VLSI Data Book

LSI Products Division

TRW Electronic Components Group

Table Of Contents

Introduction 5
Product Indexes 7
Advance Information 9
A/D Converters 17
D/A Converters 125
Multipliers 155
Multiplier-Accumulators 231
Special Function Products 295
Menory/Storage Products 351
Reliability 381
Package Information 391
Glossary 413
Ordering Information 421
Application Notes And Reprints 427

As the world leader of digital signal processing components, TRW LSI Products has made a commitment to the future. In the early 1960s, TRW developed TTL and pioneered the evolution of Integrated Circuit and VLSI technologies. Today TRW LSI is conducting research to create new products and set high-performance standards in the design, development and manufacture of components. As system technologies change and grow, the group of dedicated employees at TRW LSI Products has committed the future to setting even higher standards in order to provide the customer with better, more reliable, and more useful products. TRW LSI Products currently offers a diverse line of DSP components, including: multipliers, multiplier-accumulators, A/D and D/A converters, shift registers, floating point processors, and others.

The use of innovative designs and state-of-the-art manufacturing processes has resulted in product quality that is
unsurpassed in the industry. Each device receives thorough testing, and passes stringent quality control requirements. TRW LSI's components have been proven in many applications, ranging from telecommunications and broadcasting to oil and space exploration, medical electronics and underwater surveillance.

TRW LSI Products prides itself in its responsiveness to customers' requirements and needs. As world technological advances intensify, the most modern research techniques are applied to real-life situations in order to produce devices designed to improve system reliability while reducing circuit cost, size and power requirements.

All of your specific needs can be met by our superior products. Follow us as we develop components that will require less space, less energy consumption and less design effort for your system. Follow us as we challenge the future.

TDC1001	8 -Bit, 2.5MSPS	21
TDC1002	8 -Bit, 1.0MSPS	21
TDC1007	8 -Bit, 20MSPS	31
TDC1014	6 -Bit, 25MSPS	43
TDC1019	9 -Bit, 15MSPS	53
TDC1019-1	9 -Bit, 18MSPS	53
TDC1021	4 -Bit, 25MSPS	65
TDC1025	8 -Bit, 50MSPS	75
TDC1027	7 -8it, 18MSPS	91
TOC1029	6 -Bit, 100MSPS	101
TDC1048	8 -Bit, 20MSPS	113

D/A Converters

TDC1016-8	8 -Bit, 20MSPS	129
TDC1016-9	9 -Bit, 20MSPS	129
TDC1016-10	$10-$ Bit, 20MSPS	129
TDC1018	8 -Bit, 125MSPS	141

Multipliers

MPYOOBH	8×8 Bit, 90 ns Cycle Time	159
MPYOOBH-1	8×8 Bit, 65 ns Cycle Time	159
MPYOBHU	8×8 Bit, 90 ns Cycle Time	169
MPYO8HU-1	8×8 Bit, 65 ns Cycle Time	169
MPY012H	12×12 Bit, 115ns Cycle Time	179
MPY112K	12×12 Bit, 50ns Cycle Time	193
MPY016H	16×16 Bit, 145ns Cycle Time	203
MPY016K	16×16 Bit, 45ns Cycle Time	217
MPY016K -1	16×16 Bit, 40ns Cycle Time	217

Multiplier-Accumulators

TDC1008	8×8 Bit, 100ns Cycle Time, 19-Bit Output	235
TDC1009	12×12 Bit, 135ns Cycle Time, 27-Bit Output	247
TDC1010	16×16 Bit, 165ns Cycle Time, 35-Bit Output	259
TDC1043	16×16 Bit, 100ns Cycle Time, 19-Bit Output	271
TMC2010	16×16 Bit, 160ns Cycle Time, CMOS	283

Special Functions

TDC1004	64×1 Bit, 10MHz, Digital Correlator, Analog Output	299
TDC1022	$22-$ Bit, 10MHz, Floating Point Arithmetic Unit	307
TDC1023	64×1 Bit, 15MHz, Digital Correlator, Digital Output	323
TDC1028	$4 \times 4 \times 8$ Bit, 10MHz, Digital Filter (FIRi	337

Storage Products		
TDC1005	64×2 Bit, 25MHz, Shift Register	355
TDC1006	256×1 Bit, 25MHz, Shift Register	361
TDC1030	$64 \times 9,15 \mathrm{MHz}$, First-In First-Out Memory	367

See pages 11-15 for information on our new products.

Product Index (Numerical)

MPY008H	8×8 Bit Mutiplier, 90ns Cycle Time	159
MPY008H-1	8×8 Bit Multiplier, 65ns Cycle Time	159
MPY08HU	8×8 Bit Multiplier, 90ns Cycle Time	169
MPYOBHU-1	8×8 Bit Multiplier, 65ns Cycle Time	169
MPY012H	12×12 Bit Mutiplier, 115ns Cycle Time	179
MPY016H	16×16 Bit Multiplier, 145ns Cycle Time	203
MPY016K	16×16 Bit Multiplier, 45ns Cycle Time	217
MPY016K-1	16×16 Bit Multiplier, 40ns Cycle Time	217
MPY112K	12×12 Bit Multiplier, 50ns Cycle Time	193
TDC1001	8-Bit A'D Converter, 2.5MSPS, Successive Approximation	21
TDC1002	8-Bit AID Converter, 1.0MSPS, Successive Approximation	21
TDC1004	64×1 Bit Digital Correlator, 10MHz, Analog Output	299
TDC1005	64×2 Bit Shift Register, 25MHz	355
TDC1006	256×1 Bit Shift Register, 25MHz	361
TDC1007	8 -Bit AID Converter, 20MSPS	31
TDC1008	8×8 Bit Multiplier-Accumulator, 100ns Cycie Time	235
TDC1009	12×12 Bit Multiplier-Accumulator, 135ns Cycle Time	247
TDC1010	16×16 Bit Multiplier-Accumulator, 165ns Cycle Time	259
TDC1014	6-Bit AID Converter, 25MSPS	43
TDC1016-8	8-Bit D/A Converter, 20MSPS	129
TDC1016-9	9 -Bit D/A Converter, 20MSPS	129
TDC1016-10	10-Bit DIA Converter, 20MSPS	129
TDC1018	8-Bit DIA Converter, 125MSPS	141
TDC1019	9-Bit AID Converter, 15MSPS	53
TDC1019-1	9-Bit AID Converter, 18MSPS	53
TDC1021	4-Bit, AID Converter, 25MSPS	65
TDC1022	$22-$ Bit Floating Point Arithmetic Unit, 10MHz	307
TDC1023	64×1 Bit Digital Correlator, 15MHz, Digital Output	323
TDC1025	8-Bit AID Converter, 50MSPS	75
TDC1027	7-Bit AID Converter, 18MSPS	91
TDC1028	$4 \times 4 \times 8$ Bit Digital Filter (FIRI, 10 MHz	337
TDC1029	6-Bit A/D Converter, 100MSPS	101
TDC1030	64×9 Bit First-In First-Out Memory, 15MHz	367
TDC1043	16×16 Bit Multiplier-Accumulator, 100ns Cycle Time	271
TDC1048	8-Bit AID Converter, 20MSPS, Low Power	113
TMC2010	16×16 Bit CMOS Multiplier-Accumulator, 160ns Cycle Time	283

[^0]

TDCTOT1
 Advance Information

Variable-Length Shift Register 8 -bit, 20MHz

The TRW TDC1011 is a high-speed, TTL Compatible, byte-wide shift register which can be programmed to any length between 3 and 18 stages. It operates at a 50 nanosecond cycle time $\{20 \mathrm{MHz}$ shift ratel. A special split-word mode is provided for use with the TRW TDC1028.

The TDC1011 is fully synchronous, with all operations controlled by a single master clock. Input and output registers are positive-edge-triggered D-type flip-flops. The tength control inputs are also registered.

Built with TRW's state-of-the-art, Omicron-B ${ }^{\text {tw }} 1$-wicion bipolar process, the TDC1011 provides the system designer with a unique variable-delay capability at video speeds.

Features

- 50ns Cycle Time Worst Casel
- Single +5V Power Supply
- TTL Compatible
- Selectable Length From 3 to 18 Stages
- Special 4-Bit Wide Mixed-Delay Mode
- Available in 24 Lead DIP, 28 Contact Chip Carrier or 28 Leaded Chip Carrier

Length Programming

Input Coda				D3-0	$\begin{aligned} & \text { MODE=0 } \\ & D_{7-4} \end{aligned}$	$\begin{aligned} & \text { MODE=1 } \\ & D 7-4 \end{aligned}$
L_{3}			40	Length	Length	Length
0	0	0	0	3	3	18
		0	1	4	4	18
		1	0	5	5	18
		1	1	6	6	18
	1	0	0	7	7	18
0	1	0	1	8	8	18
0	1	1	0	9	9	18
0	1	1	1	10	10	18
1	0	0	0	11	11	18
1	0	0	1	12	12	18
1	0	1	0	13	13	18
1	0	1	1	14	14	18
1	1	0	0	15	15	18
1	1	0	1	16	16	18
1	1	1	0	17	17	18
1	1	1	1	18	18	18

Monolithic Video A/D Converter

7-bit, 20MSPS

The TRW TDC1047 is a 20 MegaSample Per Second (MSPS) full-parallel flashl analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5 MHz into 7 -bit digital words. A° sample-and-hold circuit is not necessary. All digital inputs and outputs are TIL compatible.

The TDC1047 consists of 127 clocked latching camparaturs, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputa in bimary or offset two's complement coding.

The TDC1047 is pin and function compatible with TRW's TDC1027, and offers increased performance with lower power dissipation.

Features

-7-Bit Resolution

- 1/2 LSB Linearity
- Low Power Consumption, 850mW
- Sample-And-Hold Circuit Not Required
- TTL Compatible
-20MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP
- Low Cost

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

CMOS VLSI Multiplier-Accumulator

8 X 8 bit, 100ns

The TRW TMC2008 is a high-speed 8×8 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time 110 MHz multiply-accumulate rate). The multiplicand and the multiplier may be specified together as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19-bit result. The TMC2008 can also perform subtraction, in which case the outputs are always two's complement numbers, regardless of the input format.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interracicing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), an 8-bit Most Significant Product IMSPI, and an 8-bit Least Significant Product ILSPI. Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2008 is pin and function compatible with the industry standard TDC1008; it operates with the same speed, and at less than one-fifth the power dissipation at full speed.

Features

- 100 ns Multiply-Accumulate Time IWorst Case)
- Low Power CMOS Process Technology (150mW Typical)
- Single +5V Power Supply
- 8 X 8 Bit Parallel Multiplication With Accumulation To 19-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- Pin Compatible With TRW TDC1008
- All Inputs And Outputs Are Registered TL Compatible
- Iwo's Complement Or Unsigned Magnitude Operation
- Three-State TTL Compatible Output
- Available In 48 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

LSI Products Division
TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038
© CTRW Inc. 1983
40G01276 Rev. A-8/83
Printed in the U.S.A.

CMOS VLSI Multiplier-Accumulator

12×12 bit, 135ns

The TRW TMC2009 is a high-speed 12×12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time 17.4 MHz multiply-accumulate ratel. The multiplicand and the multiplier may be specified together as two's complement or unsigned magnitude, yielding a full-precision 24 -bit product. Products may be accumulated to a 27 -bit result. The TMC2009 can also perform subtraction ir which case the outputs are always two's complement numbers, regardless of the input format.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), a 12 -bit Most Significant Product (MSP), and a 12 -bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2009 is pin and function compatible with the industry standard TDC1009; it operates with the same speed, and at less than one-fifth the power dissipation at full speed.

Features

- 135ns Multiply-Accumulate Time (Worst Case)
- Low Power CMOS Process Technology (200 mW Typical)
- Single +5V Power Supply
- 12×12 Bit Parallel Multiplication With Accumulation To 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
Rel Compatible With TRW TDC1009
All hnputs And Outputs Are Registered TTL Compatible
Two's Complement Or Unsigned Magnitude Operation
- Three-State TTL Compatible Output
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

TMC2039

CMOS Video Shift Register

384 words $\times 9$ bits, 21 MHz

The TRW TMC2039 is a 384 -word by 9-bit shift register with a shift rate of 21 MHz . The device is fabricated using TRW's 2-micron CMOS technology.

Shifting of data occurs on the rising edge of a TL compatible shift command (SH). Active-low shift enable (SHEN) and output enable ($\overline{\mathrm{OE}}$) controls are provided for increased design flexibility. The shift register is fully static and outputs data with a time latency of 384 shift cycles. Devices can mereasily cascaded to lengthen the storage capacity, of operated in (5) parallel for words wider than nine bits. The data outputs theve three-state drivers for interfacing to high-speed dgotâtuisses.

Features

- High-Speed (21MHz) Data Shift Capability
- 384-Word By 9-Bit Static Register Architecture
- Low Power CMOS Technology
- Easily Cascadable
- Edge-Triggered Synchronous Operation
- Fully TL Compatible Inputs And Outputs
- Three-State Outputs

Single +5V Power Supply

- Avajlable in 24 Lead DIP

Applications

- Video Scramblers And Descramblers
- General Purpose Data Delay
- AID Converter Output Data Buffer
- Digital Video Systems

Functional Block Diagram

TRW LSI's line of monolithic highspeed analog-to-digital (A/D) converters consists primarily of devices that employ parallel "flash" architecture. The exceptions are the TDC1001 and TDC1002 successive approximation A/D converters. The entire line of A / D converters covers resolutions from four to nine bits and conversion rates from 1 to 100 MSPS . All of these devices are built with TRW's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance, size, power, and reliability.

TRW LSI Products pioneered the development of monolithic high-speed A/D converters by introducing the TDC1007 in 1977. This device is an 8-bit 20MSPS A/D converter which has become an industry standard in video, radar, and imaging applications. The development of fine lithography techniques has yielded faster, more accurate, and less expensive A/D converters. Most of TRW LSI's A/D converters are available with an evaluation board which contains all peripheral circuitry necessary for quick and convenient operation of the device.

Figure 1. Resolution vs. Conversion Rate For TRW-LSI ADD Converters.

"Flash" A/D Converters

"Flash" A/D converters have three major functional sections: the comparator array, encoding logic, and output data latches. The input voltage to the A / D is compared with $\left(2^{N}\right)-1$ separate reference voltage points which differ from adjacent points by a voltage equivalent to one Least Significant Bit (LSB). N is the number of data outputs, or the resolution of the A/D converter in bits. The comparator reference voltage points are tapped from a reference resistor chain which is driven by an external reference voltage source.

The outputs from the $\left(2^{N}\right)-1$ comparators form a code sometimes referred to as a "thermometer" code (all comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more negative then the input signal will be on). The "thermometer" code from the comparator array is then encoded into an N -bit binary word.

The conversion operation is controlled by a single CONVert (clock) signal which latches the N -bit results from the encoding logic. The output latches of the converter hold data valid while the
conversion is taking place and are updated by the CONVert signal. Some converters have additional data controls which allow data formatting of straight binary, inverse binary, two's complement, or inverse two's complement notation.

Successive Approximation A/D Converters Successive approximation A/D converters have three major functional sections: the comparator, D/A converter, and successive approximation register (SAR). The comparator compares the unknown input voltage to the output of the internal D/A. Successive approximation
is an iterative process during which the SAR stores data from the comparator and presents new data to the D/A converter. At the end of the process, the data in the SAR drives the D/A converter to a level which is within $1 / 2$ LSB of the unknown input voltage. At this time, the SAR data is the binary equivalent of the unknown input voltage.

Once the iterative process has terminated, the SAR data is latched in an output register and a "BUSY" signal will change state indicating that new output data is available.

Product	Resolution Bits	Conversion Rate ${ }^{1}$ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1001	8	2.5	0.6	J8	Successive approximation
TDC1002	8	1.0	0.6	J8	Successive approximation
TDC1007	8	20	2.6	$\begin{aligned} & \mathrm{J} 1, \mathrm{C} 1, \mathrm{~L} 1 \\ & \mathrm{E} 1, \mathrm{P} 1 \end{aligned}$	Evaluation boards
TDC1014	6	25	1.0	$\begin{aligned} & \mathrm{J} 7, \mathrm{C3}, \mathrm{B7} \\ & \mathrm{E1}, \mathrm{P1} \\ & \hline \end{aligned}$	Evaluation boards
TDC1019	9	15	3.9	$\begin{aligned} & \mathrm{J} 1, \mathrm{C} 1, \mathrm{~L} 1 \\ & \mathrm{E} 1 \end{aligned}$	ECL compatible Evaluation board
TDC1019-1	9	18	3.9	J1, C1, L1	Speed selected version
TDC1021	4	25	0.3	J9	
TDC1025	8	50	4.5	$\begin{aligned} & \text { C1, L1 } \\ & E 1 \end{aligned}$	ECL compatible Evaluation board
TDC1027	7	18	1.8	$\begin{aligned} & \mathrm{J7}, \mathrm{~B} 7 \\ & \mathrm{E} 1 \end{aligned}$	Evaluation board
TDC1029	6	100	1.6	$\begin{aligned} & \mathrm{J7} \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	ECL compatible Evaluation board
TDC1048	8	20	14	$\begin{aligned} & \mathrm{J} 6, \mathrm{C}, \mathrm{B6} \\ & \mathrm{E} 1 \\ & \hline \end{aligned}$	Evaluation board

Note: 1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

TDC1001 (400ns) TDC1002 $11 \mu \mathrm{sec})$

Successive Approximation

A/D Converters

8-bit, 2.5MSPS, 1MSPS

The TRW TDC1001 and TDC1002 analog-to-digital converters are high-speed, 8 -bit successive approximation devices. These bipolar, monolithic converters offer significant advantages in size, cost, and performance, as well as high reliability and low-power consumption.

All digital interfaces are TL compatible. A single +5 VDC supply is required by the digital circuitry while $-5 V D C$ is required by the analog portion of the device. The analog and digital ground planes are internally isolated.

The TDC1001 and TDC1002 consist of a comparator, reference buffer, 8-bit D/A converter, successive approximation register, output register, and control circuitry.

Features

- 8-Bit Resolution
- Binary Output Coding
- TTL Compatible
- $\pm 1 / 2$ LSB Linearity
- Parallel Output Register
- 600mW Power Dissipation
- Available In 18 Lead DIP

Applications

- Microprocessor Systems
- Numerical Control Interface
- Data Acquisition Systems

Functional Block Diagram

Functional Block Diagram

Pin Assignments

18 Lead DIP－J8 Package

Functional Description

General Information

The TDC1001 and TDC1002 consist of six functional sections： comparator for the analog input，reference buffer， 8 －bit D／A converter（DAC），successive approximation register（SAR），output
register，and control circuitry．The SAR and comparator will sequentially compare the analog input to the DAC output．The conversion process requires nine clock cycles．

Power

The TDC1001 and TDC1002 operate from separate analog and digital power supplies．Analog power（ $V_{E E}$ ）is -5.0 ODCC and digital power $N_{C C}$ is $+5.0 V D C$ ．All power and ground pins must be connected．

Separate decoupling for each supply is recommended．The return for IEE，the current drawn from the V_{EE} supply，is $A_{G N D}$ ．The return for ICC，the current drawn from the $V_{C C}$ supply，is $D_{G N D}$ ．

Name	Function	Value	J8 Package
$V_{E E}$	Analog Supply Voltage	$-5.0 V D C$	Pin 17
$V_{\text {CC }}$	Digital Supply Votage	$+5.0 V D C$	Pin 1
$A_{\text {GND }}$	Analog Ground	$0.0 V \mathrm{VCC}$	Pin 15
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 VDC	Pin 10

Reference

The TDC1001 and 1002 accept a nominal input reference voltage of -0.5 VDDC ．The voltage should be supplied by a precision voltage reference，as the accuracy of this voltage will
have a significant effect on the overall accuracy of the system． The reference voltage input pin should be bypassed to AGND as close as possible to the device terminal．

Name	Function	Value	J8 Package
VREF	Reference Voltage Input	$-0.5 V D C$	Pin 13

Analog Input

The analog input range of the device is set by the reference voltage．This is nominally -0.5 VDC with an absolute tolerance of $\pm 0.1 V D C$ ．Since the device is a successive approximation
type A / D converter，a sample－and－hold circuit may be required in some applications．

Name	Function	Value	J8 Package
$V_{I N}$	Analog $\ln p u t$	0 to -0.5 V	Pin 16

Conversion Timing Description

The timing sequence of the TDC1001 and 1002 is typical of successive approximation converters．Nine clock cycles are required for each conversion．Start Convert must transition from LOW to HIGH a minimum of ts prior to the leading edge of the first convert pulse，and must remain HIGH a minimum of $t H$ after the edge．

This first cycle clears the BUSY flag and prepares the device for a new conversion．The following 8 clock cycles convert each data bit（MSB first，LSB last）．During these 8 clock cycles，the analog input must be held stable lo within $1 / 2$ LSBI．At to nanoseconds after the rising edge of the eighth clock pulse，the seven most significant bits are valid land the BUSY signal goes LOWI．At to nanoseconds after the ninth clock pulse the LSB is valid，and the conversion is completed．

Name	Function	Value	J8 Package
SC	Start Convert Input	TTL	Pin 2
BUSY	Busy Flag Output	TTL	Pin 12
CLOCK	Convert Clock Input	TTL	Pin 18

LSI Products Division
TRW Electronic Components Group

Data Outputs

The outputs of the TDC1001 and 1002 are TTL compatible and capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. The outputs hold the previous

Name	Function	Value	J8 Package
D_{7}	MSB Output	ΠL	Pin 3
D_{6}		ΠL	Pin 4
D_{5}		ΠL	Pin 5
D_{4}		ΠL	Pin 6
D_{3}		$T L$	Pin 7
D_{2}		ΠL	Pin 8
D_{1}		$T L L$	Pin 9
D_{0}		ΠL	Pin 11

Compensation Pin

The COMPensation pin (COMP), is provided for external compensation of the internal reference amplifier.
data a minimum time (tol) after the rising edge of Start Convert (SC).

The compensation capacitor must be connected between this pin and $V_{\text {EE }}$. tantalum capacitor greater than $10 \mu \mathrm{~F}$ is recommended for proper operation.

Name	Description	Value	J8 Package
COMP	Compensation Pin	$>10 \mu \mathrm{~F}$	Pin 14

Output Coding

An analog input voltage of 0.0 V will produce a digital output code of all zeros; an analog input voltage of -0.50 V will produce a digital output code of all ones.

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

TEST LOAD FOR DELAY MEASUREMENTS

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Vohage

$V_{C C}$ (measured to $\mathrm{D}_{\mathrm{GND}}$) 0 to +6.0 V
$V_{E E}$ (measured to $\mathrm{A}_{\mathrm{GND}}$). 0 to -6.0V
$\mathrm{A}_{\mathrm{GND}}$ (measured to $\mathrm{O}_{\mathrm{GND}}$). -0.5 to +0.5 V
Input Voltages
CLK, SC (measured to $\mathrm{D}_{\mathrm{GND}}$) -0.5 to +5.5 V
$V_{I N}, V_{\text {REF }}$ (measured to $A_{G N D}$) +0.5 V to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
Output
Applied voltage (measured to $\mathrm{D}_{\mathrm{GND}}$) -0.5 to $+5.5 \mathrm{v}^{2}$
Applied current, externally forced. -1.0 to +6.0 ma a ${ }^{3,4}$
Short circuit duration (single output in high state to $\mathrm{D}_{\mathrm{GND}}$) 1 sec
Temperature
Operating, case.

\qquad
-60 to $+140^{\circ} \mathrm{C}$
junction. $+175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $+300^{\circ} \mathrm{C}$
Storage. -65 to $+150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter	Temperature Range						Units
	Standard			Extended			
	Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$ Positive Supply Voltage	4.5	5.0	5.5	4.5	5.0	5.5	V
$\mathrm{V}_{\text {EE }}$ Negative Supply Voltage	-4.75	-5.0	-5.25	-4.75	-5.0	-5.25	V
$\mathrm{A}_{\mathrm{GND}}$ Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
${ }^{\text {tPWL }}$ Clock Pulse Widht, Low	20			20			ns
tpwh Clock Pulse Width, High	20			20			ns
${ }^{\text {t }}$ S Start Convert, Set-Up Time	7			7			ns
${ }^{\text {t }} \mathrm{H}$ S Start Convert, Hold Time	16			16			ns
$\mathrm{V}_{\text {IL }}$ Input Voltage, Logic Low			0.8			0.8	v
$\mathrm{V}_{\text {IH }} \quad$ Input Voltage, Logic High	2.0			2.0			V
IOL Output Current, Logic Low			4.0			4.0	mA
$\mathrm{l}_{\text {OH }}$ Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$ Reference Voltage	-0.4	-0.5	-0.6	-0.4	-0.5	-0.6	V
$\mathrm{V}_{\mathbb{I}}$ Analog Input Voltage	0.0		-0.6	0.0		-0.6	V
$\mathrm{T}_{\text {A }} \quad$ Ambient Temperature, Still Air	0		+70				${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}} \quad$ Case Temperature				-20		+85	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{S}	Maximum Clock Rate		$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}-\mathrm{MIN}$ TDC1001	22.5		22.5		MHz
			TDC1002	9.0		9.0		MHz
${ }^{t} \mathrm{C}$	Conversion Time	$\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {EE }}=$ MIN TDC1001		400		400	ns	
		TDC1002		1000		1000	ns	
${ }^{t}$	Digital Output Delay	$V_{C C}, V_{E E}=M 1 N$		50		50	ns	

System performance characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ElI Linearity Error Integral, Independent	$V_{C C}, V_{E E}-N O M$		± 0.2		± 0.2	\%
$\mathrm{E}_{\text {LD }}$ Linearity Error Differential			0.2		0.2	\%
${ }^{\text {T CG }}$ Gain Temperature Coefficient	$V_{C C}, V_{E E}=N O M$		+10		+10	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{0} \quad$ Offset Voltage			± 7		± 7	mV
${ }^{\text {T }}$ O 0 Offset Temperature Coefficient	$V_{C C}, V_{E E}=N O M$		-10		-10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\mathrm{G}} \quad$ Gain Error			1.5		2.0	\%
${ }^{\text {T CIB }}$ IBIAS Temperature Coefficient	$V_{C C}, V_{E E}=N O M$		-1.0		-1.0	$\% /{ }^{\circ} \mathrm{C}$

TDC1001／1002

Application

The TDC1001 and TDC1002 are high－speed，TTL compatible， SAR type AID converters．The combination of very small analog signals and high－speed digital circuitry requires careful design of supporting analogldigital circuitry．Proper physical component layout，trace routing，and provision for sizeable analog and digital grounds are as important as the electrical design．

Two key design areas for fast，accurate A / D conversion are timing and grounding．The timing requirements for this device are detailed in Figure 1．Proper grounding is highly dependent on the board＇s mechanical layout and design constraints．In general，the noise associated with improper digital and analog ground isolation is synchronous with the clock and appears on the analog input．

Proper Design Practices Include：

－Sensitive signals such as clock，start convert，analog input， and reference should be properly routed and terminated to minimize ground noise pick－up and crosstalk．Wirewrap is not recommended for these signals）．
－Analog and digital ground planes should be substantial and common at one point only．Analog and digital power supplies should be referenced to their respective ground planes．
－Reference voltage should be stable and free of noise． Accuracy of the conversion is highly dependent on the integrity of this signal．
－The analog input should be driven from a low－impedance source K 250 hmsl ．This will minimize the possibility of picking up extraneous noise．
－Ceramic high frequency bypass capacitors（ 0.001 to $0.01 \mu \mathrm{~F}$ ） should be used at the input pins of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ ，and REF．All pins should be bypassed to $A_{G N D}$ except $V_{C C}$ ．
－A tantalum capacitor of greater than $10 \mu \mathrm{~F}$ should be connected from COMP（pin 14）to V_{EE} ．

Figure 5. Typical Interface Circuit

Parts List

Resistors

R1	909 Ohms	1\%	118W
R2	100 Ohms		Multi-Turn Cermet Pot
R3	1.33 kOhms	1\%	1/8W
R4	2.49 kOhms	1\%	1/8W

Capacitors

$\mathrm{C1}, \mathrm{C3}, \mathrm{C} 5$	$10.0 \mu \mathrm{~F}$	25 V
$\mathrm{C2}, \mathrm{C4}$	$0.001 \mu \mathrm{~F}$	50 V
$\mathrm{C6}$	$0.005 \mu \mathrm{~F}$	50 V

Integrated Circuits

U1	TDC1001J8	TRW 8-bit A/D Converter
U2	74LS161	TTL 4-bit Counter
U3	74LSO4	TL Hex Inverter
D1	LM113-1.22	1.22V Bandgap Voltage Reference

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1001/JS	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1001J8C
TCC1001.18G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1001J8G
toctooiser	EXT-T $\mathrm{C}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1001J88
TDC100198T	EXT-T $\mathrm{C}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MIL-STD-883	18 Lead DIP	100148T
T0C100138H	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1001) JBH
TDC1002 8 C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1002J8C
TCC1002.8G	STD $-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	1002JEG
TDC1002.88	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Commercial	18 Lead DIP	1002J8R
TDC1002-8i	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MIL-STD-883	18 Lead DIP	1002389
TDC1002.J8H	EXT- $\mathrm{T}_{\mathrm{C}}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Commercial With Burn-In	18 Lead DIP	100238H

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Monolithic Video A/D Converter 8-bit, 20MSPS

The TDC1007 is an 8-bit fully parallel (flashl analog-to-digital converter, capable of digitizing an input signal at rates up to 20MSPS (megasamples per second). It will operate accurately without the use of an external sample-and-hold amplifier, with analog input signals having frequency components up to 7 MHz .

A single CONVert ICONV) signal controls the conversion operation of the device which consists of 255 sampling comparators, encoding logic, and a latched output buffer register. The device will recover from a full-scale input step in 2Ons. Control inputs are provided to format the output in binary, two's complement, or inverse data coding formats.

The TDC1007 is patented under U.S. Patent No. 3283170 with other patents pending.

Features

-8-Bit Resolution

- Conversion Rates Up to 20MSPS
- Sample-And-Hold Amplifier Not Required
- Bipolar Monolithic Construction
- TTL Compatible Inputs and Outputs
- Binary or Two's Complement Mode
- Differential Phase $=1.0$ Degrees
- Differential Gain = 1.7\%
- Evaluation Boards Available: TDC1007E1C or TDC1007PIC

Applications

- Video Systems 3x or 4x Subcarrier, NTSC or PAL
- Radar Systems
- High-Speed Multiplexed Data Acquisition
- Digital Signal Processing

Functional Block Diagram

Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

LSI Products Division
TRW Electronic Components Group

Pin Assignments

Functional Description

General Information

The TDC1007 has three major functional sections: a comparator array, encoding logic, and output data latches. The input voltage is compared with 255 separate reference voltage points tapped from the reference resistor chain. The 255 comparator outputs form a code isometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and
those referred to voltages more negative than the input signal will be onl. The "thermometer" code from the comparator array is encoded into an eight-bit binary word by the encoding logic section. Each of these eight results is sent through an exclusive-OR gate where they are inverted by use of the NMINV or NLINV inputs. This allows operation in binary, two's complement, or inverted data formats.

Power

The TDC1007 operates from two supply voltages, +5.0 V and -6.0 V . The return for I_{C}, the current drawn from the +5.0 V supply, is $D_{G N D}$. The return path for ${ }^{{ }_{E E E}}$, the current drawn

Name	Function	Value	C1, 11 Package	J1 Package	J0 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0V	Pins 23, 41	Pins 28, 43	Pins 22, 37
$V_{\text {EE }}$	Negative Supply Voltage	-6.0V	Pins 14, 18, 19, 21	Pins 47, 48, 49, 50	Pins 15, 16, 17, 18
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 25,40	Pins 29, 42	Pins 23, 36
$A_{\text {GND }}$	Analog Ground	0.0 V	Pins 48, 55	Pins 14, 19	Pins 46, 51

Reference

The TDC1007 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form．$V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain），and V_{RB} the voltage applied to the pin at the bottom of the reference resistor chain／should be between +0.1 V and -2.1 V ，with the difference between them less than 2．1V．V $V_{R T}$ should be more positive than V_{RB} within that range．In order to insure optimum operation of the TDC1007，these points should be driven by low－impedance sources capable of providing the
necessary reference resistor chain current．The voltages on RT_{T} and R_{B} may be varied dynamically up to 7 MHz ．Due to variations in reference current with clock and input signals， R_{T} and R_{B} should be low－impedance－to－ground points．For circuits in which the reference is not varied，a bypass capacitor to ground is recommended．If the reference inputs are varied dynamically（as in an AGC application）a low－impedance reference source is required．

Name	Function	Value	C1，L1 Package	J1 Package	J0 Package
$\mathrm{R}_{\boldsymbol{T}}$	Reference Resistor（Top）	0.0 V	Pin 60	Pin 11	Pin 54
R_{M}	Reference Resistor（Middle）	-1.0 V	Pin 51	Pin 17	Pin 48
R_{B}	Reference Resistor（Bottom）	-2.0 V	Pin 44	Pin 22	Pin 43

Control

Two control inputs are provided on the TDC1007 for changing the format of the output data．When NMINV is tied to a logic ＂ 0 ＂，the most significant bit of the output data is inverted； when NLINV is tied to a logic＂ 0 ＂，the seven least significant bits of the output are inverted．By using these controls，the

Name	Function	Value	C1，L1 Package	J1 Package	J0 Package
NMINV	Not Most Significant Bit INVert	TL	Pin 29	Pin 41	Pin 24
NLINV	Not Least Significant Bit $\mathbb{N V V e r t}$	TIL	Pin 34	Pin 36	Pin 29

Convert

The analog input to the TDC1007 is sampled（comparators are latched）approximately $10 n \mathrm{~s}$ after the rising edge of the CONV Signal．This time delay is the sampling timé offset Itstol and varies only by a few nanoseconds from device to device and as a funcion of temperature．The short－term uncertainty （jitter）in sampling time offset is approximately 30 picoseconds．
output data format can be binary，inverted binary，two＇s complement，or inverted two＇s complement．Output data versus input voltage and control input state is illustrated in the Output Coding table on page 40.

Name	Function	Value	C1，L1 Package	J1 Package	J0 Package
CONV	Convert	TL	Pin 39	Pin 30	Pin 35

Analog Input

The input impedance of the TDC1007 varies with input signal level. As the signal varies, the comparator input transistors change from active to cut-off, causing the net input resistance and capacitance to change. To prevent this action from degrading the integrity or accuracy of the output data, it is desirable to drive the TDC1007 inputs from a low-impedance source lless than 25 Ohmsl. The input signal level should remain within the range of V_{EE} to +0.5 V in order to prevent damage to the device. When the input is at a level between V_{RT} and V_{RB} reference voltages, the output data value will be directly proportional to the amplitude of the analog input

Name	Function	Value	C1, L1 Package	J1 Package	J0 Package
$V_{\text {IN }}$	Analog Input Signal	OV to -2 V	Pins 46, $50,52,54,58$	Pins $13,15,16,18,20$	Pins 45, 47, 49, 50, 52

Outputs

The outputs of the TDC1007 are TTL compatible and capable of driving four low-power Schottky unit loads $154 / 74$ LS). The outputs hold the previous data a minimum time a t HO a atter the
signal. When the analog input is beyond the range of the reference voltage, the output data will be the appropriate full-scale value. Note that there are two components to the input bias current flowing into the $V_{I N}$ pins. One component is constant for constant input voltage and is the sum of the bias currents of the subset of comparators that are active (ICBI. The other component is related to the action of the CONV signal on the comparator chain $\mathrm{ISB}_{\mathrm{SB}}$. All analog input pins of the TDC1007 must be used in order to insure operation over the full input range.

Name	Function	Value	C1, L1 Package	J1 Package	J0 Package
O_{1}	MSB Output	TL	Pin 30	Pin 40	Pin 25
D_{2}		TIL	Pin 31	Pin 39	Pin 26
D_{3}		TTL	Pin 32	Pin 38	Pin 27
D_{4}		TIL	Pin 33	Pin 37	Pin 28
D_{5}		TIL	Pin 35	Pin 35	Pin 30
D_{6}		TL	Pin 36	Pin 34	Pin 31
D_{7}		TL	Pin 37	Pin 33	Pin 32
D_{8}	LSB Output	$\pi \mathrm{L}$	Pin 38	Pin 32	Pin 33

No Connects

There are several pins labeled No Connect INC, which have no connections to the chip. These pins may be left open.

Name	Function	Value	C1, L1 Package	J1 Package	JO Package
NC	No Connect	Open	Pins 1-13, 15-17, 20, 22, 24,	Pins 1-10, 12, 24-27,	Pins 1-14, 19-21, 34,
			$26-28,42,43,45,47,49,53$, $56,57,59,61,62-68$	$31,44-46,51-64$	$38-41,53,55-64$

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{C}_{\text {IN }}$ IS A nonlinear Junction capacitance
$\boldsymbol{V}_{\text {RB }}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings（beyond which the device will be damaged）${ }^{1}$

Supply Voltages

$V_{C C}$（measured to $D_{G N D}$ ）
-0.5 to +7.0 V
$V_{E E}$（measured to $A_{G N D}$ ） +0.5 to -7.0 V
$A_{G N D}$（measured to $D_{G N D}$ ） -1.0 to +1.0 V

Input Voltages
\qquad
$V_{I N}, V_{R T}, V_{R B}$（measured to $A_{G N D}$ ）．．to $V_{E E} V$
$V_{R T}$（measured to $V_{R B}$ ）
+2.2 to -2.2 V
Output
Applied voltage（measured to $\mathrm{D}_{\mathrm{GNO}}$ ）
-0.5 to $+5.5 \mathrm{~V}^{2}$
Applied current，externally forced
-1.0 to $+6.0 \mathrm{~mA}^{3,4}$
Short circuit duration（single output in high state to ground） \qquad 1 sec

Temperature

> Operating, ambient
> -60 to $+140^{\circ} \mathrm{C}$
> junction $+175^{\circ} \mathrm{C}$

Lead，soldering（10 seconds） $+300^{\circ} \mathrm{C}$
Storage
-65 to $+150^{\circ} \mathrm{C}$
Notes：
1．Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions．
Functional operation under any of these conditions is NOT implied．
2．Applied voltage must be current limited to specified range．
3．Forcing voltage must be limited to specified range．
4．Current is specified as positive when flowing into the device．

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage（Measured to $\mathrm{D}_{\mathrm{GND}}$ ）	4.75	5.0	5.25	4.5	5.0	5.5	V
$\mathrm{V}_{\text {EE }}$	Negative Supply Voltage（Measured to $\mathrm{A}_{\mathrm{GND}}$ ）	－5．75	－6．0	－6．25	－5．75	－6．0	－6．25	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage（Measured to $\mathrm{D}_{\mathrm{GND}}$ ）	－0．1	0.0	0.1	－0．1	0.0	0.1	V
tpWL	CONV Pulse Width，Low	25			25			ns
tPWH	CONV Pulse Width，High	15			15			ns
$V_{\text {IL }}$	Input Voltage，Logic Low			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage，Logic High	2.0			2.0			V
10	Output Current，Logic Low			4.0			4.0	mA
${ }^{\text {OH }}$	Output Current，Logic High			－400			－400	$\mu \mathrm{A}$
$\mathrm{V}_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	－1．1	0.0	0.1	－1．1	0.0	0.1	V
V_{RB}	Most Negative Reference Input ${ }^{1}$	－0．9	－2．0	－2．1	－0．9	－2．0	－2．1	V
$\overline{V_{R T}-V_{R B}}$	Voltage Reference Differential	1.0	2.0	2.2	1.0	2.0	2.2	V
$\mathrm{V}_{\text {IN }}$	Input Voltage	$V_{\text {RT }}$		V_{RB}	$V_{\text {RT }}$		$V_{\text {RB }}$	V
T_{A}	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature				－55		125	${ }^{\circ} \mathrm{C}$
Note：								

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CC}$	Positive Supply Current		$V_{\text {CC }}=$ MAX, Static ${ }^{1}$		30		35	mA
${ }_{\text {EE }}$	Negative Supply Current		$\mathrm{V}_{\text {EE }}-\mathrm{MAX}$, Static ${ }^{1}$					
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-400			mA	
		$T_{A}=70^{\circ} \mathrm{C}$		-350			mA	
		$\mathrm{T}^{\mathrm{C}-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}}$				-470	mA	
		$\mathrm{T}_{\mathrm{C}}-125^{\circ} \mathrm{C}$				-320	mA	
IREF	Reference Current	$V_{\text {RT }}, V_{\text {RB }}=N O M$		35		40	mA	
$\mathrm{R}_{\text {REF }}$	Total Reference Resistance		57		50		Ohms	
RIN	Input Equivalent Resistance	$V_{R T}, V_{\text {RB }}=N O M, V_{\mathbb{N}}-V_{\text {RB }}$	5		5		kOhms	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			250		250	pF	
${ }^{\text {I }}$ CB	Input Constant Bias Current	$V_{E E}=$ MAX		400		500	$\mu \mathrm{A}$	
${ }_{\text {SB }}$	Input Clock Synchronous Bias			200		200	$\mu \mathrm{A}$	
IL	Input Current, Logic Low	$V_{C C}-$ MAXX $V_{1}-0.5 \mathrm{~V}$		-2.0		-2.0	mA	
IIH	Input Current, Logic High	$V_{\text {CC }}-$ MAX, $V_{1}=2.4 \mathrm{~V}$		75		75	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
$\mathrm{V}_{0 \mathrm{LL}}$	Output Voltage, Logic Low	$V_{C C}=M I N, I_{O L}-M A X$		0.5		0.5	V	
V_{OH}	Output Voltage, Logic High		2.4		2.4		V	
Ios	Short Circuit Output Current	$V_{C C}=$ MAX, Output High, one pin to ground, one second duration.		-25		-25	mA	
c_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note:	1. Worst case, all digital inputs an	uts LOW.						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Maximum Conversion Rate		$V_{C C}-M I N, V_{E E}=M I N$	20		20		MSPS
${ }_{\text {t }}$ STO	Sampling Time Offset		$V_{C C}=$ MIN, $V_{E E}-\mathrm{MIN}$	0	10	0	10	ns
${ }_{\text {t }}$	Output Delay Time	$\mathrm{V}_{\text {CC }}=$ MIN, $\mathrm{V}_{\text {EE }}=$ MIN, Load 1	15	40	15	45	ns	
${ }^{\text {tho }}$	Output Hold Time	$V_{C C}=$ MAX, $\mathrm{V}_{\mathrm{EE}}=$ MAX, Load 1	10		10		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integra，Independent		$V_{R T}, V_{\text {RB }}=N O M$		± 0.3		± 0.3	\％
$E_{\text {LD }}$	Linearity Error Differential		$V_{\text {RT }}, V_{\text {RBB }}$		0.3		0.3	\％
0	Code Size	$V_{R T}, V_{\text {RB }}=$ NOM	15	185	15	185	\％Nominal	
$\mathrm{E}_{0 \mathrm{~T}}$	Offset Error Top	$V_{1 N}-V_{R T}$		35		45	mV	
$\mathrm{E}_{0 B}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		－22		－24	mV	
${ }^{\text {T }} \mathrm{CO}$	Offset Error Temperature Coefficient			± 50		± 50	$\mu V{ }^{\prime} \mathrm{C}$	
BW	Bandwidth，Full Power Input		7		5		MH2	
	Transient Response，full Scale			20		20	ns	
SNR	Signal－to－Noise Ratio	10MHz Bandwidth 20MSPS Conversion Rate						
	Peak Signal／RMS Noise	1.248 MHz lnput	53		52		dB	
		2．438MHz Input	50		49		dB	
	$\overline{\text { RMS SignaliRMS Noise }}$	1.248 MHz Input	44		43		dB	
		2．438MHz Input	41		40		dB	
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwith 4 Sigma Loading 1．248MHz Slot 20MSPS Conversion Rate	36.5		36.5		dB	
	Aperture Error			60		60	ps	
DP	Differential Phase	NTSC © 4x Color Subcarrier		1.0		1.0	Degree	
DG	Differential Gain	NTSC＠4x Color Subcarrier		1.7		1.7	\％	

Output Coding (lnput range from 0.000 to -2.000 V)

Input Voltage (-7.84 mVIStep)	Binary		Offset Two's Complement	
	True	Inverted	True	Inverted
	NMINV - 1	0	0	1
	NLINV - 1	0	1	0
0.000	00000000	11111111	10000000	01111111
-	-	-	-	-
\bullet	\bullet	-	-	-
-0.0078	00000001	11111110	10000001	01111110
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-0.9960	01111111	10000000	11111111	00000000
-1.0039	10000000	01111111	00000000	11111111
-	-	-	-	\bullet
-	-	-	-	-
-		-	-	-
-	-	-	-	-
-1.9921	11111110	00000001	01111110	10000001
-		-	-	-
-	-	-	-	-
-2.000	11111111	00000000	01111111	10000000

Calibration

To calibrate the TDC1007, the top of the reference resistor chain, AT_{T}, is connected to analog ground. The reference voltage is then set up by adjusting the bottom of the resistor chain to -2.0 V . When this technique is used, offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the AID. These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block Diagram. The offset voltage error is the result of the resistor chain current flowing through the parasitic resistance. These errors can be compensated for by applying an equal offset to the analog input signal or by adjusting the voltages on R_{T} and R_{B}.

The effect of the offset error at the bottom of the resistor chain manifests itself in the form of a slight gain error which can be compensated for by varying the voltage applied to RB. This voltage will necessarily be more negative than the desired reference level of -2.0 V . The actual operating range of the A/D converter will be:

$$
\left.\mathbb{N}_{\text {AGND }}-\left\|_{\text {REF }} \times R 1\right\| \text { to } V_{\text {RB }}+\| \|_{\text {REF }} \times R 2\right) .
$$

However, if both ends of the resistor chain are driven by transistor-buffered operational amplifiers, the voltages on R_{T} and R_{B} could then be adjusted to remove the effect of the parasitic resistances and therefore eliminate the need to apply a compensating offset voltage to the analog input signal. Here the operating range of the A / D will be:

$$
\text { (V} V_{\text {RT }}-\| \text { REF } \times R 1 \| \text { to } V_{\text {RB }}+\| \text { REF } \times R 2 \| .
$$

Since both $V_{R T}$ and $V_{\text {RB }}$ are adjustable, the offset voltage error effect can be cancelled and the ADD operated with gain and offset errors removed.

The TDC1007 provides access to the mid-point of the reference resistor chain, R_{M}. This point can be sensed by external circuitry for temperature compensation or gain tracking functions in the system. It can also be driven in the manner shown in Figure 6 for fine linearity correction.

Typical Application

Figure 5 shows a typical interface circuit for a TDC1007, an input buffer amplifier, and the reference voltage source. The reference voltage is supplied by an inverting amplifier that has been buffered with a PNP transistor. The transistor sinks the current flowing through the reference resistor chain and keeps the driving impedance at the bottom end of the resistor chain low. The gain of the overall circuit is adjusted by varying the input voltage to the operational amplifier.

The input amplifier is a bipolar wideband operational amplifier followed by an NPN transistor buffer. The transistor drives the input capacitance of the AID converter and keeps the overall circuit frequency stable. The offset error is compensated by varying the current into the summing junction of the op-amp. Note that all five $\mathrm{V}_{\text {IN }}$ points are connected together and the buffer amplifier feedback loop is closed at that point. The buffer amplifier has a gain of two, raising the $1 \mathrm{~V} p-\mathrm{p}$ video input signal to $2 \mathrm{~V} p-\mathrm{p}$ at the input to the A / D converter. The A/D converter operates with a 2 V full-scale.

Figure 5. Typical Interface Circuit

Figure 6. Method For Driving Mid-Point Of Resistor Chain

Parts List

Resistors			
R1	\dagger	114W	
R2	\dagger	1/4W	
R3	1 K	1/4W	5\%
R4	4.3K	1/4W	5\%
R5	10	1/4W	5\%
R6	56	112 W	5\%
R7	240	2W	5\%
R日	6.8	$1 / 2 \mathrm{~W}$	5\%
R9	2K	112 W	5\%
R10	*	1/4W	5\%
R11	2K	1/4W	10-turn
R12	2K	1/4W	10-turn
R13	1.3 K	1/4W	5\%
R14	2.2 K	114 W	5\%
R15	680	$1 / 4 \mathrm{~W}$	5\%

Capacitors			Integrated Circuits	
C1	0.1	50 V	U1	TDC1007J1
C2	*	50 V	U2	Plessey SL541C
C3	0.1	50 V	U3	$\mu \mathrm{A} 41$
C4	0.1	50 V	U4	MC14030
C5	0.1	50 V		
C6	1.0	15 V	Diodes	
C7	0.1	50 V		
C8	0.1	50 V		
C9	0.1	50 V	CR1	1 N 4001
ClO	0.1	50 V		
			Transistors	
			01	2N5836
			02	2N2907

\dagger Indicates input terminatorldivider

- Indicates amplifier compensation

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1007C1F TDC1007C1A TDC1007CIN	$\begin{aligned} & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT-T } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial With Burn-In	68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier	1007C1F 1007C1A 1007C1N
TDC1007JIC TDC1007JIG TDC1007JIF TDC1007JIA TDC1007JIN	$\begin{aligned} & \text { STD-T } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD-T } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT-T } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{Co} 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-in Commercial MILL-STD-883 Commercial With Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	1007JIC 1007JIG 1007JIF 1007JIA 1007JIN
TDC1007JOC TDC1007.JG TDC1007JJF TDC1007.JOA TDC1007JON	$\begin{aligned} & \text { STD-T } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD-T } \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT-T } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT-T } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	1007.J0C 1007J0G 1007.JOF 1007.JOA 1007JON
TDC1007L1F TDC1007L1A TOC1007LIN	$\begin{aligned} & \text { EXT }-T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT-T } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial With Burn-In	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	1007L1F 1007L1A 1007LIN

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Monolithic Video A/D Converter

6-Bit, 25MSPS

The TRW TDC1014 is a 25 MegaSample Per Second IMSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12 MHz into 6 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TIL compatibie.

