ← (temp31)
32

 || temp31…0

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM232

ADDU Add Unsigned ADDU

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
ADDU

1 0 0 0 0 1

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd. No integer overflow exception occurs under any circumstances. In 64-bit

mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never causes an integer

overflow exception.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T: GPR [rt] ← GPR [rs] + GPR [rt]

64 T: temp ← GPR [rs] + GPR [rt]

GPR [rd] ← (temp31)
32

 || temp31…0

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 233

AND AND AND

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
AND

1 0 0 1 0 0

Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical AND

operation. The result is placed into general register rd.

Operation:

32 T: GPR [rd] ← GPR [rs] and GPR [rt]

64 T: GPR [rd] ← GPR [rs] and GPR [rt]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM234

ANDI AND Immediate ANDI

ANDI

31 26 25 21 20 16 15 0

rs0 0 1 1 0 0 rt immediate

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical

AND operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] ← 0
16

 || (immediate and GPR [rs]15…0)

64 T: GPR [rt] ← 0
48

 || (immediate and GPR [rs]15…0)

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 235

BC0F Branch on Coprocessor 0 False BC0F

COPz

31 26 25 21 20 16 15 0

0 1 0 0 X X Note offset
BC

0 1 0 0 0
BCF

0 0 0 0 0

Format:

BC0F offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the Coprocessor 0’s condition signal (CpCond), as sampled

during the previous instruction, is false, then the program branches to the target address with a delay of one

instruction.

Because the condition signal is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition signal.

Operation:

32 T–1: condition ← not SR18

T: target ← (offset15)
14

 || offset || 0
2

T+1: if condition then

PC ← PC + target

endif

64 T–1: condition ← not SR18

T: target ← (offset15)
46

 || offset || 0
2

T+1: if condition then

PC ← PC + target

endif

Exceptions:

Coprocessor unusable exception

Note See the opcode table below, or 9.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

0

0

BC0F

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM236

BC0FL Branch on Coprocessor 0 False Likely BFC0FL

COPz

31 26 25 21 20 16 15 0

0 1 0 0 X X Note offset
BC

0 1 0 0 0
BCFL

0 0 0 1 0

Format:

BC0FL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the Coprocessor 0’s condition signal (CpCond), as sampled

during the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition signal is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition signal.

Operation:

32 T–1: condition ← not SR18

T: target ← (offset15)
14

 || offset || 0
2

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T–1: condition ← not SR18

T: target ← (offset15)
46

 || offset || 0
2

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

Note See the opcode table below, or 9.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

1

16

0

0

BC0FL

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 237

BC0T Branch on Coprocessor 0 True BC0T

COPz

31 26 25 21 20 16 15 0

0 1 0 0 X X Note offset
BC

0 1 0 0 0
BCT

0 0 0 0 1

Format:

BC0T offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the Coprocessor 0’s condition signal (CpCond), as sampled

during the previous instruction, is true, then the program branches to the target address, with a delay of one

instruction.

Because the condition signal is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition signal.

Operation:

32 T–1: condition ← SR18

T: target ← (offset15)
14

 || offset || 0
2

T+1: if condition then

PC ← PC + target

endif

64 T–1: condition ← SR18

T: target ← (offset15)
46

 || offset || 0
2

T+1: if condition then

PC ← PC + target

endif

Exceptions:

Coprocessor unusable exception

Note See the opcode table below, or 9.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

0

16

1

0

BC0T

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM238

BC0TL Branch on Coprocessor 0 True Likely BC0TL

COPz

31 26 25 21 20 16 15 0

0 1 0 0 X X Note offset
BC

0 1 0 0 0
BCTL

0 0 0 1 1

Format:

BC0TL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the Coprocessor 0’s condition signal (CpCond), as sampled

during the previous instruction, is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition signal is sampled during the previous instruction, there must be at least one instruction

between this instruction and a coprocessor instruction that changes the condition signal.

Operation:

32 T–1: condition ← SR18

T: target ← (offset15)
14

 || offset || 0
2

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T–1: condition ← SR18

T: target ← (offset15)
46

 || offset || 0
2

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

Coprocessor unusable exception

Note See the opcode table below, or 9.4 CPU Instruction Opcode Bit Encoding.

Opcode Table:

31

0

30

1

29

0

28

0

27

0

26

0

25

0

24

1

23

0

22

0

21

0

20

0

19

0

18

0

17

1

16

1

0

BC0TL

Opcode Coprocessor
number

BC sub-opcode Branch condition

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 239

BEQ Branch on Equal BEQ

BEQ

31 26 25 21 20 16 15 0

rs0 0 0 1 0 0 rt offset

Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general

register rt are compared. If the two registers are equal, then the program branches to the target address, with a

delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs] = GPR [rt])

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs] = GPR [rt])

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM240

BEQL Branch on Equal Likely BEQL

BEQL

31 26 25 21 20 16 15 0

rs0 1 0 1 0 0 rt offset

Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general

register rt are compared. If the two registers are equal, then the program branches to the target address, with a

delay of one instruction. If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs] = GPR [rt])

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs] = GPR [rt])

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 241

BGEZ Branch on Greater than or Equal to Zero BGEZ

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BGEZ

0 0 0 0 1

Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared,

then the program branches to the target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0)

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0)

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM242

BGEZAL Branch on Greater than or Equal to Zero And Link BGEZAL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BGEZAL
1 0 0 0 1

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay

slot is placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the

program branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to

execute such an instruction is not trapped, however.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 243

BGEZALL Branch on Greater than or Equal to Zero And Link Likely BGEZALL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BGEZALL
1 0 0 1 1

Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay

slot is placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the

program branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to

execute such an instruction is not trapped, however. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM244

BGEZL Branch on Greater than or Equal to Zero Likely BGEZL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BGEZL

0 0 0 1 1

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared,

then the program branches to the target address, with a delay of one instruction. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 245

BGTZ Branch on Greater than Zero BGTZ

BGTZ

31 26 25 21 20 16 15 0

rs0 0 0 1 1 1 offset
0

0 0 0 0 0

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the

contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to

the target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0) or (GPR [rs] ≠ 0
32

)

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0) or (GPR [rs] ≠ 0
64

)

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM246

BGTZL Branch on Greater than Zero Likely BGTZL

BGTZL

31 26 25 21 20 16 15 0

rs0 1 0 1 1 1 offset
0

0 0 0 0 0

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the

contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches to

the target address, with a delay of one instruction. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 0) or (GPR [rs] ≠ 0
32

)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 0) or (GPR [rs] ≠ 0
64

)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 247

BLEZ Branch on Less than or Equal to Zero BLEZ

BLEZ

31 26 25 21 20 16 15 0

rs0 0 0 1 1 0 offset
0

0 0 0 0 0

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. If the

contents of general register rs have the sign bit set or are equal to zero, then the program branches to the target

address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1) or (GPR [rs] = 0
32

)

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1) or (GPR [rs] = 0
64

)

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM248

BLEZL Branch on Less than or Equal to Zero Likely BLEZL

BLEZL

31 26 25 21 20 16 15 0

rs0 1 0 1 1 0 offset
0

0 0 0 0 0

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs is compared to zero. If the

contents of general register rs have the sign bit set or are equal to zero, then the program branches to the target

address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1) or (GPR [rs] = 0
32

)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1) or (GPR [rs] = 0
64

)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 249

BLTZ Branch on Less than Zero BLTZ

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BLTZ

0 0 0 0 0

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then

the program branches to the target address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1)

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1)

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM250

BLTZAL Branch on Less than Zero and Link BLTZAL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BLTZAL
1 0 0 0 0

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay

slot is placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program

branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to

execute such an instruction is not trapped, however.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 251

BLTZALL Branch on Less than Zero and Link Likely BLTZALL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BLTZALL
1 0 0 1 0

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay

slot is placed in the link register, r31. If the contents of general register rs have the sign bit set, then the program

branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attempt to

execute such an instruction is not trapped, however. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1)

GPR [31] ← PC + 8

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM252

BLTZL Branch on Less than Zero Likely BLTZL

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 offset
BLTZL

0 0 0 1 0

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit set, then

the program branches to the target address, with a delay of one instruction. If the conditional branch is not

taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs]31 = 1)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs]63 = 1)

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 253

BNE Branch on Not Equal BNE

BNE

31 26 25 21 20 16 15 0

rs0 0 0 1 0 1 rt offset

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general

register rt are compared. If the two registers are not equal, then the program branches to the target address,

with a delay of one instruction.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC ← PC + target

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC ← PC + target

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM254

BNEL Branch on Not Equal Likely BNEL

BNEL

31 26 25 21 20 16 15 0

rs0 1 0 1 0 1 rt offset

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general

register rt are compared. If the two registers are not equal, then the program branches to the target address,

with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)
14

 || offset || 0
2

condition ← (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

64 T: target ← (offset15)
46

 || offset || 0
2

condition ← (GPR [rs] ≠ GPR [rt])

T+1: if condition then

PC ← PC + target

else

NullifyCurrentInstruction

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 255

BREAK Breakpoint BREAK

SPECIAL

31 26 25 6 5 0

code0 0 0 0 0 0
BREAK

0 0 1 1 0 1

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: BreakpointException

Exceptions:

Breakpoint exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM256

CACHE Cache Operation CACHE

CACHE

31 26 25 21 20 16 15 0

base1 0 1 1 1 1 op offset

Format:

CACHE op, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The 5-bit sub-opcode op specifies a cache operation for that address.

If CP0 is not usable (User or Supervisor mode) and the CP0 enable bit in the Status register is cleared, a

coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combination

not listed below, or on a secondary cache, is undefined. The operation of this instruction on uncached addresses

is also undefined.

The Index operation uses part of the virtual address to specify a cache block. For a cache of 2CACHEBITS bytes

with 2LINEBITS bytes per tag, vAddrCACHEBITS...LINEBITS in the VR4121, VR4122, VR4181, and VR4181A or

vAddrCACHEBITS−2...LINEBITS in the VR4131 specifies the block. In the VR4131, bit 31 of the virtual address indicates

the way of cache to be used.

The Hit operation translates the virtual address to a physical address using the TLB, accesses the specified

cache as normal data references, and performs the specified operation if the cache block contains valid data with

the specified physical address (a hit). If the cache block is invalid or contains a different address (a miss), no

operation is performed.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 257

CACHE Cache CACHE
(Continued)

Write back from a primary cache goes to memory. The address to be written is specified by the cache tag and

not the translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations (where the physical

address is used to index the cache but need not match the cache tag) to unmapped addresses may be used to

avoid TLB exceptions. This operation never causes a TLB Modified exception.

Bits 17 and 16 (op1..0) of the instruction code specify the cache as follows:

op1..0 Name Cache

0 I Instruction cache

1 D Data cache

2 Reserved

3 Reserved

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM258

CACHE Cache CACHE
(Continued)

Bits 20 to 18 (op4..2) of the instruction specify the operation as follows:

op4..2 Cache Name Operation

0 I Index_Invalidate Set the cache state of the cache block to Invalid. This operation can also be used

to cancel lock of a cache block in the VR4131.

0 D Index_Write_

Back_Invalidate

Examine the cache state and W bit of the primary data cache block at the index

specified by the virtual address. If the state is not Invalid and the W bit is set, then

write back the block to memory. The address to write is taken from the primary

cache tag. Set cache state of primary cache block to Invalid. This operation can

also be used to cancel lock of a cache block in the VR4131.

1 I, D Index_Load_Tag Read the tag for the cache block at the specified index and place it into the TagLo

register of the CP0.

2 I, D Index_Store_

Tag

Write the tag for the cache block at the specified index from the TagLo register of

the CP0.

3 D Create_Dirty_

Exclusive

This operation is used to avoid loading data needlessly from memory when writing

new contents into an entire cache block. If the cache block does not contain the

specified address, and the block is dirty, write it back to the memory. In all cases,

set the cache state to Dirty.

4 I, D Hit_Invalidate If the cache block contains the specified address, mark the cache block Invalid.

This operation can also be used to cancel lock of a cache block in the VR4131.

5 D Hit_Write_Back

Invalidate

If the cache block contains the specified address, write back the data if it is dirty,

and mark the cache block Invalid.

5 I Fill Fill the primary instruction cache block from memory. This operation can also be

used to cancel lock of a cache block in the VR4131.

6 D Hit_Write_Back If the cache block contains the specified address, and the W bit is set, write back

the data to memory and clear the W bit.

6 I Hit_Write_Back If the cache block contains the specified address, write back the data

unconditionally.

7 I, D Fetch_and_Lock For the VR4131 only. If the cache block contains the specified address, fill the

cache block from memory. Locks the cache line regardless of refilling the cache

block.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 259

CACHE Cache CACHE
(Continued)

Operation:

32, 64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM260

DADD Doubleword Add DADD

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DADD

1 0 1 1 0 0

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd.

An integer overflow exception occurs if the carries out of bits 62 and 63 differ (2’s complement overflow). The

destination register rd is not modified when an integer overflow exception occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] + GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 261

DADDI Doubleword Add Immediate DADDI

DADDI

31 26 25 21 20 16 15 0

rs0 1 1 0 0 0 rt immediate

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The

result is placed into general register rt.

An integer overflow exception occurs if carries out of bits 62 and 63 differ (2’s complement overflow). The

destination register rt is not modified when an integer overflow exception occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: GPR [rt] ← GPR [rs] + (immediate15)
48

 || immediate15…0

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM262

DADDIU Doubleword Add Immediate Unsigned DADDIU

DADDIU

31 26 25 21 20 16 15 0

rs0 1 1 0 0 1 rt immediate

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The

result is placed into general register rt.

The only difference between this instruction and the DADDI instruction is that DADDIU never causes an overflow

exception.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rt] ← GPR [rs] + (immediate15)
48

 || immediate15…0

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 263

DADDU Doubleword Add Unsigned DADDU

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DADDU

1 0 1 1 0 1

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd.

The only difference between this instruction and the DADD instruction is that DADDU never causes an overflow

exception.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

64 T: GPR [rd] ← GPR [rs] + GPR [rt]

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM264

DDIV Doubleword Divide DDIV

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DDIV

0 1 1 1 1 0

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as

2’s complement values. No overflow exception occurs under any circumstances, and the result of this operation

is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the doubleword quotient of the result is loaded into special register LO, and the

doubleword remainder of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by two or more instructions.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: LO ← GPR [rs] div GPR [rt]

HI ← GPR [rs] mod GPR [rt]

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 265

DDIVU Doubleword Divide Unsigned DDIVU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DDIVU

0 1 1 1 1 1

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as

unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation

is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor.

When the operation completes, the doubleword quotient of the result is loaded into special register LO, and the

doubleword remainder of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by two or more instructions.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: LO ← (0 || GPR [rs]) div (0 || GPR [rt])

HI ← (0 || GPR [rs]) mod (0 || GPR [rt])

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM266

DIV Divide DIV

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DIV

0 1 1 0 1 0

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as

2’s complement values. No overflow exception occurs under any circumstances, and the result of this operation

is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the doubleword quotient of the result is loaded into special register LO, and the

doubleword remainder of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by two or more instructions.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: LO ← GPR [rs] div GPR [rt]

HI ← GPR [rs] mod GPR [rt]

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: q ← GPR [rs] 31…0 div GPR [rt] 31…0

r ← GPR [rs] 31…0 mod GPR [rt] 31…0

LO ← (q 31)
32

 || q 31…0

HI ← (r 31)
32

 || r 31…0

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 267

DIVU Divide Unsigned DIVU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DIVU

0 1 1 0 1 1

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as

unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation

is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the doubleword quotient of the result is loaded into special register LO, and the

doubleword remainder of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by two or more instructions.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: LO ← (0 || GPR [rs]) div (0 || GPR [rt])

HI ← (0 || GPR [rs]) mod (0 || GPR [rt])

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: q ← (0 || GPR [rs] 31…0) div (0 || GPR [rt] 31…0)

r ← (0 || GPR [rs] 31…0) mod (0 || GPR [rt] 31…0)

LO ← (q 31)
32

 || q 31…0

HI ← (r 31)
32

 || r 31…0

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM268

DMACC Doubleword Multiply and Add Accumulate DMACC
(for VR4121, VR4122, VR4131, and VR4181A)

rs
SPECIAL
0 0 0 0 0 0

rt

31 26 25 21 20 16 15 0

DMACC
1 0 1 0 0 1

6 5

rd sat us

11 10 9 7

hi 0 0

8

Format:

DMACC rd, rs, rt

DMACCU rd, rs, rt

DMACCHI rd, rs, rt

DMACCHIU rd, rs, rt

DMACCS rd, rs, rt

DMACCUS rd, rs, rt

DMACCHIS rd, rs, rt

DMACCHIUSrd, rs, rt

Description:

The mnemonics of the DMACC instruction differ as shown in the table below by the setting of the sat, hi, or us

bits.

