i)

b

N
5,

B e,
-
- /./
/

(>

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time
to improve design and to supply the best possible product for the
spectrum of users.

-Microprocessor Pascal system (TMSWT753P or TMSW754P) is

copyrighted by Texas Instruments Incorporated, and is sole
property thereof. Use of this product is defined by the license
agreement SC-1 between the customer and Texas Instruments. The
software may not be reproduced in any form without written
permission of Texas Instruments. Application run-time packages
generated from the Microprocessor Pascal system may, however, be
reproduced for resale exclusively by the customer purchasing the
Microprocessor Pascal system.

All manuals associated with Microprocessor Pascal (MP 351) are
printed in the United States of America and are copyrighted by
Texas Instruments 1Incorporated. All rights reserved. No part of
these publications may be reproduced in any manner including
storage in a retrieval system or transmittal via electronic

means, or other reproduction in any form or any method
(electronic, mechanical, photocopying, recording, or otherwise)
without prior written permission of Texas Instruments

Incorporated.

Information contained in these publications is believed to be
accwrate and reliable. However, responsibility is assumed neither
for its use nor for any infringement of patents or rights of
others that may result from its use. No license is granted by
implication or otherwise under any patent or patent right of
Texas Instruments or others.

Copyright, Texas Instruments Incorporated, 1979

()

PREFACE

Texas Instruments Microprocessor Pascal is a complete high level
language development sSystem specifically designed for
microprocessor applications. TI's FS990 floppy based development
System is the minimum hardware necessary to develop a software
program written in Microprocessor Pascal. Pascal programs execute
on a wide spectrum of TI's microprocessor based products from a
9900 microprocessor chip set to TM9900 microcomputer modules to
990 minicomputers. As a virtual superset of the proposed
international Pascal standard, Microprocessor Pascal incorporates
several language extensions such as concurrent task execution,
expanded input/output capability, and specific library utilities
for microprocessor applications. The Microprocessor Pascal system
provides total software capability--from design to
debug--resulting in a dramatic decrease in software costs and
application development time.

This book introduces the wser to the various features of the

Microprocessor Pascal svstem. The manua® content features
introductory information (Sections 1 thru 3); and information on
software development tools (Sections y thru 7), the

Microprocessor Pascal lanesuage (Section 8), the Run-Time Support
Libraries (Sections 9 thru 14), and operation of the development
and target systems (Sections 15 thrw 17). 1In addition, variows
topies that supoort the manual text are discussed in the
appendices.

The Microprocessor Pascal User's Guide documents the
Microprocessor Pascal system for the user. Future changes to the
software making up the Microprocessor Pascal system will Dbe
indicated in revisions to this manwal.

iii

Y

()

INTRODUCTION

SECTION I. MICROPROCESSOR PASCAL SYSTEM OVERVIEW

1.1 WHAT IS MICROPROCESSOR PASCAL?
1.2 SOURCE EDITOR. « ¢« o v ¢ « « o &
1.3 COMPILER e e e e e e e e e e e
1.4 NATIVE CODE GENERATOR. o e v e e e e e s e
1.5 HOST DEBUGGER. « « « o « « o .
1.6 EXECUTIVE RUN TIME SUPPORT

SECTION II. MICROPROCESSOR PASCAL SYSTEM CONCEPTS

2.1 PROCESS e e e e e e e e e e e
2.2 LANGUAGE EXTENTIONS TO SUPPORT PROCESSES
2.2.1 SYSTEM Declaration« « v « .
2.2.2 PROGRAM Declaration. « « « .« « . .
2.2.3 PROCESS Declaration. « . . .

2.3 MEMORY+ ¢ « ¢ v v v v e e e e e e e
2.3.1 System Memory. ¢« + « « + + « o o« o .
2.3.2 Stack. .« ¢ v i v i e e e e e e e e e e e
2.3.3 Heap « .« ¢ ¢ ¢ ¢ ¢ v e i i e e e e e e e e
2.4 REENTRANCY v v v v v v v v e e e e e
2.5 RECURSION. . . . & v « ¢ ¢ v ¢ o o o o« o« o« o«

SECTION III. MICROPROCCESSOR PASCAL SYSTEM EXAMPLE

3.1 OVERVIEW « . ¢ ¢ v v v v o o o & .
3.2 PROBLEM DEFINITION AND STRUCTURING
3.3 AN EXAMPLE« .+ « o o o . . .

SOFTWARE DEVELOPMENT TOOLS

.SECTION IV. SOURCE EDITOR GUIDE

SOURCE EDITOR OVERVIEW e e e e .
The Video Display. . . . e e e

1
1.1 .
1.2 Microprocessor Pascal Sonrce File Deflnltlon
2 EXAMPLL EDIT SESSIONS.

2. Creating a File.

2. Editing an Existing File
3 EDITOR COMMANDS AND FUNCTIONS.
3.

3.

3.

3.

.

1 Kinds of Parameters.« « « v « « « o .
2 Optional Parameters.« « « . .
3 Current Line Marker.« . .
y

Y,
y
Y,
y.
Y.
y.
y .
y.
4.
y. ..
4. CMD (HELP) K€y « « v + v v v v v v v v u v

PPN iy
| I O I)
Lo WW W=

PPN
!
~N~J oo uUuIUNTww =

ww w
L |
N — -

[I T I R B B |
sz.szslc\ox.r:ww— - -

P - 3 5 I i g g - —

HELP Command
Edit/Compose Mode.
CHECK Command. . .
QUIT Command . .
ABORT Command. .
SAVE Command . . .
INPUT Command.
Cursor Positioning
Roll=-Up Function . .
Roll-Down Function .
New Line Funection. .
Tab Function
Back Tab Function. . ..
Set Tab Increment Command. .
Cursor Up Function
Cursor Down Funetion
Cursor Right Function. . . .
0 Cursor Left Function. . . .
1 Home Funection
2. FIND Command.
3 Relative Positioning. . . .
4
5

e o o o o o o
3 o o o o e e
N OoONEWN =
e & e o

- e D L OO OWNEWN =

o o

EEEFFLOLLLULLLLLVLUWLVLLLLVLLWLWLLWLWLLLWLLLWLWLLWWLWWWLWWWWLWWWWW WWWW
. L]

. 3 . .
.
.
.

. . .

TOP Command
BOTTOM Command.
Program Modification
1 Insert Line Funection

2 Duplicate Line Function.

3 Delete Line Funection . . .
4 Skip Funetion.
5 Insert Character Function.

6 Delete Character Function. .
7

8

9

1

Clear Line Funection.

REPLACE Command.

Split Line Funection.
0 INSERT Command.
Block Commands

e« o * o

1
2 COPY Command
3 MOVE Command
4 DELETE Command
5 PUT Command.
SHOW Command
ERROR MESSAGES
Command Syntax Errors.
Command Processing Errors.
File I/0 Errors. . . . e
Syntax Checker Error Messages

e o

g g — #kbkk#k&::k:#khk-ﬁ'#k#::-ﬁ'##:::k::#:k#:#k::J'-'###

. . .
Ewn -

SECTION V.

LISTING EXAMPLES
.1 Compiler Execution Messages. .
.2 Compiler Listing

vi

Start and End Block Functlons

Setup and Termination Commands'.

. o o o

.

. . . 3

COMPILER AND NATIVE CODE GENERATOR

.

o o LIS

COMPILER AND NATIVE CODE GENERATOR OVERVIEW.

.

.

. o s o

1
- d d e) e ad d ed e ed - OO OO OO0 N
N ot e DO OO

PN g 3 LI i g - N g g 5 P ¥ N ¥

|
-t d amd
[A\SIOV N

4-12
4-13
4-13
4-13
4-13
4-13
4-13
4-13
4-13
414
414
4-14
414
b-14
4-15
4-15
4-15
4-15
4-16
4-16
4-16
417
417
4-18

(SIS, S)]
[}
N e

D)

)

(

-1

O OO OO OVON OVOY OVOY OVON O‘vO\O\O\O\O\O\C\O\O\ oooooonooonooooonooonohohohov O

o o o o e o

NN oU W NN
. .

.

o

uvuumoTut ot T i

.3 Variable Map
Yy

Native Code Generator Listing.

OPTIONS.

COPY STATEMENT
SEPARATE COMPILATION
SAVING SEGMENTS.

ERROR MESSAGES

°

.

.

.

.

.

.

1 Syntax Error Number Descriptions
.2 Other Compiler Error Messages.
Native Code Generator Error Messages

w

SECTION VI. HOST DEBUGGER GUIDE

. L] L] L] L] . . L]
WWwWwwwwuwwuww wuw ww ww wwwwwwwwwwwwwwwwwwwwwwww-

.) . L] L] . Ll L] L] ° . L[]
\memmmm'\l\l\) \l\l‘\)\l\l‘\lNINIONONO\O\O\O\WU\\II#J:J:J:J:'J:J::WN—‘

.

*

HOST DEBUGGER OVERVIEW
DEBUGGING EXAMPLES
DEBUGGER COMMANDS.

Kinds of Parameters.
Process and Rowtine Parameters
Optional Parameters.

Getting Started/Finished . . .
GO Command
QUIT Command
HELP Command . . .

.

LOAD Command

SE Command

COPY Command
Status Displays. . . .

L . L]
N OV &EWN -

1
.2 Display Process - DP Command
Breakpoints/Single Step. . . .

List Breakpoints - LB Command
Single-Step Mode - SS Command
Showing/Modifying Data
1 Show Frame - SF Command. . .
2 Show Heap - SH Command
3 Show Common - SC Command . .
4 Show Inairect - SI Command
5 Show Memory - SM Command
.6 Modify Frame - MF Command. .
7 Modify Heap - MH Command . .
8 Moaify Common - MC Command .
9 Modify Indirect - MI Command
.10 Modify Memory - MM Command .
Tracing Commands . .

Trace echo ON - TON Command.
Monitor Process Scheduling . .

vii

Debug Process - DEBUG Command.

.

1 Assign Breakpoint - AB Command

2 Delete Breakpoint - DB Command

3 Delete All Breakpoints - DAB Command
Y

5

.

Trace echo OFF - TOFF Command.

.

.

.

.

Display All Processes - DAP Command

.

.

.

.

.

1 Trace Process schednllng - TP Command.

2 Trace Routine entry/exit - TR Command.
.3 Trace Statement flow - TS Command.

4

5

.

NN b b e ed d =]) &
O3V VO

(RO RG VRV, R R R, RV RS)
(2 R B R R R |

-t) and eed ed b b LT

ooV OV O
ooViw - 00

]
iy
o

Hold Process - HP Command.
Release Process - RP Command . . .

0 Interprocess File Simulation. . . .
0.1 Connect Input File - CIF Command.
0.2 Connect Output File - COF Command
1 Interrupt Simwlation - SIMI Command
2 Selection of CRU Mode - CRU Command
2
2
2
2

1 Test CRU Bit - TB
.2 Load CRU Valwe - LDCR
.3 Set Bit to Logic One - SBO. . .
.4 Set Bit to Logic Zero - SBZ .
2.5 Store CRU Value - STCR. . . .
ERROR MESSAGES
Command Syntax Errors.
Breakpoint Command Errors. . . .
Show/Modify Command Errors
Miscellaneows Errors

e o o o o o o o
EEEELITLLWLWLLVWLLW WLWLWWWWWW

e o o o

e * o o o

. .

oooooonoononononooohonononoh oo OO OV OY

L]
L] L]
EWN -

SECTION VII.

7.1 EXECUTE OVERVIEW
7.2 PROGRAM SEGMENTS
7.3 EXECUTION MESSAGES
7.4 I/0 SUPPORT. o« o .
7.5 RUN-TIME SUPPORT ERROR MESSAGES o e .
7.6 ABNORMAL TERMINATION MESSAGES.

Select Default Process - SDP Command

1

2 Assign Breakpoint to Process - ABP Command .
3 Delete Breakpoint from Process - DBP
4
5

Command

.
.

CONVENTIONAL PASCAL PROGRAM EXECUTION

THE MICROPROCESSOR PASCAL SYSTEM

SECTION VIII.

. LANGUAGE VOCABULARY AND REPRESENTATION
Character Set. . . « « « « « ¢« « . .
Special Symbols.
Keyword Symbols.

- Identifiers.
Constants.

Integer and Long Integer

o e
o o

1 Constant.
2 Real Constant.
.3 String Constant.
.4 Character Constant
Separators . . .+ ¢ ¢ v 4 e e e e e
DECLARATIONS . . ¢« v v v v v v o o« o .
1 System Declaration
2 VLabel Declaration Part
3 Data Declarations.
3
3

.

1 Constant Declaration Part.
.2' Type Declaration Part.

aumcna:au»cna:ooa:anxknq:aunc»

viii

THE MICROPROCESSOR PASCAL SYSTEM

. . o o

!
WA VN =

R QR R R
'

G0 0o Co0 o C© Co Co O Co Co Co Co Co CO OO Co OO
!

]
O OOV UVNEEZEWWWUWN @ @ o

o

oo oaoo ocooo::oc 070) COOC 0000 CO0O 0000 Co OO Co Oo Co 00 Co OO OO 0O OO 00 OO0 0o OO OO CO 0o Co GO Oo OO OO OO OO O0 OO OO Co OO Co G0 Co OO OO O

. L] . . L] ° L] L] L] ¢ e] . . L] . L] . L] L] . L] . . -
O\O\O\O\O\O\O\O\O\O\ O\O\U'lU'IUIU\U\U'I EEEsSsfFsffuowwLLLLWLWWWLWWWLWWLWWLWWWNDNDPDLND DDV DD

o o

. . . .

o .

e o e o . .
- e s VOOV EWwWw

o 0 °

e o
VT EWN -

¢ o .
——h

SN EWN

o o

.1
. 1.
St
1.
1.
1.
1.
.2
.2
2.
2.

.

s w

A

Variable Declaration Part.
Common Declaration Part.
Access Declaration Part. . .
Program Declarations . .

Process Declarations

Procedure Declarations .
Function Declarations. .
Parameter Kinds.
EXTERNAL Declarations .

.

FORWARD Declarations. . . .
Concurrent Characteristies.
Conventional Pascal Program
TA TYPES
Simple Types

INTEGER and LONGINT Types.

BOOLEAN Type
CHAR Type. .
Scalar Type.

.

Subrange Type.

REAL Type. .

Structuwred Types

Array Type .
Record Type.
Set Type . .
File Type. .
Pointer Type

SEMAPHORE T ype

PACKED Types

Type Compatibility

.

.

. e o o .

. . e o .

. . o o * e

VARIABLES. .

Simple Variable.
Indexed Variable .
Record Variable. .
Pointer Variable
Type Transferred

EXPRESSIONS.

Operands
Operators.
Set Value.
Function Calls .
Integer Constant

STATEMENTS

.

1
2
3

Simple Statements.

Assignment Statement

.

Procedure Statement.

START Statement.
ESCAPE Statement
GOTO Statement

ASSERT Statement

.

Structured Statements.

Compound Statement

IF Statement .
CASE Statement

Variable.

.

.

ix

Overriding the Type Structure

Expressions

e o e

* o e o

* o e o

O OO~V &EEWN 200

00 00 00 0o O 00 Co 0o ©o 0o 0o Co 0o Co C0 0o Co GO ©
U

NN

[N ol o]

8-21
8-21
8-22
8-23
8-25
8-27
8-28

8-33
8-33
8-34
8-35
8-36
8-36
8-36
8-38
8-39
8-39
8-40
8-40
8-40
8-41
8-41
8-41
8-42
8-43
8-4y
8-4y
8-4u
8-46

¢ o e o . . o o * o
o o o o

o Oo 00 ©0 00 00 ©o ©o C0 Co Co Oo o

NNNNNNNagN oo OO

SECTION IX.

S

SECTION X.

10.1
-10.1.1
10.1.1
10.1.1.
10.1.1.
10.1.1.
10.1.1.
10.1.1.
10.1.2
10.1.3
10.1.4
10.2
10.2.1
10.2.2

QAN -

FOR Statement.

WHILE Statement.

REPEAT Statement .

WITH Statement . . .
PUT AND OUTPUT
Sequential File Operations . . .
Text File Operations

Text File Read Operation . . .

Text File Write Operation. . .
RANDOM File Operations
Binding of File Names.
Passing Files as Parameters. . .
Encode and Decode.

.

RTS LIBRARY

SCHEDULING POLICY.
EVENTS . . . L L . . Ll
SEMAPHORES

Introduction . . « « .« « +« ¢ . .

Abstract Operations on Semaphores.

Usage of Semaphores.
RTS Semaphore Routines.
Implementation of Semaphores .

INTEREUPT HANDLING

Introduction < . . .
Interrupts Treated as Events . .
Interrupt Routines

.

.

General Features of Interrupt Handllng

General Routines
Techniques of Code Style .

HEDULING OF DEVICE AND NON- DEVICE PROCESSES.

PROCESS COMMUNICATION

SIMPLE COMMUNICATION MECHANISMS

Device Communication Using CRU.
Procedure CRUBASE
Procedure LDCR (Load CRU)

Procedure STCR (Store CRU).
Function TB (Test Bit).

ONU'I-BUUN—‘

Device Communication Using Memory-Mapped I/O.

.

Procedure SBO (Set Bit to One).
Procedure SBZ (Set Bit to Zero)

.

.

L4 . . .

Interprocess Communication Using Shared Variables
Interprocess Communication Using Message Buffers.

EXECUTIVE RTS FILES

Process-Local File Variables.
Channels. . . « ¢« ¢ « « « «

* o o e

. 8-46
. 8-47
. 8-48
. 8-48
. 8-50
. 8-50
. 8-51
. 8-52
8-54
8-56
8-56
8-57
8-57

PROCESS SYNCHRONIZATION AND PROCESSOR MANAGEMENT

]
-t b o b OO OO OO =~ -

.
O WO WO WO WO VWO OO
LI]

(Ve liVe}
L
NN
aw

.10=-1
.10-1
.10-2
.10-3
.10-3
.10-3
.10-3
.10-3
.10-4
.10-5
.10-6
.10-9
.10-10
.10-11

10.2.
4
10.2.
.6
10.2.
10.2.
10.2.
10.2.10
10.2.11
10.2.12
10.2.13

10.2

10.2

SECTION

1.1
11.2

11.
11
1"
11
11

. L]
NIO\U\J-'-UJ

o o

3
5
7

8
9

SYSTEM DECLARATION.
PROGRAM DECLARATION e . o o e e .
DECLARATION OF A CONVENTIONAL POSCAL PROGRAM. c e e e
PROCESS DECLARATION +« ¢ ¢ ¢ ¢« v v v o « « 11=8
CONCURRENT CHARACTERISTICS.
PROCESS INVOCATION. « ¢« « o o o« « « .
PROCESS TERMINATION

Device Channels’ cee e e e e e . J10-11
Connection of File Variables to Channels e e e o« .+ +10=-12
Sequential (Non-Text) File Operations10-15
Text File Operations. ¢ v + ¢« ¢ « « « .10=-15
Random File Operations.10-19
Logical End of File « + ¢« ¢ & « + « « « .« .10=-20
Logical End of Consumption.10-20
Buffers Associated With File Variables10-20
Connections of Files with Different Component Types.10-21
Conditional READs and WRITEs « +. . . .10-22
Channel Abortions.« . .10-24

XI. PROCESS MANAGEMENT

-— b b
P e)

"1
O &= -

e e o« o+« <11=10
. . . '11-12

e+« « o+ J+11-15

SECTION XII. MEMORY MANAGEMENT

12.1

12.1.1

12.1
12.2

12.2.
12.2.

.2

1
2

MEMORY MANAGEMENT BY THE EXECUTIVE RTS.

. 012-1
Dynamically Located Data Areas.12-1
Statically Located Data Areas e o . 212=2

HIGH-LEVEL USER INTERFACE TO MEMORY MANAGEMENT e e . . 12=2

Procedure NEW ¢ & & v ¢ v v v v « v o o o v J12=2
Procedure DISPOSE . . & ¢ ¢ ¢ ¢ v o« o o o o« o o o o <12=2

12.3 LOW-LEVEL USER INTERFACE TO MEMORY MANAGEMENT12-3

12.3.
12.3.
12.3.

12.4
12.5

12.5.
.2
12.50

12.5

12.5.
12.5.

.12.5.

12.5.
12.6

1
2
3
1

3
y
y.
y.
u

USE OF COMMONS.
PROCESS RESOURCES « + ¢« « ¢ v ¢ v o« o« « « « «12=-5

Procedure NEW$. ¢« o ¢ v ¢ ¢ ¢« v v o o o« o « 12=3
PPOCEdur’e FREE$ ° Y ° . 012-3
Procedure HEAP$TERM « ¢ v v « . J12=3

e e e e e e e . o s12-4

Process Stack ¢ . ¢ ¢ ¢ ¢ i 4 4 e e e . . J12=-5
Process Heap. e e e e e e e e e e . W12-6
Estimating Space Requlrements of Process Resources. .12-6
Allocation of Process Resources12-9
Allocation of System Process or New Program12-9
Allocation of New Process« ¢« « « ¢« ¢« ¢« +« « +12=-9
Allocation of Conventional Pascal Program12-9
AMPLE ¢ ¢ ¢ ¢ 0 0 e e e e e e e e e . o.12-10

SECTION XIII. ERROR RECOVERY AND EXCEPTION HANDLING

INTRODUCTION. . . . e e e e e e e e e e e e L1341
EXECUTIVE RTS DETECTLD ERRORS e e e e e e e e e e e e 131
User Errors . . ¢ ¢ ¢ v v ¢ v v 4 e e e e e e e e e a13-1

Scheduling Errors13
Semaphore Errors. . . . ¢ .+ + ¢ ¢ +« o o o o o « « « <13
Interrupt Errors. . . . e e e e « s 4 4 4 s e« e + 413
Process Management Errors e e e e e e e e e e e 13

xi

Exception Errors.

13.2.6 e e e e e e e ¢« « o « +13=4

13.2.7 Memory Management Errors. +« ¢« ¢ « « « « o« o+ +13=-4

13.2.8 File Errors . . . +v v v ¢« ¢ o o o o« o o o« o o o« « « 13-4

13.2.9 Host File Errors. . .« « v o o« o o« ¢« o o o o « « « « +13-9

13.3 RUN-TIME EXECUTION ERRORS « ¢ ¢« « « .« .13-10
13.4 CRITICAL TRANSACTIONS . . &+ ¢ ¢« ¢ ¢ & o o o o o o« o« « <13=11
13.5 EXCEPTION HANDLING. . . &+ ¢ v v v v ¢« ¢ ¢« o o o o o« « <13=12
13.6 EXAMPLE . . ¢ ¢ v & & ¢ & o o o o o o o o o o o« « « « <13=15
13.7 RECOVERY OF FILES+ « ¢ ¢ « & v ¢ ¢« « & « « « .13-16
13.8 PROCESS MANAGEMENT. . . . ¢ ¢« ¢« ¢« ¢ v & o o o o« o o « <13=17
13.9 SYSTEM CRASH. . . . « + ¢ ¢ v ¢« v v v ¢ 4 o o o o o« « 13=-17
SECTION XIV. IMPLEMENTATION OF DEVICE HANDLERS

14.1 INTRODUCTION. B ey

14.2 PHYSICAL DEVICE INTERFACE SYSTEMS e 4 4 e e e e 4 e « +14=3

14.2.1 Physical Device Interface Initialization Procedure. .14-4

14.2.2 Physical Device Interface Super~isor Program.14-6

14.2.3 VLogical Device Interface Process. . . «. .« « « + « « .14=7

14.2.4 Logical Device Channel. ¢ « « ¢ « « « « « o« +14=17

14.2.4.1 Channel Name. . . .+ + « ¢ ¢ &« + & o « o o« o o« « « 14-8

14.2.4.2 Component Length. « + + ¢« ¢ + « « &« + +14-8

14.2.48.3 Channel Mode. ¢ ¢ v & v o o« « o o o o o o +14-8

14.2.4.4 Maximum Number of Connected User Files.14-=9

14.2.4.5 End of Consumption Handling14-9

14.2.4.6 Device Channel Destruction. « + « « +« « & .1“-9

14.2.4.7 Device Channel Abortions.« « . « « . .
14.2.5 Interrupt Demultiplexer ¢« ¢ « ¢ o« « o & .14 10
14.3 EXAMPLES. . . . +« « ¢ v v v v v o o« o« o & e e B
14.3.1 Physical Device Interface System for a Llne Printer .14-11
14.3.2 Logical Device Interface Process for a Cassette

Drive. . « « ¢ ¢« ¢ ¢ ¢ ¢ 4 4 4 4 e 4 e 4 4« e« « o + 14=15
14.3.3 Implementation of Video Display Terminal Handler. . .14-17

-
:’
\O

14.3.3 User Interface and Operation of VDT14-17
14.3. Implementation of Initialization Procedure.14-18
. .14-19

Implementation of VDT Screen Logical Device

Process. . « v ¢ « ¢« ¢ 4 o + 4 4 o e « e s s+ s+ 14=20
.5 Implementation of VDT Keyboard Logical Device

ProCessS. .« + v « o o o o o o o o o o o e o & o« J14=2}4

.1
3.2
14.3.3.3 Implementation of Supervisor Program.
3."
3

OPERATIONS

SECTION XV. DEVELOPMENT SYSTEM OPERATION ON DX/10

WW N ==

15.1 DX/10 OVERVIEW.
15.2 EDIT.
15.3 COMPILE
15.4 DEBUG
15.5 EXECUTE o .
15.6 SAVE. . . « v v vt e v v e e e e e e e e e e e e

e o o e
.
.
.
.
e o o o
.
e o o o
—t e b amd b D
T i
UL

.
.

.

.

.

.

.

.

.

.

.

.
LY

xii

.
-— md el ed ed b wd ed d b

15.7 BATCH v « v v v v o v v v v v .
15.8 COLLECT . v v v v v v v v e e e e e e e e e e
15.9 SHOW. v v v v v v o .
15.10 PRINT. . . + v v v v o o o
15.11 SCI. ¢ v v v v v v « o o u
15.12 WAIT . . . + v v v v « o o .
15.13 PURGE.
15.14 QUIT « v v v o o o .

0
.
-
.
.
. . . .
.
.
o e . .

SECTION XVI. DEVELOPMENT SYSTEM OPERATION ON TX990

1 TX990 OVERVIEW. « « ¢ ¢ v ¢ o o o o &
2 CONTROL PROGRAM
<3 EDIT. . ¢ v ¢ v v v v v v e e e e e e e e e e
4 COMPILE « .« v v v v v o o .

5 DEBUG

6 EXECUTE . .

7 SAVE. . .

16.8 COLLECT .
16.9 SHOW. . . .
16.10 COPY . . . & v v v v v v v e e e e e e e e e e
16.11 UTILITY. . . e 4 e e e e e e e e e e e
16.12 CONTROL PROGRAM MESSAGES C e e e e e e e e e e e
16.13 MANUAL SYSTEM RESTART. « « v v & o o« o o« o« &

.
-
.
.
.
.
.
.
.
.
.
0
.
°
.
.

.
. . . .
. .

.
. . . .
0 . . .

. . * o
.
.
.
.

o o . .
.

.
.

SECTION XVII. CONFIGURING AND DEBUGGING TARGET SYSTEMS

OVERVIEW. e . . . e e .

CONFIGURING MICROPROCESSOR PASCAL SYSTEM
INTERPRETIVE RTS FOR TARGET MACHINE.
Specification of RAM Locations.
Specification of Restart and LREX Vectors Locations
Allocation of Workspaces in CONFIG.
Example . . . o e e e

USER CUSTOMIZATION OF THE INTERPRETIVE RUN TIME
SUPPORT. e e s e e e e s e e e

.1 Assembly Language Interrupt Handlers. ¢ e e e e e s
.2 Crash Routine ¢ + ¢ ¢ ¢ v v o v o o &
ASSEMBLY LANGUAGE CODING CONVENTIONS.
PRODUCING AN INTERPRETIVE RTS LOAD MODULE
Configuration of Interpretive RTS Segment(s). .

1 "Full"™ RTS Library. « . « ¢« « « + .

