
The Engineering Staff of

TEXAS INSTRUMENTS INCORPORATED
Semiconductor Group

TM 990/100M
MICROCOMPUTER

USER'S
GUIDE

PART NUMBER 1602000-9701

DECEMBER 1978

TEXAS INSTRUMENTS
INCORPORATED

IMPORTANT NOTICES
Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright © 1978
Texas Instruments Incorporated

TABLE OF CONTENTS

1. INTRODUCTION
1.1 General•..•.....................................•......... 1-1
1.2 Manual Organization ..•..................... 1-1
1 .3 Specifications. • . . . • .. 1-4
1 .4 Board Characteristics•................................•.....•....... 1-4
1.5 Glossary•.....................•........•..•....................... 1-4
1.6 Applicable Documents .. 1-8

2. IINSTALLATION AND OPERATION
2.1 General ..•.....•...........•.. 2-1
2.2 Required Equipment ..•.....•........................•......•.....•.................... 2-1
2.3 Unpacking. • . • 2-2
2.4 Power and Terminal Hookup•.................•...............•.............• 2-2
2.4.1 Power Supply Hookup•..........................•............... 2-2
2.4.2 Terminal Hookup•.............•.......•............ 2-2
2.5 Operation ...•..•.•...•...........•.............................•...........•.......... 2-2
2.6 Sample Programs•....................•...•.•......................... 2-4

3. TIBUG INTERACTIVE DEBUG MONITOR
3.1 General•.•....................•......•...•............. 3-1
3.2 TIBUG Commands ..••.•..•....................•...•....•.•.......•....•..•....•....... 3-1
3.2.1 Execute Under Breakpoint (B) .. 3-3
3.2.2 CRU Inspect/Change (C) .•...........•...............•....•.•....•...............•..••. 3-4
3.2.3 Dump Memory to Cassette/Paper Tape (D) .. 3-5
3.2.4 Execute Command (E) .•..•.•..............................••.............•............ 3-7
3.2.5 Find Command (F)•.........•..............•............................•... 3-7
3.2.6 Hexadecimal Arithmetic (H)•.....•.....••....•.........•...........• 3-8
3.2.7 Load Memory From Cassette or Paper Tape (L) ..•..................• • . . . • 3-8
3.2.8 Memory Inspect/Change, Memory Dump (M)•............ 3-9
3.2.9 Inspect/Change User WP, PC, and ST Registers (R) 3-10
3.2.10 Execute in Step Mode (S) •......................•....................•................ 3-11
3.2.11 TI 733 ASR Baud Rate (T)•...................................•........•.•...... 3-11
3.2.12 Inspect/Change User Workspace (W)•.........................•.....•....... 3-12
3.3 User Accessible Utilities •.....•...........•........•....•.....•......•.......•........ 3-13
3.3.1 Write One Hexadecimal Character to Terminal (XOP 8) •............•..•................. 3-13
3.3.2 Read Hexadecimal Word From Terminal (XOP 9) .. 3-14
3.3.3 Write Four Hexadecimal Characters to Terminal (XOP 10) 3-14
3.3.4 Echo Character (XOP 11) .. 3-15
3:.3.5 Write One Character to Terminal (XOP 12) ... 3-15
3.3.6 Read One Character from Terminal (XOP 13) ... 3-15
3.3.7 Write Message to Terminal (XOP 14) .. 3-15
3.4 TIBUG Error Messages•....................•..•.....•.•..... 3-16

4. INSTRUCTION SET FOR THE TM 990!100M
4.1 General•...........•.....•.....•........•...•.................•....•.•..•. 4-1
4.2 User Memory•.•..•.•.....................•....•.....•........•.....•••.•......•.. 4-1
4.3 Hardware Registers•.......•...•.••......•.•......•..•.••..••....•.......•.•.•..• 4-1
4.3.1 Program Counter••........• : '. • . . • . • • • • . . • . .. 4-2
4.3.2 Workspace Pointer •...•..........••.••....•.........•....•••..•...•.•••..•.•.•••••.... 4-2

iii

TABLE OF CONTENTS (Continued)
4.3.3
4.4
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.6
4.6.1
4.6.2
4.6,3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9

4.7

Status Register .. 4-2
Software Registers .. 4-4
Instruction Formats and Addressing Modes .. 4-7
Direct Register Addressing .. 4-8
I ndirect Register Addressing ...•..• • 4-8
Indirect Register Autoincrement Addressing ...•.. 4-11
Symbolic Memory Addressing, Not Indexed ... 4-11
Symbolic Memory Addressing, Indexed ... 4-11
Instructions ..•....... 4-14
Format 1 Instructions•............................•............•..... 4-18
Format 2 Instructions
Format 3 Instructions
Format 4 Instructions
Format 5 Instructions
Format 6 Instructions
Format 7 Instructions
Format 8 Instructions

(,
................................... 0 ... '.

4-19
4-22
4-23
4-24
4-26
4-28
4-30

Format 9 Instructions•... 4-32
-- -- - _. - -

Comparison of Jumps, Branches, XOP's ' 4·34

5. THEORY OF OPERATION
5.1 General•.•........................•...............•............ 5-1
5.2 System Clock•................................... 5-1
5.3 Central Processing Unit•..........................•............ 5-1
5.4 RESET and LOAD•...........................•.................•...•...•.. 5-3
5.5 Memory 1/0 Decoder•.•..•.........................•.•........... 5-7
5.6 Random Access Memory•..•....•..........•..•.••.. 5-7
5.7 Read Only Memory•................................. '5-7
5.8 Offboard Expansion Buffers .•..................•..............•.................•..••.. 5-8
5.9 TMS 9901 Parallel 110, Interrupts .. 5-8
5.10 TMS 9902 Serial 1/0 Interface .. 5-15
5.11 Serial 1/0 Interface•.................................... 5-15
5.12 Wire-Wrap Area 5-15
5.13 Multidrop Interface ...•..• 5-15

6. APPLICATIONS
6.1 General :•..•....•.......•.•................ 6-1
6.2 Wire-Wrap Additional On-Card TMS 9901 6-'
6.3 Parallel 1/0 Port Circuitry•..............................•....................•.. 6-'
6.4 Off-Card Additional Random Access Memory •.....................••..•................. 6-1
6.5 Add Off-Card TMS 9901•.•.................•..•.......•......... 6-'
6.6 On-Board Communications Interrupt ..•........... 6-1

7. OPTIONS
7.1 General ,•. '"•................•.............. 7-1
7.2 On-Board Memory Expansion•.....•...................................•...•.. 7-'
7.2.1 EPROM Expansion .. . 7-'
7.2.2 RAM Expansion ..•............. 7-1
7.3 Asynchronous Serial Communication .. . 7-1
7.4 RS-232-C and Teletypewriter Interfaces , ., .•................ 7-4
7.5 External System Reset•..•.......•..•... 7-4
7.6 Memory Map Change ..••.......•........ 7-4
7.7 Line-By-Line Assembler•....................................... 7-6
7.B TM 990/301 Microterminal ...•.......... 7-6
7.9 OEM Chassis ..•..•..• 7-6
7.10 Interrupt from TMS 9902•.•.. 7-6

iv

f'

TABLE OF CONTENTS (Concluded)

8. PROGRAMMING THE TM 990/100M MICROCOMPUTER
8.1 General. 8-1
8.2 CRU Programming .. 8-2
8.2.1 General .. 8-2
8.2.2 CRU Addressing .. 8-2'
8.2.3 CRU Timing .. 8-4
8.2.4 CRU Instructions ... 8-4
8.3 I nterru pts . 8-7
8.3.1 I nterrupt Operation ... 8-7
8.3.2 Programmable Interrupts .. 8-8
8.4 Programming the Interval Timers .. 8-10
8.4.1 TMS 9901 Interval Timer ... 8-10
8.4.2 TMS 9902 I nterval Timer. .. 8-11
8.5 Context Switch to Another Program such as Monitor ,8-14
8.6 I/O Programming with the TMS 9901 8-14

APPENDICES

A WIRING TELETYPE MODEL 3320/SJE FOR TM 990/100M
B EIA RS-232-C CABLING
C ASCII CODE
D BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
E PARTS LISTS
F SCHEMATICS AND DIMENSIONAL DRAWING
G 990 OBJECTIVE CODE FORMAT
H Pl, P2, AND P4 PIN ASSIGNMENTS
I TM 990/301 MICROTERMINAL

J EXAMPLE PROGRAMS

Figure 1-1
Figure 1-2
Figure 1-3

Figure 2-1
Figure 2-2

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

LIST OF ILLUSTRATIONS

TM 990/1ooM Microcomputer PC Board ..•..•.•.....•.......•.......•..........•..•.... 1-2
Principal TM 990/1ooM Components ...•..•.••...•..•......•.........•..•...•..•.••.•.. 1-3
TM 990/looM Board Dimensions _ _•.....•.•......••...•.... 1-5

Power Supply Hookup •..•....•....•.•..•......•.....................•......•.....•.•.. 2-3
743 KSR Terminal Hookup••....•..•...•.......•.•.•.....•......•....•....•..•.... 2-4

Memory Requirements for TIBUG ..•.••.......................•......•.•................ 3-2
CRU Bits Inspected by C Command ..•........................••.......••.•...•....•..•. 3-4
733 ASR Upper Switch Panel•.......•..•.......••..........•.•...•..•.•. 3-6
Tap Tabs•..................•........•.....•.........••.•..•..•..••..• , 3-6

Memory Map : • • • . . . • . • . . . • . . . • • • .. 4-2
Status Register ... :.. 4-3
Workspace Example •..•.•..• ~ . • . • . . • • . • • • • • . • . . • . . • • . • . . • . . • . . . •• 4-6
TM 990/1ooM Instruction Formats ..••..........•.••..•.•.•..•..•...•........••.••••... 4-7
Direct Register Addressing'Example•.......•...•...••.•.•...•.........•..••........ 4-9
Indirect Register Addressing Example•.•.•.••.....•.•••...••.•............•.•..•. 4-10
Indirect Register Autoincrement Addressing Example •.•............... ; 4-10
Direct Memory Addressing Example•..•........•..•.••..•.••..•..•.......••.•••... 4-12

v

Figure 4-9
Figure 4-10
Figure 4-11

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

Figure 8-7

Figure 8-8

Figure 8-9

Figure 8-10

Figure 8-11

LIST OF ILLUSTRATIONS (Continued)

Direct Memory Addressing. Indexed. Example•................•................... 4-13
BLWP Example•..•......................................•............ 4-29
XOP Example•...•....... 4-33

TM 990/100M Block Diagram•........•............... 5-2
Crystal-Controlled Operation•.. 5-3
TMS 9900 Signals•... 5-4
TMS 9900 Data and Address Flow .. 5-5
TMS 9900 CPU Flow Chart•.................................•..................... 5-6
External Instruction Decode Logic on TMS 9900•................................ -, 5-7
RESET and LOAD Logic ...•..............................•............•................ 5-8
Memory 1/0 Decoder ..•................... 5-9
Random Access Memory••... 5-10
Read Only Memory ...•..................••......••...•................••............. 5-11
Buffering of Control Signals to Connector Pl•....•............•...... 5-12
Buffering of Address and Data Signals to Connector Pl 5-13
TMS 9901 External Logic•... 5-14
TMS 9902 External Logic•....................•.....•.....•................•..... 5-16
Serial 1/0 Interlace •.•..•.....................•...................•................... 5-17
Signals at Wire-Wrap Area••...•.............•....•............. 5-18
Multi-Drop Interface•..........•......•....•.....•...••......•............. 5-19

Devices Used in Various Applications •.•...•...... 6-2
Signals at Wire-Wrap Area .••......•.........................•...............•......... 6-3
On-Board TMS 9901 Wiring•...••..•...........•...........•............... 6-4
Parallel 1/0 Port ..•...........................•........................•.............. : 6-5
Off-Board Expansion of RAM ..•..........•.....•...•....•..............•............... 6-6
Circuitry to Add TMS 9901 Off-Board ... 6-7
Four Interrupt-Causing Conditions at TMS 9902 ... 6-8

Memory Placement On Board•.•..........•....•.....•......................... 7-2
Jumpers and Capacitors Used for Option Selection 7-3
Memory Expansion Maps•................................. 7-5
Line-By-Line Assembler Output•... 7-7
TM 990/301 Microterminal ..•.............••..............•.........•................. 7-8
OEM Chassis ...•........•....•..........•..........•................................. 7-9
OEM Chassis Backplane Schematic .. 7-10

CRU Address in Register 12 VS. Address Bus Lines 8-3

TMS 9900 CRU Interface Timing .. 8·5

LDCR Byte Instruction . 8·6

STCR Word Instruction ... 8·7

I nterrupt Trap Locations .. 8-8

Dedicated Instruction and Wrokspace Areas for Interrrupts 3 and 4 8-9

Enabling and Triggering TMS 9901 Interval Timer 8·12

Example of Code to Run TMS 9901 Interval Timer 8-13

LDCR Word Execution to TMS 9901 8-15

LDCR Byte Execution to TMS 9901

STCR Word Execution to TMS 9901

vi

8-16

8-17

Figure 8-12

Figure 8-13

Figure 8-14

Figure G-t
Figure G-2

Figure 1··1

Table 3-1
Table 3-2
Table 3-3
Table 3-4

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 5-1

Table 6-1
Table 6-2

Table 7-1

Table 8-1

Table C-l
Table C-2

Table 0-1
Table 0-2

Table G-l

Table H-l
Table H-2
Table H-3

Table 1-1

LIST OF ILLUSTRATIONS (Concluded)

STCR Byte Execution to TMS 9901 .. 8-18

Test CRU Bit at TMS 9901 .. 8-19

Set CRU Bit at TMS 9901 .. 8-20

Object Code Example ... __ ... G-3
Source Code and Corresponding Object Code .. G-5

TM 990/301 Microterminal ... 1-2

LIST OF TABLES

TlBUG Commands 3-1
Command Syntax Conventions ... 3-3
User Accessible Utilties ... 3-13
T{BUG Error Messages ..•... 3-16

Status Bits Affected by Instructions ... 4-5

I nstruction Description Terms. .. 4-14

Instruction Set, Alphabetical Index ., 4-15

I nstruction Set, Numerical Index . 4-17

Comparison of Jumps, Branches, XOP's .. 4-34

1/0 Device Select Lines ..•........ 5-10

1/0 P~ns at Wire-Wrap Area•................... 6-3
list of Materials for Adding RAM _.• 6-7

Jumpers and Capacitors Used With Options ... 7-4

CRU Addressing Map _ ~-2

ASCII Control Codes•.............•..........•.. C-l
ASCII Character Code ...•........ C-2

HexadecimallDecimal Conversion Chart•.•.................. 0-5
Binary, Decimal, and Hexadecimal Equivalents .. 0-6

Object Output Tags Supplied by Assemblers ... G-l

Chassis Interface Connector (Pl) Signal Assignment H-1
Serial 1/0 Interface (P2) Pin Assignments ..• H-2
Paralfel [/0 Interface (P4) Signal Assignments•... H-3

EIA Cable Signals _ _ 1-2

vii/viii

SECTION 1

INTRODUCTION

1.1 GENERAL

The Texas Instruments TM 990/100M is a self-contained microcomputer on a single printed-circuit board.
The board's component side is shown in Figure 1-1. It contains features found on computer systems of

much larger size including a Central Processing Unit (CPU) with hardware multiply and divide,

programmable serial and parallel I/O lines, external interrupts, and a monitor to assist the programmer in
program development and execution. Other features include (see Figure 1·2):

• TMS 9900 microprocessor based system: software is compatible with other members of
the 990 family.

• 256 x 16 bits of TMS 4042-2 random-access memory (RAM) expandable on board to 512
x 16 bits. Replacements are listed in Appendix E, Parts List.

• 1 K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM)
expandable on board to 2K x 16 bits. Simple jumper modifications allow substitution of
large TMS 2716 EPROM's (16K bits each) for the smaller TMS 2708's (8K bits). Four

TMS 2716's allow EPROM expansion to 4K x 16 bits.

NOTE
Three board configurations are available. The
characteristics of each are explained in paragraph 1.4.

• Buffered address, data, and control lines for off-board memory and I/O expansion.

• 3 MHz crystal-controlled clock.

• Interfaces to 20 mA current loop or RS-232-C terminals or to twisted-pair multidrop
interface (see paragraph 1.4).

• Two programmable interval timers.

• User wire-wrap area surrounded by signal access pins; area adjacent to spare onboard
40-pin connector (P3).

• PROM memory decoders allow easy reassignment of memory map configuration.

1.2 MANUAL ORGANIZATION

Section 1 covers board specifications and characteristics. A glossary in paragraph 1.5 explains terms used

throughout the manual.

Section 2 of this manual shows how to install, power up, and operate the TM 990/100 microcomputer with

the addition of the following:

• Power supply

1-1

FIGURE 1-1. TM GGO/100M MICROCOMPUTER

r--- TMS 9900 MICROPROCESSOR

TIM 9904 CLOCK
RESET SWITCH

TMS 9901 PARALLEL I/O CONTROLLER

FIGURE 1-2. PRINCIPAL TM 990/10OM COMPONENTS

P2

RAM's

TMS 9902
ASYNCI1 RONOUS
COMMUNICATIONS
CONTROLLER

• Data terminal (properly wired and connected)

• Connecting cables

Section 3 explains how you can communicate with the TM 990/100M using the TIBUG monitor (on board
999211-0001 only)_ This versatile monitor, complete with supervisor calls and operator communication
commands facilitates the development and execution of software_ Section 4 covers programming
procedures including the instruction set, interrupts, extended operations (XOPs), context switching, and
I/O programming.

Section 5 covers theory of operation with paragraphs keyed to schematics of specific areas of the TM
990/100M board. Section 6 contains application considerations, and Section 7 covers options including
a microterminal and a line-by-line (no-label) assembler. Section 8 covers programming techniques and con­
siderations.

1.3 GENERAL SPECIFICATIONS

Power Consumption:

256 words RAM, 1 K words EPROM

256 words RAM, 2K words EPROM

512 words RAM, 1 K words EPROM

Clock rate: 3 MHz

Baud Rates (set by TI BUG monitor):

+5 V

1.2 A

1.2 A

1.4 A

110 baud, 300 baud, 1200 baud, 2400 baud

Memory Size:

+12 V

0.2 A

0.2A

0.2 A

-12V

0.1 A

0.1 A
0.1,A

RAM (TMS 4042-2's), 256 x 16 bits expandable on-board to 512 x 16 bits

EPROM (TMS 2708's), 1 K x 16 bits expandable on-board to 2K x 16 bits

Optional EPROM (TMS 2716's), 2K x 16 bits expandable to 4K x 16 bits

Board Dimensions: See Figure 1-3.

1.4 BOARD CHARACTERISTICS

Different models of the TMS 990/1 OOM microcomputer and identified by different assembly numbers. This
number is in the lower left as shown in Figure 1-2. The different aspects of these boards as shipped from
the factory are listed in Table 1-1.

1.5 GLOSSARY

The following are definitions of terms used with the TM 990/100M. Applicable areas in this manual are in
parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing is usually
represented in hexadecimal from 000016 to FFFF 16 for the TM 990/100M.

Alphanumeric Character: Letters, numbers, and associated symbols.

1-4

z
0
-l
m

C
m
-l
~
r-
C

~
m
Z
(I)

(5
Z

."
(I)

i5
(I)
:x:

c 0
::D :E m z .. 0
~ Z
-l -0

=: »
C'l

\I) m
\I)

." ~ ... ~
8 =:

u, I
1I § 0
0

j
~
0
~
i
~
i
~

D-

1..----- 2.1 ---~

'0

U26

20
e4

10 5

• 2

U28

.0 30

U29

2~
10

~ ~~F, XU51 "6J13 ,,~~:: §
1 R35 R3l

~ ~ ~ ~ ~ 21~ c.::J C40 C41 B RJO

< - -D- CJ- R29 B J12

20
.3

U30 U31
L-p_---ll L-p----..J'8 p I L-P_---l

: cn 1

U19 C33b

r----~;' ~~g;;"" ~::}. ~1i(~ ~=P=J='0==-Cr=~C38'

.------,'" ~.", f .'" i :~~~" '8j

1= 1 1= 1 §
1

-D-C34

c,. lNT 4
SOURCE

990'{ n
Pl_18 t Jl

Ji !L---pU'O --'

C'[::: -fL t:::J- B
c:=} ~24 R16 R17

l1 ~J

, " 1= '" ,P.+ ! EjJ. "'0

'

U46 _ !.J~40r6~
JJC26~~ -! ,
C25 ~.i, F ----1 U'S

1 g,..,.., J2 U3~L~ 1 C30
R1, B . :ill- -D-

--~----I 1 U17 ~ R13 U3~f . I U4.e====l

~ ." 9..+ I'~

~
3,j-~-c:J-C-15~-=--=-T-M--9-9-0-/-=-'0-=-O-M----------------------::-:'-I~:'--_..J p U13 I ~,.~ §R12 RnD U35 C22

MADE IN USA - . c::: ----.J R10

SERIAL NO R9

~,~,~, u ~, ~],~, :~~~:$~'~'"
C7 C'~ -D-, +C3--== -, +~_rt J~U32 A~O 999211-Se",:-,,,,, ~ C9 ~ ~ ~

SUBASSY 999~09-00(f~ DIAGRAM NO 999212 ~ ~ , ~ ~ C4
30 4 50 Pl 60 I'; 80 90 + t!l10,0 ___ o ________________ ..:e....,

U21 U22
1= 1= 16

,~ I
C21 B C20

-
~.

P
U43 •

~t
P U33 F

~ I U'~ P
J

1

0'

'0

I
--- 11.000 --------------------------.. 1

TABLE 1-1. BOARD ASSEMBLY CHARACTERISTICS

r---------- - --- ~--- --- ,---~-- --

ASSEMBL Y NO. I/O INTERFACE TYPES EPROM* RAM

999211-0001 RS-232-C (EIA) or Current Loop lK x 16 bits" 256 x 16 bits*'
999211-0002 Multidrop or RS-232-Conly 1K x 16bits** 256 x 16 bits' *
999211-0003 Multidrop or RS-232-C only 4K x 16 bits*** 512 x 16 bits"*

*Assembly 999211-0001 EPROM's contain TlBUG monitor; assemblies 999211-0002 and _-0003 EPROM's are not programmed.
"Two 2108 EPROM's and four 4042 RAM's,

***Four 2716 EPROM's and eight 4042 RAM's.

ASCI r Code: A seven-bit code used to represent alphanumberic characters and control (Appendix C).

Assembler: Program that interprets assembtylanguage source statements into object code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated into an object
program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or O.

Breakpoint: Memory address where a program is intentionally halted. This is a program debugging tool.

Byte: Eight bits or half a word.

Carry: A carry occurs whe:1 the most-significant bit is carried out in an arithmetic operation (i.e., resultant
cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The "heart" of the computer: responsibilities include instruction access and
interpretation, arithmetic functions, I/O memory access. The TMS 9900 is the CPU of the
TM 990/100M.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the TlBUG monitor which takes the user's input from the
terminal and searches a table for the proper code to execute.

Context Switch: Change in program execution environment, includes new program counter (PC) value and
new workspace area.

CR U (Communications Register Unit): The TMS 9900's general purpose, command-driven input/output
interface. The CRU provides up to 4096 directly addressable input and output bits (paragraph
8.2).

Effective Address: Memory address resulting from interpretation of an instruction, required for execution
of that instruction.

EPROM: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D).

1-6

Immediate Addressing: An immediate or absolute value (16-bits) is part of the instruction (second word of
instruction) .

Indexed Addressing: The effective address is the sum of the contents of an index register and an absolute
(or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph 4.5.3.2).

Interrupt: Context switch in which new workspace pointer (WP) and program counter (PC) values are
obtained from one of 16 interrupt traps in memory addresses 00001 6 to 003E 1 6 (paragraph 4.9).

I/O: The input/output lines are the signals which connect an external device to the data lines of the
TMS9990.

Least Significant Bit (LSB): Bit having the smallest value (smallest power of base 2); represented by the
right-most bit.

Link: The process by which two or more object code modules are combined into one, with cross-referenced
label address locations being resolved:

Load: Transfer control to the operating system tlTrough the pquivalent of a BLWP instruction to vectors in
upper memory (FFFC16 and FFFE16). See Reset.

Loader: Program that places one or more absolute or relocatable object programs into memory (Appendix
G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4).

Monitor: A program that assists in the real-time aspects of program execution such as operator command.
interpretation and supervisor call execution. Sometimes called supervisor· (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representing the highest power of
base 2. This bit is used to show sign with a 1 indicating negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an assembler program. This is
the code executed when loaded into memory.

One's Complement: Binary representation of a number in which the negative of the number is the
complement or inverse of the positive number (all ones become zeroes, vice versa). The MSB is one
for negative numbers and zero for positive. Two representations exist for zero: aU ones or all
zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the instruction (paragraph 4.5.1).

Overflow: An overflow occurs when the result of an arithmetic operation cannot be represented in two's
complement (i.e., in 15 bits plus sign bit). (paragraph 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd parity means an odd number of
one bits; even parity means an even number of one bits. A parity bit is set to make all bytes
conform to the selected parity. If the parity is not as anticipated, an error flag can be set by
software. The parity jump instruction can be used to determine parity (paragraph 4.3.3.6).

Program Counter (PC): Hardware register that points to the next instruction to be executed or next word
to be interpreted (paragraph 4.3.1).

1-7

PROM: See Read Only Memory.

Random Access Memory (RAM): Memory that can be written to as well as read from (vs. ROM).

Read Only Memory (ROM): Memory that can only be read from (can't change contents). Some can be

programmed (PROM) using a PROM burner. Some PROM's can be erased (EPROM's) by exposure
to ultraviolet light.

RESET: Transfer control to the operating system through the equivalent ofa BLWP instruction to vectors in lower
memory (000016 and 000216). See Load.

Source Program: Programs written in menmonics that can be translated into machine language (by an

assembler) .

Status Register (ST): Hardware register that reflects the outcome of a previous instruction and the current

interrupt mask (paragraph 4.3.3).

Supervisor: See Monitor

Util ities: A unique set of instructions used by different parts of the program to perform the same function.
In the case of TlBUG, the utilities are the I/O XOP's (paragraph 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers 0 to 15, located in RAM for use by the

executing program (paragraph 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of the beginning (register 0)
of the workspace area (paragraph 4.3.2).

1.6 APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information for the TM 990/100M user.

• TMS 9900 Microprocessor Data Manual

• TMS 9901 Programmable Systems Interface Data Manual

• TMS 9902 Asynchronous Communication Contr(Jller (Data Manual)

• Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer's
Guide (PIN 943441-9701)

• TM 990/301 Microterminal

• TM 990/401 TI BUG Monitor Listing

• TM 990/402 Line-By-Line Assembler

• TM 990/402L Line-By-Line Assembler Listing

1-8

SECTION 2

INSTALLATION AND OPERATION

2.1 GENERAL

This section explains procedures for unpacking and setting up the TM 990/1 OOM board for operation.

2.2 REQUIRED EQUIPMENT

(1) Volt-ohmmeter

(2) Soldering iron, electrical solder

(3) 24 AWG insulated stranded wire

(4) 18 AWG insulated stranded wire

(5) Connectors

• 100-pin, 0.125 in. C-C, wire-wrap PCB edge connector such as:
TI H321150
Amphenol 225-804-50
Viking 3VH50/9N05
Elco 00-6064-100-061-001

• 40-pin, 0.1 in. C-C, wire-wrap PCB edge connector such as:
TI H311120
Viking 3VH20/IJND5

• 25-pin RS-232 style (plug)

(6) Power Supplies

Voltage

+5 V

-12 V

+12 V

(7) Terminal such as:

ITT DB25P
TRW CINCH DB25P

Reg.

±3%

±3%

±3%

Current

1.3A

0.2 A

0.1 A

• Texas Instruments 743 KSR or 733 KSR/ASR (see Appendix B)

• Teletype Model 3320/5JE (see Appendix A). This current-loop terminal is
useable with board assembly 999211-0001 only

• RS-232-C compatible terminal (see Appendix B).

2-1

2.3 UNPACKING

Take the TM 990/100M board from its carton and remove the protective wrapping.

Check the board for any abnormalities that could have occurred in shipping. Report any discrepancies to
your supplier.

2.4 POWER AND TERMINAL HOOKUP

These procedures assume that user has the following configuration:

• TM 990/100M board with two TMS 2708 erasable, programmable read-only memories
(EPROM's).

• Texas Instruments Model 743 KSR terminal.

It is also assumed that jumper configuration is as shipped by the factory (J1, J2, J3, and J4 installed). See
Figure 7-2.

For other memory configurations, see paragraph 7.2 for applicable jumper connections.

For other terminals, contact the manufacturer for correct wiring. Hookup to a Teletype model 3320/5JE is
explained in Appendix A. Hookup for other RS-232-C compatible terminals is explained in Appendix B.

CAUTION

Be very cautious to avoid applying incorrect voltage

levels to the TM 990/100M. Texas Instruments assumes
no responsibility for damage caused by improper wiring

or voltage appl ication by the user.

2.4.1 POWER SUPPLY HOOKUP

Figure 2-1 shows how to connect volta!je to the TM 990/100M through connector P 1 . Be careful to use the
correct pins as numbered on the board; these pin numbers may not correspond to the numbers on the

particular edge connector used.

The table in Figure 2-1 shows suggested color coding for the power supply plugs. To prevent incorrect

connection, label the top side of the edge connector "TOP" and the bottom "TURN OVER."

2.4.2 TERMINAL HOOKUP

Figure 2-2 shows how to connect the TM 990/100M to the 743 KSR terminal through connector P2. A
DEI5S connector attaches to the terminal; a DB25P connector attaches to P2 on the board. Point-to-point

connections between the connectors are shown in the table.

Because this is an RS-232-C type terminal, make sure that jumper J11 is removed and that jumper J7 is in

the EIA position (Figure 7-2).

2.5 OPERATION

(1) Verify that all wiring has been correctly connected.

2-2

0>
Ziti
Cl+

2 4 10 20 30 40

TM 99/100M
P1 CONNECTOR

(TOP)

50 60

> >
N N

"j +"
70 7476 80 90

00

A0001417

EDGE CONNECTOR

SHRINK SLEEVING

r-"'------- 18 AWG INSULATED STRANDED WIRE --------

BANANA PLUGS -----------

(SUGGEST COLOR CODING)
THESE AS PER TABLE

VOLTAGE P1 PIN* SUGGESTED PLUG COLORS

+5V

+12V

-12V

GND

3,4

75, 76

73, 74

1,2

RED

BLUE

GREEN

BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS_

FIGURE 2-1_ POWER SUPPLY HOOKUP

CAUTION
Before connecting the power supply to P1, use a volt-ohmmeter
to verify that correct voltages are present as shown in Figure
2-2.

(2) Set the 743 KSR data terminal switches to the following:

• LOW SPEED switch to high speed (30 characters per second).

• HALF DUP switch to full d<uplex.

• ON LINE switch to ON LINE.

2-3

TOP2 ON
TM 99O/100M

A0001418

DB25P

4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE

CONNECTIONS

PIN ON DE15S PIN ON DB25P SIGNAL

13 2 XMIT

12 3 RECV

11 8 DCD

1 7 GND

FIGURE 2·2. 743 KSR TERMINAL HOOKUP

(3) Apply power to board and data terminal.

(4) Press the RESET switch on the board (see Figure 1 ·2).

(5) Press the "A" key on the terminal.

DE15S

TO 743 DATA
TERMINAL

(6) The T1BUG monitor (assembly 999211·0001 only) will be called up and print a message

on the terminal. Following the message, a question mark will be printed on a new line.

This is a request to input a command to the TlBUG command scanner. Commands are

explained in detail in Section 3 and assembly language is presented in Section 4.

NOTE
If control is lost during operation, return control back to

monitor by repeating steps (4) and (5).

2.6 SAMPLE PROGRAMS

~a1 SAMPLE PROGRAM 1

The following is a sample program you can input using the TlBUG commands M (paragraph 3.2.8), R
(paragraph 3.2.9), and E (paragraph 3.2.4). (TIBUG is on assembly 999211·0001 only).

(1) Enter the M command with a hexadecimal address of FEOO.

2·4

(2) Enter the following values into memory beginning at hexadecimal address FEOO by using

the space bar with the M command as described in paragraph 3.2.8.

ASSEMBLY
ENTER LANGUAGE

LOCATION VALUE MNEMONICS

FEOO 2FAO XOP @ > FE08, 1.4

FE02 FEOO
FE04 0460 B @>80

FE06 0080
FEOO 4849 TEXT 'HI'

FEOA OAOO DATA> OAOD

FEOC 0700 DATA> 0700

Exit the M command with a carriage return. The monitor will print a question mark.

(3) Use the R command to set the value 'FEOO' into the P register (Program Counter).

(4) Use the E command to execute the program.

(5) The message HI will print on the printer, followed by a line feed, carriage return, and bell.

Your terminal printout should look like the following:

·;:·t'l FE 00
FEOO=2FAO
FE 02=FE 0::;:
FE04=0460
FE 06= 0 0::;: 0
FE 0::;:=4::;:49
FEOA=OAOD
FEOC=0700
" F.:
1,.1= OB:::: 0

2FAO
FE 0::::
0460
00::;:0
4::;:49
OAOD
0700

F'=FEOO FEOO
'E HI

You can re-execute your program by repeating steps (3) and (4),

2.6.2 SAMPLE PROGRAM 2

Using steps 1 to 5 in pragraph 2.6.1, enter and execute the following program which has been assembled by

the optional TM 990/402 Line-By-Line Assembler.

FEOO 2FAO XDF' ~>FE08~14
FE 02 FE 0::::
FE04 0460 B ~>0080
FE06 00::;:0
FE 0::;: 4:~:4F :f;CmH:;f;:'fHULAT I [Jt·E. \'fJUP PF'm~F.'Ar'1 i,iDF.'k~:!

FEOA 4E47
FEOC 5241

2-5

FEOE 5455
FE! (I 4C41
FE12 5449
FE14 4F4E
FE1E. 532E
FEH:: 205':;'
FE1A 4F55
FE1C 5220
FE1E 5052
FE20 4F47
FE22 5241
FE24 4D20
FE2E. 574F
FEE:::: ~:;24:B

FE2A ':,321
FE2C 0707 +> 0707
FE2E 0700 +"> 0700

You can re-execute this program by repeating steps (3) and (4) in paragraph 2.6.1.

Figure 8-8 in Section 8 (Programming the TM 990/100M Microcomputer) contains an exercise program in

executing the interval timer on the TM 9901. Appendix J contains larger programs that can be loaded and

executed.

2-6

SECTION 3

TlBUG INTERACTIVE DEBUG MONITOR

3.1 GENERAL

TlBUG is debug monitor which provides an interactive interface between the user and the TM 990/100M. It

is supplied by the factory on assembly 999211-0001 only and is available as an option, supplied on two
2708 EPROM's.

TlBUG occupies EPROM memory space from memory address (M.A.) 008016 as shown in Figure 3-1.

TlBUG uses four works paces in 40 words of RAM memory. Also in this reserved RAM area are the restart

vectors which initialize the monitor following single step execution of instructions.

The TlBUG monitor provides seven software routines that accomplish special tasks. These routines, called

in user programs by the XOP machine instruction, perform .tasks such as writing characters to a terminal.
XOP utility instructions are discussed in detail in paragraph 4.6.9.

All communication with TlBUG is through a 20 mA current loop or RS-232-C device. TlBUG is initialized

as follows:

• Press the RESET pushbutton (Figure 1-2). The monitor is called up through interrupt
trap O.

• Enter the character 'A' at the terminal. TlBUG uses this input to measure the width of
the start bit and set the TMS 9902 Asynchronous Communication Controller (ACC) to
the correct baud rate.

• TlBUG prints an initialization message on the terminal. On the next line it prints a
question mark indicating that the command scanner is available to interpret terminal

inputs.

• Enter one of the commands as explained in paragraph 3.2.

3.2 TlBUG COMMANDS

TlBUG commands are listed in Table 3-1.

TABLE 3-1. TIBUG COMMANDS

INPUT RESUL TS PARAGRAPH

B Execute under Breakpoint 3.2.1
C CR U Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3.2.3
E Execute 3.2.4
F Find Word/Byte in Memory 3.2.5

H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7

M Memory Inspect/Change 3.2.8

R Inspect/Change User WP, PC, and ST Registers 3.2.9

S Execute in Step Mode 3.2.10

T 1200 Baud Terminal 3.2.11

W I nspect/Change Current User Workspace 3.2.12

3-1

RESTART VECTORS

MEMORY
ADDRESS

0000

0040

0048

0060

007E
0080

07FE

FFBO

""
~

{'FFe
FFFE

XOP VECTORS 0 AND 1 TIBUG EPROM AREA

XOP VECTORS 8 TO 15
MONITOR UTILITIES

TIBUG EPROM AREA
TIBUG MONITOR

MONITOR
WORKSPACES -.: ~

WP nBUG RAM AREA

PC

FIGURE 3·1. MEMORY REQUIREMENTS FOR TlBUG

3·2

Conventions used to define command syntax in this paragraph are listed in Table 3-2.

CONVENTION
SYMBOL

<>
[1

{}

(CR)

1\

LF

R or Rn

WP

PC

ST

TABLE 3-2. COMMAND SYNTAX CONVENTIONS

EXPLANA nON

I terns to be suppl ied by the user. The term with in the angle brackets is a generic term.

Optional Item - May be included or omitted at the user's discretion. Items not included in brackets
are req u ired.

One of several optional items must be chosen.

Carriage Return

Space Bar

Line Feed

Register (n ~ 0 to 15)

Current User Workspace Pointer contents

Current User Program Counter contents

Current User Status Register contents

NOTE
Except where indicated otherwise, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal; the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3.2.1 EXECUTE UNDER BREAKPOINT (B)

3.2.1.1 Syntax

B < address> < (CR) >

3.2.1.2 Description

This command is used to execute instructions from one memory address to another (the stopping address is
the breakpoint). When execution is complete, WP, PC, and ST register contents are displayed and control is
returned back to the monitor command scanner. Program execution begins at the address in the PC (set by
using the R command). Execution terminates at the address specified in the B command, and a banner is
output showing the contents of the hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of an instruction. The breakpoint is
controlled by a software interrupt, XOP 15.

If no address is specified, the B command defaults to an E command, where execution continues with no
halting point specified.

3-3

EXAMPLE:

?B FCOG
BP FFBI) FCOb E400
'('

3.2.2 CRU INSPECT/CHANGE (C)

3.2.2.1 Syntax

C < CRU software base address> <count> < (CR) >

3.2.2.2 Description

The Communication Register Unit (CRU) input bits from "CRU software base address" to ("CRU soft·
ware base address' + 2("count")·2) are displayed right justified in a 16·bit hexadecimal representation.
"CRU address" is a 16·bit value in bits 0 to 15; this is the same as the contents of register 12 as used by
the CRU instructions (paragraphs 4.6.9 and 812). Up to 16 CRU bits may be displayed. The corresponding
CRU output bits may be altered following input bit display by keying in desired hexadecimal data, right
justified. A carriage return following data output forces a return to the command scanner. A minus sign (-)
or a space causes the same CRU input bits to be displayed again. Defaults for "CRU software base address"
and "count" are 0 (M.A. 0000) and 0 (count of 16) respectively. "Count" is a hexadecimal value of 0 to
F '6 with 0 indicating 16,0.

The CRU inspect/change monitor command displays from 1 to 16 CRU bits, right justified. The command
syntax includes the CRU address and the number of CRU bits to be displayed. The CRU address is the 16·
bit contents of R12 as explained in paragraph 8.2.2 (vs. the CRU hardware base address in bits 3 to 14 of
R12); thus the user must use 2 X CRU software base address. This is shown in Figure 3·2 where 100,6 is
specified in the command to display values beginning with CRU bit 80,6.

? C 100,7
0100=007F

EXAMPLES:

..
ZERO FILLED

7 BITS
REQUESTED

FIGURE 3·2. CRU BITS INSPECTED BY C COMMAND

>007F

80 CRU BIT
81
82
83
84
85
86

(1) Examine eight CRU input bits. CRU software base address is 20,6.

'?C: 20,:3
0020="OOFF- CARRIAGE RETURN ENTERED
'('

(2) Set value of eight CRU output bits at CR U software base address 20,6; new value is 02,6.

?C 2 I) ~ ::: 1'-1"-- CHANGE OOFF TO 0002

0020=OOFF 2- 2 FOLLOWED BY CARRIAGE RETURN

3-4

3.2.3

3.2.3.1

(3) Check changes in CRU input bit O.
?C 0,1
0000=0001
0000=0001
0000=0001
0000=0001
OO(lO=OI)FF

MINUS SIGN ENTERED

o I) I) 0= 0 0 0 1 ~-- CARRIAGE RETURN ENTERED
.-;:.

(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or clock mode (one);

? I~. 100
01- (I I):::>FFFE --- ZERO INDICATES INTERRUPT MODE

DUMP MEMORY TO CASSETTE/PAPER TAPE (D)

S rMONITOR PROMPT
yntax I

o < start address> { 11. }< stop address> { 11. }< entry address> { 11. } I DT = < name> < 1\> , , ,

3.2.3.2 Description

Memory is dumped from "start address" to "stop address." "Entry address" is the address in memory
where it is desired to begin program execution. After entering a space or comma following the entry
address, the monitor responds with an "IDT=" prompt asking for an input of up to eight characters that
will identify the prbQram. This program ID will be output when the program is loaded into memory using
the TlBUG loader, co<;le will be dumped as non-relocatable data in 990 object record format with absolute
load ("start address") and entry addresses specified. Object record format is explained in Appendix G.

After entering the D command, the monitor will respond with "READY YIN" and wait for a Y keyboard
entry indicating that the receiving device is ready. This allows the user to verify switch settings, etc., before
proceeding with the dump.

3.2.3.3 Dump to Cassette Example

The terminal is assumed to be a Texas Instruments 733 ASR or equivalent. The terminal must have
automatic device control (ADe). This means that the terminal recognizes the four tape control characters
DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the "READY YIN" query (Figure 3-3):

(1) Load a cassette in the left (No.1) transport on the 733 ASR.

(2) Place the transport in the "RECORD" mode.

(3) Rewind the cassette.

3-5

(4) Load the cassette. If the cassette does not load, it may be write protected. The write protect
hole is on the bottom right side of the cassette (Figure 3-4). Cover it with the tab provided
with the cassette. Now repeat steps 1 through 4.

(5) The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.

(6) Place the TAPE FORMAT switch in the LINE position.

(7) Answer the "READY YIN" query with a "Y"; the "Y" will not be echoed.

,....... ____ CASSETTE 1 ----..." i CASSETTE 2

LOAD/FF 0 RECORD ----. r-- PLAYBACK ° REWIND LOAD/FF REWIND

~ ...•. ii ~< 0 READY m REAEDNY
O

0°00 I ~ ":-:-:"." ::: :: ::::». R-. \dJ END

:::::::::/:;:" :::("':::} o PLAYBACK --J '--- RECORD <0 STOP STOP STOP STOP

PLAYBACK CONTROL RECORD CONTROL

CONT
START

BLOCK
FWD

STOP REV

~:: ..•.•.•....... : :•.