Mnemonic sat hi us

DMACC 0 0 0

DMACCU 0 0 1

DMACCHI 0 1 0

DMACCHIU 0 1 1

DMACCS 1 0 0

DMACCUS 1 0 1

DMACCHIS 1 1 0

DMACCHIUS 1 1 1

The number of valid bits in the operands differs depending on whether saturation processing is executed (sat =

1) or not (sat = 0).

•••• When saturation processing is executed (sat = 1): DMACCS, DMACCUS, DMACCHIS, and DMACCHIUS

instructions

The contents of general register rs are multiplied by the contents of general register rt. If us = 1, the contents

of both operands are handled as 16-bit unsigned data. If us = 0, the contents are handled as 16-bit signed

integers. Sign/zero extension by software is required for bits 16 to 31 in the operands.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 269

DMACC Doubleword Multiply and Add Accumulate DMACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

The product of this multiply operation is added to the value in special register LO. If us = 1, this add operation

handles the values being added as 32-bit unsigned data. If us = 0, the values are handled as 32-bit signed

integers. Sign/zero extension by software is required for bits 32 to 63 in special register LO.

After saturation processing of 32 bits has been performed (refer to the table below), the sum from this add

operation is loaded to special register LO. When hi = 1, data that is the same as the data loaded to special

register HI is also loaded to general register rd. When hi = 0, data that is the same as the data loaded to

special register LO is also loaded to general register rd. Overflow exceptions do not occur.

•••• When saturation processing is not executed (sat = 0): DMACC, DMACCU, DMACCHI, and DMACCHIU

instructions

The contents of general register rs are multiplied by the contents of general register rt. If us = 1, the contents

of both operands are handled as 32-bit unsigned data. If us = 0, the contents are handled as 32-bit signed

integers. Sign/zero extension by software is required for bits 32 to 63 in the operands.

The product of this multiply operation is added to the value in special register LO. If us = 1, this add operation

handles the values being added as 64-bit unsigned data. If us = 0, the values are handled as 64-bit signed

integers.

The sum from this add operation is loaded to special register LO. When hi = 1, data that is the same as the

data loaded to special register HI is also loaded to general register rd. When hi = 0, data that is the same as

the data loaded to special register LO is also loaded to general register rd. Overflow exceptions do not occur.

These operations are defined for 64-bit mode and 32-bit Kernel mode. A reserved instruction exception occurs if

one of these instructions is executed during 32-bit User/Supervisor mode.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM270

DMACC Doubleword Multiply and Add Accumulate DMACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

The correspondence of us and sat settings and values stored during saturation processing is shown below, along

with the hazard cycles required between execution of the instruction for manipulating the HI and LO registers and

execution of the DMACC instruction.

Values Stored During Saturation Processing Hazard Cycle Counts

us sat Overflow Underflow Instruction Cycle Count

0 0 Store calculation result as is Store calculation result as is

1 0 Store calculation result as is Store calculation result as is

0 1 0x0000 0000 7FFF FFFF 0xFFFF FFFF 8000 0000

1 1 0xFFFF FFFF FFFF FFFF None

MULT, MULTU

DMULT, DMULTU

DIV, DIVU

DDIV, DDIVU

MFHI, MFLO

MTHI, MTLO

MACC

DMACC

Note1

3

36

68

Note2

0

0

0

Notes 1. VR4121, VR4122 … 1

VR4131 … 0

VR4181A … 1

2. VR4121, VR4122 … 2

VR4131 … 0

VR4181A … 2

Operation:

32, 64, sat = 0, hi = 0, us = 0 (DMACC instruction)

T: temp1 ← ((GPR[rs]31)32 || GPR [rs]) * ((GPR[rt]31)32 || GPR [rt])

temp2 ← temp1 + LO

LO ← temp2

GPR[rd] ← LO

32, 64, sat = 0, hi = 0, us = 1 (DMACCU instruction)

T: temp1 ← (032 || GPR [rs]) * (032 || GPR [rt])

temp2 ← temp1 + LO

LO ← temp2

GPR[rd] ← LO

32, 64, sat = 0, hi = 1, us = 0 (DMACCHI instruction)

T: temp1 ← ((GPR[rs]31)32 || GPR [rs]) * ((GPR[rt]31)32 || GPR [rt])

temp2 ← temp1 + LO

LO ← temp2

GPR[rd] ← HI

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 271

DMACC Doubleword Multiply and Add Accumulate DMACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

32, 64, sat = 0, hi = 1, us = 1 (DMACCHIU instruction)

T: temp1 ← (032 || GPR [rs]) * (032 || GPR [rt])

temp2 ← temp1 + LO

LO ← temp2

GPR[rd] ← HI

32, 64, sat = 1, hi = 0, us = 0 (DMACCS instruction)

T: temp1 ← ((GPR[rs]31)32 || GPR [rs]) * ((GPR[rt]31)32 || GPR [rt])

temp2 ← saturation(temp1 + LO)

LO ← temp2

GPR[rd] ← LO

32, 64, sat = 1, hi = 0, us = 1 (DMACCUS instruction)

T: temp1 ← (032 || GPR [rs]) * (032 || GPR [rt])

temp2 ← saturation(temp1 + LO)

LO ← temp2

GPR[rd] ← LO

32, 64, sat = 1, hi = 1, us = 0 (DMACCHIS instruction)

T: temp1 ← ((GPR[rs]31)32 || GPR [rs]) * ((GPR[rt]31)32 || GPR [rt])

temp2 ← saturation(temp1 + LO)

LO ← temp2

GPR[rd] ← HI

32, 64, sat = 1, hi = 1, us = 1 (DMACCHIUS instruction)

T: temp1 ← (032 || GPR [rs]) * (032 || GPR [rt])

temp2 ← saturation(temp1 + LO)

LO ← temp2

GPR[rd] ← HI

Exceptions:

Reserved instruction exception (in 32-bit User/Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM272

DMADD16 Doubleword Multiply and Add 16-bit Integer DMADD16
(for VR4181 only)

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DMADD16
1 0 1 0 0 1

Format:

DMADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2’s complement

values. Bits 62 to 15 of the operand must be sign-extended values.

This multiplied result and the contents of special register LO are added to form the result as a signed integer.

When the operation completes, the doubleword result is loaded into special register LO.

No integer overflow exception occurs under any circumstances.

This operation is defined for the VR4181 operating in 64-bit mode or in 32-bit Kernel mode. Execution of this

instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

The following table shows hazard cycles between DMADD16 and other instructions.

Instruction sequence No. of cycles

MULT/MULTU → DMADD16 1 Cycle

DMULT/DMULTU → DMADD16 4 Cycles

DIV/DIVU → DMADD16 36 Cycles

DDIV/DDIVU → DMADD16 68 Cycles

MFHI/MFLO → DMADD16 2 Cycles

MADD16 → DMADD16 0 Cycles

DMADD16 → DMADD16 0 Cycles

Operation:

32, 64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: temp ← GPR [rs] * GPR [rt]

temp ← temp + LO

LO ← temp

HI ← undefined

Exceptions:

Reserved instruction exception (VR4181 in 32-bit User mode, VR4181 in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 273

DMFC0 Doubleword Move from System Control Coprocessor DMFC0

COP0

31 26 25 21 20 16 15 11 10 0

0 1 0 0 0 0 rt rd
DMF

0 0 0 0 1
0

0 0 0 0 0 0 0 0 0 0 0

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

All 64-bits of the general register destination are written from the coprocessor register source. The operation of

DMFC0 on a 32-bit Coprocessor 0 register is undefined.

Operation:

32, 64 T: data ← CPR [0, rd]

T+1: GPR [rt] ← data

Exceptions:

Coprocessor unusable exception (User and Supervisor mode if CP0 not enabled)

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM274

DMTC0 Doubleword Move to System Control Coprocessor DMTC0

COP0

31 26 25 21 20 16 15 11 10 0

0 1 0 0 0 0 rt rd
DMT

0 0 1 0 1
0

0 0 0 0 0 0 0 0 0 0 0

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

All 64-bits of the coprocessor register destination are written from the general register source. The operation of

DMTC0 on a 32-bit Coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of

load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

Operation:

32, 64 T: data ← GPR [rt]

T+1: CPR [0, rd] ← data

Exceptions:

Coprocessor unusable exception (User and Supervisor mode if CP0 not enabled)

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 275

DMULT Doubleword Multiply DMULT

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DMULT

0 1 1 1 0 0

Format:

DMULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 2’s complement values. No

integer overflow exception occurs under any circumstances.

When the operation completes, the low-order doubleword of the result is loaded into special register LO, and the

high-order doubleword of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by a minimum of two other instructions.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← GPR [rs] * GPR [rt]

LO ← t 63…0

HI ← t 127…64

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM276

DMULTU Doubleword Multiply Unsigned DMULTU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
DMULTU
0 1 1 1 0 1

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands

as unsigned values. No overflow exception occurs under any circumstances.

When the operation completes, the low-order doubleword of the result is loaded into special register LO, and the

high-order doubleword of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by a minimum of two instructions.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR [rs]) * (0 || GPR [rt])

LO ← t 63…0

HI ← t 127…64

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 277

DSLL Doubleword Shift Left Logical DSLL

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSLL

1 1 1 0 0 0

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits. The result is

placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 0 || sa

GPR [rd] ← GPR [rt] 63 − s…0 || 0
s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM278

DSLLV Doubleword Shift Left Logical Variable DSLLV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSLLV

0 1 0 1 0 0

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the low-order six bits

contained in general register rs, inserting zeros into the low-order bits. The result is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← GPR [rs] 5…0

GPR [rd] ← GPR [rt] 63 − s…0 || 0
s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 279

DSLL32 Doubleword Shift Left Logical + 32 DSLL32

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSLL32

1 1 1 1 0 0

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into the low-order bits. The

result is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 1 || sa

GPR [rd] ← GPR [rt] 63 − s…0 || 0
s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM280

DSRA Doubleword Shift Right Arithmetic DSRA

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRA

1 1 1 0 1 1

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits. The result is

placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 0 || sa

GPR [rd] ← (GPR [rt]63)
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 281

DSRAV Doubleword Shift Right Arithmetic Variable DSRAV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRAV

0 1 0 1 1 1

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of

general register rs, sign-extending the high-order bits. The result is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← GPR [rs]5…0

GPR [rd] ← (GPR [rt]63)
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM282

DSRA32 Doubleword Shift Right Arithmetic + 32 DSRA32

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRA32

1 1 1 1 1 1

Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the high-order bits. The result

is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 1 || sa

GPR [rd] ← (GPR [rt]63)
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 283

DSRL Doubleword Shift Right Logical DSRL

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRL

1 1 1 0 1 0

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits. The result

is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 0 || sa

GPR [rd] ← 0
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM284

DSRLV Doubleword Shift Right Logical Variable DSRLV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRLV

0 1 0 1 1 0

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of

general register rs, inserting zeros into the high-order bits. The result is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← GPR [rs]5…0

GPR [rd] ← 0
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 285

DSRL32 Doubleword Shift Right Logical + 32 DSRL32

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSRL32

1 1 1 1 1 0

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros into the high-order bits. The

result is placed in general register rd.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: s ← 1 || sa

GPR [rd] ← 0
s
 || GPR [rt]63…s

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM286

DSUB Doubleword Subtract DSUB

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSUB

1 0 1 1 1 0

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The

result is placed into general register rd.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2’s complement overflow).

The destination register rd is not modified when an integer overflow exception occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] − GPR [rt]

Exceptions:

Integer overflow exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 287

DSUBU Doubleword Subtract Unsigned DSUBU

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
DSUBU

1 0 1 1 1 1

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The

result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never traps on overflow.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] − GPR [rt]

Exceptions:

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM288

ERET Exception Return ERET

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET
0 1 1 0 0 0

Format:

ERET

Description:

ERET is the instruction for returning from an interrupt, exception, or error trap. Unlike a Branch or Jump

instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC register and clear the

ERL bit of the Status register (SR2 = 0). Otherwise (SR2 = 0), load the PC from the EPC register, and clear the

EXL bit of the Status register (SR1 = 0).

When MIPS16 instructions are enabled, the value of clearing the least significant bit of the EPC or ErrorEPC

register to 0 is loaded to PC. This means the content of the least significant bit is reflected on the ISA mode bit

(internal).

Operation:

32, 64 T: if SR2 = 1 then

if MIPS16EN = 1 then

PC ← ErrorEPC63…1 || 0

ISA MODE ← ErrorEPC0

else

PC ← ErrorEPC

endif

SR ← SR31…3 || 0 || SR1…0

else

if MIPS16EN = 1 then

PC ← EPC63…1 || 0

ISA MODE ← EPC0

else

PC ← EPC

endif

SR ← SR31…2 || 0 || SR0

endif

Exceptions:

Coprocessor unusable exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 289

HIBERNATE Hibernate HIBERNATE

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HIBERNATE
1 0 0 0 1 1

Format:

HIBERNATE

Description:

HIBERNATE instruction starts mode transition from Fullspeed mode to Hibernate mode.

When the HIBERNATE instruction finishes the WB stage, the VR4100 Series wait by the SysAD bus is idle state,

and then fix the all clocks generated by the CPU core to high level, thus freezing the pipeline.

Once the VR4100 Series is in Hibernate mode, the Cold Reset sequence will cause the VR4100 Series to exit

Hibernate mode and to enter Fullspeed mode.

Operation:

32, 64 T:

T+1: Hibernate operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Hardware User's Manual of each product for details about the operation of the peripheral

units at mode transition.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM290

J Jump J

J

31 26 25 0

target0 0 0 0 1 0

Format:

J target

Description:

The 26-bit target address is shifted left by two bits and combined with the high-order four bits of the address of

the delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

32 T: temp ← target

T+1: PC ← PC31…28 || temp || 0
2

64 T: temp ← target

T+1: PC ← PC63…28 || temp || 0
2

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 291

JAL Jump And Link JAL

JAL

31 26 25 0

target0 0 0 0 1 1

Format:

JAL target

Description:

The 26-bit target address is shifted left by two bits and combined with the high-order four bits of the address of

the delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction. The

address of the instruction immediately after a delay slot is placed in the link register (r31). When MIPS16

instructions are enabled, the value of bit 0 of r31 indicates the ISA mode bit (internal) before jump.

Operation:

32 T: temp ← target

if MIPS16EN = 1 then

GPR [31] ← (PC + 8)31…1 || ISA MODE

else

GPR [31] ← PC + 8

endif

T+1: PC ← PC31…28 || temp || 0
2

64 T: temp ← target

if MIPS16EN = 1 then

GPR [31] ← (PC + 8)63…1 || ISA MODE

else

GPR [31] ← PC + 8

endif

T+1: PC ← PC63…28 || temp || 0
2

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM292

JALR Jump And Link Register JALR

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rd
0

0 0 0 0 0
JALR

0 0 1 0 0 1
0

0 0 0 0 0

Format:

JALR rs

JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one

instruction.

When MIPS16 instructions are enabled, the program unconditionally jumps with a delay of one instruction to the

address indicated by the value of clearing the least significant bit of the general register rs to 0. Then, the

content of the least significant bit of the general register rs is set to the ISA mode bit (internal).

The address of the instruction immediately after the delay slot is placed in general register rd. The default value

of rd, if omitted in the assembly language instruction, is 31. When MIPS16 instructions are enabled, the value of

bit 0 of rd indicates the ISA mode bit before jump.

Register specifiers rs and rd should not be equal since such an instruction does not have the same effect when

re-executed because storing a link address destroys the contents of rs if they are equal. However, an attempt to

execute this instruction is not trapped, and the result of executing such an instruction is undefined.

Since 32-bit length instructions must be word-aligned, a Jump and Link Register (JALR) instruction must specify

a target register (rs) that contains an address whose two low-order bits are zero when MIPS16 instructions are

enabled. If these low-order bits are not zero, an address error exception will occur when the jump target

instruction is subsequently fetched.

Operation:

32, 64 T: temp ← GPR [rs]

if MIPS16EN = 1 then

GPR [rd] ← (PC + 8)63…1 || ISA MODE

else

GPR [rd] ← PC + 8

endif

T+1: if MIPS16EN = 1 then

PC ← temp63…1 || 0

ISA MODE ← temp0

else

PC ← temp

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 293

JALX Jump And Link Exchange JALX

JALX

31 26 25 0

target0 1 1 1 0 1

Format:

JALX target

Description:

When MIPS16 instructions are enabled, a 26-bit target address is shifted to left by two bits and combined with

the high-order four bits of the address or the delay slot. The program unconditionally jumps to the calculated

address with a delay of one instruction. The address of the instruction immediately after a delay slot is placed in

the link register (r31). The ISA mode bit is inverted with a delay of one instruction. The value of bit 0 of the link

register (r31) indicates the ISA mode bit (internal) before jump.