2 Kernel RTS Library.

3 Standard Procedure MESSAGE e e e e e e e e e e

-
L] L]
N =

..
L] e @
EWN -

- b wnd b e

. .

e o
. .

m\nmwmmw:_—ww whhPphoNn

Link Editing. . . e e e e e e e e e e e e
.1 ROM/RAM Speclflcatlon c e e e e e e e e e e e e
17.6 TARGET DUBEGGER e e e e e e e e e e e e e

17.6.1 OVerVIEeW. « « v ¢ v v o v o o o o o v v o v v o
17.6.2 An Example. . « « v v v o v v v« v v e e e ow
17 6.3 How to Get Going. . . . « + « v v v v ¢ e e e e . .
3.1 HELP Command. . . ¢ « ¢ ¢ « o o o o o o o o« o« &
3.2 RESET Command . .« . ¢ « v ¢ o o o o o o o o o« o &
3.3 GO Command. . . + ¢ v ¢ ¢« o o o o o e e e e e .

3.4 STAT Command. . .« « ¢ « & o « o o « o« o o o o« o

ﬂ-<~:q-q~h<-q~:ﬂ NN NN ==

1
1.
1.
1.
2
2

.6.
17 6.
17.6.
17.6

Xiii

- d b ed wd wd b b

L] .
[|]
ooV VT &

[RG RV RS R RV RV R}
]

o o . .

<17-1

17=-1
.17-3
L17-4
.17-5
<17=-5

.17-6
«17-13
.17-15
SAT-17
<17-19
.17-20
.17-20
L17=-21
.17=-22
<17-22
.17-23
L17-24
C17-24
< 17-25
.17-30
<17-31
<17-31
<17-31
. 17-32

1
.2
6.7.3
17.6.7.4
17.6.8
17.7
17.7.1
17.7.2
17.7.3
17.7.4
17.7.5
17.7.6

17.

EX

1ppendix
Appendix
Appendix
Appendix
Appendix

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

HALT Command. o o .
QUIT Command. . . . o . .« v v v v v v o v v v ..
Status Displays/Selection of Default Process. . . .
Display All Processes - DAP
Select Default Process - SDP(process)
Display Process - DP(Kprocess>)
Show Process - SP(<process>).
Show/Modify Memory Commands
Show Frame - SF(<name>,<displacement>,<1ength>)’ .
Show Heap =~ SH(<addr'ess>,<displacement>,<length>)
Show Memory - SM(address,<length>).
Modifv Memory - MM(address,old value,new value) .
Breakpoints/Single-Step Commands.
Assign Breakpoint - AB(name,{statement>). . . .
Delete Breakpoint - DB(name,<statement>). . . .
List Breakpoints - LB
Delete All Breakpoints - DAB.
Single-Step - SS(Kflag>). . . + v v v « v v v ..
Tracing Commands.
Trace Process Scheduling - TP(<flag>)
Trace Rowtine Entry/Exit - TR(Kflag>)
Trace Statement Flow - TS(<flag>)
Display Trace - DT(<count>)
Error Messages.

¢« o e o

AMPLE
Compile and Save.
Collect e e e e e e e w W
Modify the 'CONFIG' Modmle. . . . + v o o« v o o . .
Create a Link Edit File « o v « . .
Link Edit 00 e e e e e e e,
Target Debugger o

APPENDICES

Glossary. v v e e e e e
Microprocessor Pascal Reference Card.
Microprocessor Pascal Standard Routines
Executive Run Time Support Reference Card . . .
Microprocessor Pascal System Error and
Exception Codes
Microprocessor Pascal System vs Wirth's
Microprocessor Pascal System vs TIP
Executi-~e Ruwn-Time Support =s TIPMX
BNF of Microprocessor Pascal System
Interpretive RTS Data Structures.
TX SYSGEN Example v v v v o v v v . .
MPP 733 ASR DSR Documentation
RTS Mailbox Manager« « « « . .
RTS Clock Interrwpt Handler

ZICRUHIO™T HUOUOW

Xiv

17-32
.17-32
.17-32
-17-33
.17-33
.17-34
1734
.17-36
.17-36
.17-37
.17-37
.17-37
.17-38
.17-38
.17-38
.17-38
.17-39
.17-39
.17-39

< 17=-30"™

- 17=-40
- 17-40
- 17-40
<17-40
17-42
<17=-42
«17-43
<17-43
<17=-44
< 17=-45
. 17=-45

. (] L] [
LI R I |
——d e

Z2IXICRGHTD Q™M OO w»

L] * e * o * e L]
| DN D R D R R R B R |
b b D b D) b D

J

Figure
Figwre

Figure
Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Figure
Figure

-Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

NIV
]
w N

&=
]
-

]
OVl EWN =

]
Y

L I |
ol W N

O O O WO WO O (o)) [RGB RV RV RS
"
—

-

o
]

-

10-2
10-3

10-4

10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12

10-13
10-14
10-15
10-16
10-17

ww
]
N —
[]

LIST OF ILLUSTRATIONS

The Microprocessor Pascal System:

Nesting of System, Program, and Process
Declarations.+ .+ + .« . . .
Typical Stack Frame « « ¢« + « « &
Heap Structure. . . .« « v o ¢« o« o o+ o o o

Diagram of Input/Output
Compiler Listing of Producer/
Consumer Processes . . .« « o« o o o o o o o

Input File Example. v ¢ o « o « &

Example.Sysdecl . . . « « ¢« « ¢ o « o o o o o
Example.Producer. « .« o« .
Example.Consumer. . . . « ¢ ¢ « o « o o o o =
Segment 1 - System Body+ « . . .
Segment 2 - Producer. ¢ « ¢« ¢ « « o
Segment 3 - Conswmer. . . . « « « « + o o o o

Debugging strategies. ¢« « « .« o+ . .

Examples of the Executive RTS

Scheduling Policy . . « « « ¢« ¢ « o ¢« « « o &
Example of Incorrect Semaphore Usage.
Example of Correct Semaphore Use.
Example of Servicing Interrupts as Events . .
Serious Interrupt Program
Example of Style for Interrupt Handling . . .

Interface to Memory-Mapped I/0 Device
Manipulation of Memory-Mapped I/0 Device. . .
Example of Semaphore Control of Shared

Variables e e e e e e e .
Example Implementation of Message
Buffering Data. e .

Example Implementation of Message Bufferlng .
File Variables as Proccess-Local Ports. . .
Channel Connections« e e
Logical Device and Associated Device Channel.
Pagination Program. « « .+ .+ . . .
Coordinate Conversion Program
Communication Among Programs and Devices. . .
Column Index is Incremented During

Text Read o e e
Efect of READLN on Readlng Text Flle. . e e
Effect of Reading First Character on Line . .
Effect of EOF(F) When Result is False
Polling Files for Input « « . « .+ &
Use of EOF with Conditional Files

Xv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figwre
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figuue
Figure

Figure

Figure
Figure

Figure
Figure
Figure
Figuré

Figure
Figwre

Figure
Figure

Figure
Figure

Example of a System Body Which Starts

Two Devices and a Main Program.
Example of System Body Declarations
Simple, Conventional Pascal Program
Equivalent of Conventional Pascal Program .
Conventional Pascal Program with File I/0 .
Equivalent System to Conventional

Pascal Program with File I1/0.
Nesting of Processes and
Variables in Scope. ¢ ¢ ¢+« .+ . .

Example of Concurrent Characteristics
Which are Constant and Variable
Multiple Dynamic Invocations of Processes .

Determining Stack Requirements of a Process
Determinine Heap Requirements of a Process.
Use of Target Debugger to Determine

Stack and Heap REquirements of a Process. .
Program with Concurrent Characteristics . .
Memory Layout of Stacks and

Heaps for Example ¢« v ¢« « &« « o &

Example Sketch of Execwtion Handling. . . .
Example of Exception Handling for a Process

Conceptuwal View of Interface to a

Locical Device.+ ¢ ¢ ¢ o v o o o « &
Interface to Physical Device.
Example Sketch of an Interface Proess . . .
Illustration of Multiple Logical Devices

on a Single Physical Device
Calling Sequence of Example Physical Device
Interface Initializaton Procedure
Initializaton of Four ASR 733's
Implementation of Physical Device Interface
Initialization Proceduwre.
Physical Device Interface System with
Interrupt Demultiplexer Process
Calling Sequence of Line Printer
Initialization Procedure.
Implementation of Line Printer

Initialization Procedwre.
Implementation of Line Printer
Supervisor Program. « .« ¢ < o o o .

Example of Line Printer Device Manipulaton.
Implementation of Cassette Logical Device

Interface Process . . « ¢ « « o o« o« o o o« @
Example of Connection of
User Files to a VDT . . +« v v v o o o o o .

VDT Interface System

Initialization Procedure.
VDT Interface System Supervisor Program . .
VDT Screen Logical Device Process

xvi

11-2
11-4
11-6
11=-6
11-7
11=-7
11=-9

11=-12
11=-13

12-7
12-8

12-8
12-10

13-14
13-15

14-1
14=-2 "
14-2
14-3

14-4
14-5

14-6

14-10
14-11
14-12

14-13
14-14

14-16
14-18
14-18

14-19
1421

N

()

Figure
Figwre

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

Table

Table

Table
Table

14-18
14-19

14-20
14-21

14-22

17-1
17-2
17-3
17-4
17-5
17-6
17-1

17-8
17-9
17-10
17-11
17-12

[l sl sl sl sl al il onl o
1
WOONO0OUV &EWN -

Implementétion of VDT Secreen

Worker Procedure. . . . « « « o o o o

Implementation of VDT Screen
Exception Handler o . .

VDT

Keyboard Logical Device Process

Implementation of VDT Keyboard
Worker Procedure. « + « « « o o o o
VDT Physical Device Interface System . . .

Confie. . . . e e e e e e e e e e e e e e
slmple RAM Table. L] . L) . . . L] L] . L] . . L]

Use

of RAM Table in Conflg. e e e e e e e e

Config with User Modificatons
USERINIT. . &+ & « o o ¢ o o o o o o o o o o
Standard Code for Level 3 Interrupt
Skeleton of Assembly Language

Enterrupt Handler « ¢ « ¢« .« .
Assembly Language Clock Interrupt Handler . .
Divide by 10 Clock Ingerrupt Handler.
Standard Crash Code « ¢« « « « « « .
Elaborate Crash Routine
Assembly Language Segment

ASR Handler Implementation.
ASR Interface System Initializaton Procedure.
ASR Interface System Supervisor Program . . .

ASR

Keyboard Logical Device Process

Implementation of Keyboard Work Procedure .
Implementation of Keyboard Exception Handler.

ASR

Printer Logical Device Process.

Implementation of ASR Printer Work Procedure.
Implementation of ASR Cassette Logical
Device Process. « « « ¢ o o ¢« o o« o o« o o o
Implementation of ASR Cassette

Work Procedure. . . ¢« « « o ¢« o o o o o o o
Implementation of ASR Cassette

Output Procedure. . . . « ¢ « « « ¢« o« « o« o &
Implementation of ASR Cassette

Input Procedure« ¢« +« « .+ . . .
ASR Physical Device Interface System. . .

LIST OF TABLES

Source Editor Commands and Functions
Listing Control Options.

RAM Memory . . . ¢ ¢ ¢ ¢ « « o o o« o« o o
Segment Table.« + ¢« « ¢ « ¢ + o o .

xvii

1

1
1

1

1
1

4-22

4-23
y-24

4-25
14-27

7-2
7-3

17-14
17-6

1
1

1
1
1

7-17
7-14

7-14
7-14
7-15

17-16

1

[l ol ol ol Sl ol S ~—

-

T-16

]
]
-—

-

] LI |
_— e = O W

WwnN = O

]
-
g

L-15

L-

16

L-18

L-

19

SECTION I

MICROPROCESSOR PASCAL SYSTEM OVERVIEW

1.1 WHAT IS MICROPROCESSOR PASCAL?

The Microprocessor Pascal System is a package of software
development tools and run-time utilities which support the use of
the Pascal programming language on the Texas Instruments 9900 Family
of microprocessors.

Microprocessor Pascal is intended for applications that execute on
small computers that do not have a general-purpose, disc-based
operating system but do require multitasking executive support.

Pascal, as extended to become the Microprocessor Pascal System, is
well-suited for such applications. The Microprocessor Pascal System
language supports structured programming, compiler-enforced

compatibility checks that enhance program reliability, user-declared
data structures, and reentrant code that can be shared among tasks.
Microprocessor Pascal System language extensions allow multiple
sites of execution (called processes), synchronization among
processes via semaphores, and access to the communication register
unit (CRU) of the 9900 Family. The execution of Microprocessor
Pascal System-coded applications is supported by the Executive Run

Time Support Libraries. Executive Run Time Support 1is a
memory-resident executive that supports multiprogramming,
Microprocessor Pascal System-coded interrupt handlers, process
synchronization through semaphores, interprocess communication

through Microprocessor Pascal System file I/0, dynamic creation and
reclamation of processes, and process scheduling according to a
multiple priority scheme.

A major benefit of the use of the Microprocessor Pascal System
language and the Executive Run Time Support is that each designer of
an application system does not have to specify system-wide standards
and conventions for inter-module parameter passing, register usage,
task control blocks, etc. These design decisions have been made by
Texas Instruments in mapping the Microprocessor Pascal System onto
the arcnitecture of the 9900 family. Microprocessor Pascal System
I/0 provides a standard high-level module interface that permits the
development of modular software component libraries from which users
can select exactly those modules that are needed for a particular

application. For example, Texas Instruments provides interface
modules for common peripheral devices of the TM990 family of
9900-based microcomputer boards. The design of the Executive Run

Time Support also emphasizes software modularity. The components of
the Executive Run Time Support are provided in a form that permits
the user to include in his applications only those features that are
actually used.

1-1

Within +the framework provided by the Microprocessor Pascal System,

the production of a multl -tasking application is to a great degree
reduced to construction of a collection of processes, each of which

is basically a sequential Pascal program. Well-defined techniques
and supportive executive components are provided to manage the
time-dependent interactions among processes. The user of the

Microprocessor Pascal System can concentrate on the algorithms that
comprise his application without concern about the implementation of
the executive under which they execute.

The user of the Microprocessor Pascal System develops software using
one of the following host computer systems; either a single-user
FS990/4 or FS990/10 floppy disc development system or a multi-user
DS990/10 hard disc minicomputer. The Microprocessor Pascal System
provides four major components which support software development on
a host computer:

e An intelligent, interactive editor for source preparation

® A compiler to compile source into interpretive code

® A code generator to generate 9900 object code N

e An interactive debugging interpreter.

The figure below illustrates these four major components, providing
the user with an overview of the Microprocessor Pascal System.

EDITOR (SYNTAX ERRORS)
SOURCE
COMPILER (SEMANTIC ERRORS)

'

INTERPRETIVE CODE

: s

DEBUGGER CODEGEN

(LOGIC ERRORS) '

9900 CODE
HOST
TARGET L
INTERPRETIVE NATIVE
RUN TIME SUPPORT RUN TIME SUPPORT

(REAL TIME ERRORS)

FIGURE 1-1 THE MICROPROCESSOR PASCAL SYSTEM

1-2

N

1.2 SOURCE EDITOR

The Microprocessor Pascal System provides an interactive source
editor designed to help in the creation and modification of
Microprocessor Pascal System source files. The editor interacts
with the wuser at a video display terminal by displaying a desired
portion of the file on the screen and allowing a cursor to be moved
around within this display. Changes may be made to the file by
simply typing over the old text with the new text, or by adding,
moving or deleting complete lines or blocks of several lines. The
editor helps the user input correct Pascal statements by syntax
checking the complete file on command. If an error is detected, an
appropriate error message is given to allow the user to correct the
error before syntax checking continues. The editor also has
features which help with the indentation of structured statements.
Each " time a new line is added, the editor positions the cursor to
the current indentation 1level. The cursor 1location is only a
suggested indentation 1level; the wuser can easily reposition the
cursor to a different one.

1.3 COMPILER

The Microprocessor Pascal System provides a compiler that translates
Microprocessor Pascal System source code into interpretive code for
a hypothetical stack computer. This code may be executed
interpretively using the Host Debugger or may be used as input to
the Native Code Generator. The interpretive code is characterized
by its small size, about half the size of 9900 native code. Another
advantage of interpretive code is the minimal time required to
produce an executable system that can be debugged at a functional
level. The Microprocessor Pascal System Compiler processes the full
Microprocessor Pascal System language and detects syntactic and
semantic errors at the source level. The compiler also supports a
"copy" statement which allows the wuser to partition a complete
Microprocessor Pascal System system into separate source files which
are easier to maintain and edit.

1.4 NATIVE CODE GENERATOR

A code generator will also be provided with the Microprocessor
Pascal System in a future release; the Native Code Generator will

translate the interpretive code from the compiler into 9900 object
code.

1-3

1.5 HOST DEBUGGER -

The Microprocessor Pascal System provides an interactive debugger
which enables the user to debug systems at a functional level. The
debugger supports symbolic references to module names, file names,

and common names. A module is any unit of Pascal which may be
invoked that is either a system, program, process, procedure or
function. Statements can be referred to by Pascal statement

numbers. Either a single process or a set of processes can be
debugged at once. Breakpoints can be used to stop the execution at
any point by specifying the Pascal statement number of a particular
module. When execution is suspended, the status of the system can
be examined. Examples include the status of each process in the
system, as well as the values of module variables, common variables,
or variables allocated from a dynamic heap. Data can also be
modified if desired. The execution of the system can be traced at
the process scheduling level, module entry and exit level, or module
statement flow 1level. Target hardware interfaces such as CRU
references and interrupts may be simulated in the debugging mode.

MM

1.6 EXECUTIVE RUN TIME SUPPORT

The executive components of the Microprocessor Pascal System are
provided 1in two versions that correspond to the two types of output
that are available with the Microprocessor Pascal System
compiler -- interpretive and native (object) code. The Interpretive
Run Time Support Library supports interpretive execution. It is
generally used for applications for which the program compactiion
that 1s achieved with interpretation is more important than the
associated decrease in execution speed. The Native Code Run Time
Support Library supports the execution of 9900 Native code and is
generally used for time-critical applications. Both versions of the
executive provide the same capabilities to the wuser and will be
referred to as the Executive Run Time Support Libraries.

14

7

N

)

SECTION II
MICROPROCESSOR PASCAL SYSTEM CONCEPTS

This section deals with the general concepts and structures which
comprise the Microprocessor Pascal System. It is primarily designed
to introduce the concepts which will be used in this document. The
following topies include processes, programs, systems, memory
management, reentrancy, and recursion.

2.1 PROCESS ' '

A conventional Pascal program consists of a main program along with
zero or more procedures or functions. Execution of such a progranm
is done serially; that is, execution proceeds from one statement to
the next so that execution exists at a single point in a single
run-time environment at any time. However, the practice of having
several sites of execution within one program at the same time,
called multiprogramming, is often desirable. To permit
multiprogramming, the concept of a process (a separately executing
entity with its own run-time environment for its data) has been
introduced 1into the Microprocessor Pascal System language. A
conventional program is normally executed by one process which is
created by the run-time support system before the program starts
executing, and is destroyed when the program ends.

A process has resources which are allocated when the process is
first started and deallocated when the process terminates. A
process' stack holds variables which are statically declared in the
process. A process' heap holds variables which are dynamically
allocated and deallocated according to the NEW and DISPOSE
statements, respectively. A process record is associated with each
process by the Executive Run-Time Support and is used to hold
implementation-dependent information.

A process is executed by a processor whiech is a CPU hardware
device. The Microprocessor Pascal System is designed for the Texas
Idistruments model 990 computer and 9900 microprocessor. A process
has a state which, if the process were snapshot at some instant,
would indicate the next instruction the process is to execute as
well as the current values of all data variables which it can
address. If a process is temporarily suspended for any reason (such
as the occurrence of an interrupt), the state of the process must be
restored before the process can continue its computation. The state
of a process includes at 1least the machine context (workspace
pointer, program counter, and status register) which is saved in the
process record. 1In the Microprocessor Pascal System, code produced
by the compiler is not self modifying, so the state of a process
does not include the instructions themselves. The instructioh
stream is invariant with respect to the execution of processes. The
Microprocessor Pascal System Compiler also produces references to

2-1

local data that are relative to the stack region. Invariant code f/
and relative data references provide reentrancy, which allows one
copy of code to be in simultaneous use by more than one process.

In a stand-alone environment, having multiple points (sites) of
execution within a program and being able to support interrupt
handling 1is <convenient. As an example, a process control problem
could be solved by preparing a process to control each type of
device in the system and a particular instance of that process for
each actual device. General multiprogramming is also possible using
the process concept. The Executive Run Time Support allows the user
to write programs and processes in Pascal to service interrupts and
devices and realize general multiprogramming.

Multiprogramming (or multitasking) allows more than one process to

be executing in the same system. Multiprogramming was originally
introduced to achieve better utilization of large computers: rather
than going to an idle state to await the occurrence of some externalm,
event such as an input/output operation, the processor could execute.
another program. Typically, each program was a step of a batech job
that did not interact with other jobs. Improved processor
utilization is not the primary reason the Executive Run Time Support
supports multiprogramming; it is intended for applications (such as
process control) that have a high degree of parallelism. Each
concurrent activity is best managed by a separate software module
that models its ©behavior. This one-to-one correspondence between /*
external activity and software control programs provides a powerful U
technique for the decomposition of a complex problem into modular
components. Such modularity is important for the simplification of
software development and testing and for the application of
previously developed modules to new problems.#%

Processes can communicate among themselves and synchronize with each
other using the Executive Run Time Support. Logically, they execute
concurrently (at the same time) competing for the processor's
response. Processes are scheduled (selected for execution) based on
process readiness and process priority. Process readiness is a-™
‘indication of whether a process may either proceed or must wait for-
some condition to occur. Process priority is an indication (a
number) of the relative urgency of the process. The 1lower the
number, the more time critical the associated process is.

¥ In the terminology of Executive Run Time Support, a program is a
special case of a process, so "multiprocessing" would be a more
appropriate term than "multiprogramming"; however, "multiprocessing"
has been used to describe execution on multiple processors. N

2-2

.

2.2 LANGUAGE EXTENSIONS TO SUPPORT PROCESSES

A conventional Pascal program is structured as a PROGRAM module that
has zero or more procedures or functions declared within it. There
is one site of execution per program. The Pascal language has been
extended to form the Microprocessor Pascal System language by adding
constructs to declare and concurrently start processes, each of
which has a site of execution. Two types of processes have special
properties and are given the names "system" and "program".

The extensions in the Microprocessor Pascal System language have
been designed to aid the user in the following areas:

Process declaration is distinect from the declaration of
a procedure or function

Process declarations may be nested, and the Pascal
scope rules of global variables are enforced as usual

Process parameters may be declared, and the START
statement allows the passing of process parameters with
full type checking by the Microprocessor Pascal System
System compiler

Variables within scope of a process are guaranteed to
exist even if processes which are lexical ancestors
have terminated

The PROGRAM construct is a special case of a process in
that it has no variables global to it. Its resources
are given a special treatment by the run-time support

Any process or program which is within scope <can be
concurrently executed with the START statement. To
allow all program declarations (declared at level one)
to be in scope, the SYSTEM construct at level zero
contains all program declarations.

2.2.1 SYSTEM Declaration

. []

The SYSTEM is the outermost level of declarations and executable
statements in a Microprocessor Pascal System. All other modules are
contained within the SYSTEM; programs are nested within the SYSTEM,
and processes are nested within programs as well as within other
processes. An example of the nesting of the system, programs, and
processes is illustrated in Figure 2-1.

A SYSTEM is the process in which execution begins. It bootstraps
the SYSTEM by initializing global parameters and starting the
programs which comprise the SYSTEM. It may not have any variables
except possibly variables in COMMONs.

SYSTEM EXAMPLE; LEVELO ﬁ \

PROGRAM PROS1; LEVEL1 ﬁ

PROCESS PROC1; = LEVEL2 _T

BEGIN (PROCESS BODY)
END;

BEGIN (PROGRAM BODY)
END;

PROGRAM PROS2; LEVEL1 =

PROCESS PROC2; LEVEL2 == k]

PROCESS PROC2A; == LEVEL3 e==m

BEGIN (PROCESS BODY)
END;

——~

BEGIN (PROCESS BODY)
END;

PROCESS PROC3; == LEVEL2 -

BEGIN (PROCESS BODY)

END; ,@‘i\‘

BEGIN (PROGRAM BODY)
END;

BEGIN (SYSTEM BODY)
END;

FIGURE 2-1. NESTING OF SYSTEM, PROGRAM, AND PROCESS DECLARATIONS

24

2.2.2 PROGRAM Declaration

Using the Microprocessor Pascal System, multitasking is possible.
Because of this feature more than one program may be declared within
the same SYSTEM. Processes and routines (procedures and functions)
may be declared in a PROGRAM within the SYSTEM. 1In addition, the
Microprocessor Pascal System also supports conventional Pascal which
allows only single program environments.

A program is a process that 1is self-contained with respect to
accessing data via scope of variables or pointers. It corresponds
to the PROGRAM construct of the Pascal language and has no external
data available to it except possibly through COMMONs.

2.2.3 PROCESS Declaration

A process may only be declared within a program, or within another
process; within a process, procedures and functions may be declared
along with other processes. A process may have value parameters
associated with it, and may also have access to all variables which
are declared global to it.

2.3 MEMORY

Each program or process has two data structures associated with it
to manage memory. One of these is called the stack and the other is
called the heap. The stack is an area allocated to the declared
variables of the program or process and its procedures. The heap
holds dynamically allocated variables, which are not declared but
are created and destroyed by the procedures NEW and DISPOSE.

2.3.1 System Memory

System memory comprises all the data space which is possibly
available for use. It must, however, be memory which the Executive

‘Run Time Support system knows to use. System memory is a resource

from which the program data structures are constructed.

2-5

2.3.2 Stack

A stack is implemented by using a block of storage called a stack
region, out of which stack frames are allocated upon routine entry
and deallocated upon routine exit. These stack frames are managed
on a last-in, first-out Dbasis. Each frame or activation record
corresponds to a particular call of a program, process, procedure,
or function, and includes space for variables, for temporaries, and
for an administration area. (Refer to Figure 2-2.)

ADMINISTRATION VARIABLES TEMPORARIES

™
FIGURE 2-2. TYPICAL STACK FRAME

2.3.3 Heap, A heap is an area of memory which may be allocated in
arbitrary sized packets which may then be returned and reused.
These packets are used to hold dynamically allocated variables.
Heaps may be one of two types: program or nested. Programs have
heaps which are created from system memory. A nested heap 1is
allocated out of another heap, called the parent, so that a
hierarchy of heaps may be created. When a process is started, it is
specified either to have its own heap (nested) or to share that of
its 1lexical parent. NEW and DISPOSE use the heap associated with
the process from which they are called. Hence, each procedure,
function, process, or program may use only one heap using NEW and
DISPOSE.

A heap is implemented as a heap region with an administration packet
and allocated and unallocated packets. All dynamically allocated
variables are allocated from the heap and returned to the heap in
program-dependent order (using NEW and DISPOSE). (See Figure 2-3.)7

ADMINISTRATION PACKET UNUSED PACKET PACKET UNUSED

FIGURE 2-3. HEAP STRUCTURE

2

2.4 REENTRANCY

Reentrancy is a property of code (of which Microprocessor Pascal
System stem ¢ System example) which allows multiple activated copies
or <calls of a code module to be executing at the same time. These
activations execute independently of each other, causing
modifications of separate areas of data though using physically the
same code. This is made possible by initializing all wvariables by
executable code, not wusing self-modifying code, and keeping local
variables and temporaries in an unshared data Space. This allows,
for example, many users to execute the same copy of a text editor,
though working on different text. The controller for a device can
be implemented by a routine that has as a parameter the
identification of the specific instance of that device that must be
controlled. If the code is reentrant, then the same handler can be
invoked to control a number of devices.

2.5 RECURSION

Recursion is a property whereby an algorithm (solution) is expressed
in terms of itself. This occurs whenever a routine calls itself
directly (direct recursion), as well as when a calling routine is
called (through a series of calls) without having first returned
(indirect recursion). Implementing recursion requires that data
references be relative to unshared data spaces for each activation
of a routine. The reentrant nature of Pascal code easily supports
the implementation of recursion. An example of direct recursion is
that of factorials of positive integers: the factorial of N is N
times the factorial of N-1 (the factorial of zero is 1). This is
expressed as:

FACTORIAL(n) n*FACTORIAL(n=-1)

FACTORIAL(O) 1

In Pascal, this could be coded as:

function factorial (n: integer): integer;
begin

assert n >z 0;

if n = 0 then factorial := 1

else factorial :=z n # factorial(n - 1)
end;

27

.,./\\.

