The Engineering Staff of
TEXAS INSTRUMENTS INCORPORATED

Semiconductor Group

TM 990/100M
MIGROGCOMPUTER

USER’'S
GUIDE

PART NUMBER 16020092-9701

DECEMBER 1978

TEXAS INSTRUMENTS

INCORPORATED

S

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in
order to improve design and to supply the best product possible.

Tl cannot assume any responsibility for any circuits shown or
represent that they are free from patent infringement.

Copyright © 1978
Texas Instruments Incorporated

TABLE OF CONTENTS

INTRODUCTION

11 (7= 1= - 1 A AP 1-1
1.2 Manual Organizationiuuieiienneenerineeneeenneeneeneeneesasneeeneosnesneeansas 1-1
1.3 ST =TT} o7 (T T PN 1-4
1.4 Board CharacteriStiCsviuuetetnetetuneneeennneneeennneeoneeennseeannseoeanansnenes 1-4
1.6 LT T LT T PP 1-4
1.6 Applicable DOCUMENTSvuvnttieteenteeeieeneaneenennns s 1-8
INSTALLATION AND OPERATION

2.1 L= 0 1= - 1 USSP 2-1
2.2 Required EQUIPMENt ...ttt ittt ittt itee e etneeennneennerennneeesnneeennnnns 2-1
2.3 L0 L3 0T Ted {3 Vo U 2-2
24 Power and Terminal HOOKUP .. .ciitiitii ittt ittt itieeeeneennneeennenaenaanas 2-2
24.1 PoWer SUPPIY HOOKUD ittt ittt ittt ettt e teeeaseesneesenneesennennns 2-2
2.4.2 Terminal HOOKUD .ottt ittt ettt tttee e ttiteeeenieeeneeeenseeennneeasneeennnns 2-2
25 (07 4 T=T 2 Y (o 3 2-2
2.6 ST [0 o L= T o e T |- o 1 PPN 2-4
TIBUG INTERACTIVE DEBUG MONITOR

3.1 (7= YT - T AP 3-1
3.2 TIBUG COMMANAS .t ttttnttiiteneeetenuanneneeneesenaeeeeeeensnnseeseseeesansssnsnoansss 3-1
3.2.1 Execute Under Breakpoint (B)ciiiiuriiiiiiiiiinerinereneeeneeeeennneeeennanenns 3-3
3.22 CRUINSPECt/Change (C)uuuuiinitttituneernreunnneeeeeeonseanessaesoseseesonanns 3-4
3.2.3 Dump Memory to Cassette/Paper Tape (D)cuitiiniienrerrenineieneeereeeeennnns 3-5
3.24 Execute Command (E)uununiiiitttitiiiiiiiieiiiieeeer ettt 3-7
3.2.5 FiNd Command (F)itieiititintttieetteieeteenunnneeenneeeneeeeoeeeennesensneesnnnns 3-7
3.2.6 Hexadecimal Arithmetic (H) ..ottt i ittt ittt teeneernennnennnenennnns 3-8
3.2.7 Load Memory From Cassette or Paper Tape (L)c.uvriiierierieiiiinnneneeeenennanns 3-8
3.2.8 Memory Inspect/Change, Memory Dump (M) ...ttt iiiieeeeernennnnns 3-9
3.2.9 Inspect/Change User WP, PC, and ST Registers (R)ccoiviiiiiiiiiiniennenenennnnns 3-10
3.2.10 Execute in Step Mode (S) . .iiiitiiitiiiiiiiiit ittt tteeeeteeriteeeennaneennnnanns 3-11
3.211 TI733 ASR Baud Rate (T) . .vuniiiittttiiiiieitieieneeeeeesnnneeeeeneeeeesannannns 3-11
3.2.12 Inspect/Change User Workspace (W)ciuiiiiuiiineennerennernnnsseonesaoenaennns 3-12
3.3 User Accessible Utilitiesottt iiiiiiieierteereerenreessnsensesnasasnes 3-13
3.3.1 Write One Hexadecimal Character to Terminal (XOP 8)oviiitiiiiniinennernennenns 3-13
3.3.2 Read Hexadecimal Word From Terminal (XOP 9)ivtiiiiiiiiieiierrnennernnennnnns 3-14
3.3.3 Write Four Hexadecimal Characters to Terminal (XOP 10)ccoiiiiiiiriiiinnennnnsn 3-14
3.3.4 Echo Character (XOP T1) oottt ittt ettt ieetneesesseenesneenneeneennennns 3-15
3.3.56 Write One Character to Terminal (XOP 12)iiiiiiiitiitintiitiieeeeeneeneennennennns 3-15
3.3.6 Read One Character from Terminal (XOP 13) ...ttt iiiieeeeennerernnenns 3-15
3.3.7 Write Message to Terminal (XOP 14) ... ittt it iieeteereenneraneeneenennns 3-15
34 TIBUG Error MESSagES . ..o vviutnitittttnetetneeeaeseenonnnosesssesinesansannessensens 3-16
INSTRUCTION SET FOR THE TM 990/100M

41 (7= 3T - T LA PPN 4-1
4.2 USer MBMOTY oottt iitt ettt ieeeeneenneeoneenoeeaseaeennsseroeesnnennesnennennes 4-1
4.3 Hardware RegiSterSoiutiir ittt itiiteteetneteeeenneeenneesnneeonnsesanneesennenns 4-1
4.3.1 Program COUNTErcovtuuinierennenonneneennnnnnasannns A e ieei e 4-2
4.3.2 Workspace Pointeritiiiiiiiiiiiettinnenreeteneeeanaseonnseneassanneersnnsannans 4-2

TABLE OF CONTENTS (Continued)

4.3.3 Status Registercuuetitieeneeeinnnnereeeaninnannnnnnn P 4.2
44 SOftware RegiStersiviuiuiiiiitetiiiuereneeenneeeennneeeenaeeesneseaneesanaeonns 4-4
45 Instruction Formats and Addressing Modesccoiiiiiiiiiiiiineeererennnnnnnans 4-7
4.5.1 Direct Register Addressinguuuereetiteriniirreeeeeeeeesonneeeeeeeanaanneenenns 4-8
4.5.2 Indirect Register AdAresSingueeeetieenenrnereneeinennesnneeeeeesennenassosenns 4-8
4.5.3 Indirect Register Autoincrement Addressingccoiiiiiiiiiiiiiiiiiiiiein, 4-11
45.4 Symbolic Memory Addressing, Not Indexedc.ccovitiiiiiiiiineneeenennnnennnns 4-11
.45.5 Symbolic Memory Addressing, Indexedc.oiiiiiiiiiiieeeieeeeniennneeeeeannns 4-11
4.6 IOSITUCHIONS . .\ v vvettts e ee ettt e et e et ettt ettt e e et e e e e e e ee e e et aanaes 4-14
4.6.1 Format 1 INStrUCHIONSttt tiiisiininnneeeereneenneeeeeeeeeseeannnnneseeseaneassnnes 4-18
4.6.2 FOrmat 2 INSITUCHIONSvvttrtrtennnnnnnnneeeseesnneaneeessesenannsnnsesessennennnens 4-19
4.6:3 FOrmat 3 INSIUCHONSuueteetneeetttieeeesserteeeee e eeerenaeeeeenrnnnnns £ 4-22
4.6.4 FOrmat 4 INStrUCHIONSvtuttenttennnnneeeeeeeeennseseeeeeeennennsnseeseeseninnaneos 4-23
4.6.5 FOrmat 5 INStrUCHIONS .. .vutitintiniiine ittt eeenereeroneennseeeseeeeresnssnsnnsnnnns 4-24
4.6.6 FOrmat B INStrUCTIONSottttirtnnnnineneneeteeroneeeseeeneeasnennnnoseeoseesannnnnneas 4-26
4.6.7 Format 7 INStrUCtiONSuiiiiienniinenerereennnnnnneeeeeneannns [N 4-28
4.6.8 FOrmat B INStrUCIONS ..ottt trenteeennreeennerensneeensneeneneeeensoseanseennes 4-30
4.6.9 Format 9 Instructions e ettt 1 4-32
4.7 Comparison of Jumps, Branches, XOP's e 4-34
THEORY OF OPERATION
5.1 (€Y 4T - T O 5-1
5.2 SYStEM ClOCK .. ititttt i iiiieeteneeeeeeeeneonnnsesansasnaseassossssesasanssnnnnnns 5-1
5.3 Central Processing Unitcouiiiiiiiiiiiiiiiiiiiiiieeieniieieessssseeeaansssosnnnns 5-1
54 RESET @nd LOADiiiiiiiiiiiititieteeeteeeeesonncansnnssssaesesssssnsnnsnssnsnnnns 5-3
55 Memory 170 Decoderiuuuiiiiiiiiiii ittt iiiiiiiiiiieiatnettanaeeanarionannns 5-7
5.6 Random Access MemOrYcvviiiereenereernnnneeennnneennnns everedreaessrectteranes 5-7
5.7 Read ONlY MBIMOIY . intittit vt tetet et ettenenenneneesensonesseesensaseassasansasanans 5-7
5.8 Offboard Expansion Buffersc.oiiiiiiiiiiiniieiiierernesseenosnscennssocennnsns 5-8
5.9 TMS 9901 Parallel 170, Interru‘pts .. 5-8
510 TMS 9902 Serial 1/0 Interfaceoiuiuiiniiiiniiiiereeeeernenntneseeecoerassasanes 5-15
5.1 Serial I/O0 Interfaceooiiiiiiiiian, i eeeisiraesenseansectnsretsatasenranan 5-15
512 Wire-Wrap Areacoiiiiuiiiieuiineinnnseniseereennsacensssenncsensnns e 5-15
B5.13 MUMIAIOP INtErfACE vt vuvtite e etet et tteenrtnnenseeneenneonasenssessensseneenconns 5-15
APPLICATIONS
6.1 LY 1T AR 6-1
6.2 Wire-Wrap Additional On-Card TMS 9901 ... ittt iiieiitrarnatnnnsnsnennns 6-1
6.3 Parallel 170 Port CirCUIIY ... vitiiittiiittitiieetetenneeeoresesnnseeensasessnnneassanns 6-1
6.4 Off-Card Additional Random AcCCess MeMOTYeiutinreiieinnrenreeneenesensennens 6-1
6.6 Add Off-Card TMS 9801ttt it ittt ittt cnacnaeenens 6-1
6.6 On-Board Communications INterruptcciittetennirneneeteeeeennonneiocsssansons 6-1
OPTIONS ,
71 LTy 1T | 7-1
7.2 On-Board Memory EXPansionc.ciieiiiieienieenoreestassosssssoascancensoanssnnnes 7-1
7.2.1 EPROM EXPanSiOoN . .v.utietirinetnieeetoneesoonnsessonasesosessasssssosssesssnssansanns 7-1
7.2.2 RAMEXpansioncciiiiiiiiiiiiiiiiiiaiaa, B 7-1
7.3 Asynchronous Serial COMMUNICAtIONuunreeerererenenensnranecesenensaeneosesssnes 7-1
7.4 RS-232-C and Teletypewriter Interfacesc.oiiiiiiiiiiiiiiiiiiiiiiiiianien, 7-4
7.5 External System Resetouiiiiiiiiiiiiiiiiiiiiiiitiiieinrinaceeaeanannanssconns 7-4
7.6 Memory Map Changecciiuiiiiiiieiiiiierieineeereeneetnneeososnesnsnsasessnnes 7-4
7.7 Line-By-Line Assemblerciiiiiiiiiiiiiniiieriinntonenneeieeineeteennsanenannan 7-6
7.8 TM 990/301 Microterminalciiiiuiiieiiniierrrennsronneecnnocennes eeeereeanan 7-6
7.9 OEM ChasSiS . vvvverertonnneenneesosuaseeensessnsassessasusseassssonsesssnssssanannnons 7-6
7.10 Interrupt from TMS 9002 ittt ittt iiitesennererntessannscaasnnnanss 7-6

TABLE OF CONTENTS (Concluded)

8. PROGRAMMING THE TM 990/100M MICROCOMPUTER

8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.3
8.3.1
8.3.2
8.4
8.4.1
8.4.2
8.5
8.6

TIOMMOO®>

[

Figure 1-1
Figure 1-2
Figure 1-3

Figure 2-1
Figure 2-2

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8

General e, 8-1
CRU Programmingo e e e e e e e 8-2
General . . .o e e 8-2
CRU AdAressing oo vt e e 8-2
CRU TIMING . .. o e e 8-4
CRU INStructionso e e e e e e 84
INterTUPES .« . . L e 8-7
Interrupt Operation 8-7
Programmable Interrupts L e 8-8
Programming the Interval Timers e 8-10
TMS 9901 Interval Timer o e e 8-10
TMS 9902 Interval Timerot e e 8-11
Context Switch to Another Program such as Monitor 8-14
1/0 Programming with the TMS 9901 it 8-14
APPENDICES

WIRING TELETYPE MODEL 3320/SJE FOR TM 990/100M
EIA RS-232-C CABLING
ASCII CODE
BINARY, DECIMAL, AND HEXADECIMAL NUMBERING
PARTS LISTS
SCHEMATICS AND DIMENSIONAL DRAWING
990 OBJECTIVE CODE FORMAT
P1, P2, AND P4 PIN ASSIGNMENTS
TM 990/301 MICROTERMINAL
EXAMPLE PROGRAMS

LIST OF ILLUSTRATIONS
TM 990/100M Microcomputer PC Boardc.ccviitiinierrierenrenneoneansosesosssssas 1-2
Principal TM 990/ TO0M CompPoneNntSovtttenetenteneeaneroeronesossossasassosssens 1-3
TM 990/100M Board Dimensionscc.iitieniieeernneeeeeneeeennsssennasoansesennss 1-5
Power SUPPlY HOOKUP ..ttt ittt ittt et itetettneeeernaneeeanesossaanssansoas 2-3
743 KSR Terminal HOOKUD . ..iiiiiiiiiiiiii it ieietinereeneeeennoesesacnasesosesansans 2-4
Memory Requirements for 7/BUGoiiiiintiineinereneeneetoerossaseeneennsensens 3-2
CRU Bits Inspected by C Commandiiiiiiiinttitineeernnnesoasesetnsasonnnses 3-4
733 ASR Upper SWitch Paneluiiiiiiiiiiiiiiriiiiieererneeeeranssorneesnnseens 3-6
LI T TR 1 - 3-6
Memory Map ..o vve it iii it J T S T 4-2
Status Registerouiun it i e 4-3
Workspace EXampleottt i i i it e 4-6
TM 990/100M INStruction FOIMatsvvvtuunnnennenneeeeeeeeeeeerononensessessonennnes 4-7
Direct Register Addressing Exampleiiiiiiiiiiiiiiiiiiiiiiieiianiriaeerennens 4-9
Indirect Register Addressing Exampleciiiiiiiiiiiiiiiiieriiiiiiiiieneeennns 4-10
Indirect Register Autoincrement Addressing Exampleciiiiiviiiiiiiiiininn. 4-10
Direct Memory Addressing Exampleiiiiiiiiiiiiiineinneireneereneeenennnns 4-12

Figure 4-9
Figure 4-10
Figure 4-11
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11

LIST OF ILLUSTRATIONS (Continued)

Direct Memory Addressing, Indexed, Examplec.ciiiiiiiiiiiiiniennnnnannan 4-13
12T I T o T 1 o) - A 4-29
D (0] o 3 -1 1 1]] - Y 4-33
TM 990/100M BIoCk Diagramuuutiniiieeeeerunneeeneeeeeeseeenssanasaneosesanens 5-2
Crystal-Controlled Operationc.iiuiiiietneneeneeeeeneeeeeneeeeensacnnaaaennnns 5-3
TMS 9900 Signalsciiiiiiii ittt ittt tiiitearaneneerneanaaeaaaans 5-4
TMS 9900 Data and Address FIOWoiiiiiieiiiiiiieiieinereneeneeonnnaneanassaeonnns 5-5
TMS 9900 CPU FIOW CRarttttiiiiiiiieieeinnnneeeaeeeseannnnneeonsseeeseananns 5-6
External Instruction Decode Logicon TMS 9900ciiiiiiiiiiininnnenecnnnn « 5-7
RESET @nd LOAD LOGIC . .uuitiiiitiineeeeeennnneeeeeaeoeonunnnnnassaasesosnsnasaanassas 5-8
MemoOry 1/0 DeCoderiiiiiiii ittt it teeeneeaneasesaseaneesassessneseessasnnsnns 5-9
Random AcCess MemOrYciiiiiiiiieiereennneeeneeroennonnnenanaoascscsnssnnnnans 5-10
Read Only MemOryutiiiiiiiitiiiiieeneneenneeenneeeonnsaceasnassonassanasannans 5-11
Buffering of Control Signals to Connector P1o iiiiiiiiiiiiiiiiiiiieneeneenns 5-12
Buffering of Address and Data Signals to Connector P1ciiiiiiiiiiiienenn. 5-13
TMS 9901 External LogiC .. .cuvunntetienneieeeeennnnecrneeeeeeesonnnnseancseacssassns 5-14
TMS 9902 External LOGICovvvuininiinieiiettetiennniesoereesossceenncnnssceeennns 5-16
Serial 1/0 Interfacecouuiiiiiiiiiiii ittt teeeeeeeneennnneseassasasonannannanns 5-17
Signals at WiIire-Wrap Ar€acouueeeueeeeeereeeeeseesanannesoassoeesssesannnnnns 5-18
Multi-Drop Interfaceconiiiiitiiieiineienreeeneeeenaeeeecnnasaanasoanssoannns 5-19
Devices Used in Various Applicationscciiiiieieiieeeeernennnneseeeceennnnnnnns 6-2
Signals at WiIre-Wrap Araovetuniietnneeenneseoeeeesesnaseesneeesseesansanennens 6-3
On-Board TMS 9901 WIringciiiiiiiiiuiinnieeeeeeonnnnoeeesseasosseosonnnanaansns 6-4
Parallel 1/0 Port ...ttt ittt e tietaeaaereeeaeenennneastesoesttonantenans 6-5
Off-Board Expansion of RAMttt iiitiieiteteeaaeenenncnnnnsnannes 6-6
Circuitry to Add TMS 9901 Off-Boardcciiiiiiiiiiiniiiiieerennneeeaceecnnsennnns 6-7
Four Interrupt-Causing Conditions at TMS 9902iiiiiiiiiiiriierennenennnes 6-8
Memory Placement On Boardc.ciiieiieennerennereoneeroenneaaennasonnessanssss 7-2
Jumpers and Capacitors Used for Option Selectioncciiiiiiiiitnneerrnnecnaanns 7-3
Memory EXpansion Mapsoiiiiiiieiinneennerenneeeonneassonnassonsosanasasnnsss 7-5
Line-By-Line Assembler QUtpUtiiiiiiiiiiiiietinneernnneesennaeeneseanaonanses 7-7
TM 990/301 Microterminaluiuniiietituennenseseeseserossonsssceeeceessnnnans 7-8
OEM Chassis . .itiitiuninieeueeseeenneoesosesannesensssaonssnaascassssessannssannnns 7-9
OEM Chassis Backplane SChematiCc..ciitiiiietiitteeneereenenenenaanssaasscnnns 7-10
CRU Address in Register 12 vs. AddressBus Lines 8-3
TMS 9800 CRU Interface Timing it ittt it e i i . 85
LDCR Byte Instructiont it i e e it e e e 8-6
STCRWord Instruction i et 87
Interrupt Trap LOCatiONS o ittt ittt ettt ettt e e e e 88
Dedicated Instruction and Wrokspace Areas for Interrrupts3and4 89
Enabling and Triggering TMS 9901 Interval Timer 8-12
Example of Code to Run TMS 9901 Interval Timer i, 8-13
LDCR Word Execution to TMS 9901 e 8-15
LDCR Byte Execution to TMS 9901 i i 8-16
STCR Word Execution to TMS 9901 i i i i ettt e ie e et 8-17

vi

Figure 8-12
Figure 8-13
Figure 8-14

Figure G-1
Figure G-2

Figure |-1

Table 3-1
Tabie 3-2
Table 3-3
Table 3-4

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

Table 5-1

Table 6-1
Table 6-2

Table 7-1
Table 8-1

Table C-1
Table C-2

Table D-1
Table D-2

Table G-1
Table H-1
Table H-2
Table H-3

Table I-1

LIST OF ILLUSTRATIONS (Concluded)

STCR Byte Execution to TMS 9901 i e e e e e e e 8-18
Test CRUBitat TMS 9901 e e e e e e e e e e 8-19
Set CRUBitat TMS 9901 e e e e 8-20
Object Code EXamplettt ittt ettt ettt G-3
Source Code and Corresponding Object Codeovuiiiiueneeeerreeenenennnnnneens G-5
TM 990/301 Microterminaliiuiitnniiietteieteeteeeeeeeennainneeneeeseennnnnnns 1-2
LIST OF TABLES
TIBUG Commands .. .uutuuniitiieettettntneseeeeeeaeeeeeeeeeensnnneeeeeeenssnnanennns 3-1
Command Syntax CoNVENtIONSiiituitettnnnerennnneeennneennaeennesenneeennanenns 3-3
User Accessible UtIiesc..ooiiiiiiiiiiiiiiii ittt ittt iiieeereeennnneaannnens 3-13
TIBUG Error MESSAgES .. vvvvtttnentttneeenneeeunaneseesseeessneeesnaessaseonnsaeennnnn 3-16
Status Bits Affected by Instructions e 45
Instruction Description Terms i e e e 4-14
Instruction Set, Alphabetical Index e 4-15
Instruction Set, Numerical Index 4-17
Comparison of Jumps, Branches, XOP's it et 4-34
1/0 Device SeleCt LiNesovvtutniiinent ittt teiiiiiiieseecaneonsaanioieseanns 5-10
170 Pins @t Wire-Wrap Areauutiniiiietoieenreeeeeeatnnnonaosesensnnnnnneonases 6-3
List of Materials for Adding RAM i ittt ittt ieeeeneaneannnaenn 6-7
Jumpers and Capacitors Used With Optionsc.cciiiiiiiiiiiiiiiineieeneeeeennnnnns 7-4
CRU Addressing Map i e e e e e e e e e e e 8-2
ASCH Control Codes . ..uvitiitiii ittt ttieetneteneeeneeoneasecnseaaeoesnosnconcssasons C-1
ASCH Character Codeoutuiitiiiinintiinreeeeureenoeeneeeasoneonsossonnsoansasenons C-2
Hexadecimal/Decimal Conversion Chart i iiiiiiiiiciiiiiiiiiiiineann, . D-5
Binary, Decimal, and Hexadecimal Equivalentsiiiiiiiiiiiiiiininnennnnns D-6
Object Output Tags Supplied by Assemblers it G-1
Chassis Interface Connector (P1) Signal Assignment iiiiiiiiiiiiineneenns H-1
Serial /0 Interface (P2) Pin ASSIGNMENtS ...ttt iiiaiiaenneeennnns H-2
Paraliel [/70 Interface (P4) Signal AsSigNmentsc.ciuiiiiiieinnrenennenaeoneennnns H-3
EIA Cable Signalsc.uniiii it i ittt et eee e eee e aeeaaee et 1-2

vii/viii

1.1

1.2

GENERAL

SECTION 1

INTRODUCTION

The Texas Instruments TM 990/100M is a self-contained microcomputer on a single printed-circuit board.
The board’s component side is shown in Figure 1-1. It contains features found on computer systems of
much larger size including a Central Processing Unit (CPU) with hardware multiply and divide,

" programmable serial and parallel 1/0O lines, external interrupts, and a monitor to assist the programmer in

program development and execution. Other features include (see Figure 1-2):

e TMS 9900 microprocessor based system: software is compatible with other members of
the 990 family.

g 256 x 16 bits of TMS 4042-2 random-access memory (RAM) expandable on board to 512
x 16 bits. Replacements are listed in Appendix E, Parts List.

° 1K x 16 bits of TMS 2708 erasable programmable read-only memory (EPROM)
expandable on board to 2K x 16 bits. Simple jumper modifications allow substitution of
large TMS 2716 EPROM'’s (16K bits each) for the smaller TMS 2708's (8K bits). Four
TMS 2716's allow EPROM expansion to 4K x 16 bits.

NOTE
Three board configurations are available. The
characteristics of each are explained in paragraph 1.4.

® Buffered address, data, and control lines for off-board memory and 1/O expansion.

° 3 MHz crystal-controlled clock.

L Interfaces to 20 mA current loop or RS-232-C terminals or to twisted-pair multidrop
interface (see paragraph 1.4).

° Two programmable interval timers.

° User wire-wrap area surrounded by signal access pins; area adjacent to spare onboard
40-pin connector (P3).

° PROM memory decoders allow easy reassignment of memory map configuration.

MANUAL ORGANIZATION

Section 1 covers board specifications and characteristics. A glossary in paragraph 1.5 explains terms used
throughout the manual.

Section 2 of this manual shows how to install, power up, and operate the TM 990/100 microcomputer with
the addition of the following:

Power supply

11

1-2

FIGURE 1-1. TM 990/100M MICROCOMPUTER

et

TMS 9900 MICROPROCESSOR
TIM 9904 CLOCK
RESET SWITCH

ASSEMBLY NO. P1

— TMS 9901 PARALLEL 1/0 CONTROLLER

FIGURE 1-2. PRINCIPAL TM 990/100M COMPONENTS

RAM’s

EPROMS

TMS 9902
ASYNCHRONOUS
COMMUNICATIONS
CONTROLLER

1.3

1.4

1.5

° Data terminal (properly wired and connected)
° Connecting cables

Section 3 explains how you can communicate with the TM 990/100M using the 7/BUG monitor {on board
999211-0001 only). This versatile monitor, complete with supervisor calls and operator communication
commands facilitates the development and execution of software. Section 4 covers programming
procedures including the instruction set, interrupts, extended operations (XOPs), context switching, and
1/0 programming.

Section 5 covers theory of operation with paragraphs keyed to schematics of specific areas of the TM
990/100M board. Section 6 contains application considerations, and Section 7 covers options including
a microterminal and a line-by-line (no-label) assembler. Section 8 covers programming techniques and con-
siderations.

GENERAL SPECIFICATIONS

Power Consumption:

+5V +12V -12V
256 words RAM, 1K words EPROM 1.2A 0.ZA 01A
256 words RAM, 2K words EPROM 1.2A 0.2A 0.1A
512 words RAM, 1K words EPROM 14 A 02A 0.1,A

Clock rate: 3 MHz

Baud Rates (set by 7/BUG monitor):
110 baud, 300 baud, 1200 baud, 2400 baud

Memory Size:

RAM (TMS 4042-2's), 256 x 16 bits expandable on-board to 512 x 16 bits

EPROM (TMS 2708's), 1K x 16 bits expandable on-board to 2K x 16 bits

Optional EPROM (TMS 2716's), 2K x 16 bits expandable to 4K x 16 bits
Board Dimensions: See Figure 1-3.
BOARD CHARACTERISTICS
Different models of the TMS 990/100M microcomputer and identified by different assembly numbers. This
number is in the lower left as shown in Figure 1-2. The different aspects of these boards as shipped from
the factory are listed in Table 1-1.

GLOSSARY

The following are definitions of terms used with the TM 990/100M. Applicable areas in this manual are in
parentheses.

Absolute Address: The actual memory address in quantity of bytes. Memory addressing is usually
represented in hexadecimal from 0000, ¢ to FFFF; ; for the TM 990/100M.

Alphanumeric Character: Letters, numbers, and associated symbols.

1-4

310N

'6-4 3DVd NO NMOHS SNOISN3IWIA 1ivi3a

G-l
(SFHONI Ni) SNOISNIWIAQ GY w08 W00L/066 INL '€-L 3HNOId

e—————2.1

39

a0 30 20 10
P3
c31
u2s u2e vi u27 u2s u23 u3o U3t
1 1 1 c32 1 1

1 1 .
=z T =T T
— v20 u21 u22 -
[__— , -{ } R21
—

]
b

24 R16 R17 o o U45|
<~ . [:u —¥ c2s g8 |
A S) uss N
1 | A1a 29 It
— b . Rz v 2
u1s 1 vaa
1 U7 1 —
\ uig c19
: u3s 1
I—F ! Tt
Cia INT 4 - v13 uls R12 k c22
SOURCE Q;W 5 c21
C20
9902 4 lv- 33
{{ n oo TM990/100M E 1B] IR —
P1=18 v2 MADE IN USA R9 1 -
SERIAL NO 1 1 R8 .

":F

p - = .

u3s

c1

;E us 1 gg' u7' vus 1 U0 ! +D 1y on _:‘ C -c s - . J3
P! o g 1Y T e/

Tt
ASSY NO 999211-000 @@ 2> . o)
z = 20 SUBASSY 999209 008+ D'AG““S'Z‘ NO 999212 g8 oz !

50 P1

 — J

< 11.000

3
°
.

—> [<«— 0SE"0
. L[]
NGND

y

—

ASSEMBLY NO.

TABLE 1-1. BOARD ASSEMBLY CHARACTERISTICS

1/0 INTERFACE TYPES

EPROM*

RAM

999211-0002
999211-0003

999211-0001 -

RS-232-C (ElA) or Current Loop

Multidrop or RS-232-C only
Multidrop or RS-232-C only

1K x 16 bits**
1K x 16 bits**
4K x 16 bits***

256 x 16 bits**
256 x 16 bits**

512 x 16 bits***

*Assembly 999211-0001 EPROM’s contain TIBUG monitor; assemblies 999211 -0002 and -00G63 EPROM’s are not programmed.
**Two 2708 EPROM's and four 4042 RAM's.
***Four 2716 EPROM’s and eight 4042 RAM's.

'

ASCII Code: A seven-bit code used to represent alphanumberic characters and control (Appendix C).
Assembler: Program that interprets assembly language source statements into object code.

Assembly Language: Mnemonics which can be interpreted by an assembler and translated into an object
program (paragraph 4.6).

Bit: The smallest part of a word; it has a value of either a 1 or 0.
Breakpoint: Memory address where a program is intentionally halted. This is a program debugging tool.
Byte: Eight bits or half a word.

Carry: A carry occurs when the most-significant bit is carried out in an arithmetic operation (i.e., resultant
cannot be contained in only 16 bits), (paragraph 4.3.3.4).

Central Processing Unit (CPU): The ““heart” of the computer: responsibilities include instruction access and
interpretation, arithmetic functions, 1/O memory access. The TMS 9900 is the CPU of the
TM 990/100M.

Chad: Dot-like paper particles resulting from the punching of paper tape.

Command Scanner: A given set of instructions in the 7/BUG monitor which takes the user’s input from the
terminal and searches a table for the proper code to execute.

~ Context Switch: Change in program execution environment, lncludes new program counter (PC) value and
new workspace area.

CRU (Communications Register Unit): The TMS 9900's general purpose, command-driven input/output
interface. The CRU provides up to 4096 directly addressable input and output bits (paragraph
8.2).

Effective Address: Memory address resulting from interpretation of an instruction, required for execution
of that instruction.

EPROM: See Read Only Memory.

Hexadecimal: Numerical notation in the base 16 (Appendix D).

1-6

Immediate Addressing: An immediate or absolute value (16-bits) is part of the instruction (second word of
instruction).

Indexed Addressing: The effective address is the sum of the contents of an index register and an absolute
(or symbolic) address (paragraph 4.5.3.5).

Indirect Addressing: The effective address is the contents of a register (paragraph 4.5.3.2).

Interrupt: Context switch in which new workspace pointer (WP) and program counter (PC) values are
obtained from one of 16 interrupt traps in memory addresses 0000, ¢ to O03E, ¢ (paragraph 4.9).

1/0: The input/output lines are the signals which connect an external device to the data lines of the
TMS 9990. '

Least Significant Bit (LSB): Bit having the smallest value (smallest power of base 2); represented by the
right-most bit.

Link: The process by which two or more object code modules are combined into one, with cross-referenced
label address locations being resolved.

Load: Transfer control to the operating system through the equivalent of a BLWP instruction to vectors in
upper memory (FFFC1g and FFFE1g). See Reset.

Loader: Program that places one or more absolute or relocatable object programs into memory (Appendix
G).

Machine Language: Binary code that can be interpreted by the CPU (Table 4-4).

Monitor: A program that assists in the real-time aspects of program execution such as operator command
interpretation and supervisor call execution. Sometimes called supervisor (Section 3).

Most Significant Bit (MSB): Bit having the most value; the left-most bit representing the highest power of
base 2. This bit is used to show sign with a 1 indicating negative and a 0 indicating positive.

Object Program: The hexadecimal interpretations of source code output by an assembler program. This is
the code executed when loaded into memory.

One’s Complement: Binary representation of a number in which the negative of the number is the
complement or inverse of the positive number (all ones become zeroes, vice versa). The MSB is one
for negative numbers and zero for positive. Two representations exist for zero: all ones or all
zeroes.

Op Code: Binary operation code interpreted by the CPU to execute the instruction (paragraph 4.5.1).

Overflow: An overflow occurs when the result of an arithmetic operation cannot be represented in two's
complement (i.e., in 15 bits plus sign bit), (paragraph 4.3.3.5).

Parity: Means for checking validity of a series of bits, usually a byte. Odd parity means an odd number of
one bits; even parity means an even number of one bits. A parity bit is set to make all bytes
conform to the selected parity. If the parity is not as anticipated, an error flag can be set by
software. The parity jump instruction can be used to determine parity (paragraph 4.3.3.6).

Program Counter (PC): Hardware register that points to the next instruction to be executed or next word
to be interpreted (paragraph 4.3.1).

1-7

1.6

PROM: See Read Only Memory.
Random Access Memory (RAM): Memory that can be written to as well as read from (vs. ROM).
Read Only Memory (ROM): Memory that can only be read from (can’t change contents). Some can be

programmed (PROM) using a PROM burner. Some PROM'’s can be erased (EPROM’s) by exposure
to ultraviolet light. k

RESET: Transfer control to the operating system through the equivalent of a BLWP instruction to vectors in lower
memory (000016 and 000216). See Load.

Source Program: Programs written in menmonics that can be translated into machine language (by an
assembler).

Status Register (ST): Hardware register that reflects the outcome of a previous instruction and the current
interrupt mask (paragraph 4.3.3).

Supervisor: See Monitor

Utilities: A unique set of instructions used by different parts of the program to perform the same function.
In the case of T/BUG, the utilities are the |/O XOP’s (paragraph 3.3).

Word: Sixteen bits or two bytes.

Workspace Register Area: Sixteen words, designated registers O to 15, located in RAM for use by the
executing program (paragraph 4.4).

Workspace Pointer (WP): Hardware register that contains the memory address of the beginning (register 0)
of the workspace area (paragraph 4.3.2).

APPLICABLE DOCUMENTS

The following is a list of documents that provide supplementary information for the TM 990/100M user.

L] TMS 9900 Microprocessor Data Manual

° TMS 9901 Programmable Systems Interface Data Manual

° TMS 9902 Asynchronous Communication Controller (Data Manual)

° Model 990 Computer, TMS 9900 Microprocessor Assembly Language Programmer’s

Guide (P/N 943441-9701)

° T™ 990/301 Microterminal
° TM 990/401 TIBUG Monitor Listing
] TM 990/402 Line-By-Line Assembler

(] TM 990/402L Line-By-Line Assembler Listing

SECTION 2

INSTALLATION AND OPERATION

2.1 GENERAL
This section explains procedures for unpacking and setting up the TM 990/100M board for operation.
2.2 REQUIRED EQUIPMENT
(1) Volt-ohmmeter
(2) Soldering iron, electrical solder

(3) 24 AWG insulated stranded wire

(4) 18 AWG insulated stranded wire
(5) Connectors
° 100-pin, 0.125 in. C-C, wire-wrap PCB edge connector such as:
- TI H321150

— Amphenol 225-804-50
- Viking 3VH50/9N05
— Elco 00-6064-100-061-001

® 40-pin, 0.1 in. C-C, wire-wrap PCB edge connector such as:
— TIH311120
- Viking 3VH20/1JND5

) 25-pin RS-232 style (plug)
— ITT DB25P
— TRW CINCH DB25P

(6) Power Supplies
Voltage Reg. Current
+5 Vv +3% 1.3A
—12V +3% 0.2A
+12V +3% 01A
(7) Terminal such as:
° Texas Instruments 743 KSR or 733 KSR/ASR (see Appendix B)
° Teletype Model 3320/5JE (see Appendix A). This current-loop terminal is

useable with board assembly 999211-0001 only

o RS-232-C compatible terminal (see Appendix B).

21

2.3

24

24.1

24.2

2.5

UNPACKING

Take the TM 990/100M board from its carton and remove the protective wrapping.

Check the board for any abnormalities that could have occurred in shipping. Report any discrepancies to
your supplier.

POWER AND TERMINAL HOOKUP

These procedures assume that user has the following configuration:

® TM 990/100M board with two TMS 2708 erasable, programmable read-only memories
(EPROM’s).
° Texas Instruments Model 743 KSR terminal.

It is also assumed that jumper configuration is as shipped by the factory (J1, J2, J3, and J4 installed). See
Figure 7-2.

For other memory configurations, see paragraph 7.2 for applicable jumper connections.

For other terminals, contact the manufacturer for correct wiring. Hookup to a Teletype model 3320/5JE is
explained in Appendix A. Hookup for other RS-232-C compatible terminals is explained in Appendix B.

CAUTION
Be very cautious to avoid applying incorrect voltage
levels to the TM 990/100M. Texas Instruments assumes
no responsibility for damage caused by improper wiring
or voltage application by the user.

POWER SUPPLY HOOKUP
Figure 2-1 shows how to connect voltage to the TM 990/100M through connector P1. Be careful to use the
correct pins as numbered on the board; these pin numbers may not correspond to the numbers on the

particular edge connector used.

The table in Figure 2-1 shows suggested color coding for the power supply plugs. To prevent incorrect
connection, label the top side of the edge connector “TOP’ and the bottom “TURN OVER.”

TERMINAL HOOKUP

Figure 2-2 shows how to connect the TM 990/100M to the 743 KSR terminal through connector P2. A
DEISS connector attaches to the terminal; a DB25P connector attaches to P2 on the board. Point-to-point

_ connections between the connectors are shown in the table.

Because this is an RS-232-C type terminal, make sure that jumper J11 is removed and that jumper J7 is in
the EIA position (Figure 7-2).

OPERATION

(1) Verify that all wiring has been correctly connected.

2-2

\/\ T™ 99/100M
23 P rom 88 <
j0oodnonodooootonondooontonootoonofoiinbooootooonl

EDGE CONNECTOR

TR R R | ERHR A

18 AWG INSULATED STRANDED WIRE

pad
I BANANA PLUGS
(SUGGEST COLOR CODING
GND I +5V THESE AS PER TABLE —12v +12v

VOLTAGE P1PIN* SUGGESTED PLUG COLORS
+5V 3,4 RED
+12V 75,76 BLUE
—-12V 73,74 GREEN
GND 1,2 BLACK

*ON BOARD, ODD-NUMBERED PADS ARE DIRECTLY BENEATH EVEN-NUMBERED PADS.

A0001417

FIGURE 2-1. POWER SUPPLY HOOKUP

CAUTION
Before connecting the power supply to P1, use a volt-ohmmeter
to verify that correct voltages are present as shown in Figure

2-2.
(2) Set the 743 KSR data terminal switches to the following:
o LOW SPEED switch to high speed (30 characters per second).
° HALF DUP switch to full duplex.
° ON LINE switch to ON LINE.

2-3

DB25P DE15S

TOP2ON TO 743 DATA
T™ 990/100M TERMINAL
4 CONDUCTOR CABLE, 24 AWG
INSULATED STRANDED WIRE
CONNECTIONS
PIN ON DE15S | PIN ON DB25P SIGNAL

13 2 XMIT

12 3 RECV

11 8 DCD

1 7 GND

A0001418

FIGURE 2-2. 743 KSR TERMINAL HOOKUP

(3) Apply power to board and data terminal.
(4) Press the RESET switch on the board (see Figure 1-2).
(5) Press the ‘A"’ key on the terminal.
(6) The T/BUG monitor (assembly 999211-0001 only) will be called up and print a message
on the terminal. Following the message, a question mark will be printed on a new line.
This is a request to input a command to the 7/BUG command scanner. Commands are
~ explained in detail in Section 3 and assembly language is presented in Section 4.
NOTE
If control is lost during operation, return control back to
monitor by repeating steps (4) and (5).
2.6 SAMPLE PROGRAMS
2.6.1 SAMPLE PROGRAM1

The following is a sample program you can input using the 7/BUG commands M (paragraph 3.2.8), R
(paragraph 3.2.9), and E (paragraph 3.2.4). (T/BUG is on assembly 999211-0001 only).

(1) Enter the M command with a hexadecimal address of FEQO.

2-4

(2) Enter the following values into memory beginning at hexadecimal address FEOO by using
the space bar with the M command as described in paragraph 3.2.8.

ASSEMBLY
ENTER LANGUAGE
LOCATION VALUE MNEMONICS
FEOO 2FAO XOP @ > FEOS, 14
FEO2 FEO8
FEO4 0460 B @ >80
FEO6 0080
FEO8 4849 TEXT ‘HI
FEOA 0AOD DATA > 0AOD
FEOC 0700 DATA > 0700

Exit the M command with a carriage return. The monitor will print a question mark.

(3) Use the R command to set the value ‘FEQQ’ into the P register (Program Counter).
(4) Use the E command to execute the program.
(5) The message HI will print on the printer, followed by a line feed, carriage return, and bell.

Your terminal printout should look like the following:

TMOFEDD

FEOO=2FRO ZFAU
FEnz=FEDZ FEI=
FEOd=040 0d4el
FEOE=00210 nEn

FEOZ=4249 4249
FEOR=0ROD RO
FEOQC=0700 nyon
TR

W=0EBS0

F=FEOO FEOD

TE HI

You can re-execute your program by repeating steps (3) and (4).

2.6.2 SAMPLE PROGRAM 2

Using steps 1 to 5 in pragraph 2.6.1, enter and execute the following program which has been assembled by
the optional TM 990/402 Line-By-Line Assembler.

FEOD ZFAD =0F 3:FEOS.14

FEOz FEO=

FEO3 0Od4e0 E F=0020

FEOE Q020

FEOS 424F BECOMGREATULARTIONEZ, Y0OUR FROGEAM WORESZE
FEOR 4E47

FEOZ S241

2-5

FEQGE 5455
FE1O 4041
FE1z Sd44%
FE14 4F4E
FE1e SEZE
FE1Z 2059
FE1R 4F5%5
FELIC Szzuo
FELIE S0
FEZO 4F47
FEzz Scd1
FE=4 4020
FEZE S74F
TESS SZ4EF
FESC O7FOay +:>0707
FEZ o700 +=0700

You can re-execute this program by repeating steps (3) and (4) in paragraph 2.6.1.