Operation:

32 T: temp ← target

GPR [31] ← (PC + 8)31…1 || ISA MODE

T+1: PC ← PC31…28 || temp || 0
2

ISA MODE toggle

64 T: temp ← target

GPR [31] ← (PC + 8)63…1 || ISA MODE

T+1: PC ← PC63…28 || temp || 0
2

ISA MODE toggle

Exceptions:

Reserved instruction exception (when MIPS16 instruction execution disabled)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM294

JR Jump Register JR

SPECIAL

31 26 25 21 20 6 5 0

rs0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JR

0 0 1 0 0 0

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one

instruction.

When MIPS16 instructions are enabled, the program unconditionally jumps with a delay of one instruction to the

address indicated by the value of clearing the least significant bit of the general register rs to 0. Then, the

content of the least significant bit of the general register rs is set to the ISA mode bit (internal).

Since 32-bit length instructions must be word-aligned, a Jump Register (JR) instruction must specify a target

register (rs) that contains an address whose two low-order bits are zero when MIPS16 instructions are enabled.

If these low-order bits are not zero, an address error exception will occur when the jump target instruction is

subsequently fetched.

Operation:

32, 64 T: temp ← GPR [rs]

T+1: if MIPS16EN = 1 then

PC ← temp63…1 || 0

ISA MODE ← temp0

else

PC ← temp

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 295

LB Load Byte LB

LB

31 26 25 21 20 16 15 0

base1 0 0 0 0 0 rt offset

Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the byte at the memory location specified by the effective address are sign-extended and loaded

into general register rt.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor BigEndianCPU
3

GPR [rt] ← (mem7 + 8*byte)
24

 || mem7 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor BigEndianCPU
3

GPR [rt] ← (mem7 + 8*byte)
56

 || mem7 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM296

LBU Load Byte Unsigned LBU

LBU

31 26 25 21 20 16 15 0

base1 0 0 1 0 0 rt offset

Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the byte at the memory location specified by the effective address are zero-extended and loaded

into general register rt.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor BigEndianCPU
3

GPR [rt] ← 0
24

 || mem7 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor BigEndianCPU
3

GPR [rt] ← 0
56

 || mem7 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 297

LD Load Doubleword LD

LD

31 26 25 21 20 16 15 0

base1 1 0 1 1 1 rt offset

Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into

general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR [rt] ← data

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR [rt] ← data

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM298

LDL Load Doubleword Left LDL

LDL

31 26 25 21 20 16 15 0

base0 1 1 0 1 0 rt offset

Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register with eight consecutive

bytes from memory, when the bytes cross a doubleword boundary. LDL loads the left portion of the register with

the appropriate part of the high-order doubleword in memory; LDR loads the right portion of the register with the

appropriate part of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that can specify an arbitrary byte. It reads bytes only from the doubleword in memory that contains the

specified starting byte, and places them in the high-order part of general register rt. The contents of the

remaining part of general register rt is retained. From one to eight bytes will be loaded, depending on the starting

byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of

the register; then it loads bytes from memory into the register until it reaches the low-order byte of the

doubleword in memory. The least-significant (right-most) byte(s) of the register will not be changed.

address 8

address 0

Memory (little endian)

before

after

$24

$24

Register

A B C D E F G H

12 11 10 9 8 F G H

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

LDL $24, 12 ($0)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 299

LDL Load Doubleword Left LDL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed

between an immediately preceding load instruction which specifies register rt and a following LDL (or LDR)

instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR [rt] ← mem7 + 8*byte…0 || GPR [rt]55 – 8*byte…0

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR [rt] ← mem7 + 8*byte…0 || GPR [rt]55 – 8*byte…0

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM300

LDL Load Doubleword Left LDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

P B C D E F G H

O P C D E F G H

N O P D E F G H

M N O P E F G H

L M N O P F G H

K L M N O P G H

J K L M N O P H

I J K L M N O P

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

7

6

5

4

3

2

1

0

I J K L M N O P

J K L M N O P H

K L M N O P G H

L M N O P F G H

M N O P E F G H

N O P D E F G H

O P C D E F G H

P B C D E F G H

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 301

LDR Load Doubleword Right LDR

LDR

31 26 25 21 20 16 15 0

base0 1 1 0 1 1 rt offset

Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register with eight consecutive

bytes from memory, when the bytes cross a doubleword boundary. LDR loads the right portion of the register

with the appropriate part of the low-order doubleword in memory; LDL loads the left portion of the register with

the appropriate part of the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that can specify an arbitrary byte. It reads bytes only from the doubleword in memory that contains the

specified starting byte, and places them in the low-order part of general register rt. The contents of the remaining

part of general register rt is retained. From one to eight bytes will be loaded, depending on the starting byte

specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of

the register; then it loads bytes from memory into the register until it reaches the high-order byte of the

doubleword in memory. The most significant (left-most) byte(s) of the register will not be changed.

address 8

address 0

Memory (little endian)

before

after

$24

$24

Register

A B C D E F G H

A B C D E 7 6 5

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

LDR $24, 5 ($0)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM302

LDR Load Doubleword Right LDR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed

between an immediately preceding load instruction which specifies register rt and a following LDR (or LDL)

instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)

GPR [rt] ← GPR [rt]63…64 – 8*byte || mem63… 8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

mem ← LoadMemory (uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)

GPR [rt] ← GPR [rt]63…64 – 8*byte || mem63… 8*byte

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 303

LDR Load Doubleword Right LDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O P

A I J K L M N O

A B I J K L M N

A B C I J K L M

A B C D I J K L

A B C D E I J K

A B C D E F I J

A B C D E F G I

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

A B C D E F G I

A B C D E F I J

A B C D E I J K

A B C D I J K L

A B C I J K L M

A B I J K L M N

A I J K L M N O

I J K L M N O P

0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM304

LH Load Halfword LH

LH

31 26 25 21 20 16 15 0

base1 0 0 0 0 1 rt offset

Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the halfword at the memory location specified by the effective address are sign-extended and

loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

GPR [rt] ← (mem15 + 8*byte)
16

 || mem15 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

GPR [rt] ← (mem15 + 8*byte)
48

 || mem15 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 305

LHU Load Halfword Unsigned LHU

LHU

31 26 25 21 20 16 15 0

base1 0 0 1 0 1 rt offset

Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the halfword at the memory location specified by the effective address are zero-extended and

loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

GPR [rt] ← 0
16

 || mem15 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

GPR [rt] ← 0
48

 || mem15 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM306

LUI Load Upper Immediate LUI

LUI

31 26 25 21 20 16 15 0

0 0 1 1 1 1 rt immediate
0

0 0 0 0 0

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left by 16 bits and concatenated to 16 bits of zeros. The result is placed into

general register rt. In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T: GPR [rt] ← immediate || 0
16

64 T: GPR [rt] ← (immediate15)
32

 || immediate || 0
16

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 307

LW Load Word LW

LW

31 26 25 21 20 16 15 0

base1 0 0 0 1 1 rt offset

Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the word at the memory location specified by the effective address are loaded into general

register rt. In 64-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

GPR [rt] ← mem31 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

GPR [rt] ← (mem31 + 8*byte)
32

 || mem31 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM308

LWL Load Word Left LWL

LWL

31 26 25 21 20 16 15 0

base1 0 0 0 1 0 rt offset

Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register with four consecutive

bytes from memory, when the bytes cross a word boundary. LWL loads the left portion of the register with the

appropriate part of the high-order word in memory; LWR loads the right portion of the register with the

appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that can specify an arbitrary byte. It reads bytes only from the word in memory that contains the

specified starting byte, and places them in the high-order part of general register rt. The contents of the

remaining part of general register rt are retained. From one to four bytes will be loaded, depending on the

starting byte specified. In 64-bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order (left-most) byte of

the register; then it loads bytes from memory into the register until it reaches the low-order byte of the word in

memory. The least-significant (right-most) byte(s) of the register will not be changed.

address 4

address 0

Memory (little endian)

7

before

after

$24

$24

Register

LWL $24, 4 ($0)

6 5 4

3 2 1 0 A B C D

4 B C D

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 309

LWL Load Word Left LWL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed

between an immediately preceding load instruction which specifies register rt and a following LWL (or LWR)

instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

temp ← mem32*word + 8*byte + 7…32*word || GPR [rt]23 – 8*byte…0

GPR [rt] ← temp

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp ← mem32*word + 8*byte + 7…32*word || GPR [rt]23 – 8*byte…0

GPR [rt] ← (temp31)
32

 || temp

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM310

LWL Load Word Left LWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

S S S S P F G H

S S S S O P G H

S S S S N O P H

S S S S M N O P

S S S S L F G H

S S S S K L G H

S S S S J K L H

S S S S I J K L

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

7

6

5

4

3

2

1

0

S S S S I J K L

S S S S J K L H

S S S S K L G H

S S S S L F G H

S S S S M N O P

S S S S N O P H

S S S S O P G H

S S S S P F G H

3

2

1

0

3

2

1

0

4

4

4

4

0

0

0

0

0

1

2

3

4

5

6

7

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

S: sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 311

LWR Load Word Right LWR

LWR

31 26 25 21 20 16 15 0

base1 0 0 1 1 0 rt offset

Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register with four consecutive

bytes from memory, when the bytes cross a word boundary. LWR loads the right portion of the register with the

appropriate part of the low-order word in memory; LWL loads the left portion of the register with the appropriate

part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that can specify an arbitrary byte. It reads bytes only from the word in memory that contains the

specified starting byte, and places them in the low-order part of general register rt. The contents of the remaining

part of general register rt are retained. From one to four bytes will be loaded, depending on the starting byte

specified. In 64-bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of

the register; then it loads bytes from memory into the register until it reaches the high-order byte of the word in

memory. The most significant (left-most) byte(s) of the register will not be changed.

address 4

address 0

Memory (little endian)

7

before

after

$24

$24

Register

LWR $24, 1 ($0)

6 5 4

3 2 1 0 A B C D

A 3 2 1

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM312

LWR Load Word Right LWR
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed

between an immediately preceding load instruction which specifies register rt and a following LWR (or LWL)

instruction which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr1…0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

temp ← GPR [rt]31…32 – 8*byte || mem31 + 32*word…32*word + 8*byte

GPR [rt] ← temp

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr1…0 xor BigEndianCPU
2

word ← vAddr2 xor BigEndianCPU

mem ← LoadMemory (uncached, WORD-byte, pAddr, vAddr, DATA)

temp ← GPR [rt]31…32 – 8*byte || mem31 + 32*word…32*word + 8*byte

GPR [rt] ← (temp31)
32

 || temp

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 313

LWR Load Word Right LWR
(Continued)

Given a word in a register and a word in memory, the operation of LWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

S S S S M N O P

S S S S E M N O

S S S S E F M N

S S S S E F G M

S S S S I J K L

S S S S E I J K

S S S S E F I J

S S S S E F G I

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

4

4

4

4

0

0

0

0

S S S S E F G I

S S S S E F I J

S S S S E I J K

S S S S I J K L

S S S S E F G M

S S S S E F M N

S S S S E M N O

S S S S M N O P

0

1

2

3

0

1

2

3

7

6

5

4

3

2

1

0

0

0

0

0

4

4

4

4

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

S: sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM314

LWU Load Word Unsigned LWU

LWU

31 26 25 21 20 16 15 0

base1 0 0 1 1 1 rt offset

Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the word at the memory location specified by the effective address are loaded into general

register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

GPR [rt] ← 0
32

 || mem 31 + 8*byte…8*byte

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

GPR [rt] ← 0
32

 || mem 31 + 8*byte…8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 315

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

rs
SPECIAL
0 0 0 0 0 0

rt

31 26 25 21 20 16 15 0

MACC
1 0 1 0 0 0

6 5

rd sat us

11 10 9 7

hi 0 0

8

Format:

MACC rd, rs, rt

MACCU rd, rs, rt

MACCHI rd, rs, rt

MACCHIU rd, rs, rt

MACCS rd, rs, rt

MACCUS rd, rs, rt

MACCHIS rd, rs, rt

MACCHIUS rd, rs, rt

Description:

The mnemonics of the MACC instruction differ as shown in the table below by the setting of the sat, hi, or us bits.

Mnemonic sat hi us

MACC 0 0 0

MACCU 0 0 1

MACCHI 0 1 0

MACCHIU 0 1 1

MACCS 1 0 0

MACCUS 1 0 1

MACCHIS 1 1 0

MACCHIUS 1 1 1

The number of valid bits in the operands differs depending on whether saturation processing is executed (sat =

1) or not (sat = 0).

•••• When saturation processing is executed (sat = 1): MACCS, MACCUS, MACCHIS, and MACCHIUS

instructions

The contents of general register rs are multiplied by the contents of general register rt. If us = 1, the contents

of both operands are handled as 16-bit unsigned data. If us = 0, the contents are handled as 16-bit signed

integers. Sign/zero extension by software is required for bits 16 to 31 in the operands.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM316

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

The product of this multiply operation is added to the 64-bit value (of which only the low-order 32 bits are valid)

formed by concatenating special registers HI and LO. If us = 1, this add operation handles the values being

added as 32-bit unsigned data. If us = 0, the values are handled as 32-bit signed integers. Sign/zero

extension by software is required for bits 32 to 63 of the value formed by concatenating special registers HI and

LO.

After saturation processing of 32 bits has been performed (refer to the table below), the sum from this add

operation is loaded to special registers HI and LO. When hi = 1, data that is the same as the data loaded to

special register HI is also loaded to general register rd. When hi = 0, data that is the same as the data loaded

to special register LO is also loaded to general register rd. Overflow exceptions do not occur.

•••• When saturation processing is not executed (sat = 0): MACC, MACCU, MACCHI, and MACCHIU

instructions

The contents of general register rs are multiplied by the contents of general register rt. If us = 1, the contents

of both operands are handled as 32-bit unsigned data. If us = 0, the contents are handled as 32-bit signed

integers. Sign/zero extension by software is required for bits 32 to 63 in the operands.

The product of this multiply operation is added to the 64-bit value formed by concatenating special registers HI

and LO. If us = 1, this add operation handles the values being added as 64-bit unsigned data. If us = 0, the

values are handled as 64-bit signed integers.

The low-order word of the sum from this add operation is loaded to special register LO, and the high-order word

to special register HI. When hi = 1, data that is the same as the data loaded to special register HI is also

loaded to general register rd. When hi = 0, data that is the same as the data loaded to special register LO is

also loaded to general register rd. Overflow exceptions do not occur.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 317

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

The correspondence of us and sat settings and values stored during saturation processing is shown below, along

with the hazard cycles required between execution of the instruction for manipulating the HI and LO registers and

execution of the MACC instruction.

