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Introduction 

SPARC, an acronym for Scalable Processor Architecture, is an open RISC architecture with mUltiple semi­
conductor implementations from a number of vendors. SPARC is an architecturally driven standard, with 
binary compatibility of software between processor versions ensured by enforcing compliance to the archi­
tecture standard. The open architecture approach offered by SPARC allows all its participants to make cre­
ative contributions in developing their versions of SPARC processor. This results in a vastly greater number 
of technical contributions than would be possible for a closed architecture held and defined by only one 
group. This architectural freedom has allowed the SPARC architecture to expand into process technologies 
such as CMOS gate arrays, full-custom CMOS, BiCMOS, and GaAs faster than any other RISC architec­
ture. This same freedom allows SPARC vendors to make micro-architectural enhancements to their SPARC 
implementations while maintaining absolute binary compatibility. The final result of this open architecture 
approach is that it provides the customer with a wider range of price/performance and technology options 
that cannot be matched by less innovative and restricted licensing policies. In addition, the various SPARC 
vendors also participate in standard second-sourcing agreements. 

The inclusion of the word "scalable" in the acronym for SPARC emphasizes its importance in the philosophy 
of the architecture. "Enforced compatibility" has been embraced to ensure migration of the architecture as 
semiconductor technology improves. Scalability allows SPARC to be re-implemented without complica­
tion as semiconductor process technology evolves. This allows SPARC to continually be offered in higher 
clock speeds and technologies than other RISC architectures, providing rapid performance improvements 
as process technology continues to be refined. Other RISC processors have complicated their micro-archi­
tectures with features that create an unnecessary burden for the hardware designer. These features provide 
only a minimal performance improvement, but greatly complicate hardware design and cost. ROSS SPARC 
microprocessors do not require multiple-phase clocks, de-multiplexing of the processor's address or data 
buses or many of the other problems that affect hardware complexity and cost. This provides ROSS SPARC 
based designs with the advantages of excellent performance, low design costs, a high degree of manufactur­
ability, and increased reliability due to simplicity of design. 

ROSS Technology provides two families of SPARC processors: the RT600 hyperSPARC family, and the 
original CY7C600 family. The hyperSPARC is the second-generation SPARC RISC processor family, con­
sisting of the RT620 Central Processing Unit (CPU), the RT625 Cache Controller, Memory Management, 
and Tag Unit (CMTU) and the RT627 Cache Data Unit (CDU). The CY7C600 is the first-generation SPARC 
processor family, which consists of the CY7C601 Integer Unit (IV), the CY7C611 Integer Unit for em­
bedded control, the CY7C602 Floating-Point Unit (FPU), the CY7C604 Cache Controller and Memory 
Management Unit (CMU), the CY7C605 Cache Controller and Memory Management Unit for Multipro­
cessing (CMU-MP), and the CY7C157 Cache Storage Unit (CSU). The RT600 hyperSPARC and the 
CY7C600 processor families provide a range of cost-performance choices, allowing the designer to match 
the level of processor technology to the requirements of the system. 

The hyperSPARC is a high-performance, superscalar processor representing a milestone in the development 
of SPARC. The RT620 hyperSPARC CPU is a superscalar RISC processor featuring an integrated integer 
unit/floating-point unit with an 8-Kbyte 2-way set-associative instruction cache. The superscalar RT620 
supports dual-instruction launch for a majority of instruction combinations, and features several significant 
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pipeline enhancements in both the integer unit and floating-point unit data paths. The demand on memory 
required by hyperSPARC is supported by the 64-bit Intra-Module Bus (1MB), which provides a high-band­
width interface to the hyperSPARC cache system. The RT625 CMTU and RT627 Cache Data Units com­
plete the hyperSPARC CPU, providing 128 or 256 Kbytes of cache with complete hardware support for 
MBus-based multiprocessor systems. 

The CY7C600 family is ROSS Technology's first-generation SPARC processor family. The CY7C600 fam­
ily includes two Integer Units (the CY7C601 and the CY7C61l), an FPU (the CY7C602), two Cache Con­
troller and Memory Management Units (the CY7C604 and the CY7C605), and a high-speed synchronous 
SRAM Cache Storage Unit (CY7C157). The CY7C601 is the primary processing engine for the CY7C600 
CPU, and is designed to work as part of a tightly-coupled SPARC CPU. The CY7C602 is an efficient FPU 
designed to operate in tandem with the CY7C601. The cache control and memory management functions 
of the CY7C600 CPU may be provided by the CY7C604 or the CY7C605, depending upon system require­
ments. The CY7C604 is an efficient uniprocessor cache controller and memory management unit (MMU). 
The CY7C605 is a SPARC cache controller and memory management unit that provides full hardware sup­
port for Level-2 MBus multiprocessing systems. Both cache controllers are designed to use the CY7C157, 
a synchronous, self-timed cache RAM custom designed for the CY7C600 family. The CY7C611 is a SPARC 
Integer Unit derived from the CY7C601, and is designed for high-performance, cost-sensitive embedded 
control applications. 

1.1 SPARe Architecture Features 

1.1.1 Load/Store Architecture 

SPARC uses a register Load/Store architecture, that performs all operations using either immediate oper­
ands or operands stored in internal registers or status registers. Data is fetched from memory to an internal 
register by the use of a load instruction, and is transferred from the register file to memory by the use of a 
store instruction. Register Load/Store architectures are a superior method of operand access in terms of 
minimizing memory bus traffic and maximizing data locality to the CPU. In addition, the Load/Store para­
digm allows the definition of an instruction set with a high degree of orthogonality. This is accomplished 
by separating data access operations from logical data operations. This instruction set orthogonality pro­
vides a logical separation of tasks, resulting in greater simplicity in the implementation of the processor. The 
implied simplicity of the Load/Store architecture results in efficient pipelining and thereby lends itself to 
high-performance superscalar designs. 

1.1.2 Register Windows 

ROSS SPARC microprocessors contain a large, 32-bit-wide register file that is divided into multiple win­
dows that are controlled by internal hardware. Each window contains 24 working registers and has access 
to eight global registers. Combined with SPARC's register-to-register architecture, this file operates effec­
tively as a compiler-directed, copy-back data cache, considerably reducing data bus traffic. Load instruc­
tions enter data into this cache, and store instructions "copy back" information when it needs to be replaced 
into main memory. 

The register file is managed as a circular stack, with the first and last windows overlapping each other. Each 
window overlaps the previous window and succeeding window by eight registers, making the window 
mechanism ideal for passing parameters in procedure calls. Results left in the overlapping registers by a call­
ing routine automatically become available operands for the called routine as the window moves, and vice 
versa. This parameter passing technique eliminates the need for the loads and stores to memory required 
by machines using a stack during procedure calls. 
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1.1.3 Instruction Set 

SPARC instructions fall into five basic categories: Load/Store, arithmetic/logical/shift, control transfer, 
read/write control register, and floating-point/coprocessor-operate. 

1.1.3.1 Load and Store Instructions 

Load and store instructions are the only way to access memory or external registers. Addresses are calcu­
lated using the contents of two registers or one register and a constant. The destination may be an integer 
unit, floating-point unit, or coprocessor register, that either supplies or receives the data. In order to greatly 
speed up memory accesses, halfword, word, and doubleword data must be aligned on their corresponding 
boundaries. If they are not, a trap is generated when an access is attempted. 

Whenever an address is sent to the address bus, the processor also generates eight bits of address space iden­
tifier (AS I). The ASI pins identify to the external system which of the 256 possible address spaces is to be 
accessed. For most load or store operations, one of four standard ASI values is asserted. These four ASI 
values indicate whether the processor is in user or supervisor mode, and whether the access is an instruction 
or data reference. 

The address space identifier is intended for use by the system operating software. Consequently, the instruc­
tions that specify a particular ASI value (Load/Store Alternate) are privileged and can only be executed in 
the supervisor mode. Many of the ASI bit patterns are assigned for accessing various features of the cache 
controller and memory management unit. A large block of address spaces is reserved for the designer to 
implement as desired. 

1.1.4 Arithmetic/Logical/Shift Instructions 

These instructions compute a result using two source operands and place the result in a destination register. 
In addition to standard arithmetic operations, the SPARC instruction set includes tagged arithmetic opera­
tions. Tagged arithmetic instructions assume that the least -significant two bits of the operands are tags, and 
set a condition code bit if they are not zero. Tagged instructions are used with artificial intelligence lan­
guages such as LISP to indicate the data type of the operands. The use of tagged arithmetic instructions al­
lows languages such as LISP and Prolog to run significantly faster than on RISC machines without this type 
of instruction. 

1.1.5 Control Transfer Instructions 

Control transfer instructions include jumps, calls, branches, and traps. Transfer of control to the new address 
is usually delayed until after execution of the next instruction immediately following the JUMP, CALL or 
Branch, etc., so that the transfer does not create a hole or bubble in the instruction pipeline. It is the compil­
er's or assembly language programmer's job to attempt to place a useful instruction in this delay slot. 

1.1.6 Read/Write Control Register Instructions 

These include instructions to read and write the contents of various SPARC control registers. The source 
(read) or destination (write) is implied by the instruction name, or by an alternate state register number pro­
vided as an instruction operand. 

1.1.7 Floating-Point-Operate and Coprocessor-Operate Instructions 

This category includes floating-point calculations, floating-point register operations, and instructions in­
volving computations or other operations in the second coprocessor. 
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Floating-point -operate (FPop) instructions execute concurrently with integer instructions and possibly with 
other floating-point instructions. Concurrent execution is also possible with the coprocessor-operate in­
structions if they are implemented. 

The CY7C601 supports a coprocessor interface, thus allowing the user to provide a customized processing 
engine to work in tandem with the CY7C601 Integer Unit and the CY7C602 Floating-Point Unit. This inter­
face is not supported on the CY7C611 Integer Unit or the hyperSPARC RT620. 

Coprocessor-operate (CPop) instructions are defined by the coprocessor itself. In the SPARC instruction 
set, they are specified by the CPop instruction. The SPARC architecture will accommodate 1024 coproces­
sor-operate instructions. 

Floating-point and coprocessor loads and stores are not classified as operate instructions; they belong to the 
"load and store" category previously discussed. 

1.2 hyperSPARC Overview 

The hyperSPARC is designed as a tightly-coupled chipset to be utilized in a SPARC MBus module. Each 
hyperSPARC CPU supports either 128 or 256 Kbytes of second-level cache, and each module may contain 
one or two CPUs. The chipset is comprised of the RT620 Central Processing Unit (CPU), the RT625 Cache 
Controller, Memory Management, and Tag Unit (CMTU), and two or four RT627 Cache Data Units (CDUs) 
for 128 Kbytes or 256 Kbytes of second-level cache, respectively. The chipset can be configured for unipro­
cessing (Levell MBus) or multiprocessing (Level 2 MBus). Figure 1-1 represents a block diagram of the 
hyperSPARC chipset. 

RT625 
CMTU 

RT620 
CPU 

ROSS 1MB 

32 

RT627 
CDU 

1 parr of CD Us 
=128 Kbytes 

SPARCMBus 

32 32 OPTIONAL 

RT627 
CDU 

2 pairs of CDUs 
= 256 Kbytes 

Figure 1-1. hyperSPARC CPU Block Diagram 

The RT620 is the primary processing unit in hyperSPARC. This chip is comprised of an integer unit, a float­
ing-point unit, and an 8-Kbyte, 2-way set-associative instruction cache. The integer unit contains the ALU 
and separate Load/Store data path, constituting two of the chip's four execution units. There is also the float­
ing-point unit and a Branch/Call unit (for processing control transfer instructions). Two instructions are 
fetched every clock cycle. In general, as long as these two instructions require different execution units and 
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have no data dependencies, they can be launched simultaneously. Two floating-point instructions may also 
be simultaneously dispatched, due to the inclusion of a floating-point instruction pre-queue. The RT620 
contains two registerfiles: 136 integer registers configured as eight register windows, and 32 separate float­
ing-point registers in the floating-point unit. 

The hyperSPARC's second-level cache is built around the RT625 CMTU, a combined cache controller and 
memory management unit that supports shared-bus mUltiprocessing. The cache controller portion supports 
128-Kbytes or 256-Kbytes of cache, made up of two or four RT627 CDU s. The cache is direct-mapped with 
4-Kbytes of cache tags. The cache is physically tagged and virtually indexed so that the RT625's cache co­
herency logic can quickly determine snoop hits and misses without stalling the RT620's access to the cache. 
Both copy-back and write-through caching modes are supported. 

The SPARC reference MMU of the RT625 provides a 64-entry, fully set -associative TLB that supports 4096 
contexts. The RT625 contains a read buffer (32 bytes deep) and a write buffer (64 bytes deep) for buffering 
the 32-byte cache lines in and out of the second-level cache, and synchronization logic for interfacing the 
virtual 1MB to the SPARC MBus. 

The RT627 is a custom-designed 16-Kbyte X 32-bit SRAM. It is organized as four arrays of 16-Kbyte 
SRAM with byte write logic, registered inputs, and data-in and data-out latches. The RT627s provide a zero­
wait-state cache to the CPU with no pipeline penalty (i.e., stalls) for loads and stores that hit the cache. The 
RT627 requires no glue logic for interfacing to the RT620 (CPU) and the RT625 (CMTU). 

1.2.1 hyperSPARC Design Features 

The microarchitecture of hyperSPARC boasts classic RISC and superscalar features for improving instruc­
tion processing throughput. In addition, hyperSPARC also employs architectural enhancements that differ­
entiate it from other next-generation microprocessor designs. The following sections highlight of some of 
hyperSPARC's most important attributes. 

1.2.1.1 High Frequency ojOperation 

Fundamentally, hyperSPARC is built for speed. In order to facilitate high clock frequencies, particular atten­
tion is paid to the 6-stage integer and floating -point pipelines, keeping them simple and well-balanced. Each 
stage of the pipelines is carefully partitioned in order that the number of gates per stage is similar, thus more 
easily lending itself to process shrinks for scaling to higher clock rates. 

The hyperSPARC allows processor clock rates to be increased independently of the external bus (MBus). 
The hyperSPARC chipset was partitioned to allow synchronous or asynchronous operation through syn­
chronization logic contained in the RT625. This decoupling of the CPU bus from the external bus allows 
scaling of hyperSPARC's clock frequency independent of the memory and I/O subsystems. This provides 
longer product life cycles since upgrades to higher performance hyperSPARC modules require no hardware 
changes to the underlying system design. 

1.2.1.2 Instruction Scheduling 

Instruction scheduling and dispatching is a critical portion of any superscalar design. Optimal instruction 
scheduling involves both minimizing pipeline stalls (costly enough for any RISC machine, but even more 
costly when mUltiple instructions are being held) and minimizing conditions that prevent simultaneous 
instruction launching. 

All superscalar microprocessors are not the same. The ability to fetch and launch multiple instructions is 
only as good as the number of times this feature is actually taken advantage of. Compilers can help reduce 
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the occurrences of instructions that cannot be launched together by scheduling instructions accordingly. 
However, the software can only optimize for the hardware; the microprocessor design must be intelligently 
partitioned to provide opportunities for software enhancements. 

The hyperSPARC is partitioned into four execution units in order to facilitate parallel processing of major 
instruction types. These execution units are the Load/Store unit, Branch/Call unit, integer unit, and floating­
point unit. The floating-point unit is actually comprised of an instruction queue and two parallel pipelines, 
an adder and a multiplier. 

The hyperSPARC fetches two instructions every clock cycle and evaluates them for simultaneous launch. 
hyperSPARC's primary scheduler is invoked for this evaluation and determines the hardware resources re­
quired for processing the instructions, as well as any data dependencies. This critical juncture in the instruc­
tion processing path exposes the strengths and weaknesses of microarchitectures. 

Poorly architected designs require more frequent splits of instruction groupings. Internal constraints, such 
as bus design/bandwidth and number of read/write register ports, sometimes prevent the scheduler from 
having any opportunity to launch multiple instructions together. These design constraints manifest them­
selves in many ways, especially restricting simultaneous launch based on the types of instructions, and/or 
order of the instructions, within groupings. The result is frequent sequential (instead of simultaneous) 
instruction launches. 

hyperSPARC's ability to launch multiple instructions simultaneously is not restricted by the order and typet 
of instructions within groupings. Sequential launch is required, of course, for cases involving resource con­
flicts or data dependencies. But unlike some other superscalar designs, any instruction can occupy any posi­
tion in the grouping and still be considered for simultaneous launch. 

hyperSPARC also provides special support for the launching of floating-point instructions. The hyper­
SPARC floating-point unit employs two queues: a pre-queue and post-queue. The post-queue maintains in­
formation on instructions currently in execution in either the floating-point adder or multiplier units. This 
information includes the instruction type, address, and stage of the pipeline for any given clock. Information 
of this type is required for exception handling to recover the instructions aborted when the floating-point 
pipeline is flushed due to a trap. 

ROSS, however, extends this principle to a floating-point pre-queue, which holds the same information for 
up to four instructions that are pending execution. The significance of this pre-queue is that it allows float­
ing-point instructions to be sent to the pre-queue from the normal integer instruction stream. The hyper­
SPARC scheduler is capable offetching and dispatching any two floating-point instructions at a time, send­
ing both to the pre-queue in the same clock cycle. If the floating-point unit is not busy, one of the two 
floating-point instructions bypasses the pre-queue and begins final instruction decode and execution im­
mediately. The integer pipeline proceeds uninterrupted to fetch, decode, and execute more instructions in 
the next clock cycle (Figure 1-2). This is made possible with hyperSPARC's dual-level instruction decod­
ing, which off-loads final instruction decode to the floating-point unit. In hyperSPARC, integer multiplies 
and divides are executed in the integer ALU, removing this workload from the floating-point unit. 

t There is a group of infrequently occurring instructions that must be launched sequentially (e.g., JMPL, RETI, 
FCMP, FLUSH, etc., and privileged instructions such as RDY and WRY), but they represent only a small fraction 
of most executable programs. 
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Figure 1-2. RT620 Instruction Pipeline Example 

1.2.1.3 Multiprocessing 

Multiprocessing is a key to dramatically higher performance from existing silicon technology. hyperSPARC 
provides full hardware support for tightly-coupled multiprocessing system architectures. 

hyperSPARC provides a high-performance snoop mechanism to facilitate efficient data transfers between 
processors. In a write-invalidate protocol, such as the one implemented in Level 2 MBus, caches residing 
on a shared bus must check, or "snoop," each address request to shared memory space. If a cache owns the 
cache line at the address being requested, it can respond to the request by copying the data to memory (which 
later forwards the data to the requesting cache) or supply the data directly to the requesting processor (direct 
data intervention). In the case of a direct data intervention transfer, the cache supplying the data must pre­
vent memory from obtaining the bus and responding to the request. 

The SPARC Architecture allows a window of MBus clock cycles within which a cache must assert the 
Memory InHibit (MIR) signal if it owns the requested cache line (i.e., there is a snoop hit). That window 
is A + 2 cycles to A + 7 cycles, the "A" representing the cycle in which the address of the cache line being 
requested is placed on the MBus. The hyperSPARC responds on snoop hits with MIR in the A + 3 cycle. 
This means that memory is free to respond beginning A+4. Using the full window allowed by MBus would 
impose a three-cycle penalty for every memory access. Responding this quickly, even though the MBus 
specification offers more relaxed timing, enables a very high-performance memory subsystem to be built 
around hyperSPARC. 

1.2.1.4 Cache Architecture 

hyperSPARC was designed as a tightly-coupled chipset in order to achieve optimal performance between 
processor and cache. The ROSS designers' understanding of the CPU's relationship with the cache is dem­
onstrated in the RT620's design, which imposes only a one-cycle primary cache (instruction cache) miss 
penalty. A pipeline stage is allotted in the RT620 for accessing the second-level cache so that no additional 
stall in CPU throughput is realized if the on-chip cache is missed and the second-level cache is hit. 
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Fetch Decode Execute Cache Write Update 

Figure 1-3. RT620 Pipeline Stages 

The RT620 utilizes a six-stage pipeline, as shown in Figure 1-3. The first three stages are typical RISC pipe­
line stages: Fetch, Decode, and Execute. The fourth stage ofthe pipeline is the Cache stage, which is a built­
in recognition of the latency of accessing the second-level cache for data access. 

Instruction fetches will cause the RT620 to initiate two accesses: one to the on-chip 8-Kbyte instruction 
cache, and, at the same time, one to the second-level cache. If the address for the instruction is found within 
the on-chip cache, the access to the second-level cache is cancelled and the instruction is available at the 
Decode stage of the pipeline. If there is a miss on the internal cache, and a hit on the second-level cache, 
the instruction is available after a one-cycle miss penalty built into the pipeline. The significance of this de­
sign is that it allows the pipeline to proceed uninterrupted as long as the instruction accesses hit either the 
on-chip cache or the second-level cache, which has been found to be about 90% and 98 % of the time, respec­
tively, for typical workstation applications. Since the integer and floating-point pipelines mirror these six 
stages for reasons of architectural balance and ease of exception handling, this design enables the RT620 
to achieve its high throughput rate at speeds that would otherwise not be possible. 

The RT627 Cache Data Units utilize a unique single-stage pipeline and data forwarding similar to that used 
in microprocessor designs. This pipeline design allows the RT627 to keep up with the data rate of the proces­
sor, which requires latching and writing data into the RAM core within a short period. Writes into the RT627 
are buffered by latching the address and data during the write cycle. The RT620 is then free to perform read 
operations. The write into the RAM core is delayed until the next write access. Each write access operation 
provides the opportunity to write the previous write data into RAM without incurring a timing penalty. 

The obvious drawback of this approach is the possibility of a read of the data being held in the latches before 
the RAM core is updated. The RT627 addresses this problem by using data forwarding. A comparitor checks 
the address of the pending write with the incoming read address. If a match occurs, data is forwarded from 
the input data latches directly to output pins, bypassing the RAM core. In this way, the most recent data is 
provided by the RT627 CDUs. 

1.2.1.5 Special hyperSPARC Features 

There are a number of subtle but clever design features implemented in hyperSPARC that improve perfor­
mance for common functions required of the CPU. One such feature is the RT620 CPU's Fast ConstantlIn­
dexlBranch capability. 

Fast Constant, for example, represents a commonly occurring combination of two ALU instructions that 
are used to generate 32-bit constants. Specifically, the SETHI and OR instruction pair is used frequently to 
create the 22 high-order and 10 low-order bits, respectively (in fact, the current SPARC compilers generate 
these two instructions from the pseudo-instruction SET for sufficiently large constants.) When hyper­
SPARC's scheduler encounters this instruction pair, it launches them for execution in parallel, as ifthey were 
a single instruction. Thus, an operation that normally takes two cycles (i.e., the setting of the high- and low­
order bits for the designated register) is reduced to one cycle. Fast Index works similarly, combining the 
SETHI and LD instruction pair commonly used to generate a 32-bit base address for array indexing. 

Fast Branch is a feature which avoids waiting for condition codes to be set by an ALU instruction before 
initiating a Branch Target Fetch. This feature allows a branch and an associated ALUcc instruction to be 
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launched simultaneously. The hyperSPARC uses a branch-taken prediction strategy, and fetches the branch 
target address. This reduces the number of cycles between branch resolution and target instruction Fetch 
and Execute if the branch is taken, or continued instruction processing if the branch is not taken. 

Block Copy and Block Fill are special features of the RT625 CMTU. These are software-initiated operations 
to increase the performance of data movement in and out of main memory. Taking full advantage of the 
RT625 , s read and write buffers, these block manipulation functions allow data to be moved to or from main 
memory without having to be brought into cache. This not only saves the latency of filling the cache, but 
also allows the RT620 to continue processing at the same time. 

Block Copy copies an entire 32-byte block of data from a cache or main memory location to another location 
in main memory. This is particularly useful when copying files, databases or other large memory blocks to 
other memory locations. If data is being copied from main memory to another location in main memory, 
for example, it is first read into the read buffer, transferred to the write buffer, and then written to the speci­
fied memory location in memory. Block Copy saves more than 10 clock cycles that would be encountered 
if the block were read into, and then out of, cache. 

Block Fill copies into the specified memory location the doubleword embedded in the special block fill STA 
instruction. The Block Fill works similarly to the Block Copy, only the read transaction is not required since 
the source data comes from the processor. The specified doubleword pattern is written throughout the 
32-byte block of memory, which is very useful in initializing large blocks of memory. The alternative solu­
tion would require a cache line in main memory to be brought into cache, initialized with a data pattern, and 
then written back out to main memory. 

1.3 CY7C600 Overview 

The CY7C600 chip set is a 32-bit custom CMOS implementation of the SPARC architecture. Designed by 
ROSS Technology, Inc., the chip set is implemented in 0.8-flm CMOS technology. The chip set is in produc­
tion and is available at 40 MHz. The CY7C600 family includes the CY7C60l Integer Unit, the CY7C602 
Floating-Point Unit (FPU), the CY7C604 Cache Controller and MMU (CMU), the CY7C605 Cache Con­
troller and Memory Management Unit for Multiprocessing (CMU-MP), and the CY7C157 Cache Storage 
Unit (CSU). This CPU includes a SPARC Reference MMU and a 64-Kbyte cache, and directly interfaces 
to a 64-bit physical bus capable of a bandwidth approaching 320 Mbytes per second at 40 MHz. The five­
chip CY7C600 CPU requires no glue logic, and provides maximum computing performance with minimal 
design effort. 

1.3.1 Partitioning 

The CY7C600 family is designed to offer a complete solution for high-performance computer and controller 
applications. The CY7C601 Integer Unit and the CY7C602 FPU together comprise the full SPARC instruc­
tion set architecture. Additional family members include the CY7C604 CMU for uniprocessor applications, 
the CY7C605 CMU-MP, and the CY7C157 CSU. 

Figure 1-4 and Figure 1-5 illustrate how CY7C600 family devices connectto each other in both single-pro­
cessor and mUltiprocessor applications. The CY7C60l 's second coprocessor interface is not shown in these 
diagrams. The function of this second coprocessor (CP) is defined by the system designer, but its interface 
to the CY7C60l is identical to that of the CY7C602 FPU coprocessor. 
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1.3.1.1 The CY7C601lnteger Unit 

The CY7C601 is the primary processing engine in the SPARC architecture, executing all instructions except 
for specific floating-point and coprocessor operations. The CY7C602 FPU does its floating-point calcula­
tions concurrently with the CY7C601 Integer Unit. The architecture also allows for concurrent operation 
through the use of an optional second coprocessor. 

Significant features of the CY7C601 include: 

• Full binary compatibility with entire SPARC application software base 

• Architectural efficiency that sustains 1.25 to 1.5 clocks per instruction 

• Large-windowed register file 

• Tightly-coupled floating-point interface 

• User/supervisor modes for multitasking 

• Semaphore instructions and alternate address spaces for mUltiprocessing 

• Tagged arithmetic instructions to support artificial intelligence software 

1.3 .1.1.1 Traps and Exceptions 

The CY7 C60 1 supports afull set of traps and exceptions. A table-based set oftrap vectors supports 128 hard­
ware and 128 software trap types, both synchronous (error conditions and instructions) and asynchronous 
(interrupts and reset). The CY7C601 supports a very fast interrupt time of 4 to 7 clocks, depending upon 
the contents of the instruction pipeline. 

1.3 .1.1.2 Multitasking 

Multitasking is supported with user and supervisor modes. Certain privileged instructions can only be ex­
ecuted while the CY7C60 1 is in supervisor mode, ensuring that user programs cannot accidentally alter the 
state of the machine. Supervisor mode is only accessible by using a hardware interrupt or by executing a 
trap instruction. 

1.3 .1.1.3 Multiprocessing 

The CY7C601 supports multiprocessing with two instructions for implementing semaphores in memory. 
Atomic Load/Store unsigned byte loads a byte from memory, then sets the memory location to all ones. The 
SWAP instruction exchanges the contents of a register and a memory location. Both of these instructions 
are "atomic," meaning they are uninterruptable. 

1.3.1.2 CY7C602 Floating-Point Unit 

The CY7C602 FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-pre­
cision floating-point calculations for CY7C600 systems, and is designed to operate concurrently with the 
CY7C601. All address and control signals for memory accesses by the CY7C602 are supplied by the 
CY7 C60 1. Floating -point instructions are addressed by the CY7 C60 1, and are simultaneously latched from 
the data bus by both the CY7C601 and CY7C602. Floating-point instructions are concurrently decoded by 
the CY7C601 and the CY7C602, but do not begin execution in the CY7C602 until after the instruction is 
enabled by a signal from the CY7C601. Pending and currently executing FP instructions are placed in an 
on-chip queue while the CY7C601 continues to execute non-floating-point instructions. 

1-11 



TEe H NO LOG Y, I~ ========================I=D=t=r=o=d=u=c=t=iO=D;::; 

The CY7C602 has a 32-bit x 32-bit data register file for floating-point operations. The contents of these reg­
isters are transferred to and from external memory under control of the CY7 C60 1 using floating -point Load/ 
Store instructions. Addresses and control signals for data accesses during a floating-point load or store are 
supplied by the CY7C601, while the CY7C602 supplies or receives data. Although the CY7C602 operates 
concurrently with the CY7C601, a program containing floating-point computations generates results as if 
the instructions were being executed sequentially. 

1.3.1.3 CY7C157 Cache Storage Unit 

The CY7C 157 is a 16-Kbyte x 16-bit high-performance CMOS static RAM designed specifically as a cache 
memory for CY7C600 systems. It incorporates registered address and write-enable inputs, latched data in­
puts and outputs, and a self-timed write mechanism-features that have greatly simplified the design of 
cache memories for the CY7C600 family. 

1.3.1.4 CY7C6041CY7C605 Cache Controller and Memory Management Units 

The CY7C604 and CY7C605 are combined cache controller and memory management units designed spe­
cifically to support the CY7C601. The CY7C604 and CY7C605 provide control for a 64-Kbyte direct­
mapped virtual cache and provide a SPARC reference standard MMU for virtual to physical address transla­
tion. The CY7C604 and CY7C605 directly interface with the CY7C600 family, requiring no glue logic for 
a 64-Kbyte cache system. The CY7C604 and CY7C605 use two CY7C157 Cache Storage Units to imple­
ment a 64-Kbyte cache system using only three chips. Cache tag memory is provided as an on-chip feature 
of the CY7C604/CY7C605, thereby reducing hardware complexity for a CY7C604- or CY7C605-based 
system. 

The CY7C604 is optimized for uniprocessor systems, providing cache locking and cache expandability to 
256 kilobytes using additional CY7C604s. The cache locking feature of the CY7C604 allows deterministic 
response from the cache system, an important feature for real-time systems. The SPARC reference MMU, 
supported on both the CY7C604 and the CY7C605, provides translation of a 4-Gbyte virtual address space 
to a 64-Gbyte physical address space. Both the CY7C604 and the CY7C605 provide a 64-entry fully asso­
ciative translation lookaside buffer (TLB), used in translating virtual addresses to physical addresses. TLB 
entries may be locked, excluding critical TLB entries from replacement and thereby preventing unnecessary 
table walks. Table walking (required to obtain additional virtual to physical address translations not stored 
in the TLB) for the CY7C604 and CY7C605 is implemented in hardware, providing a substantial time sav­
ings over software table walk routines. 

The SPARC MMU section of the CY7C604/CY7C605 is designed for the efficient support of multitasking 
operating systems. CY7C604/CY7C605 TLB and cache tag entries allow a maximum of 4096 different 
context tags to identify tasks within an operating system. The SPARC MMU implemented in the 
CY7C604/CY7C605 provides extensive memory access level protection (User/Supervisor and read/write/ 
Execute), including an execute-only memory access level. The ability to mark memory accesses as execute­
only provides a security feature that can be used to protect proprietary features of a software system from 
unauthorized scrutiny. The CY7C604 and CY7C605 MMU also support multilevel address mapping, allow­
ing software to select a region of 4 Kbytes, 256 Kbytes, 16 Mbytes, or 4 Gbytes to be addressed by a single 
TLB entry. This feature allows efficient utilization ofTLB entries, which in tum reduces the number of table 
walks caused by system software. 

The CY7C605 is an extension of the CY7C604 designed for use in mUltiprocessor systems. The CY7C605 
provides a dual cache tag memory, which allows the CY7C605 to perform bus snooping while it simulta­
neously supports cache accesses by the CY7C601. The CY7C605 implements a cache coherency protocol 
based on the IEEE Futurebus, which has been recognized as a superior protocol for maintaining consistency 
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of shared data in a multiprocessing system. The CY7C605 supports direct data intervention, which is the 
capability of a CY7C605-based cache to directly supply modified data to another requesting cache without 
first requiring main memory to be updated. This feature provides a significant performance advantage over 
cache systems that must update main memory in order to supply modified data to another cache. In addition 
to direct data intervention, the CY7C605 also supports memory reflection. Memory reflection allows a 
memory system to automatically update itself during a direct data intervention operation. This feature al­
lows a multiprocessing system to update both a requesting cache and main memory in a single bus operation. 

Both the CY7C604 and the CY7C605 are specifically designed to support secondary cache systems. The 
use of common secondary caching provides the advantage of increased cache performance for each process­
ing node of a multiprocessor system without the expense of large caches for each node. This approach pro­
vides a direct upgrade path to the next generation of high-integration SPARC processors, and also allows 
a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and replac­
ing the CY7C604 with the CY7C605. 

The CY7C604 and CY7C605 support the SPARC MBus standard bus interface. The MBus is a peer level, 
high-speed, 64-bit, mUltiplexed address and data bus which supports a full peer-level protocol (i.e., multiple 
bus masters). The CY7C604/605 MBus supports data transfers in transaction sizes of 1, 2, 4,8, or 32 bytes. 
These data transfers are performed in either burst or non-burst mode, depending upon size. Data transactions 
larger than eight bytes (one doubleword) are transferred in burst mode, which consists of an address phase 
followed by four data phases. Non-burst transactions consist of an address phase followed by one data phase, 
and are used for data transactions of eight or fewer bytes. Bus mastership is granted and controlled by an 
external bus arbiter. The bus arbiter sets bus priorities, and grants access to a bus master. 

The MBus is divided into two levels of implementation: Levelland Level 2. Levell, implemented on the 
CY7C604, is the uni-processor version ofMBus. Levell is a subset of Level 2, which is the multiprocessor 
version ofMBus. The CY7C605 supports Level 2 MBus. Level 2 MBus includes the IEEE Futurebus (MO­
SEl) cache coherency protocol, which has been recognized in the industry as a superior method of support­
ing multiprocessing systems. Level 2 MBus defines five cache states for describing cache line status. Trans­
actions on the MBus are monitored or "snooped" by the CY7C605 and other bus agents on the Level 2 MBus 
to maintain ownership and modified status for each cache line. Transactions on the Level 2 MBus are made 
with respect to the cache line ownership and modified status to ensure consistency for shared data images. 

The Level 2 MBus supports direct data intervention, which allows a cache system with the up-to-date ver­
sion of a cache line to directly supply the data to another cache system without having to first update main 
memory. Direct data intervention provides a significant performance improvement over systems that do not 
support this feature. In addition, the CY7C605 provides support for memory systems with reflective 
memory controllers. A memory system with reflective memory control can recognize a cache-to-cache data 
transaction and automatically update itself without delaying the system. Another system concept supported 
by the CY7C605 is secondary caching. Secondary caching provides a performance advantage over systems 
directly using main memory, and provides an economic advantage over systems using large caches for each 
processing node. 
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SPARe Programming Environment 

The purpose of this chapter is to provide a general description of the programming environment for ROSS 
Technology SPARC products. The SPARC Architecture Specification, available from SPARC Internation­
al, describes the features and requirements of a SPARC compatible system. This architecture specification 
is specific enough to ensure software compatibility between SPARC systems, yet allows for design flexibil­
ity within the specification. Therefore, this chapter describes the SPARC programming environment as 
implemented on the RT600 hyperSPARC and CY7C600 SPARC families of processors. 

SPARC (IU) SPARC FPU (or optional CU) 

r-------------r------------
II I PROCESSOR STATE REG (PSR) I 1,1 

FLOATING-POINT QUEUE 
SUPERVISOR I I TRAP BASE REG (TBR) I II (FPQ) 

ACCESS I - . II 
ONLY I I WINDOW INVALID MASK (WIM) I II I I I . . II DIAGNOSTIC REGISTER (DIAG)' 

I INSTRUCTION CACHE 'I 
I CONTROL REGISTER (ICCR)' 'I 

II I Y REGISTER I ': II I I . . FLOATING-POINT STATUS (FSR) 

I II 
I II 
I WORKING REGISTERS I FLOATING-POINT REGISTERS 
I (r-REGISTERS) II ({·REGISTERS) 
I 136 x 32-bit II 32 X 32-BIT 

I II 
-------------~-------------~ 
, hyperSPARC only 

SPARC MMU and Cache Controller 

r--------------------------~ I SYSTEM CONTROL REGISTER I I 
. (SCR) . I INDEX TAG REGISTER II 

SUr:&'&SOR I CONTEXT TABLE POINTER REG I. (ITR) I 
ONLY. (CTPR) . TLB REPLACEMENT CONTROL I 

CONTEXT REGISTER REGISTER (TRCR) I 
(CXR) SYNCHRONOUS I 

RESET REGISTER FAULT STATUS REG (SFSR) I 
(RR) SYNCHRONOUS I 

ROOT POINTER REGISTER 
(RPR) 

INSTRUCTION ACCESS PTP 
(lpJP) 

FAULT ADDRESS REG. (SFAR) I 
ASYNCHRONOUS I 

~=FA=U=L=T=ST=~=T=US=R=E=G=.=A=F=SR==~I 
I 

I DATA ACCESS PTP I FAULT STATUS REG. AFAR J 
I (DPTP). I ~ __________________________ J 

Figure 2-1. SPARe Register Models 

2-1 



TECI1NOLOGY, 
~~~~~~~~~~~~~S~P~~~R~c~p~ro~g~r~a~m~m~in~g~E~n~V~ir~o~n~m~e~n~t 

2.1 Programming Model 

The SPARC register model, register window mechanism, processor states, supervisor/user modes, control/ 
status registers, and data types are described in detail in this section. The concepts and properties explained 
here are central to an understanding of the SPARC operation. 

Figure 2-1 represents the SPARC register set available to the programmer. The register sets for the hyper­
SPARC RT600 and the CY7C600 families are identical with the following exceptions: 

• The instruction cache control register (lCCR) has been added to the RT620 Central Proces­
sing Unit (CPU) in order to allow control of the on-chip instruction cache. 

• In order to provide a diagnostic interface for chip testing, the diagnostic register (DIAG) has 
been added to the RT620. This register is for manufacturing test purposes, and is not intended 
for user access. 

• The floating point unit (FPU) portion of the RT620 has a four-entry pre-queue and a three­
entry post-queue, as compared to the CY7C602 FPU three-entry queue. 

• The features of the hyperSPARC RT625 Cache Controller, Memory Management, and Tag 
Unit (CMTU) have been enhanced over the previous CY7C604 and CY7C605 CMU s. There­
fore, control registers such as the system control register (SCR), reset register (RR), 
synchronous fault status register (SFSR), and the asynchronous fault status register (AFSR) 
have been changed. 

SPARC registers can be divided into two general classifications: working registers and control/status regis­
ters. Working registers are those used for data and addressing operations. They are called r-registers for the 
integer unit (IU), orf-registers in the floating-point unit. The various control/status registers record status 
or control the state of a processor or memory management unit (MMU). 

The 136 r-registers of the integer unit are divided into eight register windows, as described in the next sec­
tion. The 32 f-registers of the floating-point unit are a directly addressed register file (referred to as freg 
O .. /reg 31) and are discussed in section 2.1.3. The various control/status registers for the IU, the FPU, and 
the cache controller/MMU are discussed in their respective sections. 

All registers for SPARC are 32-bits in length, although floating-point double-precision instructions allow 
an adjacent and aligned floating-point data register pair to be accessed as a single 64-bit register. Also note 
that while all control registers are 32-bits in length, some of the bit fields may be designated as reserved. 
Reserved bits are non-writable, and are returned as zero when the register is read. It is good programming 
practice to write zeros into a reserved bit field when writing to a control register of this type. This practice 
avoids upgrade problems with later hardware versions. 

2.1.1 Supervisor/User Modes 

In support of multitasking, SPARC employs a supervisor/user model of operation. The processor is in super­
visor mode when the S bit in the processor state register (PSR) is set, and in user mode when S is reset (see 
Section 2.2 .1.2). The state of this bit determines whether or not privileged instructions may be used. Privi­
leged instructions restrict control register access to supervisor software, preventing user programs from 
accidentally altering the state of the machine. 

A program running in user mode may enter supervisor mode by encountering a software or hardware trap. 
A return to user mode is accomplished by executing a return from trap (RETT) instruction, which restores 
the state of the S bit to what it was before the trap was taken. A commonly used trap return is the JMPL, 
RETT delayed control transfer couple (refer to Section 2.4.3.4.4). This restores both the PC and nPC (see 
Section 2.2 .1.1) and the previous state of the S bit. 
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Figure 2-2. Overlapping Windows 

2.1.2 Register Windows 

The SPARC architecture uses a "windowed" register file model in which the file is divided up into groups 
of registers called windows. This windowed register model simplifies compiler design, speeds procedure 
calls, and efficiently supports AlI programming languages such as Prolog, LISP and Smalltalk. 

The 136 r-registers of the RT620 and CY7C60l are 32-bits wide and are divided into a set of 128 window 
registers and a set of eight global registers. The 128 window registers are grouped into eight sets of 24 r-reg­
isters called windows. One of these eight windows is selected by setting the Current Window Pointer 
(CWP), a 5-bit field in the processor state register (PSR) (see Section 2.2 .1.2). Within each window, the pro­
grammer can directly access 24 windowed r-registers by register number (as described in Table 2-1). The 
eight global registers may be accessed regardless of the window selected by the CWP. 

Table 2-1. Register Addressing 

Register Alternate Register 
Number Register Number Group Name 

r[24] to r[31] i[O] to i[7] ins 

r[16] to r[23] 1[0] to 1[7] locals 

r[8] to r[15] 0[0] to 0[7] outs 

r[O] to r[7] g[O] to g[7] globals 

The windowed register file is implemented as a circular stack, with the highest numbered window joined 
to the lowest. For the eight windows implemented in SPARC, window 7 adjoins window O. 

Note that each window shares its ins and outs with adjacent windows (refer to Figure 2-2). Outs from a pre­
vious window (CWP+ 1) are the ins of the current window, and the outs of the current window are the ins 
ofthe next window (CWP-1). While only adjacent windows share ins and outs, globals are shared by all 
windows. A window's locals, on the other hand, are not shared at all, belonging only to that window. 
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An alternative approach to understanding SPARC window registers is to note that the Current Window 
Pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the Current Win­
dow Pointer by one offsets the r-register addressing by 16. Since 24 r-registers can be addressed with each 
CWP value, incrementing or decrementing the CWP results in an eight register overlap in register addres­
sing. This overlap of window register addressing creates the in-out feature of the windowed registers. 

Programming Note: 

After power-on reset, the state of the Current Window Pointer and the WlM register (see Section 2.2 .1.3) 
are undefined. The power-on reset trap routine must initialize the CWP and WIM register for correct opera­
tion. 

2.1.2.1 Parameter Passing Using Register Windows 

Register window overlap provides an efficient means of passing parameters during procedure calls and re­
turns. One method of implementing a procedure call that takes advantage of the overlap is to have the calling 
procedure move the parameters to be passed into its outs registers, then execute a CALL instruction. A 
SAVE instruction then decrements the CWP to activate the next window. The calling procedure's outs be­
come the called procedure's ins, making the passed parameters directly accessible. 

When a called procedure is ready to return results to the procedure that called it, those results are moved 
into its ins registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction 
increments the CWP to activate the previous window. The called procedure's ins are still the calling proce­
dure's outs; thus the results are available to the calling procedure. Note that the terms ins and outs are defined 
relative to calling, not returning. 

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the 
additional parameters must be passed on the memory stack. One method of handling the stack pointer is to 
dedicate an out register in the current window to hold the stack pointer (see Figure 2-3). After a CALL, this 
pointer (which is now in an ins register) can be used as the frame pointer for the called procedure. The SAVE 
instruction, in addition to decrementing the CWP, also performs an ADD using registers from the current 
window and placing the result in a register in the next window. This feature can be used to set a new stack 
pointer for the called procedure from the old pointer in the calling procedure. RESTORE also performs an 
ADD, using registers in the current window and placing the result in the previous window. 

2.1.2.2 Window Overflow and Underflow 

No matter how many windows a register file has, it is possible that at some point the program will try to use 
more than are available. Since the register file is a circular stack, something must be done to prevent over­
writing the oldest window as the stack wraps around. 

Window management is provided by using bits in the window invalid mask (WIM) register to mark win­
dows that will trigger an underflow or overflow trap (see Section 2.2 .1.3). If a SAVE instruction points the 
CWP to a marked window, a window overflow trap is generated. This means that only seven of the eight 
windows are available for calls, because the last window must be saved for the trap handler. However, since 
a typical overflow trap handler would transparently save one or more of the oldest windows to memory, the 
program sees an apparently infinite number of windows. 

The CWP is automatically decremented upon encountering a trap. This happens without generating another 
window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked 
by the WIM register, the system is assured of at least one window for use by the trap handler. 
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r31 (i7) return address 

r30 (FP) frame pointer 

r29 (is) incoming param reg 5 

in r28 (i4) incoming param reg 4 

r27 (i3) incoming param reg 3 

r26 (i2) incoming param reg 2 

r25 (il) incoming param reg 1 

r24 (iO) incoming param reg 0 

r23 (17) local 7 

r22 (16) local 6 

r21 (15) localS 

local r20 (14) local 4 

r19 (13) local 3 

r18 (12) local 2 

r17 (11) local I 

r16 (10) loealO 

rl5 (07) temp 

rl4 (SP) stack pointer 

r13 (05) outgoing param reg 5 

out r12 (04) outgoing param reg 4 

rll (03) outgoing param reg 3 

rIO (02) outgoing param reg 2 

r9 (01) outgoing param reg I 

r8 00) out~oin~ oaram re~ 0 

r7 (g7) global 7 

r6 (g6) global 6 

r5 (~5) ~lobal5 

global r4 (g4) global 4 

r3 (g3) global 3 

r2 (g2) global 2 

r1 (~l) global I 

rO (gQ) 0 

f31 floating-point value 

floating : : 
point 

fO floating-point value 

Figure 2-3. Registers as Seen by a Procedure 

A RESTORE instruction causes a window underflow trap if it attempts to restore to a window invalidated 
by the WIM register. Execution of a return from trap (RETT) instruction under the same circumstances will 
also generate an underflow trap. SAVE, RESTORE, and RETT always check the WIM register before com­
pleting their actions. 

For example, if the procedure using the window 0 executes a CALL and SAVE sequence and the WIM bit 
7 is set, a window overflow trap occurs. The overflow trap handler may safely use only the locals of w7, 
because w7's ins are wO's outs and w7's outs are w6's ins. 

Active window = 0 
Previous window = 1 
Next window = 7 
Trap window = 7 
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The overflow trap handler is responsible for saving one or more of the least recently used windows to the 
memory stack. Simulations of register file management methods show that saving and restoring one window 
at a time is the simplest and most effective algorithm for handling overflow and underflow. The stack pointer 
to the window-save area must be aligned to a word boundary in valid memory and, for efficiency, should 
be doubleword aligned. This is because it is faster to load and store doublewords than to load and store 
words. 

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context 
switch, only the windows containing valid data are saved, and on average this is about half the number of 
r-register windows, minus one for the reserved trap window. 

2.1.2.2.1 Alternate Register Window Usage 

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not 
force their use for that purpose alone. Except for the eight-register overlap and the partial fixing of the func­
tion of several registers by the instruction set (see Section 2.1.2 .3), register windows can be viewed and 
manipulated as needed to fit the application at hand. 

For example, the register set can be treated as a flat register file. Access to any particular register in any win­
dow is obtained by writing its window value into the Current Window Pointer located in the processor state 
register. Moreover, windows naturally segment registers into blocks that could be dedicated to specific pur­
poses and accessed through the CWP. Register saving and parameter passing could be done with a standard 
push/pop stack in memory, although this would substantially increase bus traffic. 

For real-time and embedded controller systems, where Fast Context switching may be more important than 
procedure calling, the register file can easily be divided into banks of registers separated by trap handling 
windows set up by the WIM register (see Section 2.2 .1.3). Switching from one register bank to another is 
accomplished by writing to the CWP field of the processor state register. Globals are accessible by all pro­
cesses. 

2.1.2.3 Special Registers 

In general, the window registers seen at any given time can be used in any manner desired, while keeping 
in mind that windows overlap at both ends. However, the instruction set does fix the use of r[O] and partially 
fixes the use of r[I5]. 

Global register r[O] always returns the value 0 when read, making the most frequently used constant easily 
available at all times. In addition, when addressed as a destination operand, r[O] discards the value written 
to it. 

The CALL instruction writes its own address into register r[I5] (out register 7) of the calling procedure's 
window. If a SAVE instruction then activates a new window, r[I5] of the old window becomes r[3I] (in reg­
ister 7) of the new window and serves as the return address to the calling procedure. However, if the register 
is needed for some other purpose, the return address can be saved to a stack or simply overwritten. 

Two other registers are also used by hardware to save information during a trap. Registers r[I7] and r[18] 
(locals 1 and 2) of the trap window (not the trapping procedure's window) are used to save the contents of 
the program counters (PC and nPC) at the time the trap is taken. Because the trap window locals are all a 
trap handler is allowed to use (unless it saves to the system stack), this limits the trap handler's usable regis­
ters to six. 
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64-bit double register pairs. 
31 o 31 0 

freg 0 freg 1 
freg2 frea3 
frea4 freg5 
freg6 freg 7 
freg8 freg 9 
freg 10 freg 11 
freg 12 freg 13 
freg 14 freg 15 
freg 16 freg 17 
freg 18 freg 19 
freg 20 freg 21 
freg22 freg 23 
freg 24 freg25 
freg 26 freg 27 
freg 28 freg 29 

frea 30 frea 31 

Figure 2-4. FPU Register File 

2.1.3 Floating-Point Register File (FREGS) 

In addition to the 132 r-registers, SPARC defines a set of 32-bit floating-point data registers, referred to as 
J-registers. The RT620 and CY7C602 fp register files each provide a set of 32J-registers. These registers 
can be accessed as 32 registers containing single precision (32-bit) data types or as 16 pairs of registers con­
taining double precision (64-bit) data types. Double precision register pairs are always addressed as adjacent 
even-odd registers. 

2.2 SPARC Control/Status Registers 
Control/status registers provide the software control interface for the SPARC CPU. Control/status registers 
are divided into three groups: integer unit, floating-point unit, and cache controller/MMU. For the RT620, 
both the integer unit and floating-point unit control/status registers reside in the same processor. The 
CY7C601 uses a separate floating-point unit. The cache controller/MMU is a separate unit for both the hy­
perSPARC and the CY7C600 processor families. 

With the exceptions of the Y register and the FPU Status register (FSR), control/status registers are generally 
restricted to supervisor-mode access. The following sections describe the control/status registers for the in­
teger unit, and the FPU. Control/status registers for ROSS SPARC cache controller and memory 
management units are described in Chapter 4 (RT625) and Chapter 8 (CY7C604/CY7C605). 

2.2.1 Integer Unit Control/Status Registers 

This section describes the control and status registers for the integer unit portion of the RT620 and the 
CY7C601 Integer Unit. These registers are identical for both families of processors, with minor exceptions 
noted. 

The two program counters (PC and nPC) are accessed indirectly using such instructions as a CALL, JMPL, 
software trap (Ticc), and return from trap (RETT). The processor state register (PSR), window invalid mask 
(WlM), trap base register (TBR), and multiply-step register (Y), are all read/write registers. Read/write in­
structions that access the PSR, WlM, and TBR are privileged and thus may only be used in supervisor mode. 
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2.2.1.1 Program Counters (PC and nPC) 

The program counter (PC) contains the address of the instruction currently being executed by the SPARC 
processor, and the next program counter (nPC) holds the address (PC + 4) of the next instruction to be ex­
ecuted (assuming there is no control transfer and a trap does not occur). The nPC is necessary to implement 
delayed control transfer couples, wherein the instruction that immediately follows a control transfer may 
be executed before control is transferred to the target address (see Section 2.4.3.4). Having both the PC and 
nPC available to the trap handler allows a trap handler to choose between retrying the instruction causing 
the trap (after the trap condition has been eliminated) or resuming program execution after the trap causing 
instruction. 

2.2.1.2 Processor State Register (PSR) 

Trap Enable (ET) -
Previous Supervisor Mode (PS) -

Supervisor Mode (S) -

Enable Floating-Point Unit (EF) -
Enable Coprocessor (EC)* -

Integer Processor Current 
Condition Interrupt Window 

Codes Level Pointer 

IV IV 
Implementation Version 

Number Number 
(impl) (ver) (ICC) reserved (PIL) (CWP) 

I 4-bits I 4-bits I 4-bits I 6-bits 11 11 I 4-bits 11 I III I 5-bits 

31 28 27 24 \, 14 13 12 11 8 7 6 5 4 
'\ 

'~I-~~f~~~;v~e-rl--(~¥~)--rl~ov~(~~~)~w-Ir-~c~~;~--~'~ 

23 22 21 20 

Figure 2-5. Processor State Register 

*Forced to zero 
onRT620 

I 
o 

The processor state register is the primary status and control register for the RT620 or the CY7C60 1, con­
taining fields that report the status of processor operations or control processor operations. Instructions that 
modify its fields include SAVE, RESTORE, Ticc, RETT, and any instruction that modifies the condition 
code field (icc). Any hardware or software action that generates a trap modifies the S, PS, and ET fields. 
The PSR may be read or written directly using the privileged instructions RDPSR and WRPSR. Figure 2-5 
illustrates the fields of the PSR. Field names given in italics in Figure 2-5 are read-only and cannot be mo­
dified with the WRPSR instruction. The PSR is made up of the following fields: 

impl-Implementation: PSR(31 :28) contain the processor's implementation number. The implementa-
tion number for ROSS Technology SPARC is "0001." This field, along with the version field, is 
provided to allow software to identify the processor manufacturer and version. WRPSR does not 
modify this field. 

ver -- Version: PSR(27:24) contain the ROSS SPARC processor version number. WRPSR does not 
modify this field. The version numbers for ROSS SPARC processors are '0001' for the CY7C601 and 
'1111' for the RT620. 

ICC --Integer Condition Codes: PSR(23:20) hold the integer unit's condition codes. These bits are mo­
dified by arithmetic and logical instructions whose names end with the letters cc (for example, 
ANDcc), and can be overwritten by the WRPSR instruction. The Bicc and Ticc instructions base their 
control transfer on these bits, which are defined as follows: 
N -- Negative: PSR(23) indicates whether the ALU result was negative for the last icc-modifying 
instruction. This bit is set to '1' to indicate a negative result. 
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Z - Zero: PSR(22) indicates whetherthe ALU result was zero for the lasticc-modifying instruction. 
This bit is set to '1' to indicate a zero result. 

v - Overflow: PSR(21) indicates whether an arithmetic overflow occurred during the last icc-mo­
difying instruction. This bit is set to ' l' to indicate an arithmetic overflow. The overflow bit is also set if 
a tagged operation (TADDcc, TSUBcc, etc.) is performed on non-tagged operands (refer to Section 
2.4.3.2.3). Logical instructions that modify the icc field always set the overflow bit to O. 

C - Carry: PSR(20) indicates whether an arithmetic carry out of result bit 31 occurred from the last 
icc-modifying addition or if a borrow into bit 31 resulted from the last icc-modifying subtraction. This 
bit is set to '1' to indicate a carry/borrow occurrence. Logical instructions that modify the icc field al­
ways set the carry bit to O. 

reserved: PSR(19: 14) are reserved. This field is fixed at 0; a write to any bit in this field is ignored. 

EC - Coprocessor Enabled: PSR(13) determines whether a coprocessor is enabled or disabled. This bit 
is set to ' 1 ' to enable the coprocessor interface. This feature is supported only on the CY7C60 1. Conse­
quently, this bit is fixed to zero in the RT620, and writes to this bit are ignored for this processor. 

CY7C601 note: 

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor Load/ 
Store instruction will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state 
until it is re-enabled or reset. Even when disabled, the coprocessor can continue to execute instructions 
if it contains a queue. 

EF - Enable Floating-Point Unit: PSR(l2) determines whether the FPU is enabled or disabled. This bit 
is set to '1' to enable the FPU. If the FPU is either disabled or enabled but not present, an FPop, FBfcc, 
or floating-point Load/Store instruction will cause a floating-point-disabled trap. When disabled, the 
FPU retains that state until it is re-enabled or reset. Even when disabled, it can continue to execute any 
instructions in its queue. 

Note that ifthe EF bit in the PSR is set to zero while there are instructions executing in the floating point 
unit, the behavior is undefined. Software should wait for all instructions to complete and recognize all 
pending floating-point exceptions before disabling the FPU. 

PIL - Processor Interrupt Level: PSR(11:8) identify the processor's external interrupt priority level. 
The processor will only accept external interrupts whose interrupt level is greater than the value in PIL 
or whose interrupt level is 15, which denotes a non-maskable interrupt. Note that a PIL = OxO denotes 
no interrupt request. Bit 11 of the PIL is the MSB and bit 8 is the LSB. 

S - Supervisor: PSR(7) determines whether the processor is in supervisor or user mode. This bit is set to 
, l' to indicate supervisor mode. Because WRPSR is privileged and only available in the supervisor 
mode, supervisor mode can only be entered by a software or hardware trap. 

PS - Previous Supervisor: PSR(6) holds the value that was in the S bit at the time the most recent trap 
was taken. 

ET - Enable Traps: PSR(5) determines whether traps are enabled. This bit is set to '1' to enable traps. If 
traps are disabled, all asynchronous (or interrupting) traps are ignored. If a synchronous (also called 
precise) or floating-point/coprocessor trap occurs while traps are disabled, the SPARC processor halts 
and enters error mode (for a description of error mode, see Section 3.9 for RT620 and Section 6.5.5 for 
CY7C601). 
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CWP - Current Window Pointer: PSR( 4:0) contain a pointer to the currently active register file window. 
CWP is decremented by traps and the SAVE instruction, and is incremented by RESTORE and RETT 
instructions. 

Programming Note: 
If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit 
from enabled (ET=I) to disabled (ET=O), since the RDPSR, WRPSR instruction sequence is interruptible. 
A suggested solution is to write all interrupt trap handlers so that before they return program control to the 
interrupted supervisor routine, they restore the PSR to the value it had before the interrupt was taken. This 
will guarantee a correct result when the interrupted RDPSR, WRPSR sequence continues. The only PSR 
bit that cannot be restored is the PS bit, which is overwritten when the trap is taken. 

An alternative to the RDPSR-WRPSR sequence is to generate a "trap instruction" trap with a Ticc instruc­
tion. A taken trap automatically sets ET to 0, disabling further traps. 

2.2.1.3 Window Invalid Mask Register (WIM) 

This register designates which window(s) will cause generation of an underflow or overflow trap when 
pointed to by the CWP as the result of a SAVE, RESTORE, or RETT instruction. The WIM register does 
not affect register window access except in the case of the SAVE, RESTORE, or RETT instructions. 

Each bit in the WIM register (see Figure 2-6) corresponds to a window; if a bit is setto 1, the window corre­
sponding to that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP 
to point to a window whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RE­
STORE, RETT) trap is generated. The overflow trap prevents previous windows from being overwritten, 
while an underflow trap is used to restore previous windows from memory. No traps are generated if an in­
validated window is accessed by directly changing the Current Window Pointer (CWP) of the PSR through 
the use of a WRPSR instruction. 

31 

reserved (forced to zero) 

Window 0 
Window 1 

Window 2 
Window 3 

7654321 0 

Figure 2-6. Window Invalid Mask 

In general practice, a WIM bit is usually set by the operating system software to identify the boundary be­
tween the oldest and newest window. The practice of invalidating a window to separate the end of the 
windowed register file from the beginning has the effect of reserving a window for use by a trap handler 
in the case of a full r-register file. As a taken trap always causes the processor to switch to a new window, 
an invalidated window is necessary to prevent over-writing the oldest window in the r-register file. In order 
to prevent over-writing the in registers of the oldest register window when the r-register file is full, a trap 
handler should be restricted to using the local registers of a window. 

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to 
unimplemented windows read as zeros and are unaffected by writes. 

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software. 

2.2.1.4 Trap Base Register (TBR) 

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR 
contains two fields that together constitute a pointer into the trap table, which in tum contains the trap han-
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dler address (see Figure 2-7). RDTBR can read the entire register; however, the WRTBR instruction can 
write only to the trap base address field. Only hardware can write to the trap type field, and bits 0 through 
3 are zeros and are unaffected by a write. The trap type field can be directly manipulated using the Ticc in­
struction. For more information on trap operation, see Section 2.4.5. 

TBA - Trap Base Address: TBR(31: 12) contain the most-significant 20 bits of the trap table address. 
This field applies to all trap types except reset, which forces address O. The TBA is software controlled. 

tt - Trap Type: TBR(1l :4) comprise the trap type field, an eight-bit value that provides an offset into the 
trap table based on the type of trap being taken (see Section 2.4.5.4.2). This field retains its value until 
the next trap is taken. 

Trap Base Address (TBA) Trap Type (tt) 

31 12 11 

Figure 2-7. Trap Base Register 

2.2.1.5 Y Register 

The Y register is a 32-bit register used by integer multiply and divide instructions to create 64-bit results. 
It is used by multiply instructions (such as MULSE UMUL, SMUL, UMULcc, and SMULcc) and integer 
divide instructions (such as UDIV, SDIV, UDIVcc, and SDIVcc) to hold the 32 most significant bits of an 
operation. The Y register is also used by the multiply step instruction. The Y register is also used by the 
multiply step instruction (MULScc) to create 64-bit products. The Y register may also be accessed using 
the non-privileged RDY and WRY instructions. Refer to Chapter 12, SPARC Instruction Set for a full de­
scription of these instructions and their operation. 

Integer multiplication instructions write the 32 most significant bits of the product into the Y register and 
the 32 least significant bits into the destination register. The integer division instructions (UDIV, SDIV, 
UDIVcc, and SDIVcc) use the Y register to hold the 32 most significant bits of a 64-bit dividend. 

Note that integer multiply and divide instructions are supported only by the RT620. In the CY7C601, these 
instructions will cause an unimplemented instruction trap. The CY7C601 requires the user to provide soft­
ware to support integer multiplication. The MULScc instruction is provided to support software 
implementation of integer multiplication. 

31 o 
Figure 2-8. Y Register 

2.2.1.6 On-chip Instruction Cache Control Register (ICCR) (RT620 only) 

This control register has been added to the RT620 to support the on-chip instruction cache. Access to this 
register is privileged (i.e., only accessible if the PSR supervisor bit is set). It is accessed using the RDASR 
(read ancillary state register) and WRASR (write ancillary state register) instructions. If the PSR supervisor 
bit is not set and a read or write to the register is attempted, a privilege exception occurs. The appropriate 
rd (destination register) orrs 1 (source register 1) field must be set to 31 (Ox IF) in order to access this register. 
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31 o 

Figure 2-9. leeR Register 

The instruction cache enable (IBE, leCR < 0 » bit enables ICACHE accesses if it is set and disables ac­
cesses if it is cleared. 

The flush trap disabled (FTD, ICCR < 1 » bit determines whether an ICACHE sub-block (packet) will be 
flushed (invalidated) or an unimplemented flush trap (tt=25) will be taken when a flush instruction is ex­
ecuted. 

When FTD = 1, if a flush instruction is executed and an ICACHE hit occurs, the packet corresponding to 
the address in the ICACHE line is invalidated. When FTD = 0, if an attempt is made to execute a flush in­
struction, an unimplemented flush exception is taken. The purpose of the FTD bit is to support 
self-modifying code in a symmetric multiprocessing environment. 

Upon power-on reset, the instruction cache is disabled (the IBE bit is cleared) and flush traps are enabled 
(the FTD bit is cleared). Also during power on, all entries in the instruction cache are invalidated. Writes 
to bits other than the FTD and IBE bits are ignored. Bits other than FTD and IBE are forced to O. 

2.2.2 FPU Control/Status Registers 

The following is a description of the SPARC floating-point status register as implemented in the RT620 and 
the CY7C602 Floating Point Unit (FPU). 

2.2.2.1 Floating-Point Status Register (FSR) 

The FSR contains fields which report the status of and control FPU operations. All fp operations can modify 
the status fields of the FSR. The fields are represented in Figure 2-10. 

I RD I RP I TEM I NS I R I version I FIT I QNEI R I FCC I AEXC CEXC 
3130 2928 27 23 22 2120 19 17 16 14 13 12 11 10 9 54 o 

TEM AEXC CEXC 

nva I oia I ufa I dza I nxa I nYc I ofc I ufe dzc I nxe 

Figure 2-10. Floating-Point Status Register (FSR) 

RD - Rounding Direction: FSR(31 :30) define the rounding direction used by the FPU during a fp arith­
metic operation. 

00 round to nearest (tie-even) 

01 round to zero 

10 round to + 00 

11 round to - 00 

U - Unused: FSR (29: 28) and FSR(12) are unused. Writes to these fields (via ldfsr) are ignored. The 
fields read as zero. For future compatibility, software should only issue a ldfsr instruction with zeros in 
these bits. 
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TEM - Trap Enable Mask: FSR(27 :23) enable traps caused by fp instructions. These bits are ANDed (1 
::: enable, 0 ::: disable) with the bits of the CEXC (current exception) field to determine whether to force 
an fp trap. This field can be read and written using stfsr and ldfsr respectively. 

bit trap enable mask 

27 invalid operation trap mask 

26 overflow trap mask 

25 underflow trap mask 

24 divide by zero trap mask 

23 inexact trap mask 

NS - Non-Standard Floating-Point: FSR(22) enables non-standard mode of operation in the FPU (0 ::: 
standard mode, 1 ::: non-standard mode). This bit can be read and written using stfsr and ldfsr respec­
tively. 

R - Reserved: FSR(21 :20) are reserved. Writes to these bits are ignored. The bits read as zero. For future 
compatibility, software should only issue a ldfsr instruction with zeros in these bits. 

version: FSR( 19: 17) is fixed to the appropriate value below. Any write to this field is ignored. Reading the 
field always returns the fixed value. 

FPU version 

RT620 '000' 

CY7C602 '011' 

FTT - Floating-Point Trap Type: FSR(16: 14) identifies the fp trap type of the current fp exception and 
is updated on every fp operation. Any write to this field via a LDFSR instruction is ignored. Note that a 
stfsr instruction does not clear the ftt field. 

value trap type 

0 none 

1 IEEE exception 

2 unfinished fp instruction 

3 unimplemented fp instruction 

4 sequence Error 

5 hardware Error 

6,7 reserved 

In the hyperSPARC CPU, the hardware error trap type (fit::: 5) is not supported. 

qne -FPQ Not Empty: FSR(13) signals whether the FPQ is empty (0::: empty, 1::: not empty). This bit 
can be read using the STFSR instruction. Writes to this bit are ignored. 

FCC -Floating-Point Condition Codes: FSR(l1:lO) report the fp condition codes. This field can be 
read and written using stfsr and ldfsr respectively. 

fcc value condition 

0 equal 

1 less than 

2 greater than 

3 unordered 
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AEXC -Accumulated Exceptions: FSR(9:5) reports the accumulated exceptions that are masked by the 
TEM field. All masked exceptions are ORed with the contents of the AEXC field and accumulated as 
status. This field can be read and written using STFSR and LDFSR respectively. 

bit accrued exception type 

9 accrued invalid exception 

8 accrued overflow exception 

7 accrued underflow exception 

6 accrued divide by zero exception 

5 accrued inexact exception 

CEXC - Current Exceptions: FSR( 4:0) reports the current IEEE fp exceptions. This field is updated on 
the completion of every fp instruction. This field can be read and written using STFSR and LDFSR 
respectively. 

bit accrued exceptiou type 

4 current invalid exception 

3 current overflow exception 

2 current underflow exception 

1 current divide by zero exception 

0 current inexact exception 

2.2.3 Cache Controller/MMU Control/Status Registers 

The cache control and MMU functions for ROSS SPARC CMU products are provided by the hyperSPARC 
RT625 CMTU, the CY7C604 CMU, or the CY7C605 CMU-MP. ROSS CMU products adhere to the 
SPARC reference MMU architecture specifications, and programming features for the MMU functions are 
identical for each CMU. However, due to progressive feature enhancements in cache management, the 
cache related programming features change somewhat with each CMU. The differences between these reg­
isters has been minimized. However, it is recommended that the programmer refer to the chapter 
corresponding to the CMU utilized in the target system. Please refer to Chapter 4 for detailed information 
on the hyperSPARC RT625, or Chapter 8 for information on the CY7C604 and CY7C605. 

2.3 SPARC Data Types 
SPARC supports ten data types (eleven with quad-precision floating-point, see Section 2.3.3.2.3). SPARC 
is a big-endian architecture (refer to Section 2.3 .2). Integer types include byte, unsigned byte, halfword, un­
signed halfword, word, unsigned word, doubleword, and tagged data (see Figure 2-11). ANSI/lEEE 
754-1985 floating-pointtypes include single- and double-precision. A byte is eight bits wide, halfwords are 
16 bits, words and single-precision floating-point are 32 bits, doublewords and double-precision float­
ing-point are 64 bits. 

2.3.1 Data Organization In Registers 

The organization of the ten data types when loaded into registers is shown in Figure 2-11. 

When moving memory data to or from the registers, byte operands are always loaded to or extracted from 
the lower eight bits of a register. On a Load, bits 8 through 31 are sign-extended for a byte or zero-extended 
for an unsigned byte. halfwords are always loaded to or extracted from the lower 16 bits of a register. Bits 
16 through 31 are sign-extended for a halfword or zero-extended for an unsigned halfword during a Load. 
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All 32 bits of a signed or unsigned word are loaded from or stored to memory. Stores of byte and halfword 
data are not sign-extended. Tagged data is handled as an unsigned word. doubleword operands load to and 
store from two contiguous registers, r[n] and r[n+ 1], with r[n] containing the most significant word. 
Figure 2-12 illustrates the relationship between the way data is stored in memory and the way it is loaded 
into registers. 

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the 
eight bits of exponent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require 
a register pair, with the upper-order register (r[ n]) containing the sign bit, II-bit exponent, and the high-order 
bits of the fraction. The lower-order register (r[n+ 1]) contains the low-order bits of the fraction. Total frac­
tion size is 52 bits. 

When loading doublewords or double-precision operands from memory to the working registers (either r 
orf>, the destination register must be at an even address or the hardware will force such an address. For exam­
ple, an attempted load double to register r[9] would be forced to r[8], so that the most significant word would 
be loaded in r[8] and the least significant word in r[9]. A load double to r[O] would result in the loss of the 
most significant word. 

BYTE SSS SSS Is I BYTE .................... 
31 8 7 6 0 

UNSIGNED 000 ..................... 000 BYTE I BYTE 
31 8 7 0 

HALFWORD SSS SSS I S I HALFWORD ........... 
31 1615 14 0 

UNSIGNED 000 ............ 000 HALFWORD 
HALFWORD 

31 16 15 0 

SIGNED Is I WORD 
WORD 

31 o 

UNSIGNED I WORD 
WORD 

31 o 

TAGGED 
WORD DATA 

31 2 1 0 

DOUBLE WORD 0 (MOST SIGNIFICANT WORD) WORD I------'-:...:::.:;~~;;;;;;.;...;;;.;.;=:.='_=;..;;..=~ __ ......, r(N) 

WORD 1 (LEAST SIGNIFICANT WORD) '::-:-_____ ...;:..:..:::....;;..=::;;:..;;.:..;:..=.:..:..;;::..==-"--..=c::'-"-__ ---;:' r(N+ 1) 

31 0 

SINGLE- I I PRECISION FP c;:S.J...--=E:o;XP::....:.;ON""E"'NT-=--_"---___ ..:.FRA=C::.;T:.:,IO::.;N ______ -' 

DOUBLE­
PRECISION FP 

31 30 23 22 o 

EXPONENT HIGH-ORDER BITS OF FRACTION feN) 

'::-:--:-::--___ L_O_W_-O_R_D,-::E_R-:-:B_IT_S_O_F_FRA_C_T_IO_N ____ -::' f(N+ 1) 
W ~ 0 

Figure 2-11. Processor Data Types 
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Byte Load Example (From Address N+ 1) 

Data Bus 

Source Register 

Byte Store Example (To Address N+2) 

Figure 2-12. Byte Operand Load and Store 

63 Doubleword 0 

31 Word 0 31 Word 0 

15 
Halfword 0 15 

Halfword 0 15 
Halfword 0 15 

Halfword 0 

7 Byte 
017 

Byte 0 7 Byte 017 
Byte 0 7 Byte o 17 

Byte 0 7 Byte I 7 
Byte 0 

N N+l N+2 N+3 N+4 N+5 N+6 N+7 

Figure 2-13. Data Organization in Memory 

2.3.2 Data Organization In Memory 

Organization and addressing of data in memory follows the "big-endian" convention wherein lower ad­
dresses contain the higher-order bytes (see Figure 2-13). For a stored word, address N corresponds to the 
most significant byte of the word, and address N+3 corresponds to the least significant byte. The address 
of a halfword, word, or doubleword is also the address of its most significant byte. A halfword datum must 
be located on a halfword boundary (address bit <0> = 0), which is evenly divisible by 2. Similarly, a word 
must be located on a word boundary (address bits <1:0> = 0) evenly divisible by 4, and a doubleword must 
be located on a doubleword boundary (address bits <2:0> = 0) evenly divisible by 8. Attempting to access 
misaligned data will generate a memory _address_noCaligned trap. 

2.3.3 SPARe Floating-Point Data Types 

ROSS Technology SPARC FPU s are compliant to IEEE Std. 754-1985 for floating-point arithmetic. Accu­
racy of the results ofits operations are within ± 112 LSB, as specified by the IEEE standard. The following 
sections describe the IEEE format as implemented on the RT620 and CY7C602. 
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2.3.3.1 IEEE Definitions 

The following terms are used extensively in describing the IEEE-754 floating-point data formats. This sec­
tion is directly quoted from the IEEE Standard for Binary Floating-Point Arithmetic. 

biased exponent 

binary floating-point 
number 

Denormalized 

denormalized number 

fraction 

NaN 

Normalized 

significand 

true exponent 

Zero 

The sum of the exponent and a constant (bias) chosen to make the biased expo­
nent's range nonnegative. (Note in the remainder of this section, the term 
"exponent" refers to a biased exponent.) 

A bit string characterized by three components: a sign, a signed exponent and a 
significand. Its numerical value, if any, is the signed product of its significand and 
two raised to the power of its exponent. 

Denormalized numbers are those numbers whose magnitude is smaller than the 
smallest magnitude representable in the format. They have a zero exponent and 
a denormalized non-zero fraction. Denormalized fraction means that the hidden 
bit is zero. 

(DNRM) A non-zero floating-point number whose exponent has a reserved value, 
usually the format's minimum, and whose explicit or implicit leading significand 
bit is zero. (Denormalized numbers are also referred to as subnormal in this text.) 

The field of the significand that lies to the right of its implied binary point. 

Not a number, a symbolic entry encoded in floating-point format. They are used 
to signal invalid operations and as a way of passing status information through a 
series of calculations. NaNs arise in one of two ways: they can be generated upon 
an invalid operation or they may be supplied by the user as an input operand. NaN 
is further subdivided into two categories: quiet and signaling. Signaling NaNs 
signal the invalid operation exception whenever they appear as operands. Quiet 
NaN s propagate through almost every arithmetic operation without signaling ex­
ceptions. 

Most calculations are performed on normalized numbers. For single-precision, 
they have a biased exponent range of 1 to 255, which results in a true exponent 
range of -126 to +127. The normalized number type implies a normalized signifi­
cand (hidden bit is 1). 

The component of a binary floating-point number that consists of an explicit or 
implicit leading bit to the left of its implied binary point and a fraction field to the 
right. 

The component of a binary floating-point number that normally signifies the inte­
ger power to which 2 is raised in determining the value of the represented number. 

The IEEE zero has all fields except the sign field equal to zero. The sign bit deter­
mines the sign of zero (i.e., the IEEE format defines a +0 and a -0). 

2.3.3.2 IEEE Floating-point Data Formats 

The RT620 and CY7C602 directly support single- and double-precision floating-point data formats. Quad­
precision (or extended-precision) formats are defmed as part of the SPARC architecture, but are not directly 
executed by the RT620 or CY7C602. Single-, double-, and quad-precision formats are described in this sec­
tion. 
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2.3.3.2.1 Single-Precision Floating-Point 

Single-precision floating-point data are 32-bits wide and consist of three fields: a single sign bit (s), an eight­
bit biased exponent (e), and a 23-bit fraction (f). Figure 2-14 illustrates the single-precision floating-point 
format. 

Table 2-2. Single-Precision Floating-Point Format 

s = sign (1) 
e = biased exponent (8) 
f = fraction (23) 

normalized number (0 < e < 255): (-1)s * 2e- 127 * l.f 
subnormal (e=O): f~O (-1)s * 2 - 126 * O.f 

zero (e=O): f= 0 (-1)S * 0 

signaling NaN: f~O s=u 
e = 255 (max) 
f = .Ouuu-uu (at least one bit must be non-zero) 

quiet NaN: f~O s = u; 
e = 255 (max) 
f = Juuu-uu 

infinity: f= 0 s = 0 or 1, depending upon sign; 
e = 255 (max) 
f = .00-00 (all zeros) 

MSB LSB 

I (s) I exponent (e) fraction (f) 

31 30 23 22 0 

Figure 2-14. Single-Precision Floating-Point Format 

2.3.3.2.2 Double-Precision Floating-Point 

Double-precision floating-point data are 64-bits wide and consist of three fields: a single sign bit (s), an 
eleven-bit biased exponent (e), and a 52-bit fraction (f). Figure 2-15 illustrates the double-precision floa­
ting-point format. 
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Table 2-3. Double-Precision Floating-Point Format 

s = sign (1) 
e = biased exponent (11) 
f = fraction (52) 

normalized number (0 < e < 2047): (-1)S * 2e- 1023 * 1.f 

subnormal (e=O): f~O (-1)S * 2 -1022 * O.f 

zero (e=O): f= 0 (-1)s*O 

signaling NaN: f~O s = u 
e = 2047 (max) 
f = .Ouuu-uu (at least one bit must be nonzero) 

quiet NaN: f~O s = u 
e = 2047 (max) 
f = .luuu-uu 

infinity: f= 0 s = 0 or 1, depending upon sign; 
e = 2047 (max) 
f = .00-00 (all zeros) 

MSB LSB 

I (s) I exponent (e) fraction (f) I 
63 62 5251 32 31 0 

I II I 
31 word 0 031 word 1 0 

Figure 2-15. Double-Precision Floating-Point Format 

2.3.3.2.3 Quad Precision 

The SPARC architecture supports another data type, a quad-precision floating-point type with a width of 
128 bits (see Table 2-4). For the present, however, the CY7C602 FPU and RT620 hyperSPARC do not im­
plement quad-precision Floating-Point-operate (FPop) instructions, so they must be emulated in software. 
A quad-precision format FPop will generate a floating-point-exception trap if execution is attempted. 

When loaded to the working registers, extended-precision operands require a register quadruple (see 
Figure 2-16). The upper-order register (r[N]) contains the sign bit, a IS-bit exponent, and the high order 
16 bits of the fraction. The next register (r[N+ 1]) contains the next 32 bits of the fraction, register (r[N+2]) 
holds the next 32 bits of the fraction, and register (r[N+3]) the low-order 32 bits. As with double-precision 
operands, when loading a quad-precision operand, the destination register must be at an even address or the 
hardware will force an even address. 

The memory address of a quad-precision datum is also the address of its most significant byte (see 
Figure 2-17). A quad-precision datum must be located on a quad-precision boundary (address bits <3:0> 
= 0), which is evenly divisible by 16. 
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Table 2-4. Quad-Precision Floating-Point Format 

s = sign (1) 
e = biased exponent (15) 
f = fraction (112 bits) 
u = undefined 

normalized number ( 0 < e < 32767): (_1)8 x 2 e-16383 x l.f 
subnormal number ( e = 0) (f . 0): (_1)8 x 2 -16383 x O.f 
zero ( s = 0; e = 0) (f· 0): (_1)8 x 0 

signaling NaN (e=32767): f·O s = u 
e = 32767 (max); 
f = .Ouu-uu (at least one bit must be non-zero) 

quiet NaN (e=32767): f . 0 s = u 
e = 32767 (max); 
f = .1uu-uu 

infinity: f= 0 s = 1, 
e = 32767 (max); 
f = .000-00 (all zeroes) 

QUAD PRECISION FP r[N] SJ EXP[14:0] I FRACTlON[111 :96] 

128 

63 

31 

Address N 

r[N + 1] 

r[N + 2] 

r[N+3] 

3130 

FRACTlON[95:64] 

FRACTION[63:32] 

FRACTION[31:0] 

16 15 

Figure 2-16. Quad-Precision Data Organization in Registers 

Quad-Precision Data 

Doubleword Doubleword 
o 63 

Word 
0131 

Word Word 
0131 o 31 

N+4 N+8 N+12 

Figure 2-17. Quad-Precision Data Organization in Memory 

2.4 SPARC Instruction Set 

Word 

o 

0 

0 

0 

This section describes the SPARC instruction set as defined by the SPARC architecture. Included are subsec­
tions on instruction formats, addressing, instruction types, and an op code summary. Chapter 12, SPARC 
Instruction Set, contains a description of the assembly language syntax and a complete set of instruction 
defmitions. 

2.4.1 Instruction Formats 

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruc­
tion, format 2 for the SETID and Branch instructions, and format 3 for the remaining integer and 
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floating-point/coprocessor instructions. Figure 2-18 shows each format with its fields, bit positions, and 
the instructions that use that format. All instructions are one word long and aligned on word boundaries in 
memory. For most instructions, operands are located in source registers (represented by rs1 and rs2). The 
remaining instructions use one source register plus a displacement or immediate operand contained within 
the instruction itself. 

CALL 

FORMAT 1 3D-Bit Displacement (disp30) 

o 
SETHI 

22-Bit Immediate (imm22) 

o 

FORMAT 2 BRANCH 

22-Bit Displacement (disp22) 

o 

o OTHER INTEGER INSTRUCTIONS 

opcode 
(op) Destination (rd) °Fccode op3) Source 1 (rsI) 0 Alternate Space (asi) I Source 2 (rs2) 

opcode 
(op) Destination (rd) Decode 

op3) Source 1 (rs 1) 1 13-Bit Immediate (simmI3) 

31 30 25 19 14 13 5 o 
FORMAT 3 

a 

asi 

cond 

disp22 

disp30 

imm22 

op 

FLOATING POINT/COPROCESSOR OPERATIONS 

Destination (rd) Source 1 (rsI) Source 2 (rs2) 

25 14 o 

MEMORY INSTRUCTIONS 

opcode 
(op) Destination (rd) °8code op3) Source 1 (rsl) 0 Alternate Space (asi) I Source 2 (rs2) 

opcode 
(op) Destination (rd) 0f,code 

op3) Source 1 (rsI) 1 13-Bit Immediate (simmI3) 

31 30 25 19 14 13 5 o 

Figure 2-18. Instruction Format Summary 

The a (annul) bit is used in Branch instructions to control the execution of the delay instruction 
that immediately follows a control transfer instruction (see Section 2.4.3.4.3). 

The address space identifier (ASI) is an eight-bit field used in Load/Store alternate instructions. 
Refer to Section 2.4.2.6. 

This field identifies the condition code used for a Branch instruction. 
This field contains the 22-bit displacement value used for PC-relative addressing for a taken 
Branch. It is sign extended to full-word size when used. 
This field contains the 30-bit displacement used for the PC-relative addressing of a CALL in­
struction. 
The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) 
will be r[rs2] (i = 0), or a sign-extended simm13 (i = 1). 
This field contains the 22-bit constant used by the SETHI instruction. 
The op field selects the instruction format as shown in Table 2-5. 
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op2 The op2 field (Table 2-6) contains the instruction opcode for format 2 instructions (op=O). 
op3 The 6-bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3). 
ope The 9-bit ope identifies a coprocessor-operate (CPop) instruction. The relationship between the 

ope field and CPop instructions is described in Section 2.4.3.6. 
opf The 9-bit 0pfidentifies a floating-point-operate (FPop) instruction. The relationship between the 

opffield and FPop instructions is described in Section 2.4.3.6. 
rd The r-register (or r-register pair) orf-register (orf-register pair) specified in the rd field serves as 

the source during store instructions. For all other instructions, the identified register (register 
pair) serves as the destination. Note that r[O] as a source supplies the value 0, and as a destination 
causes the result to be discarded. Note that rd must be an r-register for integer instructions and 
must be anf-register for floating-point instructions. 

rsl The 5-bit rsl field identifies the register containing the first source operand. The source is an r­
register for integer instructions, anf-register for floating-point instructions, or a e register for 
coprocessor instructions. 

rs2 The 5-bit rs2 field identifies the register containing the second source operand. The source is an 
r-register for integer instructions, anf-register for floating-point instructions, or a e register for 
coprocessor instructions. 

simm13 This field holds the 13-bit immediate value used as the second ALU operand when i = 1. It is 
sign-extended to full-word size when used. 

Table 2-5. op field Coding 

op Value Instruction 

00 Bicc, FBfcc,CBccc, SETHI 

01 CALL 

10 Integer/FP 

11 Memory 

Table 2-6. op2 Field Coding 

op2 Value Instruction 

000 UNIMPlemented 

010 Bicc 

100 SETHI 
110 FBfcc 
111 CBccc 

Unused (reserved) bit patterns which are used in the op, op2, op3, or i (wrong bit used) fields of instructions 
will cause an illegaLinstruction trap. Fields that are not used for a particular instruction are ignored and so 
will not cause a trap, regardless of the bit pattern placed in that field. Unused or reserved bit patterns used 
in the opf or ope fields of a floating -point or coprocessor instruction cause an fp exception or a cp exception. 

2.4.2 Addressing 

SPARC supports four address modes: two register, register plus 13-bit immediate, I3-bit immediate, and 
program-counter relative. Memory address generation is done only for load and store instructions and is byte 
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oriented. Program counter-relative addressing is generated only for calls and branches and is word-bound­
ary oriented because it is addressing instructions. Register-indirect addressing applies to jumps, returns, and 
traps and is also word-boundary oriented. Address generation is illustrated in Figure 2-19. 

2.4.2.1 Two Register 

Two-register addressing uses the rs1 and rs2 fields (instruction format 3) to specify two source registers 
whose 32-bit contents are added together to create a memory address. This is a Load/Store (or register-indi­
rect) addressing mode. 

2.4.2.2 Register Plus 13-Bit Immediate 

This addressing mode is used where an immediate value is required as one of the sources. The address is 
generated by adding the 32-bit source register specified by rs1 (format 3) to a 13-bit, sign-extended immedi­
ate value contained in the instruction. This is a Load/Store (or register-indirect) addressing mode. 

2.4.2.3 13-Bit Immediate 

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rs1-specified 
register is r[O] (whose value is 0), which means the address is generated using only the 13-bit immediate 
value. Use of this special case allows absolute addressing ofthe upper and lower 4 Kbytes of a memory (or 
instruction) space with the 13-bit immediate value. Immediate addressing is the simplest method of address­
ing because no registers need be set up beforehand. 
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31 

Register Source 1 

31 

Register Source 2 

31 

Register Source 1 

31 13 

Sign Extension 13-Bit Immediate 

31 13 0 

Memory Address 
(Program Counter) 

Memory Address 
(Program Couater) 

1 Sign Extension 13-Bit Immediate 1-1 ---~.. Memory Address 
'------------'------------' (Program Counter) 

Load/Store (JMPL, RETT) 

31 

Program Counter 

31 
Program Counter 

3D-Bit Displacement 

CALL 

31 

Program Counter 

31 24 
Program Counter 

Sign Extension 22-Bit Displacement 

BRANCH 

Figure 2-19. Address Generation 

Address generation for the CALL instruction is program counter-relative, that is, the target address is based 
on the program counter (PC). The PC refers to the PC of the CALL instruction; the PC is not replaced with 
the nPC (SPARC is a delayed-control-transfer architecture, see Section 2.4.3.4) until the effective address 
is calculated with the CALL instruction's PC (see Figure 2-19). 

An address is generated by adding this PC value to the 30-bit word displacement contained in the CALL 
instruction. The displacement is formed by appending two zeros to the 30-bit value from the instruction. 
This allows control transfers to any word-boundary location in the virtual memory instruction space. The 
result of the address generation becomes the new oPe. 

2.4.2.5 Branch 

Branch instructions also use PC-relative addressing, but in this case, the value added to the PC is a sign-ex­
tended 22-bit word displacement. Again, the displacement is formed by appending two zeros to the 22-bit 
value contained in the Branch instruction and then sign extending out to 32 bits. This allows a branching 
range of 8 Mbytes on word boundaries. The generated address becomes the new oPe. 
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Table 2-7. Standard SPARC ASI Assignments 

ASI Address Space 

Ox08 User Instruction 

OxOA User Data 

Ox09 Supervisor Instruction 

OxOB Supervisor Data 

2.4.2.6 ASI 

In addition to the 32 bits of address output by the processor, an additional eight bits of address space identifi­
er (ASI) is sent to system memory (by means of the ASI(7 :0) bus) during a memory access. These ASI bits 
define 256 alternate 32-bit address spaces, which mayor may not overlap depending upon the designer's 
implementation. 

The SPARC architecture defines four ASI values for user instructions, user data, supervisor instructions, 
and supervisor data (see Table 2-7). The ASI value is supplied on ASI external signals for each instruction 
Fetch and each data access encountered. These four ASI values all map to the same 32-bit address space, 
and are used to implement access-level protection. ASI values are commonly used to identify user/supervi­
sor accesses, to identify special protected memory accesses such as boot PROM, and to access resources 
such as Cache controller/MMU (CMU) control registers, TLB entries, cache tag entries, etc .. Alternate ASIs 
(those other than the standard ASIs listed in Table 2-7) can be asserted by the use of alternate ASI load and 
store instructions (refer to Section 2.4.3.1.1 or to Chapter 12, SPARC Instruction Set). 

ROSS SPARC assigns a number of these ASI values to the CMU, and others are reserved for future assign­
ment. Nevertheless, nearly 80 are left unassigned for use by the system. Refer to Section 4.9 (RT625) or 
Section S.S (CY7C604/605) for ASI assignments reserved for ROSS SPARC CMUs. 

2.4.3 Instruction Types 

SPARC instructions fall into six functional categories: Load/Store, arithmetic/logical/shift, control transfer, 
read/write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete 
information on each instruction, see Chapter 12. 

2.4.3.1 Load and Store 

Load and store instructions (see Table 2-8) move bytes, halfwords, words, and doublewords between the 
byte-addressable main memory and a register in either the IU, FPU, or CPo They are the only instructions 
that access data memory. 

Load and store instructions use two-register, register-pIus-immediate, and immediate addressing modes. In 
addition to the 32-bit address, SPARC also generates an eight-bit address space identifier. 

2.4.3.1.1 AS1 

The address space identifier is used by the external system to ascertain which of the 256 available address 
spaces to access for the load or store being executed. Access to these alternate spaces can be gained directly 
by using the "load from alternate space" and "store to alternate space" instructions. These instructions use 
two-register addressing and the asi field in instruction format 3. The address space specified in the asi field 
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overrides the automatic ASI assignment made by the processor, giving access to such resources as system 
control registers that are invisible to the user. Because the ASI is intended for use by the system operating 
software, the alternate space instructions are privileged and can only be executed in supervisor mode. 

Table 2-8. Load and Store Instructions 

Name Operation 

LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 

LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 

LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 

LDUH (LDUHA*) Load Unsigned Halfword (from Alternate Space) 

LD (LDA*) Load Word (from Alternate Space) 

LDD (LDDA*) Load Doubleword (from Alternate Space) 

LDF Load Floating-Point 

LDDF Load Double Floating-Point 

LDFSR Load Floating-Point Status 

LDC Load Coprocessor 

LDDC Load Double Coprocessor 

LDCSR Load Coprocessor Status Register 

STB (STBA*) Store Byte (into Alternate Space) 

STH (STHA*) Store Halfword (into Alternate Space) 

ST (STA*) Store Word (into Alternate Space) 

STD (STDA*) Store Donbleword (into Alternate Space) 

STF Store Floating-Point 

STDF Store Double Floating-Point 

STFSR Store Floating-Point Status Register 

STDFQ* Store Double Floating-Point Queue 

STC Store Coprocessor 

STDC Store Double Coprocessor 

STCSR Store Coprocessor State Register 

STDCQ* Store Double Coprocessor Queue 

LDSTUB (LDSTUBA*) Atomic Load-Store Unsigned Byte (in Alternate Space) 

SWAP (SWAPA*) Swap r-register with Memory (in Alternate Space) 

* denotes supervIsor mstructlon 

2.4.3 .1.2 Multiprocessing Instructions 

In addition to alternate address spaces, SPARe provides two uninterrupible instructions, SWAP and atomic 
Load-Store unsigned byte (LDSTUB), to support tightly coupled multiprocessing. 

The SWAP instruction exchanges the contents of an r-register with a word from a memory location without 
allowing asynchronous traps or other memory accesses during the exchange. 

The LDSTUB instruction reads a byte from memory into an r-register and then overwrites the memory byte 
to all ones. As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its 
execution. LDSTUB is used to construct semaphores. 

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location 
are guaranteed that the competing instructions will execute in serial order. 
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2.4.3.2 ArithmetiC/Logical/Shift 

This class of instructions performs a computation on two source operands and writes the result into a destina­
tion register (r[ rd]). One of the source operands is always a register, r[ rs 1], and the other depends on the state 
of the instruction's "i" (immediate) bit. If i = 0, the second operand is register r[rs2]. If i = 1, the operand 
is the 13-bit, sign-extended constant in the instruction's simmi3 field. SETHI is a special case because it 
is a single-operand instruction. 

Table 2-9. Arithmetic/Logical/Shift Instructions 

Name Operation 

ADD (ADDcc) Add (and modify icc) 

ADDX (ADDXcc) Add with Carry (and modify icc) 

TADDcc (TADDccTV) Tagged Add and modiify icc (and Trap on oVeIflow) 

SUB (SUBcc) Subtract (and modify icc) 

SUBX (SUBXcc) Subtract with Carry (and modify icc) 

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on 0 VeIflow) 

MULScc Multiply Step and modify icc 

UMUL (UMULcc) Unsigned Integer Multiply (and modify icc) 

SMUL (SMULcc) Signed Integer Multiply (and modify icc) 

UDIV (DDIVcc) Unsigned Integer Division (and modify icc) 

SDIV (SDIVcc) Signed Integer Division (and modify icc) 

AND (ANDcc) And (and modify icc) 

ANDN (ANDNcc) And Not (and modify icc) 

OR (ORcc) Inclusive Or (and modify icc) 

ORN (ORNcc) Inclusive Or Not (and modify icc) 

XOR (XORcc) Exclusive Or (and modify icc) 

XNOR (XNORcc) Exclusive Nor (and modify icc) 

SLL Shift Left Logical 

SRL Shift Right Logical 

SRA Shift Right Arithmetic 

SETHI Set High 22 Bits of r-register 

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes 
and one that does not (see Table 2-9). 

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the 
instruction. 

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 
32-bit integers. For more information on MULScc, refer to its defInition in Chapter 6. 

2.4.3.2.1 Register rEO] 

Because register r[O] reads as a 0 and discards any result written to it as a destination, it can be used with 
some instructions to create syntactically familiar pseudoinstructions. For example, an integer COMPARE 
instruction is created using the SUBcc (subtract and set condition codes) with r[O] as its destination. A TEST 
instruction uses SUBcc withr[O] as both the destination and one of the sources. A register-to-register MOVE 
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is accomplished using an ADD or OR instruction with r[O] as one of the source registers. A negation is done 
with SUB and r[O] as one source. If the assembler being used supports psuedoinstructions, it translates the 
psuedoinstruction into the equivalent instruction in the native assembly language. Refer to your assembly 
language manual for details. 

2.4.3.2.2 SETHI 

SETHI is a special instruction that can be combined with another arithmetic instruction (such as an OR im­
mediate) to construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the 
destination register and clears the lower 10 bits. The arithmetic immediate instruction which follows is used 
to load the lower 10 bits. Note that the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI 
value. SETHI can also be combined with a load or store instruction to construct a 32-bit memory address. 

TAGGED 
DATA 

OTHER 

2.4.3.2.3 Tagged Arithmetic 

WORD 

31 

I WORD 
31 

Figure 2-20. Tagged Data Example 

I 010 I 
2 1 0 

I xl x I 
2 1 0 

At least one bit 
must be nOll-zero. 

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or 
Prolog. For efficient support of such languages, the SPARC architecture defines tagged data as a data type. 
Tagged data are assumed to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see 
Figure 2-20). A tagged add (TADDcc) or subtract (TSUBcc) will set the overflow bit if either of the oper­
ands has a nonzero tag or if a nonnal overflow occurs. 

Tagged add or subtract instructions are nonnally followed by a conditional Branch. If the overflow bit is 
set during a tagged add or subtract operation, control is commonly transferred to a routine that checks the 
operand types. In order to expedite this software construct, the SPARC architecture provides two trap on 
overflow instructions: TADDccTV and TSUBccTV, which automatically trap if the overflow bit is set dur­
ing their execution. 

2.4.3.3 Control Transfer 

Control transfer instructions are those that change the values of the PC and uPc. These include conditional 
Branches (Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from 
trap (RETT). Also included are the SAVE and RESTORE instructions, which don't transfer control but are 
used to save or restore windows during a call to a new procedure or a return to a calling procedure (see 
Table 2-/0). 

For SPARC processors, control transfer is usually delayed so that the instruction immediately following the 
control-transfer instruction (called the delay instruction) can be executed before control transfers to the tar­
get address. The delay instruction is always fetched. However, the annul or a bit in conditional Branch 
instructions can cause the instruction to be annulled (i.e., prevent execution) if the Branch is not taken (or 
always annulled in the case of BA, FBA, and CBA). If a Branch is taken, the delay instruction is always 
executed (except for BA, FBA, and CBA, see Section 2.4.3.4.3). Table 2-IJ shows the characteristics of 
each control transfer type. 
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Program Counter Relative 

PC-relative addressing computes the target address by adding a displacement to the program counter. See 
Section 2.4.2. 

Register-Indirect 

Register-indirect addressing computes the target address as either r[rsl] + r[rs2] if i = 0, or r[rsl] + 
simm13 if i = 1. See Section 2.4.2. 

Delayed 

A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction 
delay. See Section 2.4.3.4. 

Annul Bit 

In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 
2.4.3.4.3. 

2.4.3.3.1 Branching and the Condition Codes 

The condition code bits in the icc ,fcc, and ccc fields, are located (respectively) in the processor state register 
(PSR), floating-point state register (FSR), and coprocessor state register (CSR). The integer condition code 
bits are modified by arithmetic and logical instructions whose names end with the letters cc, or they may 
be written directly with WRPSR. The floating-point condition codes are modified by the floating-point 
compare instructions, FCMP and FCMPE, or directly with the STFSR instruction. Modification of the co­
processor condition codes is done directly with STCSR or by operations defined by the particular 
coprocessor implementation. 

Except for Branch Always (BA) and Branch Never (BN), a Bicc instruction evaluates the integer condition 
codes as specified in the cond field. If the tested condition evaluates as true, the branch is taken, causing a 
PC-relative delayed transfer to the address [(PC + 4) + sign extnd( disp22)]. If the evaluation result is false, 
the branch is not taken. For BA and BN, there is no evaluation; the result is simply forced to true for BA 
and false for BN. 

Table 2-10. Control Transfer Instructions 

Name Operation 

SAVE SAVE caller's window 

RESTORE RESTORE caller's window 

Bicc Branch on integer condition codes 

FBfcc Branch on floating-point condition codes 

CBccc Branch on coprocessor condition codes 

CALL Call 

JMPL Jump and Link 

RETT Return from Trap 

Ticc Trap on integer condition codes 
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Table 2-11. Control Transfer Instruction Characteristics 

Instructions Addressing Mode Delayed Annul Bit 

Conditional Branch Program Counter Relative yes yes 

CALL Program Counter Relative yes yes 

ruMP Register Indirect yes no 

Return Register Indirect yes no 

Trap Register Indirect no no 

If the Branch is not taken, then the annul bit is checked. If the "a" bit is set, the delay instruction is annulled. 
If"a" is not set, the delay instruction is executed. If the Branch is taken, the annul bit is ignored and the delay 
instruction is executed. For more information on delayed control transfer and the annul bit, see Section 
2.4.3.4. 

If its annul field is 0, a BN instruction acts like an NOP. If its annul field is 1, the following (delay) instruction 
is annulled (not executed). In neither case does a transfer of control take place. 

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and 
CBA, the effect of the annul bit is changed. See Section 2.4.3.4.3 for details. 

As illustrated in Table 2-12, Bicc and Ticc instructions test for the same conditions and use the same cond 
field codes during their evaluations. The FPfcc instruction operates in the same way as a Bicc, except it tests 
floating-point condition codes. A CBccc instruction behaves in the same manner as an FBfcc, except it tests 
the CCC<1 :0> signals supplied by the coprocessor (see Table 2-14). BothFBN and CBNbehave in the same 
way as BN. Note that all coprocessor instructions cause an unimplemented trap on the RT620. 

2.4.3.3.2 Trap Instructions 

The "Trap on integer condition codes" (Ticc) instruction evaluates the condition codes specified by its cond 
(condition) field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes 
evaluate to false, Ticc executes as a NOP. Once the Ticc is taken, it identifies which software trap type caused 
it by writing its trap number + 128 (the offset for trap instructions) into the tt field of the Trap Base Register 
(TBR), as illustrated in Figure 2-21. 

The trap number is the least significant seven bits of either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] 
+ sign extnd(simm13)" if the i field is one. The processor then disables traps (ET=O), saves the state of S 
into PS, decrements the CWP, saves PC and nPC into the locals r[17] and r[18] (respectively) of the new 
window, enters supervisor mode (S=I), and writes the trap base register to the PC and TBR + 4 to npC. 

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time 
checks, such as out-of-range array indices, integer overflow, etc. 

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETT first in­
crements the CWP by one, calculates the return address (using register-indirect addressing), and then checks 
for a number of trap conditions before it allows a return. An illegal_instruction trap is generated if traps are 
enabled (ET=l) when RETT is executed. IfET=O, RETT checks for other trap conditions and generates a 
reset trap and enters error mode for the following conditions: if S=O; if the new CWP would cause a window 
underflow; or if the return address is not word aligned. If none of these conditions exists, RETT enables traps 
(ET=l), restores the previous supervisor state to the S bit, and writes the target address into the nPC. 
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Trap Base Register 

I Trap Base Address (TBA) Trap Type (tt) 10000 I 

1 
31 12 \1 4 3 

128 

Register Source I 

\3 
1-"-'''''''"_. It field of Trap Base Register 

i bit of Ticc instruction = I 
128 I 

Sign Extension 

Register Source I 

}-"'-==-_ It field of Trap Base Register 

Register Source 2 

i bit of Ticc instruction = 0 

Figure 2-21. Tiee Trap Address Generation 

Table 2-12. Biee and Tiee Condition Codes 

Condo Test Condo Thst 

0000 Never 1000 Always 
0001 Equal to 1001 Not equal to 
0010 Less than or equal 1010 Greater than 
0011 Less tban 1011 Greater tban or equal to 
0100 Less tban or equal to, unsigned 1100 Greater than, unsigned 
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned) 
0110 Negative 1110 Positive 
0111 Overflow set 1111 Overflow clear 

Table 2-13. FBfee Condition Codes 

Condo Test Condo Test 

0000 Never 1000 Always 
0001 Not equal to 1001 Equal to 
0010 Less than or greater tban 1010 Unordered or equal to 
0011 Unordered or less tban 1011 Greater tban or equal to 
0100 Less than 1100 Unordered or greater than or equal to 
0101 Unordered or greater than 1101 Less than or equal to 
0110 Greater than 1110 Unordered or less tban or equal to 
0111 Unordered 1111 Ordered 

Table 2-14. CBeee Condition Codes 

Opcode Condo CCC[1:0] Test Opcode Condo CCC[1:0] Test 

CBN 0000 Never CBA 1000 Always 
CBI23 0001 lor20r3 CBO 1001 0 
CBI2 0010 lor2 CB03 1010 o or3 
CB13 0011 lor3 CB02 1011 Oor2 
CBI 0100 I CB023 1100 Oor20r3 
CB23 0101 20r3 CBOI 1101 Oorl 
CB2 0110 2 CB013 1110 Oorlor3 
CB3 0111 3 CBOl2 1111 00rlor2 
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2.4.3.3.3 Calls and Returns 

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target 
address using a PC-relative displacement of 30-bits, or the Jump and link (JMPL) instruction uses regis­
ter-indirect addressing (the sum of two registers or the sum of a register and a 13-bit signed immediate value) 
to compute its target address. Either instruction allows control transfer to any arbitrary instruction address. 

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL 
instruction and a SAVE instruction. A procedure that does not need a new window, a so-called "leaf' routine, 
is invoked with only the CALL or JMPL. 

The CALL instruction stores its return address (the current PC) into outs register r[15]. When the new win­
dow is activated, this becomes ins register r[31] (see Figure 2-2). The JMPL instruction stores its return 
address (the contents of PC, which is the link) into the r-register specified in the destination field, rd. 

The primary purpose of the SAVE instruction is to "save" the caller's window by decrementing the Current 
Window Pointer (CWP) by one, thereby activating the next window and making the current window into 
the previous window. SA VB also performs a normal ADD, using source registers from the caller's window, 
but writing the result into a destination register in the new window. This can be used to set a new stack pointer 
from the previous one (see Section 2.1.2.1). 

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A 
leaf procedure returns by executing a JMPL only. The target address for the return is normally that of the 
instruction following the CALL's or JMPL's delay instruction; that is, the return address + 8. The RESTORE 
instruction restores the caller's window by incrementing the CWP by one, causing the previous window to 
become the current window. As with SAVE, RESTORE performs an ADD using source registers from the 
called (new) window and writing the result into the calling (previous) window. 

Both SAVE and RESTORE compare the new CWP against the window invalid mask (WIM) to check for 
window overflow or underflow. They may also be used to atomically change the CWP while establishing 
a new memory stack pointer in an r-register. 

2.4.3.4 Delayed Control Transfer 

Traditional architectures usually execute the target instruction of a control transfer immediately after the 
control transfer instruction. However, in a pipelined RISC architecture, this type of transfer requires flush­
ing the instruction that follows the control transfer instruction. To avoid creating a hole or bubble in the 
pipeline, SPARC processors delay execution of the target instruction until the instruction following the con­
trol transfer instruction is executed. The instruction in this delay slot is called the delay instruction. 

Table 2-15. Delayed Control Transfer Instruction Example 

PC nPC Instruction 

8 12 Non-control transfer 
12 16 Control transfer (target = 40) 
16 40 Non-control transfer (delay instruction) 

(Transfers control to 40) 

40 44 ... 
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Table 2-16. Effect of Annul Bit Reset (a=O) 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=O) 40 Not Taken 
16 20 Delay slot instruction Executed 
20 24 ... Executed 

Table 2-17. Effect of Annul Bit Set (a=l) 

PC nPC Instruction Action 

8 12 Non-control transfer Executed 
12 16 Bicc (a=l) 40 Not Taken 
16 20 Delay slot inst. (annulled) Not Executed 
20 24 ... Executed 

2.4.3.4.1 PC and nPC 

The program counter (PC) contains the address of the instruction currently being executed by the SPARC 
processor, and the next program counter (nPC) holds the address (PC + 4) of the next instruction to be ex­
ecuted (assuming a control transfer or a trap does not occur). 

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC 
by four or write a computed control transfer target address into nPC. At this point, the PC points to the in­
struction that is about to begin execution and the nPC points to the instruction that will be executed after 
that, i.e., the second instruction after the currently executing instruction. It is the existence of the nPC that 
allows the execution of the delay instruction before transfer of control to the target instruction. 

2.4.3.4.2 Delay Instruction 

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is 
called the delay instruction. Normally, this is the next sequential instruction in the code stream. However, 
if the instruction that preceded the delayed control transfer was itself a delayed control transfer, the target 
of the preceding control transfer becomes the delay instruction (where the nPC will point). For more on 
delayed control transfer couples, see Section 2.4.3.4.4. 

Table 2-15 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order 
of execution is 8, 12, 16, 40. If the delayed -control-transfer instruction is not taken, the order would becomes 
8, 12, 16,20. 

2.4.3.4.3Annul Bit 

The a (annul) bit is only available on conditional Branch instructions (Bicc, FBfcc, and CBccc), where it 
changes the behavior of the delay instruction. If a is set on a conditional Branch instruction (except BA, 
FBA, and CBA) and the Branch is not taken, the delay instruction is annulled (not executed). An annulled 
instruction does not affect the state of the SPARC processor, and does not allow a trap to occur during an 
annulled instruction. If the Branch is taken, the a bit is ignored and the delay instruction is executed. 
Table 2-16 and Table 2-17 show the effect of the annul bit when it is reset or set. 

The "Branch Always" instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instruc­
tions, the delay instruction is annulled, even though the Branch is taken. Effectively, this gives a "traditional" 
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non-delayed Branch. When a = a in a "Branch Always" instruction, it behaves the same as any other condi­
tional Branch; the delay instruction is executed. Figure 2-22 displays the effect the a bit has on any Branch 
for either the set or reset state. Table 2-18 summarizes the effect the annul bit has on the execution of delay 
instructions. 

Table 2-18. Effect of Annul Bit on Delay Instruction 

a bit Type of Branch Delay instruction executed? 

a=l Always No 

Conditional, taken Yes 

Conditional. not taken No 

a=O Always Yes 

Conditional, taken Yes 

Conditional, not taken Yes 

2.4.3.4.4Delayed Control Transfer Couples 

The occurrence of two back -to-back, delayed control transfer instructions is called a delayed control transfer 
couple, which the processor handles differently from a simple control transfer. An instruction sequence con­
taining a delayed control transfer couple is shown in Table 2-19, and the order of execution for the six 
different cases of back-to-back, delayed control transfer instructions is shown in Table 2-20. 

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed 
control transfer instruction. For most cases, this instruction is located immediately in the code listing after 
the delayed control transfer instruction. However, in the case of a delayed control transfer couple, the target 
instruction of the first delayed control transfer instruction is the delay slot instruction for the second delayed 
control transfer instruction, since that target instruction is the next instruction to be fetched. The delay slot 
instruction for the second delayed control transfer instruction is the next instruction loaded into the instruc­
tion pipeline after the second delayed control transfer instruction. 

ANNUL = 0 

Code 

Taken 
Conditional ~--""T""----' 

Untaken 
Conditional 

ANNUL = 1 

+ 
Code 

Branch Control Transfer Inst. I Untaken 

..... _A_lw_a;",.ys ____ ---11~-----'C;;;:0"'1nditional , 
Taken 

Conditional 
Delay Inst. 

I 

+ 
Figure 2-22. Delayed Control Transfer 
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In the following tables, "delayed control transfer instruction" is abbreviated to "DCn." A "Non-DCn" 
may be either a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where 
the annul bit is not indicated, it may be either 0 or 1. 

Case 1 of Table 2-20 includes the "JMPL, RETT" couple, which is the normal method of returning from 
a trap handler. The JMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the 
trap routine, even in the case of a trap caused by a delay slot instruction (see Section 2.4.3.4.2). The case 
of a trap caused by a delay slot instruction is one where the nPC will not be PC + 4, thus requiring both PC 
and nPC to be restored. The JMPL, RETT couple allows the choice of re-executing the trapped instruction 
or executing the instruction following the trap occurrence. Refer to the RETT instruction description in 
Chapter 12 for further information. 

Table 2-19. Delayed Control Transfer Couple Instruction Sequence 

Address Instruction Target 

8: NonDCTI 
12 DCT! 4 
16 DCT! 60 
20 NonDCT! 
24 ... 
... ... 
40 NonDCT! 
44 ... 
... '" 

60 NonDCT! 
64 ... 
... ... 

Table 2-20. Execution of Delayed Control Transfer Couples 

Case DCT! at Location 12 DCT! at Location 16 Order of Execution 

1 DCTI Unconditional DCTITaken 12,16,40,60,64 ... 
2 DCT! Unconditional B *cc( a=O) Untaken 12,16,40,44 ... 
3 DCT! Unconditional B*cc(a=1) Untaken 12,16,44,48 ... (40 annulled) 
4 DCT! Unconditional B*A(a=1) 12,16,60,64 ... (40 annulled) 
5 B*A(a=l) anyCTI 12,40,44 ... (16 annulled) 
6 B*cc DCTI Not Supported 

Defmitions: 
B*A .................. BA,FBA, or CBA 
B*cc ..... . . . . . . . . . . . .. Bicc,FBicc, or CBicc (except B* A) 
DCTI Unconditional ..... CALL,JMPL,RETT, or B* A(a=O) 
DCTITaken ............ CALL,JMPL,RETT,B*cc taken, or B* A(a=O) 

Cases 1-5 described in Table 2-20 are illustrated in Figure 2-23. In case 1, the flrst DCn is fetched at ad­
dress 12 and the target address is calculated while the delay slot instruction is fetched. The delay slot 
instruction for the first DCn (located at address 16) is another DCn, which also has a delay slot. The target 
address of the flrst Dcn has been calculated by the time the first delay slot instruction has been fetched, 
and the target instruction is fetched at address 40. The target instruction is the instruction located in the in­
struction pipeline after the second DCn, and therefore it is the delay slot instruction for the second DCT!. 
The target instruction for the second Dcn (address 60) is fetched after the delay slot instruction for the sec­
ond DCTI (which is also the target address for the fIrst DCn) has been fetched. 

Case 2 differs from case 1 in that the second DCn is conditional, and is not taken. In case 2, the instruction 
at address 40 (target for DCn #1) is the delay slot instruction for the second DCn. Since the second DCn 
does not cause a Branch, the instruction fetch continues to address 44. 
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Case 3 is an interesting case in which the target instruction of the first DCn is annulled by the second DCn. 
This causes the instruction at address 40 to be annulled. Since the second DCn is an untaken conditional 
Branch, instruction Fetch continues after the annulled target instruction (address 44). 

Case 4 illustrates a DCn followed by a Branch Always instruction with the annul bit set. This causes the 
target instruction of the first DCn (address 40) to be annulled, and program control is transferred to the 
target of the second DCn at address 60. 

Case 5 illustrates the case where the second DCn is annulled by the annul bit of the first DCn. The second 
DCn, since it is annulled, has no effect on instruction Fetch. This case is identical to the case of any other 
annulled delay slot instruction. 

When the first instruction of a delayed control transfer couple is a conditional Branch, control transfer is 
undefined (case 6). If such a couple is executed, the location where execution continues is within the same 
address space but is otherwise undefined. Execution of this sequence does not change any other aspect of 
the processor state. 

Inst. Case 1 Inst. Case 2 Inst. Case 3 Address Address Address 

12H 12H DCTlnst, I I 12H DCT Inst. I I 
t Delay Slot # I t Delay Slot #1 

16H 16H B*cc (untaken) 16H B*cc (untaken) 
a=O a=1 

I t Delay Slot #2 I t Delay Slot #2 

40H 40H II DCT #1 Target I 40H II DCT#! Target r 
+ + annulled by Dcn #2 

44H Next Inst. 44H NextInst. I 
60H 

64H 

Inst. Case 4 Inst. CaseS 
Address Address 

12H 12H 

16H 
16H 

40H 40H 

annulled by DCTI #2 
44H 

60H 

64H Next Inst. 

Figure 2-23. Delayed Control Transfer Couples 
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Table 2-21. Read/Write Control Register Instructions 

Name Operation Cycles 

RDY Read Y Register 1 

RDPSR* Read Processor S tate Register 1 

RDWIM* Read Window Invalid Mask 1 

RDTBR* Read Trap Base Register 1 

WRY Write Y Register 1 

WRPSR* Write Processor State Register I 

WRWIM* Write Window Invalid Mask 1 

WRTBR* Write Trap Base Register I 

* denotes supervisor instruction 

Table 2-22. Floating-Point-Operate and Coprocessor-Operate Instructions 

Name Operation Cycles 

FPop Floating-Point Operations 1 to launch 

CPop Coprocessor Operations 1 to launch 

Table 2-23. Miscellaneaous Instructions 

Name Operation Cycles 

UNIMP Unimplemented Instruction 1 

FLUSH Instruction Cache Flush 1 

2.4.3.5 Read/Write Control Registers 

This class of instruction reads or writes the contents of the various control registers (see Table 2-21). The 
source (read) or destination (write) is implied by the instruction name. Read/write instructions are provided 
for the PSR, WIM, TBR, FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are 
privileged and are available in supervisor mode only. 

2.4.3.6 Floating-Point-Operate 

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are 
register-to-register instructions that compute some result as a function of one or two source operands (see 
Table 2-22). The result is always placed in a destination register (i.e., source operands are not overwritten). 
The source and destination registers for floating-point instructions must be f-registers. If the EF bit of the 
PSR is not set, executing a floating-point instruction will generate a fp disabled trap. An fp disabled trap 
is also generated if the CY7C602 FPU is not present in a CY7C601-based system. 

Because the FPU instructions execute concurrently with the integer unit, when a floating-point exception 
occurs, the PC does contain the address of an FPop instruction, but not the one that caused the exception. 
However, the front entry of the floating-point queue contains the offending instruction and its address. 

Floating-point Load/Store instructions are not operate instructions; they fall under the Load/Store instruc­
tion category (see Section 2.4.3.1). 

2.4.3.7 Coprocessor-Operate (CY7C601 only) 

For CY7C601 systems, the coprocessor-operate instructions (CPops) are executed by an attached coproces­
sor. Coprocessor instructions use the c registers located in the coprocessor's register file as source and 
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destination registers. If there is no attached coprocessor, or if the coprocessor interface is not supported as 
is the case with the RT620, attempted execution of a coprocessor instruction generates a cp disabled trap. 

Coprocessor Load/Store instructions are not operate instructions; they fall under the Load/Store instruction 
category (see Section 2.4.3.i). 

If the coprocessor executes instructions concurrently with the CY7C601, the architecture supports a copro­
cessor queue that functions in the same fashion as the floating-point queue. 

2.4.3.8 FLUSH 

The FLUSH instruction is used to flush a word from an internal instruction cache. The instruction is de­
scribed in Chapter 12, SPARC instruction Set. The RT620 provides an 8-Kbyte instruction cache, which is 
described in Section 4.6. Refer to Section 3.6.4.3 for information on the effect of the FLUSH instruction on 
theRT620. 

The CY7C601 does not incorporate an internal instruction cache, so FLUSH would normally execute as an 
Nap. However, if the CY7C601 is supported by an external instruction cache or buffer, FLUSH causes an 
illegal instruction trap if the IFT signal is LOW (refer to Section 6.2 .1.9 for information on the IFT signal 
for the CY7C601). 
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2.4.4 SPARC Instruction OP Codes 

This section contains tables that give a complete list of the instruction opcodes, both by functional groups 
and in ascending numeric order. 

2.4.4.1 Load and Store Instructions 

Table 2-24. Load and Store Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

LD 1 1 rd 000000 rsl i=O unused (zero) I rs2 

i=l simm13 

LDA 1 1 rd 010000 rsl i=O asi I rs2 

LDC 1 1 rd 110000 rsl i=O unused (zero) I rs2 

i=l simm13 

LDCSR 1 1 rd 110001 rsl i=O unused (zero) I rs2 

i=l simm13 

LDD 1 1 rd 000011 rsl i=O unused (zero) I rs2 

i=l simm13 

LDDA 1 1 rd 010011 rsl i=O asi I rs2 

LDDC 1 1 rd 110011 rsl i=O unused (zero) I rs2 

i=l simm13 

LDDF 1 1 rd 100011 rsl i=O unused (zero) I rs2 

i=l simm13 

LDF 1 1 rd 100000 rsl i=O unused (zero) I rs2 

i=l simm13 

LDFSR 1 1 rd 100001 rsl i=O unused (zero) I rs2 

i=l simm13 

LDSB 1 1 rd 001001 rsl i=O unused (zero) 1 rs2 

i=l simm13 

LDSBA 1 1 rd 011001 rsl i=O asi I rs2 

LDSH 1 1 rd 001010 rsl i=O unused (zero) I rs2 

i=l simm13 

LDSHA 1 1 rd 011010 rsl i=O asi I rs2 

LDSTUB 1 1 rd 001101 rsl i=O unused (zero) I rs2 

i=l simm13 

LDSTUBA 1 1 rd 011101 rsl i=O asi 1 rs2 

LDUB 1 1 rd 000001 rsl i=O unused (zero) I rs2 

i =1 simm13 

LDUBA 1 1 rd 010001 rsl i=O asi I rs2 

LDUH 1 1 rd 000010 rsl i=O unused (zero) I rs2 

i=1 simm13 

LDUHA 1 1 rd 010010 rsl i=O asi I rs2 

ST 1 1 rd 000100 rsl i=O unused (zero) I rs2 

i=1 simm13 
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Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

STA 1 1 rd 010100 rsl i=O asi I rs2 

STB 1 1 rd 000101 rsl i=O unused (zero) I rs2 

i =1 simm13 

STBA 1 1 rd 010101 rsl i=O asi I rs2 

STC 1 1 rd 110100 rsl i=O unused (zero) I rs2 

i =1 simm13 

STCSR 1 1 rd 110101 rsl i=O unused (zero) I rs2 

i=l simm13 

SID 1 1 rd 000111 rsl i=O unused (zero) I rs2 

i =1 simm13 

SIDA 1 1 rd 010111 rs1 i=O asi I rs2 

SIDC 1 1 rd 110111 rsl i=O unused (zero) I rs2 

i =1 simm13 

STDCQ 1 1 rd 110110 rs1 i=O unused (zero) I rs2 

i =1 simm13 

SIDF 1 1 rd 100111 rs1 i=O unused (zero) I rs2 

i =1 simm13 

SIDFQ 1 1 rd 100110 rsl i=O unused (zero) I rs2 

i =1 simm13 

STF 1 1 rd 100100 rs1 i=O unused (zero) I rs2 

i =1 simm13 

STFSR 1 1 rd 100101 rsl i=O unused (zero) I rs2 

i=1 simm13 

STH 1 1 rd 000110 rs1 i=O unused (zero) I rs2 

i=1 simm13 

STHA 1 1 rd 010110 rsl i=O asi I rs2 

SWAP 1 1 rd 001111 rsl i=O unused (zero) I rs2 

i =1 simm13 

SWAPA 1 1 rd 011111 rs1 i=O asi I rs2 
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2.4.4.2 Arithmetic/Logical/Shift Instructions 

Table 2-25. Arithmetic/Logical/Shift Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

ADD 1 0 rd 000000 rs1 i=O unused (zero) rs2 

i=l simm13 

ADDee 1 0 rd 010000 rs1 i=O unused (zero) rs2 

i =1 simm13 

ADDX 1 0 rd 001000 rs1 i=O unused (zero) rs2 

i =1 simm13 

ADDXee 1 0 rd 011000 rs1 i=O unused (zero) rs2 

i =1 simm13 

AND 1 0 rd 000001 rs1 i=O unused (zero) rs2 

i =1 simm13 

ANDee 1 0 rd 010001 rs1 i=O unused (zero) rs2 

i =1 simm13 

ANDN 1 0 rd 000101 rs1 i=O unused (zero) rs2 

i=l simm13 

ANDNcc 1 0 rd 010101 rs1 i=O unused (zero) rs2 

i =1 simm13 

MULSee 1 0 rd 100100 rs1 i =0 unused (zero) rs2 

i=l simm13 

OR 1 0 rd 000010 rs1 i=O unused (zero) rs2 

i =1 simm13 

ORee 1 0 rd 010010 rs1 i=O unused (zero) rs2 

i =1 simm13 

ORN 1 0 rd 000110 rs1 i=O unused (zero) rs2 

i =1 simm13 

ORNee 1 0 rd 010110 rs1 i=O unused (zero) rs2 

i=1 simm13 

SLL 1 0 rd 100101 rs1 i=O unused (zero) rs2 

i =1 unused (zero) shent 

SDIV 1 0 rd 001111 rs1 i=O unused (zero) rs2 

i =1 simm13 

SDIVee 1 0 rd 011111 rsl i=O unused (zero) rs2 

i =1 simm13 

SMUL 1 0 rd 001011 rs1 i=O unused (zero) rs2 

i =1 simm13 

SMULee 1 0 rd 011011 rs1 i=O unused (zero) rs2 

i =1 simm13 

SRA 1 0 rd 100111 rs1 i=O unused (zero) rs2 

i =1 unused (zero) shent 

SRL 1 0 rd 100110 rs1 i=O unused (zero) rs2 

i =1 unused (zero) shent 
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Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

SUB 1 0 rd 000100 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUBcc 1 0 rd 010100 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUBX 1 0 rd 001100 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUBXcc 1 0 rd 011100 rsl i=O unused (zero) L rs2 

i=1 simm13 

TADDcc 1 0 rd 100000 rsl i=O unused (zero) I rs2 

i =1 simm13 

TADDccTV 1 0 rd 100010 rsl i=O unused (zero) I rs2 

i =1 simm13 

TSUBcc 1 0 rd 100001 rsl i=O unused (zero) I rs2 

i =1 simm13 

TSUBccTV 1 0 rd 100011 rsl i=O unused (zero) I rs2 

i =1 simm13 

UDIV 1 0 rd 001110 rsl i=O unused (zero) I rs2 

i =1 simm13 

UDIVcc 1 0 rd 011110 rsl i=O unused (zero) I rs2 

i =1 simm13 

UMUL 1 0 rd 001010 rsl i=O unused (zero) I rs2 

i =1 simm13 

UMULcc 1 0 rd 011010 rsl i =0 unused (zero) I rs2 

i =1 simm13 

XNOR 1 0 rd 000111 rsl i=O unused (zero) L rs2 

i=1 simm13 

XNORcc 1 0 rd 010111 rsl i=O unused (zero) I rs2 

i =1 simm13 

XOR 1 0 rd 000011 rsl i=O unused (zero) I rs2 

i =1 simm13 

XORcc 1 0 rd 010011 rsl i=O unused (zero) I rs2 

i =1 simm13 

3130 29 25 2422 21 0 

SETHI 0 0 rd 100 1 imm22 
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2.4.4.3 Control Transfer Instructions 

Table 2-26. Control Transfer Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

JMPL 1 0 rd 111000 rsl i=O unused (zero) I rs2 

i=1 simm13 

RESTORE 1 0 rd 111101 rsl i=O unused (zero) I rs2 

i =1 simm13 

RETT 1 0 unused 111001 rsl i=O unused (zero) I rs2 

i =1 simm13 

SAVE 1 0 rd 111100 rs1 i=O unused (zero) I rs2 

i =1 simm13 

3130 29 2825 2422 21 0 

Bice 0 0 a eond 010 disp22 

CBccc 0 0 a eond 1 1 1 disp22 

FBfee 0 0 a eond 1 10 disp22 

3130 29 2825 24 19 18 14 13 12 5 4 0 

Tice 1 0 R* eond 111010 rs1 i=O unused (zero) I rs2 

i =1 simm13 

CALL 0 1 disp30 

*R :;::: reserved. 

Table 2-27. Biee and Tiee Condition Codes 

Condo Test 

0000 Never 
0001 Equal to 
0010 Less than or equal to 
0011 Less than 
0100 Less than or equal to, unsigned 
0101 Carry set (less than, unsigned) 
0110 Negative 
0111 Overflow set 
1000 Always 
1001 Not equal to 
1010 Greater than 
1011 Greater than or equal to 
1100 Greater than, unsigned 
1101 Carry clear (greater than or equal, unsigned) 
1110 Positive 
1111 Overflow clear 
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Table 2-28. FRfee Condition Codes Table 2-29. CReee Condition Codes 

Condo Test Opcode Condo CCC[1:0] Test 

0000 Never CBN 0000 Never 
0001 Not equal CB123 0001 lor2or3 
0010 Less than or greater than CB12 0010 lor2 
0011 Unordered or less than CB13 0011 lor 3 
0100 Less than CB1 0100 1 
0101 Unordered or greater than CB23 0101 2or3 
0110 Greater than CB2 0110 2 
0111 Unordered CB3 0111 3 
1000 Always CBA 1000 Always 
1001 Equal CBO 1001 0 
1010 Unordered or equal CB03 1010 Oor3 
1011 Greater than or equal CB02 1011 Oor2 
1100 Unordered or greater than or equal CB023 1100 Oor2or3 
1101 Less than or equal CB01 1101 o or 1 
1110 Unordered or less than or equal CB013 1110 Oorlor3 
1111 Ordered CB012 1111 Oor1or2 

2.4.4.4 ReadfWrite Control Register Instructions 

Table 2-30. ReadlWrite Control Register Instruction Opeodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 0 

RDASR* 1 0 rd 101000 rs1 unused (zero) 

RDPSR 1 0 rd 101001 unused unused (zero) 

RDTBR 1 0 rd 101011 unused unused (zero) 

RDWIM 1 0 rd 101010 unused unused (zero) 

3130 29 25 24 19 18 14 13 12 5 4 0 

WRASR* 1 0 rd 110000 rs1 i=O unused (zero) I rs2 

i =1 simm13 

WRPSR 1 0 reserved 110001 rs1 i=O unused (zero) I rs2 

i =1 simm13 

WRTBR 1 0 reserved 110011 rs1 i=O unused (zero) I rs2 

i =1 simm13 

WRWIM 1 0 reserved 110010 rs1 i=O unused (zero) I rs2 

i =1 simm13 

• WRASR and RDASR are general case instructions that include the previous WRY and RDY instructions, WRY and RDY are 
indicated by setting rd = 0, Setting rd = 30 accesses the DIAG register; setting rd = 31 accesses the ICCR register (both supported 
by RT620 only), 
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2.4.4.5 Floating-Point/Coprocessor Instructions 

Table 2-31. Floating-Point /Coprocessor Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 5 4 0 

CPopl 1 0 rd 110110 rs1 OPC rs2 

CPop2 1 0 rd 110111 rs1 OPC rs2 

FABSs 1 0 rd 110100 unused o 000 0 1 001 rs2 

FADDd 1 0 rd 110100 rs1 o 0 1 0 0 0 0 1 0 rs2 

FADDq 1 0 rd 110100 rs1 o 0 1 0 0 0 0 1 1 rs2 

FADDs 1 0 rd 110100 rs1 o 0 1 0 0 0 0 0 1 rs2 

FCMPd 1 0 unused 110101 rs1 o 0 1 0 1 0 0 1 0 rs2 

FCMPq 1 0 unused 110101 rs1 o 0 1 0 1 001 1 rs2 

FCMPs 1 0 unused 110101 rs1 o 0 1 0 1 000 1 rs2 

FCMPEd 1 0 unused 110101 rs1 o 0 1 0 101 1 0 rs2 

FCMPEq 1 0 unused 110101 rsl o 0 1 0 1 0 1 1 1 rs2 

FCMPEs 1 0 unused 110101 rs1 o 0 1 0 1 0 101 rs2 

FDIVd 1 0 rd 110100 rs1 o 0 1 001 110 rs2 

FDIVq 1 0 rd 110100 rs1 o 0 100 1 1 1 1 rs2 

FDIVs 1 0 rd 110100 rs1 o 0 1 001 101 rs2 

FdMULq 1 0 rd 110100 rs1 001101110 rs2 

FdTOi 1 0 rd 110100 unused o 1 1 0 100 1 0 rs2 

FdTOq 1 0 rd 110100 unused o 1 100 1 1 1 0 rs2 

FdTOs 1 0 rd 110100 unused o 1 1000110 rs2 

FiTOd 1 0 rd 110100 unused o 1 100 1 000 rs2 

FiTOq 1 0 rd 110100 unused o 1 1001100 rs2 

FiTOs 1 0 rd 110100 unused o 1 1 000 1 0 0 rs2 

FMOVs 1 0 rd 110100 unused o 0 0 0 0 000 1 rs2 

FMULd 1 0 rd 110100 rs1 o 0 100 1 0 1 0 rs2 

FMULq 1 0 rd 110100 rs1 o 0 1 0 0 1 0 1 1 rs2 

FMULs 1 0 rd 110100 rs1 o 0 100 1 001 rs2 

FNEGs 1 0 rd 110100 unused o 0 0 0 0 0 101 rs2 

FqTOd 1 0 rd 110100 unused o 1 100 101 1 rs2 

FqTOi 1 0 rd 110100 unused o 1 1 0 1 001 1 rs2 

FqTOs 1 0 rd 110100 unused o 1 1 000 1 1 1 rs2 

FsMULd 1 0 rd 110100 rs1 001101001 rs2 

FSQRTd 1 0 rd 110100 unused 000 1 0 1 0 1 0 rs2 

FSQRTq 1 0 rd 110100 unused 00010 101 1 rs2 

FSQRTs 1 0 rd 110100 unused 00010 100 1 rs2 

FsTOd 1 0 rd 110100 unused o 1 100 100 1 rs2 

FsTOi 1 0 rd 110100 unused o 1 1 0 1 000 1 rs2 

FsTOq 1 0 rd 110100 unused o 1 100 1 101 rs2 

FSUBd 1 0 rd 110100 rs1 001 000 1 1 0 rs2 

FSUBq 1 0 rd 110100 rs1 o 0 1 000 1 1 1 rs2 

FSUBs 1 0 rd 110100 rs1 o 0 1 000 101 rs2 
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2.4.4.6 Miscellaneous Instructions 

Table 2-32. Miscellaneous Instruction Opcodes 

Opcodes with Format 

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0 

FLUSH 1 0 unused 111011 I rsl I i=O I unused (zero) I rs2 

I i =1 I simm13 

UNIMP 0 0 reserved 0001 const22 

2.4.4.7 Opcodes In Ascending Numeric Order 

Table 2-33. Instruction Opcode Numeric Listing 

Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0 

UNIMP 0 0 reserved 000 const22 

Bicc 0 0 a I cond 010 disp22 

SETID 0 0 rd 100 imm22 

FBfcc 0 0 a l cond 110 disp22 

CBccc 0 0 a I cond 1 1 1 disp22 

CALL 0 1 disp30 

ADD 1 0 rd 000000 rsl i=O unused (zero) I rs2 

i=l simm13 

AND 1 0 rd 000001 rsl i=O unused (zero) I rs2 

i =1 simm13 

OR 1 0 rd 000010 rsl i=O unused (zero) I rs2 

i =1 simm13 

XOR 1 0 rd 000011 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUB 1 0 rd 000100 rsl i=O unused (zero) J rs2 

i=l simm13 

ANDN 1 0 rd 000101 rsl i=O unused (zero) I rs2 

i =1 simm13 

ORN 1 0 rd 000110 rsl i=O unused (zero) I rs2 

i =1 simm13 

XNOR 1 0 rd 000111 rsl i=O unused (zero) I rs2 

i=l simm13 

ADDX 1 0 rd 001000 rsl i=O unused (zero) I rs2 

i=l simm13 

UMUL 1 0 rd 001010 rsl i=O unused (zero) I rs2 

i=l simm13 

SMUL 1 0 rd 001011 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUBX 1 0 rd 001100 rsl i=O unused (zero) I rs2 

i =1 simm13 
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Opcodes with Format 

Mnemonic 3130 29 25 2422 21 19 18 14 13 12 5 4 0 

UDIV 1 0 rd 001110 rs1 i=O unused (zero) I rs2 

i =1 simm13 

SDIV 1 0 rd 001111 rsl i=O unused (zero) I rs2 

i =1 simm13 

ADDee 1 0 rd 010000 rsl i=O unused (zero) I rs2 

i =1 simm13 

ANDee 1 0 rd 010001 rsl i=O unused (zero) I rs2 

i =1 simm13 

ORee 1 0 rd 010010 rsl i=O unused (zero) I rs2 

i =1 simm13 

XORee 1 0 rd 010011 rsl i=O unused (zero) J rs2 

i =1 simm13 

SUBee 1 0 rd 010100 rsl i=O unused (zero) I rs2 

i =1 simm13 

ANDNee 1 0 rd 010101 rsl i=O unused (zero) I rs2 

i =1 simm13 

ORNee 1 0 rd 010110 rsl i=O unused (zero) I rs2 

i =1 simm13 

XNORee 1 0 rd 010111 rsl i =0 unused (zero) I rs2 

i =1 simm13 

ADDXee 1 0 rd 011000 rsl i=O unused (zero) I rs2 

i =1 simm13 

UMULee 1 0 rd 011010 rsl i=O unused (zero) I rs2 

i =1 simm13 

SMULee 1 0 rd 011011 rsl i=O unused (zero) I rs2 

i =1 simm13 

SUBXee 1 0 rd 011100 rsl i=O unused (zero) I rs2 

i =1 simm13 

UDIVee 1 0 rd 011110 rsl i=O unused (zero) I rs2 

i =1 simm13 

SDIVee 1 0 rd 011111 rsl i=O unused (zero) I rs2 

i =1 simm13 

TADDee 1 0 rd 100000 rsl i=O unused (zero) I rs2 

i =1 simm13 

TSUBce 1 0 rd 100001 rs1 i=O unused (zero) I rs2 

i =1 simm13 

TADDeeTV 1 0 rd 100010 rs1 i=O unused (zero) I rs2 

i =1 simm13 

TSUBeeTV 1 0 rd 100011 rs1 i=O unused (zero) I rs2 

i =1 simm13 

MULSee 1 0 rd 100100 rs1 i=O unused (zero) I rs2 

i =1 simm13 

SLL 1 0 rd 100101 rs1 i=O unused (zero) I rs2 

i =1 unused (zero) I shent 
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Mnemonic 3130 29 25 2422 21 19 18 14 13 12 5 4 0 

SRL 1 0 rd 100110 rsl i=O unnsed (zero) rs2 

i =1 unused (zero) shent 

SRA 1 0 rd 100111 rsl i=O unnsed (zero) rs2 

i =1 unused (zero) shent 

RDY 1 0 rd 101000 unused 1* unused (zero) 

RDPSR 1 0 rd 101001 unused 1* unused (zero) 

RDWIM 1 0 rd 101010 unused 1* unused (zero) 

RDTBR 1 0 rd 101011 unused 1* unused (zero) 

WRASR* 1 0 unused 110000 rsl i=O unused (zero) rs2 

i =1 simm13 

WRPSR 1 0 unused 110001 rsl i=O unused (zero) rs2 

i=1 simm13 

WRWIM 1 0 unused 110010 rsl i=O unused (zero) rs2 

i =1 simm13 

WRTBR 1 0 unused 110011 rsl i=O unused (zero) rs2 

i=1 simm13 

FPOPI 1 0 rd 110100 rsl OPF rs2 

FMOVs 1 0 rd 110100 unused o 000 0 0 0 0 1 rs2 

FNEGs 1 0 rd 110100 unused o 0 0 0 0 0 1 0 1 rs2 

FABSs 1 0 rd 110100 unused o 0 0 0 0 100 1 rs2 

FSQRTs 1 0 rd 110100 unused 000 1 0 100 1 rs2 

FSQRTd 1 0 rd 110100 unused 000101010 rs2 

FSQRTq 1 0 rd 110100 unused 000 1 0 1 0 1 1 rs2 

FADDs 1 0 rd 110100 rsl o 0 1 0 0 000 1 rs2 

FADDd 1 0 rd 110100 rsl o 0 1 0 000 1 0 rs2 

FADDq 1 0 rd 110100 rsl o 0 1 0 0 001 1 rs2 

FSUBs 1 0 rd 110100 rsl o 0 1 000 1 0 1 rs2 

FSUBd 1 0 rd 110100 rsl o 0 1 000 1 1 0 rs2 

FSUBq 1 0 rd 110100 rsl o 0 1 000 1 1 1 rs2 

FMULs 1 0 rd 110100 rsl o 0 1 0 0 1 001 rs2 

FMULd 1 0 rd 110100 rsl o 0 1 0 0 1 010 rs2 

FMULq 1 0 rd 110100 rsl o 0 1 0 0 1 0 1 1 rs2 

FDIVs 1 0 rd 110100 rsl o 0 100 1 101 rs2 

FDIVd 1 0 rd 110100 rsl o 0 100 1 1 1 0 rs2 

FDIVq 1 0 rd 110100 rsl o 0 100 1 1 1 1 rs2 

FiTOs 1 0 rd 110100 unused o 1 100 0 1 0 0 rs2 

FdTOs 1 0 rd 110100 unused o 1 1000110 rs2 

FqTOs 1 0 rd 110100 unused o 1 1000111 rs2 

FiTOd 1 0 rd 110100 unused o 1 100 1 000 rs2 

FsTOd 1 0 rd 110100 unused o 1 100 100 1 rs2 

FqTOd 1 0 rd 110100 unused o 1 1 001011 rs2 

* WRASR and RDASR are general case mstructlOns that mclude the prevIOus WRY and RDY mstructlOns. WRY and RDY 
are indicated by setting rd = O. Setting rd = 30 accesses the DIAG register; setting rd = 31 accesses the lCCR register 
(both supported by RT620 only). 
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Mnemonic 3130 29 25 2422 21 19 18 14 l3 12 5 4 0 

FiTOq 1 0 rd 110100 unused 0 1 1 001 100 rs2 

FsTOq 1 0 rd 110100 unused 0 1 1 0 0 1 101 rs2 

FdTOq 1 0 rd 110100 unused o 1 1 0 0 1 1 1 0 rs2 

FsTOi 1 0 rd 110100 unused o 1 101 000 1 rs2 

FdTOi 1 0 rd 110100 unused 0 1 1 0 1 0 0 1 0 rs2 

FqTOi 1 0 rd 110100 unused o 1 1 0 1 001 1 rs2 

FPOP2 1 0 rd 110101 rs1 OPF rs2 

FCMPs 1 0 unused 110101 rs1 o 0 1 0 1 000 1 rs2 

FCMPd 1 0 unused 110101 rs1 o 0 1 0 1 0 0 1 0 rs2 

FCMPq 1 0 unused 110101 rs1 o 0 1 0 1 001 1 rs2 

FCMPEs 1 0 unused 110101 rs1 o 0 1 0 1 0 1 0 1 rs2 

FCMPEd 1 0 unused 110101 rs1 0010101 1 0 rs2 

FCMPEq 1 0 unused 110101 rs1 o 0 1 0 101 1 1 rs2 

CPopl 1 0 rd 1 101 10 rs1 OPC rs2 

CPop2 1 0 rd 110111 rs1 OPC rs2 

JMPL 1 0 rd 111000 rs1 i=O unused (zero) rs2 

i=l simml3 

RETT 1 0 unused 111001 rs1 i=O unused (zero) rs2 

i =1 simm13 

Ticc 1 0 R* I cond 111010 rs1 i=O unused (zero) rs2 

i =1 simml3 

FLUSH 1 0 unused 111011 rs1 i =0 unused (zero) rs2 

i =1 simml3 

SAVE 1 0 rd 111100 rs1 i=O unused (zero) rs2 

i =1 simm13 

RESTORE 1 0 rd 111101 rs1 i=O unused (zero) rs2 

i =1 simm13 

LD 1 1 rd 000000 rs1 i=O asi rs2 

i =1 simm13 

LDUB 1 1 rd 000001 rs1 i=O asi rs2 

i =1 simm13 

LDUH 1 1 rd 000010 rs1 i=O asi rs2 

i =1 simm13 

LDD 1 1 rd 000011 rs1 i=O asi rs2 

i =1 simm13 

ST 1 1 rd 000100 rs1 i=O asi rs2 

i =1 simm13 

STB 1 1 rd 000101 rs1 i=O asi rs2 

i =1 simm13 

STH 1 1 rd 000110 rs1 i=O asi rs2 

i =1 simm13 

STD 1 1 rd 000111 rs1 i=O asi rs2 

i =1 simm13 

R *=reserved 
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Opcodes with Format 

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0 

LDSB 1 1 rd 001001 rs1 i=O asi rs2 

i=l simm13 

LDSH 1 1 rd 001010 rs1 i=O asi rs2 

i=l simm13 

LDSTUB 1 1 rd 001101 rs1 i=O asi rs2 

i=l simm13 

SWAP 1 1 rd 001111 rs1 i=O asi rs2 

i =1 simm13 

LDA 1 1 rd 010000 rs1 i=O asi rs2 

LDUBA 1 1 rd 010001 rs1 i=O asi rs2 

LDUHA 1 1 rd 010010 rs1 i=O asi rs2 

LDDA 1 1 rd 010011 rs1 i=O asi rs2 

STA 1 1 rd 010100 rs1 i=O asi rs2 

STBA 1 1 rd 010101 rs1 i=O asi rs2 

STHA 1 1 rd 010110 rs1 i=O asi rs2 

STDA 1 1 rd 010111 rs1 i=O asi rs2 

LDSBA 1 1 rd 011001 rs1 i=O asi rs2 

LDSHA 1 1 rd 011010 rs1 i=O asi rs2 

LDSTUBA 1 1 rd 011101 rs1 i=O asi rs2 

SWAPA 1 1 rd 011111 rs1 i =0 asi rs2 

LDF 1 1 rd 100000 rs1 i =0 unused (zero) rs2 

i =1 simm13 

LDFSR 1 1 rd 100001 rs1 i =0 unused (zero) rs2 

i =1 simm13 

LDDF 1 1 rd 100011 rs1 i=O unused (zero) rs2 

i =1 simm13 

STF 1 1 rd 100100 rs1 i=O unused (zero) rs2 

i =1 simm13 

STFSR 1 1 rd 100101 rs1 i=O unused (zero) rs2 

i =1 simm13 

STDFQ 1 1 rd 100110 rs1 i=O unused (zero) rs2 

i =1 simm13 

STDF 1 1 rd 100111 rs1 i=O unused (zero) rs2 

i =1 simm13 

LDC 1 1 rd 110000 rs1 i=O unused (zero) rs2 

i =1 simm13 

LDCSR 1 1 rd 110001 rs1 i=O unused (zero) rs2 

i =1 simm13 

LDDC 1 1 rd 110011 rs1 i=O unused (zero) rs2 

i =1 simm13 

STC 1 1 rd 110100 rs1 i=O unused (zero) I rs2 

i =1 simm13 

STCSR 1 1 rd 110101 rs1 i=O unused (zero) rs2 

i =1 simm13 
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Opcodes with Format 
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STDCQ I I rd IlOIlO rsl i=O unused (zero) I rs2 

i =1 simm13 

STDC I I rd 110111 rsl i=O unused (zero) I rs2 

i =1 simm13 

2.4.5 SPARe Exception Model 

SPARC supports three types of traps: precise, deferred, and interrupting. A precise trap (also referred to as 
a synchronous trap) is induced by a particular instruction and occurs before the processor state is changed 
by the trap-inducing instruction. All instructions preceding the trap inducing instruction have completed 
execution. 

Deferred traps are caused by a trap-inducing instruction, but the processor state may have been changed by 
other instructions executing after the trap-inducing instruction. Deferred traps are generated by a unit other 
than the integer unit executing instructions in parallel with the IU, such as the internal FPU within a RT620 
or the CY7C602 FPU in a CY7C601 system. 

Interrupting traps occur when an external event interrupts the processor. They are not related to any particu­
lar instruction and occur between the execution of instructions. Memory exceptions, RESET, and interrupt 
requests belong to this group of traps. Interrupting traps are also sometimes referred to as an asynchronous 
traps. 

Several details concerning the handling of exceptions are processor dependent. Detailed information on trap 
handling is given in Section 3.9 (RT620) and Section 6.5.5 (CY7C601). 

2.4.5.1 Precise Traps 

Precise traps are caused by the actions of an instruction, with the trap stimulus occurring either internally 
to the SPARC processor or from an external signal which was provoked by the instruction. These traps are 
taken immediately and the instruction that caused the trap is aborted before it changes any state in the proces­
sor. All instructions in the SPARC pipeline that preceded the trap-inducing instruction complete execution 
before the trap is recognized. 

2.4.5.1.11nternallSoftware 

Precise traps generated by internal hardware are associated with an instruction. The trap condition is de­
tected during the Execute stage of the instruction and the trap is taken immediately, before the instruction 
can complete. 
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illegal instruction trap 

An illegal instruction trap occurs: 

• when the UNIMP instruction is encountered, 

• when an unimplemented instruction is encountered (excluding FPops and CPops), 

• in any of the situations below where the continued execution of an instruction would result 
in an illegal processor state: 

1. Writing a value to the PSR's CWP field that is greater than the number of implemented 
windows (with a WRPSR) 

2. Executing an alternate space instruction with its i bit set to 1 

3. Executing a RETT instruction with traps enabled (ET=l) 

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal in­
struction trap. They generate fp exception and cp exception traps, respectively. 

privileged instruction 

This trap occurs when a privileged instruction is encountered while the PSR's supervisor bit is reset (S=O). 

fp disabled 

An fp disabled trap is generated when an FPop, FBfcc, or floating-point Load/Store instruction is encoun­
tered while the PSR's EF bit =0. In the case of the CY7C601, this trap can also be generated by these 
instructions if no FPU is present. 

cp disabled (CY7C601 only) 

A cp disabled trap is generated when a CPop, CBccc, or coprocessor Load/Store instruction is encountered 
while the PSR's EC bit =0, or if no coprocessor is present (CP input signal =1). 

window overflow 

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a 
window marked invalid in the WIM register. 

window underflow 

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point 
to a window marked invalid in the WIM register. The window underflow trap type can also be set in the PSR 
during a RETT instruction, but the trap taken is a reset. Refer to Chapter 12 for the instruction definition 
forRETT. 

memory address not aligned 

Memory address not aligned trap occurs when a load or store instruction generates a memory address that 
is not properly aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned 
(low-order two bits nonzero). 

tag overflow 

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the inte­
ger condition codes to be set. Refer to the instruction definitions of TADDccTV and TSUBccTV in 
Chapter 12, SPARC Instruction Set for details. 

trap instruction 

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 program­
mable trap types available within the trap instruction trap (see Chapter 12, Ticc Instruction). 
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2.4.5.2 Deferred Traps 

Deferred traps differ from precise traps in that the trap-inducing instruction may be followed by other 
instructions that may change the state of the processor. For ROSS SPARC, deferred traps may be caused 
by a trap-inducing FP or CP operation. Note that FP and CP register loads and stores are considered a type 
of load and store instruction, and therefore are not a deferred trap. 

The servicing of a deferred trap is facilitated by the use of a deferred-trap queue. This queue contains the 
trap-inducing instruction and its address, as well as other FP (and/or CP, in the case ofthe CY7C60 1) instruc­
tions that may have been fetched. This allows the deferred-trap handling routine to recover from the deferred 
trap by emulation or re-execution of the trap-inducing instruction. The topics of floating-point queues are 
covered in Section 3.5.1.1 for the RT620 and Section 7.3.1.2 for the CY7C602 FPU. The topic of floating­
point traps for the RT620 is further addressed in Section 3.9.8. 

2.4.5.3 Interrupting Traps 

Interrupting traps occur in response to the interrupt level inputs, memory exceptions, or reset. They differ 
from both precise traps and deferred traps in that they are not necessarily caused by a particular instruction, 
or may be due to an exception caused by a previous instruciton. Interrupting traps also differ from the other 
trap types in that they are not required to provide a means of emulating an instruction (such as the FP queue) 
that caused an interrupting trap. 

2.4.5.3.1 Interrupt Requests 

Interrupt requests are made to the SPARC processor by means of a group of interrupt level signals 
(MIRL(3:0) for the RT620 and IRL(3:0) forthe CY7C601). The interrupt level on these lines are compared 
against the four-bit processor interrupt level (PIL) field in the processor state register (PSR) of the integer 
unit. If the interrupt level is greater than the setting of the PIL, an interrupting trap is taken by the processor. 
Note that (M)IRL(3:0) = '0000' denotes no interrupt request and' 1111' denotes a non-maskable interrupt 
request. 

For processor-specific information on interrupts, refer to Section 3.9.7 for the RT620 or Section 6.5.3 for 
the CY7C601. 

2.4.5.3.2 Reset 

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is trig­
gered by asserting the RESET input signal. Upon recognizing the RESET signal, the RT620 or CY7C601 
enters reset mode and stays there until the RESET line is deasserted. After reset, the processor enters Execute 
mode and then begins the execute trap procedure. The processor modifies the enable traps bit (ET=O), and 
the supervisor bit (S=l). It then sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 
4, and transfers control to location O. All other PSR/ields, and all other registers retain their values/rom 
the last Execute mode. 

If the processor was reset from error mode, then the normal actions of a trap have already been performed, 
including setting the tt field to reflect the cause of the error mode. Because this field is not changed by the 
reset trap, a post-mortem can be conducted on what caused the error mode. The processor enters error mode 
whenever a synchronous trap occurs while traps are disabled. 

Note: Upon power-up reset the state of all registers other than the PSR are undefined. 

2.4.5.3.3 Memory Exceptions 

Memory exceptions are signaled to the processor by the cache controller. In general, these may be due either 
to a cache access exception or to an MBus exception that is signalled by the responding MBus unit. 
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Memory exceptions are signalled to the RT620 by the RT625 CMTU using the IMEXC signal. In a similar 
fashion, the CY7C604/605 CMU uses the MEXC signal to signal memory exceptions to the CY7C601. The 
IU (either RT620 or CY7 C60 1) This interface and other details concerning memory exceptions are covered 
in the chapters specific to these processors. 

2.4.5.4 Trap Operation 

Once a trap is taken, the following operations take place: 

• Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error 
mode). 

• The S bit of the PSR is copied into the PS bit; the S bit is then set to 1. 

• The CWP is decremented by one (modulo the number of windows) to activate a trap window. 
This happens regardless of the contents of the WIM register, which is ignored upon entering 
a trap. 

• The PC and nPC are saved into r[17] and r[18], respectively, of the trap window. 

• The tt field of the TBR is set to the appropriate value. 

• If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written 
with TBR + 4. If the trap is a reset, the PC is set to address zero and the nPC to address four. 

The SPARC architecture does not automatically save the PSR into memory during a trap. Instead, it saves 
the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner (ET 
and CWP), or should not be altered in the trap handler until the PSR has been saved to memory. 

2.4.5.4.1 Trap Addressing 

The trap base register (TBR) is made up of two fields, the trap base address (TBA) and the trap type (tt). 
The TBA contains the most-significant 20 address bits of the trap table, which is in external memory. The 
trap type field, which was written by the trap, not only uniquely identifies the trap, it also serves as an offset 
into the trap table when the TBR is written to the PC. The TBR address is the first address of the trap handler. 
However, because the trap addresses are only separated by four words (the least-significant four bits ofTBR 
are zero), the program must jump from the trap table to the actual address of the particular trap handler. 

Of the 256 trap types allowed by the 8-bit tt field, half are dedicated to hardware traps (0-127), and half are 
dedicated to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculate the tt 
value from the fields given in the instruction, while the hardware traps can be set from a table such as the 
one below. The tt field remains valid until another trap occurs. Refer to the Ticc instruction definition in 
Chapter 12 for further information. 

2.4.5.4.2 Trap Types and Priority 

Each type of trap is assigned a priority. When multiple traps occur, the highest priority trap is taken, and 
lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in 
order to be recognized and taken. Refer to Table 3-7 for a trap priority listing for the RT620 or Table 6-7 
for a trap priority listing for the CY7C601. 
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2.4.5.4.3Return From Trap 

On returning from a trap with the RETT instruction, the following operations take place: 

• The CWP is incremented by one (modulo the number of windows) to re-activate the previous 
window. 

• The return address is calculated. 

• Trap conditions are checked. If traps have already been enabled (ET=l), an illegal instruction 
trap is taken. If traps are still disabled but S=O, or the new CWP points to an invalid window, 
or the return address is not properly aligned, then an error mode/reset trap is taken. 

• If no traps are taken, then traps are re-enabled (ET=l). 

• The PC is written with the contents of the nPC, and the nPC is written with the return address. 

• The PS bit is copied back into the S bit. 

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple 
causes a non-delayed control transfer back to the trapped instruction or to the instruction following the 
trapped instruction, whichever is desired. See the RETT instruction definition for details. 
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RT620 hyperSPARC 

Central Processing Unit 

The hyperSPARC RT620 is a second-generation SPARC RISC processor, providing a highly pipelined, su­
perscalar Central Processing Unit (CPU) solution for high-performance computing systems. Features of 
the RT620 include: 

• Dual instruction launch capability for a majority of instruction combinations 

• Integrated integer unit (IU) and floating-point unit (FPU) 

- Integer unit and floating-point unit feature enhanced pipelines for increased performance 

• Two-way set associative 8-Kbyte instruction cache (ICACHE) 

• 64-bit high-speed Intra-Module Bus (1MB) for high memory bandwidth 

- 3.3V 1MB logic for increased speed and reduced power consumption 

• Hardware support for integer multiply and divide instructions 

• Compliant to SPARC Instruction Set Architecture Version 8 

The RT620 is designed as part of a tightly coupled hyperSPARC CPU system, consisting of the RT620, the 
RT625 Cache Controller, Memory Management Unit and Tag Unit (CMTU), and two or four RT627 Cache 
Data Units (CDUs). The hyperSPARC CPU system provides the RT620 with a 128- or 256-Kbyte cache, 
a SPARC reference Memory Management Unit (MMU), and SPARC MBus with full multiprocessing sup­
port. 

3.1 RT620 hyperSPARC CPU 

The RT620 is divided into several different functional blocks: the integer data path (!DP), the floating-point 
data path (FPDP), the instruction fetch (IFETCH) unit, an on-chip (execute-only) instruction cache, the 
Instruction Scheduler (ISCHED), the floating-point instruction decode-schedule-and-dispatch controller 
(FPSCHED), and the Intra-Module Bus Interface Unit (IBIU). These blocks are illustrated in Figure 3-1. 

Instructions are fetched for the RT620 by the instruction fetch (IFETCH) block under the control of the inte­
ger unit. In order to minimize delays due to instruction cache misses, instructions are simultaneously 
requested from the instruction cache and the IBIU. Instructions are supplied to the IFETCH by the instruc­
tion cache if a cache hit occurs, or from external memory through the IBIU in the case of a cache miss. The 
IBIU instruction fetch request from external cache is nullified if an internal instruction cache hit occurs. 
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Figure 3-1. RT620 hyperSPARC CPU Block Diagram 

FPDP 

Once an instruction pair is fetched, it is globally decoded by the ISCHED block, The instruction pair is 
scheduled for multiple or single instruction launch depending upon the instruction combination and the 
execution resources required. If an instruction pair (also called an instruction packet) cannot be executed 
together, the packet is split and the individual instructions are executed singly and in order. Floating-point 
instructions are dispatched to the floating-point unit by the ISCHED, where they are locally decoded by the 
FPSCHED unit. Local decoding of the integer instructions is performed by a sub-block of the integer data 
path (IDP). Figure 3-1 illustrates the functional blocks of the RT620. 

IDP - The integer data path is comprised of several units. The arithmetic and logic unit (ALU) handles 
integer arithmetic, logical, and shift instructions. The load and store unit (LSU) handles instructions 
that load and store data between memory and registers. This includes the loading and storing of both 
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integer and floating-point (fp) data. The program counter unit (PCU) maintains the program counter 
and performs condition code evaluation. The special register unit (SRU) handles instructions which 
read and write the SPARC special registers (SREGS). The integer register file (IREGS) is also con­
tained in the integer unit data path. 

FPDP - The floating-point unit is comprised of the floating-point queue (FPQ), the floating-point arithme­
tic unit (FAU), the Floating-Point Multiplier Unit (FMU), the floating-point register file (FREGS), and 
the floating-point status register (FSR). The FPDP handles all SPARC fp data operations. Note that fp 
load and store operations, which are considered a subset of standard load and store instructions, are 
handled by the integer unit. The FPDP generates results which are fully compatible with the ANSI! 
IEEE 754-1985 standard. 

ISCHED - The Instruction Scheduler performs several key control functions. It provides global instruc­
tion decoding, identifying which execution unit resources are required and determining whether 
sequential or simultaneous execution is possible. It determines whether data forwarding can be per­
formed and whether instruction dispatches (also called "launches") need to be delayed due to data 
dependencies. It initiates instruction launch and it identifies and controls interrupt and trap handling. 

FPSCHED - The floating-point instruction scheduler performs key control functions for the floating­
point unit. When the integer unit detects fp instructions in the Decode stage, it off-loads these 
instructions to the fp functional units and continues processing. Therefore, functional blocks exist 
which perform necessary decode, scheduling and control for fp operations. The FPSCHED provides 
floating-point instruction queue control (FPQc), performs fp instruction decoding, and performs fp 
data dependency and data forwarding resolution. It provides the integer unit with signals that indicate 
when fp load or store instructions should be delayed due to data dependence on instructions in the FPQ. 
It also initiates fp instruction launch. 

IFETCH - The instruction fetch unit consists of two major functional blocks: the program counter unit 
(PCU) and.the instruction fetch controller (IFETCHC). 

The program counter unit (PCU) calculates the address of the next instruction to be fetched. It handles 
instructions which cause program control transfer such as CALL and Branch. This unit handles both 
integer and fp Branch instructions. 

The hyperSPARC CPU fetches two instructions (a packet) at a time. The instructions within the packets 
are referred to as slots. The first instruction in the packet is referred to as slot-a and the second instruc­
tion in the packet is referred to as slot-b. In each clock cycle, the CPU attempts to launch both the 
instructions in the packet. If the instruction packet cannot be launched together, the instructions are 
launched singly and in order. 

In order to fully support the instruction fetch and launch mechanism, the CPU's on-chip instruction 
cache supports non-aligned packet boundary accesses. The instruction cache also interfaces with the 
64-bit data path of the IBIU block and the external cache subsystem. 

ICA CHE - The on-chip instruction cache stores 8 Kbytes of instructions (corresponding to 2048 instruc­
tions ).lts inclusion follows the Harvard architectural approach, reducing contention for the bus during 
memory accesses. This approach allows parallel access to instructions and data. While instructions are 
fetched from the on-chip ICACHE, the external bus can simultaneously access data from memory. 
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When a conflict over bus usage between a data and instruction access does arise (e.g., in the case where 
an instruction cache miss occurs), the data access receives priority over the instruction access. 

When an on-chip instruction cache miss occurs, only one extra clock cycle is required to fetch the in­
struction from the external cache. This is accomplished by simultaneously accessing the on-chip 
instruction cache and the external cache subsystem. If an on-chip instruction cache hit does occur while 
the external access is in progress, the external access is canceled. 

IBIU - The IBIU provides the interface between the CPU and the other hyperSPARC chips. The IBIU 
samples incoming control signals and propagates controls to appropriate functional blocks. The IBIU 
is responsible for generating memory access control signals to the cache memory subsystem (e.g., ad­
dress, size of data, access-type, etc.). Data and instructions are read from memory, and data is written to 
memory, through the IBIU. 

3.2 Integer Data Path (IDP) 

The integer data path is comprised of five major data units: the arithmetic and logical unit (ALU), the load 
and store unit (LSU), a set of special control registers (SRU), and a register file for integer data (IREG). 
Figure 3-2 illustrates the logical blocks of the integer unit, which are described in this section. 

3.2.1 Arithmetic and Logical Unit (ALU) 

The ALU handles all the SPARC integer operation instructions. The following instructions are executed by 
the arithmetic and logical unit: 

integer arithmetic instructions: ADD, ADDcc, ADDX, ADDXcc, SUB, SUBcc, SUBX, SUBXcc, 
MULScc, UMUL, UMULcc, SMUL, SMULcc, SRL, SRA, SLL, SETHI, TADDcc, TADDccTV, 
TSUBcc, TSUBccTV, SAVE, RESTORE. 

integer logical instructions: AND, ANDcc, ANDN, ANDNcc, OR, ORcc, ORN, ORNcc, XOR, XORcc, 
XNOR, XNORcc. 

special register unit read/write instructions: RDY, RDASR, RDPSR, RDWIM, RDTBR, WRY, WRASR, 
WRPSR, WRWIM, WRTBR. 

fetch control instructions: JMPL, RETT, FLUSH 

These instructions are described in detail in Chapter 12, SPARC Instruction Set. 

3.2.2 Load and Store Unit (LSU) 

The load and store unit (LSU) handles all the SPARC integer and fp load and store instructions. It is com­
prised of two sub-blocks (represented in Figure 3-2), the Load/Store adder and the Load/Store alignment 
shifter. 

The LSU performs two basic functions: 

• It calculates the data effective virtual address. 

• It aligns data which is being loaded and/or stored. Therefore, the LSU uses add, shift, and 
memory alignment exception checking logic. 

3-4 



TECHNOLOGY, 
~~~~~~~~~~~~~~R=T=6=2=O=h~y=pe=r=SP=~=R=C~C=P~U 