The TDC1014 consists of 63 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 6-Bit Resolution
- $1 / 4$ LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP, 24 Lead CERDIP And 28 Contact Chip Carrier

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1014 has three functional sections：a comparator array， encoding logic，and output latches．The comparator array compares the input signal with 63 reference voltages to produce an N －of－63 code Isometimes referred to as a ＂thermometer＂code，as all the comparators below the signal will be on，and all those above the signal will be offl．The
encoding logic converts the N －of－63 code into binary or offset two＇s complement coding，and can invert either output code．This coding function is controlled by DC signals on pins NMINV and NLINV．The output latch holds the output constant between updates．

Power

The TDC1014 operates from two supply voltages，+5.0 V and -6.0 V ．The return for $\mathrm{I}_{\mathrm{C}} \mathrm{C}$ ，the current drawn from the +5.0 V supply，is $\mathrm{D}_{\mathrm{GND}}$ ．The return for I_{EE} ，the current drawn from
the－6．0V supply，is $A_{G N D}$ ．All power and ground pins must be connected．

Name	Function	Value	J7，B7 Package	C3 Package
V_{CC}	Positive Supply Voltage	+5.0 V	Pin 7	Pin 12
V_{EE}	Negative Supply Voltage	-6.0 V	Pins 1,6	Pins 3，9
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pin 8	Pin 11
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 18,20	Pins 22，24

Reference

The TDC1014 converts analog signals in the range $V_{R B} \leqslant V_{\mathbb{N}} \leqslant V_{R T}$ into digital form．$V_{\text {RB }}$ the voltage applied to the pin at the bottom of the reference resistor chainl and $V_{\text {RT }}$ the voltage applied to the pin at the top of the reference resistor chain）should be between +0.1 V and -2.1 V ．V_{RT} should be more positive than V_{RB} within that range．The voltage applied across the reference resistor chain V_{RT}－ V_{RB} ）must be between 0.8 V and 1.2 V ．The current in the reference resistor chain can be supplied directly by a 741
type operational amplifier．The nominal voltages are， $\mathrm{V}_{\mathrm{RT}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-1.0 \mathrm{~V}$ ．These voltages may be varied dynamically up to 12 MHz ．Due to variation in the reference currents with clock and input signals，R_{T} and R_{B} should be low－impedance－to－ground points．For circuits in which the reference is not varied，a bypass capacitor to ground is recommended．If the reference inputs are exercised dynamically las in an AGC circuit），a bypass capacitor is inappropriate and a low－impedance reference source is required．

Name	Function	Value	J7，B7 Package	C3 Package
$R_{\boldsymbol{T}}$	Reference Resistor（Top）	0.0 V	Pin 22	Pin 26
R_{B}	Reference Resistor（Bottom）	-1.0 V	Pin 16	Pin 20

Control

Two function control pins，NMINV and NLINV，are provided． These controls are for DC（i．e．steady state）use．They permit the output coding to be either straight binary or offset two＇s complement，in either true or inverted sense，according to the

Output Coding table given on page 50．These pins are active LOW，as signified by the prefix＂ N ＂in the signal name．They may be tied to $V_{C C}$ for a logic＂ 1 ，＂and $D_{G N D}$ for a logic＂ 0 ．＂

Name	Function	Value	J7，B7 Package	C3 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 4	Pin 5
NLINV	Not Least Significant Bit INVert	TTL	Pin 5	Pin 6

Convert

The TDC1014 requires a convert（CONV）signal．A sample is taken the comparators are latched）approximately 10 ns after a rising edge on the CONV pin．This time is t STO，Sampling Time Offset．This delay varies by a few nanoseconds from part to part and as a function of temperature．The 63 to 6 encoding is performed on the falling edge of the CONV signal． The coded result is transferred to the output latches on the
next rising edge．The outputs require a minimum value of to loutput delayl after a rising edge of the CONV signal．This permits the previous conversion result to be acquired by external circuitry at that rising edge，i．e．data for sample N is acquired by the external circuitry while the TDC1014 is taking input sample $N+2$ ．

Name	Function	Value	J7，B7 Package	C3 Package
CONV	Convert	TTL	Pin 15	Pin 19

Analog Input

The TDC1014 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert ICONVI signal．This variation is＂ISB，clock synchronous bias current．＂The comparators also cause the input impedance， resistive and capacitive，to vary with the signal level，as comparator input transistors are cut－off or become active．As a result，for optimal performance，the source impedance of the device must have less than 25 Ohms impedance．The input
signal will not damage the TDC1014 if it remains within the range of $V_{E E}$ to +0.5 V ．If the input signal is between the V_{R} and $V_{\text {RB }}$ references，the output will be a binary number between 0 and 63 inclusive．A signal outside this range will indicate either full－scale positive or full－scale negative， depending on whether the signal is off－scale in the positive or negative direction．All three analog input pins must be connected together．

Name	Function	Value	J7，B7 Package	C3 Package
$V_{I N}$	Analog Signal Input	OV to－1V	Pins 17，19，21	Pins 21，23，25

Dutputs

The outputs of the TDC1014 are TIL compatible，capable of driving four low－power Schottky TIL 154174 LSI unit loads or the equivalent．To improve rise time of outputs，it is recommended that the 2.2 kOhm pull－up resistors to V_{CC} be
connected to data outputs．The outputs hold the previous data a minimum time（thol after the rising edge of the CONV signal．

Name	Function	Value	J7，B7 Package	C3 Package
D_{1}	MSB Output	TTL	Pin 9	Pin 13
D_{2}		TL	Pin 10	Pin 14
D_{3}		TIL	Pin 11	Pin 15
D_{4}		TTL	Pin 12	Pin 16
D_{5}		TL	Pin 13	Pin 17
D_{6}	TLL Output	Pin 14	Pin 18	

No Connects

There are several pins labeled No Connect INC ），which have no connections to the chip．Connect these pins to $A_{G N D}$ for noise reduction．

Name	Function	Value	J7，B7 Package	C3 Package
NC	No Connection	AGND	Pins 2，3，23，24	Pins 1，2，4，7，8，10，27，28

Figure 1．Timing Diagram

Figure 2．Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ is a nonlinear junction capacitance
$V_{R B}$ IS a voltage equal to the voltage on pin R_{B}

Figure 3．Digital Input Equivalent Circuit

Figure 4．Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

$\mathrm{A}_{\mathrm{GND}}$ (measured to $\mathrm{D}_{\mathrm{GND}}$	-1.0 to +1.0 V

Input Voltages

> CONV, NMINV, NLINV (measured to $\mathrm{D}_{\mathrm{GND}}$)
> -0.5 to +5.5 V
$V_{I N}, V_{R T}, V_{R B}$ (measured to $A_{G N D}$)
+0.5 to $\mathrm{V}_{\mathrm{EE}} \mathrm{V}$
$V_{R T}$ (measured to $V_{R B}$ +2.2 to -2.2 V

Output

Applied current, externally forced -1.0 to $6.0 \mathrm{~mA}^{3,4}$
Short circuit duration (single output in high state to ground) 1 sec

Temperature

junction .. $+175^{\circ} \mathrm{C}$

Storage ... $150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	4.75	5.0	5.25	4.5	5.0	5.5	v
$V_{\text {EE }}$	Negative Supply Voltage (Measured to AgNa)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	V
$\bar{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$).	-0.1	0.0	0.1	-0.1	0.0	0.1	V
TPWL	CONV Pulse Width, Low	19			19			ns
tPWH	CONV Pulse Width, High	15			15			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	v
V_{IH}	Input Voltage, Logic High	2.0			2.0			V
	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-1.1	0.0	0.1	-1.1	0.0	0.1	v
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-0.9	-1.0	-2.1	-0.9	-1.0	-2.1	V
$V_{\text {RT }}-V_{\text {RB }}$	Voltage Reference Differential	0.8	1.0	1.2	0.8	1.0	1.2	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$ C	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ Must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

LSI Products Division

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Maximum Conversion Rate		$V_{C C}-M I N, V_{E E}=M I N$	25		25		MSPS
${ }_{\text {t }}$ STO	Sampling Time Offset		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{EE}}=\mathrm{MIN}$	0	10	0	10	ns
	Digital Dutput Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN Load 1		35		35	ns	
${ }^{\text {tho }}$	Output Hold Time	$\mathrm{V}_{\mathrm{CC}}-\mathrm{MAX}, \mathrm{V}_{\mathrm{EE}}=$ MAX Load 1	15		15		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integral, Independent		$V_{R T}, V_{R B}=N O M$		0.4		0.4	\%
ELD	Linearity Error Differential				0.4		0.4	\%
0	Code Size	$V_{\text {RT }}, V_{\text {RB }}=$ NOM	50	150	50	150	\% Nominal	
E_{OT}	Offset Error Top	$V_{\text {IN }}=V_{\text {RT }}$		30		30	mV	
$\mathrm{E}_{0 B}$	Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		-24		-24	mV	
${ }^{\text {T }} \mathbf{C} 0$	Offset Error Temperature Coefficient			± 100		± 100	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$	
	Bandwidth, Full Power Input		12		12		MHz	
$\frac{{ }^{\frac{T}{} \mathrm{SNR}}}{}$	Transient Response, Full Scale			20		20	ns	
	Signal-to-Noise Ratio	10MHz Bandwidth, 25MSPS Conversion Rate						
	Peak Signal/RMS Noise	1.248MHz Input	44		44		dB	
		2.438MHz Input	43		43		dB	
	RMS SignalifMS Noise	1.248 MHz Input	35		35		dB	
		2.438MHz Input	34		34		dB	
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwith 4 Sigma Loading 1.248MHz Slot 25MSPS Conversion Rate	26		26		dB	
$\mathrm{E}_{\text {AP }}$	Aperture Error			60		60	ps	

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	$\begin{aligned} & \hline-1.0000 \mathrm{~V} \text { FS } \\ & 15.8730 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline-1.0080 \mathrm{~V} \text { FS } \\ & 16.0000 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline \text { NMINV }=1 \\ & \text { NLINV }=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	1 0
00	0.0000 V	0.0000 V	000000	111111	100000	011111
01	-0.0159V	-0.0160V	000001	111110	100001	011110
-	-	-	-	-	-	-
-	-	-	-	-	-	\bullet
\bullet	-	-	-	-	-	-
31	-0.4921V	-0.4960V	011111	100000	111111	000000
32	-0.5079V	-0.5120V	100000	011111	000000	111111
33	-0.5238V	-0.5280V	100001	011110	,000001	111110
-	-	-	-	-	-	\bullet
-	-	-	-	-	-	\bullet
-	-	\bullet	-	-	-	-
62	-0.9841V	-0.9920V	111110	000001	011110	100001
63	-1.000V	-1.0080V	11111	000000	011111	100000

Note:
Voltages are code midpoints when calibrated by the procedure given on page 51 .

Calibration

To calibrate the TDC1014, adjust $V_{\text {RT }}$ and $V_{\text {RB }}$ to set the 1st and 63rd thresholds to the desired voltages. Note on the block diagram that R_{1} is greater than R, ensuring calibration with a positive voltage on R_{T}. Assuming a OV to - 1 V desired range, continuously strobe the converter with -0.0079 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00
and 01. Then apply -0.9921 V and adjust V_{RB} for toggling between codes 62 and 63 . Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Parts List

Resistors

R1	\dagger	$1 / 4 \mathrm{~W}$	2%
R2	\dagger	$1 / 4 \mathrm{~W}$	2%
R3	$1.0 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	2%
R4	$4.2 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	2%
R5	10Ω	$1 / 4 \mathrm{~W}$	2%
R6	56Ω	$1 / 2 \mathrm{~W}$	5%
R7	240Ω	2 W	5%
R8	6.8Ω	$1 / 2 \mathrm{~W}$	5%
R9	$2.0 \mathrm{k} \Omega$	$1 / 2 \mathrm{~W}$	2%
R10		$1 / 4 \mathrm{~W}$	2%
R11	$2.0 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	Multiturn Cermet Pot
R12	$2.0 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	Multiturn Cermet Pot
R13	$21.4 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	2%
R14	$21.4 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	2%
R15	$2.2 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$	5%

Capacitors

C1	$0.1 \mu \mathrm{~F}$	50 V
C2	.	50 V
C3	$0.1 \mu \mathrm{~F}$	50 V
C4	$0.1 \mu \mathrm{~F}$	50 V
C5	$0.1 \mu \mathrm{~F}$	50 V
C6	$1.0 \mu \mathrm{~F}$	10V
C7	$10.0 \mu \mathrm{~F}$	10V
CB	$0.1 \mu \mathrm{~F}$	50 V

Transistors

Diodes

CR1 1 N4001

Integrated Circuits

U1	TRW TDC1014
U2	Plessey SL541C
U3	741 Operational Amplifier
U4	Motorola MC1403U

*Amplifier Compensation Components

$$
\mathrm{t}_{\mathrm{R} 2}=\frac{1}{\frac{2 V_{\text {Range }}}{V_{\text {REF }} Z_{\mathbb{N}}}-0.001} \quad \mathrm{R} 1=\mathrm{Z}_{\mathbb{N}}-\frac{1000 \mathrm{R} 2}{1000+\mathrm{R} 2}
$$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1014J7C TDC1014J7 JDC1014J7F TDC1014J7A TDC1014J7N	$\begin{aligned} & \text { STD- } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD- } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	24 Lead DIP 24 Lead DIP 24 Lead DIP 24 Lead DIP 24 Lead DIP	1014J7C 1014J7G 1014J7F 1014J7A 1014J7N
TDC1014C3C TDC1014C3G TDC1014C3F TDC1014CJA TDC1014C3N	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD-T } \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 700^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	28 Contact Chip Carrier 28 Contact Chip Carrier	1014C3C 1014C3G 1014C3F 1014C3A 1014C3N
TDC1014B7C TDC1014B7G	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T O-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial Commercial With Burn-In	24 Lead CERDIP 24 Lead CERDIP	101487C 101487G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1019

Preliminary Information

Monolithic Video A/D Converter

9-bit, 18MSPS

The TRW TDC1019 is an 18 MegaSample Per Second IMSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5 MHz into 9 -bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are differential ECL.

The TDC1019 consists of 512 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The outputs can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 9-Bit Resolution
- 18MSPS Conversion Rate, TDC1019-1
- 15MSPS Conversion Rate, TDC1019
- Overflow Flag
- Sample-And-Hold Circuit Not Required
- Differential Phase 1.0 Degree
- Differential Gain 2.0\%
- Differential ECL Interface
- Selectable Output Format
- Single -5.2V Power Supply
- Available in 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Video Data Conversion
- Radar Data Conversion
- Data Acquisition
- IR Processors

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J1 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1019 has three functional sections：a comparator array， encoding logic and output latches．The comparator array compares the input signal with 512 reference voltages to produce an N －of－512 code（sometimes referred to as a
＂thermometer＂code，as all the comparators below the signal will be on，and all those above the signal will be off）．The encoding logic converts the N －of－512 code into binary data． The output latch holds the output constant between updates．

Power

The TDC1019 operates from separate analog and digital power supplies，$V_{E E A}$ and $V_{E E D}$ ，respectively．Since the required voltage for both $\mathrm{V}_{\text {EEA }}$ and $\mathrm{V}_{\text {EED }}$ is -5.2 V ，they may ultimately be connected to the same power source，but separate
decoupling for each supply is recommended．The return for the current drawn from $V_{E E D}$ and $V_{E E A}$ is $D_{G N D}$ and $A_{G N D}$ ． respectively．All power and ground pins must be connected．

Name	Function	Value	J1 Package	C1，L1 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pins 46，48，51	Pins 14，16，18，20，21
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pins 43，54	Pins 13，22
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 4，7，26，27	Pins 41，65
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 13，14，19，20，40，57	Pins 9，27，48，49，55，57

Reference

The TDC1019 converts analog signals in the range $\mathrm{V}_{\mathrm{RB}} \leqslant \mathrm{V}_{\mathbb{I}} \leqslant \mathrm{V}_{\mathrm{RT}}$ into digital form． V_{RB} the voltage applied to the pin at the bottom of the reference resistor chain）and $V_{R T}$ lthe voltage applied to the pin at the top of the reference resistor chain）should be between +0.1 V and -2.1 V ．V_{RT} should be more positive than V_{RB} within that range．The voltage applied across the reference resistor chain $\left.V_{R T}-V_{R B}\right)$ must be between 1.8 V and 2．2V．The nominal voltages are $V_{R T}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-2.0 \mathrm{~V}$ ．Parasitic resistances， R_{1} and R_{2} ，introduce offsets at the top and bottom of the reference resistor chain．Sense points RTS，RBS and OFS may be used to null out these offsets．Note that R_{1} is greater than R ， ensuring that a positive voltage is required at R_{T} ． $\mathrm{R}_{3}, \mathrm{R}_{4}$ and

R5 are not designed to carry the reference current．OverFlow Sense（OFS）may be used to null out offsets at the overflow Imost positivel comparator whenever the OVerFlow（OVF）flag is used．If the sense points are not used，they should be left open．The reference voltages may be varied dynamically up to 5 MHz ．If these inputs are exercised dynamically，a low－impedance reference source is required．If the reference is not varied，a bypass capacitor is recommended．A midpoint tap， R_{M} ，allows the converter to be adjusted for optimum linearity．It can also be used to achieve a non－linear transfer function．This node should be driven from a low－impedance source．Noise introduced at this point，as well as the reference inputs IRT，RTS，RB，RBS，OFSI，may result in encoding errors．

Name	Function	Value	J1 Package	C1，L1 Package
R_{T}	Reference Resistor（Top）	0.0 V	Pin 10	Pin 59
R_{TS}	Reference Resistor（Top）Sense	0.0 V	Pin 8	Pin 62
R_{B}	Reference Resistor（Bottom）	-2.0 V	Pin 24	Pin 44
R_{BS}	Reference Resistor（Bottom）Sense	-2.0 V	Pin 25	Pin 43
R_{M}	Reference Resistor（Midpoint）	-1.0 V	Pin 17	Pin 52
0 FSS	OverFlow Sense	$0.0 V$	Pin 9	Pin 61

Convert

The TDC1019 requires a differential CONVert (CONV and $\overline{\text { CONV }}$) signal. A sample is taken lthe comparators are latched) approximately $10 n s$ after the rising edge of the CONV signal. This time is ST 0 , Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 512 to 9

The coded result is transferred to the output latches on the next rising edge. Data is held valid at the output register for at least tho, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, to, time. In a synchronous system data for sample N is acquired by the external circuitry while the TDC1019 is taking input sample $N+2$.

Name	Function	Value	J1 Package	C1, L1 Package
$\overline{\text { CONV }}$	Convert	ECL	Pin 5	Pin 64
$\overline{\text { CONV }}$	Convert, Complement	ECL	Pin 6	Pin 63

Analog Input

The TDC1019 uses strobed latching comparators which cause the input impedance, resistive and capacitive, to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must be less than 250 hms . The input
signal will not damage the TDC1019 if it remains within the range of $\mathrm{V}_{\text {EEA }}$ to +0.5 V . If the input signal is between the $V_{R T}$ and $V_{R B}$ references, the output will be a binary number between 0 and 511 inclusive. All five analog input pins must be connected.

Name	Function	Value	J1 Package	C1, L1 Package
$V_{\mathbb{I N}}$	Analog Signal Input	OV to $-2 V$	Pins 12, 15, 16, 18, 22	Pins 46,50,53,54,58

Outputs

The outputs of the TDC1019 are differential ECL levels. The recommended load is 5000 hms to -2 V . For optimum operation over the full temperature range, differential line receivers should be used. An OVerFlow (OVF) signal indicates
that the analog input has exceeded the threshold of the most positive comparator. The outputs hold the previous data a minimum time (thol after the rising edge of the CONVert signal.

Name	Function	Value	J1 Package	C1, L1 Package
D_{1}	MSB Output	ECL	Pin 30	Pin 38
$\overline{D_{1}}$	MSB Output Complement	ECL	Pin 31	Pin 37
D_{2}		ECL	Pin 32	Pin 36
D_{2}		ECL	Pin 33	Pin 35
D_{3}		ECL	Pin 34	Pin 34
$\overline{D_{3}}$		ECL	Pin 35	Pin 33
D_{4}		ECL	Pin 36	Pin 32
$\overline{0}_{4}$		ECL	Pin 37	Pin 31
D_{5}		ECL	Pin 58	Pin 7
$\overline{D_{5}}$		ECL	Pin 59	Pin 6
D_{6}		ECL	Pin 60	Pin 5
$\overline{0_{6}}$		ECL	Pin 61	Pin 4
D_{7}		ECL	Pin 62	Pin 3
$\overline{0_{7}}$		ECL	Pin 63	Pin 2
D_{8}		ECL	Pin 64	Pin 1
$\overline{D_{8}}$		ECL	Pin 1	Pin 68
Dg	LSB Output	ECL	Pin 2	Pin 67
D_{9}	LSB Output Complement	ECL	Pin 3	Pin 66
OVF	Overilow Output	ECL	Pin 28	Pin 40
$\overline{\mathrm{OVF}}$	Overilow Output Complement	ECL	Pin 29	Pin 39

No Connects

There are several pins labeled No Connect (NC). These pins
should be left open.

Name	Function	Value	J1 Package	C1, L1 Package
NC	No Connect	Open	Pins 11, 21, 23, 38, 39, 41, 42, 44,	Pins 8, 10, 11, 12, 15, 17, 19, 23, 24,
			$45,47,49,50,52,53,55,56$	$26,28,29,30,42,45,47,51,56,60$

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ IS A NONLINEAR JUNCTION CAPACITANCE $V_{R B}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

$V_{E E D}$ (measured to $D_{G N D}$)
$V_{E E A}$ (measured to $A_{G N D}$) +0.5 to -7.0 V
$A_{G N D}$ (measured to $D_{G N D}$)
+1.0 to -1.0v
$V_{E E A}$ (measured to $V_{E E D}$). +0.5 to -0.5 V

Input Voltage

Outputs

Temperature
Operating, case \qquad -60 to $+140^{\circ} \mathrm{C}$
junction. $+175^{\circ} \mathrm{C}$
Lead, soldering 10 seconds)...

Note:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Operating conditions

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temper	re Range	Units	
		Min	Max			
$\mathrm{l}_{\text {EE }}$	Supply Current		$\mathrm{V}_{\text {EED }}, \mathrm{V}_{\text {EEA }}=\mathrm{MAX}$			
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-850	mA	
		$\mathrm{T}_{\mathrm{A}}-50^{\circ} \mathrm{C}$		-725	mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ (500 LFPM)		-700	mA	
IREF	Reference Current	$V_{R T}, V_{\text {RB }}=N O M$	10	36	mA	
$\mathrm{R}_{\text {REF }}$	Total Reference Resistance		56	200	Ohms	
R ${ }_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{\text {RB }}-N O M, V_{\mathbb{N}}-V_{R B}$	2.0		kOhms	
CIN	Input Capacitance	$V_{\text {RT }}, V_{\text {RB }}=$ NOM, $V_{\text {IN }}-V_{\text {RB }}$		280	pF	
${ }^{\text {CB }}$	Input Constant Bias Current	$V_{\text {EEA }}=$ MAX, $V_{\text {IN }}=0.0 \mathrm{~V}$		750	$\mu \mathrm{A}$	
I	Digital Input Current	$V_{\text {EED }}=$ MAX, $V_{1}=-0.7 \mathrm{~V}$		150	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {OL }}$	Output Voltage, Logic Low	$V_{E E D}=$ NOM, $\mathrm{I}_{\text {OL }}-$ Test Load ${ }^{1}$	-1.6		V	
$\overline{\mathrm{VOH}}$	Output Voltage, Logic High	$\mathrm{V}_{\text {EED }}=$ NOM, $\mathrm{IOH}=$ Test Load ${ }^{1}$		-0.95	V	
c_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		35	pF	
Notes:						

Switching characteristics within specified operating conditions

System performance characteristics within specified operating conditions

Notes:

1. Voltage at midpoint $\mathbb{R}_{\mathrm{M}} \mid$ adjusted
2. In excess of quantization.

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	$\begin{gathered} \hline-2000 \mathrm{VFS} \\ 3.9139 \mathrm{mV} \text { Step } \end{gathered}$	$\begin{gathered} -2.0440 \mathrm{FS} \\ 4.000 \mathrm{mV} \text { Step } \end{gathered}$		All Outputs Inverted	D_{1} Inverted	$\mathrm{D}_{2}-\mathrm{Dg}_{\mathrm{g}}$ Inverted
000	0.0000 V	0.0000 V	000000000	111111111	100000000	011111111
001	0.0039 V	0.0040 V	000000001	111111110	100000001	011111110
\bullet	-	-	-	-	-	-
-	-	-	-	-	-	-
-	\bullet	-	\bullet	-	\bullet	\bullet
255	0.9980 V	1.0200 V	011111111	10000000	11111111	000000000
256	1.0020 V	1.0240V	100000000	01111111	00000000	111111111
257	1.0059 V	1.0280V	100000001	01111110	00000001	111111110
-	-	-		-	-	-
-		-	-	-	\bullet	-
-	-	-	\bullet	-	-	-
510	1.9961 V	1.9980 V	111111110	000000001	011111110	100000001
511	2.0000 V	2.0200 V	111111111	000000000	011111111	100000000

Notes:

1. Any output may be inverted by interchanging connections to the true $\left\{\mathrm{D}_{N}\right\rangle$ and complement $\left\{\overline{\mathrm{D}}_{N}\right\rangle$ output pins.
2. Voltages are code midpoints when calibrated by the procedure given below.

Calibration

To calibrate the TDC1019, adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 511th thresholds to the desired voltages. Note that R_{1} is greater than R , ensuring calibration with a positive voltage on R_{T}. Assuming a OV to -2V desired range, continuously strobe the converter with -0.00196 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply -1.9980 V and adjust V_{RB} for toggling between codes 510 and
511. The Overflow flag is calibrated similarly to $V_{R T}$ except that the converter input is set 1 LSB more positive than the top of the encoding range $(-0.00196 \mathrm{~V}$ in this examplel. Instead of adjusting $V_{R T}, R_{T}$ can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Parts List

Resistors			
R1	. $0 \Omega^{1}$		
R2	$80.6 \Omega{ }^{1}$	1/4W	2\%
R3	1.0K Ω	1/4W	2\%
R4	4.2\% Ω	114W	2\%
R5	$2.0 \mathrm{~K} \Omega$	1W	Multiturn Cermet Pot
R6	100.0Ω	3W	5\%
R7	120.0Ω	3W	5\%
R8	10.0Ω	1/4W	5\%
R9	2.0K Ω	114 W	2\%
R10	(See Note 2)		
R11	2.0Kת	1w	Multiturn Cermet Pot
R12	2.0K Ω	1w	Muttiturn Cermet Pot
R13	$20.0 \mathrm{~K} \Omega$	144W	2\%
814	20.0K Ω	14W	2\%
R15	2.0K Ω	1/4W	2\%
R16	2.0k Ω	1/4W	2\%
R17	75.0K Ω	14W W	2\%

Integrated Circuits

U1	TRW TDCI019
U2	Plessey SL541C
U3	MC4741
U4	MC1403
U5	MC10116
Transistors	
01	2N5836
02	2N2907
Diodes	
D1	

Notes:

1. Selected for desired input impedance and voltage range.
2. Selected for amplifier compensation.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1019JIC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1019JIC
TDC1019JIC1	STO- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1019JIC1
TDC1019J1G	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-in	64 Lead DIP	1019JIG
TOC1019J1G1	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1019J1G1
TDC1019C1C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1019CIC
TDC1019C1G1	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commerical	68 Contact Chip Carrier	1019C1C1
TDC1019C1G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1019 ClG
TDC1019C1GI	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	$1019 \mathrm{C1G1}$
TDC1019LIC	STO- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1019LIC
TDC10t9L1C1	SID $-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1019LICI
TDC1019L1G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-ln	68 Leaded Chip Carrier	1019516
TDC10i911G1	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1019LIG1

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic A/D Converter 4-bit, 25MSPS

The TRW TDC1021 is a 25 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting signals with full-power frequency components up to 10 MHz into 4 -bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are TTL compatible.

The TDC1021 consists of 15 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs, in binary or offset two's complement coding.

Features

- 4-Bit Resolution
- $\pm 1 / 4$ LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In 16 Lead DIP
- Standard/Extended Temperature Range

Applications

- Video Special Effects
- Radar Data Conversion
- High-Speed Multiplexed Data Acquisition
- Medical Imaging
- Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1021 has three functional sections: a comparator array, encoding logic and output latches. The comparator array compares the input signal with 15 reference voltages to produce an N -of-15 code Isometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off).

The encoding logic converts the N -of-15 code into binary or offset two's complement coding and can invert either output code. This coding function is selected by DC controls on pins NMINV and NLINV. The output latch holds the data on the output constant between updates.

Power

The TDC1021 operates from two supply voltages: +5.0 V which
is referenced to $\mathrm{D}_{\mathrm{GND}}$, and -6.0 V which is referenced to
A GND. All power and ground pins must be connected. $_{\text {ald }}$

Name	Function	Value	J9 Package
$V_{C C}$	Positive Supply Voltage	+5.0 V	Pin 10
$V_{E E}$	Negative Supply Voltage	-6.0 V	Pin 6
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pin 11
$\mathrm{~A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pin 1

Reference

The TDC1021 converts signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{\text {RB }}$ lthe voltage applied at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . $V_{R T}$ should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain $V_{R T}-V_{R B}$) must be between 0.4 V and 1.3 V . The current in the reference resistor chain can be supplied directly by an operational amplifier. These voltages may be varied dynamically up to 10 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in
which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically las in an AGC circuitt, a bypass capacitor is inappropriate and a low-impedance reference source is required. A reference middle is also provided; this may be used as an input to adjust the mid-scale point in order to improve integral linearity. This point may also be used as a tap to supply a mid-scale voltage to offset the analog input. If $V_{R M}$ is used as an output, it must be connected to a high input impedance device which has negligible offset current. Noise generated at this point will adversely affect the performance of the device.

Name	Function	Value	J9 Package
$V_{R T}$	Reference Resistor (Top)	0.04 V	Pin 4
$V_{\text {RM }}$	Reference Resistor (Middle)	-0.5 V	Pin 8
$V_{\text {RB }}$	Reference Resistor (Bottom)	-1.04 V	Pin 5

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e., steady state) use. They permit the output coding to be either binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table given on page 72. These pins are active LOW, as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $D_{G N D}$ for a logic " 0 ."

Name	Function	Value	J9 Package
NMINV	Not Most Significant Bit INVert	TL	Pin 9
NLINV	Not Least Significant Bit INVert	mL	Pin 7

Convert

The TDC1021 requires a convert (CONV) signal. A sample is taken lthe comparators are latched) approximately 10 ns after a rising edge on the CONV pin. This time is tsto, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature. The 15 to 4 encoding is performed on the falling edge of the CONV signal. The coded result is then transferred to the output latches on
the next rising edge. Data is held valid at the output register for at least tho, Output Hold Time, after the rising edge of CONV. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e., data for sample N is acquired by the external circuitry while the TDC1021 is taking input sample $N+2$.

Name	Function	Value	J9 Package
CONV	Convert	mL	Pin 16

Analog Input

The TDC1021 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert (CONV) signal. This variation is "ISB, clock synchronous bias current." The comparators also cause the input impedance, resistive and capacitive, to vary with the signal level as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must
be less than 25 Ohms. The input signal will not damage the TDC1021 if it remains within the range of $V_{E E}$ to +0.5 V . If the input signal is between the the $V_{R T}$ and $V_{R B}$ references, the output will be a valid representation of the input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending upon whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J9 Package
$V_{\mathbb{N}}$	Analog Signal Input	OV to -1V	Pin 2

Outputs

The outputs of the TDC1021 are TTL compatible, capable of driving four low-power Schottky TTL (54174LS) unit loads or the equivalent. To improve rise time of outputs, it is recommended that 2.2 kOhm pull-up resistors to $\mathrm{V}_{\text {CC }}$ be
connected to data outputs. The outputs hold the previous data a minimum time lthol after the rising edge of the CONV signal.

Name	Function	Value	J9 Package
D_{1}	MSB Output	ΠL	Pin 12
D_{2}		ΠL	Pin 13
D_{3}	LSB Output	ΠL	Pin 14
D_{4}	ΠL	Pin 15	

No Connects

Pin 3 of the TDC1021 is labeled No Connect $(\mathbb{N C l}$, and has no
connection to the chip. Connect this pin to AgND $^{\text {for noise }}$ reduction.

Name	Function	Value	J9 Package
NC	No Connect	A $_{\text {GND }}$	Pin 3

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$C_{\text {IN }}$ IS A NONLINEAR JUNCTION CAPACITANCE $V_{\text {RB }}$ is a voltage equal to the voltage on pin R_{B}

Figure 3. Digital Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage (Measured to $\mathrm{O}_{\text {GNO }}$)	4.75	5.0	5.25	4.5	5.0	5.5	v
$\mathrm{V}_{\text {EE }}$	Negative Supply Voltage (Measured to $\mathrm{A}_{\text {GND }}$)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0.0	0.1	-0.1	0.0	0.1	V
${ }^{\text {tPWL }}$	CONV Pulse Width, Low	19			19			ns
tPWH	CONV Pulse Width, High	15			15			ns
$V_{\text {IL }}$	Input Vottage, Logic Low			0.8			0.8	V
$V_{\text {IH }}$	Input Vottage, Logic High	2.0			2.0			V
10 L	Output Current, Logic Low			4.0			4.0	mA
${ }^{10 \mathrm{OH}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-1.9	0.0	0.1	-1.9	0.0	0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-2.1	-1.0	-0.1	-2.1	-0.1	-0.1	V
$V_{R T}-V_{\text {RB }}$	Votage Reference Differential	0.2	1.0	2.0	0.2	1.0	2.0	v
$V_{\text {IN }}$	Input Voltage	V_{RB}		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	v
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ must be more positive than $V_{R B}$ and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Paramater		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {ICC }}$	Positive Supply Current		$V_{C C}=$ MAX, static ${ }^{1}$		35		35	mA
IEE	Negative Supply Current		$V_{E E}-$ MAX $^{\text {, static }}{ }^{1}$		-60		-60	mA
${ }_{\text {R }}$	Reference Current	$V_{R T}, V_{R B}=N O M$		-4.0		-4.0	mA	
R REF	Total Reference Resistance		250		250		Ohms	
RIN	Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{I N}=V_{R B}$	60		60		kOhms	
$\mathrm{Cin}^{\text {IN }}$	Input Capacitance			25		25	pF	
${ }^{\text {I CB }}$	Input Constant Bias Current	$V_{E E}=\mathrm{MAX}$		20		20	$\mu \mathrm{A}$	
ISB	Input Clock Symchronous Bias			5		5	$\mu \mathrm{A}$	
IIL	Input Current, Logic Low	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$		-2.0		-2.0	mA	
IH	Input Current, Logic High	$V_{C C}=$ MAX, $V_{1}=2.4 V$		75		75	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{C C}-$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
V_{01}	Output Voltage, Logic Low	$V_{C C}=$ MIN, $I_{O L}=$ MAX		0.4		0.4	V	
$\overline{\mathrm{VOH}}$	Output Voltage, Logic High	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	2.4		2.4		V	
los	Short Circuit Output Current	$V_{C C}=$ MAX, Output High, one pin to ground, one second duration		-25		-25	mA	
C_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	

Note:

1. Worst case: all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Maximum Conversion Rate		$V_{C C}-M I N, V_{E E}=$ MIN	25		25		MSPS
${ }_{\text {t }}$ STO	Sampling Time Offset		$V_{C C}=M I N, V_{E E}-M I N$	0	10	0	15	ns
to	Output Delay	$V_{C C}=$ MIN, $V_{E E}=$ MIN Load 1		35		35	ns	
${ }^{\text {tho }}$	Output Hold Time	$V_{C C}=$ MAX, $V_{\text {EE }}=$ MAX Load 1	5		5		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
ElI	Linearity Error Integra，Independent		$V_{R T}, V_{R B}=N O M$		± 1.6		± 1.6	\％
$E_{L D}$	Linearity Error Differential				1.6		1.6	\％
0	Code Size	$V_{R T}, V_{\text {RB }}=$ NOM	50	150	50	150	\％Nominal	
E_{0}	Offset Error Top	$V_{\text {IN }}-V_{\text {RT }}$		＋50		＋50	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		－50		－50	mV	
${ }^{\text {T }}$ O	Offset Error Temperature Coefficient			± 100		± 100	$\mu \mathrm{V} /{ }^{\prime} \mathrm{C}$	
BW	Bandwidth，Full Power Input		10		10		MHz	
tr	Transient Response，Full Scale			20		20	ns	
$\mathrm{EAP}^{\text {A }}$	Aperture Error			50		50	ps	

Output Coding

Step	Range		Binary		Offset Two＇s Complement	
			TrueNMINV－ 1NLINV $=1$	Inverted00	True01	Inverted 1 0
	－1．0000V FS	－0．960V FS				
	66.667 mV STEP	64.000 mV STEP				
00	0.000 V	0.000 V	0000	1111	1000	0111
01	－0．067V	－0．064V	0001	1110	1001	0110
02	－0．133V	－0．128V	0010	110	1010	0101
03	－0．200V	－0．192V	0011	1100	1011	0100
04	－0．267V	－0．256V	0100	1011	1100	0011
05	－0．333V	－0．320V	0101	1010	1101	0010
06	－0．400V	－0．384V	0110	1001	1110	0001
07	－0．467V	－0．448V	0111	1000	1111	0000
08	－0．533V	－0．512V	1000	0111	0000	1111
09	－0．600V	－0．576V	1001	0110	0001	1110
10	－0．667V	－0．640V	1010	0101	0010	1101
11	－0．733V	－0．704V	1011	0100	0011	1100
12	－0．800V	－0．768V	1100	0011	0100	1011
13	－0．867V	－0．832V	1101	0010	0101	1010
14	－0．933V	－0．896V	1110	0001	0110	1001
15	－1．000V	－0．960V	1111	0000	0111	1000

[^1]
Calibration

To calibrate the TDC1021, adjust $V_{\text {RT }}$ and $V_{\text {RB }}$ to set the 1st and 15th thresholds to the desired voltages. Assuming a OV to $-1.0 V$ desired range, continuously strobe the converter with -0.0335 V on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01 . Then apply -0.9665 V and adjust V_{RB} for toggling between codes 14 and 15 . Instead of adjusting $V_{R T}, R_{T}$ can be connected to analog ground and the OV end of the range calibrated with an analog input buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path.

Typical Interface Circuit

Figure 5 shows a typical interface circuit. In this circuit the input has the range of 0.067 V to -0.933 V . The range is the difference between the voltages at which the transition from code 0 to code 1 occurs and the transition from code 14 to 15 occurs, +1 LSB. This extra LSB is produced when the analog to digital converter is calibrated with the transition from the 0 code to the 1st code occurring one half LSB away from ground, and the transition from the 14th to 15 th codes occurring $1 / 2 \mathrm{LSB}$ away from full scale. If a range from 0.000 V to 1.000 V is required, then V_{RT} must be adjusted (see calibration) and another buffer circuit added.

The TDC1021 does not require a buffer to drive the analog input, however, a buffer circuit may be used to provide signal conditioning such as filtering or gain/offset.

Figure 5. Typical Interface Circuit

Parts List

l					
Resistors					
R1	$2.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	Multiturn Cermet Pot		
R2	$21.5 \mathrm{~K} \Omega$	114 W	2%		
R3	$21.5 \mathrm{~K} \Omega$	114 W	2%		
R4	$2.2 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%		

l		
Capacitors		
C 1	$10 \mu \mathrm{~F}$	10 V
C2	$1 \mu \mathrm{~F}$	10 V
C3	$0.1 \mu \mathrm{~F}$	50 V
C4	$0.1 \mu \mathrm{~F}$	50 V

Integrated Circuits

U1	TRW TDC1021
U2	741 Op-Amp
U3	Motorola MC1403U

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1021JgC	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1021J9C
TDC1021JgG	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1021J9G
TDC1021J9F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1021.J9F
TDC1021J9A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	16 Lead DIP	1021J9A
TDC102199N	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1021.JSN

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.

Monolithic A/D Converter

8-bit, 50MSPS

The TRW TDC1025 is a 50 MegaSample Per Second (MSPS)
full-parallel (flash) analog-to-digital converter, capable of
converting an analog signal with full-power frequency
components up to $12 M H z$ into 8 -bit digital words. A
sample-and -hold circuit is not necessary. All digital inputs and
outputs are ECL compatible.
The TDC1025 consists of 255 clocked latching comparators, combining logic, and an output buffer register. A differential ECL convert signal controls the conversion operation. The digital outputs will interface with differential or single-ended ECL . The device requires a single -5.2 V power supply.

Features

- 8-Bit Resolution
- 50MSPS Conversion Rate
- Sample-And-Hold Circuit Not Required
- Differential Or Single-Ended ECL Compatible
- Single -5.2V Power Supply
- Available In 68 Contact Or Leaded Chip Carrier

Applications

- Medical Electronics
- Fluid Flow Analysis
- Seismic Analysis
- RadarlSonar
- Transient Analysis
- High-Speed Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1025 has three functional sections：a comparator array， encoding logic，and output latches．The comparator array compares the input signal with 255 reference voltages to produce an N －of－255 code lsometimes referred to as a
＂thermometer＂code，as all the comparators below the signal will be on，and all those above the signal will be off）．The encoding logic converts the N －of－255 code into binary format． The output latch holds the output constant between updates．

Power

The TDC1025 operates from a single－5．2V power supply．The separate analog and digital power pins，$V_{\text {EEA }}$ and $V_{E E D}$ ，both require -5.2 V ，and may be connected to the same power supply．However，separate decoupling of the analog and digital power pins is recommended Irefer to Figure 5 for a typical decoupling circuitl．The return for leed，the current drawn from
the $\mathrm{V}_{\text {EED }}$ supply，is $\mathrm{D}_{\mathrm{GND}}$ ．The return for $\mathrm{l}_{\mathrm{EEA}}$ ，the current drawn from the $V_{E E A}$ supply，is $A_{G N D}$ ．The analog and digital ground planes should be separated to minimize ground noise and prevent ground loops，and connected back at the power supply．All power and ground pins must be connected．

Name	Function	Value	C1，L1 Package
$\mathrm{V}_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pins 7，29
$\mathrm{V}_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pins 13，14，16，18，20，22，23
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 8，28，39，64
$\mathrm{A}_{\text {GND }}$	Analog Ground	0.0 V	Pins 46，50，55，58

Reference

The TDC1025 converts analog signals in the range $\mathrm{V}_{\mathrm{RB}} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{RT}}$ into digital form． V_{RB} the voltage applied to the pin at the bottom of the reference resistor chain）and V_{RT} lthe voltage applied to the pin at the top of the reference resistor chain）should be between +0.1 V and -2.1 V ． V_{RT} should be more positive than V_{RB} within that range．The voltage applied across the reference resistor chain $\left.V_{R T}-V_{R B}\right)$ must be between 1.8 V and 2.2 V ．The nominal voltages are $V_{R T}=0.0 \mathrm{~V}, V_{R B}=-2.0 \mathrm{~V}$ ．

Two sense points，RTS and R_{BS} ，may be used to minimize the offset errors and temperature sensitivity．With sensing，resistors R_{1} and R_{2} las shown in the Functional Block diagraml are contained within the feedback loop，and no longer contribute to the offset error．The remaining offset errors，EOTS and EOBS，can be eliminated by the calibration method discussed on page 88．The temperature sensitivity of this remaining offset error is specified by tCOS，Temperature Coefficient，Sensed． The sense resistors， R_{3} and R_{4} las shown in the Functional Block diagraml are approximately 1 kOhm ．These resistors are not designed to carry the total reference current，and should not be used as reference inputs．If the sensed points are not used，these pins should be left open．The circuit in Figure 5 shows a typical sensing configuration．

A midpoint tap， R_{M} ，allows the converter to be adjusted for optimum linearity，although adjustment is not necessary to meet the linearity specification．It can also be used to achieve a nonlinear transfer function．The circuit shown in Figure 7 will provide approximately $1 / 2 \mathrm{LSB}$ adjustment of the linearity midpoint．The characteristic impedance at this node is approximately 75 Ohms，and should be driven from a low－impedance source．Note that any load applied to this node will affect linearity．Noise introduced at this point，as well as the reference inputs and sense points may degrade the quantization process，resulting in encoding errors．

Due to the variation in the reference currents with clock and input signals， R_{T} and R_{B} should be low－impedance－to－ground points．For circuits in which the reference is not varied，a bypass capacitor to ground is recommended．If the reference inputs are exercised dynamically，las in an automatic gain control circuitt，a low－impedance reference source is required．The reference voltages may be varied dynamically at rates up to 10 MHz ．

Reference (Cont.)

Name	Function	Value	C1, L1 Package
$\mathrm{R}_{\boldsymbol{T}}$	Reference Resistor (Top)	0.0 V	Pin 62
$\mathrm{R}_{T S}$	Reference Resistor Sense (Top)		Pin 63
R_{M}	Reference Resistor (Middle)	-1.0 V	Pin 49
R_{B}	Reference Resistor (Bottom)	-2.0 V	Pin 41
R_{BS}	Reference Resistor Sense (Bottom)		Pin 40

Convert

The TDC1025 requires a differential ECL Convert (CONV) signal. Both convert inputs must be connected, with CONV being the complement of CONV. A sample is taken the comparators are latched) within $10 n \mathrm{n}$ after the rising edge on the CONV pin. This time is tsto, Sampling Time Offset. This delay may vary from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling time offset is less than 50 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded output is transferred to the output latches on the next rising edge. Data
is held valid at the output register for at least tHO , Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, t . This permits the previous conversion result to be acquired by external circuitry on that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1025 is taking input sample $N+2$. Note that there are minimum pulse width (tpWL and tpwh) requirements on the waveshape of the CONV signal. (Refer to Figure 1)

Name	Function	Value	C1, L1 Package
CONV	Convert	ECL	Pin 54
$\overline{\operatorname{CONV}}$	Convert Complement	ECL	Pin 53

Analog Input

The TDC1025 comparator array causes the input impedance to vary slightly with the signal level, as comparator input transistors are cut-off or become active. For optimal performance, the source impedance driving the device must be less than 250 hms . The input signal will not damage the TDC1025 if it remains within the range of +0.5 V to $\mathrm{V}_{\mathrm{EEA}}$. If the input signal is between the $V_{R T}$ and V_{RB} references, the output will be a binary number between 0 and 255 , proportional to the magnitude of the analog input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All eight analog input pins should be connected through resistors near the chip
to provide a balanced analog input to all portions of the comparator array. The optimized values are shown in Figure 6.

The analog input bandwidth, specified for a full-power input, is limited by the slew rate capabilities of the internal comparators. Decreasing the analog input amplitude will reduce the slew rate, and thus increase the effective bandwidth. Note that other system performance characteristics are specified for the recommended $2 \mathrm{~V} p-\mathrm{p}$ amplitude, and may degrade with the decreased analog input signal. A sample-and-hold circuit at the analog input will also extend performance beyond the specified bandwidth.

Name	Function	Value	C1, L1 Package
$V_{\text {IN }}$	Analog Signal Input	OV to $-2 V$	Pins 44, 47, 48, 51, 52, 56, 57, 60

Outputs

The outputs of the TDC1025 are both differential and single-ended ECL compatible. The outputs should be terminated with a 1.5 kOhm impedance into a -5.2 V source to
meet the specified logic levels. Using the outputs in a differential mode will provide increased noise immunity.

Name	Function	Value	C1, L1 Package
\bar{D}_{1}	MSB Output	ECL	Pin 66
$\overline{D_{1}}$	MSB Output, Complement	ECL	Pin 67
\bar{D}_{2}		ECL	Pin 68
$\overline{\bar{D}_{2}}$		ECL	Pin 1
$\overline{D_{3}}$		ECL	Pin 2
$\overline{D_{3}}$		ECL	Pin 3
$\overline{D_{4}}$		ECL	Pin 4
$\overline{D_{4}}$		ECL	Pin 5
$\overline{D_{5}}$		ECL	Pin 30
$\overline{D_{5}}$		ECL	Pin 31
\bar{D}_{6}		ECL	Pin 32
$\overline{D_{6}}$		ECL	Pin 33
$\overline{D_{7}}$		ECL	Pin 34
$\overline{D_{7}}$			Pin 35
\bar{D}_{8}			Pin 36
$\overline{D_{8}}$			Pin 37

No Connects

There are several pins labeled No Connect (NCl, which have no connections to the chip. These pins should be left open.

Name	Function	Value	C1, L1 Package
NC	No Connect	Open	Pins 6, 9, 10, 11, 12, 15, 17, 19, 21, 24, 25, 26, 27, 38, 42, 43, 45,59,61,65

Thermal Design

The case temperature must be limited to a maximum of $80^{\circ} \mathrm{C}$ for the standard temperature range and $125^{\circ} \mathrm{C}$ for the extended temperature range. For ambient temperatures above
45° C, 500 L.F.P.M. moving air is required for specified performance. In addition to moving air, heat sinking is an efficient method to optimize thermal management.

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

$\mathrm{C}_{\text {in }}$ is a nonlinear junction capacitance
$V_{\text {fB }}$ is a voltage equal to the voltage on pin B_{B}

Figure 3. Convert Input Equivalent Circuit

Figure 4. Output Circuits

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Vottages	
Input Voltages	
Output	

Temperature
Note:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Dperating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
	.	Min	Nom	Max	Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}$	Analog Supply Vottage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}-V_{\text {EED }}$	Supply Voltage Differential	-0.1	0.0	$+0.1$	-0.1	0.0	+0.1	V
$\mathrm{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	$+0.1$	-0.1	0.0	+0.1	V
${ }^{\text {t PWWL }}$	CONV Puise Width, Low	6			8			ns
tPWH	CONV Puise Width, High	12			14			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			-1.4			-1.4	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic High	-1.0			-1.0			V
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
$V_{R T}{ }^{-V_{R B}}$	Votage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
T_{C}	Case Temperature ${ }^{2}$	0		80	-55		+125	${ }^{\circ} \mathrm{C}$

Notes

1. V_{RT} Must be more positive than V_{RB}, and voltage reference differential must be within specified range.
2. 500 L.F.P.M. moving air required above $45^{\circ} \mathrm{C}$ ambient.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
$\mathrm{IEE}^{\text {E }}$ Supply Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX					
	${ }^{\circ} \mathrm{C}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$		700			mA
	$\mathrm{T}_{\mathrm{C}}-80^{\circ} \mathrm{C}$		550			mA
	${ }^{\top} \mathrm{C}-55{ }^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				850	mA
	$\mathrm{T}_{\mathrm{C}}-125^{\circ} \mathrm{C}$				500	mA
$\mathrm{I}_{\text {REF }}$ Reference Current	$V_{R T}, V_{R B}=$ NOM	10	35	10	40	mA
RREF Total Reference Resistance		57	200	50	200	Ohmis
RIN Input Equivalent Resistance	$V_{R T}, V_{R B}=N O M, V_{\mathbb{N}}=V_{\text {RB }}$	4		4		KOhms
$\mathrm{CiN}^{\text {IN }}$ Input Capacitance			160		160	pF
${ }^{\text {CB }}$ Input Constant Bias Current	$V_{\text {EEA }}, V_{\text {EED }}-M A X, V_{I N}-0.0 V$		660		1200	$\mu \mathrm{A}$
I Digital Input Current	$V_{\text {EEA }}, V_{\text {EED }}-M A X, V_{1}=-0.7 \mathrm{~V}$		160		240	$\mu \mathrm{A}$
$\mathrm{V}_{0 \mathrm{~L}}$ Output Votage, Logic Low	$V_{\text {EEA }}, V_{\text {EED }}=$ NOM, $\mathrm{IOL}=$ Test Load ${ }^{1}$	-1.6		-1.5		V
$V_{\text {OH }} \quad$ Output Voltage, Logic High	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ NOM, $\mathrm{IOH}=$ Test Load ${ }^{\prime}$		-0.95		-1.1	V
C_{1} Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		20		20	pF

Switching characteristics within specified operating conditions

System performance characteristics within specified operating conditions

Parameter			Test Conditions	Temperature Range				Units	
			Standard	Extended					
			Min	Max	Min	Max			
ELI	Linearity	Integral, Independent		$V_{R T}, V_{R B}=N O M$		± 0.3		± 0.3	\%
$E_{L D}$	Linearity	Differential				0.3		0.3	\%
0	Code Size		$V_{R T}, V_{R B}-N O M$	15	185	15	185	\% Nominal	
$\mathrm{E}_{\text {OT }}$	Offset Error	Top	$V_{I N}=V_{\text {RT }}$		+40		+40	mV	
EOTS	Offiset Error	Top, Sensed			+10		+10	mV	
E_{OB}	Offset Error	Bottom	$V_{\text {IN }}=V_{R B}$		-40		-40	mV	
E OBS	Offset Error	Bottom, Sensed			-10		-10	mV	
${ }^{\text {T Cos }}$	uiffet Error	Temperature Coefficient, Sensed			80		80	$\mu V 1 /{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input			12.5		10		MHz	
	Transient Response, Full Scale Input Change				10		10	ns	
SNR	Signal-to-Noise Ratio		20MHz Bandwidth, 50MSPS Conversion Rate						
	Peak SignaliRMS Noise		1.25 MHz Input	53		53		dB	
			5.34MHz Input-	51		51		dB	
			10.0MHz Input			47		dB	
			12.0MHz Input	47				dB	
		RMS Signal/RMS Noise	1.25MHz input	44		44		dB	
			5.34MHz Input	42		42		dB	
			10.0MHz Input			38		dB	
			12.0MHz Input	38				dB	
EAP	Aperture Error				40		40	ps	

TDC1025

Figure 5. Typical Interface Circuit

Parts List

Resistors			
R1	$0 \Omega^{1}$		
R2	$49.9 \Omega^{1}$	1/8W	1\%
R3	$1.5 \mathrm{~K} \Omega$	144W	5\%
R4	649Ω	1/8W	1\%
R5	100Ω	188W	5\%
R6	100Ω	1/8W	5\%
R7	324Ω	188W	1\%
R8	470S	114W	5\%
R9	402Ω	1/8W	2\%
R10	$1.21 \mathrm{~K} \Omega$	1/8W	1\%
R11	3018	1186	1\%
R12	$2.0 \mathrm{~K} \Omega$	1 BWW	1\%
R13	$10 \Omega-20 \Omega^{2}$	1/8W	5\%
R14	200Ω	2W	5\%
R15	$8.2 \Omega-15 \Omega^{2}$	186W	5\%
R16	150Ω	2 W	5\%
R17	2.7Ω	188W	5\%
R18	2.78	1/8W	5\%
R19	$34 \mathrm{~K} \Omega$	1/4W	1\%
R20	$10 \mathrm{~K} \Omega$	18\%	1\%
R21	10Ω	1/8W	5\%
R22	470Ω	1/4W	5\%
R23	10Ω	1/8W	5\%
R24	10Ω	1/8W	5\%
R25	11.3K Ω	1/8W	1\%
R26	$42.2 \mathrm{~K} \Omega$	188 W	1\%
R27	392Ω	118W	1\%
R28	2.0K Ω	1W	5\% Multiturn Cermet Pot
R29	2.0k Ω	1w	5\% Multiturn Cermet Pot
R30	$10 \Omega-20 \Omega$	118W	5\%
R31	$10 \Omega-20 \Omega$	1/8W	5\%
R32	$10 \mathrm{~K} \Omega$	118 W	1\%
R33	$42.2 \mathrm{~K} \Omega$	188W	1\%
R34	$1.2 \mathrm{~K} \Omega$	1/8W	1\%
R35	$8.2 \mathrm{~K} \Omega$	1/8W	1\%
R36	100Ω	118W	2\%
R37	324Ω	1/8W	2\%
R38	15Ω	1/10W	1\%
R39	10Ω	How	1\%
R40	10Ω	1110W	1\%
R41	10Ω	1/10W	1\%
R42	10Ω	1/10W	1\%
843	10Ω	1/10W	1\%
R44	10Ω	1/10w	1\%
R45	15Ω	H10w	1\%
R46	130Ω	14W	5\%
R47	82Ω	1/4W	5\%
448	$10 \mathrm{~K} \Omega$	18W	1\%
R49	$10 \mathrm{~K} \Omega$	188W	1\%
R50	10Ω	1/8W	5\%

Integrated Circuits	Capacitors		
U1 TRW TDC1025L1 or C1	C1	100.0 pF	200 V
U2 CA3127E	C2	$0.1 \mu \mathrm{~F}$	50 V
U3 MC4741	C3	$10.0 \mu \mathrm{~F}$	25 V
U4 MC1403	C4	$0.1 \mu \mathrm{~F}$	50 V
U5 337T	C5	1.0-8.0pF ${ }^{2}$	200 V
U6 MC10131	C6	$0.1 \mu \mathrm{~F}$	50 V
U7 MC10131	C7	$0.1 \mu \mathrm{~F}$	50 V
U8 MC10131	C8	$0.1 \mu \mathrm{~F}$	50 V
US MC10131	C9	$0.1 \mu \mathrm{~F}$	50V
UTO MC10101	C10	$0.1 \mu \mathrm{~F}$	50 V
	C11	$1.0 \mu \mathrm{~F}$	20 V
Transistors	C 12	$10.0 \mu \mathrm{~F}$	25V
	C13	$0.1 \mu \mathrm{~F}$	50 V
01 2N5836	C14	$1.0 \mu \mathrm{~F}$	50 V
$02 \mathrm{2N} 2222$	C15	$10.0 \mu \mathrm{~F}$	25V
03 2N2907A	C16	10.0 \%	25V
042 N 4957	C17	$10.0 \mu \mathrm{~F}$	25V
	C18	$0.1 \mu \mathrm{~F}$	50 V
Diodes	C 19	$10.0 \mu \mathrm{~F}$	25 V
	C20	$0.1 \mu \mathrm{~F}$	50 V
01 1N4148	C21	$0.1 \mu \mathrm{~F}$	50V
D2 1N4148	C22	$0.1 \mu \mathrm{~F}$	50 V
D3 1N4001	C23	1000.0pF	200 V
D4 1N4001	C24	1000.0pF	200 V
D5 1N4001	C25	$0.1 \mu \mathrm{~F}$	50 V
D6 1N4148	C26	$0.1 \mu \mathrm{~F}$	50 V
D1 1N4148	C27	100.0pF	200 V
D8 1N4148	C28	. $01 \mu \mathrm{~F}$	50 V
D9 1N4148	C29	$0.1 \mu \mathrm{~F}$	50 V
D10 1N4148	C30	$0.1 \mu \mathrm{~F}$	50V
011 1N4148			
VR1 1N52268			
VR2 1 N 5226 B			
VR3 1N5232B			
VR4 1N5223B			
Inductors			

[^2]
Typical Interface

Figure 5 shows an example of a typical interface circuit for the TDC1025. The analog input buffer is a discrete differential amplifier followed by an NPN transistor buffer. The transistor buffer satisfies the input drive requirement of the A / D converter. The analog input resistors, attached close to the $\mathrm{V}_{\mathbb{N}}$ pins, provide frequency stability and a balanced analog input to all portions of the comparator array. All eight $V_{I N}$ pins are connected together close to the device package, and the buffer feedback loop should be closed at that point. Bipolar inputs may be used by adjusting the buffer offset control. The buffer has a gain of two, increasing a 1 Volt $p-p$ input signal to the recommended 2 Volt $p-p$ input for the AID.