SECTION III

MICROPROCESSOR PASCAL SYSTEM EXAMPLE

3.1 OVERVIEW

Much attention has recently been given to methods for producing good
quality software. However, the solution to this problem remains a
highly sub jective one. Two software designers may use very
different methods to achieve the same result, namely, a reliable,
maintainable software product that performs the desired function.

Though methodological views may differ, one point of agreement
emerges. The software design process must become more and more
disciplined. Software systems must be simple, adaptable, and
reliable if they are to achieve a long lifetime of use.

We cannot hope to present even a cursory overview of modern software
design principles and techniques in this short section. The purpose
here is to present a small view of the software development cycle
using the Microprocessor Pascal System. A simple software system is
presented with a step-by-step example showing how the system can be
implemented using the Microprocessor Pascal System.

3.2 PROBLEM DEFINITION AND STRUCTURING

An early design problem is the decision regarding how the system is
to be structured. The system can usually be divided into fairly
independent functional units. Each functional unit should be
defined so that it can be understood in terms of the inputs it can
receive and the outputs it is expected to produce. 1In this way, the
interfaces between the units form a nearly complete definition of
the systemn. Each functional unit can then be designed and

implemented one at a time. Moreover, a single unit can be

systematically tested in isolation from all other units in order to
verify that it performs the required function. It 1is possible to
construct even the most complex systems in this incremental
fashion.

In terms of a Microprocessor Pascal System implementation, a
functional unit can be considered to be a process. A Microprocessor
Pascal System can be divided into separate processes, each of which
accepts a set of inputs and produces a set of outputs. A single
process can be viewed 1in isolation from other processes. The
behavior of each process can be verified one at a time, before the
process is placed into the system in its normal context.

31

3.3 AN EXAMPLE

The example chosen for this section is a simple system containing a

producer process and a consumer process. The two processes
communicate with each other through a message buffer. A message in
this system could be any kind of data structure. However, in the

example, a message is simply a single character value from A to Z.
The producing process may send a message to the message buffer
without waiting for the message to be copied by the consuming
process. The producing process is suspended only if the required
buffer space 1is not available. The consuming process copies the
character out of the message buffer. This process is suspended only
if the buffer space is empty or not available for exclusive access.
(Refer to Figure 3-1.)

In Figure 3-2 on the following page, a message buffer is declared as
a COMMON variable which 1is a record. The "slots" field is the
circular buffer into which messages are deposited by the producer
and fetched by the consumer. The "next_in" field indicates where
the next incoming message is to be deposited. The "next_out" field
indicates from where the next outgoing message is to be fetched ™
The "exclusive_access" field is a semaphore used to guarantee that
only one process has access to the message buffer at a given
instant. The "not empty" field is a semaphore used to ensure that
the buffer is not empty when removing messages from it. The
"not_full" field is a semaphore used to ensure that there is an
available space in the buffer when depositing a message.

PRODUCER BUFFER CONSUMER

FIGURE 3-1. DIAGRAM OF INPUT/OUTPUT

32

DX Microprocessor Pascal System Compiler 1.0 05/24/79 13:51:41

{$ DEBUG, MAP}
SYSTEM tutorial;

CONST number_of_slots = 10; .maximum number of slots in a buffer

TYPE slot_index = 1..number of _slots;
alpha character = 'A'..'27;

COMMON message_buffer: RECORD Yeircular message buffer
slots: ARRAY [slot 1ndex] OF alpha_character;
next_in, next out: slot_index;
not_empty, not_full: SEMAPHORE;
exclusive acceSs: SEMAPHORE;
END; -

ACCESS message_buffer;

PROCEDURE initsemaphore(var sema: SEMAPHORE; count: INTEGER);
EXTERNAL;

PROCEDURE signal(sema:SEMAPHORE); EXTERNAL;

PROCEDURE wait(sema: SEMAPHORE); EXTERNAL;

PROCEDURE swap; EXTERNAL;

PROGRAM producer;
VAR item: alpha_ character,
line: PACKED ARRAY [1..16] OF CHAR;
status: INTEGER;
ACCESS message buffer;
BEGIN ({#priority = 20; stacksize = 100}
item := 'A';
line 'item produced: 's
WITH m = message_buffer DO
WHILE TRUE DO BEGIN
wait(m.not full); walt for buffer space
wait(m.exclusive access); "get acces to the buffer
m.slots [m.next_in] :z item; "deposit item into buffer
ENCODE(line, 16, status, item);
MESSAGE(1line);
10 IF item = 'Z' THEN item := 'A! "generate the next item
12 ELSE item := SUCC(item);
13 m.next in :=z SUCC(m.next in MOD number of _slots);
14 signal{m.exclusive access); Yrelease access to buffer
15 signal(m.not_empty); "indicate presence of another item

16 swap; ”give the consumer a chance
17 END;
17 END;

. N —
WO~NOoOOUMEWN=2200NO OO0 0 FOO0OODO0OO0OO0ODO0OO0ODO0OO0O0CO0OO000O0

S FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES (1 OF 3)

3-3

8 cﬁgGﬁﬁgmconipﬂa bharacter,
2 line: PACKED ARRAY [1..16] OF CHAR;
18 status: INTEGER;
20 ACCESS message buffer;
1 BEGIN %ﬁpriori?y = 20; stacksize = 106}
1 line := 'item consumed: 's
2 WITH m = message buffer DO
3 WHILE TRUE DO BEGIN
y wait(m.not empty), "“wait for available item to appear
5 wait(m.exclusive _access); "*wait for access to buffer
6 item := m.slots m. next_out ; "extract item from buffer
7 ENCODE(line, 16, status, item);
8 MESSAGE(line);
9 m.next out :=z SUCC(m.next out MOD number of _slots);
10 signal(m.exclusive accessT “release access to buffer
11 signal(m.not full), indiacte an available space in buffer
12 swap; "give the producer a chance ™
13 END;
13 END;
1 BEGIN {#stacksize = 300; heapsize = 500}
1 WITH m = message buffer DO BEGIN "initialize the message buffer
2 m.next_in := 15 Yindex of first in-coming item
3 m.next out := 1; “index of first out-going item
y initseﬁaphore(m.exclusive access, 1); “one access at a time
5 initsemaphore(m.not empty, 0); "of full slots in the buffer
6 initsemaphore(m.not" _full, number_of_slots); s;of empty slots
7 END;
7 START producer;
8 START consumer;
9 END.

SYSTEM TUTORIAL;
STACK SIZE = 0000

COMMON TYPE SIZE =N
MESSAGE_ RECORD 30 ‘
FIELD DISP TYPE SIZE

SLOTS 0000 ARRAY 20

NEXT_IN 0014 SUBRANGE 2

NEXT_OUT 0016 SUBRANGE 2

NOT_EMPT 0018 SEMAPHORE 2

NOT_FULL 001A SEMAPHORE 2

EXCLUSIV 001C SEMAPHORE 2

FIGURE 3-2. COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES (2 OF 3)

34

~

PROCEDURE INITSEMA (VAR SEMA :SEMAPHORE; COUNT
PROCEDURE SIGNAL (SEMA : SEMAPHORE); EXTERNAL;
PROCEDURE WAIT (SEMA : SEMAPHORE); EXTERNAL;
PROCEDURE SWAP ; EXTERNAL;
PROGRAM PRODUCER;
STACK SIZE = 0014
VARIABLE DISP TYPE SIZE
ITEM 0000 SUBRANGE 2
LINE 0002 STRING 16
STATUS 0012 INTEGER 2
PROGRAM CONSUMER;
STACK SIZE = 0014
VARIABLE DISP TYPE SIZE
ITEM 0000 SUBRANGE 2
LINE 0002 STRING 16
STATUS 0012 INTEGER 2
FIGURE 3-2.

:INTEGER);

EXTERNAL;

COMPILER LISTING OF PRODUCER/CONSUMER PROCESSES (3 OF 3)

The text on the following page is a sample debugging session for the

producer/consumer example;

an explanation follows.

35

HOST DEBUGGER 1.0 05/24/79 13:52:12
Enter system heap size in (K)bytes: 5
Do you wish to debug the most recently compiled system?
Please answer YES or NO:YES
debug(producer)

debug(consumer)

go
run-time support now initialized

go
#%% Pprocess Created #%#% PRODUC(2)

sdp(producer)

ab(producer, 10)

go
%% Process Created #%% CONSUM(3)
dap
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts
0 IDLE$P IDLES$P 0 Ready 32767 no
1 TUTORI runtime code Active 1 no
2 PRODUC PRODUC 0 Ready 20 yes
3 CONSUM CONSUM 0 Wait 20 no
ab(consumer.1, 9)
go
¥%¥% Breakpoint ¥*#¥# PRODUC(2) .PRODUC Statement 10

sc(message, 0, 24)

common MESSAG
c95C (0000) 0041 0000 0000 0000 0000 0000 0000 0000 (.A............
C96C (0010) 0000 0000 0001 0001 (eeveennn

go
¥%¥% Breakpoint ¥#%#% CONSUM(3).CONSUM Statement 9

sc(message, 0, 24)
common MESSAG

C95C (0000) 0041 0000 0000 0000 0000 0000 0000 000O (cBeeennnnnn. .
C96C (0010) 0000 0000 0002 0001 (eeveenne ‘
go

~

#%% Breakpoint ¥*¥#

sc(message, 0, 24)
common MESSAG
C95C (0000) o0oO41 0042 0000
c96C (0010) 0000 0000 0002

go
¥%% Breakpoint ¥¥%#¥

sc(message, 0, 24)

common MESSAG
C95C (0000) 0041 0042 0000
c96C (0010) 0000 0000 0003

go
¥%¥% Breakpoint %*¥%#¥

sc(message, 0, 24)

common MESSAG
C95C (0000) 0041 OOL42 0043
c96C (0010) 0000 0000 0003
hp(consumer)

dab(producer)

go
Idle Instruction

dap

Site of

Process Name Execution

0 IDLE$P IDLES$P
2 PRODUC
3 CONSUM

sc(message, 0, 24)
common MESSAG

C95C (0000) OO4B 004C OO43 OOL4Y4 OOUS 0046 0047

PRODUC(2) .PRODUC

Statement 10

0000 0000 0000 0000 0000 (.A.B..
0002

CONSUM(3).CONSUM

(venenn

Statement 9

0000 0000 0000 0000 0000 (.A.B..
0002

0000 0000 0000 0000 0000

0003

0

runtime code
runtime code

C96C (0010) 0049 004A 0003 0003

hp(producer)
rp(consumer)

dap

Site of
Process Name Execution

3-7

PRODUC(2).PRODUC

Status Summary of All Existing Processes

Status

Active
Wait Sema
Hold

Status Summary of All Existing Processes

Status

(evven.

Statement 10

(evvenn

Enabled
Pri Traces

32767

20
20

oo48 (.K.L.C
(.I.J.

(.A.B.C.......

e o

Stmt
Bkpts

no
no
yes

ces)

)

.D.E.F.G.H)

Enabled
Pri Traces

Stmt -
Bkpts

)

0 IDLE$P IDLE$P 0 Ready 32767 no

2 PRODUC runtime code Wait Sema (h) 20 no
. 3 CONSUM runtime code Active 20 yes
go
¥%¥%¥ Breakpoint ¥#¥# CONSUM(3).CONSUM Statement 9

sc(message, 0, 24)
common MESSAG

€C95C (0000) 004B 00UC OO43 OO4Y4 0045 0O46 OO4T OO4U8 (.K.L.C.D.E.F.G.H)
C96C (0010) 0049 OOL4A 0003 0003 (.I.d....)
go :

¥#% Breakpoint ¥##% CONSUM(3).CONSUM Statement 9

sc(message, 0, 24)go
extra characters will be ignored
common MESSAG e\
C95C (0000) OO4B 004C 0043 0044 0045 OOL6 00UT 0048 (.K.L.C.D.E.F.G..y
C96C (0010) 0049 0O0O4A 0003 OOOU4 (.I.Jd....)

sc(message, 0, 24)

common MESSAG
C95C (0000) OO4B OOL4C OOL3 OO4YH OO45 OO46 0047 0048 (.K.L.C.D.E.F.G.H)
C96C (0010) 0049 004A 0003 0004 (.I.d....)

dab(consumer)

go
Idle Instruction
dap
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts N
0 IDLE$P IDLES$P 0 Active 32767 no)
2 PRODUC runtime code Hold 20 no
3. CONSUM runtime code Wait Sema 20 no
sc(message, 0 , 24)
common MESSAG
C95C (0000) OO4B 004C 0043 0OLY4 0045 OO46 OO4T OOU8 (.K.L.C.D.E.F.G.H)
C96C (0010) 0049 004A 0003 0003 (.I.J....)

quit

Execution Terminated
Memory Used (bytes) Maximum = 4082 Current = 2184

3-8

In the sample debugging session, the message buffer is displayed at
various points using a "show common" (sc) command. Notice that a
length of 24 bytes starting at displacement 0 is specified each time
the common is displayed. From the compiler map, it can be seen that
the first 20 bytes of the common comprise the message buffer slots,
followed by the "next_in" and the "next_out" field. The semaphore
values are not importznt to understanding this example.

Once the producer and consumer processes have been created,
breakpoints are set just ©beyond the point where a message 1is
produced or consumed. Since the producer and the consumer both
perform a "swap", they manage to keep up with one another, i.e. as
soon as an item is produced it is generally consumed immediately.
To make the example more interesting, the consumer is held wusing a
"hold process"™ (hp) command. The consumer becomes ineligible for
execution until an explicit M"release process" (rp) command is
given. This causes the producer to completely fill the buffer until
no more slots are available. When this happens, the producer is
suspended on the "not full" semaphore. At this point, the producer
is held (using an hp command) and the consumer is released (using an

rp command). This causes the consumer to consume all messages in
the buffer. When all messages are consumed, the consumer is
suspended on the "not_empty" semaphore. The example debugging

session would continue forever if both processes were allowed to
continue. The session can be terminated with a quit command.

Notice that a dangerous problem can oceur if the
wait(exclusive_access) precedes wait (not_empty) in +the consumer
process. Suppose the consumer process 1is started and becomes

suspended on "not empty" because no messages have yet been deposited
into the buffer. ~A producer process then cannot get exclusive
access to the buffer to deposit a message. The consumer will be
waiting forever for an item to appear. In fact, all processes
sharing the message buffer become suspended forever. Semaphores are
low-level synchronization tools that must be used with great care.
Users are therefore encouraged to use the mechanism of interprocess
files for interprocess communication whenever possible, since this

‘is a much safer, higher-level interface mechanism.

SECTION IV

SOURCE EDITOR GUIDE

4.1 SOURCE EDITOR OVERVIEW

The Source Editor allows the user interactively to create and modify
Microprocessor Pascal source files which may be input to the
Microprocessor Pascal Compiler. The Source Editor permits the user
to enter and modify data only in the first 72 columns of a 1line.
This protects the user from entering data which he had intended to
be read by the compiler as part of his source program in columns 73

" through 80. The Source Editor is invoked and operated from a TI
911(TI 913) VDT.

The Source Editor allows the user either to create a new source
file, or to edit an existing source file. To create a new source
file using the Source Editor, a blank 1line should be entered by
pressing the RETURN(NEW LINE) key when prompted by the editor for an
input file. In order to edit an existing source file, the user
should respond to the prompt by typing the pathname of the file to
be edited.

4.1.1 The Video Display

Editing occurs on a page basis, with a page being 23 lines on the
911 VDT and 11 lines on the 913 VDT. Any line displayed on the
screen may be edited by positioning the cursor anywhere within the
line to be edited. Lines may be inserted between any two lines, and

p-may be inserted or deleted in any order. In addition, characters
within a line may be inserted, deleted, or modified. Positioning of
the file for display is accomplished by the use of the Roll Up, Roll
Down, Cursor Up, and Cursor Down functions as well as the Relative
Positioning, Top, Bottom, and Find commands.

4.1.2 Microprocessor Pascal Source File Definition
A Microprocessor Pascal source file is a file which is determined to
be syntactically complete by the CHECK command. A Microprocessor

Pascal source file may be:

A module header with any portion of its declaration
section and its associated body,

The declaration section of a module with one or more of

the declarations in the order Const, Type, Var, Common,
Access, and Submodules.

4-1

e T

4.1.3 Command Summary —
The commands and functions of the Source Editor are conveniently
divided into five separate classes. The following table is a
Ssummary of the editor commands and functions. A detailed

description of each command and function is given in Section 4.3.

TABLE 4-1. SOURCE EDITOR COMMANDS AND FUNCTIONS
Command/Function 911 VDT Key 913 VDT Key ‘
Setup and Termination
Help CMD/"HELP" HELP/"HELP"
Edit/Compose Toggle F7 F7
Syntax Check CMD/"HELP" HELP/"™CHECK" oy
Quit CMD/"QUIT" HELP/"QUIT®
Abort CMD/® ABORT" HELP/"ABORT"
Save CMD/"SAVE" HELP/"SAVE"
Input CMD/"INPUT" HELP/"INPUT"
Cursor Positioning
Roll Up F1 ROLL UP
ROLL DOWN F2 ROLL DOWN
NEW LINE RETURN NEW LINE
TAB SHIFT TAB SKIP TAB
BACK TAB LEFT FIELD BACK TAB
SET TAB INCREMENT CMD/"TAB(increment)" HELP/"TAB(increment)"
CURSOR UP up-arrow up-arrow
CURSOR DOWN down-arrow down-arrow ’jjj)
CURSOR RIGHT right-arrow right-arrow .
CURSOR LEFT left-arrow left-arrow)
Home HOME HOME
Find CMD/"FIND(parms)* HELP/"FIND(parms)"
Relative Positioning CMD/number HELP/number
Top CMD/"TOP" HELP/"TOP"
Bottom CMD/"BOTTOM" HELP/"BOTTOM"

Program Modification

Insert Line
Duplicate Line
Delete Line

Skip

Insert Character
Delete Character
Clear Line
Replace

Split Line
Insert

Block Commands

Start Block
End Block
Copy

Move

Delete

Put

Show Command

Show

unlabeled gray key
F4

ERASE INPUT

TAB SKIP

INS CHAR

DEL CHAR

ERASE FIELD
CMD/"REPLACE(parms)"
F8

CMD/"INSERT"

F5

F6
CMD/"COPY"
CMD/"MOVE"
CMD/"DELETE"
CMD/"PUT"

CMD/" SHOW"

4.2

INSERT LINE
F4

DELETE LINE
SKIP

INS CHAR
DEL CHAR
CLEAR
HELP/"REPLACE(parms)"
FoO

HELP/"INSERT"

FS

F6
HELP/"COPY"
HELP/"MOVE"
HELP/"DELETE"
HELP/"PUT"

HELP/"SHOW"

4.2 EXAMPLE EDIT SESSIONS

The following edit sessions provide examples depicting the creétion
of a new source file, modification of an existing source file, and
saving the results of an edit session.

4.2.1 Creating a File

The following procedure applies to creating a new file using the
Source Editor. The example assumes that the Source Editor has been
invoked as described in Section XV covering the DX10, and Section
XVI covering TXDS.

Upon invocation of the Source Editor, the user is prompted as
follows:

INPUT FILE ACCESS NAME:

Press the RETURN(NEW LINE) key to indicate that a new source file is
to be created. The screen 1is cleared, *EOF is displayed in the
upper left hand corner of the screen, COMPOSE MODE is displayed in
the lower right hand corner of the screen, and the cursor is
positioned at row one, column one of the screen. The display
indicates that the only record in the file is the end-of-file record
and that the editor is in COMPOSE mode. :

To begin entering a program, press either the RETURN(NEW LINE) key
or the unlabeled gray key(INSERT LINE). Note that row one is now a
blank 1line, the end-of-file marker is on row two, and the cursor is
positioned at row one, column one. You may now begin entering a
source file by simply typing the source file and pressing the
RETURN(NEW LINE) key whenever you wish to enter another line.

After the program has been typed in, the file may be saved by one of
/™,wo methods: ’

If the user does not want to edit another source file
then he should press the CMD(HELP) key and type the
word QUIT. The user will then be prompted as follows:
OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the
file to which the edited source file is to be written
and press the RETURN(NEW LINE) key. The user will then
be prompted as follows:

REPLACE?:

The user should respond by typing the letter N to

4-3

specify that an existing file with the pathname entered
in response to the previous prompt should not be
replaced, otherwise the user should respond by typing
the 1letter Y. The file 1is then saved in the file
specified by the pathname entered and the editor is
exited.

If the user wants to edit another file after saving the
file Jjust edited, the CMD(HELP) should be pressed, and
the word SAVE typed. The user will then be prompted as
follows:

OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the
file to which the edited source file is to be written
and press the RETURN(NEW LINE) key. The user will then
be prompted as follows: .-

REPLACE?:

The user should respond by typing the letter N to
specify that an existing file with the pathname entered
in response to the previous prompt should not be
replaced, otherwise the user should respond by typing
the letter Y. The file is then saved in the file
specified by the pathname entered and the user is
prompted for the pathname of the next file to be edited
as follows:

INPUT FILE ACCESS NAME: pathname

The wuser may then respond by pressing the RETURN(NEW
LINE) key to re-edit the file just saved, clearing the
line and pressing RETURN(NEW LINE) to create a new
file, or entering the pathname of an existing file as
described in the next section.

4.2.2 Editing an Existing File

The example

for editing an existing file by using the Source Editor. It
that the editor has already been invoked. For this example

assumed
session,

the file in Figure 4-1 will be used as the input file.

Upon invocation the following is displayed:

INPUT FILE ACCESS NAME:

described in this section gives the general procedures

is

s

S 2 USSR e e e e DRI " neaiad A e 2 el e

Enter the pathname of the file to be edited and press the RETURN(NEW
LINE) key.

The screen is cleared and the file is displayed, beginning in row
one of the screen. EDIT MODE is displayed in the lower right hand
corner. *EOF is displayed on row 14, after the 1last 1line of the
source file. The cursor is in column one, row one.
It may be noticed that the keyword "BEGIN" has been omitted. 1In
order to insert the keyword, the user should press the down-arrow
key three times and then press the unlabeled gray key(INSERT LINE),
which inserts a blank line in front of line 4. The cursor 1is 1in
column one of the blank line. The user then types "BEGIN".
At this point the user may think that the program is syntactically
complete. To verify this he presses the CMD(HELP) key, types the
word CHECK, and presses the RETURN(NEW LINE) key.

P

Shortly afterwards the message "SEMICOLON MAY NOT PRECEDE AN ELSE"
is displayed on the bottom line of the screen and the cursor is
positioned at the keyword "ELSE". The user presses the up-arrow
key, presses the HOME key, and then presses the LEFT FIELD(BACK TAB)
key three times to position the cursor on the semicolon following
the THEN clause. To remove this semicolon, press the space bar,
causing the semicolon to be replaced by a blank.

The user again wants to verify that his progrém is syntactically
correct, so he again presses the CMD(HELP) key, reenters CHECK, and
presses the RETURN(NEW LINE) key.

The error message "END-OF-FILE EXPECTED" is displayed on the bottom
line of the screen and the cursor is positioned at the keyword "END"
which immediately precedes the #*EOF.

The user presses the ERASE INPUT(DELETE LINE) key to delete the line

.which contains the extra "END;" statement. He then presses the

/7IMD(HELP) key, types the word CHECK, and presses the RETURN(NEW

LINE) key.

After a short period of time, the message "NO SYNTAX ERRORS FOUND®
is displayed on the bottom line of the screen.

The user then saves the file as described in the previous section.
Notice that the syntax checker did not detect that the variable

"second" was not declared. This is an example of a semantic error,
which is not detected by the syntax checker.

PROGRAM example;
VAR
first : INTEGER;
reset (INPUT);
WHILE NOT eof DO
BEGIN
readln(first,second);
IF first = second
THEN writeln('EQUAL',first);
ELSE writeln(first,' NOT EQUAL',second);
END
END;
END.

FIGURE 4-1. INPUT FILE EXAMPLE

4.3 EDITOR COMMANDS AND FUNCTIONS
The following sections describe the commands and functions of the
Source Editor. Commands may be entered in either upper-case or
lower-case letters. They are divided into five groups:

1) Setup and Termination,

2) Cursor Positioning, and Program Modification

3) Block Commands

4) Show Command.

4.3.1 Kinds of Parameters

There are four basic kinds of parameters recognized by the editor.
These are:

Integer Constant - An integer constant parameter is a
non-negative number less than or equal to 32767

Identifier - An identifier parameter is either a
Microprocessor Pascal identifier or Microprocessor
Pascal System reserved word

String - A string parameter is a character string
enclosed in double quotes (a double quote is
represented by two double quotes inside a string)

Pathname - A pathname parameter is a valid DX10 or TXDS

4-6

pathname, depending on which operating system is being
used.

4.3.2 Optional Parameters

If a parameter is optional, it can simply be omitted, forcing the
default value to be assumed.

Extra commas for optional parameters at the end of a command need
not appear. For example, the command "FIND(Identifier)" is
equivalent to "FIND(Identifier,1)". ’

4.3.3 Current Line Marker

The line on which the cursor is currently positioned is often
significant while wediting a file. The editor automatically marks
the current line location when the CMD(HELP) key is pressed during
an edit session by placing a "-----~--=" in columns 73 through 80.

If the current line should be a line which already contains a start
or end block marker in columns 73 through 80 (section 4.3.8.1), the

current line marker becomes a "GC-=-—-- " oor a "---e—=>n,
respectively. Should the current line already contain a start and
end block marker there will be no change; a "€---- 2 " will remain

in columns 73 through 80.

4.3.4 CMD(HELP) Key

The CMD(HELP) key is used for several purposes within the editor.
Generally, it will cause the weditor to prompt the user for a
command. It can also be used after an error has oeccurred to erase

'the error message generated from the screen and to prompt the user

for the next command.

If the user is prompted for information after having entered a
command, pressing the CMD(HELP) key will cause the editor to return
to command mode. However, if the user presses the CMD(HELP) key in

respond to the prompt INPUT FILE ACCESS NAME, the editor will
abort.

4.3.5 Setup and Termination Commands
The functions and commands described in this section are used to set
up the input file for the editor, specify the output pathname for

the file after it has been modified, and set the mode of editing
(i.e. compose or edit).

4-7

4.3.5.1 HELP Command. Pressing CMD(HELP) and typing "HELP" causes a
list of available commands and short descriptions of each to be
displayed. This command also displays the tab increment amount.

4.3.5.2 Edit/Compose Mode. The editor operates in either compose
mode or edit mode. Compose mode is generally used to enter large
blocks of new program text. By contrast, edit mode is most useful
when modifying portions of existing program text.

The major difference between compose mode and edit mode is the
function of the RETURN(NEW LINE) key. When operating in edit mode,
pressing RETURN(NEW LINE) causes the cursor to move to the next
line; in compose mode, pressing RETURN(NEW LINE) causes a blank line
to be inserted after the current line. When creating a new file the
editor is invoked in compose mode. If editing an existing file, the
editor is invoked in edit mode. The user may switch back and forth
between edit and compose mode by pressing a special function key,
F7, which acts as a toggle switch. The mode of the editor is
displayed in the lower right hand corner of the screen.

4.3.5.3 CHECK Command. This command instructs the editor to
perform a syntax check of the module being edited and allows errors
to be corrected interactively as they are found. This feature has
the advantage of helping the user to detect common syntax errors
before a (possibly) time-consuming compile step is attempted. The
typical use of this command is when the edit session is nearly
complete. If a syntax error is found, the editor positions the
window and cursor to the point of the error, and allowing the user
to correct it.

4.3.5.4 QUIT Command. The QUIT command is used to save the results
of the most recent edit session and exit the editor. This command
is entered by pressing CMD(HELP) followed by typing "QUIT", the
following prompt is then displayed: A

OUTPUT FILE ACCESS NAME: pathname
The pathname displayed is the value entered when the current edit

Session was invoked. If no pathname is displayed, the user must
enter the pathname of the output file. The pathname must be entered

if the user wishes to save the results of the edit session on a

different file (possibly a new file). To replace the file that is
displayed in the prompt, the user simply presses the RETURN(NEW
LINE) key. The user will then be prompted as follows:

REPLACE?:
The wuser should respond by typing the letter N to specify that an

existing file with the displayed pathname should not be replaced,
otherwise the user should respond by typing the letter Y.

