
User’s Manual

VR5432TM

64-Bit MIPS RISC Microprocessor

Document No.U15397EU5V0UMJ1
Date Published: May 2001 CP (K)

© NEC Electronics Inc. 2000
Printed in U.S.A.

Volume 2

µµµµPD30541GD

In North America: No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. All devices sold by NECEL are
covered by the provisions appearing in NECEL's Terms and Conditions of Sales only, including the limitation of liability, warranty, and
patent provisions. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or
regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may
appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The
devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace
equipment, submarine cables, nuclear reactor control systems and life support systems. “Standard” quality grade devices are
recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial
robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems,
anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the
reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products
in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL
devices in applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine NECEL's
willingness to support a given application.

VR5432 Microprocessor User’s Manual
Document Number U15397EU5V0UMJ1

Revision History

NEC, the NEC logo, VR Series, VR3000, VR4000, VR4300, VR5000, VR5432 and VR10000 are registered trademarks of NEC
Corporation. All other product, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark owners.

February 1999: First release
August 1999: Version 2, Preliminary
December 1999: Version 3, Preliminary update
February 2000: Version 4, Document release
May 2000: Version 5, Document corrections

Contents

Volume 1

Prefacexv

Chapter 1 Introduction .. 1

1.1 Device Features .. 2

1.2 Internal Architecture ... 3

1.2.1 Configuration.. 3

1.2.2 CPU Registers .. 6

1.2.3 CPU Instruction Set Overview .. 8

1.2.4 Data Formats and Addressing.. 10

1.2.5 System Control Coprocessor (CP0).. 13

1.2.6 Floating-Point Unit (FPU).. 16

1.2.7 Internal Cache... 16

1.3 Memory Management Unit (MMU)... 17

1.3.1 Translation Lookaside Buffer (TLB).. 17

1.3.2 Operating Modes.. 17

1.4 Instruction Pipeline .. 18

Chapter 2 Signal Descriptions ... 19

2.1 System Interface Signals ... 21

2.2 Power Inputs... 23

2.3 Clock Interface Signals.. 24

2.4 JTAG and Test Interface Signals.. 26

2.5 Interrupt Interface Signals ... 27

2.6 Initialization Interface Signals... 28

2.7 Pin Orientation .. 29
VR5432 Microprocessor User’s Manual iii

Contents
Chapter 3 Pipeline ... 31

3.1 Pipeline Stages.. 31

3.2 Branch Delay .. 34

3.3 Load Delay .. 34

3.4 Interlock and Exception Handling ... 36

3.4.1 Exception Conditions .. 38

3.4.2 Interrupt Latency.. 39

3.4.3 Stall Conditions.. 39

3.5 Transaction Buffer.. 40

Chapter 4 Memory Management Unit ... 41

4.1 Translation Lookaside Buffer.. 42

4.1.1 Hits and Misses .. 42

4.2 Processor Modes .. 42

4.2.1 Processor Operating Modes ... 43

4.2.2 Instruction Set Mode ... 44

4.2.3 Addressing Modes ... 45

4.3 Addresses and Address Spaces .. 45

4.3.1 Virtual Addresses... 46

4.3.2 Physical Addresses .. 47

4.3.3 Virtual-to-Physical Address Translation.. 47

4.3.4 32-Bit Mode Virtual Address Translation ... 48

4.3.5 64-Bit Mode Virtual Address Translation ... 50

4.3.6 User Address Space... 51

4.3.7 Supervisor Space.. 53

4.3.8 Kernel Space.. 56

4.4 System Control Coprocessor.. 63

4.4.1 TLB Entry Format ... 64

4.4.2 Instruction and Data Micro-TLBs... 68

4.5 CP0 Registers ... 69

4.5.1 Index Register (0) .. 70

4.5.2 Random Register (1) ... 71

4.5.3 EntryLo0 (2) and EntryLo1 (3) Registers.. 72

4.5.4 PageMask Register (5) .. 72

4.5.5 Wired Register (6) ... 74
iv VR5432 Microprocessor User’s Manual

Contents
4.5.6 EntryHi Register (10) .. 75

4.5.7 Processor Revision Identifier (PRId) Register (15) ... 76

4.5.8 Config Register (16) .. 77

4.5.9 Load Linked Address (LLAddr) Register (17) ... 80

4.5.10 Cache Tag Registers [TagLo (28) and TagHi (29)] ... 80

4.6 Virtual-to-Physical Address Translation Process .. 81

4.7 TLB Exceptions ... 83

4.8 TLB Instructions ... 83

Chapter 5 Cache Organization and Operation ... 85

5.1 Memory Organization ... 86

5.2 Primary Cache Organization ... 87

5.2.1 Cache Line Lengths ... 87

5.2.2 Cache Sizes ... 87

5.2.3 Instruction Cache Organization... 88

5.2.4 Data Cache Organization.. 89

Chapter 6 CPU Exceptions .. 91

6.1 Exception Processing Overview .. 92

6.2 Exception Processing Registers ... 93

6.2.1 Context Register (4) .. 94

6.2.2 Bad Virtual Address Register (BadVAddr) (8) .. 95

6.2.3 Count Register (9).. 95

6.2.4 Compare Register (11) .. 96

6.2.5 Status Register (12) ... 97

6.2.6 Cause Register (13) ... 102

6.2.7 Exception Program Counter (EPC) Register (14) .. 104

6.2.8 XContext Register (20) ... 105

6.2.9 WatchLo and WatchHi Registers (18 and 19) .. 106

6.2.10 Performance Counter Registers (25) .. 107

6.2.11 Parity Error (PErr) Register (26) ... 109

6.2.12 Cache Error (CacheErr) Register (27).. 110

6.2.13 Error Exception Program Counter (ErrorEPC) Register (30) 112

6.3 Processor Exceptions.. 112

6.3.1 Exception Types... 113
VR5432 Microprocessor User’s Manual v

Contents
6.3.2 Exception Vector Locations... 115

6.4 Exception Vector Offsets... 115

6.4.1 TLB Refill Vector Selection .. 116

6.4.2 Priority of Exceptions ... 118

6.4.3 Reset Exception.. 119

6.4.4 Soft Reset Exception ... 121

6.4.5 Nonmaskable Interrupt (NMI) Exception.. 122

6.4.6 Address Error Exception... 123

6.4.7 TLB Exceptions ... 124

6.4.8 Cache Error Exception .. 127

6.4.9 Bus Error Exception .. 128

6.4.10 Integer Overflow Exception... 129

6.4.11 Trap Exception ... 129

6.4.12 System Call Exception .. 130

6.4.13 Breakpoint Exception.. 131

6.4.14 Reserved Instruction Exception... 132

6.4.15 Coprocessor Unusable Exception ... 133

6.4.16 Floating-Point Exception .. 134

6.4.17 Watch Exception .. 134

6.4.18 Interrupt Exception .. 135

6.5 Exception Handling and Servicing Flowcharts... 136

6.6 Interrupts .. 143

6.6.1 Hardware Interrupts ... 143

6.6.2 Nonmaskable Interrupt (NMI)... 143

6.6.3 Asserting Interrupts ... 143

Chapter 7 Floating-Point Unit ... 149

7.1 Overview149

7.2 FPU Features .. 150

7.3 FPU Programming Model .. 150

7.4 Floating-Point General-Purpose Registers... 151

7.5 Floating-Point Registers .. 153

7.6 Floating-Point Control Registers .. 153

7.6.1 Implementation and Revision Register (FCR0) ... 154

7.6.2 Control/Status Register (FCR31) .. 155
vi VR5432 Microprocessor User’s Manual

Contents
7.7 Floating-Point Formats.. 159

7.8 Binary Fixed-Point Format .. 161

7.9 Floating-Point Instruction Set Overview .. 162

7.9.1 Floating-Point Load, Store, and Move Instructions ... 165

7.9.2 Floating-Point Conversion Instructions ... 166

7.9.3 Floating-Point Computational Instructions ... 167

7.10 FPU Instruction Pipeline Overview ... 169

7.10.1 Instruction Execution .. 169

7.10.2 Instruction Execution Cycle Time .. 169

7.10.3 Instruction Issuing Constraints with Multicycle Instructions..................................... 171

Chapter 8 Floating-Point Exceptions .. 173

8.1 Exception Types... 174

8.2 Exception Trap Processing ... 175

8.3 Flags176

8.4 FPU Exceptions.. 179

8.4.1 Inexact Operation Exception (I) .. 179

8.4.2 Invalid Operation Exception (V)... 180

8.4.3 Division by Zero Exception (Z) .. 181

8.4.4 Overflow Exception (O) ... 181

8.4.5 Underflow Exception (U) ... 181

8.4.6 Unimplemented Operation Instruction Exception (E)... 183

8.5 Saving and Restoring State... 184

8.6 Trap Handlers for IEEE Standard 754 Exceptions... 184

Chapter 9 Bus Interface... 187

9.1 Interface Buses In Native Mode .. 188

9.2 Interface Buses in R43K Mode.. 189

Chapter 10 System Interface Transactions (Native Mode).................................. 191

10.1 Terminology.. 192

10.2 Processor Requests ... 193

10.2.1 Rules for Processor Requests... 194

10.2.2 Processor Read Request.. 196

10.2.3 Processor Write Request... 197
VR5432 Microprocessor User’s Manual vii

Contents
10.3 External Requests ... 198

10.3.1 External Read Request .. 199

10.3.2 External Write Request ... 200

10.3.3 Read Response ... 200

10.4 Handling Requests .. 201

10.4.1 Load Miss.. 201

10.4.2 Store Miss.. 202

10.4.3 Store Hit... 203

10.4.4 Uncached Loads or Stores .. 203

10.4.5 Uncached Accelerated Stores .. 203

10.4.6 Uncached Instruction Fetch.. 204

10.4.7 Fetch Miss ... 204

Chapter 11 System Interface Protocols (Native Mode) .. 205

11.1 Address and Data Cycles... 206

11.2 Issue Cycles ... 206

11.3 Handshake Signals .. 208

11.4 System Interface Operation ... 208

11.4.1 Master and Slave States .. 209

11.4.2 External Arbitration... 210

11.4.3 Uncompelled Change to Slave State... 210

11.5 Processor Request Protocols .. 211

11.5.1 Processor Read Request Protocol.. 212

11.5.2 Processor Write Request Protocol... 214

11.5.3 Processor Request Flow Control ... 216

11.5.4 Processor Request Timing Modes... 218

11.6 External Request Protocols .. 227

11.6.1 External Arbitration Protocol... 228

11.6.2 External Read Request Protocol.. 229

11.6.3 External Null Request Protocol ... 231

11.6.4 External Write Request Protocol... 232

11.6.5 Read Response Protocol ... 233

11.7 SysADC (3:0) Protocol ... 236

11.8 Data Rate Control ... 236

11.9 Data Transfer Patterns .. 237
viii VR5432 Microprocessor User’s Manual

Contents
11.10 Word Transfer Ordering .. 239

11.11 Independent Transmissions on the SysAD Bus .. 242

11.12 System Interface Cycle Time ... 243

11.13 System Interface Commands/Data Identifiers .. 243

11.13.1 Command and Data Identifier Syntax .. 244

11.13.2 System Interface Command Syntax.. 244

11.13.3 Read Requests .. 245

11.13.4 System Interface Data Identifier Syntax .. 248

11.14 System Interface Addresses.. 250

11.14.1 Addressing Conventions ... 250

11.14.2 Subblock Ordering... 250

11.14.3 Processor Internal Address Map.. 251

Chapter 12 System Interface Transactions (R43K Mode) 253

12.1 Processor Requests ... 254

12.1.1 Rules for Processor Requests... 255

12.1.2 Processor Read Request.. 256

12.1.3 Processor Write Request... 257

12.2 External Requests ... 257

12.2.1 External Write Request ... 259

12.2.2 Read Response ... 259

12.3 Handling Requests .. 260

12.3.1 Fetch Miss ... 260

12.3.2 Load Miss.. 261

12.3.3 Store Miss.. 262

12.3.4 Store Hit... 262

12.3.5 Uncached Loads or Stores .. 263

12.3.6 Uncached Accelerated Stores .. 263

12.3.7 Uncached Instruction Fetch.. 264
VR5432 Microprocessor User’s Manual ix

Contents
Chapter 13 System Interface Protocols (R43K Mode) .. 265

13.1 Address and Data Cycles... 266

13.2 Issue Cycles ... 266

13.3 Handshake Signals .. 268

13.4 System Interface Operation ... 268

13.4.1 Master and Slave States .. 269

13.4.2 External Arbitration... 270

13.4.3 Uncompelled Change to Slave State... 270

13.5 Processor Request Protocols .. 271

13.5.1 Processor Read Request Protocol.. 272

13.5.2 Processor Write Request Protocol... 274

13.5.3 Processor Request Flow Control ... 276

13.5.4 Successive Processing of Requests ... 277

13.6 External Request Protocols .. 281

13.6.1 External Arbitration Protocol... 282

13.6.2 External Write Request Protocol... 286

13.6.3 External Read Response Protocol ... 287

13.7 Discarding and Re-Executing Commands ... 290

13.7.1 Re-Execution of Processor Commands.. 290

13.7.2 Discarding and Re-Executing a Write Command .. 291

13.7.3 Discarding and Re-Executing a Read Command ... 293

13.7.4 Executing and Discarding a Command.. 294

13.8 SysADC (3:0) Protocol ... 295

13.9 Data Flow Control... 295

13.9.1 Read Response ... 295

13.9.2 Write Request ... 295

13.9.3 Independent Transfer on the SysAD (31:0) Bus... 296

13.9.4 System Endianness .. 296

13.10 System Interface Cycle Time ... 297

13.10.1 Release Latency Time ... 297

13.11 System Interface Commands and Data Identifiers .. 298

13.12 Command and Data Identifier Syntax .. 298

13.12.1 System Interface Command Syntax.. 299

13.12.2 Read Requests .. 300

13.12.3 Write Requests ... 302
x VR5432 Microprocessor User’s Manual

Contents
13.12.4 System Interface Data Identifier Syntax .. 304

13.12.5 Data Identifier Bit Definitions ... 304

13.13 System Interface Addresses.. 305

13.13.1 Addressing Conventions ... 306

13.13.2 Sublock Order Data Retrieval.. 306

Chapter 14 Initialization Interface .. 307

14.1 Processor Reset Signals ... 307

14.1.1 Power-On Reset ... 308

14.1.2 Cold Reset ... 309

14.1.3 Warm Reset... 310

14.1.4 Processor Reset State .. 311

14.2 Processor Initialization Signals ... 311

Chapter 15 Clock Interface .. 313

15.1 Basic System Clocks ... 313

15.1.1 SysClock/MasterClock ... 313

15.1.2 PClock.. ..313

15.2 Alignment to SysClock... 314

15.3 Phase-Locked Loop (PLL).. 314

15.4 Bypass PLL Mode ... 316

Volume 2

Chapter 16 Instruction Set Overview .. 319

16.1 Instruction Set Architecture .. 320

16.2 Instruction Formats.. 321

16.3 Load and Store Instructions... 321

16.3.1 Delayed Load Instructions.. 323

16.3.2 Defining Access Types ... 323

16.4 Computational Instructions ... 326

16.4.1 64-Bit Operations... 327

16.5 Jump and Branch Instructions.. 328

16.5.1 Jump Instructions ... 328
VR5432 Microprocessor User’s Manual xi

Contents
16.5.2 Branch Instructions.. 328

16.6 Special Instructions .. 329

16.7 Coprocessor Instructions .. 329

16.7.1 Coprocessor Load and Store .. 330

16.7.2 Coprocessor Operations .. 330

16.8 Implementation-Specific Instructions ... 331

16.8.1 Overview ... 331

16.8.2 Implementation-Specific Instruction Descriptions... 333

16.9 Integer Rotate Instructions .. 337

16.10 Integer Multiply-Accumulate Instructions .. 338

16.11 Multimedia Extensions .. 339

16.12 Debugging Instructions ... 340

16.12.1 Instruction Notation Conventions ... 340

Chapter 17 CPU Instruction Set ... 345

17.1 Introduction .. 345

17.2 Functional Instruction Groups .. 345

17.2.1 Load and Store Instructions ... 346

17.2.2 Computational Instructions .. 348

17.2.3 Jump and Branch Instructions.. 353

17.2.4 Miscellaneous Instructions ... 354

17.3 System Control Coprocessor (CP0) Instructions ... 355

17.4 CPU Instructions ... 356

17.5 CPU Instruction Opcode Bit Encoding ... 565

Chapter 18 Floating-Point Unit Instruction Set .. 569

18.1 Instruction Formats.. 569

18.1.1 Floating-Point Loads, Stores, and Transfers ... 572

18.1.2 Floating-Point Operations .. 572

18.2 Floating-Point Computational Instructions... 575

18.3 FPU Instructions ... 578

18.4 FPU Instruction Opcode Bit Encoding ... 674
xii VR5432 Microprocessor User’s Manual

Contents
Chapter 19 Multimedia Instruction Set ... 677

19.1 Multimedia Extensions .. 677

19.2 Multimedia Instruction Format .. 681

19.3 Multimedia Instructions.. 682

19.4 Multimedia Instruction Opcode Bit Encoding .. 735

Chapter 20 Debug and Test Features .. 737

20.1 Overview738

20.2 Definition of Terms ... 739

20.3 Debug Mode.. 742

20.4 Internal Access ... 743

20.4.1 Debug Instructions... 744

20.4.2 Debug Registers ... 745

20.5 External Access .. 759

20.5.1 JTAG Port Signals ... 760

20.5.2 JTAG-Accessible Registers ... 766

20.5.3 N-Wire Monitor Data Download Example ... 779

20.5.4 N-Trace Packets ... 780

Appendix A Subblock Data Retrieval Order.. 787

Appendix B Comparing the VR4300, VR5000 and VR5432 Processors............791

Appendix C PLL Analog Power Filtering .. 795

Appendix D Instruction Hazards ... 797

Index799
VR5432 Microprocessor User’s Manual xiii

Contents
xiv VR5432 Microprocessor User’s Manual

Preface

The VR5432� microprocessor is an NEC VR Series� RISC
(reduced instruction set computer) microprocessor that implements
the high-performance 64-bit MIPS® IV architecture. This manual
describes the architecture and hardware functions of the VR5432
microprocessor.

Legend Data significance: Higher on left and lower on right
Active-high signal name: XXX
Active-low signal name: XXX*
Numeric representation: binary ... XXXX or XXXX2

decimal ... XXXX
hexadecimal ... 0xXXXX

Prefixes representing an exponent of 2 (for address space or memory
capacity):

K (kilo) 210 = 1024
M (mega) 220 = 10242

G (giga) 230 = 10243

T (tera) 240 = 10244

Manual Overview The manual is divided into two volumes. Volume 1 is the user manual,
containing processor architectural and functional information and
instructions. Volume 2 contains the instruction set information and
appendixes.

Volume 1 (U13751E)

Chapter 1: Introduction provides an overview of the device
features, CPU, Floating-Point Unit (FPU), and pipeline.

Chapter 2: Signal Descriptions discusses the pin configuration and
functions of the VR5432 processor signals.

Chapter 3: Pipeline describes the dual-issue instruction pipeline
stages, delays, and interlock and exception handling.
VR5432 Microprocessor User�s Manual xv

Preface
Chapter 4: Memory Management Unit discusses the processor’s
virtual and physical address spaces, the virtual-to-physical address
translation, the translation lookaside buffer (TLB) process, and the
system control coprocessor registers that provide the software
interface to the TLB.

Chapter 5: Cache Organization and Operation describes the cache
memory’s place in the VR5432 memory configuration and individual
cache organization.

Chapter 6: CPU Exceptions describes the processor’s exception
types, registers, vector offsets, processing handling, and interrupts.

Chapter 7: Floating-Point Unit describes the FPU coprocessor,
including the programming model, instruction set and formats, and
the pipeline.

Chapter 8: Floating-Point Exceptions discusses FPU exception
types, exception trap processing, exception flags, saving and restoring
states when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

Chapter 9: Bus Interface describes how the processor accesses the
external resources needed to satisfy cache misses and uncached
operations, while permitting an external agent access to some of the
processor’s internal resources.

Chapter 10: System Interface Transactions (Native Mode)
describes processor and external requests in the native system
interface protocol of the VR5432 processor.

Chapter 11: System Interface Protocols (Native Mode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in the native protocol of the
VR5432 processor.

Chapter 12: System Interface Transactions (R43K Mode) This
section describes processor and external requests as they occur in
R43K (VR4300 compatibility) mode.

Chapter 13: System Interface Protocols (R43K Mode) contains a
cycle-by-cycle description of the system interface protocols for each
type of processor and external request in R43K mode.

Chapter 14: Initialization Interface describes the processor reset
and initialization signals.
xvi VR5432 Microprocessor User’s Manual

Preface
Chapter 15: Clock Interface describes the basic system clocks,
SysClock and PClock, and Phase-Locked Loop (PLL) and Bypass
PLL modes.

Volume 2 (U15397E)

Chapter 16: Instruction Set Overview discusses the general
attributes of the CPU, FPU, multimedia, and debugging instructions
of the MIPS IV instruction set architecture (ISA) utilized by the
VR5432 processor.

Chapter 17: CPU Instruction Set describes the details of the CPU
instructions.

Chapter 18: Floating-Point Unit Instruction Set describes the
details of the FPU instructions.

Chapter 19: Multimedia Instruction Set describes the details of the
multimedia instructions.

Chapter 20: Debug and Test Features describes the VR5432
processor�s debug and test functions, Debug mode, and debug
instructions.

Appendix A: Sublock Order describes how a block of data elements
(bytes, halfwords, words, or doublewords) can be retrieved from
storage in sequential or nonsequential (sub-block) order.

Appendix B: Comparing the VR4300, VR5000, and VR5432
Processors delineates each processor�s attributes.

Appendix C: PLL Analog Power Filtering illustrates the phase-
locked loop circuit configuration.

Appendix D: Instruction Hazards identifies the VR5432 instruction
hazards that occur with certain instruction and event combinations
(such as pipeline delays, cache misses, interrupts, and exceptions).
VR5432 Microprocessor User�s Manual xvii

Preface
Related Documents See also the following documents. The related documents indicated
here may include preliminary versions. However, preliminary
versions are not marked as such.

Product Data Sheet
User�s Manual

Hardware Architecture Instruction Set
VR5432 U13504E U13751E U15397E
VR5000 U12031E U11761E U12754E

VR10000 U12703E U10278E U12754E
xviii VR5432 Microprocessor User�s Manual

Instruction Set Overview

16

This chapter provides an overview of the instruction set architecture (ISA) utilized
by the VR5432 processor. For detailed information on each instruction type, refer
to the following chapters.

• Chapter 17, CPU Instruction Set, on page 3

• Chapter 18, Floating-Point Unit Instruction Set, on page 569

• Chapter 19, Multimedia Instruction Set , on page 677

• Chapter 20, Debug and Test Features, on page 737
VR5432 Microprocessor User’s Manual 319

Chapter 16
16.1 Instruction Set Architecture
The VR5432 processor executes the MIPS IV instruction set (a superset of the
MIPS III instruction set) plus instructions added by NEC specifically for VR5432
implementation. As Figure 16-1 illustrates, each new architecture level (or
version) includes the former levels. Therefore, a processor implementing MIPS
IV can also run MIPS I, MIPS II, or MIPS I II binary programs without change.

Figure 16-1 MIPS Architecture Extensions

The MIPS IV instruction set for the VR5432 processor utilizes the following
instruction types.

• CPU instructions

• Floating-point instructions

• Multimedia instruction

• Test and debug instructions

In earlier MIPS architectures, coprocessor instructions were implementation
dependent. In the MIPS IV architecture, the Coprocessor 3 instruction formats
have been used for extensions to the floating-point instruction set. In the VR5432
implementation, the Coprocessor 2 instruction formats have been used for
implementation-specific instruction set extensions. The new MIPS IV, VR5432
processor-specific instructions are summarized and briefly explained in Section
16.8.

MIPS I

 MIPS II

MIPS III

MIPS IV
320 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.2 Instruction Formats

Each instruction consists of a single 32-bit word aligned on a word boundary.
There are three instruction formats—immediate (I-type), jump (J-type), and
Register (R-type). The use of a small number of instruction formats simplifies
instruction decoding, allowing the compiler to synthesize more complicated (and
less frequently used) operations and addressing modes from these three formats.
See the subsequent instruction chapters for details on the formats of each
instruction type.

16.3 Load and Store Instructions

Load and Store instructions are immediate (I-type) instructions that transfer data
between the memory system and the general-purpose register sets in the CPU and
coprocessors. There are separate instructions for different purposes: transferring
variously sized fields, treating loaded data as signed or unsigned integers,
accessing unaligned fields, selecting the addressing mode, and providing atomic
memory updates (read-modify-write cycles).

Regardless of byte ordering (big- or little-endian), the address of a halfword,
word, or doubleword is the smallest byte address among the bytes forming the
object. For big-endian ordering, this is the most-significant byte; for little-endian
ordering, this is the least-significant byte.

Except for the few specialized instructions listed in Table 17-2, Load and Store
instructions must access naturally aligned objects. An attempt to load or store an
object at an address that is not an even multiple of the size of the object will cause
an Address Error exception.

Load and Store operations have been added in each revision of the architecture:

MIPS II

• 64-bit coprocessor transfers

• Atomic update

MIPS III

• 64-bit CPU transfer

• Unsigned word load for the CPU

MIPS IV: Register + r egister addressing mode for the FPU

Table 16-1 and Table 16-2 tabulate the supported Load and Store operations and
indicate the MIPS architecture level at which each operation was first supported.
The instructions themselves are listed in the following sections.
VR5432 Microprocessor User’s Manual 321

Chapter 16

Table 16-1 Load/Store Operations Using Register + Offset Addressing Mode

CPU
 Coprocessor

(except 0)

Data Size
Load

Signed
Load

Unsigned
Store Load Store

Byte I I I

Halfword I I I

Word I III I I I

Doubleword III III II II

Unaligned word I I

Unaligned doubleword III III

Linked word
(atomic modify)

II II

Linked doubleword
(atomic modify)

III III

Table 16-2 Load/Store Operations Using Register + Register Addressing Mode

Floating-Point Coprocessor Only

Data Size Load Store

Word IV IV

Doubleword IV IV
322 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.3.1 Delayed Load Instructions

The MIPS I architecture defines delayed loads; an instruction scheduling
restriction requires that an instruction immediately following a load into register
Rn cannot use Rn as a source register. The time between the Load instruction and
the time the data is available is the “load delay slot.” If no useful instruction can
be put into the load delay slot, then a null operation (assembler mnemonic NOP)
must be inserted.

In MIPS II, this instruction scheduling restriction is removed. Programs will
execute correctly when the loaded data is used by the instruction following the
load, but this may require extra read cycles. Most processors cannot actually load
data quickly enough for immediate use and the processor will be forced to wait
until the data is available. Scheduling load delay slots can be desirable, both for
performance and compatibility with earlier VR Series processors. However, the
scheduling of load delay slots is not required for correct operation of the
processor.

16.3.2 Defining Access Types

Access type indicates the size of a VR5432 processor data item to be loaded or
stored, as set by the Load or Store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given
specifies the low-order byte in the addressed field. For a big-endian configuration,
the low-order byte is the most-significant byte; for a little-endian configuration,
the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the
bytes accessed within the addressed doubleword (shown in Table 16-3). Only the
combinations shown in Table 16-3 are permissible; other combinations cause
Address Error exceptions.
VR5432 Microprocessor User’s Manual 323

Chapter 16
Table 16-3 Byte Access within a Doublew o r

Access Type
Mnemonic

(Value)

Low-Order
Address Bits

Bytes Accessed

Big Endian
(63-----------31------------0)

Byte

Little Endian
(63-----------31------------0)

Byte
2 1 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (2)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7
324 VR5432 Microprocessor User’s Manual

Instruction Set Overview
Table 16-4 Access Type Specifications for Load/Store Instru c t i o n

Access Type SysCmd (2:0) Meaning

Doubleword 7 8 bytes (64 bits)

Septibyte 6 7 bytes (56 bits)

Sextibyte 5 6 bytes (48 bits)

Quintibyte 4 5 bytes (40 bits)

Word 3 4 bytes (32 bits)

Triplebyte 2 3 bytes (24 bits)

Halfword 1 2 bytes (16 bits)

Byte 0 1 byte (8 bits)
VR5432 Microprocessor User’s Manual 325

Chapter 16
16.4 Computational Instructions

Computational instructions can be in either register (R-type) format, in which both
operands are registers, or immediate (I-type) format, in which one operand is a 16-
bit immediate.

Two’s-complement arithmetic is performed on integers represented in two’s-
complement notation. There are signed versions of add, subtract, multiply, and
divide operations. There are add and subtract operations, called “unsigned,” that
are actually modulo arithmetic without overflow detection. There are unsigned
versions of multiply and divide. There is a full complement of shift and logical
operations.

MIPS I provides 32-bit integers and 32-bit arithmetic. MI PSIII adds 64-bit
integers and provides separate Arithmetic and Shift instructions for 64-bit
operands. Logical operations are not sensitive to the width of the register.

Computational instructions perform the following operations on register values:

• Arithmeti

• Logical

• Rotate

• Shift

• Multipl

• Divide

• Multiply-accumulat

• Parallel operations on packed bytes

These operations fit in the following six categories of computational instructions:

• ALU immediate instruction

• Three-operand register-type instructions

• Rotate and Shift instructions

• Multiply and Divide instructions

• Multiply-accumulate instructions

• Packed byte instructions
326 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.4.1 64-Bit Operations

The VR5432 microprocessor has a 64-bit architecture that supports 32-bit
operands. These operands must be sign extended. Opcodes are available for 32-bit
operands for all of the basic arithmetic and logical instructions, such as: ADD,
ADDU, SUB, SUBU, ADDI, SLL, SRA, and SLLV. Operations that don’t use
sign-extended 32-bit values correctly are unpredictable. In addition, 32-bit data is
stored sign extended in a 64-bit register.
VR5432 Microprocessor User’s Manual 327

Chapter 16
16.5 Jump and Branch Instructions

All Jump and Branch instructions have a delay slot of exactly one instruction. That
is, the instruction immediately following a Jump or Branch instruction (the
instruction occupying the delay slot) is executed while the target instruction is
being fetched from the cache. A Jump or Branch instruction cannot be used in a
delay slot; however, if they are used, the error is not detected and the results of
such an operation are undefined.

If an exception or interrupt prevents the completion of the instruction while it is
in a delay slot, the hardware sets a virtual address to the EPC register at the point
of the Jump or Branch instruction that precedes it. When exception or interrupt
processing is complete and the program is restored, both the Jump and Branch
instruction and the instruction in the delay slot are re-executed.

Because Jump and Branch instructions may be re-executed after exception or
interrupt processing, register 31 (the register in which the link address is stored)
should not be used as a source register in Jump, Link/Branch, and Link
instructions.

Because instructions must be word-aligned, a Jump Register or Jump and Link
Register instruction must use a register that contains an address where the low-
order two bits are zero. If these low-order two bits are not zero, an Address Error
Exception instruction at the Jump destination is fetched.

16.5.1 Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or
Jump and Link instructions, both of which are J-type instructions. In J-type
format, the 26-bit target address is shifted left 2 bits and concatenated with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the
Jump Register or Jump and Link Register instructions. Both are R-type
instructions that take the 64-bit byte address contained in one of the general-
purpose registers.

16.5.2 Branch Instructions

All Branch instruction target addresses are calculated by adding the address of the
instruction in the delay slot to the 16-bit offset (shifted left by 2 bits and sign-
extended to 64 bits). All branches occur with a delay of one instruction.
328 VR5432 Microprocessor User’s Manual

Instruction Set Overview
If a conditional Branch Likely instruction is not taken, the instruction in the delay
slot is nullified (i.e., discarded without affecting any data).

16.6 Special Instructions

Special instructions allow the software to initiate traps both conditionally and
unconditionally. These instructions can cause System Call (SysCall), Breakpoint
(Break), and Trap (Trap) conditions in the processor. SysCall and Break are
unconditional, while Trap can specify a condition such as a Branch instruction.
The Synchronize (Sync) instruction allows the software to ensure that all pending
operations are complete. In the VR5432 processor implementation, the Sync
instruction is executed as an NOP.

16.7 Coprocessor Instructions

Coprocessors are alternate execution units with register files separate from the
CPU. The MIPS architecture provides an abstraction for up to 4 coprocessor units,
numbered 0 to 3. Each architecture level defines some of these coprocessors, as
shown in Table 16-5. Coprocessor 0 is always used for system control and
Coprocessor 1 is used for the floating-point unit. Other coprocessors are
architecturally valid, but do not have a reserved use. Some coprocessors are not
defined and their opcodes are either reserved or used for other purposes.

The coprocessors may have two register sets, Coprocessor general-purpose
registers and coprocessor control registers, with each set containing up to 32
registers. Coprocessor computational instructions may alter registers in either
set.

Table 16-5 Coprocessor Definition and Use in the MIPS Architect u r

MIPS Architecture Level

Coprocessor I II III IV

0 Sys. control Sys. control Sys. control Sys. control

1 FPU FP FP FPU

2 Unused Unused Unused Unused

3 Unused Unused Not defined
FPU
(COP1X)
VR5432 Microprocessor User’s Manual 329

Chapter 16
System control for all MIPS processors is implemented as Coproce ssor0 (CP0),
the system control coprocessor. It provides the processor control, memory
management, and exception handling functions. The CP0 instructions are specific
to each CPU and are documented with the CPU-specific information.

If a system includes a floating-point unit, it is implemented as coproces sor1
(CP1). In MIPS I V, the FPU also uses the computation opcode space for
Coprocessor unit 3, renamed COP1X. The FPU instructions are documented in
Chapter 18.

The coprocessor instructions are divided into two main groups:

• Load and Store instructions that are reserved in the main opcode
space

• Coprocessor-specific operations that are defined entirely by the
coprocessor

16.7.1 Coprocessor Load and Store

Load and Store instructions are not defined for CP0; the Move to/from
Coprocessor instructions provide the only way to write and read the CP0 registers.

16.7.2 Coprocessor Operations

Up to four coprocessors and their instructions are shown generically for
coprocessor z. Within the operation main opcode, the coprocessor has further
coprocessor-specific instructions encoded.

Table 16-6 Coprocessor Operation Instr u c t i o n

Mnemonic Description
Defined in

MIPS...

COPz Coprocessor z Operation I
330 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.8 Implementation-Specific Instructions

16.8.1 Overview

The MIPS IV instructions added by NEC for the VR5432 processor enable the
MIPS architecture to compete in the high-end numeric processing market, which
has traditionally been dominated by vector architectures.

Compound Multiply-Add instructions are included, taking advantage of the fact
that most floating-point computations use the chained multiply-add paradigm.
The intermediate multiply result is rounded before the addition is performed.

A register + register addressing indexed mode for floating-point loads and stores
eliminates the extra integer required in many array accesses. However, issuing a
register + register load causes a one-cycle stall in the pipeline, which makes it
useful only for compatibility with other MIPS IV implementations. Register +
register indexed addressing for integer memory operations is not supported.

A set of four conditional move operators allows floating-point arithmetic IF
statements to be represented without branches. THEN and ELSE clauses are
computed unconditionally and the results are placed in a temporary register.
Conditional move operators then transfer the temporary results to their true
register. Conditional moves must be able to test both integer and floating-point
conditions in order to supply the full range of IF statements. Integer tests are
performed by comparing a general-purpose register against a zero value.

Because floating-point conditional moves test the floating-point condition codes,
the VR5432 processor provides eight condition codes to give the compiler
increased flexibility in scheduling the comparison and the conditional moves.

Table 16-7 lists the new instructions that complete the MIPS IV instruction set;
these instructions are described in Section 16.8.2 on page 333.
VR5432 Microprocessor User’s Manual 331

Chapter 16
Table 16-7 MIPS IV Instruction Additions

Instruction Definition

BC1F Branch on FP condition code false

BC1T Branch on FP condition code true

BC1FL Branch on FP condition code false likely

BC1TL Branch on FP condition code true likely

C.cond.fmt (cc) Floating-point compare

LDXC1 Load doubleword indexed to COP1

LWXC1 Load word indexed to COP1

MADD.fmt Floating-point multiply-add

MOVF Move conditional on FP condition code false

MOVN Move on register not equal to zero

MOVT Move conditional on FP condition code true

MOVZ Move on register equal to zero

MOVF.fmt FP move conditional on condition code false

MOVN.fmt FP move on register not equal to zero

MOVT.fmt FP move conditional on condition code true

MOVZ.fmt FP move conditional on register equal to zero

MSUB.fmt Floating-point multiply-subtract

NMADD.fmt Floating-point negative multiply-add

NMSUB.fmt Floating-point negative multiply-subtract

PREFX Prefetch indexed register + register

PREF Prefetch register + offset

RECIP.fmt Reciprocal

RSQRT.fmt Reciprocal square root

SDXC1 Store doubleword indexed from COP1

SWXC1 Store word indexed from COP1
332 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.8.2 Implementation-Specific Instruction Descriptions

This section describes the new instructions listed in Table 16-7.

16.8.2.1 Branch on floating-point Coprocessor instructions

BC1T: Branch on FP condition True

BC1F: Branch on FP condition False

BC1TL: Branch on FP condition True Likely

BC1FL: Branch on FP condition False Likely

The four Branch instructions are upwardly compatible extensions of the Branch
on floating-point coprocessor instructions of the MIPS instruction set. The BC1T
and BC1F instructions are extensions of MIPS I. BC1TL and BC1FL are
extensions of MIPS III. These instructions test one of eight floating-point
condition codes. This encoding is upwardly compatible with previous MIPS
architectures.

The branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and sign
extended to 64 bits. If the contents of the floating-point condition code specified
in the instruction are equal to the test value, the target address is branched to with
a delay of one instruction. If the conditional branch is not taken and the nullify
delay bit in the instruction is set, the instruction in the branch delay slot is
nullified.

16.8.2.2 Floating-point Compare instructions

C.cond.fmt: Compares the contents of two FPU registers

The contents of the two FPU source registers specified in the instruction are
interpreted and arithmetically compared. A result is determined based on the
comparison and the conditions specified in the instruction.
VR5432 Microprocessor User’s Manual 333

Chapter 16
16.8.2.3 Indexed floating-point Load instructions

LWXC1: Load word indexed to Coprocessor 1

LDXC1: Load doubleword indexed to Coprocessor 1

The two indexed floating-point Load instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from memory to the floating-
point registers using the register + register addressing mode. There are no indexed
loads to general-purpose registers. The contents of the general-purpose register
specified by the base are added to the contents of the general-purpose register
specified by the index to form a virtual address. The contents of the word or
doubleword specified by the effective address are loaded into the floating-point
register specified in the instruction.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. Also, if the
address is not aligned, an Address Error exception occurs.

16.8.2.4 Integer conditional Move instructions

MOVT: Move conditional on condition code True

MOVF: Move conditional on condition code False

MOVN: Move conditional on register not equal to zero

MOVZ: Move conditional on register equal to zero

The four-integer Move instructions are exclusive to the MIPS IV instruction set
and are used to test a condition code or a general-purpose register and then
conditionally perform an integer move. The value of the floating-point condition
code specified in the instruction by the 3-bit condition code specifier, or the value
of the register indicated by the 5-bit general-purpose register specifier, is
compared to zero. If the result indicates that the move should be performed, the
contents of the specified source register are copied into the specified destination
register.
334 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.8.2.5 Floating-point Multiply-Add instructions

MADD: Floating-point Multiply-Add

MSUB: Floating-point Multiply-Subtract

NMADD: Floating-point Negative Multiply-Add

NMSUB: Floating-point Negative Multiply-Subtract

These four instructions are exclusive to the MIPS IV instruction set and
accomplish two floating-point operations with one instruction. Each of these four
instructions performs intermediate rounding.

16.8.2.6 Floating-point conditional Move instructions

MOVT.fmt: Floating-point conditional move on condition code True

MOVF.fmt: Floating-point conditional move on condition code False

MOVN.fmt: Floating-point conditional move on register not equal to zero

MOVZ.fmt: Floating-point conditional move on register equal to zero

The four floating-point Conditional Move instructions are exclusive to the MIPS
IV instruction set and are used to test a condition code or a general-purpose
register and then conditionally perform a floating-point move. The value of the
floating-point condition code specified by the 3-bit condition code specifier, or the
value of the register indicated by the 5-bit general-purpose register specifier, is
compared to zero. If the result indicates that the move should be performed, the
contents of the specified source register are copied into the specified destination
register. All of these conditional floating-point move operations are non-
arithmetic. Consequently, no IEEE-754 exceptions occur as a result of these
instructions.
VR5432 Microprocessor User’s Manual 335

Chapter 16
16.8.2.7 Prefetch instructions

PREF: Register + offset format

PREFX: Register + register format

The two Prefetch instructions are exclusive to the MIPS IV instruction set and
allow the compiler to issue instructions early so the corresponding data can be
fetched and placed as close as possible to the CPU. Each instruction contains a
5-bit “hint” field that gives the coherency status of the line being prefetched. The
line can be shared, exclusive clean, or exclusive dirty. The contents of the general-
purpose register specified by the base are added either to the 16-bit sign-extended
offset or to the contents of the general-purpose register specified by the index to
form a virtual address. This address and “hint” field are sent to the cache controller
and a memory access is initiated.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. The Prefetch
instruction never generates TLB-related exceptions. The PREF instruction is
considered a standard processor instruction, while the PREFX instruction is
considered a standard Coprocessor 1 instruction.

16.8.2.8 Reciprocal instructions

RECIP.fmt: Reciprocal

RSQRT.fmt: Reciprocal Square Root

The Reciprocal instruction performs a reciprocal on a floating-point value. The
reciprocal of the value in the floating-point source register is placed in a
destination register.

The Reciprocal Square Root instruction performs a reciprocal square root on a
floating-point value. The reciprocal of the positive square root of a value in the
floating-point source register is placed in a destination register.

The VR5432 meets full IEEE accuracy requirements for the RECIP and RSQRT
instructions. On the VR5432 microprocessor, the RECIP instruction has the same
latency as a DIV instruction, but an RSQRT is faster than a SQRT followed by a
RECIP.
336 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.8.2.9 Indexed floating-point Store instructions

SWXC1: Store word indexed from Coprocessor 1

SDXC1: Store doubleword indexed from Coprocessor 1

The two indexed floating-point Store instructions are exclusive to the MIPS IV
instruction set and transfer floating-point data types from the floating-point
registers to memory using the register + register addressing mode. There are no
indexed stores from general-purpose registers. The contents of the general-
purpose register specified by the base are added to the contents of the general-
purpose register specified by the index to form a virtual address. The contents of
the floating-point register specified in the instruction are stored to the memory
location specified by the effective address.

The region bits (63:62) of the effective address must be supplied by the base. If
the addition alters these bits, an Address Error exception occurs. Also, if the
address is not aligned, an Address Error exception occurs.

16.9 Integer Rotate Instructions

The VR5432 processor adds a set of Rotate instructions that are not part of the
standard MIPS instruction set.

Table 16-8 Rotate Instructi o n

Instruction Definition

DROR Doubleword rotate right

DROR32 Doubleword rotate right plus 32

DRORV Doubleword rotate right variable

ROR Rotate right

RORV Rotate right variable
VR5432 Microprocessor User’s Manual 337

Chapter 16
16.10 Integer Multiply-Accumulate Instructions

The VR5432 processor includes a set of Multiply-Accumulate instructions that are
not part of the standard MIPS instruction set. These instructions use half of the HI
and LO registers together as a 64-bit accumulator, with the upper 32 bits of the
accumulator mapped to the lower 32 bits of HI and the lower 32 bits of the
accumulator mapped to the lower 32 bits of LO. These instructions perform no
underflow or overflow detection and produce no exceptions. Table 16-9 lists these
instructions.

Table 16-9 Multiply-Accumulate Instruction Set Extensions

Instruction Definition

MACC Multiply, accumulate, and move LO

MACCHI Multiply, accumulate, and move HI

MACCHIU Unsigned multiply, accumulate, and move HI

MACCU Unsigned multiply, accumulate, and move LO

MSAC Multiply, negate, accumulate, and move LO

MSACHI Multiply, negate, accumulate, and move HI

MSACHIU Unsigned multiply, negate, accumulate, and move HI

MSACU Unsigned multiply, negate, accumulate, and move LO

MUL Multiply and move LO

MULHI Multiply and move HI

MULHIU Unsigned multiply and move HI

MULS Multiply, negate, and move LO

MULSHI Multiply, negate, and move HI

MULSHIU Unsigned multiply, negate, and move HI

MULSU Unsigned multiply, negate, and move LO

MULU Unsigned multiply and move LO
338 VR5432 Microprocessor User’s Manual

Instruction Set Overview
16.11 Multimedia Extensions

The VR5432 adds a set of instructions to operate on packed vectors of eight 8-bit
unsigned integers. These instructions are described in Chapter 19.

Table 16-10 Multiply-Accumulate Instruction Latency and Repeat Rat e

Instruction Latency Repeat Rate

MACC, MACCHI, MACCHIU, MACCU 3 1

MSAC, MSACHI, MSACHIU, MSACU 3 1

MUL, MULHI, MULHIU, MULU 3 1

MULS, MULSHI, MULSHIU, MULSU 3 1

Table 16-11 Multimedia Extensions

Instruction Definition

ADD.OB Vector add

ALNI.OB Vector align

AND.OB Vector AND

C.EQ.OB Vector compare equal

C.LE.OB Vector compare less than or equal

C.LT.OB Vector compare less than

MAX.OB Vector maximum

MIN.OB Vector minimum

MUL.OB Vector multiply

MULA.OB Vector multiply-accumulate

MULS.OB Vector multiply, negate, and accumulate

MULSL.OB Vector multiply, negate, and load accumulator

NOR.OB Vector NOR

OR.OB Vector OR

PICKF.OB Vector pick false

PICKT.OB Vector pick true

RZU.OB Vector scale, round, and clamp accumulator

SHFL.MIXH.OB Vector element shuffle

SHFL.MIXL.OB Vector element shuffle

SHFL.PACH.OB Vector element shuffle
VR5432 Microprocessor User’s Manual 339

Chapter 16
16.12 Debugging Instructions

The VR5432 processor adds a set of instructions to control the on-chip debugging
features described in Chapter 20.

16.12.1 Instruction Notation Conventions

In the following instruction set chapters, all variable subfields in instruction
formats (such as rs, rt, fs, ft, immediate, and so on) are shown in lowercase.

For clarity, sometimes an alias is used for a variable subfield in the formats of
specific instructions. For example, rs = base in the format for Load and Store
instructions. Such an alias is always lowercase, since it refers to a variable
subfield.