, , " 
: 

".' 

INTEGER UNIT REGISTER FILE (IREGS) 
136 x 32-bit registers 

'> ':' .... ..... ". , 

i .Data 

-".f'- f.. f-J,...."F 
i:; 

i; .. ;' , , 
:; .t ~r1 Special 

';, ALU 
' .. 1 Load-Store .' '. . . . . Processor Counter r: Register Unit : t Adder 1 Unit (PCU) 

(SRU) 

·1 
I .' LSU t ' 

I> 
.... .•....... j' Addr Load-Store ,I 

i/· Dl\t~ I Alignment Shifters II 
!O',:; '.' 

CQlltrdl ~ . I 
.....•.. ';, '. '. -,.--.----

Data 

Instruction Instr Intra-Module 
Scheduler Bus Interface Unit 
(ISCHED) r--- (ruIU) 

Addr 

Instruction Cache 
(ICACHE) 

fp fp Instr fp Cntrl fp Status Control Address Datajlnstrs 
Addr 

Figure 3-2. IDP Blocks 

The following instructions are executed by the load and store unit: 

• Integer load and store instructions: LDUB, LDSB, LDUH, LDSH, LD, LDD, LDUBA, 
LDSBA, LDUHA, LDSHA, LDA, LDDA, STB, STH, ST, STD, LDSTUB, SWAP, STBA, 
STHA, STA, STDA, LDSTUBA, SWAPA. 

• fp load and store instructions: LDFSR, LDF, LDDF, STFSR, STF, STDF, STDFQ. 

These instructions are described in detail in Chapter 12, SPARC Instruction Set. 

3.2.3 Program Counter Unit (PCU) 

The program counter unit (PCU) performs three functions. It selects the address for the next instruction from 
several possible sources. It performs condition code evaluation. It also maintains the program counter (PC) 
through the successive stages of the execution pipeline. 

The PCU executes the following SPARC integer and fp instructions: 

• Branch and CALL instructions: Bicc, FBfcc, and CALL. 

These instructions are described in full detail in Chapter 12, SPARC Instruction Set. 
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The PCU is also involved in the execution of the Ticc, JMPL, RETT, and FLUSH instructions through the 
propagation of instruction addresses to the ICACHE and the IBIU units. 

3.2.4 Special Register Unit (SRU) 

The special register unit is comprised of the control/status registers defIned for Version 8 of the SPARC Ar­
chitecture. These special registers are identical to those implemented in the CY7C60 1, with the addition of 
the instruction cache control register (ICCR) and the diagnostic (DIAG) register. A more detailed descrip­
tion of integer unit control/status registers is given in Section 2.2 .1. 

3.2.5 Internal Register File (I REGS) 

The general register model for the hyperSPARC is given in Figure 3-3. The r-registers (or IREGS) are the 
working register set for the SPARC integer unit. All r-registers are 32-bits in length. The 136 r-registers sup­
ported by the RT620 are divided into 128 windowed r-registers and eight global registers. The 128 
windowed r-registers are divided into eight overlapping windows of twenty-four r-registers. The twenty­
four r-registers that comprise a window are further subdivided into three groups of eight registers, referred 
to as the in, out, and local registers. The eight r-register windows overlap in a manner such that the in regis­
ters of one window are the out registers of the previous window. Local r-registers are not shared with another 
window, but are private to that window. The current window in use by the processor is pointed to by the 
current window pointer (CWP), a fIeld within the processor state register. In addition to the r-register win­
dow, there are eight global registers that are accessible regardless of the current window pointer. 

More information on the lREGS and the SPARC register model is given in Chapter 2. 
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Figure 3-3. hyperSPARC Register Model 

3.3 Instruction Fetch Unit (IFETCH) 

Before discussing the details of these blocks, it is helpful to first reach an understanding of the state machine 
which governs the behavior of the integer unit. The behavior of the entire hyperSPARC CPU follows that 
of the integer unit. Figure 3-4 shows the four states of the integer unit: RESET, EXECUTE, HOLD, and 
ERROR. During reset, the reset line (PRST) will be asserted. Until reset is deasserted, the CPU remains in 
the RESET state. When the reset signal is deasserted, the CPU enters the EXECUTE state. This is the normal 
mode of operation. 
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Figure 3-4. RT620 State Transition Diagram 

After reset, the processor remains in the EXECUTE state unless (i) a precise or deferred trap occurs while 
traps are disabled, or (ii) for some reason, reset is asserted, or (iii) an access to the external cache subsystem 
has resulted in an external hold signal being asserted (PH OLD). If condition (i) occurs, the CPU enters ER­
ROR state and remains in ERROR state until reset is asserted again. If condition (ii) occurs, RESET state 
is entered until the reset signal is again deasserted. If condition (iii) occurs, the CPU enters HOLD state and 
remains in the HOLD state until either a reset is asserted or the external hold is deasserted. If the reset is 
asserted, RESET state is entered as in the previous cases. If the external hold is deasserted, the CPU returns 
to EXECUTE state. 

While the integer unit remains in EXECUTE mode, instruction fetches may occur. The process of instruc­
tion fetch involves (i) generating an address for instruction fetch, (ii) locating and retrieving that instruction, 
and (iii) placing the instruction in a cache from which it can be decoded and executed. 

Once the address for the next instruction packet is available, the instruction must be located. The PCU will 
send the instruction address to the IBID and the ICACHE simultaneously. If the ICACHE is enabled and 
the instruction is located in the ICACHE, the ICACHE will return the instruction packet to IFETCH 
(Instruction FETCH) and signal the IBIU to cancel the request for data from the external cache subsystem. 
Otherwise, the IBID continues with the request for an instruction fetch to the external cache subsystem. 

If the instruction is available in the external cache, the external cache subsystem will return the instruction 
to IFETCH through the IBID. Otherwise, a hold signal (PHOLD) will be generated by the external cache 

3-7 



TEe H NO' 0 G Y. ,$ ============;;;;;;R;;;;;;T;;;;;;6;;;;;;2;;;;;;O;;;;;;h;;;;;y!;;;pe;;;;;;r;;;;;;SP;;;;;;i\;;;;;;R;;;;;;C=C;;;;;;P=U 

subsystem controller (RT625). The RT625 asserts the hold signal until the cache line corresponding to the 
instruction has been fetched from main memory and stored in the external cache subsystem. The RT625 
fetches the requested instruction data frrst and then the rest of the words in the cache line. The RT625 gener­
ates a data strobe signal when the requested instruction is available on the Intra-Module Bus; it deasserts 
the hold immediately (i.e., it does not wait until the entire external cache line is filled). 

3.4 Instruction Scheduler (ISCHED) 

Rather than attempting to execute all instruction combinations simultaneously, the SPARe instruction set 
has been divided into two major groups to simplify the detection of conditions for executing simultaneous 
instructions. These two groups are instructions which must be executed sequentially, and instructions which 
are eligible for simultaneous execution. 
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Table 3-1. Instruction Grouping 

Group-Id Group-Name Instructions 

A Load/Store LDSB, LDSH, LD, LDUB, LDUH, LDD 
LDF,LDDF 
ST, STB, STH, SID 
STF, SIDF 
SWAP, LDSTUB 

B ALU ADD, AND, OR, XOR, SUB, ANDN, ORN, 
(arithmetic/logic ) XNOR 

ADDXSUBX 
ADDcc. ANDcc. ORcc. XORcc. 
SUBcc. ANDNcc, ORNcc. XORNcc 
ADDXcc, SUBXcc 
TADDcc, TSUBcc, 
MULScc 
SLL, SRL. SRA, SETHI 

C FP instruction FADDs, FADDd, FSUBs, FSUBd 
(FP add/multiply PTO (fp data conversions) 

except fcmp) FMULs, FSMULd, FMULd 
FDIVs, FOlVd, FSQRTs, FSQRTd 
FMOVs, FNEGs, FABSs 
fp instruction (quad precision) 

D (reserved) (reserved) 

E Bcc Bicc, FBfcc 
(Branch control 

transfer) 

F Single-step CALL, JMPL, RETT, SAVE, RESTORE 
TADDccTV. TSUBccTV 
UMUL, UMULcc, SMUL, SMULcc 
UOlV, UOlVcc, SOlV, SOlVcc 
RDY, RDPSR, RDWIM, RDTBR 
WRY, WRPSR, WRWIM, WRTBR 
LDSBA, LDSHA, LDA, LDUBA, LDUHA, 
LDDA,LDFSR 
STA, STBA, STHA, STDA, STDFQ, 
STFSR, SWAPA, 
LDSTUBA 
Ticc. FLUSH. CPOPS, CBccc, illegal, 
LDC. LDDC, LDCSR, STC, SIDC, STCSR, 
SIDCQ 
FCMPs, FCMPd, FCMPEs, FCMPEd 

In order to simplify this process of group classification, instruction decoding has been broken down into two 
levels. These two levels are global (scheduling) decoding and local (execution unit) decoding. 

During the global level of Decode, each instruction in the Decode buffer is characterized as either belonging 
to a group which must always be launched one at a time (referred to as anfgroup) or belonging to a group 
which is eligible for simultaneous launch (sometimes referred to as a non-fgroup). The instruction groups 
eligible for simultaneous launch can be conceptualized as being mapped to one of four execution units. 

During global Decode, resource conflicts, data dependencies and operand forwarding are detected and re­
solved. After group characterization is performed by the instruction decoder, local decoding is performed. 
If an instruction is recognized as a floating -point instruction, local decoding for that instruction is performed 
by the FPSCHED. 
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3.4.1 Single Instruction Launch Group 

During global Decode, each instruction in the instruction packet is classified as either a single launch in­
struction, or a multiple launch instruction. If either instruction belongs to the single step group, then it must 
be executed by itself. In other words, single step instructions cause the execution of the packet to be split 
(i.e., to be executed in sequence). The instructions in this group are: 

• CALL, JMPL, RETT, SAVE, RESTORE, TADDccTV, TSUBccTV, UMUL, UMULcc, SMUL, 
SMULcc, UDIV, UDIVcc, SDIV, SDIVcc, Ticc, FLUSH, RDPSR, RDTBR, RDWIM, RDY, RDASR, 
WRPSR, WRTBR, WRWIM, WRY, WRASR, LDSBA, LDSHA, LDUBA, LDUHA, LDA, LDDA, 
LDSTUBA, SWAPA, LDFSR, STFSR, STDFQ, STBA, STHA, STA, STDA, FCMP, (CBccc, LDC, 
LDDC, LDCSR, STC, STDC, STCSR, STDCQ). 

• all other coprocessor instructions (copland cop2). t 
• any other unimplemented instruction or reserved opcode detected at global Decode time (except for 

unimplemented fp instructions). 
All other instructions are eligible to be executed simultaneously. 

Special Case: There is a special case regarding single step instructions when a write special register or 
load floating-point status register instruction has been executed. The execution of write special register or 
load floating-point status register instructions cause packet splitting to be enforced for the next three instruc­
tions regardless of the group to which the three succeeding instructions belong. 

3.4.2 Multiple Instruction Launch Group 

If the instruction scheduler detects a packet which does not contain a single launch instruction, does not con­
tain two instructions of the same group (for an exception to this, see Table 3-2) does not have an intra-packet 
data conflict, and does not have an inter-packet data conflict, then the instruction scheduler will launch both 
instructions in parallel. 

If there is an intra-packet data conflict, the instruction scheduler will split the packet. If there is an inter-pack­
et data conflict, the instruction scheduler will delay the slot-b instruction if the conflict exists only for the 
slot-b instruction. The scheduler will delay both instructions if the conflict exists for the slot-a instruction. 
The concept of intra-packet and inter-packet dependencies is discussed in Section 3.4.3 under the notes for 
case vii. 

As mentioned previously, the groupfinstructions force packet splitting. The following table lists combina­
tions of instructions in the Decode packet that are eligible for simultaneous execution. 

t The RT620 does not support a coprocessor interface. The RT620 enters a coprocessor disabled trap upon encountering a 
coprocessor instruction. 
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Table 3-2. Instruction Combinations Eligible for Simultaneous Execution 

Slot-a Slot-b Slot-a Slot-b 

group A group B group C group A 

group A group C group C group B 

group A group E group C group C [IJ 

group B group A group C group E 

group B [2J group B [2J group E group A 

group B group C group E group B 

group B group E group E group C 

Notes: 1. Assuming the FPQ is not full, from the perspective of the instruction scheduler, the combination of two group C instructions in a 
packet behaves as though both instructions are launched simultaneously. 

2. A special case exists called Fast Constant (refer to section 3.4.4.1) which permits two group B instructions in a packet to be 
executed at the same time. Otherwise, two group B instructions in an instruction packet must be executed singly. 

3.4.3 Interlocks and Dependencies 

There are situations where certain activities of the processor are temporarily suspended. These suspensions 
come in two forms: 

1. A total freeze on activities in both the integer unit and the floating-point unit (an interlock caused by 
an external hold being applied by the external memory subsystem or IMBNA asserted and data ac­
cess required.) 

2. A delay in launching additional instructions (i.e., a delay caused by the lack of available computing 
resources or available data to continue launching instructions). 

More specifically, instruction launch delays can be caused by: 

i. A miss in the ICACHE. 

ii. Contention for integer register file read ports. 
Whenever a store instruction is executed, the pipeline maintains this information and the scheduler 
checks to see if a store instruction is in the Execute stage. If a fetched instruction requires the Load/ 
Store adder (e.g., LD, ST, LDSTUB or SWAP), that instruction is delayed until the store in execute 
has advanced to the Cache stage. The reason for this is that a store instruction actually has three 
source operands. The first two operands (rs 1 and rs2, or rs 1 and the signed immediate field) are used 
to calculate the effective address. The rd field contains the third source, that is the register containing 
the data to be written to memory. Since the integer register file has only two read ports which can be 
used by the LSU, the third operand access must be deferred to the Execute stage of the Store instruc­
tion. When a Load or Store instruction is in Decode, it requires access to the register ports to obtain its 
effective address source operands. This access conflicts with that of the store instruction which is in 
the Execute stage. Therefore, the second Load-Store instruction will be delayed. 

A JMPL, RETT or FLUSH that follows a store instruction must be delayed for one clock to avoid bus 
contention. A JMPL, RETT or FLUSH instruction that follows a LDSTUB or SWAP instruction will 
be delayed for two clocks to avoid bus contention. 
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iii. Contention for execution units. 

iv. Arbitrary internal delays. 
There are cases involving Bicc, FBfcc, CALL, JMPL, and RETI that result in delays until the next 
instruction is available. For the cases of JMPL and RETI, these instructions are both delayed control 
transfer instructions. Because it is possible for these control transfer instructions to corne alone or in 
pairs and instructions are fetched two at a time, the location of a delayed control transfer instruction 
(slot-a vs. slot-b) and availability of delay slot instructions determine when a change in the flow of 
program control takes effect. When a Bicc, FBfcc, CALL, JMPL or RETI instruction is in Decode 
and the delay slot instruction is not available, the control transfer instruction will be delayed until the 
delay slot instruction is available. 

A specified delay (called an "internal nop" or inop) is inserted after any JMPL or RETI instruction. 
This provides sufficient time to generate the new target instruction address and only fetch the delay 
slot instruction packet. An internal nop (inop) has the same effect as a nop instruction; there is no 
operation and no program accessible machine state is altered. 

In the case of FLUSH instructions, the processor must perform an ICACHE lookup and a Writeback 
(FLUSH). This requires that three inops be inserted after any FLUSH instruction before a new in­
struction fetch can be performed. Also note that a FLUSH instruction is delayed until any instruction 
or data access that is in progress is completed. 

v. The presence of an exception that has not yet trapped. 
The scheduler also tracks the occurrence of exceptions that are detected at various pipeline stages. If 
an exception has been detected, the pipeline stages advance until the trap is taken; but additional in­
structions are neither fetched nor launched until the trap is taken. 

vi. A full fp pre-queue while additional fp instructions are "waiting" in the DBUF (Decode buffer). 
The floating-point unit provides the scheduler with status information regarding free space in the fp 
pre-queue. When fp instructions exist in the integer unit decoder and there are no free entries in the 
pre-queue for off-loading fp instructions, additional instruction fetch and launch cannot continue. 
Instruction fetch and launch resumes when instructions in the floating-point unit launch, thus mak­
ing a free entry available in the fp pre-queue. 

vii. Data dependencies (integer or fp). 
Data dependencies need to be checked in two directions. The first involves checking for data depen­
dencies between instructions in the same packet (called "intra-packet" dependencies). The second 
direction involves dependency checking between instructions which have not yet been launched and 
instructions currently advancing through the pipeline stages but have not yet written results back to 
the register ftle (called "inter-packet" dependencies). Dependency checking covers both the integer 
unit and floating-point unit and is limited to detecting register conflicts. 

When intra-packet dependencies are detected the second instruction will be delayed at least one 
clock. For inter-packet comparisons, either one instruction will be delayed (if only the slot-b instruc­
tion is involved) or both instructions will be delayed (if the slot-a instruction is involved). 

viii. FP compare instructions in the pre-queue and an FBfcc instruction in the instruction (not fp) decoder. 
The fp compare instructions and Idfsr are the only fp instructions that can affect the fp condition 
codes. The fp Branch is delayed until new fp condition codes are available (in the ex2 stage of an fp 
compare instruction and the Update stage of a LDFSR instruction). 
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ix. An LDFSR or a STFSR in the instruction decoder and a non-empty FPQ. 

x. Integer multiply instructions cause further instruction launch to be held for 18 cycles. 
The integer multiply instructions require 17 clock cycles to complete execution. Instruction 
launches can continue after cycle 17. 

xi. Execution of an integer divide instruction causes further instruction launch to be held for 37 cycles. 
The integer divide instructions require 37 cycles to complete execution. Instruction launches can 
continue after the execution is complete. 

Instruction Execution Notes: 

Integer Unit Forwarding: ALU results are computed in one clock. The results move through a series of 
buffers as the instruction moves through each pipeline stage. If an instruction in Decode stage requires the 
result from an ALU operation before the result is written back to the destination register, this result is for­
warded to the instruction in Decode stage as an operand input. However, if the instruction in Decode stage 
requires the result of a load operation in the Execute stage or Cache stage, a delay will occur until the operand 
is available. In the floating-point unit, since more than one clock is required to execute an instruction, for­
warding is not possible for intermediate pipeline stages, so delays are performed in much the same way as 
for load instructions. 

Integer Unit Dependency Checking: Since dependency checking needs to be performed for both the inte­
ger unit and floating-point unit, responsibility for the checks is divided between the two units. In the cases 
where inter-packet dependencies are resolved by the FPSCHED, dependencies detected by the FPSCHED 
are signaled to the integer unit scheduler. For more information on fp instruction scheduling, see Section 
3.5.1. 

There are two possible outcomes for inter-packet dependencies. When the slot-a instruction encounters a 
data dependency, both the slot-a and slot-b instructions are delayed. When the slot-a instruction does not 
encounter a data dependency and the slot-b instruction does encounter a data dependency, the slot-a instruc­
tion is launched and only the slot-b instruction is delayed. This preserves the execution order of programs 
and minimizes the complexity of the exception handling logic. 

3.4.4 Special Features 

There are three special cases in which multiple instruction launch is allowed that otherwise would have to 
be executed sequentially. These three cases are called Fast Constant, Fast Index, and Fast Branch. 

3.4.4.1 Fast Constant 

When there is a need to construct 32-bit constants, SPARC typically accomplishes this by executing two 
ALU instructions. For example: 

sethi %hi(const), %rx 
or %rx, %lo(const), %rx 

In these instruction sequences, no ADD or logical OR need actually be performed. These operations can be 
accomplished through simple concatenation. Therefore, when the SETHI is in slot-a and the add/or is in 
slot-b, it is possible to construct the constant in one step rather than two sequential steps by simply concate­
nating the high and low immediate fields of the instructions on the operand 2 input bus to the ALU. During 
a Fast Constant, register %gO (constant zero) is selected as the ALU input operand 1 and the concatenated 
32-bit constant is selected as the input operand 2. The operation performed by the ALU will be an OR opera­
tion. The result can then be passed through the ALU. 
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3.4.4.2 Fast Index 

There is a need to rapidly establish base addresses for array indexing, especially for programs which use 
complex data structures. This is typically accomplished by executing two instructions sequentially, for ex­
ample: 

sethi %hi(const), %rx 
ld [ %rx + %ry] , %rz 

or 
sethi %hi(const), %rx 
ld [%rx + imm], %rz 

or 
sethi %hi(const), %rx 
st %rz, [%rx + %ry] 

or 
sethi %hi(const), %rx 
st %rz, [%rx + imm] 

In this instance, although the two instructions do not require the same execution unit, there appears to be 
a data dependency. An add is performed and the results of the SETHI need to be written to the register file. 
However, when the SETHI is in slot-a and the load or store (including a fp load or store) is in slot-b, it is 
possible to provide the "shifted" constant to both the operand 2 input of the ALU and the operand 1 input 
of the LSU in one step rather than two sequential steps. The ALU processes the SETHI in the normal fashion. 
The LSU calculates the effective address by adding the operand 1 input (generated by the instruction decod­
er, not the fp decoder) with the second operand (specified by the instruction). 

3.4.4.3 Fast Branch 

In other words, instruction pairs of the type: 

sethi %hi(const), %rx 
ldd [%rx + imm], %rz 

are executed as 

sethi %hi(const), %rx 
Idd [%hi(const) + imm]/ %rz 

Ordinarily, fetching a condition-code-altering instruction and conditional Branch in the same packet would 
cause single instruction launch to occur. Consider the case where slot-a contains an ALU instruction which 
sets condition codes (e.g., ANDcc) and slot-b contains a Branch on Condition Code (e.g., BNE). Note that 
Branch Always (e.g., BA) and Branch Never (e.g., BN) do not depend on condition codes. 

Ordinarily, the Branch instruction that uses the condition codes cannot be launched at the same time as the 
ALU instruction that sets the condition codes. This is because the time at which they are needed to evaluate 
whether the branch should be taken or not has already passed by the time the condition codes are set. Also, 
since the condition codes are not written back to the PSR immediately, a dependency issue exists. 

Delays are avoided for most intra-packet and inter-packet branch condition code dependencies through the 
application of two techniques: 

1. condition code forwarding 

2. special handling of Branch under the Fast Branch situation 
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Condition code forwarding works similarly to operand forwarding. That is, if condition codes are required 
the clock after an ALUcc instruction has been launched, the newly generated condition codes are provided 
even though the PSR has not yet been updated. 

In the special case where the ALUcc and Bicc instructions are contained in the same packet (i.e., there is 
an intra-packet condition code dependency and the delay slot instruction is available in the Fetch stage), the 
situation is referred to as a Fast Branch condition. An assumption is made that code generation is biased such 
that the Branch will be taken more often than not taken. Rather than split the packet and potentially waste 
a clock cycle, the new target address fetch is attempted. If the Branch is taken, the new target is available 
by the time the delay slot instruction has been executed. Otherwise, the delay slot instruction packet is 
executed and the original instruction stream is restored. Section 3.8.12.3 describes the pipeline operation 
for the Fast Branch case. 

Fast Branch does not apply to floating-point Branch instructions. Fast Branch also does not apply when the 
slot-a instruction is a TADDccTV, TSUBccTV, UMULcc, SMULcc, UDIV cc, or SDIV cc instruction, be­
cause these instructions force packet splitting. 

Note that when a UMULcc, SMULcc, UDIV cc or SDIV cc instruction is being executed, the condition codes 
will NOT be available until after the instruction completes its Execute stages. The condition codes can be 
forwarded through the Cache and Writeback stages for these instructions. Sections 3.8.3.1 and 3.8.3.2 pro­
vide a description of the pipeline stages for multiply and divide instructions. 

3.5 Floating-Point Unit (FPU) 

The hyperSPARC RT620 features a high-performance pipelined floating-point unit capable of launching 
one fp operation per cycle. The floating-point unit (illustrated in Figure 3-5) is comprised of a floating-point 
queue (FPQ), a floating-point register file, a floating-point status register (FSR), and two execution units. 
The two execution units are a 64-bit floating-point arithmetic unit (FAU) and a 64- x 32-bit Floating-Point 
Multiplier Unit, which enable single-precision addition, subtraction, and multiplication operations to 
execute in one cycle. To further enhance performance, the floating-point unit utilizes condition code for­
warding to the integer unit to allow one-cycle FP compares. 

The general operation of the floating-point unit is illustrated by Figure 3-6, which represents the high level 
state transitions for the floating-point unit. There are four states through which the floating-point unit transi­
tions: 

1. EXECUTE. This is the normal mode of operation of the floating-point unit. 

2. EXCEPTION PENDING. The floating-point unit enters this state when an exception takes place in the 
floating-point unit on which a trap should be taken. It remains in this state until the integer unit acknowl­
edges the exception. 

3. EXCEPTION. The floating-point unit enters this state when a pending exception is acknowledged by 
the integer unit. In this state, only fp store instructions can be executed. The floating -point unit remains in 
this state as long as the queue not empty (qne) bit in the FSR is not clear or if an instruction other than a fp 
store instruction is executed. 

4. FLOATING-POINT UNIT FREEZE. The floating-point unit enters this state when the integer unit sig­
nals a hold. The hold could be due to an external hold (e.g., cache miss) or an internal hold. All activities in 
the floating-point unit are frozen in this state. 
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Figure 3-6. Floating-Point Unit State Transition Diagram 
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3.5.1 Floating-Point Instruction Decode-SCHEDule-and-Dispatch Controller (FPSCHED) 

The IFETCH and ISCHED blocks provide instruction fetch and global decoding for the RT620. All instruc­
tions recognized as a floating-point instruction are forwarded to the floating-point instruction scheduler for 
local fp instruction decoding and fp instruction launch. The task of the FPSCHED is largely performed by 
the floating-point queue (FPQ) and the floating-point queue control (FPQC) blocks. The FPQ stores both 
instructions awaiting execution and those in the process of execution. The FPQC provides control for the 
FPQ, as well as local fp instruction decoding and execution scheduling. The following sections describe the 
FPQ and FPQC. 

3.5.1.1 Floating-Point Queue (FPQ) 

The floating-point queue (FPQ) is divided into two parts, a pre-queue and a post-queue, as illustrated in 
Figure 3-7. The post-queue consists of three queue entries corresponding to the three stages of the fp execu­
tion pipeline (Executel, Execute2, and Round). The post-queue tracks instructions which have begun 
execution until an exception is detected or result generation is completed. 

In order to support exception handling, the post-queue retains both the instruction address and a copy of the 
instruction as it passes through successive stages of the fp execution pipeline. Since the floating-point unit 
and integer unit pipelines operate somewhat independently, the exception detected by the floating-point unit 
is delayed with regards to the integer unit pipeline. The address of the exception causing fp instruction is 
used by trap handlers to determine the point in the instruction stream where the exception occurred. 

The pre-queue is a performance enhancement which largely eliminates stalls of the RT620 due to the execu­
tion of multiple-cycle floating-point unit instructions. The pre-queue contains four entries, and behaves like 
an auxiliary set of instruction fetch buffers. When a series of fp instructions is fetched, the fp instructions 
are deposited in the pre-queue until execution, thereby allowing the integer unit to continue fetching and 
processing additional instructions. 
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Figure 3-7. Floating-Point Queue (FPQ) 

3.5.1.2 Floating-Point Queue Control (FPQC) 

The FPQC provides the following functions : 

• It provides FPQ management, including: queue advance, queue load and queue store. 

• It decodes and launches fp instructions. 

qne bit 
ofFSR 

• It selects the appropriate fp operands for fp instructions. This includes forwarding any fp operands. 

• It performs dependency checking against other fp instructions before launching an fp instruction. 

• It interacts with the integer unit to perform dependency checking between fp instructions and 
fp Load and Store instructions. 

• It directs loads and stores to and from the fp register file and the floating-point status register (FSR), 
and stores from the FPQ. 

• It maintains the state of the FSR. The FPQC also forwards the floating-point condition codes (fcc) to 
the integer unit. 

• It performs exception handling based on the status of the fp operations reported by the fp computational 
units and the FPQ. 

3.5.1.2.1 FPQ Management 

The floating-point unit unit operates in a pipelined manner. One fp instruction is launched per cycle assum­
ing no constraints exist. There are three stages of execution for each fp instruction: Execute 1, Execute2, and 
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Round. As the fp instruction advances through the pipeline stages, the corresponding entries in the queue 
also advance. When an fp instruction is launched for execution, it enters entry 2 in the FPQ (refer to 
Figure 3-7). This corresponds to the Executel stage of the fp instruction. When the instruction advances 
to the Execute2 stage, entry 2 is advanced to entry 1. Similarly, when the instruction advances to the Round 
stage, entry 1 advances to entry O. When the instruction completes execution, it drops out of entry 0 and 
space is available for a new instruction. If an fp instruction requires more than three cycles for execution, 
the instruction is held in queue entry 2 for the duration of the extra cycles. 

When an fp instruction is decoded in the integer unit, it is sent into the queue on the next cycle (if the queue 
is not full). If the pre-queue is empty, then the instruction enters post-queue entry 2 directly and goes into 
the Executel stage. If the instruction cannot be launched, it is stored in the pre-queue. Various conditions 
may preclude a launch: 

• If there are instructions already present in the pre-queue, the new instruction cannot be 
launched. It is stored in the first available pre-queue entry (closest to entry 2). 

• If the fp instruction in entry 2 requires multiple execution cycles, then entry 2 is not available 
for a new fp instruction and the new instruction must be delayed (see Section 3.8.13). 

• Dependency constraints may prevent a launch even if the pre-queue is empty and entry 2 is 
available. In this case, the instruction is stored in entry 3. 

• If an fp exception was detected and is awaiting acknowledgment from the integer unit, the 
floating-point unit will be in the floating-point unit exception pending state (refer to the state 
diagram in Figure 3-6). All fp execution is halted until the floating-point unit is returned to 
the Execute state. 

As instructions are launched from the pre-queue, the other instructions in the pre-queue are advanced in a 
FIFO manner. As is apparent from the above discussion, instructions in the pre-queue are always launched 
for execution from entry 3. It is not possible to have an invalid queue entry between two valid queue entries 
in the pre-queue or vice-versa. It is possible to have holes in the post -queue if instruction launch is delayed 
due to dependencies or an instruction spends extended cycles in the Execute2 stage. 

The queue entries are emptied as follows: 

1. The fp instructions finish normal execution; the instructions are flushed out of entry 0 and the 
queue advances. 

2. Instruction(s) in the queue are flushed due to an integer exception. 

3. A STDFQ instruction is issued which causes a queue entry to be stored out to memory. 

The FPQC provides queue-not-empty (qne) status information to the FSR. The qne bit in the FSR indicates 
if the queue is empty (qne is clear). From the programmer's perspective, the qne bit in the FSR indicates 
whether or not there are valid entries in the pre-queue and post-queue, but it does not indicate the number 
of valid entries or their location. The FPQC also provides the integer unit with two signals which indicate 
if the queue is full or has only 1 entry left. If the queue is full, the integer unit must stall upon fetching an 
fp instruction and hold them until the queue can accommodate the fetched instruction. If there is only 1 entry 
left and both slot-a and slot-b contain fp instructions, then the integer unit must split the packet and hold 
the slot -b instruction in the instruction fetch buffer. The integer unit provides the FPQC with a control signal 
to FLUSH instructions in the queue under certain exception conditions. 
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3.5.1.3 Dependency Checking before FP Instruction Launch 

The FPQC is responsible for performing dependency checking on an fp instruction before it launches the 
instruction. The FPQC performs two kinds of dependency checks: 

1. It checks for dependency against any instructions still executing in the post-queue. 

2. It checks for dependency against any load instructions still executing and which occurred ear­
lier in the instruction stream. 

3.5.1.4 Floating-Point Data Forwarding 

Forwarding can be classified into two types: 

1. forwarding data to an fp instruction waiting to be launched. 

2. forwarding data to a store instruction. 

3.5 .1.4 .1 Forwarding to fp instruction 

If an fp instruction (fp inst 2) is dependent on data which will be generated by an fp instruction in the 
post-queue (fp inst 1), the data is directly forwarded to fp inst 1 when it becomes available; fp inst 2 does 
not have to wait for the data to be written into the register file. However, as stated earlier, the precisions of 
the two instructions should be the same. Figure 3-8 shows the timing for a case where two fp instructions 
are launched in parallel with an empty queue. The second instruction from the packet uses the result from 
the first instruction as one of its operands. The result from the first instruction is forwarded at the end of the 
Round stage and the second instruction enters execution in the next cycle. 

2 4 5 

fp inst 1 

fp inst 2 

Case of fp instruction forwarding data to another fp instruction: 

fp inst 1: fadds %x, %y, %z 
fp inst 2: fadds %z, %a, %b 

6 

Note: fp inst 1 and fp inst 2 are in the same packet and the queue is empty 

Figure 3-8. Forwarding between two FP Instructions 
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2 

fp load 

fp inst 

Case of fp load followed by fp instruction. 

fpload: ld [scrJ, %Z 
fpinst: fadds %2, %a, %b 

4 5 

Note: The load instruction and the fp instruction are in the same packet 
and are launched in the same cycle. 

Figure 3-9. Forwarding from Load to FP Instruction 

3.5.1.4.2 Forwarding to Load Instruction 

A fp instruction may also be dependent on data which is being loaded via an fp load instruction. Data from 
the Cache or Writeback stages of an fp load can be directly forwarded to the fp instruction. Since the instruc­
tion scheduler keeps track of the fp load execution, the FPQC communicates with the instruction scheduler 
to handle forwarding. 

Figure 3-9 illustrates the case of an fp load instruction followed by an fp instruction with both the instruc­
tions launched in parallel. The data from the fp load instruction is forwarded from the Cache stage (when 
it becomes available) to the fp instruction so that the fp instruction enters execution in the next cycle. Until 
then, the fp instruction waits in the pre-queue. 

3.5.1.4.3 Forwarding to Store Instruction 

The fp store instruction requires its data operand to be available during the Cache stage of the fp store. If 
an fp store instruction is currently in Execute and its data is being generated by an fp instruction in entry 
0, then the data is directly forwarded to the store in the next cycle (refer to Figure 3-10). 

In this example, the fp instruction and the fp store instruction are in slot-a and slot-b respectively of the 
instruction cache. The source of the fp store operand is the result of the fp instruction. Since an intra-packet 
conflict exists, the instruction scheduler will split the packet and only launch the fp instruction. In subse­
quent cycles, the FPQC performs the inter-packet dependency checking. The FPQC signals the instruction 
decoder to delay the fp store instruction until the fp instruction enters the Round stage. The data from the 
fp instruction is forwarded to the fp store instruction in the Cache stage. Note that the fp store instruction 
is launched in the cycle in which the fp instruction enters the Round stage (before the fp instruction finishes 
computation of the result). Refer to Section 3.9.8 regarding the case of an fp exception during this type of 
forwarding operation. 
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2 

fp inst 1 

fp store 

Case of fp instruction followed by fp store: 

fpinstruction: fadds %x, %y, %z 
fpstore: st %z, [dest] 

4 

Note: The fp instruction and the store instruction are in the same packet. 

Figure 3-10. Forwarding from FP Instruction to Store 

3.5.1.5 Floating-Point Load/Store Control 

Control for fp load and fp store instructions is handled by the FPQC. The instructions include LDFSR, 
STFSR, LDF, STF, LDDF, STDF and STDFQ. 

Load Instructions: The integer unit is responsible for generating the address for load instructions. The 
FPQ does the appropriate alignment of the received data. Data from the LDST bus is loaded into an internal 
register in the Writeback stage. It is then written from the internal register into the register file or FSR in 
the next (Update) stage. Thus the pipeline for fp loads is identical with the pipeline for integer unit loads. 

A LDFSR instruction is always launched by itself. The scheduler forces inops for three cycles after launch­
ing a LDFSR, allowing enough time for the FSR update to take place. 

Store Instructions (except STDFQ): When the instruction scheduler detects an fp store instruction, it sig­
nals the FPQC to provide the required data. The FPQC puts the data on the Load/Store bus during the Cache 
stage of the store. For a single precision store, the data is replicated on the upper and lower half of the Loadl 
Store bus. 

A STFSR instruction is always launched by itself. STFSR instructions are held in Decode until all floating­
point unit instructions have completed execution. 

STDFQ Instructions: Each STDFQ instruction stores out a valid queue entry from the FPQ. The entries 
are stored out in the sequence they entered the queue (i.e., in a FIFO manner). The post-queue entries are 
stored out directly from their respective queue locations and the queue is not advanced. For example, if 
post-queue entries 0 and 1 are valid and a STDFQ is executed, then post-queue entry 0 will be stored out 
on the next cycle and will be marked invalid. On the next STDFQ, the next valid entry, post-queue entry 
1, will be stored out and marked invalid. If all the post-queue entries are invalid and one or more pre-queue 
entries are valid, then the pre-queue is advanced on each STDFQ and the entries are stored out from entry 
3. For example, if only pre-queue entries 3 and 4 are valid, then entry 3 will be stored out on a STDFQ, entry 
4 will be advanced to entry 3 and entry 4 will be marked invalid and so on. 

If a STDFQ instruction is executed when the queue is empty, an fp sequence error trap occurs (see Section 
3.9.8). If the floating-point unit is in EXECUTE mode, a STDFQ instruction will be held in the instruction 
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cache until the queue becomes empty or the floating-point unit enters into EXCEPTION_PENDING mode. 
The state of the queue, empty or not empty, is indicated by the qne bit in the FSR. 

A STDFQ instruction is always launched by itself ({group instruction). The scheduler forces inops for three 
cycles after launching a STDFQ allowing enough time for the qne bit in the FSR to be updated. 

3.5.1.6 Floating-Point Unit Condition Codes: 

The floating-point condition codes are reflected in the fcc field of the FSR. Since fp Branch instructions are 
handled by the integer unit, there are two lines that carry the current fcc values to the integer unit. The FPQC 
also sends another signal indicating if the fcc values are valid. When an fp compare instruction enters the 
queue, the FPQC marks the fcc values as invalid until valid condition codes are available. 

The FPQC also forwards the fcc values from a fcmp instruction to the integer unit; it does not wait until the 
FSR is updated. Valid fcc values are available from the floating-point arithmetic unit in the Execute2 stage 
and are forwarded to the integer unit so that an fp Branch can be launched in the next cycle. The fcc values 
are not forwarded in the following cases: 

• If there is a valid instruction in queue entry 0 or 1 and the instruction is an unimplemented 
instruction. 

• If any of the queue entries 2-6 contains a compare instruction. 

• If the compare instruction itself caused an exception. 

3.5.2 Floating-Point Execution Units 

The two floating-point execution units for the RT620 hyperSPARC are the floating-point arithmetic unit 
(FAU) and the floating-point multiplier unit (FMU). These execution units are used to implement all fp 
instructions of single and double precision, including all fp compare and type conversion instructions. 
Instructions involving extended (or quad) precision data types are not implemented, and will produce an 
unimplemented fp instruction trap when encountered by the floating-point unit. 

The FAU handles all the SPARC fp arithmetic, compare and convert instructions. Appropriate conversion, 
alignment, addition, rounding, and IEEE-754 standard fp exception detection is performed by this unit in 
order to execute the assigned instructions. These instructions follow the typical fp execution pipeline. This 
pipeline involves Fetch, Decode, Execute 1 , Execute2, Round, and Update stages. 

The FMU handles the SPARC fp multiply, divide, and square root instructions. Appropriate conversion, 
alignment, addition, rounding, and IEEE-754 standard fp exception detection is performed by this unit in 
order to execute the assigned instructions. Most of these instructions follow a multiple cycle fp execution 
pipeline. For additional information on the fp execution pipeline, see Section 3.B.13. 

The floating-point functions of hyperSPARC conform to the IEEE floating-point arithmetic standard 
754-1985. In addition to standard operation, the RT620 floating-point unit allows de-normalized operands 
to be treated as zero's when non-standard mode is enabled. 

The following instructions are executed by the floating-point arithmetic unit: 

FAU instructions: FMOVs, FABSs, FNEGs, FADDs, FADDd, FSUBs, FSUBd, FiTOs, FiTOd, FsTOi, 
FsTOd, FdTOi, FdTOs, FCMPs, FCMPd, FCMPEs, and FCMPEd. 

The following instructions are executed by the Floating-Point Multiplier Unit: 

FMU instructions: FMULs, FMULd, FsMULd, FDIVs, FDIVd, FSQRTs and FSQRTd. 

Floating-point unit instructions are described in detail in Chapter 12, SPARC Instruction Set. 
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3.5.2.1 Non-standard mode 

The floating-point unit may perfonn computations in one of two modes: standard and non-standard. Stan­
dard mode reflects adherence to the IEEE-7 54 standard. Non-standard mode reflects a slight departure from 
the standard mode for handling denonnalized numbers. In non-standard mode, all denonnalized operands 
are rounded to zero. This feature is occasionally desirable in some computation routines, and it has the ad­
vantage of avoiding underflow. Standard mode is achieved by clearing the NS bit (bit 22) in the FSR. 
Non-standard mode is achieved by setting the NS bit. 

3.6 instruction Cache (ICACHE) 

The RT620 instruction cache is organized as a two-way set associative cache, organized as two sets of 128 
line entries. Each line entry consists of four instruction packets (each packet contains two instructions), a 
20-bit tag, a supervisor bit, and four valid bits to indicate the validity of each instruction packet in the 
ICACHE line (refer to Figure 3-11). Up to 2048 instructions can be held in the instruction cache. 

Each instruction fetch for the RT620 is simultaneously requested from both the ICACHE, and the IBIU, 
which in tum places the request on the RT620 address lines. In this manner, if an ICACHE miss occurs and 
the external cache contains the instruction, the miss penalty is only one clock cycle. If an ICACHE hit oc­
curs, the PNULL signal is used to cancel the request already on the bus for the external cache subsystem. 

number of bits: 20 

supervisor 
validO 

valid! 
valid2 

valid3 

64 64 

Figure 3-11. ICACHE Line Organization 

64 

~ 
packet 

h= instruction 
r-------------ta-g-------------r� ~in-d~e-x-rl~r,'~~o~ol 
~371------------~~----------~1~2~11----5~~4~3~2~1~O 

Figure 3-12. Virtual Address Format 
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Cache Organization: 

128 lines per cache set 
8 instructions per line 
Total of 8-Kbytes 

TO SE 

o 
1 
2 

S 
S 
S 
S 

127 

tag, S, valid 0-3 

S 
S 
S 
S 

I 
packet 0 - 3 

S 
S 
S 
S 

f 

instruction packet from IBID 

I 

I 

instruction packet to decode 

I 
MULTIPLEXER I 
+ • 

SET 1 I 
0 tag, S, valid 0-3 packet 0 - 3 
1 
2 
S S S 
S S S 
S S S 
S S S 

127 

t 
I 

DE-MULTIPLEXER I 

l 
Figure 3-13. ICACHE Organization 

3.6.1 Virtual Addresses 

Figure 3-12 illustrates the fields ofthe virtual address as they are decoded by the ICACHE. The two sets 
of the cache are directly indexed by bits 11 - 5 of the virtual address. These seven index bits select one of 
the 128 lines in both cache sets. Bits 31 through 12 of the virtual address are used for tag comparisons with 
the two cache lines selected by the index bits. Bits 4 and 3 are used to determine which packet is being ac­
cessed for the indexed cache line. Bit 2 is used to determine which instruction within a packet is being 
accessed for the indexed cache line. 

Alternatively, the encoding derived from bits 4 through 2 (binary values 000 through 111) also identify in­
structions within the cache line as dO through d7, respectively. From this alternative viewpoint, packet 0 
corresponds to instructions dO and d1, packet 1 corresponds to instructions d2 and d3, packet 2 corresponds 
to instructions d4 and d5, and packet 3 corresponds to instructions d6 and d7. 

3.6.2 ICACHE Hits 

Au [CACHE hit is generated when there is a tag match, and a privilege match and a packet match or a partial 
packet match. A [CACHE miss takes place if there is no ICACHE hit. 

• A tag match occurs when the tag field from the virtual address compares successfully against 
one of the tags in the two sets of the indexed cache line (determined from the index bits of the 
address). If there is no tag match, a tag mismatch occurs, which is sufficient to cause a cache 
miss. 

• Aprivilege match is determined by the comparison of the supervisor bit in the PSR against the 
access privilege for the indexed cache line as shown in the table below. If there is no privilege 
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match, there is a privilege mismatch. A privilege mismatch is sufficient to cause an ICACHE 
mISS. 

Table 3-3. Cache Line Privilege Match 

S bit inPSR S bit in cache line privilege match 

1 ignored 1 (always matched) 

0 0 1 

0 1 0 

• The S bit in the cache line is set at the time the instruction packet is fetched and written into the 
ICACHE. The S bit is set to 1 if the instruction fetch access is privileged (i.e., the PSR supervi­
sor bit is set) and cleared otherwise. 

• A packet match occurs when: 

- The access to the cache line is aligned on the packet boundary of the cache line (i.e., when A2 = 0) and 
the valid bit for that packet is set. 

- The access to the cache line is on an odd-word boundary (A2 = 1) and valid bits for both the packets (in 
which the two instructions being accessed are contained) are set. 

• Instruction fetch from off-chip sources is performed on double word boundaries. However, 
instructions from the ICACHE can be fetched on word boundaries. The instructions to be ac­
cessed from the indexed cache line are selected by the A4, A3 and A2 bits. Therefore, it is 
possible for the selected instructions to straddle two packets of the cache line. 

When a cache miss is generated, the instruction access request will be placed on the 1MB through the IBIU. 
If the miss was caused by a privilege mismatch, the RT625 CMTU will detect the attempted access to the 
privileged address space. This can cause a memory access exception to be generated if the external access 
is also tagged as a privileged address space. 

When a partial packet hit occurs as the result of an odd instruction word access, (i.e., the instruction packet 
requested straddles a doubleword boundary), the available instruction is forwarded to the integer unit, 
instead of delaying the packet until the even instruction word is available. 

I FTD I ICE I 
31 o 

Figure 3-14. ICCR Register 

3.6.3 Instruction Cache Control Register 

The ICACHE control register (ICCR) is an ancillary state register provided for control of the on-chip 
instruction cache. Access to this register is privileged (i.e., only accessible if the PSR supervisor bit is set). 
It is accessed using the RDASR (read ancillary state register) and WRASR (write ancillary state register) 
instructions. If the PSR supervisor bit is not set and a read or write to the register is attempted, a privilege 
exception occurs. The appropriate rd (destination register) or rsl (source register 1) field must be set to 31 
(Oxlf) in order to access this register. 

The instruction cache enable (ICE, ICCR < a » bit enables ICACHE accesses if it is set and disables ac­
cesses if it is cleared. 
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The flush trap disabled (FfD, ICCR < 1 » bit determines whether an ICACHE sub-block (packet) will be 
flushed (invalidated) or an unimplemented flush trap (tt=25) will be taken when a FLUSH instruction is 
executed. 

When FTD = 1, if a FLUSH instruction is executed and an ICACHE hit occurs, the packet corresponding 
to the address in the cache line is invalidated. When FTD = 0, if an attempt is made to execute a FLUSH 
instruction, an unimplemented FLUSH exception is taken. The purpose of the FTD bit is to support self-mo­
difying code in a symmetric mUltiprocessing environment. 

Upon power-on reset, the instruction cache is disabled (the ICE bit is cleared) and Flush Traps are enabled 
(the FTD bit is cleared). Also during power on, all entries in the instruction cache are invalidated. Writes 
to bits other than the FTD and ICE bits are ignored. Bits other than FTD and ICE are forced to O. 

A partial cache line hit occurs when one of the two sets has a tag match and a supervisor match, and there 
are one or more valid packets in that line. A partially valid cache line is one in which there is no tag match 
but one or more packets are valid in that line. When an ICACHE miss occurs and the ICACHE is enabled, 
the new instruction fetched from the external cache must be written into the ICACHE. The replacement 
strategy is based on determining whether there is equal eligibility for replacement between the two cache 
sets or not. 

CASE 1: In the case where neither set has any valid packets (i.e., all valid bits in the line are clear), they are 
equally eligible for replacement. The replacement bit (see below) determines the set into which 
the newly fetched packet is written. 

CASE 2: In the case where one of the two sets has a tag match and there are one or more valid packets in that 
line, the line is partially valid and the packet must be written into this set. 

CASE 3: In the case where there is no tag match in either set but one set has one or more valid packets, then 
the set containing valid packets must be preserved and the newly fetched packet must be written 
into the other set. 

CASE 4: Finally, in the case where there is no tag match and both sets' cache lines contain one or more 
valid packets, the replacement bit determines into which set the newly fetched instruction is 
writtten. 

Whenever an ICACHE line is being overwritten with a new tag, anew supervisor bit, and its first valid pack­
et, the remaining packet valid bits must be cleared, This must be done to avoid generating false ICACHE 
hits during subsequent instruction fetches. 

The replacement bit is set and cleared as follows: 

• When there is an ICACHE hit, the replacement bit does not change. 

• If there is an ICACHE miss for the instruction fetch but there is a partial cache line hit. In this 
case, the replacement bit is forced to the set in which the partial cache line hit occurred, and 
replacements are now performed in that set. 

• If there is an ICACHE miss and no packets are valid in the current set, the replacements will 
occur in the set indicated by the replacement bit. The replacement bit is unchanged. 

• If there is an ICACHE miss and no tag match but any packets are valid in this set, then the 
replacement bit changes to the opposite set, and replacements are performed in that set. 

• The replacement bit is cleared on reset. 
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3.6.4 On-Chip Instruction Cache Read/Write Diagnostic Support 

There are several instruction cache diagnostic commands defined which allow access to the tag/valid/super­
visor bits and the contents of the ICACHE blocks (lines). These diagnostic instructions are only accessible 
when the instruction cache is disabled. Access to the ICACHE is made using load and Store Alternate in­
structions. The two following subsections describe these actions. 

3.6.4.1 lCACHE Tag Access Address Mapping for Diagnostic Support 

For ICACHE tag access, use LDA and STA instructions (word size transactions only) with ASI = OxOc. 

Virtual Address Bits: 31 13 

0000 ... 0000 

VA Entry VA Entry 

Set 0 Oxooooooox entry 0 Set I OxOOOOlOOX entry 0 
OxOOOOO02X entry I OxOOOO102X entry I 
OxOOOOO04X entry 2 OxOOOO104X entry 2 

OxOOOOOfcX entry 126 OxOOOOlfcX entry 126 
OxOOOOOfeX entry 127 OxOOOOlfeX entry 127 

3.6.4.2 lCACHE Sub-Block Access (Data) Address Mapping for Diagnostic Support 

For ICACHE data access, use LDDA and STDA instructions (doubleword size transactions only) with 
ASI = OxOd. 

Virtual Address Bits: 

VA 
Set 0 Oxoooooooo 

OxOOOOO008 
OxOOOOOOlO 
OxOOOOO0l8 
OxOOOO0020 

OxOOOOOfeO 
OxOOOOOfe8 
OxOOOOOffO 
OxOOOOOffS 

31 13 

0000 ... 0000 

Entry 

entry 0: sub-block 0 
entry 0: sub-block I 
entry 0: sub-block 2 
entry 0: sub-block 3 
entry I: sub-block 0 

entry 127: sub-block 0 
entry 127: sub-block I 
entry 127: sub-block 2 
entry 127: sub-block 3 

3.6.4.3 ICACHE FLUSH Instructions 

VA Entry 

Set I OxOOOOIOOO entry 0: sub-block 0 
OxOOOOlO08 entry 0: sub-block I 
OxOOOO 10 10 entry 0: sub-block 2 
OxOOOO 10 I 8 entry 0: sub-block 3 
OxOOOOl020 entry I: sub-block 0 

OxOOOOlfeO entry 127: sub-block 0 
OxOOOOlfe8 entry 127: sub-block I 
OxOOOOlffO entry 127: sub-block 2 
OxOOOOlff8 entry 127: sub-block 3 

Two types of FLUSH instructions are available for the RT620: the FLUSH instruction, and Store Alternate 
(STA) instructions using ASI values reserved for FLUSH actions. Table 3-4 lists the various FLUSH 
instruction combinations and the corresponding actions. 

FLUSH instructions may be used to flush individual instruction packets, individual ICACHE lines, or the 
entire ICACHE. In order to flush an ICACHE line, all valid bits in the line must be cleared. Flushing an 
ICACHE line by flushing individual instruction packets requires a sequence of four FLUSH instructions, 
each of which corresponds to an instruction packet in a particular ICACHE line. 

Flushing an entire ICACHE line involves executing a Store Alternate word (STA) instruction using an ASI 
ofOxlO-Oxl4 (which flushes both the ICACHE and external cache), or ASI = Oxl8 -OxIC (which flushes 
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the ICACHE only). The effective address tag must match the tag in the indexed entry in one of the two sets 
in order for the line flush to occur. Only the ICACHE line in the matching set will be flushed. 

The entire ICACHE may be invalidated by using a Store Alternate word instruction with an ASI of Ox31. 
Both sets of the ICACHE are affected, and the effective address for the FLUSH instruction is ignored. 

Table 3-4. FLUSH instructions 

Memory 
ICACHE - Memory Access Re· 

Instruction PSR.S ICeR.Fill ICCR.lCE hit Misalign Action quired? PNULL 

FLUSH x I I 0 x nop no 

I x FLUSH no 

0 x x nop no 

0 x x x unimp flush no 
(tt = Ox25) 

STA ASI= OxlO .. Ox14 I x I 0 0 nop yes 
(on-chip and external 
cache)[2] 

I unpredictable[l] 

I 0 flush_line yes 

I unpredictablell ] 

0 x 0 nop yes 

I unpredictable[1] 

0 x x x x priv violation no 
(tt = Ox3) 

STA ASI = OxlS .. Oxic I x I 0 0 nop no 
(on-chip) [2] 

I unpredictable[l] 

I 0 flush_line no 

I unprecitable[l] 

0 x 0 nop no 

I unpredictablell] 

0 x x x x priv violation no 
(tt = Ox3) 

STA ASI = Ox31[1] I x x x x flush all no 

0 x x x x priv violation no 
(tt = Ox3) 

LDA/STA ASI = Oxc I x 0 x x read/wrt test no 
LDDNSTDA ASI = Oxd[3] 

1 x x unpredictable[l] 

0 x x x x priv violation no 
(tt = Ox3) 

Notes: 

1. Use of these cases is discouraged. Programmers should avoid unpredictable cases by prohibiting the use of misaligned addresses. 
In the RT620 implementation, the results are unpredictable and not guaranteed to behave in any specific way. 

2. Defined only for the STA instruction. Other instructions (such as LDUBA, LDSBA, etc.) generate unpredictable results. 

3. LDDNSTDA with ASI = Oxd causes the data area of the ICACHE to be read/written; LDA /STA with ASI = Oxc causes the tag 
area of the ICACHE to be read/written; other types ofloads and stores (e.g., Atomic LDSTUB, STH, etc.) result in unpredictable 
results. 

3-29 

na 

na 

na 

na 

no 

no 

no 

na 

na 

na 

na 

na 

na 

na 

na 

na 



, E C H N <0 LOG' < ,~ ============;:;R;:;T;:;6;;;;2;:;;O;:;h=yp=e;:;r;:;;;;SP;:;1\;:;R;:;C==:;C;:;P=U 

Programming Note: The diagnostic ICACHE access instructions (LDA or STA with ASI = Oxc, and LDDA 
or STDA with ASI = Oxd) will result in unpredictable results in the following cases: 
1. The instruction is executed while ICACHE is enabled. 

2. The instruction is one of three instructions following the execution of a WRPSR or WRASR %iccr 
instruction with ICACHE disabled. 

3.7 hyperSPARC Signal Descriptions 

3.7.1 hyperSPARC CPU Pinouts 

IMA<31:18> 

MIRL<3:0> 
IMA<17:15> 

PRST 
IMA<14:3> 

IMBNA IMA<2:0> 

IMEXC IMD<63:0> 

IMDS 
RT620 IMASI<5:0> 

hyperSPARC 
IMSIZE<1:0> 

PHOLD CPU 

IMCLK 
IMTYPE<1:0> 

TCK 
PNULL 

TDI 
PERROR 

TRST 
TDO 

TMS 

Figure 3-15. RT620 Signals 

IMCLK - (input) 1MB Clock 

This is the basic clock for all the Intra-Module components. All the Intra-Module signals are driven 
and sampled on only the rising edge of the IMCLK. The RT620 uses only the IMCLK clock (not the 
MBus clock). The rising edge ofIMCLK defmes the beginning of each pipeline stage. The processor 
cycle is equal to a full clock cycle. 

IMA < 31:18 > - (output, bi-state) Intra-Module Address Bus 

IMA < 17:15 > - (output, tri-state) Intra-Module Address Bus 

IMA < 14:3 > - (input/output, tri-state) Intra-Module Address Bus 

IMA < 2:0 > - (input/output, bi-state) Intra-Module Address Bus 

The 32-bit address bus carries instruction or data address during a fetch or Load/Store operation. 
Addresses are sent out unlatched and must be latched external to the RT620. The address on the IMA 
< 31:0 > is a virtual address. 

IMD < 63:0 > - (input/output, tri-state) Intra-Module Data Bus 

These pins form a 64-bit bi-directional data bus that serves as the interface between the CPU and 
memory. 
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Store data is sent out unlatched (and is latched by the RT625). Alignment for load and store instruc­
tions is performed by the RT620. Double words are aligned on 8-byte boundaries, words on 4-byte 
boundaries, and halfwords on 2-byte boundaries. 

IMASI < 5:0 > - (output, bi-state) Intra-Module Address Space Identifier 

These 6 bits constitute the address space identifier (ASI). The ASI identifies the memory address 
space to which the instruction or data access is being directed. The IMASI bits are sent out unlatched 
simultaneously with the address (and are latched by the RT625). 

The following table describes IMASI generation: 

Bus Activity IMASI 

instruction fetch 001000 (binary) + supervisor bit 

Load/Store access 001010 (binary) + supervisor bit 

Load/Store alternate ASI immediate field 

IMSIZE < 1:0 > - (output, bi-state) Intra-Module Access SIZE 

These two pins indicate the SIZE of the current access. Instruction accesses are always doubleword 
size. Because the data bus is 64-bits wide, doubleword accesses can be performed in a single access. 
The value of the size bits during a given cycle relates only to the address which appears on pins 
IMA<31 :0>. The IMSIZE<1 :0> bits are sent out unlatched (and are latched by the RT625). Size val­
ues are defined as follows: 

Bus Activity 

instruction fetch 

Load/Store double 

Load/Store word 

Load/Store haIfword 

Load/Store byte 

IMTYPE < 1:0> - Intra-Module Access TYPE 

• IMTYPE < 1 > - (output, bi-state) 

• IMTYPE < 0 > - (output, tri-state) 

SIZE < 1:0 > 

11 (binary) 

11 (binary) 

10 (binary) 

01 (binary) 

00 (binary) 

These two pins indicate the current access TYPE. Instruction accesses are always type read. The val­
ue ofthe type bits during a given cycle relates only to the address which appears on pins IMA<31 :0>. 
The IMTYPE bits are sent out unlatched (and are latched by the RT625). Type values are defined as 
follows. 

IMTYPE< 1 > IMTYPE<O> Meaning 

0 0 N ormaI write (store) 

0 1 Normal read (load or instruction fetch) 

I 0 Locked write (atomic store) 

I I Locked read (atomic load) 
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PHOLD - (input) processor HOLD 

This signal is used by the CMTU to hold the processor and prevent pipeline advancement. When the 
PHOLD input signal is asserted, all pipelines in the RT620 are frozen. 

IMDS - (input) Intra-Module Data Strobe 

This signal is generated by the CMTU to strobe the data into the CPU whenever the valid data is 
available while the processor is being held. The data strobe is valid only ifPHOLD is asserted during 
the cycle that precedes the IMDS occurrence. 

IMEXC - (input) Intra-Module Exception 

This signal is generated by the CMTU to indicate an exception condition to the CPU. 

IMBNA - (input) Intra-Module Bus Not Available 

This signal is generated by the CMTU to indicate that the CMTU is using the Intra-module Bus. This 
feature allows data in a missed cache line to be filled as a background task while the processor contin­
ues executing instructions from the on-chip instruction cache. The processor can resume instruction 
execution once the CMTU has provided the data which caused the processor hold. 

PNULL - (output, bi-state) Processor Nullify 

The RT620 asserts PNULL to indicate that the current external cache access is being nullified. As­
serting PNULL nullifies the access already latched by the external cache subsystem. 

PNULL is generated under the following conditions: 

1. An on-chip instruction cache hit occurred. 

2. An on-chip instruction cache miss occurred and a Fast Branch was not taken. 

3. An exception is pending. 

4. No instruction fetch is pending and no load or store instruction is pending. 

PERROR - (output, bi-state) Processor ERROR 

This pin is asserted when the processor is in the ERROR mode, which occurs when a synchronous 
trap is encountered while traps are disabled (i.e., the PSR's ET bit = 0). The only way to restart a 
processor which is in the error mode state is to trigger a reset by asserting the PRST signal. 

PRST - (input) Processor Reset 

Assertion of this pin will reset the RT620. PRST must be asserted for a minimum of eight processor 
clock cycles. After PRST is de-asserted, the processor starts fetching from virtual address O. PRST is 
latched by the RT620 before it is used. 

MIRL < 3:0 > - (input, asynchronous) MBus Interrupt Request Levels 

MIRL<3 :0> indicate the interrupt request level. If traps are enabled, this value is compared against 
the PSR processor interrupt level field to determine if the interrupt should be acknowledged. 
MlRL<3:0> are synchronized by the RT620 for two clocks. 

The state of these four pins defines the external interrupt level. MIRL < 3:0 > = 0000 indicates that 
no external interrupts are pending and is the normal state of the MIRL pins. MIRL < 3:0 > = 1111 
signifies a non-maskable interrupt. 
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TCK - Test Clock 

This is a test access port (TAP) clock signal that is independent of the IMCLK. The changes on TAP 
input signals (TMS and TDI) are clocked into the TAP controller, instruction register, or selected test 
data register on the rising edge of TCK. Changes at the TAP output signal (TDO) also occur on the 
rising edge of TCK. 

TDI - Test Data Input. 

TDI is a TAP input that is clocked into the selected register (instruction or data) on a rising edge of 
TCK. The TD I input has a built-in pull-up resistor which ensures that an un -terminated or open input 
is seen by the test logic as a "1." 

TDO - Test Data Output. 

TDO is a TAP serial data output. The contents of the selected register (instruction or data) are shifted 
out ofTDO on the falling edge ofTCK. TDO is set to high-impedance except when scanning of data 
is in progress. 

TMS - Test Mode Select. 

This control input is clocked into the TAP controller on the rising edge of TCK. The TMS input has a 
built-in pull-up resistor which ensures that an un-terminated or open input is seen by the test logic as 
a'1.' 

TRST - Test Reset. 

TRST initializes the state of the instruction register bits and the TAP controller state machine. 

3.7.2 Intra-Module Bus (1MB) 

The 1MB is a high-speed 64-bit synchronous processor bus specifically designed for interface with the hy­
perSPARC external cache (refer to Figure 3-16). The hyperSPARC external cache (referred to as the 
e-Cache) is comprised of two or four RT627 CDU s controlled by one RT625 CMTU The 1MB is a synchro­
nous data bus designed to transfer one 64-bit data word upon every processor clock (IMCLK) cycle. All data 
and control signals are sampled on the rising IMCLK edge. 

During normal operation, the RT620 asserts IMA<31 :0>, IMASl<5 :0>, IMSIZE<l :0>, and IMTYPE<1 :0> 
for all instruction fetches, regardless of whether the instruction cache is enabled. If the instruction is found 
in the ICACHE, the instruction request is nullified by the RT620 by asserting the PNULL signal. This causes 
the RT625 to deassert the cache read output enable (CROE) signal, which disables the outputs of the cache 
RAM. PNULL remains asserted as long as the RT620 ICACHE contains the required instructions. If the 
ICACHE misses on an instruction request, PNULL is released and the RT625 asserts CROE. Asserting 
CROE allows the e-Cache to respond to the address supplied by the RT620. 

If the RT625 determines that the address supplied on the 1MB is not in the e-Cache, the RT625 asserts the 
signal PHOLD, which freezes the RT620 processor pipeline. An example of this is illustrated in the timing 
diagram Figure 3-23 on page 3-43. In addition to PHOLD, the RT625 asserts the IMBNA signal in order 
to force the RT620 to release the 1MB address and data buses, and the IMTYPE<O> signal. This allows the 
RT625 to drive the 1MB to transfer data into the RT627 Cache Data Unit. PHOLD is held until the RT625 
has fetched the data originally requested by the RT620. 

Upon assertion of the IMBNA signal, the RT620 tri-states IMA<17:0>, IMD<63:0>, and IMTYPE<O>. 
These signals are directly connected to the RT627 CDUs, and therefore must be tri-stated in order for the 
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RT625 to transfer data. IMA<31:18> and IMTYPE<I> are direct inputs to the RT625, and remain driven 
when IMBNA is asserted. 

The hyperSPARC supports data forwarding during cache line fetches. If the RT620 is stopped with PHOLD 
due to a Cache read miss, PHOLD is released when the requested data is placed on the 1MB by the RT625. 
In addition, the IMDS data strobe is asserted for the clock edge upon which the missed data is valid on the 
1MB. This allows the RT620 to latch the data on the 1MB as it is transferred to the RT627 CDU s. The IMBNA 
signal remains asserted by the RT625 until the entire cache line is transferred to the cache. 

Memory exceptions are signaled by a one-clock assertion of the IMEXC by the RT625. This is illustrated 
in Figure 3-27 on page 3-51. The RT620 responds by asserting the PNULL signal, thereby nullifying the 
instruction or data requests following the memory exception. The RT620 enters a trap routine and begins 
fetching trap instructions after flushing the pipeline. 
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Figure 3-16. hyperSPARC CPU with 256-Kbyte Cache 
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3.7.3 hyperSPARC CPU Bus Timing Waveforms 

This subsection supplies a sampling of bus timing diagrams related to read, write, atomic read-write, 
memory exceptions, reset, interrupt, traps, and error mode. These diagrams represent a subset of possible 
combinations of bus activities. 

3.7.3.1 List of Figures: page 

Figure 3-17. Instruction Access with Instruction Cache Hit ......................... 3-37 
Figure 3-18. Read Accesses with External Cache Hit ............................. 3-38 
Figure 3-19. Write Accesses with External Cache Hit ............................. 3-39 
Figure 3-20. Atomic Read-Write Accesses with External Cache Hit .................. 3-40 
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Figure 3-17. Instruction Access with Instruction Cache Hit* 

* This series of read activities corresponds to . . . 
four user instruction reads (Fetches) that results in an internal instruction cache hit 
followed by one user instruction read (Fetch) that results in an external cache hit. 
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Figure 3-18. Read Accesses with External Cache Hit* 

* This series of read activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user halfword read (e.g., LDSH or LDUH) that results in an external cache hit followed by 
a user word read (e.g., ill or LDP) that results in an external cache hit followed by 
a user doubleword read (e.g., LDD or LDDP) that results in an external cache hit followed by 
a user byte read (e.g., LDSB or LDUB) that results in an external cache hit followed by 
a user instruction read 
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Figure 3-19. Write Accesses with External Cache Hit* 

* This series of read/write activities corresponds to ... 
a supervisor instruction read (Fetch) that results in an external cache hit followed by 
a supervisor byte write (e.g., STB) tb,at results in an external cache hit followed by 
a supervisor instruction read (Fetch) that results in an external cache hit followed by 
a supervisor word write (e.g., ST or STF) that results in an external cache hit. 
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Figure 3-20. Atomic Read-Write Accesses with External Cache Hit* 

* This series of read/write activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user atomic read/write (e.g., LOSTUB) that results in an external cache hit followed by 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user word read (e.g., LDO or LOOp). 
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Figure 3-21. Write Access Followed by Read Access with External Cache Hit* 

* This series of read activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user halfword write (e.g., STH) that results in an external cache hit followed by 
a user word read (e.g., LD or LDF) that results in an external cache hit followed by 
two user instruction reads (Fetches). 
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Figure 3-22. Write Access Followed by Write Access with External Cache Hit* 

* This series of read activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user halfword write (e.g., STH) that results in an external cache hit followed by 
a user byte write (e.g., STB) that results in an external cache hit followed by 
a user instruction read. 
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Figure 3-23. Read Access with External Cache Miss* (page 1 of 2) 

* This series ofread activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user halfword read (e.g., LDSH) that results in an external cache miss and a cache line fill 
(where the halfword is latched by the processor as soon as it is available) followed by 
a user word read (e.g., LD or LDF) that results in an external cache hit followed by 
a user doubleword read (e.g., LDD or LDDF) that results in an external cache hit followed by 
a user byte read (e.g., LDSB or LDUB) that results in an external cache hit followed by 
a user instruction read (Fetch) 
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Figure 3-23. Read Access with External Cache Miss (page 2 of 2) 
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Figure 3-24. Write Access with External Cache Miss* (page 1 of 2) 

* This series of read/write activities corresponds to ... 
a supervisor instruction read (Fetch) that results in an external cache hit followed by 
a supervisor byte write (e.g., STB) that results in an external cache miss and a cache line fill followed by 
a supervisor instruction read (Fetch) that results in an external cache hit followed by 
a supervisor word write (e.g., ST or STF) that results in an external cache hit. 
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Figure 3-24. Write Access with External Cache Miss (page 2 of 2) 
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Figure 3-25. Atomic Read-Write Access with External Cache Miss* (page 1 of 2) 

* This series of read/write activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user atomic read/write (e.g., LDSTUB) that results in an external cache miss and a cache line fill 
(where the byte is latched by the processor as soon as it is available) followed by 
two user instruction reads (Fetches) that result in external cache hits. 
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Figure 3-25. Atomic Read-Write Access with External Cache Miss (page 2 of 2) 
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Figure 3-26. Data Read Access with Memory Exception* (page 1 of 2) 

* This series of read activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user halfword read (e.g., LDSH) that results in an external cache miss and 
a memory exception followed by 
a sequence of supervisor instruction reads (Fetches) corresponding to the exception 
trap handler that are fetched from main memory. 
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Figure 3-26. Data Read Access with Memory Exception (page 2 of 2) 
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Figure 3-27. Instruction Read Access with Memory Exception* (page 1 of 2) 

* This series of read activities corresponds to ... 
a user instruction read (Fetch) that results in an external cache hit followed by 
a user instruction read (Fetch) that results in an external cache miss and a memory exception followed by 
a user instruction "pre-Fetch" followed by 
a sequence of supervisor instruction reads (Fetches) corresponding to the exception trap handler that are 
fetched from main memory. 
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Figure 3-27. Instruction Read Access with Memory Exception (page 2 of 2) 
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Figure 3-28. Reset Timing* (page 1 of 2) 

* These bus activities correspond to , .. 
a reset that is held for at least eight clocks followed by 
a series of supervisor instruction reads (Fetches) that corresponds to 
the reset boot program beginning at address O. 
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Figure 3-28. Reset Timing (page 2 of 2) 
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Figure 3-29. Interrupt Timing* (part 1 of 2) 

* This series of read activities corresponds to . . . 
an external intermpt coinciding with 
a series of user instmctions reads (Fetches) with ICACHE hits followed by 
a series of supervisor instmction reads (Fetches) of the intermpt handler. 
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Figure 3-29. Interrupt Timing (part 2 of 2) 
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Figure 3-30. Error Timing* (page 1 of 2) 

* This series of bus activities corresponds to ... 
an instruction read (Fetch) that is cancelled due to an exception advancing through the pipeline 
while traps are disabled, which results in the generation of the processor error signal. 
the processor is reset externally 
the boot program is fetched beginning at address O. 
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Figure 3-30. Error Timing (page 2 of 2) 

3.8 Instruction Pipelines 
The hyperSPARC CPU has a highly pipelined microarchitecture. Except for a few cases, the pipelines for 
the integer unit and floating-point unit are uniform. This facilitates multiple instruction launch and simpli­
fies recovery from instruction execution exceptions. The following sections describe the RT620 instruction 
pipelines under various conditions. 

3.8.1 Instruction Fetch Timing 

Every instruction execution begins with an instruction fetch. The instruction can be fetched from one of 
three locations: the on-chip instruction cache, external cache (e-Cache), or main memory. Figure 3-31, 
Figure 3-32 and Figure 3-33 describe each of these cases when the ICACHE is enabled. Figure 3-34 and 
Figure 3-35 show timing of instruction fetch with e-Cache hit and e-Cache miss with the ICACHE disabled. 
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Figure 3-31. Timing for Instruction Fetch with ICACHE Hit 
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Figure 3-32. Timing for Instruction Fetch with ICACHE Miss and e-Cache Hit 

3-59 



TECHNOLOGY, 

Al 
ICACHE 

, 

Al 
e-Cache 
lookup 

Al 
write to 
ICACHE 

A2 
ICACHE 

A3 
ICACHE 

, 

~ Address c;)( G Generated lA2 

lMA G (;) Address sent out 
on external bus 

, , 
IMD 0' instruction 
available 

ICACHEhit 

Sf m detected by 
ICACHE n PNULL (( 

)) 
PHOLD 
(from external 

S~ 
memory subsystem) 

IMDS 
(from external SSllJ memory subsystem) 
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Figure 3-34. Timing for Instruction Fetch with ICACHE Disabled and e-Cache Hit 
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Figure 3-36. Typical Integer Instruction Pipeline 

3.8.2 Integer Instruction Pipeline 

The instructions in the Arithmetic Logic Unit (ALU), Load/Store Unit (LSU), and Program Counter Unit 
(PCU) groups follow a 6-stage pipeline denoted as: Fetch (F), Decode (D), Execute (E), Cache (C), Write-
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back (W) and Update (U). All instructions share common instruction fetch activities and common global 
Decode activities. The local Decode and other Execute, Cache, and Write back stage activities vary from 
instruction to instruction. Figure 3-36 describes the typical integer instruction pipeline stages. 

Note that there are Execute, Cache, and Writeback stage forwarding mechanisms for the ALU and there are 
Cache and Writeback stage forwarding mechanisms for the LSU. The Update stage is when the register file 
is actually written. 

The following text and illustrations are intended to convey basic timing information associated with the 
pipeline stage activities for each of the major integer instructions. The functional activities are slightly dif­
ferent for load, store, and Atomic Load-Store instructions, so each is treated as a separate case. 

Table 3-5. Integer Unit Cycle Per Instruction (CPI)* 

Instruction CPI 

Single-cycle ALU iustructions: ADD, AND, OR, XOR, SUB, ANON, ORN, 1 
XNOR, ADDX SUBX, ADDcc, ANDcc, ORcc, XORcc, SUBcc, ANDNcc, 
ORNcc, XORNcc, ADDXcc, SUBXcc, TADDcc, TSUBcc, MULScc, SLL, 
SRL, SRA, SETHI 

Integer multiply instructions: UMUL, UMULcc, SMUL, SMULcc 17 

Integer divide instructions: UDIV, UDIVcc, SDIV, SDIVcc 37 

Branch instructions: Bicc, FBfcc 1** 

Control transfer instructions: CALL, JMPL, RETT, SAVE, RESTORE, Ticc 1 

Control register access instructions: ROY, RDPSR, ROWIM, RDTBR, WRY, 1 
WRPSR, WRWIM, WRTBR 

Load instructions: LOSB, LOSH, LO, LOUB, LOUH, LDO, LDF, LDDF *** 1 

Store instructions: ST, STB, STH, STD, STF, STDF *** 2 

Atomic Load-Store instructions: SWAP, LDSTUB 3 

Miscellaneous: UNIMP, FLUSH 1 

* These CPI values assume the worst case situation of single instruction launch. The CPI decreases if dual instruction launch occurs. Also, 
pipeline enhancements such as Fast Branch or Fast Constant affect CPI. 

** Assuming the delay slot is filled with a useful instruction and single instruction launch. 

*** These instruction groups also include the alternate space version of the instruction (for example: LDA, STA). 

3.8.3 ALU Instructions 

Each ALU instruction proceeds through a series of processing activities. Figure 3-37 shows processing ac­
tivities for typical ALU instructions. Note that integer multiply and divide instructions follow a slightly 
different pipeline. The first stage activity is the instruction fetch which involves looking up the address of 
the next ALU instruction in the ICACHE and making it available for Decode. During the second stage (De­
code), the ALU instruction is globally decoded during the first half of the clock. By the end of the second 
half of the clock, local Decode is performed. During local Decode, appropriate control signals for the ALU 
execution unit are set up and operand access is performed. The decision to launch or delay the instruction 
is also made at this time. Operand access involves retrieving operand data either from the register file, ob­
taining results currently in the pipeline (through forwarding), or extracting immediate data from the 
instruction itself. 

During the Execute stage, the ALU operation result is generated. If the instruction causes updates to the con­
dition codes, the new condition codes are generated during the Execute stage. There are several exceptions 
that can occur when certain integer instructions are executed (e.g., TADDccTV). These exceptions are de­
tected during the Decode or Execute stages (tag overflow, or illegal instruction). 
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3.8.3.1 Integer MUltiply Instructions 

The Fetch and Decode stage activities for integer mUltiply are identical to those for other ALU instructions. 
Integer multiply instructions require 17 Execute stages to generate results. Each stage of the 17 clock cycles 
involves addition of inputs 1 and 2, shifting the mUltiplier, updating the intermediate partial product and 
selecting the next input 1. If the instruction updates condition codes, the new condition codes are generated 
once the last addition has been performed. The results and condition codes are forwarded and additional 
instructions can be launched after Execute stage 17. 

3.8.3.2 Integer Divide Instructions 

The Fetch and Decode stage activities for integer divide are identical to those for other ALU instructions. 
Integer divide instructions require more than one Execute stage to generate results. For a signed divide, the 
two's complement of the dividend input is generated during the next two cycles if it is negative. These cycles 
are idle cycles for other cases. In the next cycle, the dividend and divisor are compared to check for overflow. 
If there is no overflow, the non-restoring algorithm is executed for 32 cycles. Each iteration consists of a 
shift followed by an add. Following the last add, for a signed divide, overflow is again checked for during 
the later half ofthe cycle and the two's complement of the quotient is generated during the next cycle if nec­
essary. If the instruction updates condition codes, the new condition codes are generated once the last 
addition has been performed for an unsigned divide or following the two's complement (if necessary) for 
the signed divide. The results and condition codes are forwarded and additional instructions can be launched 
after Execute stage 37. 

F D EI E2 E3 E4 

@@8G' 
" :88: 

• for signed divide only 
** for signed divide only if negative dividend 

.** for UDIVee and SDrVee only 

E5 E36 

••• I 

E37 c w 

·_-----------. 
" , 

" , 
result available 
for forwarding 

, 
I·----~---- ... - ... -

8 tz:;\' 
LI 

OVf*'@C' check eval 
, , 

Figure 3-39. Typical Integer Divide Instruction Pipeline 
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3.8.4 Load Instructions 

Load instructions come in several varieties, including LD, LDF and LDFSR (word), LDD and LDDF 
(double), LDUB (unsigned byte), LDSB (signed byte), LDUH (unsigned halfword), and LDSH (signed 
half). Each integer unit Load also has a corresponding alternate address space form. Figure 3-40 illustrates 
the pipeline stages which Load instructions encounter. 

Global Decode, local Decode and operand access are performed during the Decode stage. These activities 
are similar to those employed for ALU instructions. During Decode, it is possible to detect that a privilege 
violation or illegal instruction has been encountered for the alternate address space form of Load instruc­
tions. 

During the Execute stage, the effective address is calculated. After this, memory alignment is checked (e.g., 
if a word data fetch is required but the address calculated does not have "00" in its two least significant bits, 
a memory alignment exception must be generated). The address is placed on the 1MB address lines during 
the rising edge of the Cache stage (along with the appropriate IMSIZE, IMASI, and IMTYPE 0 signals). 
If a memory alignment exception has occurred, the memory access is nullified by asserting PNULL on the 
cycle following the address. This provides the cache management unit with the data address to lookup in 
the external cache for this data access request. 

Assuming there is a hit for the data in the external cache, the data is delivered prior to the Writeback stage. 
Data alignment is performed during the Cache stage and the data is updated in the register file after the Write­
back stage. 

3.8.5 Store Instructions 

Store instructions include all access size and alternate address space forms available for Load instructions. 
As with load instructions, alternate address forms of the store instruction must be decoded so as to detect 
privilege violations and illegal instructions. Figure 3-41 shows timing for a typical Store instruction. 

The effective address is calculated and memory alignment checks are performed during the Execute stage. 
If a memory alignment exception is detected (i.e., access not word aligned), a memory alignment exception 
is generated. During the execute stage, the source register is accessed for the purpose of writing its contents 
to memory. During the Cache stage, the address is placed on the 1MB (along with the appropriate IMSIZE, 
IMASI, and IMTYPE < 0 > signals) and data alignment is performed on the source data. If a memory align­
ment exception has occured, PNULL is asserted in the cycle following the address cycle in order to nullify 
the memory access. 

In the case of a Load instruction, the cache management unit latches the address from the CPU and lookup 
does not require more than one clock (assuming an external cache hit occurs). In the case of store instruc­
tions, the address must be held on the 1MB through the Cache and Writeback stages to guarantee Writeback 
to the data cache (one cycle is required to determine cache-hit and access and protection checks, and a second 
is required to perform the Writeback). 

3.8.6 Atomic Load-Store Instructions 

The Atomic Load-Store instructions are non-interruptible sequences of a load memory access followed by 
a store data access. Therefore, the Atomic Load-Store instruction timing follows that shown in Figure 3-42. 
One difference (which is not obvious from Figure 3-42) between an ordinary Load and Store instruction 
pair and an Atomic Load-Store instruction is that the IMTYPE < 1 > (LOCK) signal is asserted by the IBIU 
while an Atomic Load-Store instruction is in progress. 
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Figure 3-43. Typical Branch Instruction Pipeline 
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Figure 3-44. Typical CALL Instruction Pipeline 

3.8.7 Branch Instructions 

Branch instruction timing departs significantly from that applied to ALU, Load, and Store instructions. 
Figure 3-43 illustrates Branch instruction timing for integer and fp branches (for the non-Fast Branch case). 
The Fetch stage is performed in the usual fashion. Three activities occur during Decode. First, the condition 
codes are evaluated to determine whether the branch will be taken or not. Second the effective address of 
the target must be calculated using the current PC and the displacement extracted from the instruction by 
the instruction decoder. Finally, since SPARC permits nullification of delay slot instructions, this must be 
determined during Decode. The first two activities proceed in parallel. The third activity cannot be deter­
mined until the condition codes have been evaluated except in the special case of a Fast Branch. Refer to 
Section 3,8.12.3 for pipeline descriptions for Fast Branch events. 

If the branch is taken, the new target address is placed on the address lines (both for ICACHE and for the 
1MB along with appropriate IMSIZE, IMASI, and IMTYPE < 0 > signals) and the new instruction stream 
Fetch begins. If the branch is not taken, instruction fetch continues along the previous instruction stream. 

3.8.8 CALL Instructions 

The CALL instruction pipeline activities are shown in Figure 3-44. The CALL instruction is very similar 
to branches except in three respects. First, CALL belongs to the single instruction launch group, so a "packet 
split" always occurs (the concepts of "instruction groups" and "packet splits" are discussed in Section 3.4). 
Second, no condition code evaluation is performed because for CALL instructions, the "branch" is always 
taken. Finally, the CALL instruction requires that the PC of the CALL instruction be recorded in the register 
file as described in Chapter 12, SPARC Instruction Set. 

3.8.9 JMPL/RETT/FLUSH Instructions 

Although JMPL, RETT, and FLUSH perform significantly different functions, they are allfgroup instruc­
tions and require generation of target addresses. They follow nearly identical timing. Figure 3-45, 
Figure 3-46 and Figure 3-47 illustrate the JMPLjRETT/FLUSH instruction timings. 

3-68 



TECHNOLOGY, 

F D E c w u 

:r---' : 
( insert ') 
'\ inop /' 1\. ____ 1 

Figure 3-45. Typical JMPL Instruction Pipeline 

F D E c w u 

• delay slot instruction 

Figure 3-46. Typical RETT Instruction Pipeline 
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Figure 3-47. Typical FLUSH Iustructiou Pipeline 

The Decode, Execute, and Cache stages of a JMPLIRETTIFLUSH instruction are similar to those of the load 
instruction. An operand access is performed, an effective address is calculated from these operands, and 
memory alignment errors are checked. For all these instructions, the address is supplied for lookup in the 
instruction cache and external caches. The differences between these instructions are shown in the timing 
diagrams, and include: 

• JMPL requires saving the instruction PC back to the register file. 

• RETT performs window underflow checks and updates several fields in the PSR. 

• FLUSH does not update the program counter with the target address but either takes an exception or 
flushes the corresponding packet entry in the cache line when an ICACHE hit is detected, depending on 
the state of the Instruction Cache Control Register (ICCR). When determining which packet of an 
ICACHE line is to be flushed, the last 3 bits of the address are ignored. Therefore, no misalignment ex­
ception can occur for a FLUSH instruction. 

3.8.10 SAVEIRESTORE Instructions 

The SAVE and RESTORE instructions are very similar to ordinary ALU instructions with two exceptions: 
(i) they belong to the single instruction launch group and (ii) they modify the Current Window Pointer 
(CWP). SAVE instructions decrement the CWP and check for window overflows; RESTORE instructions 
increment the CWP and check for window overflows. The concepts of "instruction groups" are discussed 
in Section 3.4. Figure 3--48 illustrates timing for SAVE and RESTORE instructions. 
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Figure 3-48. Typical SAVE/RESTORE Instruction Pipeline 
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Figure 3-49. Typical Read/Write Special Register Instruction Pipeline 
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3.8.11 ReadlWrite Special Register Instrnctions 

The Read and Write Special Register instructions move information between the integer register file and 
SPARC special control registers. Figure 3-49 illustrates the pipeline activities for both instructions. All of 
these instructions are privileged instructions other than RDY and WRY. Exception detection is performed 
during the Decode stage except for the special case of WRPSR which is checked in the Execute stage to 
confIrm that the CWP points to a valid window. 

The Read Special Register instructions load the special register values into the ALU writeback result buffer 
used for forwarding during the Writeback stage. The register file is updated (as usual) during the clock fol­
lowing the Writeback stage (i.e., in the Update stage). 

The write special register instructions behave like most ALU instructions. During the Decode stage, a regis­
ter access is made. During the Execute stage an XOR is performed on the operands. During the Update stage 
the specified special register is updated. 

3.8.12 Special Feature Pipelines 

There are several special features of the RT620 which exploit multiple instruction launch and provide per­
formance speedups. Additional information regarding scheduling activities associated with these 
instruction combinations can be located in the corresponding subsections in Section 3.4. 

3.8.12.1 Fast Constant Pipeline 

When a specific combination of two instructions used to generate a 32-bit constant is contained in an instruc­
tion packet, it is possible to execute both instructions in parallel. Figure 3-50(a) shows the typical sequential 
instruction execution used to generate a 32-bit constant. Figure 3-50(b) shows parallel execution provided 
by the RT620. 
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(b) , 

I. .,' 
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Figure 3-50. Fast Constant Instruction Pipeline 
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Figure 3-51. Fast Index Instruction Pipeline 

3.8.12.2 Fast Index Pipeline 

u 

When a specific combination of two instructions used to generate a 32-bit memory index is contained in an 
instruction packet, it is possible to execute both instructions in parallel. Figure 3-51 (a) shows the typical 
sequential instruction execution used to generate a 32-bit base address for array indexing. Figure 3-51(b) 
shows the parallel execution for base address construction provided by the RT620. Again, the speedup factor 
is two times that of sequential execution. 

3.8.12.3 Fast Branch 

Fast Branch is a feature which avoids waiting for the outcome of an ALU instruction setting condition codes 
in order to initiate a Branch instruction target fetch. This situation occurs when an integer Branch is immedi­
ately preceded by an ALUcc-type instruction in the same packet. In such a case, it is possible to launch both 
instructions simultaneously. Figure 3-52 shows sequential execution of two instructions which make up a 
Fast Branch pair. Notice that the cycles per instruction execution (CPI) count is 4 cycles +4 instructions 
= 1.0 CPI. 

Figure 3-53 shows timing results when Fast Branch is applied. When the branch is taken, a one clock speed 
up occurs and the CPI now becomes 3 cycles + 4 instructions = 0.75 CPI. When the branch is not taken, some 
logic must be exercised to fetch instructions from the original instruction stream. Even when the delay slot 
instruction (DSI) and the instruction which follows the DSI (DSI+4) cannot be executed in parallel, the 0.75 
CPI still holds (i.e., the performance is still better than that for sequential execution). 
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Figure 3-53. Fast Branch Instruction Pipeline 

3.8.13 Floating-Point Instruction Pipelines 

There are two types of pipeline instructions executed by the floating-point unit. These are typical floating­
point unit instructions and multiple-cycle floating-point unit instructions. The typical floating-point unit 
instructions follow a standard six-stage sequence (both for single and double precision computations). Mul­
tiple cycle instructions require iterative algorithms to produce results and require multiple execution stages. 
The number of execution stages depends on the type of fp operation and the precision of the required result. 
All instructions in the Floating-Point Arithmetic Unit (FAU) group and two instructions in the Floating­
Point Multiplier Unit (FMU) group follow the typical six-stage pipeline. These six stages are: Fetch (F), 
Decode (D), Executel (E1), Execute2 (E2), Round (R), and Update (U). 

Note that there is a Round stage forwarding mechanism in both the FAU and FMU units. 

Figure 3-54 illustrates the typical floating-point unit instruction pipeline. Instructions are fetched in the 
same way as integer instructions but they must be decoded locally by the floating-point unit decoder. As with 
ALU and LSU instructions, during the Decode stage, the fp register operands are accessed during the decode 
stage. During the Execute 1 stage, operands are checked for validity and converted to the internal representa­
tion. Fractions and exponents are aligned for instruction execution. Several IEEE exceptions are determined 
at this time by detecting operands which are NaN, Denormalized, or Infinity. 
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Figure 3-54. Typical Floating-Point Unit Instruction Pipeline 
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Figure 3-55. Typical Multiple Cycle Floating-Point Unit Instruction Pipeline 
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Once the operands have been correctly aligned for execution (e.g. for adds and subtracts, a common expo­
nent must be established), the instruction is actually performed. IEEE rounding, result generation, and 
additional exception detection on the result is performed during the Round stage. Assuming no exception 
has been generated, the register file can be updated during the Update stage. 

Note that the fp condition codes can be forwarded at the beginning of the Execute2 stage and that results 
can be forwarded at the beginning of the Update stage. Table 3-6 provides instruction execution perform­
ance for the typical floating-point unit instructions. 

For multiple cycle instructions, results cannot be computed in two execution stages and one Round stage 
except if the operation involves special case operands in which the result can be forced. The algorithms re­
quired to generate results require a series of iterations using intermediate results. Figure 3-55 shows the 
basic multiple cycle fp instruction pipeline. Other than the iteration associated with the execution stages, 
it is identical to the basic fp instruction pipeline. 

Note that when a multiple cycle instruction is in the fp post queue, it occupies the Execute 1 stage (post queue 
entry 2) until the last (nth) iteration of its algorithm. 

Table 3-6. Typical Floating-Point Unit Instruction Cycle Times 

Instruction CPI Instruction CPI Instruction CPI 

FABSs 1 FDIVd 12* FMULs 1 

FAOOs 1 FiTOs 1 FsMULd 1 

FAOOd 1 FiTOd 1 FMULd 1* 

FCMPs 1 FsTOi 1 FNEGs 1 

FCMPd 1 FsTOd 1 FSQRTs 11* 

FCMPEs 1 FdTOi 1 FSQRTd 17* 

FCMPEd 1 FdTOs 1 FSUBs 1 

FDIVs 8* FMOVs 1 FSUBd 1 

* An additional cycle is required if the instruction in the table above is followed by a FMULs, FMULd, FsMULd, FDIV s, FDIV d, 
FSQRTs or FSQRTd. 

