

mos integrated circuit $\mu PD30541$

V_R5432[™] 64-/32-BIT MICROPROCESSOR

The μ PD30541 (V_R5432) is a member of the V_R SeriesTM RISC (Reduced Instruction Set Computer) microprocessors. It is a high-performance 64-/32-bit microprocessor employing the RISC architecture developed by MIPSTM.

The V_R5432 employs a 32-bit bus for the system interface and can operate with a protocol compatible to that of the V_R4300 SeriesTM.

For the detailed functional description and when designing your system, refer to the following manual:

• VR5432 User's Manual (U13751E)

FEATURES

- · MIPS 64-bit RISC architecture
- · High-speed operation processing
 - Dual-issue superscaler 5-stage pipeline
 - 6.6 SPECint95, 3.6 SPECfp95, 316 MIPS
- High-speed translation lookaside buffer (TLB) (48 entries)
- Address space Physical: 32 bits, Virtual: 40 bits
- Floating-point unit (FPU)
 - Supports sum-of-products instructions
- On-chip primary cache memory (instruction/data: 32 KB each)
- 32-bit address/data multiplexed bus
 - Operates with protocol compatible to VR4300 Series

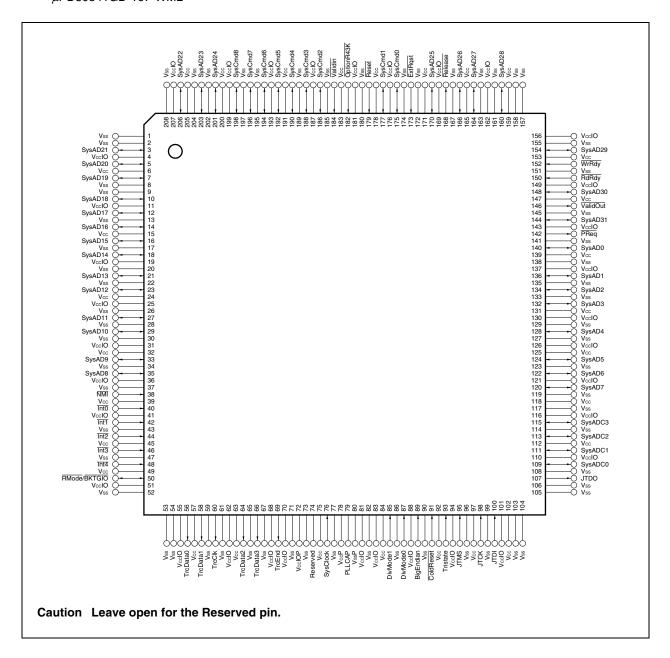
- Maximum operating frequency
 - Internal: 167 MHz, External: 83.3 MHz
 - External/internal multiple selectable from ×2 to ×4
- Conforms MIPS I, II, III, and IV instruction sets. Also supports multimedia instructions
- Supply voltage

Core block: 2.5 V ±5%, I/O block: 3.3 V ±0.3 V

APPLICATIONS

- Set-top-box
- · Page printer controller
- · Amusement machines, etc.

ORDERING INFORMATION


Part Number Package Maximum Operating Frequency (MHz) μ PD30541GD-167-WML 208-pin plastic QFP (fine pitch) (28 × 28) 167

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

PIN CONFIGURATION

• 208-pin plastic QFP (fine pitch) (28 \times 28) μ PD30541GD-167-WML

PIN NAMES

BigEndian: Endian Mode Select

BKTGIO: Break/Trigger I/O

ColdReset: Cold Reset

DivMode (1:0): Divide Mode

ExtRqst:External RequestInt (4:0):Interrupt RequestJTCK:JTAG ClockJTDI:JTAG Data InputJTDO:JTAG Data OutputJTMS:JTAG Mode Select

