DATA HANDBOOK

FAST

 LogicSupplement

Signetics
Philips Components
PHILIPS

FAST Logic
 Supplement

Signetics

Philips Components

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work rightto these products, andmakes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics Products for use in such applications do so at their own risk and agree to fully indemnity Signetics for any damages resulting from such improper use or sale.

PREFACE

Since the publication of the 1989 FAST Logic Data Handbook, twentyfour new products have been released. Product specifications for these products are contained in this supplement and supercede any previously published "Preliminary Specifications".

74FI89A	74F711	74F1763	74F8960
744219A	74FIT12	74FF1766	74488962
74F646A	74F723	74F3893	74F8963
74F648A	74F725	74F5074	74F50109
744651A	74F777	74F5300	74F50728
74F652A	74F807	74F5302	74F50729

A series of Industrial Temperature part types, guaranteed over an extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (instead of the traditional temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) has also been released. Specifications for these parts and ordering information has been added to the existing data sheets. An "l" prefix has been added to designate the industrial temperature range part types:

$174 F 86$	174F244B	174F656A	I74F3037
174 F112	$174 F 280 B$	$174 F 657$	
174 F175	$174 F 655 A$	174 F776	

Development of the following part types listed as "preliminary" in the 1989 FAST Logic Data Handbook has been discontinued and these should not be considered as valid part types:

74F657A 74F1761 74F4763
Additional changes, corrections, or additions to existing specifications have been made and are included in this supplement for reference. Only those pages of individual product specifications which had a change, correction, pr addition are included along with the first page of the product specification. All revised areas have been highlighted by a bold dotted square to facilitate locating the change.

Four application notes AN219, AN222, AN220 and AN222 which support the 74F50XXX family are contained in this supplement. These application notes are not in the 1989 FAST Data Manual.

This booklet is a supplement to the 1989 FAST Logic Data Handbook and should be used in conjunction with it.

Product Status

FAST Logic Products

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or In Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and supplementary data will be published at a later date. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at anytime without notice in order to improve design and supply the best possible product.

TABLE OF CONTENTS

PART NO.	DATE REV.	DESCRIPTION OF ADDITION/CHANGE	PAGE
74F06	11/27/89	DC Electrical Characteristics (Vol - Max Low-level output voltage)	1
74 F 07	11/27/89	DC Electrical Characteristics (Vol - Max Low-level output voltage)	1
74F74	10/5/89	Logic Symbol (Pins 11, 10, 13), AC Waveforms (Dn)	3
74F85	4/27/90	I/O loading \& Fan-Out table, Logic Diagram (pin3), Ordering Info. (SOL)	5
74F86	2/9/90	Added feature of Industrial Temperature Range (-40 to +85 C)	7
74 F 112	2/9/90	Added feature of Industrial Temperature Range (-40 to +85 C)	9
74 F 132	11/27/89	AC Electrical Characteristics (Propagation Delays)	11
74F133	10/16/89	I/O loading \& Fan-Out table (pins)	13
74F139	2/23/90	l/O loading \& Fan-Out table (Load value H/L)	14
74F154	1/8/90	Fctn. Table (A Inputs)	15
74F164	2/8/90	Ordering Info. (SO), AC Elec. Char. (Prop Delay, MR to Qn)	17
74F175	2/9/90	Text (Features), Table 2 (Ind. Temp Spec), AC Elec. Char., AC Set-Up Rec.	19
74F189A	2/23/90	New Product Specification	21
74F192	1/8/90	Timing Diagram (TCD \& Q3)	27
74F195	10/5/89	AC Electrical Characteristics (Propagation Delay, CP to Qn)	29
74F219A	2/23/90	New Product Specification	31
74F242	11/27/89	AC Electrical Characteristics (propagation delays)	37
74F243	11/27/89	AC Electrical Characteristics (propagation delays on the 242 only)	37
74F244	2/8/90	Added feature of Industrial Temperature Range (-40 to +85 C)	39
74F251	3/19/90	AC Electrical Characteristics (Output Disable Time, Output Enable Time)	41
74F251A	3/19/90	AC Electrical Characteristics (On the 251 only)	41
74F257	1/8/90	Logic Diagram (Nor gates changed to OR gates)	43
74F269	2/9/90	Logic Diagram, Application (Cascading Diagram)	45
74F280A	3/19/90	AC Elec. Char. (Prop. Delay, in-SigE), DC Elec. Char. (High Level Input Current).	48
74F280B	3/19/90	Added feature of Industrial Temperature Range (-40 to +85 C)	48
74F298	8/14/89	AC Electrical Characteristics (fmax)	51
74F299	3/1/90	I/O loading \& Fan-Out table, Pin Conf., Logic Symbol, Logic Diagram, Fctn. Table	53
74F323	3/1/90	I/O loading \& Fan-Out table, Pin Conf., Logic Symbol, Logic Diagram, Fctn. Table	56
74F365	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level)	59
74F366	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level)	59
74F367	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level)	59
74F368	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level)	59
74F373	1/8/90	Table 1 \& 2 (Propagation delay \& fmax)	61
74F374	1/8/90	Table 1 \& 2 (Propagation delay \& fmax)	61
74F378	10/5/89	Text (Features)	62
74F410	1/8/90	Text (Functional Description)	63
74F524	9/20/89	I/O loading \& Fan-Out table (C/SO - Def.)	65
74F539	2/23/90	Pin Conf., Logic Symbol, Logic Diagram (Pin No.)	66
74F540	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level)	68
74F541	1/8/90	AC Electrical Characteristics (OE Time to High or Low Level) On the 540 only	68
74 F 543	9/27/90	IEEEIEC Logic Symbol	70
74F544	9/27/89	IEEE/IEC Logic Symbol	70
74F552	2/23/90	I/O loading \& Fan-Out table (Def.)	72
74F563	11/27/89	Table 1\&2 (Prop delay \& fmax), I/O table \& Fan-out, AC Elec Char, AC Set-Up Req	73
74F564	11/27/89	Table 1\&2 (Prop delay \& fmax), I/O table \& Fan-out, AC Elec Char, AC Set-Up Req	73
74F573	10/16/89	DC Elec. Char. (Icc), AC Elec. Char. (F574 only), Tables 1,2, AC Set-Up Rec.	74-1
74 F 574	10/16/89	DC Elec. Char. (lcc), AC Elec. Char. Tables 1,2, AC Set-Up Rec	74-1
74F579	2/23/90	AC Elec. Char., AC Set-Up Req., Logic Diagram	75
74F582	4/27/90	Text (Description)	79
74F595	4/18/90	AC Elec. Char, AC Set-Up Req., Pin Conf., Logic Symbol (pin 9)	80

TABLE OF CONTENTS

PARTNO.	DATE REV.	DESCRIPTION OF ADDITION/CHANGE	PAGE
74F597	2/1/90	Updated Preliminary Specification	82
74F598	2/1/90	Updated Preliminary Specification	82
74F604	3/1/90	Text (Title,Description), Logic symbol (IEE/IEC), AC Elec. Char., I/O loading table.....	92
74F605	9/20/89	Text (Title, Description), Logic symbol (IEE/IEC), AC Elec. Char., 1/O loading table....	96
74F621	9/27/89	Text (featues), Test Ckt \& Waveforms, Graph, AC Waveforms	99
74F622	9/27/89	Text (featues), Test Ckt \& Waveforms, Graph, AC Waveforms	99
74F640	11/27/89	AC Electrical Characteristics	102
74F641	11/27/89	AC Electrical Characteristics	104
74F642	11/27/89	AC Electrical Characteristics	104
74 F646	4/18/91	AC/DC Elec. Char., Rec. Oper. Cond., Fctn Table (first two rows)	107
74F646A	4/18/89	New Product Specification	107
$74 \mathrm{F648}$	4/18/89	AC/DC Elec. Char., Rec. Oper. Cond., Fctn Table (first two rows)	107
74F648A	4/18/89	New Product Specification	107
74F651	1/29/90	Text (Features), DC Elec. Char. (10)	116
74F651A	1/29/90	New Product Specification	116
74F652	1/29/90	Text (Features), DC Elec. Char. (10)	116
74F652A	1/29/90	New Product Specification	116
74F655A	3/19/90	Added feature of Industrial Temperature Range (-40 to +85 C)	124
74F656A	3/19/90	Added feature of Industrial Temperature Range (-40 to +85 C)	124
74F657	3/19/90	Text (Features), Ordering Info. (Ind. Temp), AC/DC Elec. Char.,	127
74F657A		Deleted Part type	
74F676	4/18/90	Logic Diagram	134
74F711	4/25/90	New Product Specification	136
74F712	4/25/90	New Product Specification	136
74F723	9/20/89	New Product Specification	143
74F725	9/20/89	New Product Specification	143
74F776	1/29/89	Added feature of Industrial Temperature Range (-40 to +85 C)	151
74F777	2/27/90	New Product Specification	153
74F779	9/20/89	Text (Features),	160
$74 F 786$	9/27/89	AC Electrical Characteristics	161.
74 F 807	4/27/90	New Product Specification	163
74F821	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F822	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F823	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F824	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F825	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F826	4/27/90	AC Set-Up Req., DC Elec. Char., Fctn Table notes,	170
74F835	1/8/90	Text (Features), Table 1, AC/DC Elec. Char., AC Set-UP Req.	174
74F841	4/18/90	AC Waveforms	177
74F842	4/18/90	AC Waveforms	177
74F843	4/18/90	AC Waveforms	177
74F844	4/18/90	AC Waveforms	177
74 F 845	4/18/90	AC Waveforms	177
74F846	4/18/90	AC Waveforms	177
74F1604	9/27/89	Pin Configuration	179
74F1760	8/23/89	Updated Preliminary Specification	180
74F1761		Deleted Part type	
74F1763	11/17/89	New Product Specification	187
74F1764	5/17/90	DC Elec. Char. (Vol)	199
74F1764-1	5/17/90	DC Elec. Char. (Vol)	199

TABLE OF CONTENTS

ARTNO.	DATE REV.	DESCRIPTION OF ADDITION/CHANGE	PAGE
IF1765	5/17/90	DC Elec. Char. (Vol)	199
F1765-1	5/17/90	DC Elec. Char. (Vol)	199
F1766		New Product Specification	200-1
1F2952	9/22/89	Ordering Info., Pin Conf.	201
1F2953	9/22/89	Ordering Info., Pin Conf.	201
F3037	1/29/90	Added feature of Industrial Temperature Range (-40 to +85 C)	203
F3038	1/29/90	AC Electrical Characteristics, Ordering Info.	206
F3040	1/29/90	Ordering Info., AC/DC Electrical Characteristics	208
IF3893	9/15/89	New Product Specification	210
1F4763		Deleted Part type	
IF5074	1/8/90	New Product Specification	215
IF5300	12/13/89	New Product Specification	222
FF5302	1/8/90	New Product Specification	228
F8960	11/27/89	New Product Specification	235
F8961	11/27/89	Recommended Oper. Cond., AC Waveforms	235
1F8962	4/18/90	New Product Specification	246
1F8963	4/18/90	New Product Specification	246
IF30240	9/15/89	Ordering Info.	256
IF30244	9/15/89	Ordering Info.	256
F30245	4/18/90	Pin Conf., Logic Symbol, Logic Symbol (IEEE/IEC), AC Elec. Char.	257
IF30640	4/18/90	Pin Conf., Logic Symbol, Logic Symbol (IEEE/IEC), AC Elec. Char.	257
IF50109	1/8/90	New Product Specification	260
IF50728	3/19/90	New Product Specification	267
F50729	5/3/90	New Product Specification	273
$\sqrt{219}$	Nov-89	A Metastability Primer	280
$\sqrt{220}$	Sep-89	Synchronizing and Clock Driving Solutions Using the 74F50XXX Family	285
$\sqrt{221}$	Jan-90	Multiplying and Dividing Clock Frequencies Using the 74F50729	290
$\sqrt{222}$	Jan-90	Eliminating Glitches Using the 74F50XXX Family	293

Signetics

Document No.	$853-1122$
ECN No.	98618
Date of issue	November 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- Open Collector output drive 64mA
- High speed
- 12V output termination voltage
- Symmetrical propagation delays

FAST 74F06, 74F07 Inverter/Buffer/Drivers
74F06 Hex Inverter Buffer/Driver (Open Collector) 74F07 Hex Buffer/Driver (Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICALSUPPLY (TOTAL) 74 F 06$\quad 3.5 \mathrm{~ns}$
74 F 07	4.5 ns	18 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F06N, N74F07N
14-Pin Plastic SO	N74F06D, N74F07D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
D_{n}	Data input	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{\mathrm{n}}$	Data output ('F06)	OC/106.7	OC/64mA
Q_{n}	Data output ('F07)	OC/106.7	OC/64mA

NOTE:

1. One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
2. $O C=$ Open Collector.

PIN CONFIGURATION

LOGIC SYMBOL

74F06

[^0]LOGIC SYMBOL(IEEE/IEC)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
V_{OH}	High-level output voltage			12	V
${ }^{\prime} \mathrm{OL}$	Low-level output current			64	mA
TA	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range uniess otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
I_{OH}	High-level output current						$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$			0.30	0.50	V				
V_{IK}	Input clamp voltage				$V_{C C}=M I N, I_{1}=I_{I K}$				-0.73	-1.2	V		
1	Input current at maximum input voltage			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{1 H}$	High-level input current			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
III.	Low-level input current			$V_{C C}=$ MAX,	0.5 V				-0.6	mA			
${ }^{\text {cc }}$	Supply current [total]	74F06	${ }^{1} \mathrm{CCH}$	$V_{C C}=M A X$				5.0	8.0	mA			
			${ }^{\text {'CCL }}$					30	43	mA			
		74F07	${ }^{1} \mathrm{CCH}$					10	14	mA			
			${ }^{\text {CCLL }}$					32	45	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=100 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n} \text { to } \bar{Q}_{n}$	74F06		Waveform 1	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to Q_{n}	74F07		Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	2.0	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns

Signetics

Document No.	$853-0335$
ECN No.	99598
Date of issue	May 15,1990
Status	Product Specification
FAST Products	

DESCRIPTION

The 74F74 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also true and complementary outputs.
Set $\left(\bar{S}_{D}\right)$ and Reset (\bar{R}_{D}) are asynchronous active-Low inputs and operate independently of the Clock (CP) input.
Set (\bar{S}_{D}) and Reset (\bar{R}_{D}) are synchronously
active Low inputs and operate independently of the clock (CP). When Set and Reset are inactive (High), Data at the D input is transferred to the Q and $\overline{\mathrm{Q}}$ outputs on the Low-to-High transition of the Clock. Data must be stable just one setup time prior to the Low-to-High transition of the clock for predictable operation.
Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D input may be changed without affecting the levels of the output.

PIN CONFIGURATION

FAST 74F74
FLIP-FLOP

Dual D-Type Flip-FIop

TYPE	${\text { TYPICAL } \text { f }_{\text {MAX }}}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 74$	125 MHz	11.5 mA

ORDERING INFORMATION

PACKAGES	$v_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F74N
14-Pin Plastic SO	N74F74D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 \mathrm{~F}(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{CP}_{0}, \mathrm{CP}$	Clock inputs (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{S}_{D 0}, \bar{S}_{\mathrm{D}}$	Set inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\overline{\mathrm{R}}_{\mathrm{DO}}, \overline{\mathrm{R}}_{\mathrm{OI}}$	Reset inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{0}, \overline{\mathrm{Q}}_{1}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC WAVEFORMS

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0055$
ECN No.	99494
Date of issue	April 27, 1990
Status	Product Specification
FAST Products	

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Magnitude comparison of any binary words
- Serial of parallel expansion without extra gating

DESCRIPTION

The 74F85 is a 4-bit magnitude comparator that can be expanded to almost any length. It compares two 4-bit binary, BCD, or other monotonic codes and presents the three possible magnitude results at the outputs. The 4-bit inputs are weighted $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ and $\left(\mathrm{B}_{0}-\mathrm{B}_{3}\right)$ where A_{3} and B_{3} are the most significant bits. The operation of the 74 F 85 is described in the Function Table, showing all possible logic conditions. The upper part of the table describes the normal operation under all conditions that will occur in a single device or in a series expansion scheme. In the upper part of the table the three outputs are mutually exclusive. In the lower part of the table, the outputs reflect the feed-forward conditions that exists in the

PIN CONFIGURATION

FAST 74F85
 Comparator

4-Bit Magnitude Comparator

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 85	7.0 ns	40 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F85N
16-Pin Plastic	N74F85D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Comparing inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	Comparing inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{A}<\mathrm{B}}, \mathrm{I}_{\mathrm{A}=\mathrm{B}}, \mathrm{I} \mathrm{A}>\mathrm{B}$	Expansion inputs	(active High)	$1.0 / 0.033$
$\mathrm{~A}<\mathrm{B}, \mathrm{A}=\mathrm{B}, \mathrm{A}>\mathrm{B}$	Data outputs	(active High)	$50 / 33$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
parallel expansion scheme. The expansion inputs $I_{A>B}, I_{A=B}$ and $I_{A \subset B}$ are the least significant bit positions. When used for series expansion, the $A>B, A=B$ and $A<B$ outputs of the least significant word are connected to thecorresponding $I_{A>B}$, $I_{A=B}$ and $I_{A<B}$ inputs of the next higher
stage. Stages can be added in this manner to any length, but a propagation delay penalty of about 15 ns is added with each additional stage. For proper operation the expansion inputs of the least significant word should betied as follows: $I_{A>B}=$ Low, $I_{A=B}=$ High and $I_{A<B}=$ Low.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

COMPARING INPUTS	EXPANSION INPUTS			OUTPUTS				$=$ High voltage level
$A_{3}, B_{3} \quad A_{2}, B_{2} \quad A_{1}, B_{1} \quad A_{0}, B_{0}$	$I_{A>B}$	${ }^{\prime} \times$ < ${ }^{\text {A }}$	$\mathrm{I}_{\mathrm{A}=\mathrm{B}}$	$A>B$	A<B	$A=B$	X	= Don't care
$A_{3}>B_{3} \quad X \quad X \quad X$	X	X	X	H	L.	L		
$A_{3}<B_{3} \quad X \quad X \quad X$	X	X	x	L	H	L		
$A_{3}=B_{3} \quad A_{2}>B_{2} \quad X \quad X$	X	X	X	H	L	L		
$A_{3}=B_{3} \quad A_{2}<B_{2} \quad X \quad X$	X	X	X	L	H	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}>B_{1} \quad X$	X	X	X	H	L	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}<B_{1} \quad X$	X	X	X	L	H	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}>B_{0}$	X	X	X	H	L	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}<B_{0}$	X	X	X	L	H	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	H	L	L	H	L	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	L	H	L	L	H	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	L	L	H	L	L	H		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	X	X	H	L	L	H		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	H	H	L	L	L	L		
$A_{3}=B_{3} \quad A_{2}=B_{2} \quad A_{1}=B_{1} \quad A_{0}=B_{0}$	L	L	L	H	H	L		

Signetics

Document No.	$853-0336$
ECN No.	98773
Date of issue	February 9, 1990
Status	Product Specification
FAST Products	

FAST 74F86

Gate

Quad 2-Input Exclusive-OR Gate

FEATURE

- Industrial temperature range
available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
FUNCTION TABLE

INPUTS		OUTPUT
$\mathrm{D}_{\text {na }}$	D_{nb}	Q_{n}
L	L	L
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$L=$ Low voltage level

LOGIC DIAGRAM

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$T_{A}=0^{\circ} \mathrm{C}$ to $\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ $\mathrm{~V}_{\mathrm{CC}}=55^{\circ} \mathrm{C} \pm 10 \%$ $C_{\mathrm{L}}=50 \mathrm{pF}$ $C_{L}=50 \mathrm{pF}$ $R_{L}=500 \Omega$ $R_{L}=500 \Omega$ 				UNIT
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n a} \text { or } D_{n b} \text { to } Q_{n} \text { (Other input Low) }$	Waveform 1	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 4.2 \end{aligned}$	$\begin{gathered} 5.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	3.0 2.5	7.0 8.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}$ or $D_{n b}$ to Q_{n} (Other input High)	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	8.0 7.5	3.5 3.0	10.0 8.0	ns

AC WAVEFORMS

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0338$
ECN No.	98775
Date of issue	February 9, 1990
Status	Product Specification
FAST Products	

FEATURE

- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
L

DESCRIPTION

The 74F112, Dual Negative Edge-Triggered JK-Type Flip-Flop, features individual J, K, Clock ($\left.\overline{\mathrm{CP}}{ }_{\mathrm{n}}\right)$, Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset $\left(\bar{R}_{D}\right)$ inputs, true $\left(Q_{n}\right)$ and complementary $\left(\bar{Q}_{n}\right)$ outputs.
The \bar{S}_{D} and \bar{R}_{D} inputs, when Low, set or reset the outputs as shown in the Function Table regardless of the level at the other inputs.
A High level on the clock ($\overline{\mathrm{CP}}_{n}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the $\overline{\mathrm{CP}}_{n}$ is High and flip-flop will perform according to the Function Table as long as minimum setup and hold times are observed. Output changes are initiated by the High-to-Low transition of the $\overline{\mathrm{CP}}_{n}$.

PIN CONFIGURATION

FAST 74F1 12

Flip-Flop
Dual J-K Negative Edge-triggered Flip-Flop

TYPE	TYPICAL $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
N74F112	100 MHz	15 mA

ORDERING INFORMATION

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
J_{0}, J_{1}	Jinputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~K}_{0}, \mathrm{~K}_{1}$	K inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{S}_{D 0}, \bar{S}_{\mathrm{D} 1}$	Set inputs (active Low)	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\overline{\mathrm{R}}_{\mathrm{D}}, \overline{\mathrm{R}}_{\mathrm{D} 1}$	Reset inputs (active Low)	$1.0 / 5.0$	$20 \mu \mathrm{~A} / 3.0 \mathrm{~mA}$
$\overline{\mathrm{CP}}_{0}, \overline{\mathrm{CP}}_{1}$	Clock Pulse input (active falling edge)	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{Q}_{0}, \bar{Q}_{0} ; \mathrm{Q}_{1}, \bar{Q}_{1}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} T_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=- \\ & +8 \\ & \mathrm{C}_{\mathrm{C}}= \\ & \mathrm{C}_{\mathrm{L}}= \\ & \mathrm{R}_{\mathrm{L}}= \end{aligned}$	$\begin{aligned} & \text { C to } \\ & \text { C } \\ & \pm 10 \% \\ & \mathrm{pFF} \\ & \mathrm{NO} \end{aligned}$	
			Min	Typ	Max	Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum clock frequency	Waveform 1	85	100		80		80		MHz
${ }^{\mathrm{t}_{\text {PLH }}}$	Propagation delay $\overline{C P}$ to Q_{n} or \bar{Q}_{n}	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	2.0 2.0	7.5 7.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHLL}}} \\ & \hline \end{aligned}$	Propagation delay $\bar{S}_{D n}, \bar{R}_{D}$ to Q_{n} or \bar{Q}_{n}	Waveform 2,3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	1.5 1.5	7.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{c C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$T_{A}=0^{\circ} \mathrm{C}$ to $T_{A}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $+85^{\circ} \mathrm{C}$ $\mathrm{V}_{C C}=5 \mathrm{~V} \pm 10 \%$ $\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ $C_{L}=50 \mathrm{pF}$ $C_{L}=50 \mathrm{pF}$ $R_{L}=500 \Omega$ $R_{L}=500 \Omega$				UNIT
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low J_{n}, K_{n} to $\overline{\mathrm{CP}}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		5.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low J_{n}, K_{n} to $\overline{C P}$	Waveform 1	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		0.0 0.0		ns
$\begin{aligned} & w_{w}^{(H)} \\ & t_{w}(\mathrm{~L}) \end{aligned}$	$\overline{\mathrm{CP}}$ Pulse width High or Low	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		5.0 5.0		ns
${ }_{w}(\mathrm{~L})$	$\begin{aligned} & \overline{\mathrm{S}}_{\text {Dn }}, \overline{\mathrm{R}}_{\mathrm{D}} \text { Pulse width } \\ & \text { Low } \end{aligned}$	Waveform 2,3	4.5			5.0		5.0		ns
${ }^{\text {treC }}$	$\begin{aligned} & \text { Recovery time } \\ & \overline{\mathrm{S}}_{\mathrm{Dn}}, \overline{\mathrm{R}}_{\mathrm{D}} \text { to } \overline{\mathrm{CP}} \end{aligned}$	Waveform 2,3	4.5			$5.0{ }^{\circ}$		5.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay For data to output, data setup time and hold times, and clock pulse width

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Signetics

Document No.	$853-0342$
ECN No.	98710
Date of issue	November 27, 1990
Status	Product Specification
FAST Products	

DESCRIPTION

The 74F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have greater noise margin than conventional NAND gates. Each circuit contains a 2 -input Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input threshold (typically 800 mv) is determined by reisistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as three inputs remain at a more positive voltage than $V_{T+M A X}$, the gate will respond in the transition of the other input as shown in Waveform 1.

FAST 74F132
Schmitt Trigger

Quad 2-Input NAND Schmitt Trigger

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 132	6.3 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE CC $=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F132N
14-Pin Plastic SO	N74F132D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{\mathrm{n}}$	Data output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$				$\begin{aligned} & +70^{\circ} \mathrm{C} \\ & \pm 10 \% \\ & \mathrm{ppF} \\ & \text { on . } \end{aligned}$	
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}, D_{n b} \text { to } \bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	5.5 6.0		3.0		ns

AC WAVEFORMS

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-1154$
ECN No.	97893
Date of issue	October 16, 1989
Status	Product Specification
FAST Products	

FAST 74F133
 Gate

13-Input NAND Gate

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 133	4.0 ns	2.0 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F133N
14-Pin Plastic SO	N74F133D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
	$D_{0}-\mathrm{D}_{12}$	Data inputs	$1.0 / 1.0$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Signetics

Document No.	$853-0344$
ECN No.	98903
Date of issue	February 23, 1990
Status	Product Specification
FAST Products	

FEATURES

- Demultiplexing capability
- Two independent 1-of-4 decoders
- Multifunction capability

DESCRIPTION

The 74F139 is a high speed, dual 1-of-4 decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs ($A_{0 n}, A_{1 n}$) and providing four mutually exclusive active-Low outputs $\left(\bar{Q}_{0 n}-\bar{Q}_{3 n}\right)$. Each decoder has an active-Low Enable ($\overline{\mathrm{E}}$). When \bar{E} is High, every output is forced High. The Enable can be used as the Data input for a 1-of-4 demultiplexer application.

PIN CONFIGURATION

FAST 74F139

Decoder/Demultiplexer

Dual 1-of-4 Decoder//Demultiplexer

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 139	5.3 ns	13 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V}_{ \pm} 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F139N
16-Pin Plastic SO	N74F139D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$A_{n a}, A_{n b}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{E}_{a^{\prime}} \bar{E}_{b}$	Enable inputs (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{\mathrm{on}}-\overline{\mathrm{Q}}_{3 \mathrm{n}}$	Data outputs (active Low)	$50 / 33$	1.0 mA 20 mA

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-1155$
ECN No.	98493
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- 16-line demultiplexing capability
- Mutually exclusive outputs
- 2-input enable gate for strobing or expansion

DESCRIPTION

The 74F154 decoder accepts four active High binary address inputs and provides 16 mutually exclusive active Low outputs. The 2 -input Enable (\bar{E}_{0}, \bar{E}_{1}) gate can be used to strobe the decoder to eliminate the normal decoding "glitches" on the outputs, or it can be used for expansion of the decoder. The Enable gate has two AND'ed inputs which must be Low to enable the outputs.

The 74F154 can be used as a 1 -of-16 demultiplexer by using one of the Enable inputs as the multiplexed data input. When the other Enable is Low, the addressed output will follow the state of the applied data.

PIN CONFIGURATION

FAST 74F154

Decoder/Demultiplexer
1-of-16 Decoder/Demultiplexer

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 154$	5.5 ns	26 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F154N
24-Pin Plastic SOL	N74F154D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$A_{0}-A_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{E}_{0}, \bar{E}_{1}	Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\bar{Q}_{15}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

$V_{C C}=\operatorname{pin} 24$
$G N D=\operatorname{pin} 12$

$$
\begin{array}{lllllllllllll}
\bar{Q}_{0} & \overline{\mathrm{a}}_{1} & \overline{\mathrm{Q}}_{2} & \bar{Q}_{3} & \bar{Q}_{4} & \bar{Q}_{5} & \bar{Q}_{6} & \bar{Q}_{7} & \bar{Q}_{8} & \bar{Q}_{9} & \bar{Q}_{10} & \bar{Q}_{11} & \bar{Q}_{12}
\end{array} \overline{\mathrm{Q}}_{13} \overline{\mathrm{Q}}_{14} \overline{\mathrm{Q}}_{15}
$$

FUNCTION TABLE

INPUTS					OUTPUTS																
$\bar{E}_{0} \quad \bar{E}_{1}$	A_{0}			A_{3}	$\overline{\mathrm{O}}_{0}$	$\overline{\mathrm{a}}_{1}$	$\overline{\mathrm{a}}_{2}$	$\overline{\mathbf{O}}_{3}$	$\overline{\mathrm{O}}_{4}$	\bar{Q}_{5}	\bar{Q}_{6}	$\overline{\mathrm{a}}_{7}$	$\overline{\mathbf{Q}}_{8}$	$\overline{\mathrm{Q}}_{9}$	$\overline{\mathrm{a}}$	$\overline{\bar{Q}_{1}}$	$\overline{\mathrm{a}}$				
L H	\| \times		X	$\bar{\chi}$	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	
H L	- ${ }^{1}$	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	
H H	- ${ }^{\text {x }}$	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	
L L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	
L L	${ }^{\text {H }}$	L	L		H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	
L L	L	H	L		H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	
L L		H	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	
L		L	H		H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	
L L	${ }^{\text {H }}$	L	H		H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	
L L		H	H		H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	
L L	${ }^{\text {H }}$	H	H	L	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	
L L		L	L		H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	
L L	IH	L	L		H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	
L L	1 L	H	L		H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	
L L	\| H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	L.	H	H	H	H	
L L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	
L L	IH	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	
L L	\\|	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	
L L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	

[^1]Signetics

Document No.	$853-0348$
ECN No.	98770
Date of issue	February 8,1990
Status	Product Specification
FAST Products	

FEATURES

- Gated serial data inputs
- Typical shift frequency of 100 MHz
- Asynchronous Master Reset
- Fully buffered clock and data inputs
- Fully synchronous data transfers

DESCRIPTION

The 74 F 164 is an 8 -bit edge-triggered shift register with serial data entry and an output from each of the eight stages. Data is entered through one of two inputs ($D_{\text {sa }}$, D_{sb}); either input can be used as an active High enable for data entry through the other input. Both inputs must be connected together or an unused input must be tied High.

Data shifts one place to the right on each Low-to-High transition of the Clock (CP) input, and enters into Q_{0} the logical AND of the the two data inputs ($\mathrm{D}_{\mathrm{sa}}, \mathrm{D}_{\mathrm{sb}}$) that existed one setup time before the rising clock edge. A Low level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all outputs Low.
PIN CONFIGURATION

FAST 74F164
Shift Register

8-Bit Serial-In Parallel-Out Shift Register

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 164	100 MHz	33 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F164N
14-Pin Plastic SO	N74F164D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{\text {sa }}, \mathrm{D}_{\mathrm{sb}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

APPLICATION

NOTE: The ' F 164 can be cascaded to form synchronous shift registers of longer length. Here, two 'F164 are combined to form a 16 bit shift register.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	80	100		80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $C P$ to Q_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	2.5 5.0	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
${ }^{\text {P }}$ PLL	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 2	5.5	7.5	10.5	5.5	11.5	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to $C P$	Waveform 3	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $D_{n} \text { to } C P$	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & \mathbf{w}_{w}^{(H)} \\ & w_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$			4.0 7.0		ns
${ }_{w}{ }^{(L)}$	$\overline{\mathrm{MR}}$ Pulse width Low	Waveform 2	7.0			7.0		ns
${ }^{\text {R REC }}$	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 2	7.0			7.0		ns

Signetics

Document No.	$853-0047$
ECN No.	98776
Date of issue	February 9, 1990
Status	Product Specification
FAST Products	

FEATURES

- Four edge-triggered D-type flipflops
- Buffered common clock
- Buffered asynchronous Master Reset
- True and complementary outputs
- Industrial temperature range \rightarrow available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F175 is a quad, edge-triggered Dtype flip-flop with individual D inputs and both Q and \bar{Q} outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously. The register is fully edgetriggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output. All Qoutputs will be forced Low independently of clock or data inputs by Low voltage level on the $\overline{\mathrm{MR}}$ input. The device is useful for applications where both true and complementary outputs are required and the CP and $\overline{\mathrm{MR}}$ are common to all storage elements.

PIN CONFIGURATION

FAST 74F175
Flip-Flop

Quàd D Flip-Flop

TYPE	TYPICAL $f_{\text {max }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 175	140 MHz	25 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
16-Pin Plastic DIP	N74F175N	174F175N
16-Pin Plastic SO	N74F175D	$\cdots 174 F 175 \mathrm{D}$

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	True outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$	Complementary outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$T_{A}=0^{\circ} \mathrm{C}$ to $T_{A}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $V_{C C}=5 \mathrm{~V} \pm 10 \%$ $+85^{\circ} \mathrm{C}$ $C_{L}=50 \mathrm{pF}$ $V_{C C}=5 \mathrm{~V} \pm 10 \%$ $\mathrm{R}_{\mathrm{L}}=500 \Omega$ $C_{L}=50 \mathrm{pF}$ $R_{L}=500 \Omega$				
			Min	Typ	Max	Min	Max	Min	Max	
${ }^{\text {max }}$	Maximum clock frequency	Waveform 1	100	140		100		100		MHz
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHLL}}} \\ & \hline \end{aligned}$	Propagation delay $\overline{C P} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 8.5 \end{aligned}$	4.0 4.0	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	3.5 4.0	8.5 10.0	ns
${ }^{\text {PHLL }}$	Propagation delay $\overline{M R}$ to Q_{n}	Waveform 3	4.5	9.0	11.5	4.5	13.0	4.5	13.0	ns
${ }^{\text {tPLH }}$	Propagation delay $\overline{M R} \text { to } \overline{\mathrm{Q}}_{n}$	Waveform 3	4.0	6.5	8.0	4.0	9.0	4.0	11.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS						
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ + & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} T_{A} & =-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$	
			Min	Typ	Max	Min	Max	Min	Max
$\begin{aligned} & \hline t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low $D_{n} \text { to } C P$	Waveform 2	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		3.0 4.0	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{n} to $C P$	Waveform 2	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			1.0 1.0		1.0	
$\begin{aligned} & t_{w}{ }^{(H)} \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			4.0 5.0		4.0 6.0	
${ }_{w}{ }^{(L)}$	$\overline{\text { MR }}$ Pulse width Low	Waveform 3	5.0			5.0		5.0	
${ }^{\text {R REC }}$	Recovery time $\overline{\mathrm{MR}}$ to CP	Waveform 3	5.0			5.0		6.0	

Signetics

Document No.	$853-1309$
ECN No.	98908
Date of issue	February 23, 1990
Status	Product Specification
FAST Products	

FEATURES

- High speed performance
- Replaces 74F189
- Address access time: 8 ns max vs 28ns for 74F189
- Power dissipation: $\mathbf{4 . 3} \mathbf{m W} / \mathrm{bit}$ typ
- Schottky clamped TTL
- One chip enable
- Inverting outputs (For noninverting outputs see 74F219A)
- Buffered PNP inputs
- 3-state outputs
- 74F189A in 150 mil wide S.O. is preferred option for new designs
- C3F189A in 300 mil wide S.O.L. replaces 74F189 in existing designs

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

DESCRIPTION

The 74F189A is a high speed, 64-Bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to
PIN CONFIGURATION

FAST 74F189A

64-Bit TL Bipolar RAM, Inverting (3-State)

TYPE	TYPICAL ACCESS TIME	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 189 \mathrm{~A}$	5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $v_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F189AN
16-Pin Plastic SO (150 mil)	N74F189AD
$16-$ Pin Plastic SOL (300 mil)	C3F189AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$D_{0}-D_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$A_{0}-A_{3}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Chip Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{WE}}$	Write Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\bar{Q}_{0}-\overline{\mathrm{Q}}_{3}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
minimize loading and are fully decoded on-chip. The outputs are in High impedance state whenever the Chip Enable

LOGIC SYMBOL

$(\overline{\mathrm{CE}})$ is High. The outputs are active only in the READ mode ($\overline{W E}=$ High $)$ and the output data is the complement of the stored data.
LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUT	
OPERATING MODE				
	$\overline{\text { WE }}$	D_{n}	$\overline{\mathrm{Q}}_{\mathrm{n}}$	
L	H	X	Complement of stored data	Read
L	L	L	High impedance	Write "0"
L	L	H	High impedance	Write "1"
H	X	X	High impedance	Disable Input

$H \equiv$ High voltage level
$L=$ Low voltage level .
$X=$ Don't care
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
v_{cc}	Supply voltage	4.5	5.0	5.5	V
V_{H}	High-level input voltage	2.0			V
V_{LL}	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
${ }^{\text {I }}$	High-level output current			-3	mA
${ }^{1} \mathrm{OL}$	Low-level output current			24	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$V_{C C}=$ MIN, $V_{\text {IL }}=\mathrm{MAX}$	$\pm 10 \% V_{c c}$	2.4			V
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V		
v^{\prime}	Low-level output voltage		$V_{C C}=M I N, V_{I L}=M A X$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V		
			$V_{1 H}=M I N, I_{O L}=M A X$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	\checkmark		
V_{IK}	Input clamp voitage		$V_{C C}=M I N, I_{1}=I_{I K}$			-0.73	-1.2	\checkmark		
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	Others	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		$\overline{C E}, \overline{W E}$					-1.2	mA		
${ }^{\text {OZZH }}$	Off-state output current High-level voltage applied		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$				50	mA		
Iozl	Off-state output current Low-level voltage applied		$V_{C C}=M A X, V_{0}=0.5 V$				-50	mA		
Ios	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
${ }^{\text {c }} \mathrm{C}$	Supply current (total)		$V_{C C}=\mathrm{MAX}, \overline{C E}=\overline{W E}=$			55	80	mA		
$\mathrm{C}_{\text {IN }}$	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$			4		pF		
$\mathrm{C}_{\text {OUT }}$	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			7		pF		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $I_{\text {OS }}$, the use of high-speed test apparatus and/or sample-and-hold tectniques are preferable in order to minimize intemal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip ternperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter lests, Ios tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Access time	Propagation delay A_{n} to \bar{Q}_{n}		Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$		$\begin{aligned} & \text { Enable time } \\ & \overline{\mathrm{CE}} \text { to } \overline{\mathrm{Q}}_{\mathrm{n}} \end{aligned}$		Waveform 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	$\begin{array}{\|l} \hline \text { Disable time } \\ \overline{C E} \text { to } \bar{Q}_{n} \\ \hline \end{array}$		Waveform 3	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Write Recovery time	Enable time $\overline{W E}$ to \bar{Q}_{n}	Waveform 4	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	$\begin{aligned} & \hline \text { Disable time } \\ & \text { WE to } \bar{Q}_{n} \\ & \hline \end{aligned}$		Waveform 4	$\begin{aligned} & 3.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	3.0 1.5	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time A_{n} to $\overline{W E}$	Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Hold time } \\ & A_{\mathrm{n}} \text { to } \mathrm{WE} \end{aligned}$	Waveform 4	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time D_{n} to $\overline{W E}$	Waveform 4	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$			9.0 8.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Hold time } \\ & D_{n} \text { to } W E \end{aligned}$	Waveform 4	0			0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time $\overline{\mathrm{CE}}$ (falling edge) to $\overline{\mathrm{WE}}$ (falling edge)	Waveform 4	0			0		ns
$t_{\text {L }}(\mathrm{L})$	Hold time $\overline{W E}$ (falling edge) to $\overline{C E}$ (rising edge)	Waveform 4	6.5			7.5		ns
${ }^{\text {t }}$ (L)	Pulse width, Low WE	Waveform 4	7.0			8.0		ns

AC WAVEFORMS

Waveform1. Read Cycle, Address Access Time

Waveform 2. Read Cycle, Chip Enable Access Time

Waveform 3. Read Cycle, Chip Disable Time

NOTES: 1 . For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition
 pulse generators.

Signetics

Document No.	$853-0353$
ECN No.	98486
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- Synchronous, reversible 4-bitcounting
- Asynchronous parallel load capabillty
- Asynchronous reset (clear)
- Cascadable without external logic

DESCRIPTION

The 74F192 and 74F193 are 4-bit synchronous Up/Down Counters. The 74F192 counts in BCD mode and 74F193 counts in the binary mode. Separate up/down clocks, CP_{U} and CP_{D}, respectively simplify operation. The outputs' change state synchronously with the Low-to-High transition of either clock input. If the CP_{U} clock is pulsed while $C P_{D}$ is held HIgh, the device will count up. If the $C P_{D}$ clock is pulsed while CP_{U} is held HIgh, the device will count down The device can be cleared at any time by the asynchronous reset pin. It may also be loaded in parallel by activating the asynchronous parallel load pin. Inside the device are four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, asynchronous preset, load, and synchronous count up and count down functions. Each flip-flop contains JK feedback from slave to master such that a Low-to-High transition on the $C P_{D}$ input will decrease the count by one, while a similar transition on the $C P_{U}$ input will advance the count by one. One clock should be held High while counting with the other, because the circuit will either count by twos or not at all depending on the state of the first JK flip-flop, which cannot toggle as long as either clock input is Low. Applications requiring reversible operation must make the reversing decision while the activating clock is High to avoid erroneous counts. The terminal count up ($\overline{T C}_{U}$) and terminal count down ($\overline{T C}_{D}$) outputs are normally High. When the circuit has

FAST 74F192, 74F193
Counters
'F192 Up/Down Decade Counter With Separate Up/Down Clocks 'F193 Up/Down Binary Counter With Separate Up/Down Clocks

TYPE	${\text { TYPICAL } \mathbf{f}_{\text {max }}}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 192	125 MHz	32 mA
74 F 193	125 MHz	32 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V}_{\mathrm{I}} 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic Dip	N74F192N, N74F193N
16 -Pin Plastic SO	N74F192D, N74F193D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP_{U}	Count up clock input (active rising edge)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
CP	Count down clock input (active rising edge)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\overline{\mathrm{PL}}$	Asynchronous parallel load control input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
MR	Asynchronous Master Reset input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count up (carry) output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count down (borrow) output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
reached the maximum count state (9 for the 'F192 and 15 for the 'F193), the next High-toLow transition of $C P_{U}$ will cause $\overline{T C}_{U}$ to go Low. $\overline{T C}_{U}$ will stay Low until CP_{U} goes High again, duplicating the count up clock, although delayed by two gate delays. Likewise, the $\overline{\mathrm{TC}}_{\mathrm{D}}$ output will go Low when the circuit is in the zero state and $C P_{D}$ goes Low. The TC outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous since there is a two-gate delay time difference added for each stage that is
added. The counter may be preset by the asynchronmous parallel load capability of the circuit. Information present on the parallel data inputs $D_{0}-D_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs when the Parallel Load ($\overline{\mathrm{PL}}$) input is Low. A High level on the Master Reset (MR) input will disable the parallel load gates, override both clock inputs, and sets all Q outputs Low. If one of the clock inputs is Low during and after a reset or load operation, the next Low-to-High transition of the clock will be interpreted as legitimate signal and will be counted.

AC WAVEFORMS

Waveform 3.
Parallel poulse width, Parallel Load to Output Delays,
and Parallel Load to Clock Recovery Time

Master Reset Pulse Width, Master Reset to
Output Delay and Master Reset to Clock
Recovery Ilme
NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TIMING DIAGRAM (Typical clear, load, and count sequence) for 'F192

Signetics

Document No.	$853-0024$
ECN No.	97805
Date of issue	October 5, 1989
Status	Product Specification
FAST Products	

FEATURES

- High-impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Shift right and parallel load capability
- J- $\bar{K}(D)$ inputs to first stage
- Complement output from last stage
- Asynchronous Master Reset

DESCRIPTION

The 74F195 is a 4-bit Parallel Access Shift Register and its functional characteristics are indicated in the Logic diagram and Function Table. The device is useful in a variety of shifting, counting and storage applications. It performs serial, paraliel, serial to parallel, or parallel to serial data transfers at very high speeds.

The 74F195 operates in two primary modes: shift right ($Q_{0} \rightarrow Q_{1}$) and parallel load, which are controlled by the state of the Parallel Enable ($\overline{\mathrm{PE}})$ input. Serial data enters the first flip-flop $\left(Q_{0}\right)$ via the J and \bar{K}

FAST 74F195

Shift Register
4-Bit Parallel-Access Shift Register

TYPE	TYPICAL $\mathbf{f}_{\mathrm{MAX}}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 195	115 MHz	45 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F195N
16-Pin Plastic SO	N74F195D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~J}, \overline{\mathrm{~K}}$	J - K or D type serial inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{PE}}$	Parallel Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock Pulse input (Active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset input (Active Low)	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{3}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathbf{v}_{c C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
${ }^{\text {m MAX }}$	Maximum clock frequency	$\overline{\text { PE mode }}$		Waveform 1	120	130		110		MHz
		Toggle mode			100	115		90		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P$ to Q_{n}		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to $\overline{\mathrm{Q}}_{3}$		Waveform 1	$\begin{aligned} & \hline 7.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns	
${ }^{t_{\text {PHL }}}$	Propagation delay$\overline{M R} \text { to } Q_{n}$		Waveform 2	5.0	7.5	10.5	5.0	11.0	ns	
${ }^{\text {PLLH }}$	Propagation delay $\overline{\mathrm{MR}}$ to $\overline{\mathrm{Q}}_{3}$		Waveform 2	7.0	10.0	13.5	7.0	14.0	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t}}(\mathrm{H}) \\ & \mathrm{t}_{s}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low J, \bar{K} and D_{n} to CP	Waveform 3	$\begin{aligned} & \hline 4.0 \\ & 4.0 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low J, \bar{K} and D_{n} to CP	Waveform 3	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{P E}$ to CP	Waveform 4	3.0 4.0			3.0 5.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{P E}$ to $C P$	Waveform 4	0			0		ns
${ }_{\text {w }}(\mathrm{H})$	CP Pulse width High	Waveform 1	6.0			6.0		ns
${ }_{\text {w }}$ (L)	$\overline{\text { MR }}$ Pulse width Low	Waveform 2	5.0			5.0		ns
${ }^{\text {t REC }}$	Recovery time $\overline{M R}$ to CP	Waveform 2	6.0			6.0		ns

Signetics

Document No.	$853-1308$
ECN No.	98907
Date of issue	February 23, 1990
Status	Product Specification
FAST Products	

FEATURES

- High speed performance
- Replaces 74F219
- Address access time: 8 ns max vs 28ns for 74F219
- Power dissipation: $4.3 \mathrm{~mW} /$ bit typ
- Schottky clamped TTL
- One chip enable
- Non-Inverting outputs (For inverting outputs see 74F189A)
- Buffered PNP inputs
- 3-state outputs
- 74F219A in 150 mil wide S.O. is preferred option for new designs
- C3F219A in 300 mil wide S.O.L. replaces 74F189 in existing designs

APPLICATIONS

- Scratch pad memory
- Buffer memory
- Push down stacks
- Control store

DESCRIPTION

The 74F219A is a high speed, 64-Bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to

PIN CONFIGURATION

FAST 74F219A
 64-Bit TLL Bipolar RAM, Non-Inverting (3-State)

TYPE	TYPICAL ACCESS TIME	TYPICALSUPPLY CURRENT (TOTAL)
74 F 219 A	5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F219AN
16-Pin Plastic SO (150 mil)	N74F219AD
16-Pin Plastic SOL (300 mil)	C3F219AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$D_{0}-D_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$A_{0}-A_{3}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Chip Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{W E}$	Write Enable input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
minimize loading and are fully decoded on-chip. The outputs are in High impedance state whenever the Chip Enable

LOGIC SYMBOL

($\overline{\mathrm{CE}}$) is High. The outputs are active only in the READ mode ($\overline{\mathrm{WE}}=\mathrm{High}$) and the output data is the same polarity as the stored data.

LOGIC SYMBOL(IEEE/IEC)

64-Bit TTL Bipolar RAM (16X4)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUT	
OPERATING MODE				
	$\overline{W E}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	
L	H	X	Stored data	Read
L	L	L	High impedance	Write "O"
L	L	H	High impedance	Write "1"
H	X	X	High impedance	Disable Input

$\mathrm{H}=\mathrm{High}$ voltage level
$L=$ Low voltage level
X = Don't care
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {iN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
T_{A}	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

64-Bit TTL Bipolar RAM (16X4)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
V_{cc}	Supply voltage	4.5	5.0	5.5	V
V_{1+}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {L }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
${ }^{\mathrm{OH}}$	High-level output current			-3	mA
${ }_{\mathrm{OL}}$	Low-level output current			24	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		บMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$V_{C C}=M I N, V_{\text {IL }}=\mathrm{MAX}$	$\pm 10 \% V_{\text {cc }}$	2.4			V
			$V_{I H}=M I N, I_{O H}=\operatorname{MAX}$	$\pm 5 \% V_{\text {cc }}$	2.7	3.4		V		
v_{0}	Low-level output voltage		$V_{C C}=$ MIN, $V_{\text {IL }}=$ MAX	$\pm 10 \% V_{C C}$		0.35	0.50	V		
			$V_{I H}=M I N, I_{O L}=M A X$	$\pm 5 \% V_{\text {cc }}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$V_{C C}=M I N, I_{1}=I_{I K}$			-0.73	-1.2	V		
1	Input current at maximum input voitage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
I_{11}	Low-level input current	Others	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
		$\overline{\mathrm{CE}}, \overline{\mathrm{WE}}$					-1.2	mA		
${ }^{\text {OZHH }}$	Off-state output current High-level voltage applied		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$				50	mA		
'ozl	Off-state output current Low-level voltage applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{0}=0.5 \mathrm{~V}$				-50	mA		
I_{OS}	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$		-60		-150	mA		
${ }^{\text {ICC }}$	Supply current (total)		$V_{C C}=\mathrm{MAX}, \overline{\mathrm{CE}}=\overline{\mathrm{WE}}$			55	80	mA		
C_{IN}	Input capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$			4		pF		
$\mathrm{C}_{\text {OUT }}$	Output capacitance		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$			7		pF		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $I_{\text {OS }}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize intemal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.

64-Bit TTL Bipolar RAM (16X4)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{c C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Access time	Propagation delay $A_{n} \text { to } \bar{Q}_{n}$		Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	2.5 2.0	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$		Enable time $\overline{C E}$ to \bar{Q}_{n}		Waveform 2	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	1.5 2.0	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \end{aligned}$	Disable time $\overline{C E}$ to \bar{Q}_{n}		Waveform 3	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Write recovery time	Enable time $\overline{W E}$ to \bar{Q}	Waveform 4	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	1.5 2.5	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLZ}}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Disable time } \\ & \overline{W E} \text { to } \bar{Q}_{n} \end{aligned}$		Waveform 4	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	2.5 1.5	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time A_{n} to WE	Waveform 4	4.5 4.5			5.0 5.0		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time A_{n} to $\overline{W E}$	Waveform 4	0 0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time D_{n} to $\overline{W E}$	Waveform 4	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$			9.0 8.5		ns
$\begin{aligned} & t_{h}(H) \\ & h_{h}(L) \end{aligned}$	$\begin{aligned} & \text { Hold time } \\ & \mathrm{D}_{\mathrm{n}} \text { to } \mathrm{WE} \end{aligned}$	Waveform 4	0			0		ns
$\mathrm{t}_{s}(\mathrm{~L})$	Setup time $\overline{C E}$ (falling edge) to $\overline{W E}$ (falling edge)	Waveform 4	0			0		ns
$t_{n}($ L $)$	Hold time $\overline{W E}$ (falling edge) to $\overline{C E}$ (rising edge)	Waveform 4	6.5			7.5		ns
${ }^{\text {t }}$ (L)	Pulse width, Low WE	Waveform 4	7.0			8.0		ns

AC WAVEFORMS

Waveform1. Read Cycle, Address Access Time

Waveform 2. Read Cycle, Chip Enable Access Time

Waveform 3. Read Cycle, Chip Disable Time

NOTES: 1. For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }}$	closed
$\mathrm{t}_{\text {PZL }}$	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}^{\mathbf{w}}$	$\mathbf{t}^{\text {THH }}$	'THL 2
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-0356$
ECN No.	98173
Date of issue	November 27, 1989
Status	Product Specification
FAST Products	

FAST 74F242, 74F243

Transceivers

74F242 Quad Transceiver, Inverting (3-State)
74F243 Quad Transceiver (3-State) 74F243 Quad Transceiver (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 242	4.3 ns	31.2 mA
74 F 243	4.0 ns	66 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F242N, N74F243N
14-Pin Plastic SO	N74F242D, N74F243D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
A_{n}, B_{n}	Data inputs ('F242)	$3.5 / 1.67$	$70 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data inputs ('F243)	$3.5 / 2.67$	$70 \mu \mathrm{~A} / 1.6 \mathrm{~mA}$
$\overline{O E}_{\mathrm{A}}$	Output enable input (active Low)	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
OE_{B}	Output enable input	$1.0 / 1.67$	$20 \mu \mathrm{~A} / 1.0 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\mathrm{PH}} \end{aligned}$	Propagation delay A_{n}, B_{n} to B_{n}, A_{n}	74F242		Waveform 1	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$					ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level			Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation delay $A_{n}, B_{n} \text { to } B_{n}, A_{n}$	74F243	Waveform 2	2.5 2.5	4.0 4.0	5.2 5.2	2.0 2.0	6.2 6.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 8.5 \end{aligned}$	ns	
$t_{\mathrm{PHZ}} \mathrm{t}_{\mathrm{PLZ}}$	Output Disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0357$
ECN No.	98769
Date of issue	February 8,1990
Status	Product Specification
FAST Products	

FEATURES

- Octal bus interface
- 3-State Output buffer output sink 64mA
- 15mA source current
- Industrial temperture range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F244 is an octal buffer that is ideal for driving bus lines of buffer memory address registers. The outputs are all capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features two Output Enables, $\overline{\mathrm{OE}}_{\mathrm{a}}$ and $\overline{\mathrm{OE}}_{\mathrm{b}}$, each controlling four of the 3 -state outputs.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
${ }^{\text {t PLZ }}$	closed
${ }^{t^{\text {PZL }}}$	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

Signetics

Document No.	$853-0358$
ECN No.	99143
Date of issue	March 19, 1990
Status	Product Specification
FAST Products	

FEATURES

- High speed 8-to-1 multiplexing
- On chip decoding
- Multifunction capability
- Inverting and Non-Inverting outputs
- Both outputs are 3-state for further multiplexer expansion

DESCRIPTION

The 74F251 and 74F251A are logic implementation of a single 8-position switch with the switch position controlled by the state of three Select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{3}\right)$ inputs. True (Y) and complementary $(\overline{\mathrm{Y}}$) outputs are both provided. The output Enable $(\overline{\mathrm{OE}})$ is active Low. When $\overline{\mathrm{OE}}$ is High, both outputs are in high impedance state, allowing multiple output connections to a common bus without driving nor loading the bus significantly. All but one device must be in high impedance state to avoid high currents that would exceed the maximum ratings when the outputs of the 3 state devices are tied together. When the output of more than one device is tied together the user must ensure that there is no overlap in the active Low portion of the output enable voltages.
PIN CONFIGURATION

FAST 74F251, 74F251A
 Multiplexers

74F251 8-input Multiplexer (3-State)
74F251A 8-input Multiplexer (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 251	5.5 ns	15 mA
74 F 251 A	4.5 ns	19 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F251N, N74F251AN
16-Pin Plastic SO	N74F251D, N74F251AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(\mathrm{U} . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{Y}, \overline{\mathrm{Y}}$	Data outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
74 F 251 A is the faster version of 74 F 251.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay I_{n} to Y	74F251		Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay I_{n} to \bar{Y}			Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to Y		Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{n} to \bar{Y}		Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Y		Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable time $\overline{O E}$ to Y		Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4,0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pHz}} \end{aligned}$	Output Enable time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{Y}}$		Waveform 3 Waveform 4	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to \bar{Y}		Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	
${ }^{t_{\text {PLH }}}$	Propagation delay I_{n} to Y	74F251A	Waveform 2	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay I_{n} to \bar{Y}		Waveform 1	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns	
$t_{\text {PLH }}$	Propagation delay S_{n} to Y		Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{array}{r} 4.0 \\ 3.5 \end{array}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay S_{n} to \bar{Y}		Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns	
$\begin{aligned} & t_{\mathrm{PZH}} \\ & t_{\mathrm{PZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Y		Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to Y		Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \\ & \hline \end{aligned}$	Output Enable time $\overline{O E}$ to \bar{Y}		Waveform 3 Waveform 4	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to \bar{Y}		Waveform 3 Waveform 4	$\begin{aligned} & 3.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	ns	

Signetics

Document No.	$853-0360$
ECN No.	98483
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- Multifunction capability
- Non-Inverting data path
- 3-state outputs
- See 'F258A for inverting version

DESCRIPTION

The 74F257/74F257A has four identical 2 -input multiplexers with 3 -state outputs which select 4 bits of data from two sources under control of a common Select (S) input. The $I_{0 n}$ inputs are selected when the common Select input is Low and the $I_{1 n}$ inputs are selected when the common Select input is High. Data appears at the outputs in true non-inverted form from the selected inputs. The 'F257/ 'F257A is the logic implementation of a 4pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the common Select input. Outputs are forced to a high impedance "off" state when the Output Enable $(\overline{\mathrm{OE}}$) is High. All but one device must be in high impedance state to avoid currents that would exceed the maximum ratings if the outputs were tied together. Design of the Output Enable signals must ensure that there is no overlap when outputs of 3state devices were tied together.

The 74F257A is the faster version of 74F257.

FAST 74F257, 74F257A Data Selectors/Multiplexers

74F257 Quad 2-Line To 1-Line Selector/Multiplexer, Non-Inverting (3-State)
 74F257A Quad 2-Line To 1-Line Selector/Multiplexer, Non-Inverting (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 257	4.3 ns	12 mA
74 F 257 A	4.3 ns	12 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F257N, N74F257AN
16-Pin Plastic SO	N74F257D, N74F257AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$I_{\text {On, }} I_{1 n}$	Data inputs	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
S	Common Select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{Y}_{\mathrm{a}}-\bar{Y}_{d}$	Data outputs	$150 / 33$	$3.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUT
$\overline{\text { OE }}$	S	I $_{0}$	I $_{\mathbf{1}}$	\bar{Y}
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

[^2]$Z=$ High impedance "off" state

Signetics

Document No.	$853-0056$
ECN No.	98778
Date of issue	February 9, 1990
Status	Product Specification
FAST Products	

FEATURES

- Synchronous counting and loading
- Built-in look-ahead carry capability
- Count frequency 115 MHz typ
- Supply current 95mA typ

DESCRIPTION

The 74F269 is a fully synchronous 8 -stage Up/Down Counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U / \bar{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

PIN CONFIGURATION

FAST 74F269 Counter

8-Bit Bidirectional Binary Counter

| TYPE | ${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}^{\text {TYPICAL SUPPLY Y CURRENT }}$ |
| :---: | :---: | :---: |
| (TOTAL) | |

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE CC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}$ $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim Dip (300 mil)	N74F269N
24-Pin Plastic SOL	N74F269D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L$ L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{P}_{0}-\mathrm{P}_{7}$	Parallel Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up/Down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal Count output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Flip-flop outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Counter

Counter

MODE SELECT-FUNCTION TABLE

INPUTS						OUTPUTS		OPERATING MODE
CP	U/ $\overline{\mathbf{D}}$	$\overline{\text { CEP }}$	$\overline{\text { CET }}$	$\overline{\text { PE }}$	P_{n}	Q_{n}	$\overline{\mathrm{TC}}$	
$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	1	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	(a) (a)	Parallel load
\uparrow	h	1	1	h	X	Count up	(a)	Count up
\uparrow	1	1	1	h	X	Count down	(a)	Count down
\uparrow	$\begin{aligned} & x \\ & x \end{aligned}$	h	I	h	X X	$\begin{aligned} & q_{n} \\ & q_{n} \end{aligned}$	(a) H	Hold (do nothing)

$H=$ High voltage level
$h=$ High voltage level one setup prior to the Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
1 = Low voltage level one setup prior to the Low-to-High clock transition
$q=$ Lower case letters indicate the state of the referenced output prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
(a) $=T$ TC is Low when CET is Low and the counter is at Terminal Count. The Terminal Count up is with all Q_{n} outputs High andTerminal Count Down is with all Q_{n} outputs Low.