The top reference, R_{T}, is grounded, with the sense point, RTS, left open. The offset error introduced at the top of the reference chain is cancelled by the buffer offset adjustment. The bottom reference voltage, $V_{R B}$ is supplied by an amplifier, buffered with a PNP transistor. The feedback loop through the sense, RBS, minimizes the offset error and related temperature
variations at the bottom of the resistor chain. Additional gain adjustment can be made by varying the input voltage to the sensing op amp.

The differential clock is provided by an ECL gate, with termination close to the TDC1025 to minimize ringing or overshoot. The convert clock is delayed by approximately $5-10 \mathrm{~ns}$ to latch the data at the output. The data outputs are terminated with 1.5 k 0 hms to -5.2 V . The standard Thevenin equivalent (220 Ohms -330 Ohms to -5.2 V) is used where additional termination is required.

The analog and digital ground planes are separated to minimize ground noise and prevent ground loops, and are connected back at the power supply. The independent ECL digital ground aids in maintaining the chip digital ground, especially in a system with highspeed ECL logic. Protective diodes between all three ground planes avoid damage due to excessive differences in ground potential.

Figure 6. Power Decoupling and Input Network

$L=$ FERRITE BEAD INDUCTOR
$R_{1}=15 \Omega, 1 \%$ CARBON COMPOSITION OR CERAMIC CHIP RESISTOR
$\mathrm{R}_{2}=10 \Omega, 1 \%$ CARBON COMPOSITION OR CERAMIC CHIP RESISTOR
$\mathrm{C}=0.1 \mu \mathrm{~F}$ CERAMIC DISC CAPACITOR
市 $=$ ANALOG GROUND
$\underset{=}{\underline{I}}=$ DIGITAL GROUND

Figure 7. Typical Reference Midpoint Adjust Circuit

Note: Pins are shown for $\mathrm{L1}, \mathrm{Cl}$ packages

LSI Products Division

TRW Electronic Components Group

Output Coding

Step	Range		Binary		Offset Two＇s Complement	
			True	Inverted	True	Inverted
	$\begin{aligned} & \hline-2.0000 \mathrm{~V} \text { FS } \\ & 7.8431 \mathrm{mV} \text { Step } \end{aligned}$	$\begin{aligned} & -2.0480 \mathrm{VFS} \\ & 8.000 \mathrm{mV} \text { Step } \end{aligned}$		All Dutputs Inverted	D_{1} Inverted	$\mathrm{D}_{2}-\mathrm{Dg}_{9}$ Inverted
000	0.0000 V	0.0000 V	000000000	111111111	100000000	011111111
001	－0．0078V	$-0.0080 \mathrm{~V}$	000000001	111111110	100000001	011111110
－	－	－	－	－	\bullet	－
－	－	－	－	－	－	－
\bullet	－	－	－	－	－	\bullet
127	－0．996IV	－1．0160V	011111111	100000000	111111111	000000000
128	－1．0039	－1．0240V	100000000	011111111	000000000	111111111
129	－1．0118V	－1．0320v	100000001	011111110	000000001	111111110
－		－	－	－	．	－
－				－	－	－
－	－	－	\bullet	－	－	－
254	－1．9921V	－2．0392V	111111110	000000001	011111110	100000001
255	－2．0000	－2．0400V	111111111	000000000	011111111	100000000

Note：
1．Voitages are code midpoints after calibration．
2．Any output may be inverted by interchanging connections to the true（ D_{N} ）and complement（ $\overline{\mathrm{D}_{N}}$ ）output pins．

Calibration

To calibrate the TDC1025，adjust $V_{R T}$ and $V_{R B}$ to set the 1st and 255th thresholds to the desired voltages．Note that R_{1} is greater than R ，ensuring calibration with a positive voltage on R_{T} ．Assuming a OV to -2 V desired range，continuously strobe the converter with $-0.0039 \mathrm{~V} 11 / 2$ LSB from OVI on the analog input，and adjust $V_{R T}$ for output toggling between codes 00 and 01．Then apply -1.996 V （1／2 LSB from -2 V ）and adjust $V_{\text {RB }}$ for toggling between codes 254 and 255 ．

The degree of required adjustment is indicated by the offset errors， E_{OT} and E_{OB} ．Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit．These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block

Diagram．Calibration will cancel all offset voltages，eliminating offset and gain errors．

The above method of calibration requires that both ends of the resistor chain，R_{T} and R_{B} ，are driven by buffered operational amplifiers．Instead of adjusting $V_{R T}$ ，R_{T} can be connected to analog ground and the OV end of the range calibrated with a buffer offset control．The offset error at the bottom of the resistor chain results in a slight gain error，which can be compensated for by varying the voltage applied to R_{B} ．The bottom reference is a convenient point for gain adjust that is not in the analog signal path．These techniques are employed in Figure 5.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1025CIC	STD-T $\mathrm{C}^{-1} \mathrm{O}^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1025C1C
TDC1025C1G	STD- $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1025C1G
TDC1025C1F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1025C1F
TDC1025C1A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MLL-STD-883	68 Contact Chip Carier	1025C1A
TDC1025C1N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carier	1025CIN
TDC1025L1C	$\mathrm{STD}-\mathrm{T}^{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	10251.1C
TDC1025L1G	STD-T $\mathrm{C}=0^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1025116
TDC1025LIF	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1025LIF
TDC1025L1A	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	68 Leaded Chip Carrier	1025L1A
TDC1025LIN	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1025L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic Video A/D Converter

7-bit, 18MSPS

The TRW TDC1027 is an 18 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5 MHz into 7 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are $\Pi \mathrm{L}$ compatible.

The TDC1027 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

-7-Bit Resolution

- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 18MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP or CERDIP

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

Functional Block Diagram

Functional Block Diagram

Pin Assignments

> 24 Lead DIP - J7 Package
> 24 Lead CERDIP - B7 Package

Functional Description

General Information

The TDC1027 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 127 reference voltages to produce an N -of-127 code isometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The
encoding logic converts the N -of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1027 operates from two supply voltages, +5.0 V and -5.2 V . The return for I_{C}, the current drawn from the +5.0 V supply, is $\mathrm{D}_{\mathrm{GND}}$. The return for l_{EE}, the current drawn from
the -5.2 V supply, is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package
V_{CC}	Positive Supply Voltage	+5.0 V	Pins 10, 16
$V_{E E}$	Negative Supply Voltage	$-5.2 V$	Pins 11, 14
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 4, 21
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 3, 12, 13, 22

Reference

The TDC1027 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . V_{RT} should be more positive than $V_{R B}$ within that range. The voltage applied across the reference resistor chain $\left|V_{R T}-V_{R B}\right|$ must be between 0.8 V and 1.2 V . The nominal voltages are $V_{R T}$
$=0.05 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RB}}=-1.04 \mathrm{~V}$. These voltages may be varied dynamically up to 5 MHz . Due to variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically las in an AGC circuit), a low-impedance reference source is required.

Name	Function	Value	J7, B7 Package
R_{T}	Reference Resistor (Top)	0.0 V	Pin 2
R_{B}	Reference Resistor (Bottom)	-1.0 V	Pin 23

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table given on page 98. These pins are active LOW as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic " 1 " and $D_{G N D}$ for a logic " 0 ."

Name	Function	Value	J7, B7 Package
NMINV	Not Most Significant Bit INVert	TL	Pin 5
NLINV	Not Least Significant Bit INVert	ΠL	Pin 15

Convert

The TDC1027 requires a CONVert (CONV) signal. A sample is taken the comparators are latched) approximately $10 n \mathrm{n}$ after a rising edge on the CONV pin. This time is t STO, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 127 to 7 encoding is performed on the falling
edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time Ithol after the rising edge of the CONVert signal. This permits the previous conversion resuit to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1027 is taking input sample $N+2$.

Name	Function	Value	J7, B7 Package
CONV	Convert	TL	Pin 20

Analog Input

The TDC1027 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 250 hms . The input signal will not damage the TDC1027 if it remains within the range of $V_{\text {EE }}$ to +0.5 V . If the input signal is between the $V_{\text {RT }}$ and $V_{\text {RB }}$
references, the output will be a binary number between 0 and 127 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins must be connected through individual 100 hm resistors to the input driver.

Name	Function	Value	J7, B7 Package
$V_{I N}$	Analog Signal Input	OV to -1V	Pins 1, 24

Outputs

The outputs of the TDC1027 are TTL compatible, and capable of driving four low-power Schottky TTL $154 / 74$ LSI unit loads
or the equivalent. The outputs hold the previous data a minimum time ithol after the rising edge of the CONV signal.

Name	Function	Value	J7, B7 Package
D_{1}	MSB Output	TLL	Pin 6
D_{2}		TL	Pin 7
D_{3}		TL	Pin 8
D_{4}		TL	Pin 9
D_{5}		TL	Pin 17
D_{6}		TL	Pin 18
D_{7}		TL	Pin 19

Figure 1．Timing Diagram

Figure 2．Simplified Analog Input Equivalent Circuit

Cin IS A NONLINEAR JUNCTION CAPACITANCE
$V_{\text {rb }}$ IS a voltage equal to the voltage on pin R_{B}

Figure 3．Digital Input Equivalent Circuit

Figure 4．Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

$V_{C C}$ (measured to $\mathrm{D}_{\mathrm{GND}}$)
$V_{E E}$ (measured to $A_{G N D}$) 0.0 to -7.0V
$A_{G N D}$ (measured to $D_{G N D}$ -1.0 to +1.0 V

Input Voltages
CONV, NMINV, NLINV (measured to $\mathrm{D}_{\mathrm{GND}}$) .. -0.5 to +5.5 V

Output

Applied current, externally forced
-1.0 to $6.0 \mathrm{~mA}^{3,4}$
Short circuit duration (single output in high state to ground)
1 sec

Temperature

Operating conditions

Parameter		Standard			Extended			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	4.75	5.0	5.25	4.5	5.0	5.5	V
$V_{\text {EE }}$	Negative Supply Voltage (Measured to AGND)	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\mathrm{GND}}$)	-0.1	0.0	0.1	-0.1	0.0	0.1	V
PWWL	CONV Pulse Width, Low	24			24			ns
tPWH	CONV Pulse Width, High	28			28			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic High	2.0			2.0			V
OL	Output Current, Logic Low			4.0			4.0	mA
${ }^{\text {OH}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-1.1	0.0	0.1	-1.1	0.0	0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-0.9	-1.0	-2.1	-0.9	-1.0	-2.1	V
$\overline{V_{R T}-V_{\text {RB }}}$	Voltage Reference Differential	0.8	1.0	1.2	0.8	1.0	1.2	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{R T}$	$V_{R B}$		$V_{R T}$	V
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }} \mathrm{C}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{R T}$ Must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CC}$	Positive Supply Current		$V_{C C}=$ MAX，static ${ }^{1}$		40		55	mA
lee	Negative Supply Current		$\mathrm{V}_{\text {EE }}-\mathrm{MAX}$ ，static ${ }^{1}$					
		${ }^{T}{ }^{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		－275			mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		－180			mA	
		$\mathrm{T}_{\mathrm{C}}=-55$ to $125^{\circ} \mathrm{C}$				－350	mA	
		$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$				－165	mA	
IREF	Reference Current	$V_{R T}, V_{R B}=$ NOM	5.0	30	5.0	40	mA	
R REF	Total Reference Resistance		30	200	25	200	Ohms	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{\text {RB }}=N O M, V_{I N}=V_{R B}$	5.0		5.0		kOhms	
$\overline{\mathrm{CIN}}$	Input Capacitance			100		100	pF	
${ }_{\text {IB }}$	Input Constant Bias Current	$V_{E E}=\operatorname{MAX}$		200		300	$\mu \mathrm{A}$	
IIL	Input Current，Logic Low	$V_{C C}=\operatorname{MAX}, V_{1}=0.5 \mathrm{~V}$						
		NLINV		－2．4		－3．0	mA	
		CLK，NMINV		－2．0		－2．0	mA	
IH	Input Current，Logic High	$V_{C C}=$ MAX，$V_{1}=2.4 V$		100		100	$\mu \mathrm{A}$	
1	Input Current，Max Input Voltage	$V_{\text {CC }}=$ MAX，$V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
V_{OL}	Output Voltage，Logic Low	$\mathrm{V}_{\text {CC }}=$ MIN， $\mathrm{IOL}=$ MAX		0.5		0.5	V	
$\mathrm{V}_{\text {OH }}$	Output Voltage，Logic High	$V_{C C}=$ MIN， $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V	
IOS	Short Circuit Output Current	$V_{C C}=M A X$, Output high，one pin to ground， one second duration．		－25		－25	mA	
Cl_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note：	1．Worst case：all digital inputs an	Low．						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Maximum Conversion Rate		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {EE }}=\mathrm{MIN}$	18		18		MSPS
${ }^{\text {t }}$ STO	Sampling Time Offset		$V_{C C}=M I N, V_{E E}=M I N$	0	15	0	20	ns
	Output Delay	$V_{C C}-M I N, V_{E E}-M I N$, Load 1		35		40	ns	
${ }^{\text {t }} \mathrm{HO}$	Output Hold Time	$V_{C C}=$ MAX，$V_{\text {EE }}=$ MAX，Load 1	10		10		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integra, Independent		$V_{\text {RT }}, V_{\text {RB }}=$ NOM		± 0.4		± 0.4	\%
ELD	Linearity Error Differential				0.4		0.4	\%
0	Code Size	$V_{\text {RT }}, V_{\text {RB }}=$ NOM	30	170	30	170	\% Nominal	
$\mathrm{E}_{0 T}$	Offset Error Top	$V_{\text {IN }}-V_{\text {RT }}$		45		45	mV	
$\mathrm{E}_{0 \mathrm{~B}}$	Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		-35		-40	mV	
${ }^{\text {T }} \mathrm{C}$	Offset Error Temperature Coefficient			± 40		± 40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
	Bandwidth, Full Power Input		5		5		MHz	
	Transient Response, Full Scale			30		30	ns	
SNR	Signal-to-Noise Ratio	5MHz Bandwidth, 18MSPS Conversion Rate			.			
	Peak SignalikMS Noise	1.248 MHz Input	48		48		dB	
		2.438MHz Input	47		47		dB	
	RMS Signal/RMS Noise	1.248 MHz Input	39		39		dB	
		2.438 MHz Input	38		38		dB	
NPR	Noise Power Ratio	DC to 8 MHz White Noise Bandwith 4 Sigma Loading 1.248MHz Slot 18MSPS Conversion Rate	30		30		dB	
$\mathrm{EAP}^{\text {P }}$	Aperture Error			50		50	ps	

Output Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	$\begin{aligned} & \hline-1.0000 \mathrm{~V} \text { FS } \\ & 7.874 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline-1.0160 \mathrm{FS} \\ & 8.000 \mathrm{mV} \text { STEP } \end{aligned}$	$\begin{aligned} & \hline \text { NMINV }=1 \\ & \text { NLINV }=1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$
000	0.0000 V	0.0000 V	0000000	1111111	1000000	0111111
001	-0.0078V	-0.0080V	0000001	1111110	1000001	0111110
-				-	-	-
-		-		-		-
-	-	-	-	-	-	-
127	-1.0000V	-1.0160V	1111111	0000000	0111111	1000000
Note:						
1. Voltages are code midpoints when calibrated using the procedure given on page 99.						

Calibration

To calibrate the TDC1027, adjust $V_{R T}$ and $V_{\text {RB }}$ to set the 1st and 127th thresholds to the desired voltages. Note that R_{1} is greater than R , ensuring calibration with a positive voltage on RT. Assuming a OV to - 1 V desired range, continuously strobe the converter with -0.0039 V on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01 . Then apply
-0.9961V and adjust $V_{\text {RB }}$ for toggling between codes 126 and 127. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Parts List

Resistors			
R1	\dagger	1/4W	2\%
R2	\dagger	114W	2\%
R3	$1.0 \mathrm{~K} \Omega$	1/4W	2\%
R4	$4.2 \mathrm{~K} \Omega$	14W	2\%
R5	10Ω	1/4W	2\%
R6	56Ω	12 W	5\%
R7	240Ω	2W	5\%
R8	6.8Ω	112 W	5\%
R9	$2.0 \mathrm{~K} \Omega$	112 W	2\%
R10	*	114 W	2\%
R11	$2.0 \mathrm{~K} \Omega$	114W	Multiturn Cermet Pot
R12	$2.0 \mathrm{~K} \Omega$	1/4W	Multiturn Cermet Pot
R13	21.4K Ω	$1 / 4 \mathrm{~W}$	2\%
R14	$21.4 \mathrm{~K} \Omega$	144W	2\%
R15	10Ω	1/4W	2\%
R16	10Ω	1/4W	2\%

* Amplifier Compensation Components

Capacitors		
C1	$0.1 \mu \mathrm{~F}$	50 V
C2	$.1 \mu \mathrm{~F}$	50 V
C3	$0.1 \mu \mathrm{~F}$	50 V
C4	$0.1 \mu \mathrm{~F}$	50 V
C5	$0.1 \mu \mathrm{~F}$	50 V
C6	$1.0 \mu \mathrm{~F}$	10 V
C7	$10.0 \mu \mathrm{~F}$	10 V
C8	$0.1 \mu \mathrm{~F}$	50 V

Diodes
CR1 1N4001

Integrated Circuits

U1	TRW TDC1027
U2	Plessey SL541C
U3	741 Operational Amplifier
U4	Motorola MC1403U

Transistors

$01 \quad$ 2N5836
02 2N2907

$$
t_{\mathrm{R} 2}=\frac{1}{\frac{V_{\text {RANGE }}}{V_{\text {REF }} Z_{I N}}-0.001}
$$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1027JTC	STD- $\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1027JTC
TDC1027J7G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1027JG
TDC1027J7	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1027J7F
TDC1027J7	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883B	24 Lead DIP	1027J7A
TDC1027J7N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1027JTN
TDC1027B7C	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead CERDIP	102787C
TDC1027876	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead CERDIP	102787G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Monolithic A/D Converter

6 -bit, 100MSPS

The TRW TDC1029 is a 100 MegaSample Per Second (MSPS) full-paralle! (flash) analog-to-digital converter, capable of converting an analog signal with full power frequency components up to 50 MHz into 6 -bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are ECL compatible.

The TDC1029 consists of 63 clocked latching comparators, combining logic, and an output buffer register. A single differential convert signal controls the conversion operation. The digital outputs are single-ended ECL with the exception of the MSB which is differential. Binary or offset two's complement output format is available.

Features

- 6-Bit Resolution
- 100MSPS Conversion Rate
- 50MHz Input Bandwidth
- Low Cost
- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- IV Input Range
- Binary Or Two's Complement Output Format
- Available In 24 Lead DIP

Applications

- Transient Digitizers
- Direct Digital Receivers
- Radar Data Conversion
- Data Acquisition
- Telecommunications
- Medical Imaging

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1029 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 63 reference voltages to produce an N -of-63 code Isometimes referred to as a "thermometer" code, as all the comparators below the signal
will be on, and all those above the signal will be offl. The encoding logic converts the N -of-63 code into binary coding, with the complement of the MSB available for offset two's complement output format. The output latch holds the output constant between updates.

Power

The TDC1029 operates from separate analog and digital power supplies, $V_{\text {EEA }}$ and $V_{\text {EED }}$, respectively. Since the required voltage for both $V_{E E A}$ and $V_{E E D}$ is -5.2 V , these may ultimately be connected to the same power source, but separate decoupling for each supply is recommended. A typical
decoupling network is shown in Figure 5. The return for IEED, the current drawn from the $V_{E E D}$ supply, is $D_{G N D}$. The return for IEEA, the current drawn from the VEEA supply, is $A_{G N D}$. All power and ground pins must be connected.

Name	Function	Value	J7 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pins 18, 19,24
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pins 1,12
$\mathrm{D}_{\text {GND }}$	Digital Ground	0.0 V	Pins 3, 10, 17, 20
$\mathrm{A}_{G N D}$	Analog Ground	0.0 V	Pins 5,8

Thermal Design

The TDC1029 has thermal characteristics similar to other high-performance ECL devices and is rated for a maximum ambient temperature of $70^{\circ} \mathrm{C}$. For ambient temperatures above
40° C, 500 L.F.P.M. moving air is required for specified performance. The maximum case temperature should be no greater than $110^{\circ} \mathrm{C}$.

Reference

The TDC1029 converts analog signals in the range
$\mathrm{V}_{\mathrm{RB}} \leqslant \mathrm{V}_{\mathrm{IN}} \leqslant \mathrm{V}_{\mathrm{RT}}$ into digital form. The voltage applied across the reference resistor chain $V_{R T}-V_{R B}$) must be between 0.9 V and 1.1 V . V_{RB} the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ (the voltage applied to the pin at the top of the reference resistor chain) should be between -0.2 V and -1.4 V . VRT should be more positive than $V_{\text {RB }}$ within that range. The nominal voltages are:
$V_{R T}=-0.3 V, V_{R B}=-1.3 V$. These voltages may be varied
dynamically up to 25 MHz . Due to variation in the reference currents with changes in clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground reference of the input signal is recommended. If the reference inputs are exercised dynamically las in an AGC circuitl, a low-impedance reference source is required.

Name	Function	Value	J7 Package
R_{T}	Reference Resistor, Top	$-0.3 V$	Pin 11
R_{B}	Reference Resistor, Bottom	$-1.3 V$	Pin 2

Convert

The TDC1029 requires a differential ECL CONVert (CONV) signal. A sample is taken (the comparators are latched) approximately 5ns after a rising edge on the CONV pin. This time is tST0, Sampling Time Offset. This delay may vary by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty lijtter) in sampling offset time is less than 50 picoseconds. The 63 to 6 encoding is performed on the falling edge of the CONV signal. The
coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time Ithol after the rising edge of the CONVert signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1029 is taking input sample $N+2$. Both convert inputs must be connected, with CONV being the complement of CONV.

Name	Function	Value	J7 Package
$\overline{\text { CONV }}$	Convert	ECL	Pin 7
CONV	Convert Complement	ECL	Pin 6

Analog Input

The TDC1029 uses strobed latching comparators which cause the input impedance to vary slightly with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal 'performance, the source impedance driving the device must be less than 25 Ohms. The input signal will not damage the TDC1029 if it remains within the range of +0.5 V to $\mathrm{V}_{\text {EEA }}$. If the input signal is between the V_{RT} and
$V_{R B}$ references, the output will be a binary number between 0 and 63 , inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins MUST be connected through 150 hm resistors as shown in Figure 5.

Name	Function	Value	J7 Package
$V_{I N}$	Analog Signal Input	-0.3 V to -1.3 V	Pins 4, 9

Outputs

The outputs of the TDC1029 are ECL compatible. Outputs D_{2-6} are single-ended, while the MSB (D) is differential. Offset two's complement format is available by cross-wiring the

MSB, i.e. interchanging D_{\uparrow} and $\overline{D_{1}}$. The outputs should be terminated with a 1000 hm (or greater) impedance into an equivalent -2.0 V source.

Name	Function	Value	J7 Package
$\overline{D_{1}}$	MSB Dutput, Complement	ECL	Pin 13
D_{1}	MSB Output	ECL	Pin 14
D_{2}		ECL	Pin 15
D_{3}		ECL	Pin 16
D_{4}		ECL	Pin 21
D_{5}		ECL	Pin 22
D_{6}	LSB Output	ECL	Pin 23

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Figure 3. Convert Input Equivalent Circuit

Figure 4. Output Circuits

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Vottages					
Input Voltages					
CONV, CONV (measured to $\mathrm{D}_{\mathrm{GND}}$) ... +0.5 to $V_{E E D} V$ $V_{I N}, V_{R T}, V_{R B}$ (measured to $A_{G N D}$) ... 0.5 to $V_{E E A} V$ $V_{R T}$ (measured to $V_{R B}$) \qquad +1.5 to -1.5 V					
Output					
Temperature					
Note: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating con Functional operation under any of these conditions is NOT implied.					
Operating conditions					
Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}$	Analog Supply Vottage	-4.9	-5.2	-5.5	V
$V_{\text {EEA }}{ }^{-V_{\text {EEE }}}$	Supply Voltage Differential	-0.1	0.0	0.1	V
$\bar{V}_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{O}_{\mathrm{GND}}$)	-0.1	0.0	0.1	V
${ }_{\text {tPWL }}$	CONV Pulse Width, Low	3	4		ns
tPWH	CONV Pulse Widh, High	5	6		ns
$V_{\text {ICM }}$	CONV Input Voitage, Common Mode Range (Figure 6)	-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential (Figure 6)	0.4		1.2	V
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-0.2	-0.3	-0.4	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-1.2	-1.3	-1.4	V
$V_{R T}-V_{\text {RB }}$	Voltage Reference Differential	0.9	1.0	1.1	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	V
$T_{\text {A }}$	Ambient Temperature ${ }^{2}$	0		70	${ }^{\circ} \mathrm{C}$
1. $V_{R T}$ must be more positive than $V_{R B}$, and voltage reference differential must be within specified range. 2. 500 L.F.P.M. moving air required above $40^{\circ} \mathrm{C}$.					

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	$\frac{\text { Temperature Range }}{\text { Standard }}$		Units	
		Min	Max			
$I_{E E A}+I_{\text {EED }}$	Supply Current		$V_{\text {EEA }}, V_{\text {EED }}=$ MAX			
		$\mathrm{T}^{\prime}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-375	mA	
		$\mathrm{T}_{\mathrm{A}}-70^{\circ} \mathrm{C}$		-300	mA	
TREF	Reference Current	$V_{\text {RT }}, V_{\text {RB }}=$ NOM	10	35	mA	
R ${ }_{\text {REF }}$	Total Reference Resistance		29	100	0 hm	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{R T}, V_{\text {RB }}-N O M, V_{I N}-V_{R B}, V_{E E}=M A X$	6		kOhm	
$\mathrm{CIN}^{\text {c }}$	Input Equivalent Capacitance	$V_{\text {RT }}, V_{\text {RB }}=N O M, V_{\mathbb{N}}=V_{R B}$		20	pF	
${ }^{\text {CB }}$	Input Constant Bias Current	$V_{\text {EEA }}, V_{\text {EED }}-M A X, V_{\text {IN }}=-0.3 V$		500	$\mu \mathrm{A}$	
1	Input Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX, $V_{1}=-0.5 \mathrm{~V}$		250	$\mu \mathrm{A}$	
V_{OL}	Output Voltage, Logic Low	$V_{\text {EEA }}, V_{\text {EED }}-$ NOM, Test Load 1	-1.650		V	
$\overline{\mathrm{V}}_{\mathrm{OH}}$	Output Voltage, Logic High	$V_{\text {EEA }} V_{\text {EED }}=$ NOM, Test Load 1		-0.950	V	
${ }_{4}$	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	pF	

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
F_{S}	Maximum Conversion Rate		$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=\mathrm{MIN}$	100		MSPS
${ }^{\text {ts }}$ TO	Sampling Time Offset		$V_{\text {EEA }}, V_{\text {EED }}=M 1 N$	0	6	ns
${ }_{\text {t }}$	Output Delay	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MIN, Load 1		7	ns	
${ }^{\text {H0 }}$	Dutput Hold Time	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}=$ MAX, Load 1	1.5		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temp	Range	Units	
		Min	Max			
	Linearity Error Integral, Terminal Based		$V_{R T}, V_{R B}=N O M$		± 0.8	\%
	Linearity Error Differential			± 0.8	\%	
0	Code Size	$V_{\text {RT }}, V_{\text {RB }}=$ NOM	50	150	\% Nominal	
$\mathrm{E}_{0 T}$	Offset Error Top	$V_{I N}-V_{R T}$		20	mV	
$\mathrm{E}_{0 B}$	Offset Error Bottom	$V_{\text {IN }}-V_{\text {RB }}$		-8	mV	
${ }^{\text {T }} \mathrm{CO}$	Offset Error Temperature Coetficient			± 35	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Fuil Power Input ${ }^{\dagger}$	$\mathrm{F}_{\mathrm{S}}=100 \mathrm{MSPS}$	50		MHz	
${ }^{\text {TR }}$	Transient Response, Full-Scale Input Change			6	ns	
SNR	Signal-To-Noise-Ratio ${ }^{2}$	100MSPS Conversion Rate				
	Peak SignaliRMS Noise	25MHz Input	42		dB	
		50 MHz Input	39		dB	
	RMS SignallRMS Noise	25 MHz Input	33		dB	
		50 MHz Input	30		dB	
$E_{\text {AP }}$	Aperture Error			30	ps	
Notes:	Beat frequency sinusoidal reconstruction prot Single frequency sinusoidal input attenuated	rs greater then 3 LSBs, IPW mpling frequency lanti-alias				

Output Coding ${ }^{1}$

Step	Range		Binary	Offset Two's Complement
	$\begin{gathered} -1.3000 \mathrm{VS} \\ 15.8730 \mathrm{mV} \text { STEP } \end{gathered}$	$\begin{gathered} \hline-1.3080 \mathrm{~V} \text { FS } \\ 16.0000 \mathrm{mV} \text { STEP } \end{gathered}$	MSB LSB	MSB LSB
00	-0.3000V	-0.3000V	000000	100000
01	-0.3159V	-0.3160V	000001	100001
-	-	-	-	-
-	-	-	-	-
-	-	-	-	\bullet
31	-0.7921v	-0.7960v	011111	111111
32	-0.8079v	-0.8120V	100000	000000
33	-0.8238V	-0.8280V	100001	000001
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
62	-1.2841V	-1.2920V	111110	011110
63	-1.3000v	-1.3080V	111111	011111

1. Voltages are code midpoints after calibration.

Figure 5. Power Decoupling and Input Network

Figure 6. CONVert, CONVert Switching Levels

Calibration

To calibrate the TDC1029, adjust $V_{R T}$ and $V_{R B}$ to set 1st and 63rd thresholds to the desired voltages. Assuming a -0.3 V to $-1.3 V$ desired range, continuously strobe the converter with -0.3079 V on the analog input, and adjust $V_{\text {RT }}$ for output toggling between codes 00 and 01 . Then apply -1.2921 V and adjust $V_{\text {RB }}$ for toggling between codes 62 and 63 . Instead of
adjusting $V_{R T}$, R_{T} can be connected to a fixed voltage and the most positive end of the range calibrated with an offset control. R_{B} is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 7.

Figure 7. Typical Interface Circuit

Parts List

Resistors			
R1	15.0Ω	$1 / 8 \mathrm{~W}$	2%
R2	82Ω	$1 / 4 \mathrm{~W}$	5%
R3	130Ω	$1 / 4 \mathrm{~W}$	5%
R4	15.0Ω	$1 / 8 \mathrm{~W}$	2%
R5	68Ω	$1 / 4 \mathrm{~W}$	5%
R6	$2 \mathrm{~K} \Omega$		Multiturn Cermet Pot
R7	$11.3 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R8	$2 \mathrm{~K} \Omega$		Multiturn Cermet Pot
R9	270Ω	$1 / 2 \mathrm{~W}$	5%
R10	$10.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R11	$4.22 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R12	$20.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R13	$20.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R14	10Ω	$1 / 8 \mathrm{~W}$	5%
R15	$10.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R16	$1.5 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R17	$1.5 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	5%
R18	$10.0 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R19	$1.00 \mathrm{~K} \Omega$	$1 / 4 \mathrm{~W}$	2%
R20	18Ω	$1 / 4 \mathrm{~W}$	5%
R21	10Ω	$1 / 8 \mathrm{~W}$	5%
R22	68Ω	$1 / 4 \mathrm{~W}$	5%
R23	324Ω	$1 / 8 \mathrm{~W}$	2%
R24	100Ω	$1 / 8 \mathrm{~W}$	2%

Capacitors			Integrated Circuits	
Cl	$0.1 \mu \mathrm{~F}$		U1	TDC1029J7
C2	$0.1 \mu \mathrm{~F}$		U2	100102D
C3	$1.0 \mu \mathrm{~F}$	Polarized	U3	1001510
C4	$10.0 \mu \mathrm{~F}$	Polarized	U4	3503
C5	$0.1 \mu \mathrm{~F}$		U5	4741
C6	$0.1 \mu \mathrm{~F}$		U6	3375
C7	$0.1 \mu \mathrm{~F}$			
C8	$1.0 \mu \mathrm{~F}$	Polarized	Diodes	
C9	$10.0 \mu \mathrm{~F}$	Polarized		
C10	$1.0 \mu \mathrm{~F}$	Non-polar	D1	1N4148
	$1.0 \mu \mathrm{~F}$	Non-polar	01	1N4001
C12	$1.0 \mu \mathrm{~F}$	Polarized	D2	
C13	$1.0 \mu \mathrm{~F}$	Polarized	D3	1N4148
C14	$10.0 \mu \mathrm{~F}$	Polarized	D4	1N4148
C15	$10.0 \mu \mathrm{~F}$	Polarized	D5	$\begin{aligned} & \text { 1N4001 } \\ & \text { 1N4001 } \end{aligned}$
C16	$0.1 \mu \mathrm{~F}$			
C17	$1.0 \mu \mathrm{~F}$	Polarized		
			Inductors	
Transistors			L1	Bead Inductor
01	2N2907			
02	2N2222			
03	2N2907			

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1029J7C	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1029J7C
TDC102976	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead Dip	102976

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC1048

Monolithic Video A/D Converter

8-bit, 20MSPS

The TRW TDC1048 is a 20 MegaSample Per Second IMSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 7 MHz into 8 -bit digital words. A sample-and-hold circuit is not necessary. Low power consumption eases thermal considerations, and board space is minimized with a 28 lead package. All digital inputs and outputs are TTL compatible.

The TDC1048 consists of 255 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 8-Bit Resolution
- 20MSPS Conversion Rate
- Low Power Consumption, 1.4W (Worst Case)
- Sample-And-Hold Circuit Not Required
- Differential Phase 1 Degree
- Differential Gain 2%
- 1/2 LSB Linearity
- TTL Compatible
- Selectable Output Format
- Available In 28 Lead DIP, CERDIP, Or Contact Chip Carrier

Applications

- Low-Cost Video Digitizing
- Radar Data Conversion
- Data Acquisition
- Medical Imaging

Functional Block Diagram

Functional Block Diagram

Pin Assignments

28 Lead DIP - J6 Package
28 Lead CERDIP - B6 Package

28 Contact Chip Carrier - C3 Package

Functional Description

General Information

The TDC1048 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 255 reference voltages to produce an N -of-255 code lsometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The
encoding logic converts the N -of-255 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1048 operates from two supply voltages, +5.0 V and -5.2 V . The return for I_{C}, the current drawn from the +5.0 V supply, is $D_{G N D}$. The return for $I_{E E}$, the current drawn from

Name	Function	Value	J6, B6, C3 Package
V_{CC}	Positive Supply Voltage	+5.0 V	Pins 6, 10
V_{EE}	Negative Supply Voltage	-5.2 V	Pins 7, 8, 9
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pins 5, 11
$\mathrm{A}_{\mathrm{GND}}$	Analog Ground	0.0 V	Pins 19, 25

Reference

The TDC1048 converts analog signals in the range $V_{R B} \leqslant V_{I N} \leqslant V_{R T}$ into digital form. $V_{R B}$ the voltage applied to the pin at the bottom of the reference resistor chain) and $V_{R T}$ the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1 V and -2.1 V . VRT should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain $\left.N_{R T}-V_{\text {RB }}\right)$ must be between 1.8 V and 2.2 V . The nominal voltages are V_{RT} $=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-2.0 \mathrm{~V}$.

A midpoint tap, R_{M}, allows the converter to be adjusted for optimum linearity, although adjustment is not necessary to meet the linearity specification. It can also be used to achieve a nonlinear transfer function. The circuit shown in Figure 5 will provide approximately $1 / 2 \mathrm{LSB}$ adjustment of the linearity
midpoint. The characteristic impedance seen at this node is approximately 220 Ohms, and should be driven from a low-impedance source. Note that any load applied to this node will affect linearity, and noise introduced at this point will degrade the quantization process.

Due to the variation in the reference currents with clock and input signals, R_{T} and R_{B} should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically, las in an automatic gain control circuitl, a low-impedance reference source is required. The reference voltages may be varied dynamically up to 5 MHz .

Name	Function	Value	J6, B6, C3 Package
R_{T}	Reference Resistor (Top)	0.0 V	Pin 18
R_{M}	Reference Resistor (Middle)	-1.0 V	Pin 27
R_{B}	Reference Resistor (Bottom)	$-2.0 V$	Pin 26

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the

Output Coding table on page 121. These pins are active LOW, as signified by the prefix " N " in the signal name. They may be tied to $V_{C C}$ for a logic "1" and $D_{G N D}$ for a logic "0."

Name	Function	Value	J6, B6, C3 Package
NMINV	Not Most Significant Bit INVert	$\Pi \mathrm{L}$	Pin 28
NLINV	Not Least Significant Bit INVert	$\Pi \mathrm{L}$	Pin 12

Convert

The TDC1048 requires a convert ICONV) signal. A sample is taken Ithe comparators are latchedl within 15 ns after a rising edge on the CONV pin. This time is tSTO, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to
the output latches on the next rising edge. Data is held valid at the output register for at least thO, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, t , time. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1048 is taking input sample $N+2$.

Name	Function	Value	J6, B6, C3 Package
CONV	Convert	TL	Pin 17

Analog Input

The TDC1048 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 25 Ohms. The input signal will not damage the TDC1048 if it remains within the range of $V_{E E}$ to +0.5 V . If the input signal is between the V_{RT} and V_{BB}
references, the output will be a binary number between 0 and 255 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All five analog input pins must be connected together.

Name	Function	Value	J6, B6, C3 Package
$V_{\mathbb{I N}}$	Analog Signal Input	OV to -2 V	Pins 20, 21, 22, 23, 24

Outputs

The outputs of the TDC1048 are TTL compatible, capable of driving four low-power Schottky TTL 154174 LSI unit loads or
the equivalent. The outputs hold the previous data a minimum time ItHOl after the rising edge of the CONVert signal.

Name	Function	Value	J6, B6, C3 Package
D_{1}	MSB Output	$\Pi \mathrm{L}$	Pin 1
D_{2}		ΠL	Pin 2
D_{3}		ΠL	Pin
D_{4}		ΠL	Pin 4
D_{5}		ΠL	Pin 13
D_{6}		ΠL	Pin 14
D_{7}		ΠL	Pin 15
D_{8}		ΠL	Pin 16

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Cin $_{\text {IN }}$ IS A NONLINEAR JUNCTION CAPACITANCE
$\mathbf{V}_{\text {RB }}$ IS a voltage equal to the voltage on pin R_{B}

Figure 3. Convert Input Equivalent Circuit

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

$V_{C C}$ (measured to $\mathrm{D}_{\mathrm{GND}}$)
-0.5 to +7.0 V
$V_{E E}$ (measured to $A_{G N O}$)
+0.5 to -7.0 V
$A_{G N D}$ (measured to $D_{G N D}$)
-0.5 to +0.5 V

Input Voltages

$V_{I N}, V_{R T}, V_{R B}$ (measured to $A_{G N D}$) .. to $V_{E E} V$

Output

Applied current, externally forced -1.0 to $+6.0 \mathrm{~mA}^{3,4}$
Short circuit duration (single output in high state to ground) 1 sec

Temperature

Operating, ambient \qquad -55 to $+125^{\circ} \mathrm{C}$
junction $+175^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.50	V
$V_{\text {EE }}$	Negative Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{D}_{\text {GND }}$)	-0.1	0	+0.1	-0.1	0	+0.1	V
${ }_{\text {tPWL }}$	CONV Pulse Width, Low	18			18			ns
tPWH	CONV Pulse Width, High	22			22			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
V_{IH}	Input Voltage, Logic High	2.0			2.0			V
$\mathrm{IOL}^{\text {che }}$	Output Current, Logic Low			4.0			4.0	mA
OH	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$V_{\text {RT }}$	Most Positive Reference Input ${ }^{1}$	-0.1	0.0	0.1	-0.1	0.0	+0.1	V
$V_{\text {RB }}$	Most Negative Reference Input ${ }^{1}$	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
$V_{\text {RT }}-V_{\text {RB }}$	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
$V_{\text {IN }}$	Input Voltage	$V_{\text {RB }}$		$V_{\text {RT }}$	$V_{\text {RB }}$		$V_{\text {RT }}$	V
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\top}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Note:

1. $V_{A T}$ Must be more positive than $V_{R B}$, and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CC}$	Positive Supply Current		$V_{\text {CC }}-\mathrm{MAX}$ ，static ${ }^{1}$		35		40	mA
${ }_{\text {EE }}$	Negative Supply Current		$\underline{V_{E E}}=$ MAX，static ${ }^{1}$					
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		－220			mA	
		$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		－170			mA	
		$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				－270	mA	
		$\mathrm{T}^{\mathrm{C}} \mathrm{C}=125^{\circ} \mathrm{C}$				－165	mA	
$\mathrm{I}_{\text {REF }}$	Reference Current	$V_{R T}, V_{R B}=N O M$		30		40	mA	
$\mathrm{R}_{\text {REF }}$	Total Reference Resistance		67		50		Ohms	
$\mathrm{R}_{\text {IN }}$	Input Equivalent Resistance	$V_{\text {RT }}, V_{\text {RB }}=N O M, V_{\text {IN }}=V_{\text {RB }}$	10		10		kOhms	
$\mathrm{CiN}^{\text {chen }}$	Input Capacitance	$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}=\mathrm{NOM}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{RB}}$		100		100	pF	
${ }^{\text {CB }}$	Input Constant Bias Current	$V_{E E}=$ MAX		100		200	$\mu \mathrm{A}$	
ILL Input Current，Logic Low		$V_{\text {CC }}=$ MAX，$V_{1}=0.5 \mathrm{~V}$						
		CONV		－0．4		－0．4	mA	
		NMINV，NLINV		－0．6		－0．6	mA	
${ }_{1 / \mathrm{H}}$	Input Current，Logic High	$\mathrm{V}_{\text {CC }}=$ MAX， $\mathrm{V}_{1}=2.4 \mathrm{~V}$		50		50	$\mu \mathrm{A}$	
1	Input Current，Max Input Voltage	$V_{\text {CC }}=$ MAX， $\mathrm{V}_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
V_{OL}	Output Voltage，Logic Low	$V_{C C}=M I N, I_{0 L}=M A X$		0.5		0.5	V	
V_{OH}	Output Voltage，Logic High	$V_{\text {CC }}-\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V	
${ }_{\text {IOS }}$	Short Circuit Output Current	$V_{\text {CC }}=$ MAX，Output high，one pin to ground， one second duration．		－30		－30	mA	
C_{1}	Digital Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note：								
	1．Worst case：all digital inputs an	LOW．						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Maximum Conversion Rate		$V_{C C}-M I N, V_{E E}=M I N$	20		20		MSPS
${ }_{\text {tito }}$	Sampling Time Offset		$\mathrm{V}_{C C}-\mathrm{MIN}, \mathrm{V}_{\text {EE }}-\mathrm{MIN}$	0	10	0	15	ns
	Digital Output Delay	$V_{C C}=$ MIN，$V_{\text {EE }}=$ MIN，Load 1		25		30	ns	
${ }^{\text {H0}}$	Digital Output Hold Time	$V_{C C}=M A X, V_{E E}=$ MAX，Load 1	5		5		ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Linearity Error Integral, Independent		$V_{\text {RT }}, V_{\text {RB }}=$ NOM		± 0.2		± 0.2	\%
$E_{L D}$	Linearity Error Differential				0.2		0.2	\%
0	Code Size		25	175	25	175	\% Nominal	
$\mathrm{E}_{0 T}$	Offset Error Top	$V_{\text {IN }}=V_{\text {RT }}$		+40		+40	mV	
$E_{0 B}$	Offset Error Bottom	$V_{\text {IN }}=V_{\text {RB }}$		-30		-30	mV	
$\mathrm{T}^{\text {Co }}$	Offset Error Temperature Coefficient			± 20		± 20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
BW	Bandwidth, Full Power Input		7		5		MHz	
${ }^{\text {T }}$ R	Transient Response, Full Scale			20		20	ns	
SNR	Signal-to-Noise Ratio	20MSPS Conversion Rate, 10MHz Bandwidth						
	Peak Signal/RMS Noise	1.248 MHz Input	54		53		dB	
		2.438MHz Input	53		52		dB	
	RMS Signal/RMS Noise	1.248 MHz Input	45		44		dB	
		2.438MHz Input	44		43		dB	
$\mathrm{EAP}_{\text {AP }}$	Aperture Error			60		60	ps	
DP	Differential Phase Error	$\mathrm{F}_{S}=4 \times$ NTSC		1.0		1.0	Degree	
DG	Differential Gain Error	$\mathrm{F}_{\mathrm{S}}=4 \times$ NTSC		2.0		2.0	\%	
NPR	Noise Power Ratio	DC to 8 MHz White Noise Bandwidth 4 Sigma Loading 1.248MHz Slot 20MSPS Conversion Rate	36.5		36.5		dB	

Dutput Coding

Step	Range		Binary		Offset Two's Complement	
			True	Inverted	True	Inverted
	-2.0000V FS	-2.0480V FS	NMINV - 1	0	0	1
	7.8431 mV STEP	8.000 mV STEP	NLINV - 1	0	1	0
000	0.0000 V	0.0000 V	0000000	1111111	1000000	0111111
001	-0.0078V	-0.0080V	0000001	1111110	1000001	0111110
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
127	-0.9961V	-1.0160V	01111111	10000000	11111111	00000000
128	-1.0039v	-1.0240V	10000000	01111111	00000000	11111111
129	-1.0118V	-1.0320V	10000001	01111110	00000001	11111110
-	-		-	-	-	-
-	-		-	-	-	-
-	-	-	\bullet	\bullet	-	-
254	-1.9921V	-2.0320V	11111110	00000001	01111110	10000001
255	-2.0000V	-2.0400V	1111111	00000000	01111111	10000000

Notes:

1. NMINV and NLINV are to be considered DC controls. They may be tied to +5 V for a logical " 1 " and tied to ground for a logical " 0 ."
2. Voltages are code midpoints when calibrated by the procedure given below.

Calibration

To calibrate the TDC1048, adjust $V_{R T}$ and $V_{\text {RB }}$ to set the 1st and 255th thresholds to the desired voltages. Note that R_{1} is greater than R, enșuring calibration with a positive voltage on RT. Assuming a OV to -2 V desired range, continuously strobe the converter with $-0.0039 \mathrm{~V}(1 / 2 \mathrm{LSB}$ from OV) on the analog input, and adjust $V_{R T}$ for output toggling between codes 00 and 01. Then apply $-1.996 \mathrm{~V}(1 / 2 \mathrm{LSB}$ from -2 V) and adjust $V_{\text {RB }}$ for toggling between codes 254 and 255 .

The degree of required adjustment is indicated by the offset error, E_{OT} and E_{OB}. Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_{1} and R_{2} in the Functional Block

Diagram. Calibration will cancel all offset voltages, eliminating offset and gain errors.

The above method of calibration requires that both ends of the resistor chain, R_{T} and R_{B}, are driven by buffered operational amplifiers. Instead of adjusting $V_{R T}$, RT can be connected to analog ground and the OV end of the range calibrated with a buffer offset control. The offset error at the bottom of the resistor chain results in a slight gain error, which can be compensated for by varying the voltage applied to R_{B}. The bottom reference is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 6.

Typical Interface

Figure 6 shows an example of a typical interface circuit for the TDC1048. The analog input amplifier is a bipolar wideband operational amplifier, which is used to directly drive the AID converter. Bipolar inputs may be accommodated by adjusting the offset control. A zener diode provides a stable reference for both the offset and gain control. All five $V_{\mathbb{I N}}$ pins are connected close to the device package, and the buffer amplifier feedback loop should be closed at that point. The buffer has a gain of minus two, increasing a 1 Volt $p-p$ video input signal to the recommended 2 Volt p-p input for the AD converter. Proper decoupling is recommended for all systems, although the degree of decoupling shown may not be needed. A
variable capacitor permits buffer optimization, by either step response or frequency response. This may be replaced with a fixed value capacitor, as determined by the layout and desired optimization.

The bottom reference voltage, V_{RB}, is supplied by an inverting amplifier, buffered with a PNP transistor. The transistor provides a low-impedance source and is necessary to sink the current flowing through the reference resistor chain. The bottom reference voltage can be adjusted to cancel the gain error introduced by the offset voltage, $\mathrm{E}_{0 \mathrm{~B}}$, as discussed in the calibration section.

Figure 5. Typical Reference Midpoint Adjust Circuit

Figure 6. TDC1048 Typical Interface Circuit

Parts List

Resistors			
R1	0.0Ω	114 W	5%
R2	80.7Ω	114 W	5%
R3	$1 \mathrm{~K} \Omega$	114 W	5%
R4	$2 \mathrm{~K} \Omega$	114 W	5%
R5	220Ω	114 W	5%
RG	$2 \mathrm{~K} \Omega$	114 W	5%
R7	$1 \mathrm{~K} \Omega$	114 W	5%
R9	$2 \mathrm{~K} \Omega$	114 W	Multiturn Pot
R9	$2 \mathrm{~K} \Omega$	114 W	Multiturn Pot
R10	$10 \mathrm{~K} \Omega$	114 W	5%
R11	$20 \mathrm{~K} \Omega$	114 W	5%
R12	27Ω	114 W	5%

Integrated Circuits

U1	TRW TDC1048
U2	HA-2539-5 op-amp
U3	UA741C op-amp
U4	LM313 reference
Transistors	
01	2N2907
Inductors	
LT, L2	Ferrite beads

Capacitors

$\mathrm{C1}-\mathrm{CA}$	$10 \mu \mathrm{~F}$	25 V
$\mathrm{C5}-\mathrm{C11}$	$0.1 \mu \mathrm{~F}$	50 V
C 12	$1-6 \mathrm{pF}$	variable

$$
\mathrm{R}_{2}=\frac{1}{\frac{2 V_{\text {Range }}}{V_{\text {REF }} Z_{\mathrm{IN}}}-0.001}
$$

$R 1-Z_{I N}-\frac{1000 \mathrm{R} 2}{1000+\mathrm{R}^{2}}$

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1048, 6 C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	104866
TDC10486G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Lead DIP	104866
TOC10486F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Lead DIP	1048/6F
TDC10486A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MLL-STD-8838	28 Lead DIP	104816A
TDCIO486N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Lead DIP	1048, 6 N
TDC1048C3C	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1048C3C
TDC1048C3G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Contact Chip Carrier	1048C3G
TDC1048C3F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	28 Contact Chip Carrier	1048C3F
TDC1048C3A	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883B	28 Contact Chip Carrier	1048C3A
TDCIO48Can	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Contact Chip Carrier	1048 C 3 N
TDC1048B6C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	28 Lead CERDIP	1048B6C
TDC1048B6G	STD-T ${ }_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	28 Lead CERDIP	1048B6G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TRW LSI's line of monolithic, high-speed D/A converters employ segmented current switching techniques. These D/A converters have resolutions of 8 and 10 bits, and are exceptionally well suited for video, vector, and raster graphics applications. These devices are built with TRW LSI's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance, size, power, and reliability. The development of fine lithography techniques has yielded faster, more accurate, and more economical D/A converters.

Operation

D/A converters have four major functional sections: data input registers, decoding logic, output current switches and reference amplifier. The primary function of the data registers is to hold data values constant during conversion. The registers assure precise matching of propagation delays to reduce glitching to a minimum. The decoding
logic selects the current switches and special video functions, such as SYNC, BLANK, BRIGHT, and FORCE
HIGH. The two analog outputs of the TDC1018 are complementary currents, which vary in proportion to the input data, controls, and reference current. The TDC1016 has an internal resistor to provide a voltage output which varies in proportion to the magnitude of input data and reference voltage. The reference amplifier drives the current switches. The full-scale output value may be adjusted over a limited range by varying the reference voltage or current.