OptionR43K: VR4300™ Mode Select

Non-maskable Interrupt Request

PLLCAP: PLL Capacitor
PReq: Processor Request

RdRdy: Read Ready

Release Interface

Reset: Reset

Reserved: Reserved

RMode: Reset Mode

SysAD (31:0): System Address/Data Bus

SysADC (3:0): System Address/Data Check Bus

SysClock: System Clock

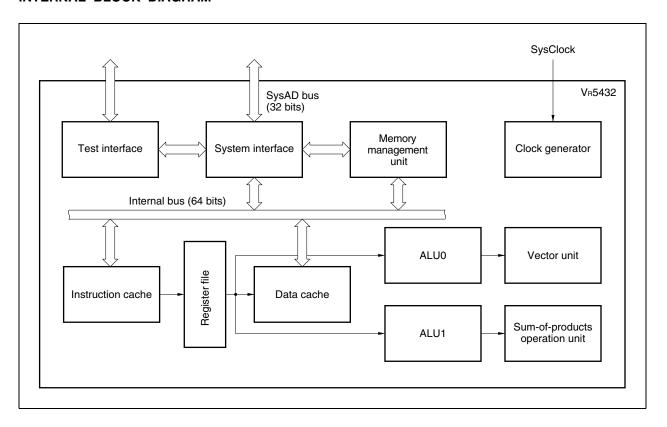
SysCmd (8:0): System Command/Data Identifier

TrcClk: Trace Clock
TrcData (3:0): Trace Data
TrcEnd: Trace End
Tristate: 3-state

ValidIn: Valid Input
ValidOut: Valid Output

Vcc: Power Supply for Processor Core
VccIO: Power Supply for Processor I/O

VccIOP: Quiet VccIO for PLL
VccP: Quiet Vcc for PLL


Vss: Ground

VssP: Quiet Vss for PLL WrRdy: Write Ready

Data Sheet U13504EJ4V0DS

INTERNAL BLOCK DIAGRAM

CONTENTS

1. PIN FUNCTIONS	6
2. ELECTRICAL SPECIFICATIONS	10
3. PACKAGE DRAWING	18
4. RECOMMENDED SOLDERING CONDITIONS	19
APPENDIX DIFFERENCES AMONG Vr5432. Vr5000™. AND Vr4310™	20

1. PIN FUNCTIONS

Caution The functions of some pins change depending on the status of the OptionR43K signal. If this signal is low, the signal names same as those of the V_R4300 Series are used because these pins have functions compatible to those of the V_R4300 Series.

(1/4)

		1	<u> </u>	(1/4)
Pin Name	I/O	OptionR43K Signal	Signal Name	Function
SysAD (31:0)	I/O	High level/low level	SysAD (31:0)	System address/data bus A 32-bit bus for communication between the processor and external agent
SysADC (3:0)	I/O	High level	SysADC (3:0)	System address/data check bus A parity bus for SysAD bus
		Low level	-	Not used
SysCmd (8:0)	I/O	High level	SysCmd (8:0)	System command/data ID bus A 9-bit bus that transfers commands and data identifiers between the processor and external agent
		Low level	SysCmd (4:0) (SysCmd (8:5) are not used.)	System command/data ID bus A 5-bit bus that transfers commands and data identifiers between the processor and external agent
ValidIn	Input	High level	ValidIn	Valid In A signal indicating that the external agent is driving a valid address or data onto the SysAD bus, and a valid command or data identifier onto the SysCmd bus
		Low level	EValid	External valid A signal indicating that the external agent is driving a valid address or data onto the SysAD bus, and a valid command or data identifier onto the SysCmd bus
ValidOut	Output	High level	ValidOut	Valid out A signal indicating that the processor is driving a valid address or data onto the SysAD bus, and a valid command or data identifier onto the SysCmd bus
		Low level	PValid	Processor valid A signal indicating that the processor is driving a valid address or data onto the SysAD bus, and a valid command or data identifier onto the SysCmd bus
ExtRqst	Input	High level	ExtRqst	External request A signal allowing the external agent to request the right to use the system interface
		Low level	EReq	External request A signal allowing the external agent to request the right to use the system interface