Figure 8-8 in Section 8 (Programming the TM 990/100M Microcomputer) contains an exercise program in
executing the interval timer on the TM 9901. Appendix J contains larger programs that can be loaded and
executed.

2-6

3.1

3.2

SECTION 3
TIBUG INTERACTIVE DEBUG MONITOR

GENERAL

T/IBUG is debug monitor which provides an interactive interface between the user and the TM 990/100M. It
is supplied by the factory on assembly 999211-0001 only and is available as an option, supplied on two
2708 EPROM's.

TIBUG occupies EPROM memory space from memory address (M.A.) 0080, as shown in Figure 3-1.
TIBUG uses four workspaces in 40 words of RAM memory. Also in this reserved RAM area are the restart
vectors which initialize the monitor following single step execution of instructions.

The 7TIBUG monitor provides seven software routines that accomplish special tasks. These routines, called
in user programs by the XOP machine instruction, perform tasks such as writing characters to a terminal.
XOP utility instructions are discussed in detail in paragraph 4.6.9.

All communication with 7/BUG is through a 20 mA current loop or RS-232-C device. T/BUG is initialized
as follows:

° Press the RESET pushbutton (Figure 1-2). The monitor is called up through interrupt
trap O.
° Enter the character ‘A’ at the terminal. T/BUG uses this input to measure the width of

the start bit and set the TMS 9902 Asynchronous Communication Controller (ACC) to
the correct baud rate.

o TIBUG prints an initialization message on the terminal. On the next line it prints a
question - mark indicating that the command scanner is available to interpret terminal
inputs.

L Enter one of the commands as explained in paragraph 3.2.

TIBUG COMMANDS

T/BUG commands are listed in Table 3-1.

TABLE 3-1. T/BUG COMMANDS

INPUT RESULTS PARAGRAPH
B Execute under Breakpoint 3.2.1
Cc CRU Inspect/Change 3.2.2
D Dump Memory to Cassette/Paper Tape 3.2.3
E Execute 3.2.4
F Find Word/Byte in Memory 3.25
H Hex Arithmetic 3.2.6
L Load Memory from Cassette/Paper Tape 3.2.7
M Memory Inspect/Change 3.2.8
R Inspect/Change User WP, PC, and ST Registers 3.29
S Execute in Step Mode 3.2.10
T 1200 Baud Terminal 3.2.11
W Inspect/Change Current User Workspace 3.2.12

31

MEMORY

ADDRESS
0000
0040 XOP VECTORS 0 AND 1 TIBUG EPROM AREA
0048
0060 B
XOP VECTORS 8 TO 15
MONITOR UTILITIES
007E
0080
> TIBUG EPROM AREA
TIBUG MONITOR
07FE J
FFBO MONITOR
WORKSPACES %
EEFC WP TIBUG RAM AREA
RESTART VECTORS
FFFE PC

FIGURE 3-1. MEMORY REQUIREMENTS FOR T7/BUG

Conventions used to define command syntax in this paragraph are listed in Table 3-2.

TABLE 3-2. COMMAND SYNTAX CONVENTIONS

CONVENTION
SYMBOL EXPLANATION
<> Items to be supplied by the user. The term within the angle brackets is a generic term.
[] Optional Item — May be included or omitted at the user’s discretion. ltems not included in brackets
are required.
{} One of several optional items must be chosen,
(CR) Carriage Return
A Space Bar
LF Line Feed
Ror Rn Register (n =0 to 15)
wpP Current User Workspace Pointer contents
PC Current User Program Counter contents
ST Current User Status Register contents

NOTE

Except where indicated otherwise, no space is necessary
between the parts of these commands. All numeric input
is assumed to be hexadecimal; the last four digits input
will be the value used. Thus a mistaken numerical input
can be corrected by merely making the last four digits
the correct value. If fewer than four digits are input,
they are right justified.

3.2.1 EXECUTE UNDER BREAKPOINT (B)

3.2.1.1 Syntax

B < address > < (CR) >

3.2.1.2 Description

This command is used to execute instructions from one memory address to another (the stopping address is
the breakpoint). When execution is complete, WP, PC, and ST register contents are displayed and control is
returned back to the monitor command scanner. Program execution begins at the address in the PC (set by
using the R command). Execution terminates at the address specified in the B command, and a banner is

output showing the contents of the hardware WP, PC, and ST registers in that order.

The address specified must be in RAM and must be the address of an instruction. The breakpoint is

controlled by a software interrupt, XQP 15.

If no address is specified, the B command defaults to an E command, where execution continues with no

halting point specified.

3.2.2

3.2.2.1

3.2.2.2

EXAMPLE:
Th FCOB
BF FFED FCoe S0

CRU INSPECT/CHANGE (C)

Syntax

C < CRU software base address > <count> < (CR) >
Description

The Communication Register Unit (CRU) input bits from “CRU software base address’’ to {('CRU soft-
ware base address’ + 2("’‘count’’)-2) are displayed right justified in a 16-bit hexadecimal representation.
“CRU address” is a 16-bit value in bits O to 15; this is the same as the contents of register 12 as used by
the CRU instructions (paragraphs 4.6.9 and 812). Up to 16 CRU bits may be displayed. The corresponding
CRU output bits may be altered following input bit display by keying in desired hexadecimal data, right
justified. A carriage return following data output forces a return to the command scanner. A minus sign (—)
or a space causes the same CRU input bits to be displayed again. Defaults for “CRU software base address’’
and “count" are 0 (M.A. 0000) and O (count of 16) respectively. ‘“Count’ is a hexadecimal value of 0 to
F1g with 0 indicating 164¢_

The CRU inspect/change monitor command displays from 1 to 16 CRU bits, right justified. The command
syntax includes the CRU address and the number of CRU bits to be displayed. The CRU address is the 16-
bit contents of R12 as explained in paragraph 8.2.2 (vs. the CRU hardware base address in bits 3 to 14 of
R12); thus the user must use 2 X CRU software base address. This is shown in Figure 3-2 where 1004¢ is
specified in the command to display values beginning with CRU bit 801¢.

? C 100,7
0100=007F VALUE DISPLAYED
of1]2]3]4]s]s]7]8]o |1ol11[12|13114h5/
l J >007F
(- _J A A
Y
«— 7BITS —
ZERO FILLED REQUESTED — 80CRUBIT
81
82
83
84
85
86
FIGURE 3-2. CRU BITS INSPECTED BY C COMMAND
EXAMPLES:
(1) Examine eight CRU input bits. CRU software base address is 201¢.
TS0 =
(132 0=1111FF «<— CARRIAGE RETURN ENTERED
(2) Set value of eight CRU output bits at CRU software base address 201¢; new value is 021¢.
OEhE CHANGE 00FF TO 0002
D02 0=00FF Z<— 2 FOLLOWED BY CARRIAGE RETURN

34

323

3.2.3.1

3.2.3.2

3.233

(3) Check changes in CRU input bit O.

TIoo0sd
Qooo=0001 -
Qo0n=00n1 -
aooo=on0l — » MINUS SIGN ENTERED
RS ool —s
DOno=00FF -
OO00=010101 «———— CARRIAGE RETURN ENTERED
(4) Check to see if the TMS 9901 is in the interrupt mode (zero) or clock mode (one);
o100

N1 01aFFFE <—— ZERO INDICATES INTERRUPT MODE

DUMP MEMORY TO CASSETTE/PAPER TAPE (D)

MONITOR PROMPT
Syntax

D < start address > { A }<stop address > { A }<entry address > { A HDT =< name> < >
Description

Memory is dumped from “‘start address’’ to ‘‘stop address.” "“Entry address’” is the address in memory
where it is desired to begin program execution. After entering a space or comma following the entry
address, the monitor responds with an “IDT="" prompt asking for an input of up to eight characters that
will identify the proaram. This program ID will be output when the program is loaded into memory using
the T/BUG loader, code will be dumped as non-relocatable data in 990 object record format with absolute
load (“'start address’’) and entry addresses specified. Object record format is explained in Appendix G.

After entering the D command, the monitor will respond with “READY Y/N’’ and wait for a Y keyboard
entry indicating that the receiving device is ready. This allows the user to verify switch settings, etc., before
proceeding with the dump.
Dump to Cassette Example
The terminal is assumed to be a Texas Instruments 733 ASR or equivalent. The terminal must have
automatic device control (ADC). This means that the terminal recognizes the four tape control characters

DC1, DC2, DC3, and DC4.

The following procedure is carried out prior to answering the “READY Y/N' query (Figure 3-3):

(1) Load a cassette in the left (No. 1) transport on the 733 ASR.
(2) Place the transport in the “RECORD’* mode.
(3) Rewind the cassette.

35

(4)

(5)

(8)

(7)

Load the cassette. If the cassette does not load, it may be write protected. The write protect
hole is on the bottom right side of the cassette (Figure 3-4). Cover it with the tab provided
with the cassette. Now repeat steps 1 through 4.

The KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/OFF/LINE switches
must be in the LINE position.
Place the TAPE FORMAT switch in the LINE position.
Answer the “READY Y/N" query with a “Y’’; the "Y'" will not be echoed.
e CASSETTE 1 . CASSETTE2
REWIND LOAD/FF @ RECORD =y r——— PLAYBACK © REWIND LOAD/FF
faornd
READY READY
O O
@ END P g END @
STOP STOP @ PLAYBACK = =——d b RECORD © STOP STOP
PLAYBACK CONTROL RECORD CONTROL @
CONT BLOCK CHAR
START FWD FWD 0©N CHARACTER PRINT ON
o ERROR [—-[-—[T——] e : II
-STOP- REV TAipE FORMAT ERASE OFF
LINE LINE
OFF OFF
LOCAL t LOCAL | S
KEYBOARD PLAYBACK RECORD PRINTER

BlT1—-/ BIYBJ

FIGURE 3-3. 733 ASR MODULE ASSEMBLY (UPPER UNIT) SWITCW PANEL

/— TAPE SIDE UP

o O

Side 1
S ————-
] 1
(o] {_L»]
N— WRITE TAB FOR SIDE 2 -/
WRITE TAB FOR SIDE 1

FIGURE 3-4. TAPE TABS

3-6

3.2.3.4 Dump to Paper Tape

3.24

3.2.4.1

3.2.4.2

3.25

3.2.5.1

3.25.2

The terminal is assumed to be an ASR 33 teletypewriter. The following steps should be completed carefully
to avoid punching stray characters:

(1)

(2)

(3)

(4)

(5)

(6)

Enter the command as described in paragraph 3.2.3.1. Do not answer the “READY Y/N"’
query yet.

Change the teletype mode from ON LINE to LOCAL.

Turn on the paper tape punch and press the RUBOUT key several times, placing
RUBQUTS at the beginning of the tape for correct-reading/program-loading.

Turn off the paper tape punch, and reset the teletype mode to LINE. (This is necessary to
prevent punching stray characters).

Turn on the punch and answer the “READY Y/N’' query with “Y’’. The Y will not be
echoed.

Punching will begin. Each file is followed by 60 rubout characters. When these characters
appear (identified by the constant punching of all holes) the punch must be turned off.

EXECUTE COMMAND (E)

Syntax
E

Description

The E command causes task execution to begin at current values in the Workspace Pointer and Program

Counter.

Example: E

FIND COMMAND (F)

Syntax

F <start address > { /'\}< stop address > { /'\ 1<value> { R, }

Description

The contents of memory locations from “‘start address”” to “’stop address’’ are compared to ‘““value’”. The
memory addresses whose contents equal ““value’ are printed out. Default value for start address is 0. The
default for “’stop address’ is 0. The default for ‘‘value” is 0.

If the termination character of “‘value” is a minus sign, the search will be from “’start address” to “‘stop
address” for the right byte in “value”. If the termination character is a carriage return, the search will be a
word mode search.

37

EXAMPLE:

TF 0220 FFFF «<——— CARRIAGE RETURN ENTERED

e
oooc
a1z
ooie
YF 1 2] FF— <«————— MINUS SIGN ENTERED

o0es

ooy

oonc
ooon
ool
0ol
0a1e
ooy

326 HEXADECIMAL ARITHMETIC (H)
3.2.6.1 Syntax
H < number 1> { }}< number 2> < (CR) >
3.2.6.2 Description
The sum and difference of two hexadecimal numbers are output.

EXAMPLE:

TH El:l. Os 101 < CARRIAGE RETURN ENTERED
Hli+HZ=03=00 H1—-Hz=u1100

3.2.7 LOAD MEMORY FROM CASSETTE OR PAPER TAPE (L)

3.2.7.1 Syntax
L < bias> < (CR) >

3.2.7.2 Description
Data in 990 object record format (defined in Appendix G) is loaded from paper tape or cassette into
memory. Bias is the relocation bias (starting address in RAM). Its default is 0; . Both relocatable and
absolute data may be loaded into memory with the L command. After the data is loaded, the module
identifier (see tag 0 in Appendix G) is printed on the next line.

3.2.7.3 Loading From Texas Instruments 733 ASR Terminal Cassette

The 733 ASR must be equipped with automatic device control (ADC). The following procedure is carried
out prior to executing the L command:

(1 Insert the cassette in one of the two transports on the 733 ASR (cassette 1 in Figure 3-2).

3-8

3.2.7.4

3.2.8

3.2.8.1

(2) Place the transport in the playback mode.
(3) Rewind the cassette.
(4) Load the cassette.

(5) Set the KEYBOARD, PLAYBACK, RECORD, and PRINTER LOCAL/LINE switches to
LINE.

(6) Set the TAPE FORMAT switch to LINE.

Execute the L command.
Loading From Paper Tape (ASR33 Teletype)

Prior to executing the L command, place the paper tape in the reader and position the tape so the reader
mechanism is in the null field prior to the file to be loaded. Enter the load command. |f the ASR33 has
ADC (automatic device control), the reader will begin to read from the tape. If the ASR33 does not have
ADC, turn on the reader, and loading will begin.

Each file is terminated with 60 rubouts. Whe&n the reader reaches this area of the tape, turn it off. The
loader will then pass control to the command scanner.

The user program counter (P) is loaded with the entry address if a 1 tag or a 2 tag is found on the tape.

EXAMPLE:

YL 00)<~—————— CARRIAGE RETURN ENTERED
FROGFAM <———— PROGRAM ID FROM TAPE

MEMORY INSPECT/CHANGE, MEMORY DUMP (M)

Syntax
® Memory Inspect/Change Syntax
M < address > < (CR) >
[] Memory Dump Syntax

M < start address > { A }< stop address > < (CR) >

3.2.8.2 Description

Memory inspect/change ““opens’’ a memory location, displays it, and gives the option of changing the data
in the location. The termination character causes the following:

. If a carriage return, control is returned to the command scanner.

39

3.29

3.29.1

3.29.2

° If a space, the next memory location is opened and displayed.
e If a minus sign, the previous memory location is opened and displayed.

If a hexadecimal value is entered before the termination character, the displayed memory location is
updated to the value entered.

Memory dump directs a display of memory contents from ‘’start address’’ to ‘‘stop address’’. Each line of
output consists of the address of the first data word output followed by eight data words. Memory dump
can be terminated at any time by typing any character on the keyboard.

EXAMPLES:
(1)
THM FEQI = CARRIAGE RETURN ENTERED
FEOO=FFOF
FEO2=0012 FFFF <—— NEWCONTENTS ENTERED
FEO4=103211 — <——— MINUS SIGN ENTERED
FEDNZ=FFFF <——— NEW CONTENTS
FEO4=03=11

(2)

TMOE0 30

Doz 0=00z] oong nooas noz=o0 oo o azg

OO=Z0=0001

INSPECT/CHANGE USER WP, PC, AND ST REGISTERS (R)
Syntax

R <(CR)>
Description
The user workspace pointer (WP), program counter (PC), and status register (ST) are inspected and changed
with the R command. The output letters WP, PC, and ST identify the values of the three principal hardware
registers passed to the TMS 9900 microprocessor when a B, E, or S command is entered. WP points to the
workspace register area, PC points to the next instruction to be executed (Program Counter), and ST is the
Status Register contents.
The termination character causes the following:

° A carriage return causes control to return to the command scanner.

° A space causes the next register to be opened.

Order of display is W, P, S.

3-10

EXAMPLES:

(1)

TR
=000 11010 <«—— SPACE ENTERED
F=0000 20 <«— CARRIAGE RETURN ENTERED

v

(2)
TR

Wi=010 l:’:j— SPACE ENTERED
F=0z0n0

Z=101111] «—————— SPACE OR CARRIAGE RETURN ENTERED

3.2.10 EXECUTE IN SINGLE STEP MODE (S)
3.2.10.1 Syntax
S

3.2.10.2 Description.

Each time the S command is entered, a single instruction is executed at the address in the Program Counter,
then the contents of the Program Counter, Workspace Pointer, and Status Register (after execution) are
printed out. Successive instructions can be executed by repeated S commands. Essentially, this command
executes one instruction then returns control to the monitor.

EXAMPLE:
)

l.;.|¥FF|:: & SPACES ENTERED
F=FE1D FEOD /—

ZE0A <_/— PROGRAM COUNTER
FFLCE FEOZ & [IH-< STATUS REGISTER

WORKSPACE POINTER

e lH
FFCe FEQ4 2E0H
FFC& FEO= SE0A
FFCE FEDOC SEDA

NOTE
Incorrect results are obtained when the S instruction
causes execution of an XOP instruction (see paragraph
4.6.9) in a user program. To avoid these problems the B
command should be used to execute any XOP’s in a
program (rather than the S command).

3.2.11 TI1 733 ASR BAUD RATE (T)
3.2.11.1 Syntax

T

31

3.2.11.2 Description

The T command is used to alert T/BUG that the terminal being used is a 1200 baud terminal which is not a
Texas Instrument’s 733 ASR (e.g., a 1200 baud CRT). To revoke the T command, enter it again.

3.2.11.3 Use

3.2.12

T is used only when operating with a true 1200 baud peripheral device. Note that T is never used when
operating at other baud rates.

In 7/BUG the baud rate is set by measuring the width of the character ‘A’ input from a terminal. When an
‘A’ of 1200 baud width is measured, T/BUG is set up to automatically insert three nulls for every character
output to the terminal. These nulls are inserted to allow correct operation of the TM 990/100M with Texas
Instruments 733 ASR data terminals. The T command, in effect, cancels the insertion of nulls for true 1200
baud operation.

INSPECT/CHANGE USER WORKSPACE (W)

3.2.12.1 Syntax

W [REGISTER NUMBER] < (CR) >

3.2.12.2 Description

The W command is used to display the contents of all WOrkspace registers or display one register at a time
while allowing the user to change the register contents. The workspace begins at the address given by the
Workspace Pointer.

The W command, followed by a carriage return, causes the contents of the entire workspace to be printed.
Control is then passed to the command scanner.

The W command followed by a register number in hexadecimal and a carriage return causes the display of
the specified register’s contents. The user may then enter a new value into the register by entering a
hexadecimal value. The following are termination characters whether or not a new value is entered:

L] A space causes display of the next register.

° A minus sign causes display of the previous register.

o A carriage return gives control to the command scanner.
EXAMPLES:

(1

FiO=F43

-

EEE:
RE=FAAD

CARRIAGE RETURN ENTERED
“C=FHCH RI=0020 RI=FESE ES=003%2 Re=

1
FH=0EH: EB=0000 RC=0100 RID=0024 RE=F

5

AR

-]
n
I
D A0

312

= 0

q

(2)

N
1

I
.
(]

B

Do

DN -
T O e Do M
1]

T = o=
U < n S
= 0

o i

CARRIAGE RETURN ENTERED

:4561

-0

SPACE ENTERED
S00F ‘
| «———— CARRIAGE RETURN ENTERED

3.3 USER ACCESSIBLE UTILITIES

TIBUG contains seven utility subroutines that perform 1/0 functions as listed in Table 3-3. These
subroutines are called through the XOP (extended operation) assembly language instruction. This
instruction is covered in detail in paragraph 4.6.9. In addition, locations for XOP's Oand 1 contain vectors for
utilities that drive the TM 990/301 microterminal, and XOP 15 is used by the monitor for the breakpoint

facility.
TABLE 3-3. USER ACCESSIBLE UTILITIES
XOP FUNCTION PARAGRAPH
8 Write 1 Hexadecimal Character to Terminal 3.3.1
9 Read Hexadecimal Word from Terminal 3.3.2
10 Write 4 Hexadecimal Characters to Terminal 3.3.3
11 Echo Character 3.3.4
(,.12 Write 1 Character to Terminal 3.3.5
— 13 Read 1 Character from Terminal 3.3.6
— 14 Write Message to Terminal 3.3.7
NOTE
All characters are in ASCII code.

3.31 WRITE ONE HEXADECIMAL CHARACTER TO TERMINAL (XOP 8)

The least significant four bits of user register Rn are converted to their ASCII coded hexadecimal equivalent
(0 to F) and output on the terminal. Control returns to the instruction following the extended operation.

Format:

Most of the XOP format examples herein use a register
for the source address, however, all XOP’s can also use a
symbolic memory address or any of the addressing forms

NOTE

available for the XOP instruction.

EXAMPLE:

Assume user register 5 contains 203C, 4. The assembly language (A.L.) and machine language (M.L.) values

are shown below.

A.L. XOP

0

XOP

Rn,8

SEND 4 L8B’S OF R5 TO TERMINAL
7 8 11

14 15

M.L.|O

R5,8
2 3
1 0

5 6 9 10
1[1 0o o 010 or

0 1] > 2E05

Terminal Output: C

3-13

3.3.2 READ HEXADECIMAL WORD FROM TERMINAL (XOP 9)

Format: XOP Rn,9
DATA NULL ADDRESS OF CONTINUED EXECUTION IF
NULL IS ENTERED
DATA ERROR ADDRESS OF CONTINUED EXECUTION IF

NON-HEX NO. ENTERED
(NEXT INSTRUCTION) EXECUTION CONTINUED HERE IF VALID HEX
NUMBER AND TERMINATOR ENTERED

Binary representation of the last four hexadecimal digits input from the terminal is accumulated in user
register Rn. The termination character is returned in register Rn+1. Valid termination characters are space,
minus, comma, and a carriage return. Return to the calling task is as follows:

° If a valid termination character is the only input, return is to the memory address
contained in the next word following the XOP instruction (NULL above).

(] If a non-hexadecimal character or an invalid termination character is input, control
returns to the memory address contained in the second word following the XOP
instruction (ERROR above).

L] If a hexadecimal string followed by a valid termination character is input, control returns
to the word following the DATA ERROR statement above.

EXAMPLE:
A.L. XOP R6,9 READ HEXADECIMAL WORD INTO R6
DATA > FFCO RETURN ADDRESS, IF NO NUMBER
DATA > FFC6 RETURN ADDRESS, IF ERROR
M.L. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
M.A. FFBO[O 0 1 0 1 T [1 0 0 1] 0 0] 0 1 1 0 > 2E46
FFB2{1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 > FFCO
FFB4|1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 > FFC6

If the valid hexadecimal character string 12C is input from the terminal followed by a carriage return,
control returns to memory address (M.A) FFB6;, with register 6 containing 012C,¢ and register 7
containing 000D 4.

If the hexadecimal character string 12C is input from the terminal followed by an ASCII plus (+) sign,
control returns to location FFC6, . Registers 6 and 7 are returned to the calling program without being
altered. “+"" is an invalid termination character.

If the only input from the terminal is a carriage return, register 6 is returned unaltered while register 7
contains 000D, . Controil is returned to address FFCO, ¢.

3.3.3 WRITE FOUR HEXADECIMAL CHARACTERS TO TERMINAL (XOP 10)
Format: XOP Rn,10

.

The four-digit hexadecimal representation of the contents of user register Rn is output to the terminal.
Control returns to the instruction following the XOP call.

3-14

3.3.4

3.35

3.3.6

3.37

EXAMPLE:

Assume register 1 contains 2C46, .

A.L. XOP R1,10 WRITE HEXNUMBER

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ML o o0 1 0o 1 1 [0o 1 o[o oJo o o 1] >2es

Terminal Output: 2C46
ECHO CHARACTER (XOP 11)
Format: XOP Rn, 11

This is a combination of XOP’s 13 (read character) and 12 (write character). A character in ASCII code is
read from the terminal, placed in the left byte of Rn, then written (echoed back) to the terminal. Control
returns to the instruction following the XOP after a character is read and written. By using a code to
determine a character string termination, a series of characters can be echoed and stored at a particular
address:

CLR R2 CLEAR R2
LI R1, > FEOO SET STORAGE ADDRESS
XOP R2, 11 ECHO USING R2
Cl R2,>.0D00 WAS CHARACTER A CR?
JEQ $+6 YES, EXIT ROUTINE
MOVB R2,*R1+ NO, MOVE CHAR TO STORAGE
Jmp $-10 REPEAT XOP
NOTE

The parity bit must be reset so that >0D = CR.
WRITE ONE CHARACTER TO TERMINAL (XOP 12)
Format: XOP Rn,12

The ASCII character in the left byte of user register Rn is output to the terminal. The right byte of Rn is
ignored. Control is returned to the instruction following the call.

READ ONE CHARACTER FROM TERMINAL (XOP 13)

Format: XOP Rn,13
The ASCII representation of the character input from the terminal is placed in the left byte of user register
Rn. The right byte of'register Rn is zeroed. When this utility is called, control is returned to the instruction
following the call only after a character is input.

WRITE MESSAGE TO TERMINAL (XOP 14)

Format: XOP @MESSAGE,14

34

MESSAGE is the symbolic address of the first character of the ASCII character string to be output. The
string must be terminated with a byte containing binary zeroes. After the character string is output, control
is returned to the first instruction following the call.

Assuming the following program:

MEMORY

ADDRESS OP CODE A.L. MNEMONIC
(Hex) (Hex)
FEOO 2FAO XOP @ > FEEOQ,14
FEO2 FEEO
FEO4
FEEO 5445 TEXT 'TEST’
FEE2 5354
FEE4 00 BYTEO

During the execution of this XOP, the character string ‘TEST' is output on the terminal and control is then
returned to the instruction at location FEOQ4, . TEXT is an assembler directive to transcribe characters into
ASCII code.

TIBUG ERROR MESSAGES

Several error messages have been included in the 7/BUG monitor to alert the user to incorrect operation. In
the event of an error, the word ‘ERROR’ is output followed by a single digit representing the error number.

Table 3-4 outlines the possible error conditions

TABLE 3-4. 7/BUG ERROR MESSAGES

ERROR CONDITION
0 Invalid tag detected by the loader.
1 Checksum error detected by the loader.
2 Invalid termination character detected.
3 Null input field detected by the dump routine.
4 Invalid command entered.

In the event of errors 0 or 1, the program load process is terminated. |f the program is being input from a
733 ASR, possible causes of the errors are a faulty cassette tape or dirty read heads in the tape transport. If
the terminal device is an ASR33, chad may be caught in a punched hole in the paper tape. In either case
repeat the load procedure.

* In the event of error 2, the command is terminated. Reissue the command and parameters with a valid

termination character.

Error 3 is the result of the user inputting a null field for either the start address, stop address, or the entry
address to the dump routine. It also occurs if the ending address is less than the beginning address. The
dump command is terminated. To correct the error, reissue the dump command and input all necessary
parameters.

3-16

4.1

4.2

4.3

SECTION 4

INSTRUCTION SET FOR THE TM 990/100M

GENERAL

This section covers the instruction set used with the TM 990/100M including assembly language and
machine language. This instruction set is compatible with other members of the 990 family. Section 8
of this manual covers examples and considerations for programming the TM 990/100M. Appendix J con-
tains commented program examples that can be executed.

The TM 990/100M microcomputer is designed for use by a variety of users with varying technical
backgrounds and available support equipment. Because a TM 990/100M user has the capability of writing
his programs in machine language and entering them into memory using the 7/BUG monitor, emphasis is on
binary/hexadecimal representations of assembly language statements. The assembly language described
herein can be assembled on a 990 family assembler. If an assembler is used, this section assumes that the
user will be aware of all prerequisites for using the particular assembler.

It is also presumed that all users learning this instruction set have a working knowledge in:
° ASCII coded character set (described in Appendix C).
L] Decimal/hexadecimal, binary number system (described in Appendix D).

Further information on the 990 assembly language is provided in the Mode/ 990 Computer/TMS 9900
Microprocessor Assembly Language Programmer’s Guide (P/N 943441-9701).

USER MEMORY

Figure 4-1 shows the user RAM space in memory available for execution of user programs. Note that the
memory address value is the number of bytes beginning at 0000; thus, all word addresses are even values
from 0000 to FFFE, .

Programs in EPROM’s can be read by the processor and executed; however, EPROM memory cannot be
modified (written to). Therefore, workspace register areas are in RAM where their values can be modified.

Restart vectors and 7/BUG workspaces utilize the last 40 words of RAM memory space as shown in Figure
4-1.

HARDWARE REGISTERS

The TM 990/100M uses three major hardware registers in executing the instruction set: Program Counter
(PC), Workspace Pointer (WP), and Status Register (ST).

41

4.3.1 PROGRAM COUNTER (PC)
This register contains the memory address of the next instruction to be executed. After an instruction
image is read in for interpretation by the processor, the PC is incremented by two so that it “points” to the
next sequential memory word.
4.3.2 WORKSPACE POINTER (WP)
This register contains the memory address of the register file currently being used by the program under
execution. This workspace consists of 16 contiguous memory words designated registers 0 to 15. The WP
points to register 0. Paragraph 4.4 explains a workspace in detail.
4.3.3 STATUS REGISTER (ST)
The Status Register contains relevant information on preceding instructions and current interrupt level.
Included are:
L] Results of logical and two’s complement comparisons (many instructions automatically
compare the results to zero).
L Carry and overflow.
L Odd parity found (byte instructions only).
° XOP being executed.
® Lowest priority interrupt level that will be currently recognized by the processor.
The Status Register is shown in Figure 4-2.
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
[T \ Y VvV I T T T T
L> | A> l EQ I C l ov l oP l X [\\ RESERVED \\\\l INTERRUPT MASK
AL A WA N
L> LOGICALLY GREATER THAN OV OVERFLOW
A> ARITHMETICALLY GREATER THAN oP ODD PARITY
EQ EQUAL X XOP BEING EXECUTED
(o] CARRY
A0001421
FIGURE 4-2. STATUS REGISTER
4.3.3.1 Logical Greater Than
This bit contains the result of a comparison of words or bytes as unsigned binary numbers. In this case, the
most significant bit (MSB) or a work or byte does not indicate positive or negative sign of a number. The
MSB of words being logically compared represents 2 1 5 (32,768), and the MSB of bytes being logically
compared represents 27 (128).
4.3.3.2 Arithmetic Greater Than

The arithmetic greater than bit contains the result of a comparison of words or bytes as two’s complement
numbers. In this comparison, the MSB of words or bytes being compared represents the sign of the number,
zero for positive, or one for negative.

4-2

BYTE 0000

MEMORY BYTE 0001
ADDRESS
000! ~ _1 .
INTERRUPT VECTORS § oo [~ 7~~~ ——— —— "
}0040 FIRST
XOP VECTORS EPROM 1024
:«EEI:/:SQ?D { Yoo7e TMS 2708 WORD
(TIBUG 0080 1K X 16 EPROM
MONITOR
07FE
0800
EPROM SECOND
TMS 270 1024
FF68 INT 3, 1K X 168 Z ‘ WORD
FRegb — ————— —————— - } WP AT FF68 OFFE EPROM*
2w
Fros lNT(%RglNST AT FF88 1000
_____________ } WP AT FF8C
:igg 2WORD INST AT FFAC =~ | MEMORY
FEFE ~ o EXPANSION
= > _FBFE
~(_Fcoo
< RAM I SECOND
N T™seos22 :VS(‘)SRD
USER 256 X 16 ‘ s
- avaiLasLe (FOFE > RAM
-~ RAM FEOO ~
T~ RAM FIRST
g
~ TMS 4042-2 256
T~ 256 X 16~
>~ ~ WORD
~S == > RAM
N e -
FFFE
RESERVED 40 WORDS FOR .
TIBUG MONITOR WORKSPACE *STANDARD FOR BOARDS WITH
FILES AND RESET VECTORS ASSEMBLY NO. 999211-0003;
AT FFFC AND FFFE OPTIONAL FOR OTHER BOARDS
DEDICATED MEMORY
ADDRESS (HEX) PURPOSE
0000-0003 RESET interrupt vector
000C-000F INT3 vectors (TMS 9901 timer)
0010-0013 INT4 vectors (TMS 9902 timer)
0040-0047 Vectors for XOP’s 0 and 1 (Microterminal 1/0)
0060-007F Vectors for XOP’s 8 to 15 (TIBUG utilities)
0080-07FF TIBUG monitor
FFBO-FFFB Four overlapping monitor workspaces
FFFC-FFFF Restart (load) vectors
BOARD MEMORY MAP
ADDRESS (HEX) MEMORY TYPE ENABLE SIGNAL COMMENT
0000-07FF* ROM (2708) MROM TIBUG monitor
0000-OFFF* ROM (2716) MROM TIBUG monitor, 2048 bytes expansion PROM
0800-OFFF * ROM (2708) EROM 2048 bytes expansion PROM
1000-1FFF* ROM (2716) EROM 4096 bytes expansion PROM
FCOO-FDFF RAM (4042) RAM Expansion RAM
FEOO-FFFF RAM (4042) RAM Standard RAM

*TMS 2708 and TMS 2716 EPROM’s cannot be mixed; i.e., the monitor EPROM and expansion EPROM must both be
the same type.

FIGURE 4-1. MEMORY MAP

4-3

4.3.33

4.3.34

4.3.35

4.3.3.6

4.3.3.7

4.3.3.8

4.4

Equal
The equal bit is set when the words or bytes being compared are equai.
Carry

The carry bit is set by a carry out of the MSB of a word or byte (sign bit) during arithmetic operations. The
carry bit is used by the shift operations to store the value of the last bit shifted out of the workspace
register being shifted.

Overflow

The overflow bit is set when the result of an arithmetic operation is too large or too small to be correctly
represented in two’s complement (arithmetic) representation. In addition operations, overflow is set when
the MSB'’s of the operands are equal and the MSB of the result is not equal to the MSB of the destination
operand. In subtraction operations, the overflow bit is set when the MSB’s of the operands are not equal,
and the MSB of the result is not equal to the MSB of the destination operand. For a divide operation, the
overflow bit is set when the most significant sixteen bits of the dividend (a 32-bit value) are greater than or
equal to the divisor. For an arithmetic left shift, the overflow bit is set if the MSB of the workspace register
being shifted changes value. For the absolute value and negate instructions, the overflow bit is set when the
source operand is the maximum negative value, 8000, ¢.

Odd Parity

The odd parity bit is set in byte operations when the parity of the result is odd, and is reset when the parity
is even. The parity of a byte is odd when the number of bits having a value of one is odd; when the number
of bits having a value of one is even, the parity of the byte is even.

Extended Operation

The extended operation bit of the Status Register is set to one when a software implemented extended
operation (XOP) is initiated.

Status Bit Summary

Table 4-1 lists the instruction set and the status bits affected by each instruction.

SOFTWARE REGISTERS

Registers used by programs are contained in memory. This speeds up context-switch time because the
content of only one register (WP hardware register) needs to be saved instead of the entire register file. The
WP, PC, and ST register contents are saved in a context switch.

A workspace is a contiguous 16 word area; its memory location can be designated by placing a value in the
WP register through software or a keyboard monitor command. A program can use one or several

workspace areas, depending upon register requirements.

More than three-fourths of the instructions can address the workspace register file; all shift instructions and
most immediate operand instructions use workspace registers exclusively.

Figure 4-3 is an example of a workspace file in high-order memory (RAM). A workspace in ROM would be
ineffective since it could not be written into. Note that several registers are used by particular instructions.

4-4

TABLE 4-1. STATUS BITS AFFECTED BY INSTRUCTIONS

MNEMONIC | L> | A> | EQ CcC [oV | oP X MNEMONIC | L>| A> | EQ C | ov | op X
A X X X X X - - LDCR X X - - 1 -
AB X X X X X X - L X X X - - - -
ABS X X X X X — - LIMI - — — — - - —
Al X X X X X — - LREX - - - - - — -
ANDI X X X - - — LWPI - - — — — — -
B - - - - - - - MOV X X X - - - -
BL - — - - - - - MOvVB X X X - — X -
BLWP - — - — — - - MPY - - - - - - -
C X X X — - - - NEG X X X X X - -
CB X X X - - X — ORI X X X - - - -
Cl X X X - - - — RSET - - - - - - —
CLR - - - - — - - RTWP X X X X X X X
coc - - X - - - - S X X X X X - -
czc - - X - - - — SB X X X X X X -
DEC X X X X X - - SBO - - - - - - -
DECT X X X X X - - SBZ - - - - - - -
DIV — — - - X - — SETO - - - - - - -
IDLE — - - — — — - SLA X X X X X - -
INC X X X X X - - SOC X X X - - - -
INCT X X X X X - - socB X X X - - X —
INV X X X - - - - SRA X X X X - - -
JEQ - - - - - - - SRC X X X X - - -
JGT - - - - - - - SRL X X X X - - —
JH - — - - - - - STCR X X X - - 1 -
JHE - - — - - - - STST - - - - - - -
JL - - — - - - - STWP - - - - - - -
JLE — — - - . - - SWPB - - - - - -
JLT - - - - - - - SzC X X X - - - -
Jmp - - - - - - - SZCB X X X - - X -
JNC - - - - — - - B - - X - - - -
JNE - - - - - - - X 2 2 2 2 2 2 2
JNO - - - - - - - XoPpP 2 2 2 2 2 2 2
JocC - - - - - - - XOR X X X - - - -
JoP - — - - - - -

NOTES
1. When an LDCR or STCR instruction transfers eight bits or less, the OP bit is set or reset as in byte instructions. Otherwise these
instructions do not affect the OP bit.)
2. The X instruction does not affect any status bit; the instruction executed by the X instruction sets status bits normally for that
instruction. When an XOP instruction is implemented by software, the XOP bit is set, and the subroutine sets status bits normally.

45

MEMORY

ADDRESS
WP REGISTER (HEXADECIMAL)
12 15
[Fcoo | SHIFT BITS 12.15 USED BY
Fcoo COUNT RO SHIFT INSTRUCTIONS
FC02 R
FCo4 R2
FC06 R3
FCo8 R4
FCOA RS
Fcoc R6
FCOE R7
FC10 R8
FC12 R9
FC14 R 10
FC16 R11 } USED BY XOP'S AND BRANCH RETURN
FC18 R12 | USED INCRU ADDRESSING
FC1A R 13
USED IN CONTEXT
FCic R14 SWITCHING (XOP,
BLWP, RTWP)
FCI1E R 15

A0001422

FIGURE 4-3. WORKSPACE EXAMPLE |

4-6

45 INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions used by the TM 990/100M are contained in 16-bit memory words and require one, two, or
three words for full definition. The first word (or the single word) of an instruction will describe the
purpose of the instruction while the succeeding one or two words will be numbers that are referenced by
the initial instruction word. A word describing an instruction is interpreted by the Central Processing Unit
(CPU) by decoding the various fields within the 16 bits. These fields are shown in Figure 4-4 for the 9900
instruction set which is also categorized into nine instruction formats as shown in the figure.

In order to construct instructions in machine language, the programmer must have a knowledge of the fields
and formats of the instructions. This knowledge is often very important in debugging operations because it
allows the programmer to change bits within an instruction in order to solve an execution problem.

The fields within an instruction word contain the following information (see Figure 4-4):

. Op code which identifies the desired operation to be accomplished when this instruction
is executed.
® B code which identifies whether the instruction will affect a full 16-bit word in memory

or an 8-bit byte. A one indicates a byte will be addressed, while a zero indicates a word
will be addressed.

FORMAT o0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 GENERAL USE
1 opPcoDE [B [T1p | DR | s | SR ARITHMETIC
2 OP CODE [SIGNED DISPLACEMENT JUMP
3 OP CODE WR Ts SR LOGICAL
4 OP CODE c Ts SR CRU
5 OP CODE | c R SHIFT
6 OP CODE | 15 SR PROGRAM
7 OP CODE - NOT USED CONTROL
8 OP CODE N R IMMEDIATE
9 OP CODE [DR] 15 SR MPY, DIV, XOP

OP CODE OPERATION CODE
B BYTEINDICATOR (1=BYTE)
Tp DESTINATION ADDRESS TYPE*
DR DESTINATION REGISTER
Ts SOURCE ADDRESS TYPE*
SR SOURCE REGISTER
C CRUTRANSFER COUNT OR SHIFT COUNT
R REGISTER
N NOT USED
*TpOR Tg ADDRESS MODE TYPE
00 DIRECT REGISTER
01 INDIRECT REGISTER
0 { SYMBOLIC ADDRESSING,NOT INDEXED (SR OR DR = 0)
SYMBOLIC ADDRESSING + INDEX REGISTER (SR OR DR >0)
1 INDIRECT REGISTER, AUTOINCREMENT REGISTER
A0001423

FIGURE 4-4. TM 990/100M INSTRUCTION FORMATS

4.5.1

4.5.2

° T fields identified by Tp for the destination T field and Tg for the source T field. The T
field is a two-bit code which identifies which of five different addressing modes will be
used (direct register, indirect register, memory address, memory address indexed, and
indirect register autoincremented). These modes are described in detail in paragraphs
4.5.1 through 4.5.5. The source T field is the code for the source address and the
destination T field is the code for the destination address. As shown in Figure 4-4, only
five instruction formats use a T field.

L] Source and destination register fields which contain the number of the register affected (O
through 15).

L] Displacement fields that contain a bias to be added to the program counter in program
counter relative addressing. This form of addressing is further described in paragraph
4.5.7.

° Fields that contain counts for indicating the number of bits that will be shifted in a shift

instruction or the number of Communication Register Unit (CRU) bits that will be
addressed in a CRU instruction.