3.9 Traps and Interrupts 

The RT620 supports three categories of traps. These are precise traps, deferred traps, and interrupting traps. 
Precise traps correspond to exceptions induced by a particular instruction which occur before the instruction 
has changed t he program-visible state of the machine. When a precise trap occurs (except in the case of a 
power-on reset trap), several conditions must hold. These are: (1) the instructions before the trap inducing 
instruction will have completed execution, (2) the instructions after the trap inducing instruction remain un­
executed, and (3) the PC and nPC point to the trap inducing instruction and to the instruction which was to 
be executed next. 

Deferred traps correspond to traps induced by a particular instruction, but may occur after the program­
visible state has changed. For SPARC architectures, this trap type occurs in floating-point (fp) exceptions, 
where the trap inducing instruction is executed, but the deferred trap is not taken until one or more instruc­
tions after the trap-inducing instruction. Associated with the deferred trap there must exist the following: 
(1) an instruction that provokes a potentially outstanding deferred-trap exception to be taken as a trap, (2) 
the ability to resume execution of the trapped instruction stream and (3) privileged instructions that access 
the state required for the supervisor to emulate the deferred trap-inducing instructions and resume execution 
of the trapped instruction stream (i.e., access the deferred trap queue). The deferred trap must be taken before 
the execution of any instruction which depends on the trap-inducing instruction. 
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Interrupting traps are controlled by the enable trap (ET) and processor interrupt level (PIL) level fields of 
the PSR and do not correspond to precise traps or deferred traps. These traps were previously referred to 
as asynchronous traps. These interrupting exceptions are generated by external hardware. 

3.9.1 Machine State at Reset 

The reset trap is triggered asynchronously by asserting the external PRST signal. When the hyperSPARC 
CPU recognizes the PRST signal, it enters reset mode and stays there until the PRST line is deasserted. The 
processor then enters Execute mode and executes the trap procedure. The specific actions taken during reset 
are: 

• ET (enable trap) bit in the PSR is set to O. 

• S (supervisor) bit in the PSR is set to 1. 

• PC is set to 0 and nPC is set to 4. 

• FTD bit in the ICCR is set to 0 and the ICE bit is set to O. 

All other fields in the above programmer-accessible registers and all other registers are unspecified on a 
power-up reset; if the reset is not a power-up reset, they retain their values from the last execution mode. 

Internally, on a reset trap 

• All the valid bits in the ICACHE are cleared. 

• The valid bits in the instruction fetch buffers are cleared. 

• The valid bits of all the FPQ entries are cleared. Because all FPQ entries are cleared, the qne 
bit will also be initially cleared. 

• Control is then transferred to location O. 
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Figure 3-56. Exception Pipeline 
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3.9.2 Exception Pipeline 

A trap is always taken at the end of the Writeback stage. Instructions which preceded the instruction which 
caused the trap are allowed to complete register Update before the trap is recognized. At the end of this Wri­
teback stage, three additional pipeline stages are "appended" to support trap handling. These stages are 
referred to as Tl, T2, and T3. Figure 3-56 shows these stages along with the activities performed during 
each stage. Note that if Tl is entered while the trap enabled (ET) bit in the PSR is cleared, the processor 
enters ERROR mode. 

There is a special case involving an ALU instruction in slot-a paired with a load instruction in slot-b. Ifboth 
instructions are launched together and the load instruction causes a data access trap, the ALU instruction 
is allowed to complete its register Update. 

3.9.3 Trap Operation 

SPARC traps are enabled or disabled with the enable traps (ET) bit in the processor state register (PSR). If 
traps are enabled, the following occurs upon recognizing a trap: 

• The current window pointer (CWP) in the PSR is decremented, thus changing the CWP. Note 
that this is done without regard to the WIM register and without checking for window over­
flow. 

• The existing user/supervisor mode is preserved in the PS bit: S ~ PS. 

• The user/supervisor mode is changed to supervisor: I ~ S. 

• The RT620 automatically saves the PC in r[17] (local register 1) of the current window. 

• nPC is automatically saved in r[18] (local register 2) of the current window. 

• The ET bit of the PSR is cleared, thereby disabling traps. 

• The trap type is automatically entered into the tt (trap type) field of the trap base register (TBR). 

• If the trap is a reset trap, control is transferred to address 0: 0 ~ PC, 4 ~ nPC. 

• If the trap is not a reset trap, control is transferred to the address specified by the TBR: 
TBR ~ PC, TBR+4 ~ nPC. 

The trap table pointed to by the TBR has a space of four instructions for each trap vector specified by the 
TBR. This available slot of four instructions is generally used to jump to a trap handler routine. 

If the enable trap bit is cleared (ET = 0) when a trap is recognized by the processor, the RT620 enters error 
mode and halts execution. If ET = 0 and an interrupt or deferred exception occurs, it is ignored. 

3.9.4 Error Mode 

SPARC processors enter error mode or state when a trap occurs while traps are disabled (when the ET bit 
of the PSR is set to zero). Upon encountering this event, the processor halts execution and asserts the 
PERROR signal. Standard trap actions, such as decrementing CWP and saving the program counters (PC 
and nPC) in r[17] and r[18] do not occur. The tt field of the TBR is not written except in the case of a RETT 
instruction that traps while ET = O. In this singular case, the tt field is written to indicate the exception type 
induced by the RETT instruction. The method of handling error mode is implementation dependent, but it 
is typically handled by causing the processor to trigger an external reset. 
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3.9.5 Trap Priorities 

Each trap type is assigned a priority; priority 1 is the highest priority and priority 31 the lowest. If two traps 
occur simultaneously, the highest priority trap is taken. The RT620 avoids the case of two traps occuring 
with the same priority by disallowing simultaneous launch of instructions which can cause exceptions at 
the same priority level. 

The trap table (used to direct traps to the appropriate trap handler) is divided into two halves. The first half 
is dedicated to hardware exceptions and the second half is dedicated to software exceptions. Hardware ex­
ceptions are detected by the processor logic. Software traps are accessed through the Ticc instruction. 
Table 3-7lists exceptions supported by the RT620: 

Table 3-7. RT620 Supported Exceptions 

Exception Priority tt 

reset 1 n/a 
instruction access exception 5 OxOI 
privileged instruction 6 Ox03 
illegal instruction 7 Ox02 
floating-point disabled 8 Ox04 
coprocessor disabled 8 0x24 
unimplemented flush 8 0x25 
window overflow 9 Ox05 
window underflow 9 Ox06 
memory address not aligned 10 Ox07 
floating-point exception 11 Ox08 
data access exception 13 Ox09 
tag overflow 14 OxOa 
division by zero 15 Ox2a 
trap instruction 16 Ox80 through Ox:ff 

interrupt level 15 17 Oxlf 
interrupt level 14 18 Oxle 
interrupt level 13 19 Oxld 
interrupt level 12 20 OxIc 
interrupt level 11 21 Oxlb 
interrupt level 10 22 Oxla 
interrupt level 9 23 Ox19 
interrupt level 8 24 Ox18 
interrupt level 7 25 Ox 17 
interrupt level 6 26 Ox16 
interrupt level 5 27 Oxl5 
interrupt level 4 28 Ox14 
interrupt level 3 29 Ox 13 
interrupt level 2 30 Ox12 
interrupt level 1 31 Ox 11 

3.9.6 Precise Traps 

Precise trap exception conditions are detected during anyone of the integer instruction pipeline stages. The 
priority encoding of these exceptions is performed at each pipeline stage as the instruction progresses. 
Table 3-8 identifies the pipeline stage at which each exception is detected during instruction execution. 
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Table 3-8. Pipeline Stage Exception Recognition 

Decode Execute Writeback 

instruction access illegal instruction data access 
privilege violation window overflow 
illegal instruction window underflow 
floating-point unit disabled memory not aligned 
CP disabled tag overflow 
floating-point exception floating-point exception floating-point exception 
trap instruction (ticc) interrupt 
unimplemented flush divide-by-zero 

A pending fp exception is recognized in Decode if the instruction is a FBfcc, in Execute if the instruction 
is an fp Load or an FPop, and in Write back if the instruction is an fp store. Note that an fp exception is always 
taken regardless of the exception priority if the instruction is valid (for example, if an fp Store recognizes 
an fp exception and there is a misaligned exception on the Store, the fp exception trap is taken even though 
a misaligned trap has higher priority). 

In the RT620, an illegal instruction exception is signaled when an integer instruction is not implemented. 

An illegal instruction exception is recognized in Decode except for an illegal instruction exception due to 
a WRPSR instruction with an invalid CWP which is recognized in Execute. 

3.9.7 Interrupting Traps (Asynchronous) 

For interrupt requests, the MIRL<3 :0> is compared against the processor interrupt level (PIL) of the proces­
sor status register (PSR). If traps are enabled (ET = 1) and if MIRL<3:0> is greater than the PIL, or if 
MIRL<3 :0> = Ox 15 (a non-maskable interrupt), the interrupt trap is taken if no higher priority traps are out­
standing. 

Note that an interrupt will be masked when: 

• traps are disabled (ET = 0) or 

• the interrupt level on the extemallines (MIRL<3 :0> ) is less than or equal to the PIL in the PSR 
(unless MIRL<3:0> = 15, which is a non-maskable interrupt). 

Interrupts are sampled two successive times at a sampling rate of one-half of the IMCLK frequency before 
a new MIRL<3:0> value is recognized by the processor. The value of MIRL<3:0> must be held until the 
interrupt trap is taken. This is usually accomplished by coding the interrupt trap routine to access a user-de­
fined system interrupt control register and clear the interrupt. 
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3.9.8 Floating-Point Unit Traps (Deferred Traps) 

There are four types of fp exceptions: 

Unimplemented fp instruction: This exception is signaled when the floating-point unit local decoder 
determines that the opcode bit pattern is invalid or the instruction is a SPARC fp instruction that is not 
supported in hardware in the RT620 (e.g., FADDx). 

Unfinished fp instruction: This exception is signaled when the floating-point unit is operating in stan­
dard mode and any of the inputs is a denormalized number or when the output is a tiny number before 
rounding, with the following exceptions: 

1. One operand is a NaN, or during an add or subtract operation. 

2. One operand is a NaN, or during a multiply or divide operation. 

3. The operand is a negative denormalized number during a square root operation. 

4. The instruction is an absolute value (FABSs), move (FMOVs), negate (FNEGs), compare (FCMPs, 
FCMPd, FCMPEs, FCMPEd, or convert floating-point to/from integer (FdTOi, FsTOi, FiTOs, 
FiTOd). 

Sequence Error: This exception is signaled when the floating-point unit is in exception (TRAP) mode 
and an fp instruction other than an fp store is decoded. This exception is also signaled when a STDFQ 
instruction is issued when the floating-point unit is not in EXCEPTION mode. 

IEEE Exceptions: This is a class of exceptions defined by the IEEE-754 standard. The specific exception 
is signaled through the cexc field of the FSR. 

The fp exceptions are signaled through the Itt field in the FSR as shown below. 

Table 3-9. FTT Field of FSR 

ftt Field Exception Type 

000 none 

001 IEEE 

010 Unfinished 

011 Unimplemented 

100 Sequence error 

101 Hardware error (not supported in RT620) 

110 reserved 

111 reserved 

The exceptions are detected by the FPQC in the Round stage, or previous pipeline stages in which case they 
advance through the fp pipeline stages until they reach the Round stage. All the exceptions cause fp deferred 
traps except those corresponding to IEEE exceptions. For a particular IEEE exception, the IEEE exception 
will cause a deferred trap only if the corresponding bit in the trap enable mask field in the FSR is set. On 
recognizing a trap condition, the floating-point unit enters exception pending mode and asserts the fp excep­
tion pending signal. The next fp instruction to enter the instruction decoder will cause the integer unit to 
acknowledge the fp exception and take an fp trap as shown in Figure 3-57. When the floating-point unit 
receives the exception acknowledgement signal, it goes into EXCEPTION mode as discussed in Section 3.5. 
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As defined in the SPARC architecture, when an fp trap occurs: 

• the destination register is unchanged. 

• the FSRfcc field is unchanged. 

• the FSR aexc field is unchanged. 

• the FSR cexc field is unchanged except for an IEEE-754 exception; in this case, the cexc con­
tains exactly one bit (which is 1) corresponding to the exception which caused the trap. 

FP Inst 1 
(causes trap) 

FP Inst 2 

fp_exception_pending , 

: r--trap~-' 
~ __ -J' l_~~s~~J 

__ ----__ --~:~I --~~SS: 

ss; 
Figure 3-57. Floating-Point Exception Pipeline 

, 1 

:IL...-__ 
,,--I __ 

When an fp exception is acknowledged by the integer unit, an fp exception trap handler is invoked and the 
floating-point unit enters exception mode (also referred to as trap mode). Typically, this trap handler 
executes a sequence of store double floating-point queue (STDFQ) instructions to empty the queue of its 
address and instructions. The FPQ is emptied starting at post-queue entry 0 and working back through to 
pre-queue entry 6, skipping invalid entries. If any fp instruction other than a store instruction is attempted, 
a sequence error occurs and the processor remains in exception mode. When the FPQ is emptied, the float­
,ing-point unit returns to normal execution mode. 

The instruction decoder checks to see if there is an fp exception pending in different stages depending on 
the instruction being decoded as given in the following table. 

Table 3-10. FP Pipeline Stage Exception Recognition 

Instruction Stage 

FBfcc Decode 

FPop Execute 

fp Load Execute 

fp Store Writeback 

FP exceptions are checked in the Decode stage if the instruction is an fp Branch to maintain correct PCs to 
save in the trap handler. 

In case ofFPop instructions, fp exception is checked for in the Execute stage. If this were done in the Decode 
stage, then in the case where the exception pending signal from the floating-point unit arrives in the Execute 
cycle, the integer unit would assume that the instructions had been successfully launched. However, the 
floating-point unit would not accept the instructions, and the instructions would then be "lost." 
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FP Inst 1 
(causes a trap) 

fp store inst 

fp_exception_ 
pending 

fp_exception_ 
acknowledge 

: I : 11....----.-__ 

--~--~--7_~--~:I~ ~:~I __ ~---

Figure 3-58. Floating-Point Exception during Forwarding to Store 

In case of fp Load instructions, fp exceptions are checked in the Execute stage. This is because no dependen­
cy checks are done for a load in Decode stage against the instruction in entry 0 (the Round stage of the 
instruction); if the instruction should cause an fp exception pending in the next cycle, it would be detected 
in the Execute cycle of the Load. 

The instruction decoder checks for the exception pending signal in the Write back stage of the Store instruc­
tion. This case is illustrated in Figure 3-58. The Store instruction is waiting for data to be forwarded from 
the fp instruction. However, the Store instruction anticipates the completion of the fp instruction and goes 
into the Execute stage in the same cycle that the fp instruction enters Round stage. If the fp instruction takes 
a trap, then the exception pending signal arrives too late for the instruction decoder to recognize the excep­
tion while the Store is in Execute. Since the data forwarded is invalid in the case of an exception, the Store 
instruction needs to be cancelled and the exception has to be recognized. The Store instruction is cancelled 
by the FPQC which sends the cancel signal (in the next cycle) to the IBIU if there is an fp Store in Execute 
and there is an exception pending. The instruction decoder checks for an exception pending signal from the 
floating-point unit in the Writeback stage of the Store and takes the fp exception only if the exception pend­
ing signal was also asserted in the previous cycle (if the exception pending signal was asserted starting in 
the Write back stage, then the fp exception is not recognized on the Store instruction since it is too late to 
annul the Store). 

3.9.8.1 IEEE Exceptions 

There are five RT620 supported IEEE exceptions: inexact, underflow, overflow, invalid, and divide by zero. 

The conditions under which these exceptions occur are described in the IEEE-754 standard. However, a few 
details of the IEEE-754 standard are implementation dependent. Also, the RT620 does not handle denor­
malized operands in all cases. The behavior of the RT620 in the case ofIEEE-754 exceptions is described 
in the following sections. Note that there cannot exist more than two exception cases simultaneously. If there 
are two exception cases, one exception will be an inexact exception. In the standard mode, two exception 
cases can arise when an overflow exception occurs; in the non-standard mode, an inexact exception can arise 
along with any other exception. 
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In non-standard mode, denormalized numbers at the input or output are substituted by zero if the case is such 
that an unfinished exception would result in the standard mode. Detailed description of the behavior of each 
individual instruction in standard and non-standard mode is given in Section 3.9.8.6. 

NXM refers to the inexact bit in the term, NX indicates that an inexact trap is taken (the nx bit is set in the 
cexc), and nx means that the inexact bit is set in the cexc and ORed into the aexc but no trap is taken. Similar 
abbreviations are used for the other exception types. 

3.9.8.2 Inexact exception 

3.9.8.2.1 Standard mode: 

The inexact exception can arise due to two causes: 

1. There is an overflow condition as discussed in Section 3.9.8.3.3. 

2. The result is inexact as defined by the IEEE standard and there is no other exception. 

3.9.8.2.2 Non-Standard Mode: 

In addition to the exception cases in the standard mode, an inexact exception also occurs if denormalized 
numbers at the input or output are substituted by zero; the inexact exception will trap only if NXM = 1 and 
no other higher priority IEEE exception trap occurs as discussed in the tables below. 

3.9.8.3 Underflow Exception 

3.9.8.3.1 Standard Mode: 

In the standard mode of operation, there is no underflow exception; an unfinished trap is taken if the result 
underflows. 

3.9.8.3.2 Non-Standard Mode: 

If tininess is detected in the result of an operation (before rounding), then an underflow condition exists. The 
state of the inexact and underflow trap enable mask bits in the FSR decides the course of action taken. 

If both the inexact and the underflow traps are disabled, then the uf and nx bits in the cexc field of the FSR 
are set and also ORed into the aexc, and the result is replaced by zeros with the same sign. If the uf and/or 
the nx traps are/is enabled, then the trap which is taken is prioritized (remember that only one bit in the cexc 
should be set when an fp trap due to an IEEE exception is taken). 

The following table indicates the priority between the IEEE exceptions when there is a denormalized result 
with the floating-point unit in non-standard mode (Note: XX denotes bit set and trap taken, xx denotes bit 
set only). 

Trap Enable State FSR Update (NS = 1) 

UFM= 1. NXM=x UF 

UFM=O,NXM= 1 NX 

UFM=O,NXM=O nx, uf 
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3.9.8.3.3 Overflow Exception: 

Overflow behaves identically in the non-standard mode and the standard mode. The following table defines 
the behavior when an overflow exception occurs (Note: XX denotes bit set and trap taken, xx denotes bit 
set only). 

Trap Enable State FSR Update 

OFM= I,NXM=x OF 

OFM=O,NXM= 1 NX 

OFM=O, NXM=O nx,of 

3.9.8.4 Invalid Exception 

3.9.8.4.1 Standard Mode: 

This exception occurs as specified in the IEEE 754-1985 standard. 

3.9.8.4.2 Non-Standard Mode: 

In the non-standard mode, in addition to the standard-mode exceptions, if the exception occurs due to substi­
tution of denormalized numbers, the exceptions are prioritized as follows (Note: XX denotes bit set and trap 
taken, xx denotes bit set only). 

Trap Enable State FSR Update (NS = 1) 

NVM = 1, NXM = x NV 

NVM = O,NXM = 1 NX 

NVM = 0, NXM = ° nX,nv 

3.9.8.5 Divide by Zero Exception 

3.9.8.5.1 Standard Mode: 

This exception occurs as specified in the IEEE 754-1985 standard. 

3.9.8.5.2 Non-Standard Mode: 

In the non-standard mode, in addition to the standard-mode exceptions, ifthe exception occurs due to substi­
tution of denormalized numbers, the exceptions are prioritized as follows (Note: XX denotes bit set and trap 
taken, xx denotes bit set only). 

Trap Enable State FSR Update (NS = 1) 

DZM= l,NXM=x DZ 

DZM = 0, NXM = 1 NX 

DZM = 0, NXM = ° nX,dz 

3.9.8.6 Result Generation 

3.9.8.6.1 Standard Mode Result Generation 

The following sequence of tables provides the results generated by the floating -point unit for various combi­
nations of input operands when the processor is operating in standard mode and the corresponding trap 
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enable mask bit for an IEEE exception is cleared. However, in the case of an unfinished exception, the trap 
is always taken. 

In the following tables, terms are abbreviated as follows: 

Inum 
Norm 

an integer. 
a normalized number. 
a denormalized number. 
a quiet NaN. 
a signaling NaN. 

DeNorm 
QNaN 
SNaN 
QNaNn 
SNaNn 
QSNaNn 

a quiet NaN which appears at the rs n source operand input. 
a signaling NaN which appears at the rs n source operand input. 
a quiet NaN produced by the NaN transformation (described below) on a signaling 
NaN from rs n. 

QQNaNn a quiet NaN produced by the NaN transformation (described below) on a quiet NaN 
from rs n. 

UNFNSH an unfinished exception occurs (trap is taken and destination is unchanged). 
NX an IEEE inexact exception occurs. 
NV an IEEE invalid exception occurs. 
OF an IEEE overflow exception occurs. 
DZ an IEEE divide-by-zero exception occurs. 
UF an IEEE underflow exception occurs (only in non-standard mode). 
= the fcc is set to 0 (equal). 
< the fcc is set to 1 (smaller). 
> the fcc is set to 2 (greater). 
? the fcc is set to 3 (unordered). 
RN round to nearest. 
RP round to + 00. 

RM round to - 00. 

RZ round to zero. 
OD zero delivered at the output in non-standard mode when the output result is a denorm. 
"RJEEE number delivered at the output in case of an overflow as specified by IEEE-754. 

NaN transformation: The most significant bits of the operand fraction are copied to the most significant 
bits of the result fraction. When converting to a narrower format, excess low order bits are discarded. When 
converting to a wider format, excess lower order bits of the result fraction are set to O. The quiet bit (most 
significant bit of the result fraction) is always set to 1, thus the NaN transformation always produces a quiet 
NaN. 
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FMOVs: 
rs2 result 

+Nonn +Nonn 

-Nonn -Nonn 

+DeNonn + DeNonn 

-DeNonn -DeNonn 

SNaN2 SNaN2(1) 

QNaN2 QNaN2 (1) 

+0 +0 

-0 -0 

+00 +00 

_00 _00 

Note 1: The input is delivered to the output without any change. 

FABSs: 

rs2 result 

+Nonn +Nonn 

-Nonn -Nonn 

+DeNonn + DeNonn 

-DeNonn + DeNonn 

SNaN2 SNaN2 (1) 

QNaN2 QNaN2 (1) 

+0 +0 

-0 +0 

+00 +00 

_00 +00 

Note 1: If the sign bit is 0, the input is delivered to the output without any change. 
If the sign bit is 1, the input is delivered to the output with the sign bit cleared. 

FNEGs: 

rs2 result 

+Nonn -Nonn 

-Nonn +Nonn 

+ DeNonn -DeNonn 

-DeNonn + DeNonn 

SNaN2 SNaN2 (1) 

QNaN2 QNzN2 (1) 

+0 -0 

-0 +0 

+00 _00 

_00 +00 

Note 1: The input is delivered to the output with the sign bit inverted. 
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FADDs, FADDd: 

rsllrs2 + Norm -Norm +1-DeNorm SNaN2 QNaN2 +0 

QSNaN2 
+ Norm (1) (2) UNFNSH NV QNaN2 +Nonn 

QSNaN2 
-Norm (2) (3) UNFNSH NV QNaN2 +Nonn 

QSNaN2 
+1-DeNorm UNFNSH UNFNSH UNFNSH NV QNaN2 UNFNSH 

QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI QSNaNI 
SNaNl NV NV NV NV NV NV 

QSNaN2 
QNaNl QNaNI QNaNI QNaNI NV QNaN2 QNaNI 

QSNaN2 
+0 + Norm -Nonn UNFNSH NV QNaN2 +0 

QSNaN2 
-0 +Nonn -Nonn UNFNSH NV QNaN2 0(5) 

QSNaN2 
+00 +00 +00 +00 NY QNaN2 +00 

QSNaN2 
_00 _00 _00 _00 NV QNaN2 _00 

Note I: outputs possible: + Nann, RqEEE & OF & NX, + Nann & NX. 
Note 2: outputs possible: rsl '" -rs2: +/- Nann, UNFNSH, +/- Nann & NX. 

rsl = rs2: + 0 or - 0 depending on rounding mode (see (5». 
Note 3: outputs possible: - Nann, RqEEE & OR & NX, - Nann & NX. 
Note 4: QNaN delivered at output = 7ff .. f 
Note 5: returns + 0 in rounding modes RN, RZ, and RP; returns --0 in rounding mode RM. 

FSUBs, FSUBd: 

rsl/rs2 + Norm -Norm +1-DeNorm SNaN2 QNaN2 +0 

QSNaN2 
+ Norm (I) (3) UNFNSH NV QNaN2 +Nonn 

QSNaN2 
-Norm (2) (1) UNFNSH NV QNaN2 -Nann 

QSNaN2 
+1-DeNorm UNFNSH UNFNSH UNFNSH NV QNaN2 UNFNSH 

QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI QSNaNI 
SNaNl NV NV NV NV NV NV 

QSNaN2 
QNaNl QNaNl QNaNI QNaNI NV QNaN2 QNaNI 

QSNaN2 
+0 -Nonn +Nonn UNFNSH NV QNaN2 0(5) 

QSNaN2 
-0 -Nonn +Nonn UNFNSH NV QNaN2 -0 

QSNaN2 
+00 +00 +00 +00 NV QNaN2 +00 

QSNaN2 
_00 _00 _00 _00 NV QNaN2 _00 

Note I: output possible: rsl '" -rs2: +/- Nann, UNFNSH, +/- Nann & NX. 
rsl = rs2: + 0 or - 0 depending on rounding mode (see (5». 

Note 2: output possible: - Nann, RqEEE & OF & NX, - Nann & NX. 
Note 3: output possible: + Nann, RqEEE & OF & NX, + Nann & NX. 
Note 4: QNaN delivered at output = 7ff .. f 
Note 5: returns + 0 in rounding modes RN, RZ, and RP; returns --0 in RM. 

3-89 

-0 +00 _00 

+Nonn +00 _00 

-Nonn +00 _00 

UNFNSH +00 _00 

QSNaNI QSNaNI QSNaNI 
NV NV NV 

QNaNI QNaNI QNaNI 

0(5) +00 _00 

-0 +00 _00 

QNaN 
+00 +00 NV(4) 

QNaN 
_00 NV(4) _00 

-0 +00 _00 

+Nonn _00 +00 

-Nonn +00 _00 

UNFNSH _00 +00 

QSNaNI QSNaNI QSNaNI 
NV NV NV 

QNaNI QNaNl QNaNl 

+0 _00 +00 

-0 (5) _00 +00 

QNaN 
+00 NV(4) +00 

QNaN 
_00 _00 NV(4) 
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FsTOi, FdTOi: 

rs2 result 

+Nonn (1) 

-Nonn (2) 

+0 
+ DeNonn NX 

-0 
-DeNonn NX 

SNaN2 NY (3) 

QNaN2 NY (3) 

+0 +0 

-0 -0 

+ lnf NY (4) 

-lnf NY (5) 

Note I: outputs possible: +Inurn, NY if output overflows (see (3», +Inurn & NX. 
Note 2: outputs possible: - Inurn, NY if output overflows (see (3», - Inurn & NX. 
Note 3: if sign bit is 0, deliver 7f[ .. f; if sign bit is I, deliver 800 .. 0 
Note 4: deliver 7f[ .. f at output. 
Note 5: deliver 800 .. 0 at output. 

FiTOs, FiTOd: 

Note 1: outputs possible: 

Note 2: outputs possible: 

rs2 

+0 

+ Inurn 

- Inurn 

FITOS: + Nonn, +Nonn & NX. 
PITOD: + Nonn 
FITOS: - Nonn, - Nonn & NX. 
FITOD: - Nonn. 

FSTOD 

rs2 result 

+Nonn +Nonn 

-Nonn -Nonn 

+DeNonn UNFNSH 

-DeNonn UNFNSH 

QSNaN2 
SNaN2 NY 

QNaN2 QQNaN2 

+0 +0 

-0 -0 

+00 +00 

_ 00 _ 00 

result 

+0 

(1) 

(2) 

rs2 

+Nonn 

-Nonn 

+DeNonn 

-DeNonn 

SNaN2 

QNaN2 

+0 

-0 

+00 

_ 00 

Note 1: outputs possible: 
Note 2: outputs possible: 

+ Nonn, + Nonn & NX, ~EEE & OF & NX, UNFNSH. 
- Nonn, - Nonn & NX, ~EEE & OF & NX, UNFNSH. 
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FDTOS 

result 

(I) 

(2) 

UNFNSH 

UNFNSH 

QSNaN2 
NY 

QQNaN2 

+0 

-0 

+00 

_ 00 
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FMULs, FMULd: 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

QSNaN2 
+ Norm (I) (2) UNFNSH UNFNSH NV QNaN2 

QSNaN2 
-Norm (2) (I) UNFNSH UNFNSH NV QNaN2 

QSNaN2 
+DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NV QNaN2 

QSNaN2 
-DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NV QNaN2 

QSNaNI QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI 
SNaNl NV NV NV NV NY NV 

QSNaN2 
QNaNl QNaNI QNaNI QNaNI QNaNI NV QNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NV QNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NV QNaN2 

QSNaN2 
+00 +00 _00 +00 _ 00 NV QNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NV QNaN2 

Note 1: outputs possible:+ Norm, UNFNSH, ~EEE & OF & NX, + Norm & NX. 
Note 2: outputs possible: - Norm, UNFNSH, ~EEE & OF & NX, - Norm & NX. 
Note 3: QNaN delivered at output = 7ff . .f 

FsMULd: 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

QSNaN2 
+ Norm + Norm -Norm UNFNSH UNFNSH NV QQNaN2 

QSNaN2 
-Norm -Norm + Norm UNFNSH UNFNSH NV QQNaN2 

QSNaN2 
+DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NV QQNaN2 

QSNaN2 
-DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NV QQNaN2 

QSNaNI QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI 
SNaNl NV NV NV NV NV NV 

QSNaN2 
QNaNl QQNaNl QQNaNI QQNaNI QQNaNI NV QQNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NV QQNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NV QQNaN2 

QSNaN2 
+00 +00 _00 +00 _ 00 NY QQNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NY QQNaN2 

Note 1: QNaN delivered at output = 7ff . .f 
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+0 -0 +00 _00 

+0 -0 +00 _00 

-0 +0 _00 +00 

+0 -0 +00 _00 

-0 +0 _00 +00 

QSNaNI QSNaNI QSNaNI QSNaNI 
NV NV NV NV 

QNaNI QNaNI QNaNI QNaNI 

QNaN QNaN 
+0 -0 NV(3) NV(3) 

QNaN QNaN 
-0 --D NV(3) NV(3) 

QNaN QNaN 
NV(3) NY (3) +00 _00 

QNaN QNaN 
NV(3) NV(3) _00 +00 

+0 -0 +00 _00 

+0 -0 +00 _00 

-0 +0 _00 +00 

+0 -0 +00 _00 

-0 +0 _00 +00 

QSNaNI QSNaNI QSNaNI QSNaNI 
NV NV NV NV 

QQNaNl QQNaNI QQNaNI QQNaNI 

QNaN QNaN 

+0 -0 NV(l) NY (I) 

QNaN QNaN 
-0 +0 NV(I) NV (I) 

QNaN QNaN 
NV(I) NVCI) +00 _00 

QNaN QNaN 
NV(I) NV (I) _00 +00 
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FDIVs, FDIVd: 

rsllrsl + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

QSNaN2 
+ Norm (I) (2) UNFNSH UNFNSH NY QNaN2 

QSNaN2 
-Norm (2) (1) UNFNSH UNFNSH NY QNaN2 

QSNaN2 
+DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NY QNaN2 

QSNaN2 
-DeNorm UNFNSH UNFNSH UNFNSH UNFNSH NY QNaN2 

QSNaNI QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI 
SNaNl NY NY NY NY NY NY 

QSNaN2 
QNaNl QNaNI QNaNI QNaNI QNaNI NY QNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NY QNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NY QNaN2 

QSNaN2 
+00 +00 _00 +00 _ 00 NY QNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NY QNaN2 

Note 1: outputs possible: + Nonn, UNFNSH, RtEEE & OF & NX, + Nonn & NX. 
Note 2: outputs possible: - Nonn, UNFNSH, RtEEE & OF & NX, - Nonn & NX 
Note 3: QNaN delivered at output= 7ff .. f 

FSQRTs, FSQRTd: 

Note 1: outputs possible: + Nonn, + Nonn & NX. 
Note 2: QNaN delivered = 7ff .. f 

rs2 

+Nonn 

-Nonn 

+ DeNonn 

-DeNonn 

SNaN2 

QNaN2 

+0 

-0 

+00 

_00 
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result 

(1) 

QNaN 
NV(2) 

UNFNSH 

QNaN 
NV(2) 

QSNaN2 
NV 

QNaN2 

+0 

-0 

+00 

QNaN 
NV(2) 

+0 -0 +00 _00 

+00 _00 

DZ DZ +0 -0 

_00 +00 

DZ DZ -0 +0 

+00 _00 

DZ DZ +0 -0 

_00 +00 

DZ DZ -0 +0 

QSNaNI QSNaNI QSNaNI QSNaNI 
NV NY NY NY 

QNaNI QNaNI QNaNI QNaNI 

QNaN QNaN 
NY (3) NY (3) +0 -0 

QNaN QNaN 
NV(3) NY (3) -0 +0 

QNaN QNaN 
+00 _00 NY (3) NY (3) 

QNaN QNaN 
_00 +00 NY (3) NY (3) 
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FCMPs, FCMPd: 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 +0 -0 +00 _00 

? 

+ Norm (1) > > > NY ? > > < > 

? 
-Norm < (1) < < NY ? < < < > 

? 
+DeNorm < > (1) > NY ? > > < > 

? 

-DeNorm < > < (1) NY ? < < < > 
? ? ? ? ? ? ? ? ? ? 

SNaNl NY NY NY NY NY NY NY NY NY NY 

? 
QNaNl ? ? ? ? NY ? ? ? ? ? 

? 

+0 < > < > NY ? = = < > 

? 

-0 < > < > NY ? = = < > 

? 
+00 > > > > NY ? > > = > 

? 
_00 < < < < NY ? < < < = 

Note 1: output possible: >, < , = 

FCMPEs, FCMPEd: 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 +0 -0 +00 _00 

? ? 
+ Norm (1) > > > NY NY > > < > 

? ? 
-Norm < (1) < < NY NY < < < > 

? ? 
+DeNorm < > (1) > NY NY > > < > 

? ? 
-DeNorm < > < (1) NY NY < < < > 

? ? ? ? ? ? ? ? ? ? 
SNaNl NY NY NY NY NY NY NY NY NY NY 

? ? ? ? ? ? ? ? ? ? 
QNaNl NY NY NY NY NY NY NY NY NY NY 

? ? 
+0 < > < > NY NY = = < > 

? ? 

-0 < > < > NY NY = = < > 

? ? 
+00 > > > > NY NY > > = > 

? ? 
_00 < < < < NY NY < < < = 

Note 1: output possible: >, < , = 
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3.9.8.6.2 Non-Standard Mode Result Generation 

The following sequence oftables provides the results generated by the floating-point unit for various combi­
nations of input operands when the processor is operating in non-standard mode and the corresponding trap 
enable mask bit for an IEEE exception is cleared. Note that the results are the same as in the standard-mode 
except in the cases when an unfinished exception would be taken. In such cases, denorms at the input are 
substituted by zero (nx flag is set). If the result is a denorm, it too is substituted by zero (uf and nx are set). 

FABSs (NS): 

rs2 result 

+ Norm + Norm 

-Norm + Norm 

+ DeNorm + DeNorm 

-DeNorm + DeNorm 

SNaN2 SNaN2 (1) 

QNaN2 QNaN2 (1) 

+0 +0 

-0 +0 

+00 +00 

_00 +00 

Note 1: If the sign bit is 0, the input is delivered to the output without any change. 
Note 2: If the sign bit is 1, the input is delivered to the output with the sign bit cleared. 

FMOVs (NS): 

rs2 result 

+ Norm + Norm 

-Norm -Norm 

+DeNorm + DeNorm 

-DeNorm -DeNorm 

SNaN2 SNaN2 (1) 

QNaN2 QNaN2 (1) 

+0 +0 

-0 -0 

+00 +00 

_00 _00 

Note 1: The input is delivered to the output without any change, 

3-94 



~$,$ ============:::::;:R:::::;:T:::::;:6:::::;:2:::::;:O:::::;:h;;:;;;yp=e:::::;:r:::::;:SP:::::;:i\:::::;:R:::::;:C=C:::::;:P=U 

FNEGs (NS): 

rs2 result 

+ Norm -Norm 

-Norm + Norm 

+DeNorm -DeNorm 

-DeNorm + DeNorm 

SNaN2 SNaN2 (I) 

QNaN2 QNaN2(1) 

+0 

-0 

+00 

_00 

Note I: The input is delivered to the output with the sign bit inverted. 

FADDs, FADDd (NS): 

rsl/rs2 + Norm -Norm + DeNorm -DeNorm SNaN2 

+ Norm + Norm QSNaN2 
+ Norm (I) (2) NX NX NY 

-Norm -Norm QSNaN2 
-Norm (2) (3) NX NX NY 

+ Norm -Norm +{) (5) QSNaN2 
+DeNorm NX NX NX NX NV 

+ Norm -Norm (5) -0 QSNaN2 
-DeNorm NX NX NX NX NY 

QSNaNI QSNaNI QSNaNI QSNaNI QSNaN2 
SNaNl NV NV NV NY NY 

QSNaN2 
QNaNl QNaNI QNaNI QNaNI QNaNI NY 

+0 (5) QSNaN2 
+0 + Norm -Norm NX NX NY 

(5) -0 QSNaN2 
-0 + Norm -Norm NX NX NV 

QSNaN2 
+00 +00 +00 +00 +00 NY 

QSNaN2 
_00 _00 _00 _00 _00 NY 

Note 1: outputs possible: + Norm, "RiEEE & OF & NX, + Norm & NX. 
Note 2: outputs possible: 

rs 1 *" -rs2: +/- Norm, UNFNSH, +/- Norm & NX. 
rsl = rs2: + 0 or - 0 depending on rounding mode (see (5». 

Note 3: outputs possible: - Norm, "RiEEE & OF & NX, - Norm & NX. 
Note 4: QNaN delivered at output = 7ff . .f 

-0 

+0 

_00 

+00 

QNaN2 

QNaN2 

QNaN2 

QNaN2 

QNaN2 

QSNaNI 
NY 

QNaN2 

QNaN2 

QNaN2 

QNaN2 

QNaN2 

Note 5: returns + 0 in rounding modes RN, RZ, and RP; returns -0 in rounding mode RM. 
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+0 -0 +00 _00 

+ Norm + Norm +00 _00 

+ Norm -Norm +00 _00 

+0 (5) 
NX NX +00 _00 

(5) -0 
NX NX +00 _00 

QSNaNI QSNaNI QSNaNI QSNaNI 
NV NV NY NY 

QNaNI QNaNI QNaNI QNaNI 

+0 (5) +00 _00 

(5) -4) +00 _00 

QNaN 
+00 +00 +00 NY (4) 

QNaN 
_00 _00 NV(4) _00 



FSUBs, FSUBd (NS): 

rs1lrsl + Norm -Norm + DeNorm -DeNorm SNaN2 QNaN2 

+ Norm + Norm QSNaN2 
+ Norm (1) (3) NX NX NV QNaN2 

-Norm -Norm QSNaN2 
-Norm (2) (1) NX NX NV QNaN2 

-Norm + Norm (5) +0 QSNaN2 
+ DeNorm NX NX NX NX NV QNaN2 

-Norm + Norm --0 (5) QSNaN2 
-DeNorm NX NX NX NX NV QNaN2 

QSNaN1 QSNaN1 QSNaN1 QSNaN1 QSNaN2 QSNaN1 
SNaNl NV NV NV NV NV NV 

QSNaN2 
QNaNl QNaN1 QNaN1 QNaN1 QNaN1 NV QNaN2 

(5) +0 QSNaN2 
+0 -Norm + Norm NX NX NV QNaN2 

--0 (5) QSNaN2 
-0 -Norm + Norm NX NX NY QNaN2 

QSNaN2 
+00 +00 +00 +00 +00 NV QNaN2 

QSNaN2 
_00 _00 _00 _00 _00 NV QNaN2 

Note I: output possible: 
rsl ¢ -rs2: +/- Norm, UNFNSH, +/- Norm & NX, +/- Ov & UF & NX. 
rsl = rs2: + 0 Or - 0 depending on rounding mode (see (5». 

Note 2: output possible: - Norm, - Norm & NX, ~EEE & OF & NX, - Norm & NX. 
Note 3: output possible: + Norm, + Norm & NX, ~EEE & OF & NX, + Norm & NX. 
Note 4: QNaN delivered at output = 7ff . .f 
Note 5: returns + 0 in rounding modes RN, RZ, and RP; returns...{) in RM. 

FsTOi, FdTOi (NS): 

rs2 result 

+ Norm (I) 

-Norm (2) 

+0 
+ DeNorm NX 

-0 
-DeNorm NX 

SNaN2 NV(3) 

QNaN2 NV(3) 

+0 +0 

-0 -0 

+Inf NV(4) 

-Inf NV(5) 

Note I: outputs possible: +Inum, NV if output overflows (see (3», +Inum & NX. 
Note 2: outputs possible: -Inum, NV if output overflows (see (3», -Inum & NX. 
Note 3: If sign bit is 0, deliver 7ff .. f; if sign bit is I, deliver 800 .. 0 
Note 4: Deliver 7ff . .f at output. 
Note 5: Deliver 800 .. 0 at output. 

3-96 

+0 -0 +00 _00 

+ Norm + Norm _00 +00 

-Norm -Norm +00 _00 

(5) +0 
NX NX _00 +00 

-0 (5) 
NX NX _00 +00 

QSNaN1 QSNaN1 QSNaN1 QSNaN1 
NV NY NV NV 

QNaNl QNaN1 QNaN1 QNaN1 

(5) +0 _00 +00 

-0 (5) _00 +00 

QNaN 
+00 +00 NV(4) +00 

QNaN 
_00 _00 --00 NV(4) 
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FiTOs, FiTOd (NS): 

Note 1: outputs possible: 
PITOS: + Nonn, +Nonn & NX, 
FITOD: + Nonn 

Note 2: outputs possible: 
FITOS: - Nonn, - Nonn & NX. 
PITOD: - Nonn. 

rs2 result 

+0 +0 

+ Inurn (1) 

-Inurn (2) 

FSTOD(NS): FDTOS(NS): 

Note 1: outputs possible: 
Note 2: outputs possible: 

rs2 result rs2 

+Nonn +Nonn +Nonn 

-Nonn -Nonn -Nonn 

+0 
+ DeNonn NX + DeNonn 

-0 
-DeNonn NX -DeNonn 

QSNaN2 
SNaN2 NY SNaN2 

QNaN2 QQNaN2 QNaN2 

+0 +0 +0 

-0 -0 -0 

+00 +00 +00 
_ 00 _ 00 _ 00 

+ Norm, + Nonn & NX, RiEEE & OF & NX, +OD & UP & NX. 
- Nonn, - Nonn & NX, RiEEE & OF & NX, -OD & UP & NX. 
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result 

(1) 

(2) 

+0 
NX 

-0 
NX 

QSNaN2 
NY 

QQNaN2 

+0 

-0 

+00 
_ 00 
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FMULs, FMULd (NS): 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

+0 -0 QSNaN2 
+ Norm (1) (2) NX NX NY QNaN2 

-0 +0 QSNaN2 
-Norm (2) (I) NX NX NV QNaN2 

+0 -0 +0 -0 QSNaN2 
+DeNorm NX NX NX NX NV QNaN2 

-0 +0 -0 +0 QSNaN2 
-DeNorm NX NX NX NX NY QNaN2 

QSNaNl QSNaNl QSNaNl QSNaNl QSNaN2 QSNaNI 
SNaNl NY NY NV NV NV NV 

QSNaN2 
QNaNl QNaNl QNaNl QNaNl QNaNl NY QNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NV QNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NY QNaN2 

QSNaN2 
+00 +00 _00 +00 _00 NY QNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NV QNaN2 

Note 1: outputs possible: + Norm, + Norm & NX, OD & UF & NX, "RiEEE & OF & NX, 
Note 2: outputs possible: - Norm, - Norm & NX, -DD & UF & NX, "RiEEE & OF & NX, 
Note 3: QNaN delivered at output = 7fLf 

FsMULd (NS): 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

+0 -0 QSNaN2 
+ Norm +Nonn -Nonn NX NX NV QQNaN2 

-0 +0 QSNaN2 
-Norm -Nonn +Nonn NX NX NV QQNaN2 

+0 -0 +0 -0 QSNaN2 
+DeNorm NX NX NX NX NV QQNaN2 

-0 +0 -0 +0 QSNaN2 
-DeNorm NX NX NX NX NV QQNaN2 

QSNaNl QSNaNl QSNaNI QSNaNl QSNaN2 QSNaNl 
SNaNl NV NV NV NV NY NV 

QSNaN2 
QNaNl QQNaNl QQNaNl QQNaNl QQNaNl NV QQNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NV QQNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NV QQNaN2 

QSNaN2 
+00 +00 _00 +00 _ 00 NV QQNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NV QQNaN2 

Note 1: QNaN delivered at output = 7fLf 
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+0 -0 +00 _00 

+0 -0 +00 _00 

-0 +0 _00 +00 

+0 -0 +00 _00 

-0 +0 _00 +00 

QSNaNl QSNaNl QSNaNl QSNaNl 
NV NV NV NY 

QNaNl QNaNl QNaNl QNaNl 

QNaN QNaN 
+0 -0 NV(3) NV(3) 

QNaN QNaN 
-0 +0 NV(3) NV(3) 

QNaN QNaN 
NV(3) NV(3) +00 _00 

QNaN QNaN 
NV(3) NY (3) _00 +00 

+0 -0 +00 _00 

+0 -0 +00 _00 

-0 +0 _00 +00 

+0 -0 +00 _00 

-0 +0 _00 +00 

QSNaNl QSNaNl QSNaNl QSNaNl 
NV NV NV NV 

QQNaNl QQNaNl QQNaNl QQNaNl 

QNaN QNaN 
+0 -0 NV (I) NV(1) 

QNaN QNaN 
-0 +0 NV(I) NV(I) 

QNaN QNaN 
NV(I) NV(I) +00 _00 

QNaN QNaN 
NV (I) NV(1) _00 +00 



FDIVs, FDIVd (NS): 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

+00 _00 QSNaN2 
+ Norm (1) (2) DZ,NX DZ,NX NV QNaN2 

_00 +00 QSNaN2 
-Norm (2) (1) DZ,NX DZ,NX NV QNaN2 

+0 -0 QNaN QNaN QSNaN2 
+DeNorm NX NX NV, NX (3) NV,NX(3) NV QNaN2 

-0 +0 QNaN QNaN QSNaN2 
-DeNorm NX NX NV,NX(3) NV,NX(3) NV QNaN2 

QSNaNI QSNaNI QSNaNI QSNaNI QSNaN2 QSNaNI 
SNaNl NV NV NV NV NV NV 

QSNaN2 
QNaNl QNaNI QNaNI QNaNI QNaNI NV QNaN2 

QSNaN2 
+0 +0 -0 +0 -0 NV QNaN2 

QSNaN2 
-0 -0 +0 -0 +0 NV QNaN2 

QSNaN2 
+00 +00 _00 +00 _ 00 NV QNaN2 

QSNaN2 
_00 _00 +00 _00 +00 NV QNaN2 

Note 1: outputs possible: + Nonn, + Nonn & NX, + OD & UF & NX, RtEEE & OF & NX, 

Note 2: outputs possible: - Nonn, - Nonn & NX, + OD & UP & NX, RtEEE & OF & NX. 

Note 3: QNaN delivered at output= 7ff . .f 

FCMPs, FCMPd (NS): 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 

? 
+ Norm (I) > > > NV ? 

? 
-Norm < (I) < < NV ? 

? 
+DeNorm < > (I) > NV ? 

? 
-DeNorm < > < (1) NV ? 

? ? ? ? ? ? 
SNaNl NV NV NV NV NY NV 

? 
QNaNl ? ? ? ? NY ? 

? 
+0 < > < > NV ? 

? 
-0 < > < > NY ? 

? 
+00 > > > > NV ? 

? 
_00 < < < < NV ? 

Note I: output possible: >, < , = 
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+0 -0 +00 _00 

+00 _00 

DZ DZ +0 -0 

_00 +00 

DZ DZ -0 +0 

+00 _00 

DZ DZ +0 -0 

_00 +00 

DZ DZ -0 +0 

QSNaNI QSNaNI QSNaNI QSNaNI 
NV NV NV NV 

QNaNI QNaNI QNaNI QNaNI 

QNaN QNaN 
NV(3) NV(3) +0 -0 

QNaN QNaN 
NV(3) NV(3) -0 +0 

QNaN QNaN 
+00 _00 NV(3) NV(3) 

QNaN QNaN 
_00 +00 NV(3) NV(3) 

+0 -0 +00 _00 

> > < > 

< < < > 

> > < > 

< < < > 

? ? ? ? 
NV NV NV NV 

? ? ? ? 

= = < > 

= = < > 

> > = > 

< < < = 
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FCMPEs, FCMPEd (NS): 

rsl/rs2 + Norm -Norm +DeNorm -DeNorm SNaN2 QNaN2 +0 -0 +00 _00 

? ? 
+ Norm (I) > > > NY NY > > < > 

? ? 
-Norm < (1) < < NV NY < < < > 

? ? 
+DeNorm < > (1) > NV NY > > < > 

? ? 
-DeNorm < > < (I) NV NY < < < > 

? ? ? ? ? ? ? ? ? ? 
SNaNl NY NY NY NY NY NY NY NY NY NV 

? ? ? ? ? ? ? ? ? ? 
QNaNl NY NY NY NY NY NY NY NY NY NY 

? ? 
+0 < > < > NV NY = = < > 

? ? 
-0 < > < > NY NY = = < > 

? ? 
+00 > > > > NY NY > > = > 

? ? 
_00 < < < < NY NY < < < = 

Note 1: output possible: >, < , = 

3.9.9 Integer Unit-Floating-Point Unit Exception Flush Logic 

When an integer instruction is executing and an exception occurs, it is possible for following fp instructions 
to have already entered the fp pre-queue. To avoid the problem of incorrectly' 're- executing" fp instructions 
that follow the trapping integer unit instruction, logic has been added to the FPQ to track the program counter 
progress on the integer unit side and flush appropriate instructions from the FPQ. 

3.9.10 RT620 Method for Handling Traps and Error Mode 

3.9.10.1 Integer Unit 

Table 3-11 describes how the processor affects critical fields and registers during reset traps, non-reset traps, 
and error mode. 

If tt were overwritten on reset or error mode, the initial trap type might be lost and the preserved information 
would not correspond to the initial trap. 

Since neither reset nor error mode update the CWP, TBR.tt, r[I7], and r[I8] registers, it is possible for the 
reset trap handler to locate and identify the initial trap that was being processed when error mode occurred. 

Do not confuse reset due to power-on with reset due to error mode. The state of CWP, TBR.tt, r[I7], and 
r[I8] registers are undefined. The RT625 logs enough information for boot code to recognize whether it en­
tered into reset routine due to power-on or error (i.e., double fault). When reset is asserted by the RT625, 
the RT620 treats reset identically whether the reset trap was due to power on from the module "power-on" 
logic or asserted in order to clear error mode. 
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Table 3-11. Integer Unit Actions Upon Reset, Trap, and Error Mode Events 

On Reset On Non-Reset Trap On Error Mode 

ETf-O ETf-O ET f- n/c' 

PS f- nlc PSf- S PS f- n/c 

Sf-I Sf-I Sf- nle 

CWPf- n/c CWP f- (CWP -l)mod CWPf- n/c 

f[17] f- n/e f[17] f- exc PC f[17] f- n/c 

f[18] f- n/c f[l8] f- exc nPC f[18] f- n/c 

PCf-O PCf- TBR PC f- n/c 

nPC f- 4 OPCf- TBR+4 OPC f- n/c 

TBRtt f- n/c TBR.tt f- trap type TBRtt f- n/c" 

* indicates the ET bit must be zero in order to enter error mode. 

** indicates RETT with and exception can cause tt to be updated when error mode is entered. In the case of RETT, tt can be set 
to privilege violation, misaligned address, or window underflow traps when ET = 0 and a corresponding exception occurred. 
No other exceptions can cause tt to be updated when ET = 0 and a corresponding exception occurred. No other exceptions can 
cause tt to be updated when error mode occurs. 

3.9_10.2 Floating-Point Unit 

Table 3-12 describes how the processor affects critical fields and registers in the floating-point unit during 
reset traps, non-reset traps, and error mode 

If the integer unit enters error mode with fp instructions executing in the queue, the floating -point unit will 
complete all pending instructions in the queue and signal exceptions as appropriate_ The integer unit will 
ignore all floating-point unit signals in error mode state. 

Table 3-12. Floating-Point Unit Actions Upon Reset, Trap, And Error Mode Events 

On Reset On Non-Reset Trap On Error Mode 

FSR.qnef-O FSRqne f- unchanged FSR.qne f- unchanged 

fest of FSR f- undefined fest of FSR f- unchanged fest of FSR f- unchanged 

FREGS f- undefmed FREGS f- unchanged FREGS f- unchanged 

Queue Entries f- invalid Queue entries may be flushed if the trap Queue entries f- unchanged 
is not an fp exception trap. 
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RT625 hyperSPARC Cache Controller, 

Memory Management, and Tag Unit 

The hyperSPARC RT625 Cache Controller, Memory Management, and Tag Unit (CMTU) consists of a 
Memory Management unit (MMU), a cache controller with cache tag memory, and support for the SPARC 
Reference MBus interface. The CMTU is designed as an integral part of the hyperSPARC family to provide 
a high-performance solution for cache, virtual memory, and multiprocessing support. Features of the RT625 
include: 

• 64-entry translation lookaside buffer (TLB) 

• 32-byte read buffer and 64-byte write buffer 

• Uniprocessor and multiprocessor system support 

• 128-Kbyte and 256-Kbyte cache size support 

• Support for memory systems with reflective memory controllers 

• MBus Level 2 cache coherency protocol 

• Supports the SPARC MBus reference standard interface 

The RT625 is designed as part of a tightly coupled hyperSPARC CPU system which includes the RT625 
CMTU, RT620 CPU, and two or four RT627 Cache Data Units (CDUs). 

4.1 RT625 hyperSPARC CMTU 

The RT625 CMTU combines two major functions: memory management and cache control. In addition, 
the RT625 provides the asynchronous interface between the system bus (MBus) and the rest of the hyper­
SPARCCPU. 

The MMU portion ofthe RT625 provides translation from a 32-bit virtual address range (4 Gigabytes) to 
a 36-bit physical address (64 Gigabytes), as provided in the SPARC Reference MMU specification. Virtual 
address translation is further extended with the use of a context register, which is used to identify up to 4096 
contexts or tasks. The TLB entries contain context numbers to identify tasks or processes. This minimizes 
unnecessary TLB entry replacement during task switching. 

The MMU features a 64-entry translation lookaside buffer. The TLB acts as a cache for address mapping 
entries used by the MMU to map a virtual address to a physical address. These mapping entries, referred 
to as page table entries or PTEs, allow one of four levels of address mapping. A PTE can be defined as the 
address mapping for a single 4-Kbyte page, a 256-Kbyte region, a 16-Mbyte region, or a 4-Gbyte region. 
The TLB entries are lockable, allowing important TLB entries to be excluded from replacement. 
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The MMU perfonns its address translation task by comparing a virtual address supplied by the hyperSPARC 
RT620 Central Processing Unit (CPU) through the Intra-Module Bus to the address tags in the TLB entries. 
If the virtual address and the value of the context register match a TLB entry, a TLB "hit" occurs. When 
this occurs, the physical address stored in the TLB is used to translate the virtual address to a physical ad­
dress. The Access Type (read/write of data or instruction) and privilege level (user/supervisor) are checked 
during translation. If a TLB hit occurs but access-level protection is violated, the MMU signals an exception 
and the operation ends. 

If the virtual address or context does not match any valid TLB entry, a TLB "miss" occurs. This causes a 
table walk to be perfonned by the MMU. The table walk is a search perfonned by the MMU through the 
address translation tables stored in main memory. The MMU searches through several levels of tables for 
the PTE corresponding to the virtual address. Upon fmding the PTE, the MMU translates the address and 
selects a TLB entry for replacement, where it then stores the PTE. 

Two sizes of cache are supported: 128-Kbyte and 256-Kbyte. The cache is "virtually indexed" and "physi­
cally tagged." The tenn "virtually indexed" refers to the direct addressing of the cache line by the RT620 
CPU with the Intra-Module Address Bus (lMA <31 :0». The 128-Kbyte cache is organized into 4096 lines 
of 32 bytes each. IMA <16:5> select the cache line, and lMA < 4:3 > select the 64-bit word of the cache 
line, as illustrated in Figure 4-1. The 256-Kbyte cache is organized into 4096 lines with two sub-blocks, 
each sub-block being 32 bytes (cache sub-block approach). Address bits IMA < 17:6 > select the cache line, 
address bit IMA < 5> selects the sub-block and address bits IMA < 4:3> select the 64-bit word of the cache 
line, as illustrated in Figure 4-2. 
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Figure 4-1. 128-Kbyte Cache Memory Sub-System 

The cache tag entries reflect the physical address, hence the cache is said to be "physically tagged." The 
RT625 provides access control for the cache by checking the physical address (translated through the TLB) 
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against the cache tags. If the physical address matches the cache tag for the cache line addressed, a cache 
hit occurs and the access is enabled. If the physical address does not match the cache tag for the cache line, 
a cache miss occurs and the cache controller accesses main memory for the required data. The RT625's 
cache directory can be accessed from both the processor and MBus. Due to the inclusion of 8 Kbytes of 
on-chip instruction cache in the RT620 and an efficient arbitration mechanism to access cache tags from 
both the processor and MBus, the performance degradation due to a single cache directory compared with 
a dual cache directory is insignificant. The RT625 supports the MBus Level 2 cache coherency protocol, 
which is modeled after the acclaimed IEEE Futurebus. 

The RT625 cache controller supports two modes of caching: write-through with no write allocate and copy­
back with write allocate. Write-through mode is a simpler style of cache management that causes write ac­
cesses to the cache to be written through to main memory upon each write access. The advantage of this 
method is that the cache always remains coherent with main memory. Its disadvantage is that each write to 
the cache is echoed to main memory, which increases traffic on the system bus. Another disadvantage to 
write-through is that the processor is delayed by the time required to arbitrate the system bus and write the 
data to main memory. However, in the case of the RT625, this disadvantage is significantly offset by the 
inclusion of write buffers. 

Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to 
become modified. Modified cache lines are automatically written back to main memory only when the cache 
line is no longer needed. Copy-back mode is a more complex mode of cache management, but provides sub­
stantial system performance improvements over write-through due to decreased traffic on the system bus. 
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Figure 4-2. 256-Kbyte Cache Memory Sub-System 
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A 64-byte write buffer and a 32-byte read buffer are provided in the RT625 to fully buffer the transfer of 
a cache line. This feature allows the RT625 to simultaneously read a cache line from main memory as it is 
flushing a modified cache line from the cache. The write buffer can store up to eight doubleword accesses 
and avoids stalling the RT620 on writes to main memory by storing the write data until the physical bus be­
comes available. The write buffer writes the data to memory as a background task. 

The RT625 supports the SPARC MBus reference standard interface. The MBus is a peer-level, high-speed, 
64-bit, multiplexed address and data bus that supports a full peer-level protocol (i.e., multiple bus masters). 
The RT625 MBus supports data transfers in transaction sizes of 1, 2, 4,8, or 32 bytes. These data transfers 
are performed in either burst or non-burst mode, depending upon the size. Data transactions larger than eight 
bytes (one doubleword) are transferred in burst mode, which consists of an address phase followed by four 
data phases. Non-burst transactions consist of an address phase followed by one data phase, and are used 
for data transactions of eight or fewer bytes. Bus mastership is granted and controlled by an external bus 
arbiter. The bus arbiter sets bus priorities, and grants access to a bus master. Additional information on the 
MBus can be found in the SPARe MBus Interface Specification. 

The RT625 provides support for memory systems with reflective memory controllers. A memory system 
with reflective memory control can recognize a cache-to-cache data transaction and automatically update 
itself without delaying the system. 

4.2 RT625 Memory Management Unit 
This section describes the SPARC Reference MMU as implemented in the RT625. 

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside 
buffer (TLB). The TLB is in reality a full address translation cache for address translation entries stored from 
tables in main memory. These entries, referred to as page table entries or PTEs, contain the mapping infor­
mation used by the MMU to translate the virtual addresses. Addresses presented to the MMU for translation 
are compared against the set ofPTEs stored in the TLB. All entries in the TLB are simultaneously accessed 
through the use of content addressable memory (CAM) technology. If a match for the virtual address and 
context is found in a valid TLB entry and the access protection is not violated, a TLB hit occurs and the ad­
dress is translated. A virtual address and context that matches a valid TLB entry but violates the memory 
access protections will cause the RT625 to generate a memory exception to the RT620. If the TLB entries 
do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs. The MMU re­
sponds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the 
virtual address. 

The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The 
table walk is a search through a series of up to four tables in main memory for the PTE corresponding to 
a virtual address. These tables are: the context table, the Levell table, the Level 2 table and the Level 3 table. 
The table walk uses the context table pointer register as a base register and the context number as an offset 
to point to an entry in the context table. At any address, the MMU finds either a PTE, which terminates its 
search, or a page table pointer (PTP). A PTP is a pointer used in conjunction with a field in the virtual address 
to select an entry in the next level of tables. The table walk continues searching through levels of tables as 
long as PTPs are found pointing to the next table. The table walk terminates if a PTE is found at any level; 
an exception is generated if a PTE is not found after accessing the Level 3 table. An exception is also gener­
ated if the table walk finds an invalid or reserved entry in the page tables. Upon finding the PTE, the RT625 
stores it in an available TLB entry and translates the corresponding virtual address. The table walk process­
ing is implemented in the RT625 hardware. It is self-initiated, and is transparent to the user. 

4.2.1 Translation Lookaside Buffer (TLB) 

The RT625 uses a 64-entry fully associative TLB for address translation. The TLB consists of two sections: 
a virtual section and a physical section, as shown in Figure 4-3. The virtual section is compared against the 

4-4 



TEe H N 0 LOG', ,$ =============R=T=62=5=h;;;;y;;;;p=er=S=P=}\=R=C=C=M=T=U 

virtual address and the contents of the context register. A content addressable memory (CAM) is used as 
the virtual section of the TLB. The CAM provides simultaneous comparison of all 64 TLB entries with the 
current virtual address and context. The physical section of the TLB is a RAM array, and its entries are ad­
dressed by a valid compare output from a CAM entry. If a CAM entry matches the virtual address and con­
text, the corresponding RAM entry in the TLB provides the physical address for use by the RT625. 

The virtual section of a TLB entry consists of 20 bits of virtual address (VA < 31:12 » and a 12-bit context 
number (CXN <11 :0». The physical section of a TLB entry consists of a 24-bit physical page number (PPN 
< 35:12 », a cacheable bit (C), a modified bit (M), a three-bit field for page access-level protection (ACC 
< 2:0 », a two-bit short translation field (ST < 1:0 », and one valid bit (V). 

As described by the SPARC Reference MMU specification, bits 31 through 12 of the virtual address are 
translated to an expanded physical address using bits 35 through 12. The translation of these bits depends 
upon the ST field of the TLB entry (or PTE) and the MMU operation mode (refer to Section 4.3). Bits 11 
through 0 of the virtual address are not translated, and are defined as the page offset. 

Virtual Section 
(CAM Array) 

Physical Section 
(RAM Array) 

Figure 4-3. Translation Lookaside Buffer (TLB) 

Table 4-1. Short Translation Bits ST(I:0) 
STl STO Address Mapping 

0 0 4-Kbyte (page size) 

0 1 256-Kbyte 

1 0 16-Mbyte 

1 1 4-Gbyte 

64 TLB Entries 

A TLB entry (PTE) can be defined to map a virtual address into one of four sizes of addressing regions using 
the ST field. The four sizes of addressing regions are: 4-Kbyte, 256-Kbyte, 16-Mbyte, or 4-Gbyte. Table 4-1 
illustrates the values assigned to the ST field. 

The value of the short translation bits affects both the addresses generated using the TLB entry and the virtu­
al addresses allowed to match with the TLB entry. The virtual address supplied by the RT620 is divided into 
four fields: index 1, index 2, index 3 and page offset, as illustrated in Figure 4-4. For ST = (1,1) (4-Gbyte 
addressing range), only the context register is used to match a TLB entry. Setting ST = (1,1) essentially 
causes the CAM array to ignore the index 1, 2, and 3 fields of the virtual address. Consequently, the address 
generated using the TLB entry only supplies the upper four bits of the 36-bit physical address. Index 1, 2, 
and 3 fields, along with the page offset, are passed along to the physical address unchanged. 
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The three remaining values ofthe ST field "tum on" comparison of the three index fields. The index fields 
that are required to match a TLB entry also become the fields that are replaced by the TLB entry during virtu­
al to physical translation. Setting ST = (1,0) (l6-Mbyte addressing region) requires the TLB to match the 
context and index 1 fields of the virtual address to the TLB entry. The TLB entry with ST = (1,0) will supply 
the upper four address bits and replace the index 1 field of the virtual address with a physical address field. 
The index 2, 3, and page offset fields are passed along to the physical address from the virtual address. Set­
ting ST = (0,1) and (0,0) adds index 2 and index 3 fields to the comparison, respectively. Setting ST = (0,0) 
causes the TLB to require matching of the context, index 1, 2, and 3, and will replace all but the page offset 
when translating the virtual address. 

Virtual 
Address 

TLB Entry 

Hit/Miss Logic 

lMASI<5:0> 

IMTYPE < 1:0 > 

Figure 4-4. Address Comparison 

Page Offset 

o 

Context Register (CXR) 

Access Violation 

Physical addresses are generated using the contents of the PPN field of the TLB entry. The portion of the 
PPN field used to map the virtual address to a physical address is dependent upon the ST(l :0) bit field, as 
described above. If a 4-Kbyte linear addressing range is specified by the ST(l :0) bits, then the entire 24-bit 
field is used as the upper 24 bits of the physical address. When a 256-Kbyte linear addressing range is speci­
fied, the upper 18 bits of the PPN field < 35: 18 > are used in the physical address. The remaining bits of the 
physical address are supplied from the virtual address. The upper 12 bits of the PPN field < 35 :24 > are used 
for a 16-Mbyte addressing region. If a 4-Gbyte region is selected, only the upper four bits of the PPN field 
< 35:32 > are used in the address translation. The page offset field of the virtual address is always used as 
the lower twelve bits of the physical address. 

The cacheable bit (C) indicates whether the memory addressed by the TLB entry is cacheable or not. If the 
MMU is enabled, the value ofthe C bit is output on the MC pin (MAD) of the MBus during the address phase 
of a transaction. The MBus is described in the SPARC MBus interface specification. 

The modified bit (M) in the TLB is set when the RT620 modifies the memory page. This bit may be checked 
by an operating system to determine the modified status of a memory area. 
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Table 4-2. Access-Level Protection Bits-ACC < 2:0 > 

ACC User Access Supervisor Access 

0 Read Only Read Only 

1 Read/Write Read/Write 

2 Read/Execute Read/Execute 

3 Read/Write/Execute Read/Write/Execute 

4 Execute Only Execute Only 

5 Read Only Read/Write 

6 No Access Read/Execute 

7 No Access Read/Write/Execute 

The access-level protection (ACC) bits are described in Table 4-2. The ACC bits define the access-level 
protection for the addressing region controlled by the TLB entry. Access-level protection is checked during 
a TLB access. If a TLB hit occurs but access-level protection is violated, the MMU generates a synchronous 
fault and the operation terminates (see Section 4.10, Synchronous Faults). 

The valid bit (V) reports the valid status of the TLB entry. These bits are cleared upon power-on reset 
(RSTIN asserted) to invalidate the TLB entries. These bits are also cleared on a TLB entry invalidation. 

Programmer's Note: When loading the TLB entries under software control (i.e., TLB entries loaded by the 
central processing unit with ASI = 6), care must be taken to ensure that multiple TLB entries cannot map 
to the same virtual address. This may inadvertently occur when combining TLB entries that map different 
sizes of addressing regions. For example, a 4-Kbyte region described by a TLB entry could be included in 
a TLB entry for a 16-Mbyte region. Violation ofthis restriction will result in an invalid output from the TLB. 
It is recommended that when writing to the TLB using ASI = 6, the CAM should be written first followed 
by write to the RAM. Note that this case cannot happen when the TLB entries are automatically loaded by 
the RT625 during a table walk, as the TLB is checked for a "hit" first. 

4.2.1.1 TLB Look-up 

A virtual address to be translated by the RT625 is compared against each entry in the TLB as shown in 
Figure 4--4. If a TLB hit (match) occurs and access-level requirements are satisfied, then the TLB outputs 
the physical address and the cacheable bit. This physical address is output by the RT625 onto the MBus if 
the cache has been disabled or if the page is non-cacheable. If the cache controller is enabled and a cache 
miss occurs, the physical address of the cache miss is used to access the new cache line in main memory 
for cache line replacement. 

The short translation bits specify a linear address mapping range of 4-Kbyte, 256-Kbyte, 16-Mbyte, or 
4-Gbyte for each TLB entry. The short translation bits also determine the index fields of the virtual address 
that are matched with the TLB entry to determine a TLB hit. For a TLB entry with a linear address range 
of 4-Kbyte, index fields 1, 2, and 3 of the virtual address and the context register are compared against the 
TLB entry. A TLB entry with a 256-Kbyte linear addressing range requires a match of the context and of 
the index 1 and index 2 fields. A 16-Mbyte linear addressing range requires a match of the index 1 field and 
the context. The 4-Gbyte linear address mapping requires only a context match to produce a TLB hit. 

If the modified (M) bit is not set in a TLB entry, write, Load-Store accesses, Block Fills, cache flush and 
the destination write part of Block Copy that match the TLB entry and meet all access-level requirements 
will cause a table walk. (see Section 4.2.2, Table Walk) The table walk sets the modified bit in the page table 
pointer entry for the memory region. This information is used by an operating system to ensure that modified 
regions of memory are stored in alternate memory media (typically a disk drive) before they are overwritten 
during memory page swap operations. 
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If there is a matched entry, but the access-level requirements are not satisfied, then a synchronous address 
fault exception is asserted. Context number matching is not required if the access-level field (ACC) is either 
6 or 7 and the memory access is a supervisor mode access (ASI = 9,B H). This produces a means of mapping 
the kernel of an operating system into the same virtual address locations of every context. 

The TLB ignores access-level checking during MMU probe and software cache flush operations. 

4.2.1.2 TLB Entry Replacement and Locking 

The RT625 supports a random replacement algorithm to replace a TLB entry during TLB miss processing; 
however, the RT625 will attempt to fill all invalid entries before selecting any valid entry for replacement. 
The random replacement algorithm is implemented by using a counter to point to one of the 64 TLB entries. 
A 6-bit replacement counter (RC) is used to point to the next TLB entry to be replaced as shown in 
Figure 4-5. Upon encountering a TLB miss, the RT625 uses the counter value to address a TLB entry to 
be replaced. The hardware automatically replaces an entry pointed to by the replacement counter (RC) dur­
ing TLB miss processing. 

Locking of TLB entries is supported with a 6-bit initial replacement counter (IRC). The number of locked 
entries is specified by setting the value of the IRC. The value of the IRC is used as a counter preset for the 
replacement counter. Once the replacement counter (RC) reaches the maximum value, it wraps to the IRC 
value. Upon power-on reset (RSTIN asserted), both the IRC and RC are initialized to zero. 

Locked TLB entries can be changed (read/write) only through the alternate space Load/Store instructions 
with ASI = 6 (see Section 4.7., Diagnostics Support) These locked entries will not participate in the random 
replacement algorithm during TLB miss processing. The IRC should be initialized to the number oflockable 
entries by writing to the TLB replacement control register (TRCR). 

Programming Note: When changing the IRC, the RC should also be written with the same value. This ensur­
es that the RC is always pointing to the replacement area of the TLB. 

63~ ________________ ~ 

1------------------;.-- Replacement 
Counter (RC) 

TLB Entries 

1------------------;.-- Initial Replacement 
Counter (IRC) 

" , } Lncked Entries 
,: ' 

0;,; " 

Figure 4-5. TLB Replacement and Locking 

4.2.1.3 TLB Entries (TLBs) 

Both the virtual and physical sections of each TLB entry can be accessed (read/write) through single Load 
or Store instructions. Software has the option to write and to lock high-usage or high-priority TLB entries 
to optimize system response time (Refer to Section 4.7.1, MMU TLB Entries for more details.) 

4.2.2 Table Walk 

The RT625 supports tree-structured, 4-level table walk processing (including the context table level) as 
shown in Figure 4-6. All of the virtual to physical address mapping tables are located in physical memory. 
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These tables are accessed in the case of a TLB miss, a write, Load-Store operation, Block Fills, cache flush 
or destination write part of Block Copy operation with a cleared M (modified) bit in the TLB entry. 

Upon starting a table walk, the RT625 walks through a series of tables to find a page table entry (PTE). The 
page table entry contains the physical page number, the access-level permission, cacheable, modified, and 
referenced bits for the address generating the table walk. (Refer to Section 4.2.4 for information on PTEs.) 
A table walk caused by a TLB miss causes the RT625 to update an available TLB entry with the new PTE. 
A table walk forced by a write or Load-Store operation on an unmodified memory region causes the RT625 
to set the modified bit in the page table entry and in the TLB entry. 

The table walk begins with an access to the context table. The RT625 uses the context table pointer register 
(CTPR) as a base register to point to the beginning of the context table. The context register (CXR) is used 
as an index register to point to the table entry. The upper 22 bits of the CTPR are concatenated with the twelve 
bits of the CXR to provide a 36-bit address. The lowest two bits of all addresses pointing to a page table entry 
or pointer are always forced to zero. 

If a PTE is found at the context table level, the table walk terminates. The PTE is stored in the TLB and, 
if necessary, the modified bits and/or the referenced bits are updated. (Refer to Section 4.2.4 for information 
on page table entries and the modified and reference bits.) If a page table entry is not found, then a Page Table 
Pointer (PTP) must be located at the address pointed to in the context table. (See Sections 4.2.3 and 4.2.4 
for more information on PTPs and PTEs.) The page table pointer is used as the base address for the next table. 

If a PTE is not found, the table walk continues by accessing the Levell table using the PTP as a base address 
and the index 1 field from the virtual address as an index pointer. The index 1 field (virtual address (31:24)) 
is used to select an entry in the Level 1 table. If a page table entry is not found at this location, a page table 
pointer stored at this entry is used as the base address for the Leve12 table. The index 2 field (virtual address 
< 23:18 » is used to select an entry in the Level 2 table. If the entry in the Level 2 table is not a page table 
entry, it is used as the base address for the Level 3 table. The index 3 field (virtual address < 17: 12 » is used 
to select an entry in the Level 3 table, which must be a page table entry. 
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Figure 4-6. Four-Level Table Walk (4-Kbyte Addressing) 
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If a page table entry is not found after the Level 3 table access, a synchronous fault exception is asserted. 
A synchronous fault exception is also generated if an invalid or reserved entry is found at any level of the 
table walk. The table walk terminates immediately when an exception is generated. 

The level at which the table walk terminates is related to the size of addressing region associated with the 
entry. A table walk that fmds its page table entry in the context table corresponds to an addressing region 
of 4 Gbytes. Each level deeper into the table walk corresponds to a smaller size of address mapping. A PTE 
for a 16-Mbyte addressing region will be found in a Levell table. A 256-Kbyte PTE will be found in a Level 
2 table. Only an addressing region of 4-Kbyte will require a table walk of four levels to fmd the correct page 
table entry). 

An example of a table walk for a 256-Kbyte linear address space is shown in Figure 4-7. The value of the 
short translation bits are related to the level at which the table walk terminates. The short translation bits 
decrease from (1,1) for a table walk with a context table PTE to (0,0) for a table walk with a Level 3 table 
PTE. (refer to Table 4-1.) 

Each table walk access is performed as a non-burst transaction on the MBus. The MBus busy (MBB) signal 
is asserted from the beginning of the table walk to the end of the table walk process. This locks the MBus 
and prevents another bus master from gaining the bus until the table walk is complete. The MLOCK bit in 
the address phase of the MBus transaction will be set indicating a locked transaction. During these transac­
tions, the C bit in the SCR register is output on the MC signal of the MBus. There will be write transactions 
during the table walk only if the referenced bit (R) and/or the modified bit (M) has to be set in the page tables. 

If there is an invalid page table entry (ET = 0) at any level, an invalid address error exception occurs and 
the table walk terminates immediately. If an external Bus Error occurs or a reserved entry (ET = 3) is detected 
or a PTP entry is detected in Level 3, a translation error exception occurs, and the table walk terminates im-
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mediately. If an access-level protection occurs, the table walk is terminated and a protection/privilege viola­
tion exception is asserted. 

Virtual I Index 1 Index 2 I Offset I Address 
31 2423 18 l7 I 0 

I 
Context I r--------- -----------------------1 
Pointer i Context Table I Register 

I I Levell Page Table 

I Context I I I 
I : 