".'

.: .. :".:.

KEYBOARD

CHAR
FWD

LINE

OFF

LOCAL

ON PRINT

o
ERROR

°
LINE

OFF

LOCAL

PRINTER

Bnt BIT8

FIGURE 3-3. 733 ASR MODULE ASSEMBLY IUPPER UNIT) SWITCW PANEL

TAPE SIrlE UP

o o
Side I'

WRITE TAB FOR SlOE 2

WRITE TAB FOR SIDE 1

FIGURE 3-4. TAPE TABS

3-6

3.2.3.4 Dump to Paper Tape

3.2.4

3.2.4.1

3.2.4.2

3.2.5

3.2.5.1

The terminal is assumed to be an ASR 33 teletypewriter. The following steps should be completed carefully
to avoid punching stray characters:

(1) Enter the command as described in paragraph 3.2.3.1. Do not answer the "READY YIN"
query yet.

(2) Change the teletype mode from ON LINE to LOCAL.

(3) Turn on the paper tape punch and press the RUBOUT key several times, placing
RUBOUTS at the beginning of the tape for correct·reading/program·loading.

(4) Turn off the paper tape punch, and reset the teletype mode to LI N E. (This is necessary to
prevent punching stray characters).

(5) Turn on the punch and answer the" READY YIN" query with "Y". The Y will not be
echoed.

(6) Punching will begin. Each file is followed by 60 rubout characters. When these characters
appear (identified by the constant punching of all holes) the punch must be turned off.

EXECUTE COMMAND (E)

Syntax

E

Description

The E command causes task execution to begin at current values in the Workspace Pointer and Program
Counter.

Example: E

FIND COMMAND (F)

Syntax

F < start address> { ~ }< stop address> { ~ }< value> { (CFI) }

3.2.5.2 Description

The contents of memory locations from "start address" to "stop address" are compared to "value". The
memory addresses whose contents equal "value" are printed out. Default value for start address is O. The
default for "stop address" is O. The default for "value" is O.

If the termination character of "value" is a minus sign, the search will be from "start address" to "stop
address" for the right byte in "value". If the termination character is a carriage return, the search will be a
word mode search.

3-7

EXAMPLE:

?F O~20 FFFF ----CARRIAGERETURNENTERED

0006
oooe
0012
0016
?F 0 20 FF- ~----MlNUSSIGN ENTERED

0006
0007
oooe
OOOD
0012
0013
0016
0017

3.2.6 HEXADECIMAL ARITHMETIC (H)

3.2.6.1 Syntax

H < nur;nber 1 > { /\ }< number 2> < (CR) > ,

3.2.6.2 Description

The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

?H 20 I), 1 (I (I .. CARRIAGE RETURN ENTERED

Hl+H2=1)3UO HI-H~=Ull)l)

3.2.7 LOAD MEMORY FROM CASSETTE OR PAPER TAPE (L)

3.2.7.1 Syntax

L < bias>< (CR) >

3.2.7.2 Description

Data in 990 object record format (defined in Appendix G) is loaded from paper tape or cassette into
memory. Bias is the relocation bias (starting address in RAM). Its default is 016 . Both relocatable and
absolute data may be loaded into memory with the L command. After the data is loaded, the module
identifier (see tag 0 in Appendix G) is printed on the next line.

3.2.7.3 Loading From Texas Instruments 733 ASR Terminal Cassette

The 733 ASR must be equipped with automatic device control (ADe). The following procedure is carried
out prior to executing the L command:

(1) Insert the cassette in one of the two transports on the 733 ASR (cassette 1 in Figure 3-2).

3-8

(2) Place the transport in the playback mode.

(3) Rewind the cassette.

(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAULINE switches to
LINE.

(6) Set the TAPE FORMAT switch to LINE.

Execute the L command.

3.2.7.4 Loading From Paper Tape (ASR33 Teletype)

Prior to executing the L command, place the paper tape in the reader and position the tape so the reader
mechanism is in the null field prior to the file to be loaded. Enter the load command. If the ASR33 has
ADC (automatic device control), the reader will begin to read from the tape. If the ASR33 does not have
ADC, turn on the reader, and loading will begin.

Each file is terminated with 60 rubouts. Whl!>n the reader reaches this area of the tape, turn it off. The
loader will then pass control to the command scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or a 2 tag is found on the tape.

EXAMPLE:

?L I) (I (I (1 1------­
PPDGPAt'1 ~ .. -----

CARRIAGE RETURN ENTERED

PROGRAM ID FROM TAPE

3.2.8 MEMORY INSPECT/CHANGE, MEMORY DUMP (M)

3.2.8.1 Syntax

• Memory I nspect/Change Syntax

M < address> < (CR) >

• Memory Dump Syntax

M < start address> { fl }< stop address> < (CR) > ,

3.2.8.2 Description

Memory inspect/change "opens" a memory location, displays it, and gives the option of changing the data
in the location. The termination character causes the following:

• If a carriage return, control is returned to the command scanner.

3-9

• If a space, the next memory location is opened and displayed.

• If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the displayed memory location is
updated to the value entered.

Memory dump directs a display of memory contents from "start address" to "stop address". Each line of
output consists of the address of the first data word output followed by eight data words. Memory dump
can be terminated at any time by typing any character on the keyboard.

EXAMPLES:

(1)

?N FE 0 0 f------­
FEOO=FFOF

CARRIAGE RETURN ENTERED

FE02=0012
FE 04= 0:::: 11

FFFF - NEW CONTENTS ENTERED

- .. MINUS SIGN ENTERED

FE 02=FFFF f------­
FE04=0:311

NEW CONTENTS

FE06=00:32

(2)

·'·t'l 2 (I 30
0020=0020
0030=0001
.-;:.

EEAA - CARRAGE RETURN ENTERED

00::::0 0000 0005 0030

3.2.9 INSPECT/CHANGE USER WP, PC, AND ST REGISTERS (R)

3.2.9.1 Syntax

R«CR»

3.2.9.2 Description

ODOO 0000 0024

The user workspace pointer (WP), program counter (PC), and status register (ST) are inspected and changed
with the R command. The output letters WP, PC, and ST identify the values of the three principal hardware
registers passed to the TMS 9900 microprocessor when a B, E, or S command is entered. WP points to the
workspace register area, PC points to the next instruction to be executed (Program Counter!, and ST is the

Status Register contents.

The termination character causes the following:

• A carriage return causes control to return to the command scanner.

• A space causes. the next register to beopened.

Order of display is W, P, S.

3·10

EXAMPLES:

(1)

'F'
t...I= I) 1)2 I) 1 I) I) - SPACE ENTERED

F'= I) I) I) I) 2 I) I) - CARRIAGE RETURN ENTERED

(2)

,p

1,1= I~I ~ 1~11~1"':~----'7'---SPACE ENTERED
F' = IJ c IJ IJ ... ___ -.J.

S= I) I) I) I) f------ SPACE OR CARRIAGE RETURN ENTERED
.. ~.

3.2.10 EXECUTE IN SINGLE STEP MODE (S)

3.2.10.1 Syntax

S

3.2.10.2 Description.

Each time the S command is entered, a single instruction is executed at the address in the Program Counter,
then the contents of the Program Counter, Workspace Pointer, and Status Register (after execution) are

printed out. Successive instructions can be executed by repeated S commands. Essentially, this command

executes one instruction then returns control to the monitor.

EXAMPLE:
.'.p
1.1.I=FFC6
F'=FE10 FE 0 0 / WORKSPACE POINTER }

~ SPACES ENTERED

O(¥ ./ ~PROGRAMCOUNTER :~:=260A

FFC6~02...-/ ::::6 OA-- STATUS REGISTER

--;:.

FFC6 FE04 860A
FFC6
FFC6

FE 0::::
FEOC

::::60A
::::60A

NOTE

I

Incorrect results are obtained when the S instruction
causes execution of an XOP instruction (see paragraph

4.6.9) in a user program. To avoid these problems the B
command should be used to execute any XOP's in a

program (rather than the S command).

3.2.11 TI 733 ASR BAUD RATE (T)

3.2.11.1 Syntax

T

3·11

3.2.11.2 Description

The T command is used to alert TlBUG that the terminal being used is a 1200 baud terminal which is not a
Texas Instrument's 733 ASR (e.g., a 1200 haud CRT). To revoke the T command, enter it again.

3.2.11.3 Use

T is used only when operating with a true 1200 baud peripheral device. Note that T is never used when
operating at other baud rates.

InTI BUG the baud rate is set by measuring the width of the character' A' input from a termi nal. When an
'A' of 1200 baud width is measured, TI BUG is set up to automatically insert three nulls for every character
output to the terminal. These nulls are inserted to allow correct operation of the TM 990/100M with Texas
Instruments 733 ASR data terminals. The T command, in effect, cancels the insertion of nulls for true 1200

baud operation.

3.2.12 INSPECT/CHANGE USER WORKSPACE (W)

3.2.12.1 Syntax

W [REGISTER NUMBER] < (CR) >

3.2.12.2 Description

The W command is used to display the contents of all workspace registers or display one register at a time
while allowing the user to change the register contents. The workspace begins at the address given by the
Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the entire workspace to be printed.
Control is then passed to the command scanner.

The W command followed by a register number in hexadecimal and a carriage return causes the display of
the specified register's contents. The user may then enter a new value into the register by entering a
hexadecimal value. The following are termination characters whether or not a new value is entered:

• A space causes display of the next register.

• A minus sign causes display of the previous register.

• A carriage return gives control to the command scanner.

EXAMPLES:

(1)

?I ... ' I-----''-------- CARRIAGE RETURN ENTERED

F.:l=0084 F.:2=FA2A F.:3=0020
F.:9=3600 RA=OEA6 RB=OOOO

F.:O=F942
F:::::=FAA 0

F:4=FBSE
RC=OlCO

3-12

F.:S=009::::
F.:D=OO::::4

F.:6=1300
RE=FA30

F.:7= I) 0::::4
F::F =C600

(2)

?1.lJ 2 ... t-------- CARRIAGE RETURN ENTERED

P2=02f:4
P3=OOlB
P4= 16 0:=:
P5=0460
P6=Ff:OO

:i:6~61 SPACE ENTERED

:::OOF
o .. CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES

TlBUG contains seven utility subroutines that perform I/O functions as listed in Table 3-3. These
subroutines are called through the XOP (extended operation) assembly language instruction. This
instruction is covered in detail in paragraph 4.6.9. In addition, locations for XOP's 0 and 1 contain vectors for
utilities that drive the TM 990/301 microterminal, and XOP 15 is used by the monitor for the breakpoint

facility.

XOP I
8
9

10
11

TABLE 3-3. USER ACCESSIBLE UTILITIES

FUNCTION

Write 1 Hexadecimal Character to Terminal
Read Hexadecimal Word from Terminal
Write 4 Hexadecimal Characters to Terminal
Echo Character

I PARAGRAPH

f---12 Write 1 Character to Terminal
Read 1 Character from Terminal
Write Message to Terminal

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

-13
_14

NOTE
All characters are in ASCII code.

NOTE
Most of the XOP format examples herein use a register
for the source address, however, all XOP's can also use a
symbolic memory address or any of the addressing forms
available for the XOP instruction.

3.3.1 WRITE ONE HEXADECIMAL CHARACTER TO TERMINAL (XOP 8)

A.L.

Format: XOP Rn,8

The least significant four bits of user register Rn are converted to their ASCII coded hexadecimal equivalent
(0 to F) and output on the terminal. Control returns to the instruction following the extended operation.

EXAMPLE:

Assume user register 5 contains 203C16 . The assembly language (A.L.) and machine language (M.L.) values

are shown below.

XOP R5,S SEND 4 L6B'S OF R5 TO TERMINAL

0 1 2 3 4 5 6 7 S 9 10 11 12 13 14 15

M·L.IO 0 0 ~ ___________ ~ ___ o __ o __ o_~_o __ o~l_o _____ o ___ ~1 >2E05

Terminal Output: C

3-13

3.3.2 READ HEXADECIMAL WORD FROM TERMINAL (XOP 9)

Format: XOP
DATA

DATA

Rn,9
NULL

ERROR

ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
ADDRESS OF CONTINUED EXECUTION IF
NON·HEX NO. ENTERED

(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the terminal is accumulated in user
register Rn. The termination character is returned in register Rn+1. Valid termination characters are space,
minus, comma, and a carriage return. Return to the calling task is as follows:

EXAMPLE:

A.L. XOP

• If a valid termination character is the only input, return is to the memory address
contained in the next word following the XOP instruction (NU LL above).

• If a non·hexadecimal character or an invalid termination character is input, control
returns to the memory address contained in the second word following the XOP
instruction (ERROR above).

• If a hexadecimal string followed by a valid termination character is input, control returns
to the word following the DATA ERROR statement above.

DATA

DATA

R6,9

>FFCO

>FFC6

2 3

READ HEXADECIMAL WORD INTO R6

RETURN ADDRESS, IF NO NUMBER

RETURN ADDRESS, IF ERROR

M.L. 0
M.A. FFBO

FFB2

FFB4

0

1

1

0 1 0

1 1 1

1 1 1

4 5 6 7 8 9 10 11
1 1 I 1 0 0 1 I 0 o I
1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

12 13 14 15
0 1 1 0

0 0 0 0

0 1 1 0

>2E46

>FFCO

>FFC6

If the valid hexadecimal character string 12C is input from the terminal followed by a carriage return,
control returns to memory address (M.A) FFB616 with register 6 containing 012C I6 and register 7
containing oooD 16 •

If the hexadecimal character string 12C is input from the terminal followed by an ASCII plus (+) sign,
control returns to location FFC616 • Registers 6 and 7 are returned to the calling program without being
altered. "+" is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is returned unaltered while register 7
contains 0000 1 6. Control is returned to address FFC0 1 6·

3.3.3 WRITE FOUR HEXADECIMAL CHARACTERS TO TERMINAL (XOP 10)

Format: XOP Rn,10

The four·digit hexadecimal representation of the contents of user register Rn is output to the terminal.
Control returns to the instruction following the XOP call.

3·14

EXAMPLE:

Assume register 1 contains 2C4616 .

A.L. XOP R1,10 WRITE HEX NUMBER

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M.L·LIo ____ o _________ o ________ ~ ______ 0 _________ 0~ __ 0 ____ 0~ __ 0 ____ 0 _____ 0 ____ 1~ >2E81

Terminal Output: 2C46

3.3.4 ECHO CHARACTER (XOP 11)

Format: XOP Rn, 11

This is a combination of XOP's 13 (read character) and 12 (write character). A character in ASCII code is
read from the terminal, placed in the left byte of Rn, then written (echoed back) to the terminal. Control
returns to the instruction following the XOP after a character is read and written. By using a code to
determine a character string termination, a series of characters can be echoed and stored at a particular
address:

CLR R2 CLEAR R2
LI R1,> FEDD SET STORAGE ADDRESS
XOP R2,11 ECHO USING R2
CI R2,>ODOO WAS CHARACTER A CR?
JEQ $+6 YES, EXIT ROUTINE
MOVB R2,*R1+ NO,MOVECHARTOSTORAGE
JMP $-10 REPEAT XOP

NOTE
The parity bit must be reset so that >00 = CR.

3.3.5 WRITE ONE CHARACTER TO TERMINAL (XOP 12)

Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the terminal. The right byte of Rn is
ignored. Control is returned to the instruction following the call.

3.3.6 READ ONE CHARACTER FROM TERMINAL (XOP 13)

Format: XOP Rn, 1 ~

The ASCII representation of the character input from the terminal is placed in the left byte of user register
Rn. The right byte of1register Rn is zeroed. When this utility is called, control is retur~ed to the instruction
following the call only after a character is input.

3.3.7 WRITE MESSAGE TO TERMINAL (XOP 14)

Format: XOP @MESSAGE,14

3-15

MESSAGE is the symbolic address of the first character of the ASCII character string to be output. The
string must be terminated with a byte containing binary zeroes. After the character string is output, control
is returned to the first instruction following the call.

Assuming the following program:

MEMORY
ADDRESS

(Hex)

FEOO
FE02
FE04

FEEO
FEE2
FEE4

OPCODE
(Hex)

2FAO
FEEO

5445
5354
00

A.L. MNEMONIC

XOP @> FEEO,14

TEXT 'TEST'

BYTE 0

During the execution of this XOP, the character string 'TEST is output on the terminal and control is then
returned to the instruction at location FE0416 . TEXT is an assembler directive to transcribe characters into
ASCII code.

3.4 TlBUG ERROR MESSAGES

Several error messages have been included in the TlBUG monitor to alert the user to incorrect operation. In
the event of an error, the word 'ER RO R' is output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions

TABLE 3-4. TfBUG ERROR MESSAGES

ERROR CONDITION

0 Invalid tag detected by the loader.

1 Checksum error detected by the loader.

2 Invalid termination character detected.

3 Null input field detected by the dump routine.

4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. If the program is being input from a
733 ASR, possible causes of the errors are a faulty cassette tape or dirty read heads in the tape transport. If
the terminal device is an ASR 33, chad may be caught in a punched hole in the paper tape. I n either case
repeat the load procedure.

In the event of error 2, the command is terminated. Reissue the command and parameters with a valid
termination character.

Error 3 is the result of the user inputting a null field for either the start address, stop address, or the entry
address to the dump routine. It also occurs if the ending address is less than the beginning address. The
dump command is terminated. To correct the error, reissue the dump command and input all necessary
parameters.

3-16

SECTION 4

INSTRUCTION SET FOR THE TM 990/100M

4.1 GENERAL

This section covers the instruction set used with the TM 990/100M including assembly language and
machine language. This instruction set is compatible with other members of the 990 family. Section 8
of this manual covers examples and considerations for programming the TM 990/100M. Appendix J con­
tains commented program examples that can be executed.

The TM 990/100M microcomputer is designed for use by a variel'y of users with varying technical
backgrounds and available support equipment. Because a TM 990/100M user has the capability of writing
his programs in machine language and entering them into memory using the TlBUG monitor, emphasis is on
binary /hexadecimal representations of assembly language statements. The assembly language described
herein can be assembled on a 990 family assembler. If an assembler is used, th is section assumes that the
user will be aware of all prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a working knowledge in:

• ASCII coded character set (described in Appendix C).

• Decimal/hexadecimal, binary number system (described in Appendix D).

Further information on the 990 assembly language is provided in the Model 990 ComputerlTMS 9900
Microprocessor Assembly Language Programmer's Guide (P /N 943441-9701).

4.2 USER MEMORY

Figure 4-1 shows the user RAM space in memory available for execution of user programs. Note that the

memory address value is the number of bytes beginning at 0000; thus, all word addresses are even values
from 0000 to FFFE 16 .

Programs in EPROM's can be read by the processor and executed; however, EPROM memory cannot be
modified (written to). Therefore, workspace register areas are in RAM where their values can be modified.
Restart vectors and TlBUG workspaces utilize the last 40 words of RAM memory space as shown in Figure
4-1.

4.3 HARDWARE REGISTERS

The TM 990/100M uses three major hardware registers in executing the instruction sat: Program Counter
(PC), Workspace Pointer (WP), and Status Register (ST).

4-1

4.3.1 PROGRAM COUNTER (PC)

This register contains the memory address of the next instruction to be executed. After an instruction
image is read in for interpretation by the processor, the PC is incremented by two so that it "points" to the
next sequential memory word.

4.3.2 WORKSPACE POINTER (WP)

This register contains the memory address of the register file currently being used by the program under
execution. This workspace consists of 16 contiguous memory words designated registers 0 to 15. The WP
points to register O. Paragraph 4.4 explains a workspace in detail.

4.3.3 STATUS REGISTER (ST)

The Status Register contains relevant information on preceding instructions and current interrupt level.
Included are:

• Results of logical and two's complement comparisons (many instructions automatically
compare the results to zero).

• Carry and overflow.

• Odd parity found (byte instructions only).

• XOP being executed.

• Lowest priority interrupt level that will be currently recognized by the processor.

The Status Register is shown in Figure 4-2.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

INTERRUPT MASK

L> LOGICALLY GREATER THAN OV OVERFLOW
A> ARITHMETICALLY GREATER THAN OP ODD PARITY
EQ EQUAL X XOP BEING EXECUTED
C CARRY

AOOO1421

FIGURE 4-2. STATUS REGISTER

4.3.3.1 Logical Greater Than

This bit contains the result of a comparison of words or bytes as unsigned binary numbers. In this case, the
most significant bit (MSB) or a work or byte does not indicate positive or negative sign of a number. The
MSB of words being logically compared represents 2 1 5 (32,768), and the MSB of bytes being logically
compared represents 27 (128).

4.3.3.2 Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words or bytes as two's complement
numbers. In this comparison, the MSB of words or bytes being compared represents the sign of the number,
zero for positive, or one for negative.

4-2

DEDICATED
MEMORY

MEMORY
ADDRESS

, INTERRUPT VECTORS l:~
'1 XOP VECTORS 0040 007E

TIBUG ~0080
MONITOR

07FE

0800

EPROM
TMS2708
1 K X 16

/""---- BYTE 0000
BYTE 0001

FIRST
1024
WORD
EPROM

SECOND
1024

FF6Sr-----------"""" } INT 3,

WP AT FF6S
FF88 ------------- 2-WORDINSTATFF88

OFFE

1000

EPROM
TMS270B
1 K X 16

WORD
EPROM*

~ MEMORY

FFSC } INT4
---________ WPATFFSC

2·WORD INST AT FFAC

•
•

ADDRESS (HEX)

0000-0003
OOOC-OOOF

0010-0013

0040-0047

0060-007F

0080-07FF

FFBO-FFFB

FFFC-FFFF

ADDRESS (HEX) MEMORY TYPE

0000-07FF* ROM (2708)

OOOO-OFFF* ROM (2716)

0800-OFfF* ROM (2708)

1000-1FFF* ROM (2716)

FCOO-FDFF RAM (4042)

FEOO-FFFF RAM (4042)

.......

'-........ FBFE
..... FCOO

'-

USER
AVAILABLE FDFE

RAM FEOO

'­ --

•

RAM
TMS4042·2

256 X 16

......
RAM

TMS4042·2
256 X 16

FFFE~_~~ _________ ~

) EXPANSION

l SECOND
(256
(WORD
) RAM* i ;:ST

WORD
RAM

RESERVED 40 WORDS FOR
TIBUG MONITOR WORKSPACE
FILES AND RESET VECTORS
AT FFFC AND FFFE

• *STANDARD FOR BOARDS WITH
ASSEMBLY NO. 999211-0003;
OPTIONAL FOR OTHER BOARDS

DEDICATED MEMORY

PURPOSE

RESET interrupt vector

INT3 vectors (TMS 9901 timer)

INT4 vectors (TMS 9902 timer)

Vectors for XOP's 0 and 1 (Microterminal I/O)

Vectors for XOP's 8 to 15 (TIBUG utilities)

TIBUG monitor

Four overlapping monitor workspaces

Restart (load) vectors

BOARD MEMORY MAP

ENABLE SIGNAL

MROM

MROM

EROM

EROM
RAM

RAM

COMMENT

TIBUG monitor

TIBUG monitor, 2048 bytes expansion PROM

2048 bytes expansion PROM

4096 bytes expansion PROM

Expansion RAM

Standard RAM

*TMS 2708 and TMS 2716 EPROM's cannot be mixed; i.e., the monitor EPROM and expansion EPROM must both be
the same type.

FIGURE 4-1. MEMORY MAP

4-3

4.3.3.3 Equal

The equal bit is set when the words or bytes being compared are equal.

4.3.3.4 Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit) during arithmetic operations. The
carry bit is used by the shift operations to store the value of the last bit shifted out of the workspace
register being shifted.

4.3.3.5 Overflow

The overflow bit is set when the result of an arithmetic operation is too large or too small to be correctly
represented in two's complement (arithmetic) representation. In addition operations, overflow is set when
the MSB's of the operands are equal and the MSB of the result is not equal to the MSB of the destination
operand. In subtraction operations, the overflow bit is set when the MSB's of the operands are not equal,
and the MSB of the result is not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a 32·bit value) are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the MSB of the workspace register
being shifted changes value. For the absolute value and negate instructions, the overflow bit is set when the
source operand is the maximum negative value, 800016 ,

4.3.3.6 Odd Parity

The odd parity bit is set in byte operations when the parity of the result is odd, and is reset when the parity
is even. The parity of a byte is odd when the number of bits having a value of one is odd; when the number
of bits having a value of one is even, the parity of the byte is even.

4.3.3.7 Extended Operation

The extended operation bit of the Status Register is set to one when a software implemented extended
operation (XOP) is initiated.

4.3.3.8 Status Bit Summary

Table 4-1 lists the instruction set and the status bits affected by each instruction.

4.4 SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-switch time because the
content of only one register (WP hardware register) needs to be saved instead of the entire register file. The
WP, PC, and ST register contents are saved in a context switch.

A workspace is a contiguous 16 word area; its memory location can be designated by placing a value in the
WP register through software or a keyboard monitor command. A program can use one or several
workspace areas, depending upon register requirements.

More than three-fourths of the instructions can address the workspace register fi Ie; all shift instructions and
most immediate operand instructions use workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A workspace in ROM would be
ineffective since it could not be written into. Note that several registers are used by particular instructions.

4-4

TABLE 4-1. STATUS BITS AFFECTED BY INSTRUCTIONS

MNEMONIC L>IA>IEOI C I OV I OP
I

X MNEMONIC L> I A> I EQ I C I OV I OP I X

A X X X X X - - LDCR X X X - - 1 -

AB X X X X X X - LI X X X - - - -
ABS X X X X X - - LlMI - - - - - - -

AI X X X X X - - LREX - - - - - - -
ANDI X X X - - - - LWPI - - - - - - -
B - - - - - - - MOV X X X - - - -

BL - - - - - - - MOVB X X X - - X -

BLWP - - - - - - - MPY - - - - - - -
C X X X - - - - NEG X X X X X - -

CB X X X - - X - ORI X X X - - - -

CI X X X - - - - RSET - - - - - - -

CLR - - - - - - - RTWP X X X X X X X
COC - - X - - - - S X X X X X - -

CZC - - X - - - - SB X X X X X X -
DEC X X X X X - - SBO - - - - - - -

DECT X X X X X - - SBZ - - - - - - -
DIV - - - - X - - SETO - - - - - - -

IDLE - - - - - - - SLA X X X X X - -

INC X X X X X - - SOC X X X - - - -
INCT X X X X X - - SOCB X X X - - X -

INV X X X - - - - SRA X X X X - - -

JEQ - - - - - - - SRC X X X X - - -
JGT - - - - - - - SRL X X X X - - -

JH - - - - - - - STCR X X X - - 1 -

JHE - - - - - - - STST - - - - - - -
JL - - - - - - - STWP - - - - - - -
JLE - - - - - - - SWPB - - - - - - -

JLT - - - - - - - SZC X X X - - - -

JMP - - - - - - - SZCB X X X - - X -

JNC - - - - - - - TB - - X - - - -

JNE - .- - - - - - X 2 2 2 2 2 2 2
JNO - - - - - - - XOP 2 2 2 2 2 2 2
JOC - - - - - - - XOR X X X - - - -
JOP - - - - - - -

NOTES

1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these
instructions do not affect the OP bit.

2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally for that

instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

4-5

MEMORY
ADDRESS

Wf> REGISTER (HEXADECIMAL)
12 15

I SHIFT l BITS 12-15 USED BY
FCOO ... FCOO COUNT RO SHI FT INSTRUCTIONS

FC02 R 1

FC04 R2

FC06 R3

FC08 R4

FCOA R5

FCOC R6

FCOE R7

FC10 R8

FC12 R9

FC14 R 10

FC16 R 11 l USED BY XOP'S AND BRANCH RETURN

FC18 R 12 } USED IN CRU ADDRESSING

FC1A R 13 l USED IN CONTEXT
FCtC R14

~
SWITCHING (XOP,
BlWP. RTWPI

FC1E R 15
AOOO1422

FIGURE 4-3. WORKSPACE EXAMPLE

4-6

4.5 INSTRUCTION FORMATS AND ADDRESSING MODES

FORMAT

The instructions used by the TM 990/100M are contained in 16-bit memory words and require one, two, or
three words for full definition. The first word (or the single word) of an instruction will describe the

purpose of the instruction while the succeeding one or two words will be numbers that are referenced by
the initial instruction word. A word describing an instruction is interpreted by the Central Processing Unit

(CPU) by decoding the various fields within the 16 bits. These fields are shown in Figure 4-4 for the 9900

instruction set which is also categorized into nine instruction formats as shown in the figure.

In order to construct instructions in machine language, the programmer must have a knowledge of the fields
and formats of the instructions. This knowledge is often very important in debugging operations because it

allows the programmer to change bits within an instruction in order to solve an execution problem.

The fields within an instruction word contain the following information (see Figure 4-4):

o

• Op code which identifies the desired operation to be accompl ished when this instruction

is executed.

• B code which identifies whether the instruction will affect a full 16-bit word in memory

or an 8-bit byte. A one indicates a byte will be addressed, while a zero indicates a word

will be addressed.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE

OP CODE I B I To I DR I TS SR 1 ARITHMETIC

OPCODE I SIGNED DISPLACEMENT 2 JUMP

OP CODE I WR I TS SR 3 LOGICAL

OP CODE I C I T~ SR 4 CRU

OPCODE I C R 5 SHIFT

OPCODE I TS SR 6 PROGRAM

OPCODE T NOT USED 7 CONTROL

OPCODE I N R 8 IMMEDIATE

OPCODE I DR I TS SR 9 MPY,DIV,XOP

.-.0001423

OP CODE OPERATION CODE

·TD OR TS

00

01

10

11

B BYTE INDICATOR (1=BYTE)

TO DESTINATION ADDRESS TYPE"

DR DESTINATION REGISTER

TS SOURCE ADDRESS TYPE'

SR SOURCE REGISTER

C CRU TRANSFER COUNT OR SHIFT COUNT

R REGISTER

N NOT USED

ADDRESS MODE TYPE

DIRECT REGISTER

INDIRECT REGISTER

{
SYMBOLIC ADDRESSING,NOT INDEXED (SR OR DR = 0)

SYMBOLIC ADDRESSING + INDEX REGISTER (SR OR DR >0)
INDIRECT REGISTER, AUTOINCREMENT REGISTER

FIGURE 4-4. TM 9OO/lOOM INSTRUCTION FORMATS

4-7

• T fields identified by T D for the destination T field and T S for the source T field. The T
field is a two-bit code which identifies which of five different addressing modes will be
used (direct register, indirect register, memory address, memory address indexed, and
indirect register autoincremented). These modes are described in detail in paragraphs
4.5.1 through 4.5.5. The source T field is the code for the source address and the
destination T field is the code for the destination address. As shown in Figure 4-4, only
five instruction formats use a T field.

• Source and destination register fields which contain the number of the register affected (0
through 15).

• Displacement fields that contain a bias to be added to the program counter in program
counter relative addressing. This form of addressing is further described in paragraph
4.5.7.

• Fields that contain counts for indicating the number of bits that will be shifted in a shift
instruction or the number of Communication Register Unit (CRU) bits that will be

addressed in a CRU instruction.

4.5.1 DIRECT REGISTER ADDRESSING (T=002)

In direct register addressing, execution involves data contained within one of the 16 workspace registers. In
the first example in Figure 4-5, both the source and destination operands are registers as noted in the
assembly language example at the top of the figure. Both T fields contain 002 to denote direct register
addressing and their associated register fields contain the binary value of the number of the register
affected. The 1102 in the op code field identifies this instruction as a move instruction. Since the B field
contains a zero, the data moved will be the full 16 bits of the register (a byte instructio'n addressing a
register would address the left byte of the register). The instruction specifies moving the contents of register
1 to register 4, thus changing the contents of register 4 to the same value as in register 1. Note that the
assembly language statement is constructed so that the source register is the first item in the operand while
the destination register is the second item in the operand. This order is reversed in the machine language
construction with the destination register and its T field first and the source register and' its T field second.

4.5.2 INDIRECT REGISTER ADDRESSING (T=01 2)

In indirect register addressing, the register does not contain the data to be affected by the instruction;
instead, the register contains the address within memory of where that data is stored. For example, the
instruction in Figure 4·6 specifies to move the contents of register 1 to the address which is contained in
register 4 (indirect register 4). Instead of moving the value in register 1 to register 4 as was the case in
Figure 4-5, the CPU must first read in the 16-bit value in register 4 and use that value as a memory address
at which location the contents of register 1 will be stored. In the example, register 4 contains the value
FD0016 . This instruction stores the value in register 1 into memory address (MA) FD0016 .

In direct register addressing, the contents of a register are addressed. In indirect register addressing, the CPU
goes to the register to find out what memory location to address. This form of addressing is especially
suited for repeating an instruction while accessing successive memory addresses. For example, if you wished
to add a series of numbers in 100 consecutive memory locations, you could place the address of the first
number in a register, and execute an add indirect through that register, causing the contents of the first
memory address (source operand) to be added to another register or memory address (destination operand).
Then you could increment the contents of the register containing the address of the number, loop back to
the add instruction, and repeat the add, only this time you will be adding the contents of the next memory
address to the accumulator (destination operand). This way a whole string of data can be summed using a
minimum of instructions. Of course, you would have to include control instructions that would signal when

4-8

the entire list of 100 addresses have been added, but there are obvious advantages in speed of operation,

better utilization of memory space, and ease in programming.

EXAMPLE 1

ASSEMBL Y LANGUAGE:

MOV Rl,R4

SOURCE OPERAN~ ~
DESTINATION OPERAND

MACHINE LANGUAGE:

o 2 3

MOVE THE CONTENTS OF Rl (SOURCE) TO R4 (DESTINATION)

TCODE FOR
DIRECT REGISTER I j REGISTER 4 T CODE FOR r DIRECT REGISTER

/ REGISTER 1

-;----;-- r 6 7 A, =: ;--- 1011 ~2 13 A,14 '" 15

1~_l ________ o~IL-0 __ ~I_o _____ 0-LI __ o ________ O ____ O~IL-0 ____ O __ L1 __ 0 ____ 0 ____ 0 ____ 1~I>C101
OPCODE B TO DR TS SR

M.A.

FCOO RO

FC02 Rt

FC04 R2 PLACE R1 BINARY

FC06 R3 IMAGE IN R4

FC08 R4

FCOA R5

EXAMPLE 2

ASSEMBL Y LANGUAGE:

A R4,Rl0 ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 1 0 1 I 0 I 0 0 I 1 0 0 I 0 0 I 0 0 0 > A284

OP CODE B TO DR TS SR
AOOO1424

FIGURE 4-5. 01 RECT REGISTER ADDRESSING EXAMPLE

4-9

ASSEMBL Y LANGUAGE:

MOV Rl,*R4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:

AOOO1425

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1-1 _1 ___ 0~1_0--L-1_0 __ 1--,-1_0 ___ 0 __ 0---.J1,---0 __ 0-,1_0 __ 0 __ 0 _---'1 I >C501

OPCODE B TO

M.A.

FCOO

FC02

FC04

FC06

FC08

FCOA

FOOO

F002

DR TS

RO·

R1

R2

R3 PLACE Rl BINARY
R4

IMAGE IN MA FDOO16
R5

(INDIRECT R41

FIGURE 4-6. INDIRECT REGISTER ADDRESSING EXAMPLE

ASSEMBL Y LANGUAGE:

SR

MOV Rl,*R4+ MOVE THECONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESS BY 2

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o I 0 I 1 1 I 0 o o I 0 o I 0 o o >CDOl

OPCODE B TO DR TS SR

BEFORE

M.A.

FCOO RO

FC02 R1 0000 0000

FC04 R2

FC06 R3

FC08 R4 FF02

~
FFOO 0000

AOOO1427

FIGURE 4·7. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

4·10

4.5.3

4.5.4

4.5.5

INDIRECT REGISTER AUTOINCREMENT ADDRESSING (T=11 2)

Indirect register autoincrement addressing is the same as indirect register addressing (paragraph 4.5.2)

except for an additional feature - automatic incrementation of the register. This saves the requirement of

adding an increment (by one or two) instruction to increment the register being used in the indirect mode.

The increment will be a value of one for byte instructions (e.g., add byte or AB) or a value of two for full
word instructions (e.g., add word or A).

In assembly language, the register number is preceded by an asterisk (*) and followed by a plus sign (+) as
shown in Figure 4-7. Note in the figure that the contents of register 4 was incremented by two since the

instruction was a move word (vs. byte) instruction. If the example used a move byte instruction, the

contents of the register would be incremented by one so that successive bytes would be addressed (the

H,·bit word addresses in memory are always even numbers or multiples of two since each contains two
bytes). Bytes are also addressed by various instructions of the 990 instruction set.

Note that only a register can contain the indirect address.

SYMBOLIC MEMORY ADDRESSING, NOT INDEXED (T=102)

This mode does not use a register as an address or as a container of an address. I nstead, the address is a

16-bit value stored in the second or third word of the instruction. The SR or DR fields will be all zeroes as

shown for the destination register field in the first example of Figure 4-8. When the T field contains 102 ,

the CPU retrieves the contents of the next memory location and uses these contents as the effective

address. In assembly language, a symbolic address is preceded by an at sign (@) to differentiate a numerical

memory address from a register number. All alphanumeric labels must be preceded by an @ sign; numerical

values preceded by an @ sign will be assembled as an absolute address (the TM 990/402 Line-By-Line

Assembler does not recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure 4-8, both the source and destination operands are symbolic memory

addresses. In this case, the source address is the first word following the instruction and the destination is

the second word following the instruction in machine language.

SYMBOLIC MEMORY ADDRESSING,INDEXED (T=102)

Note that the T field for indexed as well as non-indexed symbolic addressing is the same (102). In order to

differentiate between the two different modes, the associated SR or DR field is interrogated; if this field is
all zeroes (00002), non-indexed addressing is specified; if the SR or DR field is greater than zero, indexing

is specified and the non-zero value is the index register number. As a result, register 0 cannot be used as an

index register.

In assembly language, the symbolic address is followed by the number ofthe index register in parentheses.
In the example in Figure 4-9, the source operand is non-indexed symbolic memory addressing while the

destination operand is indexed symbolic memory addressing. In this case, the destination effective address

is the sum of the FF02,s value in the destination memory address word plus the value in the index register

(0004,6). The effective address in this case is FF06,s as shown by the addition in the left part of the

figure.

Note that only symbolic addressing can be indexed.

4-11

EXAMPLE 1

ASSEMBL Y LANGUAGE:

MOV Rl,@>FFOO MOVE THE CONTENTS OF RI TO ADDRESS >FFOO

NOTE

The > sign indicates hexidecimal representation.

MACHINE LANGUAGE:

OPCODE B

0 2 3

1st WORD

I
1 0 I o I

2nd WORD

EXAMPLE 2

ASSEMBL Y LANGUAGE:

TO

4

1

FEFE

FFOO

MOV @>FFOA,@>FF08

MACHINE LANGUAGE:

OPCODE B TO

o 2 3 4

5

o I

5

RO

R1

R2

DR

6 7 8 9

0 0 0 0

0 0

TS

10 11 12

I 0 0 I 0

0 0 0

PLACE R1 BINARY

IMAGE IN

MA >FFOO

SR

13 14 15

0 0 1

0 0 0

MOVE THE CONTENTS OF > FFOA TO >FF08

DR TS SR

6 7 8 9 10 11 12 13 14 15

I
> C801

> FFOO

1st WORD >C820 1 1 o I o I 1 o I 0 0 0 o l 1 01 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 2nd WORD >FFOA (SOURCEI

1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 3rd WORD >FFOS (DESTINATIONI

A0001428

M.A.

FF08

FFOA

BEFORE AFTER

tITIEi
~
~
~

FIGURE 4·8. SYMBOLIC MEMORY ADDRESSING EXAMPLE

4·12

ASSEMBL Y LANGUAGE:
MOV @>FFOO,@>FF02(R1)

MACHINE LANGUAGE:

OP CODE

o

1

1

1

>FF02 (D)
+ 0004 (R1)

>FF06

1

1

1

B

2 3

0 I 0 I
1 1

1 1

TO

4

1

1

1

M.A.

FFOO

~
FF02

FF04

FF06

AOO01429

5

o I
1

1

RO

R:1

R2

6

0

1

1

~

MOVE THE CONTENTS OF > FFOO TO >FF02 + AI CONTENTS

DR TS SR

7 8 9 10 11 12 13 14 15

0 0 1 I 1 o I 0 0 0 0 >C860

1 0 0 0 0 0 0 0 0 >FFOO(SOURCE)

1 0 0 0 0 0 0 1 0 >FF02 'IDESTINATION)

BEFORE AFTER

0004 0004

~
, "'i

~ ~ ~ ~

FFEE FFEE

0000 0000

0000 0000

0000 FFEE

FIGURE 4-9. SYMBOLIC MEMORY ADDRESSING,INDEXED EXAMPLE

4.5.6 IMMEDIATE ADDRESSING

This mode allows an absolute value to be specified as an operand; this value is used in connection with a
register contents or is loaded into the WP or the Status Register interrupt mask. Examples are shown below:

LI

CI

LWPI

R2,100

RS,> 100

>FCOO

LOAD 100 INTO REGISTER 2

COMPARE R8 CONTENTS TO > 100, RESULTS IN ST

SET WP TO MA > FCOO

4.5.7 PROGRAM COUNTER RELATIVE ADDRESSING

This mode allows a change in Program Counter contents, either an unconditional change or a change
conditional on Status Register contents. Examples are shown below:

JMP

JMP

JEO

JMP

$+6

THERE

$+4

>FE26

JUMP TO LOCATION, 6 BYTES FORWARO

JUMP TO LOCATION LABELLED THERE

IF ST EO BIT = 1, JUMP 4 BYTES (MA + 4)

JUMP TO M.A. >FE26 (LiNE-BY-LiNE ASSEMBLER ONLY)

The dollar symbol ($) means "from this address"; thus, $+6 means "this address plus 6 bytes."

4-13

4.6 INSTRUCTIONS

Table 4-2 lists terms used in describing the instructions of the TM 990/100M. Table 4-3 is an alphabetical
list of instructions. Table 4-4 is a numerical list of instructions by op code. Examples are shown in both
assembly language (A.L.) and machine language (M.L.). The greater-than sign (>) indicates hexadecimal.