DIRECT REGISTER ADDRESSING (T=00,)

In direct register addressing, execution involves data contained within one of the 16 workspace registers. In
the first example in Figure 4-5, both the source and destination operands are registers as noted in the
assembly language example at the top of the figure. Both T fields contain 00, to denote direct register
addressing and their associated register fields contain the binary value of the number of the register
affected. The 110, in the op code field identifies this instruction as a move instruction. Since the B field
contains a zero, the data moved will be the full 16 bits of the register (a byte instruction addressing a
register would address the left byte of the register). The instruction specifies moving the contents of register
1 to register 4, thus changing the contents of register 4 to the same value as in register 1. Note that the
assembly language statement is constructed so that the source register is the first item in the operand while
the destination register is the second item in the operand. This order is reversed in the machine language
construction with the destination register and its T field first and the source register and "its T field second.

INDIRECT REGISTER ADDRESSING (T=01,)

In indirect register addressing, the register does not contain the data to be affected by the instruction;
instead, the register contains the address within memory of where that data is stored. For example, the
instruction in Figure 4-6 specifies to move the contents of register 1 to the address which is contained in
register 4 (indirect register 4). Instead of moving the value in register 1 to register 4 as was the case in
Figure 4-5, the CPU must first read in the 16-bit value in register 4 and use that value as a memory address
at which location the contents of register 1 will be stored. In the example, register 4 contains the value
FDO0O0, ¢. This instruction stores the value in register 1 into memory address (MA) FD0OO, ¢ .

In direct register addressing, the contents of a register are addressed. In indirect register addressing, the CPU
goes to the register to find out what memory location to address. This form of addressing is especially
suited for repeating an instruction while accessing successive memory addresses. For example, if you wished
to add a series of numbers in 100 consecutive memory locations, you could place the address of the first
number in a register, and execute an add indirect through that register, causing the contents of the first
memory address (source operand) to be added to another register or memory address (destination operand).
Then you could increment the contents of the register containing the address of the number, loop back to
the add instruction, and repeat the add, only this time you will be adding the contents of the next memory
address to the accumulator (destination operand). This way a whole string of data can be summed using a
minimum of instructions. Of course, you would have to include control instructions that would signal when

48

the entire list of 100 addresses have been added, but there are obvious advantages in speed of operation,
better utilization of memory space, and ease in programming.

EXAMPLE 1

ASSEMBLY LANGUAGE: —
MOV R1,R4 MOVE THE CONTENTS OF R1 (SOURCE) TO R4 (DESTINATION)

SOURCE OPERAND

T CODE FOR
DESTINATION OPERAND DIRECT REGISTER
REGISTER 4 T CODE FOR
DIRECT REGISTER
REGISTER 1
MACHINE LANGUAGE:
——— ~e— M ~~—’\ ~ _—— —— ™~
(4] 1 2 3 4 5 6 1 12 13 14 15

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 > C101

OP CODE B Tp DR Ts SR
M.A.
FCO0 RO
FCO02 R1
FCO04 R2 PLACE R1 BINARY
FCO6 R3 IMAGE IN R4
FCO08 R4
FCOA R5
EXAMPLE 2
ASSEMBLY LANGUAGE:

A R4,R10 ADD THE CONTENTS OF R4 (SOURCE) AND R10 (DESTINATION)

MACHINE LANGUAGE:
[} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1 0 1[0[0 0[1 o 1 0]0 0[0 1 00J>A284

OP CODE B Tp DR Ts SR
A0001424

FIGURE 4-5. DIRECT REGISTER ADDRESSING EXAMPLE

4-9

ASSEMBLY LANGUAGE:
MOV R1,xR4 MOVE THE CONTENTS OF RI (SOURCE) TO ADDRESS IN R4 (DESTINATION)

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 1[0 1 0 OJO OIO 0 0 1 |>C501

OP CODE B o DR Ts SR
M.A
FCO0 RO
FCO2 R o—
FC04 R2
FCO6 R3 PLACE R1 BINARY
FCO8 R4 FDoOO IMAGE IN MA FD001g
FCOA RS

(INDIRECT R4)

N

FDOO ~—]
A0001425 FD02
FIGURE 4-6. INDIRECT REGISTER ADDRESSING EXAMPLE
ASSEMBLY LANGUAGE:
MOV R1,*R4+ MOVE THE CONTENTS OF RI TO ADDRESS CONTAINED IN R4,
INCREMENT ADDRESS BY 2

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 > CDO1

OP CODE B o DR Ts SR

BEFORE AFTER

M.A.

FCOO RO

FCO2 R 0000 0000

FCO4 R2

FCO6 R3

FCO8 R4 FFOO FFO2

FFOO AAAA 0000

A0001427

FIGURE 4-7. INDIRECT REGISTER AUTOINCREMENT ADDRESSING EXAMPLE

4-10

45.3

454

4.5.5

INDIRECT REGISTER AUTOINCREMENT ADDRESSING (T=11,)

Indirect register autoincrement addressing is the same as indirect register addressing (paragraph 4.5.2)
except for an additional feature — automatic incrementation of the register. This saves the requirement of
adding an increment (by one or two) instruction to increment the register being used in the indirect mode.
The increment will be a value of one for byte instructions (e.g., add byte or AB) or a value of two for full
word instructions (e.g., add word or A).

In assembly language, the register number is preceded by an asterisk (*) and followed by a plus sign (+) as
shown in Figure 4-7. Note in the figure that the contents of register 4 was incremented by two since the
instruction was a move word (vs. byte) instruction. If the example used a move byte instruction, the
contents of the register would be incremented by one so that successive bytes would be addressed (the
16-bit word addresses in memory are always even numbers or multiples of two since each contains two
bytes). Bytes are also addressed by various instructions of the 990 instruction set.

Note that only a register can contain the indirect address.
SYMBOLIC MEMORY ADDRESSING, NOT INDEXED (T=10,)

This mode does not use a register as an address or as a container of an address. Instead, the address is a
16-bit value stored in the second or third word of the instruction. The SR or DR fields will be all zeroes as
shown for the destination register field in the first example of Figure 4-8. When the T field contains 10,,
the CPU retrieves the contents of the next memory location and uses these contents as the effective
address. In assembly language, a symbolic address is preceded by an at sign (@) to differentiate a numerical
memory address from a register number. All alphanumeric labels must be preceded by an @ sign; numerical
values preceded by an @ sign will be assembled as an absolute address (the TM 990/402 Line-By-Line
Assembler does not recognize alphanumeric symbols but does recognize absolute memory addresses).

In the second example in Figure 4-8, both the source and destination operands are symbolic memory
addresses. In this case, the source address is the first word following the instruction and the destination is
the second word following the instruction in machine language.

SYMBOLIC MEMORY ADDRESSING, INDEXED (T=10,)

Note that the T field for indexed as well as non-indexed symbolic addressing is the same (10,). In order to
differentiate between the two different modes, the associated SR or DR field is interrogated; if this field is
all zeroes (0000,), non-indexed addressing is specified; if the SR or DR field is greater than zero, indexing
is specified and the non-zero value is the index register number. As a result, register O cannot be used as an
index register.

In assembly language, the symbolic address is followed by the number of the index register in parentheses.
In the example in Figure 4-9, the source operand is non-indexed symbolic memory addressing while the
destination operand is indexed symbolic memory addressing. In this case, the destination effective address
is the sum of the FF02,¢ value in the destination memory address word plus the value in the index register
(0004+6). The effective address in this case is FFO6:¢ as shown by the addition in the left part of the
figure.

Note that only symbolic addressing can be indexed.

4-11

EXAMPLE 1

ASSEMBLY LANGUAGE:
MoV R1,@>FF00 MOVE THE CONTENTS OF Rl TO ADDRESS >FF00

NOTE
The > sign indicates hexidecimal representation.

MACHINE LANGUAGE:
OP CODE B o DR Ts SR
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1st WORD 1 1 o[ol1 o[o 0o o o[o o[o o o0 1
2nd WORD 1 1 1 1 1 1 1 1 0o o ©0 ©0o o o 0 o
”
M.A.
RO
R1 [N
R2
X X PLACE R1 BINARY
IMAGE IN
FEFE MA >FF00
FFOO <
EXAMPLE 2

ASSEMBLY LANGUAGE:
MOV @>FFO0A@>FF08 MOVE THE CONTENTS OF >FFOA TO >FF08

MACHINE LANGUAGE:

OP CODE B To DR Ts SR
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1st WORD 1 1 010[1 o[o o o ol1 olo o o o
2nd WORD 1 1 1 1 1 1 1 1 6 o o0 o0 1 o 1 o
3rd WORD 1 1 1 1 1 1 1 1 0o o0 o0 o0 1 o o o

BEFORE AFTER

M.A.
FFO08 FFFF 0000
FFOA 0000 0000

A0001428

FIGURE 4-8. SYMBOLIC MEMORY ADDRESSING EXAMPLE

4-12

> C801

> FFOO0

>C820
>FFOA (SOURCE)

>FF08 (DESTINATION)

ASSEMBLY LANGUAGE:

MOV @>FF00,@>FF02(R1)

MACHINE LANGUAGE:

OP CODE B Tp DR Ts
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0
BEFORE AFTER
M.A
RO
R1 0004 0004
R2
>FFO02 (D) \ \ \ X
+ 0004 (R1)
-_ FFOO FFEE FFEE
>FF06
FF02 0000 0000
FFO04 0000 0000
FF06 0000 FFEE
A0001429

FIGURE 4-9. SYMBOLIC MEMORY ADDRESSING,INDEXED EXAMPLE

45.6 |IMMEDIATE ADDRESSING

MOVE THE CONTENTSOF >FF00TO >FF02+ Rl CONTENTS

>C860
>FF00 .(SOURCE)

>FF02 '(DESTINATION)

This mode allows an absolute value to be specified as an operand; this value is used in connection with a
register contents or is loaded into the WP or the Status Register interrupt mask. Examples are shown below:

Li
Cl
LWPI

R2,100

R8, > 100

>FC00

LOAD 100 INTO REGISTER 2

COMPARE R8 CONTENTS TO > 100, RESULTS IN ST

SET WP TO MA > FC00

457 PROGRAM COUNTER RELATIVE ADDRESSING

This mode allows a change in Program Counter contents, either an unconditional change or a change

conditional on Status Register contents. Examples are shown below:

JMP
Jmp
JEQ
JMP

$+6
THERE
$+4
>FE26

JUMP TO LOCATION, 6 BYTES FORWARD
JUMP TO LOCATION LABELLED THERE
IF STEQBIT =1, JUMP 4 BYTES (MA + 4)

JUMP TO M.A. > FE26 (LINE-BY-LINE ASSEMBLER ONLY)

The dollar symbol ($) means ‘‘from this address’’; thus, $+6 means ‘‘this address plus 6 bytes.”

4-13

4.6 INSTRUCTIONS
Table 4-2 lists terms used in describing the instructions of the TM 990/100M. Table 4-3 is an alphabetical

list of instructions. Table 4-4 is a numerical list of instructions by op code. Examples are shown in both
assembly language (A.L.) and machine language (M.L.). The greater-than sign (>) indicates hexadecimal.

TABLE 4-2. INSTRUCTION DESCRIPTION TERMS

TERM DEFINITION
B Byte indicator (1 = byte, 0 = word)
C Bit count
DR Destination address register
DA Destination address
10P Immediate operand
LSB(n) Least significant (right most) bit of (n)
M.A. Memory Address
MSB(n) Most significant (left most) bit of (n)
N Don’t care
PC Program counter
Result Result of operation performed by instruction
SR Source address register
SA - Source address
ST Status register
STn Bit n of status register
Tp Destination address modifier
TS Source address modifier
WR or R Workspace register
WRn or Rn Workspace register n
(n) Contents of n
a—>b a is transferred to b
(a) >b Contents of a is transferred to be
[n] Absolute value of n
+ Arithmetic addition
- Arithmetic subtraction
AND " Logical AND
OR Logical OR
@ Logical exclusive OR
n Logical complement of n
> Hexadecimal value

Sl-v

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX

ASSEMBLY MACHINE STATUS REG. RESULT

LANGUAGE LANGUAGE BITS COMPARED

MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
A A000 1 04 X Add (word) 46.1
AB BOOO 1 0-5 X Add (byte) 4.6.1
ABS 0740 6 0-2 X Absolute Value 4.6.6
Al 0220 8 0-4 X Add Immediate 46.8
ANDI 0240 8 0-2 X AND Immediate 46.8
B 0440 6 - Branch 4.6.6
BL 0680 6 - Branch and Link (R11) 4.6.6
BLWP 0400 6 - Branch; New Workspace Pointer 4.6.6
[o] 8000 1 0-2 Compare (word) 46.1
CcB 9000 1 0-2,5 Compare (byte) 46.1
Cl 0280 8 0-2 Compare Immediate 4.6.8
CKOF 03COo 7 — User Defined 4.6.7
CKON 03A0 7 - User Defined 46.7
CLR 04C0 6 - Clear Operand 4.6.6
COC 2000 3 2 Compare Ones Corresponding 46.3
CZC 2400 3 2 Compare Zeroes Corresponding 4.6.3
DEC 0600 6 0-4 X Decrement (by one) 46.6
DECT 0640 6 0-4 X Decrement (by two) 46.6
DIV 3C00 9 4 Divide 46.3
IDLE 0340 7 — Computer ldle 4.6.7
INC 0580 6 0-4 X Increment (by one) 4.6.6
INCT 05CO 6 0-4 X Increment (by two) 46.6
INV 0540 6 0-2 X Invert (One's Complement) 46.6
JEQ 1300 2 - Jump Equal (ST2=1) 46.2
JGT 1500 2 — Jump Greater Than (ST1=1), Arithmetic 4.6.2
JH 1800 2 - Jump High (ST0=1 and ST2=0), Logical 4.6.2
JHE 1400 2 - Jump High or Equal (STO or ST2=1), Logical 4.6.2
JL 1A00 2 — Jump Low (STO and ST2=0), Logical 46.2
JLE 1200 2 — Jump Low or Equal (ST0=0 or ST2=1), Logical 46.2
JLT 1100 2 — Jump Less Than (ST1 and ST2=0), Arithmetic 4.6.2
JMP 1000 2 - Jump Unconditional 4.6.2
JNC 1700 2 - Jump No Carry (ST3=0) 4.6.2
JNE 1600 2 - Jump Not Equal (ST2=0) 46.2
JNO 1900 2 — Jump No Overflow (ST4=0) 4.6.2
JOoc 1800 2 - Jump On Carry (ST3=1) 4.6.2

9l-v

TABLE 4-3. INSTRUCTION SET, ALPHABETICAL INDEX (Concluded)

ASSEMBLY MACHINE STATUS REG. RESULT
LANGUAGE LANGUAGE BITS COMPARED
MNEMONIC OP CODE FORMAT AFFECTED TO ZERO INSTRUCTION PARAGRAPH
JoP 1C00 2 - Jump Odd Parity (ST5=1) 46.2
LDCR 3000 4 0-2,5 X Load CRU 46.4
LI 0200 8 - X Load Immediate 468
LIMI 0300 8 12-15 Load Interrupt Mask Immediate 4.6.8
LREX 03E0 7 12-15 Load and Execute 4.6.7
LWPI 02EQ 8 - Load Immediate to Workspace Pointer 46.8
MOV C000 1 0-2 X Move (word) 46.1
MOvB DO00o 1 0-2,5 X Move (byte) 46.1
MPY 3800 9 - Multiply 46.3
NEG 0500 6 0-2 X Negate (Two's Complement) 46.6
ORI 0260 8 0-2 X OR Immediate 468
RSET 0360 7 12-15 Reset AU 46.7
RTWP 0380 7 015 Return from Context Switch 4.6.7
S 6000 1 0-4 X Subtract (word) 46.1
SB 7000 1 0-5 X Subtract (byte) 4.6.1
SBO 1D00 2 - Set CRU Bit to One 46.2
SBZ 1E00 2 - Set CRU Bit to Zero 4.6.2
SETO 0700 6 - Set Ones 4.6.6
SLA 0AQ0 5 04 X Shift Left Arithmetic 4.6.5
socC E000 1 0-2 X Set Ones Corresponding (word) 4.6.1
SOCB F000 1 0-2,5 X Set Ones Corresponding (byte) 46.1
SRA 0800 5 0-3 X Shift Right (sign extended) 4.6.5
SRC 0B0O 5 0-3 X Shift Right Circular 4.6.5
SRL 0900 5 0-3 X Shift Right Logical 4.6.5
STCR 3400 4 0-2,5 X Store From CRU 46.4
STST 02Co 8 - Store Status Register 4.6.8
STWP 02A0 8 - Store Workspace Pointer 46.8
SWPB 06CO 6 - Swap Bytes 4.6.6
szC 4000 1 0-2 X Set Zeroes Corresponding (word) 4.6.1
szcB 5000 1 0-2,5 X Set Zeroes Corresponding (byte) 46.1
TB 1F00 2 2 Test CRU Bit 4.6.2
X 0480 6 - Execute 4.6.6
XOP 2C00 9 6 Extended Operation 4.6.9
XOR 2800 3 02 X Exclusive OR 46.3

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX

MACHINE
LANGUAGE ASSEMBLY
OP CODE LANGUAGE STATUS BITS
(HEXADECIMAL) MNEMONIC INSTRUCTION FORMAT AFFECTED
0200 u Load Immediate 8 0-2
0220 Al Add Immediate 8 0-4
0240 ANDI And Immediate 8 0-2
0260 ORI Or Immediate 8 0-2
0280 Cl Compare Immediate 8 0-2
02A0 STWP Store WP 8 -
02C0 STST Store ST 8 -
02EO0 LWPI Load WP Immediate 8 —
0300 LiMt Load Int. Mask 8 12-15
0340 IDLE Idle 7 —
0360 RSET Reset AU 7 12-15
0380 RTWP Return from Context Sw. 7 0-15
03A0 CKON User Defined 7 -
03Co CKOF User Defined 7 -
03EO LREX Load & Execute 7 —
0400 BLWP Branch; New WP 6 -
0440 B Branch 6 -
0480 X Execute 6 -
04CO CLR Clear to Zeroes 6 —
0500 NEG Negate to Ones 6 0-2
0540 INV Invert 6 0-2
0580 INC Increment by 1 6 04
05CO INCT Increment by 2 6 04
0600 DEC Decrement by 1 6 04
0640 DECT Decrement by 2 6 04
0680 BL Branch and Link 6 -
06CO SWPB Swap Bytes 6 -
0700 SETO Set to Ones 6 —
0740 ABS Absolute Value 6 0-2
0800 SRA Shift Right Arithmetic 5 03
0900 SRL Shift Right Logical 5 0-3
0A00 SLA Shift Left Arithmetic 5 04
0B0O SRC Shift Right Circular 5 0-3
1000 JMP’ Unconditional Jump 2 —
1100 JLT Jump on Less Than 2 —
1200 JLE Jump on Less Than or Equal 2 -
1300 JEQ Jump on Equal 2 —
1400 JHE Jump on High or Equal 2 —
1500 JGT Jump on Greater Than 2 —
1600 JNE Jump on Not Equal 2 —
1700 JNC Jump on No Carry 2 -
1800 JOoC Jump on Carry 2 —
1900 JNO Jump on No Overflow 2 —
1A00 JL Jump on Low 2 -
1B00 JH Jump on High 2 —
1C00 Jop Jump on Odd Parity 2 —
1D00 SBO Set CRU Bits to Ones 2 —
1E00 SBZ Set CRU Bits to Zeroes 2 -
1F00 B Test CRU Bit 2 2
2000 coc Compare Ones Corresponding 3 2

4-17

TABLE 4-4. INSTRUCTION SET, NUMERICAL INDEX (Concluded)

MACHINE
LANGUAGE ASSEMBLY :
OP CODE LANGUAGE . STATUS BITS
(HEXADECIMAL MNEMONIC INSTRUCTION | - FORMAT AFFECTED

2400 czc Compare Zeroes Corresponding 3 2
2800 XOR Exclusive Or 3 0-2
2C00 XOP Extended Operation 9 6
3000 ' LDCR Load CRU 4 0-2,5
3400 STCR Store CRU 4 02,5
3800 MPY Multiply 9 —
3C00 DIV Divide 9 4
4000 szC Set Zeroes Corresponding (Word) 1 0-2
5000 sZcB Set Zeroes Corresponding (Byte) 1 0-2,5
6000 S Subtract Word 1 0-4
7000 SB Subtract Byte 1 0-5
8000 [Compare Word 1 0-2
9000 CB Compare Byte 1 025
A000 A Add Word 1 04
B0OOO AB Add Byte 1 0-5
C000 MoV Move Word 1 0-2
D000 MOVB Move Byte 1 0-2,5
EO0OO SOC Set Ones Corresponding (Word) 1 0-2
FO00 socB Set Ones Corresponding (Byte) 1 0-2,5

4.6.1 FORMAT 1 INSTRUCTION.
These are dual operand instructions with multiple addressing modes for source and destination operands.

GENERAL FORMAT:

OP CODE B To DR Ts SR

If B = 1, the operands are bytes and the operand addresses are byte addresses. If B = 0, the operands are
words and the operand addresses are word addresses.

4-18

OP CODE 8 RESULT STATUS
MNEMONIC o 1 21 3 MEANING COMPARED BITS DESCRIPTION
TOO AFFECTED
A 101 0 Add Yes 04 (SA)+(DA) =~ (DA)
AB 1 0 1 1 Addbytes Yes 0-5 (SA)+(DA) —~ (DA)
C 100 0 Compare No 0-2 Compare (SA) to (DA) and set
) appropriate status bits
CB 100 1 Compare bytes No 0-2,5 Compare (SA) to (DA) and set
appropriate status bits
MOV 110 0 Move Yes 0-2 (SA) = (DA)
MOVB 110 1 Move bytes Yes 0-2,5 (SA) = (DA)
S 011 0 Subtract Yes 04 (DA) — (SA) ~ (DA)
SB 01 1 1 Subtract by tes Yes 0-5 (DA) — (SA) = (DA)
SOcC 111 0 Set ones corresponding Yes 0-2 (DA) OR (SA) = (DA)
sOcCB 111 1 Set ones corresponding bytes Yes 0-2,5 (DA) OR (SA) ~ (DA)
SzC 010 0 Set zeroes corresponding Yes 0-2 (DA) AND (SA) > (DA)
SzCB 010 1 Set zeroes corresponding bytes Yes 0-2,5 (DA) AND (SA) — (DA)
EXAMPLES
(1) ASSEMBLY LANGUAGE:

A

@>100,R2

MACHINE LANGUAGE:

ADD CONTENTS OF MA >100 & R2, SUM IN R2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 >A0A0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 >0100
(2) ASSEMBLY LANGUAGE:
CB R1,R2 COMPARE BYTE R1 TO R2, SET ST
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 >9081
NOTE
In byte instruction designating a register, the left byte is used. In the above
example, the left byte (8 MSB's) of R1 is compared to the left byte of R2,
and the ST set to the results.
4.6.2 FORMAT 2 INSTRUCTIONS
4.6.2.1 Jump Instructions

Jump instructions cause the PC to be loaded with the value [PC+2(signed displacement)] if bits of the
Status Register are at specified values. Otherwise, no operation occurs and the next instruction is executed
since the PC was incremented by two and now points to the next instruction. The signed displacement field
is a word (not byte) count to be added to PC. Thus, the jump instruction has a range of —128 to 127 words
(—256 to 254 bytes) from the memory address following the jump instruction. No ST bits are affected by a
jump instruction.

4-19

GENERAL FORMAT:

0 1 2 3

4 5 6 7

9 10 1 12 13 14 15

OP CODE SIGNED DISPLACEMENT (WORDS)
MNEMONIC Op CODE MEANING ST CONDITION TO CHANGE PC
012345867

JEQ 00010011 Jump equal ST2 =1

JGT 00O01TO01O01 Jump greater than ST1 =1

JH 00011011 Jump high STO=1andST2=0

JHE 00010100 Jump high or equal STO=10rST2=1

JL 00011010 Jump low STO=0andST2=0

JLE 0001 O0O0T11O0 Jump low or equal STO=00rST2=1

JLT 0001 O0O0O01 Jump less than ST1=0andST2=0

JMP 0001 0O0O0OO0 Jump unconditional unconditional

JNC 0O00O01TO0O 111 Jump no carry ST3=0

JNE 00010110 Jump not equal ST2=0

JNO 00011001 Jump no overflow ST4=0
-JOC 00011000 Jump on carry ST3=1

JOP 00011100 Jump odd parity ST5 =1

In assembly language, $ in the operand indicates “at this instruction’’. Essentially JMP $ causes an
unconditional loop to the same instruction location, and JMP $+2 is essentially a no-op ($+2 means “'here
plus two bytes’’). Note that the number following the $ is a byte count while displacement in machine

language is in words.

EXAMPLES

(1) ASSEMBLY LANGUAGE:

JEQ $H4 IF EQ BIT SET, SKIP 1 INSTRUCTION

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

B

The above instruction continues execution 4 bytes (2 words) from the instruction location or, in other
words, two bytes (one word) from the Program Counter value {incremented by 2 and now pointing to next
instruction while JEQ executes). Thus, the signed displacement of 1 word (2 bytes) is the value to be added
to the PC.

>1301

JEQ $+4 IF STATUS REGISTER BIT 2=1

PC POINTS TO —™ SKIP NEXT INSTRUCTION

4-20

(2) ASSEMBLY LANGUAGE:
JMP §

MACHINE LANGUAGE:

REMAIN AT THIS LOCATION

1] >10FF

PC —1 WORD —>»

CONTINUOUS LOOP

PC POINTS TO —»

B

TO JMP $ (>FF =—1WORD)

This causes an unconditional loop back to one word less than the Program Counter value (PC + >FF = PC-1
word). The Status Register is not checked. A JMP $+2 means “‘go to the next instruction’” and has a
displacement of zero (a no-op). No-ops can substitute for deleted code or can be used for timing purposes.

4.6.2.2 CRU Single-Bit Instructions.
These instructions test or set values at the Communications Register Unit (CRU). The CRU bit is selected
by the CRU address in bits 3 to 14 of register 12 plus the signed displacement value. The selected bit is set
to a one or zero, or it is tested and the bit value placed in equal bit (2) of the Status Register. The signed
displacement has a value of —128 to 127.
NOTE
CRU addressing is discussed in detail in paragraph8.2.
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
General Format: OP CODE SIGNED DISPLACEMENT
STATUS
OP CODE
MNEMONIC MEANING BITS DESCRIPTION
01234567
AFFECTED
" SBO 00011101 Set bit to one — Set the selected CRU output bit to 1.
SBZ 00011110 Set bit to zero - Set the selected CRU output bit to 0.
B oO0O01T1T111 Test bit 2 If the selected CRU input bit = 1, set ST2.
EXAMPLE

R12,BITS3TO 14 =>100

ASSEMBLY LANGUAGE:
SB0 4

MACHINE LANGUAGE:

SET CRU ADDRESS >104 TO ONE

6 7 8 9 10 1 12 13 14

0 1 0 0 0 0 0 1 0

15
o | >1Dos

4-21

46.3 FORMAT 3/9 INSTRUCTIONS
These are dual operand instructions with multiple addressing modes for the source operand, and workspace
register addressing for the destination. The MPY and DIV instructions are termed format 9 but both use the
same format as format 3. The XOP instruction is covered-in paragraph 4.6.9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: OP CODE DR (REGISTER ONLY) Ts SR
RESULT STATUS
OP CODE COMPARED BITS
MNEMONIC 012345 MEANING TOO AFFECTED DESCRIPTION
coc 001000 [Compare ones No 2 Test (DR) to determine if O's are in each
corresponding bit position where 1's are in (SA). If so,
set ST2.
czc 001001 |Compare zeros No 2 Test (DR) to determine if Q's are in each
corresponding bit position where 1’s are in (SA). If so,
set ST2.

XOR 001010 |Exclusive OR Yes 0-2 (DR) @ (SA)—>(DR)

MPY 001110 |Multiply No Multiply. unsigned (DR) by unsigned
(SA) and place unsigned 32-bit product
in DR (most significant) and DR + 1
(least significant). If WR15 is DR, the
next word in memory after WR15 will
be used for the least significant half of
the product.

DIV 001111 |Divide No 4 If unsigned (SA) is less than or equal to
unsigned (DR), perform no operation
and set ST4. Otherwise divide unsigned
(DR) and (DR) by unsigned (SA).
Quotient = (DR), remainder = (DR+1).
If DR=15, the next word in memory
after WR15 will be used for the
remainder.

Exclusive OR Logic = 1®0=1
0®0=0
1M1=0
EXAMPLES
(1) ASSEMBLY LANGUAGE: .
MPY R2,R3 MULTIPLY CONTENTS OF R2 AND R3, RESULT IN R3 AND R4
MACHINE LANGUAGE:
(/] 1 2 3 4 6 7 8 9 10 1 12 13 14 15
/] 0 1 1 1 0 (1] 1 1 (4] 0 0 0 1 0 >38C2
BEFORE AFTER
R2 0002 0002
R3 0003 0000 32-BIT
R4 N 0006 RESULT

4-22

The destination operand is always a register, and the values multiplied are 16-bits, unsigned. The 32-bit
result is placed in the destination register and destination register +1, zero filled on the left.

(2) ASSEMBLY LANGUAGE: .
DIV @>FEO00,R5 DIVIDE CONTENTS OF R5 AND R6 BY VALUE AT M.A. > FE00

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 >3D60

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 >FEO0

BEFORE AFTER
M.A. > FEOO 0005 0005

/

R5 0000 0003

R6 0011 0002 |-~=—— REMAINDER

The unsigned 32-bit value in the destination register and destination register +1 is divided by the source
operand value. The result is placed in the destination register. The remainder is placed in the destination

register +1.

(3) ASSEMBLY LANGUAGE:
CoC R10,RM ONES IN R10 ALSO IN R11?

MACHINE LANGUAGE:

V] 1 1 0 0 1 0 1 0 >22CA

Locate all binary ones in the source operand. If the destination operand also has ones in these positions, set
the equal flagin the Status Register; otherwise, reset this flag. The following sets the equal flag:

R10 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 >AAOC

>EFCD

Set EQ bit in Status Register to 1.

46.4 FORMAT 4 (CRUMULTIBIT) INSTRUCTIONS

General Format: OP CODE

423

The C field specifies the number of bits to be transferred. If C = 0, 16 bits will be ‘transferred. The CRU
hardware base register (WR 12, bits 3 through 14) defines the starting CRU bit address. The bits are trans-
ferred serially and the CRU hardware bit address is incremented with each bit transfer, although the con-
tents of WR 12 are not affected. T (C = 1 through 8), the source address is a byte address. If 9 or more
bits are transferred (C= 0.9 through 15), the source address is a word (even number) address. If the source

is addressed in the workspace register indirect autoincrement mode, the workspace register is incremented
by 1if C=1 through 8, and is incremented by 2 otherwise.

RESULT STATUS
OP CODE
MNEMONIC 012345 MEANING COMPARED BITS DESCRIPTION
TOO AFFECTED
LDCR 001100 |Loadcommuncation Yes 0-2,5% Beginning with LSB of (SA), transfer the
register specified number of bits from (SA) to
the CRU.
STCR 001101 |Storecommuncation Yes 0-2,57 Beginning with LSB of (SA), transfer the
register specified number of bits from the CRU to
(SA). Load unfilled bit pesitions with 0.
1ST5 is affected only if 1 € C <8,
EXAMPLE

ASSEMBLY LANGUAGE:

LDCR

@>FE00,8

MACHINE LANGUAGE:

4.6.5

LOAD 8 BITS ON CRU FROM M.A. >FE00

0 1 2 3 4 5 7 8 9 10 1 12 13 14 15

0 0 1 0 0 0 0 0 1 0 0 0 0 0 >3220

1 1 1 1 1 0 0 0 0 0 0 0 0 0 >SFE00
NOTE

CRU addressing is discussed in detail in paragraph 8.2.

FORMAT 5 (SHIFT) INSTRUCTIONS

These instructions shift (left, right, or circular) the bit patterns in a workspace register. The last bit value
shifted out is placed in the carry bit (3) of the Status Register. If the SLA instruction causes a one to be
shifted into the sign bit, the ST overflow bit (4) is set. The C field contains the number of bits to shift.

General Format:

9 10

1

12 13 14 15

OP CODE

4-24

If C = 0, bits 12 through 15 of RO contain the shift count. If C = 0 and bits 12 through 15 of WRO = 0, the

shift count is 16.

RESULT STATUS
MNEMONIC Op CODE MEANING COMPARED BITS DESCRIPTION
01234567
TO 0 AFFECTED

SLA 0 000 1 0 1 O | Shiftleftarithmetic Yes 0-4 Shift (R) left. Fill vacated bit
positions with 0.

SRA 000O01O0O0O Shift right arithmetic Yes 0-3 Shift (R) right. Fill vacated bit
positions with original MSB of (R).

SRC 0 000 1 0 1 1 | Shiftrightcircular Yes 0-3 Shift (R) right. Shift previous LSB
into MSB.

SRL 00O0O0T1TO0O01 Shift right logical Yes 0-3 Shift (R) right. Fill vacated bit
positions with Q's.

EXAMPLES

(1) ASSEMBLY LANGUAGE:

SRA R1,2 SHIFT R1 RIGHT 2 POSITIONS, CARRY SIGN

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 >0841
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
T T T
R1IBEFORE| 1 0 0 0 1 1 1 1 o o o0 0 1 1 1 1 >8FOF
\\\ \\\ \\\ \\
> T > T T
R1 AFTER 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 >E3C3
\——-—SIGN BIT CARRIED IN
(2) ASSEMBLY LANGUAGE:
SRC Rb54 CIRCULAR SHIFT R54 POSITIONS
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 >0845
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

R5 BEFORE | 0 0 0 0 1 0 0 1 0 0 0 0

1 1 1 >090F

R5 AFTER AT 1 1 1 1 0

4-25

(3) ASSEMBLY LANGUAGE:

SLA R1,0 SHIFT COUNT IN RO
SHIFT COUNT
0 1 2 3 4 5 6 8 9 10 1 12 13 14 15
| "lzpaqegseprpejegn] EIEN
RO 1 1 0 0 1 1 0 1 1 0 o 0 0 1 1 >CCC3
T T
R1 (BEFORE) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- - - - -
T T | E—
R1 (AFTER) 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
V\~
VACATED BITS ZERO FILLED
4.6.6 FORMAT 6 INSTRUCTIONS
These are single operand instructions.
V] 1 2 3 4 5 6 8 9 10 1 12 13 14 15
General Format: OP CODE Ts SR

"The Tg and S fields provide multiple mode addressing capability for the source operand.

OP CODE RESULT STATUS
MNEMONIC MEANING COMPARED BITS DESCRIPTION
0123456789
TOO AFFECTED
B 0000010001 |Branch - No - ‘SA“ (PC)
BL 0000011010 |Branchand link No - (PC) > (R11);'SA > (PC)
BLWP 000001000 O0 |Branch and load No - (SA) =(WP); (SA+2) —>(PC);
workspace pointer (old WP) = (new WR13);
(old PC) = (new WR14);
(old ST) = (new WR15);
‘the interrupt input (INTREQ) is not
tested upon completion of the
BLWP instruction.
CLR 0000010011 |Clearoperand No — 0000 —~> (SA)
SETO 0000011100 |Settoones No - FFFF1g— (SA)
INV 0000010101 |Invert Yes 0-2 (SA) = (SA) (ONE'S complement)
NEG 000001010 0 |Negate Yes 0-4 —(SA) ~> (SA)TWO'S complement)
ABS 0000011101 |Absolutevalue No 04 [(SA)] > (SA)
SWPB 0000011011 |Swapbytes - No — (SA), bits 0 thru 7 = (SA), bits
8 thru 15; (SA), bits 8 thru 15 —>
(SA), bits 0 thru 7.
. INC 0000010110 |Increment Yes 0-4 (SA) + 1 (SA)
INCT 0000010111 |Incrementby two Yes 0-4 (SA) + 2= (SA)
DEC 0000011000 | Decrement Yes 04 (SA) — 1> (SA)
DECT 0000011001 Decrement by two Yes 0-4 (SA) - 2—>(SA)
xT 0000010010 |Execute No - Execute the instruction at SA.

*Operand is compared to zero for setting the status bit (i.e., before execution).

t1f additional memory words for the execute instruction are required to define the operands of the instruction located at SA, these
words will be accessed from PC and the PC will be updated accordingly. The instruction acquisition signal (IAQ) will not be true
when the TMS 9900 accesses the instruction at SA. Status bits are affected in the normal manner for the instruction executed.

4-26

EXAMPLES

(1) ASSEMBLY LANGUAGE:
B *R2 BRANCH TO M.A. IN R2
MACHINE LANGUAGE:
0 1 2 3 4 s 6 7 8 9 10 1 12 13 14 15
o0 o o o o0 1 o o o 1/0 1/0 o6 1 o >042
R2 F D DO
B *R2 PC (AFTER)
MA. >FDDO | NEXT INSTR. |
(2) ASSEMBLY LANGUAGE:
BL @>FF00 BRANCH TO M.A. >FF00, SAVE OLD PC VALUE (AFTER EXECUTION) IN R11
MACHINE LANGUAGE:
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
o 0o o o o0 1 1 o 1 ol1 o]lo o o o | >06a0
1 1 1 1. 1 1 1 1 0 0o o 0 0o ©o o o | >Fo0
R11 F C 0 4 |<—— OLDPCVALUE
M.A. >FCO00 BL @ >FF00 PC (AFTER)
>FC02 F F 0 0
>FC04
>FF00 NEXT INSTR.
TO RETURN
EXECUTE
B *R11
B *R11
(3) ASSEMBLY LANGUAGE:

BLWP @>FDO00

MACHINE LANGUAGE:

BRANCH, GET NEW WORKSPACE AREA

9 10 1 12 13 14 15
0 0 0 0 0 1 0 0 o 0 1 0 0 0 0 0 >0420
T T
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 >FDOO

4-27

4.6.7

General Format:

This context switch provides a new workspace register file and stores return values in the new workspace.
See Figure 4-10. The operand (>FDO0O above) is the M.A. of a two-word transfer vector, the first word the
new WP value, the second word the new PC value.

FORMAT 7 (RTWP, CONTROL) INSTRUCTIONS

(1} 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OP CODE N

External instructions cause the three most-significant address lines (AQ through A2) to be set to the levels
described in the table below and cause the CRUCLK line to be pulsed, allowing external control functions
to be interpreted during CRUCLK at AQ, A1, and A2. The CKON and CKOF instructions are used by other
990-family systems to control the system timer. On the TM 990/101M the system timer is incorporated
into the TMS 9901; hence, these instructions are not used. CKON and CKOF can be used by monitoring
plus 10 and 9 respectively at U20 as shown on sheet. 2 of the schematics in. Appendix F 1.

The RSET instruction generates the IORST signal to clear all 1/0 devices (on board TMS 9901) attached to
it. It also clears out the status register interrupt mask, this will allow only a RESET interrupt or a LOAD
function to be granted. '

The LREX instruction causes a LOAD function request to be presented to the processor after two IAW or
IDLE pulses. This means that the LOAD function occurs after two instructions are excuted following the
LREX. TIBUG uses this function to do single step by executing the LREX, a RTWP to the user, then one
user instruction. The LOAD function becomes active and vectors back to TIBUG, which then prints the
processor registers.

IDLE causes the processor to suspend operation; it is, in essence, a HALT instruction. An interrupt or
LOAD terminates the idle state.

In all cases, note that AO, A1, A2 are nonzero values so that these instructions are differentiated from a
CRU output operation.

STATUS ADDRESS
MNEMONIC OP CODE MEANING BITS DESCRIPTION BUS*
012345678910 AFFECTED A0A1A2
IDLE 00000011010 Idle - Suspend TMS 9900 L H L
instruction execution until
an interrupt, LOAD, or
RESET occurs
RSET 00000011011 Reset 1/0 & SR 12—-15 0-—>ST12 thru ST15 L HH
CKOF 00000011110 User defined - H H L
CKON 00000011101 User defined —_ H L H
LREX 00000011111 Load interrupt Control to T/BUG HHH
RTWP 00000011100 Return from 0—-15 (R13) - (WP)
Subroutine (R14) - (PC)
(R15) - (ST)

*These outputs from the TMS 9900 go to a SN74LS138 as shown in Figure 5-6

4-28

M.A.>FC00

>FC80

TRANSFER >FDO0O

VECTORS

>FF00

RETURN

VALUES

>FF20

A0001430

BLWP @>FD00

BLWP @ >FD0O

+ N

4
J
/

F F 00 (NEW WP)

F F 20 (NEW PC)

~

FCooO

[}

(OLD WP)

Fcsa

(OLD PC)

OLD ST CONTENTS

NEXT INSTR.

RTWP

BRANCH WITH NEW WORKSPACE

~
RO
% CALLING PROGRAM
BEFORE BLWP OCCURS
FCoo | wp
FCs8a| pPc
N ST
AFTER BLWP
OCCURS
o FFOO | wp
FF20 | PC
N ST
R13
R14
R15 > NEW EXECUTION AREA
J

FIGURE 4-10. BLWP EXAMPLE

"\RTWP RETURNS EXECUTION TO CALLING
PROGRAM STARTING AT M.A. >FC84

Essentially, the RTWP instruction is a return to the next instruction that follows the BLWP instruction (i.e.,
RTWP is a return from a BLWP context switch, similar to the B *R11 return from a BL instruction). BLWP
provides the necessary values in registers 13, 14, and 15 (see Figure 4-10).

EXAMPLE

. ASSEMBLY LANGUAGE:

RTWP

MACHINE LANGUAGE:

RETURN FROM CONTEXT SWITCH

10 1 12

13

14

15

4-29

>0380

RTWP RETURN TO PREVIOUS WP (R13), PC (R14), ST (R15) VALUES
R13 FCO0OO
R14 FC84 AFTER
R15 STATUS FCO0OO wP
\ \ FC824 PC
STATUS ST
M.A. >FF40 RTWP

'EXECUTION BEGINS AT M.A. >FC84

WITH RO AT M.A. >FCO00.