Most applications of these devices require no extra registering, buffering, or deglitching. Four special level controls make the TDC1018 ideal for RGB raster graphics applications. The TDC1016 can be operated in either TTL or ECL compatible modes, with controls for selecting input data format. Binary, inverse binary, two's complement, and inverse two's complement formats are supported.

Product	Bits	Integral Linearity Error (\%)	Conversion Rate ${ }^{1}$ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1016 ${ }^{2}$	8	0.20	20	0.7	J5, J7, C2, B7	TTUECL Compatible
	9	0.10	20	0.7	J5, J7, C2, B7	TTUECL Compatible
	10	0.05	20	0.7	J5, J7, C2, B7	TTUECL Compatible
TDC1018	8	0.20	125	0.8	J7, B7	ECL Compatible

Notes: 1. Guaranteed, Worst Case, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
2. The TDC1016 has 10 -bit resolution, and is available in three linearity grades to meet 8,9 , and 10 -bit system requirements.

Video Speed D/A Converter

 10-bit, 20MSPSThe TDC1016 is a bipolar monolithic digital-to-analog converter which can convert digital data into an analog voltage at rates up to 20 MegaSamples Per Second (MSPSI. The device includes an input data register and operates without an external deglitcher or amplifier.

Operating the TDC1016 from a single - 5.2 Volt power supply will bias the digital inputs for ECL levels, while operating from a dual ± 5 Volts power supply will bias the digital inputs for TTL levels.

All versions of the TDC1016 are 10-bit digital-to-analog converters, but are available with linearity specifications of either 8,9 , or 10 bits. The TDC1016 is patented under U.S. patent number 3283120 with other patents pending.

Features

- 20MSPS Conversion Rate
- 8 , 9, or 10 -Bit Linearity
- Voltage Output, No Amplifier Required
- Single Supply Operation (-5.2V, ECL Compatible)
- Dual Supply Operation $(\pm 5.0 V$, TTL Compatible)
- Internal 10-Bit Latched Data Register
- Low Glitch Energy
- Disabling Controls, Forcing Full-Scale, Zero, And Inverting Input Data
- Binary Or Two's Complement Input Data Formats
- Differential Gain $=1.5 \%$, Differential Phase $=1.0$ Degree
- MIL-STD-883 Screening Available

Applications

- Construction of Video Signals From Digital Data. 3x Or 4x NTSC Or PAL Color Subcarrier
- CRT Graphics Displays, RBG, Raster, Vector
- Waveform Synthesis

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Pin Assignments

Functional Description

General Information

TLECL buffers are used for all digital inputs to the TDC1016. Logic family compatibility depends upon the connection of power supplies. When single power supply (-5.2 V) operation is employed, all data, clock, and disable inputs are compatible with differential ECL logic levels. All digital inputs become compatible with TTL levels when dual power supply ($\pm 5.0 \mathrm{~V}$) operation is used.

The internal 10-bit register latches data on the rising edge of the clock (CLK) pulse. Currents from the current sources are
switched accordingly and combined in the resistor network to give an analog output voltage. The magnitude of the output voltage is directly proportional to the magnitude of the digital input word.

The NFL and NFH inputs can be used to simplify system calibration by forcing the analog output voltage to either its zero-scale or full-scale value. The TDC1016 can be operated in binary, inverse binary, two's complement, or inverse two's complement input data formats.

Power

The TDC1016 can be operated from a single -5.2 Volts power supply or from a dual ± 5.0 Volts power supply. For single power supply operation, V_{CC} is connected to $\mathrm{D}_{\mathrm{GND}}$ and all inputs to the device become ECL compatible. When VCC is tied to $+5: 0$ Volts, the inputs are TTL compatible.

The return path for the output from the 10 current sources is AgND. The current return path for the digital section is DGND. $\mathrm{D}_{\mathrm{GND}}$ and $\mathrm{A}_{\mathrm{GND}}$ should be returned to system power supply ground by way of separate conductive paths to prevent digital ground noise from disturbing the analog circuitry of the
TDC1016. All $A_{G N D}$ pins must be connected to system analog ground.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pin 9	Pin 44	Pin 6
$V_{E E}$	Negative Supply Voltage	$-5.0 V$	Pin 2	Pin 34	Pin 23
A $_{\text {GND }}$	Analog Ground	$0.0 V$	Pins 5, 6,8	Pins 38, 39, 40, 41, 43	Pins 2, 3, 5
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pin 10	Pin 1	Pin 7

LSI Products Division

TRW Electronic Components Group

Reference

The reference input is normally set to -1.0 V with respect to $A_{G N D}$ ．Adjusting this voltage is equivalent to adjusting system gain．The temperature stability of the TDC1016 analog output （AOUT）depends primarily upon the temperature stability of the applied reference voltage．

The internal operational amplifier of the TDC1016 is frequency stabilized by an external 1 microfarad tantalum capacitor connected between the COMP pin and V_{EE} ．A minimum of 1 microfarad is adequate for most applications，but 10 microfarads or more is recommended for optimum performance．The negative side of this capacitor should be connected to V_{EE} ．

Name	Function	Value	J5 Package	C2 Package	J7，B7 Package
$V_{\text {REF }}$	Reference Voltage In	-1.0 V	Pin 4	Pin 36	Pin 1
COMP	Compensation	$1 \mu \mathrm{~F}$	Pin 3	Pin 35	Pin 24

Control

The NDIS inputs are used to disable the TDC1016 by forcing its output to the zero－scale value（current sources off）．The NDIS inputs are asynchronous，active without regard to the CLK inputs．The other digital control inputs are synchronous， latched on the rising edge of the CLK pulse．

The rising edge of the CLK pulse transfers data from the input lines to the internal 10 －bit register．In TTL mode，the inverted
inputs for CLK，DATA，and NDIS are inactive and should be left open．

The Input Coding table illustrates the function of the digital control inputs．A two＇s complement mode is created by activating N2C with a logic＂ 0 ．＂When NFH and NFL are both activated with a logic＂0，＂the input data to the 10 －bit register is inverted．

Name	Function	Value	J5 Package	C2 Package	J7，B7 Package
NDIS	Not Disable	TTUECL	Pin 11	Pin 2	Pin 8
$\overline{\text { NDIS }}$	Not Disable（Inv）	ECL	Pin 14	Pin 5	
CLK	Clock	TTUECL	Pin 12	Pin 3	Pin 9
$\overline{\text { CLK }}$	Clock（Inv）	ECL	Pin 13	Pin 4	
N2C	Not Two＇s Complement	TTUECL	Pin 17	Pin 9	Pin 11
NFH	Not Force HIGH	TTUECL	Pin 20	Pin 12	Pin 13
NFL	Not Force LOW	TTUECL	Pin 21	Pin 13	Pin 14

Data Input

Data inputs are ECL compatible when single power supply operation is employed．The J 5 and C 2 packages allow for differential ECL inputs while the J 7 and B 7 packages have only single－ended inputs．When differential ECL data is used，any data input can be inverted simply by reversing the connections
to the true and inverted data input pins．All inverted input pins should be left open if single－ended ECL or TTL modes are used．All data inputs have an internal 40 kOhm pull－up resistor to $V_{\text {CC }}$ ．

Data Input (Cont.)

Name	Function	Value	$J 5$ Package	C2 Package	J7, B7 Package
D_{1}	Data Bit 1 (MSB)	TTUECL	Pin 16	Pin 8	Pin 10
$\bar{\square}$	Data Bit 1 (MSB Inv)	ECL	Pin 15	Pin 7	
D_{2}		TTUECL	Pin 19	Pin 11	Pin 12
$\overline{D_{2}}$		ECL	Pin 18	Pin 10	
D_{3}		TIUECL	Pin 23	Pin 15	Pin 15
$\overline{D_{3}}$		ECL	Pin 22	Pin 14	
D_{4}		TTUECL	Pin 25	Pin 17	Pin 16
$\overline{D_{4}}$		ECL	Pin 24	Pin 16	
D_{5}		TTUECL	Pin 27	Pin 19	Pin 17
$\overrightarrow{0}_{5}$		ECL	Pin 26	Pin 18	
D_{6}		TTUECL	Pin 29	Pin 21	Pin 18
$\overline{D_{6}}$		ECL	Pin 28	Pin 20	
D_{7}		THUECL	Pin 31	Pin 23	Pin 19
$\overline{D_{7}}$		ECL	Pin 30	Pin 22	
D_{8}		TUECL	Pin 33	Pin 25	Pin 20
\square_{8}		ECL	Pin 32	Pin 24	
D_{g}		TTUECL	Pin 35	Pin 27	Pin 21
$\overline{0_{g}}$		ECL	Pin 34	Pin 26	
D_{10}	Data Bit 10 (LSB)	TTUECL	Pin 37	Pin 29	Pin 22
$\overline{\mathrm{D}_{10}}$	Data Bit 10 (LSB Inv)	ECL	Pin 36	Pin 28	

Analog Output

The analog output voltage is negative with respect to AGND
and varies proportionally with the magnitude of the input data
word. The output resistance at this point is 800 hms , nominally.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
AOUT	Analog. Dutput Voltage	OV to -1V	Pin 7	Pin 42	Pin 4

No Connect

There are several pins labeled no connect (NC) on the TDC1016
$J 5$ and C 2 packages, which have no connections to the chip.
These pins should be left open.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
NC	No Connect	Open	Pins 1,38,39, 40	Pins 6, 30, 31, 32,33,37	None

Figure 1. Timing Diagram

Figure 2. Analog Output Equivalent Circuit, TTL \& ECL Mode

Note: 1.75Ω requires outside trim

Figure 3. Digital Input Equivalent Circuit, TTL Mode

Figure 4. Digital Input Equivalent Circuit, ECL Mode

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Supply Voltages

$V_{C C}$ (measured To $\left.D_{G N D}\right)$
-0.5 to $+7.0 V$
$V_{E E}$ (measured To $A_{G N D}$)
+0.5 to -7.0 V
$A_{G N D}$ (measured To $D_{G N D}$)
+1.0 to -1.0 V
Digital (measured To $\mathrm{D}_{\mathrm{GND}}$)
+7.0 to -7.0 V
Reference (measured To $\mathrm{A}_{\mathrm{GND}}$)
-1.5 to +0.5 V

Input Voltages

Output

Temperature

junction.
$+175^{\circ} \mathrm{C}$

Storage
-65 to $+150^{\circ} \mathrm{C}$
Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.

Operating conditions

Parameter			Temperature Range						Units
			Standard			Extended			
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Positive Supply Voltage	TTL Mode	4.75	5.0	5.25	4.50	5.0	5.55	v
		ECL Mode	-0.25	0.0	0.25	-0.25	0.0	0.25	v
$V_{\text {EE }}$	Negative Supply Voltage		-4.5	-5.0	-5.5	-4.5	-5.0	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (Measured to $\mathrm{DGND}^{\text {l }}$		-0.1	0.0	0.1	-0.1	0.0	0.1	V
tpwL	CLK Pulse Width, Low		15			20			ns
${ }_{\text {tPWH }}$	CLK Pulse Width, High		15			20			ns
's	Input Register Set-up Time	TTL Mode	20			20			ns
		ECL Mode	25			25			ns
${ }^{\text {t }}$	Input Register Hold Time		2			2			ns
$V_{\text {IL }}$	Logic "0"	TTL Mode	$\mathrm{D}_{\mathrm{GND}}$		0.8	$\mathrm{D}_{\text {GND }}$		0.8	V
		ECL Mode	-1.85		-1.475	-1.85		-1.475	V
$\overline{V_{\text {IH }}}$	Logic "1"	TLL Mode	2.0		$V_{\text {CC }}$	2.0		$V_{\text {CC }}$	V
		ECL Mode	-1.105		-0.81	-1.105		-0.81	V
$V_{\text {REF }}$	Reference Voltage		-0.8	-1.0	-1.2	-0.8	-1.0	-1.2	V
$\mathrm{C}_{\text {COMP }}$	Compensation Capacitor		1.0			1.0			$\mu \mathrm{F}$
${ }_{\text {T }}$	Ambient Temperature		0		70				${ }^{\circ} \mathrm{C}$
${ }^{T}$	Case Temperature					-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I C }}$－Power Supply Current	TTL Mode， $\mathrm{V}_{\text {CC }}=$ MAX， $\mathrm{V}_{\text {EE }}=\mathrm{MAX}$		20		20	mA
EE Power Supply Current	TTL Mode， $\mathrm{V}_{\text {CC }}=$ MAX， $\mathrm{V}_{\mathrm{EE}}=\mathrm{MAX}{ }^{1}$		－120		－150	mA
MREF Reference Input Current	$\mathrm{V}_{\text {EE }}=$ MAX， $\mathrm{V}_{\text {REF }}=-1.0 \mathrm{~V}$		10		10	$\mu \mathrm{A}$
ILL Logic＂0＂Input Current	TTL Mode， $\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {EE }}=\mathrm{MAX}$		－1．0		－1．0	mA
	ECL Mode， $\mathrm{V}_{\text {CC }}=0.0, \mathrm{~V}_{\mathrm{EE}}=\mathrm{MAX}$		－300		－300	$\mu \mathrm{A}$
IHH Logic＂1＂Input Current	TTL Mode， $\mathrm{V}_{\text {CC }}=$ MAX， $\mathrm{V}_{\text {EE }}=$ MAX		75		75	$\mu \mathrm{A}$
	ECL Mode， $\mathrm{V}_{\text {CC }}=0.0, \mathrm{~V}_{\mathrm{EE}}=\mathrm{MAX}$		300		300	$\mu \mathrm{A}$
	CLK，NDIS		300		300	$\mu \mathrm{A}$
$\mathrm{C}_{\text {OUT }}$ Output Capacitance	$A_{\text {OUT }}$ to $A_{\text {GND }}$（Figure 2）		10		10	pF
$\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	Any Digital Input to $\mathrm{D}_{\mathrm{GND}}$		35		35	pF
ROUT Output Resistance	$A_{\text {OUT }}$ to $\mathrm{A}_{\text {GND }}$（Figure 2）	70	95	70	95	Ohms
Note：						

Switching characteristics within specified operating conditions

Parameter		\therefore Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Maximum Data Rate		ITL Mode Full－Scale Output Step	20		20		MSPS
			ECL Mode Full－Scale Output Step	18		18		MSPS
	Data Turn－on Delay	$\mathrm{RL}=750 \mathrm{hms}$		20		20	ns	
${ }^{\text {t }}$ SET	Settling Time	TDC1016－8 to 0．2\％		30		30	ns	
		TDC1016－9 to 0．1\％		35		35	ns	
		TDC1016－10 to ．05\％		40		40	ns	
trv	Output 10\％to 90\％Risetime	$\mathrm{V}_{\text {EE }}=$ NOM，RL -750 hms Full－Scale Step		5.5		5.5	ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
RES	Resolution		All TDC1016 Devices		10		10	bits
ELI, ELD	Linearity Error Integral and Differential Terminal Based		TDC1016-8		0.2		0.2	\% FS
		TDC1016-9		0.1		0.1	\% FS	
		TDC1016-10		0.05		0.05	\% FS	
$V_{\text {OFS }}$	Full-Scale Output Voltage	$\mathrm{V}_{\mathrm{EE}}=\mathrm{NOM}, \mathrm{RL}=10 \mathrm{kOhms}$	-0.95	-1.05	-0.95	-1.05	Volts	
		$V_{\text {REF }}=-1.000 \mathrm{~V}$						
		$\mathrm{V}_{\mathrm{EE}}=$ NOM, RL -750 hms	-0.47	-0.53	-0.47	-0.53	Volts	
		$V_{\text {REF }}=-1.000 \mathrm{~V}$						
$\overline{V_{0 Z S}}$	Zero-Scale Output Voltage	$\mathrm{V}_{\text {EE }}=$ NOM, RL $=750 \mathrm{hms}$		± 15		± 15	mV	
		$V_{\text {REF }}=-1.000 \mathrm{~V}$						
DP	Differential Phase	NTSC 4x subcarrier ${ }^{1}$		1.0		1.0	Degree	
DG	Differential Gain	NTSC 4x subcartier ${ }^{1}$		1.5		1.5	\%	
GE	Gilch "Energy" (Area)	RL $=75$ Ohms, Midscale		100		100	pV-sec	
GV	Glitch Voltage	RL $=75$ Ohms, Midscale		35		35	mV	
Note:								

Input Coding Table

NDIS	N2C	NFH	NFL	Data	Output	Description
0	x	x	x	xxxxxxxxxx	0.0	Output Disabled
1	1	1	1	1111111111	0.0	Binary (Default State for
1	1	1	1	0000000000	-1.0	TL Mode Control) Inputs Open
1	1	0	0	1111111111	-1.0	Inverse Binary
1	1	0	0	0000000000	0.0	
1	0	1	1	0111111111	0.0	Two's Complement
1	0	1	1	1000000000	-1.0	
1	0	0	0	0111111111	-1.0	Inverse Two's Complement
1	0	0	0	1000000000	0.0	
1	x	0	1	xxxxxxxxxx	0.0	Force HIGH
1	x	1	0	xxxxxxxxx ${ }^{\text {d }}$	-1.0	Force Low
Notes:						
1. For TTL, $0.0<\mathrm{V}_{\mathrm{IL}}<+0.8$ Volts is logic "0"						
2. For TTL, $+2.0<V_{\text {IH }}<+5.0$ Volts is logic "0"						
3. For ECL, $-1.85<\mathrm{V}_{\text {IL }}<-1.47$ Volts is logic "0"						
4. For ECL, -1.10< $V_{\text {IH }}<-0.8$ Volts is logic "0"						
5. "x" = "don't care"						

Calibration

The TDC1016 is calibrated by adjusting the voltage reference to give the desired full-scale output voltage. The current switches can be turned on either by loading the data register with full-scale data or by bringing the NFH input to a logic zero.

Note that all 10 current switches are activated by the NFH input and the resulting full-scale output voltage will be greater than if the system used only eight or nine bits for full-scale data.
of the circuit is a composite video signal with SYNC and BLANKING levels coming from external sources. This technique allows the TDC1016 to use its entire dynamic range for the video information while pulses are added by other means.

The reference for the TDC1016 is generated by dividing the output voltage from a two-terminal band-gap voltage reference. System gain is calibrated by adjusting variable resistor R1. Analog and digital grounds should be routed back to system power supply ground by separate paths.

Figure 5. Typical Interface Circuit

Parts List

Resistors

R1	$5 K$	$1 / 4 W$	10 -turn
R2	$1 K$	$1 / 4 W$	$10-$ turn
R3	$1 K$	$1 / 4 W$	5%
R4	43	$1 / 4 W$	5%
R5	33	$1 / 4 W$	5%
R6	330	$1 / 4 W$	5%
R7	750	$1 / 4 W$	5%
R8,R9	10	$1 / 4 W$	5%
R10	75	$1 / 4 W$	2%
R11,R12	10 K	$1 / 4 W$	5%
R13	220	$1 / 4 W$	5%
R14,R15	100	$1 / 4 W$	5%
R16,R22	390	$1 / 4 W$	5%
R17,R18	$2 K$	$1 / 4 W$	$10-$ turn
R19	$1 K$	$1 / 4 W$	5%
R20,R21	$1 K$	$1 / 4 W$	5%

Capacitors

Cl	$0.01 \mu \mathrm{~F}$	50 V
C	$1.0 \mu \mathrm{~F}$	10 V
$\mathrm{C3}$	$1.0 \mu \mathrm{~F}$	10 V
CA	$2.2 \mu \mathrm{~F}$	25 V
$\mathrm{C5}$	$0.1 \mu \mathrm{~F}$	50 V
$\mathrm{C6}$	$2-5 \mathrm{FF}$	50 V
$\mathrm{C7}$	$0.1 \mu \mathrm{~F}$	50 V
CB	$0.1 \mu \mathrm{~F}$	50 V
CS	$0.1 \mu \mathrm{~F}$	50 V
ClO	$0.1 \mu \mathrm{~F}$	50 V
RF Chokes		
$\mathrm{L}, \mathrm{L} 2$	Ferrite beads	

Diodes
CR1 1N4001

Transistors

01	2N2907
02	2N2907
03	2N2907
04	2N6660
05	2N6660
Integrated Circuits	

U1	TRW TDC1016
U2	UM113
U3	HA2539
U4	SN7404

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1016.55CX TDC1016.J5GX TDC1016.5FX TDC1016.55AX	$\begin{aligned} & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{TC}=-55^{\circ} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883	40 Lead DIP 40 Lead Dip 40 Lead Dip 40 Lead Dip	1016.J5CX 1016.15GX 1016.55FX 101655AX
TDC1016.J7CX TDC1016J7GX TDC1016.J7FX TDC1016J7AX	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883	24 Lead DIP 24 Lead DIP 24 Lead DIP 24 Lead DIP	1016.J7CX 1016.JGX 101637FX 1016J7AX
TDC1016B7CX TDC1016B7GX	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In	24 Lead CERDIP 24 Lead CERDIP	$\begin{aligned} & \text { 101687CX } \\ & \text { 1016B7GX } \end{aligned}$
TDC1016C2CX TDC1016C2GX TDC1016C2FX TDC1016C2AX	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883	44 Contact Chip Carrier 44 Contact Chip Carier 44 Contact Chip Carier 44 Contact Chip Carier	1016C2CX 1016C2GX 1016C2FX 1016C2AX

[^3]
D/A Converter

8-bit, 125MSPS

The TRW TDC1018 is a 125 MegaSample Per Second (MSPS), 8-bit digital-to-analog converter, capable of directly driving a 75 Ohm load to standard video levels. Most applications require no extra registering, buffering, or deglitching. Four special level controls make the device ideal for video applications. All data and control inputs are ECL compatible.

The TDC1018 is built with TRW's OMICRON-B TM 1-micron bipolar process. On-chip data registers and precise matching of propagation delays make the TDC1018 inherently low-glitching. The TDC1018 offers high performance, low power consumption, and video compatibility in a 24 lead DIP package.

Features

- "Graphics-Ready"
- 125MSPS Conversion Rate
- 8 -Bit
- $1 / 2$ LSB Linearity
- Power Supply Noise Rejection > 50dB
- Registered Data And Video Controls
- Differential Current Outputs
- Video Controls: SYNC, BLANK, BRighT, Force High
- Inherently Low Glitch Energy
- ECL Compatible
- Multiplying Mode Capability
- Power Dissipation <940mW
- Available In 24 Lead DIP Package
- Single -5.2V Power Supply

Applications

- RGB Graphics
- High Resolution Video
- Raster Graphic Displays
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

$$
24 \text { Lead DIP - J7 Package }
$$

Functional Description

General Information

The TDC1018 develops complementary analog output currents proportional to the product of the digital input data and analog reference current. All data and control inputs are compatible with standard ECL logic levels. FeedThrough control (FT) determines whether data and control inputs are synchronous or asynchronous. If FT is LOW, each rising edge of the CONVert clock (CONV) latches decoded data and control values into an internal D-type register. The registered values are then converted into the appropriate analog output by switched current sinks. When FT is HIGH, data and control inputs are not registered, and the analog output asynchronously tracks the input values. FT is the only asynchronous input, and is normally used as a DC control.

The TDC1018 uses a segmented approach in which the four MSBs of the input data are decoded into a parallel "Thermometer" code, which drives fifteen identical current sinks to produce sixteen coarse output levels. The LSBs of the input drive four binary-weighted current switches, with a total contribution of one-sixteenth of full scale. The LSB and MSB currents are summed to provide 256 analog output levels.

Special control inputs, SYNC, BLANK, Force High (FH) and BRighT (BRT), drive appropriately weighted current sinks which add to the output current to produce specific output levels especially useful in video applications.

Power

To provide highest noise immunity, the TDC1018 operates from separate analog and digital power supplies, $\mathrm{V}_{\text {EEA }}$ and $\mathrm{V}_{\text {EED }}$. respectively. Since the required voltage for both $\mathrm{V}_{\text {EEA }}$ and $V_{E E D}$ is -5.2 V , these may ultimately be connected to the same power source, but individual high-frequency decoupling for each supply is recommended. A typical decoupling network is shown in Figure 7. The return for leed, the current drawn
from the $\mathrm{V}_{\mathrm{EED}}$ supply, is $\mathrm{D}_{\mathrm{GND}}$. The return for $\mathrm{I}_{\mathrm{EEA}}$ is $\mathrm{A}_{\mathrm{GND}}$. All power and ground pins MUST be connected.

Although the TDC1018 is specified for a nominal supply of -5.2 V , operation from a +5.0 V supply is possible provided that the relative polarities of all voltages are maintained.

Name	Function	Value	J7 Package
$V_{\text {EEA }}$	Analog Supply Voltage	-5.2 V	Pin 20
$V_{\text {EED }}$	Digital Supply Voltage	-5.2 V	Pin 5
$\mathrm{~A}_{\text {GND }}$	Analog Ground	0.0 V	Pin 17
$\mathrm{D}_{\mathrm{GND}}$	Digital Ground	0.0 V	Pin 9

Reference

The TDC1018 has two reference inputs: REF+ and REF-, which are noninverting and inverting inputs of an internal reference buffer amplifier. The output of this operational amplifier serves as a reference for the current sinks. The feedback loop is internally connected around one of the current sinks to achieve high accuracy (see Figure 4).

The analog output currents are proportional to the digital data and reference current, IREF. The full-scale output value may be adjusted over a limited range by varying the reference current. Accordingly, the stability of the analog output depends primarily upon the stability of the reference. A method of achieving a stable reference is shown in Figure 7.

The reference current is fed into the REF + input, while REFis typically connected to a negative reference voltage through a resistor chosen to minimize input offset bias current effects.

A COMPensation input (COMP), is provided for external compensation of the TDC1018's reference amplifier. A capacitor ${ }^{(C)}$) should be connected between COMP and the VEEA supply, keeping lead lengths as short as possible. The value of the compensation capacitor determines the effective bandwidth of the amplifier. In general, decreasing C_{C} increases bandwidth and decreases amplifier stability. For applications in which the reference is constant, C_{C} should be large, while smaller values of C_{C} may be chosen if dynamic modulation of the reference is required.

Name	Function	Value	J7 Package
REF-	Reference Current - Input	Op-Amp Virtual Ground	Pin 14
REF +	Reference Current + Input	Op-Amp Virtual Ground	Pin 15
COMP	COMPensation Input	C $_{C}$	Pin 16

Controls

The TDC1018 has four special video control inputs: SYNC, BLANK, Force High (FH), and BRighT (BRT), in addition to a clock FeedThrough control (FT). All controls are standard ECL level compatible, and include internal puildown resistors to force unused controls to a logic LOW linactivel state.

Typically the TDC1018 is operated in the synchronous mode, which assures the highest conversion rate and lowest spurious output noise. By asserting FT , the input registers are disabled, allowing data and control changes to asynchronously feed through to the analog output. Propagation delay from input change (control or datal to analog output is minimized in the asynchronous mode of operation.

In the synchronous mode, the video control inputs are registered by the rising edge of the CONV clock in a manner similar to the data inputs. The controls, like data, must be present at the inputs for a setup time of ts (ns) before, and a hold time of t_{H} (ns) after the rising edge of CONV in order to
be registered. In the asynchronous mode, the setup and hold times are irrelevant and minimum pulse widths HIGH and LOW become the limiting factor.

Asserting the video controls produces various output levels which are used for frame synchronization, horizontal blanking, etc., as described in video system standards such as RS-170 and RS-343A. The effect of the video controls on the analog outputs is shown in Table 1. Special internal logic governs the interaction of these controls to simplify their use in video applications. BLANK, SYNC, and Force High override the data inputs. SYNC overrides all other inputs, and produces full negative video output. Force High drives the internal digital data to full scale, giving a reference white video level output. The BRT control creates a "whiter than white" level by adding 10% of the full scale value to the present output level, and is especially useful in graphics displays for highlighting cursors, warning messages, or menus. For non-video applications, the special controls can be left unconnected.

Name	Function	Value	J7 Package
FT	Register FeedThrough Control	ECL	Pin 8
FH	Data Force High Control	ECL	Pin 10
BLANK	Video BLANK Input	ECL	Pin 11
BRT	Video BRighT Input	ECL	Pin 12
SYNC	Video SYNC Input	ECL	Pin 13

Data Inputs

Data inputs to the TDC1018 are standard single-ended ECL level compatible. Internal pulldown resistors force unconnected data inputs to logic LOW. Input registers are provided for synchronous data entry and lowest differential data propagation delay (skew), which minimizes glitching.

In the registered mode, valid data must be present at the input a setup time ts (ns) before, and a hold time IH_{H} (ns) after the rising edge of CONV. When FT is HIGH, data input is asynchronous and the input registers are disabled. In this case the analog output changes asynchronously in direct response to the input data.

Name	Function	Value	J7 Package
D_{1}	Data Bit 1 (MSB)	ECL	Pin 21
D_{2}		ECL	Pin 22
D_{3}		ECL	Pin 23
D_{4}		ECL	Pin 24
D_{5}		ECL	Pin
D_{6}		ECL	Pin 2
D_{7}		ECL	Pin 3
D_{8}	Data Bit 8 (LSB)	PCL	Pin 4

Convert

CONVert (CONV) is a differential ECL compatible clock input whose rising edge synchronizes data and control entry into the TDC1018. Within the constraints shown in Figure 2, the actual switching threshold of CONV is determined by CONV. CONV may be driven single-ended by connecting CONV to a suitable bias voltage V_{BB}). The bias voltage chosen will determine the
switching threshold of CONV. However, for best performance, CONV must be driven differentially. This will minimize clock noise and power supplyfoutput intermodulation. Both clock inputs must normally be connected, with CONV being the complement of CONV.

Name	Function	Value	J7 Package
CONV	CONVert Clock Input	ECL	Pin 6
$\overline{\text { CONV }}$	CONVert Clock Input, Complement	ECL	Pin 7

Analog Outputs

The two analog outputs of the TDC1018 are high-impedance complementary current sinks which vary in proportion to the input data, controls, and reference current values. The outputs are capable of directly driving a dual 750 hm load to standard video levels. The output voltage will be the product of the
output current and effective load impedance, and will usually be between OV and -1.07 V in the standard configuration Isee Figure 5). In this case, the OUT- output gives a DC shifted video output with "sync down." The corresponding output from OUT + is also DC shifted and inverted, or "sync up."

Name	Function	Value	J7 Package
OUT-	Output Current -	Current Sink	Pin 18
OUT +	Output Current +	Current Sink	Pin 19

Figure 1. Timing Diagram

Figure 2. CONVert, $\overline{\mathrm{CONV}}$ ert Switching Levels

Figure 3. Equivalent Input Circuits

Figure 4. Equivalent Output Circuit

Figure 5. Standard Load Configuration

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$
Supply Vottages
$V_{E E D}$ (measured to $\mathrm{D}_{\mathrm{GND}}$) -7.0 to 0.5 V
$V_{E E A}$ (measured to $A_{G N D}$) -7.0 to 0.5 V
$A_{G N D}$ (measured to $\mathrm{D}_{\mathrm{GND}}$) -0.5 to 0.5 V
Input Votages
CONV, Data, and Controls (measured to $\mathrm{D}_{\mathrm{GND}}$) $V_{\text {EED }}$ to 0.5 V
Reference input, applied voltage (measured to $\left.\mathrm{A}_{\mathrm{GND}}\right)^{2}$
REF + $V_{\text {EEA }}$ to 0.5 V
REF- $V_{\text {EEA }}$ to 0.5 V
Reference input, applied current, externally forced 3 ,4
REF+ 6.0 mA
REF- 0.5 mA
Output
Analog output, applied voltage (measured to $\mathrm{A}_{\mathrm{GND}}$)
OUT+ -2.0 to +2.0 V
OUT- -2.0 to +2.0 V
Analog output, applied current, externally forced ${ }^{3,4}$
OUT+ 50 mA
OUT- 50 mA
Short circuit duration Unlimited sec
Temperature
Operating, ambient -60 to $+140^{\circ} \mathrm{C}$
junction $+175^{\circ} \mathrm{C}$
Lead, soldering (10 seconds) $+300^{\circ} \mathrm{C}$
Storage -60 to $+150^{\circ} \mathrm{C}$
Notes:1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current when flowing into the device.

Operating conditions

Parameter			Temperature Range			Units
			Standard			
			Min	Nom	Max	
$V_{\text {EED }}$	Digital Supply Voltage (measured to $\mathrm{D}_{\mathrm{GND}}$)		-4.9	-5.2	-5.5	v
VEEA	Analog Supply Voltage (measured to AGND)		-4.9	-5.2	-5.5	V
$V_{\text {AGND }}$	Analog Ground Voltage (measured to $\mathrm{D}_{\text {GND }}$)		-0.1	0.0	+0.1	V
$V_{\text {EEA }}-V_{\text {EED }}$	Supply Voltage Differential		-0.1	0.0	+0.1	V
VICM	CONV Input Voitage, Common Mode Range (Figure 2)		-0.5		-2.5	V
VIDF	CONV Input Voitage, Differential (Figure 2)		0.4		1.2	V
tpwL	CONV Pulse Width, LOW		4			ns
tPWH	CONV Pulse Width, HIGH		4			ns
${ }_{\text {t }}$	Setup Time, Data and Controls		5			ns
${ }_{\text {t }}^{\text {H }}$	Hold Time, Data and Controls		0			ns
$V_{\text {IL }}$	Input Voltage, Logic Low		-1.49			V
$\mathrm{V}_{1 H}$	Input Voltage, Logic HIGH				-1.045	V
REF	Reference Current	Video standard output levels ${ }^{1}$	1.059	1.115	1.171	mA
		8 -bit linearity	1.0		1.3	mA
C_{C}	Compensation Capacitor		2000	3900		pF
${ }^{\text {T }}$	Ambient Temperature, Still Air		0		70	${ }^{\circ} \mathrm{C}$
Note:	1. Minimum and Maximum values allowed by $\pm 5 \%$ v	rriation given in RS343A and RS	after in	correction	evice.	

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
$\mathrm{F}_{\text {S }}$	Maximum Conversion Rate		$V_{\text {EEA }} V_{\text {EED }}=$ MIN	125		MSPS
${ }_{\text {tosc }}$	Clock to Output Delay, Clocked Mode		$\mathrm{V}_{\text {EEA }}, V_{\text {EED }}=\mathrm{MIN}, \mathrm{F}-0$		8	ns
tost	Data to Output Delay, Transparent Mode	$V_{\text {EEA }}, V_{\text {EED }}=$ MIN, FT - 1		13	ns	
${ }_{\text {t }}$ SI	Current Setting Time, Clocked Mode	$V_{\text {EEA }}, V_{\text {EED }}-\mathrm{MIN}, \mathrm{FT}=0$				
		0.2\%		10	ns	
		0.8\%		8	ns	
		3.2\%		5	ns	
${ }_{\text {tri }}$	Rise Time, Current	10\% to 90\% of Gray Scale		1.7	ns	

System performance characteristics within specified operating conditions

Parameter		Test Conditions	Temperat	dard	Units	
		Min	Max			
ELI	Linearity Error Integral, Terminal Based		$V_{\text {EEA }}, V_{\text {EED }}$ I $I_{\text {REF }}$ - NOM		± 0.2	\% of Gray Scale
ELD	Linearity Error Differential	$\mathrm{V}_{\text {EEA }} \cdot \mathrm{V}_{\text {EED }}$, $\mathrm{I}_{\text {REF }}=\mathrm{NOM}$	\%	± 0.2	\% of Gray Scale	
I_{OF}	Output Offset Current	$V_{\text {EEA }}, V_{\text {EED }}=$ MAX, SYNC $=$ BLANK $=0, F H-B R T=1$		10	$\mu \mathrm{A}$	
E_{G}	Absolute Gain Error	$V_{\text {EEA }}, V_{\text {EED }}-M I N, I_{\text {REF }}=N O M$		± 5	\% of Gray Scale	
TC_{G}	Gain Error Tempco			± 0.024	\% of Gray Scale ${ }^{1} \mathrm{C}$	
BWR	Reference Bandwidth, -3 dB	$C_{C}=$ MIN		1	MHz	
DP	Differential Phase	$4 \times$ NTSC		1.0	Degrees	
DG	Differential Gain	$4 \times$ NTSC		2.0	\%	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\text {EEA }}, \mathrm{V}_{\text {EED }}, \mathrm{I}_{\text {REF }}=$ NOM 1		45	dB	
		$V_{\text {EEA }}, V_{\text {EED }}, I_{\text {REF }}=$ NOM ${ }^{2}$		55	dB	
PSS	Power Supply Sensitivity	$\mathrm{V}_{\text {EEA }} \cdot \mathrm{V}_{\text {EED }} \cdot \mathrm{I}_{\text {REF }}=$ NOM		120	$\mu \mathrm{AN}$	
${ }^{\text {G }}$ C	Peak Glitch Charge	Registered Mode ${ }^{3,4}$		800	fCoulomb	
G^{\square}	Peak Glitch Current	Registered Mode		1.2	mA	
G_{E}	Peak Glitch "Energy" (Area)	Registered Mode ${ }^{4}$		30	pV -Sec	
${ }^{\mathrm{FT}} \mathrm{C}_{\mathrm{C}}$	Feedthrough Clock	Data - Constant ${ }^{5}$		-50	dB	
${ }_{\underline{F}}$	Feedthrough Data	Clock $=$ Constant ${ }^{5}$		-50	dB	
Notes:	1. $20 \mathrm{KHz}, \pm 0.3 \mathrm{~V}$ ripple superimposed on 2. $60 \mathrm{~Hz}, \pm 0.3 \mathrm{~V}$ ripple superimposed on V 3. fCoulombs $=$ microamps \times nanosecon 4. 37.5Ω load. Because glitches tend to 5. d8 relative to full gray scale, 250 MHz	$V_{\text {EEA }}, V_{\text {EED }}$; dB relative to full gray scale. EEA. $V_{\text {EED }}$ dB relative to full gray scale. be symmetric, average glitch area approaches zero. bandwidth limit.				

Table 1 Video Control Truth Table

Sync	Blank	Force High	Bright	Data Input	Out- (mA) ${ }^{1}$	Out- (V) ${ }^{2}$	Out - (IRE) ${ }^{3}$	Description ${ }^{4}$
1	X	X	X	X	28.57	-1.071	-40	Sync Level
0	1	X	X	X	20.83	-0.781	0	Blank Level
0	0	1	1	X	0.00	0.00	110	Enhanced High Level
0	0	1	0	X	1.95	-0.073	100	Normal High Level
0	0	0	0	000...	19.40	-0.728	7.5	Normal Low Level
0	0	0	0	111...	1.95	-0.073	100	Normal High Level
0	0	0	1	000...	17.44	-0.654	17.5	Enhanced Low Level
0	0	0	1	111...	0.00	0.00	110	Enhanced High Level

Notes:

1. Out + is complementary to Out-. Current is specified as conventional current when flowing into the device.
2. Voltage produced when driving the standard load configuration $(37.50 \mathrm{hms})$. See figure 5.
3. 140 IRE units $=1.00 \mathrm{~V}$.
4. RS-343-A tolerance on all control values is assumed.

Figure 6. Video Output Waveform for Out- and Standard Load Configuration

Figure 7. Typical Interface Circuit

Parts List

Resistors

R1	$1 \mathrm{~K} \Omega$	Pot	10 Turn
R2	$1.00 \mathrm{~K} \Omega$	$1 / 8 \mathrm{w}$	1% Metal Film
R3	$2.00 \mathrm{~K} \Omega$	18 W	1% Meta Film
R4	$1.00 \mathrm{~K} \Omega$	$1 / 8 \mathrm{~W}$	1% Metal Film

Capacitors

C1-C3	$0.1 \mu \mathrm{~F}$	50 V	Ceramic disc
C4	$0.01 \mu \mathrm{~F}$	50 V	Ceramic disc

Integrated Circuits

U1 \quad TDC1018	D/A Converter	
Voltage References		
VR1	LM113 or LM313	Bandgap Reference

Inductors

F1	Ferrite Bead Shield Inductor
	Fair-Rite PiN 2743001112 or Similar

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1018J7C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1018.J7C
TDC1018J7G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	24 Lead DIP	1018J7G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division

Digital signal processing (DSP) relies heavily on multiplication. TRW LSI offers a family of parallel multipliers in a variety of word sizes ($8,12,16$ bits) and speeds (40 ns to 230 ns multiply times). Parallel multipliers accept two n -bit input operands and output the 2 n -bit product. Independently clocked registers are provided for the inputs and outputs. Three-state outputs are provided to ease interfacing. All TRW multipliers are TTL compatible.

Multipliers have three functional sections: an input section, the asynchronous multiplier array, and the output section. The input section has two n -bit registers, comprised of positive-edge-triggered D-type flipflops. Except as noted, the operands may be either two's complement or unsigned magnitude numbers.

The asynchronous multiplier array generates the n partial products. The properly weighted partial products are summed by an asynchronous group of adders. The product is rounded and the format is adjusted as appropriate, before entering the product register.

The output section includes the product registers and the three-state output ports. The Most Significant Product (MSP) and the Least Significant Product (LSP) each have their own individually clocked n-bit register. The MSP and LSP have separate three-state output ports.

" H " series Multipliers

The MPY008H/MPY008HU (8-bit), MPY012H (12-bit), and MPY016H (16-bit) devices are fabricated using a two-micron triple-diffused bipolar technology.

"K" series Muttipliers

The MPY112K (12-bit) and MPY016K (16-bit) devices have been developed for high-speed applications using TRW's OMICRON-B ${ }^{\text {TM }}$ one-micron triple-diffused bipolar technology. The MPY112K has been optimized for minimum package size and operation at video processing speeds (20 MHz). The MPY016K is a faster yet pin-compatible version of the MPY016H.

Product	Size	Multiplication Time ${ }^{1}$ ($n s$)	Power Dissipation (Watts)	Package	Notes
MPY008H	8×8	90	1.3	J5, C2	Two's complement
MPYOO8H-1	8×8	65	1.3	J5, C2	Two's complement
MPY08HU	8×8	90	1.3	J5, C2	Unsigned magnitude
MPYO8HU. 1	8×8	65	1.3	J5, C2	Unsigned magnitude
MPY012H	12×12	115	3.0	Ji, C1, L1, F1	
MPY112K	12×12	50	2.2	J4	16-Bit product
MPY016H	16×16	145	4.4	J1, C1, L1, F1	
MPY016K	16×16	45	4.0	J1, C1, L1	
MPY016K-1	16x16	40	4.0	J1, C1, L1	

Note: 1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Multiplier

8×8 bit, 65ns

The MPYOOBH is a high-speed 8×8 bit parallel multiplier which operates at a 65 nanosecond cycle time. The multiplicand and the multiplier are both two's complement numbers, yielding a full-precision 16 -bit two's complement product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPY008H is built with TRW's 2-micron bipolar process.

Features

- 65ns Multiply Time: MPY008H-1
- 90 ns Multiply Time: MPYOOBH
- 8×8 Bit Parallel Multiplication With 16 -Bit Product Output
- Three-State Outputs
- Fully TTL Compatible
- Two's Complement Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 40 Lead Ceramic DIP Or 44 Contact Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

40 Lead DIP - J5 Package

44 Contact Chip Carrier - C2 Package

Functional Description

General Information

The MPYOOBH has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous
multiplier array is a network of AND gates and adders, designed to handle two's complement numbers only. The output registers hold the product as two 8 -bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPYO08H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 8-bit output lines.

Power

The MPYOOBH operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J5 Package	C2 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 30	Pin 34
GND	Ground	0.0 V	Pin 32	Pin 36

Data Inputs

The MPYOO8H has two 8-bit two's complement data inputs, labeled X and Y. The Most Significant Bits (MSB'sl, denoted $X_{S G N}$ and $Y_{S G N}$, carry the sign information for the two's complement notation. The remaining bits are denoted X_{1}
through X_{7} and Y_{1} through Y_{7} (with X_{7} and Y_{7} the Least Significant Bitsl. The input and output formats for fractional two's complement notation, and integer two's complement notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package	C2 Package
$X_{S G N}$	X Data Sign Bit (MSB)	ΠL	Pin 22	Pin 25
X_{1}		ΠL	Pin 21	Pin 24
X_{2}		ΠL	Pin 20	Pin 23
X_{3}		ΠL	Pin 19	Pin 22
X_{4}		ΠL	Pin 18	Pin 21
X_{5}		ΠL	Pin 17	Pin 20
X_{6}		Π Data LSB	Pin 16	Pin 19
X_{7}	Y Data Sign Bit (MSB)	ΠL	Pin 15	Pin 18
$Y_{S G N}$		ΠL	Pin 35	Pin 39
Y_{1}		ΠL	Pin 34	Pin 38
Y_{2}		ΠL	Pin 33	Pin 37
Y_{3}		ΠL	Pin 31	Pin 35
Y_{4}		ΠL	Pin 29	Pin 33
Y_{5}		ΠL	Pin 28	Pin 32
Y_{6}			Pin 26	Pin 31
Y_{7}				Pin 30

Data Outputs

The MPYOO8H has a 16 -bit two's complement output which is the product of the two input data values. This output is divided into two 8 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit IMSBI of both the MSP and the LSP is always the sign bit, PSGN. The input and output formats for fractional two's complement notation and integer two's complement
notation are shown in Figures 1 and 2, respectively. Note that since +1 cannot be denoted in fractional two's complement notation while -1 can be, some provision for handling the case $(-1) \times(-1)$ must be made. The MPYOOBH provides a -1 output in this case. As a result, external error handling provisions may be required.

Name	Function	Value	J5 Package	C2 Package
$P_{\text {SGN }}$	Product Sign Bit (MSP)	TL	Pin 36	Pin 41
P_{1}		m	Pin 37	Pin 42
P_{2}		mL	Pin 38	Pin 43
P_{3}		TL	Pin 39	Pin 44
P_{4}		mL	Pin 40	Pin 1
P_{5}		mi	Pin 1	Pin 2
P_{6}		TiL	Pin 2	Pin 3
P_{7}		π	Pin 3	Pin 4
$\mathrm{P}_{\text {SGN }}$	Produt Sign Bit (SP)	TL	Pin 1	Pin 9
P_{B}		m	Pin ${ }^{\text {b }}$	Pin 10
Pg_{9}		mL	Pin 9	Pin 11
P_{10}		mL	Pin 10	Pin 12
P_{11}		mL	Pin 11	Pin 13
P_{12}		mL	Pin 12	Pin 14
P_{13}		m	Pin 13	Pin 15
P_{14}	Product LSB	TL	Pif 14	Pin 16

Clocks

The MPYOO8H has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in at the rising edge of the logical $O R$
of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J5 Package	C2 Package
CLK X	Clock Input Data X	ΠL	Pin 23	Pin 26
CLK Y	Clock Input Data Y	ΠL	Pin 24	Pin 27
CLK P	Clock Product Register	$\Pi \mathrm{L}$	Pin 4	Pin 5

No Connects

The contact chip carrier version of the MPY008H has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J5 Package	C2 Package
NC	No Connection	Open	(none)	Pins 6, 17, 28, 40

Control

The MPYO08H has three control lines：

TRIM，TRIL Three－state enable lines for the MSP and the LSP．The output driver is in the high－impedance state when TRIM or TRIL is HIGH，and enabled when the appropriate control is LOW．

The RND input is registered，and clocked in at the rising edge of the logical OR of both CLK X and CLK Y．Special attention is required if normally HIGH clock signals are used．Problems with loading these control signals can be avoided by the use of normally LOW clocks．

Name	Function	Value	J5 Package	C2 Package
RND	Round Control Bit	TTL	Pin 25	Pin 29
TRIM	MSP Three－State Control	$\Pi \mathrm{L}$	Pin 5	Pin 7
TRIL	LSP Three－State Control	$\Pi \mathrm{L}$	Pin 6	Pin 8

Figure 1．Fractional Two＇s Complement Notation

Figure 2．Integer Two＇s Complement Notation

Figure 3. Timing Diagram

Figure 4. Equivalent Input Circuit

Figure 6. Normal Test Load

Figure 5. Equivalent Output Circuit

Figure 7. Three-State Delay Test Load

LOAD 2

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPYOO8H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
\mid 6618) \times(218)=12164 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product. However, these scale factors do have implications for hardware design.

Because common design practice assigns a fixed value to any given line land input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in figures 1 and 2.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Temperature
\qquad
junction

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {tPW }}$	Clock Pulse Width	25			30			ns
${ }_{\text {t }}$	Input Register Setup Time	25			30			ns
${ }_{\mathrm{H}}$	Input Register Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
$\bar{V}_{1 H}$	Input Voltage, Logic High	2.0			2.0			V
$\mathrm{IOL}^{\text {che }}$	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O }}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T} \mathrm{C}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

最畐

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{1} \mathrm{CC}$	Supply Current		$V_{C C}=$ MAX, Static ${ }^{1}$		375		450	mA
$1 / 2$	Input Current, Logic Low		$V_{\text {CC }}-$ MAX, $V_{1}-0.5 \mathrm{~V}$					
		$X_{\text {IN }}, Y_{\text {IN }}, \mathrm{RND}$		-0.4		-0.4	mA	
		CLK X and Y, TRIM, TRIL		-1.0		-1.0	mA	
		CLK P		-2.0		-2.0	mA	
IH	Input Current, Logic High	$V_{C C}-$ MAX, $V_{1}=2.4 V$						
		$X_{\text {IN }}, Y_{I N}$, RNDCLK X and Y, TRIM, TRILCLK P		75		100	$\mu \mathrm{A}$	
				75		100	$\mu \mathrm{A}$	
				150		200	$\mu \mathrm{A}$	
1	Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAXX $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
V_{OL}	Output Voltage, Logic Low	$V_{C C}=$ MAX, $I_{\text {OL }}=$ MAX		0.5		0.5	V	
V_{OH}	Output Voltage, Logic High	$V_{C C}=$ MAX, $I_{\text {OH }}=$ MAX	2.4		2.4		V	
IOZL	Hi-2 Output Leakage Current	$V_{C C}=$ MAX,$V_{1}=0.5 \mathrm{~V}$		-40		-40	$\mu \mathrm{A}$	
IOZH	Hi-2 Output Leakage Current	$V_{C C}-$ MAX, $V_{1}=2.4 V$		40		40	$\mu \mathrm{A}$	
Ios	Short-Circuit Output Current	$V_{C C}=$ MAX, one pin to ground, one second duration max, output high		-50		-50	mA	
c_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
$\overline{C_{0}}$	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note: 1. All inputs and outputs LOW.								

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {t MPY }}$ Mutiply Time	$V_{C C}=$ MIN MPYOOOH-1		65			
	$\mathrm{V}_{\text {CC }}=$ MIN MPYOOSH		90		115	ns
${ }_{0}{ }_{0} \quad$ Output Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Load 1		40		45	ns
teNA Three-State Output Enable Deiay	$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
TOIS Three-State Dutput Disable Delay	$V_{C C}=$ MIN, Load 2		40		45	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY008HJ5C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	008H.5C
MPY008HJ5G	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	008H.J5G
MPYo08HJ5F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	008H.J5F
MPYoo8HJ5A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	40 Lead DIP	008H.J5A
MPY008HJ5N	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-ln	40 Lead DiP	008H 55 N
MPY008H 5 C 1	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	008HJ5C1
MPYO08H 561	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	008H.56G1
MPY008HC2C	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carrier	008HC2C
MPY008HC2G	STD $-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	44 Contact Chip Carrier	008HC2G
MPY008HC2F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	44 Contact Chip Carrier	008HC2F
MPY008HC2A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	44 Contact Chip Carrier	008HC2A
MPY008HC2N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	44 Contact Chip Carrier	008HC2N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

MPYO8HU

High-Speed Parallel Multiplier

8-bit, 65ns

The TRW MPYOBHU is a high-speed 8-bit parallel multiplier which operates at a 65 nanosecond cycle time 115 MHz multiplication ratel. The multiplicand and the multiplier are both unsigned magnitude, yielding a full-precision 16 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge--triggered D-type flip-flops.
Three-state outputs with separate output enable lines for the MSP and the LSP are employed.

The MPYO8HU is built with TRW's radiation hard 2-micron process, and is the unsigned magnitude version of the industry standard MPY008H.

Features

-65ns Multiply Time: MPYO8HU-1

- 90ns Multiply Time: MPY08HU
- 8×8 Bit Parallel Multiplication With 16 -Bit Product Output
- Independent Most Significant Product and Least Significant Product Outputs
- Three-State Outputs
- Fully TTL Compatible
- Unsigned Magnitude Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 40 Lead DIP

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Pin Assignments

40 Lead DIP - J5 Package

Functional Description

General Information

The MPYOBHU has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each number is stored independently, simplifying multiplication by a constant. The asynchronous
multiplier array is a network of AND gates and adders, designed to handle unsigned magnitude numbers. The output registers hold the product as two 8 -bit words, the Most Significant Product IMSPI and the Least Significant Product (LSP). Three-state output drivers allow the MPYO8HU to be used on a bus, or allow the outputs to be multiplexed over the same 8 -bit output lines.

Power

The MPYOBHU operates from a single +5 Volt supply.