APPLICATION

Signetics

Document No.	$853-0363$
ECN No.	99142
Date of issue	March 191990
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in Low and High states)
- Buffered inputs--one normalized load
- Word length easily expanded by cascading

DESCRIPTION

The 74F280A is a 9-bit Parity Generator or Checker commonly used to detect errors in high speed data transmission or data retreival systems. Both Even (Σ_{E}) and Odd (Σ_{O}) parity outputs are available for generating and checking even or odd parity on up to 9 bits.

The Even (Σ_{E}) parity output is High when an even number of data inputs $\left.\left(I_{0}{ }^{-1}\right)_{8}\right)$ are Hlgh . The Odd (Σ_{0}) parity output is High when an odd number of data inputs are High.

PIN CONFIGURATION

FAST 74F280A, 74F280B Parity Checker Generator

9-Bit Odd/Even Parity Generator/Checker

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 280 A	6.5 ns	26 mA
74 F 280 B	5.5 ns	26 mA

ORDERING INFORMATION

PACKAGES	$\begin{gathered} \text { COMMERCIAL RANGE } \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=0^{\circ} \mathrm{C} \mathrm{to}+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} V_{C C}=5 V_{ \pm} 10 \% \\ T_{A}=-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C} \end{gathered}$
14-Pin Plastic DIP	N74F280AN, N74F280BN	174F280BN
14-Pin Plastic SO	N74F280AD, N74F280BD	174F280BD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$I_{0}-1_{8}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Σ_{E}, Σ_{O}	Parity outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Expansion to larger word sizes is accomplished by tying the Even (Σ_{E}) outputs of up to nine parallel devices to the data inputs of the

LOGIC SYMBOL

final stage. This expansion scheme allows an 81-bit data word to be checked in less than 20 ns.

The 74F280B is a faster version of 74F280A
LOGIC SYMBOL(IEEE/IEC)

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
v_{cc}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{LL}	Low-level input voltage				0.8	\checkmark
I_{IK}	Input clamp current				-18	$m A$
${ }^{\text {I }}$	High-level output current				-1	$m A$
I_{OL}	Low-level output current				20	$m A$
T_{A}	Operating free-air temperature range	Commercial range	0		70	"C
		Industrial range	-40		85	"C

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$V_{C C}=M I N, V_{\text {IL }}=M A X$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		v		
$v_{o l}$	Low-level output voltage		$V_{C C}=$ MIN, $V_{\text {IL }}=$ MAX	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.35	0.50	V		
			$V_{I H}=M I N, I_{O L}=M A X$	$\pm 5 \% V_{\text {cc }}$		0.35	0.50	V		
V_{IK}	Input current at maximum input voltage		$V_{C C}=$ MIN, $I_{1}=I_{1 K}$			-0.73	-1.2	v		
1			$V_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / H}$	High-level input current Low-level input current	Commercial range Industrial range	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				${ }_{20}^{20}$	$\mu \mathrm{A}$		
I_{11}	Short-circuitoutput current ${ }^{3}$		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
I_{OS}	Supply current (total)		$V_{C C}=\mathrm{MAX}$		-60		-150	mA		
${ }^{\text {Icc }}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			26	35	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques aro prefor,tblo in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a lligh output may raise the chup termproture well above normal and thereby cause invalid readings in other parameter tests. In iny sequence of parameter tests, Ios tests should be performed lit:t.

AC ELECTRICAL CHARACTERISTICS

Waveform 1. Propagation Delay For
Inverting Outputs

TEST CIRCUIT AND WAVEFORMS

Test Circuit For Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance: see AC CHARACTERISTICS tor value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of

$$
V_{M}=1.5 \mathrm{~V}
$$

Input Pulse Definition

	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	${ }^{\text {t }}$ w	${ }^{1}$ tLH	${ }^{\text {t }}$ THL
74F	3.0 V	1 MHz	500ns	2.5 ns	2.5ns

Signetics

Document No.	$853-0061$
ECN No.	97377
Date of issue	August 14, 1989
Status	Product Specification
FAST Products	

FEATURES

- Fully synchronous operation
- Select from two data sources
- Buffered, negative edge triggered clock
- Provides the equivalent of function capabilities of two separate MSI functions (74F157 and 74F175)

DESCRIPTION

The 74F298 is a high speed Quad 2Input Multiplexer with storage. It selects 4 bits of data from two sources (ports) under the control of a common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the High-to-Low transition of the clock (GP). The 4-bit register is fully edge triggered. The data inputs (I_{0} and I_{1}) and Select input (S) must be stable only one setup time prior to the High-to-Low transition of the clock for predictable operation.

FAST 74F298

Multiplexer

Quad 2-Input Multiplexer With Storage

TYPE	TYPICAL $f_{\text {MAX }}$	$\left.\begin{array}{c}\text { TYPICAL } \begin{array}{c}\text { SUPPLY CURRENT } \\ \text { (TOTAL) }\end{array} \\ \hline 74 \mathrm{~F} 298\end{array}\right] \quad 30 \mathrm{~mA}$

ORDERING INFORMATION

PACKAGES	COMMERCIAL $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-pin Plastic DIP	N74F298N
16-pin Plastic SO	N74F298D

PINS	DESCRIPTION	$\begin{gathered} 74 F \text { (U.L.) } \\ \text { HIGH/LOW } \end{gathered}$	LOAD VALUE HIGH/LOW
$\mathrm{I}_{0 a}, I_{o b}, I_{o c}, I_{o d}$	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$I_{1 a}, l_{1 b}, l_{10}, l_{1 d}$	Data inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S	Select input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
6P	Clock input (active falling edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$Q_{a}, Q_{b}, Q_{c^{\prime}} Q_{d}$	Data outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LImits			UNIT
		Min	Nom	Max	
$v_{c c}$	Supply voltage	4.5	5.0	5.5	v
V_{H}	High-level input voltage	2.0			V
V_{ll}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
I_{OL}	Low-level output current			20	mA
TA	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

NOTES

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, ${ }^{\prime}$ os tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\prime}$ MAX	Maximum clock frequency	Waveform 1	110	115		105		MHz
${ }^{\mathrm{t}_{\mathrm{PLH}}}$	Propagation delay $\overline{C P}$ to Q_{n}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	4.0 4.5	9.0 9.5	ns

Signetics

Document No.	$853-0365$
ECN No.	98989
Date of issue	March 1, 1990
Status	Product Specification
FAST Products	

FEATURES

- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: Shift left, shift right, load and store
- 3-state outputs for bus oriented applications

DESCRIPTION

The 74F299 is an 8-bit universal shift / storage register with 3-state outputs. Four modes of operation are possible: Hold (store), shift left, shift right and parallel load. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy serial cascading. A separate active-Low Master Reset is used to reset the register.

The 74F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous, shift left, shift right, parallel

FAST 74F299

Register

8-Bit Universal Shift/Storage Register(3-State)

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 299	115 MHz	58 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{CC}^{=}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F299N
20-Pin Plastic SOL	N74F299D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
DS ${ }_{0}$	Serial data input for right shift	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Serial data input for left shift	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select inputs	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
CP	Clock Pulse input (Active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{O E}_{0}, \overline{O E}_{1}$	Output Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial outputs	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$1 / 0_{n}$	Multiplexed paraliel data inputs or	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	3-state parallel outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

DESCRIPTION (Continued)

load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Function Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting
on longer words. A Low signal on $\overline{\mathrm{MR}}$ overrides the Select and and CP input and resets the flip-flops.
All other state changes are initiated by the rising edge of the clock. inputs can change when the clock is in either state provided only that the recommended set up and hold times, relative to the rising
edge of clock are observed. A High signal on either $\overline{\mathrm{OE}}_{0}$ or $\overline{\mathrm{OE}}_{1}$ disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3 -state buffers are also disabled by High signals on both S_{0} and S_{1} in preparation for a parallel load operation.

LOGIC DIAGRAM

FUNCTION TABLE

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	$\mathrm{O}_{0}, \mathrm{Q}_{7}$	40
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	$1 / \mathrm{O}_{\mathrm{n}}$	48
$\mathrm{~T}_{\text {STG }}$	Storage temperature	mA	

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voitage		2.0			V
V_{H}	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
I_{OH}	High-level output current	Q_{0}, Q_{7}			-1	mA
		$1 / \mathrm{O}_{\mathrm{n}}$			-3	mA
${ }^{\text {OL }}$	Low-level output current	Q_{0}, Q_{7}			20	mA
		$1 / \mathrm{O}_{\mathrm{n}}$			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

Signetics

Document No.	$853-0367$
ECN No.	98987
Date of issue	March 1, 1990
Status	Product Specification
FAST Products	

FEATURES

- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: Shift left, shift right, load and store
- 3-state outputs for bus oriented applications

DESCRIPTION

The 74F323 is an 8-bit universal shift /storage register with 3 -state outputs. Its function is similar to the 74F299 with the exception of synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin counts. Separate serial inputs and outputs are provided for flip-flops Q_{0} and Q_{7} to allow easy serial cascading. Four modes of operation are possible: Hold (store), shift left, shift right and parallel load.

The 74F323 contains eight edge-triggered D-type flip-flops and the interstage logic

PIN CONFIGURATION

FAST 74F323
Register
8-Bit Universal Shift/Storage Register With Synchronous Reset and Common I/O pins (3-State)

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 323	115 MHz	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $v_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C} \mathbf{1 0}+\mathbf{7 0} 0^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F323N
20-Pin Plastic SOL	N74F323D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
DS	Serial data input for right shift	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DS_{7}	Serial data input for left shift	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode select inputs	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~m}$
CP	Clock Pulse input (Active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{S R}$	Synchronous Reset input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{O E}_{0}, \overline{O E}_{1}$	Output enable input (active Low)	1.011.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial outputs	50/33	$20 \mu \mathrm{~A} / 20 \mathrm{~mA}$
$1 / O_{n}$	Multiplexed parallel data inputs or	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	3-state paraliel outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operations is determined by S_{0} and S_{1}, as shown in the Function Table. All flip-flop outputs are brought out through 3state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins
for expansion in serial shifting of longer words. A Low signal on $\overline{S R}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of clock. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended set up and hold times, relative to the rising edge of
clock are observed. A high signal on either $\overline{O E}_{0}$ or $\overline{O E}_{1}$ disables the 3 -state buffers and puts the I / O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3 -state buffers are also disabled by High signals on both S_{0} and S_{1} in preparation for a parallel load operation.

LOGIC DIAGRAM

FUNCTION TABLE

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
${ }_{\text {I Out }}$	Current applied to output in Low output state	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	40	mA
		$1 / \mathrm{O}_{\mathrm{n}}$	48	mA
T_{A}	Operating free-air temperature range		0 to + 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {R }}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
I_{OH}	High-level output current	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			-1	mA
		$1 / O_{n}$			-3	mA
${ }_{\mathrm{OL}}$	Low-level output current	$\mathrm{Q}_{0}, \mathrm{Q}_{7}$			20	mA
		$1 / \mathrm{O}_{n}$			24	mA
T_{A}	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

Signetics

Document No.	$853-0042$
ECN No.	98496
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- High speed
- Bus oriented
- 3-state buffer outputs sink 64 mA

PIN CONFIGURATION

FAST 74F365, 74F366 74F367, 74F368 Buffers/Drivers
 'F365, 'F367 Hex Buffer/Driver (3-State)
 'F366, 'F368 Hex Inverter Buffer/Driver (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 365,74 \mathrm{~F} 367$	5.0 ns	36 mA
$74 \mathrm{~F} 366,74 \mathrm{~F} 368$	5.0 ns	33 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathbf{C}$
16-Pin Plastic DIP	N74F365N, N74F366N,N74F367N,N74F368N
16-Pin Plastic SO	N74F365D, N74F366D, N74F367D, N74F368D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{I}_{0} \mathrm{I}_{5}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$	Output enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{0}-\mathrm{Y}_{5}, \overline{\mathrm{Y}}_{0}-\bar{Y}_{5}$	Data outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
t_{PLH}	Propagation delay $I_{n} \text { to } \bar{Y}_{n}$	$\begin{aligned} & \text { 'F366, } \\ & \text { 'F368 } \end{aligned}$		Waveform 1	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation delay $I_{n} \text { to } Y_{n}$	$\begin{aligned} & \text { 'F35, } \\ & \text { 'F367 } \end{aligned}$		Waveform 2	2.5 2.5	4.5 5.5	6.5 7.0	2.0 2.0	7.0 7.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \\ & \hline \end{aligned}$	Output Enable time to High or Low leve	$\begin{aligned} & \text { 'F365, } \\ & \text { 'F366 } \end{aligned}$	Waveform 3 Waveform 4	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 4.0 \\ 5.0 \\ \hline \end{array}$	$\begin{array}{r} 6.5 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & t_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low leve	$\begin{aligned} & \text { 'F367, } \\ & \hline \text { F } \end{aligned}$	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 3. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 2. For Non-Inverting Outputs

Waveform 4. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }} \mathrm{L}^{\mathrm{t}}$ PZL All other	closed open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	\mathbf{t}^{\prime}	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-0369$
ECN No.	98488
Date of issue	January 8, 1390
Status	Product Specification
FAST Products	

FEATURES

- 8-bit transparent latch-'F373
- 8-bit positive edge triggered register-'F374
- 3-State Outputs glitch free during power-up and power-down
- Common 3-state Output register
- Independent register and 3-state buffer operation

DESCRIPTION

The 74F373 is an octal transparent latch coupled to eight 3-State output devices. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

The data on the D inputs is transferred to the latch outputs when the Enable (E) input is High. The latch remains transparent to the data input while E is High, and stores the data that is present one set-up time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the latch operation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs.

When $\overline{\mathrm{OE}}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 'F374 is an 8-bit, edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the clock

FAST 74F373, 74F374

Latch/Flip-Flop

74F373 Octal Transparent Latch (3-State) 74F374 Octal D Flip-Fiop (3-State)

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $v_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F373N,N74F374N
20-Pin Plastic SOL	N74F373D, N74F374D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E ('F373)	Enable input (active High)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F374)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
(CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flipflop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses,

MOS memories, or MOS microprocessors.
The active Low Output Enable ($\overline{(\mathrm{OE})}$ controls all eight 3-State buffers independent of the register operation. When $\overline{\mathrm{OE}}$ is Low, the data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

Signetics

Document No.	$853-0067$
ECN No.	97804
Date of issue	October 5, 1989
Status	Product Specification
FAST Products	

FEATUBES

- 6-bit high-speed parallel register
- Positive edge-triggered D-type inputs
- Fully buffered common Clock and Enable inputs
- Input clamp diodes limit high speed termination effects
- Fully TTL and CMOS compatible

DESCRIPTION

The 74F378 has six edge-triggered Dtype flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously when the Enable (\bar{E}) input is Low.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition is transferred to the corresponding flip-flop's Q output. The \bar{E} input must be stable one setup time prior to the Low-to-High clock transition for predictable operation.

FAST 74F378

Flip-Flop

Hex D Flip-Flop With Enable

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 378	100 MHz	35 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F378N
16-Pin Plastic SO	N74F378D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data inputs	$1.0 / 1,0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 1,0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable input (active Low)	$1.0 / 1,0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-1310$
ECN No.	98498
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- Edge-triggered output register
- Typical access time of 19.5 ns
- Optimize for register stack operation
- 3-state outputs
- 18-pin package

DESCRIPTION

The 74F410 is a register oriented high speed 64-bit Read/Write Memory organized as 16 -words by 4 -bits. An edge-triggered 4-bit output register allows new input data to be written while previous data is held. 3-state outputs are provided for maximum versatility. The 74F410 is fully compatible with all TTL families.

PIN CONFIGURATION

FAST 74F410
 Register Stack-16X4 RAM 3-State Output Register

TYPE	TYPICAL ACCESS TIME	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 410	19.5 ns	45 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
18 -Pin Plastic DIP $(300$ mil wide $)$	N 74 F 410 N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select input (active Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{WE}}$	Write Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Pulse input (active rising edge)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

FUNCTIONAL DESCRIPTION

Write Operation--- When the three control inputs, Write Enable ($\overline{\mathrm{WE}}$), Chip Select ($\overline{\mathrm{CS}}$), and Clock (CP), are Low the information on the data inputs ($D_{0}-D_{3}$) is written into the memory location selected by the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$). If the input data changes while $\overline{W E}, \overline{C S}$, and CP are

Low, the contents of the selected memory location follow these changes, provided setup and hold time criteria are met.

Read Operation--- When $\overline{\mathrm{CS}}$ is Low, $\overline{\text { WE }}$ is High, and CP goes from Low-to-High, the contents of the memory location selected by the address inputs $\left(A_{0}-A_{3}\right)$ are edge-triggered into the Output Register.

When WE is Low, $\overline{\mathbb{C} S}$ is Low, and CP goes from Low-to-High, the data at the Data inputs is edge-triggered into the Output Register. The $\overline{\mathrm{OE}}$ input controls the output buffers. When $\overline{\mathrm{OE}}$ is High the four outputs $\left(Q_{0}-Q_{3}\right)$ are in a high impedance or OFF-state; when $\overline{\mathrm{OE}}$ is Low, the outputs are determined by the state of the Output Register.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Signetics

Document No.	$853-0373$
ECN No.	97675
Date of issue	September 20, 1989
Status	Product Specification
FAST Products	

FEATURES

- 8-Bit bidirectional register with busoriented input-output
- Independent serial input-output to register
- Register bus comparator with 'equal to', 'greater than' and 'less than' outputs
- Cascadable in groups of 8-bits
- Open collector comparator outputs for AND-wired expansion
- Two's complement or magnitude compare

DESCRIPTION

The 74F524 is an 8-bit bidirectional register with parallel input and output plus serial input and output progressing from LSB to MSB. All data inputs, serial and parallel, are loaded by the rising edge of the clock. The device functions are controlled by two control lines $\left(S_{0}, S_{1}\right)$ to execute shift, load, hold and read out. An 8-bit comparator examines the data stored in the registers and on the data bus. Three true-High, open collector outputs representing 'register equal to bus', 'register greater than bus' and 'register less than bus' are provided. These outputs can be disabled to the OFF state by the use of Status Enable ($\overline{\mathrm{SE}}$). A mode control has also been provided to allow Two's Complement as well as magnitude compare. Linking inputs are provided for expansion to longer words.

FAST 74F524
 Comparator

8-Bit Register Comparator (Open Collector+3-State)

TYPE	TYPICAL $\boldsymbol{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 524	65 MHz	110 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE CC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F524N
20 -Pin Plastic SOL 1	N74F524D

NOTE:
1.Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
1/On	Parallel data inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
S_{0}, S_{1}	Mode select inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
C / SI	Status priority or serial data input	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock pulse input (active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { SE }}$	Status enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Compare mode select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$1 / \mathrm{O}_{n}$	3-state parallel data outputs	150/40	3.0 mA 24 mA
C/SO	Status priority or serial data output	50/33	1.0 mA 20 mA
LT	Register less than bus output	OC/33	OC/20mA
EQ	Register equal to bus output	OC/33	OC/20mA
GT	Register greater than bus output	OC/33	OC/20mA

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. OC=Open Collector

Signetics

Document No.	$853-1274$
ECN No.	98905
Date of issue	Febnruary 23, 1990
Status	Product Specification
FAST Products	

DESCRIPTION

The 74F539 contains two independent decoders. Each accepts two address (A_{0} A_{1}) input signals and decodes them to select one of four mutually exclusive outputs. A Polarity control (P) input determines whether the outputs are active Low ($\mathrm{P}=\mathrm{H}$) or active High ($\mathrm{P}=\mathrm{L}$). An active-Low Enable (E) is available for data demultiplexing. Data is routed to the selected output in non-inverted or inverted form in the active-Low mode or inverted form in the active-High mode.A High signal on the Output Enable ($\overline{O E}_{n}$) input forces the 3 -state outputs to the high impedance state.

PIN CONFIGURATION

FAST 74F539

Dual 1-Of-4 Decoder (3-state)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 539	7.5 ns	40 mA

ORDERING INFORMATION

PACKAGES	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F539N
20-Pin Plastic SOL	N74F539D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$\begin{aligned} & \text { 74F(U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$	LOADVALUE HIGH/LOW
$A_{0 a}, A_{1 a}$	Decoder A Address inputs	1.0/1.0:	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$A_{0 b}, A_{1 b}$	Decoder B Address inputs	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\bar{E}_{a^{\prime}} \bar{E}_{b}$	Enable inputs (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{\mathrm{a}} \overline{\mathrm{OE}}_{\mathrm{b}}$	Output enable inputs (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
P_{a}, P_{b}	Polarity control inputs	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0 \mathrm{a}}-\mathrm{Q}_{3 \mathrm{a}}$	Decoder A Data outputs	150/40	3.0 mA 24 mA
$\mathrm{Q}_{0 \mathrm{~b}}-\mathrm{Q}_{3 \mathrm{~b}}$	Decoder B Data outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

FUNCTION TABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{INPUTS} \& \multicolumn{4}{|c|}{OUTPUTS} \& \multirow[b]{2}{*}{OPERATING MODE}

\hline \multicolumn{4}{|l|}{$\overline{O E}_{n} \bar{E}_{n} A_{1 n} A_{\text {on }}$} \& O_{0} \& $Q_{1 n}$ \& $\mathrm{Q}_{2 \mathrm{n}}$ \& Q_{3} \&

\hline H \& X \& X \& X \& Z \& 2 \& Z \& Z \& High impedance

\hline L \& H \& X \& X \& \& \& \& \& Disable

\hline $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& L \& H
H \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
$$ \& H
L
L
L \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
$$ \& $$
\begin{aligned}
& L \\
& L \\
& L \\
& H
\end{aligned}
$$ \& Active High output
$$
(P=L)
$$

\hline $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L}
\end{aligned}
$$ \& L
L
L \& L
L
H
H \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H}
\end{aligned}
$$ \& L

H
H
H \& H
L
H
H \& H
H
L

H \& $$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
$$ \& Active Low output

$$
(\mathrm{P}=\mathrm{H})
$$

\hline
\end{tabular}

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care
$Z=$ High impedance "off "state.

Signetics

Document No.	$853-0068$
ECN No.	98494
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Low power, light bus loading
- Functional similar to the 'F240 and 'F241
- Provides ideal interface and increases fan-out of MOS Microprocessors
- Efficient pinout to facilitate PC board layout
- Octal bus interface
- 3-State buffer outputs sink 64mA
- 15mA source current

DESCRIPTION

The 74F540 and 74F541 are octal buffers that are ideal for driving bus lines or buffer memory address registers. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The devices feature input and outputs on opposite sides of the package to facilitate printed circuit board layout.

PIN CONFIGURATION

FAST 74F540, 74F541

Buffers

74F540 Octal Inverter Buffer (3-State) 74F541 Octal Buffer (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 540	3.5 ns	58 mA
74 F 541	5.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F540N, N74F541N
20-Pin Plastic SOL	N74F540D, N74F541D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{0} \overline{\mathrm{OE}}_{1}$	3-state output enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Y}_{0}-\mathrm{Y}_{7}$	Data outputs ('F541)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\bar{Y}_{0}-\overline{\mathrm{Y}}_{7}$	Data outputs ('F540)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Buffers

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay I_{n} to \bar{Y}_{n}	74F540		Waveform 1	3.0 1.5	4.5 2.5	6.5 4.5	2.5 1.5	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pzH}} \\ & \mathrm{t}_{\mathrm{pZLL}} \end{aligned}$	Output Enable time to High or Low level			Waveform 3 Waveform 4			6.5 9.5	2.0 4.0	$\begin{aligned} & 7.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHLL}} \\ & \hline \end{aligned}$	Propagation delay I_{n} to Y_{n}	74F541	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$	Output Enable time to High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\text {PZLL }} \end{aligned}$	Output Disable time from High or Low level		Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 1. For Propagation Delay Data to Output for 'F540

Waveform 3. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 4. 3-State Output Enable Time To Low
Level And Output Disable Time From Low Level NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLZ}}$	closed $\mathrm{t}_{\mathrm{PZL}}$ cllosed other
open	

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse

Input Pulse Definition

FAMLY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	\mathbf{t}_{W}	$\mathbf{t}_{\mathrm{TLH}}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-0874$
ECN No.	99525
Date of issue	May 2, 1990
Status	Product Specification
FAST Products	

FEATURES

- Combines 74F245 and 74F373 type functions in one chip
- 8-bit octal transceiver with D-type latch
- 'F543 Non-inverting 'F544 Inverting
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 24 mA and source 3mA
- B outputs sink 64mA and source 15 mA
- 300 mil wide 24-pin Slim DIP package
- 3-state outputs for bus-orientated applications

DESCRIPTION

The 74F543 and 74F544 Octal Registered Transceivers contain two sets of Dtype latches for temporary storage of data flowing in either direction. Separate Latch Enable ($\overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}})$ and Output Enable $(\overline{O E A B}, \overline{O E B A})$ inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. While the 'F543 has non-inverting data path, the 'F544 inverts data in both directions. The A outputs are guaranteed to sink 24 mA while the B outputs are rated for 64 mA .

FUNCTIONAL DESCRIPTION

The 'F543 and 'F544 contain two sets of eight D-type latches, with separate input and controls for each set. For data flow from A to B, for example, the A -to- B Enable ($\overline{\mathrm{EAB}}$) input must be Low in order to enter data from $\mathrm{A}_{0}-\mathrm{A}_{7}$ or take data from $\mathrm{B}_{0}-\mathrm{B}_{7}$, as indicated in the

FAST 74F543, 74F544 Transceivers

74F543 Octal Registered Transceiver, Non-Inverting (3-State) 74F544 Octal Registered Transceiver, Inverting (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 543	6.0 ns	80 mA
74 F 544	6.5 ns	95 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F543N, N74F544N
24-Pin Plastic SOL	N74F543D, N74F544D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS		DESCRIPTION	$\begin{gathered} \text { 74F(U.L.) } \\ \text { HIGH/LOW } \end{gathered}$	LOADVALUE HIGH/LOW
$\begin{aligned} & \text { 'F543 } \\ & \text { 'F544 } \end{aligned}$	$\mathrm{A}_{0}-\mathrm{A}_{7}$	Port A; 3-state inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\mathrm{B}_{0}-\mathrm{B}_{7}$	Port B, 3-state inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{O E A B}$	A-to-B Output Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{O E B A}$	B-to-A Output Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{E A B}$	A-to-B Enable input (Active Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
	$\overline{E B A}$	B-to-A Enable input (Active Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
	$\overline{\text { LEAB }}$	A-to-B Latch Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	$\overline{L E B A}$	B-to-A Latch Enable input (Active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
'F543	$\mathrm{A}_{0}-\mathrm{A}_{7}$ P	Port A, 3-state outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	$\mathrm{B}_{0}-\mathrm{B}_{7}$	Port B, 3-state outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
'F544	$\bar{A}_{0}-\bar{A}_{7}$	Port $\bar{A}, 3$-state outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	$\overline{\mathrm{B}}_{0} \cdot \overline{\mathrm{~B}}_{7}$	Port $\bar{B} .3$-state outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Function Table. With $\overline{E A B}$ Low, a Low signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the $\mathrm{A}-\mathrm{to}-\mathrm{B}$ latches transparent; a subsequent Low-to High transition of the $\overline{\text { LEAB }}$ signal puts the A latches in the storage mode and their outputs no longer change with the A
inputs. With $\overline{\mathrm{EAB}}$ and $\overline{\mathrm{OEAB}}$ both Low, the 3state B output buffers are active and display the data present at the outputs of the A latches.
Control of data flow from B to A is similar, but using the $\overline{E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.

LOGIC SYMBOL(IEEE/IEC)

FUNCTION TABLE for 'F543 and 'F544

INPUTS				OUTPUTS		STATUS
$\overline{\text { OEXX }}$	$\overline{\text { EXX }}$	$\overline{\text { LEXX }}$	DATA	'F543	'F544	
H	X	X	X	Z	Z	Disabled
X	H	X	X	Z	Z	Disabled
L	\uparrow	L	h	Z	Z	Disabled + Latch
L	\uparrow	L	l	Z	Z	
L	L	\uparrow	h	H	L	Latch + Display
L	L	\uparrow	I	L	H	
L	L	L	H	H	L	Transparent
L	L	L	L	L	H	
L	L	H	X	NC	NC	Hold

[^3]Signetics

Document No.	$853-1098$
ECN No.	98906
Date of issue	February 23, 1990
Status	Product Specification
FAST Products	

FEATURES

- 8-Bit bidirectional I/O port with handshake
- Register status flag flip-flops
- Separate clock enable and output enable
- Parity generation and parity check
- B outputs and parity output sink 64mA
DESCRIPTION
The 74F552 Octal Registered Transceiver contains two 8 -bit registers for temporary storage of data flowing in either direction. Each register has its own clock (CPR, CPS) and Clock Enable (CER, $\overline{\mathrm{CES}}$) inputs, as well as a flag flip-flop that is set automatically as the register is loaded. The flag output will be reset when the Output Enable returns to High after reading the output port. Each register has a separate Output Enable ($\overline{O E A S}, \overline{O E B R}$) for its 3 -state buffer. The separate Clocks, Flags and Enables provide considerable flexibility as I/O ports for demand-response data transfer. When data is transferred from the A port to the B port, a parity bit is generated. On the other hand, when data is transferred from the B port to the A port, the parity of input data on $B_{0}-B_{7}$ is checked.

PIN CONFIGURATION

FAST 74F552
 Transceiver

Octal Registered Transceiver With Parity and Flags (3-State)

TYPE	TYPICAL 'MAX	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 552$	85 MHz	120 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
28-Pin Plastic DIP (600mil)	N74F552N
28-Pin Plastic SOL ${ }^{1}$	N74F552D

NOTE: Thermal mounting technique are recommended. See AN SMD-100 ProcessApplications (page 17) for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-A_{7}$	ALata inputs	3.5/1	$70 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{B}_{1}-\mathrm{B}_{2}$	B Data inputs	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPR	R registers clock input (active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPS	S registers clock input (active rising edge)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { CER }}$	R registers clock Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CES}}$	S registers clock Enable input (active Low)	1.0/1.0	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { OEBR }}$	A-to-B Output Enable input (active Low) and clear FS output (active Low)	1.0/2.0	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\text { OEAS }}$	B-to-A Output Enable input (active Low) and clear FR output (active Low)	1.0/2.0	$20 \mu \mathrm{~A} 1.2 \mathrm{~mA}$
	Parity bit transceiver input	3.5/1.0	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Parity bit transceiver output	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
ERROR	Parity check output (active Low)	50/33.3	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$A_{0}-A_{7}$	AData outputs	150/40	3.0 mA 24 mA
B $-\mathrm{B}^{\text {a }}$	B Data outputs	750/106.7	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
FR	A-to-B Status Flag output (active High)	50/33.3	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
FS	B-to-A Status Flag output (active High)	50/33.3	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-0166$
ECN No.	98169
Date of issue	November 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- 74F563 is broadside pinout version of 74F533
- 74F564 is broadside pinout version of 74F534
- Inputs and Outputs on opposite side of package allow easy interface to Microprocessors
- Useful as an Input or Output port for Microprocessors
- 3-State Outputs for Bus interfacing
- Common Output Enable
- 74F573 and 74F574 are noninverting versions of 74F563 and 74F564 respectively
- These are High-Speed replacements for N8TS807 and N8TS808

DESCRIPTION

The 74F563 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The 74F563 is functionally identical to the 74F533 but has a broadside pinout configuration to facilitate PC board layout and allows easy interface with microprocessors.

The data on the D inputs is transferred to the latch outputs when the Enable (E) input is High. The latch remains transparent to the data input while E is High and stores the data that is present one set-up time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independently of

FAST 74F563, 74F564 Latch/Flip-Flop

74F563 Octal Transparent Latch (3-State)
74F564 Octal D Flip-Flop (3-State)

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $v_{C C}=5$ $10 \% ; T_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F563N, N74F564N
20-Pin Plastic SOL	N74F563D, N74F564D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{E}($ 'F563 $)$	Latch Enable input (active High)	$1.0 / 1.0$	$20 \mu A / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F564)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
the latch operation. When $\overline{\mathrm{OE}}$ is Low, the latched or transparent data appears at the outputs. When $\overline{O E}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 74F564 is functionally identical to the 74F534 but has a broadside pinout configuration to facilitate PC board layout and allows easy interface with microprocessors.

It is an 8 -bit, edge triggered register coupled to eight 3 -State output buffers. The two sections of the device are controlled independently by the clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) control gates.

The register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flipflop's \bar{Q} output.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3 -State buffers independently of the register operation. When $\overline{O E}$ is Low, data in the register appears at the outputs. When $\overline{O E}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to \bar{Q}_{n}	74F563		Waveform 2	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$				$\begin{array}{r} 9.5 \\ 7.0 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay E to \bar{Q}_{n}			Waveform 1	5.0 3.0	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PZH }} \\ & t_{\text {PZL }} \end{aligned}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & \hline 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8,5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	74F564	Waveform 1	160	180		150		MHz	
t_{PLH}	Propagation delay CP to \bar{Q}_{n}		Waveform 1	3.5 3.5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	3.0 3.0	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	
$t_{\mathrm{PZH}} \mathrm{t}_{\mathrm{PZL}}$	Output Enable time to High or Low level		Waveform 4 Waveform 5	$\begin{array}{r} 2.5 \\ 4.0 \\ \hline \end{array}$	4.5 5.5	7.5 8.0	2.0 3.5	8.0 8.5	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{HHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable time to High or Low level		Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$	1.0 1.0	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time D_{n} to E	74F563		Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.0 1.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $D_{n} \text { to } E$			Waveform 3	3.0 2.5			3.0 2.5		ns
${ }_{w}{ }^{(H)}$	E Pulse width, High		Waveform 1	3.5			3.5		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time D_{n} to CP	74F564	Waveform 3	$\begin{array}{r} 2.0 \\ 2.0 \end{array}$			$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		ns	
$\mathrm{t}_{\mathrm{n}}(\mathrm{H})$ $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold time D_{n} to CP		Waveform 3	1.0 1.0			1.5 1.5		ns	
$\begin{aligned} & { }_{w}(\mathrm{H}) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	$\begin{array}{r}3.5 \\ 3.5 \\ \hline\end{array}$			3.5 3.5		ns	

Signetics

Document No.	$853-0083$
ECN No.	97897
Date of issue	October 16, 1989
Status	Product Specification
FAST Products	

FEATURES

- 74F573 is broadside pinout version of 74F373
- 74F574 is broadside pinout version of 74F374
- Inputs and Outputs on opposite side of package allow easy interface to Microprocessors
- Useful as an Input or Output port for Microprocessors
- 3-State Outputs for Bus interfacing
- Common Output Enable
- 74F563 and 74F564 are inverting version of 74F573 and 74F574 respectively
- 3-State Outputs glitch free during power-up and power-down
- These are High-Speed replacements for N8TS805 and N8TS806

DESCRIPTION

The 74F573 is an octal transparent latch coupled to eight 3-State output buffers. The two sections of the device are controlled independently by Enable (E) and Output Enable ($\overline{\mathrm{OE}}$) control gates.
The 74F573 is functionally identical to the 74F373 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

The data on the D inputs is transferred to the latch outputs when the Enable (E) input is High. The latch remains transparent to the data input while E is High and stores the data that is present one set-up time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. The active Low Output Enable (OE)

FAST 74F573, 74F574
 Latch/Flip-Flop

74F573 Octal Transparent Latch (3-State)
 74F574 Octal D Flip-Flop (3-State)

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $v_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F573N, N74F574N
20-Pin Plastic SOL	N74F573D, N74F574D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
E ('F573)	Latch enable input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP ('F574)	Clock Pulse input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
controls all eight 3 -State buffers independent of the latch operation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When $\overline{\mathrm{OE}}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 74F574 is functionally identical to the 74F374 but has a broadside pinout configuration to facilitate PC board layout and allow easy interface with microprocessors.

It is an 8-bit, edge triggered register coupled to eight 3-State output buffers. The two sections of the device are controlled independently by the clock (CP)
and Output Enable ($\overline{\mathrm{OE}}$) control gates. The register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition is transferred to the corresponding flipflop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3 -State buses, MOS memories, or MOS microprocessors. The active Low Output Enable ($\overline{\mathrm{OE}}$) controls all eight 3-State buffers independent of the latch operation. When $\overline{O E}$ is Low, the latched or transparent data appears at the outputs. When $\overline{\mathrm{OE}}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	Limits			UNIT
		Min	Nom	Max	
v_{cc}	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 H}$	High-level input voltage	2.0			V
$\mathrm{V}_{\text {L }}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
I_{OH}	High-level output current			-3	mA
I_{OL}	Low-levei output current			24	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% V_{C C}$	2.4			v
				$\pm 5 \% V_{\text {cc }}$	2.7		3.4		v		
V_{OL}	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X \\ & V_{I H}=M I N, I_{\text {LL }}=M A X \end{aligned}$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V		
					$\pm 5 \% V_{\text {cc }}$		0.35	0.50	v		
V_{IK}	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$			-0.73	-1.2	V		
1	Input current at maximum input voltage			$V_{C C}=$ MAX, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {IH }}$	High-level input current			$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current			$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$:	-0.6	mA		
${ }^{\text {IOZH }}$	Off state output current, High-level voltage applied			$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$		
${ }^{\text {O OLL }}$	Off state output current, Low-level voltage applied			$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$				-50	$\mu \mathrm{A}$		
${ }^{1} \mathrm{OS}$	Short circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
${ }^{\text {cc }}$	Supply current (total)	${ }^{\mathrm{CCH}}$	74F573	$v_{C C}=\operatorname{mAX}$			30	40	mA		
		${ }^{\mathrm{CCL}}$					35	50	mA		
		${ }^{\text {c CCZ }}$					40	60	mA		
		${ }^{\mathrm{I} C \mathrm{CH}}$	74F574	$V_{C C}=M A X$			45	65	mA		
		${ }^{1} \mathrm{CCL}$					50	70	mA		
		${ }^{\text {c CCz }}$					55	85	mA		

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$t_{\mathrm{t}_{\mathrm{PLH}}}$	Propagation delay $D_{n} \text { to } Q_{n}$	74F573		Waveform 2	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay E to Q_{n}			Waveform 1	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level		Waveform 5 Waveform 6	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time from High or Low level		Waveform 5 Waveform 6	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	ns	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock frequency	74F574	Waveform 1	160	180		150		MHz	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{n}		Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time to High or Low level		Waveform 5 Waveform 6	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	Output Disable time from High or Low level		Waveform 5 Waveform 6	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns	

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{s}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time D_{n} to E	74F573		Waveform 4	$\begin{array}{r} 8.0 \\ 1.5 \end{array}$					ns
$\begin{array}{\|l} \hline t_{n}(H) \\ t_{h}(L) \\ \hline \end{array}$	Hold time $D_{n} \text { to } E$			Waveform 4	2.5 4.0			$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$		ns
${ }_{\text {w }}{ }^{(H)}$	E Pulse width, High		Waveform 1				3.5		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time $D_{n} \text { to } C P$	74F574	Waveform 3	2.5 2.5			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns	
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold time $D_{n} \text { to } C P$		Waveform 3	0			0		ns	
$\begin{aligned} & { }^{{ }^{\prime} \mathrm{w}(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CP Pulse width, High or Low		Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		ns	

Signetics

Document No.	$853-0377$
ECN No.	99600
Date of issue	May 15, 1990
Status	Product Specification
FAST Products	

FEATURES

- Fully synchronous operation
- Multiplexed 3-state I/O ports for bus oriented applications
- Built in cascading carry capability
- U/ $\overline{\mathbf{D}}$ pin to control direction of counting
- Separate pins for Master Reset and Synchronous operation
- Center power pins to reduce effects of package inductance
- Count frequency 115 MHz typ
- Supply current 100 mA typ
- See 'F269 for 24 pin separate I/O port version
- See 'F779 for 16 pin version

DESCRIPTION

The 74F579 is a fully synchronous 8 -stage Up/Down Counter with multiplexed 3-state I/ O ports for bus-oriented applications. It features a preset capability for programmable operation, carry look-ahead for easy cascading and a U/D input to control the direction of counting. All state changes, except for the case of asynchronous reset, are initiated by the rising edge of the clock. TC output is not recommended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

PIN CONFIGURATION

FAST 74F579 Counter

8-Bit Bidirectional Binary Counter (3-state)

| TYPE | ${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}^{\text {TYPICAL SUPPLY CURRENT }}$ |
| :---: | :---: | :---: |
| (TOTAL) | |

ORDERING INFORMATION

$\left.\begin{array}{|c|c|}\hline \text { PACKAGES } & \mathbf{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}\right]$ N74F579N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{U} \overline{/ D}$	Up/Down count control input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$	Synchronous Reset input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low stato.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

[^4]
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to $/ / O_{0}$	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	ns
t_{PLH}	Propagation delay CP to $\overline{T C}$	Waveform 1	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay U / \bar{D} to $\overline{T C}$	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{CET}} \text { to } \overline{\mathrm{TC}}$	Waveform 3	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
${ }^{\text {tPHL }}$	Propagation delay $\overline{\mathrm{MR}}$ to $1 / \mathrm{O}_{\mathrm{n}}$	Waveform 2	5.0	7.0	9.0	5.0	10.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable time $\overline{C S}$ to $/ / O_{n}$	Waveform 6 Waveform 7	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns
	Output Disable time $\overline{\mathrm{CS}}$ to $1 / \mathrm{O}$	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\stackrel{r}{\mathrm{PZZH}}_{\mathrm{t}_{\mathrm{PZL}}}$	Output Enable time $\overline{P E}$ to $1 / O_{n}$	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLLZ}}} \\ & \hline \end{aligned}$	Output Disable time $\overline{P E}$ to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable time $\overline{O E}$ to I / O_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Output Disable time $\overline{O E}$ to I / O	Waveform 6 Waveform 7	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{s}(\mathrm{H}) \\ & \mathbf{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $1 / O_{n}$ to CP	Waveform 5	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $1 / O_{n}$ to CP	Waveform 5	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low U / \bar{D} to $C P$	Waveform 5	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			9.0 9.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low U / \bar{D} to $C P$	Waveform 5	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{P E}, \overline{S R}$ or $\overline{C S}$ to CP	Waveform 5	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low $\overline{P E}, \overline{S R}$ or $\overline{C S}$ to CP	Waveform 5	0			0		ns
ts (H) $\mathrm{t}_{s}(\mathrm{~L})$	Setup time, High or Low $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	Waveform 5	$\begin{aligned} & \hline 5.0 \\ & 9.0 \end{aligned}$			$\begin{gathered} 5.5 \\ 10.5 \end{gathered}$		ns
$t_{h}(\mathrm{H})$ $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold time, High or Low $1 / O_{n}$ to $C P$	Waveform 5	0			0		ns
$\begin{aligned} & w_{w}(H) \\ & w^{(L L)} \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
(${ }^{(L)}$	MR Pulse width,	Waveform 2	3.0			3.0		ns
$t_{\text {REC }}$	Recovery time, $\overline{\mathrm{MR}}$ to CP	Waveform 2	4.0			4.5		ns

Signetics

Document No.	$853-1247$
ECN No.	99495
Date of issue	April 27, 1990
Status	Product Specification
FAST Products	

FEATURES

- Performs four BCD functions
- \bar{P} and G outputs for high speed expansion
- Add/Subtract delay 28ns max Look ahead delay 22.5ns max
- Supply current 85 mA max
- 24 pin 300 mil Slim Dip package

DESCRIPTION

The 74F582 Binary Coded Decimal (BCD) Arithmetic Logic Unit (ALU) is a 24 pin expandable unit that performs addition, subtraction, comparison of two numbers and binary to BCD conversion.
The 'F582 input and output logic includes a Carry/Borrow which is generated internally in the look-ahead mode, allowing BCD to computed directly.
CASCADING FEATUREIS DELETED

When A / S is Low, $B C D$ addition is performed $(A+B+C / \bar{B}=F)$. If an input is greater than 9 binary to $B C D$ conversion results at the output.
When \bar{A} / S is High, subtraction is performed. If the C / B is Low, then the subtraction is accomplished by internally computing the nine's complement addition of the two BCD numbers($\mathrm{A}-\mathrm{B}-1=\mathrm{F}$). When C / \bar{B} is High, the difference of the two numbers is figured as $A-F=F$. If A is greater than or equal to B, the BCD difference appears at the output F in its true form. If A is less than B and C / \bar{B} is Low, the 9 s complement of the true form appears at the output F. As long as A is less than B, an active Low borrow is also generated. The 'F582 also performs binary to $B C D$ conversion. For inputs from 10 to 15 , binary to BCD conversion occurs by grounding one set of inputs, A_{n} or B_{n}, and applying the binary number to the other set of inputs.

FAST 74F582
4-Bit BCD Arithmetic Logic Unit

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
745582	12.0 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300 mil)	N74F582N
24-Pin Plastic SOL	N74F582D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 \mathrm{~F}(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A operand inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\mathrm{~B}_{0}$	B operand input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{1}$	B operand input	$1.0 / 4.0$	$20 \mu \mathrm{~A} / 2.4 \mathrm{~mA}$
$\mathrm{~B}_{2}$	B operand input	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~B}_{3}$	B operand input	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 1.2 \mathrm{~mA}$
$\overline{\mathrm{~A}} / \mathrm{S}$	Add/Subtract input	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{C} / \overline{\mathrm{B}}$	Carry/Borrow input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{C} / \overline{\mathrm{B}}_{\mathrm{n}+4}$	Carry/Borrow output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Carry Propagate output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{G}}$	Carry Generator output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~A}=\mathrm{B}$	Comparator output	$0 \mathrm{~m} / 33$	$0 \mathrm{C} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. ○=Open Collector

Signetics

Document No.	$853-1096$
ECN No.	99392
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

FEATURES

- Low noise, no switching feedthru current
- Controlled output edge rates
- High impedance PNP base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 8-bit serial-in, parallel-out shift register with storage
- 3-state outputs
- Shift register has direct clear
- Guaranteed shift frequency-DC to 100 MHz

DESCRIPTION

The 74F595 contains an 8-bit serial-in, parailel-out shift register that feeds an 8bit D-type storage register. The storage register has parallel 3 -state outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct overriding clear, serial input and serial output pins for cascading. Both the shift register and storage register clocks are positive edgetriggered. If the user wishes to connect both clocks together, the shift register

PIN CONFIGURATION

FAST 74F595

Shift Register
8-Bit Shift Register with Output Latches (3-state)

TYPE	TYPICAL $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
N74F595	130 MHz	65 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{CC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F595N
16-Pin Plastic SO	N74F595D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOADVALUE HIGH/LOW
D_{S}	Serial data input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SHCP	Shitt register clock pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
STCP	Storage register clock pulse input (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{SHR}}$	Shift register reset input (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable input (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Q_{S}	Serial expansion output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
state will always be one clock pulse ahead of the storage register.
This device uses patented circuitry to control system noise and internal ground
bounce. This is done by eliminating switching feedthru current and controlling both Low-to-High and High-to-Low slew rates.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(\mathrm{H}) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low D_{S} to SHCP	Waveform 3	2.0 2.0			2.5 2.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low $\mathrm{D}_{\mathrm{S}} \text { to } \mathrm{SHCP}$	Waveform 3	0			0		ns
$\mathrm{t}_{5}(\mathrm{~L})$	Setup time, Low SHR to STCP	Waveform 3	4.5			5.0		ns
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup time, High SHCP to STCP	Waveform 4	4.5			5.0		ns
	SHCP Pulse width, High or Low	Waveform 1	3.5 4.0			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns
$\begin{aligned} & { }^{t}{ }^{\mathbf{w}}(\mathrm{H}) \\ & { }_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	STCP Pulse width, High or Low	Waveform 1	4.0 3.0			4.0 3.5		ns
${ }_{\text {t }}{ }^{(L)}$	$\overline{\text { SHR }}$ Pulse width, Low	Waveform 2	3.0			3.0		ns
${ }^{\text {treC }}$	Recovery time, $\overline{S H R}$ to SHCP	Waveform 2	3.0			3.0		ns

Signetics

Document No.	$853-$
ECN No.	
Date of issue	February 1, 1990
Status	Preliminary Specification
FAST Products	

FEATURES

- High impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- 8-bit Parallel storage register
- Shift register has asynchronous direct overriding load and reset
- Guaranteed shift frequency DC to 120 MHz
- Parallel 3-State I/O, Storage register inputs
- Shift register outputs-'F598

DESCRIPTION

The 74F597 consists of an 8-bit storage register feeding a parallel-in/serial-in, serial out 8 -bit shift register. The storage register and shift register have separate positive edge triggered clocks. The shift register also has asynchronous direct load (from storage) and reset inputs.

The 74F598 consists of an 8-bit storage register feeding a parallel/serial-in, parallel/serial out 8 -bit shift register. Both the storage register and shift register have positive edge triggered clocks. The shift register also has asynchronous direct load (from storage) and reset inputs. The 'F598 has 3-state I/O ports that provide parallel shift register outputs and also has multiplexed serial data input.

FAST 74F597, 74F598
 Shift Registers

74F597 8-Bit Shift Register with Input Storage Registers 74F598 8-Bit Shift Register with Input Storage Registers (3-State)

TYPE	TYPICALf $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 597	120 MHz	75 mA
74 F 598	120 MHz	75 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0 ^ { \circ } \mathrm { C }}$
16-Pin Plastic DIP	N74F597N
20-Pin Plastic DIP	N74F598N
16-Pin Plastic SO	N74F597D
20-Pin Plastic SOL	N74F598D

	PINS	DESCRIPTION	$\begin{aligned} & \text { 74F(U.L.) } \\ & \text { HIGH/LOW } \end{aligned}$	LOADVALUE HIGH/LOW
-F597	D_{S}	Serial data input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{D}_{0}-\mathrm{D}_{7}$	Parallel data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCP	Shift register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	STCP	Storage register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	SHLD	Shift register load input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	SHRST	Shift register reset input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	Q_{S}	Serial data output	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
'F598	$1 / \mathrm{O}_{n}$	Parallel data inputs	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	$\mathrm{D}_{\text {S }}, \mathrm{D}_{\text {S } 1}$	Serial data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCP	Shift register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\text { STCP }}$	Storage register clock pulse input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHCPEN	Shift register clock pulse enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\text { SHLD }}$	Shift register load input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	SHRST	Shift register reset input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	S	Serial data selector input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{O E}$	Output Enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	Q_{S}	Serial data output	50/33	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$
	$1 / O_{n}$	Parallel data outputs	150/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM for 'F597

Shift Registers

FUNCTION TABLE

INPUTS				OPERATING MODES
STCP	SHCP	$\overline{\text { SHLD }}$	$\overline{\text { SHRST }}$	
\uparrow	X	X	X	data loaded to storage registers
\uparrow	X	L	H	data loaded from inputs to shift register
\uparrow	X	L	H	data transferred from storage registers to shift registers
x	X	L	L	Invalid logic, state of shift register indeterminate when signals removed
X	X	H	L	shift register cleared
X	\uparrow	H	H	shift register clocked, $Q_{n}=Q_{n-1}, Q_{0}=Q_{s}$

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care
$\uparrow=$ Low to High clock transition
$\uparrow=$ Not Low to High clock transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{cc}	Supply voltage		-0.5 to +7.0	V
$V_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current		-30 to +5	mA
$V_{\text {out }}$	Voltage applied to output in High output state		-0.5 to $+V_{C C}$	V
${ }^{\text {out }}$	Current applied to output in Low output state	Q_{S}	40	mA
		$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$\mathrm{a}_{\text {S }}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{IOH}^{=-1 m A}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V				
			$1 / O_{n}$	${ }^{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.4				V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		2.7	3.3			V				
V_{OL}	Low-level output voltage			$V_{C C}=M I N,$	${ }^{\prime} \mathrm{OL}=\mathrm{MAX}$	$\pm 10 \% V_{\text {cc }}$		0.30	0.50	V			
				$\begin{aligned} & V_{I L}=M A \\ & V_{I H}=M I \end{aligned}$		$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$				-0.73	-1.2	v			
1	Input current at maximum input voltage			others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
			$1 / O_{n}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
I_{IH}	High-level input current			$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$1 / 1$	Low-level input current			$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
${ }^{1} \mathrm{OZH}^{+l_{\mathrm{IH}}}$	Off-state output current, High-level voltage applied		$1 / \mathrm{O}_{\mathrm{n}}$ only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
${ }^{\text {OZL }}{ }^{+1} \mathrm{IL}$	Off-state output current, Low-level voltage applied			$V_{C C}=M A X, V_{0}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
I_{OS}	Short-circuit output current ${ }^{3}$			$V_{C C}=\mathrm{MAX}$			-60		-150	mA			
${ }^{1} \mathrm{cc}$	Supply current (total)		${ }^{1} \mathrm{CCH}$	$V_{C C}=M A X$				45	70	mA			
		'F597	${ }^{{ }^{C C L}}$					48	75	mA			
			${ }^{\text {ccz }}$					75	90	mA			
		'F598	${ }^{\mathrm{ICCH}}$										
			${ }^{\mathrm{CCL}}$					78	95	mA			
			${ }^{1} \mathrm{CCH}$					85	100	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS for 'F597

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\dagger_{\text {MAX }}$	Maximum clock frequency	Waveform 1	100	120		80		MHz
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay SHCP to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}}{ }_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\text { SHLD }}$ to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t} P L H} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \end{aligned}$	Propagation delay STCP to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
${ }^{\text {t PHL }}$	Propagation delay SHRST to Q_{S}	Waveform 3	4.0	8.0	10.0	4.0	11.0	ns

AC SETUP REQUIREMENTS for 'F597

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low D_{n} to STCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{n} to STCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\mathrm{D}_{\mathrm{S}} \text { to SHCP }$	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low D_{S} to SHCP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low STCP to SHLD	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low STCP to SHLD	Waveform 4	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & { }^{\left.\mathrm{w}^{(} \mathrm{H}\right)} \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	SHCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}^{(\mathrm{H})} \\ & \mathrm{t}_{\mathrm{w}}^{(\mathrm{L})} \end{aligned}$	STCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
${ }_{\text {t }}{ }^{(L)}$	SHRST pulse width, Low	Waveform 1	4.0			4.0		ns
${ }_{\text {t }}(\mathrm{L})$	$\overline{\text { SHLD pulse width, Low }}$	Waveform 1	4.0			4.0		ns
${ }^{\text {tREC }}$	Recovery time, SHRST to SHCP	Waveform 2	6.0			7.0		ns
${ }^{\text {t }}$ REC	Recovery time, $\overline{\text { SHLD }}$ to SHCP	Waveform 2	6.0			7.0		ns

AC ELECTRICAL CHARACTERISTICS for 'F598

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {f MAX }}$	Maximum clock frequency	Waveform 1	100	120		80		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay SHCP to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay STCP to $Q_{S}(\overline{\text { SHLD }}=$ Low $)$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{S H L D}$ to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SHCP to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SHRST to Q_{S}	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
${ }^{\text {P }}{ }^{\text {PHL}}$	Propagation delay, $\overline{\text { SHRST }}$ to $1 / \mathrm{O}_{S}$	Waveform 2	4.0	8.0	10.0	4.0	11.0	ns
${ }^{\text {PHL }}$	Propagation delay, $\overline{\text { SHRST }}$ to Q_{S}	Waveform 2	4.0	8.0	10.0	4.0	11.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Enable time to High or Low	Waveform 5 Waveform 6	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{gathered} \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLZ}} \end{gathered}$	Output Disable time to High or Low	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 'F598

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $D_{S n}$ to SHCP	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low D_{Sn} to SHCP	Waveform 3	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low STCP to SHLD	Waveform 4	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & t_{n}(\mathrm{H}) \\ & t_{n}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low STCP to $\overline{\text { SHLD }}$	Waveform 4	$\begin{array}{r} 1.0 \\ 1.0 \\ \hline \end{array}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low SHCPEN to SHCP	Waveform 3	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{w}_{\mathrm{w}}^{(\mathrm{L})} \end{aligned}$	SHCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{w}^{\mathrm{w}} \mathrm{w}(\mathrm{H}) \\ & \mathrm{w}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	STCP pulse width, High or Low	Waveform 1	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
${ }_{\text {t }}{ }^{(L L)}$	SHRST pulse width, Low	Waveform 1	4.0			4.0		ns
${ }_{\text {w }}{ }^{(L)}$	$\overline{\text { SHLD pulse width, Low }}$	Waveform 1	4.0			4.0		ns
$t_{\text {REC }}$	Recovery time, SHRST to SHCP	Waveform 2	6.0			7.0		ns
${ }^{\text {R }}$ REC	Recovery time, $\overline{\text { SHLD }}$ to SHCP	Waveform 2	6.0			7.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Inputs To Output Clock Pulse Width, Maximum Clock Frequency, Shitt Register Reset And Load inputs To Serial Data Output

Waveform 5. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 2. Propagation Delay, Shift Register Resel And Load inputsTo Serial Data Output, Shift Register Reset And Load Inputs To Shift register Clock Pulse Input Recovery Time

Waveform 4. Setup And Hoid Times

Waveform 6. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$
The shaded areas indicate when the input is permitted to change for predictable output performance.

TYPICAL TIMING DIAGRAM for 74F597

TYPICAL TIMING DIAGRAM for 74F598

TEST CIRCUIT AND WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
February 1, 1990

Signetics

Document No.	$853-0029$
ECN No.	98991
Date of issue	March 1, 1990
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in HIgh and Low states)
- Stores 16-bit-wide Data inputs, multiplexed 8-bit outputs
- 3-state outputs
- Power supply current 75mA typical

DESCRIPTION

The 74F604 multiplexed latch is ideal for storing data from two input buses, A or B, and providing data from either the A or B latches to the output bus. Organized as 8 -bit A and B latches, the latch outputs are connected by pairs to eight 2 -input multiplexers. A Select (SELECT A/ \bar{B}) input determines whether the A or B latch contents are multiplexed to the eight 3state outputs. Data entered from the B inputs are selected when SELECT A / \bar{B} is Low; data from the A inputs are selected when SELECT A / \bar{B} is High. Data enters

FAST 74F604
$[$ Latch

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 604	7.5 ns	75 mA

ORDERING INFORMATION

| PACKAGES | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :---: | :---: |$|$| N74F604N |
| :---: |
| 28 -Pin Plastic DIP |
| 28-Pin Plastic SOL |

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SELECT $A \bar{B}$	Select input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	Latch Enable Input (active	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{O}_{0}-\mathrm{Q}_{7}$	Data outputs	150/40	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
the latches when the Latch Enable ($\overline{\mathrm{LE}}$) edge. The outputs are enabled when $\overline{\mathrm{LE}}$ input is Low and is latched on the $\overline{L E}$ rising is High and disabled when $\overline{\mathrm{LE}}$ is Low.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Latch

[^5]
AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			Min	Typ	Max	Min	Max	
	Propagation delay SELECT A / \bar{B} to Q_{n} (B latch)	Waveform 1		7.0 8.5		5.5	$\begin{aligned} & 70.0 \\ & 11.5 \end{aligned}$	ns
$\int_{\mathrm{t}_{\mathrm{PHL}}}^{\mathrm{t}_{\mathrm{PLH}}}$	Propagation delay SELECT A / \bar{B} to Q_{n} (A latch)	Waveform 2	6.0 4.0	8.0 6.5	10.0 8.5	5.5 3.5	11.5 9.0	ns
$\frac{\mathrm{t}_{\mathrm{PZH}}}{\mathrm{t}_{\mathrm{PZL}}}$	Output Enable time to High or Low level	Waveform 4 Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	7.5 7.5	9.5 9.5	4.5 4.5	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	ns
$\frac{t_{\mathrm{PHZ}}}{L_{\mathrm{OH}}}$	Output Disable time from Hiah or Low leve	Waveform 4 Waveform 5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	7.0 7.0	9.5 9.5	4.5	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, Aigh or Low $A_{n}, B_{n} \text { to } \overline{L E}$	Waveform 3	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$			2.0 3.0		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low A_{n}, B_{n} to $\overline{L E}$	Waveform 3	$\begin{gathered} 0 \\ 1.0 \end{gathered}$			0 1.5		ns
${ }_{\text {L }}(\mathrm{L})$	$\overline{\mathrm{LE}}$ Pulse width, Low	Waveform 3	5.0			6.0		ns

AC WAVEFORMS

Waveform 3. Data Setup And Hold Times, Latch Enable pulse width

Waveform 4. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 5. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
${ }^{\text {t}}{ }^{\text {PLZ }}$	closed
${ }^{\text {t PZL }}$	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}^{\mathbf{w}}$	$\mathbf{t}^{\mathbf{T L H}}$	$\mathrm{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-0030$
ECN No.	97679
Date of issue	September 20, 1989
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Stores 16-blt-wide Data inputs, multiplexed 8-bit outputs
- Open Collector outputs
- Propagation delay 10ns typical
- Power supply current 85 mA typical

DESCRIPTION

The 74F605 multiplexed latch is ideal for storing data from two input buses, A or B, and providing data from either the A or B latches to the ouput bus. Organized as 8 -bit A and B latches, thelatch outputs are connected by pairs to eight 2-input multiplexers. A Select (SELECT A / \bar{B}) input determines whether the A or B latch contents are multiplexed to the eight Open Collector outputs. Data entered from the B inputs are selected when SELECT A / \bar{B} is Low; data from the A inputs are selected when SELECTA/ \bar{B} is High. Data enters the latches when the Latch Enable ($\overline{\mathrm{LE}}$)

FAST 74F605

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
28-Pin Plastic DIP	N74F605N
28-Pin Plastic SOL	N74F605D

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	1.010.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SELECT AB	Select input	1.0\%.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
LE	Latch Enable Input (activ	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	OC/40	OC/24mA

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
$\mathrm{OC}^{\prime}=$ Open Collector
input is Low and is latched on the $\overline{L E}$ rising edge. The outputs are enabled when $\overline{\mathrm{LE}}$ is High and disabled when $\overline{\mathrm{LE}}$ is Low.