In some instructions, the instruction subfields op and function have fixed 6-bit
values. These instructions use an uppercase mnemonic. For instance, in the
floating-point ADD instruction, op = COP1 and function = FADD. In other cases,
a single field has both fixed and variable subfields, so the name contains both
uppercase and lowercase characters. The actual encodings of all the mnemonics
and the codes in the function fields are shown in the instruction chapters. The
operation executed by each instruction is described in pseudocode notation, as
described in Table 16-13.

SHFL.PACL.OB Vector element shuffle

SLL.OB Vector shift left logical

SRL.OB Vector shift right logical

SUB.OB Vector subtract

XOR.OB Vector XOR

Table 16-12 Debug Instructi o n

Instruction Definition

DBREAK Debug break

DRET Debug return

MFDR Move from Debug register

MTDR Move to Debug register

Table 16-11 Multimedia Extensions (continued)

Instruction Definition
340 VR5432 Microprocessor User’s Manual

Instruction Set Overview
Table 16-13 Instruction Operation Notatio n

Symbol Meaning

← Substitution assignment

|| Bit string concatenation

xy Repetition of bit string x with a y-bit string. x is always a
single-bit value.

xy...z

Selection of bits y through z for bit string x. Little-endian bit
notation is always used. If y is less than z, this expression is
an empty (zero length) bit string.

+ Two’s-complement or floating-point addition

– Two’s-complement or floating-point subtraction

* Two’s-complement or floating-point multiplication

div Two’s-complement integer division

mod Two’s-complement remainder

/ Floating-point division

< Two’s-complement less than comparison

and Bitwise logical AND

or Bitwise logical OR

xor Bitwise logical XOR

nor Bitwise logical NOR

GPR[x]
General-purpose register x. GPR (0) always reads as zero.
Attempts to modify the contents of GPR (0) have no effect.

CPR[z,x] Coprocessor unit z, general-purpose register x

CCR[z,x] Coprocessor unit z, control register x

COC[z] Coprocessor unit z condition signal

BigEndianMem

Endian mode as configured at reset (0 → Little, 1 → Big).
Specifies the byte order of the memory interface (see
LoadMemory and StoreMemory), and the byte order of
Kernel and Supervisor modes. Controlled by the BE bit in
the Configuration register, which can only be modified
during reset initialization.

ReverseEndian
Signal to reverse the byte order of Load and Store
instructions. This feature is available in User mode only,
and is enabled by setting the RE bit of the Status register.
VR5432 Microprocessor User’s Manual 341

Chapter 16
BigEndianCPU

Endian mode for Load and Store instructions (0 → Little, 1
→ Big).
In User mode, byte order can be reversed by setting the RE
bit. The byte order is also affected by the BE bit in the
Configuration register. BigEndianCPU is calculated as
BigEndianMem XOR ReverseEndian.

LLbit
Bit showing synchronized state of instructions. Set by LL
instruction, cleared by ERET instruction, and read by SC
instruction.

T+i:

Indicates the time steps between operations. Each statement
within a time step is defined to be executed in sequential
order (instruction execution order may be changed by
conditional branch and loop). Operations marked T + i: are
executed at instruction cycle i from the start of execution of
the instruction. Thus, an instruction that starts at time j
executes operations marked T + i: at the time of the i + jth
cycle. The order is not defined for instructions executed at
the same time of operations.

Table 16-13 Instruction Operation Notations (continued)

Symbol Meaning
342 VR5432 Microprocessor User’s Manual

Instruction Set Overview
The examples in Figure 16-2 illustrate the application of some of the instruction
notations.

Figure 16-2 Instruction Notation Examples

Example #1

GPR[rt] ← immediate || 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits) and the
32-bit string is assigned to general-purpose register rt.

Example #2

(immediate15)16 || immediate15...0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and th
result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit
sign-extended value.

Example #3

CPR[1, ft] ← data

Data is assigned to general-purpose register ft of CP1 (Floating-Point
General-Purpose register FGR).
VR5432 Microprocessor User’s Manual 343

Chapter 16
344 VR5432 Microprocessor User’s Manual

CPU Instruction Set

17

17.1 Introduction

This chapter describes the instruction set architecture (ISA) for the central
processing unit (CPU) in the MIPS IV architecture. (For a general overview of the
VR5432 MIPS IV instruction set, see Chapter 16.) The CPU architecture defines
the nonprivileged instructions that execute in User mode. It does not define
privileged instructions providing processor control executed by the
implementation-specific system control processor. Instructions for the floating-
point unit are described in Chapter 18.

17.2 Functional Instruction Groups

CPU instructions are divided into the following functional instruction groups:

• Load and Store

• Arithmetic and Logic Unit (ALU)

• Jump and Branch

• Miscellaneous

• Coprocessor
VR5432 Microprocessor User’s Manual 345

Chapter 17
17.2.1 Load and Store Instructions

The instructions in Table 17-1 transfer data in bytes, halfwords, words, and
doublewords. Signed and unsigned integers of different sizes are supported by
load operations that either sign extend or zero extend the data loaded into the
register. Load and Store instructions are not defined for CP0; the Move to/from
coprocessor instructions provide the only way to write and read the CP0 registers.

Unaligned words and doublewords can be loaded or stored in only two
instructions by using a pair of special instructions (Table 17-2). The Load
instructions read the left-side or right-side bytes (left or right side of the register)
from an aligned word and merge them into the correct bytes of the destination
register. MIPS I, though it prohibits other use of loaded data in the load delay slot,
permits LWL and LWR instructions targeting the same destination register to be
executed sequentially. Store instructions select the correct bytes from a source
register and update only those bytes in an aligned memory word (or doubleword).

Table 17-1 Normal CPU Load/Store Instructions

Mnemonic Description Defined in MIPS...

LB Load Byte I

LBU Load Byte Unsigned I

SB Store Byte I

LH Load Halfword I

LHU Load Halfword Unsigned I

SH Store Halfword I

LW Load Word I

LWU Load Word Unsigned III

SW Store Word I

LD Load Doubleword III

SD Store Doubleword III
346 VR5432 Microprocessor User’s Manual

CPU Instruction Set
17.2.1.1 Atomic update Load and Store instructions

Paired instructions, Load Linked and Store Conditional, can be used to perform an
atomic read-modify-write access of word and doubleword cached memory
locations. These instructions are used in carefully coded sequences to provide one
of several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts. The individual instruction descriptions
describe how to use them.

Table 17-2 Unaligned CPU Load/Store Instructions

Mnemonic Description Defined in MIPS...

LWL Load Word Left I

LWR Load Word Right I

SWL Store Word Left I

SWR Store Word Right I

LDL Load Doubleword Left III

LDR Load Doubleword Right III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

Table 17-3 Atomic Update CPU Load/Store Instructions

Mnemonic Description
Defined in

MIPS...

LL Load Linked Word II

SC Store Conditional Word II

LLD Load Linked Doubleword III

SCD Store Conditional Doubleword III
VR5432 Microprocessor User’s Manual 347

Chapter 17
17.2.2 Computational Instructions

17.2.2.1 Multiply and Divide instructions

The Multiply and Divide instructions produce twice as many result bits as is
typical with other processors and they deliver their results into the HI and LO
special registers. Multiply produces a full-width product twice the width of the
input operands; the low half is put in LO and the high half is put in HI. Divide
produces both a quotient in LO and a remainder in HI. The results are accessed by
instructions that transfer data between HI/LO and the general-purpose registers.

Table 17-4 Multiply/Divide Instructions

Mnemonic Description Defined in MIPS...

MULT Multiply Word I

MULTU Multiply Unsigned Word I

DIV Divide Word I

DIVU Divide Unsigned Word I

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDIV Doubleword Divide III

DDIVU Doubleword Divide Unsigned III

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I
348 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Cycle Timing for Computational Instructions

The VR5432A processor performs most computational instructions with the
exception of Multiply and Divide instructions in a single processor cycle
(PCycle). Multiply and Divide instructions require multiple iterations in the
functional units and require multiple processor cycles to execute. Also, Divide and
some Multiply instructions require the use of the MFLO and MFHI instructions to
move the result back to the general register file. Since Multiply and Divide
instructions can be executed in parallel with other nondependent instructions, it is
desirable to schedule nondependent operations to gain performance. The
VR5432A will automatically interlock the pipe when a dependency on a
multicycle instruction is detected.

Table 17-5 gives the number of processor cycles (PCycles) required to execute
and resolve a stall between Multiply or Divide instructions, and a subsequent
dependent instruction.

Table 17-5 Multiply and Divide Instruction Latency and Repeat Rates

Instruction
Latency1/Repeat Rate

(Cycles)/(Cycles)

Word Long

DIV / DIVU / DDIV / DDIVU 42/42 74/74

MACC / MACCHI / MACCHIU / MACCU 3/1

MSAC / MSACHI / MSACHIU / MSACU 3/1

MUL / MULHI / MULHIU / MULU 3/1

MULS / MULSHI / MULSHIU / MULSU 3/1

MULT / MULTU / DMULT / DMULTU 3/1 4/2

Note:
1. Latency of the accumulator for back-to-back Multiply-accumulate instructions is 1 cycle.
VR5432 Microprocessor User’s Manual 349

Chapter 17
17.2.2.2 ALU instructions

Some Arithmetic and Logical instructions operate on one operand from a register
and the other from a 16-bit immediate value in the instruction word. The
immediate operand is treated as signed for the Arithmetic and Compare
instructions, and as logical (zero extended to register length) for the Logical
instructions.

Table 17-6 ALU Instructions With an Immediate Op e r a n

Mnemonic Description Defined in MIPS...

ADDI Add Immediate Word I

ADDIU Add Immediate Unsigned Word I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate Unsigned I

ANDI AND Immediate I

ORI OR Immediate I

XORI Exclusive OR Immediate I

LUI Load Upper Immediate I

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate Unsigned III
350 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Table 17-7 Three-Operand ALU Instructions

Mnemonic Description
Defined in

MIPS...

ADD Add Word I

ADDU Add Unsigned Word I

SUB Subtract Word I

SUBU Subtract Unsigned Word I

DADD Doubleword Add III

DADDU Doubleword Add Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND AND I

OR OR I

XOR Exclusive OR I

NOR NOR I
VR5432 Microprocessor User’s Manual 351

Chapter 17
17.2.2.3 Shift instructions

There are Shift instructions that take the shift amount from a 5-bit field in the
instruction word and Shift instructions that take a shift amount from the low-order
bits of a general-purpose register. The instructions with a fixed shift amount are
limited to a 5-bit shift count, so there are separate instructions for doubleword
shifts of 0−31 bits and 32−63 bits.

Table 17-8 Shift Instructions

Mnemonic Description Defined in MIPS...

SLL Shift Word Left Logical I

SRL Shift Word Right Logical I

SRA Shift Word Right Arithmetic I

SLLV Shift Word Left Logical Variable I

SRLV Shift Word Right Logical Variable I

SRAV Shift Word Right Arithmetic Variable I

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32
Doubleword Shift Right Arithmetic +
32

III

DSLLV
Doubleword Shift Left Logical
Variable

III

DSRLV
Doubleword Shift Right Logical
Variable

III

DSRAV
Doubleword Shift Right Arithmetic
Variable

III
352 VR5432 Microprocessor User’s Manual

CPU Instruction Set
17.2.3 Jump and Branch Instructions

Table 17-9 Jump Instructions Jumping Within a 256 MB Reg i o

Mnemonic Description Defined in MIPS...

J Jump I

JAL Jump and Link I

Table 17-10 Jump Instructions to Absolute Address

Mnemonic Description Defined in MIPS...

JR Jump Register I

JALR Jump and Link Register I

Table 17-11 PC-Relative Conditional Branches Comparing Two Registers

Mnemonic Description
Defined in

MIPS...

BEQ Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

BGTZ Branch on Greater Than Zero I

BEQL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero Likely II

BGTZL Branch on Greater Than Zero Likely II
VR5432 Microprocessor User’s Manual 353

Chapter 17

17.2.4 Miscellaneous Instructions

17.2.4.1 Exception instructions

Exception instructions cause exceptions that will transfer control to a software
exception handler in the kernel. System Call and Breakpoint instructions cause
exceptions unconditionally. Trap instructions cause exceptions based upon the
result of a comparison.

Table 17-12 PC-Relative Conditional Branches Comparing Against Zer

Mnemonic Description
Defined in

MIPS...

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than Zero and Link I

BGEZAL Branch on Greater Than or Equal to Zero and Link I

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero Likely II

BLTZALL Branch on Less Than Zero and Link Likely II

BGEZALL
Branch on Greater Than or Equal to Zero and Link
Likely

II

Table 17-13 System Call and Breakpoint Instructions

Mnemonic Description Defined in MIPS...

SYSCALL System Call I

BREAK Breakpoint I
354 VR5432 Microprocessor User’s Manual

CPU Instruction Set

17.2.4.2 Conditional Move instructions

Instructions were added in MIPS IV to move one CPU general-purpose register to
another, based on the value in a third general-purpose register.

Table 17-14 Trap-on-Condition Instructions Comparing Two Register

Mnemonic Description Defined in MIPS...

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLT Trap if Less Than Unsigned II

TEQ Trap if Equal II

TNE Trap if Not Equal II

Table 17-15 Trap-on-Condition Instructions Comparing an Immediate

Mnemonic Description
Defined in

MIPS...

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Unsigned Immediate II

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Unsigned Immediate II

TEQI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

Table 17-16 CPU Conditional Move Instructio n

Mnemonic Description
Defined in

MIPS...

MOVN Move Conditional on Not Zero IV

MOVZ Move Conditional on Zero IV
VR5432 Microprocessor User’s Manual 355

Chapter 17
17.3 System Control Coprocessor (CP0) Instructions

There are some limitations imposed on operations involving a CP0 that is
incorporated within the CPU. Although Load and Store instructions to transfer
data to and from coprocessors and to exchange control codes to and from
coprocessor instructions are generally permitted by the MIPS architecture, CP0 is
given a somewhat protected status because it has responsibility for exception
handling and memory management. Therefore, the coprocessor transfer
instructions are the only valid way of writing to and reading from the CP0
registers.

Some CP0 instructions are defined to directly read, write, and probe TLB entries
and to change the operating modes in preparation for restoring to User mode or
interrupt-enabled states.

17.4 CPU Instructions

This section describes in detail each function of the CPU instructions in 32- or 64-
bit mode. Exceptions that may occur are listed at the end of each instruction’s
description. For details regarding CPU exceptions and exception processing, refer
to Chapter 6.
356 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

ADD rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are added to the contents of general-
purpose register rt. The result is stored in general-purpose register rd. In 64-bit
mode, the operands must be sign-extended, 32-bit values.

An Integer Overflow exception occurs if the carries-out of bits 30 and 31 differ
(two’s-complement overflow). The contents of destination register rd are not
modified when an Integer Overflow exception occurs.

Operation:

Exceptions:

Integer Overflow exception

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0
VR5432 Microprocessor User’s Manual 357

Chapter 17
Format:

ADDI rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. In 64-bit
mode, the operand must be sign-extended, 32-bit values.

An Integer Overflow exception occurs if the carries-out of bits 30 and 31 differ
(two’s-complement overflow). The contents of destination register rt are not
modified when an Integer Overflow exception occurs.

Operation:

 Exceptions:

Integer Overflow exception

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16

0 0 1 0 0 0

ADDI

32 T: GPR [rt] ← GPR[rs] +(immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ← (temp31)32 || temp31...0
358 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

ADDIU rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. No Integer
Overflow exception occurs under any circumstance. In 64-bit mode, the operand
must be sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that the
ADDIU instruction never causes an Integer Overflow exception.

Operation:

Exceptions:

None

ADDIU Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16

0 0 1 0 0 1

ADDIU

32 T: GPR [rt] ← GPR[rs] + (immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ← (temp31)32 || temp31...0
VR5432 Microprocessor User’s Manual 359

Chapter 17
Format:

ADDU rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are added to the contents of general-
purpose register rt. The result is stored in general-purpose register rd. No Integer
Overflow exception occurs under any circumstance. In 64-bit mode, the operands
must be sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that the
ADDU instruction never causes an Integer Overflow exception.

Operation:

Exceptions:

None

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

32 T: GPR[rd] ←GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0
360 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

AND rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are bitwise ANDed with the contents
of general-purpose register rt. The result is stored in general-purpose register rd.

Operation:

Exceptions:

None

ANDAND

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

32 T: GPR[rd] ← GPR[rs] and GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]
VR5432 Microprocessor User’s Manual 361

Chapter 17
Format:

ANDI rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is zero extended and bitwise ANDed with the contents of
general-purpose register rs. The result is stored in general-purpose register rt.

Operation:

 Exceptions:

None

ANDI AND Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16

0 0 1 1 0 0

ANDI

32 T: GPR[rt] ← 016 || (immediate and GPR[rs]15...0)

64 T: GPR[rt] ← 048 || (immediate and GPR[rs]15...0)
362 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BEQ rs, rt, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are equal, then the program branches
to the branch address with a delay of one instruction.

Operation:

Exceptions:

None

BEQBranch on EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16

0 0 0 1 0 0

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
 endif
64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
 endif
VR5432 Microprocessor User’s Manual 363

Chapter 17
Format:

BEQL rs, rt, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are equal, the program branches to
the branch address with a delay of one instruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

Exceptions:

None

BEQL Branch on Equal Likely

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16

0 1 0 1 0 0

BEQL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then
 PC ← PC + target

 else

 endif
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])

T+1: if condition then
 PC ← PC + target
 else

 endif
 NullifyCurrentInstruction
364 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BGEZ rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are equal to or greater than 0, then the
program branches to the branch address with a delay of one instruction.

Operation:

Exceptions:

None

BGEZor Equal to Zero

Branch on Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16

0 0 0 0 0 1 0 0 0 0 1

BGEZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)
T+1: if condition then

 PC ← PC + target
 endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)
T+1: if condition then

 PC ← PC + target
 endif
VR5432 Microprocessor User’s Manual 365

Chapter 17
Format:

BGEZAL rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay slot is stored in the
link register, r31. If the contents of general-purpose register rs are equal to or
greater than 0, then the program branches to the branch address, with a delay of
one instruction.

Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and then it may not be re-executable. An attempt to use r31 does not cause an
exception, however.

Operation:

Exceptions:

None

BGEZALor Equal to Zero and Link

Branch on Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 1

BGEZAL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 0)

T+1: if condition then
 PC ← PC + target
 endif

 GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 0)

T+1: if condition then
 PC ← PC + target
 endif

 GPR[31] ← PC + 8
366 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Format:

BGEZALL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay slot is stored in the
link register, r31. If the contents of general-purpose register rs are equal to or
greater than 0, then the program branches to the branch address, with a delay of
one instruction. When it does not branch, the instruction in the delay slot is
discarded. Usually, general-purpose register r31 should not be specified as
general-purpose register rs, because the contents of rs are overwritten by storing
the link address, and then it may not be re-executable. An attempt to use r31 does
not cause an exception, however.

Operation:

Exceptions:

None

BGEZALLor Equal to Zero
Branch on Greater ThanBGEZALL

and Link Likely

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 1

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

T+1: if condition then
 PC ← PC + target

 endif

 GPR[31] ← PC + 8

 NullifyCurrentInstruction
else

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)

T+1: if condition then
 PC ← PC + target

 endif

 GPR[31] ← PC + 8

 NullifyCurrentInstruction
else
VR5432 Microprocessor User’s Manual 367

Chapter 17
Format:

BGEZL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are equal to or greater than 0, then the
program branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

Exceptions:

None

BGEZL Than or Equal to Zero Likely
Branch on Greater

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16

0 0 0 0 0 1 0 0 0 1 1

BGEZL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 0)
T+1: if condition then

 PC ← PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 0)
T+1: if condition then

 PC ← PC + target

endif

 else
 NullifyCurrentInstruction
368 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BGTZ rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are greater than 0, then the program
branches to the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BGTZBranch on Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16

0 0 0 1 1 1 0 0 0 0 0

BGTZ

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)

T+1: if condition then
 PC ← PC + target
 endif

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)

T+1: if condition then
 PC ← PC + target
 endif
VR5432 Microprocessor User’s Manual 369

Chapter 17
Format:

BGTZL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are greater than 0, then the program
branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the delay slot is discarded.

Operation:

Exceptions:

None

BGTZL Than Zero Likely
Branch on Greater

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0

BGTZL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)
T+1: if condition then

 PC ← PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)
T+1: if condition then

 PC ← PC + target
 else
 NullifyCurrentInstruction
 endif
370 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BLEZ rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are equal to or less than 0, then the program
branches to the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BLEZBranch on Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

or Equal to Zero

0 0 0 1 1 0 0 0 0 0 0

BLEZ

32 T: target ← (offset15)14 || offset || 02

T+1: if condition then
 PC ← PC + target
 endif

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 1) and (GPR[rs] = 064)
T+1: if condition then

 PC ← PC + target
 endif

 condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
VR5432 Microprocessor User’s Manual 371

Chapter 17
Format:

BLEZL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are equal to or less than 0, then the program
branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BLEZL Branch On Less Than

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

or Equal to Zero Likely

0 1 0 1 1 0 0 0 0 0 0

BLEZL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
T+1: if condition then

 PC ← PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 1) and (GPR[rs] = 064)
T+1: if condition then

 PC ← PC + target
 else
 NullifyCurrentInstruction
 endif
372 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BLTZ rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. If the
contents of general-purpose register rs are less than 0, then the program branches
to the branch address, with a delay of one instruction.

 Operation:

Exceptions:

None

BLTZBranch on Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0

BLTZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)
T+1: if condition then

 PC ← PC + target
 endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)
T+1: if condition then

 PC ← PC + target
 endif
VR5432 Microprocessor User’s Manual 373

Chapter 17
Format:

BLTZAL rs, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the address of the instruction after the delay slot is stored in the
link register, r31. If the contents of general-purpose register rs are less than 0, then
the program branches to the branch address, with a delay of one instruction.

Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and then it is not re-executable. An attempt to use r31 does not generate an
exception, however.

Operation:

Exceptions:

None

BLTZAL Than Zero and Link
Branch on Less

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 0 0

BLTZAL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 1)

T+1: if condition then
 PC ← PC + target
 endif

 GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 1)

T+1: if condition then
 PC ← PC + target
 endif

 GPR[31] ← PC + 8
374 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BLTZALL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the instruction after the delay slot is stored in the link register,
r31. If the contents of general-purpose register rs are smaller than 0, then the
program branches to the branch address, with a delay of one instruction.
If it does not branch, the instruction in the branch delay slot is discarded.
Usually, general-purpose register r31 should not be specified as general-purpose
register rs, because the contents of rs are overwritten by storing the link address,
and then it is not re-executable. An attempt to use r31 does not cause an exception,
however.

Operation:

Exceptions:

None

BLTZALLThan Zero and Link Likely
Branch on Less

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16

0 0 0 0 0 1 1 0 0 1 0

BLTZALL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

T+1: if condition then
 PC ← PC + target

 endif

 GPR[31] ← PC + 8

 NullifyCurrentInstruction
else

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)

T+1: if condition then
 PC ← PC + target

 endif

 GPR[31] ← PC + 8

 NullifyCurrentInstruction
else
VR5432 Microprocessor User’s Manual 375

Chapter 17
Format:

BLTZL rs, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended.
Unconditionally, the instruction after the delay slot is stored in the link register,
r31. If the contents of general-purpose register rs are less than 0, then the program
branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

 Operation:

Exceptions:

None

BLTZL Branch on Less Than Zero Likely

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0

BLTZL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs]31 = 1)
T+1: if condition then

 PC ← PC + target

 endif

 else
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs]63 = 1)
T+1: if condition then

 PC ← PC + target
 else
 NullifyCurrentInstruction
 endif
376 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BNE rs, rt, offset (MIPS I format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are not equal, then the program
branches to the branch address, with a delay of one instruction.

Operation:

Exceptions:

None

BNEBranch on Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16

0 0 0 1 0 1

BNE

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif
VR5432 Microprocessor User’s Manual 377

Chapter 17
Format:

BNEL rs, rt, offset (MIPS II format)

Description:

A branch address is calculated from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted two bits left and sign extended. The
contents of general-purpose register rs and the contents of general-purpose
register rt are compared. If the two registers are not equal, then the program
branches to the branch address, with a delay of one instruction.

If it does not branch, the instruction in the branch delay slot is discarded.

Operation:

Exceptions:

None

BNEL Branch on Not Equal Likely

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16

0 1 0 1 0 1

BNEL

32 T: target ← (offset15)14 || offset || 02

 condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

 PC ← PC + target
 else

 endif
 NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

 condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

 PC ← PC + target
 else

 endif
 NullifyCurrentInstruction
378 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

BREAK (MIPS I format)

Description:

A Breakpoint exception occurs after execution of this instruction, transferring
control to the exception handler.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Breakpoint exception

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620

0 0 0 0 0 0 0 0 1 1 0 1

BREAK

32, 64T: BreakpointException
VR5432 Microprocessor User’s Manual 379

Chapter 17
Format:

CACHE op, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The virtual address is translated to a
physical address using the TLB, and the 5-bit sub-opcode specifies a cache
operation for that address.

The index operation uses part of the virtual address to specify a cache block.

For a cache of 32 KB with 32 bytes per tag, vAddr13:5 specifies the block. Bit 0 of
the virtual address is used to specify the associativity.

Index Load Tag uses vAddrLINEBITS... 3 to select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit WriteBack
Invalidate, Index WriteBack Invalidate, and Fill also use vAddrLINEBITS ... 3 to
select the doubleword that has its parity modified. This operation is performed
unconditionally.

The hit operation accesses the specified cache as normal data references and
performs the specified operation if the cache block contains valid data with the
specified physical address (a hit). If the cache block is invalid or contains a
different address (a miss), no operation is performed.

During a write-back operation, modified data in the cache (i.e., “dirty” data) is
written to main memory. The address to be written is specified by the cache tag
and not the translated physical address.

CACHE Cache Operation

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16

1 0 1 1 1 1

CACHE
380 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Bits 17...16 of the instruction specify the cache as follows:

Bits 20 to 18 (this value is listed under the Code column) of the instruction specify
the operation as follows:

Code Name Cache

 00 I Instruction

 01 D Data

10 Reserved

11 Reserved

Code Cache Name Operation

000 I
Index
Invalidate

Set the cache state of the cache block to Invalid and Unlocked.

000 D
Index
WriteBack
Invalidate

Examine the cache state of the data cache block at the index
specified by the virtual address. If the state is Dirty and not
Invalid, writes the block back to memory. The address to write
is taken from the cache tag. Set the cache state of the cache
block to Invalid. May be used to unlock a cache block.

(continued)CACHE Cache Operation CACHE
VR5432 Microprocessor User’s Manual 381

Chapter 17
Code Cache Name Operation

001 All
Index Load
Tag

Reads the tag for the cache block at the specified index and
places it into the TagLo and TagHi CP0 registers, ignoring any
parity errors. In addition, the data parity from the specified
doubleword is loaded into the PErr register.

010 I, D
Index Store
Tag

Write the tag for the cache block at the specified index from the
TagLo and TagHi CP0 registers, including the parity bit (P)
from the TagLo register.

011 D Create Dirty

This operation is used to avoid loading data needlessly from
memory when writing new contents into an entire cache block.
If the cache block does not contain the specified address and the
block is dirty, write it back to memory. In all cases, set the cache
block tag to the specified physical address and set the cache
state to Dirty.

(continued)CACHE Cache Operation CACHE
382 VR5432 Microprocessor User’s Manual

CPU Instruction Set
TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations (where the physical address is used to index the cache but need not
match the cache tag), unmapped addresses may be used to avoid TLB exceptions.
This operation never causes TLB Modified exceptions.

If CP0 is not enabled (i.e., the CP0 enable bit in the Status register is clear in User
or Supervisor mode) and this instruction is executed, a Coprocessor Unusable
exception is taken. The operation of this instruction on any operation/cache
combination not listed in the table is undefined. The operation of this instruction
on uncached addresses is also undefined.

The processor only fills the I-cache line using the cache instruction “Fill” when
the data is not stored in the cache.

Code Cache Name Operation

100 I, D
Hit
Invalidate

If the cache block contains the specified address, mark the cache
block Invalid.

101 D
Hit
WriteBack
Invalidate

If the cache block contains the specified address, write the data
back if it is dirty. In all cases, mark the cache block Invalid.

101 I Fill Fill the instruction cache block from memory.

110 D
Hit
WriteBack

If the cache block contains the specified address and its state is
Dirty, write back the data and clear the state to not Dirty.

111 D
Fetch and
Lock

This operation is used to lock a cache block. If the cache block
does not contain the specified address, fill it from memory,
writing the original block back to memory using the tag address
if the block was dirty. In all cases, set the cache block tag to the
specified physical address and set the cache state to Locked.

111 I
Fetch and
Lock

This operation is used to lock a cache block. If the cache block
does not contain the specified address, fill it from memory. In
all cases, set the cache block tag to the specified physical
address and set the cache state to Locked.

(continued)CACHE Cache Operation CACHE
VR5432 Microprocessor User’s Manual 383

Chapter 17
Operation:

Exceptions:

Coprocessor Unusable exception

(continued)CACHE Cache Operation CACHE

32, 64T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)
384 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

CFC1 rt, fs (MIPS I format)

Description:

The contents of the floating-point control register fs are loaded into general-
purpose register rt, with sign extension if the destination register is 64 bits.

This instruction is only defined when fs equals 0 or 31.

For MIPS I, MIPS II, and MIPS III, the contents of general-purpose register rt are
undefined while the instruction immediately following this Load instruction is
being executed.

Operation:

 Exceptions:

Coprocessor Unusable exception

(Coprocessor 1)CFC1

11

Move Control Word from FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC1

32 T: temp ← FCR[fs]
T+1: GPR[rt] ← temp

64 T: temp ← FCR[fs]
T+1: GPR[rt] ← (temp31)32 || temp
VR5432 Microprocessor User’s Manual 385

Chapter 17
Format:

COPz cofun (MIPS I format)

Description:

A coprocessor operation is performed. The operation may specify and reference
internal coprocessor registers, and may change the state of the coprocessor
condition line, but does not modify states within the processor, cache, or main
memory.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception (CP1 only)

Opcode Bit Encoding:

COPzCoprocessor z Operation

31 25 2426

COPz

6

0

cofun

251

CO
0 1 0 0 x x 1

COPz

32, 64T: CoprocessorOperation (z, cofun)

COPz 31 30 29 28 27 26Bit # 25 0

COP0

Coprocessor Number
Coprocessor Sub-opcodeOpcode

31 30 29 28 27 26Bit # 25 0

COP1

31 30 29 28 27 26Bit # 25 0

COP2
386 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

CTC1 rt, fs (MIPS I format)

Description:

The contents of general-purpose register rt are stored in floating-point control
register fs. This instruction is defined only if fs is 0 or 31.

If any cause bit of the Floating-Point Control/Status register (FCR31) and its
corresponding enable bit are set by writing data to FCR31, the Floating-Point
exception occurs. The data is written to the register before the exception occurs.

For MIPS I, MIPS II, and MIPS III, the contents of the Floating-Point Control
register fs are undefined while the instruction immediately following this
instruction is executed.

Operation:

CTC1

11

Move Control Word to FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC1

32 T: temp ← GPR[rt]
T+1: FCR[fs] ← temp

 COC[1] ← FCR[31]23

64 T: temp ← GPR[rt]31...0
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23
VR5432 Microprocessor User’s Manual 387

Chapter 17
Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Division by Zero exception
Inexact Operation exception
Overflow exception
Underflow exception

CTC1 Move Control Word to FPU CTC1(Coprocessor 1)

(continued)
388 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DADD rd, rs, rt (MIPS III format)

Description:

The contents of general-purpose register rs and the contents of general-purpose
register rt are added, and the result is stored in general-purpose register rd. An
Integer Overflow exception occurs if the carries-out of bits 62 and 63 differ
(two’s-complement overflow). The contents of the destination register rd are not
modified when an Integer Overflow exception occurs.

This operation is only defined for 64-bit mode and 32-bit Kernel mode. Execution
of this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

DADDDoubleword Add

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

DADD

64 T: GPR[rd] ←GPR[rs] + GPR[rt]
VR5432 Microprocessor User’s Manual 389

Chapter 17
Format:

DADDI rt, rs, immediate (MIPS III format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt. An Integer
Overflow exception occurs if the carries-out of bits 62 and 63 differ (two’s-
complement overflow). The contents of the destination register rt are not modified
when an Integer Overflow exception occurs.

This operation is only defined in 64-bit mode and 32-bit Kernel mode. Execution
of this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

DADDI Doubleword Add Immediate

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16

0 1 1 0 0 0

DADDI

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0
390 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DADDIU rt, rs, immediate (MIPS III format)

Description:

The 16-bit immediate is sign extended and added to the contents of general-
purpose register rs. The result is stored in general-purpose register rt.

This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of this instruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.

The only difference between this instruction and the DADDI instruction is that the
DADDIU instruction never causes an Integer Overflow exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DADDIUDoubleword Add

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16

0 1 1 0 0 1

DADDIU Immediate Unsigned

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0
VR5432 Microprocessor User’s Manual 391

Chapter 17

Format:

DADDU rd, rs, rt (MIPS III format)

Description:

The contents of general-purpose register rs and the contents of general-purpose
register rt are added, and the result is stored in general-purpose register rd.

This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of this instruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.

The only difference between this instruction and the DADD instruction is that the
DADDU instruction never causes an Integer Overflow exception.

Operation:

Note: Same operation in the 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DADDU Doubleword Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

DADDU

64 T: GPR[rd] ←GPR[rs] + GPR[rt]
392 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DBREAK (VR5432 format)

Description:

The DBREAK instruction forces entry into Debug mode by causing a trap to the
Debug Exception vector address (0xFFFF FFFF BFC0 1000). This instruction
may only be executed in User, Supervisor, or Kernel mode. Execution in Debug
mode results in undefined behavior.

Execution transitions to Debug mode at an instruction boundary, the program
counter (PC) is saved in the DEPC register, and execution is redirected to the 64-
bit Debug Exception vector (location 0xFFFF FFFF BFC0 1000).

Before the processor enters Debug mode, all instructions are flushed from the
pipeline and all outstanding external bus transactions are completed. There may
be a delay entering Debug mode to allow the pipeline flush and to allow all
outstanding external transactions to complete. The processor stalls during this
time.

The processor will not enter Debug mode at a branch delay slot instruction
boundary. Instead, it stops either at the Branch instruction or the target of the
branch. If a software or hardware breakpoint occurs for the branch delay slot
instruction, the breakpoint occurs at the corresponding Branch instruction. If a
single-step break is executed on a Branch instruction, both the branch and its delay
slot are executed.

If the DME bit in the Status register is not set, a Reserved Instruction exception
will occur when DBREAK is issued.

DBREAK Debug Break

31 2526

SPECIAL2

6 20

0 DBREAK

6

6 5 0

0 1 1 1 0 1 1 1 1 1 1

DBREAK
VR5432 Microprocessor User’s Manual 393

Chapter 17
Operation:

Exceptions:

Reserved Instruction exception

DBREAK Debug Break DBREAK
(Continued)

32, 64 T: DBreakOperation ()
394 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DDIV rs, rt (MIPS III format)

Description:

The contents of general-purpose register rs are divided by the contents of general-
purpose register rt, treating both operands as signed integers. An Integer Overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero.

This instruction is usually executed after additional instructions to check for a zero
divisor and for overflow.

When the operation completes, the quotient word of the doubleword result is
stored in special register LO, and the remainder word of the doubleword result is
stored in special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DDIV instruction.

This operation is only defined in 64-bit mode and 32-bit Kernel mode. Execution
in 32-bit User or Supervisor mode causes a Reserved Instruction exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DDIVDoubleword Divide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

DDIV

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

64

HI ← GPR[rs] mod GPR[rt]
VR5432 Microprocessor User’s Manual 395

Chapter 17
Format:

DDIVU rs, rt (MIPS III format)

Description:

The contents of general-purpose register rs are divided by the contents of general-
purpose register rt, treating both operands as unsigned integers. An Integer
Overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero.

This instruction is usually executed after instructions to check for a zero divisor.

When the operation completes, the quotient (doubleword) is stored into special
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain correct results, insert two or more
instructions between MFHI or MFLO and the DDIVU instruction.

This operation is only defined for the VR5432 operating in 64-bit mode and in 32-
bit Kernel mode. Execution of this instruction in 32-bit User or Supervisor mode
causes a Reserved Instruction exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DDIVU Doubleword Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

DDIVU

← undefined
← undefined
← undefined

← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

64

HI
396 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DIV rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are divided by the contents of general-
purpose register rt, treating both operands as signed integers. An Overflow
exception never occurs, and the result of this operation is undefined when the
divisor is zero. In 64-bit mode, the result must be sign-extended, 32-bit values.

This instruction is usually executed after instructions to check for a zero divisor
and for overflow

When the operation completes, the quotient (doubleword) is stored into special
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DIV instructions.

DIVDivide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

DIV
VR5432 Microprocessor User’s Manual 397

Chapter 17
Operation:

 Exceptions:

None

(continued)DIV Divide DIV

← undefined
← undefined
← undefined

HI ← GPR[rs] mod GPR[rt]

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← GPR[rs]31...0 div GPR[rt]31...0

HI
T–1: LO

HI

LO ← (q31)32 || q31...0
HI ← (r31)32 || r31...0

r ← GPR[rs]31...0 mod GPR[rt]31...0

32

64
398 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DIVU rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are divided by the contents of general-
purpose register rt, treating both operands as unsigned integers. An Integer
Overflow exception never occurs, and the result of this operation is undefined
when the divisor is zero. In 64-bit mode, the result must be sign-extended, 32-bit
values.

This instruction is usually executed after instructions to check for a zero divisor.

When the operation completes, the quotient (doubleword) is stored into special
register LO and the remainder (doubleword) is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. To obtain correct results, insert two or more additional
instructions between MFHI or MFLO and the DIVU instruction.

DIVU Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

DIVU
VR5432 Microprocessor User’s Manual 399

Chapter 17
Operation:

Exceptions:

None

(continued)DIVU Divide Unsigned DIVU

← undefined
← undefined
← undefined

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← (0 || GPR[rs]31...0) div (0 || GPR[rt]31...0)

HI
T–1: LO

HI

LO ← (q31)32 || q31...0

HI ← (r31)32 || r31...0

r ← (0 || GPR[rs]31...0) mod (0 || GPR[rt]31...0)

32

64
400 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DMFC0 rt, rd (MIPS III format)

Description:

The contents of coprocessor register rd of CP0 are stored in general-purpose
register rt.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

The contents of the source coprocessor register rd are written to the 64-bit
destination general-purpose register rt. The operation of a DMFC0 instruction on
a 32-bit register of CP0 is undefined.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception (64-/32-bit User mode and Supervisor mode if
CP0 is disabled)

Reserved Instruction exception (32-bit User or Supervisor mode)

DMFC0 Doubleword Move from

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC0

64 T: data ←CPR[0,rd]

T+1: GPR[rt] ← data
VR5432 Microprocessor User’s Manual 401

Chapter 17
Format:

DMTC0 rt, rd (MIPS III format)

Description:

The contents of general-purpose register rt are loaded into coprocessor register rd
of CP0.

This operation is defined in 64-bit mode or in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

The contents of the source general-purpose register rd are written to the 64-bit
destination coprocessor register rt. The operation of a DMTC0 instruction on a 32-
bit register of CP0 is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of Load instructions, Store instructions, and TLB
operations for the instructions immediately before and after this instruction are
undefined.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception (64-/32-bit User and Supervisor mode if CP0 is
disabled)

Reserved Instruction exception (32-bit User or Supervisor mode)

DMTC0 Doubleword Move to

31 2526 2021 1516 0

COP0 DMT 0

6 5 5 16

System Control Coprocessor

010000

DMTC0

00101 rt rd 00000000000

64 T: data ← GPR[rt]

T+1: CPR[0, rd] ← data
402 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Format:

DMULT rs, rt (MIPS III format)

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both
operands as signed integers. An Integer Overflow exception never occurs.

When the operation completes, the low-order doubleword is stored into special
register LO and the high-order doubleword is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. To obtain correct results, insert two or more other
instructions between MFHI or MFLO and the DMULT instruction.

This operation is only defined in 64-bit mode and in 32-bit Kernel mode.
Execution of this instruction in 32-bit User or Supervisor mode causes a Reserved
Instruction exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DMULT Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

DMULT

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t63...0
H I ← t127...64
VR5432 Microprocessor User’s Manual 403

Chapter 17
Format:

DMULTU rs, rt (MIPS III format)

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both
operands as unsigned integers. An Overflow exception never occurs.

When the operation completes, the low-order doubleword is stored into special
register LO, and the high-order doubleword is stored into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. To obtain correct results, insert two or more other
instructions between MFHI or MFLO and the DMULTU instruction.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DMULTU
Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

DMULTU Unsigned

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t63...0
HI ←t127...64
404 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DRET (VR5432 format)

Description:

The DRET instruction returns from Debug mode to the mode in effect (User,
Supervisor, or Kernel mode) when the last debug break event has occurred.
Control is passed to the instruction pointed to by the Debug Exception PC (DEPC)
register. Unlike most jumps and branches, the execution of which also executes
the next instruction (the one in the delay slot), DRET does not execute a delay slot
instruction. The DRET instruction must not be placed in a branch delay slot.

Operation:

Exceptions:

None

DRET Debug Return

31 2526

SPECIAL2

6 20

0 DRET

6

6 5 0

0 1 1 1 0 1 1 1 1 1 0

DRET

32, 64 T: DRetOperation ()
VR5432 Microprocessor User’s Manual 405

Chapter 17
Format:

DROR rd, rt, sa (VR5432 format)

Description:

The contents of general-purpose register rt are rotated right by sa bits, and the
result is stored in general-purpose register rd.

Operation:

Exceptions:

None

DRORDoubleword Rotate Right

31 2526 2021 1516

SPECIAL 1 rt

6 5 5

rd sa DROR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DROR

0 0 0 0 1

32, 64T: GPR[rd] ← GPR[rt]sa-1...0 || GPR[rt]63...sa
406 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DROR32 rd, rt, sa (VR5432 format)

Description:

The contents of general-purpose register rt are rotated right by sa + 32 bits, and
the result is stored in general-purpose register rd.

Operation:

Exceptions:

None

DROR32Doubleword Rotate

31 2526 2021 1516

SPECIAL 1 rt

6 5 5

rd sa DROR32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DROR32

0 0 0 0 1

Right Plus 32

32, 64T: s = sa + 32

GPR[rd] ← GPR[rt]s-1...0 || GPR[rt]63...s
VR5432 Microprocessor User’s Manual 407

Chapter 17
Format:

DRORV rd, rt, rs (VR5432 format)

Description:

The contents of general-purpose register rt are rotated right by the number of bits
specified by the low-order five bits of general-purpose register rs. The result is
stored in general-purpose register rd.

Operation:

Exceptions:

None

DRORV Doubleword Rotate

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 1 DRORV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

DRORVRight Variable

32, 64T: s ← GPR[rs]4...0

GPR[rd] ← GPR[rt]s-1...0 || GPR[rt]63...s
408 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSLL rd, rt, sa (MIPS III format)

Description:

The contents of general-purpose register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSLLDoubleword Shift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 0

DSLL

0 0 0 0 0

64 T: s ← 0 || sa

GPR[rd] ← GPR[rt](63–s)...0 || 0s
VR5432 Microprocessor User’s Manual 409

Chapter 17
Format:

DSLLV rd, rt, rs (MIPS III format)

Description:

The contents of general-purpose register rt are shifted left by the number of bits
specified by the low-order six bits contained in general-purpose register rs,
inserting zeros into the low-order bits. The result is stored in general-purpose
register rd.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSLLV Doubleword Shift Left

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0

DSLLVLogical Variable

64 T: s ← GPR[rs]5...0

GPR[rd]← GPR[rt](63–s)...0 || 0s
410 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSLL32 rd, rt, sa (MIPS III format)

Description:

The contents of general-purpose register rt are shifted left by 32 + sa bits, inserting
zeros into the low-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSLL32 Doubleword Shift Left

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0

DSLL32Logical Plus 32

0
0 0 0 0 0

64 T: s ← 1 || sa

GPR[rd]← GPR[rt](63–s)...0 || 0s
VR5432 Microprocessor User’s Manual 411

Chapter 17
Format:

DSRA rd, rt, sa (MIPS III format)

Description:

The contents of general-purpose register rt are shifted right by sa bits, sign
extending the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSRADoubleword

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

DSRA Shift Right Arithmetic

64 T: s ← 0 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s
412 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSRAV rd, rt, rs (MIPS III format)

Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general-purpose register rs, sign extending
the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSRAV
Doubleword Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

DSRAVArithmetic Variable

64 T: s ← GPR[rs]5...0

GPR[rd] ← (GPR[rt]63)s || GPR[rt]63...s
VR5432 Microprocessor User’s Manual 413

Chapter 17
Format:

DSRA32 rd, rt, sa (MIPS III format)

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits, sign
extending the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

 Exceptions:

Reserved Instruction exception

DSRA32Doubleword Shift Right

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

DSRA32 Arithmetic Plus 32

64 T: s ←1 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s
414 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSRL rd, rt, sa (MIPS III format)

Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and in 32-bit Kernel mode. Execution of
this instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSRLDoubleword

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DSRL

0
0 0 0 0 0

Shift Right Logical

64 T: s ← 0 || sa

GPR[rd] ← 0s || GPR[rt]63...
VR5432 Microprocessor User’s Manual 415

Chapter 17
Format:

DSRLV rd, rt, rs (MIPS III format)

Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order six bits of general-purpose register rs, inserting zeros
into the high-order bits. The result is stored in general-purpose register rd.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSRLV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

DSRLVLogical Variable

rs

64 T: s ← GPR[rs]5...0

GPR[rd] ← 0s || GPR[rt]63...s
416 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSRL32 rd, rt, sa

Description:

The contents of general-purpose register rt are shifted right by 32 + sa bits,
inserting zeros into the high-order bits. The result is stored in general-purpose
register rd.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSRL32Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DSRL32 Logical Plus 32

0
0 0 0 0 0

64 T: s ← 1 || sa

GPR[rd] ← 0s || GPR[rt]63...s
VR5432 Microprocessor User’s Manual 417

Chapter 17
Format:

DSUB rd, rs, rt (MIPS III format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs, and the result is stored in general-purpose register rd.

An Integer Overflow exception takes place if the carries-out of bits 62 and 63
differ (a two’s-complement overflow). The contents of destination register rd are
not modified when an Integer Overflow exception occurs.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Integer Overflow exception
Reserved Instruction exception

DSUB DSUBDoubleword Subtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

64 T: GPR[rd] ← GPR[rs] – GPR[rt]
418 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

DSUBU rd, rs, rt (MIPS III format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs, and the result is stored in general-purpose register rd.

