

MOS INTEGRATED CIRCUIT μ PD30671

V_R7701[™]

64-/32-BIT MICROPROCESSOR

DESCRIPTION

The μ PD30671 (V_R7701) is a member of the V_R Series TM of RISC (Reduced Instruction Set Computer) microprocessors. It is a high-performance 64-/32-bit microprocessor that employs the RISC architecture developed by MIPSTM.

The V_R7701 has a V_R5500[™] core as the CPU. It is also equipped with many peripheral units such as a secondary cache, 64-bit DDR SDRAM memory controller, 64-bit PCI-X, 10/100 BASE Ethernet[™] controller (MAC), LocalBus interface, interrupt controller, serial controller, and timer.

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing.

• VR7701 User's Manual (U16334E)

FEATURES

- Employs VR5500 core, a 64-bit RISC core, as CPU.
 - High-speed operation processing with 2-way superscalar super pipeline
 - 804 MIPS at 400 MHz operation
 - Conforms to MIPS I, II, III, and IV instruction sets. Also supports some of MIPS64 instructions.
 - High-speed translation lookaside buffer (TLB) (48 double entries)
 - On-chip floating-point unit (FPU)
 - On-chip primary cache memory Instruction/data: 32 KB each 2-way set associative cache
 - On-chip Hardware debug function (N-Wire)
- On-chip secondary cache memory
 - 256 KB 4-way set associative cache
- Instruction/data mixed
- Supports freeze control.
- SDRAM interface
 - SDR or DDR SDRAMs selectable
 - Supports 64/128/256/512 Mb/1 Gb SDRAM.
 - Operating frequency: 133 MHz

- LocalBus interface
 - 32-bit address/data multiplexed bus
 - Address space: 25 bits (128 MB)
 - 4-channel I/O DMA interface
- PCI-X interface
 - Conforms to 64-bit PCI-X Rev. 1.0a (133 MHz MAX.).
 - PCI mode (PCI Rev. 2.2, 33 MHz MAX.) selectable
- Ethernet controller
 - 10/100 BASE MAC and MII (2 channels each)
 - Operating frequency: 2.5 MHz, 25 MHz
- On-chip peripheral units
 - Timer (9 channels)
 - Interrupt controller
 - 16550-compatible serial interface (2 channels)
 - Clocked serial interface
- Supply voltage

Core block:	1.475 to 1.625 V
I/O block:	3.14 to 3.47 V, 2.3 to 2.7 V

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS

- Disk array equipment
- High-end set-top box
- Network equipment, etc.

ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency
μPD30671F2-400-UA5	500-pin plastic BGA (C/D advanced type) (40 \times 40)	400 MHz

PIN CONFIGURATION

• 500-pin plastic BGA (C/D advanced type) (40 \times 40)