Name	Function	Value	J5 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pin 30
GND	Ground	0.0 V	Pin 32

Data Inputs

The MPY08HU has two data 8-bit unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs) are denoted X_{7} and Y_{7}; the remaining bits are denoted X_{0} through X_{6} and Y_{0} through Y_{6} (with X_{0} and Y_{0} the Least Significant

Bitsl. The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
X_{7}	X Data MSB	TTL	Pin 22
χ_{6}		TL	Pin 21
x_{5}		TL	Pin 20
x_{4}		TL	Pin 19
x_{3}		TTL	Pin 18
x_{2}		TLL	Pin 17
x_{1}		TL	Pin 16
x_{0}	X Data LSB	TL.	Pin 15
Y_{7}	Y Data MSB	TL	Pin 35
γ_{6}		TL	Pin 34
γ_{5}		TL	Pin 33
r_{4}		TTL	Pin 31
Y_{3}		TL	Pin 29
Y_{2}		TL	Pin 28
Y_{1}		TL	Pin 27
Y_{0}	Y Data LSB	TL	Pin 26

Data Outputs

The MPYOBHU has a 16 -bit unsigned magnitude output which is the product of the two input data values. This output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit IMSB) of the MSP is Product bit P_{15}. Product

Name	Function	Value	J5 Package
P_{15}	Product MSB	TTL	Pin 36
P_{14}		TL	Pin 37
P_{13}		TTL	Pin 38
P_{12}		TTL	Pin 39
P_{11}		TIL	Pin 40
P_{10}		TTL	Pin 1
Pg_{9}		TIL	Pin 2
P_{8}		TTL	Pin 3
P_{7}		TIL	Pin 7
P_{6}		TTL	Pin 8
P_{5}		TIL	Pin 9
P_{4}		TIL	Pin 10
P_{3}		TIL	Pin 11
P_{2}		TTL	Pin 12
P_{1}		TL	Pin 13
P_{0}	Product LSB	TL	Pin 14

Clocks

The MPYOBHU has three clock lines, one for each of the input registers and one for the product register. Data present at the
bit P_{0} is the Least Significant Bit (LSBI. The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
CLK X	Clock Input Data X	TTL	Pin 23
CLK Y	Clock Input Data Y	TL	Pin 24
CLK P	Clock Product Register	TL	Pin 4

Controls

The MPYO8HU has three control lines:
inputs of these registers is loaded into the registers at the rising edge of the appropriate clock.

TRIM, TRIL Three-state enable lines for the MSP and the RND LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

The RND input is registered, and clocked in at the rising edge of CLK X. A one is added to the MSB of the LSP when RND is HIGH. The RND control is used when a rounded 8 -bit product is desired.

Name	Function	Value	J5 Package
RND	Round Control Bit	TL	Pin 25
TRIM	MSP Three-State Control	$\Pi \mathrm{L}$	Pin 5
TRIL	LSP Three-State Control	$\Pi \mathrm{L}$	Pin 6

Figure 1. Fractional Unsigned Magnitude Notation

$$
\begin{aligned}
& \begin{array}{l}
\text { BinaRy POINT } \\
\qquad \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline x_{7} & x_{6} & x_{5} & x_{4} & x_{3} & x_{2} & x_{1} & x_{0} & \text { Signal } \\
\hline 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} & 2^{-5} & 2^{-6} & 2^{-7} & 2^{-8} & \text { digit value }
\end{array}
\end{array} \\
& x \begin{array}{|c|c|c|c|c|c|c|c|}
\hline y_{7} & y_{6} & y_{5} & y_{4} & y_{3} & y_{2} & y_{1} & y_{0} \\
\hline 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} & 2^{-5} & 2^{-6} & 2^{-7} & 2^{-8} \\
\hline
\end{array}
\end{aligned}
$$

Figure 2. Integer Unsigned Magnitude Notation

Figure 3. Timing Diagram

Figure 4. Equivalent Input Circuit

Figure 5. Equivalent Output Circuit

Figure 6. Normal Test Load

Figure 7. Three-State Delay Test Load

LOAD 2

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Paramater		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.5	V
${ }^{\text {PPW }}$	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
${ }^{1} \mathrm{H}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Vottage, Logic LOW			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
$\underline{0 L}$	Output Current, Logic LOW			4.0			4.0	mA
$\mathrm{TOH}^{\text {O}}$	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
T_{C}	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units		
		Standard		Extended				
		Min	Max	Min	Max			
ICC Supply Current	$V_{C C}=$ MAX, Static ${ }^{1}$		375		450	mA		
Ill Input Current, Logic Low	$V_{C C}-\operatorname{MAX}, V_{1}-0.5 \mathrm{~V}$							
	$\mathrm{X}_{\text {IN }}, Y_{\text {IN }}, \mathrm{RND}$		-0.4		-0.4	mA		
	CLK X and Y, TRIM, TRIL		-1.0		-1.0	mA		
	CLK P		-2.0		-2.0	mA		
ItH Input Current, Logic High	$V_{\text {CC }}-\mathrm{MAX}, \mathrm{V}_{1}-2.4 \mathrm{~V}$							
	CLK P		150		200	$\mu \mathrm{A}$		
	(All others)		75		100	$\mu \mathrm{A}$		
1 Input Current, Max Input Voltage	$V_{C C}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA		
$\mathrm{V}_{\text {OL }}$ Output Voltage, Logic Low	$V_{C C}-M I N, I_{0 L}-M A X$		0.5		0.5	V		
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic High	$\mathrm{V}_{C C}=$ MIN, $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V		
$\mathrm{IOZL}^{\text {Hi-Z }}$ Output Leakage Current	$V_{C C}=$ MAX		-40		-40	$\mu \mathrm{A}$		
IozH Hi-Z Output Leakage Current	$V_{C C}=$ MAX		40		40	$\mu \mathrm{A}$		
IOS Short-Circuit Output Current	$V_{\text {CC }}$ - MAX, One pin to ground, one second duration max, output high		-50		-50	mA		
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF		
$\mathrm{Co}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF		
Note: 1. Static: All inputs and outputs Low								

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
Muthiply Time	$\mathrm{V}_{\text {CC }}$ - MIN MPYOBHU-1		65			ns
	$\mathrm{V}_{\text {CC }}$ - MIN MPYOBHU		90		115	ns
${ }^{\text {to }}$ O Output Delay	$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
$\mathrm{t}_{\text {ENA }}$ Three-State Output Enable Delay	$\mathrm{V}_{\text {CC }}$ - MIN, Load 1		40		45	ns
${ }^{\text {tolS }}$ Three-State Output Disabie Delay	$V_{\text {CC }}-\mathrm{MIN}$, Load 2		40		45	ns

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPYOBHU does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 and 2.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPYOBHUJ5C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	08HUJ5C
MPY08HUJ5C1	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	08HUJ5C1
MPYOBHUJ5G	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	08HUJ5G
MPY08HUJ5G1	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	40 Lead DIP	08HUJ5G1
MPY08HUJ5F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	40 Lead DIP	OBHUJ5F
MPY08HUJ5A	EXT-T $\mathrm{T}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	40 Lead DIP	08HUJ5A
MPYO8HUJ5N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-in	40 Lead DIP	08HUJ5N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Multiplier

12×12 bit

The MPY012H is a high-speed 12×12 bit parallel multiplier which operates at a 115 nanosecond cycle time 18.7 MHz multiplication ratel. The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, vielding a full-precision 24 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPY012H is built with TRW's state-of-the-art 2-micron bipolar process.

Features

- 115ns Multiply Time (Worst Case)
- 12×12 Bit Parallel Multiplication With 24 -Bit Product Output
- Three-State Outputs
- Fully TTL Compatible
- Two's Complement, Unsigned Magnitude, And Mixed Mode Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, Or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038	Phane: (6191 457-1000 Telex: 697-957 TWX: 810-335-1571	© TRW Inc. 1983 40G01320 Rev. A-10/83 Printed in the U.S.A.

Functional Block Digram

Pin Assignments

64 Lead DIP - JO Package

64 Lead DIP - J1 Package
LSI Products Division
TRW Electronic Components Group

Pin Assignments

68 Contact Or Leaded Chip Carrier－C1，L1 Package
Pin Assignments

Functional Description

General Information

The MPY012H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12-bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,
designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPYO12H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 12-bit output lines.

Power

The MPY012H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pins $48,49,50$	Pins $50,51,52$	Pins $15,16,17$	Pins $55,56,57$
GND	Ground	$0.0 V$	Pins 23,24	Pins 10,11	Pins 41,42	Pins 17,18

Control

The MPY012H has seven control lines:

FT A control line which makes the output register transparent if it is HIGH.

TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS \quad RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2-12 bit $\left(P_{10}\right)$. If RS is HIGH when RND is HIGH, a one will be added to the 2-11 bit $\left\{\mathbb{P}_{11} \mid\right.$. In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX,TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the MPY012H to consider the appropriate input as a two's complement number, while a LOW forces the MPY012H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, 11 Package	J0 Package	F1 Package
RND	Round Control Bit	IL	Pin 58	Pin 42	Pin 7	Pin 47
TCX	X Input, Two's Complement	π	Pin 57	Pin 43	Pin 8	Pin 48
TCY	Y Input, Two's Complement	TL	Pin 41	Pin 59	Pin 24	Pin 64
FT	Output Register Feedthough	TIL	Pin 25	Pin 9	Pin 40	Pin 16
RS	Output Right Shitt	TTL	Pin 26	Pin 8	Pin 39	Pin 15
TRIM	MSP Three-State Control	TTL	Pin 22	Pin 12	Pin 43	Pin 19
TRIL	LSP Three-State Control	TIL	Pin 21	Pin 13	Pin 44	Pin 20

Data Inputs

The MPY012H has two 12 -bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits MSB'sl, denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} with X_{0} and Y_{0}
the Least Significant Bitsl. The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode are shown in Figures 1-6.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
x_{11}	X Data MSB	TL	Pin 61	Pin 39	Pin 4	Pin 44
X_{10}		TL	Pin 62	Pin 38	Pin 3	Pin 43
x_{g}		Til	Pin 63	Pin 37	Pin 2	Pin 42
x_{8}		TTL	Pin 64	Pin 36	Pin 1	Pin 41
X_{7}		TLL	Pin 1	Pin 35	Pin 64	Pin 40
x_{6}		TLL	Pin 2	Pin 34	Pin 63	Pin 39
x_{5}		$\pi \mathrm{L}$	Pin 3	Pin 33	Pin 62	Pin 38
x_{4}		TL	Pin 4	Pin 32	Pin 61	Pin 37
x_{3}		TL	Pin 5	Pin 31	Pin 60	Pin 36
x_{2}		$\pi \mathrm{L}$	Pin 6	Pin 30	Pin 59	Pin 35
x_{1}		TTL	Pin 7	Pin 29	Pin 58	Pin 34
x_{0}	X Data LSB	TL	Pin 8	Pin 28	Pin 57	Pin 33
Y_{11}	Y Data MSB	TIL	Pin 42	Pin 58	Pin 23	Pin 63
Y_{10}		TL	Pin 43	Pin 57	Pin 22	Pin 62
Y_{g}		TIL	Pin 44	Pin 56	Pin 21	Pin 61
Y_{8}		TTL	Pin 45	Pin 55	Pin 20	Pin 60
Y_{7}		TLL	Pin 46	Pin 54	Pin 19	Pin 59
γ_{6}		TTL	Pin 47	Pin 53	Pin 18	Pin 58
Y_{5}		TIL	Pin 51	Pin 49	Pin 14	Pin 54
r_{4}		TTL	Pin 52	Pị 48	Pir 13	Pin 53
r_{3}		TL	Pin 53	Pin 47	Pin 12	Pin 52
r_{2}		TTL	Pin 54	Pin 46	Pin 11	Pin 51
Y_{1}		TTL	Pin 55	Pin 45	Pin 10	Pin 50
Y_{0}	Y Data LSB	TL	Pin 56	Pin 44	Pin 9	Pin 49

Data Outputs

The MPY012H has a 24 -bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 12 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit IMSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used ITCX $=T C Y=1, R S=0$). The input and output formats for fractional two's complement, fractional unsigned
magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode are shown in Figures 1-6. For the MSP and LSP to be read, the respective TRIM and TRIL controls must be LOW. RS is an output format control. A logical " 1 " on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
P_{23}	Product MSB	TTL	Pin 40	Pin 61	Pin 25	
P_{22}		TL	Pin 39	Pin 62	Pin 26	Pin 2
P_{21}		TL	Pin 38	Pin 63	Pin 27	Pin 3
P_{20}		TL	Pin 37	Pin 64	Pin 28	Pin 4
P_{19}		TLL	Pin 36	Pin 65	Pin 29	Pin 5
P_{18}		TL	Pin 35	Pin 66	Pin 30	Pin 6
P_{17}		TL	Pin 34	Pin 67	Pin 31	Pin 7
P_{16}		TL	Pin 33	Pin 68	Pin 32	Pin 8
P_{15}		TL	Pin 32	Pin 1	Pin 33	Pin 9
P_{14}		TLL	Pin 31	Pin 2	Pin 34	Pin 10
P_{13}		TTL	Pin 30	Pin 3	Pin 35	Pin 11
P_{12}		TTL	Pin 29	Pin 4	Pin 36	Pin 12
P_{11}		TTL	Pin 20	Pin 15	Pin 45	Pin 21
P_{10}		TL	Pin 19	Pin 16	Pin 46	Pin 22
Pg		TL	Pin 18	Pin 17	Pin 47	Pin 23
P_{8}		TL	Pin 17	Pin 18	Pin 48	Pin 24
P_{7}		TL	Pin 16	Pin 19	Pin 49	Pin 25
P_{6}		TLL	Pin 15	Pin 20	Pin 50	Pin 26
P_{5}		TL	Pin 14	Pin 21	Pin 51	Pin 27
P_{4}		TTL	Pin 13	Pin 22	Pin 52	Pin 28
P_{3}		TIL	Pin 12	Pin 23	Pin 53	Pin 29
P_{2}		TTL	Pin 11	Pin 24	Pin 54	Pin 30
P_{1}		TTL	Pin 10	Pin 25	Pin 55	Pin 31
P_{0}	Product LSB	TTL	Pin 9	Pin 26	Pin 56	Pin 32

Clocks

The MPY012H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in
at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
CLK X	Clock Input Data X	TL	Pin 60	Pin 40	Pin 5	Pin 45
CLK Y	Clock Input Data Y	TL	Pin 59	Pin 41	Pin 6	Pin 46
CLK L	Clock ISP Register	TL	Pin 27	Pin 7	Pin 38	Pin 74
CLK M	Clock MSP Register	TLL	Pin 28	Pin 6	Pin 37	Pin 13

No Connects

The contact and leaded chip carrier versions of the MPY012H have four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
NC	No Connection	Open	(none)	Pins 5, 14, 27, 60	(none)	(none)

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Fractional Mixed Mode Notation

BINARY	Poin																								
x_{11}	X_{10}	Xg_{9}	x_{8}	X_{7}	x_{6}	X_{5}	X_{4}	X_{3}	X_{2}	X_{1}	X_{0}	SIGNAL (TWO'S COMPLEMENT) digit value													
2^{0}	2^{1}	z^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	$2{ }^{10}$	211														
X	Y_{11}	Y_{10}	Yg	Y_{8}	${ }_{7}$	Y_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	SIGNAL (UNSIGNED MAGNITUDE 2 digit value												
	z^{-1}	z^{2}	z^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	z^{10}	2^{11}	z^{12}													
P_{23}	P_{22}	P_{21}	P_{20}	P_{19}	P_{18}	P_{17}	P_{16}	P_{15}	P_{14}	P_{13}	P_{12}	P_{11}	P_{10}	Pg	P_{8}	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}	SIGMAL	
	2^{1}	z^{2}	2^{3}	2^{4}	2^{5}	2^{-6}	r^{7}	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	z^{13}	2^{14}	2^{-15}	2^{16}	$2{ }^{17}$	2^{-18}	$2 \cdot 19$	2.20	2^{21}	2^{22}	2^{23}	DIGIT VALUE	RS $=1$
	MSP											LSP													NDATORY

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 9. Equivalent Input Circuit

Figure 10. Equivalent Output Circuit

Figure 11. Normal Test Load

Figure 12. Three-State Delay Test Load

LOAD 2

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converterl. These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to
two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY012H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier $(\mathrm{Y}$) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY012H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6618) \times(218)=12 / 64 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design.

Because common design practice assigns a fixed value to any given line land input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift（RS）Control

In two＇s complement notation，the acceptable range of values for a given word size is not the same for positive and negative numbers．The largest negative number is one LSB larger than the largest positive number．This is true for either fractional or integer notation．A problem can arise when the largest representable negative number is multiplied by itself． This should give a positive number of the same magnitude． However，the largest representable positive number is one LSB less than this value．As a result，this product cannot be correctly represented without using one additional output bit．

The MPY012H has a Register Shift（RS）control that permits shifting of the result to provide a correct answer for every two＇s complement multiplication．When RS is active，the value of all bits in the MSP is doubled（i．e．，shifted left one position）， which provides the capability to represent the largest possible product．The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word．The effects of this control are illustrated in Figures 1 and 4．Note that for unsigned magnitude operation， the RS control must be HIGH．

Absolute maximum ratings（beyond which the device will be damaged）${ }^{1}$

Supply Voltage	
Output	
	Short－circuit duration（single output in high state to ground）．． 1 sec
Temperature	
	Operating，case \qquad -55 to $+125^{\circ} \mathrm{C}$
Notes：	
	1．Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions． Functional operation under any of these conditions is NOT implied．
	2．Applied voltage must be current limited to specified range．
	3．Forcing voltage must be limited to specified range，
	4．Current is specified as conventional current flowing into the device．

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
tPW	Clock Pulse Width	25			30			ns
${ }_{\text {t }}$	Input Register Setup Time	25			30			ns
${ }_{\text {t }}^{\text {H }}$	Input Register Hold Time	0			3			ns
$V_{1 l}$	Input Voltage, Logic Low			0.8			0.8	v
$\bar{V}_{\text {IH }}$	Input Votage, Logic High	2.0			2.0			V
$\mathrm{IOL}^{\text {che }}$	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$T_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$ C	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {ICC }}$	Supply Current		$V_{C C}=$ MAX, Static ${ }^{1}$		700		750	mA
Ill Input Current, Logic Low			$V_{C C}-$ MAX, $V_{1}=0.5 V^{\prime}$					
		$\mathrm{X}_{\text {IN, }}, \mathrm{Y}_{\text {IN }}$, RND, FT		-0.4		-0.4	mA	
		TCX, TCY, RS		-0.8		-0.8	mA	
		CLK L, M, X, and Y; TRIM, TRIL		-1.0		-1.0	mA	
ItH Input Current, Logic High		$V_{\text {CC }}-\mathrm{MAX}, \mathrm{V}_{1}=2.4 \mathrm{~V}$						
		$\mathrm{X}_{\text {IN, }}, \mathrm{Y}_{\text {IN, }}$, RND, FT		75		100	$\mu \mathrm{A}$	
		TCX, TCY, RS		75		100	$\mu \mathrm{A}$	
		CLK L, M, X, and Y; TRIM, TRIL		75		100	$\mu \mathrm{A}$	
1	Input Current, Max Input Voitage	$V_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA	
$V_{\text {OL }}$	Output Votage, Logic Low	$V_{C C}=$ MAX, $I_{O L}=M A X$		0.5		0.5	V	
V_{OH}	Output Voltage, Logic High	$V_{C C}=$ MAX, $\mathrm{IOH}=\mathrm{MAX}$	2.4		2.4		V	
IOZL	Hi-2 Output Leakage Current	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$		-40		-40	$\mu \mathrm{A}$	
IOZH	Hi-2 Output Leakage Current	$V_{C C}=$ MAX, $V_{1}=2.4 V$		40		40	$\mu \mathrm{A}$	
Ios	Short-Circuit Output Current	$V_{C C}=$ MAX, one pin to ground, one second duration max, output high		-50		-50	mA	
c_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		15		15	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF	
Note:								

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {I MPY }}$	Muttiply Time		$V_{\text {CC }}-\mathrm{MIN}$	10	115	10	140	ns
${ }_{\text {IMUC }}$	Muthiply Time，Unclocked		$V_{C C}=$ MIN		155		185	ns
t	Output Delay	$V_{\text {CC }}=$ MIN，Load 1		40		45	ns	
ENA	Three－State Output Enable Delay	$V_{\text {CC }}=$ MIN，Load 1		40		45	ns	
${ }_{\text {DIS }}$	Three－State Output Disable Delay	$V_{\text {CC }}$－MIN，Load 2		40		45	ns	

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPYO12HJIC MPYO12HJIG MPY012HJIF MPYO12HJIA MPYO12HJIN	STD－T $A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial Commercial with Burn－In Commercial MIL－STD－883 Commercial with Burn－In	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	012HJIC 012HJIG 012HJIF 012HJIA O12HJ1N
MPYO12HC1F MPY012HC1A MPYO12HC1N	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL－STD－883 Commercial with Burn－In	68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier	$012 \mathrm{HC1F}$ 012HC1A $012 \mathrm{HC1N}$
MPYO12HL1F MPYO12HLIA MPYO12HLIN	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL－STD－883 Commercial with Burn－In	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	012HLIF 012HL1A 012HL1N
MPY012HFIF MPYO12HFIA MPYO12HFIN	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT $-T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL－STD－883 Commercial with Burn－In	64 Lead Flat－Pack 64 Lead Flat－Pack 64 Lead Flat－Pack	012HF1F 012HF1A 012HF1N
MPYO12HJOF MPYO12H．JOA MPY012HJON	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL－STD－883 Commercial with Burn－In	64 Lead DIP 64 Lead DIP 64 Lead DIP	012H．JOF O12H．JOA O12HJON

TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW Inc．or others．

Multiplier

12×12 bit, 50 ns

The MPY112K is a video-speed 12×12 bit parallel multiplier which operates at a 50 nanosecond cycle time 120 MHz multiplication ratel. The multiplicand and the multiplier may be specified together as two's-complement or unsigned magnitude, vielding a 16 -bit result. Mixed-mode operation is not available on this device.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The most significant 16 bits of the product are available at the output register. The output is a single three-state port.

Built with TRW's OMICRON - ${ }^{\text {TM }} 1$-micron bipolar process, the MPY112K is similar to the industry standard MPY012H but operates with more than twice the speed at about three-quarters of the power dissipation. The MPY112K is the industry's first true video-speed 12-bit multiplier.

Features

- 50ns Multiply Time (Worst Case)
- 12×12 Bit Parallel Multiplication With 16 -Bit Product Output
- Fully TIL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5 V Power Supply
- Available In 48 Lead Ceramic DIP

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

48 Lead DIP - J4 Package

Functional Description

General Information

The MPY112K has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12-bit numbers which are to be multiplied and the instruction which controls whether the inputs are to be considered as two's complement or unsigned magnitude numbers. Each input operand is stored independently, simplifying multiplication by a constant; however,
since the product and the Y input share a common clock, any constant should be stored in the X register. The asynchronous multiplier array is a network of AND gates and adders which has been designed to handle two's complement or unsigned magnitude numbers. The output register holds the most significant 16 bits of the product. Three-state output drivers allow the MPY112K to be used on a bus.

Power

The MPY112K operates from a single +5 Volt supply. Note that the maximum voltage for proper operation over the
extended temperature range is 5.25 Volts. All power and ground lines must be connected.

Name	Function	Value	J4 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pins 12, 13
GND	Ground	$0.0 V$	Pins 36,37

Data Inputs

The MPY112K has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits MSBs), denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The rest of the bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} (with X_{0} and Y_{0}
the Least Significant Bitsl. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package
X_{11}	X Data MSB	TL	Pin 2
X_{10}		TL	Pin 1
X_{g}		TTL	Pin 48
x_{8}		TIL	Pin 47
X_{7}		TTL	Pin 46
x_{6}		TTL	Pin 45
x_{5}		TTL	Pin 44
x_{4}		TLL	Pin 43
x_{3}		TL	Pin 42
x_{2}		TL	Pin 41
x_{1}		TTL	Pin 40
x_{0}	X Data LSB	TIL	Pin 39

Data Inputs (Cont.)

Name	Function	Value	J4 Package
γ_{11}	Y Data MSB	TTL	Pin 16
Y_{10}		TIL	Pin 15
Y_{9}		TIL	Pin 14
γ_{8}		TIL	Pin 11
Y_{7}		TTL	Pin 10
Y_{6}		TIL	Pin 9
γ_{5}		TTL	
r_{4}		TTL	Pin 7
Y_{3}		TLL	Pin 6
r_{2}		TIL	
Y_{1}		TTL	Pin 4
Y_{0}	Y Data LSB	TTL	Pin 3

Data Outputs

The MPY112K has a 16 -bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is the most significant 16 bits of the complete product. The output is truncated to this length, not rounded. The Most Significant Bit (MSB) of the product is the sign bit if two's complement notation is used (TC=1). The
input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively. The output driver is in the high-impedance state when $\overline{\mathrm{OE}}$ is HIGH, and enabled when $\overline{\mathrm{OE}}$ is LOW.

Name	Function	Value	J4 Package
P_{23}	Product MSB	TL	Pin 20
P_{22}		TIL	Pin 21
P_{21}		TTL	Pin 22
P_{20}		TTL	Pin 23
P_{19}		TTL	Pin 24
P_{18}		TIL	Pin 25
P_{17}		TTL	Pin 26
P_{16}		TTL	Pin 27
P_{15}		TTL	Pin 28
P_{14}		TTL	Pin 29
P_{13}		TL	Pin 30
P_{12}		TTL	Pin 31
P_{11}		TTL	Pin 32
P_{10}		TTL	Pin 33
Pg		TIL	Pin 34
P_{8}		TIL	Pin 35

Clocks

The MPY112K has two clock lines, one for the X input register and one for both the Y input register and the product register. Data present at the X input is loaded into the registers at the rising edge of CLK X. Data present at the Y input, the two's

Name	Function	Value	J4 Package
CLK X	Clock Input Data X	$\Pi \mathrm{~L}$	Pin 38
CLK M	Master Clock	ΠL	Pin 18

Controls

The MPY112K has two control lines. $\overline{O E}$ is a three-state enable line for the output. The output drivers are in the high-impedance state when $\overline{\mathrm{OE}}$ is HIGH , and enabled when $\overline{\mathrm{OE}}$ is LOW.
complement instruction, and the product present at the output of the asynchronous multiplier array are loaded into the appropriate registers at the rising edge of CLK M.

Name	Function	Value	J4 Package
$T C$	Two's Complement	$\Pi \mathrm{L}$	Pin 17
$\overline{0 E}$	Three-State Control	$\Pi \mathrm{L}$	Pin 19

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Figure 5．Timing Diagram

Figure 6．Equivalent Input Circuit

Figure 8．Normal Test Load

Figure 7．Equivalent Output Circuit

Figure 9．Three－State Delay Test Load

LOAD 2

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input Voltage ...	
Dutput	
	Applied voltage \qquad -0.5 to $+5.5 v^{2}$ Forced current \qquad -1.0 to $+6.0 m A^{3,4}$ Short-circuit duration (single output in high state to ground) \qquad 1 sec
Temperature	
	Operating, case \qquad -55 to $+125^{\circ} \mathrm{C}$ junction \qquad $175^{\circ} \mathrm{C}$
Notes:	
	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range.
	3. Forcing voltage must be limited to specified range.
	4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.25	V
tPW	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
${ }_{\text {th }}$	Input Hold Time	5			10			ns
V_{11}	Input Voltage, Logic Low			0.8			0.8	V
$\overline{\mathrm{V}} \mathrm{IH}$	Input Voltage, Logic High	2.0			2.0			V
OL	Output Current, Logic Low			4.0			2.5	mA
O_{OH}	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {tMPY M Mutiply Time }}$	$V_{\text {CC }}=\mathrm{MIN}$		50		55	ns
${ }^{\text {t }}$ D Output Delay	$V_{\text {CC }}=$ MIN，Load 1		35		45	ns
teNA Three－State Output Enable Delay	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$ ，Load 2		30		45	ns
${ }^{\text {tid }}$ Three－State Output Disable Delay	$V_{C C}=$ MIN，Load 2		30		45	ns

Application Notes

Mixed-Mode Multiplication

There are several applications in which it may be advantageous to perform mixed-mode multiplication. Video data are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter.I These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the video data must be converted to two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed-mode operation. The MPY112K can only provide this capability by making the MSB of the unsigned magnitude number a zero, thus reducing its precision to eleven bits. No additional circuitry is required.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register. Due to the sharing of the CLK M pin by the Y input register and the output register, all constants should be kept in the X register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY112K does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(228)=12164
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Exceptional Case

The most negative number that can be represented in two's complement notation is greater in magnitude than the largest representable positive number by one LSB. This is only a problem when the full-scale negative number is squared. If fractional notation is used, this means that $(-1) \times(-1)$ with the MPY112K will yield the lincorrect) result $(-11$. In the full-precision series of multipliers the correct result can be obtained by the use of the RS control, which was not included on the MPY112K due to pin count limitations.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY112KJ4C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	112KJ4C
MPY112KJ4G	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	48 Lead DIP	$112 \mathrm{KJ4G}$
MPY112KJ4F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	112KJ4F
MPY112KJ4A	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MLL-STD-883	48 Lead DIP	112KJ4A
MPY112KJ4N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	48 Lead DIP	112KJ4N

[^4]
Multiplier

16×16 bit, 145ns

The MPY016H is a high-speed 16×16 bit parallel multiplier which operates at a 145 nanosecond cycle time 16.9 MHz multiplication ratel. The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, vielding a full precision 32 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) has a dedicated output port. The Least Significant Product (LSP) shares a bidirectional port with the Y input. Three-state outputs are employed throughout. The MPY016H is built with TRW's state-of-the-art 2-micron bipolar process.

Features

- 145ns Multiply Time IWorst Casel
- 16×16 Bit Parallel Multiplication With 32 -Bit Product Output
- Three-State Outputs
- Fully TL Compatible
- Two's Complement, Unsigned Magnitude, and Mixed Mode Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J0 Package

64 Lead DIP - J1 Package
LSI Products Division
TRW Electronic Components Group

Pin Assignments

68 Contact Or Leaded Chip Carrier－C1，L1 Package

Pin Assignments

Functional Description

General Information

The MPY016H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 16 -bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,
designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words, the Most Significant Product (MSP) and the Least Significant Product ILSPI. Three-state output drivers allow the MPY016H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 16 -bit output lines. The Least Significant Product ILSP) is multiplexed with the Y input.

Power

The MPY016H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0V	Pins 48, 49	Pins 1, 68	Pins 16, 17	Pins 56, 57
GND	Ground	0.0 V	Pins 45, 46, 47	Pins 2, 3, 4	Pins 18, 19, 20	Pins 58, 59, 60

Control

The MPY016H has seven control lines:
FT A control line which makes the output register transparent if it is HIGH.

TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the respective control is LOW.

RS \quad RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2-16 bit \mathbb{P}_{141}) If RS is HIGH when RND is HIGH, a one will be added to the 2-15 bit (P_{15}). In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

Name	Function	Value	J1 Package	C1，L1 Package	JD Package	F1 Package
RND	Round Control Bit	TTL	Pin 52	Pin 65	Pin 13	Pin 53
TCX	X Input Two＇s Complement	TTL	Pin 51	Pin 66	Pin 14	Pin 54
TCY	Y Input Two＇s Complement	TTL	Pin 50	Pin 67	Pin 15	Pin 55
FT	Output Register Feedthough	TTL	Pin 44	Pin 5	Pin 21	Pin 61
RS	Output Right Shift	TTL	Pin 43	Pin 6	Pin 22	Pin 62
TRIM	MSP Three－State Control	TL	Pin 42	Pin 7	Pin 23	Pin 63
TRIL	LSP Three－State Control	TIL	Pin 6	Pin 46	Pin 59	Pin 35

Data Inputs

The MPY016H has two 16－bit two＇s complement or unsigned magnitude data inputs，labeled X and Y ．The Most Significant Bits（MSBs），denoted X_{15} and Y_{15} ，carry the sign information for the two＇s complement notation．The remaining bits are denoted X_{0} through X_{14} and Y_{0} through Y_{14} lwith X_{0} and Y_{0} the Least Significant Bits）．The input and output formats for
fractional two＇s complement，fractional unsigned magnitude， integer two＇s complement and integer unsigned magnitude are shown in Figures 1－6．The Y inputs are multiplexed with the LSP outputs，and hence can only be used when the TRIL control is in a HIGH state．

Name	Function	Value	J1 Package	C1，L1 Package	JO Package	F1 Package
χ_{15}	X Data MSB	TL	Pin 54	Pin 63	Pin 11	Pin 51
X_{14}		TL	Pin 55	Pin 62	Pin 10	Pin 50
x_{13}		TL	Pin 56	Pin 61	Pin 9	Pin 49
X_{12}		TL	Pin 57	Pin 59	Pin 8	Pin 48
x_{11}		THL	Pin 58	Pin 58	Pin 7	Pin 47
x_{10}		TL	Pin 59	Pin 57	Pin 6	Pin 46
x_{g}		TL	Pin 60	Pin 56	Pin 5	Pin 45
x_{8}		TL	Pin 61	Pin 55	Pin 4	Pin 44
X_{7}		TL	Pin 62	Pin 54	Pin 3	Pin 43
x_{6}		TIL	Pin 63	Pin 53	Pin 2	Pin 42
x_{5}		TL	Pin 64	Pin 52	Pin 1	Pin 41
x_{4}		TIL	Pin 1	Pin 51	Pin 64	Pin 40
x_{3}		TL	Pin 2	Pin 50	Pin 63	Pin 39
x_{2}		TIL	Pin 3	Pin 49	Pin 62	Pin 38
x_{1}		TL	Pin 4	Pin 48	Pin 61	Pin 37
x_{0}	X Data LSB	TTL	Pin 5	Pin 47	Pin 60	Pin 36
Y_{15}	Y Data MSB	TL	Pin 24	Pin 27	Pin 41	Pin 17
Y_{14}		TL	Pin 23	Pin 28	Pin 42	Pin 18
r_{13}		IIL	Pin 22	Pin 29	Pin 43	Pin 19
Y_{12}		TL	Pin 21	Pin 30	Pin 44	Pin 20
Y_{11}		TL	Pin 20	Pin 31	Pin 45	Pin 21
Y_{10}		TTL	Pin 19	Pin 32	Pin 48	Pin 22
Yg		$\pi \mathrm{L}$	Pin 18	Pin 33	Pin 47	Pin 23
γ_{8}		TL	Pin 17	Pin 34	Pin 48	Pin 24
Y_{7}		TIL	Pin 16	Pin 35	Pin 49	Pin 25
Y_{6}		TIL	Pif 15	Pin 36	Pin 50	Pin 26
Y_{5}		TTL	Pin 14	Pin 37	Pin 51	Pin 27
Y_{4}		TTL	Pin 13	Pin 38	Pin 52	Pin 28
Y_{3}		TIL	Pin 12	Pin 39	Pin 53	Pin 29
Y_{2}		TL	Pin 11	Pin 40	Pin 54	Pin 30
Y_{1}		TL	Pin 10	Pin 41	Pin 55	Pin 31
Y_{0}	Y Data LSB	TIL	Pin 9	Pin 42	Pin 56	Pin 32

Data Outputs

The MPY016H has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used ITCX $=T C Y=1$, RS $=01$. The input and output formats for fractional two's complement, fractional unsigned magnitude, integer two's complement and integer unsigned
magnitude are shown in Figures 1-6. The LSP Output can be taken from the Y inputs only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. For an output from the MSP lines to be read, the TRIM control must be low. RS is an output format control. A logical " 1 " on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
P_{31}	Product MSB	TTL	Pin 40	Pin 10	Pin 25	Pin 1
P_{30}		TTL	Pin 39	Pin 11	Pin 26	Pin 2
P_{29}		TTL	Pin 38	Pin 12	Pin 27	Pin 3
P_{28}		TIL	Pin 37	Pin 13	Pin 28	Pin 4
P_{27}		TL	Pin 36	Pin 14	Pin 29	Pin 5
P_{26}		TL	Pin 35	Pin 15	Pin 30	Pin 6
P_{25}		TL	Pin 34	Pin 16	Pin 31	Pin 7
P_{24}		TTL	Pin 33	Pin 17	Pin 32	Pin 8
P_{23}		TL	Pin 32	Pin 18	Pin 33	Pin 9
P_{22}		TTL	Pin 31	Pin 19	Pin 34	Pin 10
P_{21}		TL	Pin 30	Pin 20	Pin 35	Pin 11
P_{20}		TL	Pin 29	Pin 21	Pin 36	Pin 12
P_{19}		TL	Pin 28	Pin 22	Pin 37	Pin 13
P_{18}		TL	Pin 27	Pin 23	Pin 38	Pin 14
P_{17}		TLL	Pin 26	Pin 24	Pin 39	Pin 15
P_{16}		TIL	Pin 25	Pin 25	Pin 40	Pin 16
P_{15}		TL	Pin 24	Pin 27	Pin 41	Pin 17
P_{14}		TTL	Pin 23	Pin 28	Pin 42	Pin 18
P_{13}		TL	Pin 22	Pin 29	Pin 43	Pin 19
P_{12}		TIL	Pin 21	Pin 30	Pin 44	Pin 20
P_{11}		TL	Pin 20	Pin 31	Pin 45	Pin 21
P_{10}		TTL	Pin 19	Pin 32	Pin 46	Pin 22
Pg		TLL	Pin 18	Pin 33	Pin 47	Pin 23
P_{8}		TTL	Pin 17	Pin 34	Pin 48	Pin 24
P_{7}		TIL	Pin 16	Pin 35	Pin 49	Pin 25
P_{6}		TIL	Pin 15	Pin 36	Pin 50	Pin 26
P_{5}		TLL	Pin 14	Pin 37	Pin 51	Pin 27
P_{4}		TLL	Pin 13	Pin 38	Pin 52	Pin 28
P_{3}		TL	Pin 12	Pin 39	Pin 53	Pin 29
P_{2}		TTL	Pin 11	Pin 40	Pin 54	Pin 30
P_{1}		TTL	Pin 10	Pin 41	Pin 55	Pin 31
P_{0}	Product LSB	TTL	Pin 9	Pin 42	Pin 56	Pin 32

Clocks

The MPY016H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in
at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
CLK X	Clock Input Data X	TL	Pin 53	Pin 64	Pin 12	Pin 52
CLK Y	Clock Input Data Y	TIL	Pin 8	Pin 44	Pin 57	Pin 33
CLK L	Clock LSP Register	TIL	Pin 7	Pin 45	Pin 58	Pin 34
CLK M	Clock MSP Register	THL	Pin 4	Pin 8	Pin 24	Pin 64

No Connects

The chip carrier version of the MPYO16H has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
NC	No Connection	Open	(none)	Pins 9, 26, 43, 60	(none)	(none)

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

BINAR	POIN																																	
	X_{15}	X_{14}	x_{13}	x_{12}	X_{11}	X_{10}	X_{9}	X_{8}	x_{7}	x_{6}	X_{5}	X_{4}	x_{3}	x_{2}	X_{1}	x_{0}	SIGN																	
	2.1	2^{2}	2^{-3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	$2 \cdot 10$	2^{-11}	$2 \cdot 12$	$2{ }^{13}$	2^{-14}	2^{15}	2^{16}		T VAL																
X	Y_{15}	Y_{14}	Y_{13}	Y_{12}	Y_{11}	Y_{10}	Y_{g}	Y_{8}	Y_{7}	V_{6}	Y_{5}	Y_{4}	Y_{3}	Y_{2}	Y_{1}	Y_{0}	SIGN																	
x	2.1	2^{2}	2^{-3}	2^{4}	2.5	$2{ }^{6}$	2^{7}	$2^{\text {B }}$	$2 \cdot 9$	$2 \cdot 10$	2.11	2^{12}	2^{13}	2^{-14}	2^{15}	$2{ }^{16}$		It val																
$=$	P_{31}	P_{30}	P_{29} \|	P_{28}	P_{77}	P_{26}	P_{25}	P_{24}	P_{23}	P_{22}	P_{21}	P_{20}	P_{19}	P_{18} \|	P_{17}	P_{16}	P_{15}	P_{14}	P_{13}	P_{12}	P_{11}	$P_{10}{ }^{\text {a }}$	P_{9}	P_{B}	P_{7}	P_{6}	P_{5}	P_{4}	P_{3}	P_{2}	P_{1}	P_{0}	Signal	
	2.	2^{2}	2^{3}	2^{4}	$2{ }^{5}$	2^{6}	2^{7}	2^{8}	2^{9}	$2 \cdot 10$	2.11	2^{12}	2.13	2^{14}	2.15	2^{16}	2^{-17}	2.18	2^{-19}	220	2.21	2.22	223	224	2^{25}	2^{26}	2^{27}	228	2^{29}	230	231	2^{-32}	digit value	RS $=1$
								MSP																	LSP									NDATORY

Figure 3. Fractional Mixed Mode Notation

Figure 4．Integer Two＇s Complement Notation

Figure 5．Integer Unsigned Magnitude Notation

Figure 6．Integer Mixed Mode Notation

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 9. Equivalent Input Circuit

Figure 10. Equivalent Output Circuit

Figure 11. Normal Test Load

Figure 12. Three-State Delay Test Load

LOAD 2

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to
two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY016H does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
\mid 618) \times(218)=12164 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common design practice assigns a fixed value to any given line land input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The MPY016H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled li.e., shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Output	
	Applied voltage \qquad -0.5 to $+5.5 \mathrm{v}^{2}$ Forced current \qquad -0.1 to $+6.0 \mathrm{~mA}^{3,4}$ Short-circuit duration (single output in high state to ground) \qquad 1 sec
Temperature	
	Operating, case. \qquad -55 to $+125^{\circ} \mathrm{C}$ junction \qquad $175^{\circ} \mathrm{C}$ Lead, soldering (10 seconds) \qquad $300^{\circ} \mathrm{C}$ Storage \qquad $-65 \text { to }+150^{\circ} \mathrm{C}$
Notes:	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2. Applied voltage must be current limited to specified range. 3. Forcing voltage must be limited to specified range. 4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {tpw }}$	Clock Pulse Width	25			30			ns
ts	Input Register Setup Time	25			30			ns
${ }_{\text {th }}$	Input Register Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage，Logic Low			0.8			0.8	V
V_{IH}	Input Voltage，Logic High	2.0			2.0			V
${ }_{\text {OL }}$	Output Current，Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O }}$	Output Current，Logic High			－400			－400	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }_{\text {T }}$	Case Temperature				－55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Supply Current	$V_{\text {CC }}=$ MAX，Static ${ }^{1}$		875		1050	mA
ILL Input Current，Logic Low	$V_{C C}=\operatorname{MAX}, V_{1}=0.5 \mathrm{~V}$					
	$\mathrm{X}_{\text {IN，}}, Y_{\text {IN }}$, RND，FT		－0．4		－0．4	mA
	TCX，TCY，RS		－0．8		－0．8	mA
	CLK L，M，and X；TRIM，TRIL		－1．0		－1．0	mA
	CLK Y		－2．0		－2．0	mA
IH Input Current，Logic High	$V_{\text {CC }}=$ MAXX，$V_{1}=2.4 \mathrm{~V}$					
	$\mathrm{X}_{\text {IN }}, Y_{\text {IN }}$, RND，FT		75		100	$\mu \mathrm{A}$
	TCX，TCY，RS		75		100	$\mu \mathrm{A}$
	CLK L，M，and X；TRIM，TRIL		75		100	$\mu \mathrm{A}$
	CLK Y		100		200	$\mu \mathrm{A}$
I Input Current，Max Input Voltage	$V_{C C}=$ MAX，$V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{0 L}$ Output Voltage，Logic Low	$V_{C C}-M I N, I_{O L}-M A X$		0.5		0.5	V
$\overline{\mathrm{V}}_{\text {OH }}$ Output Voltage，Logic High	$V_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	2.4		2.4		V
$\mathrm{IOZL}^{\text {Hi－Z Output Leakage Current }}$	$V_{\text {CC }}-$ MAX		－40		－40	$\mu \mathrm{A}$
OZZH Hi－Z Output Leakage Current	$V_{C C}-$ MAX		40		40	$\mu \mathrm{A}$
IOS Short－Circuit Output Current	$V_{\text {CC }}=$ MAX，One pin to ground， one second duration max，output high		－50		－50	mA
$C_{1} \quad$ Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
Note：						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }_{\text {tMPY }}$	Multiply Time, Clocked		$V_{C C}-\mathrm{MIN}$	10	145	10	185	ns
TMUC	Muthiply Time, Unclocked		$V_{C C}=M 1 N$		185		230	ns
${ }_{0}$	Output Delay	$V_{\text {CC }}-\mathrm{MIN}$, Load 1		40		45	ns	
tena	Three-State Output Enable Delay	$V_{\text {CC }}-$ MIN, Load 1		40		45	ns	
${ }_{\text {IIS }}$	Three-State Output Disable Delay	$V_{C C}-M I N$, Load 2		40		45	ns	

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY016HJIC MPYO16HJIG MPY016HJIF MPYO16HJIA MPYO16HJIN	$\begin{aligned} & \text { STO }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD- } \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial with Burn-In Commercial MIL-STD-883 Commercial with Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP 54 Lead DIP 64 Lead DIP	016HJIC 016HJTG 016HJIF 016HJTA 016HJIN
MPY016HCIF MPYOT6HC1A MPYO16HCIN	$\begin{aligned} & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial with Burn-In	68 Contact Chip Carier 68 Contact Chip Carrier 68 Contact Chip Carrier	016HCIF 016HC1A 016HC1N
MPY016HLIF MPYO16HL1A MPYo16HLIN	$\begin{aligned} & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Mil-STD-883 Commercial with Burn-In	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	016HL1F 016HL1A 016HLIN
MPYO16HFIF MPYO16HF1A MPYO16HF1N	$\begin{aligned} & \text { EXT- } T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial with Burn-In	64 Leaded Flatpack 64 Leaded Flatpack 64 Leaded Flatpack	016HFIF 016HFIA 016HF1N
MPY016HJOC MPYO16HJOG MPYO16H.JOF MPYO16HJOA MPY016HJON		Commercial Commercial with Burn-In Commercial MIL-STD-883 Commercial with Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	016HJOC 016HJOG 016HJOF 016HJOA 016HJON
MPY016H 3 3F MPY016HJ3A MPYO16HJ3N	$\begin{aligned} & \text { EXT }-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial with Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP	016HJ3F 016HJ3A 016HJ3N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

NAPYO16K

Preliminary Information

VLSI Multiplier

16×16 bit, 40ns

The TRW MPY016K is a video-speed 16×16 bit parallel multiplier which operates at a 40 nanosecond cycle time (25MHz multiplication rate). The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full precision 32 -bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) and Least Significant Product (LSP) can be multiplexed through a dedicated output port, or the LSP can share a bidirectional port with the Y input. All outputs are three-state.

Built with TRW's OMICRON-B ${ }^{\text {TM }} 1$-micron bipolar process, the MPY016K is pin compatible with the industry standard MPY016H, and operates with three times the speed at comparable power dissipation. The MPYO16K is the industry's first true video-speed 16-bit multiplier.

Features

- 40ns Multiply Time: MPY016K-1 IWorst Case)
- 45ns Multiply Time: MPY016K (Worst Case)
- Pin Compatible With TRW MPY016H
- 16×16 Bit Parallel Multiplication With 32 -Bit Output
- Two Least Significant Product Output Modes: Multiplexed With Most Significant Product Or Multiplexed With Y Input
- Output Registers Can Be Made Transparent
- Three-State TL Output
- Two's Complement, Unsigned Magnitude, Or Mixed Mode Multiplication
- Fully TIL Compatible
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier
- Available Screened To MIL-STD-883

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64. Lead DIP - J1 Package

Functional Description

General Information

The MPY̛016K has three functional sections: Input registers, an asynchronous multiplier array, and output registers. The input registers store the two 16-bit numbers which are to be multiplied and the instruction which controls the output rounding. The rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,
designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16 -bit words, the Most Significant Product (MSP) and the Least Significant Product ILSP). Three-state output drivers allow the MPY016K to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 16 -bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The MPY016K operates from a single +5.0 V supply. All power and ground lines must be connected. Note that the device is pin-compatible with the MPYO16H, which has an additional
ground pin; this is a control lead in the MPY016K. A ground on this pin (which must exist in all MPY016H applications) will cause the MPY016K to function like an MPYO16H.

Name	Function	Value	J1 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pins 48, 49	Pins 1,68
GND	Ground	0.0 V	Pins 46,47	Pins 2,3

Data Inputs

The MPY016K has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{14} and Y_{0} through Y_{14} with X_{0} and Y_{0} the Least Significant Bitsl. The input and output formats for fractional two's complement, fractional unsigned magnitude,
fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6 , respectively. The Y inputs are multiplexed with the LSP outputs, and hence can only be used when the TRIL control is in a HIGH state. This is true whether or not the LSP is also multiplexed out through the MSP output port.

Name	Function	Value	J1 Package	C1, L1 Package
χ_{15}	X Data MSB	TTL	Pin 54	Pin 63
X_{14}		TTL	Pin 55	Pin 62
x_{13}		TTL	Pin 56	Pin 61
x_{12}		TTL	Pin 57	Pin 59
x_{11}		TTL	Pin 58	Pin 58
x_{10}		TTL	Pin 59	Pin 57
X_{9}		IIL	Pin 60	Pin 56
X_{8}		TTL	Pin 61	Pin 55
X_{7}		TTL	Pin 62	Pin 54
X_{6}		TIL	Pin 63	Pin 53
x_{5}		TTL	Pin 64	Pin 52
x_{4}		TTL	Pin 1	Pin 51
x_{3}		TTL	Pin 2	Pin 50
X_{2}		TTL	Pin 3	Pin 49
X_{1}		TTL	Pin 4	Pin 48
X_{0}	X Data LSB	TTL	Pin 5	Pin 47

Data Inputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package
γ_{15}	Y Data MSB	TTL	Pin 24	Pin 27
Y_{14}		TIL	Pin 23	Pin 28
γ_{13}		TIL	Pin 22	Pin 29
Y_{12}		TTL	Pin 21	Pin 30
γ_{11}		TIL	Pin 20	Pin 31
Y_{10}		TTL	Pin 19	Pin 32
Y_{g}		TTL	Pin 18	Pin 33
Y_{8}		ITL	Pin 17	Pin 34
Y_{7}		TTL	Pin 16	Pin 35
Y_{6}		TIL	Pin 15	Pin 36
Y_{5}		TIL	Pin 14	Pin 37
Y_{4}		TIL	Pin 13	Pin 38
Y_{3}		TIL	Pin 12	Pin 39
γ_{2}		TIL	Pin 11	Pin 40
Y_{1}		ITL	Pin 10	Pin 41
Y_{0}	Y Data LSB	TIL	Pin 9	Pin 42

Data Outputs

The MPY016K has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product IMSP) and Least Significant Product (ISP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used ITCX $=T C Y=1$, RS $=0$ I. The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6, respectively.

If MSEL is LOW, the LSP output can be taken from the Y input pins only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. If MSEL is HIGH, the LSP output is made available at the MSP lines, as well as at the Y input pins. For an output from the MSP lines to be read, the TRIM control must be active.

RS is an output format control. A HIGH on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package
P_{31}	Product MSB	TL	Pin 40	Pin 10
P_{30}		TTL	Pin 39	Pin 11
P_{29}		TIL	Pin 38	Pin 12
P_{28}		TTL	Pin 37	Pin 13
P_{27}		TLL	Pin 36	Pin 14
P_{26}		TIL	Pin 35	Pin 15
P_{25}		TTL	Pin 34	Pin 16
P_{24}		TTL	Pin 33	Pin 17
P_{23}		TTL	Pin 32	Pin 18
P_{22}		TL	Pin 31	Pin 19
P_{21}		TTL	Pin 30	Pin 20
P_{20}		TL	Pin 29	Pin 21
P_{19}		TTL	Pin 28	Pin 22
P_{18}		TL	Pin 27	Pin 23
P_{17}		TL	Pin 26	Pin 24
P_{16}		TL	Pin 25	Pin 25

Name	Function	Value	J1 Package	C1, L1 Package
			MUXED	
			Input/Output	Inputioutput
P_{15}		TTL	Pin 24/Pin 40	Pin $27 / \mathrm{Pin} 10$
P_{14}		TTL	Pin 23/Pin 39	Pin 28/Pin 11
P_{13}		TTL	Pin 22/Pin 38	Pin $29 /$ Pin 12
P_{12}		TTL	Pin 211 Pin 37	Pin 30/Pin 13
P_{11}		TTL	Pin 20/Pin 36	Pin 31/Pin 14
P_{10}		TL	Pin 19/Pin 35	Pin 32/Pin 15
Pg		TTL	Pin 18/Pin 34	Pin 33/Pin 16
P_{8}		TL	Pin 171Pin 33	Pin 34/Pin 17
P_{7}		TTL	Pin 16/Pin 32	Pin 35/Pin 18
P_{6}		TIL	Pin 15/Pin 31	Pin 36/Pin 19
P_{5}		TTL	Pin 14/Pin 30	Pin 37/Pin 20
P_{4}		TTL	Pin 13/Pin 29	Pin 38/Pin 21
P_{3}		TTL	Pin $12 \mid$ Pin 28	Pin 391Pin 22
P_{2}		TTL	Pin 11/Pin 27	Pin 40/Pin 23
P_{1}		TTL	Pin 10/Pin 26	Pin 41/Pin 24
P_{0}	Product LSB	TTL	Pin 9/Pin 25	Pin 42/Pin 25

Clocks

The MPY016K has four clock lines, one for each input register and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, clocked in at the rising edge of

Name	Function	Value	J1 Package	C1, L1 Package
CLK X	Clock Input Data X	TL	Pin 53	Pin 64
CLK Y	Clock Input Data Y	TL	Pin 8	Pin 44
CLK L	Clock LSP Register	TL	Pin 7	Pin 45
CLK M	Clock MSP Register	TL	Pin 41	Pin 8

Controls

The MPY016K has eight control lines.

FT A control line which makes the output register RND transparent if it is HIGH.

TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS \quad RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.
$\overline{\text { MSEL }} \quad \overline{\text { MSEL }}$ is an output multiplex control. When MSEL is LOW, the MSP is available to the output three-state drivers at the MSP port, and the LSP is available to the output three-state drivers at the LSPIY input port. When MSEL is HIGH, the LSP is available to both three-state drivers and the MSP is not available.