TABLE 4-2. INSTRUCTION DESCRIPTION TERMS

TERM DEFINITION

B Byte indicator (1 - byte, a - word)
C Bit count
DR Destination address register
DA Destination address

lOP Immediate operand
LSB(n) Least significant (right most) bit of (n)

M.A. Memory Address

MSB(n) Most significant (left most! bit of (n)
N Don't care

PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA - Sou rce address

ST Status register
STn Bit n of status register

TO Destination address modifier

TS Source address modifier

WR or R Workspace register
WRn or Rn Workspace register n
(n) Con ten ts of n
a--"b a is transferred to b

(a) --"b Contents of a is transferred to be
[n) Absolute value of n
+ Arithmetic addition
- Arithmetic subtraction

AND Logical AND
OR Logical OR

<3 Logical exclusive OR
n Logical complement of n

> Hexadecimal value

4-14

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH

A AOOO 1 0-4 X Add (word) 4.6.1

AB BOOO 1 0-5 X Add (byte) 4.6.1

ABS 0740 6 0-2 X Absolute Value 4.6.6

AI 0220 8 0-4 X Add Immediate 4.6.8

ANDI 0240 8 0-2 X AND Immediate 4.6.8

B 0440 6 - Branch 4.6.6

BL 0680 6 - Branch and Link (R 11) 4.6.6

BLWP 0400 6 - Branch; New Workspace Pointer 4.6.6

C 8000 1 0-2 Compare (word) 4.6.1

CB 9000 1 0-2,5 Compare (byte) 4.6.1

CI 0280 8 0-2 Compare Immediate 4.6.8

CKOF 03CO 7 - User Defi ned 4.6.7

CKON 03AO 7 - User Defined 4.6.7

CLR 04CO 6 - Clear Operand 4.6.6

COC 2000 3 2 Compare Ones Corresponding 4.6.3

CZC 2400 3 2 Compare Zeroes Corresponding 4.6.3

DEC 0600 6 0-4 X Decrement (by one) 4.6.6

DECT 0640 6 0-4 X Decrement (by two) 4.6.6

DIV 3COO 9 4 Divide 4.6.3

IDLE 0340 7 - Computer Idle 4.6.7

INC 0580 6 0-4 X Increment (by one) 4.6.6

INCT 05CO 6 0-4 X Increment (by two) 4.6.6

INV 0540 6 0-2 X Invert (One's Complement) 4.6.6

JEQ 1300 2 - Jump Equal (ST2~1) 4.6.2

JGT 1500 2 - Jump Greater Than (ST1 ~1), Arithmetic 4.6.2

JH lBOO 2 - Jump High (STO~l and ST2~0). Logical 4.6.2

JHE 1400 2 - Jump High or Equal (STO or ST2~1), Logical 4.6.2

JL lAOO 2 - Jump Low (STO and ST2=0). Logical 4.6.2

JLE 1200 2 - Jump Low or Equal (STO=O or ST2=1), Logical 4.6.2

JLT 1100 2 - Jump Less Than (STl and ST2=0). Arithmetic 4.6.2

JMP 1000 2 - Jump Unconditional 4.6.2

JNC 1700 2 - Jump No Carry (ST3=0) 4.6.2

JNE 1600 2 - Jump Not Equal (ST2=0) 4.6.2

JNO 1900 2' - Jump No Overflow (ST4=0) 4.6.2

JOC 1800 2 - Jump On Carry (ST3=1) 4.6.2

TABLE 4·3. INSTRUCTION SET, ALPHABETICAL INDEX (Concluded)

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH

JOP lCOO 2 - Jump Odd Parity (ST5=1) 4.6.2

LDCR 3000 4 0-2,5 X Load CRU 4.6.4

LI 0200 8 - X Load Immediate 4.6.8

LlMI 0300 8 12-15 Load Interrupt Mask Immediate 4.6.8

LREX 03EO 7 12-15 Load and Execute 4.6.7

LWPI 02EO 8 - Load Immediate to Workspace Pointer 4.6.8

MOV COOO 1 0-2 X Move (word) 4.6.1

MOVB 0000 1 0-2,5 X Move (byte) 4.6.1

MPY 3800 9 - Multiply 4.6.3

NEG 0500 6 0-2 X Negate (Two's Complement) 4.6.6

ORI 0260 8 0-2 X OR Immediate 4.6.8

RSET 0360 7 12-15 Reset AU 4.6.7
:.

RTWP 0380 7 0-15 Return from Context Switch 4,6.7

S 6000 1 0-4 X Subtract (word) 4.6 .. 1

SB 7000 1 0-5 X Subtract (byte) 4.6.1

SBO 1000 2 - Set CRU Bit to One 4.6.2

SBZ 1 EOO 2 - Set CRU Bit to Zero 4.6.2

SETO 0700 6 - Set Ones 4.6.6

SLA OAOO 5 0-4 X Shift Left Arithmetic 4.6.5

SOC EOOO 1 0-2 X Set Ones Corresponding (word) 4.6.1

SOCB FOOO 1 0-2,5 X Set Ones Corresponding (byte) 4.6.1

SRA OBOO 5 0-3 X Shift Right (sign extended) 4.6.5

SRC OBOO 5 0-3 X Shift Right Circular 4.6.5

SRL 0900 5 0-3 X Shift Right Logical 4.6.5

STCR 3400 4 0-2,5 X Store From CRU 4.6.4

STST 02CO 8 - Store Status Register 4.6.8

STWP 02AO 8 - Store Workspace Pointer 4.6.8

SWPB 06CO 6 - Swap Bytes 4.6.6

SZC 4000 1 0-2 X Set Zeroes Corresponding (word) 4.6.1

SZCB 5000 1 0,2,5 X Set Zeroes Corresponding (byte) 4.6.1

TB lFOO 2 2 Test CRU Bit 4.6.2

X 0480 6 - Execute 4.6.6

XOP 2COO 9 6 Extended Operation 4.6.9.

XOR 2800 3 0-2 X Exclusive OR 4.6.3

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY

OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED

0200 U Load Immediate 8 (}2

0220 AI Add Immediate 8 0-4
0240 ANDI And Immediate 8 0-2

0260 ORI Or Immediate 8 (}2

0280 CI Compare Immediate 8 (}2

02AO STWP Store WP 8 -
02CO STST Store ST 8 -

02EO LWPI Load WP Immediate 8 -

0300 LlMI Load I nt. Mask 8 12-15

0340 IDLE Idle 7 -

0360 RSET Reset AU 7 12-15

0380 RTWP Return from Context Sw. 7 0-15

03AO CKON User Defined 7 -

03CO CKOF User Defined 7 -

03EO LREX Load & Execute 7 -

0400 BLWP Branch; New WP 6 -
0440 B Branch 6 -

0480 X Execute 6 -
04CO CLR Clear to Zeroes 6 -

0500 NEG Negate to Ones 6 (}2

0540 INV Invert 6 (}2

0580 INC Increment by 1 6 0-4

05CO INCT I ncrement by 2 6 0-4

0600 DEC Decrement by 1 6 0-4

0640 DECT Decrement by 2 6 (}4

0680 BL Branch and Li nk 6 -

06CO SWPB Swap Bytes 6 -

0700 SETO Set to Ones 6 -

0740 ABS Absolute Value 6 0-2

0800 SRA Shift Right Arithmetic 5 (}3

0900 SRL Shift Right Logical 5 (}3

OAOO SLA Shift Left Arithmetic 5 (}4

OBOO SRC Shift Right Circular 5 0-3

1000 JMP Unconditional Jump 2 -

1100 JLT Jump on Less Than 2 -

1200 JLE Jump on Less Than or Equal 2 -

1300 JEQ Jump on Equal 2 -

1400 JHE Jump on High or Equal 2 -

1500 JGT Jump on Greater Than 2 -

1600 JNE Jump on Not Equal 2 -

1700 JNC Jump on No Carry 2 -

1800 JOC Jump on Carry 2 -

1900 JNO Jump on No Overflow 2 -

1AOO JL Jump on Low 2 -

1BOO JH Jump on High 2 -

1COO JOP Jump on Odd Parity 2 -

1000 SBO Set CR U B its to Ones 2 -

1EOO SBZ Set CRU Bits to Zeroes 2 -

1FOO TB Test CRU Bit 2 2

2000 coe Compare Ones Corresponding 3 2

4-17

TABLE 4-4_ INSTRUCTION SET, NUMERICAL INDEX fConcluded)

MACHINE
LANGUAGE ASSEMBLY

OIP COOE LANGUAGE STATUS BITS
fHEXADECIMAL MNEMONIC INSTRUCTION FORMAT AFFECTED

2400 CZC Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2
2COO XOP Extended Operation 9 6
3000 LDCR Load CRU 4 0-2,5
3400 STCR Store CRU 4 0-2,5

3800 MPY MUltiply 9 -
3COO DIV Divide 9 4
4000 SZC Set Zeroes Corresponding (Word) 1 0-2
5000 SZCB Set Zeroes Corresponding (Byte) 1 0-2,5
6000 S Subtract Word 1 0-4

7000 SB Subtract Byte 1 0-5
8000 C Compare Word 1 0-2
9000 CB Compare Byte 1 0-2,5
AOOO A Add Word 1 0-4
8000 AB Add Byte 1 0-5

COOO MOV Move Word 1 0-2
0000 MOVB Move Byte 1 0-2,5
EOOO SOC Set Ones Corresponding (Word) 1 0-2
FOOO SOCB Set Ones Corresponding (Byte) 1 0-2,5

4_6_1 FORMAT 1 INSTRUCTION_

These are dual operand instructions with multiple addressing modes for source and destination operands_

GENERAL FORMAT:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OPCOOE B TO DR TS SR

If B = 1, the operands are bytes and the operand addresses are byte addresses_ If B = 0, the operands are
words and the operand addresses are word addresses.

4-18

OP CODE B
RESULT STATUS

MNEMONIC MEANING COMPARED I BITS I I)ESCRIPTION 0 1 2 3
TOO AFFECTED

A 1 0 1 0 Add Yes 0-4 ISA)+IDA) --+ IDA)

AB 1 0 1 1 Add bytes Yes 0-5 ISA)+IDA) --+ IDA)

C 1 0 0 0 Compare No 0-2 Compare ISA) to IDA) and set

appropriate status bits

CB 1 0 0 1 Compare bytes No 0-2,5 Compare ISA) to IDA) and set

appropriate status bits

MOV 1 1 0 0 Move

I
Yes 0-2

I
(SA) --+ IDA)

MOVB 1 1 0 1 Move bytes Yes 0-2,5 (SA) --+ IDA)
S 0 1 1 0 Subtract Yes 0-4 (DA) - (SA) -+ (DA)

SB 0 1 1 1 Subtract bytes Yes 0-5 (DA) - (SA) -> (DA)
SOC 1 1 1 0 Set ones corresponding Yes 0-2 IDA) OR ISA) -> IDA)

SOCB 1 1 1 1 Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA) --+ IDA)

SZC 0 1 0 0 Set zeroes corresponding Yes 0-2 IDA) AND ISA) -> (DA)

SZCB 0 1 0 1 Set zeroes corresponding bytes Yes 0-2,5 IDA) AND (SA) -+ (DA)

EXAMPLES

(1) ASSEMBL Y LANGUAGE:
A @>100,R2 ADD CONTENTS OF MA >100 & R2, SUM IN R2

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t :
0 0 0 0 0 0 0 0 0 0 0 0 >AOAO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 >0100

(2) ASSEMBL Y LANGUAGE:
CB R1,R2 COMPARE BYTE R1 TO R2, SET ST

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13

o o o o o o o o o o

NOTE

In byte instruction designating a register, the left byte is used. In the above
example, the left byte (8 MSB's) of R1 is compared to the left byte of R2,
and the ST set to the results.

4.6.2 FORMAT 2 INSTRUCTIONS

4.6.2.1 Jump Instructions

o

14 15

o >9081

Jump instructions cause the PC to be loaded with the value [PC+2(signed displacement) 1 if bits of the
Status Register are at specified values. Otherwise, no operation occurs and the next instruction is executed
since the PC was incremented by two and now points to the next instruction. The signed displacement field
is a word (not byte) count to be added to PC. Thus, the jump instruction has a range of -128 to 127 words
(-256 to 254 bytes) from the memory address following the jump instruction. No ST bits are affected by a
jump instruction.

4-19

GENERAL FORMAT:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OPCODE SIGNED DISPLACEMENT (WORDSI

OP CODE
MNEMONIC MEANING ST CONDITION TO CHANGE PC

JEQ

JGT

JH

JHE

JL

JLE

JLT

JMP

JNC

JNE

JNO

JOC

JOP

0 1 2 3 4 5 6 7

0 0 0 1 0 0 1 1 Jump equal ST2 = 1

0 0 0 1 0 1 0 1 Jump greater than STl = 1

0 0 0 1 1 0 1 1 Jump high STO = 1 and ST2 = 0

0 0 0 1 0 1 0 0 Jump high or equal STO = 1 or ST2 = 1

0 0 0 1 1 0 1 0 Jump low STO = 0 and ST2 = 0

0 0 0 1 0 0 1 0 Jump low or equal STO = 0 or ST2 = 1

0 0 0 1 0 0 0 1 Jump less than STl = 0 and ST2 = 0

0 0 0 1 0 0 0 0 Jump unconditional unconditional

0 0 0 1 0 1 1 1 Jump no carry ST3 = 0

0 0 0 1 0 1 1 0 Jump not equal ST2 = 0

0 0 0 1 1 0 0 1 Jump no overflow ST4 = 0

0 0 0 1 1 0 0 0 Jump on carry ST3 = 1

0 0 0 1 1 1 0 0 Jump odd parity ST5 = 1

In assembly language, $ in the operand indicates "at this instruction". Essentially JMP $ causes an
unconditional loop to the same instruction location, and JMP $+2 is essentially a no-op ($+2 means "here
plus two bytes"). Note that the number following the $ is a byte count while displacement in machine
language is in words.

EXAMPLES

(1) ASSEMBL Y LANGUAGE.-

JEQ $+4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE.-

o 2 3

o o o

PC POINTS

4 5 6 7 8 9

o o 1 o o

~\
TO----t===j~

10 11 12 13 14 15

o o o o o

IF STATUS REGISTER BIT 2 = 1

SKIP NEXT INSTRUCTION

>1301

The above instruction continues execution 4 bytes (2 words) from the instruction location or, in other
words, two bytes (one word) from the Program Counter value (incremented by 2 and now pointing to next
instruction while JED executes). Thus, the signed displacement of 1 word (2 bytes) is the value to be added
to the PC.

4·20

(2) ASSEMBL Y LANGUAGE:
JMP $ REMAIN AT THIS LOCATION

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o o o o o o o >10FF

PC ~:~::~~----~----$----~ CONTINUOUS LOOP

TO .IMP $ (> FF = -1 WORD)

This causes an unconditional loop back to one word less than the Program Counter value (PC + >F F = PC-1
word). The Status Register is not checked. A JMP $+2 means "go to the next instruction" and has a
displacement of zero (a no-op). No-ops can substitute for deleted code or can be used for timing purposes.

4.6.2.2 CRU Single-Bit Instructions.

These instructions test or set values at the Communications Register Unit (CRU). The CRU bit is selected
by the CRU address in bits 3 to 14 of register 12 plus the signed displacement value. The selected bit is set
to a one or zero, or it is tested and the bit value placed in equal bit (2) of the Status Register. The signed
displacement has a value of -128 to 127.

NOTE

CRU addressing is discussed in detail in paragraph 8.2 .

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Goo~1 Fmmm: LI ______________ OP ___ C_O_D_E ______________ ~ ________ S_IG __ N_E_D __ D_IS_P_L_A_C_E_M __ E_N_T ________ ~

OP CODE
MNEMONIC MEANING

0 1 2 3 4 5 6 7

SSO a a a 1 1 1 a 1 Set bit to one

SSZ a a a 1 1 1 1 a Set bit to zero

TS a a a 1 1 1 1 1 Test bit

EXAMPLE

R12,SITS3TO 14=>100

ASSEMBL Y LANGUAGE:

STATUS

BITS

AFFECTED

-

-

2

SBO 4 SET CRU ADDRESS >104 TO ONE

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9

o o o o o o

4-21

DESCRIPTION

Set the selected CRU output bit to 1.

Set the selected CR U output bit to O.

If the selected CRU input bit ~ 1, set ST2.

10 11 12 13 14 15

o o o o o >1004

4.6.3 FORMAT 3/9 INSTRUCTIONS

These are dual operand instructions with mUltiple addressing modes for the source operand, and workspace
register addressing for the destination. The MPY and 0 I V instructions are termed format 9 but both use the
same format as format 3. The XOP instruction is covered in paragraph 4.6.9.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE I DR (REGISTER ONLY) I TS SR

MNEMONIC

COC

CZC

XOR

MPY

DIV

OP CODE

012345 MEANING

o 0 1 0 0 0 Compare ones
corresponding

00 1 0 0 1 Compare zeros
corresponding

00 1 0 1 0 Exclusive OR

o 0 1 1 1 0 Multiply

o 0 1 1 1 1 0 ivide

Exclusive OR Logic 100~ 1

000~0
101 ~ 0

EXAMPLES

(1) ASSEMBL Y LANGUAGE:

RESULT
COMPARED

TOO

No

No

Yes

No

No

STATUS
BITS

AFFECTED

2

2

0-2

4

DESCRIPTION

Test (DR) to determine if O's are in each
bit position where l's are in (SA). If so,
set ST2.

Test (DR) to determine if O's are in each
bit position where 1 's are in (SA). If so,
set ST2.

(DR) Etl (SA) -c> (DR)

Multiply unsigned (DR) by unsigned
(SA) and place unsigned 32-bit product
in DR (most significant) and DR + 1

(least significant). If WR15 is DR, the
next word in memory after WR15 will
be used for the least significant half of
the product.

If unsigned (SA) is less than or equal to
unsigned (DR), perform no operation
and set ST4. Otherwise divide unsigned
(DR) and (DR) by unsigned (SAL
Quotient -c> (DR), remainder -+ (DR+1).
If DR~15, the next word in memory
after WR 15 will be used for the
remainder.

MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 >38C2

BEFORE AFTER

R2 0002 0002

R3 0003 0000 } 32-BIT

R4 N 0006 RESULT

4-22

The destination operand is always a register, and the values multiplied are 16-bits, unsigned. The 32-bit
result is placed in the destination register and destination register +1, zero filled on the left.

(2) ASSEMBL Y LANGUAGE:
DIV @>FEOO,R5 DIVIDE CONTENTS OF R5 AND RS BY VALUE AT M.A. > FEOO

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o o 1 I 0 o o I 0 o o o >3060

o o o o o o o o o >FEOO

BEFORE AFTER

M.A. > FEOO

R5 0000 0003

R6 0011 0002 1-"'--- REMAINDER

The unsigned 32-bit value in the destination register and destination register +1 is divided by the source
operand value. The result is placed in the destination register. The remainder is placed in the destination
register +1.

(3) ASSEMBLY LANGUAGE:
COC R1O,Rll ONES IN R10 ALSO IN Rll?

MACHINE LANGUAGE:

Rl0

Rll

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 1 I 0 0 I 1 0 0 >22CA

Locate all binary ones in the source operand. If the destination operand also has ones in these positions, set

the equal flag in the Status Register; otherwise, reset this flag. The following sets the equal flag:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 0 0 0 0 0 0 0

I
>AAOC

0 1 0 0 0 1 >EFCD

Set EQ bit in Status Register to 1.

4.6.4 FORMAT 4 (CRU MUL TIBIT) INSTRUCTIONS

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format:1 OP CODE C TS SR

4·23

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be transferred. The CRU
hardware base register (WR 12, bits 3 through 14) defines the starting CRU bit address. The bits are trans·
ferred serially and the CR U hardware bit address is incremented with each bit transfer, although the con·
tents of WR 12 are not affected. Ts (C = 1 through 8), the source address is a byte address. If 9 or more
bits are transferred (C= 0.9 through 15). the source address is a word (even number) address. If the source
is addressed in the workspace register indirect autoincrement mode, the workspace register is incremented
by 1 if C =1 through 8, and is incremented by 2 otherwise.

OPCODE
RESULT STATUS

MNEMONIC MEANING COMPARED BITS DESCRIPTION o 1 2 345
TO 0 AFFECTED

LDCR o 0 1 1 o 0 Load communcation Yes 0-2,5 t Beginning with LSB of iSA), transfer the

regi ster specified number of bits from iSA) to

the CRU.

STCR 001 1 o 1 Store communcation Yes 0-2,5 t Beginning with LSB of iSA), transfer the

register specified number of bits from the CRU to

iSA). Load unfilled bit positions with O.

tST5 is affected only if 1 .;; C .;; 8.

EXAMPLE

ASSEMBL Y LANGUAGE:
LDCR @>FEOO,8 LOAD 8 BITS ON CRU FROM M.A. >FEOO

MACHINE LANGUAGE:

o 2 3 4 5 7 8 9 10 11 12 13 14 15

o o o o o o o o o o o o >3220

1 o o o o o o o o o >FEOO

NOTE

CRU addressing is discussed in detail in paragraph 8.2.

4.6.5 FORMAT 5 (SHIFT) INSTRUCTIONS

These instructions shift (left, right, or circular) the bit patterns in a workspace register. The last bit value
shifted out is placed in the carry bit (3) of the Status Register. If the SLA instruction causes a one to be
shifted into the sign bit, the ST overflow bit (4) is set. The C field contains the number of bits to shift.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OPCODE C R

4-24

If C = D, bits 12 through 15 of RD contain the shift count. If C = D and bits 12 through 15 of WRD = 0, the
shift count is 16.

RESULT STATUS
Of> CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7

TOO AFFECTED

SLA 0 0 0 0 1 0 1 0 Shift left arith metic Yes 0-4 Shift (R) left. Fill vacated bit

positions with O.

SRA 0 0 0 0 1 0 0 0 Shift right arithmetic Yes 0-3 Shift (R) right. Fill vacated bit

positions with original MSB of (Rl.

SRC 0 0 0 0 1 0 1 1 Shift right circular Yes 0-3 Shift (R) right. Shift previous LSB

into MSB.

SRL 0 0 0 0 1 0 0 1 Shift right logical Yes 0·3 Shift (A) right. F ill vacated bit

positions with O's.

EXAMPLES

(1) ASSEMBLY LANGUAGE:
SRA Rl,2 SHIFT Rl RIGHT 2 POSITIONS, CARRY SIGN

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 >0841

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 BEFORE I 0 0 0 0 0 0 0 >8FOF

.. " "-
..

"- "- "-
....

" " ,; " " "
R1 AFTER 0 0 0 0 0 0 0 >E3C3

SIGN BIT CARRIED IN

(2) ASSEMBL Y LANGUAGE:
SRC R5,4 CIRCULAR SHIFT R5 4 POSITIONS

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o o o o o o o o o o o o >0845

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R5 BEFORE 0 o o o o o o o o o >090F

R5AFTER~_-_r __ 0 ____ 0 ____ 0 ____ 0 ___ I_-____ -0 ____ 0---->-----0--__ O----O------~>FOOO

4·25

(3) ASSEMBL Y LANGUAGE:
SLA Rl,O SHIFT COUNT IN RO

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I
RO 1 1 0 0 1 1 0 0

Rl (BEFORE) 1 1 1 1 1 1 1 1

R1 (AFTER)

4.6.6 FORMAT 6 INSTRUCTIONS

These are single operand instructions.

o 2 3 4 5 6 7

8 I 9 I 10 I 11

1 1 0 (}

1 1 1 1

8 9 10 11

SHIFT COUNT

12 I 13 I 14 I 15

r~-__ "A_

0 0 1 1 >CCC3

1 1 1 1

- o 0 0 I
~

VACATED BITS ZERO FILLED

12 13 14 15

Gernwal Format: LI ____________________ O_P __ C_O_D_E ______________________ L-___ T_s ____ ~ ________ S_R ________ ~

~The TS and S fields provide multiple mode addressing capability for the source operand.
~~ ~-- ~~----~~------

RESULT STATUS
OP CODE

MNEMONIC MEANING COMPARED BITS DESCRIPTION
0 1 2 3 4 5 6 7 8 9

TO 0 AFFECTED

B 000 o 0 1 000 1 Branch No - SA • (PC)

BL 0 o 0 0 0 1 1 o 1 0 Branch and link No - '(PC) ~(R11);oSA ~(PC)
BLWP 0 o 0 0 0 1 o 0 0 0 Branch and load No - (SA) ~(WP); (SA+2) ~(PC);

workspace pointer (old WP) --+ (new WR 13);

(old PC) ~ (new WR14);

(old ST) ~ (new WR 15);

the interrupt input (f NTR EO) is not

tested upon completion of the

BLWP instruction.

CLR 0 o 0 o 0 1 0 o 1 1 Clear operand No - OOOO~(SA)

SETa 0 o 0 0 0 1 1 1 0 0 Set to ones No - FFFF 16 --+ (SA)

INV 0 0 0 0 0 1 0 1 0 1 Invert Yes 0-2 (SA) ~ (SA) (ONE'S complement!

NEG 000 0 0 1 0 1 0 0 Negate Yes 0-4 - (SA) -+ (SA HTWO'S complement)

ABS 0 o 0 0 0 1 1 1 0 1 Absolute value* No 0-4 [(SA)) ~(SA)

SWPB o 0 0 0 0 1 1 o 1 1 Swap bytes No
I

- (SA), bits 0 thru 7 -+ (SA), bits

8 thru 15; (SA), bits 8 thru 15-+

(SA), bits 0 thru 7.

INC 0 o 0 0 0 1 0 1 1 0 Increment Yes 0-4 (SA) + 1 -+ (SA)

INCT 0 o 0 0 0 1 0 1 1 1 Increment by two Yes 0-4 (SA) + 2 -+ (SA)

DEC 0 0 000 1 1 o 0 0 Decrement Yes 0-4 (SA) - 1 -+ (SA)

DECT 0 0 o 0 0 1 1 0 0 1 Decrement by two Yes 0-4 (SA) - 2 -+ (SA)

xt o 0 000 1 o 0 1 0 Execute No - Execute the instruction at SA.

*Operand is compared to zero for setting the status bit (i.e., before execution).
tit additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these

words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition Signal (lAO) will not be true
when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

4-26

EXAMPLES

(1) ASSEMBL Y LANGUAGE:
B *R2 BRANCH TO M.A. IN R2

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~I _o ____ o ____ o ___ o ____ o ________ o ____ o ____ o ____ 1~1 _0 ____ 1~I __ O ____ O ________ O~1 ~42

R2 F D D 0

B *R2 F D Dol (AFTER)

M.A. >FDDO NEXT INSTR.

(2) ASSEMBL Y LANGUAGE:
BL @>FFOO BRANCH TO M.A. >FFOO, SAVE OLD PC VALUE (AFTER EXECUTION) IN Rl1

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I 0
0 0 0 0 0 0 I 1 0 [0 0 0 0 >06AO

1 0 0 0 0 0 0 0 0 >FFOO

F C 0 4

BL@ >FFOO PC IF F 0 0 (AFTER)

F F 0 0

>FFOO NEXT INSTR.

TO RETURN
EXECUTE
B *R11

B *R11

(3) ASSEMBL Y LANGUAGE:
BLWP @>FDOO BRANCH, GET NEW WORKSPACE AREA

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 o I 0 0 0 0

I
~20

0 0 0 0 0 0 0 0 0 >FDO&

o o o o o

4·27

This context switch provides a new workspace register file and stores return values in the new workspace.
See Figure 4-10. The operand (>FDOO above) is the M.A. of a two-word transfer vector, the first word the
new WP value, the second word the new PC value.

4.6.7 FORMAT 7 (RTWP, CONTROL) INSTRUCTIONS

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: L __________ O_P_C_O_D_E __________ ---lL-_____ N _____ --J

External instructions cause the three most-significant address lines (AO through A2) to be set to the levels
described in the table below and cause the CRUCLK line to be pulsed, allowing external control functions
to be interpreted during CRUCLK at AO, A 1, andA2. The CKON and CKOF instructions are used by other
990-family systems to control the system timer. On the TM 990/101M the system timer is incorporated
into the TMS 9901; hence, these instructions are not used. CKON and CKOF can be used by monitoring
plus 10 and 9 respectively at U20 as shown on sheet. 20f the schematics inAppendix F,.

The RSET instruction generates the 10RST signal to clear atl I/O devices (on board TMS 9901) attached to
it. It also clears out the status register interrupt mask, this will allow only a RESET interrupt or a LOAD
function to be granted.

The LREX instruction causes a LOAD function request to be presented to the processor after two lAW or
IDLE pulses. This means that the LOAD function occurs after two instructions are excuted fotlowing the
LREX. TIBUG uses this function to do single step by executing the LREX, a RTWP to the user, then one
user instruction. The LOAD function becomes active and vectors back to TIBUG, which then prints the
processor registers.

IDLE causes the processor to suspend operation; it is, in essence, a HALT instruction. An interrupt or
LOAD terminates the idle state.

In all cases, note that AO, A 1, A2 are nonzero values so that these instructions are differentiated from a
CRU output operation.

STATUS ADDRESS

MNEMONIC OPCODE MEANING BITS DESCRIPTION BUS*

012345678910 AFFECTED AOA1 A2

IDLE 00000011010 Idle - Suspend TMS 9900 L H L

instruction execution until
--

an interrupt, LOAD, or

RESET occurs

RSET 00000011011 Reset I/O & SR 12-15 0-+ST12 thru ST15 L H H

CKOF 00000011110 User defined --- H H L

CKON 00000011101 User defined --- H L H

LREX 00000011111 Load interrupt Control to TlSUG H H H

RTWP 00000011100 Return from 0-15 (R13) -+(WP)

Subroutine (R14)-+(PC)

(R15) -+(ST)

*These outputs from the TMS 9900 go to a SN74LS138 as shown in Figure 5-6

4-28

M.A.>FCOO

>FC80

TRANSFER {

VECTORS

>FDOO

>FFOO

RETURN I
VALUES

>FF20

AOOO1430

L

~

BLWP@>FDOO

N

BLWP@ >FDOO

F F 00 (NEW WP}

F F 2 0 (NEW PCI

FCOO = (OLDWP)

FC84 = (OLD PC)

OLD ST CONTENTS

NEXT INSTR.

RTWP

""

BRANCH WITH NEW WORKSPACE

-,
RO

CALLING PROG RAM

L
I BEFORE BLWP 0 CCURS

• F COO WP

~
F C 8 4

N

AFTER BLW
OCCURS

PC

ST

P

"-

~ RO F F 0 0

F F 2 0

WP

PC

N ST

R13

R14

R15 >- NEW EXECUTIO NAREA

RTWP RETURNS EXECUTI ON TO CALLING

PROGRAM STARTING AT M.A. >FC84

FIGURE 4-10. BLWP EXAMPLE

Essentially, the RTWP instruction is a return to the next instruction that follows the BLWP instruction (i.e.,
RTWP is a return from a BLWP context switch, similar to the B *R 11 return from a BL instruction). BLWP

provides the necessary values in registers 13,14, and 15 (see Figure 4-10).

EXAMPLE

. ASSEMBL Y LANGUAGE:
RTWP RETURN FROM CONTEXT SWITCH

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o o o o o o o o o o o o o >0380

4-29

RTWP RETURN TO PREVIOUS WP (R131, PC (R141, ST (R151 VALUES

R13 F C 0 0

R14 F C 8 4

R15 STATUS

'Ii
/'

M.A. >FF40 RTWP

~
,~

AFTER

F C o 0 WP

F C 8 4 PC

STATUS ST

. EXECUTION BEGINS AT M.A. >FC84
WITH RO AT M.A. >FCOO.

4.6.8 FORMAT 8 (IMMEDIATE, INTERNAL REGlSTER LOAD/STORE) INSTRUCTIONS

4.6.8.1 Immediate Register Instructions

o

General format:

MNEMONIC

AI

ANDI

CI

LI

ORI

AND Logic:

OP COOE

o 1 23456789

o a a a a a 1

a a a a a 0 1

a a a a a a 1

o 0 0 a 0 0

o 0 0 0 0 0

0.1, 1·0 = 0

0·0 = 0
,., = 1

1

1

a a a
a a 1

a 1 a

000

001

2

I

10

1

a
a

0

1

3 4 5 7 8

OP CODE

lOP

RESULT

MEANING COMPARED

TO 0

Add immediate Yes

AND immediate Yes

Compare Yes

immediate

Load immediate Yes

OR immediate

OR Logic:

Yes

0+1,1+0=1

1 + 1 = 1
0+0=0

4.6.8.2 Internal Register Load Immediate Instructions

a 2 3 4 5 6 7 8

9 10 11 12 13 14 15

N R

STATUS

BITS DESCRIPTION

AFFECTED

0-4 (RI + lOP ~ (R)

0·2 (RIAND IOP~(R)

0-2 Compare (RI to lOP and set

appropriate status bits

0-2 IOP-+(R)

0-2 (RI OR IOP-+(R)

9 10 11 12 13 14 15

General format: . ~I _______________________ O __ P_C_O_D_E _____ I_O_P ____________ -L ___________ N __________ ~

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

LWPI 0 0 0 0 0 0 1 0 1 1 1 Load workspace pointer immediate lOP --+ (WP), no ST bits affected

LlMI 0 0 0 0 0 0 1 1 0 0 0 Load interrupt mask lOP, bits 12 thru 15 --+ ST12

thruST15

4-30

4.6.8.3 Internal Register Store Instructions

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General format: OP CODE I N R

NO ST BITS ARE AFFECTED.

OP CODE
MNEMONIC MEANING DESCRIPTION

0 1 2 3 4 5 6 7 8 9 10

STST 0 0 0 0 0 0 1 0 1 1 0 Store status register (ST) -> (R)

STWP 0 0 0 0 0 (3 1 0 1 0 1 Store workspace pointer (WP) --(R)

EXAMPLES

(1) ASSEMBL Y LANGUAGE:
AI R2,>FF ADD >FF TO CONTENTS OF R2

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1

BEFORE AFTER

R2 too 0 F I o 1. 0 E

(2) ASSEMBL Y LANGUAGE:
CI R2,>10E COMPARE R2 TO >10E

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

R2 contains "after" results (> IOE) of instruction in Example (1) above; thus the ST equal bit becomes set.

(3) ASSEMBL Y LANGUAGE:
LWPI >FCOO WP SET AT >FCOO (M.A. OF RO)

MACHINE LANGUAGE:

0 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 0 0

This is used to define the workspace area in a task. usually placed at the beginning
of a task.

4-31

14 15

0 0

0 0

>0222

>OOFF

>0282

>010E

>02EO

>FCOO

(4) ASSEMBL Y LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o o o o o o o o o o o o >02A2

This pfaces the M.A. of RO in a workspace register.

4.6.9 FORMAT 9 (XOP) INSTRUCTION

Other format 9 instructions (MPY, OIV) are explained in paragraph 4.6.3 (format 3).

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: 0 o o 1 D (XOP NUMBER) TS SR

The TS and SR fields provide multiple mode addressing capability for the source operand. When the XOP is

executed, ST6 is set and the following transfers occur:

(401 6 + 40) -7 (WP)
(42 16 + 40) -7 (PC)
SA -7 (new R 11)
(old WP) -7 (new WR 13)
(old PC) -7 (new WR14)
(old sn -7 (new WR 15)

First vector at 4016

Each vector uses 4 bytes (2 words)

The TMS 9900 does not test interrupt request (lNTREQ) upon completion of theXOP instruction.

An XOP is a means of calling one of 16 subtasks available for use by any executing task. The EPROM
memory area between M.A. 4016 and 7E16 is reserved for the transfer vectors of XOP's a to 15 (see Figure
4-1). Each XOP vector consists of two words, the first a WP value, the second a PC value, defining the
workspace pointer and entry point for a new subtask. These values are placed in their respective hardware

registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the BLWP instruction) in the new
workspace, registers 13,14, and 15. Return to the calling routine is through the RTWP instruction. Also
stored, in the new R 11, is the M.A. of the source operand. This allows passing a parameter to the new
subtask, such as the memory address of a string of values to be processed by the XOP-called routine. Figure
4-11 depicts calling an XOP to process a table of data; the data begins at M.A. F Faa 16·

XOP's 0, 1 and 8 to 15 are used by the TlBUG monitor, calling software routines (supervisor calls) as
requested by tasks. This user-accessible software performs tasks such as write to terminal, convert binary to

hex ASCII, etc. These monitor XOP's are discussed in Section 3.3.

4-32

AOO01431

ASSEMBL Y LANGUAGE:
XOP @>FFOO,4

MACHINE LANGUAGE:

0 1

0 0

1

xoP
VECTORS

2

1

3

0

1

M.A.

>0040
>0042

>0050

>0052

>087E

.CALLING INSTR,

XOP4

PROGRAM

TABLE OF
VALUES TO

BE PROCESSED

>FCOO

> FC20

I >FFOO

4

1

1

\

1

).

~

1

~

1 .

;..

~

:Ii.

~

5 6 7 8 9

1 I 0 1 0 0 I
1 1 0 0

XOP 0 WP

xOP 0 PC
,

. '~ F C 0'0

F C 2 0

",'
).

'\
XOP @>FFOO,4-

,
i-'

RO
,
~

10 11

1 0 I
0 0

AFTER

F C (). 0'

F C 2 0

N

12

0

0

13

0

0

I/\/P'

PC

ST

14 15

0 0
I >~

0 0 >FFOO

F F o 0 R11- PASSED PAR AMETER (SOURCE OPERAND)

R12

OLD WP R13

I OLD PC R14

OLD SR R15

1ST INSTR.

~

RTWP

~

FIGURE 4·11. XOP EXAMPLE

4-33

RETURN VE CTORS

G TASK TO CALLIN

4.7 COMPARISON OF JUMPS, BRANCHES AND XOPS

See Table 4-5.

TABLE 4-5. COMPARISION OF JUMPS. BRANCHES. XOP'S

MNEMONIC I PARAGRAPH I DEFINITION SUMMARY

JMP 4.6.2

B 4.6.6

BL 4.6.6

BLWP 4.6_7

XOP 4.6.9

One-word instruction. destination restricted to +127, -128 words from Program.
Counter value

Two-word instruction; branch to any memory tocation.

Same as B with PC return address in R 11.

Same as B with new workspace~old WP, PC'and~T contents (return vectors} are in
new R13, R14, R15.

Same as'BLWP wi'th address of parameter (source operand) in new Rt1. Sixteen XOP
vectors'butside pr.ogram in M_A. 4016 to 7E16; can be called by any program.

4-34

SECTION 5

THEORY OF OPERATION

5.1 GENERAL

This section covers theory of operation of the TM 990/100M. Information in the following manuals can be
used to supplement material in this section:

• TMS 9900 Microprocessor Data Manual

• TMS 9901 Programmable Systems Interface Data Manual

• TMS 9902 Asynchronous Communication Controlfer

Figure 5-1 shows data flow within the TMS 990/l00M, highlighting the four major buses:

• Address Bus

• Control Bus

• Data Bus

• Communications Register Unit Bus

5.2 SYSTEM CLOCK (Figure 5-2)

System timing is regulated by a crystal-controlled TMS 9904 clock driver. The tank circuit, shown in Figure
5-2, is tuned to the third harmonic (48 MHz) of the crystal frequency (16 MHz). The 48 MHz is divided by 4 to
12 MHz which is further divided into four 3 MHz phases (</>1 to </>4).

5.3 CENTRAL PROCESSING UNIT (Figures 5-3 to 5-6)

The TMS 9900 microprocessor is the central processing unit (CPU for the TM 990/100M. The processor's
responsibilities include:

• Memory and bus control

• Instruction acquisition and interpretation

• Timing

• System initialization

• CRU programming

Figure 5-3 groups TMS 9900 pins by function. The address bus addresses devices such as the TMS 9901 and
TMS 9902 as well as memory locations. Data is transferred to and from memory as 16-bit words. Interrupt
requests and the interrupt level code (ICO to IC3) come from the TMS 9901 interface.

5-1

Sl

~- RESTILOAD

PRES
LOGIC

P1

RESTART t
P1

I
P2 C(1

N SYSTEM
CLOCK

L+-
TMS9904 --,

I

I

A0001438

MEMORY I/O
SELECT

CONTROLLER

RAM

SELECT

MONITOR ROM SELECT

EXPANSION ROM SELECT

RAM ARRAY
512 X 16 BITS

t-_R_E_S_ET_ _:------,I-------lT t 1/0
SELECT II IT T

LOAD

IAQ

</>1

</>2

</>4

CENTRAL
PROCESSOR

UNIT

ADDRESS BUS
~----~-r~-------' r------~--~r_~

IJ---..L-L-------L..) -"----'----'-'------'1 1 1
CONTROL BUS

I
DATA BUS

...-_-.-_...-_...;C.,RU CONTROL BUS

tH-t--

r - --" -:..--,
I WIRE - WRAP I
L -, AREA I

__ L_~Q_~~
P4

PARALLEL 1/0
L.., INTERRUPT

CONTROLLER

11'1 -..

P3

+
TO M4 SERIAL I/O

CONTROLLER

r-- --,
I SE.RIAL 1/0 I

L ~:ilA~'_~ _
P2

FIGURE 5-1. TM 990/100M BLOCK DIAGRAM

ROM ARRAY
2K X 16 BITS

BUFFERS FOR
OFF BOARD
EXPANSION

P1

TZ QUAR

CRYST AL

XTAL 1 a 18

T XTAL2
19

,,1 R .pl
12 8

¢2 R
,,2

11 9 TMS 9900
'LS362

MICROPROCESSOR
(TIM9904) R

TANK 1 4)3 ,03

~ Y18 PF

1 CLOCK 8 28
DRIVER R

I/.A J\. ()4
TANK 2 9 25 - 2

OSCIN R = lOll
17

: 4.7 K.!1 20 13 3 10
1

VCC VDD GNt--tGND
1 2

A0001439 +5V +12V

FIGURE 5-2. CRYSTAL-CONTROLLED OPERATION

CRU input instructions (STCR, TB) sample bits on CRUIN while CRU output instructions (LDCR, SBO,
SBZ) place serial outputs on CRUOUT. CRU instructions also program the TMS 9901 and TMS 9902 as
explained respectively in paragraphs 5.9 and 5.10 (examples are shown in paragraph 4.10).

Other signals are explained in detail in the TMS 9900 Microprocessor Data Manual.

Figures 5-4 and 5-5 show the data and address flow within the TMS 9900.

Figure 5-6 shows the logic of three instructions that are externally defined. Paragraph 4.6.7 further explains
the coding of these instructions and their interpretation by board logic. These instructions are LREX, RESET,
and IDLE. CKOF and CKON are instructions that can be user defined as explained in paragraph 4.6.7.

5.4 RESET AND LOAD (Figure 5-7)

The reset function resets the processor and TMS 9901, inhibiting memory write and the CRU clock. An
interrupt occurs that resets the Status Register and begins execution under the monitor. Reset can occur in

two ways:

• Actuating the RESET pushbutton on the card.

• Setting PRES.B to a logic ZERO state through connector Pl.

The load function causes an interrupt to WP and PC vectors respectively at FFFC16 and FFFE16 . It is

implemented two ways:

• Executing the software instruction LREX.

• Setting RESTART.B to logic zero through connector Pl.

For both RESTART.B and PRES.B, 39 J.LF tantalum electrolyte capacitors may be installed as shown in Figure
5-7 and Figure 7-2 for debouncing external switch generated reset or load interrupts. Installation of the
capacitor on RESTART.B will interfer with microterminal operation.