A1GNDB9PAD26C17PIRDY#A2GNDB10PAD21C18PSTOP#A3VD3B11GNDC19PFAR64A4PAD43B12PAD14C20MMD0A5PAD40B13PAD9C21MMD1A6PAD35B14VD3C22MMD7A7PAD31B15PAD1C23MMD9A8PAD28B16PREC2#C24MDOS1A9PAD23B17VD3C25MMD11A10PAD18B19PDEVSEI#C27MMD23A11PAD18B19PDEVSEI#C27MMD23A12PAD18B19PDEVSEI#C27MMD23A13PAD8B21MMD5C28VD2A14PAD8B22MMD6C30MMD25A15PAD6B22MMD6C30MMD25A16PRE01#B24SDLLE1VD2PAD58A16PRE01#B24SDLLE1VD2PAD63A17PRE0#B26MD10D1PAD58A18PFRAME#B26GNDD1PAD48A19PTRY#B27MD0M2D5VDA20MCLNMB28MD11D1PAD3A21MD23C1GNDD1PAD3A22MD24B30GNDD1PAD3A23MD13C2PAD4A3	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	
A2GNDB10PAD21C18PSTOP#A3VD3B11GNDC19PPAR64A4PAD43B12PAD14C20MMD0A5PAD40B13PAD9C21MMD1A6PAD5B14VD3C22MMD7A7PAD51B15PAD1C23MMD7A7PAD31B16PREQ2#C24MDQS1A9PAD23B17VD3C26MDQS2A10PAD19B18PACK84#C26MDQS2A11PAD18B19PDEVSEL#C21MMD23A12PAD18B20GNDC29MVef0A13PAD6B22MMD6C30MMD25A14PAD6B22MMD6C30MMD25A15PAD6B22MMD6D1PAD58A16PREQ1#B26GNDD1PAD58A17PREQ6#B25MMD14D3PAD53A18PREQ1#B27MDM22D5VDCA20MCLKINB28GNDD6GADA21MCLKIM#B30GNDD8GNDA22MCQS0B30GNDD10PAD53A23MMD3C1GNDD10PAD34A24MMD3C2PAD4D10D11A25MMD4C3PAD4D14D3A24MCNC3PAD4D14Q3A24	A1	GND	В9	PAD26	C17	PIRDY#	
A3VD3B11GNDC19PPAR64A4PAD3B12PAD14C20MMD0A5PAD40B13PAD9C21MMD1A6PAD35B14VD3C22MMD7A7PAD31B15PAD1C23MMD9A8PAD28B16PRC2#C24MDOS1A9PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MOQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD3B20GNDC28VD2A13PAD8B21MMD5C28W0r60A14PAD5B22MMD6C30MM25A15PAD0B23VDDD1PAD58A16PRE01#B24SDLE1VD2PAD66A17PRE00#B25MMD14D3PAD33A18PFRAME#B26GNDD4PAD48A19PFRV94B27MOQ2D5PAD4A20MCLINB28GNDD4PAD48A21MCLNMB28GNDD4PAD3A22MO2S0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MD13C2PAD62D10PAD25A25MOQM1C3PAD3D11PAD5A26MMD16C4VD3D12PAD16 <td< td=""><td>A2</td><td>GND</td><td>B10</td><td>PAD21</td><td>C18</td><td>PSTOP#</td></td<>	A2	GND	B10	PAD21	C18	PSTOP#	
A4PAD43B12PAD14C20MMD0A5PAD40B13PAD9C21MMD1A6PAD35B14VD3C22MMD7A7PAD31B15PAD1C23MMD9A8PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD5B22MMD6C30MMD25A14PAD5B22MMD6C30MMD25A15PAD0B23VD0D1PAD58A16PRE01#B24SDLL1YD2PAD63A17PREQ#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD44A19PTRDY#B27MDQM2D5VDDA19PTRDY#B29GNDD7PAD39A22MDGS0B30GNDD8GNDA24MDG13C1GNDD9PAD30A25MD014C3PAD4D1V03A26MD015C4VD3D1VD3A27MD13C2PAD47D1V03A28MD14G3PAD47D1V03A24MD16C4VD3D12PAD30A25MD011C5PAD47D1V03A26 <td>A3</td> <td>VD3</td> <td>B11</td> <td>GND</td> <td>C19</td> <td>PPAR64</td>	A3	VD3	B11	GND	C19	PPAR64	
A5PAD40B13PAD9C21MMD1A6PAD35B14VD3C22MMD7A7PAD31B15PAD1C23MMD9A8PAD28B16PRCQ#C24MDQS1A9PAD23B17VD3C25MMD11A10PAD18B19PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29MVref0A14PAD6B22MMD6C30MMD25A15PAD6B22MMD6C30MMD25A16PREQI#B24SDLE1VD2PAD68A17PREQ0#B26GNDD4PAD48A18PFRAME#B26GNDD4PAD48A19PTDY#B27MDQM2D5VDA20MCLKINB28MMD19D6PAD44A21MDC30B30GNDD8GNDA23MMD3C2PAD52D10PAD25A24MD011C3PAD47D11VD3A25MDQ11C3PAD47D11VD3A26MD014C3PAD4D1PAD5A27MD030C4PAD4D1PAD5A28MD011C3PAD4D1PAD5A29MD030C4VD3D11VD3	A4	PAD43	B12	PAD14	C20	MMD0	
A6PAD35B14VD3C22MMD7A7PAD31B15PAD1C23MMD9A8PAD28B16PRCQ2#C24MDQS1A9PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MDQS2A11PAD19B18PACK64#C26MDQS2A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29MVref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD44A20MCKINB28MD019D6PAD44A21MCKIN#B29GNDD7PAD39A22MDQ3C1GNDD9PAD30A24MMD3C1GNDD9PAD30A24MMD13C2PAD46D13PAD11A25MDQ11C3PAD4D14GNDA26MD011C3PAD4D1VDA27MDG30C1GNDD1PAD30A28MD25C1GNDD1PAD3A24MMD16C4VD3D15PAD11A25MD011C5PAD46D13PAD11A	A5	PAD40	B13	PAD9	C21	MMD1	
A7PAD31B15PAD1C23MMD9A8PAD28B16PREQ2#C24MDQS1A9PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MDD3A12PAD18B20GNDC28VD2A13A14PAD5B21MMD5C30MMD25A14PAD6B21MMD5C30MMD25A14PAD6B22VDDD1PAD58A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLE1VD2PAD66A17PREQ0#B25MD14D3PAD43A18PFRAME#B26GNDD4PAD48A19PTRY#B27MDM2D5VD1A20MCLKINB28MMD19D6PAD44A21MCDS0B28MD19D6PAD44A22MDQS0B30GNDD1PAD39A22MDQS0B30GNDD1PAD39A24MMD3C2PAD52D10PAD3A24MDG1C3PAD47D11VD3A25MDQM1C3PAD47D11VD3A26MDM11C3PAD47D11VD3A27MMD13C2PAD3D12PAD11A28MDQM1C3PAD4D13P	A6	PAD35	B14	VD3	C22	MMD7	
A8PAD28B16PREQ2#C24MDQS1A9PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29MVref0A14PAD5B22MD6C30MMD25A15PAD0B23VDD1PAD58A16PREQ1#B24SDLE1VD2PAD66A17PREQ0#B25MMD14D3PAD63A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MD0M2D5VDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MDQN1C3PAD47D10PAD3A25MDQM1C3PAD47D11VD3A26MD011C3PAD4D14GNDA26MDD11C5PAD46D13PAD11A27MDD11C5PAD4D14GNDA28VD2C6PAD4D14GNDA29GNDC7PAD36D15PAD3A29MD11C5PAD4D14GND	A7	PAD31	B15	PAD1	C23	MMD9	
A9PAD23B17VD3C25MMD11A10PAD19B18PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29MVref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLE1VD2PAD66A17PREQ0#B25MD14D3PAD8A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDM22D5VDA20MCLKINB28MMD19D6PAD44A21MCKIN#B29GNDD7PAD39A22MDGS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MDGN1C3PAD47D10PAD3A25MD014C3PAD47D11VD3A26MD16C4VD3D12PAD16A27MD17C5PAD46D13PAD11A28VD2C6PAD34D16YLLGND1A29GNDC1PAD36D15PAD3A29GNDC1PAD36D16YLLGND1A29GNDC3PAD4D14GNDA29GNDC5PAD4D14GND<	A8	PAD28	B16	PREQ2#	C24	MDQS1	
A10PAD19B18PACK64#C26MDQS2A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29M/ref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD88A16PREQ1#B24SDLE1VD2PAD66A17PREQ0#B26MMD14D3PAD83A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MD0M2D5VDDA21MCLKINB29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD43A24MD13C2PAD46D10PAD25A25MDQM1C3PAD47D11VD3A26MMD13C2PAD46D13PAD11A27MMD16C4VD3D12PAD16A28VD2C6PAD46D13PAD11A29GNDC1PAD36D14GNDA29GNDC1PAD36D16PAD3A29GNDC1PAD49D16YDLIQND1A29GNDC1PAD49D16YDLIQND1A29GNDC1PAD36D16PAD3A29GNDC1PAD4D16MDLIQDD </td <td>A9</td> <td>PAD23</td> <td>B17</td> <td>VD3</td> <td>C25</td> <td>MMD11</td>	A9	PAD23	B17	VD3	C25	MMD11	
A11PAD18B19PDEVSEL#C27MMD23A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29Mvref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD88A16PREQ1#B24SDLE1VD2PAD86A17PREQ0#B25MMD14D3PAD83A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MD0M2D5VDDA20MCLKINB28MD19D6PAD44A21MCLKINB29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MDGN1C2PAD46D11VD3A25MDQM1C2PAD47D10PAD25A26MMD3C2PAD47D10PAD30A27MMD3C1GNDD11VD3A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A29GNDC10PAD29D17GNDA20GNDC10PAD29D16YPLGND1A20GNDC3PAD4D14GNDA21MDQ17C5PAD46D13PAD14A22MD24C16PAD29D16MD14 <td< td=""><td>A10</td><td>PAD19</td><td>B18</td><td>PACK64#</td><td>C26</td><td>MDQS2</td></td<>	A10	PAD19	B18	PACK64#	C26	MDQS2	
A12PAD13B20GNDC28VD2A13PAD8B21MMD5C29MVref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKINB29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD47D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD3D16YPLGND1A29GNDC7PAD36D16YPLGND1A29GNDC8PAD34D16YPLGND1A29GNDC10PAD24D18MDLVDDA20GNDC11PAD36D19PAP3A21MD2C5PAD46D14SNDA22MD2C6PAD34D16YPLGND1A24MD16C10PAD3D16YPLGND <td>A11</td> <td>PAD18</td> <td>B19</td> <td>PDEVSEL#</td> <td>C27</td> <td>MMD23</td>	A11	PAD18	B19	PDEVSEL#	C27	MMD23	
A13PAD8B21MMD5C29MVref0A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MD0M2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKINB29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD3C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD18C4VD3D12PAD16A27MMD16C4PAD3D14GNDA28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A29MD016C4VD3D16YPLGND1A29GNDC7PAD36D16YPLGND1A29GNDC10PAD24D18MDLVDDA20GNDC11PAD24D19PAP3A21MD25C11PAD24D19PARA22MD26C12PAD36D19PARA23GNDC14PAD2D19PAR	A12	PAD13	B20	GND	C28	VD2	
A14PAD5B22MMD6C30MMD25A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD47D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD4D16YPLLGND1A30GNDC11PAD20D17GNDA31PAD51C12PAD4D18MDLVDDA33GNDC11PAD20D19PPARA34PAD51C14PAD4D19PARA44PAD5C12PAD15D20VD2A45C14PAD2D19PARA45C14PAD4D22MMD8A54PAD3 <td< td=""><td>A13</td><td>PAD8</td><td>B21</td><td>MMD5</td><td>C29</td><td>MVref0</td></td<>	A13	PAD8	B21	MMD5	C29	MVref0	
A15PAD0B23VDDD1PAD58A16PREQ1#B24SDLLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD47D11VD3A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD49D16YPLLGND1A31PAD51C10PAD29D17GNDA33GNDC11PAD20D19PPARA34YDDC11PAD20D19PPARA35GNDC11PAD20D19PARA33GNDC11PAD20D19PARA44PAD45C12PAD15D20VD2A55GNDC14PAD6D22MMD6A54PAD3C14PAD6D22MMD6A5	A14	PAD5	B22	MMD6	C30	MMD25	
A16PREQ1#B24SDLLE1VD2PAD56A17PREQ0#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD47D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC1PAD36D15PAD3A29GNDC3PAD44D16YPLLGND1A29GNDC4VD3D12PAD16A29GNDC4PAD36D16YPLLGND1A29GNDC7PAD36D16YPLLGND1A30GNDC10PAD20D17GNDB4PAD50C10PAD20D19PPARB4PAD45C12PAD16D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD2D23GNDB7PAD33C15PAD2D23GND	A15	PAD0	B23	VDD	D1	PAD58	
A17PREQO#B25MMD14D3PAD53A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD47D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A29GNDC10PAD29D16YPLLGND1A29GNDC11PAD36D16YPLLGND1A30GNDC31PAD49D16YPLLGND1A30GNDC11PAD29D17GNDB4PAD51C10PAD2D19PAR4B4PAD4C13PAD10D14MDM0B5GNDC14PAD6D24MD8B6PAD3C14PAD6D24MD8B7PAD3C14PAD4D14Q24B7PAD3C14PAD2D24MD8B7PAD3C14PAD2D24MD8B7 <td>A16</td> <td>PREQ1#</td> <td>B24</td> <td>SDLLE1V</td> <td>D2</td> <td>PAD56</td>	A16	PREQ1#	B24	SDLLE1V	D2	PAD56	
A18PFRAME#B26GNDD4PAD48A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C44VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A29GNDC7PAD36D16YPLLGND1A29GNDC1PAD29D16YPLLGND1A29GNDC1PAD36D16YPLLGND1A30GNDC1PAD29D17GNDB4PAD50C1PAD29D19PAR4B3VDC11PAD20D19PAR4B4PAD45C12PAD15D20VD2B5GNDC13PAD16D19PAR4B4PAD3C14PAD6D24MDGB6PAD3C14PAD6D24MDGB7PAD3C15PAD2D23GNDB8VDDC16YAD2D24MD15B7P	A17	PREQ0#	B25	MMD14	D3	PAD53	
A19PTRDY#B27MDQM2D5VDDA20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD49D16YPLLGND1B4PAD50C10PAD29D17GNDB5GNDC11PAD20D18MDLLVDB4PAD45C12PAD15D20VD2B5GNDC13PAD16D21MDQM0B6PAD3C14PAD6D22MDGB6PAD3C14PAD6D22MDQM0B7PAD3C15PAD2D23GNDB6VDDC16YPLVD1D24MD15	A18	PFRAME#	B26	GND	D4	PAD48	
A20MCLKINB28MMD19D6PAD44A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD36D15PAD3A29GNDC7PAD36D16YPLLGND1A30GNDC8PAD39D16YPLLGND1B4PAD50C9PAD29D17GNDB5PAD45C10PAD20D18MDLVDDB4PAD45C11PAD20D19PPARB5GNDC11PAD11D19PDA11B6PAD36C12PAD15D10VD2B6PAD45C12PAD29D17GNDB6PAD36C13PAD15D20VD2B7PAD36C14PAD6D21MDQM0B7PAD36C14PAD6D22MMD8B7PAD36C14PAD6D24MD15B7PAD36C14PAD2D23MD2B7PAD36C14PAD6D24MD16B7PAD36C14PAD2D23MD2B7	A19	PTRDY#	B27	MDQM2	D5	VDD	
A21MCLKIN#B29GNDD7PAD39A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD44D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD20D19PPARB3VDDC11PAD20D19PAD4B4PAD45C12PAD15D20VD2B5GNDC13PAD6D21MDM0B6PAD33C14PAD2D23GNDB7PAD3C15PAD2D23GNDB8VDDC16YPLVD1D24MD15	A20	MCLKIN	B28	MMD19	D6	PAD44	
A22MDQS0B30GNDD8GNDA23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD49D17GNDB1PAD50C9PAD29D17GNDB2PAD51C11PAD20D19PPARB3VDDC13PAD15D20VD2B4PAD45C13PAD10D14MDQM0B5GNDC14PAD2D17GNDB6PAD3C14PAD6D22MMD8B7PAD3C15PAD2D23GNDB8VDDC16YPLVDD1D24MD15	A21	MCLKIN#	B29	GND	D7	PAD39	
A23MMD3C1GNDD9PAD30A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD49D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD20D18MDLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD16D20VD2B5GNDC14PAD6D22MMD8B6PAD33C15PAD2D23GNDB7PAD33C16YPLVDD1D24MD15	A22	MDQS0	B30	GND	D8	GND	
A24MMD13C2PAD52D10PAD25A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD29D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD20D19PPARB4PAD45C12PAD10D20VD2B5GNDC14PAD6D22MMD8B6PAD33C15PAD2D23GNDB7PAD33C16YPLVDD1D24MD15	A23	MMD3	C1	GND	D9	PAD30	
A25MDQM1C3PAD47D11VD3A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD34D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D19PPARB3VDDC11PAD15D20VD2B4PAD45C12PAD10D12MDQM0B5GNDC13PAD6D22MMD8B6PAD33C14PAD2D23GNDB7PAD33C16YPLUVD1D24MD15	A24	MMD13	C2	PAD52	D10	PAD25	
A26MMD16C4VD3D12PAD16A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD29D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD6D22MMD8B6PAD33C15PAD2D23GNDB8VDDC16YPLLVDD1D24MD15	A25	MDQM1	C3	PAD47	D11	VD3	
A27MMD17C5PAD46D13PAD11A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD34D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD20D19PPARB3VDDC11PAD20D19VD2B4PAD45C12PAD15D20VD2B5GNDC13PAD6D21MDQM0B6PAD38C14PAD2D23GNDB7PAD33C15PAD2D24MD15	A26	MMD16	C4	VD3	D12	PAD16	
A28VD2C6PAD41D14GNDA29GNDC7PAD36D15PAD3A30GNDC8PAD34D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD2D23GNDB7PAD33C16YPLLVDD1D24MD15	A27	MMD17	C5	PAD46	D13	PAD11	
A29GNDC7PAD36D15PAD3A30GNDC8PAD34D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD6D23GNDB7PAD33C16YPLLVDD1D24MMD15	A28	VD2	C6	PAD41	D14	GND	
A30GNDC8PAD34D16YPLLGND1B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD33C14PAD2D23GNDB7PAD33C16YPLLVDD1D24MMD15	A29	GND	C7	PAD36	D15	PAD3	
B1PAD50C9PAD29D17GNDB2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD6D23GNDB7PAD33C15PAD2D23GNDB8VDDC16YPLLVDD1D24MMD15	A30	GND	C8	PAD34	D16	YPLLGND1	
B2PAD51C10PAD24D18MDLLVDDB3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD6D22MMD8B7PAD33C15PAD2D23GNDB8VDDC16YPLLVDD1D24MMD15	B1	PAD50	C9	PAD29	D17	GND	
B3VDDC11PAD20D19PPARB4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD6D22MMD8B7PAD33C15PAD2D23GNDB8VDDC16YPLLVDD1D24MMD15	B2	PAD51	C10	PAD24	D18	MDLLVDD	
B4PAD45C12PAD15D20VD2B5GNDC13PAD10D21MDQM0B6PAD38C14PAD6D22MMD8B7PAD33C15PAD2D23GNDB8VDDC16YPLLVDD1D24MMD15	B3	VDD	C11	PAD20	D19	PPAR	
B5 GND C13 PAD10 D21 MDQM0 B6 PAD38 C14 PAD6 D22 MMD8 B7 PAD33 C15 PAD2 D23 GND B8 VDD C16 YPLLVDD1 D24 MMD15	B4	PAD45	C12	PAD15	D20	VD2	
B6 PAD38 C14 PAD6 D22 MMD8 B7 PAD33 C15 PAD2 D23 GND B8 VDD C16 YPLLVDD1 D24 MMD15	B5	GND	C13	PAD10	D21	MDQM0	
B7 PAD33 C15 PAD2 D23 GND B8 VDD C16 YPLLVDD1 D24 MMD15	B6	PAD38	C14	PAD6	D22	MMD8	
B8 VDD C16 YPLLVDD1 D24 MMD15	B7	PAD33	C15	PAD2	D23	GND	
	B8	VDD	C16	YPLLVDD1	D24	MMD15	