Values Stored During Saturation Processing Hazard Cycle Counts

us sat Overflow Underflow Instruction Cycle Count

0 0 Store calculation result as is Store calculation result as is

1 0 Store calculation result as is Store calculation result as is

0 1 0x0000 0000 7FFF FFFF 0xFFFF FFFF 8000 0000

1 1 0xFFFF FFFF FFFF FFFF None

MULT, MULTU

DMULT, DMULTU

DIV, DIVU

DDIV, DDIVU

MFHI, MFLO

MTHI, MTLO

MACC

DMACC

Note1

3

36

68

Note2

0

0

0

Notes 1. VR4121, VR4122 … 1

VR4131 … 0

VR4181A … 1

2. VR4121, VR4122 … 2

VR4131 … 0

VR4181A … 2

Operation:

32, sat = 0, hi = 0, us = 0 (MACC instruction)

T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← temp1 + (HI || LO)

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← LO

32, sat = 0, hi = 0, us = 1 (MACCU instruction)

T: temp1 ← (0 || GPR[rs]) * (0 || GPR[rt])

temp2 ← temp1 + ((0 || HI) || (0 || LO))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← LO

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM318

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

32, sat = 0, hi = 1, us = 0 (MACCHI instruction)

T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← temp1 + (HI || LO)

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← HI

32, sat = 0, hi = 1, us = 1 (MACCHIU instruction)

T: temp1 ← (0 || GPR[rs]) * (0 || GPR[rt])

temp2 ← temp1 + ((0 || HI) || (0 || LO))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← HI

32, sat = 1, hi = 0, us = 0 (MACCS instruction)

T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← saturation(temp1 + (HI || LO))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← LO

32, sat = 1, hi = 0, us = 1 (MACCUS instruction)

T: temp1 ← (0 || GPR[rs]) * (0 || GPR[rt])

temp2 ← saturation(temp1 + ((0 || HI) || (0 || LO)))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← LO

32, sat = 1, hi = 1, us = 0 (MACCHIS instruction)

T: temp1 ← GPR[rs] * GPR[rt]

temp2 ← saturation(temp1 + (HI || LO))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← HI

32, sat = 1, hi = 1, us = 1 (MACCHIUS instruction)

T: temp1 ← (0 || GPR[rs]) * (0 || GPR[rt])

temp2 ← saturation(temp1 + ((0 || HI) || (0 || LO)))

LO ← temp263..32

HI ← temp231..0

GPR[rd] ← HI

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 319

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

64, sat = 0, hi = 0, us = 0 (MACC instruction)

T: temp1 ← ((GPR[rs]31)32|| GPR[rs]) * ((GPR[rt]31)32|| GPR[rt])

temp2 ← temp1 + (HI31..0 || LO31..0)

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← LO

64, sat = 0, hi = 0, us = 1 (MACCU instruction)

T: temp1 ← (032|| GPR[rs]) * (032|| GPR[rt])

temp2 ← temp1 + (HI31..0 || LO31..0)

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← LO

64, sat = 0, hi = 1, us = 0 (MACCHI instruction)

T: temp1 ← ((GPR[rs]31)32|| GPR[rs]) * ((GPR[rt]31)32|| GPR[rt])

temp2 ←temp1 + (HI31..0 || LO31..0)

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← HI

64, sat = 0, hi = 1, us = 1 (MACCHIU instruction)

T: temp1 ← (032|| GPR[rs]) * (032|| GPR[rt])

temp2 ← temp1 + (HI31..0 || LO31..0)

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← HI

64, sat = 1, hi = 0, us = 0 (MACCS instruction)

T: temp1 ← ((GPR[rs]31)32|| GPR[rs]) * ((GPR[rt]31)32|| GPR[rt])

temp2 ← saturation(temp1 + (HI31..0 || LO31..0))

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← LO

64, sat = 1, hi = 0, us = 1 (MACCUS instruction)

T: temp1 ← (032|| GPR[rs]) * (032|| GPR[rt])

temp2 ←saturation(temp1 + (HI31..0 || LO31..0))

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← LO

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM320

MACC Multiply and Add Accumulate MACC
(for VR4121, VR4122, VR4131, and VR4181A)

(Continued)

64, sat = 1, hi = 1, us = 0 (MACCHIS instruction)

T: temp1 ← ((GPR[rs]31)32|| GPR[rs]) * ((GPR[rt]31)32|| GPR[rt])

temp2 ← saturation(temp1 + (HI31..0 || LO31..0))

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← HI

64, sat = 1, hi = 1, us = 1 (MACCHIUS instruction)

T: temp1 ← (032|| GPR[rs]) * (032|| GPR[rt])

temp2 ← saturation(temp1 + (HI31..0 || LO31..0)

LO ← ((temp263)32|| temp263..32)

HI ← ((temp231)32|| temp231..0)

GPR[rd] ← HI

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 321

MADD16 Multiply and Add 16-bit integer MADD16
(for VR4181 only)

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
MADD16

1 0 1 0 0 0

Format:

MADD16 rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2’s complement

values. Bits 62 to 15 of the operand must be valid sign-extended values. If not, the result is unpredictable.

This multiplied result and the 64-bit data joined special register HI to LO are added to form the result. When the

operation completes, the low-order word of the result is loaded into special register LO, and the high-order word

of the result is loaded into special register HI.

No integer overflow exception occurs under any circumstances.

Hazard cycles required between MADD16 and other instructions are as follows.

Instruction sequence No. of cycles

MULT/MULTU → MADD16 1 Cycle

DMULT/DMULTU → MADD16 4 Cycles

DIV/DIVU → MADD16 36 Cycles

DDIV/DDIVU → MADD16 68 Cycles

MFHI/MFLO → MADD16 2 Cycles

DMADD16 → MADD16 0 Cycles

MADD16 → MADD16 0 Cycles

Operation:

32, 64 T: temp1 ← GPR [rs] * GPR [rt]

temp2 ← temp1 + (HI31…0 || LO31…0)

LO ← (temp2 31)
32

 || temp2 31…0

HI ← (temp2 63)
32

 || temp2 63…32

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM322

MFC0 Move from System Control Coprocessor MFC0

COP0

31 26 25 21 20 16 15 11 10 0

0 1 0 0 0 0 rt rd
MF

0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

Operation:

32 T: data ← CPR [0, rd]

T+1: GPR [rt] ← data

64 T: data ← CPR [0, rd]

T+1: GPR [rt] ← (data31)
32

 || data31…0

Exceptions:

Coprocessor unusable exception (User and Supervisor mode if CP0 not enabled)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 323

MFHI Move from HI MFHI

SPECIAL

31 26 25 16 15 11 10 6 5 0

0 0 0 0 0 0 rd
0

0 0 0 0 0
MFHI

0 1 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFHI instruction may

not be any of the instructions which modify the HI register: MACC, DMACC, MADD16, DMADD16, MULT,

MULTU, DIV, DIVU, MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

32, 64 T: GPR [rd] ← HI

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM324

MFLO Move from LO MFLO

SPECIAL

31 26 25 16 15 11 10 6 5 0

0 0 0 0 0 0 rd
0

0 0 0 0 0
MFLO

0 1 0 0 1 0
0

0 0 0 0 0 0 0 0 0 0

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFLO instruction may

not be any of the instructions which modify the LO register: MACC, DMACC, MADD16, DMADD16, MULT,

MULTU, DIV, DIVU, MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

32, 64 T: GPR [rd] ← LO

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 325

MTC0 Move to Coprocessor0 MTC0

COP0

31 26 25 21 20 16 15 11 10 0

0 1 0 0 0 0 rt rd
MT

0 0 1 0 0
0

0 0 0 0 0 0 0 0 0 0 0

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of CP0.

Because the state of the virtual address translation system may be altered by this instruction, the operation of

load instructions, store instructions, and TLB operations immediately prior to and after this instruction are

undefined.

When using a register used by the MTC0 by means of instructions before and after it, refer to CHAPTER 11

COPROCESSOR 0 HAZARDS and place the instructions in the appropriate location.

Operation:

32, 64 T: data ← GPR [rt]

T+1: CPR [0, rd] ← data

Exceptions:

Coprocessor unusable exception (User and Supervisor mode if CP0 not enabled)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM326

MTHI Move to HI MTHI

SPECIAL

31 26 25 21 20 6 5 0

rs0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MTHI

0 1 0 0 0 1

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI.

Restrictions:

The operation results written to the HI/LO register pair via a DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MULT,

or MULTU instruction should be read by the MFHI or MFLO instruction before another result is written to either of

the registers. If the MTHI instruction is executed prior to the MFLO or MFHI instruction following the execution of

any one of the arithmetic instructions, the contents of the LO register are undefined as shown in the example

below.

MULT r2, r4 # start operation that will eventually write to HI, LO

 … # code not containing MFHI or MFLO

MTHI r6

 … # code not containing MFLO

MFLO r3 # this MFLO would get an undefined value

Operation:

32, 64 T−2: HI ← undefined

T−1: HI ← undefined

T: HI ← GPR [rs]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 327

MTLO Move to LO MTLO

SPECIAL

31 26 25 21 20 6 5 0

rs0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MTLO

0 1 0 0 1 1

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

Restrictions:

The operation results written to the HI/LO register pair via a DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MULT,

or MULTU instruction should be read by the MFHI or MFLO instruction before another result is written to either of

the registers. If the MTLO instruction is executed prior to the MFLO or MFHI instruction following the execution of

any one of the arithmetic instructions, the contents of the HI register are undefined as shown in the example

below.

MULT r2, r4 # start operation that will eventually write to HI, LO

 … # code not containing MFHI or MFLO

MTLO r6

 … # code not containing MFHI

MFHI r3 # this MFHI would get an undefined value

Operation:

32, 64 T−2: LO ← undefined

T−1: LO ← undefined

T: LO ← GPR [rs]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM328

MULT Multiply MULT

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
MULT

0 1 1 0 0 0

Format:

MULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as signed 32-bit integer. No

integer overflow exception occurs under any circumstances. In 64-bit mode, the operands must be valid 32-bit,

sign-extended values.

When the operation completes, the low-order doubleword of the result is loaded into special register LO, and the

high-order doubleword of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by a minimum of two other instructions.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← GPR [rs] * GPR [rt]

LO ← t 31…0

HI ← t 63…32

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← GPR [rs] 31…0 * GPR [rt] 31…0

LO ← (t 31)
32

 || t 31…0

HI ← (t 63)
32

 || t 63…32

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 329

MULTU Multiply Unsigned MULTU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
0

0 0 0 0 0 0 0 0 0 0
MULTU

0 1 1 0 0 1

Format:

MULTU rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as unsigned values. No

overflow exception occurs under any circumstances. In 64-bit mode, the operands must be valid 32-bit, sign-

extended values.

When the operation completes, the low-order doubleword of the result is loaded into special register LO, and the

high-order doubleword of the result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.

Correct operation requires separating reads of HI or LO from writes by a minimum of two instructions.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR [rs]) * (0 || GPR [rt])

LO ← t 31…0

HI ← t 63…32

64 T−2: LO ← undefined

HI ← undefined

T−1: LO ← undefined

HI ← undefined

T: t ← (0 || GPR [rs] 31…0) * (0 || GPR [rt] 31…0)

LO ← (t 31)
32

 || t 31…0

HI ← (t 63)
32

 || t 63…32

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM330

NOR NOR NOR

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
NOR

1 0 0 1 1 1

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical NOR

operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] nor GPR [rt]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 331

OR OR OR

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
OR

1 0 0 1 0 1

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical OR

operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] or GPR [rt]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM332

ORI OR Immediate ORI

ORI

31 26 25 21 20 16 15 0

rs0 0 1 1 0 1 rt immediate

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical

OR operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] ← GPR [rs] 31…16 || (immediate or GPR [rs] 15…0)

64 T: GPR [rt] ← GPR [rs] 63…16 || (immediate or GPR [rs] 15…0)

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 333

SB Store Byte SB

SB

31 26 25 21 20 16 15 0

base1 0 1 0 0 0 rt offset

Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The least-significant byte of register rt is stored at the effective address.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

byte ← vAddr2…0 xor BigEndianCPU
3

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

byte ← vAddr2…0 xor BigEndianCPU
3

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM334

SD Store Doubleword SD

SD

31 26 25 21 20 16 15 0

base1 1 1 1 1 1 rt offset

Format:

SD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of general register rt are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are non-zero, an address error exception

occurs.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR [rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR [rt]

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 335

SDL Store Doubleword Left SDL

SDL

31 26 25 21 20 16 15 0

base1 0 1 1 0 0 rt offset

Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register into eight consecutive

bytes of memory, when the bytes cross a doubleword boundary. SDL stores the left portion of the register into

the appropriate part of the high-order doubleword in memory; SDR stores the right portion of the register into the

appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that may specify an arbitrary byte. It alters only the doubleword in memory that contains the specified

starting byte, with the high-order part of general register rt. From one to eight bytes will be stored, depending on

the starting byte specified.

Conceptually, it starts at the most-significant (leftmost) byte of the register and copies it to the specified byte in

memory; then it copies bytes from register to memory until it reaches the low-order byte of the doubleword in

memory.

address 8

address 0

Memory (little endian)

before

after

$24

Register

A B C D E F G H

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SDL $24, 8 ($0)
address 8

address 0

15 14 13 12 11 10 9 A

7 6 5 4 3 2 1 0

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM336

SDL Store Doubleword Left SDL
(Continued)

No address error exceptions due to alignment are possible.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

data ← 0
56 – 8*byte

 || GPR [rt]63…56 – 8*byte

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

data ← 0
56 – 8*byte

 || GPR [rt]63…56 – 8*byte

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 337

SDL Store Doubleword Left SDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O A

I J K L M N A B

I J K L M A B C

I J K L A B C D

I J K A B C D E

I J A B C D E F

I A B C D E F G

A B C D E F G H

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

7

6

5

4

3

2

1

0

A B C D E F G H

I A B C D E F G

I J A B C D E F

I J K A B C D E

I J K L A B C D

I J K L M A B C

I J K L M N A B

I J K L M N O A

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM338

SDR Store Doubleword Right SDR

SDR

31 26 25 21 20 16 15 0

base1 0 1 1 0 1 rt offset

Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register into eight consecutive

bytes of memory, when the bytes cross a doubleword boundary. SDR stores the right portion of the register into

the appropriate part of the low-order doubleword in memory; SDL stores the left portion of the register into the

appropriate part of the high-order doubleword.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that may specify an arbitrary byte. It alters only the doubleword in memory that contains the specified

starting byte, with the low-order part of general register rt. From one to eight bytes will be stored, depending on

the starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in

memory; then it copies bytes from register to memory until it reaches the high-order byte of the doubleword in

memory.

address 8

address 0

Memory (little endian)

before

after

$24

Register

A B C D E F G H

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SDR $24, 1 ($0)
address 8

address 0

15 14 13 12 11 10 9 8

B C D E F G H 0

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 339

SDR Store Doubleword Right SDR
(Continued)

No address error exceptions due to alignment are possible.

This operation is defined for the VR4100 Series operating in 64-bit mode or in 32-bit Kernel mode. Execution of

this instruction in 32-bit User or Supervisor mode causes a reserved instruction exception.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

data ← GPR [rt]63 – 8*byte || 0
8*byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…3 || 0
3

endif

byte ← vAddr2…0 xor BigEndianCPU
3

data ← GPR [rt]63 – 8*byte || 0
8*byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM340

SDR Store Doubleword Right SDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

A B C D E F G H

B C D E F G H P

C D E F G H O P

D E F G H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

I J K L M N O A

I J K L M N A B

I J K L M A B C

I J K L A B C D

I J K A B C D E

I J A B C D E F

I A B C D E F G

A B C D E F G H

0

1

2

3

4

5

6

7

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

Reserved instruction exception (VR4100 Series in 32-bit User mode, VR4100 Series in 32-bit Supervisor mode)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 341

SH Store Halfword SH

SH

31 26 25 21 20 16 15 0

base1 0 1 0 0 1 rt offset

Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an effective

address. The least-significant halfword of register rt is stored at the effective address. If the least-significant bit

of the effective address is non-zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian
2
 || 0))

byte ← vAddr2…0 xor (BigEndianCPU
2
 || 0)

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM342

SLL Shift Left Logical SLL

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SLL

0 0 0 0 0 0

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-order bits. The result is

placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for

all shift amounts, including zero; SLL with zero shift amount truncates a 64-bit value to 32 bits and then sign

extends this 32-bit value. SLL, unlike nearly all other word operations, does not require an operand to be a

properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T: GPR [rd] ← GPR [rt] 31 – sa…0 || 0
sa

64 T: s ← 0 || sa

temp ← GPR [rt] 31 – s…0) || 0
s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

Caution SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels. If using SLL with a zero shift to truncate 64-bit values, check the

assembler you are using.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 343

SLLV Shift Left Logical Variable SLLV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SLLV

0 0 0 1 0 0

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five bits contained

in general register rs, inserting zeros into the low-order bits. The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for

all shift amounts, including zero; SLLV with zero shift amount truncates a 64-bit value to 32 bits and then sign

extends this 32-bit value. SLLV, unlike nearly all other word operations, does not require an operand to be a

properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T: s ← GPR [rs] 4…0

GPR [rd] ← GPR [rt] 31 – s…0 || 0
s

64 T: s ← 0 || GPR [rs] 4…0

temp ← GPR [rt] 31 – s…0) || 0
s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

Caution SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some

optimization levels. If using SLLV with a zero shift to truncate 64-bit values, check the

assembler you are using.

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM344

SLT Set on Less Than SLT

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SLT

1 0 1 0 1 0

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are less than the contents of general register

rt, the result is set to one; otherwise the result is set to zero. The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if GPR [rs] < GPR [rt] then

GPR [rd] ← 0
31

 || 1

else

GPR [rd] ← 0
32

endif

64 T: if GPR [rs] < GPR [rt] then

GPR [rd] ← 0
63

 || 1

else

GPR [rd] ← 0
64

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 345

SLTI Set on Less Than Immediate SLTI

SLTI

31 26 25 21 20 16 15 0

rs0 0 1 0 1 0 rt immediate

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are less than the sign-extended immediate, the

result is set to 1; otherwise the result is set to 0. The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if GPR [rs] < (immediate15)
16

 || immediate15…0 then

GPR [rt] ← 0
31

 || 1

else

GPR [rt] ← 0
32

endif

64 T: if GPR [rs] < (immediate15)
48

 || immediate15…0 then

GPR [rt] ← 0
63

 || 1

else

GPR [rt] ← 0
64

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM346

SLTIU Set on Less Than Immediate Unsigned SLTIU

SLTIU

31 26 25 21 20 16 15 0

rs0 0 1 0 1 1 rt immediate

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are less than the sign-extended immediate,

the result is set to 1; otherwise the result is set to 0. The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if (0 || GPR [rs]) < (0 || (immediate15)
16

 || immediate15…0) then

GPR [rt] ← 0
31

 || 1

else

GPR [rt] ← 0
32

endif

64 T: if (0 || GPR [rs]) < (0 || (immediate15)
48

 || immediate15…0) then

GPR [rt] ← 0
63

 || 1

else

GPR [rt] ← 0
64

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 347

SLTU Set on Less Than Unsigned SLTU

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SLTU

1 0 1 0 1 1

Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are less than the contents of general

register rt, the result is set to 1; otherwise the result is set to 0. The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction

used during the comparison overflows.