5-3

GOES TO {
RESET/LOAD
LOGIC

CONTROL BUS GOES
TO MEMORY DECODER,
MEMORY, EXPANSION
BUFFERS.

FROM SYSTEM CLOC.!

FROM TMS 9901
INTERRUPT CONTROL

-5V

+5V

+12V

A0001440

RESET 6 IMSBI DO
41

--
LOAD 4 42

TMS 9900 01
7 43

lAO 02

03 44

64 -- 45
HOLD 04

5 46
HOLDA 05

62
READY

47
06

3
WAIT 07

48

61 - 49
WE 08

63 --- 50
MEMEN D9

29 DBIN 010
51

011 :22
8

<1>1 012 53

9
<1>2

54
013

28
<1>3

55
014

25 <1>4
56

015

31 24
CRUIN IMSB)AO

3Cl 23
CRUOUT Al

60 22
CRUCLK A2

21
A3

32 --- 20
INTREO A4

36 19
ICO A5

35 18
ICl A6

34 17
IC2 A7

33 16
IC3 A8

15
A9

1 14
VBB Al0

2 13

T 59
Vcc All

12
Vcc A12

27 11
VDD A13

26 10
VSS A14

Vss

1 40

l'

FIGURE 5·3. TMS 9900 SIGNALS

5-4

..

DATA BUS GOES TO
MEMORY, EXPANSION
BUFFERS

ADDRESS BUS GOES TO
MEMORY AND I/O DECODER,

MEMORY, EXPANSION
BUFFERS, TMS 9901,

TMS 9902, WIRE-WRAP AREA.

A0001441

HOlO

HOlOA

lOAO

WE
REAOY

WAIT

/Mmlii
OBIN

RESET

lAO

CRUCLK

</>1-</>4

- f--- t---
- f---l-
- f--- t-----l--- t---
- f--- t---

--'-

~6j
INSTRUCTION

REGISTER

16

CONTROL
ROM

ji
l

"-/

CONTROL

lOGIC

4}

INTREO ICO IC3

I AO-A14

~~

~6/ "-,16P
\ULTI~LEXER/ ~ 4 ~

II~IHRRUPT I
I ~6J

REGISTER MEMORY
AODRESS
REGISTER

T1 ~6"'"

T2

];6/ PROGRAM COUNTER

I
STATUS VVORKSPACf REGISTER

REGISTER

~16J Jl \~ULT~lEXE1

lJ _~J
A [l

I'LU

F

~16)- f-----..

\UL TI~LEXER/
J \.

0 .J ~

A -~
SHIFT I 16 16

) COlJ~ITER
SOIIRU DATA

HfGISHR
SHIFT REGISTER I

) j
""-.16j
11~ --

CRUOUT
DO -015 CRUIN

FIGURE 5-4. TMS 9900 DATA AND ADDRESS FLOW

5-5

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

GET RESET VECTOR

(WP AND PC)

FROM LOCA nON 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK
(ST12-ST15) = 0

N

A0001443

Y

GET LOAD VECTOR

(WP AND PC) FROM

LOCATION FFFC 16,

FFFE16

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET

INTERRUPT MASK

(ST12 - ST15) ~ 0

Y

GET INTERRUPT LEVEL

VECTOR (WP AND t>C)

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
-ST15) TO LEVEL - 1

FIGURE 5-5. TMS 9900 CPU FLOWCHART

5-6

Y

N

N

TMS 9900

, A0001444

INSTR.

TO MEMORY ANO CRU

~
LREX

V 15 RSET
/ IDLE

CRUCLK.B·

--<: YO Y7

SN74LS138

~
Y6 C

~5
A

/3 A1
B U20 Y5 P

I I

~ AO·A14 C
Y3

Gl G2A G2SY2 r-"

I ~
CRUCLK

-~ -~

LEVELS ON
AO A1 A2

HI OUTPUT
ATU20

1
0
0

--
LREX

-
RST

--
IDLE

..

.

o

Y7
Y3
Y2

INTERNALLY DEFINED

} INTERNALL V DEFINED

FIGURE 5-6. EXTERNAL INSTRUCTION DECODE LOGIC ON TMS 9900

5.5 MEMORY I/O DECODER (Figure 5-8)

This area is responsible for decoding the most significant (Ao and As) bits of the address lines into chip
select lines in order to address either RAM or ROM or an I/O device (TMS 9901 or TMS 9902). A 74S287
decodes address lines Ao (MSB of a 15-bit address) through As to determine memory address of a 16-bit
word in RAM or ROM. A 74S288 decodes A6 to As to determine addressing of the TMS 9901, TMS 9902,
outputs at the wire-wrap area, or external CRU. Signal MEMEN (memory enable) determines whether
memory or an I/O device is being addressed.

Jumper J2 reflects whether the EPROM's in positions U42, U43, U44, and U45 are TMS 2708's or
TMS 2716's, and changes the address map accordingly. See section 7.6,

SEll, SEL2, SEL3, SEL4, and SEL5 are five signals routed to the wire wrap area on the TM 990/100M.
These signals are intended to be utilized as I/O device select lines. All lines are decoded for 32 consecutive

CRU bits.

Table 5-1 lists the CRU bit address from which the lines are active.

5.6 RANDOM ACCESS MEMORY (Figure 5-9)

Four TMS 4042-2 chips, each consisting of 256 x 4 bits, comprise the random access memory. The standard
TM 990/100M is populated with 256 words of RAM (four TMS 4042-2'5). An optional four-chip block can
be added to increase on-board RAM to 512 16-bit words. Figure 5-9 shows the RAM array,

5.7 READ ONLY MEMORY (Figure 5-10)

Blocks of TMS 2708 EPROM chips, each consisting of 1024 x 8 bits, comprise the eraseable read only
memory (EPROM). A block of two TMS 2708 chips, containing 1024 words, comes with the
TM 990/100M. An optional second block can be added to increase EPROM to 2048 16-bit words. Figure
5- 10 shows the EPROM array. Jumper options at J3 and J4 select whether the EPROM's are TMS 2708's or

TMS 2716's. See section 7.6,

5-7

74 LS04 iDI RESET SW. I ~
ruc2J A), ~ +5L

Ii D CLR 0 D CLR 0 D
CLR

0

74LS132 74LS74 74LS74 74LS74
+5V 11 up -

LREX LK , CLK op-- .-t:cLK P o~ P P

4.7K +y 1 1 1
1/4W

- 74LS132
IDLE

PRES B

Pl·94
68U

~ 1!4W lAO +5V
,-- ------,), 1
I 139"F I 74LS04 D CLR 0 D CLR 0 r

IORES

I _ ELECTROLYTIC I TO OFF BOARD

L~ ___ J
74LS74 74LS74 I/O

rpcLK p
Op I~LKp Q IORST

+5V TO ON BOARD

(,'j
I/O

(TMS 99011

RTB 4.7K

~
Pl·93

P2·16

1/4W
68S1

~
r- ----.,

I 139"F I I ELECTROL YTIC I
L~ ___ J

RST

. , "j1
FROM PROCESSOR

CIRCUIT

74 LS08

MEMEN

63

01
WAIT

+5V

D
PR of-

74LS74

CK 0
CLR

+ 5V

FIGURE 5-7. RESET AND LOAD LOGIC

NOTE

L 1
PR

D

74LS74

I
CK

eLR

EPROM expansion to 4K is possible by using TMS 2716
EPROM's (2K x 8 bits) and making jumper changes. This

is discussed in Section 7, Options.

oJ ~D p~ oJ
74LS74 of- ,

CK 01-
CLR

MEMCYC

5.8 OFFBOARD EXPANSION BUFFERS (Figures 5-11 and 5-12)

Offboard expansion is possible by tapping signals at the P1 connector. The signals are buffered to drive
board-to-board lines (Section 6, Applications, contains examples of memory and I/O expansion off board).
Figures 5-11 and 5-12 show logic buffering the signals to connector Pl. Table H1 in Appendix H lists

connector Pl pins and signals at these pins.

5.9 TMS 9901, PARALLEL 1/0, INTERRUPTS (Figure 5-13)

The TMS 9901 controls:

• 16-bit (maximum) parallel input and output
• Interrupt signals to the TMS 9900 CPU

5-8

DBIN

~ -DIN

+ 5V ~
74LS20 +5V +5V

4.7K 7482S7

R2 13
CsT ~R • R

-l. 14 - 12 RAM 4.7K 4.7K
CS2 DOl

_ MSEL - 15 11 MROM
ADH D02

MEMEN 1 10 EROM
ADG D03

AO 2 9 IOSEL
ADF D04

- Al 3
ADE

A2 4
ADD

A3 7
ADC

A4 6
ADB

A5 5
ADA

748288

15 1 9901SEL
CS

14 2 9902SEL
ADE

A6 13 3 EXTCRU
ADD

A7
4 SELl

12 ADC 5 SEL2
AS 11 ADB 6 SEL3

A9 10
ADA

7 SEL4

9 SEL5

~ -
A6

~S04
BYTE BEING

--- OUTPUTS ON
MSEL ADDRESSED MEMEN

(HEX)
RAM MROM EROM 10SEL

1 O-FFF 0 1 0 1 0

1 1000-lFFF 0 1 1 0 0

0 0-7FF 0 1 0 1 0

0 800-FFF 0 1 1 0 0

NA ~FCOO 0 0 1 1 0

NA NA 1 1 1 1 1

NOTES: 1. Memory mapping is shown in Figure 7-2.

2. The address bus contains 15 lines with AO (MSB) = 16,384 (2 14).

FIGURE 5-S. MEMORY I/O DECODER

5-9

TABLE 5-1. CRU ADDRESS MAP

CRU SOFTWARE CRU HARDWARE LINE
BASE ADDRESS, BASE ADDRESS SELECTED FUNCTION

R12, BITS R12, BITS ATU23
0-15 3-14

0OOO-OO3E 00OO-OO1F SEL1 On-card expansion

0040-007E 0020-003F SEL2 On-card expansion

0080-00BE 0040-OO5F 9902SEL On-card serial interface. timer (TMS 9902)

OOCO-OOFE 0060-007F SEL3 On-card expansion

0100-013E 0080-009F 9901SEL On-card parallel interface (TMS 9901) --0140-017E OOAO-OOBF SEL4 On-card expansion --
0180-01BE OOCO-OODF SEL5 On-card expansion

01CO-01 FE OOEO-OOFF N/A Reserved. on-card expansion

0200-1FFE 0100-0FFF N/A Off-card CRU lines

- .-- .-- -
RAM 15 4 A14 RAM 15 4 A14 RAM 15 4 A14 RAM 15 4 A14

A610 3 A13 A610 3 A13 A610 J All A6 10 3 A13

OOIN 9 2 A12 OBIN 9 2 A12 OHIN 9 2 A12 ORIN 9 2 A12

WE 16 1 All WE 16 1 All WE 16 1 All WE 16 1 All

~
17 Ala ~ 17 Ala ~ 17 Al0

~ 17 ATO

~ 5 A9 ~ 5 A9 ~ 5 A9 ~ 5 A9

~ 6 AS ~ 6 AS ~ 6 AS ~ 6 AS

~ ~ 7 A7 ~ 7 A7 ~ 7 A7 ~ 7 A7

~ ~2 ~2 ~2 ~2
WE

~ 00-015

i5iiiN A7·A14

TMS4042·2 TMS4042·2 TMS4042·2 TMS4042·2 - .-- - r---
~ 012 I. 7 A7 ~ 7 A7 ~ 7 A7 ~ 7 A7

~ 013 13 6 AS ~ 6 AS ~ 6 AS ~ 6 AS

~ 5 A9 ~ 5 A9 ~ 5 A9 ~ 5 A9

~ 11 Al0
~

11 Al0 ~ 17 Ala ~ 17 Al0

WE 16 1 All WE 16 1 All WE 16 1 All WE 16 1 All

OBIN 9 2 A12 OOIN 9 2 A12 CBIN 9 2 A12 DOIN 9 2 A12

A6 10 3 A13 A610 3 A13 A6 10 3 A13 A6 10 3 A13

RAM 15 4 A14 RAM 15 4 A14 RAM 15 4 A14 RAM 15 4 A14

1447
'--- - '--- '---AOOO

FIGURE 5-9. RANDOM ACCESS MEMORY

5-10

A4

MROM

AOOO 1448

J411"-1 ~ .. _< 2~}
TMS 2716 .-3) ... : ._._< TMS 2708

: 4 > .. , ,..-------.
8 A14 L._.< : 20

I--:--:-:-~"", 1 5 :'~I 1:

5 All 014 10

11

8 A14

7 A13

6 A12

10 014 5 All

013 11 TMS 27081 4 Al0
TMS 2716 1--3--A-9-..J

012 13

013 11 TMS 27081 1-4 __ A_10-..J

TMS 2716 3 A9 13 012

011 14 2 A8 011 14 2 AS

010 15 1 A7 010 15 1 A7

09 16 23 A6 09 16 23 A6

08 17 22 AS 08 17 22 A5

VOLTAGE PIN

VCC

Vaa

VOO

Vss

DO 17 22 A5 DO 17 22 AS

01 16 23 A6 01 16 23 A6

02 15 1 A7 02 15 1 A7

03 14 2 A8 03 14 2 A8

04 13 TMS27081 3 A9 04 13 TMS 27081 3 A9

05 11
TMS 2716 4 A10 05 11 TMS2716 4 Al0

os 10 5 All 06 10 5 All

07 9 6 A12 07 9 6 A12

18 7 A13 18 7 A13

20 8 A14 ~ B A14
'---

FIGURE 5-10. REAO ONLY MEMORY

TMS 9901 transmission to and from memory is handled by CRU instructions. Data to be transmitted in
parallel is received serially by the TMS 9901. Parallel received data is input to memory serially. Program­

ming the TMS 9901 for I/O is explained in paragraph 8.6.

I nterrupts received by the TMS 9901 are coded and sent via signals I CO to I C3 to the CPU when signal
INTREQ (interrupt request) goes low.

Figure 5-13 shows signal flow to and from the TMS 9901. Further information can be obtained from the
TMS 9901 data manual and paragraphs 8.4.1 and 8.6.

5-11

24

21

19

12

Pl-90

Pl-92

+5V

220.11
READY.B 3

330.11

2
+5V -=-

220.11 -=-
HOLD.B 5

+5V
330.11

-= 6

~ -:::-

WE

HOLDA

MEMEN

DBIN

* Vref =2V

A0001449

75140

11 01

4
S

7
12 02

8
REF

10RES

CRUCLKB

-=

+5V

WE

HOLDAI

MEMEN

MEMCYC

DBIN

+5V

4.7K!1
l/4W

READY

74LS04

HOLD

74LS04

WE.B

MEMEN.B

MEMCYC.B

DBIN.B

7438 r----'
I I 10RES.B

I I
I I
I I
I I HOLDA.B

I I
I I
I I
I I CRUCLK.B 2-----------------+------------~_1---~

I I L ____ .J

FIGURE 5-11. BUFFERING OF CONTROL SIGNALS TO CONNECTOR P1

5-12

P1-78

Pl-80

Pl-84

Pl-82

Pl-8B

Pl-86

Pl-87

DO 11 74 LS243 3 OO.B AO 11 74LS243 3 AO.B
lB lA lB lA

01 10 4 01.B Al 10 4 A1.B 2B 2A 2B 2A
02 9 5 02.B A2 9 5 A2.B 3B 3A 3B 3A
03 B

4B 4A
6 03.B A3 B 6 A3.B

4B 4A
DIN 1

GAB
+5V 1

GAB
OOUT 13

GBA
13

GBA

04 11 74LS243 3 04.B A4 11 74LS243 3 A4.B
lB lA lB lA

05 10 4 05.B A5 10 4 A5.B
2B 2A 2B 2A

06 9 5 06.B A6 9 5 A6.B
3B 3A 3B 3A

CRUOUT 2 74LS241
U! CRUOUT lA 1 lYl

07 B 6 07.B A7 B 6 A7.B
4B 4A 4B 4A

1
GAB ~ GAB

~ lA2 lY2 .1.L-_
;:;1 17 3 ()l.B

lA3 1Y3

~ 13
GBA GBA

(p3 15
lA4 lY4 5 «)3.B

CLK 13 7 CLK
HOLDA 2Al 2Yl

lAO 11 9 lAO
2A2 2Y2

DB 11 74LS243 3 OB.B AB 11 74LS243 3 AB.B
lB lA lB lA

09 10 4 09.B A9 10 4 A9.B
2B 2A 2B 2A

CRUIN 16 r:o:.- 4 CRUIN.B

+5V 13 '-=-
010 9 5 010.8 Al0 9 5 Al0.B

3B 3A 3B 3A
011 B 6 011.B All 8 6 All.B

4B 4A 4B 4A

2G
EXTCRU 1 1G

1
GAB ~ GAB

13 13 ..-GBA GBA

012 11 74LS243 3 012.B A12 11 74LS243 3 A12.B
lB lA lB lA

013 10
2B 2A

4 013.B A13 10 2B 2A 4 A13.B

014 9 5 014.B A14 9 5 A14.B
3B 3A 3B 3A

015 B 6 015.B 8 6 A15.B
4B 4A

6B!!$

4B 4A
1 +5V 1 GAB GAB
~ 13 GBA GBA

A0001451

FIGURE 5-12. BUFFERING OF ADDRESS AND DATA SIGNALS TO CONNECTOR P1

+5V .
:> 1 <

> > "> < ALL 4.7K12

TMS9901
____ ~I~N~T~R~E~Q~ __ l~l~INTREQ INTl ... 1:..:7_~~+--+-+_+-+-+_+-_-,-,1 N.:..T:....1'--______ Pl-16

I NT2 .,.1:..::8'--_----<_-+-_+-+__-+-_+-+---1 N_T_2 _______ Pl-13 J +5V

____ ~I~C~0 ______ ~1~5~ICO

ICl 14
---------~ICl

IC2 13
-------~IC2

IC3 12
-------~ IC3

iORST 1
-------~ RSTI

10 -
9

CRUIN 4
--------~CRUIN

__ ~C:..:R~U=_O=...::.U..:..T_...:2~CR UOUT

CRUCLKB 3
-------~CRUCLK

___ ~ __ 1_S_E_L __ 5~CE

Al0 39 SC

All 36
------------ifl

__ ..:..A..:..1...:2~ __ ...:3...:5~S2

A13 25
--------ISJ

A14 24
---------~S4

+5V 40
------tVCC

16
r-------iGN D

1

A0001450

9 INT3 47K
INT3 F-----~+_+-I___+__+-----'....:..:..-=-------- Pl-15 I--~ . Pl-18

INT4 ~8-----_t-+__+__+-~-~I-N~T-4--------E-X-T---L----~ __ }-_

Jl _J 9902
INT5 t-7 _________ ~_+__ir_+_-+--I-N-T-5--_.----- Pl-17

INT6 '----- P4-8
I NT6 t-6----------+_ir_+_-+------'-----~---- Pl-20

I
~ ~

INT7/P15 Pl-6

'----- P4-40
INT8/P14 33 Pl-5

32 P4_38
INT9/P13 Pl-8

31 P4-36
INT10/P12 ~--_----------------_.----- P1-7

30 '----- P4-34
INT11/Pl1 I---+--i_----------------_----- PH 0

29 '----- P4-32
INT12/Pl0 ~-_+--~ ----------------_---- Pl-9

28 ~----- P4-30
INT13/P9 ...---_+-1-+_.-----------------_.---- Pl-12

27 1---____ P4-28

INTl4/PB ...----+--1-+_+--<_------------_.----- Pl-11

'------ P4-26
INT15/P7 23 Pl-14

P6
19 1---_____ P4-24

~-_+-I-+_+--+-f__-----------P4-12

20
P5 ~-_+-~4__+-+___+__+-e_-------------P4_10

P4 t-2_1 __ _+_ir_+-_+-1-+_+-+-+------------ P4-18

P3 t-2~2--_+~r_+-_+-I-+_+-t--I-_.---------P4-16

P2 t-2:;:6_-+~r_+--+-1--I--+-+-+_+--1t_-------- P4-14

Pl t-3;..:.7-_+~f-+_+-1--I-_+-t--I-__t-t_ ----- P4-22

PO t-38==---+_+__+---lf--+_+_+-+_+__+-f-t-...... --- P4-20

ALL 4.7Kll

+5V

FIGURE 5-13. TMS 9901 EXTERNAL LOGIC

5-14

5.10 TMS 9902, SERIAL 1/0 INTERFACE (Figure 5-14)

The TMS 9902 controls serial I/O for the TM 990/100M. Through CRU instructions the user can set:

• Control criteria such as parity and character length

• Interval timer rate

• Receive data rate

• Transmit data rate

Data is transmitted and received through the CRUOUT and CRUIN lines. The TMS 9902 can interface with
a terminal through the EIA connector, P2. An interfacing of level shifters is used to allow hookup to a

Texas Instruments 743 KSR, teletypewriter, or other RS-232-C terminal. See Figure 5-14.

When operating under the monitor (supplied with assembly 999211-0001 only), the TMS 9902 is used to
control communication by monitoring signals at the CRU. Signals used for communications purposes also

cause an interrupt level 4 at the TMS 9901. Because of this, jumper J 1 must be removed when using the

TlBUG monitor to prevent the internal interrupt from incumbering monitoring operation. This interrupt is

described in detail in paragraph 6.6. Further information is available from the TMS 9902 data manual.

5.11 SERIAL 1/0 INTERFACE (Figure 5-15)

This area provides an interface between the TMS 9902 and a 743 KSR, teletypewriter, or RS-232-C
terminal. The board comes jumpered for 743 KSR operation (jumper J11 disconnected). Section 7

(Options) contains a description of accommodating optional terminals. J11 is installed if the terminal used
is a teletypewriter. Jumper J7 must be in the EIA position to use an EIA terminal or a teletypewriter
with the TM 990/100M. Jumper locations are shown in Figure 7-2.

5.12 WIRE-WRAP AREA (Figure 5-16)

A wire-wrap area has been provided for adding additional devices such as TMS 9901's or TMS 9902's. On

the periphery of the wire-wrap area are pads containing voltages and signals as shown in Figure 5-16.

Spare pins from the 40-pin board edge connectors P3 and P4 are routed to an array of plated through holes

near the bottom of each connector. This facilitates interconnection of these spare pins with circuitry added

in the wire-wrap area.

The wire-wrap area consists of an array of .046 inch diameter holes spaced on 0.1 inch centers. It is

suggested that networks placed in this area be mounted in sockets with wire-wrap tails. Interconnections are
thus facilitated in wire-wrap. Two 16-pin DIP socket locations are dedicated for connection to power and

miscellaneous CRU control signal. See Figure 5-16.

5.13 MULTIDROP 1/0 INTERFACE (Figure 5-17)

The Multidrop interface may be used for board-to-board communication over long distances. Generally, all

that is required is a twisted pair line run between the boards. More than two boards may be linked together,

each one is just "dropped" into place, hence the term "multidrop". If more than two boards are used, the

boards not at the extreme ends of the twisted pair line (i.e., those "dropped in the middle") are considered
non-terminating boards, and the termination resistor jumper plugs should be removed to prevent standing
wave patterns which might occur, mostly at the higher baud rates. The two boards at the extremes of the

5-15

.... A14

A13

A12

Al1

Al0

.... ,

,

+5V

1 -

NOTE

line, regardless of whether additional boards .exist in between, should have these resistor jumper plugs
installed (J9-J12). Jumpers to be installed for the multidrop operation are listed below:

INSTALL REMOVE

Half Duplex, non·terminating J5, J8, J7 (MD) J6, J9-J12
Full Duplex, non·terminating J7 (MD) J5, J6, J8-J12
Half Duplex, terminating board J7 (MD), J5, J6, J8-J1 0, J12 J11
Fu II Duplex, terminating board J7 (MD), J6, J9, J1 0, J12 J11, J5, J8

+5V

TMS9902/03 -- ,75188 12 - 1 TO INT4 ON 9901
S4 INT

13 2 XOUT
S3 XOU

14
RTS

5 RTS
S2

T 15 - 6
Sl CTS .75188

16 7
SO DSR RS232 XMT

17
RIN 3

CRUCLK
8 CRUOUT
4

CRUIN
18 ~ ;; DCD
19

CE .,/'
20

VCC
9 GND 75189

I ~
DTR

I
I
I
I

P2·3

P2-8

P2·20

<J TMS 9902/9903 PIN I RS232RIN RS232 RCV
< P2·2

NUMBERS REFER TO

SOCKET PIN NUMBERS

OF U40.

A0001452

I r---<l I
I I EIA

L __ -<..> __ .,
MD I r--_.J PWRIN 75189

TMS9903 (ONLY) SC~l~l __ ~

SCT~l~O __ •

FIGURE 5-14. TMS 9902 EXTERNAL LOGIC

5-16

RECVCLK 1------< P2·17

XMTCLK t-----< P2-15

-12V R30*
TTY XMT RTN

P2·24
560l! OUTPUSH 1/2W

TTY XMT
75188

XOUT
P2·25

2N2905A OUTPUll
+5V ----4~-r-__I 3.3Kn +12 V

CTS
P2·5

-=- DSR
P2·6

75188

RS232 XMT
P2·3

75188

DCD
RTS C> -- >----------:---------.-... P2·8

DSR ~L-____ D_T_R ___ ~
--.:.:.----~ • P2·20

<]75189 RECV ClK

------ -------------------------------------~.~P2·17

. . XMTClK <]75189 t---------------------------~--------------------~ -----...... • P2·15