4-8

)

s

If a 1legal pathname is given and a valid replacement option is
specified, the file will be "saved" in its final edited form.
During the "saving", the following message will be displayed:

"QUIT" COMMAND EXECUTING

Should either of these responses be incorrect, a file I/0 error will
occur and an appropriate error message will be generated.

If no 'pathname 1is specified when the RETURN(NEW LINE) key is
pressed, no action is performed and the editor prompts for another
command.

4.3.5.5 ABORT Command. The ABORT command is used to gracefully
exit the editor without saving the results of the current edit
session. This command is entered by pressing the CMD(HELP) key and
typing the word ABORT.

@ 4.3.5.6 SAVE Command. The SAVE command is used to save the results
of the most recent edit session on and start editing a new file.
This command is entered by pressing the CMD(HELP) key and typing
"SAVE", the following prompt is then displayed:

OUTPUT FILE ACCESS NAME: pathname

The pathname displayed is the value entered when the most recent
edit session was invoked. If no pathname is displayed, the user
must enter the name of the output file. The name must be entered if
the user wishes to save the results of the edit session on a
different file (possibly a new file). To replace the file that is
displayed in the prompt, the user simply presses the RETURN(NEW
LINE) key. The user will then be prompted as follows:

REPLACE?:

The wuser should respond by typing the letter N to specify that an
existing file with the displayed pathname should not be replaced,
(™ otherwise the user should respond by typing the letter Y.

If a 1legal pathname is given and a valid replacement option is
specified, the file will be "saved" in its final edited form.
During the "saving", the following message will be displayed:

"SAVE" COMMAND EXECUTING

Should either of these responses be incorrect, a file I/0 error will
occur and an appropriate error message will be displayed.

If no pathname is specified when the RETURN(NEW LINE) key is
pressed, no action is performed and the editor prompts for another
command.

4-9

The wuser 1is then prompted for the pathname of the next file to be
edited with the following prompt:

INPUT FILE ACCESS NAME:

The response to the prompt is the pathname of the file which is to
be edited. If no pathname is specified when the RETURN(NEW LINE)
key is pressed, a new file is created. The cursor is positioned at
the first column of the first line of the file.

4.3.5.7 INPUT Command. The INPUT command is wused to stop the
editing of the current file without saving the results of the most
recent edit session and begin the editing of another file. This
command is entered by pressing CMD(HELP) followed by typing
"INPUT™. When the command 1is entered, the following prompt is
displayed:

INPUT FILE ACCESS NAME: R

The response to the prompt is the pathname of the file which is to
be edited. If no pathname is specified when the RETURN(NEW LINE)
key is pressed, a new file is created. The cursor is positioned at
the first column of the first line of the file.

4.3.6 Cursor Positioning

The functions and commands described in this section are used to
position the window and the 1location of the gursor within the
window.

4.3.6.1 Roll-Up Function. The Roll-Up function is called by
pressing the F1(ROLL UP) key. This function causes the cursor to be
repositioned to column one of the line which is 23 (11 on the 913
VDT) lines toward the end of file from the current line. The row on
which the cursor is positioned is not changed.

4.3.6.2 Rolle- Down Function. The Roll Down function is called by
pressing the F2(ROLL DOWN) key. This function causes the cursor to
be repositioned to column one of the line which is 23 (11 on the 913
VDT) lines toward the top of file from the current line. The row on
which the cursor is positioned is not changed unless the new line on
which the cursor is positioned is the first line of the file, in
which case the cursor is at row one.

4.3.6.3 New Line Function. The New Line function is called by
pressing the RETURN(NEW LINE) key. In edit mode, this function
causes the cursor to move to the first character of the first token
on the next line. In compose mode, a blank line is inserted after
the current line and the cursor is moved to the new 1line. The
cursor 1s positioned on a new line at the same indentation level as
the first token on the previous line. If the program text to be
entered should start at a different nesting level, the tab and back
tab functions can be used to indent or un-indent the cursor to the

4-10

~

proper place.

4.3.6.4 Tab Function. The Tab function is called by pressing the
SHIFT key and TAB SKIP key at the same time on the 911 VDT or the
TAB Kkey on the 913 VDT. If the cursor is positioned on a blank
line, the cursor moves to " the right one indentation level.
Otherwise, the cursor moves to the start of the next token. If the
cursor is at the last token, the cursor moves to the right one
indentation 1level. If the cursor is at column 72, the cursor is
positiohed to the beginning of the line.

4.3.6.5 Back Tab Function. The Back Tab function is called by
pressing the LEFT FIELD(BACK TAB) key. If there are no characters
to the left of the cursor, the cursor moves to the 1left one
indentation 1level. If the cursor is positioned to the right of the
space following the last token on a line, the cursor moves to the
space following the last token. Otherwise, the cursor moves to the
start of the previous token. If the cursor is.at the first token,
the cursor moves to the left one indentation level. If the cursor

is at the beginning of a line, the cursor is positioned to the end
of the line.

4.3.6.6 Set Tab Increment Command. The Set Tab Increment command
is used to change the increment amount used for tabs and back tabs.
The syntax of this command is:

TAB(increment)

The 1increment value must be a positive integer value less than 72.
The default increment value used by the editor for tabs is two.

4.3.6.7 Cursor Up Function. The Cursor Up function 1is called by
pressing the up-arrow key. This function causes the cursor to move

to the previous line. The cursor remains at the same position
within the line.

4.3.6.8 Cursor Down Function. The Cursor Down function is called
by pressing the down-arrow key. This function causes the cursor to
be moved to the next line. The cursor remains at the same position
within the line.

4.3.6.9 Cursor Right Function. The Cursor Right function is called
by pressing the right-arrow key. This function causes the cursor to
be moved one position to the right. If the cursor is in column 72
on a 1line when the cursor right funection is called, the cursor
remains in its current position.

4.3.6.10 Cursor Left Function. The Cursor Left function is called
by pressing the left-arrow key. This function causes the cursor to
be moved one position to the left. If the cursor is in column one

of the 1line when the cursor left function is called, the cursor
remains in its current position.

4-11

4.3.6.11 Home Function. The Home function is called by pressing
the HOME key. This function causes the cursor to be moved to column
one of the current line.

4.3.6.12 FIND Command. The FIND command is used to position the
cursor to the next (or nth) occurrence of a specific identifier or
8tring after the current cursor position. The command is entered by
pressing the CMD(HELP) key followed by typing a command with the
syntax:

FIND (identifier or string, occurrence number)

If the occurrence number is not specified, it 'is assumed to be one
(i.e. the next occurrence is searched for). The search begins at
the first character following the cursor. If the specified number
of occurrences of the identifier or string is found the cursor is
positioned so that it is on the first character of the 1last
occurrence of the identifier or string, and--the line in which the
identifier or string is contained is in the center row of the
screen. If the specified number of matches for the name or string
is not found, the cursor position remains unchanged and a message is
displayed which indicates that the identifier or string was not
found the specified number of times.

4.3.6.13 Relative Positioning. The file may be positioned an
arbitrary number of lines relative to the current position by first
pressing the CMD(HELP) key followed by the integral number of lines
to be skipped, either forward or backward. If the Jjump is to go
forward the specified integer is preceded by an optional + (plus
sign); for a backward skip, the integer must be preceded by a =
(minus sign). If the specified Jump is outside the file boundaries,
the cursor is positioned to the file's beginning or end, depending
on the direction of the jump. The cursor is positioned at column
one of the destination line. If the line is the end-of-file then
the line is displayed as the last line on the screen. Otherwise,
the line is displayed at the center of the Screen. :

4.3.6.14 TOP Command. The TOP command is wused to position the
cursor to the first column of the first line of the file being
edited. The command is entered by pressing CMD(HELP) followed by
.typing "TOP". The cursor is positioned at row one, column one.

4.3.6.15 BOTTOM Command. The BOTTOM command is used to position the
cursor to the end-of-file marker of the file being edited. The
command is entered by pressing CMD(HELP) followed by typing
"BOTTOM". The cursor is positioned at column one of the end-of-file
marker which is displayed as the last line on the screen.

4-12

(

U

4.3.7 Program Modification

The functions and commands described in this section are wused to
modify source files. Any time that a line is modified, any data
which may be in columns 73 through 80 is replaced by blanks to
indicate to the user that the line has been modified. This deletion
of characters from columns 73 through 80 does not effect the program

being entered, since only columns 1 through 72 are used by the
compiler.

4.3.7.1 1Insert Line Function. The Insert Line function is called
by pressing the unlabeled gray key(INSERT LINE). When this function
is called, a blank line is inserted just before the line the cursor
is on.

4.3.7.2 Duplicate Line Function. The Duplicate Line function 1is
called by pressing the F4 key. This function causes a copy of the
characters from the cursor position to the end of the line to be
duplicated and. placed after the current line. The cursor is moved
to the new line and remains in the same column.

4.3.7.3 Delete Line Funetion. The Delete Line function is called
by pressing the ERASE INPUT(DELETE LINE) key. This function causes
the line on which the cursor is positioned to be deleted. The
cursor 1is positioned at the first character of the first token of
the line which followed the deleted line.

4.3.7.4 Skip Function. The Skip function is called by pressing the
TAB SKIP(SKIP) key. This function clears all of the characters on
the current line from the cursor position to the right margin. The
cursor position is not changed.

4.3.7.5 1Insert Character Function. The Insert Character function
is called by pressing the INS CHAR key and typing the new
character(s) which are inserted into the file. Characters are never
lost at the right margin. If a non-blank character 1is present at
the right margin, no additional characters can be inserted on the
line. The beeper is sounded if this is attempted. Note that a
"split line" command exists for breaking up long lines.

4.3.7.6 Delete Character Function. The Delete Chracter funcetion is
called by pressing the DEL CHAR key. This function causes the
character at the current cursor position to be deleted and the
characters to the right of the cursor position to be shifted to the

left one character position with a blank being 1inserted in column
T2.

4.3.7.7 Clear Line Function. The Clear Line function is called by
pressing the ERASE FIELD(CLEAR) key. This function causes the 1line
containing the cursor to be cleared. The cursor is repositioned to
the beginning of the line.

4-13

4.3.7.8 REPLACE Command. The REPLACE command searches for the next
n occurrences of an identifier (or string) and when found,
Substitutes a different identifier (or string). The syntax of this
command is:

‘REPLACE (patterni, pattern2, repeat count)

where pattern1 and pattern2 are either an identifier or
string enclosed in double quotes.

If the specified command is executed without an error, the cursor is
positioned at the first character of the last occurrence of pattern2
which was replaced. If patterni is not found the specified number
of times, the cursor is returned to the line and column at which-it
was positioned prior to the execution of the command and a message
is displayed which indicates the number of occurrences of patternit

which were not replaced. If the replacing of an occurrence of -

patternl by pattern2 would result in charactérs being lost off the
end of a line, the command is halted and the cursor is positioned at
the beginning of the occurrence of pattern1 which caused the halt.

4.3.7.9 Split Line Funection. ' The Split Line function is called by
pressing the F8(F0) key. This function causes the current line to
be split into two lines such that the cursor position indicates the
first character of the first token of the new line. The first
character of the new line is positioned at the same indentation
level as the first token of the line which was split. The cursor
position is not changed.

4.3.7.10 INSERT Command. The INSERT command copies a sequential
file, other than the file being edited, to the position after the
line at which the cursor is positioned. After the INSERT command
has been entered, the user will be prompted for a file name:

INSERT FILE ACCESS NAME:

Enter the pathname of the file to be inserted and press the
RETURN(NEW LINE) key. The entire file Specified will be copied into
the file being edited.

‘4.3.8 Block Commands

The functions and commands described in this section are used to
modify files by using designated blocks of lines instead of single
characters, or single lines.

4.3.8.1 Start and End Block Functions. These two functions - are
used to bracket sections of the file to be manipulated by the COPY,
MOVE, DELETE, and PUT commands by placing markers in the file. A
start block marker 1is set by pressing the F5 key and results in a
beep and the placing of "Cemm—eaa " in columns 73 through 80. An end
block marker is set by pressing the F6 key and results in a beep and
the placing of "e-eoaaa " in columns 73 through 80. If both the

4-14

»

o

W

Start and end "block markers are set on the same line of the file
"lemmmm >" is placed in columns 73 through 80 of that Lline. For
either function, the cursor position is used as the location for the
marker.

4.3.8.2 COPY Command. The COPY command causes a copy of the block
designated by the start and end block markers to be made after the
line on which the cursor is positioned. When this command is
completed, the markers are not modified and the cursor is placed 1in
column ‘1 of the first line of the copied block. If the end block
marker precedes the start block marker, or either of the markers
does not exist, a message is displayed and no action is taken.

4.3.8.3 MOVE Command. The MOVE command causes the block designated
by the start and end block markers to be moved after the line on
which the cursor is positioned. When this command is completed, the

. markers are removed from the file and the cursor is placed in column

1 of the first line of the moved block. The designated block can
not be moved to a location which is contained within that block. If
the end block marker precedes the start block marker, or either of
the markers does not exist, a message is displayed and no action is
taken.

4.3.8.4 DELETE Command. The DELETE command causes the block
designated by the start and end block markers to be deleted. When
this command is completed, the markers are removed from the file and
the cursor 1is placed in column 1 of the line following the deleted
block. If the end:block marker precedes the start block marker, or
either of the markers does not exist, a message is displayed and no
action is taken.

4.3.8.5 PUT Command. The PUT command causes a copy of the block
designated by the start and end block markers to be copied to the
file specified. After the PUT command has been entered, the wuser
will be prompted for the file pathname to which the block is to be

/™ copied.

OUTPUT FILE ACCESS NAME:

The user should respond by typing the pathname of the file to which

‘the block is to be written and press the RETURN(NEW LINE) key. The

user will then be prompted as follows:

REPLACE?:

The user should respond by typing the letter N to specify that an
existing file with the entered pathname should not be replaced,
otherwise the user should respond by typing the letter Y. :

If a legal pathname is given and a valid replacement option 1is
Specified, the designated block will be "put"™ into the file in its
current form. The following message will be displayed while the
command is completing its execution:

4-15

"PUT" COMMAND EXECUTING

Should either of these responses be incorrect, a file I/0 error will
occur and an appropriate error message will be displayed.

If no pathname is specified when the RETURN(NEW LINE) key is
pressed, no action is performed and the editor prompts for another
command. :

4.3.9 SHOW Command

The SHOW command allows the user to "look"™ at a sequential file,
other than the one being edited, during an edit session. After the
SHOW command has been entered, the following prompt will ‘be
displayed requesting the pathname of the file to be "shown":

SHOW FILE ACCESS NAME:

The file may be positioned an arbitrary number of lines relative to
the current position by first pressing the CMD(HELP) key followed by
the integral number of 1lines to be skipped, either forward or
backward. If the jump is to go forward the specified integer is
preceded by an optional "+"; for a backward skip, the integer must
be preceded by a "-", If the Specified jump is outside the file
boundaries, the cursor is positioned to file's beginning or end,
depending on the direction of the jump.

4.4 ERROR MESSAGES

This section describes each error message generated by the command
processor and syntax checker.

4.4.1 Command Syntax Errors

When a command or a parameter of a command is improperly formed or
recognized by the Source Editor, one of the following error messages
is given.

BAD PARAMETER
An illegal parameter was found within ‘a command. Parameters
can only be one of the following: integer constant, identifier,
string (delimited by double quotes), or pathname.

INCOMPLETE COMMAND SYNTAX
A command is improperly terminated. If a command " has

parameters, the parameter list must be enclosed in
parentheses.

INVALID COMMAND NAME

The command name is not valid. Use the HELP command to find
the proper command name to use.

4-16

u

EXTRANEOUS CHARACTERS
The command contains extra non-blank characters to the right of
an otherwise well-formed command.

TOO MANY PARAMETERS :
The command contains too many parameters. Use the HELP command
to check the number and meaning of parameters for the command.

4.4.2 Command Processing Errors

The following error messages may be generated by a command which is
being executed.

n OCCURENCE(S) NOT FOUND
The identifier or string specified in a FIND or REPLACE command
was not found the specified number of times between the current
cursor position and the end-of-file marker.

REPLACEMENT STRING TOO LONG
If replacement of a string or name in a line would cause
characters to be lost off the right hand side of a line, this
message is displayed.

RESPONSE MUST BE "YES™ OR "NO"

The response given to the REPLACE?: prompt must be a yes (y) or
ano (n).

START BLOCK NOT SPECIFIED
A COPY, MOVE, DELETE, or PUT command was entered but the
designated block was not completely bracketed.

END BLOCK NOT SPECIFIED
A COPY, MOVE, DELETE, or PUT command was entered but the
designated block was not completely bracketed. :

END BLOCK PRECEDES START BLOCK
Within the file being edited, the start block marker must
precede the end block marker for a MOVE, COPY, DELETE, or PUT
command to be executed.

ILLEGAL DESTINATION SPECIFIED

The designated block in a MOVE command ecan not be moved to any
location which is within that block of the file.

4.4.3 File I/0 Errors

The following errors may be generated when responding to a prompt
from the editor for an input, or output file access name.

4-17

— e e e e bt Vo M b A e it e ot - - - o G a5 et e e

SVC ERROR NO. n :

This error may be generated when responding to the editor's
prompt for an input file access name at the beginning of an
edit session, or following a SAVE or INPUT command. This error
occurs if the specified file can not be accessed. The SVC
status code is given, in hexadecimal, to further clarify the
error encountered. The meanings associated with each of these
codes can be found in either the TX 990 Operating System
Programmer's Manual, or in the DX 10 Operating System Reference
Manual - VOL.6 Error Reporting and Recovery.

BAD DISK NAME/DISK VOLUME NOT INSTALLED
This error occurs when the disk name (within a file access
name) given as a response to an editor prompt does not exist.

NO FILE DEFINED BY NAME SPECIFIED

This error occurs when the file access name given by the user m,

in response to an editor prompt does not exist.

FILE IS DELETE PROTECTED
This error will occur if the user attempts to save a file used
in an edit session in an existing file which is delete
protected. ' ‘

FILE EXISTS AND REPLACE NOT SPECIFIED
This error will occur when the user requests that a file be
saved, but not replaced and a file of that name already
exists.

BAD PATHNAME SYNTAX

This error occurs when the syntax of the file access name
entered is invalid.

UNABLE TO GRANT REQUESTED ACCESS PRIVILEGES
This error will occur if the user has requested a file in

response to a prompt which can not be accessed by the editor, ~

e.g. it is already in use.

4.4.4 Syntax Checker Error Messages

The following is a list of error messages which will be generated by
the syntax checking routine of the editor. The 1list ineludes the

actual error message and a brief description of what could have
caused the error.

1 STATEMENT SEPARATOR EXPECTED
A statement must be Separated by ";", "END", or "UNTIL".

2 MISMATCHED PARENTHESES

Parentheses do not mateh in an expression, declaration, or
parameter list.

4-18

-

(]

\

3 ® " EXPECTED
A " " was expected following a set reference, or an array
subscript.

4 INVALID OPERAND IN EXPRESSION
An invalid term was encountered in an expression.

5 ERROR IN QUALIFIED VARIABLE
An ‘identifier must follow the "." of a qualified variable.

6 ERROR IN TYPE TRANSFER VARIABLE
A TYPE identifier must follow the "::" of a type transfer
variable.

7 CASE ALTERNATIVE ERROR
A CASE label, ";", "END", or "OTHERWISE" was expected.

8 "OF" EXPECTED IN CASE STATEMENT
Incomplete CASE statement found; "OF" must precede the included
list of case alternatives.

9 MISMATCHED REPEAT/UNTIL PAIR

An "UNTIL"™ was not expected to occur at this point in the
system.

10 SEMICOLON MAY NOT PRECEDE AN "ELSE"
The THEN and the ELSE clauses of an IF statement may not be
Separated by a semicolon.

11 THEN EXPECTED :
An IF statement is incomplete without a THEN clause.

12 ":" EXPECTED AFTER LABEL
All statement labels must be followed by a ":",

/713 STRUCTURED STATEMENT MUST FOLLOW ESCAPE LABEL

A REPEAT, WHILE, WITH, FOR, IF, CASE, or compound statement
must follow all escape labels.

14 ":=m EXPECTED IN ASSIGNMENT STATEMENT

.An invalid operator, or operand was encountered in an
assignment statement.

15 ERROR IN WRITE PARAMETER LIST

A "," was expected or the keyword "HEX" was expected in a write
parameter list.

16 ESCAPE IDENTIFIER EXPECTED
The keyword "ESCAPE" must be followed by an escape label.

17 STATEMENT LABEL EXPECTED
The keyword "GOTO" must be followed by a statement label.

4-19

e ot e B i e T T s D e e T i e s e amn ¢ e e A SIS e ke e L L L R e e ettt v e m et

18

19

20

21

22

23

24

25.

26

27

40

41

42

43

by

PROGRAM OR PROCESS NAME MUST FOLLOW START

A START statement must include a PROCESS, or PROGRAM identifier {:)

~ following the keyword "START".

CONTROL VARIABLE EXPECTED

The control variable of a FOR statement was expected following

the keyword "FOR".

":=" EXPECTED IN. FOR STATEMENT

A FOR statement control variable must be followed by a ":=",

"TO™ OR "DOWNTO" EXPECTED IN FOR STATEMENT -
A "TO"™ or "DOWNTO"™ must separate the initial and
expressions of a FOR statement.

"DO" EXPECTED IN FOR, WITH, OR WHILE STATEMENT

A "DO" must be included in all FOR, WITH, and WHILE ™

statements.

IﬁVALID TAGFIELD IN WITH STATEMENT

A record variable or an identifier was expected in the tagfield

of a WITH statement.

STATEMENT EXPECTED

An unknown keyword, or statement beginning was encountered.

":" EXPECTED- AFTER CASE LABEL LIST
A ":" must follow all CASE label 1lists.

INVALID CASE LABEL
An enumeration. constant was expected as a CASE label.

DECLARATION SEPARATOR EXPECTED (m";m)
All declarationsAmust be separated by ";".

ERROR IN LABEL LIST

A statement label was expected in a LABEL declaration.

nen EXPECTED IN TYPE OR CONST DECLARATION
"An "=" must follow all TYPE and CONST identifiers that
being declared.

CONST. IDENTIFIER EXPECTED

An identifier was expected in a CONST declaration.

TYPE IDENTIFIER EXPECTED .
An identifier was expected in a TYPE declaration.

":" EXPECTED IN VAR OR COMMON DECLARATION

f;nal

are

A ":" must follow all VAR and COMMON identifiers that are being

declared.

4-20

%)

D,

4s

46

47

48

kg

50

51

52

53

54

55

56

57

58

59

VAR IDENTIFIER EXPECTED
An identifier was expected in a VAR declaration.

COMMON IDENTIFIER EXPECTED
An identifier was expected in a COMMON declaration.

INVALID OPERAND IN CONST DECLARATION
An integer term was expected in a CONST expression.

" ® EXPECTED IN ARRAY DECLARATION
A "o must precede the index type(s) of all ARRAY
declarations. :

"OF" EXPECTED IN DECLARATION ’
An "OF" was expected in an ARRAY, FILE, SET, or RECORD variant
declaration.

"END" EXPECTED FOLLOWING RECORD DEFINITION
An "END" was expected to terminate a RECORD declaration.

"ARRAY"™ OR "RECORD"™ MUST FOLLOW "PACKED"
PACKED structures only include ARRAYS and RECORDs.

"FILE" MUST FOLLOW "RANDOM"
A RANDOM rile declaration must include the keyword "FILE"
following the "RANDOM" sSpecification.

":" EXPECTED IN RECORD FIELD LIST
A ":" must separate all identifiers from the TYPE identifier
with which they are associated.

INVALID TAGFIELD IN RECORD

A tagfield type was expected in the variant portion of a RECORD
declaration.

"(" EXPECTED PRECEDING FIELD LIST

A "(" was expected in the variant portion of a RECORD
declaration. :

".." EXPECTED IN DECLARATION
A ".." was expected in a Subrange declaration.

ENUMERATION CONSTANT EXPECTED

An enumeration constant was expected in the declaration
section.

INDEX TYPE EXPECTED IN DECLARATION
An index type was expected in an ARRAY declaration.

SIMPLE TYPE EXPECTED IN DECLARATION

A simple type was expected in a TYPE declaration, or in a SET -
declaration.

4-21

e i gy e e . o e 1 - e e e ¢ et e

60 ERROR IN IDENTIFIER LIST - o
An identifier-was:expected in an identifier list. ;f>

61 PARAMETER LIST EXPECTED
A "("..was- . expected following a WRITE, ENCODE, or DECODE
procedure call.

eroay ey Y g

R ok
I I

70 FILE MUST BEGIN WITH MODULE OR DECLARATIONS >

yssn,, The -~file Dbeing .edited does not begin with an acceptable
keyword.
71 MODULE DECLARATION SECTION EXPECTED . T
s35.-3v Ihe-module header:-has been encountered and parsed; declarations
are expected next. Possibly a "FORWARD"™ or "EXTERNAL" is

expected. My

T2 SYSTEM -MUST :BE .OUTERMOST MODULE
A SYSTEM may not occur within any module.

73 MODULE HEADER -MISSING
A body has been encountered, but the corresponding module
header was missing.

" ‘74 MODULE EXPECTED
The end-of-file, or a module header is expected. ~f>

vt 19 :"END" NOT -EXPECTED;-
An "END" was encountered, but not expected in a REPEAT
statement.

a4+ 16 END-OF-FILE -EXPECTED
The parser has completed an entire system, but the file has not
been exhausted. '

saol 7. MODULE IDENTIFIER EXPECTED
The name of the module must immediately follow the keyword
"SYSTEM", "PROGRAM", "PROCESS", "PROCEDURE", or "FUNCTION" in a
module header.

78 FUNCTION RESULT TYPE EXPECTED
The FUNCTION header is not complete without the result type of
the. FUNCTION. included. .

79 m:" EXPECTED IN PARAMETER LIST
A ":" must separate all parameters from the TYPE identifier
with which. they are associated in all parameter lists.

80 "BEGIN" EXPECTED
: A "BEGIN" is expected to precede a module body section. .

4-22

81 INVALID MODULE TERMINATOR (";" op m M)
The terminator following a module is missing, or an incorrect
terminator was encountered.

82 SYSTEM MAY NOT HAVE PARAMETERS
A "(" was encountered following a SYSTEM identifier; parameter
lists are not allowed at the sSystem level.

90 SYSTEM NESTING LEVEL TOO DEEP FOR PARSER
The nesting within the file being edited is too deep to be
handled by the CHECK command.

91 INVALID ?COPY STATEMENT

A ?COPY statement was encountered, but it is syntactically
incorrect.

- ..
92 END OF STRING EXPECTED
AN "'" was expected to terminate a string within file.

93 END OF COMMENT EXPECTED
A "}" or "#)" yas expected to terminate a comment.

94 NESTED COMMENTS ENCOUNTERED

A nested comment was encountered; comments should not be
nested. '

95 INVALID NUMBER
A symbol was encountered within a number which is not allowed
in the type of number found. It could be a "." ywithin an
integer, or a hexadecimal digit within a real number.

@m\1001 - 1006 INTERNAL PARSER ERROR

. These errors should never be generated by the editor during its
syntax check. If one should occur, recheck your system using
the CHECK command. If the problem persists, send a listing of

the file, along with some indication as to the location of the
eursor when the error was generated, to your nearest TI
representative.

4-23

gt i rimm

.
-
\
R}
e
~,

SECTION V

COMPILER AND NATIVE CODE GENERATOR

5.1 COMPILER AND NATIVE CODE GENERATOR OVERVIEW

The Microprocessor Pascal Compiler takes, as input, the source for a
Microprocessor Pascal system and produces Interpretive Code for a
hypothetical stack computer. Normally only the first 72 columns of
each input line are scanned and columns 73 through 80 are assumed to
be the sequence field. This may be changed via a compiler option so
that the entire source line will be scanned. The compiler checks
for syntax and semantic errors while it is producing code, and it
generates error messages for any errors it detects. The code
generated by the compiler may be executed interpretively using the

(MMHost Debugger or it may be input to the Native.. Code Generator to

~ generate 9900 native code. The interpretive code is characterized
by its small size, about half the size of 9900 native code. Another
advantage of interpretive code is the minimal time required to
produce code which can be executed.