(2/4)

Pin Name	I/O	OptionR43K Signal	Signal Name	Function (2/4)
Release	Output	High level	Release	Releases interface A signal indicating that the processor releases the system interface to a slave state
		Low level	PMaster	Processor master A signal indicating that the processor has a right to control the system interface
PReq	Output	High level	PReq	Processor request A signal indicating that the processor has a request that is pending
		Low level	PReq	Processor request A signal allowing the processor to request the right to use the system interface
WrRdy	Input	High level	WrRdy	Write ready A signal indicating that the external agent is ready to accept a processor write request
		Low level	EOK	External OK A signal indicating that the external agent is ready to accept a processor read/write request
RdRdy	Input	High level	RdRdy	Read ready A signal indicating that the external agent is ready to accept a processor read request
		Low level	_	Not used
SysClock	Input	High level	SysClock	System clock Clock input to the processor
		Low level	MasterClock	Master clock Clock input to the processor
Int (4:0)	Input	High level/low level	Int (4:0)	Interrupts These are general-purpose processor interrupt requests. The input states can be checked by bits 14 to 10 of the Cause register.
NMI	Input	High level/low level	NMI	Non-maskable interrupt This is the non-maskable interrupt request.
ColdReset	Input	High level/low level	ColdReset	Cold reset This signal completely initializes the internal status of the processor. Deassert it in synchronization with SysClock.
Reset	Input	High level/low level	Reset	Reset This signal logically initializes the internal status of the processor. Deassert it in synchronization with SysClock.

(3/4)

Pin Name	I/O	OptionR43K Signal	Signal Name	Function
OptionR43K	Input	_	OptionR43K	VR4300 mode Assert this signal when the system interface of the VR5432 operates with a protocol compatible to the VR4300 Series. Set the input level of this signal before the power-on reset. Make sure that the level of this signal does not change while the VR5432 is operating.
DivMode (1:0)	Input	High level/low level	DivMode (1:0)	Division mode These signals set the division ratio of PClock and SysClock as follows: 11: 4:1 10: 3:1 01: 5:2 00: 2:1 Set the input levels of these signals before the power-on reset. Make sure that the levels of these signals do not change while the Vr.5432 operates.
BigEndian	Input	High level/low level	BigEndian	Endian mode This signal sets a byte ordering for addressing. A big endian mode is selected when this signal is active; a little endian mode is selected when it is inactive. Set the input level of this signal before the power-on reset. Make sure that the level of this signal does not change while the VR5432 is operating.
TrcData (3:0)	Output	High level/low level	TrcData (3:0)	Trace data Data output by the test interface
TrcEnd	Output	High level/low level	TrcEnd	Trace end A signal indicates the end of a trace data packet.
TrcClk	Output	High level/low level	TrcClk	Trace clock Clock for the test interface. The same clock as SysClock is output.
RMode/BKTGIO	I/O	High level/low level	RMode/BKTGIO	Reset mode/break trigger I/O This signal serves as a debug reset input signal on Cold Reset. It serves as a break or trigger I/O signal during normal operation.
Tristate	Input	High level/low level	Tristate	3-state This signal sets all output signals to a high-impedance state.
JTDI	Input	High level/low level	JTDI	JTAG data input Serial data input for JTAG
JTDO	Output	High level/low level	JTDO	JTAG data output Serial data output for JTAG

(4/4)