NEC

					(2/5)
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
D25	MMD21	F3	PAD59	K1	PPERR#
D26	MMD22	F4	VD3	K2	VDD
D27	VDD	F5	PAD55	КЗ	PINTD#
D28	MMD24	F26	MMD29	K4	GND
D29	GND	F27	MMD26	K5	PREQ64#
D30	MDQS3	F28	MMD27	K26	GND
E1	PCBE2#	F29	MMDP4	K27	GND
E2	PAD61	F30	MMDP1	K28	GND
E3	PAD57	G1	PCBE5#	K29	GND
E4	PAD54	G2	GND	K30	MMA14
E5	PAD49	G3	PCBE0#	L1	PCIFREQ0
E6	GND	G4	PAD62	L2	PCIBUS64
E7	PAD42	G5	PAD60	L3	PRST#
E8	PAD37	G26	MMD30	L4	PINTB#
E9	PAD32	G27	MMDP0	L5	PINTC#
E10	PAD27	G28	MDQSP	L26	GND
E11	PAD22	G29	MMDP2	L27	VD2
E12	PAD17	G30	MMDP7	L28	GND
E13	PAD12	H1	PGNT2#	L29	SDLLN1V
E14	PAD7	H2	PGNT0#	L30	MMA13
E15	PAD4	H3	PCBE6#	M1	JTDI
E16	PREQ3#	H4	PCBE4#	M2	PCIMODE
E17	YPLLGND2	H5	PCBE1#	M3	PCIFREQ1
E18	YPLLVDD2	H26	MMDP5	M4	HOSTMODE
E19	PCLKIN	H27	GND	M5	PINTA#
E20	MMD4	H28	MDQM8	M26	MCKE3
E21	MMD2	H29	VDD	M27	MCKE2
E22	MMD12	H30	GND	M28	MCKE1
E23	MMD10	J1	IDSEL	M29	MCKE0
E24	MMD20	J2	PSERR#	M30	MMA12
E25	MMD18	J3	PGNT3#	N1	JTMS
E26	VD2	J4	PGNT1#	N2	JTDO
E27	MMD28	J5	PCBE7#	N3	SPLLVDD
E28	MDQM3	J26	MMDP6	N4	JTCK
E29	GND	J27	MMDP3	N5	SPLLGND
E30	MMD31	J28	GND	N26	MMA11
F1	PCBE3#	J29	GND	N27	MMA9
F2	PAD63	J30	GND	N28	MMA7

NEC

	1		1		(3/5)
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name
N29	MMA8	U27	GND	AA5	LAD1
N30	MMA5	U28	MWE#	AA26	GND
P1	NTrcData1	U29	VD2	AA27	GND
P2	NTrcData0	U30	MCAS#	AA28	GND
P3	NTrcClk	V1	DEVMEM0	AA29	GND
P4	VD3	V2	DEVCPU2	AA30	GND
P5	JTRST#	V3	TCLKIN	AB1	LAD0
P26	MMA6	V4	DEVCPU0	AB2	LAD2
P27	GND	V5	DEVCPU1	AB3	LAD3
P28	MMA4	V26	MCS5#	AB4	LAD5
P29	VD2	V27	MCS3#	AB5	LAD7
P30	MMA3	V28	MCS2#	AB26	GND
R1	NMI	V29	MCS1#	AB27	GND
R2	BKTGIO#	V30	MCS4#	AB28	GND
R3	NTrcEnd	W1	GND	AB29	GND
R4	NTrcData2	W2	DEVLC1	AB30	GND
R5	NTrcData3	W3	DEVMEM1	AC1	LAD4
R26	N.C.	W4	DEVLC0	AC2	LAD6
R27	N.C.	W5	VD3	AC3	LAD8
R28	GND	W26	GND	AC4	LAD10
R29	MMA2	W27	GND	AC5	LAD12
R30	MMA1	W28	MCS7#	AC26	MMD36
T1	INTP4/GP54	W29	MCS6#	AC27	GND
T2	INTP3/GP53	W30	GND	AC28	GND
Т3	INTP2/GP52	Y1	GND	AC29	VDD
T4	INTP0/GP50	Y2	GND	AC30	GND
T5	INTP1/GP51	Y3	BIGENDIAN	AD1	LAD9
T26	MMBA1	Y4	GND	AD2	LAD11
T27	MMA10	Y5	GND	AD3	LAD13
T28	MMA0	Y26	GND	AD4	LAD15
T29	MMBA0	Y27	VD2	AD5	LAD17
T30	MRAS#	Y28	GND	AD26	MMD34
U1	INTP7/GP57	Y29	SDLLN2V	AD27	MMD33
U2	GND	Y30	GND	AD28	MMD32
U3	INTP6/GP56	AA1	N.C.	AD29	GND
U4	VD3	AA2	VDD	AD30	GND
U5	INTP5/GP55	AA3	GND	AE1	LAD14
U26	MCS0#	AA4	GND	AE2	GND

-				-	(4/5)	
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	
AE3	LAD18	AG1	LAD20	AH9	MI1TXEN/GP1	
AE4	VD3	AG2	LAD22	AH10	MI1TXER/GP6	
AE5	LAD23	AG3	LAD24	AH11	MI1RXDV/GP10	
AE26	VDD	AG4	VD3	AH12	MI1RXER/GP15	
AE27	MMD39	AG5	LAD30	AH13	MI2TXD0/GP20	
AE28	MDQM4	AG6	LCS2#	AH14	MI2TXER/GP24	
AE29	GND	AG7	LWR#	AH15	MI2RXD0/GP29	
AE30	MMD37	AG8	GND	AH16	MI2MDCLK/GP34	
AF1	LAD16	AG9	N.C.	AH17	UARTCLK	
AF2	LAD19	AG10	MI1TXD3/GP5	AH18	U1CTS/GP39	
AF3	LAD21	AG11	VD3	AH19	U2TXD/GP44	
AF4	LAD25	AG12	MI1RXD3/GP14	AH20	U2DSR/GP49	
AF5	VDD	AG13	MI2TXEN/GP19	AH21	MMD59	
AF6	LALE	AG14	GND	AH22	MDQM7	
AF7	LCS6#	AG15	MI2RXDV/GP28	AH23	MMD51	
AF8	LBT16#	AG16	MI2RXER/GP33	AH24	MMD55	
AF9	VD3	AG17	GND	AH25	MMD49	
AF10	MI1TXD2/GP4	AG18	U1DTR/CSI_DO/GP40	AH26	MMD43	
AF11	MI1RXCLK/GP9	AG19	U2RTS/GP45	AH27	MDQS5	
AF12	MI1RXD1/GP12	AG20	VD2	AH28	MMD40	
AF13	MI1MD/GP17	AG21	MMD63	AH29	VDD	
AF14	MI2TXD2/GP22	AG22	MMD57	AH30	VD2	
AF15	MI2RXCLK/GP27	AG23	GND	AJ1	GND	
AF16	MI2RXD3/GP32	AG24	MDQM6	AJ2	GND	
AF17	U1RXD/GP36	AG25	MMD48	AJ3	LAD28	
AF18	U1DCD/CSI_DI/GP41	AG26	MMD42	AJ4	LAD31	
AF19	U2CTS/GP46	AG27	MMD44	AJ5	GND	
AF20	VDDOK	AG28	GND	AJ6	LRD#	
AF21	MMD62	AG29	MVref1	AJ7	LRDY#	
AF22	MMD61	AG30	MMD38	AJ8	VD3	
AF23	MMD54	AH1	LAD26	AJ9	MI1TXD0/GP2	
AF24	MMD53	AH2	LAD27	AJ10	MI1COL/GP7	
AF25	MMD46	AH3	VDD	AJ11	GND	
AF26	MMD45	AH4	LAD29	AJ12	MI1MDCLK/GP16	
AF27	VD2	AH5	LCS1#	AJ13	MI2TXD1/GP21	
AF28	MMD35	AH6	LCS3#	AJ14	VDD	
AF29	VD2	AH7	MI1TXCLK/GP0	AJ15	MI2CRS/GP26	
AF30	MDQS4	AH8	LDRQ0	AJ16	MI2RXD2/GP31	