PIN CONFIGURATION

These functions are also well-suited for receiving 16 -bit simultaneous data and transmitting it as two sequential 8-bit words.

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			OUTPUTS	
$A_{0}-A_{7}$	$B_{0}-B_{7}$	SELECT A / \bar{B}	LE	$Q_{0}-Q_{7}$
A data	B data	L	\uparrow	B data
A data	B data	H	\uparrow	A data
X	X	X	L	OFF
X	X	L	H	B latched data
X	X	H	H	A latched data

$H=$ High voltage leve
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
OFF $=$ Pulled up through resistor (open collector)
$\uparrow=$ Low-to-High transition

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SELECT $A \bar{B}$ to Q_{n} (B latch)	Waveform 2	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SELECT $A \bar{B}$ to Q_{n} (A latch)	Waveform 1	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} \hline 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 14.5 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{L E}$ to Q_{n}	Waveform 3	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{5}(\mathrm{H})$ $\mathrm{t}_{\mathrm{s}}(\mathrm{LL})$	Setup time, Aligh or Low $A_{n}, B_{n} \text { to } \overline{L E}$	Waveform 4	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$			2.0 4.0		ns
$t_{\text {f }}(\mathrm{H})$ $t_{n}(\mathrm{~L})$	Hold time, High or Low A_{n}, B_{n} to $\overline{L E}$	Waveform 4	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$			2.0 3.0		ns
$t^{(}$(L)		Waveform 4	5.0			6.0		ns

AC WAVEFORMS

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Signetics

Document No.	$853-0380$
ECN No.	97743
Date of issue	September 27, 1989
Status	Product Specification
FAST Products	

FEATURES
 - High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in HIgh and Low states)
 - Octal bidirectional bus interface
 - Open collector outputs sink 64mA
 - -'F621 Non-Inverting
 -'F622 Inverting

DESCRIPTION

The 74F621 is an octal bus transceiver featuring non-inverting open collector bus-compatible outputs in both send and receive directions. The outputs are capable of sinking 64 mA , providing very good capacitive drive characteristics. The 74F622 is a inverting version of the 74F621. These octal bus transceivers are designed for asynchronous two-way communication between data busses. The control function implementation allows for maximum flexibilty in timing. These devices allow data transmission from the A bus to the B bus or from B bus to A bus, depending upon the logic levels at the Enable inputs ($\overline{O E B A}$ and OEAB). The Enable inputs can be used to disable the device so that the busses are effectively isolated. The dual-enable configuration gives the 'F621 and 'F622 the capability to store data by the simultaneous enabling of $\overline{O E B A}$ and OEAB.

FAST 74F621, 74F622

Transceivers

74F621 Octal Bus Transceiver, Non-Inverting (Open Collector) 74F622 Octal Bus Transceiver, Inverting (Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 621	8.0 ns	105 mA
74 F 622	8.5 ns	53 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{V}_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20 -Pin Plastic DIP	N74F621N, N74F622N
20 -Pin Plastic SOL	

NOTE:

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal considerations for suface mounted device.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$A_{0}-A_{7}, B_{0}-B_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E B A}$, OEAB	Output Enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data outputs	$\mathrm{OC} / 40$	$\mathrm{OC} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data outputs	$\mathrm{OC} / 106.7$	$\mathrm{OC} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
OC=Open Collector

Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the
bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states.

Transceivers
FAST 74F621, 74F622

AC ELECTRICAL CHARACTERISTICS for 74F621

SYMBOL	PARAMETER	TEST CONDITION	Limits					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n}	Waveform 2	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & { }^{{ }^{{ }_{\mathrm{PLH}}}} \\ & { }^{\mathrm{t}}{ }_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{O E B A}$ to A_{n}	Waveform 3	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay OEAB to B_{n}	Waveform 4	$\begin{aligned} & 7.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 6.5 \end{gathered}$	$\begin{gathered} 15.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 10.0 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS for 74F622

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	Waveform 1	$\begin{aligned} & 8.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 4.0 \end{gathered}$	$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 1	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 3.5 \end{gathered}$	$\begin{gathered} 12.0 \\ 5.0 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 5.5 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	$\begin{aligned} & \text { Propagation delay } \\ & \text { OEBA to } A_{n} \end{aligned}$	Waveform 3	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay OEAB to B_{n}	Waveform 4	$\begin{gathered} 10.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	$\begin{gathered} 10.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 15.5 \\ 9.5 \end{gathered}$	ns

AC WAVEFORMS

TYPICAL PROPAGATION DELAYS VERSUS LOAD FOR OPEN COLLECTOR OUTPUTS

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0381$
ECN No.	98171
Date of issue	November 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- High-impedance NPN base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high-output drive and minimal bus loading
- Inverting version of 'F245
- Octal bidirectional bus interface
- 3-state buffer outputs sink 64mA and source 15 mA

DESCRIPTION

The 74F640 is an octal transceiver featuring inverting 3 -state bus compatible outputs in both transmit and receive directions. The B port outputs are capable of sinking 64 mA and sourcing 15 mA , providing very good capacitive drive characteristics. The device features an Output Enable ($\overline{\mathrm{OE}}$) input for easy cascading and Transmit/Receive(T/保) input for direction control. The 3-state outputs, $B_{0}-B_{7}$, have been designed to prevent output bus loading if the power is removed from the device.
PIN CONFIGURATION

FAST 74F640

Transceiver

Octal Bus Transceiver, Inverting (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 640	3.5 ns	78 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F640N
20-Pin Plastic SOL	N74F640D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7} \mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	$3.5 / 0.115$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output enable input (active Low)	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/Receive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A port outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B Port outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay A_{n} to B_{n}, B_{n} to A_{n}	Waveform 1	2.0 1.0	4.5 2.5	7.0 5.0	2.0 1.0	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }_{\mathrm{t}}^{\mathrm{PZZ}} \\ & \hline \end{aligned}$	Output Enable time to High or Low level	Waveform 2 Waveform 3	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLL}}} \\ & \hline \end{aligned}$	Output Disable time from High or Low level	Waveform 2 Waveform 3		$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 6.5 \\ 7.0 \end{array}$	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

AC WAVEFORMS

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
${ }^{\text {t }}$ PLZ	closed
${ }^{\text {t }}$ PZL	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$\mathrm{C}_{\mathrm{L}}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

Document No.	$853-0382$
ECN No.	98172
Date of issue	November 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Octal bidirectional bus interface
- Common Output Enable for both Transmit and Receive modes
- Open collector outputs sink 64mA
- -'F641 Non-Inverting
-'F642 Inverting

PIN CONFIGURATION

74F641	
T/R	$20 \mathrm{~V}_{\infty}$
$A_{0}{ }_{2}$	19 OE
$A_{1} 3$	18. B_{0}
$A_{2} 4$	17 B
$\mathrm{A}_{3} 5$	$16 . \mathrm{B}_{2}$
$A_{4} 6$	15. B_{3}
A 7	$14 . \mathrm{B}_{4}$
A 8	13] B_{5}
$\mathrm{A}_{7} 9$	$12 \mathrm{~B}_{6}$
GND 10	1187

FAST 74F641, 74F642

Transceivers

74F641 Octal Bus Transceiver With Common Output Enable, Non-Inverting (Open Collector)
74F642 Octal Bus Transceiver With Common Output Enable, Inverting (Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 641	8.0 ns	69 mA
74 F 642	8.5 ns	52 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F641N, N74F642N
20-Pin Plastic SOL	N74F641D, N74F642D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(\mathrm{U}, \mathrm{L})$. HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
T / \bar{R}	Transmit / Receive input	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable inputs	$2.0 / 0.067$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data outputs	$\mathrm{OC} / 40$	$\mathrm{OC} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data outputs	$\mathrm{OC} / 106.7$	$\mathrm{OC} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
OC=Open Collector

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
${ }^{\prime} \mathrm{OH}$	High-level output current						$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
$V_{O L}$	Low-level output voltage		$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	${ }^{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V			
			$\mathrm{A}_{0} \mathrm{~A}_{7}$			$\pm 5 \% \mathrm{~V}$ cc		0.35	0.50	V			
			$B_{0}-B_{7}$		$\mathrm{l}^{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.38	0.55	V			
			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V				
V_{IK}	Input clamp voltage			$V_{C C}=M 1 N, I_{1}=I_{I K}$				-0.73	-1.2	V			
1	Input current at maximum input voltag			T/ $\bar{R}, \overline{O E}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
			A_{n}, B_{n}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1}=5.5 \mathrm{~V}$					1	mA			
${ }_{1 / H}$	High-level input current		$\mathrm{T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}}$	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
			A_{n}, B_{n}						20	$\mu \mathrm{A}$			
I_{IL}	Low-level input current		T/ $\bar{R}, \overline{O E}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-40	$\mu \mathrm{A}$			
			A_{n}, B_{n}						-20	$\mu \mathrm{A}$			
${ }^{\text {I cc }}$	Supply current (total)	'F641	${ }^{\mathrm{CCH}}$	$v_{C C}=\operatorname{MAX}$	$T / \bar{R}=4.5 \mathrm{~V}$,			60	90	mA			
			$\mathrm{I}_{\mathrm{CCL}}$		$\bar{R}=4.5 \mathrm{~V}, \mathrm{~A}_{n}=$	GND		78	120	mA			
		'F642	${ }^{\mathrm{CCH}}$		$A_{n}=T / \bar{R}=\overline{O E}=4$			37	55	mA			
			$\mathrm{I}_{\mathrm{CCL}}$		T/ $/ \mathrm{R}=4.5 \mathrm{~V}$,	GND		67	98	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

AC ELECTRICAL CHARACTERISTICS for 74F641

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHHL} \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	Waveform 2	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 2	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	8.0 5.5	$\begin{gathered} 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\bar{O} \bar{E}$ to A_{n}	Waveform 4	7.0 5.0	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 12.5 \\ & 9.0 \end{aligned}$	7.0 5.0	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{O E}$ to B_{n}	Waveform 4	8.0 5.5	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$	ns

Transceivers

AC ELECTRICAL CHARACTERISTICS for 74F642

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	Waveform 2	$\begin{aligned} & 8.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 7.0 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 2	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 6.0 \\ \hline \end{gathered}$	$\begin{aligned} & 7.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 6.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{P} P L H}} \\ & { }^{\mathrm{t}} \mathrm{PHLL} \\ & \hline \end{aligned}$	Propagation delay $\overline{O E} \text { to } A_{n}$	Waveform 4	7.5 6.0	$\begin{array}{r} 9.0 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{O E}$ to B_{n}	Waveform 4	8.0 6.0	9.0 7.0	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	ns

Waveform 1. Propagation delay for An to Bn or Bn to An ('F642)

Waveform 3. Propagation delay for $\overline{O E}$ to An or Bn Outputs ('F642) (Bn or An inputs in High state)

Waveform 2. Propagation delay for An to Bn or Bn to An ('F641)

Waveform 4. Propagation delay for $\overline{O E}$ to An or Bn Outputs ('F641) (Bn or An inputs in Low state)

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circult For 3-State Outputs SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }}{ }^{\prime} \mathrm{t}_{\text {PZL }}$ All other	closed open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	${ }^{\mathbf{t}} \mathrm{W}$	$\mathrm{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1124$
ECN No.	99393
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

FEATURES

- Combines 'F245 and two 'F374 type functions in one chip
- High impedance base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- Controlled ramp outputs for 'F646A1'F648A
- 3-state outputs
- 300 mil wide 24-pin Slim Dip package

DESCRIPTION

The 74F646/646A and 74F648/648A Transceivers/Registers consist of bus transceiver circuits with 3 -state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output Enable ($\overline{\mathrm{OE}}$) and DIR pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or B register or both.

The select (SAB, SBA) pins determine whether data is stored or transfered through the device in real-time.The DIR determines which bus will receive data when the $\overline{\mathrm{OE}}$ is active Low. In the isolation mode ($\overline{O E}=$ High), data from Bus A may be stored in the B register and/or

FAST 74F646, 74F646A 74F648, 74F648A Transceivers/Registers
74F646/646A Octal Transceiver/Register, Non-Inverting (3-State) 74F648/648A Octal Transceivers/Register, Inverting (3-State)

TYPE	${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 646 / 648$	115 MHz	140 mA
74 F 646 A 648 A	185 MHz	105 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F646N, N74F646AN, N74F648N, N74F648AN
24-Pin Plastic SOL ${ }^{1}$	N74F646D, N74F646AD, N74F648D, N74F648AD

NOTE 1: Thermal mounting techniques are recommended except for N74F646AN74F648A. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	A and B inputs	$3.5 / 0.166$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB	A-to-B clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
DIR	Data flow Directional control enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E}$	Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Outputs for 'F646A/F648A	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	Outputs 'F646/F648	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
data from Bus B may be stored in the A register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B may be driven at a time. The following
examples demonstrate the four fundamental bus-management functions that can be performed with the 'F646/646A and 'F648/648A.

PIN CONFIGURATION	LOGIC SYMBOL	LOGIC SYMBOL(IEEE/IEC)
	'F646/646A	
PIN CONFIGURATION	LOGIC SYMBOL	LOGIC SYMBOL(IEEE/IEC)
	'F648/648A $\begin{aligned} & v_{\mathrm{CC}}=\text { Pin } 24 \\ & \mathrm{GND}=\text { Pin } 12 \end{aligned}$	'F648/648A

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE	
$\overline{O E}$	DIR	CPAB	CPBA	SAB	SBA	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$B_{0} \cdot B_{7}$	'F646/646A	'F648/648A
H	X	\uparrow	X	x	X	Input	Unspecified*	Store A, B unspecified*	Store A, B unspecified*
	X	X	\uparrow	X	X	Unspecified*	Input	Store B, A unspecified*	Store B, A unspecified*
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{gathered} \uparrow \\ H \text { or } L \\ \hline \end{gathered}$	$\begin{gathered} \uparrow \\ H \text { or } L \\ \hline \end{gathered}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \mathrm{x} \\ & \hline \end{aligned}$	Input	Input	Store A and B data Isolation, hold storage	Store A and B data Isolation, hold storage
$\underset{L}{L}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{gathered} \text { X } \\ H \text { or } L \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real time B data to A bus Stored B data to A bus	Real time \bar{B} data to A bus Stored $\overline{\mathrm{B}}$ data to A bus
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\underset{\mathrm{H} \text { or } \mathrm{L}}{\mathrm{X}}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Input	Output	Real time A data to B bus Stored A data to B bus	Real time \bar{A} data to B bus Stored \bar{A} data to B bus

$H=$ High voltage level
L= Low voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ Low-to-High clock transition
$*=$ The data output function may be enabled or disabled by various signals at the $\overline{\mathrm{OE}}$ and DIR inputs. Data input functions are always enable, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	v
I_{IN}	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\text {cc }}$	V
Iout	Current applied to output in Low output state	74F646A, 74F648A	72	mA
		74F646, 74F648	128	mA
$T_{\text {A }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

April 18, 1990

Transceivers/Registers

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
V_{L}	Low-level input voltage				0.8	V
${ }_{1 \mathrm{~K}}$	Input clamp current				-18	mA
I_{OH}	High-level output current				-15	mA
l_{OL}	Low-level output current	74F6			48	mA
		74F6			64	mA
T_{A}	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize intemal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. The output condition has been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOs.

April 18, 1990

Transceivers/Registers

FAST 74F646, 74F646A, 74F648, 74F648A

AC ELECTRICAL CHARACTERISTICS for 74F646

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		90		MHz
$\begin{aligned} & { }^{{ }^{1} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	5.5 5.5	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	11.5 11.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ 6.5 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & t_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay SAB or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.5 \end{aligned}$	ns
	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	ns
${ }^{\mathrm{t}_{\mathrm{PHZ}}}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	4.5 5.0	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F646

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{c C}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			0 0		ns
$\begin{aligned} & \mathbf{w}^{\mathbf{w}}{ }^{(H)} \\ & t_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$			4.0 6.0		ns

Transceivers/Registers

AC ELECTRICAL CHARACTERISTICS for 74F648

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	100	115		90		MHz
$\begin{aligned} & { }^{{ }^{\mathrm{P}} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHLL} \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 3	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay SAB or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }^{\mathrm{t}_{\text {PZL }}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{array}{r} 10.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & { }^{t_{\mathrm{PHZ}}} \\ & { }^{t_{\mathrm{PLLZ}}} \end{aligned}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	5.0 5.0	9.0 9.0	12.5 12.5	4.5 5.0	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F648

SYMBOL	PARAMETER	TEST CONDITION	Limits					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0			0		ns
$\begin{aligned} & w^{(W)} \\ & w^{(H)} \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	3.5 6.5			4.0 7.0		ns

AC ELECTRICAL CHARACTERISTICS for 74F646A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	165	185		150		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHLL}}} \\ & \hline \end{aligned}$	Propagation delay $S A B$ or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pl} 17} \end{aligned}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	2.0 3.0	4.5 5.0	7.5 8.0	1.5 2.0	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F646A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0			0		ns
t ${ }_{\text {c }}^{(H)}$ $w_{\text {w }}(\mathrm{L})$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$		ns

AC ELECTRICAL CHARACTERISTICS for 74F648A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }_{\text {max }}$	Maximum clock frequency	Waveform 1	160	185		135		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 9.5 \\ 10.0 \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 3	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SAB or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{p}_{\mathrm{P} Z \mathrm{H}}} \\ & { }^{\mathrm{t}} \mathrm{PZL} \\ & \hline \end{aligned}$	Output Enable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }^{\mathrm{t}} \mathrm{PZLL} \\ & \hline \end{aligned}$	Output Enable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\mathrm{t}} \mathrm{PLLZ} \end{aligned}$	Output Disable time $\overline{O E}$ to A_{n} or B_{n}	Waveform 5 Waveform 6	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$		$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
${ }^{\mathrm{t}_{\mathrm{PHZ}}}{ }_{\text {trz }}$	Output Disable time DIR to A_{n} or B_{n}	Waveform 5 Waveform 6	2.5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	2.0 2.5	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F648A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ R_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			4.5 4.5		ns
$\begin{aligned} & t_{h}(H) \\ & h_{h}(L) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0			0		ns
$\begin{aligned} & w_{w}^{1}(\mathrm{H}) \\ & w_{w}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			4.0 3.5		ns

AC WAVEFORMS

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }}$	closed tlosed $\mathrm{t}_{\text {PLI }}$ All other

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}^{\mathbf{t}}$	$\mathbf{t}^{\mathbf{T L H}}$	$\mathbf{t}^{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1126$
ECN No.	98640
Date of issue	January 29, 1990
Status	Product Specification
FAST Products	

FAST 74F651, 74F651A 74F652, 74F652A
 Transceivers/Registers

74F651/74F651A Octal Transceiver/Register, Inverting (3-State) 74F652/74F652A Octal Transceiver/Register, Non-Inverting (3-State)

- Combines 'F245 and two 'F374 type I functions in one chip
- High impedance base inputs for reduced loading ($70 \mu \mathrm{~A}$ in High and Low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-state outputs

DESCRIPTION

The 74F651/74F651A and 74F652/ 74F652A Transceivers/ Registers consist of bus transceiver circuits with 3 -state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes High. Output Enable (OEAB, OEBA) and Select (SAB, SBA) pins are provided for bus management.

TYPE	TYPICAL $\mathbf{f}_{\text {max }}$	TYPICAL SUPPLYCURRENT (TOTAL)
$74 \mathrm{~F} 651 / 74 \mathrm{~F} 652$	110 MHz	140 mA
$74 \mathrm{~F} 651 \mathrm{~A} / 74 \mathrm{~F} 652 \mathrm{~A}$	175 MHz	110 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm \mathbf{1 0 \%} ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0} 0^{\circ} \mathbf{C}$
24-Pin Plastic Slim Dip (300mil) ${ }^{1}$	N74F651N, N74F652N
24-Pin Plastic Slim Dip (300mil)	N74F651AN, N74F652AN
24-Pin Plastic SOL ${ }^{1}$	N74F651AD, N74F652AD

NOTE 1:
Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB	A-to-B clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CPBA	B-to-A clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB	A-to-B select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SBA	B-to-A select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OEAB	A-to-B Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEBA}}$	B-to-A Output Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	A outputs ('F651, 'F652)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	B outputs ('F651A, 'F652A)	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 'F651/651A and 'F652/652A.
The select pins determine whether data is stored or transferred through the device in real time.
The Output Enable pins determine the direction of the data flow.

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE	
OEAB	$\overline{\text { OEBA }}$	CPAB	CPBA	SAB	SBA	A_{n}	B_{n}	'F651/651A	'F652/652A
$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{H} \text { or } \mathrm{L} \\ \uparrow \end{gathered}$	$\underset{\uparrow}{\mathrm{H} \text { or } \mathrm{L}}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Input	Isolation Store A and B data	Isolation Store A and B data
X	H	\uparrow	H or L	X	x	Input	Unspecified*	Store A, Hold B	Store A, Hold B
H	H	\uparrow	\uparrow	L	X	Input	Output	Store A in both registers	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified*	Input	Hold A, Store B	Hold A, Store B
L.	L	\uparrow	\uparrow	X	L	Output	Input	Store B in both registers	Store B in both registers
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real time \bar{B} data to A bus Stored \bar{B} data to A bus	Real time B data to A bus Stored B data to A bus
$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	Input	Output	Real time \bar{A} data to B bus Stored \bar{A} data to B bus	Real time A data to B bus Stored A data to B bus
H	L	Hor L	H or L	H	H	Output	Output	Stored \bar{A} data to B bus Stored \bar{B} data to A bus	Stored A data to B bus Stored B data to A bus

NOTES:

$\mathrm{H}=$ High voltage level

L= Low voltage level

* The data output function may be enabled or disabled by various signals at the $\overline{O E B A}$ and $O E A B$ inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every Low-to-High transition of the clock.
$\uparrow=$ Low-to-High clock transition
$X=$ Don't care

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{\text {cC }}$	V
Iour	Current applied to output in Low output state	'F651, 'F652	128	mA
		'F651A, 'F652A	72	mA
TA	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
V_{1}	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
${ }^{1} \mathrm{OH}$	High-level output current				-15	mA
${ }^{\text {OL }}$	Low-level output current	'F651, 'F652			64	mA
		'F651A, 'F652A			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

Transceivers/Registers

DC ELECTRICAL CHARACTERISTICS													
SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$				LIMITS					
				Min	Typ ${ }^{2}$	Max	UNIT						
V_{OH}	High-level output voltage						$V_{C C}=\mathrm{MIN}$,		$\pm 10 \% V_{\text {cc }}$	2.4			v
				$V_{\mathrm{IL}}=\mathrm{MAX},$	$\mathrm{OH}^{=-3 \mathrm{~mA}}$	$\pm 5 \% V_{\text {cc }}$	2.7	3.3		V			
				$V_{I H}=M I N$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0			V			
$V_{O L}$	Low-level output voltage			$\begin{aligned} & V_{C C}=M I N, \\ & V_{1}=M A X, \end{aligned}$	$10=$ MAX	$\pm 10 \% V_{\text {cc }}$			0.55	V			
				$\begin{aligned} & V_{\mathbb{I L}}=\text { MAX }, \\ & V_{\mathbb{I H}}=M I N \end{aligned}$	$\mathrm{OL}^{\text {- Max }}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V			
V_{IK}	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$				-0.73	-1.2	V			
11	Input current at maxim input voltage	imun	others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}^{\prime}$	7.0 V				100	$\mu \mathrm{A}$			
		$A_{0}-A$	$A_{7}, B_{0}-B_{7}$	$V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1}$					1	mA			
I_{H}	High-level input curre		OEAB, $\overline{O E B A}$, CPAB, CPBA SAB, SBA	$v_{C C}=M A X$,	2.7 V				20	$\mu \mathrm{A}$			
$1_{1 L}$	Low-level input curre	ent SAE		$V_{C C}=M A X$,	0.5 V				-20	$\mu \mathrm{A}$			
$\mathrm{I}_{1 \mathrm{I}^{+1} \mathrm{OZH}}$	Off-state output curre High-level voltage a	ent pplied	$A_{0}-A_{7}$	$v_{C C}=$ MAX,	2.7 V				70	$\mu \mathrm{A}$			
$\mathrm{IL}^{\text {IL }}$ + OZL	Off-state output curre Low-level voltage ap		$\mathrm{B}_{0}-\mathrm{B}_{7}^{\prime}$	$V_{C C}=M A X$,	0.5 V				-70	$\mu \mathrm{A}$			
'os	Short circuit output cu	current ${ }^{3}$	$\begin{aligned} & \text { 74F651 } \\ & \text { 74F652 } \end{aligned}$	$V_{C C}=M A X$			-100		-225	mA			
${ }^{1} 0$	Output current ${ }^{4}$		$\begin{aligned} & 746657 A \\ & 74 F 652 A \end{aligned}$	$V_{C C}=M A X$	$=2.25 \mathrm{~V}$		-60		-160	mA			
${ }^{\text {cc }}$	74 F 652 Supply current (total) 74 F 651 A 74 F 652 A 		${ }^{\text {'CCH }}$	$V_{C C}=M A X$				$\begin{aligned} & 110 \\ & 140^{5} \\ & \hline \end{aligned}$	$\begin{array}{r} 155 \\ 185^{5} \\ \hline \end{array}$	mA			
			${ }^{\text {CCL }}$					$\begin{aligned} & 155 \\ & 165^{5} \end{aligned}$	$\begin{aligned} & 200 \\ & 240^{5} \end{aligned}$	mA			
			$\mathrm{I}_{\mathrm{ccz}}$					130	175	mA			
			${ }^{\mathrm{CCH}}$					105	145	mA			
			${ }^{1} \mathrm{CCL}$					115	165	mA			
			${ }^{\text {c Ccz }}$					115	160	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. I_{0} is tested under conditions that produce current approximately one half of the true short-circuit output current ($\mathrm{I}_{\text {OS }}$).
5. These values are for worst case only. Worst case is defined as all (16) I/O pins selected as outputs. When using worst case conditions thermal mounting is required.

AC ELECTRICAL CHARACTERISTICS for 74F651/74F652

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	90	110		80		MHz
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} or B_{n} to B_{n} or A_{n}	Waveform 2, 3	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHHL}}} \end{aligned}$	Propagation delay SAB or SBA to A_{n} or B_{n}	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time OEAB or $\overline{\text { OEBA }}$ to A_{n} or B_{n}	Waveform 7 Waveform 8		$\begin{aligned} & 7.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }_{\mathrm{t}}^{\mathrm{PLLZ}} \end{aligned}$	Output Disable time $O E A B$ or $\overline{O E B A}$ to A_{n} or B_{n}	Waveform 7 Waveform 8	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	9.5 9.0	$\begin{aligned} & 13.0 \\ & 13.0 \end{aligned}$	4.0 4.0	$\begin{aligned} & 14.5 \\ & 15.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F651/74F652

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $\overline{O E B A}$ to OEAB or OEAB to $\overline{\text { OEBA }}$	Waveform 5, 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.0 5.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low $\overline{O E B A}$ to $O E A B$ or $O E A B$ to $\overline{O E B A}$	Waveform 5, 6	0			0		ns
$\begin{aligned} & t_{w}(\mathrm{H}) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Pulse width, High or Low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$			4.5 6.5		ns

Note: 1 .Setup time is to protect against current surge caused by enabling 16 outputs (64 mA per output) simultaneously.

AC ELECTRICAL CHARACTERISTICS for 74F651A/74F652A

SYMBOL	PARAMETER		TEST CONDITION	Limits					UNIT	
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency			Waveform 1	155	175		140		MHz
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay CPAB or CPBA to A_{n} or B_{n}	'F651A		Waveform 1	4.5 5.5	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
		'F652A	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \end{aligned}$	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay$A_{n} \text { or } B_{n} \text { to } B_{n} \text { or } A_{n}$	'F651A	Waveform 2, 3	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.0 \end{gathered}$	ns	
		'F652A		$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay SAB or SBA to A_{n} or B_{n}	'F651A	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	
		'F652A		$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $O E A B$ or $\overline{O E B A}$ to A_{n} or B_{n}		Waveform 7 Waveform 8	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	ns	
${ }^{\mathrm{t}_{\text {PHZ }}}$	Output Disable time OEAB or $\overline{O E B A}$ to A_{n} or B_{n}		Waveform 7 Waveform 8	1.5 2.5	4.0 6.0	7.0 8.5	1.0 2.0	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	ns	

AC SETUP REQUIREMENTS for 74F651A/74F652A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$			4.0 4.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low A_{n} or B_{n} to CPAB or CPBA	Waveform 4	0 0			0		ns
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time, High or Low $\overline{O E B A}$ to $O E A B$ or OEAB to $\overline{O E B A}$	Waveform 5, 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			5.0 5.0		ns
$t_{h}(H)$ $t_{h}(L)$	Hold time, High or Low $\overline{O E B A}$ to $O E A B$ or OEAB to $\overline{O E B A}$	Waveform 5, 6	0 0			0 0		ns
	Pulse width, High or Low CPAB or CPBA	Waveform 1	4.0 3.5			4.5 4.0		ns

Note: 1. Setup time is to protect against current surge caused by enabling 16 outputs (64 mA per output) simultaneously.

AC WAVEFORMS

Waveiorm 1. Propagation Delay, Clock Input to Output,
Clock Pulso Width, and Maximum Clock Frequency

Waveform 3. Propagation Delay, An to Bn or Bn to An and SAB or SBA to An or Bn
$\overline{\text { OEBA }}$

OEAB

Waveform 7. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 2. Propagation Delay, An to Bn or Bn to An and SAB or SBA to An or Bn

Wavelorm 6. OEAB to OEBA Setup and Hold Times

Waveform 8. 3-State Output Enable Time To Low Level
And Output Disable Time From Low Level

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0383$
ECN No.	99141
Date of issue	March 19,1990
Status	Product Specification
FAST Products	

FAST 74F655A, 74F656A
Buffers/Drivers
74F655A Octal Buffer/Driver With Parity, Inverting (3-State)
74F656A Octal Buffer/Driver With Parity, Non-Inverting (3-State)

FEATURES

- Significantly improved AC performance over 'F655 and 'F656
- High impedance NPN base inputs for reduced loading ($40 \mu \mathrm{~A}$ in High and Low states)
- Ideal in applications where high output drive and light bus loading are required ($I_{I L}$ is $40 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 'F655A combines 'F240 and 'F280A functions in one package
- 'F656A combines 'F244 and 'F280A functions in one package
- 'F655A Inverting 'F656A Non-Inverting
- 3-state outputs sink 64mA and source 15 mA
- 24-pin plastic Slim DIP (300 mil) package
- Inputs on one side and outputs on the other side simplifies PC board layout
- Combined functions reduce part count and enhance system performance
- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F655A and 74F656A are octal buffers and line drivers with parity generation/checking designed to be employed as memory address drivers, clock drivers, and bus-oriented transmitters/receivers. These parts include parity generator/ checker to improve PC board density.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 655 A	6.5 ns	64 mA
74 F 656 A	6.5 ns	64 mA

ORDERING INFORMATION

PACKAGES	$\begin{gathered} \text { COMMERCIAL RANGE } \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	industrial range $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
24-Pin Plastic Slim DIP (300mil)	N74F655AN, N74F656AN	74F655AN, 174F656AN
24-Pin Plastic SOL	N74F655AD, N74F656AD	74F655AD, 174F656AD

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data inputs	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
PI	Parity input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\Sigma_{E, \Sigma_{0}}$	Parity outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{7}$	Data outputs ('F655A)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs ('F656A)	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS								
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } \\ + & +0^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} T_{A} & =-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ V_{C C} & =5 \mathrm{~V} \pm 10 \% \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$		UNIT				
			Min	Typ	Max	Min	Max	Min	Max			
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay $D_{n} \text { to } \bar{Q}_{n}$	'F655A		Waveform 2	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	2.0 1.0	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay $D_{n} \text { to } Q_{n}$	'F656A		Waveform 1	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	7.0 7.5	2.0 2.5	8.0 9.0	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay$D_{n} \text { to } \Sigma_{E}, \Sigma_{O}$		Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 13.0 \\ 14.5 \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.5 \end{aligned}$	4.5 5.5	$\begin{aligned} & 16.5 \\ & 18.0 \end{aligned}$	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PzH}}}{ }^{\mathrm{t}_{\mathrm{PZZL}}} \end{aligned}$	Output Enable time to High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 10.5 \\ 11.0 \end{array}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable time from High or Low level		Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 4.5 \\ 5.0 \end{array}$	8.0 8.0	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	
AC WAVEFORMS												

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$t_{\text {PLZ }}$	closed closed $t_{\text {PZL }}$
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}^{\mathbf{w}}$	$\mathbf{t}^{\text {TLH }}$	$\mathbf{t}_{\mathrm{THL}}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1125$
ECN No.	
Date of issue	, 1990
Status	Product Specification
FAST Products	

FEATURES

- Combines 74F245 and 74F280A functions in one package
- High impedance base input for reduced loading $(70 \mu \mathrm{~A}$ in High and Low states)
- Ideal in applications where High output drive and light bus loading are required ($I_{\text {IL }}$ is $70 \mu \mathrm{~A}$ vs FAST std of $600 \mu \mathrm{~A}$)
- 3-state buffer outputs sink 64 mA and source 15 mA
- Input diodes for termination effects
- 24-pin plastic Slim Dip (300mil) package
- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

DESCRIPTION

The 74F657 is an octal transceiver featuring non-inverting buffers with 3-state outputs and an 8-bit parity generator/ checker, and is intended for bus-oriented applications. The buffers have a guaranteed current sinking capability of 24 mA at the A ports and 64 mA at the B ports. The Transmit/Receive (T / \bar{R}) input determines the direction of the data flow through the bidirectional transceivers.

PIN CONFIGURATION

FAST 74F657

Transceivers

74F657 Octal Transceivers With 8-Bit Parity Generator/Checker (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 657	8.0 ns	100 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
24-Pin Plastic Slim DIP (300mil)	N74F657N	174F657N
24-Pin Plastic SOL	N74F657D	174F657D

NOTE:
1.Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A ports 3-state inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B ports 3-state inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
PARITY	Parity input	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/Receive input	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
ODD/EVEN	Parity select input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low $)$	$2.0 / 0.066$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A port 3-state outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	B port 3-state outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
PARITY	Parity output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
$\overline{\text { ERROR }}$	Error output	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Transmit (active-High) enables data from A ports to B ports; Receive (active-Low) enables data from B ports to A ports.
The Output Enable ($\overline{\mathrm{OE}}$)input disables both the A and B ports by placing them in a high impedance condition when the $\overline{O E}$ input is High. The parity select (ODD/ $\overline{E V E N}$) input gives the user the option of odd or even parity systems. The parity (PARITY) pin is an output from the generator/checker when transmitting from the port A to $B(T / \bar{R}=H i g h)$ and an input when receiving from port B to A port (T/ $\overline{\mathrm{R}}=$ Low). When transmitting ($\mathrm{T} / \overline{\mathrm{R}}=\mathrm{High}$)
the parity select (ODD/EVEN) input is set, then the A port data is polled to determine the number of High bits. The parity (PARITY) output then goes to the logic state determined by the parity select (ODD/EVEN) setting and by the number of High bits on port A. For example, if the parity select (ODD/EVEN) is set Low (even parity), and the number of High bits on port A is odd, then the parity (PARITY) output will be High, transmitting even parity. If the number of High bits on port A is even, then the parity (PARITY) output will be Low, keeping even parity. When in
receive mode ($T / \bar{R}=$ Low) the B port is polled to determine the number of High bits. If parity select (ODD/EVEN) is Low (even parity) and the number of Highs on port B is:
(1) odd and the parity (PARITY) input is High, then ERROR will be High, signifying no error.
(2) even and the parity (PARITY) input is High, then ERROR will be asserted Low. indicating an error.

FUNCTION TABLE

NUMBER OF InPUTS THAT ARE HIGH	INPUTS			INPUT/ OUPUT	OUTPUTS	
	$\overline{\mathrm{OE}}$	T / \bar{R}	ODD/EVEN	PARITY	ERROR	OUTPUTS MODE
	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
0, 2, 4, 6, 8	L	L	H	H	H	Receivet
	L	L	H	L	L	Receive
	L	L	L	H	L	Receivet
	L	L	L	L	H	Receivett
	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
1,3,5,7	L	L	H	H	L	Receivet
$1,3,5,7$	L	L	H	L	H	Receive
.	L	L	L	H	H	Receivet
	L	L	L	L	L	Receivett
Don't care	H	X	X	Z	Z	3 -state

[^6]
LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$V_{C C}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
$\mathrm{I}_{\text {I }}$	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{C C}$	V
'out	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$	48	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, $\overline{\text { ERROR }}$	128	mA
T_{A}	Operating free-air temperature range	Commercial range	0 to +70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{v}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
V_{11}	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
I_{OH}	High-level output current	$A_{0}-A_{7}$			-3	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			-15	mA
${ }^{\text {OL }}$	Low-level output current	$A_{0}-A_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$, PARITY, ERROR			64	mA
T_{A}	Operating free-air temperature range	Commercial range	0		70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40		85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage	All outputs				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}^{\text {OH }}=3-3 \mathrm{~mA}^{4,5}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
		$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7}, \\ & \text { PARITY, } \\ & \text { ERROR } \end{aligned}$	$\mathrm{OH}^{=}=-12 \mathrm{~mA}{ }^{5}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{cc}}$	2.0				V			
			${ }^{\prime} \mathrm{OH}^{=-15 m A}$	$\pm 10 \% V_{\text {CC }}$	2.0				V			
				$\pm 5 \% V_{C C}$	2.0				V			
V_{OL}	Low-level output voltage	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{HL}}=\mathrm{MAX}, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}^{\prime}=24 \mathrm{~mA}^{4,5}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
		$\begin{aligned} & \mathrm{B}_{0}-\mathrm{B}_{7^{\prime}} \\ & \text { PARIT, } \\ & \hline \text { ERROR } \end{aligned}$		$\mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}{ }^{4}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.38	0.55	V			
				$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V			
				$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}^{4}$	$\pm 5 \% V_{\text {cc }}$		0.42	0.55	V			
$\mathrm{V}_{1 K}$	Input clamp voltage		$\mathrm{V}_{\mathrm{cc}}=\mathrm{MIN}$				-0.73	-1.2	V			
1	Input current at maximun input voltage	$\begin{aligned} & \overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}},} \mathrm{C} \\ & \mathrm{ODD/EVEN} \end{aligned}$	$V_{C C}=0.0 \mathrm{~V}$,	7.0 V				100	$\mu \mathrm{A}$			
		$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=5.5 \mathrm{~V}, V_{1}=5.5 \mathrm{~V}$					2	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$						1	mA			
${ }_{1} \mathrm{H}$	High-level input current	ODD/EVEN	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20^{4}	$\mu \mathrm{A}$			
								40^{5}	$\mu \mathrm{A}$			
								40^{4}	$\mu \mathrm{A}$			
		$\overline{O E}, T / \bar{R}$						80^{5}	$\mu \mathrm{A}$			
IIL	Low-level input current	ODD/EVEN	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
		$\overline{\mathrm{OE}, \mathrm{T} / \overline{\mathrm{R}}}$						-40	$\mu \mathrm{A}$			
${ }^{1 \mathrm{IH}^{+} \mathrm{OZH}}$	Off-state output current High-level voltage applied	$\begin{gathered} A_{0}-A_{7}, \\ B_{0}-B_{7} \\ \text { PARITY } \end{gathered}$	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
${ }^{\text {ILL }}+{ }^{\text {I OZL }}$	Off-state output current Low-level voltage applied		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
OZZH	Off-state output current High-level voltage applied	$\overline{\text { ERROR }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
${ }^{\prime} \mathrm{OZL}$	Off-state output current Low-level voltage applied		$V_{C C}=M A X$	0.5V				-50	$\mu \mathrm{A}$			
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{3}$	$3 \quad \mathrm{~A}_{0}-\mathrm{A}_{7}$	$V_{C C}=M A X$			-60		-150	mA			
		$\mathrm{B}_{0}-\mathrm{B}_{7}$				-100		-225	$\mu \mathrm{A}$			
${ }^{\text {cc }}$	Supply current (total)		$V_{C C}=M A X$				90	125^{4}	mA			
		CCH					90	135^{5}	mA			
		${ }^{\text {cCL }}$					106	150^{4}	mA			
							106	160^{5}	mA			
		${ }^{\text {ccez }}$					98	145	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. For commercial range.
5. For industrial range.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} \mathrm{T}_{A} & =-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}}{ }^{\mathrm{P}} . \end{aligned}$	Propagation delay A_{n} to B_{n} or B_{n} to A_{n}	Waveform 2	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t} \mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to PARITY	Waveform 1,2	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	7.0 7.0	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 19.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{P} \mathrm{PLH}} \\ & { }_{\mathrm{P} \mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay ODD/EVEN to PARITY, ERROR	Waveform 1,2	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.0 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay B_{n} to ERROR	Waveform 1,2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 14.0 \\ 14.0 \end{array}$	$\begin{aligned} & 20.5 \\ & 20.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 25.0 \end{aligned}$	ns
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay PARITY to ERROR	Waveform 1,2	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.5 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15.5 \\ 15.5 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 200 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & { }^{\mathrm{t}_{\mathrm{PLLL}}} \\ & \hline \end{aligned}$	Output Enable time ${ }^{1}$ to High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{1} \mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLL}}} \end{aligned}$	Output Disable time from High or Low level	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns

NOTE:

1. These delay times reflect the 3 -state recovery time only and not the signal through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output. VALID data at the ERROR pin \geq (B to A) + (A to PARITY).

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-0284$
ECN No.	99394
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

FEATURES

- 16-bit parallel-to-serial conversion
- 16-bit serial-in, serial-out
- Chip select control
- Power supply current 48mA typical
- Shift frequency 110 MHz typical
- Available in 300 mil-wide 24 -pin Slim DIP package

DESCRIPTION

The 74F676 contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the mode (M) input is High, information presenton the parallel data ($D_{0}-D_{15}$) inputs is entered on the falling edge of the clock pulse ($\overline{\mathrm{CP}}$) input signal. When M is Low, data is shifted out of the most significant bit position while information present on the serial (SI) input shifts into the least significant bit position. A High signal on the chip select ($\overline{\mathrm{CS}}$) input prevents both parallel and serial operations. The 16 bit shift register operates in one of three modes, as indicated in the shift register Function Table.

Hold : a High signal on the Chip Select
PIN CONFIGURATION

FAST 74F676
 Shift Register

16-Bit Serial/Parallel-In, Serial-Out Shift Register (3-State)

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 676	110 MHz	48 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F676N
24-Pin Plastic SOL	N74F676D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SI	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
M	Mode select input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
SO	Serial data output	$50 / 33$	1 mA 20 mA

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
($\overline{\mathrm{CS}}$) input prevents clocking, and data is stored in the 16 registers.
Shift/Serial load : data present on the SI pin shifts into the register on the falling edge of $\overline{C P}$. Data enters the Q_{0} position and shifts toward Q_{15} on successive clocks finally appearing on the SO pin.
LOGIC SYMBOL

Parallel load: data present on $\mathrm{D}_{0}-\mathrm{D}_{15}$ are entered into the register on the falling edge of $\overline{\mathrm{CP}}$. The SO output represents the Q_{15} register output.
To prevent false clocking, $\overline{\mathrm{CP}}$ must be Low during a Low-to-High transition of $\overline{\mathrm{CS}}$.
LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-1368$
ECN No.	99463
Date of issue	April 25, 1990
Status	Product Specification
FAST Products	

FEATURES for 74F711/711-1

- Consists of five 2-to-1 Multiplexers
- High impedance PNP base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Designed for address multiplexing of dynamic RAM and other applications
- Output inverting/non-inverting option
- A 30 ohm series termination resistor on each output-'F711-1
- Outputs sink 48mA ('F711 only)

FEATURES for 74F712/712-1

- Consists of five 3-to-1 Multiplexers
- High impedance PNP base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Designed for address multiplexing of dynamic RAM and other applications
- A 30 ohm series termination resistor on each output-'F712-1
- Outputs sink 64mA ('F712 only)

DESCRIPTION

The 74F711/711-1 consists of five 2-to-1 multiplexers designed for address multiplexing for dynamic RAMs and other multiplexing applications. The 'F711 has a common select (S) input, an Output Enable ($\overline{\mathrm{OE}}$) input and an Output Inverting $(\overline{\mathrm{NV}})$ input to control the 3 -state outputs. The outputs source 15 mA and sink 48 mA . The 'F711-1 is same as the 'F711 except that it has a 30 ohm series termination resistor on each output to reduce line noise and the 3 -state outputs source 12 mA and sink 5 mA .
The inverting ($\overline{\mathrm{NV} V}$) input, when Low, changes data path to inverting in.

FAST 74F711/711-1,
Multiplexers
74F711 Quint 2-to-1 Data Selector Multiplexer (3-State)
74F711-1 Quint 2-to-1 Data Selector Multiplexer With 30 ohm Series Termination Resistors (3-State)
74F712 Quint 3-to-1 Data Selector Multiplexer
74F712-1 Quint 3-to-1 Data Selector Multiplexer With 30 ohm Series Termination Resistors

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 F 711$	6.5 ns	35 mA
$74 \mathrm{~F} 711-1$	7.0 ns	32 mA
74 F 712	6.0 ns	25 mA
$74 \mathrm{~F} 712-1$	7.0 ns	31 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 V_{ \pm 10 \% ;} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP	N74F711N, N74F711-1N
24-Pin Plastic Slim DIP (300 mil)	N74F712N, N74F712-1N
$20-\mathrm{Pin}$ Plastic SOL	N74F711D, N74F711-1D
24-Pin Plastic SOL	N74F712D, N74F712-1D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\begin{aligned} & \text { 'F711/ } \\ & \hline \text { 'F711-1 } \end{aligned}$	$D_{n a}, D_{n b}$	Data inputs	1.0/0.066	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
	S	Select input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{OE}}$	Output Enable input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{INV}}$	Output Inverting input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$Q_{0}-Q_{4}$	Data outputs for 'F711	750/80	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
	$\mathrm{Q}_{0}-\mathrm{Q}_{4}$	Data outputs for 'F711-1	600/8.33	$12 \mathrm{~mA} / 5 \mathrm{~mA}$
$\begin{gathered} \text { 'F712I } \\ \text { 'F712-1 } \end{gathered}$	$\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}, \mathrm{D}_{\mathrm{nc}}$	Data inputs	1.0/0.066	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
	S_{0}, S_{1}	Select inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$Q_{0}-Q_{4}$	Data outputs for 'F712	750/150	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
	$Q_{0}-Q_{4}$	Data outputs for 'F712-1	600/8.33	$12 \mathrm{~mA} / 5 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

To improve speed and noise immunity $V_{C C}$ and GND side pins are used.
The 74F712/712-1 consists of five 3-to-1 multiplexers designed for address multiplexing for dynamic RAMs and other multiplexing applications. The 'F712 has two select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ inputs to determine
which set of five inputs will be propagated to the five outputs. The outputs source 15 mA and sink 64 mA . The 'F712-1 is same as the 'F712 except that it has a 30 ohm series termination resistor on each output to reduce line noise and the outputs source 12 mA and sink 5 mA .

PIN CONFIGURATION

'F712/712-1	
	24. $\mathrm{Dam}_{\mathrm{cm}}$ (23) D_{10} $22 \mathrm{D}_{24}$ 21] D_{3} (20) D_{4} $19 \mathrm{~V}_{\mathrm{cc}}$ 1日] $D_{a b}$ $17 D_{10}$ $16 D_{70}$ $15 D_{5}$ (14) D_{40} $13 \mathrm{D}_{4 \mathrm{c}}$

LOGIC SYMBOL(IEEE/IEC)

Multiplexers
FAST 74F711/711-1, 74F712/712-1

LOGIC DIAGRAM for 'F711/711-1

FUNCTION TABLE for 'F711/711-1

INPUTS					
S	$\overline{\text { INV }}$	$\overline{\mathrm{OE}}$	$\mathrm{D}_{n a}$	$\mathrm{D}_{n \mathrm{~b}}$	Q_{n}
L	L	L	data a	data b	data a
H	L	L	data a	data b	data b
L	H	L	data a	data b	data a
H	H	L	data a	data b	data b
X	X	H	X	X	Z

[^7]LOGIC DIAGRAM, 'F712/712-1

FUNCTION TABLE for 'F712/712-1

INPUTS					OUTPUT
S_{0}	S_{1}	$D_{n a}$	$D_{n b}$	$D_{n c}$	Q_{n}
L	L	data a	data b	data c	data a
H	L	data a	data b	data c	data b
X	H	data a	data b	data c	data c

$H=$ High voltage level
L = Low voltage level
$X=$ Don't care

Multiplexers

FAST 74F711/711-1, 74F712/712-1

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
V_{IN}	Input voltage		-0.5 to +7.0	V
I_{IN}	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{C C}$	\checkmark
Iout	Current applied to output in Low output state	'F711	72	mA
		F712	108	mA
		'F711-1, 'F712-1	10	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 H}$	High-level input voltage		2.0			V
V_{LL}	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	'F711, 'F712			-15	mA
		'F711-1, 'F712-1			-12	mA
${ }^{1} \mathrm{OL}$	Low-level output current	'F711			48	mA
		'F712			64	mA
		'F711-1, 'F712-1			5	mA
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		'F711/ 'F711-1 'F712/ 'F712-1				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	${ }^{\prime} \mathrm{OH}^{=}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V				
			$\begin{aligned} & \text { 'F711-1/ } \\ & \text { 'F712-1 } \\ & \text { only } \end{aligned}$	$\mathrm{IOH}^{=-12 m A}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$		2.0	-			V				
			$\begin{aligned} & \text { 'F711/ } \\ & \text { 'F712 } \\ & \text { only } \end{aligned}$	$\mathrm{IOH}^{=-15 m A}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		2.0				v				
V_{OL}	Low-level output voitage			$\begin{aligned} & \text { 'F711/ } \\ & \text { 'F712 } \\ & \text { only } \end{aligned}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.38	0.55	V		
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$					0.42	0.55	V			
			$\begin{aligned} & \text { 'F711-1/ } \\ & \text { 'F712-1 } \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$		$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.38	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=\mathrm{MIN}, \mathrm{I}_{1}=\mathrm{I}_{1 \mathrm{~K}}$				-0.73	-1.2	V			
I_{1}	Input current at maximun input voltage			$V_{C C}=$ MAX, $V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
I_{IH}	High-level input current			$\mathrm{V}_{C C}=$ MAX, $\mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$\mathrm{I}_{1 /}$	Low-level input current		$\begin{aligned} & \text { Others } \\ & D_{n} \text { only } \end{aligned}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
								-40	$\mu \mathrm{A}$				
${ }^{\text {OZH }}$	Off-state output current High-level voltage applied			$\begin{aligned} & \text { 'F711/ } \\ & \text { 'F711-1 } \\ & \text { only } \end{aligned}$	$V_{C C}=M A X, V_{0}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$		
'OZL	Off-state output current Low-level voltage applied		$V_{C C}=M A X, V_{0}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$				
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{3}$		$\begin{aligned} & \hline \text { 'F711-1/' } \\ & \text { 'F712-1 } \\ & \hline \end{aligned}$		$V_{C C}=M A X$			-60		-150	mA		
			'F712	-100					-225	mA			
10	Output current ${ }^{4}$ 'F		F711/'F712	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-60		-160	mA			
I_{cc}	Supply current (total)	'F711	${ }^{\prime} \mathrm{CCH}$	$V_{C C}=M A X$				33	45	mA			
			${ }^{\text {CCL }}$					37	50	mA			
			'ccz					37	50	mA			
			${ }^{1} \mathrm{CCH}$					30	40	mA			
		'F711-1	$1{ }^{1} \mathrm{CCL}$	$V_{c c}=\mathrm{MAX}$				33	45	mA			
			${ }^{1} \mathrm{CCZ}$					34	45	mA			
		'F712	${ }^{\mathrm{CCH}}$	=MAX				20	27	mA			
			${ }^{1} \mathrm{CCL}$	CC				30	40	mA			
			$1{ }^{\mathrm{I}} \mathrm{CCH}$					29	40	mA			
		'F712-1	$1{ }^{\text {I }} \mathrm{CCL}$	c $=$ MAX				32	45	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

3 Not more than one output should be shorted at a time. For testing ${ }_{\text {OS }}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. I_{O} is tested under conditions that produce current approximately one half of the true short-circuit output current (I_{OS}).

AC ELECTRICAL CHARACTERISTICS for 74F711/74F711-1

SYMBOL	PARAMETER		TEST CONDITION	Limits					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n a^{\prime}} D_{n b} \text { to } Q_{n}$	$74 F 711$		Waveform 1, 2	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S to Q_{n}			Waveform 1,3	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\overline{\operatorname{NV}}$ to Q_{n}		Waveform 1,3	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 15.0 \\ & 12.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{\mathrm{OE}}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation delay $D_{n a} D_{n b} \text { to } Q_{n}$	74F711-1	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $S, \bar{N} V$ to Q_{n}		Waveform 1,3	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 13.5 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	ns	
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	

AC ELECTRICAL CHARACTERISTICS for 74F712/74F712-1

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c} \text { to } Q_{n}$	74F712-1		Waveform 1, 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $S_{0}, S_{1} \text { to } Q_{n}$			Waveform 1	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}$ to Q_{n}	74F712	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pH}} \end{aligned}$	Propagation delay $S_{0}, S_{1} \text { to } Q_{n}$		Waveform 1	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \end{aligned}$	ns	

AC WAVEFORMS

Waveform 1. Propagation Delay For Non-Inverting Output

Waveform 2. Propagation Delay For Inverting Output

Waveform 3. Propagation Delay For INV To Output

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PLZ }}$	closed $\mathrm{t}_{\text {PZL }}$ All other

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	\mathbf{t}_{w}	$\mathbf{t}_{\mathrm{TLH}}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1369$
ECN No.	97677
Date of issue	September 20, 1989
Status	Product Specification
FAST Products	

FEATURES for 74F723/723-1

- Consists of four 3-to-1 Multiplexers
- High Impedance PNP base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- Inverting or non-Inverting data path capability by an Inverting (NAK) input
- Designed for address multiplexing of dynamic RAM and other appilcations
- Multiple side pins for $V_{C C}$ and GND to reduce lead Inductance (improves speed and nolse immunity)
- 3-State outputs sink 48mA ('F723 only)
- 30 ohm output series termination resistor option-74F723-1

FEATURES for 74F725/725-1

- Consists of four 4-to-1 Multiplexers
- High Impedance PNP base inputs for reduced loading $(20 \mu \mathrm{~A}$ in High and Low states)
- Equivalent to two 'F253s without 3state
- Outputs sink 48mA ('F725 only)
- 30 ohm output series termination resistor option-74F725-1

DESCRIPTION

The 74F723/723-1 consists of four 3-to-1 multiplexers designed for address multiplexing for dynamic RAMs and other multiplexing applications. Select ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) inputs control which line is to be selected, as defined in the Function Table for 'F723/ 723-1. The inverting (${ }^{(N W}$) input, when Low, changes data path to inverting.

To improve speed and noise immunity, $V_{c c}$ and GND side pins are used. The 3state outputs sorrce 15 mA and sink

FAST 74F723/723-1, 74F725/725-1

Multiplexers

74F723 Quad 3-to-1 Data Selector Multiplexer (3-State)
74F723-1 Quad 3-to-1 Data Selector Multiplexer With 30 ohm Series Termination Resistors (3-State)
74F725 Quad 4-to-1 Data Selector Multiplexer
74F725-1 Quad 4-to-1 Data Selector Multiplexer With 30 ohm Serles Termination Resistors

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{F723}$	6.0 ns	25 mA
$747723-1$	7.5 ns	33 mA
74 F 725	6.0 ns	20 mA
$74 \mathrm{~F} 725-1$	7.0 ns	20 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300 mil)	N74F723N, N74F723-1N, N74F725N, N74F725-1N
24-Pin Plastic SOL	N74F723D, N74F723-1D, N74F725D, N74F725-1D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

TYPE	PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\begin{aligned} & \text { 'F723/ } \\ & \text { 'F723-1 } \end{aligned}$	$D_{n a}, D_{n b}, D_{n c}$	Data inputs	1.0/0.066	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
	S_{0}, S_{1}	Select inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	H+	Output Inverting input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	OE	Output Enable input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
'F723	$Q_{0}-Q_{3}$	Data outputs	750/80	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
'F723-1	$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Data outputs	600/8.33	$12 \mathrm{~mA} / 5 \mathrm{~mA}$
$\begin{aligned} & \text { 'F725/ } \\ & \text { 'F725-1 } \end{aligned}$	$\mathrm{D}_{n a}, D_{n b}, D_{n c}, D_{n c}$	Data inputs	1.0/0.066	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
	S_{0}, S_{1}	Select inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
'F725	$Q_{0}-Q_{3}$	Data outputs	750/80	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
'F725-1	$Q_{0}-Q_{3}$	Data outputs	600/8.33	$12 \mathrm{~mA} / 5 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

48 mA . The 74F723-1 is same as 74F723 except that it has a 30 ohm series termination resistor on each output to reduce line noise and the 3-state outputs source 12 mA and sink 5 mA .
The 74F725/725-1 consists of four 4-to-1 multiplexers designed for general multiplexing purpose. The select $\left(S_{0}, S_{1}\right)$ in-
puts control which line is to be selected, as defined inthe Function Table for 'F725/ $725-1$. The outputs source 15 mA and sink 48 mA . The 74F725-1 is same as the 74F725 except that it has a 30 ohm series termination resistor on each output to reduce line noise and the outputs source 12 mA and sink 5 mA .