RIN <J75189 RS232 RCV
......;..;.;,.;,.;..--- I----------~,.J------------------~. P2·2

I
I

JUMPER J11 _---t-~ ,/
TTY RCV

INPUll

'"---------.. ------------4~--------_; ... P2·18

R31 * 2.7K, 1/2W

INPUSH
+12V

·On auembly 999211·0001 only.
,--------------.... -------1 ... P2·23

R32* 330n,1/2W

A0001453

-12V

FIGURE 5·15. SERIAL I/O INTERFACE

5-17

AOOO1454

00000000
I ~D I

DETAIL A

00000000
L-J L-J LJ L.J
-5V +12V -12V +5V

P4 P3

11&..-_

~r"V'V'"'\} 0

~~~~~~~~~}0 
I .. ....... ---------- 5OHOLES-------------.j~1 

CRU 
ADDR. 

SEL 

SEL1 

SEL2 

SEL3 

SEL4 

SEL5 

CRUADDRESS 
(R12. BITS 3·14) 

000016 

002016 

006016 

OOA016 

OOC016 

00000000 
Z 1M 
::::l -e-
f3 DETAIL B 

00000000 
~ 
..J g 
II: 
U 

FIGURE 5·16. SIGNALS AT WIRE·WRAP AREA 

&18 



+5V 

-5V 

XOUT OUTPUll 

OUTPUSH 

R25 
27K %W 

+5V 
10 

6 28 

-5V 11 
VCC- -=-

3 1C 13 
1Y 

GND 1Z R23 

R29 ~--:1 27K. %W 
L.:_:J 27K %W - 75112 J6 

r -, R22 -L _J 330!2 
J12 %W 

r ,r , 
J51 II IJ8 

R27.27K 
r- - , L JL...J %W 
L _.J 

J10 DUPLEX SELECTORS 

_~IN~P~U~S~H~ ______________ ~~~ ______ 4-~~l 1A 1Y 4 PWRIN 

_~IN~P~U~L~L~~ ____ -+ ____ ~~ __________ ~ __ ~2 18 

CR3 
IN5333 

CR2 
IN5333 

NC 8 2G 

+5V - .... --.:.::;.JVCC+ 

-5V 13 VCC-

U48 

75107 

FIGURE 5-17. MULTI-DROP INTERFACE 

5-19 

+5V 

-5V 





SECTION 6 

APPLICATIONS 

6.1 GENERAL 

This section covers various methods of communicating to applications external to the TM 990/100M. 
Figure 6-1 shows board locations applicable to this section. 

A wirewrap area has been provided for wiring devices on board. This area, shown in detail in Figure 6-2. 
contains signal input and output pins located on its periphery. Table 6-1 lists the signatures of the pins. 
Note that a spare 40-pin connector (P3) is available adjacent to the wirewrap area. 

6.2 WIRE-WRAP ADDITIONAL ON-CARD TMS 9901 

An additional TMS 9901 may be added for an external application. Figure 6-3 shows wire-wrap wiring to 
add a TMS 9901 I/O controller and associated resistor packs. Sockets with wire-wrap tails are inserted into 
the board to accommodate the devices and wiring. 

Signals and power available at the wire-wrap area are shown in Figure 6-2. The use of SEL 1 to the 74LSOO 
designates a CR U address of 000016 (bits 3 to 14 of R 12). 

6.3 PARALLEL I/O PORT CIRCUITRY 

Figure 6-4 shows a parallel I/O port that can be implemented in the wire-wrap area_ Wire-wrap area signals 
are available as shown in Figure 6-2. This port consists of eight input and eight output lines. These 16 lines 
are interfaced to connector P3, pins 1 to 16. 

6.4 OFF-CARD ADDITIONAL RANDOM ACCESS MEMORY 

Figure 6-5 shows sugge~ted wiring for adding up to 1 K words of RAM off-board in 256-word increments. 
Table 6-2 is a list of materials for this addition. 

6.5 ADD OFF-CARD TMS 9901 

Figure 6-6 shows circuitry, connected through connector Pl, for connecting an additional TMS 9901 off 
the card. The CRU hardware address for the TMS 9901 in this configuration is FF016 (R 12, bits 3 to 14). 

6.6 ON-BOARD COMMUNICATIONS INTERRUPT 

The TMS 9902 will issue a level 4 interrupt when programmed as in paragraph 4.9. Positioning jumper Jl 
(shown in Figure 6-1) to the "9902" position connector,s the interrupt output of the TMS 9902 to 
interrupt level 4. This allows interrupt operation of the TMS 9902. 

NOTE 
As shown in Figure 6-7, the TMS 9902 timer as well as 
three other conditions cause an interrupt to be generated 
(lNT) which can be routed to interrupt 4 of the 
TMS 9901. Because these signals are monitored through 
the CRU by the TIBUG monitor to facilitate I/O and 
other functions, the jumper at Jl must be in the 
"Pl-18" position when operati ng under the monitor. 

6-1 



TMS9901PARALLELSYSTEMINTERFACE 

TMS 9900 MICROPROCESSOR 

WIRE WRAP AREA 

J1 ROUTES TMS 9901 INT4 TO CONNECTOR P1-18 OR TO TMS 9902_ 

FIGURE 6-1. DEVICES USED IN VARIOUS APPLICATIONS 

ASYNCH RONOUS 

COMMUNICATION CONTROLLER 



TABLE 6-1. I/O PINS AT WIREWRAP AREA 

SIGNAL DEFINITION 

A10 to A14 Five LSB's of address bus 

CRUCLKB CRU clock input 

CRUIN Serial data to CRU 

CRUOUT Serial data from CRU 

IORST I/O Reset 

SEL1 CRU address* is 000016 

SEL2 CRU address* is 002016 

SEL3 CR U address* is 006016 

SEL4 CR U address* is OOAOl6 

SEL5 CRU address* is 00C0 16 

?iJ Clock 03 

+5V +5 volt supply 

-12V -12 volt supply 

+12V +12 volt supply 

-5V -5 volt supply 

*CR U hardware base address (bits 3 to 14 of R 12) 

~ 

fB-
I .. 

CRU 
ADDR. 

SEL 

SELl 

SEL2 

SEL3 

SEL4 

SEL5 

AOOQ1454 

P4 

1111 
Em 

em 

50 HOLES 

CRU ADDRESS 
tR 12. BITS 3· 141 

000016 

002016 

006016 

OOA016 

OOC016 

00000000 
I GND I 

00000000 
'--J '--J '--J '--J 
-5V +12V -12V +5V 

P3 

r I 11 
~ 

..I 
00000000 

0 N '" .. ;,; 1'4 :t :t :t :t :t s 
a: 
CJ 

00000000 
'" w 
a: 
o § I~ I~ I~ I~ I~ 

a: 
CJ 

" .... 
CJ 
::l 
a: 
CJ 

FIGURE 6-2. SIGNALS AT WIRE-WRAP AREA 

6-3 

DETAIL A 

DETAIL B 

}0 
}0 



>5V >5V 

~7~!~/~W_1 ~E~S2:0~ ;ACK 4.7Kn,lJ4W --i- RESISTOR PACK ,- - -- - - - - -- --, 
I I I I 
I I I I 
I I I I 
L - - - - - ---l L - - - - - - - - - - - - - - - -.J 

TMS 9901 
+5V 

IOAST vccW RST 1 

CRUOUT SO 
Al0 

CRUOUr 

CRUClK 
CRUClK PO P4-20 

CAUIN 
CRUIN Pl P4-22 

-- All SEL 1 - Sl CE 

S2 A12 
INT6 

INT5 .'5 P4·40. Pl-& 

--
INT4 P14 P4·38.Pl·5 

--
INT3 P13 P4-38, Pl·8 

~ "i P12 P4-34, Pl·7 

INTREQ Pll P4-32, Pl-10 

IC3 Pl0 P4-30, Pl-9 

NO 
CONNECTION IC2 P9 P4·28, Pl·12 

--
ICl P8 P4-26. Pl·l1 

ICO P2 P4-14 

Vss S3 A13 

-b 
iNTi A14 

S4 

INT2 P7 P4·24, Pl-14 

r-- P6 P3 P4-16 

I 
P5 .4 P4-18 

P4-10 

P4·12 

NOTES: 1. ALL LINE SIGNALS SHOWN ARE AVAILABLE AT THE 16-PIN DIP HOLE PATTERNS ON THE EDGE OF THE 
WIRE-WRAP AREA. 

2. I/O PORTS P7 TO P15 CONNECT TO PINS AT CONNECTOR Pl (Pl-5 TO Pl-12 AND ~4'. 

A0001455 

FIGURE 6-3. ON-BOARD TMS 9901 WIRING 

6-4 

PADS AT 
EDGE 
CONNECTOR 



AOO01456 

74LS04 -- 74LSOO 
SEL 1 

CRUCLK 

.---

74LSOO 
+5V 

All 

74LSOO ----
SEL 1 

10RES 

+5V 

OTY 

2 
2 
1 

1 
1 

74LSOO 
+5V 

LIST OF MATERIALS 
PART 

16 - PIN DIP SOCKETS AND WIRE - WRAP PINS 
14 - PIN DIP SOCKET AND WIRE - WRAP PINS 
74LSOO 
74LS259 
74LS04 
74LS251 
74LS10 

A12 

A13 

A14 

CRUOUT 

-I.-

-

A12 

A13 

A14 

CRUIN 

- '-

FIGURE 6-4. PARALLEL I/O PORT 

6-5 

74LS259 

3 4 
C 00 

2 5 
B 01 

1 
A 02 6 

13 
0 03 7 

14 G 04 
9 

16 10 
VCC 05 

15 
CLEAR 06 

11 

8 
GNO 07 

12 

74LS251 

9 4 
C DO 

10 5 
B 01 

11 6 
A 02 

5 7 
V 03 

7 S 04 
9 

16 
VCC D5 

10 

06 
11 

8 
~NO 07 

12 



® I 74LS04 <p 74LS20 

I ~ ~ © I 
74LS04 

I 

I 
I 

READV. BI .. 3'--- 17 ~ ~ 
14 

I - ~ P P 
-0 Q 0 Q- AS 13 

I 74LS241 ~ 
¢1 - BI22 2 

74LS74 74LS74 

T~" 
C 

I 
ClR ClR 

ONO I, POWER GND +. V 

GNOl2 SIGNAL GNO 

+5V 14 
+5V 14 

¢l.B 124 3 11 I 
WE.B 178 4 74LS24J 10 I N 

OBIN.S 182 • • i MEMEN.B I 80 6 8 

0 I GAB GBA 

1 
, liT 

'...., 74lS10 
I 1 

o1S.B 148 3 11 

014.B 147 4 74LS243 10 I 
013.B I .. • • }----
012.8145 6 8 I 

I GAB GBA 

I 1 L 113 
74LS04 

01'.B 144 3 11 

010.8 143 4 74LS243 10 

D9.B 142 }-- N 

• • 
D8.B 14, 6 8 ~ 

I GAB GSA 

I 11 '3 

07.B 140 3 11 

06.B 139 • 74LS243 10 

05 .• 138 5 • 
04.8 137 6 8 

I GAB GBA 

I '1 13 

03.B ],6 3 11 

02.8 135 4 74LS243 10 1 
01.B 134 5 • }---- N 

OO.B 133 6 8 J 
~ I GAB GSA 

1 , 13 

I 
A14.8 171 2 18 

A1l.S 170 4 74LS241 '6 

A12.S 169 6 " 
Al'.S 168 8 12 

AlO.S 167 11 • 
A9.B 166 13 7 

A8.B 165 15 5 

I 1G 2G 

I 'J ~ 
N 

Al.B 164 2 18 ~ 
A6.B 163 4 16 

AS.S 162 6 74LS241 14 

A4.8161 8 12 

Al.B 160 11 • 
A2.B 159 '3 7 

ALB 158 I. • 
AO.B 1s7 '7 3 

I 16 2G 

1 , 
" 

1P1 ... 

A0001457 

FIGURE 6-S. OFF-BOARD EXPANSION OF RAM 

6-6 

1/2 74LS155 

2G 2V3 
12 

2C 2V2 ~-
A 2Vl 

10 

B • 2VO 

~HHl ~l ~ ............... - ~ ~rO --
ggg~'~I~(eIS 

o _ 
M ;., ~ ~ 

~ ~ ~ ~ ~ ~ ~ :; 

;J'l ~I ~I ~ ~ 

~ij N 
<" 'Of <t :;; ~ :;; 

~l~HHL .................... ~ :!!I:< 
_ N M 

g I~ I~ 15 IS 000 :::: ::, :::: 

o _ N M ~ ~ "' ~ 
~ ~ ~ ~ ~ ~ ~ 

~\'\~\~I~ 
~ 

i\ ~l N 

<t <I: « ;: ~ :;; 

~hl ~hl"' ................. m :!!I:< 
0 ~ g v 

I~ J~ Ie IS ~ 

o _ N 
M " ~ "' :; ~ ~ ~ ~ ~ ~ ~ 

;I~~T~~ 
~ 

~~T N 

« « <c ::t ~ :;; 

~l~l~hl"' .............. 0- m '!r;== 
0 g g g I~ I~ Ie IS 

0 N M ~ 
~ :;; ~ ~ ~ ::/ ~ ~ 

~j 'T~~r ~ ~1~ N M " 
« <t <t :i ~ < ;( :;: 
AO 

A' h A2 

L-J A3 
74lS20 

. 
TO 
POI 

® 

TO 
PaiN 

@ 

;;: ~ 
z g 
o~ 

z w 0" 
} ~ i 

NT 16 ~ 
g ~ 

T 



QUANTITY 

7 
1 

4 per 256 words 

3 
4 per 256 words 

1 
1 
1 
1 

4 
3 

1 

*And wire-wrap pins as required 

0-
a: 
0 
>-
1rl 
z 
z 
0 
u 
:i 
8 
~ 
'" '" ~ 

29 

30 

87 

88 

24 

80 

60 

61 

62 

63 

64 

65 

I 

I 
I 

I 

I 
I 

CRUIN [ 

CRUQUT I 

CRUCLKB I 

lORST I 
- I ,3.B 

MEMEN.3 I 

I 

I 
,5V I 

,5V I 

GND I 

GND I 

I 

A3 I 
A4 I 
A5 I 

A6 I 

A7 I 

A8 I 
I 

TABLE 6-2. LIST OF MATERIALS FOR ADDING RAM 

PART 

14-pin DIP Socket* 
16-pin 01 P Socket* 
18-pin DIP Socket* 
20-pin DIP Socket* 
TMS 4042-2 
74LS155 
74LS20 
74LS74 
74LS04 
74LS243 
74LS241 

74LS10 

74LS367 

I'-
V 

L TMS9901 

n~ 2G fG >----.2 
I 1 -

RST 1 
10 

39 
SO 

36 
51 

35 
52 

74lS367 '--
25 

53 

~ 54 

~ Vee 

»- ,!.!! GND 

74LS30 

-
2G lG I r---

I I W L 

66 

67 

68 

69 

70 

71 

I 
I 

: 
I 
I 

A0001458 

I 
I 

A9 I 
A10 I 
All I 

Al2 I 

Al3 I 

Al4 I 
I 
I 

I 

74LS367 

iG 
-
2G 

~ 

ow 

to+5volts-

LIST OF MATERIALS 

PART 

14 PIN DIP SOCKET'" 

16 PIN DIP SOCKET'" 
40 PIN DIP SOCKET 
74LS367 
74lS04 
74lS30 
TMS9901 

• AND WIRE WRAP PINS AS REQUIRED 

FIGURE 6-6. CIRCUITRY TO ADD TMS 9901 OFF-BOARD 

6-7 

CE ~ 
~ 

PO 
38 
r---

Pl 37 
r---

P2 
26 
r---

P3 tE--
P4 ~ 
P5 ~ 
P6 ~ 
P7 ~ 
P8 ~ 
P9 ~ 

P10 ~ 
Pll tlL-
Pl2 ~ 
P13 tE-
Pl4 tR-
Pl5 ~-



INTERRUPT 
CAUSING 

CONDITION 

DATA SET CHANGE { 

RECEIVE BUFFER { 
lOADED, ENABLED 

TRANSMIT BUFFER { 
EMPTY 

TIMER ELAPSED { 

A0001459 

DSCH 

DSCENB 

RBRl 

RIENB 

XBRE 

XIENB 

TIMElP 

TlMENB 

DSCINT 

9902 
CRU 

.!!!!.. 

r-------------~~----------------------------------- 20 

RBINT 
r-----------~--+_--------------~~-------------------- 16 

XBINT 
~------~--~--+_-------------------------------------- 17 

TlMINT r---__ ~-+--~--+_------------------------------~------ 19 

TO INT4AT 

9901 
lJ10PTION) 

FIGURE 6-7. FOUR INTERRUPT-CAUSING CONDITIONS AT TMS 9902 

6-8 



\ 

SECTION 7 

OPTIONS 

7.1 GENERAL 

This section explains the various options available to the user of the TM 990/100M. These options include: 

• Use of TMS 2716 EPROM's (2K x 8 bits each) instead of TMS 2708 EPROM's (1 K x 8 
bits each) (paragraph 7.2). 

• On-card expansion of EPROM and RAM (paragraph 7.2) 

• Asynchronous serial interrupt from TMS 9902 (paragraph 7.3). 

• RS-232-C or teletypewriter interface (paragraph 7.4). Teletypewriter interface is with 
assembly 999211-0001 only. 

• Microterminal use (paragraph 7.8). 

• External switch actuation of a RESET or RESTART signal (paragraph 7.5). 

• Memory chip and CRU device selected by bit masks in PROM's (paragraph 7.6). 

• Assembler in EPROM (paragraph 7.7). 

Figures 7-1 and 7-2 show board locations application to this section. Table 7-1 is a summary of jumpers and 
capacitors used with these options. 

7.2 ON-BOARD MEMORY EXPANSION (Figure 7-2) 

7.2.1 EPROM EXPANSION 

EPROM memory can be expanded on-board in two ways (all expansion memory is provided on assembly 

999211-0003): 

• Add two TMS 2708 EPROM chips (1 K x 8 bits each) to provide an additional 1 K words 
of memory. 

• Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K or 4K words 
of memory. 

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses (in bytes). The board 
silkscreen designators identify the necessary jumper placement at J2, J3, and J4. 

NOTE 
Models 999211-1 and -2 come from the factory with 2 

TMS 2708's which are installed in sockets at U42 and 
U44. Jumper J2 is installed in the "2708" position and 
Jumpers J3 and J4 in the "08" position. This 
configuration will allow up to four 2708's to be used in 

U42 to U45. 

7·1 



PRIMARY RAM 
FOUR 4042-2'5 

SECONDARY EPROM's 
MA 080016 TO OFFF 16 (2708's) 
MA 10001 TO 1FFF16 (2716's) 

PRIMARY EPROM's 
MA 000016 TO 07FF 16 (2708's) 
MA 000016 TO OFFF 16 (2716's) 

MA FE0016 TO FFFF16 

SECONDARY RAM 
FOUR 4042-2'5 
MA FC0016 TO FDFF16 

FIGURE 7-1 . MEMORY PLACEMENT ON BOARD 

7-2 



~ __ ~~: } MICROTERMINAL 
USE 

~-- J15 

SPARE JUMPERS 
J16,J17,J18 

J12 MULTIDROP INTERFACE 

J11 % INTERFACE TYPE) 

1r } MULTIDROP 
=""''----J6 INTERFACE 

~--J5 

J7 (EIA MULTIDROP 
SELECT) 

TMS 2708/16 
J2 EPROM 
J4 } 

SELECT 
J3 

DEBOUNCE PRES. B) 

C5 (OPTIONAL; DEBOUNCE RESTART) 

FIGURE 7·2 ..... MPERS AND CAPACITORS USED FOR OPTION SELECTION 

7·3 



7.2.2 RAM EXPANSION 

To utilize TMS 2716 EPROM's J2 must be positioned to 
"2716" and J3 and J4 to the "16" position. 

EPROM types may not be mixed. That is, TMS 2716 
'may not be populated in U42 and U44 while 

TMS 2708's are populated in U43 and U45. 

Four additional TMS 4042-2 RAM chips can be added as shown in Figure 7-3. This will provide an addi­
tional 256 words, 512 bytes of RAM. All expansion memory is provided on assembly 999211,0003. 

7.3 ASYNCHRONOUS SERIAL COMMUNICATION 

An internal interrupt to interrupt trap 4 can be selected through programming considerations described in 
paragraph 8.4. This interrupt will signal changes in data set status and the current contents of the 

TABLE 7-1. JUMPERS AND CAPACITORS USED WITH OPTIONS 

OPTION JUMPERS/CAPACITORS PARAGRAPH 

TMS 9902 I NT to Interrupt 4 Jl (as shown on board) 7.10 
Pl-18 to interrupt 4 Jl (as shown on board)" 7.10 
Use TMS 2708 EPROM's J2, J3, J4 (as shown on board)" 7.2.1 

Use TMS 2716 EPROM's J2, J3, J4 (as shown on board) 7.2.1 

20 mA Interface Use J11 (installed) 7.4 
RS-232-C I nterface Use Jl1 (disconnected)" 7.4 
Microterminal Power J13, J14, J15 (installed) 7.8 
External RESTART signal C5 (installed) 7.5 
External PRES.B signal C6 (installed) 7.5 
Multid rop Interface J5,J6,J8,J9,Jl0,J12 
EIA/Multidrop Select J7 

"Configuration when shipped from factory 

TMS 9902 transmit buffer or receive buffer. Further information is presented in the TMS 9902 
Asynchronous Communication Control/er Data Manual_ 

7.4 RS-232-C AND TELETYPEWRITER INTERFACES 

Appendix A covers cabling for a Teletype Model 3320/5JE. To use this terminal (20 rnA current loop), 
connect the jumper at J11. 

CAUTION 
Verify correct voltage levels at connector P2 when 
attaching a teletypewriter type terminal. 

Appendix B covers cabling for an RS-232-C-type terminal. To use this type of terminal, disconnect the 
jumper at J11. 

7-4 



M.A. M.A. 
(HEX} (HEX} 

0000 0000 
BANK 1 

U42,U44 
2 TMS2708'S 

(lK X S EACH} BANK 1 
2 TMS2716'S 

0800 
BANK 2 

U42,U44 
(2K XS EACH} 

2 TMS 270S'S 
U43,U45 (lK X S EACH} 

OFFE 

AOOO1460 

(EXPANSION} 

JUMPER SELECTION 
J2 - "2708" 

J3 AND J4 - "08" 

M.A. 
(HEX} 

FCOO 
U33, U35, U37, U39 

FEOO 

U32, U34, U36, U38 

1000 

BANK 2 
2 TMS2716'S 
(2K XS EACH} 

U43, U45 (EXPANSION} 

1FFE~ ____________ ~ 

(A} EPROM EXPANSION 

BANK 1 
(EXPANSION} 

BANK 2 

JUMPER SELECTION 
J2 - "271,6" 

J3 AND J4 - "16" 

(EACH 256 X 4 WITH 

FFEE~ ____________ ~ 

) 

TMS4042·2 

41N EACH BANK. TOTAL 
EXPANSION TO 512 X 16 
BITS} 

(B} RAM EXPANSION 

FIGURE 7-3. MEMORY EXPANSION MAPS 

7.5 EXTERNAL SYSTEM RESET 

External switches can reset the system through connections at connector P1. They activate the following 
signals as shown in Appendix F (Schematics). 

• RESTART.B. This causes a load function. A 39 J.LF tantalum capacitor is required at C5 to 

debounce the switch. See Figure 7-2 for part placement. This capacitor should be 

removed during microterminal operation. 

• PRES.B. This causes reset function. A 39 J.LF tantalum capacitor is required at C6 to 

debounce the switch. See Figure 7-2 for part placement. 

7·5 



7.6 MEMORY MAP CHANGE 

On-board memory chip and CRU device addressing is through bit patterns in two PROMs, a 74S287 and a 
74S288 as shown in Appendix F (Schematics). This memory map may be altered by the substitution of 
PROM's with the desired configuration. 

7.7 TM 990/402 UNE-BY-UNE ASSEMBLER 

A line-by-line assembler is available, programmed on two TMS 2708 EPROM's. It will assemble each 
instruction as it is input by the user. The resulting machine code will be printed on the terminal and placed 
in continuous memory locations. The TlBUG monitor must be present to use the assembler. 

No relocatable labels can be used. Jump instructions use dollar-sign plus or minus byte displacements, and 
symbolic addresses are input as absolute locations. Error codes identify syntax errors (illegal op code), 
displacement errors (jump instructions), and range errors (e.g., R33). Figures 4-17 and 7-4 are examples of 
assembly outputs using the line-by-line assembler. 

7.8 TM 990/301 MICROTERMINAL 

An alternate to a hard-copy terminal is a TM 990/301 microterminal for user communication to and from 
the TM 990/100M. The size of a hand-held calculator, the TM 990/301 uses its light-emitting diode (LED) 
display to show hexadecimal or decimal values. Features of the TM 990/301 include: 

• Hexadecimal to signed decimal and signed decimal to hexadecimal conversion of 
displayed value. 

• Display and change contents of Workspace Pointer, Program Counter, Status Register, or 
CRU ports. 

• Increment through memory displaying contents. 

• Display and change contents of memory addresses. 

• Halt or single step user program execution. 

• Begin program execution. 

• Keyboard values 0 through Fl 6' 

This microterminal comes With its own cable which attaches to the 25-pin connector P2. To supply power to 
the microterminal, place jumpers at JT3, J14, andJ15. When the microterminal is not connected, make 
sure that these jumpers are disconnected. Jumper J7 must be in the EIA position for microterminal 
operation. See Figure 7-2. Spare jumpersi'lre populated at J16, J17, and J18. 

Figure 7-5 shows the microterminal and cabling to the TM SSO/lOOM 

7.9 TM 990/510 OEM CHASSIS 

An original equipment manufacturer (OEM) chassis is available. It features slots for four boards, a 
motherboard backplane interfacing to Plan the board, and a terminal strip for power, PRES.B, INT1.B, 
and RESTART.B. A dimensional drawing of the OEM chassis is shown in Figure 7-6. A schematic of the 
backplane is shown in Figure 7-7. P1 pin assignments are listed in Table H-1 of Appendix H. 

NOTE 
Dimension between card slots is one inch. 

7-6 



MEMORY ADDRESS 

/ ~ ASSEMBLER MACHINE CODE 

/ ~ USER INPUT SOURCE CODE 

F DO 0 ,/FE 00 • CHANGE MEMORY ADDRESS 

FEOO 2FAO XOP ~)FEOC,14 
FE02 FEOe 
FE 04 I,/.:~: .. SYNTAX ERROR 
FE04 0460 B ~>0080 
FE06 00:::0 
FE 0:::: ,/FE oe .. CHANGE MEMORY ADDRESS 

FE OC 434F :I;cmH3PATULAT I mE. \'DUP PPDI:;PAt'1 I!JDP~::::~:! -.. ----- TEXT STATEMENT 

FEOE 4E4{, 
FE10 5241 
FE12 5455 
FE14 4C41 
FE16 5449 
FE1::: 4F4E 
FE1A 532E 
FE1C 2059 
FE1E 4F55 
FE20 5220 
FE22 5052 
FE24 4F4{, 
FE26 5241 
FE2::: 4D20 
FE2A 5{,4F 
FE2C 524B 
FE2E 5321 
FE30 O{'O{' +)O{'O{' 
FE::=:2 O{'OO +>o{'oo 

FIGURE 7-4. LINE·BY·LINE ASSEMBLER OUTPUT 

7·7 



FIGURE 7-5. TM 990/301 MICROTERMINAL 

7-8 



5_0 

7.10 INTERRUPT FROM TMS 9902 

An on-board communications interrupt is issued by the TMS 9902 as explained in paragraph 6.6. When 

operating under the TlBUG monitor, place jumper J1 in position "P1-18." 

BACKPLANE 

o 

) a: ) 

14---------- 7.430---------~~ 

NOTES: 
1. DIMENSIONS IN INCHES 
2. DISTANCE BETWEEN SLOTS 

IS liNCH 
3. ALL DIMENSIONS ±O.010. 

A0001463 

FIGURE 7-6. TM 990/510 OEM CHASSIS 

7-9 



GND 

+5V 

CPU JI I: 

1 ~ 
~ >. 

~ iii 
~ ~ 

1 ~ 

1 : 

~ 
TO' 

6 12 '" fifJfJfJfJfJfJ'" 

5- /I 17 

Ta, 

SUPPLY 
[

GND 

-/~V 

+/~Y 

-/~Y 

+IZY 

+OY 

iTi'FT • .a 

RESTMT.B 

'iND·SUPPLY 

'''I 

.. 

T., 
TERMINAL STRIP 

30 

fJ 

.. 

IN BACK OF CHASSIS 

3~ 42 48 54 60 .. 7Z 76 84 ... . 
F> fiJ F> fiJ P fiJ P fiJ fJ fJ '" f' f' f' fJ fJ fJ 

~ >- >. 

i ~ .: 
~ ~ ~ 

~ ~ ~ 
~ ;. 

~ ~ 

,. ., • 7 53 59 ~ . 71 " 
., • 9 .. 

"--'" "--'" '-'--'"' 
TSI TSI rBI 

r-

- r---' r---' r---' r-' ,--- ';--

,,0 0 0 0 " " ~ 0 " " ~ " « .. .. 
'" .. .. ~ .. .. .. .. 

'" 
.. .. ~ ., .. ., '" .. .. .. 

'" 
M 

" ~ .. ~ ~ ~ 
~ 

~ ;;; " " " " " • " " " 

, 

NOTE: BACKPLANE PIN ASSIGNMENTS LISTED 

IN TABLE H-1 (APPENDIX H). 

" " ::: .. .. . ~ 
~ ~ 

FIGURE 7·7. OEM CHASSIS BACKPLANE SCHEMATIC 

7-10 

.~~ 

1°:1 •• 
>- . 
~ 

~ ~ 
~ ~ 

:1 

::1 
"----'"' 

TBI 

,"V 

GNO 



SECTION 8 

PROGRAMMING THE TM 990/100M MICROCOMPUTER 

8.1 GENERAL 

This section covers programming considerations. techniques, and examples using the TM 990/100M micro­
computer. Subjects include: 

• CRU Programming 

• I nterrupt Programming 

• lnterval Timer Programming 

• Context Switch 

• I/O Programming with the TM 9901 

8-1 

Paragraph 

8.2 

8.3 

8.4 

8.5 

8.6 



8.2 CRU PROGRAMMING 

8.2.1 GENERAL 

The Communications Register Unit (CRU) is the I/O data interface for the TM 990/100M microcomputer. 
When CRU instructions are executed, data is written or read through the CRUOUT or CRUIN pins respect­
ively of the TMS 9900 to or from designated devices addressed via the address bus of the microprocessor. 

The CRU software base address is maintained in register 12 of the workspace register area. Only bits 3 
through 14 of the register are interpreted by the CPU for the desired CRU bit address. Essentially, the CRU 
bit address is the value on the address bus that will cause decode logic on the address bus to enable an ex­
ternal device. Once enabled, the device can be communicated with via the CRU lines attached to the device. 
The CR U process follows this general sequence: 

(1) The CRU instruction is executed. 
(2) Bit address of the desired external device is placed on the address bus. 
(3) Decode logic on the address bus enables an external device so that it can serially 

send or receive using the CRU input or output lines and clock. 
(4) Bits are serially sent or received over the CR U rines. 

TM 990/100M devices driven off of the CRU interface include the TMS 9901 parallel interface and the 
TMS 9902 serial interface which are accessed through the CRU base addresses noted in Table 8-1. This 
table also lists the functions of the other CRU base addresses which can be used for on-card or off-card I/O 
use. Addressing the TMS 9901 and TMS 9902 for use as interval timers is explained, along with program­
ming examples, in section 8.4. Further detailed information on these two devices can be obtained from 
their respective data manuals. 

TABLE 8-1. CRU ADDRESS MAP 

CRU SOFTWARE CRU HARDWARE LINE 
BASE ADDR, BASE ADDR, SELECTED FUNCTION 

R12, BITS R12, BITS ATU23 
0-15 3-14 

0OOO-OO3E 00OO-OO2F SITf On-card expansion 

0040-007E 0020-003F SEL2 On-card expansion 

OOSO-OOBE 0040-005F 9902SEL On-card serial interface. timer (TMS 9902) 

OOCO-OOFE 0060-007F SEL3 On-card expansion 

0100-013E 00SO-OO9F 9901SEL On-card parallel interface (TMS 9901) 

0140-017E OOAO-OOBF SEL4 On-card expansion 

01S0-01 BE OOCO-OODF m5 On-card expansion 

01 CO-Ol FE OOEO-OOFF N/A Reserved. on-card expansion 

0200-1FFE 0100-0FFF N/A Off-card CRU lines 

Paragraph 8.2.2 explains CRU addressing while timing is covered in paragraph 8.2.3., Paragraph 8.2.4 
describes the five CRU instructions. 

8.2.2 CRU ADDRESSING 

The CRU software base address is contained in the 16 bits of register 12. From the CRU software base 
address, the processor is able to determine the CRU hardware base address and the resulting CRU bit 
address. These three CRU addressing forms are shown in Figure 8-1. 

8-2 



8.2.2.1 CRU BIT ADDRESS 

The CRU bit address is the address that will be placed on the address bus at the beginning of a CRU instruc­
tion. This is the address bus value that, when decoded by hardware attached to the address bus, will enable 
the device so that it can be driven by the CRU control and clock lines. The CRU bit address is the sum of 
the displacement value of the CRU instruction (displacement applies to instructions TB, SBO, and SBZ 
only) and the CRU hardware base address in bits 3 to 14 of register 12. Note that the sign bit of the eight­
bit value is extended to the right and added as part of the displacement. The resulting CRU bit address 
will be placed on address lines A3 to A14; address lines AO to A3 always will be zeroes. 

8.2.2.2 CRU HARDWARE BASE ADDRESS 

The CRU hardware base address is the value in bits 3, to 14 of register 12. For instructions that do not 
specify a displacement (the LCDR and STCR do not), the CRU hardware base address is the same as the 
CRU bit address on address lines A3 to A14 as explained in paragraph 8.2.2.1. An important aspect of 
the CR U hardware base address is that it does not ,use the lease significant bit of register 12 (bit 15); this 
bit is ignored in deriving the CRU bit address. 

8.2.2.3 CRU SOFTWARE BASE ADDRESS 

The CRU software base address is the entire 16-bit contents of register 12. In essence, this is the CRU 
hardware base address divided by two. Bits 0, 1, 2, and 15 of the CRU software base address are ignored 
in deriving the CRU hardware base address and the CRU bit address. 

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12) 

~ 

~ ADDRESS 
A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 -- LINES A3 A4 

0 0 0 0 0 0 0 0 0 o I 
~ 

,--/ • IGNORE 

R12 I~o_~o=-__ o ____ o ____ o __________________________________________________ ~ ------ "----ZEROES --___ ----.-
CRU HARDWARE BASE ADDRESS 

SIGN _______ ..... ~ o o 0 0 0 0 0 1 0 0 0 + DISPLACEMENT" 
EXTENDED o 0 0 0 o 0 0 1 0 0 1 0 0 0 -------'-------...... --~ ~ ,--/ 

ALL ZEROES FOR 
CRU OPERATIONS CRU BIT ADDRESS 

*The displacement added to the CRU hardware base address is a signed eight-bit value, 
with sign extended, used only when executing one of the single-bit CRU instructions 
(TS, SBO, and SBZ). 

FIGURE 8-1. CRU BASE AND BIT ADDRESSES 

Because bit 15 of R12 is not used, some confusion can result in programming. Instead of loading the CRU 
bit address in bits 0 to 15 of Register 12 (e.g. LI R12> 80 will not cause the CPU to address the TMS 9901 
at CRU hardware base address 8016), the programmer must shift the software base address value one bit 
to the left so that it is in bits 3 to 14 instead of in bits 4 to 15. Several programming methods can be used to 
ensure this correct placement, and all of the following examples place the TMS 9901 base address of 8016 
correctly in R 12. 

8-3 



8.2.3 

LI 

LI 

LI 
SLA 

CRU TIMING 

R12,>100 
or 

R12,>80*2 

or 
R12,>80 
R 12, 1 

PLACES >80 IN BITS 3 TO 14 

MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LlNE­
BY-LINE ASSEMBLER) 

BASE ADDRESS IN BITS 4 TO 15 
SHIFT BASE ADDRESS ONE BIT TO THE LEFT 

CRU timing is shown in figure 8-2. Timing phases (</>1 to </>4) are shown at the top of the figure. The CRU 
address is valid on the address bus beginning at the. start of </>2,llnd stays valid for eight timing phases (two 
clock cycles). At the start of the next c/J2 phase, CRUCLK at the TMS 9900 goes high for two phases to provide 
timing for CRUOUT sampling. Note that for LDCR and STCR instructions, the address bus is incremented for 
each data bit to be output or input. For input op.erations, the address is placed on the address bus at the 
beginning of phase c/J2, and the input is sampled between phases c/J4 and c/Jl. 

8.2.4 CRU INSTRUCTIONS 

The five instructions that program the CR U interface are: 

• LDCR Place the CRU hardware base address on address lines A3 to A14. Load from 
memory a pattern of 1 to 16 bits and serially transmit this pattern through the 
CRUOUT pin of the TMS 9900 (paragraph 4.6.4). Increment the address on 
A3 to A14 after each CRUOUT transmission. 

• STCR Place the CRU hardware base address on address lines A3 to A14. Store into 
memory a pattern of 1 to 16 bits obtained serially at the CRUIN pin of the 
TMS 9900 (paragraph 4.6.4). Increment the address on A3 to A14 after each 
CRUIN sampling. 

• SBO Place the CRU hardware base address plus the instruction's signed displacement 
on address lines A3 to A14. Send a logical one through the CRUOUT pin of the 
TMS 9900 (paragraph 4.6.2.2). 

• SBZ Place the CRU hardware base address plus the instruction's signed displacement 
on address lines A3 to A14. Send a logical zero through the CRUOUT pin of the 
TMS 9900 (paragraph 4.6.2.2). 

• TB Place the CRU hardware base address plus the instruction's signed displacement 
on address lines A3 to A14. Test the value at the CRUIN pin of the TMS 9900 
and reflect the test results (one or zero) in the equal bit of the Status Register 
(paragraph 4.6.2.2). 

The LDCR and STCR instructions use a byte or word of memory depending respectively if 1 to 8 bits or more 
than 8 bits are to be loaded or stored. In STCR instructions, the right bits of the memory area are used for 
storage, and unused left-side bits are zero filled. Figure 8-3 depicts an LDCR instruction using a byte of 
memory. Figure 8-4 depicts an STCRinstruction using a word of memory. 

The TB, SBO, and SBZ instructions use a displacement of+127 and -128 bits from the CRU bit designated in 
bits 3 to 14 of R 12. Thus, if bit 30016 is designated in R 12, bits 3 to 14, the following assembly language 
instructions and comments would apply: 

8-4 



Z 
1-0 
::)­
~I-
1-« 
::)a: 
ow 

t5 

~ 

<;>1 

<;>2 

AO-A1S 

CRUCL.K 

CRUOUT 

1-­
::)1-
~« z a: CRUIN. 
-w 
~ 

n~ __ ~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n n n~ __ _ 
~~~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n~ __ ~n n I ~ 
---1l---t----ln : nL-__ I---In~_ nL-_I n n~ __ 1 ~n n I IL
_~n,-+-~n I r~+--~n nL-+--~n n: n n n

I I I I
I I I I
I I

CRU ADDRESS n + 1 ; ~ CRU ADDRESS m I :x=:=
I I I I I ____ -+-_~n niH I I
I I I I I I

UNKNOWN

I I I I
-UN-K-N-OW-N--4X CRU DATA DUTo :x CRU DATA OUT H 1 I)(:; r UNKNOWN I X,-__

: I : I I
I I. I I I

?~·j?1~~ ~txtux§kN;i~A:Rj~
I I I I .aaaaat~~T VAUD

\~------------~ ~------------~/ v-
\ ~ __ / INPUT BIT m
'---------.v-

CRU OUTPUT CRUINPUT

FIGURE 8-2. TMS 9900 CRU INTERFACE TIMING

TB
SBa
SBZ

>10
-1
16

TEST CRU BIT >310
SET CRU BIT >2FF TO ONE
SET CRU BIT >310 TO ZERO

The LCDR and STCR instructions address the CRU using the value in R12; these instructions do not have
the advantage of specifying a displacement from the R 12 value such as used by the CRU bit instructions.
If it is necessary to change the CRU hardware base address, it is important to understand that only bits
3 to 14 need be modified. For example, if it is desired to load (LCDR) successive groups of 16 CRU ports,
a value of 32 {not 16) must be added to the contents of R 12 for each group in order to accurately change
the contents of R12 bits 3 to 14 (AI R12,32). An alternate method would be to load a new value into R12
(LI R 12, > 200; LI R12, > 220; etc.}.

U Rl2.>Z(}O

LOCB R5,6

o

0 0 0

0 0 0

0 0 1

LOAD CRU BASE ADDRESS >100 IN BITS 3 TO 14 OF R12

6 BtTS TO CRU

3 4 S 9 10 1-1- 12 13 14 15

0 0 0 1 0 0 0 () o l 1 1 0 0

0 0 0 1 () () 0 0 a () 0 0 0

1 0 01 0 ~ 1 o I 0 o t 0 1 0 1

o 2 7 15

>(}20C

>3185

Rs __ l, () ! 1 1 I 0 1 I 0 f (I I 1 t 1 1 lIt 0 I
=_::;;:::N':O::RE~IL----l----L~I.--LL:'=~=~====~=!::=~::-.--:- : -'" __ »00

8 BITS OR LESS - BYTE ADDRESS

9 BITS OR MORE - WORD AOORESS

AOOQ1434

FIGURE 8-3. LDCR BYTE lNSTRUCTlON ,

8-6

~ s -CRU Add, .. , >1(}5

7

B

A

B

C

D

10

11

12

LI R12,>120*2 LOAO CRU BASE ADDRESS >120 IN BITS 3 TO 14 OF R12

STCR R4,10 10 BITS FROM CRU TO R4

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0

0 0 0 0 0

0 0 1 1 0

o

R4 ______ ----'v------____ -

NOTES:

ZE.RO FILL
UNUSED LEFT-SIDE BITS

8 BITS OR LESS - BYTE ADDRESS
9 BITS OR MORE - WORD ADDRESS

0 1 0 0

I
0 1 0 0

1 I 1 0 1

6

•

THE MULTIPLICATION IN THE DESTINATION OPERAND (>120*21
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER.
THIS MUL TIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS
OF REGISTER 12.

AOOO1435

0 0

1 0

o I 0

•

FIGURE 8-4. STCR WORD INSTRUCTION,

8.3 INTERRUPT PROGRAMMING

8.3.1 INTERRUPT OPERATION

o I 1 1 0

0 0 0 0

01 0 1 0

15

0 >020C

0 >0240

0 >3684

o +-CRU Address >120

1

2

3

4

5

6

7

8

9 +-CRU Address >129

A

B

C

D

E

F

10

The TM 990/100M employs 16 interrupt levels with level a the highest priority and level 15 the lowest
priority. Level a is reserved for the reset function. Reset, which can be initiated by the RESET pushbutton
(Figure 1-2) or by remote activation of the PRES signal, places the board under monitor 'Control.

8-7

I nterrupts are controlled by the TMS 9901 interface which polls interrupt signals from 15 input lines (I NT1

to I NT15), determines the priority of the incoming signal, and sends a four-bit code of the highest priority
interrupt to the TMS 9900 along with an interrupt request (lNTREQ). The four-bit code is sent on lines
ICO to tC3.

The TMS 9900 compares the level of incoming interrupt request to the interrupt mask in the least

significant four bits (12 to 15) of the Status Register. If the level of the incoming interrupt is equal to or

less than the value in the Status Register mask, a context switch takes place simitar to a B LWP instruction

(paragraph 4.6.6). A pair of vector addresses (the new WP and PC values) are obtained from one of the 16
interrupt traps in EPROM (M.A. 000016 to 003E 1 6), as shown in Figure 8-5. Then the following takes
place:

• The current WP, PC, and ST contents are saved.

• The new values from the ~nterrupt vectors are placed in the WP and PC hardware registers.

• The old WP, PC, and ST values are placed respectively in R 13, R T 4, and R 15 of the new
workspace.

• A value of one less than the new interrupt value is p{aced irt the ST interrupt mask (bits
12 to 15).

• Execution begins and continues until another interrupt of higher priority occurs or until a

return instruction is executed (RTwPt.

If a higher priority interrupt occurs, a second interrupt context switch takes place after at least one
instruction is executed of the first ~nterrupt- This allows execution of a LlMI instruction to inhibit other

interrupts. Completion of the second interrupt passes control back to the first interrupt using the RTWP

instruction (paragraph 4.6.7).

8.3.2 PROGRAMMABLE INTERRUPTS

Interrupt traps 0, 3, and 4 contain vector values burned into EPROM. Interrupts 3 and 4 can be

programmed by the user.

AOO01432

M.A.

0000

0002

0004

0006

OOOC
OOOE

0010

0012

003C

003E

1

WP

PC

WP

PC

• • •
FF68

FFSS

FF8C

FFAC

• • •
WP

PC

} INTERRUPT 0 VECTORS

} INTERRUPT 1 VECTORS

"'\
>

} INTERRUPT :fVECTORS

} INTERRUPT 4 VECTORS

} INTERRUPT 15 VECTORS

FIGURE 8-5. INTERRUPT TRAP LOCATIONS

8-8

• Interrupt trap 0 is used for the reset function. This is not a user programmable interrupt.

• Interrupt trap 3 is the real time clock utilized by programming the TMS 9901 using CRU
instructions. This programming is shown in the TMS 9901 Programmable Systems
Interface Data Manual. Vectors in interrupt trap 3 are FF6816 for the WP vector and
FF8816 for the first of a two-word instruction to be inserted in RAM by the user. See
Figure 8-6:- This two-word instruction area could contain a B or BL instruction as
discussed in paragraph 4.6.6. The branch would be to the start of a subroutine set up to

handle the interrupt. The subroutine would return to the interrupted program with the
RTWP instruction, using the return values in R13, R14, and R15 of the interrupt
workspace.

• Interrupt trap 4 originates from the INT output of the TMS 9902 as shown in sheet 3 ofthe
schematics in Appendix F and the TMS 9902 Asynchronous Communication Controller
Manual. A movable plug (J 11) allows this signal to be routed to the TMS 9901 as input for
interrupt 4 as shown in the schematics (Appendix F). Vectors in trap4 are to FF8C16 forthe
workspace and to FFAC16 for the first of a two-word instruction. The user can fill these

RAM location as desired (e.g., B or BL instruction to subroutine in RAM). See ~igure 8-6.

Four conditions causing INT to be active (low causing interrupts to occur) are as follows:

• TMS 9902 CRU bit 21 a one and a data set status change (DSCH) occurs.

• TMS 9902 CRU bit 20 a one and timer elapses (TIMELP)

• TMS 9902 CRU bit 19 a one and the transmit buffer is empty (XBIENB).

• TMS 9902 CRU bit 18 a one and the receive buffer is loaded (RIENB).

If the user desires to fill interrupt trap locations (M.A. ()()()(), 6 to 003E16) with his own vector values, he must

reburn the EPROM with the desired values.

AOOO1433

M.A.

FF68

FF88

FFBC

FFAC

r--------

16-WORD l
WORKSPACE (INTERRUPT 3

2-WORD INSTRUCTION)

I

:;~~~ACE !INTERRUPT 4

---- ---12-WORD INSTRUCTION)

FIGURE 8-6. DEDICATED INSTRUCTION AND WORKSPACE AREAS FOR INTERRUPTS 3 AND ..

8-9

"

8.4 PROGRAMMING THE INTERVAL TIMERS

Two interval timers are available to the TM 990/100M; one from the TMS 9901 and one from the
TMS 9902. Detailed information on these two devices can be found in the respective data manuals for the
TMS 9901 and TMS 9902.

Both interval timers can be programmed to cause interrupts at the TMS 9900:

• To trap 3 for the TMS 9901

• To trap 4 for the TMS 9902

8.4.1 TMS 9901 INTERVAL TIMER

-, NOTE

'\. I/O programming with the TMS 9901 is explained in paragraph 8.6.

A detailed discussion of the TMS 9901 interval timer can be found in the TMS 9901 data manual. There are
several possible sequences of coding that can program and enable the interrupt 3 interval timer, and since
the timer has a maximum period of 349 milliseconds before issuing an interrupt, the programmer must
decide whether to set the interval Period in the calling program or in the code handling the interrupt. If the
interrupt period desired is longer than 349 milliseconds, then it may be advantageous to reset the timer in
the interrupt subroutine which. also triggers the interrupt and re,turns control back to the interrupted
program. In any case, the timer must be initially set and triggered following the general sequence below:

(1) Set the CR U hardware address of the TMS 9901 in bits 3 to 14 .f R 12.

(2) Enable the clock interrupt at the TMS 9901 (interrupt 3).

(3) Set the Status Register interrupt mask to a value of 3 or greater.

(4) Set a register to the value of the interval desired (bits 1 to 14) with bit 15 set to one to
enable the clock as shown in Figure 4-18. This figure shows the code and a representation

. of the CRU for setting a timeof 250 milliseconds and for setting the TMS 9901 tothe clock
mode. The first bit serially brought in on the CRU will be a value of one in bit 15 of the
register which sets the TMS 9901 to the clock mode; successive bits (1 to 14) then set the
clock interval value. The final bit brought in triggers the timer.

(5) When the interrupt occurs, the interrupt handler must reset the interrupt at the
TMS 9901 befo~e returning to the interrupted program.

The clock decrements the value set in step (4) at the rate of l/>/64 (approximately 46,875 Hz with a 3 MHz
clock). The maximum interval registe~ value of all ones in 14 bits (16,383) takes approximately 349
milliseconds to decrement to zero.

The timer can also be started and stopped, then the timer register bits read with an STCR instruction to
determine the elapsed time (elapsed bit count divided by 46,875 equals elapsed time in seconds).

8-10

The code in Figure 8-8 is an example of a code to set up and call the TMS 9901 interval timer and also the
code of the interrupt handling subroutine. Note that the calling program first clears the counting register
(RO) of the interrupt workspace. Then it sets up the interrupt masks at the TMS 9901 and TMS 9900 after
setting the TMS 9901 address in R12. Then the calling program sets an initial value in the timer register
(CLK 1 to CLK14 as shown in the TMS 9901 data manual). Because the desired output on the terminal is a
message every 15 seconds, a minimum interval is set in the calling program while the interrupt handler is
responsible for setting the time and clearing the interrupt after it occurs. The handler keeps a count of the
intervals to determine the 15 seconds. Since interrupt 3 causes a context switch to the WP and PC areas

shown in Figure 8-7, a branch to the handler is first placed in the RAM instruction area shown for interrupt
3. The clock will periodically interrupt the executing program with return vectors to that program stored in
R13 to R15 of the interrupt worksapce. Assembled code is shown for the TM 990/402 line-by-line
assembler as well as the TXMI RA assembler.

8.4.~ TMS 9902 INTERVAL TIMER

The TMS 9902 interval timer is programmable through the CRU, but it requires a different sequence of
events than for the TMS 9901 timer. A detailed discussion of the TMS 9902 interval timer can be found in
the TMS 9902 data manual. The interval register of the TMS 9902 can contain a maximum value of FF,e,
providing a maximum interval of 19.58 milliseconds at an internal clock frequency of 833 kHz. The interrupt
is routed to the TMS 9980 through INT 4 of the TMS 9901; thus the interrupt masks of both these devices
must be programmed. J2 must be in the "9902" position to route interrupts from the TMS 9902 to the
microprocessor via the TMS 9901; code to run the TMS 9902 interval timer generally follows the following
sequence:

LI RO, COUNT PLACE TIMER COUNT VALUE IN RO
LI R12,>0080 ADDRESS OF 9902
SBZ 13 RESET LDIR IF NOT ALREADY
SBO 14 SET LDCTRL
SBZ 3 INSURE 2.5 MHz/31 COUNT RATE (OPTIONAL)
MOV *R12, *R12 DUMMY STATEMENTS FOR
MOV *R12, *R12 TIMING: >11 CLOCK
MOV *R12, *R12 CYCLES
SBO 13 SET LDIR TO LOAD COUNT
SBZ 14 BUT FIRST RESET LDCTRL