NEC

					(5/5)	
Pin No.	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	
AJ17	VD3	AK2	GND	AK17	MI2MD/GP35	
AJ18	U1RTS/GP38	AK3	VD3	AK18	U1TXD/GP37	
AJ19	U2RXD/GP43	AK4	LCS4#	AK19	U1DSR/CSI_CLK/GP42	
AJ20	GND	AK5	LCS5#	AK20	U2DTR/GP47	
AJ21	RESET#	AK6	VD3	AK21	U2DCD/GP48	
AJ22	MMD58	AK7	LBCLKOUT	AK22	2 COLDRESET#	
AJ23	VD2	AK8	LDRQ1	AK23	MDQS7	
AJ24	MMD56	AK9	MI1TXD1/GP3	AK24	MMD60	
AJ25	MDQS6	AK10	MI1CRS/GP8	AK25	MMD50	
AJ26	SDLLW1V	AK11	MI1RXD0/GP11	AK26	MMD52	
AJ27	VD2	AK12	MI1RXD2/GP13	AK27	MMD47	
AJ28	MMD41	AK13	MI2TXCLK/GP18	AK28	MDQM5	
AJ29	GND	AK14	MI2TXD3/GP23	AK29	GND	
AJ30	GND	AK15	MI2COL/GP25	AK30	GND	
AK1	GND	AK16	MI2RXD1/GP30			

Pin Identification (1/2)

BIGENDIAN:	Big endian	MDQSP:	SDRAM data parity strobe
BKTGIO#:	Break/trigger input/output	MI1COL:	MII channel 1 collision
COLDRESET#:	Cold reset	MI1CRS:	MII channel 1 carrier sense
CSI_CLK:	CSI clock	MI1MD:	MII channel 1 management data
CSI_DI:	CSI serial data input	MI1MDCLK:	MII channel 1 management clock
CSI_DO:	CSI serial data output	MI1RXCLK:	MII channel 1 receive clock
DEVCPU(2:0):	Divide mode for CPU	MI1RXD(3:0):	MII channel 1 receive data
DEVLC(1:0):	Divide mode for LocalBus	MI1RXDV:	MII channel 1 receive data valid
DEVMEM(1:0):	Divede mode for SDRAM	MI1RXER:	MII channel 1 receive error
GND:	Ground	MI1TXCLK:	MII channel 1 transmit clock
GP(57:0):	General purpose I/O	MI1TXD(3:0):	MII channel 1 transmit data
HOSTMODE:	PCI-X host mode	MI1TXEN:	MII channel 1 transmit enable
IDSEL:	PCI-X initialization device select	MI1TXER:	MII channel 1 transmit error
INTP(7:0):	Interrupt	MI2COL:	MII channel 2 collision
JTCK:	JTAG clock	MI2CRS:	MII channel 2 carrier sense
JTDI:	JATG data input	MI2MD:	MII channel 2 management data
JTDO:	JTAG data output	MI2MDCLK:	MII channel 2 management clock
JTMS:	JTAG mode select	MI2RXCLK:	MII channel 2 receive clock
JTRST#:	JTAG reset	MI2RXD(3:0):	MII channel 2 receive data
LAD(31:0):	LocalBus address/data bus	MI2RXDV:	MII channel 2 receive data valid
LALE:	LocalBus address latch enable	MI2RXER:	MII channel 2 receive error
LBCLKOUT:	LocalBus clock output	MI2TXCLK:	MII channel 2 transmit clock
LBT16#:	LocalBus boot size	MI2TXD(3:0):	MII channel 2 transmit data
LCS(6:1)#:	LocalBus chip select	MI2TXEN:	MII channel 2 transmit enable
LDRQ0:	LocalBus channel 0 DMA request	MI2TXER:	MII channel 2 transmit error
LDRQ1:	LocalBus channel 1 DMA request	MMA(14:0):	SDARM address
LRD#:	LocalBus read	MMBA(1:0):	SDRAM bank address
LRDY#:	LocalBus ready	MMD(63:0):	SDRAM data bus
LWR#:	LocalBus write	MMDP(7:0):	SDRAM data bus parity
MCAS#:	SDRAM column address strobe	MRAS#:	SDRAM row address strobe
MCKE(3:0):	SDRAM clock enable	MVref(1:0):	SDRAM Vref
MCLKIN:	SDRAM clock input	MWE#:	SDRAM write enable
MCLKIN#:	SDRAM clock input	N.C.:	No connection
MCS(7:0)#:	SDRAM chip select	NMI:	Non-maskable interrupt
MDLLVDD:	Quiet VDD for DLL	NTrcClk:	N-Trace clock
MDQM(8:0):	SDRAM data input mask	NTrcData(3:0):	N-Trace data output
MDQS(7:0):	SDRAM data strobe	NTrcEnd:	N-Trace end

Pin Identification (2/2)

PACK64#:	PCI-X acknowledge 64 bit transfer	SDLLN2V:	Quiet VDD for DLL
PAD(63:0):	PCI-X address/data bus	SDLLW1V:	Quiet VDD for DLL
PCBE(7:0)#:	PCI-X bus command/byte enable	SPLLGND:	Quiet GND for PLL
PCIBUS64:	PCI-X 64 bit bus mode	SPLLVDD:	Quiet VDD for PLL
PCIFREQ(1:0):	PCI-X frequency	TCLKIN:	Timer clock input
PCIMODE:	PCI-X mode	U1CTS:	UART1 clear to send
PCLKIN:	PCI-X clock	U1DCD:	UART1 data carrier detect
PDEVSEL#:	PCI-X device select	U1DSR:	UART1 data set ready
PGNT0#:	PCI-X grant/bus request	U1DTR:	UART1 data terminal ready
PGNT(3:1)#:	PCI-X grant	U1RTS:	UART1 data request to send
PFRAME#:	PCI-X cycle frame	U1RXD:	UART1 receive data
PINTA#:	PCI-X interrupt A	U1TXD:	UART1 transmit data
PINTB#:	PCI-X interrupt B	U2CTS:	UART2 clear to send
PINTC#:	PCI-X interrupt C	U2DCD:	UART2 data carrier detect
PINTD#:	PCI-X interrupt D	U2DSR:	UART2 data set ready
PIRDY#:	PCI-X initiator ready	U2DTR:	UART2 data terminal ready
PPAR:	PCI-X parity	U2RTS:	UART2 data request to send
PPAR64:	PCI-X parity 64	U2RXD:	UART2 receive data
PPERR#:	PCI-X parity error	U2TXD:	UART2 transmit data
PREQ0#:	PCI-X request/grant	UARTCLK:	UART clock
PREQ(3:1)#:	PCI-X bus request	VD2:	Power supply for SDRAM
PREQ64#:	PCI-X request 64 bit transfer	VD3:	Power supply for I/O
PRST#:	PCI-X reset	VDD:	Power supply for CPU core
PSERR#:	PCI-X system error	VDDOK:	VDD ok
PSTOP#:	PCI-X stop	YPLLGND1:	Quiet GND for PLL
PTRDY#:	PCI-X target ready	YPLLGND2:	Quiet GND for PLL
RESET#:	Reset	YPLLVDD1:	Quiet VDD for PLL
SDLLE1V:	Quiet VDD for DLL	YPLLVDD2:	Quiet VDD for PLL
SDLLN1V:	Quiet VDD for DLL		

INTERNAL BLOCK DIAGRAM AND EXAMPLE OF EXTERNAL CONNECTION

CPU CORE INTERNAL BLOCK DIAGRAM

CONTENTS

1. PIN FUNCTIONS	13
1.1 List of Pin Functions	13
1.2 Connection of Unused Pins	31
2. ELECTRICAL SPECIFICATIONS	32
3. PACKAGE DRAWING	

1. PIN FUNCTIONS

Remark # indicates active low.

1.1 List of Pin Functions

(1) Initialization interface signals

Signal Name	I/O	Function
RESET#	Ι	Reset. Logically initializes the internal status of the processor. The DRAM interface is not initialized, however.
COLDRESET#	Ι	Cold reset. Completely initializes the internal status of the processor, including the DRAM interface.
DEVMEM(1:0)	I	Division mode. Sets a combination of frequency ratios of MCLKIN vs. VCO (PLL oscillation clock) and SysClk vs. DClk (same frequency as MCLKIN). <u>DEVMEM(1:0)</u> SysClk vs. DClk 00 Div1 MCLKIN × 3 01 Div2 10 Div1.5 11 Reserved Use this pin in the combination shown in Table 1-1.
DEVLC(1:0)	I	 Division mode. Sets a division ratio of VCO and ebclk (clock to LocalBus interface. About 33 MHz). 00: Div9 01: Div12 10: Div15 11: Reserved Use this pin in the combination shown in Table 1-1.
DEVCPU(2:0)	1	Division mode. Sets a division ratio of SysClk and PClk (pipeline clock). 000: Div2 001: Div2.5 010: Div3 011: Div3.5 100: Div4 101: Div4.5 110: Div5 111: Div5.5 Use this pin in the combination shown in Table 1-1.
BIGENDIAN	I	Endian mode. Sets a byte order for addressing. 0: Little endian 1: Big endian PCI-X always operates in the little-endian mode.

Table 1-1. Combinations of DEVMEM(1:0), DEVLC(1:0), and DEVCPU(2:0)

DEVMEM(1:0)	DEVLC(1:0)	DEVCPU(2:0)	MCLKIN	VCO	SysClk	ebclk	PClk	Remark
10	01	000	133 MHz	400 MHz	200 MHz	33 MHz	400 MHz	Target value
10	00	001	100 MHz	300 MHz	150 MHz	33 MHz	375 MHz	
00	01	010	133 MHz	400 MHz	133 MHz	33 MHz	400 MHz	
00	00	100	100 MHz	300 MHz	100 MHz	33 MHz	400 MHz	
01	01	000	100 MHz	400 MHz	200 MHz	33 MHz	400 MHz	

(2) Interrupt interface signals

	_	(1/2)
Signal Name	I/O	Function
NMI	I	Non-maskable interrupt. Interrupt request that cannot be masked ^{Note}
INTP0/GP50	I/O	 The function of this pin differs depending on the setting of the INTSEL0 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP0^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP50, general-purpose I/O port.
INTP1/GP51	I/O	 The function of this pin differs depending on the setting of the INTSEL1 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP1^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP51, general-purpose I/O port.
INTP2/GP52	I/O	 The function of this pin differs depending on the setting of the INTSEL2 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP2^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP52, general-purpose I/O port.
INTP3/GP53	I/O	 The function of this pin differs depending on the setting of the INTSEL3 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP3^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP53, general-purpose I/O port.
INTP4/GP54	I/O	 The function of this pin differs depending on the setting of the INTSEL4 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP4^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP54, general-purpose I/O port.
INTP5/GP55	I/O	 The function of this pin differs depending on the setting of the INTSEL5 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP5^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP55, general-purpose I/O port.