Pin Name	I/O	OptionR43K Signal	Signal Name	Function
JTMS	Input	High level/low level	JTMS	JTAG mode select This signal selects a JTAG test mode.
JTCK	Input	High level/low level	JTCK	JTAG clock input Serial clock input for JTAG
PLLCAP	-	High level/low level	PLLCAP	PLL capacitor Connect a capacitor to this pin to adjust the internal PLL.
VccP	_	High level/low level	VccP	PLL Vcc This pin supplies 2.5 V to the internal PLL.
VccIOP	-	High level/low level	VccIOP	PLL VccIO This pin supplies 3.3 V to the internal PLL.
VssP	-	High level/low level	VssP	PLL Vss This is the ground pin of the internal PLL.
Vcc	_	High level/low level	Vcc	Power supply pin for core
VccIO	-	High level/low level	VccIO	Power supply pin for I/O
Vss	-	High level/low level	Vss	Ground pin

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VccIO		-0.5 to +4.0	٧
	VccIOP		-0.5 to +4.0	٧
	Vcc		-0.5 to +3.0	٧
	VccP		-0.5 to +3.0	٧
Input voltage ^{Note}	Vı		-0.5 to VccIO + 0.3	V
		Pulse of less than 10 ns	-1.5 to VccIO + 0.3	٧
Operating case temperature	Tc		-10 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

Note The upper-limit input voltage (VccIO + 0.3) is +4.0 V.

- Cautions 1. Do not short-circuit two or more outputs at the same time.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The specifications and conditions shown in the following DC Characteristics and AC Characteristics sections are the ranges within which the product can normally operate and the quality can be guaranteed.

DC Characteristics (Tc = -10 to +85 °C, VccIO = VccIOP = 3.3 ± 0.3 V, Vcc = VccP = 2.5 V $\pm 5\%$)

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	High-level output voltage	Vон	VccIO = MIN., Iон = -4 mA	2.4		٧
	Low-level output voltage	Vol	VccIO = MIN., loL = 4 mA		0.4	٧
	High-level input voltage Note 1	VIH		2.0	VccIO + 0.3	٧
	Low-level input voltage Note 1	VIL		-0.5	+0.8	٧
			Pulse of less than 10 ns	-1.5	+0.8	٧
	High-level input voltage Note 2	VIHC		$0.8 \times V$ cclO	VccIO + 0.3	٧
	Low-level input voltage Note 2	VILC		-0.5	$0.2 \times VcclO$	٧
			Pulse of less than 10 ns	-1.5	0.2 × VccIO	٧
*	Supply current	Icc	During internal operation at 167 MHz,		0.80	Α
		IccIO	VccIO = VccIOP = 3.6 V, Vcc = VccP = 2.625 V		0.15	Α
*	Power consumption	Pd	During internal operation at 167 MHz,		2.10	W
		PdIO	VccIO = VccIOP = 3.6 V, Vcc = VccP = 2.625 V		0.54	W
	High-level input leakage current	Ішн	Vı = VccIO		5.0	μΑ
	Low-level input leakage current	ILIL	$V_1 = 0 V$		-5.0	μΑ
	High-level output leakage current	Ісон	Vo = VccIO		5.0	μΑ
	Low-level output leakage current	ILOL	Vo = 0 V		-5.0	μΑ

Notes 1. Not applied to the SysClock pin.

2. Applied to the SysClock pin only.

Remark The supply current during operation is almost proportional to the operating clock frequency.

Power-On Sequence

The V_R5432 uses two systems of power supplies. These power supplies can be turned on any sequence. However, make sure that one power supply is not turned on for 10 ms or longer while the other power supply is turned off.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Power-on delay	t DF		0	10	ms

Capacitance (TA = 25 °C, VccIO = VccIOP = Vcc = VccP = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input capacitance	Cin	fc = 1 MHz		5.0	pF
Output capacitance	Соит	Pins other than tested pin: 0 V		7.0	pF

Data Sheet U13504EJ4V0DS

AC Characteristics (Tc = -10 to +85 °C, VccIO = VccIOP = 3.3 ± 0.3 V, Vcc = VccP = 2.5 V $\pm 5\%$)