Root Pointer I Register Level 2 Page Table 

PTP I 
I I 
I PTE l I 
I I 
I I 
I . I 
~~~~~~ ___________________________ J 

~ • Physical I Physical Page Number I Page Offset I Address 
35 18 17 o 

Figure 4-7. Three-Level Table Walk (2S6-Kbyte Addressing) 

The referenced bit (R) and the modified bit (M) are set according to the Access Type. In order to record the 
exceptions in the synchronous fault status registers properly, the table walk hardware must indicate the fault 
type and the level at which the fault occurred (referto Section 4.1 0 for more details). For access-level check­
ing during the table walk, Load-Store cycles are treated as write cycles. The table walk state diagram is 
shown in Figure 4-11. During MMU probe and software cache flush, the table walk controller ignores ac­
cess-level checking. 

4.2.3 Page Table Pointer (PTP) 

A Page Table Pointer (PTP), as shown in Figure 4--8, may be found in the context, Levell, or Level 2 tables. 
The PTP is used in conjunction with an index field of the virtual address to point to the next level of table 
in a table walk. The PTP found at the context level is called the root pointer. Bits 31 through 6 of the root 
pointer are output on bits 35 through 10 of the MBus (MAD < 35:10 » and are concatenated with the eight 
bits of the index 1 field of the virtual address to access the entry in the first level page table. The lowest two 
bits of the address are equal to zero, as addressing is aligned on word boundaries. 

PTP 

31 4 3 2 1 o 
PTP Page Table Pointer 
RSV Reserved 
ET Entry Type 

Figure 4-8. Page Table Pointer 

Similarly, bits 31 through 4 of the PTP in Level 1 or Level 2 tables are output on bits 35 through 8 of the 
MBus (MAD < 35:8 ». The index 2 or index 3 fields are concatenated with the PTP to yield the address 
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of the next table entry. The ET field (see Table 4-3) describes the entry type: invalid, page table pointer, or 
page table entry. 

Table 4-3. Page Table Entry Type 

ET Entry Type 

0 Invalid 

I Page Table Pointer 

2 Page Table Entry 

3 Reserved 

In order to reduce the penalty for a TLB miss, the root pointer from the context level table and four PTPs 
from the Level 2 table are cached in the PTP cache. The PTPs from the two most recent data and from the 
two most recent instruction misses using a four-level table walk are cached for later use. The TLB checks 
the PTP cache upon a TLB miss, and uses the cached PTP to access the Level 3 table if an entry matches 
the access. The PTP cache is discussed in more detail in Section 4.2.5. 

4.2.4 Page Table Entry (PTE) 

The Page Table Entry (PTE) is shown in Figure 4-9 and may be found in the context, Level I, Level 2 or 
Level 3 tables. The page table entry contains the address mapping information used by the MMU to translate 
a range of virtual addresses to physical addresses. 

24 1 1 1 3 2 

PPN Icl~RI ACC I ET 

31 8 7 6 5 4 2 1 0 

PPN Physical Page Number R Referenced Bit 
C Cacheable Bit ACC = Access Protection Bits 
M Modified Bit ET = Entry Type 

Figure 4-9. Page Table Entry Format 

The level of the table in which the PTE is found is related to the addressing range associated with the PTE. 
A PTE found in the context table will map a 4-Gbyte addressing region. A Levell PTE will map a 16-Mbyte 
addressing region. A Level 2 PTE corresponds to a mapping region of 256 Kbytes. A Level 3 PTE maps 
a 4-Kbyte addressing region. The addressing region mapped to the PTE determines how many bits in the 
PPN field of the PTE are used to form the physical address. PTE < 31 :28 > from a context level table PTE 
are output on bits 35 through 32 of the physical address bus (MAD < 35:32 » to offer 4 Gbytes of linear 
address mapping. Similarly, PTE < 31 :20 > from a Level 1 table PTE are asserted on bits 35 through 24, 
and provides 16 Mbytes of linear addressing. PTE < 31: 14 > from a Level 2 table PTE are asserted on bits 
35 through 18, and PTE < 31:8> from a Level 3 table PTE are asserted on bits 35 through 12 to offer 256 
Kbytes and 4 Kbytes of linear address mapping, respectively. The remainder of the PPN field not used for 
address translation is reserved. The remaining physical address bits not specified by the PPN field are 
supplied from the virtual address. 

The ACC bits describe the access-level and privilege protection assigned to the PTE. These bits are de­
scribed in Table 4-2. The referenced (R) bit is set in the PTE when the RT625 has read the value of the PTE 
in a table walk. The RT625 automatically sets this bit upon access of the PTE. The modified (M) bit is set 
upon a write, Load-Store access, Block Fills, cache flush or destination write part of Block Copy of a pre­
viously unmodified memory region. This information is commonly used by an operating system to flag re­
gions of memory that must be written to mass storage before being replaced by another memory page. 
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The cacheable (C) bit indicates whether or not the memory region addressed by the PTE is allowed to be 
cached. It may be used, for example, to prevent caching of memory-mapped input/output devices. 

The ET field, described in Table 4-3, is used by the RT625 to determine the type of table entry during a table 
walk. The ET field is set to 2 to indicate a PTE, and is set to I to indicate a PTP. If the RT625 encounters 
a table entry with ET=O during a table walk, the RT625 generates an invalid address error. The RT625 gener­
ates a translation error if ET =3 (reserved) is encountered in a table entry during a table walk. 

4.2.5 Page Table Pointer Cache (PTPC) 

In order to reduce the penalty for a TLB miss, the RT625 supports a five-PTP entry page table pointer cache. 
The page table pointer cache (PTPC) caches the most recently used PTPs, as shown in Figure 4-10. The 
five entries are: the root pointer register (RPR), the two instruction access Level 2 PTPs (IPTPO, IPTPI), 
and the two data access Level 2 PTPs (DPTPO, DPTPI). The IPTPO and DPTPO registers are referenced by 
the index tag register (ITRO). The IPTPI and DPTPI registers are referenced by the index tag register 
(ITRI). These entries are cached during table walk processing for a TLB miss. 

The root pointer for a context is cached in the RPR. The RPR remains valid until the context register (CXR) 
or the context table pointer register (CTPR) value is changed. The instruction access PTP registers contain 
the two latest Level 2 PTPs for instruction accesses. These PTPs are cached from the two most recent TLB 
misses requiring a three- or four-level table walk for instruction accesses. The data access PTP registers con­
tain the two latest Level 2 PTPs for data accesses. These PTPs are cached from the two most recent three­
or four-level table walk for data accesses. A LRU algorithm is used to decide which PTPs (either IPTPO or 
IPTPI for an instruction access, DPTPO or DPTPI for a data access) to replace when a four-level table walk 
occurs. Refer to Section 4.5 for more information on these registers. 

Index tag registers (ITRO, ITRI) are used to reference the IPTP and DPTP registers. The ITAG and DTAG 
fields of the index tag register are used by the RT625 to compare against an address generating a TLB miss. 
Once a Level 2 page table pointer is cached for an instruction or a data access, the same PTPs are used if 
the index I and index 2 fields of the virtual address match the index I and index 2 tag fields of the ITAG 
or DTAG. The IPTP and DPTP registers are updated only if a TLB miss occurs that does not match the ITAG 
or DTAG and also generates a table walk that accesses Level 3 of the page tables. 
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r-----------------------------l 
Index Tag Register 0 

Index Tag Register 1 

Instruction PTP Register 0 

Instruction PTP Register 1 

Data PTP Register 0 

Data PTP Register 1 

RPRegister 

ITAG 

ITAG 

Instruction Access PTP 

Instruction Access PTP 

Data Access PTP 

Data Access PTP 

Root Pointer 

DTAG 

DTAG 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-----------------------------~ 
Figure 4-10. Page Table Pointer Cache 

Once a root pointer is cached for a particular context, the same root pointer can be used as long as the context 
is not changed. If the table walk finds a context level or Levell or Level 2 entry PTE (i.e., is not a four-level 
table walk), then no caching of Level 2 pointers is performed. 

Whenever the context is changed, the entire PTPC (all five entries) is invalidated. Upon power-on reset, all 
the PTPC entries are invalidated. When the context pointerregister (CTPR) is written, the page table pointer 
cache is invalidated by clearing the V bits in the IPTPs, DPTPs, and RPR registers. Any TLB invalidate 
operation invalidates the IPTP and DPTP registers of the PTP Cache. The PTPC entries are also updated 
for MMU probe, software cache flush and Block Copy/Fill operations. 
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Legend: 
L - Table Level (see Table 3-17) 
Ff - Fault Type (see Table 3-19) 
R - Referenced Bit in PTE 
M - Modified Bit in PTE 

Translation Error 
(L=O,Ff=4) 

Address Error 
(L=O,Ff=l) 

Translation Error 
(L= 1,Ff=4) 

Address Error 
(L=l,Ff=l) 

Translation Error 
(L = 2, Ff =4) 

Address Error 
(L=2,Ff= 1) 

R=l 
M=X 

N 

R=O 
M=X 

or 
Load-Store 

Translation Error 
(L=3,Ff=4) 

Address Error 
(L=3, Ff= 1) 

Privilege Violation 
(Ff=3) 

Protection Violation 
(Ff=2) 

R=X 
M=O 

y 

R=O 
M=l 

Translation Error 
(L = (1-3, Ff = 4) 

R=l 
M=l 

Lnad TLB 

Figure 4-11. Table Walk Algorithm 
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4.3 RT625 MMU Operation Modes 
This section describes the different modes of operation of the RT625, the conditions under which they occur, 
and what information is reflected on the pins. The operation mode for the MMU (and cache controller) is 
controlled by the system control register (SCR). Please refer to Section 4.5.1 for further information on the 
SCR. 

The following symbols are used throughout the chart: 
MC(MAD(43» MBus Cacheable Indicator signal 

ASI 

SCR[C] 
X 

(Refer to Section 4,]], Pin Definitions) 
Address Space Identifier code 
for current access from RT620 
Cacheable bit of SCR 
Not Defined or Don't Care 

UN 
RES 
PA 
VA 
BM,ME,CE 
PTE[C] 

Table 4-4. MMU Operation Modes 

MMU Operation Modes 

Conditions 

Unassigned ASI 
Reserved ASI and ASI 
Physical Address 
Virtual Address 
Bits in System Control Register (SCR) 
Cacheable bit of page table entry 

Results 

Mode ASI BM ME CE Physical Addressing Caching MC 

UN,RES UN,RES X X X Ignore Ignore Ignore N/A 

By-pass 20-2F X X X 
PA < 35:32 > = PA < 31:0 > = Not 

0 
ASI < 3:0> VA<31:0> Cached 

Pass-Through 8,9,A,B 0 0 X PA < 35:32 > = 0 
PA <31:0>= Not SCR 

VA <31:0> Cached [C] 

Boot 
8,9 I X PA < 35:28 >= FF 

PA <27:0>= Not SCR 
(Instr, access) 

X 
VA <27:0> Cached [C] 

Boot 
A,B I 0 PA < 35:32> =0 

PA < 31:0 > = Not SCR 
(Data access) X 

VA <31:0 > Cached [C] 

Translation I 
PA< 35:12 >= PA<11:0>= Not PTE 

(Data Access and A,B X I 0 
PTE < 31:8 >1 VA< 11:0>1 Cached [C] 

Cache Disabled) 

Translation 2 
PA < 35:12 > = PA<lI:O>= Cached if PTE 

(Data Access and A,B X I I PTE < 31:8 >1 VA< 11:0>1 PTE[C] = I [C] 
Cache Enabled) 

Translation 3 
PA < 35:12 > = PA <li:O > = Not PTE 

(Instruction Access and 8,9 0 I 0 
PTE < 31:8 >1 VA < 11:0 >1 Cached [C] 

Cache Disabled) 

Translation 4 
PA<35:12>= PA<li:O>= Cached if PTE 

(Instruction Access and 8,9 0 I I 
PTE<31:8>1 VA< 11:0>1 PTE[C] = I [C] 

Cache Enabled) 

IConcatenation field sizes vary depending upon the short translation (ST) bits to provide 4-Gbyte, 16-Mbyte, 256-Kbyte or 4-Kbyte oflinear address mapping, 
Refer to Section 42,1 for further details, 

The MMU provides three types of operating modes: boot modes, direct-access modes, and translation 
modes. Two boot modes are defined for the MMU, one for data accesses, and one for instruction accesses. 
The boot modes force the upper eight bits of the physical address to FF H for instruction accesses. The upper 
four bits are forced to zero for data accesses. 

The direct access modes allow the central processing unit to access the main memory without address trans­
lation by the MMU. These modes include: by-pass, and pass-through. The lower 32 bits of the physical ad­
dress are supplied directly from the virtual address bus. This mode allows the central processing unit to ac­
cess the boot mode memory (if supported in the system) without changing the state of the SCR. 

Bypass mode allows complete access to the main memory space. The MMU is not enabled, and the lower 
four bits of the ASI are used as the upper bits of the physical address. The remaining 32 bits are supplied 
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directly from the virtual address bus. The state of the SCR does not have to be modified. This mode is 
mapped into the ASI space as ASI = 20 - 2F H. 

Pass-through mode describes the RT625 operation with the MMU disabled. The upper four address bits of 
the physical address are forced to zero. This mode requires the boot mode (BM) and MMU enable (ME) 
bits of the SCR to be cleared. 

The translation modes are considered to be the normal operating modes of the MMU. This group includes 
four modes of translation operations: Translation 1-4. Translation 1 and 2 are the non-cached and cached 
data access modes, respectively. Translation 3 and 4 are the non-cached and cached instruction access 
modes. The cached and non-cached modes are identical in results for both data and instruction accesses, with 
the exception that the data access modes ignore the BM bit of the SCR. This feature allows the system to 
enable the MMU for data accesses, yet still access instructions from the boot memory space without chang­
ing the BM bit. 

Note: The SPARC architecture supports the concept of address space identifiers (ASI), which provide an 
extension of the standard addressing space. These bits are used to enable special addressing modes, or to 
provide access to registers and other features of the RT625. Refer to Section 4.9, RT625 AS! and Register 
Mapping for more information. 

4.3.1 MMU Invalidate and Probe Operations 

4.3.1.1 invalidate Operations 

The invalidate operation allows software invalidation of selected entries in the TLB. TLB entries are invali­
dated by executing a Store Alternate ASI instruction using ASI = 3 H and supplying a virtual address in the 
format shown in Figure 4-12. The context number is given by the context register (CXR). All TLB entries 
that match the virtual address, context, and TLB invalidate type will be invalidated simultaneously. The in­
validate type is specified in bits 11-8 of the virtual address for the invalidate operation. 

Virtual Address Format: 

Index 1 Index 2 Index 3 Type RSV 

31 2423 18 17 12 11 8 7 o 

Figure 4-12. MMU Invalidate Address Format 

The RT625 supports five different types of TLB invalidate operations. These types are: page, segment, re­
gion, context, and entire invalidate. The five types of invalidate operations are listed in Table 4-5, and define 
the address comparison required to match a TLB entry for invalidation. The short translation (ST) bits in 
the TLB entries are ignored for TLB matching. All TLB entries matching the compare criterion of the invali­
date type are invalidated, including those locked by the IRe. 
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Table 4-5. TLB Entry Invalidation 

Type Invalidate Compare Criterion 

0 Page Context (or ACC = 6, 7), 
Index 1, Index 2, and Index 
3 

1 Segment Context (or ACC = 6, 7), 
Index 1, and Index 2 

2 Region Context (or ACC = 6, 7) 
and Index 1 

3 Context Context (user pages with 
ACC=Ot05) 

4 Entire None 

5 to F Reserved 

4.3.1.2 Probe Operation 

The probe operation allows testing the TLB and page tables for a PTE entry corresponding to a virtual ad­
dress. The operation is initiated by executing a Load Alternate ASI instruction with ASI = 3 H, the appropri­
ate virtual address, and the context number. The context is specified by the context register. Upon starting 
a probe operation, the TLB is probed first. If there is a TLB hit, it returns the 32-bit physical section of the 
matched entry. The returned entry fields are formatted such that it is identical to a PTE (see Section 4.2.4, 
for PTE format information). If a matching entry could not be found in the TLB, a table walk is started and 
an appropriate 32-bit value (PTE) is returned and loaded into the TLB. 

A probe operation causes the reference bit (R) to be set in the PTE by means of a table walk. When a probe 
operation hits the TLB, the R bit is always returned as set. 

The context register and access-level protection checking are ignored for TLB matching and during the 
probe operation table walk. The table walk hardware checks for invalid address error and translation error 
exceptions and records appropriate fields in the SFSR register as in the normal table walk process. If a bus 
error occurs or an invalid or reserved entry is detected during the table walk, a 32-bit zero value is returned 
as status. If a zero value is returned, the UC, TO, BE, L, and FT fields of the SFSR are updated accordingly, 
but the operation does not cause an exception to the RT620. 

4.4 RT625 Cache Controller 
The RT625 cache controller is designed to accommodate both uniprocessor and multiprocessor system re­
quirements. The RT625 provides bus snooping and an efficient style of cache coherency protocol. 

4.4.1 RT625 Cache Modes 

The RT625 cache can be programmed in two cache modes: either write-through with no write allocate or 
copy-back with write allocate. The two cache modes differ in how they treat cache write accesses. Write­
through cache mode causes write hits to the cache to be written to both cache and main memory. Write cache 
misses in write-through mode only update main memory and do not modify the cache. 

A write access in copy-back mode only modifies the cache. The writing of the modified cache line to main 
memory is deferred until the cache line is no longer required. Copy-back cache mode has the advantage of 
reducing traffic on the system bus. Bus traffic is reduced since all updates to memory are deferred and are 
performed subsequently only as absolutely required. In addition, all such data transfers are made utilizing 
the more efficient burst mode. The following sections describe the two cache modes in detail. 
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4.4.1.1 RT625 Write-through Mode with No Write Allocate 

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated 
simultaneously. A write access cache miss causes only main memory to be updated (no write allocate). 
write-through caching mode normally requires a processor to be held during a write miss while the data is 
written to main memory. The RT625 provides write buffers to prevent this delay in most cases. The write 
buffers store the write access and write the data to main memory as a background task. (Refer to Section 
4.4.2.8 for further information on the write buffers.) 

During read access cache hits, the cached data is read out and supplied to the RT620. In the case of a read 
access cache miss, a cache line is fetched from main memory to load into the cache and the required data 
is supplied to the RT620 while data is being loaded into the cache. 

4.4.1.2 RT625 Copy-back Mode with Write Allocate 

When the RT625 cache is configured for copy-back mode, only the cache is updated on write access cache 
hits (i.e., main memory is not updated). The modified bit of the cache tag for the cache line is set on a copy­
back write access (write hit or after a write miss is corrected). During write access cache misses, if the se­
lected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache 
and only the cache is updated. If the selected cache line is modified, it has to be flushed out to update main 
memory. The RT625 flushes the modified cache line from the cache and stores it into its write buffer; at the 
same time, it fetches the new cache line from main memory and stores it into the read buffer. After the modi­
fied cache line has been flushed into the write buffer, the new cache line is stored into the cache memory 
from the read buffer and the modified cache line is written out from the write buffer into main memory. 

During read access cache hits, the cached data is read out and supplied to the RT620. During read access 
cache misses, if the selected cache line is clean (not modified), a cache line is fetched from main memory 
to load into the cache. If the selected cache line is modified, the selected cache line is flushed out to the 
RT625 write buffer, and a new cache line is fetched from main memory and stored into the read buffer. The 
new cache line is then stored in the cache from the read buffer, while the modified cache line stored in the 
write buffer is written out to main memory. 

4.4.2 RT625 Cache Controller 

The cache controller provides cache memory access control for a 128-Kbyte or 256-Kbyte direct-mapped 
cache. The cache is virtually indexed and physically tagged. The cache controller performs its task by com­
paring memory accesses against the address and status entries in a cache tag memory. The RT625 provides 
cache TAG (CTAG) memory for access comparison. Cache memory accesses from the processor (after un­
dergoing translation through the TLB) and bus snooping operations are compared against the CTAG 
memory. The RT625 cache tag avoids all conflict between processor accesses and bus snooping accesses 
without requiring a duplicate set of tags for snooping. 

The cache controller is designed to use two ( or four) RT627 Cache Data Units (CDU s) for the cache memory. 
Each CDU is a 16-Kbyte x 32 SRAM with on-chip address and data latches and timing control. Two or four 
RT627s and one RT625 comprise an entire 128-Kbyte or 256-Kbyte cache system with physical bus inter­
face and read and write buffers. 

4.4.2.1 128-Kbyte Cache Sub-System 

The cache is organized as 4096 cache lines of 32 bytes each. The RT625 has 4096 cache tag entries in the 
CTAG, one entry in each cache tag memory per cache line. Addressing for the cache indexing is provided 
directly from the Intra-Module Bus. The address field IMA < 16:5> selects one of the 4096 lines of the 
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cache. This address field also selects the cache tag entry in the CTAG dedicated to the selected cache line. 
A cache hit occurs when the translated physical address matches with the physical address stored in the se­
lected cache tag entry in CTAG. The lowest five bits of the address bus (IMA < 4:0 » select one or more 
of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines (32 
bytes). 

4.4.2.2 256-Kbyte Cache Sub-System 

The cache is organized as 4096 cache lines of two sub-blocks, each sub-block containing 32 bytes. The 
RT625 has 4096 cache tag entries in the CTAG, one entry in each cache tag memory per cache line. Address­
ing for the cache indexing is provided directly from the Intra-Module Bus. The address field IMA < 17:6 > 
selects one of the 4096 lines of the cache. This address field also selects the cache tag entry in the CTAG 
dedicated to the selected cache line. A cache hit occurs when the translated physical address matches with 
the physical address stored in the selected cache tag entry in CTAG. The address bit IMA < 5 > selects one 
of the two sub-blocks. The lowest five bits of the address bus (IMA < 4:0 » select one or more of the 32 
bytes in the cache sub-block. Cache data replacement is always performed by replacing cache sub-blocks 
(32 bytes). 

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the 
cache controller. The RT625 controls cache read accesses by holding the RT620 with PHOLD if a cache hit 
is not detected by the cache controller. The cache controller then reads the new cache line from main 
memory, and supplies the correct data to the RT620. The correct data is latched into the RT620 by strobing 
the IMDS signal. The RT620 is released from the hold state and execution proceeds normally. Thus, the 
RT625 performs the rest of the cache line fill (if needed) as a background task without holding the CPU. 

Writes to the cache are controlled by the RT625, which decodes the lowest three bits of the virtual address, 
the IMSIZE < 1:0 > signal, and checks for a cache hit to enable the correct cache byte write enable signals. 
If a cache write hit occurs, the RT625 decodes the correct CBWE signals for the write access, and outputs 
these to the cache data unit (CDU) write enables. If the cache mode is set to write-through (see Section 4.4.1, 
Cache Modes), the write data is also written to main memory. If a write cache miss occurs for write-through 
cache mode, the data is written to main memory and the cache is not updated. If the write cache miss occurs 
during copy-back cache mode, the cache line is fetched from main memory. If the cache line stored in the 
cache when the write cache miss occurred has been modified, the old cache line is written to main memory 
and is replaced by the new cache line fetched from main memory. After the cache line has been replaced, 
the write access is enabled by the RT625. If both sub-blocks are dirty for a cache miss, they are both flushed 
to memory as two 32-byte block writes. 

4.4.2.3 RT625 Cache Tag 

The cache tag (CTAG) array consists of 4096 direct-mapped physical address cache tag entries. Figure 4-13 
shows the layout of a CTAG entry. Each entry in the cache consists of 24 bits of physical address (PA 
< 35: 12 », one supervisor bit (SU), two shared bits (SHo and SHj ), two modified bits (Mo and Mj ) and two 
valid bits (VO and Vj). Vo, SHo and Mo are the valid, shared and modified bits for sub-block 0 of the cache 
line while Vj , SHo and Mo are the valid, shared and modified bits for sub-block 1 of the cache line. The valid 
bit is set or cleared to indicate the validity of the cache sub-block. The shared bit (SH) for a cache sub-block 
is set when bus snooping indicates that the cache sub-block is shared. The modified bit for a cache sub-block 
is set when this cache is the owner of that cache sub-block in the shared memory image system. 
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CTAG Cache Tag Entry 

31 

TAG 
SU 

SHo 
Me 
Vo 

TAG 

Physical Address Tag 
Supervisor bit 

Shared bit for sub-block 0 ~ 
Modified bit for sub-block 0 
Valid bit for sub-block 0 

Shared bit for sub-block 1 J 
Modified bit for sub-block 1 
Valid bit for sub-block I 

R Reserved 

8 7 654 3 2 

IMA<5>=O 

IMA<5>=1 

o 

Note: The address bit IMA < 5 > is used to select status bits (even for 128-Kbyte cache subsystem), 

Figure 4-13. RT625 Cache Tag Entry 

MBus Address Processor Address 

63 5150 

Physical Address 
fromTLB -

46 45 3635 I 

I 

I 
1211 

-

~-----------r------------r------' I VA (31:17) Cache Line Select I Byte Select I 
54 0 31 17 16 I 54 0 

r---------------~ 
I CTAG Entries I 
I MAD (35:12) SU Silo Mo Vo I 

+ 1 I I I I I I 
12:1 MUxl I + + + + I 

I I I 
'------+--~ MAD (35:12) SU SHu Mo Vo I 12:1MUXI 4096 

Entries 

! I I I I~----------------~I--+----I I 
• I I 

MAD (35:12) SU SHo Mo Vo I 
I I 
I I 
~ _______________ J 

L 

\Comparej 

\---.. - Cache Hit 

Figure 4-14. RT625 Cache TAG (CTAG) Comparison (128-Kbyte Cache) 
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MBus Address 

63 51 

Physical Address 
fromTLB -

~ 
4645 3635 I 

I 

Cache Sub-Block Select Cache Sub-Block Select 

Processor Address 

1817 

1 ~ 1L.-_VA_(3_1:_18_) __ I,-c_ac_h_e L_i_ne,s_el_ec_t -'lyl .......... sB"'ei:::::~"-t-'1 • r" " 1 
1211 6 5 4 a 31 

2:1 MUXI 

r-----cr~~~~-----,r----I 

i MAD (35:12) SU SHo Mo Vo SHI MI VI i 
I I I I I I I I I 

12:1MUX I + ++++++1 
I MAD (~5:12) SU SHo Mo Vo SHI Ml VI I L 

~------~!I ~~J I I I 
+ I I 

~\c...1o-m-par-'e'-/-- I I 
I MAD (35:12) SU SHu Mo Vo SHI Ml VI I 
I I L _____________________ J 

J Cache Hit 

Figure 4-15. RT625 Cache TAG (CTAG) Comparison (256-Kbyte Cache) 

The 4096 CTAG entries are virtual address indexed. From the processor side, the cache line select field, IMA 
< 16:5 > in case of 128-Kbyte cache or IMA < 17:6> in case of 256-Kbyte cache, is used to select a cache 
line entry and its corresponding cache tag entry. The translated physical address is compared against the 
physical address of the selected cache tag entry. If a match occurs, then a cache hit is generated. If a match 
is not found, then a cache miss is generated. To complete an access successfully, the cache tag and the TLB 
must be hit with appropriate access-level permission. 

From the MBus side, the index field for CTAG, as supplied by the MBus, is formed by concatenating the 
superset virtual address bits < 16:12> (MAD < 50:46 » in case of 128-Kbyte cache or < 17:12> (MAD 
< 51:46 » in case of 256-Kbyte cache with physical address bits < 11:5> (MAD < 11:5 » (refer to 
Figure 4-14 and Figure 4-15). On power-on reset (RSTIN asserted), all cache tag entries are invalidated 
(all V bits are cleared). 

4.4.2.4 RT625 Multiprocessing Support 

The RT625 is designed to support multiprocessing systems. The RT625 accomplishes this by providing fea­
tures necessary to maintain cache coherency with a second-level memory system (typically main memory 
or a secondary cache) and other caching systems on the shared bus. 

The RT625 supports two modes of caching: write-through and copy-back. Operation in write-through cach­
ing mode causes main memory to be modified with each write access to the cache. This avoids the issue of 
lack of coherency between the individual cache systems and main memory, but greatly increases memory 
bus traffic. The effect of this increased bus traffic is a degradation in the performance of a multiprocessor 
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system as the processing nodes compete for memory bus bandwidth. This problem is greatly reduced when 
copy-back caching mode is used. 

Operation in copy-back mode causes all changes to a cache line to be held until the line is flushed from the 
cache. This minimizes bus traffic to only those transactions necessary to maintain the cache. However, by 
allowing the cache line to be modified without updating main memory, a problem arises when other process­
ing nodes require an up-to-date copy of that memory location. The problem of modified cache lines is solved 
by the enforcement of a cache coherency protocol. 

The RT625 implements a cache coherency protocol specified by the Level 2 SPARC MBus standard. In this 
protocol, each cache line is described by one offive states: Invalid (I), Exclusive Clean (EC), Exclusive Mo­
dified (EM), Shared Clean (SC), and Shared Modified (SM). The following describes these five cache 
states: 

Invalid (/): Cache line is not valid. 

Exclusive Clean (EC ): Only this cache module has a valid copy of this cache line, other than the next level 
of memory (main memory or secondary cache). No other cache module on the same level of memory 
has a valid copy of this cache line. 

Exclusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module is 
the OWNER of the cache line, and has the responsibility to update the next level of memory (main 
memory or secondary cache) and also to supply data if any other cache references this memory loca­
tion. 

Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of 
memory mayor may not contain a valid copy of this cache line, depending upon whether this cache line 
has been modified in any other cache. 

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache mod­
ule is the OWNER of the cache line. The next level of memory does not have a valid copy of this cache 
line, and this cache module has the responsibility to update the next level of memory and to supply any 
other cache that may reference this same memory location. 

These five states are described by three state bits (valid (V), shared (SH), and modified(M» in each cache 
tag entry (refer to Figure 4-13). 

Under write-through cache mode, only the valid bit applies to cache tag entries,(i.e., the entry is either valid 
or invalid). The shared and modified bits are not set by the RT625 in write-through mode. 

4.4.2.5 RT625 Cache State Transitions 

The following sections describe the five cache line states (Invalid, Exclusive Clean, Exclusive Modified, 
Shared Clean, and Shared Modified) and the transitions these states undergo due to transactions on both the 
Intra-Module Bus and the MBus. Each numbered transition in a section corresponds to a numbered transi­
tion on the state diagram for that section. Note that state transitions are dependent upon both the cache trans­
action and the state of the MBus signals: memory shared (MSH), and memory inhibit (MIH). 

All processor transactions described in this section affect the processor serviced by the RT625. All coherent 
transactions affect all bus agents on the MBus with a copy of the shared cache line. 
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Figure 4-16. Copy-back Invalid 

4.4.2.5.i Copy-back invalid 

Processor Read Miss: RT625 issues a Coherent Read transaction on the MBus. The RT625 will read the 
cache line from the second-level memory and then load it into the CDUs. 

1. If MSH = HIGH, then Invalid changes to Exclusive Clean. 

2. If MSH = LOW, then Invalid changes to Shared Clean. 

Processor Write Miss: RT625 issues a Coherent Read and Invalidate transaction on the MBus. The RT625 
reads the cache line from the second-level memory and loads it into the CDUs. Then the processor data 
is written into the cache in the cycle following the last cache line entry. 

3. The new cache line is marked as Exclusive Modified. 

4.4.2.5.2 Copy-back Exclusive Clean 

Processor Read Hit: The RT625 will supply data to the RT620 immediately. 

1. The tag entry is Exclusive Clean: NO STATE CHANGE. 

Processor Read Miss: The RT625 will issue a Coherent Read transaction on the MBus. The RT625 will 
read the cache line from the second-level memory and then load it into the CDUs. 

2. If MSH = HIGH, then Exclusive Clean. 

3. IfMSH = LOW, then Exclusive Clean changes to Shared Clean. 

Processor Write Hit: The RT625 will update the cache immediately with the RT620 data. 

4. Exclusive Clean changes to Exclusive Modified. 
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Figure 4-17. Copy-back Exclusive Clean 

Processor Write Miss: The RT625 will issue a Coherent Read and Invalidate transaction on the MBus. The 
RT625 will read the cache line from the second-level memory and then load it into the CDUs. Then the 
processor data is written into the cache in the cycle following the last cache line entry. 

5. The new cache line is marked as Exclusive Modified. 

Software Flush Hit (Store Alternate instruction withASI = /oH to I4H; see Section 4.4.3): TheRT625 will 
invalidate the cache tag entry. 

6. Exclusive Clean is changed to Invalid. 

Coherent Read Hit: During the A+3 cycle of the MBus Coherent Read transaction, the RT625 will assert 
MSH and change the state of the cache line from Exclusive Clean to Shared Clean. 

7. Assert MSH; Exclusive Clean is changed to Shared Clean. 

Coherent Read and Invalidate Hit: The cache tag entry in the RT625 is invalidated. 

8. Exclusive Clean is changed to Invalid. 

Coherent Invalidate Hit: The cache tag entry in the RT625 is invalidated. 

9. Exclusive Clean is changed to Invalid. 

Coherent Write and Invalidate Hit: The RT625 invalidates the cache tag entry. 

lO. Exclusive Clean is changed to Invalid. 

4.4.2.5.3 Copy-back Shared Clean 

Processor Read Hit: The RT625 will supply data immediately to the RT620. 

1. The tag entry is Shared Clean: NO STATE CHANGE. 

Processor Read Miss: The RT625 will issue a Coherent Read transaction on the MBus. The RT625 will 
read the cache line from the second-level memory and load it into the CDUs. 
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2. If MSH = HIGH, then entry is marked as Exclusive Clean. 

3. If MSH = LOW, then entry is marked Shared Clean; 

Processor Write Hit: The RT625 issues a Coherent Invalidate transaction on the MBus. The RT625 will 
wait till it receives MRDY for the Coherent Invalidate transaction and then update the cache with the 
processor data. 

4. Shared Clean is changed to Exclusive Modified in the cache tag entry. 

Processor Write Miss: The RT625 will issue a Coherent Read and Invalidate transaction on the MBus. The 
RT625 will read the cache line from the second-level memory and then load the data into the CDU s. The 
processor data is written into the cache in the cycle following the last cache line entry. 

5. The new cache line is marked as Exclusive Modified in the cache tag entry. 

Software Flush Hit: The RT625 will invalidate the cache tag entry. 

6. Shared Clean is changed to Invalid in the cache tag entry. 

Coherent Read Hit: During the A+ 3 cycle of the MBus Coherent Read transaction, the RT625 will assert 
MSH. 

7. Assert MSH; Shared Clean in the cache tags. 

Coherent Read and Invalidate Hit: The cache tag entry is invalidated. 

8. Shared Clean is changed to Invalid in the cache tag entry. 

Coherent Invalidate Hit: The cache tag entry is invalidated. 

9. Shared Clean is changed to Invalid in the cache tags. 

Coherent Write and Invalidate Hit: The cache tag entry is invalidated. 

10. Shared Clean is changed to Invalid in the cache tags. 
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Figure 4-18. Copy-back Shared Clean 
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4.4.2.5.4 Copy-back Exclusive Modified 

Processor Read Hit: The RT625 will supply data to the processor immediately. 

1. Exclusive Modified in the cache tags: NO STATE CHANGE. 

Processor Read Miss: The RT625 will initiate a Coherent Read transaction followed by a block write 
transaction of the previously modified cache line. The RT625 will read the cache line from the sec­
ond-level memory and load the data into the CDUs. The modified cache line has to be written to update 
the second-level memory. The MBus busy (MBB) signal is asserted from the beginning ofthe Coherent 
Read transaction to the end of the write transaction on the MBus. 

2. If MSH = HIGH, the cache tag entry is changed from Exclusive Modified to Exclusive Clean. 

3. If MSH = LOW, the cache tag entry is changed from Exclusive Modified to Shared Clean. 

Processor Write Hit: The RT625 will update the cache immediately with the processor data. 

4. Exclusive Modified remains as Exclusive Modified in the cache tags. 

Processor Write Miss: The RT625 will initiate a Coherent Read and Invalidate transaction followed by a 
block write transaction of the previously modified cache line. The RT625 will read the cache line from 
the second-level memory and load it into the CDUs. The processor data is written into the CDU in the 
cycle following the last cache line entry into the cache. The modified cache line must be written into the 
second-level memory in order to update the memory. The MBB signal is asserted from the beginning of 
the Coherent Read and Invalidate transaction to the end of the write transaction on the MBus. 

5. The cache tag entry remains Exclusive Modified. 

Software Flush Hit: The RT625 initiates a block write transaction on the MBus. The RT625 writes the mo­
dified cache line to update the second-level memory and then invalidates the cache tag entry. 

6. Exclusive Modified is changed to Invalid in the cache tag entry. 

Coherent Read Hit: During the A+ 3 cycle of the Coherent Read transaction on the MBus, the RT625 as­
serts both the MSH and MIH signals. This RT625 is the OWNER of the cache line, and is responsible 
for supplying the data for the Coherent Read transaction on the MBus. 

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the RT625 changes 
the state of the cache tag entry from Exclusive Modified to Shared Clean. 

8. If the memory reflection (MR) bit of the SCR is cleared, the RT625 changes the state of the cache 
tag entry from Exclusive Modified to Shared Modified. 

Coherent Read and Invalidate Hit: During the A+ 3 cycle of a Coherent Read and Invalidate transaction on 
the MBus, the RT625 asserts MIH signals. This RT625 is the OWNER of the cache line, and is responsi­
ble for supplying the data for the Coherent Read transaction on the MBus. The cache tag entry is invali­
dated. 

9. Exclusive Modified is changed to Invalid in the cache tag entry. 

Coherent Invalidate Hit: The cache tag entry in the RT625 is invalidated. 
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10. Exclusive Modified is changed to Invalid in the cache tag entry. 

Coherent Write and Invalidate Hit: The cache tag entry is invalidated. 

11. Exclusive Modified is changed to Invalid in the cache tag entry. 

2 o 
6,9,10, 

11 

8 

Figure 4-19. Copy-back Exclusive Modified 

4.4.2.5.5 Copy-back Shared Modified 

Processor Read Hit: The RT625 will supply data immediately to the RT620. 

1. Shared Modified in the cache tags: NO STATE CHANGE. 

Processor Read Miss: The RT625 will initiate a Coherent Read transaction followed by a block write 
transaction of the previously modified cache line. The RT625 will read the cache line from second-lev­
el memory and load the data into the CDUs. The modified cache line has to be written to update the 
second-level memory. The MBB signal is asserted from the beginning of the Coherent Read transaction 
to the end of the write transaction on the MBus if the bus remains granted between the accesses. 

2. If MSH == HIGH, the cache tag entry is changed from Shared Modified to Exclusive Clean. 

3. If MSH == LOW, the cache tag entry is changed from Shared Modified to Shared Clean. 

Processor Write Hit: The RT625 initiates a Coherent Invalidate transaction on the MBus. The RT625 will 
wait until it receives MRDY for the Coherent Invalidate transaction and then update the cache with the 
processor data. 

4. The cache tag entry is changed from Shared Modified to Exclusive Modified. 

Processor Write Miss: The RT625 will initiate a Coherent Read and Invalidate transaction followed by a 
block write transaction of the previously modified cache line. The RT625 will read the cache line from 
second-level memory and load it into the CDUs. The processor data is written into the CDUs in the 
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cycle following the last cache line entry into the cache. The modified cache line must be written into 
second-level memory in order to update the memory. The MBB signal is asserted from the beginning of 
the Coherent Read and Invalidate transaction to the end of the write transaction on the MBus if the bus 
remains granted between the accesses. 

5. The cache tag entry is changed from Shared Modified to Exclusive Modified. 

Software Flush Hit: The RT625 initiates a block write transaction on the MBus. The RT625 will write the 
modified cache line to update second-level memory and then it invalidates the cache tag entry. 

6. Shared Modified is changed to Invalid in the cache tag entry. 

Coherent Read Hit: During the A+3 cycle of the Coherent Read transaction on the MBus, the RT625 as­
serts both the MSH and MIH signals. This RT625 is the OWNER of the cache line, and is responsible 
for supplying the data for the Coherent Read transaction on the MBus. 

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the RT625 changes the 
state of the cache tag entry from Shared Modified to Shared Clean. 

8. If the MR bit of the SCR is not set, then the cache tag entry remains Shared Modified. 

Coherent Read and Invalidate Hit: During the A+ 3 cycle of a Coherent Read and Invalidate transaction on 
the MBus, the RT625 asserts MIH signals. This RT625 is the OWNER of the cache line, and is responsi­
ble for supplying the data for the Coherent Read transaction on the MBus. The cache tag entry is invali­
dated. 

9. Shared Modified is changed to Invalid in the cache tag entry. 

Coherent Invalidate Hit: The cache tag entry in the RT625 is invalidated. 

10. Shared Modified is changed to Invalid in the cache tag entry. 

Coherent Write and Invalidate Hit: The cache tag entry is invalidated. 

11. Shared Modified is changed to Invalid in the cache tag entry. 
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Figure 4-20. Copy-back Shared Modified 
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4.4.2.5.6 Write-through Invalid 

Processor Read Miss: The RT625 issues a block read transaction on the MBus. The RT625 will read the 
cache line from second-level memory and load the data into the CDUs. 

1. The cache tag entry is changed from Invalid to valid. 

Processor Write Miss: The RT625 will issue a write-buffered Coherent Write and Invalidate transaction 
on the MBus. 

2. The cache tag entry remains Invalid. 

Figure 4-21. Write-through Invalid 

4.4.2.5.7 Write-through Valid 

Processor Read Hit: The RT625 will supply data to the RT620 immediately. 

1. The cache tag entry remains valid: NO STATE CHANGE. 

Processor Read Miss: The RT625 issues a block read transaction on the MBus. The RT625 will read the 
cache line from second-level memory and load the data into the CDUs. 

2. The entry remains valid. 

Processor Write Hit: The RT625 issues a write-buffered Coherent Write and Invalidate transaction on the 
MBus. The RT625 will write data into the cache. 

3. The entry remains valid. 

Processor Write Miss: The RT625 issues a write-buffered Coherent Write and Invalidate transaction on 
the MBus. The RT625 will not write to the cache. 

4. The entry remains valid. 

Software Flush Hit: The RT625 invalidates the cache tag entry. 

5. The entry changes from valid to Invalid. 

Coherent Read Hit: During the A+3 cycle of the MBus Coherent Read transaction, the RT625 asserts 
MSH. 

6. Assert MSH; the entry remains valid. 

Coherent Read and Invalidate Hit: The RT625 invalidates the cache tag entry. 

7. The entry changes from valid to Invalid. 
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Coherent Write and Invalidate Hit: The RT625 invalidates the cache tag entry. 

8. The entry changes from valid to Invalid. 

Coherent Invalidate Hit: The RT625 invalidates the tag entry. 

9. The entry changes from valid to Invalid. 

4,5,7,8,9 
1,2,3,6 

Figure 4-22. Write-through Valid 

4.4.2.5.8 RT625 Bus Snooping 

The RT625 bus snooper watches MBus transactions and snoops into the CTAG array for coherent 
transactions, as listed in Table 4-6. 

Table 4-6. MBus Snooping Transactions 

Cache Mode Transaction Type Snoop 

Copy-back Coherent Read & Invalidate yes 

Coherent Write & Invalidate yes 

Coherent Read yes 

Coherent Invalidate yes 

Read no 

Write no 

Write-through Coherent Read & Invalidate yes' 

Coherent Write & Invalidate yes 

Coherent Read yes' 

Coherent Invalidate yes' 

Read no 

Write no 

'These transactions are not generated by the RT625 for normal accesses. However, the 
RT625 will snoop these transactions if generated by another bus master. 

4.4.2.6 RT625 Address Aliasing 

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be de­
tected to maintain data consistency in a virtual cache system. The SPARC Reference system software con­
vention permits the use of aliases in address spaces that are modulo with respect to the system's underlying 
cache size. This convention ensures that the aliased entry maps to the same cache line address for each 
RT625 in the multiprocessor system. With this convention, the existence of address aliasing is automatically 
prevented in the RT625 cache system. 

4.4.2.7 RT625 Cache Control Signals 

The RT625 controls the cache through control signals supplied to the RT620 and to the cache data units. The 
signals used by the cache controller to control the RT620 consist of PHOLD, IMDS and IMBNA. PHOLD 
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is used to stall the RT620 until the RT625 can service the RT620 memory access request, such as during 
cache miss processing or during table walks. IMDS is used by the RT625 to strobe data into the 
RT620. IMBNA is used to obtain the Intra-Module Bus ownership from the RT620. 

The signals used to control the cache data unit consist of the cache byte write enable (CBWE) signals and 
cache read output enable (CROE) signals. CROE is asserted low to enable the output of the cache data units 
during a cache read. CBWE < 7:0 > is asserted low to enable writing to the cache data units. The multiple 
CBWE signals allow the cache controller to enable byte, halfword, word or doubleword writes to the cache 
data unit. Byte or halfword or word or doubleword reads are handled by the RT620, which reads an entire 
64-bit doubleword and internally discards unwanted bytes. 

During a cache read miss, the RT625 halts the RT620 by asserting PHOLD. The RT625 also asserts IMBNA, 
which is used to disable the RT620 data bus and address bus output drivers and obtain the ownership of the 
1MB to access the cache data unit. The cache controller fetches the new cache line from main memory, as­
serting CB WE < 7:0 > and the cache line addresses to write the data into the cache. While writing data into 
the cache data unit, when the missed read data doubleword is put on the data bus, the RT625 toggles the data 
strobe (IMDS) signal and deasserts PHOLD. Toggling IMDS forces the RT620 to latch the data on the data 
bus. The cache read miss terminates by deasserting the IMBNA signal. Read misses are handled in the same 
manner for both copy-back and write-through modes of caching. 

Cache write misses for write-through mode generally do not affect the operation of the RT620 due to the 
presence of write buffers in the RT625 (refer to the following section on the write buffer). In the case of a 
write miss, the write data is written to the write buffer instead of the cache memory. The write buffer writes 
the data to memory as a background task. The RT620 is stalled for a write-through write miss only if the 
write buffer is full. This occurs when the RT620 overruns the eight doubleword buffers in the write buffer. 
In this case, PHOLD is asserted until space is made available in the write buffer as it writes its contents into 
main memory. 

On a write miss, if the cache mode is copy-back and the cache line is clean, the cache line is replaced in a 
similar manner as in the cache read miss described above. PHOLD is asserted to stall the RT620 and IMBNA 
is asserted to force the RT620 off the data and address buses. A new cache line is read from main memory, 
and the cache is updated by writing the data into the cache. This is accomplished by supplying the cache 
addresses, cache line data from main memory, and asserting the CBWE signals to write the data. The write 
cache miss terminates by deasserting IMBNA and PHOLD, which causes the missed write data and address 
to reappear on their respective buses. The RT625 then strobes CBWE < 7:0 > according to the address and 
IMSIZE < 1:0 > signals to write the data into the cache and allows the processor to return to execution. 

If the cache line is modified, the modified cache line is read out of the cache and stored into the write buffer 
during the same time the new cache line is fetched from main memory and stored in the read buffer (refer 
to the following sections on write and read buffers). PHOLD is asserted and IMBNA asserted to force the 
RT620 into a halted and inactive state. The RT625 asserts CROE and the cache addresses to flush the modi­
fied cache line into the write buffer. The RT625 then writes the new cache line into the cache from the read 
buffer while simultaneously writing the modified cache line into main memory from the write buffer. This 
is accomplished by supplying the cache addresses for the cache line data, and asserting the CBWE < 7:0 > 
signals to write the data into the cache. The copy-back write miss for a modified cache line terminates by 
releasing IMBNA and PHOLD to allow the missed write data and address to reassert on the data and address 
buses. The RT625 asserts the appropriate CBWE < 7:0 > signals to write the data into the cache. 

4.4.2.8 RT625 Write Buffer 

The RT625 supports eight write buffers on-chip, as shown in Figure 4-23. In write-through mode, each 
buffer can store 64-bit data, which efficiently supports store double operations. A physical address tag is 
associated with each of the eight buffers in write-through mode. Upon a write access, the write buffers are 
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loaded with the data to be written to main memory. This allows the RT620 to continue operation without 
stalling due to memory access delays on the physical bus. Note that the WBE (Write Buffer Enable) bit of 
the SCR, or system control register (refer to Section 4.5.1), must be set to enable the write buffer. 

PAO V Double Word 

PAl V Double Word 

PA2 V Double Word 

PA3 V Double Word 

PA4 V Double Word 

PAS V Double Word 

PA6 V Double Word 

PA? V Double Word 

Write-tbrough mode or non-cache.ble write 

Figure 4-23. RT625 Write Buffers 

In copy-back mode, the same buffers are configured to store a 32- or 64-byte cache line with a single physical 
address as shown in Figure 4-24. This allows for faster cache line flushes during modified cache line re­
placement. The modified cache line is flushed into the write buffer as the new cache line is simultaneously 
fetched from main memory. In either case, the contents of the buffers are transferred to main memory as a 
background task. For a 128-Kbyte cache system or if only one sub-block of the cache line has been modified 
in a 256-Kbyte cache system, only a 32-byte cache line has to be flushed out. On power-on reset (RSTIN 
asserted), all of the write buffers are invalidated. 

I PA I Vo I dWO I dWl I dW2 I dW3 I VI I dW4 I dW5 I dW6 I dW7 I 
35 0 63 0 63 o 63 0 63 0 63 0 63 0 63 0 63 0 

Figure 4-24. RT625 Write Buffer (Copy-back mode) 

Non-cacheable writes use the eight write buffers in the same manner as write-through cache transaction, 
even if copy-back mode is enabled. However, a copy-back cache line and non-cacheable data cannot simul­
taneously occupy the write buffer. Store and Atomic Load-Store accesses on exclusive cache line hits have 
to wait until the write buffers are empty. This is necessary to maintain store ordering in multiprocessor sys­
tems. Otherwise modified data may be snooped by another processor while an earlier Store is still in the 
write buffer. 

The RT625 requests MBus ownership as soon as one of the write buffers is valid. For each write buffer trans­
fer, the RT625 re-arbitrates the MBus again. A modified cache-line flush is considered as one transaction 
except if sub-blocks are enabled and both are dirty (in this case, the cache flushing is done as two transac­
tions). When the bus is still granted to the RT625 (i.e., bus parking), the RT625 can transfer the data immedi­
ately without any bus re-arbitration (so there are no dead clocks between transactions). Once all of the write 
buffers are full, further writes from the RT620 are held until a buffer is empty. If there is a read access cache 
miss, the RT620 is held until all of the write buffers are written back into main memory in order to maintain 
data consistency. After the write buffers are cleared, the RT625 resumes the task of fetching the cache line 
for the cache read miss. 

4.4.2.9 RT625 Read Buffer 

The RT625 provides a read buffer of 32 bytes (one cache line) in order to support simultaneous writing of 
a modified cache line to main memory and reading of a new cache line from main memory into the cache 
under copy-back mode. The read buffer is shown in Figure 4-25. The read buffer is invalidated on power-on 
reset. 
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Figure 4-25. RT625 Read Buffer (copy-back mode) 

4.4.3 RT625 Software Cache Flushing Operations 

The RT625 supports five different levels of cache flush operations, as illustrated in Table 4-7. The cache 
flush operations are dependent upon the cache mode and state. Flushing under copy-back cache mode for 
a modified cache line means flushing the cache line into main memory and invalidating the cache tag entry. 
If the cache line is clean (copy-back mode), or is in write-through cache mode, flushing only invalidates the 
cache tag entry. 

Table 4-7. Cache Flush operations 

Cache Flush ASI Compare 

PAGE IOH PA [35:12] 

SEGMENT llH None 

REGION 12H None 

CONTEXT 13H None 

USER 14H User (S = 0) 

Unlike a TLB flush operation, all cache flushing operations flush only one cache line at a time. The cache 
line selected for operation is indexed as in normal cache access operations (IMA < 16:5 > in case of 
128-Kbyte or IMA < 17:6 > in case of 256-Kbyte ). The page cache flush virtual address is translated through 
the TLB to obtain the physical address and then compared with the selected cache tag entry. If the cache flush 
operation does not match the cache tag entry, no action occurs. The five types of cache flush operations are 
page flush, segment flush, region flush, context flush and user flush as illustrated in Table 4-7. Segment, 
region and context are unconditional flushes and their virtual address need not be translated through the 
TLB. The virtual address need not be translated through the TLB in the case of a user flush either; if the cache 
line is marked as user (SU = 0), it will be flushed. These different levels of cache flush are mapped with the 
ASI bits. The Store Alternate space instructions for the RT620 must be used to assert the ASI value that cor­
responds to the level of cache flush operation desired. The combination of the ASI and a Store operation 
using the virtual address specifies the cache flush operation and the cache line to be matched for flushing. 
Since, for the page flush, the virtual address undergoes translation through the TLB, a table walk may be 
required if a TLB miss occurs. During address translation for a cache flush (through the TLB or a table-walk 
if there is TLB miss), access-level checking is not performed. In a 256-Kbyte cache sub-system, the flush 
command applies to both sub-blocks; ifboth sub-blocks are dirty, the cache flush is done as two transactions 
on the MBus. 

4.4.4 RT625 Cacheable/Non-Cacheable Memory Accesses 

Pages that are declared as non-cacheable (C = 0 in the page table entry (PTE» are not cached in the cache 
data unit and, as such, there are no associated cache tag entries in the RT625. For data consistency and imple­
mentation reasons, the RT625 assumes the following cycles are also non-cacheable: 

• table walk accesses 
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• boot mode accesses (except user/supervisor data accesses when the MMU is enabled and the 
cache is enabled) 

• pass-through mode accesses 

• by-pass mode accesses 

• accesses while the cache is disabled 

• accesses when MMU is disabled (ME bit of SCR ::: 0) 

• write-through Atomic Load-Store are non-cacheable. 

Table 4-8 shows the RT625 operation conditions for cacheable and non-cacheable accesses. Refer to the 
section on MMU operation modes for additional information. 

Table 4-8. Cacheable/Non-Cacheable Accesses 

Access Condition 

Not cached ASI = 20-2F H (by-pass) 

ASI = UN, RES (unassigned/reserved) 

BM= I and ME = x andCE=x and ASI = 8, 9 H 

BM = x and not (ME = I and CE = I and PTE[C]= I) 

Table walk cycles 

Write-through Atomic Load-Store 

Cached BM=OandME= 1 andCE= 1 and ASI= 8, 9, A, B H and PTE[C] = I 

BM= I and ME = I andCE= I and ASI = A,B H and PTE [C] = I 

4.4.5 RT625 MBus Cacheable (MC) Bit 

One of the RT625 output signals is a MBus cacheable bit, which is embedded in the MBus address phase 
as MAD < 43 >. The MBus cacheable bit indicates the cacheable status of a memory access by the RT625. 
This information is consistent with the cache visibility philosophy of the RT625 and is made available for 
use by a secondary cache tag array. 

When the MMU is enabled, the MC bit is set by the state of the C bit in the corresponding PTE entry. When 
the MMU function of the RT625 is disabled, the C bit of the SCR register sets the value of the MC bit. The 
C bit of the SCR register is loaded by the RT620, and it defines the cacheable status of memory accesses 
when the MMU is disabled. Table 4-9 illustrates the state of the MC bit for various RT625 operation condi­
tions. 

Table 4-9. State Table for MC (Memory Cacheable) Bit 

MC Condition 

0 ASI=20-2FH 

Not Applicable ASI = UN, RES 

SCR[C] Not one of the above and ME = 0 or 
Not one of the above and (BM = 1 and ASI = 8, 9 H) or 
Not one of the above and table walk 

PTE[C] Not one of the above 

4.4.6 RT625 LDST (Atomic Load-Store Instruction) Cycles 

When the cache is in copy-back mode, LDST cycles are treated as normal memory accesses and are cached 
according to the C bit of the PTE associated with the access. 
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LDST operations on the physical bus (MBus) are repeated if interrupted by a Relinquish and Retry before 
the Load operation of the LDST has been completed. However, if the Relinquish and Retry occurs after the 
load operation has completed, only the Store operation of the LDST is repeated. 

4.4.7 RT625 Cache Byte Write Enables 

The RT625 supports eight separate byte write enables (CBWE < 7:0» to control write accesses to the cache 
data units (CDUs). These signals are generated using the lower three bits of the virtual address 
(IMA < 2:0 » and size (IMSIZE < 1:0 » information during write accesses. 

The decoding of the IMSIZE < 1:0>and VA <2:0> bits is shown in Table 4-10. TheCBWEO signal controls 
the most significant byte (MSB), which is located at a doubleword aligned address N. CBWE7 controls the 
least-significant byte, located at address N+7. 

63 5655 4847 4039 3231 2423 16 15 87 o 
Figure 4-26. CBWE Byte Assignments 

Table 4-10. Cache Byte Write Enables 

IMSIZE < 1:0 > IMA<2:0> CBWE7 CBWE6 CBWE5 CBWE4 CBWE3 CBWE2 CBWEI CBWEO 

00 000 1 1 1 1 1 1 1 0 
00 001 1 1 1 1 1 1 0 1 
00 010 1 1 i 1 1 0 1 1 
00 011 1 1 1 1 0 1 1 1 

00 100 1 1 1 0 1 1 1 1 
00 101 1 1 0 1 1 1 1 1 
00 110 1 0 1 1 1 1 1 1 
00 111 0 1 1 1 1 1 1 1 

01 000 1 1 1 1 1 1 0 0 
01* 001* X X X X X X X X 
01 010 1 1 1 1 0 0 1 1 
01" 011* X X X X X X X X 

01 100 1 1 0 0 1 1 1 1 
01" 101* X X X X X X X X 
01 110 0 0 1 1 1 1 1 1 
01" Ill' X X X X X X X X 

10 000 1 1 1 1 0 0 0 0 
10* 001' X X X X X X X X 
10* 010" X X X X X X X X 
10' 011* X X X X X X X X 

10 100 0 0 0 0 1 1 1 1 
10" 101* X X X X X X X X 
10' 110' X X X X X X X X 
10' 111' X X X X X X X X 

11 000 0 0 0 0 0 0 0 0 
11' 001' X X X X X X X X 
11* 010" X X X X X X X X 
11' 011* X X X X X X X X 

11' 100' X X X X X X X X 
11* 101* X X X X X X X X 
11* 110* X X X X X X X X 
11" 111" X X X X X X X X 

"Denotes an illegal combination of IMSIZE < 1:0> and IMA < 2:0 >. CBWE values are undefined for illegal combinations. 
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4.4.8 Cache Data Forwarding 

The RT625 supports cache data forwarding on cache read miss accesses both in write-through and copy­
back modes. (Note that the CWR bit of the SCR (refer to Section 4.5.1) must be set to enable this feature.) 
The RT625 puts out a request for the data at the doubleword address for which it detected a cache miss on 
the MBus. As soon as the requested data is available, the RT625 strobes the data into the CPU while loading 
the data into the cache and releases the CPU from the pipeline hold state. Thus the CPU can continue execu­
tion while the rest of the cache line fill continues as a background task. If the RT620 has requested a double 
word, the RT625 will assert IMDS whenever there is valid data on the 1MB as it is filling the cache line. In 
this case, the RT620 can use the IMDS signal to latch the data if necessary. The address placed on the MBus 
is such that the requested data comes first and then wraps around on the cache line boundary if necessary 
in order to complete the cache line fill. 

Due to forwarding on cache read miss accesses, the errors (UC,TO,BE) on the MBus cannot be signaled 
properly if the error occurs after the acknowledge of the first data transfer (of the cache line). In such a case, 
the RT625 marks the cache line as Invalid. Thus, if the CPU were to continue accessing the other words in 
this same cache line, eventually the error would occur on the first data transfer and the error would be sig­
naled to the CPU synchronously. Also, due to the same reason, the R&R and Retry cannot be acknowledged 
properly if the error occurs after the acknowledge of the first data transfer and an asynchronous error results. 
The AFAR and AFSR are updated and the System Error (SE) bit in the AFSR (bit 13) is set. 

4.5 RT625 Registers 
This section describes the control and data registers for the RT625. 

All values in all control registers are read/write (with the exception of the implementation and version fields 
of the SCR). Control registers are accessible by use of the alternate space Load or Store instructions with 
ASI = 4 (AFAR and AFSR are read-only registers). Please refer to Section 4.9, ASI and Register Mapping, 
for more information on register addressing. 

Programmer's Note: To ensure software compatibility with future versions ofthe RT625, reserved fields 
in a register should be written as zeros and masked out when read. 

4.5.1 RT625 System Control Register (SCR) 

The system control register (SCR), as shown in Figure 4-27, defines the operation modes for the cache con­
troller and MMU. Refer to Section 4.3 for additional information on the operation modes of the MMU. The 
following describes the functions of the bit fields in the SCR. 

31 

IMPL 
VER 

CWR 
SE 
WBE 

28 27 

MID (3:0) = 
BM 

24 23 22 21 20 19 18 

Specific Implementation of the MMU 
Version of Specific Implementation 

(typically mask revision) 
Cache Wrap 
Snoop Enable 
Write Buffer Enable 
Module Identifier 
Boot Mode 

15 14 13 12 11 10 9 8 7 210 

C 
CS 
MR 
CM 
CE 
NF 
ME 
RSV 

Cacheable (when MMU disabled) 
Cache Size 
Memory Reflection 
Cache Mode 
Cache Enable 
No Fault 
MMUEnable 
Reserved 

Figure 4-27. RT625 System Control Register (SCR) 

IMPL, VER The implementation number (SCR < 31 :28» and the version number (SCR < 27 :24» fields 
are hardwired; they are read-only fields and writes to these fields are ignored. The assignments for the 
RT625 are: implementation number field = 0001, version number field = 0111. 
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CWR Cache Wrap Enable (SCR < 21 » indicates if cache wrapping is enabled. This bit is set to 1 to enable 
cache wrapping. 

SE Snoop Enable (SCR < 20 » indicates if the cache will be snooped for MBus Coherent transactions. This 
bit is set to 1 to enable snooping. 

WBE Write Buffer Enable (SCR < 19 » indicates if the write buffers are enabled. This bit is set to 1 to en­
able the write buffers. 

MID < 3:0 > Module Identification number (SCR < 18: 15» identifies the processor module during trans­
actions on the MBus. This four bit module identification number is embedded in the MBus address 
phase of all MBus transactions initiated by the RT625. These bits always reflect the hardwired module 
ID input pins. Writes to them by software are ignored. 

BM Boot-mode bit (SCR < 14 » indicates the system is in boot mode. This bit is set to 1 to indicate boot 
mode. This bit is automatically set upon power-on reset. 

C Cacheable bit (SCR < 13 » indicates whether the access is cacheable or not when the MMU is disabled 
(this bit is independent of the CE bit, see Section 4.4.4, CacheableiNon-cacheable Memory Accesses 
for more details.) This bit is set to 1 if accesses on the physical bus (with the MMU disabled) are to be 
considered cacheable. 

CS Cache Size (SCR < 12 » CS = 0 indicates a 128-Kbyte cache subsystem. CS = 1 indicates a 256-Kbyte 
cache subsystem. 

MR Memory Reflection (SCR < 11 » MR = 1 indicates that the main memory system on the MEus supports 
memory reflection. MR affects the status of the CTAG bits as described in Section 4.4.2.5. 

CM Cache-mode bit (SCR < 10 » indicates whether the cache is operating under write-through no write 
allocate policy or copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. 
Setting this bit to 0 will enable write-through cache mode. 

CE Cache-enable bit (SCR < 8 » indicates whether the cache is enabled or not. This bit is set to 1 to enable 
the cache controller. 

NF Nolault bit (SCR < 1 » prevents accesses other than supervisor instruction accesses from signaling 
faults to the RT620. When the NF bit is set, exception-generating logic (in both the TLB and the table 
walk) does not indicate faults to the RT620 (via IMEXC) unless the access is a supervisor instruction 
access (ASI 9), but status and address information is recorded in the SFSR and SFAR registers as in 
normal access operations. When the NF bit is not set, the RT625 will signal an exception for all faults. 

ME MMU -enable bit (SCR < 0 » indicates whether the MMU is enabled ornot. This bit is setto 1 to enable 
theMMU. 

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the RT625 into the 
following state: snoop disabled (SE = 0), write buffers disabled (WEE = 0), cache disabled (CE = 0), write­
through mode (CM = 0), non-cacheable (C = 0), boot-mode enabled (BM = 1), cache size (CS = 0), memory 
reflection disabled (MR = 0), no fault disabled (NF = 0), and MMU disabled (ME = 0). 
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4.5.2 RT625 Context Table Pointer Register (CTPR) 

The context table pointer points to the context table in physical memory. The table is indexed by the contents 
of the context register. The context table pointer appears on bits 35 through 14 of the MBus (MAD 
< 35:14 » during the ftrst fetch ofTLB miss processing. Once the root pointer is cached in the page table 
pointer cache (PTPC) no fetching of the root pointer is required until the context is changed. 

CTP RSV 

31 109 o 
CTP Context Table Pointer 
RSV Reserved 

Figure 4-28. RT625 Context Table Pointer Register 

4.5.3 RT625 Context Register (CXR) 

The context register defmes a virtual address space associated with the current process. The CXR is a 
twelve-bit register, which supports 4096 contexts. This register is used to defme the current context. Nearly 
all the RT625 operations are dependent upon matching the value of this register to a TLB entry. 

RSV CXN 

31 12 11 o 
RSV Reserved 
CXN Context Number 

Figure 4-29. RT625 Context Register 

4.5.4 RT625 Reset Register (RR) 

The RR register contains information regarding whether watchdog reset (WDR) or software internal reset 
(SIR) occurred. This is a read/write register, and setting the software internal reset bit (SIR) causes the reset. 
Refer to Section 4.8 for more details on reset processing. Upon power-on reset, the WDR and SIR bits in 
the RR will be cleared. Reading the RR will also clear these bits. 

31 

RSV 
WDR = 
SIR = 

RSV 

Reserved 
Watchdog Reset 
Software Internal Rest 

3 2 0 

Figure 4-30. RT625 Reset Register 

4.5.5 RT625 Root Pointer Register (RPR) 

The RPR is the context level page table pointer (PTP) and is cached in the page table pointer cache. Refer 
to Section 4.2.5 for information on the page table pointer cache. 

On power-on reset, the V bit is cleared. When the current context is changed by writing to the context register 
(CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written. 

4-39 



~~/~ ============R;;;;;;T;;;;;;6;;;;;;25;;;;;;h;;;;y=p;;;;;;er;;;;;;S;;;;;;P;;;;;;l\.;;;;;;R;;;;;;C;;;;;;C;;;;;;M;;;;;;T;;;;;;U= 

RP RSV V I 
31 6 5 1 0 

RP Root Pointer 
RSV Reserved 
V Valid 

Figure 4-31. RT625 Root Pointer Register 

4.5.6 RT625 Instruction access PTPs (IPTPO, IPTP1) 

The IPTPs are the instruction access Level 2 table page table pointers (PTPs) and are part of the page table 
pointer cache. On power-on reset, the V bit is cleared. 

IPTP RSV V I 
31 4 3 1 0 

IPTP Instruction Access PTP 
RSV Reserved 
V Valid 

Figure 4-32. RT625 Instruction Access PTP Registers 

4.5.7 RT625 Data Access PTPs (DPTPO, DPTP1) 

The DPTPs are the data access Level 2 table page table pointers (PTPs) and are registers in the page table 
pointer cache. On power-on reset, the V bit is cleared. 

DPTP 

31 4 3 1 0 

DPTP = Data Access PTP 
RSV Reserved 
V Valid 

Figure 4-33. RT625 Data Access PTP Registers 

4.5.8 RT625 Index Tag Registers (ITRO, ITR1) 

The ITRx contains the tag (index! and index2) fields of the IPTPx and DPTPx entries. Refer to Section 4.2.5 
for information on the PTP cache. 

ITAG DTAG 

31 18 17 16 15 2 1 0 

ITAG = Instruction Access PTP Tag 
RSV = Reserved 
DTAG = Data Access PTP Tag 

Figure 4-34. RT625 Index Tag Registers 

4.5.9 RT625 TLB Replacement Control Register (TRCR) 

The TRCR contains the Replacement Counter (RC) and Initial Replacement Counter (IRC) fields as shown 
inFigure 4-35. These fields are used in order to support random replacement and to support locking capabil-
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ities ofthe TLB. Refer to Section 4.2.1.2 for information on TLB entry locking. Upon power-on reset, both 
the RC and IRC fields are initialized to zero. 

RSV RC I RSV I IRC 

31 14 13 8 7 6 5 o 
RSV Reserved 
RC Replacement Counter 
IRC Initial Replacement Counter 

Figure 4-35. RT625 Replacement Control Register 

4.5.10 RT625 Synchronous Fault Status Register (SFSR) 

The Synchronous Fault Status Register, illustrated in Figure 4-36, contains fault-associated information for 
synchronous faults. Synchronous faults are faults that occur during a central processing unit access of 
memory. Synchronous faults include almost all possible faults for the RT625. This type of fault is synchro­
nous to the operations of the RT620. For the RT625, this fault type covers all cases except those caused by 
delayed writes of data stored in the write buffers. The delayed write faults are asynchronous to the operation 
of the RT620, and are named asynchronous faults. 

RSV I SEI uc I TOI BEl L AT FT IFAV I Owl 

31 14 13 12 11 10 9 8 7 5 4 2 I 0 

RSV = Reserved L Level 
SE System Error AT Access Type 
UC Uncorrectable Error FT Fault Type 
TO Time Out Error FV Fault Address Valid 
BE Bus Error OW OverWrite 

Figure 4-36. RT625 Synchronous Fault Status Register 

An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized 
memory access. These faults are discussed in detail in Section 4.1 o. Upon encountering a synchronous fault, 
the RT625 asserts the EXC signal. Synchronous faults are the only exception type that assert the EXC signal. 

The Uncorrectable Error (UE), Timeout Error (TO), and Bus Error (BE) bits report error status as encoded 
in the MERR, MRTY, and MRDY signals. The System Error (SE) bit in the SFSR register is set if R&R or 
retry occurs after the acknowledge for the first data transfer has been received during a write or Atomic 
LDSTmiss. 

The level (L) bits describe the level in a table walk process at which the fault occurred (if applicable). These 
bits are described in Table 4-18. 

The Access Type bits (AT < 2:0 » describe the Access Type that caused the fault. This field specifies user/ 
supervisor access and whether the access is a Load or Store of data or instruction. The AT bits are described 
in Table 4-19 in the section on synchronous faults. The fault type bits (FT) describe the fault type, and are 
illustrated in Table 4-20. The fault address valid bit is set when the address in the synchronous fault address 
register (SFAR) is a valid fault address. The over-write (OW) bit is set in the case of a double fault where 
the fault status stored in the SFSR does not correspond with the fault first trapped on by the RT620. This 
is discussed in detail in Section 4.10, Synchronous Faults. 

Upon power-on reset, the SE, UC, TO, BE, FT, FA V, and OW bits in the SFSR will be cleared. Reading the 
synchronous fault status register clears all fault status bits. 
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4.5.11 RT625 Synchronous Fault Address Register (SFAR) 

The synchronous fault address register contains the faulted virtual address. (see Figure 4-37) 

Synchronous Fault Address 

31 o 

Figure 4-37. Synchronous Fault Address Register 

4.5.12 RT625 Asynchronous Fault Status Register (AFSR) 

Asynchronous faults are those faults caused by a delayed memory access initiated by the RT625. This type 
of error can only be caused by a delayed write to main memory initiated by the write buffer, or a Relinquish 
and Retry, or a Retry on a cache miss read which occurs after the first data transfer (the SE bit in the AFSR 
is set in this case). Asynchronous faults cause the AERR signal to be asserted, which can be used as an inter­
rupt to the RT620. 

The UC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into 
the MERR, MRTY" and MRDY signals of the MBus. The asynchronous fault address bits provide the upper 
four bits of the physical address not captured in the asynchronous fault address register (AFAR), which is 
a 32-bit register. 

The asynchronous fault occurred (AFO) bit is set when an asynchronous fault is encountered. Once the 
asynchronous fault occurred bit is set, no further asynchronous faults are recorded until the AFO bit is 
cleared, which is accomplished by reading the asynchronous fault address register (see Figure 4-38). The 
SE, UC, TO, and BE bits in the AFSR are undefined except when the AFO bit is set. The AFO bit is cleared 
upon power-on-reset. Reading the AFAR will also clear the AFO bit. 

RSV 

31 

RSV ~ Reserved 
SE System Error 
UC ~ Uncorrectab1e Error 
TO ~ Time Out Error 

I SE I uc I Tol BE I RSV I AFA (35:32) I RSV I AFOI 

13 12 11 10 9 8 7 6 4 3 0 

BE ~ Bus Error 
AFA ~ Asynchronous Fault Address 
AFO ~ Asynchronous Fault Occurred 

Figure 4-38. RT625 Asynchronous Fault Status Register 

4.5.13 RT625 Asynchronous Fault Address Register (AFAR) 

The AFAR contains bits 31 through 0 of the physical address for asynchronous faults (Bus Errors) (see 
Figure 4-39). Asynchronous faults can occur during 

'" delayed write accesses. 

• background cache line flush operations in copy-back mode. 

• delayed writes during Block Copy or Block Fill. 

• an R&R or Retry during a cache read miss after the first data transfer has completed. 

The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36-bit phys­
ical address. 

Asynchronous Fault Address 

31 o 

Figure 4-39. RT625 Asynchronous Fault Address Register 
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4.6 RT625 Block Copy and Block Fill 

Block Copy and Block Fill operations are performed by the software to increase the performance of data 
movement to and from main memory. The RT625 provides support for both of these block manipulation 
functions. Block Copy and Block Fill will work only on cache line boundaries. 

4.6.1 RT625 Block Copy 

Block Copy copies an entire 32-byte block of data from a cache or main memory location to another location 
in main memory. A Block Copy is performed when a STA instruction with ASI equal to Oxl7 is detected 
(the RT625 does not check the size of the Store Alternate instruction; it is the responsibility of the software 
to ensure that only a single-word size Store Alternate instruction with an ASI of Oxl7 is issued). In copy­
back mode if 

• both the source and destination blocks are cacheable, the RT625 will perform a MBus Co­
herent Read followed by a Coherent Write and Invalidate. 

• the source is cacheable and the destination is non-cacheable, it performs a Coherent Read fol­
lowed by a normal block write. 

• the source is non-cacheable and the destination is cacheable, it performs a normal block read 
followed by a Coherent Write and Invalidate. 

• both are non-cacheable, the RT625 does a normal block read followed by a normal block 
write. 

In case of write-through mode, the RT625 does a normal block read followed by a Coherent Write and Invali­
date. The virtual address of the Coherent Read transaction (source) comes from the address of the STA op­
eration (i.e., read address = "r[rsl] + r[rs2]"). The data portion of the STA defines the virtual address of the 
Coherent Write and Invalidate transaction destination (i.e., write address = r[rdD. 

A table walk may be needed prior to starting the Coherent Read transaction if the source address is missed 
in the TLB. The Coherent Read transaction is performed like a cache read miss and the incoming data will 
be placed in the read buffer. It may be necessary to perform another table walk prior to starting the Coherent 
Write and Invalidate transaction if the destination address is missed in the TLB. Then the Coherent Write 
and Invalidate transaction is performed. If the RT625 that is performing the Block Copy operation "owns" 
the source block, it still performs the Coherent Read transaction. If the RT625 which is performing the Block 
Copy operation holds the destination block, it will invalidate that block for the Coherent Write and Invali­
date transaction. During the address translation of both the source and destination for Block Copy operation, 
access level checking is performed in the TLB and during table walk (if required). The referenced and modi­
fied bits are updated (if required) as in normal table walk operations. The source access is treated as a normal 
supervisor data read access and the destination access is treated as a normal supervisor data write access for 
protection checking. If a synchronous exception occurs on the source or destination, the SFAR and the SFSR 
hold the proper information for the trap handler. The MBus is locked by asserting MBB during the source 
and destination transactions (cacheable or non-cacheable). 

4.6.2 RT625 Block Fill 

Block Fill operation is very similar to Block Copy operation except that the Coherent Read operation is not 
required since the source data comes from the processor. When a STDA instruction with ASI equal to OxlF 
is executed with the size of the operation equal to a double word, the RT625 will perform the Block Fill oper­
ation (the RT625 does not check the size of the Store Alternate instruction; it is the responsibility of the soft­
ware to ensure that only a Store Double Alternate instruction with an ASI of Oxlf is issued so that valid data 
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is used for fIlling the block). The store address defines the destination virtual address. The store data defines 
the pattern which should be filled in that 32-byte block. 

A table walk may be needed prior to starting the Coherent Write and Invalidate transaction if the destination 
address is missed in the TLB. If the RT625 which is performing the Block Fill operation holds the destination 
block, it will invalidate that block for the Coherent Write and Invalidate transaction. If the block is 
non-cacheable, then a normal block write is performed. In write-through mode, a Coherent Write and Invali­
date is performed. During the address translation of the destination for Block Fill operation, access level 
checking is performed in the TLB and during table walk (if required). The reference and modified bits are 
updated (if required) as in normal table walk operations. 

4.7 RT625 Diagnostic Support 

4.7.1 RT625 MMU TLB Entries 

TLB entries can be accessed with a Load or Store Alternate instruction with the TLB entry address and ASI 
= 6H. This feature is supported for diagnostic purposes and to provide the RT620 with access to locked TLB 
entries. The virtual and physical sections of each entry in the TLB can be accessed by the RT620 as a word 
read or write. The address mapping for the TLB entries is shown in Table 4-11. The format of CAM word 
and RAM word entries in the TLB are shown in Figure 4-40. 

Table 4-11. TLB Entry Address Mapping 

Address TLB Entry Register 

OOH Entry 0 RAM Word 

08H Entry 0 CAM Word 

IOH Entry I RAM Word 

18H Entry I CAM Word 

20H Entry 2 RAM Word 

28H Entry 2 CAM Word 

• • 
• • 
• • 

3EOH Entry 62 RAM Word 

3E8H Entry 62 CAM Word 

3FOH Entry 63 RAM Word 

3F8H Entry 63 CAM Word 

400--FFFFFFF8 H Reserved 

TLB Entry CAM Word Fanna! TLB Entry RAM Word Fannat 

VA CXN PPN(35:12) 

31 12 11 o 31 8 7 6 5 3 2 I 0 

VA Virtual Address PPN Physical Page Number 
CXN Context Number C Cacheable Bit 

M Modified Big 
ACC Access Protection Bits 
ST Short Translation 1YPe 
V Valid 

Figure 4-40. TLB Entry Format 
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4.7.2 RT625 Cache Tag Entries 

RT625 CTAG entries are accessed using word LDST Alternate instructions with the cache tag entry address 
and ASI:::: OxOE. Each tag entry can be read as a Load single or can be written as a Store single by the RT620. 
The address mapping for the Cache Tag entries is shown in Table 4-12. The RT625 CTAG entry format is 
illustrated in Figure 4-41. 

Table 4-12. Cache Tag Entry Address Mapping 

128K-byte 256K-byte 

Address Cache Tag Entry Address Cache Tag Entry 

OOOOxH 0 

0002x H 1 

0004xH 2 

0006x H 3 

• • 
• • 
• • 

lFFExH 4095 

31 

TAG 

TAG = Physical Address Tag 
SU = Supervisor Bit 
SHo = Sub-Block 0 Shared Bit 
Mo = Sub-Block 0 Modified Bit 
V 0 = Sub-Block 0 Valid Bit 
SHI = Sub-Block 1 Shared Bit 

OOOOx H 

0004xH 

0008x H 

OOOcxH 

• 
• 
• 

3FFCxH 

(X = Don't Care) 

7 6 5 4 3 2 

SHo = 
SHI = 
Mo 
MI 
R 

Sub-Block 0 Shared Bit 
Sub-Block 1 Shared Bit 
Sub-Block 0 Modified Bit 
Sub-Block I Modified Bit 
Reserved 

Figure 4-41. RT625 Cache Tag Entry Format 

4.7.3 CDU Cache Data Entries 

0 

1 

2 

3 

• 
• 
• 

4095 

o 

Cache data entries can be accessed from the cache data unit by using a LDST Alternate instruction asserting 
the virtual address and ASI :::: OF H. The RT625 causes a forced hit from the cache tag during these accesses. 
All data widths are supported for a read or write to the CDU. 

4.8 RT625 Reset 

4.8.1 Power-On Reset (RSTIN) 

Upon power-on reset, the entire system is forced into a defined state. The TLB and the cache tag in the RT625 
are invalidated, all valid bits in control registers are cleared, and certain bits in the AFSR and SFSR are 
cleared as described in the previous sections. The RT625 asserts PRST to the RT620 for as long as RSTIN 
is asserted. RSTIN must be asserted for a minimum of 16 clocks. The bits in the Reset Register (RR) are 
cleared. 
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Upon power-on reset, the UC, TO, BE, FT, FA V, and OW bits in the SFSR will be cleared. The SCR fields 
in the RT625 will have the following state after a power-on reset: 

Table 4-13. Power-On Reset States 

SCRfield PORstate SCRfield POR state 

IMPL Unchanged CS 0 

VER Unchanged CM 0 

SE 0 CE 0 

WBE 0 NF 0 

MID<3:0> see note 1 ME 0 

BM I MR 0 

C 0 

Note 1. MID<3:0> value is latched from the MID input pins 

4.8.2 Watchdog Reset (WDR) 

When the RT620 encounters a trap while traps are disabled, the RT620 enters into an error state, asserts the 
PERROR signal, and then halts. The only way to restart the RT620 in the error state is to assert its PRST 
signal. The RT625 does this by performing a watchdog reset, which asserts the PRST signal for 16 clock 
cycles. The TLB and the cache tag in the RT625 are not invalidated. The WDR (RR < 2 » bit in the RR 
register is set. All SCR fields except boot mode (BM) are unchanged. BM is set to 1 after a watchdog reset. 
The RT625 also asserts AERR during watchdog reset. AERR is cleared when the Reset Register is read. 

4.8.3 Software Internal Reset (SIR) 

The operating system can reset the RT620 by setting the SIR bit in the Reset Register. The RT625 asserts 
PRST for 16 clock cycles to reset the RT620. The TLB and cache tag are not invalidated. All SCR fields 
except BM are unchanged, and BM is set to 1 after a software internal reset. The contents of the Reset Regis­
ter are unchanged and the SIR bit will remain set. 

4.9 RT625 ASI and Register Mapping 
The RT625 uses the address space identifier bus (IMASI < 5:0 » to provide the RT620 with access to the 
RT625's internal registers and resources, such as the cache tag and the TLB. The RT625 also uses the ASI 
bus to map restricted memory access functions, such as bypass memory addressing modes. Register access 
to the RT625 requires using a Load or Store Alternate instruction with ASI = 04 H in addition to the register 
address, given in Table 4-14. Table 4-15 illustrates the ASI mapping for the RT625. 
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Table 4-14. RT625 Register Address Mapping 

VA (15:8) RT625 Registers 

OOH System Control Register (SCR) 

01 H Context Table Pointer Register (CTPR) 

02H Context Register (CXR) 

03H Synchronous Fault Status Register (SFSR) 

04H Synchronous Fault Address Register (SFAR) 

05H Asynchronous Fault Status Register (AFSR) 

06H Asynchronous Fault Address Register (AFAR) 

07H Reset Register (RR) 

08~FH Reserved 

IOH Root Pointer Register (RPR) 

llH Instruction Access PTP (lPTPO) 

12H Data Access PTP (DPTPO) 

13H Index Tag Register (lTR0) 

14H TLB Replacement Control Register (TRCR) 

15 H Instruction Access PTP (lPTPI) 

16H Data Access PTP (DPTPI) 

17H Index Tag Register (ITRI) 

18-FFH Reserved 

Table 4-15. Standard SPARe ASI Assignments 

ASI Function ASI Function 

OH Reserved 14H Flush Combined Cache Line (user)' 

IH Reserved 15H Reserved 

2H Reserved 16H Reserved 

3H MMU Invalidate/Probe' 17H Block Copy' 

4H MMU Registers' 18H Flush RT620 Instruction Cache Cache Line (page) 

5H MMU Diagnostics Instruction only TLB 19H Flush RT620 Instruction Cache Cache Line (segment) 

6H MMU Diagnostics Instruction/Data TLB' IAH Flush RT620 Instruction Cache Cache Line (region) 

7H MMU Diagnostics I/O TLB IBH Flush RT620 Instruction Cache Cache Line (context) 

8H User Instruction' ICH Flush RT620 Instruction Cache Cache Line (user) 

9H Supervisor Instruction' !DH Reserved 

AH User Data' IEH Reserved 

BH Supervisor Data' IFH Block Fill' 

CH Cache Tag for Instruction Cache 20-2FH MMU Bypass Physical Address' 

DH Cache Data for Instruction Cache 30H Unassigned 

EH Cache Tag Combined (instruction/data) Cache (CTAG)' 31 H Flush Entire CY7C260 Instruction Cache 

FH Cache Data for Combined Cache' 32-3FH Unassigned 

IOH Flush Combined Cache Line (page)* 40-6FH Reserved 

llH Flush Combined Cache Line (segment)* 70-7FH Unassigned 

12H Flush Combined Cache Line (region)* 80-FFH Reserved 

13H Flush Combined Cache Line (context)' 

*indicates functions supported by the RT625 
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4.10 Synchronous Faults 

Synchronous faults are grouped into three classes: instruction access faults, data access faults, and transla­
tion table access faults. The translation table access faults are further divided into translation instruction ac­
cess faults and translation data access faults. The SPARC architecture causes the timing and priority of these 
fault classes to be handled differently. Due to delays caused by the instruction pipeline, the RT620 can possi­
bly encounter a second fault before the RT620 enters a trap to correct the first. Depending upon the class 
of fault encountered, the status and address of a fault may be allowed to overwrite information for a previous 
fault that has not yet generated a trap. This potential condition requires a trap handler that can correct the 
various combinations of fault conditions. This section describes these potential fault conditions. 

The case of multiple faults occurring presents a problem in reporting the correct fault status. This problem 
is solved by use of an overwrite (OW) bit in the SFSR and by prioritizing which types of faults may overwrite 
a previous fault. The OW bit signals the trap handler that the status and address stored in the fault registers 
are not valid for the trap that the RT620 has entered. The SFSR logic sets the OW bit according to a state 
sequence based on the fault handling of the RT620 and the type of faults encountered. 

Since the RT620 delays entering a trap handler for an instruction fault, a trap caused by another fault will 
overwrite the trap information for the initial instruction fault. If the initial instruction trap is entered before 
the second fault trap is entered, the OW bit will be set. This is because the first trap reading the fault status 
registers will have the fault data for the second trap. The OW bit is set only if the status information stored 
in the SFSR does not correspond to the trap that will be executed fIrst by the RT620. The setting of the OW 
bit is entirely based upon the types of faults and their order of occurrence. Table 4-17 illustrates the possible 
fault cases and their effect on OW. 

The RT620 delays a trap caused by an instruction access fault until that instruction reaches the Writeback 
stage. However, since data accesses are not pipelined, the RT620 jumps to a trap immediately upon encoun­
tering a data access fault. 

Faults are allowed to overwrite another fault status depending upon priority. An instruction fault is allowed 
to overwrite only another instruction fault. It is not allowed to overwrite either a data fault or a translation 
fault. Data faults may overwrite an instruction fault, but not a translation fault. Data faults cannot overwrite 
another data fault. Translation faults may overwrite any other type of fault, but cannot be overwritten. A 
translation fault cannot overwrite another translation fault. 

All multiple fault cases are recoverable by re-executing the instruction or access that caused the fault whose 
status has been overwritten. If an instruction access fault occurs and the OW bit is set, the system software 
must determine the cause by probing the MMU and/or memory. 

Table 4-16. SPARC Fault Cases 

for Read Access Before First Data Mter First Data 

Error Synchronous Fault Nothing 
RetryorR&R Access Will Retry Asynchronous Fault 

For Write/LDST Before First Data After First Data 

Error Synchronous Fault Synchronous Fault 
RetryorR&R Access Will Retry Synchronous Fault 
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Table 4-17. OW Bit States 

Previous Fault Current Fault Update SFSR OW 

none instruction yes 0 

none data yes 0 

none translate instruction yes 0 

none translate data yes 0 

instruction instruction yes I 

instruction data yes 0 

instruction translate instruction yes 1 

instruction translate data yes 0 

data instruction no 0 

data data no 0 

data translate instruction yes I 

data translate data yes I 

translate instruction instruction no 0 

translate instruction data no 0 

translate instruction translate instruction no 0 

translate instruction translate data no 0 

translate data instruction no 0 

translate data data no 0 

translate data translate instruction no 0 

translate data translate data no 0 

Table 4-18. Fault Register Level Field 
L Level 

0 Entry in Context Field 

I Entry in Levell Table 

2 Entry in Level 2 Table 

3 Entry in Level 3 Table 

Table 4-19. Fault Register Access Type Field 
AT Access Type 

0 Load from User Data Space 

1 Load from Supervisor Data Space 

2 Load/Execute from User Instruction Space 

3 Load/Execute from Supervisor Instruction Space 

4 Store to User Data Space 

5 Store to Supervisor Data Space 

6 Store to User Instruction Space 

7 Store to Supervisor Instruction Space 

Upon encountering a synchronous fault, the SFSR records the Bus Error status (System Error, Bus Error, 
timeout, and Uncorrectable Error) when a Bus Error occurs during memory accesses. The Access Type (AT) 
field, illustrated in Table 4-19, defines the type of access that caused the fault. The fault type field FT (see 
Table 4-20) defines the type of the current fault. 
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Table 4-20. Fault Register Fault Type Field 

Ff Fault Type 

0 None 

1 Invalid Address Error 

2 Protection Error 

3 Privilege Violation Error 

4 Translation Error 

5 Bus Access Error 

6 Not Generated 

7 Reserved 

A translation table access fault (FT = 4) occurs if an MMU page table access causes an external System Error. 
This also occurs if a reserved entry type (ET = 3 in the PTE) is found in any level of the table walk. A transla­
tion table access fault also can occur if a page table pointer (PTP) is found in Level 3, instead of a PTE. If 
the page table entry is invalid (ET = 0 in the PTE), the fault type is an invalid address error (FT = 1). 
Table 4-21 illustrates the fault type (FT) assigned for valid TLB entries or PTE entries (ET = 2) that cause 
a fault condition. These fault conditions are either a protection error (read/write of data or instruction) or 
a privilege violation (user/supervisor access) error. 

Table 4-21. Fault Type (FT) for PTE[ET] = 2 
ACC 

AT 0 1 2 3 4 5 6 7 

0 0 0 0 0 2 0 3 3 

1 0 0 0 0 2 0 0 0 

2 2 2 0 0 0 2 3 3 

3 2 2 0 0 a 2 a a 
4 2 0 2 0 2 2 3 3 

5 2 a 2 0 2 0 2 a 
6 2 2 2 0 2 2 3 3 

7 2 2 2 a 2 2 2 a 

The fault address valid bit (FA V) is set to one if the content of the synchronous fault address registeris valid. 

If multiple fault types apply to the same fault occurrence, the highest priority fault is recorded. The highest 
fault priority is a translation fault (priority 2), as shown in Table 4-22. Priority 1 is reserved for an internal 
fault. 

Table 4-22. Fault Register Error Priorities 

Priority Error 

1 Internal Error 

2 Translation Error 

3 Invalid Address Error 

4 Privilege Violation Error 

5 Protection Error 

6 Bus Access Error 

Upon power-on reset, the SE, UC, TO, BE, FT, FAV, and OW bits in the SFSR will be cleared. Reading the 
synchronous fault status register clears all fault status bits. 
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4.10.1 Synchronous Fault Cases 

The following 20 cases describe the combinations of fault cases that can occur: 

Case 1: Instruction fault. The RT620 trap is delayed until the RT620 tries to execute the instruction. 

The trap is taken immediately if the instruction access is actually a data access that is interpreted by 
the RT625 as an instruction access due to asserting ASI = 8 or 9 with a Load Alternate instruction. In 
this case, the trap handlers cannot probe main memory using the PC of the instruction. If the instruc­
tion is a Load Alternate instruction, the trap handler has to calculate the effective address to probe. 
The SFAR has the valid address in this case. 

Case I: Instruction Fanlt 

OW 0 

FAV I SFAR has valid address 

FT I Invalid error occurred (ET = 0 during table walk) 

2 Protection error occurred (either TLB or table walk) 

3 Privilege violation error occurred (either TLB or table walk) 

5 Bus access error occurred (external Bus Error: UC or TO or BE is set) 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0, 1.2,3 Level at which fault occurred during table walk (only valid with FT = I) 

Case 2: Data fault. The RT620 trap is taken immediately. 

Case 2: Data Fault 

OW 0 

FAV I SFAR has valid address 

FT I Invalid error occurred (ET = 0 during table walk) 

2 Protection error occurred (either TLB or table walk) 

3 Privilege violation error occurred (either TLB or table walk) 

5 Bus Error occurred (external Bus Error: UC or TO or BE is set) 

AT 0, 1,4,5,6,7 

L 0, 1,2,3 Level at which fault occurred during table walk (only valid with FT = I) 

Case 3: Translationfault on instruction access. The RT620 trap is delayed until the RT620 tries to ex­
ecute the instruction, or is taken immediately if the access is data due to a Load Alternate instruction. 

Case 3: Traoslation Fault on Instruction Access 

OW 0 

FAV I SFAR has valid address for traoslation fault 

FT 4 Translation error occurred (Bus Error or ET = 3 or PTP in Level 3 during table walk) 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0, 1,2,3 Level at which translation fault occurred during table walk 
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Case 4: Translation fault on data access. The RT620 trap is taken immediately. 

Case 4: Translation Fault ou Data Access 

OW ° 
FAV 1 SFAR has valid address for translation fault 

FT 4 Translation error occurred (Bus Error or ET = 3 or PTP in Level 3 during table walk) 

AT 0, 1,4, 5, 6, 7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 5: Instructionfaultfollowed by instruction fault. The RT620 traps on the first instruction fault. 

If the second instruction fault is due to a load access with ASI 8,9 (Load Alternate), it overwrites the 
fault associated information of the first fault. In this case the SFAR has a valid address for the data 
access of the Load Alternate instruction. 

The fault address of the first fault can be obtained from the PC in the RT620 for the trap handler with 
the exception of the following case. 

It is possible that a data access is interpreted by the RT625 as an instruction access because of the use 
of a Load or Store Alternate instruction with ASI = 8, 9. Before the RT620 takes the trap on the data 
access fault (which is recorded as an instruction fault in the RT625), another instruction fault may 
occur. The second instruction will overwrite the data access fault information, because it is recorded 
as an instruction fault in the RT625. In this case, the PC of the instruction (for the first fault) is not the 
faulted address; also, the SFAR does not contain the fault address ofthe firstfault and the trap handler 
has to calculate the effective address to probe. 

Case 5: Instruction Fault followed by Instruction Fault 

OW 1 

FAV 1 SFAR has valid address for second instruction fault 

FT 1,2,3,5 Fault type of second fault 

AT 2,3 Access Type of second fault 

L 0, 1,2,3 Level at which second fault occurred during table walk (only valid with FT = 1) 

Case 6: Instructionfaultfollowed by data fault. The RT620 traps on the data fault. 

The history of the instruction fault is lost, but the same fault can be obtained again, once the return 
from the trap handler of the data fault is completed. 

Case 6: Instruction Fault then Data Fault 

OW ° FAV 1 SFAR has valid address for data fault 

FT 1,2,3,5 Fault type of data fault 

AT 0, 1,4,5, 6, 7 

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1) 

Case 7: Instructionfaultfollowed by translation fault on instruction access. The RT620 traps on the in­
struction fault. 
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The fault address of the instruction fault can be obtained from the PC in the RT620 for the trap han­
dler with the exception of the following case. 

A data access fault can be recorded as an instruction fault if a Load Alternate instruction with ASI = 
8,9 causes a fault. Before the RT620 takes the trap on the data access fault (which is recorded as an 
instruction fault in the RT625), a translation fault may occur due to an instruction access. This will 
overwrite the data access fault information. 

Case 7: Instruction Fault then Translation Fault on Instruction Access 

OW I 

FAV I SFAR has valid address for translation fault 

FT 4 

AT 2,3 Load/Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 8: Instruction fault followed by translation fault on data access. The RT620 will trap on the data 
fault. 

Case 8: Instruction Fault then Translation Fault on Data Access 

OW 0 

FAV 1 SFAR has valid address for translation fault 

FT 4 

AT 0, 1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 9: Data fault followed by instruction fault. The instruction fault cannot overwrite the data fault. The 
instruction fault will occur again, once the return from the data fault trap handler is completed. The 
RT620 will trap on the data fault. 

Case 9: Data Fault then Instruction Fault 

OW 0 

FAV 1 SFAR has valid address for data fault 

FT 1,2,3,5 Fault type of data fault 

AT 0, 1, 4, 5, 6, 7 

L 0, 1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1) 

Case 10: Data fault followed by data fault. The information for the first data fault is saved. 

Case 10: Data Fault then Data Fault 

OW 0 

FAV 1 SFAR has valid address for first data fault 

FT 1,2,3,5 Fault type of first data fault 

AT 0, 1, 4, 5, 6, 7 

L 0,1,2,3 Level at which first data fault occurred during table walk (only valid with FT = 1) 

Case 11: Data fault followed by translation fault on instruction access. The RT620 traps on the data fault. 
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Before the RT620 takes the trap on the data access fault, a translation fault may occur due to an in­
struction access. This will overwrite the data access fault information. 

Case 11: Data Fault then Translation Fault on Instruction Access 

OW 1 

FAY I SFAR has valid address for translation fault 

FT 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fanlt occurred during table walk 

Case 12: Datafaultfollowed by translation fault on data access. The RT620 traps on the data fault. 

Before the RT620 takes the trap on the data access fault, a translation fault may occur due to a data 
access. This will overwrite the data access fault information. 

Case 12: Data Fault then Translation Fault on Data Access 

OW 1 

FAY I SFAR has valid address for translation fault 

Ff 4 

AT 0, 1,4,5,6,7 

L 0, 1,2,3 Level at which translation fault occurred during table walk 

Case 13: Translation fault on instruction access followed by instruction fault. The RT620 traps on the 
translation fault. The instruction fault cannot overwrite the translation fault. 

Case 13: Translation Fault on Instruction Access then Instruction Fault 

OW ° FAY I SFAR has valid address for translation fault 

Ff 4 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 14: Translationfault on instruction accessfollowed by datafault. The RT620 traps on the data fault. 
The data fault cannot overwrite the translation fault. 

Case 14: Translation Fault on Instruction Access then Data Fault 

OW ° FAY I SFAR has valid address for translation fault 

FT 4 

AT 2,3 Execute from User/supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 
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Case 15: Translationfault on instruction access followed by translationfault on instruction access. The 
RT620 traps on first translation fault. The second translation fault cannot overwrite the first transla­
tion fault. 

Case 15: Translation Fault on Instruction Access then Translation Fault on Instruction Access 

OW ° FAV 1 SFAR has valid address for first translation fault 

Ff 4 

AT 2,3 Load/Execute from User/supervisor instruction space 

L 0,1,2,3 Level at which first translation fault occurred during table walk 

Case 16: Translationfault on instruction accessfollowed by translation fault on data access. The RT620 
traps on the second translation fault. The second translation fault does not overwrite the first transla­
tion fault. 

Case 16: Translation Fault on Instruction Access then Translation Fault on Data Access 

OW ° FAV 1 SFAR has valid address for first translation fault 

Ff 4 

AT 2,3 Execute from User/supervisor instruction space 

L 0,1,2,3 Level at which first translation fault occurred during table walk 

Case 17: Translation fault on data access followed by instruction fault. The RT620 will trap on the trans­
lation fault. 

Case 17: Translation Fault on Data Access then Instruction Fault 

OW ° FAV 1 SFAR has valid address for translation fault 

Ff 4 

AT 0, 1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 18: Translation fault on data access followed by data fault. The RT620 will trap on the translation 
fault. 

Case 18: Translation Fault on Data Access then Data Fault 

OW ° FAV 1 SFAR has valid address for translation fault 

Ff 4 

AT 0, 1,4, 5, 6, 7 

L 0,1,2,3 Level at which translation fault occurred during table walk 
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Case 19: Translation/ault on data access/allowed by translation/ault on instruction access. The RT620 
will trap on the first translation fault. 

Case 19: Translation Fanlt on Data Access then Translation Fault on Instruction Access 

OW ° FAY I SFAR has valid address for data translation fault 

FT 4 

AT 0, 1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 20: Translation/ault on data access/allowed by translation/ault on data access, The RT620 will 
trap on the first translation fault. 

Case 20: Translation Fault on Data Access then Translation Fault on Data Access 

OW ° FAY I SFAR has valid address for first data translation fault 

FT 4 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

4.11 RT625 Pinouts 

4.11.1 Pin Description 

CLKMODE - (input) Clock MODE 

During reset 

o = bypass mode 

1 = normal synchronizer mode 

After reset if bypass mode is selected 

o = synchronize at this IMCLK edge 

1 = do not synchronize at this IMCLK edge 

There are two simple modes, If the clocks are asynchronous, then the CLKMODE pin is tied to V cc and 
the synchronizers are used. If the clocks are the same frequency, then they must be guaranteed out of 
phase and the CLKMODE pin is tied to ground. This causes the synchronizers to be bypassed and every 
IMCLK edge is available for synchronizing, 

IMCLK - (input) Intra-Module Bus (1MB) clock 

This is the basic clock for all the Intra-Module components. All the Intra-Module signals are driven and 
sampled on only the rising edge of the IMCLK. The RT625 uses the IMCLK clock to interface with 
CPU and CDU units. 

IMA < 31:18 > - (input) Intra-Module Address Bus. 

This is part of the virtual address sent out by the RT620 during a fetch or Load/Store operation. This 
address is latched by the RT625. 
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RSTIN 
RT625 PHOLD 

CLKMODE IMDS 

IMCLK lMEXC 

MCLK lMENA 

IMA<31:18> PRST 

IMA<17:3> CROE 

IMA<2:0> CBWE<7:0> 

IMD<63:0> MBR 

IMASI<5:0> MEG 

IMSIZE<1:0> MBB 

IMTYPE<l> MAS 
IMTYPE<O> MRDY 
PNULL MRTY 

PERROR MERR 

MID<3:0> MAD<63:0> .. 
TCK MIH 
IDI MSH 

TMS AERR 

TRST TDO 

Figure 4-42. RT625 Pinout 

IMA < 17:3 > - (input/output, tri-state) Intra-Module Address Bus 

This bus acts as input when the RT625 is latching an address from the RT620. The RT625 puts the cache 
data address on this bus when it needs to write data into the cache data unit. 

IMA < 2:0 > - (input) Intra-Module Address Bus 

This is part of the virtual address sent out by the RT620 during a fetch or Load/Store operation and is 
latched by the RT625. 

IMD < 63:0 > - (input/output, tri-state) Intra-Module Data Bus 

These pins form a 64-bit bi-directional data bus that carries data between the RT625 and the other 1MB 
components. 

IMASI < 5:0 > - (input) Intra-Module Address Space Identifier 

These 6 bits constitute the Address Space Identifier (ASI). The ASI identifies the memory address 
space to which the instruction or data access is being directed. The IMASI bits are sent out unlatched 
along with the address by the RT620 and are latched by the RT625. 

IMSIZE < 1:0> - (input) Intra-Module Access Size 

These two pins indicate the SIZE of the current access. Instruction accesses are always doubleword 
size. Because the data bus is 64-bits wide, double word accesses can be performed in a single access. 
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The value of the size bits during a given cycle relates only to the address which appears on pins IMA < 
31:0 >. The IMSIZE < 1:0> bits are latched by the RT625. Size values are defined as follows: 

IMSIZE < 1:0 > Size 

00 Byte 

OJ Half Word 

10 Word 

11 Double Word 

The size bits for the different bus transactions are given below. 

Bus Activity IMSIZE<I:O> 

Instruction fetch 11 

Load/Store double 11 

Load/Store word 10 

Load/Store halfword 01 

Load/Store byte 00 

IMTYPE < 1 > - (input) Intra-Module Access Type 

IMTYPE < 0 > - (input/output, tri-state) Intra-Module Access Type 

These two pins indicate the current access TYPE. Instruction accesses are always type read. The value 
of the type bits during a given cycle relates only to the address which appears on pins IMA < 31:0 >. The 
IMTYPE bits are latched by the RT625. Type values are defined as follows. 

IMTYPE<I > IMTYPE<O> Meaning 

0 0 Normal write (Store) 

0 I Normal read (Load or instruction fetch) 

1 0 Locked write (Atomic Store) 

I I Locked read (Atomic Load) 

PHOLD - (OUtpUt) Processor Hold 

This signal is used by the RT625 to hold the processor. 

IMDS - (output) Intra-Module Data Strobe 

This signal is used by the RT625 to strobe the data into the CPU when the valid data becomes available. 

IMEXC - (output) Intra-Module Exception 

This signal is used by the RT625 to indicate a synchronous exception condition to the CPU. 

IMBNA - (output) Intra-Module Bus Not Available 

This pin is used by the RT625 to indicate to the CPU that the RT625 is using the Intra-Module Bus. This 
allows data in a missed cache line to be filled as a background task while the processor continues ex­
ecuting instructions from the on-chip instruction cache. The processor can resume instruction execu­
tion once the RT625 has provided the data which caused the processor hold. 
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PNULL - (input) Processor Nullify Signal 

The processor PNULL asserts to indicate that the current external cache access is being nullified. This 
supports highly pipelined accesses on the Intra-Module Bus and allows access nullification at a later 
stage. Asserting PNULL nullifies the access already latched by the external cache subsystem. For ex­
ample, in the case ofload data access which gets an external cache miss, the RT620 asserts PNULL for 
one cycle due to data forwarding. 

PERROR - (input) Processor Error 

This pin is asserted when the processor is in the ERROR mode. The only way to restart a processor that 
is in the error mode state is to trigger a reset by asserting the PRST signal. 

PRST - (output) Processor Reset 

Assertion of this pin will reset the processor. PRST must be asserted for a minimum of sixteen proces­
sor clock cycles. 

CROE - (output) Cache RAM Output Enable. 

Assertion of this pin enables the output buffers of the cache RAMs (CDUs). 

CBWE < 7:0 > - (output) Cache RAM Byte Write Enables. 

The RT625 enables these signals appropriately to enable writes into the cache RAMs (CDUs). 

MCLK - (input) MBus Clock. 

All the MBus signals are driven and sampled on only the rising edge of the MCLK. The RT625 uses the 
MCLK clock to interface with the rest of the components on the MBus. 

MAD < 63:0 > - (input/output, tri-state) MBus Address Data Bus. 

During the address phase, MAD < 35:0 > contains the physical address. The remaining signals contain 
the transaction specific information. During the data phase, MAD < 63:0 > contains the data of the 
transfer. 

MAS - (input/output, tri-state) MBus Address Strobe. 

This signal is asserted by the bus master during the very first cycle of a bus transaction (the "address 
phase" or the "address cycle"). 

MRDY - (input/output, tri-state) MBus Ready Strobe. 

This signal is one of three bits used to encode the transaction status. The encoding with only MRDY low 
indicates that valid data has been transferred. 

MRTY - (input) MBus Retry Strobe. 

This signal is one of three bits used to encode the transaction status. The encoding with only MRTY low 
indicates that the slave wants the master to abort the current transaction immediately and start over. 
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MERR - (input) MBus Error Strobe. 

This signal is one of three used to encode the transaction status as shown in Table 4-23. The encoding 
with only MERR low indicates that a Bus Error (or other system implementation specific) error oc­
curred. 

Table 4-23. Transaction Status Bit Encoding 

MER MRDY MRTY Action 

H H H Idle Cycle 

H H L Relinquish and Retry 

H L H Data Strobe 

H L L Undefined L I, Reserved L2 

L H H ERROR I ~ Bus Error 

L H L ERROR2 ~ Time Out 

L L H ERROR3 ~ Uncorrectable 

L L L Retry 

MBR -(output) MBus Request. 

This signal is asserted by a MBus master to acquire bus ownership. There is one unique MBR signal per 
master. 

MBG - (input) MBus Grant. 

This signal is asserted by the external arbiter when the particular MBus master is granted the bus. There 
is one unique MBG signal per master. 

MBB - (input/output, tri-state) MBus Busy. 

This signal is asserted as an output during the entire transaction, from and including the assertion of 
MAS, to the assertion of the last MRDY or first other acknowledgement which terminates the transac­
tion. The potential bus master samples this signal in order to acquire bus ownership as soon as the cur­
rent master releases the bus. 

RSTIN - (input) Reset Input. 

This signal should reset all logic on a module to its initial state and ensure that all MBus signals are 
inactive or tri-state as appropriate. 

AERR - (output, open drain) Asynchronous Error. 

This signal is asserted by the module as a level to indicate that an asynchronous error was detected by 
the module. 

MIH - (input/output, tri-state) Memory Inhibit. 

It is asserted by the owner of a cache block to inform main memory that the current Coherent Read or 
Coherent Read and Invalidate request should be ignored. This is because the owner will supply the 
cache block. 
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MSH - (input/output, open drain) MBus Shared. 

This signal is asserted by an RT625 in response to a Coherent Read request of a cache block if it has a 
valid copy of that cache block. 

MID <3:0 > - (input) Module Identifier. 

These pins carry the hardwired module identifier to the module. This four bit module identification 
number is embedded in the MBus address phase of all MBus transactions initiated by the RT625. 

The following RT625 signals support the hyperSPARC Test Access Port (TAP) interface. For more informa­
tion, see the hyperSPARC TAP Interface Specification available from ROSS Technology. 

TCK - (input) Test Clock. 

This is nominally a free-running clock signal. The changes on TAP input signals (TMS and TDI) are 
clocked into the TAP controller, instruction register or selected test data register on the rising edge of 
TCK. Changes at the TAP output signal (TDO) also occur on the rising edge of TCK. 

TDI - (input) Test Data Input. 

TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. The TDI input 
must have a built-in pull-up resistor of a value which ensures that an un-terminated input is seen by the 
test logic as a high signal level. 

TDO - (output) Test Data Output. 

The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of 
TCK. TDO drivers must be set to high-impedance except when scanning of data is in progress. 

TMS - (input) Test Mode Select. 

This control input is clocked into the TAP controller on the rising edge of TCK. The TMS input must 
have a built-in pull-up resistor of a value which ensures that an unterminated input is seen by the test 
logic as a high signal level. 

TRST - (input) Test Reset. 

TRST initializes the state of the instruction register bits and the TAP controller state machine. 
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Figure 4-43. RT625 Cache Read Miss, Synchronous Clocks (page 1 of 2) 
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Figure 4-43. RT625 Cache Read Miss, Synchronous Clocks (page 2 of 2) 
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Figure 4-44. RT625 Cache Read Miss, Asynchronous Clocks* (page 1 of 3) 

* This timing diagram is only an example. The sequence of writes to the CDUs mayor may not have wait states depending on 
the ratio of IMCLK and MCLK frequencies and on the relative timing of the IMCLK and MCLK rising edges. Each double­
word will be written on the fourth IMCLK rise after the data appears on MAD. 
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Figure 4-44. RT625 Cache Read Miss, Asynchronous Clocks (page 2 of 3) 

4-66 



, , C H NO' 0 G Y, ,$ ============R:;::T:;::6:;::25:;::h;;:;;y::;;;p:;::er:;::S:;::P:;::1\:;::R:;::C:;::C:;::M=T=U 

N+8 N+9 N+I0 N+ll N+12 N+13 N+14 N+15 
IMCLK 

IMA 

~~------~----------~----------~---
IMD ~ D3 ) CJ[J~------------------~----

IMDS ,r~------~-------'--------~------~------~------~---------------

\~------~----~---------------------
-+-____ -i-...J/ 

11 12 13 14 15 

MCLK 

MAD 

MAS I 

MBB I 

MRDY I 

Figure 4-44. RT625 Cache Read Miss, Asynchronous Clocks (page 3 of 3) 
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Figure 4-45. Write Cache Miss, Copy-back, One Modified Block, Asynchronous Clocks* 
(page 1 of 3) 

* If two sub-blocks are modified, both must be loaded into the write buffer before the new cache data can be written into the CDU s. 
If the memory responds quickly, the copy-back may still be finishing when the new data arrives. 
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Figure 4-45. Write Cache Miss, Copy-back, One Modified Block, Asynchronous Clocks 
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Figure 4-46. Write Cache Miss, Copy-back, No Modified Data Synchronous Clocks (page 2 of 2) 
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Figure 4-47. Write Through Write, Synchronous Clocks 
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Figure 4-48. Write Through Write, Asynchronous Clocks 
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Figure 4-49. RT625 Block Fill, Synchronous Clocks (page 1 of 2) 
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Figure 4-49. RT625 Block Fill, Synchronous Clocks (page 2 of 2) 
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Figure 4-50. RT625 Block Fill, Asynchronous Clocks (page 1 of 2) 
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Figure 4-50. RT625 Block Fill, Asynchronous Clocks (page 2 of 2) 
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Figure 4-51. Block Copy, Synchronous Clocks (page 3 of 3) 
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Figure 4-52. Block Copy, Asynchronous Clocks (page 1 of 3) 
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Figure 4-52. Block Copy, Asynchronous Clocks (page 2 of 3) 
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RT627 hyperSPARC Cache Data Unit 

Figure 5-1 illustrates the hyperSPARC Central Processing Unit (CPU) configured with four RT627 Cache 
Data Units (CDUs), constituting a 256-Kbyte cache subsystem. The RT627s are specialty SRAMS that are 
specifically designed to interface with the RT620 and the RT625. 

The RT627 is a 524,288 bit synchronous SRAM. The device integrates a 4-Kbyte x 32-bit SRAM core with 
advanced peripheral circuitry. All the control inputs to the device are synchronous. 

In order to minimize external interface logic, the RT627 contains a one-deep write-buffer pipeline, byte 
write logic, registered inputs, data-in and data-out latches, and data forwarding logic from the write-buffer. 
Because it is designed specifically for the hyperSPARC family of devices, the RT627 CDU requires no glue 
logic to interface with the CPU and the RT625 CMTU. All relevant pins on each device connect direct to 
one another. 

IMD<63:0> 

IMA<31:0> 

hyperSPARC 
CMfU (RT625) 

MBus 

IMA<4:3> 
Cache Double­
word Addr. 

IMA < 16:5 > 
Cache Line Addr. 

IMTYPE<O> 

CBWE<7:0> 

IMA < 17 > (selects cache bank) 

IMA<17> 
VDD 

RT627 I 

RT627 

-

hyperSPARC CDUs (4 X RT627) 

Figure 5-1. 256-Kbyte Cache Subsystem 
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The two chip enables (CE, CE) are included in order to support 256-Kbyte cache subsystem with one CMTU 
and no glue logic. The read RD signal indicates whether the CPU or CMTU is reading (read access) the data 
from the cache or writing (write access) data into it. The read access appears for only one cycle on the Intra­
Module Bus whereas the write access appears for two cycles on the Intra-Module Bus if the access is from 
the processor. As a result, the RD signal is low for two cycles in write accesses from the processor. However, 
the RT627 views the write access as a single cycle pipelined write access (the first cycle of the write access 
is utilized by the CMTU to do address translation and access level checking). The CDU output enable 
(CROE) is used in conjunction with the RD pin to control the output buffers of the Cache Data Units. The 
four cache byte write enables (CBWE < 3:0 » are provided to allow individually writeable bytes. 

The RT627 includes a pipelined stage write-buffer for high performance (see Figure 5-2). Address regis­
ter-I and data input latches offer this pipeline stage. Writing into the RAM core is delayed until the next write 
access. In order to allow forwarding, a comparator is included to compare the address of the write-buffer 
and the incoming read address. Valid bits, Vo, VI, V 2 and V 3, are included to indicate ifthe appropriate bytes 
are to be written into the RAM core or not. 
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Figure 5-2. RT627 Block Diagram 
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5.1 RT627 Pinouts 
IMCLK- (input) Intra-Module Clock 

This is the basic clock for all the Intra-Module Bus components. All the Intra-Module Bus signals are 
driven and sampled only on the rising edge ofthe IMCLK. The RT627 uses only the IMCLK clock (not 
the MBus clock). The RAM cycle is equal to a full clock cycle of IMCLK. 

IMA < 13:0 > - (input) Intra-Module Address Bus 
These signals directly interface to the address bus of the Intra-Module Bus. The addresses sent out by 
the RT620 and the RT625 are unlatched and so the RT627 will latch the address. 

IMD < 31:0 > - (input/output, tri-state) Intra-Module Data Bus 
These signals directly interface with the bi-directional data bus of the Intra-Module Bus. The data bus is 
driven by the RT620 only during the execution of STORE instructions and the store cycle of Atomic 
Load-Store instructions. The data bus is driven by the RT625 during cache line fills. Store data sent out 
by the CYC620 and the RT625 are unlatched and so the RT627 will latch the data. Alignment for Load 
and Store instructions is performed by the CPU. Doublewords are aligned on 8-byte boundaries, words 
on 4-byte boundaries, and halfwords on 2-byte boundaries. 

CE, CE - (input) Chip Enable 
These signals are included in order to support the 256-Kbyte cache subsystem with one CMTU without 
any glue logic. By appropriately connecting an additional Intra-Module Address Bus signal 
(IMA < 17 » to these signals, two 128-Kbyte cache banks can be formed for 256-Kbyte cache subsys­
tem as shown in Figure 5-1. Because the addresses sent out by the RT620 and the RT625 are unlatched, 
the RT627 will latch CE and CE inputs. 

RD - (input) Read Access 
This signal acts as an advanced access type information signal. This signal is useful in high perform­
ance systems to determine whether to tum On/Off the output drivers of the RAMs. This signal is direct-
1y connected to Intra-Module access TYPE signal (IMTYPE < 0 ». The value of this signal during a 
given cycle relates only to the address which appears on pins IMA < 31:0 >. Because the IMTYPE bits 
sent out by the RT620 and the RT625 are unlatched, the RT627 will latch RD input. 

CROE - (input) Cache RAM Output Enable 
this Output Enable signal is used in conjunction with the advanced RD signal to control the output driv­
ers of the bidirectional data lines. During read accesses, if the RD is HIGH and CROE is asserted (i.e., is 
LOW) the CDU will drive the data bus. During read accesses, if the CROE is deasserted (i.e., is HIGH) 
the CDU will not drive the data bus. During write accesses, the CDU will drive the data lines. 

RD CROE 

0 X Data lines not driven 

1 0 Data lines driven 

1 1 Data lines not driven 

CBWE < 3:0 > - (input) Cache RAM Byte Write Enables 
The CBWE < 3:0> signals control data writes into the RAMs. CBWE < 0 > controls byte write on data 
lines IMD < 31 :24 >, CBWE < 1 > controls byte write on data lines IMD < 23: 16 >, CBWE < 2 > con­
trols byte write on data lines IMD < 15:8> and CBWE < 3 > controls byte write on data lines IMD 
<7:0>. 
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5.2 RT627 Access Waveforms 

IMCLK 

IMA 

CB ~~~ ________ ~ ______ ~ __________________________ ___ 

RD J 
CROB ~~~ __________________ ~ __________________________ __ 

CBWE < 3:0 > _____ +-__ ..JI 
IMD 

Figure 5-3. Read Access followed by Read Access 
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Figure 5-4. Write Access Followed by Write Access 
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Figure 5-5. Read followed by Write Access followed by Read Access 
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IMCLK 

IMA 

RD 

CBWE<3:0> 

IMD 

invalid data for R(A) 

G non-cacheable data provided by CMTU 

PHOLD and IMDS are signals from the CMTU to the CPU and not related to the CDU. 

Figure 5-6. Non-Cacheable Read Access (illustrates the use of CROE) 
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CY7C601lCY7C611 Integer Unit 

This chapter describes the workings of the CY7C601 Integer Unit (IU) and the CY7C611 Embedded Con­
troller Integer Unit. Descriptions and explanations given for the CY7C601 also apply to the CY7C611 
Integer Unit, except for those differences noted in Section 6.7. 

The CY7C600-family Integer Units are based on the SPARC 32-bit RISC architecture, which defines a pro­
cessor capable of execution at a rate approaching one instruction per clock cycle. The CY7C601 supports 
a tightly-coupled floating-point unit (FPU) and a second, system-specific coprocessor, all three of which 
may operate concurrently. The CY7C611 supports an FPU in the same manner as the CY7C601, but does 
not support the coprocessor interface. The CY7C601 executes all instructions except floating-paint-operate 
and coprocessor-operate instructions. 

A block diagram ofthe CY7C60 l/CY7C611 is shown in Figure 6-1. The processor is organized around the 
ALU and the shift unit. These are both two-operand units, accepting 32-bit information from either source 
I or source 2 of the register file, the program counters, or the instruction decoder. ALU or shift unit results 
may be passed to the register file, address bus, program counters, control registers, or back to themselves. 

Program 
Counters 

Address 

Destination 

Register File 
136 x 32-bits 

Processor State 
Window Invalid 

Trap Base 
Muillply Step 

Instruction/ Data 

Figure 6-1. Integer Unit Block Diagram 
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5 CY7C601!CY7C611 Integer Unit 
==================~== TECHNOLOGY, 

The standard version ofthe Integer Unit, the CY7C601, contains a 136-bit x 32-bit register file divided into 
eight overlapping windows. It is supplied in 207 -pin PGA and 208-pin QFP packages, which allows 32-bit 
address and data buses, an eight-bit ASI bus, a number of control lines, and provides both floating-point and 
coprocessor interfaces. 

The CY7C611 Embedded Controller IU is internally the same as the CY7C60 1, but it is externally optimized 
for board-space-sensitive controller applications. By eliminating some external pins, the CY7C611 fits into 
a 160-pin PQFP package. In the smaller package, the address bus is modified to 24 bits, the ASI bus to 3 
bits, and the coprocessor interface and five control lines are omitted. 

6.1 CY7C601!CY7C611 Register Set 

The following is a brief description ofthe SPARC register set. Detailed programming information for ROSS 
Technology SPARC processors is given in Chapter 2, SPARC Programming Environment. 

The general register model for the CY7C600 family is given in Figure 6-2. The CY7C60l/CY7C611 regis­
ter set consists of the processor state register (PSR), the trap base register (TBR), the window invalid mask 
(WIM), the multiply step register (Y register), and 136 r-registers. These registers are described in detail 
in Section 2.2. 

The r-registers are the working register set for the SPARC Integer Unit. All r-registers are 32-bits in length. 
The 136 r-registers supported by the CY7C60l/CY7C611 are divided into 128 windowed r-registers and 
eight global registers. The 128 windowed r-registers are divided into eight overlapping windows of 24 r-reg­
isters. The twenty-four r-registers that comprise a window are further subdivided into three groups of eight 
registers, referred to as the in, out, and local registers. The eight r-register windows overlap in a manner such 
that the in registers of one window are the out registers of the previous window. Local r-registers are not 
shared with another window, but are private to that window. The current window in use by the processor 
is pointed to by the Current Window Pointer (CWP), a field within the processor state register. In addition 
to the r-register window, there are eight global registers that are accessible regardless ofthe Current Window 
Pointer. 

SUPERVISOR 
ONLY 

WORKING 
REGISTERS 

Current window 
within set of 
136 r-registers 

I 
I 

IV Registers 
CY7C601/CY7C611 

PROCESSOR STATE REG (PSR) 

TRAP BASE REG (TBR) 

I 
I 

I WINDOW INVALID MASK (WJM) I 

I 
MULTIPLY STEP (Y) 

I 

OUTS (8) 

INS(8) 

LOCALS(8) 

GLOBALS(8) 

I 

FPU Registers (optional) 
CY7C602 

FLOATING-POINT QUEUE 
(FPQl (3l I 

I FLOATING-POINT STATUS (FSR)I 

FLOATING-POINT REGISTERS 
(32) 

Figure 6-2. SPARe Register Model 

6-2 

Coprocessor·registers (optional) 

I COPROCESSOR QUEUE (CPQ) I 

I COPROCESSOR STATUS (CSR) I 

COPROCESSOR REGISTERS 



S CY7C601/CY7C611 Integer Unit 
==================~== TECHNOLOGY, 

6.1.1 CY7C601/CY7C611 Cycle Per Instruction (CPI) 

Table 6-1. CY7C601/CY7C611 Instruction CPI 
Name Operation Cycles 

Load/Store Instructions 

LDSB (LDSBA)1 Load Signed Byte (from Alternate Space) 2 

LDSH (LDSHA)1 Load Signed Halfword (from Alternate Space) 2 

LDUB (LDUBA)1 Load Unsigned Byte (from Alternate Space) 2 

LDUH (LDUHA)l Load Unsigned Halfword (from Alternate Space) 2 

LD (LDA) 1 Load Word (from Alternate Space) 2 

LDD (LDDA)1 Load Doubleword (from Alternate Space) 3 

LDF Load Floating-Point 2 

LDDF Load Double Floating-Point 3 

LDFSR Load Floating-Point Status 2 

LDC Load Coprocessor 2 

LDDC Load Double Coprocessor 3 

LDCSR Load Coprocessor Status Register 2 

STB (STBA)l Store Byte (into Alternate Space) 3 

STH (STHA)1 Store Halfword (into Alternate Space) 3 

ST (STA) 1 Store Word (into Alternate Space) 3 

STD (STDA) 1 Store Doubleword (into Alternate Space) 4 

STF S tore Floating-Point 3 

STDF Store Double Floating-Point 4 

STFSR Store Floating-Point Status Register 3 

STDFQl Store Double Floating-Point Queue 4 

STC Store Coprocessor 3 

STDC Store Double Coprocessor 4 

STCSR Store Coprocessor State Register 3 

STDCQl Store Double Coprocessor Queue 4 

LDSTUB (LDSTUBA)1 Atomic Load-Store Unsigned Byte (in Alternate Space) 4 

SWAP (SWAPA) 1 Swap r-register with Memory (in Alternate Space) 4 
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Name Operation Cycles 

Arithmetic/Logical/Shift Instructions 

ADD (ADDcc) Add (and modify icc) 1 

ADDX (ADDXcc) Add with Carry (and modify icc) 1 

TADDcc (TADDccTV) Tagged Add and modiify icc (and Trap on oVerflow) 1 

SUB (SUBcc) Subtract (and modify icc) 1 

SUBX (SUBXcc) Subtract with Carry (and modify icc) 1 

TSUBcc (TSUBccTV) Tagged Subtract and modify icc (and Trap on oVerflow) 1 

MULScc Multiply Step and modify icc 1 

AND (ANDcc) And (and modify icc) 1 

ANDN (ANDNcc) And Not (and modify icc) 1 

OR (ORce) Inclusive Or (and modify icc) 1 

ORN (ORNcc) Inclusive Or Not (and modify icc) 1 

XOR (XORcc) Exclusive Or (and modify icc) 1 

XNOR (XNORcc) Exclusive Nor (and modify icc) 1 

SLL Shift Left Logical 1 

SRL Shift Right Logical 1 

SRA Shift Right Arithmetic 1 

SETHI Set High 22 Bits of r-register 1 

Control Transfer Instructions 

SAVE SAVE caller's window 1 

RESTORE RESTORE caller's window 1 

Bicc Branch on integer condition codes 1 (2) 

FBfcc Branch on floating -point condition codes 1 (2) 

CBccc Branch on coprocessor condition codes 1 (2) 

CALL Call 1 (2) 

JMPL Jump and link 2 (2) 

RETT Return from Trap 2 (2) 

Ticc Trap on integer condition codes 1 (3) 

Read/Write Control Register Instructions 

RDY Read Y Register 1 
RDPSR(I) Read Processor State Register 1 
RDWIM(I) Read Window Invalid Mask 1 
RDTBR(l) Read Trap Base Register 1 

WRY Write Y Register 1 
WRPSR (I) Write Processor State Register 1 
WRWlM(I) Write Window Invalid Mask 1 
WRTBR(l) Write Trap Base Register 1 

Miscellaneous Instructions 

FLUSH Instruction Cache FLUSH 1 

UNIMP Unimplemented Instruction 1 (4) 

Notes: 1. denotes supervisor instruction 3. A Ticc instruction requires 4 cycles if the trap is taken 
2. assumes delay slot is filled with a useful instruction 4. The UNIMP instruction causes an unimplemented instruction trap 
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Figure 6-3. CY7C601/CY7C611 External Signals 

6.2 Signal Description 

INTACK 
IRL(3:0) 
CLK 

This section provides a description of the CY7C60l/CY7C611 's external signals. Functionally, the IU's ex­
ternal signals can be divided into four categories: memory subsystem interface, floating-point/coprocessor 
interface, interrupt and control signals, and power and clock signals. 

Signals that are active LOW are marked with an overscore; all others are active HIGH. Table 6-2 summa­
rizes the signals described in this section. Table 6-2 provides a summary of the external signals for the 
CY7C601. Table 6-9 in Section 6.7 provides a summary of external signals for the CY7C611. 

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when 
it is deasserted it is inactive. When a signal is HIGH, it is a logical 1 ; when it is LOW, it is a logical O. This 
is true regardless of whether it is asserted or deasserted. 
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Table 6-2. CY7C601 External Signal Summary 

Pin Name Description Signal Type Active 

Memory Subsystem Interface Signals: 

A<31:0> Address Bus Three-State Output 

AOE Address Output Enable Input LOW 

ASl<7:0> Address Space Identifier Three-State Output 

COE Control Output Enable Input LOW 

BHOLD Bus Hold Input LOW 

D<31:0> Data Bus Three-State BiDir. 

DOE Data Output Enable Input LOW 

DXFER Data Transfer Three-State Output HIGH 

1FT Instruction Cache Flush Trap Input LOW 

!NULL Integer Unit Nullify Cycle Three-State Output HIGH 

LDST Atomic Load-Store Three-State Output HIGH 

LOCK Bus Lock Three-State Output HIGH 

MDS Memory Data Strobe Input LOW 

MEXC Memory Exception Input LOW 

MHOLDA Memory Bus Hold A Input LOW 

MHOLDB Memory Bus Hold B Input LOW 

RD Read Access Three-State Output HIGH 

SIZE<1:0> Bus Transaction Size Three-State Output 

WE Write Enable Three-State Output LOW 

WRT Advanced Write Three-State Output HIGH 

Floating-Point / Coprocessor Interface Signals: 

CCC<I:O> Coprocessor Condition Codes Input 

CCCV Coprocessor Condition Codes Valid Input HIGH 

CEXC Coprocessor Exception Input LOW 

CHOLD Coprocessor Hold Input LOW 

CINS1 Coprocessor Instruction in Buffer 1 Three-State Output HIGH 

CINS2 Coprocessor Instruction in Buffer 2 Three-State Output HIGH 

CP Coprocessor Unit Present Input LOW 

CXACK Coprocessor Exception Acknowledge Three-State Output HIGH 

FCC<1:0> Floating-Point Condition Codes Input 

FCCV Floating-Point Condition Codes Valid Input HIGH 

FEXC Floating-Point Exception Input LOW 

FHOLD Floating-Point Hold Input LOW 

FINS 1 Floating-Point Instruction in Buffer 1 Three-State Output HIGH 

FlNS2 Floating-Point Instruction in Buffer 2 Three-State Output HIGH 

FLUSH Floating-Point/Coprocessor Instruction Flush Three-State Output HIGH 

FP Floating-Point Unit Present Input LOW 
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==================~== TECHNOLOGY, 

Pin Name Description Signal Type Active 

FXACK Floating-Point Exception Acknowledge Three-State Output HIGH 

INST Instruction Fetch Three-State Output HIGH 

Interrupt and Control Signals: 

IRL<3:0> Interrupt Request Level Input 

INTACK Interrupt Acknowledge Three-State Output HIGH 

RESET Reset Input LOW 

ERROR Error State Three-State Output LOW 

FPSYN Floating-Point Synonym Mode Input HIGH 

TOE Test Mode Output Enable Input LOW 

Power and Clock Signals: 

CLK Clock Input 

VCCI Main internal VCC Input 

VCCO Output driver VCC Input 

VCCT Input circuit VCC Input 

VSSI Main internal VSS Input 

VSSO Output driver VSS Input 

VSST Input circuit VSS Input 

The following sections describe the external signals for the CY7C601 and CY7C611. Signals that are modi­
fied for the CY7C611 are listed in brackets, such as [A<23:0>j. Signals not available on the CY7C611 are 
denoted as [Not available on CY7C61lj. 

6.2.1 Memory Subsystem Interface Signals 

Memory interface signals consist ofthe address lines (40 bits), bidirectional data lines (32 bits), transaction 
size lines (2 bits), and various control signals. 

6.2.1.1 A <31 :O>-Address Bus (output) [A<23:0>] 

The 32-bit address bus carries instruction or data addresses during a Fetch or Load/Store operation. Address­
es are sent out unlatched and must be latched external to the CY7C60l/611. The address bus is three-stated 
when the AOE or TOE signal is de asserted (HIGH). 

6.2.1.2 AOE-Address Output Enable (input) [Not available on CY7C61lj 

Assertion ofthis signal enables the output drivers for the address bus, A<31 :0>, and the ASI bus, ASk7 :0>, 
and is the normal condition. Deassertion of AOE three-states the output drivers and should only be done 
when the bus is granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted). 

6.2.1.3 ASI<7:0>-Address Space Identifier (output) [ASI<2:0>j 

These 8 bits constitute the address space identifier (ASI), which identifies the memory address space to 
which the instruction or data access is being directed. The ASI bits are sent out unlatched-simultaneously 
with the memory address-and must be latched externally. The ASI pins are three-stated when the AOE or 
TOE signal is deasserted (HIGH). Encoding of the ASI bits is shown in Table 6-3. Additional ASI assign­
ments for the SPARC architecture are listed in Table 8-15. 
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Table 6-3. ASI Assignments 

CY7C601 CY7C611 
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space 

00001000 (08 H) 000 (0 H) User Instruction 

00001010 (OA H) 010 (2H) User Data 

00001001 (09 H) 001 (1 H) Supervisor Instruction 

00001011 (OB H) 011 (3 H) Supervisor Data 

6.2.1.4 BHOW-Bus Hold (input) 

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will 
freeze the processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data 
at all inputs to the CY7C601/611 is the same as it was before BHOLD was asserted. This signal is tested 
on the falling edge (midpoint) of a cycle and must be valid and stable at the processor for the duration of 
the specified set-up time prior to the falling edge of CLK. All HOLD signals are latched in the CY7C60 1/611 
(transparent latch with clock high) before they are used. Because MDS and MEXC are recognized by the 
CY7C601/611 but do not revert to the previous state as in the case of MDS and MEXC assertion with 
MHOLD active, BHOLD should only be used for bus access requests by an external device. BHOLD should 
not be asserted when LOCK is asserted. 

6.2.1.5 COE-Control Output Enable (input) [Not available on CY7C611j 

Assertion of this signal enables the output drivers for SIZE<1:0>, RD, WE, WRT, LOCK, LDST, and 
DXFER outputs, and is the normal condition. Deassertion of COE three-states these output drivers and 
should only be done when the bus is granted to another bus master (i.e., when either BHOLD or MHOL­
DA/B is asserted). 

6.2.1.6 D<31 :O>-Data Bus (bidirectional) 

These pins form a 32-bit bidirectional data bus that serves as the interface between the Integer Unit and 
memory. The data bus is only driven by the CY7C601/611 during the execution of integer store instructions 
and the store cycle of atomic-Ioad-store instructions. Similarly, the CY7C602 FPU drives the data bus only 
during the execution of floating-point store instructions. 

Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is 
valid during the second data cycle of a store single access, the second and third data cycle of a store double 
access, and the third data cycle of an atomic-Ioad-store access. 

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte 
boundaries, words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or 
halfword load or store instruction generates an improperly aligned address, a memory address not aligned 
trap will occur. Instructions and operands are always expected to reside in a 32-bit wide memory. D<31> 
corresponds to the most significant bit of the most significant byte of a 32-bit word going to or from memory. 

6.2.1.7 DOE-Data Output Enable (input) [Not available on CY7C611j 

Assertion of this signal enables the output drivers for the data bus, D<31 :0>, and is the normal condition. 
Deassertion of DOE three-states the data bus output drivers and should only be done when the bus is granted 
to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted). 
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6.2.1.8 DXFER-Data Transfer (output) [Not available on CY7C61lJ 

DXFER i s used to differentiate between the addresses being sent out for instruction fetches and the addresses 
of data fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, 
including both cycles of store single and all three cycles of store double and atomic load-store. DXFER is 
sent out unlatched and must be latched externally before it is used. 

6.2.1.9 1FT -Instruction Cache Flush Trap (input) [Not available on CY7C61lJ 

The state of this pin determines whether or not execution of the FLUSH instruction generates a trap. If 
IFT=O, then execution of FLUSH causes an illegal instruction trap. IfIFT=l, then FLUSH executes like a 
Nap with no side effects. 

6.2.1.10 INULL-Integer Unit Nullify Cycle (output) 

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in 
the same cycle in which the address being nullified is active (though no longer on the address bus, the address 
is held in the external address latches). INULL is used to prevent a cache miss (in systems with cache 
memory) and to disable memory exception generation for the current memory access. This means that MDS 
and MEXC should not be asserted for a memory access in which INULL= 1. INULL is a latched output and 
should not be latched externally. If a floating-point unit (FPU) or coprocessor is present in the system, 
INULL should be ORed with the FNULL and CNULL signals to generate a final NULL signal. 

INULL is asserted under the following conditions: 

1. During the second data cycle of any store instruction (including atomic load-store) to nullify the second 
occurrence of the store address. 

2. On all traps, to nullify the third instruction fetch after the trapped instruction. For reset, it nullifies the 
error-producing address. 

3. On a load in which the hardware interlock is activated. 

4. JMPL and RETT instructions. 

6.2.1.11 LDST -Atomic Load-Store (output) 

This signal is used to identify an atomic load-store to the system and is asserted by the Integer Unit during 
all the data cycles (the load cycle and both store cycles) of atomic load-store instructions. LDST is sent out 
unlatched and must be latched externally before it is used. 

6.2.1.12 LOCK-Bus Lock (output) 

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple 
cycle transactions (load double, store single and double, atomic load-store). The bus will not be granted to 
another bus master as long as LOCK is asserted. Note that BHOLD should not be asserted in the processor 
clock cycle that follows a cycle in which LOCK is asserted. LOCK is sent out unlatched and must be latched 
externally before it is used. 

6.2.1.13 MDS-Memory Data Strobe (input) 

MDS is asserted by the memory system to enable the clock to the Integer Unit's instruction register (during 
an instruction fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an 
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MHOLDA/B. In a system with cache, MDS is used to signal the processor when the missed data (cache 
miss) is ready on the data bus. In a system with slow memories, MDS tells the processor when the read data 
is available on the bus. During a cache line replacement, MDS may be asserted anywhere within the 
MHOLD cycle and deasserted before MHOLD is released. For example, if a cache miss occurs on word 2 
of a 4-word cache line, MDS should only be driven active while word 2 is being replaced in the cache. 

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the 
pipeline is frozen with MHOLDA/B. The CY7C601/611 samples MDS with an on-chip transparent latch 
before it is used. 

6.2.1.14 MEXC-Memory Exception (input) 

Assertion of this signal by the memory system initiates an instruction access exception or data access excep­
tion trap and indicates to the CY7C60l/611 that the memory system was unable to supply a valid instruction 
or data. If MEXC is asserted during an instruction fetch cycle, it generates an instruction access exception 
trap. If asserted during a data cycle, it generates a data access exception trap. 

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDAIB and MDS 
are already asserted. If MDS is applied without MEXC, the CY7C601/611 accepts the contents of the data 
bus as valid. If MEXC accompanies MDS, an exception is generated and the data bus content is ignored. 

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must 
be deasserted in the same clock cycle in which MHOLDA/B is deasserted. 

6.2.1.15 MHOLD(AIB)-Memory Holds (inputs) 

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for 
systems with cache memory) or when accessing a slow memory. The processor pipeline is frozen while 
MHOLDA is asserted and the memory subsystem interface signals (see Table 6-2 for a list of these signals), 
except for INULL, revert to and maintain the value they had at the rising edge of the clock in the cycle in 
which MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be 
valid and stable at the processor for the duration of the specified set-up time prior to the falling edge of CLK. 

MHOLDB behaves in the same fashion as MHOLDA, and either can be used to stop the processor during 
a cache miss or memory exception. The pipeline is actually frozen by a "final" hold signal that is the logical 
OR of all hold signals (MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the 
CY7C601/611 (transparent latch with clock high) before they are used. 

Note that MHOLD must be driven HIGH while RESET is LOW. 

6.2.1.16 RD-Read Access (output) 

RD is sent out during the address portion of an access to specify whether the current memory access is a read 
(RD=l) or a write (RD=O) operation. RD is set to "0" only during the address cycles of store instructions. 
For atomic load-store instructions, RD is "l" during the load address cycle and "0" during the two store ad­
dress cycles. It is sent out unlatched by the Integer Unit and must be latched externally before it is used. 

RD is used in conjunction with SIZE<l:O>, ASI<7:0>, and LDST to determine the type and to check the 
read/write access rights of bus transactions. It may also be used to tum off the output drivers of data RAMs 
during a store operation. 

6.2.1.17 SIZE<1:0>-Bus Transaction Size (outputs) 

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. 
The value of the size bits during a given cycle relates only to the memory address which appears on pins 
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A<31 :0> simultaneously with the size outputs. It does not apply to data which may be on the data bus during 
that same cycle. 

Size bits are sent out unlatched and must be latched external to the CY7C601/611 before they are used. 
SIZE<1 :0> remains valid during the data address cycles of loads, stores, load doubles, store doubles, and 
atomic load-stores. Encoding of the size bits is shown in Table 6-4. For example, during an instruction fetch, 
SIZE<1 :0> is set to "10," because all instructions are 32 bits long. For doubleword instructions, SIZE< 1 :0> 
is "11" for all data address cycles. 

Table 6-4. SIZE Bit Encoding 

SIZEd> SIZE<O> Data Transfer Type 

0 0 Byte 

0 1 Halfword 

1 0 Word 

1 1 Word (Load/Store Double) 

6.2.1.18 WE-Write Enable (output) 

WE is asserted by the Integer Unit during the cycle in which the store data is on the data bus. For a store 
single instruction, this is during the second store address cycle; the second and third store address cycles 
of store double instructions, and the third load-store address cycle of atomic load-store instructions. It is sent 
out unlatched and must be latched externally before it is used. To avoid writing to memory during memory 
exceptions, WE must be externally qualified by the MHOLDA/B signals. 

6.2.1.19 WRT -Advanced Write (output) 

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single 
or double store instructions, the first store address cycle of floating-point single or double store instructions, 
and the second load-store address cycle of atomic load-store instructions. WRT is sent out unlatched and 
must be latched externally before it is used. 

6.2.2 Floating-Point/Coprocessor Interface Signals 

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the Integer Unit 
and both the floating-point unit and the coprocessor. Using these connections, no external circuits are re­
quired to interface the IU to the FPU and coprocessor. The interfaces consist of the following signals: 

6.2.2.1 CCC<1 :O>-Coprocessor Condition Codes (input) [Not available on CY7C611j 

These lines represent the current condition code bits from the coprocessor state register (CSR), qualified 
by the CCCV signal. When CCCV = 1, these bits are valid. During the execution of a CBccc instruction, the 
processor uses CCC< I :0> to determine whether or not to take the branch. These bits are latched by the pro­
cessor before they are used. 

6.2.2.2 CCCV--Coprocessor Condition Codes Valid (input) [Not available on CY7C611j 

This signal is a specialized hold used to synchronize coprocessor compare instructions with coprocessor 
branch instructions. It is asserted (the normal condition) whenever the CCC< I :0> bits are valid. A coproces-
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sor would deassert CCCV (CCCV=O) as soon as a coprocessor compare instruction enters the coprocessor 
queue, unless an exception is detected. Deasserting CCCV freezes the Integer Unit pipeline, preventing any 
further compares from entering the pipeline. CCCV is reasserted when the compare is completed and the 
coprocessor condition codes are valid, thus ensuring that the condition codes match the proper compare in­
struction. CCCV is latched in the CY7C601 before it is used. 

6.2.2.3 CEXC-Coprocessor Exception (input) [Not available on CY7C61lj 

CEXC is used to signal the Integer Unit that a coprocessor exception has occurred. CEXC must remain as­
serted until the CY7C601 takes the trap and acknowledges the FPU exception via the CXACK signal. 
Although coprocessor exceptions can occur at any time, they are taken by the CY7C601 only during the 
execution of a subsequent CPop, a CBfcc instruction, or a coprocessor load or store instruction. A coproces­
sor implementation should deassert CHOLD if it detects an exception while CHOLD is asserted. In such 
a case, CEXC should be asserted one cycle before CHOLD is deasserted. CEXC is latched in the CY7C601 
before it is used. 

6.2.2.4 CHOLD-Coprocessor Hold (input) [Not available on CY7C61lj 

This signal is asserted by the coprocessor if a situation arises in which it cannot continue execution. The 
coprocessor checks all dependencies in the Decode stage of the instruction and asserts CHOLD (if neces­
sary) in the next cycle. If the Integer Unit receives a CHOLD, it freezes the instruction pipeline in the same 
cycle. Once the conditions causing the CHOLD are resolved, the coprocessor deasserts CHOLD, releasing 
the instruction pipeline. Because MDS and MEXC are recognized by the CY7C60l/611 but do not revert 
to the previous state as in the case of MDS and MEXC assertion with MHOLD active, MDS and MEXC 
should not used with CHOLD to strobe exceptions into the CY7C601. CHOLD is latched in the CY7C601 
before it is used. 

The conditions under which the coprocessor asserts CHOLD are implementation dependent. 

6.2.2.5 CINSI-Coprocessor Instruction in Buffer I (output) (Not available on CY7C61l) 

CINS 1 is asserted by the Integer Unit during the Decode stage of the coprocessor instruction that is in the 
Dl buffer of the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the 
Dl instruction, and to latch it into its Execute-stage register. CINSI and CINS2 are never asserted in the 
same cycle. 

6.2.2.6 CINS2-Coprocessor Instruction in Buffer 2 (output) (Not available on CY7C61l) 

CINS2 is asserted by the Integer Unit during the Decode stage of the coprocessor instruction that is in the 
D2 buffer of the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the 
D2 instruction, and to latch it into its Execute-stage register. CINS 1 and CINS2 are never asserted in the 
same cycle. 

6.2.2.7 CP-Coprocessor Unit Present (input) [Not available on CY7C61lj 

When pulled low, CP indicates that a coprocessor is available to the system. It is normally pulled up to VDD 
through a resistor, and then grounded by connection to the coprocessor. The Integer Unit will generate a cp 
disabled trap if CP=l during the execution of an CPop, CBfcc, or coprocessor load or store instruction. 

6.2.2.8 CXACK-Coprocessor Exception Acknowledge (output) [Not available on CY7C61lj 

CXACK is asserted by the Integer Unit to inform the coprocessor that a trap has been taken for the currently 
asserted CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which 
in turn causes the to deassert CXACK. CXACK is a latched output and should not be latched externally. 
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6.2.2.9 FCC<1 :O>-Floating-Point Condition Codes (input) 

These lines represent the current condition code bits from the FPU's floating-point state register (FSR), qu­
alified by the FCCV signal. When FCCV=I, these bits are valid. During the execution of an FBfcc 
instruction, the processor uses FCC<I:0> to determine whether or not to take the branch. These bits are 
latched by the processor before they are used. 

6.2.2.10 FCCV-Floating-Point Condition Codes Valid (input) 

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch 
instructions. It is asserted (the normal condition) whenever the FCC<I:0> bits are valid. The CY7C602 
deasserts FCCV (FCCV=O) as soon as a floating-point compare instruction enters the floating-point queue, 
unless an exception is detected (see Section 7.2 .1.2 .1). Deasserting FCCV freezes the Integer Unit pipeline, 
preventing any further compares from entering the pipeline. FCCV is reasserted when the compare is com­
pleted and the floating-point condition codes are valid, thus ensuring that the condition codes match the 
proper compare instruction. FCCV is latched in the CY7C60l/611 before it is used. 

6.2.2.11 FEXC-Floating-Point Exception (input) 

FEXC is used to signal the Integer Unit that a floating-point exception has occurred. FEXC must remain 
asserted until the CY7C601/611 takes the trap and acknowledges the FPU exception via the FXACK signal. 
Although floating-point exceptions can occur at any time, they are taken by the CY7C60l/611 only during 
the execution of a subsequent FPop, an FBfcc instruction, or a floating-point load or store instruction. The 
CY7C602 deasserts FHOLD if it detects an exception while FHOLD is asserted. In such a case, FEXC is 
asserted one cycle before FHOLD is deasserted. FEXC is latched in the CY7C60l/611 before it is used. 

6.2.2.12 FHOLD-Floating-Point Hold (input) 

This signal is asserted by the CY7C602 if a situation arises in which the FPU cannot continue execution. 
The FPU checks all dependencies in the Decode stage of the instruction and asserts FHOLD (if necessary) 
in the next cycle. If the Integer Unit receives an FHOLD, it freezes the instruction pipeline in the same cycle. 
Once the conditions causing the FHOLD are resolved, the FPU deasserts FHOLD, releasing the instruction 
pipeline. FHOLD is latched in the CY7C601/611 before it is used. 

An FHOLD is asserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending 
in the queue, (2) if either a resource or operand dependency exists between the FPop being decoded and any 
FPops already being executed, or (3) if the floating-point queue is full. 

6.2.2.13 FINSI-Floating-Point Instruction In Buffer 1 (output) 

FINS 1 is asserted by the Integer Unit during the Decode stage of the floating-point instruction that is in the 
Dl buffer of the floating-point unit (see Section 7.2 ). The FPU uses this signal to begin decoding and execu­
tion of the D 1 instruction, and to latch it into its Execute-stage register. FINS 1 and FINS2 are never asserted 
in the same cycle and both are ignored if (1) FLUSH is asserted, (2) any HOLD is asserted, (3) or if FCCV 
or CCCV is deasserted. 

6.2.2.14 FINS2-Floating-Point Instruction In Buffer 2 (output) 

FINS2 is asserted by the Integer Unit during the Decode stage of the floating-point instruction that is in the 
D2 buffer of the floating-point unit (see Section 3.1). The FPU uses this signal to begin decoding and execu-
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tion of the D2 instruction, and to latch it into its Execute-stage register. FINS 1 and FINS2 are never asserted 
in the same cycle and both are ignored if (1) FLUSH is asserted, (2) any HOLD is asserted, (3) or if FCCV 
or CCCV is deasserted. 

6.2.2.15 FLUSH-Floating-PointICoprocessor Instruction Flush (output) 

This signal is asserted by the Integer Unit whenever it takes a trap. FLUSH is used by the FPU (or coproces­
sor) to flush the instructions in its instruction caches. These instructions, as well as the instructions annulled 
in the CY7C60l/611's pipeline, are restarted after the trap handler is finished. If the trap was not caused by 
a floating -point (or coprocessor) exception, instructions already in the floating -point (or coprocessor) queue 
may continue their execution. If the trap was caused by a floating-point (or coprocessor) exception, the fp 
(or cp) queue must be emptied before the FPU (coprocessor) can resume execution. 

6.2.2.16 FP-Floating-point Unit Present (input) 

When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up 
to VDD through a resistor, and then grounded by connection to the FPU. The Integer Unit will generate an 
fp disabled trap if FP=1 during the execution of an FPop, FBfcc, or floating-point load or store instruction. 

6.2.2.17 FXACK-Floating-Point Exception Acknowledge (output) 

FXACK is asserted by the Integer Unit to inform the floating-point unit that a trap has been taken for the 
currently asserted FEXC signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC, which 
in tum causes the CY7C60 1/611 to deassert FXACK. FXACK is a latched output and should not be latched 
externally. 

6.2.2.18 INST-Instruction Fetch (output) 

The INST signal is asserted by the Integer Unit whenever a new instruction is being fetched. It is used by 
the floating-point unit or coprocessor to latch the instruction currently on the data bus into an FPU or copro­
cessor instruction cache. SPARC-compatible floating-point units and coprocessors have two instruction 
caches (Dl and D2) to save the last two fetched instructions (see Section 7.2). When INST is asserted, a new 
instruction enters buffer D 1 and the instruction that was in D 1 moves to buffer D2. INST is a latched output 
and should not be latched externally. 

6.2.3 Interrupt and Control Signals 

The following signals are used by the Integer Unit to control and to receive input from external events. 

6.2.3.1 ERROR-Error State (output) 

This signal is asserted when the Integer Unit enters the error mode state. This happens if a synchronous trap 
occurs while traps are disabled (the PSR's ET bit =0). Before it enters the error mode state, the 
CY7 C60 1/611 saves the PC and nPC and sets the trap type (tt) for the trap causing the error mode into the 
TBR. It then asserts the ERROR signal and halts. The only way to restart a processor which is in the error 
mode state is to trigger a reset by asserting the RESET signal. 

6.2.3.2 FPSYN-Floating-point Synonym Mode (input) 

This is a mode pin which will be used to allow execution of additional instructions in future designs. For 
the CY7C601/611, it should be kept grounded. 
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6.2.3.3 INTACK-Interrupt Acknowledge (output) 

INTACK (interrupt acknowledge) is a latched output that is asserted by the Integer Unit when an external 
interrupt is taken, not when it is sampled and latched. 

6.2.3.4 IRL<3:0>-Interrupt Request Level (input) 

The state of these pins defines the external interrupt level (IRL). IRL<3:0>=OOOO indicates that no external 
interrupts are pending and is the normal state of the IRL pins. IRL<3 :0>= 1111 signifies a nonmaskable inter­
rupt. All other interrupt levels are maskable by the processor interrupt level (PIL) field of the processor state 
register (PSR). The Integer Unit uses two on-chip synchronizing latches to sample these signals, and a given 
level must remain valid for two consecutive cycles to be recognized. External interrupts should be latched 
and prioritized by external logic before they are passed to the CY7C601/611. Logic must also keep an inter­
rupt valid until it is taken and acknowledged. External interrupts can be acknowledged by system software 
or by the CY7C60l/611 's interrupt acknowledge (INTACK) signal. 

6.2.3.5 RESET -Integer Unit Reset (input) 

Assertion of this pin will reset the Integer Unit. RESET must be asserted for a minimum of eight processor 
clock cycles. After RESET is deasserted, the Integer Unit starts fetching from address O. RESET is latched 
by the CY7C60l/611 before it is used. 

6.2.3.6 TOE-Test Mode Output Enable (input) 

When deasserted, this signal will three-state all Integer Unit output drivers. Thus, in normal operation, this 
pin should always be asserted (tied to ground). Deassertion of TOE isolates the CY7C601/611 from the sys­
tem for debugging purposes. 

6.2.4 Power and Clock Signals 

The signals listed below provide clocking and power to the Integer Unit. 

6.2.4.1 CLK-Clock (input) 

CLK is a 50%-duty-cycle clock used for clocking the Integer Unit's pipeline registers. The rising edge of 
CLK defines the beginning of each pipeline stage and a processor cycle is equal to a full clock cycle. 

6.2.4.2 VCCO, VCCI, VCCT -Power (inputs) 

These pins provide +5V power to various sections of the processor. Power is supplied on three different 
buses to provide clean, stable power to each section: output drivers, main internal circuitry, and the input 
circuits. VCCO pins supply the output driver bus; VCCI pins supply main internal circuitry bus; and VCCT 
pins supply the input circuit bus. See Section 7.1 for pin identification. 

6.2.4.3 VSSO, VSSI, VSST -Ground (inputs) 

These pins provide ground return for the power signals. Ground is supplied on three different buses to match 
the power signals to each section: VSSO pins for the output driver bus; VSSI pins for the main internal cir­
cuitry bus; and VSST pins for the input circuit bus. See Section 7.1 for pin identification. 
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6.3 Pipeline And Instruction Execution Timing 

One of the major contributing factors to the CY7C60l/CY7C611 's high performance is an instruction ex­
ecution rate approaching one instruction per clock cycle. To achieve that rate of execution, the 
CY7C60l/CY7C611 employs a four-stage instruction pipeline that permits multiple instructions to be oper­
ated on at the same time. 
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6.3.1 Stages 

Instruction execution is broken into four stages corresponding to the stages of the pipeline: 

1. Fetch-The processor outputs the instruction address to fetch the instruction. 

2. Decode-The instruction is placed in the instruction register and decoded. The processor reads the oper­
ands from the register file and computes the next instruction address. 

3. Execute-The processor executes the instruction and saves the results in temporary registers. Pending 
traps are prioritized and internal traps taken during this stage. 

4. Write-If no trap is taken, the processor writes the result to the destination register. 

All four stages operate in parallel, working on up to four different instructions at a time. A basic 
"single-cycle" instruction enters the pipeline and completes in four cycles. By the time it reaches the Write 
stage, three more instructions have entered and are moving through the pipeline behind it. So, after the first 
four cycles, a single-cycle instruction exits the pipeline and a single-cycle instruction enters the pipeline on 
every cycle (see Figure 6-5). 

Of course, a "single-cycle" instruction actually takes four cycles to complete, but they are called single cycle 
because with this type of instruction the processor can complete one instruction per cycle after the initial 
four-cycle delay. 

6.3.1.1 InternalOpcodes 

Instructions that require extra cycles automatically insert internal opcodes (lOPs) into the Decode stage as 
they move into the Execute stage. These internal opcodes are unique to the instruction that generates them. 
They move all the way through the pipeline, performing functions specific to the instruction that created 
them. For example, in Figure 6-6, the data load in cycle four can be thought of as the fetch for the lOP that 
starts in cycle three; together they make a complete four-cycle instruction that balances out the pipeline. 
JMPL and RETT also generate an lOP, but have no external data cycle. 

Multicycle instructions may generate up to three lOPs to complete execution. Table 6-5 lists the instructions 
that require lOPs and the number generated. 

Because instructions continue to be fetched even though lOPs occupy the Decode stage, a two-stage pre­
fetch buffer is used to hold instructions until they can move into the Decode stage (see Figure 6-4). This 
enables the processor to fully utilize the data bus bandwidth and still keep the pipeline full. Only two buffers 
are required because a maximum of two cycles are available for instruction fetching for any multi-cycle in­
struction. 

Table 6-5. Internally Generated Opcodes 

Instruction Number of Internal Opcodes 

Single Loads 1 

Double Loads 2 

Single Stores 2 

Double Stores 3 

Atomic Load-Store 3 

Jump 1 

Return from Trap 1 
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6.3.2 Multicycle Instructions 

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline 
cycles) to complete. A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction 
takes six cycles (three bus cycles), and so on. 

In most cases, the extra cycles required by multicycle instructions result from data bus usage (e.g., a data 
load or store to memory) that prevents the processor from fetching the next instruction during those cycles. 
In Figure 6-6, the Fetch of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 6-7, 
the store sequence delays the Inst 3 Fetch by two cycles. 

Fetch Load Inst 1 Inst2 Load Data Inst 3 Inst4 

Decode Load lOP! Inst 1 Inst 2 Inst 3 

Execute Load lOP! Iust 1 Iust2 

Write 

eLK 

A<31:0> 

D<31:0> 

DXFER 

INST \ / 
Figure 6-6. Pipeline with One Double-Cycle Instruction (Load) 
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Fetch Store Inst 1 Inst2 Tag Check Store Data Inst 3 

Decode Store lOP! IOP2 lnst 1 Inst 2 

Execute Store lOP! IOP2 Inst 1 

Write Store lOP! IOP2 

eLK 

A<31:0> 

D<31:0> 

RD 

WE \ I 
DXFER I \ 
LOCK I \ 
WRT I \ 
INULL I \ 
INST \ I 

Figure 6-7. Pipeline with One Triple-Cycle Instruction (Store) 
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Fetch Load Inst 1 Inst 2 Load Data Inst3 Inst4 

Decode Load IOPLd IOPlnt Inst2 Inst 3 

Execute Load IOPLd Inst 1 Inst 2 

Write Load IOPInt. Inst 1 

eLK 

A(31:0) 

D(31:0) 

DXFER 

lNULL / \ 
INST \ / 

Figure 6-8. Pipeline with Hardware Interlock (Load) 

6.3.2.1 Register lnterlocks 

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use 
the contents of a particular register which is in the process of being updated by a previous instruction. Special 
bypass paths in the pipeline of the CY7C60l/CY7C611 make the correct data available to subsequent in­
structions for all internal register to register operations, but cannot solve the problem ofloads to the registers 
from external memory. For this case, interlock hardware prevents an instruction following a load instruction 
from reading the register being loaded until the load is complete (see Figure 6-8). This also applies to a 
a CALL instruction with a delay slot instruction using r[15] and a JMPL with a delay slot instruction using 
the same register specified as the r[rd] ofthe JMPL. To maximize performance, compilers and assembly 
language programmers should avoid loads followed immediately by instructions using the loaded register's 
contents. 

6.3.2.2 Branching 

The CY7C601/CY7C6Il's delayed-control-transfer mechanism allows branches (taken or untaken) to oc­
cur without creating a bubble in the pipeline (see Figure 6-9). Special parallel hardware enables the 
processor to evaluate the condition codes and calculate the effective branch address during the Decode stage 
rather than the Execute stage, so that only one delay instruction is required between the branch and the target 
instruction (or the next instruction, if the branch is not taken). Refer to Section 2.4.3.3 for a discussion on 
branching. 

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay 
instruction can be annulled by setting the branch instruction's a bit. The result is shown in Figure 6-10. 
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Fetch Branch Delay Target Inst 1 Inst 2 Inst 3 Inst4 

Decode Branch Delay Target Inst 1 lnst 2 lust 3 

Execute Branch Delay Target Inst 1 Inst2 

Write Branch Delay Target lnst 1 

CLK 

A(31:0) 

D(31:0) 

Figure 6-9. Pipeline During Branch Instruction 

Fetch Branch Delay Target Inst 1 Inst2 Inst 3 lnst 4 

Decode Branch Annulled Target lnst 1 Inst 2 Inst 3 

Execute Branch Annulled Target Inst 1 Inst 2 

Write Branch Annulled Target lnst I 

CLK 

A(31:0) 

D(31:0) 

Figure 6-10. Branch with Annulled Delay Instruction 
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Fetch Inst 1 Inst2 lnst 3 

Decode Inst 0 Ins! 1 Ins! 1 Inst 1 Ins! 1 Ins! 1 Ins! 2 

Execute InstO InstO InstO InstO InstO Inst 1 

Write Inst 0 

eLK 

A(31:0) 

D(31:0) 

BHOLD 

DOE 

AOE 

Figure 6-11. Pipeline Frozen During Bus Arbitration 

6.3.3 Pipeline Freezes 

Whenever the processor receives an externally generated hold input, such as MHOLDA/B or BHOLD, the 
instruction pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware 
generating the hold. Figure 6-11 shows the pipeline frozen by a BHOLD as the result of bus arbitration initi­
ated by another bus master in the system. 

6.3.4 Traps 

Figure 6-12 shows the pipeline operation when an internally generated trap is taken. Instructions in the 
pipeline after detection of the trap are annulled and the first instruction of the trap target routine is executed 
in the fourth cycle following detection. 

6.4 Bus Operation And Timing 

This section covers standard and non-standard bus operations. Standard operations include instruction 
fetch, load integer, load double integer, load floating-point, load double floating-point, store integer, store 
double integer, store floating-point, store double floating-point, atomic load-store unsigned byte, and float­
ing-point operations (FPops). Non-standard operations include bus arbitration, cache misses, exceptions, 
and the reset and error conditions. Coprocessor loads, coprocessor stores, and coprocessor operations are 
identical in timing to their floating-point counterpart, and are not repeated as a separate case in this section. 
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Fetch Inst 1 Trap 4 

Decode lust 0 Trap 3 

Execute Trap Detected Trap 2 

Write Trap 1 

eLK --.J L 
A(31:0) 

0(31:0) 

INULL 

INST 

Figure 6-12. Pipeline Operation for Taken Trap (Internal) 

Each of the following sections describes a type of bus transaction along with appropriate timing diagrams. 
The timing diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are 
sent out in the cycle before the instruction fetch. Instruction fetch cycles begin with the instruction address 
latched by the memory at the beginning of the Fetch cycle and end with the instruction supplied by the 
memory. Instruction Decode begins with the latching of the instruction at rising clock edge of the cycle after 
the Fetch cycle. If the instruction is multi-cycle, or execution requires an interlock, lOPs are inserted into 
the pipeline at the Decode stage and propagate through the pipeline like a fetched instruction. 

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted 
or deasserted; in other words, undefmed. 

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In support of 
the CY7C60l/CY7C611 's high-speed operation, many signals are sent out unlatched. Refer to Section 6.2 
for further details on CY7C60l/CY7C611 signals. 

The processor automatically aligns byte (and halfword) transfers. Figure 6-13 shows the relationship be­
tween the data transferred during byte, halfword, and word operations and the pins of the data bus. For byte 
and halfword data transfers, the CY7C601/CY7C611 repeats the byte or halfword on each eight-bit or 16-bit 
section of the bus. In other words, the undefmed portions of the bus illustrated in Figure 6-13 are actually 
a repeat of the data driven onto the bus. However, this feature is not specified in the SPARC Architecture 
Reference, and may not be supported on other SPARC processors. 
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CLK 

A<31:0> 

SIZE<1:0> 

D<31:24> 

D<23:16> 

D<15:8> 

D<7:0> 

Byte Data Alignment 

CLK 

A<31:0> 

SIZE<i:O> 

D<3I:16> (HWRDO 8< undef, _ 

D<15:0> 

Halfword Data Alignment Word Data Alignment 

x = word boundary address Note: This illustration depicts data alignment and 
is not intended to illustrate a timing case, 

Figure 6-13. Data Bus Contents During Data Transfers 
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CLK 

A<3J:O> 

D<3J:O> 

Figure 6-14. Instruction Fetch 

2 3 4 5 6 

CLK 

A<31:0> 

D<31:0> 
;,;/ __ ':'_>~<>_J 

c' :,.' '~':~;//.\;~ -"}-" 
'{<" 

DXFER I \ 
INST \ / 

Figure 6-15. Load Single Integer Timing 

6.4.1 Instruction Fetch 

The instruction Fetch cycle is that cycle in which both the instruction address and the data (the instruction 
itself) are active on their n.~spective buses (see Figure 6-14). The instruction address on A <31 :0> is actually 
sent out in the previous cycle, but is held into the Fetch cycle. It should be latched externally. The instruction 
is returned on the data bus at the very end of the Fetch cycle and is held into the Decode cycle. It is latched 
into the on-chip instruction register at the beginning of the Decode cycle. 

6.4.2 Load 

Figure 6-15 shows the timing for a load single integer instruction. Because the bus is used for a data fetch 
in the fifth cycle, this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load 
data address is sent out, while INST is inactive in the cycle in which the load data is on the data bus. 

6.4.3 Load with Interlock 

In a load with interlock situation, the instruction following the load tries to use the contents of the load's 
destination register before the load data is available. This requires the insertion of an lOP into the Decode 
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stage of the pipeline in the fourth cycle, which must be matched by a null bus cycle in the Fetch stage to 
balance the pipeline (see Figure 6-16). 

2 3 4 5 6 

CLK 

A(31:0) 

D(31:0) 

DXFER I \ 
lNULL I \ 
INST \ I 

Figure 6-16. Load Single with Interlock Timing 

2 3 4 5 6 

CLK 

A(31:0) 

D(31:0) 

DXFER I \ 
LOCK I \ 
INST \ I 

Figure 6-17. Load Double Integer Timing 

6.4.4 Load Double 

The timing for a load double integer is shown in Figure 6-17. The timing is essentially the same as a load 
single except for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. 
The most-significant word is fetched in cycle four and the least-significant word in cycle five. Note that the 
size bits are set to 11 during the address portion of both loads and that the bus is locked to allow the comple­
tion of both loads without interruption. 
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Load single and load double floating-point instructions look identical to their integer counterparts except 
that the FINSI/FINS2 signal is active for floating-point operations. 

6.4.5 Store 

Store transactions involve more bus activity than loads, as shown in the store single integer timing in 
Figure 6-18. Store single is a triple-cycle instruction because it includes an extra tag check cycle in which 
to check an external cache for the store address. This extra cycle also gives the processor and the memory 
system time to three-state the data bus and tum it around for the store. The store address is sent out again 
in the fifth cycle to complete the data transfer. Note that the store data is generated by the processor off the 
falling edge of CLK and is therefore only available at the very end of the first data cycle. 

Note also that INULL is active during the second application of the store address. If there is a cache miss 
on the tag check cycle, INULL prevents an additional miss the second time the address is sent out in the store 
cycle. Because it is a triple cycle instruction, LOCK is asserted to retain control of the buses. 

2 3 4 5 6 

CLK 

A<31:0> 

0<31:0> ~ STOata »)---~ 

RO ~ ____ --,I 

~_--,I 

DXFER \'------
LOCK 

WRT 

INULL ----------_____ ~I \----
INST \---____ ----'1 

Figure 6-18. Store Single Integer Timing 

6.4.6 Store Double 

The timing for a store double integer is shown in Figure 6-19. The timing is essentially the same as store 
single except for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The 
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most-significant word is stored in cycle five and the least-significant word in cycle six. Note that the size 
bits are set to 11 during the address portion of all three data cycles and that the bus is locked to allow the 
completion of both stores without interruption. INULL is not active for the address of the least-significant 
store because there cannot be a miss on this cycle if there was not one on the tag check cycle, unless the cache 
line is less than two words. 

Store single and store double floating-point instructions look identical to their integer counterparts except 
that the FINSljFINS2 signal is active for floating-point operations. 

2 3 4 5 6 

CLK 

A<31:0> 

D<31:0> 

RD \ / 

WE \ / 
DXFER / \ 

LOCK / \ 
WRT / \ 

INULL / \ 
INST \ r 

Figure 6-19. Store Double Integer Timing 

6.4.7 Atomic Load-Store 

Atomic transactions consist of two or more steps that are indivisible; once the sequence begins in the instruc­
tion pipeline, it cannot be interrupted. Because atomic operations are four-cycle instructions, the 
CY7C60l/CY7C611 asserts LOCK for as long as necessary to make sure that no interruption occurs on the 
bus. Figure 6-20 applies to the atomic operations load-store unsigned byte (LDSTUB, LDSTUBA) and 
word swap (SWAP, SWAPA). Note that, as with any store, INULL is active on the second occurrence of the 
store address. 
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2 3 4 5 6 

CLK 

A<31:0> 

D<31:0> Store Data 

RD \ / 
WE \ / 

LDST / \ 
mITER / \ 

LOCK / \ 
WRT / \ 

!NULL / \ 
INST \ / 

Figure 6-20. Atomic Load-Store Timing 

6.4.8 Floating-Point Operations 

The timing for floating-point operations and integer operations is the same except for the addition of the 
FINS 1 and FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point op­
eration (see Figure 6-21). FINS 1/2 tell the floating-point unitto move an instruction out of its decode buffer 
and begin execution. The FPU also makes use of the INST signal to latch instructions into its decode buffers. 
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\ ...... _----
Figure 6-21. Floating-Point Operation Timing 

6.4.9 Bus Arbitration 

The CY7C601lCY7C611 does not have on-chip bus arbitration circuitry because it is designed to operate 
as a bus slave. Therefore, external circuitry must arbitrate between external bus requests and the 
CY7C601lCY7C611. When the CY7C601lCY7C611 needs to retain the buses it asserts the LOCK signal. 
The arbitration circuitry should assert BHOLD when it needs to keep the CY7C60 lICY7C611 off the buses. 
When BHOLD is asserted, the processor's instruction pipeline is frozen until it is deasserted. The arbitration 
circuitry should also deassert the DOE, AOE, and COE signals to three-state the CY7C601lCY7C611 's ad­
dress bus, data bus and control signal output drivers so they may be driven by an external source (see 
Figure 6-22). 
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CLK 

A<31:0> 

ASI<7:0> 

0<31:0> 

SIZE<1:0> 

RO 

LOST 

OXFER 

LOCK 

WRT 

2 3 4 5 6 

~ ________ J~----------------------------~~ 

~~------~~----------------------------~~ 

~-------------------------~ 
~ f.'t:?'0:.I ~----------<~ 

___________ ~_~p_~<~~,----------------------~_#_~_~c~~ ____ __ 

~---------------------------~ ______________ ~~".I"~,~_;"~" ~ _____ ~ww~ ______ _ 

_________ ~_~=;~~,¥i------------------~~~%= •. '~=;; ____ __ 

____________ ~~~<~~\;~~_·~,----------------------------<~~u_·'~~?~·~~, ______ __ 

\~------------------~I 
____ ---1 

____ ---1 
____ ---1 

Figure 6-22. Bus Arbitration Timing 

\'------­

\'-------

\'-------

6.4.10 Load with Cache Miss 

Figure 6-23 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting 
MHOLDA or MHOLDB in the next cycle. However, the processor stops with the address ofthe next instruc­
tion on the address bus rather than the instruction that caused the miss. In order to retrieve the proper load 
data, the missed address (the address that was on the bus in the cycle before MHOLD was asserted) must 
be latched externally and placed back on the bus (this is done automatically by the cache controller in 
CY7C604/605-based systems). The MHOLD signal must be maintained while the missed data is strobed 
into the processor with the MDS signal (it must be strobed externally because the internal processor clock 
is frozen by the MHOLD). 
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eLK 

A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE<1:0> 

DXFER ____ ----'1 I \\....----_ ...... \ 

I \~-------------~ 
\ I 

INST \'--_---'1 \ I 
Figure 6-23. Load with Cache Miss Timing 

6.4.11 Store with Cache Miss 

The timing for a store with cache miss is similar to the load with cache miss situation, except MDS is not 
required (see Figure 6-24). Because the processor outputs the store address twice, it already has the proper 
address on the bus when it is stopped by MHOLD. MDS is not required because nothing needs to be strobed 
into the processor. 

INULL is asserted for the second occurrence of the store address so that it does not trigger the miss circuitry 
during the time the cache is processing the miss on the first occurrence of that address. 
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2 3 4 5 

CLK 

A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE<1:0> ~~_ST_s_iz_e ___ _ 

RD 

DXFER 

LOCK 

WRT 

INULL 

INST 

\~---------------------

____ ---II 

___ -----II 
____ ---II 

\~---------------

\~--------------­
\~--------

-------_--___ ~I 

\~-----

\~-------

Figure 6-24. Store with Cache Miss Timing (1 of 2) 
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6 7 8 9 10 

CLK ..J LJ LJ 
A<31:0> 

ASI<7:0> ASIsT 

D<31:0> STD.!. __________________ --J) ~ 

SIZE<l:O> 

RD 
_____ ....J/ 

--------/ 
DXFER \~---------------

LOCK 

WRT 

INULL \~---------
____ ..J/ 

INST ----_~ ___ ~I 
Figure 6-24. Store with Cache Miss Timing (2 of 2) 

6.4.12 Memory Exceptions 

Load with memory exception timing is shown in Figure 6-25. As with a cache miss, memory logic must 
stop the processor by asserting MHOLDA or MHOLDB in the next cycle. The MHOLD signal must be 
maintained while the memory exception (MEXC) signal is strobed into the processor with the MDS signal 
(it must be strobed in externally because the internal processor clock is frozen by the MHOLD). MEXC must 
be deasserted in the same clock cycle in which MHOLD is deasserted. Note that INULL is asserted in the 
cycle 8 instruction fetch to annul that fetch. This is the same action shown in cycle 2 of Figure 6-12 for an 
internal trap. Store with memory exception has the same timing (see Figure 6-26) except INULL is asserted 
from the second store address through to the annulled cycle 8 instruction fetch. 
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6 7 8 9 

eLK 

A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE<1:0> 

DXFER 

MHOLD 

INULL 

MDS \ 

MEXC ~ \ 

INST 

FLUSH 

Figure 6-25. Load with Memory Exception Timing (2 of 2) 
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2 3 4 5 

CLK 

A<31:0> 

ASI<7:0> 

D<31:0> ~ ______ s_T_D_ata ____ _ 

SIZE<1:0> ST Size 

RD 

DXFER 

LOCK 

WRT 

INULL 

INST \~---------------
Figure 6-26. Store with Memory Exception Timing (page 1 of 2) 
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A<31:0> 

ASI<7:0> 

D<31:0> 

SIZE<1:0> 

RD ---------'/ 
WE ---------'/ 

DXFER \~~-------------
LOCK 

WRT 

INULL \~-----~ 
MHOLD / 

MDS ~ / 
MEXC ~ / 

INST 

Figure 6-26. Store with Memory Exception Timing (page 2 of 2) 
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CLK 

FEXC \ Sf / 
FXACK S~ \ 

FLUSH S~ \ 

Figure 6-27. Floating-Point Exception Handshake Timing 

2 3 4 5 6 

CLK 

A<31:0> 

D<31:0> 

IRL<3:0> __ ~O_H ____ ~X~ __________ ~ _____ In_re_rru_p_t_A_ss_ert_e_d ______ ~ ________ ~XOH 

INTACK ~ 
--~------------------~--------------------~- j 

Figure 6-28. Asynchronous Interrupt Timing 

6.4.13 Floating-Point Exceptions 

The floating-point unit asserts FEXC to notify the CY7C601/CY7C611 that a floating-point exception has 
occurred and that it should take a trap on the next floating -point instruction that it encounters in the instruc­
tion stream (see Figure 6-27). The CY7C60l/CY7C61I asserts FXACK to signal the FPU that the trap is 
being taken, and FLUSH to clean out the FPU's decode buffers. From this point on, the FPU will execute 
only floating-point store queue instructions until its queue is emptied by the trap handler. 

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the CY7C60 l/CY7C611 
after FEXC is deasserted. 

6.4.14 Interrupts 

The asynchronous IRL<3:0> inputs are sampled on the rising edge of every clock. If the interrupt value rep­
resented by those inputs is greater than the masking value in the processor, and no higher priority trap 
supersedes it, the CY7C60l/CY7C611 will take the interrupt. The IRL input level should be held stable until 
the processor asserts INTACK. Figure 6-28 shows the timing for the best case response time where the IRL 
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input value is asserted one clock and a setup time before the Execute stage of a single-cycle instruction. 
Refer to Section 2.4.5.3 for more information on interrupts. 

eLK 

A<31:0> OOOOH 

ASI<7:0> 

D<31:0> ~----------~~~-------------------~ 
SIZE<1:0> \ 10 ~ 

~------------~,~----------------~ 

!NULL -----\55 \'---_ 
--_~S51------,1 
------IS5\------~ 

Figure 6-29. Power-On Reset Timing 

6.4.15 Reset Condition 

Figure 6-29 shows the timing for a power-on reset. RESET must be asserted for at least eight cycles so that 
the processor can synchronize the reset input and initialize its internal state. For RESET to be synchronized, 
the CLK signal must be active. 

During the initialization, the processor disables traps (ET:::O), sets the supervisor mode (S:::l), and sets the 
program counter to location zero (PC:::O, nPC:::4). 

6.4.16 Error Condition 

Error mode is one of the three states in which the CY7 C60 l/CY7 C611 can exist. To get into the error mode, 
a synchronous trap must occur while traps are disabled (the processor state register's ET bit is set to zero). 
This essentially means that a trap which cannot be ignored occurs while another trap is being serviced. In 
order for that synchronous trap to be serviced, the processor goes through the normal operations of a trap 
(see Section 2.4.5), including setting the tt bits to identify the trap type. It then enters error mode, halts, and 
asserts the ERROR signal (see Figure 6-30). 

The only way to leave error mode is to receive an external RESET signal, which forces the processor into 
reset mode. All information placed in the CY7C60l/CY7C611 's registers from the last Execute mode (the 
trap operation) remains unchanged and the processor resumes operation at address zero. The reset trap han­
dler can examine the trap type of the synchronous trap and deal with it accordingly. 
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Figure 6-30. Error/Reset Timing (part 1 of 2) 
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Figure 6-30. Error/Reset Timing (part 2 of 2) 

*MHOLD must be driven to a deasserted state when RESET is asserted. 
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Table 6-6. Externally Generated Synchronous Exception Traps 

Trap Initiating Signal Condition 

Data Access Exception MEXC Memory error during data access 

Instruction Access Exception MEXC Memory error dnring instruction access 

Floating-Point Exception FEXC Floating-point unit error 

Coprocessor Exception CEXC Coprocessor unit error 

6.5 Exception Model 

The CY7C60l/CY7C611 supports three types of traps: synchronous, floating-point/coprocessor, and 
asynchronous (also called interrupts). Synchronous traps are caused by hardware responding to a particular 
instruction or by the trap on integer condition code (Ticc) instructions; they occur during the instruction that 
caused them. 

Floating-point/coprocessor traps caused by a floating-point-operate (FPop) or coprocessor-operate (CPop) 
instruction occur before that instruction is complete. However, because floating-point (and coprocessor) ex­
ceptions are pended until the next floating-point (coprocessor) instruction is executed, other 
non-floating-point (coprocessor) instructions may have executed before the trap is taken. See Figure 3-57. 

Asynchronous traps occur when an external event interrupts the processor. They are not related to any partic­
ular instruction and occur between the execution of instructions. See Section 204.5.3. 

6.5.1 Reset 

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is trig­
gered by asserting the RESET input signal. But from that point on, its behavior is entirely different from 
that of an asynchronous interrupt (see Section 204.5.3). 

As soon as the CY7C60l/CY7C611 recognizes the RESET signal, it enters reset mode and stays there until 
the RESET line is deasserted. The processor then enters Execute mode and then the Execute trap procedure. 
Here, it deviates from the normal action of a trap (Section 2 04.5 A) by modifying the enable traps bit (ET=O), 
and the supervisor bit (S=I).1t then sets the PC to 0 (rather than changing the contents of the TBR), the OPC 
to 4, and transfers control to location O. All other PSRfields, and all other registers retain their values from 
the last Execute mode. 

Note: Upon power-up reset the state of all registers other than the PSR are undefined. 

If the processor got to reset mode from error mode, then the normal actions of a trap have already been per­
formed, including setting the tt field to reflect the cause of the error mode. Because this field is not changed 
by the reset trap, a post -mortem can be conducted on what caused the error mode. The processor enters error 
mode whenever a synchronous trap occurs while traps are disabled. 

6.5.2 Synchronous Traps 

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either inter­
nally to the CY7C60l/CY7C611 or from an external signal which was provoked by the instruction. These 
traps are taken immediately and the instruction that caused the trap is aborted before it changes any state 
in the processor. 

The external signals that can cause a synchronous trap are listed in Table 6-6. 
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6.5.2.1 External Signals 

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the Execute 
phase of an instruction or occur immediately for data accesses. Traps generated by the FEXC and CEXC 
signals belong to the special floating-point/coprocessor category, and may not occur immediately. 

6.5.2 .1.11 nstruction Access Exception 

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is 
asserted) during an instruction fetch. 

6.5.2.1.2 Data Access Exception 

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) 
during the data cycle of any instruction that moves data to or from memory. 

6.5.2.2 InternallSoftware 

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is 
detected during the Execute stage of the instruction and the trap is taken immediately, before the instruction 
can complete. 

6.5.2.2.1 Illegal Instruction 

An illegal instruction trap occurs: 

• When the UNIMP instruction is encountered, 

• When an unimplemented instruction is encountered (excluding FPops and CPops), 

• In any of the situations below where the continued execution of an instruction would result in an illegal 
processor state: 

1. Writing a value to the PSR's CWP field that is greater than the number of implemented windows (with 
aWRPSR) 

2. Executing an alternate space instruction with its i bit set to 1 

3. Executing a RETT instruction with traps enabled (ET=1) 

4. Executing an FLUSH instruction with IFf=O 

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal in­
struction trap. They generate fp exception and cp exception traps, respectively. 

6.5.2.2.2 Privileged Instruction 

This trap occurs when a privileged instruction is encountered while the PSR's supervisor bit is reset (S=O). 

6.5.2.2.3fp Disabled 

A fp disabled trap is generated when an FPop, FBfcc, or floating-point Load/Store instruction is encountered 
while the PSR's EF bit =0, or if no FPU is present (FP input signal =1). 
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6.5.2.2.4 CP Disabled 

A cp disabled trap is generated when a CPop, CBccc, or coprocessor Load/Store instruction is encountered 
while the PSR's EC bit =0, or if no coprocessor is present (CP input signal =1). 

6.5.2.2.5 Window Overflow 

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point to a 
window marked invalid in the WIM register. 

6.5.2.2.6 Window Underflow 

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point 
to a window marked invalid in the WIM register. The window underflow trap type can also be set in the PSR 
during a RETT instruction, but the trap taken is a reset. See Section 2.4.5.3.2 on reset traps and Chapter 12 
for the instruction definition for RETT. 

6.5.2.2.7 Memory Address Not Aligned 

Memory address not aligned trap occurs when a load or store instruction generates a memory address that 
is not properly aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned 
(low-order two bits nonzero). 

Fetch Inst2 Inst 3 Trap 2 Trap 3 

Decode Inst 1 Inst2 Trap 2 

Execute Inst 1 Annulled Annulled 

Write Inst 1 Annulled 

L Taken 

IRL<3:0> 

Prioritized 

Latched 

Sampled 

INTACK 

Figure 6-31. Best-Case Interrupt Response Timing 

6.5.2.2.8 Tag Overflow 

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the inte­
ger condition codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 
2.4.3.2.3 for details. 

6.5.2.2.9 Trap Instruction 

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 program­
mable trap types available within the trap instruction trap (see Chapter 6, Ticc Instruction). 
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6.5.3 Interrupts (Asynchronous Traps) 

Asynchronous traps occur in response to the Interrupt Request Level (IRL<3:0» inputs. This type of trap 
is not associated with an instruction and is said to happen between instructions. This is because, unlike syn­
chronous traps, an interrupt allows the instruction in whose Execute stage it is prioritized to complete 
execution (see Figure 6-31). Any instruction that has entered the pipeline behind the instruction which was 
allowed to complete is annulled, but can be restarted again after returning from the trap. 

6.5.3.1 Priority 

The level, or priority, of the interrupt is determined by the value on the IRL<3:0> pins. For the interrupt to 
be taken, the IRL value must be greater than the value in the processor interrupt level (PlL) field of the pro­
cessor state register (PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents 
a non-maskable interrupt. All other IRL values between 0 and 15 represent interrupt requests which can be 
masked by the PlL field. The priority and trap type (tt) for each level is shown in Table 6-7 in Section 6.5.5.3. 

Store 
D1 

Fetch 

Decode IOP3 

Execute IOP2 

Write 

IRL<3:0> 

Latched 

Store 1 Inst3 D2 t 
! 

Inst 1 i Inst 2 

IOPJ Inst 1 

~ 
Inst 1 ! Trap 1 

U::--Taken 

Prioritized 

INTACK 

Sampled n 
--------------------~ ~------

Figure 6-32. Worst-Case Interrupt Response Timing 

6.5.3.2 Response Time 

The CY7C601/CY7C611 samples the IRL inputs at the rising edge of every clock. In order to properly syn­
chronize these asynchronous inputs, they are put through two synchronizing levels ofD-type flip-flops. The 
outputs of the two levels must agree before the interrupt can be processed. If the outputs disagree, the inter­
rupt request is ignored. This logic serves to filter transients on the IRL lines, but it means that the lines must 
be active for two consecutive clock edges to be accepted as valid. 

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next 
Execute stage of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied 
one clock plus one setup time before the Execute phase of any instruction in the pipeline (see Figure 6-31). 
In this case, the first instruction of the interrupt service routine is fetched during the fourth clock following 
the application of an IRL value greater than the PlL field of the processor status register (PSR). This also 
holds for an IRL value of OF H, which acts as a non-maskable interrupt. 
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The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point 
for the Execute stage of a four-cycle instruction, such as a store double or atomic load-store (see 
Figure 6-32). In this case, the interrupt input must wait an additional three cycles for the next pipeline 
Execute phase. In addition, if the IRL input just misses the sampling clock edge, an additional clock delay 
occurs. As a result, the first instruction of the service routine is fetched in the eighth clock following the 
application of IRL. 

The best and worst case interrupt timing described above assumes that the processor is not stopped via the 
application of an external hold signal, and that the IRL input is not superceded by the occurrence of a syn­
chronous (internal) trap. 

6.5.3.3 Interrupt Acknowledge 

As shown in Figure 6-31, and more clearly in Figure 6-32, the interrupt acknowledge (INTACK) output 
signal is asserted when the interrupt is taken, not when it is first detected and latched. Because of this delay, 
if the IRL<3 :0> inputs are changed to reflect another interrupt condition before the corresponding INTACK 
for the latched condition is received, there could be some question as to which interrupt the INTACK is re­
sponding to. Therefore, external hardware should ensure that the IRL<3:0> inputs are held stable until an 
INTACK is received. 

6.5.4 Floating-Point/Coprocessor Traps 

Floating-point/coprocessor exception traps are considered a separate class of traps because they are both 
synchronous and asynchronous. They are asynchronous because they are triggered by an external signal 
(FEXC or CEXC), and are taken sometime after the floating-point or coprocessor instruction that caused 
the exception. This can happen because the CY7 C60 1/CY7C611 and the FPU ( coprocessor) operate concur­
rently. However, they are also synchronous, because they are tied to an instruction-the next floating-point 
or coprocessor instruction encountered in the inst.'1lction stream after the signal is received. 

When the FPU (coprocessor) recognizes an exception condition, it enters an "exception pending mode" 
state. It remains in this state until the CY7 C60 l/CY7 C611 signals that it has taken an fp exception ( cp excep­
tion) trap by sending back an FXACK (CXACK) signal. The FPU (coprocessor) then enters the "exception 
mode" state, remaining there until the floating-point (coprocessor) queue has been emptied by execution 
of one or more STDFQ (STDCQ) instructions. 

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is 
taken, it does not point to the instruction that caused the exception. However, the instruction that did cause 
the exception is always the front entry in the queue at the time the trap is taken, and the entry includes both 
the instruction and its address. The remaining entries in the queue point to FPops (CPops) that have been 
started but have not yet completed. Once the queue has been emptied, these can be re-executed or emulated. 

6.5.4.1 Floating-Point Exception 

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point Load/ 
Store instruction is encountered. The type of exception is encoded in the tt field of the floating-point state 
register (FSR). Refer to Section 7.3.1 for further details on the FSR. 

6.5.4.2 Coprocessor Exception 

This trap occurs when the coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor 
Load/Store instruction is encountered. The type of exception should be encoded in the tt field of the copro­
cessor state register (CSR). The nature of the exception is implementation dependent. 
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6.5.5 Trap Operation 

Once a trap is taken, the following operations take place: 

• Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode). 

• The S bit of the PSR is copied into the PS bit; the S bit is then set to 1. 

• The CWP is decremented by one (modulo the number of windows) to activate a trap window. This hap-
pens regardless of the contents of the WIM register, which is ignored upon entering a trap. 

• The PC and nPC are saved into r[17] and r[18], respectively, of the trap window. 

• The tt field of the TBR is set to the appropriate value. 

• If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR 
+ 4. If the trap is a reset, the PC is set to address zero and the nPC to address four. 

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory 
during a trap. Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered 
in a reversible manner (ET and CWP), or should not be altered in the trap handler until the PSR has been 
saved to memory. 

6.5.5.1 Recognition 

In most cases, traps are "recognized" in the pipeline's Execute stage. For a synchronous trap, the trap criteria 
are examined during the Execute stage of an instruction, and the trap is taken immediately, before the Write 
stage of that instruction takes place. This includes the fp disabled and cp disabled trap type. The special cases 
occur with those traps generated by external signals. A memory exception on an instruction fetch is detected 
at the beginning of the Execute stage of instruction execution. Memory exceptions occurring on data ac­
cesses are detected on the rising clock edge of the data cycle. 

Because asynchronous traps happen "between" instructions, their timing is slightly different. As long as the 
ET bit is set to one, the CY7C601/CY7C611 checks for interrupts. The interrupt is sampled on a rising clock 
edge and latched on the next rising clock edge. The processor compares the IRL<3:0> input value against 
the PIL field of the PSR, and if IRL is greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at 
the end of the next Execute stage of the pipeline. A trap keyed to the IRL level occurs after the Write stage 
completes. 

Floating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first 
sampled. The processor waits until it encounters a floating-point or coprocessor instruction in the instruction 
stream and then handles it as if it were an internal synchronous trap. 

6.5.5.2 Trap Addressing 

The trap base register (TBR) is made up of two fields, the trap base address (TBA) and the trap type (tt). 
The TBA contains the most -significant 20 address bits of the trap table, which is in external memory. The 
trap type field, which was written by the trap, not only uniquely identifies the trap, it also serves as an offset 
into the trap table when the TBR is written to the PC. The TBR address is the first address of the trap handler. 
However, because the trap addresses are only separated by four words (the least-significant four bits ofTBR 
are zero), the program must jump from the trap table to the actual address of the particular trap handler. 

Of the 256 trap types allowed by the 8-bit tt field, half are dedicated to hardware traps (0-127), and half are 
dedicated to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculate the tt 
value from the fields given in the instruction, while the hardware traps can be set from a table such as the 
one below. The tt field remains valid until another trap occurs. See the Ticc instruction definition for details. 
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6.5.5.3 Trap Types and Priority 

Each type of trap is assigned a priority (see Table 6-7). When multiple traps occur, the highest priority trap 
is taken, and lower priority traps are ignored. In this situation, a lower priority trap must either persist or 
be repeated in order to be recognized and taken. 

Table 6-7. Trap Type and Priority Assignments 

Trap Synchronous or 
Trap Priority Type(tt) Asynchronous 

Reset 1 - Async. 

Instruction Access 2 1 Sync. 

Illegal Instruction 3 2 Sync. 

Privileged Instruction 4 3 Sync. 

Floating-Point Disabled 5 4 Sync. 

Coprocessor Disabled 5 36 Sync. 

Window Overflow 6 5 Sync. 

Window Underflow 7 6 Sync. 

Memory Address not Aligned 8 7 Sync. 

Floating-Point Exception 9 8 Sync. 

Coprocessor Exception 9 40 Sync. 

Data Access Exception 10 9 Sync. 

Tag Overflow 11 10 Sync. 

Trap Instructions (Ticc) 12 128 - 255 Sync. 

Interrupt Level 15 15 31 Async. 

Interrupt Level 14 16 30 Async. 

Interrupt Level 13 17 29 Async. 

Interrupt Level 12 18 28 Async. 

Interrupt Level 11 19 27 Async. 

Interrupt Level 10 20 26 Async. 

Interrupt Level 9 21 25 Async. 

Interrupt Level 8 22 24 Async. 

Interrupt Level 7 23 23 Async. 

Interrupt Level 6 24 22 Async. 

Interrupt Level 5 25 21 Async. 

Interrupt Level 4 26 20 Async. 

Interrupt Level 3 27 19 Async. 

Interrupt Level 2 28 18 Async. 

Interrupt Level 1 29 17 Async. 
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6.5.5.4 Return From Trap 

On returning from a trap with the RETT instruction, the following operations take place: 

• The CWP is incremented by one (modulo the number of windows) to re-activate the previous window. 

• The return address is calculated 

• Trap conditions are checked. If traps have already been enabled (ET= I), an illegal instruction trap is tak­
en. If traps are still disabled but S=O, or the new CWP points to an invalid window, or the return address 
is not properly aligned, then an error mode/reset trap is taken. 

• If no traps are taken, then traps are re-enabled (ET=I). 

• The PC is written with the contents of the nPC, and the nPC is written with the return address. 

• The PS bit is copied back into the S bit. 

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple 
causes a non-delayed control transfer back to the trapped instruction or to the instruction following the 
trapped instruction, whichever is desired. See the RETT instruction definition for details. 

6.6 Coprocessor Interface 
In the SPARC architecture, the Integer Unit is the basic processing engine, but provision is made for two 
coprocessor extensions. The extensions are in the form of instruction set extensions and a pair of identical 
signal interfaces. In the CY7C601, one of these instruction and signal interface extensions is dedicated to 
floating-point operations and the other is designated for a second coprocessor that may be supplied by the 
user. Although signals and instructions have been named to reflect the assumption of how these two exten­
sions will be used, either instruction set extension/signal interface may be used in any way desired. Note 
that the CY7C611 does not provide a separate coprocessor interface, but it does support the floating-point 
interface. Execution of coprocessor instructions by the CY7C611 will cause a cp disabled trap to occur. 

In order for the CY7C601 to support a user-defined coprocessor, the coprocessor should contain certain ele­
ments defined by the SPARC architecture. These include an internal register set, a status register, a 
coprocessor queue, and a set of compatible interface pins. These elements are identical to the floating-point 
interface, and it is recommended that a user desiring to use the coprocessor interface thoroughly study the 
floating-point interface in Section 7.2 as an example of a coprocessor interface application. 

6.6.1 Protocol 

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently 
with the Integer Unit and the floating-point unit. To keep operations synchronized, address and data buses 
are shared. The initial CY7C601 instruction Decode determines which unit should execute the instruction. 
The CY7C601 executes its own instructions,but signals the coprocessor to continue the Decode and execu­
tion if it recognizes a coprocessor instruction. For coprocessor loads and stores, the CY7C60 1 supplies the 
memory address and the coprocessor receives or supplies the data. The coprocessor must deal with resource 
or data dependencies, signaling the problem to the CY7C601 by freezing the instruction pipeline with the 
CHOLD signal. 

The signal interface between the CY7C601/CY7C611 and the coprocessor consists of shared address, data, 
clock, reset, and control signals, plus a special set of signals that provide synchronization and minimal status 
information between the coprocessor and the CY7C601. 

6.6.1.1 Coprocessor Interface Signals 

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The 
CY7C601 assigns one set of coprocessor signals for specific use by the floating-point unit, and the other 
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set of coprocessor signals for a user-defined coprocessor. All floating-point interface signal names begin 
with an F, and all coprocessor interface signal names begin with a C. Both sets of interface signals share 
the INST signal, which identifies a CY7C601 instruction fetch. The two groups of signals are symmetric, 
have identical timing requirements, and are listed in Table 6-2. 

Instruction fetch is signaled by the CY7C60 I using the INST signal. The coprocessor uses INST as an input 
to enable latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the 
CY7C601, regardless of instruction type. The coprocessor is expected to use a two-stage instruction/ad­
dress buffer as described in Section 7.2 on the Floating-Point/lnteger Unit interface. The CY7C601 asserts 
CINS 1 or CINS2 at the beginning of the Decode stage of instruction execution of a coprocessor instruction. 
The CINS 1 or CINS2 signals are used to start the execution of a coprocessor instruction and select which 
of the two most recently fetched instructions stored in the two-stage instruction cache is to be executed by 
the coprocessor. 

The CY7C601 requires the CP signal to be driven low in order for the Integer Unit to recognize the presence 
of a coprocessor. Attempting to execute coprocessor instructions with CP high will cause the CY7C601 to 
execute a cp disabled trap. 

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This sig­
nal is asserted by the coprocessor to freeze the CY7C601. This signal is asserted in cases where the 
CY7C601 must be halted to prevent it from causing a condition from which the coprocessor cannot recover. 
An example of this would be fetching multiple coprocessor instructions that would otherwise overrun the 
coprocessor queue. The coprocessor would be expected to assert CHOLD until it could handle additional 
instructions. 

Coprocessor interrupts are asserted with the CEXC signal. This signal is asserted by the coprocessor upon 
the detection of an exception case. The CY7C601 will continue normal execution until the execution stage 
of the next coprocessor instruction. At that time, the CY7C601 will aclcnowledge the interrupt with 
CXACK, and begin coprocessor trap execution. 

Coprocessor branch on condition code (CBcc) instructions are executed by the CY7C60 1 Integer Unit based 
on the value of the CCC<l:O> signals supplied by the coprocessor. These signals are typically set by the 
execution of a coprocessor compare instruction (defined by the designer). The CCCV signal supplied by 
the coprocessor indicates whether the state of the CCC<l :0> signals is valid. CCCV is normally asserted, 
but is deasserted when a coprocessor compare instruction is executed and remains deasserted until that in­
struction is completed. The deassertion of this signal causes the CY7C601 to halt execution. This interlock 
prevents the CY7 C60 1 from branching on invalid condition codes. The SPARC architecture requires at least 
one non-coprocessor instruction between a coprocessor compare and a coprocessor branch on condition 
code (CBcc) instruction. 

6.6.2 Register Model 

The coprocessor register model specified by the SPARC architecture is shown in Figure 6-33. The copro­
cessor has its own 32 x 32-bit working register file from which all operands for CPop instructions originate 
and to which all results return. The contents of these registers are transferred to and from memory under 
control of the CY7C601, using coprocessor Load/Store instructions. 

The coprocessor state register (CSR) contains the current status of the coprocessor. The exact nature of the 
exception bits and trap types are implementation dependent. The CSR is read and written indirectly through 
memory using the LDCSR and STCSR instructions. 
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32-Word by 32-Bit Register File 

32-Bit Status Register 

Address Decode Register 1 Instruction Decode Register 1 

Address Decode Register 2 Instruction Decode Register 2 

Address Queue Register N Instruction Queue Register N ----_ .. _------ .. ------- -----------_ ... --------
Instruction Queue Register 1 ---------------------___ ~~~e_s~ ~e~~ ~~g!s!e! ! __ _ 

Address Queue Register 0 Instruction Queue Register 0 

Figure 6-33. Coprocessor Register Model 

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, 
first-out queue records all pending coprocessor instructions and their addresses at the time of a coprocessor 
exception. The front entry of the queue contains the unfinished instruction that caused the exception. The 
rest of the queue contains unfinished CPops which would be restarted or emulated after the trap handler re­
turns control to the main program. 

The address and instruction decode buffers hold instructions and their addresses until the CY7C601 deter­
mines if they belong to the coprocessor. If one of the held instructions belongs to the coprocessor, the 
CY7C601 sends the appropriate CINS signal to move the instruction into the coprocessor Execute stage. 
The address and a copy of the instruction also move into the queue at this point and remain there until the 
instruction completes. 

When a trap is taken, the CY7C601 asserts the FLUSH signal, causing the coprocessor to dump any instruc­
tions in the decode buffers. FLUSH does not affect instructions that are already in the queue. 

6.6.3 Exceptions 

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most 
implementations would probably include Unfmished CPop as a condition that would cause an exception. 
An unfinished CPop trap is generated when the coprocessor cannot complete execution because the data 
has exceeded the capabilities of the coprocessor and/or has generated an inappropriate result. 
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6.7 CY7C611 Integer Unit for Embedded Control 

The CY7C611 is a SPARC Integer Unit designed for embedded control applications. It is a functional equiv­
alent of the CY7C60 1 with a reduced pin out for lower cost applications. The CY7C611 retains all internal 
features of the CY7C601, and maintains complete binary code compatibility with all other SPARC proces­
sors. The CY7C611 differs from the CY7C601 in that the address bus has been reduced to 24 bits, the ASI 
signals have been reduced to three bits, and several control signals not required for lower cost systems have 
been eliminated. The CY7C611 supports the floating-point interface, but does not include the coprocessor 
interface. The CY7C611 is packaged in a low-cost 160-pin plastic quad flat package (PQFP) and is available 
in speeds of 25 MHz. 

CY7C601 signals not available on the CY7C611 are listed in Table 6-8 below. The signal summary for the 
CY7C611 is listed in Table 6-9. All CY7C611 signals are identical to their CY7C601 counterparts, and the 
information regarding the CY7C601 in this chapter is also valid for the CY7C611. 

Note that the EC (enable coprocessor) bit of the PSR register for the CY7C611 is permanently forced to zero. 

A user-defined coprocessor can be connected to the CY7C611 instead of a floating-point unit, if desired. 
All floating-point interface signals are identical in function to their coprocessor counterparts. In order to 
use the floating-point interface to support a user-defined coprocessor, the floating-point instructions must 
be used to exercise the coprocessor. This will require software remapping of coprocessor instructions. The 
CY7C601 and CY7C611 do not decode the nine-bit opf field of a floating-point operate instruction. This 
can be used to map coprocessor instructions to valid and invalid FPop instructions (as specified by the op3 
and opf fields of the op code) without causing an invalid FP instruction trap, since the invalid FP instruction 
must recognized by the floating-point unit. 

Table 6-8. Signal Differences Between CY7C601 and CY7C611 

CY7C601 Signals Not Available on CY7C611 

A<3l:24> Address bits 31 through 24 

AOE Address Output Enable 

ASI<7:3> ASI bits 7 through 3 

CCC<l:O> Coprocessor Condition Codes <1:0> 

CCCV Coprocessor Condition Codes Valid 

CEXC Coprocessor Exception 

CHOLD Coprocessor Hold 

CINSI Coprocessor Instruction Stage 1 

CINS2 Coprocessor Instruction Stage 2 

COE Control Output Enable 

CP Coprocessor Present 

CXACK Coprocessor Exception Acknowledge 

DOE Data Output Enable 

DXFER Data Transfer 

1FT Instruction Cache Flush Trap 
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Table 6-9. CY7C611 Signal Summary 

CY7C611 Signal Summary 

Signal Name Signal Description Input/Output Active 

A<23:0> Address Bus Three-State Output 

ASI<2:0> Address Space Identifier Three-State Output 

BHOLD Bus Hold Input Low 

CLK Clock Inpnt 

D<3l:0> Data Three-State Bidir. 

ERROR IV Error Mode Three-State Output Low 

FCC<l:O> Floating-Point Condition Codes Input 

FCCV Floating-Point Condition Codes Valid Input High 

FEXC Floating-Point Exception Input Low 

FHOLD Floating-Point Hold Input Low 

FINS 1 Floating-Point Instruction Stage 1 Three-State Output High 

FINS2 Floating-Point Instruction Stage 2 Three-State Output High 

FLUSH Flush FP Instruction Three-State Output High 

FP Floating-Point Present Input Low 

FPSYN FP Synonym Mode Input High 

FXACK FP Exception Acknowledge Three-State Output High 

IRL<3:0> Interrupt Level <3:0> Input 

INST Instruction Fetch Cycle Three-State Output High 

INULL Instruction Cycle Nullify Three-State Output High 

INTACK Interrupt Acknowledge Three-State Output High 

LDST Atomic Load-Store Operation Three-State Output High 

LOCK Multicycle Bus Lock Three-State Output High 

MDS Memory Data Strobe Input Low 

MEXC Memory Exception Input Low 

MHOLDA Memory Hold A Input Low 

MHOLDB Memory Hold B Input Low 

RD Read Three-State Output High 

RESET Reset Input Low 

SIZE<l:O> Bus Transaction Size Three-State Output 

TOE Test Output Enable Input Low 

WRT Advanced Write Three-State Output High 

WE Write Three-State Output Low 
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CY7C602 Floating-Point Unit 

The CY7C602 Floating-Point Unit (FPU) is a high-performance, single-chip implementation ofthe SPARC 
reference Floating-Point Unit. The CY7C602 FPU is designed to provide execution of single and double­
precision floating-point instructions concurrently with execution of integer instructions by the CY7C601 
Integer Unit (IV). The CY7C602 is compliant to the ANSI/IEEE-754 floating-point standard. 

The CY7C602 provides a 64-bit internal datapath, a 64-bit ALU, and a 64-bit multiply/divide/square-root 
unit for efficient execution of double-precision floating-point instructions. For efficient data management, 
the CY7C602 provides thirty-two 32-bit floating-point registers. These 32-bit registers can be concatenated 
for use as 64-bit registers for double-precision operations. The internal 64-bit architecture of the CY7C602 
allows high speed execution of both single- and double-precision operations. 

FHOLD 

FNULL 

ADDRESS BUS 

Execution Unit/ 
Floating -Point 

Queue 

t 
RESET FCCV 

* HOl'J)s refers to the MHOLDA, 
MHOLDB, and BHOLD inputs 

DATA BUS 

r----L----~FXACK 

Exceptions/ 
FSR Unit 

Store Unit 

DATA BUS 

-FEXC 

FCC<l:O> 

Figure 7-1. CY7C602 Functional Block Diagram 
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The SPARC floating-point/integer unit interface supports concurrent execution of integer and floating-point 
instructions. The tightly coupled floating-point/integer unit interface requires the integer unit to provide all 
addressing and control signals for memory access. All instructions are fetched by the integer unit, and these 
instructions are simultaneously latched and decoded by both the CY7C601 and CY7C602. Execution of 
a floating-point instruction is enabled by CY7C601, which signals the CY7C602 to begin execution of the 
floating-point instruction when that instruction reaches the Execute stage of the CY7C60 1 instruction pipe­
line. In the case of a floating-point load or store instruction, the CY7C601 executes the FP load or store in 
conjunction with the CY7C602 by asserting address and control signals for memory access while the 
CY7C60210ads or stores the data. All other floating-point instructions execute independently ofthe integer 
unit and in parallel with integer instruction execution. 

The floating-point/integer unit interface provides hardware interlocking to ensure synchronization between 
the CY7C601 and CY7C602. Hardware interlocking ensures software compatibility among SPARC sys­
tems with different levels of floating-point performance. 

7.1 CY7C602 Functional Description 

Figure 7-1 illustrates the functional block diagram for the CY7C602. The fetch unit captures instructions 
and their addresses from the D(31 :0) and A(31 :0) buses. The decode unit contains logic to decode the floa­
ting-point instruction opcodes. The execution unit handles all instruction execution. The execution unit 
includes a floating-point queue (FP queue), which contains stored floating-point operate (FPop) instruc­
tions (see Section 7.3.2) under execution and their addresses. The execution unit controls the load unit, the 
store unit, and the datapath unit. 

The load unit holds data that is fetched from memory via the data bus before it is written into the register 
file. The register file contains the 32f-registers. The exceptions/floating-point status register (FSR) unit 
keeps the status of completing FPops, as well as the operating mode of the CY7C602. The store unit holds 
data that is supplied to the data bus during a store operation. The dependency checking unit checks for condi­
tions where the FPU must freeze the CY7C601 Integer Unit pipeline so that an incoming instruction does 
not overflow the floating-point queue (described below). The datapath unit contains arithmetic logic used 
by FPops to operate on the data in the register file and is comprised of a 64-bit ALU and a 64-bit multiply /di­
vide/square-root/compare unit. Figure 7-2 gives a more detailed block diagram of the CY7C602. 

The CY7C602 provides three types ofregisters:f-registers, FSR, and the FP queue. Thef-registers are the 
32 floating-point operand registers, each 32-bits in size. Adjacent even-oddf-register pairs (for instance, 
fregO andfreg1) can be concatenated to support double-precision operands. The FSR is a 32-bit status and 
control register. It keeps track of rounding modes, floating-point trap types, queue status, condition codes, 
and various IEEE exception information. The floating-point queue contains the floating-point instructions 
currently under execution, along with their corresponding addresses. The floating-point queue provides an 
efficient method of handling floating-point exceptions. When an FPop instruction causes a floating-point 
exception, the queue contains the offending instruction/address pair along with any other instructions that 
have started execution. The CY7C601 Integer Unit acknowledges the floating-point exception, enters a 
floating-point trap routine, empties the queue, and corrects the exception case. After the exception case is 
corrected, unfinished floating-point instructions found in the floating-point queue are either executed or 
emulated in the trap handler before returning to normal execution. 

The CY7C602 depends upon the CY7C601 to assert all addresses and control signals for memory access. 
Floating-point loads and stores are executed in conjunction with the CY7C601, which provides addresses 
and control signals while the CY7C602 supplies or stores the data. Instruction Fetch for integer and floating­
point instructions is provided by the CY7C601. When the CY7C601 Integer Unit asserts an address for an 
instruction Fetch, it asserts the INST signal one clock later. The CY7C602 Floating-Point Unit uses INST 
to determine when a valid instruction is present on the D(31 :0) bus. The instruction, which appears on the 
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data bus on the next clock cycle, is latched and paired with its corresponding address (refer to Figure 7-4). 
In any given cycle, the two previous instruction/address pairs are stored by the CY7C602, regardless of 
whether the instruction is an integer or floating-point instruction. Either of these two instruction/address 
pairs may be selected for execution by the CY7C601 upon asserting the FINSI or FINS2 signal. The 
CY7C601/CY7C602 interface uses this two stage address/ instruction cache to accommodate delays in the 
instruction pipeline of the CY7C601 Integer Unit. The FINS I or FINS2 signals select between the output 
of the two stages of the address/instruction cache, enabling a floating-point instruction to begin execution 
by the CY7C602. 

A 

32 

Address 
Pipe 

32 

Instruction 
Pipe 

D (same as input D) 

D 

32 

64 

32 x 32-bitf-regs 
or 16 x 64-bitf-regs 64 

64 

};'igure 7-2. CY7C602 Block Diagram 
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Upon decoding a floating-point instruction, the CY7C601 will assert the FINS 1 or the FINS2 signal to en­
able the CY7C602 to begin execution. The FINS 1 or FINS2 signal is asserted during the Decode stage of 
the floating-point instruction and is recognized by the CY7C602 at the beginning of the Execute stage of 
the floating-point instruction. This ensures synchronization of the Decode and Execute stages of a floating­
point instruction between instruction pipelines of the CY7C601 and the CY7C602. 

7.2 Floating-Point/Integer Unit Interface 

The CY7C602 is designed to directly interface with the CY7C601 without external glue logic. Figure 7-3 
illustrates the signals required to interconnect the CY7C601 and CY7C602. The control signals illustrated 
in Figure 7-3 are used to interface with the remainder of the CPU system components. The FNULL, RE­
SET, BHOLD, MHOLDA or MHOLDB, MDS, and DOE signals are used by the CY7C604 or CY7C605 
for cache interface and virtual bus arbitration. The signal descriptions for the CY7C602 signals are de­
scribed in Section 7.4. 
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Figure 7-3. CY7C601 - CY7C602 Hardware Interface 
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to FPqueue to FPqueue 

Figure 7-4. CY7C602 Address/Instruction Pipe 

7.2.1 CY7C602 Instruction Fetch and Execution 

The CY7C602 uses a four-stage instruction pipeline consisting of Fetch, Decode, Execute, and Write stages 
(F, D, E, and W). The instruction pipelines for the CY7C601 and the CY7C602 are concurrent and synchro­
nized; a floating-point instruction will be in the same stage in both processors. Multiple cycle instructions 
such as floating-point operate instructions (FPops) leave the pipeline after the W stage and enter the FP 
queue until completion. 

Addresses for both integer unit and Floating-Point Unit instructions are supplied by the CY7C601. The 
CY7C602 FPU latches all instructions and the corresponding addresses from the D(31 :0) and A(31 :0) buses. 
The CY7C602 uses the INST signal, supplied by the CY7C601, to identify an instruction Fetch by the inte­
ger unit. 

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding 
the instruction simultaneously. During the Decode stage of the floating-point instruction, the FPU checks 
for operand and resource dependencies. When the CY7C601 Integer Unit decodes a FPop, it asserts the 
FINS 1 or FINS2 signal. This occurs before the end ofthe Decode stage, and is used by the CY7C602 to 