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM for 'F723/'F723-1

FUNCTION TABLE for 'F723/'F723-1

		INPUTS					OUTPUT
S_{0}	S_{1}	INV	$\overline{\mathrm{OE}}$	$\mathrm{D}_{\text {na }}$	D_{nb}	D_{nc}	Q_{n}
L	L	L	L	data a	data b	data c	data a
L	L	H	L	data a	data b	data c	data a
H	L	L	L	data a	data b	data c	$\overline{\text { data } \mathrm{b}}$
H	L	H	L	data a	data b	data c	data b
x	H	L	L	data a	data b	data c	$\overline{\text { data } \mathrm{c}}$
X	H	H	L	data a	data b	data c	data C
X	X	X	H	X	X	X	Z

[^8]LOGIC DIAGRAM for 'F725/'F725-1

FUNCTION TABLE for 'F725/'F725-1

INPUTS						OUTPUT
S_{0}	S	D_{na}	$D_{n b}$	D_{nc}	$D_{\text {nd }}$	Q_{n}
L	L	data a	data b	data C	data d	data a
H	L	data a	data b	data C	data d	data b
L	H	data a	data b	data C	data d	data C
H	H	data a	data b	data C	data d	data d

[^9]Multiplexers
FAST 74F723/723-1, 74F725/725-1

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the usefull life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
V_{cc}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
${ }^{\text {IN }}$	Input current		-30 to +5	mA
$V_{\text {OUT }}$	Voltage applied to output in High output state		$-0.510+V_{c C}$	\checkmark
${ }^{\text {I OUT }}$	Current applied to output in Low output state	'F723-1, 'F725-1	10	mA
		'F723, 'F725	72	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{v}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	v
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2.0			V
V_{IL}	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	'F723-1. 'F725-1			-12	mA
		'F723, 'F725			-15	mA
${ }^{\text {OL }}$	Low-level output current	'F723-1, 'F725-1			5	mA
		'F723, 'F725			48	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

Multiplexers

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$\begin{aligned} & \hline \text { 'F723/ } \\ & \text { 'F723-1 } \\ & \text { 'F725/ } \\ & \text { 'F725-1 } \\ & \hline \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	${ }^{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V				
			$\begin{aligned} & \text { 'F723-1/ } \\ & \text { 'F725-1 } \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
			$\pm 5 \% V_{\text {cc }}$		2.0				V				
			$\begin{aligned} & \text { 'F723/ } \\ & \text { 'F725 } \end{aligned}$	${ }^{1} \mathrm{OH}^{=-15 m A}$	$\pm 10 \% V_{c c}$	2.0				v			
			$\pm 5 \% V_{\text {CC }}$		2.0				V				
V_{O}	Low-level output voltage			$\begin{aligned} & \text { 'F723-1/ } \\ & \text { 'F725-1 } \end{aligned}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=\mathrm{MAX}, \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	${ }^{\mathrm{OL}}=5 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.38	0.55	V		
			$\pm 5 \% V_{\text {cc }}$					0.38	0.55	V			
			$\begin{aligned} & \text { 'F723/ } \\ & \text { 'F725 } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$		$\pm 10 \% V_{C C}$		0.38	0.55	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$				0.42	0.55	V				
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{I K}$				-0.73	-1.2	V			
$1 /$	Input current at maximun input voltage			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }^{\text {IH }}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$					20	$\mu \mathrm{A}$			
$I_{\text {IL }}$	Low-level input current			others	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$		
			D_{n} only						-40	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {OzH }}$	Off-state output current High-level voltage applied		'F723/ 'F723-1 only	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {OzL }}$	Off-state output current Low-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
los	Short circuit output current ${ }^{3}$		$\begin{aligned} & \text { 'F723-1/ } \\ & \text { 'F725-1 } \end{aligned}$	$V_{C C}=$ MAX			-60		-150	mA			
10	Output current ${ }^{4}$		'F723/'F725				-60		-160	mA			
${ }^{\prime} \mathrm{cc}$	Supply current	'F723	${ }^{\mathrm{CCH}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				23	40	mA			
			$\mathrm{I}_{\mathrm{CCL}}$					25	40	mA			
			${ }^{\text {CCCZ }}$					26	40	mA			
		'F723-	${ }^{\mathrm{CCH}}$	$V_{C C}=M A X$				33	45	mA			
			$1{ }^{1} \mathrm{CCL}$					33	45	mA			
								35	50	mA			
		'F725	${ }^{1} \mathrm{CCH}$	$V_{c c}=M A X$				18	30	mA			
			${ }^{\text {CCLL }}$					22	35	mA			
		'F725-1	$1{ }^{1} \mathrm{CCH}$	$V_{C C}=M A X$				17	35	mA			
								20	40	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output shouid be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.
4. I_{O} is tested under conditions that produce current approximately one half of the true short-circuit output current (I_{OS}).

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c} \text { to } Q_{n}$	'F723	Waveform 1, 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $S_{0}, S_{1}, \overline{N V}$ to Q_{n}		Waveform 1, 2	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{pZH}} \\ & \mathbf{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}$ to Q_{n}	'F723-1	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $S_{0}, S_{1}, \overline{\text { INV }}$ to Q_{n}		Waveform 1, 2	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable time $\overline{O E}$ to Q_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 30 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}, D_{n d} \text { to } Q_{n}$	'F725		Waveform 1, 2	2.0 2.0	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay $S_{0}, S_{1} \text { to } Q_{n}$			Waveform 1	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n a}, D_{n b}, D_{n c}, D_{n d} \text { to } Q_{n}$	'F725-1	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $S_{0}, S_{1} \text { to } Q_{n}$		Waveform 1	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 12.0 \end{aligned}$	ns	

AC WAVEFORMS

Waveiorm 1. Propagation Delay For Non-Inverting Output
Waveform 2. Propagation Delay For Inverting Output

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

TEST	SWITCH
t PLZ $\mathrm{t}_{\text {PZL }}$ All other	closed closed open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

Document No.	$853-1121$
ECN No.	
Date of issue	June 11,1990
Status	Product Specification
FAST Products	

FEATURES

- Octal Latched Transceiver
- Drives heavily loaded backplanes with equivalent load impedances down to 10 ohms
- High drive (100 mA) open collector drivers on B-port
- Reduced voltage swing (1 volt) produces less noise and reduces power consumption
- High speed operation enhances performance of backplane buses and facilitates incident wave switching
- Compatible with Pi-bus and IEEE 896 Futurebus Standards
- Built-in precision band-gap reference provides accurate receiver thresholds and improved noise immunity
- Controlled output ramp and multiple GND pins minimize ground bounce
- Glitch-free power up / power down operation

- Multiple package options

\square

 - Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $+80^{\circ} \mathrm{C}$)
DESCRIPTION

The 74F776 is an octal bidirectional latched transceiver and is intended to provide the electrical interface to a high performance wired-or bus. The B port inverting drivers are low-capacitance open collector with controlled ramp and are designed to sink 100 mA from 2 volts. The B port inverting receivers have a 100 mV threshold region and a 4 ns glitch filter.

The 74F776 B port interfaces to 'Backplane Transceiver Logic' (BTL) . BTL features a reduced (1V) voltage swing for lower power consumption and a series

FAST 74F776

Pi-Bus Transceiver

Octal Bidirectional Latched Transceiver (Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICALSUPPLY CURRENT (TOTAL) 74 F 776$\quad 6.5 \mathrm{~ns}$
80 mA		

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} V_{C C}=5 \mathrm{~V} \pm 10 \% \\ T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$
28-Pin Plastic DIP (600mil) ${ }^{1}$	N74F776N	174F776N
28-Pin PLCC ${ }^{1}$	N74F776A	174F776A

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L$) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	PNP latched inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs with threshold circuitry	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
OEA	A Output Enable input (active High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEB}}_{0}, \overline{\mathrm{OEB}}_{1}$	B Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\overline{\mathrm{LE}}$	Latch Enable input (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Open Collector outputs	$\mathrm{OC} * / 166.7$	$\mathrm{OC} / 100 \mathrm{~mA}$

NOTES:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

- $O C=$ Open Collector
diode on the drivers to reduce capacitive
loading ($<5 \mathrm{pF}$). Incident wave switching is employed, therefore BTL propagation
delays are short. Although the voltage swing is much less for BTL, so is its receiver threshold region, therefore noise margins are excellent.
BTL offers low power consumption, low ground bounce, EMI and crosstalk, low capacitive loading, superior noise margin and low propagation delays. This results in a high bandwidth, reliable backplane.
The 74F776 A port has TTL 3-State drivers and TTL receivers with a latch function. A separate High-level control voltage input $\left(V_{x}\right)$ is provided to limit the

A side output level to a given voltage level (such as 3.3 V). For 5.0 V systems, V_{x} is simply tied to V_{CC}.

The 'F776 has a designed feature to control the B output transitions during power sequencing. There are two possible sequences, They are as follows:

1. When $\overline{\mathrm{LE}}=$ Low and $\overline{\mathrm{OEB}}_{\mathrm{n}}=$ Low then the B outputs are disabled until the $\overline{L E}$ circuitry takes control. Then the B outputs will follow the A inputs, making a maximum of one transition during power-up (or down).
2. If $\overline{\mathrm{LE}}=$ High or $\overline{\mathrm{OEB}}_{n}=$ High then the B outputs will be disabled durng power-up (or down).

Pi-Bus Transceiver

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	A PORT LIMITS								
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{aligned} \mathrm{T}_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} T_{A} & =-40^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \\ V_{C C} & =5 \mathrm{~V} \pm 10 \% \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$		UNIT	
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 1		$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{array}{\|l\|} \hline 12.0 \\ 10.5 \\ \hline \end{array}$	5.0 6.0	$\begin{aligned} & 12.0 \\ & 11.0 \end{aligned}$	5.0 6.0	12.0 11.0	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PZH}}} \\ & { }^{\mathrm{t}} \mathrm{PZZL} \end{aligned}$	Output Enable time from High or Low OEA $_{n}$ to A_{n}	Waveform 3,4	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$		$\begin{array}{\|l\|} \hline 14.5 \\ 14.5 \end{array}$	7.5 8.5	$\begin{aligned} & 15.5 \\ & 17.0 \end{aligned}$	7.5 8.5	15.5 17.0	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{P} 17} \end{aligned}$	Output Disable time from High or Low OEA A_{n}	Waveform 3,4	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	2.0 2.0	7.5 8.0	ns	
SYMBOL	PARAMETER	TEST CONDITION	B PORT LIMITS								
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		$\begin{aligned} & T_{A}=-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & N_{C C}=5 \mathrm{~V} \pm 10 \% \\ & C_{D}=30 \mathrm{pF} \\ & R_{U}=9 \Omega \end{aligned}$		UNIT	
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & { }^{t^{\mathrm{PLLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	2.0 3.0	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\text { LE }}$ to B_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	2.5 3.0	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	2.5 3.0	$\begin{gathered} 10.0 \\ 9.5 \\ \hline \end{gathered}$	ns	
$\begin{aligned} & \hline{ }^{\mathrm{t}_{\mathrm{PL.H}}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation delay } \\ & \text { PEB }_{n} \text { to } B_{n} \end{aligned}$	Waveform 1	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	4.5	$\begin{array}{\|c\|} \hline 7.5 \\ 10.5 \\ \hline \end{array}$	3.5	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	\\|ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Transition time, B port 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test circuit and Waveform		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	4.5	0.5	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns	
AC SETUP REQUIREMENTS								I			
SYMBOL	PARAMETER	TEST CONDITION	B PORT LIMITS								
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \\ C_{L}=30 \mathrm{pF} \\ R_{L}=9 \Omega \end{gathered}$			$T_{A}=0^{\circ} \mathrm{C}$ to $T_{A}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $+85^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ $\mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ $\mathrm{C}_{L}=30 \mathrm{pF}$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=9 \Omega$ $R_{L}=500 \Omega$				UNIT	
			Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time A_{n} to $\overline{L E}$	Waveform 2	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		5.0 5.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time A_{n} to $\overline{L E}$	Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$				ns	
${ }_{W}{ }^{(L)}$	$\overline{\text { LE Pulse width, Low }}$	Waveform 2	6.0			6.0		6.0		ns	
		-									

Signetics

Document No.	$853-1413$
ECN No.	98963
Date of issue	February 27, 1990
Status	Product Specification
FAST Products	

FEATURES

- Latching Transceiver
- High drive open collector output current with minimum output swing
- Compatible with Test Mode (TM) Bus specification
- Controlled output ramp
- Multiple package options

DESCRIPTION

The 74F777 is atriple bidirectionallatched Bus transceiver and is intended to provide the electrical interface to a high performance wired-OR bus. This bus has a loaded characteristic impedance range of 20 to 50 ohms and is terminated on each end with a 30 to 40 ohm resistor.
The 74F777 is a triple bidirectional transceiver with open collector B and 3-state A port output drivers. A latch function is provided for the A port signals. The B port output driver is designed to sink 100 mA from 2 volts to minimize crosstalk and ringing on the bus.
A separate output threshold clamp voltage $\left(V_{X}\right)$ is provided to prevent the A port output High level from exceeding future high density processor supply voltage levels. For 5 volt systems, V_{X} is simply tied to V_{CC}.

FAST 74F777

Triple Bidirectional Latched Bus Transceiver

Triple Bidirectional Latched Bus Transceiver (3-State + Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 777	7 ns	45 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$
20-Pin Plastic DIP (300mil)	N74F777N
20-Pin PLCC	N74F777A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{2}$	PNP latched inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{2}$	Data inputs with threshold circuitry	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
$\mathrm{OEA}_{0}-\mathrm{OEA}_{2}$	A Output Enable inputs (active High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEB}}_{0}-\overline{\mathrm{OEB}}_{2}$	B Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{LE}}_{0}-\overline{\mathrm{LE}}_{2}$	Latch Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{2}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{2}$	Open Collector outputs	$\mathrm{OC}^{*} / 166.7$	$\mathrm{OC} / 100 \mathrm{~mA}$

NOTES:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

- $O C=$ Open Collector

PIN CONFIGURATION

PIN CONFIGURATION PLCC

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					LATCH STATE	OUTPUTS		OPERATING MODE
A_{n}	$B_{n}{ }^{*}$	$\overline{L E}_{\mathrm{n}}$	OEA ${ }_{n}$	$\overline{\mathrm{OEB}}_{\mathrm{n}}$		A_{n}	B_{n}	
H	X	L	L	L	H	Z	$\mathrm{H}^{* *}$	A 3-state, Data from A to B
L	X	L	L	L	L	2	L	
X	X	H	L	L	Q_{n}	2.	Q_{n}	A 3-state, Latched data to B
-	-	L	H	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	H	H	H	L	$H^{(2)}$	H	$\mathrm{Z}^{(2)}$	Preconditioned Latch enabling data transfer from B to A
-	L	H	H	L	$\mathrm{H}^{(2)}$	L	$\mathrm{z}^{(2)}$	
-	-	H	H	L	Q_{n}	Q_{n}	Q_{n}	Latch state to A and B
H	X	L.	L	H	H	Z	Z	B and A 3-state
L	X	L	L	H	L	Z	Z	
X	X	H	L	H	Q_{n}	Z	Z	
-	H	L	H	H	H	H	Z	B 3-state, Data from B to A
-	L	L	H	H	L	L	Z	
-	H	H	H	H	Q_{n}	H	Z	
-	L	H	H	H	Q_{n}	L	2	

H = High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care

- = Input not externally driven

Z = High Impedance (off) state
$Q_{n}=$ High or Low voltage level one setup time prior to the Low-to-High $\overline{L E}$ transition
(1) $=$ Condition will cause a feedback loop path; A to B and B to A
(2) $=$ The latch must be preconditioned such that B inputs may assume a High or Low level while $\overline{\mathrm{OEB}}_{0}$ and $\overline{\mathrm{OEB}}_{1}$ are Low and $\overline{\mathrm{LE}}$ is High.
$\mathrm{B}^{*}=$ Precaution should be taken to insure the B inputs do not float. If they do they are equal to Low state.
$\mathrm{H}^{* *}=$ Goes to level of pullup voltage.
NOTE = Each latch is independent. The latches may be run in any combination of modes.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage		-0.5 to +7.0	V
V_{X}	Threshold control		-0.5 to +7.0	V
$V_{\text {IN }}$	Input voltage	$\overline{O E B}_{n}, O E A_{n}, \overline{L E}_{n}$ $A_{0}-A_{2}, B_{0}-B_{2}$	-0.5 to +7.0	V
${ }_{\text {IN }}$	Input current		-30 to +5	mA
$V_{\text {out }}$	Voltage applied to output in High output state		-0.5 to $+V_{\text {cc }}$	V
Iout	Current applied to output in Low output state	$A_{0}-A_{2}$ $B_{0}-B_{2}$	48	mA
T_{A}	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LImits			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{2}$	2.0			V
		$\mathrm{B}_{0}-\mathrm{B}_{2}$	1.6			
V_{L}	Low-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{2}$			0.8	V
		$\mathrm{B}_{0}-\mathrm{B}_{2}$			1.43	
I_{IK}	Input clamp current				-18	mA
I_{OH}	High-level output current	$A_{0}-A_{2}$			-3	mA
I_{OL}	Low-level output current	$A_{0}-A_{2}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{2}$			100	
$T_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
${ }^{\mathrm{OH}}$	High level output current	$\mathrm{B}_{0}-\mathrm{B}_{2}$			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$
Ioff	Power-off output current ${ }^{\text {P }}$	$\mathrm{B}_{0}-\mathrm{B}_{2}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$		
V_{OH}	High-level output voltage	$A_{0}-A_{2}^{4}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}}$	2.5		v_{cc}	V		
				$\begin{aligned} & \mathrm{O}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{x}}=3.13 \mathrm{~V} \& 3.47 \mathrm{~V} \end{aligned}$	2.5		V_{x}	V		
V_{OL}	Low-level output voltage	$A_{0}-A_{2}{ }^{4}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Cc}}$			0.5	V		
		$B_{0}-B_{2}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$			1.15	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	0.40			V		
V_{IK}	Input clamp voltage	$A_{0}-A_{2}$	$V_{C C}=M I N, I_{1}=I_{\text {IK }}$				-0.5	V		
		Except $A_{0}-A_{2}$	$V_{C C}=\operatorname{MIN}, I_{1}=I_{1 K}$				-1.2	V		
11	Input current at maximum input voltage	$\overline{O E B}_{n}$, OEA $^{\prime} \overline{L E}_{n}$	$V_{C C}=$ MAX, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$A_{0}-A_{2,} B_{0}-B_{2}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA		
${ }^{\text {IH }}$	High-level input current	$\overline{O E B}_{n}$, OEA $_{n}, \overline{L E}_{n}$	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}, B_{n}-A_{n}=0 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{2}$	$V_{C C}=M A X, V_{1}=2.1 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIL	Low-level input current	$\overline{O E B}_{n}, O E A_{n}, \overline{L E}_{n}$	$V_{C C}=M A \bar{X}, V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		$B_{0}-B_{2}$	$V_{C C}=M A X, V_{1}=0.3 V$				-100	$\mu \mathrm{A}$		
$\begin{gathered} \mathrm{I}_{\mathrm{OZH}} \\ +\mathrm{I}_{1 \mathrm{H}} \end{gathered}$	Off-state output current, High-level voltage applied	$A_{0}-A_{2}$	$v_{c c}=M A X, V_{O}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{array}{\|c} \hline \mathrm{OZL} \\ +\mathrm{I}_{\mathrm{I}} \end{array}$	Off-state output current, Low-level voltage applied	$A_{0}-A_{2}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
${ }^{\prime} \times$	High-level control current		$\begin{aligned} & V_{C C}=M A X, V_{X}=V_{C C}, \overline{L E}=O E A_{n}=\overline{O E B}{ }_{n}=2.7 \mathrm{~V} . \\ & A_{0}-A_{2}=2.7 \mathrm{~V}, \mathrm{~B}_{0}-\mathrm{B}_{2}=2.0 \mathrm{~V} \\ & V_{C C}=M A X, V_{X}=3.13 \mathrm{~V} \& 3.47 \mathrm{~V}, \overline{L E}=O E A_{n}=2.7 \mathrm{~V} \\ & \overline{O E B}_{n}=A_{0}-A_{7}=2.7 \mathrm{~V}, B_{0}-B_{2}=2.0 \mathrm{~V} \\ & \hline \end{aligned}$		-100		100	$\mu \mathrm{A}$		
			-10		10	mA				
Ios	Short-circuit output current ${ }^{3}$	${ }^{3} A_{0}-A_{2}$ only			$V_{C C}=M A X, B_{n}=1.8 \mathrm{~V}, O E A_{n}=2.0 \mathrm{~V}, \overline{O E B}_{n}=2.7 \mathrm{~V}$		-60		-150	mA
${ }^{\prime} \mathrm{cc}$	Supply current (total)	${ }^{\text {CCH }}$	$V_{c c}=$ MAX			40	60	mA		
		${ }^{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$			55	80	mA		
		${ }^{\text {ccCz }}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{HL}}=0.5 \mathrm{~V}$			45	67	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. Unless otherwise specified, $V_{X}=V_{C C}$ for all test conditions.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing I OS' the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, IOS tests should be performed last.
4. Due to test equipment limitations, actual test conditions are for $\mathrm{V}_{\mathrm{IH}}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	A PORT LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $B_{n} \text { to } A_{n}$	Waveform 1	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$	Output Enable time from High or Low $O E A_{n} \text { to } A_{n}$	Waveform 3,4	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 15.5 \end{aligned}$	ns
${ }^{{ }^{\mathrm{t}}{ }_{\mathrm{P} \text { PLZ }}}$	Output Disable time to High or Low $O E A_{n}$ to A_{n}	Waveform 3,4	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns
	PARAMETER	TEST CONDITION	B PORT LIMITS					UNIT
SYMBOL			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	Waveform 1	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \\ & \hline \end{aligned}$	Propagation delay $\overline{L E} \text { to } B_{n}$	Waveform 1	$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \\ & \hline \end{aligned}$	Enable/disable time $\overline{O E B}_{n}$ to B_{n}	Waveform 1	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 12.0 \end{aligned}$	ns
$t_{T L H}^{t_{\text {THI }}}$	Transition time, B Port 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test Circuit and Waveform	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=30 \mathrm{pF} \\ \mathrm{R}_{U}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{1}(L) \end{aligned}$	Set-up time $A_{n} \text { to } \overline{L E}_{n}$	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & h_{h}(L) \end{aligned}$	Hold time A_{n} to $\overline{L E}{ }_{n}$	Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		-	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
${ }_{\text {t }}(\mathrm{L})$	$\overline{\mathrm{LE}} \mathrm{n}$ Pulse width. Low	Waveform 2	5.5			6.5		ns

TM-Bus Transceiver

AC WAVEFORMS

Waveform 1. Propagation Delay For Data To Output And Enable/Disable Time $\mathrm{OEB}_{\mathbf{n}} \mathrm{To}_{\mathbf{n}}$

Waveform 3. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 2. Data Setup And Hold Times AndLE Pulse Width

Waveform 4. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

$V_{M}=1.5 \mathrm{~V}$
Input Pulse Definition

	INPUT PULSE REQUIREMENTS					
74F	Amplitude	Low V	Rep. Rate	${ }^{\text {t }}$ w	${ }^{\text {t }}$ TLH	${ }^{\text {t }}$ THL
A Port	3.0 V	0.0V	1 MHz	500ns	2.5 ns	2.5ns
B Port	2.0 V	1.0V	1 MHz	500 ns	4.0 ns	4.Ons

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{D}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{U}=$ Pull up resistor; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

Document No.	$853-0385$
ECN No.	97676
Date of issue	September 20, 1989
Status	Product Specification
FAST Products	

FEATURES

- Multiplexed 3-state I/O ports for bus oriented applications
- Built-in look-ahead carry capability
- Center power pins to reduce effects of package inductance
- Count frequency 145 MHz typical
- Supply current 90mA typical
- See 'F269 for 24 pin separate l/O port version
- See 'F579 for 20 pin version
- See 'F1779 for extended function version of the 'F799

DESCRIPTION

The 74F779 is fully synchronous 8-stage Up/ Down Counter with multiplexed 3 -state I/O ports for bus-oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pins ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The device also features carry look-ahead for easy cascading. All state changes are initiated by the rising edge of the clock. When CET is HIgh the data

PIN CONFIGURATION

FAST 74F779
 Counter

8-Bit Bidirectional Binary Counter (3-state)

TYPE	${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}^{\text {TYPICAL SUPPLY CURRENT }}$				
(TOTAL)		$	$	145 mA	
:---:	:---:				
74 F 779	145				

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F779N
16-Pin Plastic SOL	N74F779D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$/ / \mathrm{O}_{\mathrm{n}}$	Data inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
	Data outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Select inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal count output (active Low)	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
outputs are held in their current state and $\overline{\mathrm{TC}}$ is held High. The TC output is not recom-
mended for use as a clock or asynchronous reset due to the possibility of decoding spikes.

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-1269$
ECN No.	97741
Date of issue	September 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- Arbitrates between 4 asynchronous inputs
- Separate grant output for each input
- Common output enable
- On-board 4 input AND gate
- Metastable-free outputs

DESCRIPTION

The 74F786 is an asynchronous 4-bit arbiter designed for high speed real-time applications. The priority of arbitration is determined on a first-come first-served basis. Separate Bus Grant ($\overline{\mathrm{BG}}_{\mathrm{n}}$) outputs are available to indicate which one of the request inputs is served by the arbitration logic. All $\overline{\mathrm{BG}}$ outputs are enabled by a common enable ($\overline{E N}$) pin. In order to generate a bus request signal a separate 4 input AND gate is provided which may also be used as an independent AND gate. Unused Bus Request ($\overline{B R}_{n}$) inputs may be disabled by tying them High.

The ' F 786 is designed so that contention between two or more request signals will not glitch or display a metastable condition. In this situation an increase in the $\overline{B R}$ to $\overline{\mathrm{BG}}_{\mathrm{n}}{ }^{1}{ }_{\mathrm{PHL}}$ may be observed. Atypical ' F 786 has an $h=6.6 \mathrm{~ns}, \tau=.41 \mathrm{~ns}$ and and $T_{0}=$ $5 \mu \mathrm{sec}$.

Where:

$h=$ Typical propagation delay through the device and τ and T are device parameters derived from testoresults and can most nearly be defined as:
$\tau=$ A function of the rate at which a latch in a metastable state resolves that condition.
$T_{0}=A$ function of the measurement of the propensity of a latch to enter a metastable

Asynchronous Bus Arbiter

4-Bit Asynchronous Bus Arbiter

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
N74F786	6.6 ns	55 mA

ORDERING INFORMATION

$\left.\begin{array}{|c|c|}\hline \text { PACKAGES } & \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}\right]$| N74F786N | |
| :---: | :---: | :---: |
| 16-Pin Plastic DIP | N74F786D |
| 16-Pin Plastic SO | |

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(\mathrm{U} . \mathrm{L})$ HIGH/LOW	LOADVALUE HIGH/LOW
$\overline{\mathrm{BR}}_{0}-\overline{\mathrm{BR}}_{3}$	Bus Request inputs (active Low)	$1.0 / 3.0$	$20 \mu \mathrm{~A} / 1.8 \mathrm{~mA}$
$\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$	AND gate inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{EN}}$	Common Bus Grant output enable input (active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Y}_{\mathrm{OUT}}$	AND gate output	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{\mathrm{BG}}_{0}-\overline{\mathrm{BG}}_{3}$	Bus Grant outputs (active Low)	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
state. T_{0} is also a very strong function of the normal propagation delay of the device.

For further information, please refer to the 'F786 application notes.

The $\overline{\mathrm{BR}}_{n}$ inputs have no inherent priority. The arbiter assigns priority to the incoming requests as they are received, therefore, the first $\overline{B R}$ asserted will have the highest priority. When a bus request is received its corresponding bus grant becomes active, provided that EN is Low. If additional bus requests are made during this time they are queued. When the first request is removed, the arbiter services the bus request with the next highest priority. Removing a request while a
previous request is being serviced can cause a grant to be changed when arbitrating between three or four requests. For that reason, the user should not remove ungranted requests when arbitrating between three or four requests. This does not apply to arbitration between two requests.

If two or more $\overline{\mathrm{BR}}_{n}$ inputs are asserted at precisely the same time, one of them will be selected at random, and all $\overline{B G}_{n}$ outputs will be held in the High state until the selection is made. This guarantees that an erroneous $\overline{B G}_{n}$ will not be generated even though a metastable condition may occur internal to the device.
When the $\overline{E N}$ is in the High state the $\overline{B G}_{n}$ outputs are forced High.

Bus Arbiter

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathbf{V}_{C C}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay, A, B, C, D to Y ${ }_{\text {OUT }}$	Waveform 1	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay, $\overline{B R}_{n}$ to $\overline{B G}_{n}$	Waveform 2	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay, $\overline{\mathrm{EN}}$ to $\overline{\mathrm{BG}}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
${ }^{\text {PHL }}$	Propagation delay, $\overline{B R}_{a}$ to $\overline{B G}_{b}$	Waveform 3	5.0	7.0	10.0	4.5	10.5	ns

AC WAVEFORMS

Waveform 3. Bus Request to Bus Grant Delay
NOTE: a and b represent any of the Bus Requests or Grants. $\overline{B G}_{a}$ Low-to-Hightransition and the $\overline{B G}_{b}$ High-to-Low transition occur simultaneously. For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	\mathbf{t}_{W}	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1421$
ECN No.	99465
Date of issue	April 25,1990
Status	Product Specification
FAST Products	

FEATURES

- High speed parallel registers with positive edge-triggered D-type flipflops
- High speed full adder
- 8-bit parity generator
- High impedance PNP inputs for light bus loading
- Center V $_{c c}$ and GND pins and controlled output buffers minimize ground-bounce problems
- 3-state outputs glitch free during power-up and power-down
- Broadside pinout

FAST 74F807

Octal Shift/Count Registered Transceiver with Adder and Parity (3-State)

| TYPE | ${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}^{\text {TYPICAL SUPPLY CURRENT }}$ |
| :---: | :---: | :---: |
| (TOTAL) | |

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{V}_{\mathbf{C C}}=5 \mathrm{~V}_{ \pm} 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
28 -Pin Plastic DIP $(300 \text { mils })^{\top}$	N74F807N
28 -Pin SOL ${ }^{2}$	N74F807D
28 -Pin PLCC	N74F807A

NOTE:

1. To be released in May, 1990
2. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thernmal consideration for surface mounted devices.

DESCRIPTION

The 74F807 Octal Bus, Shift/Count Transceiver is designed to input data from either the A or B ports to an internal storage register. This data can then be shifted left with serial or parallel outputs, added to additional data that appears on the A -input with Carry In and Carry Out bits, incremented by the Clock Input or incremented by the Clock enabled with Carry In. An 8-bit odd parity generator is attached to the register Q Outputs.

The data in the storage register can be presented on either the A or B ports for output.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data I/O inputs	$3.5 / 0.166$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$	Output Enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{CI} / \mathrm{S} / / \mathrm{CE}$	Carry/Seria/Clock Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
CP	Clock input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{M R}$	Master Reset input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~S}_{\mathrm{n}}$	Select inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
STATOUT	Status Out output	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data I/O outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS								INTERNAL REGISTER	DATA I/O		OUTPUT	OPERATING MODE
$\overline{\mathrm{MR}}$	CP	$\overline{O E}^{\text {a }}$	$\overline{\mathrm{OE}}_{\mathrm{b}}$	S_{0}	S_{1}	S_{2}	CI/SI/CE	Q_{n}	A_{n}	B_{n}	Statout	
L	X	L	L	X	X	X	X	L	L	L	L	
L	X	L	H	X	X	X	X	L	L	z	L	Clear
L	X	H	L	X	X	X	X	L	Z	L	L	
X	X	H	H	X	X	X	X	X	Z	Z	X	3-State
H	\uparrow	x	L	L	L	L	CI/SI/CE	$\mathrm{Cl} / \mathrm{SI} / \mathrm{CE}+\mathrm{a}_{\mathrm{nO}}+\mathrm{q}_{\mathrm{nO}}$	$a_{n 1}$	$C l / S I / C E+a_{n 0}+a_{n O}$	$\mathrm{C}_{\text {OUT }}$	Add Mode w/Carry In
H	\uparrow	X	L	L	L	H	X	$\mathrm{a}_{\mathrm{nO}}+\mathrm{anO}^{\text {a }}$	$a_{n 1}$	$a_{n 0}+a_{n 0}$	${ }^{\text {cout }}$	Add Mode wo/Carry In
H	\uparrow	H	L	L	H	L	H	$\mathrm{an}_{\mathrm{n} 0}+1$	2	$\mathrm{anO}+1$	TC(1)	
H	\uparrow	L	H	L.	H	L	H	$a_{\text {no }}+1$	$\mathrm{a}_{\mathrm{nO}}+1$	Z	TC(1)	Count w/Count Enable (count)
H	\uparrow	L	L	L	H	L	H	$\mathrm{a}_{\mathrm{nO}}+1$	$\mathrm{a}_{\mathrm{nO}}+1$	anO^{+1}	TC(1)	
H	X	H	L	L	H	L	L	a_{no}	Z		TC(1)	
H	x	L	H	L	H	L	L	a_{no}	a_{nO}	Z Z	TC(1)	Count w/Count Enable (hold)
H	X	L	L	L	H	L	L	a_{no}		$\mathrm{ano}^{\text {O }}$	TC(1)	
H	\uparrow	H	L	L	H	H	x	$\mathrm{a}_{n 0}+1$	Z	$\mathrm{anO}_{\mathrm{nO}}+1$	TC(1)	
H	\uparrow	L	H	L	H	H	X	$\mathrm{a}_{n 0}+1$	$\mathrm{an}_{\mathrm{n} 0}+1$	7	TC(1)	Count wo/Count Enable
H	\uparrow	L	L	L	H	H	X	$\mathrm{anO}^{0}+1$	$\mathrm{anO}_{\mathrm{nO}}+1$	$\mathrm{anO}+1$	TC(1)	
H	\uparrow	H	L	H	L	L	CI/SI/CE	(3)	Z	(3)		
H	\uparrow	L	H	H	L	L	CI/SI/CE	(3)	(3)	Z	Q_{7}	Shift
H	\uparrow	L	L	H	L	L	C//SI/CE	(3)	(3)	(3)	Q_{7}	
H	\uparrow	H	H	H	L	H	X	$A_{n 0}$		Z	Parity (2)	
H	\uparrow	H	L	H	L	H	x	$A_{n 0}$	a_{no}	$A_{\text {no }}$	Parity (2)	Load A Inputs
H	\uparrow	L	X	H	L	H	X	$a_{n 0}$	q_{no}	X	Parity (2)	
H	\uparrow	H	H	H	H	L	X		Z		Parity (2)	
H	\uparrow	L	H	H	H	L	X	$\mathrm{B}_{\text {no }}$	B_{no}	$b_{\text {no }}$	Parity(2)	Load B Inputs
H	\uparrow	X	L	H	H	L	X	$Q_{n 0}$	\times	q_{no}	Parity(2)	
H	x	L	H	H	H	H	X			z	Parity(2)	
H	x	H	L	H	H	H	X	$Q_{\text {no }}$	z	$Q_{\text {no }}$	Parity(2)	Hold
H	x	L	L	H	H	H	X	$Q_{\text {no }}$	$Q_{n 0}$	$Q_{\text {no }}$	Parity (2)	

[^10]ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	48	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{LL}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-3	mA
${ }^{\text {IOL }}$	Low-level output current			24	mA
T_{A}	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, V_{\mathrm{IL}}=\operatorname{MAX} \\ & V_{I H}=M I N, I_{\mathrm{OH}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.4			V
			$\pm 5 \% V_{\text {cc }}$	2.7		3.3		V		
V_{OL}	Low-level output voltage		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & V_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX} \end{aligned}$	$\pm 10 \% V_{C c}$		0.35	0.50	V		
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
V_{IK}	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$			-0.73	-1.2	V	
1	Input current at maximum input voltage		$V_{C C}=$ MAX, $V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
${ }_{1 / \mathrm{H}}$	High-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
I_{1}	Low-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
${ }^{\mathrm{OZH}}{ }^{+1} \mathrm{IH}$	Off state output current, High-level voltage applied	A_{n}, B_{n}	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{OZL}}{ }^{+1} \mathrm{IL}$	Off state output current, Low-level voltage applied		$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
los	Short circuit output current ${ }^{3}$		$V_{C C}=$ MAX		-60		-150	mA		
${ }^{1} \mathrm{cc}$	Supply current (total)					155	210	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $I_{O S}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\prime}$ MAX	Maximum clock frequency	Waveform 1	100	115		70		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to A_{n} or B_{n} (Load)	Waveform 1	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 6.5 \end{gathered}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}} \mathrm{PHHL} \end{aligned}$	Propagation delay CP to A_{n} or B_{n} (Shift)	Waveform 1	$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{{ }^{\mathrm{PPLH}}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to A_{n} or $\mathrm{B}_{\text {(}}$ (Count)	Waveform 1	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 6.5 \end{gathered}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay CP to B_{n} (Add)	Waveform 1	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 6.5 \end{gathered}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to STATOUT(Load A)	Waveform 1	$\begin{aligned} & 17.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 19.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to STATOUT(Shift)	Waveform 1 \%	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to STATOUT(Count)	Waveform 1	$\begin{gathered} 10.5 \\ 6.5 \end{gathered}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation delay CP to STATOUT(Add)	Waveform 1	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 13.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 20.5 \\ & 14.0 \end{aligned}$	ns
${ }^{\text {P }}$ PLL	Propagation delay $\overline{M R}$ to A_{n} or B_{n}	Waveform 3	6.5	8.0	11.0	6.0	12.0	ns
${ }^{\text {P }}$ PHL	Propagation delay $\overline{\mathrm{MR}}$ to STATOUT(Load A)	Waveform 3	14.0	16.0	18.5	13.0	20.5	ns
${ }^{\text {t }} \mathrm{PHL}$	Propagation delay $\overline{M R}$ to STATOUT(Shift)	Waveform 3	8.5	10.0	12.5	8.0	14.0	ns
${ }^{\text {PrHL }}$	Propagation delay $\overline{M R}$ to STATOUT(Count)	Waveform 3	8.5	10.0	12.5	8.0	14.0	ns
${ }^{\text {P }}$ PHL	Propagation delay $\overline{\mathrm{MR}}$ to STATOUT(Add)	Waveform 3	10.5	12.0	14.5	9.5	16.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay A_{n} to STATOUT(Add)	Waveform 4	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 27.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CI/SI/CE to STATOUT	Waveform 4	$\begin{aligned} & 19.5 \\ & 21.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.5 \\ & 22.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 24.0 \\ 25.5 \\ \hline \end{array}$	$\begin{aligned} & 17.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 29.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay S_{n} to STATOUT(Load A)	Waveform 4	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.5 \\ 17.0 \\ \hline \end{array}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{PLLH}}} \\ & { }^{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation delay S_{n} to STATOUT(Load B)	Waveform 4	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \\ & 16.5 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \\ & { }_{\mathrm{t}} \mathrm{PHL} \end{aligned}$	Propagation delay S_{n} to STATOUT(Add)	Waveform 4	$\begin{aligned} & 19.0 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 26.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay S_{n} to STATOUT(Shift)	Waveform 4	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZZ}} \end{aligned}$	Output Enable time $\overline{O E A}$ to A_{n} or $\overline{O E B}$ to B_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time $\overline{O E A}$ to A_{n} or $\overline{O E B}$ to B_{n}	Waveform 6 Waveform 7	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n}, B_{n} to CP (Load)	Waveform 5	$\begin{aligned} & \hline 6.0 \\ & 9.5 \end{aligned}$			$\begin{gathered} 6.5 \\ 12.0 \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low A_{n}, B_{n} to CP (Load)	Waveform 5	0			0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low A_{n} to CP (Add)	Waveform 5	$\begin{aligned} & 10.5 \\ & 16.5 \end{aligned}$			$\begin{aligned} & 12.0 \\ & 21.5 \end{aligned}$		ns
$t_{h}(\mathrm{H})$ $t_{h}(\mathrm{~L})$	Hold time, High or Low A_{n} to CP (Add)	Waveform 5	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		ns
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{s}(\mathrm{~L})$	Setup time, High or Low S_{n} to CP(Add)	Waveform 5	$\begin{aligned} & 16.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & \hline 20.0 \\ & 18.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP (Count)	Waveform 5	$\begin{aligned} & 16.5 \\ & 19.5 \end{aligned}$			19.0 22.5		ns
$\begin{aligned} & t_{s}(\mathrm{H}) \\ & t_{s}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low S_{n} to CP (Shift)	Waveform 5	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$			$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low S_{n} to CP (Load)	Waveform 5	$\begin{gathered} 17.5 \\ 6.5 \end{gathered}$			$\begin{gathered} 20.5 \\ 7.0 \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low S_{n} to CP (All modes)	Waveform 5	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		ns
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \end{aligned}$	Setup time, High or Low CI/SI/CE to CP (Add)	Waveform 5	$\begin{aligned} & 10.0 \\ & 18.0 \end{aligned}$			$\begin{aligned} & \hline 11.5 \\ & 22.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CI/SI/CE to CP (Count)	Waveform 5	$\begin{gathered} 8.5 \\ 16.0 \end{gathered}$			$\begin{aligned} & 10.0 \\ & 18.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CI/SI/CE to CP (Shift)	Waveform 5	$\begin{aligned} & 5.0 \\ & 9.0 \end{aligned}$			$\begin{gathered} \hline 5.5 \\ 10.5 \end{gathered}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time, High or Low CI/SI/CE to CP (All modes)	Waveform 5	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		ns
	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$			6.0 4.5		ns
${ }_{\text {t }}{ }^{(L)}$	$\overline{\mathrm{MR}}$ Pulse width, Low	Waveform 3	4.5			5.0		ns
${ }^{\text {trec }}$	Recovery Time, $\overline{M R}$ to CP	Waveform 2	2.0			2.0		ns

AC WAVEFORMS

Waveform 1. Propagation Delay, Clock Input To Outputs, Clock Pulse Width, and Maximum Clock Frequency

Waveform 4. Propagation Delay, Select to STATOUT, CI/SI/CE to STATOUT or Data to STATOUT
Waveform 3. Propagation Delay, Master Reset to Data or Master Reset to STATOUT

Waveform 6. 3.State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 7. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\mathrm{PLZ}}$	closed
$\mathrm{t}_{\text {PZL }}$	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	${ }^{\mathbf{t}} \mathrm{W}$	${ }^{\text {t TLH }}$	$\mathbf{t}^{\text {THL }}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-1304$
ECN No.	99464
Date of issue	April 25, 1990
Status	Product Specification
FAST Products	

FEATURES

- High speed parallel registers with positive edge-triggered D-type flipflops
- High performance bus interface buffering for wide data/address paths or busses carrying parity
- High impedance PNP base inputs for reduced loading ($20 \mu \mathrm{~A}$ in High and Low states)
- IIL is $20 \mu \mathrm{~A}$ vs $1000 \mu \mathrm{~A}$ for AM29821 series
- Buffered control Inputs to reduce AC effects
- Ideal where high speed, light loading, or increased fan-in as required with MOS microprocessors
- Positlve and negative over-shoots are clamped to ground
- 3-state outputs glitch free during power-up and power-down
- Slim Dip 300 mil package
- Broadside plnout compatible with AMD AM 29821-29826 series
- Outputs sink 64mA and source 24mA

DESCRIPTION

The 74F821 series Bus Interface Registers are designed to eliminate the extra packages required to buffer existing registers and provide extra data width for wider data/address paths of busses carrying parity.

The 'F821/F822 are buffered 10-bit wide versions of the popular 'F374/'F534 functions.
The 'F822 is the inverted output version of 'F821.

The74F823 and 74F824 are 9-bit wide

FAST 74F821/822/823/ 824/825/826

 Bus Interface Registers74F821/74F822 10-Bit Bus Interface Registers, NINV/INV (3-State) 74F823/74F824 9-Bit Bus Interface Registers, NINV/INV (3-State) 74F825/74F826 8-Bit Bus Interface Registers, NINV/INV (3-State)

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 821,74 \mathrm{F8} 22$	180 MHz	75 mA
$74 \mathrm{~F} 823,74 \mathrm{~F} 824$	180 MHz	70 mA
$74 \mathrm{~F} 825,74 \mathrm{~F} 826$	180 MHz	65 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE
$V_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
24-Pin Plastic SLIM DIP	N74F821N, N74F822N, N74F823N,
(300mil)	N74F824N, N74F825N, N74F826N
24-Pin Plastic SOL	N74F821D, N74F822D, N74F823D,
	N74F824D, N74F825D, N74F826D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS		DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\begin{aligned} & \text { 'F821 } \\ & \text { 'F822 } \end{aligned}$	D_{n}	Data inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	$\overline{O E}$	Output enable input (activeLow)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	Data output	1200/106.7	$24 \mathrm{~mA} / 64 \mathrm{~mA}$
$\begin{aligned} & \text { 'F823 } \\ & \text { 'F824 } \end{aligned}$	D_{n}	Data inputs	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	$\overline{\mathrm{CE}}$	Clock enable input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{MR}}$	Master reset input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	$\overline{O E}$	Output enable input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{n} \overline{\mathrm{Q}}_{n}$	Data outputs	1200/106.7	$24 \mathrm{~mA} / 64 \mathrm{~mA}$
$\begin{aligned} & \text { 'F825 } \\ & \text { 'F826 } \end{aligned}$	D_{n}	Data inputs	1.010.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	CP	Clock input	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{CE}}$	Clock enable input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\overline{\mathrm{MR}}$	Master reset input (active Low)	1.0/0.033	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
	$\overline{O E}_{n}$	Output enable inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
	$\mathrm{Q}_{\mathrm{n}} \overline{\mathrm{O}}_{\mathrm{n}}$	Data outputs	1200/106.7	$24 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC DIAGRAM for 'F823

LOGIC DIAGRAM for 'F824

FUNCTION TABLE for 'F823 and 'F824

INPUTS					OUTPUTS		OPERATING MODE
					'F823	'F824	
$\overline{O E}$	$\overline{M R}$	CE*	CP	D_{n}	Q	$\overline{\mathrm{Q}}$	
L	L	X	X	X	L	L	Clear
L	H	L	\uparrow	h	H	L	Load and read data
L	H	L	\uparrow	1	L	H	
L	H	H	X	X	NC	NC	Hold
H	X	X	X	X	Z	Z	High impedance

[^11]$L=$ Low voltage level
$\mathrm{h}=$ High state must be present one setup time before the Low-to-High clock transition
$I=$ Low state must be present one setup time before the Low-to -High clock transition
$\uparrow=$ Low-to-High clock transition
$\mathrm{X}=$ Don't care
NC = No change
Z = High impedance "off" state

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise ncted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage						$\begin{aligned} & V_{C C}=M I N, \\ & V_{\text {IL }}=M A X, \\ & V_{I H}=M I N \\ & V_{C C}=M I N, \\ & V_{I C}=M A X, \\ & V_{\text {IH }}=M I N \end{aligned}$	${ }^{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$	2.4			V
				$\pm 5 \% V_{\text {cc }}$	2.4					V			
				$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0				V				
V_{OL}	Low-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	$\pm 10 \% V_{C C}$			0.55	V		
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$				0.42	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{cc}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILI	Low-level input current			$\mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
${ }^{\text {OZH. }}$	Off-state output current, High-level voltage applied			$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$					50	$\mu \mathrm{A}$			
'OZL	Off-state output current, Low-level voltage applied			$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$					-50	$\mu \mathrm{A}$			
'os	Short-circuit output current ${ }^{3}$			$v_{C C}=$ MAX			-60		-150	mA			
${ }^{\text {cc }}$	Supply current (total)		$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				75	105	mA			
		$\begin{aligned} & \text { 'F821 } \\ & \text { 'F822 } \end{aligned}$	${ }^{\text {c CCL }}$					75	105	mA			
			${ }^{\text {c CCz }}$					75	115	mA			
		$\begin{aligned} & \text { 'F823 } \\ & \text { 'F824 } \end{aligned}$	${ }^{\text {CCH }}$	$V_{C C}=M A X$				65	100	mA			
			${ }^{\text {chL }}$					70	105	mA			
			${ }^{\prime} \mathrm{Ccz}$					75	110	mA			
		$\begin{aligned} & \text { 'F825 } \\ & \text { 'F826 } \end{aligned}$	${ }^{1} \mathrm{CCH}$	$V_{C C}=M A X$				60	85	mA			
			${ }^{1} \mathrm{CCL}$					60	90	mA			
			${ }^{\text {ccez }}$					65	95	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $I_{\text {OS, }}$, the use of high-speed test apparatus and/or sample-and-inold techniques are prefe-able in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{os} tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	Maximum clock frequency PARAMETFR		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
${ }_{\text {max }}$	Maximum clock frequency			Waveform 1	150	180		140		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay CP to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & \text { 'F821,'F823 } \\ & \text { 'F825,'F826 } \end{aligned}$		Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & { }^{t_{\mathrm{PLL}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to \bar{Q}_{n}	$\begin{aligned} & \text { 'F822 } \\ & \text { 'F824 } \end{aligned}$	Waveform 1	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns	
${ }^{\text {t }}$ PHL	Propagation delay $\overline{M R} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & \hline \text { F823, 'F824 } \\ & \text { 'F825, 'F826 } \end{aligned}$	Waveform 2	3.0	5.0	8.0	3.0	8.0	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pZZH}} \\ & \mathrm{t}_{\mathrm{p} Z \mathrm{LL}} \\ & \hline \end{aligned}$	Output Enable time $O E_{n}$ to Q_{n} or \bar{Q}_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }^{\mathrm{t}_{\mathrm{PLZ}}} \\ & \hline \end{aligned}$	Propagation delay $O E_{n}$ to Q_{n} or \bar{Q}_{n}		Waveform 4 Waveform 5	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	

AC SETUP REQUIREMENTS

Signetics

Document No.	$853-0615$
ECN No.	99490
Date of issue	January 8, 1990
Status	Product Specification
FAST Products	

FEATURES

- Specifically designed for Video applications
- Combines the 'F373, two 'F157s, and the 'F166 functions in one package
- Interleaved loading with 2:1 mux
- Dual 8-bit Parallel inputs
- Transparent Latch on all " B " inputs
- Guaranteed Serial Shift Frequency to 100 MHz
- Expandable to 16 -bits or more with serial input

DESCRIPTION

The 74F835 is a high speed 8-bit parallel/ serial-in, serial-out shift register whose parallel inputs have been connected to an internal octal two-to-one multiplexer with all the ' B ' inputs connected to an octal latch.

This 24 pin part is specifically designed for video bit shifting, where interleaved loading is desired and parts count is critical. However, and It is useful in any design where a 2:1 mux input with a transparent latch is needed.

PIN CONFIGURATION

FAST 74F835
 Shift Register

8-Bit Shift Register with 2:1 Mux-in, Latched "B" inputs, and Serial Out

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0 \mathrm{~A}}-\mathrm{D}_{7 \mathrm{~A}}$	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0 \mathrm{~B}}-\mathrm{D}_{7 \mathrm{~B}}$	Latched Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
D_{S}	Serial data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Shift Register Clock input (active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~S} \overline{\mathrm{~A}} \mathrm{~B}$	Mux Select	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
LE	Latch Enable input (for B inputs)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q_{7}	Output	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT
				Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$V_{C C}=M I N, V_{I L}=M A X$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.5			V
		$V_{I H}=M I N, I_{O H}=\operatorname{MAX}$	$\pm 5 \% V_{\text {cc }}$	2.7	3.4		v
v_{OL}	Low-level output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=$ MAX	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.30	0.50	\checkmark
		$V_{I H}=M I N, I_{O L}=M A X$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V
V_{IK}	Input clamp voltage	$V_{C C}=M I N, I_{1}=I_{I K}$			-0.73	-1.2	v
I_{1}	Input current at maximun input voltage	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$
I_{IH}	High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$.		20	$\mu \mathrm{A}$
I_{IL}	Low-level input current	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA
Ios	Short circuit output current ${ }^{3}$	$V_{c c}=M A X$		-60		-150	mA
${ }^{\text {Icc }}$	Supply current (total)	$V_{C C}=M A X$			45	65	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {max }}$	Maximum clock frequency	Waveform 1	130	150		100		MHz
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{7} (Load)	Waveform 1	5.0 5.0	7.0 7.0	9.5 9.5	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay CP to Q_{7} (Shift)	Waveform 1	5.0 5.0	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time $D_{n A} \text { or } D_{n B} \text { to } C P$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$		ns
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold time $D_{n A} \text { or } D_{n B} \text { to } C P$	Waveform 2	1.0 1.0			1.5 1.5		ns
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time D_{S} to CP	Waveform 2	1.0 1.0			1.5 1.5		ns
th($\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold time D_{S} to CP .	Waveform 2	2.0 2.0			2.5 2.5		ns
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{s}(\mathrm{~L})$	Setup time $\overline{P E}$ to $C P$	Waveform 2	3.5 3.5			4.0 4.0		ns
$t_{h}(\mathrm{H})$ $t_{h}(\mathrm{~L})$	Hold time $\overline{P E}$ to $C P$	Waveform 2	0.0 0.0			0.0 0.0		ns
t ${ }_{\text {c }}(\mathrm{H})$ $\mathrm{t}_{s}(\mathrm{~L})$	Setup time $D_{n B} \text { to } L E$	Waveform 2	0.0 0.0			0.0 0.0		ns
$t_{h}(\mathrm{H})$ $t_{\mathrm{h}}(\mathrm{L})$	Hold time $D_{n B}$ to LE	Waveform 2	3.0 3.0			4.0 4.0		ns
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time $S \bar{A} / B$ to $C P$	Waveform 2	4.5			5.0 5.0		ns
$t_{h}(\mathrm{H})$ $t_{h}(\mathrm{~L})$	Hold time $S \bar{A} / B$ to $C P$	Waveform 2	0.0 0.0			0.0 0.0		ns
$\begin{aligned} & { }_{w}^{w_{w}(H)} \\ & i_{w}(\mathrm{~L}) \end{aligned}$	Clock pulse width, High or Low	Waveform 1	4.5 4.5			$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$		ns
${ }_{\text {w }}(\mathrm{H})$	Latch Enable pulse width, High	Waveform 1	4.5			5.0		ns
AC WAV	FORMS							

AC WAVEFORMS

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Signetics

Document No.	$853-1208$
ECN No.	99396
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

FEATURES

- High speed parallel latches
- Extra data width for wide address/ data paths or busses carrying parity
- High impedance NPN base input structure minimizes bus loading
- I IL is $20 \mu \mathrm{~A}$ vs $1000 \mu \mathrm{~A}$ for AM29841 series
- Buffered control inputs to reduce AC effects
- Ideal where high speed, light loading, or increased fan-in are required as with MOS microprocessors
- Positive and negative over-shoots are clamped to ground
- 3-state outputs glitch free during power-up and power-down
- 48mA sink current
- Slim Dip 300 mil package
- Broadside pinout
- Pin-for-pin and function compatible with AMD AM29841-846 series

DESCRIPTION

The 'F841-'846 bus interface latch series are designed to provide extra data width for wider address/data paths of busses carrying parity.

The 'F841-'F846 series are functionally and pin compatible to the AMD AM29841AM29846 series.
The 'F841 consists of ten D-type latches with 3 -state outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is High. This allows asynchronous operation, as the output transition follows the data in transition. On the LE High-to-Low transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output

FAST 74F841/842/843/844/
845/846 Bus Interface Latches
'F841/'F842 10-Bit Bus Interface Latches, NINV/INV (3-State) 'F843/'F844 9-Bit Bus Interface Latches, NINV/INV (3-State) 'F845/'F846 8-Bit Bus Interface Latches, NINV/INV (3-State)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 841,74 \mathrm{~F} 842$	5.5 ns	60 mA
$74 \mathrm{~F} 843,74 \mathrm{~F} 845$	5.5 ns	75 mA
$74 \mathrm{~F} 844,74 \mathrm{~F} 846$	6.2 s	60 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{v}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP	N74F841N, N74F842N, N74F843N,
(300mil)	N74F844N, N74F845N, N74F846N
24-Pin Plastic SOL	N74F841D, N74F842D, N74F843D,
	N74F844D, N74F845D, N74F846D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$. $H I G H / L O W$	LOADVALUE HIGH/LOW
D_{n}	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} 20 \mu \mathrm{~A}$
LE	Latch Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OE}, \overline{O E}_{n}}$	Output Enable input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{MR}}$	Master Reset input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{PRE}}$	Preset input (active-Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Q_{n}	Data outputs	$1200 / 80$	$24 \mathrm{~mA} / 48 \mathrm{~mA}$
$\overline{\mathrm{Q}}_{n}$	Data outputs	$1200 / 80$	$24 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

Enable $(\overline{\mathrm{OE}})$ is Low. When $\overline{\mathrm{OE}}$ is High the output is in the High-impedance state.

The ' F 842 is the inverted output version of 'F841.
The 'F843 consists of nine D-type latches with 3 -state outputs. In addition to the LE and $\overline{\mathrm{OE}}$ pins, the 'F843 has a Master Reset ($\overline{\mathrm{MR}}$) pin and Preset (PRE) pin. These pins are ideal for parity bus interfacing in high performance systems. When $\overline{M R}$ is Low, the outputs are Low if $\overline{\mathrm{OE}}$ is Low. When $\overline{M R}$ is High, data can be entered into the latch. When PRE is Low,
the outputs are High, if $\overline{\mathrm{OE}}$ is Low. $\overline{\mathrm{PRE}}$ overrides $\overline{\mathrm{MR}}$.
The ' F 844 is the inverted output version of 'F843.
The 'F845 consists of eight D-type latches with 3 -state outputs. In addition to the LE, $\overline{\mathrm{OE}}, \overline{\mathrm{MR}}$ and $\overline{\mathrm{PRE}}$ pins, the 'F845 has two additional $\overline{\mathrm{OE}}$ pins making a total of three Output Enables ($\overline{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$) pins.
The multiple Output Enables ($\overrightarrow{\mathrm{OE}}_{0}, \overline{\mathrm{OE}}_{1}$, $\overline{\mathrm{OE}}_{2}$) allow multiuser control of the interface, e.g., $\overline{\mathrm{CS}}, \mathrm{DMA}$, and RD/ $\overline{\mathrm{WR}}$,
The'F846 is the inverted output version of 'F845.

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Test Circuit For 3-State Outputs
SWITCH POSITION

TEST	SWITCH
${ }^{\text {t}}{ }^{\text {PLZ }}$	closed
${ }^{\text {t}}$ PZL	closed
All other	open

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	$\mathbf{t}^{\mathbf{W}}$	$\mathbf{t}^{\text {TLH }}$	$\mathbf{t}^{\mathbf{T}} \mathrm{THL}$
74 F	3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

Signetics

Document No.	$853-0088$
ECN No.	97744
Date of issue	September 27, 1989
Status	Product Specification
FAST Products	

FEATURES

- High impedance NPN base inputs for reduced loadling ($20 \mu \mathrm{~A}$ in High and Low state)
- Stores 16-Bit-Wide data inputs, multiplexed 8-Bit outputs
- Propagation delay 7.0ns typical
- Power supply current 70 mA typical

DESCRIPTION

The 74F1604 is a Dual Octal Transparent Latch. Organized as 8 -bit A and B latches, the latch outputs are connected by pairs to eight 2 -input multiplexers. A Select (SELECT A / \bar{B}) input determines whether the A or B latch contents are multiplexed to the eight outputs. Data from the B inputs are selected when SELECT A / \bar{B} is Low: data from the A inputs are selected when SELECT A / \bar{B} is High. Data enters the latch on the falling
PIN CONFIGURATION

FAST 74F1604
 LATCH

Dual Octal Latch

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1604	7.0 ns	70 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $v_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
28-Pin Plastic DIP	N74F1604N
28-Pin Plastic SOL	N74F1604D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Data inputs	$1.0 / .033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SELECT A / \bar{B}	Select input	$1.0 / .033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{L E}$	Latch Enable input (Active Low)	1.01 .033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
edge of the Latch Enable (($\overline{\mathrm{LE}}$) input. The Latch remains transparent to the data inputs while $\overline{L E}$ is Low, and stores the LOGIC SYMBOL

data that is present one setup time before the Low-to-High Latch Enable transition

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	
ECN No.	
Date of issue	August 23, 1989
Status	Preliminary Specification
FAST Products	

FEATURES

- Consists of 10 bit wide 4-1 multiplexer
- Separate address latch input for each channel
- 3-state address outputs
- Designed for address multiplexing of dynamic RAMs and other applications

PRODUCT DESCRIPTION

The 'F1760 is a 10 bit wide $4-1$ multiplexer. Each 10 -bit channel has a separate address latch enable pin thus eliminating the need for external address latches. The 'F1760 has a common pair of Select ($\mathrm{SEL}_{0}, \mathrm{SEL}_{1}$) inputs to select between channels and a common Output Enable ($\overline{\mathrm{OE}}$) pin to control the 3-State outputs.