The Native Code Generator generates 9900 native code from the
interpretive code produced by the compiler. If native code is to be
produced, the OBJECT option must be Specified so that additional
information can be included in the interpretive code for use by the
Native Code Generator. This same interpretive code may be executed
by the Host Debugger, but it will be larger than it needs to be.

5.2 LISTING EXAMPLES

This: section describes the listings generated by the compiler. An
example of a normal error free listing is given, and also an example
of a program with errors.

5.2.1 Compiler Execution Messages

As the compiler executes, messages are output to a file whiceh is
normally the wuser's interactive display. These messages indicate

how much of the system has been compiled. An example of this file
follows:

COMPILER EXECUTION BEGINS

SCANNER IS FINISHED

FACTORIA

EXAMPLE1

NO ERRORS IN COMPILATION

NORMAL TERMINATION

STACK USED = 2706 HEAP USED = 2672

5-1

B T v O UV SR S SN

e L et I R S A T s i, B e A e i A A e e e - B N B R e e LE T mal D e wlaame. e ey

The first 1line and the 1last two 1lines are generated by the DX
run-time support system and not by the compiler. They indicate that
execution has begun, that the compiler terminated normally, and how
much memory in bytes was used for the compilation.

U

The other 1lines are generated by the compiler. Since the compiler
executes in two passes, a scanner and a parser , the first message
indicates that the first pass is completed. As the compilation of

each module is completed, the first eight characters of the name *
module is output. The last line indicates that no errors were found
during compilation.

If the compiler finds errors in the System being compiled, this .is "
indicated in the message file. For each module which has errors,

the message "ERRORS 1IN MODULE" is output before the name of the
-module. Also the last line indicates that there were fatal errors m
in the —compilation. If only non-fatal errors were found in the
compilation, the. last line output will be "ERRORS 1IN COMPILATION".

An example of this type of message file is given below:

COMPILER EXECUTION BEGINS
SCANNER IS FINISHED
ERRORS IN MODULE

ERROR
ERRORS IN MODULE _

EXAMPLE2 ‘\
FATAL ERRORS IN COMPILATION . L

NORMAL TERMINATION ~
STACK USED = 2532. HEAP USED = 2722

5.2.2 Compiler Listing
‘The compiler 1listing is produced by the second pass of ‘the

compiler. An example of this listing is shown on the following ™

DX Microprocessor Pascal Compiler 1.0 08/24/79 08:21:30

PROGRAM EXAMPLE1;
VAR N : INTEGER;
M : INTEGER;
FUNCTION FACTORIAL(I:INTEGER) : LONGINT;
BEGIN
IF I =1
THEN FACTORIAL
ELSE FACTORIAL
END;
BEGIN (* EXAMPLE1 %)
N := 5;

1
I *# FACTORIAL(I-1);

M := FACTORIAL(N);

WRITELN(N:2,' FACTORIAL = ',M);
WRITELN('"NORMAL PROGRAM TERMINATION');
END. (% EXAMPLE1 %)

MEWWNDN =W -2MDO MO O

The first 1line identifies the compiler, version of compiler, and
date and time that the compilation occurred. The 1listing of the
source is given next. If the "LIST" option is on (the default), the
source is listed. Any lines between a "NO LIST" option and the next
"LIST" option are not listed unless they contain errors.

Each 1line 1listed contains a number first, followed by the first 72
columns of the source line. In the declaration section, the number
on the 1left-hand side is the displacement, in bytes, of the first
variable declared on that line. 1In the body section, this number is
the statement number of the first statement which appears on that
line. Both of these numbers are helpful when debugging because

variable displacements and statement numbers are required in many of
the commands.

Syntax and semantic errors are detected by the compiler. The
numeric values of these errors are included in the output listing
directly below the point in the source listing where they were

.encountered. The meanings associated with these numeric values are

listed in Section 5.7.1. A series of four asterisks are placed in
the 1left hand margin below the line with the error so that errors

can be found quickly. Then a "!" is placed below the token which
was found to be incorrect followed by the number associated with the
error. One error may cause several error messages which are

separated by commas, but generally the first error is the correct
one. Sometimes a token was expected to terminate the previous line
but was not found, such as a semicolon, in which case the error will
appear on the first token on the next line.

5-3

An example of a listing with error messages is shown below:
DX Microprocessor Pascal Compiler 1.0 05/09/79 08:53:26

0 PROGRAM EXAMPLE2;
0 CONST TWO = 2;

TEN = 10;
VAR X,XTWO,XTEN : REAL;

1 RESULT : REAL;
PROCEDURE ERROR (ERR:INTEGER);
BEGIN

IF ERR 0

THEN WRITELN('ERROR ##',ERR:2);
ELSE WRITELN('NO ERRORS - NORMAL TERMINATION');

[X X) 141
END;
BEGIN
X := 133.726; o
XTWO := X * TWO
XTEN := X ® TEN;
[X X] !11.[

RESULT := X/((X/XTWO) * XTEN/5.0);

IF RESULT 0
THEN ERROR(1)
ELSE IF RESULT = 0

NOUIEEWW BWN <22l B0 DO O

THENERROR(2)
AL L 152 1104
8 ELSE ERROR(0);

9 END. (* EXAMPLE2 %)

5.2.3 Variable Map

This section describes the listing generated by the MAP compiler
option. This option must be turned on or off for the entire
compilation. This listing is produced after the complete system has
been compiled, and it appears after the source listing. The map is
produced in the order in which the declarations appear, that is, the
outer blocks are listed before inner blocks. In all cases only the
first eight characters of the each name are listed, all
displacements are given in hexadecimal bytes, and all sizes unless
otherwise stated are given in decimal bytes.

54

An example of the listing broduced by the compiler when the MAP

option was specified is shown below:

DX Microprocessor Pascal Compiler 1.0 06/11/79 12:54:17

(®#$MAP *)
SYSTEM MAP_EXAMPLE;

TYPE PTR @ REC;

REC RECORD

SYISTEM MAP_EXAM;
STACK SIZE = 0000

COMMON TYPE SIZE
COM1 RECORD 6
comM2 RECORD 4

5-5

0
0
"0
0
0
0 =)
0 A : INTEGER;
0 S : SEMAPHORE;
0 NEXT : PTR;
0 END;
0
0 PREC = PACKED RECORD
0 A : 0..255;
0 B : BOOLEAN;
0 C : CHAR;
0 D : -128..127;
0 END;
0
0 COMMON COM1 : REC;
0 COM2 : PREC;
0
0 PROCEDURE INITSEMAPHORE(VAR SEMA : SEMAPHORE;
4 EXTERNAL;
0 PROCEDURE SIGNAL(SEMA : SEMAPHORE); EXTERNAL;
0 PROCEDURE WAIT(SEMA : SEMAPHORE); EXTERNAL;
2
0 PROGRAM PROG_EXAMPLE(OUTPUT, INPUT : TEXT);
4 VAR P : @ RET;
6 R : REC;
12 S : PREC;
16 I : INTEGER;
18
0 PROCEDURE PRINT ERROR(N : INTEGER);
1 BEGIN - " body for PRINT ERROR
1 END; -
2
1 BEGIN " body for PROG_EXAMFLE
1 END;
2
1 BEGIN " body for MAP EXAMPLE
1 END. -

INTEGER);

FIELD DISP TYPE SIZE

A 0000 INTEGER 2 —

S 0002 SEMAPHORE 2)

NEXT 0004 POINTER 2 -

FIELD DISP TYPE SIZE

A 0000 SUBRANGE 8 BITS (XXXXXXXX........)

B 0000 BOOLEAN 1 BIT (crvernennennen.X)

c 0002 CHAR 8 BITS (XXXXXXXX........)

D 0002 SUBRANGE 8 BITS (........XXXXXXXX)

.

PROCEDURE INITSEMA (VAR SEMA :SEMAPHORE; COUNT :INTEGER); EXTERNAL;
PROCEDURE SIGNAL (SEMA :SEMAPHORE); EXTERNAL; .
PROCEDURE WAIT (SEMA :SEMAPHORE); EXTERNAL;

PROGRAM PROG_EXA (OUTPUT :FILE; INPUT :FILE);
STACK SIZE = 0012 o

VARIABLE DISP TYPE

SIZE
OUTPUT. 0000 FILE 2
INPUT 0002 FILE 2
P 0004 POINTER 2
R 0006 RECORD 6
S 0oocC RECORD y
I 0010 INTEGER 2

PROCEDURE PRINT ER (N :INTEGER);
STACK SIZE = 0002

VARIABLE DISP TYPE SIZE
N 0000 INTEGER 2

Each section starts with a module header which both identifies the
name and indicates whether it is a system, program, process,
procedure, or function. If the module has any parameters, they are
listed after the name surrounded by parenthesis. For each
parameter, the name and -type «classification are given. If the
parameter is a reference parameter, then the parameter is preceded
by the keyword VAR. If the module is a funetion, the result type is
given. If the module is external, EXTERNAL follows the module
header.

The stack frame size in bytes is given following the header of a non
external module.

The variable section is listed next. Parameters are also included
in the variable section. For each variable, its name, displacement
in bytes in the stack frame, type, and size in bytes is given. If
the module has no variables, this section is missing.

56

,The, common. section, is. listed next. For each common, its name, type,

JAhﬁ,,giag“ﬁigi3Qytes.i&;given. Again if the module does not declare
-.,any commons, this section is missing.

"The record section is listed last. The information presented for
“each_ _regord. field. includes its name, displacement in bytes from the
-beginning of. the record, type, size in bytes or bits if packed, and
_the .bit .map ,which, the packed field occupies. If the field is not

.packed, the. last column-is empty. Each record is separated from the
‘others by a header. If no records are declared in the module, this
section is missing.

RS e e
o e Sty T B
PV Rt T .. -

"5.274 Native Gode Generator Listing

'This Section will describe the listings produced by the Native Code
.Generator. 'This .will include the statement map cross reference
@=uhich " gives the displacement in the object module of the beginning
 of “each Statement in, the module. The Native Code Generator 1is not
'supported . in _the seurrent release, but will be added in a later
‘release. "~ ~ 7 . !

5.3 OPTIONS .

SUE Dy

Options are Boolean objects, each of which may have the value TRUE
or FALSE independent of the values of all other options. Options
Aare specified in a special form of a comment shown below:

oo TTUTU(%8 option list #)
‘:p.:.ri LD TANRSs b Jes W it v o
X . {$ option 1list}

Upon textual entry to a new Pascal routine, the values of all
options are saved, but not changed. Since blocks may be nested,
these values are stacked. Within a block options may be . changed,

@“ﬁhbj@g&oﬁ;g s certain.; restrictions. Upon textual exit of the Pascal
block, the values of all options are restored to the value they had
upon block entry. ‘

thiopu-names .may be preceded by NO or RESUME. The presence of an
option name, without:a prefix of NO or RESUME, in an option control
comment causes the value of that option to become TRUE (subject to
restrictions discussed below). If the option identifier appears
with the prefix NO, the option's value becomes FALSE. 1If the option
name is prefixed with RESUME, the value is set to the value the
option. had.upon entry of the smallest enclosing block's scope.
Notice "that RESUME is not the same as "pop" because resume doesn't
"pop"™ the stack (e.g. (*$RESUME LIST, RESUME LIST*) has exactly the
same effect as (*$RESUME LIST#)).

Although option control comments may appear anywhere that a comment
may appear, not all of the options may be controlled at any point in
a system. "System sensitive" options must have a single value for
the entire compilation. Since default values exist for all options
in the imaginary scope in which the system is embedded, control of
these options must be done. before the system's text is entered.
Thus, these options must appear only in option control comments
located before the keyword SYSTEM, or before the keyword PROGRAM for

a conventional Pascal program. The only options in this elass are
MAP and .OBJECT.

"Routine sensitive" options have a single value for the entire
statement part of any routine. Options in this eclass may be changed
at three different places in a routine: before the beginning of the
System, between the semicolon ending the routine header and the next
keyword or symbol, and immediately after the BEGIN which starts the
routine's statement part and before any portion of the first
Sstatement following the BEGIN. The options in this class are DEBUG,
NULLBODY, STATMAP, and TRACEBACK. The remaining class of options
may legally be set to new values at any point in a system where a
comment could occur. (Refer to Table 5-1 below.)

TABLE 5-1. LISTING CONTROL OPTIONS
OPTION DEFAULT MEANING

COLT72 TRUE When this option is turned off, the entire source
' line is scanned, otherwise only 72 columns of the
Source are scanned. This option does not obey
the normal scope rules so it must be explicitly
turn on and off when desired. This option only
applies to the line on which the option appears.
(INSENSITIVE) :

LIST TRUE This option controls the source listing. Lines

with errors are always listed with informative
error messages. (INSENSITIVE)

MAP FALSE This option indicates that a map of the system
modules and variables are desired. The map
listing is described in section 5.2.3. (SYSTEM
SENSITIVE)

PAGE FALSE This option has the immediate effect of causing
the next line to be printed at the top of the

next page. The option is turned off immediately
following the line. (INSENSITIVE) .

STATMAP FALSE This option indicates that a map of the
displacements for each statement in the object
module is to be generated by the Native Code
Generator. (ROUTINE SENSITIVE)

OPTION DEFAULT

OBJECT FALSE

DEBUG FALSE

TRACEBACK FALSE

NULLBODY FALSE

ASSERTS TRUE

Run-Time Checks
CKINDEX FALSE

CKPTR FALSE
CKSET FALSE
CKSUB FALSE

TABLE 5-1. OPTIONS (CONTINUED)

MEANING
Native Code Options

This option indicates whether native code is to
be generated by the Native Code Generator. If
native code is to be generated, this option must
be turned on. If only interpretive code is to be
generated, this option should be turned off
because the code produced will be smaller .in
size. (SYSTEM SENSITIVE)

This option should be used when the Host Debugger
is to be used. The interpretive code is
instrumented with statement numbers so that the
module may be debugged. (ROUTINE SENSITIVE)

This option is used when native code 1is being
generated to include debugging information.
(ROUTINE SENSITIVE)

This option is used between the BEGIN / END of an
empty module body. The body must be empty which
means that statements may not occur between the
BEGIN and the END. This option indicates that no
code is to be generated for the empty body.
(ROUTINE SENSITIVE)

This option directs the combiler to generate code
for ASSERT statements. (INSENSITIVE)

This option is used to enable run-time checks for
array indices out of bound. (INSENSITIVE)

This option turns on (off) run-time checks for
pointers equal to NIL. (INSENSITIVE)

This option is used to enable run-time checks for

set element expressions out of bounds.
(INSENSITIVE)

This option direets the compiler to produce
run-time checks for Subrange assignments to
assure that they are in bounds. (INSENSITIVE)

5.4 Copy Statement

A copy statement is provided so that source files can be separated
into individual files. A copy statement is specified as follows:

?7COPY file-access-name

where "?COPY" must begin in column one of a source line and the rest
of the 1line after the "file-access-name" is treated as a remark.
Copy files may have embedded copy statements, but the nesting is
limited to 8 levels.

Use of copy files has the advantage of making editor sessions more
efficient because files are smaller. One typical use of copy files
is a set of commonly used declarations which can be included in
separately compiled systems. Another example is a set of
declarations for the Native Code RTS Library.

The example given in Section III is used in the ‘following figures to
illustrate possible uses of the ?COPY statement:

{$ pEBUG, MAP}
SYSTEM tutorial;

?COPY EXAMPLE.SYSDECL
?COPY EXAMPLE.PRODUCER
?COPY EXAMPLE.CONSUMER

BEGIN f{#stacksize = 300; heapsize = 500}

WITH m = message_buffer DO BEGIN “initialize the message buffer
m.next in := 15 “index of first in-coming item
m.next out := 1; ‘index of first out-going item
initsemaphore(m.exclusive access, 1); "allow 1 access at a time
initsemaphore(m.not empty, 0); "of full slots in the buffer
initsemaphore(m.not:full, number_of_slots); “of empty slots
END;

START producer;
START consumer;
END. -

System Body

5-10

é{\)

CONST number_of_slots = 10; "maximum number of slots in a buffer

TYPE slot_index = 1..number_of_slots;
alpha_character = "A'.,.'Z27;

COMMON message buffer: RECORD "circular message buffer
slots: ARRAY slot index OF alpha_character;
next_in, next out: " slot index:
not empty, not full: SEMAPHORE;
exclusive acceSs: SEMAPHORE;
END; -

ACCESS message_buffer;

PROCEDURE initsemaphore(var sema: SEMAPHORE; count: INTEGER);
EXTERNAL;
PROCEDURE signal(sema: SEMAPHORE) ; EXTERNAL;
PROCEDURE wait(sema: SEMAPHORE); EXTERNAL;
¢ PROCEDURE swap; EXTERNAL; o

FIGURE 5-1. EXAMPLE.SYSDECL

PROGRAM producer;

VAR item: alpha character;
line: PACKED ARRAY 1..16 OF CHAR;
Status: INTEGER; '

ACCESS message buffer;

BEGIN {wprioTity = 20; stacksize = 100}

- 'AO;

= 'item produced: 's

WITH m = message_buffer DO

WHILE TRUE DO BEGIN

wait(monot_full); "wait for buffer‘space
™ wait(m.exeTusive access); "get access to the buffer
m.slots m.next In t= item; “deposit item into buffer

ENCODE(line, 16, status, item);
MESSAGE(line);

IF item = 'z' THEN item := 7! "generate the next item
ELSE item := SUCC(item);

B.next_in := SUCC(m.next in MOD number_of_slots);

signal(m.exclusive access); "rel€as?® access to buffer
signal(m.not_emptyT; “indicate presence of another item
swap; “give the consumer a chance

END;

END;

FIGURE s5-2. EXAMPLE.PRODUCER

5-11

PROGRAM consumer;

VAR item: alpha character; }
line: PACKED ARRAY [i..16] OF CHAR;
status: INTEGER;

ACCESS message buffer;

BEGIN f{gpriorify = 20; stacksize = 100}

line := 'item consumed: ';
WITH m = message buffer DO
WHILE TRUE DO BEGIN

wait(m.not_empty); "wait for available item to appear
wait(m.exclusive _access); "wait for access to buffer
item := m.slots “m.next out H “extract item from buffer

ENCODE(line, 16, status, item);
MESSAGE(line);

m.next out := SUCC(m.next out MOD number of_slots);

signal{m.exclusive access); “release access to buffer
signal(m. not_full), “indicate an available space in buffer
swap; . “give the producer a chance

END;

END;

FIGURE 5-3. EXAMPLE.CONSUMER

5.5 SEPARATE COMPILATION

The Microprocessor Pascal System supports separate compilation of
system segments. A segment is simply a group of modules, typically
a program or process and all inner modules, which are to be compiled
together. This segment may then be saved in the form of a standard
9900 object module for 1later wuse in debugging of the complete
system. All separately compiled segments must be compiled with the
same global declaration environment so they access the same global
variables. Any modules which are referenced by a segment but are
not included in the segment must be declared EXTERNAL, as are any
global modules which are required only because of their declarations
must have null bodys. Any module declared as having a null body 1in
any separate compilation of system segments must have a body in
another system segment. Otherwise the module having the null body
is an unresolved external reference when the system is constructed
(by the debugger or link editor).

The example given in Section III could be divided into segments' as
follows:

5-12

w

{spEBUGY
SYSTEM tutorial;

?COPY EXAMPLE.SYSDECL
PROGRAM producer; EXTERNAL;
PROGRAM consumer; EXTERNAL;

BEGIN {#stacksize = 300; heapsize = 500}

WITH m = message_buffer DO BEGIN "initialize the message buffer
m.next_in := 1; "index of first in-coming item
m.next_out := 1; ' "index of first out-going item
initsemaphore(m.exclusive_access, 1); .allow 1 access at a time
initsemaphore(m.not_empty, 0); {*#of full slots in the buffer}
initsemaphore(m.not_full, number_of_slots);{#of empty slots}
END;

~ START producer;
START consumer;
END.

FIGURE 5-4. SEGMENT 1 - SYSTEM BODY

5-13

{spEBUG)
SYSTEM tutorial;

?COPY EXAMPLE.SYSDECL

PROGRAM producer;
VAR item: alpha_character;
line: PACKED ARRAY [1..16] OF CHAR;
status: INTEGER;
ACCESS message_buffer;
BEGIN {#priority = 20; stacksize = 100}
item := 'A'; :
line := 'item produced: ';
WITH m = message_buffer DO
WHILE TRUE DO BEGIN

wait(m.not_full); "wait ‘for buffer space
wait(m.exclusive_access); "get access to the buffer
m.slots m.next in := item; "deposit item into buffer

ENCODE(line, 16, status, item);
MESSAGE(line);

IF item = 'Z' THEN item := 'A' "generate the next item

ELSE item := SUCC(item);
m.next_in := SUCC(m.next_in MOD number_of slots);

signal(m.exclusive access); "pelease access to buffer
signal(m. not_emptyT. "indicate presence of another item
swap; "give the consumer a chance

END;

END;

BEGIN $Nullbod
END. { : ° x}

FIGURE 5-5. SEGMENT 2 - PRODUCER

5-14

—”

{spEBUc} .
SYSTEM tutorial;

?COPY EXAMPLE.SYSDECL

PROGRAM consumer;
VAR item: alpha_character;
line: PACKED ARRAY [1..16] OF CHAR;
status: INTEGER;
ACCESS message_buffer;
BEGIN {#priority = 20; stacksize = 100}
line := 'item consumed: . ';
WITH m = message_buffer DO
WHILE TRUE DO BEGIN

wait(m.not_empty); "wait for available item to appear
o wait(m.exclusive_aecess); "wait for access to buffer
item := m.slots m.next out ; "extract item from buffer

ENCODE(line, 16, status, item);
MESSAGE(line);
m.next_out := SUCC(m.next out MOD number_of_slots);

signal(m.exclusive access); "release access to buffer
signal(m.not_full)? "indicate an available space in buffer
swap; "give the producer a chance

END;

END;

gggfu {$Nullbodx}

FIGURE 5-6. SEGMENT 3 - CONSUMER

In the example given above, each one of the segments would be
compiled separately and saved. When the segments are loaded for
ﬁmgxecution, segment 1 should be loaded first.

5.6 Saving Segments
!

The Microprocessor Pascal System provides a utility which takes the
interpretive code generated by the compiler and puts it in the form
of a standard 9900 object module so that it can be saved for later

use. This object module could be included in a debug session or
included in an Interpretive RTS target system.

The wutility to produce the segment will ask for the segment number
to be assigned to this segment, and whether debug information is to
be placed into the object module. The prompt file is shown on the
following page with the responses shown proceeded with "-->":

ENTER THE SEGMENT NUMBER:
—-—>2

INSERT DEBUG INFO? (YES/NO):
-->YES

The segment number is needed for Interpretive RTS system
construction, and it may be any number between 1 and 50. If an
invalid segment number is specified, the following message is
generated: ERROR: BAD SEGMENT NUMBER. The debug information is for
debugging and must be present if this segment is to be debugged.

The object modules created by the SAVE command include only the .

modules which are referenced. After the segment has been created, a
map of the modules in the segment and those referenced by the
segment is generated. The listing produced for segment 2 is shown
below:

MAP FOR SEGMENT 2 LENGTH "= 0098

ASSEMBLED WITH DEBUG INFORMATION

0 NAME = TUTORI KIND = EXTERNAL

1 NAME = PRODUC KIND = ROUTINE DISP = 001A
2 NAME = MESSAG KIND = COMMON LEN = 30

3 NAME = WAIT KIND = EXTERNAL

) NAME = SIGNAL KIND = EXTERNAL

5 NAME = SWAP KIND = EXTERNAL

The first two lines of the listing shows the segment number, segment
length, and debug information status. Then, for each module in the
system, its number and name are given as well as whether it isan
external module, common variable, or internal module. For common
variables, the length of the common area is given 1in ©bytes. For
internal modules, the hex displacement within the object module is
given, followed by an indication of whether or not it is externally
defined. :

Saved segments are generally smaller than their unsaved
counterparts. Additionally, segments saved without debug
information are smaller than those saved with debug information.
Once a segment of routines for a system has been throroughly tested,
it may be saved without debug information to conserve space, but
still may be used to test other parts of the system.

5.16

_J

5.7 ERROR MESSAGES

. This section describes the error messages generated by the
compiler. The first section describes the syntax error numbers
generated by the compiler when it finds errors. The next section
describes all other error messages generated by the compiler.

5.7.1 Syntax Error Number Descriptions

This section describes each error number generated by the compiler
by giving a brief description of the error, a more detailed
description of the error, and what action to take to correct the
error. ‘

1 ERROR IN SIMPLE TYPE -~ This occurs when a simple type was

P expected but not found, or when a scalar type specification was
‘ incomplete. o

Action: Make sure the simple type is specified correctly.

2 IDENTIFIER EXPECTED - This occurs when an identifier is expected
but not found.
Action: Make sure the identifier is correct.

3 "SYSTEM" EXPECTED -~ The keyword SYSTEM was expected but not
found.
Action: Make sure your system starts with SYSTEM or PROGRAM for
a conventional Pascal program.

4y w)n EXPECTED - A) was expected to match a (in an expression,
parameter list, record variant specification, or scalar
declaration. :
Action: Make sure that the parentheses are balanced.

5 ®":%" EXPECTED - A : was expected to follow a statement label,
Vi variable declaration, parameter 1ist declaration, case label
" list, or record variant label 1list.

Action: Make sure statement label or declaration is specified
correctly.

7 ERROR IN PARAMETER LIST - An invalid symbol was found in a
parameter list or the parameter list was formed incorrectly.
Action: Correct parameter list.

8 M"OF"™ EXPECTED - The keyword OF was expected in an array, file, or
set declaration or case statement.
Action: Insert the keyword OF in the declaration.

9 "("™ EXPECTED - A (was expected to begin a recofd variant
specification.
Action: Insert the (in the specification.

5-17

10

11

12

13

14

15

16

17

18

19

20

22

ERROR IN TYPE - A type'definition was expected but not found or
incorrectly specified.
Action: Specify type correctly.

" m EXPECTED - A was expected'in an array definition but was
not found.

Action: Insert a in the array definition.

w n EXPECTED - A was expected in an array definition, array
variable reference, or set constant but was not found.
Action: Insert the where needed.

"END" EXPECTED - An END was expected to terminate a record

definition, case statement, compound statement, or routine body
but was not found.
Action: Insert the END where needed.

", EXPECTED - A ; was expected to terminate a declaration or
separate a list of statements.
Action: Insert the ; where needed.

INTEGER CONSTANT EXPECTED - An integer constant was expected but
not found. , '
Action: Insert the integer constant where needed.

"=" EXPECTED - A = was expected in a constant declaration or
type declaration but was not found.
Action: Insert the = where needed.

"BEGIN" EXPECTED - A BEGIN was expected to begin a module body.
An error in the declaration section may cause this error.
Action: Correct the declaration section error.

ERROR IN DECLARATION PART - An error was found in the
declaration section and recovery will begin at the next
declaration.

Action: Fix declaration which had the error.

ERROR IN FIELD LIST - The field 1list does not bégin with an
identifier.
Action: Fix the error in the field list.

n.w EXPECTED - A , was expected to separate a 1list of
identifiers or labels. .
Action: Use a , to separate a list of items.

".." EXPECTED - A .. was expected to separate a subrange

definition.
Action: Use .. to separate subrange constants.

5-18

R

(

40

41

43

50

51

52

53

54

55

57

58

59

ERROR IN COPY STATEMENT - This error is caused when a syntax
error is found in a copy statement, when an I/0 error occurs
while trying to open a copy file, or when more than 8 levels of
nested files are copied.

Action: Correct the copy statement.

STATEMENT EXPECTED - This error is caused when a statement in a
list of statements does not begin with a valid token.
Action: Fix the statement.

FORWARD OR EXTERNAL EXPECTED - This occurs when one of the
keywords, FORWARD or EXTERNAL 1is expected in a routine
declaration, but is not found.

Action: Make sure the routine declaration is correct and that
FORWARD and EXTERNAL are spelled correctly, if present.

ERROR IN CONSTANT - An error was found in the kind of constant
or integer constant expression.
Action: Fix the constant specification.

":=" EXPECTED - The assignment operator is expected in an
assignment statement or for statement. This error occurs when
a = is used instead of a := . :
Action: Fix the assignment statement operator.

"THEN" EXPECTED - THEN is expected after the boolean expression
in a if statement.
Action: Fix the if statement.

"UNTIL" EXPECTED - ©UNTIL is expected to terminate a repeat
statement.
Action: Fix the repeat statement.