initiate the execution of a floating-point instruction. If the CY7C602 has detected an operand or resource 
dependency during the Decode stage, the FPU will assert FHOLD as the instruction begins the execution 
stage. This freezes the integer unit's pipeline until the FPU can resolve the dependency. 

If no resource or operand dependencies exist, the decoded floating-point instruction begins execution. In­
structions entering execution are stored in the FP queue, where they are held until execution is completed. 
Note that ifthe FP queue is full during an instruction's Decode stage, the CY7C602 asserts FHOLD as the 
instruction enters the execution stage in order to halt the CY7C601. FHOLD is released when space be­
comes available in the FP queue. 

Table 7-1, Table 7-3, and Table 7-2 describe the execution phases of CY7C602 instructions. Additional 
cycles beyond the F, D, E, and W stages are denoted as Wh (Write hold). Wh stages are equivalent to the 
additional cycles held by IOPs in the CY7C601. 
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Table 7-1. FPop execution 
Cycle Action 

D stage Decode FPop, check resource and operand 
dependencies 

E stage FHOLD if necessary, read operand(s) from 
register file 

W stage Read any additional operands from register 
file; start computing results 

FPQueue Compute, FPop in queue 

· · · · · · 
FPQueue Check exception status 

FPQueue Update FSR, write results or signal FP excep-
tion trap if necessary 

Table 7-2. Load instruction execution 
Cycle Action 

D stage Decode instruction, check operand 
dependencies 

E stage FHOLD if necessary 

W stage Capture data from D(31 :0) bus (LDF, LDFSR), 
capture MSW from D(31:0) bus (LDDF). 

Whl stage Write data into register FSR (LDF, LDFSR), 
capture LSW from D(31:0) bus (LDDF) 

Wh2 stage Write data into register (LDDF) 

Table 7-3. Store instruction execution 
Cycle Action 

D stage Decode instruction, check operand 
dependencies 

E stage FHOLD if necessary, read data from FSR reg-
ister or FP queue 

W stage Drive data onto D(31:0) bus (STF, STFSR), 
(mid-cycle) drive MSW or FP queue address onto 0(31 :0) 

bus (STDF, STDFQ) 

Wh1 stage Stop driving 0(31 :0) bus (STF, STFSR), drive 
(mid-cycle) LSW or FP queue opcode onto 0(31 :0) bus 

(STDF, STDFQ) 

Wh2 stage Stop driving D(31 :0) bus 
(mid-cycle) 

7.2.1.1 Instruction Fetch 

As the CY7C601 fetches an instruction, the CY7C602 captures it at the same time from the D(31:0) bus. 
The address corresponding to this instruction is captured from the A(31 :0) in the previous cycle. The INST 
signal is used to determine when a valid instruction is present on the D(31 :0) bus, and when a valid address 
has been fetched from the A(31 :0) bus in the previous cycle. Figure 7-5 illustrates an example of an instruc­
tion Fetch with a cache hit. The transactions on the address and data buses show two instruction Fetches 
followed by a data Fetch. 

In the case of an instruction Cache miss, a memory hold signal (MHOLDA, MHOLDB, or BHOLD) is driv­
en low by the cache system starting in the cycle following the instruction Fetch. The instruction which was 
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captured from the D(31 :0) bus is invalid and is replaced when the system returns a valid instruction on the 
D(31 :0) bus. The hold signal lasts for several cycles during which time the MDS signal is asserted by the 
cache system, notifying the CY7C602 that the valid instruction is available on the D(31 :0) bus. MDS is also 
used when there is a cache miss on data (via load instructions) so the instruction is reloaded only if INST 
was asserted in the previous non-hold cycle. The same sequence of transactions in Figure 7-5 are used in 
Figure 7-6, except that the second instruction Fetch (Inst 2) experiences a cache miss. 

eLK 

INST 
.., \ / 

D(31:0) 

DI =:x X Inst I X Inst 2 x= 
D2 =:x X X Inst I x:= 

A(31:0) 

DDA =:x Al X A2 X Data A X A3 x== 
DAI =:x X Al X A2 ~ 

DA2 =:x X X Al ~ 
Figure 7-5. Instruction Fetch (Cache Hit) 
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Figure 7-6. Instruction Fetch (Cache Miss on A2) 

7.2.1.2 Instruction Execution 

The FINSI and FINS2 signals notify the CY7C602 when to launch a floating-point instruction. When 
FINS I/F1NS2 is received, the floating-point instruction is in the D stage of the CY7C601 Integer Unit pipe­
line. The example in Figure 7-7 shows a situation where both FINS 1 and FINS2 are used. A load instruc­
tion is immediately followed by two FPops. The FPops are fetched while the load instruction is executing. 
Because the load takes more than one cycle to execute, the starting of the FPops are deferred, and thus two 
instructions are held in the instruction caches of the CY7C602. When the CY7C601 reaches the D stage 
of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the second FPop (Inst 3) 
is reached, FINS 1 is issued to start the second FPop. 

FINS 1 and FINS2 are never asserted in the same cycle. Both FINS 1 and FINS2 are ignored in the following 
conditions: 

1. FLUSH is asserted. 

2. MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted. 

3. FCCV or CCCV is deasserted. 
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7.2.1.2.1 Floating-Point Compare Execution 

Floating-point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting 
from the E stage of the instruction following the compare instruction until the FCC condition codes become 
valid. FCCV is deasserted, causing the CY7C601 to halt execution until FCCV is asserted. Figure 7-8 illus­
trates the timing of FCCV relative to the FCMP instruction and the FCC condition codes. 

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the 
FCMP is held in its E stage until FCCV is reasserted. FCC( 1 :0) is valid one cycle before FCCV is reasserted. 
For unimplemented compare instructions, the CY7C602 freezes the instruction pipeline and causes an 
unimplemented FPop trap, which the CY7C601 takes immediately. 

7.2.1.2.2 FPop Queuing 

When a FPop has passed the fIrst cycle of the W stage and FLUSH has not been asserted, the FPop enters 
the FP queue. Note that the W stage of an FPop may be extended to more than one cycle if a hold condition 
exists. As an FPop completes execution successfully and results are written to the register fIle, it is removed 
from the FP queue. The front entry of the FP queue contains the instruction/address pair of the oldest FPop 
which is still being executed by the CY7C602. 

7.2.2 Instruction Pipeline Flush 

When a trap or interrupt occurs in the integer unit, normal program execution is halted and control is trans­
ferred to the trap handler. The instruction in the E stage of the pipeline and any instructions fetched after 
it are aborted and must be restarted after the trap handler is done (or emulated in the trap handler). instruc­
tions that have not yet been transferred to the FP queue are aborted by the CY7C602 when the trap occurs. 
The CY7C601 asserts the FLUSH signal in the W stage of the instruction to be aborted (refer to Figure 7-9). 
FPops which were issued before this instruction continue execution (and are in the queue) while instructions 
issued after it are aborted. 

The following figures illustrate how each type of floating -point instruction is affected by the FLUSH signal. 
Figure 7-10 illustrates the effect of the FLUSH signal during a load floating-point instruction (LDF). A 
FLUSH signal asserted any time on or before the last Wh stage of a load instruction causes the load to abort, 
leaving the contents of the floating-point register fIle unchanged. 

Figure 7-11 illustrates the effect of FLUSH on a store floating-point instruction (STF). A FLUSH signal 
asserted on or before the last Wh stage of a store instruction causes the store to abort and the CY7C602 to 
stop driving the D(31 :0) bus by the middle of the next clock cycle. 

Figure 7-12 illustrates the effect of FLUSH on an FPop instruction. A FLUSH signal asserted anytime on 
or before the W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register fIle 
and the FSR unchanged by that instruction. FPops that have passed the W stage but are still executing (stored 
in the FP queue) are not affected. 

Figure 7-13 illustrates the effect of FLUSH on a floating-point compare. FLUSH asserted in the W stage 
of a FCMP instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV 
is reasserted in the next clock cycle. 
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Figure 7-13. Effect of FLUSH on FCMP Instruction 

7.2.2.1 Hold Signals 

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the in­
struction pipelines of the CY7C601 and CY7C602 are frozen. FHOLD and FCCV are generated by the 
CY7C602, CHOLD and CCCV are generated by the coprocessor, and the others are generated by the sys­
tem. 

In the CY7C602, "freezing" or "holding" the instruction pipeline means that instructions that are still being 
tracked by the CY7C601 are not allowed to continue executing. The instructions are allowed to continue 
execution when all of the hold signals are inactive and all of the condition code valid signals are active. 
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Holds affect all Load/Store instructions, and only FPops which are in the F, D, and E stages of the instruction 
pipeline. Hold signals do not affect the execution of FPops in the FP queue. 

7.2.2.2 Interlocking with FHOLD 

In some situations it is necessary to stop the CY7C601 pipeline, either because a FP Load/Store instruction 
must be suspended due to an operand dependency, or because the CY7 C602 cannot accept any more instruc­
tions due to a resource dependency. FHOLD is used to freeze the instruction pipeline in these cases. 
Table 7-4 describes mandatory conditions under which FHOLD is asserted. 

Operand dependencies listed in Table 7-4 apply to all FPops that are defined in the architecture. For exam­
ple, suppose an unimplemented FPop is in the FP queue, waiting to cause an exception. If a store instruction 
is issued to the CY7C602 to store the contents of the unimplemented FPop's destination register, the store 
instruction must cause a FHOLD so that the wrong data is not stored. The unimplemented FPop eventually 
causes a trap that is taken by the CY7C601 in the E stage of the store instruction. 

The following simplification could be applied when handling all unimplemented FPops: when an unim­
plemented FPop has been issued to the CY7C602 but has not yet caused a trap, assert FHOLD on the next 
floating -point instruction issued until FEXC is asserted. There is no loss in performance because any FPops 
entering the FP queue after the unimplemented FPop would be re-executed after the unimplemented FPop 
has been taken care of in the trap handler. 

Table 7-4. FHOLD Resource/Operand Dependency Cases 

Resource Dependencies: 

If the CY7C602 will not have FP queue entries available to accommodate additional FPops, the CY7C602 asserts FHOLD to stop the 
CY7C601 from issuing any more instructions to the CY7C602. 

Operand Dependencies: 

LDF, Load data from Load instructions must not overwrite the source or destination registers of any FPop that has not com-
LDDF memory to f-register pleted execution. In other words, the rd field of the load instruction must not refer to the same f-regis-

ter as any valid rs1, rs2 or rd field of an outstanding FPop. The source registers ofFPops (rs1, rs2) 
may not be altered because an FP exception trap would require that the source registers be unaltered 
for the trap handler. 

STF, Store data from f- If a store instruction accesses anf-register that is the destination register of an FPop that has not yet 
STDF register to memory finished execution, the store instruction waits until all outstanding FPops with that register as a desti-

nation are complete. 

LDFSR, Load/Store data be- If any instructions are currently executing in the CY7C602 when a LDFSR/STFSR instruction is is-
STFSR tween memory and sued by the CY7C601, the CY7C602 holds nntil all instructions have completed execution and are 

floating-point status no longer in the FP queue. 
register 

If the CY7C602 goes into exception mode, FHOLD is deasserted. If there is a floating-point sequence error 
(see Section 733), FHOLD is asserted for one cycle. This is the only case where FHOLD is asserted in the 
exception mode. 

If a floating-point trap condition occurs while FHOLD is asserted, FHOLD is deasserted at least one cycle 
after FEXC is asserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEXC is 
asserted. For the FHOLD case, the CY7C601 takes the FP trap on the FP instruction that triggered the 
FHOLD. 

7.2.2.3 FNULL Signal 

FNULL is used to signal a pipeline delay of the CY7C601 by the CY7C602. FNULL replaces FCCV and 
FHOLD for informing the system that the pipeline is being held. FNULL is asserted when either FHOLD 
is asserted or FCCV is deasserted. This signal is used as an input by the CY7C604/605 to monitor pipeline 
freezes initiated by the CY7C602. 
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7.3 CY7C602 Programming Model 

7.3.1 CY7C602 Registers 

The CY7C602 has three types of user accessible registers: thef-registers, the FP queue, and the floating­
point status register (FSR). Thef-registers are the CY7C602 data registers. The FSR is the CY7C602 status 
and operating mode register. The FP queue contains the CY7C602 instructions that have started execution 
and are awaiting completion. The following section describes these registers in detail. 

7.3.1.1 f-Registers 

The CY7C602 provides 32 registers for floating-point operations, referred to asf-registers. These registers 
are 32 bits in length, which can be concatenated to support 64-bit double words. Extended precision instruc­
tions are not supported in the CY7C602, but the extended precision data format and its position in the 
SPARC FPU is defined for the SPARC architecture. Figure 7-14 illustrates the data organization for the 
f-registers. 

Integer and single precision data requires a single 32-bitfregister. Double precision data requires 64 bits 
of storage and occupies an even-odd pair of adjacentf-registers. Extended precision data requires 128 bits 
of storage and occupies a group of four consecutive I-registers, always starting with register fo, f4, fS, f12, 
f16, flO, fl4, or fl8. 

The CY7C602 forces register addressing to match the data type specified by the floating-point instruction. 
This ensures data alignment in the f-register file for double and extended precision data. Figure 7-15 illus­
trates how the CY7C602 uses the five register address bits in a floating-point instruction for the different 
types of data. Single data word transfers (integer, single-precision floating-point) can be stored in any regis­
ter. Consequently, all five bits of the register address specified in the floating-point instruction are valid. 
Double precision data must reside in at! even-odd pair of adjacent registers. By ignoring the LSB ofthe regis­
ter address for a FPop requiring a register pair, the CY7C602 ensures data alignment. In a similar manner, 
the two LSBs of the register address are ignored in a SPARC FPU that supports extended precision data. 

f-Registers 

single precision or 
signed integer data 

fO 
f4 
f8 
fl2 
fl6 
f20 
f24 
f28 

fl 
f5 
f9 

fl3 
fl7 
f21 
f25 
f29 

f2 f3 
f6 f7 
flO f1l 
fl4 fl5 
fl8 fl9 
f22 f23 
f26 f27 
f30 f31 , 

double precision data /"'M."s-"w_--'L ... s'-"wul""M"'-sw!!.-_ .... L""s-"w ... 1 

extended precision datal "'M""s:..:;w'--_____ -=L"""sw~l 

Figure 7-14.f-Register Organization 

7-14 



7.3.1.2 FP Queue 

~rd,rsl' ~ 
or rs2 field 

of FP instruction 

I I all five bits of 
single precision 
and integer data '-. --'_-L---L_.L-...J register address 

- are used 

double precision data ,-I --'_-L---L_.L-...JI LSB is ignored 

extended I 
precision data '---'_-'---'-_ .......... 

2 LSBs are 
ignored 

Figure 7-15.f-Register Addressing 

The CY7C602 maintains a floating-point queue of instructions that have started execution, but have yet to 
complete execution. The FP queue is used to accommodate the multiple clock nature of floating-point in­
structions and to support the handling of FP exceptions. 

When the CY7C602 encounters an exception case, it asserts FEXC and enters pending exception mode. The 
CY7C602 remains in pending exception mode until the CY7C601 encounters another floating-point in­
struction, at which time the CY7C601 asserts the FXACK signal to force the CY7C602 into exception mode. 
When the CY7C602 enters the exception mode, floating-point execution halts until the FP queue is emptied. 
This allows the CY7C601 to store the floating-point instructions under execution when the exception case 
occurred. Emptying the FP queue frees the CY7C602 for use by the trap handler without losing the pre-ex­
ception state of the CY7C602. 

The FP queue contains the 32-bit address and 32-bit FPop instruction of up to two instructions under execu­
tion. Floating-point load and store instructions and FP branch instructions are not queued. The front entry 
of the FP queue is accessible by executing the store double floating -point queue (STDFQ) instruction. The 
FP queue acts as a FIFO stack, pushing later entries to the top of the stack as the top entry is removed (or 
executed). A load FP queue instruction does not exist, as the FP queue must be loaded by launching instruc­
tions. 

7.3.1.3 Floating-Point Status Register (FSR) 

The following paragraphs describe the bit fields of the floating-point status register (FSR). Refer to 
Figure 7-16 for bit assignments for the FSR fields. 

RD FSR(31 :30) Rounding Direction: These two bits define the rounding direction used by the CY7C602 
during an FP arithmetic operation. 

RP FSR(29 :28) Rounding Precision: These two bits define the rounding precision to which extended-preci­
sion results are rounded. This bit is included in accordance with the ANSI/lEEE STD-754-1985. The 
CY7C602 does not currently support rounding of extended-precision results and this bit does not affect 
CY7C602 operation. 

TEM FSR(27:23) Trap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed 
(1= enable, 0= disable) with the bits of the CEXC (current exception field) to determine whether to force 
a floating-point exception to the CY7C601. All trap enable fields correspond to the similarly named bit in 
the CEXC field (see below). The TEM field only affects which bits in the CEXC field will cause the FEXC 
signal to be asserted. 
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NS FSR(22) Non-Standard floating-point: This bit enables non-standard floating-point operations in the 
CY7C602. When enabled, the CY7C602 inserts zeros for denormalized floating-point numbers before us­
ing them in a floating -point operation. The CY7 C602 also writes back zero if a denormalized number results 
from an operation. This is not consistent with the IEEE-754-1985 specification, and is therefore, non-stan­
dard. 

version FSR( 19:17) The version number is used to identify the SPARC floating-point processor type. This 
field is set to all (3H) for the CY7C602, and is read-only. 

FTT FSR( 16:14) Floating-point Trap Type: This field identifies the floating-point trap type of the current 
FP exception. This field is read-only. 

QNE FSR( 13) Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1= not empty) 

FCC FSR( 11 :10) Floating-point Condition Codes: These two bits report the FP condition codes (see 
Figure 2-10). 

AEXC FSR(9:5) Accumulated Exceptions: This field reports the accumulated FP exceptions that are 
masked by the TEM field. All masked exception cases are ORed with the contents of the AEXC and accu­
mulated as status. All accumulated fields have the same definition as the corresponding field for CEXC (see 
below). This field can be read and written, and must be cleared by software (see Figure 2-10). 

CEXC FSR(4:0) Current EXCeptions: This field reports the current FP exceptions. This field is automati­
cally cleared upon the execution of the next floating-point instruction. CEXC status is not lost upon asser­
tion of a floating-point exception, because instructions following a valid exception are not executed by the 
CY7C602. The five CEXC bits are: 

nvc = 1 fudicates invalid operation exception. This is defined as an operation using an improper 
operand value. An example of this is 0/0. 

ofe = 1 Indicates overflow exception. The rounded result would be larger in magnitude than the 
largest normalized number in the specified format. 

ufe = 1 fudicates underflow exception. The rounded result is inexact, and would be smaller in 
magnitude than the smallest normalized number in the indicated format. 

dze = 1 Indicates division-by-zero: x/a, where X is subnormal or normalized. Note that % does 
not set the dzc bit. 

nxe = 1 Indicates inexact exception. The rounded result differs from the infinitely precise correct 
result. 

R FSR21, 20, and 12. Reserved - always set to O. 

I RD I RP , TEM I NS I R' version I FIT I QNEI R , FCC AEXC CEXC 

3130 2928 27 23 22 2120 19 17 16 14 13 12 11 10 9 540 

TEM AEXC CEXC 

nvm' ofm , ufm I dzm , nxm I nva I ofa ufa I dza I nxa nyc I ofc I ute dzc I nxc I 

Figure 7-16. Floating-Point Status Register 
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Table 7-5. Floating-Point Status Register Summary 
Loadable 

Field Values FSR bits Description byLDFSR 

RD o - Round to nearest (tie-even) 31:30 Rounding Direction yes 

1 - Round to 0 

2 -Round to +1 

3-Roundto-1 

RP o - Extended precision 29:28 Extended Rounding Precision yes 

1 - Single precision 

2 - Double precision 

3 - Reserved 

TEM o - Disable trap 27:23 Trap Enable Mask yes 

1 - Enable trap 

NVM 27 invalid operation trap mask 

OFM 26 overflow trap mask 

UFM 25 underflow trap mask 

DZM 24 divide by zero trap mask 

NXM 23 inexact trap mask 

NS 22 Non-standard Floating-point: yes 

0- Disable o = IEEE mode; multiplier and ALU generate denormalized 
operand exceptions and produce unrounded normalized val-
ues on underflow exceptions. 

1- Enable 1 = FAST mode; multiplier and ALU flush denormalized 
operands to zero and round underflow results to zero. 

version 0-7 19:17 FPU version number no 

FTT O-None 16:14 Floating-point trap type no 

1 - IEEE Exception 

2 - Unfinished FPop 

3 - Unimplemented FPop 

4 - Sequence Error 

5 - 7 Reserved 

QNE o - queue empty 13 Queue Not Empty no 

FCC 0-- 11:10 Floating-point Condition Codes yes 

1-< 

2-> 

3 - Unordered 

AEXC 9:5 Accrued Exception Bits yes 

NVA 9 accrued invalid exception 

OFA 8 accrued overflow exception 

UFA 7 accrued underflow exception 

DXA 6 accrued divide by zero exception 

NXA 5 accrued inexact exception 

CEXC 4:0 Current Exception Bits yes 

NVC 4 current invalid exception 

OFC 3 current overflow exception 

UFC 2 current underflow exception 

DZC 1 current divide by zero exception 

NXC 0 current inexact exception 

r Always set to 0 21,20,1 reserved bits no 
2 
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7.3.2 CY7C602 Floating-Point Instructions 

SPARC floating-point instructions are separated into three groups: floating-point Load/Store, floating-point 
branch (FBfcc), and floating-point operate instructions (FPops). Floating-point Load/Store instructions are 
used to transfer data to and from the data registers ({registers). FP Load/Store instructions also allow the 
CY7C60I Integer Unit to read and write the floating-point status register (FSR) and to read the front entry 
of the floating-point queue. Floating-point load and store instructions are executed by both the CY7C60I 
and the CY7C602; the CY7C60I supplying all address and control signals for memory access and the 
CY7C602 loading or storing the data. 

Floating-point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc» are executed by 
the CY7C60I, since the CY7C60I is responsible for generating address and control signals for memory ac­
cess. Conditional FBfcc branches are based upon the FCC(I :0) signals supplied by the CY7C602. FCC(1 :0) 
is set by executing a FCMP instruction, which belongs to the FPop group of instructions. Floating-point 
branch instructions will cause the CY7C601 to recognize a pending floating-point exception in the same 
manner as other floating-point instructions (see Section 7.3.3). 

FPops include all other floating-point instructions executed by the CY7C602. Floating-point operate in­
structions (FPops) include basic numeric operations (add, subtract, multiply, and divide), conversions be­
tween data types, register to register moves, and floating-point number comparison. FPops operate only on 
data in the floating-point registers. 

The SPARC architecture supports four data types: 32-bit signed integer, single-precision FP, double-preci­
sion FP, and extended-precision FP. Extended precision instructions are defined in the SPARC architecture, 
but are not supported in the CY7C602. The CY7C602 supports execution of extended precision floating­
point instructions by asserting an unimplemented instruction trap. This allows the CY7C60I to trap to a 
software emulation of extended precision floating-point. 

Seven Load/Store instructions are executed by the CY7C602. The following describes the CY7C602 Load! 
Store instructions: 

• LDF and LDDF transfer data from memory to f-registers 32 and 64 bits at a time, respectively. 

• STF and STDF transfer data from the f-registers to memory in data widths of 32 and 64 bits. 

• LSFSR and STFSR allow the FSR to be read and written to. 

• STDFQ is a privileged instruction which allows the FP queue to be read. 

All FPops operate only on data located in the f-registers. The FPops are divided into four groups: basic 
arithmetic operations, compares, format conversions, and register-to-register moves. Move operations do 
not cause exceptions. The converts, moves and the square root instruction use only a single source operand. 
FP compare instructions modify only the FCC(I:O) signals. FPops are dispatched in one cycle in the 
CY7C60I, and require multiple cycles to execute in the CY7C602. 

Floating-point performance can be improved in the CY7C602 by scheduling FPop instructions such that 
the floating-point ALU and the floating-point multiply/divide/compare/square-root units are concurrently 
operating. With the exception of data dependencies, the ALU and multiply/divide/compare/square-root 
units are independent and can execute separate instructions without requiring the other unit to complete ex­
ecution. Therefore, an FPop using the ALU followed by a FPop using the multiply/divide/compare/square­
root unit does not require the previous instruction to finish before starting (assuming there are no data depen­
dencies). 

Table 7-6 and Table 7-7 illustrate the CY7C602 instructions and their execution cycle count. For further 
information on the SPARC floating-point instructions, please refer to Chapter 6, SPARe Instruction Set. 
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Table 7-6. Floating-Point Load and Store Instruction Cycle Count 

Mnemonic Operation Cycles 

LDF load floating-point 2 

LDDF load double floating-point 3 

LDFSR 10adFSR 2 

STF store floating-point 3 

STDF store floating-point double 4 

STFSR store FSR 3 

STDFQ store double FP queue 4 

Table 7-7. Floating-Point Operate (FPops) Instruction Cycle Count 

Mnemonic Operation Cycles 

FABSs absolute value 4 

FADDs add single 4 

FADDd add double 4 

FCMPs compare single 4 

FCMPd compare double 4 

FCMPEs compare single and exception if 4 
unordered 

FCMPEd compare double and exception if 4 
unordered 

FDIVs divide single 14 

FDIVd divide double 21 

FMOVs move 4 

FMULs multiply single 4 

FMULd multiply double 5 

FNEGs negate 4 

FSQRTs square root single 19 

FSQRTd square root double 34 

FSUBs subtract single 4 

FSUBd subtract double 4 

FdTOi convert double to integer 4 

FdTOs convert double to single 4 

FiTOs convert integer to single 8 

FiTOd convert integer to double 4 

FsTOi convert single to integer 4 

FsTOd convert single to double 4 

7.3.3 CY7C602 Internal Operation 

The CY7C602 operates in one of three modes: execution mode, pending exception mode, and exception 
mode (see Figure 7-17). After reset, the CY7C602 enters execution mode, which is the normal mode of 
operation. When the CY7C602 encounters a floating-point exception condition, the CY7C602 asserts 
FEXC and enters the pending exception mode. All FPop instructions under execution at this point are sus­
pended. The CY7C601 asserts FXACK and enters the floating-point trap when the next floating-point in­
struction is encountered. Upon receiving FXACK, the CY7C602 FPU enters exception mode. The 
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CY7C602 returns to execution mode as soon as the trap handler empties the FP queue using store double 
floating-point queue instructions (STDFQ). 

7.3.3.1 Exception Handling 

Upon encountering an exception condition, the CY7C602 asserts FEXC to notify the CY7C601 that a floa­
ting-point exception has occurred and enters the pending exception mode. The CY7C601 enters the trap 
handler on the next floating-point instruction it encounters in the instruction stream, asserting FXACK to 
signal to the CY7C602 that the trap is being taken. At this point, the CY7C602 enters exception mode (see 
Figure 7-17), 

Figure 7-17. FPU Operation Modes 

Upon receiving FXACK from the CY7C601, the mode of the CY7C602 changes from pending exception 
to exception mode. All FPops in the CY7C602 stop executing during pending exception and exception 
modes. While in exception mode, the CY7C602 will execute only store floating-point instructions until the 
FP queue is emptied. All floating-point store instructions are allowed while in this operating mode. Any 
load or FPop issued to the CY7C602 while in this mode causes a sequence error and returns the CY7C602 
to exception pending mode. Once the queue is emptied by successive STDFQ instructions, the CY7C602 
returns to execution mode. 

Due to the latency of floating-point instruction execution, an exception caused by a FPop occasionally may 
not occur until one or more FP instructions have been fetched and executed (or entered into the FP queue 
for execution). This is a case where FEX C is not asserted before the next floating-point instruction is fetched 
and executed. In this case, FEXC is asserted as soon as the exception case is recognized, and the CY7C601 
acknowledges the FPexception during the Execute stage of the next floating-point instruction fetched after 
FEXC is asserted. 

Figure 7-18 illustrates the handshake of signals between the CY7C601 and the CY7C602 during a floating­
point exception. The qne (queue not empty) bit of the FSR is shown in Figure 7-18 to illustrate the depen­
dency of clearing the FP queue to return to execution mode. 
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CLK 

qne 
(of FSR) 

FXACK 

FLUSH 

Floating-point exception 
occurs; FEXC = 0 
Pending exception mode of 
CY7C602 

CY7C601 executes FP instruction, takes FP 
trap; FXACK = 1, FLUSH = 1 
Exception mode of CY7C602 

STDFQ instructions are executed 
and queue is cleared; qne field of 
FSR = 0; Return to execution 
mode of CY7C602 

Figure 7-18. Floating-Point Exception Handshake 

7.3.4 CY7C602 Exception Cases 

The following section describes the CY7C602 exception cases, including exceptions specified by the 
IEEE-754 standard. 

Unfinished FPop. This exception case can occur when operations on normalized floating-point numbers 
either encounter a denormalized operand or produce a denormalized result. This exception case is asserted 
upon executing any FPop encountering an NaN as one of the operands. The CY7C602 also asserts this trap 
when a floating-point to integer conversion overflow occurs. 

Unimplemented FPop. This exception is asserted by the CY7C602 upon encountering a defmed SPARC 
FPop instruction that is not supported by the CY7C602. This includes all operations using extended-preci­
sion format operands. The trap handler is expected to emulate the unimplemented instruction. 

Sequence Error. This exception is asserted by the CY7C602 when a floating-point instruction (other than 
FP store) is attempted after the CY7C602 has entered either pending exception or exception mode. The 
CY7C602 suspends all instruction execution with the exception of FP stores until the FP exception has been 
acknowledged and the FP queue has been cleared. 

IEEE Exceptions. This class of exceptions is defined as part of the IEEE-754 Standard. The five excep­
tions defined as IEEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions 
are: invalid, overflow, underflow, division-by-zero, and inexact. The only exceptions that can coincide are 
inexact with overflow and inexact with underflow. The following paragraphs discuss these exception cases. 

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the opera­
tion to be performed. The result, when the exception occurs without a trap, shall be a quiet NaN 
provided the destination has a floating-point format. The invalid operations are: 

1. Any operation on a signaling NaN 

2. Addition or subtraction: Magnitude subtraction of infinities such as (+ 1) + (-1) 

3. Multiplication: 0 x 1 

4. Division: 0/0 or 1/1 

5. Square root if the operand is less than zero 
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6. Conversion of a binary floating-point number to an integer or decimal format when overflow, infinity, or NaN pre­

cludes a faithful representation in that format and this cannot otherwise be signaled 

7. Floating-point compare operations: when one or more of the operands are NaN 

Division-by-zero. If the divisor is zero and the dividend is a ftnite nonzero number, then the division 
by zero exception shall be signaled. The result, when no trap occurs, shall be a correctly signed 1. 

Overflow. The overflow exception shall be signaled whenever the destination format's largest ftnite 
number is exceeded in magnitude by what would have been the rounded floating-point result were 
the exponent range unbounded. The result, when no trap occurs, shall be determined by the rounding 
mode and the sign of the intermediate result as follows: 

1. Round to nearest carries all overflows to 1 with the sign of the intermediate result. 

2. Round toward 0 carnes all overflows to the format's largest [mite number with the sign of the intermediate result. 

3. Round toward -1 carries positive overflows to the format's largest positive [mite number, and carries negative over­
flows to-1. 

4. Round toward + 1 carries negative overflows to the format's most negative [mite number, and carries positive over­
flows to +1. 

Underflow. The CY7C602 does not assert an underflow exception. Underflow cases are covered 
in the unfinished FPop trap, which is asserted in any case where a denormalized number is used as 
an operand. The unfinished FPop trap handler must resolve the underflow condition and update this 
bit to reflect correct accumulated exception status (AEXC fteld of FSR). 

Inexact. The inexact exception is generated whenever there is a loss of accuracy (or signiftcance) 
in the result. The CY7C602 computes results to higher precision than the number of fraction bits 
in the format. If any of the fraction bits to the right of the LSB was one prior to rounding, the inexact 
exception is signaled. 

7.3.4.1 CY7C602 IEEE-754 Compliance 

The CY7C602 meets the requirements of the IEEE Std. 754-1985 for floating-point arithmetic. Accuracy 
of the results of its operations are within ± liz LSB, as specifted by the IEEE standard. 

7.4 CY7C602 Signal Descriptions 

The following sections describe the external signals of the CY7C602. Active low signals are marked with 
an overbar, active high signals are not. 

7.4.1 Integer Unit Interface Signals 

FP active-low output Floating-point Present 

This signal indicates to the CY7C601 that a FPU is present in the system. In the absence of a FPU, this 
signal is pulled up to VCC by a resistor. This is a static signal; it always asserts a low output. The 
CY7C601 generates a floating-point disable trap ifFP is not asserted during the execution of a floating­
point instruction. 

FCC(1:0) output Floating-point Condition Codes 

The FCC(1:0) bits indicate the current condition code of the FPU, and are valid only if FCCV is as­
serted. FBfcc instructions use the value of these bits during the Execute cycle if they are valid. If the 
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FCC(l:O) bits are not valid, then FCCV is released, which halts the CY7C601 until the FCC bits be­
come valid. 

Table 7-8. FCC(l:O) Condition Codes 

FCCI FCCO Condition 

0 0 equal 

0 I Opl <Op2 
1 0 Opl >Op2 

1 1 Unordered 

FCCV output Floating-point Condition Codes Valid 

The CY7C602 asserts the FCCV signal when the FCC(l:O) represent a valid condition. The FCCV 
signal is deasserted when a pending floating-point compare instruction exists in the floating-point 
queue. FCCV is reasserted when the compare instruction is completed and FCC bits are valid. 

FHOLD output Floating-point HOLD 

The FHOLD signal is asserted by the CY7C602 if it cannot continue execution due to a resource or 
operand dependency. The CY7C602 checks for all dependencies in the Decode stage, and if necessary, 
asserts FHOLD in the next cycle. The FHOLD signal is used by the CY7C601 to freeze its pipeline in 
the same cycle. The CY7C602 must eventually deassert FHOLD to release the CY7C601 pipeline. 

FEXC output Floating-point exception 

The FEXC is asserted if a floating-point exception has occurred. It remains asserted until the CY7 C60 1 
acknowledges that it has taken a trap by asserting FXACK. Floating-point exceptions are taken only 
during the execution of a floating-point instruction. The CY7C602 releases FEXC when it receives 
FXACK. 

FXACK input Floating-point exception acknowledge 

The FXACK signal is asserted by the CY7C601 to acknowledge to the CY7C602 that the current FP 
trap is taken. 

INST input Instruction Fetch 

The INST signal is asserted by the CY7C60 1 whenever a new instruction is being fetched. It is used by 
the CY7C602 to latch the instruction on the D(31 :0) bus into the FPU instruction cache. The CY7C602 
has two instruction caches (Dl and D2) to save the last two fetched instructions (see Figure 7-4). 
When INST is asserted, the new instruction enters the D 1 buffer and the old instruction is pushed into 
the D2 buffer. 

FINSl input Floating-point instruction in buffer 1 

The FINS 1 signal is asserted by the CY7C601 during the Decode stage of a FPU instruction if the in­
struction is stored in the Dl buffer of the CY7C602. The CY7C602 uses this signal to launch the in­
struction in the Dl buffer into its Execute stage instruction register. 
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FINS2 input Floating-point instruction in buffer 2 

The FINS2 signal is asserted by the CY7C601 during the Decode stage of a FPU instruction if the in­
struction is stored in the D2 buffer of the CY7C602. The CY7C602 uses this signal to launch the in­
struction in the D2 buffer into its Execute stage instruction register. 

FLUSH input Floating-point instruction flush 

The FLUSH signal is asserted by the CY7C601 to signal to the CY7C602 to flush the instructions in its 
instruction registers. This may happen when a trap is taken by the CY7C601. The CY7C601 will re­
start the flushed instructions after returning from the trap. FLUSH has no effect on instructions in the 
floating-point queue. In addition to freezing the FPU pipeline, the CY7C602 uses FLUSH to shut off 
the D bus drivers during store operations. To ensure correct operation of the CY7C602, FLUSH must 
not change state more than once during a clock cycle. 

7.4.2 Coprocessor Interface Signals 

CHOLD input Coprocessor HOLD 

The CHOLD signal is asserted by the coprocessor if it cannot continue execution. The coprocessor 
must check all dependencies in the Decode stage of the instruction and assert the CHOLD signal, if 
necessary, in the next cycle. The coprocessor must eventually deassert this signal to unfreeze the 
CY7C601 and CY7C602 pipelines. The CHOLD signal is latched with a transparent latch in the 
CY7C602 before it is used. 

CCCV input Coprocessor Condition Codes Valid 

The coprocessor asserts the CCCV signal when the ccq 1 :0) represent a valid condition. The CCCV 
signal is deasserted when a pending coprocessor compare instruction exists in the coprocessor queue. 
CCCV is reasserted when the compare instruction is completed and the CCq1:0) bits are valid. The 
CY7C602 will enter a wait state if CCCV is deasserted. The CCCV signal is latched with a transparent 
latch in the CY7C602 before it is used. 

7.4.3 System/Memory Interface Signals 

A(31:0) input Address bus (31:0) 

The address bus for the CY7C602 is an input-only bus. The CY7C601 supplies all addresses for in­
struction and data Fetches for the CY7C602. The CY7C602 captures addresses of floating-point in­
structions from the A(31:0) bus into the DDA register. When INST is asserted by the CY7C601, the 
contents of the DDA is transferred to the DA1 register. 

D(31:0) input/output Data bus (31:0) 

The D(31 :0) bus is driven by the FPU only during the execution of floating-point store instructions. 
The store data is sent out unlatched and must be latched externally before it is used. Once latched, store 
data is valid during the second data cycle of a store single access and on the second and third data cycle 
of a store double access. The data alignment for load and store instructions is done inside the FPU. A 
double word is aligned on an eight-byte boundary. A single word is aligned on a four-byte boundary. 
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DOE input Data Output Enable 

The DOE signal is connected directly to the data output drivers and must be asserted during normal 
operation. Deassertion of this signal three-states all output drivers on the data bus. This signal should 
be de asserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, 
MHOLDA, or MHOLDB is asserted. 

MHOLDA, MHOLDB input Memory HOLD 

Asserting MHOLDA or MHOLDB freezes the CY7C602 pipeline. Either MHOLDA or MHOLDB is 
used to freeze the FPU (and the IU) pipelines during a cache miss (for systems with cache) or when slow 
memory is accessed. 

BHOLD input Bus HOLD 

This signal is asserted by the system's I/O controller when an external bus master requests the data bus. 
Assertion of this signal will freeze the FPU pipeline. External logic should guarantee that after deasser­
tion of BHOLD, the state of all inputs to the chip is the same as before BHOLD was asserted. 

MDS input Memory Data Strobe 

The MDS signal is used to load data into the FPU when the internal FPU pipeline is frozen by assertion 
of MHOLDA, MHOLDB, or BHOLD. 

FNULL output Fpu Nullify cycle 

This signal signals to the memory system when the CY7C602 is holding the instruction pipeline of the 
system. This hold would occur when FHOLD is asserted or FCCV is deasserted. This signal is used by 
the memory system in the same fashion as the integer unit's INULL signal. The system needs this sig­
nal because the IU's INULL does not take into account holds requested by the FPU. 

RESET input RESET 

Asserting the RESET signal resets the pipeline and sets the writable fields of the floating-point status 
register (FSR) to zero. The RESET signal must remain asserted for a minimum of eight cycles. 

CLK input Clock 

The CLK signal is used for clocking the FPU's pipeline registers. It is high during the first half of the 
processor cycle and low during the second half. The rising edge of CLK defines the beginning of each 
pipeline stage in the FPu. 
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CY7C604/CY7C60S Cache Controller and 

Memory Management Unit 

The CY7C604 Cache Controller and Memory Management Unit (CMU) and CY7C605 Cache Controller 
and Memory Management Unit for Multiprocessing (CMU-MP) are combined memory management unit 
(MMU) and cache controllers with on-chip cache tag memory. The CY7C604 and CY7C605 are designed 
as an integral part of the CY7C600 family to provide a high-performance solution for cache and virtual 
memory support. The CY7C604 is designed for uniprocessor systems, providing control for a 64-Kbyte 
virtual cache. The CY7C604/605 cache is extendible to 256-Kbyte through the addition of cache RAMs 
and CY7C604/605s. Expansion of the CY7C604/605 cache increases the number of translation lookaside 
buffer (TLB) entries available to the system for MMU address translation, as well as increasing the number 
of cache tag entries available to the cache. Another feature of the CY7C604 is cache locking, which provides 
deterministic response time for real-time systems controlling time-critical processes. The CY7C604, as 
well as the CY7C605, provides the SPARC reference MMU and supports the SPARC MBus standard for 
interfacing to physical memory. 

The CY7C605, a derivative of the CY7C604, is designed to support the requirements of multiprocessing 
systems. The CY7C605 provides two separate cache tag memories, as compared to the single cache tag 
memory used on the CY7C604. The second cache tag memory is physically addressed and allows concur­
rent bus snooping without stalling the CY7C6010 This allows the CY7C605 to maintain cache coherency 
with other cache systems without degrading CPU performance. The CY7C605 supports the MBus Level 
2 cache coherency protocol. 

The MMU portion of the CY7C604 and CY7C605 provides translation from a 32-bit virtual address range 
(4 Gigabytes) to a 36-bit physical address (64 Gigabytes), as provided in the SPARC reference MMU speci­
fication. Virtual address translation is further extended with the use of a context register, which is used to 
identify up to 4096 contexts or tasks. The cache tag entries and TLB entries contain context numbers to 
identify tasks or processes. This minimizes unnecessary cache tag and TLB entry replacement during task 
switching. 

The MMU features a 64-entry translation lookaside buffer. The TLB acts as a cache for address mapping 
entries used by the MMU to map a virtual address to a physical address. These mapping entries, referred 
to as page table entries or PTEs, allow one of four levels of address mapping. A PTE can be defined as the 
address mapping for a single 4-Kbyte page, a 256-Kbyte region, a 16-Mbyte region, or a 4-Gbyte region. 
The TLB entries are lockable, allowing important TLB entries to be excluded from replacement. 

The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601 
Integer Unit to the address tags in the TLB entries. If the virtual address and the value of the context register 
match a TLB entry, a TLB "hit" occurs. When this occurs, the physical address stored in the TLB is used 
to translate the virtual address to a physical address. The access type (read/write of data or instruction) and 
privilege level (user/supervisor) are checked during translation. If a TLB hit occurs but access-level protec­
tion is violated, the MMU signals an exception and the operation ends. 

If the virtual address or context does not match any valid TLB entry, a TLB "miss" occurs. This causes a 
table walk to be performed by the MMU. The table walk is a search performed by the MMU through the 
address translation tables stored in main memory. The MMU searches through several levels of tables for 
the PTE corresponding to the virtual address. Upon finding the PTE, the MMU translates the address and 
selects a TLB entry for replacement, where it then stores the PTE. 
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Figure 8-1. Virtual 64-Kbyte Cache 

The 64-Kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term "virtual cache" refers 
to the direct addressing of the cache by the integer unit (CY7C601) with the virtual address bus. Virtual 
address bits VA(15:5) select the cache line, and virtual address bits VA(4:2) select the 32-hit word of the 
cache line, as illustrated in Figure 8-1. The CY7C604/605 provides access control for the cache by check­
ing the context and virtual address against the cache tags. If the virtual address, access-level, and context 
match the cache tag for the cache line addressed, a cache hit occurs and the access is enabled. If the virtual 
address or context do not match the cache tag for the cache line, a cache miss occurs and the cache controller 
accesses main memory for the required data. 

The CY7C604/605 cache controller supports two modes of caching: write-through with no write allocate 
and copy-back with write allocate. Write-through mode is a simpler style of cache management that causes 
write accesses to the cache to be written through to main memory upon each write access. The advantage 
of this method is that the cache always remains coherent with main memory. Its disadvantage is that each 
write to the cache is echoed to main memory, which increases traffic on the system bus. Another disadvan­
tage to write-through is that the processor is delayed by the time required to arbitrate the system bus and 
write the data to main memory. However, in the case of the CY7C604/605, this disadvantage is significantly 
offset by the inclusion of write buffers. The write buffers can store up to four doubleword accesses, allowing 
the CY7C601 to continue execution while data is written to main memory. 

Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to 
become modified. Modified cache lines are automatically written back to main memory only when the 
cache line is no longer needed. Copy-back mode is a more complex mode of cache management, but pro­
vides substantial system performance improvements over write-through due to decreased traffic on the sys­
tem bus. 

A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C604/605 to fully buffer the transfer 
of a cache line. This feature allows the CY7C604/605 to simultaneously read a cache line from main 
memory as it is flushing a modified cache line from the cache. This feature is also used in write-through 
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cache mode for write accesses to main memory. The write buffer avoids stalling the CY7C601 on writes 
to main memory by storing the write data until the physical bus becomes available. The write buffer writes 
the data to memory as a background task. 

The CY7C604 and CY7C605 support the SPARC MBus reference standard interface. The MBus is a peer­
level, high-speed, 64-bit, multiplexed address and data bus that supports a full peer-level protocol (i.e., mul­
tiple bus masters). The CY7C604/605 MBus supports data transfers in transaction sizes of 1, 2, 4,8, or 32 
bytes. These data transfers are performed in either burst or non-burst mode, depending upon size. Data 
transactions larger than eight bytes (one doubleword) are transferred in burst mode, which consists of an 
address phase followed by four data phases. Non-burst transactions consist of an address phase followed 
by one data phase, and are used for data transactions of eight or less bytes. Bus mastership is granted and 
controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access to a bus master. 
Additional information on the MBus can be found in Chapter 11, MBus Operation. 

MBus is divided into two levels of implementation: Level I and Level 2. Levell, implemented on the 
CY7C604, is the uniprocessor version ofMBus. Levell is a subset of Level 2, which is the multiprocessor 
version of MBus. The CY7C605 supports Level 2 MBus. Level 2 MBus includes the IEEE Futurebus cache 
coherency protocol, which has been recognized in the industry as a superior method of supporting multipro­
cessing systems. Level 2 MBus defines five cache states for describing cache line status. Transactions on 
the MBus are monitored or "snooped" by the CY7C605 and other bus agents on the Level 2 MBus to main­
tain ownership status for each cache line. Transactions on the Level 2 MBus are made with respect to the 
cache line ownership status to ensure consistency for shared data images. 

The Level 2 MBus supports direct data intervention, which allows a cache system with the up-to-date ver­
sion of a cache line to directly supply the data to another cache system without having to first update main 
memory. Direct data intervention provides a significant performance improvement over systems which do 
not support this feature. In addition, the CY7C605 provides support for memory systems with reflective 
memory controllers. A memory system with reflective memory control can recognize a cache-to-cache data 
transaction and automatically update itself without delaying the system. Another system concept supported 
by the CY7C605 is secondary caching. Secondary caching provides a performance advantage over systems 
directly using main memory, and provides an economic advantage over systems using large caches for each 
processing node. 

8.1 Memory Management Unit 

This section describes the SPARC reference MMU implemented on the CY7C604 and CY7C605. This 
function is identical for both the CY7C604 and CY7C605, and all details of Sections 8.1 and 8.2 apply to 
both. 

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside 
buffer. The TLB is in reality a full address translation cache for address translation entries stored from tables 
in main memory. These entries, referred to as page table entries or PTEs, contain the mapping information 
used by the MMU to translate the virtual addresses. Addresses presented to the MMU for translation are 
compared against the set of PTEs stored in the TLB. All entries in the TLB are simultaneously accessed 
through the use of advanced content addressable memory (CAM) technology. If a match for the virtual ad­
dress and context is found in a valid TLB entry and the access protection is not violated, a TLB hit occurs 
and the address is translated. A virtual address and context that matches a valid TLB entry but violates the 
memory access protections will cause the CY7 C604/605 to generate a memory exception to the CY7 C60 1. 
If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs. 
The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory 
for the virtual address. 

The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The 
table walk is a search through a series of four tables in main memory for the PTE corresponding to a virtual 
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address. These tables are: the context table, the levell table, the level 2 table, and the level 3 table. The table 
walk uses the context table pointer register as a base register and the context number as a offset to point to 
an entry in the context table. At any address, the MMU finds either a PTE, which terminates its search, or 
a page table pointer (PTP). A PTP is a pointer used in conjunction with a field in the virtual address to select 
an entry in the next level of tables. The table walk continues searching through levels of tables as long as 
PTPs are found pointing to the next table. The table walk terminates when a PTE is found, or an exception 
is generated if a PTE is not found after accessing the level 3 table. An exception is also generated if the table 
walk fmds an invalid or reserved entry in the page tables. Upon fmding the PTE, the CY7C604/605 stores 
it in an available TLB entry and translates the corresponding virtual address. The table walk processing is 
implemented in the CY7C604/605 hardware. It is self-initiated, and is transparent to the user. 

VIrtual Section Physical Section 

f 
<S",AM Array) .-____ .,rJIIII" ..... Arra_y.) __ ..... 

64 lLB entries 

Figure 8-2. Translation Lookaside Buffer (TLB) 

8.1.1 Translation Lookaside Buffer (TLB) 

The CY7C604/605 uses a 64-entry fully associative TLB for address translation. The TLB consists of two 
sections: a virtual section and a physical section, as shown in Figure 8-2. The virtual section is compared 
against the virtual address and the contents of the context register. A content addressable memory (CAM) 
is used as the virtual section of the TLB. The CAM provides simultaneous comparison of all 64 TLB entries 
with the current virtual address and context. The physical section of the TLB is a RAM array, and its entries 
are addressed by a valid compare output from a CAM entry. If a CAM entry matches the virtual address 
and context, the corresponding RAM entry in the TLB provides the physical address for use by the 
CY7C604/605. 

The virtual section of a TLB entry consists of 20 bits of virtual address (VA(3l:12)) and a 12-bit context 
number (CXN(11:0)). The physical section of a TLB entry consists of a 24-bit physical page number 
(PPN(35:12)), a cacheable bit (C), a modified bit (M), a three-bit field for page access-level protection 
(ACC(2:0)), a two-bit short translation field (ST(I:0)), and one valid bit (V). 

As described by the SPARC reference MMU specification, bits 31 through 12 of the virtual address are trans­
lated to an expanded physical address using bits 35 through 12. The translation of these bits depends upon 
the ST field of the TLB entry (or PTE) and theMMU operation mode (refer to page 8-15). Bits 11 through 
o of the virtual address are not translated, and are defined as the page offset for the 4-Kbyte memory page. 

A TLB entry (PTE) can be defined to map a virtual address into one offour sizes of addressing regions using 
the ST field. The four sizes of addressing regions are: 4-Kbyte, 256-Kbyte, 16-Mbyte, or 4-Gbyte. 
Table 8-1 illustrates the values assigned to the ST(I:0) field. 

The value of the short translation bits affects both the addresses generated using the TLB entry and the virtu­
al addresses allowed to match with the TLB entry. The virtual address supplied by the integer unit is divided 
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into four fields: index 1, index 2, index 3, and page offset, as illustrated in Figure 8-3. For ST = (1,1) 
(4-Gbyte addressing range), only the context register is used to match a TLB entry. Setting ST = (1,1) essen­
tially causes the CAM array to ignore the index 1,2, and 3 fields of the virtual address. Consequently, the 
address generated using the TLB entry only supplies the upper four bits ofthe 36-bit physical address. Index 
1, 2, and 3 fields, along with the page offset, are passed along to the physical address unchanged. 

The three remaining values of the ST field "tum on" comparison of the three index fields. The index fields 
that are required to match a TLB entry also become the fields that are replaced by the TLB entry during virtu­
al to physical translation. Setting ST = (1,0), (16-Mbyte addressing region), requires the TLB to match the 
context and index 1 fields of the virtual address to the TLB entry. The TLB entry with ST = (1,0) will supply 
the upper four address bits and replace the index 1 field of the virtual address with a physical address field. 
The index 2,3, and page offset fields are passed along to the physical address from the virtual address. Set­
ting ST = (0,1) and (0,0) adds index 2 and index 3 fields to the comparison, respectively. Setting ST = (0,0) 
causes the TLB to require matching of the context, index 1,2, and 3, and will replace all but the page offset 
when translating the virtual address. 

Physical addresses are generated using the contents of the PPN field of the TLB entry. The portion of the 
PPN field used to map the virtual address to a physical address is dependent upon the ST(1:0) bit field, as 
described above. If a 4-Kbyte linear addressing range is specified by the ST(1 :0) bits, then the entire 24 bit 
field is used as the upper 24 bits ofthe physical address. When a 256-Kbyte linear addressing range is speci­
fied, the upper 18 bits of the PPN (35: 18) field are used in the physical address. The remaining bits of the 
physical address are supplied from the virtual address. The upper 12 bits ofthe PPN(35:24) field are used 
for a 16-Mbyte addressing region. If a 4-Gbyte region is selected, only the upperfour bits of the PPN (35 :32) 
field are used in the address translation. The page offset field of the virtual address is always used as the 
lower 12 bits of the physical address. 

Virtual 
Address 

TLB Entry 

HitlMiss 
Logic 

ASI(5:0) 

RD 

LDST 

I 
31 

Index 1 I 
24 23 

I VA (31:24) 

• • \ Compare/ 
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Figure 8-3. Address Comparison 
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Table 8-1. Short Translation Bits - ST(1:0) 

STl STO Address Mapping 
0 0 4-Kbyte (page size) 

0 I 256-Kbyte 

I 0 16-Mbyte 

I I 4-Gbyte 

The cacheable bit (C) indicates whether the memory addressed by the TLB entry is cacheable or not. If the 
MMUis enabled, the value of the C bit is output on the MC pin (MAD(43» of the MBus during the address 
phase of a transaction. The MBus is described in Chapter 11. 

The modified bit (M) in the TLB is set when the CY7C601 modifies the memory page. This bit may be 
checked by an operating system to determine the modified status of a memory area. 

The access-level protection (ACC) bits are described in Table 8-2. The ACC bits define the access-level 
protection for the addressing region controlled by the TLB entry. Access-level protection is checked during 
a TLB access. If a TLB hit occurs but access-level protection is violated, the MMU generates a synchronous 
fault and the operation terminates (see Section 8.9, Synchronous Faults). 

The valid bit (V) reports the valid status of the TLB entry. These bits are cleared upon power-on reset (POR) 
to invalidate the TLB entries. These bits are also cleared for a TLB entry flush. 

Programmer's Note: When loading the TLB entries under software control (i.e., TLB entries loaded by the 
integer unit with ASI = 6), care must be taken to ensure that multiple TLB entries cannot map to the same 
virtual address. This may inadvertently occur when combining TLB entries that map different sizes of ad­
dressing regions. For example, a 4-Kbyte region described by a TLB entry could be included in a TLB entry 
for a 16-Mbyte region. Violation of this restriction will result in an invalid output from the TLB. Note that 
this case cannot happen when the TLB entries are automatically loaded by the CY7C604/605 during a table 
walk, as the TLB is checked for a "hit" first. 

Table 8-2. Access-Level Protection Bits-ACC(2:0) 

Ace User Access Supervisor Access 
0 Read Only Read Only 

I Read/Write Read/Write 

2 Read / Execute Read / Execute 

3 Read / Write / Execute Read / Write / Execute 

4 Execute Only Execute Only 

5 Read Only Read /Write 

6 No Access Read / Execute 

7 No Access Read / Write / Execute 

8.1.1.1 TLB Look-up 

A virtual address to be translated by the CY7C604/605 is compared against each entry in the TLB as shown 
inFigure 8-3. If a TLB hit (match) occurs and access-level requirements are satisfied, then the TLB outputs 
the physical address and the cacheable bit. This physical address is output by the CY7C604/605 onto the 
MBus (refer to Chapter 11, MBus Operation) if the cache has been disabled or if the page is non-cacheable. 
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If the cache controller is enabled and a cache miss occurs, the physical address of the cache miss is used to 
access the new cache line in main memory for cache line replacement. 

The short translation bits specify a linear address mapping range of 4-Kbytes, 256-Kbytes, 16-Mbytes, or 
4-Gbytes for each TLB entry. The short translation bits also determine the index fields of the virtual address 
that are matched with the TLB entry to determine a TLB hit. For a TLB entry with a linear address range 
of 4 Kbytes, index fields 1, 2, and 3 of the virtual address and the context register are compared against the 
TLB entry. A TLB entry with a 256-Kbyte linear addressing range requires a match of the context and of 
the index 1 and index 2 fields. A 16-Mbyte linear addressing range requires a match of the index 1 field 
and the context. The 4-Gbyte linear address mapping requires only a context match to produce a TLB hit. 

If the modified bit is not set in a TLB entry, write or Load/Store accesses that match the TLB entry and meet 
all access-level requirements will cause a table walk. (see Section 8.1.2., Table Walk) If the modified (M) 
bit is not set for a write access, then the table walk sets the modified bit in the page table pointer entry for 
the memory region. This information is used by an operating system to ensure that modified regions of 
memory are stored in alternate memory media (typically a disk drive) before they are overwritten during 
memory page swap operations. 

If there is a matched entry, but the access-level requirements are not satisfied, then a synchronous address 
fault exception is asserted. Context number matching is not required ifthe access-level field (ACC) is either 
6 or 7 and the memory access is a supervisor mode access (AS I = 9,B H). This produces a means of mapping 
the kernel of an operating system into the same virtual address locations of every context. 

The TLB ignores access-level checking during MMU probe operations, copy-back flush cycles, and alias 
detection cycles. 

8.1.1.2 TLB Entry Replacement and Locking 

The CY7C604/605 supports a random replacement algorithm to replace a TLB entry during TLB miss pro­
cessing. The random replacement is implemented by using a counter to point to one of the 64 TLB entries. 
A 6-bit replacement counter (RC) is incremented by one during each clock cycle to point to one of the TLB 
entries as shown in Figure 8-4. Upon encountering a TLB miss, the CY7C604/605 uses the counter value 
to address a TLB entry to be replaced. The hardware automatically replaces an entry pointed to by the re­
placement counter (RC) during TLB miss processing. 

Locking of TLB entries is supported with a 6-bit initial replacement counter (IRC). The number of locked 
entries is specified by setting the value of the IRC. The value of the IRC is used as a counter preset for the 
replacement counter. Once the replacement counter (RC) reaches the maximum value, it wraps to the initial 
replacement counter (IRC) value. Upon power-on reset (PaR), both the IRC and RC are initialized to zero. 

Locked TLB entries can be changed (read/write) only through the alternate space Load/Store instructions 
with ASI = 6 (see Diagnostics Support, page 8-52.) These locked entries will not participate in the random 
replacement algorithm during TLB miss processing. The IRC should be initialized to the number of lock­
able entries by writing to the TLB replacement control register (TRCR). 

Programming Note: When changing the IRC, the RC should also be written with the same value. This ensur­
es that the RC is always pointing to the replacement area of the TLB. 

8.1.1.3 TLB Entries (TLBEs) 

Both the virtual and physical sections of each TLB entry can be accessed (read/write) through single load 
or store instructions. Software has the option to write and to lock high-usage or high-priority TLB entries 
to optimize system response time (Refer to MMU TLB Entries, page 8-52, for more details.) 
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Figure 8-5. Four-Level Table Walk (4-Kbyte Addressing) 
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8.1.2 Table Walk 

The CY7C604/605 supports tree-structured, 4-level table walk processing (including the context table lev­
el) as shown in Figure 8-5. All of the virtual to physical address mapping tables are located in physical 
memory. These tables are accessed in the case of a TLB miss or of a write or Load/Store operation with a 
cleared (Modified) bit in the TLB entry. 

Upon starting a table walk, the CY7C604/605 walks through a series of tables to find a page table entry 
(PTE). The page table entry contains the physical page number, the access-level permission, cacheable, mo­
dified, and referenced bits for the address generating the table walk. (Refer to page 8-11 for information 
on PTEs.) A table walk caused by a TLB miss causes the CY7C604/605 to update an available TLB entry 
with the new PTE. A table walk forced by a write or Load/Store operation on an unmodified memory region 
causes the CY7C604/605 to set the modified bit in the page table entry and in the TLB entry. 

The table walk begins with an access to the context table. The CY7C604/605 uses the context table pointer 
register (CTPR) as a base register to point to the beginning of the context table. The context register (CXR) 
is used as an index register to point to the table entry. The upper 22 bits of the CTPR are concatenated with 
the 12 bits of the CXR to provide a 36-bit address. The lowest two bits of all addresses pointing to a page 
table entry or pointer are always forced to zero. 

If a page table entry (PTE) is found at the context table level, the table walk terminates. The PTE is stored 
in the TLB and, if necessary, the modified bits and/or the reference bits are updated. If a page table entry 
is not found, then a Page Table Pointer (PTP) must be located at the address pointed to in the context table. 
(See page 8-10 for more information on PTPs and PTEs.) The page table pointer is used as the base address 
for the next table. 

If a PTE is not found, the table walk continues by accessing the level 1 table using the PTP as a base address 
and the index 1 field from the virtual address as an index pointer. It is possible to find a PTE instead of a 
page table pointer at any level during the table walk. The index 1 field (virtual address (31 :24)) is used to 
select an entry in the level 1 table. If a page table entry is not found at this location, a page table pointer 
stored at this entry is used as the base address for the level 2 table. The index 2 field (virtual address (23: 18)) 
is used to select an entry in the level 2 table. The entry in the level 2 table, if not a page table entry, is used 
as the base address for the level 3 table. The index 3 field (virtual address (17: 12)) is used to select an entry 
in the level 3 table, which must be a page table entry. 

If a page table entry is not found after the level 3 table access, a synchronous fault exception is asserted. 
A synchronous fault exception is also generated if an invalid entry is found at any level of the table walk. 
The table walk terminates immediately when an exception is generated. 

The level at which the table walk terminates is related to the size of addressing region associated with the 
entry. A table walk that finds its page table entry in the context table corresponds to an addressing region 
of 4-Gbyte. Each level deeper into the table walk corresponds to a smaller size of address mapping. A PTE 
for a 16-Mbyte addressing region will be found in a level 1 table. A 256-Kbyte PTE will be found in a level 
2 table. Only an addressing region of 4 Kbytes will require a table walk of four levels to find the correct 
page table entry. 

An example of a table walk for a 256-Kbyte linear address space is shown in Figure 8-6. The value of the 
short translation bits are related to the level at which the table walk terminates. The short translation bits 
decrease from (1,1) for a table walk with a context table PTE to (0,0) for a table walk with a level 3 table 
PTE. (Refer to Table 8-1.) 

Each table walk access is performed as a non-burst transaction on the MBus (physical bus). The MBus busy 
(MBB) signal is asserted from the beginning of the table walk to the end of the table walk process. This 
locks the MBus and prevents another bus master from gaining the bus until the table walk is complete. The 
MLOCK bit in the address phase of the MBus transaction will be set (refer to Chapter 11 ,MBus Operation), 
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indicating a locked transaction. During these transactions, the C bit in the SCR register is output on the MC 
signal ofthe MBus. There will be Write transactions during the table walk only if the reference bit (R) and/or 
the modified bit (M) has to be set in the page tables. 

If there is an invalid page table entry (ET = 0) at any level, an invalid address error exception occurs and 
the table walk terminates immediately. If an external bus error occurs, a reserved entry (ET = 3) is detected, 
or a PTP entry is detected in level 3, a translation error exception occurs, and the table walk terminates imme­
diately. If an access-level protection occurs, the table walk is terminated and a protection/privilege violation 
exception is asserted. 

The reference bit (R) and the modified bit (M) are set according to the access type. In order to record the 
exceptions in the synchronous fault status registers properly, the table walk hardware must indicate the fault 
type and the level at which the fault occurred (Refer to Section 8.9 for more details). For access-level check­
ing during the table walk, Load/Store cycles are treated as write cycles. The table walk state diagram is 
shown in Figure 8-10. 

During MMU probe operations, copy-back flush cycles, and alias detection cycles, the table walk controller 
ignores access-level checking. 

VIRTUAL I I ADDRESS INDEX 1 INDEX 2 I OFFSET I 
31 24 23 L:7 I 

0 

~-------- .. ------ -------------- ........ _---- .. ---- ... - ... 

I 
, , I Context Pointer , Context Table , 

Register I Levell 
, , , 

I I 
, Page Table , 

Context Register , .. Root Pointer Level 2 
, , - , , Page Table , , ....... PTP 

.. , , - , , , , 

LJ L-. 
, , PTE , , , , , , , , , , , , , , , , 

Physical Memory 
, , , 

'-----------------------------------------------

+ 
PHYSICAL I Physical Page Number I Page Offset I ADDRESS 

35 18 17 o 

Figure 8-6. Three-Level Table Walk (256-Kbyte Addressing) 

8.1.3 Page Table Pointer (PTP) 

A page table pointer (PTP), as shown in Figure 8-7, may be found in the context, levell, or level 2 tables. 
The PTP is used in conjunction with an index field of the virtual address to point to the next level oftable 
in a table walk. The PTP found at the context level is called the root pointer. Bits 31 through 6 of the root 
pointer are output on bits 35 through 10 of the MBus (MAD<35:1O» and are concatenated with the eight 
bits of the index 1 field of the virtual address to access the entry in the first level page table. (Refer to 
Figure 8-6.) The lowest two bits of the address are equal to zero, as addressing is aligned on word bound­
aries. 
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Similarly, bits 31 through 4 of the PTP in level 1 or level 2 tables are output on bits 35 through 8 of the MBus 
(MAD<35:8». The index 2 or index 3 fields are concatenated with the PTP to yield the address ofthe next 
table entry. The ET field (see Table 8-3) describes the entry type: invalid, page table pointer, or page table 
entry. 

In order to reduce the penalty for a TLB miss, the root pointer from the context level table and two PTPs 
from the level 2 table are cached in the PTP cache. The PTPs from the most recent data and instruction 
misses using a four-level table walk are cached for later use. The TLB checks the PTP cache upon a TLB 
miss, and uses the cached PTP to access the level 3 table if an entry matches the access. The PTP cache is 
discussed in more detail in Section 8.1.5. 

31 

ET 
0 

1 

2 

3 

8.1.4 Page Table Entry (PTE) 

PTP 

PTP = Page Table Pointer 

RSV = Reserved 

4 3 

ET = Entry type 

Figure 8-7. Page Table Pointer 

Table 8-3. Page Table Entry Type 

Entry Type 
Invalid 

Page Table Pointer 

Page Table Entry 

Reserved 

2 1 0 

The page table entry (PTE) is shown in Figure 8-8 and may be found in the context, level 1 , level 2 or level 
3 tables. The page table entry contains the address mapping information used by the MMU to translate a 
range of virtual addresses to physical addresses. 

The level of the table in which the PTE is found is related to the addressing range associated with the PTE. 
A PTE found in the context table will map a 4-Gbyte addressing region. A level 1 PTE will map a 16-Mbyte 
addressing region. A level 2 PTE corresponds to a mapping region of 256 Kbytes. A level 3 PTE maps a 
4-Kbyte addressing region. 

The addressing region mapped to the PTE determines how many bits in the PPN field of the PTE are used 
to form the physical address. PTE(31 :28) from a context level table PTE are output on bits 35 through 32 
of the physical address bus (MAD<35:32» to offer 4-Gbytes of linear address mapping. Similarly, 
PTE(3l:20) from a level 1 table PTE are asserted on bits 35 through 24, and provides 16 Mbytes of linear 
addressing. PTE(3l:l4) from a level 2 table PTE are asserted on bits 35 through 18, and PTE(3l:8) from 
a level 3 table PTE are asserted on bits 35 through 12 to offer 256 Kbytes and 4 Kbytes of linear address 
mapping, respectively. The remainder of the PPN field not used for address translation is reserved. The re­
maining physical address bits not specified by the PPN field are supplied from the virtual address. 

The ACC bits describe the access-level and privilege protection assigned to the PTE. These bits are de­
scribed in Table 8-2. The referenced (R) bit is set in the PTE when the CY7C604/605 has read the value 
of the PTE in a table walk. The CY7 C604/605 automatic all y sets this bit upon access of the PTE. The modi-
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fied (M) bit is set upon a write or Load/Store access of a previously unmodified memory region. This infor­
mation is commonly used by an operating system to flag regions of memory that must be written to mass 
storage before being replaced by another memory page. 

The cacheable (C) bit indicates whether or not the memory region addressed by the PTE is allowed to be 
cached. This bit may be used to prevent shared memory pages from being cached, thereby avoiding potential 
aliasing problems. It also may be used to prevent caching of memory mapped input/output devices. 

The ET field, illustrated in Table 8-3, is used by the CY7C604/605 to determine the type of table entry during 
a table walk. The ET field is set to 2 to indicate a PTE, and is set to 1 to indicate a PTP. If the CY7 C604/605 
encounters a table entry with ET = 0 during a table walk, the CY7C604/605 generates an invalid address 
error. The CY7C604/605 generates a translation error if ET = 3 (reserved) is encountered in a table entry 
during a table walk. 

24 

PPN 

31 

PPN ~ Physical Page Number 
C ~ Cacheable bit 
M ~ Modified bit 

1 1 1 3 2 

8 7 6 5 4 2 1 0 

R ~ Referenced bit 
ACC ~ Access protection bits 
ET ~ Entry type 

Figure 8-8. Page Table Entry Format 

S.1.5 Page Tabie Pointer Cache (PTPC) 

In order to reduce the penalty for a TLB miss, the CY7 C604/605 supports a three-PTP entry page table point­
er cache. The page table pointer cache (PTPC) caches the most recently used PTPs, as shown in Figure 8-9. 
The three entries are: the root pointer register (RPR) , the instruction access level 2 PTP (IPTP), and the data 
access level 2 PTP (DPTP). The IPTP and DPTP registers are referenced by a fourth register, the index tag 
register (ITR). These entries are cached during table walk processing for a TLB miss. 

The root pointer for a context is cached in the RPR. The RPR remains valid until the context register (CXR) 
or the context table pointer register (CTPR) value is changed. The instruction access PTP register contains 
the latest level 2 PTP for an instruction access. This PTP is cached from the last TLB miss requiring a 
four-level table walk for an instruction access. The data access PTP register contains the latest level 2 PTP 
for a data access. This PTP is also cached from the last four-level table walk for a data access. The IPTP 
and DPTP registers are invalidated when another table walk that accesses leve13 of the page tables is forced 
for an instruction or data access or a TLB flush. They also are invalidated when either the context register 
or context pointer register is changed. Refer to page 8-45 for more information on these registers. 

Figure 8-9 illustrates the PTPC. The index tag register (ITR) is used to reference the IPTP and DPTP regis­
ters. The ITAG and DTAG fields of the index tag register are used by the CY7C604/605 to compare against 
an address generating a TLB miss. Once a level 2 page table pointer is cached for an instruction or a data 
access, the same PTP is used if the index 1 and index 2 fields of the virtual address match the index 1 and 
index 2 tag fields of the ITAG or DTAG. The IPTP and DPTPregisters are updated only if a TLB miss occurs 
that does not match the ITAG or DTAG and also generates a table walk that accesses level 3 of the page 
tables. 
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Index Tag Register ITAG I DTAG I 
Instruction PTP Reg, Instruction Access PTP I V I 
Data PTP Reg, Data Access PTP I V I 
RP Register Root Pointer I V I. 

Figure 8-9. Page Table Pointer Cache 

Once a root pointer is cached for a particular context, the same root pointer can be used as long as the context 
is not changed. If the table walk finds a context level or level! or level 2 entry PTE (i.e., is not a four-level 
table walk), then no caching of level 2 pointers is performed. 

Whenever the context is changed, the entire PTPC (all three entries) is invalidated. Upon power-on reset, 
all the PTPC entries are invalidated. When the context pointer register (CTPR) is written, the page table 
pointer cache is invalidated by clearing the V bits in the IPTP, DPTP, and RPR registers. Any TLB flush 
invalidates the IPTP and DPTP registers of the PTP Cache. 

The IPTP and DPTP registers are not updated during table walks caused by address alias detection and 
copy-back flush cycles. 
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L Table Level (see Table 8-17) 
FT Fault Type (see Table 8-19) 
R Referenced Bit in PrE 
M Modified bit in PTE 
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Translation Error 
(L= 3, FT = 4) 

R=O 
M=X 

N 
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Figure 8-10. Table Walk Algorithm 
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8.2 MMU Operation Modes 

This section describes the different modes of operation of the CY7C604/605, the conditions under which 
they occur, and what information is reflected on the pins. The operation mode for the MMU (and cache 
controller) is controlled by the system control register (SCR). Please refer to Sections 8.4.1 and 8.4.2 for 
further information on the SCR. 

The following symbols are used throughout the chart: 
MC(MAD<43» MBus Cacheable indicator signal 

(Refer to Pin Definitions. Section 8.10) 

MBL(MAD<4S» MBus Boot/Local indicator signal 

(Refer to Pin Definitions, Section 8.10) 

ASI Address Space Identifier code 

for current access from CY7 C60 1 

SCR[C] Cacheable bit of SCR 

x Not Defined or Don't Care 

UN 

RES 

PA 

VA 

BM,ME,CE 

PTE[C] 

Unassigned ASI 

Reserved ASI and ASI 

defined but not implemented (see Table 8-15) 

Physical Address 

Virtual Address 

Bits in System Control Register (SCR) 

Cacheable bit of page table entry 

Table 8·4. MMU Operation Modes 

MMU Operation Modes 

Mode Conditions Results 
ASI BM ME CE Physical Addressing Caching MC MBL 

Local 1 X X X PA<35:32> = 0 PA<31:0>= Not 0 1 
VA<31:0> Cached 

UN, RES UN, RES X X X Ignore Ignore Ignore N/A N/A 

By-pass 20-2F X X X PA<35:32>= PA<31:0> = Not 0 0 
ASI<3:0> VA<31:0> Cached 

Pass-Through 8,9,A,B 0 0 X PA<35:32> = 0 PA<31:0>= Not SCR 0 
VA<31:0> Cached [C] 

Boot 8,9 1 X X PA<35:28>= FF PA<27:0>= Not SCR 1 
(Instr. access) VA<27:0> Cached [C] 

Boot A,B 1 0 X PA<35:32> = 0 PA<31:0>= Not SCR 1 
(Data access) VA<31:0> Cached [C] 

Translation 1 A,B X 1 0 PA<35:12> = PA<11:0> = Not PTE 0 
(Data Access PTE<31:8>* VA<11:0>* Cached [C] 
and Cache 
Disabled) 

Translation 2 A,B X 1 1 PA<35:12> = PA<11:0>= Cached if PTE 0 
(Data Access PTE<31:8>* VA<11:0>* PTE[C] =1 [C] 
and Cache 
Enabled) 

Translation 3 8,9 0 1 0 PA<35:12> = PA<11:0>= Not PTE 0 
(Instruction PTE<31:8>* VA<11:0>* Cached [C] 
Access and 
Cache Disabled) 

Translation 4 8,9 0 1 1 PA<35:12> = PA<11:0>= Cached if PTE 0 
(Instruction PTE<31:8>* VA<11:0>* PTE[C] =1 [C] 
Access and 
Cache Enabled) 

* ConcatenatIOn field Sizes vary depending upon the short translatIOn (ST) bits to proVide 4G, 16M, 256K, 4 Kbytes ofhnear address mappmg. 
Refer to Section 8.1.1 for further details. 
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The MMU provides three types of operating modes: boot modes, direct-access modes, and translation 
modes. Two boot modes are defined for the MMU, one for data accesses, and one for instruction accesses. 
The boot modes force the upper eight bits of the physical address to FF H for instruction accesses. The upper 
four bits are forced to zero for data accesses. These two modes also assert the MBus boot modellocal indica­
tor (MBL) signal. This signal can be used in the system to enable a memory region used only for system 
boot and configuration. This allows the system a secure method of accessing bootstrap ROM and shadow 
RAM separate from the main memory space. 

The direct access modes allow the integer unit to access the main memory without address translation by 
the MMU. These modes include: local, by-pass, and pass-through. Local mode enables the MBL signal 
and forces the upper four bits of the physical address to zero. The lower 32 bits of the physical address are 
supplied directly from the virtual address bus. This mode allows the integer unit to access the boot mode 
memory (if supported in the system) without changing the state of the system control register (SCR). Local 
mode is enabled by using a load or store alternate instruction with ASI = 1 H. t 

Bypass mode allows complete access to the main memory space. MBL is not enabled, and the lower four 
bits of the ASI are used as the upper bits of the physical address. The remaining 32 bits are supplied directly 
from the virtual address bus. The state of the SCR does not have to be modified. This mode is mapped into 
the ASI space as ASI = 20 - 2F H. 

Pass-through mode describes the CY7C604/605 operation with the MMU disabled. The upper four address 
bits of the physical address are forced to zero. The MBL signal is not asserted. This mode does not require 
non standard ASI assignments (i.e., ASI = 8,9,A,B H), but the boot mode (BM) and MMU enable (ME) bits 
of the SCR must be cleared. 

The translation modes are considered to be the normal operating modes of the MMU. This group includes 
four modes of translation operations: Translation 1-4. Translation 1 and 2 are the non-cached and cached 
data access modes. Translation 3 and 4 are the non-cached and cached instruction access modes. The cached 
and non-cached modes are identical in results for both data and instruction accesses, with the exception that 
the data access modes ignore the boot mode (BM) bit of the SCR. This feature allows the system to enable 
the MMU for data accesses, yet still access instructions from the boot memory space without changing the 
BMbit. 

8.2.1 MMU Flush and Probe Operations 

8.2.1.1 Flush Operations 

The flush operation allows software invalidation of selected entries in the TLB. TLB entries are flushed 
by executing a store alternate ASI instruction using ASI = 3 H and supplying a virtual address in the format 
shown in Figure 8-11. The context number is given by the context register (CXR). All TLB entries that 
match the virtual address, context, and TLB flush type will be flushed (invalidated) simultaneously. The 
flush type is specified in bits 11-8 of the virtual address for the flush operation. 

The CY7C604/605 supports five different types of TLB flushing operations. These types are: page, seg­
ment, region, context, and entire flush. The five types of flushing are listed in Table 8-5, and define the ad­
dress comparison required to match a TLB entry for flushing. The short translation (ST) bits in the TLB 
entries are ignored for TLB matching. All TLB entries matching the compare criterion of the flush type are 
invalidated, including those locked by the IRe. 

t The SPARC architecture reference supports the concept of Address Space Identifiers (AS!). which provide an extension 
of the standard addressing space. These bits are used to enable special addressing modes, or to provide access to registers 
and other features of the CY7C604. Refer to Section 8.8 for more information. 
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Virtual Address Format: 

I INDEX I I INDEX2 I INDEX3 TYPE RSV I 
31 24 23 18 17 12 11 8 7 0 

Figure 8-11. MMU Flush Address Format 

Table 8-5. TLB Entry Flushing 

Type Flush Compare Criterion 

0 Page Context (or ACC = 6, 7), 
Index 1, Index 2, and Index 3 

1 Segment Context (or ACC = 6, 7), 
Index 1, and Index 2 

2 Region Context (or ACC = 6, 7), 
and Index 1 

3 Context Context (user pages with 
ACC =Oto 5) 

4 Entire None 

5 toF Reserved 

8.2.1.2 Probe Operation 

The probe operation allows testing the TLB and page tables for a PTE entry corresponding to a virtual ad­
dress, The operation is initiated by executing a load alternate ASI instruction with ASI = 3 H, the appropriate 
virtual address, and the context number. The context is specified by the context register. Upon starting a 
probe operation, the TLB is probed first. If there is a TLB hit, it returns the 32-bit physical section of the 
matched entry. The returned entry fields are formatted such that it is identical to a PTE (see Section 8.1 A 
on page 8-11, for PTE format information). If a matching entry could not be found in the TLB, a table walk 
is started and an appropriate 32-bit value (PTE) is returned and loaded into the TLB. 

A probe operation causes the reference bit (R) to be set in the PTE by means of a table walk. When a probe 
operation hits the TLB, the R bit is always returned as set. 

The context register and access-level protection checking are ignored for TLB matching and during the 
probe operation table walk. The table walk hardware checks for invalid address error and translation error 
exceptions and records appropriate fields in the SFSR register as in the normal table walk process. If a bus 
error occurs or an invalid or reserved entry is detected during the table walk, a 32-bit zero value is returned 
as status. If a z_ero value is returned, the DC, TO, BE, L, and FT fields of the SFSR are updated accordingly, 
but the operation does not cause an exception to the CY7C601. 

8.3 CY7C604/ CY7C60S Cache Controllers 

The differences between the CY7C604 and CY7C605 become evident in the features of their respective 
cache controllers. The CY7C604 cache controller is designed for a uniprocessor system, and provides cache 
locking for real-time system support. The CY7C605 cache controller is enhanced to accommodate the re­
quirements of a multiprocessing system. The CY7C605 provides bus snooping and a Futurebus style of 
cache coherency protocol. The CY7C605 is designed to provide high visibility into its cache operations 
from the perspective of the shared physical bus in order to simplify support by a secondary cache system. 
The following sections discuss the CY7C604 and CY7C605 cache controllers. Sections specific to the 

8-17 



T , C H N 0 LOG Y, ,$ ============C;;;;;Y;;;;;7;;;;;C;;;6;;;;04;;;;:;/;:;;:;C;;;:;;Y;;;;;7;;:;;;C;;:;;;60:;;;;;5;;;;:;C:;;;;;M;;;::;V;;;;;: 

CY7C604 or CY7C605 are marked with that part number only. Sections applying to both the CY7C604 
and the CY7C605 are marked "CY7C604/605." 

8.3.1 CY7C604/605 Cache Modes 

The CY7C604/605 virtual cache can be programmed for either write-through with no write allocate or 
copy-back with write allocate. The two cache modes differ in how they treat cache write accesses. 
Write-through cache mode causes write hits to the cache to be written to both cache and main memory. 
Write-through write cache misses only update main memory; they do not modify the cache. For the 
CY7C604, write-through write cache misses also invalidate the cache tag, but the CY7C605 only invali­
dates the cache tag if an alias is detected. 

A write access in copy-back mode only modifies the cache. The writing of the modified cache line to main 
memory is deferred until the cache line is no longer required. Copy-back cache mode has the advantage of 
reducing traffic on the system bus. Bus traffic is reduced since all updates to memory are deferred and are 
performed subsequently only as absolutely required. In addition, all such data transfers are made utilizing 
the more efficient burst mode. The following describes the two cache modes in detail. 

8.3.1.1 CY7C604160S Write-Through Mode with No Write Allocate 

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated 
simultaneously. A write access cache miss causes only main memory to be updated (no write allocate). The 
selected cache line is invalidated for a write access cache miss. Write-through caching mode normally re­
quires a processor to delay during a write miss while the data is written to main memory. The CY7C604/605 
provides write buffers to prevent this delay in most cases. The write buffers store the write access and write 
the data to main memory as a background task. (Refer to page 8-37 for further information on the write buff­
ers.) 

During read access cache hits, the cached data is read out and supplied to the CY7C601. In the case of a read 
access cache miss. a cache line is fetched from main memory to load into the cache and the required data 
is supplied to the CY7C601. 

8.3.1.2 CY7C604160S Copy-Back Mode with Write Allocate 

When the cache is configured for copy-back mode, only the cache is updated on write access cache hits (i.e., 
main memory is not updated). The modified bit of the cache tag for the cache line is set on a copy-back write 
access (write hit or after a write miss is corrected). During write access cache misses, if the selected cache 
line is clean (not modified), a cache line is fetched from main memory to load into the cache and only the 
cache is updated. If the selected cache line is modified, the selected cache line is flushed out to update main 
memory. The CY7C604/605 simultaneously fetches the new cache line from main memory and stores it into 
the read buffer as it flushes the modified cache line from the cache and stores it into its write buffer. After 
the modified cache line has been flushed, the CY7C604/605 writes the modified cache line out of its write 
buffer into main memory while the new cache line is stored into the cache memory from the read buffer. 

During read access cache hits, the cached data is read out and supplied to the CY7C601. During read access 
cache misses, if the selected cache line is clean (not modified), a cache line is fetched from main memory 
to load into the cache. If the selected cache line is modified, the selected cache line is flushed out to the 
CY7C604/605 write buffer, and a new cache line is fetched from main memory and stored into the read buff­
er. The new cache line is then stored in the cache from the read buffer, while the modified cache line stored 
in the write buffer is written out to main memory. 

8.3.2 CY7C604 Cache Controller 

The cache controller provides cache memory access control for a 64-Kbyte direct mapped virtual cache. The 
cache controller is designed to use two CY7C157 Cache Storage Units for the cache memory. These cache 
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RAMs are 16-Kbyte x 16 SRAMs with on-chip address and data latches and timing control. The CY7C601 
cache can be expanded to a maximum of 256 Kbytes by adding additional groups of one CY7C604 and two 
CY7C157s. Using multiple CY7C604s to expand the cache is referred to as a multichip configuration for 
the CY7C604, and is described in Section 8.5, Multichip Configuration. 

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604 has 2048 cache tag entries 
on-chip, one tag entry for each cache line. Addressing for the virtual cache is provided directly from the 
virtual address bus. The virtual address field VA<15:5> selects one ofthe 2048 lines of the cache. This ad­
dress field also selects one of the corresponding cache tag entries in the CY7C604. A cache hit occurs when 
the upper sixteen bits of the virtual address and the context register match with the virtual address and con­
text stored in the selected cache tag entry. The lowest five bits of the virtual address bus (VA<4:0» select 
one or more ofthe 32 bytes in the cache line. Cache data replacement is always performed by replacing cache 
lines. 

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the 
cache controller. The CY7C604 controls cache read access by holding the CY7C601 with MHOLD if a 
cache hit is not detected by the cache controller. The cache controller then reads the new cache line from 
main memory, and supplies the correct data to the CY7C601. After the correct data is latched into the 
CY7C601 by strobing the MDS signal, the CY7C601 is released and execution proceeds normally. 

Writes to the cache are controlled by the CY7C604, which decodes the lowesttwo bits ofthe virtual address, 
the SIZE<I:0> signal, and checks for a cache hit to enable the correct cache byte write enable signals. If 
a cache write hit occurs, the CY7C604 decodes the correct CBWE signals for the write access, and outputs 
these to the CY7C157 Cache Storage Unit write enables. If the cache mode is set to write-through (see Sec­
tion 8.3.1, Cache Modes), the write data is also written to main memory. If a write cache miss occurs for 
write-through cache mode, the data is written to main memory and the cache is not updated. If the write 
cache miss occurs during copy-back cache mode (see Figure 8-14 ) and the selected cache line is not modi­
fied, the missed cache line is fetched from main memory. If a write cache miss occurs during copy-back 
mode and the selected cache line is modified, the CY7C604 simultaneously flushes the modified cache line 
into the write buffers while it fetches the new cache line from main memory. After the cache line has been 
replaced, the write access is enabled by the CY7C604. The modified cache line is written to main memory 
from the write buffers as a background task. 

8.3.2.1 CY7C604 Cache Tag 

The CY7C604 features 2048 direct-mapped cache tag entries, as shown in Figure 8-12. The on-chip cache 
tag and the TLB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address 
(VA<31:16», a 12-bit context number (CXN<11:0», one valid bit (V) and one modified bit (M). The valid 
bit (V) is set or cleared to indicate the validity of the cache tag entry. The modified bit (M) of a cache tag 
entry is set during copy-back mode after a write access to the cache line. This indicates that the cache line 
has been modified. The modified bit has no meaning for write-through cache mode. The cache line select 
field (VA<15:5» is used to select a cache line entry and its corresponding cache tag entry. The address field 
VA<31:16> and context register are compared against the virtual address and the context fields ofthe se­
lected cache tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache 
miss is generated. To complete an access successfully, both the cache tag and the TLB must be hit with ap­
propriate access-level permission. Upon power-on reset (POR), all cache tag entries are invalidated (all V 
bits are cleared). 

A supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the 
supervisor only (access-level field 6 or 7), the S bitis set. During a cache tag look up, ifthe access is supervi­
sor mode and the the S bit is set, the context number comparison is ignored and the context match is forced. 
This operation is similar to a TLB look up with access-level field set to either 6 or 7. 
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Figure 8-12. CY7C604 Cache Tag 

8.3.2.2 CY7C604 Address Aliasing 

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be de­
tected to maintain data consistency in a virtual cache system. The SPARC reference system software con­
vention permits the use of aliases in address spaces that are modulo with respect to the system's underlying 
cache size. In order to allow the efficient caching of physical memory pages where such aliases may occur, 
the CY7C604 supports automatic address aliasing protection. 

The CY7C604 tests for address aliasing during copy-back read or copy-back write cache misses or during 
write-through read misses. The MMU must be enabled to allow the CY7C604 to test and correct address 
aliases. 

To detect address aliasing, the virtual address of the selected cache tag entry is translated through the MMU. 
The translated physical address is compared with the physical address of the missed cache access. If the 
physical address of the selected cache tag entry and the physical address of the cache miss match, then ad­
dress aliasing is detected. 

The SPARC system software convention ensures that the aliasing maps to the same cache line address for 
a particular CY7C604. Coupled with this convention, the cache controller hardware automatically prevents 
any existence of address aliases in the virtual caches. 

Aliasing is checked during a cache miss. If detected, an alias is corrected by updating the selected cache 
tag entry with the new virtual address. The CY7C604 then halts the cache miss processing and provides an 
access to the cache, as with a cache hit. If no alias is detected, the cache miss processing proceeds normally. 
The state diagrams for write-through and copy-back cache modes with alias detection and correction are 
illustrated in Figure 8-13 and Figure 8-14. 
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Figure 8-13. CY7C604 Write-Through with No Write Allocate 
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Figure 8-14. CY7C604 Copy-Back with Write Allocate 
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In copy-back mode, address aliasing is checked during a read- or a write-access cache miss. For an alias 
detected during a read-access cache miss, the selected cache tag entry is updated with the virtual address 
that caused the cache miss. The cache miss processing is halted, and the CY7C601 is supplied with data from 
the cache. 

If an address alias is detected during a write access cache miss, the selected cache tag entry is updated with 
the new virtual address that caused the cache miss. The modified bit is set if it was not set previously. The 
cache miss processing is halted, and the cache write access is enabled. 

In write-through mode, address aliasing is checked only on read-access cache misses. If an address alias is 
detected on a read-access cache miss, the old cache tag entry is replaced with the new virtual address. The 
cache miss is halted, and the cache supplies the data requested. 

In write-through cache mode, address aliasing is not checked during write-access cache misses. In order 
to avoid potential address aliasing, the selected cache line is invalidated. Address aliasing is not checked 
in this case in order to avoid unnecessary performance degradation. 

To detect address aliasing, the selected cache line address is translated through the TLB. Protection checking 
is ignored during this translation. The translation may occasionally cause a TLB miss. If this happens in a 
write-through read miss case, the alias checking and the TLB miss are ignored. In a copy-back read miss 
or a write miss when the selected cache line is clean, alias checking and TLB miss processing are ignored. 
To provide data consistency, the table walk is performed in order to detect address aliasing in a copy-back 
read miss or a write miss when the selected cache line is modified. 

8.3.2.3 CY7C604 Cache Lock 

The CY7C604 supports a cache lock mechanism that allows the system to lock all entries in the cache. This 
feature is provided to allow deterministic response times for real-time systems. The cache lock function af­
fects only cache miss operations, since it locks out cache line replacement of valid entries. Since alias deiec­
tion is not enabled, shared memory pages must be declared as non-cacheable when the cache is locked. The 
following description summarizes each case in detail: 

a. Write-through read miss and selected entry is invalid: A new cache line is fetched from main memory 
to load into the cache and the requested data is supplied to CY7C601 as in normal operation mode. 

b. Write-through read miss and selected entry is valid: The requested data is obtained from main memory 
as a non-burst transaction on the MBus and supplied to the CY7C601, but is not loaded into the cache. 

c. Write-through write miss: The selected cache line is invalidated in order to prevent data inconsistency 
due to potential address aliasing. 

d. Copy-back read miss and selected entry is invalid: A new cache line is fetched from main memory to 
load into the cache and the requested data is supplied to CY7C601 as in a normal operation. 

e. Copy-back read miss, selected entry is valid: The requested data is obtained from main memory as a 
non-burst transaction on the MBus and supplied to the CY7C601, but is not loaded into the cache. 

f. Copy-back write miss and selected entry is invalid: A new cache line is fetched from main memory 
to load into the cache and the CY7C601 data is stored in the cache as in a normal operation. 

g. Copy-back write miss and selected entry is valid: The CY7C601 data is stored in the main memory as 
a non-burst transaction on the MBus, but the cache is not updated. 
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8.3.3 CY7C60S Cache Controller 

The cache controller provides cache memory access control for a 64-Kbyte direct-mapped virtual cache. 
The cache controller performs this task by comparing memory accesses against the address and status entries 
in a cache tag memory. The CY7C605 provides two separate cache tag memories for access comparison. 
Cache memory accesses from the processor are compared against the processor virtual cache TAG 
(PVTAG) memory. Bus snooping operations are compared against the MBus physical cache TAG 
(MPTAG) memory. The use of two cache tag memories allows the cache controller to service processor 
cache accesses concurrently with bus snooping cache tag accesses. This feature of the CY7C605 provides 
significant performance improvements over cache systems sharing a single cache tag memory between the 
processor cache access and the bus snooping operations. Single cache tag systems typically must stall the 
processor when a bus snooping operation is required, causing serious performance degradation. 

The cache controller is designed to use two CY7C157 Cache Storage Units for the cache memory. These 
cache RAMs are 16-Kbyte x 16 SRAMs with on-chip address and data latches and timing control. Two 
CY7C157s and one CY7C604/CY7C605 comprise an entire 64-Kbyte cache system with physical bus in­
terface and read and write buffers. 

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604/CY7C605 has 2048 cache tag 
entries in both the PVTAG and MPTAG, one entry in each cache tag memory per cache line. Addressing 
for the virtual cache is provided directly from the virtual address bus. The virtual address field VA<15:5> 
selects one of the 2048 lines of the cache (refer to Figure 8-15). This address field also selects the cache 
tag entry in the PVTAG dedicated to the selected cache line. A cache hit occurs when the upper sixteen bits 
of the virtual address and the context register match with the virtual address and context stored in the selected 
cache tag entry in PVTAG. The lowest five bits of the virtual address bus (VA<4:0» select one or more of 
the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lines. 

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the 
cache controller. The CY7C605 controls cache read access by holding the CY7C601 with MHOLD if a 
cache hit is not detected by the cache controller. The cache controller then reads the new cache line from 
main memory, and supplies the correct data to the CY7C601. After the correct data is latched into the 
CY7C601 by strobing the MDS signal, the CY7C601 is released and execution proceeds normally. 

Writes to the cache are controlled by the CY7C604/CY7C605, which decodes the lowest two bits of the vir­
tual address, the SIZE<1 :0> signal, and checks for a cache hit to enable the correct cache byte write enable 
signals. If a cache write hit occurs, the CY7C604/CY7C605 the correct CBWE signals for the write access, 
and outputs these to the CY7C157 Cache Storage Unit write enables. If the cache mode is set to 
write-through (see Section 8.3.1, Cache Modes), the write data is also written to main memory. If a write 
cache miss occurs for write-through cache mode, the data is written to main memory and the cache is not 
updated. If the write cache miss occurs during copy-back cache mode, the cache line is fetched from main 
memory. If the cache line stored in the cache when the write cache miss occurred has been modified, the 
old cache line is written to main memory before the cache line is replaced by the new data. After the cache 
line has been replaced, the write access is enabled by the CY7C604/CY7C605. 

8.3.3.1 CY7C605 Cache Tag 

The CY7C605 features two separate cache tag arrays: the processor virtual cache tag memory (PVTAG) 
and the MBus physical cache tag memory (MPTAG). Cache controllers using only one cache tag array must 
delay the processor when bus snooping requires access to the cache tags. The inclusion of two independent 
cache tag memories allows the CY7C605 to support processor accesses to cache while simultaneously per­
forming bus snooping on the MBus. 
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Figure 8-15. CY7C605 Processor Virtual Cache Tag (PVTAG) Comparison 

8.3.3.1.1 CY7C605 Processor Virtual Cache Tag (PVTAG) 

The PVTAG consists of 2048 direct-mapped cache tag entries, as shown in Figure 8-/6. The PVTAG and 
the TLB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address 
(VA<3l:l6», a l2-bit context number (CXN<11:0», one valid bit (V), and one shared bit (SH). The valid 
bit (V) is set or cleared to indicate the validity of the cache tag entry. The shared bit (SH) of a cache tag entry 
is set when bus snooping indicates that the cache line is shared. The cache line select field (VA<15:5» is 
used to select a cache line entry and its corresponding cache tag entry. The address field VA<3l:l6> and 
context register are compared against the virtual address and the context fields of the selected cache tag 
entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is generated. 
To complete an access successfully, both the cache tag and the TLB must be hit with appropriate access-level 
permission. On power-on reset (POR), all cache tag entries are invalidated (all V bits are cleared). 

A supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the 
supervisor only (access-level field 6 or7), the S bit is set. During a cache tag look up, if the access is supervi­
sor mode and the the S bit is set, the context number comparison is ignored and the context match is forced. 
This operation is similar to a TLB look up with access-level field set to either 6 or 7. 

8.3.3.1.2 CY7C605 MBus Physical Cache Tag (MPTAG) 

The MPTAG consists of 2048 direct-mapped, physical address cache tag entries (refer to Figure 8-16). 
Each entry in the cache consists of24 bits of physical address (PA(35: 12)), a valid bit (V), a shared bit (SH), 
and a modified bit (M). 

The 2048 MPTAG entries are virtual address indexed. The index field for MPTAG, as supplied by the MBus, 
is formed by concatenating the superset virtual address bits <15: 12> (MAD<49:46» with physical address 
bits <11 :5> (MAD<l1 :5» (refer to Figure 8-17). The format of the MBus address bus cycle is described 
in Section 11.1.5 of Chapter 11. 
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Figure 8-17. CY7C60S MBus Physical Cache Tag (MPTAG) Comparison 

0 

During a MPTAG compare operation, the physical address field <35: 12> of the access is compared against 
the physical address field of the MPTAG entry selected by the virtual address index. If a match occurs and 
the valid bit is set, a cache hit is generated. If a match is not found, or the valid bit is not set, a cache miss 
is generated. On Power-On Reset (POR), all the MPTAG cache entries are invalidated (V bits are cleared). 

8.3.3.2 CY7C605 Multiprocessing Support 

The CY7C605 is specifically designed to support multiprocessing systems. The CY7C605 accomplishes 
this by providing features necessary to maintain cache coherency with a second-level memory system (typi­
cally main memory or a secondary cache) and other caching systems on the shared bus. 

The CY7C605 supports two modes of caching: write-through and copy-back. Operation in write-through 
caching mode causes main memory to be modified with each write access to the cache. This avoids the issue 
oflack of coherency between the individual cache systems and main memory, but greatly increases memory 
bus traffic. The effect of this increased bus traffic is a degrading of the performance of a multiprocessor sys­
tem as the processing nodes compete for memory bus bandwidth. This problem is greatly reduced when 
copy-back caching mode is used. 

Operation in copy-back mode causes all changes to a cache line to be held until the line is flushed from the 
cache. This minimizes bus traffic to only those transactions necessary to maintain the cache. However, by 
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allowing the cache line to be modified without updating main memory, a problem arises when other process­
ing nodes require an up-to-date copy of that memory location. The problem of modified cache lines is solved 
by the enforcement of a cache coherency protocol. 

The CY7C605 implements a cache coherency protocol specified by the SPARC reference standard MBus 
level-2 interface. This protocol is modeled after that used by the IEEE Futurebus. In this protocol, each cache 
line is described by one of five states: invalid (I), exclusive clean (EC), exclusive modified (EM), shared 
clean (SC), and shared modified (SM). The following describes these five cache states: 

Invalid (I): Cache line is not valid. 

Exclusive Clean (EC): Only this cache module has a valid copy of this cache line, other than the next level 
of memory (main memory or secondary cache). No other cache module on the same level of memory has 
a valid copy of this cache line. 

Exclusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module 
is the OWNER ofthe cache line, and has the responsibility to update the next level of memory (main memory 
or secondary cache) and also to supply data if any other cache references this memory location. 

Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of 
memory mayor may not contain a valid copy of this cache line, depending upon whether this cache line has 
been modified in any other cache. 

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache mod­
ule is the OWNER of the cache line. The next level of memory does not have a valid copy of this cache line, 
and this cache module has the responsibility to update the next level of memory and to supply any other 
cache that may reference this same memory location. 

These five states are described by three state bits (valid (V), shared (SH), and modified(M» in each MPTAG 
cache tag entry (refer to Figure 8-16). The PVTAG cache tag entries are described by two state hit8: valid 
(V), and shared (SH). The PVTAG cache tag entries corresponding to the same cache lines can be in one 
of three states: invalid, exclusive valid, and shared valid. 

In write-through cache mode, only the valid and invalid states apply to either the MPTAG or PVTAG cache 
tag entries. The shared and modified bits in the MPTAG, and the shared bit in the PVTAG, are ignored by 
the CY7C605. 

8.3.3.3 CY7C60S Cache State Transitions 

The following sections describe the five cache line states (invalid, exclusive clean, exclusive modified, 
shared clean, and shared modified) and the transitions these states undergo due to transactions on the MBus. 
Each numbered transition in a section corresponds to a numbered transition on the state diagram for that 
section. Note that state transitions are dependent upon both the cache transaction and the state of the MBus 
signals: memory shared (MSH), and memory inhibit (MIR). 

All processor transactions described in this section affect the processor serviced by the CY7C605. All Co­
herent transactions affect all bus agents on the MBus with a copy of the shared cache line. For further infor­
mation on MBus transactions, please refer to Section 11.1.7. 

8.3.3.3.1 Copy-Back Invalid 

Processor Read Miss: CY7C605 issues a Coherent Read transaction on the MBus. The CY7C605 will read 
the cache line from the second-level memory and then load it into the cache RAM. Then the data is supplied 
to the processor in the cycle following the last cache line entry. 
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1. If MSH = HIGH, then invalid changes to exclusive valid in PVTAG and invalid changes to exclusive 
clean in MPTAG. 

2. If MSH = LOW, then invalid changes to shared valid in PVTAG and invalid changes to shared clean 
inMPTAG. 

Processor Write Miss: CY7C605 issues a Coherent Read and Invalidate transaction on the MBus. The 
CY7C605 reads the cache line from the second-level memory and loads it into the cache RAM. Then the 
processor data is written into the cache RAM in the cycle following the last cache line entry. 

3. Invalid changes to exclusive valid in PVTAG and invalid changes to exclusive modified in MPTAG. 

3 

Figure 8-18. Copy-back Invalid 

8.3.3.3.2 Copy-back Exclusive Clean 

Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately. 

1. PVTAG entry is exclusive valid; exclusive clean in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 will issue a Coherent Read transaction on the MBus. The CY7C605 
will read the cache line from the second-level memory and then load it into the cache RAM. Then the data 
is supplied to the CY7C601 in the cycle following the last cache line entry. 

2. If MSH = HIGH, then exclusive valid in PVTAG; exclusive clean in MPTAG. 

3. If MSH = LOW, then shared valid in PVTAG; exclusive clean changes to shared clean in MPTAG. 
Processor Write Hit: The CY7C605 will update the cache immediately with the CY7C601 data. 

4. PVTAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG. 
Processor Write Miss: The CY7C605 will issue a Coherent Read and Invalidate transaction on the MBus. 
The CY7C605 will read the cache line from the second-level memory and then load it into the cache RAM. 
Then the processor data is written into the cache RAM in the cycle following the last cache line entry. 

5. PVTAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG. 
Software Flush (Store alternate instruction withASI = lOH to 14H; see Section 8.3.7): The CY7C605 will 
invalidate both the PVTAG and MPTAG cache tag entries. 

6. Exclusive valid is changed to invalid in PVTAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Read: During the A+2 cycle of the MBus Coherent Read transaction, the CY7C605 will assert 
MSH and change the state of the cache line from exclusive clean to shared clean. 
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7. Assert MSH; exclusive clean is changed to shared clean in MPTAG and shared valid in PVTAG. 

Coherent Read and Invalidate: Both the PVTAG and the MPTAG cache tag entries in the CY7C605 are 
invalidated. 

8. Exclusive valid is changed to invalid in PVTAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Invalidate: Both the PVTAG and the MPTAG entries in the CY7C605 are invalidated. 

9. Exclusive valid is changed to invalid in PVTAG; exclusive clean is changed to invalid in MPTAG. 

Coherent Write and Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries. 

10. Exclusive valid is changed to invalid in PVTAG and exclusive clean is changed to invalid in MPTAG. 

8 
3,7 

6,8, 
9,10 

d 4,5 

Figure 8-19. Copy-back Exclusive Clean 

8.3.3.3.3 Copy-back Shared Clean 

Processor Read Hit: The CY7C605 will supply data immediately to the CY7C601. 

1. PVTAG entry is shared valid; shared clean in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 will issue a Coherent Read transaction on the MBus. The CY7C605 
will read the cache line from the second-level memory and load it into the cache RAM. Then the data is 
supplied to the CY7C601 in the cycle following the last cache line entry. 

2. If MSH = HIGH, then exclusive valid in PVTAG and shared clean is changed to exclusive clean in 
MPTAG. 

3. If MSH = LOW, then shared valid in PVTAG and shared clean in MPTAG. 

Processor Write Hit: The CY7C605 issues a Coherent Invalidate transaction on the MBus. The CY7C605 
will wait for MRDY before updating the cache with the processor data in case a Relinquish and Retry is 
received. 

4. PVTAG entry is exclusive valid; shared clean is changed to exclusive modified in MPTAG. 

Processor Write Miss: The CY7C605 will issue a Coherent Read and Invalidate transaction on the MBus. 
The CY7C605 will read the cache line from the second-level memory and then load the data into the cache 
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RAM. The processor data is written into the cache RAM in the cycle following the last cache line entry. 

5. PVTAG entry is changed to exclusive valid; shared clean is changed to exclusive modified in the 
MPTAG. 

Software Flush: The CY7C605 will invalidate both the PVTAG and MPTAG cache tag entries. 

6. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG. 

Coherent Read: During the A+2 cycle of the MBus Coherent Read transaction, the CY7C605 will assert 
the MSH. 

7. Assert MSH; shared clean in MPTAG and shared valid in PVTAG. 

Coherent Read and Invalidate: Both the PVTAG and the MPTAG cache tag entries will be invalidated. 

8. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG. 

Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries are invalidated. 

9. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG. 

Coherent Write and Invalidate: Both the PVTAG and MPTAG cache tag entries are invalidated. 

10. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG. 

Figure 8--20. Copy-back Shared Clean 
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Figure 8-21. Copy-back Exclusive Modified 

8.3.3.3.4 Copy-Back Exclusive Modified 

Processor Read Hit: The CY7C605 will supply data to the processor immediately. 

1. PVTAG entry is exclusive valid; exclusive modified in MPTAG: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 will initiate a Coherent Read transaction followed by a block write 
transaction of the previously modified cache line. The CY7C605 will read the cache line from the second-le­
vel memory and load the data into the cache RAM. Then the data will be supplied to the processor in the 
cycle following the last cache line entry into the cache RAM. The modified cache line has to be written to 
update the second-level memory. The MBus busy (MBB) signal is asserted from the beginning of the Co­
herent Read transaction to the end of the write transaction on the MBus, unless a Relinquish and Retry is 
received for either transaction. To insure coherency in this case, the system must insure that there is no co­
herent transaction on the MBus between the read and write that requires the invalidation or intervention of 
the data in the write buffer (there is no snooping on the write buffer). 

2. If MSH = HIGH, then the PVTAG entry is exclusive valid, and the MPTAG entry is changed from 
exclusive modified to exclusive clean. 

3. If MSH = LOW, then the PVTAG entry is changed to shared valid, and the MPTAG entry is changed 
from exclusive modified to shared clean. 

Processor Write Hit: The CY7C605 will update the cache immediately with the processor data. 

4. PVTAG entry is exclusive valid; exclusive modified remains as exclusive modified in MPTAG. 

Processor Write Miss: The CY7C605 will initiate a Coherent Read and Invalidate transaction followed by 
a block write transaction of the previously modified cache line. The CY7C605 will read the cache line from 
the second-level memory and load it into the cache RAM. The processor data is written into the cache RAM 
in the cycle following the last cache line entry into the cache RAM. The modified cache line must be written 
into the second-level memory in order to update the memory. The MBB signal is asserted from the beginning 
of the Coherent Read and Invalidate transaction to the end of the write transaction on the MBus, unless a 
Relinquish and Retry is received for either transaction. To insure coherency in this case, the system must 
insure that there is no coherent transaction on the MBus between the read and write that requires the invalida­
tion or intervention of the data in the write buffer (there is no snooping on the write buffer). 
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S. PVTAG entry remains exclusive valid; the MPTAG entry remains exclusive modified. 

Software Flush: The CY7C60S initiates a block write transaction on the MBus. The CY7C60S will write 
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and 
MPTAG cache tag entries. 

6. Exclusive valid is changed to invalid in PVTAG; exclusive modified is changed to invalid in MPTAG. 

Coherent Read: During the A+2 cycle of the Coherent Read transaction on the MBus, the CY7C60S asserts 
both the MSH and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible to supply 
the data for the Coherent Read transaction on the MBus. 

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C60S changes 
the state of the MPTAG cache tag entry from exclusive modified to shared clean, and the PVTAG entry 
from exclusive valid to shared valid. 

8. If the memory reflection (MR) bit of the SCR is cleared, the CY7C605 changes the state of the MPTAG 
entry from exclusive modified to shared modified. The PVTAG entry is changed to shared valid. 

Coherent Read and Invalidate: During the A+2 cycle of a Coherent Read and Invalidate transaction on the 
MBus, the CY7C605 asserts the MIH signal. This CY7C605 is the OWNER ofthe cache line, and is respon­
sible to supply the data for the Coherent Read transaction on the MBus. Both the PVTAG and MPTAG cache 
tag entries are invalidated. 

9. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid 
in the MPTAG entry. 

Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries in the CY7C605 are invalidated. 

10. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid 
in the MPTAG entry. 

Coherent Write and Invalidate: Both the PVTAG and the MPTAG cache tag entries are invalidated. 

11. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid 
in the MPTAG entry. 

8.3.3.3.5 Copy-back Shared Modified 

Processor Read Hit: The CY7C605 will supply data immediately to the CY7C601. 

1. PVTAG entry is shared valid; shared modified in MPTAG: NO STATE CHANGE. 

Processor ReadMiss: The CY7C60S will initiate a block read transaction followed by a block write transac­
tion of the previously modified cache line. The CY7C605 will read the cache line from the second-level 
memory and load the data into the cache RAM. Then the data will be supplied to the processor in the cycle 
following the last cache line entry into the cache RAM. The modified cache line has to be written to update 
the second-level memory. The MBB signal is asserted from the beginning of the Coherent Read transaction 
to the end of the write transaction on the MBus, unless a Relinquish and Retry is received for either transac­
tion. To insure coherency in this case, the system must insure that there is no coherent transaction on the 
MBus between the read and write that requires the invalidation or intervention of the data in the write buffer 
(there is no snooping on the write buffer). 
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2. If MSH = HIGH, the PVTAG entry changes to exclusive valid. The MPTAG entry is changed from 
shared modified to exclusive clean. 

3. IfMSH = LOW, then the PVTAG entry changes to shared valid, and the MPTAG entry is changed from 
shared modified to shared clean. 

Processor Write Hit: The CY7C605 issues a Coherent Invalidate transaction on the MBus. The CY7C605 
will wait for MRDY before updating the cache with the processor data in case a Relinquish and Retry is 
received. 

4. The PVTAG entry changes to exclusive valid; the entry in the MPTAG is changed from shared 
modified to exclusive modified. 

Processor Write Miss: The CY7C605 will initiate a Coherent Read and Invalidate transaction followed by 
a block write transaction of the previously modified cache line. The CY7C605 will read the cache line from 
the second-level memory and load it into the cache RAM. The processor data is written into the cache RAM 
in the cycle following the last cache line entry into the cache RAM. The modified cache line must be written 
into the second-level memory in order to update the memory. The MBB signal is asserted from the beginning 
of the Coherent Read and Invalidate transaction to the end of the write transaction on the MBus, unless a 
Relinquish and Retry is received for either transaction. To insure coherency in this case, the system must 
insure that there is no coherent transaction on the MBus between the read and write that requires the invalida­
tion or intervention of the data in the write buffer (there is no snooping on the write buffer). 

5. PVTAG entry is exclusive valid; the MPTAG entry is changed from shared modified to exclusive 
modified. 

Software Flush: The CY7C605 initiates a block write transaction on the MBus. The CY7C605 will write 
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and 
MPTAG cache tag entries. 

6. Shared valid is changed to invalid in PVTAG; shared modified is changed to invalid in MPTAG. 

Coherent Read: During the A+2 cycle of the Coherent Read transaction on the MBus, the CY7C605 asserts 
both the MSH and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible to supply 
the data for the Coherent Read transaction on the MBus. 

o 
;I 
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Figure 8-22. Copy-back Shared Modified 
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7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C605 changes 

the state of the MPTAG from shared modified to shared clean, and the PVTAG entry is shared valid. 

8. If the MR bit of the SCR is not set, then the PVTAG remains shared valid and the MPTAG remains 
shared modified. 

Coherent Read and Invalidate: During the A+2 cycle of a Coherent Read and Invalidate transaction on the 
MBus, the CY7C605 asserts the MIH signal. This CY7C605 is the OWNER of the cache line, and is respon­
sible to supply the data for the Coherent Read transaction on the MBus. Both the PVTAG and MPTAG cache 
tag entries are invalidated. 

9. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the 
MPTAG entry. 

Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries in the CY7C605 are invalidated. 

10. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the 
MPTAG entry. 

Coherent Write and Invalidate: Both the PVTAG and the MPTAG cache tag entries are invalidated. 

11. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the 
MPTAG entry. 

8.3.3.3.6 Write-through Invalid 

Processor Read Miss: The CY7C605 issues a block read transaction on the MBus. The CY7C605 will read 
the cache line from the second-level memory and load the data into the cache RAM. The data will be 
supplied to the processor in the cycle following the last cache line entry written to the cache RAM. 

1. The PVTAG and MPTAG entries are changed from invalid to valid. 

Processor Write Miss: The CY7C605 will issue a write-buffered Coherent Write and Invalidate transaction 
on the MBus. 

2. The PVTAG and MPTAG entries remain invalid. 

1 

Figure 8-23. Write-through Invalid 
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Figure 8-24. Write-through Valid 

8.3.3.3.7 Write-through Valid 

Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately. 

1. The PVTAG and MPTAG entries remain valid: NO STATE CHANGE. 

Processor Read Miss: The CY7C605 issues a block read transaction on the MBus. The CY7C605 will read 
the cache line from the second-level memory and load the data into the cache RAM. The data will be 
supplied to the processor in the cycle following the last cache line entry written to the cache RAM. 

2. The PVTAG and MPTAG entries remain valid. 

Processor Write Hit: The CY7C605 issues a write-buffered Coherent Write and invalidation transaction 
on the MBus. The CY7C605 will write data into the cache. 

3. The PVTAG and MPTAG entries remain valid. 

Processor Write Miss: The CY7C605 issues a write-buffered Coherent Write and Invalidate transaction on 
the MBus. The CY7C605 will write to main memory only and not to cache. If an alias is detected, the 
CY7C605 will also invalidate the cache line; if no alias is detected, the cache line is not invalidated. 

4. The PVTAG and MPTAG entries change from valid to invalid. 

Software Flush: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries. 

5. The PVTAG and MPTAG entries change from valid to invalid. 

Coherent Read: During the A+2 cycle ofthe MBus Coherent Read transaction, the CY7C605 asserts MSH. 

6. Assert MSH; the PVTAG and MPTAG entries remain valid. 

Coherent Read and Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries. 

7. The PVTAG and MPTAG entries change from valid to invalid. 

Coherent Write and Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries. 

8. The PVTAG and MPTAG entries change from valid to invalid. 

Coherent Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries. 

9. The PVTAG and MPTAG entries change from valid to invalid. 

8.3.3.3.8 Bus Snooping 

The CY7C605 bus snooper watches MBus transactions and snoops into the MPTAG array for certain trans­
actions, as listed in Table 8-6. 
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8.3.3.4 CY7C605 Address Aliasing 

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be de­
tected to maintain data consistency in a virtual cache system. The SPARC reference system software con­
vention permits the use of aliases in address spaces that are modulo with respect to the system's underlying 
cache size. In order to allow the efficient caching of physical memory pages where such aliases may occur, 
the CY7C605 supports automatic address aliasing protection. 

Table 8-6. MBus Snooping Transactions 

Cache Mode Transaction Type Snoop 

Copy-Back Coherent Read & Invalidate yes 

Coherent Write & Invalidate yes 

Coherent Read yes 

Coherent Invalidate yes 

Read no 

Write no 

Write-Through Coherent Read & Invalidate yes* 

Coherent Write & Invalidate yes 

Coherent Read yes* 

Coherent Invalidate yes* 

Read no 

Write no 

* these transactions are not generated by the CY7C605, but the CY7C605 will snoop these transactions if generated by 
another bus master 

The SPARC system software convention ensures that the aliased entry maps to the same cache line address 
for each CY7C605 in the multiprocessor system. Coupled with this convention, the cache controller hard­
ware automatically prevents any existence of address aliases in the virtual caches. 

The CY7C605 tests for address aliasing during all cache misses. Address aliasing cannot occur unless the 
MMU is enabled (ME bit of SCR). To detect address aliasing in the CY7C605, the physical address of the 
missed cache access is compared with the selected MPTAG entry. 

If the physical address of the selected MPTAG entry and the physical address of the cache miss match, then 
address aliasing is detected. If detected, an alias is corrected by updating the selected cache tag entry with 
the new virtual address. The CY7C605 then halts the cache miss processing and provides an access to the 
cache, as with a cache hit. If no alias is detected, the cache miss processing proceeds normally. 

For an alias detected during a read-access cache miss, the selected cache tag entry is updated with the virtual 
address that caused the cache miss. The cache miss processing is halted, and the CY7C601 is supplied with 
data from the cache. 

If an address alias is detected during a copy-back mode write-access cache miss, the selected cache tag entry 
is updated with the new virtual address causing the cache miss. The modified bit is set if it was not set pre­
viously. The cache miss processing is halted, and the cache write access is enabled. 

If an alias is detected on a write-through write-access cache miss, the cache line is written to main memory 
only (i.e., the cache is not updated) and the cache tag for that line is invalidated. If an alias is not detected, 
the cache line is still written to main memory, but the cache line is not invalidated. 

8.3.4 CY7C604/CY7C60S Cache Control Signals 

The CY7C604/605 controls the virtual cache through control signals supplied to the CY7C601 and to the 
cache RAMs. The signals used by the cache controller to control the CY7C601 consist ofMHOLD, MDS, 
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and 10E. MHOLD is used to stall the CY7C601 until the CY7C604/605 can service the CY7C601 memory 
access request, such as during cache miss processing or during table walks. MDS is used by the 
CY7C604/605 to strobe data into the CY7C601 when MHOLD is asserted. This causes the CY7C601 to 
latch data on the data bus despite being stalled by the assertion ofMHOLD. 10E is used as the enable signal 
for the AOE and DOE inputs of the CY7C601. When 10E is deasserted, the address and data bus output 
drivers of the CY7C601 are disabled. This feature is used to force the CY7C601 off of the virtual address 
and data buses. 

The signals used to control the CY7C157 consist of the cache byte write enable (CBWE) and cache read 
output enable (CROE) signals. CROE is asserted low to enable the output of the cache RAMs during a cache 
read. CBWE <3:0> is asserted low to enable writing to the cache RAMs. The multiple CBWE signals allow 
the cache controller to enable byte, halfword, or word writes to the cache RAM. Single byte or halfword 
reads are handled by the CY7C60 1, which reads an entire 32-bit word and internally discards unwanted by­
tes. 

During a cache read miss, the CY7C604/605 halts the CY7C601 by asserting MHOLD. The CY7C604/605 
also deasserts 10E, which is used to disable the CY7C60 1 data bus and address bus output drivers. The cache 
controller fetches the new cache line from main memory, asserting CBWE<3:0> and the cache line address­
es to write the data into the cache. Then the CY7C604/605 places the missed read data word on the data bus 
and toggles the memory data strobe signal (MDS) Toggling MDS forces the integer unit to latch the data 
on the data bus. The cache read miss terminates by reasserting the IDE signal and then releasing the MHOLD 
signal. 10E is typically reasserted one or more clocks before the MHOLD signal is deasserted, thus allowing 
the CY7C601 to output the next address onto the virtual address bus. This provides the address set-up time 
for the next memory access after MHOLD is released. Read misses are handled in the same manner for both 
copy-back and write-through modes of caching. 

Cache write misses for write-through mode generally do not affect the operation of the CY7C601 due to 
the presence of write buffers in the CY7C604/605 (refer to the following section on the write buffer). In 
the case of a write miss, the write data is written to the write buffer instead of the cache memory and the 
cache tag for the cache line is invalidated. The write buffer writes the data to memory as a background task. 
The CY7C60 1 is stalled for a write-through write miss only if the write buffer is full. This occurs when the 
CY7C601 overruns the four doubleword buffers in the write buffer. In this case, MHOLD is asserted until 
space is made by the write buffer as it writes its contents into main memory. 

On a write miss, if the cache mode is copy-back and the cache line is clean, the cache line is replaced in a 
similar manner as in the cache read miss described above. MHOLD is asserted to stall the CY7C601 and 
10E is deasserted to force the CY7C601 off the data and address buses. A new cache line is read from main 
memory, and the cache is updated by writing the data into the cache. This is accomplished by supplying the 
cache addresses, cache line data from main memory, and asserting the CBWE signals to write the data. The 
write cache miss terminates by reasserting 10E, which causes the missed write data and address to reappear 
on their respective buses. The CY7C604/605 then strobes CBWE<3:0> according to the address and 
SIZE<l :0> signals to write the data into the cache. The copy-back write miss procedure terminates by deas­
serting MHOLD, which allows the processor to return to execution. 

If the cache line is modified, the modified cache line is read out of the cache and stored into the write buffer 
during the same time the new cache line is fetched from main memory and stored in the read buffer (refer 
to the following sections on write and read buffers). MHOLD is asserted and 10E deasserted to force the 
CY7C601 into a halted and inactive state. The cache controller asserts CROE and the cache addresses to 
flush the modified cache line into the write buffer. The cache controller then writes the new cache line into 
the cache from the read buffer while simultaneously writing the modified cache line into main memory from 
the write buffer. This is accomplished by supplying the cache addresses for the cache line data, and asserting 
the CBWE<3 :0> signals to write the data into the cache. The copy-back write miss for a modified cache line 
terminates by releasing 10E to allow the missed write data and address to reassert on the data and address 
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buses. The CY7C604/605 asserts the CBWE<3:0> signals to write the data into the cache. The MHOLD 
signal is then deasserted to allow the CY7C601 to return to processing. See Section 8.11 for virtual bus tim­
ing diagrams. 

8.3.5 CY7C604/605 Write Buffer 

The CY7C604/605 supports four write buffers on chip, as shown in Figure 8-25. In write-through mode, 
each buffer can store two 32-bit words, which efficiently supports store double operations. A physical ad­
dress tag is associated with each of the four buffers in write-through mode. Upon a write access, the write 
buffers are loaded with the data to be written to main memory. This allows the CY7C601 to continue opera­
tion without stalling due to memory access delays on the physical bus. 

In copy-back mode, the same buffers are configured to store a 32-byte cache line with a single physical ad­
dress as shown in Figure 8-26. This allows for faster cache line flushes during modified cache line replace­
ment. The modified cache line is flushed into the write buffer as the new cache line is simultaneously fetched 
from main memory. In either case, the contents of the buffers are transferred to main memory as a back­
ground task. On power-on reset (PaR), all of the write buffers are invalidated. 

Non-cacheable writes use the four write buffers in the same manner as write-through cache transaction, even 
if copy-back mode is enabled. However, a copy-back cache line and non-cacheable data cannot simulta­
neously occupy the write buffer. 

The CY7C604/605 requests MBus ownership as soon as one of the write buffers is valid. For each write 
buffer transfer, the CY7C604/605 re-arbitrates the MBus again. A modified cache-line flush is considered 
as one transaction. When the bus is still granted to the CY7C604/605 (i.e., bus parking), the CY7C604/605 
can transfer the data immediately without any bus re-arbitration (so there are no dead clocks between trans­
actions). Once all of the write buffers are full, further writes from the CY7C601 are held until a buffer is 
empty. If there is a read access cache miss, the CY7C601 is held until all of the write buffers are written 
back into main memory in order to maintain data consistency. After the write buffers are cleared, the 
CY7C604/605 resumes the task of fetching the cache line for the cache read miss. 

PAO V Word 0 Word 1 

PAl V Word 0 Word 1 

PA2 V Word 0 Word I 

PA3 V Word 0 Word 1 

35 o 31 o 31 o 

Figure 8-25. Write Buffers (Write-Through Mode or Non-Cacheable Write) 

PA Iv I wo I WI I W2 I W3 I w41 W5 I w61 W71 

35 0 31 0 31 031 0 31 031 031 0 31 031 0 

Figure 8-26. Write Buffer (Copy-Back Mode) 

1~lffilmlml~lml%lml 
31 031031 031 031 031 031 0310 

Figure 8-27. Read Buffer (Copy-Back Mode) 
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8.3.6 CY7C604/605 Read Buffer 

The CY7C604/605 provides a read buffer of 32 bytes (one cache line) in order to support simultaneous writ­
ing of a modified cache line to main memory and reading of a new cache line from main memory into the 
cache under copy-back mode. The read buffer is shown in Figure 8-27. The read buffers are invalidated on 
power-on reset. 

8.3.7 CY7C604/605 Cache Flushing Operations 

The CY7C604/605 supports five different levels of cache flushing operations, as illustrated in Table 8-7. 
The cache flushing operations are dependent upon the cache mode and state. Flushing under copy-back 
cache mode for a modified cache line means flushing the cache line into main memory and invalidating the 
cache tag entry. If the cache line is clean (copy-back mode), or is in write-through cache mode, flushing 
only invalidates the cache tag entry. 

Unlike a TLB flush operation, all cache flushing operations flush only one cache line at a time. Each cache 
line can be flushed on the basis of a page, segment, region, context, or user mode, as illustrated in Table 8-7. 
The levels of address matching for a cache line flush vary from a fu1l4-Kbyte page level match of address 
and context, to a match of user mode only. 

The cache line selected for operation is indexed as in normal cache access operations (VA<15:5». If the 
cache flush operation does not cause a match of the cache tag entry, no action occurs. The five types of cache 
flush operations are: page flush, segment flush, region flush, context flush, and user flush. These different 
levels of cache flush are mapped with the ASI bits. The store alternate space instructions for the CY7C601 
must be used to assert the ASI value that corresponds with the level of cache flush operation desired. The 
combination of the ASI and a store operation using the virtual address specify the cache flush operation and 
the cache line to be matched for flushing. During flush operations, the context register provides the context 
number to be compared. 

Table 8·7. Cache Flush Operations 

Cache Flush ASI Compares: 

PAGE lOH Context (or Supervisor S = 1,), Index 1, Index 2, and Index 3 (bits 17 
and 16) 

SEGMENT llH Context (or Supervisor S = 1), Index 1, and Index 2 

REGION 12H Context, (or Supervisor S = 1), and Index 1 

CONTEXT 13 H Context and User (S = 0) 

USER 14H User (S = 0) 
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Table 8·8. Cacheable / NOll·Cacheable accesses 

Access Condition 

Not cached ASI = 20-2F H (By-pass) or ASI = 1 (Local) 

ASI = UN, RES (unassigned/reserved) 

BM = 1 and ME = x and CE = x andASI = 8,9 H 

BM = x and not (ME = 1 and CE = 1 and PTE[C] = 1) 

LDST cycles in write-through mode 

Table walk cycles 

Cache lock miss accesses which have valid entries, but no alias 

Cached BM = 0 and ME = 1 and CE = 1 and ASI = 8,9,A,B H and PTE[C] =1 

BM = 1 and ME = 1 and CE = 1 and ASI = A,B H and PTE[C] =1 

8.3.8 CY7C604/605 Cacheable/Noll·Cacheable Memory Accesses 

Pages that are declared as non-cacheable (C = 0 in the page table entry (PTE)) are not cached in the cache 
RAM and, as such, there are no associated cache tag entries in the CY7C604/605. For data consistency and 
implementation reasons, the CY7C604/605 assumes the following cycles are also non-cacheable: 

• LDST cycles in write-through mode 

• Table walk accesses 

• Cache-missed accesses during cache-lock mode (CY7C604 only) 

• Boot mode accesses (except user/supervisor data accesses when the MMU is enabled and the cache is 
enabled) 

• Pass-through mode accesses 

• By-pass mode accesses 

• Accesses while the cache is disabled 

• Local-mode accesses 

• When MMU is disabled (ME bit of SCR = 0) 

Table 8-8 shows the CY7C604/605 operation conditions for cacheable and non-cacheable accesses. Refer 
to Section 8.2 for additional information. 

8.3.9 CY7C604/605 MBus Cacheable (MC) Bit 

One of the CY7C604/605 output signals is a MBus cacheable bit, which is embedded in the MBus address 
phase as MAD<43> (Refer to Chapter 11 for more information on MBus.) The MBus cacheable bit indi­
cates the cacheable status of a memory access by the CY7C604/605. This information is consistent with the 
cache visibility philosophy of the CY7C604/605 and is made available for use by a secondary cache tag 
array. 

When the MMU is enabled, the MC bit is set by the state of the C bit in the corresponding PTE entry. When 
the MMU function of the CY7C604/605 is disabled, the C bit of the SCR register sets the value of the MC 
bit. The C bit ofthe SCR register is loaded by the CY7C601, and it defines the cacheable status of memory 
accesses when the MMU is disabled. Table 8-9 illustrates the state of the MC bit for various CY7C604/605 
operation conditions. 
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Table 8-9. State Table for MC (Memory Cacheable) Bit 

MC Condition 

0 ASI = 20-2F H or ASI = I H 

not applicable ASI = UN, RES 

SeR[C] Not one of the above and ME =0 or 
Not one of the above and (BM = 1 and ASI = 8,9 H) or 
Not one of the above and table walk 

PTE[C] Not one of the above 

8.3.10 CY7C604/60S LDST (Atomic Load/Store Instruction) cycles 

In order to maintain data consistency under write-through cache mode, LDST (atomic Load/Store) cycles 
are treated as non-cache able transactions. All LDST accesses are forced into main memory in this case. The 
C bit in the TLB entry is output on the MBus as the MC (MAD<43» bit. If a cache hit occurs on a LDST 
cycle with the cache in write-through mode, the cache line is invalidated. If the MMU is disabled, the C 
bit in the SCR is output on the MC signal of the MBus. 

In copy-back mode, LDST cycles are treated as normal memory accesses and are cached according to the 
C bit of the PTE associated with the access. 

LDST operations on the physical bus (MBus) are repeated if interrupted by a Relinquish and Retry before 
the load operation of the LDST has been completed. However, if the Relinquish and Retry occurs after the 
load operation has completed, only the store operation of the LDST is repeated. 

8.3.11 CY7C604/60S Cache Byte Write Enables 

The CY7C604/605 supports four separate byte write enables (CBWE<3:0» to control write accesses to the 
CY7C157 Cache Storage Units. These signals are generated using the lower two bits of the virtual address 
(VA<l:O» and size (SIZE<l:O» information during write accesses. 

The decoding of the SIZE<l:O> and VA<l:O> bits is shown in Table 8-10. The CBWEO signal controls the 
most significant byte (MSB), which is located at a word-aligned address N. CBWE3 controls the least-sig­
nificant byte, located at address N+3. All of the byte write enables are asserted for a cache line load into the 
cache RAM during a cache miss. 

Address N I Address N+ 1 I Address N+2 I Address N+3 

31 2423 1615 87 0 

Figure 8-28. CBWE Byte Assignments 
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Table 8-10. Byte Write Enables 

Size<1:0> A<1:0> CBWE3 CBWE2 CBWEI CBWEO 

00 00 1 1 1 0 

00 01 1 1 0 1 

00 10 1 0 1 1 

00 11 0 1 1 1 

01 00 1 1 0 0 

01 * 01* 1 1 1 1 

01 10 0 0 1 1 

01 * 11* 1 1 1 1 

10 00 0 0 0 0 

10* 01* 1 1 1 1 

10* 10* 1 1 1 1 

10* 11* 1 1 1 1 

11 00 0 0 0 0 

11* 01* 1 1 1 1 

11* 10* 1 1 1 1 

11* 11* 1 1 1 1 

* Denotes an illegal combination of Size<I:0> and A<I:0>. 

8.4 CY7C604 / CY7C605 Registers 

This section describes the control and data registers for the CY7C604/605. All registers for the CY7C604 
and CY7C605 are identical with the exception of the system control register (SCR). Sections or diagrams 
specific to the CY7C604 or CY7C605 are named with that part name only, whereas sections or diagrams 
common to both will be named using CY7C604/605. 

All values in all control registers are read/write (with the exception ofthe implementation and version fields 
of the SCR). Control registers are accessible by use of the alternate space load or store instructions with 
ASI = 4. Please refer to Section 8.8, AS! and Register Mapping, for more information on register addressing. 

Programmer's Note: To ensure software compatibility with future versions of the CY7C604/605, reserved 
fields in a register should be written as zeros and masked out when read. 

8.4.1 CY7C604 System Control Register (SCR) 

The system control register, as shown in Figure 8-29, defines the operation modes for the cache controller 
and MMU. Refer to Section 8.2, MMU Operational Modes, for additional information on the operation 
modes of the MMU. The following describes the functions of the bit fields in the SCR. 

IMPL, VER The Implementation number (SCR<31:28» and the version number (SCR<27:24» fields 
are hardwired; they are read only fields and writes to those fields are ignored. The assignments for the 
CY7C604 these fields are: 

Implementation number field: 0001 
Version number field: 0000 

MCA<1:0> Multichip address field (SCR<23:22» provides the address field in multichip configuration. 
Refer to Section 8.5 on Multichip Configuration for more information. 
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MCM<1:0> Multichip maskfield (SCR<21:20» provides a masking facility to mask certain multichip ad­
dress (MCA) bits in order to provide a facility to build systems with a different number of CY7C604s (from 
1 to 4). 

MV Multichip configuration valid bit (SCR(19» indicates that the MCA and MCM fields are valid (see 
Section 8.5, Multichip Configuration). 

BM Boot-mode bit (SCR(14» indicates the system is in boot mode. This bit is setto 1 to indicate boot mode. 
This bit is automatically set upon power-on reset. 

C Cacheable bit (SCR( 13» indicates whether the access is cacheable ornot when the MMU is disabled (this 
bit is independent of the CE bit, see Section 8.3.8, Cacheable!Non-cacheable Memory Accesses for more 
details.) This bit is set to 1 if accesses on the physical bus (with the MMU disabled) are to be considered 
cacheable. 

CM Cache-mode bit (SCR(10» indicates whether the cache is operating under write-through no write allo­
cate policy or copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting 
this bit to 0 will enable write-through cache mode. 

CL Cache-lock bit (SCR(9» indicates whether the entire cache is locked or not (see Section 8.3.2.3 on 
Cache Lock, page 8-22). This bit is set to 1 to lock the cache. 

CE Cache-enable bit (SCR(8» indicates whether the virtual cache is enabled or not. This bit is set to 1 to 
enable the cache controller. 

RSV 

7 

IMPL = Specific Implementation of the MMU CM = Cache Mode 

VER = Version of Specific Implementation (typically mask revision) CL = Cache Lock 
MCA <0: I> = Multichip Address CE = Cache Enable 
MCM <0: I> = Multichip Mask NF = No Fault 

MV = Multichip Valid ME = MMU Enable 
BM = Boot Mode RSV = Reserved 

C = Cacheable (when MMU disabled) 

Figure 8-29. CY7C604 System Control Register (SCR) 

NF No-fault bit (SCR(1» prevents supervisor data accesses from signaling data faults to the CY7C601. 
When the NF bit is set, exception-generating logic (in both the TLB and the table walk) does not indicate 
supervisor data faults to the CY7C601 (via MEXC), but status and address information is recorded in the 
SFSR and SFAR registers as in normal data access operations. When the NF bit is not set, the CY7C604 
reports the supervisor data exceptions. 

ME MMU -enable bit (SCR(O» indicates whether the MMU is enabled or not. This bit is set to 1 to enable 
theMMU. 

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C604 into 
the following state: cache disabled (CE = 0), cache unlocked (CL = 0), write-through mode (CM = 0), 
non-cacheable (C = 0), boot-mode enabled (BM = 1), multichip disabled (MV = 0), no fault disabled (NF 
= 0), and MMU disabled (ME = 0). 

8.4.2 CY7C605 System Control Register (SCR) 

The System Control Register, as shown in Figure 8-30, defines the operation modes for the cache controller 
and MMU. Refer to page 8-15 for additional information on the operation modes of the MMU. The follow­
ing describes the functions of the bit fields in the SCR. 
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IMPL, VER The implementation number (SCR<31 :28» and the version number (SCR <27 :24» fields are 
hardwired; they are read only fields and writes to thosefields are ignored. The assignments for the CY7C605 
are: 

Implementation number field: 0001 
Version number field: 1111 

MCA<1:0> Multichip address field (SCR<23:22» provides the address field in multichip configuration. 
Refer to Section 8.5 Multichip Configuration for more information. 

M CM <1 :0> M ultichip mask fie ld (SCR <21: 20» provides a masking facility to mask certain multichip ad­
dress (MCA) bits in order to provide a facility to build systems with a different number of CY7C605s (from 
1 to 4). 

MV Multichip configuration valid bit (SCR(19)) indicates that the MCA and MCM fields are valid (see 
Section 8.5, Multichip Configuration). 

MID<3:0> Module Identification number (SCR<18: 15» identifies the processor module during transac­
tions on the MBus (refer to Chapter 11). This four bit module identification number is embedded in the 
MBus address phase of all MBus transactions initiated by the CY7C605. 

BM Boot-mode bit (SCR( 14)) indicates the system is in boot mode. This bit is setto 1 to indicate boot mode. 
This bit is automatically set upon power-on reset. 

C Cacheable bit (SCR(13)) indicates whether the access is cacheable arnot when the MMU is disabled (this 
bit is independent of the CE bit, see Section 8.3.8, CacheablelNon-cacheable Memory Accesses for more 
details.) This bit is set to 1 if accesses on the physical bus (with the MMU disabled) are to be considered 
cacheable. 

MR Memory Reflection (SCR( 11)) MR = 1 indicates that the main memory system on the MBus supports 
memory reflection. MR affects the status of the MPTAG cache tag bits as described in the cache state transi­
tions section starting on page 8-26. 

CM Cache-mode bit (SCR( 10)) indicates whether the cache is operating under write-through no write allo­
cate policy or copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting 
this bit to 0 will enable write-through cache mode. 

31 28 27 

RSV 

24 23 22 21 20 19 18 15 14 13 12 11 10 9 8 7 

IMPL = Specific Implementation of the MMU 
VER = Version of Specific Implementation (typically mask revision) 
MCA <1:0> = Multichip Address 
MCM <1:0> = Multichip Mask 
MV = Multichip Valid 
MID <3:0> = Module Identifier <3:0> 
BM = Boot Mode 

C = Cacheable (when MMU disabled) 
MR = Memory Reflection 
CM = Cache Mode 
CE = Cache Enable 
NF= No Fault 
ME = MMU Enable 
RSV = Reserved 

Figure 8-30. CY7C605 System Control Register (SCR) 

CE Cache-enable bit (SCR(8)) indicates whether the virtual cache is enabled or not. This bit is set to 1 to 
enable the cache controller. 

NF No-fault bit (SCR(I)) prevents supervisor data accesses from signaling data faults to the CY7C601. 
When the NF bit is set, exception-generating logic (in both the TLB and the table walk) does not indicate 
supervisor data faults to the CY7C6m (via MEXC), but status and address information is recorded in the 
SFSR and SFAR registers as in normal data access operations. When the NF bit is not set, the 
CY7C604jCY7C605 reports the supervisor data exceptions. 
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ME MMU-enable bit (SCR(O)) indicates whether the MMU is enabled or not. This bit is set to 1 to enable 
theMMU. 

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the 
CY7C604/CY7C605 into the following state: cache disabled (CE = 0), write-through mode (CM = 0), 
non-cacheable (C = 0), boot-mode enabled (BM = 1), memory reflection disabled (MR = 0), no fault dis­
abled (NF = 0), and MMU disabled (ME = 0). 

8.4.3 CY7C604/60S Context Table Pointer Register (CTPR) 

The context table pointer points to the context table in physical memory. The table is indexed by the contents 
of the context register. The context table pointer appears on bits 35 through 14 of the MBus (MAD<35: 14» 
during the first fetch ofTLB miss processing. Once the root pointer is cached in the page table pointer cache 
(PTPC), no fetching of the root pointer is required until the context is changed (see Figure 8-31). 

31 

CTP 

CTP = Context Table Pointer 

RSV = Reserved 

RSV 

10 9 o 

Figure 8-31. CY7C604/60S Context Table Pointer Register 

8.4.4 CY7C604/60S Context Register (CXR) 

The context register defines a virtual address space associated with the current process. The CXR is a twel­
ve-bit register, which supports 4096 contexts. This register is used to define the current context for the 
CY7C604/605. Nearly all CY7 C604/605 operations are dependent upon matching the value of this register 
to a cache tag entry or TLB entry. 

31 

RSV 

CXN = Context Number 

RSV = Reserved 

CXN 

12 11 o 

Figure 8-32. CY7C604/60S Context Register 

8.4.S CY7C604/60S Reset Register (RR) 

The RR register contains information regarding whether watchdog reset (WDR) or software internal reset 
(SIR) occurred. This is a read/write register, and setting the software internal reset bit (SIR), or the software 
external reset bit (SER) in the case of the CY7C604, causes the corresponding reset. Upon power-on reset, 
the WDR and SIR bits in the RR will be cleared. Reading the RR will also clear these bits. Note that bit 
0, the SER bit, can only be modified in the CY7C604; this bit is reserved in the CY7C605. For the 
CY7C605, this bit always reads "0," and writes to it are ignored. Refer to Section 8.7, CY7C6041605 Reset 
for more details on reset processing. 

RSV 

31 3 2 o 
RSV = Reserved SIR = Software Internal Reset 
WDR = Watchdog Reset SER = Software External Reset (Reserved in the CY7C605) 

Figure 8-33. CY7C604/60S Reset Register 
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8.4.6 CY7C604/605 Root Pointer Register (RPR) 

The RPR is the context level table page table pointer (PTP) and is cached in the page table pointer cache. 
Refer to Section 8.1.5 on page 8-12 for information on the page table pointer cache. 

On power-on reset, the V bit is cleared. When the current context is changed by writing to the context pointer 
register (CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written. 

31 

RP 

RP ~ Root Pointer 

RSV ~ Reserved 

V~Valid 

RSV I v I 
6 5 1 0 

Figure 8-34. CY7C604/605 Root Pointer Register 

8.4.7 CY7C604/605 Instruction access PTP (IPTP) 

The IPTP is the instruction access level-2 table page table pointer (PTP) and is part of the page table pointer 
cache. On power-on reset, the V bit is cleared. 

31 

IPTP 

IPTP ~ Instruction Access PTP 

RSV ~ Reserved 

V~Valid 

RSV I v I 
4 3 1 0 

Figure 8-35. CY7C604/605 Instruction Access PTP Register 

8.4.8 CY7C604/605 Data access PTP (DPTP) 

The DPTP is the data access level 2 table page table pointer (PTP) and is a register in the page table pointer 
cache. On power-on reset, the V bit is cleared. 

31 

DPTP 

DPTP ~ Data Access PTP 

RSV ~ Reserved 

V~Valid 

RSV I v I 
4 3 1 0 

Figure 8-36. CY7C604/605 Data Access PTP Register 

8.4.9 CY7C604/605 Index Tag Register (ITR) 

The ITR contains the tag (index 1 and index2) fields of the IPTP and DPTP entries. Refer to Section 8.1.5 
on page 8-12 for information on the PTP cache. 

ITAG I RSV I DTAG I RSV I 
31 18 17 16 15 2 0 

RSV ~ Reserved DTAG ~ Data Access PTP Tag 
!TAG ~ Instruction Access PTP Tag 

Figure 8-37. CY7C604/605 Index Tag Register 
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8.4.10 CY7C604/605 TLB Replacement Control Register (TRCR) 

The TRCR contains the replacement counter (RC) and initial replacement counter (IRC) fields as shown 
in Figure 8-38. These fields are used in order to support random replacement and to support locking capa­
bilities of the TLB. Refer to Section 8.1.1.2 on page 8-7 for information on TLB entry locking. Upon pow­
er-on reset, both the RC and IRC fields are initialized to zero. 

RSV RC I RSV I IRC 

31 14 13 8 7 6 5 0 

RSV ; Reserved 

RC ; Replacement Counter 

IRC ; Initial Replacement Counter 

Figure 8-38. CY7C604/605 TLB Replacement Control Register 

8.4.11 CY7C604/605 Synchronous Fault Status Register (SFSR) 

The synchronous fault status register, illustrated in Figure 8-39, contains fault-associated information for 
synchronous faults. Synchronous faults are faults that occur during an integer unit access of memory. Syn­
chronous faults include almost all possible faults for the CY7C604/605. This type offault is synchronous 
to the operations ofthe CY7C60 l. For the CY7C604/605, this fault type covers all cases except those caused 
by delayed writes of data stored in the write buffers. These faults are asynchronous to the operation of the 
CY7C601, and are named asynchronous faults. 

An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized 
memory access. These faults are discussed in detail in Section 8.9. Upon encountering a synchronous fault, 
the CY7C604/605 asserts the MEXC signal, along with MHOLD andMDS. Synchronous faults are the only 
exception type that assert the MEXC signal. 

In the CY7C604, the copy-back translation error (CBT) bit indicates that a translation error occurred during 
a table walk for the flush of a modified cache line of a copy-back mode cache miss. The SFAR contains 
the address of the missed cache access, not the modified cache line address that caused the translation error. 
When this type of error occurs, the cache tag remains valid, and the cache line remains modified. Note that 
this bit is not used in the CY7C605, and is reserved. The physical address for a cache line is always available 
in the CY7C605, therefore making the CBT bit unnecessary in a CY7C605 based system. 

The uncorrectable error (UE), timeout error (TO), and bus error bits (BE) report error status as encoded in 
the MERR, MRTY, and MRDY signals. (Refer to Chapter 11 on MBus for further information.) The level 
bits (L) describe the level in a table walk process at which the fault occurred (if applicable). These bits are 
described in Table 8-17 on page 8-58. 

The access type bits (AT <2:0» describes the access type that caused the fault. This field specifies user/sup­
ervisor access and whether the access is load or store of data or instruction. The AT bits are described in 
Table 8-18 in the section on synchronous faults. The fault type bits (FT) describe the fault type, and are 
illustrated in Table 8-19 on page 8-58. The fault address valid bit is set when the address in the synchronous 
fault address register (SFAR) is a valid fault address. The over-write bit (OW) is set in the case of a double 
fault where the fault status stored in the SFSR does not correspond with the fault first trapped on by the 
CY7C601. This is discussed in detail in the section on synchronous faults, page 8-56. 

Upon power-on reset, the UC, TO, BE, FT, FA V, and OW bits in the SFSR will be cleared. Reading the syn­
chronous fault status register clears all fault status bits. 
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I RSV ICBTIUCI TOI BEl L I AT Ff IFAV 10WI 

31 14 13 12 11 10 9 8 7 5 4 2 1 0 

RSV = Reserved 

UC = Uncorrectable Error 
TO = Time Out Error 

L = Level 

AT = Access Type 
Ff = Fault Type 

BE = Bus Error FAV = Fault Address Valid 

*CBT = Copy-back Translation Error 
(*CY7C604 only; reserved in CY7C605) 

ow = Over Write 

Figure 8-39. CY7C604/605 Synchronous Fault Status Register 

8.4.12 CY7C604/605 Synchronous Fault Address Register (SFAR) 

The synchronous fault address register contains the faulted virtual address. 

SFA 

31 
SFA = Synchronous Fault Address 

o 

Figure 8-40. CY7C604/605 Synchronous Fault Address Register 

8.4.13 CY7C604/605 Asynchronous Fault Status Register (AFSR) 

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C604/605. 
This type of error can only be caused by a delayed write to main memory initiated by the write buffer. 
Asynchronous faults cause the CMER signal to be asserted, which can be used as an interrupt to the 
CY7C601. 

The DC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into 
the MERR, MRTY, and MRDY signals of the MBus (see Chapter 11). The asynchronous fault address bits 
provide the upper four bits of the physical address not captured in the asynchronous fault address register 
(AFAR), which is a 32-bit register. 

The asynchronous fault occurred (AFO) bit is set when an asynchronous fault is encountered. Once the 
asynchronous fault occurred bit is set, no further asynchronous faults are recorded until the AFO bit is 
cleared, which is accomplished by reading the asynchronous fault address register (see Figure 8-41). The 
DC, TO, BE, and AFO bits in the AFSR will be cleared upon power-on reset. Reading the AFAR will also 
clear these bits. 

RSV I uc I TO I BE I RSV I AFA<35:32> I RSV EF~ 
31 13 12 11 10 9 8 7 4 3 0 

RSV = Reserved BE = Bus Error 

UC = Uncorrectable Error AFA = Asynchronous Fault Address 

TO = Time Out Error AFO = Asynchronous Fault Occurred 

Figure 8-41. CY7C604/605 Asynchronous Fault Status Register 

8.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR) 

The AFAR contains bits 31 through 0 of the physical address for asynchronous faults (bus errors). Asynch­
ronous faults can occur during delayed write accesses or during background cache line flush operations in 
copy-back mode (see Figure 8-42). If a bus error occurs during a write to memory, the CMER signal will 
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be asserted by the CY7C604/605 and will remain asserted until the AFAR register is read by software. The 
address in the AFAR is concatenated with the four AFA bits in the AFSR to defme the entire 36-bit physical 
address. 

AFA 

31 o 
AFA = Asynchronous Fault Address 

Figure 8-42. CY7C604/60S Asynchronous Fault Address Register 

8.5 CY7C604 / CY7C60s Multichip Configuration 

The CY7C604/605 is designed to allow expansion of the 64-Kbyte cache by adding additional 
CY7C604/605s, each controlling two CY7C157 Cache Storage Units. Up to four CY7C604/605s (for up 
to 256-Kbyte of cache) can be supported by a single CY7C601. A system using an expanded cache is re­
quired to configure the CY7C604/605s for multichip operation. Multichip operation is defined by the multi­
chip address field (MCA<l:O», multichip mask field (MCM<l:O», and the multichip valid bit (MV) of 
the system control register (SCR). The two bit MCA and MCM fields control the addresses to which the 
CY7C604/605 is allowed to respond. The multichip valid bit enables the multichip mode for the 
CY7C604/605, and is to be set when the MCA and MCM fields are configured for the system. 

System initialization under multichip operation mode is handled by designating one of the CY7C604/605s 
to respond to all addresses from the CY7C601 until the CY7C604/605s have been initialized. This 
CY7C604/605 is referred to as the boot mode CY7C604/605. The other CY7C604/605s remain inactive 
until multichip operation has been set. 

8.5.1 System Initialization 

The boot mode CY7C604/605 is responsible for accesses to memory during system initialization. The boot 
mode CY7C604/605 responds to all memory accesses until multichip operation is enabled by setting the 
multichip fields of the SCR. The other CY7C604/605s remain inactive for all memory accesses until their 
SCR has been enabled for multichip mode. The non-boot mode CY7C604/605s three-state MDS and 
MEXC (in the CY7C605, IOE is also tri-stated). 
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Figure 8-43. Dual-CY7C604 Multichip Configuration 

The boot mode CY7C604/605 is selected by forcing LOW the CSEL signal as the power-on reset (POR) 
signal is deasserted. The remaining CY7C604/605s are connected such that the CSEL signals are forced 
HIGH when the POR signal is deasserted. Each CY7C604/605 latches the state of its CSEL signal upon 
rising clock edge after POR is deasserted, and remains in either boot mode or becomes inactive until the 
multichip fields of its SCR have been set. (See CSEL power-on reset timing diagrams in the CY7C600 Elec­
trical and Mechanical Specification document.) A single CY7C604/605 system should tie the CSEL signal 
to ground to ensure correct operation upon reset. 

After reset, the CSEL signal of each CY7C604/605 is tied to one of the upper virtual address signals, thereby 
mapping each CY7C604/605 to a different virtual address. The CY7C604 and CY7C605 differ slightly in 
how CSEL and the multichip control bits in the SCR are used to initialize and access the registers. 
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Figure 8-44. Dual-CY7C60S Multichip Configuration 

The non-boot CY7C604s will ignore all register accesses except those to the SCR with CSEL asserted, until 
the multichip mode is enables for the CY7C604. Conversely, the boot CY7C604 will remain inactive only 
if CSEL is deasserted and the access is a register read/write to the SCR. The CSEL signal is ignored by 
the CY7C604 after the multichip fields in the SCR are initialized. Instead, after the MV bit has been set, 
the CY7C604 is selected by the MCA and MCM fields in the SCR as defined in Figure 8-45. 

The CY7C605 will respond to register or diagnostic accesses only if the CSEL pin asserted during the ac­
cess, whether it is the boot CY7C605, the non-boot CY7C605, and even after the SCR is written to enable 
multichip mode. This allows the same diagnostic programs to be used independently of whether multichip 
mode is enabled or not. The register and diagnostic accesses include AS Is Ox04, Ox06, OxOE, and OxOF. 
Only the boot CY7C605 will respond to other AS Is before the MV bit is set. After the MV bit is set, the 
CY7C605 is selected for other AS Is by the MCA and MCM fields in the SCR as defined in Figure 8-45. 

The multichip fields of the SCR for the non-boot mode CY7C604/605s should be configured and enabled 
before the SCR for the boot mode CY7C604/605 is enabled. This prevents problems with the boot mode 
CY7C604/605 interfering during the configuration of the non-boot mode CY7C604/605s. 
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8.5.2 Cache Configurations 

Figure 8-43 illustrates a 128-Kbyte cache using two CY7C604s in a muItichip configuration. Note that 
VA<16> of the virtual address is connected to the CSEL inputofCMUl and is pulled to ground with aresis­
tor. This signal is used to access the CMUI registers before multichip operation has been enabled. Using 
a pull-down resistor also accomplishes the task of forcing the CSEL signal for CMUI to low, which is 
latched on the rising clock edge after paR is deasserted to enable the CY7C604/605 as the boot mode CMU. 
VA<17> is connected to the CSEL input for CMU2. This signal is pulled up with a resistor to ensure that 
it is forced HIGH when the system reset signal is released. The virtual address bus VA<31 :0> is three-stated 
by using the system reset signal to drive TOE HIGH, thereby forcing the CY7C60 I off the address bus. 

Figure 8-44 shows a dual CY7C605 configuration. The CY7C605 in multichip mode differs slightly from 
the CY7C604 in multichip due to the addition of the VINT signal and change to the IOE signal in the 
CY7C605. IOE changes from a bi-state on the CY7C604 to a tri-state signal on the CY7C605, and is driven 
on power-on reset to tri-state the drivers of the address bus (A<31 :0», data bus (D<31 :0», and address 
space identifiers (ASI<7:0» on the CY7C601. Although all ofthe CY7C605s in the system share a com­
mon IOE signal, as well as a common MDS, only one CY7C605 can drive these signals at a time. VINT 
is used by a CY7C605 to gain access to the virtual bus in response to a Coherent Read (or Coherent Read 
and Invalidate) transaction for a cache line it owns. See Sections 8.10 and 8.11 for more information on 
VINT. 

Two CMU System: Virtual Addressing: 

CMU! VA<31:20> VA<15:0> 

r-=-~~~iO:~ii~iO-=-J 
System Control Register 

~ X ~ (xxxO) ~ X X ~ 
/\ 

VA17 VA16 
CMU2 

r-=-~~~i1.0.iCii ~iO-=-J X X X (xxxl) XXX X 

System Control Register 

Four CMU System: Virtual Addressing: 

CMU! 

r-=-~~~fo~Cif~iO-=-J 
System Control Register 

VA<31:20> VA<15:0> 

~ X ~(xxOO)~ X X ~ 
/\ 

VA17 VA16 
CMU2 

r-=-~~~ii:~ii~iO-=-J X X X (xxOl) X X X X 

System Control Register 

CMU3 

r-=-~~~iO:~ii~iO-=-J X X X (xxlO) X X X X 
System Control Register 

CMU4 '-----------1 L MCA=lli MCM =OO ....J ----------- X X X (xxll) X X X X 
System Control Register 

Figure 8-45. Examples of Multichip Addressing 

8-51 



TECHNOLOGY, 
~========================~C~Y~7~C~6~04~/~C~Y~7~C~60=5~C~M~U~ 

The SNULL input signal causes the CY7C604/605 to ignore an address on the virtual address bus. This 
input is used in multichip operation to keep a CY7C604/605 from responding to addresses output on the 
virtual address bus by other CY7C604/605s. The MHOLD output signal from a CY7C604/605 is used as 
the SNULL input for the remaining CY7C604/605s. Figure 8-43 and Figure 8-44 illustrate the MHOLD 
to SNULL connections for a two-CY7C604/605 system. 

The multichip address bits (MCA<1:0» of the system control register (SCR) select the state of the 
VA<17: 16> bits that must be matched for multichip addressing. The multichip mask bits (MCM<1 :0» se­
lect which of the VA< 17: 16> bits can be ignored. The combination of the two fields define the address map­
ping for the CY7C604/605. The multichip valid bit (MV) must be set when writing to the MCA and MCM 
fields in order to enable multichip mode. Figure 8-45 illustrates two examples of how these fields are used 
to define the address mapping for mUltiple CY7C604/605 systems. 

8.6 CY7C604/605 Diagnostic Support 

8.6.1 CY7C604/605 MMU TLB Eutries 

TLB entries can be accessed with a load or store alternate instruction with the TLB entry address and ASI 
= 6H. This feature is supported for diagnostic purposes and to provide CY7C60 1 access to locked TLB en­
tries. The virtual and physical sections of each entry in the TLB can be accessed by the CY7C601 as a 
single-word read or write. The address mapping for the TLB entries is shown in Table 8-11. The format 
of CAM word and RAM word entries in the TLB are shown in Figure 8-46. 

31 

Table 8-11. TLB Entry Address Mapping 

ADDRESS TLB ENTRY REGISTER 

OH Entry 0 RAM Word 

4H Entry 0 CAM Word 

SH Entry I RAM Word 

CH Entry I CAM Word 

IOH Entry 2 RAM Word 

14H Entry 2 CAM Word 

· · · · · · 
IFOH Entry 62 RAM Word 

IF4H Entry 62 CAM Word 

IFSH Entry 63 RAM Word 

IFCH Entry 63 CAM Word 

200-FFFFFFFS H Reserved 

TLB Entry CAM Word Format TLB Entry RAM Word Format 

VA(31:12) 

VA = Virtual Address 

CXN = Context Number 

12 II 

CXN <11:0> PPN <35:12> 

o 31 
PPN = Physical Page Number 

C = Cacheable bit 

M = Modified bit 

Figure 8-46. TLB Entry Format 
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Table 8-12. Cache Tag Entry Address Mapping 

Address Cache Tag Entry 

OOOx H 0 

002x H I 

004xH 2 

006x H 3 

· · · · · · 
FFExH 2047 

(x-don tcare) 

8.6.2 CY7C604/605 Cache Tag Entries 

CY7C604 tag entries are accessed using a load or store alternate instruction with the cache tag entry address 
and ASI = OE H. The CY7C605 PVTAG is accessed using a load or store alternate instruction specifing 
the entry address and ASI = OE H. CY7C605 MPTAG entries are accessed in a similar manner using ASI 
= 30 H. Each tag entry can be read as a load single or can be written as a store single from the CY7C601. 
The address mapping for the cache tag entries is shown in Table 8-12. The format of a CY7C604 tag entry 
is shown in Figure 8-47. The CY7C605 PVTAG and MPTAG entry formats are illustrated in Figure 8-48. 

8.6.3 CY7C604/605 Cache Data Entries 

Cache data entries can be accessed from the cache RAM by using a load or store alternate instruction assert­
ing the virtual address and ASI = OF H. The CY7C604/605 cache controller causes a forced hit from the 
cache tag during these accesses. All data widths are supported for a read or write to the cache RAM. 

31 

TAG 

16 15 

TAG = Virtual Address Tag 

CXN = Context Number 

V=Valid bit 

4 3 2 I 0 

M = Modified bit 

S = Supervisor 

R = Reserved 

Figure 8-47. CY7C604 Cache Tag Entry Format 

PVTAGEntry MPTAGEntry 

31 

TAG 

16 15 

TAG = Virtual Address T.g 
CXN = Context Number 
v= Valid bit 

4 3 2 J 0 

SH = Shared 
S = Supervisor 
R = Reserved 

31 

TAG 

TAG = Physical Address Tag 

V=Valid 
SH = Shared 

Figure 8-48. CY7C605 Cache Tag Entry Format 
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8.7 CY7C604/605 Reset 

8.7.1 Power-On Reset (POR) 

Upon power-on reset, the entire system is forced into a defined state. The TLB and the cache tag(s) in the 
CY7C604/605 are invalidated, all valid bits in control registers are cleared, and certain bits in the AFSR and 
SFSR are cleared as described in the previous sections. The CY7C604 asserts IRST to the integer unit until 
POR is deasserted; the CY7C605 holds IRST low for an extra clock cycle, releasing it one cycle after IOE 
is driven low. Since INULL is asserted until after IRST is deasserted, MAS (or MBR in the case of arbitra­
tion for the bus) can be generated one cycle earlier in the CY7C604 than the CY7C605. MRST is not as­
serted in the case of the CY7C604. POR must be asserted for a minimum of 8 clocks. The bits in the reset 
register (RR) are cleared. Upon power-on reset, the UC, TO, BE, FT, FA V, and OW bits in the SFSR will 
be cleared. The SCR fields in the CY7C604j605 will have the following state after a power-on reset: 

Table 8-13. CY7C604/605 Power-On Reset States 

IMPL Unchanged 

VER Unchanged 

MCA<1:0> Unchanged 

MCM<1:0> Unchanged 

MV 0 

BM 1 

C 0 

CM 0 

CL 0 

CE 0 

NF 0 

ME 0 

MR 0 

MID<3:0> FH (605 only) 

8.7.2 Watchdog Reset (WDR) 

When the CY7C601 encounters a trap while traps are disabled, the CY7C601 enters into an error state, as­
serts the ERROR signal, and then halts. The only way to restart the CY7C601 in the error state is to assert 
its RESET signal. The CY7C604j605 does this by performing a watchdog reset, which asserts the IRST sig­
nal for 1024 clock cycles. MRST is not asserted. The TLB and the cache tag(s) in the CY7C604/605 are 
not invalidated. The WDR (RR[2]) bit in the RR register is set. All SCR fields except boot mode (BM) are 
unchanged. BM is set to 1 after a watchdog reset. 

8.7.3 Software Internal Reset (SIR) 

The operating system can reset the CY7C601 by setting the SIR bit in the reset register. The CY7C604j605 
asserts IRST for 1024 clock cycles to reset the CY7C601. The TLB and the cache tag are not invalidated. 
All SCR fields except BM are unchanged, and BM is set to 1 after a software internal reset. The contents 
of the reset register are unchanged and the SIR bit will remain set. Refer to page 8-98 for timing diagrams 
for the SIR and SER resets. 
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8.7.4 Software External Reset (SER) (CY7C604 only) 

The operating system can reset the system separately from the CY7C601 by writing 1 into the SER bit of 
the RR register of the CY7C604 only. (This bit is "reserved" in the CY7C605; writes to it are ignored.) 
Only the writing of a 1 into the SER bit will cause MRST to be asserted. The CY7C604 asserts MRST for 
1024 MBus clock cycles to reset the system. The TLB and the cache tag are not invalidated. The SCR regis­
ter remains unchanged. The CY7C604 will wait for its write buffers to empty before asserting MRST on 
a software external reset. The contents of the reset register are unchanged and the SER bit will remain set. 

MRST will not be asserted on a software external reset (refer to page 8-54) until the write buffers have been 
flushed. Writing both the SIR and SER bits in the reset register will cause the assertion of both IRST and 
MRST. A reset routine can poll the reset register to determine the source of any reset. 

8.7.5 CY7C604/605 Reset in Multichip Configuration 

In a multichip configuration, the CY7C604/605 that is responsible for handling boot mode can also assume 
the responsibility to handle the reset operations described above. The IRST to the CY7C601 and the MRST 
to the external system are connected only to this responsible CY7C604/605. The reset signals from the other 
CY7C604/605s are not connected. The ERROR pin of the CY7C601 should be connected to all 
CY7C604/605s thereby putting all CY7C604/605s in the same state during watchdog reset. Only the IRST 
of the boot-handling CY7C604/605 is connected to the RESET input of the CY7C601. 

When performing a software internal reset in a multichip configuration, the reset register SIR bit should be 
set in all the non-boot-handling CY7C604/605s before SIR is set in the boot-handling CY7C604/605. This 
places all CY7C604/605s contained in the system in the same mode before the CY7C601 is reset. A soft­
ware external reset in a uniprocessing multichip configuration can be performed in by writing the SER bit 
in the boot-handling CY7C604 only. It is not necessary to alter the non-boot-handling CY7C604s. 

8.8 CY7C604/605 ASI and Register Mapping 

The CY7C604/605 uses the address space identifier bus (AS I <5:0» to provide access by the CY7C601 
to internal registers and resources, such as the cache tag and the TLB. The CY7C604/605 also uses the ASI 
bus to map restricted memory access functions, such as local and pass-through memory addressing modes. 
Register access to the CY7C604/605 requires using a load or store alternate instruction with ASI = 04 H 
in addition to the register address, given in Table 8-14. Table 8-15 illustrates the ASI mapping for the 
CY7C604/605. 

Table 8-14. CY7C604/605 Register Address Mapping 

VA<15:S> CY7C604/605 Registers VA<15:S> CY7C604/605 Registers 

OH System Control Register (SCR) 8H-FH Reserved 

lH Context Table Pointer Register (CTPR) lOH Root Pointer Register (RPR) 

2H Context Register (CXR) llH Instrnction Access PTP (IPTP) 

3H Synchronous Fault Status Register (SFSR) 12H Data Access PTP (DPTP) 

4H Synchronous Fault Address Register (SFAR) 13H Index Tag Register (ITR) 

5H Asynchronous Fault Status Register (AFSR) 14H TLB Replacement Control Register (TRCR) 

6H Asynchronous Fault Address Register (AFAR) IS - FFH Reserved 

7H Reset Register (RR) 
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Table 8-15. Standard ASI Assignments 

ASI Function 

OH Reserved 

1H MBus extended address space* 

2H Reserved 

3H MMU flush/probe* 

4H MMU registers* 

5H MMU diagnostics instruction only TLB 

6H MMU diagnostics instruction/data TLB* 

7H MMU diagnostics I/O TLB 

SH User instruction* 

9H Supervisor instruction* 

AH User data* 

BH Supervisor data* 

CH Cache tag for instruction cache 

DH Cache data for instruction cache 

EH Cache tag for combined (inst/data) cache* 

(PVTAG if VA<lS>=O, MPTAG if VA<lS>=l)** 

FH Cache data for combined cache* 

lOH flush combined cache line (page)* 

llH Flush combined cache line (segment)* 

* indicates functions supported by the CY7C604 and CY7C605 

** indicates function is specific to the CY7C605 

8.9 Synchronous Faults 

ASI Function 

12H flush combined cache line (region)* 

13H flush combined cache line (context)* 

14H flush combined cache line (user)* 

15 H Reserved 

16H Reserved 

17H Block copy 

IS H flush data cache line (page) 

19H Flush data cache line (segment) 

1AH Flush data cache line (region) 

IBH Flush data cache line (context) 

1CH Flush data cache line (user) 

!DH Reserved 

lEH Reserved 

IFH Block zero 

20-2FH MMU bypass physical address* 

30-3FH Unassigned 

40-6FH Reserved 

70-7FH Unassigned 

SO-FFH Reserved 

Synchronous faults are grouped into three classes: instruction access faults, data access faults, and transla­
tion table access faults. The translation table access faults are further divided into translation instruction 
access faults and translation data access faults. The SPARC architecture causes the timing and priority of 
these fault classes to be handled differently. Due to delays caused by the instruction pipeline, the CY7C601 
can possibly encounter a second fault before the CY7C601 enters a trap to correct the first. Depending upon 
the class of fault encountered, the status and address of a fault may be allowed to overwrite information for 
a previous fault that has not yet generated a trap. This potential condition requires a trap handler that can 
correct the various combinations of fault conditions. This section describes these potential fault conditions. 

The case of a pair of faults occurring presents a problem in reporting the correct fault status. This problem 
is solved by use of an overwrite (OW) bit in the SFSR and by prioritizing which types offaults may overwrite 
a previous fault. The OW bit signals the trap handler that the status and address stored in the fault registers 
are not valid for the trap that the CY7C60 1 has entered. The SFSR logic sets the OW bit according to a state 
sequence based on the fault handling of the CY7C60 1 and the type of faults encountered. 

Since the CY7C60 1 delays entering a trap handler for an instruction fault, a trap caused by another fault will 
overwrite the trap information for the initial instruction fault. If the second fault causes a trap in the 
CY7C601 before the initial instruction fault trap is entered, the OW bit is not set. This is because the infor­
mation in the fault registers will be correct for the first trap reading the registers. However, if the initial in­
struction trap is entered before the second fault trap is entered, the OW bit will be set. This is because the 
first trap reading the fault status registers will have the fault data for the second trap. The OW bit is set only 
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if the trap that will be executed first by the CY7C601 does not match the status information stored in the 
SFSR. The setting of the OW bit is entirely based upon the types of faults and their order of occurrence. 
Table 8-16 illustrates the possible fault cases and their effect on OW. 

Table 8-16. OW Bit States 

First Fault Second Fault Update OW 
SFSR 

single fault yes 0 

instruction instruction yes 1 

instruction data yes 0 

instruction translate instr. yes 1 

instruction translate data yes 0 

data instruction no 0 

data data yes 1* 

data translate yes 1 

translate instruction, data no 0 

translate translate no 0 

* not possible witb CY7C601 (and related processors) 

The CY7C601 delays a trap caused by an instruction access fault until that instruction reaches the Execute 
stage. However, since data accesses are not pipelined, the CY7C601 jumps to a trap immediately upon en­
countering a data access fault. 

Faults are allowed to overwrite another fault status dependent upon priority. An instruction fault is allowed 
to overwrite only another instruction fault. It is not allowed to overwrite either a data fault or a translation 
fault. Data faults may overwrite an instruction fault, but not a translation fault. Data faults cannot overwrite 
another data fault, since the CY7C601 traps immediately upon encountering a data fault. Translation faults 
may overwrite any type of fault, but cannot be overwritten. Translation faults may not overwrite another 
translation fault. 

All double fault cases are recoverable by re-executing the instruction or access that caused the fault whose 
status has been overwritten. If an instruction access fault occurs and the OW bit is set, the system software 
must determine the cause by probing the MMU and/or memory. 

Upon encountering a synchronous fault, the SFSR records the bus error status (bus error, timeout, and uncor­
rectable error) when a bus error occurs during memory accesses. The level field (L), as shown in Table 8-17, 
is set to the page table level of the entry that caused the fault, if the fault is associated with a table walk. 
The access type (AT) field, illustrated in Table 8-18, defines the type of access that caused the fault. The 
fault type field FT (see Table 8-19) defmes the type of the current fault. 

A translation table access fault (FT = 4) occurs if an MMU page table access causes an external system error. 
This also occurs if a reserved entry type (ET = 3 in the PTE) is found in any level of the table walk. A transla­
tion table access fault (FT = 4) also can occur if a PTP (page table pointer) is found in level 3, instead of 
a PTE. If the page table entry is invalid (ET = 0 in the PTE), the fault type is an invalid address error (FT 
= 1). Table 8-20 illustrates the fault type (FT) assigned for valid TLB entries or PTE entries (ET = 2) that 
cause a fault condition. These fault conditions are always either a protection error (read/write of data or 
instruction) or a privilege violation (user/supervisor access) error. 
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The copy-back translation fault bit (CBT) is set if there is an error occurring during a table walk for a modi­
fied cache line replacement or during a modified cache line flush operation. The fault address valid bit 
(FAV) is set to one if the content of the synchronous fault address register is valid. The SFAR may not be 
valid for instruction faults. The SFAR is always valid for data faults and translation errors. 

If multiple fault types apply to the same fault occurrence, the highest priority fault is recorded. The highest 
fault priority is a translation fault (priority 2), as shown in Table 8-21. Priority 1 is reserved for an internal 
fault. 

Upon power-on reset, the UC, TO, BE, FT, FA V, and OW bits in the SFSR will be cleared. Reading the syn­
chronous fault status register clears all fault status bits. 

Table 8-17. Fault Register Level Field 

L . Level 
a Entry in Context Field 

I Entry in Levell Table 

2 Entry in Level 2 Table 

3 Entry in Level 3 Table 

Table 8-18. Fault Register Access Type Field 

AT Access Type 
a Load from User Data Space 

I Load from Supervisor Data Space 

2 Load/Execute from User Instruction Space 

3 Load/Execute from Supervisor Instruction Space 

4 Store to User Data Space 

5 Store to Supervisor Data Space 

6 Store to User Instruction Space 

7 Store to Supervisor Instruction Space 

Table 8-19. Fault Register Fault Type Field 

FT Fault Type 
a None 

1 Invalid Address Error 

2 Protection Error 

3 Privilege Violation Error 

4 Translation Error 

5 Bus Access Error 

6 Not Generated 

7 Reserved 
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Table 8-20. Fault Type (FT) for PTE[ET] = 2 

AT ACC 
0 I 2 3 4 5 6 7 

0 0 0 0 0 2 0 3 3 

I 0 0 0 0 2 0 0 0 

2 2 2 0 0 0 2 3 3 

3 2 2 0 0 0 2 0 0 

4 2 0 2 0 2 2 3 3 

5 2 0 2 0 2 0 2 0 

6 2 2 2 0 2 2 3 3 

7 2 2 2 0 2 2 2 0 

Table 8-21. Fault Register Error Priorities 

Priority Error 
I Internal Error 

2 Translation Error 

3 Invalid Address Error 

4 Privilege Violation Error 

5 Protection Error 

6 Bus Access Error 

8.9.1 Synchronous Fault Cases 

The following seventeen cases describe the combinations of fault cases that can occur: 

Case 1: Instructionfault with no further faults. The CY7C601 trap is delayed until the CY7C601 tries to 
execute the instruction. 

The trap is taken immediately if the instruction access is actually a data access that is interpreted by 
the CY7C604/605 as an instruction access due to asserting ASI = 8 or 9 with a load alternate instruc­
tion. In this case, the trap handlers cannot probe main memory using the PC of the instruction. If 
the instruction is a load alternate instruction, the trap handler has to calculate the effective address 
to probe. The SFAR has the valid address if the OW bit is not set. 

Case 1: Single-Instruction Fault 

OW 0 

FAV 1 SFAR has valid address 

Ff 1 Invalid error occurred 
(ET = 0 during table walk) 

2 Protection error occurred (either lLB or table walk) 

3 Privilege violation error occurred (either lLB or table walk) 

5 Bus access error occurred (external bus error: UC or TO or BE is set). 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = 1) 
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Case 2: Multiple instructionfault. Instruction fault (1) followed by another instruction fault (2) will always 
cause at least one more instruction fault. The CY7C601 traps on instruction fault (1). 

If the latest instruction fault is due to a load alteruate access with ASI = 8 or 9 ), it overwrites the 
fault associated information of any previous fault. In this case, the setting of the FAV bit in the SFAR 
indicates a valid address for the latest fault instruction. 

The fault address offault (1) can be obtained from the PC in the CY7C601 for the trap handler with 
the exception of the following case. 

It is possible that a data access may be interpreted by the CY7C604/605 as an instruction access be­
cause of the use of a load or store alternate instruction with ASI = 8, 9. Before the CY7C601 takes 
the trap on the data access fault (which is recorded as an instruction fault in the CY7C604/605), 
another instruction fault may occur. The second instruction fault will overwrite the data access fault 
information because it is recorded as an instruction fault in the CY7C604/605. In this case, the trap 
handler cannot just probe the PC of the instruction. If the instruction is a load alternate instruction, 
the trap handler must calculate the effective address to probe, and the SFAR will not contain the fault 
address of the data access fault. 

Case 2: Multiple-Instruction Fault 

OW 1 

FAV 1 SFAR has valid address for latest fault 

Ff 1,2,3,5 Fault type of latest fault 

AT 2,3 Access type of latest fault 

L 0,1,2,3 Level of table walk at which latest fault (2) occurred (only valid with Ff = 1) 

Case 3: Single Datafault. CY7C601 trap (taken immediately). 

Case 3: Single Data Fault 

OW 0 

FAV 1 SFAR has valid address 

FT I Invalid error occurred (ET = 0 during table Walk) 

2 Protection error occurred (either TLB or table walk) 

3 Privilege violation error occurred (either TLB or table walk) 

5 Bus error occurred (external bus error, UC or TO or BE is set) 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which fault occurred during table walk (only valid with Ff = I) 

Case 4: Instructionfaultfollowed by datafault. CY7C601 traps on the data fault 

The history of the instruction fault is lost, but the same fault can be obtained again, once the return 
from the trap handler of the data fault is completed. 
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Case 4: Instruction Fault then Data Fault 

OW 0 

FAY 1 SFAR has valid address for data fault 

FT 1,2,3,5 Fault type of data fault 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1) 

Case 5: Datafaultfollowed by instruction fault. The instruction fault cannot overwrite the data fault. The 
instruction fault will occur again, once the return from the data fault trap handler is completed. 
CY7C601 will trap on data fault. 

Case 5: Data Fault then Instruction Fault 

OW 0 

FAY 1 SFAR has valid address for data fault 

FT 1,2,3,5 Fault type of data fault 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1) 

Case 6: Datafaultfollowed by data fault. (not possible with CY7C601.) 

Case 7: Translationfault (instruction access); no further faults. The CY7C601 trap is delayed until the 
CY7C601 tries to execute the instruction or is taken immediately if the access is data due to a load 
alternate instruction. 

Case 7: Translation Fault on Instruction Access 

OW 0 

FAY 1 SFAR has valid address for translation fault. 

FT 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table walk) 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 8: Translationfault (data access). The CY7C601 trap is taken immediately. 

Case 8: Translation Fault on Data Access 

OW 0 

FAY 1 SFAR has valid address for translation fault 

FT 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table walk) 

AT 0,1,4,5,6,7 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 9: Instructionfault followed by translation fault (instruction.) The CY7C601 traps on the instruction 
fault. 

The fault address of the instruction fault can be obtained from the PC in the CY7C601 for the trap 
handler with the exception of the following case. 
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A data access fault can be recorded as an instruction fault if a load alternate instruction with ASI = 
8,9 causes a fault. Before the CY7C60l takes the trap on the data access fault (which is recorded 
as an instruction fault in the CY7C604/605), a translation fault may occur due to an instruction ac­
cess. This will overwrite the data access fault information. 

Case 9: Instruction Fault then Translation Fault (I) 

OW 1 

FAV 1 SFAR has valid address for translation fault 

Ff 4 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 10: Translationfault (instruction access) followed by instructionfault. The CY7C60l traps on the 
translation fault. The instruction fault cannot overwrite the translation fault. 

Case 10: Translation Fault (I) then Instruction Fault 

OW 0 

FAV 1 SFAR has valid address for translation fault 

FT 4 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 11: Translationfaultl (instruction access) followed by translationfault2 (instruction). The 
CY7C601 traps on translation faultl. 

Case 11: Translation Fault (I) then Translation Fault (I) 

OW 0 

FAV 1 SFAR has valid address for first translation fault 

Ff 4 

AT 2,3 LoadlExecute from User/Supervisor instruction space 

L 0,1,2,3 Level at which first translation fault occurred during table walk 

The second translation fault cannot overwrite the first translation fault. 

Case 12: Translationfaultl (instruction access) followed by translationfault2 (data access). The 
CY7C601 traps on translation fault2. The translation fault2 cannot overwrite translation faultl. 

Case 12: Translation Fault (I) then Translation Fault (D) 

OW 0 

FAV 1 SFAR has valid address for translation fault 1 

Ff 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault 1 occurred during table walk 
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Case 13: Translationfault (instruction access) followed by data fault. The CY7C601 traps on the data 
fault. The data fault cannot overwrite the translation fault. 

Case 13: Translation Fault (I) then Data Fault 

OW 0 

PAV 1 SPAR has valid address for translation fault 

Fr 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk 

Case 14: Data fault followed by translation fault (instruction access). The CY7C60 1 traps on the data fault. 

Before the CY7C601 takes the trap on the data access fault, a translation fault may occur due to an 
instruction access. This will overwrite the data access fault infonnation. 

Case 14: Data Fault then Translation Fault (I) 

ow 1 

PAV 1 SPAR has valid address for translation fault 

Fr 4 

AT 2,3 Execute from User/Supervisor instruction space 

L 0,1,2,3 Level at which translation fault occurred during table walk: 

Case 15: Instructionfaultfollowed by translationfault (data). The CY7C601 will trap on the data fault. 

Case 15: Instruction Fault then Translation Fault (D) 

OW 0 

PAV 1 SPAR has valid address for translation fault 

Fr 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk: 

Case 16: Translationfault (data) followed by instruction/ault. The CY7C601 will trap on the data fault. 

Case 16: Translation Fault (D) then Instruction Fault 

OW 0 

PAV 1 SPAR has valid address for translation fault 

Fr 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk: 
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Case 17: Translationfault (data)followed by translationfault (instruction). The CY7C601 will trap on the 

data fault. 

Case 17: Translation Fault (D) then Translation Fault (I) 

OW ° FAV 1 SFAR has valid address for data translation fault 

FT 4 

AT 0,1,4,5,6,7 

L 0,12,3 Level at which translation fault occurred during table walk 

8.10 CY7C604/605 Pin Definitions 

The functional pinouts for the CY7C604 and CY7C605 are shown in Figure 8-49. Note that all three-state 
output signals are driven to their inactive state before they are released to three-state. All signals described 
are common to both the CY7C604 and CY7C605 unless otherwise stated. 

Virtu I B s· a us 19nas M' s· ISC. Igna s Virtu aI Bus Signals Misc. Signals 

... CLK 

~ ... CSEL 
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Figure 8-49. CY7C604 and CY7C605 I/O Signals 
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Signal Name 

A<31:16> 

A<15:2> 

A<l:O> 

ASl<5:0> 

D<31:0> 

ERROR 

FNULL 

INULL 

(605 ONLY) 

I/O 

I 

I/O 

I 

I 

I/O 

I 

I 

I 

0(604) 
I/O (605) 

CY7C604/60S Virtual Bus Signals 

Description 

Virtual Address bus. A<31:16> are input signals during normal read/write 
accesses and are latched into the CY7C604/605 on the rising edge of clock. 

Virtual Address bus. Three-state input/output signals. A<15:2> are input 
signals during normal read/write accesses and are latched into the 
CY7C604/605 on the rising edge of the clock. They are output signals 
during cache line loads into the CY7C157 and modified cache-line reads 
from the CY7C157. 

Virtual Address bus. A<1:0> are input signals during normal read/write 
accesses and are latched on the rising edge of clock. 

Address Space Identifiers. The ASI bits are used to: 
1. Identify various types of accesses (user/supervisor, instruction/data) 
2. Access CY7C604/605 registers 
3. Initiate MMU flush/probe operation 
4. Identify CACHE flush operations 
5. Recognize diagnostic operations 
6. Recognize pass physical address space 

Virtual Data bus. Three-state input/output signals. D<31 :0> are input sig­
nals during CY7C601 normal write accesses, modified cache-line reads 
from the CACHE RAM, CY7C604/605 register writes or CY7C604/605 
diagnostic accesses. They are output signals during cache line loads into 
CACHE RAM, CY7C604/605 register reads, non-cacheable loads, or 
CY7C604/605 diagnostic accesses. 

Error (active LOW) signal from the CY7C601. When this signal asserted, 
it indicates the CY7C601 has halted due to entering the error state. The 
CY7C604/605 reads this signal and initiates a watchdog reset. (Refer to 
Section 8.7.2 for more details.) 

Floating-point unit nullification cycle (active HIGH). When FNULL is 
active, the current access is ignored. 

Integer unit nullification cycle (active HIGH). When INULL is active, the 
current access is ignored. 

Integer unit output enable (active LOW). This signal is connected to the 
AOE and DOE inputs of the CY7C601. When deasserted (HIGH), the 
IOE will place the address (A<31:0», address space identifiers 
(ASl<7:0», and data (D<31:0» drivers ofthe CY7C601 in a three-state 
condition. On the CY7C604, this signal is continually driven high or low, 
and is driven LOW during power-on reset. 

In the CY7C605, this signal is a three-state signal. During power-on reset, 
IOE is driven HIGH. This signal must be tied to ground through a resistor. 
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Signal Name 1/0 

IRST o 

LDST I 

o 

o 

MHOLD o 

RD I 

SIZE(l:O) I 

SNULL I 

I 

VINT I/O 
(605 ONLY) 

Description 

Integer unit reset (active LOW) is asserted to reset the integer unit. (Refer 
to Section 8.7.2 for more details.) This signal is continually driven HIGH 
or LOW. 

Atomic Load-Store operation indicator (active HIGH). Asserted by the 
CY7C601 during atomic load store cycles and is sampled by the 
CY7C604/605 on the rising edge of the clock. 

Memory data strobe (active LOW) is asserted for one clock to strobe data 
into the CY7C601 during a cache miss. MHOLD must be low when MDS 
is asserted. It is driven off of the falling edge of the clock. This is a three­
state output. This signal must be tied to Vee through a resistor. 

Memory exception (active LOW) is asserted for one clock whenever a 
privilege or protection violation is detected. MHOLD and MDS must be 
low when MEXC is asserted. This is a three-state output. This signal must 
be tied to Vee through a resistor. 

Memory hold (active LOW) is asserted by the CY7C604/605 whenever it 
requires additional time to complete the current access such as during 
cache miss etc. It is driven off of the falling edge of the clock. 

Read cycle indicator (active HIGH). Asserted by the CY7C601 during 
read cycles and is sampled by the CY7C604/605 on the rising edge of the 
clock. This signal is also used to generate cache read output enable 
(CROE). 

SIZE of access indicator. Specifies the data width of the CY7C601 access 
and is sampled by the CY7C604/605 at the rising edge of the clock. 

System nullification cycle (active LOW). When SNULL is active, the cur­
rent access is ignored. 

Write enable to indicate write cycle (active LOW). Asserted by the 
CY7C601 during write cycles and is sampled by the CY7C604/605 on the 
rising edge of the clock. This signal is also used to generate cache byte­
write enables (CBWE<3:0». 

Virtual interrupt (active LOW). This signal is a three-state signal asserted 
by a CY7C605 during a Coherent Read (or Coherent Read and Invalidate) 
transaction to respond to a request for a cache line it owns. When operat­
ing in a multiprocessor systems, assertion of VINT causes the other 
CY7C605(s) in the system to stop driving the address and data buses. 
VINT is asserted during the second cycle after the address is strobed on the 
MBus (with MAS), or later if the CY7C605 is busy and cannot immediate­
ly supply the data. This signal must be tied to Vee through a resistor. 

8-66 



, E C H N 0 LOG Y, ,$ ============C=Y=7;;;::C;;::6;;::04;;:;/;::;C;;;;:Y:;;;;7;:;;C:;;;:60:;;;;5;;;;;;C;:;;;M;;;;V;:;;; 

Signal Name I/O 

Signal Name I/O 

o 

(605 ONLY) 

MAD<63:0> I/O 

Description 

When this pin is asserted by a CY7C605, the other CY7C605(s) in the sys­
tem will tri-state their virtual bus signals (A<31:0>, D<31:0>, and 
ASI<5:0» and assert MHOLD on the next rising clock. VINT remains 
asserted until the owned data is read from the cache RAMs. MHOLD re­
mains asserted for one additional cycle after VINT is deasserted. In a mul­
tichip configuration, all of the CY7C605s connect to a common VINT pin. 

MBus Signals 

Description 

CMU Error (active LOW). This signal is open drain and is asserted if any 
bus error has occurred during writes to main memory. A system can use 
this signal to cause an interrupt. This signal will remain asserted until the 
asynchronous fault address register is read, at which time it will be tri­
stated. This signal must be tied to V cc through a resistor. 

In the CY7C605, CMER is also asserted if ERROR is asserted (watchdog 
reset). In this case, CMER will remain asserted until the reset register is 
read. 

MBus address and data (three-state bus). During the address phase of a 
transaction MAD<35:0> contains the physical address PA(35:0). The re­
maining signals MAD<63:36> contain the transaction-associated informa­
tion as shown below during the address phase of the transaction: 

MAD<39:36> 
OH 
IH 

2H* 
3 H* 
4H* 
SH* 

6--FH 

Transaction Type 
MBus write 
MBus read 
Coherent Invalidate 
Coherent Read 
Coherent Write and Invalidate 
Coherent Read and Invalidate 
Reserved 

* CY7C60S ONLY 

MAD<42:40> Transaction Size 
o Byte (8 bits) 
1 Halfword (16 bits) 
2 Word (32 bits) 
3 Doubleword (64bits) 
4 16 Bytes** 
S 32 Bytes 
6 64 Bytes** 
7 128 Bytes** 

** Not supported by CY7C604/605. 

MAD(43) (MC) MBus cacheable (active HIGH). Indicates the current 
MBus transaction is cacheable. 

MAD(44) (MLOCK) MBus LOCK (active HIGH). Indicates the currrent 
MBus transaction is a locked transaction. 
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Signal Name 

MIH 
(60S ONLY) 

I/O 

0(604) 
1/0(60S) 

I/O 

I 

o 

I 

I/O 

Description 

MAD(45) (MBL) MBus boot mode/local indicator. MBL is high during 
the address phase of boot mode transactions. The instruction fetch and data 
accesses to the MBus while the MMU is disabled in boot mode are consid­
ered BOOT MODE transactions. The data transactions on the MBus re­
quired for Load/Store alternate instructions with ASI = 01 are considered 
LOCAL transactions. 

MAD<53:46> t (VA) Virtual address bits VA<19:12>. The CY7C60S uses 
VA<IS: 12> for the virtually indexed cache. 

MAD<59:54> (Reserved) Driven HIGH during the address phase. 

MAD<63:60> t (MID) module identifier. This field is defined by the 
module ID number field in the SCR of a CY7C60S. It is used by an MBus 
agent to identify the master who should be re-granted the bus on a Relin­
quish and Retry acknowledgement. 

During the data phase of the transaction, the MAD<63 :0> lines contain the 
64 bits of data being transferred. 

MBus address strobe (active LOW). Asserted by the bus master during the 
first cycle of every bus transaction to indicate the address phase of that 
transaction. This is a three-state output. This signal must be tied to V cc 
through a resistor. 

MBus bus busy (active LOW) asserted by the current MBus master during 
an entire transaction and, if required, during both the read and write trans­
actions of indivisible accesses. The potential bus master devices sample 
MBB in order to obtain bus mastership as soon as the current master re­
leases the bus. This is a three-state output. This signal must be tied to 
V cc through a resistor. 

MBus Bus grant (active LOW). Asserted by external arbiter when the 
MBus is granted to a master. This signal is continually driven. 

MBus bus request (active LOW). Asserted by potential MBus master de­
vices to acquire bus mastership. This signal is continually driven. 

MBus error (active LOW). Asserted or deasserted by an MBus slave dur­
ing every data phase of a transaction. This signal is three-stated when re­
leased. This signal must be tied to V cc through a resistor. 

Memory inhibit (active LOW). Asserted by the CY7C60S for MBus trans­
actions where the cache owns the data that has been requested on the 
MBus. This signal is monitored during bus snooping by the CY7C60S. 
Refer to Chapter 11 for further details. This signal must be tied to V cc 
through a resistor. 

t Applies to CY7C605 (Level 2 MBus) systems only. 
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Signal Name 

MRDY 

MRST 
(604 ONLY) 

MSH 
(605 ONLY) 

Signal Name 

CBWE<3:0> 

I/O 

1(604) 
I/O (605) 

o 

I 

I/O 

I 

I/O 

o 

o 

Description 

MBus ready (active LOW). Asserted or deasserted by an MBus slave dur­
ing every data phase of a transaction. This signal is to be three-stated 
when released. This signal must be tied to V cc through a resistor. 

MBus reset (active LOW). Asserted for 1024 clock cycles by only one 
source on the MBus to initialize all devices on the MBus. This signal is 
continually driven. 

MBus retry (active LOW). Asserted or deasserted by an MBus slave dur­
ing every data phase of a transaction. This signal is three-stated when re­
leased. This signal must be tied to V cc through a resistor. 

MERR MRDY MRTY Action 
H H H Nothing 
H H L Relinquish and Retry* 
H L H Data Strobe 
H L L Reserved 
L H H Bus Error 
L H L TimeOut 
L L H Uncorrectable Error 
L L L Retry* 

* See Chapter 11 on MBus. 

Memory shared (active LOW). Asserted by the CY7C605 after detecting a 
data request on the MBus for which the CY7C605 has a copy. This signal 
is monitored by the CY7C605 during bus snooping. Refer to Chapter 11 
for further information. This signal must be tied to V cc through a resistor. 

Power-on reset (active LOW). The POR initializes all on-chip logic to a 
known state, invalidates all the TLB entries, and all cache tag entries. It 
must be asserted for a minimum of 8 clocks. It also causes the 
CY7C604/605 to assert IRST to reset the CY7C601. 

Cache RAM Signals 

Description 

Cache byte write enables (active LOW). During normal write operations, 
certain byte enable signals are asserted depending upon the size and A(1:0) 
inputs. During a cache line load all four byte enable signals are asserted. 
These signals can also be driven by using a store alternate instruction with 
ASI = OF H. This feature is supported for diagnostic purposes. This output 
is continually driven (not three-stated). CBWEO controls the most signifi­
cant byte (MSB) and CBWE3 controls the least significant byte (LSB). 
Refer to page 8-40 for further information on this signal. 

Cache RAM output enable (active LOW). Asserted during normal read 
operations with ASI = 8, 9, A, B and during modified cache line read oper­
ations. This signal is also asserted during cache data read operations with 
ASI = OF H for diagnostic purposes. This signal is continually driven. 
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Signal Name 

CLK 

CSEL 

CSTA 
(604 only) 

TOE 

I/O 

I 

I 

o 

I 

Miscellaneous Signals 

Description 

System clock. This is the same clock used by the 7C601 Integer Unit. 

Chip select (active LOW). In multi-CMU systems, CSEL on each 
CY7C604/605 is connected to different address lines (anyone from 
A<31:16» to initialize the multichip configuration. In single-CMU sys­
tems, CSEL should be connected to ground in order to permanently enable 
the CY7C604/605. In multi-CMU systems, CSEL should be connected to 
ground or VCC through a resistor during power-on reset. This is required 
in order to enable only one boot mode CMU. (Refer to Section 8.5, Multi­
chip Configuration for more details.) 

Cache status. This pin provides the status of cache. In write-through, the 
CSTA indicates whether the cache line associated with a write transaction 
on the MBus is valid or not. For MBus read transactions, in both 
write-through and copy-back mode, the CSTA indicates whether the 
CY7C604 is replacing a valid cache line entry or not. 

This signal has the same timing specifications as the MBus signals such as 
MC and has meaning only in the address phase of MBus transactions. This 
signal is continually driven HIGH or LOW. 

Cache Mode CSTA Condition 
Write-through 1 read and valid cache line replacement 

0 read and invalid cache line replacement 

1 write cache hit 

1 write cache miss and cache line valid 
0 write and cache line invalid 

1 read and valid cache line replacement 
Copy-back 0 read and invalid cache line replacement 

undef. write 

Test/output enable (active LOW). When HIGH, this signal is used to 
three-state all output drivers of the CY7C604/605. TOE SHOULD BE 
TIED LOW DURING NORMAL OPERATION. It is used to isolate the 
CY7C604/605 from the rest of the system for debugging purposes. 
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8.11 Virtual Bus Operation 

The following timing diagrams illustrate CY7C604/605 virtual bus operations: 
Page 

Figure 8-50. Write-Through (Copy-Back) Read Cache Hit ................................ 8-72 
Figure 8-51. Write-Through (Copy-Back, Clean Cache Line) Read Cache Miss ............... 8-73 
Figure 8-52. Write-Through, Read Cache Miss (Alias Detected) ............. " ............. 8-76 
Figure 8-53. Write-Through Write Cache Hit ........................................... 8-77 
Figure 8-54. Write-Through Write Cache Miss ......................................... 8-78 
Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line ..................... 8-79 
Figure 8-56. Copy-Back, Write Cache Miss, Modified or Non-Modified (Alias Detected) ....... 8-84 
Figure 8-57. Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) ........ 8-85 
Figure 8-58. Copy-Back, Write Cache Hit ...................................................... 8-86 
Figure 8-59. Write-Through Load-Double Cache Hit .................................... 8-86 
Figure 8-60. Write-Through, Store-Double Cache Hit .................................... 8-87 
Figure 8-61. Table Walk (with Modified Bit Update) ..................................... 8-88 
Figure 8-62. Read Access with Protection or Privilege Violation ........................... 8-92 
Figure 8-63. CY7C604/605 Diagnostic Cache Tag Write Access ........................... 8-92 
Figure 8-64. CY7C604/605 Register Read ............................................. 8-93 
Figure 8-65. CY7C604/605 Register Write ............................................ 8-93 
Figure 8-66. Power-On Reset Timing (CY7C604 only) ................................... 8-94 
Figure 8-67. Power-On Reset Timing (CY7C605 only) ................................... 8-96 
Figure 8-68. Software External Reset ................................................ 8-98 
Figure 8-69. Software Internal Reset ................................................. 8-98 

8-71 



S CY7C604/CY7C605 CMU 
TECHNOLOGY, INC 

CLK ~ LJ 
A(31:0) 

D(31:0) 

RD I ,., 'W' 
WE I 'W' ,. 

CROE \ 1\ 
MHOLD I 

I 

\~--------------------
Figure 8-50. Write-Through (Copy-Back) Read Cache Hit 
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TEe H N 0 LOG Y, ,$ ============C=Y=7:;;;;::C=6;;;;;04;;;;;;/;;;;:;C=Y=7C~60;;;5;;;;;;C;;;;M;;;;U;:;;;: 
1 

CLK II 
2 3 4 5 6 

~ ...... n,-----,11 
A(31:0) 

D(31:0) 

RD 

~~ _________________ A~l ________________ _ 

----~GII----------------------~~ 
(missed data) 

I 

WE I 'W' 
CROE ~ I 

CBWE(3:0) I 

MHOLD I \~-------------------------
MDS I 

IOE '---------.II \ 

MBR I \'----___ --'1 
MBG* I \~--------------------
MBB I \~-----------

MAD<63:0> ---------------------------------<{ ADDR ~ 

MAS I \ 1 
MRDY I 

Figure 8-51. Write-Through (Copy-Back, Clean Cache Line) Read Cache Miss (page 10f3)* 

* Two clocks can be deleted from the cache miss timing if MBG is already granted. 
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S CY7C604/CY7C605 CMU 
TECHNOLOGY,INC. 

6 7 8 9 10 11 

CLK ~ I LJ I n I IL 
A(31:0) Al X A2 X, A3 X ~ X A5 ~ 
D(31:0) ( DI X D2 X D3 X D4 X D5 

RD I 

WE I 

CROE I 

CBWE(3:0) \ AA AA AA AA I 

MHOLD \ 

MDS I 

IOE I 

MBR I 

MBG \ 

MBB \ I 
MAD(63:0) 

MAS I 

MRDY -V V V V 

Figure 8-51. Write-Through (Copy-Back) Read Cache Miss (page 2 of 3) 
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TEe H N 0 LOG Y, ,$ ============C:;:;;;Y:;:;;;7;;;;;;C:;;;;6;;;;;;04;;;;:/;;;;;;;C;;;;;;;Y;;;;;;7C;;;;6;;;:O;;;;5~C;;:;;M;;;;;U:;:;;; 
12 13 14 15 16 17 

CLK 

A(31:0) A6 X ,--_A..;..7_...JXI... __ A.;..8_...JX,-__ A_--,~ 

D(31:0) X D6 ""--__ .JX .... _D_7_...JX .... _D_8_...J)IIIII( D(A) )e6MWI 

RD I 

WE I 

CROE I 

CBWE(3:0) !}. 

MHOLD \~ ___________________________ -J 

MDS I 

rOE I 

MBR I 

MBG \~ ______________________________________ _ 

MBB I 

MAD(63:0) 

MAS I 

MRDY I 

Figure 8-51. Write-Through (Copy-Back) Read Cache Miss (page 3 of 3) 
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--------~~~------------------------------~~ 

'--_-----'I \~_~I 

\\..... _____ ---11 

I \ 
( ADDR HDATAO 

\ / 
\ / 

\ 
\ 

Figure 8-52. Write-Through, Read Cache Miss (Alias Detected)* 
* Although aliasing is detected, the MBus access is not aborted (the CY7C604/605 ignores the access). The MBus transaction 

terminates normally. 
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Figure 8-53. Write-through, Write Cache Hit 
* This timing diagram is an example of bus parking (i.e. MBG granted by default to the CY7C604/605). 
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CLK 

A(31:0) 

D(31:0) 

RD 

WE 

CBWE(3:0) I 

CROE I 

MHOLD I 

MDS I 

rOE \ 

MBG \ 

MBB I \ r 
MAD(63:0) ( ADDR X DATA r-

MAS I \ I 
MERR I 

MRDY I \ ;-
MRTY I 

Figure 8-54. Write-Through, Write Cache Miss 
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2 3 4 5 6 

CLK 

A(31:0) ~ Al X A2 X A3 V--~'-____ ~ 1....._----'1..... __ "--

D(31:0) -----~__ D'(AI) X D'(A2~ 
RD I 

WE I 

CBWE(3:0) I 

'---_---J/ \'----------------------

\'--------------------------

'---____ ...J/ 

\\..-____ -...J! 

\'--------------------

\_---------
-""!'-----------------« (read) ADDR _ DI,2 • 

\ ! 

Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line (page 1 of 5)* 
* Two clock cycles can be deleted from this timing diagram if the MBG signal is already asserted. 
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6 7 8 9 10 11 

CLK .-J n L 
A(31:0) X A4 X A6 X A5 XI.... __ ....--J A7 X As x:= 
D(31:0) 

RD I 

WE I 

CBWE(3:0) I 

CROE \ 

MHOLD \ 

MDS I 

IOE I 

MBR 
I 

MBG \ 

MBB \ 

MAD(63:0) 

MAS 

MRDY V V V V 

Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line (page 2 of 5) 
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12 13 14 15 16 

Al X A2 X A3 X A4 G 
'--____ D(AI) X D(A2) X D(A3) X D(A4) 

'--___ --II 
MHOLD \ 

MDS I 

IOE I 

MBR 
I 

MBG \ 

MBB \ 

MAD(63:0) ______ A_D_D_R_(c_ac_he_l_in_e_fl_us_h_) _____ ---'X D'I,2 _ D'3,4 )II 

MAS I 

MRDY I 

Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line (page 3 of 5) 
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TEe H N 0 LOG Y. ,$ ============C:;;;;Y~7;;;;;C;;;;;:6;;;;;04;:;;/:;;;C:;:;;Y;;:;;7::=C:;;:60=::5=C=M~U;:: 
16 17 18 19 20 21 

CLK 

A(31:0) AI 
X 

A5 
X 

A6 
X 

A7 
X 

As 
X 

A )fK 

D(31:0) < 
D(A4) 

X 
D(A5) 

X 
D(A6) 

X 
D(A7) 

X 
D(As) 

X 
XD(A) 

RD I 

WE I 

CBWE(3:0) 

CROE I 

MHOLD \ 

MDS I \ I 
IOE I \"----

MBR 
I 

MBG \ 

MBB \ I 

MAD(63:0) ~ D'5,6 )fit( D'7,S )8 

MAS I 

MRDY 

Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line (page 4 of 5) 

8-82 
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21 22 23 

CLK 

A(31:0) 

0(31:0) 

RO I 

WE I 

CBWE(3:0) I 

CROE ~ I 

MHOLO ~------------~I \ 

MDS \ I 
IOE \ 

MBR 
I 

MBG \ 

MBB I 

MAO(63:0) 

I 

I 

Figure 8-55. Copy-Back Cache Read Cache Miss, Modified Cache Line (page 5 of 5) 
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CLK 

A(31:0) 

D(31:0) --~----~~r--------------~----------------~ 

RD 

WE 

CBWE(3:0) 

CROE ~ 

MHOLD I \~------------~I 
MDS I 

MEXC I 

IOE \ I \~---------------------
MAD(63:0) ( ADDR ------------~~ ____ -J}-{DATAO>---<DATAl>---<DATA2>---<= 

MAS I \ 
MERR I 

MRDY 

MRTY I 

MBG \ 

Figure 8-56. Copy-Back, Write Cache Miss, Modified or Non-Modified (Alias Detected)* 
* Even though aliasing is detected, the MBus is not aborted (the CY7C604/605 ignores the access). The MBus transaction termi­

nates normally. Timing assumes MBus is parked (already granted). 
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CLK 

A(31:0) 

D(31:0) (D(A) ) @ 

RD \ ... JJfIJ//B ~ ~ .., 
WE I ~ ~ ~ ~ .., 

CBWE(3:0) \ I 
CROE I 

MHOLD I \'--------'/ 
MDS I 

MEXC I 

IOE ~ ___ ....JI \ \~-----------
MAD(63:0) 

MAS I \'--_---11 
MERR I 

MRDY 

MRTY I 

MBG \ 

Figure 8-57. Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected) 
* Even though aliasing is detected, the MBus is not aborted (the MBus controller ignores the access). Timing assumes MBus is 

parked (already granted). 

8-85 



TEe H N 0 LOG Y, I~ ============C;:;;;Y;;;7;;;:C:;:;;:6=04;;:;;/;;;;;C;;;;Y;;;;;;7;;;;:;;C=60~5;;;;;C=M~U;;::;;; 

CLK 

A(31:0) 

0(31:0) ----------~~~~------------

RD 

CBWE(3:0) \'---~/ 
I 

Figure 8-58. Copy-Back, Write Cache Hit 

CLK 

A(31:0) 

0(31:0) --------4~~--~~~-------

RO 

Figure 8-59. Write-Through Load-Double Cache Hit 

8-86 



TECHNOLOGY, ~~======================C~Y~7=C~6~04=/=C=Y~7=C=60=5=C=M=U= 
CLK 

A(31:0) 

D(31:0) C§) ~ 
RD \ ~ Ala ~ Ala Aa 
WE I ~ ~ .,. ., \tit 

LDST \ 

CBWE(3:0) \ I 
CROE I 

MHOLD I 

MDS I 

MEXC I 

IOE \ 

MAD(63:0) ( ADDR X DATA 

MAS I \ I 
MERR I 

MRDY I \ 
MRTY I 

Figure 8-60. Write-Through, Store-Double Cache Hit* 
* The MBus cycle is not initiated until both 32-bit transfers of the double store are received. 
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TEe" N 0 LOG Y, ,$ ============C;;;;Y;;;;7;;;;;;C;;;;;6;;;;;04;;;;;;/;;;;;;C;;;;;;Y;;;;;;7;;;;;C;;;;60;;;;;5;;;;;;C:;;M~U~ 
2 4 5 6 

CLK 

A(31:0) 

D(31:0) @ 

CROE I \ I 
RD 

WE I ,. ,. -
CBWE(3:0) I 

MHOLD I \~--------------------
lOE \ 

MAD(63:0) ------------------------c( CONTEXT TABLE )-
. ADDRESS . 

MAS I \'--_--r, 
MERR I 

MRDY I \ 
MRTY I 

MBR I \ ....... ____ ---JI 
MBG I \'---------
MBB I \'------

Figure 8-61. Table Walk Timing Diagram (with Modified Bit Update)* (page 1 of 4) 
* This table walk illustrates a cache read hit with TLB miss. This table walk updates the TLB and performs access protection 

checking. 
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, , C H N 0 LOG'. ,$. ============C:::;;;Y:::;;;7;;;;;;C;;;;;6~04;;;;/=C=Y=7=C:::;;;60;::5=C;::M=U= 
6 9 10 11 

CLK 

A(31:0) 

0(31:0) 

CROE I 

RO / -
WE / ., .. ;: r, ~ j', 

, , 'c; -
CBWE(3:0) I 

MHOLO \ 

rOE \ 

MAO(63:0) 
CONTEXT LEVEL 1 TABLE 

TBLADDR. ADDRESS 

MAS --.--I \ / 
MERR I 

MROY I '--I '--I 
MRTY I 

MBR I 

MBG \ 

MBB \ 

Figure 8-61. Table Walk Timing Diagram (with Modified Bit Update) (page 2 of 4) 
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S 
TECHNOLOGY, INC. 

CLK 

A(31:0) 

D(31:0) 

CROE I 

RD 

WE 

CBWE(3:0) 

MHOLD \ 

IOE \ 

MAD(63:0) 

MAS ~ 
MERR I 

MRDY I 

MRTY I 

MBR / 

MEG \ 

MBB \ 

II 12 13 

! 

CY7C604/CY7C605 CMU 

14 

LEVEL 3 TABLE 
ADDRESS 

\ ....... __ ....J! 

15 16 

Figure 8-61. Table Walk Timing Diagram (with Modified Bit Update) (page 3 of 4) 
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IMISS CY7C604/CY7C60S CMU 
TECHNOLOGY,INC. 

16 17 18 19 20 21 

CLK -1 L 
A(31:0) 

D(31:0) 

CRaB / 

RD 

WE 

CBWE(3:0) / 

MHOLD ~--------------------------~;--\ 

lOB \ 

MAD(63:0) @ _--------« LEVEL 3 TABLE ~ _____ _ 
. ADDRESS ~ 

MAS / \ ..... ___ 1 
MERR / 

MRDY -1 
MRTY / 

MBR / 

MBO \ 

MBB ~--------------------------~<~;--\ 

Figure 8-61. Table Walk Timing Diagram (with Modified Bit Update) (page 4 of 4) 
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CLK -.J 
A(31:0) 

0(31:0) 

RD 

WE 

CBWE(3:0) I 

CROE I 

MHOLD \ I 
MDS I \ I 

MEXC I \ I 
IOE \ 

Figure 8-62. Read Access with Protection or Privilege Violation 

CLK -.J 
A(31:0) 

0(31:0) ® 
WE 

MHOLO I \ I 
Figure 8-63. CY7C604/605 Diagnostic Cache Tag Write Access 
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CLK ~ L 
A(31:0) 

0(31:0) ------------------------~~~--~~~---

RO 

/ \'--____ --JI 
I \"------11 

Figure 8-64. CY7C604/605 Register Read 

CLK ~ L 
A(31:0) 

0(31:0) ----------~~~--------

I 

Figure 8-65. CY7C604/605 Register Write 
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TEe H" 0 LOG Y, ,$ ============C;;:;Y;;:;7;::;;C=6:;:;04;'=::C;;::Y;;;;;;7;C=60=5;;;;;C:;;;;M;;;;U;;:;;;; 

eLK 

A(31:0) 

/ \ / (( 

» 

\ 
" (( 

INULL 
/ » \ 

rr 
I .0 L 
Figure 8-66. Power-On Reset Timing (CY7C604 only) (page 1 of 2) 
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5 CY7C604/ CY7C605 CMU 
TECHNOLOGY, , N C 

12 13 14 15 16 17 

eLK 

A(31:0) ~ 04H • 
D(31:0) 

POR I 

INULL \ 

IRST I 

MHOLD '\ ;-
MDS I \ ;-

MAD(63:0) ( AO HINSTO) 

MAS I U 
MRDY I U 

MBR '\ I 
MBG I \ I 
MBB I \ I 

Figure 8-66. Power-On Reset Timing (CY7C604 only) (page 2 of 2) 
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TEe H NO LOG T, ,$ ============C;Y;7;;;;;C=6;04=I=C=Y=7=C=60=5=C=M=U; 

eLK ~~ ..... 9_-I 

10 11 12 

U L 
~~\ --~------~ 
~ r---- 8 CLOCKS M;N. ----r.:!:i·II-' ------------

. , sr--l ' 

OOH -A(31:0) 

I \~~£~(----------~/ 
I S5 \ 

" 
INULL 

I )) L 
I s: 

Figure 8-67. Power-On Reset Timing (CY7C605 only) (page 1 of 2) 

8-96 



~~,$ ============C;;;Y;;;7;;:C;;::6;::;O;:;;4/:;;;:C~Y;;;;;7;;;;;;C;;;;;;60:;;:5;;;;:;C;;;;M;:::;U;:;;;;: 
12 13 14 15 16 17 

eLK 

A(31:0) ~ ________ 04_H _______ ---I} 

D(31:0) 

I 

INULL \ 

IRST I 

MHOLD I \ ;-
MDS I \ ;-

MAD(63:0) ( AO HINSTOr--

MAS I U 
MRDY I .~ 

MBR I \ I 
MBG I \ I 
MBB I \ f 

Figure 8-67. Power-On Reset Timing (CY7C605 only) (page 2 of 2) 
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TEe H N 0 LOG Y, ,$ ===========~C;;;;;;;;Y;;;;;7C;;;;;;6;;;;;;O=4/=C=Y=7;;;;;;;;C=60::;;;5=C=M=U;;;; 

CLK ~ 
A(31:0) } 

0(31:0) 
~ 1024 CLOCKS t->----

--------<~)---------i---;l--Ir-----i-·---1S}l--+· ---

MHOLO I \'-----1...---( S5 ;/ 
MRST I ~ \ f~ 

S. 

t t 
X Y 

Figure 8-68. Software External Reset 
Notes: 

1. Address A will be 00000700 H and ASI will be 04 H 

2. Data A will be 00000001 H 

3. MRST will not be asserted until the write buffers are empty. If empty, MRST will be asserted at point X. If not empty, MRST 
will be asserted at point Y (the rising clock following the final data phase of emptying the write buffer.) In either case, MRST 
will be asserted for 1024 clock cycles. 

eLK ~ LJ L 
A(31:0) 

0(31:0) 

IRST I 

Figure 8-69. Software Internal Reset 
Notes: 

1. Address A will be 00000700 H and ASI will be 4 H. 

2. Data A will be 00000002 H 

3. IRST causes CY7C601 to place address 0 on address bus while asserted. CY7C60 I continues with reset address sequence after 
IRST is deasserted. 
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CY7C157 Cache Storage Unit 

The CY7C157 Cach Storage Unit (CSU) is a high-performance CMOS static RAM organized as 16 Kbytes 
x 16 bits. It is intended specifically for use as a high-speed cache memory for the CY7C600 family of SPARC 
devices. The CY7CI57's 20-ns access time allows operation at processor clock speeds to 40 MHz. 

The CY7C157 includes registered inputs as well as data-in and data-out latches. Because it was designed 
specifically for 7C600 family devices, the CY7C157 CSU requires no glue logic to interface with the 
CY7C601, CY7C602, CY7C604, or CY7C605. All relevant pins on each device connect directly to one 
another. The combination of direct connection and on-chip latches and registers yields system designs re­
quiring less board space at a lower cost and with increased reliability. In addition, the CY7C l57's self-timed 
byte-write mechanism relieves the system of any write timing chores. 

WEI 

A[13:0] 

CLOCK 

Array 0 
16Kx 8 

Figure 9-1. CY7C157 Block Diagram 
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TECHNOLOGY, 
~~~~~~~~~~~~~~C=Y~7C~15=7~c=a=ch=e=S=t=o=ra=g=e=u=n=i=t 