FORMAT 8 (IMMEDIATE, INTERNAL REGISTER LOAD/STORE) INSTRUCTIONS

4.6.8
4.6.8.1 Immediate Register Instructions
0 1 2 3 4q 5 6 7 8 9 10 11 12 13 14 15
General format: OP CODE l N l R
10P
RESULT STATUS
OP CODE
MNEMONIC MEANING COMPARED BITS DESCRIPTION
012345678910
TOO AFFECTED
Al 0000001000 1 Add immediate Yes 0-4 (R) + 10P > (R)
ANDI 00000010010 AND immediate Yes 0-2 (R) AND 10P = (R)
Cl 00000010100 Compare Yes 0-2 Compare (R) to 10OP and set
immediate appropriate status bits
LI 00000010000 Load immediate Yes 0-2 10P =>(R)
ORI 0000001001 1 OR immediate Yes 0-2 (R) OR 10P = (R)
AND Logic: 01,10=0 OR Logic: 0+1,1+0=1
00=0 1+1=1
11=1 0+0=0
4.6.8.2 Internal Register Load Immediate Instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
_
General format: OP CODE N
ol
OP CODE
MNEMONIC MEANING DESCRIPTION
0123456 789 10
LWPI 0O0000O0O0O1TO0T1TI1T 1 Load workspace pointer immediate I0P = (WP), no ST bits affected
LIMI 0000O0OOT11T1T0O0O0 Load interrupt mask 10P, bits 12 thru 15 >ST12
thru ST15

4-30

4.6.8.3 Internal Register Store Instructions

0 1 2 3 4 5 6 7 8 9 10

11

12

13

14 15

General format: OP CODE

I

R

NO ST BITS ARE AFFECTED.

MNEMONIC Op CODE MEANING DESCRIPTION
0123456 789 10
STST 00000010110 Store status register (ST) — (R)
STWP 0000O0O0G1TO010 1 Store workspace pointer (WP) —~(R)
EXAMPLES
(1) ASSEMBLY LANGUAGE:
Al R2>FF ADD >FF TO CONTENTS OF R2
MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 >0222
T T
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 >00FF

R2

BEFORE

000F

AFTER

010E

(2) ASSEMBLY LANGUAGE:

Cl R2 >10E COMPARE R2 TO >10E

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 >0282
0 0 0 0 ' 0 0 0 1 , 0 0 0 0 1 1 1 0 >010E

R2 contains “after” results (>‘IOE) of instruction in Example (1) above; thus the ST equal bit becomes set.
(3) ASSEMBLY LANGUAGE:

LWPI >FC00 WP SET AT >FC00 (M.A. OF RO)

MACHINE LANGUAGE:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 >02E0
1 1 1 1 ' 1 1 0 0 I] 0 0 1] ' (1] 0 0 0 >FCO00

This is used to define the workspace area in a task, usually placed at the beginning
of a task.

4-31

(4) ASSEMBLY LANGUAGE:
STWP R2 STORE WP CONTENTS IN R2

MACHINE LANGUAGE:

] 0 0 0 0 0 1 0 1 0 1 0 0 0 1 ‘0 >02A2

" This places the M.A. of RO in a workspace register.

4.6.9 FORMAT 9 (XOP) INSTRUCTION

Other format 9 instructions (MPY, DIV) are explained in paragraph 4.6.3 (format 3).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

General Format: | 0 0 1 (1] 1 1 D (XOP NUMBER) Ts SR

The Tg and SR fields provide multiple mode addressing capability for the source operand. When the XQOP is
executed, ST6 is set and the following transfers occur:

{40, ¢ +4D) > (WP) First vector at 40, ¢

(42,4 +4D) ~ (PC) Each vector uses 4 bytes (2 words)
SA = (new R11)

(old WP) = (new WR13)

(old PC) = (new WR14)

{old ST) > (new WR15)

The TMS 9900 does not test interrupt request {(INTREQ) upon completion of the XOP instruction.

An XOP is a means of calling one of 16 subtasks available for use by any executing task. The EPROM
memory area between M.A. 40, ¢ and 7E, 4 is reserved for the transfer vectors of XOP’s 0 to 15 (see Figure
4-1). Each XOP vector consists of two words, the first a WP value, the second a PC value, defining the
workspace pointer and entry point for a new subtask. These values are placed in their respective hardware
registers when the XOP is executed.

The old WP, PC, and ST values (of the XOP calling task) are stored (like the BLWP instruction) in the new
workspace, registers 13, 14, and 15. Return to the calling routine is through the RTWP instruction. Also

- stored, in the new R11, is the M.A. of the source operand. This allows passing a parameter to the new
subtask, such as the memory address of a string of values to be processed by the XOP-called routine. Figure
4-11 depicts calling an XOP to process a table of data; the data begins at M.A. FFO00,¢.

XOP's 0, 1 and 8 to 15 are used by the T/BUG monitor, calling software routines (supervisor calls) as

requested by tasks. This user-accessible software performs tasks such as write to terminal, convert binary to
hex ASClI, etc. These monitor XOP’s are discussed in Section 3.3.

4-32

ASSEMBLY LANGUAGE:
XO0P @>FF00,4

MACHINE LANGUAGE:

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 >2D20

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 >FF00

M.A
(>o040 XOP 0 WP AFTER
>0042 XOP 0 PC "FCO0OO WP
X0P J \ : FCz2o PC
VECTORS >0050 FCoOoO N ST
>0052 FC20
>007E
R 3
'CALLING INSTR. XOP @>FF00,4
(" >Fcoo RO
FFoOO R11—e—— PASSED PARAMETER (SOURCE OPERAND)
R12
XopP4 OLD wp R13 RETURN VECTORS
PROGRAM oLD PC R14 TO CALLING TASK
oLD SR R15
L >FC20 1ST INSTR.
RTWP
TABLE OF >FF00 |
VALUES TO

BE PROCESSED

A0001431

FIGURE 4-11. XOP EXAMPLE

4-33

4.7 COMPARISON OF JUMPS, BRANCHES AND XOPS

See Table 4-5.
TABLE 4-5. COMPARISION OF JUMPS, BRANCHES. XOP'S
MNEMONIC PARAGRAPH : DEFINITION SUMMARY

JMP 4.6.2 - : Oﬁe-word instruction, destination ‘restricted to +127, —128 words from Program.
Counter value .

B‘ 4.6.6 Two-word instruction, branch to any memory focation.

BL 4.6.6 Same as B with PC return address in R11.

BLWP 4.6.7 Same as B with new workspace; old WP, PC:and ST contents (return vectors) are in
new R13, R14, R15.

XOoP 4.6.9 Same as BLWP with address of pa}ameter (source operand) in new R11. Sixteen XOP

vectors-outside program in M.A. 40, ¢ to 7E¢4; can be called by any program.

434

5.1

5.2

5.3

SECTION 5

THEORY OF OPERATION

GENERAL

This section covers theory of operation of the TM 990/100M. Information in the following manuals can be

used to supplement material in this section:

o TMS 9900 Microprocessor Data Manual
° TMS 9901 Programmable Systems Interface Data Manual
o TMS 9902 Asynchronous Communication Controller

Figure 51 shows data flow within the TMS 990/100M, highlighting the four major buses:

° Address Bus

° Control Bus

° Data Bus

o Communications Register Unit Bus

SYSTEM CLOCK (Figure 5-2)

System timing is regulated by a crystal-controlled TMS 9904 clock driver. The tank circuit, shown in Figure
5-2, is tuned to the third harmonic (48 MHz) of the crystal frequency (16 MHz). The 48 MHz is divided by 4 to

12 MHz which is further divided into four 3 MHz phases (¢1 to ¢a).

CENTRAL PROCESSING UNIT (Figures 5-3 to 5-6)

The TMS 9900 microprocessor is the central processing unit (CPU for the TM 990/100M. The processor’s

responsibilities include:

° Memory and bus control

° Instruction acquisition and interpretation
° Timing

o System initialization

] CRU programming

Figure 53 groups TMS 9900 pins by function. The address bus addresses devices such as the TMS 9901 and
TMS 9902 as well as memory locations. Data is transferred to and from memory as 16-bit words. Interrupt

requests and the interrupt level code (IC0O to IC3) come from the TMS 9901 interface.

5-1

A

MONITOR ROM SELECT

EXPANSION ROM SELECT

CENTRAL
PROCESSOR
UNIT

RAM
ME?E?.EETUO RAM ARRAY ROM ARRAY
CONTROLLER SELECT 512 X 16 BITS 2K X 16 BITS
< <
10 9
SELECT
ADDRESS BUS o

|

J 1 |

A

LT 1

CONTROL BUS

11

I

I

L]

I L

DATA BUS

. [

|

[

11

11

[1]
I

11

s1
L/ RESET
—]
= REST/LOAD LOAD
PRES Loaic 1aQ
P1
RESTART |
P1>——d
o1
p2 >—o ¢2
SYSTEM 3
cLock
04
T™S 9904
-=1
A0001438

(CRU CONTROL BUS
v
RST1]l
> 4> } <)) > J\/' <
PARALLEL 1/0 —_— BUFFERS FOR
| INTERRUPT |u'O!NT4 cgm:&'ﬁgn OFF BOARD
CONTROLLER EXPANSION
P <Y 11
J 3 &,r g
- === 0 2 r—= I |
{_ WIRE - WRAP | & « | SERIALI/O |
=" AREA | e e | INTERFACE
1 | <
L —— 4 o L -1
w
[7]
=)
- I O 2 Lo 2 2 JJ_'
P4 P3 P2 P1

FIGURE 5-1. TM 990/100M BLOCK DIAGRAM

. R
XTAL 1 ‘ o1 1
QUARTZ 18 12 ANA- 8
crysTaL , R
T _XTAL 2 19 smp 1 | 02 \an—22 | g TMS 9900
" MICROPROCESSOR
TANK 1 (TIM9904) o3 ©3
I 1 cLOCK 8 pP—wWA\——1 28
0.33uH 18 pF DRIVER . R .
TANK 2 , 9 2 Am—=2 25
OSCIN -
17 R =100
4.7KQ 20 13 3 10
Vce [Vop |GND GND
1 2
A0001439 5V +12v

5.4

FIGURE 5-2. CRYSTAL-CONTROLLED OPERATION

CRU input instructions (STCR, TB) sample bits on CRUIN while CRU output instructions (LDCR, SBO,
SBZ) place serial outputs on CRUOUT. CRU instructions also program the TMS 9901 and TMS 9902 as
explained respectively in paragraphs 5.9 and 5.10 (examples are shown in paragraph 4.10).

Other signals are explained in detail in the TMS 9900 Microprocessor Data Manual.

Figures 5-4 and 55 show the data and address flow within the TMS 9900.

Figure 5-6 shows the logic of three instructions that are externally defined. Paragraph 4.6.7 further explains
the coding of these instructions and their interpretation by board logic. These instructions are LREX, RESET,
and IDLE. CKOF and CKON are instructions that can be user defined as explained in paragraph 4.6.7.

RESET AND LOAD (Figure 5-7)
The reset function resets the processor and TMS 9901, inhibiting memory write and the CRU clock. An
interrupt occurs that resets the Status Register and begins execution under the monitor. Reset can occur in
two ways:

° Actuating the RESET pushbutton on the card.

{ Setting PRES.B to a logic ZERO state through connector P1.

The load function causes an interrupt to WP and PC vectors respectively at FFFCi¢ and FFFEqe. It is
implemented two ways:

[Executing the software instruction LREX.
[] Setting RESTART.B to logic zero through connector P1.
For both RESTART.B and PRES.B, 39 uF tantalum electrolyte capacitors may be installed as shown in Figure

5-7 and Figure 7-2 for debouncing external switch generated reset or load interrupts. Installation of the
capacitor on RESTART.B will interfer with microterminal operation.

5-3

~

GOES TO
RESET/LOAD {
LOGIC

CONTROL BUS GOES

TO MEMORY DECODER, 1
MEMORY, EXPANSION
BUFFERS.

FROM SYSTEM CLOCK

CRU I/OJ

FROM TMS 9901 4
INTERRUPT CONTROL
L
-5V
+5V
+12V

A0001440

1
2

I 59
27
26

(MSB) po
TMS 9900 - D1 |
lAaQ D2
D3
HOLD D4
HOLDA D5
READY D6
WAIT D7
WE D8
MEMEN D9
DBIN D10
D11
o1 D12
2 D13v
¢3 D14
04 ‘D15

CRUIN (MSB) A0

CRUOUT
CRUCLK

INTREQ
Ico

Ic1

Ic2

IC3

| VBB

Vce
Vee
Vbbp
Vss

Al
A2
A3
A4
A5
A6
A7
A8
A9

A10 |

At1l

- A12

A13
Al14

FIGURE 5-3. TMS 9900 SIGNALS

54

DATA BUS GOES TO
MEMORY, EXPANSION
BUFFERS

ADDRESS BUS GOES TO
MEMORY AND 1/0 DECODER,
- MEMORY, EXPANSION
BUFFERS, TMS 9901,

TMS 9902, WIRE-WRAP AREA.

iNTREQ 1COIC3
AO—A14
4%
~
16 16
\“}
16 INTERRUPT
REGISTER MEMORY
INSTRUCTION ADDRESS
REGISTER REGISTER
T — /HN'
16 T2
16
CONTROL PROGRAM COUNTER
ROM
WORKSPACE REGISTER STATUS
REGISTER
16
c
0
N o
T
R
0
L ™
< _F 16
AOLD A B
HOLDA
{OAD ALU
WE .
REV:\:’I‘T' CONTROL T
LOGIC
MEMEN 16
DBIN
RESET
1AQ
CRUCLK
J
4
P1—0pa 4 16 16
SHIFT 16 16
COUNTER
SOURCF DATA
REGISTLR
SHIFT REGISTER
J

A0001441

5-5

FIGURE 5-4. TMS 9900 DATA AND ADDRESS FLOW

CRUIN

CRUOUT

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

i

INSTRUCTION
ACQUISITION

INSTRUCTION
EXECUTION

UPDATE PC

LOAD

N

GET RESET VECTOR
(WP AND PC)

FROM LOCATIONO, 2
STORE PREVIOUS PC,
WP, AND ST IN NEW
WORKSPACE. SET

INTERRUPT MASK
(ST12—-ST15) =0

LOAD
ACTIVE?/

\

ACTIVE?

XOP OR BLWP
INSTRUCTION

INTERRUPT?
(INTREQ
ACTIVE)

INTERRUPT
VALID? (ICO—IC3<

GET LOAD VECTOR
(WP AND PC) FROM
LOCATION FFFC¢.
FFFE 6

WP, AND ST IN NEW
WORKSPACE. SET
INTERRUPT MASK
(ST12 - ST15) = 0

STORE PREVIOUS PC,

T12-ST15)

GET INTERRUPT LEVEL
VECTOR (WP AND PC)
STORE PREVIOUS PC,
WP, AND ST IN NEW

WORKSPACE. SET
INTERRUPT MASK (ST12
—ST15) TO LEVEL -1

{

1

IDLE
INSTRUCTION?

A0001443

FIGURE 5-5.

TMS 9900 CPU FLOWCHART

56

LEVELS ON HI OUTPUT

INSTR. A0 A1 A2 AT U20
TO MEMORY AND CRU
1} LREX 1 1 1 Y7
15 RSET 0 1 1 Y3
A - IDLE 0 1 0 Y2
CRUCLK.B'
YO Y7 D—ﬁ—’ INTERNALLY DEFINED
SN74L.S138
A2 Y6 G
15 3 A1 A
TMS 9900 e /l »B u20 vs |
AO0-A14 c prpee
AC vapRST
—_— Y DEFINED
va DLE INTERNALLY DE
G1 G2a gBY2P—— >
CRUCLK i

. A0001444
FIGURE 5-6. EXTERNAL INSTRUCTION DECODE LOGIC ON TMS 9900

5.5 MEMORY |/O DECODER (Figure 5-8)

This area is responsible for decoding the most significant (A, and Ag) bits of the address lines into chip
select lines in order to address either RAM or ROM or an 1/O device (TMS 9901 or TMS 9902). A 745287
decodes address lines Ay, (MSB of a 15-bit address) through As to determine memory address of a 16-bit
word in RAM or ROM. A 745288 decodes A4 to Ag to determine addressing of the TMS 9901, TMS 9902,
outputs at the wire-wrap area, or external CRU. Signal MEMEN (memory enable) determines whether
memory or an |/O device is being addressed.

Jumper J2 reflects whether the EPROM’s in positions U42, U43, U44, and U45 are TMS 2708's or
TMS 2716’s, and changes the address map accordingly. See section 7.6.

SEL1, SEL2, SEL3, SEL4, and SELS5 are five signals routed to the wire wrap area on the TM 990/100M.
These signals are intended to be utilized as 1/O device select lines. All lines are decoded for 32 consecutive
CRU bits.

Table 5-1 lists the CRU bit address from which the lines are active.

5.6 RANDOM ACCESS MEMORY (Figure 5-9)

Four TMS 4042-2 chips, each consisting of 256 x 4 bits, comprise the random access memory. The standard
TM 990/100M is populated with 256 words of RAM (four TMS 4042-2’s). An optional four-chip block can
be added to increase on-board RAM to 512 16-bit words. Figure 5-9 shows the RAM array.

5.7 READ ONLY MEMORY (Figure 5-10)

Blocks of TMS 2708 EPROM chips, each consisting of 1024 x 8 bits, comprise the eraseable read only
memory (EPROM). A block of two TMS 2708 chips, containing 1024 words, comes with the
TM 990/100M. An optional second block can be added to increase EPROM to 2048 16-bit words. Figure
5-10 shows the EPROM array. Jumper options at J3 and J4 select whether the EPROM’s are TMS 2708’s or
TMS 2716's. See section 7.6.

5-7

74L504 7418132 JaLs08 74LS08
RESET SW. _i@o——bo—1
41504 15V Q J)
CLR
Lo Q o a o CLR

74L8132 74LS874 74L874 74L874

2b—

|
RSET

op —pcLk . ap— oLk , 0 (HLOAD

i i
]

LREX pCL
P

TBILE 74L8132

K
IDLE +5"~I T
)

1AQ > o +5V

P
1/0
(TMS 9901)

' 39uF I 741504 b CLR ¢ b CtR | 1omes
| ELECTROLYTIC | _| TO OFF BOARD
|_T J - 74LS74 741574 /o
_— bcLk - ap beLk @ po—QRST
P TO ON BOARD
03 ?

74L808

l 15V —g
ELECTROLYTI R & fk
Tic | MEMEN PR PR __l PR

D al— D Q — o Q

—
- - 741874 741574 741574

#3 _
cK Qb cK al— | ¢ a
CLR r CLR e

& T

WAIT) T
l MEMCYC

+5V

FROM PROCESSOR
CIRCUIT

FIGURE 5-7. RESET AND LOAD LOGIC

NOTE
EPROM expansion to 4K is possible by using TMS 2716
EPROM'’s (2K x 8 bits) and making jumper changes. This
is discussed in Section 7, Options.

5.8 OFFBOARD EXPANSION BUFFERS (Figures 5-11 and 5-12)

Offboard expansion is possible by tapping signals at the P1 connector. The signals are buffered to drive
board-to-board lines (Section 6, Applications, contains examples of memory and 1/0 expansion off board).
Figures 511 and 512 show logic buffering the signals to connector P1. Table H1 in Appendix H lists

connector P1 pins and signals at these pins.

5.9 TMS 9901, PARALLEL 1/0, INTERRUPTS (Figure 5-13)
The TMS 9901 controls:

° 16-bit (maximum) parallel input and output
° Interrupt signals to the TMS 9900 CPU

5-8

DBIN

) DIN
+5V ‘
74LS20 +5V +5V
47K 745287 [
R2 B e R ZR
I 18 | — 12 RAM 4.7K 47K
-—< MSEL - 5 CSs2 DO1
! =
i;;:,__<n_< 2e ADH ooz M- S MROM L
! MEMEN 10 EROM
< ! 1aoc D03 - .-
A0 2 9 10SEL
ADF DO4 L 4
- Al 3 1 aDE
A2
4 laop
A3
?_{apc
A4 6
ADB
A5 5
ADA
745288
15 1 9901SEL
cs
2
L 9902SEL
A6 13 3 EXTCRU
L 2 ADD —
4 SEL1
A7 12 1 ADC —
8 5 SEL2
A 11 laDB 6 SEL3
A9 SELA
L PR 7 SEL4
9 SELB
A6
74LS04
BYTE BEING
—_— OUTPUTS ON
MSEL ADDRESSED MEMEN
RAM MROM EROM 10SEL
(HEX)
1 0-FFF 0 1 0 1 0
1 1000-1FFF 0 1 1 0 0
0 0-7FF 0 1 0 1 0
0 800-FFF 0 1 1 0 0
NA ZFC00 0 0 1 1 0
NA NA 1 1 1 1 1
NOTES : 1. Memory mapping is shown in Figure 7-2.

2. The address bus contains 15 lines with AQ (MSB) = 16,384 (214).

FIGURE 5-8. MEMORY 1/0 DECODER

5-9

TABLE 5-1. CRU ADDRESS MAP

CRU SOFTWARE |[CRU HARDWARE LINE
BASE ADDRESS, BASE ADDRESS SELECTED FUNCTION
R12, BITS R12, BITS AT U23
0-15 314
0000-003E 0000-001F SEL1 On-card expansion
0040-007E 0020-003F SEL2 On-card expansion
0080-00BE 0040-005F 9902SEL On-card serial interface, timer (TMS 9902)
00CO-00FE 0060-007F SEL3 On-card expansion
0100-013E 0080-009F 9901SEL On-card parallel interface (TMS 9901)
0140-017E 00AO0-00BF SEL4 On-card expansion
0180-01BE 00CO0-00DF SEL5 On-card expansion
01CO-0O1FE OOEO-OOFF N/A Reserved, on-card expansion
0200-1FFE 0100-0OFFF N/A Off-card CRU lines
RAM 15 4 A4 RAM 15| 4 A4 RAM 15 4 A4 RAM 15 4 A4
(a0 313) A6 10 3a13) (a6 10 3 A13 (A6 10 3a13)
DBIN 9 2 A12 A D 2 A12 DBIN 9 212 | f DBIN 9 2a12 |
r—— a r—— N —— — k p— —
E 16 1 AN WE 16 1 AN E 16 1 A1 WE 16| 1 AN
™ o n 17_A10 " o n 17_A10 D7 1 17 a10 ™ ba 1 17_A10 A
D14 12 5 A9 ("p10 12 5 A9 D6 12 5 A9 D2 12 s a0 |
D13 13 6 A8 D9 13 6 A8 D5 13 6 A8 D1 13 6 A8 R
RAM (012 14 7 A7 D8 14 7 a7 | D4 14 7 A7 [oo 1a 7 A7 i
28 TMS4042:2 TMS4042:2 TMS4042:2 TMS4042.2
WE
A6 DO-D15
DBIN A7-A14
TMS4042-2 TMS4042-2 TMS4042-2 TMS4042-2
_D12 14 747 | lLD8 14 7A7 | D4 14 7 A7 DO 14 7 A7
\.D13 13 6 A8 | _D9 13 6 A8 | D5 13 6 A8 l_D1 13 6 A8 |
_D14 12 5 A9 | D10 12 5 A9 y D6 12| 5 A9 D2 12 5 A9
_D15 11 17 A0 | tm n 17 A0 | D7 1 17 A10 b3 1 17 A10
___WE 16 1A WE 16 1A WE 16 1An ___WE 16 1A
| DBIN 9 2 A12 { __DBIN o 2 A2 | DBIN 9 2 A2 | | _DBIN 9 2 A12
l___A6 10 3A13 | A6 10 3 A13 A6 10 3 A3) |l A6 10 3 A13
__RAM 15 4 A4 J __RAM 15 4 A8) __RAM 15 a4 A4) __RAM 15 4 A4
A0001447

FIGURE 5-9. RANDOM ACCESS MEMORY

5-10

VOLTAGE| PIN
Vee 24
Vgg 21
Vpp 19
Vss 12

fpran ¢ pa?
1
™S)b 20—, BV 2
2716 :-———< “4"3 ;:5 TMS 2708 T™s 2716 el 72’3 ’)‘ TMS 2708
P) 3 -
< 5 - :: : :: Y ’;]%: 20 8 A4
l 18 7 A3
‘_—-ﬁ __ﬁ
‘_[D15 9 6 A2 D15 9 6 A2
= / = ————\
(D14 10 5 AN (p1a] |10 5 A1
[a0)
o13] | 11 ;MS 2708/ | & A10) (o13] [11 | T™Ms2708/ [& at0
——
(o12| | 13 MS2716 [5 a9) (D12| [13 | TMS2716 | ;3 Lo
o)
D11 14 2 A8 | o11| |14 2 A8
)
b10| |15 1 A7) 10| [1s 1 A7
P
£ 16 23 A6 | (DS 16 23 A6
——
Ao £ 17 22 as) b8 17 22 As
r Y o)
EROM
\ 00 17 2 A5 | D0 17 2 A5
\D1 16. 23 A6 | D1 16 23 A6/
| D2 15 1 A7 | D2 15 1 A7
e3 14 2 A8 | D3 14 2 A8 |
| D4 13 | TMS 2708/ 3 A9 | D4 13 | TMS 2708/ 3 A9
| D5 1 | TMS 2716 4 A0 D5 11 | TMS2716 a4 A0
\ D6 10 5 A11 FDS 10 5 A1
\D7 9 6 A12 \ D7 9 6 A12
18 7 A3 18 7 A3
0001448 20 8 A4 20 8 A4

FIGURE 5-10. READ ONLY MEMORY

TMS 9901 transmission to and from memory is handled by CRU instructions. Data to be transmitted in
parallel is received serially by the TMS 9901. Parallel received data is input to memory serially. Program-

ming the TMS 9901 for 1/0 is explained in paragraph 8.6.

Interrupts received by the TMS 9901 are coded and sent via signals ICO to IC3 to the CPU when signal
INTREQ (interrupt request) goes low.

Figure 5-13 shows signal flow to and from the TMS 9901. Further information can be obtained from the
TMS 9901 data manual and paragraphs 8.4.1 and 8.6.

511

75140

1 DF READY
17 01 p
74Ls04

7 HOLD
12 02 p—
74LS04
8
IREF —————+5V
WE 41504
7438 _
WE [|
| | WE.B _
HOLDA 4LSo04 HOLDAT i 1 » P1-78
| |
MEMEN [|
i | MEMEN.B
; | — P1-80
MEMEN 41504 I '
MEMCYC |, |
1 | MEMCYC.B
| 0 » P1-84
74L504 _] |
DBIN \ DBIN | |
| DBIN.B
/ : ' > P1-82
+5V
L———_-J
7K
»?/ZwsZ 7438
IORES |
| | IORES.B
I i » P1-88
| |
* Vief =2V L l oL
) HOLDA.B
: : » P1-86
| I
CRUCLKB 1, |
2 1 | CRUCLK.B
| » P1-87
|
A0001449 | I |

FIGURE 5-11. BUFFERING OF CONTROL SIGNALS TO CONNECTOR P1

5-12

€L-g

DO 11 | 74Ls243 3 D0.B A0 1 7418243 |3 A0.B
18 1A 1B 1A
D1 10 a D1.B
28 - Al 10 {8 28 fA—ALE
D2 9 5 D2.B
3B 3A = e EL 3a PP——A28
A
D3 8 lis anf8— D3B 3 2 an 18 A3.B
BIN 1] +5V 1]
———9¢——dGAB ———9¢——GaB
DOUT 3] en 13 | on
D4 1 7418243 |3 D4.B A4 11 74L8243 |5 A4.B
1B 1A 18 1A
D5 10 a D5.B A5 10)
28 2A 2B 2 P2 ALE CRUOUT ats701
D6 9 D6. Al 2
3B a2 D68 5 9 138 3a |2 AG.B a1 v P 8
D7 8 . a
4B an 6 D7.B A7 8 4B 4A 6 A7.B _ 1A2 1v2 16 _
14_ 1 - é1 17 3 »1.B
GAB +——dGaB 1A3 1v3
1 13 >3 3.
3 leBa GBA o3 504 v w38
CLK 13l A & CLK
HOLDA 1AQ 1 9 1AQ
—2a2 w2 p————
D8 11 7415243 |3 D8.B A8 1 7415243 |3 AS.B , CRUIN 16 / 4 CRUIN.B
1B 1 1B A p— 20 |
D9 10 4 D9.B A9 10 a A9.B N—
28 A p—— 2B 28— RIS +5V 136
D10 i ' A10 9 5 A10.B R
I 3 j>— DI0B 3B 3A EXTCRU_ 1 J.5
D11 8 6 D11.B A11 . Emme—
a8 mp—_ 8 lis an |8 A11.B
1 |- 1 |-
—aGAB GAB
13 13
GBA GBA
D12 11 74LS243 3 D12.B 741.S243
5 o A12 (L SE A12.B
D13 10 |o L D13.B A13 10 |,g a2 A13.B
D14 9 5 D14.8B
a8 3A Al4 9 lag aa I8 A14.B
D15 8 6 D15.8 8
a8 4A 8 an [A15.B
1 p—
e easzi +5V L
3 lcea 12 Jcea
A0001451

FIGURE 5-12. BUFFERING OF ADDRESS AND DATA SIGNALS TO CONNECTOR P1

+5V

ALL 4.7K¢
. TMS9901 J——
P —_— +5V
INTREG "1 |iRTREG TRE L INT? P1-16
TN INT2
Ico 13 ico iNT2 2 P113
IC1 —_— INT3 4.7K
14 Ic1 iNT3 |2 INT3 P1-15 ___(
— EXT.1
12 3 lic2 i INT4 e
e J1 9902
Ic3 — —1
2 lics NTS | INTS - P1-17 X
— L—————P4-3
TORST — R
L = iINTE |2 INT6 . P1-20
= 10 |- _ 34 L P4-7 2
2 Py INT7/P15 o P16 5 8
CRUIN a S 33 P4-40 |E 2
CRUIN INT8/P14 * P1-5 s |a
| SR o=
CRUOUT 2 —e 32 =
CRUOUT INT9/P13 - P18 w
CRUCLKB 3 — 31 L——'P4'35
CRUCLK INT10/P12 - P17
9901SEL 5 |— S 30 , L———-—P4-34
CE INTT1/P11 ‘[P1-10
A10 39 | —_— 29 P4-32
se INT12/P10 - P19
Al 36 | e 28 _L— :;1-?2
A2 35 S — 27 L———"“’s
S2 INT14/P8 9 P1-11
A13 25 — 23 L———M-zcs
INT15/P7 - Pi-14
Al4 24 19 L——P4-24
sa P& Pa-12
+5V 40 20
—Vce PS5 P4-10
16 ' 21
GND P4 P4-18
—I:_ p3 122 P4-16
P2 | P4-14
p1 [P4-22
38
PO * P4-20
% § ALL 4.7KQ
A0001450

+5V

FIGURE 5-13. TMS 9901 EXTERNAL LOGIC

5-14

5.10 TMS 9902, SERIAL I/O INTERFACE (Figure 5-14)

5.1

5.12

5.13

The TMS 9902 controls serial /O for the TM 990/100M. Through CRU instructions the user can set:

° Control criteria such as parity and character iength
° Interval timer rate

° Receive data rate

° Transmit data rate

Data is transmitted and received through the CRUOQUT and CRUIN lines. The TMS 9902 can interface with
a terminal through the EIA connector, P2. An interfacing of level shifters is used to allow hookup to a
Texas Instruments 743 KSR, teletypewriter, or other RS-232-C terminal. See Figure 5-14.

When operating under the monitor (supplied with assembly 999211-0001 only), the TMS 9902 is used to
control communication by monitoring signals at the CRU. Signals used for communications purposes also
cause an interrupt level 4 at the TMS 9901. Because of this, jumper J1 must be removed when using the
TIBUG monitor to prevent the internal interrupt from incumbering monitoring operation. This interrupt is
described in detail in paragraph 6.6. Further information is available from the TMS 9902 data manual.

SERIAL 1/0O INTERFACE (Figure 5-15)

This area provides an interface between the TMS 9902 and a 743 KSR, teletypewriter, or RS-232-C
terminal. The board comes jumpered for 743 KSR operation (jumper J11 disconnected). Section 7
(Options) contains a description of accommodating optional terminals. J11 is installed if the terminal used
is a teletypewriter. Jumper J7 must be in the EIA position to use an EIA terminal or a teletypewriter
with the TM 990/100M. Jumper locations are shown in Figure 7-2.

WIRE-WRAP AREA (Figure 5-16)

A wire-wrap area has been provided for adding additional devices such as TMS 9901's or TMS 9902’s. On
the periphery of the wire-wrap area are pads containing voltages and signals as shown in Figure 5-16.

Spare pins from the 40-pin board edge connectors P3 and P4 are routed to an array of plated through holes
near the bottom of each connector. This facilitates interconnection of these spare pins with circuitry added
in the wire-wrap area.

The wire-wrap area consists of an array of .046 inch diameter holes spaced on 0.1 inch centers. It is
suggested that networks placed in this area be mounted in sockets with wire-wrap tails. Interconnections are
thus facilitated in wire-wrap. Two 16-pin DIP socket locations are dedicated for connection to power and
miscellaneous CRU control signal. See Figure 5-16.

MULTIDROP 1/0 INTERFACE (Figure 5-17)

The Multidrop interface may be used for board-to-board communication over long distances. Generally, all
that is required is a twisted pair line run between the boards. More than two boards may be linked together,
each one is just “dropped’ into place, hence the term ‘“multidrop”. If more than two boards are used, the
boards not at the extreme ends of the twisted pair line (i.e., those ““dropped in the middle’’) are considered
non-terminating boards, and the termination resistor jumper plugs should be removed to prevent standing
wave patterns which might occur, mostly at the higher baud rates. The two boards at the extremes of the

5-15

line, regardless of whether additional boards exist in between, should have these resistor jumper plugs
installed (J9—J12). Jumpers to be installed for the multidrop operation are listed below:

INSTALL REMOVE
Half Duplex, non-terminating J5, Jg, J7 (MD) J6, J9—-J12
Full Duplex, non-terminating J7 (MD) J5, J6, J8—J12
Half Duplex, terminating board J7 (MD), J5, J6, J8—J10, J12 J11
Full Duplex, terminating board J7 (MD), Je, J9, J10, J12 J11, J5, J8
+5V
TMS9902/03
— |1 TO INT4 ON 9901 . 75188
A14 12 sa NT
A13 13 2 XOuT
s3 XOUT]
A12 14 —— |5 RTS
T s2 RTS RTS T 9-
15 —
» s1 cTs o 75188
A10 L P psk |] RS232 XMT
17 3 P2-3
CRUCLK RIN ‘
> 8 _lcruout
R .
> = CRUIN 75188
> v oo . P28
+5V 20
Vce
[——Q—GND 75189
DTR
— lr P2-20
|
|
NOTE | 75189
TMS 9902/9903 PIN | RS232RIN RS232 RCV P2.2
NUMBERS REFER TO I l
SOCKET PIN NUMBERS I :————<
OF UA40. I L___ B
| ———'5.>- -=7
| MD JI
! el PWRIN 75189
1
TMS9903 RECV CLK
(ONLY) SCR- ——————< P2-17
ScT10
75189
A0001452 XMT CLK
P2-15

FIGURE 5-14. TMS 9902 EXTERNAL LOGIC

5-16

TO TMS 9902/9803

-12Vv R30*

TTY XMT RTN
AN

> p2-24
T OUTPUSH
33KQ
(XOUT 75188 . Q1 1y xmr
> p2.25
AN\ 2N2905A OUTPULL
+5V 3.3KQ) +12V
CR1 33KQ crs
P25
75188 =
- - P26
RS232 XMT
— p2.3
75188
RTS DCD
—_— > p2.8
< 75189
DSR DTR
> p2.20
75189
RECV CLK
> P2-17
75189
XMT CLK
> P2-15
75189
RS232 RCV
RIN » > P2-2
~ / INPULL
PR, g
JUMPER J11 e
P TTY RCV
| g o » P2.18
R31* 27K, 1/2W
INPUSH
+12V
*On 11-0001 only.
On assembly 999211-0001 only. o P2.23
R32* {3309, 1/2wW
A0001453

-12Vv

FIGURE 5-15. SERIAL 1/O INTERFACE

5-17

00000000

DETAIL A

cau | 0J0101010X0X0X0,

ADDR. CRU ADDRESS' -
SEL (R12,BITS3-14) 5 I3
— & DETAIL B
SEL1 00001¢ -_—
S e OO00O0O0O0O0O0
SEL3 00601
—_— 12 = - o~ ™ < 0 b4
SELA 00A016 g 3 2 ‘; l: ld IE" 3
Ty 7]
SEL5 00C01¢ e 2 ° @ lo fe 2
(3] 3]

A0001454

FIGURE 5-16. SIGNALS AT WIRE-WRAP AREA

518

uT 5l OUTPULL
X0 2A 2z T
p— OUTPUSH
RTS "|>:1° RTS 4 ,¢ 2y -—
74L.80aN VU21
1A R25
NC uaz 27K %W
1B —AMA—— +5V
+5V Veet r—
b ¢ 0o R24
J9 Q, %W
28 BRRA
-5V MWvee- =
13 —ANVWW—— —
31c 1Y v
P GND 1z P2 r— 27&?:;.w
i N e
K. = 75112 = J6
r — A R22
R28 L 3 3302
3300, %W 912 %W
rinr
5| || |8
B [}
a4
DUPLEX SELECTORS
= R26, 33092, %W
INPUSH ’ 4 oA v |4 PWRIN
INPULL - o—218
N —8log 2v |9
CR2 5
IN5333 16 3 o Ne
CR3 6] S | 10
IN5333 =
+5V 14 Veet
= -5V 3lvee—
11,
| 2A
71 GND
L uas
75107

FIGURE 5-17. MULTI-DROP INTERFACE

5-19

6.1

6.2

6.3

6.4

6.5

6.6

SECTION 6

APPLICATIONS
GENERAL

This section covers various methods of communicating to applications external to the TM 990/100M.
Figure 6-1 shows board locations applicable to this section.

A wirewrap area has been provided for wiring devices on board. This area, shown in detail in Figure 6-2
contains signal input and output pins located on its periphery. Table 6-1 lists the signatures of the pins.
Note that a spare 40-pin connector (P3) is available adjacent to the wirewrap area.

WIRE-WRAP ADDITIONAL ON-CARD TMS 9901

An additional TMS 9901 may be added for an external application. Figure 6-3 shows wire-wrap wiring to
add a TMS 9901 1/0 controller and associated resistor packs. Sockets with wire-wrap tails are inserted into
the board to accommodate the devices and wiring.

Signals and power available at the wire-wrap area are shown in Figure 6-2. The use of SEL1 to the 74LS00
designates a CRU address of 0000, ¢ (bits 3 to 14 of R12).

PARALLEL I/0O PORT CIRCUITRY

Figure 6-4 shows a parallel 1/O port that can be implemented in the wire-wrap area. Wire-wrap area signals
are available as shown in Figure 6-2. This port consists of eight input and eight output lines. These 16 lines
are interfaced to connector P3, pins 1 to 16.

OFF-CARD ADDITIONAL RANDOM ACCESS MEMORY

Figure 6-5 shows suggested wiring for adding up to 1K words of RAM off-board in 256-word increments.
Table 6-2 is a list of materials for this addition.

ADD OFF-CARD TMS 9901

Figure 6-6 shows circuitry, connected through connector P1, for connecting an additional TMS 9901 off
the card. The CRU hardware address for the TMS 9901 in this configuration is FFO1g (R12, bits 3 to 14).

ON-BOARD COMMUNICATIONS INTERRUPT

The TMS 9902 will issue a level 4 interrupt when programmed as in paragraph 4.9. Positioning jumper J1
(shown in Figure 6-1) to the “9902" position connectors the interrupt output of the TMS 9902 to
interrupt level 4. This allows interrupt operation of the TMS 9902.

NOTE
As shown in Figure 6-7, the TMS 9902 timer as well as
three other conditions cause an interrupt to be generated
(INT) which can be routed to interrupt 4 of the
TMS 9901. Because these signals are monitored through
the CRU by the T/BUG monitor to facilitate 1/0 and
other functions, the jumper at J1 must be in the
"P1-18" position when operating under the monitor.

6-1

TMS 9901 PARALLEL SYSTEM INTERFACE

ASYNCHRONOUS

COMMUNICATION CONTROLLER

TMS 9900 MICROPROCESSOR

WIRE WRAP AREA

TIBUG operates the serial interface under polled con-
trol. If the TMS 9902 was to initiate interrupts to the
TMS 9900 microprocessor, incorrect 7/BUG operation
would result.

6-2

J1 ROUTES TMS 9901 INT4 TO CONNECTOR P1-18 OR TO TMS 9902.

FIGURE 6-1. DEVICES USED IN VARIOUS APPLICATIONS

TABLE 6-1. 1/OPINS AT WIREWRAP AREA

SIGNAL DEFINITION
A10to A14 Five LSB's of address bus
CRUCLKB CRU clock input
CRUIN Serial data to CRU
CRUOUT Serial data from CRU
IORST 1/0 Reset
SEL1 CRU address* is 0000, ¢
SEL2 CRU address* is 0020, ¢
SEL3 CRU address* is 0060 ¢
SEL4 CRU address* is 00A0; ¢
SELS CRU address* is 00C0; ¢
&3 Clock 03
+5V +5 volt supply
—12V —12 volt supply
+12V +12 volt supply
-5V —5 volt supply

*CRU hardware base address (bits 3 to 14 of R12)

A0001454

DETAIL A

50 HOLES

O

CRU ADDRESS °
(R12,BITS 3-14) b

00001¢
00204¢
00601¢
00A01¢
00C01¢

7]
w
«c
e

OO

- ~
- - -
< < < <

-
2
o
2
o«
3]

SEL2
SEL3

|

SEL1

0O

0000

O

12

O

DETAIL B

SEL5 O CRUI
CRUCLK O

<
-
w
7]

FIGURE 6-2. SIGNALS AT WIRE-WRAP AREA

+5V

P4a-20

P4-22

P4-40,P1-6

P4-38,P15

P4-36, P1-8

Pa-34,P1-7

P4-32,P1-10

P4-30,P1-9

P4-28, P1-12

P4-26,P1-11

P4-14

P4-24, P1-14

P4-16

P4-18

P4.10

Pa-12

4.7K,1/4W | RESISTOR PACK 47K 0. 1/4W ‘ RESISTOR PACK
| I
| |
| < |
L= === === =] = —|d
+5V
TMS 9901
IORST —_—
RST 1 Vee
CRUOUT so A0
——— cruour b
CRUCLK
————— crucLk Po o]
CRUIN CRUIN P o
SEL 1 & st A1l
N A2
INT6 s2
INTS P15 -0
INTa P14 o
INT3 P13 -0
C ER— ; P12 - o
INTREQ P11 —0
1c3 P10 e
NO
CONNECTION| |!C2 P9 0
Ic1 P8 o
Ico P2 -0
L' . -
= A4
INT1 s4
INT2 _ P7 o
P P3]
PS5 P4 0
—0
o
NOTES: 1. ALL LINE SIGNALS SHOWN ARE AVAILABLE AT THE 16-PIN DIP HOLE PATTERNS ON THE EDGE OF THE

A0001455

WIRE-WRAP AREA.