"DO"™ EXPECTED - DO is expected in a for, while, or with
statement.) .
Action: Fix the statement.

"TO"™ OR "DOWNTO" EXPECTED - TO or DOWNTO is expected to separate
the initial and final expression of the for statement.
Action: Fix the for statement.

"FILE" EXPECTED - FILE is expected after the keyword RANDOM.
Action: Fix the file definition.

ERROR IN FACTOR - An error was found while processing the
operand of an expression. The operand was expected but was not
found.

Action: Fix the expression.

ERROR IN VARIABLE - A variable was expected but an invalid

variable identifier was found.
Action: Fix the variable.

5-19

60

80

81

82

83

84

85

101

102

103

104

"HEX" EXPECTED - HEX was expected to follow a write statement
parameter but was not found. This may be caused by a missing
comma in the write statement.

Action: Fix the write statement.

OPTION IDENTIFIER EXPECTED - An identifier was expected in an
option comment but was not found.
Action: Fix the option comment.

UNKNOWN OPTION IDENTIFIER - The option name is unknown to the
option processor. This may be caused by an unsupported
option.

Action: Fix the option comment.

SYSTEM SENSITIVE OPTION NOT ALLOWED HERE - A system sensitive
option may only be specified before the first symbol of a
system.

.Action: Place the option comment at the beginning.

MODULE SENSITIVE OPTION NOT ALLOWED HERE - A module sensitive
option may only be specified between the module header and the
first declaration, or after the begin statement of the body and
the first statement. '

Action: Place the option comment at the correct place.

NULL BODY EXPECTED - The null body option was specified but an
empty body was not found. Null body may only be used within a
empty begin / end body. '

Action: Fix the null body specification.

ERROR IN CONCURRENT CHARACTERISTIC SPECIFICATION - The
concurrent characteristic identifier is not PRIORITY, HEAPSIZE,
or STACKSIZE. :

Action: Fix the concurrent characteristic specification.

IDENTIFIER DECLARED TWICE - The identifier hés already been
declared at this level and cannot be redeclared.
Action: Use another identifier.

LOWER BOUND EXCEEDS UPPER BOUND - The lower bound of a subrange
specification exceeds the upper bound.
Action: Fix the subrange definition.

WRONG KIND OF IDENTIFIER - The identifier found is not ‘the
correct kind. A procedure identifier within an expression is
an example of this type of error.

Action: Use the identifier correctly.

IDENTIFIER NOT DECLARED - All identifiers must be declared
before they are referenced. This is most often caused by a
misspelled identifier.

Action: Declare the identifier.

5-20

105

106

107

108

i10

111

113

115

116

119

120

SIGN NOT ALLOWED - The constant operand was not a binary
constant so a sign is not allowed.
Action: Correct the constant.

NUMBER EXPECTED - A binary constant was expected but was not
found.
Action: Correct the constant.

INCOMPATIBLE SUBRANGE TYPES - The type of the lower bound and
upper bound do not agree.
Action: Correct the subrange specification.

FILE NOT ALLOWED HERE - A pointer may not point to a file
variable, and a file may not be the component type of an array
or be a field type within a record.

Action: Fix the pointer specification.

TAGFIELD TYPE MUST BE SCALAR OR SUBRANGE = The record variant
Selector type must be scalar or a subrange.
Action: Correct the tagfield type specification.

INCOMPATIABLE VARIANT LABEL - Record variant label is
incompatible with the ¢type of the record variant selector
type.

Action: Correct the label specification.

INDEX TYPE MUST BE SCALAR OR SUBRANGE - The array index type
must be a scalar or subrange type. This also applies to the
array variable index expression.

Action: Fix the array specification.

SET BASE TYPE MUST BE SCALAR OR SUBRANGE - The set base type
must be a scalar or subrange type.
Action: Fix the set specification.

ERROR IN TYPE OF STANDARD PROCEDURE PARAMETER - The type of the
parameter is not the type which was expected for the particular
standard procedure parameter.

Action: Correct the standard procedure call.

REPETITION OF PARAMETER LIST NOT ALLOWED - When the full
declaration of a forward routine is given, the parameter 1list
must not be repeated.

Action: Fix the routine header.

FUNCTION RESULT TYPE MUST BE SCALAR, SUBRANGE, OR POINTER - The

type of the result returned by a function must be scalar,
sSubrange, or a pointer.

Action: Fix the function specification.

5-21

121

122

123

125

126

127

129

130
131
132
134

135

FILE VALUE PARAMETER NOT ALLOWED - A file must be passed by
reference to a procedure or function.
Action: Fix the file parameter specification.

REPETITION OF THE RESULT TYPE NOT ALLOWED - When the actual
declaration of a function declared forward is given, the result
type must not be repeated.

Action: Fix the function specification.

MISSING RESULT TYPE IN FUNCTION DECLARATION - The type of the
function was expected but was not found.
Action: Fix the function specification.

ERROR IN TYPE OF STANDARD FUNCTION PARAMETER - The type of a
standard function parameter 1is incompatible with what was
expected.

Action: Fix the parameter of the standard function call.

NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION - The

number of parameter in the «call does not agree with the
declaration of the routine.
Action: Fix the call parameters.

ACTUAL PARAMETER MUST NOT BE PACKED - The actual reference
parameter must not be packed.

Action: Pass an unpacked variable by reference and assign 1its
returned value to the packed variable.

TYPE CONFLICT IN ASSIGNMENT - The type of the expression is not
compatible with the variable on the 1left hand side of the
assignment.

Action: Fix the assignment statement.

EXPRESSION IS NOT A SET - The second operand of an IN operator
must be a set but it is not.
Action: Fix the expression.

TESTS FOR POINTER EQUALITY ONLY - The only operators valid on
pointer types are equal to and not equal to.
Action: Fix the expression.

ILLEGAL OPERATOR - The operator is not valid given the types of
the operands or the expression is misformed.
Action: Fix the expression.

ILLEGAL TYPE OF OPERAND(S) - The type of the operands are
incompatible.
Action: Fix the expression operands.

TYPE OF EXPRESSION MUST BE BOOLEAN - The type of the expression
was expected to be boolean but it was not.
Action: Supply a boolean expression.

5-22

e S e I S e ST L L i o oo o e S S S 1 ST L R T e . B T

136

137

138

139

™10

141

142

143

144

146

147

148

SET ELEMENT TYPE MUST BE SCALAR OR SUBRANGE - The type of a set
constant element must be scalar or subrange but it was not.
Action: Fix the set constant.

SET ELEMENT TYPES NOT COMPATIBLE - The type of the set constant
element is not compatible with previous set elements.
Action: Fix the set constant.

TYPE OF VARIABLE IS NOT ARRAY - Array subscripts are allowed
only on array variables.
Action: Fix the variable specification.

INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION - The type of the

array subscript expression is not compatible with the
declaration of the array.
Action: Fix the variable specification.

TYPE OF VARIABLE IS NOT RECORD - A field designator is valid
only after a variable of type record.
Action: Fix the variable specification.

TYPE OF VARIABLE MUST BE POINTER - A pointer reference is only
valid on a variable of type pointer.
Action: Fix the variable specification.

ILLEGAL PARAMETER SUBSTITUTION - The type of the actual

parameter is not compatible with the declaration. of the
parameter.

Action: Fix the call parameter.

ILLEGAL TYPE OF FOR EXPRESSION - The type of the initial and

final for expressions are not compatible or they are not scalar .
types.

Action: Fix the for statement.

ILLEGAL TYPE OF CASE SELECTOR - The type of the case selector
must be scalar or subrange.
Action: Fix the case selector expression.

ASSIGNMENT OF FILES OR SEMAPHORES NOT ALLOWED - Files and

semaphores may not be assigned to other variables.
Action: Delete file assignment.

INCOMPATIBLE CASE LABEL - The type of the case 1label is not
compatible with the case selector expression.
Action: Fix the case label.

SUBRANGE BOUNDS MUST BE SCALAR - The type of the subrange

constants must be scalar.
Action: Fix the subrange constants.

5-23

149

152

154

156

157

158

160

161

162

163

165

166

INDEX TYPE MUST NOT BE "INTEGER" - The index type must be

bounded, and INTEGER does not have fixed lower or upper
bounds.

Action: Change array specification.

NO SUCH FIELD IN THIS RECORD - The identifier specified was not
declared to be a field of the record variable. The identifier
may be misspelled.

Action: Fix the variable specification.

ACTUAL PARAMETER MUST BE A VARIABLE - Only variables may be
passed by reference to routines and they may not be components
of packed structures.

Action: Pass an unpacked variable instead of an expression.

MULTIDEFINED CASE LABEL - The case label was already defined in

another alternative. This may be caused by overlapping
subranges.

Action: Fix the case label specification. A%

CASE LABEL RANGE TOO LARGE - The total range of all labels in a
case statement must be no larger than 256. _
Action: Use a different method for ranges greater than 256.

MISSING CORRESPONDING VARIANT DECLARATION - The record
specified in NEW or SIZE was not declared to have variants.
Action:. Fix the NEW or SIZE constant parameter. ‘ -

PREVIOUS DECLARATION WAS NOT FORWARD - A module which was I
previously declared is being redeclared at the same level.
Action: Correct the routine specification.

MODULE DECLARED FORWARD AGAIN - Two forward declarations for a
module are not allowed.
Action: Correct the module specification.

PARAMETER MUST BE A CONSTANT - A constant parameter is expected
for NEW or SIZE but was not found. ™
Action: Correct the parameter specification.

MISSING VARIANT 1IN DECLARATION - The constant value specified
in a NEW or SIZE was not found in the record variant 1list.
Action: Fix the constant specification.

MULTIDEFINED LABEL - A statement label must appear only once
within a module.

Action: Fix the statement label specification.

MULTIDECLARED LABEL - A statement label must appear only once

in the label deplaration list.
Action: Fix the statement label declaration.

5-24

e Ay e AL e} R T e i e, e

167

177

178

179
180
181
182
183
184
A85

186

188

UNDECLARED LABEL - A statement label must be declared in the

label declaration section of the module where it is defined and
referenced.
Action: Declare the statement label.

ASSIGNMENT TO NON-LOCAL FUNCTION NOT ALLOWED - A value may only
be assigned to the local function identifier.
Action: Fix the assignment statement.

MULTIDEFINED RECORD VARIANT LABEL - The record variant label
was defined in another record variant list. This may be caused
by overlapping subranges.

Action: Fix the record variant label specification.

ILLEGAL ESCAPE - An escape statement may not reference another
routine at the same lexical level as the current routine.
Action: Fix the escape statement.

UNACCESSED COMMON VARIABLE - The common variable referenced was
not in the access list of the current routine.
Action: Declare access to the common variable.

ASSIGNMENT TO "FOR"™ VARIABLE IS NOT ALLOWED - The for variable
may not be modified within the for statement.
Action: Delete the assignment statement.

"ACTUAL REFERENCE PARAMETER MUST NOT BE A FOR VARIABLE - A for

variable may not be passed by referenced to a routine.
Action: Fix the call statement.

ILLEGAL TYPE TRANSFER - A type transfer was applied to a packed

element which was larger than the original element.
Action: Fix the type transfer specification.

TYPE OF COMMON MUST NOT BE A FILE - A common variable may not
be a file.

Action: Make the common a global variable.

FILE ELEMENT TYPE MUST NOT BE FILE OR POINTER - A file of files
or file of pointers is not allowed.
Action: Fix the file specification.

SET BOUND OUT OF RANGE - The lower bound of a set must not be

less than O and the upper bound of a set must not be greater
than 1023.

Action: Fix the set specification.
DIVISION BY ZERO - Division by zero is not allowed in an

integer constant expression.
Action: Fix the integer constant expression.

525

189

190

191

192

193

194

195

196

201

202

203

STATEMENT MUST BE A STRUCTURED STATEMENT - Escape labels are
allowed only on structured statements.
Action: Fix escape label specification.

STATEMENT LABEL IN FOR OR WITH STATEMENT NOT ALLOWED - This is
a warning message which indicates that a goto statement could
possibly jump into a for or with statement with undefined
results.

Action: Check for jumps into the for or with statement.

VARIABLE DECLARATIONS NOT ALLOWED AT SYSTEM LEVEL - Global
variables may not be declared at the system level.
Action: Make system variables commons.

INVALID NESTING OF SYSTEM, PROGRAM, OR PROCESS - Programs may
only be declared within a system, and processes may only be
declared within programs or other processes. Systems may not
be declared within anything.

Action: Fix declaration.

REFERENCE PARAMETERS NOT ALLOWED FOR PROGRAM OR PROCESS - Only
value parameters are allowed for programs or processes.
Action: Change parameters to value parameters.

POINTER PARAMETERS NOT ALLOWED FOR PROGRAM - Pointers may not
be passed as parameters to programs because heaps are local to
programs. '

Action: Fix parameter specification.

"INPUT" AND "QUTPUT" MUST BE DECLARED "TEXT" - When specifying

. INPUT or OUTPUT as parameters to programs or processes, they

must be declared to be text.
Action: Declare files to be text.

WINPUT" OR "OUTPUT"™ NOT DECLARED - Implicit use of INPUT or
OUTPUT was encountered in a standard I/0 routine without a
declaration. '

Action: Declare the needed text file, INPUT or OUTPUT; or
remove the reference to the I/0 routine.

FRACTION EXPECTED - The fractional portion of a real number was
expected but was not found.
Action: Specify real constant correctly.

STRING CONSTANT MUST NOT EXCEED SOURCE LINE - A string constant
must not extend across a source line boundary. This error may
be caused by an unclosed string constant.

Action: Correct string constant.

INTEGER CONSTANT EXCEEDS RANGE - The integer coﬁstant can not

be represented as a long integer.
Action: Correct integer constant.

5-26

206

207

208

209

251

252

255
258
o~

304

399

EXPONENT EXPECTED - A real constant was followed by an E but no
exponent was found.
Action: Correct real constant.

HEX DIGIT EXPECTED - A character other than a hex digit was
found. Only digits 0 through 9 and letters A through F are hex
digits.

Action: Correct hex constant.

ILLEGAL LONG INTEGER CONSTANT - A real constant was suffixed
with the letter L which indicates a long integer constant.

_Action: Correct real constant.

NESTED COMMENTS - This is a warning message that indicates that
a comment was found within another comment. This may indicate
a previously unclosed comment.

Action: Check for unclosed comments.

TOO MANY NESTED MODULES - Modules may only be nested to a level
of 10 or less.
Action: Correct routine nesting.

TOO MANY MODULES DECLARED - Only 256 modules may be declared in
one compilation.

Action: Your system is too large to be compiled. A possible
action 1is to split the system into separate segments and
compile the segments separately.

TOO MANY ERRORS IN THIS SOURCE LINE - If more than 9 errors are
found on any one line, this error message is generated.
Action: Fix all errors on line.

TOO MANY IDENTIFIERS DECLARED IN LIST - Only 8 identifiers may
be declared in one identifier list.
Action: Break declaration up into multiple lists.

SET ELEMENT OUT OF RANGE - A set constant element is less than
0 or greater than 1023.
Action: Correct set constant.

INTERNAL COMPILER ERROR - An inconsistency was found in the
compiler which may be caused by previous errors.
Action: Fix all errors and try again.

5.7.2 Other Compiler Error Messages

The

following error messages are generated by the compiler in

message form rather than error number.

5-27

#88% UNRESOLVED TYPE - name -- This message is generated when the
type . referenced by a pointer is not declared. Since this is
the only time forward type references are allowed, a error
message cannot be generated until the end of the declaration

section. The type identifier name is given.
Action: Define the type identifier.

##%% [ABEL UNDEFINED - number -- This message is generated at the
end of the body when a label is declared and referenced but not
defined. Each 1label declared and referenced must precede one
and only one statement within the body where it is declared.
Action: Define the statement label.

##%# END OF SYSTEM EXPECTED #%##% __. This message is generated at the
end of a compilation when the end of the system or program is
expected but more source is found. This may be caused by
mismatched begin/end pairs or some other mismatched statement.
Only one system or program may be compiled at one time.

Action: Correct syntax errors.

5.7.3 Native Code Generator Error Messages

This section will describe the error messages generated by the
Native Code Generator when it is producing 9900 machine code. The
Native Code Generator is not supported in the current release, but
will be added in a later release.

5-28

SECTION VI

HOST DEBUGGER GUIDE

6.1 HOST DEBUGGER OVERVIEW

A flaw in software is commonly called a bug. The act of removing
bugs from software is called debugging. The Source Editor helps the
user to construct a syntactically correct program, whereas the
Microprocessor Pascal System language and its compiler help the user
to discover and to correct semantic errors. Because the 1language
itself prohibits the use of semantically inconsistent operations on
data, the user is freed from many traditional debugging chores.
However, an interactive debugging tool such as the Host Debugger can
be very useful for observing the behavior of Microprocessor Pascal

Systems as they evolve; i.e. the debugger can be a useful design
tool.

It must be recognized that the design, implementation, and testing
of large, complex systems is a difficult task. The modern approach
to this problem is to break up large pieces of software into small,
independent units. The smaller modules can be examined one at a
time to ensure that they perform the desired function; intuitively,
this task is more intellectually manageable. If the interfaces
between the modules are well-defined and the modules work correctly
by themselves, it is reasonable to assume that the entire system
will perform correctly when the modules are combined. The Host
Debugger can be used to ensure that modules perform correctly by
themselves; it 1is also useful for monitoring and possibly altering
the interfaces between modules and concurrent processes. ’

The debugger's user._interface is designed to be as helpful and
friendly as possible. Whenever The debugger expects a response from
the wuser, a prompting message is displayed, which usually consists
of the characters "<>". The HELP command can be used at any time to
determine the correct syntax for a command.

‘A complete history of a debugging session can be obtained on a hard
copy device 1if desired. User input commands, debugger responses,
trace information, and all status displays are sent to a log file,
stored on disc at some user determined pathname. It is sometimes
helpful to be able to track the steps which led to a certain state,
Sso that state can be recreated. HELP displays are not echoed on the

log file. Note also that the log file does not contain any user
input, output, or messages.

6-1

The following table is a summary of the debugger command

names.

detailed description of each command is given in section 6.3.

Command Name

Getting Started/Finished
GO
QUIT
HELP
DEBUG
LOAD
SE
CoPY
Status Displays
DP
DAP

Breakpoints/Single Step
AB
DB
DAB
LB
SS

Showing/Modifying Data
SF
SH
sC
SI
SM
MF
MH
MC
MI
MM

Tracing Execution
TP
TR
TS
TOFF
TON

Monitor Process Scheduling
SDP
ABP
DBP
HP
RP

Meaning

Resume execution

Quit debugging session
Help command

Debug process

Load. saved segment

Show unresolved Externals
Copy commands from file

Display Process
Display All Processes

Assign Breakpoint

Delete Breakpoint

Delete All Breakpoints
List Breakpoints
Single-Step execution mode

Show Frame

Show Heap

Show Common
Show Indirect
Show Memory
Modify Frame
Modify Heap
Modify Common
Modify Indirect
Modify Memory

Trace
Trace
Trace
Trace
Trace

Process scheduling
Routine entry/exit
Statement flow
echo OFF

echo ON

Select Default Process

Assign Breakpoint to Process
Delete Breakpoint from Process
Hold Process

Release Process

6-2

1¥//

i’

Interprocess File Simulation
CIF
COF

Interrupt Simulation
SIMI

Selection of CRU Mode
CRU :

Connect Input File
Connect Output File

SIMulate Interrupt

select CRU mode

6-3

6.2 DEBUGGING EXAMPLES

A system to be monitored using the Host Debugger must be compiled
with the DEBUG option set. This is done by inserting a .$DEBUG

option comment into the source code before it is compiled -- see
Section 5.3 of this manual for the available compiler options. The
compiler 1listing contains wuseful information for debugging as
follows: (1) in the body section of each module (between the
BEGIN-END pair), statement numbers are listed in the left margin,
(2) in the declaration section of a module, stack frame
displacements for variables are 1listed. Consider the following
example compiler listing:

DX Microprocessor Pascal Compiler 1.0 06/11/79 09:32:44

{$ DEBUG, MAP}
PROGRAM example; o
VAR :
n: INTEGER;
m: INTEGER;
FUNCTION factorial (i: INTEGER): INTEGER;
BEGIN :
IF i <= 1 THEN
factorial := 1
ELSE
factorial := i * factorial (i - 1)
END;
BEGIN <# stacksize = 200}
n := 5;
m := factorial (n);
END.

W= Flwwhh-=2=20MNOOCOO

PROGRAM EXAMPLE ;
STACK SIZE = 0004

VARIABLE DISP TYPE SIZE

N 0000 INTEGER 2

M 0002 INTEGER 2
FUNCTION FACTORIA (I ¢:INTEGER) : INTEGER;
: STACK SIZE = 0004

VARIABLE DISP TYPE SIZE

I 0000 INTEGER 2

In the program "example", the variable "n" is at displacement 0 1in
the stack frame for "example"; the variable "m" is at displacement
2. The value parameter "i" in the function "factorial" is stored at
displacement 0 in its stack frame. The function result is stored at
displacement 2 in the stack frame for "factorial". The statement
numbers are listed in the body section.

64

The following "walk-through" is an example of an interactive
debugger session. All user input commands are preceeded by the
characters <>. Output messages from the debugger are shown
following many of the commands, although some commands do not evoke
a response from the debugger. Explanatory comments about the
example walk-through is given between the comment symbols {and} .
{Start of debugging sessioq}

HOST DEBUGGER 1.0 03/27/79 09:07:51

Enter system heap size in (K)bytes: 5

Do you wish to debug the most recently compiled system?

Please answer YES or NO: YES

[]
<> DEBUG(example) {breakpoint when "example" process is created}

<> GO
run-time support now initialized

<> GO
#2% Process Created #*%#% EXAMPL(1)
<> AB(factorial, 1)'{assign breakpoint to statehent 1 of factoriai}
<> AB(example, 1) {assign breékpoint to statement 1 of examplq}
<> LB
Breakpoints for Process EXAMPL(1)
EXAMPL 1
FACTOR 1
<> DB(example, 1) { delete breakpoint from statement 1 of.example}
<> LB N

Breakpoints for Process EXAMPL(1)
FACTOR 1

<> AB(example, 3)
<> AB(example, 2)

<> AB(example, 1)

<>LB
Breakpoints for Process EXAMPL(1)
EXAMPL 1
EXAMPL 2

6-5

EXAMPL 3
FACTOR

-—

<> GO

#%#% Breakpoint ### EXAMPL(1) .EXAMPL Statement 1
<>DP
Static/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = U464
Stack Used (bytes) Maximum = 4 Current = 4

Call Order Name ~ Statement
1 EXAMPL 1

<> SF(example)

stack frame for EXAMPL(1).EXAMPL
CD9A (0000) 0000 0000 (....

<> SF(factorial) '{note, factorial has not been called}

stack frame not found

. <> GO
#%#% Breakpoint ### EXAMPL (1) .EXAMPL Statement 2
<> DP
Statice/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = 464
Stack Used (bytes) Maximum = 4 Current = 4

Call Order Name Statement
1 EXAMPL 2

<> SF { note the value of "n" is 5)

stack frame for EXAMPL(1).EXAMPL

cbga (0000) 0005 0000 (evee

<> GO

#%% Breakpoint ### EXAMPL(1).FACTOR Statement 1
<> DP

Static/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = U464
Stack Used (bytes) Maximum = 36 Current = 36

66

Call Order Name Statement

1 EXAMPL 2
i 2 FACTOR 1
<>SF
stack frame for EXAMPL(1).FACTOR
CB42 (0000) 0005 0000 (even
< >Go
#%% Breakpoint ### EXAMPL(1) .FACTOR Statement 1
<>DP {note that factorial is called recursively}

Static/Dynamic Calling Order for Process EXAMPL(1)

M@ Stack Size (bytes) = U6l
Stack Used (bytes) Maximum = 70 Current = 70
Call Order Name Statement
1 EXAMPL 2
2 FACTOR 3
3 FACTOR 1
<>SF
stack frame for EXAMPL(1).FACTOR
CB64 (0000) 0004 0001 (oo
<>GO0
#%#% Breakpoint ### EXAMPL (1) .FACTOR Statement 1
<> DP (note, factorial again called reeursively}
Van Statice/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = 464
Stack Used (bytes) Maximum = 104 Current = 104

"Call Order Name Statement
1 EXAMPL 2
2 FACTOR 3
3 FACTOR 3
y FACTOR 1
<> SF
stack frame for EXAMPL(1).FACTOR
CB86 (0000) 0003 0001 (....
<>GO

#8% Breakpoint ##%#% EXAMPL(1).FACTOR - Statement 1

e

<> DP {and again, factorial is called} —
Static/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = U464
Stack Used (bytes) Maximum = 138 Current = 138

Call Order Name Statement <
1 EXAMPL 2
2 FACTOR 3
3 FACTOR 3
y FACTOR 3
5 FACTOR 1
<> SF P
stack frame for EXAMPL(1).FACTOR '
CBA8 (0000) 0002 0001 (eoeoe)
<>G60
#8% Breakpoint ### EXAMPL (1) .FACTOR Statement 1
<>DP
Static/Dynamic Calling Order for Process EXAMPL(1) A ‘>

Stack Size (bytes) = 464
Stack Used (bytes) Maximum = 172 Current = 172

Call Order Name Statement
1 EXAMPL 2
2 FACTOR 3
3 FACTOR 3 ™
y FACTOR 3
5 FACTOR 3
6 FACTOR 1
<> SF {note, the value of the parameter is 1} *
'stack frame for EXAMPL(1).FACTOR
CBCA (0000) 0001 0001 (ene.)
<>GO
#%% Breakpoint ### EXAMPL (1) .EXAMPL Statement 3

68

<> DP
Statice/Dynamic Calling Order for Process EXAMPL(1)

Stack Size (bytes) = U464
Stack Used (bytes) Maximum = 172 Current = 4

Call Order Name Statement
1 EXAMPL 3
<> SF {’note, the value of "m" is 78 (hex) = 5 factorial}
stack frame for EXAMPL(1).EXAMPL
CD9A (0000) 0005 0078 (...%)
<> GO

#%#% process Terminated ###% EXAMPL(1)
Stack Used (bytes) = 172

<> DAP

Status Summary of All Existing Processes

Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts
0 IDLES$P IDLE$P 0 Active 32767 no
1 EXAMPL >Terminated yes
<> QUIT
Execution Terminated
Memory Used (bytes) Maximum = 3064 Current = 1266

6.3 DEBUGGER COMMANDS

.A Host Debugger command is similar in appearance to a Microprocessor
Pascal System or AMPL procedure call. AMPL stands for "A
Microprocessor Prototyping Lab", which is a useful tool for
debugging at the the target machine level. A debugger command name
is followed by a (possibly empty) list of parameters enclosed in
parentheses. Parameters are separated by commas, as in a normal
Microprocessor Pascal System procedure call. Only one debugger
command can appear on a single input 1line. Continuation of a
command across an input line boundary is not allowed.

The debugger commands are described using a BNF-like notation.
Command names are written using upper-case characters, although the
debugger treats every 1lower-case character as if it were its
upper-case equivalent (the command "SF" is the same as ngfn),
Parameters are written using lower-case characters. The brackets
and are used to indicate that the enclosed symbol is optional.

Examples:
SF (routine , displacement , length)

This is the syntax for the SF (Show Frame) command. All three
parameters as described in a later section, are optional.

SM (address, 1length)

This is the syntax for the SM (Show Memory) command. The first

parameter must be present, whereas the second parameter is
optional.

: 6.3.1 Kinds of Parameters

There are four basic types of parameters recognized by the
debugger. These are:

(1) integer constant - An integer constant parameter can be
either in hex or decimal format. By default, all numerals
(strings of digits) are interpreted in decimal. Any
numeral beginning with the character > or #, however, is
interpreted in hex. For example, the number twenty-two
may be represented by 22, >16, or #16. Hex integer values
may contain from 1 to 4 hex digits.

(2) name - A name parameter has the same syntax as’ a
Microprocessor Pascal identifier. The debugger maintains
routine names and common names which must be unique within
the first six characters. A name parameter may be 1longer

than six characters, but only the first six characters are
significant.

6-10

-

-~

S

(3) string - A string parameter is a character string enclosed

in double quotes (a double quote is represented by two
double quotes inside a string).