9.1 Description Of Part 

The CY7Cl57 is organized as two arrays of 16-Kbyte static memory. In order to minimize external timing 
and interface logic, the CY7Cl57 contains self-timed byte write logic, registered inputs, data in and data 
out latches, and output hold delay logic to control the data out latches. 

Reading the device is accomplished by deasserting WE HIGH, and OE LOW. On the rising edge of 
CLOCK, addresses A(13:0) are loaded into the input registers. A memory access occurs, and data is held 
until the next rising edge of CLOCK in order to meet the hold time requirements of the CY7C60 1. 

To write to the CY7C157, OE must be taken HIGH. If the falling edge of CLOCK samples either or both 
WEo or WEI LOW, a self timed byte write mechanism is triggered. Data is written from the data-in latch 
into the memory array at the corresponding address. 

Note that the OE signal must be HIGH for a proper write as the WEo and WEI signals do not three-state the 
outputs. A die coat insures alpha immunity. 

9.2 Operation 

Reading the device is accomplished by taking the appropriate WE HIGH and OE Law. On the rising edge 
of CLOCK, addresses AO through A13 are loaded into the input registers. A memory access occurs, and 
data is held after a read cycle beyond the next rising edge of CLOCK to meet the hold time requirement of 
the microprocessor. 

To write the device, OE must be taken HIGH. If the falling edge of CLOCK samples one or both of WEO 
or WE1 LOW, a self-timed byte-write mechanism is triggered. Data is written from the data-in latch into 
the memory array at the corresponding address. 

OE must be taken HIGH for a proper write because the write enables do not three-state the outputs. 

9.3 Signal Descriptions 

A <13:0> Address Inputs: Addresses on inputs A<13 :0> are loaded into the address registers on the rising 
edge of CLOCK. 

110<15:0> Data Inputs/Outputs: The 16 bidirectional data I/O pins are input signals during write ac­
cesses and output signals during read accesses. Data direction is controlled by the output enable pin, OE. 

WE<i:O> Write Enables: The write enables initiate the self-timed write mechanism when they are 
sampled LOW on the falling edge of CLOCK. WEO controls byte writing on data lines 110<7 :0> and WE1 
controls data lines 1/0<15:8>. 

OE Output Enable: The output enable pin controls the output drivers of the bidirectional data lines. To 
begin a read access, OE is taken LOW to enable the output drivers. To begin a write access, OE is taken 
HIGH to three-state the output drivers. 

CLOCK Clock input: CLOCK is the system clock input and is the same signal used by the microproces­
sor. 
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SPARC MBus CPU Modules 

ROSS Technology offers the hyperSPARC RT600 and the original CY7C600 families of processors in sev­
eral varieties of SPARC MBus module products. These central processing unit (CPU) modules provide 
many advantages, such as high reliability and ease of system upgrade. Design issues such as clock skew, 
chip to chip timing, and signal termination are solved, allowing engineering effort to be invested in system­
specific design issues. 

ROSS SPARC modules allow ease of system upgrade due to the use of SPARC-standard MBus connectors 
as well as specialty connectors for height-sensitive applications. This allows interchangeability between 
MBus modules, and enables system designs to be upgraded to new processor technology with little or no 
hardware modifications. The hyperSPARC-based CPU modules have the added advantage of hyper­
SPARC's dual clock architecture, which allows the CPU to run at a clock speed higher than that of the sys­
tem. This decoupling of processor clock from the system clock allows a single system design to support a 
wide range of performance levels without modification. 

This chapter provides a general description of the ROSS Technology SPARC CPU modules using the RT600 
and CY7C600 processor families. For further information, please refer to the data sheet for the specific mod­
ule of interest. 