The only difference between this instruction and the DSUB instruction is that the
DSUBU instruction never causes an Integer Overflow exception.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Reserved Instruction exception

DSUBU Doubleword Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

DSUBUDSUBU

64 T: GPR[rd] ← GPR[rs] – GPR[rt]
VR5432 Microprocessor User’s Manual 419

Chapter 17
Format:

ERET (MIPS III format)

Description:

ERET is for returning from an interrupt, exception, or error exception. Unlike a
Branch or Jump instruction, ERET does not execute a delay slot instruction.

The ERET instruction must not itself be placed in a branch delay slot.

If the ERL bit of the Status register is set (SR2 = 1), load the contents of the
ErrorEPC register to the PC and clear the ERL bit to zero. Otherwise (SR2 = 0),
load the PC from the EPC, and clear the EXL bit of the Status register to zero
(SR1 = 0).

An ERET instruction executed between an LL instruction and an SC instruction
causes the SC instruction to fail, since the ERET instruction clears the LL bit to
zero.

Operation:

Exceptions:

Coprocessor Unusable exception

ERETReturn from Exception

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET

32, 64 T: if SR2 = 1 then
 PC ← ErrorEPC

SR ← SR31...3 || 0 || SR1...0
else

PC ← EPC
SR ← SR31...2 || 0 || SR0

endif
LLbit ← 0
420 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

J target (MIPS I format)

Description:

The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calculate the target address. The program
unconditionally jumps to this calculated address with a delay of one instruction.

Because instructions must be word aligned, a J instruction must specify an address
where the low-order two bits are zero. If these low-order two bits are not zero, an
Address Error exception will occur when the Jump target instruction is fetched.

Operation:

Exceptions:

Address Error exception

J Jump

31 2526

J

6

0

target

26

0 0 0 0 1 0

J

32 T: temp ← target
T+1: PC ← PC31...28 || temp || 02

64 T: temp ← target
T+1: PC ← PC63...28 || temp || 02
VR5432 Microprocessor User’s Manual 421

Chapter 17
Format:

JAL target (MIPS I format)

Description:

The 26-bit target is shifted left two bits and combined with the high-order four bits
of the address of the delay slot to calculate the address. The program
unconditionally jumps to this calculated address with a delay of one instruction.
The address of the instruction after the delay slot is placed in the link register, r31.

Because instructions must be word aligned, a JAL instruction must specify an
address where the low-order two bits are zero. If these low-order two bits are not
zero, an Address Error exception will occur when the Jump target instruction is
fetched.

Operation:

Exceptions:

Address Error exception

JAL Jump and Link

31 2526

JAL

6

0

target

26

0 0 0 0 1 1

JAL

GPR[31] ← PC + 8

32 T: temp ← target

T+1: PC ← PC 31...28 || temp || 02

GPR[31] ← PC + 8

64 T: temp ← target

T+1: PC ← PC 63...28 || temp || 02
422 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

JALR rs (MIPS I format, rd = 31 implied)
JALR rd, rs (MIPS I format)

Description:

The program unconditionally jumps to the address contained in general-purpose
register rs, with a delay of one instruction. The address of the instruction after the
delay slot is stored in general-purpose register rd. The default value of rd, if
omitted in the assembly language instruction, is 31.

Register numbers rs and rd should not be equal, because such an instruction does
not have the same effect when re-executed. If they are equal, the contents of rs are
destroyed by storing a link address. However, if an attempt is made to execute this
instruction, an exception will not occur, and the result of executing such an
instruction is undefined.

Because instructions must be word aligned, a JALR instruction must specify a
target register (rs) that contains an address where the low-order two bits are zero.
If these low-order two bits are not zero, an Address Error exception will occur
when the Jump target instruction is fetched.

Operation:

Exceptions:

Address Error exception

JALR Jump and Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

32, 64 T: temp ← GPR [rs]
GPR[rd] ← PC + 8

T+1: PC ← temp
VR5432 Microprocessor User’s Manual 423

Chapter 17
Format:

JR rs (MIPS I format)

Description:

The program unconditionally jumps to the address contained in general-purpose
register rs, with a delay of one instruction.

Because instructions must be word aligned, a JR instruction must specify a target
register (rs) that contains an address where the low-order two bits are zero. If these
low-order two bits are not zero, an Address Error exception will occur when the
Jump target instruction is fetched.

Operation:

Exceptions:

Address Error exception

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6

0 1 0 0 0

JR

32, 64 T: temp ← GPR[rs]

T+1: PC ← temp
424 VR5432 Microprocessor User’s Manual

CPU Instruction Set

Format:

LB rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the byte at the memory
location specified by the address are sign extended and loaded into general-
purpose register rt.

Operation:

 Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16

1 0 0 0 0 0

LB

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)24 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)56 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

32

64
VR5432 Microprocessor User’s Manual 425

Chapter 17
Format:

LBU rt, offset(base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the byte at the memory
location specified by the address are zero extended and loaded into general-
purpose register rt.

Operation:

Exceptions:

TLB Miss exception TLB Invalid exception
Bus Error exception Address Error exception

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16

1 0 0 1 0 0

LBU

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 024 || mem7+8* byte...8* byte

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 056 || mem7+8* byte...8* byte

32

64
426 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LD rt, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the 64-bit doubleword at
the memory location specified by the address are loaded into general-purpose
register rt.

If any of the low-order three bits of the address are not zero, an Address Error
exception occurs.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

LDLoad Doubleword

31 2526 2021 1516 0

LD base rt offset

6 5 5 16

1 1 0 1 1 1

LD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← mem
VR5432 Microprocessor User’s Manual 427

Chapter 17
Format:

LDCz rt, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The processor loads a doubleword from the
addressed memory location to CPz. The manner in which each coprocessor uses
the data is defined by the individual coprocessor specifications.

If any of the low-order three bits of the address are not zero, an Address Error
exception takes place.

This instruction is not valid for use with CP0.

When CP1 is specified, the FR bit of the Status register equals zero and the least-
significant bit in the rt field is not zero; the operation of the instruction is
undefined. If the FR bit equals one, an odd or even register is specified by rt.

LDCz Load Doubleword to Coprocessor z

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16

1 1 0 1 x x

LDCz
428 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

(continued)LDCz Load Doubleword to Coprocessor z LDCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

COPzLD (rt, mem)

LDCz 31 30 29 28 27 26Bit # 0

LDC1

Coprocessor NumberOpcode

31 30 29 28 27 26Bit # 0

LDC2
VR5432 Microprocessor User’s Manual 429

Chapter 17
Format:

 LDL rt, offset (base) (MIPS III format)

Description:

This instruction is used in combination with the LDR instruction to load the
doubleword data in the memory that is not at the word boundary to general-
purpose register rt. The LDL instruction loads the higher portion of the data to the
register, while the LDR instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the
doubleword data in the memory where the most-significant byte is specified by the
generated address, only the data at the same word boundary as the target address
is loaded and stored to the higher portion of general-purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytes to be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the most-significant byte
position of general-purpose register rt. If there is data of the low-order byte that
follows the same doubleword boundary, the operation to store this data to the next
byte of general-purpose register rt is repeated. The remaining low-order byte is
not affected.

LDL Load Doubleword Left

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16

0 1 1 0 1 0

LDL

address 0
address 8

Memory
Register

LDL $24,3($0)

$24

(Big Endian)

Before

After

10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

$243 4 5 6 7 F G H

loading

loading
430 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The contents of general-purpose register rt are internally bypassed within the
processor, so that no NOP instruction is needed between an immediately
preceding Load instruction that targets general-purpose register rt and a
subsequent LDL (or LDR) instruction.

The Address Error exception does not occur even if the specified address is not at
the doubleword boundary.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)LDL Load Doubleword Left LDL

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

if BigEndianMem = 0 then

 pAddr ← pAddrPSIZE–1...3 || 0
3

endif

byte ← vAddr2...0 xor BigEndianCPU3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
 GPR[rt] ← mem7+8*byte...0 || GPR[rt]55–8*byte...0
VR5432 Microprocessor User’s Manual 431

Chapter 17
The relationship between the address given to the LDL instruction and the result
(bytes for registers) is shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

(continued)LDL Load Doubleword Left LDL

LDL
A C DBRegister

I K LJMemory

E G H

M O PN

F

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G H 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

BigEndianCPU = 0

vAddr2...0 Destination DestinationType Type

OffsetOffset

BigEndianCPU = 1

LEM BEM LEM BEM
432 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

(continued)LDL Load Doubleword Left LDL
VR5432 Microprocessor User’s Manual 433

Chapter 17

Format:

LDR rt, offset (base) (MIPS III format)

Description:

This instruction is combined with the LDL instruction to load the word data in the
memory that is not at the word boundary to general-purpose register rt. The LDL
instruction loads the higher portion of the data to the register, while the LDR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the word
data in memory where the least-significant byte is specified by the generated
address, only the data at the same doubleword boundary as the target address is
loaded and stored to the lower portion of general-purpose register rt. The
remaining portion of the register is not affected. Depending on the address
specified, the number of bytes to be loaded changes from 1 to 8.

In other words, first the addressed byte is stored to the least-significant byte
position of general-purpose register rt. If there is data of the high-order byte that
follows the same doubleword boundary, the operation to store this data to the next
byte of general-purpose register rt is repeated. The remaining high-order byte is
not affected.

LDRLoad Doubleword Right

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

LDR

A

LDR $24,4($0)

After

address 0
address 8

Register

$24

(Big Endian)

Before
10 2 3 4 5 6 7
98 10 11 12 13 14 15

B C D E F G H

A $24B C 0 1 2 3 4

Memory

loading

loading
434 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The contents of general-purpose register rt are bypassed within the processor so
that no NOP instruction is needed between an immediately preceding Load
instruction that targets general-purpose register rt and a subsequent LDR (or LDL)
instruction.

The Address Error exception does not occur even if the specified address is not
located at the doubleword boundary.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)
LDRLoad Doubleword RightLDR

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddr31...3 || 0
3

endif
byte ← vAddr2...0 xor BigEndianCPU3

mem ← LoadMemory (uncached, DOUBLEWORD - byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt]63...64-8*byte || mem63...8*byte
VR5432 Microprocessor User’s Manual 435

Chapter 17
The relationship between the address given to the LDR instruction and the result
(bytes for registers) is shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

(continued) LDRLoad Doubleword RightLDR

LDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

BigEndianCPU = 0

vAddr2..0 Destination DestinationType Type
OffsetOffset

BigEndianCPU = 1

LEM BEM LEM BEM
436 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

(continued) LDRLoad Doubleword RightLDR
VR5432 Microprocessor User’s Manual 437

Chapter 17
Format:

LH rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the halfword at the memory
location specified by the address are sign extended and loaded into general-
purpose register rt.

If the least-significant bit of the address is not zero, an Address Error exception
occurs.

Operation:

 Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16

1 0 0 0 0 1

LH

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 byte ← vAddr2...0 xor (BigEndianCP 2 || 0)
 GPR[rt] ← (mem15+8*byte)16 || mem15+8*byte...8* byte

 pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

 byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
 GPR[rt] ← (mem15+8*byte)16 || mem15+8*byte...8* byte
438 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LHU rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the halfword at the memory
location specified by the address are zero extended and loaded into general-
purpose register rt.

If the least-significant bit of the address is not zero, an Address Error exception
occurs.

Operation:

Exceptions:

TLB Miss exception TLB Invalid exception
Bus Error exception Address Error exception

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16

1 0 0 1 0 1

LHU

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
 byte ← vAddr2...0 xor (BigEndianCPU2 || 0)

GPR[rt] ← 016 || mem15+8*byte...8*byte

 pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
 byte ← vAddr2...0 xor (BigEndianCPU2 || 0)

GPR[rt] ← 048 || mem15+8*byte...8*byte

 pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
VR5432 Microprocessor User’s Manual 439

Chapter 17
Format:

LL rt, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general-purpose register rt. In 64-
bit mode, the loaded word is sign extended. In addition, the specified physical
address of the memory is stored in the LLAddr register, and sets the LL bit to 1.
Afterward, the processor checks whether the address stored in the LLAddr register
has been rewritten by the other processors or devices.

This instruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities; however, the VR5432 does not implement
these facilities.

Load Linked (LL) and Store Conditional (SC) instructions can be used to update
memory atomically:

This atomically increments the word addressed by T0. Changing the ADD
instruction to an OR instruction changes this to an atomic bit set.

This instruction is available in User mode; it is not necessary to enable CP0.

LL Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16

1 1 0 0 0 0

LL

L1:
LL T1, (T0)
ADD T2, T1, 1
SC T2, (T0)
BEQ T2, 0, L1
NOP
440 VR5432 Microprocessor User’s Manual

CPU Instruction Set
If the specified address is in the noncache area, the operation of the LL instruction
is undefined. A cache miss that occurs between the LL and SC instructions hinders
execution of the SC instruction. Usually, therefore, one should not use a Load or
Store instruction between the LL and SC instructions. Otherwise, the operation of
the SC instruction is not guaranteed. If an exception frequently occurs, the
exception also hinders execution of the SC instruction. It is therefore necessary to
disable the exception temporarily.

If either of the low-order two bits of the address is not zero, an Address Error
exception takes place.

Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

(continued)LL Load Linked LL

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
GPR[rt] ← mem31+8*byte...8*byte
LLbit ← 1
LLAddr ← pAddr

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte...8*byte
LLbit ← 1
LLAddr ← pAddr

VR5432 Microprocessor User’s Manual 441

Chapter 17
Format:

LLD rt, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the doubleword at the
memory location specified by the address are loaded into general-purpose register
rt. In addition, the specified physical address of the memory is stored in the
LLAddr register, and sets the LL bit to 1. Afterward, the processor checks whether
the address stored in the LLAddr register has been rewritten by the other
processors or devices.

This instruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities; the VR5432 does not implement these
facilities.

The Load Linked Doubleword (LLD) instruction and the Store Conditional
Doubleword (SCD) instruction can be used to update the memory atomically:

This atomically increments the doubleword addressed by T0. Changing the
DADD instruction to an OR instruction changes this to an atomic bit set.

LLD Load Linked Doubleword

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16

1 1 0 1 0 0

LLD

L1:
LL T1, (T0)
DADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP
442 VR5432 Microprocessor User’s Manual

CPU Instruction Set
If the specified address is in a noncache area, the operation of the LLD instruction
is undefined. If a data cache miss occurs between the LLD and SCD instructions,
the operation of the SCD instruction is not guaranteed. Therefore, do not use a
Load or Store instruction between the LLD and SCD instructions. An exception
also causes the operation of the SCD instruction to not be guaranteed, so it is
necessary to disable exceptions temporarily.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

(continued)LLD Load Linked Doubleword LLD

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

 GPR[rt] ← mem
 LLbit ← 1

LLAddr ← pAddr

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

 GPR[rt] ← mem
 LLbit ← 1

LLAddr ← pAddr
VR5432 Microprocessor User’s Manual 443

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

(continued)LLD Load Linked Doubleword LLD
444 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LUI rt, immediate (MIPS I format)

Description:

The 16-bit immediate is shifted left 16 bits and extended on the right with 16 bits
of zeros. The result is placed into general-purpose register rt. In 64-bit mode, the
32-bit result is sign extended to 64 bits.

Operation:

Exceptions:

None

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16

0 0 1 1 1 1

LUI

0
0 0 0 0 0

32 T: GPR[rt] ← immediate || 016

64 T: GPR[rt] ← (immediate15)32 || immediate || 016
VR5432 Microprocessor User’s Manual 445

Chapter 17
Format:

LW rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general-purpose register rt. In 64-
bit mode, the loaded word is sign extended to 64 bits.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

Operation:

 Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16

1 0 0 0 1 1

LW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ← mem

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ← mem
446 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LWCz rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The processor loads a word at the addressed
memory location to general-purpose register rt of CPz. The manner in which each
coprocessor uses the data is defined by the individual coprocessor specifications.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

This instruction is not valid for use with CP0.

LWCz Load Word to Coprocessor z

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16

1 1 0 0 x x*

LWCz
VR5432 Microprocessor User’s Manual 447

Chapter 17
Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

(continued)LWCz Load Word to Coprocessor z LWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

LWCz 31 30 29 28 27 26Bit # 0

LWC1

Coprocessor NumberOpcode

31 30 29 28 27 26Bit # 0

LWC2
448 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LWL rt, offset (base) (MIPS I format)

Description:

This instruction is combined with the LWR instruction to load word data in
memory that is not at a word boundary to general-purpose register rt. The LWL
instruction loads the higher portion of the data to the register, while the LWR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory where the most-significant byte is specified by the generated
address, only the data at the same word boundary as the target address is loaded
and stored to the higher portion of general-purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytes to be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the most-significant byte
position of general-purpose register rt. If there is data of the high-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general-purpose register rt is repeated.

The remaining higher byte is not affected.

LWL Load Word Left

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16

1 0 0 0 1 0

LWL

address 0
address 4

0 1 2 3
4 5 6 7

Memory

A B C D

Register

$24

(Big Endian)

Before

After
1 2 3 D $24

LWL $24,1($0)

loading

loading
VR5432 Microprocessor User’s Manual 449

Chapter 17
The contents of general-purpose register rt are bypassed within the processor, so
that no NOP instruction is needed between an immediately preceding Load
instruction that targets general-purpose register rt and a subsequent LWL (or
LWR) instruction.

The Address Error Exception does not occur, even if the specified address is not
located at the word boundary.

Operation:

(continued)LWL Load Word Left LWL

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE–1...2 || 0
2

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7 || GPR[rt]23-8*byte...0
GRP[rt] ← temp

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE–1...2|| 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7 || GPR[rt]23-8*byte...0
GPR[rt] ← (temp31)32 || temp
450 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The relationship between the address given to the LWL instruction and the result
(bytes for registers) is shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

S: Sign extension of destination bit 31

LWL LWL(continued)

Load Word Left

LWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

BigEndianCPU = 0

vAddr2...0 Destination DestinationType Type
OffsetOffset

BigEndianCPU = 1

LEM BEM LEM BEM
VR5432 Microprocessor User’s Manual 451

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LWL LWL(continued)

Load Word Left
452 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LWR rt, offset (base) (MIPS I format)

Description:

This instruction is combined with the LWL instruction to load the word data in the
memory that is not at the word boundary to general-purpose register rt. The LWL
instruction loads the higher portion of the data to the register, while the LWR
instruction loads the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address that can specify any byte. Of the word
data in the memory where the least-significant byte is specified by the generated
address, only the data at the same word boundary as the target address is loaded
and stored to the lower portion of general-purpose register rt. The remaining
portion of the register is not affected. Depending on the address specified, the
number of bytes to be loaded changes from 1 to 4.

In other words, first the addressed byte is stored to the least-significant byte
position of general-purpose register rt. If there is data of the high-order byte that
follows the same word boundary, the operation to store this data to the next byte
of general-purpose register rt is repeated.

The remaining high-order byte is not affected.

LWRLoad Word Right

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16

1 0 0 1 1 0

LWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

Register

LWR $24,4($0)

$24

Memory
(Big Endian)

Before

After
A B C 4 $24

loading

loading
VR5432 Microprocessor User’s Manual 453

Chapter 17
The contents of general-purpose register rt are bypassed within the processor, so
that no NOP instruction is needed between an immediately preceding Load
instruction that targets general-purpose register rt and a following LDL (or LWR)
instruction.

The Address Error exception does not occur even if the specified address is not
located at the word boundary.

Operation:

(continued) LWRLoad Word RightLWR

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddrPSIZE–31...3 || 0
3

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem31...32-8*byte...0 || mem31+32*word-32*word+8*byte
GPR[rt] ← temp

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr ← pAddrPSIZE–31...3 || 0
3

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem31...32-8*byte...0 || mem31+32*word-32*word+8*byte
GPR[rt] ← (temp31)32 || temp
454 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The relationship between the address given to the LWR instruction and the result
(bytes for registers) is shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)
OffsetpAddr2...0 Output to memory
LEMLittle-endian memory (BigEndianMem = 0)
BEMBig-endian memory (BigEndianMem = 1)

S: Sign extension of destination bit 31

X: Not affected

LWRLWR (continued)
Load Word Right

LWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S M N O P 3 0 4 X X X X E F G I 0 7 0
1 X X X X E M N O 2 1 4 X X X X E F I J 1 6 0
2 X X X X E F M N 1 2 4 X X X X E I J K 2 5 0
3 X X X X E F G M 0 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 3 4 0 X X X X E F G M 0 3 4
5 X X X X E I J K 2 5 0 X X X X E F M N 1 2 4
6 X X X X E F I J 1 6 0 X X X X E M N O 2 1 4
7 X X X X E F G I 0 7 0 S S S S M N O P 3 0 4

BigEndianCPU = 0

vAddr2...0 Destination DestinationType Type
OffsetOffset

BigEndianCPU = 1

LEM BEM LEM BEM
VR5432 Microprocessor User’s Manual 455

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LWRLWR (continued)
Load Word Right
456 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

LWU rt, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of the general-purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the address are loaded into general-purpose register rt. The
loaded word is zero-extended in 64-bit mode.

If either of the low-order two bits of the effective address is not zero, an Address
Error exception occurs.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

LWULoad Word Unsigned

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16

1 0 1 1 1 1

LWU

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

 GPR[rt] ← mem

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
 GPR[rt] ← 032 || mem
VR5432 Microprocessor User’s Manual 457

Chapter 17

Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

(continued) LWULoad Word UnsignedLWU
458 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MACC rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is added to the signed contents of the 64-bit accumulator formed by the least-
significant 32 bits of the HI and LO registers. A copy of the least-significant 32
bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACC instruction.

Operation:

Exceptions:

None

MACC Multiply, Accumulate,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MACC

6 5 5 11

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0

MACCand Move LO

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...0) + (GPR[rs] * GPR[rt]))31..0
VR5432 Microprocessor User’s Manual 459

Chapter 17
Format:

MACCHI rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is added to the signed contents of the 64-bit accumulator formed by the least-
significant 32 bits of the HI and LO registers. A copy of the most-significant 32
bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCHI instruction.

Operation:

Exceptions:

None

MACCHI Multiply, Accumulate,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MACCHI

6 5 5 11

0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0

MACCHIand Move HI

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...0) + (GPR[rs] * GPR[rt]))63..32
460 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MACCHIU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied, and the
product is added to the unsigned contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the most-significant
32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCHIU instruction.

Operation:

Exceptions:

None

MACCHIU Unsigned Multiply,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MACCHIU

6 5 5 11

0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1

MACCHIUAccumulate,
and Move HI

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...0) + (GPR[rs] * GPR[rt]))63..32
VR5432 Microprocessor User’s Manual 461

Chapter 17
Format:

MACCU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied, and the
product is added to the unsigned contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the least-significant
32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MACCU instruction.

Operation:

Exceptions:

None

MACCU Unsigned Multiply,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MACCU

6 5 5 11

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1

MACCUAccumulate, and Move LO

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) + (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...0) + (GPR[rs] * GPR[rt]))31..0
462 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MFC0 rt, rd (MIPS I format)

Description:

The contents of general-purpose register rd of the CP0 are loaded into general-
purpose register rt.

Operation:

 Exceptions:

Coprocessor Unusable exception (64-/32-bit User and Supervisor mode if CP0 is
disabled)

MFC0 Move from

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0

MFC0

32 T: data ← CPR[0,rd]

T+1: GPR[rt] ← data

64 T: data ← CPR[0,rd]

T+1: GPR[rt] ← (data31)32 || data31...0
VR5432 Microprocessor User’s Manual 463

Chapter 17
Format:

MFCz rt, rd (MIPS I format)

Description:

The contents of general-purpose register rd of CPz are loaded into general-
purpose register rt.

Operation:

 Exceptions:

Coprocessor Unusable exception

MFCz

11

Move from Coprocessor z

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFCz

32 T: data ← CPR[z,rd]

T+1: GPR[rt] ← data

64 T: if rd0 = 0 then

data ← CPR[z, rd4...1 || 0]31...0

else

data ← CPR[z, rd4...1 || 0]63...32

endif

T+1: GPR[rt] ← (data31)32 || data
464 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Opcode Bit Encoding:

(continued)MFCz MFCz
Move from Coprocessor z

MFCz 31 30 29 28 27 26Bit # 25 0

MFC0

24 23 22 21

Coprocessor Number
Coprocessor Sub-opcodeOpcode

31 30 29 28 27 26Bit # 25 0

MFC1

24 23 22 21

31 30 29 28 27 26Bit # 25 0

MFC2

24 23 22 21
VR5432 Microprocessor User’s Manual 465

Chapter 17
Format:

MFDR rt, dr (VR5432 format)

Description:

The contents of debug register dr are loaded into general-purpose register rt.

Operation:

 Exceptions:

None

MFDR Move from

dr

11 10

5

31 2526 2021 1516 0

SPECIAL2 MFDR rt Debug Move

6 5 5

Debug Register

0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1

MFDR

0
0 0 0 0 0

6 5

5 6

32, 64T: GPR[rt] ← DEBUG[dr]
466 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MFHI rd (MIPS I format)

Description:

The contents of special register HI are loaded into general-purpose register rd.

To ensure proper operation in the event of interrupts, the two instructions that
follow an MFHI instruction may not be any of the instructions that modify the HI
register: DDIV, DDIVU, DIV, DIVU, DMULT, DMULTU, MAC, MACC,
MACCHI, MACCHIU, MACCU, MTHI, MUL, MULHI, MULHIU, MULT,
MULTU, or MULU.

Operation:

Exceptions:

None

MFHI

0

Move from HI

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 1 0 0 0 0

MFHI

32, 64 T: GPR[rd] ← HI
VR5432 Microprocessor User’s Manual 467

Chapter 17
Format:

MFLO rd (MIPS I format)

Description:

The contents of special register LO are loaded into general-purpose register rd.

To ensure proper operation in the event of interruptions, the two instructions that
follow an MFLO instruction may not be any of the instructions that modify the L
register: DDIV, DDIVU, DIV, DIVU, DMAC, DMULT, DMULTU, MAC,
MACC, MACCHI, MACCHIU, MACCU, MTLO, MUL, MULHI, MULHIU,
MULT, MULTU, or MULU.

Operation:

Exceptions:

None

MFLOMove from LO

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 1 0 0 1 0

MFLO

32, 64 T: GPR[rd] ← LO
468 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MFPC rt, reg (VR5432 format)

Description:

The contents of Performance Counter reg are loaded into general-purpose register
rt.

Operation:

 Exceptions:

Coprocessor Unusable exception

MFPC Move from

CP0 Move

11 10

5

31 2526 2021 1516

COP0 MFPC rt 1

6 5 5

Performance Counter

0 1 0 0 0 0 0 0 0 0 0

MFPC

1 1 0 0 1
0

5
0 0 0 0 0

1 0

reg

5 1

6 5

32,64 T: GPR[rt] ← CPR[0,reg]
VR5432 Microprocessor User’s Manual 469

Chapter 17
Format:

MFPS rt, reg (VR5432 format)

Description:

The contents of performance event specifier reg are loaded into general-purpose
register rt.

Operation:

 Exceptions:

Coprocessor Unusable exception

MFPS Move from

CP0 Move

11 10

5

31 2526 2021 1516

COP0 MFPS rt 0

6 5 5

Performance Event Specifier

0 1 0 0 0 0 0 0 0 0 0

MFPS

1 1 0 0 1
0

5
0 0 0 0 0

1 0

reg

5 1

6 5

32,64 T: GPR[rt] ← CPR[0,reg]
470 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MOVN rd, rs, rt (MIPS IV format)

Description:

If the value in general-purpose register rt is not equal to zero, then the contents of
general-purpose register rs are placed into general-purpose register rd.

Operation:

Note: The nonzero value tested here is the condition true result from the
SLT, SLTI, SLTU, and SLTIU comparison instructions.

Exceptions:

Reserved Instruction exception

MOVN Move Conditional on Not Zero

16 1531 2526

SPECIAL

6

0

5

rs rt

5

21 20

0 0 0 0 0 0

MOVN

5

rd

11 10

0 0 0 0 0

5

0

6 5

0 0 1 0 1 1

6

MOVN

if GPR[rt] ≠ 0 then

GPR[rd] ← GPR[rs]

endif
VR5432 Microprocessor User’s Manual 471

Chapter 17
Format:

MOVZ rd, rs, rt (MIPS IV format)

Description:

If the value in general-purpose register rt is equal to zero, then the contents of
general-purpose register rs are placed into general-purpose register rd.

Operation:

Note: The nonzero value tested here is the condition false result from the
SLT, SLTI, SLTU, and SLTIU comparison instructions.

Exceptions:

Reserved Instruction exception

MOVZ Move Conditional on Zero

16 1531 2526

SPECIAL

6

0

5

rs rt

5

21 20

0 0 0 0 0 0

MOVZ

5

rd

11 10

0 0 0 0 0

5

0

6 5

0 0 1 0 1 0

6

MOVZ

if GPR[rt] = 0 then

GPR[rd] ← GPR[rs]

endif
472 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MSAC rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is subtracted from the signed contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the least-significant
32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSAC instruction.

Operation:

Exceptions:

None

MSAC Multiply, Negate,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MSAC

6 5 5 11

0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0

MSACAccumulate, and Move LO

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) - (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...) - (GPR[rs] * GPR[rt]))31..0
VR5432 Microprocessor User’s Manual 473

Chapter 17
Format:

MSACHI rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is subtracted from the signed contents of the 64-bit accumulator formed by the
least-significant 32 bits of the HI and LO registers. A copy of the most-significant
32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACHI instruction.

Operation:

Exceptions:

None

MSACHI Multiply, Negate,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MSACHI

6 5 5 11

0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0

MSACHIAccumulate, and Move HI

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) - (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...) - (GPR[rs] * GPR[rt]))63..32
474 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MSACHIU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied, and the
product is subtracted from the unsigned contents of the 64-bit accumulator formed
by the least-significant 32 bits of the HI and LO registers. A copy of the most-
significant 32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACHIU instruction.

Operation:

Exceptions:

None

MSACHIU Unsigned Multiply,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MSACHIU

6 5 5 11

0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1

MSACHIUNegate, Accumulate,

and Move HI

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) - (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...) - (GPR[rs] * GPR[rt]))63..32
VR5432 Microprocessor User’s Manual 475

Chapter 17
Format:

MSACU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied, and the
product is subtracted from the unsigned contents of the 64-bit accumulator formed
by the least-significant 32 bits of the HI and LO registers. A copy of the least-
significant 32 bits of the result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MSACU instruction.

Operation:

Exceptions:

None

MSACU Unsigned Multiply, Negate,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MSACU

6 5 5 11

0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1

MSACUAccumulate, and Move LO

32, 64 T: HI31..0 || LO31...0 ← (HI31...0 || LO31...0) - (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← ((HI31...0 || LO31...) - (GPR[rs] * GPR[rt]))31..0
476 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MTC0 rt, rd (MIPS I format)

Description:

The contents of general-purpose register rt are loaded into general-purpose
register rd of CP0.

Because the contents of the TLB may be altered by this instruction, the operation
of Load and Store instructions and TLB operations for the instructions
immediately before and after this instruction are undefined.

Operation:

Exceptions:

Coprocessor Unusable exception

MTC0
Move to

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5C 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00

MTC0

32, 64 T: data ← GPR[rt]
T+1: CPR[0, rd] ← data
VR5432 Microprocessor User’s Manual 477

Chapter 17
Format:

MTCz rt, rd (MIPS I format)

Description:

The contents of general-purpose register rt are loaded into general-purpose
register rd of CPz.

Operation:

Opcode Bit Encoding:

Exceptions:

Coprocessor Unusable exception

MTCz

11

Move to Coprocessor z

31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MTCz

32 T: data ← GPR[rt]
T+1: CPR[z, rd] ← data

64 T: data ← GPR[rt]31...0
T+1: if rd0 = 0

CPR[z, rd4...1 || 0] ← CPR[z, rd4...1 || 0]63...32 || data
else

CPR[z, rd4...1 || 0] ← data || CPR[z, rd4...1 || 0]31...0
endif

MTCz 31 30 29 28 27 26Bit # 25 0

MTC0

24 23 22 21

Coprocessor Number
Coprocessor Sub-opcode

Opcode

31 30 29 28 27 26Bit # 25 0

MTC1

24 23 22 21

31 30 29 28 27 26Bit # 25 0

MTC2

24 23 22 21
478 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MTDR rt, dr (VR5432 format)

Description:

The contents of general-purpose register rt are loaded into debug register dr.

Operation:

 Exceptions:

None

MTDR Move to

dr

11 10

5

31 2526 2021 1516 0

SPECIAL2 MTDR rt Debug Move

6 5 5

Debug Register

0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1

MTDR

0
0 0 0 0 0

6 5

5 6

32, 64T: DEBUG[dr] ← GPR[rt]
VR5432 Microprocessor User’s Manual 479

Chapter 17
Format:

MTHI rs (MIPS I format)

Description:

The contents of general-purpose register rs are loaded into special register HI.

If the MTHI instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTHI instruction,
the contents of special register LO are undefined.

Operation:

Exceptions:

None

rs

MTHI Move to HI

21 2031 2526

SPECIAL

6

0

MTHI0

6 5

5 15 6

0 1 0 0 0 1

MTHI

32,64 T–2: HI ← undefined

T–1: HI ← undefined

T: HI ← GPR[rs]
480 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MTLO rs (MIPS I format)

Description:

The contents of general-purpose register rs are loaded into special register LO.

If the MTLO instruction is executed following the MULT, MULTU, DIV, or
DIVU instruction, the operation is performed normally. However, if the MFLO,
MFHI, MTLO, or MTHI instruction is executed following the MTLO instruction,
the contents of special register HI are undefined.

Operation:

Exceptions:

None

rs

MTLOMove to LO

21 2031 2526

SPECIAL

6

0

MTLO0

6 5

5 15 6

0 1 0 0 1 1

MTLO

32,64 T–2: LO ← undefined

T–1: LO ← undefined

T: LO ← GPR[rs]
VR5432 Microprocessor User’s Manual 481

Chapter 17
Format:

MTPC rt, reg (VR5432 format)

Description:

The contents of general-purpose register rt are loaded into Performance Counter
reg.

Operation:

 Exceptions:

Coprocessor Unusable exception

MTPC Move to

CP0 Move

11 10

5

31 2526 2021 1516

COP0 MTPC rt 1

6 5 5

Performance Counter

0 1 0 0 0 0 0 0 1 0 0

MTPC

1 1 0 0 1
0

5
0 0 0 0 0

1 0

reg

5 1

6 5

32,64 T: CPR[0,reg] ← GPR[rt]
482 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MTPS rt, reg (VR5432 format)

Description:

The contents of general-purpose register rt are loaded into performance event
specifier reg.

Operation:

 Exceptions:

Coprocessor Unusable exception

MTPS Move to

CP0 Move

11 10

5

31 2526 2021 1516

COP0 MTPS rt 0

6 5 5

Performance Event Specifier

0 1 0 0 0 0 0 0 1 0 0

MTPS

1 1 0 0 1
0

5
0 0 0 0 0

1 0

reg

5 1

6 5

32,64 T: CPR[0,reg] ← GPR[rt]
VR5432 Microprocessor User’s Manual 483

Chapter 17
Format:

MUL rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is stored in the 64-bit register formed by the least-significant 32 bits of the HI and
LO registers. A copy of the least-significant 32 bits of the result is stored in
general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MUL instruction.

Operation:

Exceptions:

None

MUL Multiply and Move LO

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MUL

6 5 5 11

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0

MUL

32, 64 T: HI31..0 || LO31...0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])31..0
484 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULHI rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is stored in the 64-bit register formed by the least-significant 32 bits of the HI and
LO registers. A copy of the most-significant 32 bits of the result is stored in
general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULHI instruction.

Operation:

Exceptions:

None

MULHI Multiply and Move HI

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULHI

6 5 5 11

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0

MULHI

32, 64 T: HI31..0 || LO31...0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])63..32
VR5432 Microprocessor User’s Manual 485

Chapter 17
Format:

MULHIU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied, and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the most-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULHIU instruction.

Operation:

Exceptions:

None

MULHIU Unsigned Multiply

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULHIU

6 5 5 11

0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1

MULHIUand Move HI

32, 64 T: HI31..0 || LO31...0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])63..32
486 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULS rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied, and the product
is negated and stored in the 64-bit register formed by the least-significant 32 bits
of the HI and LO registers. A copy of the least-significant 32 bits of the result is
stored in general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULS instruction.

Operation:

Exceptions:

None

MULS Multiply, Negate, and Move LO

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULS

6 5 5 11

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0

MULS

32, 64 T: HI31..0 || LO31...0 ← 0 − (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 − (GPR[rs] * GPR[rt]))31..0
VR5432 Microprocessor User’s Manual 487

Chapter 17
Format:

MULSHI rd, rs, rt (VR5432 format)

Description:

The signed 32-bit operands in the rs and rt registers are multiplied and the product
is negated and stored in the 64-bit register formed by the least-significant 32 bits
of the HI and LO registers. A copy of the most-significant 32 bits of the result is
stored in general-purpose register rd.

An Integer Overflow exception never occurs.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSHI instruction.

Operation:

Exceptions:

None

MULSHI Multiply, Negate, and

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULSHI

6 5 5 11

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0

MULSHIMove HI

32, 64 T: HI31..0 || LO31...0 ← 0 − (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 − (GPR[rs] * GPR[rt]))63..32
488 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULSHIU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied and the
product is negated and stored in the 64-bit register formed by the least-significant
32 bits of the HI and LO registers. A copy of the most-significant 32 bits of the
result is stored in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSHIU instruction.

Operation:

Exceptions:

None

MULSHIU Unsigned Multiply,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULSHIU

6 5 5 11

0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1

MULSHIUNegate, and Move HI

32, 64 T: HI31..0 || LO31...0 ← 0 − (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 − (GPR[rs] * GPR[rt]))63..32
VR5432 Microprocessor User’s Manual 489

Chapter 17
Format:

MULSU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the least-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULSU instruction.

Operation:

Exceptions:

None

MULSU Unsigned Multiply,

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULSU

6 5 5 11

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1

MULSUNegate, and Move LO

32, 64 T: HI31..0 || LO31...0 ← 0 − (GPR[rs] * GPR[rt])

GPR[rd]31..0 ← (0 − (GPR[rs] * GPR[rt]))31..0
490 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULT rs, rt (MIPS I format)

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both
operands as 32-bit signed integers. An Integer Overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the doubleword result is
loaded into special register LO, and the high-order word of the doubleword result
is loaded into special register HI. In the 64-bit mode, the respective results are sign
extended and stored.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULT instruction.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

MULT Multiply MULT
VR5432 Microprocessor User’s Manual 491

Chapter 17
Operation:

Exceptions:

None

MULT Multiply MULT(continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t31...0
H I ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs]31...0 * GPR[rt]31...0
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32
492 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULTU rs, rt (MIPS I format)

Description:

The contents of general-purpose registers rs and rt are multiplied, treating both
operands as 32-bit unsigned values. An Integer Overflow exception never occurs.

In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the doubleword result is
loaded into special register LO, and the high-order word of the doubleword result
is loaded into special register HI. In 64-bit mode, these results are sign extended
and loaded.

If either of the two preceding instructions is MFHI or MFLO, the execution results
of these transfer instructions are undefined. To obtain the correct result, insert two
or more additional instructions between MFHI or MFLO and the MULTU
instruction.

MULTUUnsigned Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

MULTU
VR5432 Microprocessor User’s Manual 493

Chapter 17
Operation:

Exceptions:

None

MULTUUnsigned MultiplyMULTU (continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t31...0
HI ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]31...0) * (0 || GPR[rt]31...0)
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32
494 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

MULU rd, rs, rt (VR5432 format)

Description:

The unsigned 32-bit operands in the rs and rt registers are multiplied and the
product is stored in the 64-bit register formed by the least-significant 32 bits of the
HI and LO registers. A copy of the least-significant 32 bits of the result is stored
in general-purpose register rd.

If either of the two instructions immediately preceding this instruction is the
MFHI or MFLO instruction, the execution result of the transfer instruction is
undefined. To obtain correct results, insert two or more other instructions between
MFHI or MFLO and the MULU instruction.

Operation:

Exceptions:

None

MULU Unsigned Multiply and Move LO

rd

11 10

5

31 2526 2021 1516 0

SPECIAL rs rt MULU

6 5 5 11

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1

MULU

32, 64 T: HI31..0 || LO31...0 ← GPR[rs] * GPR[rt]

GPR[rd]31..0 ← (GPR[rs] * GPR[rt])31..0
VR5432 Microprocessor User’s Manual 495

Chapter 17
Format:

NOR rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are bitwise NORed with the contents
of general-purpose register rt. The result is stored in general-purpose register rd.

Operation:

Exceptions:

None

NOR NOR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]
496 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

OR rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are bitwise ORed with the contents of
general-purpose register rt. The result is stored in general-purpose register rd.

Operation:

Exceptions:

None

OROR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]
VR5432 Microprocessor User’s Manual 497

Chapter 17
Format:

ORI rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is zero extended and bitwise ORed with the contents of
general-purpose register rs. The result is stored in general-purpose register rt.

Operation:

Exceptions:

None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16

0 0 1 1 0 1

ORIOR ImmediateORI

32 T: GPR[rt] ← GPR[rs]31...16 || (immediate or GPR[rs]15...0)

64 T: GPR[rt] ← GPR[rs]63...16 || (immediate or GPR[rs]15...0)
498 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

PREF hint, offset (base) (MIPS IV format)

Description:

PREF adds the 16-bit signed offset to the contents of general-purpose register base
to form an effective byte address. It advises that data at the effective address may
be used in the near future. The hint field supplies information about the way the
data is expected to be used.

Unlike the VR5000, in which the PREF instruction is executed as an NOP, the
VR5432 data may be prefetched into the data cache as a result of executing this
instruction.

PREF is an advisory instruction that may change the performance of the program.
However, for all hint values and all effective addresses, it neither changes the
architecturally visible state nor alters the meaning of the program.

If MIPS IV instructions are supported and enabled, PREF does not cause
addressing-related exceptions. If it does happen to raise an exception condition,
the exception condition is ignored. If an addressing-related exception condition is
raised and ignored, no data is prefetched. However, even if no data is prefetched,
some action that is not architecturally visible—such as write-back of a dirty cache
line—can take place.

If PREF results in a memory operation, the memory access type used for the
operation is determined by the memory access type of the effective address, just
as it would be if the memory operation had been caused by a load or store to the
effective address.

The hint field supplies information about the way the data is expected to be used.
A hint value cannot cause an action to modify an architecturally visible state. A
processor may use a hint value to improve the effectiveness of the prefetch action.
The defined hint values are shown in Table 17-17.

PREF
31 2526

PREF

6

0

16

offset

Prefetch

5

base

21 20

1 1 0 0 1 1

PREF

5

hint

16 15
VR5432 Microprocessor User’s Manual 499

Chapter 17
Table 17-17 Values of Hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Data is expected to be loaded (not modified).
Fetch data as if for a load.

1 store
Data is expected to be stored or modified.
Fetch data as if for a store.

2−3 Reserved

4 load_streamed

Data is expected to be loaded (not modified) but not reused
extensively; it “streams” through the cache.
Fetch data as if for a load and place it in the cache so that it does
not displace data prefetched as “retained.”

5 store_streamed

Data is expected to be stored or modified but not reused
extensively; it “streams” through the cache.
Fetch data as if for a store and place it in the cache so that it does
not displace data prefetched as “retained.”

6 load_retained

Data is expected to be loaded (not modified) and reused
extensively; it should be “retained” in the cache.
Fetch data as if for a load and place it in the cache so that it is
not displaced by data prefetched as “streamed.”

7 store_retained

Data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.
Fetch data as if for a store and place it in the cache so that it is
not displaced by data prefetched as “streamed.”

8−24 Reserved

25 writeback_invalidate

26−31 Reserved

PREFPrefetchPREF (continued)
500 VR5432 Microprocessor User’s Manual

CPU Instruction Set
PREF never generates a memory operation for a location with an uncached
memory access type.

Prefetch cannot prefetch data from a mapped location unless the translation for
that location is present in the TLB. Locations in memory pages that have not been
accessed recently may not have translations in the TLB, so prefetch may not be
effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to
prefetch using an address pointer value before the validity of a pointer is
determined.

Operation:

Exceptions:

Reserved Instruction exception

PREFPrefetchPREF (continued)

vAddr ← GPR[base] + sign_extend(offset)

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)
VR5432 Microprocessor User’s Manual 501

Chapter 17
Format:

ROR rd, rt, sa (VR5432 format)

Description:

The contents of general-purpose register rt are rotated right by sa bits. The result
is stored in general-purpose register rd.

Operation:

Exceptions:

None

RORRotate Right

31 2526 2021 1516

SPECIAL 1 rt

6 5 5

rd sa ROR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

ROR

0 0 0 0 1

32, 64T: GPR[rd] ← GPR[rt]sa-1...0 || GPR[rt]31...sa
502 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

RORV rd, rt, rs (VR5432 format)

Description:

The contents of general-purpose register rt are rotated right by the number of bits
specified by the low-order five bits of general-purpose register rs. The result is
stored in general-purpose register rd.

Operation:

Exceptions:

None

RORV Rotate Right Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 1 RORV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

RORV

32, 64T: s ← GPR[rs]4...0

GPR[rd] ← GPR[rt]s-1...0 || GPR[rt]31...s
VR5432 Microprocessor User’s Manual 503

Chapter 17
Format:

SB rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The least-significant byte of register rt is
stored at the memory location specified by the address.

Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16

1 0 1 0 0 0

SB

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 data ← GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

 pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 byte ← vAddr2...0 xor BigEndianCPU3

 data ← GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

 pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

 byte ← vAddr2...0 xor BigEndianCPU3
504 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SC rt, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of general-purpose register rt
are stored at the memory location specified by the address only when the LL bit is
set. If another processor or device changes the physical address after the previous
LL instruction has been executed, or if the ERET instruction exists between the
LL and SC instructions, the register contents are not stored to memory, and storing
fails.

This instruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities.

The success or failure of the SC operation is indicated by the contents of general-
purpose register rt after execution of the instruction. A successful SC instruction
sets the contents of general-purpose register rt to 1; an unsuccessful SC instruction
sets them to 0.

The operation of SC is undefined when the address is different from the address
used in the last LL instruction.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the low-order two bits of the address is not zero, an Address Error
exception takes place.

If this instruction both fails and causes an exception, the exception takes
precedence.

SC Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16

1 1 1 0 0 0

SC
VR5432 Microprocessor User’s Manual 505

Chapter 17
Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

(continued)SC Store Conditional SC

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]31...0
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]31...0
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit
506 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SCD rt, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of general-purpose register rt
are stored at the memory location specified by the address only when the LL bit is
set. If another processor or device changes the target address after the previous
LLD instruction has been executed, or if the ERET instruction exists between the
LLD and SCD instructions, the register contents are not stored to memory, and
storing fails.

This instruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities.

The success or failure of the SCD operation is indicated by the contents of general-
purpose register rt after execution of the instruction. A successful SCD instruction
sets the contents of general-purpose register rt to 1; an unsuccessful SCD
instruction sets them to 0.

The operation of SCD is undefined when the address is different from the address
used in the last LLD.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If any of the low-order three bits of the address is not zero, an Address Error
exception takes place. If this instruction both fails and causes an exception, the
exception takes precedence.

This instruction is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed in the 32-bit User or Supervisor mode, the Reserved
Instruction exception occurs.

SCD Store Conditional Doubleword

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16

1 1 1 1 0 0

SCD
VR5432 Microprocessor User’s Manual 507

Chapter 17
Operation:

Note: In the 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception
Reserved Instruction exception

(continued)SCD
Store Conditional Doubleword SCD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
if LLbit then
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit
508 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SD rt, offset (base) (MIPS III format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of general-purpose register rt
are stored at the memory location specified by the address.

If any of the low-order three bits of the address are not zero, an Address Error
exception occurs.

This operation is defined in 64-bit mode and 32-bit Kernel mode. Execution of this
instruction in 32-bit User or Supervisor mode causes a Reserved Instruction
exception.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDStore Doubleword

31 2526 2021 1516 0

SD base rt offset

6 5 5 16

1 1 1 1 1 1

SD

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 data ← GPR[rt]
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 data ← GPR[rt]
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
VR5432 Microprocessor User’s Manual 509

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception
Reserved Instruction exception

SDStore DoublewordSD
(continued)
510 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SDCz rt, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. Register rt of coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory location. The
stored data is defined by individual coprocessor specifications.

If any of the low-order three bits of the address is not zero, an Address Error
exception takes place.

This instruction is not valid for use with CP0.

When CP1 is specified, the FR bit of the Status register equals 0 and the least-
significant bit in the rt field is not 0, the operation of this instruction is undefined.
If the FR bit equals 1, both odd and even registers can be specified by rt.

SDCz Store Doubleword

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16

1 1 1 1 x x*

SDCz
from Coprocessor z
VR5432 Microprocessor User’s Manual 511

Chapter 17
Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

(continued)

SDCz Store Doubleword SDCzfrom Coprocessor z

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

SDCz 31 30 29 28 27 26Bit # 0

SDC1

Coprocessor NumberOpcode

31 30 29 28 27 26Bit # 0

SDC2
512 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SDL rt, offset (base) (MIPS III format)

Description:

This instruction is used in combination with the SDR instruction to store the
doubleword data in the register to the doubleword in the memory that is not at the
doubleword boundary. The SDL instruction stores the higher portion of the data
to the memory, while the SDR instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the doubleword data in the memory
where the most-significant byte is specified by the generated address, only the
lower portion of general-purpose register rt is stored to memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be loaded changes from one to eight.

In other words, first the most-significant byte position of general-purpose register
rt is stored to the bytes in the addressed memory. If there is data of the low-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

SDL Store Doubleword Left

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16

1 0 1 1 0 0

SDL

14

SDL $24,1($0)

After

address 0
address 8

Memory
Register

$24

(Big Endian)

Before
10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

address 0
address 8

0
98 10 11 12 13 15

B C D E F GA

storing

storing
VR5432 Microprocessor User’s Manual 513

Chapter 17
The Address Error exception does not occur, even if the specified address is not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If this instruction is executed in the 32-bit User or
Supervisor mode, the Reserved Instruction exception occurs.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDL
Store Doubleword Left

SDL(continued)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation
(vAddr, DATA)
pAddr ← pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr ← pAddr31...3 || 03

endif
byte ← vAddr2...0 xor BigEndianCPU3

data ← 056–8*byte || GPR[rt]63...56–8*byte
Storememory (uncached, byte, data, pAddr, vAddr, DATA)
514 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The relationships between the addresses given to the SDL instruction and the
result (bytes for doublewords in the memory) are shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Reserved Instruction exception

SDL
Store Doubleword Left

SDL(continued)

SDL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O A 0 0 7 A B C D E F G H 7 0 0
1 I J K L M N A B 1 0 6 I A B C D E F G 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

Offset
BigEndianCPU = 1BigEndianCPU = 0

Offset
LEM BEM LEM BEMvAddr2...0 TypeDestination Destination Type
VR5432 Microprocessor User’s Manual 515

Chapter 17
Format:

SDR rt, offset (base) (MIPS III format)

Description:

This instruction is used in combination with the SDL instruction to store the
doubleword data in the register to the word data in the memory that is not at the
doubleword boundary. The SDL instruction stores the higher portion of the data
to the memory, while the SDR instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the doubleword data in the memory
where the least-significant byte is specified by the generated address, only the
lower portion of general-purpose register rt is stored to memory at the same
doubleword boundary as the target address. Depending on the address specified,
the number of bytes to be loaded changes from 1 to 8.

In other words, first the least-significant byte position of general-purpose register
rt is stored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same doubleword boundary, the operation to store this data
to the next byte of the memory is repeated.

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16

1 0 1 1 0 1

SDR Store Doubleword Right SDR

SDR $24,10($0)

After

A
address 0
address 8

Register

$24

(Big Endian)

Before B C D E F G H

Memory

address 0
address 8

10 2 3 4 5 6 7
98 10 11 12 13 14 15

4 5 6 7
98 10 11 12 13 14 15

E F G H

storing

storing
516 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The Address Error exception does not occur, even if the specified address is not
located at the doubleword boundary. This operation is defined in the 64-bit mode
and 32-bit Kernel mode. If this instruction is executed in the 32-bit User or
Supervisor mode, the Reserved Instruction exception occurs.

Operation:

Note: In 32-bit Kernel mode, the high-order 32 bits are ignored during
virtual address creation.

SDR
Store Doubleword Right

SDR(continued)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr ← pAddrPSIZE – 1...3 || 03

endif
byte ← vAddr2...0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte || 08*byte
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr,
DATA)
VR5432 Microprocessor User’s Manual 517

Chapter 17
The relationships between the addresses given to the SDR instruction and the
result (bytes for doublewords in the memory) are shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

 Offset: pAddr2...0 Output to memory
LEM Little-endian memory (BigEndianMem = 0)
BEM Big-endian memory (BigEndianMem = 1)

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Reserved Instruction exception

SDR
Store Doubleword Right

SDR(continued)

SDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

Offset
BigEndianCPU = 1BigEndianCPU = 0

Offset
LEM BEM LEM BEMvAddr2...0 TypeDestination Destination Type
518 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SH rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The least-significant halfword of register
rt is stored in the memory specified by the address.

If the least-significant bit of the address is not zero, an Address Error exception
occurs.

Operation:

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 16

1 0 1 0 0 1

SH

5

32 T: vAddr ← ((offset15)16 || offset15...) + GPR[base]
 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)

 byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
 data ← GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

 pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ← ((offset15)48 || offset15...) + GPR[base]

 byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
 data ← GPR[rt]63–8*byte...0 || 08*byte

 StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
 pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))
VR5432 Microprocessor User’s Manual 519

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

SH Store Halfword SH
(continued)
520 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SLL rd, rt, sa (MIPS I format)

Description:

The contents of general-purpose register rt are shifted left by sa bits, inserting
zeros into the low-order bits. The result is stored in general-purpose register rd. In
the 64-bit mode, the value resulting from sign-extending the shifted 32-bit value
is stored as a result. If the shift value is 0, the low-order 32 bits of the 64-bit value
are sign extended. This instruction can generate a 64-bit value that sign-extends a
32-bit value.

Operation:

Exceptions:

None

Caution: If the shift value of this instruction is 0, the assembler may treat
this instruction as an NOP. When using this instruction for sign
extension, check the specifications of the assembler.

SLLShift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0 0 0 0 0

32 T: GPR[rd] ← GPR[rt]31– sa...0 || 0sa

64 T: s ← 0 || sa

temp ← GPR[rt]31-s...0 || 0s

GPR[rd] ← (temp31)32 || temp
VR5432 Microprocessor User’s Manual 521

Chapter 17
Format:

SLLV rd, rt, rs (MIPS I format)

Description:

The contents of general-purpose register rt are shifted left the number of bits
specified by the low-order five bits of general-purpose register rs, inserting zeros
into the low-order bits. The result is stored in general-purpose register rd. In the
64-bit mode, the value resulting from sign-extending the shifted 32-bit value is
stored as a result. If the shift value is 0, the low-order 32 bits of the 64-bit value
are sign extended. This instruction can generate a 64-bit value that sign-extends a
32-bit value.

Operation:

Exceptions:

None

Caution: If the shift value of this instruction is 0, the assembler may treat
this instruction as an NOP. When using this instruction for sign
extension, check the specifications of the assembler.

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0

SLLV

rs

32 T: s ← GPR[rs]4...0

GPR[rd]← GPR[rt](31–s)...0 || 0s

64 T: s ← 0 || GPR[rs]4...0

temp ← GPR[rt](31–s)...0 || 0s

GPR[rd] ← (temp31)32 || temp
522 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SLT rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. Interpreting these values as signed integers, if the
contents of general-purpose register rs are less than the contents of general-
purpose register rt, one is stored in the general-purpose register rd; otherwise, zero
is stored in general-purpose register rd.

An Integer Overflow exception never occurs. The comparison is valid even if the
subtraction used during the comparison overflows.

Operation:

Exceptions:

None

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

SLT

32 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif
VR5432 Microprocessor User’s Manual 523

Chapter 17
Format:

SLTI rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is sign extended and subtracted from the contents of
general-purpose register rs. Interpreting these values as signed integers, if rs
contents are less than the sign-extended immediate, one is stored in general-
purpose register rt; otherwise, zero is stored in the general-purpose register rt.

An Integer Overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16

0 0 1 0 1 0

SLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then

GPR[rt] ← 031 || 1

else

GPR[rt] ← 032

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then

GPR[rt] ← 063 || 1

else

GPR[rt] ← 064

endif
524 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SLTIU rt, rs, immediate (MIPS I format)

Description:

The 16-bit immediate is sign extended and subtracted from the contents of
general-purpose register rs. Interpreting these values as unsigned integers, if rs
contents are less than the sign-extended immediate, one is stored in the general-
purpose register rt; otherwise zero is stored in the general-purpose register rt.

An Integer Overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTIUImmediate Unsigned

Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16

0 0 1 0 1 1

SLTIU

32 T: if (0 || GPR[rs]) < (immediate15)16 || immediate15...0 then

GPR[rt] ← 031 || 1

else

GPR[rt] ← 032

endif

64 T: if (0 || GPR[rs]) < (immediate15)48 || immediate15...0 then

GPR[rt] ← 063 || 1

else

GPR[rt] ← 064

endif
VR5432 Microprocessor User’s Manual 525

Chapter 17
Format:

SLTU rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. Interpreting these values as unsigned integers, if the
contents of general-purpose register rs are less than the contents of general-
purpose register rt, one is stored in general-purpose register rd; otherwise, zero is
stored in the general-purpose register rd.

An Integer Overflow exception never occurs. The comparison is valid even if the
subtraction overflows.

Operation:

Exceptions:

None

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

32 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif
526 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SRA rd, rt, sa (MIPS I format)

Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
signed bits into the high-order bits. The result is stored in general-purpose register
rd. In 64-bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

 Exceptions:

None

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

32 T: GPR[rd] ← (GPR[rt]31)sa || GPR[rt] 31...sa

64 T: s ← 0 || sa

temp ← (GPR[rt]31)s || GPR[rt] 31...s

GPR[rd] ← (temp31)32 || temp
VR5432 Microprocessor User’s Manual 527

Chapter 17
Format:

SRAV rd, rt, rs (MIPS I format)

Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order five bits of general-purpose register rs, sign-extending
the high-order bits. The result is stored in the general-purpose register rd. In 64-
bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRAV
Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

32 T: s ← GPR[rs]4...0

GPR[rd] ← (GPR[rt]31)s || GPR[rt]31...s

64 T: s ← GPR[rs]4...0

temp ← (GPR[rt]31)s || GPR[rt]31...s

GPR[rd] ← (temp31)32 || temp
528 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SRL rd, rt, sa (MIPS I format)

Description:

The contents of general-purpose register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is stored in general-purpose register rd.
In 64-bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

32 T: GPR[rd] ← 0 sa || GPR[rt]31...sa

64 T: s ← 0 || sa

temp ← 0s || GPR[rt]31...s

GPR[rd] ← (temp31)32 || temp
VR5432 Microprocessor User’s Manual 529

Chapter 17
Format:

SRLV rd, rt, rs (MIPS I format)

Description:

The contents of general-purpose register rt are shifted right by the number of bits
specified by the low-order five bits of general-purpose register rs, inserting zeros
into the high-order bits. The result is stored in general-purpose register rd. In 64-
bit mode, the sign-extended 32-bit value is stored as the result.

Operation:

Exceptions:

None

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

32 T: s ← GPR[rs]4...0

GPR[rd] ← 0s || GPR[rt]31...

64 T: s ← GPR[rs]4...0

temp ← 0s || GPR[rt]31...

GPR[rd] ← (temp31)32 || temp
530 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SUB rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. The result is stored into general-purpose register rd.
In 64-bit mode, the sign-extended 32-bit value is stored as the result.

An Integer Overflow exception occurs if the carries-out of bits 30 and 31 differ (a
two’s-complement overflow). The destination register rd is not modified when an
Integer Overflow exception occurs.

Operation:

Exceptions:

Integer Overflow exception

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] – GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0
VR5432 Microprocessor User’s Manual 531

Chapter 17
Format:

SUBU rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rt are subtracted from the contents of
general-purpose register rs. The result is stored in general-purpose register rd. In
64-bit mode, the sign-extended 32-bit value is stored as the result.

The only difference between this instruction and the SUB instruction is that SUBU
never causes an Integer Overflow Exception.

Operation:

Exceptions:

None

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] – GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0
532 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SW rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of general-purpose register rt
are stored in the memory location specified by the address. If either of the low-
order two bits of the address is not zero, an Address Error exception occurs.

Operation:

Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16

1 0 1 0 1 1

SW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]31...0

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

 64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
VR5432 Microprocessor User’s Manual 533

Chapter 17
Format:

SWCz rt, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. Coprocessor register rt of the CPz is stored
in the addressed memory. The data to be stored is defined by individual
coprocessor specifications. This instruction is not valid for use with CP0.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

Operation:

SWCz Store Word from Coprocessor z

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 x x*

SWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)
534 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Exceptions:

TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception
Coprocessor Unusable exception

Opcode Bit Encoding:

SWCz Store Word from Coprocessor z SWCz(continued)

SWCz 31 30 29 28 27 26Bit # 0

SWC1

Coprocessor NumberOpcode

31 30 29 28 27 26Bit # 0

SWC2
VR5432 Microprocessor User’s Manual 535

Chapter 17
Format:

SWL rt, offset (base) (MIPS I format)

Description:

This instruction is used in combination with the SWR instruction to store a word
in a register to a word in memory that is not at the word boundary. The SWL
instruction stores the higher portion of the data to memory, while the SWR
instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the word data in the memory where
the most-significant byte is specified by the generated address, only the higher
portion of general-purpose register rt is stored to memory at the same word
boundary as the target address.

Depending on the address specified, the number of bytes to be stored changes
from 1 to 4.

In other words, first the most-significant byte position of general-purpose register
rt is stored to the bytes in the addressed memory. If there is data of the low-order
byte that follows the same word boundary, the operation to store this data to the
next byte of the memory is repeated.

No Address Error exceptions occur when the specified address is not located at the
word boundary.

SWL Store Word Left

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16

1 0 1 0 1 0

SWL

address 0

address 4

0 1 2 3

4 5 6 7
A B C D

Register

address 0

address 4
0
4 5 6 7

A B C

$24

Memory
(Big Endian)

Before

After
SWL $24,1($0)

storing

storing
536 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Operation:

SWL Store Word Left SWL(continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte
else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then
pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte
else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)
VR5432 Microprocessor User’s Manual 537

Chapter 17
The relationships between the contents given to the SWL instruction and the result
(bytes for words in the memory) are shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM: Little-endian memory (BigEndianMem = 0)
BEM: Big-endian memory (BigEndianMem = 1)

SWL Store Word Left SWL(continued)

SWL
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

Offset
BigEndianCPU = 1BigEndianCPU = 0

Offset
LEM BEM LEM BEMvAddr2...0 TypeDestination Destination Type
538 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception
Reserved Instruction exception

SWL Store Word Left SWL(continued)
VR5432 Microprocessor User’s Manual 539

Chapter 17
Format:

SWR rt, offset (base) (MIPS I format)

Description:

This instruction is used in combination with the SWL instruction to store word
data in a register to a word in memory that is not at the word boundary. The SWL
instruction stores the higher portion of the data to memory, while the SWR
instruction stores the lower portion.

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to generate a virtual address. Of the word data in the memory where
the least-significant byte is specified by the generated address, only the lower
portion of general-purpose register rt is stored to memory at the same word
boundary as the target address. Depending on the address specified, the number of
bytes to be stored changes from 1 to 4.

In other words, first the least-significant byte position of general-purpose register
rt is stored to the bytes in the addressed memory. If there is data of the high-order
byte that follows the same word boundary, the operation to store this data to the
next byte of the memory is repeated.

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16

1 0 1 1 1 0

SWR Store Word Right SWR
540 VR5432 Microprocessor User’s Manual

CPU Instruction Set
No Address Error exceptions occur when the specified address is not located at the
word boundary.

SWR Store Word Right SWR
(Continued)

address 0

address 4

0 1 2 3

4 5 6 7
A B C D

Register

address 0

address 4
0
D 5 6 7

1 2 3

$24

Memory
(Big Endian)

Before

After

SWR $24,4($0)

storing

storing
VR5432 Microprocessor User’s Manual 541

Chapter 17
Operation:

SWR Store Word Right SWR(continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 0

8*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 0

8*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)
542 VR5432 Microprocessor User’s Manual

CPU Instruction Set
The relationships between the register contents given to the SWR instruction and
the result (bytes for words in the memory) are shown below:

Note: Type: Access type output to memory (refer to Table 16-3 on
page 324 for information on byte access within a double-
word)

Offset: pAddr2...0 Output to memory
LEM: Little-endian memory (BigEndianMem = 0)
BEM: Big-endian memory (BigEndianMem = 1)

SWR Store Word Right SWR(continued)

SWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

Offset
BigEndianCPU = 1BigEndianCPU = 0

Offse

LEM BEM LEM BEM
vAddr2...0 TypeDestination Destination Type
VR5432 Microprocessor User’s Manual 543

Chapter 17
Exceptions:

TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

SWR Store Word Right SWR(continued)
544 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

SYNC (MIPS II format)

Description:

This instruction is provided for compatibility with MIPS implementations that
implement multiprocessing facilities. The VR5432 does not implement these
facilities. This instruction executes as an NOP on the VR5432.

Operation:

Exceptions:

None

SYNC Synchronize

31 2526

SPECIAL

6 15

0 SYNC

6

6 5 0

0 1 1 1 1

SYNC

stype

5

11 10

32, 64 T: SyncOperation ()
VR5432 Microprocessor User’s Manual 545

Chapter 17
Format:

SYSCALL (MIPS I format)

Description:

A System Call exception occurs after this instruction is executed, unconditionally
transferring control to the exception handler.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

System Call exception

System Call

31 2526

SPECIAL

6 20

code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00

SYSCALL SYSCALL

32, 64T: SystemCallException
546 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TEQ rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with those of general-
purpose register rs. If the contents of general-purpose register rs are equal to the
contents of general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Trap exception

Trap If Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

TEQTEQ

32, 64 T: if GPR[rs] = GPR[rt] then

TrapException

endif
VR5432 Microprocessor User’s Manual 547

Chapter 17
Format:

TEQI rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. If the contents of general-purpose register rs are equal to the
sign-extended immediate, a Trap exception occurs.

Operation:

Exceptions:

Trap exception

TEQI Trap If Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

TEQI

32 T: if GPR[rs] = (immediate15)16 || immediate15...0 then

TrapException

endif

64 T: if GPR[rs] = (immediate15)48 || immediate15...0 then

TrapException

endif
548 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TGE rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with the contents of
general-purpose register rs. Interpreting both register contents as signed integers,
if the contents of general-purpose register rs are greater than or equal to the
contents of general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Trap exception

TGETrap If Greater Than or Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

TGE

32, 64 T: if GPR[rs] ≥ GPR[rt] then
TrapException

endif
VR5432 Microprocessor User’s Manual 549

Chapter 17
Format:

TGEI rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as signed integers, if the contents of
general-purpose register rs are greater than or equal to the sign-extended
immediate, a Trap exception occurs.

Operation:

Exceptions:

Trap exception

TGEI Trap If Greater Than or Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

TGEI

32 T: if GPR[rs] ≥ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≥ (immediate15)48 || immediate15...0 then
TrapException

endif
550 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TGEIU rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as unsigned integers, if the contents
of general-purpose register rs are greater than or equal to the sign-extended
immediate, a Trap exception occurs.

Operation:

 Exceptions:

Trap exception

TGEIU
Trap If Greater Than or Equal

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

Immediate Unsigned

0 0 0 0 0 1 0 1 0 0 1

TGEIU

32 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)48 || immediate15...0) then
TrapException

endif
VR5432 Microprocessor User’s Manual 551

Chapter 17
Format:

TGEU rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with the contents of
general-purpose register rs. Interpreting both values as unsigned integers, if the
contents of general-purpose register rs are greater than or equal to the contents of
general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

 Exceptions:

Trap exception

TGEU Trap If Greater Than or Equal Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

TGEU

32, 64 T: if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
TrapException

endif
552 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TLBP (MIPS I format)

Description:

Searches for a TLB entry that matches with the contents of the EntryHI register
and stores an index for that TLB entry in the Index register. If a TLB entry that
matches is not found, sets the most-significant bit of the Index register.

Memory references by the instruction immediately after a TLBP instruction, or in
cases in which more than one TLB entry is a hit, are undefined.

Operation:

Exceptions:

Coprocessor Unusable exception

TLBPProbe TLB for Matching Entry

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBP

32 T: Index← 1 || 025 || Undefined6

for i in 0...TLBEntries – 1
if (TLB[i]95...77 = EntryHi31...13) and (TLB[i]76 or
(TLB[i]71...64 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

64 T: Index← 1 || 025 || Undefined6

for i in 0...TLBEntries – 1
if (TLB[i]167...141 and not (015 || TLB[i]216...205))

 = (EntryHi39...13 and not (015 || TLB[i]216...205)) and
(TLB[i]140 or (TLB[i]135...128 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor
VR5432 Microprocessor User’s Manual 553

Chapter 17
Format:

TLBR (MIPS I format)

Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
selected by the contents of the Index register. The G bit (which controls ASID
matching) read from the TLB is written into both of the EntryLo0 and EntryLo1
registers.

The operation is invalid (and the results are undefined) if the contents of the Index
register are greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor Unusable exception

TLBR Read Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBR

32 T: PageMask ← TLB[Index5...0]127...96
EntryHi ← TLB[Index5...0]95...64 and not TLB[Index5...0]127...96
EntryLo1 ←TLB[Index5...0]63...33|| TLB[Index5...0]76
EntryLo0 ← TLB[Index5...0]31...1|| TLB[Index5...0]76

64 T: PageMask ← TLB[Index5...0]255...192
EntryHi ← TLB[Index5...0]191...128 and not TLB[Index5...0]255...192
EntryLo1 ←TLB[Index5...0]127...65 || TLB[Index5...0]140
EntryLo0 ← TLB[Index5...0]63...1 || TLB[Index5...0]140
554 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TLBWI (MIPS I format)

Description:

The TLB entry selected by the Index register is loaded with the contents of the
EntryHi and EntryLo registers. The G bit of the TLB is written with the logical
AND of the G bits in the EntryLo0 and EntryLo1 registers.

The operation is invalid (and the results are undefined) if the value in the Index
register is greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor Unusable exception

TLBWI Write Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWI

32, 64 T: TLB[Index5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0
VR5432 Microprocessor User’s Manual 555

Chapter 17
Format:

TLBWR (MIPS I format)

Description:

The TLB entry selected by the Random register is loaded with the contents of the
EntryHi and EntryLo registers. The G bit of the TLB is written with the logical
AND of the G bits in the EntryLo0 and EntryLo1 registers.

Operation:

Exceptions:

Coprocessor Unusable exception

TLBWR Write Random TLB Entry TLBWR

0

6

6 531 25 2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

32, 64 T: TLB[Random5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0
556 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TLT rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with general-purpose
register rs. Interpreting both values as signed integers, if the contents of general-
purpose register rs are less than the contents of general-purpose register rt, a Trap
exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Trap exception

TLTTrap If Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

TLT

32, 64 T: if GPR[rs] < GPR[rt] then
TrapException

endif
VR5432 Microprocessor User’s Manual 557

Chapter 17
Format:

TLTI rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as signed integers, if the contents of
general-purpose register rs are less than the sign-extended immediate, a Trap
exception occurs.

Operation:

Exceptions:

Trap exception

TLTI Trap If Less Than Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

TLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then
TrapException

endif
558 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TLTIU rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. Interpreting both values as unsigned integers, if the contents
of general-purpose register rs are less than the sign-extended immediate, a Trap
exception occurs.

Operation:

Exceptions:

Trap exception

TLTIUTrap If Less Than Immediate Unsigned

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

TLTIU

32 T: if (0 || GPR[rs]) < (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) < (0 || (immediate15)48 || immediate15...0) then
TrapException

endif
VR5432 Microprocessor User’s Manual 559

Chapter 17
Format:

TLTU rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with general-purpose
register rs. Interpreting both values as unsigned integers, if the contents of
general-purpose register rs are less than the contents of general-purpose register
rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Trap exception

TLTU Trap If Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

TLTU

32, 64T: if (0 || GPR[rs]) < (0 || GPR[rt]) then

TrapException

endif
560 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

TNE rs, rt (MIPS II format)

Description:

The contents of general-purpose register rt are compared with those of general-
purpose register rs. If the contents of general-purpose register rs are not equal to
the contents of general-purpose register rt, a Trap exception occurs.

The code field is available for transferring parameters to the exception handler.
The parameter is retrieved by the exception handler only by loading as data the
contents of the memory word containing the instruction.

Operation:

Exceptions:

Trap exception

TNETrap If Not Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

TNE

32, 64T: if GPR[rs] ≠ GPR[rt] then

TrapException

endif
VR5432 Microprocessor User’s Manual 561

Chapter 17
Format:

TNEI rs, immediate (MIPS II format)

Description:

The 16-bit immediate is sign extended and compared with the contents of general-
purpose register rs. If the contents of general-purpose register rs are not equal to
the sign-extended immediate, a Trap exception occurs.

Operation:

Exceptions:

Trap exception

TNEI Trap If Not Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

TNEI

32 T: if GPR[rs] ≠ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≠ (immediate15)48 || immediate15...0 then
TrapException

endif
562 VR5432 Microprocessor User’s Manual

CPU Instruction Set
Format:

XOR rd, rs, rt (MIPS I format)

Description:

The contents of general-purpose register rs are bitwise ORed with the contents of
general-purpose register rt. The result is stored into general-purpose register rd.

Operation:

Exceptions:

None

XORExclusive OR

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

XOR

32, 64T: GPR[rd] ← GPR[rs] xor GPR[rt]
VR5432 Microprocessor User’s Manual 563

Chapter 17
Format:

XORI rt, rs, immediate (MIPS I format)

Description:

The 16-bit zero-extended immediate is bitwise ORed with the contents of general-
purpose register rs. The result is stored in general-purpose register rt.

Operation:

 Exceptions:

None

XORI Exclusive OR Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16

0 0 1 1 1 0

XORI

32 T: GPR[rt] ← GPR[rs] xor (016 || immediate)

64 T: GPR[rt] ← GPR[rs] xor (048 || immediate)
564 VR5432 Microprocessor User’s Manual

CPU Instruction Set
17.5 CPU Instruction Opcode Bit Encoding

 Figure 17-1 and Figure 17-2 list the VR5432 opcode bit encoding.

Figure 17-1 VR5432 Opcode Bit Encoding (1 of 2)

 SPECIAL
ADDI
COP0

DADDIe DADDIUe LDLe LDRe * * *
BEQL BNEL BLEZL BGTZL

LB
SB CACHE

LWUe

*

LL LDC1 LDC2 LDe
SC SDC1 SDC2 SDe

DSLLe * DSRLep DSRAe DSLL32e * DSRL32ep DSRA32e
TGE TGEU TLT TLTU TEQ TNE

2...0

REGIMM rt18...16

SLL
 JR

MFHI
MULTp

ADD
SLT

*
DSLLVe * DSRLVep DSRAVe
DMULTe DMULTUe DDIVe DDIVUe

DADDe DADDUe DSUBe DSUBUe*

*

COPz rs

SPECIAL function

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

31...29
0
1
2
3
4
5
6

 5...3
0
1
2
3
4
5
6
7

20...19
0
1
2
3

7

28...26 Opcode
0 1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 *
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRLp SRA SLLV SRLVp SRAV
 JALR
MTHI MFLO MTLO

MULTUp DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *
ADDIU SLTI SLTIU ANDI ORI XORI LUI

REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

BLTZL
TLTI

BLTZALL

BGEZL
TLTIU

BGEZALL
TNEITEQI

MF

23...21
0 1 2 3 4 5 6 725, 24

0
1
2
3

CF
BC

MT CT

CO

DMFe g DMTe g

SDLe
LLDe

SCDe

SDRe

* * SYNC

d

g g g g g g g

* * * * * * * *
* * * *

* * * *
* *

BLTZ

BLTZAL

BGEZ

BGEZAL
TGEI TGEIU

*

DEBUG
VR5432 Microprocessor User’s Manual 565

Chapter 17
Figure 17-2 VR5432 Opcode Bit Encoding (2 of 2)

Key:

* If the operation code marked with an asterisk is executed, the
Reserved Instruction exception occurs. These codes are reserved
for future expansion.

γ Operation codes marked with a gamma cause a Reserved
Instruction exception. They are reserved for future expansion

BCF

18...16
0 1 2 3 4 5 6 720...19

0
1
2
3

BCFL
γ γ γ γ γ γ γ

γ γBCT BCTL γ γ
γ

γ γ γ γ γ γ γγ
γ γ γ γ γ γ γγ

CP0 Function
2 ... 0

0 1 2 3 4 5 6 75 ... 3
0
1
2
3

TLBWITLBR TLBWR
TLBP

ξ

4
5
6
7

ERET χ

φ φφ

φ φ φ φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

COPz rt

DEBUG Function
2 ... 0

0 1 2 3 4 5 6 75 ... 3
0
1
2
3
4
5
6
7

φ φφ

φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

φ

φ
φ
φ

φ φ

DRETMF/TDR DBREAK
566 VR5432 Microprocessor User’s Manual

CPU Instruction Set
δ Operation codes marked with a delta are valid only with CP
enabled and cause a Reserved Instruction exception on other
processors.

φ Operation codes marked with a phi are invalid but do not caus
Reserved Instruction exceptions

ξ Operation codes marked with a xi cause a Reserved Instructio
exception.

χ Operation codes marked with a chi are valid only on VR4000 and
VR5000 processors.

ε Operation codes marked with an epsilon are valid in the 64-bit
mode and 32-bit Kernel mode. In the 32-bit User or Supervisor
mode, these codes generate the Reserved Instruction exception.

π Operation codes marked with a pi have been used for the
implementation-specific instruction set extensions on th
VR5432, specifically the Multiply-Accumulate instructions and
the Rotate instructions
VR5432 Microprocessor User’s Manual 567

Chapter 17
568 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

18

This chapter provides a detailed description of each Floating-Point Unit (FPU)
instruction. (For a general overview of VR5432 instructions, see Chapter 16.)

18.1 Instruction Formats

The instruction description subsections that follow show how the three basic
instruction formats (I-, R-, and J-type) are used by:

• Load and Store instructions

• Transfer instructions

• Floating-point arithmetic instructions

• Floating-point Branch instruction

Floating-Point instructions are mapped onto the MIPS coprocessor instructions,
defining Coprocessor one (CP1) as the floating-point unit.

Each operation is valid only for certain formats. Implementations may support
some of these formats and operations through emulation, but they only need to
support combinations that are valid (marked V in Table 18-1). Combinations
VR5432 Microprocessor User’s Manual 569

Chapter 18
marked R (reserved) in Table 18-1 are not currently specified by this architecture,
and cause an Unimplemented Instruction exception. They are reserved for future
extensions of the architecture.

The FPU Branch instruction can be used with the logic of the condition reversed,
so it is only necessary to provide half of the 32 comparison predicates and
relations required by the IEEE-754 standard. A four-bit field in the C instruction

Table 18-1 Valid FPU Instruction Forma t

Operation
Source Format

Single Double Word Longword

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

RECIP V V

ROUND.W V V

RSQRT V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R
570 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
(comparison) specifies one of the 16 conditions shown in the “True” column of
Table 18-2. Inverting the sense of the condition in the Branch instruction provides
the 16 conditions shown in the “False” column. Unordered conditions result when
one of the operands is a NaN (i.e., a “Not a Number” encoding), which has no
numerical order when compared to a number or another NaN.

Table 18-2 Logical Reverse of Predicates by Condition True/False

Condition Relations Invalid
Operation

Exception if
Unordered

Mnemonic
Code

Greater
Than

Less
Than

Equal Unordered
True False

F T 0 F F F F No

UN OR 1 F F F T No

EQ NEQ 2 F F T F No

UEQ OGL 3 F F T T No

OLT UGE 4 F T F F No

ULT OGE 5 F T F T No

OLE UGT 6 F T T F No

ULE OGT 7 F T T T No

SF ST 8 F F F F Yes

NGLE GLE 9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

F: False
T: True
VR5432 Microprocessor User’s Manual 571

Chapter 18
18.1.1 Floating-Point Loads, Stores, and Transfers

All movement of data between the floating-point unit (FPU) and memory is
accomplished by load and store operations, which reference the Floating-Point
General-Purpose registers (FGRs). These operations are unformatted; no format
conversions are performed and, therefore, no floating-point exceptions can be
generated by these operations.

Data may also be directly moved between the floating-point unit and the processor
by Move to Coprocessor (MTC) and Move from Coprocessor (MFC) instructions.
Like the floating-point load and store operations, these operations perform no
format conversions and never cause floating-point exceptions.

In addition, two Floating-Point Control registers (FCRs) are provided for FPU
control bits, status bits, implementation level, and revision level. These registers
can only be accessed by the CTC1 and CFC1 instructions.

18.1.2 Floating-Point Operations

The floating-point unit instruction set includes:

• Floating-point Add instructions

• Floating-point Subtract instruction

• Floating-point Multiply instruction

• Floating-point Divide instruction

• Floating-point Square Root instructions

• Floating-point Reciprocal instruction

• Floating-point Reciprocal Square Root instructions

• Conversion between fixed-point and floating-point format

• Conversion between floating-point format

• Floating-point Compare instructions

These operations satisfy the requirements of the IEEE-754 standard for accuracy.
Specifically, these operations obtain a result identical to an infinite-precision
result rounded to the specified format, using the current rounding mode.

Instructions must specify the format of their operands. Except for conversion
functions, mixed-format operations cannot be performed.

In the VR5432 implementation, the instruction immediately following a load may
use the contents of the register being loaded. In such cases, the hardware
interlocks by the number of cycles required for reading. Scheduling load delay
572 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
slots is not required for functional code; however, it still may be desirable for
highest performance or compatibility with the VR3000 device (which lacks
interlocks).

Load and Store instruction behavior depends on FGR width.

• When the FR bit in the Status register is clear, the Floating-Point
General-Purpose registers (FGRs) are 32 bits wide.

• To hold single-precision floating-point format data, sixteen even-
numbered registers out of 32 FGRs are available.

• To hold double-precision floating-point format data, the 32-bit
registers are used in pairs as 16 64-bit registers

• When the FR bit in the Status register is set, the FGRs are 64 bits
wide.

• To hold single-precision floating-point format data, the low half of 32
FGRs are used.

• To hold double-precision floating-point format data, 32 FGRs are
used.

In the load and store operation descriptions, the functions listed in
Table 18-3 are used to represent the handling of virtual addresses and physical
memory.

Table 18-3 FPU Load/Store Instructions Using Registe r +Register Addressing

Mnemonic Description
Defined in

MIPS...

LWXC1 Load Word Indexed to FPU IV

SWXC1 Store Word Indexed from FPU IV

LDXC1 Load Doubleword Indexed to FPU IV

SDXC1 Store Doubleword Indexed from FPU IV
VR5432 Microprocessor User’s Manual 573

Chapter 18
Figure 18-1 shows the I-type instruction format used by Load and Store
instructions.

Figure 18-1 Load and Store Instruction Format

All coprocessor loads and stores reference data that is located at word boundaries.
For word loads and stores, the access type field is always word, and the low-order
two bits of the address must always be zero. For doubleword loads and stores, the
access type field is always doubleword, and the low-order three bits of the address
must always be zero.

Regardless of byte-numbering order, the address specifies the byte that has the
smallest byte address in the accessed field. For a big-endian system, this is the left-
most byte; for a little-endian system, this is the right-most byte.

op: 6-bit opcod

base: 5-bit base register specifier

ft: 5-bit source (for stores) or destination (for loads) FPU register specifie

offset: 16-bit signed immediate offset

31 25 21 20 16 0

I-type (Immediate)

15

offset

26

ftbaseop

6 5 5 16
574 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
18.2 Floating-Point Computational Instructions

Computational instructions include all of the floating-point arithmetic operations
performed by the FPU.

Figure 18-2 shows the R-type instruction format used for computational
instructions.

Figure 18-2 Computational Instruction Format

The function field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand formats.
The operand format for an instruction is specified by the 5-bit format field (fmt);
decoding for this field is shown in Table 18-4.

Table 18-4 Format Field Decoding

Code Mnemonic Size Format

0−15 Reserved

16 S Single (32 bits) Binary floating-point

17 D Double (64 bits) Binary floating-point

18 Reserved

19 Reserved

20 W 32 bits Binary fixed-point

21 L 64 bits Binary fixed-point

22–31 Reserved

COP1: 6-bit opcode

fmt: 5-bit format specifie

fs: 5-bit source 1 register

ft: 5-bit source 2 register

fd: 5-bit destination register

function: 6-bit function field

31 0

R-type (Register)

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5
VR5432 Microprocessor User’s Manual 575

Chapter 18
Table 18-5 lists all floating-point computational instructions.

Table 18-5 Floating-Point Computational Instructions and Operations

Code
(5:0)

Mnemonic Operation

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Transfer

7 NEG Sign reverse

8 ROUND.L Convert to 64-bit fixed-point, rounded to nearest even number

9 TRUNC.L Convert to 64-bit fixed-point, rounded toward zero

10 CEIL.L Convert to 64-bit fixed-point, rounded to + ∞
11 FLOOR.L Convert to 64-bit fixed-point, rounded to – ∞
12 ROUND.W Convert to 32-bit fixed-point, rounded to nearest even number

13 TRUNC.W Convert to 32-bit fixed-point, rounded toward zero

14 CEIL.W Convert to 32-bit fixed-point, rounded to + ∞
15 FLOOR.W Convert to 32-bit fixed-point, rounded to – ∞
16–31 Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 Reserved

35 Reserved

36 CVT.W Convert to 32-bit fixed-point

37 CVT.L Convert to 64-bit fixed-point

38–47 Reserved

48–63 C Floating-Point Compare
576 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
The following routines are used in the description of the floating-point operations
to retrieve the value of an FPR or to change the value of an FGR:

 32-Bit Mode

value <-- ValueFPR(fpr, fmt)
/* undefined for odd fpr */
case fmt of

S, W:
value <-- FGR[fpr+0]

D:
value <-- FGR[fpr+1] || FGR[fpr+0]

end

StoreFPR(fpr, fmt, value):
/* undefined for odd fpr */
case fmt of

S, W:
FGR[fpr+1] <-- undefined
FGR[fpr+0] <-- value

D:
FGR[fpr+1] <-- value63...32
FGR[fpr+0] <-- value31...0

end
VR5432 Microprocessor User’s Manual 577

Chapter 18
18.3 FPU Instructions

This section describes in detail the FPU instructions.

Exceptions that may occur are listed at the end of each instruction’s description.
For details regarding FPU exceptions and exception processing, refer to Chapter
8.

 64-Bit Mode

value <-- ValueFPR(fpr, fmt)
case fmt of

S, W:
value <-- FGR[fpr]31...0

D, L:
value <-- FGR[fpr]

end

StoreFPR(fpr, fmt, value):
case fmt of

S, W:
FGR[fpr] <-- undefined32 || value

D, L:
FGR[fpr] <-- value

end
578 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

ABS.fmt fd, fs (MIPS I format)

Description:

The absolute value of the contents of floating-point register fs is taken and stored
in floating-point register fd. The operand is processed in the floating-point format
fmt.

The absolute value operation is arithmetically performed. If the operand is NaN,
therefore, the Invalid Operation exception occurs.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined.

If the FR bit is 1, both odd and even register numbers are valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

ABS.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

ABS.fmAbsolute Value

32, 64T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))
VR5432 Microprocessor User’s Manual 579

Chapter 18

t

Format:

ADD.fmt fd, fs, ft (MIPS I format)

Description:

The contents of floating-point registers fs and ft are added and the result is stored
in floating-point register fd. The operand is processed in the floating-point format
fmt. The operation is executed as if the accuracy were infinite, and the result is
rounded according to the current rounding mode.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the Status register is 0, only an even number can be specified as
a register number because adjacent even-numbered and odd-numbered registers
are used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

ADD.fmFloating-Point Add

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0

ADD.fmt

32, 64T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) + ValueFPR (ft, fmt))
580 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

ADD.fmtFloating-Point AddADD.fmt
(continued)
VR5432 Microprocessor User’s Manual 581

Chapter 18
Format:

BC1F offset (MIPS I format, cc = 0 is implied)
BC1F cc, offset (MIPS IV format)

Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of the instruction following the branch (not the branch itself) in the branch
delay slot to form a PC-relative effective target address. If the floating-point
condition code bit cc is false (0), the program branches to the effective target
address after the instruction in the delay slot is executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code,
implemented as the Coprocess or1 condition signal (Cp1Cond) and the C bit in the
FCR31 register. MIP SI, II, and III architectures must have the cc field set to 0,
which is implied by the first format in the “Format” section above. Both assembler
formats are valid for MIPS IV.

The MIPS IV architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay slot) fields as
variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

In the MIPS I, II, and III implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that tests it. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

BC1F Branch on FPU False

18 17 16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC cc

3

21 20

0 1 0 0 0 1 0 1 0 0 0

BC1F

1 1

nd tf
0 0
582 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

Note: With the 18-bit signed instruction offset, the conditional branch
range is ±128K. Use the Jump (J) or Jump Register (JR) instruc-
tions to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

(Coprocessor 1)
Branch on FPU False BC1FBC1F

(continued)

MIPS I, II, and III:

T-1: condition ← FPConditionCode(0) = 0

T: target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

endif

MIPS IV:

T: condition ← FPConditionCode(cc) = 0

target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

endif
VR5432 Microprocessor User’s Manual 583

Chapter 18
Format:

BC1FL offset (MIPS I format, cc = 0 is implied)
BC1FL cc, offset (MIPS IV format)

Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of the instruction following the branch (not the branch itself) in the branch
delay slot to form a PC-relative effective target address. If the floating-point
condition code bit cc is false (0), the program branches to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken,
the instruction in the delay slot is not executed.

A floating-point condition code is set by the Floating-Point Compare instruction,
C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code,
implemented as the Coprocess or1 condition signal (Cp1Cond) and the C bit in the
FCR31 register. MIP SI, II, and III architectures must have the cc field set to 0,
which is implied by the first format in the “Format” section above. Both assembler
formats are valid for MIPS IV.

The MIPS IV architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay slot) fields as
variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

In the MIPS I, II, and III implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that tests it. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

BC1FL Branch on FPU False Likely

18 17 16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC cc

3

21 20

0 1 0 0 0 1 0 1 0 0 0

BC1FL

1 1

nd tf
1 0
584 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

Note: Software should only use this instruction when there is a very high
probability (98% or more) that the branch will be taken. If the
branch is not likely to be taken or if the probability of a taken
branch is unknown, users are encouraged to use the BC1F instruc-
tion instead.

(Coprocessor 1)
Branch on FPU False Likely BC1FLBC1FL

(continued)

MIPS I, II, and III:

T-1: condition ← FPConditionCode(0) = 0

T: target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

else

NullifyCurrentInstruction()

endif

MIPS IV:

T: condition ← FPConditionCode(cc) = 0

target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

else

NullifyCurrentInstruction()

endif
VR5432 Microprocessor User’s Manual 585

Chapter 18
Note: With the 18-bit signed instruction offset, the conditional branch
range is ±128K. Use Jump (J) or Jump Register (JR) instructions to
branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

(Coprocessor 1)
Branch on FPU False Likely BC1FLBC1FL

(continued)
586 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

BC1T offset (MIPS I format, cc = 0 is implied)
BC1T cc, offset (MIPS IV format)

Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of the instruction following the branch (not the branch itself) in the branch
delay slot to form a PC-relative effective target address. If the floating-point
condition code bit cc is false (0), the program branches to the effective target
address after the instruction in the delay slot is executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code,
implemented as the Coprocess or1 condition signal (Cp1Cond) and the C bit in the
FCR31 register. MIP SI, II, and III architectures must have the cc field set to 0,
which is implied by the first format in the “Format” section above. Both assembler
formats are valid for MIPS IV.

The MIPS IV architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay slot) fields as
variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

In the MIPS I, II, and III implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that tests it. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

BC1T Branch on FPU True

18 17 16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC cc

3

21 20

0 1 0 0 0 1 0 1 0 0 0

BC1T

1 1

nd tf
0 1
VR5432 Microprocessor User’s Manual 587

Chapter 18
Operation:

Note: With the 18-bit signed instruction offset, the conditional branch
range is ± 128K. Use Jump (J) or Jump Register (JR) instructions
to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

(Coprocessor 1)
Branch on FPU True BC1TBC1T

(continued)

MIPS I, II, and III:

T-1: condition ← FPConditionCode(0) = 1

T: target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

endif

MIPS IV:

T: condition ← FPConditionCode(cc) = 1

target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

endif
588 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

BC1TL offset (MIPS I format, cc = 0 is implied)
BC1TL cc, offset (MIPS IV format)

Description:

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the
address of the instruction following the branch (not the branch itself) in the branch
delay slot to form a PC-relative effective target address. If the floating-point
condition code bit cc is false (0), the program branches to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken,
the instruction in the delay slot is not executed.

A floating-point condition code is set by the floating-point Compare instruction,
C.cond.fmt.