Clock parameter

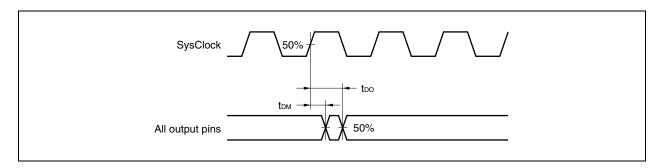
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
System clock high-level width	tсн		3.0		ns
System clock low-level width	tcL		3.0		ns
System clock frequency Note		DivMode = 2:1	41.7	83.3	MHz
		DivMode = 5:2	33.3	66.6	MHz
		DivMode = 3:1	27.7	55.5	MHz
		DivMode = 4:1	20.8	41.6	MHz
System clock cycle	tcp	DivMode = 2:1	12	24	ns
		DivMode = 5:2	15	30	ns
		DivMode = 3:1	18	36	ns
		DivMode = 4:1	24	48	ns
System clock jitter	tu			±250	ps
System clock rise time	tcr			2.0	ns
System clock fall time	tcF			2.0	ns
JTAG clock frequency				33	MHz

Note This is the frequency at which the operation of the internal PLL is guaranteed.

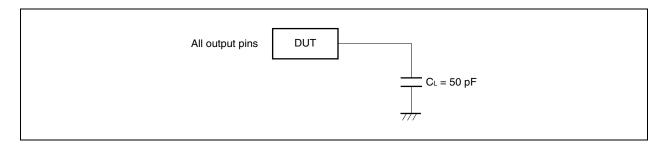
 $\textbf{Remark} \hspace{0.2cm} \textbf{The JTAG clock runs asynchronously to the system clock}.$

System interface parameter

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data output hold time	tом		1.0		ns
Data output delay time	too			5.0	ns
Data input setup time	tos		2.0		ns
Data input hold time	tон		1.5		ns

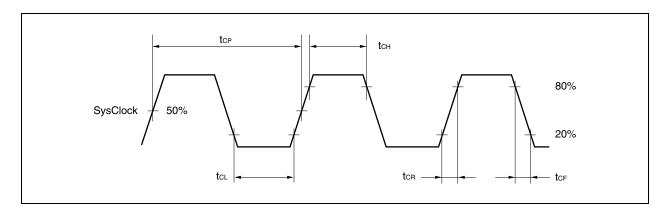

Load coefficient

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Load coefficient	CLD			1.0	ns/25 pF