10.1 hyperSPARC Modules 

hyperSPARC-based modules offer the advantages of this second-generation SPARC processor family. 
These advantages include: 

• High-performance, superscalar hyperSPARC processor(s) with integrated FPU and 8-Kbyte instruc­
tion cache 

• Full mUltiprocessing capability 
- Hardware support for symmetric, shared-memory multiprocessing 
- Level 2 MBus support for cache consistency 
- Direct data intervention and reflective memory support 

• Compliant to SPARC Instruction Set Architecture Version 8, SPARC Reference MMU, and Level 2 
MBus Module Specification 

• Dual-clock architecture 
- CPU scalable from 55 to 80 MHz 

• Module design 
- 3.3V logic level for 1MB to reduce power and increase speed 
- Two power and two ground planes 
- Minimum-skew clock distribution 
- MBus-standard form factor: 3.30" (8.34 cm.) x 5.78" (14.67 cm.) 
- TAB packaging technology for a more compact design 

• MB us connector 
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- SPARC standard 
- Separate power and ground blades (100 active pins) 
- Designed for high frequency (low capacitance, low inductance) 

• Specialty connectors 
- Low profile MBus connector 
- PGA-pin MBus connector 

10.1.1 hyperSPARC Module Description 
The hyperSPARC module is a complete SPARC CPU, including on-board primary and secondary cache me­
mories. It is packaged as a compact PCB and interfaces to the remainder of the system via a SPARC-standard 
MBus connector (or special low profile MBus connector). Each RT62XX module consists of one or two 
high-speed RT620 CPUs supported with a corresponding RT625 Cache Controller, Memory Management, 
and Tag Unit (CMTU) and two or four 16-Kbyte x 32-bit RT627 Cache Data Units (CDUs) for either 128-
or 256-Kbyte of cache per processor. IC components are packaged using tape automated bonding (TAB) 
technology for a compact footprint and higher frequency of operation. 

RT62XX modules interface to the rest of the system via the SPARC MBus and conforms to the SPARC 
Reference MMU. This standardization allows a RT62XX module to be replaced by other ROSS SPARC 
MBus-based CPU modules without having to modify any portion of the memory system or I/O. This CPU 
"building block" strategy not only decreases the user's time-to-market, but also provides a mechanism for 
upgrading in the field. 

Table 10-22. hyperSPARC Modules 

Number 
Module Number of processors 

RT6221K 1 

RT6224K 1 

RT6226K 2 

RT6236K 2 

RT6246K 2 

10.1.2 hyperSPARC Module Design 

10.1.2.1 Advanced Packaging Technology 

Cache 
(Per Processor) 

128-Kbyte 

256-Kbyte 

256-Kbyte 

256-Kbyte 

256-Kbyte 

Connector Type 

MBus 

MBus 

MBus 

PGApin 

low-profile MBus 

The hyperSPARC Module utilizes an advanced packaging technology known as tape automated bonding 
(TAB). Copper leads supported by polyimide carrier connect the chip directly to a printed circuit board, 
eliminating the traditional IC package. In addition to eliminating one layer of connections, TAB provides 
higher density on the PCB and improved electrical performance for higher clock speeds. 

10.1.2.2 Clock Distribution 
RT62XX modules use two module clock signals (MCLKO and MCLK1) as defined in the MBus Specifica­
tion. In order to minimize clock skew, traces have been carefully routed. All clock lines are routed on inner 
layers of the module PCB, and their impedances have been matched. The MBus clock lines have diode ter­
mination to reduce signal undershoot and overshoot and the 1MB clock lines use a parallel resistive termina­
tion of60Q. 

10.1.2.3 MBus Connector 
With the exception of the RT6236K and the RT6246K, the RT62XX interface utilizes the 100-pin SPARC 
MBus connector, which is a two-row male connector with 0.050" spacing (AMP part number 121354-4 or 
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Fujitsu part number FCN-264PlOO--G/C). The connector is a controlled impedance-type, based on a 
microstrip configuration that provides a controlled characteristic impedance plus very low inductance and 
capacitance. Separate power and ground blades are provided for isolation to prevent noise. 

10.1.2.4 PGA Pin Connector (RT6236K Only) 

The RT6236K interface is via a 120-pin SPARC MBus PGA footprint. These pins allow thru-hole attach­
ment to the motherboard which, in combination with a lower profile heatsink, provides a low-height solution 
for space-sensitive applications. This MBus connection supports Level 2 MBus. 

10.1.2.5 Low Profile MBus Connector (RT6246K Only) 

The RT6246K interface is via the 1OO-pin SPARC low-profile MBus connector, which is a two-row male 
connector with 0.050" spacing (AMP part number 121344--4). The connector is a controlled impedance­
type (SOn ±1O%) based on a microstrip configuration that provides a controlled characteristic impedance 
plus very low inductance and capacitance. Separate power and ground blades are provided for isolation to 
prevent noise. This MBus connector supports Level 2 MBus. 

10.1.2.6 Mating MBus Connector (System Interface Board) 

With the exception of the RT6236K, RT62XX modules connect to the system interface through the standard 
MBus female connector (vertical receptacle assembly, AMP part number 121340-4 or Fujitsu 
FCN-264J1 00-0/0). 

10.1.2.7 Reset and Interrupt Signals 

A power-on reset signal is generated to the module from the MBus via the RSTIN signal. Level-sensitive 
interrupts (15 max) are generated to the RT620 via the IRL[3:0] lines from the MBus. A value of OooOb 
means that there is no interrupt, while a value of 1111 b means a non-maskable interrupt (NMI) is being as­
serted. IRL values between 0 and 15 represent interrupt requests that can be masked by the processor. 

10.1.2.8 MBus Request and Grant Signals 

One (or two sets) of request and grant signals are generated to/from the RT62XX module to arbitration logic 
on the motherboard. 

10.1.2.9 MBus SCAN Test Feature 

RT62XX modules support the SCAN test feature of the MBus through the hyperSPARC Test Access Port 
(TAP) interface. For more details, refer to the TAP Interface Specification available from ROSS 
Technology. 

10.1.3 hyperSPARC System Design Considerations 

RT62XX modules implement a subset of all possible MBus signals; signals that are optional and/or specifi­
cally for multiple processor modules may not supported. Systems designers should be aware of these assign­
ments in order to more easily upgrade to other and future MBus modules. RT62XX MBus pinout assign­
ments and a list of reserved MBus pins are detailed in the RT62XX data sheets. 

All MAD, bused control, and point-to-point control signals use 8-mA drivers except for MAS, which uses 
l6-mA. The MSH, MIH and AERR signals use an open-drain driver. 

The following pull-up resistors are recommended for the MBus signals: MSH and MIH are pulled up to 5V 
with a 620n resistor; AERR is pulled up to 5V with a 1.5-kn resistor; all other MBus signals are pulled up 
to 5V with 10-kQ resistors. 
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As the frequency of operation increases, transmission line effects playa bigger role. Care must be taken to 
keep skew between any two clock signals at the MBus connector within the specifications given in the Syn­
chronous Signals table in the AC Characteristics section. MBus signal lines must be routed carefully to mini­
mize crosstalk and interference. A thorough SPICE or other transmission-line analysis of the motherboard 
design is recommended. 

Use of HH Smith #4387 (3/4" length by 114" OD) stand-offs on the motherboard or equivalent is recom­
mended to support the module and prevent damage to the connector. 

10.2 CYM600X Modules 

CYM600X modules provide one or two complete SPARC MBus-based CPUs utilizing the original 
CY7C600 chipset. It is packaged as a compact PCB and interfaces to the remainder of the system via a 
SPARC-standard MBus connector. Each CPU on a CYM600X module consists of a CY7C601 high-speed 
Integer Unit, a CY7C602 Floating-Point Unit, a CY7C604 or CY7C605 Cache Controller and Memory 
Management Unit, and two 16-Kbyte x 16 CY7Cl57 Cache Storage Units (providing a 64-Kbyte cache for 
each CPU). 

CYM600X modules interface to the rest of the system via the SPARC MBus and conforms to the SPARC 
Reference MMU. This standardization allows a CYM600X module to be replaced by other SPARC MBus­
based CPU modules without having to modify any portion of the memory system or I/O. This CPU "building 
block" strategy not only decreases the user's time to market, but also provides a mechanism for upgrading 
in the field. Some of the features of the CYM600X module family are: 

• High performance SPARC RISC CPU CY7C600 family 
- CY7C601 Integer Unit (IV) 
- CY7C602 Floating-Point Unit (FPU) 
- Two Cache Controller and Memory Management Unit (CMU) options: 

CY7C604 CMU for uniprocessor systems 
CY7C605 CMU-MP for multiprocessor systems 

- Two CY7C157 Cache Storage Units (CSUs) provide 64-Kbyte cache for each CPU 

• SPARC standard 
- SPARC Instruction Set Architecture (ISA) compliant 
- Conforms to SPARC Reference MMU architecture 
- Conforms to SPARC MBus Module Specification (Levelland Level 2) 

• Each module features: 
- SPARC integer and floating-point processing 
- Zero-wait-state, 64-Kbyte cache per processor 
- 4-Kbyte page virtual memory management 
- Surface-mount packaging for more compact design 
- Provides simple CPU upgrade path at module level 

• MBus Module designs feature: 
- Two power and two ground planes 
- Minimum-skew clock distribution 
- MBus-standard form factor: 3.30" (8.34 cm) x 5.78" (14.67 cm) 

• SPARC-standard MBus connector 
- Separate power and ground blades (100 active pins) 
- Designed for high frequency (low capacitance, low inductance) 
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Table 10-23. CYM600X Modules 

Module Number Number of CMU Module Type 
processors 

CYM6001K 1 CY7C604 Levell MBus Module 

CYM6002K 2 CY7C60S Level 2 MBus Module 

CYM6003K 1 CY7C60S Level 2 MBus Module 

CYM6111 1 CY7C604 Multi-Die Package 

10.2.1 CYM600X Module Design 

10.2.1.1 Clock Distribution 

CYM600X modules use four module clock signals (MCLKO, MCLK1, MCLK2, and MCLK3) as defined 
in the MBus Specification. In order to minimize clock skew, traces have been carefully routed. All clock 
lines are routed on inner layers of the module PCB, and their impedances have been matched. All clock lines 
have diode termination to reduce signal undershoot and overshoot. 

10.2.1.2 MBus Connector 

The CYM600X interface is via the 100-pin SPARC MBus connector, which is a two-row male connector 
with O.OSO" spacing (AMP "microstrip" part number 1213S4--4 or Fujitsu part number 
FCN-264PlOO-G/C). The connector is a controlled impedance-type based on a microstrip configuration 
which provides a controlled characteristic impedance plus very low inductance and capacitance. Separate 
power and ground blades are provided for isolation to prevent noise. 

10.2.1.3 Mating MBus Connector (System Interface Board) 

The module connects to the system interface by means of a standard MBus female connector (AMP vertical 
receptacle assembly, part number 121340--4). 

10.2.1.4 Reset and Interrupt Signals 

A power-on reset signal is generated to the module from the MBus via the RSTIN signal. Level-sensitive 
interrupts (1S max) are generated to the CY7C601 via the IRL[3:0] lines from the MBus. A value ofOOOOb 
means that there is no interrupt while a value of 1111 b means a non-maskable interrupt (NMI) is being as­
serted. IRL values between 0 and IS represent interrupt requests that can be masked by the processor. 

10.2.2 System Design Considerations 

CYM600X modules implement a subset of all possible MBus signals; signals that are optional and/or specif­
ically for multiprocessing, dual CPUs, and SCAN test capabilities may not be supported. Systems designers 
should be aware of these assignments in order to more easily upgrade to other and future MBus modules. 
MBus pinout assignments and a list of reserved MBus pins are detailed in the data sheet for the specific 
CYM600X module. 

All MAD, bused control, and point-to-point control signals use 8-mA drivers (with the exception of MAS, 
which uses a 16-mA driver). The AERR signal uses an open-drain driver. 

The following pull-up resistors are recommended for the MBus signals: MSH is pulled up to SV with a 
620-Q resistor, and AERR is pulled up to SV with a l.S-kQ resistor; all other MBus signals are pulled up 
to SV with lO-kQ resistors. 
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As the frequency of operation increases, transmission line effects playa bigger role. Care must be taken to 
keep skew between any two clock signals at the MBus connector within the specifications given in the Syn­
chronous signals table. MBus signal lines must be routed carefully to minimize crosstalk and interference. 
A thorough SPICE or other transmission-line analysis of the motherboard design is recommended. 

Use of HH Smith #4387 (3/4" length by 1/4" OD) stand-offs on the motherboard or equivalent is recom­
mended to support the module and prevent damage to the connector. 

10.3 CYM6111 Multi-Die Package CPU 

The CYM6111 is a complete SPARe CPU mounted in a single surface mount package. It utilizes an ad­
vanced multi-die packaging (MDP) technology that provides single-chip integration with multiple die. The 
CYM6111 interfaces to the remainder of the system utilizing the SPARC-standard MBus. The CPU in the 
CYM6111 consists of a high-speed Integer Unit (CY7C601), a Floating-Point Unit (CY7C602), a Cache 
Controller and Memory Management Unit (CY7C604), and two 16-Kbyte x 16-bit CY7Cl57 CSUs (pro­
viding a 64-Kbyte cache for the CPU). These die are packaged in a single 256-pin CQFP package for a com­
pact footprint and lower power consumption. 

10.3.1 Multi-Die Packaging Technology 

Multi-die packaging (MDP) technology provides low inductance, low capacitance interconnect over waf­
erscale distances. Die are mounted directly on a silicon circuit board, eliminating much of the package re­
lated capacitances. The dense interconnect and ability of route interconnect under the die without interfer­
ence from thermal vias enable extremely close placement of ICs. This results in net trace lengths typically 
4 to 8 times shorter than PCB implementations, and therefore, lower load capacitance and inductance to be 
driven by chip outputs. 

In the CYM6111, virtually all of the interconnections between the individual die are done through the pack­
age's silicon substrate. The only connections to the package are for the signals that must interface the CPU 
to the rest of the system (i.e., MBus). In addition to the shorter trace lengths, routing interconnections within 
the MDP package also relaxes I/O limitations that are typically imposed on high bandwidth VLSI devices 
by the physical layout of the die pads around the perimeter of the package 

Intra-package trace connections also improve the integrity of signal transmissions. Noise on power and 
ground signals, as well as skew on clock lines are greatly reduced due to the reduction in trace lengths and 
controlled electrical environment. 
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MBus Operation 

The SPARC MBus is a high-speed interface designed to connect SPARC processor modules to physical 
memory modules and I/O modules. The MBus is an integrated circuit interface, and is not intended to oper­
ate as a general expansion bus across a system backplane. It is intended to operate as an interface between 
modules and interface circuitry located on a single printed circuit board within a carefully controlled geo­
graphical area. Modules consist of one or more integrated circuits which contain the MBus interface. A 
CPU based upon the hyperSPARC is an example of such a module. 

In addition to the electrical and architectural characteristics specified by MBus, the MBus also identifies 
mechanical guidelines for MBus processor modules. This includes length, width, and height dimensions 
as well as the MBus-standard module connector. Details on ROSS' MBus CPU modules are given else­
where in this User's Guide. 

MBus is divided into two levels of implementation: Levell and Level 2. Levell includes the basic MBus 
signals and transactions needed to support a uniprocessor system. Level 2 introduces additional signals and 
transactions needed to design a symmetric, cache-coherent, shared-memory multiprocessor system. The 
CY7C604 supports Levell, while the CY7C605 and RT625 support both Levell and Level 2. 

The SPARC MBus Interface Specification (available from SPARC International) provides further informa­
tion on MBus. This section describes the MBus as it pertains to the operation of the CY7C604, CY7C605 
and RT625 and may not explicitly represent all MBus signals and functionality 

11.1 MBus Principles 

• Fully synchronous bus. 

• Multiplexed 64-bit address/data bus. 

• 64 Gigabytes of physical memory address space. 

• All signals changed and sampled on the rising edge of clock. 

• Bus arbiter is a separate bus unit. 

• Centralized arbitration, reset, interrupt distribution, and clock distribution. 

• Peer level (multi-master) bus protocol. 

• Overlapped arbitration with bus "parking." 

• Shared memory multiprocessor signals and transactions (Level 2). 

• Write-invalidate type of cache-consistency protocol (Level 2). 

MBus assumes that there are central functional elements to perform reset, arbitration, interrupt distribution, 
timeout, and MBus clock generation. Refer to the SPARC MBus Interface Specification for a detailed de­
scription of MBus as defmed for system implementation. 

11.1.1 MBus Levell Overview 

Levell MBus supports two transactions: read and write. These transactions simply read or write a specified 
SIZE of bytes from a specified physical address. These transactions are supported using a subset of the 
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MBus signals, namely a 64-bitmultiplexed address/data bus (MAD<63:0>, an address strobe signal (MAS), 
and an encoded acknowledge on the three signals MRDY, MRTY, and MERR). Additional Levell signals 
support arbitration for modules (MBR, MBG, and MBB), reset (POR on CY7C604/605, RSTIN in the 
SPARC MBus Specification and RT625), and memory error (CMER on CY7C604/605, AERR in the 
SPARC MBus Specification and RT625). The MBus reference clock (CLK) completes the signal require­
ments for a Level I system. 

11.1.2 MBus Level 2 Overview 

The Level 2 MBus includes all Levell transactions and signals and adds four transactions and two signals 
to support cache coherency. This is to facilitate the design of symmetric, shared memory, multiprocessor 
systems. In Levell, details of the cache operations inside modules are not visible to the MBus transactions. 
This changes with Level 2, where many aspects of the cache operation are assumed as part of the new MBus 
transactions. To participate in cache consistent sharing using Level 2 transactions, a cache must have a copy­
back with write-allocate policy and have a block or sub-block of size 32 bytes. An ownership-based protocol 
is employed in which cache lines are assumed to be described as being in one offive states: invalid (I), exclu­
sive clean (EC), exclusive modified (EM), shared clean (SC), and shared modified (SM). A simplified state 
transition diagram is shown below in Figure 11-1. 

*MSH not asserted 

**MSH asserted 

'OWNED' 

Figure 11-1. Level 2 MBus Cache State Diagram 

The additional transactions present in Level 2 systems are Coherent Read, Coherent Invalidate, Coherent 
Read and Invalidate, and Coherent Write and Invalidate. The two additional signals are MBus shared 
(MSH) and MBus inhibit (MIH). All coherent transactions have SIZE = 32 bytes, except Coherent Write 
and Invalidate which will support any valid MBus size. The cache coherency protocol is a "write-invali­
date" protocol, where the writing cache issues a Coherent Invalidate transaction if the cache line is not exclu­
sive. This indicates to all caches that they should invalidate the cache line since it contains "stale data" after 
the write completes. All caches "snoop" Coherent Read transactions and assert MSH if the address of the 
transaction is present in their cache. By observing the MSH signal, other caches can update the state of the 
cache lines they hold. If a cache is the "owner," it asserts the signal MIH to prevent memory from sending 
data. The cache then supplies the data to the requesting cache (this is referred to as direct data intervention). 
Coherent Read and Invalidate and Coherent Write and Invalidate are simply the combination of a Coherent 
Invalidate and either a Coherent Read or a Write. Their purpose is to reduce the quantity of MBus transac­
tions needed and thus conserve bandwidth. 
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11.1.3 MBus Physical Signal Summary 

Table 11-1 summarizes the physical signals that comprise the MBus interface. Bus agents (master, slave, 
arbiter, etc.) are listed in the output or input column of Table 11-1 to denote whether the signal is an input 
or output for that bus agent. The "line type" column of Table 11-1 lists signals as bussed or dedicated. 
Bussed signals are those driven or received by multiple bus agents, whereas dedicated signals are driven 
by one agent and received by only one other. 

Table 11-1. MBus Signal Summary 

Symbol Description 

MCLK MBus Clock 

MAD<63:0> MBus Address/Data 

MAS MBus Address Strobe 

MERR MBus Error 

MRDY MBusReady 

MRTY MBusRetry 

MBR MBus Bus Request 

MBG MBus Bus Grant 

MBB MBus Bus Busy 

MSH* MBus Shared 

MIH* Memory Inhibit 

IRL[3:0] Interrupt Level 

ID[3:0] Module Identifier 

AERR Asynchronous Error 

RSTIN Module Reset In 

TDI Scan Data In 

TDO Scan Data Out 

TCK Scan Clock 

TMS Scan TAP Control 

TRST Scan TAP Reset 

TS: Three-state BS: Bl-state OD: Open Dram 

* Level 2 ONLY 

Output Input 

Clock buffer Master/Slave/ 
Arbiter 

Master/Slave Master/Slave 

Master Slave 

Slave Master 

Slave Master 

Slave Master 

Master Arbiter 

Arbiter Master 

Master Arbiter/Master 

Bus Watcher Master 

Bus Watcher Master/Memory 

Interrupt Logic CPU Module 

System MBusModule 

Module Interrupt Logic 

Reset Logic Master/Slave 

System Module 

Module System 

System Module 

System Module 

System Module 
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Line Signal 
Type Type 

dedicated BS 

bussed TS 

bussed TS 

bussed TS 

bussed TS 

bussed TS 

dedicated BS 

dedicated BS 

bussed TS 

bussed OD 

bussed TS 

dedicated BS 

dedicated BS 

dedicated OD 

impl dependent BS 

dedicated BS 

dedicated BS 

dedicated BS 

dedicated BS 

dedicated BS 



MCLK MBus master clock. The distribution of the MCLK signalin a system is implementa­
tion dependent. For example, depending on the connector, each module on the MBus 
may be given one or more identical MCLK lines which could originate from a single 
clock generator. 

MAD<63:0> Memory address and data. During the address phase, MAD<35:0> contains the 
physical address (PA[35 :0]). The remaining signals (MAD<63:36» on the bus con­
tain the transaction-specific information which will be described in Section 11.1.4. 
During the data phase, MAD<63 :0> contains the data of the transfer. The bytes are 
organized as shown in Figure 11-2. For transactions involving less than a double 
word (8-bytes), the data must be aligned. For example, all even-addressed words will 
be aligned on MAD<63:32> whereas all odd-addressed words will be aligned on 
MAD<31 :0>. As another example, byte address 2 of an odd-addressed word will be 
carried on MAD<15:8> i.e. byte 6 on the MBus. Unused data lines during the data 
phase are undefined. 

MAD' 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 o 

, , 
,15 halfword 0 0 15 halfword 1 , 0; 15 halfword 2 o 15 halfword 3 0; 

31 word 0 o 31 word 1 o 

Figure 11-2. Byte Organization 

MAS Memory address strobe. This signal is asserted by the bus master during the very first 
cycle of a bus transaction. The cycle in which it is asserted is referred to as the "ad­
dress cycle" or "address phase" of the transaction. For transactions that receive a Re­
linquish and Retry (R&R) or a Retry acknowledgment, MAS will be asserted again 
until the transaction gets a normal or error acknowledgment. Other cycle timing is 
discussed with respectto MAS. e.g., A+2 indicates the second cycle after MAS asser­
tion. i.e., MAS assertion is A+O. 

MRDY MBus ready transaction status bit. This bit is one of the three bits used to encode the 
transaction status as shown in Table 11-2. The encoding with MRDY asserted alone 
indicates that valid data has been transferred. The three status bits (MRDY, MRTY, 
and MERR) are normally asserted by the addressed slave. The ERROR2 (timeout) 
acknowledgement will be asserted by the bus monitor. 

MRTY MBus Retry transaction status bit. This bit is one of the three bits used to encode the 
transaction status as shown in Table 11-2. The encoding with MRTY asserted alone 
indicates that the slave wants the master to abort the current transaction immediately 
and start over. The master will relinquish bus ownership upon this type of a Retry 
acknowledgment. Note that if any type of acknowledgement other than "valid data 
transfer" is issued, the cycle it is issued is the last cycle, regardless of how many fur­
ther acknowledgement cycles would normally occur. The three status bits (MRDY, 
MRTY, and MERR) are normally asserted by the addressed slave. 
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Table 11-2. Transaction Status Bit Encoding 

MERR MRDY MRTY Meaning 

H H H idle cycle 
H H L Relinquish and Retry (R&R) 
H L H Valid Data Transfer 
H L L reserved 
L H H ERROR! => Bus Error 
L H L ERROR2 => Timeout 
L L H ERROR3 => Uncorrectable 
L L L Retry 

MERR MBus error transaction status bit. This bit is one of the three bits used to encode the 
transaction status as shown in Table 11-2. The encoding with MERR asserted alone 
indicates that a bus error (or other system implementation specific error) has oc­
curred. Note that if any type of acknowledgement other than "valid data transfer" is 
issued, the cycle it is issued is the last cycle, regardless of how many further acknowl­
edgement cycles would normally occur. The three status bits (MRDY, MRTY, and 
MERR) are normally asserted by the addressed slave. 

MBR MBus request signal. This signal is asserted by an MBus master to acquire bus own­
ership. There is one unique MBR signal per master. 

MBG MBus grant signal. This signal is asserted by the external arbiter when the particular 
MBus master is granted the bus. There is one unique MBG signal per master. 

MBB MBus busy signal. This signal is asserted as an output during the entire transaction, 
from and including the assertion of MAS to the assertion of the last MRDY or first 
other acknowledgment which terminates the transaction (such as an error acknowl­
edgment). If a master wishes to keep the bus and perform several transactions with­
out releasing the bus between them, it keeps MBB asserted until the last MRDY of the 
last transaction of the group. The potential master device samples this signal in order 
to obtain the bus ownership as soon as the current master releases the bus. MBB locks 
arbitration on a particular MBus. A master is allowed to assert MBB prior to the as­
sertion of MAS (to hold the bus). It is also allowed to keep MBB asserted after the 
assertion of the last acknowledgment in a few special cases for performance reasons. 
This continued assertion ofMBB should only occur while MBG is still parked on the 
current master. The MAS of the transaction prompting the continued assertion of 
MBB should be generated quickly (2 cycles is the recommended maximum delay). 
For more details on arbitration, see Section 11.1.9. 

MIH Memory inhibit signal. This signal is only present in Level 2 MBus modules. It is 
asserted by the owner of a cache block at the beginning of the second cycle after it 
receives the address (its A + 2 cycle)t to inform the main memory that the current Co­
herent Read or Coherent Read and Invalidate request should be ignored. This is be­
cause the owner, not the memory, will be responsible for delivering the cache data 
block. If no device asserts MIH during its A+2 cycle, main memory will be responsi­
ble for delivering the data. If main memory starts delivering data and MIH is as­
serted, the memory delivery shall be aborted immediately. Any data which was re­
ceived from main memory in this case should be ignored. It should be noted that 

t See SPARe Internatjonal SPARe MBus Specification for notes to designers who wish to avoid the A+2 requirement. 

11-5 



because of the restriction on MIH either occurring simultaneously with or before 
MRDY, there will be at most two cycles worth of data to ignore. While MIH is 
sourced by a module (for one cycle) two cycles after receiving MAS it may be ob­
served by a cache in the interval from its A+2 until it observes an acknowledgement. 
This variation in where MIH can be observed is due to the possibility for MBus re­
peaters and modules that do not meet the A+2 timing. 

MSH Cache block shared signal (wired-or, open-drain). This signal is only present in Lev­
el2 MBus modules. Whenever a Coherent Read transaction appears on the bus, the 
bus monitor of each processor module should immediately search its cache directory. 
If a valid copy is found, the MSH signal should be asserted in the second cycle after 
the address is received (its A+2 cycle). The MSH signal is also sampled (observed) 
by external caches. It is asserted as an output (for a single cycle) if there is a cache hit 
in the snooping directory. While MSH is sourced by a module two cycles t after re­
ceiving MAS it may be observed by a cache from its A+2 until it observes an ac­
knowledgement. This variation in where MSH may be observed is due to the possi­
bility for MBus repeaters and modules that do not meet the A+2 timing. Signals are 
sourced at the beginning and observed or sampled at the end of a cycle. Due to the 
open drain nature ofMSH and the associated slow rise time, while the signal is driven 
active low for one cycle, it can be observed active low for up to two cycles and the 
trailing or rising edge of the signal is considered asynchronous. 

RSTIN Module reset input signal. This signal should reset all logic on a module to its initial 
state, and ensure that all MBus signals are inactive or tri-state as appropriate. The 
minimum assertion time of RSTIN will be system implementation dependent, al­
though the default assertion time will be 1024 MBus clock (MCLK) periods (25.6 
microseconds). RSTIN should be treated as asynchronous. 

AERR Module asynchronous error detect out signal. This signal is asserted by the module as 
a level to indicate that an asynchronous error was detected by the module. It remains 
asserted until a software initiated action resets a bit that is maintaining the signal as­
sertion. AERR is open drain because several modules could assert it simultaneously. 
AERR may be asynchronous. 

INTOUT Module interrupt out signal. This signal is asserted by an I/O module as a level to indi­
cate an interrupt request to the system. It remains asserted until a software initiated 
action resets a bit that is maintaining the signal assertion. INTOUT may be asynchro­
nous. This signal is optional. 

IRL[3:0] These pins carry the interrupt request level inputs to a SPARC integer unit. They are 
only used by processor modules. IRL[3:0] may be asynchronous~ nach processor 
module receives a dedicated set of IRL[3:0]. 

ID[3:0] These pins carry the module identifier. These signals are not needed by Levell pro­
cessor modules, which have a default ID of OxF, and are optional for other modules 
who may obtain this information by other means. ID[3:0] is reflected as MID[3:0] 
during the address phase of every transaction, and is also used to identify a unique 
address range for module identification, initialization and configuration. 

If modules do not have ID[3:0] input pins, the system must provide a function that 
allows each module to obtain a unique ID[3:0] value in an internal ID[3:0] register. 
One way this can be accomplished is to have a logic function with a known MBus 
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address attached to the MBus arbiter. There are unique MBR and MBG lines per 
module and so this function when addressed, would return a unique ID[3 :0] value on 
MAD, based on which module's MBG was asserted just prior to the beginning of the 
ID read transaction when MBB was deasserted. 

TDI This signal is an input to the module and is used for receiving scan data from the sys­
tem. This is the input of the scan ring and should not be inverted or gated. This signal 
changes on the falling edge ofTCK and should be sampled on the rising edge of TCK. 
Scan is optional. 

TDO This signal is an output of the module and is used for sending the scan data to the sys­
tem. This is the output of the scan ring and should not be inverted or gated. TDO 
should be driven on the falling edge ofTCK and will be sampled on the rising edge of 
TCK. Scan is optional. 

TCK This signal is used to supply the clock to the scan ring on the module. (Typically 5 
MHz). Scan is optional. 

TMS This signal is an input to the module. It is used to control the TAP controller state ma­
chine. Scan is optional. 

TRST This signal is an input to the module. It is used to reset the TAP controller state ma­
chine. Scan is optional. 

11.1.4 MBus Multiplexed Signal Summary 

The MBus is a 64-bit multiplexed address/data bus. Table 11-3 summarizes the multiplexed MBus signals. 
All multiplexed signals are active HIGH (true when "I"). 

Table 11-3. Multiplexed Signal Summary 

Multiplexed Signals (valid during address phase) 

Signal Name Physical Signal Signal Description 

PA[35:0] MAD[35:0] Physical address for current transaction 
TYPE[3:0] MAD[39:36] Transaction type 
SIZE[2:0] MAD[42:40] Transaction data size 
MC MAD[43] Data cacheab1e (advisory) 
MLOCK MAD [44] Bus lock indicator (advisory) 
MBL MAD[45] Boot mode / local bus (advisory)(optional) 
VA[19:12] MAD[53:46] Virtual address (optional)(Leve12) 
reserved MAD[59:54] reserved for future expansion 
MID[3:0] MAD[63:60] Module Identifier 

11.1.5 MBus Address Cycle 

The address cycle of an MBus transaction consists of a 36-bit physical address and 28 bits of control and 
transaction infonnation. Figure 11-3 illustrates the MBus address cycle. The address fields of the MBus 
address cycle follow. 
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MBus Address Cycle: MAD<63:0> 

/ ~~:~~'~9:;4 "'53~4~' 45444

1
342\:4039:3" TYpe 

SHADED areas are RESERVED 0 ................... MEus Write 
for Levell and are FORCED I .................... MBus Read 
HIGH by the CY7C604 MC Memory 2 ............ Coherent Invalidate* 

o 

MLOCK 4 .... Coherent Write and Invalidate* 
Locked 5 .... Coherent Read and Invalidate* 
Transaction 

MBL Boot mode/Local*** 
Size 

Virtual Address* o .......................... Byte 
1 ...................... Halfword 

Reserved 2 .................. Word (32 bits) 
3 ................... Doubleword 
4 .................... 16-bytes** 

Module Identifier' 5 ...................... 32-bytes 
6 .................... 64-bytes** 

* Level 2 only 7 ................... 128-bytes** 

** Not used by CY7C604/605 and RT625 
*** Not used by RT625 

Figure 11-3. MBus Address Cycle 

PA[35:0] Physical address of current transaction which is multiplexed on MAD<35:0>. 

TYPE[3:0] The transaction types are encoded in bits MAD<39:36> as shown below in 
Table 11-4. Most of the transaction types are reserved. 

Table 11-4. TYPE Encodings 

TYPE[3] TYPE[2] TYPE[l] TYPE[O] 
Data 
Size Transaction Type 

H H H H - reserved 
H H H L - reserved 
H H L H - reserved 
H H L L - reserved 
H L H H - reserved 
H L H L - reserved 
H L L H - reserved 
H L L L - reserved 
L H H H - reserved 
L H H L - reserved 
L H L H 32B Coherent Read & Invalidate(CRI) 
L H L L any* Coherent Write & Invalidate(CWI) 
L L H H 32B Coherent Read(CR) 
L L H L 32B Coherent Invalidate(CI) 
L L L H any* Read (RD) 
L L L L any* Write (WR) 

*as defined by the SIZE signals in Table 11-5. 
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SIZE[2:0] The transaction data SIZE information is encoded in bits MAD<42:40>. The size 
field is encoded as log2 [number of data bytes transferred]. The encoding of the SIZE 
bits is shown in Table 11-5. 

For transactions with SIZE greater than 8 bytes, more than one MRDY will be need­
ed. For transactions with SIZE less than or equal to 8 bytes, unneeded address lines 
are undefined (e.g. for SIZE = 8 bytes, MAD<2:0> are undefined). The 
CY7C604/605 and RT625 support all non-burst transaction sizes, and a 32-byte burst 
transfer. 

Table 11-5. SIZE Encodings 

SIZE [2] SIZE[l] SIZE[O] Transaction Size 

L L L Byte 
L L H Halfword (2 bytes) 
L H L Word (4 bytes) 
L H H Doubleword (8 bytes) 
H L L 16-byte Burst 
H L H 32-byte Burst 
H H L 64-byte Burst 
H H H 12S-byte Burst 

MC Cacheable indicator (multiplexed on MAD[ 43]). When this signal is asserted, it indi­
cates the state of the cacheable bit for the address of the transaction in the module 
MMU. This is an advisory bit, not used by MBus transactions, but possibly of use to 
the slave device. 

An example use of C would be to inform a second level cache of the cacheability state 
of the address of a transaction with SIZE less than 32 bytes. 

MLOCK Lock indicator signal (multiplexed on MAD<44». This bit indicates that the MBus 
transaction is a "locked" transaction. If the MBus master intends to lock access to a 
device residing on MBus (main memory is one MBus device) or some other bus con­
nected to MBus, and perform N indivisible MBus transactions to the device, this bit 
needs to be asserted during the address cycles of all N MBus transactions. The lock­
ing master must keep MBB asserted during each locked cycle and not deassert it until 
the end of the final locked transaction (however MBB may be suspended for a time by 
an R&R acknowledgment). The deassertion of MBB signals the MBus arbiter to re­
lease the MBus. It is the final deassertion of MBB after possible intervening R&R 
acknowledgments which tells the device to release its lock. LOCK is an advisory bit, 
not used by MBus transactions directly, but possibly of use to the slave device or bus 
interface. 

An example use of LOCK would be to "lock" an MBus master to a particular slave. If 
an MBus processor performed an atomic operation to a resource arbitrated external­
ly to MBus, such as a dual-ported memory device or another bus, then the external 
arbiter could prevent any other (non MBus) device from accessing that resource by 
locking arbitration. The referenced slave device in a LOCKed transaction could be, 
in essence, dedicated to the requesting master. The MBus slave port interface inter­
prets an assertion of the MBus LOCK bit as saying "become locked" and a final 

11-9 



TECHNOLOGY, 

deassertion of MBB at the end of the locked sequence as saying "become unlocked," 
and reports this information to the arbiter for the "locked" device (or bus). If the slave 
port supports R &R acknowledgments, it must know not to clear the locked state when 
MBB is removed due to an R&R. 

MBL MBus boot mode/local bus indicator (multiplexed on MAD<45». This signal is as­
serted by CY7C604/605 and RT625 processor modules during the address phase of 
boot mode transactions, or during local bus transactions (SPARC processor accesses 
with ASI = Oxl). It is system implementation dependent whether or not local bus 
transactions are employed in a system. This is an advisory bit, not used by MBus 
transactions, but possibly of use to the slave device. This bit is optional. If unused by 
an implementation it should remain deasserted. The RT625 always drives this bit 
LOW. 

VA[19:12] Virtual Address 19 through 12 (multiplexed on MAD<53:46». This field only ap­
plies to MBus Level 2 coherent transactions; for non-coherent transactions, these bits 
are undefined. This field is used to carry the virtual address bits 19 through 12 
associated with the physical address of a Coherent Read transaction (bits 15:12 are 
used by the CY7C605 only, and bits 17:12 are used bytheRT62). These bits are used 
by virtually indexed caches that desire to index into the dual directories via the virtual 
"superset" bits to avoid synonym problems. This assumes a minimum page size of 4 
Kbytes in the system and maximum cache size of 1 Mbyte. Modules that choose not 
to provide this function or to support coherent transactions (such as a Levell device) 
should drive these lines HIGH. 

reserved This 5-bit field (multiplexed on MAD<58:54», is reserved for future MBus expan­
sion. The lines should be driven HIGH if not used. 

SUP Supervisor access indicator (multiplexed on MAD<59». This signal is asserted by 
processor modules and indicates that the MBus transaction is a processor supervisor 
access. This is an advisory bit, not used by MBus transactions, but possibly of use to 
the slave device. This bit is optional. If unused by an implementation it should re­
main asserted. This bit is not used by the CY7C604/605 and RT625; it is always driv­
en HIGH. 

An example use of SUP would be to enable more state to be captured on processor 
asynchronous write errors. 

MID[3:0] Module identifier signals (multiplexed on MAD<63:60». This field is sourced by 
all MBus modules and reflects the value input into the module on the ID[3:0] input 
signals. For Levell processor modules this field is driven HIGH (OxF). This field is 
observed by slave ports that wish to issue an R&R acknowledgment (see Section 
1/ .1.8.2), so thatthey can identify the master with which to reconnect in a multi-mas­
ter system configuration. For the CY7C605 these signals are specified by the MID 
field in the SCR register. For the RT625 these signals are specified by the ID[3:0] 
input signals. 

11.1.6 MBus Data Cycle 

MBus transactions consist of an address cycle followed by one or more data cycles. A single data cycle 
transaction is referred to as a non-burst transaction. Note that all noncacheable transactions made by the 
CY7C604j605 and RT625 are transferred as non-burst transactions. During non-burst read or write transac-
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tions, data appears in the byte locations of the MBus as determined by the size (MAD<42:40» and address 
bits MAD<2:0> (see Figure 11-4). The data on any unused MBus lines is undefined. 

Burst transactions are used by the CY7C604/605 and RT625 for cache line transfers. Burst transactions 
made by the CY7C604/605 will always be on cache line boundaries (i.e., MAD<4:0> = 0 for the address 
cycle of a burst transaction). All burst transactions made by the CY7C604/605 and RT625 are 32 bytes (one 
cache line) in length. 

Note: The CY7C604/605 and RT625 are designed to ensure one "implicit clock" after a MBus read transac­
tion before it will assert an address for the next MBus transaction. This allows time for slow memory data 
buffers to release the MBus. Also, the RT625 will add one "implicit clock" after an MBus write transaction 
that ends in an Error, Retry, or R&R. 

Word 0 Word I 

Halfword 0 Halfword I Halfword 2 Halfword 3 

By teO I By tel Byte2 I Byte3 Byte4 I ByteS Byte6 I Byte7 

63 56 55 48 47 40 39 32 31 24 23 16 IS 8 7 o 
Figure 11-4. MBus Data Ordering 

11.1. 7 MBus Transactions 

The MBus has three separate bus agents: master, slave, and arbiter. The bus arbiter is essentially a "traffic 
cop" for the MBus. It is external to all bus masters or slaves, and is responsible for granting bus ownership 
to one of the various bus masters. The algorithm by which the arbiter assigns priority to the various bus 
masters is left to the system designer. More information on MBus arbitration is available in Section 11.1.9. 

The MBus bus cycle consists of an address cycle followed by one or more data cycle(s). Transaction sizes 
supported by MBus are: 1,2,4,8, 16,32,64, and 128 bytes. A data transaction requiring more than one 
data cycle is referred to as a burst transaction. 

Since the 64-bit MBus can transfer eight bytes in a single data cycle, transactions greater than eight bytes 
are performed as burst transactions, in which a single address phase is followed by multiple data phases. 
Transactions less than or equal to eight bytes are performed as non-burst transactions. Non-burst transac­
tions consist of a single address phase and a single data phase. Figure 11-5 illustrates an example of a burst 
transaction. The CY7C604/605 and RT625 support 1, 2, 4,8, and 32-byte transactions on the MBus. The 
32-byte burst transaction corresponds to the 32-byte cache line size. 

eLK 

MAD<63:0> 

- Arbitrary 
No. of 
Cycles - - Arbitrary Arbitrary Arbitrary 

No, of No, of No. of 
Cycles - - Cycles - - Cyc1es-

Ln 
Figure 11-5. MBus Burst Transaction Example 

An MBus cycle begins after the bus master has acquired the MBus and asserted MBB. The bus master sup­
plies the address and strobes the MBus address strobe (MAS) for one clock period. The bus slave (usually 
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the memory system) acknowledges the data transfer by strobing the MRDY , MERR, and MRTY signals. 
MRDY is strobed for each successful data cycle. Unsuccessful data cycles are acknowledged with other 
combinations of the MRDY, MERR, and MRTY signals. Table 11-6 describes the decoding of the MRDY, 
MERR, and MRTY signals. 

All MBus transactions can be terminated by an Error, which is reported by the state of the MRDY, MERR, 
and MRTY signals. These signals can be asserted during any data phase. All MBus transactions can be 
suspended immediately by a Retry or by an R&R, also signaled by the MRDY, MERR, and MRTY signals. 
If Retry is signaled by the bus slave, the suspended transaction then restarts from the beginning with a new 
address phase. If R&R is signaled by the bus slave, the bus master must deassert MBB and re-arbitrate for 
MBus ownership. 

A special case occurs for the CY7C604/605 and RT625 if an R &R is returned for an atomic Load/Store trans­
action. If the R&R occurs for the read section of the Load/Store transaction, the transaction is halted and 
MBB is deasserted. The entire transaction is repeated after re-arbitration (the normal case). If the read sec­
tion has completed and the write section encounters an R&R, the transaction is halted and MBB is deas­
serted. However, in this case the transaction will retry with the write section and will not repeat the read 
section of the load/store transaction. 

Table 11-6. Bus Status Encoding 

MERR MRDY MRTY Action 

H H H Nothing 

H H L Relinquish and Retry 

H L H Data Strobe 

H L L Reserved 

L H H Bus Error 

L H L Time Out 

L L H Uncorrectable Error 

L L L Retry 

The data transfer rate on the MBus is controlled by the MBus slave. All MBus masters must be capable of 
accepting a burst transfer of the requested size at the maximum transfer rate supported by the bus. Bus slaves 
that cannot support the maximum transfer rate of the MBus must insert wait states by delaying the MRDY, 
MERR, and MRTY signals until the data cycle is completed. After the MBus transaction has finished, the 
bus master terminates the bus cycle by deasserting MBB. 

Two transactions are defined for Levell MBus: read and write. Level 2 defines four additional transactions: 
Coherent Read, Coherent Invalidate, Coherent Read and Invalidate, and Coherent Write and Invalidate. The 
following section describes these transaction types. 

11.1.7.1 Levell Transaction Types 

11.1.7.1.1 Read (CY7C6041605 and RT625) 

A read operation can be performed on any size of data transfer which is specified by the SIZE bits in the 
address cycle. Read transactions involving less than eight bytes will have undefined data on the unused by­
tes. The minimum MBus read transaction takes two cycles. The minimum time is for the cases when no 
data is returned on MAD, such as during R&R or Error acknowledgements. If data is being returned, an 
extra cycle is required to avoid bus contention. The arbitration protocol creates a dead cycle between trans-
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actions which ensures there will be no bus contention between back-to-back reads from different masters. 
If a module locks the bus and performs back-to-back reads, it is its responsibility to ensure a dead cycle to 
avoid contention Note that the protocol means that a master must be able to receive data at the maximum 
rate of the MBus for the duration of the transaction, i.e., eight bytes on every consecutive clock. Figure 11-6 
illustrates a read transaction on MBus. 

CLK 

A A+ 1 : . A+n : 

MAD<63:0> I xxx I Address I XXX I XXX I Data 1 I XXX I Data2 I XXX I Data3 I XXX I Data4 I XXX I , 

I U 
Arbitrary Arbitrary - Arbitrary - Arbitrary 

No. of No. of No. of No. of - Cycles _ Cycles Cycles _ Cycles ._ 

Figure 11-6. MBus Read Transaction 

11.1.7.1.2 Write (CY7C604160S and RT62S) 

A write operation can be performed on any size of data transfer specified by the SIZE bits in the MBus ad­
dress cycle. Write transactions involving less than eight bytes will have undefined data on the unused bytes. 
The bus master performing the write immediately drives the data in the period after the address phase of 
the transaction, and immediately after receipt of each MRDY in transactions with SIZE greater than 8 bytes. 
Note that the protocol means that a master must be able to supply data at the maximum rate of the MBus 
for the entire transaction (i.e., 8 bytes on every consecutive transaction). The minimum MBus write opera­
tion takes two cycles (the minimum is three cycles if different masters are performing back-to-back writes). 
Figure 11-7 shows an MBus write transaction. 

CLK 

MAD<63:0> 

:_ Cycles_ 

l~~ ____ ~~ ______ ~ ____ ~ __ ~~ 
Figure 11-7. MBus Write Transaction 

Due to the nature of the cache-consistency protocol, the write transaction works equally well in Levell and 
Level 2 MBus implementations. Writes can be used for non-cache able accesses as well as for write-backs 
of modified cache lines. Write transactions do not need to be snooped and the MIH and MSH signals must 
not be asserted during the operation. 
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R&R acknowledgements issued to Block write transactions to cacheable locations introduce a detailed de­
sign problem, in that the write back buffer in this case may be the only source of the most up to date data. 
This introduces the prospect of having to snoop the write back buffer. To simplify the design of processor 
modules, the MBus specification eliminates the need for processor modules to snoop write back buffers and 
places the burden of handling this case of R&R acknowledgement on the module that issues the R&R. Mod­
ules that issue R&R acknowledgements to cacheable block write transactions must capture the addressees) 
of the cache line(s) until they complete the transaction to which they issued R&R. Should other modules 
attempt to read the line(s) during this interval the R&R issuing module must detect this and issue R&R to 
the intervening Coherent Read (CR) or Coherent Read and Invalidate (CRI) transaction(s). In general it 
should be possible for most modules to avoid the need to issue R&R to cacheable block write operations and 
hence avoid this complexity (the only likely exception is a coherent bus adaptor). 

11.1.7.2 Additional Transaction Types for Level 2 

Level 2 requires two additional signals over Levell in order to support cache coherency operations. MSH 
(Memory Shared) and MIH (Memory Inhibit) are asserted during MBus coherent transactions to describe 
the shared and ownership status of a cache line whose address has been asserted on the MBus. MSH is as­
serted by a CY7C605 and RT625 in response to a bus snooping operation for which it discovers it has a copy 
of the cache line involved in the current coherent MBus transaction. MIH is asserted by a CY7C605 and 
RT625 in response to a coherent transaction on a cache line which the CY7C605 and RT625 own (i.e., have 
the most up-to-date copy). The MIH signal is used to inhibitthe output of the memory system, and is asserted 
to indicate that the CY7C605 and RT625 will respond to the memory request by supplying the data directly 
to the requesting cache. 

11.1.7.2.1 Coherent Read (CY7C605 and RT625 only) 

A Coherent Read operation is a block read transaction that maintains cache consistency. The participants 
in the transaction are the requesting cache, the other caches performing bus snooping, and memory (or a 
second-level cache). There are three possible read scenarios for a multiprocessing system with snooping 
caches: 

1. For a snooping cache that does not have a copy of the requested block, the cache simply ignores this 
transaction. 

2. For a snooping cache that has a copy of the requested block but does not own it, the cache must assert 
MSH for one cycle during the cycle A+2 or A+3t. It will mark its copy as shared (if not already 
marked as such). 

3. For a snooping cache which owns the requested block, the cache must assert both MSH and MIH 
signals for one cycle during the A+2 or A+3 cycle. The cache supplies the requested data no sooner 
than cycle A+6 (four cycles after it issued MIH). If the cache's own copy of the block was labeled 
exclusive, it will be changed to shared. Otherwise, no status change will take place for the cache's 
own copy. 

Upon receiving the data block, the requesting master shall label the block exclusive if no one asserts MSH 
during the A+2 or A+3 cycle. The requesting master shall label the block as shared if the MSH signal is 
asserted during the A+2 or A+3 cycle. 

Case (3) is the only case where MIH is asserted. This signal affects three parties. It is sourced by the snoop­
ing (intervening) cache and observed by both memory (or a second level cache) and the requesting cache. 

t See SPARC International SPARe MBus Specification for notes to designers who wish to avoid the A+2 requirement. 
The CY7C605 asserts MSH and MIH during cycle A+2. 
The RT625 asserts MSH and MIH during cycle A+3. 
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It tells the requesting cache that it may have received stale data from memory, and to ignore that data and 
data it may receive on the next clock and wait until the fourth or later clock for the correct data. It tells 
memory to stop sending data immediately, which means memory may send one more MRDY before it can 
stop. The delay of 4 clocks at the requesting cache and the snooping (intervening) cache serve two related 
purposes. The first is to allow time for MRDY and MAD from the memory to be turned off before the snoop­
ing cache asserts MRDY and MAD, and so avoid bus contention. The second is to allow for implementations 
that buffer the MBus. 

CLK 

MAD<63:0> 

CLK 

_~ ____ ~: __ ~: ___ ~! ______________ ~i~ 
l x, Y, and Z d~note arbitrary number of cycles, I 

Figure 11-8. MBus Coherent Read Transaction - MIH not asserted 

LU 

------:----r----.~: ----'-------------__ ----__ --~;~ 
.. A+ 7 or greater for the RT625. 
*A+3 for the RT625 

x, Y, and Z denote arbitrary number of cycles. ' 
: X, Y, and Z are 1 cycle for the 605 and 0 cycles for the 625, 

Figure 11-9. MBus Coherent Read Transaction - MIH asserted 

11.1.7.2.2 Coherent Invalidate (CY7C605 and RT625) 

An invalidate operation can only be performed on a cache-line basis. All invalidate operations are snooped. 
In an invalidate operation that hits in a cache, the cache line copy is invalidated immediately regardless of 
its state. One MBus module (normally a memory or second-level cache controller) is responsible for the 
acknowledgment of a Coherent Invalidate transaction on the A+2t cycle or later. All acknowledgment 
types are possible. Memory will only issue normal acknowledgments (i.e., MRDY) to Coherent Invalidate 
transactions, but other bus adaptors, such as a second-level cache, may issue the full range of acknowledg­
ments, especially R&R. It should be noted that a Coherent Invalidate transaction has SIZE = 32 bytes during 

t See SPARC International SPARC MBus Specification for notes to designers who wish to avoid the A+2 requirement. 
For the RT625 the Coherent Invalidate must be acknowledged during cycle A+3 or later. 
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the address phase, but will only be expecting one MRDY as the acknowledgment. Also, the address may 
not be 32-byte aligned. For a cache system that cannot guarantee to complete the invalidation before the 
A+2 cycle, the memory controller for that system should delay the acknowledgment as required. (This im­
plies that memory controllers should have a feature that allows the time to acknowledge invalidates to be 
varied to some extent, either hard wired or through a programmable register. A recommended range for the 
programmable delay is A+2 to A+ 10. This programmable delay is the MBus flow control technique to guar­
antee that invalidates can be completed at any rate they are issued.) 

The Coherent Invalidate transaction is issued when a write is being performed on a shared cache line. Before 
the write can be performed, all other caches in the system must invalidate their copies (write-invalidate 
cache consistency protocol). Snooping caches need not assert MSH during the A+2 cyclet. The 
MAD<63:0> bus is undefined during the data cycles. If a Coherent Invalidate transaction should receive 
an R&R acknowledgement, there is a possibility that the line which is about to be written becomes invali­
dated by an intervening invalidation transaction on the bus. This means that when the cache regains the bus 
it should issue a Coherent Read and Invalidate transaction, not a Coherent Invalidate transaction, to once 
again allocate the cache line. Figure 11-10 shows the basic Coherent Invalidate operation. 

For any particular system, selecting which module will be responsible for acknowledging Coherent Invali­
dates introduces some issues for memory controller designers. In most systems a single memory controller 
will be responsible. In systems with a coherent bus adaptor, the adaptor will be responsible. If it is desired 
to use a memory controller in a system that also has a coherent bus adaptor, it is then required to be able to 
tell the memory controller not to respond to invalidates. This should be accomplished during system initial­
ization prior to enabling any caches, preferably by writing a bit in a register in a memory controller. 

CLK 
Cycle I Cycle : Cycle ! 

A : A + 1 : A + 2* ' 

MAD<63:0> xxx I Addressl xxx 
i 

!~ 
l Ir-
~'---+----~----~----~I . 

* Cycle A+3 for RT625 

Figure 11-10. MBus Coherent Invalidate Transaction 

11.1.7.2.3 Coherent Read and Invalidate (CRI) (CY7C60S and RT62S) 

The Coherent Read and Invalidate transaction combines a Coherent Read transaction with a Coherent Inval­
idate transaction. This transaction is included to reduce the number of MBus Coherent Invalidate transac­
tions. Caches performing Coherent Reads that intend to immediately modify the data can issue this transac­
tion. 

Each CRI transaction is snooped by all system caches. If the address hits in a cache but the cache does not 
own the block, then the cache invalidates its copy of this block regardless of the state of the data. If the ad­
dress hits in a cache and the cache owns the block, then it asserts MIH and supplies the data. When the data 
has been successfully supplied, the cache then invalidates its copy of the block. Figure 11-11 and 
Figure 11-12 show the CRI operation. Note that it is identical to the Coherent Read operation, except that 
the snooping caches invalidate their copy of the cache line upon a cache hit. All of the comments concerning 
MIH for the Coherent Read transaction apply to the CRI transaction. MSH is not driven during the CRI 
transaction. 
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I . 
X, Y, and Z denote arbitrary number of cycles 

J ' i ' 

* Cycle A + 3 for the RT625 

Figure 11-11. MBus Coherent Read and Invalidate Transaction - MIH not asserted 

CLK 

* A+ 3 for tbe RT625 
** A+ 7 for tbe RT625 

LJ 

X, Y, and Z denote arbitrary number of cycles. 
X, Y, and Z are 1 cycle for the 605 and 0 cycles 
for the 625. 

Figure 11-12. MBus Coherent Read and Invalidate Transaction - MIH asserted 

11.1.7.2.4 Coherent Write and Invalidate (CWI) (CY7C60S and RT625) 

The Coherent Write and Invalidate transaction combines a write transaction with a Coherent Invalidate 
transaction. This transaction is included to reduce the number of MBus Coherent Invalidate transactions. 
This transaction can be used by modules that can operate with a write-through cache, useful for second-level 
caches that support inclusion. 

Each CRI transaction is snooped by all system caches. If the address hits in a cache, then that cache invali­
dates its copy of the cache line regardless ofthe state ofthe data. Figure 11-13 illustrates the basic CWI 
operation, which is a block transaction in copy-back mode. Note that this transaction is identical to the write 
operation, except that the snooping caches invalidate their block upon a cache hit. The SIZE for this transac-
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tion can be any valid MBus transaction size (though the CY7C605 and RT625 only support up to 32 bytes), 
and a single, 32-byte cache line is invalidated regardless of the value of SIZE. Due to the nature of the cache 
coherency protocol, neither MIH nor MSH is asserted. 

Figure 11-14 shows a typical CRI transaction in write-through mode (in which non-block transfers can oc­
cur) in which different bus masters are asserting MAS. This diagram represents the timing for the occur­
rence ofMRDY in A+ 3 or later for the RT625 (or in A +2 or later for the CY7C605). MRDY may be asserted 
in A+2 (this is the earliest cycle allowed by MBus), but only ifMBG is deasserted during MRDY (see Figure 
11-15). This applies to byte, halfword, word, or doubleword writes in write-through mode. For Block CWI 
transactions in write-through mode (generated by the RT625 only for Block Copy and Block Fill opera­
tions). MRDY may be asserted earlier than A+3, but bus acknowledgements (Error, Retry, or R&R) must 
not be asserted before A+3. 

CLK 

MAD<63:0> 

* m must be 2 or greater for the CY7C605 and 3 or greater for the RT625, 

Figure 11-13. MBus Block Coherent Write and Invalidate Transaction 

o 2 3 4 5 6 7 8 

CLK 

MAD<63:0> 

''--+-...J! 

'~-+--I! '\--+--Ir 
I 

~'-~--~--+---~~'-~--+---~~~;-I 
Figure 11-14. MBus Write-through Coherent Write and Invalidate Transaction 
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CLK 

MAD<63:0> ~""""---=D~1--~==lD~2==)-t---
\\--4--....J! 

\~-t--'! 