2. 1/O PORTS P7 TO P15 CONNECT TO PINS AT CONNECTOR P1 (P1-5 TO P1-12 AND -14).

FIGURE 6-3. ON-BOARD TMS 9901 WIRING

PADS AT
EDGE
CONNECTOR

7415259

A12 4
c Qo
A13 : 8 a1 k8
A4 6
741504 CRUOUT A oz
SEL 1 74LS00 13 o a3 _7__—
CRUCLK s as >
10
16 Vce Q5 |
— "cLear as |1
8 lono a7 P2
74LS00
+5V ‘
74LS251
AN 0
A12 c o |4
A13 10 5
74L.S00 B D1 }-————-——-
‘ A4 1 6
B ——— - D2 b———m™™
SEL 1 CRUIN § 7
—_—1Y p3 b——
7
s pa |2
74LS00
IORES | +5V PN 1®vee ps |2
1
+5V ‘ D6
8 leno o7 |2
LIST OF MATERIALS —
arty PART =
2 16 - PIN DIP SOCKETS AND WIRE - WRAP PINS
2 14 - PIN DIP SOCKET AND WIRE - WRAP PINS
1 74LS00
1 74LS259
1 74LS04
1 74LS251
1 74LS10

A0001456

FIGURE 6-4. PARALLEL 1/0 PORT

6-5

74L520

TO CE1 ON ADDITIONAL
256 X 16 MEMORY BLOCKS

| 1/2 7415155
14 12
READY s|so 3 17 J) 1 26 2y3
15 "
[P P L_J 2c 2v2
| “—o) a 13) A v 10
74Ls241 741574 741874 3]lg 9
91-8|22 2 — | 2vo T0
i 26 c — POINT
| CLR CLR
| 1 19
GNp! 1 POWER GND 5V 1
GNp| 2 SIGNAL GND
+5V I‘ ﬁ Ml el v
s la ala|ala I——»
HEIEEEBEREE,
clo e e HE
oﬂnlz‘ 3 1 I TO
=3
WEB |55 W | 7es2as g0 [J 28838EIEE POINT
DBINB | g2 5 9 g
MEMEN.B | 80 6 8
_ xy PR EEE RS
| GAB ___ GBA L << L <<
74L810 NEIEIEHMEBEE:
| g2l
D15.8 | 48 3 1"
D14.8 |47 4 74Ls243 |10)
013.8 |46 5 9 —
D128 las 6 8 J]
| GAB GBA 7=
| 1L Lm 741504 HERE L
0118 las 3 n clefelzlelole] g
010.8 |43 s | 741s243 |10 8883 IY
o 832
D9.B |42 5 9)
)
D8.8 |41 6 8 J 3
pram— <
! B cea $I¥TI 28X
I "l 13 BREENERRED
07.8 |40 3 1 ;:22—55.’_
- 2z 2
D6.8 | 39 4 7a1s243 |10 ‘| <
D5.8 |38 5 9 }__
D48 |3 6 [} J
| GAB GBA
1 13
' . HEEE q
038 |% 2 u ol ool sl o of 0| 2
028 |3 4 7415243 | 10) SEISERER
D18 |34 5 9 T ~| S S zOlIS
00.8 |33 6 8 J 9
| GAB GBA B
]
| 1] 13 IR R R R EER
I | M| N - : w|le|~
NEEIEMEER
A148 |71 2 18 <« Uafzlefs=
A13.8 |70 a 7aLs241 |16 —
A12.B lgg 6 14
A118 lgg 8 12 R
A10.B |g; 1 9 1 J
298 g 13 7 8l5|8(8
488 les 15 5 clejelzlelalele—0
| G 26) §333IESIE|3
~ S I =SS 0 jo
| 1] 19 ! N
a78 lga 2 18 g
AGE g3 ‘ 18 $332332%%
k!
A5.8 |62 6 7415241 [14 Tel=[=Ts[=[<] =
A48 |61 8 12 nlaolaolef |slele
U=zl s 9=
a38 lgo 1 9
A28 |59 13 7 A0
A18 |ss 15 5 Al
A0B |57 17 3 A2 —»
| G 26 A3
. 741520
| 1 19
|1 ™

A0001457

FIGURE 6-5. OFF-BOARD EXPANSION OF RAM

6-6

TO ADDITIONAL
256 X 16 BLOCKS

TO CE2 ON ADDTIONAL
THREE 256 X 16 BLOCKS

TABLE 6-2. LIST OF MATERIALS FOR ADDING RAM

QUANTITY PART
7 14-pin DIP Socket*
1 16-pin DIP Socket*
4 per 256 words 18-pin DIP Socket*
3 20-pin DIP Socket*
4 per 256 words TMS 4042-2
1 74LS155
1 74LS20
1 74L.S74
1 74LS04
4 74LS243
3 7415241
1 74LS10
*And wire-wrap pins as required
| 7415367
29 |__CRUIN |
30 |_CRUOUT !
47 1 CRUCLKB | AD.}
’—._
a8 iorst |
2 3B | TMS9901 ;l
80 | MEMEN3 | ;_2l ce |2
| | 2G iG 3 4
| : Yasra po |38
- 10 e, 137
T sy | 39 26
R B A— S0 [-
; 1 GND ! 36 s1 P3 22
s , eno | 35|, s |22
E | | 7415367 _ Bls ps |20
§ 60 |— A3 ! 241 sa pe 12
R — | EI IV e |23
8 62 | A5 ! 181 6no rg |27
S 63 —A26 ! po |28
a A7 ! 741530 29
‘é 64 | P10
65 28 ! P11 |30
| | 162G P12 |31
| | __I—L P13 |32
| l p1a {33
| ! 7415367 P15 |34 _
66 22 |
67 1___A10 |
I
68 | Al |
A12 |
69 F
70 A1 !
o —t !
| | s z‘f
l I to +5 volts
| I
|
LIST OF MATERIALS
ary
1 14 PIN DIP SOCKET*
4 16 - PIN DIP SOCKET*
1 40 - PIN DIP SOCKET
3 7415367
1 741504
1 741530
1 T™S 9901
* AND WIRE - WRAP PINS AS REQUIRED
A0001458

FIGURE 6-6. CIRCUITRY TO ADD TMS 9901 OFF-BOARD

6-7

INTERRUPT s

CAUSING au
CONDITION i
DSCH ‘
DATA SET CHANGE scene | f DSCINT "
D ___j
RBRL
RECEIVE BUFFER \ RBINT)
LOADED, ENABLED RIENB ‘ } 9
XBRE —\ |
TRANSMIT BUFFER . XBINT ;
EMPTY XIENB ‘ }
TIMELP ‘
TIMINT
TIMER ELAPSED TIMENE | B
INT TO INT4 AT
K 9901
(J1 OPTION)

A0001459

FIGURE 6-7. FOUR INTERRUPT-CAUSING CONDITIONS AT TMS 9902

6-8

7.1

7.2

7.2.1

SECTION 7

OPTIONS

GENERAL
This section explains the various options available to the user of the TM 990/100M. These options include:

. Use of TMS 2716 EPROM'’s (2K x 8 bits each) instead of TMS 2708 EPROM’s (1K x 8
bits each) (paragraph 7.2).

o On-card expansion of EPROM and RAM (paragraph 7.2)
° Asynchronous serial interrupt from TMS 9902 (paragraph 7.3).
® RS-232-C or teletypewriter interface (paragraph 7.4). Teletypewriter interface is with

assembly 999211-0001 only.

° Microterminal use (paragraph 7.8).

o External switch actuation of a RESET or RESTART signal (paragraph 7.5).

® Memory chip and CRU device selected by bit masks in PROM's (paragraph 7.6).
° Assembler in EPROM (paragraph 7.7).

Figures 7-1 and 7-2 show board locations application to this section. Table 7-1 is a summary of jumpers and
capacitors used with these options.

ON-BOARD MEMORY EXPANSION (Figure 7-2)
EPROM EXPANSION

EPROM memory can be expanded on-board in two ways (all expansion memory is provided on assembly
999211-0003):

° Add two TMS 2708 EPROM chips (1K x 8 bits each) to provide an additional 1K words
of memory.

L Use two or four TMS 2716 EPROM chips (2K x 8 bits each) to provide 2K or 4K words
of memory.

Figure 7-3 shows placement of EPROM chips and corresponding memory addresses (in bytes). The board
silkscreen designators identify the necessary jumper placement at J2, J3, and J4.

NOTE
Models 999211-1 and -2 come from the factory with 2
TMS 2708's which are installed in sockets at U42 and
U44. Jumper J2 is installed in the “2708" position and
Jumpers J3 and J4 in the “08" position. This
configuration will allow up to four2708’s to be used in
U42 to U45.

SECONDARY EPROM'’s
MA 100016 TO 1FFF4¢ (2716's)

]

PRIMARY EPROM'’s

- MA 0000,4¢ TO 07FF4¢ (2708's)
MA 00004 TO OFFF 46 (2716')

PRIMARY RAM
FOUR 4042-2's
MA FE00;g TO FFFFg

—— SECONDARY RAM
FOUR 4042-2's
MA FC004g TO FDFFqg

FIGURE 7-1. MEMORY PLACEMENT ON BOARD

7-2

J13

MICROTERMINAL
J14 USE
J15

SPARE JUMPERS
J16, 417, J18

J12 MULTIDROP INTERFACE
J11 (1/O INTERFACE TYPE)

s8 UmMuLTIDROP
36 (NTERFACE

J5

J7 (EIA MULTIDROP
SELECT)

Ja
TMS 2708/16
J2 % EpROM

SELECT
J3

C6 (OPTIONAL;
DEBOUNCE PRES. B)

C5 (OPTIONAL; DEBOUNCE RESTART)

FIGURE 7-2. JUMPERS AND CAPACITORS USED FOR OPTION SELECTION

7.2.2

7.3

74

To utilize TMS 2716 EPROM'’s J2 must be positioned to
2716" and J3 and J4 to the 16" position.

EPROM types may not be mixed. That is, TMS 2716
“may not be populated in U42 and U44 while
TMS 2708's are populated in U43 and U45.

RAM EXPANSION

Four additional TMS 4042-2 RAM chips can be added as shown in Figure 7-3. This will provide an addi-
tional 256 words, 512 bytes of RAM. All expansion memory is provided on assembly 999211-0003.

ASYNCHRONOUS SERIAL COMMUNICATION

An internal interrupt to interrupt trap 4 can be selected through programming considerations described in
paragraph 8.4. This interrupt will signal changes in data set status and the current contents of the

TABLE 7-1. JUMPERS AND CAPACITORS USED WITH OPTIONS

OPTION JUMPERS/CAPACITORS PARAGRAPH
TMS 9902 INT to Interrupt 4 J1 (as shown on board) 7.10
P1-18 to interrupt 4 J1 (as shown on board)* 7.10
Use TMS 2708 EPROM's J2, J3, J4 (as shown on board) * 7.21
Use TMS 2716 EPROM's J2, J3, J4 (as shown on board) 7.21
20 mA Interface Use J11 (installed) 7.4
RS-232-C Interface Use J11 (disconnected) * 7.4
Microterminal Power J13,J14, J15 (installed) 7.8
External RESTART signal C5 (installed) 7.5
External PRES.B signal C6 (installed) 7.5
Multidrop Interface J5, J6, 48, J9, J10, J12
L ElIA/Multidrop Select J7

*Configuration when shipped from factory

TMS 9902 transmit buffer or receive buffer. Further information is presented in the TMS 9902
Asynchronous Communication Controller Data Manual.

RS-232-C AND TELETYPEWRITER INTERFACES

Appendix A covers cabling for a Teletype Model 3320/5JE. To use this terminal (20 mA current loop),
connect the jumper at J11.

\ CAUTION
Verify correct voltage levels at connector P2 when
attaching a teletypewriter type terminal.

Appendix B covers cabling for an RS-232-C-type terminal. To use this type of terminal, disconnect the
jumper at J11.

7-4

M.A, M.A.

(HEX) (HEX)
0000 0000
BANK 1
2 TMS 2708'S
U42, vas
(1K X 8 EACH) BANK 1
2 TMS 2716'S
(2K X 8 EACH)
0800 U42, U4s
BANK 2
2 TMS 2708'S
U43, U4s (1K X 8 EACH)
(EXPANSION)
OFFE
1000
JUMPER SELECTION BANK2
AUMPER SELECTION 2 TMS 2716'S
, B” (2K X 8 EACH)
3 AND J4 —“08 U43, uas (EXPANSION)
1FFE

JUMPER SELECTION
J2 - “2716"
J3 AND J4 — “16”

(A) EPROM EXPANSION

M.A.

(HEX)

FCOO

BANK 1

U33, U35, U37, U39 (EXPANSION) TS 4042-2

FEOO (EACH 256 X 4 WITH
U32, U34, U36, U38 BANK 2 4 IN EACH BANK.TOTAL

! FFEE EXPANSION TO 512 X 16
A0001460 BITS)

(B) RAM EXPANSION

FIGURE 7-3. MEMORY EXPANSIbN MAPS

7.5 EXTERNAL SYSTEM RESET

External switches can reset the system through connections at connector P1. They activate the following
signals as shown in Appendix F (Schematics).

® RESTART.B. This causes a load function. A 39 uF tantalum capacitor is required at C5 to
debounce the switch. See Figure 7-2 for part placement. This capacitor should be
removed during microterminal operation.

[PRES.B. This causes reset function. A 39 uF tantalum capacitor is required at C6 to
debounce the switch. See Figure 7-2 for part placement.

7.6

7.7

7.8

7.9

- MEMORY MAP CHANGE

On-board memory chip and CRU device addressing is through bit patterns in two PROMs, a 745287 and a
745288 as shown in Appendix F (Schematics). This memory map may be altered by the substitution of
PROM'’s with the desired configuration.

TM 990/402 LINE-BY-LINE ASSEMBLER

A line-by-line assembler is available, programmed on two TMS 2708 EPROM'’s. It will assemble each
instruction as it is input by the user. The resulting machine code will be printed on the terminal and placed
in continuous memory locations. The T/BUG monitor must be present to use the assembler.

No relocatable labels can be used. Jump instructions use dollar-sign plus or minus byte displacements, and
symbolic addresses are input as absolute locations. Error codes identify syntax errors (illegal op code),
displacement errors {(jump instructions), and range errors (e.g., R33). Figures 4-17 and 7-4 are examples of
assembly outputs using the line-by-line assembler.

TM 990/301 MICROTERMINAL

An alternate to a hard-copy terminal is a TM 990/301 microterminal for user communication to and from
the TM 990/100M. The size of a hand-held calculator, the TM 990/301 uses its light-emitting diode (LED)
display to show hexadecimal or decimal values. Features of the TM 990/301 include:

L Hexadecimal to signed decimal and signed decimal to hexadecimal conversion of
displayed value. -

° Display and change contents of Workspace Pointer, Program Counter, Status Register, or
CRU ports.

° Increment through memory displaying contents.

(] Display and change contents of memory addresses.

® Halt or single step user program exécution.

L] Begin program execution.

° Keyboard values 0 through F ¢.

This microterminal comes with its own cable which attaches to the 25-pin connector P2. To supply power to
the microterminal, place jumpers at J13, J14, and J15. When the microterminal is not connected, make
sure that these jumpers are disconnected. Jumper J7 must be in the EIA position for microterminal
operation. See Figure 7-2. Spare jumpers are populated at J16, J17, and J18.

Figure 7-5 shows the microterminal and cabling to the TM 990/100M

TM 990/510 OEM CHASSIS

An original equipment manufacturer (OEM) chassis is available. It features slots for four b(la_rd_s, a
motherboard backplane interfacing to P1 on the board, and a terminal strip for power, PRES.B, INT1.B,
and RESTART.B. A dimensional drawing of the OEM chassis is shown in Figure 7-6. A schematic of the
backplane is shown in Figure 7-7. P1 pin assignments are listed in Table H-1 of Appendix H.

NOTE
Dimension between card slots is one inch.

7-6

FLon

FEOD &2

FEOZ
FEO4
FEO4
FEE
FED:=
FEOC
FEUE

FE1O 3&

FE1Z 5¢«

FE14

FEl1e &

FE1Z2

FE1H 5=

FEIC 2

FE1E
FEZN
FE2Z
FEZ4

FEZE E

FE2S

FEZH £

FEEL
FEZE
FEZ0D
FEZE

o4k

[L)

e
T
Ly

e
Ly L

)

SFEQD

MEMORY ADDRESS
ASSEMBLER MACHINE CODE

USER INPUT SOURCE CODE

CHANGE MEMORY ADDRESS

w0OP 3:FEOC 14

WL -

E oax0020

SFENC <=

SYNTAX ERROR

CHANGE MEMORY ADDRESS

FCOMGEATULATIONE. YOURE FEOGEAM WORKEZ! -

+5: 0707
+5 0700

FIGURE 7-4. LINE-BY-LINE ASSEMBLER OUTPUT

7-7

TEXT STATEMENT

Microterminal
TV 980/301

RUN

FIGURE 7-5. TM 990/301 MICROTERMINAL

7-8

7.10 INTERRUPT FROM TMS 9902

An on-board communications interrupt is issued by the TMS 9902 as explained in paragraph 6.6. When
operating under the T/BUG monitor, place jumper J1 in position “P1-18."

BACKPLANE

[<— 0.406
BARRIER
STRIP
(=}
y /_-) Ow UU
0.627
@ ﬂ] l] 2 PLACES
]
ﬁ ——
) '
— SL—F
)
é I_..___/
é ol 1 C
.
i‘ 7.430

NOTES:

1. DIMENSIONS IN INCHES

2. DISTANCE BETWEEN SLOTS
IS 1 INCH

3. ALL DIMENSEIONS *0.010.

A0001463

FIGURE 7-6. TM 990/510 OEM CHASSIS

7-9

GND

v 24 30 30 42 a8 54 &0 66 72 78| 84| 20| EP -
© @ @) P Q o @ E ol © 5‘0]
ot /9 ‘g_%_@ @ |o __%_g_g__ _[; s |o (<8 29
100}
2 po) » p 2
g I il IS Skl -
DMA[CRU "2[, & E _g_‘i@ car:~ X E - _Ig 5
IR NIR NI
g & g8 g3 R
WK < N 8 <o
R : g 2 5§ 3
§ 2 - ik -
. K Il
sz o [Pl Istb Db sEsh b & Bl aﬁj’;f TE il -
k5] ©f o 9 ol © 10t
el v [ddddddd R S I alilahe 2
QMA/CRU ‘ ¢ g’ £ 29 ﬁ < 505 S 3 e 47 53 59 - @5 7 77 83 89 25
" WJ f—t AN J
et T8 T8B! T8B! T8B!
TB81
Q2 92 o0 92 92 9
Ql ol ¥ 3} ¥ @
MR NEBERIRIERIE sy
GND
GNO r
15V 4+—©2
1 7
SUPPLY Har O3
-12v 4+—©4
+12v¥ 4—©5
+5¢ 400 .
T NOTE: BACKPLANE PIN ASSIGNMENTS LISTED
e s IN TABLE H-1 (APPENDIX H).
RESTART.8 oo :
ND- SUPPLY o0

T8I

TERMINAL STRIP
IN BACK OF CHASSIS

FIGURE 7-7. OEM CHASSIS BACKPLANE SCHEMATIC

7-10

SECTION 8

PROGRAMMING THE TM 990/100M MICROCOMPUTER

8.1 GENERAL

This section covers programming considerations, techniques, and examples using the TM 990/100M micro-
computer. Subjects include:

Paragraph
o CRU Programming 8.2
° Interrupt Programming 8.3
o Interval Timer Programming 8.4
L4 Context Switch 8.5
° /0 Programming with the TM 9901 8.6

81

8.2 CRU PROGRAMMING
8.2.1 GENERAL
The Communications Register Unit (CRU) is the 1/O data interface for the TM 990/100M microcomputer.
When CRU instructions are executed, data is written or read through the CRUOUT or CRUIN pins respect-
ively of the TMS 9900 to or from designated devices addressed via the address bus of the microprocessor.
The CRU software base address is maintained in register 12 of the workspace register area. Only bits 3
through 14 of the register are interpreted by the CPU for the desired CRU bit address. Essentially, the CRU
bit address is the value on the address bus that will cause decode logic on the address bus to enable an ex-
ternal device. Once enabled, the device can be communicated with via the CRU lines attached to the device.
The CRU process follows this general sequence:
(1) The CRU instruction is executed.
(2) Bit address of the desired external device is placed on the address bus.
(3) Decode logic on the address bus enables an external device so that it can serially
send or receive using the CRU input or output lines and clock.
(4) Bits are serially sent or received over the CRU lines.
TM 990/100M devices driven off of the CRU interface include the TMS 9901 parallel interface and the
TMS 9902 serial interface which are accessed through the CRU base addresses noted in Table 8-1. This
table also lists the functions of the other CRU base addresses which can be used for on-card or off-card 1/0
use. Addressing the TMS 9901 and TMS 9902 for use as interval timers is explained, along with program—
ming examples, in section 8.4. Further detailed information on these two devices can be obtained from
their respective data manuals. -
TABLE 8-1. CRU ADDRESS MAP
CRU SOFTWARE {CRUHARDWARE LINE
BASE ADDR, BASE ADDR, SELECTED FUNCTION
R12, BITS R12, BITS AT U23
0-15 314
0000-003E . 0000-002F SELT On-card expansion
0040-007E 0020-003F SEL2 On-card expansion
0080-00BE " 0040-005F 9902SEL On-card serial interface, timer (TMS 9902)
00C0-00FE 0060-007F SEL3 On-card expansion
0100-013E 0080-009F 9901SEL On-card parallel interface (TMS 9901)
0140-017E O0A0-00BF SEL4 On-card expansion
0180-01BE 00C0-00DF SELS On-card expansion
01CO-01FE OOEO-OOFF N/A Reserved, on-card expansion
0200-1FFE 0100-0OFFF N/A Off-card CRU lines

8.2.2

Paragraph 8.2.2 explains CRU addressing while timing is covered in paragraph 8.2.3. Paragraph 8.2.4
describes the five CRU instructions.

CRU ADDRESSING
The CRU software base address is contained in the 16 bits of register 12. From the CRU software base

address, the processor is able to determine the CRU hardware base address and the resulting CRU bit
address. These three CRU addressing forms are shown in Figure 8-1. '

8.2.2.1 CRU BIT ADDRESS

The CRU bit address is the address that will be placed on the address bus at the beginning of a CRU instruc-
tion. This is the address bus value that, when decoded by hardware attached to the address bus, will enable
the device so that it can be driven by the CRU control and clock lines. The CRU bit address is the sum of
the displacement value of the CRU instruction (displacement applies to instructions TB, SBO, and SBZ
only) and the CRU hardware base address in bits 3 to 14 of register 12. Note that the sign bit of the eight-
bit value is extended to the right and added as part of the displacement. The resulting CRU bit address
will be placed on address lines A3 to Aq4; address lines Ag to A3 always will be zeroes.

8.2.2.2 CRU HARDWARE BASE ADDRESS

The CRU hardware base address is the value in bits 3 to 14 of register 12. For instructions that do not
specify a displacement (the LCDR and STCR do not), the CRU hardware base address is the same as the
CRU bit address on address lines A3 to Aq4 as explained in paragraph 8.2.2.1. An important aspect of
the CRU hardware base address is that it does not use the lease significant bit of register 12 (bit 15); this
bit is ignored in deriving the CRU bit address.

8.2.2.3 CRU SOFTWARE BASE ADDRESS
The CRU software base address is the entire 16-bit contents of register 12. In essence, this is the CRU

hardware base address divided by two. Bits 0, 1, 2, and 15 of the CRU software base address are ignored
in deriving the CRU hardware base address and the CRU bit address.

CRU SOFTWARE BASE ADDRESS (CONTENTS OF R12)

ADDRESS

A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 AR A14 «-— LINES

R12 | O 0 0

o o0 0 o0 1 o o 0 (] (] 0 o o0
—TNT —
ZEROES \—’-\/‘-’s/mmﬁne

CRU HARDWARE BASE ADDRESS
SIGN _ 0 o o o 0o 1 o0 0 1 0 0 0 +DISPLACEMENT*
EXTENDED
o 0o o0 0 o o o0 1 1 o o 1 0 0 0
ALL ZEROES FOR
CRU OPERATIONS CRU BIT ADDRESS

*The displacement added to the CRU hardware base address is a signed eight-bit value,
with sign extended, used only when executing one of the single-bit CRU instructions
(T8, SBO, and SBZ).

FIGURE 8-1. CRU BASE AND BIT ADDRESSES

Because bit 15 of R12 is not used, some confusion can result in programming. Instead of loading the CRU
bit address in bits 0-to 15 of Register 12 (e.g. LI R12 > 80 will not cause the CPU to address the TMS 9901
at CRU hardware base address 801g), the programmer must shift the software base address value one bit
to the left so that it is in bits 3 to 14 instead of in bits 4 to 15. Several programming methods can be used to

ensure this correct placement, and all of the following examples place the TMS 9901 base address of 801¢
correctly in R12,

83

8.23

8.24

LI R12,>100 PLACES >80 IN BITS 3 TO 14

or
LI R12,>80*2 MULTIPLY BASE ADDRESS BY 2 (NOT RECOGNIZED BY LINE-
BY-LINE ASSEMBLER)
or
u R12,>80 BASE ADDRESS IN BITS 4 TO 15 ;
SLA R12,1 SHIFT BASE ADDRESS ONE BIT TO THE LEFT

CRU TIMING

CRU timing is shown in figure 8-2. Timing phases (¢1 to ¢4) are shown at the top of the figure. The CRU
address is valid on the address bus beginning at the start of ¢2,and stays valid for eight timing phases (two
clock cycles). At the start of the next ¢2 phase, CRUCLK at the TMS 9900 goes high for two phases to provide
timing for CRUOUT sampling. Note that for LDCR and STCR instructions, the address bus is incremented for
each data bit to be output or input. For input operations, the address is placed on the address bus at the
beginning of phase ¢2, and the input is sampled between phases ¢4 and ¢1.

CRU INSTRUCTIONS
The five instructions that program the CRU interface are:

L LDCR Place the CRU hardware base address on address lines A3 to A14. Load from
memory a pattern of 1 to 16 bits and serially transmit this pattern through the
.CRUOUT pin of the TMS 9900 (paragraph 4.6.4). Increment the address on
A3 to Aq4 after each CRUOUT transmission.

o STCR Place the CRU hardware base address on address lines A3 to Aq4. Store into
memory a pattern of 1 to 16 bits obtained serially at the CRUIN pin of the
TMS 9900 (paragraph 4.6.4). Increment the address on A3 to Aq4 after each
CRUIN sampling.

L SBO Place the CRU hardware base address plus the instruction’s signed displacement

on address lines A3 to A14. Send a logical one through the CRUOUT pin of the
TMS 9900 (paragraph 4.6.2.2).

® SBZ Place the CRU hardware base address plus the instruction’s signed displacement
on address lines A3 to Aq4. Send a logical zero through the CRUOUT pin of the
TMS 9900 (paragraph 4.6.2.2).

® TB Place the CRU hardware base address plus the instruction’s signed displacement
on address lines A3 to Aq4. Test the value at the CRUIN pin of the TMS 9900
and reflect the test results (one or zero) in the equal bit of the Status Register
(paragraph 4.6.2.2).

The LDCR and STCR instructions use a byte or word of memory depending respectively if 1 to 8 bits or more
than 8 bits are to be loaded or stored. In STCR instructions, the right bits of the memory area are used for
storage, and unused left-side bits are zero filled. Figure 8-3 depicts an LDCR instruction using a byte of
memory. Figure 8-4 depicts an STCR instruction using a word of memory.

The TB, SBO, and SBZ instructions use a displacement of +127 and - 128 bits from the CRU bit designatedin
bits 3 to 14 of R12. Thus, if bit 30046 is designated in R12, bits 3 to 14, the following assembly language
instructions and comments would apply:

84

S8

o 1 1 [] [1 [IR [[[[
92] [[T 11 1 I 11 '
nlm ! Iy I Ny B y :J_l M
|
o4 My Ty T i [L i [11 .r [[] []
T T I
| : | | | :
| | | | |
I ' L i 1 rl/ |
A0-A15 UNKNOWN IX CRU BIT ADDRESSn ' X CRU ADDRESS n + 1 ')(e ™ cRU ADDRESS m | J(
| | | | | | '
CRUCLK | I I | I l | $< 1 !
1 1 1 +]
2% | |
J | | | |
© cruout UNKNOWN 1)(CRUDATA OUT n :)C CRU DATA OUT n + 1)(‘: |>< UNKNOWN I)L
| | | S |
| | ' I |
=
22 crun XXXO0OOOC0OO0000 R SARe 0000000000 R, OOOKX, Bawe. cane X s XXX/} |
& | | | | INPUT VALID
\ ", \ 4 INPUTBITm
—\V "
CRU OUTPUT CRU INPUT

FIGURE 8-2. TMS 9900 CRU INTERFACE TIMING

8 >10 TEST CRU BIT >310
SBO -1 SET CRU BIT >2FF TO ONE
SBZ 16 SET CRU BIT >310 TO ZERO

The LCDR and STCR instructions address the CRU using the value in R12; these instructions do not have
the advantage of specifying a displacement from the R12 value such as used by the CRU bit instructions.
If it is necessary to change the CRU hardware base address, it is important to understand that only bits
3 to 14 need be modified. For example, if it is desired to load (LCDR) successive groups of 16 CRU ports,
a value of 32 {not 16) must be added to the contents of R12 for each group in order to accurately change
the contents of R12 bits 3 to 14 (Al R12,32). An alternate method would be to load a new value into R12
(LI R12, > 200; L1 R12, > 220; etc.).

LI R12>200

LOAD CRU BASE ADDRESS >100 IN BITS3TQ 14 OF R12
LOCR R56 6 BITS TGO CRU
o 1 2 3 4 5 6 7 8 9 10 ¥ 12 13 14 15
6 o o0 0 o0 ©0 1+ ©0 O 0 0 © [1 1 o .o | >020c
o o o o e © 1 0 © ©0 0 ©0 O 0 0 0 >0200
o o 1 1 o oJ o r 1 oTo o 1 o 1 0 1| >318
0 2 7 8 15
Rs——>[1l1]ol1lo}[1[0‘110}0!1!1]1L1I0J
%

—0 +~CRU Address >100
‘1
-2
—3
—a
t—5 «~CRU Address >105
6
-7
-8
-9
—A
B
—c
b
—E
—F
10
11
L-12

1
“lonone l
IGNORE

8 BITS OR LESS — BYTE ADDRESS
9 BITS OR MORE — WORD ADDRESS

A0001434

FIGURE 8-3. LDCR BYTE INSTRUCTION !

8-6

LI R12,>120*2 LOAD CRU BASE ADDRESS >120 INBITS3 TO 14 OF R12

STCR R4,10 10 BITS FROM CRU TO R4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T
0 o o0 o o0 o 1 o o o o0 o 1 1 o o >020C
T T
0 o o o0 o0 O 1 o o 1 o o o o0 o0 o >0240
o o 1 1 ()} 1 1 (] 1 o|]o o] o0 1 0o o >3684
(] 6 15
R4 o |loj o] o| ofo
W“ k 4 L 0 «<CRU Address >120
ZERO FILL
UNUSED LEFT-SIDE BITS . . . — 1
S I)
-3
-4
-5
-6
-7
-8
-9 «CRU Address >129
- A
-8
NOTES:
8 BITS OR LESS - BYTE ADDRESESSS Lc
9 BITS OR MORE - WORD ADDR B
THE MULTIPLICATION IN THE DESTINATION OPERAND (>120*2) D
IS NOT RECOGNIZED BY THE TM 990/402 LINE-BY-LINE ASSEMBLER. e
THIS MULTIPLICATION IS AN EXAMPLE OF THE RELATIONSHIP OF ¢
THE CONTENTS OF THE CRU BASE ADDRESS TO THE CONTENTS [T

OF REGISTER 12.

A0001435

FIGURE 8-4. STCR WORD INSTRUCTION .

8.3 INTERRUPT PROGRAMMING

8.3.1 INTERRUPT OPERATION

The TM 990/100M employs 16 interrupt levels with level O the highest priority and level 15 the lowest
priority. Level O is reserved for the reset function. Reset, which can be initiated by the RESET pushbutton
(Figure 1-2) or by remote activation of the PRES signal, places the board under monitor control.

8-7

8.3.2

Interrupts are controlled by the TMS 9901 interface which polls interrupt signals from 15 input lines (INT1
to INT15), determines the priority of the incoming signal, and sends a four-bit code of the highest priority
interrupt to the TMS 9900 along with an interrupt request (INTREQ). The four-bit code is sent on lines
ICO to IC3.

The TMS 9900 compares the level of incoming interrupt request to the interrupt mask in the least
significant four bits (12 to 15) of the Status Register. If the level of the incoming interrupt is equal to or
less than the value in the Status Register mask, a context switch takes place similar to a BLWP instruction
(paragraph 4.6.6). A pair of vector addresses (the new WP and PC values) are obtained from one of the 16
interrupt traps in EPROM (M.A. 0000, to 003E;), as shown in Figure 8-5. Then the following takes
place:

° The current WP, PC, and ST contents are saved.

o The new values from the interrupt vectors are placed in the WP and PC hardware registers.

L] The old WP, PC, and ST values are placed respectively in R13, R14, and R15 of the new
workspace.

L] A value of one less than the new interrupt vatue is placed in the ST interrupt mask (bits
12 to 15).

L] Execution begins and continues until another interrupt of higher priority occurs or until a

return instruction is executed (RTWP).

If a higher priority interrupt occurs, a second interrupt context switch takes place after at least one
instruction is executed of the first interrupt. This allows execution of a LIMI instruction to inhibit other
interrupts. Completion of the second interrupt passes control back to the first interrupt using the RTWP
instruction (paragraph 4.6.7).

PROGRAMMABLE INTERRUPTS

Interrupt traps 0, 3, and 4 contain vector values burned into EPROM. Interrupts 3 and 4 can be
programmed by the user.

M.A.
0000 WP
0002 s INTERRUPT 0 VECTORS
0004 wp
0006 PC INTERRUPT 1 VECTORS
L]
DETAN
L]
oo0C FF68
000E FF8s INTERRUPT 3 VECTORS
0010 FF8C
0012 FFAC INTERRUPT 4 VECTORS
NN
[}
®
003C wp
70001432 003E PC INTERRUPT 15 VECTORS

FIGURE 8-5.. INTERRUPT TRAP LOCATIONS

88

Interrupt trap O is used for the reset function. This is not a user programmable interrupt.

Interrupt trap 3 is the real time clock utilized by programming the TMS 9901 using CRU
instructions. This programming is shown in the TMS 9907 Programmable Systems
Interface Data Manual. Vectors in interrupt trap 3 are FF68,¢ for the WP vector and
FF88,, for the first of a two-word instruction to be inserted in RAM by the user. See
Figure 8-6. This two-word instruction area could contain a B or BL instruction as
discussed in paragraph 4.6.6. The branch would be to the start of a subroutine set up to
handle the interrupt. The subroutine would return to the interrupted program with the
RTWP instruction, using the return values in R13, R14, and R15 of the interrupt
workspace.

Interrupt trap 4 originates from the INT output of the TMS 9902 as shownin sheet 3 of the
schematics in Appendix F and the TMS 9902 Asynchronous Communication Controller
Manual. A movable plug (J11) allows this signal to be routed tothe TMS 9901 as input for
interrupt 4 as shown in the schematics (Appendix F). Vectors intrap 4 are to FF8Cy¢ for the
workspace and to FFAC,6 for the first of a two-word instruction. The user can fill these
RAM location as desired (e.g., B or BL instruction to subroutine in RAM). See Figure 8-6.

Four conditions causing INT to be active (low causing interrupts to occur) are as follows:

TMS 9902 CRU bit 21 a one and a data set status change (DSCH) occurs.
TMS 9902 CRU bit 20 a one and timer elapses (TIMELP)
TMS 9902 CRU bit 19 a one and the transmit buffer is empty (XBIENB).

TMS 9902 CRU bit 18 a one and the receive buffer is loaded (RIENB).

If the user desires to fill interrupt trap locations (M.A.0000:¢ to 003E+e) with his own vector values, he must
reburn the EPROM with the desired values.

A0001433

M.A.
FF68

16-WORD

WORKSPACE INTERRUPT 3
FF88

[———— 11} 2woRrD msmucnon)

FF8C

16-WORD

 WORKSPACE INTERRUPT 4

FFAC [—— —1} 2.wORD INSTRUCTION

FIGURE 8-6. DEDICATED INSTRUCTION AND WORKSPACE AREAS FOR INTERRUPTS 3 AND 4

89

8.4

8.4.1

PROGRAMMING THE INTERVAL TIMERS

Two interval timers are available to the TM 990/100M; one from the TMS 9901 and one from the
TMS 9902. Detailed information on these two devices can be found in the respective data manuals for the
TMS 9901 and TMS 9902.

Both interval timers can be programmed to cause interrupts at the TMS 9900:
L] To trap 3 for the TMS 9901
° To trap 4 for the TMS 9902

TMS 9901 INTERVAL TIMER

NOTE . '
1/0 programming with the TMS 9901 is explained in paragraph 8.6.

A detailed discussion of the TMS 9901 interval timer can be found in the TMS 9901 data manual. There are
several possible sequences of coding that can program and enable the interrupt 3 interval timer, and since
the timer has a maximum period of 349 milliseconds before issuing an interrupt, the programmer must
decide whether to set the interval period in the calling program or in the code handling the interrupt. If the
interrupt period desired is longer than 349 milliseconds, then it may be advantageous to reset the timer in
the interrupt subroutine which also triggers the interrupt and returns control back to the interrupted
program. In any case, the timer must be initially set and triggered following the general sequence below:

(1) Set the CRU hardware address of the TMS 9901 in bits 3 to 14 ef R12.

(2) Enable the clock interrupt at the TMS 9901 (interrupt 3).

(3) Set the Status Register interrupt mask to a value of 3 or greater.

(4) Set a register to the value of the interval desired (bits 1 to 14) with. bit 15 set to one to

enable the clock as shownin Figure 4-18. This figure shows the code and a representation
~ of the CRU for setting a time of 250 milliseconds and for setting the TMS 9901 to the clock
- mode. The first bit serially brought in on the CRU will be a value of one in bit 15 of the
register which sets the TMS 9901 to the clock mode; successive bits(1to 14)then setthe
clock interval value. The final bit brought in triggers the timer.

(5) When the interrupt occurs, the interrupt handler must reset the interrupt at the
TMS 9901 before returning to the interrupted ‘program.

The clock decrements the value set in step (4) at the rate of $/64 (approximately 46,875 Hz with a 3 MHz
clock). The maximum interval register value of all ones in 14 bits (16,383) takes approximately 349

milliseconds to decrement to zero.

The timer can also be started and stopped, then the timer register bits read with an STCR instruction to
determine the elapsed time (elapsed bit count divided by 46,875 equals elapsed time in seconds).

8-10

8.4.2

The code in Figure 8-8 is an example of a code to set up and call the TMS 9901 interval timer and also the
code of the interrupt handling subroutine. Note that the calling program first clears the counting register
(RO) of the interrupt workspace. Then it sets up the interrupt masks at the TMS 9901 and TMS 9900 after
setting the TMS 9901 address in R12. Then the calling program sets an initial value in the timer register
(CLK1 to CLK14 as shown in the TMS 9901 data manual). Because the desired output on the terminal is a
message every 15 seconds, a minimum interval is set in the calling program while the interrupt handler is
responsible for setting the time and clearing the interrupt after it occurs. The handler keeps a count of the
intervals to determine the 15 seconds. Since interrupt 3 causes a context switch to the WP and PC areas
shown in Figure 8-7, a branch to the handler is first placed in the RAM instruction area shown for interrupt
3. The clock will periodically interrupt the executing program with return vectors to that program stored in

R13 to R15 of the interrupt worksapce. Assembled code is shown for the TM 990/402 line-by-line
assembler as well as the TXMIRA assembler.

TMS 9902 INTERVAL TIMER

The TMS 9902 interval timer is programmable through the CRU, but it requires a different sequence of
events than for the TMS 9901 timer. A detailed discussion of the TMS 9902 interval timer can be found in
the TMS 9902 data manual. The interval register of the TMS 9902 can contain a maximum value of FFys,
providing a maximum interval of 19.58 milliseconds at an internal clock frequency of 833 kHz. The interrupt
is routed to the TMS 9980 through INT4 of the TMS 9901; thus the interrupt masks of both these devices
must be programmed. J2 must be in the “9902" position to route interrupts from the TMS 9902 to the
microprocessor via the TMS 9901; code to run the TMS 9902 interval timer generally follows the following
sequence:

Ll RO, COUNT PLACE TIMER COUNT VALUE IN RO

LI R12,>0080 ADDRESS OF 9902

SBZ 13 RESET LDIR IF NOT ALREADY

SBO 14 SET LDCTRL

SBZ 3 INSURE 2.5 MHz/31 COUNT RATE (OPTIONAL)

MOV *R12, *R12 DUMMY STATEMENTS FOR
MOV *R12, *R12 TIMING: >11 CLOCK

MOV *R12, *R12 CYCLES

SBO 13 SET LDIR TO LOAD COUNT

SBZ 14 BUT FIRST RESET LDCTRL

LDCR . RO,8 PUT OUT COUNT IN LEFT BYTE OF RO

SBO 20 SET TIME NB

8-11

Ll R12,>>100 CRU ADDRESS OF TMS 9901 (2 X >80 = >>100)

Ll R1,>5B8F CLOCK, >2DC7 COUNTS, AND SET CLOCK MODE BIT
LDCR R1, 15 SET CLOCK VALUE AT CLOCK REGISTER
R
o|1]2]3|a|ls|e]l7]|8]o]10]11]12]13]14]1s CRU TMs9901
R[N 1 0 1 1 0 1 1 1 0 0 0 1 1 1 1|>588F ADDR, ASSIGNMENT
je—————— CLK1 TO CLK14 = >2DC7 = 11,719 ————— ['——'” 1] 80 1=CLOCKMODE
11,719/46,875Hz = 250MS —_— 1 81 CLK1
1 82 CLK2
[
[
o
1| 8E CLK14
8F

NOTE: .
THE FIRST SERIAL INPUT FROM CRU (A ONE IN BIT 15 OF R1) SETS CLOCK MODE.