FAST 74F1760 4-Way Latched Address Multiplexer

TYPE	TYPICAL PRPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1760	5.5 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
64 -Pin Plastic DIP	74 F 1760 N
68 -Pin PLCC	74 F 1760 A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{9}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{9}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{C}_{0}-\mathrm{C}_{9}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{9}$	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{SEL}_{0}-\mathrm{SEL}_{1}$	Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{ALE}_{\mathrm{A}}$	Address Latch Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{ALE}_{\mathrm{B}}$	Address Latch Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{ALE}_{\mathrm{C}}$	Address Latch Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{ALE}_{\mathrm{D}}$	Address Latch Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{9}$	Address Outputs	N / A	$15 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as 20 uA in the HIGH state and 0.6 mA in the LOW state.

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	PINS		TYPE	NAME AND FUNCTION
	DIP	PLCC		
$A_{0}-\mathrm{A}_{9}$	$\begin{gathered} 57-64, \\ 1-2 \end{gathered}$	$\begin{gathered} 63-68, \\ 1-4 \end{gathered}$	Inputs	Address inputs
$\mathrm{B}_{0}-\mathrm{B}_{9}$	4-13	6-15	Inputs	Address inputs
$\mathrm{C}_{0}-\mathrm{C}_{9}$	18-27	20-29	Inputs	Address inputs
$\mathrm{D}_{0}-\mathrm{D}_{9}$	29-38	31-40	Inputs	Address inputs
$\mathrm{ALE}_{\text {A }}$	3	5	Input	Address Latch Enable for $\mathrm{A}_{0}-\mathrm{A}_{9}$
$\mathrm{ALE}_{\mathrm{B}}$	14	16	Input	Address Latch Enable for $\mathrm{B}_{0}-\mathrm{B}_{9}$
ALE_{C}	28	30	Input	Address Latch Enable for $\mathrm{C}_{0}-\mathrm{C}_{9}$
ALE $_{\text {D }}$	39	41	Input	Address Latch Enable for $\mathrm{D}_{0}-\mathrm{D}_{9}$
SEL 0	40	42	Input	Select input
SEL 1	41	43	Input	Select input
$\overline{O E}$	42	44	Input	Output Enable input
$Q_{9}-Q_{0}$	$\begin{aligned} & 44-48, \\ & 51-55 \end{aligned}$	$\begin{aligned} & \hline 47-51, \\ & 56-60 \end{aligned}$	Outputs	Address outputs

BLOCK DIAGRAM

FUNCTION TABLE

$\mathrm{A}_{0}-\mathrm{A}_{9}$	$\mathrm{ALE}_{\mathrm{A}}$	$8_{0}-8_{9}$	ALE_{B}	$\mathrm{C}_{0}-\mathrm{C}_{9}$	$\mathrm{ALE}_{\mathrm{c}}$	$\mathrm{D}_{0}-\mathrm{D}_{9}$	$\mathrm{ALE}_{\mathrm{D}}$	SEL ${ }_{0}$	SEL_{1}	$\mathrm{Q}_{0}-\mathrm{Q}_{9}$	$\overline{O E}$	COMMENTS
XX	$\mathrm{Hi}-\mathrm{Z}$	High	Outputs 3-stated									
$a_{0}-a_{9}$	\downarrow	XX	A-inputs latched into latch A									
$\mathrm{a}_{0}-\mathrm{a}_{9}$	Note	XX	XX	xx	XX	XX	XX	Low	Low	$\mathrm{a}_{0}-\mathrm{a}_{9}$	Low	$\mathrm{a}_{0}-\mathrm{a}_{9}$ appear on $Y_{0}-Y_{9}$ outputs
XX	XX	$b_{0}-b_{9}$	\downarrow	XX	B-inputs latched into latch B							
XX	XX	$\mathrm{b}_{0}-\mathrm{b}_{9}$	Note	XX	XX	XX	XX	High	Low	$\mathrm{b}_{0}-\mathrm{b}_{9}$	Low	$\mathrm{b}_{0}-\mathrm{b}_{9}$ appear on $\mathrm{Y}_{0}-Y_{9}$ outputs
XX	XX	XX	XX	$\mathrm{Co}_{0}-\mathrm{C}_{9}$	\downarrow	XX	XX	XX	XX	XX	XX	C-inputs latched into latch C
XX	XX	XX	XX	$\mathrm{C}_{0}-\mathrm{c}_{9}$	Note	XX	XX	Low	High	$\mathrm{C}_{0}-\mathrm{C}_{9}$	Low	$\mathrm{C}_{0}-\mathrm{C}_{9}$ appear on $\mathrm{Y}_{0} \mathrm{Y}_{9}$ outputs
XX	XX	XX	XX	XX	XX	$\mathrm{d}_{0}-\mathrm{d}_{9}$	\downarrow	XX	XX	XX	XX	D-inputs latched into latch A
XX	XX	XX	XX	XX	XX	$\mathrm{d}_{0}-\mathrm{d}_{9}$	Note	High	High	$\mathrm{d}_{0}-\mathrm{d}_{9}$	Low	$\mathrm{d}_{0}-\mathrm{d}_{9}$ appear on $\mathrm{Y}_{0}-\mathrm{Y}_{9}$ outputs

NOTE:
ALE $_{n}$ may be High (transparent mode) or Low (if data has been latched previously by a High to Low transition on ALE $_{n}$.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL		PARAMETER	RATING
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	UNIT
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	V
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	500	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATION CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
$V_{C C}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{1 \mathrm{H}}$	High-level input voltage	2.0			V
V_{H}	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current ${ }^{1}$			-15	mA
I_{OL}	Low-level output current ${ }^{1}$			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transcient currents will exceed these values in actual operation

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LImits			UNIT
					Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
			$\mathrm{IOH2}^{3}=-35 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
v_{OL}	Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	\checkmark
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
			$\mathrm{IOL2}^{4}=60 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.45	0.80	V
V_{IK}	Input clamp voltage	$V_{C C}=M / N, I_{1}=I_{1 K}$				-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{\text {cc }}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
I_{IH}	High-level input current	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
IL	Low-level input current	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA
Ios	Short circuit output current ${ }^{5}$	$v_{C C}=$ MAX			-100		-225	mA
${ }^{\text {c }}$ C	Supply current (total)	$\mathrm{v}_{\mathrm{CC}}=\mathrm{MAX}$				55	75	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. IOH_{2} is the current necessary to guarantee a Low to High transition in a 70Ω transmission line.
4. $\mathrm{I}_{\mathrm{OL2} 2}$ is the current necessary to guarantee a High to Low transition in a 70Ω transmission line.
5. Not more than one output should be shorted at a time. For testing l_{os}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, l_{s} tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHLL}}} \end{aligned}$	Propagation delay $A_{n}, B_{n}, C_{n}, D_{n} \text { to } Q_{n}$	Waveform 1	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay SEL $_{n}$ to Q_{n}	Waveform 2	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PRL}} \end{aligned}$	Output Enable time $\overline{O E}$ to Q_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	2.0 4.0	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	ns
${ }^{\mathrm{t}_{\mathrm{PZH}}}{ }_{\mathrm{t} \mathrm{PZL}}$	Output Disable time $\overline{O E}$ to Q_{n}	Waveform 4 Waveform 5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	2.0 2.0	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & C C=5 \mathrm{~V} \\ & C_{L}=300 \mathrm{pF} \\ & R_{L}=70 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ C C=5 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R_{L}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $A_{n}, B_{n}, C_{n}, D_{n}$ to $A L E E_{n}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns
$t_{h}(\mathrm{H})$ $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold time, High or Low $A_{n}, B_{n}, C_{n}, D_{n}$ to $A L E_{n}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			2.0 2.0		ns

AC WAVEFORMS

TEST CIRCUIT AND WAVEFORMS

Signetics

FAST Products

FEATURES

- DRAM signal timing generator

- Automatic refresh circuitry
- Selectable row address hold and RAS precharge times
- Facilitates page mode accesses
- Controls 1 MBit DRAMs
- Intelligent burst-mode refresh after page-mode access cycles

PRODUCT DESCRIPTION

The Signetics Intelligent Dynamic RAM Controller is a 1 MBit , single-port version of the 74F764 Dual Port Dynamic RAM Controller. It contains automatic signal timing, address multiplexing and refresh control required for interfacing with dynamic RAMs. Additional features have been added to this device to take advantage of technological advances in Dynamic RAMs. A Page-Mode access pin allows the user to assert $\overline{\text { RAS }}$ for the entire access cycle rather than the predefined four-clock-cycle pulse width used for normal random access cycles. In addition, the user has the ability to select the RAS precharge time and Row-Address Hold time to fit the particular DRAMs being used. DTACK has been modified from previous family parts to become a negative true, tri-stated output. The options for latched or unlatched address are contained on a single device by the addition of an Address Latch Enable ($\overline{\mathrm{ALE}}$) input. Finally, a burst refresh monitor has been added to ensure complete refreshing after lengthy pagemode access cycles. With a maximum clock frequency of 100 MHz , the F1763 is capable of controlling DRAM arrays with access times down to 40 nsec .

Product Specification

TYPE	$\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1763	100 MHz	150 mA

ORDERING INFORMATION

| PACKAGES | COMMERCIAL RANGE
 $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}$ $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| :--- | :---: |$|$| N74F1763N |
| :--- |
| 48 -Pin Plastic DIP |
| 44 -Pin PLCC |

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L. $)$ HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\text { REQ }}$	DRAM Request Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CP	Clock Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { PAGE }}$	Page Mode Select Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
PRECHRG	$\overline{\text { RAS }}$ Precharge Select Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
HLDROW	Row Hold Select Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { DTACK }}$	Data Transfer Ack. Output	$50 / 80$	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
GNT	Access Grant Output	$50 / 80$	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
RCP	Refresh Clock Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
RA0-9	Row Address Inputs	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
CAO-9	Column Address Inputs	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { ALE }}$	Address Latch Enable Input	$1.0 / 1.0$	$20 \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { RAS }}$	Row Address Strobe Output	N/A*	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
$\overline{\text { CAS }}$	Column Address Strobe Output	N/A*	$35 \mathrm{~mA} / 60 \mathrm{~mA}$
MAO-9	DRAM Address Outputs	N/A*	$35 \mathrm{~mA} / 60 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as 20 UA in the HIGH state and 0.6 mA in the LOW state.

- FAST Unit Loads do not correspond to DRAM Input Loads. See Functional Description for details.

BLOCK DIAGRAM

DIP PIN CONFIGURATION

PLCC PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	PINS		TYPE	NAME AND FUNCTION
	DIP	PLCC		
$\overline{\mathrm{REQ}}$	48	44	Input	Active Low Memory Access Request input, must be asserted for the entire DRAM access cycle. $\overline{\mathrm{REQ}}$ is sampled on the rising edge of the CP clock.
GNT	1	1	Input	Active High Grant output. When High indicates that a DRAM access (inactive during refresh) cycle has begun. Asserted from the rising edge of the CP clock.
$\overline{\text { PAGE }}$	47	43	Input	Active Low Page-Mode Access input. Forces the IDC to keep $\overline{\text { RAS }}$ asserted for as long as the PAGE input is Low and $\overline{R E Q}$ is asserted Low.
HLDROW	2	2	Input	Row Address Hold input. If Low will configure the IDC to maintain the row addresses for a full CP clock cycle after $\overline{\text { RAS }}$ is asserted. If High will program the IDC to maintain row addresses for a $1 / 2 \mathrm{CP}$ clock cycle after $\overline{\mathrm{RAS}}$ is asserted.
PRECHRG	3	3	Input	$\overline{R A S}$ Precharge input. A Low will program the IDC to guarantee a minimum of 4 CP clock cycles of precharge. A High will guarantee 3 clock cycles of precharge.
CP	46	42	Input	Clock input. Used by the Controller for all timing and arbitration functions.
RCP	45	41	Input	Refresh Clock input. Divided internally by 64 to produce an internal Refresh Request.
$\overline{\text { DTACK }}$	6	6	Output	Active Low, 3-state Data Transfer Acknowledge output. Enabled by the REQ input and asserted four clock cycles after the assertion of RAS. 3 -stated when $\overline{\text { REO }}$ goes High.
RAO-9	$\begin{aligned} & \hline 44,42, \\ & 40,35, \\ & 33,31, \\ & 29,27, \\ & 25,23 \end{aligned}$	$\begin{array}{\|l\|} \hline 40,38, \\ 36,33, \\ 31,29, \\ 27,25, \\ 23,21 \end{array}$	Inputs	Row Address inputs.
CAO-9	$\begin{aligned} & 43,41, \\ & 39,34, \\ & 32,30, \\ & 28,26, \\ & 24,22 \end{aligned}$	$\begin{aligned} & 39,37, \\ & 35,32, \\ & 30,28, \\ & 26,24, \\ & 22,20 \end{aligned}$	Inputs	Column Address inputs. Propagated to the MAO-9 outputs 1 CP clock cycle after $\overline{\text { RAS }}$ is asserted, if HLDROW $=0$ or $1 / 2$ clock cycle later if HLDROW is 1.
$\overline{\text { RAS }}$	4	4	Output	Active Low Row Address Strobe. Asserted for four clock cycles during each refresh cycle regardless of the PAGE input. Also asserted for four clock cycles during processor access if the PAGE input is High. If $\overline{\text { PAGE }}$ is Low, $\overline{\text { RAS }}$ is negated upon negation of $\overline{\text { PAGE }}$ or $\overline{\text { REQ, }}$, whichever occurs first.
$\overline{\text { CAS }}$	5	5	Output	Active Low Column Address Strobe. Always asserted 1.5 CP clock cycles after the assertion of $\overline{\mathrm{RAS}}$. Negated upon negation of $\overline{\mathrm{REQ}}$. HLDROW input pin does not affect $\overline{R A S}$ to $\overline{\mathrm{CAS}}$ timing.
MAO-9	$\begin{aligned} & 7-10, \\ & 15-20 \end{aligned}$	$\begin{aligned} & 7-10, \\ & 13-18 \end{aligned}$	Output	DRAM multiplexed address outputs. Row and column addresses asserted on these pins during an access cycle. Refresh counter addresses presented on these outputs during refresh cycles.
$\overline{\text { ALE }}$	21	19	Input	Active Low Address Latch Enable input. A Low on this pin will cause the address latches to be transparent. A High level will latch the RAO-9 \& CAO-9 inputs.
V_{cc}	36-38	34		$+5 \mathrm{~V} \pm 10 \%$ Supply voitage.
GND	11-14	11, 12		Ground

FUNCTIONAL DESCRIPTION

The 74F1763 1 Megabit Intelligent DRAM Controller (IDC) is a synchronous device with most signal timing being a function of the CP input clock.

Arbitration:

Once the DRAM's $\overline{\text { RAS }}$ precharge time has been satisfied, the $\overline{R E Q}$ input is sampled on each rising edge of the CP clock and an internally generated refresh request is sampled on each falling edge of the same clock. When only one of these requests is sampled as active the appropriate memory cycle will begin immediately. For a memory access cycle this will be indicated by GNT and RAS outputs both being asserted and for a refresh cycle by multiplexing refresh address to the MAO-9 outputs and subsequent assertion of $\overline{\text { RAS }}$ after $1 / 2 C P$ clock cycle. If both memory access and refresh requests are active at a given time the request sampled first will begin immediately and the other request (if still asserted) will be serviced upon completion of the current cycle and it's associated $\overline{\mathrm{RAS}}$ precharge time.

Memory access:

The row (RA0-9) and column (CA0-9) address inputs are latched when $\overline{\text { ALE }}$ input is High. When $\overline{A L E}$ is Low the input addresses propagate directly to the outputs. When GNT and RAS are asserted , after a $\overline{R E Q}$ has been sampled the RAO9 address inputs will have already propagated to the MAO-9 outputs for the row address. One or one-half CP clock cycles later (depending on the state of the HLDROW input) the column address (CAO-9) inputs are propagated to the

MAO-9 outputs. $\overline{\text { CAS }}$ is always asserted one and one-half CP clock cycles after $\overline{\text { RAS }}$ is asserted. If the $\overline{\text { PAGE input is }}$ High, $\overline{R A S}$ will be negated approximately four CP clock cycles after its initial assertion. At this time the DTACK output becomes valid indicating the completion of a memory access cycle. The IDC will maintain the state of all its outputs untill the $\overline{\mathrm{REQ}}$ input is negated (see timing waveforms).

Row address hold times:

If the HLDROW input of the IDC is High the row address outputs will remain valid $1 / 2$ CP clock cycle after $\overline{\text { RAS }}$ is asserted. If the HLDROW input is Low the row address outputs will remain valid one CP clock cycle after $\overline{\mathrm{RAS}}$ is asserted.

$\overline{\text { RAS }}$ precharge timing:

In order to meet the $\overline{\mathrm{RAS}}$ precharge requirement of dynamic RAMs, the controller will hold-off a subsequent $\overline{\text { RAS }}$ signal assertion due to a processor access request or a refresh cycle for four or three full CP clock cycles from the previous negation of $\overline{R A S}$, depending on the state of the PRECHRG input. If the PRECHRG input is Low, $\overline{\mathrm{RAS}}$ remains High for at least 4 CP clock cycles. If the PRECHRG input is High $\overline{\text { RAS }}$ remains High for at least 3 CP clock cycles.

Refresh timing:

The refresh address counter wakes-up in an all 1 's state and is an up counter. The refresh clock (RCP) is internally divided down by 64 to produce an internal refresh request. This refresh request is recognized either immedia:ely or at the end of a running memory access cycle. Due to the
possibility that page mode access cycles may be lengthy, the controller keeps track of how many refresh requests have been missed by logging them internally (up to 128) and servicing any pending refresh requests at the end of the memory access cycle. The controller performs $\overline{\mathrm{RAS}}$-only refresh cycles until all pending refresh requests are depleted.

Page-mode access:

Fast accesses to consecutive locations of DRAM can be realized by asserting the PAGE input as shown in the timing waveforms. In this mode, the controller does not automatically negate $\overline{R A} \bar{S}$ after four CP clock cycles, but keeps it asserted throughout the access cycle. By using external gates, the $\overline{\mathrm{CAS}}$ output can be gated on and off while changing the column address inputs to the controller, which will propogate to the $\mathrm{MA}_{0}-\mathrm{MA}_{9}$ address outputs and provide a new column address. This is only useful if the $\overline{\mathrm{ALE}}$ input is Low, enabling the user to change addresses. This mode can be used with DRAMs that support page or nibble mode addressing.

Output driving characteristics:

Considering the transmission line characteristic of the DRAM arrays, the outputs of the IDC have been designed to provide in-cident-edge switching (in Dual-InlinePackaged memory arrays), needed in high performance systems. For more information on the driving characteristics, please refer to Signetics application note number AN218. The driving characteristics of the 74F1763 are the same as those of the 74F765 shown in the application note.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	120	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATION CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		Min	Nom	Max	
v_{Cc}	Supply voltage	4.5	5.0	5.5	v
$\mathrm{V}_{1 H}$	High-level input voltage	2.0			V
V_{l}	Low-level input voltage			0.8	\checkmark
$\mathrm{I}_{\text {IK }}$	Input clamp current			-18	mA
I_{OH}	High-level output current ${ }^{1}$	-.		-15	mA
I_{OL}	Low-level output current ${ }^{1}$			24	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

NOTE:

1. Transient currents will exceed these values in actual operation.

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER	TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT
					Min	Typ ${ }^{2}$	Max	
V_{OH}	High-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	${ }^{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4		V
			$\mathrm{IOH} 2^{3}=-35 \mathrm{~mA}$	$\pm 5 \% V_{\text {cc }}$	2.4			V
$V_{O L}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{LL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.35	0.50	V
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V
			$\mathrm{IOL} 2^{4}=60 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.45	0.80	V
V_{IK}	Input clamp voltage	$V_{C C}=$ MIN, $I_{1}=I_{\text {IK }}$				-0.73	-1.2	V
1	Input current at maximum input voltage	$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$
I_{IH}	High-level input current	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA
Ios	Output current ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			-100		-225	mA
ICC	Supply current (total)	$V_{C C}=$ MAX					220	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. $I_{\text {OHz }}$ is transient current necessary to guarantee a Low to High transition in a 70Ω transmission line.
4. $\mathrm{I}_{\mathrm{ot} 2}$ is transient current necessary to guarantee a High to Low transition in a 70Ω transmission line.
5. Not more than one output should be shorted at a time. For testing $\mathrm{I}_{\text {os, }}$ the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and mose accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

NO	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
1	CP clock period (tcp)		10			10		ns
2	CP clock low time		5			5		ns
3	CP clock high time		5			5		ns
4	RCP clock period		100			100		ns
5	RCP clock low time		10			10		ns
6	RCP clock high time		10			10		ns
7	Setup time $\overline{\mathrm{REQ}}(\downarrow)$ to $\mathrm{CP}(\uparrow)$		4	2		4		ns
8	$\overline{\mathrm{REQ}}$ High hold time after $\mathrm{CP}(\uparrow)$ (Note 1)		0	.		0		ns
9	$\overline{\mathrm{REQ}}$ High pulse width (Note 2)		1/2tcp +5	1/2tcp+5	1/2tcp +5	1/2tcp +5	1/2tcp +5	ns
10	Propagation delay $\mathrm{CP}(\hat{\uparrow})$ to GNT High		8.5	11	13.5	8.5	15.5	ns
11	Propagation delay $\overline{\operatorname{REQ}}(\uparrow)$ to GNT Low		8.5	10.5	13	8.5	14	ns
12	$\overline{\text { ALE }}$ pulse width Low		4	1		4		ns
13	RAO-9,CAO-9 High or Low setup to $\overline{\operatorname{ALE}}(\uparrow)$		2	0		2		ns
14	$\overline{\operatorname{ALE}}(\uparrow)$ to RAO-9,CA0-9 High or Low hold		1	0		1		ns
15	Propagation delay RAO-9,CAO-9 High or Low to MAO-9 (Note 3)	$\overline{\text { ALE }}$ Low	4	7.5	11	4	14	ns
16	Propagation delay $\overline{\operatorname{ALE}}(\downarrow)$ to MAO-9		5.5	8.5	13	5.5	15	ns
17	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{RAS}}(\downarrow)$		8.5	10.5	12.5	8.5	14	ns
18	$\overline{\mathrm{RAS}}(\downarrow)$ to MA0-9 (colum address) skew	HLDROW = 1	1/2tcp-2	1/2tcp+2	1/2tcp+5.5	1/2tcp-2.5	1/2tcp +7	ns
19	$\overline{\mathrm{RAS}}(\downarrow)$ to MAO-9 (column address) skew	HLDROW $=0$	1 tcp-2	1tcp+2	1tcp+5.5	1tcp-2.5	1tcp +7	ns
20	$\overline{\mathrm{RAS}}(\downarrow)$ to $\overline{\mathrm{RAS}}(\uparrow)$ skew	PAGE $=1$	$4 \mathrm{tcp}+1.5$	$4 \mathrm{tcp}+3.5$	4tcp+6	$4 \mathrm{tcp}+1$	4tcp +6.5	ns
21	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{RAS}}(\uparrow)$		12	14	16.5	12	18.5	ns
22	Propagation delay $\overline{\operatorname{REQ}}(\uparrow)$ to $\overline{\operatorname{RAS}}(\uparrow)$ (Note 4)		14.5	17.5	20	14	24	ns
23	Propagation delay $\mathrm{CP}(\downarrow)$ to $\overline{\operatorname{CAS}}(\downarrow)$		6	8	10	6	11	ns
24	Propagation delay $\overline{\operatorname{PAGE}}(\uparrow)$ to $\overline{\operatorname{RAS}}(\uparrow)$ (Note 4)		10	12.5	15	10	17	ns
25	$\overline{\mathrm{RAS}}(\downarrow)$ to $\overline{\mathrm{CAS}}(\downarrow)$ skew		1.5tcp-4.5	1.5tcp-2.5	1.5tcp-o. 5	1.5tcp-5.5	1.5 tcp	ns
26	Propagation delay $\overline{\mathrm{REQ}}(\uparrow)$ to $\overline{\mathrm{CAS}}(\uparrow)$		10	12	15	10	17	ns
27	MAO-9 (column address) to $\overline{\mathrm{CAS}}(\downarrow)$ skew		1tcp-8	1tcp-4	$1 \mathrm{tcp}-0.5$	1tcp-9	1tcp-0.5	ns

AC ELECTRICAL CHARACTERISTICS

NO	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V}+10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
28	MAO-9 (column address) to $\overline{\text { CAS }}(\downarrow)$ skew	HLDROW $=0$	1/2tcp-8	1/2tcp-4	1/2tcp-0.5	1/2tcp-9	1/2tcp-0.5	ns
29	Set-up time $\overline{\operatorname{PAGE}}(\downarrow)$ to $C P(\uparrow)$		2			2		ns
30	Propagation delay $\overline{\operatorname{REQ}}(\downarrow)$ to $\overline{\operatorname{DTACK}}(\uparrow)$		6	8	11.5	6	12	ns
31	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\text { DTACK }}(\downarrow)$		7.5	9.5	12	7.5	13	ns
32	Propagation delay $\overline{\operatorname{REQ}}(\uparrow)$ to $\overline{\mathrm{DTACK}}(3$ state)		9	12	13	9	15.5	ns
33	MAO-9 (refresh address) to $\overline{\mathrm{RAS}}(\downarrow)$ skew		1/2tcp-5			1/2tcp-6.5		ns
34	$\overline{\mathrm{RAS}}(\downarrow)$ to MAO-9 (refresh addres) skew		1 tcp-2			1tcp-2.5		ns
35	$\overline{\mathrm{RAS}}(\uparrow)$ to RAS (\downarrow) skew (precharge)	PRECHRG $=0$	4tcp-6	4tep-3.5	4tcp-1.5	4tcp-6.5	4tcp-6.5	ns
36	$\overline{\mathrm{RAS}}(\uparrow)$ to RAS (\downarrow) skew (precharge)	PRECHRG = 1	3tcp-6	3tcp-3.5	3tcp-1.5	$3 \mathrm{tcp}+1$	3tcp-6.5	ns

Note1: $\overline{\mathrm{REQ}}$ High hold means that, if $\overline{\mathrm{REQ}}$ is High at the rising clock edge, it is guaranteed that the $\overline{\mathrm{REQ}}$ input was not samples as Low. Note2: A 50% duty cycle clock is recommended. If the duty cycle of the clock is not $50 \%, \overline{R E Q}$ should be held high for enough time such that a falling CP clock edge samples $\overline{\mathrm{REQ}}$ as High. This is to ensure that refresh cycles don't get locked-up.
Note3: When $\overline{\text { ALE }}$ is Low, the address input latches are in the transparant mode and therefore any changes in the address inputs will be propagated to the MAO-9 outputs. Figure 2 illustrates RAO-9 inputs propagating to the MAO-9 outputs, but later in the cycle, if ALE is still Low when the CAO-9 inputs are multiplexed to the MAO-9 outputs the CAO-9 inputs will be in the transparant mode.
Note4: If $\overline{\text { PAGE }}$ is High and $\overline{\text { REQ }}$ is Low, $\overline{\text { RAS }}$ is automatically negated after approximately 4 CP clock cycles. If $\overline{\text { PAGE }}$ is Low and $\overline{\text { REQ }}$ is also Low, $\overline{R A S}$ will be negated when PAGE goes High. $\overline{\text { RAS }}$ will always be negated when REQ goes High regardless of the state of PAGE input.

TIMING DIAGRAMS

CP

RCP

Figure 1: Clock cycle Timing

Figure 2: Memory access cycle timing

Note 5: If the RAO-9 \& CAO-9 address inputs are not latched,RAO-9 inputs should remain valid until row address hold time is met and CAO9 inputs should remain valid until column address hold time is met.
Note 6: MAO-9 outputs will contain the present row address on the RAO-RA9 inputs or the last row address latched into the device.
Note 7: PAGE input may be asserted anytime before this rising clock edge inorder to hold RAS Low.

TIMING DIAGRAM

Figure 3: Refresh cycle timing following a memory access cycle
Note 8: $\overline{R E Q}$ input is a don't care during a memory refresh cycle. If $\overline{R E Q}$ is asserted during a refresh cycle, it will be recognized at the first rising CP clock edge, following the refresh cycle and it's associated RAS precharge time (see Figure 4).
Note 9: RAO-9 \& CAO-9 address inputs may be latched at anytime during a memory refresh cycle. However, a memory access cycle will not begin until after the completion of the refresh cycle.
Note 10: RAO-9 \& CAO-9 if in the transparant mode do not propagate to the MAO-9 outputs during a refresh cycle.
Note 11: MAO-9 outputs will contain the present row address on the RAO-RA9 inputs or the last row address latched into the device.

TIMING DIAGRAM

Figure 4: Memory access cycle timing following a refresh cycle

Note 12: If the RAO-9: \& CAO-9 address inputs are not latched, RAO-9 inputs should remain valid until row address hold time is met and CAO9 inputs should remain valid until column address hold time is met.
Note 13: MAO-9 outputs will contain the present row address on the RAO-RA9 inputs or the last row address latched into the device.
Note 14: $\overline{\text { PAGE }}$ input may be asserted anytime before this rising clock edge inorder to hold $\overline{\mathrm{RAS}}$ Low.

Intelligent DRAM Controller (IDC)

Figure 5: 16.67 MHz 68030 interface with 74F1763 for cache burst mode support using 4Mbytes of 100nsec. nibblemode DRAMs (Four 32bit words read to or written from cache in only 7 clock cycles).

Signetics

FAST Products

FEATURES

- Allows two microprocessors to access the same bank of dynamic RAM
- Performs arbitration, signal timing, address multiplexing and refresh
- 10 address output pins allow direct control of up to 1 Mbit dynamic RAMs
- External address multiplexing enables control of 4 Mbit (or greater) dynamic RAMs
- Separate refresh clock allows adjustable refresh timing
- 74F1764/F1764-1 have on-chlp 20-bit address input latch
- Allows control of dynamic RAMS with row access times down to 40 ns
- 74F1764/F1765 output drlvers designed for Incident wave switchIng
- 74F1764-1/F1765-1 output drivers designed for first reflected wave switching

DESCRIPTION

The 74F1764/1765 DRAM Dual-ported Controller is a high speed synchronous dual-port arbiter and timing generator that allows two microprocessors, microcontrollers, or any other memory accessing device to share the same block of DRAM. The device performs arbitration, signal timing, address multiplexing, and refresh address generation, replacing up to 25 discrete devices.

74F1764 V8 74F1765

The 74F1764 though functionally and pin to pin compatible with the 74F1765 differs from the later in that it has an on-chip address input latch. This is useful in systems that have unlatched or multiplexed address and data bus.

FAST 74F1764/1765 74F1764-1/1765-1
 I Megabit DRAM Dual-Ported Controller

Product Specification

TYPE	TYPICAL f $_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 1764 / 1765$	150 MHz	150 mA
$74 \% 1764-1 / 1765-1$	150 MHz	125 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $V_{\text {CC }}=5 \mathrm{~V}_{ \pm 10} \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
48-Pin Plastic DIP	N74F1764N, N74F1765N, N74F1764-1N, N74F1765-1N
44-Pin PLCC	N74F1764A, N74F1765A, N74F1764-1A, N74F1765-1A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS		DESCRIPTION	$\begin{gathered} 74 \mathrm{~F}(\mathrm{U} . \mathrm{L}) \\ \text { HIGH/LOW } \end{gathered}$	LOADVALUE HIGH/LOW
$R A_{0}-R A_{9}$		Row address inputs	1.011.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\mathrm{CA}_{0}-\mathrm{CA}_{9}$		Column address inputs	1.011 .0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\overline{\mathrm{AEQ}}_{1}, \overline{\mathrm{REQ}}_{2}$		Memory access request inputs	1.011.0	$20 \mu \mathrm{~N} 0.6 \mathrm{~mA}$
CP		Clock input	$1.0 / 1.0$	$20 \mu A N 0.6 \mathrm{~mA}$
RCP		Refresh clock input	1.011 .0	$20 \mu A N 0.6 \mathrm{~mA}$
$\overline{S E L}_{1}, \overline{S E L}_{2}$	F1764/1765	Select outputs	750/40	15.0 mA 24 mA
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
$M A_{0}-M A_{9}$	'F1764/1765	Memory address outputs	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
GNT	'F1764/1765	Grant output	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	'F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
$\overline{\text { RAS }}$	'F1764/1765	Row address strobe output	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
WG	'F1764/1765	Write gate output	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
$\overline{\text { CASEN }}$	'F1764/1765	Column address strobe enable output	750/40	15.0 mA 24 mA
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$
DTACK	'F1764/1765	Data transfer acknowledge output	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
	F1764-1/1765-1		1000/13.3	$20.0 \mathrm{~mA} / 8 \mathrm{~mA}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage		$\begin{aligned} & \text { 74F1764 } \\ & \text { 74F1765 } \end{aligned}$				$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	${ }_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7					V				
$\mathrm{V}_{\mathrm{OH} 2}{ }^{3}$			$\mathrm{IOH2}^{3}=-35 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.4				V				
V_{OH}			$\begin{aligned} & \text { 74F1764-1 } \\ & \text { 74F1765-1 } \end{aligned}$	$\begin{aligned} & V_{C C}=M I N, \\ & V^{\mathrm{IL}}=M A X \\ & V_{I H}^{I L}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.4	2.7		V			
			$\pm 5 \% V_{\text {cc }}$			2.6	3.0		V				
	Low-level output voltage			$\begin{aligned} & \text { 74F1764 } \\ & \text { 74F1765 } \end{aligned}$	$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=\operatorname{MAX}, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.35	0.50	V		
			$\pm 5 \% V_{\text {cc }}$					0.35	0.50	V			
$\mathrm{V}_{\mathrm{OL2} 2}{ }^{3}$			$\mathrm{IOL}^{4}=60 \mathrm{~mA}$			$\pm 5 \% V_{\text {cc }}$		0.45	0.80	V			
			$\begin{aligned} & 74 \mathrm{~F} 1764-1 \\ & 74 \mathrm{~F} 1765-1 \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MiN}, \\ & \mathrm{~V}_{\mathrm{LI}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$		0.30	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$				0.30	0.50	v				
$\mathrm{VOLL}^{3}{ }^{3}$			$\mathrm{COL2}^{3}=75 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\text {cc }}$		2.1	2.5	V				
-	Input clamp voitage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{1}=I_{\mathrm{IK}}$				-0.73	-1.2	V			
$1 /$	Input current at maximum input voltage			$\mathrm{V}_{C C}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{1 H}$	High-level input current			$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
$I_{\text {IL }}$	Low-level input current			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
los	Short-circuit output current ${ }^{5}$			$\begin{aligned} & \hline 74 F 1764 \\ & 74 \mathrm{~F} 1765 \\ & \hline \end{aligned}$	$V_{C C}=$ MAX			-100		-225	mA		
			$\begin{aligned} & 74 F_{1764-1} \\ & 74 F^{\prime} 765-1 \end{aligned}$	$V_{C C}=$ MAX			-60	100	-150	mA			
${ }^{\text {cc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$		74F1764 74F1765	$V_{C C}=M A X$				150	200	mA		
		${ }^{\mathrm{CCL}}$						165	210	mA			
		$\mathrm{I}_{\mathrm{CCH}}$	$\begin{aligned} & \text { 74F1764-1 } \\ & \text { 74F1765-1 } \end{aligned}$					120	165	mA			
		$\mathrm{I}_{\mathrm{CCL}}$						125	170	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Refer to Appendix A.
4. Refer to Appendix A.
5. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

Signetlics

Document No.	$853-$
ECN No.	
Date of issue	June 4, 1890
Status	Product Specification
FAST Products	

FEATURES

- Allows burst-mode access for aystems using Nibble/Page/Static column mode DRAMs
- Completo control of DRAM access, acknowledge, refresh and address multiplexing functions
- True $\overline{\text { RAS }}$ interleaving for minimum refresh and $\overline{\mathrm{RAS}}$ precharge overhead
- Asynchronous arbitration to speed up accesses
- Selectable Precharge and Acknowlodge tlmes
- Selectable Row address hold tlmes
- Supports $\overline{\text { CAS }}$ before $\overline{\mathrm{RAS}}$ refresh
- Allows control of dynamic RAMs with row access times down to 30 ns
- Output drlvers designed for incident wave switching

DESCRIPTION

The Signetics Burst Mode DRAM Controller (BMDC) is a high periormance memory timing generator designed to support Page, Nibble or Static Column modes of operation in addition to the normal DRAM access cycles. H performs memory access/refresh arbitration, refresh and memory access timing, $\overline{\text { RAS }}$ interleaving, $\overline{\mathrm{CAS}}$ byte decoding and controls up to four banks of DRAM. The BMDC generates DRAM timing and thus requires a companion address multiplexer like the 74F1762 Memory Address Muttiplexer for row and column address generation. This provides the flexibility of using the controller with any size of DRAM array by simply using an appropriate address multiplexer. For example when used with the 74F1762, it can control 4 Mbit DRAMs.

FAST 74F1766 Burst Mode DRAM Controller (BMDC)

TYPE	TYPICAL f MAX	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1766	150 MHz	200 mA

ORDERING INFORMATION

PACKAGES	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
48 -Pin Plastic DIP	N74F1766N
44 -Pin PLCC	N74F1766A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\begin{aligned} & \bar{C}_{0} / A_{0} \bar{C}_{1} / A_{1} . \\ & \bar{C}_{2} / S I Z_{0} \bar{C}_{3} / S I Z_{1} . \end{aligned}$	$\overline{\text { CAS }}$ Enable inputs	1.0/1.0	$20 \mu \mathrm{~A} / 2.6 \mathrm{~mA}$
PRECHRG	FAS Precharge Select Input	1.0/1.0	$20 \mu \mathrm{~N} 0.6 \mathrm{~mA}$
$\overline{\text { REQ }}$	Memory access request input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CP	Clock input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
RCP	Refresh clock input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
B_{0}, B_{1}	Bank select inputs	1.011.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\overline{M R}$	Reset input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
BREQ	Burst request input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
ACKSEL	Acknowledge select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
HLDROW	Row address hold select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
PAGE	Page mode select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CMODE	$\overline{C A S}$ mode select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
CWIDTH	$\overline{C A S}$ width select input	1.0/1.0	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\overline{\text { ACK }}$	Acknowledge output	750/40	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
MUX	Address Multiplexer output	150/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
RAS_{0-3}	Row address strobe outputs	750/40	$15.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\overline{C A S}_{00-33}$	Column address strobe outputs	750/40	15.0 mA 24 mA

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state

dip Pin Configuration

PLCC PIN CONFIGURATION

Burst Mode DRAM Controller (BMDC)

PIN DESCRIPTION

SYMBOL	PINS		TYPE	NAME AND FUNCTION
	DIP	PLCC		
CP	2	2	Input	Clock input. Used by the controller for all timing and arbitration functions.
RCP	14	12	Input	Refresh clock input. Divided internally by 64 to produce an internal Refresh Requst.
PRECHRG	15	13	Input	$\overline{R A S}$ Precharge input. A Low will program the Controller to guarantee 4 CP clock cycles of precharge. A High will guarantee 3 clock cycles of precharge.
$\overline{\mathrm{REQ}}$	16	14	Input	Active Low Memory Access Request input, must be asserted for the entire DRAM access cycle. $\overline{\mathrm{REQ}}$ is sampled on the rising edge of the CP clock.
$\mathrm{B}_{0}, \mathrm{~B}_{1}$	3,4	3,4	Input	$\overline{\mathrm{RAS}}$ Bank Select inputs.See Tablet for decoding information.
$\overline{\text { BREQ }}$	19	17	Input	Active Low Burst Request input. If active during an access cycle, the controller automatically toggles $\overline{\text { CAS }}_{x}$ outputs for burst access. The duration of the $\overline{\mathrm{CAS}}_{x}$ outputs are controlled by the CWIDTH and PAGE inputs.
ACKSEL	21	19	Input	Acknowledge timing Select input. A Low will program the Controller to assert $\overline{\mathrm{ACK}}$ output 2 CP clock cycles after $\overline{\mathrm{CAS}}$, is asserted. When High $\overline{\mathrm{ACK}}$ output will be asserted at the time of assertion of CAS_{x}.
HLDROW	20	18	Input	Row Address Hold input. A Low will program the Controller to assert MUX output $1 / 2$ CP clock cycles after RAS ${ }_{y}$ is asserted. When High MUX output will be asserted at the time of assertion of $\overline{R A S}_{X}$.
$\overline{\text { ACK }}$	22	20	Output	Active Low, 3-state Acknowledge output. Asserted as selected by the ACKSEL input. This is asserted only once during a burst or non-burst memory access cycle, and is not asserted during a memory refresh cycle.
CMODE	9	9	Input	$\overline{\mathrm{CAS}}$ Mode select input. When Low $\overline{\mathrm{CAS}}_{x}$ outputs are enabled directly by the $\overline{\mathrm{C}}_{0-3}$ inputs. Whep High CAS x outputs are enabled by decoding the A_{0-1} and SIZ_{0-1} inputs (see Table 2).
\bar{C}_{0} / A_{0}	5	5	Input	$\overline{C A S}_{X 0}$ enable input. As selected by the CMODE input. "X" indicates Banks 0-3.
\bar{C}_{1} / A_{1}	6	6	Input	$\overline{\mathrm{CAS}}_{\mathrm{X} 1}$ enable input. As selected by the CMODE input. "X" indicates Banks 0-3.
$\bar{C}_{2} / \mathrm{SIZ}_{0}$	7	7	Input	$\overline{\mathrm{CAS}}_{X 2}$ enable input. As selected by the CMODE input. "X" indicates Banks 0-3.
$\bar{C}_{3} / \mathrm{SIZ}_{1}$	8	8	Input	$\overline{\mathrm{CAS}}_{\mathrm{X} 3}$ enable input. As selected by the CMODE input. "X" indicates Banks 0-3.
$\overline{\operatorname{RAS}}_{0-3}$	$\begin{aligned} & 48,43 \\ & 33,28 \end{aligned}$	$\begin{aligned} & 44,39 \\ & 31,26 \end{aligned}$	Output	Active Low Row Address Strobe outputs. Asserted as dictated by the B_{0-1} inputs. (see Table 1 for decoding information)
CWIDTH	17	15	Input	$\overline{\mathrm{CAS}}_{x}$ pulse Width select input. This input selects the initial $\overline{\mathrm{CAS}}_{x}$ pulse width in the burst mode. When Low the initial CAS pulse is selected equal to 3 CP clock cycles and when High it's selected equal to 2 CP clock cycles. This input is ignored in the non-burst mode.
MUX	23	21	Output	Row/Column address Multiplex output. Asserted as selected by the HLDROW input and is used by an external address multiplexer like the 74F1762.
$\overline{\mathrm{CAS}}_{00-33}$	47-44, 42-39, 32-29, 27-24	$\begin{aligned} & 43-40, \\ & 38-35, \\ & 30-27, \\ & 25-22 \end{aligned}$	Output	Active Low Column Address Strobe outputs. Asserted when enabled by the $\overline{\mathrm{CAS}}_{x}$ enable inputs (Table 2) and $\overline{\mathrm{RAS}}_{\mathrm{X}}$ bank circuitry.
$\overline{\text { PAGE }}$	18	16	Input	the burst mode. When this input is Low the $\overline{C A S}_{x}$ pulse is selected equal to 2 CP cycles and when High it's selected equal to 1 CP cycle. This is ignored in the nonburst mode.
$\overline{M R}$	1	1	Input	Active Low Master Reset input. The first Low to High transition on the CP clock after RESET is Low will reset the controller. After reset, the 74F1766 remains in test mode until the first rising edge of CP clock.
Vcc	10-13	10,11		Power
GND	34-38	32-34	.	Ground

ARCHITECTURE

The 74F1766 Burst Mode DRAM controller is a synchronous device, with all signal generation being a function of the input clock (CP).

The 'F1766 Block Diagram (Figure 1) shows the overall architecture of the device. The refresh generator uses $\overline{\text { CAS }}$ before RAS refresh and produces refresh requests based upon the frequency of the refresh clock (RCP). A memory refresh request is generated for all four banks every 64 cycles of the RCP clock. This request is arbitrated individually for all banks with it's corresponding memory access request made through the $\overline{\mathrm{REQ}}$ input. If both memory access and refresh requests are active at a given time the request sampled first will begin immediately and the other request (if still asserted) will be serviced upon completion of the current cycle and it's associated
precharge time.
Every one of the four banks have individual refresh monitors to keep track of any missed refreshes during a long page mode access. A total of 127 missed refreshes can be stored by each bank. After the page mode access cycle the controller will burst refresh that bank until all missed refreshes have been performed. In order to limit the number of outputs switching at the same time the refresh generator will stagger the refresh cycles to individual banks, starting from Bank 0. The bank select inputs $\left(B_{0-1}\right)$ select which $\overline{\mathrm{RAS}}_{x}$ output will be enabled during the access cycle. Each $\overline{\operatorname{RAS}}_{x}$ output has it's own arbiter and timing generator to allow true $\overline{R A S}$ interleaving between access cycles and refresh cycles. This also enables transparant RAS precharge between access cycles. The RAS precharge time can be selected by the PRECHRG input to be equal to either 3 or

BLOCK DIAGRAM

4 CP clock cycles.
The timing generator allows burst or nonburst accesses selected by the BREQ input. If $\overline{B R E Q}$ input is asserted during a memory access cycle the controller will automatically toggle $\overline{\text { CAS }}_{x}$ outputs for burst accesses. The duration of the first CAS $_{x}$ pulse is determined by the CWIDTH input, and by the PAGE input for subsequent CAS_{x} pulses. This is particularly useful when block moves are made into and out of memory for cache transfers. The $\overline{C A S}$, outputs may be gated by the byte select inputs (\bar{C}_{0-3}) or by a decoding function generated by the $A_{0} / A / S I Z_{0} /$ SIZ using the CMODE input. Each RAS output has an associated set of CAS outputs for that bank, for example $\overline{\text { RAS }}_{p}$ uses $\overline{C A S}_{00-03}$ outputs. This allows simultaneous refresh of RAS banks while another bank is being accessed by the processor.
The ACKSEL input allows the assertion of Acknowledge ($\overline{\mathrm{ACK}}$) output to be either when CAS x is asserted or 2 CP clock cycles after that. $\overline{A C K}$ stays asserted in the burst mode until REQ is negated. The HLDROW input can be used to assert MUX output when $\overline{\operatorname{RAS}}_{x}$ is asserted or one-haf CP clock cycle after that.

FUNCTIONAL DESCRIPTION

Most DRAMs require that $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs be toggled a number of times before the DRAM may be used. The BMDC has an initialization feature which allows the automatic excersizing of the DRAMs. This is done by resetting the device, which forces the refresh counter to be offset by ten, thus forcing ten refresh cycles before allowing any memory access cycles. The $\overline{R E Q}$ input is sampled on the rising edge of the CP clock. It no refresh request is being serviced, one of the $\overline{R A S}_{x}$ outputs (depending on the B_{0-1} inputs) will be asserted immediately. Depending on the state of the HLDROW input, the MUX output will be driven High either at the assertion of $\overline{\operatorname{RAS}}_{\chi}$ or onehalf CP cycle after that. One CP cycle after the assertion of $\overline{\text { RAS }}_{x}$, the $\overline{\mathrm{CAS}}_{x}$ outputs enabled either by the $\bar{C}_{0,3}$ inputs or the decoded function of $\mathrm{A}_{\rho} \mathrm{AA}_{1}^{3} / \mathrm{SIZ}_{\circ}$, SIZ (as selected by the CMODE inpuit) will be asserted. If the ACKSEL input is High, the $\overline{A C K}$ output will be asserted at this time; otherwise it will be asserted 2 CP cycles after this time.
The BREQ input is sampled when the CAS x outputs are initially asserted, and this determines what will take place on the CAS, outputs after their initial assertion. If BREQ is High, the RAS ${ }_{x}$, MUX and CAS $_{x}$ outputs will remain in their present state until the negation of $\overline{R E Q}$, at which time allthese signals are negated. Negation of $\overline{R E Q}$ is asynchronous to the CP clock cycle and therefore is not sampled

Burst Mode DRAM Controller (BMDC)

by the clock. If the $\overline{\mathrm{BREQ}}$ is Low at the assertion of $\overline{C A S}_{x}$, the $\overline{\mathrm{RAS}}_{x}$ and MUX outputs will stay in their existing state but the CAS x outputs after staying Low for 2 CP cycles will alternately be negated and asserted for one CP clock cycle if PAGE input is High or for two CP clock cycles if PAGE input is Low. This process will continue untill the negation of the REQ input, at which time the RAS $_{x}, M U X, \overline{C A S}_{x}$ and $\overline{A C K}$ outputs will be negated.

As mentioned before, the controller guarantees a $\overline{\text { RAS }}$ precharge on all the $\overline{\operatorname{RAS}}_{X}$ outputs to be either 3 or 4 CP clock cycles as selected by the PRECHRG input. This precharge function is independent among the $\overline{\operatorname{RAS}} \times$ outputs, which means that, by connecting the appropriate loworder address lines from the processor to the B_{0-1} inputs, sequential accesses, a common occurance with microprocessors, will result in no precharge overhead.

The refresh function is also independent

B_{0}	$\mathrm{~B}_{1}$	$\overline{\mathrm{RAS}}_{0}$	$\overline{\mathrm{RAS}}_{1}$	$\overline{\mathrm{RAS}}_{2}$	$\overline{\mathrm{RAS}}_{3}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	1	0	1	1	0

TABLE 1: BANK SELECT DECODE
between the $\overline{\mathrm{RAS}}_{x}$ outputs, which means that three $\overline{\operatorname{RAS}}_{x}$ outputs can be periorming a CAS before $\overline{R A S}$ refresh, while the fourth is in the precharge mode or is being accessed, thus reducing the overall refresh overhead.

Output driving Characteristics

Considering the transmission line characteristics of the DRAM arrays, the outputs of the DRAM controller have been designed to provide incident-edge switching (in Dual-Inline-Packaged memory ar
rays), needed in high performance systems. For more information on the driving characteristics, please refer to Signetics application note number AN218. The driving characteristics of the 74F1766 are the same as those of the 74F765 shown in the application note.

Testing the BMDC

Precautions have been taken in the design of the BMDC to facilitate testing of the device. After a $\overline{\mathrm{MR}}$ is issued and the

CP input is toggled from Low to High all internalflip-flops are brought into a known state, and the device goes into the test mode from the time MR is deasserted till the time the first Low to High transition occurs on the CP clock. During the test mode, bank refresh counters (that keep track of missed refreshes) are clocked by a High to Low transition on the $\overline{\mathrm{C}}_{0-3}$ inputs and the main refresh counter is clocked on the rising RCP clock edge. The comparators that compare the contents of the main refresh counter and refresh counters of individual banks are clocked by the Low to High transition on the PRECHRG input and are gated on to $\overline{\operatorname{RAS}} \times$ outputs by the $\overline{\mathrm{C}}_{\text {in }}$ inputs. So whenever $\overline{\mathrm{C}}_{0-3}$ are Low, RAS outputs are disabled (pulled High). If the contents of the main refresh counter and the individual bank counters are equal, the corresponding RAS output will be High, if not equal the corresponding RAS output will be Low. This allows full testing of the Counters and comparators with relatively few lines of code.

CMODE	OPERATION	$\overline{\mathrm{C}}_{3} / \mathrm{SIZ}_{1}$	$\overline{\mathrm{C}}_{2} / \mathrm{SIZ}_{0}$	\bar{C}_{1} / A_{1}	\bar{C}^{\prime} / A_{0}	$\overline{\mathrm{CAS}}_{\mathrm{x} 3}$	$\overline{\mathrm{CAS}}_{\times 2}$	$\overline{\mathrm{CAS}}_{\mathrm{x} 1}$	$\overline{\mathrm{CAS}}_{\mathrm{x} 0}$
1		0	0	0	0	0	0	0	0
1	LONG WORD	0	0	0	1	0	0	0	1
1	LONG WORD	0	0	1	0	0	0	1	1
1		0	0	1	1	0	1	1	1
1		0	1	0	0	1	1	1	0
1	BYTE	0	1	0	1	1	1	0	1
1		0	1	1	0	1	0	1	1
1		0	1	1	1	0	1	1	1
1		1	0	0	0	1	1	0	0
1	WORD	1	0	0	1	1	0	0	1
1		1	0	1	0	0	0	1	1
1		1	0	1	1	0	1	1	1
1		1	1	0	0	1	0	0	0
1	THREE BYTES	1	1	0	1	0	0	0	1
1		1	1	1	0	0	0	1	1
1		1	1	1	1	0	1	1	1

TABLE 2: BYTE SELECT DECODE

Burst Mode DRAM Controller (BMDC)

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. $\begin{aligned} & \text { Unless otherwise noted these limits are over the operating free-air temperature range.) } \\ & \text { Und }\end{aligned}$

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {OC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\text {CC }}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	500	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		.	LIMITS		UNIT
			Min	Nom	Max	
$\mathrm{v}_{\text {cc }}$	Supply voltage		4.5	5.0	5.5	V
V_{H}	High-level input voltage		2.0			V
V_{k}	Low-level input voltage				0.8	V
$1{ }_{1 K}$	Input clamp current				-18	mA
I_{OH}	High-level output current	All pins except $\overline{A C K}$			-15	mA
		$\overline{\text { ACK }}$ output			-3	mA
${ }^{1} \mathrm{OL}$	Low-level output current				24	mA
T_{A}	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. $\mathrm{IOH}^{2} \& \mathrm{I}_{\mathrm{OL}}{ }^{2}$ are transientcurrents necessary to guarantee a Low to High 8 a High to Low transition in a 30 OHM transmission line respectively. Refer to Application note number AN218 for further explanation.
4. Not more than one output shouid be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize intemal heating and more accurately refiect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature weil above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.

Burst Mode DRAM Controller (BMDC)

AC ELECTRICAL CHARACTERISTICS

NO	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=300 \mathrm{pF} \\ \mathrm{RL}=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
1	CP clock period (tcp)		10			10		ns
2	CP clock low time		4			4		ns
3	CP clock high time		6			6		ns
4	RCP clock period		100			100		ns
5	RCP clock low time		10			10		ns
6	RCP clock high time		10			10		ns
7	Setup time $\overline{\operatorname{REQ}}(\downarrow)$ to $\mathrm{CP}(\uparrow)$		2.5			4		ns
8	Setup time B_{0}, B, to $\mathrm{CP}(\uparrow)$		3			4		ns
9	Setup time $\overline{\mathrm{BREQ}}$ to $\mathrm{CP}(\uparrow)$		3			4		ns
10	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{RAS}}(\downarrow)$		3	7.5	9.5	3	10	ns
11			4	9	12	3	13	ns
12	Propagation delay $\mathrm{CP}(\uparrow)$ to $\operatorname{MUX}(\uparrow)$	HLDROW $=1$	3	8	10	3	11	ns
13	Propagation delay $\mathrm{CP}(\downarrow)$ to $\operatorname{MUX}(\uparrow)$	$\overline{\text { HLDROW }}=0$	2	5.5	7.5	2	8.5	ns
14	Propagation delay $\overline{\operatorname{REQ}}(\uparrow)$ to $\operatorname{MUX}(\downarrow)$		4	8.5	10.5	4	11.5	ns
15	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{CAS}}(\downarrow)$		3	8.5	11.5	3	12	ns
16	Propagation delay $\overline{\mathrm{REQ}}(\uparrow)$ to $\overline{\mathrm{CAS}}(\uparrow)$		4	9.5	12	4	14	ns
17	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{CAS}}(\uparrow)$	$\overline{\mathrm{BREQ}}=0$	3	8	10	3	11	ns
18	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{CAS}}(\downarrow)$	$\overline{\mathrm{BREQ}}=0$	3	9	11	3	12	ns
19	Propagation delay $\overline{\operatorname{REQ}}(\downarrow)$ to $\overline{\operatorname{ACK}(3-}$ state to High)		2	5	7	2	8	ns
20	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{ACK}}(\downarrow)$	ACKSEL $=1$	3	7.5	9.5	3	10	ns
21	Propagation delay $C P(\uparrow)$ to $\overline{A C K}(\downarrow)$	ACKSEL $=0$	3	7.5	9.5	3	10	ns
22	Propagation delay $\overline{\operatorname{REQ}}(\uparrow)$ to $\overline{\operatorname{ACK}}$ (Low to 3-state)		2	5	7	2	7.5	ns
23	Propagation delay CP(\uparrow) to $\overline{\mathrm{CAS}}(\downarrow)$ *	REFRESH CYCLE	4	9.5	12	4	13	ns
24	Propagation delay CP(\uparrow) to $\overline{\mathrm{MAS}}(\downarrow)$ *	REFRESH CYCLE	3	7.5	9.5	3	10	ns
25	Propagation delay CP(\uparrow) to $\overline{C A S}(\uparrow)$ *	REFRESH CYCLE	4	9.5	12	4	14	ns
26	Propagation delay $\mathrm{CP}(\uparrow)$ to $\overline{\mathrm{AAS}}(\uparrow)$ *	REFRESH CYCLE	4	9	11	3	13	ns
27	Propagation delay $\overline{\mathrm{RAS}}(\downarrow)$ to $\overline{\mathrm{CAS}}(\downarrow)$		1tcp-1	$1 t c p+1$	1tcp +2.5	1tcp-1	1tcp+3	ns

*The same parameters will hold for a refresh cycle during $\overline{\mathrm{RAS}}_{1}, \overline{\mathrm{RAS}}_{2}$ and $\overline{\mathrm{RAS}}_{3}$ access cycles.

AC ELECTRICAL CHARACTERISTICS

NO	PARAMETER	TEST CONDITIONS	LIMITS					UNIT
			$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} \\ V_{c c}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{L}=300 \mathrm{pF} \\ R L=70 \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=300 \mathrm{pF} \\ R L=70 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
28	Propagation delay $\overline{\mathrm{RAS}}(\downarrow)$ to $\operatorname{MUX}(\uparrow)$	HLDROW = 1	-1	0.5	2	-1.5	2.5	ns
29	Propagation delay $\overline{\mathrm{RAS}}(\downarrow)$ to MUX (\uparrow)	HLDROW $=0$	1/2tcp-3.5	1/2tcp-1.5	1/2tcp	1/2tcp-1.5	1/2tcp+2.5	ns
30	Propagation delay MUX (\uparrow) to $\overline{C A S}(\downarrow)$	HLDROW $=1$	$1 \mathrm{tcp}-1.5$	1tcp +0.5	1tcp+2	1tcp-2.5	1tcp+2.5	ns
31	Propagation delay MUX(\uparrow) to $\overline{\mathrm{CAS}}(\downarrow)$	HLDROW $=0$	1/2tcp +0.5	1/2tep+2	1/2tcp+4.5	1/2tcp-0.5	1/2tcp+5	ns

TEST CIRCUIT AND WAVEFORMS

Signetics

Document No.	$853-1097$
ECN No.	97708
Date of issue	September 22, 1989
Status	Product Specification
FAST Products	

FEATURES

- 8-bit Registered Transceivers
- Two 8-bit , back-to-back registers store data moving in both directions between two bidirectional busses
- Separate Clock, Clock Enable and 3-state Enable provided for each register
- 'F2952 Non-inverting 'F2953 Inverting
- AM2952/2953 functional equivalent
- A outputs sink 24mA and source 3mA
- B outputs sink 64 mA and source 15 mA
- 300 mil wide 24-pin Slim DIP package

DESCRIPTION

The 74F2952 and 74F2953 are 8-bit Registered Transceivers. Two 8-bit back to back registers store data flowing in both directions between two bi-directional busses. Data applied to the inputs is entered and stored on the rising edge of the Clock (CPXX) provided that the Clock Enable (CEXX) is Low. The data is then present at the 3 -state output buffers, but is only accessible when the Output Enable ($\overline{O E X X}$) is Low. Data flow from A inputs to B outputs is the same as for B inputs to A outputs.