When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2^{-16} bit $(P 14)$. If RS is HIGH when RND is HIGH, a one will be added to the 2^{-15} bit $\left(\mathrm{P}_{15}\right)$. In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX, TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY makes the appropriate input a two's complement input, while a LOW makes the appropriate input a magnitude only input.

F, RS, $\overline{M S E L}$, TRIM, and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention is required if normally HIGH clock signals are used. Problems with loading of these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package
RND	Round Control Bit	TLL	Pin 52	Pin 65
TCX	X Input Two's Complement	TLL	Pin 51	Pin 66
TCY	Y Input Two's Complement	TL	Pin 50	Pin 67
FT	Output Register Feedthrough	TL	Pin 44	Pin 5
RS	Output Register Shift	TL	Pin 43	Pin 6
$\overline{\text { MSEL }}$	Output Select	TL	Pin 45	Pin 4
TRIM	MSP Three-State Control	$T L$	Pin 42	Pin 7
TRIL	LSP Three-State Control	$T \mathrm{TL}$	Pin 6	Pin 46

No Connects

The contact and leaded chip carrier versions of the MPY016K have four pins which are not connected internally. These may be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package
NC	No Connection	Open	(none)	Pins 9, 26, 43, 60

Figure 1．Fractional Two＇s Complement Notation

Figure 2．Fractional Unsigned Magnitude Notation

Figure 3．Fractional Mixed Mode Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram, Non-Multiplexed Output

Figure 8. Timing Diagram, Unclocked Mode, Non-Multiplexed Output

Figure 9. Timing Diagram, Multiplexed Output

Figure 10. Equivalent Input Circuit

Figure 12. Normal Test Load

Figure 11. Equivalent Output Circuit

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers le.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the data must be converted to two's complement
notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016K provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the desired register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY016K does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12 / 164 .
$$

The difference lies in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit.

The MPY016K has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled fi.e. shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
tMC Muttiply Time, Clocked	$V_{C C}=$ MIN (MPY016K)		45		50	ns
	$V_{C C}=$ MIN (MPY016K-1)		40		45	ns
${ }^{\text {tMUC Mutiply Time, Unclocked }}$	$\mathrm{V}_{\text {CC }}=$ MIN (MPY016K)		75		85	ns
	$\mathrm{V}_{\text {CC }}=$ MIN (MPY016K-1)		70		75	ns
t_{0} Output Delay	$V_{\text {CC }}=$ MIN, Load 1 (MPYO16K)		30		35	ns
	$\mathrm{V}_{\text {CC }}=$ MIN, Load 1 (MPY016K-1)		30		30	ns
${ }^{\text {t }}$ SEL Output Multiplex Select Delay	$V_{\text {CC }}=$ MIN, Load 1		20		25	ns
teNA Three-State Output Enable Delay	$V_{\text {CC }}$ - MIN, Load 1		30		35	ns
${ }^{\text {toIS }}$ Three-State Output Disable Delay	$V_{\text {CC }}=$ MIN, Load 2		30		35	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPYO1GKJIC MPY016KJIC1 MPYO16KJIG MPY016KJIG1 MPY016KJIF MPY016KJIF1 MPY016KJIA MPY016KJIAI MPY016KJIN MPY016KJIN1	$\mathrm{STD}-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T O-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T O-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial Commercial Commercial With Burn-In Commercial With Burn-In Commercial Commercial MIL-STD-883 MIL-STD-883 Commercial With Burn-In Commercial Wth Burn-In	64 Lead DIP 64 Lead DIP	016KJIC 016KJTC1 016KJTG 016KJ1G1 0t6KJTF 016KJTF1 OTGKJIA 016KJIAT 016KJIN 016KJIN1
MPY016KC1F MPYOTGKCIA MPYOTGKC1N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL-STD-883 Commercial With Burn-In	68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier	016KC1F 016KCIA 016KCIN
MPYO16KL1F MPYOTGKL1A MPYOI6KLIN	EXT-T $C=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial MIL-STD-883 Commercial Wth Burn-In	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	016 KLIF 016KL1A 016KLIN

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Prefiminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Multiplier-accumulators perform the sum of products operation found in most digital signal processing algorithms. TRW LSI offers a family of multiplier-accumulators in a variety of word sizes ($8,12,16$ bits) and speeds (100 ns to 225 ns multiply-accumulate time).

The multiplier-accumulator is an extension of the multiplier. The operation of addition/subtraction has been included, along with a feedback path for accumulation and a preload path for initializing the accumulator. With the accumulator adder embedded in the multiplier array, the product and sum are generated in only slightly more time than is required to derive the product alone. Clearing the accumulator is accomplished simultaneously with computation of the first product, and the accumulator may be disabled for operation as a multiplier. All TRW multiplier-accumulators are TTL compatible, and have full precision outputs (except as noted), plus three extended bits.

Multiplier-accumulators consist of three functional sections: an input section, the multiply-accumulate array, and the output section. The input section has two independently clocked n-bit input registers for the operands, comprised of positive-edge-triggered D-type flip-flops. Four mode controls (ACCumulate, SUBtract, RouND, and Two's Complement) are also registered.

The multiply-accumulate array is an asynchronous group of AND gates and adders which generates the product of the two input operands and, if desired, adds or subtracts the current contents of the product register (the results of
the previous calculation). The
ACCumulate control (ACC) determines whether the feedback path from the product register to the multiply-accumulate array is enabled. The SUBtract control (SUB) determines whether to add or subtract the product register contents from the new product. The input operands may be interpeted as two's complement or unsigned magnitude. User selectable rounding is available.

The output section includes the product registers and the three-state output ports. The product register receives the accumulated result from the multiply-accumulate array. Accumulation can generate word growth; in addition to the n-bit Most Significant Product (MSP) and the Least Significant Product (LSP), there is an additional three bits of eXTended Product (XTP) in the product register. The output pins are bidirectional ports through which the product register may be preloaded by coordinating the PRELoad control (PREL) with the three-state controls.

Bipolar Muttiplier-Accumulators

The TDC1008, TDC1009, TDC1010 (8,12 , and 16 bits, respectively) and the TDC1043 (16 bits) are triplediffused bipolar devices. The TDC1043 is similar to the TDC1010; however, there is no preload function, and the LSP, though internally used, is not output.

CMOS Multiplier-Accumulators

The TMC2010 (16 bits) is a TRW CMOS multiplier-accumulator which is pin and function compatible with the bipolar TDC1010. It operates at speeds comparable to the bipolar device and dissipates less than 0.5 Watts.

Product	Size	Multiplication Time ${ }^{1}$ (ns)	Power Dissipation (Watts)	Package	Notes
TDC1008	8×8	100	1.8	J4, C1, L1	
TDC1009	12×12	135	3.2	J1, C1, L1	
TDC1010	16×16	165	4.7	J1, C1, L1	
TDC1043	16×16	100	1.2	J3, C1, L1	19-Bit Output
TMC2010	16×16	160	. 5	J3, C1, L1	CMOS

[^5]
VLSI Multiplier-Accumulator

8×8 bit, 100ns

The TDC1008 is a high-speed 8×8 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time $(10 \mathrm{MHz}$ multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), an 8-bit Most Significant Product (MSP), and an 8-bit Least Significant Product ILSPI. Individual three-state output ports are provided for the XTP, LSP and MSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1008 is a uniquely powerful LSI signal processing device.

Features

- 100ns Muttiply-Accumulate Time IWorst Case)
- 8×8 Bit Parallel Multiplication With Accumulation To 19-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TLL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 48 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

©TRW Inc. 1984 40601343 Rev A-2184
Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1008 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 8 -bit numbers which are to be multiplied, and the control lines which control the input numerical format two's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers.
The output registers hold the product as two 8 -bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1008 to be used on a bus, or allow the outputs to be multiplexed over the same 8 -bit output lines.

Power

The TDC1008 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 37	Pin 51
GND	Ground	0.0 V	Pin 12	Pin 18

Data Inputs

The TDC1008 has two 8-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{7} and $Y 7$, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{6} and Y_{0} through Y_{6} (with X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs are
clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package	C1, LI Package
${ }^{1} 7$	X Data MSB	TL	Pin 29	Pin 39
x_{6}		TL	Pin 28	Pin 38
x_{5}		TL	Pin 27	Pin 37
x_{4}		TTL	Pin 26	Pin 36
x_{3}		TL	Pin 25	Pin 35
x_{2}		TL	Pin 24	Pin 34
X_{1}		TL	Pin 23	Pin 33
x_{0}	X Data LSB	TL	Pin 22	Pin 32
Y_{7}	Y Data MSB	TIL	Pin 40	Pin 54
Y_{6}		TIL	Pin 39	Pin 53
Y_{5}		TL	Pin 38	Pin 52
Y_{4}		TL	Pin 36	Pin 50
Y_{3}		TL	Pin 35	Pin 49
Y_{2}		TL	Pin 34	Pin 48
Y_{1}		TLI	Pin 33	Pin 47
Y_{0}	Y Data LSB	TL	Pin 32	Pin 46

Data Outputs

The TDC1008 has a 19-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product ILSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit IMSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package	C1, L1 Package
P_{18}	Product MSB \quad	TL	Pin 43	Pin 63
P_{17}		TL	Pin 44	Pin 64
P_{16}		TIL	Pin 45	Pin 65
P_{15}		TTL	Pin 46	Pin 66
P_{14}		TL	Pin 47	Pin 67
P_{13}		TL	Pin 48	Pin 68
P_{12}		TL	Pin 1	Pin 1
P_{11}		TL	Pin 2	Pin 2
P_{10}		TL	Pin 3	Pin 3
Pg_{9}		TL	Pin 4	Pin 4
P_{B}		TL	Pin 5	Pin 5
P_{7}		TL	Pin 9	Pin 15
P_{6}		mi	Pin 10	Pin 16
P_{5}		TL	Pin 11	Pin 17
P_{4}		TL	Pin 13	Pin 19
P_{3}		TTL	Pin 14	Pin 20
P_{2}		TL	Pin 15	Pin 21
P_{1}		TL	Pin 16	Pin 22
P_{0}	Product LSB	TLL	Pin 17	Pin 23

Clocks

The TDC1008 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB)
edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J4 Package	C1, LI Package
CLK X	Clock Input Data X	$\Pi \mathrm{~L}$	Pin 30	Pin 40
CLK Y	Clock Input Data Y	$\Pi \mathrm{~L}$	Pin 31	Pin 41
CLK P	Clock Product Register	$\Pi \mathrm{L}$	Pin 7	Pin 12

Controls

The TDC1008 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW, and PRELoad is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RNDI controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBitract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J4 Package	C1, LI Package
TSX	XTP Three-State Control	$\Pi \mathrm{L}$	Pin 42	Pin 56
TSM	MSP Three-State Control	$\Pi \mathrm{L}$	Pin 6	Pin 6
TSL	LSP Three-State Control	$\Pi \mathrm{L}$	Pin 18	Pin 24
PREL	Preload Control	$\Pi \mathrm{L}$	Pin 8	Pin 13
RND	Round Control Bit	$\Pi \mathrm{L}$	Pin 21	Pin 31
TC	Two's Complement Control	$\Pi \mathrm{L}$	Pin 41	Pin 55
ACC	Accumulate Control	$\Pi \mathrm{L}$	Pin 20	Pin 30
SUB	Subtract Control	TL	Pin 19	Pin 29

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	1	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	1	1	H	Register \rightarrow Output pin	Register \rightarrow Output pin	Hi-Z
L	1	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
1	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Register \rightarrow Output pin
1	H	L	H	Hi-Z	Register \rightarrow Output pin	Hi-Z
L	H	H	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
1	H	H	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	1	$\mathrm{Hi} \mathrm{-}$ Z	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z Preload
H^{2}	1	H	L	Hi-Z	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	1	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-2$
H^{2}	H	L	H	Hi-Z Preload	Hi-Z	Hi-Z Preload
H^{2}	H	H	1	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-2 Preload	Hi-2 Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Temperature
Operating, case .. ${ }^{\circ} \mathrm{C}$

Lead, soldering (10 seconds) ...

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tPW }}$	Clock Pulse Width	25			30			ns
t_{5}	Input Setup Time	25			30			ns
${ }_{\text {H }}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
$\mathrm{V}_{1 H}$	Input Voltage, Logic High	2.0			2.0			V
I_{OL}	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {I }}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {TMA }}$	Mutiply - Accumulate Time		$V_{C C}=M 1 N$		100		125	ns
${ }^{t}$	Output Delay		$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
${ }^{\text {tena }}$	Three-State Output Enable Delay	$V_{C C}-$ MIN, Load 1		40		45	ns	
${ }^{\text {tols }}$	Three-State Output Disable Delay	$V_{C C}=$ MIN, Load 2		40		45	ns	

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Normal Test Load

Figure 9. Three-State Delay Test Load

LOAD 2

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and the desired register not be loaded again until a new constant is desired. The
multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1008 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12164
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening TDC1008J4C	STD $-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Package
Marking				

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
(1)

VLSI Multiplier-Accumulator

12×12 bit, 135ns

The TDC1009 is a high-speed 12×12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time $(7.4 \mathrm{MHz}$ multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 24 -bit product. Products may be accumulated to a 27 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 12 -bit Most Significant Product (MSP), and a 12 -bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1009 is a uniquely powerful LSI signal processing device.

Features

- 135ns Multiply-Accumulate Time IWorst Case)
- 12×12 Bit Paralleł Multiplication With Accumulation to 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- MicrocomputerIMinicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J0 Package

64 Lead DIP - J1 Package
LSI Products Division
TRW Electronic Components Group

Pin Assignments

68 Contact or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1009 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 12 -bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSPI, and the eXTended Product (XTP). Three-state output drivers permit the TDC1009 to be used on a bus, or allow the outputs to be multiplexed over the same 12 -bit output lines.

Power

The TDC1009 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
VCC	Positive Supply Voltage	+5.0 V	Pin 49	Pin 16	Pins 68, 2
GND	Ground	0.0 V	Pin 16	Pin 49	Pins 34, 36, 37

Data Inputs

The TDC1009 has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{11} and Y_{11}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} (with X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
X_{11}	X Data MSB	TTL	Pin 58	Pin 7	Pin 59
X_{10}		TL	Pin 59	Pin 6	Pin 58
χ_{g}		TIL	Pin 60	Pin 5	Pin 57
x_{8}		TL	Pin 61	Pin 4	Pin 56
x_{7}		TTL	Pin 62	Pin 3	Pin 55
x_{6}		TL	Pin 63	Pin 2	Pin 54
x_{5}		$\pi \mathrm{L}$	Pin 64	Pin 1	Pin 53
x_{4}		TL	Pin 1	Pin 64	Pin 52
x_{3}		TL	Pin 2	Pin 63	Pin 51
x_{2}		$\Pi \mathrm{L}$	Pin 3	Pin 62	Pin 50
x_{1}		TIL	Pin 4	Pin 61	Pin 49
x_{0}	X Data LSB	TTL	Pin 5	Pin 60	Pin 48
Y_{11}	Y Data MSB	TIL	Pin 43	Pin 22	Pin 8
Y_{10}		TTL	Pin 44	Pin 21	Pin 7
Y_{g}		TL	Pin 45	Pin 20	Pin 6
γ_{8}		TIL	Pin 46	Pin 19	Pin 5
Y_{7}		TTL	Pin 47	Pin 18	Pin 4
Y_{6}		TIL	Pin 48	Pin 17	Pin 3
Y_{5}		TTL	Pin 50	Pin 15	Pin 67
r_{4}		TTL	Pin 51	Pin 14	Pin 66
r_{3}		TTL	Pin 52	Pin 13	Pin 65
r_{2}		TTL	Pin 53	Pin 12	Pin 64
Y_{1}		TL	Pin 54	Pin 11	Pin 63
$\underline{Y_{0}}$	Y Data LSB	TIL	Pin 55	Pin 10	Pin 62

Data Outputs

The TDC1009 has a 27-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 12 -bit output words, the Most Significant Product (MSP) and Least Significant Product ILSPI, and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
P_{26}	Product MSB	TL	Pin 40	Pin 25	Pin 11
P_{25}		TTL	Pin 39	Pin 26	Pin 12
P_{24}		TL	Pin 38	Pin 27	Pin 13
P_{23}		TTL	Pin 37	Pin 28	Pin 14
P_{22}		TL	Pin 36	Pin 29	Pin 15
P_{21}		TIL	Pin 35	Pin 30	Pin 16

Data Outputs (Cont.)

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
P_{20}		TL	Pin 34	Pin 31	Pin 17
P_{19}		TL	Pin 33	Pin 32	Pin 18
P_{18}		TL	Pin 32	Pin 33	Pin 19
P_{17}		TL	Pin 31	Pin 34	Pin 20
P_{16}		TL	Pin 30	Pin 35	Pin 21
P_{15}		TTL	Pin 29	Pin 36	Pin 22
P_{14}		TIL	Pin 28	Pin 37	Pin 23
P_{13}		TL	Pin 27	Pin 38	Pin 24
P_{12}		TL	Pin 26	Pin 39	Pin 25
P_{11}		TTL	Pin 22	Pin 43	Pin 29
P_{10}		TTL	Pin 21	Pin 44	Pin 30
Pg_{9}		TTL	Pin 20	Pin 45	Pin 31
P_{8}		TTL	Pin 19	Pin 46	Pin 32
P_{7}		TTL	Pin 18	Pin 47	Pin 33
P_{6}		TTL	Pin 17	Pin 48	Pin 35
P_{5}		TiL	Pin 15	Pin 50	Pin 38
P_{4}		TIL	Pin 14	Pin 51	Pin 39
P_{3}		TTL	Pin 13	Pin 52	Pin 40
P_{2}		TTL	Pin 12	Pin 53	Pin 41
P_{1}		TL	Pin 11	Pin 54	Pin 42
P_{0}	Product LSB	TL	Pin 10	Pin 55	Pin 43

Clocks

The TDC1009 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB)
inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
CLX X	Clock Input Data X	TL	Pin 57	Pin 8	Pin 60
CLK Y	Clock Input Data Y	TL	Pin 56	Pin 9	Pin 61
CLK P	Clock Product Register	TL	Pin 23	Pin 42	Pin 28

Controls

The TDC1009 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW, and PRELoad is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 11. First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at
the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

Controls (Cont.)

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly.

This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 41	Pin 24	Pin 10
TSM	MSP Three-State Control	TLL	Pin 25	Pin 40	Pin 26
TSL	LSP Three-State Control	TLL	Pin 9	Pin 56	Pin 44
PREL	Preload Control	TL	Pin 2	Pin 41	Pin 27
RND	Round Control Bit	TLL	Pin 8	Pin 57	Pin 45
TC	Two's Complement Control	TL	Pin 42	Pin 23	Pin 9
ACC	Accumulate Control	TLL	Pin 6	Pin 59	Pin 47
SUB	Subtract Control	TTL	Pin 7	Pin 58	Pin 46

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \longrightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	Hi-Z
L	L	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	L	H	H	Register \rightarrow Output pin	Hi-Z	Hi-Z
L	H	L	L	Hi-Z	Register \rightarrow Output pin	Register \rightarrow Output pin
L	H	L	H	Hi-Z	Register \rightarrow Output pin	Hi-Z
L	H	H	L	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	H	H	H	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	L	H	L	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload	Hi-Z
H^{2}	H	L	L	Hi-Z Preload	Hi-Z	Hi-Z
H^{2}	H	1	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
$\mathrm{T}_{\text {PW }}$	Clock Pulse Width	25			30			ns
T_{S}	Input Setup Time	25			30			ns
T_{H}	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
V_{IH}	Input Voltage, Logic High	2.0			2.0			V
${ }_{0}$	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		+125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$V_{C C}=$ MAX, Static ${ }^{1}$		750		850	mA
ILL Input Current, Logic Low	$V_{C C}-\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$					
	$X_{\text {IN }}, Y_{\text {IN }}$, RND, ACC, SUB, TC		-0.4		-0.4	mA
	CLK Y, P, PREL		-2.0		-2.0	mA
	CLK X, TSL, TSM, TSX		-1.0		-1.0	mA
IH Input Current, Logic High	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=2.4 \mathrm{~V}$					
	$X_{\text {IN }}, Y_{\text {IN }}$, RND, ACC, SUB, TC		75		100	$\mu \mathrm{A}$
	CLK Y, P, PREL		150		200	$\mu \mathrm{A}$
	CLK X, TSL, TSM, TSX		75		100	$\mu \mathrm{A}$
I Input Current, Max Input V	$V_{\text {CC }}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$\mathrm{V}_{\text {OL }}$ Output Voltage, Logic Low	$V_{C C}=$ MAX, $I_{O L}=$ MAX		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic High	$V_{\text {CC }}=$ MAX, $\mathrm{IOH}=$ MAX	2.4		2.4		V
$\mathrm{I}_{\text {OZL }}$ Hi-Z Output Leakage Current	$V_{C C}=$ MAX		-40		-40	$\mu \mathrm{A}$
OZZH Hi-2 Output Leakage Current	$V_{C C}=$ MAX		40		40	$\mu \mathrm{A}$
IOS Short-Circuit Output Current	VCC $=$ MAX, output high, one pin to ground, one second duration		-50		-50	mA
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		10		10	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		10		10	pF
Notes: 1. Worst Case: All inputs and outputs LOW.						

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {™ }}$ M Multiply-Accumulate Time	$V_{\text {CC }}=M \mathbb{N}$		135		170	ns
tD Output Delay	$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
${ }_{\text {teNA }}$ Three-State Output Enable Delay	$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
tols Three-State Output Disable Delay	$V_{\text {CC }}=$ MIN, Load 2		40		45	ns

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Normal Test Load
Figure 9. Three-State Delay Test Load

LOAD 2

LSI Products Division
TRW Electronic Components Group

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and the desired register not be loaded again until a new constant is desired. The
multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1009 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(618) \times(218)=12164
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC100gJiC TDC1009J1G TDC1009.JF TDC1009JIA TDC1009.JIN	$\mathrm{SID}-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP 64 Lead DIP	1009J1C 1009.J1G 1009JIF 1009.j1A 1009J1N
TDC1009.JOF TDC1009.JOA TDCTOOSJON	$\begin{aligned} & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial With Burn-In	64 Lead DIP 64 Lead DIP 64 Lead DIP	1009.jof 1009.0A 1009.0N
TDC1009C1F TDC1009C1A TDC1009C1N	$\begin{aligned} & \text { EXT- } T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MIL-STD-883 Commercial With Burn-In	68 Contact Chip Carrier 68 Contact Chip Carrier 68 Contact Chip Carrier	1009C1F 1009C1A 1009C1N
TDC1009L1F TDC1009L1A TDC1009L1N	$\begin{aligned} & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial MLL-STD-8B3 Commercia! With Burn-In	68 Leaded Chip Carrier 68 Leaded Chip Carrier 68 Leaded Chip Carrier	1009L1F 1009L1A 1009L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
 MRE

VLSI Multiplier-Accumulator

16×16 bit, 165ns

The TDC1010 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 165 nanosecond cycle time 16 MHz multiply-accumulation rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32 -bit product. Products may be accumulated to a 35 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3 -bit eXTended Product (XTP), a 16-bit Most Significant Product IMSPI, and a 16 -bit Least Significant Product ILSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1010 is a uniquely powerful LSI signal processing device.

Features

- 165ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Accumulation To 35 -Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Redar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - JO Package

64 Lead DIP - J1 Package
LSI Products Division
TRW Electronic Components Group

Pin Assignments

Functional Description

General Information

The TDC1010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format Itwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16 -bit words and one 3-bit word: the Most Significant Product MSPI, the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TDC1010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 49	Pin 16	Pins 17, 18, 19, 20
GND	Ground	$0.0 V$	Pin 16	Pin 49	Pins 53,54

Data Inputs

The TDC1010 has two 16 -bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits IMSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} iwith X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	J0 Package	C1, 11 Package
X_{15}	X Data MSB	TTL	Pin 56	Pin 9	Pin 10
X_{14}		TL	Pin 57	Pin 8	Pin 9
x_{13}		TTL	Pin 58	Pin 7	Pin 8
X_{12}		TTL	Pin 59	Pin 6	Pin 7
x_{11}		TTL	Pin 60	Pin 5	Pin 6
X_{10}		TTL	Pin 61	Pin 4	Pin 5
χ_{9}		TTL	Pin 62	Pin 3	Pin 4
x_{8}		TTL	Pin 63	Pin 2	Pin 3
x_{7}		TL	Pin 64	Pin 1	Pin 2
x_{6}		TTL	Pin 1	Pin 64	Pin 1
x_{5}		TTL	Pin 2	Pin 63	Pin 68
x_{4}		TL	Pin 3	Pin 62	Pin 67
x_{3}		ITL	Pin 4	Pin 61	Pin 66
x_{2}		TTL	Pin 5	Pin 60	Pin 65
x_{1}		ITL	Pin 6	Pin 59	Pin 64
x_{0}	X Data LSB	TL	Pin 7	Pin 58	Pin 63
Y_{15}	Y Data MSB	TLL	Pin 24	Pin 41	Pin 45
γ_{14}		TTL	Pin 23	Pin 42	Pin 46
Y_{13}		ITL	Pin 22	Pin 43	Pin 47
Y_{12}		TL	Pin 21	Pin 44	Pin 48
Y_{11}		TTL	Pin 20	Pin 45	Pin 49
Y_{10}		ITL	Pin 19	Pin 46	Pin 50
Y_{g}		TTL	Pin 18	Pin 47	Pin 51
γ_{8}		TL	Pin 17	Pin 48	Pin 52
Y_{7}		TL	Pin 15	Pin 50	Pin 55
γ_{6}		TIL	Pin 14	Pin 51	Pin 56
Y_{5}		TIL	Pin 13	Pin 52	Pin 57
r_{4}		TTL	Pin 12	Pin 53	Pin 58
γ_{3}		$\pi \mathrm{L}$	Pin 11	Pin 54	Pin 59
r_{2}		TL	Pin 10	Pin 55	Pin 60
Y_{1}		TIL	Pin 9	Pin 56	Pin 61
γ_{0}	Y Data LSB	TTL		Pin 57	Pin 62

Data Dutputs

The TDC1010 has a 35 －bit two＇s complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated．The output is divided into two 16－bit output words，the Most Significant Product（MSP）and Least Significant Product ILSPI，and one 3－bit output word，the
eXTended Product（XTP）．The Most Significant Bit（MSB）of the XTP is the sign bit if two＇s complement notation is used．The input and output formats for fractional two＇s complement notation，fractional unsigned magnitude notation，integer two＇s complement notation，and integer unsigned magnitude notation are shown in Figures 1 through 4，respectively．

Name	Function	Value	J1 Package	J0 Package	C1，L1 Package
P_{34}	Product MSB	TTL	Pin 43	Pin 22	Pin 26
P_{33}		TTL	Pin 42	Pin 23	Pin 27
P_{32}		TTL	Pin 41	Pin 24	Pin 28
P_{31}		TTL	Pin 40	Pin 25	Pin 29
P_{30}		TL	Pin 39	Pin 26	Pin 30
P_{29}		TL	Pin 38	Pin 27	Pin 31
P_{28}		TTL	Pin 37	Pin 28	Pin 32
P_{27}		TTL	Pin 36	Pin 29	Pin 33
P_{26}		TTL	Pin 35	Pin 30	Pin 34
P_{25}		TTL	Pin 34	Pin 31	Pin 35
P_{24}		TTL	Pin 33	Pin 32	Pin 36
P_{23}		TTL	Pin 32	Pin 33	Pin 37
P_{22}		TLL	Pin 31	Pin 34	Pin 38
P_{21}		TTL	Pin 30	Pin 35	Pin 39
P_{20}		TTL	Pin 29	Pin 36	Pin 40
P_{19}		TIL	Pin 28	Pin 37	Pin 41
P_{18}		TTL	Pin 27	Pin 38	Pin 42
P_{17}		TTL	Pin 26	Pin 39	Pin 43
P_{16}		TTL	Pin 25	Pin 40	Pin 44
P_{15}		TTL	Pin 24	Pin 41	Pin 45
P_{14}		TTL	Pin 23	Pin 42	Pin 46
P_{13}		TTL	Pin 22	Pin 43	Pin 47
P_{12}		TTL	Pin 21	Pin 44	Pin 48
P_{11}		TTL	Pin 20	Pin 45	Pin 49
P_{10}		TTL	Pin 19	Pin 46	Pin 50
Pg_{9}		TTL	Pin 18	Pin 47	Pin 51
P_{8}		TTL	Pin 17	Pin 48	Pin 52
P_{7}		TTL	Pin 15	Pin 50	Pin 55
P_{6}		TTL	Pin 14	Pin 51	Pin 56
P_{5}		TTL	Pin 13	Pin 52	Pin 57
P_{4}		TTL	Pin 12	Pin 53	Pin 58
P_{3}		TTL	Pin 11	Pin 54	Pin 59
P_{2}		TIL	Pin 10	Pin 55	Pin 60
P_{1}		TL	Pin 9	Pin 56	Pin 61
P_{0}	Product LSB	IIL		Pin 57	Pin 62

Clocks

The TDC1010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND IRNDI, Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising
edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
CLK X	Clock Input Data X	TIL	Pin 51	Pin 14	Pin 15
CLK Y	Clock Input Data Y	TTL	Pin 50	Pin 15	Pin 16
CLK P	Clock Product Register	TTL	Pin 44	Pin 21	Pin 25

Controls

The TDC1010 has eight control lines. TSX,TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL are HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 11. First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TXL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control ITSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract ISUBI control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical $O R$ of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
TSX	XTP Three-State Control	TLL	Pin 47	Pin 18	Pin 22
TSM	MSP Three-State Control	TL	Pin 45	Pin 20	Pin 24
TSL	LSP Three-State Control	TL	Pin 55	Pin 10	Pin 11
PREL	Preload Control	TL	Pin 46	Pin 19	Pin 23
RND	Round Control Bit	TL	Pin 54	Pin 11	Pin 12
TC	Two's Complement Control	TLL	Pin 48	Pin 17	Pin 21
ACC	Accumulate Control	TL	Pin 52	Pin 13	Pin 14
SUB	Subtract Control	TL	Pin 53	Pin 12	Pin 13

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tpw }}$	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
${ }^{1} \mathrm{H}$	Input Hold Time	0			3			ns
$V_{\text {IL }}$	Input Voltage, Lagic Low			0.8			0.8	v
V_{IH}	Input Voltage, Logic High	2.0			2.0			V
${ }_{0} 0$	Output Current, Logic Low			4.0			4.0	mA
$\mathrm{OH}^{\text {OH}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
$T_{\text {A }}$	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T} \mathrm{C}$	Case Temperature.				-55		+125	${ }^{\circ} \mathrm{C}$

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {m }}$ M	Multiply-Accumulate Time		$\mathrm{V}_{\text {CC }}=\mathrm{M} / \mathrm{N}$	10	165	10	200	ns
${ }^{\text {t }}$	Output Delay		$V_{\text {CC }}=$ MIN, Load 1		40		45	ns
${ }_{\text {tena }}$	Three-State Output Enable Delay	$V_{C C}=$ MIN, Load 1		40		45	ns	
${ }_{\text {tis }}$	Three-State Output Disable Delay	$V_{\text {CC }}=$ MIN, Load 2		40		45	ns	

Electrical characteristics within specified operating conditions

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Normal Test Load

Figure 9. Three-State Delay Test Load

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \rightarrow Output pin	Register \rightarrow Output pin	Register \rightarrow Output pin
L	L	L	H	Register \rightarrow Output pin	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	L	Register \rightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
1	L	H	H	Register \rightarrow Output pin	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$
L	H	L	L	Hi-Z	Register \rightarrow Output pin	Register \longrightarrow Output pin
L	H	L	H	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin	Hi-Z
L	H	H	L	Hi-Z	Hi-Z	Register \rightarrow Output pin
L	H	H	H	Hi-2	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z
H^{2}	L	L	L	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	1	L	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z Preload
H^{2}	1	H	1	Hi-Z	Hi-Z Preload	$\mathrm{Hi}-2$
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H^{2}	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant only requires that the constant be loaded into the desired input register，and that the register not be loaded again until a new constant is desired．The multiply
cycle then consists simply of loading new data and strobing the output register．

Selection of Numeric Format

Essentially，the difference between integer，mixed，and fractional notation in system design is only conceptual．For example，the TDC1010 does not differentiate between this operation：

$$
6 \times 2=12
$$

and this operation：

$$
(6 / 8) \times(218)=12 / 64
$$

The difference lies only in constant scale factors（in this case， a factor of 8 in the multiplier and multipicand and a factor of 64 in the productl．However，these scale factors do have
implications for hardware design．Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel，the scale factors determine the connection of the output pins of any multiplier in a system．As a result，only two choices are normally made：integer and fractional notation．If integer notation is used，the Least Significant Bits of the multiplier， multiplicand，and product all have the same value．If fractional notation is used，the Most Significant Bits of the multiplier， multiplicand，and product all have the same value．These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1010JIC	STO－T $\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1010JIC
TDC1010JIG	STD－T $A=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	64 Lead DIP	1010．1G
TDC1010．J1F	EXT－ $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1010J1F
TDC1010JIA	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MLI－STD－883	64 Lead DIP	1010．1a
TDC1010JIN	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn－In	64 Lead DIP	1010J1N
TDC1010．0F	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1010．J0F
TDC1010．0A	EXT－ $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL－STD－883	64 Lead DIP	1010．50A
TDC1010．jon	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn－In	64 Lead DIP	1010．0N
TDC1010C1F	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1010CIF
TOC10t0C1A	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL－STD－883	68 Contact Chip Carrier	1010CiA
tociolocin	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn－in	68 Contact Chip Carrier	1010CIN
TDC1010L1F	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1010L1F
TDC1010．1A	EXT－T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL－STD－883	68 Leaded Chip Carrier	1010L1A
TDC1010LIN	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn－In	68 Leaded Chip Carrier	1010L1N

[^6] others．

TDC1043
 Preliminary Information

VLSI Multiplier-Accumulator

16×16 bit, 100ns

The TRW TDC1043 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time 110 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge triggered D-type flip-flops. All outputs are three-state.

Built with TRW's OMICRON-BTM 1-micron bipolar process, the TDC1043 is pin-compatible with the industry standard TDC1010, but does not provide the preload and Least Significant Product (LSP) output capabilities of the TDC1010. However, the LSP bits are used internally for accurate accumulation. The TDC1043 operates with almost twice the speed of the TDC1010 at less than one-third the power dissipation.

Features

- 100ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Selectable Accumulation And Subtraction, and 19-Bit Limited Precision Output
- Pin Compatible With TRW TDC1010
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State TTL Output
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier
- Available Screened To MIL-STD-883

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1043 has four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16 -bit numbers which are to be multiplied and the control lines which control the input numerical format (two's complement or unsigned magnitude), output roundings, accumulation and subtraction. Each number is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output
registers hold the complete result. Three-state output drivers are provided for one 16 -bit word, the Most Significant Product (MSP), and one 3-bit word, the eXTended Product (XTP). The Least Significant Product (LSP) is not available with the TDC1043. It is held internally for use in accumulation. Three-state output drivers permit the TDC1043 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The unit is pin-compatible with the TDC1010 with the exception that there is no preload capability or least significant product output.

Power

The TDC1043 operates from a single +5 V supply. The voltage tolerance is different for the standard and extended temperature range parts. All power and ground lines must be connected. A good ground must be provided due to the large number of data outputs capable of changing simultaneously. A $0.1-\mu \mathrm{F}$ (minimum) bypass capacitor between $V_{C C}$ and ground is recommended.

TDC1010 Compatibility Note: Permanently connect pin 46 IJ3 package) or pin 23 (C1, L1 packagel on the TDC1043 to ground. Do not leave this pin open or connected to a TTL output. (On the TDC1010, this pin is the preload pin.)

Name	Function	Value	J3 Package	C1, L1 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	$0.0 V$	Pins 16, 46	Pins 23,53,54

Data Inputs

The TDC1043 has two 16 -bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} (with X_{0} and Y_{0} the Least Significant Bits). Data present at the X and Y inputs
are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X_{15}	X Data MSB	TTL	Pin 56	Pin 10
X_{14}		TIL	Pin 57	Pin 9
X_{13}		TIL	Pin 58	Pin 8
x_{12}		TTL	Pin 59	Pin 7
x_{11}		TL	Pin 60	Pin 6
X_{10}		TTL	Pin 61	Pin 5
Xg_{9}		TTL	Pin 62	Pin 4
x_{B}		TIL	Pin 63	Pin 3
x_{7}		TTL	Pin 64	Pin 2
x_{6}		TL	Pin 1	Pin 1
x_{5}		TTL	Pin 2	Pin 68
x_{4}		TIL	Pin 3	Pin 67
x_{3}		TTL	Pin 4	Pin 66
x_{2}		TIL	Pin 5	Pin 65
x_{1}		TL	Pin 6	Pin 64
x_{0}	X Data LSB	TTL	Pin 7	Pin 63
γ_{15}	Y Data MSB	TTL	Pin 24	Pin 45
Y_{14}		IIL	Pin 23	Pin 46
γ_{13}		TL	Pin 22	Pin 47
r_{12}		TIL	Pin 21	Pin 48
Y_{11}		TL	Pin 20	Pin 49
Y_{10}		TTL	Pir 19	Pin 50
Y_{g}		TTL	Pin 18	Pin 51
Y_{8}		TIL	Pin 17	Pin 52
Y_{7}		TL	Pin 15	Pin 55
Y_{6}		TL	Pin 14	Pin 56
Y_{5}		TIL	Pin 13	Pin 57
Y_{4}		TL	Pin 12	Pin 58
γ_{3}		TL	Pin 11	Pin 59
Y_{2}		ITL	Pin 10	Pin 60
γ_{1}		TL	Pin 9	Pin 61
Y_{0}	Y Data LSB	TIL		Pin 62

Data Outputs

The TDC1043 has a 35 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. Only the most significant 19 bits are available off-chip. The output is divided into one 16-bit output word, the Most Significant Product (MSP), and one 3-bit output
word, the eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's cormplement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 and 4, respectively.

Name	Function	Value	J3 Package	C1, 11 Package
P_{34}	Product MSB	TTL	Pin 43	Pin 26
P_{33}		TTL	Pin 42	Pin 27
P_{32}		TTL	Pin 41	Pin 28
P_{31}		TTL	Pin 40	Pin 29
P_{30}		TTL	Pin 39	Pin 30
P_{29}		TTL	Pin 38	Pin 31
P_{28}		TTL	Pin 37	Pin 32
P_{27}		TTL	Pin 36	Pin 33
P_{26}		TTL	Pin 35	Pin 34
P_{25}		TTL	Pin 34	Pin 35
P_{24}		TTL	Pin 33	Pin 36
P_{23}		TTL	Pin 32	Pin 37
P_{22}		TTL	Pin 31	Pin 38
P_{21}		TL	Pin 30	Pin 39
P_{20}		TTL	Pin 29	Pin 40
P_{19}		TTL	Pin 28	Pin 41
P_{18}		TTL	Pin 27	Pin 42
P_{17}		TIL	Pin 26	Pin 43
P_{16}		TTL	Pin 25	Pin 44

Clacks

The TDC1043 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. Note that the input to the output register comes only from the internal adder and multiplier array. The RouND (RND), Two's Complement (TC),

ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	$\Pi \mathrm{L}$	Pin 51	Pin 55
CLK Y	Clock Input Data Y	$\Pi \mathrm{L}$	Pin 50	Pin 16
CLK P	Clock Product Register	$\Pi \mathrm{L}$	Pin 44	Pin 25

Controls

The TDC1043 has six control lines. TSX and TSM are three-state enable lines for the XTP and the MSP. The output driver is in the high-impedance state when TSX or TSM are HIGH, and enabled when the appropriate control is LOW. TSX and TSM are not registered.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP lif appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs and TC LOW makes both inputs magnitude only inputs.

When ACCumulate $(A C C)$ is HIGH, the contents of the output register are added to or subtracted from the next product generated, and their sum is stored back into the output
registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the contents of the output register are subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical $O R$ of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package
TSX	XTP Three-State Control	TL	Pin 47
TSM	MSP Three-State Control	$\Pi \mathrm{L}$	Pin 45
RND	Round Control Bit	$\Pi \mathrm{L}$	Pin 54
TC	Two's Complement Control	$\Pi \mathrm{L}$	Pin 48
ACC	Accumulate Control	$\Pi \mathrm{L}$	Pin 52
SUB	Subtract Control	$\Pi \mathrm{LL}$	Pin 53

No Connects

The TDC1043 has one pin labeled "No Connect" (NC). No connection is made between the chip and this pin.

Name	Function	Value	J3 Package	C1, L1 Package
NC	No Connection	Open	Pin 55	Pin 11

Figure 1．Fractional Two＇s Complement Notation

Figure 2．Fractional Unsigned Magnitude Notation

Figure 3．Integer Two＇s Complement Notation

Figure 4．Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Input Voltage	
Output	Applied voltage \qquad -0.5 to $+5.5 \mathrm{~V}^{2}$ Forced current \qquad -0.1 to $+6.0 \mathrm{~mA}^{3,4}$ Short-circuit duration (single output in high state to ground) \qquad 1 sec
Temperature	Dperating, case .. junction \qquad $+175^{\circ} \mathrm{C}$ Lead, soldering (10 seconds) \qquad $+300^{\circ} \mathrm{C}$ Storage \qquad -65 to $150^{\circ} \mathrm{C}$
Notes:	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range. 3. Forcing voltage must be limited to specified range. 4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameters		Temperature Range						Units
		Standard			Extended			
		Min	Nom ${ }^{1}$	Max	Min	Nom ${ }^{1}$	Max	
$v_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tpWL }}$	Clock Pulse Width, Low	25			25			ns
${ }^{\text {tPWH }}$	Clock Pulse Width, High	25			25			ns
${ }_{\text {t }}$	Input Setup Time	25			25			ns
${ }_{\text {th }}$	Input Hold Time	0			0			ns
V_{IL}	Input Voltage, Logic Low			0.8			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic High	2.0			2.0			V
$\mathrm{l}_{0 \mathrm{~L}}$	Output Current, Logic Low			4.0			4.0	mA
${ }_{\text {IH }}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				55		+125	${ }^{\circ} \mathrm{C}$

Note:

1. Nominal performance at $V_{C C}=N O M, T_{A}=25^{\circ} \mathrm{C}$.

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {I CC }}$ Supply Current	$V_{C C}=M A X$, static ${ }^{1}$					
	$\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		220			mA
	$\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}$		200			mA
	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				250	mA
	$\mathrm{T}_{\mathrm{C}} \geq 35^{\circ} \mathrm{C}$				210	mA
	$V_{C C}-5.0 \mathrm{~V}$					
	$\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}$		195			mA
	$\mathrm{T}_{\mathrm{C}} \geq 35^{\circ} \mathrm{C}$				200	mA
IL Input Current, Logic Low	$\underline{V_{C C}-M A X, V_{1}-0.5 V}$					
	Data inputs, RND, ACC, SUB, TC		-0.2		-0.2	mA
	TSX, TSM, CLK X, CLK Y, CLK P		-0.8		-0.8	mA
IH Input Current, Logic High	$V_{C C}=$ MAX, $V_{1}-2.4 V$					
	Data Inputs, RND, ACC, SUB, TC		50		50	$\mu \mathrm{A}$
	TSX, TSM, CLK X, CLK Y, CLK P		100		100	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAX, $V_{1}=5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{0 L}$ Output Voltage, Logic Low	$V_{C C}=M I N, I_{0 L}=\operatorname{MAX}$		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic High	$V_{C C}=M I N, I_{O H}=$ MAX	2.4		2.4		V
IOZL Hi-2 Output Leakage Current	$V_{C C}=$ MAX,$V_{l}=0.5 \mathrm{~V}$		-20		-20	$\mu \mathrm{A}$
IOZH Hiz Output Leakage Current	$V_{C C}=$ MAX, $V_{1}=2.4 V$		20		20	$\mu \mathrm{A}$
IOS Short Circuit Output Current	$V_{\text {CC }}=M A X$, One pin to ground, one second duration, output high.	-5	-50	-5	-50	mA
C_{1} Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}-1 \mathrm{MHz}$		15		15	pF

1. Worst Case: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {ma }}$	Muttiply-Accumulate Time		$V_{\text {CC }}-\mathrm{MIN}$		100		120	ns
t	Output Delay		$V_{\text {CC }}=$ MIN, Load 1		35		35	ns
tena	Three-State Output Enable Delay	$V_{C C}=$ MIN, Load 1	10	35	10	35	ns	
tois	Three-State Output Disable Delay	$V_{C C}=$ MIN, Load 2	10	35	10	35	ns	

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 8. Normal Test Load

Figure 7. Equivalent Output Circuit

Figure 9. Three-State Delay Test Load

LOAD 2

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1043 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6618) \times(2 / 8)=12 / 64 .
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1043J3C	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1043J3C
TDC104333G	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	104333G
TDC1043,3F	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1043J3F
TDC104333	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	64 Lead DIP	1043J3A
TDC1043J3N	EXT $-\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	104333
TDC1043C1C	STO - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1043C1C
TDC1043C1G	STD - $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1043C1G
TDC1043C1F	EXT - $T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	1043C1F
TDC1043C1A	EXT - $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	68 Contact Chip Carrier	1043C1A
TDC1043C1N	EXT - ${ }^{\text {C }} \mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1043C1N
TDC1043L1C	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1043L1C
TDC1043119	STD - $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1043L16
TDC1043L1F	EXT $-T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	1043L1F
TDC1043L1A	EXT $-T_{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	68 Leaded Chip Carrier	1043L1A
TDCIO43L1N	EXT - ${ }^{\text {C }}$ C $=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	1043LIN

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

CMIOS Multiplier-Accumulator

16×16 bit, 160ns
The TMC2010 is a high-speed 16×16 bit parallel multiplier-accumulator which operates at a 160 nanosecond cycle time (more than 6 MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32 -bit product. Products may be accumulated to a 35 -bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a three bit eXTended Product (XTP), a sixteen bit Most Significant Product (MSP), and a sixteen bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2010 is pin and function compatible with the industry standard TDC1010 and operates with the same speed at one-sixth or less power dissipation, depending on the multiply-accumulate rate.

Features

- Low Power Consumption CMOS Process
- Pin And Function Compatible With TRW TDC1010
- 160ns Multiply-Accumulate Time (Worst Case)
- 16×16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Available in 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

Functional Block Diagram

Functional Block Diagram

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

64 Lead DIP - J3 Package

Functional Description

General Information

The TMC2010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format ltwo's complement or unsigned magnitudel, output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of
products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words and one 3-bit word: the Most Significant Product MSPI, the Least Significant Product ILSPI, and the eXTended Product (XTP). Three-state output drivers permit the TMC2010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TMC2010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
$V_{D D}$	Positive Supply Voltage	$+5.0 V$	Pin 49	Pins 17, 18, 19, 20
GND	Ground	Pin 18	Pins 53, 54	

Data Inputs

The TMC2010 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15}, carry the sign information for the two's complement notation. The remaining bits are denoted X_{14} through X_{0} and Y_{14} through Y_{0} with X_{0} and Y_{0} the Least Significant Bitsl. Data present at the X and Y inputs
is clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X_{15}	X Data MSB	TL	Pin 56	Pin 10
X_{14}		IL	Pin 57	Pin 9
X_{13}		TL	Pin 58	Pin 8
x_{12}		TTL	Pin 59	Pin 7
x_{11}		TIL	Pin 60	Pin 6
X_{10}		TL	Pin 61	Pin 5
X_{9}		TL	Pin 62	Pin 4
χ_{8}		TL	Pin 63	Pin 3
x_{7}		TL	Pin 64	Pin 2
x_{6}		TLL	Pin 1	Pin 1
x_{5}		TL	Pin 2	Pin 68
x_{4}		TL	Pin 3	Pin 67
x_{3}		IIL	Pin 4	Pin 66
x_{2}		TIL	Pin 5	Pin 65
x_{1}		TTL	Pin 6	Pin 64
x_{0}	X Data LSB	TL	Pin 7	Pin 63

Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, 11 Package
Y_{15}	Y Data MSB	TL	Pin 24	Pin 45
Y_{14}		TL	Pin 23	Pin 46
Y_{13}		TIL	Pin 22	Pin 47
Y_{12}		TL	Pin 21	Pin 48
Y_{11}		TL	Pin 20	Pin 49
Y_{10}		TL	Pin 19	Pin 50
Y_{g}		TL	Pin 18	Pin 51
Y_{B}		TL	Pin 17	Pin 52
Y_{7}		TIL	Pin 15	Pin 55
γ_{6}		TL	Pin 14	Pin 56
Y_{5}		TIL	Pin 13	Pin 57
r_{4}		TTL	Pin 12	Pin 58
γ_{3}		TTL	Pin 11	Pin 59
Y_{2}		TIL	Pin 10	Pin 60
Y_{1}		TL	Pin 9	Pin 61
Y_{0}	Y Data LSB	TL		Pin 62

Data Outputs

The TMC2010 has a 35 -bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16 -bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the
eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P_{34}	Product MSB	TL	Pin 43	Pin 26
P_{33}		TL	Pin 42	Pin 27
P_{32}		TL	Pin 41	Pin 28
P_{31}		TTL	Pin 40	Pin 29
P_{30}		TIL	Pin 39	Pin 30
P_{29}		TTL	Pin 38	Pin 31
P_{28}		TIL	Pin 37	Pin 32
P_{27}		TL	Pin 36	Pin 33
${ }^{26}$		TL	Pin 35	Pin 34
P_{25}		TL	Pin 34	Pin 35
P_{24}		TL	Pin 33	Pin 36
P_{23}		TL	Pin 32	Pin 37
P_{22}		TL	Pin 31	Pin 38
P_{21}		TL	Pin 30	Pin 39
P_{20}		TLL	Pin 29	Pin 40
P_{19}		TTL	Pin 28	Pin 41
P_{18}		TLL	Pin 27	Pin 42
P_{17}		TTL	Pin 26	Pin 43
P_{16}		TL	Pin 25	Pin 44

Data Dutputs（Cont．）

Name	Function	Value	$J 3$ Package	C1，L1 Package
P_{15}		TL	Pin 24	Pin 45
P_{14}		TL	Pin 23	Pin 46
P_{13}		TL	Pin 22	Pin 47
P_{12}		TLL	Pin 21	Pin 48
P_{11}		TIL	Pin 20	Pin 49
${ }^{10}$		TL	Pin 19	Pin 50
P_{9}		TL	Pin 18	Pin 51
P_{8}		TIL	Pin 17	Pin 52
P_{7}		TL	Pin 15	Pin 55
P_{6}		TL	Pin 14	Pin 56
P_{5}		TL	Pin 13	Pin 57
P_{4}		TL	Pin 12	Pin 58
P_{3}		TTL	Pin 11	Pin 59
P_{2}		TIL	Pin 10	Pin 60
P_{1}		TL	Pin 9	Pin 61
P_{0}	Product LSB	TL	Pin 8	Pin 62

Clocks

The TMC2010 has three clock lines，one for each of the input registers and one for the product register．Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock．The RouND（RND），Two＇s Complement（TC），ACCumulate（ACC），and SUBtract（SUB） inputs are registered，with all four bits clocked in at the rising

Name	Function	Value	J3 Package	C1，L1 Package
CLK X	Clock Input Data X	TL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	TL	Pin 50	Pin 16
CLK P	Clock Product Register	TL	Pin 44	Pin 25

Controls

The TMC2010 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active Isee Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSLI, and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RNDI controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriatel rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	TL	Pin 47	Pin 22
TSM	MSP Three-State Control	TL	Pin 45	Pin 24
TSL	LSP Three-State Control	TL	Pin 55	Pin 11
PREL	Preload Control	TL	Pin 46	Pin 23
RND	Round Control Bit	TL	Pin 54	Pin 12
TC	Two's Complement Control	TL	Pin 48	Pin 21
ACC	Accumulate Control	TLL	Pin 52	Pin 14
SUB	Subtract Control	TL	Pin 53	Pin 13

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter	Test Conditions		Range	Units
		Standard		
		Min	Max	
${ }^{\text {t MA }}$ Mutiply-Accumulate Time	$V_{D D}-$ MIN, Load 1		160	ns
$t_{D} \quad$ Output Delay	$V_{D D}=$ MIN, Load 1		45	ns
teNA Three-State Output Enable Delay	$V_{D D}=$ MIN, Load 1		40	ns
${ }^{\text {tolS }}$ Three-State Output Disable Delay	$V_{D D}=$ MIN, Load 2		35	ns

Figure 5. Timing Diagram

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Test Load

Preload Truth Table 1

PREL ${ }^{1}$	TSX ${ }^{1}$	TSM ${ }^{1}$	TSL ${ }^{1}$	XTP	MSP	LSP
L	L	L	L	Register \longrightarrow Output pin	Register \longrightarrow Output pin	Register \longrightarrow Output pin
L	L	L	H	Register \longrightarrow Output pin	Register \rightarrow Output pin	Hi -Z
L	L	H	L	Register \longrightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	Register \rightarrow Output pin
L	L	H	H	Register \longrightarrow Output pin	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
L	H	L	L	$\mathrm{Hi}-\mathrm{Z}$	Register \longrightarrow Output pin	Register \longrightarrow Output pin
1	H	L	H	Hi-Z	Register \longrightarrow Output pin	Hi-Z
L	H	H	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Register \longrightarrow Output pin
L	H	H	H	Hi-Z	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	L	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	L	L	H	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z	Hi-Z Preload
H^{2}	L	H	1	$\mathrm{Hi}-\mathrm{Z}$	Hi-2 Preload	$\mathrm{Hi}-2$
H^{2}	H	L	L	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	L	H	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$	Hi-Z Preload
H^{2}	H	H	1	Hi-Z Preload	Hi-Z Preload	$\mathrm{Hi}-\mathrm{Z}$
H^{2}	H	H	H	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.
2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply
cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2010 does not differentiate between this operation:

$$
6 \times 2=12
$$

and this operation:

$$
(6 / 8) \times(218)=12164
$$

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the productl. However, these scale factors do have
implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same linel, the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2010J3C	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	2010.3C
TMC201033G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	201013G
TMC2010C1C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	2010C1C
TMC2010C1G	STD- $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	2010C1G
TMC2010LIC	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	201011 C
TMC2010L1G	STO-T $\mathrm{T}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Carrier	2010L1g

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.


``` \(=\) мй
```



``` , Izs.
```



``` n
```


Special Function Products

TRW LSI has several special function devices to address particular requirements found in digital signal processing. Floating point arithmetic has significant processing advantages over fixed point, specifically, a vastly improved dynamic range without excessive word size. Prior to the introduction of the TRW LSI floating point devices, performing floating point arithmetic required massive investments in hardware.