LAST INPUT TO CLOCK REGISTER (CLK1 TO CLK14) STARTS THE CLOCK.

A0001436

FIGURE 8-7. ENABLING AND TRIGGERING TMS 9901 INTERVAL TIMER , -

8-12

ASSEMBLED USING TXMIRA ASSEMBLER ASSEMBLED USING TM 990/402 LINE-BY-LINE
ON 990/4 COMPUTER ASSEMBLER ON TM 990/100M

m—“'—-\m

TTHER TR

- = W = + & s k3
#* AN INTERRUFT THROGH IMT= #*
* ING THE INTERVAL TIMER IN THE #*
3 QOFCODE IS A DIRECTIVE T THE *
= TYMIRM NERATE N TNRG CHARACTER AND *
¥ CO0E T JaWALEH 1-75 3
3 & + * *

IDT “TIMER”

REGIZTER EGQUATES (PRECEDE MUMBER WITH “R7) SER

#*

e Eoll O GZED LWMET SFEZ0

r1 1 |_|._i§o:| LWFI =FEZQ

F1z 1z FEZD B
. N4ED CLRE 3:FFas CLE INT. REG.

FF
I LI R1Zs=100 31 CRU RDDE

FROGRAM CALLING THE INTERRUFT

#* *-
NORG ZET ADDR. TO LOAD OBJE FEOR 0100
LWFI DEFINE WO “AICE ADDRI FEDOC 1E00 [l 2301 TO IMT.
1 TEO0 = ZET IMT. =
CLR CLEAR INTERRUFT REGISTER O LIMI = EMAELE 2200 IHT
L1 701 CRU ADDR. TN R1Z LI Fis3 EMAELE CLOCK
=RZ 2201 TO INTERRUFT MODE - - - R
SR ENABLE INTERRUFT 3 LOCE R1.1S AFFLY TO 2301
LIMI 2 ENABLE TINTERRUFT 3 IN =T IMF :FE1RA LOOF HEFRE
SFFQON
LI Ri.2 CLOCE COUNT 1, CLOCK MODE C1 ROsE0 COUMT = &07
LOCR R1,1% CLOCK, COUNT TO CRU, ENABLE CLE EQ E+24 YEZs DO MMIIS
. i = T JEL = IR
e % LOOF WHILE CLOCE COUNTS DOWN INC RO HO. IMC. CHTRE

4 INTERRUFT PROGRAM S LI Rigs =100 3301 CRU RDDE

3 = -t | .
AORG SFFOO SET ABSOLUTE OBJECT ADDR. LI Fls> CLOCK COUNT
T RO, 60 I5 COUNT = 40 (15 SECONDS)?
AFFLY COuMT
JEG 424 2 2301 TO INTRF
ING RO INCREMENT COUNTER ZEO 2 ELE IMT =
LI R1Z,2100 1 ADDRESS TO R12 LIMI = EMAELE 23200 INT
| SEEE CLOCK COUNT © 719 _
LI Rl oTEEF FLOCK COUNT OF 11.71% RTUF FET TO FROGRAM
5 GUNT To 9901, ENABLE COUNTER 10F 5:FF2e.14 ZEND M 5E
1 TO INTERRUFT MODE ~
CLEAR INTERRUFT = CLE RO FEZET TIMER REG.
RESET INTERUFT MAZK AT * E S:FFO0 FEDD IMTERRUFT
RTUF RETURN T FROGRAM TECOMDE HAYE ELAPZED.
XOF @2FF2e, 14 WRITE MESSAGE
CLR RO RESET TIMER COUNT
B @IFFOO RETNYOKE INTERRUPT
TEXT “15 SECONDS HAVE ELAFSED. -
OATA 20707, 20707 BELLZ
BYTE © END (F MESSAGE DELIMITER
i

TNSTRUCTION IN INTERRUFT RAM AREA
3

INT. 2 INSTRUCTION ADDR.
GO TO INTERRUFT ROUTINE

END! DIRECTIVE Tir ASSEMBLER

50 TO IMT. ROUTIME

FFO0

MEMORY ADDRESS

MACHINE CODE

A0001437
FIGURE 8-8. EXAMPLE OF CODE TO RUN TMS 9901 INTERVAL TIMER

8-13

85

8.6

When the interval timer has counted down to zero, the interrupt (INT) is sent via jumper J1 to interrupt 4 of
the TMS 9901.

NOTE :
This interrupt should not be routed to the TMS 9901
from the TMS 9902 while under the monitor as ex-
plained in paragraph 6.6. If J1 is in the P1-18 position,
the interrupt signal will be routed from connector P1,
pin 18. '

CONTEXT SWITCH TO ANOTHER PROGRAM SUCH AS MONITOR

By manipulating registers 13, 14, 15 and executing the RTWP instruction, execution can branch from one
program to another, such as a user program to the 7/BUG monitor. The following is code to branch into
the monitor.

LI R13>FFBO WP VALUE OF MONITOR
Li R14>80 PC VALUE OF MONITOR
Lt R15,0
RTWP

NOTE

The above example shows how to branch into a program
using the RTWP instruction; it also branches into the
monitor. Other more convenient methods to branch to
the monitor include the following:

BLWP@> FFFC MONITOR VECTORS AT M.A.> FFFC

or

B @>80 BRANCH DIRECTLY TO MONITOR ENTRY POINT

1/0 PROGRAMMING WITH THE TMS 9901

The following figures, 8-9 to 8-14 are examples of addressing the TMS 9901 through the CRU, pointing out
in graphic form:

° External 1/0 in parallel {multibit) and serial (single bit) forms.

® The relationship between the CRU bits addressed and the bits in the source operand.
of the STCR instructions

° The relationship between the CRU bit addressed and the displacement in TB, SBO,
and SBZ instructions.

8-14

The TMS 9901 occupies 32 bit positions of CRU space with the low 16 bits at CRU software address

010046 and the high 16 bits at CRU software address 01201¢. To access the low 16 bits of the TMS 9901
through the CRU, load 01001¢ into register 12.

The high 16 bits at CRU software address 01201¢ are the parallel 1/O bits, shown in the accompanying
figures. These may be set, reset, or read in any order or combination with length from 1 to 16 bits. Since
CRU operations are serial, data from the microprocessor (either serial or parallel) is transmitted serially to
the TMS 9901, which outputs it in parallel. Likewise, during input, data present at the 1/O pins shifted
serially to the microprocessor using the CRU bus for programming. It is necessary only to load register 12
with 012046 and use either the LCDR or STCR instructions. Bear in mind that CRU operations of 1 to 18
bits affect the left byte (more significant half) of a word.

The lower 16 bits of the TMS 9901 at CRU software address 01001 ¢ are used for control of interrupts and
the timer function, and to reset the 1/O lines to the input mode with output buffers disabled and floating.
Interrupt requests are presented to the TMS 9901, each on its own line, and are compared against an
internal mask. If the internal interrupt mask allows, the particular interrupt request is encoded onto ICO
through IC3 of the TMS 9901 (ICO -- IC3 of the TMS 9900) as explained on page 6 of the TMS 9900 data
manual or page 8 of the TMS 9901 data manual. The TMS 9901 also pulls the INTREQ line low on inter-
rupt requests (not during RESET), which goes to INTREQ at the TMS 9900.

ASSEMBLY LANGUAGE:

Ll R12,>0120
LDCR RO, 15

SOURCE ADDRESS IN MEMORY:

0 3 4 7 8 1112 15 RO Ls8
RO:I101 1 100 10 1 0 1 10 1 1| (LSBOFRO ¢ pob— 1
L 1 v P11
P2f— o
P3 b— 1
IGNORED Pab— 1
: P5— 0
P6— 1
> p7H— 0
ADDRESSING: Pg — 1
POl _ o
ADDRESS LINES AT OPERATION START P10L_ 0
P11 — 1
FH2:|0 00000 01001 00 0 0 o] BIT 15 P'z'—:
P13 —
- e - IGNORED 3 :
P14 |—
P15 p—
IGNORED ADDRESS
l———DSELECT
0000 00001 00O0 100 00 10 TMS 9901
DECODE A
lAO ______________ A14J P15 STATE REMAINS UNCHANGED

ADDRESS LINES

FIGURE 8-9. LDCR WORD EXECUTION TO TMS 9901

8-15

(1) ASSEMBLY LANGUAGE

LI R12,>0130
LDCR R2,2

POf—
P1—
(2) SOURCE ADDRESS IN MEMORY:
p2l—
0 3 4 7 8 1 12 15 p3f—
T T T Pa—
1 0 1 1 0o 1 16 1 0 1 1 0 1 0 1 p5 |—
& I P6—
L T J TWO BITS TRANSFERRED PI
LEFT BYTE USED > pg—0
—» pgI—1
Piot—
) P11 b—
P12f—
(3) ADDRESSING:
P13f—
T T T
R122{0 0 0 0 0o © 0 1.0 0 1 {1 o0 0 o of BITIS P14—
IGNORED P15 l—
IGNORED l l » ADDRESS
I————>SELECT
0 0 0 0 00 O 1 00 1 1 00 0 H/a
DECODE
Ag T T T T T T T T T T T T A
L |

ADDRESS LINES

FIGURE 8-10. LDCR BYTE EXECUTION TO TMS 9901

8-16

(1) ASSEMBLY LANGUAGE

L! R12,>>0120
STCR R3, 11

(2) SOURCE ADDRESS IN MEMORY

0 34 78 1 12 15 *oV
1 i I
az:l1 o 1 1 0o 11 1 0o 1 0 T 1 o o | BeFore p
PO
T 1]
P O 0 0 6 0 1 0 1 0 1 0 1 0 0 0] AFTER P1
P2
| J L J
A P3 —@
ZEROED
Pa
- 4 P5 |—o
P6
P7
(3) ADDRESSING: b8
ADDRESS LINES AT OPERATION START PO —
P10 ——9
l | : P11 f— =
R122]/0 0o 0 o o o o 1 0 0 1 0 0 0 O O BIT 15 P12 —
IGNORED :
l] 1 | P13 |—
P14 |—
P15 |—
IGNORED »1 ADDRESS
I’——"SELECT
J 1/0
ZEROES DECODE TMS 9901
v
0o 0 0o 0o 0 0 0 1t 0 O 1 0 0 0 00—
AQ — — — — — — — — — — — — —Aa

ADDRESS LINES

FIGURE 8-11. STCR WORD EXECUTION TO TMS 9901

8-17

(1) ASSEMBLY LANGUAGE

LI R12,>120
STCR R1,6

(2) SOURCE ADDRESS IN MEMORY

3 a 8 11 12 15 PO
0 P
' T P2
R1{ 1 0 1 1t 0 17 1 0 0] 1 0 1 1 0 BEFORE
P3
0 0 1 1 0 10 0 0 1 0 1 1 0| AFTER P4
! | L] P5 |
I l P6
ZEROED UNCHANGED
P7
P8
P9
P10
(3) ADDRESSING P11
- : P12
R122 o0 0o 0 0 0 0 O 0 1 00 00 ofBITI5 P13
— — - IGNORED P14
IGNORED ——J
. P15
ADDRESS
[—-b-SELECT
0 00 0 0 00 0 1.0 ¢ 0 0 I/0
DECODE TMS 9901
Ag A1q

ADDRESS LINES

FIGURE 8-12. STCR BYTE EXECUTION TO TMS 9901

+5V

(1) ASSEMBLY LANGUAGE

FTTTTTTTr et

LI R12,> 140
T8 -3
PO
P1
(2) ADDRESSING: o
, : : - BIT 15 P3
R12l0 o 0 0 00 0 1 0 1 0 0 0 0 O Ofe IS ™S pa
IGNORED 9901
IGNORED:| 5
P6
P7
‘ P8
11 1 1 1 1 1 1 110 1 - 3 DISPLACEMENT o
SIGN EXTENDED - | | ADDED TO ADDRESS o10
l P11
ZEROES P12
P13
00 00O 060 1 001 1 1 0 1 P14
R P15
.E 14‘ ADDRESS
I
ADDRESS LINES F—> SELECT
1/0
DECODE
(3) STATUS REGISTER:
BITNO. 0 3 15
1
EQUAL___/
BIT
NOTE

IF A JEQ (JUMP ON EQUAL) INSTRUCTION FOLLOWS A TB INSTRUCTION, A 1
FOUND WILL CAUSE A JUMP, AND A 0 FOUND WILL NOT CAUSE A JUMP (1 =
EQUAL STATE).

FIGURE 8-13. TEST CRU BIT AT TMS 9901

8-19

(1) ASSEMBLY LANGUAGE:

L R12,>0120
sBz 7

(2) ADDRESSING:

r12 o o o o0'o o o 1 0% 1 0'0 0 o ﬂ BIT 15
- T —! |GNORED
IGNORED _— —T *
+ 0 00 000 0 0 0 1 1 1 <— + 7 DISPLACEMENT
|] ADDED TO ADDRESS
SIGN EXTEND
0 0 00 0 0O 0 1 0 0 10 1 1 1 170

PO

P1-

P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13

P14
P15

ADDRESS
SELECT

! DECODER
ZEROES

FIGURE 8-14. SET CRU BIT AT TMS 9901

8-20

APPENDIX A

WIRING TELETYPE MODEL 3320/5JE FOR TM 990/100M

A-1 GENERAL
Figure A-1 shows the wiring configuration required to connect a 3320/5JE Teletype in a

20 mA current loop with a TM 990/100M. Other teletypewriter models may require
different connections; therefore, consult the manufacturer for correct wiring of other
models. Teletypewriters can be used with Assembly No. 999211-0001 only.

CAUTION

Note the 117 Vac connection at pins 1 and 2. Be sure that this
voltage is not accidently wired to the TM 990/100M board.

A-2 CONNECTIONS
The following assumes that the teletypewriter is wired as it came from the factory.
(1) Locate the 151411 terminal block at the left rear (viewed from the rear) of
the machine (Figure A-1).

(2) Move the white/blue wire from terminal 4 to terminal 5 on the terminal block.
(3) Move thebrown/yellow wire from terminal 3 to terminal 5 on the terminal block.

(4) Move the purple wire from terminal 8 to terminal 9 on the terminal block (for 20
mA neutral signaling).

(6) Locate the power resistor behind the teletype power supply. Remove the blue
wire from the 750 ohm tap and connect it to the 1450 ohm tap, as shown in
Figure A-2.

(6) Check pins 3, 4, 6, and 7 at terminal strip 151411. Voltage to ground must be
zero with power applied. If not, do not connect to the TM 990/100M.

NOTE
For teletypewriter operation jumper J11 must be installed and J7
must be in the EIA position.

A-3 TROUBLESHOOTING

If the printer continues to chatter after the RESET switch on the TM 990/100M has been
activated, reverse connections 6 and 7 at the terminal strip.

A-1

PRINTER

KEYBOARD

A0001412

TELETYPE MODEL 3320/5JE
TERMINAL

STRIP

151411

. VIOLET(PURPLE)
| YELLOW

8

@ BLACK/GREEN

7 WHITE/BROWN

|~

A

TM™M 990/100M
P2
OUTPULL
25
OUTPUSH
24
INPULL
18
INPUSH
23
12 3 4 5 6 7 8 9
EEEEEEEEE
%

\

LEFT REAR VIEW OF TELETYPEWRITER

DETAIL A

| RED/GREEN

" WHITE/YELLOW

/
| WHITE/BLACK

WHITE/BLUE

e<{_
. BROWN/YELLOW

GREEN/ORANGE

<X
L RED

GRAY(SILVER)

*‘_/a:/
) N l_ WHITE/RED

117 VAC

117 VAC

*NO.6 SPACE LUGS

FIGURE A-1. TELETYPEWRITER TERMINAL STRIP CONNECTIONS

A-2

1450 OHM TAP

A0001413

DETAIL A

FIGURE A-2. TELETYPEWRITER RESISTOR CONNECTION

A-3

APPENDIX B

EIA RS-232-C CABLING

Figure B-1 shows the wiring for the 743 KSR cable attached between connector P2 on the
TM 990/100M and a 743 KSR data terminal. Also shown is the relationship between cable
wires and signals to the serial interface, the TMS 9902. Figure B-2 shows the cable
configuration for the 733 data terminal.

NOTE
When using an RS-232-C device, disconnect jumper J11 and
insert jumper J7 in the EIA position. See Figure 7-2.

EIA CABLE
TM 990/100M
A
P2
TMS9002
PROTECTIVE GND .
3 RECEIVED DATA TRANSMIT DATA
RIN 2 743 DATA
2 TRANSMITTED DATA RECEIVE DATA TERMINAL
XouT 3
—_— 5 DCD ; REQUEST TO SEND
RTS T 8
cTS 6 DTR 20
ey i SIGNAL GND
DSR 7 SIGNAL GND 7

NOTE: Suggested EIA cable connectors (ITT Cannon or TRW Cinch):
P2: DB-25P
P1: DE-15S
A0001414

FIGURE B-1. EIA RS-232-C CABLING FOR 743 DATA TERMINAL

B-1

TM 990/100M

T™MS 9902
PROTECTIVE GROUND
RIN 3 RECEIVED DATA
XOUT 2 TRANSMITTED DATA
+12v 3.3K, %W
i ;;g: W
SIGNAL GND
mls DCP
DSR |2 DTR

EIA CABLE

PROTECTIVE GROUND

P1

TRANSMIT DATA

RECEIVE DATA

CTS

DSR

SIGNAL GND

REQUEST TO SEND

W N O G W N =

20

DATA TERMINAL READY

FIGURE B-2. EIA RS-232-C CABLING FOR 733 DATA TERMINAL

B-2

I

A N © ®

733
DATA
TERMINAL

APPENDIX C

ASCII CODE

TABLE C-1. *ASCIl CONTROL CODES

BINARY HEXADECIMAL
CONTROL CODE CODE
NUL — Null 000 0000 00
SOH - Start of heading 000 0001 01
STX — Start of text 000 0010 02
ETX — End of text 000 0011 03
EOT - End of transmission 000 0100 04
ENQ - Enquiry 000 0101 05
ACK — Acknowledge 000 0110 06
BEL - Bell 000 0111 07
BS — Backspace 000 1000 08
HT — Horizontal tabulation 000 1001 09
LF — Line feed 000 1010 OA
VT — Vertical tab 000 1011 oB
FF — Form feed 000 1100 oC
CR — Carriage return 000 1101 oD
SO — Shift out 000 1110 OE
Si — Shift in 000 1111 OF
DLE - Data link escape 001 0000 10
DC1 — Device control 1 001 0001 1
DC2 - Device control 2 001 0010 12
DC3 — Device control 3 001 0011 13
DC4 — Device control 4 (stop) 001 0100 14
NAK — Negative acknowledge 001 0101 15
SYN — Synchronous idle 001 0110 16
ETB — End of transmission block 001. 0111 17
CAN — Cancel 001 1000 18
EM — End of medium 001 1001 19
SUB — Substitute 001 1010 1A
ESC — Escape 001 1011 iB
FS - File separator 001 1100 1C
GS — Group separator 001 1101 1D
RS — Record separator 001 1110 1E
US — Unit separator 001 1111 1F
DEL — Delete, rubout 111 111 7F

*American Standards Institute Publication X3.4-1968

C-1

TABLE C-2. *ASCIll CHARACTER CODE

BINARY HEXADECIMAL BINARY HEXADECIMAL
CHARACTER CODE CODE CHARACTER CODE CODE
Space 010 0000 20 P 101 0000 50
! 010 0001 21 Q 101 0001 51
" (dbl. quote) 010 0010 22 R 101 0010 52
010 0011 23 s 101 0011 53
$ 010 0100 24 T 101 0100 54
% 010 0101 25 U 101 0101 55
& 010 0110 26 Y 101 0110 56
" (sgl. quote) 010 0111 27 w 101 0111 57
(010 1000 28 X 101 1000 58
) 010 1001 29 Y 101 1001 59
* (asterisk) 010 1010 2A z 101 1010 5A
+ 010 1011 28 [101 1011 58
, (comma) 010 1100 2C \ 101 1100 5C
~ (minus) 010 1101 2D] 101 1101 5D
. (period) 010 1110 2E A 101 1110 5E
/ 010 1111 2F — (underline) 101 1111 5F
0 011 0000 30 110 0000 60
1 011 0001 31 a 110 0001 61
2 011 0010 32 b 110 0010 62
3 011 0011 33 c 110 0011 63
4 011 0100 34 d 110 0100 64
5 011 0101 35 e 110 0101 65
6 011 0110 36 f 110 0110 66
7 011 0111 37 g 110 0111 67
8 011 1000 38 h 110 1000 68
9 011 1001 39 i 110 1001 69
011 1010 3A j 110 1010 6A
; 011 1011 3B k 110 1011 68
< 011 1100 3c I 110 1100 6C
) 011 1101 3D m 110 1101 6D
> 011 1110 3E n 110 1110 6E
? 011 1111 3F o 110 1111 6F
@ 100 0000 40 p 111 0000 70
A 100 0001 a1 q 111 0001 71
B 100 0010 42 r 111 0010 72
c 100 0011 43 s 111 0011 73
D 100 0100 a4 t 111 0100 74
E 100 0101 45 u 111 0101 75
- F 100 0110 46 v 111 0110 76
G 100 0111 47 w 111 0111 77
H 100 1000 48 x 111 1000 78
I 100 1001 49 y 111 1001 79
J 100 1010 4A z 111 1010 7A
K 100 1011 4B { 111 1011 78
L 100 1100 ac | 111 1100 7C
M 100 1101 4D } 111 1101 7D
N 100 1110 4E ~ 111 1110 7E
o 100 1111 aF

*American Standards Institute Publication X3.4-1968

C-2

APPENDIX D

BINARY, DECIMAL AND HEXADECIMAL NUMBERING

D-1 GENERAL

This appendix covers numbering systems to three bases (2, 10, and 16) which are used
throughout this manual.

D-2 POSITIVE NUMBERS

D-2.1 DECIMAL (BASE 10). When a numerical quantity is viewed fromright to left, the right-
most digit represents the base number to the exponent 0. The next digit represents the base
number to the exponent 1, the next to the exﬁonent 2,then exponent 3, etc. For example, using
the base 10 (decimal):

106 105 104 103 102 10! 100
X, X XX X X X

or

Loooo
100,000
10 0G0
1000 100 10 1
X, x) X X

For example, 75,264 can be broken down as follows:

75, 264
TT
4x10°-4x1 - 4
6x10'-6x10 - 60
l————2x10°-2x 100 - 200
5x10°-5x 1000 - 5000

7x10°-7x 10,000 - +70000
752641

D-1

D-2.2 BINARY (BASE 2). As base 10 numbers use ten digits, base 2 numbers use only O and
1. When viewed from right to left, they each represent the number 2 to the powers0, 1, 2, etc.,
respectively as shown below:

215 ; 26 25 o4 o3 22 21 90
(32,768) e e e (64) (32) (16) (8) (4) (2) (1)
X eee X X X X X X X

For example, 11011, can be translated into base 10 as follows:

or 1101 1, equals 27,10'

Binary is the language of the digital computer. For example, to place the decimal quantity 23
12310) into a 16-bit memory cell, set the bits to the following:

0 : 15
o|loflo|loflo]lo]lolo|lo|loflo|l 1o 11} 1]

whichis1+2+4+ 16 - 23,,.

D-2.3 HEXADECIMAL (BASE 16). Whereas binary uses two digits and decimal uses ten
digits, hexadecimal uses A16 (0to9, A, B, C, D, E, and F).

The letters A through F are used to represent the decimal numbers 10through 15 as shownon
the following page.

D-2

NIU Nl6 NlO NI(
0] 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

When viewed from right to left, each digit in a hexadecimal number is a multiplier of 16 to the
powers O, 1, 2, 3, etc., as shown below:

163 162 16! 160
(4096) (256) (16) (1)
X X X X

For example, 7 B A 5, can be translated into base 10 as follows:

7 B A 5 ;
I T—5X16°= 5X1 = 5
10x161=10x16 = 160

11X162=11X256 = 2816

7X163= 7X409 = 28672

3165310

or 7 B A 55 equals 31,653,o.

Because it would be awkward to write out 16-digit binary numbers to show the contents of a
16-bit memory word, hexadecimal is used instead. Thus

003E;s or > 003E (> indicates hexadecimal)
is used instead of
0000 0000 0011 1110,

to represent 62, as computed below:

D-3

BASE 2 BASE 10

101 1 1 1 09 6 210
' [———oxzo = 0 | T__zxmo = 9
: 1x2t = 2 : 6 X100 = 60
1x22 = 4 6;
1x28 = 8 10
1x24 = 16
5 -
TXZ 32 BASE 16
6210
l L——-MX?GO = 14
3x 16! = 48
6210

Note that separating the 16 binary bits into four-bit parts facilitates recognitic n and translation
into hexadecimal.

0000 0000 0011 1110, B Fi6

I A Vb

0 o 3 E1g 1100 0111 1011 1111y

Table D-1 is a conversion chart for converting decimal to hexadecimal and vice versa. Table D-2
shows binary, decimal and hexadecimal equivalents for numbers Oto 15. Note that Table D-1 is
divided into four parts, each part representing four of the 16-bits of a memory cell or word (bits
0 to 15 with bit O being the most significant bit (MSB) and bit 15 being the least significant bit
(LSB). Note that the MSB is on the left and represents the highest power of 2 andthe LSB on the
right represents the O power of 2 (2°- 1). As explained later, the MSB can also be used to signify
number polarity (+ or —).

NOTE
To convert a binary number to decimal or hexadecimal, convert
the positive binary value as described in Section D-4.

D-4

TABLE D-1. HEXADECIMAL/DECIMAL CONVERSION CHART

MSB LSB
16° 16 16" 16° ‘
BITS|0 1 2 3|4 5 6 7 |8 7 8 11| 12 13 14 15

HEX DEC HEX DEC HEX DEC HEX DEC
o} oo olo o| o 0
1 4096 | 1 256 | 1 16| 1 1
2 8192 | 2 512 | 2 32| 2 2
3 12288 | 3 768 | 3 48 | 3 3
4 16384 | 4 1024 | 4 64| 4 4

|5 20480 | 5 1280 | 5 80| 5 5
6 24576 | 6 1536 | 6 96 | 6 6
7 28672 7 1792 | 7 112} 7 7
8 32768 | 8 2048 | 8 128| 8 8
9 36864 | 9 2304 | 9 144 | 9 9
A 40960 | A 2560 | A 160| A 10
B 45056 | B 2816 | B 176 | B 1
C 49152 | C 3072 | C 192| C 12
D 53248 | D 3328 | D 208| D 13
E 57344 | E 3584 | E 224| E 14
F 61440 | F 3840 | F 240 | F 15

To convert a number from hexadecimal, add the decimal equivalents for each hexadecimal
digit. For example, 7A82,s would equal in decimal 28,672 + 2,560 + 128 + 2. To convert
hexadecimal to decimal, find the nearest decimal number in the above table less than or equal
to the number being converted. Set down the hexadecimal equivalent then subtract this
number from the nearest decimal number. Using the remainder(s), repeat this process. For

example:

31,3620 = 700016 + 269010 7000

2,690 = AOO;s + 13010 AQ0O

13010-801 + 210 80

2]0 = 2!6 2
TAB2,6

D-5

TABLE D-2. BINARY, DECIMAL, AND HEXADECIMAL EQUIVALENTS

BINARY DECIMAL HEXADECIMAL
(N2) (No) (Ni6)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101’ 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 , 10 A
1011 : 11 B
1100 _ 12 (o
1101 13 D
1110 14 E
1111 15 , F
10000 16 10
10001 17 ' 11
10010 18 i 12
10011 19 ' 13
10100 20 14
10101 21 15
10110 22 16
10111 23 17
11000 24 18
11001 25 19
11010 26 1A
11011 27 1B
11100 28 1C
11101 29 1D
11110 30 1E
11111 31 1F
100000 32 20

D-6

D-3 ADDING AND SUBTRACTING BINARY
Adding and subtracting in binary uses the same conventions for decimal: carrying over in
addition and borrowing in subtraction.

Basically,
0 1 10
+1 +1 -1
1 10 (the carry, 1, is carried to the left) 01 (1 is borrowed from
top left)
1 1
} =0 + carry 1
1 1
+1 = 0 (from above) + 1 = 1 + 1
11 101

—\—carry carry 1 + 1 = 10————/—

1 1000 0110
} =0+ 1 carry
1 -1 Borrow the 1 -1
1 0111 0111
=0+ 1 carry
+ 1

. o
carry 1 + carry 1

D-4 POSITIVE/NEGATIVE CONVERSION (BINARY). To compute the negative equivalent
of a positive binary or hexadecimal number, or interpret a binary or hexadecimal negative
number (determine its positive equivalent) use the two’s complement of the binary number.

NOTE
To convert a binary number to decimal, convert the positive binary
value (not the negative binary value) and add the sign.

Two’s complementing a binary number includes two simple steps:

a. Obtain one’s complement of the number (1’'s become O’s, O’'s becomes 1's) (invert
bits).

b. Add 1 to the one’s complement.

For example, with the MSB (left-most bit) being a sign bit:

010 (+25) 11 (=1 110 (-29) 101 (-39)
101 Invert 000 Invert 001 Invert 010 Invert
+1 Add 1 +1 Add 1 +1 Add 1 1

110 (-29) 001 (+19) 010 (+29) 011 (+39)

This can be expanded to 16-bit positive numbers:

(=39F61g) 0017 1001 1111 0110 (39F64g
1100 0110 0000 1001 Invert

+1 Add 1

(=C60A1g) 1100 0110 0000 1010 (C60A4g
SIGN BIT(-)

+14,83810)

—14,8381g) Two's Complement

And to 16-bit negative numbers:

(=C60A1g) 1100 0110 0000 1010 (C60Aqg
0011 1001 1111 0101 Invert

+1 Add 1

—14,8381()

(=39F64) 0011 1001 1111 0110 (39F64g +14,8381g) Two’s Complement

SIGN BIT(+)

D-8

APPENDIX E

PARTS LIST (TM990/100M-1)
TABLE E-1. PARTS FOR ALL BOARDS

SYMBOL DESCRIPTION QTy.
CltoC4 Capacitor, 22 uF, tantalum electrolytic 4
C7 to C22, Capacitor, 0.047 uF, axial lead 35
C24 to C42
c23 Capacitor, 18 pF, cerarﬁic disc 1
CR1 Diode, 1TN914B | 1
L1 Inductor, 0.33 pH 1
P2 Connector, EIA, 25-pin socket 1
R1 R4, R5 Resistor, 68 ohms, 1/4 W, 5% 3
R2, R9, R11 Resistor, 220 ohms,‘ 1/4 W, 5% 3
R3, R8, R10 Resistor, 330 ohms, 1/4 W, 5% 3
R6, R12, Resistor, 4.7 kilohms, 1/4 W, 5% 5
R13, R14, R19
R7 Resistor, 1 kilohm , 1/4 W, 5% 1
R15 to R18 Resistor, 10 ohms, 1/4 W, 5% 4
R20, R34, R35 Resistor, 3.3 kilohms, 1/4 W, 5% 3
R21 Resistor, 33 kilohms, 1/4 W, 5% 1
S1 Switch, SPDT 1

E-1

u1 Resistor Pack, 4.7 kilohms, 16-pin

u2 74LS241N, octal buffer

U3 to U10 74LS243N, quad bidirectional buffer

u11, u14 7438N, quad, 2-input NAND gate, open collector
u12 75140N, receiver

uU13, U21, u27 74LS04N, hex inverter

u1b TMS 9901, programmable systems interface
u1é TMS 9900, cen;crai procéssing unit ”

ut7z 74S287N, PROM, 256 x 4 bits |

u1is 74LS20N, dual 4-input NAND ‘gate

u19 74LS362N, clock gbenerator

u20 74LS138N, 3 to 8 decoder

U22, U2s, 74LS74AN, dual D flip-flip

u30, U31

u23 74S288N, PROM, 32 x 8

u25 Resistor pack, 4.7 kilohms, 14 pin

u28 | 74LS132N, quad, 2-input NAND gate, Schmitt trigger
u29 74LS08N, quad, 2-input AND gate

u32, U34, TMS 4042-2 RAM, 256 x 4 bits

uU36, U38 (Replaceable with 2111A-4, 2111A, or 2111A-2)
u40 TMS 9902, asynchronous communications controller
U441 75189N, EIA driver

7U46 75188N, EIA driver

E-2

VR1

XU15

XU16

XU17, XU23
XU19, Xu40
XU32 to XU39
XU42 to XU45

Y1

TABLE E-2. ADDITIONAL PARTS FOR ASSEMBLY 999211-0001

SYMBOL
a1

R30

R31

R32

u42, u44

Converter, =5 V, LM7905C
40-pin socket, low profile
64-pin socket, low profile
16-pin socket, low profile
20-pin socket, low profile
18-pin socket, low profile
24-pin socket, low profile

Crystal, 48 MHz, 3 overtone \

(TTY INTERFACE)

DESCRIPTION
Transistor, 2N2905A, PNP
Resistor, 560 ohms, 1/2 W, 5%

Resistor, 2.7 kilohms, 1/2 W, 5%

Resistor, 330 ohms, 1/2 W, 5%

TMS 2708 EPROM (1024 x 8 bits each) with TIBUG
monitor

E-3

QrTy.

TABLE E-3. ADDITIONAL PARTS FOR ASSEMBLIES 999211-0002
AND 999211-0003 (MULTIDROP INTERFACE)

SYMBOL DESCRIPTION Qry.
CR2, CR3 Zener diode, 3.3V R ' 2
R22, R24, Resistor, 330 ohms, 1/4 W, 5% =~ T 4
R26, R28
R23, R25, Resistor, 27 kilohms, 1/4 W, 5% 4
R27, R29 DR
u42, Ua4 TMS 2708 EPROM (1024 x 8 bits each) 2
ua47 75112, balanced line transmitter 1

u48 ‘ 75107, balanced line receiver ’ — 1

TABLE E-4. ADDITIONAL PARTS FOR ASSEMBLY 999211-0003 ONLY
(MULTIDROP INTERFACE)

SYMBOL DESCRIPTION QrTy.

U33, U35, TMS 4042-2 RAM, 256 x 4 bits each 4
u37, U39 (expansion RAM) o
U43, U45 : TMS 2708 EPROM, 1024 x 8 bits each : 2

(expansion EPROM)

E-4

-4

NOTES: UNLESS OTHERWISE SPECIFIED
1. CAPACITANCE VALUES ARE \N MICROFARADS

‘2. INDUCTANCE VALUES ARE IN MICROFARADS

Bt 39uf C5%C6 ELECTROLY TIC CAPACITORS ARE USER
INSTALLABLE. THESE SHOULD BE TANTALUM CAPAC\TORS,
15V MINIMUM.

@ oN THE TM990/\00M—\ ASSEMBLY, THE TTX IWWTERFACE
1S POPLULATED. ON THE TM990/100M-2 ASSEMBLY, THE
MUL TI-DROP INTERFACE 15 POPULATED

THIS ILLUSTRATES THE CUT AND JUMPER
° FOR 9992//-0004 ASSY ONLY

PIN I OF Ul IS REMOVED FROM CIRCUITRY
FOR -0004 ASSY ONLY

SPARES
Code R
| N
" ,!o 741504 75188
-
3 12 vzs
(L [%.7%A),
74L504N 4

1
3
fuzs) 74L508N A
| — .7l
>
7
DD - Lo

e e g PI-15,76
C20,(24,(30|
C3z,C41 4+ c2
el T3
+5v ——
C1-Cil,C18,C19,C2
I LZb,ﬁL!,L!’.i +Ic: -tlc:&
C31,033-C39 35¢ 35|
I _ D4TxF T“/-F /EZr‘F

> P1-3,4;,91,98

GND e +> P1-1,2,21,23,25, 21,31,
J_CZI,(ZZI = 11,19,81,83,85,
— At 89,91,99,100
— A 779100,
snp03 _ 9f Ia CRUULKD oy, 04TuF caz es
sHz ~CRUIN 100 7 SELS o4 -5V 04LF = 22.F
NelLd s SEL LM7305C - 3sv
A4 12l . Js SEL3
A3 30 XUS0 la SEL2 ey P1-13,74
Az jal 53 SELL g
Al '50' éz CRUOUT SH2

sz AW 16l J' IORST o \1s
| I—, -

LOGIC DIAGRAM, TM 990/100M
: SHEET 10f 8

ONIMVHA TVNOISNIWIA ANV SOILVINIHOS
4 XIAN3ddV

¢4

sHB—RESET SRESET po &l 00
on 8 —L0AD 46AD [y - T I
sh7-dAQ g pol3 D2
o 8l D24 D3
| _62 3oz PSS D4
sHe{ _¢3] 2845 0546 05
04 2864 peld?Z D6
SH 3-—'1—2?@————-3%INTREQ 075%-————31—
1CO pside D8 =
T — bobo pg (SMEe i
SH3 1c2 3alic, ool pio '
s 0 33dcs D112€ DI
_READY e2pcany biB3 Dz
_waly 00000 3 oL —]
SH4 WAIT |
WOLD 647575 3255 Y
sHe+¢7—HUDA ___ Suopa Uyl 0158 ———DIS_
VBB(-5V) s A0 R4 AQ
VCCG5Y) v A 122 Al]
- 59vCCCC Az E2 Az "5H4§7
VDDGI2V) 27| rl A3 |
v A4 aa_ 4
L aQyes as 2 A5 YSH 4,5¢7
CRUIN 32 ne B A6
5HI,3¢7< CRUOUT QQgsuoNT a7l A7 }
CRUCLK ol onuou 6 A8 HHNERT
sH 1,3 —SB RUCLK A8 A |
- — SIWE A9 i J
MEMEN 63 men arolla A0
smi DBIN DBIN A E All]
Al2fi2 Alg SH 5 6T
Ar3fll Al3
Al Al4 ver
LIMS9900 | ' TALSO4N
o vol e CRUCKB 132 CRUUKB. s34
is vidNe o
SuqCRUCLK _ _ | __ 4 y Yz'l-‘?——»—;%—— SHB
[Blgumeen) G2A v:s'-'l———— SH 8
) 28 val-NC
CRUCLK gim YS%NC
Ye2—NC
U20v77 LREX oy

w1 DB, ©,7
+5v L 545208

CENTRAL PROCESSOR UNIT

T4LS13

LOGIC DIAGRAM TM 890/100M

SHEET 2 0of 8

€4

ol \NTRee | mTIlL _ e fex
L9 =2'1co NT2[I8 PI-13 14 Leal
SHe IC1 INT3 PI-I5 lipee] S
362. 1c2 TNTa18 | lipee P18
12 13 INTS ——> PI-17 [a0z
Pa- 3>~
+5v —40vec WG e L]d
P1-20
. v RS Pa-7
5S INTT5/P1 P4
= S paza
sno—%?———-———'%zﬁ TRTT/peeL PIoll
sHe -
: L 4CRUIN - INTT3/PY iy +iy o R,
snz{ (_;{gﬁo%T CouT ! QN 33K, W
;ﬁ RUCLK TNTTZAI ' P1-9 P2-G .
st ———— 5 P4-3Q -lav TERM
A1 3655 /P30 LA re-s {_}
ALl 365 Wb SRR ') R35 Ah -
2 | A1Z 22, WTT0/f12 i SR L o 5
HEY A 553 WA P1-34 JI3
Al4 245, IN Q/PB Pl-53
L Srise +5v
Praf2d- — — A TERM
‘.N.T_a/l \5)1:355 | Rse3e Rev p2-2 f S\
TP ple Ji |r‘1’>;1 {]Jl‘v -
) P4-40 1TTY INPULL } —
uis pe 2 P4-12 L'i‘J TTY ROV U48-2 (SHB)
£ P4- 10 +12v . : >P2-18 +i2v ERM
. ﬁ‘; P4-18 R3I ,;A__}
TMS9901 Pa-1G 2.7Kn .
Pz g Pa~-l4 /2w INFUSH __ ,45-1(su8) o o——>p2-12
P15 1 Pa-22 v TTY RCV RTN p2-23 — e
Fo IE) YN) N (T2 (- 200 T 20 r4-z0 z
[xd¥dxddxdWivdydedclx il 330.0,1/2w
I,\ =Cr '; ~ f; 1189~ GG GT G "‘l 9 ‘I‘lam
35 o SS9 o e R
et ‘r[viv%’ e T[‘fl 4k e RS232XMT L. o pai
- 4 +5v —ov ’ >
0 B o ’ e
§6C.i,) /2
(5] +5v * T:V’;‘_%Egﬁ-) Po-24 L
QUTPUSH __ 4q-8(sn &)
L INT R2 TTYXMT
i2l5s el INT 4 T5188N 3_“‘1"‘“ e Pees
fég uao XOUTZ QL_JT S RO u4g) e — U47-9 (5K 8)
2 RTS2 BTS _ 2ljagp3 900, p;. [249 an
o 6 - -IEQG 75188 Fes NC U4l U4T 5(5HR) CR1 2N2905A
850 T3 U2I-11(5H8) N oo Yl - |
1AcRuQLK DSRIZ DSR St DTAL oo o0 ingi4s L =
RUOUT N L4 - - —
EV e I TS oo B o Lot 4 TTY INTERFACE
3555 SEL o T JT 0 NC 4y
SH 4 22025EL +5v —=Qvee Zas-asH 8)
S I THAbashe e a RCV (LK oroiq
I =crlo SEELT D/luﬂ 2=
i [- n e XMT CLK
_ [2 - .
) TMS9902/03 < [7si89n SPZ-15