FAST 74F2952, 74F2953 Transceivers

74F2952 Registered Transceiver, Non-Inverting (3-State) 74F2953 Registered Transceiver, Inverting (3-State)

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 2952	160 MHz	105 mA
74 F 2953	160 MHz	105 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Plastic Slim DIP (300mil)	N74F2952N, N74F2953N
24-Pin Plastic SOL ${ }^{1}$	N74F2952D, N74F2953D
28-Pin Plastic PLCC	N74F2952A, N74F2953A

NOTE:
1.Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L. $)$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Port A, 3-state inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Port B, 3-state inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPAB,CPBA	Clock inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} 0.6 \mathrm{~mA}$
$\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}$	Clock Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OEAB}, \overline{\mathrm{OEBA}}}$	Output Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Port $\mathrm{A}, 3$-state outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Port B, 3-state outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION DIP

PIN CONFIGURATION PLCC

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)

Signetics

Document No.	$853-0021$
ECN No.	98774
Date of issue	February 9, 1990
Status	Product
FAST Products	

FEATURES

- 30Ω line driver
- 160 mA output drive capability in the Low state
- 67 mA output drive capability in the High state
- High speed
- Facilitates incident wave switching
- 3nh lead inductance each on $V_{c c}$ and GND when both side pins are used

- Industrial temperature range $\boldsymbol{\square}$

 available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
DESCRIPTION

The 74F3037 is a high current Line Driver composed of four 2-input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.

The drive capability of the ' F 3037 is 67 mA source and 160 mA sink with a $V_{c c}$ as low as 4.5 V . This guarantees incident

PIN CONFIGURATION

FAST 74F3037

30Ω Line Driver

Quad 2-Input NAND 30 2 Line Driver

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices. If driving impedances 42 ohms or greater then thermal mounting is not necessary.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{n \mathrm{a}}, \mathrm{D}_{\mathrm{nb}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{Q}_{n}	Data outputs	$3350 / 266$	$67 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
wave switching with V_{OH} not less than 2.0 V and V_{O} not more than 0.8 V while driving impedances as low as 30 ohms. This is applicable with any combination of outputs using continuous duty.

LOGIC SYMBOL

The propagation delay of the part is minimally affected by reflections when terminated only by the TTL inputs of other devices. Performance may be improved by full or partial line termination.

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

$v_{c c}=\text { Pin } 12,13$ GNO - Pin 4,5

FUNCTION TABLE

INPUTS		OUTPUT
$D_{n a}$	$D_{n b}$	$\overline{\mathrm{O}}_{n}$
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High voltage level
$L=$ Low voltage level

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
v_{cc}	Supply voltage		-0.5 to +7.0	V
V_{IN}	Input voltage		-0.5 to +7.0	V
I_{N}	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{c c}$	\checkmark
tout	Current applied to output in Low output state		320	mA
TA	Operating free-air temperature range	Commercial range Industrial range	$\begin{aligned} & 0 \text { to }+70 \\ & -40 \text { to }+85 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$V_{c c}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{1 H}$	High-level input voltage		2.0			V
$\mathrm{V}_{\text {LL }}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
${ }^{\text {OH }}$	High-level output current				-67	mA
I_{OL}	Low-level output current				160	mA
T_{A}	Operating free-air temperature range	Commercial range Industrial range	$-\frac{0}{-40}$		$\frac{70}{85}$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{C C}=M I N \\ & V_{\mathrm{IL}}=\mathrm{MAX} \\ & V_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-45 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH} 1}=-67 \mathrm{~mA}{ }^{3}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
V_{OL}	Low-level output voltage		$V_{C C}=M I N$	$\mathrm{l}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
			$\begin{aligned} & V_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL} 1}=160 \mathrm{~mA}{ }^{4}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
V_{IK}	Input clamp voltage		$V_{C C}=M I N, I_{1}=I_{I K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1} \mathrm{H}$	High-level input current		$V_{C C}=$ MAX, $V_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
I_{LL}	Low-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-0.6	mA			
10	Output current ${ }^{5}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$			$\Gamma-100$		-200	mA			
${ }^{\text {cc }}$	Supply current (total)	${ }^{\mathrm{CCH}}$	$V_{C C}=M A X$				6.0	9.0	mA			
		${ }^{\text {CCL }}$					30	40	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{OH} 1}$ is the current necessary to guarantee the Low to High transition in a 30 ohm transmission line on the incident wave.
4. ${ }_{\mathrm{OL} 1}$ is the current necessary to guarantee the High to Low transition in a 30 ohm transmission line on the incident wave.
5. 1_{O} is tested under conditions that produce current approximately one half of the true short-circuit output current (O_{OS}).

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C} & =5 \mathrm{~V} \pm 10 \% \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ &+85^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n a} D_{n b} \text { to } \bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	1.0 1.0	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	1.0 1.0	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Inputs to Output

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

Signetics

Document No.	$853-0022$
ECN No.	98644
Date of issue	January 29, 1990
Status	Product
FAST Products	

FEATURES

- 30Ω line driver
- 160mA output drive capability
- High speed
- Facilitates incident wave switching
- 3nh lead inductance each on $V_{c c}$ and GND when both side pins are used

DESCRIPTION

The 74F3038 is a high current Open-Collector Line Driver composed of four 2input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.

The 74F 3038 can sink 160 mA with a $V_{c c}$ as low as 4.5 V . This guarantees incident wave switching with V_{OL} not more than 0.8 V while driving impedances as low as 30 ohm. This is applicable with any combination of outputs using continuous duty.

The AC specifications for the 74F3038 were determined using the standard PIN CONFIGURATION

FAST 74F3038 30Ω Line Driver

Quad Two-Input NAND 30Ω Line Driver (Open Collector)

\(\left.$$
\begin{array}{l}\begin{array}{|c|c|c|}\hline \text { TYPE } & \begin{array}{c}\text { TYPICAL PROPAGATION } \\
\text { DELAY }\end{array} & \begin{array}{c}\text { TYPICAL SUPPLY CURRENT } \\
\text { (TOTAL) }\end{array} \\
\hline 74 F 3038 & 6.0 \mathrm{~ns}\end{array}
$$

\hline ORDERING INFORMATION\end{array}\right]\)| 17 mA |
| :--- |

NOTE:

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices. If driving impedances 42 ohms or greater then thermal mounting is not necessary.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOADVALUE HIGH/LOW
$D_{n a}, D_{n b}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{a}}_{\mathrm{n}}$	Data outputs	$0 \mathrm{C} / 266$	$0 \mathrm{C} / 160 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. OC = Open Collector

FAST load for open-collector parts of 50 pf capacitance, a 500 ohm pull-up resistor and a 500 ohm pull-down resistor. (See Test Circuit).

Reducing the load resistors to 100 ohm will decrease the $t_{P L H}$ propagation delay LOGIC SYMBOL

$v_{C C}=\operatorname{Pin} 12,13$
GND $=\operatorname{Pin} 4,5$
by approximately 50% while increasing $\mathrm{t}_{\mathrm{PHL}}$ only slightly. The graph of typical propagation delay vs load resistor (See AC Characteristics section for Graph) shows a spline fit curve from four measured data points. $R_{L}=30$ ohm, $R_{L}=100$ ohm, $R_{L}=300$ ohm, and $R_{L}=500 \mathrm{ohm}$.
LOGIC SYMBOL (IEEE/IEC)

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
I_{OH}	High-level output current					$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=\mathrm{MAX}$					250	$\mu \mathrm{A}$
V_{OL}	Low-level output current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$. 42	. 55	V			
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$	$\mathrm{I}_{\mathrm{OL}}=160 \mathrm{~mA}^{3}$	$\pm 5 \% V_{\text {cc }}$. 80	V			
V_{IK}	Input clamp voltage		$V_{C C}=M I N, I_{1}=I_{I K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 V$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{1 H}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-0.6	mA			
${ }^{\text {cc }}$	Supply current [total]	${ }^{\text {CCH }}$	$V_{C C}=M A X$		$\mathrm{V}_{\mathbb{I N}}=\mathrm{GND}$		3.5	6.0	mA			
		${ }^{\text {I CCL }}$			$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		30	40	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. I OL_{1} is the current necessary to guarantee the High to Low transition in a 30Ω transmission line on the incident wave.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PH}}} \end{aligned}$	Propagation delay $D_{n a}, D_{n b} \text { to } \bar{Q}_{n}$	Waveform 1	$\begin{aligned} & =6.0 \\ & 1.0 \end{aligned}$	8.5 2.0	11.5 5.0	6.0 1.0	12.0 5.0	ns

AC WAVEFORMS

Signetics

Document No.	$853-0023$
ECN No.	98639
Date of issue	January 29, 1990
Status	Product
FAST Products	

FEATURES

- 30Ω line driver
- 160mA output drive capability in the Low state
- 67mA output drive capability in the High state
- High speed
- Facilitates incident wave switchIng
- 3nh lead inductance each on $V_{c c}$ and GND when both side pins are used

DESCRIPTION

The 74F3040 is a high current Line Driver composed of two 4 -input NAND gates. It has been designed to deal with the transmission line effects of PC boards which appear when fast edge rates are used.

The drive capability of the ' $F 3040$ is 67 mA source and 160 mA sink with a V_{CC} as low as 4.5 V . This guarantees incident wave switching with V_{OH} not less than 2.0 V and V_{OL} not more than 0.8 V while driving impedances as low as 30 ohms.

PIN CONFIGURATION

FAST 74F3040

30Ω Line Driver

Dual 4-Input NAND 30Ω Line Driver

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F3040N
16 -Pin Plastic SOL	N74F3040D

NOTE:

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices. If driving impedances 42 ohms or greater then thermal mounting is not necessary.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L. $)$ HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{n \mathrm{n},}, \mathrm{D}_{\mathrm{n}, \mathrm{b}}, \mathrm{D}_{\mathrm{nc}}, \mathrm{D}_{\mathrm{nd}}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
\bar{Q}_{n}	Data output	$3350 / 266$	$67 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

This is applicable with any combination of outputs using continuous duty.
The propagation delay of the part is minimally affected by reflections when termi-

LOGIC SYMBOL

$V_{C C}=P$ in 12, 13
GND $=\operatorname{Pin} 4,5$
$N C=\operatorname{Pin} 9,16$
nated only by the TTL inputs of other devices, Performance may be improved by full or partial line termination.

LOGIC SYMBOL (IEEE/IEC)

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
V_{OH}	High-level output voltage				$\begin{array}{ll} \mathrm{v}_{\mathrm{CC}}=\mathrm{MIN} \\ \mathrm{v}_{\mathrm{IL}}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} & \mathrm{I}_{\mathrm{OH}}=-45 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH} 1}=-67 \mathrm{~mA}^{3} \end{array}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7		3.4		v		
			$\pm 10 \% V_{\text {cc }}$	2.0				V		
v^{\prime}	Low-level output voltage		$V_{C C}=M I N$	$\pm 10 \% V_{c c}$		0.30	0.50	V		
			$\begin{aligned} & V_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\pm 5 \% V_{\text {cc }}$		0.30	0.50	V		
V_{IK}	Input clamp voltage		$V_{C C}=M I N, I_{1}=I_{I K}$			-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
I_{H}	High-level input current		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
112	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-0.6	mA		
10	Output current ${ }^{5}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-100		-200	mA		
${ }^{\text {cc }}$	Supply current (total)	${ }^{\mathrm{CCH}}$	$V_{C C}=M A X$			3.0	5.0	mA		
		${ }^{\mathrm{I}} \mathrm{CCL}$				16	22	mA		

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. $\mathrm{I}_{\mathrm{OH} 1}$ is the current necessary to guarantee the Low to High transition in a 30 ohm transmission line on the incident wave.
4. $\mathrm{I}_{\mathrm{O}, 1}$ is the current necessary to guarantee the High to Low transition in a 30 ohm transmission line on the incident wave.
5. IO is tested under conditions that produce current approximately one half of the true short-circuit output current (los).

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Propagation delay } \\ & D_{n a}, D_{n b}, D_{n c}, D_{n d} \text { to } \bar{Q}_{n} \end{aligned}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	2.0 2.0	$\begin{aligned} & =5.0 \\ & 4.5 \end{aligned}$	1.0	5.5 5.0	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Inputs to Outputs

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

Signetics

Document No.	$853-$
ECN No.	
Date of issue	March 13, 1990
Status	Product Specification
FAST Products	

FEATURES

- Quad Backplane Transceiver
- Drives heavily loaded backplanes with equivalent load impedances down to 10 ohms
- Futurebus drivers sink 100 mA
- Reduced voltage swing (1 volt) produces less noise and reduces power consumption
- High speed operation enhances performance of backplane buses and facilitates incident wave switching
- Compatible with IEEE 896 and IEEE 1194.1 Futurebus Standards
- Built-in precision band-gap (BG) reference provides accurate receiver threshoid and improved nolse immunity
- Glitch-free power up / power down operation on all outputs
- Pin and function compatible with NSC DS3893

DESCRIPTION

The 74F3893 is a quad backplane transceiver and is intended to be used in very high speed bus systems.
The 74F3893 interfaces to 'Backplane Transceiver Logic' (BTL). BTL features a reduced (1V) voltage swing for lower power consumption and a series diode on the drivers to reduce capacitive loading ($<5 \mathrm{pF}$).
Incident wave switching is employed, therefore BTL propagation delays are short. Although the voltage swing is much

FAST 74F3893

Quad Futurebus Backplane Transceiver (3 State +Open Collector)

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 3893	3.0 ns	55 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE $\mathbf{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 20 -Pin PLCC\quad N74F3893A

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data inputs	$1.0 / 0.067$	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
DE	Data Enable input	$1.0 / 0.33$	$20 \mu \mathrm{~A} / 200 \mu \mathrm{~A}$
$\overline{\mathrm{RE}}$	Receiver Enable input	$1.0 / 0.067$	$20 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3}$	Bus inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3}$	Bus outputs	$\mathrm{OC} / 166.7$	$\mathrm{OC} / 100 \mathrm{~mA}$
$\mathrm{R}_{0}-\mathrm{R}_{3}$	Receiver outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
OC= Open Collector
less for BTL, so is its receiver threshold region, therefore noise margins are excellent.
BTL offers low power consumption, low ground bounce, EMI and crosstalk, low capacitive loading, superior noise margin and short propagation delays. This results in a high bandwidth, reliable backplane.
The 74F3893 has four TTL outputs (R_{n}) on the receiver side with a common

Receive Enable input (RE). It has four data inputs $\left(D_{n}\right)$ which are also TTL. These data inputs are NANDed with the Data Enable input (DE). The four I/O pins (Bus side) are futurebus compatible, sink a minimum of 100 mA , and are designed to drive heavily loaded backplanes with load impedances as low as 10 ohms. All outputs are designed to be glitch-free during power up and power down.

Quad Futurebus Backplane Transceiver

PIN CONFIGURATION

LOGIC SYMBOL

$v_{\text {CC }}=\operatorname{Pin} 1$
LOGIC GND = Pin 6
BUS GND $=\operatorname{Pin} 13,16,19$
BG GND $=\operatorname{Pin} 20$

LOGIC SYMBOL(IEEE/IEC)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS			INPUT/OUTPUT	OUTPUT	OPERATING MODE
DE	$\overline{\mathrm{RE}}$	D_{n}	$1 / O_{n}$	R_{n}	
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Transmit to bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & D_{n} \\ & X \end{aligned}$	$\begin{aligned} & \bar{D}_{n} \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{z} \end{aligned}$	Receiver 3-state, Transmit to bus
L	L	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	Receive, $1 / \mathrm{O}_{\mathrm{n}}=$ inputs

$\mathrm{H}=\mathrm{High}$ voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
$Z=$ High impedance "off" state

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-1.5 to +6.5	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-1.5 to +6.5	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	200	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Quad Futurebus Backplane Transceiver

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
V_{cc}	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathbb{H}}$	High-level input voltage	$D_{n}, D E, \overline{R E}$	2.0			V
$V_{\text {th }}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\text {IK }}$	Input clamp current				-18	mA
$\mathrm{V}_{\text {TH }}$	Bus input threshold	I/O ${ }_{\text {n only }}$	1.475	1.55	1.625	V
I_{OH}	High-level output current	R_{n} only			-3	mA
$\mathrm{IOL}_{\mathrm{OL}}$	Low-level output current				100	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
				Min	Typ ${ }^{2}$	Max					
${ }^{\text {OHB }}$	High-level output current	$1 / O_{n}$				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=1.5 \mathrm{~V}$			10	100	$\mu \mathrm{A}$
V_{OH}	High-level output voltage	R_{n}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$		2.5			V		
$\mathrm{V}_{\mathrm{OHB}}$	High-level output Bus voltage	$1 / O_{n}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{D}_{\mathrm{n}}=\mathrm{DE}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \Omega, \\ & \mathrm{RE}=2.0 \mathrm{~V} \end{aligned}$		1.9			V		
v_{OL}	Low-level output voltage	R_{n}		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \overline{\mathrm{RE}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$			0.35	0.5	v		
$\mathrm{V}_{\text {OLB }}$	Low-level output Bus voltage	$1 / O_{n}$		$\mathrm{D}_{\mathrm{n}}=\mathrm{DE}=\mathrm{V}_{1 H} \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$		0.75	1.0	1.2	V		
				$\mathrm{D}_{\mathrm{n}}=\mathrm{DE}=\mathrm{V}_{\mathrm{IH}}{ }^{\prime} \mathrm{O}_{\mathrm{OL}}=80 \mathrm{~mA}$		0.75	1.0	1.1	V		
$v_{\text {OCB }}$	Driver output positive clamp voltage	$1 / O_{n}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ or $0 \mathrm{~V}, 1 / \mathrm{O}_{\mathrm{n}}=1 \mathrm{~mA}$	$\mathrm{D}_{\mathrm{n}}=\mathrm{DE}=0.8 \mathrm{~V}$	1.9		2.9	V		
				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ or $0 \mathrm{~V}, 1 / \mathrm{O}_{\mathrm{n}}=10 \mathrm{~mA}$	$\overline{\mathrm{E}}=2.0 \mathrm{~V}$	2.3		3.2	V		
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{K}}$			-0.73	-1.2	V		
11	Input current at maximum input voltage			$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}, D E=\overline{R E}=D_{n}=V_{C C}$				100	$\mu \mathrm{A}$		
I_{IH}	High-level input current	$\mathrm{D}_{n}, \overline{R E}, \mathrm{DE}$		$V_{C C}=M A X, D E=\overline{R E}=D_{n}=5.5 \mathrm{~V}$				20	$\mu \mathrm{A}$		
${ }^{\text {IHB }}$	High-level I/O bus current (power off)	$1 / O_{n}$		$V_{C C}=0 \mathrm{~V}, \mathrm{D}_{\mathrm{n}}=\mathrm{DE}=0.8 \mathrm{~V}, 1 / \mathrm{O}_{\mathrm{n}}=1.2 \mathrm{~V}, \overline{\mathrm{RE}}=0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIL	Low-level input current	$\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{RE}}$		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}, \mathrm{DE}=4.5 \mathrm{~V}$				-40	$\mu \mathrm{A}$		
		DE		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}, \mathrm{D}_{\mathrm{n}}=4.5 \mathrm{~V}$				-200	$\mu \mathrm{A}$		
${ }_{\text {ILB }}$	Low-level I/O bus current (power on) $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$			$V_{C C}=M A X, D_{n}=D E=0.8 V, 1 / O_{n}=0.75 \mathrm{~V}, \overline{\mathrm{RE}}=0 \mathrm{~V}$		-20		20	$\mu \mathrm{A}$		
${ }^{\text {IOZH }}$	Off-state output current, High-level voltage applied	R_{n}		$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}, \overrightarrow{R E}=2 \mathrm{~V}$				20	$\mu \mathrm{A}$		
${ }^{\text {OzL }}$	Off-state output current, Low-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}, \overline{\mathrm{RE}}=2 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
l_{OS}	Short-circuit output current ${ }^{3}$			$V_{C C}=$ MAX		-60		-150	mA		
${ }^{1} \mathrm{cc}$	Supply current (total)			$V_{C C}=M A X,\left(\overline{R E}=V_{I H}\right.$ or $\left.V_{I L}\right)$			55	80	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing l_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Quad Futurebus Backplane Transceiver

AC ELECTRICAL CHARACTERISTICS for Driver and Driver Enable

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=50 \mathrm{FF} \\ \mathrm{R}_{\mathrm{T}}=10 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{T}}=2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{T}}=10 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay D_{n} to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \end{aligned}$	Propagation delay DE to $1 / O_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	D_{n} to $/ / O_{n}$ Transition time 10\% to $90 \%, 90 \%$ to 10%	Waveform 1	$\begin{gathered} 1.0 \\ 1.0 \end{gathered}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
tskew	Skew between Drivers in same package			1.0				ns

AC ELECTRICAL CHARACTERISTICS for Receiver

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{gathered}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=1 \mathrm{k} \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation delay l / O_{n} to R_{n}	Waveform 2	$\begin{aligned} & 1.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 7.75 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \end{aligned}$	ns

AC ELECTRICAL CHARACTERISTICS for Receiver Enable

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable to High or Low level RE to R_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{t} P H Z}}{ }^{\mathrm{t}^{\mathrm{t}} \mathrm{PLZ}} \end{aligned}$	Output Disable from High or Low level $\overline{R E}$ to R_{n}	Waveform 3 Waveform 4	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	ns

AC WAVEFORMS

Waveform 1. Propagation Delay For Driver

Waveform 3. 3-State Output Enable Time To High Level And Output Disable Time From High Level

Waveform 2. Propagation Delay For Receiver

Waveform 4. 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

TEST CIRCUIT AND WAVEFORMS

SWITCH POSITION

TEST	SWITCH
$\mathrm{t}_{\text {PII }}, \mathrm{t}_{\mathrm{pI}}$ All other	closed open

Test Circuit For Open Collector Outputs

DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$C_{D}=$ Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistor; see AC CHARACTERISTICS for value.
$\mathrm{R}_{\mathrm{T}}^{\prime}=\begin{aligned} & \text { Termination resistance should be equal to } \mathrm{Z}_{\mathrm{OUT}} \text { of } \\ & \text { pulse generators. }\end{aligned}$

Signetics

Document No.	$853-1391$
ECN No.	98491
Date of issue	January 8,1990
Status	Product Specification
FAST Products	

FEATURES

- Metastable Immune Characteristics
- Propagation delay skew and output to output skew guaranteed less than 1.5 ns
- High source current ($\left.l_{\mathrm{OH}}=15 \mathrm{~mA}\right)$ ideal for clock driver applications
- Pinout compatible with 74F74
- See 74F50728 for Synchronizing Cascaded D-Type Flip-Flop
- See 74F50729 for Synchronizing Dual D-Type Flip-Flop with EdgeTriggered Set and Reset
- See 74F50109 for Synchronizing Dual J-K Positive Edge-Triggered Flip-Flops

DESCRIPTION

The 74F5074 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also true and complementary outputs.
Set $\left(\overline{\mathrm{S}}_{\mathrm{Dn}}\right)$ and Reset $\left(\overline{\mathrm{R}}_{\mathrm{Dn}}\right)$ are asynchronous active-Low inputs and operate independently of the Clock ($C P_{n}$) input. Data must be stable just one setup time prior to the Low-to-High transition of the clock for guaranteed propagation delays.
Clock triggering occurs at a voltage level and

PIN CONFIGURATION

FAST 74F5074
Flip-Flop/ Clock Driver

Synchronizing Dual D-Type Flip-Flop With Metastable Immune Characteristics

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY (TOTAL)
74 F 5074	120 MHz	20 mA

ORDERING INFORMATION

PACKAGES	COMMERCIAL RANGE $V_{C C}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ 14-Pin Plastic DIP 14-Pin Plastic SO N74F5074N

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L) HIGH/LOW	LOADVALUE HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data inputs	1.0/0.417	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$\mathrm{CP}_{0}, \mathrm{CP}_{1}$	Clock inputs (active rising edge)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{S}}_{\mathrm{D},} \overline{\mathrm{S}}_{\mathrm{D}}$	Set inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{R}}_{\mathrm{D},} \overline{\mathrm{R}}_{\mathrm{DI}}$	Reset inputs (active Low)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{0}, \overline{\mathrm{Q}}_{1}$	Data outputs	750/33	$15 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D_{n} input may be changed without affecting the levels of the output.
The 74F5074 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup and hold times are violated the propagation delays may be extended beyond the specifications

LOGIC SYMBOL

but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 74F5074 are: $\tau \cong 135 \mathrm{ps}$ and $T_{0} \cong 9.8 \times 10^{6} \mathrm{sec}$ where τ represents a function of the rate at which a latch in a metastable state resolves that condition and T_{0} represents a function of the measurement of the propensity of a latch to enter a metastable state.
LOGIC SYMBOL(IEEE/IEC)

Metastable Immune Characteristics

Signetics uses the term 'metastable immune' to describe characteristics of some of the products in its FAST family. Specifically the 74F50XXX family presently consists of 4 products which display metastable immune characteristics. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations. This claim is easily verified on the 74F5074.

By running two independent signal generators (see Fig. 1) at nearly the same frequency (in this case 10 MHz clock and 10.02 MHz data) the device-under-test can often be driven into a metastable state. If the \mathbf{Q} output is then used to trigger a digital scope set to infinite persistence the $\overline{\bar{Q}}$ output will build a waveform. An experiment was run by continuously operating the devices in the region where metastability will occur.

When the device-under-test is a 74F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Fig. 2.

Fig. 2 shows dearly that the $\overline{\mathrm{Q}}$ output can vary
in time with respect to the Q trigger point. This also implies that the Q or $\overrightarrow{\mathrm{Q}}$ output waveshapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5 volt line in the upper right hand quadrant. These show that the \bar{Q} output
did not change state even though the Qoutput glitched to at least 1.5 volts, the trigger point of the scope.
When the device-under-test is a metastable immune part, such as the 74F5074, the waveform will appear as in Fig. 3. The 74F5074 $\overline{\mathrm{Q}}$ output will not vary with respect to the Q trigger point even when the part is driven into a metastable state. Any tendency towards internal metastability is resolved by Signetics

Fig. 1-Test Set up
COMPARISON OF METASTABLE IMMUNE AND NON-IMMUNE CHARACTERISTICS

Fig. 2-74F74 \bar{Q} output triggered by Q output, setup and hold times violated

Time base $=2.00 \mathrm{~ns} /$ div Trigger level $=1.5$ Volts Trigger slope $=$ positive
Fig. 3-74F5074 $\overline{\mathbf{Q}}$ output triggered by Q output, setup and hold times violated
patented circuitry. If a metastable event occurs within the flop the only outward manifestation of the event will be an increased Clock-to-Q/ $\overline{\mathrm{Q}}$ propagation delay. This propagation delay is, of course, a function of the metastability characteristics of the part defined by τ and T_{0}.

The metastability characteristics of the 74F5074 and related part types represent state-of-the art in TTL technology.
After determining the T_{0} and τ of the flop, cal-
culating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the F5074 for synchronizing asynchronous data that is arriving at 10 MHz (as measured by a frequency counter), has a clock frequency of 50 MHz , and has decided that he would like to sample the output of the F5074 10 nanoseconds after the clock edge.
He simply plugs his numbers into the equation below:

$$
M T B F=e^{(\tau / \tau)} / T_{0} c_{c_{1}}
$$

In this formula, f_{c} is the frequency of the clock, f_{1} is the average input event frequency, and t^{\prime} is the time after the clock pulse that the output is sampled ($t^{\prime}>h, h$ being the normal propagation delay). In this situation the f_{1} will be twice the data frequency or 20 MHz because input events consist of both low and high data transitions. Multiplying f_{1} by f_{c} gives an answer of $10^{15} \mathrm{~Hz}^{2}$. From Fig. 4 it is clear that the MTBF is greater than 10^{10} seconds. Using the above formula the actual MTBF is $1.51 \times 10^{10} \mathrm{sec}$ onds or about 480 years.

MEAN TIME BETWEEN FAILURES (MTBF) versus t'

Fig. 4 MTBF versus t^{\prime} for 74 F5074 at $\tau=135 \mathrm{ps}$ and $\mathrm{T}_{0}=9.8 \times 10^{6} \mathrm{sec}$

Typical values for τ and T_{0} at various $V_{c c} s$ and Temperatures

	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	τ	T_{0}	τ	$\mathrm{~T}_{0}$	τ	$\mathrm{~T}_{0}$
5.5 V	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$
5.0 V	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$
4.5 V	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	175 ps	$7.3 \times 10^{4} \mathrm{sec}$