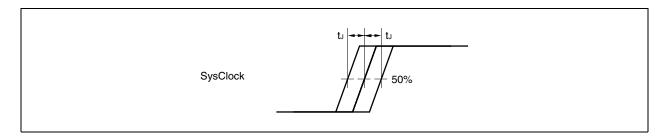


Measurement Conditions

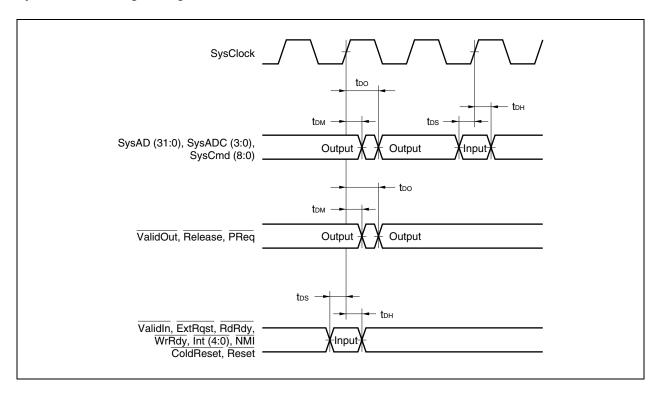
Measurement point



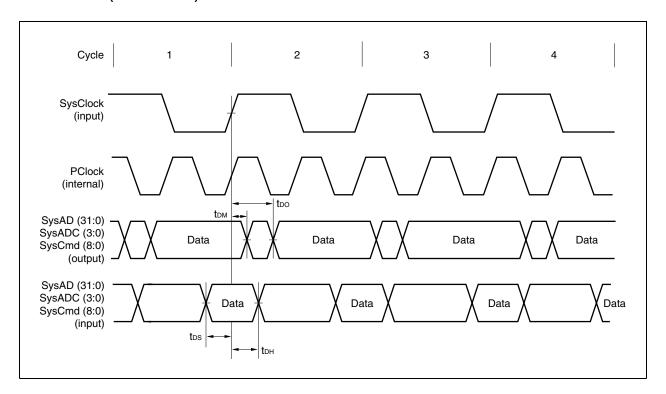
Load condition

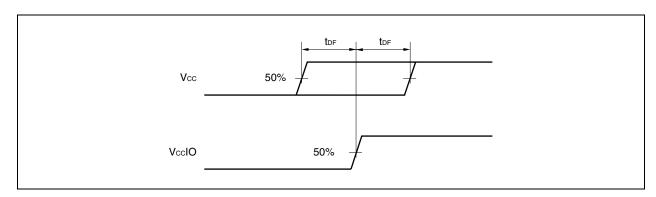

Timing Charts

Clock timing

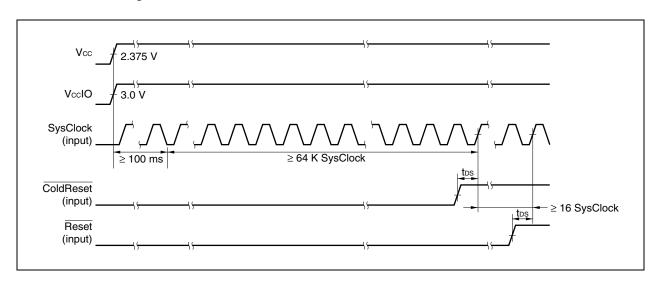


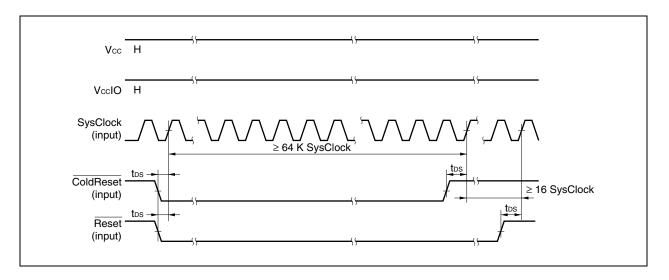
Data Sheet U13504EJ4V0DS


Clock jitter


System interface edge timing

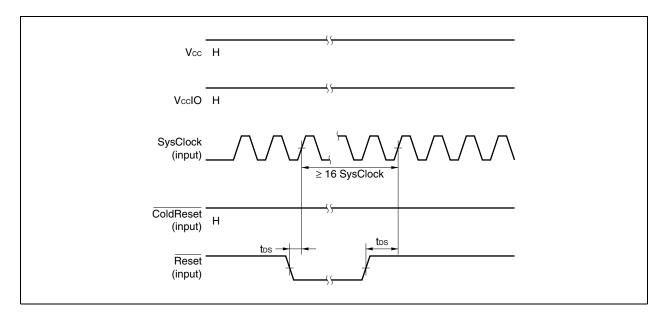
Clock relations (DivMode = 2:1)


Power-on sequence

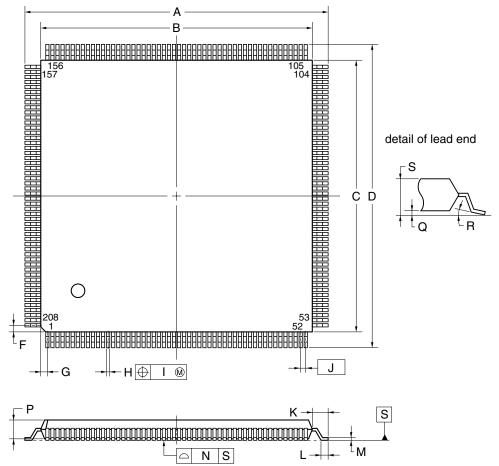

DDS 15

Reset Timing

Power-on reset timing



Cold Reset timing



Warm Reset timing

3. PACKAGE DRAWING

208-PIN PLASTIC QFP (FINE PITCH) (28x28)