! DON'T CARE / \~+-~/ __ 'D_O_N_'T_C_AR~i _EJ / \ .......... --
~~~ __ ~_~~r-t-\~~_~_~~! I 

I 

Figure 11-15. MBus Write-through Coherent Write and Invalidate Transaction (MRDY in A+2) 

11.1.8 MBus Acknowledgement Cycles 

It is a requirement that any transaction once issued must correctly accept any acknowledgment type. This 
applies to all Levell and Level 2 transactions. The earliest that an acknowledgment can be issued is A+ 1 
for read and write and A+2 (CY7C605) or A+3 (RT625) for all coherent transactions. Processor caches that 
are supplying data as part of a Coherent Read transaction may only issue either normal or Error acknowl­
edgements. They may not issue R&R or Retry acknowledgements. The CY7C605 and RT625 only issue 
normal acknowledgements while supplying data for a CR or CRI. 

11.1.8.1 Idle Cycles 

When there is no bus activity or when it is necessary to insert wait states in between the address cycle and 
the data cycle or between consecutive data cycles, an addressed slave can simply refrain from asserting any 
transaction status bits (MERR, MRDY, and MRTY). The number of wait cycles which can be inserted is 
arbitrary, as long as it does not exceed the system timeout interval (see Section 11.1.8.5 for timeout details). 

11.1.8.2 Relinquish and Retry (R&R) 

When a slave device cannot accept or supply data immediately, it can perform an R&R acknowledgment 
cycle by asserting MRTY for only one bus cycle. This will indicate to the requesting master that it should 
release the bus immediately so that the bus can be rearbitrated and possibly used by another MBus master. 
This involves at least one dead cycle until the suspended transaction can be performed in the case when the 
bus is still granted to the retrying master. When the bus is no longer granted to the master in question, then 
the suspended transaction must wait until bus ownership is once again attained. When a transaction that 
receives an R&R acknowledgment regains bus mastership it must issue the same transaction over from the 
beginning. An exception to this is when a Coherent Invalidate is a Coherent Read and Invalidate. For Level 
1 modules, for all transactions with SIZE greater than 8 bytes, an R&R acknowledgment can be asserted on 
any data transfer. For Level 2 modules, for all transactions with SIZE greater than 8 bytes, (including the 
Levell READ and WRITE transactions) R&R can only be issued on the first acknowledgement. It is the 
responsibility of the slave port to time the duration of the transaction that is causing it to issue R&R, and 
return an ERROR2 acknowledgment to the correct master when its device specific timeout interval has 
passed and the master has reconnected to the slave. 
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There are two different cases that cause slaves to issue R&R acknowledgments. The fIrst is slow devices. 
If a device is slow to respond, the slave interface should wait a short interval (around one microsecond is 
recommended), and then issue an R&R acknowledgment. It should also capture the ID of the master from 
the MAD lines during the address phase (MID[3:0] fIeld) and enter a "port busy" state while waiting for 
the device attached to the slave to respond. The master will eventually reconnect and the R&R process will 
be repeated until either the device responds or the slave timeout interval is exceeded. The slave will then 
issue the normal or error acknowledgment respectively and exit the "port busy" state. 

In systems with multiple masters, the slave that issues R&R must capture the ID of the master whose transac­
tion is being postponed in order to know which master should receive the normal or error acknowledgment 
when the slave can complete the transaction. If a master with an ID other than that captured by the slave 
port should access the slave port while it is in the "port busy" state, it should simply be given an R&R ac­
knowledgment. 

The second cause of R&R acknowledgments is the resolution of deadlock situations where there is a master 
and a slave port sharing an MBus interface and simultaneous transactions on both ports requires one transac­
tion to back off. R&R requires the current owner of MBus to relinquish ownership in order to resolve the 
deadlock. R&R's used to resolve deadlocks are inherently stateless and do not require a "port busy" state. 

A detail of significance is that R &R can be issued to a transaction that is part of a locked sequence of transac­
tions. By definition, all transactions in a locked sequence are addressed to the same device, e.g. main 
memory (or second level cache) or an I/O adapter. There is only one "port busy" state per device, so there 
is only one source of R&R for a locked sequence. 

Normally, main memory will not issue R&R. Multiple R&R sources from main memory would restrict 
locked sequences to addresses within one memory bank, Also, some aspects of coherent cache design are 
simplified by locking some MBus sequences such as fills and their associated write-back (if any). These 
sequences rely on either a memory system that does not issueR&R or an appropriately designed second level 
cache or coherent bus adaptor that does. 

It should be noted that processor caches which assert MIH and then supply data cannot issue R &R acknow 1-
edgements. 

11.1.8.3 Valid Data Transfer 

A valid or ready data transfer is indicated by a responding slave with the assertion of the MRDY transaction 
status bit for only one cycle. This signal needs to be asserted on reads to indicate to the requesting master 
that valid data has just arrived. On writes, MRDY indicates to the writing master that the data has been ac­
cepted and that the writing master shall stop driving the accepted data. The next doubleword, if a write burst 
were being performed, will be driven onto the bus in the cycle immediately following the assertion of 
MRDY. 

11.1.8.4 ERROR1 => Bus Error 

When the responding device asserts only the MERR transaction status bit, the requesting master will inter­
pret this as an external bus error just having taken place. The meaning of "Bus Error" is implementation 
dependant. 

11.1.8.5 ERROR2 => Timeout 

This acknowledgment is expected to be generated by some sort of watchdog timer logic in the system that 
primarily detects transactions that are not acknowledged. This is accomplished by timing the shorter of, ei­
ther the assertion of MBB, or the time since the last MAS assertion, as follows. 
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A timeout counter should start on the assertion ofMBB and count until the deassertion ofMBB, or until the 
timer has counted the timeout interval. If the counter counts to the timeout limit, a timeout error acknowl­
edgement should be generated by the timeout monitor circuitry. When counting ceases, the counter should 
be reinitialized to its initial condition. If MAS is asserted during the time that counting is enabled (MBB 
assertion) the counter should be reinitialized, but continue counting. The number of cycles for the timeout 
interval is system implementation dependent. This error code can also be used to indicate a system imple­
mentation dependent error. Timeout is the suggested interpretation of an ERROR2 acknowledgment. 

11.1.8.6 ERROR3 => Uncorrectable 

This acknowledgment is mainly used by the addressed memory controller to inform the requester that in 
the process of accessing the data some sort of uncorrectable error has been encountered (like parity, uncor­
rectable ECC, etc). This error code can also be used to indicate a system implementation dependent error. 
Uncorrectable error is the suggested interpretation of an ERROR3 acknowledgment. 

11.1.8.7 Retry 

This acknowledgment differs from the R&R acknowledgment in that the master will not, in this case, release 
bus ownership if it is no longer granted the bus, but rather the transaction will immediately begin again with 
an address phase (MAS, etc.) as soon as the retried master is ready to do so. Retry errors can occur on any 
acknowledgment of a transaction. This type of acknowledgment can be useful when a correctable ECC error 
has occurred in the main memory subsystem. 

Should a Retry acknowledgement occur on other than the first acknowledgement cycle, the issue of "Data 
Correctness" arises. Modules that use delivered data prior to completion of the transaction may not be able 
to tolerate delivery of bad data. They may choose to treat Retry acknowledgements as equivalent to ER­
ROR3 acknowledgements. This assumes that the Retry is "stateless" and the slave device issuing it will not 
hang or otherwise malfunction if the transaction is not retried. This is a detail at the discretion of system 
implementors. In the CY7C605 Retry can be issued on any acknowledgement cycle. In the RT625 a Retry 
after the first acknowledgement will be treated as an error. In this case the data strobed prior to the Retry 
must be valid. 

11.1.8.8 Reserved 

This acknowledgement is reserved for future use. Should a master receive a reserved acknowledgement its 
behavior is undefined. 

11.1.9 MBus Arbitration 

11.1.9.1 Arbitration Principles 

• The Arbiter is a separate unit from both the slave(s) and master(s). 

• Arbitration is overlapped with current bus cycle. 

• Back-to-back transactions by different masters are not allowed. There must be at least one dead cycle in 
between each transaction during which MBB is deasserted. 

• Arbitration algorithm is implementation dependent (fair bandwidth allocation should be maintained). 

• Bus parking is employed (i.e., current master keeps the bus until it is taken away by another request). 

• Locked cycles are accommodated to handle indivisible operations. 
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11.1.9.2 Arbitration Protocol 

The MBus arbitration scheme assumes a central arbiter. The exact algorithm used by the arbiter (e.g., round 
robin, etc) is implementation dependent. The arbiter uses only the MBRn and MBGn signals from each mas­
ter and the common bussed MBB signal. The arbiter receives the requests (MBRn) and resolves which grant 
(MBGn) to assert. 

A bus master requests bus ownership by asserting its dedicated MBR signal. The arbiter grants bus owner­
ship by asserting the dedicated MBG signal for that bus master. If the MBB (MBus bus busy) signal is not 
asserted, the bus master asserts MBB and starts the bus transaction. If the MBB signal is asserted, the bus 
master must wait until is has been released. The bus master does not own the bus until it has asserted MBB, 
and MBB cannot be asserted until it has been released by the previous bus master. This protocol allows 
the MBus to support overlapped bus arbitration. Note that MBG should stay asserted until MBB has been 
released by the current bus master. 

Upon receiving its dedicated MBG signal, the requesting master can start using the bus by asserting MAS 
and MBB as soon as MBB is released (deasserted) by the previous master, and should remove its dedicated 
request (MBR) on the next clock edge. (It is allowed to assert MBR in anticipation of needing the bus, and 
then deassert it prior to receiving MBG. However, this may waste bu~ cycles and should be avoided.) It 
is not necessary for the requesting master to assert MAS immediately, but it is necessary to assert MBB to 
acquire and hold the bus. A requesting master is not guaranteed to gain bus ownership if it does not immedi­
ately assert MBB upon detecting the condition of its MBG asserted and MBB deasserted. 

After MBB has been released by the current bus master, MBG may be deasserted at any time in response 
to other bus requests. If no further requests are made, the MBG should stay asserted. This is referred to as 
"bus parking," and it allows subsequent requests from the same bus master to be serviced without the delay 
of arbitrating the MBus. IfMBG for a particular bus master has already been asserted (i.e., the bus has been 
parked on that bus master), the bus master may assert MBB and claim the MBus without fIrst asserting MBR. 
Only one grant (MBG) is asserted at any time. A dead cycle between successive transactions of different 
masters will always occur with the MBus arbitration scheme. 

Timing diagrams for example transactions are shown in Section 11.1.11. 

A grant remains asserted until at least one cycle after the current master has deasserted MBB when it be­
comes "parked," and may be removed at any time after this in response to assertion of further requests. 

11.1.10 MBus Configuration Address Map 

A small portion of the MBus memory space has been preallocated to each potential MBus module, to allow 
for a uniform method of system confIguration. There is an individual space per MBus ID, 16 spaces in total. 
The ID of a module is determined by the value on the ID[3:0] pins. Levell processor modules do not have 
slave interfaces and so will not respond at the confIguration address map locations. The CY7C605 and 
RT625, though Level 2 devices, do not implement the configuration address map. Figure 11-16 shows the 
configuration address spaces of MBus. 
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Configuration Spaces Mbus Identifier 

OxFFOOOOOOOto OxFFOFFFFFF Range for ID=OxO* 
OxFFIOOOOOOtoOxFFlFFFFFF Range for ID=Oxl 
OxFF2000000to OxFF2FFFFFF Range for ID=Ox2 

OxFFFOOOOOO to OxFFFFFFFFF Range for ID=OxF 

*reserved for "boot PROM" 

Figure 11-16. MBus Configuration Address Map 

One 32-bit location in each space (OxFFnFFFFFC where n=ID) is fixed and should contain the Implementa­
tion Number and Version Number of the MBus module in an MBus Port Register (MPR) which is shown 
in Figure 11-17. A processor accessing the 16 possible MPRs can determine what ID slots are pres­
ent(through timeout) and what devices they contain from the contents of the MPR. Other than this one ad­
dress, the use of the address range is implementation specific, and specified by module vendors. Examples 
of items located in these configuration address ranges are registers that determine the address ranges which 
memory and I/O modules respond to. Similarly, implementation specific registers and memories necessary 
to configure and test modules would reside at locations within the device specific configuration address 
space. 

31 16 15 8 7 4 3 0 

OxFFnFFFFFC L.1 __ ~hn::!p~le~m;:.:e.::nta.::t::.;io::.;n...::S£.pe;:.:c;:.:ifl.::·C ___ ..L-__ --=.;M.::D:..:E=-V ___ --1..~MRE:...::.=.V_-L._MVE;;....;...;..N.;..D----' 

Figure 11-17. MBus Port Register Format 

MDEV MBus device number. This field contains a unique number which indicates the ven­
dor specific MBus device that is present at the referenced MBus port. Refer to Ven­
dors for their MDEV assignments. 

MREV Device revision number. This field contains a number that can be interpreted as a re­
vision number or some other variable of a device. Refer to Vendors for their MREV 
assignments, if any. 

MVEND MBus vendor number. This field contains a unique number which indicates the ven­
dor of the device present at the referenced MBus port. Refer to Appendix A for cur­
rent MVEND assignments. 

On coming out of reset, processor modules will fetch instructions from MBus address OxFFOOOOOO and sub­
sequent memory locations. This means that the configuration address space for ID=OxO is special and al­
ways needs to be present. MBus ID=OxO, then, can be considered as the "boot PROM" MBus module. 
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Figure 11-18. Initial MBus Arbitration 
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Figure 11-19. MBus Mastership Transfer 

Note on arbitration: MBR2 can appear at any time and does not have to be granted immediately as shown. 
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MERR I 
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MRTY I 
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Figure 11-20. MBus Arbitration with Multiple Requests (part 1 of 2) 
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Figure 11-20. MBus Arbitration with Multiple Requests (part 2 of 2) 
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2 3 4 5 6 

CLK 

MAD<63:0> ( ADDRESS H DATA ) 
MAS \ I 

MERR I 

MRDY \ I 
MRTY I 

MBR \ I 
MBG \ I 
MBB \ I 

Figure 11-21. MBus Single-Cycle Read Transaction 
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Figure 11-22. MBus Single-Cycle Write Transaction 
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MAD<63:0> ---'~( ADDRESS H DATA 0 H DATA 1 H DATA 2 H DATA 3 }---

~ / 
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\~-----------------------------------------------------
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Figure 11-23. MBus Burst-Cycle Read Transaction* 

* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 

2 3 4 5 6 7 

CLK 

MAD<63:0> ---{ ADDRESS )>---------~-__« DATA 0 )>------~( DATA 1 >--
MAS ~'-__ -II 

MBG ~~ ______________________________________ ~ __________________________ __ 

MBB ~~ ____ ~ ______________________ ~ ______________________ __ 

Figure 11-24. MBus Burst-Cycle Read Transaction (Slow memory)* (part 1 of 2) 
* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 
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8 9 10 11 12 13 

CLK 

MAD<63:0> ------« DATA 2 )~------« DATA 3 )>-----------

MAS' 

MBG~~ ________________________________________________________________ _ 

MBB ___________________________ ~/ 

Figure 11-24. MBus Burst-Cycle Read Transaction (Slow memory)* (part 2 of 2) 

* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 

2 3 4 5 6 

CLK ~ LJ LrI L 
MAD<63:0> ( ADDRESS X DATA 0 X DATA 1 X DATA 2 X DATA 3 )----

MAS ~ / 
MERR I 

MRDY \ ~------------------------------------~;----
MRTY I 

MER I 

MBG \ 

MEB ~ ~------------------------------------------------~;----
Figure 11-25. MBus Burst-Cycle Write Transaction* 

* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 
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MRDY \ 1 \ 1 
MBG* \ 

MBB ~ 

Figure 11-26. MBus Burst-Cycle Write Transaction (Slow memory)* (part 1 of2) 

7 8 9 10 11 12 

CLK ~ 

MAD<63:0> ______ D_~_T_~_2 __ --~X~ ____ ---D-AT-~-3-------)~-------------~-------------

MAS / 

MRDY \,-----,1 
MBG \ 

MBB ____________ ----__________ --JI 

Figure 11-26. MBus Burst-Cycle Write Transaction (Slow memory)* (part 2 of 2) 
* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 
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Figure 11-27. MBus Locked Transaction* 

* Note that the bus has been granted to the the CY7C604/605 or RT625 prior to the beginning of the transaction. 
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Figure 11-32. MBus Error (Uncorrectable) 
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Figure 11-33. MBus Coherent Read-Shared* Data (page 1 of 2) 

* This timing diagram illustrates a Coherent Read in which the requested data exists in one or more caches in the system, but is 
not owned by any cache. These caches must assert MSH on cycle A+2 as shown for the CY7C605 or during cycle A+3 for the 
RT625. 
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Figure 11-33. MBus Coherent Read-Shared Data (page 2 of 2) 
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Figure 11-34. MBus Coherent Read-Owned Data (CY7C605) (Slow Memory)* (page 1 of 2) 

* This timing diagram illustrates a Coherent Read in which the requested data exists in one or more caches in the system, and is 
owned by a cache. All caches with a copy of the requested data (including the owner) must assert MSH. Only the owning cache 
will assert MIH on cycle A+2 and supply the data. 
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Figure 11-34. MBus Coherent Read-Owned Data (CY7C60S) (Slow Memory) (page 2 of2) 
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Figure 11-35. MBus Coherent Read-Owned Data (CY7C605) (Fast Memory)* (page 1 of 2) 

* This timing diagram illustrates a Coherent Read in which the requested data exists in one or more caches in the system, and is 
owned by a cache. All caches with a copy of the requested data (including the owner) will assert MSH. Only the owning cache 
asserts MIH on cycle A+2 and supplies the data. In this case, memory has already started to respond (with MRDY in the A+2 
cycle) and thus must get off the bus immediately to allow the cache which owns the data to drive the bus. 
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Figure 11-35. MBus Coherent Read-Owned Data (Fast Memory) (page 2 of 2) 
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Figure 11-36. MBus Coherent Read-Owned Data (RT625) (Slow Memory)* (page 1 of 2) 

* This timing diagram illustrates a Coherent Read in which the requested data exists in one or more caches in the system, and is 
owned by a cache. All caches with a copy of the requested data (including the owner) must assert MSH. Only the owning cache 
will assert MIH on cycle A+3 and supply the data. 
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Figure 11-36. MBus Coherent Read-Owned Data (RT625) (Slow Memory) (page 2 of 2) 
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Figure 11-37. MBus Coherent Read-Owned Data (RT625) (Fast Memory)* (page 1 of 2) 

* This timing diagram illustrates a Coherent Read in which the requested data exists in one or more caches in the system, and is 
owned by a cache. All caches with a copy of the requested data (including the owner) will assert MSH. Only the owning cache 
asserts MIH on cycle A+3 and supplies the data. In this case, memory has already started to respond (with MRDY in the A+3 
cycle) and thus must get off the bus immediately to allow the cache which owns the data to drive the bus. 
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Figure 11-37. MBus Coherent Read-Owned Data (RT625) (Fast Memory) (page 2 of 2) 
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Figure 11-38. MBus Coherent Write and Invalidate* (page 1 of 2) 

* This timing diagram illustrates a Coherent Write and Invalidate operation in which one or more other caches have a copy of the 
cache line. The other caches invalidate their copy of the cache line but do not assert MSH. Memory (or second-level cache) asserts 
MRDY during A+2 for the CY7C605 or A+3 or later for the RT625. System caches which contain the data being invalidated do 
not assert MSH during this transaction. The CY7C605 and RT625 only issue this transaction in write-through mode. 
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Figure 11-38. MBus Coherent Write and Invalidate (page 2 of 2) 
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Figure 11-39. MBus Coherent Write and Invalidate (RT625) (Block Copy/Fill)* (page 1 of 2) 

* This timing diagram illustrates a Coherent Write and Invalidate operation for Block Copy/Fill transactions (RT625 only) in 
which one or more other caches have a copy of the cache line. The other caches invalidate their copy of the cache line but do not 
assert MSH. Memory (or second-level cache) asserts MRDY during A+3 or later for the RT625. System caches which contain 
the data being invalidated do not assert MSH during this transaction. 
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Figure 11-39. MBus Coherent Write and Invalidate (RT625) (Block CopylFiII) (page 2 of 2) 
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Figure 11-40. MBus Coherent Invalidate* 

* This timing diagram illustrates a Coherent Invalidate operation. Memory (or second-level cache) asserts MRDY during A+2 
for the CY7C605 or A+ 3 or later for the RT625. System caches which contain the data being invalidated do not assert MSH during 
this transaction. 
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Figure 11-41. MBus Coherent Read and Invalidate-Shared Data* (page 1 of 2) 

* This timing diagram illustrates a Coherent Read and fuvalidate in which the requested data may exist in one or more caches in 
the system. MSH is not asserted for the Coherent Read and fuvalidate transaction. 
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Figure 11-42. MBus Coherent Read and Invalidate-Shared Data (page 2 of 2) 
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Figure 11-42. MBus Coherent Read and Invalidate-Owned Data (CY7C605) (Slow Memory)* 
(page 1 of 2) 

* This timing diagram illustrates a Coherent Read and Invalidate in which the requested data exists in one or more caches in the 
system and is owned by a cache. Only the owning cache asserts MIH on cycle A+2 and supplies the data. After supplying the 
data, the owning cache invalidates its copy; all other caches with copies of the data also invalidate their copies. 
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(page 2 of 2) 
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Figure 11-43. MBus Coherent Read and Invalidate-Owned Data (CY7C605) (Fast Memory)* 
(page 1 of 2) 

* This timing diagram illustrates a Coherent Read and Invalidate in which the requested data exists in one or more caches in the 
system and is owned by a cache. Only the owning cache asserts MIH on cycle A+2 and supplies the data. After supplying the 
data, the owning cache invalidates its copy; all other caches with copies of the data also invalidate their copies. 
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Figure 11-44. MBus Coherent Read and Invalidate-Owned Data (RT62S) (Slow Memory)* 
(page 1 of 2) 

* This timing diagram illustrates a Coherent Read and Invalidate in which the requested data exists in one or more caches in the 
system and is owned by a cache. Only the owning cache asserts MIH on cycle A+3 and supplies the data. After supplying the 
data, the owning cache invalidates its copy; all other caches with copies of the data also invalidate their copies. 
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Figure 11-44. MBus Coherent Read and Invalidate-Owned Data (RT625) (Slow Memory) 
(page 2 of 2) 
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Figure 11-45. MBus Coherent Read and Invalidate-Owned Data (RT625) (Fast Memory)* 
(page 1 of 2) 

* This timing diagram illustrates a Coherent Read and Invalidate in which the requested data exists in one or more caches in the 
system and is owned by a cache, Only the owning cache asserts MIH on cycle A+3 and supplies the data. After supplying the 
data, the owning cache invalidates its copy; all other caches with copies of the data also invalidate their copies, 
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SPAR C Instruction Set 

12.1 Assembly Language Syntax 

The notations given in this section are taken from Sun's SPARe Assembler and are used to describe the sug­
gested assembly language syntax for the instruction definitions given in Section 12.2. 

Understanding the use of type fonts is crucial to understanding the assembly language syntax in the instruc­
tion definitions. Items in typewriter font are literals, to be entered exactly as they appear. Items in italic font 
are metasymbols which are to be replaced by numeric or symbolic values when actual assembly language 
code is written. For example, asi would be replaced by a number in the range of 0 to 255 (the value of the 
bits in the binary instruction), or by a symbol which has been bound to such a number. 

Subscripts on metasymbols further identify the placement of the operand in the generated binary instruction. 
For example, regrs2 is a reg (i.e., register name) whose binary value will end up in the rs2 field of the result­
ing instruction. 

12.1.1 Register Names 

reg 

A reg is an integer unit register. It can have a value of: 

%0 through %31 all integer registers 
%gO through %g7 global registers-same as %0 through %7 
%00 through %07 out registers-same as %8 through %15 
%10 through %17 local registers-same as %16 through %23 
%iO through %i7 in registers-same as %24 through %31 

Subscripts further identify the placement of the operand in the binary instruction as one of: 

regrsl -rsl field 
regrs2 -rs2 field 
regrd -rd field 

freg 

Afreg is a floating-point register. It can have a value from %fO through %f31. Subscripts further 
identify the placement of the operand in the binary instruction as one of: 

fregrsl -rs1 field 
fregrs2 -rs2 field 
fregrd -rd field 

creg 

A creg is a coprocessor register. It can have a value from %cO through %c31. Subscripts further 
identify the placement of the operand in the binary instruction as one of: 

cregrsl -rs1 field 
cregrs2 -rs2 field 
cregrd -rd field 
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12.1.2 Special Symbol Names 

Certain special symbols need to be written exactly as they appear in the syntax table. These appear in type­
writer font, and are preceded by a percent sign (%). The percent sign is part of the symbol name; it must 
appear as part of the literal value. 

The symbol names are: 

%psr 
%wim 
%tbr 
%y 
%fsr 
%csr 
%fq 
%cq 
%hi 
%10 

12.1.3 Values 

Processor State Register 
Window Invalid Mask register 
Trap Base Register 
Y register 
Floating-point State Register 
Coprocessor State Register 
Floating-point Queue 
Coprocessor Queue 
Unary operator that extracts high 22 bits of its operand 
Unary operator that extracts low 10 bits of its operand 

Some instructions use operands comprising values as follows: 

simm13-A signed immediate constant that fits in 13 bits 
const22-A constant that fits in 22 bits 
asi-An alternate address space identifier (0 to 255) 

12.1.4 Label 

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z (upper and lower case distinct)), 
underscore ( _ ), dollar sign ($), period (.), and decimal digits (0-9), but which does not begin with a decimal 
digit. 

Some instructions offer a choice of operands. These are grouped as follows: 

regaddr: 

reg rsl 

reg rsl + reg rs2 

address: 

reg rsl 

reg rsl + reg rs2 

reg rsl + simm13 
reg rsl - simm13 
simm13 
simm13 + reg rsl 

reg_or _imm: 

reg rs2 

simm13 
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12.1.5 Instruction Mnemonics 

Figure 12-1 illustrates the mnemonics used to describe the SPARe instruction set. Note that some combi­
nations possible in Figure 12-1 do not correspond to valid instructions (such as store signed or floating­
point convert extended to extended). Refer to the instruction set summary, Table 12-2, for a list of valid 
SPARe instructions. 

Data Transfer 

[ LOad] 
Store 

[ Signed ] 
Unsigned 

[
Byte ] 
Halfword 
word 
Doubleword 

[ single 
Double ] [Floating-point] 

Coprocessor 

fnormal J 
LAlternate 

[
register ] 
Status Register 
Queue 

atomic SWAP word Atomic Load-Store Unsigned Byte 

Integer Operations 

[ AND ] [ normal ] [ normal] OR Not setCC 
XOR 

[ ADD 
SUB ] [normal ] 

extended 
[ normal] 

setCC 

[Signed ] 
Unsigned 

[ DlV 
MUL ] [normal ] 

extended 
[ normal] 

setCC 

[ Y 

1 
[ ReaD ] PSR 

WRite W1M 
TBR 

Floating-Point Operations 

""""'" [ Integer 
Single 
Double 
Quad 

] [ 
I~teger] 

TO Smgle 
Double 
Quad 

MOVe ] 
NEGate Single 
ABSolute 

Control Transfer 

[
Integer CC J 

Branch Floating-point CC 
Coprocessor CC 

normal 
Anulldelay 
instruction 

Shift [ Left ] 
Right 

[LOgiCal ] 
Arithmetic 

Tagged [ ADD] 
SUB 

set CC [ normal ] 
Trap oVerflow 

Fp 

MULtiply Step set CC 

SETHI 
SAVE 
RESTORE 

ADD 
SUBtract 
MULtiply 
DIVide 
SQuare RooT 
CoMPare 
CoMPare and Exception 

JuMP and Link 
RETurn from Trap 

CALL 
Trap on Integer CC 

[
Single 1 
Double 
Quad 

Figure 12-1. SPARe Instruction Mnemonic Summary 
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12.2 Definitions 

This section provides a detailed definition for each CY7C601 instruction. Each definition includes: the in­
struction operation; suggested assembly language syntax; a description of the salient features, restrictions 
and trap conditions; a list of synchronous or floating-point/coprocessor traps which can occur as a conse­
quence of executing the instruction; and the instruction format and op codes. Instructions are defined in al­
phabetical order with the instruction mnemonic shown in large bold type at the top of the page for easy refer­
ence. The instruction set summary that precedes the definitions, Table 12-2, groups the instructions by type. 

Table 12-1 identifies the abbreviations and symbols used in the instruction definitions. An example of how 
some of the description notations are used is given below in Figure 12-2. Register names, labels and other 
aspects of the syntax used in these instructions are described in the previous section. 

LDD 

Operation: 

Assembler 
Syntax: 

Load data into destination register rd 

~ 
Brackets indicate data located at address specified by contents 

~ 
Contents of source register 1 LDl 

Load Doubleword 
Contents of source register 2 

/ / Sign-extended immediate 13-bitfield of instruction 

r[rdJ-- [r[rsl] + (r[rs2] or sign extnd(simm13))] 

r[rd + 1]- [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4] -----ldd [address], regrd 

An example of this instruction would be: 

ldd [%g1 + 4], %6 
which would add the contents of global register gl to signed 
immediate value (4) to determine the load address. 

Description: The LDD instruction moves a do 
r[rd] and r[rd+ 1]. The effective I 

r[ rs 1] and either the 

The resulting address is used to fetch and load double-word 
data into the destination registers 6 and 7, 

Figure 12-2. Instruction Description 

Table 12-1. Instruction Description Notations (part 1 of 2) 

Symbol Description 

a Instruction field that controls instruction annulling during control transfers 

AND, OR XOR, etc, AND, OR, XOR, etc operators 

asi Instruction field that identifies the Load/Store alternate address space 

c The icc carry bit 

ccc The coprocessor condition code field of the CSR 

CONCAT Concatenate 

cond Instruction field that selects the condition code test for branches 

CQ.ADDR The address portion of the Coprocessor Queue 

CQ.INSTR The instruction portion of the Coprocessor Queue 

c[rd] Depending on context, the coprocessor register (or its contents) specified by the instruction field, 
e.g., rd, rsl, rs2 

CSR Coprocessor State Register 

CWP PSR's Current Window Pointer field 

disp22 Instruction field that contains the 22-bit sign-extended displacement for branches 

disp30 Instruction field that contains the 30-bit word displacement for calls 

dz Floating-point exception: division by zero 
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Table 12-1. Instruction Description Notations (part 2 of 2) 

Symbol Description 

EC PSR's Enable Coprocessor bit 

EF PSR's Enable FPU bit 

ET PSR's Enable Traps bit 

fcc The floating-point condition code field of the FSR 

FQ.ADDR The address portion of the Floating-point queue 

FQ.lNSTR The instruction portion of the Floating-point queue 

f[rd]s The suffix (s, d, q) after the operand indicates the precision of the operand 

f[rsl] Depending on context, the floating-point register (or its contents) specified by the instruction field, 
e.g., rd, rsl, rs2 

FSR Floating-point State Register 

i Instruction field that selects rs2 or sign extnd(simm13) as the second operand 

icc The integer condition code field of the PSR 

imm22 Instruction field that contains the 22-bit constant used by SETHI 

n The icc negative bit 

not Logical complement operator 

nPC next Program Counter 

nv Floating-point exception:invalid 

nx Floating-point exception:inexact result 

of Floating-point exception:overflow 

opc Instruction field that specifies the count for Coprocessor-operate instructions 

operand2 Either r[rs2l or sign extnd(simm13) 

PC Program Counter 

pS PSR's previous Supervisor bit 

PSR Processor State Register 

r[15] A directly addressed register (could be floating-point or coprocessor) 

rd Instruction field that specifies the destination register (except for store) 

r[rd] Depending on context, the integer register (or its contents) specified by the instruction field, e.g. , rd, rsl, rs2 

r[rd]<31> <> are used to specify bit fields of a particular register or 1/0 signal 

[r[rsl] + r[rs2]] The contents of the address specified by r[rsl] + r[rs2] 

rsl Instruction field that specifies the source I register 

rs2 Instruction field that specifies the source 2 register 

S PSR's Supervisor bit 

shcnt Instruction field that specifies the count for shift instructions 

sign extn(simm13) Instruction field that contains the 13-bit, sign-extended immediate value 

Symbol Description 

TBR Trap Base Register 

tt TBR's trap type field 

uf Floating-point exception:underflow 

v The icc overflow bit 

WIM Window Invalid Mask register 
y Y Register 

z The icc zero bit 

- Subtract 

x Multiply 

I Divide 

<-- Replaced by 

7FFFFFFH Hexadecimal number representation 

+ Add 
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Table 12-2. Instruction Set Summary (part 1 of 2) 

Name Operation CY7C601 RT620 CPI! 

LDSB (LDSBA4) Load Signed Byte (from Alternate Space) 2 1[5J 

LDSH (LDSHA4) Load Signed Halfword (from Alternate Space) 2 1[5J 

LDUB (LDUBA4) Load Unsigned Byte (from Alternate Space) 2 1[5J 

LDUH (LDUHA4) Load Unsigned Halfword (from Alternate Space) 2 1[5J 

LD (LDA4) Load Word (from Alternate Space) 2 1[5J 

LDD (LDDA4) Load Doubleword (from Alternate Space) 3 1[5J 

LDF Load Floating Point 2 I 

LDFF Load Double Floating-Point 3 1 

'" LDFSR Load Floating-Point State Register 2 1 

~ LDC Load Coprocessor 2 not supported = i LDDC = Load Double Coprocessor 3 not supported 
.... 
~ LDCSR Load Coprocessor State Register 2 not supported 
.s STB (STBA4) Store Byte (into Alternate Space) 3 2[5J 00 
"C 

(STHA4) 2[5J = STH Store Halfword (into Alternate Space) 3 eo 
"C 

ST (STA4) Store Word (into Alternate Space) 3 2[5J eo 
Q .... 

STD (STDA4) Store Doubleword (into Alternate Space) 4 2[5J 

STF Store Floating-Point 3 2 

STDF Store Double Floating-Point 4 2 

STFSR Store Floating-Point State Register 3 2 

STDFQ Store Double Floating-Point Queue 4 2 

STC Store Coprocessor 3 not supported 

STDC Store Double Coprocessor 4 not supported 

STCSR Store Coprocessor State Register 3 not supported 

STDCQ Store Double Coprocessor Queue 4 not supported 

LDSTUB (LDSTUBA4) Atomic Load-Store Unsigned Byte (in Alternate Space) 4 3 

SWAP (SWAPA4) Swap r-register with Memory (in Alternate Space) 4 3 

ADD (ADDcc) Add (and modify icc) 1 I 

ADDX (ADDXcc) Add with Carry (and modify icc) 1 1 

SUB (SUBcc) Subtract (and modify icc) 1 I 

it:: 
SUBX (SUBXcc) Subtract with Carry (and modify icc) I I 

:a TADDcc (TADDccTV) Tagged Add and Modify icc (and Trap on overflow) 1 1 

~ TSUBcc (TSUBccTV) Tagged Subtract and Modify icc (and Trap on overflow) 1 I 
.~ 
Q SDIV (SDIV) Integer Divide (and modify icc) not supported 37 

'i5 
0';: SMUL (SMULcc) Integer Multiply (and modify icc) not supported 17 .. 
= MULScc Multiply Step and Modify icc I 1 .; 

°C 
UDIV (UDIVcc) Unsigned Divide (integer) not supported 37 < 
UMUL (UMULcc) Unsigned Multiply (integer) not supported 17 

AND (ANDcc) And (and modify icc) I 1 

ANDN (ANDNcc) And Not (and modify icc) 1 1 

OR (ORcc) Inclusive Or (and modify icc) 1 I 

ORN (ORNcc) Inclusive Or Not (and modify icc) 1 1 
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Table 12-2. Instruction Set Summary (part 2 of 2) 

Name Operation CY7C601 RT620 CPI' 

XOR (XORcc) Exclusive Or (and modify icc) 1 1 
$i 

XNOR (XNORcc) Exclusive Nor (and modify icc) 1 1 .c: 

~ SLL Shift Left Logical 1 1 
·st 
0 SRL Shift Right Logical 1 1 

J::! 
i SRA Shift Right Arithmetic 1 1 

e SETHI Set High 22 Bits of r-register 1 1 = 
~ SAVE Save Caller's Window 1 1 
-< 

RESTORE Restore Caller's Window 1 1 

Bicc Branch on Integer Condition Codes 1[6] 1[6] 

.... FBicc Branch on Floating-Point Condition Codes 1[6] 1[6] 
~ 
I(l CBccc Branch on Coprocessor Condition Codes 1[6] 1[6] 
01 

.::: CALL Call 
'0 

1[6] 1[6] 

~ JMPL Jump and Link 2[6] 1[6] 
0 

U RETT Return from Trap 2[6] 1[6] 

Ticc Trap on Integer Condition Codes 1 (4 if taken) 1 

RDASR2,4 Read Ancillary State Register 1 1 

RDY Read Y Register 1 1 

RDPSR4 Read Processor State Register 1 1 

en RDWIM4 .... Read Window Invalid Mask 1 1 

" " ... :C0Q RDTBR4 Read Trap Base Register 1 1 

~~ WRASR2,4 Write Ancillary State Register 1 1 
'C-
OlO 

WRY Write Y Register 1 1 " .... 
~= 0 WRPSR4 Write Processor State Register 1 1 U 

WRWIM4 Write Window Invalid Mask 1 1 

WRTBR4 Write Trap Base Register 1 1 

UNIMP Unimplemented Instruction 1 1 

FLUSH7 Instruction Cache Flush 1 4 

~~!;/J FPop Floating-Point Unit Operations 1 to launch see note 3 
~88 

CPop Coprocessor Operations 1 to launch not supported 

Notes: 1. All RT620 CPI assume worst case of single instruction launch. 
2. Not a privileged instruction when accessing the Y register. 
3. Refer to Table 3--6 on page 3-77. 
4. Privileged instruction 
5. Alternate ASI = Oxc, Oxd, Oxl0 - Ox18, or Ox31 have varying CPI (all are true ICACHE instructions) 
6. Assuming delay slot is filled with a useful instruction 
7. This instruction is referred to as FLUSH in the SPARC Version 8 ISA and IFLUSH in the SPARC Version 7 ISA. 
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ADD Add ADD 

Operation: r[rd] - r[rsl] + (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: add regrsl, reg_or _imm, regrd 

Description: The ADD instruction adds the contents ofthe register named in the rsl field ,r[rsl], to either 
the contents of r[ rs2] if the instruction's i bit equals zero, or to the 13-bit, sign-extended im­
mediate operand contained in the instruction if i equals one. The result is placed in the regis­
ter specified in the rd field. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 000000 1 rsl 1 i=O 1 ignored 1 rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 000000 I rs! li=d simmI3 I 
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ADDcc Add and modify icc ADDcc 

Operation: r[rd] - r[rsl] + operand2, where operand2 = (r[rs2] or sign extnd(simm13)) 

n- r[rd]<31> 

Assembler 

z- ifr[rd] =0 then 1, else 0 

v- (r[rsl]<31> AND operand2<31> AND not r[rd]<31» 

OR (not r[rsl]<31> AND not operand2<31> AND r[rd]<31» 

c- (r[rsl]<31> AND operand2<31» 

OR (not r[rd]<31> AND (r[rsl]<31> OR operand2<31>)) 

Syntax: addcc regrsl, reg_or _imm, regrd 

Description: ADDcc adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit 
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. The result is 
placed in the register specified in the rd field. In addition, ADDcc modifies all the integer 
condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 010000 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
010000 

1 rsl li=d simm13 I 
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ADDX Add with Carry ADDX 

Operation: r[rd] - r[rsl] + (r[rs2] or sign extnd(simm13» + c 

Assembler 
Syntax: addx regrsl, reg_or _imm, regrd 

Description: ADDX adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit 
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. It then adds the 
PSR's carry bit (c) to that result. The final result is placed in the register specified in the rd 

field. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001000 I rsl I i=O I ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 001000 1 rs! li=d simm13 I 
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ADDXcc Add with Carry and modify icc ADDXcc 

Operation: r[rd] - r[rsl] + operand2 + c, where operand2 = (r[rs2] or sign extnd(simm13)) 

n- r[rd]<31> 

Assembler 

z- ifr[rd] =0 then 1, else 0 

v- (r[rsl]<31> AND operand2<31> AND not r[rd]<31» 

OR (not r[rsl]<31> AND not operand2<31> AND r[rd]<31» 

c- (r[rsl]<31> AND operand2<31» 

OR (not r[rd]<31> AND (r[rsl]<31> OR operand2<31») 

Syntax: addxcc regrsl, reg_or _imm, regrd 

Description: ADDXcc adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit 
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. It then adds the 
PSR's carry bit (c) to that result. The final result is placed in the register specified in the rd 

field. ADDXcc also modifies all the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 011000 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 011000 
1 rsl ! i=l! simm13 I 
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AND And AND 

Operation: r[rd] - r[rsl] AND (r[rs2] or sign extnd(simm13)) 

Assembler 
Syntax: and regrsl, reg_or _imm, regrd 

Description: This instruction does a bitwise logical AND of the contents of register r[rs 1] with either the 
contents of r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored in register r[ rd]. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 000001 1 rsl 1 i=ol ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 000001 1 rsl li=d simm13 1 
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ANDcc And and modify icc 

Operation: r[rd] - r[rsl] AND (r[rs2] or sign extnd(simm13» 

n- r[rd]<31> 

Assembler 

z- ifr[rd] =0 then 1, else 0 

v-O 

c-O 

Syntax: andcc regrs], reg_or _imm, regrd 

ANDcc 

Description: This instruction does a bitwise logical AND of the contents of register r[ rs 1] with either the 
contents of r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored in register r[rd]. ANDcc also modifies all 
the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 010001 I rsl I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 o! rd ! 010001 
! rsl ! i=l! simm13 ! 
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ANDN And Not ANDN 

Operation: r[rd) - r[rsl) AND (r[rs2) or sign extnd(simm13)) 

Assembler 
Syntax: andn regrsl, reg_or _imm, regrd 

Description: ANDN does a bitwise logical AND of the contents of register r[ rs 1) with the logical compli­
ment (not) of either r[rs2) Cifbit field i=O) or the 13-bit, sign-extended immediate value con­
tained in the instruction (if bit field i=l). The result is stored in register r[rd). 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 000101 I rs1 I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 000101 I rs1 I i=ll simm13 I 
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ANDNee And Not and modify icc 

Operation: r[rd] - r[rsl] AND (r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 

Assembler 

z- ifr[rd] =0 then 1, else 0 

v-O 

c-O 

Syntax: andncc regrs} , reg_or _imm, regrd 

AND Nee 

Description: ANDNcc does a bitwise logical AND of the contents of register r[rsl] with the logical com­
pliment (not) of either r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value 
contained in the instruction (if bit field i=l). The result is stored in register r[rd]. ANDNcc 
also modifies all the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd 1010101 I rsl I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 010101 I rsl I i=11 simm13 I 
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Bicc Integer Conditional Branch Bicc 

Operation: PC - OPC 

Assembler 
Syntax: 

If condition true then nPC - PC + (sign extnd(disp22) x 4) 

else nPC - oPC + 4 

ba{,a} 
bn{,a} 
bne{,a} 
be{,a} 
bg{,a} 
ble{,a} 
bge{,a} 
bl {,a} 
bgu{,a} 
bleu{,a} 
bcc{,a} 
bcs{,a} 
bpos{,a} 
bneg{,a} 
bvc{,a} 
bvs{,a} 

label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 
label 

synonym: bnz 
synonym: bz 

synonym:bgeu 
synonym: blu 

Note: The instruction's annul bit field, a, is set by appending ",a" after the branch name. Ifit 
is not appended, the a field is automatically reset. ",a" is shown in braces because it is option­
al. 

Description: The Bicc instructions (except for BA and BN) evaluate specific integer condition code com­
binations (from the PSR's icc field) based on the branch type as specified by the value in the 
instruction's cond field. If the specified combination of condition codes evaluates as true, the 
branch is taken, causing a delayed, PC-relative control transfer to the address PC + (sign 
extnd( disp22) x 4). If the condition codes evaluate as false, the branch is not taken. Refer to 
Section 2.4.3.3 for additional information on control transfer instructions. 

If the branch is nottaken, the annul bit field (a) is checked. If a is set, the instructionimmedi­
ately following the branch instruction (the delay instruction) is not executed (i.e., it is an­
nulled). If the annul field is zero, the delay instruction is executed. If the branch is taken, the 
annul field is ignored, and the delay instruction is executed. See Section 2.4.3.4 regarding 
delay-branch instructions. 

Branch never (BN) executes like a NOP, except it obeys the annul field with respect to its 
delay instruction. 

Branch always (BA), because it always branches regardless of the condition codes, would 
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normally ignore the annul field. Instead, it follows the same annul field rules: if a=l, the 
delay instruction is annulled; if a=O, the delay instruction is executed. 

The delay instruction following a Bicc (other than BA) should not be a delayed-con­
trol-transfer instruction. The results offollowing a Bicc with another delayed control trans­
fer instruction are implementation-dependent and therefore unpredictable. 

Traps: none 

Mnemonic Condo Operation icc Test 

BN 0000 Branch Never No test 

BE 0001 Branch on Equal z 

BLE 0010 Branch on Less or Equal zOR(nXOR v) 

BL 0011 Branch on Less nXORv 

BLEU 0100 Branch on Less or Equal, Unsigned cORz 

BCS 0101 Branch on Carry Set c 
(Less than, Unsigned) 

BNEG 0110 Branch on Negative n 

BVS 0111 Branch on oVerflow Set v 

BA 1000 Branch Always No test 

BNE 1001 Branch on Not Equal notz 

BG 1010 Branch on Greater not(z OR (n XOR v)) 

BGE 1011 Branch on Greater or Equal not(nXOR v) 

BGU 1100 Branch on Greater, Unsigned not(c OR z) 

BCC 1101 Branch on Carry Clear not c 
(Greater than or Equal, Unsigned) 

BPOS 1110 Branch on Positive notn 

BVC 1111 Branch on oVerflow Clear not v 

Format: 
3130 29 28 25 24 22 21 o 

I 0 0 I a I condo I 0 1 0 I disp22 
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CALL Call CALL 

Operation: r[15] - PC 

PC-nPC 

nPC- PC + (disp30 x 4) 

Assembler 
Syntax: call label 

Description: The CALL instruction causes a delayed, unconditional, PC-relative control transfer to the 
address PC + (disp30 x 4). The CALL instruction does not have an annul bit, therefore the 
delay slot instruction following the CALL instruction is always executed (See Section 
2.4.3.4). CALL ftrst writes its return address (PC) into the outs register, r[15], and then adds 
4 to the Pc. The 32-bit displacement which is added to the new PC is formed by appending 
two low-order zeros to the 30-bit word displacement contained in the instruction. Conse­
quently, the target address can be anywhere in the CY7C601 's user or supervisor address 
space. 

Traps: 

Format: 

If the instruction following a CALL uses register r[15] as a source operand, hardware inter­
locks add a one cycle delay. 

Programming note: a register-indirect CALL can be constructed using a JMPL instruction 
with rd set to 15. 

none 

3130 29 0 

10 1 I disp30 I 
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CBccc Coprocessor Conditional Branch CBccc 

Operation: PC - nPC 

Assembler 
Syntax: 

If condition true then nPC - PC + (sign extnd(disp22) x 4) 

else nPC - nPC + 4 

cba{,a} label 
cbn{,a} label 
cb3 {,a} label 
cb2{,a} label 
cb23 {,a} label 
cbl{,a} label 
cb13{,a} label 
cb12{,a} label 
cb123{,a} label 
cbO{,a} label 
cb03 {,a} label 
cb02{,a} label 
cb023 {,a} label 
cbOl{,a} label 

cb013{,a} label 
cb012{,a} label 

Note: The instruction's annul bit field, a, is set by appending" ,a" after the branch name. If it 
is not appended, the a field is automatically reset. ",a" is shown in braces because it is option­
al. 

Description: The CBccc instructions (except for CBA and CBN) evaluate specific coprocessor condition 
code combinations (from the CCC< 1 :0> inputs) based on the branch type as specified by the 
value in the instruction's cond field. If the specified combination of condition codes evalu­
ates as true, the branch is taken, causing a delayed, PC-relative control transfer to the address 
(PC + 4) + (sign extnd( disp22) x 4). If the condition codes evaluate as false, the branch is not 
taken. See Section 2.4.3.3 regarding control transfer instructions. 

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immedi­
ately following the branch instruction (the delay instruction) is not executed (i.e., it is an­
nulled). If the annul field is zero, the delay instruction is executed. If the branch is taken, the 
annul field is ignored, and the delay instruction is executed. See Section 2.4.3.4 regarding 
delayed branching. 

Branch never (CBN) executes like a NOP, except it obeys the annul field with respect to its 
delay instruction. 

Branch always (CBA), because it always branches regardless of the condition codes, would 
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Traps: 

Format: 

normally ignore the annul field. Instead, it follows the same annul field rules: if a=l, the 
delay instruction is annulled; if a=O, the delay instruction is executed. 

To prevent misapplication of the condition codes, a non-coprocessor instruction must imme­
diately precede a CBccc instruction. 

A CBccc instruction generates a cp _disabled trap (and does not branch or annul) if the PSR's 
BC bit is reset or if no coprocessor is present. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

cp_disabled 
cp_exception 

Mnemonic 

CBN 

CB123 

CB12 

CB13 

CB1 

CB23 

CB2 

CB3 

CBA 

CBO 

CB03 

CB02 

CB023 

CB01 

CB013 

CB012 

condo 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

31 30 29 28 25 24 22 21 

loolal condo 1111 I 
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CCC<1:0> test 

Never 

10r20r3 

lor2 

lor 3 

1 

20r3 

2 

3 

Always 

0 

00r3 

00r2 

00r20r3 

o or! 

00r10r3 

00r10r2 

o 

disp22 
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CPop Coprocessor Operate CPop 

Operation: Dependent on coprocessor implementation 

Assembler 
Syntax: Unspecified 

Description: CPopl and CPop2 are the instruction formats for coprocessor operate instructions. The op3 
field for CPopl is 110110; for CPop2 it is 110111. The coprocessor operations themselves 
are encoded in the ope field and are dependent on the coprocessor implementation. Note that 
this does not include Load/Store coprocessor instructions, which fall into the integer unit's 
Load/Store instruction category. 

Traps: 

Format: 

All CPop instructions take all operands from, and return all results to, the coprocessor's reg­
isters. The data types supported, how the operands are aligned, and whether a CPop gener­
ates a cp_exception trap are coprocessor dependent. 

A CPop instruction causes a cp_disabled trap if the PSR's EC bit is reset or if no coprocessor 
is present. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

cp_disabled 
cp_exception 

31 30 29 25 24 19 18 14 13 5 4 o 

11 0 I rd 1110110 I rs1 I ope I rs2 

31 30 29 25 24 19 18 14 13 5 4 o 

11 0 I rd I 110111 I rs1 I ope I rs2 
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FABSs Absolute Value Single FABSs 

Operation: f[rd]s - f[rs2]s AND 7FFFFFFF H 

Assembler 
Syntax: fabss jregrs2,jregrd 

Description: The FABSs instruction clears the sign bit of the word in f[rs2] and places the result in f[rd]. It 
does not round. 

Traps: 

Format: 

Since rs2 can be either an even or odd register, FABSs can also operate on the high-order 
words of double and extended operands, which accomplishes sign bit clear for these data 
types. 

fp_disabled 
fp_exception* 

3130 29 25 24 19 18 

rd 1110100 1 ignored 

14 13 5 4 o 

000001001 rs2 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FADDd Add Double FADDd 

Operation: f[rd]d - f[rsl]d + f[rs2]d 

Assembler 
Syntax: faddd fregrs1,fregrs2,fregrd 

Description: The FADDd instruction adds the contents of f[rsl] CONCAT f[rsl+l] to the contents of 
f[rs2] CONCAT f[rs2+ 1] as specified by the ANSI/IEEE 754-1985 standard and places the 
results in f[rd] and f[rd+ 1]. 

Traps: fp_disabled 
fp_exception (of, uf, nY, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001000010 rs2 
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FADDq Add Quad* FADDq 

Operation: f[rd]q - f[rsl]q + f[rs2]q 

Assembler 
Syntax: faddq fregrsl,jregrs2,jregrd 

Description: The FADDq instruction adds the contents off[rsl] CONCAT f[rsl+l] CONCAT f[rsl+2] 
CONCATf[rsl+3] tothecontentsoff[rs2] CONCATf[rs2+1] CONCATf[rs2+2] CONCAT 
f[rs2+3] as specified by the ANSI/IEEE 754-1985 standard and places the results in f[rd], 
f[rd+l], f[rd+2], and f[rd+3]. 

Traps: fp_disabled 
fp_exception (of, uf, nY, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

1110100 1 rsl 1 001000011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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TECHNOLOGY, ====================== 

FADDs Add Single FADDs 

Operation: f[rd]s - f[rs1]s + f[rs2]s 

Assembler 
Syntax: fadds fregrsl ,fregrs2 ,fregrd 

Description: The FADDs instruction adds the contents off[rs1] to the contents off[rs2] as specified by the 
ANSI/IEEE 754-1985 standard and places the results in f[rd]. 

Traps: fp_disabled 
fP3xception (of, uf, nY, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001000001 rs2 
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FBfcc Floating-Point Conditional Branch FBfcc 

Operation: PC - nPC 

Assembler 
Syntax: 

If condition true then nPC- PC + (sign extnd(disp22) x 4) 

else nPC - nPC + 4 

fbaLa} label 
fbnLa} label 

fbuLa} label 

fbgLa} label 
fbug{,a} label 
fbI {,a} label 
fbul{,a} label 
tblg{,a} label 
fbne{,a} label synonym: fbnz 
fbe{,a} label synonym: fbz 
fbue{,a} label 
fbge{,a} label 
fbuge{,a} label 
fble{,a} label 
fbule{,a} label 
fbo{,a} label 

Note: The instruction's annul bit field, a, is set by appending" ,a" after the branch name. If it 
is not appended, the a field is automatically reset. ",a" is shown in braces because it is option­
al. 

Description: The FBfcc instructions (except for FBA and FBN) evaluate specific floating-point condition 
code combinations (from the FCC< 1 :0> inputs) based on the branch type, as specified by the 
value in the instruction's cond field. If the specified combination of condition codes evalu­
ates as true, the branch is taken, causing a delayed, PC-relative control transfer to the address 
(PC + 4) + (sign extnd( disp22) x 4). If the condition codes evaluate as false, the branch is not 
taken. See Section 2.4.3.3 for additional information on control transfer instructions. 

If the branch is not taken, the annul bit field (a) is checked. If a is set, the instruction immedi­
ately following the branch instruction (the delay instruction) is not executed (Le., it is an­
nulled). If the annul field is zero, the delay instruction is executed. If the branch is taken, the 
annul field is ignored, and the delay instruction is executed. See Section 2.4.3.4 regarding 
delayed branch instructions. 

Branch never (FBN) executes like a NOP, except it obeys the annul field with respect to its 
delay instruction. 

Branch always (FBA), because it always branches regardless of the condition codes, would 
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Traps: 

Format: 

nonnally ignore the annul field. Instead, it follows the same annul field rules: if a=1, the 
delay instruction is annulled; if a=O, the delay instruction is executed. 

To prevent misapplication of the condition codes, a non-floating-point instruction must im­
mediately precede an FBfcc instruction. 

An FBfcc instruction generates an fp_disabled trap (and does not branch or annul) if the 
PSR's EF bit is reset or if no floating-point unit is present. 

fp_disabled 
fP3xception* 

Mnemonic 

FBN 

FBNE 

FBLG 

FBUL 

FBL 

FBUG 

FBG 

FBU 

FBA 

FBE 

FBUE 

·FBGE 

FBUGE 

FBLE 

FBULE 

FBO 

Condo Operation 

0000 Branch Never 

0001 Branch on Not Equal 

0010 Branch on Less or Greater 

0011 Branch on Unordered or Less 

0100 Branch on Less 

0101 Branch on Unordered or Greater 

0110 Branch on Greater 

0111 Branch on Unordered 

1000 Branch Always 

1001 Branch on Equal 

1010 Branch on Unordered or Equal 

1011 Branch on Greater or Equal 

1100 Branch on Unordered or Greater or Equal 

1101 Branch on Less or Equal 

1110 Branch on Unordered or Less or Equal 

1111 Branch on Ordered 

3130 29 28 25 24 22 21 

loolal condo 1110 1 disp22 

fcc Test 

no test 

UorLorG 

LorG 

UorL 

L 

UorG 

G 

U 

no test 

E 

UorE 

GorE 

UorGorE 

LorE 

UorLorE 

LorGorE 

o 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FCMPd Compare Double FCMPd 

Operation: fcc_ f[rsI]d COMPARE f[rs2]d 

Assembler 
Syntax: fcmpd fregrsl,jregrs2 

Description: FCMPd subtracts the contents of f[rs2] CONCAT f[rs2+ 1] from the contents of f[ rsl] CON­
CAT f[ rs 1 + 1] following the ANSIlIEEE 754-1985 standard. The result is evaluated, the 
FSR'sfcc bits are set accordingly, and then the result is discarded. The codes are set as fol­
lows: 

Traps: 

Format: 

fcc relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fs 1 ? fs2 (unordered) 

In this table, fs 1 stands for the contents of f[ rs 1], f[ rs 1 + 1] and fs2 represents the contents of 
f[rs2], f[rs2+ 1]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPd causes an invalid exception (nv) if either operand is a signaling NaN. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

11 0 I ignored I 1 1 0 1 0 1 I rsl 
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001010'010 rs2 



5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
FCMPEd Compare Double and Exception if Unordered FCMPEd 

Operation: fcc- f[rsl]d COMPARE f[rs2]d 

Assembler 
Syntax: fcmped freg rsl,fregrs2 

Description: FCMPEd subtracts the contents of f[rs2] CONCAT f[rs2+ 1] from the contents of f[rs 1] 
CONCAT f[rs 1 + 1] following the ANSI/lEEE 754-1985 standard. The result is evaluated, 
the FSR'sfcc bits are set accordingly, and then the result is discarded. The codes are set as 
follows: 

Traps: 

Format: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fs 1 stands for the contents of f[ rs 1], f[ rs 1 + 1] and fs2 represents the contents of 
f[rs2], f[rs2+ 1]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPEd causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

11 0 I ignored I 1 1 0 1 0 1 I rsl 
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FCMPEq Compare Quad and Exception if Unordered* FCMPEq 

Operation: fcc- f[rsl]q COMPARE f[rs2]q 

Assembler 
Syntax: fcmpeq fregrsl,fregrs2 

Description: FCMPEq subtracts the contents of f[rs2] CONCAT f[rs2+ 1] CONCAT f[rs2+2] CONCAT 
f[rs2+3] from the contents of f[rsl] CONCAT f[rsl+l] CONCAT f[rsl+2] CONCAT 
f[ rs 1 +3] following the ANSI/lEEE 754-1985 standard. The result is evaluated, the FSR' s fcc 
bits are set accordingly, and then the result is discarded. The codes are set as follows: 

Traps: 

Format: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents off[rsl] , f[rsl + 1], f[rsl +2], f[rsl +3] and fs2 repre­
sents the contents of f[rs2], f[rs2+ 1], f[rs2+2], f[rs2+3] . 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPEq causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

11 0 I ignored I 1 1 0 1 0 1 I 
14 13 

rsl 

5 4 o 

001010111 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented PPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FCMPEs Compare Single and Exception if Unordered FCMPEs 

Operation: fcc- f[rsl]s COMPARE f[rs2]s 

Assembler 
Syntax: fcmpes fregrsl,fregrs2 

Description: FCMPEs subtracts the contents of f[rs2] from the contents of f[rsl] following the ANSI! 

Traps: 

Format: 

IEEE 754-1985 standard. The result is evaluated, the FSR' s fcc bits are set accordingly, and 
then the result is discarded. The codes are set as follows: 

fcc relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ?fs2 (unordered) 

In this table, fs1 stands for the contents off[rs1] and fs2 represents the contents off[rs2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPEs causes an invalid exception (nv) if either operand is a signaling or quiet NaN. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

110 I ignored 1110101 I rsl 
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FCMPq Compare Quad* FCMPq 

Operation: fcc- f[rsl]q COMPARE f[rs2]q 

Assembler 
Syntax: fcmpq fregrsl,jregrs2 

Description: FCMPq subtracts the contents of f[rs2] CONCAT f[rs2+ 1] CONCAT f[rs2+2] from the con­
tents off[rsl] CONCAT f[rsl+l] CONCAT f[rsl+2] following the ANSIJIEEE 754-1985 
standard. The result is evaluated, the FSR'sfcc bits are set accordingly, and then the result is 
discarded. The codes are set as follows: 

Traps: 

Format: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fs 1 ? fs2 (unordered) 

In this table, fsl stands for the contents off[rsl], f[rsl +1], f[rsl +2], f[rsl +3] and fs2 repre­
sents the contents of f[rs2] , f[rs2+ 1], f[rs2+2], f[rs2+3]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPq causes an invalid exception (nv) if either operand is a signaling NaN. 

fp_disabled 
fp_exception (nv) 

31 30 29 25 24 19 18 

110 I ignored 1110101 I 
14 13 

rsl 

5 4 o 

001010011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 

12-32 



5 SPARe Instruction Set 
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FCMPs Compare Single FCMPs 

Operation: fcc- f[rsl]s COMPARE f[rs2]s 

Assembler 
Syntax: fcmps fregrsl,fregrs2 

Description: FCMPs subtracts the contents off[rs2] from the contents off[rsl] following the ANSI/lEEE 
754-1985 standard. The result is evaluated, the FSR's!cc bits are set accordingly, and then 
the result is discarded. The codes are set as follows: 

Traps: 

Format: 

fcc Relation 

0 fsl = fs2 

1 fsl < fs2 

2 fsl > fs2 

3 fsl ? fs2 (unordered) 

In this table, fsl stands for the contents of f[rsl] and fs2 represents the contents of f[rs2]. 

Compare instructions are used to set up the floating-point condition codes for a subsequent 
FBfcc instruction. However, to prevent misapplication of the condition codes, at least one 
non-floating-point instruction must be executed between an FCMP and a subsequent FBfcc 
instruction. 

FCMPs causes an invalid exception (nv) if either operand is a signaling NaN. 

fp_disabled 
fp_exception (nv) 

3130 29 25 24 19 18 

11 0 I ignored I 1 1 0 1 0 1 I rsl 
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FDIVd Divide Double FDIVd 

Operation: f[rd]d- f[rsl]d / f[rs2]d 

Assembler 
Syntax: fdivd fregrsl ,fregrs2 ,fregrd 

Description: The FDIVd instruction divides the contents off[rsl] CONCAT f[rsl +1] by the contents of 
f[rs2] CONCAT f[rs2+ 1] as specified by the ANSIJIEEE 754-1985 standard and places the 
results in f[rd] and f[rd+ 1]. 

Traps: fp_disabled 
fp_exception (of, uf, dz, nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001001110 rs2 
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FDIVq Divide Quad * FDIVq 

Operation: f[rd]q - f[rsl]q / f[rs2]q 

Assembler 
Syntax: fdivq fregrsl ,fregrs2 ,fregrd 

Description: The FDIV q instruction divides the contents of f[ rs 1] CONCAT f[ rs 1 + 1] CONCAT f[ rs 1 + 2] 
CONCAT f[rsl+3] by the contents of f[rs2] CONCAT f[rs2+1] CONCAT f[rs2+2] CON­
CAT f[rs2+3] as specified by the ANSI/lEEE 754-1985 standard and places the results in 
f[rd], f[rd+l], f[rd+2], and f[rd+3]. 

Traps: fp_disabled 
fp_exception (of, uf, dz, nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 rs1 001001111 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FDIVs 

Operation: f[rd]s - f[rsl]s / f[rs2]s 

Assembler 
Syntax: fdivs jregrsi ,fregrs2 ,fregrd 

Divide Single FDIVs 

Description: The FDIVs instruction divides the contents off[rsl] by the contents off[rs2] as specified by 
the ANSI/lEEE 754-1985 standard and places the results in f[rd]. 

Traps: fp_disabled 
fp_exception (of, uf, dz, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001001101 rs2 

12-36 



S SPARe Instruction Set 
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FdMULq Multiply Double to Quad* FdMULq 

Operation: f[rd]q f-- f[rsI]d x f[rsZ]d 

Assembler 
Syntax: fdmulq fregrsl ,jregrs2 ,fregrd 

Description: The FdMULq instruction multiplies the double precision contents of f[rsI] CONCAT 
f[rsl + 1] by the double precision contents off[rsZ] CONCAT f[rsZ+ 1]. The result is of quad 
precision, and is placed in f[rd], f[rd+I] f[rd+Z], and f[rd+3]. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 rsl 001101110 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FdTOi Convert Double to Integer FdTOi 

Operation: f[rd]i - f[rs2]d 

Assembler 
Syntax: fdtoi jregrs2,jregrd 

Description: FdTOi converts the floating-point double contents of f[rs2] CONCAT f[rs2+ 1] to a 32-bit, 
signed integer by rounding toward zero as specified by the ANSIIIEEE 754-1985 standard. 
The result is placed in f[rd]. The rounding direction field (RD) of the FSR is ignored. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
3130 29 2S 24 19 18 14 13 S 4 o 

rd I 1 1 0 1 0 0 I ignored I 0 1 1 0 1 0 0 1 0 rs2 
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TECHNOLOGY, ====================== 

FdTOq Convert Double to Quad* FdTOq 

Operation: f[rd]q - f[rs2]d 

Assembler 
Syntax: fdtoq jregrs2,jregrd 

Description: FdTOq converts the floating-point double contents of f[rs2] CONCAT f[rs2+ 1] to a quad­
precision, floating -point format as specified by the ANSI/IEEE 754-1985 standard. The re­
sult is placed in f[rd], f[rd+ 1], f[rd+2], and f[rd+3]. Rounding is performed according to the 
rounding direction (RD) and rounding precision (RP) fields of the FSR. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011001110 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FdTOs Convert Double to Single FdTOs 

Operation: f[rd]s - f[rs2]d 

Assembler 
Syntax: fdtos jregrs2,jregrd 

Description: FdTOs converts the floating-point double contents of f[rs2] CONCAT f[rs2+1] to a 
single-precision, floating-point format as specified by the ANSI/lEEE 754-1985 standard. 
The result is placed in f[ rd]. Rounding is performed according to the rounding direction field 
(RD) of the FSR. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 011000110 rs2 
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FiTOd Convert Integer to Double FiTOd 

Operation: f[rd]d- f[rs2]i 

Assembler 
Syntax: fitod jregrs2,jregrd 

Description: FiTOd converts the 32-bit, signed integer contents off[rs2] to a floating-point, double-preci­
sion fonnat as specified by the ANSI/lEEE 754-1985 standard. The result is placed in f[ rd] 
and f[rd+ 1]. 

Traps: fp_disabled 
fp_exception* 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011001000 rs2 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FiTOq Convert Integer to Quad* FiTOq 

Operation: f[rd]q - f[rs2]i 

Assembler 
Syntax: fitoq jregrs2,jregrd 

Description: FiTOq converts the 32-bit, signed integer contents of f[rs2] to a quad-precision, float­
ing-point format as specified by the ANSIIIEEE 754-1985 standard. The result is placed in 
f[rd], f[rd+ 1], f[rd+2], and f[rd+3]. 

Traps: fp_disabled 
fp_exception 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011001100 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 

FiTOs Convert Integer to Single FiTOs 

Operation: f[rd]s - f[rs2]i 

Assembler 
Syntax: fitos jregrs2,jregrd 

Description: FiTOs converts the 32-bit, signed integer contents of f[rs2] to a floating-point, single-preci­
sion format as specified by the ANSI/lEEE 754-1985 standard. The result is placed in f[rd]. 
Rounding is performed according to the rounding direction field, RD. 

Traps: 

Format: 

fp_disabled 
fp3xception (nx) 

3130 29 25 24 19 18 

rd 1110100 1 

14 13 5 4 G 

ignored 011000100 rs2 
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FLUSH Flush Instruction Memory FLUSH 

Operation: FLUSH- [r[rsl] + (r[rs2] or sign extnd(simm13))] 

Assembler 
Syntax: flush address 

Description: The FLUSH instruction causes a word to be flushed from an instruction cache which may be 
internal to the processor. The word to be flushed is at the address specified by the contents of 
r[rsl] plus either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. 

Traps: 

Format: 

Effect on hyperSPARC 

FLUSH instructions may be used to flush individual instruction packets within the instruc­
tion cache (ICACHE). In order to flush an ICACHE line, all valid bits in the line must be 
cleared (refer to Section 3.6). Flushing an lCACHE line by flushing individual instruction 
packets requires a sequence of four flush instructions, each of which corresponds to an in­
struction packet in a particular I CACHE line. Refer to Section 3.6.4.3 for additional informa­
tion on FLUSH instruction actions. 

Effect on CY7C601 

Since there is no internal instruction cache in the CY7C600 family, the result of executing an 
FLUSH instruction is dependent on the state of the input signal, instruction cache flush trap 
(1FT). If 1FT = 1, FLUSH executes as a NOP, with no side effects. If 1FT = 0, execution of 
FLUSH causes an illegaCinstruction trap. 

Note that although the opcode is the same, the mnemonic for this instruction is FLUSH in 
the SPARC Version 8 ISA, and FLUSH in the SPARC Version 7 ISA. 

illegaUnstruction 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored I 111011 I rs1 I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 
1 

111011 I rs1 I i=ll simm13 1 
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FMOVs Move FMOVs 

Operation: f[rd]s- f[rs2]s 

Assembler 
Syntax: fmovs freg rs2,fregrd 

Description: The FMOV s instruction moves the word content of register f[ rs2] to the register f[rd]. Multi­
ple FMOVs's are required to transfer multiple-precision numbers betweenf-registers. 

Traps: 

Format: 

fp_disabled 
fp_exception* 

rd 

25 24 19 18 

1110100 1 

14 13 5 4 o 

ignored 000000001 rs2 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FMULd Multiply Double FMULd 

Operation: f[rd]d - f[rsl]d x f[rs2]d 

Assembler 
Syntax: fmuld fregrsl ,fregrs2 ,fregrd 

Description: The FMULd instruction multiplies the contents of f[ rs 1] CONCAT f[rsl + 1] by the contents 
of f[rs2] CONCAT f[rs2+ 1] as specified by the ANSI/IEEE 754-1985 standard and places 
the results in f[rd] and f[rd+ 1]. 

Traps: fp_disabled 
fp_exception (of, uf, nY, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

11 0 I rd 1110100 I rsl I 001001010 rs2 
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FMULq Multiply Quad* FMULq 

Operation: f[rd]q - f[rsI]q x f[rs2]q 

Assembler 
Syntax: fmulq fregrsl ,fregrs2 ,fregrd 

Description: The FMULq instruction multiplies the contents of f[rsI] CONCAT f[rsI+I] CONCAT 
f[rsi +2] CONCAT f[rsi +3] by the contents off[rs2] CONCAT f[rs2+ 1] CONCAT f[rs2+2] 
CONCAT f[ rs2+ 3] as specified by the ANSIJIEEE 754-1985 standard and places the results 
in f[rd], f[rM 1], f[rM2], and f[rM3]. 

Traps: fp_disabled 
fp_exception (of, uf, nY, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001001011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimp1mented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 

12-47 



TEO H N 0 LOG Y, ,~ ===============S=P=l\=R=C=I=D=s=tr=u=ct=iO=D=S=e=t 

FMULs Multiply Single FMULs 

Operation: f[rd]s- f[rsl]s x f[rs2]s 

Assembler 
Syntax: fmuls jregrs],jregrs2,jregrd 

Description: The FMULs instruction multiplies the contents off[rsl] by the contents off[rs2] as specified 
by the ANSI/IEEE 754-1985 standard and places the results in f[rd]. 

Traps: fp_disabled 
fP3xception (of, uf, nY, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

1110100 1 rsl 1 001001001 rs2 
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FNEGs Negate FNEGs 

Operation: f[rd]s - f[rs2]s XOR 80000000 H 

Assembler 
Syntax: fuegs freg rs2,jregrd 

Description: The FNEGs instruction complements the sign bit ofthe word in f[rs2] and places the result in 
f[rd]. It does not round. 

Traps: 

Format: 

Since this FPop can address both even and odd/-registers, FNEGs can also operate on the 
high-order words of double and extended operands, which accomplishes sign bit negation 
for these data types. 

fp_disabled 
fp_exception* 

rd 

25 24 19 18 

1110100 1 ignored 

14 13 5 4 o 

000000101 rs2 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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FqTOd Convert Quad to Double* FqTOd 

Operation: f[rd]d- f[rs2]q 

Assembler 
Syntax: fqtod jregrs2,jregrd 

Description: FqTOd converts the floating-point quad contents of f[rs2] CONCAT f[rs2+ 1] CONCAT 
f[rs2+2] CONCAT f[rs2+3] to a double-precision, floating-point format as specified by the 
ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and f[rd+ 1]. Rounding is per­
formed according to the rounding direction (RD) field of the FSR. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011001011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FqTOi Convert Quad to Integer* FqTOi 

Operation: f[rd]i - f[rs2]q 

Assembler 
Syntax: fqtoi jregrs2,jregrd 

Description: FqTOi converts the floating-point quad contents of f[rs2] CONCAT f[rs2+ 1] CONCAT 
f[rs2+2] CONCAT f[rs2+3] to a 32-bit, signed integer by rounding toward zero as specified 
by the ANSI/lEEE 754-1985 standard. The result is placed in f[rd]. The rounding field (RD) 
of the FSR is ignored. 

Traps: 

Format: 

fp_disabled 
fp_exception (nv, nx) 

2S 24 19 18 

rd 1110100 1 

14 13 S 4 o 

ignored 011010011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unimplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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TECHNOLOGY,INC. ======== 

FqTOs Convert Quad to Single* FqTOs 

Operation: f[rd]s - f[rs2]q 

Assembler 
Syntax: fqtos jregrs2,jregrd 

Description: FqTOs converts the floating-point quad contents of f[rs2] CONCAT f[rs2+1] CONCAT 
f[rs2+2] CONCAT f[rs2+3] to a single-precision, floating-point format as specified by the 
ANSI/IEEE 754-1985 standard. The result is placed in f[ rd]. Rounding is performed accord­
ing to the rounding direction (RD) field of the FSR. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011000111 rs2 

* NOTE: Quad-precision operations are not directly supported; an "UnimpImented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FsMULd Multiply Single to Double FsMULd 

Operation: f[rd]d f- f[rsl]s x f[rs2]s 

Assembler 
Syntax: fsmuld fregrsl ,fregrs2 ,fregrd 

Description: The FsMULd instruction multiplies the single precision contents off[ rs I] by the single preci­
sion contents of f[rs2]. The result is of double precision, and is placed in f[rd] CONCAT 
f[rMI]. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 rs1 001101001 rs2 
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FSQRTd Square Root Double FSQRTd 

Operation: f[rd]d- SQRT f[rs2]d 

Assembler 
Syntax: fsqrtd jregrs2,jregrd 

Description: FSQRTd generates the square root of the floating-point double contents of f[ rs2] CONCAT 
f[rs2+ 1] as specified by the ANSI/IEEE 754-1985 standard. The result is placed in f[rd] and 
f[rd+ 1]. Rounding is performed according to the rounding direction field (RD) of the FSR. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rd I 1 1 0 1 0 0 I ignored I 0 0 0 1 0 1 0 1 0 rs2 
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TECHNOLOGY, ====================== 
FSQRTq Square Root Quad* FSQRTq 

Operation: f[rd]q - SQRT f[rs2]q 

Assembler 
Syntax: fsqrtq fregrs2,jregrd 

Description: FSQRTq generates the square root of the floating-point quad contents of f[rs2] CONCAT 
f[rs2+1] CONCAT f[rs2+2] f[rs2+3] as specified by the ANSI/IEEE 754-1985 standard. 
The result is placed in f[rd] , f[rd+ 1], f[ rd+ 2], and f[ rd+ 3]. Rounding is performed according 
to the rounding direction (RD) and rounding precision (RP) fields of the FSR. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 000101011 rs2 

* NOTE: Quad-precision operations are not directly supported; an "UnimpJmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FSQRTs Square Root Single FSQRTs 

Operation: f[rd]s - SQRT f[rs2]s 

Assembler 
Syntax: fsqrts jregrs2,jregrd 

Description: FSQRTs generates the square root of the floating-point single contents off[rs2] as specified 
by the ANSIJIEEE 754-1985 standard. The result is placed in f[ rd]. Rounding is perfonned 
according to the rounding direction field (RD) of the FSR. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 000101001 rs2 

12-56 



TEe H N 0 LOG y. ,$ ===============;;;;;S;;;;;PA=R;;;;;C;;;;;I;;;;;n;;;;;s;;;;;tf;;;;;u;;;;;c;;;;;ti;;;;;on=S;;;;;et;;;;; 

FsTOd Convert Single to Double FsTOd 

Operation: f[rd]d- f[rs2]s 

Assembler 
Syntax: fstod freg rs2,fregrd 

Description: FsTOd converts the floating-point single contents of f[rs2] to a double-precision, float­
ing-point format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in 
f[rd] and f[rd+ 1]. Rounding is performed according to the rounding direction field (RD) of 
the FSR. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 1 011001001 rs2 
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FsTOi Convert Single to Integer FsTOi 

Operation: f[rd]i - f[rs2]s 

Assembler 
Syntax: fstoi fregrs2,fregrd 

Description: FsTOi converts the floating-point single contents of f[rs2] to a 32-bit, signed integer by 
rounding toward zero as specified by the ANSI/lEEE 754-1985 standard. The result is 
placed in f[rd). The rounding field (RD) of the FSR is ignored. 

Traps: fp_disabled 
fp_exception (nv, nx) 

Format: 
31 30 29 25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011010001 rs2 
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FsTOq Convert Single to Quad* FsTOq 

Operation: fIrd]q - fIrs2]q 

Assembler 
Syntax: fstoq fregrs2,fregrd 

Description: FsTOq converts the floating-point single contents of f[rs2] to a quad-precision, float­
ing-point format as specified by the ANSI/IEEE 754-1985 standard. The result is placed in 
fIrd], f[rd+ 1], f[rd+2], and f[rd+3]. Rounding is performed according to the rounding direc­
tion (RD) and rounding precision (RP) fields of the FSR. 

Traps: fp_disabled 
fp_exception (nv) 

Format: 
25 24 19 18 14 13 5 4 o 

rd 1110100 1 ignored 011001101 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unirnplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FSUBd Subtract Double FSUBd 

Operation: f[rd]d- f[rsl]d - f[rs2]d 

Assembler 
Syntax: fsubd fregrsl ,fregrs2 ,fregrd 

Description: The FSUBd instruction subtracts the contents off[rs2] CONCAT f[rs2+ 1] from the contents 
of f[rsl] CONCAT f[rsl + 1] as specified by the ANSIJIEEE 754-1985 standard and places 
the results in f[rd] and f[rd+l]. 

Traps: fp_disabled 
fp_exception (of, uf, nx, nv) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

11 0 I rd 1110100 I rsl I 001000110 rs2 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 

FSUBq Subtract Quad* FSUBq 

Operation: f[rd]q - f[rsl]q - f[rs2]q 

Assembler 
Syntax: fsubq fregrsl ,fregrs2 ,fregrd 

Description: The FSUBq instruction subtracts the contents of f[rs2] CONCAT f[rs2+ 1] CONCAT 
f[rs2+2] CONCAT f[rs2+3] from the contents of f[rsl] CONCAT f[rsl+l] CONCAT 
f[rsl+2] CONCAT f[rsl+3] as specified by the ANSI/lEEE 754-1985 standard and places 
the results in f[rd], f[rd+ 1], f[rd+2], and f[rd+3]. 

Traps: fp_disabled 
fp_exception (of, uf, nv, nx) 

Format: 
3130 29 25 24 19 18 14 13 5 4 o 

rd 1110100 1 rs1 001000111 rs2 

* NOTE: Quad-precision operations are not directly supported; an "Unirnplmented FPop" trap is generated if a quad-preci­
sion operation is attempted. This operation must be emulated in software. 
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FSUBs Subtract Single FSUBs 

Operation: f[rd)s - f[rsl)s - f[rs2]s 

Assembler 
Syntax: fsubs fregrsl ,fregrs2 ,fregrd 

Description: The FSUBs instruction subtracts the contents of f[rs2) from the contents off[rs 1) as specified 
by the ANSI/lEEE 754-1985 standard and places the results in f[rd). 

Traps: fp_disabled 
fp_exception (of, uf, nx, nv) 

Format: 
25 24 19 18 14 13 5 4 o 

1110100 1 rs1 1 001000101 rs2 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
JMPL Jump and Link JMPL 

Operation: r[rd] - PC 

PC-nPC 

nPC- r[rsl] + (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: jmpl address, regrd 

Description: JMPL first provides linkage by saving its return address into the register specified in the rd 

field. It then causes a register-indirect, delayed control transfer to an address specified by the 
sum ofthe contents of r[rsl] and either the contents of r[rs2] ifthe instruction's i bit equals 
zero, or the 13-bit, sign-extended immediate operand contained in the instruction if i equals 
one. 

Traps: 

Format: 

If either of the low-order two bits of the jump address is nonzero, a memory _ad­
dress_nocaligned trap is generated. 

Programming note: A register-indirect CALL can be constructed using a JMPL instruction 
with rd set to 15. JMPL can also be used to return from a CALL. In this case, rd is set to 0 and 
the return (jump) address would be equal to r[31] + 8. 

memory _address_noCaligned 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 111000 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111000 
! rsl 1 i=l! simml3 

! 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
LD Load Word LD 

Operation: r[rd] - [r[rsl] + (r[rs2] or sign extnd(simmI3))] 

Assembler 
Syntax: ld [address], regrd 

Description: The LD instruction moves a word from memory into the destination register, r[rd]. The ef­
fective memory address is derived by summing the contents of r[ rs 1] and either the contents 
of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. 

Traps: 

Format: 

If LD takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles to the following instruction depending 
upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 t/ rd I 000000 I 
31 30 29 25 24 19 18 

11 1 I rd I 000000 I 

14 13 12 5 4 0 

rsl I i=ol ignored I rs2 I 
14 13 12 o 

rsl li=d simm13 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDA Load Word from Alternate space 

(Privileged Instruction) 

LDA 

Operation: address space - asi 

r[rd] - [r[rs1] + r[rs2]] 

Assembler 
Syntax: Ida [regaddr] asi, regrd 

Description: The LDA instruction moves a word from memory into the destination register, r[rd]. The 
effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents ofr[rs1] and r[rs2]. 

Traps: 

Format: 

If LDA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles to the following instruction depending 
upon the memory subsystem. 

illegal_instruction (if i= 1) 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access_exception 

rs1 
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S SPARe Instruction Set 
TECHNOLOGY, ======================= 
LDC Load Coprocessor register LDC 

Operation: c[rd] - [r[rsl] + (r[rs2] or sign extnd(simm13))] 

Assembler 
Syntax: ld [address], cregrd 

Description: The LDC instruction moves a word from memory into a coprocessor register, c[rd]. The ef­
fective memory address is derived by summing the contents of r[rs 1] and either the contents 
of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. 

Traps: 

Format: 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. If LDC takes a trap, the state of the coprocessor depends on the particular imple­
mentation. 

If the instruction following a coprocessorload uses the load's c[rd] register as a source oper­
and, hardware interlocks add one or more delay cycles to the following instruction depend­
ing upon the memory subsystem. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

cp_disabled 
cp_exception 
memory _address_nocaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 110000 I 
31 30 29 25 24 19 18 

11 1 I rd I 110000 I 

14 13 12 5 4 0 

rsl I i=O I ignored I rs2 I 
14 13 12 0 

rs1 li=tj simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDCSR Load Coprocessor State Register LDCSR 

Operation: CSR- [r[rs1] + (r[rs2] or sign extnd(simm13))] 

Assembler 
Syntax: ld [address], %csr 

Description: The LDCSR instruction moves a word from memory into the coprocessor state register. The 
effective memory address is derived by summing the contents ofr[rs1] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. 

Traps: 

Format: 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. IfLDCSR takes a trap, the state of the coprocessor depends on the particular im­
plementation. 

If the instruction following a LDCSR uses the CSR as a source operand, hardware interlocks 
add one or more delay cycles to the following instruction depending upon implementation of 
the coprocessor. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

cp_disabled 
cp _exception 
memory 3ddress_nocaligned 
data_access_exception 

31 30 29 25 24 19 18 

II I I rd I 110001 I 
31 30 29 25 24 19 18 

11 1 I rd I 110001 I 

14 13 12 5 4 0 

rsl I i=O I ignored I rs2 I 
14 13 12 0 

rsl I i=d simml3 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDD Load Double-word LDD 

Operation: r[rd] - [r[rsl] + (r[rs2] or sign extnd(simm13»] 

r[rd + 1] - [(r[rsl] + (r[rs2] or sign extnd(simm13») + 4] 

Assembler 
Syntax: ldd [address], regrd 

Description: The LDD instruction moves a double-word from memory into a destination register pair, 
r[ rd] and r[ rd+ 1]. The effective memory address is derived by summing the contents of r[rs 1] 
and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-ex­
tended immediate operand contained in the instruction if i equals one. The most significant 
memory word is always moved into the even-numbered destination register and the least sig­
nificant memory word is always moved into the next odd-numbered register (see discussion 
in Section 2.3.1). 

Traps: 

Format: 

If a data_access_exception trap takes place during the effective address memory access, the 
destination registers remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles to the following instruction depending 
upon the memory subsystem. For an LDD, this applies to both destination registers. 

Programming note: If rs1 is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

memory _address_nocaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd 1000011 I 
31 30 29 25 24 19 18 

11 d rd I 000011 I 

rs1 

rs1 
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14 13 12 5 4 0 

I i=O I ignored I rs2 I 
14 13 12 0 

li=d simm13 I 



5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDDA Load Double-word from Alternate space 

(Privileged Instruction) 

LDDA 

Operation: address space- asi 

r[rd] - [r[rsl] + r[rs2]] 

r[rd + 1] - [r[rsl] + r[rs2] + 4] 

Assembler 
Syntax: ldda [regaddr] asi, regrd 

Description: The LDDA instruction moves a double-word from memory into the destination registers, 
r[rd] and r[rd+ 1]. The effective memory address is a combination ofthe address space value 
given in the asi field and the address derived by summing the contents of r[rsl] and r[rs2]. 
The most significant memory word is always moved into the even-numbered destination 
register and the least significant memory word is always moved into the next odd-numbered 
register (see discussion in Section 2.3.1). 

Traps: 

Format: 

If a trap takes place during the effective address memory access, the destination registers re­
main unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, 
hardware interlocks add one or more delay cycles to the following instruction depending 
upon the memory subsystem. For an LDDA, this applies to both destination registers. 

illegal_instruction (if i=l) 
privileged_instruction (if S=O) 
memory _address_nocaligned 
data_access_ exception 

31 30 29 25 24 19 18 

rd 1010011 I rs1 
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14 13 12 5 4 o 

asi rs2 
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LDDC Load Double-word Coprocessor LDDC 

Operation: c[rd ] - [r[rsl] + (r[rs2] or sign extnd(simm13»] 

Assembler 
Syntax: 

c[rd + I] - [(r[rsl] + (r[rs2] or sign extnd(simm13))) + 4] 

ldd [address], cregrd 

Description: The LDDC instruction moves a double-word from memory into the coprocessor registers, 
c[rd] and c[rd+I]. The effective memory address is derived by summing the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. The most sig­
nificant memory word is always moved into the even-numbered destination register and the 
least significant memory word is always moved into the next odd-numbered register (see dis­
cussion in Section 2.3.1). 

Traps: 

Format: 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. IfLDDC takes a trap, the state of the coprocessor depends on the particular imple­
mentation. 

If the instruction following a coprocessor load uses the load's c[rd] register as a source oper­
and, hardware interlocks add one or more delay cycles to the following instruction depend­
ing upon the memory subsystem and coprocessor implementation. For an LDDC, this ap­
plies to both destination registers. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

cp_disabled 
cp_exception 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 110011 I 
31 30 29 25 24 19 18 

11 1 I rd I 110011 I 

14 13 12 5 4 0 

rs1 I i=O I ignored I rs2 I 
14 13 12 0 

rsl I i=ll simm13 I 
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LDDF Load Double-word Floating-Point LDDF 

Operation: f[rd] - [r[rs1] + (r[rs2] or sign extnd(simm13))] 

f[rd + 1] - [(r[rs1] + (r[rs2] or sign extnd(simm13))) + 4] 

Assembler 
Syntax: ldd [address],fregrd 

Description: The LDDF instruction moves a double-word from memory into the floating-point registers, 
f[rd] and f[rd+ 1]. The effective memory address is derived by summing the contents of r[rs 1] 
and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-ex­
tended immediate operand contained in the instruction if i equals one. The most significant 
memory word is always moved into the even-numbered destination register and the least sig­
nificant memory word is always moved into the next odd-numbered register (see discussion 
in Section 2.3.1). 

Traps: 

Format: 

If the PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will 
be generated. If a trap takes place during the effective address memory access, the destina­
tion registers remain unchanged. 

If the instruction following a floating-point load uses the load's f[rd] register as a source op­
erand, hardware interlocks add one or more delay cycles to the following instruction depend­
ing upon the memory subsystem. For an LDDF, this applies to both destination registers. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

fp_disabled 
fp_exception* 
memory _address_not_aligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 100011 I 
31 30 29 25 24 19 18 

11 1 I rd I 100011 I 

14 13 12 5 4 o 

rsl I i=O I ignored rs2 

14 13 12 o 

rsl I i=11 simm13 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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LDF Load Floating-Point register LDF 

Operation: f[rd] - [r[rsl] + (r[rs2] or sign extnd(simm13»] 

Assembler 
Syntax: ld [address],fregrd 

Description: The LDF instruction moves a word from memory into a floating-point register, f[rd]. The 
effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. 

Traps: 

Format: 

If the PSR's EFbit is set to zero or ifno floating-point unit is present, an fp_disabled trap will 
be generated. IfLDF takes a trap, the contents of the destination register remain unchanged. 

If the instruction following a floating-point load uses the load's f[ rd] register as a source op­
erand, hardware interlocks add one or more delay cycles to the following instruction depend­
ing upon the memory subsystem. 

Programming note.' If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

fp_disabled 
fp_exception* 
memory _address_not_aligned 
data_access_exception 

31 30 29 2S 24 19 18 

11 d rd I 100000 I 
31 30 29 2S 24 19 18 

11 1 I rd I 100000 I 

rsl 

rsl 

14 13 12 S 4 0 

I i=ol ignored I rs2 I 
14 13 12 0 

I i=11 simm13 I 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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5 SPARe Instruction Set 
TECHNOLOGY, ======================= 
LDFSR Load Floating-Point State Register LDFSR 

Operation: FSR- [r[rsl] + (r[rs2] or sign extnd(simm13))] 

Assembler 
Syntax: ld [address], %fsr 

Description: The LDFSR instruction moves a word from memory into the floating-point state register. 

Traps: 

Format: 

The effective memory address is derived by summing the contents of r[ rs l] and either the 
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. This instruction will wait for all pending 
FPops to complete execution before it loads the memory word into the FSR. 

Ifthe PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will 
be generated. If LDFSR takes a trap, the contents of the FSR remain unchanged. 

If the instruction following a LDFSR uses the FSR as a source operand, hardware interlocks 
add one or more cycle delay to the following instruction depending upon the memory subsys­
tem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

fp_disabled 
fp _exception * 
memory _address_not_aligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 100001 I 
31 30 29 25 24 19 18 

11 1 I rd I 100001 I 

rsl 

rsl 

14 13 12 5 4 0 

I i=O I ignored I rs2 I 
14 13 12 0 

I i=11 simm13 I 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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LDSB Load Signed Byte LDSB 

Operation: r[rd] - sign extnd[r[rsl] + (r[rs2] or sign extnd(simm13»] 

Assembler 
Syntax: ldsb [address], regrd 

Description: The LDSB instruction moves a signed byte from memory into the destination register, r[ rd]. 

Traps: 

Format: 

The effective memory address is derived by summing the contents of r[rsI] and either the 
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. The fetched byte is right-justified and 
sign-extended in r[rd]. 

If LDSB takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles to the following instruction depending 
upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

data_access_exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 1 I rd I 001001 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 1 I rd I 001001 I rs1 I i=11 simm13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 

LDSBA Load Signed Byte from Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

r[rd] - sign extnd[r[rsl] + r[rs2]] 

Assembler 
Syntax: ldsba [regaddr] asi, regrd 

LDSBA 

Description: The LDSBA instruction moves a signed byte from memory into the destination register, 
r[ rd]. The effective memory address is a combination of the address space value given in the 
asi field and the address derived by summing the contents of r[rsl] and r[rs2]. The fetched 
byte is right-justified and sign-extended in r[rd]. 

Traps: 

Format: 

If LDSBA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

illegal_instruction (if i=l) 
privileged_instruction (if S=O) 
data_access_exception 

3130 29 25 24 19 18 

11 1 I rd 10110011 

14 13 12 5 4 o 

rs1 asi rs2 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDSH Load Signed Half-word LDSH 

Operation: r[rd] - sign extnd[r[rsI] + (r[rs2] or sign extnd(simmI3))] 

Assembler 
Syntax: ldsh [address], regrd 

Description: The LDSH instruction moves a signed half-word from memory into the destination register, 
r[ rd]. The effective memory address is derived by summing the contents of r[ rs 1] and either 
the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended imme­
diate operand contained in the instruction if i equals one. The fetched half-word is right-jus­
tified and sign-extended in r[rd]. 

Traps: 

Format: 

If LDSH takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

memory _address_nocaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 001010 I 
31 30 29 25 24 19 18 

11 1 I rd I 001010 I 

14 13 12 5 4 o 

rsl I i=O I ignored rs2 

14 13 12 o 

rsl I i=11 simm13 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDSHA Load Signed Half-word from Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

r[rd] - sign extnd[r[rsl] + r[rs2]] 

Assembler 
Syntax: ldsha [regaddr] asi, regrd 

LDSHA 

Description: The LDSHA instruction moves a signed half-word from memory into the destination regis­
ter, r[rd]. The effective memory address is a combination of the address space value given in 
the asi field and the address derived by summing the contents of r[rsl] and r[rs2]. The 
fetched half-word is right-justified and sign-extended in r[rd]. 

Traps: 

Format: 

If LDSHA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

illegaUnstruction (if i=l) 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access_exception 

25 24 19 18 

rd 1011010 I rs1 
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LDSTUB Atomic Load-Store Unsigned Byte LDSTUB 

Operation: r[rd] - zero extnd[r[rsl] + (r[rs2] or sign extnd(simm13))] 

[r[rsl] + (r[rs2] or sign extnd(simmI3))] - FFFFFFFF H 

Assembler 
Syntax: ldstub [address], regrd 

Description: The LDSTUB instruction moves an unsigned byte from memory into the destination regis­
ter, r[rd], and rewrites the same byte in memory to all ones, while preventing asynchronous 
trap interruptions. In a multiprocessor system, two or more processors executing atomic 
Load-Store instructions which address the same byte simultaneously are guaranteed to ex­
ecute them serially, in some order. 

Traps: 

Format: 

The effective memory address is derived by summing the contents of r[rsl] and either the 
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. The fetched byte is right-justified and 
zero-extended in r[rd]. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

If LDSTUB takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

data_access _exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 1 I rd I 001101 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 1 I rd I 001101 I rs1 li=d simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ======================= 
LDSTUBA Atomic Load-Store Unsigned Byte LDSTUBA 

in Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

Assembler 

r[rd] - zero extnd[r[rsl] + r[rs2]] 

[r[rsl] + r[rs2]] - FFFFFFFF H 

Syntax: ldstuba [regaddr] asi, regrd 

Description: The LDSTUBA instruction moves an unsigned byte from memory into the destination regis­
ter, r[rd], and rewrites the same byte in memory to all ones, while preventing asynchronous 
trap interruptions. In a mUltiprocessor system, two or more processors executing atomic 
Load-Store instructions which address the same byte simultaneously are guaranteed to ex­
ecute them in some serial order. 

Traps: 

Format: 

The effective memory address is a combination of the address space value given in the asi 
field and the address derived by summing the contents of r[rsl] and r[rs2]. The fetched byte 
is right-justified and zero-extended in r[rd]. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

If LDSTUBA takes a trap, the contents of the memory address remain unchanged. 

illegaUnstruction (if i=l) 
privileged_instruction (if S=O) 
data_access _exception 

25 24 19 18 

rd 1011101 I rsl 
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14 13 12 5 4 o 

I i=O I asi rs2 



S SPARe Instruction Set 
TECHNOLOGY, ====================== 
LDUB Load Unsigned Byte LDUB 

Operation: r[rd] - zero extnd[r[rsl] + (r[rs2] or sign extnd(simm13))] 

Assembler 
Syntax: ldub [address], regrd 

Description: The LDUB instruction moves an unsigned byte from memory into the destination register, 
r[rd]. The effective memory address is derived by summing the contents of r[rsl] and either 
the contents of r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended imme­
diate operand contained in the instruction if i equals one. The fetched byte is right-justified 
and zero-extended in r[rd]. 

Traps: 

Format: 

If LDUB takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to I, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

data_access_exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 1 I rd I 000001 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 d rd I 000001 I rsl li=d simm13 I 
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RIISS SPARe Instruction Set 
TECHNOLOGY,INC. ======== 

LDUBA Load Unsigned Byte from Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

r[rd] - zero extnd[r[rsl] + r[rs2]] 

Assembler 
Syntax: lduba [regaddr] asi, regrd 

LDUBA 

Description: The LDUBA instruction moves an unsigned byte from memory into the destination register, 
r[ rd]. The effective memory address is a combination of the address space value given in the 
asi field and the address derived by summing the contents of r[rsl] and r[rs2]. The fetched 
byte is right-justified and zero-extended in r[rd]. 

Traps: 

Format: 

If LDUBA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[ rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

illegal_instruction (if i=l) 
privileged_instruction (if S=O) 
data_access_exception 

25 24 19 18 

rd 1010001 I rs1 
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LDUH Load Unsigned Half-word LDUH 

Operation: r[rd] - zero extnd[r[rsl] + (r[rs2] or sign extnd(simm13»] 

Assembler 
Syntax: lduh [address], regrd 

Description: The LDUH instruction moves an unsigned half-word from memory into the destination reg­
ister, r[rd]. The effective memory address is derived by summing the contents ofr[rsl] and 
either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended 
immediate operand contained in the instruction if i equals one. The fetched half-word is 
right-justified and zero-extended in r[rd]. 

Traps: 

Format: 

If LDUH takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

memory_address_not_aligned 
data_access_exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 d rd I 000010 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 d rd I 000010 I rsl I i=11 simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ======================= 
LDUHA Load Unsigned Half-word from Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

r[rd] - zero extnd[r[rsl] + r[rs2]] 

Assembler 
Syntax: lduha [regaddr] asi, regrd 

LDUHA 

Description: The LDUHA instruction moves an unsigned half-word from memory into the destination 
register, r[rd]. The effective memory address is a combination of the address space value 
given in the asi field and the address derived by summing the contents of r[rsl] and r[rs2]. 
The fetched half-word is right-justified and zero-extended in r[rd]. 

Traps: 

Format: 

If LDUHA takes a trap, the contents of the destination register remain unchanged. 

If the instruction following an integer load uses the load's r[rd] register as a source operand, 
hardware interlocks add one or more delay cycles depending upon the memory subsystem. 

illegaUnstruction (if i==l) 
privileged_instruction (if S==O) 
memory _address_noCaligned 
data_access_exception 

25 24 19 18 

rd 1010010 I rs1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
MULScc Multiply Step and modify icc MULScc 

Operation: opl = (n XOR v) CONCAT r[rsl]<31:1> 

Assembler 

if (Y <0> = 0) op2 = 0, else op2 = r[rs2] or sign extnd(simm13) 

Y - r[rsl]<O> CONCAT Y<31:1> 
r[rd] - opl + op2 
n- r[rd]<31> 
z- if [r[rd]]=O then 1, else 0 
v- «op1<31> AND op2<31> AND not r[rd] <3 1» 

OR (not op1<3 1> AND not op2<31> AND r[rd]<31») 
c- «op1<31> AND op2<31» 

OR (not r[rd] AND (op1<31> OR op2<31>)) 

Syntax: mulscc regrsl, reg_or _imm, regrd 

Description: The multiply step instruction can be used to generate the 64-bit product of two signed or un­
signed words. MULScc works as follows: 

Traps: 

Format: 

1. The "incoming partial product" in r[ rs 1] is shifted right by one bit and the high-order bit is 
replaced by the sign of the previous partial product (n XOR v). This is operandI. 

2. If the least significant bit of the multiplier in the Y register equals zero, then operand2 is 
set to zero. If the LSB of the Y register equal one, then operand2 becomes the multipli­
cand, which is either the contents of r[rs2] if the instruction i field is zero, or sign 
extnd( simm 13) if the i field is one. Operand2 is then added to operand 1 and stored in r[ rd] 
(the outgoing partial product). 

3. The multiplier in the Y register is then shifted right by one bit and its high-order bit is re­
placed by the least significant bit of the incoming partial product in r[ rs 1]. 

4. The PSR's integer condition codes are updated according to the addition performed in 
step 2. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 100100 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
100100 

1 rsl 1 i=11 simm13 
1 
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TEe H NO' 0 G Y, /$ ===============;;;;S;;;;P;;;;i\;;;;R;;;;C=ID;;;;s;;;;tr;;;;u;;;;c;;;;ti;;;;o;;;;D;;;;S;;;;e;;;;t 

OR Inclusive-Or OR 

Operation: r[rd] - r[rsl] OR (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: or regrs], reg_or _imm, regrd 

Description: This instruction does a bitwise logical OR of the contents of register r[rsl] with either the 
contents of r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i=I). The result is stored in register r[rd]. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 000010 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 000010 I rsl li=d simm13 I 
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, E C H NOLO G " ,$ ===============;;::S;;::P;;::J\;;::R;;::C=ID;;::s;;::tr;;::ll;;::c;;::ti;;::o;;::D;;::S;;::e;;::t 

ORcc Inclusive-Or and modify icc 

Operation: r[rd] - r[rsl] OR (r[rs2] or sign extnd(simm13)) 

n - r[rd] <3 1> 

Assembler 

z- if [r[rd]]=O then 1, else 0 

v-O 

c-O 

Syntax: orcc regrsl, reg_or _imm, regrd 

ORcc 

Description: This instruction does a bitwise logical OR of the contents of register r[rsI] with either the 
contents of r[rs2] (if bit field i=O) or the I3-bit, sign-extended immediate value contained in 
the instruction (if bit field i=I). The result is stored in register r[rd]. ORcc also modifies all 
the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 010010 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 o 

11 01 rd I 010010 I rsl I i=11 simm13 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
ORN Inclusive-Or Not ORN 

Operation: r[rd] - r[rsl] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13)) 

Assembler 
Syntax: om regrsl, reg_or _imm, regrd 

Description: This instruction does a bitwise logical OR of the contents of register r[rsl] with the one's 
complement of either the contents of r[ rs2] (if bit field i=O) or the 13-bit, sign-extended im­
mediate value contained in the instruction (if bit field i=l). The result is stored in register 
r[rd]. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 000110 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 000110 I rsl li=d simm13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ======================= 
ORNcc Inclusive-Or Not and modify icc ORNcc 

Operation: r[rd] - r[rsl] OR not(operand2), where operand2 = (r[rs2] or sign extnd(simm13» 

n- r[rd]<31> 

Assembler 

z- if [r[rd]]=O then 1, else 0 

v-O 

c-O 

Syntax: orucc regrs] , reg_or_imm, regrd 

Description: This instruction does a bitwise logical OR of the contents of register r[rsl] with the one's 
complement of either the contents of r[rs2] (if bit field i=O) or the 13-bit, sign-extended im­
mediate value contained in the instruction (if bit field i=l). The result is stored in register 
r[rd). ORNcc also modifies all the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd 1010110 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 010110 I rs1 li=d simm13 I 
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RDASR Read Ancillary State Register RDASR 

Operation: 

Assembler 
Syntax: 

r[rd] - ASR (ancillary state register) 

rd %y, regrd (rdy special case) 
rd ascrsl, %rx (rdasr general case) 

Description: RDASR copies the contents of the ancillary state register specified by rs1 into the register 
specified by the rd field. 

Traps: 

Format: 

Version 8 of the SPARC Instruction Set Architecture defines instructions which access im­
plementation dependent control registers called ancillary state registers (ASR' s). As defined 
by the SPARC ISA, the existing rdy and wry instructions become special cases of the rdasr 
and wrasr instructions. When the rs1 field equals 0 - 15, a read Y register into the specified 
rd register is performed. Whenrs1 is < 15, the function is affected by the PSR supervisor bit 
and is performed according to the table below. 

For hyperSPARC, asr_rs1 can use the value %iccr = Oxlf (31 decimal) to read the instruction 
cache control register (ICCR), or Ox1e (30 decimal) to read the diagnostics register (DIAG). 
Any other ascrs1 value is interpreted according to the following table: 

rsl read source operation results 

0 Y register treat as rdy 

I to 15 Y register treat as rdy 

16 to 23 User unimplemented treat as illegal trap 

24 to 29 Privileged unimplemented if S = I ~ illegal trap 

if S = 0 ~ priv viol trap 

30 DlAG register if S = 1 ~ rd DlAG 

if S = 0 ~ priv viol trap 

31 ICCR register ifS=I~rdiccr 

if S = 0 ~ priv viol trap 

As described in the table above. 

25 24 19 18 14 13 o 

rd 1101000 I rsl ignored 
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RDPSR 

Operation: r[rd] - PSR 

Assembler 
Syntax: rd %psr, regrd 

Read Processor State Register 

(Privileged Instruction) 

RDPSR 

Description: RDPSR copies the contents of the PSR into the register specified by the rd field. 

Traps: privileged-instruction (if S=O) 

Format: 
3130 29 25 24 19 18 o 

rd 1101001 1 ignored 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
RDTBR 

Operation: r[rd] - TBR 

Assembler 
Syntax: rd %tbr, regrd 

Read Trap Base Register 

(Privileged Instruction) 

RDTBR 

Description: RDTBR copies the contents of the TBR into the register specified by the rd field. 

Traps: privileged_instruction (if S=O) 

Format: 
3130 29 25 24 19 18 o 

rd 1101011 1 ignored 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 

RDWIM 

Operation: r[rd] - WIM 

Assembler 
Syntax: rd %wim, regrd 

Read Window Invalid Mask register 

(Privileged Instruction) 

RDWIM 

Description: RDWIM copies the contents of the WIM register into the register specified by the rd field. 

Traps: privileged_instruction (if S=O) 

Format: 
25 24 19 18 o 

rd 1101010 1 ignored 
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TEe H N 0 LOG Y, ,$ ================S;;;;P;;;;1\;;;;R;;;;C=I;;;;ns;;;;t;;;;ru;;;;c;;;;t;;;;io;;;;n=Se=t 

RDY Read Y register RDY 

Operation: r[rd] - Y 

Assembler 
Syntax: rd %y, regrd 

Description: RDY copies the contents of the Y register into the register specified by the rd field. Note that 
this is a special case of the RDASR instruction. 

Traps: none 

Format: 
3130 29 25 24 19 18 14 13 0 

11 0 I rd I 101000 I 00000 I ignored I 
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RESTORE Restore caller's window RESTORE 

Operation: ncwp - CWP + 1 

Assembler 

result- r[rsl] + (r[rs2] or sign extnd(simm13» 

CWP-ncwp 

r[rd] - result 

RESTORE does not affect condition codes 

Syntax: restore regrsl, reg_or _imm, regrd 

Description: RESTORE adds one to the Current Window Pointer (modulo the number of implemented 
windows) and compares this value against the window invalid mask (WIM) register. If the 
new window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a win­
dow_underflow trap is generated. If the new window number is not invalid (i.e., its corre­
sponding WIM bit is reset), then the contents of r[ rs 1] is added to either the contents of r[ rs2] 
(field bit i = 1) or to the 13-bit, sign-extended immediate value contained in the instruction 
(field biti = 0). Because the CWP has not been updated yet, r[ rs 1] and r[ rs2] are read from the 
currently addressed window (the called window). 

Traps: 

Format: 

The new CWP value is written into the PSR, causing the previous window (the caller's win­
dow) to become the active window. The result of the addition is now written into the r[rd] 
register of the restored window. 

Note that arithmetic operations involving the CWP are always done modulo the number of 
implemented windows (8 for the CY7C601). 

window_underflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 111101 I rsl I i=ol ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111101 1 rsl 1 i=rj simm13 1 
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RETT Return from Trap 

(Privileged Instruction) 

RETT 

Operation: ncwp - CWP + 1 

ET-1 

PC-nPC 

Assembler 

nPC- r[rs1] + (r[rs2] or sign extnd(simm13)) 

CWP-ncwp 

S-pS 

Syntax: rett address 

Description: RETT adds one to the Current Window Pointer (modulo the number of implemented win­
dows) and compares this value against the window invalid mask (WIM) register. If the new 
window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a win­
dow_underflow trap is generated. If the new window number is not invalid (i.e., its corre­
sponding WIM bit is reset), then RETT causes a delayed control transfer to the address 
derived by adding the contents ofr[rs1] to either the contents ofr[rs2] (field bit i = 1) or to the 
13-bit, sign-extended immediate value contained in the instruction (field bit i = 0). 

Before the control transfer takes place, the new CWP value is written into the PSR, causing 
the previous window (the one in which the trap was taken) to become the active window. In 
addition, the PSR's ET bit is set to one (traps enabled) and the previous Supervisor bit (pS) is 
restored to the S field. 

Although in theory RETT is a delayed control transfer instruction, in practice, RETT must 
always be immediately preceded by a JMPL instruction, creating a delayed control transfer 
couple (see Section 2.4.3.4.4). This has the effect of annulling the delay instruction. 

If traps were already enabled before encountering the RETT instruction, an illegal_instruc­
tion trap is generated. If traps are not enabled (ET=O) when the RETT is encountered, but (1) 
the processor is not in supervisor mode (S=O), or (2) the window underflow condition de­
scribed above occurs, or (3) if either of the two low-order bits of the target address are non­
zero, then a reset trap occurs. If a reset trap does occur, the tt field of the TBR encodes the trap 
condition: privileged_instruction, window_underflow, or memory _address_noCaligned. 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
RETT 

Traps: 

Format: 

Return from Trap 

(Privileged Instruction) 

RETT 

Programming note: To re-execute the trapping instruction when returning from a trap han­
dler, use the following sequence: 

jmpl %17, %0 ! old PC 

rett %18 ! oldnPC 

Note thatthe CY7C60 1 saves the PC in r[17] (local 1 ) and the nPC in r[18] (locaI2) of the trap 
window upon entering a trap. 

To return to the instruction after the trapping instruction (e.g., when the trapping instruction 
is emulated), use the sequence: 

jmpl %18, %0 

rett %18 + 4 

illegal_instruction 
reset (privileged_instruction) 
reset (memory _address_nocaligned) 
reset (window_underflow) 

31 30 29 25 24 19 18 

11 01 ignored I 111001 I rsl 

31 30 29 25 24 19 18 

11 01 ignored I 111001 I rsl 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
SAVE Save caller's window SAVE 

Operation: ncwp - CWP - 1 

Assembler 

result- r[rs1] + (r[rs2] or sign extnd(simm13» 

CWP-ncwp 

r[rd] - result 

SAVE does not affect condition codes 

Syntax: save regrsl, reg_or _imm, regrd 

Description: SAVE subtracts one from the Current Window Pointer (modulo the number of implemented 
windows) and compares this value against the window invalid mask (WIM) register. If the 
new window number corresponds to an invalidated window (WIM AND 2ncwp = 1), a win­
dow_overflow trap is generated. If the new window number is not invalid (i.e., its corre­
sponding WlM bit is reset), then the contents ofr[rs1] is added to either the contents ofr[rs2] 
(field bit i = 1) or to the 13-bit, sign-extended immediate value contained in the instruction 
(field bit i = 0). Because the CWP has not been updated yet, r[rs 1] and r[ rs2] are read from the 
currently addressed window (the calling window). 

Traps: 

Format: 

The new CWP value is written into the PSR, causing the active window to become the pre­
vious window, and the called window to become the active window. The result of the addi­
tion is now written into the r[rd] register of the new window. 

Note that arithmetic operations involving the CWP are always done modulo the number of 
implemented windows (8 for the CY7C601). 

window_overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 111100 1 rs1 1 i=O 1 ignored 1 rs2 1 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 111100 1 rs1 b=d simm13 1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 

SDIV Signed Divide SDIV 

Operation: r[rd] - Y r[rs1] -7- (r[rs2] or sign extnd(simm13)) 

Assembler 
Syntax: sdiv regrs ], reg_or_imm, regrd 

Description: The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. They 
either compute "((Y.r[rsl] + r[rs2]))" (when the immediate field is zero) or "((Y.r[rs1] + 

sign_ext (simm13))" (when the immediate field is one). The most signifacant 32 bits of the 
divisor are in the Y register, and the least significant 32 bits are in r[ rs 1]. The least significant 
32 bits of the integer quotient are written into the destination register. The entire remainder 
and the most significant 32 bits of the quotient (if generated) are discarded. SDIV does not 
affect the condition code bits. 

Note: 

Traps: 

Format: 

A signed divide (SDIV, SDIVcc) assumes a signed integer double-word dividend and a un­
signed integer word divisor and computes a signed integer word quotient. Signed division 
rounds an inexact quotient towards zero if there is a non-zero remainder. 

The result of a divide instruction can overflow the 32-bit destination register under certain 
conditions. When overflow occurs (whether or not the instruction sets the condition codes in 
the PSR), the largest appropriate integer is returned as the quotient in r[ rd]. Overflow occurs 
when the result is greater than 232 -1 if the result is positive, or less than _231 if the result is 
negative, and if the result has a remainder of divisor - 1. The value returned in r[rd] will be 
232 - 1 if the result is positive, and _231 if the result is negative. 

For future compatibility, software should assume that the contents of the Y register are not 
preserved by the divide instructions. 

If the divisor is zero, the instruction takes a divide-by-zero trap. 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001111 I rsl I i=ol ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 001111 I rsl I i=d simm13 I 
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5 SPARe Instruction Set 
====================== 

SDIVcc Signed Divide (modify icc) SDIVcc 

Operation: r[rd] - Y r[rs1] 7 (r[rs2] or sign extnd(simm13)) 

n- r[rd]<31> 

Assembler 

z - ifr[rd]=O then 1, else 0 

v - 1 if overflow, else 0 

c - 0 

Syntax: sdivcc regrs ], reg_or _imm, regrd 

Description: The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. They 
either compute "«Y.r[rs1] 7- r[rs2]))" (when the immediate field is zero) or "«Y.r[rs1] 7-

sign_ext (simm13))" (when the immediate field is one). The most signifacant 32 bits ofthe 
divisor are in the Y register, and the least significant 32 bits are in r[rs1]. The least significant 

32 bits of the integer quotient are written into the destination register. The entire remainder 

and the most significant 32 bits of the quotient (if generated) are discarded. 

Note: 

Traps: 

Format: 

A signed divide (SDIV, SDIV cc) assumes a signed integer double-word dividend and a un­

signed integer word divisor and computes a signed integer word quotient. Signed division 

rounds an inexact quotient towards zero if there is a non-zero remainder. 

The result of a divide instruction can overflow the 32-bit destination register under certain 

conditions. When overflow occurs (whether or not the instruction sets the condition codes in 

the PSR), the largest appropriate integer is returned as the quotient in r[rd]. Overflow occurs 

when the result is greater than 232 -1 if the result is positive, or less than _231 if the result is 

negative, and if the result has a remainder of divisor - 1. The value returned in r[rd] will be 

232 - I if the result is positive, and _231 if the result is negative. 

For future compatibility, software should assume that the contents of the Y register are not 

preserved by the divide instructions. 

If the divisor is zero, the instruction takes a divide-by-zero trap. 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 011111 I rsl I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 01 I 1 I I I rsl 1 i=11 simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ======================= 
SETHI Set High 22 bits of r-register 

Operation: r[rd]<31:10>- imm22 

r[rd]<9:0> - 0 

Assembler 
Syntax: sethi const22, regrd 

sethi %hi value, regrd 

SETHI 

Description: SETHI zeros the ten least significant bits of the contents ofr[rd] and replaces its high-order 
22 bits with imm22. The condition codes are not affected. 

Programming note: SETHI 0, %0 is the preferred instruction to use as a NOP, because it will 
not increase execution time if it follows a load instruction. 

Traps: none 

Format: 
3130 29 25 24 22 21 o 

10 0 I rd I 100 I imm22 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
SLL Shift Left Logical SLL 

Operation: r[rd] - r[rsl] SLL by (r[rs2] or shcnt) 

Assembler 
Syntax: s11 regrsl, reg_or _imm, regrd 

Description: SLL shifts the contents ofr[ rs 1] left by the number of bits specified by the shift count, filling 
the vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs if 
the shift count is zero. 

Traps: 

Format: 

If the i bit field equals zero, the shift count for SLL is the least significant five bits of the con­
tents of r[rs2]. If the i bit field equals one, the shift count for SLL is the 13-bit, sign extended 
immediate value, simm13. In the instruction format and the operation description above, the 
least significant five bits of simm13 is called shcnt. 

This instruction does not modify the condition codes. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100101 I rs1 I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 
100101 

1 rs1 1 i=ll ignored 
1 shent 

1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
SMUL Signed Multiply SMUL 

Operation: r[Y], r[rd] - r[rs1] x (r[rs2] or sign extnd(simm13», 

where the upper 32-bit result is placed in r[Y] ( the Y register) 

Assembler 
Syntax: smul regrsl, reg_or _imm, regrd 

Description: The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. 

Note: 

Traps: 

Format: 

They either multiply the contents of two registers (when the immediate field is zero) or the 
content of a register and the sign extended immediate operand (when the immediate field is 
one). They write the 32 most significant bits of the product into the Y register and the 32 least 
significant bits into the destination register. 

A signed multiply (SMUL, SMULcc) assumes signed integer word operands and computes a 
signed integer double-word product. SMUL does not affect the condition code bits. 

32-bit overflow after SMUL is indicated by Y,* O. 

None 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 001011 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 o 

11 01 rd 1 001011 I rsl I i=ll I - - I I I simm13 
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5 SPARe Instruction Set 
TECHNOLOCY, ====================== 
SMULcc Signed Multiply (modify icc) SMULcc 

Operation: r[Y], r[rd] - r[rsl] x (r[rs2] or sign extnd(simm13», 

Assembler 

where the upper 32-bit result is placed in r[Y] ( the Y register) 

n- r[rd]<31> 

z - if r[rd]=O then 1, else 0 

v - 0 

c - 0 

Syntax: smulcc regrsl, reg_or _imm, regrd 

Description: The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. 

Note: 

Traps: 

Format: 

They either mUltiply the contents of two registers (when the immediate field is zero) or the 
content of a register and the sign extended immediate operand (when the immediate field is 
one). They write the 32 most significant bits of the product into the Y register and the 32 least 
significant bits into the destination register. 

A signed mUltiply (SMUL, SMULcc) assumes signed integer word operands and computes a 
signed integer double-word product. SMUL does not affect the condition code bits. 

32-bit overflow after SMUL is indicated by Y *- O. 
The negative (N) and zero (Z) condition code bits are set according to the least significant 
word of the product. 

None 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 011011 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
011011 

1 rs1 li=d simm13 1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
SRA Shift Right Arithmetic SRA 

Operation: r[rd] - r[rsl] SRA by (r[rs2] or shcnt) 

Assembler 
Syntax: sra regrsl, reg_or _imm, regrd 

Description: SRA shifts the contents ofr[rsl] right by the number of bits specified by the shift count, fill­
ing the vacated positions with the MSB of r[ rs 1]. The shifted results are written into r[ rd]. No 
shift occurs if the shift count is zero. 

Traps: 

Format: 

If the i bit field equals zero, the shift count for SRA is the least significant five bits of the 
contents of r[rs2]. If the i bit field equals one, the shift count for SRA is the 13-bit, sign ex­
tended immediate value, simm13. In the instruction format and the operation description 
above, the least significant five bits of simm13 is called shcnt. 

This instruction does not modify the condition codes. 

Programming note: A "Shift Left Arithmetic by 1 (and calculate overflow)" can be implem-
ented with an ADDcc instruction. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100111 I rs1 I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 5 4 0 
I I 

li=d 11 0 1 rd 100111 rs1 ignored shcnt 

12-104 



S SPARe Instruction Set 
TECHNOLOGY, ====================== 

SRL Shift Right Logical SRL 

Operation: r[rd] - r[rsl] SRL by (r[rs2] or shcnt) 

Assembler 
Syntax: srl regrsl, reg_or _imm, regrd 

Description: SRL shifts the contents of r[rsl] right by the number of bits specified by the shift count, fill­
ing the vacated positions with zeros. The shifted results are written into r[rd]. No shift occurs 
if the shift count is zero. 

Traps: 

Format: 

If the i bit field equals zero, the shift count for SRL is the least significant five bits of the 
contents ofr[rs2]. Ifthe i bit field equals one, the shift count for SRL is the 13-bit, sign ex­
tended immediate value, simm13. In the instruction format and the operation description 
above, the least significant five bits of simm13 is called shcnt. 

This instruction does not modify the condition codes. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100110 I rsl I i=O I ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1 100110 1 rsl 1 i=d ignored 1 shent 1 
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ST Store Word ST 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - r[rd] 

Assembler 
Syntax: st regrd, [address] 

Description: The ST instruction moves a word from the destination register, r[rd], into memory. The ef­
fective memory address is derived by summing the contents of r[ rs 1] and either the contents 
of r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. 

Traps: 

Format: 

If ST takes a trap, the contents of the memory address remain unchanged. 

Programming note,' If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd 1000100 I 
31 30 29 25 24 19 18 

11 1 I rd I 000100 I 

14 13 12 5 4 o 

rsl I i=O I ignored rs2 

14 13 12 o 

rsl li=d simm13 

12-106 



5 SPARe Instruction Set 
TECI-INOLOGY, ======================= 
STA Store Word into Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

[r[rsl] + r[rs2]] - r[rd] 

Assembler 
Syntax: sta regrd, [regaddr] asi 

STA 

Description: The STA instruction moves a word from the destination register, r[rd], into memory. The 
effective memory address is a combination of the address space value given in the asi field 
and the address derived by summing the contents of r[rsl] and r[rs2]. 

Traps: 

Format: 

If STA takes a trap, the contents of the memory address remain unchanged. 

illegaUnstruction (if i=l) 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access _exception 

3130 29 25 24 19 18 

rd 1010100 I 
14 13 12 5 4 

rs1 asi rs2 
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STB Store Byte STB 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13))] - r[rd] 

Assembler 
Syntax: stb regrd, [address] 

synonyms: stub, stsb 

Description: The STB instruction moves the least significant byte from the destination register, r[rd] , into 
memory. The effective memory address is derived by summing the contents of r[rsI] and 
either the contents ofr[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended 
immediate operand contained in the instruction if i equals one. 

Traps: 

Format: 

If STB takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

data_access_exception 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 1 I rd I 000101 I rsl I i=O I ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 0 

11 1 I rd I 000101 I rsl I i=11 sirnrn13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
STBA Store Byte into Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

[r[rs1] + r[rs2]] - r[rd] 

Assembler 
Syntax: stba regrd, [regaddr] asi 

synonyms: stuba, stsba 

STBA 

Description: The STBA instruction moves the least significant byte from the destination register, r[rd], 
into memory. The effective memory address is a combination of the address space value giv­
en in the asi field and the address derived by summing the contents of r[rsl] and r[rs2]. 

Traps: 

Format: 

If STBA takes a trap, the contents of the memory address remain unchanged. 

illegaUnstruction (if i= 1) 
privileged_instruction (if S=O) 
data_access _exception 

3130 29 25 24 19 18 

rd 1010101 I rs1 
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STC Store Coprocessor register STC 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13))] - c[rd] 

Assembler 
Syntax: st cregrd, [address] 

Description: The STC instruction moves a word from a coprocessor register, c[rd], into memory. The ef­
fective memory address is derived by summing the contents of r[rs 1] and either the contents 
of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one. 

Traps: 

Format: 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. If STC takes a trap, memory remains unchanged. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

cp_disabled 
cp_exception 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 
I I 
11 1 I rd 

i I 

\110100 I 

31 30 29 25 24 19 18 

rd 1110100 1 

14 

rs1 

14 

rs1 
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I i=ol ignored I rs2 I 

13 12 0 

1 i=rj simm13 1 



5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
STCSR Store Coprocessor State Register STCSR 

Operation: [r[rsl] + (r[rs2] or sign extnd(simmI3))] - CSR 

Assembler 
Syntax: st %csr, [address] 

Description: The STCSR instruction moves the contents of the coprocessor state register into memory. 

Traps: 

Format: 

The effective memory address is derived by summing the contents ofr[rsl] and either the 
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. 

Ifthe PSR's BC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. If STCSR takes a trap, the contents of the memory address remain unchanged. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 110101 I 
31 30 29 25 24 19 18 

11 d rd I 110101 I 

rsl 

rsl 
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14 13 12 5 4 0 

I i=O I ignored I rs2 I 
14 13 12 0 

I i=11 simm13 I 
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STD Store Double-word STD 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - r[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4] - r[rd + 1] 

Assembler 
Syntax: std regrd, [address] 

Description: The STD instruction moves a double-word from the destination register pair, r[rd] and 
r[ rd+ 1], into memory. The effective memory address is derived by summing the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. The most sig­
nificant word in the even-numbered destination register is written into memory at the effec­
tive address and the least significant memory word in the next odd-numbered register is writ­
ten into memory at the effective address + 4. 

Traps: 

Format: 

I 

If a data_access_exception trap takes place during the effective address memory access, 
memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

memory _address_not_aligned 
data_access_exception 

31 30 29 25 24 19 18 

I I I 
14 13 12 540 

I I 
11 1 I rd I 000111 I rsl I i=O I ignored rs2 I 
31 30 29 25 24 19 18 14 13 12 o 

11 1 I rd I 000111 I rsl li=d simm13 
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STDA Store double-word into Alternate space 

(Privileged Instruction) 

Operation: address space- asi 

[r[rsl] + (r[rs2]] - r[rd] 

[r[rsl] + (r[rs2] + 4] - r[rd + 1] 

Assembler 
Syntax: stda regrd, [regaddr] asi 

STDA 

Description: The STDA instruction moves a double-word from the destination register pair, r[rd] and 
r[ rd+ 1], into memory. The effective memory address is a combination of the address space 
value given in the asi field and the address derived by summing the contents ofr[rsl] and 
r[rs2]. The most significant word in the even-numbered destination register is written into 
memory at the effective address and the least significant memory word in the next odd-num­
bered register is written into memory at the effective address + 4. 

Traps: 

Format: 

If a data_access_exception trap takes place during the effective address memory access, 
memory remains unchanged. 

illegaUnstruction (if i=l) 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access_exception 

3130 29 25 24 19 18 

rd 1010111 I 
5 4 o 

rs1 asi rs2 
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STDC Store double-word Coprocessor STDC 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - c[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4] - c[rd + 1] 

Assembler 
Syntax: std cregrd, [address] 

Description: The STDC instruction moves a double-word from the coprocessor register pair, c[rd] and 
c[rd+ 1], into memory. The effective memory address is derived by summing the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. The most sig­
nificant word in the even-numbered destination register is written into memory at the effec­
tive address and the least significant memory word in the next odd-numbered register is writ­
ten into memory at the effective address + 4. 

Traps: 

Format: 

If the PSR's BC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. If a data_access_exception trap takes place during the effective address memory 
access, memory remains unchanged. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

cp_disabled 
cp_exception 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 110111 I 
31 30 29 25 24 19 18 

11 1 I rd I 110111 I 

rsl 

rsl 
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I i=O I ignored I rs2 I 
14 13 12 0 

I i=11 simm13 I 
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STDCQ Store double-word Coprocessor Queue STDCQ 
(Privileged Instruction) 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13))] - CQ.ADDR 

[r[rsl] + (r[rs2] or sign extnd(simm13)) + 4] - CQ.lNSTR 

Assembler 
Syntax: std %cq, [address] 

Description: The STDCQ instruction moves the front entry of the coprocessor queue into memory. The 
effective memory address is derived by summing the contents ofr[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. The address portion of the queue entry is 
written into memory at the effective address and the instruction portion of the entry is written 
into memory at the effective address + 4. 

Traps: 

Format: 

If the PSR's EC bit is set to zero or if no coprocessor is present, a cp_disabled trap will be 
generated. If a data_access_exception trap takes place during the effective address memory 
access, memory remains unchanged. 

Note that hyperSPARC processors do not support the coprocessor interface. The execution 
of a coprocessor instruction by a hyperSPARC instruction results in an cp_disabled trap. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

cp_disabled 
cp _exception 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access _exception 

31 30 29 25 24 19 18 

11 1 I rd I 110110 I 
31 30 29 25 24 19 18 

11 1 I rd I 110110 I 

14 13 12 5 4 0 

rs1 I i=O I ignored I rs2 I 
14 13 12 0 

rs1 I i=ll simm13 I 
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STDF Store Double-word Floating-Point STDF 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - f[rd] 

[r[rsl] + (r[rs2] or sign extnd(simm13» + 4] - f[rd + 1] 

Assembler 
Syntax: std !regrd, [address] 

Description: The STDF instruction moves a double-word from the floating-point register pair, f[rd] and 
f[rd+ 1], into memory. The effective memory address is derived by summing the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. The most sig­
nificant word in the even-numbered destination register is written into memory at the effec­
tive address and the least significant memory word in the next odd-numbered register is writ­
ten into memory at the effective address + 4. 

Traps: 

Format: 

If the PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will 
be generated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

fp_disabled 
fp_exception* 
memory _address_nocaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 100111 I 
31 30 29 25 24 19 18 

11 1 I rd I 100111 I 

14 13 12 5 4 0 

rs1 I i=ol ignored I rs2 I 
14 13 12 0 

rs1 I i=ll sinnn13 I 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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STDFQ Store Double-word Floating-Point Queue 

(Privileged Instruction) 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»)] - FQ.ADDR 

[r[rsl] + (r[rs2] or sign extnd(simm13) + 4] - FQ.INSTR 

Assembler 
Syntax: std %fq, [address] 

STDFQ 

Description: The STDFQ instruction moves the front entry of the floating-point queue into memory. The 
effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. The address portion of the queue entry is 
written into memory at the effective address and the instruction portion of the entry is written 
into memory at the effective address + 4. If the FPU is in exception mode, the queue is then 
advanced to the next entry, or it becomes empty (as indicated by the qne bit in the FSR). 

Traps: 

Format: 

If the PSR' s EF bit is set to zero or if no floating-point unit is present, an fp _disabled trap will 
be generated. If a trap takes place, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

fp_disabled 
fp_exception* 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 d rd I 100110 I 
31 30 29 25 24 19 18 

11 d rd I 100110 I 

14 13 12 5 4 0 

rs1 I i=O I ignored I rs2 I 
14 13 12 0 

rs1 I i=ll simm13 I 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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STF Store Floating-Point register STF 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - f[rd] 

Assembler 
Syntax: st jregrd, [address] 

Description: The STF instruction moves a word from a floating-point register, f[rd], into memory. The 
effective memory address is derived by summing the contents of r[rsl] and either the con­
tents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. 

Traps: 

Format: 

If the PSR's EF bit is set to zero or if no floating-point unit is present, an fp_disabled trap will 
be generated. If STF takes a trap, memory remains unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

fp_disabled 
fp3xception* 
memory_address_not_aligned 
data_access3xception 

31 30 29 25 24 19 18 

11 1 I rd I 100100 I 
31 30 29 25 24 19 i8 

11 d rd I 100100 I 

14 13 12 5 4 0 

rsl I i=O I ignored I rs2 I 
14 13 12 0 

rsl I i=11 simm13 I 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
STFSR Store Floating-Point State Register STFSR 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - FSR 

Assembler 
Syntax: st %fsr, [address] 

Description: The STFSR instruction moves the contents of the floating-point state register into memory. 

Traps: 

Format: 

The effective memory address is derived by summing the contents of r[rs 1] and either the 
contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. This instruction will wait for all pending 
FPops to complete execution before it writes the FSR into memory. 

If the PSR' s EF bit is set to zero or if no floating-point unit is present, an fp _disabled trap will 
be generated. If STFSR takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

fp_disabled 
fp_exception* 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 100101 I 
31 30 29 25 24 19 18 

11 1 I rd I 100101 
! 

14 13 12 5 4 0 

rsl I i=O I ignored I rs2 I 
14 13 12 0 

rsl ! i=l! simm13 
! 

* NOTE: An attempt to execute any FP instruction will cause a pending FP exception to be recognized by the integer unit. 
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STH Store Half-word STH 

Operation: [r[rsl] + (r[rs2] or sign extnd(simm13»] - r[rd] 

Assembler 
Syntax: sth regrd, [address] synonyms: stuh, stsh 

Description: The STH instruction moves the least significant half-word from the destination register, 
r[rd], into memory. The effective memory address is derived by summing the contents of 
r[rsl] and either the contents of r[rs2] if the instruction's i bit equals zero, or the 13-bit, 
sign-extended immediate operand contained in the instruction if i equals one. 

Traps: 

Format: 

If STH takes a trap, the contents of the memory address remain unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be written to without setting up a register. 

memory _address_not_aligned 
data_access_exception 

31 30 29 25 24 19 18 

11 01 rd 1000110 I 
31 30 29 25 24 19 18 

11 0 I rd I 000110 I 

14 13 12 5 4 o 

rsl I i=O I ignored rs2 

14 13 12 o 

rsl I i=d simm13 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
STHA Store Half-word into Alternate space 

(Privileged Instruction) 

Operation: address space - asi 

[r[rsl] + (r[rs2]] - r[rd] 

Assembler 
Syntax: stha regrd, [address] 

synonyms: stuha, stsha 

STHA 

Description: The STHA instruction moves the least significant half-word from the destination register, 
r[rd] , into memory. The effective memory address is a combination of the address space val­
ue given in the asi field and the address derived by summing the contents of r[ rs 1] and r[rs2]. 

Traps: 

Format: 

If STHA takes a trap, the contents of the memory address remain unchanged. 

illegal_instruction (if i= 1) 
privileged_instruction (if S=O) 
memory _address_not_aligned 
data_access_exception 

3130 29 25 24 19 18 

rd 1010110 I 
5 4 o 

rs1 asi rs2 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
SUB Subtract SUB 

Operation: r[rd] - r[rsl] - (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: sub regrsl, reg_or _imm, regrd 

Description: The SUB instruction subtracts either the contents of the register named in the rs2 field, 
r[rs2], if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate operand 
contained in the instruction if i equals one, from register r[ rs 1]. The result is placed in the 
register specified in the rd field. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd 1000100 I rsl I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
000100 I rsl I i=11 simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
SUBcc Subtract and modify icc SUBcc 

Operation: r[rd] - r[rsl] - operand2, where operand2 = (r[rs2] or sign extnd(simml3» 

n- r[rd]<3l> 

Assembler 

z- ifr[rd] =0 then 1, else 0 

v- (r[rsl]<31> AND not operand2<31> AND not r[rd]<31» 

OR (not r[rsl]<31> AND operand2<31> AND r[rd]<31» 

c- (not r[rsl]<31> AND operand2<31» 

OR (r[rd]<31> AND (not r[rsl]<31> OR operand2<31») 

Syntax: subcc regrs] , reg_or _imm, regrd 

Description: The SUBcc instruction subtracts either the contents of register r[ rs2] (if the instruction's i bit 
equals zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i 
equals one) from register r[rsl]. The result is placed in register r[rd]. In addition, SUBcc 
modifies all the integer condition codes in the manner described above. 

Traps: 

Format: 

Programming note: A SUBcc instruction with rd = 0 can be used for signed and unsigned 
integer comparison. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1010100 1 rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 010100 I rsl I i=11 simm13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
SUBX Subtract with Carry SUBX 

Operation: r[rd] - r[rsl] - (r[rs2] or sign extnd(simm13)) - c 

Assembler 
Syntax: subx regrsl, reg_or _imm, regrd 

Description: SUBX subtracts either the contents of register r[ rs2] (if the instruction's i bit equals zero) or 
the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one) 
from register r[rsl]. It then subtracts the PSR's carry bit (c) from that result. The final result 
is placed in the register specified in the rd field. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 001100 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
001100 

1 rsl 1 i=11 simm13 
1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
SUBXcc Subtract with Carry and modify icc SUBXcc 

Operation: r[rd] - r[rsl] - operand2 - c, where operand2 == (r[rs2] or sign extnd(simmI3» 

n- r[rd]<31> 

Assembler 

z - if r[ rd] ==0 then 1, else 0 

v- (r[rsl]<31> AND not operand2<31> AND not r[rd]<31» 

OR (not r[rsl]<31> AND operand2<31> AND r[rd]<31» 

c- (not r[rsl]<31> AND operand2<31» 

OR (r[rd]<31> AND (not r[rsl]<31> OR operand2<31») 

Syntax: subxcc regrsl, reg_or _imm, regrd 

Description: SUBXcc subtracts either the contents of register r[rs2] (if the instruction's i bit equals zero) 
or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one) 
from register r[rsl]. It then subtracts the PSR's carry bit (c) from that result. The final result 
is placed in the register specified in the rd field. In addition, SUBXcc modifies all the integer 
condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 011100 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 011100 I rsl I i=11 simm13 I 
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SWAP Swap r-register with memory SWAP 

Operation: word- [r[rs1] + (r[rs2] or sign extnd(simm13))] 

temp- r[rd] 

r[rd]- word 

r[rs1] + (r[rs2] or sign extnd(simm13))- temp 

Assembler 
Syntax: swap [source], regrd 

Description: SWAP atomically exchanges the contents of r[rd] with the contents of a memory location, 
i.e., without allowing asynchronous trap interruptions. In a mUltiprocessor system, two or 
more processors executing SWAP instructions simultaneously are guaranteed to execute 
them serially, in some order. 

Traps: 

Format: 

The effective memory address is derived by summing the contents ofr[rs1] and either the 
contents of r[ rs2] if the instruction's i bit equals zero, or the 13-bit, sign-extended immediate 
operand contained in the instruction if i equals one. 

If SWAP takes a trap, the contents of the memory address and the destination register remain 
unchanged. 

Programming note: If rsl is set to 0 and i is set to 1, any location in the lowest or highest 4 
Kbytes of an address space can be accessed without setting up a register. 

memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

11 1 I rd I 001111 I 
31 30 29 25 24 19 18 

11 1 I rd I 001111 I 

14 13 12 5 4 o 

rs1 I i=O I ignored rs2 

14 13 12 o 

rs1 I i=ll simm13 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
SWAPA Swap r-register with memory in Alternate space 

Operation: address space - asi 

word- [r[rsl] + r[rs2]] 

temp- r[rdl 

r[rd]- word 

[r[rsl] + r[rs2]] - temp 

Assembler 

(Privileged Instruction) 

Syntax: swapa [regsource] asi, regrd 

SWAPA 

Description: SWAPA atomically exchanges the contents ofr[rd] with the contents of a memory location, 
i.e., without allowing asynchronous trap interruptions. In a multiprocessor system, two or 
more processors executing SWAPA instructions simultaneously are guaranteed to execute 
them serially, in some order. 

Traps: 

Format: 

The effective memory address is a combination of the address space value given in the asi 
field and the address derived by summing the contents of r[rsl] and r[rs2]. 

If SWAPA takes a trap, the contents of the memory address and the destination register re­
main unchanged. 

illegaUnstruction (if i=l) 
privileged_instruction (if S=O) 
memory _address_noCaligned 
data_access_exception 

31 30 29 25 24 19 18 

rd 1011111 I rs1 
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TADDcc Tagged Add and modify icc TADDcc 

Operation: r[rd] - r[rsl] + operand2, where operand2 = (r[rs2] or sign extnd(simmI3)) 

n- r[rd]<31> 

Assembler 

z- ifr[rd]=O then 1, else 0 

v- (r[rs1]<31> AND operand2<31> AND not r[rd]<31» 

OR (not r[rsl]<31> AND not operand2<31> AND r[rd]<31» 

OR (r[rs1]<1:0>· 0 OR operand2<1:0>· 0) 

c- (r[rs1]<31> AND operand2<31> 

OR (not r[rd]<31> AND (r[rsl]<31> OR operand2<31») 

Syntax: taddcc regrsl, reg_or _imm, regrd 

Description: TADDcc adds the contents of r[rsl] to either the contents of r[rs2] if the instruction's i bit 
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. The result is 
placed in the register specified in the rd field. In addition to the normal arithmetic overflow, 
an overflow condition also exists ifbit 1 or bit 0 of either operand is not zero. TADDcc modi­
fies all the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100000 I rsl I i=ol ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 100000 I rsl I i=11 simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ======================= 
TADDccTV Tagged Add (modify icc) Trap on Overflow TADDccTV 

Operation: result- r[rsl] + operand2, where operand 2 = (r[rs2] or sign extnd(simm13)) 

tv - (r[rsl]<31> AND operand2<31> AND not r[rd]<31» 

Assembler 

OR (not r[rsl]<31> AND not operand2<31> AND r[rd]<31» 

OR (r[rsl]<1:0>· 0 OR operand2<1:0>· 0) 

if tv = 1, then tag overflow trap; else 

n- r[rd]<31> 

z- ifr[rd]=O then 1, else 0 

v-tv 

c- (r[rsl]<31> AND operand2<31> 

OR (not r[rd]<31> AND (r[rsl]<31> OR operand2<31») 

r[rd] - result 

Syntax: taddcctv regrs1, reg_or _imm, regrd 

Description: TADDccTV adds the contents of r[rs 1] to either the contents of r[rs2] ifthe instruction's i bit 
equals zero, or to a 13-bit, sign-extended immediate operand if i equals one. In addition to the 
normal arithmetic overflow, an overflow condition also exists if bit 1 or bit 0 of either oper­
and is not zero. 

Traps: 

Format: 

IfTADDccTV detects an overflow condition, a tag_overflow trap is generated and the desti­
nation register and condition codes remain unchanged. If no overflow is detected, 
TADDccTV places the result in the register specified in the rd field and modifies all the inte­
ger condition codes in the manner described above (the overflow bit is, of course, set to zero). 

tag_overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100010 I rs1 I i=O I ignored I rs2 1 

31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 1 
100010 

1 rs1 1 i=ll simm13 
1 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 

Ticc Trap on integer condition codes Ticc 

Operation: If condition true, then trap_instruction; 

Assembler 
Syntax: 

tt- 128 + [r[rsl] + (r[rs2] or sign extnd(simm13»]<6:0> 

elsePC-nPC 

nPC-nPC +4 

ta software_trap _number 
tn software_trap _number 

tne software_trap _number synonym: tnz 
te software_trap _number synonym: tz 
tg software_trap _number 

tle software_trap _number 

tge software_trap _number 

tl software_trap _number 

tgu software_trap _number 

tleu software_trap _number 

tcc software_trap _number synonym: tgeu 
tcs software_trap _number synonym: tlu 
tpos software_trap _number 
tneg software_trap _number 
tvc software_trap _number 

tvs software_trap _number 

Description: A Ticc instruction evaluates specific integer condition code combinations (from the PSR's 
icc field) based on the trap type as specified by the value in the instruction's cond field. If the 
specified combination of condition codes evaluates as true, and there are no higher-priority 
traps pending, then a trap_instruction trap is generated. If the condition codes evaluate as 
false, the trap is not generated. 

Traps: 

If a trap_instruction trap is generated, the tt field of the trap base register (TBR) is written 
with 128 plus the least significant seven bits of r[ rs 1] plus either r[ rs2] (bit field i =0) or the 
13-bit sign-extended immediate value contained in the instruction (bit field i =1). See Sec­

tion 2.4.5 for the complete definition of a trap. 

trap_instruction 
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Ticc 

Format: 

Trap on integer condition codes 

Mnemonic Condo Operation icc Test 

TN 0000 Trap Never No test 

TE 0001 Trap on Equal z 

TLE 0010 Trap on Less or Equal zOR(nXOR v) 

TL 0011 Trap on Less nXORv 

TLEU 0100 Trap on Less or Equal, Unsigned cORz 

TCS 0101 Trap on Carry Set (Less then, Unsigned) c 

TNEG 0110 Trap on Negative n 

TVS 0111 Trap on oVerflow Set v 

TA 1000 Trap Always No test 

TNE 1001 Trap on Not Equal notz 

TG 1010 Trap on Greater not(z OR (n XOR v)) 

TGE 1011 Trap on Greater or Equal not(nXOR v) 

TGU 1100 Trap on Greater, Unsigned not(cOR z) 

TCC 1101 Trap on Carry Clear (Greater than or Equal, note 
Unsigned) 

TPOS 1110 Trap on Positive notn 

TVC 1111 Trap on oVerflow Clear not v 

31 30 29 28 25 24 19 18 14 13 12 5 4 

11 0 I ign·1 cond·1 11 1 0 1 0 I rsl I i=O I ignored I rs2 

31 30 29 28 25 24 19 18 

11 0 I ign·1 cond·1 1 1 1 0 1 0 I 
ign. = ignored 
condo = condition 

rsl 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
TSUBcc Tagged Subtract and modify icc TSUBcc 

Operation: r[rd] - r[rsl] - operand2, where operand2 = (r[rs2] or sign extnd(simm13)) 

n- r[rd]<31> 

z - if r[rd]=O then 1, else 0 

v- (r[rsl]<31> AND not operand2<31> AND not r[rd]<31» OR (not r[rsl]<31> 

AND operand2<31> AND r[rd]<31» OR (r[rsl]<1:0>· 0 OR operand2<1:0>· 0) 

c- (not r[rsl]<31> AND operand2<31> 

OR (r[rd]<31> AND (not r[rsl]<31> OR operand2<31») 

Assembler 
Syntax: tsubcc regrsl, reg_or _imm, regrd 

Description: TSUBcc subtracts either the contents of registerr[rs2] (if the instruction's i bit equals zero) or 
the 13-bit, sign-extended immediate operand contained in the instruction (if i equals one) 
from register r[ rs 1]. The result is placed in the register specified in the rd field. In addition to 
the normal arithmetic overflow, an overflow condition also exists if bit 1 or bit 0 of either 
operand is not zero. TSUBcc modifies all the integer condition codes in the manner de-
scribed above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 100001 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 100001 I rs1 li=d simm13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
TSUBccTV Tagged Subtract (modify icc) TSUBccTV 

Trap on Overflow 

Operation: result- r[rsl] - operand2, where operand2 = (r[rs2] or sign extnd(simm13» 

Assembler 

tv- (r[rsl]<31> AND not operand2<31> AND not r[rd]<31» OR (not r[rsl]<31> 

AND operand2<31> AND r[rd]<31» 

OR (r[rsl]<1:0>· 0 OR operand2<1:0>· 0) 

if tv = 1, then tag overflow trap; else 

n- r[rd]<31> 

z - if r[rd]=O then 1, else 0 

v-tv 

c- (not(r[rsl]<31» AND operand2<31> OR 

(r[rd]<31> AND (not(r[rsl]<31» OR operand2<31») 

r[ rd] - result 

Syntax: tsubcctv regrs1, reg_or _imm, regrd 

Description: TSUBccTV subtracts either the contents of register r[rs2] (if the instruction's i bit equals 
zero) or the 13-bit, sign-extended immediate operand contained in the instruction (if i equals 
one) from register r[rsl]. In addition to the nonnal arithmetic overflow, an overflow condi­
tion also exists if bit 1 or bit 0 of either operand is not zero. 

Traps: 

Format: 

If TSUBccTV detects an overflow condition, a ta~overflow trap is generated and the desti­
nation register and condition codes remain unchanged. If no overflow is detected, 
TSUBccTV places the result in the register specified in the rd field and modifies all the inte­
ger condition codes in the manner described above (the overflow bit is, of course, set to zero). 

tag_overflow 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 100011 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 100011 I rs1 I i=ll simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
UDIV Unsigned Divide UDIV 

Operation: r[rd] - Y r[rs1] -;- (r[rs2] or sign extnd(simm13)) 

Assembler 
Syntax: udiv regrs], reg_or_imm, regrd 

Description: The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. They 
either compute "((Y r[rs1] + r[rs2]))" (when the immediate field is zero) or "((Y r[rs1] + 

sign_ext (simm13))" (when the immediate field is one). The most significant 32 bits of the 
dividend are in the Y register, and the least significant 32 bits are in r[rs1]. The least signifi­
cant 32 bits of the integer quotient are written into the destination register. The entire remain­
der and the most significant 32 bits of the quotient (if generated) are discarded. UDIV does 
not affect the condition code bits. 

Note: 

Traps: 

Format: 

An unsigned divide (UDIV, UDIV cc) assumes a unsigned integer double-word dividend and 
an unsigned integer word divisor and computes an unsigned integer word quotient. However, 
if the second source operand is an immediate operand, itis sign-extended (to 32 bits) as usual. 

The result of a divide instruction can overflow the 32-bit destination register under certain 
conditions. When overflow occurs (whether or not the instruction sets the condition codes in 
the PSR), the largest appropriate integer is returned as the quotient in r[rd]. Overflow occurs 
when the result is greater than 232 -1 with a remainder of divisor - 1. The value returned in 
r[rd] will be 232 - 1. 

For future compatibility, software should assume that the contents of the Y register are not 
preserved by the divide instructions. 

If the divisor is zero, the instruction takes a divide-by-zero trap. 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001110 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I 001110 I rsl I i=d simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
UDIVcc Unsigned Divide (modify icc) UDIVcc 

Operation: r[rd] - Y r[rs1] -7- (r[rs2] or sign extnd(simm13» 

n- r[rd]<31> 

Assembler 

z - ifr[rd]=O then 1, else 0 

v-I if overflow, else 0 

c- 0 

Syntax: udivcc regrsj, reg_or_imm, regrd 

Description: The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. They 
either compute "«Y r[rs1] + r[rs2]))" (when the immediate field is zero) or "«Y r[rs1] + 

signjxt (simm13»" (when the immediate field is one). The most significant 32 bits of the 
dividend are in the Y register, and the least significant 32 bits are in r[rs1]. The least signifi­
cant 32 bits of the integer quotient are written into the destination register. The entire remain­
der and the most significant 32 bits of the quotient (if generated) are discarded. 

Note: 

Traps: 

Format: 

An unsigned divide (UDIV, UDIV cc) assumes a unsigned integer double-word dividend and 
an unsigned integer word divisor and computes an unsigned integer word quotient. However, 
if the second source operand is an immediate operand, it is sign-extended (to 32 bits) as usual. 

The result of a divide instruction can overflow the 32-bit destination register under certain 
conditions. When overflow occurs (whether or not the instruction sets the condition codes in 
the PSR), the largest appropriate integer is returned as the quotient in r[rd]. Overflow occurs 
when the result is greater than 232 -1 with a remainder of divisor - 1. The value returned in 
r[rd] will be 232 - 1. 

For future compatibility, software should assume that the contents of the Y register are not 
preserved by the divide instructions. 

If the divisor is zero, the instruction takes a divide-by-zero trap. 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd I 01 11 10 I rsl I i=O I ignored 1 rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd I o 1 1 1 1 0 I rsl I i=d simm13 I 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
UMUL Unsigned Multiply UMUL 

Operation: r[Y], r[rd] - r[rsl] x (r[rs2] or sign extnd(simm13», 

where the upper 32-bit result is placed in r[Y] ( the Y register) 

Assembler 
Syntax: umul regrs], reg_or_imm, regrd 

Description: The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. 

Note: 

Traps: 

Format: 

They either multiply the contents of two registers (when the immediate field is zero) or the 
content of a register and the sign extended immediate operand (when the immediate field is 
one). They write the 32 most significant bits of the product into the Y register and the 32 least 
significant bits into the destination register. 

An unsigned multiply, UMUL, assumes unsigned integer word operands and computes an 
unsigned integer double-word product. However, if the second source operand is an immedi­
ate operand, it is sign-extended (to 32 bits) as usual. UMUL does not affect the condition 
code bits. 

32-bit overflow after UMUL is indicated by Y =j:. 0 

None 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1001010 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 o 

11 0 I rd I 001010 I rsl I i=11 simm13 
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UMULcc Unsigned Multiply (modify icc) UMULcc 

Operation: r[Y], r[rd] - r[rsl] x (r[rs2] or sign extnd(simm13», 

Assembler 

where the upper 32-bit result is placed in r[Y] ( the Y register) 

n- r[rd]<31> 

z - if r[rd] =0 then 1, else 0 

v- 0 

c- 0 

Syntax: umulcc regrs], reg_or_imm, regrd 

Description: The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. 

Note: 

Traps: 

Format: 

They either multiply the contents of two registers (when the immediate field is zero) or the 
content of a register and the sign extended immediate operand (when the immediate field is 
one). They write the 32 most significant bits of the product into the Y register and the 32 least 
significant bits into the destination register. 

An unsigned multiply, UMUL, assumes unsigned integer word operands and computes an 
unsigned integer double-word product. However, if the second source operand is an immedi­
ate operand, it is sign-extended (to 32 bits) as usual. UMUL does not affect the condition 
code bits. 

32-bit overflow after UMUL is indicated by Y =;F O. 
The negative (N) and zero (Z) condition code bits are set according to the least significant 
word of the product. 

None 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 rd 1011010 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 011010 I rs1 I i=11 sirnm13 I 
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S SPARe Instruction Set 
TECHNOLOGY, ====================== 
UNIMP Unimplemented instruction UNIMP 

Operation: illegal instruction trap 

Assembler 
Syntax: unimp const22 

Description: Executing the UNIMP instruction causes an immediate illegaCinstruction trap. The value in 
the const22 field is ignored. 

Traps: 

Format: 

Programming note: UNIMP can be used as part of the protocol for calling a function that is 
expected to return an aggregate value, such as a C-language structure. 

1. An UNIMP instruction is placed after (not in) the delay slot after the CALL instruction in 
the calling function. 

2. If the called function is expecting to return a structure, it will find the size of the structure 
that the caller expects to be returned as the const22 operand of the UNIMP instruction. 
The called function can check the opcode to make sure it is indeed UNIMP. 

3. If the function is not going to return a structure, upon returning, it attempts to execute 
UNIMP rather than skipping over it as it should. This causes the program to terminate. 
The behavior adds some run-time checking to an interface that cannot be checked proper­
ly at compile time. 

illegaCinstruction 

3130 29 25 24 ?2 21 o 

I 0 0 I ignored I 0 0 0 I const22 
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WRASR Write Ancillary State Register WRASR 

Operation: 

Assembler 
Syntax: 

r[rd] - ASR (ancillary state register) 

wr %rx, %ry, %y (wry special case) 
wr %rx, simm13, %y 
wr %rx, %ry, ascrd (wrasr general case) 
wr %rx, simm13, ascrd 

Description: WRASR computes the bitwise exclusive-or (XOR) of operand 1 (rs1) and operand 2 (either 
rs2 or simm13) and write the result into the specified state register. WRY is now a subcase of 
WRASR. When the rd field equals 0 - 15, a write into the Y register is performed. When rd is 
< 15, the write function is affected by the PSR supervisor bit, and is performed as follows: 

Traps: 

Note: 

Format: 

rd write destination operation results 

0 Y register treat as wry 

I to 15 Y register treat as wry 

16 to 23 User unimplemented treat as illegal trap 

24 to 29 Privileged unimplemented If s= I -t illegal trap 

If S = 0 -t priv viol trap 

30 DIAG register If S = I -t wr DIAG 

If S = 0 -t priv viol trap 

31 !Be r-register IfS = l-t wriccr 

If S = 0 -t priv viol trap 

For hyperSPARC, ascrd can use the value %iccr = Oxlf (31 decimal) to write to the instruc­
tion cache control register, or Ox1e (30 decimal) to write to the diagnostic register (DIAG). 
Any other ascrd value is interpreted according to the table above. 

As described in the table above. 

For hyperSPARC, any write special register instruction causes packet splitting to be enforced 
for the next three instructions. 

3130 29 25 24 19 18 14 13 12 4 0 

11 0 I rd I 110000 I rsl I 0 ignored I rs2 I 
3130 29 25 24 19 18 14 13 12 0 

11 0 I rd I 110000 I rsl I simm 13 I 
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WRPSR Write Processor State Register 

(Privileged Instruction) 

WRPSR 

Operation: PSR - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: wr regrsl, reg_or _imm, %psr 

Description: WRPSR does a bitwise logical XOR of the contents of register r[ rs 1] with either the contents 
of r[rs2] (if bit field i=O) or the 13-bit sign-extended immediate value contained in the in­
struction (if bit field i=I). The result is written into the writable subfields of the PSR. How­
ever, if the result's CWP field would point to an unimplemented window, an illegal_instruc­
tion trap is generated and the PSR remains unchanged. 

Traps: 

Format: 

WRPSR is a delayed-write instruction: 

1. If any of the three instructions following a WRPSR uses any PSR field that WRPSR modi­
fied, the value of that field is unpredictable. Note that any instruction which references a 
non-global register makes use of the CWP, so following WRPSR with three NOPs would 
be the safest course. 

2. If a WRPSR instruction is updating the PSR's processor interrupt level (PIL) to a new 
value and is simultaneously setting enable traps (ET) to one, this could result in an inter­
rupt trap at a level equal to the old PIL value. 

3. If any of the three instructions after a WRPSR instruction reads the modified PSR, the 
value read is unpredictable. 

4. If any of the three instructions after a WRPSR is trapped, a subsequent RDPSR in the trap 
handler will get the register's new value. 

Programming note: Two WRPSR instructions should be used when enabling traps and 
changing the PIL value. The fIrst WRPSR should specify ET=O with the new PIL value, and 
the second should specify ET=1 with the new PIL value. 

illegal_instruction 
privileged_instruction (if S=O) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored I 110001 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 
110001 

1 rsl 1 i=11 simm13 1 
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5 SPARe Instruction Set 
TECHNOLOGY, ====================== 
WRTBR Write Trap Base Register 

(Privileged Instruction) 

WRTBR 

Operation: TBR - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: wr regrsi, reg_or _imm, %tbr 

Description: WRTBR does a bitwise logical XOR ofthe contents of registerr[ rs 1] with either the contents 
of r[rs2] (if bit field i=O) or the 13-bit sign-extended immediate value contained in the in­
struction (if bit field i= 1). The result is written into the trap base address field of the TBR. 

Traps: 

Format: 

WRTBR is a delayed-write instruction: 

1. If any of the three instructions following a WRTBR causes a trap, the TBA used may be 
either the old or the new value. 

2. If any of the three instructions after a WRTBR is trapped, a subsequent RDTBR in the trap 
handler will get the register's new TBA value. 

privileged_instruction (if S=O) 

31 30 29 2S 24 19 18 14 13 12 S 4 0 

11 01 ignored I 110011 I rsl I i=O I ignored I rs2 I 
31 30 29 2S 24 19 18 14 13 12 0 

11 01 ignored 1 
110011 

1 rsl 1 i=11 simm13 1 
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WRWIM Write Window Invalid Mask register 

(Privileged Instruction) 

WRWIM 

Operation: WIM - r[rsl] XOR (r[rs2] or sign extnd(simm13)) 

Assembler 
Syntax: wr regrsl, reg_or _imm, %wim 

Description: WRWIM does a bitwise logical XOR ofthe contents of registerr[ rs 1] with either the contents 
of r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in the in­
struction (if bit field i=I). The result is written into the writable bits of the WlM register. 

Traps: 

Format: 

WRWIM is a delayed-write instruction: 

1. If any of the three instructions following a WRWIM is a SAVE, RESTORE, or RETT, the 
occurrence of window_overflow and window_underflow is unpredictable. 

2. If any of the three instructions after a WRWlM instruction reads the modified WlM, the 
value read is unpredictable. 

3. If any of the three instructions after a WRWIM is trapped, a subsequent RDWIM in the 
trap handler will get the register's new value. 

privileged_instruction (if S=O) 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored I 110010 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 o 

11 01 ignored 110010 rsl I i=11 simm13 
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WRY Write Y register WRY 

Operation: Y - r[rs1] XOR (r[rs2] or sign extnd(simm13» 

Assembler 
Syntax: wr regrsl, reg_or _imm, %y 

Description: WRY does a bitwise logical XOR of the contents of register r[rs 1] with either the contents of 
r[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in the instruc­
tion (if bit field i=1). The result is written into the Y register. 

Traps: 

Format: 

WRY is a delayed-write instruction: 

1. If any of the three instructions following a WRY is a MULScc or a RDY, the value of Y 
used is unpredictable. 

2. If any of the three instructions after a WRY instruction reads the modified Y register, the 
value read is unpredictable. 

3. If any of the three instructions after a WRY is trapped, a subsequent RDY in the trap han­
dler will get the register's new value. 

none 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 01 ignored I 110000 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 ignored 1 
110000 

1 rs1 1 i=ll simm13 I 
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XNOR Exclusive-Nor XNOR 

Operation: r[rd] - r[rsl] XOR not(r[rs2] or sign extnd(simmI3» 

Assembler 
Syntax: xnor regrsl, reg_or _imm, regrd 

Description: This instruction does a bitwise logical XOR of the contents of register r[ rs 1] with the one's 
complement of either the contents of r[ rs2] (if bit field i=O) or the 13-bit sign-extended im­
mediate value contained in the instruction (if bit field i=I). The result is stored in register 
r[rd]. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 000111 I rsl I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 01 rd 
1 

000111 
1 

rsl 1 i=11 simm13 I 
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XNORcc Exclusive-Nor and modify icc 

Operation: r[rd) - r[rsI) XOR not(r[rs2) or sign extnd(simm13)) 

n - r[rd)<3I> 

z - if r[rd) =0 then 1, else 0 

v - 0 
c- 0 

Assembler 
Syntax: xnorcc regrsl, reg_or _imm, regrd 

XNORcc 

Description: This instruction does a bitwise logical XOR of the contents of register r[rsI) with the one's 
complement of either the contents of r[rs2) (if bit field i=O) or the 13-bit, sign-extended im­
mediate value contained in the instruction (if bit field i= 1). The result is stored in register 
r[rd). XNORcc also modifies all the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd I 010111 I rsl I i=O! ignored ! rs2 ! 

31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 010111 I rsl li=d simm13 I 
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XOR Exclusive-Or XOR 

Operation: r[rd) - r[rsl) XOR (r[rs2) or sign extnd(simm13)) 

Assembler 
Syntax: xor regrsl, reg_or _imm, regrd 

Description: This instruction does a bitwise logical XOR of the contents of register r[rs 1) with either the 
contents of r[rs2) (if bit field i=O) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i=l). The result is stored in register r[rd). 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd 1000011 I rs1 I i=O I ignored I rs2 I 
31 30 29 25 24 19 18 14 13 12 0 

11 0 I rd I 000011 I rs1 I i=rj simm13 I 
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XORcc Exclusive-Or and modify icc 

Operation: r[rd] - r[rsl] XOR (r[rs2] or sign extnd(simm13» 

n - r[rd]<31> 

Assembler 

z - ifr[rd] =0 then 1, else 0 

v-O 

c- 0 

Syntax: xorcc regrsl, reg_or _imm, regrd 

XORcc 

Description: This instruction does a bitwise logical XOR of the contents of register r[rsl] with either the 
contents ofr[rs2] (if bit field i=O) or the 13-bit, sign-extended immediate value contained in 
the instruction (if bit field i= 1). The result is stored inregisterr[ rd]. XORcc also modifies all 
the integer condition codes in the manner described above. 

Traps: none 

Format: 

31 30 29 25 24 19 18 14 13 12 5 4 0 

11 0 I rd 1010011 rsl I i=ol ignored I rs2 I 

31 30 29 25 24 19 18 14 13 12 o 

11 01 rd I 010011 I rsl b=11 simm13 
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hyperSPARC Software Notes 

The hyperSPARC architecture incorporates a number of features which compiler writers and/or assembly 
language programmers concerned with time critical systems such as operating systems or real-time applica­
tions can use to improve the instruction throughput. In this section, we discuss these features and also point 
out pitfalls and code sequences which should be avoided if feasible. 

A.I Reset Considerations 

A reset trap can be caused by an initial system power-on. Also, it could be caused by a watchdog reset or 
software reset. A reset causes various status registers to be initialized to known values. This is done to sup­
port post-mortem analysis when system problems arise. 

During a power-on reset when boot software begins execution through the reset trap handler, there are cer­
tain status register fields which should be initialized by software in order to support initial debugging and 
eliminate potential problems. 

When reset occurs, the S bit is set and the enable trap (ET) bit is cleared automatically by the hardware. How­
ever, the enable floating-point (EF), processor interrupt level (PIL), previous supervisor (PS), and CWP 
(Current Window Pointer) fields are not initialized. Furthermore, the writeable window invalid mask 
(WIM) bits are not initialized and trap base register (TBR) (which includes the trap base address or TBA 
field) is not initialized. At power-on, these register fields take on unpredictable values. Therefore, the boot 
program should initialize these critical fields after a power-on reset. 

EF - Initial debugging or diagnostic analysis is best accomplished by focusing on one section of hardware 
at a time. It is therefore recommended that the PSR's EF bit be cleared initially until the appropriate time 
to begin testing and/or executing fp instructions. 

CWP- The CWP should be set to a known value (e.g., 0) so that the WIM can be correctly initialized and 
unanticipated window overflows and underflows can be avoided. 

PIL - If interrupts are to be masked, the PIL should be set to the highest value (15 decimal) before traps 
are enabled (ET = 1). Likewise, a suggested method for modifying interrupt levels is to do so within a trap 
handler while traps are disabled. 

WIM - The WIM is initialized through software, not hardware. If the WIM bits are not cleared initially, 
random bits could be set which can cause an unexpected window overflow (or underflow) trap at the execu­
tion of the first save (or restore) instruction. Typically, if the CWP is set to "n," then bit «n+ 1) mod 8) in 
the WIM should be set. This reserves a register window for trap handling when window overflows or under­
flows occur. 

TBR - The TBR is initially undefined. Reset causes instructions to be fetched beginning at virtual address 
O. It is assumed that the trap table is initially loaded at virtual location O. Once traps have been enabled, if 
a trap occurs and the TBA field has not either been written to zero, or written to the address page value at 
which a new trap table has been installed, it is likely that the processor will enter error mode since it will 
not vector to the actual trap table, but rather it will vector to some random location in memory. 
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Y - The Y register is initially undefined. It must be initialized before it is used. 

ICCR - The instruction cache control register (ICCR) is initialized by hardware. 

FSR - The only field initialized during reset is the qne bit which is cleared as a result of clearing the entries 
in the FPQ. The floating-point unit status register (FSR) can only be initialized if the EF bit of the PSR is 
set. The programmer should at least initialize the rounding direction (RD), trap enable mask (TEM), and 
non-standard floating-point (NS) fields to appropriate values before attempting to execute fp instructions. 

A.I.I Miscellaneous Notes 

If there are fpops executing in the floating-point unit (FPU) and the FPU is disabled (via a WRPSR instruc­
tion which sets the EF bit in the PSR to zero) the behavior is undefined. Software should ensure that the 
queue is empty and all fp exceptions have been serviced before disabling the FPU. 

When writing to a special register (e.g., PSR, WIM, TBR, Y, ... ), for the three subsequent instructions, DO 
NOT use any fields which are being modified. 

Here is a sample of a bad code sequence ... 

wr CONST, %psr 
add %iO, %10, %00 /* if CWP modified - problems ... */ 
bg label /* if cc modified - problems ... */ 
ta %gO + %gO /* if traps disabled - problems ... */ 
wr %10, % Y udiv reads incorrect value of Y 

Here is a sample of an acceptable code sequence ... 

wr CONST, %psr 
add %g2, %g3, %gl /* if CWP modified - no problems ... */ 
ba label /* if cc modified - no problems ... */ 
nop 

As mentioned in the previous section regarding power-on reset, it is best not to change interrupt levels except 
while traps are disabled. If traps are enabled and the PIL is modified, an interrupt can occur before the PIL 
modifications take effect and an interrupt intended to be masked can occur anyway. 

When using Flush in a hyperSPARC uniprocessor system, there are no problems disabling the flush traps. 
Since there is only one instruction cache, flushing self-modifying code sequences from the on-chip instruc­
tion cache can be accomplished directly through the Flush instruction. 

In a symmetric mUltiprocessing system running shared self-modifying code between processors, it can be 
difficult to distinguish which processors' on-chip instruction cache(s) needs to have its sub-block flushed. 
It is recommended that the flush trap disabled (FTD) bit be cleared in these environments. When the Flush 
instruction is attempted an unimplemented flush trap will occur. The unimplemented flush trap handler can 
be used to determine which processors' instruction cache(s) need flushing. These appropriate flushes will 
be performed through software. 

A.2 Compiler Optimization Notes 

A.2.1 Software pipelining: 

Software pipelining means ordering instructions to increase performance, which is measured in terms of 
instructions executed in a fixed number of cycles. By observing some guidelines for instruction ordering, 
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execution speed can be greatly improved. These guidelines make use of special characteristics of the hyper­
SPARC architectural features as well as specific features tailored to the SPARC instruction set. These guide­
lines are: 

Sequences to promote: 

• Attempt to reorder instruction sequences so as to interleave ALU and Load/Store instructions (i.e., reor­
der resource dependencies). However, constant generation, array indexing, and ALUcc/Bicc sequences 
do not need interleaving since they are handled through the Fast Constant/Fast Index/Fast Branch features 

• Try to interleave unrelated integer and fp instructions. 

Sequences to avoid: 

• any data dependency where a Load or atomic Load/Store, or an fp instruction is followed within three 
instructions by a dependent operation. 

• a store instruction followed immediately by a Load, Store, or JMPL instruction. 

• fp code sequences that involve an FDIV or FSQRT which is followed by more than 4 additional fp instruc­
tions. This does not include independent fp Loads, fp Stores, and fp Branches. Avoid a double precision 
multiplication followed by another multiplication. 

• group F instructions except when necessary (Refer to Section 2.4.1.4). 

A.2.2 Loop Unrolling: 

Certain loops execute a fixed number of iterations and loop unrolling is used to reduce the number of times 
the conditional test and Branch instructions (present at the beginning or end of each iteration) are executed. 
It also increases the pipeline efficiency since control transfer now takes place after a larger number of in­
structions. However, the unrolled loop occupies a larger code space increasing the potential for cache misses 
and consequently, idle cycles. However, since most of the loops are quite small in size, if the cache is large 
enough, loop unrolling can be profitably employed to increase the execution speed. The hyperSPARC CPU 
has a large on-chip instruction cache of 8-Kbytes which facilitates loop unrolling. The loop executes from 
the instruction cache and, for most loops, will have a considerable speed-up in execution time. 

A.2.3 Inter-procedure Optimizations: 

Since the SPARC Architecture specifies a large number of overlapping register windows to support parame­
ter passing for procedure calls, today's SPARC compilers do not usually make an effort to optimize register 
usage between procedure calls. Instead, a CALL or JMPL followed by a SA VB is used to enter the procedure. 
There are no problems as long as the nested procedure calls are not very deep. If the nested calls extend deep­
er, a window overflow occurs. Furthermore, additional nesting suffers window overflow handling as lower 
level procedures are called. The penalty doubles as the lower level procedures are exited and window under­
flow exceptions occur on the path upward through the calling procedure. 

Today's structured design and programming styles advocate modularization. Software modules are ex­
pected to implement minimal data exchange and functional strength (i.e., each procedure or module is dedi­
cated to computing a single specific result). This is usually achievable by passing a small number of parame­
ters between procedures. Because of the generic approach used to make procedure calls in SPARC systems, 
many registers in the register file are unused, and therefore wasted. 

However, many RISC microprocessors do not employ overlapping register windows. These processors suf­
fer greatly when register states must be saved through expensive memory accesses. Therefore, compilers 
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which generate code for these machines optimize register usage between procedure calls, to minimize un­
necessary register saves between procedure calls. 

Therefore, the underflow/overflow trap overhead can be reduced by using smart register allocation algo­
rithms for procedures which pass and use only small numbers of variables and eliminating unnecessary save 
and restore invocations. 

A.2.3.1 Profile Tracing for Branch Prediction: 

When the hyperSPARC CPU encounters a Branch instruction, it assumes that the branch is taken and starts 
fetching along the new instruction stream. Compilers for the hyperSPARC CPU should attempt to take ad­
vantage of this feature by providing trace scheduling facilities. 

These trace scheduling facilities should allow execution of profile traces for programs and representative 
data such that reordering and modification of instruction branches are biased towards branch taken. 

A.2.4 Operating Systems Notes 

A.2.4.1 Context Switching and Machine State Saves: 

Context switches and machine state saves should be conducted using store double and load double instruc­
tions to as great an extent as possible. hyperSPARC allows the programmer to move twice the data in the 
same amount of time using doubleword instructions rather than word size instructions. 
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Address Translation Cache (ATC): The ATC is a cache of address translation entries used by a Memory 
Management Unit (MMU) to translate virtual addresses to physical addresses. The CY7C604/605 
uses an ATC for address translation, but the more familiar term translation lookaside buffer (TLB) 
is used throughout the text. 

Aliasing: Mapping two or more virtual addresses to the same physical address. SPARC software conven­
tions permit the use of aliases in address spaces that are modulo with respect to the system's underlying 
cache size. 

Annul bit: This bit is used in the SPARC architecture to allow the designer or compiler to decide whether 
or not the delay slot instruction of a delay control transfer instruction will be executed if the condition­
al branch is taken. See Section 2.3.3.4 for further information. 

Cache controller: Provides cache memory access control for a 64-Kbyte direct-mapped virtual cache. 

Cache lock: A mechanism that allows the system to lock all entries in the cache, supported by the 
CY7C604. This feature allows deterministic response times for real-time systems. 

Content addressable memory (CAM): A memory that is accessed by supplying the value to be compared 
to the memory contents. When accessed, the CAM returns the location of the memory where the value 
is stored, or returns a no-match signal if the memory does not contain the value. In the case of the 
CY7C604/605 MMU, the value returned by the CAM array is used to address a value in the TLB RAM 
array, which in tum provides the physical translation value to be used by the MMU. 

Copy-back mode: A style of cache management in which write accesses are written to the cache only, not 
to main memory. 

Current window: The block of 24 r-registers pointed to by the current window pointer. 

Current window pointer (CWP): Selects the current register window. 

Delay instruction: The instruction immediately following a control transfer instruction. This instruction 
is always fetched, and is either executed or annulled before the control transfer takes place. 

Double-precision floating point: A data type consisting of 64 bits. 

Doubleword: A data type consisting of two 32-bit words used as a single 64-bit operand. A doubleword 
is always aligned with the most significant word at an even word boundary (bits 2-0 equal to zero). 
The subsequent least significant word is on an odd word boundary (bit 2 equal to one, bits 1-0 equal 
to zero). 
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Extended-precision floating point: A data type consisting of 128 bits. 

I-register: One of the FPV's 32 working registers. 

Floating-point unit (FPV): The coprocessor that performs floating-point calculations. 

Floating-point operate (FPop) instruction: Instructions that perform floating-point calculations. This 
category does not include loads and stores between the memory and the FPV. 

Floating-point queue (FQ): A three-deep storage area for FPop instructions and their addresses while they 
are being executed in the FPV. Floating-point exception traps occur sometime after the floating-point 
instruction is issued, asynchronously to the integer unit (IV) and its pipeline. The queue supplies in­
struction/address pair information to the IV for the FPop that caused the exception. 

Frame pointer: The pointer to the beginning of a memory stack. The frame pointer is often specific to 
a window, and is set from the stack pointer of the previous window. 

Global registers: A block of eight registers within the register file that are always available to the IV regard­
less of the value of the CWP. 

Halfword: A data type consisting of 16 bits. 

Integer unit (IV): The main computing engine. It fetches all instructions and executes all but the FPop 
and CPop instructions. 

MBus: The interface between a SPARC processing module and the memory subsystem. 

Load/Store: The class of instructions that are either Load or Store instructions. 

Load-Store: The class of instructions that are atomic (indivisible or locked) Load THEN Store. These 
instructions are typically used for the manipulation of multiprocessor semaphores or any other process 
where interruption during the process of loading a variable and storing a new value for that variable 
could be disastrous. The SPARC Load-Store instructions are: SWAP, SWAPA, LDSTVB, and 
LDSTVBA. 

Next program counter (nPC): Contains the address of the next instruction to be executed, assuming no 
trap occurs. 

Processor state register (PSR): The IV's status register. 

Program counter: Contains the address of the current instruction being executed by the IV. 

r-register: A global register or a register in the current window of the register file. 

Register window: A group of 24 working registers from the set of window r-registers (128 window regis­
ters or eight windows are available on the CY7C601161I ). Register windows overlap by eight regis­
ters, causing three types of window registers: ins, outs, and locals. Ins are the window registers that 
were the outs for the previous window. Locals are specific to the register window, and are not shared. 
See Section 2.2 for further information. 
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rd, rsl, and rs2: Instruction format fields which specify the register operands of an instruction. rd is the 

destination register and rsl and rs2 are the source registers. 

RISC: An acronym that stands for Reduced Instruction Set Computer. 

r[rd], r[rsl], and r[rs2]: The actual r-registers specified by rd, rsl, and rs2. 

Page table entry (PTE): An address mapping for a single 4-Kbyte page, a 256-Kbyte region, a 16-Mbyte 
region, or a 4-Gbyte region. 

Page table pointer (PTP): The address pointer used to identify the beginning of a page table in memory. 

Page table pointer cache (PTPC): The cache of page table pointers stored by the CY7C604/605 in order 
to minimize the levels of table walks required for a TLB miss. See Section 4.1 for further details. 

SPARC: An acronym that stands for Scalable Processor ARChitecture. 

Stack pointer: The pointer to the next address in memory that registers are temporarily stored, typically 
in response to a procedure call or trap routine. 

Table walk: The process of accessing levels of tables in memory to find a page table entry for a particular 
virtual address. Each level of the table either has a pointer to the next level of table, or has the page 
table entry. Upon finding a page table entry, the table walk is terminated by the MMU. 

Test Access Port (TAP): The boundary scan test feature implemented on hyperSPARC. 

Translation lookaside buffer (TLB): Acts as a cache for address mapping entries used by the MMU to 
map a virtual address to a physical address. 

Virtual cache: Refers to the direct addressing of the cache by the integer unit using the virtual address bus. 

Word: A data type consisting of 32 bits. 

Write-through mode: A style of cache management that causes write accesses to the cache to be written 
through to main memory upon each write access. 
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ADD, 12-8 

ADDcc,12-9 

address space identifier (ASI) 
CY7C601l611, 6-7 
CY7C604/605 signal, 8-65 
CY7C611,6-52 
register mapping 

CY7C604/605, 8-55-8-56 
RT625,4-46-4-47 

RT620, IMASI, 3-31 
SPARC architecture values, 2-25 

ADDX,12-1O 

ADDXcc, 12-11 

AND, 12-12 

ANDcc, 12-13 

ANDN,12-14 

ANDNcc, 12-15 

annul bit, 2-21, 2-28, 2-33 

assembly language, description, 12-1-12-8 

asynchronous fault address register (SFAR) 
CY7C604/605, 8-47 
RT625,4-42 

asynchronous fault status register (AFSR) 
CY7C604/605, 8-47 
RT625,4-42 

Atomic Load-Store. See Load-Store 

B 

BHOLD, 6-8, 6-30, 7-25 

Bicc, 2-28-2-30, 2-33, 12-16 

big-endian, 2-14, 2-16 

Block Copy, RT625, 4-43 

Block Fill, RT625, 4-43 

1-1 

c 
cache byte write enables, RT625, 4-36 

cache controller 
cache flushing, 4-34, 8-38 
cacheable/non-cacheable, 4-34, 8-39 
control signals, 4-31-4-34, 8-35-8-37 
CY7C604 

aliasing, 8-20-8-22 
cache locking, 8-22 
cache tag, 8-19 

CY7C605 
aliasing, 8-35 
bus snooping, 8-34 
cache state transitions, 8-26-8-34 
cache tag 

MPTAG, 8-24-8-25 
PVTAG,8-24 

multiprocessing support, 8-25-8-26 
LDST cycles, 4-35, 8-40 
MC (MBus cacheable bit), 4-35, 8-39 
modes 

copy-back with write allocate, 4-19, 8-18 
RT625 cache modes, 4-18 
write-through with no write allocate, 4-19, 8-18 

read buffer, 4-33, 8-38 
RT625,4-19-4-34 

aliasing, 4-31-4-32 
bus snooping, 4-31 
cache state transitions, 4-23-4-31 
cache tag, 4-2-4-7, 4-20 
multiprocessing support, 4-22-4-23 
signals, 4-31-4-32 

write buffer, 4-32, 8-37 

cache data forwarding, RT625, 4-37 

CALL, 2-7, 2-20, 2-24, 2-28, 2-32, 12-18 

CBccc, 2-28, 2-29, 2-33, 12-19 

CEXC,6-12 

CHOLD, 6-12, 6-49 

context register (CXR) 
CY7C604/605, 8-44 
RT625,4-39 

context table pointer register (CTPR) 
CY7C604/605, 8-44 
RT625,4-39 
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coprocessor interface, 6-49 

CPop, 2-37-2-38, 6-29, 12-21 

current window pointer (CWP), 2-4-2-5, 2-10, 2-30 

D 
data access PTP (DPTP) 

CY7C604/605, 8-45 
RT625,4-40 

delayed control transfer, 2-32 
instruction couples, 2-34 

diagnostics 
CY7C604/605 

cache data entries, 8-53 
cache tag entries, 8-53 
TLB entries, 8-52 

RT625 
cache tag entries, 4-45 
CDU cache data entries, 4-45 
TLB entries, 4-44 

E 
ERROR 

CY7C6011611 
ERROR signal, 6-14 
timing example, 6-40-6-41 

RT620 
mode, 3-79, 3-100-3-102 
PERROR, 3-32 
state, 3-6 

signal, 8-65 

F 
f-registers, 2-7,7-14 

floating-point 
condition codes, 6-13 
coprocessor instruction flush, 6-14 
CY7C602 

BHOLD signal, 7-12 
CHOLD signal, 7-12 

1-2 

denorrnalized numbers, 7-21 
exception cases, 7-21 
exception handling, 7-20 
FHOLD signal, 7-13 
FLUSH, 7-10 
FNULL,7-13 
FP queue, 7-10 
FSR,7-15 
IU-FPU interface, 7-4 
MHOLD signal, 7-12 
queue, 7-15 

double-precision, 2-18 
exception, 6-13 
exception acknowledge, 6-14 
extended-precision, 2-19 
hold,6-13 
instruction in buffer, 6-13 
quad-precision, 2-19 
RT620, 3-15-3-24 

denorrnalized numbers, 3-23, 3-84 
double-precision, 3-23 
execution units, 3-23 
non-standard mode, 3-23 

RT620 FPU 
error mode, 3-101 
fp instr. pipeline, 3-75 
non-standard mode, 3-24 
queue, 3-17 
reset, 3-10 1 
traps, 3-82-3-101 

single-precision, 2-18 
status register (FSR), 2-12-2-14 
unit present, 6-14 

flush 
instruction, 2-38, 6-14, 12-61 
RT620, 3-29-3-31 

FLUSH, 6-14 

FMOVs, 12-44 

FMULd, 12-46 

FMULs, 12-48, 12-53 

FNEGs, 12-49 

FNULL,8-65 

FP Queue, 7-15 

FPop, 2-37, 6-29 

FqTOd, 12-50 
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FqTOi, 12-51 

FqTOs, 12-52 

frame pointer, 2-4, 0-2 

FsMULd, 12-53 

FSQRTd, 12-54 

FSQRTs, 12-56 

FSR,2-12-2-14 

FsTOd, 12-57 

FsTOi, 12-58 

FsTOq, 12-59 

FSUBd, 12-60 

FSUBq, 12-61 

FSUBs, 12-62 

FXACK, 6-14, 6-39 

H 
hardware interlocks 

CY7C601l611, 6-20 
RT620, 3-11-3-14 

I 
index tag register (ITR) 

CY7C604/605, 8-45 
RT625,4-40 

instructions 
ADD,12-8 
ADDcc, 12-9 
ADDX, 12-10 
ADDXcc, 12-11 
AND, 12-12 
ANDcc, 12-13 
ANDN,12-14 
ANDNcc, 12-15 
arithmeticllogical/shift, 2-27 
atomic load-store, 2-26 
Bicc, 2-28-2-30, 2-33, 12-16 
CALL, 2-7, 2-20, 2-24, 2-28, 2-32, 12-18 
CBccc, 2-28, 2-29, 2-33, 12-19 

1-3 

control transfer, 2-28 
delay, 2-33 
delayed control transfer, 2-32 
formats, 2-20 
FABSs, 12-22 
FADDd, 12-23 
FADDq, 12-24 
FADDs, 12-25 
FBfcc, 2-28, 2-29, 2-33, 12-26 
FCMP, 2-29, 7-10 
FCMPd, 12-28 
FCMPEd, 12-29 
FCMPEq, 12-30 
FCMPEs, 12-31 
FCMPq, 12-32 
FCMPs, 12-33 
FDIVd, 12-34 
FDIVq, 12-35 
FDIVs, 12-36 
FdTOi, 12-38 
FdTOq, 12-39 
FdTOs, 12-40 
FEXC, 6-13, 6-39 
FHOLD,6-13 
FINS1, FINS 2 signal, 7-8 
FiTOd, 12-41 
FiTOq, 12-42 
FiTOs, 12-43 
FsMULd, 12-53 
JMPL, 2-4, 2-7, 2-28, 2-30, 2-34,12-63 
LD,12-64 
LDA, 12-65 
LDC, 12-66 
LDCSR, 12-67 
LDD,12-68 
LDDA,12-69 
LDDC, 12-70 
LDDF, 12-71 
LDF, 12-72 
LDFSR, 12-73 
LDSB, 12-74 
LDSBA, 12-75 
LDSH, 12-76 
LDSHA, 12-77 
LDST 

CY7C604/605 operation, 8-40 
CY7C6011611 signal,6-9 
CY7C601/611 timing example, 6-28 



instructions (continued) 
CY7C604/605 signal, 8-66 
RT620, timing example, 3-41, 3-48, 3-67 

LDSTUB, 2-26, 12-78 
LDSTUBA, 12-79 
LDUB,12-80 
LDUBA, 12-81 
LDUH,12-82 
LDUHA, 12-83 
load, 6-26 
load and store, 2-25 
mnemonics, 12-3 
multiprocessing, 2-26 
pipeline 

CY7C6011611,6-16-6-23 
RT620, 3-58-3-78 

MEXC,8-66 
MHOLD, 7-25, 8-66 
MULScc, 2-11, 12-84 
OR, 12-85 
ORcc,12-86 
ORN,12-87 
ORNcc, 12-88 
RDASR, 12-89 
RDPSR, 2-10, 2-37, 12-90 
RDTBR, 2-11,2-37, 12-91 
RDWIM, 2-10, 2-37,12-92 
RDY, 2-37, 12-93 
register differences, RT620/CY7C601, 2-2 
RESTORE, 2-4, 2-5, 2-10, 2-28, 2-32, 12-94 
RETT, 2-2, 2-5, 2-10, 2-28, 2-30, 2-34, 2-55, 6-49, 

12-95 
SAVE, 2-4, 2-5, 2-10, 2-28, 2-32, 12-97 
SDIV,12-98 
SDIVcc, 12-99 
SETHI, 2-20, 2-28, 12-100 
SLL, 12-101 
SMUL, 12-102 
SMULcc, 12-103 
SNULL,8-66 
SRA,12-104 
SRL,12-105 
ST, 12-106 
STA,12-107 
STB, 12-108 
STBA, 12-109 
STC, 12-110 
STCSR, 12-111 

1-4 

STD,12-112 
STDA, 12-113 
STDC, 12-114 
STDCQ,12-115 
STDF, 12-116 
STDFQ,12-117 
STF, 12-118 
STFSR,2-29, 12-119 
STH,12-120 
STHA, 12-121 
store, 6-27 
SUB, 12-122 
SUBcc, 12-123 
SUBX,12-124 
SUBXcc, 12-125 
SWAP, 2-26, 12-126 
SWAPA,12-127 
TADDcc, 2-28, 12-128 
TADDccTV, 2-28, 12-129 
Ticc, 2-11, 2-28, 2-30, 12-130 
TSUBcc,2-28, 12-132 
TSUBccTV, 2-28, 12-133 
types, 2-25-2-38 
UDIV, 12-135 
UDIVcc, 12-135 
UMUL, 12-136 
UMULcc, 12-137 
UNIMP,2-38, 12-138 
WRASR, 12-139 
WRPSR, 2-10, 2-29, 2-37, 12-140 
WRTBR, 2-11, 2-37, 12-141 
WRWIM, 2-10, 2-37, 12-142 
WRY, 2-37, 12-143 
XNOR, 12-144 
XNORcc, 12-145 
XOR,12-146 
XORcc, 12-147 

instruction access PTP register (lPTP) 
CY7C604/605, 8-45 
RT625,4-40 

instruction cache (RT620), 3-25-3-30 

integer condition codes (icc), 2-8 

integer unit control/status registers, 2-7-2-13 
lCACHE control register (lCCR), 2-11 
PSR,2-8-2-10 
TBR,2-1O 
WIM,2-1O 



S Index 
TECHNOLOGY, ====================== 

Y register, 2-11 

INULL,8-65 

J 
JMPL, 2-4, 2-7, 2-28, 12-63 

JMPL, RETT, 2-30, 2-34, 12-95, 

JMPL-RETT instruction pair, 2-2 

L 
LD,12-64 

LDA,12-65 

LDC, 12-66 

LDCSR, 12-67 

LDD, 12-68 

LDDA, 12-69 

LDDC, 12-70 

LDDF,12-71 

LDF, 12-72 

LDFSR, 12-73 

LDSB, 12-74 

LDSBA, 12-75 

LDSH,12-76 

LDSHA, 12-77 

LDSTUB, 2-26, 12-78 

LDSTUBA, 12-79 

LDUB,12-80 

LDUBA, 12-81 

LDUH,12-82 

LDUHA, 12-83 

Load-Store (LDST) 
CY7C604/605 operation, 8-40 
CY7C6011611 signal, 6-9 
CY7C6011611 timing example, 6-28 

1-5 

CY7C604/605 signal, 8-66 

M 
MBus 

burst transactions, 11-11 
data cycle(s), 11-10-11-11 
Levell, 11-1-11-2 
Level 2, 11-2 
MAD bus, 8-67 
MAS signal, 8-68 
MBB signal, 8-68 
MBG signal, 8-68 
MBR signal, 8-68 
MERR signal, 8-68 
MIH signal, 8-68 
MRDY signal, 8-69 
MRST signal, 8-69 
MRTY signal, 8-69 
MSH signal, 8-69 
non-burst transactions, 11-11 
Relinquish and Retry, 11-12 
Retry, 11-12 
signal summary, 11-3-11-10, 11-11-11-23 
transactions 

Coherent Invalidate, 11-15-11-17 
Coherent Read, 11-14-11-17 
Coherent Read and Invalidate, 11-16-11-17 
Coherent Write and Invalidate, 11-17-11-19 
write, 11-13-11-14 

memory data strobe (MDS), 8-66 

memory management unit (MMU) 
CY7C604/605, 8-3 
flush, 8-16-8-17 
invalidate, 4-17-4-18 
operation modes, 4-16-4-18, 8-15-8-17 
probe, 4-18, 8-17 
RT625,4-4 

memory stack, 2-4 

MEXC, 8-66 

MHOLD, 7-25, 8-66 

MULScc, 2-11, 12-84 

multi chip configuration, CY7C604/605, 8-48-8-52 
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o 
OR, 12-85 

ORcc,12-86 

ORN,12-87 

ORNcc, 12-88 

p 

page table entry (PTE), 4-4, 4-5, 4-12-4-13,8-3,8-4, 
8-11-8-12 

page table pointer (PTP), 4-11-4-12, 8-10-8-11 

page table pointer cache (PTPC), 4-13,8-12 

pinouts, RT625, 4-56 

power-on reset (POR), 8-69 

processor interrupt level (PIL), 2-9 

processor state register (PSR), 2-8-2-10 

program counter(s), 2-8 
delayed control transfer, 2-33 

R 
r-register 

ins, 2-32-2-33 
locals, 2-32-2-33 
outs, 2-32-2-33 
r[0],2-27 
RT620, 2-3-2-7 
special r-registers, 2-6-2-7 

RDASR, 12-89 

RDPSR, 2-10, 2-37, 12-90 

RDTBR, 2-11, 2-37, 12-91 

RDWJM, 2-10, 2-37, 12-92 

RDY, 2-37, 12-93 

register differences, RT620/CY7C601, 2-2 

registers 
CY7C604/605 

CY7C604 system control register, 8-41-8-42 

1-6 

CY7C605 system control register, 8-42 
asynchronous fault address (AFAR), 8-47 
asynchronous fault status (AFSR), 8-47 
context register (CXR), 8-44 
context table pointer (CTPR), 8-44 
data access PTP (DPTP), 8-45 
index tag register (ITR), 8-45 
instruction access PTP (1PTP), 8-45 
reset register (RR), 8-44 
root pointer register (RPR), 8-45 
synchronous fault address (SFAR), 8-47 
synchronous fault status (SFSR), 8-46 
'ILB replacement control (TRCR), 8-46 

RT625 
asynchronous fault address (AFAR), 4-42 
asynchronous fault status (AFSR), 4-42 
context register (CXR), 4-39 
context table pointer (CTPR), 4-39 
data access PTP (DPTP), 4-40 
index tag register (ITR), 4-40 
instruction access PTP (IPTP), 4-40 
reset register (RR), 4-39 
root pointer register (RPR), 4-39 
synchronous fault address (SFAR), 4-42 
synchronous fault status (SFSR), 4-41 
system control register, 4-37-4-38 
'ILB replacement control (TRCR), 4-40 

reset 
CY7C6011611 

RESET signal, 6-15 
state, 6-42 

CY7C604/605, 8-54-8-98 
in multichip configuration, 8-55-8-98 
power-on (POR), 8-54-8-98 
power-on (RSTIN), 4-45-4-84 
software external (SER), 8-55-8-98 
software internal (SIR), 8-54-8-98 
watchdog (WDR), 8-54-8-98 

RT620, 3-78, 3-100-3-102 
PRST signal, 3-32 
state, 3-6-3-7 
timing example, 3-53 

RT625, 4-45-4-84 
software internal (SIR), 4-46-4-84 
watchdog (WDR), 4-46-4-84 

reset register (RR) 
CY7C604/605, 8-44 
RT625,4-39 
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RESTORE, 2-4, 2-5, 2-10, 2-28, 2-32, 12-94 

RETT, 2-2, 2-5, 2-10, 2-28, 2-55, 6-49, 12-95 

root pointer register (RPR) 
CY7C604/605, 8-45 
RT625,4-39 

s 
SAVE, 2-4, 2-5, 2-10, 2-28, 2-32, 12-97 

SDIV,12··98 

SDIVcc, 12-99 

SETHI, 2-20, 2-28, 12-100 

SLL, 12-101 

SMUL, 12-102 

SMULcc, 12-103 

SNULL,8-66 

SPARC registers 
features, 2-2-2-15 
r-registers, 2-3-2-7 
special registers, 2-6 

SRA,12-104 

SRL, 12-105 

ST, 12-106 

STA, 12-107 

stack pointer, 2-4, G-3 

STBA, 12-109 

STC, 12-110 

STCSR, 12-111 

STD, 12-112 

STDA, 12-113 

STDC, 12-114 

STDCQ, 12-115 

STDF, 12-116 

STDFQ,12-117 

STF, 12-118 

STFSR, 2-29,12-119 

1-7 

STH, 12-120 

STHA, 12-121 

SUB, 12-122 

SUBcc, 12-123 

SUBX, 12-124 

SUBXcc, 12-125 

supervisor 
CY7C601l611, reset, 6-40 
RT620 

ICACHE privilege match, 3-25-3-27 
reset, 3-78 
trap operation, 3-79 

mode, 2-2 

SWAP, 2-26, 12-126 

SWAPA, 12-127 

synchronous fault address register (SFAR) 
CY7C604/605, 8-47 
RT625,4-42 

synchronous fault status register (SFSR) 
CY7C604/605, 8-46 
RT625,4-41 

synchronous faults 
CY7C604/605, 8-56-8-64 
RT625, 4-48-4-56 

cases, 4-51-4-56 

system control register (SCR) 
CY7C605, 8-42-8-44 
RT625, 4-37-4-38, 8-41-8-42 

T 
table walk, 4-8-4-11, 8-9-8-10 

TADDcc, 2-28, 12-128 

TADDccTV,2-28, 12-129 

tagged arithmetic, 2-28 

tagged data, 2-15, 2-28 

TBR, 2-7, 2-10, 2-30, 2-54, 6-47 

Ticc, 2-11, 2-28, 2-30, 12-130 

Test Access Port (TAP) 
supporting signals, 4-61 
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Test Access Port (TAP) (continued) 
MBus SCAN Test Feature, 10-3 

TLB replacement control register (TRCR) 
CY7C604/605, 8-46 
RT625,4-39 

translation lookaside buffer (TLB) 
CY7C604/605, 8-4 
entries, 4-8, 4-44, 8-7, 8-52 
locking, 4-8, 8-7 
look-up, 4-7, 8-6 
sections, 4-4 
table walk, 4-8-4-11, 8-9-8-10 

trap 
addressing, 2-54, 6-47 
CY7C601l611, 6-42-6-49 

asynchronous, 6-42 
interrupts, 6-45-6-46 
priority, 6-48 
reset, 6-42 
synchronous, 6-42, 6-43-6-44 
timing example, 6-22 

CY7C602, floating-point, 7-20, 7-21 
floating-point, 3-83-3-102 

FP/CP, 2-53, 6-46 
IEEE exceptions, 7-21 
interrupts, 2-53, 6-39 
operation, 2-54, 6-47 
RT620,3-77-3-102 
types, 2-54 

trap base register (TBR), 2-7, 2-10, 2-30, 2-54, 6-47 

TSUBcc, 2-28, 12-132 

TSUBccTV, 2-28, 12-132 

u 
UDIV, 12-134 

1-8 

UDIVcc, 12-135 

UMUL, 12-136 

UMULcc, 12-137 

UNIMP, 2-38, 12-138 

user, mode, 2-2 

w 
window invalid mask (WIM), 2-4, 2-5, 2-7, 2-10, 2-32 

window overflow and underflow, 2-4 
see also window invalid mask (WIM) 

WRASR, 12-139 

WRPSR, 2-10, 2-29, 2-37, 12-140 

WRTBR, 2-11, 2-37, 12-141 

WRWIM, 2-10, 2-37, 12-142 

WRY, 2-37, 12-143 

x 
XNOR, 12-144 

XNORcc, 12-145 

XOR,12-146 

XORcc, 12-147 

y 

Y register, 2-11 
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