Flip-Flop/Clock Driver

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS		OPERATING MODE
$\bar{S}_{\text {D }}$	$\overline{\mathbf{R}}_{\text {Dn }}$	$C P_{n}$	D_{n}	Q_{n}	\bar{Q}_{n}	
L	H	X	X	H	L	Asynchronous Set
H	L	x	x	L	H	Asynchronous Reset
L	L	x	X	H	H	Undetermined*
H	H	\uparrow	h	H	L	Load "1"
H	H	\uparrow	1		H	Load "0"
H	H	1	X	NC	NC	Hold
$\mathrm{H}=$ High voltage level $h=$ High voltage level one setup time prior to Low-to-High clock transition $\mathrm{L}=$ Low voltage level I= Low voltage level one setup time prior to Low-to-High clock transition $N C=$ No change from the previous setup $X=$ Don't care						
```i= Low-to-High dock transition f=Not a Low-to-High dock transition * = This setup is unstable and will change when either Set or Reset return to the High level.```						

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$V_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$I_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UMITS			UNIT
			Min	Nom	Max	
$V_{c c}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}$	High-level input voltage		2.0			V
$\mathrm{V}_{\mathrm{IL}}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\mathrm{K}}$	Input clamp current				-18	mA
${ }^{1} \mathrm{OH}$	High-level output current	$\mathrm{V}_{\mathrm{Cc}^{ \pm 10 \%}}$			-12	mA
		$\mathrm{v}_{\text {cc }}{ }^{ \pm 5 \%}$			-15	mA
$\mathrm{I}_{\mathrm{OL}}$	Low-level output current				20	mA
$\mathrm{T}_{\mathrm{A}}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{\text {IL }}=M A X, \\ & V_{I H}=M I N \end{aligned}$	${ }^{\prime} \mathrm{OH}=-12 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7	3.4				V			
			${ }^{1} \mathrm{OH}=-15 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0				$V$			
$v_{\alpha}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% V_{C C}$		0.30	0.50	V			
			$\pm 5 \% V_{\text {cc }}$			0.30	0.50	V				
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{K}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current		$V_{C C}=$ MAX,	2.7 V				20	$\mu \mathrm{A}$			
IIL	Low-level input current	$\mathrm{D}_{n}$	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$			
		$C P_{n}, \bar{S}_{D n}, \bar{R}_{D n}$						-20	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$			-60		-150	mA			
${ }^{\text {cc }}$	Supply current ${ }^{4}$ (total)		$V_{C C}=M A X$				20	30	mA			

## NOTES:

1. For conditions shown as MiN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $\mathrm{l}_{\text {OS }}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately refiect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. Measure $I_{C C}$ with the clock input grounded and all outputs open, then with $Q$ and $\bar{Q}$ outputs High in turn.

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LMMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathbf{V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$f_{\text {MAX }}$	Maximum dock frequency	Waveform 1	105	120		85		MHz
$\begin{aligned} & { }^{t_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\bar{S}_{D n}, \bar{R}_{D n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	Waveform 2	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
${ }^{\text {P }}$ S	Propagation delay Skew ${ }^{1,3}$	Waveform 4			1.0		1.0	ns
${ }^{\text {tos }}$	Output to output Skew ${ }^{2,3}$	Waveform 4			1.5		1.5	ns

NOTE:

1. | $L_{\text {PLH }}$ actual - $t_{\text {PHI }}$ actual | for any output.
2. I $t_{\text {PN }}$ actual - $\mathrm{L}_{\text {PM }}$ actual | for any output compared to any other output where N and M are either LH or HL.
3. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{\mathrm{CC}}$, loading, etc.,)

## AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \\ & \hline \end{aligned}$	Setup time, High or Low $D_{n} \text { to } C P_{n}$	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$			2.0 2.0		ns
$t_{n}(\mathrm{H})$ $t_{h}(\mathrm{~L})$	Hold time, High or Low $D_{n}$ to $C P_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.5 1.5		ns
$\begin{aligned} & \mathrm{t}^{(\mathrm{H})} \\ & \mathrm{w}^{(\mathrm{L})} \end{aligned}$	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			3.0   4.5		ns
$t_{w}(L)$	$\bar{S}_{D_{n}}$ or $\overline{\mathrm{R}}_{\mathrm{D}_{n}}$ Pulse width, Low	Waveform 2	3.0			4.0		ns
$\mathrm{t}_{\mathrm{tEC}}$	Recovery time $\bar{S}_{D_{n}}$ or $\overline{\mathrm{A}}_{D_{n}}$ to $C P_{n}$	Wavelorm 3	3.0			3.5		ns

AC WAVEFORMS


## TEST CIRCUIT AND WAVEFORMS



Test Circult For Totem-Pole Outputs
DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

Document No.	$853-1409$
ECN No.	98304
Date of issue	December 13, 1989
Status	Product Specification
FAST Products	

FEATURES

- TTL inputs
- Output enable control
- High current source and sink capability
- Matched propagation delay times ( $t_{\text {PLH }}, t_{\text {PHL }}$ )
- Symmetrical rise and fall times
- ESD protection greater than 2000 volts
- Single +5V supply
- Surface mount package


## APPLICATIONS

- High speed serial data communication
- Fiber optic data links
- Local area and metropolitan area networks
- Digital Television
- PBX systems

ASSOCIATED PRODUCTS

- NE 5210/11/12 transimpedance amplifiers
- NE5214/5217 postamplifiers with link status indicator
- 74F5302 dual fiber optic LED driver
PIN CONFIGURATION



## FAST 74F5300

Fiber Optic LED Driver

TYPE	TYPICAL PROPAGATION   DELAY	TYPICAL SUPPLY CURRENT   (TOTAL)
74 F 5300	2.5 ns	8.0 mA

ORDERING INFORMATION

COMMERCIAL RANGE   PACKAGES   $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
8-Pin Plastic DIP	74 F 5300 N
8-Pin Plastic SO	74 F 5300 D

## INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.)   HIGH/LOW	LOADVALUE   HIGH/LOW
Input	Data input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Enable	Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Output	Current driver output	$8000 / 266.6$	$160 \mathrm{~mA} / 160 \mathrm{~mA}$

## NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

## DESCRIPTION

The 74F5300 is a LED driver designed for use in fiber optics links. The 74F5300 is ideally suited for use in high speed optical high transmitter systems.

The TTL input buffer accepts TTL data. A logic High on the Enable pin enables the buffer to drive the output driver amplifier. The Linearizing Circuit ensures a constant propagation delay for $\mathrm{t}_{\text {PLH }}$ and
$t_{\text {PHL }}$, and controls the rise and fall times. The output driver amplifier is capable of sourcing more than 160 mA and sinking more than 160 mA at low impedances. The high current output driver has been designed to deal with transmission line effects of high speed switching systems with fast rising and falling edges. The performance of the system can be enhanced by matching impedance at the output for proper termination.It exhibits closely matched propagation delays

## LOGIC DIAGRAM



## Fiber Optic LED Driver

( $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{P}, \mathrm{H}}$ ) and symmetrical rise and fall times. the resulting optical waveform has minimal Duty Cycle Distortion (DCD). When used with the external pre-bias and pre-charging circuits, the response can be tailored to a specific LED to eliminate
any overshoot and to minimize the long fall response.

Additionally, this part can be used as the transmiter in a complete fiber optic system when combined with any of the

NE5210/5211/5212 preamplifiers and NE5214/5217 preamplifiers for the optical receiver. Please refer to applications note AN1121 in the Signetics Fiber Optic Communication Data Book for more specific applications information.

## APPLICATION


$50 \mathrm{Mb} / \mathrm{s}$ Optical Transmitter
ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device.

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage	-0.5 to +7.0	$V$
$\mathrm{V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$V_{\text {out }}$	Voltage applied to output in High output state	-0.5 to $+V_{\text {cC }}$	$\checkmark$
Iout	Current applied to output in Low output state	240	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{H}}$	High-level input voltage	2.0			$V$
$V_{1}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\mathrm{IK}}$	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH}}$	High-level output current			-160	mA
$\mathrm{l}_{\mathrm{OL}}$	Low-level output current			160	mA
$\mathrm{T}_{\mathrm{A}}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

December 13, 1989

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{c C}=M I N \\ & V_{I L}=M A X \\ & V_{I H}=M I N \end{aligned}$	${ }^{\mathrm{OH}}{ }^{\prime}=-80 \mathrm{~mA}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.8	3.3			3.9	V			
			$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	3.0	3.3			3.6	V			
			$\mathrm{IOH}=-160 \mathrm{~mA}$	$\pm 10 \% V_{c c}$	2.0				$\checkmark$			
$v_{o}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N \\ & V_{1 L}=M A X \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V			
			${ }^{\prime}{ }_{\text {O }}=120 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.45	0.60	V				
			$\mathrm{l}_{\mathrm{OL}}=160 \mathrm{~mA}$	$\pm 10 \% V_{C C}$		0.55	0.80	V				
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage			$\mathrm{V}_{\text {CC }}=\mathrm{MiN}, \mathrm{I}_{1}=\mathrm{I}_{\text {IK }}$				-0.73	-1.2	V		
I	Input current at maximum input voltage			$\mathrm{V}_{\text {cc }}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$		
$\mathrm{I}_{14}$.	High-level input current		$\mathrm{V}_{\text {cc }}=$ MAX, $\mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
ILL	Low-level input current		$V_{c c}=$ MAX	$=0.5 \mathrm{~V}$				-0.6	mA			
${ }^{\text {cc }}$	Supply current (total)	${ }^{\mathrm{CCH}}$	$V_{C C}=M A X$				4.0	12	mA			
		${ }^{\mathrm{CCL}}$					10.5	22	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. The device is not short circuit protected.

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LMMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=100 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=100 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & { }^{\mathrm{P}_{\mathrm{PLH}}} \\ & { }^{\mathrm{T}} \mathrm{PHL} \end{aligned}$	Propagation delay Input or Enable to Output	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{D}_{\text {tpw }}$	Pulse width distortion ${ }^{1}$	Frequency $=10 \mathrm{MHz}$		0.8	1.2		1.8	ns
${ }^{\text {t }}$ PS	Propagation delay Skew ${ }^{2,4}$	Waveform 2		0.7	1.2		1.3	ns
${ }^{\text {tras }}$	Rise and Fall time Skew ${ }^{3,4}$			0.6	1.5		1.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{THL}} \\ & \mathrm{~L}_{\mathrm{LLH}} \end{aligned}$	Fall time $90 \%$ to $10 \%$ Rise time $10 \%$ to $90 \%$	Test circuits and Waveforms	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	ns

## NOTE:

1. $D_{\text {tow }}$ is defined as the difference between input pulse width and output pulse width ( 0 to 3 voit input swing and $50 \%$ duty cycle).
2. $\mid t_{\mathrm{PLH}}$ actual - $\mathrm{t}_{\mathrm{PHL}}$ actual |.
3. It TLH actual - $\mathrm{t}_{\text {THL }}$ actual I.
4. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{\mathrm{cc}}$, loading, etc.).

## Fiber Optic LED Driver

## AC WAVEFORMS



Waveform 1. Propagation Delay for Input to Output


Waveform 2. Propagation Delay Skew

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.

TYPICAL $\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}\right) \mathrm{V}_{\mathrm{OL}}$ VERSUS $\mathrm{I}_{\mathrm{OL}}$ FOR VARIOUS TEMPERATURES


## Fiber Optic LED Driver

TYPICAL $\left(\mathrm{V}_{\mathrm{cC}}=5.0 \mathrm{~V}\right) \mathrm{V}_{\mathrm{OH}}$ VERSUS $\mathrm{I}_{\mathrm{OH}}$ FOR VARIOUS TEMPERATURES


## TEST CIRCUIT AND WAVEFORMS



Signetics

Document No.	$853-1410$
ECN No.	98485
Date of issue	January 8,1990
Status	Product Specification
FAST Products	

## FEATURES

- TTL inputs
- Output enable control
- High current source and sink capability
- Matched propagation delay times ( $t_{\text {PLH }}, t_{\text {PHL }}$ )
- Symmetrical rise and fall times
- ESD protection greater than 2000 volts
- Single +5 V supply
- Surface mount package


## APPLICATIONS

- High speed serlal data communication
- Fiber optic data links
- Local area and metropolitan area networks
- Digital Television
- PBX systems


## ASSOCIATED PRODUCTS

- NE 5210/11/12 transimpedance amplifiers
- NE5214/5217 postamplifiers with link status indicator
- 74F5300 fiber optic LED driver


## DESCRIPTION

The 74F5302 is a dual LED/ Clock driver designed for use in fiber optics links. The 74F5302 is ideally suited for use in high speed optical high transmitter systems. It is also ideal for use as a clock driver.

## FAST 74F5302

## Fiber Optic Dual LED /Clock Driver

TYPE	TYPICAL PROPAGATION   DELAY	TYPICAL SUPPLY CURRENT   (TOTAL)
$74 F 5302$	2.5 ns	8.0 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE   $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	74 F 5302 N
14-Pin Plastic SO	74 F 5302 D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION   HIGH/LOW	LOADVALUE   HIGH/LOW	
$D_{n a}, D_{n b}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$Q_{n}$	Current driver outputs	$8000 / 266.6$	$160 \mathrm{~mA} / 160 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

The TTL input buffer accepts TTL data. The Linearizing Circuit ensures a constant propagation delay for $\mathrm{t}_{\mathrm{P}, \mathrm{H}}$ and $\mathrm{t}_{\mathrm{PHL}}$, and controls the rise and fall times. The output driver amplifier is capable of sourcing more than 160 mA and sinking more than 160 mA at low impedances. The high current output driver has been designed to deal with transmission line effects of high speed switching systems with fast rising and falling edges. The performance of the system can be enhanced by matching impedance at the output for proper termination.It exhibits closely matched propagation delays ( $\mathrm{t}_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{PLH}}$ ) and symmetrical rise and fall times. The resulting
optical waveform has minimal Duty Cycle Distortion (DCD). When used with the external pre-bias and pre-charging circuits, the response can be tailored to a specific LED to eliminate any overshoot and to minimize the long fall response.

Additionally, this part can be used as the transmiter in a complete fiber optic system when combined with any of the NE5210/5211/5212 preamplifiers and NE5214/5217 preamplifiers for the optical receiver. Please refer to applications note AN1121 in the Signetics Fiber Optic Communication Data Book for more specific applications information.

PIN CONFIGURATION


LOGIC DIAGRAM (One driver)


## APPLICATION



ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {I }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	240	mA
$T_{\text {A }}$	Operating tree-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LMITS			UNIT
		Min	Nom	Max	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage	4.5	5.0	5.5	$v$
$\mathrm{V}_{\mathrm{H}}$	High-level input voltage	2.0			$V$
$\mathrm{V}_{\mathrm{L}}$	Low-level input voltage			0.8	V
$\mathrm{I}_{\mathrm{IK}}$	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH}}$	High-level output current			-160	mA
$\mathrm{I}_{\mathrm{OL}}$	Low-level output current			160	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)


## NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. The device is not short circuit protected.

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=100 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=100 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $D_{n a}, D_{n b} \text { to } Q_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	ns
$\mathrm{D}_{\text {tpw }}$	Pulse width distortion ${ }^{1}$	Frequency $=10 \mathrm{MHz}$		0.8	1.2		1.8	ns
${ }^{\text {t }}$ PS	Propagation delay Skew ${ }^{2,4}$	Waveform 2		0.8	1.2		1.3	ns
${ }^{\text {tras }}$	Rise and Fall time Skew ${ }^{\text {3,4 }}$			0.3	1.5		2.0	ns
tos	Output to output Skew ${ }^{4}$			0.9	1.3		1.6	ns
$\begin{aligned} & \mathbf{t}_{\text {THL }} \\ & \mathbf{t}_{\text {TLH }} \\ & \hline \end{aligned}$	Fall time $90 \%$ to $10 \%$ Rise time 10\% to $90 \%$	Test circuits and Waveforms	$\begin{aligned} & 1,0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	ns

## NOTES:

1. $D_{\text {tpw }}$ is defined as the difference between input pulse width and output pulse width ( 0 to 3 volt input swing and $50 \%$ duty cycle).
2. I $\mathrm{P}_{\mathrm{PLH}}$ actual - $\mathrm{t}_{\text {PHL }}$ actual $\mid$.
3. | $\mathrm{t}_{\text {THH }}$ actual - $\mathrm{t}_{\text {THL }}$ actual 1 .
4. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{\mathrm{cc}}$, loading, etc.,).

## AC WAVEFORMS



Waveform 1. Propagation Delay for Input to Output


Waveform 2. Propagation Delay Skew

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.


Fiber Optic LED Driver

TYPICAL $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \mathrm{V}_{\mathrm{OH}}$ VERSUS $\mathrm{I}_{\mathrm{OH}}$ FOR VARIOUS TEMPERATURES


## Fiber Optic LED Driver

## TEST CIRCUIT AND WAVEFORMS



Signetics

Document No.	$853-1120$
ECN No.	
Date of issue	June 12, 1990
Status	Product Specification
FAST Products	

## FEATURES

- Octal Latched Transceiver
- Drives heavily loaded backplanes with equivalent load impedances down to 10 ohms
- High drive ( 100 mA ) open collector drivers on B-port
- Reduced voltage swing (1 volt) produces less noise and reduces power consumption
- High speed operation enhances performance of backplane buses and facilitates incident wave switching
- Compatible with IEEE 896 Futurebus Standard
- Built-in precision band-gap reference provides accurate receiver thresholds and improved noise immunity
- Controlled output ramp and multiple GND pins minimize ground bounce
- Glitch-free power up / power down operation


## DESCRIPTION

The 74F8960 and 74F8961 are octal bidirectional latched transceivers and are intended to provide the electrical interface to a high performance wired-OR bus. The B port inverting drivers are low-capacitance open collector with controlled ramp and are designed to sink 100 mA from 2 volts. The B port receivers have a 100 mV threshold region and a 4 ns glitch filter.

The B port interfaces to 'Backplane Transceiver Logic' (BTL). BTL features a re-

## FAST 74F8960, 74F8961

## Futurebus Transceivers

## 74F8960-Octal Latched Bidirectional Futurebus Transceiver, INV (OC) 74F8961-Octal Latched Bidirectional Futurebus Transceiver, NINV (OC)

TYPE	TYPICAL PROPAGATION   DELAY	TYPICAL SUPPLY CURRENT   (TOTAL)
74 F 8960	6.5 ns	80 mA
74 F 8961	6.5 ns	80 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE      $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
28 -Pin Plastic DIP $(600 \mathrm{mil})^{1}$	N74F8960N, N74F8961N
28 -Pin PLCC ${ }^{1}$	N74F8960A, N74F8961A

NOTE:

1. Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$.   HIGH/LOW	LOADVALUE   HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	PNP latched inputs	$3.5 / 0.0117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs with threshold circuitry	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
OEA	A Output Enable input (active High)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{OEB}} \mathrm{B}_{0}, \overline{\mathrm{OEB}}_{1}$	B Output Enable inputs (active Low)	$1.0 / 10.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{LE}}$	Latch Enable input (active Low)	$1.0 / / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Open Collector outputs	$\mathrm{OC} / 166.7$	$\mathrm{OC} / 100 \mathrm{~mA}$

NOTES:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

- $\mathcal{O}=$ Open Collector
duced (1V) voltage swing for lower power consumption and a series diode on the drivers to reduce capacitive loading ( $<5 \mathrm{pF}$ ).

Incident wave switching is employed, therefore BTL propagation delays are short. Although the voltage swing is much less for BTL, so is its receiver threshold region, therefore noise margins are excellent.
BTL offers low power consumption, low
ground bounce, EMI and crosstalk, low capacitive loading, superior noise margin and low propagation delays. This results in a high bandwidth, reliable backplane.
The 74F8960 and 74F8961 A ports have TTL 3-State drivers and TTL receivers with alatchfunction. A separate High level control input $\left(V_{X}\right)$ is provided to limit the $A$ port output level to a given voltage level (such as 3.3 V ). For 5.0 V systems, $\mathrm{V}_{\mathrm{x}}$ is simply tied to $V_{C C}$.

74F8961 is the non-inverting version of $74 F 8960$.

PIN CONFIGURATION DIP


## PIN CONFIGURATION



PIN CONFIGURATION PLCC


PIN CONFIGURATION PLCC


LOGIC SYMBOL


LOGIC SYMBOL


PIN DESCRIPTION

SYMBOL	PINS	TYPE	NAME AND FUNCTION
$\mathrm{A}_{0}-\mathrm{A}_{7}$	$3,5,6,7,9,10,12,13$	I/O	PNP latched input / 3-state output (with $\mathrm{V}_{\mathrm{X}}$ control option)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	$27,26,24,23,21,20,19,17$	I/O	Data input with special threshold circuitry to reject noise / Open Collector output,   High current drive
$\overline{\mathrm{OEB}}_{0}$	15	Input	Enables the B outputs when both pins are Low
$\overline{\mathrm{OEB}}_{1}$	16	Input	
$\overline{\mathrm{OEA}}$	2	Input	Enables the $A$ outputs when High
$\overline{\mathrm{LE}}$	28	Input	Latched when High (a special delay feature is built in for proper enabling times)
$\mathrm{V}_{\mathrm{X}}$	14	Input	Clamping voltage keeping $\mathrm{V}_{\mathrm{OH}}$ from rising above $\mathrm{V}_{\mathrm{X}}\left(\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}}\right.$ for normal use)

## Futurebus Transceivers

FAST 74F8960, 74F8961

LOGIC DIAGRAM 74F8960


LOGIC DIAGRAM 74F8961


FUNCTION TABLE 74F8960

INPUTS						LATCH STATE	OUTPUTS		MODE
$\mathrm{A}_{\mathrm{n}}$	$\mathrm{B}_{\mathrm{n}}{ }^{\text { }}$	$\overline{\text { LE }}$	OEA	$\overline{\mathrm{OEB}}_{0}$	$\overline{O E B}_{1}$		$\mathrm{A}_{\mathrm{n}}$	$B_{n}$	
H	X	L	L	L	L	H	Z	L	A 3-state, Data from A to B
L	X	L	L	L	L	L	Z	$\mathrm{H}^{*}$	
X	X	H	L	L	L	Q	Z	$\bar{Q}_{n}$	A 3-state, Latched data to $B$
-	-	L	H	L	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	H	H	H	L	L	$L^{(2)}$	L	$\mathrm{Z}^{(2)}$	Preconditioned Latch enabling data transfer from B to A
-	L	H	H	L	L	$L^{(2)}$	H	$Z^{(2)}$	
-	-	H	H	L	L	$Q_{n}$	$\overline{\mathrm{Q}}_{\mathrm{n}}$	$\overline{\mathrm{O}}_{n}$	Latch state to A and B
H	X	L	$L$	H	X	H	Z	Z	B and A 3-state
L	X	L	L	H	X	L	Z	Z	
X	X	H	L	H	X	$\mathrm{Q}_{\mathrm{n}}$	Z	Z	
-	H	L	H	H	$x$	H	$L$	Z	B 3-state, Data from B to A
-	L	L	H	H	X	1	H	Z	
-	H	H	H	H	X	$\mathrm{Q}_{\mathrm{n}}$	L	Z	
-	L	H	H	H	X	$Q_{n}$	H	Z	
H	X	L	L	X	H	H	Z	Z	B and A 3-state
L	X	L	L	X	H	L	Z	$z$	
X	X	H	L	X	H	$\mathrm{Q}_{\mathrm{n}}$	z	Z	
-	H	L	H	X	H	H	L	z	B 3-state, Data from B to A
-	L	L	H	X	H	L	H	Z	
-	H	H	H	X	H	$\mathrm{Q}_{\mathrm{n}}$	L	Z	
-	L	H	H	X	H	$Q_{n}$	H	2	

$\mathrm{H}=$ High voltage level
$L=$ Low voltage level
$X=$ Don't care

- = Input not externally driven
$Z=$ High Impedance (off) state
$Q_{n}=$ High or Low voltage level one setup time prior to the Low-to-High $\overline{\mathrm{LE}}$ transition
$(1)=$ Condition will cause a feedback loop path; $A$ to $B$ and $B$ to $A$
$(2)=$ The latch must be preconditioned such that $B$ inputs may assume a High or Low level while $\overline{\mathrm{OEB}}_{0}$ and $\overline{\mathrm{OEB}}_{1}$ are Low and $\overline{L E}$ is High.
$\mathrm{H}^{* *}=$ Goes to level of pullup voltage.
$B^{*}=$ Precaution should be taken to insure B inputs do not float. If they do they are equal to Low state.

FUNCTION TABLE. 74F8961

INPUTS						LATCH STATE	OUTPUTS		MODE
$A_{n}$	$\mathrm{B}_{n}{ }^{*}$	$\overline{\text { LE }}$	OEA	$\overline{O E B}_{0}$	$\overline{O E B}_{1}$		$\mathrm{A}_{\mathrm{n}}$	$\mathrm{B}_{\mathrm{n}}$	
H	X	L	L	L	L	H	Z	$\mathrm{H}^{*}$	A 3-state, Data from A to B
L	X	L	L	L	L	L	Z	L	
X	X	H	L	L	L	$Q_{n}$	Z	$\mathrm{O}_{n}$	A 3-state, Latched data to $B$
-	-	L	H	L	L	(1)	(1)	(1)	Feedback: A to B, B to A
-	H	H	H	L	L	$H^{(2)}$	H	$\mathrm{Z}^{(2)}$	Preconditioned Latch enabling data transfer from $B$ to $A$
-	L	H	H	L	L	$H^{(2)}$	L	$z^{(2)}$	
-	-	H	H	L	L	$\mathrm{Q}_{\mathrm{n}}$	$Q_{n}$	$Q_{n}$	Latch state to $A$ and $B$
H	X	L	L	H	X	H	Z	Z	B and A 3-state
L	X	L	L	H	X	L	Z	Z	
X	X	H	L	H	X	$\mathrm{Q}_{\mathrm{n}}$	Z	Z	
-	H	L	H	H	X	H	H	Z	B 3-state, Data from B to A
-	L	L	H	H	X	L	L	Z	
-	H	H	H	H	X	$Q_{n}$	H	Z	
-	L	H	H	H	X	$Q_{n}$	L	2	
H	X	L	L	X	H	H	Z	2	B and A 3-state
L	X	L	$L$	X	H	L	Z	Z	
X	X	H	L	X	H	$Q_{n}$	Z	Z	
-	H	L	H	X	H	H	H	Z	B 3-state, Data from B to A
-	L	L	H	X	H	L	L	2	
-	H	H	H	X	H	$\mathrm{Q}_{\mathrm{n}}$	H	Z	
-	L	H	H	X	H	$Q_{n}$	L	$z$	

H = High voltage level
L = Low voltage level
$\mathrm{X}=$ Don't care

- = Input not externally driven

Z = High Impedance (off) state
$Q_{\mathrm{n}}=$ High or Low voltage level one setup time prior to the Low-to-High $\overline{L E}$ transition
(1) $=$ Condition will cause a feedback loop path; A to B and B to A
(2) $=$ The latch must be preconditioned such that B inputs may assume a High or Low level while $\overline{\mathrm{OEB}}_{0}$ and $\overline{\mathrm{OEB}}_{1}$ are Low and $\overline{\mathrm{LE}}$ is High.
$H^{* *}=$ Goes to level of pullup voltage.
$B^{*}=$ Precaution should be taken to insure $B$ inputs do not float. If they do they are equal to Low state.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\mathrm{X}}$	Threshold control		-0.5 to +7.0	V
$\mathrm{V}_{\mathrm{IN}}$	Input voltage	$\overline{O E B}_{n}, O E A, \overline{L E}$ $A_{0}-A_{7}, B_{0}-B_{7}$	-0.5 to +7.0 -0.5 to 5.5	V
$\mathrm{I}_{\text {IN }}$	Input current		-40 to +5	mA
$V_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+\mathrm{V}_{\text {CC }}$	V
Iout	Current applied to output in Low output state	$\mathrm{A}_{0}-\mathrm{A}_{7}$ $\mathrm{~B}_{0}-\mathrm{B}_{7}$	48 200	mA
$\mathrm{T}_{\mathrm{A}}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{H}}$	High-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{7}$	2.0			v
		$\mathrm{B}_{0}-\mathrm{B}_{7}$				
$\mathrm{v}_{\mathrm{l}}$	Low-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{7}$			0.8	v
		$\mathrm{B}_{0}-\mathrm{B}_{7}$			1.475	
$\mathrm{I}_{\mathrm{IK}}$	Input clamp current	Except $\mathrm{A}_{0}-\mathrm{A}_{7}$			-18	mA
		$\mathrm{A}_{0}-\mathrm{A}_{7}$			-40	
${ }^{\text {I }} \mathrm{OH}$	High-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			-3	mA
Iol	Low-level output current	$\mathrm{A}_{0}-\mathrm{A}_{7}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{7}$			100	
TA	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			Min	Typ ${ }^{2}$	Max					
${ }^{\mathrm{OH}}$	High level output current	$B_{0}-B_{7}$			$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$,	$\mathrm{V}_{\mathrm{IH}}=\mathrm{MiN}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$
Ioff	Power-off output current	$\mathrm{B}_{0}-\mathrm{B}_{7}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LL}}=\mathrm{MAX}, \mathrm{V}^{\text {d }}$	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$		
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage	$A_{0}-A_{7}^{4}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{CC}}$	2.5		$\mathrm{V}_{\mathrm{CC}}$	V		
				$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{X}}=3.13 \mathrm{~V} \& 3.47 \mathrm{~V} \end{aligned}$	2.5		$\mathrm{V}_{\mathrm{x}}$	V		
$\mathrm{V}_{\mathrm{OL}}$	Low-level output voltage	$A_{0}-A_{7}{ }^{4}$	$\begin{aligned} & V_{C C}=M I N, V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{cc}}$			0.5	V		
		$B_{0}-B_{7}$	$\begin{aligned} & V_{C C}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$			1.15	V		
				$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	0.40			V		
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=\overline{M I N}, I_{1}=I_{1 K}$				-0.5	$\checkmark$		
		Except $A_{0}-A_{7}$	$V_{C C}=$ MIN, $I_{1}=I_{\mathbb{K}}$				-1.2	$\checkmark$		
1	Input current at maximum input voltage	$\overline{O E B}_{n}$, OEA, $\overline{L E}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{1}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
		$\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA		
${ }^{1}{ }_{1 H}$	High-level input current	$\overline{O E B}_{n}$, OEA, $\overline{L E}$	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}, B_{n}-A_{n}=0 \mathrm{~V}$				20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$V_{c c}=M A X, V_{1}=2.1 \mathrm{~V}$				100	$\mu \mathrm{A}$		
IIL	Low-level input current	$\overline{O E B}_{n}$, OEA, $\overline{L E}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$				-20	$\mu \mathrm{A}$		
		$\mathrm{B}_{0}-\mathrm{B}_{7}$	$V_{C C}=$ MAX, $V_{1}=0.3 \mathrm{~V}$				-100	$\mu \mathrm{A}$		
$\begin{gathered} \mathrm{T}_{\mathrm{OZH}} \\ +\mathrm{I}_{\mathrm{H}} \end{gathered}$	Off-state output current, High-level voltage applied	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$V_{C C}=M A X, V_{O}=2.7 \mathrm{~V}$				70	$\mu \mathrm{A}$		
$\begin{gathered} \mathrm{OZZ} \\ +\mathrm{I}_{\mathrm{IL}} \end{gathered}$	Off-state output current, Low-level voltage applied	$A_{0}-A_{7}$	$V_{C C}=M A X, V_{O}=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$		
${ }^{1} \mathrm{x}$	High-level control current		$\begin{aligned} & V_{C C}=M A X, V_{X}=V_{C C}, \overline{L E}=O E A=\overline{O E B_{n}}=2.7 \mathrm{~V}, \\ & A_{0}-A_{7}=2.7 \mathrm{~V}, B_{0}-B_{7}=2.0 \mathrm{~V} \end{aligned}$		-100		100	$\mu \mathrm{A}$		
			$\begin{aligned} & V_{C C}=M A X, V_{X}=3.13 \mathrm{~V} \& 3.47 \mathrm{~V}, \overline{L E}=O E A=2.7 \mathrm{~V}, \\ & O E B_{n}=A_{0}-A_{7}=2.7 \mathrm{~V}, B_{0}-B_{7}=2.0 \mathrm{~V} \end{aligned}$		-10		10	mA		
'os	Short-circuit output current ${ }^{3}$	$A_{0}-A_{7}$ only	$V_{C C}=M A X, B_{n}=1.6 \mathrm{~V}$,	$O E A=2.0 \mathrm{~V}, \overline{\mathrm{OEB}}_{\mathrm{n}}=2.7 \mathrm{~V}$	-60		-150	mA		
${ }^{1} \mathrm{cc}$	Supply current (total)	${ }^{\text {CCH }}$	$V_{C C}=M A X$			70	100	mA		
		${ }^{\text {CCLL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$			100	145	mA		
		${ }^{\text {c ccz }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$			80	100	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. Unless otherwise specified, $V_{X}=V_{C C}$ for all test conditions.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $\mathrm{I}_{\mathrm{OS}}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. Due to test equipment limitations, actual test conditions are for $\mathrm{V}_{\mathrm{IH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}$.

## AC ELECTRICAL CHARACTERISTICS for 74F8960

SYMBOL	PARAMETER	TEST CONDITION	A PORT LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{t} \text { PHL }} \end{aligned}$	Propagation delay B to A	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.0 \end{aligned}$	ns
${ }^{\mathrm{t}_{\mathrm{t}}^{\mathrm{t}} \mathrm{PZL}}$	Output Enable time from High or Low OEA to A	Waveform 4.5	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 12.0 \end{aligned}$	$\begin{array}{r} 14.5 \\ 14.5 \end{array}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 17.0 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & { }^{\mathrm{t}_{\mathrm{PLLZ}}} \end{aligned}$	Output Disable time to High or Low OEA to A	Waveform 4.5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 4.5 \\ 4.5 \end{array}$	$\begin{aligned} & 7.0 \\ & 75 \end{aligned}$	2.0 2.0	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
	PARAMETER	TEST CONDITION	B PORT LIMITS					UNIT
SYMBOL			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{D}=30 \mathrm{pF} \\ R_{U}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation delay A to B	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$4.0$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	2.0 3.0	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{L E}$ to $B$	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Enable/disable time $\overline{O E B}_{n}$ to $B$	Waveform 1, 2	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{TLH}}} . \end{aligned}$	Transition time, B Port 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test Circuit and Waveforms	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	0.5 0.5	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns

## AC SETUP REQUIREMENTS for 74F8960

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Set-up time $A$ to $\overline{L E}$	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$	Hold time   A to $\overline{L E}$	Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
${ }_{\text {t }}$ (L)	LEE pulse width, Low	Waveform 3	6.0			6.0		ns

Futurebus Transceivers
FAST 74F8960, 74F8961

AC ELECTRICAL CHARACTERISTICS for 74F8961

SYMBOL	PARAMETER	TEST CONDITION	A PORT LMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & { }_{\mathrm{t}}^{\mathrm{PHHL}} \end{aligned}$	Propagation delay B to A	Waveform 1, 2	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	7.5 7.5	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	5.0 6.0	$\begin{aligned} & 12.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{pZI}} \end{aligned}$	Output Enable time from High or Low OEA to A	Waveform 4.5	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	10.5 12.0	$\begin{aligned} & 14.5 \\ & 14.5 \end{aligned}$	7.5 8.5	$\begin{aligned} & 15.5 \\ & 17.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & { }_{\mathrm{t}}^{\mathrm{t} \mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable time to High or Low OEA to A	Waveform 4.5	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	4.5 4.5	7.0 7.5	2.0 2.0	7.5 8.0	ns
SYMBOL	PARAMETER	TEST CONDITION	B PORT LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathbf{t}_{\text {PLH }} \\ & { }^{\mathrm{t}_{\mathrm{PHL}}} \end{aligned}$	Propagation delay $A$ to $B$	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	2.0 3.0	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{L E}$ to $B$	Waveform 1, 2	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Enable/disable time $\overline{O E B_{n}}$ to $B$	Waveform 1, 2	$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns
${ }_{\text {THL }}^{\text {tiL }}$	Transition time, B Port 1.3 V to $1.7 \mathrm{~V}, 1.7 \mathrm{~V}$ to 1.3 V	Test Circuit and Waveforms	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns

AC SETUP REQUIREMENTS for 74F8961

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { 10 }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ C_{\mathrm{L}}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{c}}(\mathrm{~L}) \end{aligned}$	Set-up time $A$ to $\overline{\text { LE }}$	Waveform 3	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & i_{h}(H) \\ & i_{h}(L) \end{aligned}$	Hold time $A$ to $\overline{L E}$	Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		ns
( ${ }^{(L)}$	LE pulse width, Low	Waveform 3	6.0			6.0		ns

## AC WAVEFORMS

 To Output


Waveform 3. Data Setup And Hold Times
And LE Pulse Widths


Waveform 4. 3-State Output Enable Time To High Level And Output Disable Time From High Level


Waveform 5 3-State Output Enable Time To Low Level And Output Disable Time From Low Level

NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.
TEST CIRCUIT AND WAVEFORMS


SWITCH POSITION

TEST	SWITCH
$\mathrm{t}^{\mathrm{PLZ}}{ }^{\mathrm{t}}{ }^{\mathrm{PZL}}$   All other	closed   open



DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{D}=$ Load capacitance includes jig and probe capaci-
tance; see AC CHARACTERISTICS for value.
$R_{U}=$ Pull up resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.

Signetics

Document No.	$853-1425$
ECN No.	99390
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

## FEATURES

- Octal Latched Transcelver
- Drives heavily loaded backplanes with equivalent load impedances down to 10 ohms
- High drive ( 100 mA ) open collector drlvers on B-port
- Reduced voltage swing (1 volt) produces less noise and reduces power consumption
- High speed operation enhances performance of backplane buses and facilitates incldent wave switching
- Compatible with IEEE 896 Futurebus Standard
- Built-in precision band-gap reference provides accurate recelver thresholds and Improved noise immunity
- Multiple GND pins minimize ground bounce
- Glitch-free power up / power down operation


## DESCRIPTION

The 74F8962 and 74F8963 are octal bidirectional latched transceivers and are intended to provide the electrical interface to a high performance wired-OR bus. The B port inverting drivers are low-capacitance open collector with controlled ramp and are designed to sink 100 mA from 2 volts. The B port receivers have a 150 mV threshold region.

The Bport interfaces to 'Backplane Transceiver Logic' (BTL). BTL features a reduced (1V) voltage swing for lower power

## FAST 74F8962, 74F8963

## Futurebus Transceivers

## 74F8962 9-Bit Latched Bidirectional Futurebus Transcelver, INV (OC) <br> 74 F8963 9-Bit Latched Bidirectional Futurebus Transcelver, NINV (OC)

TYPE	TYPICAL PROPAGATION   DELAY	MAX SUPPLY CURRENT   (TOTAL)
74 F 8962	6.5 ns	90 mA
74 F 8963	5.5 ns	90 mA

## ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE   $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$
44-Pin Quad Flatpack	N74F8962Y, N74F8963Y
44 -Pin PLCC	N74F8962A, N74F8963A

NOTE 1: Flatpack package is not available at this time.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F($ U.L)   HIGH/LOW	LOADVALUE   HIGH/LOW
$\mathrm{Al}_{0}-\mathrm{Al}_{8}$	PNP latched inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{8}$	Data inputs with threshold circuitry	$5.0 / 0.167$	$100 \mu \mathrm{~A} / 100 \mu \mathrm{~A}$
$\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}$	Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{LEAB}, \overline{\mathrm{LEBA}}}$	Latch Enable inputs (active Low)	$1.0 / 10.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{AO}_{0}-\mathrm{AO}_{8}$	3-State outputs	$150 / 40$	$3 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{8}$	Open Collector outputs	$\mathrm{OC}^{*} / 166.7$	$\mathrm{OC} * / 100 \mathrm{~mA}$

NOTES:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. OC = Open Collector
consumption and a series diode on the drivers to reduce capacitive loading.

Incident wave switching TO 9 ohm is guaranteed. The voltage swing is much less for BTL, so is its receiver threshold region, therefore noise margins are excellent.
BTL offers low power consumption, low ground bounce, low EMI and crosstalk,
low capacitive loading, superior noise margin and low propagation delays. This results in a high bandwidth, reliable backplane.
The 74F8962 and 74F8963 A ports have TTL 3-State drivers and TTL receivers with a latch function.

74F8963 is the non-inverting version of 74F8962.

PIN CONFIGURATION FLATPACK and PLCC


PIN CONFIGURATION FLATPACK AND PLCC


LOGIC SYMBOL (IEEE/IEC)


LOGIC SYMBOL(IEEE/IEC)


## PIN DESCRIPTION

SYMBOL	PINS	TYPE	NAME AND FUNCTION
$\mathrm{Al}_{0}-\mathrm{Al}_{8}$	$2,4,7,9,11,14,16,19,21$	Input	PNP latched inputs
$\mathrm{B}_{0}-\mathrm{B}_{8}$	$42,40,38,36,34,32,30,28,26$	$1 / \mathrm{O}$	Data input / Open Collector outputs. High current drives.
$\overline{\mathrm{OEAB}}$	25	Input	Output Enable input. Enables the B outputs when Low.
$\overline{\mathrm{OEBA}}$	44	Input	Output Enable input. Enables the A outputs when Low.
$\overline{\mathrm{IEAB}}$	24	Input	Latch Enable input. Enables the $A B$ latches Low.
$\overline{\mathrm{LEBA}}$	43	Input	Latch Enable input. Enables the BA latvches Low
$\mathrm{AO}_{0}-\mathrm{AO}_{8}$	$3,5,8,10,13,15,17,20,22$	Output	TTL 3-state outputs
GND	$6,12,18,27,29,31,33,35,37,39,41$	Ground	Grounds
$\mathrm{V}_{\mathrm{CC}}$	1,23	Power	Positive supply voltages

## Futurebus Transceivers


$V_{C C}=$ Pin 1,23
GND = Pin 6, 12, 18, 27, 29, 31, 33, 35, 37, 39, 41

## Futurebus Transceivers

LOGIC DIAGRAM 74F8963

$v_{C C}=\operatorname{Pin} 1,23$
GND $=\operatorname{Pin} 6,12,18,27,29,31,33,35,37,39,41$

Futurebus Transceivers
FAST 74F8962, 74F8963

FUNCTION TABLE 74F8962

INPUTS						$\begin{aligned} & \text { LATCH } \\ & \text { STATES } \end{aligned}$		OUTPUTS		MODE
Al	$\mathrm{B}_{n}{ }^{\text {\% }}$	LEAB	$\overline{\text { LEBA }}$	$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	AB	BA	$\mathrm{AO}_{n}$	$B_{n}$	
H	H	L	L	H	H	H	H	Z	X	$B$ and $A O$ disabled
L	L	L	L	H	H	L	L	2	X	
X	X	H	H	H	H	$\mathrm{Q}_{\mathrm{n}}$	$\mathrm{Q}_{\mathrm{n}}$	Z	X	
H	-	L	X	L	H	H	$\mathrm{Q}_{\mathrm{n}}$	Z	L	AO 3-state, transparent data from Al to B
L	-	L	X	L	H	L	$Q_{n}$	Z	$\mathrm{H}^{*}$	
X	H	X	L	H	L	$Q_{n}$	H	L	X	$B$ disabled, transparent data from $B$ to $A O$
X	L	X	L	H	L	$Q_{n}$	L	H	$x$	
X	X	H	X	L	H	$Q_{n}$	$\mathrm{O}_{\mathrm{n}}$	2	$\overline{\mathrm{a}}_{n}$	AO 3-state, latched data to $B$
X	X	X	H	H	L	$Q_{n}$	$Q_{n}$	$\bar{\square}_{n}$	X	$B$ disabled, latched data to $A O$
X	X	H	H	L	L	$Q_{n}$	$Q_{n}$	$\bar{Q}_{n}$	$\bar{Q}_{n}$	Latched state to AO and B
H	-	L	L	L	L	H	L	H	L	Read back from $A l$ to $B$ to $A O$ (both latches transparent)
L	-	L	L	L	L	L	H	L	$\mathrm{H}^{*}$	

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care

- $=$ Input not externally driven
$Z=$ High Impedance (OFF) state
$Q_{n}=$ High or Low voltage level one setup time prior to the Low-to-High $\overline{L E X X}$ transition
$\mathrm{H}^{\mathrm{n}}=$ Goes to level of pullup voltage.
$B^{*}=$ Precaution should be taken to insure B inputs do not float. If they do they are equal to Low state.
FUNCTION TABLE 74F8963

INPUTS						LATCH STATES		OUTPUTS		MODE
Al	$\mathrm{B}_{n}{ }^{*}$	LEAB	LEBA	$\overline{\text { OEAB }}$	$\overline{\text { OEBA }}$	AB	BA	$\mathrm{AO}_{\mathrm{n}}$	$B_{n}$	
H	H	L	L.	H	H	L	L	2	X	B and AO disabled
L	L	L	L	H	H	H	H	Z	$x$	
X	X	H	H	H	H	$\overline{\mathrm{a}}_{n}$	$\overline{\mathrm{Q}}_{n}$	Z	X	
H	-	L	X	L	H	L	$\overline{\mathrm{Q}}_{n}$	2	H	AO 3-state, transparent data from Al to B
L	-	L	X	L	H	H	$\overline{\mathrm{Q}}_{n}$	2	$L$	
X	H	X	L	H	L	$\overline{\mathrm{Q}}_{n}$	L	H	$x$	$B$ disabled, transparent data from $B$ to $A O$
X	L	X	L	H	L	$\overline{\mathrm{a}}_{\mathrm{n}}$	H	L	X	
x	X	H	X	L	H	$\overline{\mathrm{Q}}_{n}$	$\overline{\mathrm{Q}}_{\mathrm{n}}$	Z	$\bar{Q}_{n}$	AO 3-state, latched data to B
X	X	X	H	H	L	$\overline{\mathrm{a}}_{n}$	$\overline{\mathrm{O}}_{n}$	$Q_{n}$	$x$	$B$ disabled, latched data to $A O$
X	X	H	H	L	$L$	$\bar{Q}_{n}$	$\overline{\mathrm{Q}}_{n}$	$Q_{n}$	$\mathrm{Q}_{\mathrm{n}}$	Latched state to $A O$ and $B$
H	-	$L$	L	L	L	L	L	H	$\mathrm{H}^{*}$	Read back from $A l$ to $B$ to $A O$ (both latches transparent)
L	-	L	L	$L$	L	H	H	L	L	

H $=$ High voltage level
$\mathrm{L}=$ Low voltage level
$X=$ Don't care
_ $=$ Input not externally driven
$Z=$ High Impedance (OFF) state
$\mathrm{Q}_{\mathrm{n}}=$ High or Low voltage level one setup time prior to the Low-to-High LEXX transition
$H^{n *}=$ Goes to level of pullup voltage.
$B^{*}=$ Precaution should be taken to insure B inputs do not float. If they do they are equal to Low state.

Futurebus Transceivers
FAST 74F8962, 74F8963

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		-0.5 to +7.0	V
$V_{\text {iN }}$	Input voltage	$\overline{\mathrm{OEBA}}, \overline{\mathrm{OEAB}}, \overline{\text { LEBA, }}$, LEAB	-0.5 to +7.0	V
		$\mathrm{A}_{0}-\mathrm{A}_{8}, \mathrm{~B}_{0}-\mathrm{B}_{8}$	-0.5 to +5.5	
$\mathrm{I}_{\text {N }}$	Input current		-40 to +5	mA
$V_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to $+V_{c c}$	V
Iout	Current applied to output in Low output state	$\mathrm{AO}_{0}-\mathrm{AO}_{8}$	48	mA
		$\mathrm{B}_{0}-\mathrm{B}_{8}$	200	
$\mathrm{T}_{\mathrm{A}}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER			LIMITS		UNIT
			Min	Nom	Max	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{HH}}$	High-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{8}$	2.0			V
		$\mathrm{B}_{0}-\mathrm{B}_{8}$	1.62			
$V_{k}$	Low-level input voltage	Except $\mathrm{B}_{0}-\mathrm{B}_{8}$			0.8	V
		$\mathrm{B}_{0}-\mathrm{B}_{8}$			1.47	
$I_{\text {IK }}$	Input clamp current				-18	mA
$\mathrm{I}_{\mathrm{OH}}$	High-level output current	$\mathrm{AO}_{0}-\mathrm{AO}_{8}$			-3	mA
$\mathrm{I}_{\mathrm{OL}}$	Low-level output current	$\mathrm{AO}_{0}-\mathrm{AO}_{8}$			24	mA
		$\mathrm{B}_{0}-\mathrm{B}_{8}$			100	
T ${ }_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

## Futurebus Transceivers

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$	LIMITS			UNIT	
				Min	Typ ${ }^{2}$	Max			
$\mathrm{I}_{\mathrm{OH}}$	High level output	current	$\mathrm{B}_{0}-\mathrm{B}_{8}$		$V_{C C}=$ MAX, $V_{1 L}=M A X, V_{1 H}=M 1 N, V_{O H}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$
$\mathrm{l}_{\text {OfF }}$	Power-off outpu	current	$\mathrm{B}_{0}-\mathrm{B}_{8}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{OH}}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$	
$\mathrm{V}_{\mathrm{OH}}$	High-level outp	voltage	$\mathrm{AO}_{0}-\mathrm{AO}_{8}^{4}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{1 \mathrm{H}}=\mathrm{MIN}, 1_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.5		$\mathrm{v}_{\mathrm{cc}}$	V	
$\mathrm{V}_{\mathrm{OL}}$	Low-level output voltage		$\mathrm{AO}_{0}-\mathrm{AO}_{8}^{4}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.5	V	
			$\mathrm{B}_{0}-\mathrm{B}_{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{\text {IH }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=100 \mathrm{~mA}$	0.75	1.0	1.10	V	
			$\mathrm{V}_{C C}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{V}_{1 H}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	0.4			V		
$\mathrm{V}_{\text {IK }}$	Input clamp voit				$V_{C C}=M I N, I_{1}=I_{I K}$			-1.2	V
11	Input current at maximum input voltage		$\begin{aligned} & \overline{\mathrm{OEAB}, \overline{\mathrm{OEAB}},} \\ & \overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA},} \\ & \mathrm{Al}_{0}-A \mathrm{I}_{B} \\ & \hline \end{aligned}$	$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$			100	$\mu \mathrm{A}$	
			$\mathrm{B}_{0}-\mathrm{B}_{8}$	$V_{C C}=M A X, V_{1}=5.5 \mathrm{~V}$			1	mA	
$\mathrm{I}_{\mathrm{H}}$	High-level input current		$\begin{aligned} & \overline{\mathrm{OEAB}}, \overline{\mathrm{OEAB}}, \\ & \overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}, \\ & \mathrm{Al}_{0}-\mathrm{Al}_{8} \end{aligned}$	$V_{C C}=M A X, V_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$	
			$\mathrm{B}_{0}-\mathrm{B}_{8}$	$V_{C C}=M A X, V_{1}=2.1 \mathrm{~V}$			100	$\mu \mathrm{A}$	
IIL	Low-level input current		$\begin{aligned} & \overline{\mathrm{OEAB}}, \overline{\mathrm{OEAB}}, \\ & \overline{L E A B}, \overline{L E B A}, \\ & A I_{0}-A I_{8} \end{aligned}$	$V_{C C}=\operatorname{MAX}, V_{1}=0.5 \mathrm{~V}$			-20	$\mu \mathrm{A}$	
			$\mathrm{B}_{0}-\mathrm{B}_{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.3 \mathrm{~V}$			-100	$\mu \mathrm{A}$	
${ }^{\text {IOZH }}$	Off-state output High-level volta	current, ge applied	$\mathrm{AO}_{0}-\mathrm{AO}_{8}$	$V_{C C}=M A X, V_{0}=2.7 \mathrm{~V}$			50	$\mu \mathrm{A}$	
${ }^{\text {O OLL }}$	Off-state output Low-level voltag	current, e applied		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{0}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$	
${ }^{\text {IOS }}$	Short-circuit output current ${ }^{3}$	'F8962	$\begin{aligned} & A O_{0}-\mathrm{AO}_{8} \\ & \text { only } \end{aligned}$	$V_{C C}=\mathrm{MAX}, \mathrm{B}_{\mathrm{n}}=1.3 \mathrm{~V}, \overline{\mathrm{OEBA}}=0.8 \mathrm{~V},{\overline{O E} \bar{B}_{n}}=2.7 \mathrm{~V}$	-60		-150	mA	
		'F8963		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{B}_{\mathrm{n}}=1.8 \mathrm{~V}, \overline{\mathrm{OEBA}}=0.8 \mathrm{~V}, \overline{O E B}_{\mathrm{n}}=2.7 \mathrm{~V}$					
${ }^{\prime} \mathrm{cc}$	Supply current (total)		${ }_{\mathrm{CCH}}$	$V_{C C}=$ MAX		80	110	mA	
			${ }^{\mathrm{CCL}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}$		105	145	mA	
			${ }^{\text {c ccz }}$			80	110	mA	

## NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $\mathrm{I}_{\mathrm{s}}$, the use of high-speed test apparatus and/or sample-and-hoid techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I os tests should be performed last.
4. Due to test equipment limitations, actual test conditions are for $\mathrm{V}_{1 \mathrm{H}}=1.8 \mathrm{~V}$ and $\mathrm{V}_{1 \mathrm{~L}}=1.3 \mathrm{~V}$.

AC ELECTRICAL CHARACTERISTICS FOR 74F8962

SYMBOL	PARAMETER	TEST CONDITION	A PORT LIMITS							UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ + & 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } \\ &+70^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHLL}} \end{aligned}$	Propagation delay $B_{n} \text { to } A O_{n}$	Waveform 1, 2	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHLL}} \end{aligned}$	Propagation delay LEBA to AO	Waveform 1,2	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZ}} \end{aligned}$	Output Enable time to High or Low OEBA to AO	Waveform 5.6	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{array}{c\|} \hline 9.5 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \hline{ }^{\mathrm{t}_{\mathrm{PHZ}}} \\ & { }^{\mathrm{t}_{\mathrm{PLL}}} \end{aligned}$	Output Disable time from High or Low OEBA to AO	Waveform 5,6	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	ns
t RSKEW	Skew between receivers in same package	Waveform 4		1.5	2.5		4.0		4.0	ns
SYMBOL	PARAMETER	TEST CONDITION	B PORT LIMITS							UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{D}=30 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{U}}=9 \Omega \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{D}=30 \mathrm{pF} \\ \mathrm{R}_{U}=9 \Omega \end{gathered}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{c \mathrm{c}} & =5 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{D}} & =30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}} & =9 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay $\mathrm{Al}_{n}$ to $\mathrm{B}_{\mathrm{n}}$	Wavetorm 1, 2	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay LEAB to $B_{n}$	Waveform 1, 2	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{array}{\|c\|} \hline 8.5 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$	Output Enable/Disable time OEAB to $\mathrm{B}_{\mathrm{n}}$	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition time, $\mathrm{B}_{\mathrm{n}}$ port $10 \%$ to $90 \%, 90 \%$ to $10 \%$	Test Circuit and Waveforms	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	ns
LSKEW	Skew between drivers in same package	Waveform 4		0.5	2.0		3.0		3.0	ns

AC SETUP REQUIREMENTS FOR 74F8962

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
	Set-up time $A I_{n}$ to $\overline{L E A B}$	Waveform 3	$\begin{aligned} & \hline 3.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$		ns
$t_{h}(\mathrm{H})$ $t_{h}(\mathrm{~L})$	Hold time $A I_{n}$ to $\overline{L E A B}$	Waveform 3	$\begin{aligned} & \hline 3.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 0.0 \end{aligned}$		ns
t ${ }_{s}(\mathrm{H})$ $\mathrm{t}_{s}(\mathrm{~L})$	Set-up time $\mathrm{B}_{n}$ to $\overline{\text { LEBA }}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$		ns
th( h $h_{\text {(L) }}$	$\begin{aligned} & \text { Hold time } \\ & B_{n} \text { to LEBA } \\ & \hline \end{aligned}$	Waveform 3	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$		ns
${ }_{w}(\mathrm{~L})$	$\overline{L E A B}$ or $\overline{L E B A}$ Pulse width, Low	Waveform 3	4.5			4.5		4.5		ns

AC ELECTRICAL CHARACTERISTICS FOR 74F8963

SYMBOL	PARAMETER	TEST CONDITION	A PORT LIMITS							UNIT
			$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \hline \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ + & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ C_{L} & =50 \mathrm{pF} \\ R_{L} & =500 \Omega \end{aligned}$		$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} t 0 \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ R_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PLH}} \\ & { }^{\mathrm{t}} \mathrm{PHH} \end{aligned}$	Propagation delay $\mathrm{B}_{\mathrm{n}}$ to $\mathrm{AO}_{\mathrm{n}}$	Waveform 1, 2	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}} \mathrm{P} \mathrm{PHL} \end{aligned}$	Propagation delay LEBA to AO	Waveform 1,2	$\begin{aligned} & \hline 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{t} P \mathrm{PH}}} \\ & { }^{\mathrm{t}_{\mathrm{PZZ}}} \\ & \hline \end{aligned}$	Output Enable time to High or Low OEBA to AO	Waveform 5,6	$\begin{gathered} \hline 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 17.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{t}} \mathrm{PHZ}} \\ & { }_{\mathrm{t}} \mathrm{PLZ} \\ & \hline \end{aligned}$	Output Disable time from High or Low OEBA to $A O_{n}$	Waveform 5,6	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	ns
${ }^{\text {t }}$ RSKEW	Skew between receivers in same package	Waveform 4		1.5	2.0		4.0		4.0	ns
SYMBOL	PARAMETER	TEST CONDITION	B PORT LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \\ C_{D}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{D}} & =30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}} & =9 \Omega \end{aligned}$		$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } \\ +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{D}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{U}}=9 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	Min	Max	
${ }^{\mathrm{t}_{\mathrm{PLH}}}$	Propagation delay $\mathrm{Al}_{n} \text { to } \mathrm{B}_{n}$	Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\text { LEAB }}$ to $\mathrm{B}_{n}$	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	3.0 2.0	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	3.5 2.5	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Output Enable/Disable time OEAB to $B$	Waveform 1	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	2.5 2.5	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & { }^{4} \mathrm{THL} \end{aligned}$	Transition time, $\mathrm{B}_{\mathrm{n}}$ port $10 \%$ to $90 \%, 90 \%$ to $10 \%$	Test Circuit and Waveforms	$\begin{aligned} & 1.0 \\ & 1,0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		1.0 1.0	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	ns
DSKEW	Skew between drivers in same package	Waveform 4		0.5	2.0		3.0		3.0	ns

AC SETUP REQUIREMENTS FPR 74F8963

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{aligned} T_{A} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =5 \mathrm{~V} \pm 5 \% \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =500 \Omega \end{aligned}$		
			Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{s}(\mathrm{~L})$	Set-up time $A I_{n}$ to $\overline{\text { LEAB }}$	Waveform 3	$\begin{aligned} & 4.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 1.0 \end{aligned}$		ns
th(H) $h_{h}(L)$	Hold time $A I_{n}$ to $\overline{L E A B}$	Waveform 3	$\begin{aligned} & 2.5 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 0.0 \end{aligned}$		ns
	Set-up time $\mathrm{B}_{\mathrm{n}}$ to $\overline{\text { LEBA }}$	Waveform 3	$\begin{aligned} & 2.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.0 \end{aligned}$		ns
the $h_{h}(\mathrm{~L})$	$\begin{aligned} & \text { Hold time } \\ & \mathrm{B}_{\mathrm{n}} \text { to } \overline{\text { LEBA }} \end{aligned}$	Waveform 3	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$			3.0   1.5		$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$		ns
${ }_{W}(\mathrm{~L})$	$\overline{L E A B}$ or $\overline{L E B A}$ Pulse width, Low	Waveform 3	4.5			5.5		5.5		ns

## AC WAVEFORMS



Waveform 1. Propagation Delay For Data Or Output Enable Or Latch Enable To Output


Waveform 2. Propagation Delay For Data Or Latch Enable To Output


Waveform 3. Data Setup And Hold Times And LEAB/LEBA Pulse Widths


Waveform 5. 3-State Output Enable Time To High Level And Output Disable Time From High Level


Waveform 6. 3-State Output Enable Time To Low Level And Output Disable Time From Low Leve!

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

## TEST CIRCUIT AND WAVEFORMS



SWITCH POSITION

TEST	SWITCH
$\mathbf{t}_{\mathrm{PLZ}}{ }^{\prime} \mathrm{t}_{\mathrm{PZL}}$   All other	closed   open



DEFINITIONS
$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{O U T}$ of pulse generators.
April 18, 1990

Signetics

Document No.	$853-1157$
ECN No.	97652
Date of issue	September 15, 1989
Status	Product Specification
FAST Products	

## FEATURES

- Ideal for driving transmission lines or backplanes. $160 \mathrm{~mA} I_{\mathrm{OL}}$ Ideal for applications with Impedance as low as $30 \Omega$
- Guaranteed threshold voltages on the incident wave while driving line as low as $30 \Omega$.
- High Impedance NPN base inputs for reduced loading ( $20 \mu \mathrm{~A}$ in High and Low states)
- Ideal for applications which require high output drive and minimal bus loading
- Octal interface
- 'F30240 Inverting
- 'F30244 Non-Inverting
- Open-Collector outputs sink 160 mA
- Multiple side plns are used for $\mathrm{V}_{\mathbf{c c}}$ and GND to reduce lead inductance ( Improves speed and nolse Immunity)
- Avallable in 24-pin standard slim DIP ( 300 mil ) plastic, SOL or CERDIP packages


## DESCRIPTION

The 74F30240/F30244 are high current open collectors octal buffers composed of eight inverters. The 'F30240 has inverting data paths and the ' F 30244 has non-inverting paths. Each device has eight inverters with two Output Enables ( $\overline{O E}_{0}, \overline{\mathrm{OE}}_{1}$ ) each controlling four outputs. Both drivers are designed to deal with the low-impedance transmis-

# FAST 74F30240,74F30244 $30 \Omega$ Line Drivers 

## 'F30240 Octal 30 2 Line Driver With Enable, Inverting ( Open Collector ) <br> 'F30244 Octal $30 \Omega$ Line Driver With Enable, Non-Inverting ( Open Collector )

TYPE	TYPICAL PROPAGATION   DELAY	TYPICAL SUPPLY CURRENT   (TOTAL)
74 F 30240	9.5 ns	62.5 mA
74 F 30244	10.5 ns	69 mA

## ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE   $\mathbf{V}_{\text {CC }}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Cerdip (300 mil)	N74F30240F, N74F30244F
24-Pin Plastic Slim DIP(300 mil) ${ }^{1}$	N74F30240N, N74F30244N
24-Pin Plastic SOL	N74F30240D, N74F30244D
NOTE:	

NOTE:
1.Thermal mounting techniques are recommended. See SMD Process Applications (page
17) for a discussion of thermal consideration for surface mounted devices.
2. Because of the high current sinking capability of these parts, theSOL package should only be used under the following conditions: a) $50 \%$ duty cycle AND b) $3 / 5$ of remaining $50 \%$ driving $\leq 100 \mathrm{~mA}$ (leaving the remaining $2 / 5$ of the to drive $\leq 160 \mathrm{~mA}$ ) OR c) use $\geq$ 450 linear feet per minute forced air or other thermal mounting techniques.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.)   HIGH/LOW	LOADVALUE   HIGH/LOW
$D_{0}-D_{7}$	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{O E}_{0}-\overline{O E}_{1}$	Output Enable inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{O}}_{0}-\bar{Q}_{7}$	Data outputs (OC) for 'F30240	$\mathrm{OC} / 266.7$	$\mathrm{OC} / 160 \mathrm{~mA}$
$Q_{0}-Q_{7}$	Data outputs (OC) for 'F30244	$\mathrm{OC} / 266.7$	$\mathrm{OC} / 160 \mathrm{~mA}$

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state. OC = Open Collector
sion line effects found on printed circuit boards when fast edge rates are used. The $160 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ provides ample power to
achieve TTL switching voltages on the incident wave.

Signetics

Document No.	$853-1200$
ECN No.	99391
Date of issue	April 18, 1990
Status	Product Specification
FAST Products	

## FEATURES

- High Impedance NPN base inputs for reduced loading
- Ideal for applications which require high output drive and minimal bus loading
- Octal bidirectional bus Interface
- 'F30245 Non-Inverting
- 'F30640 Inverting
- Choice of outputs:

Open collectors ( $B_{0}-B_{7}$ ) and 3-states $\left(A_{0}-A_{7}\right)$

- Open-Collector outputs sink 160mA
- $160 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ Ideal for low-Impedance applications and transmission line effects with Impedance as low as $30 \Omega$
- 3-state buffer outputs sink 24mA
- Multiple side pins are used for $V_{\text {cc }}$ and GND to reduce lead inductance ( Improves speed and noise immunity)
- Avallable in 24-pin standard silm DIP (300mil) plastic or CERDIP packages
- Flow through pinout structure facilitates PC board layout


## DESCRIPTION

The 74F30245/F30640 are high current octal transceivers. The 'F30245 has noninverting data paths and the 'F30640 has inverting paths. The B outputs are open

## FAST 74F30245,74F30640 <br> Transceivers

74F30245 Octal $30 \Omega$ Transcelver Non-Inverting
( Open Collector With Enable + 3-State )
74F30640 Octal $30 \Omega$ Transcelver Inverting ( Open Collector With Enable + 3-State )

TYPE	TYPICAL PROPAGATION   DELAY	TYPICAL SUPPLY CURRENT   (TOTAL)
74 F 30245	5.5 ns	90 mA
74 F 30640	5.0 ns	85 mA

ORDERING INFORMATION

PACKAGES	COMMERCIALRANGE   $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
24-Pin Cerdip (300 mil)	N74F30245F, N74F30640F
24-Pin Plastic Slim DIP ${ }^{1}$	N74F30245N, N74F30640N

NOTE:
1.Thermal mounting techniques are recommended. See SMD Process Applications (page 17) for a discussion of thermal consideration for surface mounted devices.
INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$   HIGH/LOW	LOADVALUE   HIGH/LOW
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Data inputs	$3.5 / 0.1167$	$70 \mu \mathrm{~A} 70 \mu \mathrm{~A}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output enable input (active Low)	$2.0 / 0.0667$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\overline{\mathrm{~T}} / \mathrm{R}$	Transmit/Receive input	$2.0 / 0.0667$	$40 \mu \mathrm{~A} / 40 \mu \mathrm{~A}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Data outputs (3-state)	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{7}$	Data outputs $(\mathrm{OC})$	$O C / 266.7$	$\mathrm{OC} / 160 \mathrm{~mA}$

## NOTE:

One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.
$O C=$ Open Collector
collector with $160 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ while the A outputs are 3 -state with $24 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$.Both transceivers are designed to deal with the low-impedance transmission line effects
found on printed circuit boards when fast edge rates are used. The $160 \mathrm{~mA} \mathrm{I}_{\mathrm{OL}}$ provides ample power to achieve TTL switching voltages on the incident wave. if the power is removed from the device.

Transceivers
FAST 74F30245. 74F30640

PIN CONFIGURATION


## PIN CONFIGURATION

## $5=-\pi=\pi=0$

LOGIC SYMBOL

LOGIC SYMBOL(IEEE/IEC)
-


LOGIC SYMBOL
LOGIC SYMBOL LOGIC SYMBOL(IEEE/IEC)

B0 1	24	$A_{0}$
$\mathrm{B}_{1} \mathrm{~L}^{7}$	23	$A_{1}$
$\mathrm{B}_{2} \square$	22	$A_{2}$
$\mathrm{B}_{3} 4$	21	$A_{3}$
OND 5		
and ${ }^{8}$		$V_{C c}$
and 7		$V_{c}$
OND 8	17	$\overline{O E}$
$\mathrm{BA}_{4}[9$	16	$A_{4}$
$\mathrm{B}_{5} 10$	15	$A_{5}$
B6 11	14	$A_{5}$
$\mathrm{B}_{7}^{12}$	13	$A_{7}$



LOGIC DIAGRAM 'F30245


## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			Min	Typ	Max	Min	Max			
${ }^{\mathrm{P}_{\mathrm{PLH}}{ }^{\mathrm{PHL}}}$	Propagation delay $A_{n} \text { to } B_{n}$	'F30245		Waveform 1,2	7.5 3.0	$\begin{gathered} 10.0 \\ 4.5 \\ \hline \end{gathered}$	$\begin{aligned} & 13.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & { }^{\mathbf{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay $B_{n}$ to $A_{n}$			Waveform 1,2	2.0 2.0	3.5   3.5	6.5 6.0	1.5 1.5	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \mathrm{f}^{*} \\ & \mathrm{PHL}^{2} \\ & \hline \end{aligned}$	Propagation delay $A_{n} \text { to } B_{n}$	'F30640	Waveform 1,2	$\begin{array}{r} =1.0 \\ 1.0 \end{array}$	$\begin{array}{r}8.0 \\ 2.0 \\ \hline\end{array}$	$\begin{array}{r} 12.0 \\ \mathbf{5} .0 \end{array}$	1.0 1.0	$\begin{aligned} & 12.5 \\ & 5.5 \\ & \hline \end{aligned}$	ns	
${ }_{\mathrm{t}_{\text {PHL }}}^{\mathrm{t}_{\text {PLH }}}$	Propagation delay $B_{n}$ to $A_{n}$		Waveform 1,2	1.0 1.0	2.5 2.0	5.5 5.0	1.0 1.0	6.0 5.5	ns	
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	propagation delay $\overline{\mathrm{OE}}$ or $\bar{T} / \mathrm{R}$ to $\mathrm{B}_{\mathrm{n}}$	$\mathrm{B}_{\mathrm{n}}$ outputs	Waveform 1,2	$\begin{array}{r} 6.5 \\ 3.5 \end{array}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 12.0 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 9.0 \\ & \hline \end{aligned}$	ns	
${ }_{\text {t }}^{\text {t }}$ PZZ	Output Enable time $\overline{O E}$ or $\bar{T} / R$ to $A_{n}$	$A_{n}$ outputs	Waveform 3 Waveform 4	2.5 1.5	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	2.0 1.5	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns	
${ }^{\mathrm{t}_{\text {PHZ }}}$	Output Disable time $\overline{O E}$ or $\bar{T} / R$ to $A$	$A_{n}$ outputs	Waveform 3 Waveform 4	1.5 1.0	3.5 3.5	6.5	1.0 1.0	$\begin{aligned} & 7.5 \\ & 7.0 \end{aligned}$	ns	
NOTES:   1. See Figu   2. T/R prop	ure A for Open Collector information. pagation delays are guaranteed without testing.									

## AC WAVEFORMS



NOTE: For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

Signetlcs

Document No.	$853-1388$
ECN No.	98499
Date of issue	January 8, 1990
Status	Product
FAST Products	

## FEATURES

- Metastable Immune Characteristics
- Propagation delay skew and output to output skew guaranteed less than 1.5 ns
- High source current ( $\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}$ ) ideal for clock driver applications
- Pinout compatible with 74F109
- See 74F5074 for Synchronizing Dual D-Type Flip-Flop
- See 74F50728 for Synchronizing Cascaded D-Type Flip-Flop
- See 74F50729 for Synchronizing Dual D-Type Flip-Flop with EdgeTriggered Set and Reset


## DESCRIPTION

The 74F50109 is a dual positive edge-triggered JK-type flip-flop featuring individual J , $\overline{\mathrm{K}}$, Clock, Set and Reset inputs; also true and complementary outputs.
Set ( $\overline{\mathrm{S}}_{\mathrm{Dn}_{n}}$ ) and Reset ( $\overline{\mathrm{R}}_{\mathrm{Dn}}$ ) are asynchronous active-Low inputs and operate independently of the Clock $\left(C P_{n}\right)$ inputs.
The $J$ and $\bar{K}$ are edge-triggered inputs which control the state changes of the flip-flops as described in the Function Table.

PIN CONFIGURATION


## FAST 74F50109

## Flip-Flop/Clock Driver

## Synchronizing Dual J-K̄ Positive Edge-Triggered Flip-Fiop With Metastable Immune Characteristics

TYPE	TYPICAL f MAX	TYPICALSUPPLY CURRENT   (TOTAL)   74 F 50109$\| 150 \mathrm{MHz}$
22 mA		

## ORDERING INFORMATION

PACKAGES	COMMERCIAL   $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
16-Pin Plastic DIP	N74F50109N
16-Pin Plastic SO	N74F50109D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L)   HIGH/LOW	LOADVALUE   HIGH/LOW
$J_{0}, J_{1}$	Jinputs	$1.0 / 0.417$	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$\overline{\mathrm{~K}}_{0}, \overline{\mathrm{~K}}_{1}$	K inputs	$1.0 / 0.417$	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$\mathrm{CP}_{0}, \mathrm{CP}_{1}$	Clock inputs (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{~S}}_{\mathrm{DO}}, \overline{\mathrm{S}}_{\mathrm{DI}}$	Set inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{R}}_{\mathrm{D}}, \overline{\mathrm{R}}_{\mathrm{DI}}$	Reset inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{0}, \overline{\mathrm{Q}}_{1}$	Data outputs	$750 / 33$	$15 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

The J and $\overline{\mathrm{K}}$ inputs must be stable just one setup time prior to the Low-to-High transition of the clock for guaranteed propagation delays. The $\sqrt{\bar{K}}$ design allows operation as a $D$ flip-flop by tying J and $\overline{\mathrm{K}}$ inputs together.
The 74F50109 is designed so that the outputs

## LOGIC SYMBOL


can never display a metastable state due to setup and hold time violations. If setup and hold times are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability

## LOGIC SYMBOL(IEEE/IEC)


parameters for the 74F50109 are: $t \cong 135$ ps and $T_{0} \cong 9.8 \times 10^{6} \mathrm{sec}$ where $\tau$ represents a function of the rate at which a latch in a metastable state resolves that condition and $T_{0}$ represents a function of the measurement of the propensity of a latch to enter a metastable state .
Metastable Immune Characteristics Signetics uses the term 'metastable immune to describe characteristics of some of the products in its FAST family. Specifically the 74F50XXX family presently consists of 4 products which display metastable immune characteristics. This term means that the outputs will not glitch or display an output anomaly


Fig. 1-Test Set up
under any circumstances including setup and hold time violations. This claim is easily verified on the 74F5074. By running two independent signal generators (see Fig. 1) at nearly the same frequency (in this case 10 MHz clock and 10.02 MHz data) the device-under-test can often be driven into a metastable state. If the Qoutput is then
used to trigger a digital scope set to infinite persistence the Qoutput will build a waveform. An experiment was run by continuously operating the devices in the region where metastability will occur.

When the device-under-test is a 74F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Fig. 2.
Fig. 2 shows dearly that the $\bar{Q}$ output can vary in time with respect to the $Q$ trigger point. This also implies that the Q or $\overrightarrow{\mathrm{Q}}$ output waveshapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5 volt line in the upper right

## COMPARISON OF METASTABLE IMMUNE AND NON-IMMUNE CHARACTERISTICS



Fig. 2-74F74 $\overline{\mathrm{Q}}$ output triggered by Q output, setup and hold times violated


Fig. 3-74F5074 $\bar{Q}$ output triggered by Q output, setup and hold times violated

## Flip-Flop/Clock Driver

hand quadrant. These show that the $\bar{Q}$ output did not change state even though the $Q$ output glitched to at least 1.5 volts, the trigger point of the scope.
When the device-under-test is a metastable immune part, such as the 74F5074, the waveform will appear as in Fig. 3. The 74F5074 $\bar{Q}$ output will not vary with respect to the $Q$ trigger point even when the part is driven into a metastable state. Any tendency towards internal metastability is resolved by Signetics patented circuitry. If a metastable event occurs within the flop the only outward manifestation of the event will be an increased Clock-to-Q $/ \bar{Q}$ propagation delay. This propagation delay is, of course, a function of the metastability char-
acteristics of the part defined by $\tau$ and $T_{0}$.
The metastability characteristics of the 74F5074 and related part types represent state-of-the art in TTL technology.
After determining the $T_{0}$ and $\tau$ of the flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the 74F50109 for synchronizing asynchronous data that is arriving at 10 MHz (as measured by a frequency counter), has a clock frequency of 50 MHz , and has decided that he would like to sample the output of the 74F50109 nanoseconds after the clock edge.

MEAN TIME BETWEEN FAILURES (MTBF) versus t'


Typical values for $\tau$ and $T_{0}$ at various $V_{c c} s$ and Temperatures

	$0{ }^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\tau$	$\mathrm{T}_{0}$	$\tau$	$\mathrm{~T}_{0}$	$\tau$	$\mathbf{T}_{0}$
5.5 V	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$
5.0 V	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$
4.5 V	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	175 ps	$7.3 \times 10^{4} \mathrm{sec}$

He simply plugs his number into the equation below:

$$
\text { MTBF }=e^{(t / \tau)} / T_{0} C^{f} C^{\prime}
$$

In this formula, $f_{c}$ is the frequency of the clock, $f_{1}$ is the average input event frequency, and $t^{\prime}$ is the time atter the clock pulse that the output is sampled ( $t$ ' $>h$, $h$ being the normal propagation delay). In this situation the $f_{1}$ will be twice the data frequency or 20 MHz because input events consist of both low and high data transitions. Multiplying $f_{1}$ by $f_{c}$ gives an answer of $10^{15} \mathrm{~Hz}^{2}$. From Fig. 4 it is clear that the MTBF is greater than $10^{10}$ seconds. Using the above formula the actual MTBF is $1.51 \times 10^{10} \mathrm{sec}$ onds or about 480 years.

## LOGIC DIAGRAM



## FUNCTION TABLE

INPUTS					OUTPUTS		OPERATING MODE
$\bar{S}_{\text {Dn }}$	$\bar{R}_{\text {Dn }}$	$\mathrm{CP}_{\mathrm{n}}$	$J_{n}$	$\bar{K}_{n}$	$a_{n}$	$\overline{\bar{a}_{n}}$	
L	H	X	X	X	H	L	Asynchronous Set
H	L	X	X	X	L	H	Asynchronous Reset
L	L	X	X	X	H	H	Undetermined (Note)
H	H	$\uparrow$	h	1	$\bar{\square}$	9	Toggle
H	H	$\uparrow$	1	1	L	H	Load "0" (Reset)
H	H	$\uparrow$	h	h	H	L	Load "1" (Set)
H	H	$\uparrow$	1	h	9	$\bar{\square}$	Hold "no change"

$H=$ High voltage level
$h=$ High voltage level one setup time prior to Low-to-High clock transition
$L=$ Low voltage level
I = Low voltage level one setup time prior to Low-to-High clock transition
$\mathbf{q}=$ Lower case indicate the state of the referenced output prior to the Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High clock transition
Note $=$ Both outputs will be High if both $\bar{S}_{\mathrm{D}_{n}}$ and $\mathrm{R}_{\mathrm{Dn}}$ go Low simultaneously.

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the devicUnles otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		UMITS			UNIT
			Min	Nom	Max	
$V_{\text {cc }}$	-Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}$	High-level input voltage		2.0			V
$\mathrm{V}_{\mathrm{IL}}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\mathrm{K}}$	Input clamp current				-18	mA
$\mathrm{I}_{\mathrm{OH}}$	High-level output current	$V_{C C^{ \pm 10 \%}}$			-12	mA
		$v_{c C^{ \pm 5} \%}$			-15	mA
$\mathrm{I}_{\mathrm{OL}}$	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			UMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 5 \% V_{\text {cc }}$	2.0				V			