Note Unlike the existing V_R Series, these pins of the V_R7701 are active-high.

		(2/2)
Signal Name	I/O	Function
INTP6/GP56	I/O	 The function of this pin differs depending on the setting of the INTSEL6 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP6^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP56, general-purpose I/O port.
INTP7/GP57	I/O	 The function of this pin differs depending on the setting of the INTSEL7 bit of the GPIO_SEL register. In INT mode (input) This pin functions as INTP7^{Note} that inputs a general-purpose processor interrupt. In GP mode This pin functions as GP57, general-purpose I/O port.

Note Unlike the existing V_R Series, these pins of the V_R7701 are active-high.

(3) Power/clock interface signals

Signal Name	I/O	Function
TCLKIN	I	Timer clock. This clock is input to the timer.
VDDOK	I	VDD voltage OK. The external agent asserts this signal when power input and clock input have become stabilized.

(4) SDRAM interface signals

The SDRAM interface conforms to JEDEC Specification.

Signal Name	I/O	Function
MCS(7:0)#	0	SDRAM chip select. Bank select signals of SDRAM.
MMA(14:0)	0	SDRAM address. Address signals output to SDRAM.
MMBA(1:0)	0	SDRAM bank address. These signals specify one of the four banks to which commands are to be applied.
MDQM(8:0)	0	SDRAM data input mask. These signals mask input of write data to SDRAM. When these signals are asserted when SDRAM is written, data input to SDRAM is masked.
MRAS#	0	SDRAM row address strobe. The basic command is defined by combination of MRAS#, MCAS#, and MWE# signals.
MCAS#	0	SDRAM column address strobe. The basic command is defined by combination of MRAS#, MCAS#, and MWE# signals.
MWE#	0	SDRAM write enable. The basic command is defined by combination of MRAS#, MCAS#, and MWE# signals.
MMD(63:0)	I/O	SDRAM data bus. This is a data input/output bus from/to SDRAM.
MMDP(7:0)	I/O	SDRAM data bus parity. These are ECC bits for MMD(63:0).
MDQS(7:0)	I/O	SDRAM data strobe. These signals are output from SDRAM along with read data, and input to SDRAM along with write data. These signals function as an operating reference clock when DDR SDRAM is read or written.
MDQSP	I/O	SDRAM data parity strobe. This is a strobe signal for MMDP(7:0) signal.
MVref(1:0)	I	SDRAM Vref. Reference voltage for SDRAM input/output pins.
MCLKIN	I	SDRAM clock. Clock input for SDRAM interface.
MCLKIN#	I	SDRAM clock. Clock input for SDRAM interface that is the complement of MCLKIN.
MCKE(3:0)	0	SDRAM clock enable. These signals determine whether the MCLKIN signal is valid or not.

(5) PCI-X interface signals

The PCI-X interface conforms to PCISIG Specifications.

Signal Name	I/O	Function
PCLKIN	I	PCI-X clock. Clock input to PCI-X. An appropriate clock must be input to this pin even if the PCI-X bus is not used.
PRST#	I/O	 PCI-X reset. When the HOSTMODE signal is 1 Reset output from PCI-X. The level specified in the PCI Reset register is output. When the HOSTMODE signal is 0 Reset input to PCI-X.
PAD(63:0)	I/O	PCI-X address/data bus. The bus master outputs an address in the address phase and the transmitter device outputs data in the data phase.
PCBE(7:0)#	I/O	PCI-X bus command/byte enable. These signals are output by the bus master. In the address phase, these signals indicate a bus command. They indicate a valid byte lane in the data phase.
PPAR	I/O	PCI-X parity. Even parity for PAD(31:0) and PCBE(3:0)#.
PFRAME#	I/O	PCI-X cycle frame. This signal is output by the bus master, indicating that a bus cycle is under execution.
PIRDY#	I/O	PCI-X initiator ready. This signal is output by the bus master, indicating that data can be transferred.
PTRDY#	I/O	PCI-X target ready. This signal is output by the target, indicating that data can be transferred.
PSTOP#	I/O	PCI-X stop. This signal is output by the target, requesting stoppage of a bus cycle.
PDEVSEL#	I/O	PCI-X device select. This signal is output by the target, reporting a response to a bus cycle.
PPERR#	I/O	PCI-X parity error. This signal is output by the receiver device, indicating detection of a parity error in the data phase.
PSERR#	I/O	PCI-X system error. This signal is output by the PCI-X device, indicating detection of other bus errors (this signal is asynchronous to PCLKIN).
PREQ64#	I/O	PCI-X 64-bit request. This signal is output by the bus master, indicating that 64-bit data can be transferred.
PACK64#	I/O	PCI-X 64-bit acknowledge. This signal is output by the target, indicating that 64-bit data can be transferred.
PPAR64	I/O	PCI-X parity 64. This is an even parity for PAD(64:32) and PCBE(7:4)#.
PREQ(3:1)#	I	PCI-X bus request. These signals are output by the PCI-X device, requesting the arbiter for the bus mastership.

		(2/2)
Signal Name	I/O	Function
PREQ0#	I	 PCI-X bus request/grant. If PBA bit ^{Note} is 1 The PCI-X device outputs this signal, requesting the arbiter for the bus mastership. If PBA bit ^{Note} is 0 The arbiter outputs this signal, granting the bus mastership to the PCI-X device.
PGNT(3:1)#	0	PCI-X grant. The arbiter outputs this signal, granting the bus mastership to the PCI-X device.
PGNT0#	0	 PCI-X grant/bus request. If PBA bit ^{Note} is 1 The arbiter outputs this signal, granting the bus mastership to the PCI-X device. If PBA bit ^{Note} is 0 The PCI-X device outputs this signal, requesting the arbiter for the bus mastership.
PINTA#	I/O	 PCI-X interrupt A. When the HOSTMODE signal is 1 Interrupt request input. When the HOSTMODE signal is 0 Interrupt request output (this signal is asynchronous to PCLKIN).
PINTB#	I	PCI-X interrupt B. The PCI-X device outputs this signal, requesting an interrupt (this signal is asynchronous to PCLKIN).
PINTC#	I	PCI-X interrupt C. The PCI-X device outputs this signal, requesting an interrupt (this signal is asynchronous to PCLKIN).
PINTD#	1	PCI-X interrupt D. The PCI-X device outputs this signal, requesting an interrupt (this signal is asynchronous to PCLKIN).
PCIMODE	I	PCI-X mode setting. 0: PCI-X mode 1: PCI mode
PCIFREQ(1:0)	I	Setting of PCI-X frequency. These signals are used to determine a range of PLL for the clock of the PCI-X interface, and an initialize pattern in the host bridge mode. 00: 33 MHz 01: 66 MHz 10: 100 MHz 11: 133 MHz
PCIBUS64	I	PCI-X 64-bit bus mode. 0: 32-bit bus mode 1: 64-bit bus mode
HOSTMODE	1	PCI-X host mode. This signal is used to determine a host bridge mode and target device mode. 0: PCI device 1: PCI host device
IDSEL	I	PCI-X initialization device select. The bus master outputs this signal during configuration.

Note Bit 5 of the Unit Control register

(6) MII (Media Independent Interface) channel 1 signals

		(1/3
Signal Name	I/O	Function
MI1TXCLK/GP0	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 transmit clock. This pin functions as MI1TXCLK. It inputs a transmit clock necessary for outputting transmit data to a PHY device connected to the port. In GP mode This pin functions as GP0, general-purpose input/output port.
MI1TXEN/GP1	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 1 transmit enable. This pin functions as MI1TXEN. It indicates whether transmit data (TXD) is valid for each port. In GP mode This pin functions as GP1, general-purpose input/output port.
MI1TXD0/GP2	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (output) MII channel 1 transmit data. This pin functions as MI1TXD0. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP2, general-purpose input/output port.
MI1TXD1/GP3	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 1 transmit data. This pin functions as MI1TXD1. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP3, general-purpose input/output port.
MI1TXD2/GP4	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (output) MII channel 1 transmit data. This pin functions as MI1TXD2. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP4, general-purpose input/output port.
MI1TXD3/GP5	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (output) MII channel 1 transmit data. This pin functions as MI1TXD3. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP5, general-purpose input/output port.

		(2/3)
Signal Name	I/O	Function
MI1TXER/GP6	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 1 transmit coding error. This pin functions as MI1TXER. It indicates that an error has occurred in MAC during transmission. In GP mode This pin functions as GP6, general-purpose input/output port.
MI1COL/GP7	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 collision. This pin functions as MI1COL. It inputs a collision signal detected by the PHY device connected to the port. If the port is not used, fix MICOL to the low level. In GP mode This pin functions as GP7, general-purpose input/output port.
MI1CRS/GP8	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 carrier sense. This pin functions as MI1CRS. It inputs a carrier sense signal from the PHY device connected to the port. If the port is not used, fix MICRS to the low level. In GP mode This pin functions as GP8, general-purpose input/output port.
MI1RXCLK/GP9	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 receive clock. This pin functions as MI1RXCLK. It inputs a clock given by the PHY device. In GP mode This pin functions as GP9, general-purpose input/output port.
MI1RXDV/GP10	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 receive data valid. This pin functions as MI1RXDV. It indicates that the receive data on RXD is valid. If the port is not used, fix MIRXDV to the high or low level. In GP mode This pin functions as GP10, general-purpose input/output port.
MI1RXD0/GP11	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 receive data. This pin functions as MI1RXD0. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP11, general-purpose input/output port.