Correlation is a function frequently found in digital signal processing systems. Digital correlators provide a measure of the similarity between two signals.

Digital filtering often involves complex hardware; for even simple filtering functions, the sequencing of instructions can become difficult. The TDC1028 is an 8-tap finite impulse response (FIR) filter element which handles 4-bit data and coefficients and can be easily expanded in coefficient size, data size, and filter length.

The special function devices are all TTL compatible and are built using the triple-diffused bipolar technology.

Floating Point Devices

TRW LSI floating point hardware uses a 22-bit data format specifically suited to many digital signal processing applications. The 16 -bit significand and 6-bit exponent are both two's complement numbers. This data format allows the full precision of the significand to be maintained over the dynamic range of the exponent (equivalent to 64 bits fixed point).

The TDC1022 floating point arithmetic unit performs the following floating point operations: addition, subtraction, normalization, and denormalization. The device has a feedback path for accumulation. Two 22 -bit operands are accepted through an input port, the desired arithmetic operations are performed, and the output emerges through a three-state output port. Internal pipeline registers may be enabled to allow a 10 MHz data throughput rate.

Correlators

A digital correlator is a device which measures, bit-by-bit, the congruence
between two strings of bits,
"reference" and "data." The output is a binary number tallying the number of matches between the two bit strings. A correlation score of zero indicates perfect anticorrelation, such that each " 1 "' in the reference aligns with a " 0 " in the data stream, and vice-versa. Conversely, a maximum score indicates that each bit in the reference stream matches the corresponding bit in the data stream.

A digital correlator consists of two tapped shift registers, one for the data and one for the reference code. In the TDC1004 and TDC1023, each shift register is 64 taps long. At each tap, the contents of the reference register are exclusive-NORed with those of the data register; the 64 results are then tallied by a parallel counter. The output of the counter is the 6-bit binary-encoded correlation score, which runs between 0 and 64, inclusive.

Both correlators also include a masking function, which permits the user to eliminate any of the taps from consideration in the correlation score. For example, a 32 -tap correlator can be built by masking off the last half of a TDC1004 or TDC1023, leaving only the first 32 taps active.

The TDC1023 offers the additional benefit of a reference preload/holding latch structure, in which the contents of the reference register can be stored. With the latch in this hold mode, the reference register can be preloaded with the next sequence. Returning the latch to its 'track'' mode reprograms the chip to correlate with the new (preloaded) reference sequence.

Digital Fiter

The TDC1028 consists of eight 4-bit Multiply-ADd (MAD) cells, organized into a one-dimensional systolic array. The chip accommodates 4-bit data through its data input port, and outputs 13-bit sums at the same rate, through its SUM OUT port. The TDC1028 performs the standard vector inner product or convolutional sum:

$$
\begin{aligned}
& \text { SUM }_{\text {OUT }}=\text { SUM }_{1 N}+a D(n)+b D(n-1)+\ldots \\
& +h D(n-7) .
\end{aligned}
$$

where a through h are the (preprogrammed) coefficients and the D (i) are the eight data values most recently clocked into the data input port.

The SUM $_{\text {IN }}$ port permits the user to cascade the chips serially, to build either longer (more taps) or wider (greater resolution) filters from these "building block" chips. To facilitate parallel expansion, the data and coefficients have independent two's complement/unsigned magnitude controls.

Product	Description	Size	Clock Rate ${ }^{1}$ (ns)	Power Dissipation (Watts)	Package	Notes
TDC1004	Correlator	64×1	66	0.7	Jg	Analog current output
TDC1022	Floating Point Arithmetic Unit	22-Bit	100	2.4	J1, C1, L1	Two's complement
TDC1023	Correlator	64×1	66	1.7	J7, C3	Binary digital output
TDC1028	FIR Filter	$4 \times 4 \times 8$	100	2.5	J4, C1, L. 1	8 Taps

Note: 1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Analog Output, Digital Correlator

64-bit

The TRW TDC1004 is a 64 -bit digital correlator with a current source analog output. The device consists of three 64 -bit, independently-clocked shift registers capable of a shift speed of 15 MHz and a parallel correlation rate of 10 MHz .

Correlation takes place when two binary words are serially shifted into the A and B registers. The two words are continually compared, bit for bit by exclusive-NOR (XNOR) circuits. Each XNOR circuit controls a current source. The current output of each current source is then summed to produce the correlation current that is proportional to the degree of correlation.

The third 64 -bit shift register (M register) is provided to allow the user to mask or selectively choose "no compare" bit positions.

Features

- 10MHz Correlator Speed
- 15MHz Shift Speed (Static Shift Registers)
- Current Output
- Mask Register
- TTL Compatible
- Available In 16 Lead Ceramic DIP
- Radiation Hard
- 700mW Power Consumption

Applications

- Image Comparison/Recognition
- Bit/Word Synchronization
- Key Word Detection
- Error Correction Coding
- Radar And Sonar

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1004 has three 64 -bit long shift registers: A, B and M. Shift registers A and B are bit-by-bit XNORed Igate provides a true output if the two inputs are the same). The 64 results are then bit-by-bit ANDed with the M register. Each of the
outputs of the AND gates are used to turn on one of the 64 equally weighted current sources whose outputs are summed to provide the analog correlation output.

Reference

The TDC1004 provides an output current of:
$I_{\text {OUT }}=N \times$ IBIT $+I_{\text {COZ }}$
where $I_{\text {BIT }}$ is the individual bit output current, N is the number of correlating bits and $I_{C O Z}$ is the offset current.

By adjustment of IREF as described in the calibration procedure, the mean bit current variation can be zeroed. IREF is a current input. The voltage at this pin may vary from device to device due to input impedance variations.

Name	Function	Value	J9 Package
TREF	Reference Current	$350 \mu \mathrm{~A}$	Pin 1

Correlation Output

The output of the TDC1004 is a current source at pin 2. The output stage consists of the collector of an NPN transistor whose base is connected to $V_{B B}$; it is therefore critical that
the voltage at the output pin be kept 1.5 V to 2.5 V above V_{BB} to avoid saturation of this output transistor. V_{BB} should be set to a voltage level of $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V} \pm 0.3 \mathrm{VDC}$.

Name	Function	Value	J9 Package
$\mathrm{C}_{\text {OUT }}$	Analog Output	300 to $3028 \mu \mathrm{~A}$	Pin 2
V_{BB}	Base Bias Voltage	6 V	Pin 3

Power

The TDC1004 operates from a +5.0 V supply. A bias voltage of +6.0 V is also required. Since less than $100 \mu \mathrm{~A}$ are drawn
this supply, a separate supply is not necessary and the $V_{B B}$ can be provided by the circuit shown in Figure 6.

Name	Function	Value	J9 Package
$V_{C C}$	Supply Voltage	$+5 V$	Pin 16
$V_{B B}$	Secondary Supply Voltage	$+6 V$	Pin 3
GND	Electrical Ground	OV	Pin 8

Clocks

CLK A, Clock input pins for the A, M, and B registers,
CLK M, respectively. Each register may be independently
CLK B clocked.

Name	Function	Value	J9 Package
CLK A	A Register Clock	TTL	Pin 14
CLK M	M Register Clock	TTL	Pin 13
CLK B	B Register Clock	TTL	Pin 15

Data Inputs

MIN Input to the M register. Allows the user to $\quad A_{I N}, B_{I N} \quad$ Input to the A and $B 64$-bit serial shift choose "no compare" bit positions. A " 0 " in any bit location will result in a no-compare state for that location.

Name	Function	Value	J9 Package
MIN	Mask Register Input	TTL	Pin 10
$A_{\text {IN }}$	Shift Register Input	TTL	Pin 12
$\mathrm{B}_{\text {IN }}$	Shift Register Input	TTL	Pin 11

Data Outputs

Bout, Outputs of the three 64-bit serial shift registers:
AOUT, $\quad B, A$, and M, respectively.
MOUT

Name	Function	Value	J9 Package
BOUT	Shift Register B Dutput	TL	Pin 5
A OUT	Shift Register A Output	PL	Pin
MOUT	Shift Register M Output	$\pi \mathrm{TL}$	Pin 4

No Connects

There are two leads labeled no connect INC, which have no connections to the chip. These leads may be connected to ground for increased noise reduction.

Name	Function	Value	J9 Package
NC	No Connect	GND	Pins 7, 9

Figure 1. Timing Diagram

Figure 2. Analog Output Test Load

Figure 3. Analog Output Equivalent Circuit

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings（beyond which the device will be damaged） 1

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Positive Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
$V_{B B}$	Secondary Supply Votage	5.7	6.0	6.3	5.7	6.0	6.3	V
IREF	Reference Current		320	350		320	350	$\mu \mathrm{A}$
V_{CO}	Analog Output Voltage	6.5	$V_{B B}+2 V$	8.5	6.5	$\mathrm{V}_{\mathrm{BB}}+2 \mathrm{~V}$	8.5	V
${ }^{\text {CoOFS }}$	Full－Scale Analog Output Current	2.73		3.03	2.73		3.03	mA
${ }_{\text {tPW }}$	Clock Pulse Width	20			20			ns
ts	Input Register Set－Up Time	20			20			ns
${ }_{\text {th }}$	Input Register Hold Time	10			10			ns
V_{11}	Input Voltage，Logic Low			0.8			0.8	V
$V_{\text {IH }}$	Input Voltage，Logic High	2.0			2.0			V
10	Output Current，Logic Low			4.0			4.0	mA
$\mathrm{IOH}^{\text {O }}$	Output Current，Logic High			－400			－400	$\mu \mathrm{A}$
V（limef	Current Reference Voltage		2.2			2.2		V
T_{A}	Ambient Temperature，Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{T} \mathrm{C}$	Case Temperature				－55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions ${ }^{1}$

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {ICC }}$	Supply Current		$V_{C C}=$ MAX		130		130	mA
$1 N_{B B}$	Secondary Supply Current				100		100	$\mu \mathrm{A}$
V_{OL}	Output Voltage, Logic LOW	$V_{C C}=\mathrm{MIN}, \mathrm{IOL}=4.0 \mathrm{~mA}$		0.5		0.5	\checkmark	
V_{OH}	Output Voltage, Logic HIGH	$V_{C C}-M I N, I_{O H}=-0.4 \mathrm{~mA}$	2.4		2.4		V	
IIL	Input Current, Logic LOW	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}$ Clock		-4.0		-4.0	mA	
		Data		-0.8		-0.8	mA	
IIH	Input Current, Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{\text {IH }}-2.4 \mathrm{~V}$ Clock		200		200	$\mu \mathrm{A}$	
		Data		50		50	$\mu \mathrm{A}$	
IBIT	Single-Bit Analog Output (Delta)	See Note 2	37	43	37	43	$\mu \mathrm{A}$	
$\mathrm{C}_{\mathrm{COZ}}$	Zero Correlation Analog Output (Offset)	See Note 2	300	340	300	340	$\mu \mathrm{A}$	
Notes: 1. Test conditions: $V_{C C}, V_{B B}, I_{R E F}=N O M$, measured under $D C$ conditions. 2. After calibration to $I_{\text {COFS }}$ IFull-Scale Analog Output Current\|.								

Switching characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{\text {t Co }}$ Analog Output Delay	See Figure 2		100		100	ns
tD Digital Propagation Delay	See Figure 1		65		65	ns
$\mathrm{F}_{\text {SI }} \quad$ Maximum Clock Frequency	Analog output	10		10		MHz
	Digital outputs	15		15		MHz

Application Notes

The TDC1004 is a 64 -bit digital correlator with current source analog output. The device performs a bit-for-bit exclusive-OR correlation. In a mathematical sense the TOC1004 performs a convolution on 1-bit words which can be expressed in the general form:
$y(k)=\sum_{n=1}^{N} k(n) \bullet x(n-k) \quad\left[\begin{array}{ll}\text { Logical } 1 & =+1 \\ \text { Logical } 0=-1\end{array}\right]$
In some applications it may be useful to utilize the output current to generate a voltage source for threshold triggering. When converting the output to a voltage, insure that the voltage at the output pin remains above V_{BB} in order to avoid saturation of the output transistor. It is recommended that the voltage at CoUT be in the range of 7.5 V to 8.5 V for a 6.0 V $V_{\text {BB }}$. Two methods for achieving this are shown below:

Figure 4.

Figure 5.

Note: 1. $7.5 \mathrm{~V}<\mathrm{V}_{\mathrm{H}}<8.5 \mathrm{~V}$

VBB may be provided by the circuit shown below:

Figure 6.

Calibration

The TDC1004 requires two supplies V_{BB} and $\mathrm{V}_{\mathrm{C}} \mathrm{l}$ and a reference current source $\|_{\text {REF }}$ for proper operation. The voltage at the I REF pin will vary from part to part due to differences in input impedance; hence, the source will be specified as a current source. The analog output current will be directly proportional to IREF; therefore it is necessary to scale I ${ }_{\text {REF }}$ to minimize output error due to variations.

The total output current (ICON) is equal to the number of correlation bits (\mathbb{N}) times the individual bit currents
${ }^{(}{ }^{\text {BIT }}=40 \mu \mathrm{~A} \pm 3 \mu \mathrm{~A}$) plus the offset current ${ }^{\prime \prime} C O Z=320 \mu \mathrm{~A} \pm 20 \mu \mathrm{~A}$).

Therefore, the total output current can be expressed as:
$I_{C O N}=N \times I_{\text {BIT }}+I_{\text {COZ }}$
As noted in the electrical characteristics, $\mathrm{I}_{\mathrm{BIT}}$ and $\mathrm{I}_{\mathrm{COZ}}$ vary
separately over the temperature range; thus, by using the following procedure, IREF can be adjusted to yield a statistically zero mean input current variation.

Calibrate ${ }_{\text {REF }}$ as follows:

1) Set $V_{B B}$ at $V_{C C}+1 \pm 0.3 \mathrm{~V}$
2) Set IREF to $320 \mu \mathrm{~A}$
3) Measure ICOZ (zero correlation analog output current)
4) Measure ICOFS Ifull scale correlation analog output)
5) Reset IREF to:

* New $I_{\text {REF }}=\frac{2.56 \mathrm{~mA}}{\|_{\text {COFS }}{ }^{-I_{C O Z}}} \times$ Old $I_{\text {REF }}$
*This procedure may be done iteratively by taking the new ${ }^{\text {REF }}$ and repeating steps 3 through 5 .

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1004/SC	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1004.49C
TDC1004/9G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1004/9G
TDC1004/9F	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1004/9F
TDC1004/9A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	16 Lead DIP	1004.49A
TDC1004/9N	EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1004J9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1022
 Preliminary Information

Floating Point Arithmetic Unit

22-bit

The TDC1022 is a monolithic, 22-bit floating point arithmetic unit. Its operands are two 22 -bit floating point numbers, each with a 16 -bit two's complement significand and a two's complement 6 -bit exponent. All data inputs and outputs, instruction bits, and controls are registered.

The TDC1022 allows parallel loading and outputting of data. Internal pipeline registers may be enabled to permit a throughput rate of 10 MHz (100ns). Three-state output buffers are provided. All signals are TTL compatible.

Features

- Two's Complement Floating Point Operation
- 100ns Pipelined Cycle Time
- Dynamic Range Equivalent To 64-Bit Fixed Point
- Parallel Data IIO Structure
- Selectable Pipelining
- Selectable Add/Accumulate Function
- Selectable Overflow/Underflow Characteristics
- Three-State TTL Outputs
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- ALU In Array Processors
- Microprogrammed Signal Processors
- Conversion Between Fixed/Floating Point Numbers
- Floating Point Digital Filters And FFT's
- Geometric Transforms
- Image Processing

Functional Block Diagram

Functional Block Diagram

Pin Assignments

64 Lead DIP - J1 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1022 has six functional sections: input section, denormalizer, ALU, renormalizer, round/scalellimit section, and output section.

Two 22-bit floating point operands, along with the instructions and controls, are brought into the TDC1022 at the input section. When accumulate mode is selected, the operands are the result of the previous calculation.

The denormalizer selects the operand with the smaller exponent and downshifts its significand to compensate for the difference in exponents. The operands are then passed to the ALU.

The ALU performs the selected arithmetic function and passes its result to the renormalizer. Data pipeline registers located
between the ALU and the renormalizer may be enabled to permit a throughput rate of 10 MHz (100ns).

The renormalizer removes redundant leading bits lzeroes in the case of positive numbers, ones in the case of negative numbersl by upshifting the significand and decrementing the exponent accordingly. The number is normalized when the MSB and the next bit differ $(S 15 \oplus S 14=1)$. Flags are generated in this section which are used by the limiter.

User selectable rounding, scaling Idecrementing the exponent by one, thus performing division by twol, and limiting functions are available. The adjusted result, along with the flags, then enters the output registers.

Input Section

The inputs to the TDC1022 are: data inputs $\mathrm{Dl}_{21}-0$, Latch A control ((LDA), enable signals for Registers B and I ($\overline{\mathrm{DB}}, \overline{\mathrm{LD}}$), mode controls ACCumulate (ACC) and Pipeline Register FeedThrough (FT), three ALU instruction bits $\|_{2-0}$), and three signals which control adjustment of the ALU result: RouND (RND), SCAle (SCA), and LiMiT (LMT). All inputs are registered except $\mathrm{FT}, \mathrm{ACC}$, and the register controls,

Operand Input

Input operands A and B are timeshared on one 22 -bit input port. Latch A is provided before the input to Register A to allow for proper demultiplexing to Registers A and B . Latch A is transparent when LDA is low. Data A is clocked into Latch A at the rising edge of $\overline{\mathrm{DA}}$. MUXXA) selects between the
contents of Latch $\mathrm{A}(\mathrm{ACC}=0)$ and the result of the previous calculation $(\mathrm{ACC}=1)$ based on the state of the accumulate control, ACC. Register A is always loaded at the rising edge of CLK.

Register B inputs are also connected to the input port ($\mathrm{D} \mathrm{D}_{21-0}$). Register B is in hold mode when $[\mathrm{DB}$ is high, and is loaded at the rising edge of CLK when LDB is low.

Instruction and Control Input

The instruction register (Register I) accepts inputs I_{2} - 0 , RND, SCA, and LMT when [DI is low. When LDI is high, Register I is in hold mode. The rising edge of CLK loads Register I when LDI is low.

Denormalizer Section

Floating point addition is performed by forcing the two exponents to equal values and then adding the significands. The greatest accuracy is maintained by denormalizing the operand with the smaller exponent. This is done by right-shifting the significand n-places with sign-extension (downshifting), where n is the difference between the two exponents. The exponent of the denormalized operand is incremented by n, thereby equating the exponents. These internal operations are performed automatically by the TDC1022.

With 16 -bit significands, the maximum allowable shift is 15 bits. If the exponents differ by 16 or more, the TDC1022 will yield a significand of zero 10.000000000000000) when denormalizing a positive number and a significand of -1 LSB 11.111111111111111 when denormalizing a negative number. All bits shifted beyond the LSB position are truncated.

After denormalization, the two significands are passed to the ALU where the selected arithmetic function is performed.

ALU Section

Operation of the ALU section is controlled exclusively by the ALU instruction microcode, $1_{2}-0$. The 17 bit significand emerging from the ALU (which includes one overflow bit) enters the significand pipeline register (Register SI, and the exponent enters the exponent pipeline register (Register E). These registers may be made transparent by asserting the feedthrough control $\mid \mathbb{T}=1$; they are functional when $\mathrm{F}=0$. Note that there is no pipeline register for the instructions. Detailed discussion of the pipelined mode is provided at the end of the ALU functional description. The eight ALU instructions are described below.

ALU Instructions

Instruction	$\mathbf{I}_{\mathbf{2}}$	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{0}}$	Name
0	0	0	0	ZERO
1	0	0	1	$\mathrm{~A}+\mathrm{B}$
2	0	1	0	$\mathrm{~A}-\mathrm{B}$
3	0	1	1	$\mathrm{~B}-\mathrm{A}$
4	1	0	0	Normalize B
5	1	0	1	Normalize (-B)
6	1	1	0	Denormalize A
7	1	1	1	Denormalize (-A)

Zero

Both the A and B data fields are forced to ZERO lexponent = 100000 , significand $=0.0000000000000000$. The contents of the input registers are unchanged. The ZERO flag is set high, and the final output is 0.0×2^{-32}.

$A+B$

The ALU adds the significands after the operand with the smaller exponent has been denormalized. Round should be enabled ($\mathrm{RND}=1$) in this mode.

A-B

The operand with the smaller exponent is denormalized. Negative B is generated in two's complement form by one's complementing the B significand, then adding 1 LSB . This addition of 1 LSB is necessary due to the asymmetric nature of the two's complement number line and is called adding a "hot-one". The significands $(A$ and $-B)$ are then added. The rounding function must be disabled during subtraction $\operatorname{RND}=0$).

B-A

This operation is the same as $A-B$, except the operands are reversed. As before, the rounding function must be disabled during subtraction.

Normalize B

This function is used to normalize a number entering the B data field. The A operand is forced to ZERO $\left(0.0 \times 2^{-32}\right)$ to ensure that B passes through the denormalizer unchanged. The ALU does not affect the B operand, which is passed through to the renormalizer. Redundant leading ones (negative numbers) or leading zeroes (positive numbers) are removed by left-shifting lupshiftingl the significand while decrementing the exponent, thereby normalizing the number. The number is normalized when the MSB of the significand does not match the next lower bit (see Data Format, page 315). If B is already a normalized floating point number, this instruction is effectively a "pass-through." If B is an unnormalized floating point number, the TDC1022 will attempt to normalize it, generating an Exponent UNderflow flag (EUN) if the exponent exceeds its maximum negative value. This instruction would be most frequently used to convert a fixed point number into a floating point number.

Normalize (-B)

The B significand is one's complemented and a "hot-one" is added to the LSB, generating -B in two's complement form. This result is normalized as in the preceding instruction.

Denormalize A

This is used to convert a floating point number, A , to a fixed point number scaled by B. The B significand is zeroed, but not the B exponent. If the A exponent is less than the B exponent, the denormalizer downshifts the A significand up to 15 places. Beyond shifts of 15 places, positive significands become zero and negative significands become -1 LSB. If the A exponent exceeds the B exponent, the Significand OVerflow flag (SOV) is set. In this case, the significand output remains unchanged. This instruction disables the renormalizer section.

Execution of the Denormalize instructions in pipelined mode must be handled carefully. Since the instructions are not pipelined, it is necessary to execute a "fill" instruction
(e.g., same instruction repeated), prior to start of Denormalization to avoid interfering with other data going through the pipeline. The first result will be undefined; the true denormalized results start to emerge after the second result. It is also necessary to execute an extra denormalize instruction after the final desired denormalization to prevent the renormalize shifter from being enabled. The result of the calculation after the final denormalize will again be undefined. Basically, when doing the denormalize instruction n-times, $n+1$ denormalize instructions must be executed. Note that the SOV flag is generated before the pipeline register, and since there is no pipeline register for the flag, it will emerge one clock cycle ahead of the data it represents. This will cause improper functioning of the limit section; the result of the calculation previous to the one causing the overflow will be limited in this case (when $\mathrm{LMT}=1$). Additionally, the overflow case will be passed through without being limited, since the SOV flag has already taken its effect.

Denormalize (-A)

The A significand is one's complemented and the "hot-one" is added to the LSB, creating $-A$ in two's complement. This result is denormalized as in instruction Denormalize A. Note that the case where this instruction is executed with the A significand $=1.000000000000000$, and the A exponent $=\mathrm{B}$ exponent is undefined.

This is due to the fact that $-(-1)=+1$ is not representable in two's complement. This case will generate the SOV flag. The ZERO flag is set when Denormalize (-A) is executed with $A=-1$ any time the A exponent is greater than or equal to the B exponent. In these cases, a clean zero $\left(0.0 \times 2^{-32}\right)$ is the output. Attempting to Denormalize $(-A)$ for $A=-1$, where the A exponent is 16 or more than the B exponent, results in the output of the B exponent, a significand of +1 LSB, and no flags are set. Use of the Denormalize (-A) in pipelined mode causes the same situations which occur when Denormalize A is executed (see above).

Operation of the TDC1022 in Pipelined Mode

There is no pipeline register for I_{2-0}, RND, SCA, and LMT. As a result, when the TDC1022 is operated in pipelined mode, the RND, SCA, and LMT functions must be delayed one clock cycle from the data and instructions $\|_{2}$-0) with which they are associated for proper operation. This is true since these functions take effect after the pipeline registers, which delay the data resulting from execution of ALU instructions on the input operands. RND, SCA, and LMT affect the results of the ALU output on the current clock cycle, which is the result of the previous calculation when pipeline mode is used.

Use of the Denormalize instructions in pipelined mode is covered under the description of instruction "Denormalize A," in the ALU instructions.

Changing the instructions when in pipelined mode requires consideration of all the above mentioned facts. Changing states on the FeedThrough control (FT) is not permitted.

Renormalizer Section

The significand result emerging from the ALU is examined for possible positive or negative overflow into the 17th bit. If overflow is detected, the renormalization logic downshifts the significand one bit while incrementing the exponent by one: The resulting number is then assured to be a normalized number.

If no overflow is detected, the renormalize section removes redundant leading zeroes of positive numbers lleading ones of negative numbersl by upshifting the significand and decrementing the exponent. This process is continued until the number is normalized, which means that the MSB and the next bit are different Isee also Data Format, page 315).

The TDC1022 will always produce a normalized number as the final output, except when either Denormalize A or Denormalize $(-A)$ is executed. This is true regardless of the states of RND, SCA, and LMT.

[^7]The EUN flag is set high $\operatorname{EEUN}=1)$ when the exponent drops below its maximum negative value of -32 .

The ZERO flag is set high ZEERO $=1$) when the significand is zero due to the subtraction of two identical significands, the execution of instruction ZERO, or Denormalization of positive numbers where the significand is shifted beyond the LSB. The ZERO flag is also set when Denormalize $(-A)$ is executed where $A=-1$ and the A exponent is greater than or equal to the B exponent. When the ZERO flag is set, a clean zero is always output.

The SOV flag can only be set high $\operatorname{ISOV}=1 \mid$ when either instruction Denormalize A or Denormalize (-A) is executed. If either of these instructions is executed and the A (datal exponent exceeds the B (seed) exponent, the SOV flag will go high. The only other way to set SOV high is to execute Denormalize $(-\mathrm{A})$ with the A exponent greater than or equal to the B exponent, and an A significand of -1 . In this case, the ZERO flag is erroneously set and the TDC1022 outputs a clean zero. In any normalized mode, the significand cannot overflow.

Round/Scale/Limit Section

The round/scalellimit section operates on the normalized floating point number passed to it from the renormalizer. The operations of rounding and scaling occur before the limit function, since it is possible for rounding and scaling to generate exponent overflows or underflows. The flags ISOV, EOV, EUN, ZEROI are used by the limit section to produce the appropriate result of maximum positive, maximum negative, or zero. In pipelined mode, the controls RND, SCA, LMT must be delayed one clock cycle from the data which they are to influence. The output of the limit section, along with the flags, goes directly to the output registers.

Rounding

When the round control is high $\operatorname{RND}=1$), the TDC1022 adds a 1 to the $1 / 2$ LSB position. This results in a carry propagation into the LSB if there was a 1 in the $1 / 2$ LSB position.

Scaling

When the scale (divide by twol control is high $\mid S C A=1$), the exponent is decremented by one, resulting in a division by two. Note that if the exponent is -32 and $\mathrm{SCA}=1$, the EUN flag would be set and if the limiter is turned off (LMT $=0$), the resulting exponent is +31 . This condition would produce the correct result of ZERO $(0.0 \times 2-32)$ if the limiter is enabled (LMT = 1).

Limiting

When the limit function is disabled (LMT $=0$), the significand and exponent retain their two's complement characteristics upon overflow; adding one to maximum positive numbers return maximum negatives, and subtracting one from maximum negative yields maximum positives.

When the limit function is enabled ($\mathrm{LMT}=1$) and exponent overflow occurs, the data output is clipped. The resulting output is the maximum positive number possible (exponent $=011111$, significand $=0.111111111111111$) if the significand is positive. If the significand is negative, the resulting output is the maximum negative number possible lexponent $=011111$, significand $=1.000000000000000$).

When the limit function is enabled and exponent underflow occurs, the data output is forced to ZERO, regardless of the sign of the significand. This also occurs when a zero significand Idenoted by the ZERO flag being set/ with an exponent other than -32 exists. These cases will always be replaced with clean zeroes, regardless of the state of the LMT control.

When the limit function is enabled and significand overflow occurs, the limiter clips the emerging result to a full-scale maximum positive or negative value, as appropriate. The case of Denormalize $(-A)$ with $A=-1$ and the A exponent greater than or equal to the B exponent results in the output of a clean zero, since the ZERO flag is also set.

Output Section

The data and flag output registers are unconditionally loaded at the rising edge of CLK. The data output emerges through a three-state, 22-bit output port. The output format is identical
to the input format. The flags are not three-stated, and the flag buffers are always enabled.

Signal Definitions

	Signal Name	Function	Value	J1 Package	C1, L1 Package
Power	$V_{C C}$ GND CLK	Supply Voltage Ground Clock	$\begin{gathered} +5.0 \mathrm{~V} \\ 0.0 \mathrm{~V} \\ \Pi \mathrm{~L} \end{gathered}$	Pin 49 Pins 2, 16 Pin 46	Pins 52, 53 Pins 18-20, 34, 44 Pin 56
Data Input	$\overline{L D A}$ $\overline{D B}$ D_{21-0}	Latch A Control Register B Load Control Data Input	TTL TTL TTL	Pin 44 Pin 45 Pins 22-43	Pin 58 Pin 57 Pins 1-12, 59-68
Control, Instructions	$\overline{01}$ FT ACC $\mathrm{I}_{2}-\mathrm{O}$ RND SCA LMT	Register I Load Control Feedthrough Control Accumulate Control ALU Instructions Round Control Scale Control Limit Control	TTL TTL TTL TIL TTL TL TTL	Pin 17 Pin 47 Pin 21 Pins 18-20 Pin 15 Pin 13 Pin 14	Pin 17 Pin 55 Pin 13 Pins 14-16 Pin 21 Pin 23 Pin 22
Flags	ZERO SOV EOV EUN	Zero Flag Significand Overflow Flag Exponent Overflow Flag Exponent Underflow Flag	TIL $\pi \mathrm{L}$ TIL $\pi \mathrm{TL}$	Pin 4 Pin 6 Pin 5 Pin 3	Pin 32 Pin 30 Pin 31 Pin 33
Data Output	$\begin{aligned} & \overline{0 E} \\ & \mathrm{DO}_{21-0} \end{aligned}$	Three-State Output Enable Data Output	$\begin{aligned} & \pi L \\ & T T L \end{aligned}$	Pin 48 Pins 1, 7-12, 50-64	Pin 54 Pins 24-29, 35-43, 45-51

Floating Point Data Format

Zero
Zero is represented as follows:
Significand $=0.000000000000000$
Exponent $=100000$

Exponent

The exponent is represented by bits D_{16} through D_{21}. It is a two's complement integer with D_{21} the two's complement sign bit. The exponent ranges from - 32 to 31 .
Exponent $=D_{21} \times\left(-2^{5}\right)+\sum_{n=16}^{20} D_{n} \times 2^{(n-16)}$

Significand

The significand (sometimes referred to as the MANTISSA) is represented by bits D_{15} through D_{0}. It is a fractional two's complement number with 16 -bit precision: D_{15} is the two's complement sign bit. The significand ranges from -1 to (1-2-15).
Significand $=D_{15} \times(-1)+\sum_{n=0}^{14} D_{n} \times 2^{(n-15)}$

TDC1022 Timing Diagrams

General Information

TDC1022 can be operated in any one of the following four modes:

1. Non-Accumulate without Pipelining
2. Non-Accumulate with Pipelining
3. Accumulate without Pipelining
4. Accumulate with Pipelining
$\angle A C C=0, F T=1)$ The input register setup and hold times, the output delay time, ($A C C=0, F T=0)$ the three-state enable and three-state disable times are the ($A C C=1, F=1)$ same in all four modes, thus they are only shown for the ($A C C=1, \mathrm{FT}=0$) non-accumulate without pipelining mode (see below).

Figure 1. Non-Accumulate Mode Without Pipelining
The output data is available one clock cycle after the input data is entered.

Figure 2. Non-Accumulate Mode With Pipelining ${ }^{1}$
The output data is available two clock cycles after the input data is entered.

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

Figure 3. Accumulate Mode Without Pipelining

The first output data is available one clock cycle after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.
$O U T_{0}=I_{0}\left(A_{0}, B_{0}\right)$
2. The second output is the result of performing the second instruction on the second two operands.
$O U T_{1}=l_{1}\left(A_{1}, B_{1}\right)$
3. Any subsequent output depends on the previous output and the current instruction and incoming operand.
$\mathrm{OUT}_{n}=\mathrm{I}_{\mathrm{n}}$ (OUT $\left._{n-1}, \mathrm{~B}_{\mathrm{n}}\right)^{\prime}$

Figure 4. Accumulate Mode With Pipelining ${ }^{1}$

The first output data is available two clock cycles after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.
$O U T_{0}=I_{0}\left(A_{0}, B_{0}\right)$
2. The second output is the result of performing the second instruction on the first output and the incoming operand.
$\mathrm{OUT}_{1}=\mathrm{I}_{1}$ (OUT $\left._{0}, \mathrm{~B}_{1}\right)$
3. The third output is the result of performing the third instruction on the first output and the incoming operand.
$\mathrm{OUT}_{2}=\mathrm{I}_{2} \mathrm{OUT}_{0}, \mathrm{~B}_{2} \mid$
4. Any subsequent output depends on the output from two cycles ago, the current instruction, and the incoming operand.
$\mathrm{OUT}_{n}=\mathrm{I}_{\mathrm{n}}$ OUUT $_{n-2}, \mathrm{~B}_{\mathrm{n}}$) $^{\prime}$

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

TDC1022

Figure 5. Equivalent Input Circuits

Figure 7. Normal Test Load

Figure 6. Equivalent Output Circuits

Figure 8. Three-State Delay Test Load

LOAD 2

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Output	
Temperature	
.	junction .. $175^{\circ} \mathrm{C}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing voltage must be limited to specified range.
4. Current is specified as conventional current flowing into the device.

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.75	5.0	5.25	V
tPWL	Clock Puise Width, Low	20			ns
¢PWH	Clock Pulse Width, High	20			ns
${ }^{\text {tpWA }}$	Clock Pulse Widh (LDAA)	30			ns
ts	Input Setup Time	30			ns
th	Input Hold Time	0			ns
'HA	Input Hold Time (Latch A)	4			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, Logic High	2.0			V
$\underline{0 L}$	Output Current, Logic Low			4.0	mA
${ }_{\text {OH }}$	Output Current, Logic High			-0.4	mA
${ }_{\text {T }}$	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
${ }^{\text {cher }}$	Cycle Time, Pipelined		$V_{C C}=$ MIN		100	ns
${ }^{\text {t CYN }}$	Cycle Time, Non-pipelined		$V_{C C}=M 1 N$		200	ns
t_{0}	Output Delay	$V_{C C}=$ MIN, Load 1		40	ns	
tena	Three-State Output Enable Delay	$V_{C C}-$ MIN, Load 1		35	ns	
tols	Three-State Output Disable Delay	$V_{C C}=$ MIN, Load 2		35	ns	

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1022JiC	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	64 Lead DIP	1022JIC
TDC1022J1G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	64 Lead DIP	1022JtG
TDC1022C1C	STD $-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Contact Chip Carrier	$1022 C 1 C$
TDC1022C1G	STO- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Contact Chip Carrier	1022C1G
TDC1022L1C	$\mathrm{STD}-\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	68 Leaded Chip Carrier	102211C
TOC1022L1G	STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	68 Leaded Chip Cartier	1022L16

[^8]Digital Output Correlator
64-bit

The TRW TDC1023 is a monolithic, all-digital 64 -bit correlator with a 7 -bit three-state buffered digital output. This device consists of three 64 -bit independently clocked shift registers, one 64 -bit reference holding latch, and a 64 -bit independently clocked digital summing network. The device is capable of a 17MHz parallel correlation rate.

The 7-bit threshold register allows the user to preload a binary number from 0 to 64 . Whenever the correlation is equal to or greater than the number in the threshold register, the threshold flag goes HIGH.

The 64-bit mask shift register (M register) allows the user to mask or selectively choose "no compare" bit positions enabling total word length flexibility.

The reference word is serially shifted into the B register. By clocking the R latch, the data is paralle-loaded into the R reference latch. This allows the user to serially load a new reference word into the B register while correlation is taking place between the A register and R latch. The two words are continually compared bit-for-bit by exclusive-OR circuits. Each exclusive-OR provides one bit to the digital summer. The output is a 7 -bit word representing the sum of positions which agree at any one time between the A register and R latch.

A control provides either true or inverted binary output formats.

Features

- 17MHz Correlation Rate
- TTL Compatible
- All Digital
- Single +5V Power Supply
- Serial Data Input, Parallel Correlation Output
- Programmable Word Length
- Independently Clocked Registers
- Available In 24 Lead DIP
- Output Format Flexibility
- Three-State Outputs

Applications

- Check Sorting Equipment
- High-Density Recording
- Bar Code Identification
- Radar Signature Recognition
- Video Frame Synchronization
- Electro-Optical Navigation
- Pattern And Character Recognition
- Cross-Correlation Control Systems
- Error Correction Coding
- Asynchronous Communication

Functional Block Diagram

Functional Block Diagram

Pin Assignments

VCC 1 回	\bigcirc	- 24	CLK B
MIN 2 d		- 23	CLK M
AIN 3 ¢		22	CLK A
BIN 4		- 21	LDR
CLK ${ }^{\text {¢ }} 5$		-20	MOUT
CLK S 69		-19	AOUT
INV 7		-18	Bout
TS 8 d		-17	TFLG
$10_{6} 99$		-16	GND
$10_{5} 10$		- 15	10
$10_{4} 11$		-14	
$10_{3} 12$] 13	10_{2}

Functional Description

General Information

The TDC1023 consists of an input section and an output section．The input section contains A, B ，and M registers，an R
latch，XORIAND logic and a pipelined summer．The output section consists of threshold，inversion and three－state logic．

Power

The TDC1023 operates from a single +5 Volt supply．

Name	Function	Value	J7 Package
GND	Ground	0.0 V	Pin 16
$V_{\text {CC }}$	Supply Voltage	+5.0 V	Pin 1

Control

INV

TS
Control that inverts the 7－bit digital output． When a HIGH level is applied to this pin，the outputs 10_{0-6} are logically inverted．

Control that enables the three－state output buffers．A HIGH level applied to this pin forces outputs into the high－impedance state．

Name	Function	Value	J7 Package
INV	Invert Output	TTL	Pin 7
TS	Three－State Enable	TL	Pin 8
LDR	Load Reference	TTL	Pin 21

Clocks

CLK A，Input clocks．Clock input pins for the A，M，and CLK S Digital summer clock．Clock input which allows
CLK M，B registers，respectively．Each register may be
CLK B independently clocked．
CLK T Threshold register clock．Clock input pin for T register．

Name	Function	Value	J7 Package
CLK A	A Register Clock	TL	Pin 22
CLK M	M Register Clock	TL	Pin
CLK B	B Register Clock	TLL	Pin 24
CLK T	Threshold Register Clock	TL	Pin 5
CLK S	Digital Summer Clock	TTL	Pin 6

Data Inputs

MIN Allows the user to choose "no compare" bit positions. A "0" in any bit location will result in a no-compare state for that location.
$A_{I N}, B_{I N} \quad$ Shift register inputs to the A and $B 64$-bit serial registers.

Name	Function	Value	J7 Package
MIN $^{\text {IN }}$	Mask Register Input	TL	Pin 2
A_{IN}	Shitt Register Input	TL	Pin
$\mathrm{B}_{\text {IN }}$	Shift Register Input	TL	Pin 4

Data Outputs

10_{0-6}
TFLG
TFLG output goes HIGH whenever the correlation score is equal to or greater than the number loaded into the T register (0 to 64). enabled (TS LOW), data is a 7-bit binary representation of the correlation between the unmasked positions of the R latch and the A register. 10_{6} is the MSB. These pins also serve as parallel inputs to load the threshold register. Data present one setup time before CLK T goes HIGH will be latched into the threshold register.

Name	Function	Value	J7 Package
10_{6}	MSB	TL	Pin 9
10_{5}		TL	Pin 10
$1 \mathrm{IO}_{4}$		TTL	Pin 11
10_{3}		TLL	Pin 12
$1 \mathrm{O}_{2}$		TTL	Pin 13
101		TL	Pin 14
100	LSB	TL	Pin 15
TFLG	Threshoid Flag	TL	Pin 17
$B_{\text {OUT }}$	Shift Register B	TL	Pin 18
AOUT	Shift Register A	$\pi \mathrm{T}$	Pin 19
$\mathrm{M}_{\text {OUT }}$	Shift Register M	TL	Pin 20

TDC1023 Timing Diagrams

1．Continuous Correlation

The TDC1023 contains three 1×64 serial shift registers（A，B， and MI．The operation of these registers is identical and each has its own ML－compatible input，output，and clock．As shown in the timing diagram（Figure 1），valid data is loaded into register $A(B, M)$ on the rising edge of CLK A ICLK B， CLK MI．Data is valid if present at the input for a setup time of a least ts（ns）before and a hold time th（ns）after the rising clock edge．

The summing process is initiated when the comparison result between the A register and R latch is clocked into the summing network by a rising edge of CLK S．Typically，CLK A and CLK S are tied together so that a new correlation score is computed for each new alignment of the A register and R latch．When LDR goes HIGH，the contents of register B are copied into the R latch．With LDR LOW，a new template may
be entered serially into register B，while parallel correlation takes place between register A and the R latch．In the case of continuous correlation，LDR is held HIGH so that the R．latch contents continuously track those of the B register．

The summing network consists of three pipelined stages． Therefore，the total correlation score for a given set of A and B register contents appears at the summer output three CLK S cycles later．Data on the output pins 10_{0-6} is available after an additional propagation delay，denoted t_{D} on the timing diagram．

The correlation result is compared with the contents of the threshold register．TFLG goes HIGH if the correlation equals or exceeds the threshold value．TFLG is valid after a delay of to （ns）from the third CLK S rising edge．

Figure 1．Continuous Correlation

2. Cross-Correlation

When LDR goes HIGH, the B register contents are copied into the reference latch $(\mathbb{R}$ latch). This useful feature allows correlation to take place between data in the R latch and the A register while a new reference is being serially clocked into the B register. If the new reference is n bits long, it requires n rising edges of CLK B to load this data into the B register. For the timing diagram (see Figure 2), $n=64$. LDR is set HIGH during the final (nth) CLK B cycle, so that the new reference word is copied into the R latch. The minimum low and high level pulse widths for LDR are shown as tpwL (ns) and tpWH (ns), respectively.

After the new reference is loaded, the data to be correlated is clocked through the A register. Typically, CLK A and CLK S can be tied together. This allows a new correlation score to be computed for each shift of the A register data relative to the fixed reference word in the R latch. The digital summer is internally partitioned into three pipelined stages. Therefore, a correlation score for a particular alignment of the A register data and the R latch reference appears at the summer output three CLK S cycles later. After an additional output delay of to Ins), the correlation data is valid at the output pins $\left({ }^{2} 0_{0}-6\right)$. If this correlation result is equal to or exceeds the value in the threshold register, then TFLG goes HIGH. TFLG is valid tD (ns) after the third rising edge of CLK S.

Figure 2. Cross-Correlation

TS $=10 \mathrm{~W}$
$A_{I N}=$ PRELOADED
t register preloaded

3. Threshold Register Load

The timing sequence for loading the threshold (T) register is shown in Figure 3. The T register holds the 7 -bit threshold value to be compared with each correlation result. The rising edge of CLK T loads the data present on the $\mathrm{IO}_{0}-6$ pins into the T register.

The output buffers must be in a high-impedance state (disabled) when the T register is programmed from an external source. After a delay of tols (ns) from the time TS goes HIGH, the output buffers are disabled. The data pins 10_{0-6}
may then be driven externally with the new threshold data. The data must be present for a setup time of t_{S} Ins) before and th_{H} (ns) after the rising edge of CLK T to be correctly registered. The minimum low and high level pulse widths for CLK T are shown below as tpwL (ns) and tpWH Ins), respectively.

After TS is set LOW, there is an enable delay of teNA Ins) before the internal correlation data is available at pins 10_{0-6}.

Figure 3. Threshold Register Load

$B_{\text {IN }}=$ REFERENCE
LDR = HIGH

4. Mask Register

In addition to the A and B shift registers, the TDC1023 has another independently clocked register - the M , or mask register. The M register functions identically to the A and B registers, except that its parallel outputs are ANDed with the exclusive-ORed outputs from the A register and R latch.

Many uses of the TDC1023 digital correlator require disabling the correlation between certain bit positions $\left(A_{i}\right.$ and $\left.\mathrm{R}_{j}\right\rangle$ of input words A and R . While correlation data is being clocked into the A and/or B register, a mask word may be entered into the M register. Where no comparison is to be made, zeroes are entered in those M register positions. The exclusive-OR result between each bit position is ANDed with a bit from the M register. Thus, if a particular mask bit (M) is zero, the output correlation between A and B for that bit. position will be disabled. Consequently, a zero correlation is presented to the digital summer for each masked bit position.

The mask register is useful for changing correlation word length and location within the registers. Where a word is undefined or no correlation is to take place, the M register should contain zeroes.

The M register is useful for building logic functions. Note that for each bit A_{i} and R_{i}, the correlation logic is:
$A_{i} \oplus R_{i} \equiv A_{i} \bar{B}_{i}+\bar{A}_{j} A_{i}\left(A_{j}\right.$ exclusive-OR $\left.R_{i}\right)$
This result is complemented at the input of the AND gates and ANDed with the mask bit $\left(\mathrm{M}_{\mathrm{j}}\right)$ resulting in:
$\left[\overline{\left.A_{i} \overline{R_{i}}+\overline{A_{j}} \overline{F i}_{j}\right]} \cdot M_{i}\right.$
The last step, performed in the digital summer, is to sum the above result over all bit positions simultaneously for a correlation at time K :
$C(K)=\sum^{n}\left[\overline{\left[A_{i} \overline{\bar{B}_{i}}+\bar{A}_{j} R_{i}\right]} \cdot M_{i}\right.$ $i=1$
where,
$i=1,2,3 \ldots$
$\mathrm{n}=$ correlation word length

Figure 4. Equivalent Input Schematic

PIN	VALUES	NUMBER OF INTERNAL
	R1 R2	CIRCUITS LOADING PIN
AIN, $^{\text {BIN }, ~ M I N ~}$	50 K 35 K	1
CLK A, B, M	35 K 20 K	2
LDR	35 K 20 K	2
CLK S	35 K 20 K	3
CLK T, INV	35 K 20 K	1

Figure 5. Equivalent Circuit for IO_{0-6}, AOUT, BOUT, MOUT and TFLG.

Figure 6. Equivalent Circuit for Three-State (TS) Input.
The circuitry to the right of dashed line is repeated 7 times.

Figure 7. Normal Test Load

Figure 8. Three-State Delay Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Applied voltage \qquad -0.5 to $+5.5 V^{2}$ Forced current \qquad -1.0 to $+6.0 \mathrm{~mA}^{3,4}$ Short circuit duration (single output in high state to ground) \qquad 1 sec								
Notes: 1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditio Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range. 3. Forcing voltage must be limited to specified range. 4. Current is specified as positive when flowing into the device.								
Operating conditions								
Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
Supply Voltage		4.75	5.0	5.25	4.5	5.0	5.5	V
tpWL Clock Pulse Width, LOW	CLK A, CLK B, CLK M, CLK S, LDR	20			20			ns
	CLK T	25			30			ns
tpWH Clock Pulse Width, HIGH	Clocks	25			30			ns
	LOR	30			35			ns
ts Data Input Setup Time	$\mathrm{A}_{\text {IN }}, \mathrm{BIN}_{\text {IN }}, \mathrm{MiN}_{\text {IN }}$	20			22			ns
	${ }^{10} 0$	45			50			ns
th Data Input Hold Time		3			3			ns
	10_{0-6}	0			0			ns
$\mathrm{V}_{\text {IL }}$ Input Voltage, Logic LOW				0.8			0.8	V
V_{IH} Input Voltage, Logic HIGH		2.0			2.0			\checkmark
loL Output Current, Logic LOW				4.0			4.0	mA
I_{OH} Output Current, Logic HIGH				-400			-400	$\mu \mathrm{A}$
T_{A} Ambient Temperature, Still Air		0		70				${ }^{\circ} \mathrm{C}$
${ }^{\top}$ C \quad Case Temperature					-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$V_{\text {CC }}=$ MAX, static ${ }^{1}$					
	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		335			mA
	$T_{A}=70^{\circ} \mathrm{C}$		295			mA
	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				395	mA
	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$				275	mA
IIL Input Current, Logic Low	$V_{C C}=M A X, V_{1}=0.5 \mathrm{~V}$					
	10_{0-6}, TS		-350		-400	$\mu \mathrm{A}$
	Clocks, INV, LDR		-1.0		-1.3	mA
${ }^{\text {IH }}$ Input Current, Logic HIGH	$\mathrm{V}_{\text {CC }}=$ MAX, $\mathrm{V}_{1}-2.4 \mathrm{~V}$					
	10_{0-6}, Controls		50		50	$\mu \mathrm{A}$
	Clocks, LDR		100		100	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=5.5 \mathrm{~V}$		500		500	$\mu \mathrm{A}$
V_{OL} Output Voltage, Logic Low	$V_{C C}=M I N, I_{O L}=$ MAX		0.5		0.5	v
$V_{\text {OH }}$ Output Voltage, Logic HIGH	$V_{C C}=$ MIN, $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		v
10zL High-2 Output, Leakage Current ${ }^{2}$	$V_{\text {CC }}=$ MAX		-350		-400	$\mu \mathrm{A}$
IOzH High-2 Output, Leakage Current ${ }^{2}$	$V_{\text {CC }}-\mathrm{MAX}$		50		50	$\mu \mathrm{A}$
C_{l} Input Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$					
	Clocks		10		10	pF
	10_{0-6}, Controls		5		5	pF
$\mathrm{C}_{0} \quad$ Output Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15		15	pF

Note:

1. Worst Case: All digital inputs and outputs LOW.
2. Due to the I_{0-6} and T register interconnection, these values are the $I_{I H}$ and $I_{I L}$ of the T register.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
	Shift-In Clock Rate		$V_{\text {CC }}=\mathrm{MIN}$	20		17		MHz
	Correlation Rate		$V_{C C}-M^{\prime}{ }^{1}$	17		15		MHz
${ }^{1} 0$	Digital Output Delay	$V_{\text {CC }}=$ MIN, Load 1 (figure 7)						
		${ }^{10} 0$		45		50	ns	
		AOUT, BOUT, MOUT		35		40	ns	
		TFLG		40		45	ns	
teNA	Three-State Dutput Enable Delay	$\mathrm{V}_{\text {CC }}$ - MIN, Load 2 (Figure 8)		40		45	ns	
tols	Three-State Output Disable Delay	$\mathrm{V}_{\text {CC }}=$ MIN, Load 2 (Figure 8)		35		35	ns	
Note:	1. Synchronous clocking: CLK $A=$	LK M = CLK S.						

Application Notes

1. The TDC1023 can be cascaded to implement correlations of more than 64 bits. Typically, all clocks are tied together and the A, B, and M outputs of preceding stages are connected to the respective inputs of subsequent stages. An external
summer is required to generate the composite correlation score. Use of the T register and TFLG require additional hardware in this configuration.

Figure 9. Cascading For Extended-Length Correlation

2. When comparing a multi-bit word to a single-bit reference, the outputs from the individual correlators must be appropriately weighted. This weighting reflects the relative
importance of the different bit positions. Normally, simple shifts $1 \div 2,4,8, \ldots)$ provide the required weighting.