$v_{0}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{\mathrm{IH}}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.30	0.50	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$			0.30	0.50	V				
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{\mathbb{I}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$					0.1	mA			
$\mathrm{I}_{\mathrm{H}}$	High-level input current		$\mathrm{V}_{\text {CC }}=\mathrm{MAX}$,	2.7 V				20	$\mu \mathrm{A}$			
$I_{\text {IL }}$	Low-level input current	$J_{n}, \bar{K}_{n}$	$V_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$			
		$\mathrm{CP}_{\mathrm{n}}, \overline{\mathrm{S}}_{\mathrm{Dn}}{ }^{\prime} \overline{\mathrm{R}}_{\text {Dn }}$						-20	$\mu \mathrm{A}$			
'os	Short circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{cc}}=\mathrm{MAX}$			-60		-150	mA			
${ }^{1} \mathrm{cc}$	Supply current ${ }^{4}$ (total)		$V_{c c}=$ MAX				22	32	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.
4. Measure $I_{C C}$ with the dock input grounded and all outputs open, then with $Q$ and $\bar{Q}$ outputs High in turn.

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathbf{V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }_{\text {max }}$	Maximum cock frequency	Waveform 1	130	150		85		MHz
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }^{\mathrm{t}} \mathrm{PHH} \end{aligned}$	Propagation delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$	Waveform 1	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & { }^{\mathrm{t}_{\mathrm{PLH}}} \\ & { }_{\mathrm{t}}^{\mathrm{PHL}} \end{aligned}$	Propagation delay $\bar{S}_{D n}, \bar{R}_{D n}$ to $Q_{n}$ or $\bar{Q}_{n}$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns
${ }^{\text {P PS }}$	Propagation delay Skew ${ }^{1,3}$	Waveform 4			1.0		1.0	ns
tos	Output to output Skew ${ }^{\text {2,3 }}$	Waveform 4			1.5		1.5	ns

## NOTE:

1. | $t_{\text {PLH }}$ actual - $t_{\text {PHL }}$ actual | for any output.
2. I $L_{N N}$ actual - $t_{P M}$ actual | for any output compared to any other output where $N$ and $M$ are either LH or HL .
3. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{c c}$, loading, etc.).

## AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{s}(\mathrm{H})$ $\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup time, High or Low $J_{n}, \bar{K}_{n}$ to $C P_{n}$	Waveform 1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$			2.0 2.0		ns
$\begin{aligned} & h_{n}(H) \\ & h_{h}(L) \\ & \hline \end{aligned}$	Hold time, High or Low $J_{n}, \bar{K}_{n}$ to $C P_{n}$	Waveform 1	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$			1.5 1.5		ns
	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$		ns
$t_{w}(L)$	$\bar{S}_{\text {Dn }}$ or $\overline{\mathrm{R}}_{\mathrm{Dn}}$ Pulse width, Low	Waveform 2	3.5			4.0		ns
${ }^{\text {tec }}$	$\begin{aligned} & \text { Recovery time } \\ & \bar{S}_{D n} \text { or } \bar{R}_{D n} \text { to } C P_{n} \end{aligned}$	Waveform 3	3.0			3.5		ns

AC WAVEFORMS


Wavelorm 1. Propagation Delay For data to output, data
setup time and hold times, and clock width
$\bar{S}_{\mathrm{Dn}}$ or $\bar{R}_{\mathrm{Dn}}$


Waveform 3.
Recovery time for set or reset to clock

( $N O T E:$ " 1 " of top waveform is equal to " 1 " of bottom waveform)


Wavoform 4.
Propagation delay skew and output to output akew

NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

## TEST CIRCUIT AND WAVEFORMS



Signetics

Document No.	$853-1389$
ECN No.	99144
Date of issue	March 19, 1990
Status	Product Specification
FAST Products	

FEATURES

- Metastable Immune Characterlstics
- Propagation delay skew and output to output skew less than 1.5 ns
- See 74F5074 for Synchronizing Dual D-Type Flip-Flop
- See 74F50109 for Synchronizing Dual J-K Positive Edge-Triggered Filip-Flop
- See 74F50729 for Synchronizing Dual D-Type Flip-Flop with EdgeTriggered Set and Reset


## DESCRIPTION

The 74F50728 is a cascaded dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also true and complementary outputs.
Set ( $\bar{S}_{D_{n}}$ ) and Reset ( $\bar{R}_{D_{n}}$ ) are asynchronous active-Low inputs and operate independently of the Clock ( $C P_{n}$ ) input. They set and reset both flip-flops of a cascaded pair simultaneously. Data must be stable just one setup time prior to the Low-to-High transition of the clock for guaranteed propagation delays.
Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D input may be changed without affecting the levels of the output. Data entering the 'F50728 requires two clock cycles to arrive at the outputs. The 'F50728 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup and hold times are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability parameters for the 74F50728 are: $\tau \cong 135 \mathrm{ps}$ and $\mathrm{T}_{0} \cong 9.8 \times 10^{6} \mathrm{sec}$ where $\tau$ represents a function of the rate at which a latch in a metastable state resolves that condition and $\mathrm{T}_{0}$ represents a function of the measurement of the propensity of a latch to enter a metastable state .

## 74F50728 Flip-Flop

## Synchronizing Cascaded Dual D-Type Flip-Flop With Metastable Immune Characteristics

TYPE	TYPICAL f MAX	TYPICAL   SUPPLY CURRENT   (TOTAL)   $74 F 50728$$\quad 145 \mathrm{MHz}$

ORDERING INFORMATION

PACKAGES	COMMERCIAL   $\mathbf{v}_{\mathbf{C C}}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{7 0} 0^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F50728N
14-Pin Plastic SO	N74F50728D

## INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L)   HIGH/LOW	LOADVALUE   HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data inputs	$1.0 / 0.417$	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$C P_{0}, \mathrm{CP}_{1}$	Clock inputs (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{~S}}_{\mathrm{DO}}, \overline{\mathrm{S}}_{01}$	Set inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\overline{\mathrm{R}}_{\mathrm{DO}}, \overline{\mathrm{R}}_{01}$	Reset inputs (active Low)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{0}, \overline{\mathrm{Q}}_{1}$	Data outputs	$50 / 33$	$1 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE:
One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

## Synchronizing Solutions

Synchronizing incoming signals to a system clock has proven to be costly, either in terms of time delays or hardware. The reason for this is that in order to synchronize the signals a flipflop must be used to 'capture' the incoming signal. While this is perhaps the only way to synchronize a signal, to this point, there have been problems with this method. Whenever the flop's setup or hold times are violated the flop can enter a metastable state causing the outputs in turn to glitch, oscillate, enter an intermediate state or change state in some abnormal fashion. Any of these conditions could be responsible for causing a system crash. To minimize this risk, flip-flops are often cascaded so that the input signal is captured on the first clock pulse and released on the second clock pulse (see Fig. 1). This gives the first flop about one clock period minus the flop delay and minus the second flop's clock-to-Q setup time to resolve any metastable condition. This method greatly reduces the probability of the outputs of the synchronizing device displaying an abnormal state but the tradeoff is that one clock cycle is lost to synchronize the
incoming data and two separate flip-flops are required to produce the cascaded flop circuit. In order to assist the designer of synchronizing circuits, Signetics is offering the 74F50728. The 74F50728 consists of two pair of cascaded D-type flip-flops with metastable-immune features and is pin compatible with the 74F74. Because the flops are cascaded on a single part the metastability characteristics are greatly improved over using two separate flops that are cascaded. The pin compatibility with the 74 F 74 allows for plug-in retrofitting of previously designed systems.
Because the probability of failure of the 74F50728 is so remote, the metastability characteristics of the part were empirically determined based on the characteristics of its sister part, the 74F5074. The table below shows the 74F5074 metastability characteristics.
Having determined the $T_{0}$ and $\tau$ of the flop, calculating the mean time between failures (MTBF) for the 74F50728 is simple. It is, however, somewhat different than calculating MTBF for a typical part because data requires two clock pulses to transit from the input to the output. Also, in this case a failure is considered any delay of the output beyond the nor-

Flip-FIop

PIN CONFIGURATION

mal propagation delay. Suppose a designer wants to use the flop for synchronizing asynchronous data arriving at 10 MHz (as measured by a frequency counter) and is using a clock frequency of 50 MHz . He simply plugs his numbers into the equation below.

LOGIC SYMBOL


In this formula $f_{c}$ is the frequency of the clock, $f_{i}$ is the average input event frequency, and $t$ is the period of the clock input ( 20 nanoseconds). In this situation the $f$, will be twice the data frequency or 20 MHz because input

## LOGIC SYMBOL(IEEE/IEC)


events consist of both fow and high data transitions. From Fig. 2 it is clear that the MTBF is greater than $10^{41}$ seconds. Using the above formula the actual MTBF is $2.23 \times 10^{42} \mathrm{sec}-$ onds or about $7 \times 10^{34}$ years.

$$
\text { MTBF }=e^{(\tau / \tau)} / T_{0} c_{C} C_{1}
$$

Typical values for $\tau$ and $T_{\mathbf{o}}$ at various $\mathrm{V}_{\mathrm{cc}} \mathbf{s}$ and Temperatures


Fig. 1

	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\tau$	$\mathrm{T}_{0}$	$\tau$	$\mathrm{~T}_{0}$	$\tau$	$\mathrm{~T}_{0}$
5.5 V	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$
5.0 V	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$
4.5 V	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	175 ps	$7.3 \times 10^{4} \mathrm{sec}$

## Mean Time Between Fallures versus Data Frequency at various Clock Frequency



## LOGIC DIAGRAM



## FUNCTION TABLE(Note**)

INPUTS				INTERNAL REGISTER	OUTPUTS		OPERATING MODE
$\bar{S}_{\text {Dn }}$	$\overline{\mathbf{R}}_{\text {Dn }}$	$C P_{n}$	$D_{n}$	Q	$a_{n}$	$\overline{\mathrm{a}}_{\mathrm{n}}$	
L	H	X	X	H	H	L	Asynchronous Set
H	L	x	$x$	L	L	H	Asynchronous Reset
L	L	X	X	X	H	H	Undetermined*
H	H	$\uparrow$	h	h	H	L	Load "1"
H	H	$\uparrow$	1	1	L	H	Load "0"
H	H	L	x	NC	NC	NC	Hold

$H=$ High voltage level
$h=$ High voltage level one setup time prior to Low-to-High clock transition
$L=$ Low voltage level
I = Low voltage level one setup time prior to Low-to-High clock transition
NC =No change from the previous setup
$X=$ Don't care
$*=$ This setup is unstable and will change when either Set or Reset return to the High level.
$\uparrow=$ Low-to-High clock transition
** = Data entering the flop requires two clock cycles to arrive at the output (See Logic Diagram).

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	UMITS			UNIT
		Min	Nom	Max	
$\mathrm{v}_{\mathrm{cc}}$	Supply voltage	4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}$	High-level input voltage	2.0			V
$\mathrm{V}_{\mathrm{LL}}$	Low-level input voltage			0.8	$\checkmark$
$I_{1 K}$	Input clamp current			-18	mA
$\mathrm{I}_{\mathrm{OH}}$	High-level output current			-1	mA
$\mathrm{l}_{\mathrm{O}}$	Low-level output current			20	mA
TA	Operating free-air temperature range	0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{H}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	$\pm 10 \% V_{\text {cc }}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7	3.4				V			
$v_{\alpha}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{\mathrm{IL}}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% V_{\text {cc }}$		0.30	0.50	$v$			
			$\pm 5 \% V_{\text {cc }}$			0.30	0.50	V				
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$				-0.73	-1.2	V		
1	Input current at maximum input voltage		$V_{C C}=M A X, V_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{I}_{\mathrm{H}}$	High-level input current		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current		$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$			
		$C P_{n^{\prime}}, \bar{S}_{D_{n}} \bar{R}_{D_{n}}$						-20	$\mu \mathrm{A}$			
Ios	Short-circuit output current ${ }^{3}$		$V_{C C}=$ MAX			-60		-150	mA			
$\mathrm{I}_{\mathrm{cc}}$	Supply corrent ${ }^{4}$ (total)		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				23	34	mA			

## NOTES:

1. For conditions shown as $M I N$ or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $\mathrm{I}_{\mathrm{OS}}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize intemal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, bs tests should be performed last.
4. Measure I $C$ c with the clock input grounded and all outputs open, then with $Q$ and $\bar{Q}$ outputs High in turn.

## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LMITS					UNIT
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & V_{\mathrm{cC}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{V}_{\mathrm{CC}}}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{\text {max }}$	Maximum clock frequency	Waveform 1	100	145		85		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	3.8 3.8	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	1.5 2.0	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $\overline{\mathrm{S}}_{\mathrm{Dn}}, \bar{R}_{\mathrm{Dn}} \text { to } \mathrm{Q}_{n} \text { or } \bar{Q}_{n}$	Waveform 2	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns
${ }^{\text {t PS }}$	Propagation delay Skew ${ }^{1,3}$	Waveform 4			1.0		1.0	ns
tos	Output to output Skew ${ }^{2,3}$	Waveform 4			1.5		1.5	ns

## NOTE:

1. I $\mathrm{PLLH}_{\text {actual }}{ }^{1}{ }_{\text {PHL }}$ actual $\mid$ for any one output.
2. I SNN actual - TPM actual | for any output compared to any other output where N and M are either LH or HL.
3. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{\mathrm{C}}$, loading, etc.).

## AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} C \\ & V_{C C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{L}=500 \Omega \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}=0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{t}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $D_{n} \text { to } C P_{n}$	Waveform 1	$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$			2.0 2.0		ns
$t_{\text {h }}(\mathrm{H})$ $\mathrm{t}_{\mathrm{h}}(\mathrm{L})$	Hold time, High or Low $D_{n} \text { to } C P_{n}$	Waveform 1	1.0 1.0			1.5 1.5		ns
W   $W_{W}^{(L)}$   (L)	CP Pulse width, High or Low	Waveform 1	3.0 4.0			3.5 5.0		ns
${ }_{\text {t }}(\mathrm{L})$	$\bar{S}_{D_{n}}$ or $\overline{\mathrm{R}}_{\mathrm{Dn}}$ Pulse width, Low	Waveform 2	4.0			4.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery time $\bar{S}_{D n}$ or $\bar{R}_{D n}$ to $C P_{n}$	Waveform 3	3.5			3.5		ns

## AC WAVEFORMS



NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

## TEST CIRCUIT AND WAVEFORMS



Signolics

Document No.	$853-1390$
ECN No.	98904
Date of issue	February 23, 1990
Status	Product
FAST Products	

FEATURES

- Metastable Immune Characteristics
- Propagation delay skew and output to output skew guaranteed less than 1.5 ns
- High source current ( $\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}$ ) Ideal for clock driver applications
- See 74F5074 for Synchronizing Dual D-Type Flip-Flop
- See 74F50109 for Synchronizing Dual J-K Positive Edge-Triggered Filp-Flop
- See 74F50728 for Synchronizing Cascaded Dual D-Type Filp-Flop


## DESCRIPTION

The 74F50729 is a dual positive edge-triggered D-type flip-flop featuring individual Data, Clock, Set and Reset inputs; also true and complementary outputs.
Set ( $S_{D_{n}}$ ) and Reset ( $R_{D_{n}}$ ) are asynchronous positive-edge triggered inputs and operate independently of the Clock ( $\mathrm{CP}_{\mathrm{n}}$ ) input. Data must be stable just one setup time prior to the Low-to-High transition of the clock for guaranteed propagation delays.
Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the $D_{n}$ input may be

## PIN CONFIGURATION



## FAST 74F50729

## Flip-Flop/Clock Driver

## Synchronizing Dual D-Type Filp-Flop With-EdgeTriggered Set And

 Reset And Metastable Immune Characteristics| TYPE | ${\text { TYPICAL } \mathbf{f}_{\text {MAX }}}^{\text {TYPICAL }}$SUPPLY CURRENT <br> (TOTAL) |  |
| :---: | :---: | :---: |
| 74550729 | 120 MHz | 19 mA |

ORDERING INFORMATION

PACKAGES	COMMERCIAL   $V_{C C}=5 \mathrm{5V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
14-Pin Plastic DIP	N74F50729N
14-Pin Plastic SO	N74F50729D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F(U . L)$   HIGH/LOW	LOADVALUE   HIGH/LOW
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Data inputs	$1.0 / 0.417$	$20 \mu \mathrm{~A} / 250 \mu \mathrm{~A}$
$\mathrm{CP}_{0}, C P_{1}$	Clock inputs (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{~S}_{\mathrm{D}}, \mathrm{S}_{\mathrm{DI}}$	Set inputs (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{D},}, \mathrm{R}_{\mathrm{DI}}$	Reset inputs (active rising edge)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
$\mathrm{Q}_{0}, \mathrm{Q}_{1}, \overline{\mathrm{Q}}_{0}, \bar{Q}_{1}$	Data outputs	$750 / 33$	$15 \mathrm{~mA} / 20 \mathrm{~mA}$

One (1.0) FAST Unit Load is defined as: $20 \mu A$ in the High state and 0.6 mA in the Low state.
changed without affecting the levels of the output.
The 74F50729 is designed so that the outputs can never display a metastable state due to setup and hold time violations. If setup and hold times are violated the propagation delays may be extended beyond the specifications but the outputs will not glitch or display a metastable state. Typical metastability para-

## LOGIC SYMBOL


meters for the 74 F 50729 are: $\tau \cong 135 \mathrm{ps}$ and $T_{0} \cong 9.8 \times 10^{6} \mathrm{sec}$ where $\tau$ represents a function of the rate at which a latch in a metastable state resolves that condition and $T_{0}$ represents a function of the measurement of the propensity of a latch to enter a metastable state.

LOGIC SYMBOL(IEEE/IEC)


## Metastable Immune Characteristics

Signetics uses the term 'metastable immune' to describe characteristics of some of the products in its FAST family. Specifically the 74F50XXX family presently consists of 4 products which display metastable immune characteristics. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations. This claim is easily veri-


Fig. 1-Test Set up
fied on the 74F5074. By running two independent signal generators (see Fig. 1) at nearly the same frequency (in this case 10 MHz dock and 10.02 MHz data) the device-under-test can often be driven into a metastable state. If the Q output is then used to trigger a digital scope set to infinite persistence the $\bar{Q}$ output will build a waveform. An experiment was run by continuously operating the devices in the region where metastability will occur.
When the device-under-test is a 74F74 (which was not designed with metastable immune characteristics) the waveform will appear as in Fig. 2.
Fig. 2 shows clearly that the $\bar{Q}$ output can vary in time with respect to the $Q$ trigger point. This also implies that the $Q$ or $Q$ output wave-
shapes may be distorted. This can be verified on an analog scope with a charge plate CRT. Perhaps of even greater interest are the dots running along the 3.5 volt line in the upper right hand quadrant. These show that the Qoutput did not change state even though the Q output glitched to at least 1.5 volts, the trigger point of the scope.
When the device-under-test is a metastable immune part, such as the 74F5074, the waveform will appear as in Fig. 3. The $74 \mathrm{~F} 5074 \overline{\mathrm{Q}}$ output will not vary with respect to the $Q$ trigger point even when the part is driven into a metastable state. Any tendency towards internal metastability is resolved by Signetics patented circuitry. If a metastable event occurs within the flop the only outward manifestation of the event will be an increased Clock-to- $Q / \bar{Q}$ propagation delay. This propagation delay is,

## COMPARISON OF METASTABLE IMMUNE AND NON-IMMUNE CHARACTERISTICS



Fig. 2-74F74 $\overline{\mathrm{Q}}$ output triggered by Q output, setup and hold times violated


Time base $=2.00 \mathrm{~ns} /$ div Trigger level $=1.5$ Volts Trigger slope $=$ positive
Fig. 3-74F5074 $\bar{Q}$ output triggered by $Q$ output, setup and hold times violated
of course, a function of the metastability characteristics of the part defined by $\tau$ and $T_{0}$.

The metastability characteristics of the 74F5074 and related part types represent state-of-the art in TTL technology.
After determining the $T_{0}$ and $\tau$ of the flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the F50729 for synchronizing asynchronous data that is arriving at 10 MHz (as meas-
ured by a frequency counter), has a clock frequency of 50 MHz , and has decided that he would like to sample the output of the F50729 10 nanoseconds after the clock edge.
He simply plugs his numbers into the equation below:

$$
M T B F=e^{(t / \tau)} / T_{0} f_{C^{\prime}} f_{1}
$$

In this formula, $f_{c}$ is the frequency of the clock, $f_{1}$ is the average input event frequency, and $t^{\prime}$
is the time after the clock pulse that the output is sampled ( $t>h$, $h$ being the normal propagation delay). In this situation the $f_{\text {, }}$ will be twice the data frequency or 20 MHz because input events consist of both low and high data transitions. Multiplying $f_{1}$ by $f_{c}$ gives an answer of $10^{15} \mathrm{~Hz}^{2}$. From Fig. 4 it is clear that the MTBF is greater than $10^{10}$ seconds. Using the above formula the actual MTBF is $1.51 \times 10^{10} \mathrm{sec}$ onds or about 480 years.

## MEAN TIME BETWEEN FAILURES (MTBF) versus $\mathbf{t}$ '



Typical values for $\tau$ and $T_{0}$ at various $V_{c c} s$ and Temperatures

	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\tau$	$\mathrm{T}_{0}$	$\tau$	$\mathrm{~T}_{0}$	$\tau$	$\mathrm{~T}_{0}$
5.5 V	125 ps	$1.0 \times 10^{9} \mathrm{sec}$	138 ps	$5.4 \times 10^{6} \mathrm{sec}$	160 ps	$1.7 \times 10^{5} \mathrm{sec}$
5.0 V	115 ps	$1.3 \times 10^{10} \mathrm{sec}$	135 ps	$9.8 \times 10^{6} \mathrm{sec}$	167 ps	$3.9 \times 10^{4} \mathrm{sec}$
4.5 V	115 ps	$3.4 \times 10^{13} \mathrm{sec}$	132 ps	$5.1 \times 10^{8} \mathrm{sec}$	-175 ps	$7.3 \times 10^{4} \mathrm{sec}$

## LOGIC DIAGRAM



FUNCTION TABLE

INPUTS				OUTPUTS		OPERATING MODE
$\mathbf{S}_{\mathbf{D}}$	$\mathbf{R}_{\mathbf{D}}$	CP	D	$\mathbf{Q}$	$\overline{\mathbf{Q}}$	
$\uparrow$	$\uparrow$	X	X	H	L	Asynchronous Set
$\uparrow$	$\uparrow$	X	X	L	H	Asynchronous Reset
$\uparrow$	$\uparrow$	$\uparrow$	h	H	L	Load "1"
$\uparrow$	$\uparrow$	$\uparrow$	I	L	H	Load "O"
$\uparrow$	$\uparrow$	$\uparrow$	X	NC	NC	Hold

$H=$ High voltage level
$h=$ High voltage level one setup time prior to Low-to-High clock transition
$\mathrm{L}=$ Low voltage level
$I$ = Low voltage level one setup time prior to Low-to-High clock transition
$X=$ Don't care
$\uparrow=$ Low-to-High transition
NC =No change from the previous setup
$\uparrow=$ Not Low-to-High transition

ABSOLUTE MAXIMUM RATINGS (Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$V_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {A }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LMITS			UNIT
			Min	Nom	Max	
$\mathrm{V}_{\mathrm{cc}}$	Supply voltage		4.5	5.0	5.5	V
$\mathrm{V}_{\mathrm{IH}}$	High-level input voltage		2.0			V
$\mathrm{V}_{\mathrm{LL}}$	Low-level input voltage				0.8	V
$\mathrm{I}_{\mathrm{IK}}$	Input clamp current				-18	mA
${ }^{\prime} \mathrm{OH}$	High-level output current	$\mathrm{V}_{\mathrm{Cc}} \pm 10 \%$			-12	mA
		$\mathrm{V}_{\mathrm{cc}}{ }^{ \pm 5 \%}$			-15	mA
$\mathrm{I}_{\mathrm{OL}}$	Low-level output current				20	mA
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			Min	Typ ${ }^{2}$	Max							
$\mathrm{V}_{\mathrm{OH}}$	High-level output voltage					$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.5			V
			$\pm 5 \% V_{\text {cc }}$	2.7	3.4				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 5 \% V_{\text {cc }}$	2.0				V			
$v^{\prime}$	Low-level output voltage		$\begin{aligned} & V_{C C}=M I N, \\ & V_{I L}=M A X, \\ & V_{I H}=M I N \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.30	0.50	V			
			$\pm 5 \% V_{\text {cc }}$			0.30	0.50	$\checkmark$				
$\mathrm{V}_{\mathrm{IK}}$	Input clamp voltage			$V_{C C}=M I N, I_{1}=I_{1 K}$				-0.73	-1.2	$V$		
1	Input current at maximum input voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MAX} . \mathrm{V}_{1}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
${ }_{1 H}$	High-level input current		$V_{C C}=M A X$,	2.7 V				20	$\mu \mathrm{A}$			
$1 / L$	Low-level input current	$\mathrm{D}_{\mathrm{n}}$	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					-250	$\mu \mathrm{A}$			
		$\mathrm{CP}_{\mathrm{n}}, \mathrm{S}_{\mathrm{Dn}}, \mathrm{R}_{\mathrm{Dn}}$						-20	$\mu \mathrm{A}$			
Ios	Short-circuit output current ${ }^{3}$		$V_{C C}=M A X$			-60		-150	mA			
${ }_{\text {Ic }}$	Supply current ${ }^{4}$ (total)		$V_{C C}=$ MAX				19	27	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing $I_{\text {OS }}$, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, Ios tests should be performed last.


## AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathbf{V}_{c C}=5 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & R_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} C 10+70^{\circ} \mathrm{C} \\ \mathbf{V}_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
${ }^{1}$ MAX	Maximum clock frequency	Waveform 1	105	120		85		MHz
$\begin{aligned} & \mathrm{P}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay $C P_{n}$ to $Q_{n}$ or $\bar{Q}_{n}$	Waveform 1	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & { }^{{ }^{\mathrm{P}_{\mathrm{PLH}}}} \\ & { }^{\mathrm{P} P H L} \\ & \hline \end{aligned}$	Propagation delay $S_{D n}, R_{D n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	Waveform 2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns
${ }^{\text {tPS }}$	Propagation delay Skew ${ }^{1,3}$	Waveform 4			1.0		1.0	ns
${ }^{\text {tos }}$	Output to output Skew ${ }^{\text {2,3 }}$	Waveform 4			1.5		1.5	ns

NOTE:

1. | $\mathrm{P}_{\text {LH }}$ actual - ${ }^{\mathrm{P}_{\mathrm{HL}}}$ actual | for any output.
2. I $L_{P N}$ actual - $L_{P M}$ actual | for any output compared to any other output where $N$ and $M$ are either $L H$ or HL .
3. Skew times are valid only under same test conditions (temperature, $\mathrm{V}_{\mathrm{CC}}$, loading, etc.).

## AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LMITS					UNIT
			$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathbf{V}_{c \mathrm{cc}}=5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$			$\begin{gathered} T_{A}=0^{\circ} \mathrm{C} t 0+70^{\circ} \mathrm{C} \\ V_{C C}=5 \mathrm{~V} \pm 10 \% \\ C_{L}=50 \mathrm{pF} \\ R_{L}=500 \Omega \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low $D_{n} \text { to } C P_{n}$	Waveform 1	$\begin{array}{r} 1.5 \\ 1.5 \end{array}$			2.0 2.0		ns
th (H) $h_{\text {(L }}(\mathrm{L})$	Hold time, High or Low $D_{n}$ to $C P_{n}$	Waveform 1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			1.5 1.5		ns
W (H) W	CP Pulse width, High or Low	Waveform 1	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$			3.5 6.0		ns
${ }^{\text {t }}$ (H)	$S_{D_{n}}$ or $R_{D_{n}}$ Pulse width, High	Waveform 2	3.5			4.0		ns
$\mathrm{t}_{\text {rec }}$	Recovery time $S_{D_{n}}$ or $R_{D_{n}}$ to $C P_{n}$	Waveform 3	6.0			6.5		ns
$\mathrm{t}_{\text {REC }}$	Recovery time $S_{D_{n}} \text { to } R_{D_{n}} \text { or } R_{D_{n}} \text { to } S_{D_{n}}$	Waveform 3	1.0			1.0		ns

## AC WAVEFORMS



NOTE: For all waveforms, $V_{M}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

## TEST CIRCUIT AND WAVEFORMS



## Signetics

# A Metastability Primer 

## Application Note

## Standard Products

## Author: Charles Dike

## INTRODUCTION

When using a latch or flip-flop in normal circumstances (i.e. when the device's setup and hold times are not being violated) the outputs will respond to a latch enable or clock pulse within some specified time. These are the propagation delays found in the data sheets. If, however, the setup and hold times are violated so that the data input is not a clear one or zero, there is a finite chance that the flip-flop will not immediately latch a high or low but get caught half way in between. This is the metastable state and it is manifested in a bi-stable device by the outputs glitching, going into an undefined state somewhere between a high and low, oscillating, or by the output transition being delayed for an indeterminable time.

Once the flip-flop has entered the metastable state, the probability that it will stillbe metastable some time later has been shown to be an exponentially decreasing function. Because of this property, a designer can simply wait for some added time after the specified propagation delay before sampling the flip-flop output so that he can be assured that the likelihood of metastable failure is remote enough to be tolerable. On the other hand one consequence of this is that there is some probability (albeit vanishingly small) that the device will remain in a metastable state forever. The designer needs to know the characteristics of metastability so that he can determine how long he must wait to achieve his design goals.

## THE CHARACTERISTICS OF METASTABILITY

In order to define the metastability characteristics of a device three things must be known: first, what is the likelihood that the device will enter a metastable state? This propensity is defined by the parameter ' $T_{0}$ '. Second, once the device is in a metastable state how long would it be expected to remain in that state? This parameter is tau $(\tau)$ and is simply the ex-


Figure 1


Figure 2
ponential time constant of the decay rate of the metastability. It is sometimes called the metastability time constant. The final parameter is the measured propagation delay of the device. Commonly, the typical propagation delays found in the data book are used for this and it is designated ' $h$ ' in the equations (although most designers are familiar with this value as Tpd). Now let's see how tau and $\mathrm{T}_{0}$ are determined by measurements.

## A TEST METHOD

Suppose we wanted to measure the metastability characteristics of a fictitious edge-triggered D-type flip-flop and we
had a test system that would count each time the flip-flop is found in a metastable state at some time after a clocking edge. The first thing we would like to know about the flip-flop would be the $h$ or typical propagation delay. We could measure the delay or look it up in the data book (of course, measuring the actual delay would allow more precise results). This fictitious flip-flop has an h of 7 ns . In this test we decide to use a clock frequency of 10 MHz . This frequency is primarily a function of the test systems ability to assimilate the information. The data will run at 5 MHz asynchronously to the clock and with a varying period. This frequency was
chosen because at two transitions per cycle the data signal produces 10 million points each second where it is possible for the flip-flop to go into a metastable state, an average of one point for each clock pulse. An important point about the characteristic of the data signal in relation to the clock is that the data transitions must have an equal probability of occurring anywhere within the clock period or the results could be skewed. In other words, we need to have a uniform distribution of random data transitions (high and low) relative to the clocking edge.

The first measurement we take is to determine the number of times the device is still in a metastable state 8 ns after the clock edge. With this device there are 792 failures after 1 billion clock cycles. Changing the time to 9 ns we measure 65 failures after another 1 billion cycles. Because metastability resolves as an exponentially decaying function the two points define the exponential curve and they can be plotted as shown in Figure 1. An equivalent plot can be made using a semilog scale as in Figure 2. The slope of the line drawn through the two points represents tau. With these two points the tau can be determined by equation (1):
(1) $\tau=\frac{t_{2}-t_{1}}{\ln \left(N_{1} / N_{2}\right)}$
where $N_{1}$ and $N_{2}$ are the number of failures at times $t_{1}$ and $t_{2}$, respectively.

Working thru the numbers gives us a tau of 0.40 ns . Tau of this order is representative of the FAST line of flip-flops.

Earlier we stated that $T_{0}$ is an indicator of the likelihood that the device will enter a metastable state. Now we will attempt to explain it. At 9 ns after the clock we observed 65 failures in 1 billion clock cycles. Since the data transits on average once per clock cycle and the period of this clock is 100 ns , from equation (2) we can say that there appears to be an aperture about 0.0065 picoseconds wide at the input of the device that allows metastability to occur for 9 or more nanoseconds. Another way of explaining the same thing would be to suppose that if 1 billion data


Figure 3
transitions were uniformly and randomly distributed over a clock period of 100 ns : you would expect 65 of these transitions to cause the outputs to go into a metastable state and remain there for at least 9 ns.

$$
\text { (2) } T_{9}=\frac{N_{9} P_{C}}{N_{C 9}}
$$

Where $\mathrm{N}_{\mathrm{Cg}}$ is the number of clocking events at 9 ns (in this instance, 1 billion), $P_{C}$ is the period of the clock, and $\mathrm{N}_{9}$ is the number of failures recorded at 9 ns .

By the same reasoning the window at 8 ns appears to be 0.0792 picoseconds wide. It seems to have grown because there are, of course, more failures after 8 ns than after 9 ns . This aperture has been normalized by researchers to indicate the effective size of the aperture at the clock edge, or time zero. Unfortunately the normalization process tends to obscure the interpretation of $\mathrm{T}_{0} . \mathrm{T}_{0}$ can be calculated using equation (3). Figure 3 is an extension of Figure 2 and shows the relationship of $T_{0}, h$, and tau.

$$
\text { (3) } \mathrm{T}_{0}=\mathrm{T}_{8} \mathrm{e}^{\left(\frac{8 \mathrm{~ns}}{\tau}\right)}
$$

or equivalently,

$$
T_{0}=T_{9} e^{\left(\frac{9 n s}{\tau}\right)}
$$

In this case $\mathrm{T}_{0}$ is 38.4 microseconds and this value is again typical of the FAST line of products.

Figure 3 is an extension of Figure 2 and gives a graphic indication of $T_{0}$. The number of failures plots on the same scale as the aperture size but the number of failures is dependent on the number of clock cycles used in the test (we always used 1 billion in this paper) and the ratio of data transitions to clock pulses (1:1 in this paper). On the other hand, the aperture size is independent of these things.

## MTBF

Having determined the $T_{0}$ and tau of the flip-flop, calculating the mean time between failures (MTBF) is simple. Suppose a designer wants to use the flip-flop for synchronizing asynchronous data that is arriving at 10 MHz , he has a clock frequency of 25 MHz , and has decided that he would like to sample the output of the flip-flop 15 ns after the clock edge. He simply plugs his numbers into equation (4).
(4) MTBF $=\frac{e^{\left(\frac{r}{\tau}\right)}}{T_{0} f^{f_{i}}}$

In this formula $f_{c}$ is the frequency of the clock, $f_{i}$ is the average input event frequency, and $t^{\prime}$ is the time atter the clock pulse that the output is sampled (of course t'>h). In this situation the $f_{i}$ will be twice the data frequency because input events consist of both low and high data transitions. For the numbers above the MTBF is one million seconds or about one failure every 11.6 days. If the designer would have tried to sample the data after only 10 ns the MTBF would have been 3.8 seconds.

Metastability literature can be very confusing because several companies use different nomenclature and often the fundamental parameters are obscured by scale factors, so it is important that the user understand MTBF. Let's try a thought experiment to determine the correct MTBF formula. We know the size of the aperture at 8 ns so we need to know how often that window will occur. This is supplied by the clock period. This gives a ratio of window size to clock period and gives us the likelihood of a transition within the clock period causing a metastable state that lasts beyond the 8 ns point. Now we need to know the number of input events per clock period to determine the MTBF at 8 ns . This is supplied by the average input event period and produces the equation below where $P_{c}$ and $P_{i}$ are the periods of the clock and input events, respectively.

$$
\text { (5) } M T B F=\frac{1}{T_{8} \frac{1}{P_{C}} \frac{1}{P_{i}}}=\frac{1}{T_{8} C^{f} c_{i}}
$$

This gives the MTBF for 8 ns , but how can the formula be developed to handle other times? It has been stated in this paper that the rate of decay of metastable events is an exponential function with a time constant of tau. Using this information gives the equation below where $t$ ' is the time after the clock pulse that the output is sampled.
(6) MTBF $=\frac{e^{\left(\frac{r-8 n s}{\tau}\right)}}{T_{8} c^{f_{i}}}=\frac{e^{\left(\frac{r}{\tau}\right)}}{T_{8} e^{\left(\frac{8 n s}{\tau}\right)_{f_{C} f_{i}}}}$

$$
=\frac{e^{\left(\frac{\mathrm{r}^{\prime}}{\tau}\right)}}{T_{0} f_{c} f_{i}}
$$

A point should be made here about MTBF. This is the mean time between failures and as such does not indicate the average time between failures. In fact, in this situation, the MTBF is the time before which there is a $63.2 \%$ probability that a failure would have occurred. Suppose a device has an MTBF of one million seconds like the example above; because the MTBF is an exponentialfunction there is a $9.5 \%$ probability that a failure will occur in the first 1.16 days of operation. This might cause the user to feel that the device is failing more than expected. The user would find that $50 \%$ of his failures would occur within 8 days. Figure 4 gives a visual interpretation of this idea: time constant one represents one million seconds in this case.

## RECENT DEVELOPMENTS

The quest for better metastability characteristics in flip-flops has recently resulted in the development of flip-flops with taus significantly less than 0.40 ns. Perhaps the most notable of these is the Signetics 74F50XXX series with typical taus of 135 ps. The specifications of these new products can cause confusion among the uninitiated because the typical $T_{0}$ on these devices is 9.8 million seconds or about 113 days. This is an example of how the normalization process obscures the interpretation of $T_{0}$. In the newest products the taus have decreased faster than the normal propagation delays primarily due to speed limitations of the
outputs.
Using the example above and calculating $\mathrm{T}_{7}$ from equation (3) we see that the window at $h$ is 0.965 ps . Now let's assume that we have a device with the same size window ( 0.965 ps ) at h and an hof 7 ns. The difference between this device and the previous example is that this device has a tau of 150 ps . Clearly, if the device has the same $h$ and the same size of window at $h$ but a smaller tau, the device is better. But let's calculate the $T_{0}$.

$$
\begin{gathered}
T_{0}=T_{7 e}\left(\frac{7 \mathrm{~ns}}{\tau}\right) \\
T_{0}=178 \text { million seconds! }
\end{gathered}
$$

Comparing the $T_{0}$ of any two devices does not show which device is superior. However, one can expect that the device with the lower tau is superior in all but the most peculiar circumstances.

## SUMMARY

This paper is intended to introduce the reader to the terms he will be dealing with regarding metastability and it is hoped that this introduction will help him to digest the more in-depth papers that he will be reading. Signetics uses the parameters described by Thomas Chaney of Washington University in St. Louis, Missouri because they are fundamental and the better metastability papers generally use these parameters. For further reading on the subject, the article "Metastable behavior in digital systems" by Lindsay Kleeman and Antonio Cantoni published in IEEE Design \& Test of Computers in December of 1987, is recommended.


Figure 4

## Standard Products

## THE 74F50XXX FAMILY

- 74F5074 Synchronizing Dual DType FIlp-Flop
- 74F50728 Synchronizing Cascaded D-Type Flip-Flop
- 74F50729 Synchronizing Dual DType Flip-Flop with Edge-Triggered Set and Reset
- 74F50109 Synchronizing Dual J-K Positive Edge-Triggered Flip-Flop


## MAJOR FAMILY FEATURES

- Metastable immune characteristics
- Propagation delay skew and output to output skew guaranteed to be less than $1.5 n \mathrm{n}$
- Balanced output currents for clock driver applications ( $\mathrm{I}_{\mathrm{OH}}=\mathrm{I}_{\mathrm{OL}}=$ 20mA)


## INTRODUCTION

Signetics 74F50XXX series of products have been designed to resolve synchronization problems and at the same time produce complementary metastable/ immune outputs with remarkably small skews useful in clock driving applications. The 74F5074 and 74F50109 are pin and function compatible replacements of the 74F74 and 74F109 respectively. The 74F50728 consists of two pair of cascaded D-type flip-flops, and the 74F50729 is a pin compatible replacement for the 74F74 with edge-triggered set and reset inputs.

## SYNCHRONIZATION

Synchronizing incoming signals to a system clock has proven to be costly, either in terms of time delays or hardware. In order to synchronize a signal a flip-flop is normally used to 'capture' the incoming signal. When a flip-flop is used in this mode its setup and hold times are occasionally violated. Whenever this occurs the flip-flop can enter a metastable state causing the outputs to glitch, oscillate, enter an intermediate state or change state in some abnormal fashion. Any of

AN220

# Synchronizing and Clock Driving Solutions-Using the 74F50XXX Family 

## Application Note



Figure 2-Test Setup
these conditions could cause a system to crash. To minimize this risk, flip-flops are often cascaded so that the input signal is captured on the first clock pulse and released on the second clock pulse (see Figure 1). This gives the first flipflop about one clock period minus its propagation delay and minus the second flip-flop's clock-to-Q setup time to resolve any metastable condition. This method greatly reduces the probability that the outputs of the synchronizing device may display an abnormal state, but the trade-off is that one clock cycle is lost to synchronize the incoming signal. Often two separate flip-flop packages are required to produce the cascaded flipflop circuit.

The 74F50XXX series of products have five design features that cause them to be immune from metastability problems. First, the flip-flops are designed so that their outputs cannot change state until any internal metastability has been resolved. This assures that the outputs will not glitch, oscillate, enter an intermediate state, or change state in some abnormal fashion. Second, the setup and hold
time window has been minimized to reduce the likelihood of internal flip-flops entering a metastable state. Third, the internal flip-flops have specifically been designed to exit a metastable state as rapidly as possible. Fourth, the Clock-toQ propagation delays through the part have been made as short as possible. Finally, Signetics has used the best ox-ide-isolated process available to make these products the best synchronization solutions possible.

## METASTABLE IMMUNITY

Signetics uses the term 'metastable immune' to describe characteristics of some of the products in its FAST family, specifically the 74F50XXX family which presently consists of 4 products. This term means that the outputs will not glitch or display an output anomaly under any circumstances including setup and hold time violations. This claim is easily verified on the 74F5074.

When a test is performed (see Figure 2) where two independent signal generators are running at nearly the same frequency (in this case 10 MHz clock and

## Synchronizing and Clock Driving SolutionsUsing the 74F50XXX Family



Figure 3-74F74 Q Output Triggered By Q Output, Setup And Hold Times Violated


Figure 4-74F5074 Q Output Triggered By Q Output, Setup And Hold Times Vlolated
10.02 MHz data) the device-under-test operates continuously in the region where metastability can occur. If the $\mathbf{Q}$ output is then used to trigger a digital scope set to infinite persistence the $\mathbf{Q}$ output will build a waveform.

When the device-under-test is a 74F74 (which was not designed with metastable immune characteristics) the waveform appears as shown in Figure 3. This figure clearly shows that the Q output can vary in time with respect to the $\mathbf{Q}$ trigger point. It also implies that the Q or Q output waveshapes may be distorted.

This can be verified on an analog scope with a micro-channel plate CRT. Perhaps of even greater interest are the dots running along the 3.5 volt line in the upper right hand quadrant. These show that the $\mathbb{Q}$ output did not change state even though the $\mathbf{Q}$ output glitched to at least 1.5 volts, the trigger point of the scope.

When the device-under-test is a metastable immune part, such as the 74F5074, the waveform appears as shown in Figure 4. The 74F5074 Q output does not vary with respect to the $Q$ trigger point
even when the part is driven into a metastable state. Any tendency towards internal metastability is resolved by Signetics patented circuitry. If a metastable event occurs within the flip-flop the only outward manifestation of the event will be an increased Clock-to- $Q / Q$ propagation delay. This propagation delay is, of course, a function of the metastability characteristics of the device (see below).

## METASTABILITY

## CHARACTERISTICS

In order to define the metastability characteristics of these products Signetics


Figure 5-74F5074 \& And Q Outputs Skew Relationship At 5 Volts $\mathrm{V}_{\mathrm{CC}}$ And Room Temperature
has chosen to use the parameters described by Thomas J. Chaney and Fred U. Rosenberger of Washington University in St. Louis, Missouri in their paper "Characterization and Scaling of MOS Flip-flop Performance in Synchronous Applications" in the Proceedings of the Caltech Conference on VLSI, January 1979. These parameters were chosen because they are fundamental and the best papers written on metastability use these parameters.

The first parameter to be considered is $T_{0} . T_{0}$ is a function of the propensity of a latch to enter a metastable state. It is also a very strong function of the normal propagation delay of the device and is generally given in units of seconds. The second parameter is $h$. It is the propagation delay from Clock-to-Q through a device under normal (i.e., no internal metastability) operation. The final parameter is tau $(\tau)$. Tau is the exponential time constant of the rate at which a latch in a metastable state resolves that condition and is typically specified in tenths of nanoseconds. Tau is generally the most important of the defining parameters.

To determine the Mean Time Between Failures (MTBF) the following formula is used:
MTBF $=\frac{\left[\exp \left(\frac{t^{\prime}}{\tau}\right)\right]}{\left[T_{0} \text { (clock rate)(input data rate) }\right]}$
where $\mathrm{t}^{\prime}$ is the time given between the flip-flop clock and the output sampling time. This time is always greater than $h$. One point to keep in mind is that the input data rate is twice the frequency of the input signal because each cycle of the pulse generator produces two data inputs, one high and one low. A pulse generator operating at 5 MHz produces an input data rate of 10 MHz .

As an example using the 74F5074, assume that one failure per century is acceptable and both data and the clock are at 10 MHz . A typical tau for the 54F5074 is 135 picoseconds with a $T_{0}$ of 9.8 E 6 seconds. Since one century equals about three billion seconds, substituting into the equation above gives:

3E9 sec $=\frac{\left[\exp \left(\frac{t^{\prime}}{0.135 \mathrm{~ns}}\right)\right]}{[9.8 \mathrm{E} 6(10 \mathrm{MHz})(10 \mathrm{MHz})]}$

$$
t^{\prime}=9.5 \mathrm{~ns}
$$

If an additional nanosecond were allowed between the clock and the sampling point one could expect a failure about once every 1.7 million years.

The 74F728 MTBF can be determined by setting the clock period to the $t$ ' so that in the example above the $\mathrm{t}^{\prime}=100 \mathrm{~ns}$. This t' gives:

MTBF $=\frac{\left[\exp \left(\frac{100 \mathrm{~ns}}{0.135 \mathrm{~ns}}\right)\right]}{[9.8 \mathrm{E} 6(10 \mathrm{MHz})(10 \mathrm{MHz})]}$
$M T B F=5.0 E 321$ seconds or 1.6 E 312 centuries!

Note that in this case a failure is considered to be any propagation delay beyond the delay expected in a situation where setup and hold times were not violated. Assuming data and clock rates of 100 MHz gives:

$$
\mathrm{MTBF}=\frac{\left[\exp \left(\frac{10 \mathrm{~ns}}{0.135 \mathrm{~ns}}\right)\right]}{[9.8 \mathrm{E} 6(100 \mathrm{MHz})(100 \mathrm{MHz})]}
$$

$M T B F=15 E 9$ seconds
or 48 years!

## SKEW CHARACTERISTICS

One of the requirements for an effective clock driver is that the complementary outputs have a small skew relative to each other. Figure 5 shows a picture of the 74F5074 outputs at room temperature with a 5 volt $\mathrm{V}_{\mathrm{cc}}$. Because of Signetics patented circuitry the output skews will always remain tightly coupled over temperature and $V_{c c}$.

## SUMMARY

Because of their minimum output skews, metastable immune characteristics, and balanced output drive capabilities the

## Synchronizing and Clock Driving SolutionsUsing the 74F50XXX Family

74F50XXX series of products offer viable solutions to synchronization and clock driver problems.

For further reading on the metastability problem Signetics recommends application note AN219, "A Metastability Primer," and "Metastable Behavior in Digital Systems" by Lindsay Kleeman and Antonio Cantoni in IEEE Design \& Test of Computers, December 1987, pages 4-19.

Signelics

Document No.	Application Note
ECN No.	
Date of issue	January, 1990
Status	
FAST Products	

## INTRODUCTION

Subtle differences in a device's design sometimes allow unusual applications. Consider the difference between edge triggered and level sensitive inputs-

## SINGLE 14-PIN IC DOUBLES INPUT FREQUENCY

The 74F50729 from Signetics is a dual Dtype flip-flop. The part is functionally equivalent to the 74F74 except that set and reset are positive edge triggered rather than level sensitive. The circuits described in this application note make use of the edge triggered set and reset features of the 74F50729. The first circuit is a frequency doubler. It is shown in Figure 1 a along with input and output waveforms running at 30 MHz and 60 MHz respectively (Figure 1b).

## AN22 1

Multiplying and Dividing Clock
Frequencies Using the 74F50729
The operation of the frequency doubler is as follows. When the flip-flop starts out in the high state, the first rising clock edge will toggle the flip-flop into the low state because the $\mathrm{Q}^{\prime}$ is tied back to D . From here each rising clock or clock' edge will toggle the part into the high state, and this rising edge willtrigger the CLR input to put


Figure 1a. Frequency doubler


## MULTIPLY INPUT FREQUENCY BY N USING N FLIP-FLOPS

The 74F50729 can also be used to multiply input frequencies by $n$ using $n$ flipflops. The circuit shown in Figure 2a uses $n$ flip-flops to produce a series of $n$ pulses in response to each rising transition at the input. The pulse width high and low can be independently increased by increasing the delays shown in Figure 2b.

To understand the operation of this circuit, imagine $Q_{1 . . n}$ starting out in the low state and $Q_{1, n}^{\prime}$ in the high state. A low to high transition at the CLK ${ }_{1, n}$ inputs will cause $Q_{1 . . n}$ to go high and $Q_{1 . . n}$ to go low. The low to high transitions of $Q_{1 . . n}$ will trigger the $C L R_{1 . . n}$ inputs bringing $Q_{1 . n}$ back low and $Q_{1 . . n}^{\prime}$ back high. The low to high transitions of $Q_{1 . n-1}^{\prime}$ will trigger $S E T_{2 . n}$ putting $Q_{2 . . n}$ into the high state and
$Q_{2 . n}$ into the low state. The low to high transitions of $Q_{2 . n}$ will again trigger the $\mathrm{CLR}_{2 . . n}$ inputs bringing $Q_{2 . . n}$ back low and $Q_{2 . . n}$ back high. This in turn will stimulate another set of pulses on $Q_{3, \ldots} / Q_{3 . n}^{\prime}$ stimulating another set on $Q_{4 . . n} / Q_{4 . n}^{\prime \prime}$ and so on. When the sequence is complete, $Q_{n}$ will have produced $n$ rising pulses, $Q_{n-1}$ will have produced $n-1$ rising pulses, and so on down through $Q_{1}$ which will have produced one pulse.


Figure 2a. Multiply by $n$


Figure 2b. Input and output waveforms from a $4 X$ frequency multiplier. The waveforms are (in descending order) Clock, Clock2, Clock 3, and Clock4.

## DIVIDING THE INPUT

 FREQUENCY BY 1.5 AND 3The final circuit in Figure 3a works much like a two bit ripple counter except that it increments itself from the count of two to the count of three without requiring an input clock edge. To trace through the circuit operation, imagine the two flip-flops both starting out in the low state (see Figure 3b). The first rising clock edge will
toggle flip-flop 1 into the high state. The next rising clock edge will toggle flip-flop 1 into the low state which will toggle flipflop 2 into the high state which will trigger the SET input of flip-flop putting it back into the high state. The next rising clock edge will toggle flip-flop 1 into the low state which will toggle flip-flop 2 into the low state. The two flip-flops have wrapped back around to their initial state
and it has taken three input clock cycles. In three input clock cycles flip-flop 1 goes through the repetitive sequence 0101 (two full cycles), so its output frequency is two thirds or $1 / 1.5$ that of the input. In three input clock cycles flip-flop 2 has gone through the repetitive sequence 0011 (one full cycle), so its output frequency is one third that of the input.


Figure 3a. Divide by 1.5 and 3


Figure 3b. Input and output waveforms from a 1.5 and 3 frequency divider. The waveforms are (in descending order) Clock, Clock/1.5, and Clock/3.

## Signetics

# AN222 <br> Eliminating Glitches-Using the 74F50XXX Family 

Application Note

## Standard Products

Author: Charles Dike

## INTRODUCTION

One of the hazards of using self-timed circuits is that, on occasion, a glitch or runt pulse can appear because of race conditions. Because this pulse is too small to be interpreted as a legitimate one or zero, it can wreak havoc with a design.

## A SOLUTION

The following circuits turn runt pulses into useable fixed width pulses or, if the input is too small, block the input. This idea is especially useful if the output is being used to trigger a set, reset, or clock input of another flip-flop.

Figure 1 shows half of a Signetics 74F5074 in a configuration that will turn a positive runt pulse into a useable pulse or ignore it if it is too small. Normal propagation delays from the clock to $Q$ may be extended in this configuration but the outputs will not be corrupted in any manner. Figure 2 does the same for a negative pulse. (Note: The 74F50729 can be used in a similar manner, but with the feedback originating from the opposite output.)

The circuit is normally in the reset state (the Q output low) in Figure 1. If a glitch that is narrower than the delay ( 4 nanoseconds or wider works fine) arrives at the D input, the glitch on the data line will be gone when the clock sees the glitch and so the output will remain low. This is indicated in Figure 3 by the input $C$ pulse not appearing on the output. If the glitch is the same size as the delay so that the data is in transition when the flip-flop clocks the outputs may switch with a delayed propagation time but they won't glitch (indicated by the B pulse in Figure 3). This is because the clock width is at least as long as the delay and is sufficient for the flip-flop to operate properly. If the


FIGURE 3 - Outputs of FIGURE 1 circuit compared to its input signal
input pulse is longer than the delay the output will have normal transitions (pulses A and D). The output of the device will be a pulse with a width determined by the characteristics of the output loading on Q'. With a 50 pf capacitor on the Q' output, the Q output pulse width is about 6 ns . If a longer output pulse width is required, a non-inverting delay from the Q' to the reset or an inverting delay from
the Q can be used. The width of the output pulse would then be about the propagation delay thru the flip-flop plus the delay to the reset input.

This circuit will only work with the metas-table-immune features of the 74F50XXX series. If a non-metastable immune device is used the outputs can produce a glitch.

## Sales Offices, Representatives \& Distributors

FAST Logic Products

## Philips Components-Signetics <br> Sales Offices, Representatives \& Distributors

## FAST Logic Products

## SIGNETICS

HEADQUARTERS
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409
Phone: (408) 991-2000
ALABAMA
Huntsville
Phone: (205) 830-4001
CALIFORNIA
Calabasas
Phone: (818) 880-6304
Irvine
Phone: (714) 833-8980
(714) 752-2780

San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5071
GEORGIA
Atlanta
Phone: (404) 594-1392
ILLINOIS
Itasca
Phone: (708) 250-0050
INDIANA
Kokomo Phone: (317) 459-5355
MASSACHUSETTS
Westford Phone: (508) 692-6211
MICHIGAN
Farmington Hills Phone: (313) 553-6070
NEW JERSEY
Parsippany Phone: (201) 334-4405
Toms River
Phone: (201) 505-1200
NEW YORK
Wappingers Falls
Phone: (914) 297-4074
NORTH CAROLINA
Raleigh Phone: (919) 787-4990
OHIO
Columbus
Phone: (614) 888-7143
Dayton Phone: (513) 436-0066
OREGON
Beaverton Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404

## TENNESSEE

Greeneville
Phone: (615) 639-0251
TEXAS
Austin
Phone: (512) 339-9945
Richardson
Phone: (214) 644-1610
CANADA
SIGNETICS CANADA, LTD.
Etoblcoke, Ontario
Phone: (416) 626-6676
Nepean, Ontario
Phone: (613) 225-5467
REPRESENTATIVES
ALABAMA
Huntsville
Elcom, Inc.
Phone: (205) 830-4001
ARIZONA
Scottsdale
Thom Luke Sales, Inc.
Phone: (602) 941-1901
CALIFORNIA
Folsom
Webster Associates
Phone: (916) 989-0843
COLORADO
Aurora
Thom Luke Sales, Inc.
Phone: (303) 751-5011
CONNECTICUT
Wallingford JEBCO
Phone: (203) 265-1318
FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283
GEORGIA
Norcross
Elcom, Inc.
Phone: (404) 447-8200
ILLINOIS
Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 382-3001
INDIANA
Indianapolis
Mohrfield Marketing, Inc. Phone: (317) 546-6969

## IOWA

Cedar Rapids
J.R. Sales

Phone: (319) 393-2232

MARYLAND
Columbla
Third Wave Solutions, Inc.
Phone: (301) 290-5990
MASSACHUSETTS
Chelmsford
JEBCO
Phone: (508) 256-5800
MICHIGAN
Brighton
AP Associates, Inc.
Phone: (313) 229-6550
MINNESOTA
Eden Prairie
High Technology Sales
Phone: (612) 944-7274
MISSOURI
Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100
NEW HAMPSHIRE
Hooksett
JEBCO
Phone: (603) 645-0209
NEW MEXICO
Albuquerque
F.P. Sales

Phone: (505) 345-5553
NEW YORK
thaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre
S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Bob Dean, Inc.
Phone: (914) 297-6406
NORTH CAROLINA
Smithfield
ADI
Phone: (919) 934-8136
OHIO
Centervilie
Bear Marketing, Inc.
Phone: (513) 436-2061
Richfield
Bear Marketing, Inc.
Phone: (216) 659-3131
OREGON
Beaverton
Western Technical Sales
Phone: (503) 644-8860
PENNSYLVANIA
Pittsburgh
Bear Marketing, Inc.
Phone: (412) 531-2002

Hatboro
Delta Technical Sales, Inc. Phone: (215) 957-0600

## TEXAS

Austin
Synergistic Sales, Inc.
Phone: (512) 346-2122
Houston Synergistic Sales, Inc. Phone: (713) 937-1990
Richardson
Synergistic Sales, Inc.
Phone: (214) 644-3500
UTAH
Salt Lake City Electrodyne Phone: (801) 264-8050
WASHINGTON
Bellevue
Western Technical Sales Phone: (206) 641-3900
Spokane Western Technical Sales Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc. Phone: (414) 542-5352
CANADA
Calgary, Alberta Tech-Trek, Ltd. Phone: (403) 241-1719
Mississauga, Ontario Tech-Trek, Ltd. Phone: (416) 238-0366
Nepean, Ontario Tech-Trek, Ltd. Phone: (613) 225-5161
Richmond, B.C. Tech-Trek, Ltd Phone: (604) 276-8735
Ville St. Laurent, Quebec Tech-Trek, Ltd.
Phone: (514) 337-7540
PUERTO RICO
Santurce
Mectron Group Phone: (809) 728-3280
DISTRIBUTORS
Contact one of our
local distributors:
Anthem Electronics
Falcon Electronics, Inc.
Gerber Electronics
Hamilton/Avnet Electronics
Marshall Industries
Schweber Electronics
Wyle/LEMG
Zentronics, Ltd.

DATA HANDBOOK SYSTEM

## DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of six series of handbooks:

INTEGRATED CIRCUITS

DISCRETE SEMICONDUCTORS

DISPLAY COMPONENTS

PASSIVE COMPONENTS*

PROFESSIONAL COMPONENTS**

MATERIALS*
The contents of each series are listed on pages iii to viii.
The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.
When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application is given it is advisory and does not form part of the product specification.
Condensed data on the preferred products of Philips Components is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.
Product specialists are at your service and enquiries will be answered promptly.

* Will replace the Components and materials (green) series of handbooks.
** Will replace the Electron tubes (blue) series of handbooks.


## INTEGRATED CIRCUITS

code	handbook title
IC01	Radio, audio and associated systems Bipolar, MOS
IC02a/b	Video and associated systems Bipolar, MOS
IC03	ICs for Telecom Bipolar, MOS   Subscriber sets, Cordless Telephones
ICO4	HE4000B logic family CMOS
IC05	Advanced Low-power Schottky (ALS) Logic Series
IC06	High-speed CMOS; PC74HC/HCT/HCU Logic family
IC07	Advanced CMOS logic (ACL)
IC08	ECL 10 K and 100 K logic families
IC09N	TTL logic series
IC10	Memories MOS, TTL, ECL
IC11	Linear Products
IC12	$1^{2} \mathrm{C}$-bus compatible ICs
IC13	Semi-custom   Programmable Logic Devices (PLD)
IC14	Microcontrollers NMOS, CMOS
IC15	FAST TTL logic series
Supplement to IC15	FAST TTL logic series
IC16	CMOS integrated circuits for clocks and watches
IC17	ICs for Telecom Bipolar, MOS Radio pagers Mobile telephones ISDN
IC18	Microprocessors and peripherals
IC19	Data communication products

## DISCRETE SEMICONDUCTORS

| This series of data <br> current <br> code | new <br> code | handbooks title |
| :--- | :--- | :--- | | S1 | SC01 | Diodes <br> High-voltage tripler units |
| :--- | :--- | :--- |
| S2a | SC02* | Power diodes |
| S2b | SC03* | Thyristors and triacs |
| S3 | SC04 | Small-signal transistors |
| S4a | SC05 | Low-frequency power transistors and hybrid IC power modules |
| S4b | SC06 | High-voltage and switching power transistors |
| S5 | SC07 | Small-signal field-effect transistors |
| S6 | SC08 | RF power transistors |
|  | SC09 | RF power modules |
| S7 | SC10 | Surface mounted semiconductors |
| S8a | SC11* | Light emitting diodes |
| S8b | SC12 | Optocouplers |
| S9 | SC13* | PowerMOS transistors |
| S10 | SC14 | Wideband transistors and wideband hybrid IC modules |
| S11 | SC15 | Microwave transistors |
| S15** | SC16 | Laser diodes |
| S13 | SC17 | Semiconductor sensors |
| S14 | SC18* | Liquid crystal displays and driver ICs for LCDs |

* Not yet issued with the new code in this series of handbooks.
** New handbook in this series; will be issued shortly.


## DISPLAY COMPONENTS

This series of data handbooks comprises:

| current | new |
| :--- | :--- | :--- |
| code | code |

T8 DC01 Colour display components

T16 DC02 Monochrome monitor tubes and deflection units
C2 DC03 Television tuners, coaxial aerial input assemblies
C3 DC04* Loudspeakers
C20 DC05 Flyback transformers, mains transformers and general-purpose FXC assemblies

* These handbooks are currently issued in another series; they are not yet issued in the Display Components series of handbooks.


## PASSIVE COMPONENTS

This series of data handbooks comprises:

current   code	new   code	handbook title
C14	PA01	Electrolytic capacitors; solid and non-solid
C11	PA02	Varistors, thermistors and sensors
C12	PA03	Potentiometers and switches
C7	PA04	Variable capacitors
C22	PA05*	Film capacitors
C15	PA06*	Ceramic capacitors
C9	PA07*	Piezoelectric quartz devices
C13	PA08	Fixed resistors

[^12]
## PROFESSIONAL COMPONENTS

This series of data handbooks comprises:

current   code	new   code	handbook title
T1	*	Power tubes for RF heating and communications
T2a	$*$	Transmitting tubes for communications, glass types
T2b	$*$	Transmitting tubes for communications, ceramic types
T3	PC01**	High-power klystrons
T4	$*$	Magnetrons for microwave heating
T5	PC02**	Cathode-ray tubes
T6	PC03**	Geiger-Müller tubes
T9	PC04**	Photo and electron multipliers
T10	PC05	Plumbicon camera tubes and accessories
T11	PC06	Circulators and Isolators
T12	PC07	Vidicon and Newvicon camera tubes and deflection units
T13	PC08	Image intensifiers
T15	PC09**	Dry reed switches
C8	PC10	Variable mains transformers; annular fixed transformers
	PC11	Solid state image sensors and peripheral integrated circuits

[^13]** Not yet issued with the new code in this series of handbooks.

## MATERIALS

This series of data handbooks comprises:

current   code	new   code	handbook title
$\left.\begin{array}{l}\text { C4 } \\ \text { C5 }\end{array}\right\}$	MA01*	Soft Ferrites
C16	MA02*** Permanent magnet materials	
C19	MA03**	Piezoelectric ceramics

* Handbooks C4 and C5 will be reissued as one handbook having the new code MA01.
** Not yet issued with the new code in this series of handbooks.


## Philips Components - a worldwide Company

Argentina: PHIIIPS ARGENTINA S.A. Div. Philips Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-4261.
Australia: PHILIPS COMPONENTS PTY Lid, 11 Waltham Street, ARTARMON, N.S.W. 2064, TEL. (02) 4393322
Austria: OSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN. Tel (0222) 60 101-820
Belgium: N.V. PHILIPS PROF. SYSTEMS - Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel (02) 5256111.
Brazil: PHILIPS COMPONENTS (Active Devices)
Av. das Nacoes Unidas, 12495-SAO PAULO-SP, CEP 04578, P.O. Box 7383, Tel. (011) 534-2211
PHiLIPS COMPONENTS (Passive Devices \& Materials) Av. Francisco Monteiro, 702 - RIBEIRAO PIRES.SP, CEP 09400, Tel. (011) 459-8211.
Canada: PHILIPS ELECTRONICS LTD., Philips Components, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8 Tel. (416) 292-5161.
(IC Products) SGNETICS CANADA LTD., 1 Eva Road, Suite 433, ETOBICOKE, Ontario, M9C 475, Tel. (416) 626-6676.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO Tel. (02) 773816.
Colombia: IPRELENSO LTDA., Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621, Tel. (01) 2497624

Denmark: PHILIPS COMPONENTS AS, Prags Boulevard 80, PB1919, DK-2300 COPENHAGEN S, Tel. 01-541133
Finland: PHILIPS COMPONENTS, Sinikalliontie 3, SF-2630 ESPOO Tel. 358-0-50261.
France: PHILIPS COMPOSANTS, 117 Quai du President Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (O1) 40938000.
Germany (Fed. Republic): PHILIPS COMPONENTS UB der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Components Division, No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01) 4894339/4894911.
Hong Kong: PHILIPS HONG KONG LTD., Components Div., 15/F Philips Ind. Blidg., 24-28 Kung Yip St, KWAI CHUNG, Tel. (0)-4245 121.
India: PEICO ELECTRONICS \& ELECTRICALSLTD., COmponents Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. (022) 4930311/4930590.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div, Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995.
Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Components Division, Newstead, Clonskeagh, DUBLIN 14, Tel. (01) 693355.
Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 6752.1.
Japan: PHILIPS JAPAN LTD., Components Division, Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO (108), Tel. (03) 7405028
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Components Division, Philips House, 260-199 ltaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.
Malaysia: PHILIPS MALAYSIA SDN BHD, Components Div., 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (03) 7345511.
Mexico: PHILIPS COMPONENTS, Paseo Triunfo de la Republica, No 215 Local 5, Cd Juarez CHIHUAHUA 32340 MEXICO, Tel. (16) 18.67-0102.
Netherlands: PHILIPS NEDERLAND B.V., Markkgroep Philips Components, Postbus 90050,5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHLLIPS NEW ZEALAND LTD., Components Division, 110 ML Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914. Norway: NORSK AS PHIIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 680200.
98-2915-410

Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTANLTD., Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772.

Peru: CADESA, Carretera Central 6.500, LIMA 3, Apartado 5612, Tel. 5t-14-350059.
Philippines: PHILIPS ELECTRICALLAMPS INC., Components Div., 106 Valero St. Salcedo Village, MAKATI, P.O. Box 911, METRO MANILA, Tel. (63-2) 810-0161
Portugal: PHILIPS PORTUGUESA S.A.R.L. Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS SINGAPORE, PTE LTD., Components Div., Lorong 1. Toa Payoh, SINGAPORE 1231, Tel. 3502000.
South Africa: S.A. PHILIPS PTY LTD., Components Division, JOHANNESBURG 2000 , P.O. Box 7430.
Spain: PHILIPS COMPONENTS, Balmes 22, 08007 BARCELONA, Tel. (03) 3016312.
Sweden: PHILIPS COMPONENTS, A. B., Tegeluddsvagen 1, S-11584 STOCKHOLM, Tel. (0)8-7821000.
Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. (01) 4882211.
Taiwan: PHILIPS TAIWAN LTD., 581 Min Sheng East Road, P.O. Box 22978, TAIPEl 10446, Taiwan, Tel. 886-2-5005899.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.

Turkey: TURK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad. No. 5, 80640 LEVENT/ISTANBUL, Tel. (01) 1792770.
United Kingdom: PHILIPS COMPONENTS LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. (01) 5806633.
United States: (Color Picture Tubes - Monochrome \& Colour Display Tubes) PHILIPS DISPLAY COMPONENTS COMPANY, 1600 Huron Parkway, P.O. Box 963, ANN ARBOR, Michigan 48106, Tel. (313) 996-9400. (IC Products) SIGNETICS COMPANY, 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (408) 991-2000. (Passive Components, Discrete Semiconductors, Materials and Professional Components) PHILIPS COMPONENTS, Discrete Products Division, 2001 West Blue Heron Blvd., P.O. Box 10330, RIVIERA BEACH, Florida 33404, Tel. (407) 881-3200
Unuguay: PHILIPS COMPONENTS, Coronel Mora 433, MONTEVIDEO, Tel. (02) 70-4044.
Venezuela: MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, CARACAS 1074A, App. Post. 78117, Tel. (02) 2417509.
Zimbabwe: PHILIPS ELECTRICAL (PVT) LTD., 62 Mutare Road, HARARE, P.O. Box 994, Tel. 47211.

For all other countries apply to: Philips Components Division, Strategic Accounts and international Sales, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax 23753.
AS80 06/21/90 ©Philips Export B.V. 1990
All rights are reserved. Reproduction in whole or in part is prohibited without the prior writen consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any ticense under patent - or industrial or intellectual property rights.

Copyright 1990 NAPC Printed in USA

0278S/40M/FP/0990


[^0]:    $V_{C C}=\operatorname{pin} 14$
    GND $=\mathrm{pin} 7$

[^1]:    $H=$ High voltage level
    L = Low voltage level
    $X=$ Don't care

[^2]:    $\mathrm{H}=$ High voltage level
    L = Low voltage level
    $X=$ Don't care

[^3]:    $\mathrm{H}=$ High voltage level
    L= Low voltage level
    $h=$ High state must be present one setup time before the Low-to-High transition of $\overline{\overline{L E X X}}$ or $\overline{E X X}(X X=A B$ or $B A)$
    $I=$ Low state must be present one setup time before the Low-to -High transition of $\overline{L E X X}$ or $\overline{E X X}(X X=A B$ or $B A)$
    $\uparrow=$ Low-to-High transition of $\overline{\overline{E X X}}$ or $\overline{E X X}(X X=A B$ or $B A)$
    $\mathrm{X}=$ Don't care
    NC=No change
    Z $=$ High impedance "off" state

[^4]:    $V_{C C}=p i n 16$
    GND $=$ pin 6

[^5]:    $H=$ High voltage level
    $L=$ Low voltage level
    $X=$ Don't care
    $Z=$ High impedance "off" state
    $\uparrow=$ Low-to-High transition

[^6]:    $\mathrm{H}=$ High voltage level
    $L=$ Low voltage level
    $X=$ Don't care
    $Z=$ High impedance "off" state

[^7]:    $H=$ High voltage level
    L = Low voltage level
    $X=$ Don't care
    $Z=$ High impedance "off" state

[^8]:    $\mathrm{H}=$ High voltage level
    L = Low voitage level
    $X=$ Don't care
    $Z=$ High impedance "otf" state

[^9]:    $\mathrm{H}=$ High voltage level
    $\mathrm{L}=$ Low voltage level

[^10]:    $\mathrm{H}=$ High voltage level.
    $L=$ Low voltage level.
    a, b, q = Lower case letters indicate the state of the referenced ouput prior to the Low-10-High clock transition.
    $\mathrm{X}=\mathrm{Don't}$ care.
    $X=$ High impedance.
    $\uparrow=$ Low-lo-High clock transition.
    (1) $=$ Terminal coumt is High when the output is at terminal count (HHHHHHHH).
    (2) = Party is High for odd number of internal register bits High, Low for even number of internal register bits High.
    $(3)=C / S / / C E \rightarrow Q_{0} \rightarrow Q_{1}$, etc.

[^11]:    $\mathrm{H}=$ High voltage level

[^12]:    * Not yet issued with the new code in this series of handbooks.

[^13]:    * These handbooks will not be reissued.