(4) qualified routine - A qualified routine parameter consists
of an integer or name, followed by a period, followed by
an integer or name.

6.3.2 Process and Routine Parameters

To define the debugger commands, a consistent terminology is
adopted. A process is considered to be an abstraction which may be
represented at the source code 1level by a SYSTEM, PROGRAM, or
PROCESS. The term process is then used to refer to a specific
entity which owns a set of resources and performs some succession of
computations. A routine is considered to be any executable sequence
of source statements which is delineated by a BEGIN-END pair. The
term routine can then be used to refer to the body of a SYSTEM,
PROGRAM, PROCESS, PROCEDURE, or FUNCTION.

For example, one could refer to the process CARDREADER which is
represented at the source code level as a PROCESS. CARDREADER can
also be referred to as a routine when talking about the individual
statements which comprise its body.

Keeping ‘these terms in mind, the following command descriptions make
extensive use of two special kinds of parameters: process parameters
and routine parameters.

A process parameter specifies a process, either by name or by a
unique positive integer which is assigned by the debugger. A
process name, when given as a parameter, always refers to the most
recently created process of that name. To refer to an older
instance of a process, the process number must be given. Process
numbers are displayed in the far left column of the DAP (Display All
Processes) display:’

A routine parameter must not only specify a routine, but also the
process which caused it to be invoked. A routine parameter can be
written in one of six different ways as follows:

6-11

Forms for Routine Parameters Examples
LD L LT et L L el L T T TP tmmmcnn——- ,eeecce- -
i. process-name.routine-name EXAMPLE .DUMMY
ii. process-name.routine-number EXAMPLE.3
o 1ii. process-number.routine-naqe 4 .DUMMY
iv. process-number.routine-number 4.3
v. routine name | | DUMMY
vi. routine number 3

Each of the example routine parameters given in the table refer to
the same routine. It is assumed that EXAMPLE is process number U
and has been selected as the default process. EXAMPLE contains a
procedure DUMMY which is number 3 in the dynamic calling sequence.
If a routine name or number is simply given, as in form (v) and
(vi), the default process is implicitly specified. Therefore, for
"DUMMY" to be -equivalent to "EXAMPLE.DUMMY", EXAMPLE must be the
default process. A routine name, when given as a parameter, always
refers to the most recent activation of the routine. To refer to an

older activation of a routine, its dynamie calling number must be
given (see the DP command). :

In the first four forms'presented above, the process is specified

explicitly either by name or by number, according to the rules for
process parameters, stated previously.

The syntax of a "routine”™ parameter is then:

process . routine

where the process parameter (along with the period seperator) is
optional.

6.3.3 Optional Parameters

If a parameter is optional, it can simply be omitted, forcing the
default value to be assumed. However, since parameters are
positional, extra commas are sometimes required if parameters are
omitted. For example, the 1length parameter in the show frame
command (SF) can be given without specifying the displacement, as in
"SF(TEST,,12)". This command says to show 12 bytes of the stack
frame for the routine TEST, starting at the default displacement

(zero). Note that the consecutive commas are required in this
case.

6-12

BN

If a command has no parameters or all of its parameters are
optional, the command name may be given by itself or the command
name may be given followed by a set of (matching) parentheses. For
example, the command "SF" is equivalent to "SF ()n, Also, extra
commas for optional parameters at the end of a command need not

appear. For example, the command "SF (MYROUTINE,,)" is equivalent to
"SF(MYROUTINE)".

6.3.4 Getting Started/Finished

When a debugging session is started, the debugger asks the question:
*Do you wish to debug the most recently compiled system?". If the
response is YES, the object code for the most recently compiled
system is loaded. An error occurs if no object code is found, i.e.
there was nothing previously compiled. If the response is NO, the
debugger assumes that the object code to be debugged is to be loaded
explicitly by the wuser via LOAD commands. Therefore, it is not
necessary to recompile a system each time it is to be debugged,
provided the object is saved.

For relatively large and complex systems it is advantageous to
divide the system into segments which can be separately compiled and
saved (see Section 5.5). A considerable amount of time can be saved
if a change to a large system only involves editing and compiling a
relatively small portion of it.. The Host Debugger supports this
mode of development by allowing code segments to be loaded
explicitly by the user. The debugger automatically "links" together
references from one code segment to another. The diagram below
illustrates the alternative debugging strategies:

6-13

USER
/ TE:S:‘E':AL / , / TERMINAL /

EDIT |}—p SOURCE _..{ COMPILE |—3 |nTERP- DEBUG
: (SYNTAX~ RETIVE
CODE
200
THE SAVE COMMAND L v’
IS USEFUL MAINLY FOR INTERPRETIVE CODE
LARGE MICROPROCESSOR
PASCAL SYSTEMS
SAVE
[X X]
INTERP—
—® neTive
CODE (N)
—pp INTERP- ——
RETIVE
CODE2
—» INTERP- |
RETIVE
CODE1

FIGURE 6-1. DEBUGGING STRATEGIES

The square boxes in the diagram represent Microprocessor Pascal
represent the
interactive user terminal. A software development session usually
begins with the uyser creating or modifying source code using the
Syntax-checking Source Editor. The created source code is then sent
to the compiler and transformed into interpretive code. The
interpretive code can either be debugged immediately or can be
use
by the debugger. In the diagram, the boxes above the dotted line
illustrate a single system from the edit phase all the way through
the debug phase. The SAVE command box illustrates that interpretive
code can be collected into a library of interpretive code segments

Development System commands. The tilted boxes

transformed by the SAVE command into a form suitable for 1later

which are suitable for loading into the debugger.:

614

D

W

When the Host Debugger is started, the wuser is informed if
unresolved external references are detected in the interpretive
code. Unresolved references must be resolved by explicit user
commands to the debugger (via the LOAD command). Unresolved
references are caused by undefined FORWARD or EXTERNAL routines or
undefined NULLBODY routines. In the diagram, two interpretive code
segments (previously compiled and saved) were 1loaded into the
debugger using commands of the form LOAD("Interpretive Code1") and
LOAD("Interpretive Code2"). As mentioned previously, the
interpretive code file need not exist; a previously compiled and
saved system may be loaded explicitly.

The debuggger prompts the user for commands with the characters
rn, Immediately after the debugger is started, a limited set of
commands are valid which enable the debugging session to be set wup
properly. For example, commands may be given to load interpretive
code, to display a l1list of unresolved references, to debug certain
processes, and to execute a file of previously built commands (such
as a sequence of LOAD or DEBUG commands). The initially valid
commands inelude: GO, QUIT, HELP, DEBUG, LOAD, SE, and COPY.

When the initial GO command has been given, after a reasonable
amount of time, a message of the following form should appear:

run-time support now initialized

At this point before user processes are created, file connections
should be made wusing the CIF and COF commands. A subsequent GO
command causes execution to begin.

6.3.4.1 GO Command. This commandd is used to resume execution of
the user's system after it has become suspended for some
reason, e.g. encountering a breakpoint. It is also used to
start execution of the user's system when the debugger is
initially invoked. Entering a blank command line is equivalent
to entering a GO command.

The Executive RTS creates a process called the idle process with the
least possible urgency, priority 32767. The idle process is always
ready and is the last member of the scheduling queue. It's name as
can be seen in the DAP command is "IDLE$P". If this process ever
becomes active, the following message is displayed by the debugger:

idle instruction
Execution of the idle process places the processor in an idle state

(executes the IDLE instruction) in whiech it remains until an
interrupt occurs.

6-15

6.3.4.2 QUIT Command. This command is used to terminate the
current debugging session.

6.3.4.3 HELP Command. This command is used to display information
about the available debugger commands and their parameters.
The syntax of this command is:

HELP (command name)

The optional parameter is the name of a debugger command. If a
command name is given, detailed information for the specifie command
is displayed; otherwise, a summary of all commands is displayed.
The HELP command on a TX host develepment system does not allow. a

parameter. The only HELP available for a TX System is a summary of
all commands. _

6.3.4.4 Debug Process - DEBUG Command. This command is used to
select a specified process for debugging. When a process is
Selected for debugging, a breakpoint occurs every time a

process of the given name is created. The syntax of this
command is:

DEBUG (process name, flag)

The process name parameter must be the name of a process (a process
number is not allowed). This enables the command to be specified
before any process of the given name has been created. The flag
parameter is one of the Boolean values TRUE or FALSE (T and F are
also accepted as abbreviations). The value TRUE selects the process
for debugging; the value FALSE indicates the process is not selected

for debugging. If the flag parameter is not given, the default
value of TRUE is assumed.

6.3.4.5 LOAD Command. This command is used to load a previously

compiled and saved code segment. The syntax of this command
is:

LOAD ("pathname")

The single pathname parameter is a string enclosed in double
quotes. The pathname is the file name for the file on which the
code segment was saved using the SAVE command of the Microprocessor
Pascal Development System. This command along with the SAVE
capability provides a convenient form of separate compilation for
large and small systems. It also enables the user to replace

Standard EXTERNAL run-time support routines with sSpecially
constructed versions. _ '

6-16

If the debugger detects that the module being loaded was not saved
with debug information, the following warning is issued.

warning: module not saved with DEBUG information

If the system to be debugged is not one most recently compiled, at
least one LOAD command must be given to load a previously compiled
system. Note: the first module which is loaded must contain the
body of the system to be debugged or the first module must contain a

dummy system body (nullbody) with the same name as the system to be
debugged.

6.3.4.6 SE Command. This command is used to show the names of any
unresolved external routines. The syntax of this command is:

SE

The list of unresolved externals (if any) contains the names of
routines which were declared as EXTERNAL but have not yet been
defined. This command is used primarily in conjunction with the
LOAD command. Note that the same name may occur multiple times in
the list. There is one entry in the 1list corresponding to a single
reference to the given external routine.

6.3.4.7 COPY Commmand. This command is used to execute a series of
commands from an external file (disc file, card deck, cassette,
ete). The syntax of this command is:

COPY ("pathname")

The COPY command provides a convenient way to perform a sequence of
frequently executed commands without having to enter the commands
from the terminal each time. For example, when the debugger is
initially invoked, a series of LOAD commands may be required to load
all code segments comprising a system. The LOAD commands can be
stored on a disc file and a single COPY command issued to execute
all the LOAD commands. COPY commands cannot be nested; i.e. a COPY
file must not contain COPY commmands.

6.3.5 Status Displays

Two commands are provided to display the status of processes being
debugged. The DAP (Display All Processes) command is used to obtain
the status of all processes in the system. The DP (Display Process)
command shows the state of a single process.

6-17

6.3.5.1 Display All Processes - DAP Command. This command lists

the status of every process currently known to the system. \\
Consider the following example: L
Status Summary of All Existing Processes
Site of Enabled Stmt
Process Name Execution Status Pri Traces Bkpts?
1 ASRT733 runtime code Wait Sema 6 P no 1
2 CSXIN runtime code Wait Sema 6 P no
6 FORMAT runtime code >Wait Sema 6 S,P yes
3 CSXIN Terminated S,R,P yes
7 FORMAT runtime code Hold 6 P no -
4 CSXO0uUT csxoutr 7 Wait File 6 P no
5 csxour PUTCHA 10 Ready 6 P no
8 KEYIN KEYIN 3 Active 6 no M
9 PRINT PRINT 5 Ready 6 no ~
Each of the process names are indented to show their statie 1lexiecal
nesting 1level. The integer in the first column is a unique
identification number for each process. The process can be referred
to by this identification number in commands which require a process
parameter. The site of execution indicates a routine name and
statement number unless the process is currently executing in “)
run-time support code. In this <case, the site of execution .
displayed is ‘"runtime code". The status column indicates the

current status of each process. The (single) active process is
indicated by "Active". ‘If a process is ready to execute, its status

is "Ready"; otherwise it is waiting with a status of "Wait". A
waiting process is usually waiting for one of the following reasons:

"Wait File"™ (waiting on file management services), "Wait Sema"
(waiting on a semaphore), "Wait Pres" (waiting for process
management services), or "Wait Mem" (waiting for memory management ™
services). The status indicates "Hold" if an HP command caused a ‘
process to be temporarily held from normal scheduling. If an HP
command has been given for a process but the process cannot be held
immediately (for example, it may be waiting on a semaphore), the
Status of the process is displayed followed by "(h)" which indicates

a pending hold 1is to take place, immediately before the process

would otherwise become the active process. The default process is
indicated by the character "s" wywhich immediately preceeds the
Status. The PRI column contains the priority of each process. The

next column lists the kind of traces enabled for each process where

P is a process Scheduling trace, S is a statement trace, and R is a
routine entry/exit trace. The last column shows whether “any
statement breakpoints are set for each process.

6-18

6.3.5.2 Display Process - DP Command. This commnd displays a
detailed status for a single process. The syntax of this
command is:

DP (process)

If no process is specified, the default process is assumed.
Consider the following example:

Static/Dynamic Calling Order for Process CSXIN(2)

Stack size (bytes) = 1484
Stack used (bytes) Maximum = 1440 Current = 1146

Call Order Name Statement
- ASRT733(1) -
1 CSXIN 5
2 SETUP 12
3 COMMAN 27
y LINEIN 7
5 GETCHA 8

The top line of the display indicates the process name and number of
the process being displayed. The next line shows the maximum amount
of stack space available for the process. The next line gives an
indication of how much of the stack has been used and how much is
currently used. Finally the names of all routines nested within the
process and all ancestor processes are listed. Each name is
indented to indicate its static lexical nesting level. The current
statement number for each routine is also listed.

The call order, listed in the left column, represents the order in
which the routines were called dynamically. This is the number that
can be used as the value of a routine parameter in subsequent
commands to specify a given routine. Note that routine number 1 is
always the process being displayed. Any names which are “ displayed
before routine number 1 are ancestor processes. The ancestors of a
process must be displayed since their stack frames are accessible.
To see the status of an ancestor process, another DP command can be
given for the desired ancestor.

6.3.6 Breakpoints/Single Step

Microprocessor Pascal source statements are numbered by the compiler
and the compiled code is instrumented with these numbers if the
DEBUG compile option is turned on. This allows breakpoints to be
set and reset for any Microprocessor Pascal statement. If - two
Statements appear on the same source line, the statement number
listed by the compiler is that of the first statement on the 1line.
When a breakpoint is encountered, execution is suspended so the user
can examine/modify the state of the systenm. Upon encountering a
breakpoint, the debugger displays the following kind of message:

6-19

#%#8% Breakpoint ### pname(i).rname Statement n A\

where "pname" is the name of the process, "i" is the process number,
"rname®™ is the routine in which the breakpoint was encountered, and
"n® is the statement number for the breakpoint.

When a breakpoint is encountered, the breakpoint message is issued
before the specified statement is executed.

Breakpoints are associated with individual processes. Therefore, a
routine which is called from two separate processes of the same name
can be breakpointed at different statements depending on which
process invoked the routine. . -

In addition to statement breakpoints, execution can be suspended at
any statement by simply pressing the CMD key (this feature is N
currently supported only on DX host development- systems, pressing
the CMD key on a TX system causes the debugging session to
terminate). When the CMD key is pressed, the debugger displays the

following message before interacting with the wuser for further
commands:

#8% Anonymous Bkpt ###

6.3.6.1 Assign Breakpoint - AB Command. This command is used to ‘“)

assign a statement breakpoint to any routine. The syntax of
this command is:

AB (routine, statement number)
The routine parameter identifies the routine in which to set the

breakpoint. The statement number, if given, specifies at which oy
statement to breakpoint; the default statement number is 1.

6.3.6.2 Delete Breakpoint - DB Command. This command is used to

delete a statement breakpoint from any routine. The syntax of -
this command is:

DB (routine, statement number)
The routine parameter identifies the routine which contains the

breakpoint. The statement number, if given, indicates which
breakpoint to delete; the default statement number is 1.

6-20

6.3.6.3 Delete All Breakpoints - DAB Command. This comand is used
to delete all breakpoints from any process in the system. The
syntax of this command is:

DAB (process)

The process parameter specifies the process in which breakpoints are
to be deleted.

6.3.6.4 List Breakpoints - LB Command. This command is used to
list all breakpoints set in the specified process. The syntax
of this command is:

LB (process)

The process parameter is optional. If no process is specified, the
default process is assumed. The list displays the process name,
routine name and statement number for each breakpoint set in the
specified process.

6.3.6.5 Single-Step Mode - SS Command. This command is used to
perform single-step execution. The Syntax of this command is:

SS (process , flag)

The process parameter is optional. If no process is given, the
default process is assumed. The flag parameter must be one of the
Boolean values TRUE or FALSE (T and F are also accepted as
abbreviations). A TRUE value turns on single-step mode; a FALSE
value turns off single-step mode. If the flag parameter is not
given, a value of TRUE is assumed as the default. While in
Single-step mode, statements are executed one at a time. A
breakpoint is forced between every statement. A message of the
following form is displayed:

k%% Single-Step .#¥# pname(i).rname Statement n

where "pname" is the name of the process, "i" is the process number,

"rname" is the routine name of the currently executing routine, and
n'is the statement number.

Any single-step message is written before the statement is

executed. To execute the specified sEaEement, a GO command or a
blank command line must be entered.

6-21

6.3.7 Showing/Modifying Data

There are four kinds of variables that can be examined and modified
using the debugger. These are stack variables, heap variables,
common variables, and indirect variables (VAR parameters). Commands
are also provided to examine and modify absolute memory locations.

The following example is the display resulting from a SF (show

frame) command. The stack frame in the example happens to be 26
(hex) bytes in length.

A4DA (0000) FFFF 0000 0001 5341 4D50 4c45 2020 0000 (......SAMPLE

~

o)

A4EA (0010) 0002 0004 0006 0008 000A 000C OO0OE 0010 (evvvvveeoecneans)

A4FA (0020) 0012 0014 0016 (evevnn

The first word of every display line is the absclute memory address
of the (first data word displayed on the line. In the example, the
data displayed on the first line starts at memory address A4DA.
Immediately following the address is the displacement into the
specified stack, heap, or common area. The displacement is enclosed
in parentheses. 1In the example, the displacement for the first line
is zero (0000). For consistency throughout the display, the
displacement is given using a hexadecimal format. Each 1line
contains up to eight words of data. At the end of each 1line, the
data 1is displayed as a string of 16 ASCII characters enclosed in
parentheses; those bytes which represent non-printable ASCII
characters are displayed as a period. Notice that the only
printable characters in this example are those for the string
"SAMPLE " which starts at displacement 6.

6.3.7.1 Show Frame - SF Command. This command is used to display a

stack frame (or. portion thereof). The syntax of this command
is:

SF (routine , displacement , 1length)

A stack frame is created each time a routine is entered. The stack
frame contains the parameters and local variables for the routine.
®sing the stack displacements listed by the compiler, the value of
any parameter or variable may be found by displaying the appropriate
stack frame.

The first parameter specifies the stack frame to be displayed. If
the routine parameter is not given, the latest routine called as
part of the default process is assumed to be the default routine.
To show a stack frame of a routine which has multiple instances, the
dynamic calling number must be given (this number can be found using
the DP command, see previous description). If a single routine name
is given, it is assumed that the routine is in the default process.
To show the stack frame of a routine in a different process, the
process name should be specified first followed by a period,

6-22

)

/

A&\

%

K\/

followed by the routine name. For example "CSXIN.SETUP" could be

used to show the stack frame for the routine SETUP in the process
CSXIN. :

The optional second parameter specifies the byte displacement ‘into
the stack frame at which to start the display. The displacement
corresponds to the number listed by the compiler in the left margin

for each variable. The default displacement is zero. Negative
displacements are not allowed.

By default, the entire stack frame is displayed. This can be
overriden Dby specifying the length, in bytes, to be displayed. If
the displacement and length extends beyond the stack frame, only the
bytes of the specified stack frame are displayed.

6.3.7.2 Show Heap - SH Command. This command is used to show a
heap packet. The syntax of this command is:

SH (address , displacement , 1length)

The contents of any heap packet may be displayed with the show heap
command. A heap packet is identified by an absolute memory address
which is specified by the first parameter to this command. This
address can be determined by finding the value of the specific
pointer variable (using the SF command) which was returned by NEW.
If no parameter 1is given to SH, all heap packets (if any) for the
default process are displayed.

The second parameter is the byte displacement into the packet at
which to start the display. If omitted, a displacement of zero is
used. Negative displacements are not allowed.

The third parameter is the number of bytes to display. If omitted,
the entire heap packet is displayed. If the displacement and length

extends beyond the heap packet, only the bytes within the packet are
displayed. '

6.3.7.3 Show Common - SC Command. The contents of a named common
area specified by COMMON and ACCESS declarations may be
displayed using this command. The syntax of this command is:

SC (common name, displacement , length)
The first parameter is the name of the common area.
The second parameter 1is the byte displacement into the common at

which to begin the display. If omitted, zero is assumed. Negative
displacements are not allowed.

6-23

s e peras e e e T 3 I T 10 e e e it ey 1 T s e s 4 o e

The third parameter is the number of bytes to be displayed. If
omitted, the entire common area is displayed. If the displacement
and length extends beyond the length of the common, only the bytes
in the specified common are displayed.

6.3.7.4 Show Indirect - SI Command. This command is used to

display the value of an indirect variable. The syntax of this
command is:

SI (routine, displacement, 1length)

An indirect variable is a parameter passed by reference (i.e. a VAR
parameter). The 1indirect variable is addressed through a cell in
the stack frame of the specified routine at the specified
displacement. The 1length parameter is the number of bytes to be
displayed. If no length is given, one word is displayed.

6.3.7.5 Show Memory - SM Command. This command is used to show the
contents of an absolute memory location. The syntax of this
command is:

SM (address, 1length)

The first parameter is the address of the memory area to be
displayed. The second parameter 1is the length, in bytes, to be
displayed. If no length is specified, one word is displayed.

6.3.7.6 Modify Frame - MF Command. This command is ued to modify a

single word value in the specified stack frame. The syntax of
this command is:

MF (routine, displacement , verify value , new value)

The first two parameters have +the same meaning as in the SF
command. The verify value 1is the old value for the word to be
modified. If the verify value does not match the old value, an
error occurs. The final parameter is the new value for the word.

As in all of the modify commands, no check is performed if the
verify value is omitted; the specified 1location is modified
regardless of its current contents.

6.3.7.7 Modify Heap - MH Command. This command is used to modify a
single word value in heap. The syntax of this command is:

MH (address, displacement , verify value , new value)

6-24

)

-~

/

The first two parameters have the same meaning as in the SH
command. The verify value is the o0ld value for the word to be
modified. If the verify value does not match the old value, an
‘error occurs. The final parameter is the new value for the word.

6.3.7.8 Modify Common - MC Command. This command is used to modify
a single word in a common. The syntax of this command is:

MC (common name, displacement , verify value , new value

The first two parameters have the same meaning as in the SC
command. The verify value is the old value for the word to be
modified. If the verify value does not match the old value, an
error occurs. The final parameter is the new value for the word.

6.3.7.9 Modify Indirect - MI Command. This command is used to
modify a single word indirect variable (VAR parameter). The
syntax of this command is:

MI (routine, displacement, verify value , new value)

The first two parameters have the same meaning as in the SI
command. The verify value 1is the old value for the word to be
modified. If the verify value does not mateh the old value, an
error occurs. The final parameter is the new value for the word.

6.3.7.10 Modify Memory - MM Command. This command is used to
modify the contents of any single (word) location in memory.
This is the most dangerous command in the debugger's vocabulary
S0 extreme caution should be exercised. The syntax of this
command is:

MM (address, verify value , new value)

The first parameter. is the address of the word to be modified. The
second parameter is used to verify the old value for the word. If
the verify value does not match the old value, an error message

occurs. The third parameter is the new value for the word.

6.3.8 Tracing Commands

There are three kinds of tracing available. Tracing is wuseful to
examine the ©behavior of the scheduling algorithm, to observe the
dynamic behavior of routine calls and exits, and to determine the
actual control flow of statements. Trace data is written to the
user's terminal and to a log file so a hard copy can be obtained
upon termination of the debugging session. For conveniece, however,
the display of trace data at the terminal can be suppressed using
the TOFF (Trace OFF) command. It may be enabled again wusing TON
(Trace ON).

6-25

6.3.8.1 Trace Process scheduling - TP Command. This command turns j>
process scheduling tracing on or off for the specified
process. The syntax of this command is:

TP (process , flag)

The process parameter 1is optional. If no process is given, the
default process is assumed. The flag parameter must be one of the
Boolean values TRUE or FALSE (T and F are also accepted as
abbreviations). A TRUE value enables tracing; a FALSE value disables
tracing. If the flag parameter is not given, a value of TRUE 1is
assumed as the default. Process scheduling tracing causes a trace >
to be generated each time the given process is scheduled, 1i.e.

becomes active or inactive. This enables the user to examine the

behavior of the scheduling algorithm. MM
Example:)
%% Trace ##% ASRT733(1) Process Active
##% Tpace ¥ ASRT733(1) Process Inactive
#%% Trace ### CSXIN(2) Process Active
3% Trace ### CSXIN(2) Process Inactive N
#%% Trace ##% FORMAT(6) Process Active - ,/)
#%% Trace #¥# FORMAT(6) Process Inactive -
#%% Tpace ### CSXOUT(4) Process Active
6.3.8.2 Trace Routine entry/exit - TR Command. This command turns "™

routine entry/exit tracing on or off for the specified
process. The syntax of this command is:

TR (process , flag)

The process parameter is optional. If no process is specified, the
default process 1is assumed. The flag parameter must be one of the
Boolean values TRUE or FALSE (T and F are also accepted as
abbreviations). A TRUE value enables tracing; a FALSE value disables
tracing. If the flag parameter is not given, a value of TRUE is
assumed as the default. When routine tracing is 'enabled for a
process, each routine entry or exit is traced, excluding calls to
run-time support code. The trace information consists of the

process name and number, the routine name, and whether the routine
was entered or exited.

_ el

6-26

Example:

#%% Trace ### CSXIN(2).CSXIN Routine Entry
#%#% Trgce #%# CSXIN(2).SETUP Routine Entry
k%% Trace ### CSXIN(2) .COMMAN Routine Entry
%% Trace #%#% CSXIN(2).LINEIN Routine Entry
#%% Trace ### CSXIN(2).GETCHA Routine Entry
#%#% Tpagce ### CSXIN(2).GETCHA Routine Exit

k%% Tpgce #%#% CSXIN(2).LINEIN Routine Exit

6.3.8.3 Trace Statement flow - TS Command. This command turns
statement execution tracing on or off for the specified
process. The syntax of this command is:

TS (process , flag)

The process parameter is optional. If no process is specified, the
default process 1is assumed. The flag parameter must be one of the
Boolean values TRUE or FALSE (T and F are also accepted as
abbreviations). A TRUE value enables tracing; a FALSE value disables
tracing. If the flag parameter is not given, a value of TRUE is
assumed as the default. When this trace is enabled for a process,
every time a statement instruction is encountered (statement
instructions only exist in routines compiled with the DEBUG option),
a new line is written to the trace file. The 1line contains the
process name and number, the routine name, and the statement number
that was executed.

The trace information for statements is written before the specified
statement is executed.

6-27

Example:
#%#% Trgce ### CSXIN(2).CSXIN Statement 1
#%% Tpgce H¥# CSXIN(2) .CSXIN Statement 3
%% Tprace ### CSXIN(2).CSXIN Statement 4
%%#% Tpragce #%# CSXIN(2) .SETUP Statement 1
##% Trace ##%# CSXIN(2).SETUP Statement 2

6.3.8.4 Trace echo OFF - TOFF Command. This command disables all
trace information from being displayed on the terminal. The
TOFF command has no parameters. This command only affects the
display of trace data at the interactive terminal; the trace
information is still written to the log file. It is then
possible to obtain an execution trace of a system when it may
be impractical to examine a large amount of trace data
interactively.

6.3.8.5 Trace echo ON - TON Command. This command enables the
display of all trace information at the terminal. The default
is to have tracing enabled at the terminal.

6.3.9 Monitor Process Scheduling

The commands described in this section give the user limited control
over the scheduling of processes. The user can "hold"™ a process,
which temporarily blocks it from becoming active wuntil it is
explicitly "released"™. Also, process breakpoints can be assigned,
forcing a breakpoint immediately before a process would become
active (scheduled for execution).