LDCR . RO,8 PUT OUT COUNT IN LEFT BYTE OF RO
SBO 20 SET TIME NB

8-11

II

II

LDCR

R12,>100

R1,>5B8F

R1,15

CRUADDRESSOFTMS9901(2X >80= >1001

CLOCK, >2DC7 COUNTS, AND SET CLOCK MODE BIT

SET CLOCK VALUE AT CLOCK REGISTER

~ >5~F

~~~--------------------------------~~ 

AOO01436 

..... --- ClK1 TO ClK14 - >2DC7 - 11,719 ---....-.! 

",7'9146,875HIt - 250MS 

NOTE: 

1 

THE FIRSTSERIAl INPUT FROM CRU (A ONE IN BIT 15 OF R11 SETS CLOCK MODE. 

lAST INPUT TO CLOCK REGISTER (ClK1 TO ClK141 STARTS THE CLOCK. 

CRU 

@M 
TMS9901 

ASSIGNMENT 

80 1 - CLOCK MODE 

81 ClK1 

82 ClK2 

8E 

8F 

• 
• 
• 

ClK14 

FIGURE 8·7. ENABLING AND TRIGGERING TMS 9901 INTERVAL TIMER .. 



ASSEMBLED USING TXMIRA ASSEMBLER 

ON 990/4 COMPUTER 

ASSEMBLED USING TM 990/402 LlNE-BY-LINE 

ASSEMBLER ON TM 9901100M 

~--------------~---------------- ---------------~--~------------
T1!!I:-~F 

".',"", 
i)<' .. :./ .• 

(,;-\(,7 

;)1">(;:::: 

-":'1':' 
');:111 
,:;e, 1 ? 

::"-"16 
')':-'1 7 

;:\;~\o:\, :\ 

»»':\1 
(\;:'(11:: 

');:'1 0 FE();) ;:<2Ei) 
FE(I:;:~ FE2(1 

'-"'-':2<:1 F F(\4 (H1EI) 
F~i)/:, FF63 

'~;':;?1 FE(':::: C'2(X 
FE':,?) ')10r) 

;>-:'~:':? FE,X 1 EC10 
0-)"2":':: FE(,E 1 [1(,'"3 
('0::'·1 FE10 u~~oo 

FE 12 ;)I:"Y:: 
(\i)2':'~ FE1" ;)201 

FE16 ')003 
0(\::::,: FE18 :::JCl 
i)·)27 FE 1 (i t OFF 

.. );:\,~::~. FFO'-' O::::3(l 
FFi:'2 (-,I:-"3C 

(l(""::::: FF(;1j l~:OB 

(,'Y:>1 FF("(:, 0':,:::(, 
(;1):;::':,'. FF(;f. 'Y20C 

:-'"31';, F FOe 02;"\1 
FF('E ':"5B:3F 

'." .<:'7 FF 1 (1 :::::-:C 1 
f)')"::::::: FF 1:2 1 E(li) 
,-0,-, ::'::! FF 111 1 DO'3 
;)')11·:\ FF 1 (: ·')'300 

FF1:=: (,1:\;:;"3 
{)(\'11 FF1(4 n-3:~:O 

'~"")'1-:-~ FFF-: ~:~F(li) 

FFIE FF26 
(1',:,,1 ';: FF2i~i ,::'''l(JI 
;-I')'~ 'l FF2:.2 O-l(:,O 

FF',::: q FFi)r-:. 
.. -<\.~ 5 FF2,.:· ::: 1 
0'-:11\-/:. Fr--'~~E ,Y7n7 

.,-,,,,;,". 

,v,':' 1 FF',::" 
I~t:: Fr:::-:::~: "-'11 /~,i-:; 

FF:::::(:~ FF(\(1 

,0.0001437 

* 
THt';:: PRClf::;Rt,t'1 (:{-\U'3E'::: AN INTEF:f::UFT THROUOH II'IT'":: 
E'.;EF;Y 1~ :,ECClt'ID~, 1_'~'INU THE HITERV{\L THlFF: HI THE 
TM'~: ';i'::Ji) t. THE {)OR[; OF-CODE I'::: () D I REC T I I,IE TO THE 
TJ:l'llP('; ('i'::':::Et·1BLEF: TCi C-iENERATE () TtfO CHP,R(~CTER AND 
('oot: TO LO('ID ('IT {iN ,~B:::OL1JTE (\DDRE'3';::. ,J.l-l(',L~;::H 1-7::: 

* ;, * 1DT T Jt1EF; "" 

RECiI ','TER EounTE',' (PRECErIE NUMBER WITH "R"" 

EO!) 0 
EO\) 

REGI::::TER 0 I=: RO 
REGETER I 1:3 Rl 
REGISTER 12 IS R12 

F'RO['RI1M CI\LLHIG THE INTERRUF'T 

(lOPG ~'-'FE(lO 

U,)P I >FE21) 

LI R12,: 100 

S,BZ 'J 
SBO 
LIMI 

Ll PL,: 

LDCP Rl, 15 
,Jr1f' ~ 

I NTEPR!JF'T PROGRAM 

fJOPG >FF(II) 
Ct RO, (:.() 

.JE(~ $ ..... 2·1 
IN(: RO 
LI R12,>10(1 

LDCR PI, IS 
'::BZ (1 

=:BO ":;: 
Ur1I3 

RTI,..}F' 
X.OP ('~>FF26 I 1'1 

elF: PO 
B @:>FF(l(i 

':::ET (iDDR. TO LOAD OB,JECT 
DEF mE WIJR~'::3PACE ?\DDRE',,:3 

CL.E{iR INTERRUPT REGJ:;TER 0 

9901 CRI.I (-1DDR. IN R12 

~"'~-:iO 1 TO I NTERRUF'T !'lODE 
EN{\BLE INTERRUPT 3 
ENABLE J NTERRUPT 3 IN "'T 

CLOCK COUNT 1> CLOCK 1'10DE 

CLOCK COUNT TO CRU, ENABLE cue: 
LOOF' ~.JH I LE CU)CI< COUNTS DC'tWN 

SET (4BSOLUTE OB.JEer ADDR~ 
IS COUNT 1:.0 (1 '} SECONDS) ,,? 

YES, PRINT tlESS{,GE 
NO I I NC:REt"1ENT COUNTER 
S:"~Ol ADDRESS TO R12 

CLoer:: COUNT OF 11 > 719 

COUNT TO '-I9(J 1 > EN(~BLE COUNTER 
9901 TO I NTERRUF' T t10DE 
CLE!\R HlTERRUPT :3 
RESET INTERUF'T t1ASV t-H 9900 

RETURN TO F'ROC'RAM 
WR ITE ME:,",'!\I:'E 

RE,,'ET T HtER COUNT 
RE I N'iOfE INTERRUPT 

TEXT 15 ',:ECOND:,: HPNE ELAF"3ED, 
D{Htl >0707,: 0707 BELL::;: 

BYTE I) END OF tlES:3AGE rIEL Ht ITER 

J W',TRUCT IOfi IN I mERRUPT RAM {\REA 

(,:ORe; :>FF:?'t: 
p. @:>FFOO 

INT. 3 IN::;:TRUCTION (lDDR. 
00 TI.) INTERRUPT ROUTINE 

DIRECTIVE HI (,SSEMBI_EF: 

.--...,' 
l,d=FF'?6 
F'=I)HI=' (I 9E6 

'E 
FEOO 02EO LWPI >FE20 
FE02 FE20 
FE04 04EO I:LP ~'FF68 
FE 06 FF";'::: 
FE 0::: 020C LI F:12~ 100 
FEOA 0100 
FEOC lEOO S:E:Z I) 

FEOE lDI)3 ::BO ,: 
FE 11) In 0 0 LI r-1I " 
FE12 ono-~: 

FE 14 0201 l I F: 1 • 3 
FEIE. flfln--:' 

FE18 ,:,,,::1 LDCF: F:l.15 
FEIA 11)FF JMP >FEIA 
FEIC /FFOO 
FFOO 0280 CI RO,60 
FF02 OO-~:C 

FF04 130B JEO 1+24 
FF 06 05:::: (I I t"~C P (I 
FFO:::: 020C LI R12, 100 
FFOFt 010r} 
FFOC 0201 LI P1, ·;·5B8F 
FFOE 5B,~:F 

FF10 ,:Xl lDeF' 1"1.15 
FFI2 lEOO ::BZ 0 
FF14 lD03 :E:O,: 
FF16 03(1) LIrH 
FF1:::: 000:;:: 

ClF' un. PEI~. 

99 (I 1 CJ;'U ADDF.' 

'~'~Ol TO UH. 
:ET UH, ,: 
ErIABLE '?'? 0 0 IrIT 

EnABLE ClOU' 

APPL'-!' TO '::;"::;'01 
LOOF' HERE 

COUt'iT = t,O'! 

'iE S, DO r'1t1::::I:; 
r-m. IrK. OnF'F' 
9'?Ol CPU FtDDF' 

Clocr COUrn 

APF'lY COUNT 
'~,? ° 1 TO IHTRF' 
DI ::ABlE un 
Er-lABLE '~,?I)I) IrIT 

FFIA 0381) PTWP PET TO PPOGF'AM 
FFIC 2FAO XOP ~FF26.14 SEnD MESSAGE 
FFIE FF26 
FF20 04CO ClR RO PESET TIMER REG. 
FF22 0460 B ~~FFOO REDO INTERRUPT 
FF24 FFOO 
FF26 3135 115 SEconDS HAVE ELAPSED. 
FF2!::: 201'5~: 

FF2A 454,: 
FF2C 4F4E 
FF2E 44":,3 
FF3 (I 204:::: 
FF,:2 4156 
FF34 4521) 
FF:~:6 454C 
FF'~:::: 4151) 
FF3A 5345 
FFX 442E 
FF'~:E 0707 +::. 0707 
FF4C1 0707 + 0707 
FF42 0000 +1) 

FF44 
FF88 0460 B ~jFFOO 
FF:,:A FF I) 0 

GO TO Ir-lT. ROUTlr-lE 

'---->t------- MEMORY ADDRESS------....J7! 

'-----'----MACHINE cOOE---------I 

FIGURE 8-8. EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER 

8-13 



When the interval timer has counted down to zero, the interrupt (INT) is sent via jumper J 1 to interrupt 4 of 
the TMS 9901. 

NOTE 
This interrupt should not be routed to the TMS 9901 
from the TMS 9902 while under the monitor as ex· 
plained in paragraph 6.6. If J1 is in the P1·18 position, 
the interrupt signal will be routed from connector P1, 
pin 18. 

8.5 CONTEXT SWITCH TO ANOTHER PROGRAM SUCH AS MONITOR 

By manipulating registers 13, 14, 15 and executing the RTWP instruction, execution can branch from one 
program to another, such as a user program to the TfBUG monitor. The following is code to branch into 
the monitor. 

or 

LI 
LI 
LI 
RTWP 

R13>FFBO 
R14>80 
R15,O 

WP VALUE OF MONITOR 
PC VALUE OF MONITOR 

NOTE 
The above example shows how to branch into a program 
using the RTWP instruction; it also branches into the 
monitor. Other more convenient methods to branch to 
the monitor include the following: 

BLWP@> FFFC MONITOR VECTORS AT M.A. > FFFC 

B @>80 BRANCH DIRECTLY TO MONITOR ENTRY POINT 

8.6 I/O PROGRAMMING WITH THE TMS 9901 

The following figures, 8·9 to 8·14 are examples of addressing the TMS 9901 through the CRU, pointing out 
in graphic form: 

• External I/O in parallel (multibit) and serial (single bit) forms. 

• The relationship between the CRU bits addressed and the bits in the source operand. 
of the STCR instructions 

• The relationship between the CRU bit addressed and the displacement in TB, SBO, 
and SBZ instructions. 

8·14 



The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU software address 
010016 and the high 16 bits at CRU software address 012016' To access the low 16 bits of the TMS 9901 
through the CRU, load 010016 into register 12. 

The high 16 bits at CRU software address 012016 are the parallel I/O bits, shown in the accompanying 
figures. These may be set, reset, or read in any order or combination with length from 1 to 16 bits. Since 
CRU operations are serial, data from the microprocessor (either serial or parallel) is transmitted serially to 
the TMS 9901, which outputs it in parallel. Likewise, during input, data present at the I/O pins shifted 
serially to the microprocessor using the CR U bus for programming. It is necessary only to load register 12 
with 012016 and use either the LCDR or STCR instructions. Bear in mind that CRU operations of 1 to 18 
bits affect the left byte (more significant half) of a word. 

The lower 16 bits of the TMS 9901 at CRU software address 010016 are used for control of interrupts and 
the timer function, and to reset the I/O lines to the input mode with output buffers disabled and floating. 
Interrupt requests are presented to the TMS 9901, each on its own line, and are compared against an 
internal mask. If the internal interrupt mask allows, the particular interrupt request is encoded onto ICO 
through IC3 of the TMS 9901 (lCO -- IC3 of the TMS 9900) as explained on page 6 of the TMS 9900 data 
manual or page 8 of the TMS 9901 data manual. The TMS 9901 also pulls the INTREQ line low on inter­
rupt requests (not during RESET), which goes to INTREQ at the TMS 9900. 

(1) ASSEMBLY LANGUAGE: 

LI RI2,>0120 
LDCR RO,15 

(2) SOURCE ADDRESS IN MEMORY: 

o 

RO: 11 

1 
IG 

0 1 

I 

NORED 

(3) ADORES SING: 

3 4 

1 1 0 0 

7 8 

1 0 

ADORES S LINES AT OPERATION START 

0 0 R12: 10 
L-.......J 

~ 
IG NORED 

o 0 0 

AO -
I 

I 

0 0 0 0 1 0 

I 
+ 

0 a 0 0 1 0 

1 

0 

0 

ADDRESS LINES 

0 

1 

1 

11 12 15 

1 1 0 1 1 I 
I 

0 0 0 0 o I 
I 

0 0 0 0 

-- A14 

I 

ILSB OF RO) 

BIT 15 
IGNORED 

j J I 
I/O I 

I DECODE 

RO LSB 7 
I' PO 

PI 

P2 

P3 

P4 

P5 

P6 

P7 
P8 

P9 

Pl0 

P11 

P12 

P13 

, P14 

P15 

ADDRESS 

SE(..ECT 

TMS 9901 

l-

I-

I-

I-
r-

I-

r-
r-
r-
-
-
-
-
-
-
,......,. 

1 

o 

o 
1 

o 

o 
o 

1 

o 

P15 STATE REMAINS UNCHANGED 
\ 

FIGURE 8-9. lDCR WORD EXECUTION TO TMS 9901 

8-15 



(1) ASSEMBLY LANGUAGE 

LI R12, >0130 
LDCR R2,2 

PO 

PI 
(2) SOURCE ADDRESS IN MEMORY: 

P2 

o 3 4 7 8 II 12 15 P3 

P4 

o o o o 0 o P5 

P6 

TWO BITS TRANSFERRED P7 

LEFT BYTE USED P8 0 

P9 

PtO 

Pll 

(3) ADDRESSING: 
P12 

R12: [0 
[ t 

01 
0 0 0 0 0 0 1 0 0 0 0 0 BIT 15 

IGNORED 
I II IGNORED 

r 
I 

P13 

Pt4 

PI5 

ADDRESS 

SELECT 

0 0 0 0 0 0 0 0 0 1 0 0 0 

AO A14 
I 

ADDRESS LINES 

FIGURE 8-10. LDCR BYTE EXECUTION TO TMS 9901 

8-16 



(11 ASSEMBLY LANGUAGE 

LI R12, >0120 

STCR R3, 11 

(21 SOURCE ADDRESS IN MEMORY 

o 34 78 

I 
R3: o o 1 1 1 

I 
o 0 0 0 0 0 1 0 

I 
ZEROED 

(31 ADDRESSING: 

ADDRESS LINES AT OPER ATION START 

R12: 10 0 o 0 0 0 0 

I 
IGNORED 

ZEROES~ 

0000000 

AO-----

I 
1 

11 12 15 

t 
0 1 0 1 1 0 0 1 

I 
1 0 1 0 1 0 0 0 

I 
0 0 1 0 0 0 0 0 

I 

/ 

o o o 0 S o 0 

- - - - - -A14 

ADDRESS LINES 

BEFORE 

AFTER 

I 

I BIT 15 
IGNORED 

r 
r 1/0 

1 DECODE 

FIGURE 8-11. STCR WORD EXECUTION TO TMS 9901 

8-17 

+5V 

/ 
PO 

Pl 

P2 

P3 ~ 

P4 

P5 r-4~ 

P6 

P7 I-----<~ 

P8 

P9 r-
P10 

-::~ 
P11 r--

P12 -
P13 -
P14 -
P15 -

ADDRESS 

SELECT 

.~ 
TMS 9901 



(1) ASSEMBLY LANGUAGE 

LI R12,>120 
STCR Rl,6 

(2) SOURCE ADDRESS IN MEMORY 

PO 
(} 3 4 7 8 H 12 15 ~ 

Pl 1---1 

Rl 1 0 1 1 I 0 1 1 Q10 1 0 1 I 0 1 1 0 BEFORE 
P2 

P3 r--
(} 0 1 1 0 1 D- O 0 1 0 1 0 1 1 0 AFTER P4 

z 
T I I I I P5 

1 r " P6 -
EROED UNCHANGED +5V 

P7 -
P8 -
P9 r--

PtO r--
(3) AD DRESSING Pl1 f--

P12 f--

10 
0' 0 

I I 
o 1 f--0 0 0 0 1 0 0 1 0 0 0 0 BIT 15 P13 

D~ /I , IGNORED P14 f--

I P15 ~ 

ADDRESS 

I 
SELECT 

R12: 

IGNORE 

0 (} 0 0 0 0 0 1 0 0 1 0 0 0 0 / I flO I 
I DECODE TMS 9901 

AO ------------------A14 

I ,I 

ADDRESS LINES 

FIGURE 8-12_ STCR BYTE EXECUTION TO TMS 9901 

8-18 



(1) ASSEMBLY LANGUAGE 

LI R12, > 140 
TB - 3 

(2) ADDRESSING: 

BIT 15 

R12 10 0 0 0 0 0 0 0 0 0 I 0 0 0 0 I~ IS 

IGNORED ~'-_--'-_.....J!I L _______ -.-________ -'I'GNORED 

+ 1 o _ - 3 DISPLACEMENT 

ADDED TO ADDRESS 
SI GN EXTENDED ---...... f------t~ ___ _._~--------' 

ZEROES 

(3) 

I 
0000000 o 0 o 

AO---------------------------------------A14 

I 
ADDRESS LINES 

STATUS REGISTER: 

BIT NO. 0 

EQUAL 
BIT 

3 15 

I I 
I 

NOTE 

IF A JEQ (JUMP ON EQUAL) INSTRUCTION FOLLOWS A TB INSTRUCTION, A 1 
FOUND WILL CAUSE A JUMP, AND A 0 FOUND VVILL NOT CAUSE A JUMP (1 = 

EQUAL STATE). 

FIGURE 8·13. TEST CRU BIT AT TMS 9901 

8·19 

PO 

P1 

P2 

P3 
TMS P4 
9901 

P5 

P6 

P7 

P8 

P9 

P10 

P11 

P12 

- P13 

P14 

P15 

ADDRESS 

SELECT 



(n ASSEMBLY LANGUAGE 

U R12,>0120 
SBZ 7 

(2) ADDRESSING: 

R12 10 0 a a fa 

IGNORED 
II 

0 a 

4 

SIGN EXTEND 

1° 0 0 0 0 
I 

ZEROES 

a a 

a 0 

I 

a 0 

PO 

Pl 

P2 

P3 

P4 

P5 

P6 

P7 ZERO 

P8 

P9 

a 10 0 r 0 0 0 a I BIT 15 

IGNORED 

Pla 

P11 

• 
P12 

P13 
0 a a 0 0 .-. , 7 DISPLACEMENT P14 

~ ADDED TO ADDFfi::SS P15 

ADDRESS 

SELECT 

a 0 1 0 

FIGURE 8-14. SET CRU BIT AT TMS 9901 

8-20 



APPENDIX A 

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/100M 

A-1 GENERAL 
Figure A-1 shows the wiring configuration required to connect a 3320/5JE Teletype in a 
20 rnA current loop with a TM 990/100M. Other teletypewriter models may require 
different connections; therefore, consult the manufacturer for correct wiring of other 
models. Teletypewriters can be used with Assembly No. 999211-0001 only. 

CAUTION 

Note the 117 Vac connection at pins 1 and 2. Be sure that this 
voltage is not accidently wired to the TM 990/100M board. 

A-2 CONNECTIONS 
The following assumes that the teletypewriter is wired as it came from the factory. 

(1) Locate the 151411 terminal block at the left rear (viewed from the rear) of 
the machine (Figure A-1). 

(2) Move the white/blue wire from terminal 4 to terminal 5 on the terminal block. 

(3) Move the brown/yellow wire from terminal 3 toterminal5 on the terminal block. 

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal block (for 20 
rnA neutral signaling). 

(5) Locate the power resistor behind the teletype power supply. Remove the blue 
wire from the 750 ohm tap and connect it to the 1450 ohm tap, as shown in 
Figure A-2. 

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411. Voltage to ground must be 
zero with power applied. If not, do not connect to the TM 990/100M. 

NOTE 
For teletypewriter operation jumper Jll must be installed andJ7 
must be in the EIA position. 

A-3 TROUBLESHOOTING 
If the printer continues to chatter after the RESET switch on the TM 9OO/l00M has been 
activated, reverse connections 6 and 7 at the terminal strip. 

A-1 



PRINTER { 

KEVBOAR"{ 

A0001412 

TM 99O/100M 

P2 P2 

!:::ii!i::t! _________ .... 

OUTPULL 

OUTPUSH 

25 

24 

,11111·lJ -----..... 
L-._~;w;;;;t 

INPULL 

I NPUSH 

,. 
23 

LEFT REAR VIEW OF TELETYPEWRITER 

DETAIL A 

TELETYPE MODEL 3320/5JE 

TERMINAL 

* 

* 

* 

* 

STRIP 
151411 

9 

8 

7 

2 

1 

. VIOLETIPURPLE) 

YELLOW 

BLACK/GREEN 

WHITEIBROWN 

RED/GREEN 

, WHITE/YELLOW 

WHITE/BLACK 

WHITE/BLUE 

BROWN/YELLOW 

GREEN/ORANGE 

WHITE/RED 

117 VAC 

117 VAC 

-NO.6 SPACE LUGS 

FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS 

A-2 



FRONT II' 

1450 OHM TAP 

AOOO1413 

DETAIL A 

FIGURE A-2_ TELETYPEWRITER RESISTOR CONNECTION 

A-3 





APPENDIX B 

EIA RS-232-C CABLING 

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2 on the 
TM 990/100M and a 743 KSR data terminal. Also shown is the relationship between cable 
wires and signals to the serial interface, the TMS 9902. Figure B-2 shows the cable 
configuration for the 733 data terminal. 

NOTE 
When using an RS-232-C device, disconnect jumper J11 and 
insert jumper J7 in the EIA position. See Figure 7-2. 

EIA CABLE 
TM 990/100M 

~ __________ -AA ____________ ~, 
( 

P2 P2 P1 
TMSII02 

PROTECTIVE GND 

3 RECEIVED DATA TRANSMIT DATA 
RIN 2 

2 TRANSMITTED DATA 
3 XOUT 

RECEIVE DATA 

5 DCD REQUEST TO SEND 
RTS 8 

CTS 
6 DTR 

20 

DSR 
7 SIGNAL GND 

7 
SIGNAL GND 

NOTE: Suggested EIA cable connectors (ITT Cannon or TRW Cinch): 

P2: DB-25P 

P1: DE-15S 

AOO01414 

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL 

B-1 

743 DATA 

TERMINAL 



TM 990/100M EIACABLE - ~ -P2 P2 P1 
TMS9902 

tllm 
r---

PROTECTIVE GROUND 
1 

PROTECTIVE GROUND A 

RIN 3 RECEIVED DATA 2 

;f.~~1 
TRANSMIT DATA H 

XOUT 2 TRANSMITTED DATA 
3 RECEIVE DATA 10 

+1ZV ~.3K "W CTS 
733 

5 8 DATA 
1 ~~V"W 6 DSR 9 TERMINAL vv 

SIGNAL GND SIGNAL GND 7 7 

RTS 5 DCP 
8 

REOUEST TO SEND K 

i5iR 7 DTR 
20 I[I!1 DATA TERMINAL READY 

6 

'---

FIGURE B-2. EIA R8-232-C CABLING FOR 733 DATA TERMINAL 

B-2 



APPENDIX C 

ASCII CODE 

TABLE C-1. *ASCII CONTROL CODES 

CONTROL 
BINARY HEXADECIMAL 
CODE CODE 

NUL - Null 000 0000 00 
SOH - Start of heading 000 0001 01 
STX - Start of text 000 0010 02 
ETX - End of text 000 0011 03 
EOT - End of transmission 000 0100 04 
ENQ - Enquiry 000 0101 05 
ACK - Acknowledge 000 0110 06 
BEL - Bell 000 0111 07 
BS - Backspace 000 1000 08 
HT - Horizontal tabulation 000 1001 09 
LF - Line feed 000 1010 OA 
VT - Vertical tab 000 1011 OB 
FF - Form feed 000 1100 DC 
CR - Carriage return 000 1101 00 
SO - Shift out 000 1110 OE 
SI - Shift in 000 1111 OF 

OLE - Data link escape 001 0000 10 
DC1 - Device control 1 001 0001 11 
DC2 - Device control 2 001 0010 12 
DC3 - Device control 3 001 0011 13 
DC4 - Device control 4 (stop) 001 0100 14 
NAK - Negative acknowledge 001 0101 15 
SYN - Synchronous idle 0010110 16 
ETB - End of transmission block 001 0111 17 
CAN - Cancel 001 1000 18 
EM - End of medium 001 1001 19 
SUB - Substitute 001 1010 1A 
ESC - Escape 001 1011 1B 
FS - File separator 001 1100 1C 
GS - Group separator 001 1101 10 
RS - Record separator 001 1110 1E 
US - Unit separator 001 1111 1F 

DEL - Delete, rubout 111 1111 7F 

"American Standards Institute Publication X3.4-1968 

C-l 



TABLE C-2. *ASCII CHARACTER CODE 

BINARY HEXADECIMAL BINARY HEXADECIMAL 
CHARACTER CHARACTER 

CODE CODE CODE CODE 

Space 010 0000 20 P 101 0000 50 

! 010 0001 21 Q 101 0001 51 
.. (dbl. quote) 0100010 22 R 101 0010 52 

# 010 0011 23 S 101 0011 53 

$ 0100100 24 T 101 0100 54 

% 010 0101 25 U 101 0101 55 

& 0100110 26 V 101 0110 56 

• (591. quote) 0100111 27 W 101 0111 57 

( 010 1000 28 X 101 1000 58 

) 010 1001 29 y 101 1001 59 

* (asterisk) 010 1010 2A Z 101 1010 5A 

+ 010 1011 28 [ 101 1011 58 

, (comma) 010 1100 2C \ 101 1100 5C 

- (minus) 010 1101 20 1 101 1101 50 

. (period) 0101110 2E A 101 1110 5E 

/ 010 1111 2F _ (underline) 101 1111 5F 

0 011 0000 30 1100000 60 

1 011 0001 31 a 1100001 61 

2 011 0010 32 b 1100010 62 

3 011 0011 33 c 1100011 63 

4 011 0100 34 d 1100100 64 

5 011 0101 35 e 110 0101 65 

6 011 0110 36 f 110 0110 66 

7 011 0111 37 9 110 0111 67 

8 011 1000 38 h 110 1000 68 

9 011 1001 39 i 110 1001 69 

011 1010 3A j 110 1010 6A 

011 1011 38 k 1101011 68 

< 011 1100 3C I 110 1100 6C 

= 011 1101 3D m 110 1101 60 

> 011 1110 3E n 1101110 6E 

? 011 1111 3F 0 1101111 6F 

@ 100 0000 40 p 111 0000 70 

A 100 0001 41 q 111 0001 71 

8 100 0010 42 r 111 0010 72 

C 100 0011 43 5 111 0011 73 

0 100 0100 44 t 111 0100 74 

E 1000101 45 u 111 0101 75 

F 100 0110 46 v 111 0110 76 

G 100 0111 47 w 111 0111 77 

H 100 1000 48 x 111 1000 78 

I 100 1001 49 y 111 1001 79 

J 100 1010 4A z 111 1010 7A 

K 100 1011 48 { 111 1011 78 

L 100 1100 4C I 111 1100 7C I 

M 100 1101 40 } 111 1101 70 

N 100 1110 4E ~ 111 1110 7E 

0 1001111 4F 

* American Standards Institute Publication X3.4-1968 

C-2 



APPENDIX 0 

BINARY, DECIMAL AND HEXADECIMAL NUMBERING 

0-1 GENERAL 
This appendix covers numbering systems to three bases (2, 10, and 16) which are used 
throughout this manual. 

0-2 POSITIVE NUMBER$ 

0-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed from right to left, the right­
most digit represents the base number to th.e exponent O. The next digit represents the base 
number to the exponent 1, the next to the exPonent 2, then exponent 3, etc. For example, using 
the base 10 (decimal): 

106 105 104 103 102 101 100 

X, X X x, x x x 

or 

1,000,000 

t 100,000 
I 10,000 
, t 1000 100 10 1 

X, XXX, X X X 

For example, 75,264 can be broken down as follows: 

1.-___ 5 X 103 = 5 x 1000 

L..-----7 X 104 = 7 x 10,000 

D-1 

4 

60 

200 

5000 

+70000 
7526410 



0-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only 0 and 
1. When viewed from right to left, they each represent the number 2 to the powers 0, 1, 2, etc., 
respectively as shown below: 

215 

(32,768) ••• 
x ••• 

26 25 :tt 23 
(64) (32) (16) (8) 

x x x x 

For example, 11011 2 can be translated into base 10 as follows: 

or 11011 2 equals 2710• 

t 1 o 

x 20 = 1 x 1 = 1 

x 21 ~ 1 x 2 = 2 

'-------(} x 22 = 0 x 4 = 0 

"--------1 x 23 = r x 8 = 8 

'---~------t x24 = f x 16= +16 

Binary is the language of the digital computer. For example, to place the decimal quantity 23 
(2310) into a 16-bit memory cell, set the bits to the following: 

o 15 

1 0 1 01 0 I 0 I 0 0 0 0 0 0 0 o 1 

which is 1 + 2 + 4 + 16 = 2310 . 

0-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten 
digits, hexadecimal uses 16 (0 to 9, A, B, C, 0, E, and F). 

The letters A through F are used to represent the decimal numbers 10through 15 as shown on 
the following page. 

D-2 



NJ(l Nil, NJO Nih 

0 0 8 8 
1 1 9 9 
2 2 10 A 
3 3 11 B 
4 4 12 C 
5 5 13 D 
6 6 14 E 
7 7 15 F 

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the 
powers 0, 1, 2, 3, etc., as shown below: 

163 162 161 160 

(4096) (256) (16) (1) 

x x x x 

For example, 7 B A 5 16 can be translated into base 10 as follows: 

7 B A 5 1 T T 5X'60= 5X' 

. 
10 X 161 = 10 X 16 

11 X 162 = 11 X 256 

'------- 7 X 163 = 7 X 4096 

or 7 B A 5 16 equals 31,65310. 

5 

160 

2816 

28672 

3165310 

Because it would be awkward to write out 16-digit binary numbers to show the contents of a 
16-bit memory word, hexadecimal is used instead. Thus 

003E16 or > 003E ( > indicates hexadecimal) 

is used instead of 

0000 0000 0011 11102 

to represent 6210 as computed below: 

D-3 



BASE 2 BASE 10 

1 1 t ~OX20 6~ 
0 .~::;:, 2 

1 X 2' 2 60 
1 X 22 4 

1 X :z3 8 
6210 

1 X ~ 16 

1 X 25 32 BASE 16 

62'10 

160 = 14 f 1'& 14X 

3X 16.1 48 

Note that separating the 16 binary bits into four-bit parts facilitates recognitic n and translation 
intI') hexadecimal. 

0000 

• 
0000 

• 
0011 

• or 

C 7 

~ ~ 
B 

• o o 3 1100 0111 1011 

6210 

Table 0-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table 0-2 
shows binary, decimal and hexadecimal equivalents for numbersOto 15. Note that Table 0-1 is 
divided into four parts, each part representing four of the 16-bits of a memory cell orword (bits 
o to 15 with bit 0 being the most significant bit (MSB) and bit 15 being the least significant bit 
(LSB). Note that the MSB is on the left and represents the highest power of 2 and the LSB on the 
right represents the 0 power of 2 (2° = 1). As explained later, the MSB can also be used to signify 
number polarity (+ or -). 

NOTE 
To convert a binary number to decimal or hexadecimal, convert 
the positive binary value as described in Section 0-4. 

0-4 



TABLE 0-1. HEXADECIMAUDECIMAL CONVERSION CHART 

MSB 

BITS 0 1 

HEX 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

2 3 

DEC 

o 
4096 
8192 

12288 
16384 
20480 
24576 
28672 
32768 
36864 
40960 
45056 
49152 
53248 
57344 
61 440 

4 5 

HEX 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

6 7 

DEC 

o 
256 
512 
768 

1024 
1 280 
1 536 
1 792 
2048 
2304 
2560 
2816 
3072 
3328 
3584 
3840 

8 7 

HEX 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

8 11 

DEC 

o 
16 
32 
48 
64 
80 
96 

112 
128 
144 
160 
176 
192 
208 
224 
240 

LSB 

12 13 14 15 

HEX DEC 

o 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 

.. 7 7 
8 8 
9 9 
A 10 
B 11 
C 12 
o 13 
E 14 
F 15 

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal 
digit. For example, 7A8216 would equal in decimal 28,672 + 2,560 + 128 + 2. To convert 
hexadecimal to decimal. find the nearest decimal number in the above table less than or equal 
to the number being converted. Set down the hexadecimal equivalent then subtract this 
number from the nearest decimal number. Using the remainder(s), repeat this process. For 
example: 

31,36210 = 700016 + 269010 
2,69010 = AOO16 + 13010 

13010 = 8016 + 210 
210 = 216 

D-5 

7000 
AOO 

80 
2 

7A82L6 



TABLE 0-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS 

BINARY DECIMAL HEXADECIMAL 
(N2) (N lO) (N 16) 

- ---

0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 ' 5 5 
0110 6 q 
0111 " 7 7 ," 

.1000 '8 8 
1001 9 9 
1010 '" 10 A 
1011 , 11 B 
1100 ,12 

, 
C 

" 

1101. 13 0 
1110 14 E 
1111 15 F 

10000 16 10 
10001 17 1:1 

" 

10010 18 12 
10011 19 13 
10100 20 14 
10101 21 15 
10110 22 16 
10111 23 17 
11000 24 18 
11001 25 19 
11010 26 lA 
11011 27 lB 
11100 28 lC 
11101 29 10 
11110 30 lE 
11111 31 IF 

100000 32 20 

0-6 



0-3 ADDING AND SUBTRACTING BINARY 
Adding and subtracting in binary uses the same conventions for decimal: carrying over in 
addition and borrowing in subtraction. 

Basically, 

o 
+ 1 

1 

+ 1 

10 (the carry, 1, is carried to the left) 

10 

- 1 

01 (1 is borrowed from 
top left) 

1} = 0 + carry 1 
1 . 

+ 1 = 0 (from above) + 

11 

~carry 

~} = 0 + carry 

+ ~ } = 0 + carry 

100 ~ lLo + 0 = 0 

carry 1 + carry 1 

1 

11 

+ 1 

101 

carry 1 + 1 10----1/ 

1~1 Borrow the 1 
0111 

1 

10110 

- 1 

0111 

0-7 



0-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent 
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative 
number (determine its positive equivalent) use the two's complement of the binary number. 

NOTE 
To convert a binary numberto decimal, convertthepos;t;ve binary 
value (not the negative binary value) and add the sign. 

Two's complementing a binary number includes two simple steps: 

a. Obtain one's complement of the number (1 's become O's, O's becomes 1 's) (invert 
bits). 

b. Add 1 to the one's complement. 

For example, w~th the MSB (left-most bit) being a sign bit: 

101 Invert 

+ 1 Add 1 

110 (-22) 

000 Invert 

+ 1 Add 1 

001 (+12) 

001 Invert 

+1 Add 1 

010 (+221 

This can be expanded to 16-bit positive numbers: 

(=39F616) 0011' 1001 1111 0110 (39F6 16 

1100 0110 0000 1001 Invert 

+1 Add 1 

(=C60A16) 1100 0110 0000 1010 (C60A16 

~SIGN BIT(-) 

And to 16-bit negative numbers: 

(=C60A161 1100 0110 0000 10lD (C60A16 

0011 1001 1111 0101 Invert 

+1 Add 1 

(=39F6 t6) 0011 1001 1111 0110 (39F6 16 

~SIGN BIT(+) 

D-8 

010 Invert 

+ 1 

+14,83810) 

-14,83810) Two's Complement 

-14,83810) 

+14,83810) Two's Complement 



APPENDIX E 

PARTS LIST (TM990/100M-1) 

TABLE E-1. PARTS FOR All BOARDS 

SYMBOL DESCRIPTION QTY. 

C1 to C4 Capacitor, 22 J-LF, tantalum electrolytic 4 

C7 to C22, Capacitor, 0.047 J-LF, axiat lead 35 
C24 to C42 

C23 Capacitor, 18 pF, ceramic disc 1 

CR1 Diode, 1 N914B 1 

l1 Inductor, 0.33 J-LH 1 

P2 Connector, EIA, 25-pin socket 1 

R1, R4, R5 Resistor, 68 ohms, 114 W, 5% 3 

R2, R9, R11 Resistor, 220 ohms, 114 W, 5% 3 

R3, R8,R10 Resistor, 330 ohms, 114 W, 5% 3 

R6, R12, Resistor, 4.7 kilohms, 114 W, 5% 5 
R13, R14, R19 
R7 Resistor,1 kilohm, 114 W, 5% 1 

R15 to R18 Resistor, 10 ohms, 114 W, 5% 4 

R20, R34, R35 Resistor, 3.3 kilohms, 114 W, 5% 3 

R21 Resistor, 33 kilohms, 114 W, 5% 1 

S1 Switch, SPOT 1 

E-1 



Ul Resistor Pack, 4.7 kilohms, 16-pin 

U2 74LS241 N, .octal buffer 1 

U3toUl0 74LS243N, quad bidirectional buffer 8 

Ul1,U14 7438N, quad, 2-input NAND gate, open collector 2 

U12 75140N, receiver 1 

U13, U21, U27 74LS04N, hex.inv~rter 3 

U15 TMS 9901, programmabfe systems interface 1 

U16 TMS 9900, central processing unit 1 

U17 74S287N, PROM, 256 x 4 bits 1 

U18 74LS20N, dual 4-input NAND gate 1 

U19 74LS362N, clock generator 1 

U20 74LS138N, 3 to 8 decoder 1 

U22, U26, 74LS74AN, dual D flip-flip 4 
U30, U31 

U23 74S288N, PROM, 32 x 8 1 

U25 Resistor pack, 4.7 kilohms, 14 pin 1 

U28 74LS132N, quad, 2-input NAND gate, Schmitt trigger 1 

U29 74LS08N, quad, 2-input AND gate 1 

U32, U34, TMS 4042-2 RAM, 256 x 4 bits 4 
U36, U38 (Replaceable with 2111A-4, 2111A, or 2111A-2) 

U40 TMS 9902, asynchronous communications controller 1 

U41 75189N, EIA driver 1 

U46 75188N, ErA driver 1 

E-2 



VRl Converter, -5 V, LM7905C 

XU15 40-pin socket, low profile 

XU16 64-pin socket, low profile 

XU17,XU23 l6-pin socket, low profile 

XU19,XU40 20-pin socket, low profife 

XU32 to XU39 lS-pin socket, low profile 

XU42 to XU45 24-pin socket, row profile 

Yl Crysta I, 4S MHz, 3 overtone 

TABLE E-2. ADDITIONAL PARTS FOR ASSEMBLY 999211-0001 
(TTY INTERFACE) 

SYMBOL DESCRIPTION 

01 Transistor, 2N2905A, .PNP 

R30 Resistor, 560 ohms, 112 W, 5% 

R3l Resistor, 2.7 kilohms, 112 W, 5% 

R32 Resistor, 330 ohms, 112 W, 5% 

U42,U44 TMS 270S EPROM (1024 x Sbits each)vvith TIBUG 
monitor 

E-3 

1 

1 

1 

2 

2 

S 

'4 

1 

QTV. 

1 

1 

1 

1 

2 



TABLE E-3. ADDITIONAL PARTS FOR ASSEMBLIES 999211-0002 
AND 999211-0003 (MULTIDROP INTERFACE) 

SYMBOL DESCRIPTION 

CR2,CR3 Zener diode, 3.3 V 

R22, R24, Resistor, 330 ohms, 1 14W, 5% 
R26,R28 

R23, R25, Resistor, 27 kilohms, 114 W,5% 
R27, R29 

U42,U44 TMS 2708 EPROM (1024 x 8 bits each) 

U47 75112, balanced line transmitter 

U48 75107, balanced line receiver 

TABLE E-4. ADDITIONAL PARTS FOR ASSEMBLY 999211-0003 ONLY 
(MUL TIDROPINTERFACE) 

SYMBOL 

U33, U35, 
U37, U39 

U43,U45 

DESCRIPTION 

TMS 4042-2 RAM, 256 x 4 bits each 
(expansion RAM) 

TMS 2708 EPROM, 1024 x8 bits each 
(expansion EPROM) 

E-4 

QTY. 

2 

4 

4 

2 

1 

1 

QTY. 

4 

2 



7' .... 

N OTE.S: UI\JLE5~ OTHERIAIISE SPECiFiED 

I. C"""CIT ~NG( V~L~ES ~~\' \11 N\IGROf~\\'Dc, 

'2. INDOCT-'NC.E VP\LU[~ A.Hf. IN f'I\\CRO\::P\RA05 

o 39"F cSlce ELECTROLY11C UP~CITORS 'RE USER 
INST~LLPo.BLE. ,'r\'ES"t- S\-I.OUlD BE l"!\N.T~\_JJW'I CI\P/>..l\i OR'S , 
ISV MINIMUM. 

[iJ ON THE- TM990/IODN\-\ Po.')')(N\BU, IH£: \\':'( IN.iERfM.L 
l':::l PD?LULPo.TE.O. ON. T\\E TNVJ':IO!IOOIV\-'2.... r:o..:)S[~BU, TWt... 
rf\UL TI-DROP IKTERFP\CE \"l PCWULP-.,ED 

~ PIN I OF Uf /5 REMOVED FROM CIRCUITRY 
FOR -0004 ASSY ONLY 

+I2V----------------------

U2.1 

I~L 
II~IO 
13~1;: 
~j 
74LSQ4N 

loW2S 

~lS132N 
~~ 
~74·\..S08N 

I 

~36 

SPA.RES 

U21 

-V-
12 

~ 
74\..504 751SBN 

GND _~~.;;;..;.;,.;~~ .... - .... - .... - .... -~-... ..,...,.~Pl-l)2,ZI,l3,Z.5,2.7,31. 
11, 1'3)81~B3,85, 

B~J 5 I,':}':', I 00) 

LOGIC OIAGRAM, TM 990/1OOM 
SHEET 1 of 8 

~ 
:::t 
m 
s: » 
-I 
(") 
(I) 

» z 0» 
O~ 
s:~ 
~2 
~X 
0"11 
Z » ,... 
o 
:D 

~ 
Z 
C) 



SH8 ~ 6RESET 

,H 8 COAD 4 LC5AD 
5H 1 IAQ ---' lAO 

r ~ 1 8 ¢ I 

,!ilL -~<j)2 
5H8, ¢3_Zll<))3 l <1>4 2: <))4 

5H 3 INTRW 3; INTFfE(j r lCO 36 rco 
_rC_l ___ ~ ___ ~;,SrCl 

5H 31 Ie? 34 lC2 l IC3 -~IC3 
RE.ADY ~, READY 

5H4\ WAIT 3 WAIT 
l HOCli 64 HOLD 

51U,4P HOLDA 5HOLOA UI6 
V8B'-5V) I VBB 
'.'cel+ V) Vce 

'.'DD(+leV) ~;Vcc 
--"-- Voo 
2fVsc 

~ L'1Qvs~ r CRU I N -31 CRUIN 
5H 1,3 P l---'"cLlR"'U"'O"'u-'--T ____ """'I~OCRUOUT 

5H 1,3 ~~UC K 61 CwREUCLK 

5H1,b MTM"Th 
5H 4 ) OBIN ~9 MEMEN 

1 OBIN 

TMS9900 

U 18)J--"5!iJ;j",~,,,,1 '---SH "',7 

+5V--...... ~ 

D [1 t1:L--~ o_L 
D ' f'lL---------DL-
02 43 02 
03 44 D~ 

o 4~---ll'l-
05 46 OS 
06 47 D6 
07 48 07 
08 49 08 

09~·----···------'l:L. 
OIO~---·illQ... 
011 2 n 
Dj25~ 012 
01:;4 ,013 
o 14~-- - ___ ----W-<L 
015 56 ~ 
AO "4 Ao 
AI '-2. AI 

A2 A2 

A3 I A3 
A4 120 A4 
A5'9 'AS 

A6 18 ~ AA67 
A 7 1"'7,-_+++-,,"---
AS 16 AS 

A9~- A9 
AI0114 AIO 
All 1,3 AI 
AI2112 AI2 

AI:; II AI3 

A 14 110 A 14 

1SH-t \ T 

I 

ISH4,Sl7 

1 
," SH 1,51(" t 7 

j 

1 
fS~ " ~p 

74L5138 

CENTRAL PROCESSOR UN.IT 

SH 3,4 

LOGIC DIAGRAM TM 99O/100M 

SHEET 2 of 8 



UI5 
." 

W Tl'1S'J'JOl 

+5V 

, :2 
I ",IUl 
L ':J 

'L.' _____ .. Pl- 18 

RS 232. Rev) P2..-l 

:
P2 -I 

1_~ --~- Pl-1 

LOGIC DIAGRAM TM GG0/100M 
SHEET 3 of8 



"'5 V 
RI9 
/OK-D.. 
I/+W 

~cs 
~DE 

990lSEL 
001' ~ }5H3 

002 EXTCRU 3H 7 

[ --~~~67----~--~~~~g~ 
5H2 l .a JJ 0 B 

.'" Jl; OA 

DO SITl l 00 Z 

~~66 ~~~ 3 SH 1 

007·~7----------------.--~;~E~E~~~ --
00B.~9~------__ ------~~~--U23 

7432.88 

SH ~ WAIT 

MEMORY CONTROL_ 

'"'i 

lul31 
HO, D. 19 81 

WE 13 I 1 

DBIN III 01 
I I 

WE,&. -c>PI-lB 

OBIN.8 
PI-B~ 

ME-MU .8 PI-B'l-
4. 

y6 

,"<MEN I~I 
LV.J 
74LS04-~ 

Mf'MCYC 

ME->'IEN.B PI-BO IY 3 
UII 

~1\ +5V 

HOLQA.5 -7 PI-8t.:. 

~U14 

CONTROL LINE BUFF ERS 