		(3/3
Signal Name	I/O	Function
MI1RXD1/GP12	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (input) MII channel 1 receive data. This pin functions as MI1RXD1. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP12, general-purpose input/output port.
MI1RXD2/GP13	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 receive data. This pin functions as MI1RXD2. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP13, general-purpose input/output port.
MI1RXD3/GP14	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (input) MII channel 1 receive data. This pin functions as MI1RXD3. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP14, general-purpose input/output port.
MI1RXER/GP15	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 1 receive error. This pin functions as MI1RXER. This is an input signal to detect an error that occurs in the PHY device connected to the port during reception. If the port is not used, fix MIRXER to the low level. In GP mode This pin functions as GP15, general-purpose input/output port.
MI1MDCLK/GP16	I/O	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode (output) MII channel 1 management data clock. This pin functions as MI1MDCLK. It is a transfer clock of MII serial management data. In GP mode This pin functions as GP16, general-purpose input/output port.
MI1MD/GP17	1/0	 This signal functions differently depending on the setting of the MI1SEL bit of the GPI0_SEL register. In MII mode MII channel 1 management data. This pin functions as MI1MD. It is a bidirectional MII serial management data signal. In GP mode This pin functions as GP17, general-purpose input/output port.

(7) MII (Media Independent Interface) channel 2 signals

		(1/3)
Signal Name	I/O	Function
MI2TXCLK/GP18	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 transmit clock. This pin functions as MI2TXCLK. It inputs a transmit clock necessary for outputting transmit data to a PHY device connected to the port. In GP mode This pin functions as GP18, general-purpose input/output port.
MI2TXEN/GP19	I/O	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit enable. This pin functions as MI2TXEN. It indicates whether transmit data (TXD) is valid for each port. In GP mode This pin functions as GP19, general-purpose input/output port.
MI2TXD0/GP20	I/O	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit data. This pin functions as MI2TXD0. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP20, general-purpose input/output port.
MI2TXD1/GP21	I/O	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit data. This pin functions as MI2TXD1. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP21, general-purpose input/output port.
MI2TXD2/GP22	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit data. This pin functions as MI2TXD2. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP22, general-purpose input/output port.
MI2TXD3/GP23	I/O	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit data. This pin functions as MI2TXD3. It outputs transmit data to the PHY device connected to the port. In GP mode This pin functions as GP23, general-purpose input/output port.

		(2/3)
Signal Name	I/O	Function
MI2TXER/GP24	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 transmit coding error. This pin functions as MI2TXER. It indicates that an error has occurred in MAC connected to the port during transmission. In GP mode This pin functions as GP24, general-purpose input/output port.
MI2COL/GP25	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 collision. This pin functions as MI2COL. It inputs a collision signal detected by the PHY device connected to the port. If the port is not used, fix MICOL to the low level. In GP mode This pin functions as GP25, general-purpose input/output port.
MI2CRS/GP26	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 carrier sense. This pin functions as MI2CRS. It inputs a carrier sense signal from the PHY device connected to the port. If the port is not used, fix MICRS to the low level. In GP mode This pin functions as GP26, general-purpose input/output port.
MI2RXCLK/GP27	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive clock. This pin functions as MI2RXCLK. It inputs a clock given by the PHY device. In GP mode This pin functions as GP27, general-purpose input/output port.
MI2RXDV/GP28	Ι/Ο	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive data valid. This pin functions as MI2RXDV. It indicates that the receive data on RXD is valid. If the port is not used, fix MIRXDV to the high or low level. In GP mode This pin functions as GP28, general-purpose input/output port.
MI2RXD0/GP29	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive data. This pin functions as MI2RXD0. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP29, general-purpose input/output port.

		(3/3)
Signal Name	I/O	Function
MI2RXD1/GP30	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive data. This pin functions as MI2RXD1. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP30, general-purpose input/output port.
MI2RXD2/GP31	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive data. This pin functions as MI2RXD2. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP31, general-purpose input/output port.
MI2RXD3/GP32	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive data. This pin functions as MI2RXD3. It inputs receive data from the PHY device connected to the port. In GP mode This pin functions as GP32, general-purpose input/output port.
MI2RXER/GP33	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 receive error. This pin functions as MI2RXER. This is an input signal to detect an error that occurs in the PHY device connected to the port during reception. If the port is not used, fix MIRXER to the low level. In GP mode This pin functions as GP33, general-purpose input/output port.
MI2MDCLK/GP34	1/0	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (output) MII channel 2 management data clock. This pin functions as MI2MDCLK. It is a transfer clock of MII serial management data. In GP mode This pin functions as GP34, general-purpose input/output port.
MI2MD/GP35	I/O	 This signal functions differently depending on the setting of the MI2SEL bit of the GPIO_SEL register. In MII mode (input) MII channel 2 management data. This pin functions as MI2MD. It is a bidirectional MII serial management data signal. In GP mode This pin functions as GP35, general-purpose input/output port.

(8) LocalBus Interface signals

Signal Name	I/O	Function
LAD(31:0)	I/O	LocalBus address/data bus. The bus master outputs an address in the address phase and the transmitter device outputs data in the data phase.
LALE	0	LocalBus address latch enable. This is a latch enable signal of the address output from the LAD bus. It is asserted for one bus clock as soon as a bus cycle has been started.
LCS1#	0	LocalBus chip select 1. This signal indicates that a memory area of addresses 0xF F900 0000 to 0xF F9FF FFFF is accessed.
LCS2#	0	LocalBus chip select 2. This signal indicates that a memory area of addresses 0xF FA00 0000 to 0xF FBFF FFFF is accessed.
LCS3#	0	LocalBus chip select 3. This signal indicates that a memory area of addresses 0xF FC00 0000 to 0xF FCFF FFFF or an I/O area of addresses 0x0001 0000 to 0x0001 FFFF is accessed.
LCS4#	0	LocalBus chip select 4. This signal indicates that a memory area of addresses 0xF FD00 0000 to 0xF FDFF FFFF or an I/O area of addresses 0x0002 0000 to 0x0002 FFFF is accessed.
LCS5#	0	LocalBus chip select 5. This signal indicates that a memory area of addresses 0xF FE00 0000 to 0xF FEFF FFFF or an I/O area of addresses 0x0003 0000 to 0x0003 FFFF is accessed.
LCS6#	0	LocalBus chip select 6. This signal indicates that a memory area of addresses 0xF FF00 0000 to 0xF FFFF FFFF is accessed.
LRD#	0	LocalBus read. This signal is asserted during read, reporting a read access to the external device. This signal is kept asserted until LRDY# is asserted.
LWR#	0	LocalBus write. This signal is asserted during write, reporting a write access to the external device. This signal is kept asserted until LRDY# is asserted.
LRDY#	I	LocalBus ready. The external device asserts this signal when it gets ready for data transfer.
LBT16#	I	Bus size specification during LocalBus boot. This signal changes the data bus width of the LCS6 area between 32 and 16 bits. LBT16# can be changed only after reset. If it is changed not after reset, the CPU operation is not guaranteed. 0: 32-bit bus width 1: 16-bit bus width
LBCLKOUT	0	LocalBus clock output. Bus clock of the local bus.
LDRQ0	I	LocalBus channel 0 DMA request. This pin inputs a transfer request signal of internal DMA channel 0.
LDRQ1	Ι	LocalBus channel 1 DMA request. This pin inputs a transfer request signal of internal DMA channel 1.

(9) Asynchronous serial interface channel 1 (UART1) signals

	-	(1/2)
Signal Name	I/O	Function
U1RXD/GP36	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART, CSI/UART, or GP/UART mode (input) UART1 receive data. This pin functions as U1RXD. It inputs receive serial data to the V_R7701. In GP mode This pin functions as GP36, general-purpose input/output port.
U1TXD/GP37	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART, CSI/UART, or GP/UART mode (output) UART1 transmit data. This pin functions as U1TXD. It outputs transmit serial data from the VR7701. In GP mode This pin functions as GP37, general-purpose input/output port.
U1RTS/GP38	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART, CSI/UART, or GP/UART mode (output) UART1 transmission request. This pin functions as U1RTS. This signal is asserted when the VR7701 can receive serial data from the 16550 controller connected to the port. In GP mode This pin functions as GP38, general-purpose input/output port.
U1CTS/GP39	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART, CSI/UART, or GP/UART mode (input) UART1 transmission request. This pin functions as U1CTS. Assert this signal when the 16550 controller connected to the port can receive the serial data transmitted from the V_R7701. In GP mode This pin functions as GP39, general-purpose input/output port.
U1DTR/CSI_DO/GP40	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART mode (output) UART1 data terminal ready. This pin functions as U1DTR. This signal is asserted when the VR7701 is ready for transmitting/receiving serial data. In CSI/UART mode (output) CSI serial data output. This pin functions as CSI_DO. It outputs serial data from the VR7701. In GP or GP/UART mode This pin functions as GP40, general-purpose input/output port.

		(2/2)
Signal Name	I/O	Function
U1DCD/CSI_DI/GP41	I/O	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART mode (input) UART1 data carrier detection. This pin functions as U1DCD. Assert this signal while valid serial data is received. In CSI/UART mode (input) CSI serial data input. This pin functions as CSI_DI. It inputs serial data to the V_R7701. In GP or GP/UART mode This pin functions as GP41, general-purpose input/output port.
U1DSR/CSI_CLK/GP42	1/0	 The function of this pin differs depending on the setting of the U1SEL bit of the GPIO_SEL register. In UART mode (input) UART1 data set ready. This pin functions as U1DSR. Assert this signal while the 16650 controller connected to the port is ready to transmit/receive serial data to/from the VR7701. In CSI/UART mode (output) CSI clock. This pin functions as CSI_CLK. It is a serial data transmission/reception clock output from the VR7701. In GP or GP/UART mode This pin functions as GP42, general-purpose input/output port.

(10) Asynchronous serial interface channel 2 (UART2) signals

		(1/2)
Signal Name	I/O	Function
U2RXD/GP43	I/O	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART or GP/UART mode (input) UART2 receive data. This pin functions as U2RXD. It inputs receive serial data to the V_R7701. In GP mode This pin functions as GP43, general-purpose input/output port.
U2TXD/GP44	I/O	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART or GP/UART mode (output) UART2 transmit data. This pin functions as U2TXD. It outputs transmit serial data from the VR7701. In GP mode This pin functions as GP44, general-purpose input/output port.
U2RTS/GP45	I/O	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART or GP/UART mode (output) UART2 transmission request. This pin functions as U2RTS. This signal is asserted when the VR7701 can receive serial data from the 16550 controller connected to the port. In GP mode This pin functions as GP45, general-purpose input/output port.