6.3.9.1 Select Default Process - SDP Command. This command is used
to select the default process. The syntax of this command is:

SDP (process)

The single parameter indicates the process to be selected as the
default process. If a name is given, it refers to the youngest
instance of the process. A number may be given to select an older
instance of a particular process. The number of a process can be
found in the left column of the display from the DAP (display all
processes) command.

)

N~

The specified process is used as a default in subsequent commands
which have a process parameter; this provides a convenient shorthand
notation for many subsequent commands.

The user's SYSTEM is impliecitly chosen to be the default process
when the debugger is invoked. The SDP command may be used to change
this default. However, the default process cannot be selected
before the process has been created. Also, since many commands
allow one to implicitly reference the default process, it is
imperative that a default process exist at all times. For this
reason, whenever the default process terminates, a new default
process (the currently active process) is chosen by the debugger as
the default process and the user is notified of this change. The
message is of the form:

#%% Default Process Terminated ##% npame(n)
##% New Default Process *#*# new_name(m)

where "name(n)" is the name and process number of the terminated

process and "new_name(m)" is the name and process number of the new
default process.

6.3.9.2 Assign Breakpoint to Process - ABP Command. This command

is used to set a process breakpoint. The syntax of this
command is:

ABP (process)
When a process breakpoint is set, a breakpoint occurs just before

the process becomes active. Process breakpoints persist until they
are deleted using DBP or until the process terminates.

6.3.9.3 Delete Breakpoint from Process - DBP Command. This command
is used to delete a process breakpoint. The syntax of this
command is:

DBP (process)

6.3.9.4 Hold Process - HP Command. This command is ued to
temporarily suspend a process. When a process is held, it is

not eligible for execution until an explicit release command is
given by the user. The syntax of this command is:

HP (process)

6-29

This command can be issued regardless of the current status of a
pbocess. ~ For example, a process may be waiting on a semaphore when
an HP command is issued. Whereas the HP command does not take
affect until the semaphore is signaled, this delay remains
transparent to the user.

6.3.9.5 Release Process - RP Command. This command releases a
process which was previously "held" by a HP command. It makes
the specified process eligible for execution via the normal
scheduling algorithm. The syntax of this command is:

RP (process)

6.3.10 Interprocess File Simulation

Executive RTS interprocess files are simulated by the debugger with
extensions allowing host DX (or TX) files and devices to be
connected to RTS channels as producers or consumers of components
(See section 10). Normally, these "host connections" are made
implicitely according to channel names. If a channel has a name

‘which is also the name of a host file or device, that channel will

be implicitely connected to the host file. The standard procedure
SETNAME and the standard function FILENAMED may be used to direct a

‘host connection. For example,

setname(f, 'dsc2:test/dta');

Will cause the file F to have the name "DSC2:TEST/DTA". When F 1is
RESET, it 1is —connected to a channel of the same name, which is
connected to the TX file "DSC2:TEST/DTA". A READ(F,USER VARIABLE)
will cause a host request to be made to receive the next component
from the TX file "DSC2:TEST/DTA™.

The capability of connecting channels to host files allows the wuser
to view the inputs and outputs of a process in isolation from other

processes. It is, however, undesirable to require that the wuser's

source code explicitely reference host files. erefore, two debug
commands are provided with which the user may specify a run-time
mapping of internal channel names to external host file names.
Using the commands CIF (Connect Input File) and COF (Connect Output
File) the wuser can, at debug time, specify that a particular host
file is to act as a producer and/or consumer to a particular
channel.

Note that connection of an output file to ME does not imply that

information written to the output file is sent to the debugger 1log
file.

6-30

)

6.3.10.1 Connect Input File - CIF Command. This command allows the
user to specify a particular host file that is to be used as
input (a producer of components) to a particular channel. The
host connection is actually made when the first reading file
variable connects to the channel. If the channel already has
reading files connected to it, the host connection takes place
when all reading files connected to the channel become
disconnected (by calling RESET, REWRITE, or CLOSE) and another
reading file connects to the channel. Once the connection has
taken place, a READ from a connected file variable will return
the next buffered channel component if it exists. If no
components are buffered in the channel when the READ is done, a
host request is made to transfer the next component from the
connected host file. The syntax of this command is:

CIF ("internal channel name", "input host file name")

Both the INTERNAL CHANNEL NAME and INPUT HOST FILE NAME are string
parameters and, therefore, must be enclosed in double quotes. The
INTERNAL CHANNEL NAME is the internally known channel name to which
the host file named INPUT HOST FILE NAME is to be connected as a
producer of components. An example of the use of this command is:

CIF("f","dsc2:simulat/dta")

This causes the host file DSC2:SIMULAT/DTA to be connected as a
producer of components to the <channel named F when the first
consuming file variable connects to the channel. If the INPUT HOST
FILE NAME is the user's terminal, "me", the user is prompted for
input whenever host requests are made.

6.3.10.2 Connect Output File - COF Command. This command allows the
user to specify a particular host file that is to be used as
output (a consumer of components) from a particular channel.
The host connection is actually made when the first writing
file variable connectes to the channel. If the channel already
has writing files connected to it, the host connection takes
place when all writing files connected to the channel become
disconnected (by calling RESET, REWRITE, or CLOSE) and another
writing file connects to the channel. Once the connection has
taken place, a WRITE to a connected file variable will transfer

the component to the connected host file. The syntax of this
-command is:

COF ("internal channel name", "output host file name")

Both the INTERNAL CHANNEL NAME and OUTPUT HOST FILE NAME are string
parameters and, therefore, must be enclosed in double quotes. The
INTERNAL CHANNEL NAME is the internally known channel name to which
the host file named OUTPUT HOST FILE NAME is to be connected as a

consumer of components. An example of the use of this command is:

COF("fr,"dsec2:simulat/out")

6-31

This causes the host file DSC2:SIMULAT/OUT to be connected as a
consumer of components from the channel named F when the first
producing file variable connects to the channel.

6.3.11 Interrupt Simulation - SIMI command

This command is used to simulate an interrupt at the specified
level. The syntax of this command is:

SIMI (level)

If a process is waiting on the specified interrupt, execution of
this command causes the process to react as if the interrupt had
actually occurred. If the processor mask does not currently allow
the interrupt, the interrupt is maintained by the debugger as a
"pending interrupt" until the mask is raised, -at which time the
simulated interrupt is serviced.

6.3.12 Selection of CRU mode - CRU Command
The standard procedures TB, LDCR, SBO, SBZ, and STCR may be called
from any point in the user's program. The CRU debugger command may

be wused to control how CRU instructions are to be handled. The
syntax of this command is:

CRU (process , cru mode)

The process parameter specifies to which process the command

applies. If omitted, the default process is used. The second
parameter specifies how CRU instructions are to be handled. The
value of the second parameter must be one of the following: EXECUTE,
OFF, or DEBUG. If EXECUTE is specified, CRU instructions are
directly executed. If OFF is specified, all CRU instructions are
ignored. If DEBUG is specified, all CRU input and output is

simulated by the user. The following paragraphs describe how this
interaction takes place. The default mode for CRU instructions is
DEBUG.

6.3.12.1 Test CRU Bit - TB. The following message and prompt for
“input is displayed:
"Test CRU Bit" Address = nnnn, True or False?:

The user is expected to respond with a TRUE or FALSE value.

6-32

-~

6.3.12.2 Load CRU Value - LDCR. Te following message is displayed:
"Load CRU Value" Address = nnnn, Width = nn, Value = nnnn

This message displays the value that 1is to be 1loaded into the
specified CRU address.

6.3.12.3 Set Bit to Logic One - SBO. The following message is
displayed:
"Set Bit to One" Address = nnnn

This message displays the CRU address to be set to the value one.

6.3.12.4 Set Bit to Logic Zero - SBZ. The following message is
displayed:

"Set Bit to Zero" Address = nnnn
This message displays the CRU address to be set to the value zero.
6.3.12.5 Store CRU Value - STCR. The following message and prompt
for input is displayed:
"Store CRU Value" Address = nnnn, Width = nn, Value?:

The user is expected to respond with the value to be stored.

6-33

W~ MEETI SO . “e A S PP SR PP SEmaL i AR A NTARITL Y B e Ak e s e S i s S S e

6.4 ERROR MESSAGES

This section contains a 1list of debugger error messages with an
explanation for each one.

6.4.1 Command Syntax Errors

When a command is improperly formed or cannot be recognized by the
debugger, one of the following error messages is given.

command is not wvalid ‘ .
This error occurs when the specified command is not currently
valid. The HELP command can be used to display a list of all
debugger commands. However, when the debugger issues its
initial prompt <> , only a limited subset "of these commands
are wvalid. - The initially valid commands are: HELP, GO, QUIT,
LOAD, SE, DEBUG, and COPY.

incomplete command
This error occurs when a command is improperly terminated. If
a command has parameters, the parameter list must be enclosed
in parentheses.

extra characters will be ignored
This error occurs when the command contalns extra characters to
the right of an otherwise well-formed command. This error is
usually only a warning.

too many parameters
This error ocecurs when the command contains too many
parameters. Use the HELP command to check the number and
meaning of parameters for the command.

missing parameter(s)
This error occurs when the command is missing one or more
required (non-optional) parameters. Use the HELP command to
check the number and meaning of parameters for the command.

wrong kind of parameter
This error occurs when the command contains a parameter that is

the wrong kind. For example, an integer constant appearing
Wwhere an identifier is expected.

parameter syntax error
This error occurs when a command parameter is improperly
formed. Parameters can only be one of the following: integer
constant, identifier, string (delimited by double quotes),
integer constant or identifier followed by a period followed by
an integer constant or identifier.

6-34

\

U

parameter must be a Boolean value
This error occurs when a Boolean-valued parameter was expected
and not received (either TRUE, FALSE, T, or F). Use the HELP
command to check which parameter is supposed to be a Boolean
value.

unrecognized CRU mode
This error occurs when a CRU command is given and the CRU mode
is not EXECUTE, DEBUG, or OFF.

pathname must be a string
This error occurs when a file pathname parameter (e.g.
COPY(pathname)) is not specified as a string, between double
quotes. :

6.4.2 Breakpoint Command Errors

The following errors may occur when using the breakpoint commands,
AB, DB, DAB, and LB. Some of these are merely warnings. Note that
LB (list ©breakpoints) can be used to list the breakpoints that are
set for a given process.

breakpoint already assigned
This message indicates that a breakpoint is already assigned to
the specified routine and statement number. This message is a
warning (no action is performed).

no such breakpoint
This error indicates an attempt was made to delete a
non-existent breakpoint. This message is a warning (no action
is performed).

no breakpoints set
This message 1is the result of a LB (list breakpoints) command
when there are no breakpoints set. .

non-existent statement number
This message indicates that a non-existent statement number was
referenced when attempting to assign a breakpoint. Check the
compiler 1listing to ensure that the statement number in the

assign breakpoint command does not exceed the maximum statement
number listed.

6.4.3 Show/Modify Command Errors

The following errors can result from the use of the show and modify
commands, SF, SH, SC, SI, SM, MF, MH, MC, MI, and, MM.

6-35

no such routine
This message indicates an error in a routine parameter. If a
routine name was specified as a parameter, the name was
probably misspelled. If a dynamic calling number . was
specified, check to make sure there is such a dynamic calling
number listed using the DP (display process) command.

no such process
This message indicates an error in a process parameter. If a
process name was sSpecified as a parameter, the name was
probably mis-spelled. If a process number was specified, check
to make sure that the process exists (use the DAP command).

stack frame not found .
This error occurs when the stack frame for a routine does not
exist. Either the routine parameter is in error (bad name or
dynamic calling number) or the routine is not currently active
(has "returned" or has never been called).--

invalid heap packet ,
This error occurs when the address of a heap packet is
incorrect. Only heap packets which have been allocated
dynamically (by NEW) can be displayed or modified.

common not found
This error occurs when the common name parameter is incorrect.
Double check the common name given with the one declared in
your source code.

bad displacement
This error occurs when a bad displacement into a memory area is
specified. This can happen in one of the following cases: the
displacement is beyond the length of the specified stack frame,
the displacement is beyond the length of the specified heap
packet, or the displacement is beyond the 1length of the
specified common area.

verify error A
This error occurs when a modify command (MF, MH, MC, MI, MM)
contains a verification value and the value to be modified does
not match the verification value. In this case, the memory
location is not modified with the new value.

6.4.4 Miscellaneous Errors

The following errors are more general in nature than the ones
discussed previously.

cannot get system memory
This error indicates that sufficient system memory space is not
available. The user's system memory requirements should be
examined and possibly modified.

6-36

)

\i/

too many modules in segment
This error occurs when a single segment contains more than 256
routines (internal and external) and commons. This is a fixed
size constraint. To avoid this error, split the segment .into
two separate segments so that the total number of routines and
commons in each one does not exceed 256.

no interpretive code found, use LOAD command
This 1is a warning message which indicates the file containing

the interpretive code for the user system was not found. The
LOAD command can be wused to 1load a previously saved code
segment.

warning: module not saved with DEBUG information
This is a warning message which indicates that the module being
loaded does not contain debugging information. 1If desired, the
module should be re-saved with debug information.

unresolved externals, use LOAD or SE
This error occurs when the user's system contains references to
external routines which have not been resolved yet. The SE
command displays a list of unresolved routine names. The LOAD
command can be used to load saved code segments. :

invalid SAVE file
This error occurs when the file given in a LOAD command either
does not exist or cannot be opened. The file name given by the
user is probably incorrect.

cannot redefine an external
This error occurs when the debugger detects two external
routine definitions in separate code segments. The first
definition for an external routine is the one used in all
subsequent references.

cannot open COPY file .
This error occurs when a COPY command is given and the COPY

file either does not exist or cannot be opened for some
reason.

cannot nest COPY commands
This error occurs when an attempt is made to include COPY
commands in COPY files. Nested COPY commands are not allowed.

already specified for debug

This error occurs when the user performs two separate DEBUG
commands for the same process.

not specified for debug

This error occurs when the user specifies DEBUG(process, false)
and the process was never specified for debugging.

6-37

process is not held
This .error occurs when an RP (release process) command is given
for a process which is not presently held.

process is already held
This error occurs when an HP (hold process) command is given
for a process which is already held.

no process waiting on interrupt

An attempt was made to service an interrupt and there was no
process waiting on the interrupt. *

interrupt level must be in range 1..15

This error occurs when a SIMI command parameter is not in the
range 1 to 15.

more urgent interrupt in progress
This error occurs when a SIMI command” is given and the
interrupt cannot be serviced because a more urgent interrupt is
in progress.

waiting process less urgent than interrupt
This error occurs when a SIMI command is given and the only

waiting interrupt process 1is 1less urgent than the interrupt
level specified.

bad ‘internal file name

This error occurs if the internal file name parameter in a CIF
or COF command is improperly formed.

bad external file name

This error occurs if the external file name parameter in a CIF
or COF command is improperly formed.

internal error, or unknown error

: These errors should not normally occur. The probable cause for
such errors is that some data structures used by the debugger
were destroyed either explicitly (using the modify memory
command) or implicitly by the user's system. Please contact
the staff of Texas Instruments if such an error occurs and its
cause cannot be determined.

6-38

o

o
/
-

SECTION VII

CONVENTIONAL PASCAL PROGRAM EXECUTION

7.1 EXECUTION OVERVIEW

The Microprocessor Pascal System provides an executive which will
load a conventional Pascal program and execute it without any
interactive debugging capability. The program must be a single
PROGRAM without any SYSTEM or PROCESSes and no Executive Run Time
Support calls. Only standard Micrprocessor Pascal System routines
may be called. This capability is useful when writing a general
utility in Pascal or when testing an algorithm on a set of data.

7.2 PROGRAM SEGMENTS

The executive prompts the user as to whether he wants to execute the
last program which was compiled, or one which was saved. This
prompt appears as follows:

DO YOU WANT "PCODE"™ LOADED? YES

Normally the program to be executed is the last program which was
compiled, in which case, the user should simply press the RETURN
key. Otherwise if a utility program which was saved is to executed,
"NO" should be entered. When this is done, the name of the segment
for the program must be entered in response to the following prompt:

ENTER PATHNAME OF MAIN SEGMENT:

If the program to be executed has any external references, external
segments may be loaded. The execute program will prompt for the
segment pathname as follows:

ENTER PATHNAME OF EXTERNAL SEGMENT:

If the external references should be ignored, then the RETURN key
should be entered without specifing a pathname.

Please note that the concurrent characteristiecs specified in the
program are ignored. The amount of stack and heap given to the
user's program is one area of memory and used as needed for either
stack or heap. In the DX version, the combined amount of stack and
heap 1is requested, but in the TX version the total remaining amount
of memory is given to the user for stack and heap.

7-1

7.3 EXECUTION MESSAGES

After the'complete program has been loaded, control is given to the
user's program which is indicated by the following message:

EXECUTION BEGINS

After the user's program has completed execution, control is given
back to the executive and the amount of stack and heap in bytes
which was used by the user's program is indicated by the following
message:

STACK USED = xxxxx HEAP USED = xxxxXx

If the user's program terminated abnormally then the followiﬁg
message precedes the stack and heap utilization message:

ABNORMAL USER PROGRAM TERMINATION T

7.4 I/0 SUPPORT

The user's program may use Microprocessor Pascal I/0 to access host
files. All Microprocessor Pascal files are supported including
TEXT, sequential, and RANDOM files. All MESSAGEs are displayed on
the terminal. The destination of the OUTPUT file is specified
during the initial prompt. All other files may be connected to host
file via the SETNAME procedure. If the SETNAME procedure is not
used, the run-time support will prompt the user for the pathname to
be connected to the file as follows:

INPUT PATHNAME FOR "filename" :
Note: The pathname may not contain DX/10 synonyms because no synonym

mapping is performed before the file is opened.

7.5 RUN-TIME SUPPORT ERROR MESSAGES

If an error is found during an I/0 operation, the following message
will be generated:

I/0 ERROR : ee ss NAME= filename
where "ee" is the I/0 error type, described in Appendix E, "ss" is
the I/0 service call status, and "filename" is the file variable

name.

If an error is found during a TEXT I/0 operation, the following
message will be generated:

TEXT FILE I/0 ERROR : ee NAME= filename

7-2

o~

where "ee" is the TEXT I/0 error type, described in Appendix E, and
"filename" is the file variable name.

The following error messages are generated by the heap management
routines when an error is found.

HEAP OVERFLOW - no more heap space is available to allocate the
current heap packet. :

INVALID HEAP PACKET POINTER - the pointer being DISPOSEd does not
point to a valid heap packet.

INVALID HEAP PACKET LENGTH - the length of the heap packet being
DISPOSEd is bad.

Normally when any error is found by the run-time support routines,
the wuser's program is halted and control is given back to the

execute program. When this is done the following message is
generated:

HALT CALLED

7.6 ABNORMAL TERMINATION MESSAGES
If the wuser's program is terminated abnormally, the following
message will be displayed which indicates the type of error which
occurred.

%% RUN TIME ERROR DETECTED **# reason

The "reason" for the termination will be one of the following:

INVALID OPCODE - an illegal interpretive code operator was
found '

STACK OVERFLOW - the user's program consumed the entire
allocated stack area

INVALID CALL - a procedure was called which was unresolved
DIVIDE BY 0 - an attempted divide by zero

FLOATING POINT - a floating point underflow or overflow was
detected

SET RANGE - a set element less than 0 or greater than 1023 was
detected)

ASSERT - an ASSERT statement failed

CASE - no CASE statement alternative was found

7-3

SUBSCRIPT - an array subscript expression was not within the
declared bounds

POINTER - a pointer equal to NIL was being referenced

SUBRANGE - an assignment of a value to a subrange variable was
not within the declared bounds

"HALT" CALLED - a run-time support error was found

After the error message 1is generated, a trace back of the user's
program is generated which indicates where the error occurred. The
first line listed was where the error occurred and the rest indicate
how the routine was called. If the program was loaded from
interpretive code or from a segment which was saved with ™debug"
information, the name of user routines will be listed. If this was
not done, the name will not be listed. If the program was compiled
with the "debug" option, then the statement number will be listed.
An example of the trace back listing which is generated 1is shown
below:

-- RUN TIME SUPPORT
== ROUTINE = routine name STATEMENT NUMBER = nn

The first 1line indicates that ﬁhe routine name was not known, and
the second line shows the format for those routines where the name
is known.

When wusing the DX version of the execute program, a dump of each
routine's stack frame is given following the above header. This
dump is similar to the dump created by the Host Debugger.

74

TN

SECTION VIII

MICROPROCESSOR PASCAL SYSTEM

8.1 LANGUAGE VOCABULARY AND REPRESENTATION

Each Microprocessor Pascal System system is composed of symbols from
a finite vocabulary. The vocabulary consists of identifiers,
numbers, strings, operators, and keywords. They are called lexical
Symbols, and in turn are composed of sequences of characters. Their
representation therefore depends on the underlying character set.

8.1.1 Character Set

The Microprocessor Pascal System character set consists of the
letters A - Z, a-z, the digits 0 - 9, and the special characters

*er /M, s ey ()L] {3 A~ e
These characters are used to form special symbols which have a fixed
meaning in the language.
8.1.2 Special Symbols

Special symbols are used for operators and delimiters. The special
symbols are:

+ = ¥ / iz 2 K> <= 3=z > :: @A
() r J { m} B L

Note: (. .) is a substitute for[:J which is used to delimit array

indices and sets, (* #*) is a substitute for } which is used to
-delimit comments, and € is a substitute for A which is used with
pointer types. These alternate symbols are provided since the

Symbols they replace are not available on all systems.

8.1.3 Keyword Symbols

Keyword Ssymbols are reserved words with a fixed meaning; they may

not be declared as identifiers. They are written as a sequence of
letters and are interpreted as a single symbol.

8-1

ACCESS
AND
ANYFILE
ARRAY
ASSERT
BEGIN
BOOLEAN
CASE
CHAR
COMMON
CONST
DIV

DO
DOWNTO

8.1.4 Ident

Identifiers are used as names denoting user

entities.
combination
letters are

if it were the corresponding upper-case letter.
identifier DATA SIZE is the same identifier as Data Sigze.

length

ELSE
END
ESCAPE
FALSE
FILE
FOR
FUNCTION
GOTO

IF

IN
INPUT
INTEGER
LABEL
LONGINT

ifiers

MOD REPEAT
NIL SEMAPHORE
NOT SET

OF START
OR SYSTEM
OTHERWISE TEXT
OUTPUT THEN
PACKED TO
PROCEDURE TRUE
PROCESS TYPE
PROGRAM UNTIL
RANDOM VAR
REAL WHILE
RECORD WITH

défined or predefined

An identifier consists of a letter or $, followed by any

of letters,

digits,

$,

or

Upper- and lower-case

allowed but a lower-case letter is treated the same as

For example, the

A maximum

is imposed by the restriction that identifiers may not cross
card boundaries and hence may not be more than 72

characters

All characters

identifier used to denote a

in an

identifier a
systen,

re
program,

significant,

process,

long.
however, an
procedure,

function,
names shoul
used for tar
characters.

Examples:
Legal

Illeg

d not contain
get debugging,

Identifiers
X
$VAR
LONG_IDENTIFIER
NUMBER_3
READ

al Identifiers

any $ characters. Also,
routine names should not

ARRAY (Reserved word)

ROOT3 (Can't start with _)
3RDVAL (Can't start with 3)
MAX VALUE (Can't contain blank)
TOTAL-SUM (Can't contain -)

or common should be unique within the first 6 characters.
To avoid conflicet with run-time support routine names, user

routine
if AMPL is to be
contain any

Note: Some identifiers are standard, that iS, they are predeclared

Some
given meanin

g. However,

For

8-2

identifiers are standard, that is, they are predeclared with a °
they may be redefined by the user,
case the standard meaning no longer applies.

in which

example, if the

»

standard routine name READ is redefined, the standard routine READ
may not be called.

8.1.5 Constants

Constants are either vunsignéd integer constants, long integer

constants, real constants, string constants, or character
constants.

8.1.5.1 1Integer and Long Integer Constants. An integer constant is
written as a sequence of decimal digits. An integer constant may
also be a sequence of hexadecimal digits preceded by a # sign.
Either form may be followed by an L to indicate a LONGINT constant.

Examples:
Legal INTEGER and LONGINT constants
133
#26B
#AFL
00022
252410L

8.1.5.2 Real Constant. A real constant is either written as two
sequences of decimal digits separated by a decimal point or using an
exponential notation. Note that a decimal point must be surrounded
on both sides by decimal digits. The general syntax allowed is:

nnn.nnn or nnn.nnnEmm or nnnEmm

The number nnnEmm represents the real number nnn times 10 to the
power mm.

Examples:
Legal REAL constants
11.75
T26E2
9.8E-4
102.4E+2

Illegal Numbers
.005 (Decimal point not surrounded by digits)
75.E=2 (Decimal point not surrounded by digits)
2.0E1.5 (REAL exponent not allowed)
#U4TA.2 (HEX notation illegal with decimal point)

8.1.5.3 String Constant. A string constant is written as a
sequence of characters enclosed by apostrophes. A string cannot be
longer than 70 characters. Any ASCII character code may be

represented in a string by a # followed by two hexadecimal digits.
This enables wunprintable characters to be included in strings.
Within a string, ' is represented by '' and # is represented by ##.
A string constant is of the following type:

83

PACKED ARRAY [i.. length] OF CHAR

\\\‘/

where length is the number of characters in the string constant.

Examples:
Legal STRING constants
' THIS IS A STRING '
'UNPRINTABLE CHARACTER #0D!
'EXAMPLE ##3°'
lCAN'lT'

8.1.5.4 Character Constant. A character constant is written as one
character enclosed by apostrophes. The character may be represented

by two hexadecimal digits preceded by a #. As in a string constant, »
the character ' is represented by '' and # is represented by ##.

Examples: :

Legal CHARACTER constants .- éN

'7'

vPv‘

trer

l+'

'#0F"
8.1.6 Separators
At leasf one separator must occur between any two constants, ")
identifiers, keywords, or special symbols. No separator may occur :
within these elements, except that Spaces may occur within strings.
Separators are spaces, ends of lines, comments, or remarks. For
example, in : '

WHILE X<10
a space separates WHILE and X. It is not equivalent to write:)
WHILEX<10

A comment is any sequence of characters beginning with (* or { and
ending with *) or }, except that (* or { does not begin a comment ,
within a string. Comments may not be nested; a warning message is
generated if an open comment symbol is found within a comment. A
remark is any sequence of characters beginning with a " and ;
extending to the end of the logical record, except that " within a .

string_does not begin a remark.

Examples:
{This is a comment}

(* This is also a comment #*)
" the rest of the line is a remark

84

8.2 DECLARATIONS

The text of a Microprocessor Pasecal system consists of declarations
of objects and a sequence of statements that operate on the declared
objects. Objects which may be declared are labels, constants, data
types, variables, commons, . programs, processes, and routines
(procedures and functions). Declarations are used to give unique
names to each object. In general, the identifier naming an object
must be explicitly declared before it may be used in any statement.
This redundancy enables the compiler to detect spelling errors and
the inconsistent use of declared objects. In addition to explicit
declarations, there are three kinds of implicit declarations,
namely, FOR control variables, ESCAPE labels, and WITH variables.

Each declaration has a scope, which can be thought of as the range
of the system text over which the declaration is effective. The
unit of scope for explicitly declared objects is a Microprocessor
Pascal System module (system, program, process, procedure, or
function). This means that once an identifier has been declared to
denote a variable, for example, the variable is accessible by means
of this identifier throughout the module where the declaration

appeared, unless the identifier is redeclared within some inner unit
of scope (module).

Other units of scope include FOR statements (implicit declaration of
the control variable), record type declarations, structured
statements (implicit declaration of ESCAPE labels), and WITH
statements (implicit declaration of synonyms for record variables).

Extent is the time during system execution that a computational
quantity may be considered to exist. The extent of a variable is
the time during which space is allocated for the variable. The
extent of all statically declared quantities is the duration of
execution of the unit of scope in which they are declared, with the

exception of COMMON variables, whose extent is the entire system
execution.

The extent of dynamically allocated variables is that portion of
system execution between the call of NEW which creates them and the
call (if any) to DISPOSE which frees the space allocated to them.

Within an Microprocessor Pascal system, modules may only be nested
to a maximum lexical level of 10.

8.2.1 System Declaration

A Microprocessor Pascal system is the superstructure which contains
all the programs and processes of a single user task. The system
declarations define all globally known items, such as constants,

types, commons, and utility routines. All p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>