SHEET 30of 8

¥4

U18 8 DIN

SH T
-5V
7ALS20N — 5V
14 3 R2
4K /4 We " /4 W
k o/ S 220, 1AW
RAM SHG
MROM | PI-30 READY.B
x EROM }5*‘5 +5v 3 ! 6 READY
ADG o TOSEL . 5 5
AQ 2hpr D04 Al RS oo O e
Al 3] apE 2200 - 3;33 _[———%s 74LS04N
AZ ADD V4 moin.e - 7 34 AOLD
sHe A3 Zlanc P92 - Sz ogpl— 3 HOLB 54,
A% giADB urz RI0 *5V vz g aLsoan
AS ADA 3300 P +5Vv
1AW
745287 = Rer ﬂ_1
+5V > RO -
RIS 220 a, 75140 =
10Ka AW
/4 W <
5) SS0TSEL
|4C—S po! 39Q25EL }5” 3
WDE DO2
A6 ¥a00 D03 EXTCRO sy 7
J A7 2lapc po4d SECL
SHZ A8 lWApe DOS SEL2
L A9 1lapa 3 SEL: SH 1
0 3877 SEL+ ruis
u23 9 SELS HOLDA | 981 HOUDA 12]aA o=
[ale}:] [L/"| WE [343‘394111“*"\”*5&*"“"‘75
745288 WE 3] 9)3A
SHz \ | DBEIN 10l 3v(8 DBIN.B PI-82,
vzl _ DBIN__|11NO 4loa I
{ > AG she I J‘j"'l_r cho[RfeMEMCICE p)p4
74LS04N MEMEN | IN2! MEMEN 1A
wair E———— 2[R TR 10
SHe 74L504N uil
MEMCYC +5v T43BN
RI2
4.7Kn, 1AW
[4A
i HOLDA. B
WEMEN 13les Hll__ HOLDA.B . p)_g¢
: 9 IORES
s 03 3| sH g —LORES 10}se 5 IORESB s pi-se
4loa Pre———
CRUCLKBCL s 6 CRUCR.B_,p).g7
vy SH 2
b |
SH 8 1

MEMORY CONTROL

I

4 CRUELK i
\ SH2 LCRUCLK .
. Curismeery |

—

CONTROL LINE BUF

723N U4

FERS

LOGIC DIAGRAM, TM 990/100M
SHEET 4 of 8

u4z

TMS2708

of ™~ of OF T ol of —

u43
TMS2708

9
S
I3
¢
Il
0
6
8
0Z]
AS— g
AS + 551
A2+ =gl
2l
I
80]
60 ~ Ol
010 Si
110 4l
2id <
eid 1
10 el
Gia 3
8
02
AG ~ 73]
>m+.lﬂM
A2+ —;l
|| +sose
> 4> [l
F91Le |
Q> >
+8022
—0 > 4> 4 il
FatLe
> _.||l|u_
i El
| [
| el
i 7T
. Ol
6}
8
o2
I
[
A1+
2
[0
8022
>4
F3ile
> >
+80L¢2
4> 5
F9122
> o

u44
TMS2708

O[O € <] ™)

EROM

SH4

SH 2

SHEET 5 of 8

LOGIC DIAGRAM, TM 990/100M

EPROM MEMORY

9-4

(V] o
o~ 9 T V] T ;‘ o
3z 5 3 5 5 2
—~ e o T —— ———
2| 4| 9 ol = ™~ o
B [by wfof I = g ol 0| 2 3] LYENIN of =N
ngé alalalo NEGEE o N alalal 9
RAM
Ab
DBIN
E
a2/ Q) pus pa i e e PN B ol oty ™ ‘_‘QS"{QQ‘LQ‘Q T2 N=9 0 99 b N SR o ot P B N B
B -
u3a €828 u3e u37? U3s U39
TMS4042-2 T™MS4042-2 U35 TMS 4042-2 TMS 4042-2 TMS 4042-2 TMS 4042-2
~NOW T MmN O
LA L < < < L g
N O == N[] <] OO N[=] o] < RN ERNRE NEGCEERNEE O[O =T O[O] <]
Ald Al4
Al3 Al3
Al2 Al2
All) All
AlO . AlQ pSHZ ,
A9 A9
A8 A8
A7 A7
RAM MEMORY

LOGIC DIAGRAM, TM 990/100M
SHEET 6 of 8

L4

SH?2 HOLDA }D‘I HOLDA

u2i
TALS0AN
+5v +5V
[i4 la .
Vi
D3)1‘5 CCI 3 D3.B Pl-30 A3 1 3 A3.B Pl-60
Dz 190 2af4——DZB ;5 p) 35 AZ__LI0Q 4 A2B, pi-g5g
SHZ D1 g 3al2 pl-3q SHZ Al 9 5 ALBJ pysg
DO Blas ane DO.BJ py-33 AO ‘e U7 e AGBS o oo
G,
S 5— pouT [134T +5V——9
DBIN U295 GBA
sHe 74L508N L !
— 17 74Ls243n (7 74LS243N
SH4 -0l = | =
—15v —+5V
o e 4
D1 ! J T L I ALB pi-pa
DG i a D68 | p_39 ALBy piog3
SHZ D5 9 5 DS.By p3g SHZ A, B G2
D4 3 6 D4.B b3 L
»—y—ld La
o L2
7 74LTC43N 74LE243N
+oV : +5v
i »
o]} 1 DILBy a4 ALl 3 AR, piep
DIo 10 4 DIO.By - A0 10 4 AI0B
10.5y p1-43 P61
SH2 D9 9 5 D9.B] o4, SH2 A9) 5 A9.BL o .o
D8) 3 D8.8y p,_4, A8 & AB.B. o 1o
1 i
——q U~ +5vV——df
>J;L 15 us +5v
i I k2o
74L5243N 4LS243N veT
__!_ LS2 - ; J:z 74LS2 sue CRUOLT 2} 5™y l8__CRUOUT.B, o) 5,
o8a /AW | ne—Aliaz vefe ne
+ov : [Ne—8liaz yalld e
. 14 14 _rqe CRUIN.B 8}, alle CRUIN
PI-29 1A4 Y4 Sh 2
D15 L 3 DBy pi4p Ui 3 MBS, gy g sHz—18Q Uony o2 —18AB _, py-j9
Di4 19 4 DI4E p_gq I Al 10 ALB, by g sns—21 1382 2vofl OB Pi-22
SH2 D3 9 5 DI3-BS b 46 sy2 AL3 9 LABBY b _7p sHE— 03 155 a3 py30 P38 Pl-24
Di2 ISJ € Di2.By pi_45 (—Al2 ‘m 3 AZB . b1_¢n SHE—CLK :; AG 2v43 KB Pl-26
~——4 UG +5V-— ulo +5V—— 226
K L3 shaEXICRU 1] U2
GNI
T 74LS243N 7 74L5243N ‘—f—w T4LS24IN

DATA /ADDRESS BUS BUFFERS

LOGIC DIAGRAM, TM 990/100M
SHEET 7 of 8

8-d

LREX 5028
P1-94 sHe 4 SH2
B 55F su . TALS0sN a7 TaLSTAN
1AW T3 ma 2 g 3
- R7 o
1.0K T4LS04N i/'a 74L5132N
e yza” SH2 uzs
o1-9 RESTART.B
93 R4 |] cs
68, 1/aW SWF SH3_XoUT Son 242 ouTPULL
pz-lo ¢ I El _RTS N JORTSac ,e8 OUTFPU3H SH3
- nLsoen gz, il Reo
: Ney 2} 5 U4T7 27K, /4w
+5v Tal'® +5V
+5v Vet R
HE | el
| 2a.7Ka lpy2 s (SN J9 3300, I/4W
L) — -5v Wyee- =
EXTCLR RI7,100, /4w
p1-2g¢ EXTCLR.B & .;mw iz 104,/ Ol s ?IC "’:23 v
1
Hev 200 L |RBJOAYAW gp R29 +6ND li—i W
+5V-—-CEVee 19 02 SHZ 27K, /4w = =
10cnp v 75112 =
- 3 RIS, 100 ,/4W
L g TR s
Tt c23 R
200¥ 16510, /AW "
S3HE 18,F Uoe P i"“‘ sHz chrks
yi—OXTAL L Gipp Ol sy 7t 4 95 [0) ue
4EMHz O Fzrrne - LJAL -
19 = 03 DUPLEX SELECTORS
. XTAL? @31y, SH 1,13 ¢4
o gE e R LR2¢, 3300, 14w
oscourfle— CLK 5y I
ol RESET -, , 5w 3 INPUSH [PR,
oH 3 INPULL EI
SN74LS3621 re W .
CR3 S AT 16 SR NS
IN5333 i 6 s o
h +5v I';‘ veer
RESET/LOAD/CLOCK = syt
12174
Tl yag
N 75107
MULTI-DROP INTERFACE @

LOGIC DIAGRAM, TM 990/100M
SHEET 8 of 8

COMPONENT SIDE

SEE VIEW 8

i

|
.

T o - d
Ble.70
4PLACEDE 6 25— oh
2PLACES) 6.3T5 -
G125 A
g .
o H §~
2 P
) L
[N H H
H »
T3
P
E] s s
i
........ §
RER
@\ et
R \ -
L SRR T
! T
-.615
.062+.009 N A
(A-8)
RS
HRGE
L
.035%.012
2 PLACES
30°%5°
2 PLACES
SECTION A-A
SCALE: NONE
4 PLACES

(3 PLACES ROTATED 180°)

S 06 na5° |c
10 PLACES o

o

<[]

.25 X495°
/a PLACES

6.394
b.338 BSC

7.900
BASIC

HOLE SCHEDULE

FINISHED HOLE
LTR DIAMETER : REI:;::;‘G
NT
Al .09utB87 PLATE OPT
B| sHop oPTION EXT INDEXING
C| .03128%% PLATE THRU
DI .033%8%: PLATE THRU
E[03583 PLATE THRU
F| 046588 PLATE THRU
H .094 r.003 NOT PLATED
J 140 t.004 NOT PLATED

‘—VI/EQUAL JPACES@,/09BASIC—~‘

L

GO N D DD 950 BAsIC
O DD O——— 6. 338 BASIC

|
b —12 EQUAL SPACES @ ./109 BAX/C—-I

9y
e view B
SCALE: 4/1

REF

APPENDIX G

990 OBJECT CODE FORMAT

G.1 GENERAL .

In order to correctly load a program into memory using a loader, the program in hexadecimal
machine code must be in a particular format called object format. Such a format is required by
the 7/BUG loader (paragraph 3.2.7 explains loader execution). This object format has a tag
character for each 16-bit word of coding which flags the loader to perform one of several
operations. These operations include:

* Load the code at a user-specified absolute address and resolve relative addresses.
(Most assemblers assemble a program as if it was loaded at memory address 0000;s;
thus, relative addresses have to be resolved.)

* Load entire program at a specific address.
= Set the program counter to the entry address after loading.

* Check for checksum errors that would indicate a data error in an object record.

G.2 STANDARD 990 OBJECT CODE

Standard 990 object code consists of a string of hexadecimal digits, each representing four
bits, as shown in Figure G-1.

TAG CHARACTERS /

YTy NaIyN

00000SAMPROG QOMOCéOOAOOQOBCOGD8000290042C0020A0024BC81 BCO02A7F21AF

A0028B024 1B0000BCB41B0002B0380A00CAC0052C00A2B02E0C0032B0200BOFOF7F1DEF

A00D6BCOAOCO0CAB04C3BC160CO0CCBC1A0C0O0DOBC072B0281B3A00A00ECB02217F151F

AOOEEB0900B06C1AO00EAB1102A00F2B0543B11F8B2C20C0032BC101B0OB44BEQ447F18EF

A0100BDD66B0003B0282C00A2B11EDB0O3407F832F —/
CHECKSUM FIELD

2000500 10C 7FDABF

x LENGTH OF RELOCATABLE CODE

RELOCATABLE ENTRY ADDRESS (BEGINNING OF EXECUTABLE CODE)

END OF OBJECT CODE MARKER

A0001462

FIGURE G-1. OBJECT CODE EXAMPLE

G1

The object record consists of a number of tag characters, each followed by one or two fields as
defined in Table G-1. The first character of a record is the first tag character, which tells the
loader which field or pair of fields follows the tag. The next tag character follows the end of the
field or pair of fields associated with the preceding tag character. When the assembler has no
more data for the record, the assembler writes the tag character 7 followed by the checksum
field, and the tag character F, which requires no fields. The assembler then fills the rest of the
record with blanks, and begins a new record with the appropriate tag character.

Tag character O is followed by two fields. The first field contains the number of bytes of
relocatable code, and the second field contains the program identifier assigned to the program
by an IDT assembler directive. When no IDT directive is entered, the field contains blanks. The
loader uses the program identifier to identify the program, and the number of bytes of
relocatable code to determine the load bias for the next module or program. The PX9ASM
assembler is unable to determine the value for the first field until the entire module has been
assembled, so PX9ASM places a tag character O followed by a zero field and the program
identifier at the beginning of the object code file. Atthe end of the file, PX9ASM places another
tag character zero followed by the number of bytes of relocatable code and eight blanks.

Tag characters 1 and 2 are used with entry addresses. Tag character 1 is used when the entry
address is absolute. Tag character 2 is used when the entry address is relocatabie. The
hexadecimal field contains the entry address. One of these tags may appear at the end of the
object code file. The associated field is used by the loader to determine the entry point at which
execution starts when the loading is complete.

Tag characters 3 and 4 are used for external references. Tag character 3 is used when the last
appearance of the symbol in the second field is in relocatable code. Tag character 4 is used
when the last appearance of the symbol is absolute code. The hexadecimal field contains the
location of the last appearance. The symbol in the second field is the external reference. Both
fields are used by the linking loader to provide the desired linking to the external reference.

For each external reference in a program, there is a tag character in the object code, with a
location, or an absolute zero, and the symbol that is referenced. When the object code field
contains absolute zero, no location inthe program requires the address that corresponds to the
reference (an IDT character string, for example). Otherwise, the address corresponding to the
reference will be placed in the location specified in the object code by the linking loader. The
location specified in the object code similarly contains absolute zero or another location. When
it contains absolute zero, no further linking is required. When it contains a location, the addre s
corresponding to the reference will be placed in that address by the linking loader. The locat:)n
of each appearance of a reference in a program contains either an absolute zero or anott er
location into which the linking loader will place the referenced address. :

G-2

TABLE G-1. OBJECT OUTPUT TAGS SUPPLIED BY ASSEMBLERS

TAG HEXADECIMAL FIELD)
I
CHARACTER (FOUR CHARACTERS) SECOND FIELD MEANING
0) Length of all relo- 8-character program Program start
catable code identifier
1 Entry address None Absolute entry
address
2 Entry address None Relocatable entry
address
3 Location of last 6-character symbol External reference
appearance of last used in relo-
symbol catable code
4 Location of last 6-character symbol External reference
appearance of last used in absolute
symbol code
5 Location 6-character symbol Relocatable external
definition
6 Location 6-character symbol Absolute external
definition
7 Checksum for None Checksum
current record
8 Ignore checksum None Do not checksum for
error
9 Load address None : Absolute load
address
A Load address None Relocatable load
address
B Data None Absolute data
C Data None Relocatable data
D Load bias value* None Load point specifier
F None . None End-of-record
G Location 6-character symbol Relocatable symbbl
) definition
H Location 6-character symbol Absolute symbol
definition

*Not supplied by assembler.

Tag characters 5 and 6 are used for external definitions. Tag character 5 is used when the
location is relocatable. Tag character 6 is used when the location is absolute. Both fields are
used by the linking loader to provide the desired linking to the external definition. The second
field contains the symbol of the external definition.

G3

Tag character 7 precedes the checksum, which is an error detection word. The checksum is formed
as the record is being written. It is the 2's complement of the sum of the 8-bit ASCII values of each
character in the object record from the first tag of the record through (and including) the checksum
tag 7. If the tag character 7 is replaced by an 8, the checksum will be ignored. The 8 tag can be used
when object code is changed in editing and it desired to ignore checksum.

Tag characters 9 and A are used with load addresses for data that follows. Tag character 9 is
used when the load address is absolute. Tag character A is used when the load address is
relocatable. The hexadecimal field contains the address at which the following data word is to
be loaded. A load address is required for a data word that is to be placed in memory at some
address other than the next address. The load address is used by the loader.

Tag characters B and C are used with data words. Tag character B is used when the data is
absolute; an instruction word or a word that contains text characters or absolute constants, for
example. Tag character C is used for a word that contains a relocatable address. The
hexadecimal field contains the data word. The loader places the word in the memory location

specified in the preceding load address field, or in the memory location that follows the
preceding data word.

To have object code loaded at a specific memory address, precede the object program with the
D tag followed by the desired memory address (e.g., DFDOO).

Tag character F indicates the end of record. It may be followed by blanks.

Tag characters G and H are used when the symbol table option is specified with other 990
assemblers. Tag character G is used when the location or value of the symbol is relocatable,
and tag character H is used when the location or value of the symbol is absolute. The first field
contains the location or value of the symbol, and the second field contains the symbol to which
the location is assigned.

The last record of an object code file has a colon (:) in the first character position of the record,
followed by blanks. This record is referred to as an end-of-module separator record.

Figure G-2 is an example of an assembler source listing and corresponding object code. A

comparison of the object tag characters and fields with the machine code in the source listing
will show how object code is constructed for use by the loader.

G-4

SOURCE STATEMENT NO.

LOCATION COUNTER (ADDRESS RELATIVE TO FIRST OBJECT BYTE)

MACHINE CODE

SAMFLE SDSMAC 945278 **
PRGE B0l
Elnl=h [/// 1IDT “SAMPLE” '
Q2 G0 ABaE - DATA WSPARCE
B3 0Nz BasA”’ DRATA START
284 ARR4 B3 DRATA ©
QeSS 0806 WSFACE BSS 32
N6 PAZE TABLE BS5 1900
0007 QSR START
Q288 OM¥3A K4CC CLR 12
903 B03C B4CH CLR @
0819 GP]E P26 LI 2, TRBLE
A3 HY26” . '
aBall1 GBn32 0300 MoY O, @TABLE+2
ae54 BBzl
A8912 889s 1u81 JMF $+44
BHiz 8998 LooP
8814 0058 rzZund LI 4, >1224
2@5A 1234
08915 0Q3C 244 ANDI 4, >FEED
‘ POYE FEED »
8016 BORO DCE4 MOVB 4. %2+
B017 BARZ B85 LI 5, 558555
BOA4 5555 ' ,
BE1E BBRE CBBS MOV S5, @TABLE
BOAS BB26~
BY413 END
MO ERRORS
NOOARSAMFLE OOFPFE00F noo
CO02SEIO0LIENZ04El 2234 E0C44 EFEEDEDC 24 EOSOSESSSSRCE0S 0o
3 ee

: SAMPLE = 00-00-00 033143232

FIGURE G-2. SOURCE CODE AND CORRESPONDING OBJECT CODE

G-b

P1, P2, AND P4 PIN ASSIGNMENTS

APPENDIX H

TABLE H-1. CHASSIS INTERFACE CONNECTOR (P1) SIGNAL ASSIGNMENTS

P1 P1 P1

PIN SIGNAL PIN SIGNAL PIN SIGNAL
33 DO.B 71 A14B 12 INT13.B
34 D1.B 72 A15.B 1 INT14.8
35 D2.B 22 218 14 INT15.B
36 D3.B 24 238 28 EXTCLK.B
37 D4.B 92 AOLD.B 3 +5V

38 D5.B 86 HOLDA.B 4 +5V

39 D6.B 82 DBIN.B 97 +5V

40 D7.B 26 CIKB 98 +5V

41 D8.B 80 MEMEN.B 75 +12v
42 D9.B 84 MEMCYC.B 76 +12v
43 D10.B 78 WE.B 73 -12v
44 D11.B 90 READY.B 74 -12v
45 D12.B 87 CRUCLK.B 1 GND
46 D13.B 30 CRUOUT.B 2 GND
47 D14.B 29 CRUIN.B 21 GND
48 D15.B 19 IAQ.B 23 GND

57 AO.B 94 PRES.B 25 GND

58 A1.B 88 iORST.B 27 GND

59 A2.B 16 iNT1.B 31 GND

60 A3B 13 iNTZ2.B 77 GND

61 A4.B 15 INT3.8 79 GND

62 A5.B 18 INT4.B 81 GND

63 A6.B 17 iNT5.B 83 GND

64 A7.B 20 INT6.B 85 GND

65 A8.B 6 INT7.B 89 GND

66 A9.B 5 INT8.B 91 GND

67 A10.B 8 INTO9.B 99 GND

68 A11.B 7 INT10.B 100 GND

69 A12B 10 iINT11.8 93 RESTART.B
70 A13B 9 INT12.8

H-1

TABLE H-2. SERIAL I/0 INTERFACE (P2) PIN ASSIGNMENTS

P2 SIGNAL DESCRIPTION
PIN
1 GND
7 GND
3 RS232 XMT RS232 Serial Data Out
2 RS232 RCV RS232 Serial Data In
5 CTS Clear to Send
(3.3KQ pull-up to +12 V)
6 DSR Data Set Ready
(3.3KQ pull-up to +12 V)
8 DCD Carrier Detect
20 DTR Data Terminal Ready
18,23 TTY XMT TTY Receive Loop/Private
Wire Receive Pair
24,25 TTY RCV TTY Transmit Loop/Private
Wire Transmit Pair
17 RCV CLK Receive Clock
15 XMT CLK Transmit Clock
12* +12V Jumper Option for Microterminal
13* -12V Jumper Option for Microterminal
14* +5V » Jumper Option for Microterminal
16 RESTART Invokes the Load
Interrupt to the TMS 9900 CPU

*When using the Microterminal, these voltages are jumpered to the corresponding pin in connector P2. Else, the voltages are not connected.

H-2

TABLE H-3. PARALLEL 1/0 INTERFACE (P4) SIGNAL ASSIGNMENT

o SIGNAL o SIGNAL
20 PO 17 GND
22 P1 15 GND
14 P2 13 GND
16 P3 11 GND
18 P4 9 GND
10 P5 39 GND
12 P6 37 GND
24 iNT15 or P7 35 GND
26 iNT14 or P8 33 GND
28 INT13 or P9 31 GND
30 iNT12 or P10 29 GND
32 INT11 or P11 27 GND
34 iNTT10 or P12 25 GND
36 iNTS or P13 23 GND
38 INT8 or P14 21 GND
40 INT7 or P15 19 GND
1-6 Spares

H-3

APPENDIX |
TM 990/301 MICROTERMINAL

.1 GENERAL

The Texas Instruments Microterminal offers all of the features of a minicomputer front panel at reduced cost.
The Microterminal, intended primarily to support the Texas Instruments TM 990/100M and TM 990/180M
microcomputers, allows the user to do the following:

° Read from ROM or read/write to RAM

o Enter/display Program Counter

° Execute user program in free running mode or in single instruction mode
L] Halt user program execution

[Enter/display Status Register

° Enter/display Workspace Pointer (this term is unique to the Texas Instruments 9900
microprocessor)

° Enter/display CRU data (this term is unigue to the Texas Instruments 9900 microprocessor)
L] Convert hexadecimal quantity to signed decimal quantity
L Convert signed decimal quantity to hexadecimal quantity

1.2 SPECIFICATIONS

° Power Requirements
+12V (£3%), 50 mA
—12V (£3%), 50 mA
+5V (£3%), 150 mA

® Operating Temperature: 0°C to 50°C (+32° to +122°F)
° Operating Humidity: O to 95 percent, non-condensing

L] Shock: Withstand 2 foot vertical drop
1.3 INSTALLATION AND STARTUP

To install the Microterminal onto a TM 990/100M or TM 990/180M microcomputer, do the following:

° Attach jumpers to J13, J14, and J15 on the TM 990/100M or to J4, J5, and J6, on the
TM 990/180M board to route voltages to the Microterminal. Set jumper J7 on the TM 990/100M
or jumper J13 on the TM 990/180M to the EIA position.

° Attach the EIA cable from the Microterminal to connector P2. Signals between the Microterminal
and the microcomputer are listed as in Table 1.

o To initialize the system, actuate the microcomputer RESET switch, then press the microterminal

CLRjkey.

NOTE
If the user has installed the optional filter capacitor on the RESTART input, this
capacitor must be removed for proper operation (e.g., if C5 is installed on the
TM 990/100M or TM 990/180M microcomputer, this capacitor must be
removed).

kP Texas INsTRUMENTS

Microterminal
TM 990/301

oo

N
ECRU
Rt

RU

EC
DC

CL|

7

7

FIGURE I-1. TM 990/301 MICROTERMINAL

TABLE I-1. EIA CABLE SIGNALS

EIA Connector Interface At TM 990/100M/180M

Pin Signal P2 Pin Signal
2 TERMINAL DATA OUT -2 RS232 RCV
3 TERMINAL DATA IN -3 RS232 XMT
7 GND -7 GND

12 +12V -12 +12V

13 —-12Vv -13 —-12V

14 + 5V —14 + 5V

16 HALT -16 RESTART

CAUTION
Before attaching the Microterminal to a power source, verify voltage
levels between ground and EIA connector pins 12, 13, and 14
at connector P2 on the board. Voltage should not exceed values in
Table I-1. '

1.4 KEY DEFINITIONS

.41 DATAKEYS

CLR

Clear Key — Depressing this key blanks display, initializes and sends initialization message (ASCI| code
for A and ASCII code for Z) to host microcomputer.

Hexadecimal Data Keys — Depressing any one of these keys shifts that value into the right-hand display
digit. All digits already in the data display are left shifted. For all operations other than decimal to
hexadecimal conversion, the fourth digit from the right is shifted off the end of the right-hand display
field when a data key is depressed. For a decimal to hexadecimal conversion, the fifth display digit from
the right, rather than the fourth, is shifted off the end of the data field.

1.4.2 INSTRUCTION EXECUTION

Pressing this key while a program is running (run displayed) will halt program execution. The address of

RUN

the next instruction will be displayed in the four left-hand display digits, and the contents of that
address will be displayed in the four right-hand digits. Pressing this key while the program is halted, will
execute a single instruction using the values in the Workspace Pointer (WP), Program Counter (PC), and
Status Register (ST), and the displays will be updated to the next memory address and contents at that
address.

Pressing this key initiates program execution at the current values in the WP, PC; run is displayed in the
three right-hand display digits.

1.4.3 ARITHMETIC

The signed hexadecimal data contained in the four right-hand display digits is converted to signed

decimal data. Note that the fourth display digit from the right is the sign bit (1 = negative). The
conversion limits are minus 32,76810 (80001¢g) to plus 32,767 (7FFF1g). Two H->D key depressions are
required. The sequence is:

1. Depress |H—D]j.

2. Enter data via hex data key depressions.

3. Depress . The results of the conversion are displayed in the five right-hand display
digits.

The decimal data contained in the five right-hand display digits is converted to hexadecimal. The

* conversion limits are the same as for hexadecimal to decimal conversion. The sequence is:

1. Depress .

2. Enter data via hex data key depressions.
3. Depress . The results of the conversion are displayed in the four right-hand display
digits.

1.4.4 REGISTER ENTER/DISPLAY

Pressing this key causes the value displayed in the four right-hand digits to be entered into the WP,
DWP | Pressing this key causes the WP contents to be displayed in the four right-hand display digits.
EPC | Pressing this key causes the value displayed in the four right-hand digits to be entered into the PC.
DPC | Pressing this key causes the PC contents to be displayed in the four right-hand display digits.
EST | Pressing this key causes the value displayed in the four right-hand digits to be entered into the ST.
Pressing this key causes the ST contents to be displayed in the four right-hand display digits.

1.45 CRU DISPLAY/ENTER

Pressing this key causes the data at the designated Communications Register Unit (CRU) addresses to
be displayed. Designate from one to 16 CRU bits at a specified CRU address by using four hexadecimal
digits. The first digit is the count of bits to be displayed. The next three digits are the CRU address
(equal to bits 3 to 14 in register 12 for CRU addressing). When is depressed, the bit count and
address are shifted to the left-hand display, and the right-hand display will contain the values at the
selected CRU output addresses. The output value will be zero-filled on the left, depending upon bit
count entered. If less than nine bits, the value will be contained in the left two hexadecimal digits. If
nine or more, the value will be right justified in all four hexadecimal digits.

ECRU | Pressing this key enters a new vaiue at the CRU addresses and bit count shown in the left display after
depressing |DCRU]. The new value is entered from the keyboard and displayed in the right-hand
display. Pressing [ECRU| enters this value onto the CRU at the address shown in the left display.

CAUTION
Avoid setting new values at the TMS 9902 on the TM 990/100M/180M
through the CRU (TMS 9902 is at CRU address 00401g), as this device
controls 1/O functions. '

1.4.6 MEMORY ENTER, DISPLAY, INCREMENT

Pressing this key will cause (1) the memory address {(MA) in the right-hand display to be shifted to the
left-hand display and (2) the contents of that memory address to be displayed in the right-hand display.

Pressing this key causes the value in the right-hand display to be entered into the memory address
contained in the left-hand display. The contents of that location will then be displayed in the four
right-hand display digits (entered then read back).

Pressing this key causes the same action as described for the key; it also increments the memory

address by two and displays the contents at that new address. The memory address is displayed on the
left and the contents at that address is displayed on the right.

1.5 EXAMPLES
1.5.1 EXAMPLE 1, ENTER PROGRAM INTO MEMORY
Enter the following program starting at RAM location FEOO1g. Set the workspace pointer to FF004g and the

status register to 20001g. Single step through the program and verify execution. Then execute the program in
free run mode and verify execution. Then halt program execution.

1-4

NOTE
In the following examples, XXXX indicates memory contents at
current value in Memory Address Register.

OPCODE INSTRUCTIONS
04Co CLR RO CLEAR WORKSPACE REGISTER 0
0580 INC RO INCREMENT WORKSPACE REGISTER 0
0280 Cl RO, >00FF CHECK FOR COUNT 255
OOFF ~
16FC JNE $—6 JUMP TO INC RO IF NOT DONE
10FF JMP $-0 STAY HERE WHEN FINISHED
KEY ENTRIES DISPLAY

Clear Display Depress CLR

Enter PC Value Depress [E] @ @ | [FEOO

Enter into PC Depress EPC)

Display PC Depress DPC [|FEOO

Enter ST Value Depress @ @@]

Enter into ST Depress EST - 2000

Display ST Depress DST [|2000

Enter WP Value Depress @E)] - FFOO

Enter Into WP Depress - FFOO

Display WP Depress | [FFoo

Enter MA Value Depress @@ @ - FEQO

Enter Into MA Depress EMA mm

Enter CLR 0 Opcode Depress [0 [4[€] [0] FE00[04C0

Enter data,

increment MA Depress

Enter INC 0 Opcode Depress [0] [5](8][0] FE02[0580

Enter Data,

Increment MA Depress FEO4] xxxx]

Enter Cl Opcode Depress [0 0] FE04[0280

Enter Data,

increment MA Depress FEOG

KEY ENTRIES DISPLAY

Enter CI

Immediate Operand Depress @ @
Enter Data,

Increment MA Depress
Enter JNE $-6

Opcode Depress m@ FEO8|16FC

Enter Data,

Increment MA Depress FEOQA m
Enter

JMP $-0 Opcode Depress [1fo] FEOA[10FF

Enter Data,

Increment MA Depress FEOC]xxxx |

The program has now been entered into RAM. Since the PC, ST and WP values have been previously set, the
program can be executed in single step mode by depressing the H/S key.

DISPLAY EXECUTES

(AFTER) INSTRUCTION
Depress H/S . [FE02[0580 CLR RO
Depress H/S | FE04[0280 INC RO
Depress H/S Cl RO>O0FF
Depress H/S FE02{0580 JNE $-6

This cycle will continue until RO reaches the count of 255 at which point the program will continuously
execute at location FEOA 1g because it is a jump to itself.

To verify this, depress: DISPLAY

RUN | | [run

The program should now be “looping to self’” at location FEQA16. To verify this, depress:

s

Now examine the memory location corresponding to Register 0.

Depress [o] [q
Depress

This illustrates that FF1g did become the final contents of WPO. Note that, when the program was being

entered into RAM, was used rather than because of the rather desirable feature of automatic
address incrementing. The advantage of using is that the actual contents of the addressed memory
location are displayed after key depression (echoed back after being entered).

1.5.2 EXAMPLE 2, HEXADECIMAL TO DECIMAL CONVERSIONS
Convert 800016 to a decimal number

Depress CLR
Depress H~>D
Depress [o] [o] [o]
Depress

Uil

|
w
N
~
o
]

Convert 002016 to a decimal number

Depress CLR T 1
Depress H-D C T 1
Depress [2][0]
Depress H-D -

1.5.3 EXAMPLE 3, DECIMAL TO HEXADECIMAL CONVERSIONS
Convert 45.I oto hex

Depress CLR C T 1
Depress I —
oepress [4] [5]
Depress D-H | | 2p|

Convert —102410 to hex

Depress CLR C T 1
Depress O] [o] [4] [~ Tio2a
Depress [[Fcoo

1.5.4 EXAMPLE 4, ENTER VALUE ON CRU

Send a bit pattern to the CRU at CRU address (bits 3 to 14 of R12) OE01g with a bit count of 9 containing a
value of 5 (0000001012).

Depress ——
o [3] [0] [E] [0 oo
oepress [0] [0] (0] [E]

Depress ECRU

YYYY indicates value at the current CRU address. Note that aj]DCRU]Joperation is always required to
specify bit count/CRU address.

1.56.5 EXAMPLE 5. ENTER, VERIFY VALUE AT MEMORY ADDRESS

Enter 004016 into location FE20 and verify that it got there.

Depress CLR

Depress E @ E
Depress EMA FE20]xxxx]
Depress [0] [0] [4] [o] FE20j0040]
Depress FE20[0040 |

~The contents of address FE20 are verified by an echo of data from memory to diSpIay following the
pressing of[E_@, If it is desired to view and enter data at address FE22, depress

APPENDIX J
EXAMPLE PROGRAMS

J.1 MASTERMIND GAME

J.2 HI-LO GAME

J.1 MASTERMIND GAME

The printout of this game in execution (below) illustrates game rules and objective. The program generates a five-
digit number. To win, you must deduct which five digits make up the number, and their correct order. Only digits
1 to 8 are used. After each guess, the program prints the letters X and O for each correct digit entered. In addition,
each X indicates a digit is in the correct column. You are given only 12 tries to win.

MAZTERMIMD., . GUEZE MMMMM H=1-2 12 TRIEE
YO 3ET « FOR A MATCHs O FOR A HIT

1..11111

2..12222
2. 3133
4..41

4, .44144

5. 55415

CONTROL-H CAUSES ENTRY TO BE IGNORED, ALLOWS ENTRY REPEAT

WIMHER! M=cd4731

wei

aoo -
Rtate

- CR RESTARTS PROGRAM

MASZTERMIMD, . SUEZE HMMMM M=1-2 12 TRIE:Z

vOU GET « FOR A MATCH. O FOR A HIT

TN e DD 0 e

(1}
3

ESC KEY RETURNS CONTROL TO MONITOR

J-1

MMINL

MASTERMIND

00D
Q002
0004
QOO%
OQDA
Q007
OO0
QOO
Q010
Qo1
Oo12
OOl
0014
0015
O0LA
Q017
Q013
Q01
0OZ0
OO0
0022
Q0=
00z4
Q02D
QO24
D027
Q023
Q0w
DOD20
Q031
OOz
QOZz
QO0O=4
Q0%
OOQ3EA
0037
OoO3
QO
040
0041
0042
Q043

0044

Q045
QO &

Q047
Q043

FEGO

FEQO
FEOZ
FEO4
FEO&

FEOS
FEQA
FEOC
FEOQE

TAMIRA

FOR THE TM 2%

QOO0
Q001
QOO
QQO3
0004
0005
QOOA
0007
OO0
D002
QOO0A
OOOR
QOOC
D000

QZEO
FED
2ZFAQ
FFoQZ

ZFAQ
FF72
O4C0
Z04%

ok ok ox ok kX

I

DDk kX kK ok kxR
Lol

il
]

5TA

MOO

227 wE 012542 113/7= FAGE Q001
O/1XX MICROCOMFPUTER

IDT “MMIND-
+* * i* 3% 3+ -3 k-3 + * #* 3% * 3* %
THIS PROGRAM PLAYS MASTERMIMD ON THE TM 220/1XX MICRII-—-
COMPUTERSZ. THE ORJECT OF THE GAME I3 TO GUESZ, BY
LOGICAL DEDUCTION, A S-DIGIT NUMBER GEMERATED BY THE
COMFPUTER. THE COMFUTER USES QHNLY THE LDIGITS 1 To 2. You
HAVE 12 GUESZES TO ACCOMFLISH THIS. THE COMPLUTER WILL
INODICATE A CORRECT DIGIT GUESSED BY A LETTER O AN
INDICATE THE DIGIT I3 CORRECTLY PLACED WITHIN THE
S—-OIGIT NUMEBER WITH THE LETTER X. OTHER RULES THAT AFFLY:
- A CARRIAGE RETURMN RESTARTS THE GAME
- AN ESCAPE KEY INFUT RETURNS YOI TO THE MONITOR
- CONTROL H KEY ALLOWS YOU TO SCRAF FPREZENT LINE OF
" ENTRIES AMDN REENTER NEW LINE .
THIS GAME I3 A3SEMBLED TD BE LOADED AT M.A. »FEOQO RY
LUZE OF THE ACRG ASIEMEBLER DNIRECTIVE. THIS PROGRAM CAN EBE
AZSEMBLED BY THE LELA AT THE ADDREISES THOWM IMN COLLIMN
TWO OF THE LISTING. CORREZPONDING OBRJECT CODE FOR THOSE
ADDREZSES IS SHOWM IN COLUMN THREE. GOOD LILCE!

#* 3 3 +* * + +* +* 3 +* +* + = =
Ect o MI. OF GUESZES
Eclt 1 RANDIOM NCO. ARRAY ADDRESS
ECil 2 RANDCOH N, COMPUTATION LUISE
ECit = RANDICOM NO. COMPUTATION USE
E) 4 10 CONSTANT FOR DECIMAL COMFUT
Bl o CONTAINS ASCII X7
EQY A CONTAINS AZCII <0f
EQU 7 ADDREZS OF X72 & 072 BUFFER
[={n]R} 3
ECiy @ RANDCM NO. ARRAY ADDRESS
gl 10 RANLDIOM M. ARRAY ADDRESS+S
EQ 11 RANDICOM NO, SEED
EGi 2 ASCII 17 (>32100)
ECiy 13z CAST T CHARACTER MAF
ADRG »FEQOQ LJAD AT M.A. FEOO

#* +* 3* 3 3* * R +* #* +* 3* * 1+ *

FROCEDIRE AREA OF EXECUTABLE COLDE

* ¥* * ¥* ¥* #* 3 3* 3 3#* & * * ¥
RT

LWFI W= ZET WIREZSPACE FOINTER

XOP @RLULEZ, 14 FRINT RLULE=

XOF @CRLF,14 FRINT CR-LF

CLR RO COLNTS 12 GUES=ES

MV R%,R1 R1 POINTS TO RANDIOM ARRAY

J-2

MMIND

TAXMIRA

DIETTT ##

OIS 43

MASTERMIMD FOR THE TM 2%0/1XX MICROCOMPUTER

QOS50
00

Q052

Q053

D054

QO ED
0041
Q0L

O0ED
QO0a&4
QOAS
QO &M
QOLT7
0O0AZ
D0EP
0070
0071
0072
QO72
Q0O74
0075
007 A
0077
QN7

FE10
FE1Z

FE14

FEL1&

FE1E <

FE1&

FELLC

© FELE

FEZO

COMPUTE RANDOM NUMBER,

11=2/72

FAGE QDOZ

0z0z2

FEZZ &2

FEZ4

FEZ&

FEZ2
FEZA
FEZC
FEZE

FEZO
FEZZ
FEZ4
FEZ4A
FEZ&

0 FEZA

FEZ=C

FE3E

! FE40
FE4Z Z03C

FE44
FE4&

FE4Z 2

FEA4A

D50

coz7
Q4F 2

04F2

Q402

030
04C1
2C44

[8 JEFCNES

20320

MO1O

LI

R2, 0%

MPY
Al

R11,RZ

R3, 291

MY RZ,R11

CALZE RAMDOM DIGITS

* ok % %

MOLS

CLEAR ARRAY THAT HOLDS
IF CONTROL H FREZZED,
RESTRT ™MoV

ZONVERT GUESS

MOZ0

ORI

SRL RIS

AE R1Z,RI

MOVB R, *R1+
= R1,R10

e MO1O

INC RO

R7.R2

CLR #RZ2+
LR #R2+
LR #RZ

MOV RO.RZ
CLR Rl

oIV R4.R1
SWFR R1

SOCB R1-RZ
JER MOZ
ORI RZ, 20320

SR S {8
MY Rz, @50

XOF RGUESNG, 14

J-3

MOVE TO LOCATION NN

COMFUTE RANDCM MUMBER

T BE IN RANGE 1-3

MAKE

AzZCILS

FANGE

1~=

FUT IN RANDOM ARRAY
TEST FOR END OF LOOF

0o UNTIL R

DETERMIME NUMBER OF UPCOMING GUESS
FRINT UPCOMING GUEESS

GLESS=GLUE=S

ASCII X735 ANMD O

START HERE

XOE ADDR TO
+*
*
3*

NUMBER FOR OQUTPUT

GUESS NO. T

ODIVIDE RiRZ

=R10

MUMBER TO FROMPT LSER

+1

Rz

0 RZ

EBY 10

GBUDTIENT IN LEFT BYTE

MERGE GIOTI
PUT IN
MAKE ASCII

MAKE ASCII

ENT %

DIGITS

SFACE %

REMAINDER
SPACE IF FIRST DIGIT=0

ODIGIT

FUT IN FRINT BUFFER

FRINT SUESS

NLUMEBER

MMINLD

TXMIRA

VELZZT

#4 Q75143

11=2/72 FAGE Q003

FOR THE TM 220/1XX MICROCOMPUTER

CZow
Z047
DR
FFZA
0O4cn

- 2F4z

Qe

QDO
1301

OZER

1ROO

FE&LA Z3C

"MASTERMIND
QOs7
O0ss
[alat=i
D020 FE4C
0071 FE4E
DOez FEZO
FEZZ
0OvE FETD4
00w4
Q095 FESA
[SISXT:N
007 FESEZ
FEZA
QO FETIC
009 FESE
FE&OD
0100 FE&Z
0101 FE&4
FE&&
0102 FE&S
0103
Q104 FE&C
0103 FE&E
FE7O
0104 FE72
0107 FE74
[sREal=]
0102 FE74
0110 FE72
0111 FE7A
0112 FE7C
0112 FE7E
0114
0115 FE=2O
01146 FEZZ
0117 FEz4
0113 FE3&
D117 FEZSZ
FEZA
D120 FEZC
0121 FEBE
FEZ0
G122
0122 FE®2
FE?4
0124
0125
D124 FEZA
FE?=Z
0127
D128 FEYA
0129 FEZC
FEZE

2200
1EF1
IFO3

YEO3
14032
QA3
oz4%
Os2hD

1A%
ZFAO
FFO4

ZFAQ
FF&O

ZFAO

FEFA

10RA
Q440
[sT8}=18]

3#

INFLUT CHARACTER %

#
Moy
MoV
LI

CLR
MO3ZO
XOF
CR, E
I

* WAS

JER
[§

JAEG
CI

JER
CH
i
I

JH
XOP
IS DIGIT
B
JNE
ZWFEB
MOVE
INZ
MO40
MOVE
SRIZ
o
AL
I
L
XopP

XF
MO4S

XOF
#*

JMF
MONITR B

R7, RS
R7.R1
R, INFUT

R1z CLEAR BIT MAF OF CAST CQUT
R3, 132 READN DIGIT
SCAPE, OR CONTROL-H KEY FRESZED?