LOGIC DIAGRAM, TM 990/100M 

SHEET 4 of 8 



"'TI , 
U'1 

- N ~I ~ d ~ oX) Gl 0 - r<) o::t lO I.D 1'- - N ~I ~i Ni 8 a) 0'.1 0 - rt') -q lO <J) 1'-

E.~~~~~a~aa~aa~ 
, 1l3;S U45 
; g: TMS2708 

O<:Nr<)o::t..n~1'-~~ 

U44 
TMS270B 

",N 
NN 

'-------~--++_t_+__+- -
L-__________ ~~+_~~~~-------~-----

N 

:r: 
UJ 

,-------~--- -

~ ~ ~I~; ~ ~ ~I 

- ----------

r----------i--+--- ---

~-+-+-+-+ ----~--H--

U 43 
TMS2708 

UIJ2 
TMS2708 

A' 
AE 
A7 
A8 
A9 
AIO 
All --- -------+-1--+-J>--------~LL 
A 12 
A 13 
AI4 

~H 2-

EPROM MEMORY 

LOGIC DIAGRAM, TM GGO/1ooM 

SHEET 5 of 8 



I~I~ ±'!2 '" I~I~ "'"' <! 
0 0 CD 

-~~ 

- _.-

~""N-\D ",0<0 "'l~ ~-I£ I", <0 ~l",-~ ",o,£? 

l U32 

J I 
U33 

II 
U34 

TMS4042-2 TMS4042-2 TMS4042-2 

~ - N"'" "-~<O - N"'''' ~ - "'{1 - . 

--

0-

" '" 0 0 ",,,, 
Ac;, 

l":Ai'i 
A 

D&IN 
WE -- - .. -~.-

"'2 ~- <0", 0<0 o;;;rI"0N-U) ",0<0 

1'£ Z Z"'-~'OltjltJsll U36 

II TMS4042-2 U35 TMS 4042-2 
f'-~tOq-t0N;;O 

... '" <0"- N"'~ "-'" <o~ "''''''-
AI4 - ---

ill 
AI2 
All 
AIO 
A9 
A8 
A7 

RAM MEMORY 

"r-t lf\ 
",Cl 0'" 

-:r~ 
N_ ,!,,,, 0<0 'IT f'I1£::!-1.O ",0<0 

U37 

II 
U38 

TMS 4042-2 TMS 4042-2 

... ~ <Oe: N"'~ "-~ ~ "''''.,. 

~ ~ 0-
",0 

~'" "':: ,!,,,, O~ 

I l U39 

I TMS 4042-2 

"-~<o N"'~ -
AI4 

AI2 
AI 
AIO 
A9 
A8 
A7 

LOGIC DIAGRAM, TM 9901100M 
SHEET 6 of 8 



5H 2 HQ DA '" . HOLDA 

U21 
74l"J04t. 

+SV 

14 

03 II I BVCCIA 3 03.5 

e I 2B 2A D2.~ 

OJ 9 363A 5 D1.B 
no 1'4B 4A!L-~ 

~ ~GAB 
DBIN U2 DOUT 13 GBA 

7.ofLSgSN GN? U3 
74LS243N 

SH 2 

SH4 DIN -

Dl 
I 

II D7.B 
D<;, I: ~-~ 
05 9 ~_R~ 
[)4- e 04.5 

~ L'Ll r 7 74L:=- ',::N 

I 
7 

+.,v 
.---_I"!:. 

011 II DI\.e 

010 10 OIQ.13 
09 9 ~B:. 
08 B DB.8 

r-l 
~ 

Uc 

7 7'lLS243N 
7 

+5V 
14 

DIS II fL--~ 
DI4 10 ~_DI4.B) 
DI3 9 5 013.B 
Ole 8 ~~ 

r-l U6 
lJ..; 

7 74LS243N 

PI-:,(a 

PI-35 
PI- 34 
PI-33 

PI-40 
PI-3':1 
PI-38 

PI -}1 

PI-44 

PI-43 

PI-42. 

PI-41 

PI-48 

PI-47 
PI-'t1D 
P\-45 

+5V 

114 

r~ II 3~~f'10D l AZ 4 ---"'-~~ PI-5~ 
SHe. AI 19 5 AI.B PI-55 

AO 6 LJ7 E. AP~j:?---) PI ':Jl 

-tSY---+ I 

• 
l? 74LS243N 

r-+~V 

,''' 
i"3'---_AC'-7~. -,::0--, PI ,,+ 

_A~.B~ PI-(;'3 

i'L----"'4'"'-,cO. F'I C L 
I1C'---_"'A,,4."'8-} PI - 01 

74LS21'l:'>N 

PI-COB 

PI-&' 1 

PI-faG, 
AB.&) PI-I.oS 

7tlLS21l3N 

AIS.B PI--n: 
. AH.B) PI-71 

_~~!1~~ PI 70 
AILB PI b3 

DATA/ADDRESS BUS BUFFERS 

SH 2 CRIJOui 

NC 
PI-2'3 CRUI~.~ 

SH 2 lAO. 
5H B 1 

5H5~ . 
5118 elK 

+ 5V 

Sh 2 
PI- I~ 

PI- 22 
PI-ZA 

PI-2iD 

LOGIC DIAGRAM, TM 990/100M 

SHEET 7 of 8 



." 

00 

51 
U27 

74LS04N 
5 

PRES.B P 1 - 94 <-'-==VRV5v-----.----;=~--' 

Pl-93 

~8A 
Ij4W 

RESTART.B 

R4 
G8--,,--, J/4W 

R7 
1.0K 
1/4>1 

+sv 
,--1 

I~ 
I 4.7,Kn.IU 2-S 

L 6_.-J -"'-___ -+ _________ --"'-117 eSC IN 

+JZV __ I:3 VDD 

+ 5V- .. __ ~O Vee U 19 
l°Io.ND 

~-.-~G"l\) 
-= L1 (23 I TANKl 

.33 H ~OOV 
',P 2TA~KZ. 

IBxTAll 

19 XTA',--c 
_______ 5 FF8 

~21""_+R~18V'V'OvA-",0,-*_w_-=~ 014 2. 

SN74LS 3"2 11 

RESET/LOAD/CLOCK 

+5V 

-5Y 
flrl 

J5 ITI J6 

DUPLEX SELECTORS 

5 H 3 ---'17'N'=P"'U""5H"---_---,~-+~--_!-4~1 IA 
SH 3 INPUlL 2 IE> 

CR3 
IN5J33 

CR2 
IN5333 N~~~ 

+5V ---L~ VC(.+ 

-5v- 13 Vcc _ 

-.1 12 8 
122A 

-.J. GN O U<'l8 

75107 

10 
} NC 

MULTI- DROF INTERFACE I!l 

LOGIC DIAGRAM, TM 9901100M 
SHEET 8 of 8 



COMPONENT SIDE 

o 
o 
'" ,.: 

jL.O~2;.OO~ 

SECTION A-A 
SCALE: NDNE 

( 4 PLAC.ES 
3 PLACES ROTATED 

a 

.035±.OI2 

2 PLACES 

o 
a 
r-

/1,000 

r~~ 
-.J6X45° 

10 PLACES 

.031.'.:88~ 

.033 ':gg~ ----1r-:..::.:.:.:..;~1lJ 

.035':Sg ----t~~:.:.:~~~ I 

.046,:gg~ 

.094 :': .00 3:-1 -:-::-=--­
.140±.004 __ t-:~~..'::.'~tOI 





APPENDIX G 

990 OBJECT CODE FORMAT 

G.1 GENERAL 
In order to correctly load a program into memory using a loader. the program in hexadecimal 
machine code must be in a particular format called object format. Such a format is required by 
the TIBUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag 
character for each l6-bit word of coding which flags the loader to perform one of several 
operations. These operations include: 

• Load the code at a user-specified absolute address and resolve relative addresses. 
(Most assemblers assemble a program as if it was loaded at memory address 000016; 

thus. relative addresses have to be resolved.) 

• Load entire program at a specific address. 

• Set the program counter to the entry address after loading. 

• Check for checksum errors that would indicate a data error in an object record. 

G.2 STANDARD 990 OBJECT CODE 
Standard 990 object code consists of a string of hexadecimal digits. each representing four 
bits. as shown in Figure G-l. 

TAG CHARACTERS-------~· 

OOOOOSAMPROG 90040 0000A0020BC060B0002 0042C0020A0024 BC81 BC002A7F21AF 
A0028B0241 BOOOOBCB41 B0002B0380AOOCAC0052COOA2B02EOC0032 B0200BOFOF7F10EF 
A0006BCOAOCOOCAB04C3BC160COOCCBC 1 AOCOOOOBC072B0281 B3AOOAOOECB02217F 151 F 
AOOEEB0900B06C1AOOEAB1102AOOF2B0543B11F8B2C20C0032BC101 BOB44BE0447F18EF 
A01 OOBO 066B0003B0282COOA2B 11 E DB03407F 832F ~ 
~C~ 7FOABF CHECKSUM FIELD---" 

.~'-- LENGTH OF RELOCATABLE CODE 

'" ~RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE) 

END OF OBJECT CODE MARKER 

A0001462 

FIGURE G·'. OBJECT CODE EXAMPLE 

G·1 



The object record consists of a number of tag characters, each followed by one or two fields as 
defined in Table G-l. The first character of a record is the first tag character, which tells the 
loader which field or pair of fields follows the tag. The next tag character follows the end of the 
field or pair of fields associated with the preceding tag character. When the assembler has no 
more data for the record, the assembler writes the tag character 7 followed by the checksum 
field, and the tag character F, which requires no fields. The assembler then fills the rest of the 
record with blanks, and begins a new record with the appropriate tag character. 

Tag character 0 is followed by two fields. The first field contains the number of bytes of 
relocatable code, and the second field contains the program identifier assigned to the program 
by an lOT assembler directive. When no lOT directive is entered, the field contains blanks. The 
loader uses the program identifier to identify the program" and the number of bytes of 
relocatable code to determine the load bias for the next module or program. The PX9ASM 
assembler is unable to determine the value for the first field until the entire module has been 
assembled, so PX9ASM places a tag character 0 followed by a zero field and the program 
identifier at the beginning of the object code file. At the end of the file, PX9ASM places another 
tag character zero followed by the number of bytes of relocatable code and eight blanks. 

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry 
address is absolute. Tag character 2 is used when the entry address is relocatable. The 
hexadecimal field contains the entry address. One of these tags may appear at the end of the 
object code file. The associated field is used by the loader to determine the entry point at which 
execution starts when the loading is complete. 

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last 
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used 
when the last appearance of the symbol is absolute code. The hexadecimal field contains the 
location of the last appearance. The symbol in the second field is the external reference. Both 
fields are used by the linking loader to provide the desired linking to the external reference. 

For each external reference in a program, there is a tag character in the object code, with a 
location, or an absolute zero,· and the symbol that is referenced. When the object code field 
contains absolute zero, no location inthe program requires the address that corresponds tothe 
reference (an lOT character string, for example). Otherwise, the address corresponding to the 
reference will be placed in the location specified in the object code by the linking loader. The 
location specified in the object code similarly contains absolute zero or another location. When 
it contains absolute zero, no further linking is required. When it contains a location, the addr€ ,s 
corr.esponding to the reference will be placed in that address by the linking loader. The locat. m 
of each appearance of a reference in a program contains either an absolute zero or anott er 
location into which the linking loader will place the referenced address. 

G-2 



TABLE G-l. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS 

TAG 
CHARACTER 

o 

2 

3 

4 

5 

6 

7 

a 

9 

A 

B 

C 

D 

F 

G 

H 

-Not supplied by assembler. 

HEXADECIMAL FIELD 
(FOUR CHARACTERS) 

Length of all relo-
catable code 

Entry address 

Entry address 

Location of last 
appearance of 
symbol 

Location of last 
appearance of 
symbol 

Location 

Location 

Checksum for 
current record 

Ignore checksum 

Load address 

Load address 

Data 

Data 

Load bias value· 

None 

Location 

Location 

SECOND FIELD MEANING 

a-character program Program start 
identifier 

None Absolute entry 
address 

None Relocatable entry 
address 

6-character symbol External reference 
last used in relo-
catable code 

6-character symbol External reference 
last used in absolute 
code 

6-character symbol Relocatable external 
definition 

6-character symbol Absolute external 
definition 

None Checksum 

None Do not checksum for 
error 

None Absolute load 
address 

None Relocatable load 
address 

None Absolute data 

None Relocatable data 

None Load point specifier 

None End-of-record 

6-character symbol Relocatable symbol 
definition 

6-character symbol Absolute symbol 
definition 

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the 
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are 
used by the linking loader to provide the desired linking to the external definition. The sec')nd 
field contains the symbol of the external definition. 

G-3 



Tag character 7 precedes the checksum, which is an error detection word. The checksum is formed 
as the record is being written.' It is the 2's complement of the sum of the 8-bit ASCII values of each 
character in the object record from the first tag of the record through (and including) the checksum 
tag 7. If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be used 
when object code is changed in editing and it desired to ignore checksum. 

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is 
used when the load address is absolute. Tag character A is used when the load address is 
relocatable. The hexadecimal field contains the address at which the following data word is to 
be loaded. A load address is required for a data word that is to be placed in memory at some 
address other than the next address. The load address is used by the loader. 

Tag characters Band C are used with data words. Tag character B is used when the data is 
absolute; an instruction word or a word that contains text characters or absolute constants, for 
example. Tag character C is used for a word that contains a relocatable address. The 
hexadecimal field contains the data word. The loader places the word in the memory location 
specified in the preceding load address field, or in the memory location that follows the 
preceding data word. 

To have object code loaded at a specific memory address, precede the object program with the 
o tag followed by the desired memory address (e.g., DFDOO). 

Tag character F indicates the end of record. It may be followed by blanks. 

Tag characters G and H are used when the symbol table option is specified with other 990 
assemblers. Tag character G is used when the location or value of the symbol is relocatable, 
and tag character H is used when the location or value of the symbol is absolute. The first field 
contains the location or value of the symbol, and the second field contains the symbol to which 
the location is assigned. 

The last record of an object code file has a colon (:) in the first character position of the record. 
followed by blanks. This record is referred to as an end-of-module separator record. 

Figure G-2 is an example of an assembler source listing and corresponding object code. A 
comparison of the object tag characters and fields with the machine code in the source listing 
will show how object code is constructed for use by the loader. 

G-4 



SOURCE STATEMENT NO. 

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE) 

r MACHINE CODE 

SDSMAC 945278 ...... 

/ PAGE 13(11)1 

1)(1(11 WT "SAMPLE' 
-'02 0(1(10 ~3006" DATA ~·JSPACE 

133 0002 f'e8A' DATA START 
(113134 el304 eOl3(1 DATA a 
oe0S ee06 WSPACE ass 32 
l3e06 ee26 TABLE BSS 100 
0007 908A START 
ea08 e.38A 04(:( CLR 12 
eee9 eeac 040) CLR '" e01e e0SE 132(12 LI 2, TABLE 

131390 (11326" 
e011 ,(n)92 C8(n3 110'.1 e,@TABLE+;2 

0(194 (11328' 
ee12 0096 1~~1i.31 JMF' $+4 
l::le13 0098 LOOP 
13131.4 0098 ~)2CI4 LI 4,)1234 

009A 1234 
0131.5 0e9C 13244 ANDI 4,)-FEED 

ee9E FEED 
131316 00A0 OC84 1'10'.,.'8 4, .... ;2+ 
l3017 e0A2 132(15 LI 5 .. )5555 

0eA4 5555 
ee1.8 00A6 C805 MOV 5,@TABLE 

eBA8 131326' 
1211319 END 

NO ERRORS 

000AASAI'1PLE Ii 0 0 0 Cle (I (I 06(: (I 08RH 00 (lOA I) 08RI: 04CC1:04C O.E: (ie' 0::1:.1.1 1)261:C::::: 007F20 OF (100 
C0028B1001B0204B1234B0244BFEEDBDC84B0205B5555BC805C00267F3C1F 000 

SAMPLE 00/00/00 08:14:23 SDSMAC 945278 •• 

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE 

G-5 





APPENDIX H 

P1, P2, AND P4 PIN ASSIGNMENTS 

TABLE H-l. CHASSIS INTERFACE CONNECTOR (Pl) SIGNAL ASSIGNMENTS 

Pl 
SIGNAL 

Pl 
SIGNAL 

Pl 
SIGNAL 

PIN PIN PIN 

33 OO.B 71 A14.B 12 INn3.B 
34 01.B 72 A15.B 11 INn4.B 
35 02.B 22 .0'l.B 14 INn5.B 
36 03.B 24 oOO.B 28 EXTClK.B 
37 04.B 92 HOlO.B 3 +5V 
38 05.B 86 HOlOA.B 4 +5V 
39 06.B 82 OBIN.B 97 +5V 
40 07.B 26 ClK.B 98 +5V 
41 08.B 80 MEMEN.B 75 +12V 
42 09.B 84 MEMCYC.B 76 +12V 
43 010.B 78 WE.B 73 -12V 
44 011.B 90 REAOY.B 74 -12V 
45 012.B 87 CRUClK.B 1 GNO 
46 013.B 30 CRUOUT.B 2 GNO 
47 014.B 29 CRUIN.B 21 GNO 
48 015.B 19 IAO.B 23 GNO 
57 AO.B 94 PRES.B 25 GNO 
58 A1.B 88 IORST.B 27 GNO 
59 A2.B 16 INn.B 31 GNO 
60 A3.B 13 INT2.B 77 GNO 
61 A4.B 15 INT3.B 79 GNO 
62 A5.B 18 INT4.B 81 GNO 
63 A6.B 17 INT5.B 83 GNO 
64 A7.B 20 INT6.B 85 GNO 
65 A8.B 6 INT7.B 89 GNO 
66 A9.B 5 iNT8.B 91 GNO 
67 Al0.B 8 INT9.B 99 GNO 
68 Al1.B 7 INnO.B 100 GNO 
69 A12.B 10 INT11.B 93 RESTART.B 
70 A13.B 9 INn2.B 

H-l 



TABLE H-2. SERIAL 110 INTERFACE (P2) PIN ASSIGNMENTS 

P2 
SIGNAL DESCRIPTION 

PIN 

1 GND 

7 GND 

3 RS232 XMT RS232 Serial Data Out 

2 RS232 RCV RS232 Serial Data In 

5 CTS Clear to Send 
(3.3KO pull-up to +12 V) 

6 DSR Data Set Ready 
(3.3KO pull-up to +12 V) 

8 DCD Carrier Detect 

20 DTR Data Terminal Ready 

18,23 TTY XMT TTY Receive loop/Private 
Wire Receive Pair 

24,25 TTY RCV TTY Transmit loop/Private 
Wire Transmit Pair 

17 RCV ClK Receive Clock 

15 XMT ClK Transmit Clock 

12* +12 V Jumper Option for Microterminal 

13* -12 V Jumper Option for Microterminal 

14* +5V Jumper Option for Microterminal 

16 RESTART Invokes the load 
Interrupt to the TMS 9900 CPU 

'When using the Microterminal. these voltages are jumpered to the corresponding pin in connector P2. Else. the voltages are not connected. 

H-2 



TABLE H-3. PARALLEL I/O INTERFACE (P4) SIGNAL ASSIGNMENT 

P4 
SIGNAL 

P4 
SIGNAL PIN PIN 

20 PO 17 GND 

22 P1 15 GND 

14 P2 13 GND 

16 P3 11 GND 

18 P4 9 GND 

10 P5 39 GND 

12 P6 37 GND 

24 iNTf"5 or P7 35 GND 

26 INT14 or P8 33 GND 

28 INT13 or P9 31 GND 

30 INTl2 or P10 29 GND 

32 INTl1 or P11 27 GND 

34 INTlO or P12 25 GND 

36 INT9 or P13 23 GND 

38 INT8 or P14 21 GND 

40 iNf'1 or P15 19 GND 

1-6 Spares 

H-3 





APPENDIX I 

TM 990/301 MICROTERMINAL 

1.1 GENERAL 

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost. 
The Microterminal, intended primarily to support the Texas Instruments TM 990/100M and TM 990/180M 
microcomputers, allows the user to do the following: 

• Read from ROM or read/write to RAM 

• Enter/display Program Counter 

• Execute user program in free running mode or in single instruction mode 

• Halt user program execution 

• Enter/display Status Register 

• Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900 
microprocessor) 

• Enter/display CRU data (this term is unique to the Texas Instruments 9900 microprocessor) 

• Convert hexadecimal quantity to signed decimal quantity 

• Convert signed decimal quantity to hexadecimal quantity 

1.2 SPECIFICATIONS 

• Power Requirements 
+12V (±3%). 50 mA 
-12V (±3%), 50 mA 
+5V (±3%), 150 mA 

• Operating Temperature: O°C to 50°C (+32° to +122°F) 

• Operating Humidity: 0 to 95 percent, non-condensing 

• Shock: Withstand 2 foot vertical drop 

1.3 INSTALLATION AND STARTUP 

To install the Microterminal onto a TM 990/100M or TM 990/180M microcomputer, do the following: 

• Attach jumpers to J13, J14, and J15 on the TM 990/100M or to J4, J5, and J6, on the 
TM 990/180M board to route voltages to the Microterminal. Set jumper J7 on the TM 990/100M 

or jumper J13 on the TM 990/180M to the EIA position. 

• Attach the EIA cable from the Microterminal to connector P2. Signals between the Microterminal 

and the microcomputer are listed as in Table 1. 

• To initialize the system, actuate the microcomputer RESET switch, then press the microterminal 

ICLR[key. 

NOTE 
I f the user has installed the optional fi Iter capacitor on the REST ART input, this 
capacitor must be removed for proper operation (e.g., if C5 is installed on the 
TM 990/100M or TM 990/180M microcomputer, this capacitor must be 
removed). 

1·1 



FIGURE 1·1. TM 990/301 MICROTERMINAL 

TABLE 1·1. EIA CABLE SIGNALS 

EIA Connector Interface At TM 990/1 OOM/180M 
Pin Signal P2 Pin Signal 

2 TERMINAL DATA OUT -2 RS232 ReV 

3 TERMINAL DATA IN -3 RS232 XMT 

7 GND -7 GND 

12 +12V -12 +12V 

13 -12V -13 -12V 

14 + 5V -14 + 5V 

16 HALT -16 RESTART 

1·2 



CAUTION 
Before attaching the Microterminal to a power source, verify voltage 
levels between ground and EIA connector pins 12, 13, and 14 
at connector P2 on the board. Voltage should not exceed values in 

Table 1-1. 

1.4 KEY DEFINITIONS 

1.4.1 DATA KEYS 

Clear Key - Depressing this key blanks display, initializes and sends initialization message (ASCII code 
for A and ASCII code for Z) to host microcomputer. 

Hexadecimal Data Keys - Depressing anyone of these keys shifts that value into the right-hand display 
digit. All digits already in the data display are left shifted. For all operations other than decimal to 
hexadecimal conversion, the fourth digit from the right is shifted ott the end of the right-hand display 
field when a data key is depressed. For a decimal to hexadecimal conversion, the fifth display digit from 
the right, rather than the fourth, is shifted off the end of the data field. 

1.4.2 INSTRUCTION EXECUTION 

I HIS I Pressing this key while a program is running (run displayed) will halt program execution. The address of 
the next instruction will be displayed in the four left-hand display digits, and the contents of that 
address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will 
execute a single instruction using the values in the Workspace Pointer (WPI. Program Counter (PC), and 
Status Register (ST), and the displays will be updated to the next memory address and contents at that 
address. 

I RUNI Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the 
three right-hand display digits. 

1.4.3 ARITHMETIC 

I H-+D I The signed hexadecimal data contained in the four right-hand display digits is converted to signed 
decimal data. Note that the fourth display digit from the right is the sign bit (1 = negative). The 
conversion limits are minus 32,76810 (800016) to plus 32,767 (7FFF 16). Two H-+D key depressions are 
required. The sequence is: 

1. De press I H-+D I . 
2. Enter data via hex data key depressions. 
3. Depress IH-+DI. The results of the conversion are displayed in the five right·hand display 

digits. 

I D-+H I The decimal data contained in the five right-hand display digits is converted to hexadecimal. The 
. conversion limits are the same as for hexadecimal to decimal conversion. The sequence is: 

1. Depress I D-+H ,. 
2. Enter data via hex data key depressions. 
3. Depress ID-+HI . The results of the conversion are displayed in the four right-hand display 

digits. 

1·3 



1.4.4 REGISTER ENTER/DISPLAY 

I EWP I Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP. 

I DWP I Pressing this key causes the WP contents to be displayed in the four right-hand display digits. 

I EPC I Pressing this key causes the value displayed in the four right-hand digits to be entered into the PC. 

I DPC I Pressing this key causes the PC contents to be displayed in the four right-hand display digits. 

I EST I Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST. 

I D~T I Pressing this key causes the ST contents to be displayed in the four right-hand display digits. 

1.4.5 CRU DISPLAY/ENTER 

IDCRU I Pressing this key causes the data at the designated Communications Register Unit (CRUI addresses to 
be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal 
digits. The first digit is the count of bits to be displayed. The' next three digits are the CRU address 
(equal to bits 3 to 14 in register 12 for CRU addressing). When I DCRU I is depressed, the bit count and 
address are shifted to the left-hand display, and the right-hand display will contain the values at the 
selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit 
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If 
nine or more, the value will be right justified in all four hexadecimal digits. 

I ECRU I Pressing this key enters a new vaiue at the CRU addresses and bit count shown in the left display after 
depressing IDCRu\, The new value is entered from the keyboard and displayed in the right-hand 
display. Pressing JECRUI enters this value onto the CRU at the address shown in the left display. 

CAUTION 
Avoid setting new values at the TMS 9902 on the TM 990/1 OOM/180M 
through the CRU (TMS 9902 is at CRU address 004016), as this device 
controls I/O functions. 

1.4.6 MEMORY ENTER, DISPLAY, INCREMENT 

IEMAI Pressing this key will cause (1) the memory address (MA) in the right-hand display to be shifted to the 
left-hand display and (2) the contents of that memory address to be displayed in the right-hand display. 

I EMD I Pressing this key causes the value in the right-hand display to be entered into the memory address 
contained in the left-hand display. The contents of that location will then be displayed in the four 
right-hand display digits (entered then read back). 

Pressing this key causes the same action as described for the IEMDl key; it also increments the memory 
address by two and displays the contents at that new address. The memory address is displayed on the 
left and the contents at that address is displayed on the right. 

1.5 EXAMPLES 

1.5.1 EXAMPLE 1, ENTER PROGRAM INTO MEMORY 

Enter the following program starting at RAM location FE0016. Set the workspace pointer to FF0016 and the 
status register to 200016. Single step through the program and verify execution. Then execute the program in 
free run mode and verify execution. Then halt program execution. 

1·4 



Clear Display 

Enter PC Value 

Enter into PC 

Display PC 

Enter ST Value 

Enter into ST 

Display ST 

Enter WP Value 

Enter Into WP 

Display WP 

Enter MA Value 

Enter Into MA 

Enter ClR OOpcode 

Enter data, 
increment MA 

Enter INC 0 Opcode 

Enter Data, 
Increment MA 

Enter CI Opcode 
Enter Data, 
Increment MA 

NOTE 
In the following examples, XXXX indicates memory contents at 
current value in Memory Address Register. 

OPCODE 

04CO 
0580 
0280 
OOFF 
16FC 
10FF 

INSTRUCTIONS· 

ClR 
INC 
CI 

JNE 
JMP 

RO CLEAR WORKSPACE REGISTER 0 
RO INCREMENT WORKSPACE REGISTER 0 
RO, >OOFF CHECK FOR COUNT 255 

$-6 
$-0 

JUMP TO INC RO IF NOT DONE 
STAY HERE WHEN FINISHED 

KEY ENTRIES DISPLAY 

Depress IClRJ 

Depress I F/-lffilIQJ(g IFEool 

Depress I EPC I IFEool 

Depress IDPcl IFEOOI 

Depress !Il@)@l@ 12000 1 

Depress IESTI 120001 

Depress I DSTI 120001 

Depress I F/-IIF/-I @I@] IFFOOI 

Depress I Ewpi I IFFool 

Depress I Dwpl I IFFOOI 

Depress I F/-I ~[QJ [QJ I IFEool 

Depress IEMAI IFEDqxxxxl 

Depress @J 019@1 IFEOol04Col 

Depress IEMDII IFE021xxxxi 

Depress @) @][ID@] IFE02105801 

Depress IEMDII IFEO~xxxxl 

Depress [QJ rn~ @] IFE04102801 

Depress IEMDII IFEo§lxxxxl 

1·5 



KEY ENTRIES DISPLAY 

Enter CI 
Immediate Operand Depress @J@] ~~ IFE06100FF I 
Enter Data, 
Increment MA Depress 
Enter JNE $-6 

IEMDII I FEOslxxxx I 
Opcode Depress I!J[§J[fJ@ IFE08j16FC I 
Enter Data, 
Increment MA Depress IEMDII IFEO~xxxxl 
Enter 
JMP $-0 Opcode Depress ITJfQ][E][] IFEOAll0FFI 
Enter Data, 
Increment MA Depress IEMDII IFEOClxxxx I 

The prqgram has now been entered into RAM. Since the PC, ST and WP values have been previously set, the 
program can be executed in single step mode by depressing the HIS key. 

DISPLAY EXECUTES 
(AFTER) INSTRUCTION 

Depress I H/SI I FE02105S0 I CLR RO 

Depress \ H/SI I FE04102S0 I INC RO 

Depress IH/sl IFEOS\16FC I CI RO'>OOFF 

Depress I HIS I \FE02105S0 I JNE $-6 

This cycle will continue until RO reaches the count of 255 at which point the program will continuously 
execute at location FEOA16 because it is a jump to itself. 

To verify this, depress: DISPLAY 

I run I 
The program should now be "looping to self" at location FEOA16. To verify this, depress: 

I HIS I IFE0Aj10FF I 
Now examine the memory location corresponding to Register O. 

Depress IT] III @] [ill IFEOAIFFOO I 

Depress IFFOO IOOFF\ 

This illustrates that FF16 did become the final contents of WPO. Note that, when the program was being 
entered into RAM, lEMOn was used rather than I EMDI because of the rather desirable feature of automatic 
address incrementing. The advantage of using I EMDj is that the actual contents of the addressed memory 
location are displayed after key depression (echoed back after being entered). 

1·6 



1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS 
Convert 800016 to a decimal number 

Depress 

Depress 

Depress 

Depress 

I CLR I 

I H-+DI 

~[QJ[QJ[QJ 

1 H-+DI 

Convert 002016 to a decimal number 

Depress ~ 
Depress I H-+D I 

Depress ITJ@] 

Depress I H-+Dl 

18000 I 

-312768 I 

20 I 

1.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS 
Convert 4510 to hex 

Depress 

Depress 

Depress 

Depress 

ICLR\ 

I D-+HI 

~@] 

I D-+H I 

Convert -1024 10 to hex 

Depress 

Depress 

Depress 

Depress 

@EJ 

I D-+H I. 

I F/-I IT] @J []J ~ 

1.5.4 EXAMPLE 4, ENTER VALUE ON CRU 

45 I 

2D I 

- 11024 1 

IFCOO I 

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) OE016 with a bit count of 9 containing a 
value of 5 (0000001012). 

1-7 



Depress IClRI 

Depress [[] @] [IJ@] 190EO I 

Depress tDCRUI 190EOlyyyyl 

Depress [QJ [QJ [QJ [[l 190EOlo005 I 
Depress IECRUI 

YYYY indicates value at the current CRU address. Note that alDCRUloperation is always required to 

specify'bit count/CRU address. 

1.5.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS 

~ter 004016 into location FE20 and verify that it got there. 

Depress IClR I 

Depress [f] [!] 

Depress IEMAI 

Depress [QJ [QJ 

Depress IEMDI 

IFE201 

I FE20lxxxx\ 

I FE20P040 I 

I FE20I0040 I 

_ The contents of address FE20 are verified by an echo of data from memory to display following the 
pressing of~ If it is desired to view and enter data at address FE22. depresslEMDJ 

1·8 



J.1 MASTERMIND GAME 

J.2 HI-LO GAME 

APPENDIX J 
EXAMPLE PROGRAMS 



J.l MASTERMIND GAME 

The printout of this game in execution (below) illustrates game rules and objective. The program generates a five­
digit number. To win, you must deduct which five digits make up the number, and their correct order. Only digits 
1 to 8 are used. After each guess, the program prints the letters X and a for each correct digit entered. In addition, 
each X indicates a digit is in the correct column. You are given only 12 tries to win. 

MASTERMIND .• GUESS NNNNN N=1-8 12 TRIES 
YOU GET X FOR A MATCH~ 0 FOR A HIT 

1 11111 .... ' . · ,", 

'::. ..... · 1'-"::"::"::' CoLo. ........ 0 
.:. ,_I. • :31 :3:3:3 0 
4. .41 __ ---------CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT .. 
4 • .44144 ::-m 
5 • • 55415 00 
6 . • 64166 ::·::::<:0 
? . . 46177 0000 
,-, 
.j. • 64718 ;:.~>:::'mo 
'3. .64781 ::.::::-:::x:::-=:::< 1, • .IImiER! ti=64781 

1- · 11111 
'::. ..... .22222 I.,' 

I'''' 
:3. • 233:33 ::<:::,~o 

4. • :324:34 000 
5. ''jI::"-jC''-' 

• \;. o_lo .... j.;' ::-::::'::~-::OD 

6. .• CR RESTARTS PROGRAM 

MASTERMIND •• GUESS NNNNN N=1-8 12 TRIES 
YOU GET X FOR A MATCH~ 0 FOR A HIT 

. -;:. 

1..11111 
2 •• 22222 :;.:: 
:3 •• 2:3:~::3:3 00 
4 •• :32444 ::<:::<:::.:: 
5 •• :3425!:! ::<;00 
E .•• ..... t----------ESC KEY RETURNS CONTROL TO MONITOR 

J-1 



MMIND TXMIRA 936227 ** 09:25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

0001 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
001::?-
0014 
0015 
0016 
0017 
001:3 
0019 
0020 
0021 
0022 
O()23 
0024 
0025 
0026 
0027 
0028 
0029 
00:30 
0031 
0032 
003~: 

00~:4 

OO:~:5 

0036 
0037 
00:38 
OO~:'? 

0040 
0041 
0042 

FEOO 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
OOOD 

0043 FEOO 02EO 
FE02 FED6 

0044 FE04 2FAO 
FE06 FFOC 

0045 
0046 FEO::: 2FAO 

FEOA FF72 
0047 FEOC 04CO 
0048 FEOE C049 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* RO 
Rl 
R2 
R3 
R4 
R5 
R6 
R7 
R8 
R9 

IDT "MMIND" 
* * * * * * * * * * * * * * 

THIS PROGRAM PLAYS MASTERMIND ON THE TM 990/1XX MICRO-
COMPUTERS. THE OBJECT OF THE GAME IS TO GUESS, BY 
LOGICAL DEDUCTION, A 5-DIGIT NUMBER GENERATED BY THE 
COMPUTER. THE COMPUTER USES ONLY THE DIGITS 1 TO 8. YOU 
HAVE 12 GUESSES TO ACCOMPLISH THIS. THE COMPUTER WILL 
INDICATE A CORRECT DIGIT GUESSED BY A LETTER 0 AND 
INDICATE THE DIGIT IS CORRECTLY PLACED WITHIN THE 
5-DIGIT NUMBER WITH THE LETTER X. OTHER RULES THAT APPLY: 

- A CARRIAGE RETURN RESTARTS THE GAME 
- AN ESCAPE KEY INPUT RETURNS YOU TO THE MONITOR 
- CONTROL H KEY ALLOWS YOU TO SCRAP PRESENT LINE OF 

ENTRIES AND REENTER NEW LINE 
THIS GAME IS ASSEMBLED TO BE LOADED AT M.A. )FEOO BY 
USE OF THE AORG ASSEMBLER DIRECTIVE. THIS PROGRAM CAN BE 
ASSEMBLED BY THE LBLA AT THE ADDRESSES SHOWN IN COLUMN 
TWO OF THE LISTING. CORRESPONDING OBJECT CODE FOR THOSE 
ADDRESSES IS SHOWN IN COLUMN THREE. GOOD LUCK! 

* * * EG'.!U I) 

EQU 1 
EQU 2 
EQU 3 
EC~U 4 
EC~U 5 
EQU 6 
EC!U 7 
EQU 8 
EQU 9 

* * * * * * * * * * * 
NO. OF GUE:;SES 
RANDOM NO. ARRAY ADDRESS 

'RANDOM NO. COMPUTATION USE 
RANDOM NO. COMPUTATION USE 
10 CONSTANT FOR DECIMAL COMPUT 
CONTAINS ASCII ~X~ 

CONTAINS ASCII 'O~ 

ADDRESS OF X~S t O~S BUFFER 

RI0 EI~U 10 
RANDOM NO. ARRAY ADDRES-S 
RANDOM NO. ARRAY, ADDRESS+5 
RANDOM NO. SEED Rl1 EQU 11 

R12 ECHJ 12 
R13 ECJU 13 

AORG )FEOO 

* * * * * 
* 

* * * 

ASCII '1' ()3100) 
CAST OUT CHARACTER MAP 
LOAD AT M.A. )FEOO 

* * * * * * 

* PROCEDURE AREA OF EXECUTABLE CODE 

* 
* * START 

MOO5 

* * * 
LWPI WS 

XOP @RULES,14 

XOP @CRLF, 14 

CLR RO 
MOV R9,Rl 

J-2 

* * * * * * * * 
SET WORI<SPACE PO INTER 

PRINT RULES 

PRINT CR-LF 

COUNTS 12 GUESSES 
Rl POINTS TO RANDOM ARRAY 

* 

* 



MMIND TXMIRA 936227 ** 09:25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

0050 
0051 
()()52 

* COMPUTE RANDOM NUMBER, MOVE TO LOCATION NN 

005:::: 
0054 

0055 
0056 
0(>57 
~)05::: 

FE10 
FE12 
FE14 
FE16 
FE1::: 
FE1A 

FE1C 
FEtE 
FE20 
FE22 
FE24 