The MIPS I architecture defines a single floating-point condition code,
implemented as the Coprocess or1 condition signal (Cp1Cond) and the C bit in the
FCR31 register. MIP SI, II, and III architectures must have the cc field set to 0,
which is implied by the first format in the “Format” section above. Both assembler
formats are valid for MIPS IV.

The MIPS IV architecture adds seven more condition code bits to the original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test. The condition code bit specified by the
cc field is modified by the tf (true/false) and nd (nullify delay slot) fields as
variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have
specific values for tf and nd.

In the MIPS I, II, and III implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that tests it. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

BC1TL Branch on FPU True Likely

18 17 16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC cc

3

21 20

0 1 0 0 0 1 0 1 0 0 0

BC1TL

1 1

nd tf
1 1
VR5432 Microprocessor User’s Manual 589

Chapter 18
Operation:

Note: Software should only use this instruction when there is a very high
probability (98% or more) that the branch will be taken. If the
branch is not likely to be taken or if the probability of a taken
branch is unknown, users are encouraged to use the BC1T instruc-
tion instead.

(Coprocessor 1)
Branch on FPU True Likely BC1TLBC1TL

(continued)

MIPS I, II, and III:

T-1: condition ← FPConditionCode(0) = 1

T: target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

else

NullifyCurrentInstruction()

endif

MIPS IV:

T: condition ← FPConditionCode(cc) = 1

target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

T+1: if condition then

PC ← PC + target_offset

else

NullifyCurrentInstruction()

endif
590 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Note: With the 18-bit signed instruction offset, the conditional branch
range is ± 128K. Use Jump (J) or Jump Register (JR) instructions
to branch to addresses outside this range.

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

(Coprocessor 1)
Branch on FPU True Likely BC1TLBC1TL

(continued)
VR5432 Microprocessor User’s Manual 591

Chapter 18
Format:

C.cond.fmt fs, ft (MIPS I format, cc = 0 is implied)
C.cond.fmt cc, fs, ft (MIPS IV format)

Description:

The value in floating-point register fs is compared to the value in floating-point
register ft; the values are in format fmt. The comparison is exact and neither
overflows nor underflows.

If the comparison specified by cond2..1 is true for the operand values, the result is
true; otherwise, the result is false. If no exception is taken, the result is written into
condition code cc; true is 1 and false is 0.

If cond3 is set and at least one of the values is a NaN, an Invalid Operation
condition is raised; the result depends on the Floating-Point exception model
currently active:

Precise exception model: The Invalid Operation flag is set in the FCR31 register.
If the Invalid Operation Enable bit is set in the FCR31 register, no result is written
and an Invalid Operation exception is taken immediately. Otherwise, the Boolean
result is written into condition code cc.

Imprecise exception model (R8000® normal mode): The Boolean result is
written into condition code cc. No FCR31 register flag is set. If th Invalid
Operation Enabl bit is set in the FCR31 register, an Invalid Operation
exception is taken, imprecisely, at some future time

There are four mutually exclusive ordering relations for comparing floating-point
values; one relation is always true and the others are false. The familiar relations
are greater than, less than, and equal. In addition, the IEEE floating-point
standard defines the relation unordered, which is true when at least one operand
value is NaN; NaN compares unordered with everything, including itself.
Comparisons ignore the sign of zero, so +0 equals −0.

C.cond.fmt Floating-Point

31 0

6 5 5 5 3 4

COP1 fmt ft fs cc cond

11 1021 20 16 1526 25

2

FC

8 5 4 3

0 1 0 0 0 1

Compare C.cond.fmt

1 1
2

0

7 6

0 0
592 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
The comparison condition is a logical predicate, or equation, of the ordering
relations such as less than or equal, equal, not less than, or unordered or equal.
Compare distinguishes among the 16 comparison predicates. The Boolean result
of the instruction is obtained by substituting the Boolean value of each ordering
relation for the two floating-point values in the equation. If the equal relation is
true, for example, then all four example predicates above yield a true result. If the
unordered relation is true, then only the final predicate, unordered or equal, yields
a true result.

Logical negation of a compare result allows eight distinct comparisons to test for
the 16 predicates, as shown in Table 18-6. Each mnemonic tests for both a
predicate and its logical negation. For each mnemonic, compare tests the truth of
the first predicate. When the first predicate is true, the result is true as shown in
the “If Predicate Is True” column and the second predicate must be false, and vice
versa. (Note that the False predicate is never true and False/True do not follow the
normal pattern.)

The truth of the second predicate is the logical negation of the instruction result.
After a Compare instruction, a test for the truth of the first predicate can be made
with the Branch on FPU True (BC1T) instruction and the truth of the second can
be made with the Branch on FPU False (BC1F) instruction.

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
VR5432 Microprocessor User’s Manual 593

Chapter 18
Table 18-7 shows another set of eight compare operations, distinguished by a
cond3 value of 1 and testing the same 16 conditions. For these additional
comparisons, if at least one of the operands is a NaN, including a Quiet NaN
(QNaN), then an Invalid Operation condition is raised. If the Invalid Operation
condition is enabled in the FCSR, an Invalid Operation exception occurs.

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
594 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Table 18-6 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC
Result

Instruc-
tion

Condition
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation

Relation
Values If

Predicate
 Is True

Inv.
Op.

Excp.
if

QNaN?

Condi-
tion Field

> < = ? 3 2..0

F
False [this predicate is always False] F F F F

F

No 0

0
True (T) T T T T

UN
Unordered F F F T T

1
Ordered (OR) T T T F F

EQ
Equal F F T F T

2
Not Equal (NEQ) T T F T F

UEQ

Unordered or Equal F F T T T

3Ordered or Greater Than or Less Than
(OGL)

T T F F F

OLT

Ordered or Less Than F T F F T

4Unordered or Greater Than or Equal
(UGE)

T F T T F

ULT
Unordered or Less Than F T F T T

5
Ordered or Greater Than or Equal (OGE) T F T F F

OLE
Ordered or Less Than or Equal F T T F T

6
Unordered or Greater Than (UGT) T F F T F

ULE
Unordered or Less Than or Equal F T T T T

7
Ordered or Greater Than (OGT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
VR5432 Microprocessor User’s Manual 595

Chapter 18
Table 18-7 FPU Comparisons With Special Operand Exceptions f o r Q N a N

Instruction Comparison Predicate Comparison CC
Result

Instruc-
tion

Condition
Mnemonic

Name of Predicate and
Logically Negated Predicate (Abbreviation

Relation
Values If

Predicate
 Is True

Inv.
Op.

Excp.
if

QNaN?

Condi-
tion Field

> < = ? 3 2..0

SF

Signaling False [this predicate is always
False]

F F F F
F

Yes 1

0

Signaling True (ST) T T T T

NGLE

Not Greater Than or Less Than or Equal F F F T T

1Greater Than or Less Than or Equal
(GLE)

T T T F F

SEQ
Signaling Equal F F T F T

2
Signaling Not Equal (SNE) T T F T F

NGL
Not Greater Than or Less Than F F T T T

3
Greater Than or Less Than (GL) T T F F F

LT
Less Than F T F F T

4
Not Less Than (NLT) T F T T F

NGE
Not Greater Than or Equal F T F T T

5
Greater Than or Equal (GE) T F T F F

LE
Less Than or Equal F T T F T

6
Not Less Than or Equal (NLE) T F F T F

NGT
Not Greater Than F T T T T

7
Greater Than (GT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
596 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
The instruction encoding is an extension made in the MIP SIV architecture. In
previous architecture levels, the cc field for this instruction must equal 0.

The MIPS I architecture defines a single floating-point condition code,
implemented as the Coprocess or1 condition signal (Cp1Cond) and the C bit in the
FCR31 register. MIP SI, II, and III architectures must have the cc field set to 0,
which is implied by the first format in the “Format” section. Both assembler
formats are valid for MIPS IV.

The MIPS IV architecture adds seven more condition code bits to t he original
condition code 0. Floating-Point Compare and Conditional Branch instructions
specify the condition code bit to set or test.

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are
not valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined
and the value of the operand FPRs becomes undefined.

In the MIPS I, II, and III implementations, there must be at least one instruction
between the Compare instruction that sets the condition code and the Branch
instruction that tests it. Hardware does not detect a violation of this restriction. In
the MIPS IV instruction set, this restriction has been removed.

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
VR5432 Microprocessor User’s Manual 597

Chapter 18
Operation:

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt

32, 64 T: if NaN (ValueFPR (fs, fmt)) or NaN (ValueFPR (ft, fmt)) then
less ← false
equal ← false
unordered ← true
if cond3 then

signal InvalidOperationException
endif

else
less ← ValueFPR (fs, fmt) < ValueFPR (ft, fmt)
equal ← ValueFPR (fs, fmt) = ValueFPR (ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or

 (cond0 and unordered)
SetFPConditionCode (cc, condition)
598 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Note: Floating-point computational instructions, including compare, that
receive an operand value of Signaling NaN (SNan) raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation
condition for Quiet NaNs in addition to SNaNs permit a simpler
programming model if NaNs are errors. Using these compares, pro-
grams do not need explicit code to check for QNaNs causing the
unordered relation. Instead, they take an exception and allow the
exception handling system to deal with the error when it occurs
For example, consider a comparison in which we want to know i
two numbers are equal, but for which unordered would be an er-
ror.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4 # it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

#equal-case code here
L2:

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
VR5432 Microprocessor User’s Manual 599

Chapter 18
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

Compare C.cond.fmtFloating-Point

(continued)

C.cond.fmt
600 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

CEIL.L.fmt fd, fs (MIPS III format)

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the + ∞ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of –252 to 252 – 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur,
and 252– 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

CEIL.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Ceiling to Long CEIL.L.fmt
VR5432 Microprocessor User’s Manual 601

Chapter 18
Operation:

 Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

(continued)

CEIL.L.fmt Floating-Point

Fixed-Point Format

Ceiling to Long CEIL.L.fmt

32, 64T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))
602 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

CEIL.W.fmt fd, fs (MIPS II format)

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format, and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the + ∞ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of 231 – 1 to –231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur, and 231 – 1 is
returned.

CEIL.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

Ceiling to Single CEIL.W.fmt
VR5432 Microprocessor User’s Manual 603

Chapter 18
Operation:

 Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

(continued)

CEIL.W.fmt Floating-Point

Fixed-Point Format
Ceiling to Single CEIL.W.fmt

32, 64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))
604 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

CFC1 rt, fs (MIPS I format)

Description:

The contents of floating-point control register fs are loaded into general-purpose
register rt.

This instruction is only defined when fs equals 0 or 31.

The contents of general-purpose register rt are undefined while the instruction
immediately following this Load instruction is being executed.

Operation:

 Exceptions:

Coprocessor Unusable exception

(Coprocessor 1)CFC1

11

Move Control Word from FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC1

32 T: temp ← FCR[fs]
T+1: GPR[rt] ← temp

64 T: temp ← FCR[fs]
T+1: GPR[rt] ← (temp31)32 || temp
VR5432 Microprocessor User’s Manual 605

Chapter 18
Format:

CTC1 rt, fs (MIPS I format)

Description:

The contents of general-purpose register rt are stored in floating-point control
register fs. This instruction is defined only if fs is 0 or 31.

If the cause bit of the floating-point Control/Status register (FCR31) and the
corresponding enable bit are set by writing data to FCR31, the Floating-Point
exception occurs. Write the data to the register before the exception occurs.

The contents of floating-point control register fs are undefined while the
instruction immediately following this instruction is executed.

Operation:

CTC1

11

Move Control Word to FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC1

32 T: temp ← GPR[rt]
T+1: FCR[fs] ← temp

 COC[1] ← FCR[31]23

64 T: temp ← GPR[rt]31...0
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23
606 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Division by Zero exception
Inexact Operation exception
Overflow exception
Underflow exception

CTC1
Move Control Word to FPU

(Coprocessor 1)CTC1
(continued)
VR5432 Microprocessor User’s Manual 607

Chapter 18

Format:

CVT.D.S fd, fs (MIPS I format, fmt = S)
CVT.D.W fd, fs (MIPS I format, fmt = W)
CVT.D.L fd, fs (MIPS III format, fmt = L)

Description:

The contents of floating-point register fs are arithmetically converted to a double-
precision floating-point format; the result is stored in floating-point register fd.
The source operand is processed in the floating-point format fmt.

This instruction is valid only for conversion from the single-precision floating-
point format and the 32-bit or 64-bit fixed-point formats.

In the single-precision floating-point format or 32-bit fixed-point format, this
conversion operation is executed correctly without losing any accuracy.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

CVT.D.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0

Convert to Double CVT.D.fmt

32, 64T: StoreFPR (fd, D, ConvertFmt (ValueFPR (fs, fmt), fmt, D))
608 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception

CVT.D.fmt Floating-Point

Floating-Point Format
Convert to Double CVT.D.fmt

(continued)
VR5432 Microprocessor User’s Manual 609

Chapter 18
Format:

CVT.L.fmt fd, fs (MIPS III format)

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format; the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN, and if the rounded result is outside the
range of –252 to 252 – 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur,
and 252 – 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

CVT.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0

Convert to Long CVT.L.fmt
610 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

CVT.L.fmt Floating-Point

Fixed-Point Format
Convert to Long CVT.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))
VR5432 Microprocessor User’s Manual 611

Chapter 18
Format:

CVT.S.D fd, fs (MIPS I format, fmt = D)
CVT.S.W fd, fs (MIPS I format, fmt = W)
CVT.S.L fd, fs (MIPS III format, fmt = L)

Description:

The contents of floating-point register fs are arithmetically converted into a single-
precision floating-point format; the result is stored in floating-point register fd.
The source operand is processed in the floating-point format fmt. The result of the
conversion is rounded according to the current rounding mode.

This instruction is valid only for conversion from the double-precision floating-
point format, and 32-bit or 64-bit fixed-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

CVT.S.fmt
Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0

Convert to SingleCVT.S.fmt

32, 64T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))
612 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

CVT.S.fmt
Floating-Point

Floating-Point Format

Convert to SingleCVT.S.fmt

(continued)
VR5432 Microprocessor User’s Manual 613

Chapter 18
Format:

CVT.W.fmt fd, fs (MIPS I format)

Description:

The contents of floating-point register fs are arithmetically converted to a 32-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of 231 – 1 to –231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur and 231 – 1 is
returned.

CVT.W.fmt
Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0

Convert to CVT.W.fmt
614 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

 Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

CVT.W.fmt
Floating-Point

Fixed-Point Format
Convert to CVT.W.fmt
(continued)

32, 64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))
VR5432 Microprocessor User’s Manual 615

Chapter 18

t

Format:

DIV.fmt fd, fs, ft (MIPS I format)

Description:

The contents of floating-point register fs are divided by those of floating-point
register ft, and the result is stored in floating-point register rd. The operand is
processed in the floating-point format fmt. The operation is executed as if the
accuracy were infinite, and the result is rounded according to the current rounding
mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception Invalid Operation exception
Division by Zero exception Inexact Operation exception
Overflow exception Underflow exception

DIV.fmFloating-Point Divide

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1

DIV.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)/ValueFPR (ft, fmt))
616 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

DMFC1 rt, fs (MIPS III format)

Description:

The contents of FPU general-purpose register fs are stored in CPU general-
purpose register rt.

The contents of general-purpose register rt are undefined while the instruction
immediately following this instruction is being executed.

The FR bit of the Status register indicates whether all 32 registers of the FPU can
be specified. If the FR bit is 0 and the least-significant bit of fs is 1, this instruction
is undefined.

The operation is undefined if an odd number is specified when the FR bit of the
Status register is 0. If the FR bit is 1, both odd-numbered and even-numbered
registers are valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

DMFC1 Doubleword Move from FPU

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC1
VR5432 Microprocessor User’s Manual 617

Chapter 18
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

DMFC1 Doubleword Move from FPU
(Coprocessor 1) DMFC1

(continued)

64 T: if SR26 = 1 then
data ← FGR [fs]

else

if fs0 = 0 then
data ← FGR [fs + 1] || FGR [fs]

else
data ← undefined64

endif
T+1: GPR[rt] ← data
618 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

DMTC1 rt, fs (MIPS III format)

Description:

The contents of CPU general-purpose register rt are stored in FPU general-
purpose register fs.

The contents of fs are undefined while the instruction immediately following this
instruction is being executed.

The FR bit of the Status register indicates whether all the 32 registers of the FPU
can be specified. If the FR bit is 0 and the least-significant bit of fs is 1, this
instruction is undefined.

The operation is undefined if an odd number is specified when the FR bit of the
Status register is 0. If the FR bit is 1, both odd-numbered and even-numbered
registers are valid.

This operation is defined in 64-bit mode or 32-bit Kernel mode.

DMTC1
Doubleword Move to FPU

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

DMTC1
VR5432 Microprocessor User’s Manual 619

Chapter 18
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

DMTC1
Doubleword Move to FPU

(Coprocessor 1) DMTC1
(continued)

64 T: data ← GPR[rt]

T+1: if SR26 = 1 then
FGR [fs] ← data

else

if fs0 = 0 then
FGR [fs+1] ← data63..32
FGR [fs] ← data31..0

else
undefined_result

endif
620 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

FLOOR.L.fmt fd, fs (MIPS III format)

Description:

The contents of floating-point register fs are arithmetically converted into a 64-bit
fixed-point format and the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the – ∞ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of –252 to 252 – 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 – 1 is returned.

This operation is defined in the 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User/Supervisor mode, a Reserved
Instruction exception occurs.

FLOOR.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

Floor to Long FLOOR.L.fmt
VR5432 Microprocessor User’s Manual 621

Chapter 18
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

FLOOR.L.fmt Floating-Point

Fixed-Point Format

Floor to Long FLOOR.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))
622 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

FLOOR.W.fmt fd, fs (MIPS II format)

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point format; the result is stored in floating-point register fd. The source
operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward the – ∞ direction, regardless of the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of 231 – 1 to –231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur and 231 – 1 is
returned.

Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0

Floor to Single FLOOR.W.fmtFLOOR.W.fmt
VR5432 Microprocessor User’s Manual 623

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

FLOOR.W.fmt Floating-Point

Fixed-Point Format

Floor to Single FLOOR.W.fmt
(continued)

32, 64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))
624 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

LDC1 ft, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address.

If the FR bit of the Status register is 0, the contents of the doubleword at the
memory location specified by the virtual address are stored in floating-point
registers ft and ft + 1. At this time, the high-order 32 bits of the doubleword are
stored in an odd-numbered register specified by ft + 1 and the low-order 32 bits
are stored in an even-numbered register specified by ft. The operation is undefined
if the least-significant bit in the ft field is not 0.

If the FR bit is 1, the contents of the doubleword at the memory location specified
by the virtual address are stored in floating-point register ft.

If any of the low-order three bits of the address is not zero, an Address Error
exception occurs.

LDC1
Load Doubleword to FPU

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 1 0 1

LDC1
VR5432 Microprocessor User’s Manual 625

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable Exception
TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LDC1 Load Doubleword to FPU
(Coprocessor 1) LDC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ← data
elseif ft0 = 0 then

FGR [ft+1] ← data63...32
FGR [ft] ← data31...0

else
undefined_result

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← Address Translation (vAddr, DATA)
data ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ← data
elseif ft0 = 0 then

FGR [ft+1] ← data63...32
FGR [ft] ← data31...0

else
undefined_result

endif
626 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

LDXC1 fd, index (base) (MIPS IV format)

Description:

The contents of the 64-bit doubleword at the memory location specified by the
aligned effective address are fetched and placed in floating-point regi s t efd. The
contents of general-purpose registers index and base are added to form the
effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddress63..6 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword
aligned), and the result of the instruction is undefined.

Load Doubleword Indexed to FPU

5

16 15

base

31 2526

COP1X

6

0

index

21 20

5

0 1 0 0 1 1
5

0

11 10

5

fd

6 5

6

LDXC1
0 0 0 0 0 1

LDXC1 LDXC1(Coprocessor 1)

0 0 0 0 0
VR5432 Microprocessor User’s Manual 627

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception
TLB Refill exception
TLB Invalid exception

(Coprocessor 1)
Load Doubleword Indexed to FP LDXC1LDXC1

(continued)

vAddr ← GPR[base] + GPR[index]

if vAddr2..0 ≠ 03 then SignalException(AddressError) endif

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

mem ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)

if FP32RegistersMode then

FPR[fd] ← data

else

if fd0 = 0 then

FPR[fd4..1 || 0] ← data

else

FPR[fd4..1 || 0] ← undefined64

FPR[fd4..1 || 1] ← undefined64

endif

endif
628 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

LWC1 ft, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the word at the memory
location specified by the virtual address are loaded to floating-point register ft.

If the FR bit of the Status register is 0 and if the least-significant bit in the ft field
is 0, the contents of the word are stored in the low-order 32 bits of floating-point
register ft. If the least-significant bit in the ft field is 1, the contents of the word are
stored in the high-order 32 bits of floating-point register ft − 1.

If the FR bit is 1, all the 64-bit floating-point registers can be accessed; therefore,
the contents of the word are stored in floating-point register ft. The value of the
high-order 32 bits is undefined.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

LWC1Load Word to FPU

31 2526 2021 1516 0

LWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 0 0 1

LWC1
VR5432 Microprocessor User’s Manual 629

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
TLB Miss exception
TLB Invalid exception
Bus Error exception
Address Error exception

LWC1Load Word to FPU
(Coprocessor 1)LWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ← undefined32 || data
else

FGR [ft] ← data
endif

64 T: vAddr ← ((offset15)48 || offset15...) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
if SR26 = 1 then

FGR [ft] ← undefined32 || data
else

FGR [ft] ← data
endif
630 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

LWXC1 fd, index (base) (MIPS IV format)

Description:

The contents of the 32-bit word at the memory location specified by the aligned
effective address are fetched and placed in the low word of floating-point
register fd. The contents of general-purpose registers index and base are added to
form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddress63..6 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word aligned),
and the result of the instruction is undefined.

Load Word Indexed to FPU

5

16 15

base

31 2526

COP1X

6

0

index

21 20

5

0 1 0 0 1 1
5

0

11 10

5

fd

6 5

6

LWXC1
0 0 0 0 0 0

LWXC1 LWXC1(Coprocessor 1)

0 0 0 0 0
VR5432 Microprocessor User’s Manual 631

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception
TLB Refill exception
TLB Invalid exception

(Coprocessor 1)
Load Word Indexed to FPU LWXC1LWXC1

(continued)

vAddr ← GPR[base] + GPR[index]

if vAddr1..0 ≠ 02 then SignalException(AddressError) endif

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)

pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))

/* mem is aligned 64-bits from memory. Pick out correct bytes. */

mem ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)

bytesel ← vAddr2..0 xor (BigEndianCPU || 02)

if FP32RegistersMode then

FPR[fd] ← undefined32 || data

else

if fd0 = 0 then

FPR[fd4..1 || 0] ← FPR[fd4..1 || 0]63..32 || data

else

FPR[fd4..1 || 0] ← data || FPR[fd4..1 || 0]31..0

endif

endif
632 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

t

Format:

MADD.fmt fd, fr, fs, ft (MIPS IV format)

Description:

The value in floating-point register fs is multiplied by the value in floating-point
register ft to produce a product. The value in floating-point register fr is added to
the product. The resulting sum is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, and placed into
floating-point register fd. The operands and result are values in format fmt.

Cause bits are ORed into the Flag bits if no exception is taken.

The fields fr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

Floating-Point

5

16 15

fr

31 2526

COP1X

6

0

ft

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

fd

6 5

3

MADD
1 0 0

MADD.fmt MADD.fmMultiply-Add

3 2

3

fmt

vfr ← ValueFPR(fr, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, vfr +fmt (vfs ×fmt vft))
VR5432 Microprocessor User’s Manual 633

Chapter 18
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception

Multiply-Add
Floating-Point MADD.fmtMADD.fmt

(continued)
634 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

MFC1 rt, fs (MIPS I format)

Description:

The contents of floating-point general-purpose register fs are stored in general-
purpose register rt of the CPU register rt.

The contents of general-purpose register rt are undefined while the instruction
immediately following this instruction is being executed.

If the FR bit of the Status register is 0 and if the least-significant bit in the ft field
is 0, the low-order 32 bits of floating-point register ft are stored in CPU general-
purpose register rt. If the least-significant bit in the ft area is 1, the high-order 32
bits of floating-point register ft − 1 are stored in general-purpose register rt.

If the FR bit is 1, all 64-bit floating-point registers can be accessed; therefore, the
high-order 32 bits of floating-point register ft are stored in CPU general-purpose
register rt.

Operation:

Exceptions:

Coprocessor Unusable exception

MFC1

11

Move Word from FPU

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC1

32 T: data ← FGR [fs]31...0
T+1: GPR [rt] ← data

64 T: data ← FGR [fs]31...0

T+1: GPR[rt] ← (data31)32 || data
VR5432 Microprocessor User’s Manual 635

Chapter 18
Format:

MOV.fmt fd, fs (MIPS I format)

Description:

The contents of floating-point register fs are stored in floating-point register fd.
The operand is processed in the floating-point format fmt.

This instruction is not executed arithmetically, and no IEEE-754 exception is
generated.

This instruction is valid only in the single- and double-precision floating-point
formats.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception

MOV.fmtFloating-Point Move

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0

MOV.fmt

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt))
636 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

MOVF rd, rs, cc (MIPS IV format)

Description:

If the floating-point condition code specified by cc is zero, then the contents of
general-purpose register rs are placed into general-purpose register rd.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

MOVF Move Conditional on FPU False

18 17 16 1531 2526

SPECIAL

6

0

5

rs cc

3

21 20

0 0 0 0 0 0

MOVF

1 1

0 tf
0 0

5

rd

11 10

0 0 0 0 0

5

0

6 5

0 0 0 0 0 1

6

MOVCI

if FPConditionCode(cc) = 0 then

GPR[rd] ← GPR[rs]

endif
VR5432 Microprocessor User’s Manual 637

Chapter 18

t

Format:

MOVF.fmt fd, fs, cc (MIPS IV format)

Description:

If the floating-point condition code specified by cc is zero, then the value in
floating-point register fs is placed into floating-point register fd. The source and
destination are values in format fmt.

If the condition code is not zero, then floating-point register fs is not copied and
floating-point register fd retains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or
move-to operation that could be interpreted in format fmt, then the value of fd
becomes undefined. The fields fs and fd must specify floating-point registers valid
for operands of type fmt; if they are not valid, the result is undefined.

The move is nonarithmetic; it causes no IEEE-754 exceptions.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

MOVF.fmt
18 17 16 1531 2526

COP1

6

0

5

fmt cc

3

21 20

0 1 0 0 0 1

MOVF.fm

1 1

0 tf
0 0

5

fs

11 10

5

fd

6 5

0 1 0 0 0 1

6

MOVCF

Floating-Point Move
Conditional on FPU False

if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif
638 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

t

Format:

MOVN.fmt fd, fs, rt (MIPS IV format)

Description:

If the value in general-purpose register rt is not equal to zero, then the value in
floating-point register fs is placed in floating-point register fd. The source and
destination are values in format fmt.

If general-purpose register rt contains zero, then floating-point register fs is not
copied and floating-point register fd contains its previous value in format fmt. If
fd did not contain a value either in format fmt or previously unused data from a
load or move-to operation that could be interpreted in format fmt, then the value
of fd becomes undefined. The fields fs and fd must specify floating-point registers
valid for operands of type fmt; if they are not valid, the result is undefined.

The move is nonarithmetic; it causes no IEEE-754 exceptions.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

MOVN.fmt
16 1531 2526

COP1

6

0

5

fmt rt

5

21 20

0 1 0 0 0 1

MOVN.fm

5

fs

11 10

5

fd

6 5

0 1 0 0 1 1

6

MOVN

Floating-Point Move
Conditional on Not Zero

if GPR[rt] ≠ 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif
VR5432 Microprocessor User’s Manual 639

Chapter 18
Format:

MOVT rd, rs, cc (MIPS IV format)

Description:

If the floating-point condition code specified by cc is one, then the contents of
general-purpose register rs are placed into general-purpose register rd.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

MOVT Move Conditional on FPU True

18 17 16 1531 2526

SPECIAL

6

0

5

rs cc

3

21 20

0 0 0 0 0 0

MOVT

1 1

0 tf
0 1

5

rd

11 10

0 0 0 0 0

5

0

6 5

0 0 0 0 0 1

6

MOVT

if FPConditionCode(cc) = 1 then

GPR[rd] ← GPR[rs]

endif
640 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

t

Format:

MOVT.fmt fd, fs, cc (MIPS IV format)

Description:

If the floating-point condition code specified by cc is one, then the value in
floating-point register fs is placed into floating-point register fd. The source and
destination are values in format fmt.

If the condition code is not one, then floating-point register fs is not copied and
floating-point register fd retains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or
move-to operation that could be interpreted in format fmt, then the value of fd
becomes undefined. The fields fs and fd must specify floating-point registers valid
for operands of type fmt; if they are not valid, the result is undefined.

The move is nonarithmetic; it causes no IEEE-754 exceptions.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

MOVT.fmt
18 17 16 1531 2526

COP1

6

0

5

fmt cc

3

21 20

0 1 0 0 0 1

MOVT.fm

1 1

0 tf
0 1

5

fs

11 10

5

fd

6 5

0 1 0 0 0 1

6

MOVT

Floating-Point Move
Conditional on FPU True

if FPConditionCode(cc) = 1 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif
VR5432 Microprocessor User’s Manual 641

Chapter 18

t

Format:

MOVZ.fmt fd, fs, rt (MIPS IV format)

Description:

If the value in general-purpose register rt is equal to zero, then the value in
floating-point register fs is placed in floating-point register fd. The source and
destination are values in format fmt.

If general-purpose register rt does not contain zero, then floating-point register fs
is not copied and floating-point register fd contains its previous value in format
fmt. If fd did not contain a value either in format fmt or previously unused data
from a load or move-to operation that could be interpreted in format fmt, then the
value of fd becomes undefined. The fields fs and fd must specify floating-point
registers valid for operands of type fmt; if they are not valid, the result is
undefined.

The move is nonarithmetic; it causes no IEEE-754 exceptions.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception

MOVZ.fmt
16 1531 2526

COP1

6

0

5

fmt rt

5

21 20

0 1 0 0 0 1

MOVZ.fm

5

fs

11 10

5

fd

6 5

0 1 0 0 1 0

6

MOVZ

Floating-Point Move
Conditional on Zero

if GPR[rt] = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif
642 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

t

Format:

MSUB.fmt fd, fr, fs, ft (MIPS IV format)

Description:

The value in floating-point register fs is multiplied by the value in floating-point
register ft to produce a product. The value in floating-point register fr is subtracted
from the product. The subtraction result is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, and placed into
floating-point register fd. The operands and result are values in format fmt.

Cause bits are ORed into the Flag bits if no exception is taken.

The fields fr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

Floating-Point

5

16 15

fr

31 2526

COP1X

6

0

ft

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

fd

6 5

3

MSUB
1 0 1

MSUB.fmt MSUB.fmMultiply-Subtract

3 2

3

fmt

vfr ← ValueFPR(fr, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr)
VR5432 Microprocessor User’s Manual 643

Chapter 18

t

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception

Multiply-Subtract
Floating-Point MSUB.fmMSUB.fmt

(continued)
644 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

MTC1 rt, fs (MIPS I format)

Description:

The contents of CPU general-purpose register rt are stored in the floating-point
general-purpose register fs.

The contents of floating-point register fs are undefined while the instruction
immediately following this instruction is being executed.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the FR bit is 1, all of the 32 floating-point general-purpose registers can be
accessed, but only the low-order 32 bits are affected by this instruction.

Operation:

Exceptions:

Coprocessor Unusable exception

MTC1

11

Move to FPU

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0

MTC1

32, 64 T: data ← GPR [rt]231..0
T+1: if SR26= 1 then

FGR [fs] ← undefined32 || data
else

FGR [fs] ← data
endif
VR5432 Microprocessor User’s Manual 645

Chapter 18
Format:

MUL.fmt fd, fs, ft (MIPS I format)

Description:

The contents of floating-point register fs are multiplied by those of floating-point
register ft, and the result is stored in floating-point register fd. The operand is
processed in the floating-point format fmt.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
 Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

MUL.fmtFloating-Point Multiply

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0

MUL.fmt

32, 64T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) * ValueFPR (ft, fmt))
646 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

NEG.fmt fd, fs (MIPS I format)

Description:

The sign of the contents of floating-point register fs is inverted and the result is
stored in floating-point register fd. The operand is processed in the floating-point
format fmt.

The sign is inverted arithmetically. Therefore, the instruction is invalid if the
operand is NaN.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception

NEG.fmt Floating-Point Negate

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0

NEG.fmt

32, 64T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))
VR5432 Microprocessor User’s Manual 647

Chapter 18

t

Format:

NMADD.fmt fd, fr, fs, ft (MIPS IV format)

Description:

The value in floating-point register fs is multiplied by the value in floating-point
register ft to produce a product. The value in floating-point register fr is added to
the product. The resulting sum is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, negated by
changing the sign bit, and placed into floating-point register fd. The operands and
result are values in format fmt.

Cause bits are ORed into the Flag bits if no exception is taken.

The fields fr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

Floating-Point

5

16 15

fr

31 2526

COP1X

6

0

ft

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

fd

6 5

3

NMADD
1 1 0

NMADD.fmt NMADD.fmNegative

3 2

3

fmt

Multiply-Add

vfr ← ValueFPR(fr, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))
648 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception

Floating-PointNMADD.fmt NMADD.fmtNegative
Multiply-Add

(continued)
VR5432 Microprocessor User’s Manual 649

Chapter 18

t

Format:

NMSUB.fmt fd, fr, fs, ft (MIPS IV format)

Description:

The value in floating-point register fs is multiplied by the value in floating-point
register ft to produce a product. The value in floating-point register fr is subtracted
from the product. The subtraction result is calculated to infinite precision, rounded
according to the current rounding mode in the FCR31 register, negated by
changing the sign bit, and placed into floating-point register fd. The operands and
result are values in format fmt.

Cause bits are ORed into the Flag bits if no exception is taken.

The fields fr, fs, ft, and fd must specify floating-point registers valid for operands
of type fmt; if they are not valid, the result is undefined.

The operands must be values in format fmt; if they are not, the result is undefined
and the value of the operand floating-point registers becomes undefined.

Operation:

Floating-Point

5

16 15

fr

31 2526

COP1X

6

0

ft

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

fd

6 5

3

NMSUB
1 1 1

NMSUB.fmt NMSUB.fmNegative

3 2

3

fmt

Multiply-Subtract

vfr ← ValueFPR(fr, fmt)

vfs ← ValueFPR(fs, fmt)

vft ← ValueFPR(ft, fmt)

StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))
650 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception

Floating-PointNMSUB.fmt NMSUB.fmtNegative
Multiply-Subtract

(continued)
VR5432 Microprocessor User’s Manual 651

Chapter 18
Format:

PREFX hint, index (base) (MIPS IV format)

Description:

PREFX adds the contents of general-purpose register index to the contents of
general-purpose register base to form an effective byte address. It presents advice
that data at the effective address may be used in the near future. The hint field
supplies information about the way the data is expected to be used.

Unlike the VR5000, in which the PREFX instruction is executed as an NOP, in the
VR5432 data may be prefetched into the data cache as a result of executing this
instruction.

PREFX is an advisory instruction that may change the performance of the
program. For all hint values, it neither changes architecturally visible state nor
alters the meaning of the program. The supported hint values are shown in Table
18-8.

Prefetch Indexed

5

16 15

base

31 2526

COP1X

6

0

index

21 20

5

0 1 0 0 1 1
5

hint

11 10

5

0

6 5

6

PREFX
0 0 1 1 1 1

PREFX PREFX

0 0 0 0 0
652 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Table 18-8 Hint Field Values Used in PREFX Instruction

Value Name Data Use and Desired Prefetch Action

0 load
Data is expected to be loaded (not modified).
Fetch data as if for a load.

1 store
Data is expected to be stored or modified.
Fetch data as if for a store.

2−3 Reserved

4 load_streamed

Data is expected to be loaded (not modified) but not reused
extensively; it “streams” through the cache.
Fetch data as if for a load and place it in the cache so that
it does not displace data prefetched as “retained.”

5 store_streamed

Data is expected to be stored or modified but not reused
extensively; it “streams” through the cache.
Fetch data as if for a store and place it in the cache so that
it does not displace data prefetched as “retained.”

6 load_retained

Data is expected to be loaded (not modified) and reused
extensively; it should be “retained” in the cache.
Fetch data as if for a load and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

7 store_retained

Data is expected to be stored or modified and reused
extensively; it should be “retained” in the cache.
Fetch data as if for a store and place it in the cache so that
it is not displaced by data prefetched as “streamed.”

8−24 Reserved

25 writeback_invalidate

26−31 Reserved

PREFXPrefetch IndexedPREFX (continued)
VR5432 Microprocessor User’s Manual 653

Chapter 18
If MIPS IV instructions are supported and enabled and Coprocessor 1 is enabled
(allowing access to CP1X), PREFX does not cause any addressing-related
exceptions. If it does raise a nonaddressing-related exception condition, the
exception condition is ignored. If an addressing-related exception condition is
raised and ignored, no data is prefetched. In such a case, even if no data is
prefetched, some action that is not architecturally visible—such as write-back of
a dirty cache line—can take place.

PREFX never generates a memory operation for a location with an uncached
memory access type. However, it can result in a memory operation.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddress63..6 ≠ base63..62, the result of the instruction is undefined.

Prefetch cannot prefetch data from a mapped location unless the translation for
that location is present in the TLB. Locations in memory pages that have not been
accessed recently may not have translations in the TLB, so prefetch may not be
effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to
prefetch using an address pointer value before the validity of a pointer is
determined.

Operation:

Exceptions:

Reserved Instruction exception
Coprocessor Unusable exception

PREFXPrefetch IndexedPREFX (continued)

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)
654 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set

t

Format:

RECIP.fmt fd, fs (MIPS IV format)

Description:

The reciprocal of the value in floating-point register fs is placed into floating-point
register fd. The operand and result are values in format fmt.

The numeric accuracy of this operation meets the full accuracy specified by the
IEEE-754 floating-point standard for this operation.

The fields fs and fd must specify floating-point registers valid for operands of type
fmt; if they are not valid, the result is undefined.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception
Division by Zero exception

RECIP.fmt
16 1531 2526

COP1

6

0

5

fmt 0

5

21 20

0 1 0 0 0 1

RECIP.fm

5

fs

11 10

5

fd

6 5

010101

6

RECIP

Reciprocal

0 0 0 0 0

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))
VR5432 Microprocessor User’s Manual 655

Chapter 18
Format:

ROUND.L.fmt fd, fs (MIPS III format)

Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded to the closest value or even number,
regardless of the current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of –252 to 252 – 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 – 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

ROUND.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Round to Long ROUND.L.fmt
656 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

ROUND.L.fmt Floating-Point

Fixed-Point Format
Round to Long ROUND.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))
VR5432 Microprocessor User’s Manual 657

Chapter 18
Format:

ROUND.W.fmt fd, fs (MIPS II format)

Description:

The contents of floating-point register fs are converted into the 32-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded to the closest value or even number,
regardless of the current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of 231 – 1 to –231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur and 231 – 1 is
returned.

ROUND.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0

Round to Single
ROUND.W.fmt
658 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

ROUND.W.fmtFloating-Point

Fixed-Point Format

Round to Single
ROUND.W.fmt

(continued)

32, 64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))
VR5432 Microprocessor User’s Manual 659

Chapter 18

t

Format:

RSQRT.fmt fd, fs (MIPS IV format)

Description:

The reciprocal of the positive square root of the value in floating-point register fs
is placed into floating-point register fd. The operand and result are values in
format fmt.

The numeric accuracy of this operation meets the full accuracy specified by the
IEEE-754 floating-point standard for this operation.

The fields fs and fd must specify floating-point registers valid for operands of type
fmt; if they are not valid, the result is undefined.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Overflow exception
Underflow exception
Inexact Operation exception
Division by Zero exception

RSQRT.fmt
16 1531 2526

COP1

6

0

5

fmt 0

5

21 20

0 1 0 0 0 1

RSQRT.fm

5

fs

11 10

5

fd

6 5

0 1 0 1 1 0

6

RSQRT

Reciprocal

0 0 0 0 0

Square Root

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))
660 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

SDC1 ft, offset (base) (MIPS II format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address.

The contents of floating-point registers ft and ft + 1 are stored in the memory
position specified by the virtual address as a doubleword if the FR bit of the Status
register is 0. At this time, the contents of the odd-numbered register specified by
ft + 1 correspond to the high-order 32 bits of the doubleword and the contents of
the even-numbered register specified by ft correspond to the low-order 32 bits.

If the least-significant bit in the ft field is not 0, this instruction is not defined.

If the FR bit is 1, the contents of floating-point register ft are stored in the memory
location specified by the virtual address as a doubleword.

If any of the low-order three bits of the address is not zero, an Address Error
exception occurs.

SDC1Store Doubleword from FPU

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 1 0 1

SDC1
VR5432 Microprocessor User’s Manual 661

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
TLB Miss exception
TLB Invalid exception
TLB Modification exception
Bus Error exception
Address Error exception

SDC1
Store Doubleword from FPU

(Coprocessor 1)SDC1
(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR [base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1

data ← FGR [ft]63...0
elseif ft0 = 0 then

data ← FGR [ft+1]31...0 || FGR [ft]31...0
else

data ← undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR [base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1

data ← FGR [ft]63...0
elseif ft0 = 0 then

data ← FGR [ft+1]31...0 || FGR [ft]31...0
else

data ← undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
662 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

SDXC1 fs, index (base) (MIPS IV format)

Description:

The 64-bit doubleword in floating-point register fs is stored in memory at the
location specified by the aligned effective address. The contents of general-
purpose registers index and base are added to form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddress63..6 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-
aligned). If they are not, the result of the instruction is undefined.

Operation:

Store Doubleword Indexed from FPU

5

16 15

base

31 2526

COP1X

6

0

index

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

0

6 5

6

SDXC1
0 0 0 0 0 1

SDXC1 SDXC1(Coprocessor 1)

0 0 0 0 0

vAddr ← GPR[base] + GPR[index]

if vAddr2..0 ≠ 03 then SignalException(AddressError) endif

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)

if FP32RegistersMode then

data ← FPR[fs]

else

if fs0 = 0 then

data ← FPR[fs4..1 || 0]

else

data ← undefined64

endif

endif

StoreMemory(CCA, DOUBLEWORD, data, pAddr, vAddr, DATA)
VR5432 Microprocessor User’s Manual 663

Chapter 18
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception
TLB Refill exception
TLB Modified exception
TLB Invalid exception

(Coprocessor 1)
Store Doubleword Indexed from FPU SDXC1SDXC1

(continued)
664 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

SQRT.fmt fd, fs (MIPS II format)

Description:

The positive arithmetic square root of the contents of floating-point register fs is
calculated and the result is stored in floating-point register fd. The operand is
processed in the floating-point format fmt. The result is rounded as if calculated to
infinite precision and then rounded according to the current rounding mode. If the
value of the source operand is –0, the result will be –0. The result is placed in the
floating-point register specified by fd.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception

SQRT.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0

Square Root SQRT.fmt

0
0 0 0 0 0

32, 64T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))
VR5432 Microprocessor User’s Manual 665

Chapter 18
Format:

SUB.fmt fd, fs, ft (MIPS I format)

Description:

The contents of floating-point register ft are subtracted from those of floating-
point register fs, and the result is stored in floating-point register fd. The result is
rounded as if calculated to infinite precision and then rounded according to the
current rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

Operation:

Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Unimplemented Operation exception
Invalid Operation exception
Inexact Operation exception
Overflow exception
Underflow exception

SUB.fmtFloating-Point Subtract

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1

SUB.fmt

32, 64T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) – ValueFPR (ft, fmt))
666 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

SWC1 ft, offset (base) (MIPS I format)

Description:

The 16-bit offset is sign extended and added to the contents of general-purpose
register base to form a virtual address. The contents of the floating-point general-
purpose register ft are stored in the memory location at the specified address.

If the FR bit of the Status register is 0 and the least-significant bit in the ft field is
0, the contents of the low-order 32 bits of floating-point register ft are stored in
memory. If the least-significant bit in the ft field is 1, the contents of the high-order
32 bits of floating-point register ft − 1 are stored.

If the FR bit is 1, all of the 64-bit floating-point registers can be accessed. The
contents of the low-order 32 bits of the register in the ft field are stored in memory.

If either of the low-order two bits of the address is not zero, an Address Error
exception occurs.

SWC1 Store Word from FPU

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 0 0 1

SWC1
VR5432 Microprocessor User’s Manual 667

Chapter 18
Operation:

 Exceptions:

Coprocessor Unusable exception
TLB Miss exception
TLB Invalid exception
TLB Modified exception
Bus Error exception
Address Error exception

SWC1 Store Word from FPU
(Coprocessor 1) SWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← FGR [ft]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← FGR [ft]31...0
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
668 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

SWXC1 fs, index (base) (MIPS IV format)

Description:

The low 32-bit word from floating-point regis t efs is stored in memory at the
location specified by the aligned effective address. The contents of general-
purpose registers index and base are added to form the effective address.

The Region bits of the effective address must be supplied by the contents of base.
If EffectiveAddress63..6 ≠ base63..62, the result is undefined.

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word aligned).
If they are not, the result of the instruction is undefined.

Store Word Indexed from FPU

5

16 15

base

31 2526

COP1X

6

0

index

21 20

5

0 1 0 0 1 1
5

fs

11 10

5

0

6 5

6

SWXC1
0 0 1 0 0 0

SWXC1 SWXC1(Coprocessor 1)

0 0 0 0 0
VR5432 Microprocessor User’s Manual 669

Chapter 18
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception
Address Error exception
TLB Refill exception
TLB Modified exception
TLB Invalid exception

(Coprocessor 1)
Store Word Indexed from FPU SWXC1SWXC1

(continued)

vAddr ← GPR[base] + GPR[index]

if vAddr1..0 ≠ 02 then SignalException(AddressError) endif

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)

pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))

bytesel ← vAddr2..0 xor (BigEndianCPU || 02)

/* the bytes of the word are moved into the correct byte lanes */

if FP32RegistersMode then

data ← FPR[fs]31..0

else

if fs0 = 0 then

data ← FPR[fs4..1 || 0]31..0

else

data ← FPR[fs4..1 || 0]63..32

endif

endif

StoreMemory (CCA, WORD, data, pAddr, vAddr, DATA)
670 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

TRUNC.L.fmt fd, fs (MIPS III format)

Description:

The contents of floating-point register fs are converted into the 64-bit fixed-point
format and the result is stored in floating-point register fd. The source operand is
processed in the floating-point format fmt.

The result of the conversion is rounded toward 0, regardless of the current
rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number, because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of –252 to 252 – 1, the Unimplemented Operation exception occurs. If the
Unimplemented Operation exception is not enabled, the exception does not occur
and 252 – 1 is returned.