Operation:

32 T: if (0 || GPR [rs]) < (0 || GPR [rt]) then

GPR [rd] ← 0
31

 || 1

else

GPR [rd] ← 0
32

endif

64 T: if (0 || GPR [rs]) < (0 || GPR [rt]) then

GPR [rd] ← 0
63

 || 1

else

GPR [rd] ← 0
64

endif

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM348

SRA Shift Right Arithmetic SRA

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SRA

0 0 0 0 1 1

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-order bits. The result is

placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

Restrictions:

If the value of general register rt is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: GPR [rd] ← (GPR [rt] 31)
sa

 || GPR [rt] 31…sa

64 T: s ← 0 || sa

temp ← (GPR [rt] 31)
s
 || GPR [rt] 31…s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 349

SRAV Shift Right Arithmetic Variable SRAV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SRAV

0 0 0 1 1 1

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of

general register rs, sign-extending the high-order bits. The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

Restrictions:

If the value of general register rt is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: s ← GPR [rs] 4…0

GPR [rd] ← (GPR [rt] 31)
s
 || GPR [rt] 31…s

64 T: s ← GPR [rs] 4…0

temp ← (GPR [rt] 31)
s
 || GPR [rt] 31…s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM350

SRL Shift Right Logical SRL

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

sa0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SRL

0 0 0 0 1 0

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-order bits. The result

is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

Restrictions:

If the value of general register rt is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: GPR [rd] ← 0
sa

 || GPR [rt] 31…sa

64 T: s ← 0 || sa

temp ← 0
s
 || GPR [rt] 31…s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 351

SRLV Shift Right Logical Variable SRLV

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SRLV

0 0 0 1 1 0

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of

general register rs, inserting zeros into the high-order bits. The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

Restrictions:

If the value of general register rt is not a sign-extended 32-bit value (bits 63 to 31 have the same value), the

result of this operation will be undefined.

Operation:

32 T: s ← GPR [rs] 4…0

GPR [rd] ← 0
s
 || GPR [rt] 31…s

64 T: s ← GPR [rs] 4…0

temp ← 0
s
 || GPR [rt] 31…s

GPR [rd] ← (temp31)
32

 || temp

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM352

STANDBY Standby STANDBY

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STANDBY
1 0 0 0 0 1

Format:

STANDBY

Description:

STANDBY instruction starts mode transition from Fullspeed mode to Standby mode.

When the STANDBY instruction finishes the WB stage, the VR4100 Series wait by the SysAD bus is idle state,

and then fix the internal clocks to high level, thus freezing the pipeline. In the VR4131 and VR4181A, IE bit of the

Status register in the CP0 is also set to 1.

The PLL, Timer/Interrupt clocks and the internal bus clocks (TClock and MasterOut) will continue to run.

Once the VR4100 Series is in Standby mode, any interrupt, including the internally generated timer interrupt, NMI,

Soft Reset, and Cold Reset will cause the VR4100 Series to exit Standby mode and to enter Fullspeed mode.

Operation:

32, 64 T:

T+1: Standby operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Hardware User's Manual of each product for details about the operation of the peripheral

units at mode transition.

Program examples to enter Standby mode are shown below.

• For VR4121, VR4122, and VR4181

Insert process to mask interrupts in the Interrupt Control Unit (ICU)

 …

Insert process for entering Standby mode

 …

Insert process to enable interrupts in the ICU

STANDBY

• For VR4131 and VR4181A

MFC0 t5, psr

ORI t5, t5, 1

XORI t5, t5, 1

MTC0 t5, psr

Insert process for entering Standby mode

STANDBY

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 353

SUB Subtract SUB

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SUB

1 0 0 0 1 0

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The

result is placed into general register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2’s complement overflow).

The destination register rd is not modified when an integer overflow exception occurs.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T: GPR [rd] ← GPR [rs] – GPR [rt]

64 T: temp ← GPR [rs] – GPR [rt]

GPR [rd] ← (temp31)
32

 || temp31…0

Exceptions:

Integer overflow exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM354

SUBU Subtract Unsigned SUBU

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
SUBU

1 0 0 0 1 1

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a result. The

result is placed into general register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

The only difference between this instruction and the SUB instruction is that SUBU never traps on overflow. No

integer overflow exception occurs under any circumstances.

Restrictions:

If the value of either general register rt or general register rs is not a sign-extended 32-bit value (bits 63 to 31

have the same value), the result of this operation will be undefined.

Operation:

32 T: GPR [rd] ← GPR [rs] – GPR [rt]

64 T: temp ← GPR [rs] – GPR [rt]

GPR [rd] ← (temp31)
32

 || temp31…0

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 355

SUSPEND Suspend SUSPEND

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUSPEND
1 0 0 0 1 0

Format:

SUSPEND

Description:

SUSPEND instruction starts mode transition from Fullspeed mode to Suspend mode.

When the SUSPEND instruction finishes the WB stage, the VR4100 Series wait by the SysAD bus is idle state,

and then fix the internal clocks including the TClock to high level, thus freezing the pipeline. In the VR4131 and

VR4181A, IE bit of the Status register in the CP0 is also set to 1.

The PLL, Timer/Interrupt clocks and MasterOut, will continue to run.

Once the VR4100 Series is in Suspend mode, any interrupt, including the internally generated timer interrupt,

NMI, Soft Reset and Cold Reset will cause the VR4100 Series to exit Suspend mode and to enter Fullspeed

mode.

Operation:

32, 64 T:

T+1: Suspend Operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Hardware User's Manual of each product for details about the operation of the peripheral

units at mode transition.

Program examples to enter Suspend mode are shown below.

• For VR4121, VR4122, and VR4181

Insert process to mask interrupts in the Interrupt Control Unit (ICU)

 …

Insert process for entering Suspend mode

 …

Insert process to enable interrupts in the ICU

SUSPEND

• For VR4131 and VR4181A

MFC0 t5, psr

ORI t5, t5, 1

XORI t5, t5, 1

MTC0 t5, psr

Insert process for entering Suspend mode

SUSPEND

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM356

SW Store Word SW

SW

31 26 25 21 20 16 15 0

base1 0 1 0 1 1 rt offset

Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of general register rt are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an address error exception occurs.

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor (ReverseEndian || 0
2
))

byte ← vAddr2…0 xor (BigEndianCPU || 0
2
)

data ← GPR [rt]63 – 8*byte…0 || 0
8*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 357

SWL Store Word Left SWL

SWL

31 26 25 21 20 16 15 0

base1 0 1 0 1 0 rt offset

Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into four consecutive

bytes of memory, when the bytes cross a word boundary. SWL stores the left portion of the register into the

appropriate part of the high-order word in memory; SWR stores the right portion of the register into the

appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that may specify an arbitrary byte. It alters only the word in memory that contains the specified starting

byte, with the high-order part of general register rt. From one to four bytes will be stored, depending on the

starting byte specified.

Conceptually, it starts at the most-significant (leftmost) byte of the register and copies it to the specified byte in

memory; then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 4

address 0

Memory (little endian)

7
before

after

$24

Register

SWL $24, 4 ($0)

6 5 4

3 2 1 0 A B C D

address 4

address 0

7 6 5 A

3 2 1 0

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM358

SWL Store Word Left SWL
(Continued)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

data ← 0
32

 || 0
24 – 8*byte

 || GPR [rt]31…24 – 8*byte

else

data ← 0
24 – 8*byte

 || GPR [rt]31…24 – 8*byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 0 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

data ← 0
32

 || 0
24 – 8*byte

 || GPR [rt]31…24 – 8*byte

else

data ← 0
24 – 8*byte

 || GPR [rt]31…24 – 8*byte || 0
32

endif

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 359

SWL Store Word Left SWL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

I J K L M N O E

I J K L M N E F

I J K L M E F G

I J K L E F G H

I J K E M N O P

I J E F M N O P

I E F G M N O P

E F G H M N O P

0

1

2

3

0

1

2

3

0

0

0

0

4

4

4

4

7

6

5

4

3

2

1

0

E F G H M N O P

I E F G M N O P

I J E F M N O P

I J K E M N O P

I J K L E F G H

I J K L M E F G

I J K L M N E F

I J K L M N O E

3

2

1

0

3

2

1

0

4

4

4

4

0

0

0

0

0

1

2

3

4

5

6

7

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM360

SWR Store Word Right SWR

SWR

31 26 25 21 20 16 15 0

base1 0 1 1 1 0 rt offset

Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a register into four consecutive

bytes of memory, when the bytes cross a word boundary. SWR stores the right portion of the register into the

appropriate part of the low-order word in memory; SWL stores the left portion of the register into the appropriate

part of the high-order word.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address that may specify an arbitrary byte. It alters only the word in memory that contains the specified starting

byte, with low-order part of general register rt. From one to four bytes will be stored, depending on the starting

byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it to the specified byte in

memory; then copies bytes from register to memory until it reaches the high-order byte of the word in memory.

No address error exceptions due to alignment are possible.

address 4

address 0

Memory (little endian)

7
before

after

$24

Register

SWR $24, 1 ($0)

6 5 4

3 2 1 0 A B C D

address 4

address 0

7 6 5 4

B C D 0

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 361

SWR Store Word Right SWR
(Continued)

Operation:

32 T: vAddr ← ((offset15)
16

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

data ← 0
32

 || GPR [rt]31 – 8*byte…0 || 0
8*byte

else

data ← GPR [rt]31 – 8*byte || 0
8*byte

 || 0
32

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)
48

 || offset15…0) + GPR [base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1…3 || (pAddr2…0 xor ReverseEndian
3
)

if BigEndianMem = 1 then

pAddr ← pAddrPSIZE – 1…2 || 0
2

endif

byte ← vAddr1…0 xor BigEndianCPU
2

if (vAddr2 xor BigEndianCPU) = 0 then

data ← 0
32

 || GPR [rt]31 – 8*byte…0 || 0
8*byte

else

data ← GPR [rt]31 – 8*byte || 0
8*byte

 || 0
32

endif

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM362

SWR Store Word Right SWR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as follows:

B C D E F GA H

J K L M N OI P

Register

Memory

vAddr2..0 BigEndianCPU = 0 BigEndianCPU = 1 Note

destination type offset destination type offset

LEM BEM Note LEM BEM

0

1

2

3

4

5

6

7

I J K L E F G H

I J K L F G H P

I J K L G H O P

I J K L H N O P

E F G H M N O P

F G H L M N O P

G H K L M N O P

H J K L M N O P

3

2

1

0

3

2

1

0

0

1

2

3

4

5

6

7

4

4

4

4

0

0

0

0

H J K L M N O P

G H K L M N O P

F G H L M N O P

E F G H M N O P

I J K L H N O P

I J K L G H O P

I J K L F G H P

I J K L E F G H

0

1

2

3

0

1

2

3

7

6

5

4

3

2

1

0

0

0

0

0

4

4

4

4

Note For VR4131 only

Remark type: access type (see Figure 2-2) sent to memory

offset: pAddr2..0 sent to memory

LEM: Little-endian memory (BigEndianMem = 0)

BEM: Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modified exception

Bus error exception

Address error exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 363

SYNC Synchronize SYNC

SPECIAL

31 26 25 6 5 0

0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYNC

0 0 1 1 1 1

Format:

SYNC

Description:

The SYNC instruction is executed as a NOP on the VR4100 Series. This operation is compatible with code

compiled for the VR4000.

This instruction is defined for the purpose of maintaining software compatibility with the VR4000 and VR4400.

Operation:

32, 64 T: SyncOperation ()

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM364

SYSCALL System Call SYSCALL

SPECIAL

31 26 25 6 5 0

code0 0 0 0 0 0
SYSCALL
0 0 1 1 0 0

Format:

SYSCALL

Description:

A system call exception occurs by executing this instruction, immediately and unconditionally transferring control

to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: SystemCallException

Exceptions:

System call exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 365

TEQ Trap if Equal TEQ

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TEQ

1 1 0 1 0 0code

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of general register rs are

equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] = GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM366

TEQI Trap if Equal Immediate TEQI

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TEQI

0 1 1 0 0

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the contents of

general register rs are equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] = (immediate15)
16

 || immediate15…0 then

TrapException

endif

64 T: if GPR [rs] = (immediate15)
48

 || immediate15…0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 367

TGE Trap if Greater Than or Equal TGE

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TGE

1 1 0 0 0 0code

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are greater than or equal to the contents of

general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] ≥ GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM368

TGEI Trap if Greater Than or Equal Immediate TGEI

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TGEI

0 1 0 0 0

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are greater than or equal to the sign-extended

immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] ≥ (immediate15)
16

 || immediate15…0 then

TrapException

endif

64 T: if GPR [rs] ≥ (immediate15)
48

 || immediate15…0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 369

TGEIU Trap if Greater Than or Equal Immediate Unsigned TGEIU

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TGEIU

0 1 0 0 1

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are greater than or equal to the sign-

extended immediate, a trap exception occurs.

Operation:

32 T: if (0 || GPR [rs]) ≥ (0 || (immediate15)
16

 || immediate15…0) then

TrapException

endif

64 T: if (0 || GPR [rs]) ≥ (0 || (immediate15)
48

 || immediate15…0) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM370

TGEU Trap if Greater Than or Equal Unsigned TGEU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TGEU

1 1 0 0 0 1code

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are greater than or equal to the contents of

general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR [rs]) ≥ (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 371

TLBP Probe TLB for Matching Entry TLBP

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TLBP
0 0 1 0 0 0

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi

register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction

immediately after a TLBP instruction, nor is the operation specified if more than one TLB entry matches.

Operation:

32 T: Index ← 1 || 0
25

 || Undefined
6

for i in 0…TLBEntries − 1

if (TLB [i]95…77 = EntryHi31…13) and (TLB [i]76 or (TLB [i]71…64 = EntryHi7…0)) then

Index ← 0
26

 || i5…0

endif

endfor

64 T: Index ← 1 || 0
25

 || Undefined
6

for i in 0…TLBEntries − 1

if (TLB [i]167…141 and not (0
15

 || TLB [i]216…205)) =

(EntryHi39…13 and not (0
15

 || TLB [i]216…205)) and

(TLB [i]140 or (TLB [i]135…126 = EntryHi7…0)) then

Index ← 0
26

 || i5…0

endif

endfor

Exceptions:

Coprocessor unusable exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM372

TLBR Read Indexed TLB Entry TLBR

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TLBR
0 0 0 0 0 1

Format:

TLBR

Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed at by the contents of the

Index register. The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLo0

and EntryLo1 registers.

The operation is invalid (and the results are unspecified) if the contents of the Index register are greater than the

number of TLB entries in the processor.

Operation:

32 T: PageMask ← TLB [Index5…0]127…96

EntryHi ← TLB [Index5…0]95…64 and not TLB [Index5…0]127…96

EntryLo1 ← TLB [Index5…0]63…33 || TLB [Index5…0]76

EntryLo0 ← TLB [Index5…0]31…1 || TLB [Index5…0]76

64 T: PageMask ← TLB [Index5…0]255…192

EntryHi ← TLB [Index5…0]191…128 and not TLB [Index5…0]255…192

EntryLo1 ← TLB [Index5…0]127…65 || TLB [Index5…0]140

EntryLo0 ← TLB [Index5…0]63…1 || TLB [Index5…0]140

Exceptions:

Coprocessor unusable exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 373

TLBWI Write Indexed TLB Entry TLBWI

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TLBWI
0 0 0 0 1 0

Format:

TLBWI

Description:

The TLB entry pointed at by the contents of the Index register is loaded with the contents of the EntryHi and

EntryLo registers. The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1

registers.

The operation is invalid (and the results are unspecified) if the contents of the Index register are greater than the

number of TLB entries in the processor.

Operation:

32, 64 T: TLB [Index5…0] ← PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM374

TLBWR Write Random TLB Entry TLBWR

COP0

31 26 25 24 6 5 0

CO
10 1 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TLBWR
0 0 0 1 1 0

Format:

TLBWR

Description:

The TLB entry pointed at by the contents of the Random register is loaded with the contents of the EntryHi and

EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

Operation:

32, 64 T: TLB [Random5…0] ← PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 375

TLT Trap if Less Than TLT

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TLT

1 1 0 0 1 0code

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are less than the contents of general register

rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] < GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM376

TLTI Trap if Less Than Immediate TLTI

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TLTI

0 1 0 1 0

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both

quantities as signed integers, if the contents of general register rs are less than the sign-extended immediate, a

trap exception occurs.

Operation:

32 T: if GPR [rs] < (immediate15)
16

 || immediate15…0 then

TrapException

endif

64 T: if GPR [rs] < (immediate15)
48

 || immediate15…0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 377

TLTIU Trap if Less Than Immediate Unsigned TLTIU

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TLTIU

0 1 0 1 1

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are less than the sign-extended immediate,

a trap exception occurs.