0202 
01FD 
::::::::::::8 
022::;: 
012:::: 
C2C::;: 

(}'~/5:3 

BOCC 
DC·1:3 
:::2::::1 
1PIF5 

M010 
LI R2,509 

MPY Rl1,R2 
{iI R3,291 

MOV R::::, Rl1 
* CAUSE RANDOM DIGITS 

:::;RL R::;:, 5 

* 

AB R12,R3 
MOVB R:3, ·~R 1 + 
C R1,F:10 
·JL M010 

COMPUTE RANDOM NUMBER 

TO BE IN RANGE 1-8 

MAKE ASCII, RANGE 1-8 
PUT IN RANDOM ARRAY 
TEST FOR END OF LOOP 
DO UNTIL R1=Rl0 

()()59 

0060 
0061 
0062 
0063 
0064 

* DETERMINE NUMBER OF UPCOMING GUESS 
* PRINT UPCOMING GUESS NUMBER TO PROMPT USER 

0065 * 
0066 M015 
0067 FE26 05E~ INC RO GUESS=GUESS+l 
0068 * CLEAR ARRAY THAT HOLDS ASCII X/S AND O/S 
0069 * IF CONTROL H PRESSED, START HERE 
0070 RESTRT MOV R7,R2 XOB ADDR TO R2 FE2:3 CO::::7 
0071 CLR *R2+ * FE2A 04F2 
0072 CLR *R2+ * FE2C 04F2 
0073 CLR *R2 * FE2E 04D2 
0074 * CONVERT GUESS NUMBER FOR OUTPUT 
0075 MOV RO,R2 GUESS NO. TO R2 FE30 CO:::: 0 
0076 CLR Rl FE:32 04Cl 
0077 DIV R4,Rl DIVIDE R1R2 BY 10 FE34 3C44 
0078 SWPB R1 QUOTIENT IN LEFT BYTE FE36 06C1 
0079 SOCS R1,R2 MERGE QUOTIENT & REMAINDER FE:::: 8 FO::::1 
0080 JEQ M020 PUT IN SPACE IF FIRST DIGIT=O FE:3A 1302 
0081 ORI R2,>3030 MAKE ASCII DIGITS FE::::C 0262 

0082 
00:::::::: 

FE:3E 

FE40 
FE42 
FE·lil· 
FE46 
FE 4:::: 
FE·1A 

:3030 

02c.2 
20:30 
C::::(}2 
FEF4 
2FAO 
FEF2 

M020 
ORI R2, :>20::;:0 MAKE ASCII SPACE & DIGIT 

MOV R2,@CiCD PUT IN PRINT BUFFER 

PRINT GUESS NUMBER 

J-3 



MMIND TXMIRA 936227 ** 09=25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

118/78 PAGE 0003 

0087 
0088 
0089 
0090 FE4C C209 
0091 FE4E C047 
0092 FE50 0202 

FE52 FF5A 
0093 FE54 04CD 
0094 
0095 FE56 2F43 
0096 
0097 FE58 0283 

FE5A ODOO 
0098 FE5C 13Dl 
0099 FE5E 0283 

FE60 IBOO 
0100 FE62 131C 
0101 FE64 0283 

FE66 0800 
0102 FE68 13DF 
0103 FE6A 9303 
0104 FE6C lAF4 
0105 FE6E 0283 

FE70 3800 
0106 FE72 IBFt 
0107 FE74 2F03 
0108 
0109 FE76 9E03 
0110 FE78 1603 
0111 FE7A 06C3 
0112 FE7C DC45 
0113 FE7E 058D 
0114 
0115 FE80 DC83 
0116 FE82 OBI0 
01 17 FE84 8288 
0118 FE86 lAE7 
0119 FE88 0281 

FE8A FFOB 
0120 FE8C lA09 
0121 FE8E 2FAO 

FE90 FF04 
0122 
0123 FE92 2FAO 

FE94 FF60 
0124 
0125 
0126 FE96 2FAO 

FE98 FEFA 
0127 
0128 FE9A 1006 
0129 FE9C 0460 

FE9E 0080 

* 
* INPUT CHARACTER & TEST FOR COLUMN MATCH 
* 

M030 

MOV R9.R8 
MOV R7,R1 
LI R2,INPUT 

CLR R13 

RANDOM NUMBER ADDR IN R8 
X & 0 BUFF ADDR IN Rl 
INPUT BUFFER AD DR IN R2 

CLEAR BIT MAP OF CAST OUT CHAR 

XOP R3,13 READ DIGIT 
* WAS CR, ESCAPE, OR CONTROL-H KEY PRESSED? 

CI R3.>ODOO CAR. RET. ENTERED? 

JEQ 
CI 

JEQ 
CI 

JEQ 
CB 
JL 
CI 

JH 
XOP 

* IC ~ DIGIT 
CB 
JNE 
SWPB 
MOVB 
INC 

M040 
MOVB 
SRC 
C 
JL 
CI 

JL 
XOP 

* 
XOP 

* 
M045 

XOP 

* 
JMP 

MONITR B 

START 
R3,>lBOO 

MONITR 
R3,>0800 

RESTRT 
R3,R12 
M030 
R3,>3800 

M030 
R3, 1~ ~ 

A MATCH AND 
R3,*R8+ 
M040 
R~ ~ 

R5,*Rl+ 
R13 

R3,*R2+ 
R13, 1 
R8,RI0 
M030 
Rl,XOB+5 

M050 
@XOBP, 14 

@WINNER, 14 

@NUMBER, 14 

M005 
@>0080 

J-4 

IN 

YES, RESTART GAME 
ESCAPE KEY ENTERED? 

YES. RETURN TO MONITOR 
CONTROL-H PRESSED? 

YES, RESTART THIS ENTRY 
IS NO. LESS THAN I? 
YES, READ ANOTHER 
IS NO. GREATER THAN 8? 

YES, READ ANOTHER 
NO. IN RANGE. ECHO 

RIGHT COLUMN? 
DIGIT IN RIGHT COLUMN? 
NO, PUT CHAR IN CHAR BUFFER 
YES, PUT BINARY 0 IN MSB OF R~ 
PUT AN X IN THE XO BUFFER 
MAP CAST OUT CHAR 

ZERO OR CHAR TO INPUT BGFFER 
PUT BIT IN MAP 
FIFTH NUMBER INPUT? 
NO, READ ANOTHER GUESS 
YES, IS XO BUFFER FULL? 

NO, NO WINNER YET 
YES. PRINT XO BUFF (ALL XeS) 

PRINT WINNER 

PRINT NUMBER 

PLAY ANOTHER GAME 
RETURN TO MONITOR 



1'1MIND TXMIRA '::<::6227 
MASTERMIND FOR THE TM ';1'::)0/1 X X 

0131 * 
0132 * 
:) 1-~::~: * TE:::;T FOR 
0134 * 
01:~:5 MOSO 
01~:6 FEAO 02~)2 LI 

FEA2 FF5A 
0137 M052 
01:~::::: FEA4 DOF2 MOVB 
0139 FEA6 130C ,JEel 
0140 FEA8 C209 MOV 
0141 FEAA 09BD :::;RL 
0142 MOS5 
0143 FEAC OB1D ~;RC 

0144 FEAE '?lE03 CB 
0145 FEBO 1:=:05 ,JOC 
0146 FEB2 1604 ,JNE 
0147 FEB4 DC:4,~, MOVB 
0148 FEB6 0260 ORI 

FEBS :3000 
0149 FEBA BOC3 AB 
0150 M057 
0151 FEBC :32~=:::: C 
0152 FEBE lAF6 ,JL 
015~: M060 
0154 FECO ()2!32 CI 

FEC2 FF5F 
0155 FEC4 lAEF ,JL 
0156 FEC6 2FAO XOP 

FEe::? FF04 
0157 FECA (>28() C:I 

FECC OOOC 
()158 FECE 1AAB ,JL 
0159 FEOO 2FAO XOP 

FED2 FF6A 
OU:,O FED4 10EO ,JMP 

** 09: 25: 4:::: 
MICROCOMPUTER 

() .-- :::;. . . 

F·-' '-' I I'JFU-I-

*R2+,R3 
M060 
R9, R:::: 
R13, 11 

R13, 1 
R:3, *R::::+ 
M057 
M057 
R6,*Rl+ 
R13, >:3000 

R3,R3 

R8,Rl0 
M055 

R2, INPUT+5 

M052 
@XOBP, 14 

RO, 1--' ..::. 

1'1015 
@SORRY, 14 

M045 

J-5 

PAGE 0004 

INPUT BUFFER START IN R2 

TEST BYTE FROM INPUT BUFFER 
BYTE CAST OUT IF EQUAL TO ZERO 
R8 POINTS TO WORK ARRAY 
POSITION CAST OUT CH MAP 

TEST FOR CAST OUT CHAR 
DOES BYTE MATCH WORK ARRAY ? 
IF CAST OUT, M057 
IF NOT EQUAL, M057 
ON HIT, PUT 0 IN XO BUFFER 
MAP CAST OUT CHAR 

SPOIL COMPARISON, FINISH LOOP 

TE~;T FOR LA~;T D I'G IT 
IF LOW, DO ANOTHER DIGIT 

LAST DIGIT IN INPUT BUFFER? 

NO, DO NEXT DIGIT 
YES, PRINT XO BUFF 

TWELVE GUESSES MADE? 

NO, MORE GUESSES REMAIN 
YES, PRINT SORRY 

PRINT NUMBER FOR PLAYER 



MMIND TXMIRA 936227 ** 09:25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

11:;::/78 PAGE 0005 

0162 
016:3 
01 c,/j. 

0165 
016(:, 
0167 
0168 

(> 16';' 
0170 

0171 

0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 

0186 

0187 
0188 

0190 
0191 

0192 

01':;-/3 
01';/4 

FED6 
FED8 
FEDf'1 
FEDC 
FEDE 
FEEO 
FEEl 
FEE2 
FEE3 
FEE4 
FEE6 
FEE:;:: 
FEEA 
FEEC 
FEEE 
FEFO 

FEF2 
FEF4 
FEF6 
FEF7 
FEF8 
FEF9 

FEFA 
FEFB 
FEFC 
FEFD 
FE FE 
FFOO 
FF02 

FF04 
FF05 
FF06 
FFO:::: 
FFOA 

0195 FFOC: 
0196 FFOE 

FFOF 
FFI0 
FFll 
FF12 

0000 
0000 
0000 
0000 
OOOA 

58 
20 
4F 
20 

FF06 
0000 
FEFE 
FFO:3 
5555 
3100 
0000 

ODOA 
0000 

2E 
2E 
07 
00 

20 
20 
4E 
3D 

0000 
0000 
0000 

20 
20 

0000 
0000 
0000 

ODOA 
4D 
41 

54 
45 

* * * * * * * * * * * * * * 
* 
* DATA :::;ECTION 

* 
* * * * * * -~ ~- ->:' * * * * * 
* W()RK'3Pt;CE 
W:::; DATA 0,0,0,0 RO-R3 

DATA 10 
TEXT "'X 

R4 CONVERSION CONSTANT 
P5 

TEXT .. ' () .. ' 

DATA XOB 
DATA 0 
DATA NN 
DATA NN+5 
DATA .... C'C'c:-t::' .... ·._1_1_1_' 

DATA >3100 
DATA 0 

* * TEXT :3TATEMENTS 

* * LINE NUMBER OF THIS GUESS 
GUESNO DATA )ODOA 
GCD DATA $-$ 

TEXT.-' .' 

BYTE 7,0 

R6 

R7 
R8 
R';I 

R10 
R11-RANDOM NUMBER SEED 
R12 
RI3-CAST OUT CHAR MAP 

CR, LINE FEED 
CONVERTED GUESS NUMBER 

* RANDOM NUMBER OF COMPUTER IN ASCII 
NUMBER TEXT.-' N=.-' 

NN DATA 0,(>,0 

* X'S AND O"'S BUFFER SHOWING HITS ~ MISSES 
XOBP TEXT' SPACES FOR PRINTING 

XOB DATA 0,0,0 

* RULES OUTPUT AT BEGINNING OF GAME 
RULES 

DATA >ODOA 
TEXT 'MASTERMIND' 

J-6 

* 

* 



MMIND TXMIRA 9:36227 ** 09: 25: 4:3 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

11:=:/7:::: PAGE 0006 

FF13 ~.-, 
._f~ 

FF14 4D 
FF15 49 
FF16 4E 
FF17 44 

01~/7 FFU:: 2E TEXT ~ .. GUESS NNNNN N~1-8 12 TRIES' 
FF19 2E 
FF1A 47 
FF1B c"o::" 

'-"-' 
FF1C 45 
FF1D C"''':! ,_I·oJ 

FF1E C"'-' ,_I.':, 

FF1F 20 
FF20 4E 
FF21 4E 
FF22 4E 
FF23 4E 
FF24 4E 
FF25 20 
FF26 4E 
FF27 3D 
FF2:3 :::: 1 
FF2';'> 2D 
FF2A ::::c: 
FF2B 20 
FF2C :~: 1 
FF2D :32 
FF2E 20 
FF2F 54 
FF30 C".-, '_'k 
FF31 4'::-1 
FF32 45 
FF3:3 1:"-:' ,_I._I 

019:=: FF34 ODOA DATA >ODOA 
0199 FF:36 59 TEXT 'YOU GET X FOR A MATCH, 0 FOR A HIT' 

FF:~:7 4F 
FF3::: c"c" ,_1._' 
FF39 20 
FF:3A 47 
FF3B 45 
FF3C 54 
FF3D 20 
FF::::E 5:3 
FF~:F 20 
FF40 4/':, 
FF41 4F 
FF42 52 
FF'l:::: 2() 

FF44 41 
FF45 20 
FF46 4D 
FF47 41 
FF4:3 54 
FF49 4'-:' '-' 

J-7 



MMIND TXMIRA 936227 ** 09:25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

FF4A 1j·8 
FF4B 2C 
FF'lC 20 
FF4D 4F 
FF4E 20 
FF1W 46 
FF50 4F 
FF51 52 
FF52 20 
FF5:::: 41 
FF54 20 
FF55 4:3 
FF56 4';i 

FF57 54 
0200 FF58 00 BYTE 0:) 

J-8 

118/78 PAGE 0007 



MMIND TXMIRA 936227 ** 09:25:48 
MASTERMIND FOR THE TM 990/1XX MICROCOMPUTER 

0202 * BUFFER OF NUMBERS INPUT 
0203 FF5A 0000 INPUT DATA 0,0,0 

0204 
0205 

0206 

0207 

0208 

0209 

0210 
0211 

FF5C 0000 
FF5E 0000 

FF60 20 
FF61 20 
FF62 57 
FF63 4'7 
FF64 4E 
FF65 4E 
FF66 45 
FF67 52 
FF68 21 
FF69 00 
FF6A 20 
FF68 ~~ 

~~ 

FF6C 4F 
FF6D 52 
FF6E 52 
FF6F 59 
FF70 00 
FF71 00 
FF72 00 
FF73 OA 
FF74 00 
FF75 00 

0000 ERRORS 

* WINNER TEXT ~ WINNER' 

BYTE >21,0 

SORRY TEXT ~ SORRY/ 

BYTE 0,0 

CRLF BYTE >D,>A,O,O 

* END START 

J-9 

118/78 PAGE 0008 



TXXREF 937542 *A 09: 28: 1';' 118/78 PAGE 0001 

CRLF 0209 0046 
GeD 0184 0084 
GUESNO 018:3 0085 
INPUT 020:3 ()()'?2 01:36 0154 
MOO5 0045 0128 
MOI0 0051 0061 
M015 0066 0158 
M020 0082 0080 
MO:30 0094 0104 0106 0118 
M040 0114 0110 
M045 0125 0160 
1'1050 01:35 0120 
M052 01:37 0155 
M055 0142 0152 
M057 0150 0145 0146 
MOe,O 0153 0139 
MONITR 0129 0100 
NN 0189 0174 0175. 
NUMBER 0188 012e, 
RO 0022 0047 0067 0075 0157 
Rl 002:3 0048 0059 0060 0076 0077 0078 007'7 0091 0112 

0119 0147 
RI0 00:32 0060 0117 0151 
Rll 00:33 005:::: 0055 
R12 00:34 0058 010:3 
Rl:3 0035 0093 0113 0116 0141 014:3 0148 
R2 0024 0052 0053 0070 0071 0072 0073 0075 007'7 0081 

008:3 0084 0092 0115 0136 0138 0154 
R'''' • .:0 0025 0054 0055 0057 0058 0059 0095 0097 O()'~'I';I 0101 

0103 0105 0107 0109 0111 0115 0138 0144 0149 
0149 

R4 0026 0077 
R5 0027 0112 
R6 0028 0147 
R7 0029 0070 0091 
R8 0030 0090 0109 0117 0140 0144 0151 
R9 0031 0048 0090 0140 
RESTRT 0070. 0102 
RULES 0194 0044 
:30RRY 0207 0159 
START 0042 009::: 0211 
WINNER 0205 0123 
WS 0168 0043 
XOB 0192 0119 0172 
XOBP 01'?1 0121 0156 

THERE ARE 0041 SYMBOLS 

J-10 



J,2 HI-LO GAME 

The prinout of this game in execution (below) illustrates game rules and objectives. The program generates a number 

between 0 and 999. You have unlimited guesses to find the number, but you can be an expert, above average, or a 

turkey depending upon how many guesses used. 

i-L FEO!) 
I;iUES:S: 
-';:'R 

I, • .I=FFBO 
P=01::::2 FEOO 
-iE 

LOAD AND EXECUTE PROGRAM 

CAN YOU GUESS MY NUMBER (0 TO 999)7 
INPUT A NUMBER & PRESS THE SPACE BAR. 
500 TOO LoW~ TRY AGAIN!! 
700 TOO LoW~ TRY AGAIN!! 
900 TOO HIGH~ TRY AGAIN! 
850 TOO LoW~ TRY AGAIN!! 
875 TOO HIGH~ TRY AGAIN! 

... 04I----------CONTROL H PRESSED TO IGNORE ENTRY 
TOO HIGH~ TRY AGAIN! 

:=:57 TOO HIGH~ TRY AGAIN! 
:::54 CORRECT! YOU'RE ABOVE AVERAGE 

CAtl 'lOU I;iUE:S:::: r1Y r'lur'lBER (0 m '="':;'9) -i-, 

INPUT A NUMBER & PRESS THE SPACE BAR. 
500 TOO LOW~ TRY AGAIN!! 
700 TOO HIGH~ TRY AGAIN! 
650 TOO HIGH, TRY AGAIN! 

BECAUSE IT TOOK YOU 08 TRIES! 

575 CORRECT! YOU/RE AN EXPERT BECAUSE IT TOOK YOU 04 TRIES! 

CAN YOU GUESS MY NUMBER (0 TO 999)7 
It-iPUT A r'iur'lBER :~.: PRE:S:::: THE :::PACE BAR. 
900 TOO HIGH~ TRY AGAIN! 
:::: 0 0 TOO HI I;iH ~ TR'"" AGA Hi! ... 04_-------- CR PRESSED TO START NEW GAME 

CAN YOU GUESS MY NUMBER (0 TO 999)7 
INPUt A NUMBER & PRESS THE SPACE BAR. 
500 TOO HIGH~ TRY AGAIN! 
400 TOO HIGH~ TRY AGAIN! 
300 TOO HIGH~ TRY AGAIN! 
200 TOO HIGH, TR'"" AGAItH ... 041---------- ESC PRESSED TO RETURN TO MONITOR 

J-ll 



GUESS TXMIRA ~/36227 ** 09: 22=. 118/78 PAGE 0001 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

0001 
0002 
0003 
0004· 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
001:3 
0014 
0015 
0016 
0018 
0019 
0020 
0021 
0022 
002:3 
0024 
0025 
0026 
0027 
0028 FEOO 
0029 
00:30 
00:31 
0032 
003:3 

0034 

0035 
0036 
0037 

0038 
00:39 

0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 

FEOO 
FE02 
FE04 
FE06 
FE08 
FEOA 
FEOC 
FEOE 

FE10 
FE12 

FE14 
FE16 
FE18 
FE1A 

* * * * * * * * * * * * * ~ * * THIS GUESSING GAME CAN BE RUN ON A TM 990/1XX MICRO-
* COMPUTER WITH 432 (>lBO) WORDS OF USER AVAILABLE 
* RAM MEMORY. IT IS WRITTEN TO BE LOADED AT M.n. ~'FEOO 
* AND CAN BE ASSEMBLED AT THAT ADDRESS USING THE LBLA 
* OR BY LOADING THE OBJECT (COLUMN 3) AT THE MEMORY 
* ADDRESSES (COLUMN 2). THE OBJECT OF THIS PROGRAM IS TO 
* GUESS WHICH NUMBER THE COMPUTER HAS GENERATED, AND TO 
* DO THIS WITHOUT BECOMING A TURkEY. FOLLOWING PULES APPLY: 
* - CARRIAGE RETURN BRINGS YOU TO PROGRAM RESTART 
* - ESCAPE kEY BRINGS YOU TO MONITOR 
* - CONTROL-H KEY IGNORES THIS ENTRY 
* - SPACE KEY CONTINUES GAME 
* GOOD LUCK. .J. ~~ALSH· 

* * * * * * * * * * * * * * * IDT /GUESS'" 
* REGISTER EQUATES 

0000 RO EQU 0 TENS MULTI PL I ER 
0001 Rl EQU 1 GUESS NO. ACCUMULATOR 
0002 R2 EQU 2 MUL T I PLY ANSWER 
0003 R3 EQU 3 ENTERED DIGIT 
0008 R8 EGtU:3 CONTAINS COMPUTER"'S NUMBER 
0009 R9 EQU 9 NO. TRIES/I0 
OOOA Rl0 EQU 10 NO. TRIES 
OOOC R12 EQU 12 CRU ADDRESS (TMS 9902 ) 

02EO 
FFAO 
0200 
OOOA 
04C9 
04CA 
020C 
0080 

2FAO 
FEBO 

* OBJECT CODE AT ABSOLUTE ADDRESS BEGINNING WITH >FEOO 
AORG )-FEOO 

* * * * * * * * * * 
* PROCEDURE AREA: EXECUT/~BLE -
* * * -/i- * * * * 
* INITIALIZE REGISTERS 
START LWPI ItJSP 

LI RO,10 

CLR R'? 
CLR RI0 
LI R12,)-:30 

* OUTPUT OPENING MESSAGE 
XOP QMESS1,14 

* * 

* * * * -Ii- " * * CODE" 

* * * * (' * * 
\ 

SET WORt<SF'AC'E POINTER 

RO = TENS MULTIPLIER 

R9 -. NO. OF TRIES 
RI0 = NO. OF TRIES 
TMS 9902 CRU ADDR. 

OPEN I Nt} MES:::;AGE 

* THIS ROUTINE IS A NUMBER GENERATOR THAT GENERATES 

* 

* 

* 

* 
* 
* 

/" 

* A NUMBER FROM I) TO '~'~9 BASED ON THE T I ME TO RESPOND TO THE 
* OPENING MESSAGE. IT CHECKS A BIT AT THE TMS 9902 SERIAL 

04C8 
lF15 
1307 
t)2:3:3 

* INTERFACE THAT SIGNIFIES THAT A DIGIT HAS BEEN RECEIVED FR 
* THE TERMINAL IN RESPONSE TO THE OPENING MESSAGE. RECEIPT 0 
* THIS DIGIT MEANS A NUMBER IS BEING GUESSED. WHILE WAITING 
* FOR THIS FIRST NUMBER, R8 IS CONTINUOUSLY INCREMENTED FROM 

*" 0 TO 999. 
NEW NO CLR 
INCNO TB 

,-'EG~ 

CI 

R:3 
21 
ECH02 
R:3,999 

J-12 

R8 TO CONTAIN COMPUTER'S NO. 
DIGIT RECEIVED? 
YES; ECHO CHARACTER 
NO. I NCREMENTED TO 9'?9'? 



GUESS TXMIRA 936227 ** 09:22:02 11S/7:3 PAGE 0002 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

FE1C 03E7 
(}()52 FE1E 1:3FA 
)()5:3 FE20 05:38 
0054- FE22 10F9 
0055 
0056 
0057 
005:3 
0059 
0060 
0061 FE24 2F20 

FE26 FF34 
OO~.2 FE28 04C1 
006:3 FE2A 2EC:3 
0064 FE2C 06C3 
0065 
0066 FE2E 02:3:3 

FE:30 0020 
OO~.7 FE32 1:311 
006:3 FE34 ()2:33 

FE36 0000 
0069 FE3S 1:3E3 
0070 FE3A ()28:3 

FE3C 001B 
0071 FE3E 1309 
0072 FE40 028:3 

FE42 OOOS 
0073 FE44 13EF 
0074 FE46 0243 

FE48 OOOF' 
0075 FE4A 38"40 

// 

0076 FE4C/AOC2 
0077 F E C043 
007: FE50 10EC 
IX /9 FE52 04~.O 

FE54 0080 
0080 
01)::::1 FE56 05:3A 
0082 FE58 ::::201 
00:33 FE5A 1102 
0084 FE5C 1504 
0085 FE5E 1306 
0086 
00:37 FE60 2FAO 

FE62 FFOO 
00:::::::: FE6A 10E1 
00S9 FE66 2FAO 

FEb8 FF1A 
OO'?O FE6A lODE 

JEQ NEWNO YES, CLEAR TO 0, RESTART 
INC RS NO, INCREMENT NO. IN RS 
JMP INCNO LOOP, RECHECK FOR DIGIT INPUT 

* AFTER FIRST DIGIT IS ENTERED, COMPUTER'S NO. IS IN RS. 
* READ IN GUESSES AND CONVERT THESE TO HEXADECIMAL. SUM 
* FOR COMPARISON TO COMPUTER'S NO. IN RS. AS NEW NUMBER 
* IS READ, OLD VALUE IS MULTIPLIED BY 10 AND NEW VALUE 
* ADDED TO PRODUCT TO KEEP CUMULATIVE TOTAL OF DIGITS 
* ENTERED. 
ECHOO XOP @LFCR,12 DO LINE-FEED, CR 

ECH02 CLR R1 
ECH01 XOP R3,11 

SWPB R:-:: 
* WAS SPACE, CR, ESCAPE OR 

CI R3,:>0020 

.JEO COMPRE 
CI R:3, )(lOOD 

.JEGl :::;TART 
CI R3,)001B 

.JEt] 1'10NITR 
CI R:3, )OOOS 

.. JEt] ECHOO 
ANDI R:3,>OOOF 

MPY RO,R1 
A R2,R3 
MOV R3,R1 
.JMP ECH01 

MONITR B @)OOSO 

CLEAR ACCUMMULATOR 
ECHO CHAR., PLACE IT IN R3 
PLACE VALUE IN RIGHT BYTE 

CONTROL-H PRESSED? 
SPACE BAR PRESSED? 

YES, COMPARE VALUE:=; 
CARRIAGE RET. PRE~3SED',? 

YES, RESTART PROGRAM 
ESCAPE PRESSED? 

YES, RETURN TO MONITOR 
WA:3 CONTROL-H PRESSED? 

DO LFCR, RESTART GUESS 
NO, ~::;AVE 0-9 DIGIT ONLY 

PREVIOUS NO. XI0 
NEW NO. + ABOVE PRODUCT 
ANSWR TO ACCUMMULATOR 
GET NEXT DIGIT 
GO TO MONITOR 

* COMPARE NUMBERS INPUT TO COMPUTER'S NUMBER 
COMPRE INC R10 INCREMENT NOS. GUESSED 

C Rl,RS COMPARE TO COMPUTER'S NO. 
JLT LOW NO. IS LESS THAN COMPUTER'S 
JGT HIGH NO. IS MORE THAN COMPUTER'S 
JEO EQUAL NO. IS CORRECT VALUE 

* MESAGES FOR TOO HIGH, TOO LOW 
LOW XOP @LOWM,14 TOO-LOW MESSAGE 

,JMP ECH02 
HIGH XOP @HIGHM,14 

.JMP ECH02 

J-13 

GET MEXT NUMBER 
TOO-HIGH MESSAGE 

GET NEXT NUMBER 



GUESS TXMIRA 936227 ** 09:22:02 118/7:3 PAGE 000:3 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

0092 
0093 
0094 FE6C 2FAO 

FE6E FF38 
00';;'5 FE70 028A 

FE72 0007 
0096 FE74 1503 
0097 FE76 2FAO 

FE78 FF4F 
0098 FE7A 100E 
OO';;.'? FE7C 028A 

FE7E 000'7 
(1100 FE8(1 150:3 

.0101 FE82 2FAO 
FE84 FF5A 

0102 FE86 1008 
010:3 FE88 028A 

FE8A OOOD 
0104 FE8C 150:;: 
0105 FE8E 2FAO 

FE90 FF69 
0106 FE92 1002 
0107 FE94 2FAO 

FE96 FF72 
0108 
0109 FE98 :3E40 
0110 FE9A 02c.9 

FE9C 0030 
0111 FE9E 026A 

FEAO 0030 
0112 FEA2 06C9 
0113 FEA4 A289 
0114 FEA6 C80A 

FEA8 FF92 
0115 FEAA 2FAO 

FEAC FF7D 
0116 FEAE 10A8 

* CORRECT NUMBER WAS GUESSED 
* FIND ODT HOW MANY TRIES WAS USED AND OUTPUT MESSAGE 
EG!UAL XOP @CORECT, 14 CORRECT GUESS MESSAGE 

CI RI0.7 

,JGT $+8 
XOP @SEVEN,14 

,JMP COUNT 
eI RI0,,? 

.JGT $+8 
XOP @NINE,14 

,JMP COUNT 
eI RI0, 1:3 

,JGT $+8 
XOP @THIRTN.14 

... IMP COUNT 
XOP @TURI<EY. 14 

TRY COUNT GREATER THAN 7? 

YES, CHECK AGnIN 
NO, DO 0-7 TRIES MESSAGE 

GO GET CCIUNT 
TRY-COUNT GREATER THAN '7'-;:-

YES, CHECt< AGA I N 
NO, DO 8-9 TRIES MESSAGE 

GO GET COUNT 
TRY-COUNTER GREATER THAN 13? 

YES, OUTPUT TURKEY MESSAGE 
NO, DO 10-1:3 TR I ES MESSAGE 

GO GET COUNT 
OUTPUT )- 13 (TURKEY) MES:;AGE 

* IF CORRECT NUMBER FOUND, OUTPUT NO. OF TRIES 
COUNT DIV RO,R9 DIVIDE TRY-NO. BY 10 

ORI R9,)0030 OR IN )30 FOR ASCII NO. 

ORI RI0.)-0030 

SWPB R9 
A R9.RI0 
MOV RI0.@NUMBR 

XOP @CNT,14 

,JMP START 

J-14 

OR IN >:30 FOR ASCI I NO. 

REMAINDER IN LEFT BYTE 
2-DIGIT DECIMAL IN R10 
MOVE (!TY TO MESSAGE 

OUTPUT NO. OF TRIES 

GO TO BEGINNING (JF PROGRAM 



GUESS TXMIRA 936227 ** 09:22:02 11:3/7:3 PAGE 0004 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

4 

011:3 * * * * * * * * * * * * * * J~ * * * *" * 0119 * DATA AREA: DATA ~:n ATEMENTS , TEXT ~;TATEMENT'=;, ETC. 
0120 *" * *" * * * * * * * * * -ito -'"} * * * * * * 0121 * 1'1E:=;~=;A(;E~=; 

0122 FEBO OAOD ME~;~;l DATA >OAOD, >O(~OA 
FEB2 OAOA 

()123 FEB4 4--::' --' TEXT -'CAN YOU GUE~=;~=; 1'1Y NUMBER (0 TO 9'~J';1 ) "? 

FEB5 41 
FEB6 4E 
FEB7 20 
FEB8 5~1 

FEB9 4F 
FEBA C-C-._I.J 

FEBB 20 
FEBC 47 
FEBD 55 
FEBE 45 
FEBF 53 
FECO r~, 

._,.':' 

FECl 20 
FEC2 4D 
FEC3 5'? 
FEC4 20 
FEC5 4E 
FEC6 55 
FEC7 4D 
FEC8 4--' .0::. 

FEC9 45 
FECA c-~, __ I":' 

FEeB 20 
FECC 2:=: 
FECD ::::0 
FECE 20 
FECF 54 
FEDO 4F 
FEDl 20 
FED2 :~:9 

FED3 39 
FED4 :~:9 

FED5 29 
FED6 :3F 
FED7 20 

0124 FED:::: OAOD DATA >OAOD LINE FEED, CR 
0125 FEDA 49 TEXT --- INPUT A NUMBER ~( PRE:;S THE SPACE BAR. ---

FEDB LlE 
FE DC 50 
FEDD "'c-._1o_I 

FEDE 54 
FEDF 20 
FEEO 41 
FEEl 20 
FEE2 4E 
FEE3 55 
FEE't 4D 

J-15 



GUESS TXMIRA 9:36227 ** ()~?: 22: (l2 11:3/7:3 PAGE 0005 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

FEE5 4~' ... 
FEE6 45 
FEE7 .". .... ,-,''-

FEES 2() 

FEE9 26. 
FEEl'; 20 
FEEB 5() 

FEEC 52 
FEED 45 
FEEE e·-• 

• _I.~ 

FEEF C'·-t 
,_t • .:_ 

FEFO 2() 

FEF1 54 
FEF2 48 
FEF3 45 
FEF4 20 
FEF5 5:3 
FEF6 50 
FEF7 41 
FEF:3 4'-' .;.-

FEF9 45 
FEFA 20 
FEFB 4':' .... 
FEFC 41 
FEFD C'~, 

._1 ..... 

FEFE 2E 
FEFF 2() 

0126 FFOO 2()2() LOl-JM DATA :>2020 DOUBLE ~3PACE 

0127 FF02 54 TEXT "TOO LOW, TRY AGAIN! I .' 

FF03 4F 
FF04 4F 
FF05 20 
FFO/;' 4(: 
FF07 4F 
FF08 57 
FF09 2(: 
FFOA 20 
FFOB 54 
FFOC 52 
FFOD 5'~ 

FFOE 20 
FFOF 41 
FF10 47 
FF11 41 
FF12 49 
FF13 4E 
FF14 21 
FF15 21 

()128 FF16 OAOD DATA }OAOD,O LINE FEED, CR, END M~=;t-; 

FF18 0000 
0129 FF1A 2020 HIGHM DATA :>2020 HIO ~:;;PACE~=; 

01:30 FF1C 5'l TEXT "'TOO HIGH, TRY AGAIN! .. ' 
FF1D 4F 
FF1E 4F 

J-16 



GUESS TXMIRA 936227 ** 09:22:02 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

FF1F 
FF20 
FF21 
F;=-'"";"--:' 
FF2:::: 
Fi=-"2'1· 
FF25 
FF21':' 
FF27 
FF28 
FF29 
FF2A 
FF2B 
FF2C 
FF2D 
FF2~ 

FF2F 
0131 FF30 

FF32 
01:~:2 FF:=:4 
01:3:3 FF36 
01:34· FF38 

FF:3A 
0135 FF3C 
0136 FF3E 

FF:3F 
FF40 
FF41 
FF42 
FF4:3 
FF44 
FF45 
FF4/':' 
FF47 
FF4:3 
FF49 
FF4A 
FF4B 
FF4C 
FF4D 

01:~:7 FF4E 
013::;: FF4F 

FF50 
FF51 
FF52 
FF5:3 
FF54 
FF55 
FF56 
FF57 
FF5:::: 

0139 FF59 
0140 FF5A 

FF5B 

20 
i~;=; 

.'1'::-{ 

.:jo7 
4'=' '-' 
2C 
20 
54 
52 
c:"',-, 
,_17 

20 
·H 
47 
41 
49 
4E 
21 

OAOD 
0000 
OAOD 

00 
0707 
0707 
2020 

43 
4F 
c:"-' ._1":-

C"·-t 
"-'''::' 

45 
<13 
54 
21 
20 
59 
4F 
55 
27 
r: .... 
,-''';;' 

45 
20 
00 
41 
4E 
20 
45 
5:3 
!:"tt) 

45 
52 
54 
20 
00 
41 
4'-:' .:.. 

DATA >OAOD,O 

LFCR DATA )OAOD 
BYTE (> 

CORECT DATA >0707, -:':,0707 

DATA >2020 
TEXT 'CORRECT~ YOU"RE 

BYTE 0 
SEVEN TEXT 'AN EXPERT ' 

BYTE (> 

NINE TEXT 'ABOVE AVERAGE 

J-17 

I1B/78 PAGE OOOe, 

LINE FEED, CR, END MSG 

LINE FEED, CR 
END OF ME~=;SAGE 

BELLS 

SPACES 



GUESS TXMIRA 936227 ** 09:22:02 11S/78 PAGE 0007 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

FF5C 4F 
FF5D 5(~. 

FF5E 45 
FF5F 20 
FF60 41 
FF61 .,,-, 

,_II:', 

FF62 45 
FF63 52 
FF64 41 
FF65 47 
FF66 45 
FF67 20 

0141 FF68 00 BYTE 0 
0142 FF69 41 THIRTN TEXT 'AVERAGE ' 

FF6A 5(:, 

FF6B 45 
FF6C C'~, 

.J":' 

FF60 41 
FF~,E 47 
FF6F 45 
FF70 2() 

0143 FF71 00 BYTE 0 
0144 FF72 41 TURKEY TEXT 'A TURKEY ... 

FF7:3 20 
FF74 54 
FF75 C''''" ,_I._I 

FF76 C'~, 

.J""-

FF77 4B 
FF78 45 
FF79 5S"1 
FF7A 20 
FF7B 20 

0145 FF7C 00 BYTE (I 

0146 FF7D 20 CNT TEXT' BECAUSE IT TOOK YOU 
FF7E 4·-:' ..... 
FF7F 45 
FF80 43 
FF81 41 
FF::::2 55 
FF8::;: C""-' ,_I.,:, 

FF84 45 
FF85 20 
FF86 4'~1 

FF87 54· 
FF88 2() 

FFS':;I 54 
FF::::A 4F 
FFSB 4F 
FFSC 4B 
FF8D 20 
FF8E 5;' 
FF:3F 4F 
FF90 0:::"E:" 

'-"-' 
FF91 20 

J-18 



GUESS TXMIRA 936227 ** 09:22:02 
HI-LO GAME FOR TM 990/1XX MICROCOMPUTERS 

0147 
014:3 
01 119 

0150 

0151 
0152 

FF92 
FF94 
FF95 
FF9'-:, 
FF97 
FF9:::: 
FF'~'9 

FF9A 
FF9B 
FF'?C 
FF9D 
FF9E 

0000 
20 
54 
52 
49 
45 
53 
21 
07 
07 
07 
00 

0000 ERRORS 

TXXREF S"/:37542 *A 

CNT 0146 
COMPRE 0081 
CORECT 0134 
COUNT 0109 
ECHOO 0061 
ECHOl OOe,3 
ECH02 0062 
E(~UAL 0094 
'IGH 0089 

_lIGHM 0129 
INCNO 0049 
LFCR 0132 
Lm.J 0087 
LOWM 0126 
t1E::::Sl 0122 
MONITR 0079 
NEWNO 004:::: 
NINE 0140 
NUMBR 0147 
F:O 0019 
Rl 0020 

NUMBR 

l-JSP 

DATA 0 
BYTE }20 
TEXT -'TRIE!:; I-

BYTE 7,7,7,0 

EVEN 
END 

()9: 24: 23 11:3/78 

0115 
0067 
0094 
0098 0102 0106 
0073 
0078 
0050 0088 0090 
0085 
0084 
0089 
0054 
0061 
()():33 

0087 
00:39 
0071 
0052 
0101 
0114 
0034 0075 0109 
0062 0075 0077 0082 

118/7:::: PAGE 000::: 

PLACE ASCII NO. HERE 

BELLS (A!:;C I I (7) 

WORKSPACE START (RO LOC) 

PAGE 0001 

RI0 
R12 

0025 
0026 

0036 0081 0095 0099 0103 0111 0113 011~ 

0037 
R2 
R':' --' 
R':;' ----_I 
F":;"' 
:3EVEN 
START 
THIRTN 
TURKEY 
\.oJSP 

0021 
()()22 

0023 
0024 
0138 
0033 
01 LJ-2 
0144 
0151 

0076 
0063 
004:3 
()():35 

0097 

0064 
0051 
0109 

0069 0116 
0105 
0107 
0(1:::::::: 

-~ERE ARE 0032 SYMBOLS 

0066 0068 0070 0072 0074 007,~, 0077 
0053 00:::2 
01 10 01 12 01 1--:' --' 

J-19 





ALPHABETICAL INDEX 

INTRODUCTION 

The following index lists key words and concepts from the subject material of the manual together with the area(s) 
in the manual that supply major coverage of the listed concept. The numbers along the right side of the listing 
reference the following manual areas: 

• Sections - References to Sections of the manual appear as "Section x" with the symbol x representing 
any numeric quantity. 

• Appendixes - References to Appendixes of the manual appear as Appendix y" with the symbol y 
representing any capital letter. 

• Paragraphs - References to paragraphs of the manual appear as a series of alphanumeric or numeric 
characters punctuated with decimal points. Only the first character of the string may be a letter; all 
subsequent characters are numbers. The first character refers to the section or appendix of the manual in 
which the paragraph is found. 

• Tables - References to tables in the manual are represented by the capital letter T followed immediately 
by another alphanumeric character (representing the section or appendix of the manual containing the 
table). The secohd character is followed by a dash (-) and a number: 

Tx-yy 

• Figures - References to figures in the manual are represented by the capital letter F followed 
immediately by another alphanumeric character (representing the section or appendix of the manual 
containing the figure). The second character is followed by a dash (-) and a number: 

Fx-yy 



Addressing: 
Direct Register 
Immediate .. 
Indexed Symbolic 
Indirect Register 
Indirect Register 

Autoincrement 
Not-Indexed Symbolic 
PC Relative 

Addressing Modes 
Applications ... 
ASCII Code 

4.5.3.1, F4·5 
. ... 4.5.3.6 
4.5.3.5, F4-9 
4.5.3.2, F4-6 

4.5.3.3, F4-7 
4.5.3.4, F4-8 

.. 4.5.3.7 

· ... 4.5.3 
· Section 6 
Appendix C 

Assembler, Line-By-Line 
Asynchronous Serial Communication 

7.7, F8-8, F7-4 
4.9,7.3 

Backplane 
Baud Rate 
Binary Mathematics 
Binary Number 

Carry 
Central Processing Unit 
Clock, System .... 
Commands, TlBUG 

· .7.9 
3.2.11 

· 0.3 
Appendix D 

........ 4.3.3.4 
5.3, F5-3, F5-4, F5-5 

5.2, F5-2 
3.2, T3-1 

Conversions, Number Appendix D 
CRU Addressing .. 8.2, F8-l, F8-2, F8-3, :=8-4, T8-' 

CRU Inspect/Change ........... 3.2.2 

Direct Register Addressing 
Documentation 
Dump Memory 

Equipment, Required 
Error Messages, TlBUG 
Execute: 

Program 
Step Mode ... 

Expansion Buffers, 
Off-Board 

Features of TM 990/1 OOM 
Formats, Instruction 

Glossary ..... 

Hardware Registers 
Inspect/Chan ge 
Program Counter 
Status Register 
Workspace Pointer 

4.5.3.1, F4-5 

· . 1.5 
.3.2.3 

· .2.2 
3.4, T3-4 

.3.2.4 
3.2.10 

5.8, F5-11, F5-12 

. 1.1 
F4-4 

. 1.4 

.4.3 

.3.2.9 

.4.3.1 
4.3.3, F4-2 

· ... 4.3.2 

INDEX 

Index 1 

Hexadecimal: 
Math .. 
Number 

Hookup: 

. ... 3.2.6 
Appendix 0 

2.4.2, F2-1 Power 
Terminal . 2.4.2, Appendix A, Appendix B 

I/O Decoder, Memory 
I mmediate Addressing 
Indexed Symbolic 

Addressing . . 
Indirect Register 

Addressing .. 

5.5, F5-8 

· .4.5.3.6 

4.5.3.5, F4-9 

4.5.3.2, F4-6 
I ndirect Register Autoincrement 

Addressing . . . . . . .... 4.5.3.3, F4-7 

Inspect/Change: 
Hardware Registers 
Memory ..... 

Software Registers 
Install ati on 
Instruction Formats 
Instructions 
Interface: 

Multidrop 
RS-232-C: 

.3.2.9 

.3.2.8 
3.2.12 

Section 2 

· .. F4-4 
4.5, T4-2, T4-4 

.......... 5.13 

. 5.10, 7.4, Appendix B 

Teletypewriter ....... 5.11, 7.4, Appendix A 

Interrupts ......... " 8.3, 5.9, 5.10, F8-5, F8-6 
F5-13, F5-14 

Interval Timers ............... 8.4, F8-7, F8-8 

Jumpers 

Line-By- Line Assembter 
LOAD ..... . 
Load Memory 
Loading Programs 

Map, Memory 
Memory: 

Expansion . 
I/O Decoder 
Inspect/Change 
Load .... _ 

Map .... . 
Random Access 
Read Only 

Search 
TlBUG 
User . 

Microterminal 
Monitor Calls, TI BUG 
Multidrop Interface 

. F6-1, F7-2, T7-1 

7.7, F7-4, F8-8 
5.4, F5-7 

· .. 3.2.7 
3.2.7, G-l 

. . F4-1 

6.4. 7.2 
5.5, F5-8 

.3.2.8 

· .. 3.2.7 

· .. F4-' 
5.6, Fl-l, F4-1, F5-9 

.5.7, Fl-1, F4-1, F5-10 

· .. 3.2.5 
· .. F3-1 
4.2, F4-1 
7.8, F7-5 
3.3, T3-3 

· .. 5.13 



INDEX (Continued) 

Not-Indexed Symbolic 
Addressing 

Numbering: 
Binary .. 
Conversions 
Hexadecimal 

Object Code 
Object Tags 
OEM Chassis 
Off-Board: 

Expansion Buffers 
RAM 
RESET 
RESTART 
ROM 
TMS 9901 

On-Board: 
Memory Expansion 
RAM Expansion 
ROM Expansion 

Op Code . 
Operation 
Options 
Overflow 

Parallel I/O 
Parity 
Parts Ust 
PC Relative Addressing 
Pin Assignments: 

Pl 
P2 
P3 
P4 

Power Hookup 
Power Supplies 
Program, Execute 
Programming 

4.5.3.4, F4-S 

Appendix D 
Appendix D 
Appendix D 

Appendix G 
· G-2, TG-l 

7.9, F7-6, F7-7 

5.S, F5-11, F5-12 
6.4,7.2 

.7.5 

.7.5 

.7.2 

.6.5 

.7.2 
7.2.2, F7-3 
7.2.1, F7-3 
· .. 4.5.1 
Section 2 
Section 7 

· .4.3.3.5 

5.9,6.3, F5-13, F6-4 
· .. 4.3.3.6 
Appendix E 

.4.5.3.7 

.. TH-l 
FA-1, FB-l, TH-2 

· ... 5.12 
· ... TH-3 

2.4.1, F2-1 
· ... 2.2 

· ... 3.2.4 

Programs, Sample . . . . . _ .... 
· Section 4 

2,6, FS-S, J-1, J-2 

RAJYI Expansion: 
On-Board 
Off-Board 

Random Access Memory 

Read Only Memory 

Registers: 
Hardware 

7.2.2, F7-3 
· . 6.4, 7.2 
· 5.6, Fl-l 

F4-1, F5-9 
· 5.7, Fl-1, 
F4-1, F5-10 

· .... 4.3 

Index 2 

Software 
Workspace .... 

Required Equipment 
RESET 
RESTART ... 
ROM Expansion: 

On-Board 
Off-Board 

RS-232-C Interface 

4.4, F4-3 
4.4, F4-3 
.... 2.2 

5.4,7.5, F5-7 
.7.5 

7.2.1, F7-3 
..... 7.2 

. 5.10, 7.4, Appendix B 

Sample Programs .......... 2.6, F4-17, J-1, J-2 
Schematics Appendix F 
Search Memory ................ 3.2.5 
SEL Lines ................ T5-1 
Serial I/O ............ 5-10,5-11,6_6,7.3, S.6 

F6-7, F5-14, F5-15, FS-13, FS-14 
Software Registers . . . . . . . . . 4.4, F4-3 
Software Registers, Inspect/Change 3.2.12 
Source Listing .... 
Specifications 
Step Mode Execution 
System Block Diagram 
System Clock 
Teletypewriter Interface 

Theory of Operation 
. TIBUG: 

Commands 
Error Messages 
Memory 

· FG-2 
· .1.3 
3.2.10 
· F5,1 

5.2, F5-2 
5.11,7.4, 

Appendix A 
Section 5 

3.2, T3-1 
3.4, T3-4 
... F3-1 

Monitor Section 3 
Monitor Calls 3.3, T3-3 

Timers, Interval .............. S.4, FS-7, FS-S 
TMS 9901: 

Interrupts ...................... S.3, 8.4 
Off-Card Expansion .............. 6.5, F6-6 
On-Card Expansion .............. 6.2, F6-3 
CRU Programming of ................ _ 8.6 

TMS 9902 ..................... 5.10,5.11 
Interface ................ _ .. 5.11,F5-15 

Interrupts .. _ ............... 8.4,5.10,6.6, 
F5-15. F6-7 

Two's Complement .................... D.4 

Unpacking . . ... 2.3 
User Memory 
Utilities 

Wire-Wrap Area 

4.2, F4-' 
3.3, T3-3 

5-12, F5-16, 
F6-1, F6-2, T6-1 



INDEX (Concluded) 

Wiring: 

RS-232-C .............. Appendix B 

Index 3 

Teletypewriter 

Workspace Registers 

Appendix A 

. 4.4, F4-3 



TM 990/100M MICROCOMPUTER 
USER RESPONSE SHEET 

It is our desire to provide our customers with the best documentation possible. After using this manual, please 
complete this sheet and mail it, postpaid, to us. Your comments will be given every consideration. 

1. I's the manual well organized? Yes ___ No __ Comments: ________ _ 

2. Is text clearly presented and adequately illustrated? Yes ___ No 

Comments: ______________ _ 

3. What subject matter could be expanded or clarified? _____________________ _ 

4. Is the instruction set adequately covered? Yes ___ No __ _ 

Comments: _______________________________________ __ 

5. Do you wish more data that would clarify an instruction? Yes ___ No __ _ 

Comments: _______________________________________ _ 

6. Do you wish more data to clarify an application? Yes ___ No ___ _ 

Comments: _______________________________________ _ 

7. Please explain the application intended for your board: 

School Course ___ _ Home __ _ Evaluation ___ _ OEM Application ___ _ Other 

If OEM Application, please describe: _____________________________ _ 

8. Other comments concerning the TM 990/100M and this manual: ________________ _ 

Name: ________________________________________ _ 

Address ______ --------------__ State _______ _ ZIP _____ _ 

School (if applicable) ______________ _ Major _________ Year _____ _ 

REV. D, 



FOLD 

BUSINESS REPL V MAIL 

No postage necessary if mailed in the United States 

Peat ... will 1M ...... by 

TEXAS INSTRUMENTS INCORPORATED 
SEMICONDUCTOR GROUP 

P.O. BOX 1443 HOUSTON, TEXAS 77001 

ATTENTION: MICROCOMPUTER PRODUCTS DEPARTMENT 
MIS 653, COMMERCE PARK 

FOLD 

FIRST CLASS 
Permit No. 6189 
Houston, Texas 



~o TEXAS INSTRUMENTS 
INCORPORATED 

Semiconductor Group 

MP321 REV. 0 Post Office Box 1443 Houston, Texas 77001 
Printed in U.S.A. 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	J-00
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	i-00
	i-01
	i-02
	i-03
	replyA
	replyB
	xBack