This operation is defined in 64-bit mode and 32-bit Kernel mode. If this
instruction is executed during 32-bit User or Supervisor mode, a Reserved
Instruction exception occurs.

TRUNC.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01

Truncate to Long TRUNC.L.fmt
VR5432 Microprocessor User’s Manual 671

Chapter 18
Operation:

Note: Same operation in 32-bit Kernel mode.

Exceptions:

Coprocessor Unusable exception
Floating-Point exception
Reserved Instruction exception

Floating-Point Exceptions:

Unimplemented Operation exception
Inexact Operation exception
Overflow exception

TRUNC.L.fmt Floating-Point

Fixed-Point Format

Truncate to Long TRUNC.L.fmt

(continued)

64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt) , fmt, L))
672 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Format:

TRUNC.W.fmt fd, fs (MIPS II format)

Description:

The contents of floating-point register fs are arithmetically converted into a 32-bit
fixed-point single format, and the result is stored in floating-point register fd. The
source operand is processed in the floating-point format fmt.

The result of the conversion is rounded toward 0, regardless of the current
rounding mode.

This instruction is valid only for conversion from the single- or double-precision
floating-point format.

If the FR bit of the Status register is 0, only an even number can be specified as a
register number because adjacent even-numbered and odd-numbered registers are
used in pairs as floating-point registers. If an odd number is specified, the
operation is undefined. If the FR bit is 1, both odd and even register numbers are
valid.

If the source operand is infinite or NaN and if the rounded result is outside the
range of 231 – 1 to –231, the Invalid Operation exception occurs. If the Invalid
Operation exception is not enabled, the exception does not occur and 231 – 1 is
returned.

TRUNC.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25

Single Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0

Truncate toTRUNC.W.fmt
VR5432 Microprocessor User’s Manual 673

Chapter 18
Operation:

 Exceptions:

Coprocessor Unusable exception
Floating-Point exception

Floating-Point Exceptions:

Invalid Operation exception
Unimplemented Operation exception
Inexact Operation exception
Overflow exception

18.4 FPU Instruction Opcode Bit Encoding

 Figure 18-3 lists the bit encoding for FPU instructions.

TRUNC.W.fmtTRUNC.W.fmt Floating-Point

Single Fixed-Point Format

Truncate to

(continued)

32, 64T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt) , fmt, W))
674 VR5432 Microprocessor User’s Manual

Floating-Point Unit Instruction Set
Figure 18-3 Bit Encoding for FPU Instructions (1 of 2)

31...29
0

1

2

3

4

5

6

7

28...26
Opcode

br

0 1 2 3 4 5 6 7

0
1

g

g g g g

23...21
sub

0 1 2 3 4 5 6 725...24

g g g

g

LWC1

SWC1

COP1

LDC1

SDC1

DMFh

Lh g g
g g g gg g gg

MF

BC

CF MT

S

CT

D2
3

0
1

* *

* * * *

18...16
0 1 2 3 4 5 6 720...19

* * *

BCF BCFLBCT BCTL

2
3

* *

*

Wg g

* * * ** * **
* * * ** * **

DMTh
VR5432 Microprocessor User’s Manual 675

Chapter 18
Figure 18-4 Bit Encoding for FPU Instructions (2 of 2)

Key:

* When an opcode marked with an asterisk is executed, the
Reserved Instruction exception occurs. These codes are reserved
for future expansion.

γ Opcodes marked with a gamma cause an Unimplemente
Operation exception in all current implementations and ar
reserved for future expansion

η Opcodes marked with an eta are only defined when use of the
MIPS III instruction set is enabled. If the opcode is executed when
use of the instruction set is disabled (i.e., in 32-bit User or
Supervisor mode), the Unimplemented Operation exception
occurs.

 0 1 2 3 4 5 6 7
2...0

5...3
function

0

1

2

3

4

5

6

 ADD SUB

7

γ γ γ

CVT.S

C.F

MUL DIV ABS MOV NEGSQRT
ROUND.Lη TRUNC.Lη CEIL.Lη FLOOR.Lη ROUND.W TRUNC.W CEIL.W FLOOR.W/RECIP

γ γ γ γ

CVT.D CVT.W

C.UN C.EQ C.UEQ C.OLE C.ULE

C.LT C.NGEC.SF C.NGLE C.SEQ C.NGL C.LE C.NGT

C.OLT C.ULT

γ γ γ γγ γ γ γ
γ γ CVT.Lη γ γ

γ γ γγγ γ γ γ

RSQRT
676 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set

19

This chapter provides a detailed description of the multimedia instructions. (For
an general overview of VR5432 instructions, see Chapter 16.)

19.1 Multimedia Extensions

The VR5432 implements instructions and architectural extensions to support high-
performance multimedia applications. These instructions interpret the 64-bit
floating-point registers as packed vectors of eight unsigned 8-bit integers, called
the octal byte or OB format. Considerable efficiency can be gained by operating
in parallel on data, such as image data, in its original format rather than promoting
it to larger integer formats. All of these instructions have a two-cycle latency and
a one-cycle repeat rate.
VR5432 Microprocessor User’s Manual 677

Chapter 19
Three types of vector operations are supported:

• Vector-Vector. Each element of source vector vs is operated against
the corresponding elements of source vector vt to produce destination
vector vd, as shown in Figure 19-1.

• Vector-Scalar. Εach element of source vector vs is operated against a
selected element of source vector vt to produce destination vecto vd,
as shown in Figure 19-2

• Vector-Immediate: Εach element of source vector vs is operated
against an immediate value to produce destination vecto vd, as
shown in Figure 19-3.

Figure 19-1 Vector-Vector Operation

Figure 19-2 Vector-Scalar Operation

023243132394047

vd[0]vd[5] vd[4] vd[3]

16 15 8 7

vd[2] vd[1]

48

vd[6]

63

vd[7]

5556

023243132394047

vs[0]vs[5] vs[4] vs[3]

16 15 8 7

vs[2] vs[1]

48

vs[6]

63

vs[7]

5556

023243132394047

vt[0]vt[5] vt[4] vt[3]

16 15 8 7

vt[2] vt[1]

48

vt[6]

63

vt[7]

5556

023243132394047

vd[0]vd[5] vd[4] vd[3]

16 15 8 7

vd[2] vd[1]

48

vd[6]

63

vd[7]

5556

023243132394047

vs[0]vs[5] vs[4] vs[3]

16 15 8 7

vs[2] vs[1]

48

vs[6]

63

vs[7]

5556

023243132394047

vt[0]vt[5] vt[4] vt[3]

16 15 8 7

vt[2] vt[1]

48

vt[6]

63

vt[7]

5556
678 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Figure 19-3 Vector-Immediate Operation

The type of vector operation is selected by a field in the instruction. The four-bit
sel field selects the treatment of the vt operand field, as described in Table 19-1.
When a vector-immediate operation is selected, the value of the immediate is
taken from the vt operand field.

Table 19-1 sel Field Encoding

Vector arithmetic operations (except for multiply-accumulate and shift) are
saturating; i.e., results that overflow or underflow are clamped to the largest or
smallest representable values (255 and 0, respectively). No exceptions occur as a
result of overflow or underflow.

Vector operations can also be performed using the 192-bit Vector Accumulator as
the destination. This register is interpreted as eight 24-bit accumulators, which is
sometimes referred to as the OB format because it is only operated upon by data
in the octal byte format. As with many DSP architectures, having an accumulator

Bit Encoding Description

0000 Vector-scalar operation; vt[0] is the source operand.

0001 Vector-scalar operation; vt[1] is the source operand.

0010 Vector-scalar operation; vt[2] is the source operand.

0011 Vector-scalar operation; vt[3] is the source operand.

0100 Vector-scalar operation; vt[4] is the source operand.

0101 Vector-scalar operation; vt[5] is the source operand.

0110 Vector-scalar operation; vt[6] is the source operand.

0111 Vector-scalar operation; vt[7] is the source operand.

1011 Vector-vector operation

1111 Vector-immediate operation

023243132394047

vd[0]vd[5] vd[4] vd[3]

16 15 8 7

vd[2] vd[1]

48

vd[6]

63

vd[7]

5556

023243132394047

vs[0]vs[5] vs[4] vs[3]

16 15 8 7

vs[2] vs[1]

48

vs[6]

63

vs[7]

5556

imm
VR5432 Microprocessor User’s Manual 679

Chapter 19
wider than the operand data, shown in Figure 19-4, allows a series of operations
to be performed without concern about overflow or accumulation of round-off
error.

Figure 19-4 24-Bit Accumulator

023

023

07

07

07

vt[i]

vs[i]

Multiplier

Adder

Vector Accumulator [i]
680 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
19.2 Multimedia Instruction Format

A basic set of instructions to perform arithmetic and logical operations between
registers is provided. In addition, instructions exist for handling unaligned data,
permutations, comparisons, and conditional selection. For data movement, the
standard FPU instruction set is used. The R-type format used by the multimedia
instructions is shown in Figure 19-5. Some instructions do not require all fields,
in which case they are sometimes used to provide additional function selection
bits. The ALNI instruction has a unique interpretation of bits 21 through 25, not
described by this figure.

Figure 19-5 Multimedia Instruction Format

MEDIA: 6-bit opcode

sel: 4-bit vector operation specifier or immediate value

vs: 5-bit source 1 register

vt: 5-bit source 2 register

vd: 5-bit destination register

function: 6-bit function field

31 0

R-type (Register)

6 4 5 5 5 6

MEDIA sel vt vs vd function

11 1021 20 16 1526 25 6 522

0

0

VR5432 Microprocessor User’s Manual 681

Chapter 19
19.3 Multimedia Instructions

Table 19-2 lists the multimedia instructions sorted by function field.

Table 19-2 Multimedia Instructions and Operations

Code
(5:0)

Mnemonic Operation

1 C.EQ.OB Vector Compare Equal

2 PICKF.OB Vector Pick False

3 PICKT.OB Vector Pick True

4 C.LT.OB Vector Compare Less Than

5 C.LE.OB Vector Compare Less Than or Equal

6 MIN.OB Vector Minimum

7 MAX.OB Vector Maximum

10 SUB.OB Vector Subtract

11 ADD.OB Vector ADD

12 AND.OB Vector AND

13 XOR.OB Vector XOR

14 OR.OB Vector OR

15 NOR.OB Vector NOR

16 SLL.OB Vector Shift Left Logical

18 SRL.OB Vector Shift Right Logical

24 ALNI.OB Vector Align

31, sel = 4 SHFL.PACH.OB Vector Element Shuffle

31, sel = 5 SHFL.PACL.OB Vector Element Shuffle

31, sel = 6 SHFL.MIXH.OB Vector Element Shuffle

31, sel = 7 SHFL.MIXL.OB Vector Element Shuffle

32 RZU.OB Vector Scale, Round, and Clamp Accumulator

48 MUL.OB Vector Multiply

50, vd = 0 MULS.OB Vector Multiply and Subtract Accumulator

50, vd = 16 MULSL.OB Vector Multiply, Subtract, and Load Accumulator

51, vd = 0 MULA.OB Vector Multiply-Accumulate

51, vd = 16 MULL.OB Vector Multiply and Load Accumulator

62, sel = 0 WACL.OB Vector Write Accumulator Low

62, sel = 8 WACH.OB Vector Write Accumulator High
682 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
63, sel = 0 RACL.OB Vector Read Accumulator Low

63, sel = 4 RACM.OB Vector Read Accumulator Middle

63, sel = 8 RACH.OB Vector Read Accumulator High

Table 19-2 Multimedia Instructions and Operations (continued)

Code
(5:0)

Mnemonic Operation
VR5432 Microprocessor User’s Manual 683

Chapter 19
Format:

ADD.OB vd, vs, vt

Description:

The values in vector vt are added to the values in vector vs. Saturated arithmetic
is performed: overflows and underflows clamp to the largest or smallest
representable value before writing to vector vd. The sel field selects the values of
vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

ADD.OBVector Add

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

ADD.OB
22

1

0

5

vs

11 10

5

vd

6 5

6

ADD
0 0 1 0 1 1
684 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

ADD.OB (continued)
Vector Add ADD.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← AddOB(ts63..56, tt63..56)

|| AddOB(ts55..48, tt55..48)

|| AddOB(ts47..40, tt47..40)

|| AddOB(ts39..32, tt39..32)

|| AddOB(ts31..24, tt31..24)

|| AddOB(ts23..16, tt23..16)

|| AddOB(ts15..8, tt15..8)

|| AddOB(ts7..0, tt7..0)

function AddOB(ts, tt)

t ← (0 || ts) + (0 || tt)

if t8 = 1 then

AddOB ← 18

else

AddOB ← t7..0

endif

end AddOB
VR5432 Microprocessor User’s Manual 685

Chapter 19
Format:

ALNI.OB vd, vs, vt, imm

Description:

The align amount is computed by masking the immediate, then using that value to
control a funnel shift of vector vs concatenated with vector vt. No immediate or
scalar mode is available.

No data-dependent exceptions are possible. The operands must be values in OB
format. If they are not, the results are undefined and the values of the operand
vectors become undefined. This operation does not interpret the format of the
registers specified. The result of this instruction is undefined if the processor is
executing in 16 FP register mode.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

ALNI.OBVector Align,

5

16 15

Imm

31 2526

MEDIA

6

0

vt

21 20

2

0 1 0 0 1 0 0 0

ALNI.OB Constant Alignment

23

3

0

5

vs

11 10

5

vd

6 5

6

ALNI
0 1 1 0 0 0

24

s ← imm2..0||03

if BigEndianCPU then

FPR[vd] ← (FPR[vs] || FPR[vt])127-s..64-s

else

FPR[vd] ← (FPR[vs] || FPR[vt])63+s..

endif
686 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

AND.OB vd, vs, vt

Description:

Each element of vector vs is combined with the corresponding element of vector
vt in a bitwise logical AND operation. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

AND.OBVector AND

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

AND.OB
22

1

0

5

vs

11 10

5

vd

6 5

6

AND
0 0 1 1 0 0
VR5432 Microprocessor User’s Manual 687

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

AND.OB (continued)
Vector AND AND.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← AndOB(ts63..56, tt63..56)

|| AndOB(ts55..48, tt55..48)

|| AndOB(ts47..40, tt47..40)

|| AndOB(ts39..32, tt39..32)

|| AndOB(ts31..24, tt31..24)

|| AndOB(ts23..16, tt23..16)

|| AndOB(ts15..8, tt15..8)

|| AndOB(ts7..0, tt7..0)

function AndOB(ts, tt)

AndOB ← (0 || ts) and (0 || tt)

end AndOB
688 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

C.EQ.OB vs, vt

Description:

The values in vector vt are compared to the values in vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.
The comparison made is equal (EQ). The inverse comparison (NE) is not
necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) allow both CC = 0 and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

C.EQ.OBVector Compare (Equal)

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0 0 0 0 0

C.EQ.OB
22

1

0

5

vs

11 10

5

6 5

6

C.EQ
0 0 0 0 0 10

0

VR5432 Microprocessor User’s Manual 689

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

C.EQ.OB (continued) C.EQ.OBVector Compare (Equal)

ts ← FPR[vs]

tt ← select(sel, vt)

SetFPConditionCode(7, (ts63..56 = tt63..56))

SetFPConditionCode(6, (ts55..48 = tt55..48))

SetFPConditionCode(5, (ts47..40 = tt47..40))

SetFPConditionCode(4, (ts39..32 = tt39..32))

SetFPConditionCode(3, (ts31..24 = tt31..24))

SetFPConditionCode(2, (ts23..16 = tt23..16))

SetFPConditionCode(1, (ts15..8 = tt15..8))

SetFPConditionCode(0, (ts7..0 = tt7..0))
690 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

C.LE.OB vs, vt

Description:

The values in vector vt are compared to the values in vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.
The comparison made is less than or equal (LE). The inverse comparison (GT) is
not necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) allow both CC = 0 and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

C.LE.OB(Less Than or Equal)

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0 0 0 0 0

C.LE.OB
22

1

0

5

vs

11 10

5

6 5

6

C.LE
0 0 0 1 0 10

0

Vector Compare
VR5432 Microprocessor User’s Manual 691

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

C.LE.OB
(continued)

C.LE.OBVector Compare
(Less Than or Equal)

ts ← FPR[vs]

tt ← select(sel, vt)

SetFPConditionCode(7, (ts63..56 ≤ tt63..56))

SetFPConditionCode(6, (ts55..48 ≤ tt55..48))

SetFPConditionCode(5, (ts47..40 ≤ tt47..40))

SetFPConditionCode(4, (ts39..32 ≤ tt39..32))

SetFPConditionCode(3, (ts31..24 ≤ tt31..24))

SetFPConditionCode(2, (ts23..16 ≤ tt23..16))

SetFPConditionCode(1, (ts15..8 ≤ tt15..8))

SetFPConditionCode(0, (ts7..0 ≤ tt7..0))
692 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

C.LT.OB vs, vt

Description:

The values in vector vt are compared to the values in vector vs and the result is
written to the condition codes. All 8 CC bits are written with comparison results.
The comparison made is less than (LT). The inverse comparison (GE) is not
necessary; the instructions that use condition codes (BC1F, BC1T, MOVF,
MOVT, PICKF, PICKT) allow both CC = 0 and CC = 1 tests. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

C.LT.OB(Less Than)

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0 0 0 0 0

C.LT.OB
22

1

0

5

vs

11 10

5

6 5

6

C.LT
0 0 0 1 0 00

0

Vector Compare
VR5432 Microprocessor User’s Manual 693

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)

C.LT.OBVector Compare
(Less Than)C.LT.OB

ts ← FPR[vs]

tt ← select(sel, vt)

SetFPConditionCode(7, (ts63..56 < tt63..56))

SetFPConditionCode(6, (ts55..48 < tt55..48))

SetFPConditionCode(5, (ts47..40 < tt47..40))

SetFPConditionCode(4, (ts39..32 < tt39..32))

SetFPConditionCode(3, (ts31..24 < tt31..24))

SetFPConditionCode(2, (ts23..16 < tt23..16))

SetFPConditionCode(1, (ts15..8 < tt15..8))

SetFPConditionCode(0, (ts7..0 < tt7..0))
694 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MAX.OB vd, vs, vt

Description:

The values in vector vt are compared to the values in vector vs and the larger is
written to each element of vector vd. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

MAX.OBVector Maximum

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

MAX.OB
22

1

0

5

vs

11 10

5

vd

6 5

6

MAX
0 0 0 1 1 1
VR5432 Microprocessor User’s Manual 695

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

MAX.OB (continued)
Vector Maximum MAX.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← MaxOB(ts63..56, tt63..56)

|| MaxOB(ts55..48, tt55..48)

|| MaxOB(ts47..40, tt47..40)

|| MaxOB(ts39..32, tt39..32)

|| MaxOB(ts31..24, tt31..24)

|| MaxOB(ts23..16, tt23..16)

|| MaxOB(ts15..8, tt15..8)

|| MaxOB(ts7..0, tt7..0)

function MaxOB(ts, tt)

if (0 || ts) > (0 || tt) then

MaxOB ← ts

else

MaxOB ← tt

endif

end MaxOB
696 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MIN.OB vd, vs, vt

Description:

The values in vector vt are compared to the values in vector vs and the smaller is
written to each element of vector vd. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Minimum

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

MIN
0 0 0 1 1 0

MIN.OB MIN.OB
VR5432 Microprocessor User’s Manual 697

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Minimum MIN.OBMIN.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← MinOB(ts63..56, tt63..56)

|| MinOB(ts55..48, tt55..48)

|| MinOB(ts47..40, tt47..40)

|| MinOB(ts39..32, tt39..32)

|| MinOB(ts31..24, tt31..24)

|| MinOB(ts23..16, tt23..16)

|| MinOB(ts15..8, tt15..8)

|| MinOB(ts7..0, tt7..0)

function MinOB(ts, tt)

if (0 || ts) < (0 || tt) then

MinOB ← ts

else

MinOB ← tt

endif

end MinOB
698 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MUL.OB vd, vs, vt

Description:

The values in vector vt are multiplied by the values in vector vs and the product is
written into vector vd. Saturated arithmetic is performed: overflows and
underflows clamp to the largest or smallest representable value before writing to
vector vd. The sel field selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Multiply

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

MUL
1 1 0 0 0 0

MUL.OB MUL.OB
VR5432 Microprocessor User’s Manual 699

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Multiply MUL.OBMUL.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← MulOB(ts63..56, tt63..56)

|| MulOB(ts55..48, tt55..48)

|| MulOB(ts47..40, tt47..40)

|| MulOB(ts39..32, tt39..32)

|| MulOB(ts31..24, tt31..24)

|| MulOB(ts23..16, tt23..16)

|| MulOB(ts15..8, tt15..8)

|| MulOB(ts7..0, tt7..0)

function MulOB(ts, tt)

t ← (08 || ts) × (08 || tt)

if t15..8 ≠ 08 then

MulOB ← 18

else

MulOB ← t7..0

endif

end MulOB
700 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MULA.OB vs, vt

Description:

The values in vector vt are multiplied by the values in vector vs and the product is
added to the Accumulator. Wrapped arithmetic is performed: overflows and
underflows wrap around the Accumulator’s representable range before being
written into the Accumulator. The Accumulator is in the OB format. The sel field
selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

A

6 5

6

MULA
1 1 0 0 1 1

MULA.OB MULA.OB

0 0 0 0 0

Multiply-Accumulate
VR5432 Microprocessor User’s Manual 701

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Multiply-Accumulate
Vector MULA.OBMULA.OB

(continued)

ts ← FPR[vs]

tt ← select(sel, vt)

ACC ← AccMulOB(ACC191..168, ts63..56, tt63..56)

|| AccMulOB(ACC167..144, ts55..48, tt55..48)

|| AccMulOB(ACC143..120, ts47..40, tt47..40)

|| AccMulOB(ACC119..96, ts39..3 , tt39..32)

|| AccMulOB(ACC95..72, ts31..24, tt31..24)

|| AccMulOB(ACC71..48, ts23..16, tt23..16)

|| AccMulOB(ACC47..24, ts15..8, tt15..8)

|| AccMulOB(ACC23..0, ts7..0, tt7..0)

function AccMulOB(a, ts, tt)

AccMulOB ← a + (016 || ts) × (016 || tt)

end AccMulOB
702 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MULL.OB vs, vt

Description:

The values in vector vt are multiplied by the values in vector vs and the product is
stored in the Accumulator. Wrapped arithmetic is performed, such that overflows
and underflows wrap around the Accumulator’s representable range before being
written into the Accumulator. The Accumulator result is in the OB format. The sel
field selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Multiply and

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

L

6 5

6

MULL
1 1 0 0 1 1

MULL.OB MULL.OB

1 0 0 0 0

Load Accumulator
VR5432 Microprocessor User’s Manual 703

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Load Accumulator
Vector Multiply and MULL.OBMULL.OB

(continued)

ts ← FPR[vs]

tt ← select(sel, vt)

ACC ← AccMulOB(024, ts63..56, tt63..56)

|| AccMulOB(024, ts55..48, tt55..48)

|| AccMulOB(024, ts47..40, tt47..40)

|| AccMulOB(024, ts39..32, tt39..32)

|| AccMulOB(024, ts31..24, tt31..24)

|| AccMulOB(024, ts23..16, tt23..16)

|| AccMulOB(024, ts15..8, tt15..8)

|| AccMulOB(024, ts7..0, tt7..0)

function AccMulOB(a, ts, tt)

AccMulOB ← a + (016 || ts) × (016 || tt)

end AccMulOB
704 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MULS.OB vs, vt

Description:

The values in vector vt are multiplied by the values in vector vs and the product is
subtracted from the Accumulator. Wrapped arithmetic is performed: overflows
and underflows wrap around the Accumulator’s representable range before being
written into the Accumulator. The Accumulator is in the OB format. The sel field
selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Multiply and

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

S

6 5

6

MULS
1 1 0 0 1 0

MULS.OB MULS.OB

0 0 0 0 0

Subtract Accumulator
VR5432 Microprocessor User’s Manual 705

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Subtract Accumulator
Vector Multiply and MULS.OBMULS.OB

(continued)

ts ← FPR[vs]

tt ← select(sel, vt)

ACC ← SubMulOB(ACC191..168, ts63..56, tt63..5)

|| SubMulOB(ACC167..144, ts55..48, tt55..48)

|| SubMulOB(ACC143..120, ts47..40, tt47..40)

|| SubMulOB(ACC119..96, ts39..32, tt39..32)

|| SubMulOB(ACC95..72, ts31..24, tt31..24)

|| SubMulOB(ACC71..48, ts23..16, tt23..16)

|| SubMulOB(ACC47..24, ts15..8, tt15..8)

|| SubMulOB(ACC23..0, ts7..0, tt7..0)

function SubMulOB(a, ts, tt)

SubMulOB ← a - (016 || ts) × (016 || tt)

end SubMulOB
706 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

MULSL.OB vs, vt

Description:

The values in vector vt are multiplied by the values in vector vs and negated. The
vector result is stored to the Accumulator. The Accumulator result is in the OB
format. The sel field selects the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Multiply

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

L

6 5

6

MULSL
1 1 0 0 1 0

MULSL.OB MULSL.OB

1 0 0 0 0

Subtract and Load
VR5432 Microprocessor User’s Manual 707

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Subtract and Load
Vector Multiply MULSL.OBMULSL.OB

(continued)

ts ← FPR[vs]

tt ← select(sel, vt)

ACC ← SubMulOB(024, ts63..56, tt63..56)

|| SubMulOB(024, ts55..48, tt55..48)

|| SubMulOB(024, ts47..40, tt47..40)

|| SubMulOB(024, ts39..32, tt39..32)

|| SubMulOB(024, ts31..24, tt31..24)

|| SubMulOB(024, ts23..16, tt23..16)

|| SubMulOB(024, ts15..8, tt15..8)

|| SubMulOB(024, ts7..0, tt7..0)

function SubMulOB(a, ts, tt)

SubMulOB ← a - (016 || ts) × (016 || tt)

end SubMulOB
708 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

NOR.OB vd, vs, vt

Description:

Each element of vector vs is combined with the corresponding element of vector
vt in a bitwise logical NOR operation. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector NOR

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

NOR
0 0 1 1 1 1

NOR.OB NOR.OB
VR5432 Microprocessor User’s Manual 709

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector NOR NOR.OBNOR.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← NorOB(ts63..56, tt63..56)

|| NorOB(ts55..48, tt55..48)

|| NorOB(ts47..40, tt47..40)

|| NorOB(ts39..32, tt39..32)

|| NorOB(ts31..24, tt31..24)

|| NorOB(ts23..16, tt23..16)

|| NorOB(ts15..8, tt15..8)

|| NorOB(ts7..0, tt7..0)

function NorOB(ts, tt)

NorOB ← (0 || ts) nor (0 || tt)

end NorOB
710 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

OR.OB vd, vs, vt

Description:

Each element of vector vs is combined with the corresponding element of vector
vt in a bitwise logical OR operation. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector OR

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

OR
0 0 1 1 1 0

OR.OB OR.OB
VR5432 Microprocessor User’s Manual 711

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector OR OR.OBOR.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← OrOB(ts63..56, tt63..56)

|| OrOB(ts55..4 , tt55..48)

|| OrOB(ts47..4 , tt47..40)

|| OrOB(ts39..3 , tt39..32)

|| OrOB(ts31..2 , tt31..24)

|| OrOB(ts23..1 , tt23..16)

|| OrOB(ts15..8, tt15..8)

|| OrOB(ts7..0, tt7..0)

function OrOB(ts, tt)

OrOB ← (0 || ts) or (0 || tt)

end OrOB
712 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

PICKF.OB vd, vs, vt

Description:

The vector vd is written with either the corresponding element of vector vs or the
corresponding element of vector vt, depending on the state of the CC bits. All 8
CC bits are used. The sel field selects the values of vt[] used for each i.

Both PICKF and PICKT are necessary since the operands are not symmetrical;
every element of vector vs is used, whereas the sel field selects values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be a value in OB
format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Pick False

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

PICKF
0 0 0 0 1 0

PICKF.OB PICKF.OB
VR5432 Microprocessor User’s Manual 713

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Pick False PICKF.OBPICKF.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← PickOB(FPConditionCode(7) = 0, ts63..56, tt63..56)

|| PickOB(FPConditionCode(6) = 0, ts55..48, tt55..48)

|| PickOB(FPConditionCode(5) = 0, ts47..40, tt47..40)

|| PickOB(FPConditionCode(4) = 0, ts39..32, tt39..32)

|| PickOB(FPConditionCode(3) = 0, ts31..24, tt31..24)

|| PickOB(FPConditionCode(2) = 0, ts23..16, tt23..16)

|| PickOB(FPConditionCode(1) = 0, ts15..8, tt15..8)

|| PickOB(FPConditionCode(0) = 0, ts7..0, tt7..0)

function PickOB(c, ts, tt)

if c then

PickOB ← ts

else

PickOB ← tt

endif
714 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

PICKT.OB vd, vs, vt

Description:

The vector vd is written with either the corresponding element of vector vs or the
corresponding element of vector vt, depending on the state of the CC bits. All 8
CC bits are used. The sel field selects the values of vt[] used for each i.

Both PICKF and PICKT are necessary since the operands are not symmetrical;
every element of vector vs is used, whereas the sel field selects values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be a value in OB
format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Pick True

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

PICKT
0 0 0 0 1 1

PICKT.OB PICKT.OB
VR5432 Microprocessor User’s Manual 715

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Pick True PICKT.OBPICKT.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← PickOB(FPConditionCode(7) = 1, ts63..56, tt63..56)

|| PickOB(FPConditionCode(6) = 1, ts55..48, tt55..48)

|| PickOB(FPConditionCode(5) = 1, ts47..40, tt47..40)

|| PickOB(FPConditionCode(4) = 1, ts39..32, tt39..32)

|| PickOB(FPConditionCode(3) = 1, ts31..24, tt31..24)

|| PickOB(FPConditionCode(2) = 1, ts23..16, tt23..16)

|| PickOB(FPConditionCode(1) = 1, ts15..8, tt15..8)

|| PickOB(FPConditionCode(0) = 1, ts7..0, tt7..0)

function PickOB(c, ts, tt)

if c then

PickOB ← ts

else

PickOB ← tt

endif
716 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

RACH.OB vd

Description:

Read the most-significant third of the bits of the Accumulator elements. No
clamping of the values extracted is performed; the bits are simply copied into
elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of this instruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

Exceptions:

Coprocessor Unusable exception

Vector Read

5

16 15

H

31 2526

MEDIA

6

0

0

21 20

4

0 1 0 0 1 0 0

22

1

0

5

0

11 10

5

vd

6 5

6

RACH
1 1 1 1 1 1

RACH.OB RACH.OBAccumulator High

0 0 0 0 00 0 0 0 01 0 0 0

FPR[vd] ← ACC191..184

 || ACC167..160

 || ACC143..136

 || ACC119..112

 || ACC95..88

 || ACC71..64

 || ACC47..40

 || ACC23..16
VR5432 Microprocessor User’s Manual 717

Chapter 19
Format:

RACL.OB vd

Description:

Read the least-significant third of the bits of the Accumulator elements. No
clamping of the values extracted is performed; the bits are simply copied into
elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of this instruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

Exceptions:

Coprocessor Unusable exception

Vector Read

5

16 15

L

31 2526

MEDIA

6

0

0

21 20

4

0 1 0 0 1 0 0

22

1

0

5

0

11 10

5

vd

6 5

6

RACL
1 1 1 1 1 1

RACL.OB RACL.OBAccumulator Low

0 0 0 0 00 0 0 0 00 0 0 0

FPR[vd] ← ACC175..168

 || ACC151..144

 || ACC127..120

 || ACC103..96

 || ACC79..72

 || ACC55..48

 || ACC31..24

 || ACC7..0
718 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

RACM.OB vd

Description:

Read the middle third of the bits of the Accumulator elements. No clamping of the
values extracted is performed; the bits are simply copied into elements of vd[].

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of this instruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

Exceptions:

Coprocessor Unusable exception

Vector Read

5

16 15

M

31 2526

MEDIA

6

0

0

21 20

4

0 1 0 0 1 0 0

22

1

0

5

0

11 10

5

vd

6 5

6

RACM
1 1 1 1 1 1

RACM.OB RACM.OBAccumulator Middle

0 0 0 0 00 0 0 0 00 1 0 0

FPR[vd] ← ACC183..176

 || ACC159..152

 || ACC135..128

 || ACC111..104

 || ACC87..80

 || ACC63..56

 || ACC39..32

 || ACC15..8
VR5432 Microprocessor User’s Manual 719

Chapter 19
Format:

RZU.OB vd, vt

Description:

The values in the Accumulator are logically shifted right by the values in vector
vt, rounded to the nearest value with exactly halfway results rounded toward zero,
and clamped to an unsigned subset of the range of vd[]. The Accumulator is in the
OB format. The sel field selects the values of vt[] used for each i. The shift amount
must be an immediate and the value must be 0, 8, or 16. The clamping range is
0..255.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Scale, Round,

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

0

11 10

5

vd

6 5

6

RZU
1 0 0 0 0 0

RZU.OB RZU.OB

0 0 0 0 0

and Clamp Accumulator
720 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

and Clamp Accumulator
Vector Scale, Round, RZU.OBRZU.OB

(continued)

tt ← select(sel, vt)

FPR[vd] ← RZUOB(ACC191..168, tt63..56)

|| RZUOB(ACC167..144, tt55..48)

|| RZUOB(ACC143..120, tt47..40)

|| RZUOB(ACC119..96, tt39..32)

|| RZUOB(ACC95..72, tt31..24)

|| RZUOB(ACC71..48, tt23..16)

|| RZUOB(ACC47..24, tt15..8)

|| RZUOB(ACC23..0, tt7..0)

function RZUOB(a, s)

if 0 || s > 23 then

RZUOB ← 08

else

t ← 0s || a23..s

if 0 || t < 017 || 18 then

RZUOB ← t7..0

else

RZUOB ← 18

endif

endif

end RZUOB
VR5432 Microprocessor User’s Manual 721

Chapter 19
Format:

SHFL.op.OB vd, vs, vt

Description:

Elements of vectors vs and vt are merged into a new vector. Not all combinations
of values are available; the operations of the variants of this instruction are tailored
to the data movement patterns of specific calculations. The shuffles available are
given in Table 19-3.

The sel field selects the values of vt[] used for each i. The sel field must specify a
vector, not an immediate or a scalar. The remaining bits in the field are not used
for a vt[] select, but rather are used to encode the shuffle operation.

Table 19-3 Operation Encoding for Shuffles

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

sel Operation vd[7] vd[6] vd[5] vd[4] vd[3] vd[2] vd[1] vd[0]

0100 PACH vs[7] vs[5] vs[3] vs[1] vt[7] vt[5] vt[3] vt[1]

0101 PACL vs[6] vs[4] vs[2] vs[0] vt[6] vt[4] vt[2] vt[0]

0110 MIXH vs[7] vt[7] vs[6] vt[6] vs[5] vt[5] vs[4] vt[4]

0111 MIXL vs[3] vt[3] vs[2] vt[2] vs[1] vt[1] vs[0] vt[0]

Vector

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

SHFL
0 1 1 1 1 1

SHFL.op.OB SHFL.op.OBShuffle
722 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Operation:

(continued)

Vector SHFL.op.OBSHFL.op.OB Shuffle

PACH.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← ts63..56 || ts47..40

|| ts31..24 || ts15..8

|| tt63..56 || tt47..4

|| tt31..24 || tt15..8

PACL.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← ts55..48 || ts39..32

|| ts23..16 || ts7..0

|| tt55..48 || tt39..3

|| tt23..16 || tt7..0

MIXH.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← ts63..56 || tt63..56

|| ts55..48 || tt55..48

|| ts47..40 || tt47..40

|| ts39..32 || tt39..32
VR5432 Microprocessor User’s Manual 723

Chapter 19
Operation (continued):

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)

Vector SHFL.op.OBSHFL.op.OB Shuffle

MIXL.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← ts31..24 || tt31..24

|| ts23..16 || tt23..16

|| ts15..8 || tt15..8

|| ts7..0 || tt7..0
724 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

SLL.OB vd, vs, vt

Description:

Each element of vector vs is shifted left by an amount specified by an immediate
or an element of vector vt, and zeros are shifted into the low-order bits. The results
are written into vector vd. All but the lower 3 bits of the shift amount are masked
to 0, so the largest possible shift is 7 places. The sel field selects the values of vt[]
used for each i, which must be a scalar or an immediate.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Shift Left Logical

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

SLL
0 1 0 0 0 0

SLL.OB SLL.OB
VR5432 Microprocessor User’s Manual 725

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Shift Left Logical SLL.OBSLL.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← SLLOB(ts63..56, tt63..56)

|| SLLOB(ts55..48, tt55..48)

|| SLLOB(ts47..40, tt47..40)

|| SLLOB(ts39..32, tt39..32)

|| SLLOB(ts31..24, tt31..24)

|| SLLOB(ts23..16, tt23..16)

|| SLLOB(ts15..8, tt15..8)

|| SLLOB(ts7..0, tt7..0)

function SLLOB(ts, tt)

s ← tt2..0

SLLOB ← ts7-s..0 || 0s

end SLLOB
726 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

SRL.OB vd, vs, vt

Description:

Each element of vector vs is shifted right by an amount specified by an immediate
or an element of vector vt, and zeros are shifted into the low-order bits. The results
are written into vector vd. All but the lower 3 bits of the shift amount are masked
to 0, so the largest possible shift is 7 places. The sel field selects the values of vt[]
used for each i, which must be a scalar or an immediate.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector Shift Right Logical

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

SRL
0 1 0 0 1 0

SRL.OB SRL.OB
VR5432 Microprocessor User’s Manual 727

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Shift Right Logical SRL.OBSRL.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← SRLOB(ts63..56, tt63..56)

|| SRLOB(ts55..48, tt55..48)

|| SRLOB(ts47..40, tt47..40)

|| SRLOB(ts39..32, tt39..32)

|| SRLOB(ts31..24, tt31..24)

|| SRLOB(ts23..16, tt23..16)

|| SRLOB(ts15..8, tt15..8)

|| SRLOB(ts7..0, tt7..0)

function SRLOB(ts, tt)

s ← tt2..0

SRLOB ← 0s || ts7..s

end SRLOB
728 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

SUB.OB vd, vs, vt

Description:

The difference of the values in vector vt and vector vs is written into vector vd.
Saturated arithmetic is performed: overflows and underflows clamp to the largest
or smallest representable value before writing to vector vd. The sel field selects
the values of vt[] used for each i.

No data-dependent exceptions are possible. The operands must be values in the
specified format. If they are not, the results are undefined and the values of the
operand vectors become undefined. The result of this instruction is undefined if
the processor is executing in 16 FP register mode.

Vector Subtract

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

SUB
0 0 1 0 1 0

SUB.OB SUB.OB
VR5432 Microprocessor User’s Manual 729

Chapter 19
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)
Vector Subtract SUB.OBSUB.OBSUB.OB

ts ← FPR[vs]

tt ← select(fmtsel, vt)

FPR[vd] ← SubOB(ts63..56, tt63..56)

|| SubOB(ts55..48, tt55..48)

|| SubOB(ts47..40, tt47..40)

|| SubOB(ts39..32, tt39..32)

|| SubOB(ts31..24, tt31..24)

|| SubOB(ts23..16, tt23..16)

|| SubOB(ts15..8, tt15..8)

|| SubOB(ts7..0, tt7..0)

function SubOB(ts, tt)

t ← (0 || ts) - (0 || tt)

if t8 = 1 then

SubOB ← 08

else

SubOB ← t7..0

endif

end SubOB
730 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

WACH.OB vs

Description:

This instruction writes the most-significant third of the bits of the Accumulator
elements. The least-significant two-thirds of the bits of the Accumulator elements
are unaffected.

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

This instruction is the only instruction that writes a portion of the Accumulator.
WACL writes all bits in the accumulator, so it must precede WACH when
restoring the Accumulator.

No data-dependent exceptions are possible. The result of this instruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

Vector Write

5

16 15

H

31 2526

MEDIA

6

0

0

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

0

6 5

6

WACH
1 1 1 1 1 0

WACH.OB WACH.OBAccumulator High

0 0 0 0 00 0 0 0 01 0 0 0

ACC ← FPR[vs]63..56 || ACC183..168

|| FPR[vs]55..48 || AC 159..144

|| FPR[vs]47..40 || AC 135..120

|| FPR[vs]39..32 || AC 111..96

|| FPR[vs]31..24 || AC 87..72

|| FPR[vs]23..16 || AC 63..48

|| FPR[vs]15..8 || AC 39..24

|| FPR[vs]7..0 || ACC15..0
VR5432 Microprocessor User’s Manual 731

Chapter 19
Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

(continued)

Vector Write WACH.OBWACH.OB Accumulator High
732 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Format:

WACL.OB vs, vt

Description:

This instruction writes the least-significant two-thirds of the bits of the
Accumulator elements. The upper one-third of the bits of the Accumulator
elements are written by the sign bits of the corresponding elements of vector vs[]
and replicated by 8, depending on the format.

RACL/RACM/RACH followed by WACL/WACH are used to save and restore
the Accumulator.

No data-dependent exceptions are possible. The result of this instruction is
undefined if the processor is executing in 16 FP register mode.

Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

Vector Write

5

16 15

L

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

0

6 5

6

WACL
1 1 1 1 1 0

WACL.OB WACL.OBAccumulator Low

0 0 0 0 00 0 0 0

ACC ← 08 || FPR[vs]63..56 || FPR[vt]63..56

|| 08 || FPR[vs]55..48 || FPR[vt]55..48

|| 08 || FPR[vs]47..40 || FPR[vt]47..40

|| 08 || FPR[vs]39..32 || FPR[vt]39..32

|| 08 || FPR[vs]31..24 || FPR[vt]31..24

|| 08 || FPR[vs]23..16 || FPR[vt]23..16

|| 08 || FPR[vs]15..8 || FPR[vt]15..8

|| 08 || FPR[vs]7..0 || FPR[vt]7..0
VR5432 Microprocessor User’s Manual 733

Chapter 19
Format:

XOR.OB vd, vs, vt

Description:

Each element of vector vs is combined with the corresponding element of vector
vt in a bitwise logical XOR operation. The sel field selects the values of vt[] used
for each i.

No data-dependent exceptions are possible. The operands must be values in the
OB format. If they are not, the results are undefined and the values of the operand
vectors become undefined. The result of this instruction is undefined if the
processor is executing in 16 FP register mode.

Vector XOR

5

16 15

sel

31 2526

MEDIA

6

0

vt

21 20

4

0 1 0 0 1 0 0

22

1

0

5

vs

11 10

5

vd

6 5

6

XOR
0 0 1 1 0 1

XOR.OB XOR.OB
734 VR5432 Microprocessor User’s Manual

Multimedia Instruction Set
Operation:

Exceptions:

Coprocessor Unusable exception
Reserved Instruction exception

19.4 Multimedia Instruction Opcode Bit Encoding

 Figure 19-6 lists the bit encoding for multimedia instructions.

(continued)
Vector XOR XOR.OBXOR.OB

ts ← FPR[vs]

tt ← select(sel, vt)

FPR[vd] ← XorOB(ts63..56, tt63..56)

|| XorOB(ts55..48, tt55..48)

|| XorOB(ts47..40, tt47..40)

|| XorOB(ts39..32, tt39..32)

|| XorOB(ts31..24, tt31..24)

|| XorOB(ts23..16, tt23..16)

|| XorOB(ts15.. , tt15..8)

|| XorOB(ts7..0, tt7..0)

function XorOB(ts, tt)

XorOB ← (0 || ts) xor (0 || tt)

end XorOB
VR5432 Microprocessor User’s Manual 735

Chapter 19
Figure 19-6 Bit Encoding for Multimedia Instructions

5...3
0

1

2

3

4

5

6
7

2...0
Function (for Opcode = COP2)

0 1 2 3 4 5 6 7
C.EQ PICKF PICKT C.LT C.LE MIN MAX

SUB ADD AND XOR OR NOR

SLL SRL
ALNI SHFL

RZU

MUL MULS{,L} MUL{A,L}

WAC{H,L} RAC{H,L}

bits
736 VR5432 Microprocessor User’s Manual

Debug and Test Features

20

This chapter describes the VR5432 processor’s debug and test functions, which
are intended for the exclusive use of debug software and hardware tools. These
functions do not involve the WatchLo and WatchHi registers; instead, they replace
and greatly improve on the debug functions implemented by the WatchLo and
WatchHi registers.

The debug and other JTAG-accessible registers described here are not
architecturally visible parts of the processor. Programs running in Normal mode
(User, Supervisor, or Kernel mode) cannot access the debug resources directly.
However, a special Normal mode instruction, DBREAK, is provided for accessing
Debug mode, and a debug tool attached to the JTAG port can access Debug mode
directly.
VR5432 Microprocessor User’s Manual 737

Chapter 20
20.1 Overview

The processor implements both internally and externally accessible debug
resources. The externally accessible resources are accessed via the JTAG
interface, which complies with IEEE Standards 1149.1 and 1149.1a and
implements N-Wire and N-Trace debug enhancements.

The processor’s Debug mode is entered when a debug break occurs. The debug
functions can be controlled internally or externally, as follows:

• Internal Access. A processor-resident debugger program, invoked via
the Debug Exception vector, uses debug instructions to access the
processor’s debug registers. The DBREAK instruction is provided fo
this purpose; when executed, it causes the processor to enter Debug
mode.

• External Access. An external debug tool, attached to the JTAG test
access port (TAP), can access the processor’s internal debug module,
which includes JTAG-accessible registers that support JTAG, N-Wire,
and N-Trace test interfaces.

Figure 20-1 shows the processor resources accessible to debug programs and
external debug tools using the internal- and external-access methods.

Figure 20-1 Access to Processor Resources in Debug Mode

VR5432 Processor

Normal Mode
Resources D

e

Debug
Module

JTAG-
Accessible
Registers

Debug
Registers

External
Debug
Tool

External-Access Resources

Internal-Access Resources

JTAG TAP
738 VR5432 Microprocessor User’s Manual

Debug and Test Features
The debug registers—DR0 through DR15—can be accessed by the debug
instructions—DBREAK, MTDR, MFDR, and DRET—in either the internal- or
external-access Debug mode. These registers and instructions give software or
hardware the ability to break the processor, modify its state or set breakpoints, and
resume running, or to break the processor, single-step, and resume running.

The N-Wire and N-Trace interfaces, available in external-access Debug mode,
support comprehensive hardware and software breakpoints and trace functions.
They use a monitor mechanism that gives debug tools access to all system
resources, including the processor’s user and debug registers, program counter,
register file, caches, external memory, and I/O. For example, an external-access
debug tool can download data via the JTAG port into external memory, return to
normal operation mode, and monitor the result of execution using this data. The
N-Wire functions provide run-time control and access to the processor’s internal
state. The N-Trace functions support instruction-execution tracing via trace
packets on the trace signals. Both functions share a set of JTAG-accessible
registers. In the VR5432 implementation, “N” equals 4, as represented by the four
TrcData [3:0] signals.