Operation:

32 T: if (0 || GPR [rs]) < (0 || (immediate15)
16

 || immediate15…0) then

TrapException

endif

64 T: if (0 || GPR [rs]) < (0 || (immediate15)
48

 || immediate15…0) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM378

TLTU Trap if Less Than Unsigned TLTU

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TLTU

1 1 0 0 1 1code

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both

quantities as unsigned integers, if the contents of general register rs are less than the contents of general

register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 || GPR [rs]) < (0 || GPR [rt]) then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 379

TNE Trap if Not Equal TNE

SPECIAL

31 26 25 21 20 16 15 6 5 0

rs0 0 0 0 0 0 rt
TNE

1 1 0 1 1 0code

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. If the contents of general

register rs are not equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] ≠ GPR [rt] then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM380

TNEI Trap if Not Equal Immediate TNEI

REGIMM

31 26 25 21 20 16 15 0

rs0 0 0 0 0 1 immediate
TNEI

0 1 1 1 0

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. If the contents of

general register rs are not equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR [rs] ≠ (immediate15)
16

 || immediate15…0 then

TrapException

endif

64 T: if GPR [rs] ≠ (immediate15)
48

 || immediate15…0 then

TrapException

endif

Exceptions:

Trap exception

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 381

XOR Exclusive OR XOR

SPECIAL

31 26 25 21 20 16 15 11 10 6 5 0

rs0 0 0 0 0 0 rt rd
0

0 0 0 0 0
XOR

1 0 0 1 1 0

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logical

exclusive OR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] xor GPR [rt]

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM382

XORI Exclusive OR Immediate XORI

XORI

31 26 25 21 20 16 15 0

rs0 0 1 1 1 0 immediatert

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical

exclusive OR operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] ← GPR [rs] xor (0
16

 || immediate)

64 T: GPR [rt] ← GPR [rs] xor (0
48

 || immediate)

Exceptions:

None

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 383

9.4 CPU Instruction Opcode Bit Encoding

The remainder of this chapter presents the opcode bit encoding for the CPU instruction set (ISA and extensions),

as implemented by the VR4100 Series. Figure 9-1 lists the VR4100 Series Opcode Bit Encoding.

Figure 9-1. CPU Instruction Opcode Bit Encoding (1/3)

28...26 Opcode

31...29 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 π π * BEQL BNEL BLEZL BGTZL

3 DADDIε DADDIUε LDLε LDRε * JALXθ * *

4 LB LH LWL LW LBU LHU LWR LWUε

5 SB SH SWL SW SDLε SDRε SWR CACHEδ

6 * π π * * π π LDε

7 * π π * * π π SDε

2...0 SPECIAL function

5...3 0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV

1 JR JALR * * SYSCALL BREAK * SYNC

2 MFHI MTHI MFLO MTLO DSLLVε * DSRLVε DSRAVε

3 MULT MULTU DIV DIVU DMULTε DMULTUε DDIVε DDIVUε

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 Note 1 Note 2 SLT SLTU DADDε DADDUε DSUBε DSUBUε

6 TGE TGEU TLT TLTU TEQ * TNE *

7 DSLLε * DSRLε DSRAε DSLL32ε * DSRL32ε DSRA32ε

18...16 REGIMM rt

20...19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL * * * *

1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *

2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *

3 * * * * * * * *

Notes 1. VR4121, VR4122, VR4131, VR4181A … MACC

VR4181 … MADD16

2. VR4121, VR4122, VR4131, VR4181A … DMACC

VR4181 … DMADD16

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM384

Figure 9-1. CPU Instruction Opcode Bit Encoding (2/3)

23...21 COP0 rs

25…24 0 1 2 3 4 5 6 7

0 MF DMFε γ γ MT DMTε γ γ

1 BC γ γ γ γ γ γ γ

2 CO

3

18...16 COP0 rt

20...19 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL γ γ γ γ

1 γ γ γ γ γ γ γ γ

2 γ γ γ γ γ γ γ γ

3 γ γ γ γ γ γ γ γ

2...0 CP0 Function

5...3 0 1 2 3 4 5 6 7

0 φ TLBR TLBWI φ φ φ TLBWR φ

1 TLBP φ φ φ φ φ φ φ

2 ξ φ φ φ φ φ φ φ

3 ERET χ φ φ φ φ φ φ φ

4 φ STANDBY SUSPEND HIBERNATE φ φ φ φ

5 φ φ φ φ φ φ φ φ

6 φ φ φ φ φ φ φ φ

7 φ φ φ φ φ φ φ φ

CHAPTER 9 CPU INSTRUCTION SET DETAILS

User’s Manual U15509EJ2V0UM 385

Figure 9-1. CPU Instruction Opcode Bit Encoding (3/3)

Key:

 * Operation codes marked with an asterisk cause reserved instruction exceptions in all current

implementations and are reserved for future versions of the architecture.

 γ Operation codes marked with a gamma cause a reserved instruction exception. They are reserved

for future versions of the architecture.

 δ Operation codes marked with a delta are valid only for processors conforming to MIPS III instruction

set or later with CP0 enabled, and cause a reserved instruction exception on other processors.

 φ Operation codes marked with a phi are invalid but do not cause reserved instruction exceptions in

VR4100 Series implementations.

 ξ Operation codes marked with a xi cause a reserved instruction exception on VR4100 Series

processors.

 χ Operation codes marked with a chi are valid on processors conforming to MIPS III instruction set or

later only.

 ε Operation codes marked with an epsilon are valid when the processor operating in 64-bit mode or

in 32-bit Kernel mode. These instructions will cause a reserved instruction exception if the

processor operates in 32-bit User or Supervisor mode.

 π Operation codes marked with a pi are invalid and cause coprocessor unusable exception on

VR4100 Series processors.

 θ Operation codes marked with a theta are valid when MIPS16 instruction execution is enabled, and

cause a reserved instruction exception when MIPS16 instruction execution is disabled.

User’s Manual U15509EJ2V0UM386

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

This chapter describes the format of each MIPS16 instruction, and the format of the MIPS instructions that are

made by converting MIPS16 instructions in alphabetical order. For details of MIPS16 instruction conversion and

opcode, refer to CHAPTER 3 MIPS16 INSTRUCTION SET.

Caution For some instructions, their format or syntax may become ineffective after they are converted to

a 32-bit instruction. For details of formats and syntax of 32-bit instructions, refer to CHAPTER 2

CPU INSTRUCTION SET SUMMARY and CHAPTER 9 CPU INSTRUCTION SET DETAILS.

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 387

ADDIU Add Immediate Unsigned

(1/2)

0341516 2021252631

034578101115

ADDIU
0 0 1 0 0 1 trx try sign immediate

immediateryrxRRI-A
0 1 0 0 0

ADDIU ry, rx, immediate

A
D
D
I
U
0

0781516 2021252631

078101115

ADDIU
0 0 1 0 0 1 trx trx sign immediate

immediaterx
ADDIU8
0 1 0 0 1

ADDIU rx, immediate

02310111516 2021252631

078101115

ADDIU
0 0 1 0 0 1

sp
1 1 1 0 1

sp
1 1 1 0 1 sign immediate

immediate
ADJSP
0 1 1

I8
0 1 1 0 0

ADDIU sp, immediate

0
0 0 0

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM388

ADDIU Add Immediate Unsigned

(2/2)

1 021516 2021252631

078101115

ADDIU
0 0 1 0 0 1

0
0 0 0 0 0 trx

0
0 0 0 0 0 0 immediate

immediaterxADDIUSP
0 0 0 0 1

ADDIU rx, pc, immediate

0
0 0

910

Note

Note Zeros are shown in the field of bits 21 to 25 as placeholders. The 32-bit PC-relative instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 3 for a complete definition of the semantics of the

MIPS16 PC-relative instructions.

1 021516 2021252631

078101115

ADDIU
0 0 1 0 0 1

sp
1 1 1 0 1 trx

0
0 0 0 0 0 0 immediate

immediaterxADDIUSP
0 0 0 0 0

ADDIU rx, sp, immediate

0
0 0

910

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 389

ADDU Add Unsigned

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0

ADDU
1 0 0 0 0 1

ADDU
0 1ryrx

RRR
1 1 1 0 0

ADDU rz, rx, ry

rz

trz

AND AND

05610111516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0

 AND
1 0 0 1 0 0

AND
0 1 1 0 0ryrx

RR
1 1 1 0 1

AND, rx, ry

trx

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM390

B Branch Unconditional

0101115 2021252631

0101115

BEQ
0 0 0 1 0 0

zero
0 0 0 0 0 immediateNote

immediate
B

0 0 0 1 0

B immediate

zero
0 0 0 0 0 sign

16

Note In MIPS16 mode, the branch offset is interpreted as halfword aligned. This is unlike 32-bit

MIPS mode which interprets the offset value as word aligned. The 32-bit branch instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 2 and Chapter 9 for a complete definition of the

semantics of the branch instructions.

BEQZ Branch on Equal to Zero

0781516 2021252631

078101115

BEQ
0 0 0 1 0 0 trx

zero
0 0 0 0 0 sign immediate

Note

immediaterx
BEQZ

0 0 1 0 0

BEQZ rx, immediate

Note In MIPS16 mode, the branch offset is interpreted as halfword aligned. This is unlike 32-bit

MIPS mode which interprets the offset value as word aligned. The 32-bit branch instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 2 and Chapter 9 for a complete definition of the

semantics of the branch instructions.

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 391

BNEZ Branch on Not Equal to Zero

0781516 2021252631

078101115

BNE
0 0 0 1 0 1 trx

zero
0 0 0 0 0 sign immediateNote

immediaterx
BNEZ

0 0 1 0 1

BNEZ rx, immediate

Note In MIPS16 mode, the branch offset is interpreted as halfword aligned. This is unlike 32-bit

MIPS mode which interprets the offset value as word aligned. The 32-bit branch instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 2 and Chapter 9 for a complete definition of the

semantics of the branch instructions.

BREAK Breakpoint

056252631

04578101115

SPECIAL
0 0 0 0 0 0 codeNote 2 BREAK

0 0 1 1 0 1

BREAK
0 0 1 0 1rxNote 1rxNote 1RR

1 1 1 0 1

BREAK immediate

Notes 1. The two register fields in the MIPS16 break instruction may be used as a 6-bit code

(immediate) field for software parameters. The 6-bit code can be retrieved by the

exception handler.

2. The 32-bit break instruction format shown above is provided here only to make the

description complete; it is not a valid 32-bit MIPS instruction. The code field is entirely

ignored by the pipeline, and it is not visible in any way to the software executing on the

processor.

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM392

BTEQZ Branch on T Equal to Zero

0781516 2021252631

078101115

BEQ
0 0 0 1 0 0

t8
1 1 0 0 0

zero
0 0 0 0 0 sign immediateNote

immediate
BTEQZ
0 0 0

I8
0 1 1 0 0

BTEQZ immediate

Note In MIPS16 mode, the branch offset is interpreted as halfword aligned. This is unlike 32-bit

MIPS mode which interprets the offset value as word aligned. The 32-bit branch instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 2 and Chapter 9 for a complete definition of the

semantics of the branch instructions.

BTNEZ Branch on T Not Equal to Zero

0781516 2021252631

078101115

BNE
0 0 0 1 0 1

t8
1 1 0 0 0

zero
0 0 0 0 0 sign immediateNote

immediate
BTNEZ
0 0 1

I8
0 1 1 0 0

BTNEZ immediate

Note In MIPS16 mode, the branch offset is interpreted as halfword aligned. This is unlike 32-bit

MIPS mode which interprets the offset value as word aligned. The 32-bit branch instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 2 and Chapter 9 for a complete definition of the

semantics of the branch instructions.

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 393

CMP Compare

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

t8
1 1 0 0 0

XOR
1 0 0 1 1 0

CMP
0 1 0 1 0ryrx

RR
1 1 1 0 1

CMP rx, ry

0
0 0 0 0 0

25

CMPI Compare Immediate

0781516 2021252631

078101115

XORI
0 0 1 1 1 0 trx

t8
1 1 0 0 0

0
0 0 0 0 0 0 0 0 immediate

immediaterx
CMPI

0 1 1 1 0

CMPI rx, immediate

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM394

DADDIU Doubleword Add Immediate Unsigned

(1/2)

0341516 2021252631

034578101115

DADDIU
0 1 1 0 0 1 trx try sign immediate

immediateryrxRRI-A
0 1 0 0 0

DADDIU ry, rx, immediate
D
A
D
D
I
U
1

0451516 2021252631

04578101115

DADDIU
0 1 1 0 0 1 try try sign immediate

immediatery
DADD

IU5
1 0 1

I64
1 1 1 1 1

DADDIU ry, immediate

1 02671516 2021252631

04578101115

DADDIU
0 1 1 0 0 1

0
0 0 0 0 0 try

0
0 0 0 0 0 0 0 0 0 immediate

immediatery
DADDIU

PC
1 1 1

I64
1 1 1 1 1

DADDIU ry, pc, immediate

0
0 0

Note

Note Zeros are shown in the field of bits 21 to 25 as placeholders. The 32-bit PC-relative instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 3 for a complete definition of the semantics of the

MIPS16 PC-relative instructions.

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 395

DADDIU Doubleword Add Immediate Unsigned

(2/2)

1 02671516 2021252631

04578101115

DADDIU
0 1 1 0 0 1

sp
1 1 1 0 1 try

0
0 0 0 0 0 0 0 0 0 immediate

immediatery
DADDIU

SP
1 1 1

I64
1 1 1 1 1

DADDIU ry, sp, immediate

0
0 0

02310111516 2021252631

078101115

DADDIU
0 1 1 0 0 1

sp
1 1 1 0 1

sp
1 1 1 0 1 sign immediate

immediate
DADJ

SP
0 1 1

I64
1 1 1 1 1

DADDIU sp, immediate

0
0 0 0

DADDU Doubleword Add Unsigned

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0

DADDU
1 0 1 1 0 1

DADDU
0 0

ryrx
RRR

1 1 1 0 0

DADDU rz, rx, ry

rz

trz

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM396

DDIV Doubleword Divide

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DDIV
0 1 1 1 1 0

DDIV
1 1 1 1 0ryrx

RR
1 1 1 0 1

DDIV rx, ry

DDIVU Doubleword Divide Unsigned

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DDIVU
0 1 1 1 1 1

DDIVU
1 1 1 1 1ryrx

RR
1 1 1 0 1

DDIVU rx, ry

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 397

DIV Divide

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DIV
0 1 1 0 1 0

DIV
1 1 0 1 0ryrx

RR
1 1 1 0 1

DIV rx, ry

DIVU Divide Unsigned

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DIVU
0 1 1 0 1 1

DIVU
1 1 0 1 1ryrx

RR
1 1 1 0 1

DIVU rx, ry

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM398

DMULT Doubleword Multiply

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DMULT
0 1 1 1 0 0

DMULT
1 1 1 0 0ryrx

RR
1 1 1 0 1

DMULT rx, ry

DMULTU Doubleword Multiply Unsigned

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

DMULTU
0 1 1 1 0 1

DMULTU
1 1 1 0 1ryrx

RR
1 1 1 0 1

DMULTU rx, ry

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 399

DSLL Doubleword Shift Left Logical

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try sa

DSLL
1 1 1 0 0 0

DSLL
0 1ryrx

SHIFT
0 0 1 1 0

DSLL rx, ry, immediate

shamt

trx

DSLLV Doubleword Shift Left Logical Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

DSLLV
0 1 0 1 0 0

DSLLV
1 0 1 0 0ryrx

RR
1 1 1 0 1

DSLLV ry, rx

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM400

DSRA Doubleword Shift Right Arithmetic

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try try

DSRA
1 1 1 0 1 1

DSRA
1 0 0 1 1ryshamt

RR
1 1 1 0 1

DSRA ry, immediate

sa

25

DSRAV Doubleword Shift Right Arithmetic Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

DSRAV
0 1 0 1 1 1

DSRAV
1 0 1 1 1ryrx

RR
1 1 1 0 1

DSRAV ry, rx

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 401

DSRL Doubleword Shift Right Logical

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try try

DSRL
1 1 1 0 1 0

DSRL
0 1 0 0 0ryshamt

RR
1 1 1 0 1

DSRL ry, immediate

sa

25

DSRLV Doubleword Shift Right Logical Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

DSRLV
0 1 0 1 1 0

DSRLV
1 0 1 1 0ryrx

RR
1 1 1 0 1

DSRLV ry, rx

0
0 0 0 0 0

25

DSUBU Doubleword Subtract Unsigned

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0

DSUBU
1 0 1 1 1 1

DSUBU
1 0

ryrx
RRR

1 1 1 0 0

DSUBU rz, rx, ry

rz

trz

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM402

JAL Jump and Link

0252631

015

JAL
0 0 0 0 1 1 target address

immediate
15:0

0459101115

immediate
25:21

0
0

JAL
0 0 0 1 1

JAL target

immediate
20:16

JALR Jump and Link Register

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx

0
0 0 0 0 0

ra
1 1 1 1 1

JALR
0 0 1 0 0 1

JALR
0 0 0 0 0

JALR ra, rx

RR
1 1 1 0 1 0 1 0

rx

0 0 0 0 0

25

0

2

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 403

JALX Jump and Link Exchange

0252631

015

JALX
0 1 1 1 0 1 target address

immediate
15:0

0459101115

immediate
25:21

1
1

JALX
0 0 0 1 1

JALX target

immediate
20:16

JR Jump Register

045 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0rx
RR

1 1 1 0 1

JR rx

JR
0 0 0 0 0

JR
0 0 1 0 0 0

0

045 2021252631

04578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 10 0 0
RR

1 1 1 0 1

JR ra

JR
0 0 0 0 0

JR
0 0 1 0 0 0

ra
1 1 1 1 1

0 1

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM404

LB Load Byte

0451516 2021252631

04578101115

LB
1 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LB

1 0 0 0 0

LB ry, offset (rx)

LBU Load Byte Unsigned

0451516 2021252631

04578101115

LBU
1 0 0 1 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LBU

1 0 1 0 0

LBU ry, offset (rx)

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 405

LD Load Doubleword

023781516 2021252631

04578101115

LD
1 1 0 1 1 1 trx try

0
0 0 0 0 0 0 0 0 immediate

immediateryrx
LD

0 0 1 1 1

LD ry, offset (rx)

0
0 0 0

023781516 2021252631

04578101115

LD
1 1 0 1 1 1 try

0
0 0 0 0 0 0 0 0 immediate

immediatery
I64

1 1 1 1 1

LD ry, offset (pc)

0
0 0 0

LDPC
1 0 0

0
0 0 0 0 0

Note

Note Zeros are shown in the field of bits 21 to 25 as placeholders. The 32-bit PC-relative instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 3 for a complete definition of the semantics of the

MIPS16 PC-relative instructions.