		(2/2)
Signal Name	I/O	Function
U2CTS/GP46	I/O	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART or GP/UART mode (input) UART2 transmission request. This pin functions as U2CTS. Assert this signal when the 16550 controller connected to the port can receive the serial data transmitted from the V_R7701. In GP mode This pin functions as GP46, general-purpose input/output port.
U2DTR/GP47	1/0	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART mode (output) UART2 data terminal ready. This pin functions as U2DTR. This signal is asserted when the V_R7701 is ready for transmitting/receiving serial data. In GP or GP/UART mode This pin functions as GP47, general-purpose input/output port.
U2DCD/GP48	I/O	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART mode (input) UART2 data carrier detection. This pin functions as U2DCD. Assert this signal while valid serial data is received. In GP or GP/UART mode This pin functions as GP48, general-purpose input/output port.
U2DSR/GP49	1/0	 The function of this pin differs depending on the setting of the U2SEL bit of the GPIO_SEL register. In UART mode (input) UART2 data set ready. This pin functions as U2DSR. Assert this signal while the 16650 controller connected to the port is ready to transmit/receive serial data to/from the VR7701. In GP or GP/UART mode This pin functions as GP49, general-purpose input/output port.

(11) Asynchronous serial interface clock signal

The following signal is shared by UART1 and UART2.

Signal Name	I/O	Function
UARTCLK	I	UART clock. This pin inputs a serial clock for UART. Input a serial clock for UART from this pin when an external clock is used.

(12) Clocked serial interface (CSI) signals

Signal Name	I/O	Function
CSI_DO/U1DTR/GP40	0	See (9) Asynchronous serial interface channel 1 (UART1) signals.
CSI_DI/U1DCD/GP41	Ι	
CSI_CLK/U1DSR/GP42	0	

Caution An RTC interface can be created by using one of the GP signals as an RTC chip enable signal (output).

(13) GPIO interface signals

Signal Name	I/O	Function
GP(57:0)	I/O	GPIO. These are general-purpose input/output signals of the V _R 7701. Usually, they are used as dual-function pins. For the dual-function signals, see (2), (6), (7), (9), and (10).

(14) Debug interface signals

Signal Name	I/O	Function
ЈТСК	I	JTAG clock. Serial clock input for JTAG.
JTDI	Ι	JTAG data input. Serial data input for JTAG.
JTDO	0	JTAG data output. Serial data output for JTAG.
JTMS	I	JTAG mode selection. JTAG test mode selection.
JTRST#	I	JTAG reset. Reset input for JTAG.
NTrcClk	0	Trace clock. Clock output for test interface.
NTrcData(3:0)	0	Trace data. Data output for test interface.
NTrcEnd	0	Trace end. This signal indicates the end of a trace data packet.
BKTGIO#	I/O	Break trigger I/O. Break or trigger input/output signal.

(15) Power supply

Signal Name	Function
GND	Ground
YPLLGND1	Ground for internal PLL
YPLLGND2	Ground for internal PLL
SPLLGND	Ground for internal PLL
VDD	1.5 V power supply for core
VD2	2.5 V power supply for SDRAM interface
VD3	3.3 V power supply for other I/O
YPLLVDD1	Power supply for internal PLL
YPLLVDD2	Power supply for internal PLL
SPLLVDD	Power supply for internal PLL
MDLLVDD	Power supply for internal DLL
SDLLE1V	Power supply for internal DLL
SDLLN1V	Power supply for internal DLL
SDLLN2V	Power supply for internal DLL
SDLLW1V	Power supply for internal DLL

Caution The V_R7701 uses three power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one or two pins for 100 ms or longer while it is not applied to the others.

1.2 Connection of Unused Pins

The pins shown in Table 1-2 are not used as interface signals during normal operation. Connect these pins as indicated in this table.

Pin	Connection of Unused Pin
JTCK	Pull up to VD3
JTDI	Pull up to VD3
JTDO	Open
JTMS	Pull up to VD3
JTRST#	Pull down
NTrcClk	Open
NTrcData(3:0)	Open
NtrcEnd	Open
BKTGIO#	Pull up to VD3

Table 1-2. Connecting of Unused Pins (1)

The pins shown in Table 1-3 may not be used in specific system configuration. Connect these pins as indicated in this table when they are not used.

Pin	Connection of Unused Pin
PCLKIN	Input appropriate clock
PAD(63:32)	Pull up to VD3
PCBE(7:4)#	Pull up to VD3
PREQ64#	Pull up to VD3
PACK64#	Pull up to VD3
PPAR64	Pull up to VD3
MI1/2TXCLK	Pull down or pull up to VD3
MI1/2RXCLK	Pull down or pull up to VD3
MI1/2COL	Pull down
MI1/2CRS	Pull down
MI1/2RXDV	Pull down or pull up to VD3
MI1/2RXER	Pull down
U1/2RXD	Pull down or pull up to VD3
U1/2CTS	Pull down or pull up to VD3
U1/2DSR	Pull down or pull up to VD3

Table 1-3. Connection of Unused Pins (2)

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vdd	VDD pin	- 0.5 to + 2.0	V
	Vd2	VD2 pin	- 0.5 to + 4.6	V
	V _{D3}	VD3 pin	- 0.5 to + 4.6	V
Analog voltage for DLL	Vdll	MDLLVDD, SDLLE1V, SDLLN1V,	TBD	V
		SDLLN2V, and SDLLW1V pins		
Input voltage ^{Note}	VIN	VD2 pin	-0.5 to V _{D2} + 0.3	V
		VD3 pin	- 0.5 to V _{D3} + 0.3	V
Operating case temperature	Tc		0 to 85	°C
Storage temperature	Tstg		- 40 to + 125	°C

Note The upper limit of the input voltage is + 4.0 V.

Cautions 1. Do not short-circuit two or more outputs at the same time.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The specifications and conditions shown in the following DC Characteristics and AC Characteristics sections are the ranges within which the product can normally operate and the quality can be guaranteed.

Operating Range (Tc = 0 to 85 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	Vdd		1.475	1.55	1.625	V
	V _{D2}	When using DDR SDRAM	2.3	2.5	2.7	V
		When using SDR SDRAM	3.14	3.3	3.46	V
	V _{D3}		3.14	3.3	3.47	V
SDRAM reference voltage	MV _{ref}	When using DDR SDRAM	1.15	1.25	1.35	V
		When using SDR SDRAM	1.57	1.65	1.73	V
SDRAM termination voltage	VTT		MV _{ref} - 0.04		$MV_{\text{ref}} + 0.04$	V

Caution The VR7701 uses three power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one or two pins for 100 ms or longer while it is not applied to the others.

DC Characteristics (Tc = 0 to 85 °C, VDD = 1.475 to 1.625 V, VD3 = 3.14 to 3.47 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	Iон = 0 mA	Vd3 - 0.1		V
Output voltage, low	Vol	lol = 0 mA		0.1	V
Input voltage, high	Vін		2.0	V _{D3}	V
Input voltage, low	VIL		- 0.5	+ 0.8	V
Output current, high	Іон	Vон = 2.4 V	9		mA
Output current, low	lo∟	Vol = 0.4 V	9		mA
Input capacitance	Cin	V _{D3} = 0 V, T _J = 25 °C, F = 1 MHz	4.0	6.0	pF
Input/output capacitance	Cio	V _{D3} = 0 V, T _J = 25 °C, F = 1 MHz	4.0	6.0	pF
Input current leakage	Leak		- 10.0	+ 10.0	μA
Output current leakage	lOLeak		- 10.0	+ 10.0	μA

(1) LVTTL interface block (V_{D2} = 3.14 to 3.46 V)

Remark These parameters are applied to signals other than those for the SDRAM interface and PCI-X interface.

(2) SSTL_2 interface block ($V_{D2} = 2.3$ to 2.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	Iон = – 15.2 mA	0.85VD2		V
Output voltage, low	Vol	IoL = 15.2 mA		0.15V _{D2}	V
Input voltage, high	VIH (DC)		MV _{ref} + 0.18	V _{D2} + 0.3	V
Input voltage, low	Vı∟(DC)		- 0.3	MV _{ref} – 0.18	V
Input differential voltage	VID (DC)		0.36	V _{D2} + 0.6	V
Input cross point voltage	Vix		$0.5V_{\text{D2}}-0.2$	$0.5V_{D2} + 0.2$	V
Output current, high	Іон	V _{D2} = 2.3 V, Vон = V _{D2} – 0.43 V	- 15.2		mA
Output current, low	lol	V _{D2} = 2.3 V, V _{OL} = 0.35 V	15.2		mA
Input capacitance	Cin		2.0	4.0	pF
Input/output capacitance	Cio		4.0	6.0	pF
Input current leakage	Leak		- 5.0	+ 5.0	μA
Output current leakage	lOLeak		- 5.0	+ 5.0	μA

Remark These parameters are applied to the SDRAM interface signals only.

Differential input level

Single-ended input level

Example of connection of external resistors

(3) PCI-X interface block

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	Іон = – 0.5 mA	2.7		V
Output voltage, low	Vol	lo∟ = 0.5 mA		0.36	V
Input voltage, high	Vін		1.5	4.1	V
Input voltage, low	VIL		- 0.5	+ 1.26	V
Reference voltage for PCI-X interface	Vtest	Input	0.4V _{D3}		V
		Output (rising) Note	0.285VD3		V
		Output (falling) Note	0.615VD3		V
Output current, high	Іон	Vон = 2.4 V	- 19.2		mA
Output current, low	lo∟	Vol = 0.4 V	19.2		mA
Input capacitance	Cin			8.0	pF
Input/output capacitance	Cio			8.0	pF
Input current leakage	Leak		- 10.0	+ 10.0	μA
Output current leakage	OLeak		- 10.0	+ 10.0	μA

Note This is specified for measurement use only. Refer to PCI-X Specification for details.

Remark These parameters are applied to the PCI-X interface signals only.

Caution Connect a resistor of 10 Ω ±15% in series to each output pin of the PCI-X interface.