Because an external-access debug tool can access both the debug registers and the
JTAG-accessible registers, the external-access Debug mode provides more
control of the processor than does internal-access Debug mode.

20.2 Definition of Terms

Debug Break. An event that causes the processor to asynchronously leave
Normal mode (User, Supervisor, or Kernel mode) execution and enter Debug
mode. The terms “break” and “debug break” are used interchangeably. Section
20.3 defines all possible debug break events.

Debug Exception Vector. Address 0xFFFF FFFF BFC0 1000. The DBREAK
instruction is designed for accessing this vector.

Debug Instructions. DBREAK, MTDR, MFDR, and DRET, as described in
Section 20.4.1.

Debug Mode. The processor enters Debug mode as the result of a debug break. If
the debug module is in reset at the debug break, the processor begins executing
internal-access resident debugger instructions, starting at the Debug Exception
vector address. If the debug module is not in reset at the debug break, the processor
begins executing external-access instructions from the JTAG-accessible N-Wire
Monitor Instruction (MON_INST) register. Although Debug mode can be entered
and controlled via internal or external access, external access supports maximum
control of the processor. See also Normal Mode, Debug Module, and Section 20.3.
VR5432 Microprocessor User’s Manual 739

Chapter 20
Debug Mode Registers. The internally accessible debug registers and the JTAG-
accessible registers.

Debug Module. A module inside the processor that supports external access to the
debug features via the JTAG port. The debug module contains the JTAG, N-Wire,
and N-Trace interfaces. See Figure 20-1.

Debug Module Reset. The processor state in which external access to the
processor’s debug module is disabled. This reset is unrelated to the processor reset
(Reset*). The debug module is enabled and disabled with the DINIT bit in the
JTAG-accessible N-Wire Debug Module System (DM_SYSTEM) register. In the
internal-access method, the debug module is disabled (in reset), and the processor
can enter Debug mode by executing the DBREAK instruction. In the external-
access method, the debug module is enabled (not in reset). Compare to Debug
Reset.

Debug Registers. The registers accessible with the debug instructions. These
registers include DR0 through DR15 (DRCNTL, DEPC, DDATA0, DDATA1,
IBC, DBC, IBA, IBAM, DBA, DBAM, DBD, and DBDM). All of the debug
registers are accessible directly in the internal-access Debug mode, and they are
accessible either directly or indirectly in the external-access Debug mode. The
debug registers are described in Section 20.4.2. These registers overlap (share
registers or copy register bits) with the JTAG-accessible registers described in
Section 20.5.2.

Debug Reset. A reset to the processor from the debug module, accomplished by
externally setting the RESET bit in the N-Wire Debug Module Control
(DM_CONTROL) register. The effect of a debug reset on the processor is the
same as asserting Reset*. Compare to Debug Module Reset.

External Access. Debug access to processor resources and operations by an
external debug tool through the JTAG port and the on-chip debug module, which
supports JTAG, N-Wire, and N-Trace debug functions (see Figure 20-1). In the
external-access method, a debug tool can access all of the debug registers and all
of the JTAG-accessible registers. External access thus provides more control of
processor resources than does internal access.

Hardware Breakpoint. An instruction address, data address, or data-data
breakpoint specified in the debug registers or the JTAG-accessible registers. The
hardware breakpoint registers are shared between the debug and JTAG-accessible
register sets.
740 VR5432 Microprocessor User’s Manual

Debug and Test Features
Internal Access. Debug access to processor resources and operations via a
resident debugger program invoked at the processor’s Debug Exception vector
address (the DBREAK instruction is provided for this purpose). The resident
debugger program can use the debug instructions MTDR and MFDR to access the
processor state, set breakpoints, and single-step.

JTAG-Accessible Registers. The registers accessible in external-access Debug
mode. They include the three required JTAG registers (Instruction, Bypass, and
Boundary Scan), plus registers to support the N-Wire and N-Trace debug
functions (DM_SYSTEM, DM_CONTROL, MON_INST, MON_DATA,
TRCSYS, and most of the internal-access debug registers). These registe rsare
described in Section 20.5.2.

Monitor. A JTAG-accessible mechanism for accessing all system resources,
including the processor’s Normal mode and Debug mode registers, cache,
external memory, and I/O.

Normal Mode. User, Supervisor, or Kernel mode. The processor is also in
Normal mode when it is in Reset or is being reset by the debug module. See also
Debug Mode.

Resident Debugger. An optional program that can be accessed internally via the
Debug Exception vector (the DBREAK instruction is designed for this purpose).
This program provides system access to most (but not all) of the processor’s debug
features when there is no attached debug tool or the debug tool is in Reset.

Trigger. The BkTgIO* output signal.

Trigger Event. An event that causes assertion of the BkTgIO* output signal. Such
events can include:

• An enabled hardware breakpoint

• An enabled debug break
VR5432 Microprocessor User’s Manual 741

Chapter 20
20.3 Debug Mode

The processor enters Debug mode as a result of one of the following possible
debug break events:

• Internal-access debug break events

- Execution of the DBREAK instructio

- Setting th STEP bit in the DRCNTL debug register (DR0)

- Reaching an instruction-address, data-address, or data-data
breakpoint specified in the debug registers

• External-access debug break events

- Assertion o the BkTgIO* signal, when it is configured for inpu

- Setting of th BREAK bit in the JTAG-accessible N-Wire Debug
Module Control (DM_CONTROL) register

- Setting th STEP bit in either the DRCNTL register or th
DM_CONTROL register

- Reaching an instruction-address, data-address, or data-data
breakpoint specified in the debug registers

Debug mode is entered regardless of the state of the debug module.

• If the debug modul is in Reset (DINIT bit set to 1 in the N-Wire
DM_SYSTEM register), the processor begins executing internal-
access resident debugger instructions starting at the Debug Exception
vector address. In this case, the DRCNTL register controls Debug
mode operations.

• If the debug modul is not in Reset (DINIT bit cleared to 0 in the N-
Wire DM_SYSTEM register), the processor begins executing
external-access instructions from the N-Wire Monitor Instruction
(MON_INST) register, if execution is enabled. In this case, the JTAG
port controls Debug mode operations.

When Debug mode is entered, all incomplete instructions are flushed from the
pipeline, all outstanding external bus transactions are completed, execution
transitions to Debug mode at an instruction boundary, the program counter (PC)
is saved in the DEPC debug register, and execution is redirected to the 64-bit
Debug Exception vector (location 0xFFFF FFFF BFC0 1000). There may be a
delay entering Debug mode to allow the pipeline flush and to allow all outstanding
external transactions to complete; if so, the processor stalls during this time.
742 VR5432 Microprocessor User’s Manual

Debug and Test Features
The processor will not enter Debug mode at a branch delay slot instruction
boundary. Instead it stops at the branch instruction or the target of the branch. If a
software or hardware breakpoint occurs for the branch delay slot instruction, the
breakpoint occurs at the corresponding Branch instruction. If a single-step break
is executed on a Branch instruction, both the branch and its delay slot are
executed.

Instructions that redirect the PC (e.g., branches) are not allowed to be executed in
the MON_INST register when the debug module is in reset. Any attempt to do so
results in undefined behavior. Instructions that redirect the PC are allowed if the
debug module is not in reset.

While in Debug mode, the processor behaves as if it is in Kernel mode (CP0 Status
EXL = 1), although entering Debug mode does not set the EXL bit. All interrupts
are disabled, including NMI*, and any debug break events are ignored. If a Load
or Store instruction causes an exception in Debug mode, the exception is
processed as if the processor is in Kernel mode. The DM_EXCEPT bit in the
relevant Debug Control register (DRCNTL for internal access, or
DM_CONTROL for external access) indicates whether an exception occurred. If
any instruction other than Load or Store causes an exception, the results and
processor state are undefined.

The processor returns to Normal mode from Debug mode by executing a DRET
instruction. The processor vectors the PC to the address in the Debug Exception
PC (DEPC) register.

20.4 Internal Access

In the processor’s internal-access Debug mode, a resident debugger program can
use the debug instructions to access all of the debug registers. These instructions
and registers are (with a few exceptions) also available to external-access Debug
mode, as described in Section 20.5.
VR5432 Microprocessor User’s Manual 743

Chapter 20
20.4.1 Debug Instructions

The DBREAK, DRET, MTDR and MFDR instructions are unique to the
processor’s debug features. Except for DBREAK, these instructions are accessible
only when the processor is in Debug mode; executing them in Normal mode
causes a Reserved Instruction trap.

20.4.1.1 DBREAK: Debug Break

The DBREAK instruction forces entry into Debug mode by causing a trap to the
Debug Exception vector address (0xFFFF FFFF BFC0 1000). This instruction
may only be executed in Normal (User, Supervisor, or Kernel) mode. Execution
in Debug mode results in undefined behavior.

20.4.1.2 DRET: Debug Return

The DRET instruction returns from Debug mode to the mode in effect (User,
Supervisor, or Kernel mode) when the last debug break occurred. Control is
passed to the instruction pointed to by the Debug Exception PC (DEPC) register.
Unlike most jumps and branches, the execution of which also executes the next
instruction (the one in the delay slot), DRET does not execute a delay slot
instruction. The DRET instruction must not be placed in a branch delay slot.

31 2526

SPECIAL2

6 20

0 DBREAK

6

6 5 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

31 2526

SPECIAL2

6 20

0 DRET

6

6 5 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
744 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.4.1.3 MTDR: Move to Debug Register

This instruction moves the contents of general register rt into debug register dr.

20.4.1.4 MFDR: Move from Debug Register

This instruction moves the contents of debug register dr into general register rt.

20.4.2 Debug Registers

Table 20-1 lists the debug registers. The DME bit in the CP0 Status register is only
accessible in Normal mode via Normal mode instructions. All of the debug
registers except the DME bit are accessible in both the internal-access and
external-access Debug modes via the MFDR and MTDR instructions. Unless
otherwise specified, the contents of the debug registers are undefined after a
processor cold reset.

dr

11 10

5

31 2526 2021 1516 0

SPECIAL2 MTDR rt Debug Move

6 5 5

0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1
0

0 0 0 0 0

6 5

5 6

dr

11 10

5

31 2526 2021 1516 0

SPECIAL2 MFDR rt Debug Move

6 5 5

0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1
0

0 0 0 0 0

6 5

5 6
VR5432 Microprocessor User’s Manual 745

Chapter 20
Table 20-1 Debug Registers

Register
Mnemonic

Register Name
Register
Number

Register
Width
(Bits)

Register-Set
Membership1

DME DME bit in the CP0 Status register — 1 Internal

DRCNTL Debug Register Control register DR0 32 Internal

DEPC Debug Exception PC register DR1 64 Internal

DDATA0
Debug Data Monitor 0 and Monitor Data
register

DR2 64
Internal and
external

DDATA1 Debug Data Monitor 1 register DR3 64 Internal

IBC
Instruction Breakpoint Control/Status
register

DR4 32
Internal and
external

DBC Data Breakpoint Control/Status register DR5 32
Internal and
external

— Reserved DR6 —

— Reserved DR7 —

IBA Instruction Breakpoint Address register DR8 642 Internal and
external

IBAM
Instruction Breakpoint Address Mask
register

DR9 642 Internal and
external

— Reserved DR10 —

— Reserved DR11 —

DBA Data Breakpoint Address register DR12 64
Internal and
external

DBAM Data Breakpoint Address Mask register DR13 64
Internal and
external

DBD Data Breakpoint Data register DR14 64
Internal and
external

DBDM Data Breakpoint Data Mask register DR15 64
Internal and
external

Notes:
1. All debug registers except DME are accessible in both the internal-access and external-access Debug

modes via the MFDR and MTDR instructions. However, the registers marked “internal and external” are
actually shared by the internal-access and external-access register sets.

2. Only 40 bits of the virtual address, plus the region bits (63:62), are compared. The unused address bits
must be sign extended to bit 61 for all address spaces, except xkphys. For xkphys address space, bits
61:59 must also indicate the correct cacheability attribute, because these bits are compared.
746 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.4.2.1 Debug Mode Enable (DME) bit in the CP0 Status register

Bit 24 is the Debug Mode Enable (DME) bit in the Diagnostic Status (DS) field of
the CP0 Exception Processing Status register (see Section 6.2.5 on page 97). It
indicates to the processor that there is a resident debugger program at the Debug
Exception vector. The bit is only accessible in Normal mode via Normal mode
instructions, and it is only meaningful when the debug module is in reset.

• DME = 0: A debug break event does not cause the processor to enter
Debug mode. The DBREAK instruction causes a Reserved
Instruction exception instead of a debug break

• DME = 1: A debug break event causes the processor to enter Debug
mode.

20.4.2.2 DRCNTL: Debug Register Control register (DR0)

The DRCNTL register is accessible only to internal-access resident debugger
programs. It duplicates a subset of bits from two external-access registers that
constitute part of the N-Wire interface—the Debug Module System
(DM_SYSTEM) register and the Debug Module Control (DM_CONTROL)
register, described in Section 20.5.2.5 and Section 20.5.2.6.

Although the DRCNTL bits duplicate some of the DM_SYSTEM and
DM_CONTROL bits, the DRCNTL bits are a separate set of bits; they are not
shared by the DM_SYSTEM and DM_CONTROL registers. Either the DRCNTL
register is active or the two external-access registers are active; use of these
registers is mutually exclusive. DRCNTL is used when the debug module is in
reset (i.e., for internal access). The two external-access registers are used when the
debug module is not in reset. The DINIT bit in the DM_SYSTEM register
determines whether the debug module is in reset.

Figure 20-2 shows the register format. Table 20-2 describes the register fields.

Figure 20-2 Debug Register Control (DRCNTL) Register Format

31 0

See table below for field descriptions
VR5432 Microprocessor User’s Manual 747

Chapter 20
Table 20-2 Debug Register Control Register (DRCNTL) Fields

Bits Field Description

1:0 Reserved —

2 MRST

Mask User Reset in Debug mode
1 → Ignores Reset* input while in Debug mode
0 → Accepts Reset* input while in Debug mode

Defaulted to 1 at the debug module initialization.

3 MNMI

Mask User NMI*
1 → Ignores NMI*
0 → Accepts NMI*

Defaulted to 0 at the debug module initialization.

4 MINT

Mask User Interrupts
1 → Ignores user interrupt input
0 → Accepts user interrupt input

Defaulted to 0 at the debug module initialization. MINT effects
interrupts via the Int signals or via an external write. Software
interrupts are not masked.

5 STEP

Single-Step Break
Single-step allows the user to execute one Normal mode instruction.
Single-step occurs after a DRET instruction. The processor returns to
Normal mode, executes a single instruction, and breaks back into
Debug mode.

1 → Enables single-step break (single-step mode)
0 → Disables single-step break

Defaulted to 0 at the debug module initialization.

13:6 BRK_CAUSE

Break Cause
This consists of multiple bits. One bit is assigned for each break cause
and a corresponding bit is set when the break occurred. Multiple bits
are set if the break occurred by multiple break causes. The bit
assignments are defined as follows:

Bit 6 → External break
Bit 7 → Single-step
Bit 8 → Software breakpoint
Bit 9 → Reserved
Bit 10 → Reserved
Bit 11 → Instruction-address breakpoint
Bit 12 → Data access (address or data) breakpoint
Bit 13 → Reserved
748 VR5432 Microprocessor User’s Manual

Debug and Test Features
14 DBM

Debug Mode
Indicates Debug mode or Normal mode (read only).

1 → Normal mode (User, Supervisor, or Kernel mode)
0 → Debug mode

17:15 CPU_STAT

Processor Status
0 0 0 → Reset (highest)
0 0 1 → Reserved
0 1 0 → Reserved
0 1 1 → Reserved
1 0 0 → Reserved
1 0 1 → Reserved
1 1 0 → Reserved
1 1 1 → Normal (lowest)

20:18 Reserved —

21 DM_EXCEPT

Debug Mode Exception
Indicates that an exception occurred while in Debug mode (read/
write).

Read 1 → Instruction executed in Debug mode caused exception
Read 0 → No exception in Debug mode since flag was cleared
Write 1 → No operation
Write 0 → Clear exception flag

If any instruction other than Load or Store causes an exception, the
results and processor state are undefined.

22 BKIODIR

BkTgIO* direction
Indicates the direction of the BkTgIO* signal.

1 → Input
0 → Output

Defaulted to 1 at the debug module initialization.

23 BKIOEN

BkTgIO* Break Enable
1 → Enable driving of BkTgIO* trigger output at a debug break
event, or to break the processor at a BkTgIO* break input
0 → Disable

Defaulted to 0 at the debug module initialization.

24 BKIOTEN

BkTgIO* Trigger Enable (read/write)
1 → Enable detected internal trigger events to the BkTgIO* signal
when it is configured in the output direction
0 → Disable

Defaulted to 0 at the debug module initialization.

31:25 Reserved —

Table 20-2 Debug Register Control Register (DRCNTL) Fields (continued)

Bits Field Description
VR5432 Microprocessor User’s Manual 749

Chapter 20
20.4.2.3 DEPC: Debug Exception PC (DR1)

When entering Debug mode, the DEPC register contains the virtual address of the
instruction where the debug break occurred. This is the address at which Normal
mode instruction processing may resume after exiting Debug mode. Figure 20-3
shows the register format.

Figure 20-3 Debug Exception PC (DEPC) Register Format

20.4.2.4 DDATA0: Debug Data Monitor 0 and Monitor Data (DR2)

The DDATA0 register and the JTAG-accessible Monitor Data (MON_DATA)
register (see Section 20.5.2.8) are the same register. The register is used for
external access when the debug module is active, and therefore is scannable. It can
also be used as a scratch register in Debug mode. The user is responsible for
ensuring that the types of use for the register do not overlap. Figure 20-4 shows
the register format.

Figure 20-4 Debug Data Monitor 0 (DDATA0) Register Format

63 0

DEPC

63 0

 DDATA0
750 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.4.2.5 DDATA1: Debug Data Monitor 1 (DR3)

The DDATA1 register can be used as a stack pointer or scratch register. Figure
20-5 shows the register format.

Figure 20-5 Debug Data Monitor 1 (DDATA1) Register Format

20.4.2.6 Instruction Address Breakpoint

Instruction address hardware breakpoints are supported by three registers: IBC,
IBA, and IBAM. These three registers are used in both internal-access and
external-access Debug mode.

To determine an instruction address match, the program counter is compared with
the Breakpoint instruction address before TLB translation. If the breakpoint
condition is met and the break is enabled in the IBC register, the processor enters
Debug mode. The instruction that caused the breakpoint is not executed.

The VR5432 implementation of instruction address breakpoints has the following
limitations:

• Only doubleword addresses can be compared (IBAM[2:0] must be
1112) for instruction address breakpoints.

• Triggers (BkTgIO* trigger output) are not supported for instructio
address breakpoints

• Only 40-bit virtual addresses are supported for instruction address
breakpoints.

The following registers are used to set an instruction address breakpoint.

63 0

DDATA1
VR5432 Microprocessor User’s Manual 751

Chapter 20
IBC: Instruction Breakpoint Control/Status register (DR4)

The IBC register is the control and status register for the instruction-address
breakpoint. Figure 20-6 shows the register format. Table 20-3 describes the
register fields.

Figure 20-6 Instruction Breakpoint Control/Status (IBC) Register Format

Table 20-3 Instruction Breakpoint Control/Status (IBC) Register Fields

Bits Name Description

0 BS

Breakpoint Status
1 → Breakpoint match occurred.
0 → Breakpoint match did not occur.

Cleared to 0 on cold reset.

1 BE

Break Enable. Causes a debug break when a breakpoint match
occurs.

1 → Enabled.
0 → Disabled.

Cleared to 0 on cold reset.

2 Reserved —

3 INV
Invert address match condition

1 → Address matches when conditions don’t match.
0 → Address matches when conditions match.

4 ASIDM

ASID compare mask
1 → Address match is not qualified with ASID matching.
0 → Address match is qualified with ASID matching the
current processor ASID.

12:5 ASID Address Space ID to compare.

31:13 Reserved —

31 0

See table below for field descriptions
752 VR5432 Microprocessor User’s Manual

Debug and Test Features
IBA: Instruction Breakpoint Address register (DR8)

The IBA register contains the address of the instruction breakpoint. When the
instruction stored at the specified address is being executed, the condition is met.
Figure 20-7 shows the register format.

Even though a 64-bit IBA register is specified, only 40 bits of the virtual address,
plus the region bits (63:62) are compared. The unused address bits must be sign
extended to bit 61 for all address spaces except xkphys. For xkphys address space,
bits 61:59 must also indicate the correct cacheability attribute, because these bits
are compared. Please refer to the memory mapping and address space discussions
in Chapter 4.

Figure 20-7 Instruction Breakpoint Address (IBA) Register Format

IBAM: Instruction Breakpoint Address Mask register (DR9)

The IBAM register contains the mask for IBA. If a bit of this register is 1, the
corresponding bit of IBA is not compared. Figure 20-8 shows the register format.

As with the IBA register, even though a 64-bit IBAM register is specified, only 40
bits of the virtual address, plus the region bits (63:62), are compared. The unused
address bits must be sign extended to bit 61 for all address spaces except for
xkphys. For xkphys address space, bits 61:59 must also indicate the correct
cacheability attribute, because these bits are compared.

Figure 20-8 Instruction Breakpoint Address Mask (IBAM) Register Format

63 0

40-bit virtual address

39 62 40

region

61

see text

63 0

40-bit virtual address mask

39 62 40

region

61

see text
VR5432 Microprocessor User’s Manual 753

Chapter 20
20.4.2.7 Data Access Breakpoint

Data access hardware breakpoints (break on address, break on data, or break on
both) are supported by five registers: DBC, DBA, DBAM, DBD, and DBDM.
These five registers are used in both internal-access and external-access Debug
mode.

To determine a data instruction address match, the program counter is compared
with the breakpoint instruction address before TLB translation. If the breakpoint
condition is met and the break is enabled, the processor enters Debug mode. If
only a data address condition is specified, the instruction that caused the
breakpoint is not executed. If a data access condition (load or store) is specified in
the DBC register, the break occurs sometime after the instruction that caused the
breakpoint. If the breakpoint condition is met and the trigger is enabled in the
DBC register, the processor asserts a trigger on BkTgIO* output.

The VR5432 implementation of data access breakpoints has the following
limitations and features:

• For data access store breakpoints, only doubleword addresses can be
compared (IBAM[2:0] must be 1112).

• For data access load breakpoints, data access sizes other than 64 bits
are supported.

• Only 40-bit virtual addresses are supported for data access
breakpoints.

The processor supports data access sizes other than 64 bits. For loads, the DBDM
register must mask all bits that are not part of the data access size, or the DBD
register must specify the proper sign-extended 64-bit value. For stores, only data
access for doublewords is supported.

The following registers are used to set a data access breakpoint.
754 VR5432 Microprocessor User’s Manual

Debug and Test Features
DBC: Data Breakpoint Control/Status register (DR5)

The DBC register provides control and status for the data address and data access
breakpoints. Figure 20-9 shows the register format. Table 20-4 describes the
register fields.

Figure 20-9 Data Breakpoint Control/Status (DBC) Register Format

Table 20-4 Data Breakpoint Control/Status (DBC) Register Fields

Bits Name Description

0 BS

Breakpoint Status
1 → Breakpoint match occurred
0 → Breakpoint match did not occur

Cleared to 0 on cold reset.

1 BEA

Break Enable at Address Match
Causes a debug break when the address match condition is met.

1 → Enabled
0 → Disabled

2 TEA

Trigger Enable at Address Match
Outputs a trigger on BkTgIO* when the address match
condition is met.

1 → Enabled
0 → Disabled

3 AINV
Invert Address-Match Condition

1 → Address matches when conditions don’t match
0 → Address matches when conditions match

4 ASIDM

ASID Compare Mask
1 → Address match is not qualified with ASID matching
0 → Address match is qualified with ASID matching the
current processor ASID

12:5 ASID Address Space ID to compare

15:13 Reserved —

31 0

See table below for field descriptions
VR5432 Microprocessor User’s Manual 755

Chapter 20
16 TS
Trigger Status

1 → Trigger occurred
0 → Trigger has not occurred

17 BED

Break Enable at Data Match
Causes a debug break when the data condition is met.

1 → Enabled
0 → Disabled

BEA and BED are in effect if either BERD or BEWR are set.
In this case, if both BEA and BED are set, a break occurs only
when both conditions are met. If both are cleared, a break
occurs regardless of the compare results.

18 TED

Trigger Enable at Data Match
Outputs a trigger on BkTgIO* when the data match condition
is met.

1 → Enabled
0 → Disabled

TEA and TED are in effect if either TERD or TEWR is set. In
this case, if both TEA and TED are set, a trigger is output when
both conditions are met. If both are cleared, a trigger is output
regardless of the compare results.

19 DINV
Invert Data Match Condition

1 → A data match occurs when conditions don’t match
0 → A data match occurs when conditions match

20 BERD

Break Enable for Read Access (i.e., Loads)
1 → Break enabled for loads
0 → No break enabled for loads

Cleared to 0 on cold reset.

21 BEWR

Break Enable for Write Access (i.e., Stores)
1 → Break enabled for stores
0 → No break enabled for stores

Cleared to 0 on cold reset. If neither BERD nor BEWR are set,
no data access debug break occurs. These are the primary break
enable bits.

Table 20-4 Data Breakpoint Control/Status (DBC) Register Fields (continued)

Bits Name Description
756 VR5432 Microprocessor User’s Manual

Debug and Test Features
DBA: Data Breakpoint Address register (DR12)

The DBA register contains the address of the data breakpoint. When the
instruction stored in the specified address is being executed, the condition is met.
Figure 20-10 shows the register format.

Even though a 64-bit DBA register is specified, only 40 bits of the virtual address,
plus the region bits (63:62) are compared. The unused address bits must be sign-
extended to bit 61 for all address spaces except for xkphys. For xkphys address
space, bits 61:59 must also indicate the correct cacheability attribute, because
these bits are compared. Please refer to the memory mapping and address space
discussions in Chapter 4.

Figure 20-10 Data Breakpoint Address (DBA) Register Format

22 TER

Trigger Enable for Read Access (i.e., Loads)
1 → Trigger enabled for loads
0 → No trigger enabled for loads

Cleared to 0 on cold reset.

23 TEWR

Trigger Enable for Write Access (i.e., Stores)
1 → Trigger enabled for stores
0 → No trigger enabled for stores

Cleared to 0 on cold reset. If neither TERD nor TEWR is set,
no data access trigger occurs. These are the primary trigger-
enable bits.

31:24 Reserved —

Table 20-4 Data Breakpoint Control/Status (DBC) Register Fields (continued)

Bits Name Description

63 0

40-bit virtual address

39 62 40

region

61

see text
VR5432 Microprocessor User’s Manual 757

Chapter 20
DBAM: Data Breakpoint Address Mask register (DR13)

The DBAM register contains the bit mask for DBA. If a bit of this register is 1, the
corresponding bit of DBA is not compared. Figure 20-11 shows the register
format.

As with the DBA register, even though a 64-bit DBAM register is specified, only
40 bits of the virtual address, plus the region bits (63:62), are compared. The
unused address bits must be sign extended to bit 61 for all address spaces except
for xkphys. For xkphys address space, bits 61:59 must also indicate the correct
cacheability attribute, because these bits are compared.

Figure 20-11 Data Breakpoint Address Mask (DBAM) Register Format

DBD: Data Breakpoint Data register (DR14)

The DBD register contains the data of the data breakpoint. The break condition is
met when this data is read or written. Figure 20-12 shows the register format.

Figure 20-12 Data Breakpoint Data (DBD) Register Format

63 0

40-bit virtual address mask

39 62 40

region

61

see text

63 0

DBD
758 VR5432 Microprocessor User’s Manual

Debug and Test Features
DBDM: Data Breakpoint Data Mask register (DR15)

The DBDM register contains the bit mask for DBD. If a bit of this register is 1, the
corresponding bit of DBD is not compared. For partial word or partial doubleword
operations, the unused bits must be masked. Figure 20-13 shows the register
format.

Figure 20-13 Data Breakpoint Data Mask (DBDM) Register Format

20.5 External Access

In the processor’s external-access Debug mode, an external debug tool controls
processor operations through the JTAG test access port (TAP). The JTAG port
supports not only JTAG testing but also N-Wire and N-Trace testing. In external
access, the debug tool can access all Debug mode registers, including the debug
registers (Section 20.4.2) available to an internal-access resident debugger
program and the JTAG, N-Wire, and N-Trace registers described below. This
access to debug resources gives external-access Debug mode more control of the
processor than does internal-access Debug mode.

63 0

DBDM
VR5432 Microprocessor User’s Manual 759

Chapter 20
20.5.1 JTAG Port Signals

20.5.1.1 Signal summary

Table 20-5 JTAG Test Access Port Signal

Name Definition Direction Description

JTCK
JTAG Test Clock
input

Input

The processor accepts a serial clock on the
JTCK input. At the rising edge of JTCK, both
JTDI and JTMS are sampled. The maximum
frequency of JTCK is 33 MHz, and it runs
asynchronously to the processor clock,
SysClock. The ratio of SysClock to JTCK
must be at least 4:1 for proper N-Wire and N-
Trace synchronization.

JTMS
JTAG Test Mode
Select

Input

The JTAG command signal. It is decoded by
the TAP controller to control test operations.
The signal has an internal pull-up so that its
level is High when the debug tool is not
connected.

JTDI JTAG Test Data In Input

Data is serially scanned in through this signal.
The signal has an internal pull-up so that its
level is High when the debug tool is not
connected.

JTDO JTAG Test Data Out Output

Data is serially scanned out through this signal
on the falling edge of JTCK. Per the IEEE-
1149.1 standard, the JTDO output is tristated
unless data is actively being scanned.

TrcData (3:0) N-Trace Data Port Output

This bus is used for output of all trace packets
generated as a result of processor execution.
Trace packets can consist of one or more clock
cycles of data on this bus.

TrcEnd N-Trace End Output
Assertion of this signal indicates the end of a
trace packet on the TrcData (3:0) bus.
760 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.1.2 Reset mode (RMode*) signal

When ColdReset* is deasserted, the RMode* input is sampled to set the value of
the RESET bit in the Debug Module Control (DM_CONTROL) register, which is
the N-Wire debug reset variable. The RMode* value initializes the RESET bit as
follows:

• Low. Enables debug reset (when RMode* is sampled low, the RESET
bit is set to 1). The debug module asserts debug reset to th
processor. The effect on the processor of asserting RMode* is the
same as asserting Reset*.

• High. Disables debug reset. The debug module does not assert debu
reset to the processor.

TrcClk N-Trace Clock Output

This clock is generated for the benefit of test
equipment that requires a clock reference for
trace information. It runs at the same
frequency as SysClock.

RMode*,
BkTgIO*

N-Wire Reset Mode,
or
N-Wire Break or
Trigger I/O

Input/
output

This pin supports two N-Wire signals: debug
reset (RMode*), and debug break or trigger
(BkTgIO*). During assertion of ColdReset*,
the pin carries the RMode* input signal. In all
other states the pin carries the BkTgIO* debug
break input or debug trigger output signal,
depending on its setup in various debug
registers (Section 20.4.2) and JTAG-
accessible registers (Section 20.5.2). The pin
operates at SysClock frequency and must be
driven synchronously with SysClock. The pin
has an internal pull-up so that its level is High
when the debug tool is not connected.
See Section 20.5.1.2 and Section 20.5.1.3 for
details.

Tristate Tristate Outputs Input
This signal floats all processor outputs to
allow isolation for board-level tests.

Table 20-5 JTAG Test Access Port Signals (continued)

Name Definition Direction Description
VR5432 Microprocessor User’s Manual 761

Chapter 20
20.5.1.3 Break or Trigger I/O (BkTgIO*) signal

After ColdReset* is deasserted, BkTgIO* acts as a debug break input or a debug
trigger output. The direction of the BkTgIO* signal defaults to input at debug
module initialization, but its direction can thereafter be configured in the JTAG-
accessible DM_SYSTEM register (see Section 20.5.2.5).

If the signal is configured for output, it can be enabled to act as a trigger to an
external debug tool, or it indicates whether the processor is currently in Debug
mode:

• Low (1 cycle pulse) The debug module has detected one or more
processor internal trigger events

• Low (> 1 cycle). The processor is in Debug mode

• High. The processor is operating in Normal mode (User, Supervisor,
or Kernel mode).

Since the processor is a superscalar core running at a higher frequency than the
system interface, trigger events can occur much faster than BkTgIO* can report
them. Trigger events can be reported at the maximum rate of one every two
SysClock cycles (1 cycle pulse). All trigger events that have occurred since the
last BkTgIO* trigger output are reported in one trigger. If the processor enters
Debug mode, any trigger events that have not been reported will not be reported.

If the signal is configured for input, it acts as a debug break from an external debug
tool that can force the processor from Normal mode (User, Supervisor, or Kernel
mode) to Debug mode:

• Low. Break request, forces processor into Debug mode

• High. Maintain current processor mod

The debug break request needs to be asserted for only one cycle. The processor
enters Debug mode as soon as it is conveniently possible. If the processor is
already in Debug mode, or if there is already an outstanding debug break request,
a subsequent debug break request has no effect.
762 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.1.4 Board connector for debug tool

System designers are encouraged to incorporate into their board design a 26-pin
high-density connector that provides 13 signals and 13 grounds. This assures
maximum performance and eliminates noise problems. The target connector is a
0.05”-pitch 26-pin header connector, Samtec part number FTSH-113-01-L-D
(through-hole) or FTSH-113-01-L-DV (surface mount), or equivalent. The 26
pins are allocated to 12 signals (and one spare) and 13 grounds. The connector
spacing is a convenient 0.05” x 0.05” and provides easy cabling to external
equipment.

Alternatively, there is a 10-pin connector option. This smaller connector contains
only the basic JTAG boundary scan TAP signals and excludes the real-time trace-
related signals.

Figure 20-14 shows the two connectors. Table 20-6 and Table 20-7 list their
pinouts.
VR5432 Microprocessor User’s Manual 763

Chapter 20
Figure 20-14 JTAG Connector Types

0.05 in.

0.05 in.

21

2625

26-Pin Connector
(Top View)

0.05 in.

0.05 in.

1 2

9 10

10-Pin Connector

(Top View)
764 VR5432 Microprocessor User’s Manual

Debug and Test Features
In addition to the above debug port connector, system designers may also want to
include a 208-pin PQFP test socket. The socket or connector should have the exact
pinout, shape, and layout of the actual 208-pin PQFP processor chip and should
be placed as close as possible to the processor chip. This extra socket or connector
enables connection to a logic analyzer preprocessor between the target board and
the processor without having to remove the processor from the board. The
preprocessor can then support full visibility to all external processor signals, as
well as real-time trace and inverse assembly.

Table 20-6 26-Pin JTAG Connector Signals

Pin Signal I/O Target Termination

1 Reserved — —

3 JTDI Input 1-KOhm pull-up resistor

5 JTDO Output 33-ohm series resistor

7 JTMS Input 1-KOhm pull-up resistor

9 JTCK Input 1-KOhm pull-up resistor

11 Tristate Input 1-KOhm pull-down resistor

13
RMode*/
BkTgIO*

Input/Output 1-KOhm pull-up resistor

15 TrcData 0 Output 33-ohm series resistor

17 TrcData 1 Output 33-ohm series resistor

19 TrcData 2 Output 33-ohm series resistor

21 TrcData 3 Output 33-ohm series resistor

23 TrcEnd Output 33-ohm series resistor

25 TrcClk Output 33-ohm series resistor

Table 20-7 10-Pin JTAG Connector Sign a l

Pin Signal I/O Target Termination

1 Reserved — —

3 JTDI Input 1-KOhm pull-up resistor

5 JTDO Output 33-ohm series resistor

7 JTMS Input 1-KOhm pull-up resistor

9 JTCK Input 1-KOhm pull-up resistor
VR5432 Microprocessor User’s Manual 765

Chapter 20
20.5.2 JTAG-Accessible Registers

Table 20-8 lists the registers accessible by a debug tool through the JTAG port.
These registers support JTAG, N-Wire, and N-Trace functions.

Table 20-8 JTAG-Accessible Regist e r

Mnemonic Register Name
Width
(Bits)

— JTAG Instruction register 5

— JTAG Bypass register 1

— JTAG Boundary Scan register 109

— Processor Type register 25

DM_SYSTEM N-Wire Debug Module System register 7

DM_CONTROL N-Wire Debug Module Control register 22

MON_INST N-Wire Monitor Instruction register 64

MON_DATA
N-Wire Monitor Data register
This is the same as Debug register DR2
(DDATA0). See Section 20.4.2.4.

64

TRCSYS N-Trace System register 11

IBC
IBA
IBAM
DBC
DBA
DBAM
DBD
DBDM

N-Wire and N-Trace Hardware Breakpoint
registers
These are the same as Debug Registers DR4−
DR15. See Section 20.4.2.6 and Section
20.4.2.7.

Various
766 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.2.1 JTAG Instruction register

The JTAG Instruction register holds the opcodes for JTAG, N-Wire, and N-Trace
operations. Instructions are entered into the test logic during an instruction register
scan sequence in the TAP controller. Figure 20-15 shows the register format.
Table 20-9 describes the JTAG, N-Wire, and N-Trace instructions.

Figure 20-15 JTAG Instruction Register Format

Table 20-9 JTAG Instructions

Instruction Opcode Data Register Function

EXTEST 00000 JTAG Boundary Scan register
Tests circuitry external to the
chip

SAMPLE/
PRELOAD

00001 JTAG Boundary Scan register

Allows a snapshot of the
normal operation of the chip to
be taken and examined. Also
allows data to be preloaded into
the parallel outputs of the
Boundary Scan register prior to
another instruction such as
EXTEST.

DM_SYSTEM 00010
N-Wire Debug Mode System
register

Accesses the Debug Module
System register

DM_CONTROL 00011
N-Wire Debug Mode Control
register

Accesses the Debug Module
Control register

PROCTYPE 00100 Processor Type register
Accesses the Processor Type
register

NTRACE_SYS 00101 N-Trace System register
Accesses the Trace System
register

MON_INST 01000
N-Wire Monitor Instruction
register

Accesses the Monitor
Instruction register

MON_DATA 01001 N-Wire Monitor Data register
Accesses the Monitor Data
register

4 0

5

Instruction
VR5432 Microprocessor User’s Manual 767

Chapter 20
20.5.2.2 JTAG Bypass register

The JTAG Bypass register is 1 bit wide. When the TAP controller is in the Shift-
DR (Bypass) state, the data on the JTDI signal is shifted into the Bypass register,
and the data on Bypass register output shifts to the JTDO output signal.
Figure 20-16 shows the register format.

Figure 20-16 JTAG Bypass Register Format

The Bypass register is like a short-circuit. It allows bypassing of board-level
devices in the boundary scan chain that do not require a specific test. Use of the
register speeds up access to Boundary Scan registers in those ICs that remain
active in the board-level test data path.

CACHE_TEST 01100 Cache Test register Enables Cache Test mode

HIGHZ 01110 JTAG Bypass register Tristates all outputs of the chip

BYPASS 11111 JTAG Bypass register
Connects JTDI to JTDO
through the 1-bit Bypass
register

Table 20-9 JTAG Instructions (continued)

Instruction Opcode Data Register Function

0

768 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.2.3 JTAG Boundary Scan register

The JTAG Boundary Scan register is a single bus comprising a 74-bit Shift
register, each bit of which is connected to a processor signal. The Boundary Scan
register retains states for all of the processor’s input and output signals, except for
some clock and phase-locked loop signals. The external signals can be configured
to drive any arbitrary pattern, depending on the data scanned into the Boundary
Scan register while in the JTAG Shift-DR state. Data driven into the signals from
other devices can be examined while in the Capture-DR state.

Figure 20-17 shows the register format. Table 20-10 describes the register bits in
their scan order.

Figure 20-17 JTAG Boundary Scan Register Format

The least-significant bit, jSysADEn, is the JTAG output enable bit for all
processor outputs. Output is enabled when this bit is set to 1. The remaining 73
bits correspond to the processor’s 73 signal pads, as shown in Table 20-10. The
scan starts by shifting the least-significant bit out of the Boundary Scan register,
so the first scan-out bit is the jSysADEn signal.

Table 20-10 JTAG Boundary Scan Register Order

No. Signal No. Signal No. Signal No. Signal

1 jSysADEn 20 NMI* 39 SysCmd7 58 RdRdy*

2 Tristate 21 SysAD8 40 SysCmd6 59 SysAD30

3 ColdReset* 22 SysAD9 41 SysCmd5 60 ValidOut*

4 BigEndian 23 SysAD10 42 SysCmd4 61 SysAD31

5 DivMode0 24 SysAD11 43 SysCmd3 62 PReq*

6 DivMode1 25 SysAD12 44 SysCmd2 63 SysAD0

7 ByPassPLL 26 SysAD13 45 ValidIn* 64 SysAD1

8 TrcEnd 27 SysAD14 46 OptionR43k* 65 SysAD2

9 TrcData3 28 SysAD15 47 Reset* 66 SysAD3

10 TrcData2 29 SysAD16 48 SysCmd1 67 SysAD4

73 0

SysADC0

74

jSysADEnSee table below for field descriptions
VR5432 Microprocessor User’s Manual 769

Chapter 20
20.5.2.4 Processor Type register

This register contains the CPU type and the debug module version. Figure 20-18
shows the register format. Table 20-11 describes the register fields.

Figure 20-18 Processor Type Register Format

11 TrcClk 30 SysAD17 49 SysCmd0 68 SysAD5

12 TrcData1 31 SysAD18 50 ExtRqst* 69 SysAD6

13 TrcData0 32 SysAD19 51 SysAd25 70 SysAD7

14 BkTgIO* 33 SysAD20 52 Release* 71 SysADC3

15 Int4 34 SysAD21 53 SysAD26 72 SysADC2

16 Int3 35 SysAD22 54 SysAD27 73 SysADC1

17 Int2 36 SysAD23 55 SysAD28 74 SysADC0

18 Int1 37 SysAD24 56 SysAD29

19 Int0 38 SysCmd8 57 WrRdy*

Table 20-11 Processor Type Register Format Register Fields

Bits Field Description

15:0 DMV Debug module version. Set to 10H.

24:16 PID Processor ID. Set to 5400H.

Table 20-10 JTAG Boundary Scan Register Order (continued)

No. Signal No. Signal No. Signal No. Signal

24 16 15 0

DMV PID

169
770 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.2.5 N-Wire Debug Module System register (DM_SYSTEM)

The DM_SYSTEM register contains the basic configuration fields for debug
module initialization, N-Wire RMode*/BkTgIO* signal functions, and N-Trace
functions. Figure 20-19 shows the register format. Table 20-12 describes the
register fields. Certain fields of this register are copied into the DRCNTL debug
register, described in Section 20.4.2.

Figure 20-19 N-Wire Debug Module System (DM_SYSTEM) Register Format

Table 20-12 N-Wire Debug Module System (DM_SYSTEM) Register Fields

Bits Name Description

0 DINIT

Initialize the Debug Module (read/write)
1 → Resets (initializes) the debug module
0 → Releases reset of debug module (enable debug module)

Defaulted to 1 at processor ColdReset* or JTAG in reset. When
DINIT = 1, all the N-Wire register bits are at their reset value. The
N-Wire function cannot be loaded unless DINIT is enabled
(DINIT = 0).

1 BKTGIO
RMode* /BkTgIO* Signal Implementation (read only)

1 → Implemented
0 → Not implemented

2 BKTGIODIR

BkTgIO* Direction (read/write)
1 → Input
0 → Output

Defaulted to 1 at the debug module initialization.

3 BKIOBEN

BkTgIO* Break Enable (read/write)
1 → Enable driving of trigger output on BkTgIO* at a
processor break, or to break the processor at a BkTgIO* input
0 → Disable

Defaulted to 0 at the debug module initialization.

6 0

See table below for field descriptions

7

VR5432 Microprocessor User’s Manual 771

Chapter 20
20.5.2.6 N-Wire Debug Module Control register (DM_CONTROL)

The DM_CONTROL register contains enabling and status fields for debug reset,
processor breaking, interrupt and exception handling, single-stepping, and
execution of N-Wire Monitor instructions. Figure 20-20 shows the register
format. Table 20-13 describes the register fields. Certain fields of this register are
copied into the DRCNTL debug register, as described in Section 20.4.2.

Figure 20-20 N-Wire Debug Module Control (DM_CONTROL)
Register Format

4 BKIOTEN

BkTgIO* Trigger Enable (read/write)
1 → Enable detected internal trigger events to the BkTgIO*
signal when it is configured in the output direction
0 → Disable

Defaulted to 0 at the debug module initialization.

5 NTRACE
N-Trace Implementation (read only)

1 → Implemented
0 → Not implemented

6 NTRACEN

N-Trace Port Enable (read/write)
1 → Enable
0 → Disable

Defaulted to 0 at the debug module initialization.

Table 20-12 N-Wire Debug Module System (DM_SYSTEM) Register Fields (continued)

Bits Name Description

21 0

22

See table below for field descriptions
772 VR5432 Microprocessor User’s Manual

Debug and Test Features
Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields

Bits Name Description

0 RESET

Debug Reset (read/write)
1 → Requests debug reset
0 → Releases debug reset

Defaulted according to the level of the RMode* input at
processor ColdReset*. When RMode* is active low, this register
bit is active high.

1 BREAK

Break Request (read/write)
Write 1 → Requests break
Write 0 → No operation
Read 1 → Command not completed (still requesting break)
Read 0 → Break is completed

This bit is cleared when the break is completed.
Defaulted to 0 at the debug module initialization.

2 MRST

Mask Reset* (read/write)
1 → Ignores (masks) Reset* input while in Debug mode
0 → Accepts Reset* input while in Debug mode

Defaulted to 1 at the debug module initialization. ColdReset* is
not masked by this bit.

3 MNMI

Mask NMI* (read/write)
1 → Suppress the occurrence of NMI*
0 → Do not suppress the occurrence of NMI*

Defaulted to 0 at the debug module initialization.

4 MINT

Mask Interrupts (read/write)
1 → Ignores user interrupt input
0 → Accepts user interrupt input

This mask affects interrupts via the Int* signals or via an external
write. Software interrupts are not masked. Defaulted to 0 at the
debug module initialization.

5 STEP

Single-Step (read/write)
This bit allows the user to execute one Normal mode instruction
followed by a break. Single-step occurs after a DRET
instruction. The processor returns to Normal mode, executes a
single instruction, and breaks back into Debug mode. Enabling a
single-step break while the processor is in Normal mode results
in undefined behavior.