023781516 2021252631

04578101115

LD
1 1 0 1 1 1

sp
1 1 1 0 1 try

0
0 0 0 0 0 0 0 0 immediate

immediatery
LDSP
0 0 0

I64
1 1 1 1 1

LD ry, offset (sp)

0
0 0 0

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM406

LH Load Halfword

1 0561516 2021252631

04578101115

LH
1 0 0 0 0 1 trx try

0
0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LH

1 0 0 0 1

LH ry, offset (rx)

0
0

LHU Load Halfword Unsigned

1 0561516 2021252631

04578101115

LHU
1 0 0 1 0 1 trx try

0
0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LHU

1 0 1 0 1

LHU ry, offset (rx)

0
0

LI Load Immediate

0781516 2021252631

078101115

ORI
0 0 1 1 0 1

zero
0 0 0 0 0 trx

0
0 0 0 0 0 0 0 0 immediate

immediaterx
LI

0 1 1 0 1

LI rx, immediate

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 407

LW Load Word

1 02671516 2021252631

04578101115

LW
1 0 0 0 1 1 trx try

0
0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LW

1 0 0 1 1

LW ry, offset (rx)

0
0 0

1 021516 2021252631

078101115

LW
1 0 0 0 1 1

0
0 0 0 0 0 trx

0
0 0 0 0 0 0 immediate

immediaterx
LWPC

1 0 1 1 0

LW rx, offset (pc)

0
0 0

910

Note

Note Zeros are shown in the field of bits 21 to 25 as placeholders. The 32-bit PC-relative instruction

format shown above is provided here only to make the description complete; it is not a valid

32-bit MIPS instruction. See Chapter 3 for a complete definition of the semantics of the

MIPS16 PC-relative instructions.

1 021516 2021252631

078101115

LW
1 0 0 0 1 1

sp
1 1 1 0 1 trx

0
0 0 0 0 0 0 immediate

immediaterx
LWSP

1 0 0 1 0

LW rx, offset (sp)

0
0 0

910

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM408

LWU Load Word Unsigned

1 02671516 2021252631

04578101115

LWU
1 0 0 1 1 1 trx try

0
0 0 0 0 0 0 0 0 0 immediate

immediateryrx
LWU

1 0 1 1 1

LWU ry, offset (rx)

0
0 0

MFHI Move from HI Register

056101115162631

04578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 trx

MFHI
0 1 0 0 0 0

rx 0 0 0
RR

1 1 1 0 1

MFHI rx

0
0 0 0 0 0

25

MFHI
1 0 0 0 0

0

MFLO Move from LO Register

056101115162631

04578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 trx

MFLO
0 1 0 0 1 0

rx 0 0 0
RR

1 1 1 0 1

MFLO rx

0
0 0 0 0 0

25

MFLO
1 0 0 1 0

0

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 409

MOVE Move

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 r32

zero
0 0 0 0 0 try

OR
1 0 0 1 0 1

r32ry
MOV
R32
1 1 1

I8
0 1 1 0 0

MOVE ry, r32

0
0 0 0 0 0

25

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trz

zero
0 0 0 0 0 r32

OR
1 0 0 1 0 1

rz
MOV
32R

1 0 1

I8
0 1 1 0 0

MOVE r32 rz

0
0 0 0 0 0

25

r32
2:0

23

r32
4:3

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM410

MULT Multiply

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

MULT
0 1 1 0 0 0

MULT
1 1 0 0 0ryrx

RR
1 1 1 0 1

MULT rx, ry

MULTU Multiply Unsigned

0561516 2021252631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0

MULTU
0 1 1 0 0 1

MULTU
1 1 0 0 1ryrx

RR
1 1 1 0 1

MULTU rx, ry

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 411

NEG Negate

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0

zero
0 0 0 0 0 try trx

SUBU
1 0 0 0 1 1

NEG
0 1 0 1 1ryrx

RR
1 1 1 0 1

NEG rx, ry

0
0 0 0 0 0

25

NOT NOT

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0

zero
0 0 0 0 0 try trx

NOR
1 0 0 1 1 1

NOT
0 1 1 1 1ryrx

RR
1 1 1 0 1

NOT rx, ry

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM412

OR OR

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try trx

OR
1 0 0 1 0 1

OR
0 1 1 0 1ryrx

RR
1 1 1 0 1

OR rx, ry

0
0 0 0 0 0

25

SB Store Byte

0451516 2021252631

04578101115

SB
1 0 1 0 0 0 trx try

0
0 0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
SB

1 1 0 0 0

SB ry, offset (rx)

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 413

SD Store Doubleword

023781516 2021252631

04578101115

SD
1 1 1 1 1 1 trx try

0
0 0 0 0 0 0 0 0 immediate

immediateryrx
SD

0 1 1 1 1

SD ry, offset (rx)

0
0 0 0

023781516 2021252631

04578101115

SD
1 1 1 1 1 1

sp
1 1 1 0 1 try

0
0 0 0 0 0 0 0 0 immediate

immediatery
SDSP
0 0 1

I64
1 1 1 1 1

SD ry, offset (sp)

0
0 0 0

02310111516 2021252631

078101115

SD
1 1 1 1 1 1

sp
1 1 1 0 1

ra
1 1 1 1 1

0
0 0 0 0 0 immediate

immediate
SD

RASP
0 1 0

I64
1 1 1 1 1

SD ra, offset (sp)

0
0 0 0

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM414

SH Store Halfword

01561516 2021252631

04578101115

SH
1 0 1 0 0 1 trx try

0
0 0 0 0 0 0 0 0 0 0 immediate

immediateryrx
SH

1 1 0 0 1

SH ry, offset (rx)

0
0

SLL Shift Left Logical

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try sa

SLL
0 0 0 0 0 0

SLL
0 0rxry

SHIFT
0 0 1 1 0

SLL rx, ry, immediate

shamt

trx

SLLV Shift Left Logical Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

SLLV
0 0 0 1 0 0

SLLV
0 0 1 0 0ryrx

RR
1 1 1 0 1

SLLV ry, rx

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 415

SLT Set on Less Than

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

t8
1 1 0 0 0

SLT
1 0 1 0 1 0

SLT
0 0 0 1 0ryrx

RR
1 1 1 0 1

SLT rx, ry

0
0 0 0 0 0

25

SLTI Set on Less Than Immediate

0781516 2021252631

078101115

SLTI
0 0 1 0 1 0 trx

t8
1 1 0 0 0

0
0 0 0 0 0 0 0 0 immediate

immediaterx
SLTI

0 1 0 1 0

SLTI rx, immediate

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM416

SLTIU Set on Less Than Immediate Unsigned

0781516 2021252631

078101115

SLTIU
0 0 1 0 1 1 trx

t8
1 1 0 0 0

0
0 0 0 0 0 0 0 0 immediate

immediaterx
SLTIU

0 1 0 1 1

SLTIU rx, immediate

SLTU Set on Less Than Unsigned

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try

t8
1 1 0 0 0

SLTU
1 0 1 0 1 1

SLTU
0 0 0 1 1ryrx

RR
1 1 1 0 1

SLTU rx, ry

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 417

SRA Shift Right Arithmetic

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try sa

SRA
0 0 0 0 1 1

SRA
1 1rxry

SHIFT
0 0 1 1 0

SRA rx, ry, immediate

shamt

trx

SRAV Shift Right Arithmetic Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

SRAV
0 0 0 1 1 1

SRAV
0 0 1 1 1ryrx

RR
1 1 1 0 1

SRAV ry, rx

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM418

SRL Shift Right Logical

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0

0
0 0 0 0 0 try sa

SRL
0 0 0 0 1 0

SRL
1 0rxry

SHIFT
0 0 1 1 0

SRL rx, ry, immediate

shamt

trx

SRLV Shift Right Logical Variable

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try try

SRLV
0 0 0 1 1 0

SRLV
0 0 1 1 0ryrx

RR
1 1 1 0 1

SRLV ry, rx

0
0 0 0 0 0

25

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM 419

SW Store Word

1 02671516 2021252631

04578101115

SW
1 0 1 0 1 1 trx try

0
0 0 0 0 0 0 0 0 0 immediate

immediateryrx
SW

1 1 0 1 1

SW ry, offset (rx)

0
0 0

1 021516 2021252631

078101115

SW
1 0 1 0 1 1

sp
1 1 1 0 1 trx

0
0 0 0 0 0 0 immediate

immediaterx
SWSP

1 1 0 1 0

SW rx, offset (sp)

0
0 0

910

1 021516 2021252631

078101115

SW
1 0 1 0 1 1

sp
1 1 1 0 1

ra
1 1 1 1 1

0
0 0 0 0 0 0 immediate

immediate
SW

RASP
0 1 0

I8
0 1 1 0 0

SW ra, offset (sp)

0
0 0

910

CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT

User’s Manual U15509EJ2V0UM420

SUBU Subtract Unsigned

05610111516 2021252631

1 024578101115

SPECIAL
0 0 0 0 0 0 trx try

0
0 0 0 0 0

SUBU
1 0 0 0 1 1

SUBU
1 1ryrx

RRR
1 1 1 0 0

SUBU rz, rx, ry

rz

trz

SYSCALL System Call

0562631

04578101115

SPECIAL
0 0 0 0 0 0

SYSCALL
0 0 1 1 0 0

SYSCALL
0 1 0 0 1

RR
1 1 1 0 1

SYSCALL

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25

0
0 0 0

0
0 0 0

XOR Exclusive OR

05610111516 20212631

04578101115

SPECIAL
0 0 0 0 0 0 trx try trx

XOR
1 0 0 1 1 0

XOR
0 1 1 1 0ryrx

RR
1 1 1 0 1

XOR rx, ry

0
0 0 0 0 0

25

User’s Manual U15509EJ2V0UM 421

CHAPTER 11 COPROCESSOR 0 HAZARDS

The CPU core of the VR4100 Series avoids contention of its internal resources by causing a pipeline interlock in

such cases as when the contents of the destination register of an instruction are used as a source in the succeeding

instruction. Therefore, instructions such as NOP must not be inserted between instructions.

However, interlocks do not occur on the operations related to the CP0 registers and the TLB. Therefore,

contention of internal resources should be considered when composing a program that manipulates the CP0

registers or the TLB. The CP0 hazards define the number of NOP instructions that is required to avoid contention of

internal resources, or the number of instructions unrelated to contention. This chapter describes the CP0 hazards.

The CP0 hazards of the CPU core of the VR4100 Series are as or less stringent than those of the VR4000. Table

11-1 lists the Coprocessor 0 hazards of the CPU core of the VR4100 Series. Code that complies with these hazards

will run without modification on the VR4000 Series.

The contents of the CP0 registers or the bits in the “Source” column of this table can be used as a source after

they are fixed.

The contents of the CP0 registers or the bits in the “Destination” column of this table can be available as a

destination after they are stored.

Based on this table, the number of NOP instructions required between instructions related to the TLB is computed

by the following formula, and so is the number of instructions unrelated to contention:

(Destination Hazard number of A) – [(Source Hazard number of B) + 1]

As an example, to compute the number of instructions required between an MTC0 and a subsequent MFC0

instruction, this is:

(5) – (3 + 1) = 1 instruction

The CP0 hazards do not generate interlocks of pipeline. Therefore, the required number of instruction must be

controlled by program.

CHAPTER 11 COPROCESSOR 0 HAZARDS

User’s Manual U15509EJ2V0UM422

Table 11-1. Coprocessor 0 Hazards (1/2)

(a) VR4121, VR4122, VR4181, and VR4181A

Operation Source Destination

Source Name No. of cycles Destination Name No. of cycles

MTC0 − CPR 5

MFC0 CPR 3 −

TLBR Index, TLB 2 PageMask, EntryHi, EntryLo0,

EntryLo1

5

TLBWI

TLBWR

Index or Random, PageMask,

EntryHi, EntryLo0, EntryLo1

2 TLB 5

TLBP PageMask, EntryHi 2 Index 6

ERET EPC or ErrorEPC, TLB 2 Status[EXL], [ERL] 4

Status 2

CACHE Index_Load_Tag − TagLo, TagHi, PErr 5

CACHE Index_Store_Tag TagLo, TagHi, PErr 3 −

CACHE Hit ops. cache line 3 cache line 5

Coprocessor usable test Status[CU], [KSU], [EXL], [ERL] 2 −

Instruction fetch EntryHi[ASID], Status[KSU],

[EXL], [ERL], [RE], Config[K0]

2 −

TLB 2

Instruction fetch − EPC, Status 4

exception Cause, BadVAddr, Context,

XContext

5

Interrupt signals Cause[IP], Status[IM], [IE], [EXL],

[ERL]

2 −

Loads/Stores EntryHi[ASID], Status[KSU],

[EXL], [ERL], [RE], Config[K0],

TLB

3 −

Config[AD], [EP] 3

WatchHi, WatchLo 3

Load/Store exception − EPC, Status, Cause, BadVAddr,

Context, XContext

5

TLB shutdown

(VR4181 only)

− Status[TS] 2 (Inst.),

4 (Data)

Remark Brackets indicate a bit name or a field name of registers.

CHAPTER 11 COPROCESSOR 0 HAZARDS

User’s Manual U15509EJ2V0UM 423

Table 11-1. Coprocessor 0 Hazards (2/2)

(b) VR4131

Operation Source Destination

Source Name No. of cycles Destination Name No. of cycles

MTC0 − CPR 6

MFC0 CPR 4 −

TLBR Index, TLB 3 PageMask, EntryHi, EntryLo0,

EntryLo1

6

TLBWI

TLBWR

Index or Random, PageMask,

EntryHi, EntryLo0, EntryLo1

3 TLB 6

TLBP PageMask, EntryHi 3 Index 6

ERET EPC or ErrorEPC, TLB 5 Status[EXL], [ERL] 6

Status 5

CACHE Index_Load_Tag − TagLo, TagHi, PErr 6

CACHE Index_Store_Tag TagLo, TagHi, PErr 4 −

CACHE Hit ops. cache line 4 cache line 6

Coprocessor usable test Status[CU], [KSU], [EXL], [ERL] 2 −

Instruction fetch EntryHi[ASID], Status[KSU],

[EXL], [ERL], [RE], Config[K0]

2 −

TLB 2

Instruction fetch − EPC, Status 6

exception Cause, BadVAddr, Context,

XContext

6

Interrupt signals Cause[IP], Status[IM], [IE], [EXL],

[ERL]

2 −

Loads/Stores EntryHi[ASID], Status[KSU],

[EXL], [ERL], [RE], Config[K0],

TLB

4 −

Config[AD], [EP] 4

WatchHi, WatchLo 4

Load/Store exception − EPC, Status, Cause, BadVAddr,

Context, XContext

6

Remark Brackets indicate a bit name or a field name of registers.

CHAPTER 11 COPROCESSOR 0 HAZARDS

User’s Manual U15509EJ2V0UM424

Cautions 1. If the setting of the K0 bit in the Config register is changed by MTC0 for the kseg0 or ckseg0

area, the change is reflected at first to third instruction after MTC0.