RZ, 20000 CAR. RET. ENTERELD™
START YES. REZTART GAME
R3,>1BOO ESCAFE KEY ENTEREDT
MONITR YEZ, RETURNM TO MONITOR
RZ, 20300 COMTROL-H FREZSED?
RESTRT YE=, REZTART THIZ ENTRY
R3,R12 IS NO. LEZZ THAN 17
MO0 YE=, READ ANOTHER

3, FEE00 IS NO. GREATER THAN =7
MO0 YES, READ ANOTHER

Rz, 12 N, IN RANGE, ECHO

A MATCH AND

Rz, #RE+
M40

R3

RS, #R1+
R1z

3, #RI2+
R13,1
R, R10Q
MOZO

R1, XOB+S
MOS0
@ACEBF, 14

RWINNER, 14

ENIUMEBER, 14

MOOS
@000

J-4

TESZT FOR COLUMNM MATCH

RANDOM NUMBER
X %

AODR IN RZ
O BUFF ADLDR IN R1

INFUT BUFFER ADDR IN RZ

IN RIGHT CiOLUMNY

ODIGIT IN RIGHT COLUMNMT

N,
YES,
MAP CAST OUT CHAR
ZERD OR CHAR TO
FUT BIT IM MAF
FIFTH NUMBER INFUT?
N, READ
YE=, I3

N,
YEZ,

NE WINMER YET
FRINT X2 BUFF

FRIMT WINNER

FRINT NUMBER

FLAY AMOTHER GAME
RETURM TO MONITOR

Y
Ui

ANOTHER GUEZE
X BUFFER FULL?Y

LL X~

CHAR

FUT CHAR IN CHAR BUFFER
FUT BINARY O IN MSB OF R
FUT AN X IN THE X2 BUFFER

INFUT BLFFER

W
-

MMIND

28 FEAG

0142
0143
0144
0145
0146
0147
0142

0149
0150
0151
0152
Q152

0154

0155
01546

0157

D152

0152

0140

FEAZ

. FER4

FEAG
FEAS
FEAA

FEALC
FEAE
FEBO
FEBZ
FEBA4
FEBA
FEEZ
FEBA

FEBC
FEBE

FECO
FECZ
FEC4
FECA
FEC=
FECA
FECLC
FECE
FEDO
FEDZ
FELD4

TXMIRA
MASTERMIND FOR THE TM

QN

FFZA

DOFZ
1300
[{8 14

O2RD

QR1D
YEOZR
1205
1604
Lz 4 4
026D
OO0
BOCZ

Pt =]
T i

1AFA

0z2E2
FFSF
1AEF
ZFAO
FFO4
Q280
QOO
1AARE
ZFAO
FF&A
10E0O

MOSS

MOS7

MOLO

LI

MOVE
JEG
My
SRL

SRC
ZB
A0
JNE
MOVE
ORI

AR

(e §

JL
XOp

L
XoP

IMF

R, INFLUT

#RZ+,R2
MOAO
R%, Rz
R1Z,11
R1Z=,1
RZ, #RS+
MOS7
MOS7
Ré&, #R1+
R13, =23Q00
RZ.R3

R2,R10

MOSS

RZ, INFUT+S

MOSZ
@XOBF, 14

RO, 12

MO1%
@SORRY, 14

MO45

J-5

112/7%2 FAGE Q004

INFUT BUFFER START IN RZ

TEZT BYTE FROM INFUT BUFFER
BYTE CAST OUIT IF EQUAL TO ZERD
Fo POINTS TO WORE ARRAY
FOSITION CAST OUT CH MAFP

TEST FOR CAST QUT CHAR

DOES BYTE MATCH WORKE ARRAY 7
IF CAST OUT, MOS7
IF NOT EQUAL, MOS7
ON HIT. FUT O IMN XO
MAP CAST QUT CHAR

BUFFER

SPOIL COMPARIZON, FINISH LOOF

TEST FOR LAST DIGIT
IF LOW, DO ANOTHER DIGIT
LAST DIGIT INM INFUT BUFFER?

N,
YEZ,

O NEXT DIGIT
FRINT X BUFF

TWELVE GUEZZES MADE™

MO, MORE GUESZES REMAIM
YEZ, PRINT SORRY

FRINT NUMBER FOR FLAYER

MMIND

MASTERMIND

01462
0142
0144
0145
Q3
D167
0142

0146%
0170

0171

0172
0173
0174
0175
0174
0177
0172
0177
0130
0121
0122
0133
0124

0133
01346

0127

Q133

Q122

0190
0191

0192

FED&
FED=
FEDA
FEDC
FEDE
FEEO
FEE1
FEEZ
FEE=
FEE4
FEE&
FEEZ
FEEA
FEEC
FEEE
FEFO

FEFZ
FEF4
FEF5
FEF7
FEFS
FEF®

FEFA
FEFE
FEFC
FEFD
FEFE
FFQO
FFOZ

FFo4
FFOD
FFOA
FFOS

T FFOA

013
0124
0175
01964

FFOC
FFOE
FFOF
FF10
FF11
FF1z

TXMIRA
FOR THE TM

Q000
QOO0
QOO0
0000
OO0/

52

20

4F

20
FFQA
QOO0
FEFE
FFO32
5555
2100
QOO0

ODOA
QOO0
ZE
ZE
07
0o

20
20
4E
=0
QOO0
QOO0

Q000

20
20
(alalals]
Q000
QOO0

ODOA
40
41
S
4

4%

* #*

* % % %k &k

* *
WORESFAICE
5 LATA

b

DATA
TEXT

TEXT

DATA
DATA
LATA
DATA
DATA
DATA
DATA
*

VILZET w#
PP0O/1XX MICROCOMFUTER

* #*

ODATA SECTION

0,0,0

10

<
XOR

0

NN
NN+
nEEES

R Do Pt

33100
Q

TEXT STATEMENTS

#

LINE NUMBER OF THIS GUESS

GUEZND DATA
0D DATA
TEXT
BYTE

RANDOM NUMBER OF COMPUTER

NUMBER TEXT

NN LOATA

XS AND O
XOBP TEXT -~

XOE DATA

=

>0D00A
$—%

-~ Ed
. e

7.0

N="

0,0,0

0,0,0

(SR

, 0

25143

#*

BUFFER SHOWING

112/73 PAGE 0005

#* # # * #* *
£ # #* # # #
RO-RZ

R4 CONVERSION CONZTANT
FS

Ré&

R7

R3

R%

R10O

R11-RANDOM NUMEBER SEED
R12

R1Z-CAST QUT CHAR MAF

TR, LINE FEED
CONVERTED GUEZZ NUMEBER

BELL /STOF

IN ASCII

HITS % MIZZES

SFACES FOR PRINTING

RULES CQUTFUT AT BEGINNING OF GAME

RULE=
OATA

=ODO0OA

TEXT “MASTERMIND-

J-6

MMIND TXMIRA ¥2E227 *+# OvI2T43 118/7= FAGE 0004
MASTERMIND FOR THE TM 920/1XX MICROCOMPUTER

FF1z w2
FF14 40
FF1S 4%
FF1é4 4E
FF17 44
0197 FFig ZE TEXT “..GUEZZ NNNNN N=1-2 12 TRIES”
FF12 ZE
FF1A 47
FF1B bk
FF1iC 45
FFLD b=es
FF1E o
FF1F 20
FFZO 4E
FF21 4E
FFz2 4E
FF23 4E
FF24 4E
FF25 20
FF2é& AE
FF27 =D
FFza 21
FFz2 2D
FFZA =8
FFZB 20
FFZC =1
FFZD 32
FFZE 20
FFZF =4
FFz0 T2

FFz1 49

FFZ2 45

FF33 b
0192 FF24 ODOA DATA +OD0A
0199 FF34 =k TEXT “YaQld GET X FOR A& MATCH, O FOR N HITS

FF27 4F

FFz2 Sh

FFZz% 20

FFzA 47

FFZE 4%

FF3C =L

FFZD 20

FFZE btcd

FFZF 20

FFa0 44
FF41 4F
FF4z =z
FFaz 20
FF44 41
FFAS 20
FF44 4D
FF47 41
FF43 =4
FF4% 4%

J-7

MMIND TXMIRA 9346227 ## QY2548 112/73 FAGE 0007
MASTERMIND FOR THE TM #20/1XX MICROCOMPUTER

FF4a 4%
FF4B 2C
FFAC 20
FFaD 4F
FF4E 20
FF4F &

FFSO 4F
FFS1 Sz

FFS2 20
FFSZ 41

FFS4 20
FFSS 42
FFS& 4%

FFS7 54
Q=00 FFER (a]s) RYTE O

MMIND

Q202

QOZ203=

Oz04

Q205

Q020&

0OZ07

OZOS

Q209

0210
0211

TXMIRA 7
MASTERMIND FOR THE TM ¥

FFZA 0000
FFSiZ QOG0
FFD QOO0

FF&O Z0
FF&1 20
FF&Z =7
FF&= 42
FF&4 4E
FFAS 4E
FF &k 45
FF&7 =2
FF&& 21
FFA? 0o
FF&A Z0
FF&B 53
FF&C aF
FFAD 2
FF&E T2
FF&F =
FF70 00
FF71 00
FF72 on
FF72 OA
FF74 (w]e]
FF73 Q0

0000 ERRORS

BLF
INFUT

E-3

VREZZT #

20/ 1XX

FER 0OF
OATA

WINNER TEXT

SORRY

CRLF

BYTE

TEXT

BYTE

BYTE

END

D95l 45

MICROICOMPUTER

MUMBERSZ IMNPUT
0,0,0

WIMNMER "

»21,0

SORRY 7

0,0

20 A, 0.0

START

J-9

112/7%

FAGE 000S

TXXREF

CRLF
GCo
GUESND
INFUT
MOOS
MOL1O
MO15
MOZ0
MO30
M0O40O
MO45
MOS0
MOSZ
MOTS
MOS7
MO&O
MONITR
NN
MUMEER
RO

R1

R10O
R11
R1z
R1z
Rz

R=

R4

RS

Ré&

R7

Rz

R?
REZTRT
RIJLES
SORRY
START
WINNER
WS

AOR
XOBF

THERE ARE 0041

YITSAZ *A

0Z09
0124
01s3
OZ0=
0045
0051
OQkA
O0OET
aTul=g- !
0114
0125
Q1S
0137
0142
0130
015z
01272
0132
(o =i
QOZ2

00232

QO3
OOz
0024
0025
D024

DORS

0024
0027
Q023
0OZ?
0030
alnich |
Q070
0174
Q207
QOAZ
0205
DA D W
0192

0121

091232179

0044
Q0O=4

QOE5

Q12
QO&1L
0153
OO0
0104
Q01190
01460
G120
0133
0132
0145
0129
01060
0174
01264
Q047
004z
011%
QCAD
[l ki
QOS=
QO3
QOS2
002z
0054
0103
0149
0077
0112
0147
Q070
Q00
0043
0102
G144

D043
0119
0121

SYMBOLS

0104

01464

0175

QOA7
0059
0147
0117
QOss
0103
011z
QOS3
0024
Q033
0105

Q071
0109
OO0

D211

0172
0154

113/

0154

o112

0075
00460

01351

0114
Q070
Q092
Q057
0107

0117
0140

J-10

72

0157
Q076

0141
0071
0115
DOTE

Q109

0140

FPAGE D1

0077

0142
D072
01324
005

0111

0144

0073

014%=
QO7=
0133
D0P5
011S

01%1

QO75
0154
007

0132

0021

Qo7

QO

0144

011z

0031

0101
0147

J.2 HI-LO GAME

The prinout of this game in execution (below) illustrates game rules and objectives. The program generates a number
between 0 and 999. You have unlimited guesses to find the number, but you can be an expert, above average, or a
turkey depending upon how many guesses used.

TL OFEQOQ

HiJEEZE

TR LOAD AND EXECUTE PROGRAM
W=FFEN

F=0132 FEDN

TE

CHHM YO SUEEE MY MUMEBER <0 TO
INFUT A HUMEER % PREZI THE =P
S0 TOO LOWs TEY AGAIM!?
von TOO LOWs TREY AGAIM??
TOO HIGHs TREY ASAIMS
TOO LOWs TRY RAGARIMIY
TOO HIGH: TEY ARSAIN?
- CONTROL H PRESSED TO IGNORE ENTRY
TOO HIGHs TRY RAGAIN?
TOO HIGHs TRY RAGAIMN?
CORFECT! vOU'RE AREOWE RYERARGE BECRUZIE IT TOOEK wOL 02 TRIES!

CHM YO0 SUEZE MY MUMBER <0 FO 339 T
INPUT A HUMEER & FREZZ THE ZPRCE EBRR.
Son TOO LOWs TRY AGAIM!?

Ton TOO HIGHs TRY AGAIM?

=11 TOO HIGHs TRY RAGHRIM?

CORRECT! vOU'RE AM EXPERT EBECRUZE IT TOOE wOU 04 TRIEZ!

CARH YO0 SUESE MY MUMEER o0 TO
IMPUT A MUMEER % PREZZ THE =P
200 TOO HIGHs TREY ASARIMS

=00 TOO HIGHs TRY AGHIM? - CR PRESSED TO START NEW GAME

CAM vOU SUEZE MY HUMEER <0 TO 9397

INFUT A MUMEBER % FREZZ THE ZPACE BAR.

S0 TOO HIGHs TEY RAGHIM?

400 TOO HIGHs TRY RASAING

Z0n TOO HIGHs TEY RAGHRIMN?

cnn TOO HIGHs TREY AGAIN! <« ESC PRESSED TO RETURN TO MONITOR

J-1

GLESS

0001
0002
Ealslak]
OO0O4
OOOS
QOO0
Q007
Q003
Q009
0010
0011
0012
QO1=
0014
001S
Q016
001
0012
Q020
00zl
00z2
Q023
0024
D025
0026
0027

QO

0029

QO=z

Q034

0035
QO34
0027

'ttt 4

0040
0041
00472
0043
0044
Q045
Q04 A
Q047
00432
00477
QOS50
0051

FEOQOO

FEOQO
FEOZ
FEO4
FEOQA
FEO=Z
FEOA
FEOQC
FEOE

FEL0
FEL1Z

FEL4
FE1&
FE1Z
FE1A

TXMIRA 22&227 ## OP:22OQ@E - 11E/78 FAGE G001
HI-LO GAME FOR TM 270/1XX MICROCOMPUTERS

QOO0
0001
QOO0
Q003
QOO
Q0O
QO00A
Q000

OZEQ
FFAO
Q200
QO0An
Q4129
O41ZA
QOZOC
0030

ZFAO
FEBO

04E
1F15S
1307

OZR=

* 3% +* -# 3 3¢ * +* 3+ +* * 3t ¢ - +*
THIS GUESSING GAME CAN BE RUN ON A THM 920/1XX MIZRO-

COMPUTER WITH 432 (1B0) WORDE OF LIZER AVATILAERLE

RAM MEMORY. IT IS WRITTEN T3 BE LOADED AT MO0, FEOO

AND CAN BE ASSEMBLED AT THAT ADDRESS USIMG THE LELA

OR BY LOADING THE OBRJECT (COLLUMN 2 AT THE MEMOIRY

ADDRESSES (COLUMN 2). THE GBUECT OF THIS FROGRAM I3 TO
GUESE WHICH NUMEER THE COMPUTER HAS GENMERATELD. AMD TO
DO OTHIS WITHOUT BECOMING A TUREEY. FOLLOWIMNG RIULEZ AFFLY?S
* - CARRIAGE RETURN BRINGS YO TO PROGRAM REZTART

- ESCAPE EEY BRINGS Yo TO MONITOR

* - CONTROL-H EEY IGNOREZ THIS ENTRY

* - ZPACE KEY CONTINUES GAME

* GOOD LUCK. J. WALSH.

+* *» 3 3 +* 3* 3 * +* +* * ®* B3 3+ 3

IDT “GUESS”
REGISTER EQUATES
RO ECG O TEMS MULTIFLIER

R1 Ec) 1 GUESS NO. ACCUMULATOR

R2 QL 2 MULTIFLY ANSWER

R3 EG 32 ENTERED DIGIT

RZ E@l 2 CONTAINS COMPUTERS NUMBER
R¥ Eci ¥ NO. TRIES/10

R10 EGL 10 M. TRIES

R12 EQL 1z CRU ADDRESS (TME 2202)

JBJECT CODE AT ABSOLUTE ADDREZZ BESINNING WITH HFEOQO
ADRG >FEOO

¥FOF % ¥R H OB OB ¥ F # R #) % # O F#
PROCEDURE AREA: EXECUTABLE CODE)
R T R L T T ST S A S T R ﬁ ® ¥ H %
IMITIALIZE REGISTERS |
START LWPI WzP SET WORKSFACE FOINTER -
LI RO, 10 RO = TENS MULTIFLIER
CLR R? R = NI, OF TRIES
LR R10 R1O = M2, 1F TRIEZ
LI R1Z, =20 ™™= 2202 CRU ALDDR.

COUTPUT OFENING MEZSAGE
XOF @ME=ZS1,14 OFPENING MESSAGE

THIZ ROUTINE IS A NUMBER SGEMERATOR THAT GEMERATES

A NUMBER FROM O T 299 BASED ON THE TIME TO RESFOND TO THE
COPENING MEZZSAGE. IT CHECES A BIT AT THE TMZ %202 SERIAL

INTERFA&CZE THAT SIGNIFIES THAT A DIGIT HAS BEEM RECEIVED FR
THE TERMINAL IN RESFONSE TO THE OPENING MEZZAGE. RECEIFT O
THIS DISIT MEANS A NUMBER I3 BEING GUESSED. WHILE WAITING
FOR THIS FIRST NUMEBER, RZ IS CONTIMOOULESLY INCREMENTED FROM
* Q TO 9P,

NEWND CLR R RZ TO CONTAIN COMPUTERS N,

INCNGO TR 21 DIGIT RECEIVED?
JER ECHOZ YES, ECHO CHARACTER
C1 R, 9% NiJ. INCREMENTED ToO 2997

J-12

GLESS

TXMIRA

VREZZT ##

O2:22:02

HI-LO GAME FOR TM #20/1XX MICROCOMPUTERS

FELIC OZE7
005 FELIE 1ZFA
T FEZO 0533
Q0%4 FEZZ 10OF%
005S
OO5A
0057
0053
D052
QOOQAO
00&1 FEZ4 ZFZO
FE2&6 FF24
Q0LZ FEZB 0401
0043 FE2A 2EC3
O0A4 FEZC 04&C3
00AS
D0AL FEZE 0223
FE30 0020
007 FEZ2 1311
00a2 FEZ4 02233
FEZé& Q000D
0047 FEZZ2 13EZ2
0070 FE3A 0233
FE2C OQO1B
0071 FEZE 1307
0072 FE40 02383
FE4Z QOOZ
Q072 FE44 1ZEF
0074 FE44 02432

FE4% OQQF”J

0075 FE4A 3340
0076 FEACAOCZ2
0077 EEAE C043
QO7F FESO 10OEC
Q79 FESZ 0440
- FES4 0020

0020
021 FESAE 0S2A
* FESZ 2201
. > FETA 1102
00Z4 FESC 1504
0035 FESE 13064

Q024
Q027 FE&LO ZFAD
FEAZ FFOO
t FE&4 10EL
0022 FEAL ZFAOQ
FE&Z FFLA
Q070 FE&AA 1ODE

JEG NEWMO YEZ, CLEAR TO O, RESTART
INC RS N, INCREMENT MZ. IN R=
JAMEP INCND LOOF, RECHECE FOR DIIGIT INFUT
AFTER FIRZT DIGIT IS ENTERED, COMPUTER- S NO. IS IN RS.
READ IN GUEZZSES AND CONVERT THESE TO HEXADECIMAL. SUM
FOR COMPARISON TO COMPUTER S NO. IM RS. A5 NEW NLUMEER
I3 READ, OLD VALLUE IS MULTIPLIED BY 10 AND NEW VALUE
ADDED TO FRODUCT TO KEEP CIMULATIVE TOTAL OF DIGITS
ENTERED.
ECHOO XOF @LFCR,1Z D LINE-FEED. CR
ECHO2 ©CLR R1 CLEAR ACCUMMULLATOR
ECHO1 XOF RZ,11 ECHD CHAR., PLACE IT IN RZ
SWFB RZ PLACE VALUE IN RIGHT BYTE
WAS SPACE, CR, ESCAPE OR CONTROL-H PREZZEDT
I 3, 0020 SFACE BAR FPRESSEDY
JEZ COMPRE YES, COMFARE VALLEZS
I 2, 000D CARRIAGE RET. PRESSEDT
JEG START YESZ, RESTART FROGRAM
CI RZ,>001B ESCAPE PRESSED?
JEZ MONITR YEZ., RETURN TO MOMITOR
CI RZ, 00032 WAS CONTROL-H PRESSEDRT?
JEG ECHOO 00 LFCR, RESTART GUESS
ANDI R32, Q0Q0F ND, SAVE O-? DIGIT ONLY
MFY RO,R1 FREVIOUS NI, X10
A 2:R2 NEW NO. + ABOVE PRODUCT
MOV R3,R1 ANSWR TO ACCUMMULATOR
JMP ECHOL SET NEXT DIGIT
MONITR E @000 GO TO MONITOR

COMFARE NUMBERZ

COMPRE INGC
[
JLT
JGT
JED

MESAGES FOR TOO HIGH,

LW XopP
JMF
HIGH X2p
JMP

R10O
Ri,R=
LowW
HIGH
EGUAL

eLokiM, 14

ECHOZ
@HIGHM, 14

ECHOZ

J-13

11=2/72

PAGE 000Z

INFUT TO COMFUTER S NUMBER

INCREMENT NOS. GUESSEDR
COMFARE TO COMPUTER S NO.
MO. I3 LEZS THAN COMPUTERS
NO. IS MORE THAN COMPUTER-
NO. I3 CORRECT VALUE

o mn

TOO LOW

TOO-LOW MESSAGE

GET MEXT NUMEER
TOO-HIGH MESSAGE

GET NEXT NUMEER

GLIESS

TXMIRA

36227 *w 02202

HI-LO GAME FOR TM ?90/1XX MICROCOMPUTERS

QOIZ
QO3
004

QOIS

QOP4
Q07

Q102
0103

0104
0103

0106
0107

0108
0109
0110
0111
o112z
0113
0114

O11s

0114

FEALC
FE&LE
FE70
FE72
FE74
FE7A
FE7=
FE7&
FE7C
FE7E
FE2O
FE32
FE24
FEG&
FE33
FE2A
FE2C
FESE
FE?0O
FE?2
FE?4
FE?&

FE?3
FE2A
FE?C
FE%E
FERO
FEAZ
FEA4
FER&
FEA2
FEAA
FEALC
FEAE

2FAO
FFz2
QZ2A
0007
15903
2FAO
FF4F
i (:)(:)E
O23A
000
15032
2FAO
FFSA
1003
QZ2A
(alslu]n}
150z
2FAO
FF&2
1002
2FA0
FF72

2E40
Q247
00320
0246A
0030
QL6CY
AZ237
ca20A
FF22
Z2FA0
FF7D
10AS

CORRECT NUMBER WAS GUESSED

FIND
ECUAL

IF CORRECT NUMBER FOUND,

COUNT

OUT HOW MANY TRIES WAS

XopP
[4

JGT
XOP

JAMP
-1

JGT
X0P

JMP
CI

JGT
X0OP

JMP
XopP
DIv
ORI
ORI
SWPB
A
MCV
XoP

AMF

@CDRECT, 14
R10,7

+8
@3EVENM, 14

COUNT
R10,%

$+3
@NINE, 14

COUNT
R10,13

. $+8

@THIRTN,» 14
COUNT
@TURKEY, 14
RO, R?

R?, 0020
R10, 20020
R?

R?.R10
R10, @NUMBR
@CNT. 14 -

START

J-14

113/73 PAGE 0003

USED AND OUTFUT MESSAGE
CORRECT GUESS MESZSAGE

TRY COUNT GREATER THAN 77

YES, CHECE AGAIN
NQ, DI 0-7 TRIES MESSAGE

GO GET COUNT
TRY-COUNT GREATER THAN 7%

YES. CHECK AGAIN
NO, D3 3-? TRIES MESSAGE

GO GET COUNT
TRY-COUNTER GREATER THAN 137

YES, CQUTPUT TURKEY MESSAGE
MO, DO 10-13 TRIES MESSAGE

" G0 GET COUNT

OUTPUT 13 (TURKEY) MESSAGE

OUTPUT NQ. OF TRIES

DIVIDE TRY-NO. BY 10
OR IN 30 FOR ASCII NO.

QR IN 30 FOR ASCII NN,
REMAINLER IN LEFT BYTE
2=DIGIT DECIMAL IN R10O
MOVE 2TY TO MESSAGE
OUTFUT NO. OF TRIES

GO T BEGINNING OF FROGRAM

GUESS

0112
0117
0120
0121

012z

0123

Q124

0125

FERO
FEERZ
FEER4
FEBS
FER&
FER7
FEER=
FER?
FEBA
FEBB
FERC
FEBD
FEBRE
FEBF
FELCO
FEC1
FECZ2
FEC?Z
FEC4
FELCS
FECA&
FEC7
FECS
FEC=Z
FECA
FECH
FECLC
FECD
FECE
FECF
FEDO
FED1
FEDZ
FED:Z
FED4
FEDS
FELA
FED7
FEDZ
FEDRA
FELE
FEDC
FELL

FEDE

FELF
FEED
FEE}
FEEZ
FEE=
FEE4

TXMIRA
HI-LO GAME FOR TM

DAOD
DAOA
47z
41
4E

[IS I |
O La o

>
[ma]

(S
3 9

B
m

N
n

po o}

an
4z
45
52
20

=4
b

=0
20
=4
4F

20

m-Q 09 -9

[I IO IR A

~
3
'

OAOD

AE
S0

Lo

54
20
41
20
1E

b

ap

FILIZT ww

02:122:02

F20/1XX MICROCOMPUTERS

-

* #* #*

#* * 3#*
MEZZSAGES
MES=1 LDATA

L

TEXT

DATA
TEXT

#* * #* * #*

* i * *

=OA00, OA0HA

“CAN YO GUESS

>=0AoD
“INPUT A NUMEER

J-15

112/72

#* * #* #* i

3#* #* * i <+

MY NUMEBER (O

LINE FEELD,
% PRESS THE

FAGE 0004

* #* *

* 3#* “+

TO 999)

R
SFACE BAR.

3+

DATA AREA: DATA STATEMENTS. TEXT STATEMENTS, ETC.

*

*

+

3¢

E

GUESS

0126
0127

0128

0129
0130

FEES
FEE6
FEE7
FEE=
FEE?
FEEA
FEEE
FEEC
FEELD
FEEE
FEEF
FEFO
FEF1
FEFZ
FEFz
FEF4
FEFS
FEF&
FEF7
FEF3
FEF?
FEFA
FEFB
FEFC
FEFD
FEFE
FEFF
FFOQO
FFO2z
FFO3
FFO4
FFOS
FFOA
FFO7
FFoOz
FFO2
FFOA
FFOB
FFOL
FFOD
FFOE
FFOF
FF10
FF11
FF12
FFiz
FF14
FF13
FF14
FF13
FFL1a
FF1iC
FFLD
FF1E

TXMIRA ¥
HI-LO GAME FOR TM 9%0/1

4z

=7
-t i

ZE
20
2020
=4
4F

20

4C

21
OAOD
QOO0
=020

=9

4F
4F

LM

HIGHM

=
X

L2277 ww 022
X MICROCOMPUTERS

DATA 32020
TEXT “TOD LOW.

OATA Z0A0L0, O

ODATA 2020
TEXT “TOO HIGH,

J-16

202 113/77%

DoUBLE
TRY AGAIN!!”

LIMNE FEED,

TWO

TRY AGAIN'!~

SPACES

FAGE 0005

SFACE

CR,

ENI

M=G

GUESS

TXMIRA 734227 #x Q22102 112/7% FAGE 0004

HI-LO GAME FOR TM #20/1XX MICROCOMPUTERS

-~
-
—
[rx)

0133
4

O1z7
0122

D12
0140

FFZF
FF20
FF32
. FFZz4

FF3&

4 FF32

FF3A
FF2C
FFZE
FFZF
FF40
FF41

FF4z
FF4z
FF44
FF4%o
FF4a
FFa47
FFaz
FF4>
FF4A
FF4ER
FFacC
FFALD
FF4E
FF4F
FFSO
FFS1

FFoZ2
FF53
FF=4

FFSD
FFS&
FFS7
FFZ&
FFo%
FFZA
FFZER

21
OAQD
O0OQ0
QOAOD

Q0
0707
0707
2020

4z

4F

=
bl

==
b

435
42
D4
21
20
b

4F

[—4 4

bt

27
52
45
Z0
D0
41
4E
20
4%
92
=0
3=
52
o4
=0
Q0
41
4z

ODATA Z0A0O, 0 LINE FEED., CR.,
LFCR DATA Z0A0D LIME FEED. CR

BYTE © END OF MESSAGE
CORECT DATA »0O707,%0707 BELLE

DATA 2020 SFACES
TEXT “CORRECT! YOI “RE -

BYTE © END OF MEZSZAGE
SEVEN TEXT “AN EXPERT ~

BYTE O
MINE TEXT “ABOVE AVERAGE -

J-17

END

MSG

GUESS

HI-LD

0141
0142

0143
0144

0145
0144

GAME FOR TM

FFSC
FF=0
FFZE
FFIF
FF&O
FF&1
FF&2
FF&3
FF:4
FFAS
FF&&
FF&7
FF&Z
FF&D
FF&A
FF&R
FF&C
FF&D
FF&4E
FF&F
FF70
FF71
FF72
FF73
FF74
FF75
FF7&
FF77
FF7%
FF7%?
FF7A
FF7E
FF7C
FF7D
FF7E
FF7F
FF20
FFz1
FF2Z
FFaz
FFz4
FF2S
FF2é&
FF37
FFaa
FFav
FF2A
FFZRB
FFaC
FF3D
FFZE
FF3F
FF20
FF?1

aF
=&
4%
20
41
4%
Sz
41
47
4%
20

TXMIRA 724227 %% 0w 22102
PR0/1XX MICROCOMPUTERS
BYTE ©

QO
41
S
45
52
41
47
35
20
00
41
20

559

=

tal

4B
43
=9
=0
20
00
20
AZ
45
42

20
4=z
54
20
=54
aF
a4F
4K
20
=

aF

pka

20

THIRTN TEXT “AVERAGE

BYTE ©

TURKEY TEXT “A TURKEY

CNT

BYTE ©
TEXT

BECAUSE IT ToOK

J-18

112/72

Yo

FAGE 0007

GUESS TXMIRA 93246227 ## O 22102 11a/7= FAGE ©O0O=
HI-LO GAME FOR TM 970/1XX MICROCOMPUTERS

0147 FF92 0000 NUMBR DATA O FLACE ASCIT NO. HERE
0142 FF94 20 BYTE 20
014% FF9S 53 TEXT “TRIEZ!”
FFo& Sz
FFo7 4%
FF#3 4%
FFo9 53
FFoA 21
0150 FF¥E 07 BYTE 7,7,7,0 BELLE (ASCIL O7)
FFoC 07
FFoO 07
FF?E 00
0151 WaP EVEN WORKSPACE START (RO LOC)
0152 END

Q000 ERRORE

TXXREF 227542 #A Q@243 2% 112/7= FAGE 0001

CNT 01464 0115

COMFRE 0021 O0A7

CORECT ©1324 0024

COUNT Q107 Q023 0102 Q10A
ECHOO 0041 0073

ECHO1 QO&S Q073

ECHOZ 00A2 0050 0032 Q00
EGLAL Qw4 QO35

"IGH 0032 0024

AIGHM Q122 002

IMCND Q042 0054

LFCR 0132 00k

Lt} 0027 QO3

LM 0124 0027

ME=Z1 0122 DO

MONITR QO792 Q071

NEWNC 004z 0052

NINE 0140 0101

MLUMER 0147 0114

RO 0012 QOZ4 007S 0109
R1 Q020 QOAZ 0075 0077
R1O 002 : Q01 009D
R12 Q026 o0z7
Rz 0021 Q0764
R 0063 00&4 QOAL
R= 0043 O0=s1d 0053
R QOIS 0107 0110
SEVEN Q027

START NOAY 0L LA
THIRTN 0142 0105

TUREEY 0144 0107

WapF 0151 QO

D102 0111 o211z Q114

D070 O0O72 Q074 OO74LH O0D77

011z

"HERE ARE 00322 SYMBOLS

J-19

ALPHABETICAL INDEX

INTRODUCTION

The following index lists key words and concepts from the subject material of the manual together with the area(s)
in the manual that supply major coverage of the listed concept. The numbers along the right side of the listing
reference the following manual areas:

Sections — References to Sections of the manual appear as “‘Section x’’ with the symbol x representing
any numeric quantity.

Appendixes — References to Appendixes of the manual appear as Appendix y’’ with the symbol y
representing any capital letter.

Paragraphs — References to paragraphs of the manual appear as a series of alphanumeric or numeric
characters punctuated with decimal points. Only the first character of the string may be a letter; all
subsequent characters are numbers. The first character refers to the section or appendix of the manual in
which the paragraph is found.

Tables — References to tables in the manual are represented by the capital letter T followed immediately
by another alphanumeric character (representing the section or appendix of the manual containing the
table). The second character is followed by a dash (-) and a number:

Tx-yy

Figures — References to figures in the manual are represented by the capital letter F followed
immediately by another alphanumeric character (representing the section or appendix of the manual

containing the figure). The second character is followed by a dash (-) and a number:

Fx-yy

Addressing:
Direct Register 4.5.3.1, F4-5
Immediate 4.5.3.6
Indexed Symbolic 4.5.3.5, F4-9
Indirect Register 4.5.3.2, F4-6
Indirect Register
Autoincrement 4.5.3.3, F4-7
Not-Indexed Symbolic 4.5.3.4, F4-8
PC Relative 4.5.3.7
AddressingModes L. 453
Applications Section 6
ASClICode Appendix C
Assembler, Line-By-Line 7.7, F8-8,F7-4
Asynchronous Serial Communication 4.9,7.3
Backplane 7.9
BaudRate 3.2.11
Binary Mathematics D.3
Binary Number Appendix D
Carry e 4.3.3.4
Central Processing Unit 5.3, F5-3, F5-4, F5-5
Clock, System 5.2, Fb-2
Commands, T/BUG 3.2, T3-1
Conversions, Number Appendix D

CRU Addressing . . 8.2, F8-1, F8-2, F8-3, F8-4, T8-1

CRU Inspect/Change 3.2.2
Direct Register Addressing 4.5.3.1, F4-5
Documentation 1.5
Dump Memory 3.2.3
Equipment, Required 2.2
Error Messages, TIBUG 34,734
Execute:

Program 3.24

StepMode 3.2.10
Expansion Buffers,

OffBoard 5.8, F5-11, F5-12
Features of TM 990/100M 1.1
Formats, Instruction F4-4
Glossary e e 1.4

-Hardware Registers 4.3

Inspect/Change 3.2.9

Program Counter 4.31

Status Register 4.3.3, F4-2

Workspace Pointer 4.3.2

INDEX

Index 1

Hexadecimal:
Math 3.2.6
Number Appendix D
Hookup
Power 2.4.2, F21
Terminal 2.4.2, Appendix A, Appendix B

1/0 Decoder, Memory 5.5, F5-8
Immediate Addressing 4.5.3.6
Indexed Symbolic

Addressing 4.5.3.5, F4-9
Indirect Register

Addressing 4.5.3.2, F4-6
Indirect Register Autoincrement

Addressing 4.5.3.3, F4-7
Inspect/Change:

Hardware Registers 3.29

Memory 3.2.8

Software Registers 3.2.12
Installation Section 2
Instruction Formats F4-4
Instructions 4.5, T4-2, T4-4
Interface:

Multidrop 5.13

RS-232-C: 5.10, 7.4, Appendix B

Teletypewriter 5.11, 7.4, Appendix A
Interrupts 8.3, 5.9, 5.10, F8-5, F8-6

F5-13, F5-14

Interval Timers 8.4, F8-7, F8-8
Jumpers oL F6-1, F7-2, T7-1

Line-By-Line Assembter

LOAD 5.4, F5-7
Load Memory 3.2.7
LoadingPrograms 3.2.7,G1
Map, Memory F4-1
Memory:
Expansion 6.4, 7.2
1/0 Decoder 5.5, F5-8
Inspect/Change 3.2.8
Load 3.2.7
Map F4-1
Random Access 5.6, F1-1, F4-1, F59
ReadOnly 5.7, F1-1, F4-1, F5-10
Search 3.25
TIBUG e F3-1
User . . o v v e e e e e e e e 4.2, F4-1
Microterminal 7.8, F7-5
Monitor Calls, T/IBUG 3.3, T3-3
Multidrop Interface 5.13

INDEX (Continued)

Not-Indexed Symbolic

Addressing 4.5.34, F4-8
Numbering:
Binary Appendix D
Conversions Appendix D
Hexadecimal Appendix D
ObjectCode Appendix G
Object Tags G-2, TG-1
OEM Chassis 7.9, F7-6, F7-7
Off-Board:
Expansion Buffers 5.8, F5-11, F5-12
RAM 6.4,7.2
RESET 7.5
RESTART 7.5
ROM 7.2
TMS 9901 6.5
On-Board:
Memory Expansion 7.2
RAM Expansion 7.2.2, F7-3
ROM Expansion 7.2.1, F7-3
OpCodeo v it 4.5.1
Operation Section 2
Options Section 7
Overflow 4.3.3.5
Parallel 1/O 5.9, 6.3, F5-13, F6-4
Parity 4.3.3.6
Parts List Appendix E
PC Relative Addressing 4.5.3.7
Pin Assignments:
P1 .. TH-1
P2 L. FA-1, FB-1, TH-2
P3 ... e T 5.12
P4TH-3
Power Hookup 2.4.1, F2-1
Power Supplies 2.2
Program, Execute 3.24
Programming Section 4
Programs, Sample 2.6, F8-8, J-1, J-2
RAM Expansion:
On-Board 7.2.2, F7-3
OffBoard 6.4, 7.2
Random Access Memory 5.6, F1-1
F4-1, F59
Read Only Memory 5.7, F1-1,
F4-1, F5-10
Registers:
Hardware 4.3

Index 2

Software 4.4, F4-3
Workspace 4.4, F4-3
Required Equipment 2.2
RESET 5.4,7.5, F5-7
RESTART 7.5
ROM Expansion:
OnBoard 7.2.1,F7-3
Off-Board 7.2
RS-232-C Interface 5.10, 7.4, Appendix B
Sample Programs 2.6, F4-17, J-1, J-2
Schematics Appendix F
Search Memory 3.2.5
SEL Lines T5-1
Serial 1/O 5-10,5-11,6.6, 7.3, 8.6
F6-7, F5-14, F5-15, F8-13, F8-14
Software Registers 4.4, F4-3
Software Registers, Inspect/Change 3.2.12
Source Listing FG-2
Specifications 1.3
Step Mode Execution 3.2.10
System Block Diagram F5-1
SystemClock 5.2, F5-2
Teletypewriter Interface 5.11, 7.4,
Appendix A
Theory of Operation Section &
‘TIBUG:
Commands 3.2, T3-1
Error Messages 34,T34
Memory F3-1
Monitor Section 3
Monitor Calls 3.3, T3-3
Timers, Interval 8.4, F8-7, F8-8
TMS 9901:
Interrupts 8.3,84
Off-Card Expansion 6.5, F6-6
On-Card Expansion 6.2, F6-3
CRU Programmingof 8.6
TMS9902 5.10, 5.11
Interface 5.11, F5-15
Interrupts 8.4,5.10,6.6,
e F5-15, F6-7
Two's Complement D4
Unpacking 2.3
User Memory 4.2, F4-1
Utilities 3.3, T3-3
Wire-Wrap Area 5-12, F5-16,

F6-1, F6-2, T6-1

INDEX (Concluded)

Wiring: Teletypewriter Appendix A
RS-232C Appendix B Workspace Registers 4.4,F4-3

Index 3

TM 990/100M MICROCOMPUTER
USER RESPONSE SHEET

It is our desire to provide our customers with the best documentation possible. After using this manual, please
complete this sheet and mail it, postpaid, to us. Your comments will be given every consideration.

1. I's the manual well organized? Yes No__ Comments:
2. Is text clearly presented and adequately illustrated? Yes No
Comments:

3. What subject matter could be expanded or claritied?

4. Is the instruction set adequately covered? Yes No

Comments:

5. Do you wish more data that would clarify an instruction? Yes No

Comments:

6. Do you wish more data to clarify an application? Yes No

Comments:

7. Please explain the application intended for your board:

School Course Home Evaluation OEM Application Other _
If OEM Application, please describe:

8. Other comments concerning the TM 990/100M and this manual:

Name:

Address _ State ZIP
School (if applicable) Major Year

REV.D .

FOLD

FIRST CLASS
Permit No. 6189

Houston, Texas

BUSINESS REPLY MAIL
No postage necessary if mailed in the United States

Postage will be paid by

TEXAS INSTRUMENTS INCORPORATED
SEMICONDUCTOR GROUP
P.O. BOX 1443 HOUSTON, TEXAS 77001

ATTENTION: MICROCOMPUTER PRODUCTS DEPARTMENT
M/S 653, COMMERCE PARK

FOLD

~TEXAS INSTRUMENTS

INCORPORATED

Semiconductor Group

» Post Office Box 1443 Houston, Texas 77001
MP321 REV.D : Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	J-00
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	J-14
	J-15
	J-16
	J-17
	J-18
	J-19
	J-20
	i-00
	i-01
	i-02
	i-03
	replyA
	replyB
	xBack