1 → Enable single-step break (single-step mode)
0 → Disable single-step break

Defaulted to 0 at the debug module initialization.
VR5432 Microprocessor User’s Manual 773

Chapter 20
13:6 BRKCAUSE

Break Cause (read only)
This field consists of multiple bits. One bit is assigned for each
break cause and the corresponding bit is set when the break
occurred. Multiple bits are set if the break occurred by multiple
break causes. Break Cause is cleared by DRET or by processor
reset.
The bit assignments are defined as follows:

Bit 6 → External break
Bit 7 → Single-step
Bit 8 → Software breakpoint
Bit 9 → Reserved
Bit 10 → Reserved
Bit 11 → Instruction address breakpoint
Bit 12 → Data access (address or data) breakpoint
Bit 13 → Reserved

14 DBM
Debug or Normal Mode (read only)

1 → Debug mode is active
0 → Normal mode is active

17:15 CPUSTAT

CPU Status (read only)
The processor status is encoded as follows:

0 0 0 → Reset (highest)
0 0 1 → Reserved
0 1 0 → Reserved
0 1 1 → Reserved
1 0 0 → Reserved
1 0 1 → Reserved
1 1 0 → Reserved
1 1 1 → Normal mode (lowest)

18 ACTFLG_CLK

Active Flag for Processor Clock (read/write)
This bit indicates clock activity. The debug tool can use this bit
to detect whether a clock is supplied into the processor from the
target system board.

Write 1 → No operation
Write 0 → Clear active flag
Read 1 → Clock is active
Read 0 → Clock has not been active since flag was cleared

This flag is set when there's any activity on the clock. This flag
is cleared when the debug tool writes 0 into this bit.

Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields (continued)

Bits Name Description
774 VR5432 Microprocessor User’s Manual

Debug and Test Features
19 ACTFLG_BUS

Active Flag for Bus (read/write)
This bit indicates bus activity.

Write 1 → No operation
Write 0 → Clear active flag
Read 1 → Bus cycle is active
Read 0 → Bus cycle has not occurred since flag was cleared

This flag is set when there is any activity on the bus. It is cleared
when the debug tool writes 0 into this bit.

20 MON_INSTEXEC

Monitor Instruction Execution (read/write)
Setting this bit causes the processor to fetch and execute the
instruction in the MON_INST register.

Write 1 → Fetches and executes MON_INST instruction
Write 0 → No operation
Read 1 → A monitor instruction is executing
Read 0 → No monitor instruction is executing

21 DM_EXCEPT

Debug Mode Exception (read/write)
Read 1 → Instruction executed in Debug mode has caused
an exception
Read 0 → No exception in Debug mode since flag was
cleared
Write 1 → No operation
Write 0 → Clear exception flag

If any instruction other than a Load or Store causes an exception,
the results and processor state are undefined.

Table 20-13 N-Wire Debug Module Control (DM_CONTROL) Register Fields (continued)

Bits Name Description
VR5432 Microprocessor User’s Manual 775

Chapter 20
20.5.2.7 N-Wire Monitor Instruction register (MON_INST)

All JTAG accesses to system resources, such as the processor’s Normal mode and
Debug mode registers, cache, external memory, and I/O are accessed via a
monitor mechanism. The MON_INST and MON_DATA registers are used to
insert instructions and data, respectively, into the processor.

When the debug module is active (DINIT bit cleared to 0 in the DM_SYSTEM
register) and a debug break occurs, processor instructions can be loaded and
executed. The MON_INST instruction causes a processor instruction to be
scanned into the write-only MON_INST register through the JTAG port. The
MON_INSTEXEC bit in the DM_CONTROL register can then be set to cause the
processor to execute the instruction.

When executing Monitor instructions, the processor PC does not give meaning to
the instruction. Therefore, all processor instructions and events that redirect the
PC are not defined and produce unpredictable behavior. The DRET instruction is
the only instruction that can be used for redirecting the PC.

Figure 20-21 shows the register format. A monitor instruction can only be
executed while the processor is in Debug mode and the debug module is not reset.
If the MON_INSTEXEC bit is written to while in Normal mode, the results are
undefined. Attempts to modify the MON_INST or MON_DATA registers while
executing a Monitor instruction will result in undefined behavior.

An example of loading processor instructions and data with the Monitor
instruction is given in Section 20.5.3.

Figure 20-21 N-Wire Monitor Instruction (MON_INST) Register Format

63 0

MON_INST
776 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.2.8 N-Wire Monitor Data register (MON_DATA)

The MON_DATA register is identical to the DDATA0 debug register (DR2),
described in Section 20.4.2.4. The MON_DATA instruction and register are used
in conjunction with the MON_INST instruction and register to insert data and
instructions into the processor. The MON_DATA instruction causes data to be
scanned into the MON_DATA (DR2) register through the JTAG port. The
MON_INST instruction is then used to scan the MFDR instruction into the
MON_INST register. The MON_INSTEXEC bit in the DM_CONTROL register
can then be set to cause the instruction currently loaded in the MON_INST
register (i.e., the MFDR instruction) to move this data into a general-purpose
register.

Figure 20-22 shows the register format. An example of loading processor
instructions and data with the Monitor instruction is given in Section 20.5.3.

Figure 20-22 N-Wire Monitor Data (MON_DATA) Register Format

63 0

MON_DATA
VR5432 Microprocessor User’s Manual 777

Chapter 20
20.5.2.9 N-Trace System register (TRCSYS)

The TRCSYS register is used to control N-Trace reset and to give read-only
information that indicates the processor’s N-Trace implementation parameters.
Figure 20-23 shows the register format. Table 20-14 describes the register fields.

Figure 20-23 N-Trace System (TRCSYS) Register Format

Table 20-14 N-Trace System (TRCSYS) Register Fields

Bits Name Description

2:0 MODE

Trace Mode (read only)
The read value is 2H. Bits 2:1 are 01, indicating Target PC
(TPC) packet tracing in the N-Trace Level 1 mode (TPC
packets at exceptions and indirect jumps). Bit 0 is 0, indicating
a non-real-time trace.

4:3 CLKDIV
Trace Clock (TrcClk) Divisor (read only)
These bits are set by the DivMode (1:0) pins. The trace port
runs at the system interface clock frequency.

5 RESET

Reset N-Trace (read/write)
1 → N-Trace is in reset. The NOP packet is output to the
TrcData (3:0) port. The bit is initialized to 1 at
ColdReset*.
0 → N-Trace is active. Trace information is output to the
TrcData (3:0) port.

If N-Trace is reset, no trace packets are generated (NOP
packets are on the internal N-Trace port). When reset is
released, the value of the current PC is output and trace
information proceeds.

7:6 Reserved The read value is 0H.

10:8 NDATAPIN
N-Trace Data Pins (read only)
The read value is 4H, indicating 4 pins in the TrcData (3:0)
port.

10 7 6 5 4 3 2 0

reserved RESET CE MODE

3 1 1 1 2 3

NDATAPIN

8

reserved
778 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.2.10 N-Wire and N-Trace Hardware Breakpoint registers

Debug registers DR4−DR15 serve as the hardware breakpoint registers for both
internal-access and external-access Debug mode. The registers are described in
Section 20.4.2.

20.5.3 N-Wire Monitor Data Download Example

The following example describes the steps for downloading data into external
memory using the N-Wire Monitor instruction and data resources. To do this, use
the following sequence:

1. Break into Debug mode with the debug module enabled (DINIT bit cleared).

2. Scan the download data into the MON_DATA register via JTAG.

3. Scan the MFDR instruction into the MON_INST register via JTAG.

4. Set the MON_INSTEXEC bit in the DM_CONTROL register via JTAG. This
causes the processor to execute the instruction in the MON_INST register,
thus moving the data from the MON_DATA debug register (same as debug
register DR2) into a general-purpose register in preparation for a store
operation.

5. Check for completion by checking the MON_INSTEXEC bit via JTAG.

6. Scan a Store instruction into the MON_INST register via JTAG.

7. Set the MON_INSTEXEC bit via JTAG. This causes the processor to execute
the Store instruction in the MON_INST register, thus storing the data from
the general-purpose register into memory.

8. Check for completion by checking the MON_INSTEXEC bit via JTAG.

9. Repeat steps 2−8 for each doubleword of data to be stored in memory.

10. Scan a DRET instruction into the MON_INST register via JTAG.

11. Set the MON_INSTEXEC bit via JTAG to execute the DRET.

12. Check for completion by checking the MON_INSTEXEC bit via JTAG. When
the DRET is complete, the processor has returned to Normal mode.
VR5432 Microprocessor User’s Manual 779

Chapter 20
20.5.4 N-Trace Packets

The processor can trace its internal instruction execution by using the N-Trace
protocol. It uses the TrcData (3:0), TrcEnd, and TrcClk signals on the JTAG port
(Section 20.5.1) to send N-Trace packets to an external debug tool. The processor
supports the N-Trace packets shown in Table 20-15. All packets maintain a 4-bit
code definition and output information that is a multiple of four bits.

The processor generates useful trace packets only in Normal mode (User,
Supervisor, or Kernel mode). It does not generate trace packets (other than NOP)
in Debug mode; instead, NOP packets are continuously output on the N-Trace
interface. When the processor is at the instruction boundary before entering Debug
mode, all packets that have been generated are output. The processor also finishes
all pending system interface operations before entering Debug mode. When the
processor leaves Debug mode, it generates a Target PC (TPC) trace packet to
indicate the instruction address where the normal execution resumes.

The processor supports only one N-Trace mode (N-Trace Level 1 mode, with TPC
packets at exceptions and indirect jumps). The mode is non-real time, which
implies that the CPU pipeline stalls if the trace buffer fills. N-Trace is either on or
off and does not have additional control options.

Table 20-15 N-Trace Packet Types

Mnemonic Code Description

EXP 0,1,1,0,<exp_id> Exception

LSEQ 0,1,1,1 Long Sequential Execution

NOP 0,0,0,0 No Operation

NSEQ 1,0,0,0,<seq #> Non-Sequential Operation

TPC 0,1,0,0,<program_counter> Target PC
780 VR5432 Microprocessor User’s Manual

Debug and Test Features
20.5.4.1 Exception (EXP)

• Mnemonic EXP <exp_id>

• Code 0,1,1,0,<exp_id>

The EXP packet is output when an exception occurs within the processor. The
<exp_id> field contains the Exception vector address taken. Bit 3 is equal to the
BEV bit of the Status register. Bits 2:0 are an ID indicating the exception type.

20.5.4.2 Long Sequential Execution (LSEQ)

• Mnemonic LSEQ

• Code 0,1,1,1

The LSEQ packet indicates that 256 instructions have been executed sequentially.
This is the limit of the sequential instruction counter.

20.5.4.3 No Operation (NOP)

• Mnemonic NOP

• Code 0,0,0,0

The NOP packet is output if there are no other packets while trace is enabled. It is
also output if trace is disabled.

ID Exception

0 0 0 NMI

0 0 1 Debug Break

0 1 0 Reserved

0 1 1 Reserved

1 0 0 TLB Refill

1 0 1 XTLB Refill

1 1 0 Cache Error

1 1 1 Others
VR5432 Microprocessor User’s Manual 781

Chapter 20
20.5.4.4 Non-Sequential Operation (NSEQ)

• Mnemonic NSEQ <seq #>

• Code 1,0,0,0, <seq #>

The NSEQ packet indicates the current value of the 8-bit Trace instruction counter
(IC). It is output when a branch, jump, or exception occurs. The <seq #> field is
the count of instructions since the last NSEQ or LSEQ occurred; the count starts
at 0.

20.5.4.5 Target PC (TPC)

• Mnemonic TPC <program_counter>

• Code 0,1,0,0,<program_counter>

The TPC packet contains a 40-bit value representing the virtual address of:

• The target address of a Jump Register instruction after an NSEQ
packet

• The new PC after an ERET instructi

• The starting trace location when trace reset is released

• The new PC when the processor leaves Debug mode whil N-Trace is
enabled

20.5.4.6 N-Trace instruction summary

Table 20-16 summarizes the Trace instructions and the trace behavior that they
create. The instructions are grouped according to the classifications that are
defined as part of the N-Trace architecture. The instruction counter (IC) is a
pointer that indicates the count of instructions after an NSEQ or TPC packet. This
count starts at 0. The IC reported by a trace action is the IC of the instruction that
caused the action.
782 VR5432 Microprocessor User’s Manual

Debug and Test Features
Table 20-16 N-Trace Instruction Summary

Instruction Set Instruction or Group Trace Action1

CPU Instruction Set
J, JAL
(Action occurs in the delay slot)

NSEQ <IC>; IC = 0;

CPU Instruction Set
JR, JALR
(Action occurs in the delay slot)

NSEQ <IC>; IC = 0; TPC;

CPU Instruction Set
PC-Relative Conditional Branches
(Action occurs in the delay slot for
Branch Taken case)

If (Branch Taken)
NSEQ <IC>; IC = 0;
Else (Not Taken)
IC <- IC + 1; If (IC = 256)
LSEQ; IC = 0;

CPU Instruction Set
Exceptions and SYSCALL, BREAK
instructions

NSEQ<IC>; EXP<cause>; IC =
0;

CPU Instruction Set Conditional Traps

If (Trap Taken)
NSEQ<IC>; EXP<cause>; IC =
0;
Else (Not Taken)
IC <- IC +; If (IC = 256) LSEQ;
IC = 0;

CPU Instruction Set All other instructions
IC <- IC + 1; If (IC = 256)
LSEQ; IC = 0;

CP0 Instruction Set ERET NSEQ <IC>; IC = 0; TPC;

CP0 Instruction Set All other instructions
IC <- IC + 1;
If (IC = 256) LSEQ; IC = 0;

FPU Instruction Set
Conditional Branches
(Action occurs in the delay slot for
Branch Taken case)

If (Branch Taken)
NSEQ <IC>; IC = 0;
Else (Not Taken)
IC <- IC + 1; If (IC = 256)
LSEQ; IC = 0;

FPU Instruction Set All other instructions
IC <- IC + 1; If (IC = 256)
LSEQ; IC = 0;

Debug Instructions Debug Break or Break instruction NSEQ <IC>; IC = 0;

Debug Instructions DRET IC = 0; TPC;

Debug Instructions All other instructions No action

Note:
1. IC = instruction counter, a pointer indicating the number of instructions after an NSEQ or TPC packet.
VR5432 Microprocessor User’s Manual 783

Chapter 20
Table 20-17 shows an example of a Break instruction with an exception handler
instruction indicated as the target.

For taken branches and Jump instructions, the PC is not redirected until the delay
slot is executed. The NSEQ and IC reported is for the delay slot of the Branch
instruction. Table 20-18 shows an example of a Branch instruction with a Target
instruction target:

Table 20-19 shows an example of a Jump Register instruction with a Target
instruction and target address.

Table 20-17 Trace Example #1

IC Instruction Trace Packet(s)

N Break NSEQ<N>; EXP<cause>

0 Target

1 Target + 1

Table 20-18 Trace Example #2

IC Instruction Trace Packet(s)

N−1 Branch

N Delay Slot NSEQ<N>

0 Target

1 Target + 1

Table 20-19 Trace Example #3

IC Instruction Trace Packet(s)

N−1 Jump Register

N Delay Slot NSEQ<N>; TPC<TargetAddress>

0 Target

1 Target + 1
784 VR5432 Microprocessor User’s Manual

Debug and Test Features
For Branch instructions not taken, the delay slot is always part of the instruction
flow. The NSEQ and IC reported include delay slots of all Branch instructions.
delay slot is included even for branch-likely cases where the architecture does not
include it. For branch-likely cases, the delay slot is treated as an NOP.
VR5432 Microprocessor User’s Manual 785

Chapter 20
786 VR5432 Microprocessor User’s Manual

Subblock Data Retrieval Order

A

Data block elements (bytes, halfwords, words, or doublewords) can be retrieved
from storage in either sequential or subblock order. This appendix describes these
retrieval methods, with an emphasis on subblock retrieval order.

Note: The VR5432 processor requires external memory systems to
retrieve data in subblock order.

Sequential retrieval fetches data block elements in serial, or sequential, order.
Figure A-1 shows an example of sequential retrieval, in which word 0 is taken first
and word 3 is taken last.

Figure A-1 Retrieving a Data Block in Sequential Order

W 0 W 1 W 2 W 3

Word 0
retrieved first

Word 1
retrieved second

Word 2
retrieved third

Word 3
retrieved fourth
VR5432 Microprocessor User’s Manual 787

Appendix A
Subblock retrieval allows the system to define the retrieval order. Figure A-2
shows retrieval of a four-word block; the critical word at the target address is
retrieved first (W2), followed by the remaining words. (The smallest data element
of a block transfer is a doubleword.)

Figure A-2 Subblock Order Data Retrieval

The subblock ordering logic generates an address for each word as it is retrieved
by executing a bitwise exclusive-OR (XOR) of the starting block address with the
output of a binary counter that increments with each word, starting at word zero
(002). Using this scheme, Table A-1 through Table A-3 list subblock word
retrieval for a four-word block, based on three different starting-block addresses:
102, 112, and 012. The subblock order is generated by an XOR of the subblock
address (102, 112, and 012) with the binary count of the word (002 through 112).

Table A-1 Subblock Sequence: Address 102

Cycle
Starting Block

Address
Binary Count

Word
Retrieved

1 10 00 10

2 10 01 11

3 10 10 00

4 10 11 01

W0 W1 W2 W3

W0
retrieved third

W1
retrieved fourth

W2
retrieved first

W3
retrieved second

2 3 0 1Retrieval Order
788 VR5432 Microprocessor User’s Manual

Subblock Data Retrieval Order
Table A-2 Subblock Sequence: Address 112

Cycle
Starting Block

Address
Binary Count

Word
Retrieved

1 11 00 11

2 11 01 10

3 11 10 01

4 11 11 00

Table A-3 Subblock Sequence: Address 012

Cycle
Starting Block

Address
Binary Count

Word
Retrieved

1 01 00 01

2 01 01 00

3 01 10 11

4 01 11 10
VR5432 Microprocessor User’s Manual 789

Appendix A
790 VR5432 Microprocessor User’s Manual

Comparing the VR4300, VR5000, and VR5432
Processors

B

Table B-1 compares the VR4300, VR5000, and VR5432 processor features.

Table B-1 VR4300, VR5000, and VR5432 Feature Compariso

Feature VR4300 VR5000 VR5432

Cache Algorithms
Cached (write-back)
Uncached

Cached (write-back)
Cached (write-through)
Uncached

Cached (write-back)
Cached (write-through)
Uncached
Accelerated uncached

Circuit Design
Technique

Dynamic Static Static

Coprocessor 0 Hazards Yes Yes No

Data Cache
Array Size

8 KB 32 KB 32 KB

Data Cache
Associativity

Direct mapped 2-way set associative 2-way set associative

Data Cache
Line Locking

No No
Yes
(Lock bit/cache line)

Data Cache
Line Size

16 bytes 32 bytes 32 bytes

Data Cache
Parity Support

No Yes No
VR5432 Microprocessor User’s Manual 791

Appendix B
Hardware Debug
Features

JTAG Boundary Scan No

JTAG Boundary Scan
N-Wire debug support
Hardware breakpoints
Instruction jamming

Instruction Cache
Array Size

16 KB 32 KB 32 KB

Instruction Cache
Associativity

Direct-mapped 2-way set associative 2-way set associative

Instruction Cache
Line Locking

No No
Yes
(Lock bit/cache line)

Instruction Cache
Line Size

32 bytes 32 bytes 32 bytes

Instruction Cache
Parity Support

No Yes No

Instruction Fetch
Branch Prediction

No No
4096 entries
2-bit saturating counter

Instruction Set
Architecture

MIPS III MIPS IV

MIPS IV + Rotate
+ DSP
(Integer MAC, etc.)
+ Media

Load/Store
Architecture

Blocking Blocking

Nonblocking
hits under misses
Up to 4 outstanding D-
cache misses

Performance Counters
(Software/Code
Tuning)

No No
Two 32-bit counters
Selectable any 2 of 16
different events

Physical Address
Size

32 bits 36 bits
36 bits internal; 32 bits
external

Power-On
Configuration Modes

Dedicated pins Scan-in boot ROM Dedicated pins

Secondary Cache
Support

No Yes No

Table B-1 VR4300, VR5000, and VR5432 Feature Comparison (continued)

Feature VR4300 VR5000 VR5432
792 VR5432 Microprocessor User’s Manual

 Comparing the VR4300, VR5000, and VR5432
Processors
Superscalar
(Execution Units)

Scalar (Single Issue)
Limited 2-way
(1 Integer
+ 1 Floating Point)

Symmetrical 2-way
(2 Integer
+ 2 Floating Point
+ 1 Load/Store
+ 1 MAC
+ 1 Media)

System Interface
Clock Divisors

1, 1.5, 2, 3 2, 3, 4, 5, 6, 7, 8 2, 2.5, 3, 4

System Interface
Parity Support

No Yes No

System Interface
Protocol

R4000-like
(Removed Unused
Encodings)

R4000 +
Additional Write
Modes

R5000 +
Split Transactions, or
R4000-like (in VR4300
Emulation mode)

System Interface
Width

32 bits address/data
multiplexed

64 bits + parity
address/data
multiplexed

32 bits + parity
address/data
multiplexed

TLB
Data Micro-TLB

No
2 entries
(4 KB fixed page size)

4 entries
(4 KB–16 MB variable
page sizes)

TLB
Instruction Micro-
TLB

2 entries
(4 KB fixed page size)

2 entries
(4 KB fixed page size)

4 entries
(4 KB – 16 MB variable
page sizes)

TLB
Joint (2nd Level)

32 double entries
(4 KB–16 MB variable
page sizes)

48 double entries
(4 KB–16 MB variable
page sizes)

48 double entries
(4 KB–16 MB variable
page sizes)

Virtual Address
Size (largest segment)

40 bits 40 bits 40 bits

Table B-1 VR4300, VR5000, and VR5432 Feature Comparison (continued)

Feature VR4300 VR5000 VR5432
VR5432 Microprocessor User’s Manual 793

Appendix B
794 VR5432 Microprocessor User’s Manual

PLL Analog Power Filtering

C

For noisy module environments, a phase-locked loop (PLL) filter circuit, as
shown in Figure C-1, is recommended. In addition, the configuration shown in
Figure C-2 is required for PLLCap input.

 Figure C-1 PLL Filter Circuit

 Figure C-2 PLLCap Circuit

R1 = 1 KOhm, C1 = 400 pF, and C2 = 40 pF. All values shown are nominal.
Minimum and maximum values are TBD. All components should be placed as
closely as possible to the indicated pins.

10 µF 0.1 µF 100 pF

Vcc

Vss

VccP

VssP

10 µH

PLLCap

R1

C1

C2

VssP
VR5432 Microprocessor User’s Manual 795

Appendix C
796 VR5432 Microprocessor User’s Manual

Instruction Hazards

D

This chapter identifies R5432 instruction hazards that occur with certain
instruction and event combinations (such as pipeline delays, cache misses,
interrupts, and exceptions). These hazards can cause unpredictable system
behavior and malfunctions.

Most hazards result from instructions modifying and reading state in different
pipeline stages. Such hazards are defined between instruction pairs, not on a single
instruction in isolation. Other hazards are associated with instruction restartability
in the presence of exceptions.
VR5432 Microprocessor User’s Manual 797

Appendix D
For the following code hazards, the behavior is undefined and unpredictable.

• Any instruction that would modify the PageMask, EntryHi, EntryLo0,
EntryLo1, or Random CP0 registers should not be followed by
TLBWR instruction. There should be at least two integer instruction
between the register modification and the TLBWR instruction

• Any instruction that would modify the PageMask, EntryHi, EntryLo0,
EntryLo1, or Index CP0 registers should not be followed by
TLBWI instruction. There should be at least two integer instructions
between the register modification and the TLBWI instruction.

• Any instruction that would modify the Index CP0 register or the
contents of the JTLB should not be followed by a TLBR instruction.
There should be at least two integer instructions between the register
modification and the TLBR instruction

• Any instruction that would modify the PageMask or EntryHi CP0
registers or the contents of the JTLB should not be followed by a
TLBP instruction. There should be at least two integer instructions
between the register modification and the TLBP instruction.

• Any instruction that would modify the EPC, ErrorEPC, or Status CP0
registers should not be followed by an ERET instruction. There
should be at least two integer instructions between the register
modification and the ERET instruction.

• A Branch or Jump instruction is not allowed in the delay slot o
another Branch/Jump instruction. This sequence is illegal in th
MIPS architecture.

• The two instructions preceding a DIV, DIVU, DDIV, DDIVU, MULT,
MULTU, DMULT, or DMULTU instruction should not read the HI o
LO registers. There should be at least two integer instruction
between the register read and the register modification
798 VR5432 Microprocessor User’s Manual

Index

Numerics

32-bit

addressing ... 101

data format ... 10

instructions ... 321

operands, in 64-bit mode ... 327

single-precision FP format ... 159

32-bit mode

address space ... 17

address translation ... 81

FPU operations ... 150

TLB entry format ... 64

64-bit

addressing ... 101

bus, address and data ... 22

data format ... 10

double-precision FP format ... 159

floating-point registers ... 153

operations ... 327

virtual-to-physical address translation ... 50

64-bit mode

32-bit operands, handling of ... 327

address space ... 17

address translation ... 81

FPU operations ... 150

TLB entry format ... 64
VR5432 Microprocessor User’s Manual
A

address cycles ... 206

Address Error exception ... 123

address space identifier (ASID) ... 46

address spaces

64-bit translation of ... 50

address space identifier (ASID) ... 46

physical ... 47

virtual ... 46

virtual-to-physical translation of ... 47

addresses ... 45

addressing

and data formats ... 10

big-endian ... 10

Kernel mode ... 56

little-endian ... 10

Supervisor mode ... 53

User mode ... 51

virtual address translation ... 81

See also address spaces

array, page table entry (PTE) ... 94

ASID. See address space identifier

B

Bad Virtual Address register (BadVAddr) ... 95

big-endian, byte addressing ... 10, 166

binary fixed-point format ... 161

bit definition of

ERL ... 51, 53, 56, 101

EXL ... 51, 53, 56, 101, 104, 113

IE ... 101

KSU ... 51, 53, 56

KX ... 56, 101

SX ... 53, 101

UX ... 51, 101

branch delay ... 34
799

 Index
Branch instructions, CPU ... 9

Branch instructions, FPU ... 167

Break or Trigger I/O (BkTgIO*) Signal ... 762

Breakpoint exception ... 131

Bus Error exception ... 128

byte addressing

big-endian ... 10, 166

little-endian ... 10, 166

C

Cache Error (CacheErr) register ... 110

Cache Error exception ... 127

Cache Error exception process ... 114

Cause register ... 102

central processing unit (CPU)

data formats and addressing ... 10

exception processing ... 91

See also exception processing, CPU

instruction formats ... 8

instruction set

overview ... 8

instructions. See instructions, CPU

interrupts ... 143

See also interrupts, CPU

memory management

See also memory management

operating modes ... 17

registers

See also registers, CPU

System Control Coprocessor (CP0) ... 63

transfers between FPU and CPU ... 165

ckseg0 ... 62

ckseg1 ... 62

ckseg3 ... 62

cksseg ... 62

Clock interface ... 313
800
signals ... 24

cold reset ... 307

Compare instructions, FPU ... 167

Compare register ... 96

compatibility

DEC VAX ... 10

iAPX x86 ... 10

IBM 370 ... 10

MC68000 ... 10

computational instructions, CPU ... 9

64-bit operations ... 327

formats ... 326

computational instructions, FPU

floating-point ... 167

Config register ... 77

Context register ... 94

Control/Status register, FPU ... 153, 155

conversion instructions, FPU ... 166

coprocessor instructions ... 9

Coprocessor Unusable exception ... 133

Count register ... 95

CP0. See System Control Coprocessor

csseg ... 56

D

Data Access Breakpoint ... 754

Data Breakpoint Address Mask register ... 758

Data Breakpoint Address register ... 757

Data Breakpoint Control/Status register ... 755

Data Breakpoint Data Mask register ... 759

Data Breakpoint Data register ... 758

data cycles ... 206

data formats

and addressing ... 10

byte ordering ... 10

data identifiers ... 243
VR5432 Microprocessor User’s Manual

Index
data rate ... 237

DBA ... 757

DBAM ... 758

DBC ... 755

DBD ... 758

DBDM ... 759

DBREAK ... 744

DDATA0 ... 750

DDATA1 ... 751

Debug

Board Connector ... 763

Break or Trigger I/O (BkTgIO*) signal ... 762

Data Access Breakpoint ... 754

Data Breakpoint Address Mask register ... 758

Data Breakpoint Address register ... 757

Data Breakpoint Control/Status register ... 755

Data Breakpoint Data Mask register ... 759

Data Breakpoint Data register ... 758

Debug Break ... 739

Debug Data Monitor 0 and Monitor Data
register ... 750

Debug Data Monitor 1 register ... 751

Debug Exception PC register ... 750

Debug exception vector ... 739

Debug instructions ... 739, 744

Debug mode ... 739, 742

Debug Mode Enable (DME) Bit ... 747

Debug module ... 738, 740

Debug Module Control register ... 772

Debug module reset ... 740

Debug Module System register ... 771

Debug Register Control register ... 747

Debug registers ... 738, 740, 745

Debug Reset ... 740

Debug mode registers ... 740

External Access ... 738, 740, 759

Features ... 737
VR5432 Microprocessor User’s Manual
Hardware Breakpoint ... 740

Hardware Breakpoint registers ... 779

Instruction Breakpoint Address Mask register ...
753

Instruction Breakpoint Address register ... 753

Instruction Breakpoint Control/Status register
... 752

Instruction-Address Breakpoint ... 751

Internal Access ... 738, 741, 743

JTAG Boundary Scan register ... 769

JTAG Bypass register ... 768

JTAG Instruction register ... 767

JTAG Port signals ... 760

JTAG-Accessible registers ... 738, 741, 766

Monitor ... 741

Monitor Data register ... 777

Monitor example ... 779

Monitor Instruction register ... 776

N-Trace instruction summary ... 782

N-Trace packets ... 780

N-Trace System register ... 778

N-Wire and N-Trace functions ... 759

Processor Type register ... 770

Reset Mode (RMode*) signal ... 761

Trigger ... 741

Trigger Event ... 741

DEC VAX, compatibility with ... 10

Divide registers, CPU ... 6

Division by Zero exception ... 181

DM_CONTROL ... 772

DM_SYSTEM ... 771

DR0 ... 747

DR1 ... 750

DR12 ... 757

DR13 ... 758

DR14 ... 758

DR15 ... 759
801

 Index
DR2 ... 750

DR3 ... 751

DR4 ... 752

DR5 ... 755

DR8 ... 753

DR9 ... 753

DRET ... 744

E

EntryHi register ... 64, 75

EntryLo register ... 72

EntryLo0 register ... 64, 72

EntryLo1 register ... 64, 72

ERL bit ... 51, 53, 56, 101

Error Exception Program Counter (ErrorEPC)
register ... 112

exception processing, CPU

exception handler flowcharts ... 136

exception types

Address Error ... 123

Breakpoint ... 131

Bus Error ... 128

Cache Error ... 127

Cache Error exception process ... 114

Coprocessor Unusable ... 133

Floating-Point ... 134

general exception process ... 114

Integer Overflow ... 129

Interrupt ... 135

Nonmaskable Interrupt (NMI) exception
process ... 114

overview ... 113

Reserved Instruction ... 132

Reset ... 119

Reset exception process ... 113

Soft Reset ... 121

Soft Reset exception process ... 114

System Call ... 130
802
TLB ... 124

Trap ... 129

exception vector location

Reset ... 115

exception processing, FPU

exception types

Division by Zero ... 181

Inexact Operation ... 179

Invalid Operation ... 180

Overflow ... 181

overview ... 174

Underflow ... 181

Unimplemented Exception ... 183

flags ... 176

saving and restoring state ... 184

trap handlers ... 184

Exception Program Counter (EPC) register ... 104

EXL bit ... 51, 53, 56, 101, 104, 113

EXP ... 781

External Access ... 738, 740, 759

F

features

Floating-Point Unit (FPU) ... 150

Floating-Point exception ... 134

Floating-Point General-Purpose registers (FGRs) ...
151

Floating-Point registers (FPRs) ... 153

Floating-Point Unit (FPU)

designated as CP1 ... 16, 149

exception types ... 174

See also exception processing, FPU,
exception types

features ... 16, 150

formats

binary fixed-point ... 161

floating-point ... 159
VR5432 Microprocessor User’s Manual

Index
instruction execution cycle time ... 169

instruction pipeline ... 169

See also pipeline, FPU

instruction set, overview ... 162

overview ... 149

programming model ... 150

transfers between FPU and CPU ... 165

transfers between FPU and memory ... 165

FPU. See Floating-Point Unit

G

general exception

handler ... 137

process ... 114

servicing guidelines ... 138

H

hardware

interlocks ... 166

interrupts ... 143

Hardware Breakpoint ... 740

Hardware Breakpoint registers ... 779

I

iAPX x86, compatibility with ... 10

IBA ... 753

IBAM ... 753

IBC ... 752

IBM 370, compatibility with ... 10

IE bit ... 101

Implementation/Revision register, FPU ... 153–154

Index register ... 70

Initialization interface

cold reset ... 307, 309

power-on reset ... 308
VR5432 Microprocessor User’s Manual
reset signal description ... 307, 311

warm reset ... 307, 310

Instruction Breakpoint Address Mask register ... 753

Instruction Breakpoint Address register ... 753

instruction formats, CPU

types of ... 8

instruction set architecture (ISA)

overview ... 8

instruction set, CPU

overview ... 8

See also instructions, CPU

instruction set, FPU ... 162

Instruction-Address Breakpoint ... 751

instructions, CPU

branch ... 9

computational ... 9

64-bit operations ... 327

formats ... 326

coprocessor ... 9

jump ... 9

load

defining access types ... 323

overview ... 9

store

defining access types ... 323

overview ... 9

System Control Coprocessor (CP0) ... 9

translation lookaside buffer (TLB) ... 83

instructions, FPU

branch ... 167

compare ... 167

computational ... 167

conversion ... 166

load ... 165

move ... 165

store ... 165

Integer Overflow exception ... 129
803

 Index
interlocks, hardware ... 166

Internal Access ... 738, 741, 743

Interrupt exception ... 135

Interrupt interface, signals ... 27

Interrupt register ... 143–146

interrupts, CPU

accessing ... 143

hardware ... 143

Nonmaskable Interrupt (NMI) ... 143

Invalid Operation exception ... 180

J

Joint Test Action Group (JTAG) interface

signals ... 26

JTAG Boundary Scan register ... 769

JTAG Bypass register ... 768

JTAG Instruction register ... 767

JTAG port signals ... 760

JTAG test access port ... 759

JTAG-Accessible registers ... 738, 741, 766

Jump instructions, CPU ... 9

K

Kernel mode

and exception processing ... 92

ckseg0 ... 62

ckseg1 ... 62

ckseg3 ... 62

cksseg ... 62

kseg0 ... 60

kseg1 ... 60

kseg3 ... 60

ksseg ... 60

kuseg ... 59

operations ... 56

xkphys ... 61
804
xkseg ... 62

xksseg ... 61

xkuseg ... 61

kseg0 ... 60

kseg1 ... 60

kseg3 ... 60

ksseg ... 60

KSU bit ... 51, 53, 56

kuseg ... 59

KX bit ... 56, 101

L

latency

external response ... 243

FPU operation ... 169

release ... 243

little-endian, byte addressing ... 10, 166

load delay ... 166

Load instructions, CPU

defining access types ... 323

overview ... 9

Load instructions, FPU ... 165

Load Linked Address (LLAddr) register ... 80

LSEQ ... 781

M

master state ... 209

MC68000, compatibility with ... 10

memory management

address spaces ... 45

addressing ... 17

memory management unit (MMU) ... 41

register numbers ... 69

registers. See registers, CPU, memory
management

System Control Coprocessor (CP0) ... 63
VR5432 Microprocessor User’s Manual

Index
MFDR ... 745

MON_DATA ... 750, 777

MON_INST ... 776

Monitor ... 741, 779

Move instructions, FPU ... 165

MTDR ... 745

Multiply registers, CPU ... 6

N

NMI ... 122, 143

Nonmaskable Interrupt (NMI) exception

handling ... 142

process ... 114

NOP ... 781

Normal Mode ... 741

NSEQ ... 782

N-Trace ... 759

N-Trace Instruction summary ... 782

N-Trace packets ... 780

N-Trace System register ... 778

null request ... 231

N-Wire ... 759

O

operating modes ... 17

Kernel mode ... 56

User mode ... 51

OptionR43K* signal ... 19, 28, 253

Overflow exception ... 181

P

page table entry (PTE) array ... 94

PageMask register ... 64, 72

Parity Error (PErr) register ... 109

PClock ... 313
VR5432 Microprocessor User’s Manual
physical address space ... 47

pipeline

branch delay ... 34

cycle time ... 169

overview ... 169

pipelined writes ... 219

power-on reset ... 308

Processor Revision Identifier (PRId) register ... 76

R

Random register ... 71

registers, CPU

exception processing

Bad Virtual Address (BadVAddr) ... 95

Cache Error (CacheErr) ... 110

Cause ... 102

Compare ... 96

Config ... 77

Context ... 94

Count ... 95

Error Exception Program Counter
(ErrorEPC) ... 112

Exception Program Counter (EPC) ... 104

Load Linked Address (LLAddr) ... 80

Parity Error (PErr) ... 109

Processor Revision Identifier (PRId) ... 76

register numbers ... 93

Status ... 97

TagHi ... 80

TagLo ... 80

XContext ... 105

Interrupt ... 143–146

memory management

EntryHi ... 64, 75

EntryLo ... 72

EntryLo0 ... 64, 72

EntryLo1 ... 64, 72

Index ... 70
805

 Index
PageMask ... 64, 72

Random ... 71

Wired ... 71, 74

overview ... 6

System Control Coprocessor (CP0) ... 63

registers, FPU

Control/Status ... 153, 155

Floating-Point (FPRs) ... 153

Floating-Point General-Purpose (FGRs) ... 151

Implementation/Revision ... 153–154

requests ... 198

requests. See System interface

Reserved Instruction exception ... 132

Reset exception

handling ... 142

overview ... 119

process ... 113

Reset mode (RMode*) signal ... 761

resets

cold ... 307, 309

power-on ... 308

warm ... 307, 310

resident debugger ... 741

S

sequential ordering ... 250

shutdown ... 100

signals

Clock interface ... 24

descriptions ... 19

Interrupt interface ... 27

JTAG interface ... 26

request cycle control signals ... 208, 268

System interface ... 21

slave state ... 209

Soft Reset exception
806
handling ... 142

overview ... 121

process ... 114

sseg ... 55

Status register

access states ... 101

format ... 97

operating modes ... 101

Store instructions, CPU

defining access types ... 323

overview ... 9

Store instructions, FPU ... 165

subblock ordering ... 250

Supervisor mode

csseg ... 56

sseg ... 55

suseg ... 55

xsseg ... 55

xsuseg ... 55

suseg ... 55

SX bit ... 53, 101

SysClock ... 313

System Call exception ... 130

System Control Coprocessor (CP0)

instructions ... 9

register numbers ... 63

registers

used in exception processing ... 93

System interface

addressing conventions ... 250

buses ... 188

commands

overview ... 243

read requests ... 245

syntax ... 244

write requests ... 246

data identifiers
VR5432 Microprocessor User’s Manual

Index
overview ... 243

data identifiers, syntax ... 244, 248

data rate ... 237

data rate control

data transfer patterns ... 237, 297, 298

independent transmissions on SysAD bus
... 242

external request protocols

arbitration request ... 228, 283

null request ... 231, 287

overview ... 227, 281

read request ... 229, 286

write request ... 232, 290, 291, 293, 294,
296, 297, 298, 299, 300, 302,
304, 306

external requests

null request ... 231, 287

overview ... 257

read request ... 199

read response request ... 200, 259

write request ... 200, 259

handling requests

load miss ... 201–202, 261

store hit ... 203, 262

store miss ... 202–203, 262

uncached loads or stores ... 203, 263

independent transmission ... 242

issue cycles ... 206, 266

latency ... 243

master state ... 209, 269

null request ... 231

pipelined writes ... 219

processor internal address map ... 251

processor request protocols

cluster flow control ... 216, 218, 276, 277

read request ... 212, 272

write request ... 214, 274

processor requests

overview ... 194–195, 255–256
VR5432 Microprocessor User’s Manual
read request ... 196, 256

write request ... 197, 257

request ... 211

control signals ... 208, 268

rules ... 194, 255

sequential ordering ... 250

signals ... 21

slave state ... 209, 269

subblock ordering ... 250

write reissue ... 219

T

TagHi register ... 80

TagLo register ... 80

Test Features ... 737

TLB Invalid exception ... 125

TLB Modified exception ... 126

TLB Refill exception ... 124

TLB/XTLB Miss exception handler ... 139

TLB/XTLB Refill exception servicing guidelines ...
140

TPC ... 782

translation lookaside buffer (TLB)

and memory management ... 41

entry formats ... 64

exceptions ... 124

instructions ... 83

misses ... 83, 94, 136

page attributes ... 61

shutdown ... 100

translation, virtual to physical

64-bit ... 50

Trap exception ... 129

TRCSYS ... 778

Trigger ... 741

Trigger event ... 741
807

 Index
U

Underflow exception ... 181

Unimplemented exception ... 183

useg ... 51, 52

User mode

operations ... 51

useg ... 52

xuseg ... 52

UX bit ... 51, 101

V

virtual address space ... 46

virtual memory

hits and misses ... 42

mapping ... 17

virtual address translation ... 81

VR4300 compatibility mode ... xvi, 19, 28, 253, 265

W

warm reset ... 307, 310

Wired register ... 71, 74

write reissue ... 219

X

XContext register ... 105

xkphys ... 61

xkseg ... 62

xksseg ... 61

xkuseg ... 61

xsseg ... 55

xsuseg ... 55

xuseg ... 51, 52
808
 VR5432 Microprocessor User’s Manual

Some of the information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact a representative from the NEC office in your country to obtain a list of
authorized representatives and distributors who can verify the following:

! Device availability

! Ordering information

! Product release schedule

! Availability of related technical literature

! Development environment specifications (for example, specifications for third-party tools and components,
host computers, power plugs, AC supply voltages, and so forth)

! Network requirements

In addition, trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics Singapore Pte.
Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, the Netherlands
Tel: 040-2445845
Fax: 040-2444580

©2000 NEC Electronics Inc./Printed in U.S.A. U15397EU5V0UMJ1

In North America: No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change
without notice. All devices sold by NECEL are covered by the provisions appearing in NECEL Terms and
Conditions of Sales only, including the limitation of liability, warranty, and patent provisions. NECEL makes no
warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the
freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that
may appear in this document. NECEL makes no commitments to update or to keep current information
contained in this document. The devices listed in this document are not suitable for use in applications such as,
but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control
systems and life support systems. �Standard� quality grade devices are recommended for computers, office
equipment, communication equipment, test and measurement equipment, machine tools, industrial robots,
audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic
control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the
responsible NECEL salesperson to determine the reliability requirements for any such application and any cost
adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in
any application where failure could result in injury or death. If customers wish to use NECEL devices in
applications not intended by NECEL, customers must contact the responsible NECEL salespeople to determine
NECEL's willingness to support a given application.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from use of a device described herein or any other liability
arising from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been
making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot
be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an
NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as
redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three
quality grades: �Standard,� �Special,� and �Specific.� The Specific quality grade applies only to devices
developed based on a customer-designated �quality assurance program� for a specific application. The
recommended applications of a device depend on its quality grade, as indicated below. Customers may check
the quality grade of each device before using it in a particular application. Standard: Computers, office
equipment, communications equipment, test and measurement equipment, audio and visual equipment, home
electronic appliances, machine tools, personal electronic equipment and industrial robots. Special:
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment (not specifically designed for life support). Specific: Aircraft, aerospace
equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment
for life support, etc. The quality grade of NEC devices is �Standard� unless otherwise specified in NEC�s data
sheets or data books. If customers intend to use NEC devices for applications other than those specified for
Standard quality grade, they should contact an NEC sales representative in advance.

	COVER
	Preface
	Chapter 16 Instruction Set Overview
	16.1 Instruction Set Architecture
	16.2 Instruction Formats
	16.3 Load and Store Instructions
	16.3.1 Delayed Load Instructions
	16.3.2 Defining Access Types

	16.4 Computational Instructions
	16.4.1 64-Bit Operations

	16.5 Jump and Branch Instructions
	16.5.1 Jump Instructions
	16.5.2 Branch Instructions

	16.6 Special Instructions
	16.7 Coprocessor Instructions
	16.7.1 Coprocessor Load and Store
	16.7.2 Coprocessor Operations

	16.8 Implementation-Specific Instructions
	16.8.1 Overview
	16.8.2 Implementation-Specific Instruction Descriptions

	16.9 Integer Rotate Instructions
	16.10 Integer Multiply-Accumulate Instructions
	16.11 Multimedia Extensions
	16.12 Debugging Instructions
	16.12.1 Instruction Notation Conventions

	Chapter 17 CPU Instruction Set
	17.1 Introduction
	17.2 Functional Instruction Groups
	17.2.1 Load and Store Instructions
	17.2.2 Computational Instructions
	17.2.3 Jump and Branch Instructions
	17.2.4 Miscellaneous Instructions

	17.3 System Control Coprocessor (CP0) Instructions
	17.4 CPU Instructions
	17.5 CPU Instruction Opcode Bit Encoding

	Chapter 18 Floating-Point Unit Instruction Set
	18.1 Instruction Formats
	18.1.1 Floating-Point Loads, Stores, and Transfers
	18.1.2 Floating-Point Operations

	18.2 Floating-Point Computational Instructions
	18.3 FPU Instructions
	18.4 FPU Instruction Opcode Bit Encoding

	Chapter 19 Multimedia Instruction Set
	19.1 Multimedia Extensions
	19.2 Multimedia Instruction Format
	19.3 Multimedia Instructions
	19.4 Multimedia Instruction Opcode Bit Encoding

	Chapter 20 Debug and Test Features
	20.1 Overview
	20.2 Definition of Terms
	20.3 Debug Mode
	20.4 Internal Access
	20.4.1 Debug Instructions
	20.4.2 Debug Registers

	20.5 External Access
	20.5.1 JTAG Port Signals
	20.5.2 JTAG-Accessible Registers
	20.5.3 N-Wire Monitor Data Download Example
	20.5.4 N-Trace Packets

	Appendix A Subblock Data Retrieval Order
	Appendix B Comparing the Vr4300, Vr5000, and Vr5432 Processors
	Appendix C PLL Analog Power Filtering
	Appendix D Instruction Hazards
	Index