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS				
Α	30.6±0.2				
В	28.0±0.2				
С	28.0±0.2				
D	30.6±0.2				
F	1.25				
G	1.25				
Н	$0.22^{+0.05}_{-0.04}$				
I	0.10				
J	0.5 (T.P.)				
K	1.3±0.2				
L	0.5±0.2				
М	$0.17^{+0.03}_{-0.07}$				
N	0.10				
Р	3.2±0.1				
Q	0.4±0.1				
R	5°±5°				
S	3.8 MAX.				
EO I MI	NAME COME VARALE				

P208GD-50-LML,MML,SML,WML-7

4. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 4-1. Surface-Mount Technology Type Soldering Conditions

μ PD30541GD-167-WML: 208-pin plastic QFP (fine pitch) (28 × 28)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds MAX. (at 210 °C or higher), Count: Three times or less, Exposure limit: 7 days (after that, prebake at 125 °C for 36 to 72 hours)	IR35-367-3
Partial heating	Pin temperature: 300 °C MAX., Time: 3 seconds MAX. (per pin row)	-

Note After opening the dry pack, store it at 25 $^{\circ}$ C or less and 65% RH or less for the allowable storage period.

Data Sheet U13504EJ4V0DS 19

APPENDIX DIFFERENCES AMONG VR5432, VR5000 $^{TM},$ AND VR4310 TM

Item		V _R 5432	V _R 5000	Vr4310
Maximum	Internal	167 MHz	200 MHz	167 MHz
operating frequency	External	83.3 MHz	100 MHz	83.3 MHz
Pipeline		2-way superscaler 5-stage pipeline		5-stage pipeline
Cache	Primary instruction cache	32 KB		16 KB
	Primary data cache	32 KB		8 KB
	Secondary cache interface	None	Provided	None
	Data protection	Byte parity/none	Byte parity	None
System bus	Bus width	32 bits	64 bits	32 bits
	Data protection	Byte parity/none	Byte parity	None
	Status after last data write	Completes access./Holds last data on setting of transfer rate.	Completes access.	Holds last data on setting of transfer rate.
Pins for initial setting at reset		DivMode (1:0), BigEndian, OptionR43K	Modeln (dedicated serial pin)	DivMode (2:0)
Instruction set		MIPS I, II, III, IV + multimedia + sum-of- products operation	MIPS I, II, III, IV	MIPS I, II, III
Branch prediction mechanism		Provided	None	
Hardware debug function		JTAG, N-Wire	None	JTAG
SyncOut-SyncIn path		None		Provided
Clock interface	Input vs. internal multiple	2, 2.5, 3, 4	2, 3, 4, 5, 6, 7, 8	2, 2.5, 3, 4, 5, 6
	Input vs. bus division ratio	2, 2.5, 3, 4	2, 3, 4, 5, 6, 7, 8	2, 2.5, 3, 4, 5, 6
	Clock output	None		TClock
Power management mode		None	Standby mode	None
PRId register		Imp = 0x54	Imp = 0x23	Imp = 0x0B

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference document Electrical Characteristics for Microcomputer (U15170J)^{Note}

Note This document number is that of Japanese version.

The related documents in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP Brasil Tel: 55-11-6462-6810 Fax: 55-11-6462-6829

J00.7

VR4300, VR4300 Series, VR4310, VR5000, VR5432, and VR Series are trademarks of NEC Corporatipon. MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

- The information in this document is current as of October, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).