Example of connection of external resistors

AC Characteristics (Tc = 0 to 85 °C, VDD = 1.475 to 1.625 V, VD3 = 3.14 to 3.47 V)

Load conditions

(a) LVTTL interface block

(b) SSTL_2 interface block

(c) PCI-X interface block

(1) Clock parameters

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Pipeline clock frequency				400	MHz
Pipeline clock period	t PipeClkPer		2.5		ns
SysClk period	tSysClkPer		5.0		ns
ebclk period	tebclkPer		30.3		ns
Dclk period	t DclkPer		7.5		ns
TCLKIN period	t _{TclkinPer}		40		ns
LBCLKOUT period	t LBclkPer		30		ns
PCLKIN period	t PClkPer		7.5 Note1	20	ns
Ethernet interface clock Note2 period	tEtheClkPer	At 100 Mbps operation		40	ns
		At 10 Mbps operation		400	ns
MCLKIN period	tмск	When using DDR SDRAM	7.5	10	ns
		When using SDR SDRAM	10	15	ns
MCLKIN high-level width	tмсн		0.45tмск	0.55tмск	ns
MCLKIN low-level width	t MCL		0.45tмск	0.55tмск	ns
MCLKIN rise time	tMCRise			1	V/ns
MCLKIN fall time	tMCFall			1	V/ns
MCLKIN cycle-to-cycle jitter	tмл	When using DDR SDRAM		±150	ps
		When using SDR SDRAM		±200	ps
JTCK period	tJTAGPer		25	1000	ns

Notes 1. This is the value for the V_R7701 operating in PCI-X mode. The value for the V_R7701 operating in PCI mode is 30.

2. 'Ethernet interface clock' represents MInTXCLK and MInRXCLK (n = 1 or 2).

(2) Interrupt interface parameter (C_L = 10 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
NMI/INTP active level width	t nmi/int		2 tLBclkPer		ns

(3) SDRAM interface parameters

(a) When using SDR SDRAM (V_{D2} = 3.14 to 3.46 V, $V_{IH}(AC)$ = MV_{ref} + 0.35 V (MIN.), $V_{IL}(AC)$ = MV_{ref} - 0.35 V (MAX.), C_L = 40 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
MCLKIN frequency			67	100	MHz
MCLKIN period	tмск		10	15	ns
MCLKIN high-level width	tмсн		0.45tмск	0.55tмск	ns
MCLKIN low-level width	t MCL		0.45tмск	0.55tмск	ns
MCLKIN rise time	tMCRise			1	V/ns
MCLKIN fall time	t MCFall			1	V/ns
MCLKIN cycle-to-cycle jitter	tмji			±200	ps
Data output delay time	t sdo		TBD	TBD	ns
MMD/MDQM setup time	tsDs		TBD		ns
MMD/MDQM hold time	t SDh		TBD		ns

(b) When using DDR SDRAM (V_{D2} = 2.3 to 2.7 V, V_{ID}(AC) = 0.7 V, V_{IH}(AC) = MV_{ref} + 0.35 V (MIN.), V_{IL}(AC) = MV_{ref} - 0.35 V (MAX.), C_L = 40 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
MCLKIN frequency			67	100	MHz
MCLKIN period	tмск		10	15	ns
MCLKIN high-level width	tмсн		0.45 t мск	0.55tмск	ns
MCLKIN low-level width	tMCL		0.45 t мск	0.55 t мск	ns
MCLKIN rise time	t MCRise			1	V/ns
MCLKIN fall time	t MCFall			1	V/ns
MCLKIN cycle-to-cycle jitter	tмji			±200	ps
Address/command output delay time	taco	Note	0.5	3.0	ns
MMD/MDQM setup time to MDQS on	todws		1.0		ns
memory write					
MMD/MDQM hold time from MDQS	t DDWh		1.0		ns
on memory write					
MDQS/MDQSP output delay	t DQSO		5.9	8.5	ns
Write preamble setup time	t PREs		0.8		ns
Write preamble hold time	t PREh		2.1		ns
MDQS falling edge setup time to	toas		2.2		ns
MCLKIN rising edge					
MMD setup time to MDQS on	tDDRs			1.0	ns
memory read					
MMD hold time from MDQS on	t DDRh			1.6	ns
memory read					
MDQS/MDQSP output delay on	t DQSD		0	2.8	ns
memory read					

Note This parameter is applied to MMA(14:0), MMBA(1:0), MCS(7:0)#, MCKE(3:0), MRAS#, MCAS#, and MWE# pins.

In the 2-cycle mode, this is applied to MMA(14:0), MMBA(1:0), MRAS#, MCAS#, and MWE# pins only.

(4) PCI-X interface parameters (C_L = 40 pF)

Parameter	Symbol	Conditions	PCI-X Mode		PCI Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
PCLKIN frequency			50	133		33	MHz
PCLKIN period	t PClkPer		7.5	20	30		ns
PCLKIN high-level width	t PCIkHigh		3		11		ns
PCLKIN low-level width	t PCIkLow		3		11		ns
Data output delay time to valid	tDO_PCI		0.7	3.8	2	11	ns
	tdo_pci(ptp)	Note	0.7	3.8	2	12	ns
Data output delay time to active	ton		0		2		ns
Data output delay time to float	toff			7		28	ns
Data input setup time	tos_PCI		1.2		7		ns
	tds_pci(ptp)	Note	1.2		7		ns
Data input hold time	tDH_PCI		0.5		0		ns

Note This parameter is applied to PREQ(3:0)# and PGNT(3:0)# pins when they are connected point to point.

(5) Asynchronous serial interface (UART) parameters (CL = 10 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
UnTXD pulse width	tтхd			125	ns
UnRXD pulse width	t RXD			125	ns

Remark n = 1 or 2

(6) Clocked serial interface (CSI) parameters ($C_{L} = 10 \text{ pF}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
CSI_CLK frequency				16.6	MHz
CSI_CLK period	t CSIclkPer		60		ns
CSI_CLK high-level width	t CSIclkHigh		30		ns
CSI_CLK low-level width	tCSIclkLow		30		ns
CSI_CLK rise time	tCSIclkRise		0.944		ns
CSI_CLK fall time	t CSIclkFall		0.637		ns
CSI_CLK cycle-to-cycle jitter	t CSIclkJitter			±100	ps
Data output delay time	tDo_CSI			2.2	ns
Data input setup time	tos_csi			9.9	ns
Data input hold time	tDH_CSI		0		ns

(7) Ethernet interface parameters (C_L = 10 pF)

(a) Transmit interface block

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
MInTXCLK frequency		At 100 Mbps operation	25		MHz
		At 10 Mbps operation	2.5		MHz
MInTXCLK period	t TXclkPer	At 100 Mbps operation		40	ns
		At 10 Mbps operation		400	ns
MInTXCLK high-level width	$t_{TXclkHigh}$	At 100 Mbps operation		20	ns
		At 10 Mbps operation		200	ns
MInTXCLK low-level width	t _{TXclkLow}	At 100 Mbps operation		20	ns
		At 10 Mbps operation		200	ns
MInTXD output delay time	tdo_tx		15		ns
Control signal assertion delay time	tas_tx	MInTXEN and MInTXER pins	15		ns
Control signal deassertion delay time	tdas_tx	MInTXEN and MInTXER pins	15		ns

Remark n = 1 or 2

(b) Receive interface block

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
MInRXCLK frequency		At 100 Mbps operation	25		MHz
		At 10 Mbps operation	2.5		MHz
MInRXCLK period	t _{RXclkPer}	At 100 Mbps operation		40	ns
		At 10 Mbps operation		400	ns
MInRXCLK high-level width	$t_{RXclkHigh}$	At 100 Mbps operation		20	ns
		At 10 Mbps operation		200	ns
MInRXCLK low-level width	t RXclkLow	At 100 Mbps operation		20	ns
		At 10 Mbps operation		200	ns
MInRXD input setup time	tds_rxd		10		ns
MInRXD input hold time	tdh_rxd		5		ns
Control signal setup time	tds_RX	MInRXDV and MInRXER pins	5		ns
Control signal hold time	tdh_rx	MInRXDV and MInRXER pins	5		ns

Remark n = 1 or 2

(c) Management interface block

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
MInMDCLK frequency				15	MHz
MInMDCLK period	t MDclkPer		66		ns
MInMD output delay time	tdo_md		10		ns
MInMD input setup time	tds_md		10		ns
MInMD input hold time	tdh_md		5		ns

Remark n = 1 or 2

(8) LocalBus interface parameters (CL = 10 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
LBCLKOUT frequency				33	MHz
LBCLKOUT period	t LBclkPer		30		ns
LBCLKOUT high-level width	t LBclkHigh		15		ns
LBCLKOUT low-level width	t LBclkLow		15		ns
LBCLKOUT rise time	tLBclkRise		0.944		ns
LBCLKOUT fall time	t LBclkFall		0.637		ns
LBCLKOUT cycle-to-cycle jitter	tLBclkJitter			±100	ps
Data output delay time	tdo_lb			6.2	ns
Data input setup time	tds_lb			4.8	ns
Data input hold time	tdh_lb		0		ns

NEC

Timing Charts

MCLKIN waveform

MCLKIN cycle-to-cycle jitter

SDRAM interface edge timing

(a) When using SDR SDRAM

NEC

(b) When using DDR SDRAM (write)

(c) When using DDR SDRAM (read)

PCI-X interface edge timing

Asynchronous serial interface (UART) edge timing

Clocked serial interface (CSI) edge timing

Ethernet interface edge timing

(a) Transmit interface block

(b) Receive interface block

(c) Management interface block

LocalBus interface edge timing

3. PACKAGE DRAWING

500-PIN PLASTIC BGA (CAVITY DOWN ADVANCED TYPE) (40x40)

ITEM	MILLIMETERS
D	40.00±0.20
Е	40.00±0.20
е	1.27
А	1.75±0.20
A1	0.60±0.10
A2	1.15
A4	0.25 MIN.
b	0.75±0.15
x1	0.30
x2	0.15
У	0.20
ZD	1.585
ZE	1.585

P500F2-127-UA5-1

[MEMO]

NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

 Related documents
 μPD30550 (VR5500)
 Data Sheet (U15700E)

 VR5500
 User's Manual (U16044E)

 VR5000TM, VR10000TM
 Instruction
 User's Manual (U12754E)

Reference document Electrical Characteristics for Microcomputer (U15170J)^{Note}

Note This document number is that of Japanese version.

The related documents indicated in the publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

- Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60
- Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

- Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99
- Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80
- Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388
- United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311 Fax: 250-3583

V_R5000 , V_R5500 , V_R7701 , V_R10000 , and V_R Series are trademarks of NEC Corporation. MIPS is a registered trademark of MIPS Technologies, Inc. in the United States. Ethernet is a trademark of Xerox Corporation.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.