2. The instruction following MTC0 must not be MFC0.

3. The five instructions following MTC0 to Status register that changes KSU bit and sets EXL and

ERL bits may be executed in the new mode, and not Kernel mode. This can be avoided by

setting EXL bit first, leaving KSU bit set to Kernel, and later changing KSU bit.

4. If interrupts are disabled by setting EXL bit in the Status register with MTC0, an interrupt may

occur immediately after MTC0 without change of the contents of the EPC register. This can be

avoided by clearing IE bit first, and later setting EXL bit.

5. There must be two non-load, non-CACHE instructions between a store and a CACHE

instruction directed to the same primary cache line as the store.

The status during execution of the following instruction for which CP0 hazards must be considered is described

below.

(1) MTC0

Destination: The completion of writing to a destination register (CP0) of MTC0.

(2) MFC0

Source: The confirmation of a source register (CP0) of MFC0.

(3) TLBR

Source: The confirmation of the status of TLB and the Index register before the execution of TLBR.

Destination: The completion of writing to a destination register (CP0) of TLBR.

(4) TLBWI, TLBWR

Source: The confirmation of a source register of these instructions and registers used to specify a TLB

entry.

Destination: The completion of writing to TLB by these instructions.

(5) TLBP

Source: The confirmation of the PageMask register and the EntryHi register before the execution of TLBP.

Destination: The completion of writing the result of execution of TLBP to the Index register.

(6) ERET

Source: The confirmation of registers containing information necessary for executing ERET.

Destination: The completion of the processor state transition by the execution of ERET.

(7) CACHE Index_Load_Tag

Destination: The completion of writing the results of execution of this instruction to the related registers.

(8) CACHE Index_Store_Tag

Source: The confirmation of registers containing information necessary for executing this instruction.

CHAPTER 11 COPROCESSOR 0 HAZARDS

User’s Manual U15509EJ2V0UM 425

 (9) Coprocessor usable test

Source: The confirmation of modes set by the bits of the CP0 registers in the “Source” column.

Examples 1. When accessing the CP0 registers in User mode after the CU0 bit of the Status register is

modified, or when executing an instruction such as TLB instructions, CACHE instructions, or

Branch instructions that use the resource of the CP0.

2. When accessing the CP0 registers in the operating mode set in the Status register after the KSU,

EXL, and ERL bits of the Status register are modified.

(10) Instruction fetch

Source: The confirmation of the operating mode and TLB necessary for instruction fetch.

Examples 1. When changing the operating mode from User to Kernel and fetching instructions after the KSU,

EXL, and ERL bits of the Status register are modified.

2. When fetching instructions using the modified TLB entry after TLB modification.

(11) Instruction fetch exception

Destination: The completion of writing to registers containing information related to the exception when an

exception occurs on instruction fetch.

(12) Interrupts

Source: The confirmation of registers judging the condition of occurrence of interrupt when an interrupt

factor is detected.

(13)Loads/Sores

Source: The confirmation of the operating mode related to the address generation of Load/Store

instructions, TLB entries, the cache mode set in the K0 bit of the Config register, and the registers

setting the condition of occurrence of a Watch exception.

Example When Loads/Stores are executed in the kernel field after changing the mode from User to Kernel.

(14)Load/Store exception

Destination: The completion of writing to registers containing information related to the exception when an

exception occurs on load or store operation.

(15)TLB shutdown (VR4181 only)

Destination: The completion of writing to the TS bit of the Status register when a TLB shutdown occurs.

CHAPTER 11 COPROCESSOR 0 HAZARDS

User’s Manual U15509EJ2V0UM426

Table 11-2 indicates examples of calculation.

Table 11-2. Calculation Example of CP0 Hazard and Number of Instructions Inserted

Number of instructions

inserted

FormulaDestination Source Contending

internal

resource VR4121,

VR4122,

VR4181,

VR4181A

VR4131 VR4121,

VR4122,

VR4181,

VR4181A

VR4131

TLBWR/TLBWI TLBP TLB Entry 2 2 5 – (2 + 1) 6 – (3 + 1)

TLBWR/TLBWI Load or Store using newly

modified TLB

TLB Entry 1 1 5 – (3 + 1) 6 – (4 + 1)

TLBWR/TLBWI Instruction fetch using newly

modified TLB

TLB Entry 2 3 5 – (2 + 1) 6 – (2 + 1)

MTC0

Status [CU]

Coprocessor instruction that

requires the setting of CU

Status [CU] 2 3 5 – (2 + 1) 6 – (2 + 1)

TLBR MFC0 EntryHi EntryHi 1 1 5 – (3 + 1) 6 – (4 + 1)

MTC0 EntryLo0 TLBWR/TLBWI EntryLo0 2 2 5 – (2 + 1) 6 – (3 + 1)

TLBP MFC0 Index Index 2 1 6 – (3 + 1) 6 – (4 + 1)

MTC0 EntryHi TLBP EntryHi 2 2 5 – (2 + 1) 6 – (3 + 1)

MTC0 EPC ERET EPC 2 0 5 – (2 + 1) 6 – (5 + 1)

MTC0 Status ERET Status 2 0 5 – (2 + 1) 6 – (5 + 1)

MTC0

Status [IE] Note

Instruction that causes an

interrupt

Status [IE] 2 0 5 – (2 + 1) 6 – (5 + 1)

Note The number of hazards is undefined if the instruction execution sequence is changed by exceptions. In such

a case, the minimum number of hazards until the IE bit value is confirmed may be the same as the maximum

number of hazards until an interrupt request occurs that is pending and enabled.

Remark Brackets indicate a bit name or a field name of registers.

User’s Manual U15509EJ2V0UM 427

APPENDIX INDEX

A

access types ...36, 227

Address Error exception ...179

address spaces...133

address translation128, 131, 132

addressing ..26

addressing modes30, 124, 164

B

BadVAddr register...160

big endian ...26, 27

branch delay ...90

Branch instructions47, 82, 227

branch prediction ..31, 94, 155

Breakpoint exception ..185

Bus Error exception ..183

bypassing..123

C

cache

accessing ..204

index..204

line size ...204

operations ...202

organization...200

size..155, 204

states...205

cache algorithm ..149

cache data ..200

coherency..203

placement..202

Cache Error register..170

cache line..200, 201

replacement ..203

cache memory ..198

cache tag ..200

Cause register...165

Cold Reset exception..176

Compare register ..161

Computational instructions40, 74

Config register...153

Context register...159

Coprocessor 0...19

coprocessor 0 hazards..421

Coprocessor Unusable exception186

coprocessors.. 21

Count register... 160

CP0 .. 21

CP0 registers.. 22

CPU core.. 19

CPU instruction set... 33, 224

CPU registers ... 20

D

data cache.. 19, 201

data formats ... 26

delay slot .. 36, 47, 70, 90

direct mapping.. 202

doubleword... 26

E

endian .. 26

EntryHi register... 127, 151

EntryLo register .. 127, 148

EPC register ... 167

ErrorEPC register ... 171

exception .. 116

priority... 175

types ... 173

vector address .. 173

exception code ... 166

exception conditions... 119

exception processing.. 157

exception processing registers................................. 158

Extend instruction... 68

G

general-purpose register 20, 55

H

halfword.. 26

hardware interrupts .. 222

HI register... 20, 56

I

Index register.. 127, 147

instruction cache .. 19, 200

instruction formats.................................... 23, 25, 34, 59

instruction notation conventions............................... 224

instruction set architecture ... 33

APPENDIX INDEX

User’s Manual U15509EJ2V0UM428

instruction streaming.. 101, 154

Integer Overflow exception....................................... 188

interlock.. 116

interrupt enable .. 164

Interrupt exception ... 190

interrupt signals.. 222, 223

interrupts .. 221

ISA mode ... 56

ISA mode bit... 56, 57

J

joint TLB ... 30

JTLB... 30

Jump instruction... 47, 82, 227

K

Kernel mode... 124, 138

Kernel mode address space 139

L

line lock function .. 203

little endian... 26, 28

LLAddr register... 155

LO register ... 20, 56

load delay... 101

Load instructions.. 36, 71, 226

M

MACC instructions ... 35

memory hierarchy .. 198

memory management .. 30, 124

memory management registers 146

MIPS III instructions ... 23

MIPS16 instruction set 54, 386

MIPS16 instructions ... 24

N

NMI... 221

NMI exception .. 178

non-maskable interrupt .. 221

O

on-chip caches... 199

opcode ... 64, 383

operating modes .. 30, 124, 164

ordinary interrupts .. 221

P

page sizes .. 149

PageMask register.. 127, 149

Parity Error register .. 170

PC... 20, 56

PC-relative instructions... 67

physical address... 128, 133

pipeline ... 31, 84

pipeline activities .. 102

pipeline stages ... 85, 87, 89

power mode instructions... 35

PRId register... 152

product-sum operation instructions 35

R

Random register ... 127, 147

Reserved Instruction exception 187

S

set associative.. 202

slip conditions... 121

Soft Reset exception .. 177

software interrupts .. 222

Special instructions .. 51, 83

special registers ... 20, 56

stall conditions.. 120

stall cycles .. 46

Status register .. 161

Store instructions.. 36, 71, 226

superscalar ... 87

Supervisor mode .. 124, 135

Supervisor mode address space 136

System Call exception .. 184

System control coprocessor 21

system control coprocessor (CP0) instructions .. 52, 228

T

TagHi register ... 156

TagLo register .. 156

timer interrupt ... 222

TLB... 30, 125

entry.. 125

exceptions... 127

instructions.. 127

manipulation ... 126

TLB exceptions... 180

TLB Invalid exception ... 181

TLB Modified exception .. 182

APPENDIX INDEX

User’s Manual U15509EJ2V0UM 429

TLB Refill exception ..180

translation lookaside buffer.................................30, 125

Trap exception ..188

U

User mode ..124, 133

User mode address space..134

V

virtual address...128, 133

W

Watch exception ...189

WatchHi register... 168

WatchLo register .. 168

way(s)... 91, 202

Wired register... 150

word.. 26

writeback .. 203

X

XContext register.. 169

User’s Manual U15509EJ2V0UM430

[MEMO]

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: +82-2-528-4411

P.R. China
NEC Electronics Shanghai, Ltd.

NEC Electronics Taiwan Ltd.

Fax: +86-21-6841-1137

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: +1-800-729-9288

+1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Taiwan

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.

Fax: +886-2-2719-5951

Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: +81- 44-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 02.3

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 Features
	1.2 CPU Core
	1.2.1 CPU registers
	1.2.2 Coprocessors
	1.2.3 System control coprocessor (CP0)
	1.2.4 Floating-point unit (FPU)
	1.2.5 Cache memory

	1.3 CPU Instruction Set Overview
	1.4 Data Formats and Addressing
	1.5 Memory Management System
	1.5.1 Translation lookaside buffer (TLB)
	1.5.2 Processor modes

	1.6 Instruction Pipeline
	1.6.1 Branch prediction

	1.7 Code Compatibility

	CHAPTER 2 CPU INSTRUCTION SET SUMMARY
	2.1 Instruction Set Architecture
	2.2 CPU Instruction Formats
	2.3 Instructions Added in the VR4100 Series
	2.3.1 Product-sum operation instructions
	2.3.2 Power mode instructions

	2.4 Instruction Overview
	2.4.1 Load and store instructions
	2.4.2 Computational instructions
	2.4.3 Jump and branch instructions
	2.4.4 Special instructions
	2.4.5 System control coprocessor (CP0) instructions

	CHAPTER 3 MIPS16 INSTRUCTION SET
	3.1 Outline
	3.2 Features
	3.3 Register Set
	3.4 ISA Mode
	3.4.1 Changing ISA mode bit by software
	3.4.2 Changing ISA mode bit by exception
	3.4.3 Enabling change ISA mode bit

	3.5 Types of Instructions
	3.6 Instruction Format
	3.7 MIPS16 Operation Code Bit Encoding
	3.8 Outline of Instructions
	3.8.1 PC-relative instructions
	3.8.2 Extend instruction
	3.8.3 Delay slots
	3.8.4 Instruction details

	CHAPTER 4 PIPELINE
	4.1 Pipeline Stages
	4.1.1 VR4121, VR4122, VR4181A
	4.1.2 VR4131
	4.1.3 VR4181

	4.2 Branch Delay
	4.2.1 VR4121, VR4122, VR4181A
	4.2.2 VR4131
	4.2.3 VR4181

	4.3 Branch Prediction
	4.3.1 VR4122, VR4181A
	4.3.2 VR4131

	4.4 Load Delay
	4.5 Instruction Streaming
	4.6 Pipeline Activities
	4.7 Interlock and Exception
	4.7.1 Exception conditions
	4.7.2 Stall conditions
	4.7.3 Slip conditions
	4.7.4 Bypassing

	CHAPTER 5 MEMORY MANAGEMENT SYSTEM
	5.1 Processor Modes
	5.1.1 Operating mode
	5.1.2 Addressing mode

	5.2 Translation Lookaside Buffer (TLB)
	5.2.1 Format of a TLB entry
	5.2.2 Manipulation of TLB
	5.2.3 TLB instructions
	5.2.4 TLB exceptions

	5.3 Virtual-to-Physical Address Translation
	5.3.1 32-bit mode address translation
	5.3.2 64-bit mode address translation

	5.4 Address Spaces
	5.4.1 User mode virtual address space
	5.4.2 Supervisor mode virtual address space
	5.4.3 Kernel mode virtual address space

	5.5 Memory Management Registers
	5.5.1 Index register (0)
	5.5.2 Random register (1)
	5.5.3 EntryLo0 (2) and EntryLo1 (3) registers
	5.5.4 PageMask register (5)
	5.5.5 Wired register (6)
	5.5.6 EntryHi register (10)
	5.5.7 Processor Revision Identifier (PRId) register (15)
	5.5.8 Config register (16)
	5.5.9 Load Linked Address (LLAddr) register (17)
	5.5.10 TagLo (28) and TagHi (29) registers

	CHAPTER 6 EXCEPTION PROCESSING
	6.1 Exception Processing Overview
	6.1.1 Precision of exceptions

	6.2 Exception Processing Registers
	6.2.1 Context register (4)
	6.2.2 BadVAddr register (8)
	6.2.3 Count register (9)
	6.2.4 Compare register (11)
	6.2.5 Status register (12)
	6.2.6 Cause register (13)
	6.2.7 Exception Program Counter (EPC) register (14)
	6.2.8 WatchLo (18) and WatchHi (19) registers
	6.2.9 XContext register (20)
	6.2.10 Parity Error register (26)
	6.2.11 Cache Error register (27)
	6.2.12 ErrorEPC register (30)

	6.3 Overview of Exceptions
	6.3.1 Exception types
	6.3.2 Exception vector locations
	6.3.3 Priority of exceptions

	6.4 Details of Exceptions
	6.4.1 Cold Reset exception
	6.4.2 Soft Reset exception
	6.4.3 NMI exception
	6.4.4 Address Error exception
	6.4.5 TLB exceptions
	6.4.6 Bus Error exception
	6.4.7 System Call exception
	6.4.8 Breakpoint exception
	6.4.9 Coprocessor Unusable exception
	6.4.10 Reserved Instruction exception
	6.4.11 Trap exception
	6.4.12 Integer Overflow exception
	6.4.13 Watch exception
	6.4.14 Interrupt exception

	6.5 Exception Processing and Servicing Flowcharts

	CHAPTER 7 CACHE MEMORY
	7.1 Memory Organization
	7.1.1 On-chip caches

	7.2 Cache Organization
	7.2.1 Instruction cache line
	7.2.2 Data cache line
	7.2.3 Placement of cache data

	7.3 Cache Operations
	7.3.1 Cache data coherency
	7.3.2 Replacement of cache line
	7.3.3 Accessing the caches

	7.4 Cache States
	7.4.1 Cache state transition diagrams

	7.5 Cache Access Flow
	7.6 Manipulation of the Caches by an External Agent
	7.7 Initialization of the Caches

	CHAPTER 8 CPU CORE INTERRUPTS
	8.1 Types of Interrupt Request
	8.1.1 Non-maskable interrupt (NMI)
	8.1.2 Ordinary interrupts
	8.1.3 Software interrupts generated in CPU core
	8.1.4 Timer interrupt

	8.2 Acknowledging Interrupts
	8.2.1 Detecting hardware interrupts
	8.2.2 Masking interrupt signals

	CHAPTER 9 CPU INSTRUCTION SET DETAILS
	9.1 Instruction Notation Conventions
	9.2 Notes on Using CPU Instructions
	9.2.1 Load and Store instructions
	9.2.2 Jump and Branch instructions
	9.2.3 System control coprocessor (CP0) instructions

	9.3 CPU Instructions
	9.4 CPU Instruction Opcode Bit Encoding

	CHAPTER 10 MIPS16 INSTRUCTION SET FORMAT
	CHAPTER 11 COPROCESSOR 0 HAZARDS
	APPENDIX INDEX