Figure 10. Multi-Bit x 1 Bit Correlation

3．The correlation of two multi－bit words requires evaluating the term：

$$
R(M)=\sum_{n=1}^{N} h(n) \times(M+n)
$$

An example of two 3－bit words is shown below．
For additional TDC1023 Digital Output Correlator applications， see Application Note TP－17，＂Correlation－A Powerful Technique for Digital Signal Processing．＂This application note is available upon request from TRW LSI Products．

Figure 11．Multi－Bit Correlation

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1023JC	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1023J7C
TDC1023JG	STD $-\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn－In	24 Lead DIP	1023J7G
TDC1023J7	EXT－ $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	24 Lead DIP	1023J7F
TDC1023J7A	EXT－ $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL－STD－883	24 Lead DIP	1023J7A
TDC1023JN	EXT－ $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn－In	24 Lead DIP	1023J7N

Digital Filter/Correlator Building Block, 10MHz

The TDC1028 is a video-speed, TTL compatible bit-slice building block for Finite Impulse Response (FIRI digital filters and multi-bit digital correlators. It is used independently in the coefficient and signal data word dimensions as a bit-slice processor. Word lengths can be multiples of four bits. Two's complement or unsigned magnitude operation is independently selectable for both coefficients and signal data words.

The TDC1028 provides eight delay stages, eight multipliers, and eight adders in a single integrated circuit. Eight coefficient storage registers are also provided for ease in programming filter characteristics and to make correlation possible. One coefficient may be changed every clock cycle. The delay registers and the adder pipeline registers have been merged for efficiency.

Features

- 10 MHz Throughput Rate
- Eight Coefficients
- 4-Bit Coefficient And Signal Data Words
- Independently Expandable Coefficient And Signal Word Length
- Independently Selectable Format For Coefficients And Signal Data Words (Two's Complement or Unsigned Magnitude)
- Available In 48 Lead DIP
- Radiation Hard Bipolar Process
- Single +5V Power Supply
- TTL Compatible

Applications

- Digital Video Filters
- Matched Filters
- Pulse Compression
- Multi-Bit Correlation
- Waveform Synthesis
- Adaptive Filters

Functional Block Diagram

Functional Block Diagram

Pin Assignments

SIo 1 回	ζ	/ $48 \mathrm{SO}_{0}$
$\mathrm{Sl}_{1} 2$		47 SO1
$\mathrm{SI}_{2} 3$		${ }^{46} \mathrm{SO}_{2}$
$\mathrm{Sl}_{3} 4$		$1{ }^{45} \mathbf{S O}_{3}$
$\mathrm{SI}_{4} 5$		$44 \mathrm{SO}_{4}$
$\mathrm{Sl}_{5} 6$		43 SO
$\mathrm{SI}_{6} 7$		$42 \mathrm{SO}_{6}$
$\mathrm{Sl}_{7} 8$		41 S07
$\mathrm{Sig}_{8} 9$		$40 \mathrm{SO}_{8}$
Slg 10		39 SOg
$\mathrm{Sl}_{10} 11 \mathrm{l}$		$38 \quad \mathrm{SO}_{10}$
$\mathrm{Sl}_{11} 129$		37 GND
GND 13 d		$36 V_{\text {CC }}$
$\mathrm{SI}_{12} 14 \mathrm{c}$		$35 \quad \mathrm{SO}_{11}$
$\mathrm{CA}_{2} 15$		$34 \mathbf{S O}_{12}$
$\mathrm{CA}_{1} 16$		$33 \mathrm{Cl}_{3}$
CA 17		32 Cl 2
TCD 18 \%		$31 \mathrm{Cl}_{1}$
TCC 19 [$30 \mathrm{Cl}_{0}$
CLK 20 -		29 CWE
D10 21		28 DO
$\mathrm{Dl}_{1} 22$,		$27 \mathrm{DO}_{1}$
$\mathrm{Dl}_{2} 23$ 9		26 DO
$\mathrm{DI}_{3} 24$		$25 \mathrm{DO}_{3}$

Functional Description

General Information

The TDC1028 has four internal functions: delay, multiplication, addition, and coefficient storage. These functions are connected to form a building block for finite impulse response filters or correlators. Cascading inputs are provided to allow the construction of filters or correlators of arbitrary length. The
basic word size for coefficients and data is four bits. The order of the operations has been changed from the canonical form to permit the merging of delay and pipelining registers (see Figure 1).

Power

The TDC1028 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 36
GND	Ground	0.0 V	Pins 13,37

Inputs

The TDC1028 has three types of inputs: signal data, coefficients, and sum (cascading) inputs.

Name	Function	Value	J4 Package
Dl_{3}	Signal Data Input MSB	TL	Pin 24
Dl_{2}		TTL	Pin 23
Dl_{1}		TIL	Pin 22
Dl_{0}	Signal Data Input LSB	TIL	Pin 21
Cl_{3}	Coefficient Input MSB	TL	Pin 33
Cl_{2}		TL	Pin 32
Cl_{1}		TL	Pin 31
Cl_{0}	Coefficient Input LSB	TL	Pin 30
Sl_{12}	Cascading Sum Input MSB	ITL	Pin 14
Sl_{11}		TiL	Pin 12
Sl_{10}		TL	Pin 11
Slg		ITL	Pin 10
Sl_{8}		TTL	Pin 9
Sl_{7}		TL	
SI_{6}		TIL	
Sl_{5}		TL	Pin 6
SI_{4}		TL	Pin 5
Sl_{3}		TL	Pin 4
Sl_{2}		TL	Pin 3
Si_{1}		TL	Pin 2
Sl_{0}	Cascading Sum Input LSB	TL	

Data Outputs

The TDC1028 has two outputs：a sum output and a data output．The data output is used to connect one TDC1028 to
the next（cascading）for greater filter or correlation length．The sum output is used both for cascading and signal output．

Name	Function	Value	J4 Package
SO_{12}	Sum Output MSB	TL	Pin 34
SO_{11}		TL	Pin 35
SO_{10}		TL	Pin 38
SO_{9}		TTL	Pin 39
SO_{8}		π	Pin 40
SO_{7}		TTL	Pin 41
SO_{6}		TL	Pin 42
SO_{5}		IIL	Pin 43
SO_{4}		TLL	Pin 44
SO_{3}		TL	Pin 45
SO_{2}		TL	Pin 46
SO_{1}		TTL	Pin 47
SO_{0}	Sum Output LSB	TL	Pin 48
DO_{3}	Data Output MSB	TIL	Pin 25
DO_{2}		TL	Pin 26
DO_{1}		TL	Pin 27
DO_{0}	Data Output LSB	TTL	Pin 28

Clocks

The TDC1028 operates synchronously from a single master clock，and can be clocked up to 10 MHz ．All internal circuitry is static；there is no minimum clock frequency required．

Name	Function	Value	J4 Package
CLK	Clock	ΠL	Pin 20

Controls

The TDC1028 has six control inputs．TCC and TCD control the interpretation of the data and coefficients as two＇s complement or unsigned magnitude numbers．These inputs provide two＇s complement operation for the respective input when a logic

HIGH is applied，and unsigned magnitude operation when a logic LOW is applied．One active LOW input controls the writing of a coefficient，and three inputs control the selection of which coefficient is to be written．

Name	Function	Value	J4 Package
$T C C$	Two＇s Complement Coefficients	$\Pi \mathrm{L}$	Pin 19
TCD	Two＇s Complement Data	$\Pi \mathrm{L}$	Pin 18
$\overline{C W E}$	Coefficient Write Enable	$\Pi \mathrm{L}$	Pin 29
$C A_{2}$	Coefficient Address MSB	$\Pi \mathrm{L}$	Pin 15
$C A_{1}$		$\Pi \mathrm{~L}$	Pin 16
$C A_{0}$	Coefficient Address LSB	$\Pi \mathrm{L}$	Pin 17

Figure 1.

CANONICAL FIR ARCHITECTURE

TDC1028 EQUIVALENT ARCHITECTURE

Figure 2.
ARITHMETIC SUMMATION DF "SUM" OUTPUTS FOR 8-BIT COEFFICIENT, 8-BIT SIGNAL DATA WORDS

Figure 3.

RESULT WEIGHTS

Figure 4.

Figure 5.

Figure 6. Equivalent Input Circuit

Figure 7. Equivalent Output Circuit

Figure 8. Normal Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Operating conditions

Parameter		Temperature Range			Units
		Standard			
		Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	V
tpWL	Clock Pulse Width, LOW	48			ns
tpWH	Clock Pulse Width, HIGH	48			ns
${ }^{\text {t }} \mathrm{C}$	Clock Cycle Time	100			ns
${ }_{\text {t }}$	Input Setup Time				
	Data In, Sum In	15			ns
	Coefficient In, Coefficient Address in	25			ns
	Coefficient Write Enable	30			ns
t_{H}	Input Hold Time (All inputs)	5			ns
$\mathrm{V}_{\text {IL }}$	Input Voltage, Logic LOW			0.8	V
V_{IH}	Input Voltage, Logic HIGH	2.0			V
OL	Output Current, Logic LOW			4.0	mA
$\mathrm{OH}^{\mathrm{OH}}$	Output Current, Logic HIGH			-400	$\mu \mathrm{A}$
$\mathrm{T}_{\text {A }}$	Ambient Temperature, Still Air	0		70	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range		Units	
		Standard				
		Min	Max			
${ }^{\text {ICC }}$	Supply Current		$V_{\text {CC }}=$ MAX, Static ${ }^{1}$		700	mA
	Input Current, Logic LOW		$V_{\text {CC }}-$ MAX, $V_{J}-0.5 \mathrm{~V}$			
		Data Inputs		-0.4	mA	
		Clock Input		-1.0	mA	
	Input Current, Logic HIGH	$V_{\text {CC }}=$ MAX, $V_{1}=2.4 V$				
		Data Inputs		75	$\mu \mathrm{A}$	
		Clock Input		75	$\mu \mathrm{A}$	
	Input Current, Max Input Voltage	$V_{\text {CC }}=$ MAX, $\mathrm{V}_{1}=5.5 \mathrm{~V}$		1.0	mA	
V_{OL}	Dutput Voltage, Logic LOW	$V_{C C}=M I N, I_{O L}=$ MAX		0.5	V	
$\mathrm{V}_{\text {OH }}$	Output Voltage, Logic HIGH	$\mathrm{V}_{\text {CC }}-\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		V	
I_{OS}	Short-circuit Output Current	$V_{\text {CC }}=$ MAX, Output HIGH, one pin to ground, one second duration		-50	mA	
C_{1}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15	pF	
C_{0}	Output Capacitance	$\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C}, \mathrm{F}=1 \mathrm{MHz}$		15	pF	
Note:	1. Worst Case: All inputs and outp					

Switching characteristics within specified operating conditions

Application Notes

More than one TDC1028 may be connected together to form filters of greater length, greater signal data resolution, and/or greater coefficient resolution.

The simplest form of expansion is length. Each TDC1028 has a data and a sum input, and a data and a sum output. To make a filter of greater length, connect the data and sum outputs to the data and sum inputs of the next device, as shown in Figures 2 and 3 . This procedure is used for each section of a filter built with higher resolution for signal data and coefficients. Note that the sum inputs of the first device in a series (the one to which signal data is directly applied) must be supplied with a "zero": input that is, all sum input pins must be grounded.) This form of expansion is also used in combination with increased resolution, and is directly applicable to those cases.

Two options are available for increased resolution. The first method uses external adders and pipeline registers, the second uses the internal adders and pipeline registers of the TDC1028. Block diagrams of these methods are shown in Figures 9 and 10. The second method significantly increases latency; the output experiences a significant delay with respect to that of an ideal but causal Finite Impulse Response filter.

This section discusses the increasing of signal data and coefficient resolution when both signal data and coefficients are given in two's complement notation. For additional information, refer to TRW LSI Products Application Note TP-22.

The basic approach is to divide the word that requires greater resolution into two or more parts of four bits each. A separate
section will be needed for every four bits or fraction thereof. Usually, both signal data words and coefficients will be divided. Next, a filter section is assigned to each possible combination of non-overlapping 4-bit groups of signal data with 4-bit groups of coefficients. IA filter section is assigned for each element in the cross-product of the signal data and coefficient data word spaces.l This process is shown in Figure 3, which illustrates division into 4-bit segments, used with both options for increasing resolution.

The choice is made between the adder option and the no-adder option. If the adder option is chosen, a pipelined adder must be designed using MSI components. A complete 16 -tap filter using 8 -bit signal data words and 8 -bit coefficients is shown in Figure 9. Care must be taken to assure that the outputs of each of the sections are properly weighted. Note that the Two's Complement Data (TCD) pin should be active only in the sections which have the MSD of the data word as the input. Likewise, the Two's Complement Coefficient ITCCI pin should be active only on the sections which have the MSD of the coefficient word as the input.

However, another approach is possible. The TDC1028 has internal adders which are not used in the above configuration: Those are the adders in the first device in each section. By introducing suitable delays, these adders can be used to increase resolution without using external adders. A sample circuit, a complete 16 -tap filter using 8 -bit signal data words and 8 -bit coefficients, is shown in Figure 10 . Notice that this introduces an eighteen sample delay in the signal path. The necessary 8 -bit wide by 9 or 18 stage long shift registers are provided by TRW's TDC1011.

Figure 9.

Figure 10.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC10284C	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	48 Lead DIP	1028．44C
T0C10284G	STD－ $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn－In	48 Lead DIP	102844

TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW inc．or others．
Preliminary Information describes products that are not in full production at the time of printing．Specifications are based on design goals and limited characterization．They may change without notice．Contact TRW for current information．

\rightarrow-antimes

$\longrightarrow \longrightarrow$
+
 -

-
2

The TDC1005 and TDC1006 are very high-speed, synchronous shift registers. Both devices are TTL compatible and support 20 MHz clock rates. The TDC1005 stores a serial string of 256 bits, while the TDC1006 stores two parallel 64-bit strings.

FIFO

To help interface systems with differing instantaneous clock rates, TRW has introduced the TDC1030, a first-in first-out memory. The device
accommodates up to 64 nine-bit words and is fully TTL compatible. Data may be written into and read out from the device asynchronously, using the TDC 1030 's input and output handshaking ports. Two or more TDC1030s can be cascaded serially to facilitate storage of longer data sequences. The maximum shift-in and shift-out rate is 15 MHz for individual devices, and 13 MHz for cascaded parts. The device may be used without the control flags up to 18 MHz .

Product	Description	Size	Shift Rate ${ }^{1}$ (MHz)	Power Dissipation ${ }^{1}$ (Watts)	Package	Notes
TDC1005	Shift Register	64×2	25	0.5	J9	Expandable/Cascadable
TDC1006	Shift Register	256x1	25	0.7	J9	Expandable/Cascadable
TDC1030	FIFO	64×9	15	1.5	J6, B6, C3	Expandable/Cascadable

Note: 1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Serial Shift Register

Dual 64-bit

The TRW TDC1005 is a dual 64-bit positive-edge-triggered serial shift register which operates at 25 MHz . This device is cascadable in the number of words and the word size.

Complementary TTL outputs Q and $\overline{\mathrm{C}}$ are provided. The two data inputs in each shift register, D_{0} and D_{1}, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25MHz Guaranteed Clock Frequency
- Fully TTL Compatible
- True and Complementary Outputs
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 16 Lead Ceramic DIP
- Available Screened To MIL-STD-883
- Horizontal And Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage For FIR Filters
- Digital Delay Lines
- Local Storage Registers

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1005 is a positive-edge-triggered dual 64-bit serial shift register. One of two data inputs $\left(D_{0}\right.$ and $\left.D_{1}\right)$ is selected
by the Data Select control (DS). Complementary outputs Q and $\overline{0}$ are available.

Power

The TDC1005 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
$V_{\text {CC }}$	Positive Supply Voltage	+5.0 V	Pin 16
GND	Ground	$0.0 V$	Pin 8

Data Inputs

The TDC1005 has two data inputs per block, CO_{A} and DO_{B},
$\mathrm{D} 1_{\mathrm{A}}$ and $\mathrm{D} 1_{\mathrm{B}} \mathrm{l}$.

Name	Function	Value	J9 Package
DO_{A}	Data Input 0, Block A	TL	Pin 11
Dl_{A}	Data Input 1, Block A	TIL	Pin 12
DO_{B}	Data Input 0, Block B	TTL	
Dl_{B}	Data Input 1, Block B	TTL	Pin

Data Select

Two data select controls, one for Block A (DSAl and one for The 0 input is selected when DS is LOW; the 1 input is Block $\mathrm{B}\left(D S_{\mathrm{B}}\right)$, are provided to select between inputs 0 and 1. selected when DS is HIGH.

Name	Function	Value	J9 Package
$D S_{A}$	Block A Data Select	THL	Pin 13
$D S_{\mathrm{B}}$	Block B Data Select	THL	Pin 4

Data Outputs

Complementary outputs Q and $\overline{\mathrm{Q}}$ are provided for the TDC1005.

Name	Function	Value	J9 Package
QA	Data Output Block A	TL	Pin 15
$\overline{\text { QA }}$	Data Output (linv.) Block A	TL	Pin 14
QB	Data Output Block B	TL	Pin 2
$\overline{\square B}$	Data Output (lnv.) Block B	TTL	Pin 3

Clocks

The TDC1005 has three clock inputs ICLK A, CLK B, CLK Cl which are combined to provide the clock signals for the two blocks. Block A is clocked by the logical OR of CLK A and

CLK C. Block B is clocked by the logical OR of CLK B and CLK C. This allows the two blocks to be clocked either independently or simultaneously.

Name	Function	Value	J9 Package
CLK A	Clock A	TTL	Pin 10
CLK B	Clock B	TL	Pin 7
CIK C	Clock C	TTL	Pin 9

No Connects

Pin 1 on the TDC1005 is not connected internally. This pin may be left unconnected.

Name	Function	Value	J9 Package
NC	No connection	Open	Pin 1

Figure 1. Timing Diagram

Figure 2. Input/Qutput Schematics

Figure 3. Test Load for Delay Measurement (Typical)

LSI Products Division
TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within spesified operating conditions. Functional operation under any of these conditions is NOT implied.
2. Applied voltage must be current limited to specified range.
3. Forcing votage must be limited to specified range.
4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }^{\text {tPW }}$	Clock Pulse Width	15			15			ns
ts	Input Register Setup Time	0			0			ns
${ }_{\text {th }}$	Input Register Hold Time	10			10			ns
$V_{\text {IL }}$	Input Voltage, Logic Low			0.8			0.8	V
V_{IH}	Input Voltage, Logic High	2.0			2.0			V
10 L	Output Current, Logic Low			4.0			4.0	mA
${ }^{\text {OH}}$	Output Current, Logic High			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }_{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
${ }^{1} \mathrm{CC}$ Supply Current	$V_{C C}=$ MAX		105		120	mA
V_{OL} Output Voltage, Logic Low	$\mathrm{V}_{\text {CC }}-\mathrm{MIN}, \mathrm{IOL}^{\text {- MAX }}$		0.5		0.5	V
$\bar{V}_{\text {OH }}$ Output Voltage, Logic High	$V_{C C}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$	2.4		2.4		V
IL Input Current, Logic Low ${ }^{1}$	$V_{\text {CC }}-$ MAX, $V_{\text {IL }}=0.4 \mathrm{~V}$		-0.5		-0.8	mAlload
IH \quad Input Current, Logic High ${ }^{1}$	$V_{C C}-M A X, V_{\text {IH }}-2.4 V$		20		50	$\mu \mathrm{Alload}$
Note: 1. CLK C: Eight equivalent CLK A, CLK B: Four eq						

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Clock Frequency		(See Figure 3)	25		25		MHz
${ }^{t}$	Output Delay		(See Figure 3)	10	30	10	30	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1005.J9C	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1005.J9C
TDC1005.JgG	STD-TA $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1005J9G
TDC1005.J9F	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1005.19F
TDC1005.j9A	EXT- $\mathrm{C}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MIL-STD-883	16 Lead DIP	1005.19A
TOC1005.J9N	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial with Burn-In	16 Lead DIP	1005.19N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Serial Shift Register
 256-bit

The TRW TDC1006 is a positive-edge-triggered serial shift register which operates at 25 MHz . The device is cascadable in the number of words and the word size.

Complementary TTL outputs 0 and $\overline{\mathrm{Q}}$ are provided. Two data inputs, $D 0$ and $D 1$, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25MHz Guaranteed Clock Frequency
- Fully TL Compatible
- True and Complementary Outputs
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 16 Lead Ceramic DIP
- Available Screened to MIL-STD-883
- Horizontal and Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage for FIR Filters
- Digital Delay Lines
- Local Storage Registers

Functional Block Diagram

Functional Block Diagram

Pin Assignments

16 Lead DIP - J9 Package

Functional Description

General Information

The TDC1006 is a 256 -bit positive-edge-triggered serial shift register. One of two data inputs (DO and D11 is selected by
the Data Select control DS. Complementary outputs 0 and $\overline{\mathrm{D}}$ are available.

Power

The TDC1006 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
$V_{\text {CC }}$	Positive Supply Voltage	$+5.0 V$	Pin 16
GND	Ground	$0.0 V$	Pin 8

Data Inputs

The TDC1006 is a single 256 -bit shift register with two data inputs DO and $\mathrm{D1}$.

Name	Function	Value	J9 Package
00	Data Input 0	TLL	Pin 5
D1	Data Input 1	TL	Pin 6

Data Select

The TDC1006 has one data select control (DS) to select between inputs DO and D1. Input D1 is selected when DS is HIGH, DO is selected when DS is LOW.

Name	Function	Value	J9 Package
DS	Data Select	$\pi \mathrm{L}$	Pin 7

Data Outputs

Complementary outputs Q and $\overline{\mathrm{Q}}$ are provided for the TDC1006.

Name	Function	Value	J9 Package
0	Data Output	$\Pi \mathrm{L}$	Pin 11
$\overline{0}$	Data Output Inverted	$\Pi \mathrm{L}$	Pin 10

Clocks

The TDC1006 has one clock signal, CLK.

Name	Function	Value	J9 Package
CLK	Clock	TLL	Pin 9

No Connects

There are several pins on the TDC1006 which are not connected internally. These pins may be left unconnected.

Name	Function	Value	J9 Package
NC	No Connect	Open	Pins 1-4, 12-15

Figure 1. Timing Diagram

Figure 2. Equivalent Input/Output Schematics

Figure 3. Test Load

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Electrical characteristics within specified operating conditions

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
F_{C}	Clock Frequency		(See Figure 1)	25		25		MHz
${ }^{t}$	Dutput Delay		(See Figure 1)	10	30	10	30	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1006.JSC	STD- $\mathrm{T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1006J9C
TDC1006.Jg	- STD- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1006.J9G
TDC1006.3F	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial	16 Lead DIP	1006.j9F
TDC1006.9A	EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	MLL-STD-883	16 Lead DIP	1006.J9A
TDC1006.9N	EXT-TC $=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial With Burn-In	16 Lead DIP	1006.J9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

First-In First-Out Memory

64 words by 9 bits cascadable

The TRW TDC1030 is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 9 bits. A 15 MHz data rate makes it ideal in high-speed applications. Burst data rates of 18 MHz can be obtained in applications where the device status flags are not used.

With separate Shift-In |SII and Shift-Dut $\langle\mathbf{S O}|$ controls, reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a Master Reset $(\overline{M R})$, and Output Enable ($\overline{\mathrm{OE}}$). Input Ready (IR) and Output Ready (ORI flags are provided to indicate device status.

Devices can be easily interconnected to expand word and bit dimensions. The device has all output pins directly opposite the corresponding input pins, facilitating board layouts in expanded format. All inputs and outputs are TTL compatible.

Features

- 64 Words By 9 Bits Organization
- 15MHz Shift-In, Shift-Out Rates With Flags
- 18 MHz Burst-In, Burst-Out Rates Without Flags
- Cascadable To 13 MHz
- Readily Expandable In Word And Bit Dimension
- TTL Compatible
- Asynchronous Or Synchronous Operation
- Three-State Outputs
- Master Reset Input To Clear Data And Control
- Output Pins Directly Opposite Corresponding Input Pins For Easy Board Layout
- Available in 28 Lead Ceramic DIP, CERDIP, or Contact Chip Carrier

Applications

- High-Speed Disk Or Tape Controller
- Video Time Base Correction
- AID Output Buffers
- Voice Synthesis
- Input/Output Formatter For Digital Filters and FFTs

Functional Block Diagram

Functional Block Diagram

Pin Assignments

28 Lead DIP - J6 Package
28 Lead CERDIP - B6 Package

28 Contact Chip Carrier - C3 Package

Functional Description

Data Input（Figure 1）

Following power up，the Master Reset（｜MR）is pulsed LOW to clear the FIFO（Figure 2）．The Input Ready（IR）flag HIGH indicates that the FIFO input stage is empty and available to receive data．When \mathbb{R} is valid（HIGH），Shift－In（SII）may be asserted，thus loading the data present at D_{0} through D_{8} into the FIFO．Bringing the SI signal HIGH causes IR to drop LOW．

The data remains at the first location until SI is set LOW．With SI LOW，the data then propagates to the second location and continues to＂fall through＂to the output stage or last empty
location．If the FIFO is not full after the SI pulse，IR will again be valid（HIGH），indicating that there is space available in the FIFO．If the memory is full，the IR flag remains invalid（LOW）．

With the FIFO full，the SI can be held HIGH until a Shift－Out （SO）occurs（Figure 3）．Following the SO pulse，the empty location＂bubbles up＂to the input stage．This results in an Input Ready（IR）pulse HIGH and awaiting data is shifted in． The SI must be brought LOW before additional data can be shifted in．

Data Transfer

After data has been transferred into the second location by bringing SI LOW，the data continues to＂fall through＂the FIFO
in an asynchronous manner．The data stacks up at the end of the device，leaving the empty locations up front．

Data Output（Figure 4）

The Output Ready（ORII flag HIGH indicates that there is valid data at the output stage（pins $0_{0}-Q_{8}$ ）．An initial Master Reset $(\overline{M R})$ pulse LOW at power up sets the Output Ready LOW and clears the output stage（Figure 2）．Data shifted into the FIFO lafter MR）＂falls through＂to the output stage，causing OR to go high．

When the OR flag is valid（HIGH），data can be transferred out via the Shift－Out（SO）control．An SO HIGH results in a＂busy＂ （LOW）signal at the OR flag．When SO is brought LOW，data is shifted to the output stage，and the empty location＂bubbles
up＂to the input stage．At the completion of the SO pulse，OR goes HIGH．If the last valid piece of data has been shifted out， leaving the memory empty，the OR flag remains invalid（LOW）． With the FIFO empty，the last word shifted out remains on the output pins $Q_{0}-Q_{8}$ ．

With the FIFO empty，the SO can be held HIGH until a SI occurs（Figure 5）．Following the SI pulse，the data＂falls through＂to the output stage．This results in an OR pulse HIGH and data is shifted out．The SO must be brought LOW before additional data can be shifted out．

Data Inputs

The nine data inputs of the TDC1030 are TTL compatible．
There is no weighting to the inputs，and any one of them can be assigned as the MSB．The memory size of the FIFO can be reduced from the 9×64 configuration by leaving open unused
data input pins（i．e．， $8 \times 64,7 \times 64 \ldots 1 \times 64$ ）．In the reduced format，the unused data output pins must also be left open．

Hame	Function	Value	J6，C3，B6 Package
D_{0}	Data Input	TTL	Pin 5
D_{1}		TTL	Pin 6
D_{2}		TIL	Pin 7
D_{3}		TL	Pin 8
D_{4}		TTL	Pin 9
D_{5}		TL	Pin 10
D_{6}		TTL	Pin 11
D_{7}		TL	Pin 12
D_{8}	Data Input	TIL	Pin 13

Data Outputs

The nine data outputs of the TDC1030 are TTL compatible, capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. There is no weighting to the outputs, and any one of them can be assigned as the MSB.

The memory size of the FIFO can be reduced from the 9×64 configuration by leaving open unused data output pins (i.e., $8 \times 64,7 \times 64 \ldots 1 \times 641$. In the reduced format, the unused data input pins must also be left open.

Name	Function	Value	J6, C3, B6 Package
a_{0}	Data Output	TIL	Pin 24
0_{1}		TTL	Pin 23
O_{2}		TTL	Pin 22
O_{3}		TL	Pin 21
O_{4}		TTL	Pin 20
a_{5}		TL	Pin 19
O_{6}		TTL	Pin 18
0_{7}		TL	Pin 17
O_{8}	Data Output	TTL	Pin 16

Controls

SI The rising edge loads data into the input stage. $\overline{\mathrm{MR}}$ The falling edge triggers the automatic data transfer process.

SO The rising edge causes OR to go LOW. The falling edge moves upstream data into the output stage and triggers the "bubble up" process of empty locations. $\overline{\mathrm{OE}}$
$\overline{M R}$ LOW clears all data and control within the FIFO: Input Ready flag is set HIGH, Output Ready flag is set LOW, and the FIFO is cleared. The output stage remains in the state of the last word shifted out, or in the random state of power up.

With the $\overline{\mathrm{OE}} \mathrm{LOW}$, the outputs of the FIFO are TIL compatible. When disabled ($\overline{\mathrm{OE}} \mathrm{HIGH})$, the outputs go into their high-impedance state.

Name	Function	Value	J6, C3, B6 Package
SI	Shitt-In	TL	Pin 4
SO	Shitt-Out	TLL	Pin 26
$\overline{M R}$	Master Reset	TTL	Pin 27
$\overline{O E}$	Output Enable	ΠL	Pin 15

Power

The TDC1030 operates from a single +5.0 V supply. All power and ground pins must be connected.

Name	Function	Value	J6, C3, B6 Package
$V_{\text {CC }}$	Supply Voltage	+5.0	Pin 28
GND	Digital Ground	0.0	Pins 1, 2, 14

Status Flags

Input Ready (\mathbb{R}) and Output Ready（OR）flags are provided to \mathbb{R} indicate the status of the FIFO．Operation with use of the flags is explained in the Functional Description．In this mode of operation，the Shift－In and Shift－Out rates are determined by the status flags．It is assumed that a Shift－In or Shift－Out pulse is not applied until the respective flag（IR，ORI）is valid （Figures 1 and 4）．

The IR and OR flags are not required to operate the device．A high－speed burst mode is achievable when operating without the flags．Refer to the High－Speed Burst Mode section for a complete description．

Name	Function	Value	J6，C3，B6 Package
IR	Input Ready Flag	$\Pi \mathrm{L}$	Pin 3
OR	Output Ready Flag	$\Pi \mathrm{L}$	Pin 25

Application Notes

Expanded Format

The TDC1030 is easily cascaded to increase word capacity without any external circuitry．Word capacity can be expanded beyond the 128 words X 9 bits configuration shown in Figure 6．In the cascaded format，all necessary communications and timing are handled by the FIFOs themselves．The intercommunication speed is controlled by the minimum flag pulse widths and the flag delays．ISee Figures 7 and 8．The maximum data rate when cascading devices is 13 MHz ．

With the addition of a logic gate，the FIFO is easily expanded to increase word length（Figure 9）．The basic operation and timing are identical to a single FIFO，with the exception of an additional gate delay on the flags．Word length can be
expanded beyond the 18 bits $X 64$ words configuration shown in Figure 9.

High－Speed Burst Mode

Burst rates of 18 MHz can be obtained for applications in which the device status flags are not used．In this mode of operation，the Burst－In and Burst－Out rates are determined by the minimum Shift－In Pulse Widths，and Shift－Out Pulse Widths（See Figures 10 and 11）．With the Input Ready and Output Ready flags not monitored，a shift pulse can be applied without regard to the status flag．However，a Shift－In pulse which would overflow the storage capacity of the FIFO is not permitted．

TDC1030 Timing Diagrams

Figure 1. Shifting In Sequence, FIFO Empty To FIFO Full

1. Input Ready initially HIGH - FIFO is prepared for valid data.
2. Shift-In set HIGH - data loaded into input stage.
3. Input Ready drops LOW (tIR delay after SI HIGH) - input stage "busy."
4. Shift-In set LOW - data from first location "falls through."
5. Input Ready goes HIGH It|R delay after SI LOWI - status flag indicates FIFO prepared for additional data.
6. Repeat process to load 2nd through 64th word into FIFO.
7. Input Ready remains LOW - with attempt to shift into full FIFO, no data transfer occurs.

Figure 2. Master Reset Applied With FIFO Full

1. Input Ready LOW, Output Ready HIGH - assume FIFO is full.
2. Master Reset pulse LOW - clears FIFO.
3. Input Ready goes HIGH (tMRIRH delay after $\overline{\text { MR }}$ - flag indicates input prepared for valid data.

Figure 3. With FIFO Full, Shift-In Held High In Anticipation Of Empty Location

1. FIFO is initially full, Shift-In is held HIGH.
2. Shift-Out pulse - data in the output stage is unloaded, "bubble up" process of empty location begins.
3. Input Ready HIGH ItrT fallthrough delay after SO pulse) when empty location reaches input stage, flag indicates FIFO is prepared for data input.
4. Input Ready returns LOW - data Shift-In to empty location is complete, FIFO is again full.
5. SI brought LOW - necessary to complete Shift-In process, allows data "fall through" if additional empty location "bubbles up."

Figure 4. Shifting Out Sequence, FIFO Full to FIFO Empty

1. Output Ready HIGH - no data transfering in progress, valid data is present at output stage.
2. Shift-Out set HIGH - results in OR LOW.
3. Output Ready drops LOW ItoR delay after SO HIGH) output stage "busy."
4. Shift-Out set LOW - data in the input stage is unloaded, and new data replaces it as empty location "bubbles up" to input stage.
5. Output Ready goes HIGH - transfer process completed, valid data present at output.
6. Repeat process to unload the 3rd through 64th word from FIFO.
7. Output Ready remains LOW - FIFO is empty.
8. Shift-Out pulse asserted - with attempt to unload from empty FIFO, no data transfer occurs.

Figure 5. With FIFO Full, Shift Out Is Held High In Anticipation Of Data

1. FIFO is initially empty, Shift-Out is held HIGH.
2. Shift-In pulse - loads data into FIFO and initiates "fall through" process.
3. Data Output transition - ItDOF delay before OR HIGH), valid data arrives at output stage.
4. Output Ready HIGH - ItFT fallthrough delay after SI pulsel, OR flag signals the arrival of valid data at the output stage.
5. Output Ready goes LOW - data Shift-Out is complete, FIFO is again empty.
6. Shift-Out set LOW - necessary to complete Shift-Out process, allows "bubble up" of empty location as data "falls through."

Figure 6. Cascading For Increased Word Capacity - 128 Words X 9 Bits

The TDC1030 is easily cascaded to increase word capacity without any external circuitry. In the cascaded format, all necessary communications are handled by the FIFOs
themselves. Figures 7 and 8 demonstrate the intercommunication timing between FIFO A and FIFO B .

Figure 7. FIFO - FIFO Communication: Input Timing Under Empty Condition

1. FIFO A and B initially empty, SO (A) held HIGH in anticipation of data.
2. Load one word into FIFO A - SI pulse applied, IR pulse results.
3. Data Out A/Data In B transition - ItDOF delay before OR (A) HIGH), valid data arrives at FIFO A output stage prior to OR flag, meeting data input setup requirements of FIFO B.
4. $O R(A)$ and $S I(B)$ pulse HIGH - (ttr delay after SI (A) LOW) data is unloaded from FIFO A as a result of the Output Ready Pulse (TOP), data is shifted into FIFO B.
5. $\operatorname{IR}(\mathrm{B})$ and $\mathrm{SO}(\mathrm{A})$ go LOW - It_{I} delay after $\left.\mathrm{SI}(\mathrm{B}) \mathrm{HIGH}\right)$, flag indicates input stage of FIFO B is "busy," Shift-Out of FIFO A is complete.
6. IR (B) and $S O(A)$ go $H I G H-I t \mid R$ delay after $S I(B)$ LOW), input stage of FIFO B is again available to receive data, SO is held HIGH in anticipation of additional data.
7. OR (B) goes HIGH - It $\mathrm{I} T$ delay after $\mathrm{SI}(\mathrm{B})$ LOW), valid data is present at the FIFO B output stage.

Figure 8. FIFO - FIFO Communication: Output Timing Under Full Condition

1. FIFO A and B initially full, $S I(B)$ held HIGH in anticipation of shifting in new data as empty location "bubbles up."
2. Unload one word from FIFO B - SO pulse applied, OR pulse results.
3. IR $|B|$ and $S O(A)$ pulse $H I G H$ - $(t \mid T T$ delay after $S O(B)$ LOWI, data is loaded into FIFO B as a result of the Input Ready Pulse (tIP), data is shifted out of FIFO A.
4. $O R(A)$ and $S I(B)$ go LOW - Itor delay after $S O(A) H I G H)$, flag indicates the output stage of FIFO A is "busy," Shift-In to FIFO B is complete.
5. OR (A) and $\mathrm{SI}(\mathrm{B})$ go $H I G H$ - ItoR delay after $\mathrm{SO}(\mathrm{A}) \mathrm{LOW})$, flag indicates valid data is again available at the FIFO A output stage, $\mathrm{SI}(\mathrm{B})$ is held HIGH, awaiting "bubble up" of empty location.
6. IR (A) goes HIGH - It F delay after $\mathrm{SO}(\mathrm{A})$ LOW), an empty location is present at input stage of FIFO A .

LSI Products Division

TRW Electronic Components Group

Figure 9. Expanded FIFO for Increased Word Length - 64 Words X 18 Bits

The TDC1030 is easily expanded to increase word length. Composite Input Ready and Output Ready flags are formed with the addition of an AND logic gate. The basic operation
and timing are identical to a single FIFO, with the exception of an added gate delay on the flags.

Figure 10. Shift-In Operation In High-Speed Burst Mode

In the high-speed mode, the Burst-In rate is determined by the minimum Shift-In HIGH and Shift-In LOW specifications. The IR status flag is a "don't care" condition, and a Shift-In
pulse can be applied without regard to the flag. A Shift-In pulse which would overflow the storage capacity of the FIFO is not permitted.

Figure 11. Shift-Out Operation In High-Speed Burst Mode

In the high-speed mode, the Burst-Out rate is determined by the minimum Shift-Out HIGH and Shift-Out LOW
specifications. The OR flag is a "don't care" condition, and a Shift-Out pulse can be applied without regard to the flag.

Figure 12. Equivalent Input Circuit

Figure 13. Equivalent Output Circuit

Figure 14. Normal Test Load

Figure 15. Three-State Delay Test Load

LOAD 2

Absolute maximum ratings (beyond which the device will be damaged) ${ }^{1}$

Output	
	Applied voltage \qquad -0.5 to $+5.5 \mathrm{~V}^{2}$ Forced current \qquad -1.0 to $+6.0 \mathrm{~mA}^{3,4}$ Short circuit duration (single output in high state to ground) \qquad 1 sec
Temperature	
	 junction \qquad Lead, soldering (10 seconds) \qquad Storage \qquad
Notes:	1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied. 2. Applied voltage must be current limited to specified range. 3. Forcing voltage must be limited to specified range. 4. Current is specified as positive when flowing into the device.

Operating conditions

Parameter		Temperature Range						Units
		Standard			Extended			
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
${ }_{\text {t }}^{\text {SIL }}$	Shift-In Pulse Width, Low	20			20			ns
${ }_{\text {SIH }}$	Shift-In Pulse Width, High	15			18			ns
${ }_{\text {t }}$ S	Input Setup Time	0			0			ns
${ }_{\text {the }}$	Input Hold Time	25			30			ns
${ }^{\text {t SOL }}$	Shift-Out Pulse Width, Low	20			20			ns
${ }^{\text {t }}$ SOH	Shift-Out Pulse Width, High	15			18			ns
V_{HL}	Input Voltage, Logic LOW			0.8			0.8	v
$V_{\text {IH }}$	Input Voltage, Logic HIGH	2.0			2.0			V
$\mathrm{IOL}^{\text {l }}$	Output Current, Logic Low			4.0			4.0	mA
IOH	Output Current, Logic HIGH			-400			-400	$\mu \mathrm{A}$
T_{A}	Ambient Temperature, Still Air	0		70				${ }^{\circ} \mathrm{C}$
${ }^{\text {T }}$	Case Temperature				-55		125	${ }^{\circ} \mathrm{C}$

Electrical characteristics within specified operating conditions

Parameter	Test Conditions	Temperature Range				Units
		Standard		Extended		
		Min	Max	Min	Max	
ICC Supply Current	$\mathrm{V}_{\text {CC }}=$ MAX, static ${ }^{1}$					
	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		350			mA
	$T_{A}=70^{\circ} \mathrm{C}$		280			mA
	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				400	mA
	${ }^{T_{C}}=125^{\circ} \mathrm{C}$				260	mA
IIL Input Current, Logic Low	$V_{\text {CC }}=$ MAX,$V_{1}=0.5 \mathrm{~V}$					
	$\mathrm{D}_{8-0}, \bar{M} \bar{R}$		-0.4		-0.4	mA
	$\overline{\mathrm{SI}, \mathrm{SO}, \overline{\mathrm{OE}}}$		-1.0		-1.0	mA
IH Input Current, Logic High	$V_{\text {CC }}=$ MAX $V_{1}=2.4 \mathrm{~V}$		75		75	$\mu \mathrm{A}$
I Input Current, Max Input Voltage	$V_{C C}=$ MAXX $V_{1}-5.5 \mathrm{~V}$		1.0		1.0	mA
$V_{0 L}$ Output Voltage, Logic Low	$V_{C C}=M I N, I_{O L}=$ MAX		0.5		0.5	V
$\mathrm{V}_{\text {OH }}$ Output Voltage, Logic High	$V_{C C}=$ MIN, $\mathrm{I}_{\mathrm{OH}}=$ MAX	2.4		2.4		V
IoZL High-Z Output, Leakage Current, Logic Low	$V_{C C}=$ MAX, $V_{1}=0.5 \mathrm{~V}$		-40		-40	$\mu \mathrm{A}$
IozH High-Z Output, Leakage Current, Logic High	$V_{C C}=M_{A X} X_{1} V_{1}=2.4 \mathrm{~V}$		40		40	$\mu \mathrm{A}$
IOS Short Circuit Output Current	$V_{C C}=M A X$, One pin to ground, one second duration, output high.		-40		-40	mA
C_{1} Input Capacifance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15		15	pF
C_{0} Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$		15		15	pF

Note:

1. Worst case: all digital inputs and outputs LOW, OE HIGH.

Switching characteristics within specified operating conditions

Parameter		Test Conditions	Temperature Range				Units	
		Standard	Extended					
		Min	Max	Min	Max			
${ }^{\text {F }}$	Shift-In Clock Rate		$V_{C C}=M 1 N$	18		16		MHz
F_{BI}	Burst-In Clock Rate		$V_{C C}=M I N$	20		18		MHz
${ }^{\text {IR }}$	Input Ready Delay	$V_{C C}=M I N$		40		50	ns	
${ }_{\text {tr }}$	Fallthrough Time	$V_{C C}=$ MIN, Load 1		1.6		1.8	$\mu \mathrm{s}$	
F_{SO}	Shift-Out Clock Rate	$V_{\text {CC }}=$ MIN	15		13		MHz	
${ }_{\text {FBO }}$	Burst-Out Clock Rate	$V_{\text {CC }}=M 1 N$	18		16		MHz	
tor	Output Ready Delay	$V_{\text {CC }}-\mathrm{MIN}$, Load 1		51		65	ns	
t	Data Dutput Delay	$\mathrm{V}_{\text {CC }}-\mathrm{MIN}$, Load 1		50		65	ns	
ІНО	Data Output Hold Time	$V_{\text {CC }}=$ MIN, Load 1	15		15		ns	
tMRW	Master Reset Pulse Width	$V_{C C}=\mathrm{MIN}$	20		25		ns	
tmRORL	Master Reset to OR Low	$V_{C C}=$ MIN, Load 1		60		80	ns	
${ }^{\text {t MRIRH }}$	Master Reset to IR High	$V_{C C}=$ MIN, Load 1		45		65	ns	
${ }^{\text {TMRSI }}$	Master Reset to SI	$V_{C C}-M I N$	55		65		ns	
tip	Input Ready Pulse	$V_{C C}-M I N$, Load 1	40		45		ns	
top	Output Ready Pulse	$V_{C C}=$ MIN, Load 1	45		50		ns	
tof	Data To Output Flag Delay	$V_{C C}=$ MIN, Load 1	1		1		ns	
ENA	Three-State Output Enable Delay	$V_{\text {CC }}=$ MIN, Load 1		35		45	ns	
${ }_{\text {tIS }}$	Three-State Output Disable Delay	$V_{\text {CC }}=$ MIN, Load 2		30		40	ns	

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1030.J6C TDC1030J6G TDC1030.J6F TDC1030.J6A TDC1030J6N	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD-T } \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { EXT- } \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT- } T_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & \text { EXT }-T_{C}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	28 Lead DIP 28 Lead DIP 28 Lead DIP 28 Lead DIP 28 Lead DIP	1030.J6C 1030N6G 1030.J6F 1030J6A 1030.j6N
TDC1030C3C TDC1030C3G TDC1030C3F TDC1030C3A TDC1030C3N	$S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $S T D-T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT-T $\mathrm{C}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ EXT- $\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Commercial Commercial With Burn-In Commercial MIL-STD-883 Commercial With Burn-In	28 Contact Chip Carrier 28 Contact Chip Carrier	1030С3C 1030C3G 1030C3F 1030C3A 1030C3N
TDC1030B6C TDCT030B6G	$\begin{aligned} & \text { STD }-T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \text { STD-T } T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	Commercial Commercial With Burn-In	28 Lead CERDIP 28 Lead CERDIP	1030B6C 1030B6G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

The ability to produce integrated circuits to high reliability specifications cannot be learned overnight. It takes years to develop such capability, with special attention given to manufacturing processes and circuit design techniques.

TRW has been in the forefront of the development and production of high reliability integrated circuits. Following the small-scale integration afforded by the first TTL gates, TRW moved to medium and large-scale integration.

TRW LSI Products' movement from SSI to VLSI has been centered around the use of a triple diffusion (3D) bipolar process. This process was developed by TRW in the early 1960s and has been consistently improved to give superior producibility, performance and reliability.

The 3D process meets the stringent requirements of MIL-M-38510 and MIL-STD-883, as well as those requirements of other high performance commercial and industrial applications. Development of the process was only one of the steps required to produce high reliability VLSI. Circuit design must also be directed toward the same goal. Reliability cannot be added at a later stage in the development process. It must be included in the initial design of each device.

Another aspect of reliability is the control of the assembly process, which is necessary to obtain the desired results. Here again, there is no substitute for experience. Each step in the TRW LSI assembly process is controlled within narrow limits to produce high-yield devices of proven reliability. Testing verifies that high reliability VLSI has been achieved. TRW performs unique, productoriented accelerated life tests in addition to tests that are in accordance with MIL-M-38510 and MIL-STD-883.

Demonstrated VLSI Reliability

Reliability is expressed in terms of failure units, or FITs, which are defined as failures per 10^{9} devicehours. VLSI devices from TRW LSI Products exhibit a failure rate many times better than that obtainable from SSI or MSI logic.

An example of the reliability possible from VLSI is evidenced by tests performed on the MPY016H multiplier. The MPY016H contains 14,000 components (transistors and resistors) configured into 888 Current Mode Logic (CML) gates. Eighteen of these devices were operated for 2,000 hours at $290^{\circ} \mathrm{C}$ junction temperature, and a median life of 8.0×10^{6} hours at $\mathrm{Tj}=125^{\circ} \mathrm{C}$ was demonstrated. This corresponds to a mean time to failure (MTTF) of 3.39×10^{7} hours or a failure rate of 29.5 FITs.

Accelerated life testing at elevated temperatures is used to reduce testing hours to a practical number. The theoretical basis for accelerated temperature testing is the Arrhenius equation that relates failure rate to temperature:
$\frac{1}{\mathrm{t}_{\mathrm{f}}}=A \exp \left(\frac{-E_{a}}{k T}\right)$
where:
tf $=$ time to failure
$\mathrm{A}=\mathrm{a}$ constant
$\mathrm{E}_{\mathrm{a}}=$ activation energy
(approx. 1.02 eV)
$\mathrm{k}=$ Boltzmann's constant
($8.61 \times 10^{-5} \mathrm{ev} /{ }^{\circ} \mathrm{K}$)
$\mathrm{T}=$ absolute temperature
$\left({ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273^{\circ}\right)$
A graphical solution of the Arrhenius equation can be performed. The first step in the evaluation of the test results is to plot the cumulative percent of failures vs. the hours to failure, as shown in Figure 1. Then, the best straight line fit for these points is drawn to represent the failure distribution. The intersection of this line with the 50% failure line is the median lifetime, t_{m}, which in this case is 1500 hours.

An activation energy of 1.02 eV was used for the example in Figure 2. From this data point (a junction temperature of $290^{\circ} \mathrm{C}$ and median lifetime of 1500 hours), a median lifetime of 8×10^{6} hours at $125^{\circ} \mathrm{C}$ is extrapolated. This corresponds to a mean time to failure (MTTF) of 3.39×10^{7} hours, or a failure rate of 29.5 FITs.

Figure 1. Median lifetime, t_{m}, is 1500 hours for 18 samples of the MPY016H multiplier operating at $290^{\circ} \mathrm{C}$ junction temperature.

Figure 2. Median Lifetime is 8.0×10^{6} hours for the MPYO 16 H at $125^{\circ} \mathrm{C}$, as determined by accelerated reliability testing at $290^{\circ} \mathrm{C}$.

Inherent Radiation Hardness

Radiation Source	Radiation Level (Device Fully Functionall
Gamma Rays	$10^{6} \mathrm{rads}$ (Sil)
Neutrons	$10^{14} \mathrm{n} / \mathrm{cm}^{2}$
X.Ray (Upset)	$2.9 \times 10^{8} \mathrm{rads} / \mathrm{sec}$
X.Ray (Burnout)	$1.3 \times 10^{12} \mathrm{rads} / \mathrm{sec}$

Table 1. Radiation Resistance Levels
As shown in Table 1, TRW's 3D bipolar process is inherently radiation resistant. High energy radiation excites and ionizes the semiconductor materials and displaces atoms from normal crystal sites, thus, it has a profound effect on device parameters. These effects result from damage induced by neutrons, X-rays, and gamma rays. The damage can change AC and DC parameters, affect functional performance, and in some cases even destroy the device. Often, these effects are temporary, lasting only microseconds, but in some cases they cause permanent damage.

The small geometries and 3D bipolar fabrication process make TRW LSI Products' VLSI devices inherently radiation-hard. This hardness is obtained by structural perfection and cleanliness of the silicon-silicon dioxide interface. As a result, these devices outperform many of the MOS and bipolar devices exposed to similar radiation environments. TRW's multipliers have been found fully functional after an absorbed dose of 10^{6} rads (Si) from a gamma ray source.

Neutron damage also causes a change in device characteristics by reducing h_{fe}, the current gain of the transistor. The 3D transistors are inherently resistant to neutron damage because their narrow base region and low transmit time provide an f_{t} of about 300 MHz for 2 -micron geometries; thus, any small change in h_{fe} has little effect on performance. VLSI multipliers fabricated with the 3D process have survived a dose of $10^{14} \mathrm{n} / \mathrm{cm}^{2}$ without functional failures.

Another source of potential radiation problems comes from X-rays, which can cause circuit upsets or burnouts. An upset can produce permanent effects in regenerative circuits by causing latch-up conditions or changes in logic states.

VLSI multipliers fabricated with 3D technology have experienced no functional failures or latch-ups when subjected to $2.9 \times 10^{8} \mathrm{rads} / \mathrm{sec}$ of X ray upset. The high upset tolerance is again due to small geometries and fast recovery time constants inherent in the 3D process. The resistance to latch-up is also due to the low inverse betas of the NPN and PNP transistors.

The same VLSI multipliers that passed $2.9 \times 10^{8} \mathrm{rads} / \mathrm{sec}$ were tested for X ray burnout with a dose of 1.3×10^{12} $\mathrm{rads} / \mathrm{sec}$. There were no functional failures, latch-ups or burnouts in the samples.

Reliability by
 Design

Fabrication

Matching the fabrication process to both semiconductor and circuit design, TRW LSI Products achieves optimum performance from VLSI. As a result, both high reliability and good yields are available.

An example of the reliability designed into our bipolar and CMOS processes is the use of a composite metallization system consisting of titanium and
aluminum. This technique virtually eliminates electromigration, which causes voids or hillocks in metallization. Elimination of electromigration is achieved because titanium reduces residual silicon dioxide in the contact windows, providing improved ohmic contact and excellent mechanical adhesion.

Accurate Masks Lead to Reliable Devices

The final physical layout of the chip is stored on magnetic tape and applied to a pattern generator which automatically draws the device on a glass reticle. Manual steps are eliminated, thus ensuring accurate masks for device production. The first output from the pattern generator is a glass reticle containing the layout of a single chip that is several times actual size.

The reticle is accurately aligned and the image is reproduced repeatedly to produce the master mask. This mask is less susceptible to plate defects (small pinholes in chrome) than an actual size mask. Projection printing is used in the wafer fabrication process. In contrast with contact printing, projection masks have a longer useful lifetime because they encounter essentially no physical wear. On the other hand, most contact masks must be discarded after one hundred (or less) operations. Projection masks also provide better results than contact masks because minor defects are less likely to occur.

Controling Production to Assure Refiability

Once the design is completed, fabrication of the VLSI die can begin. This involves tightly-controlled steps with appropriate levels of inspection, testing and screening.

The fabrication process begins with a silicon wafer. Before any work is done on the wafer, it is inspected for visible surface defects.

Next, the wafer's thickness, flatness and resistivity are measured. A thin wafer can be excessively brittle,
whereas a thick wafer is more difficult to cut into individual dice. Flatness is important in obtaining an accurate projection of the artwork contained on the production masks. Resistivity affects the electrical parameters of the semiconductor devices on the wafer.

After a blank wafer passes inspection, it is processed through many steps. These include diffusion, ion implantation, etching, coating with photoresist, metallization, etc. The masks are aligned within very tight tolerances to ensure proper registration between elements on each die. To protect the finished surface of the wafer against contaminants, silicon dioxide (glass passivation) is deposited over the entire wafer. Gold is then evaporated onto the back of the wafer to provide a good electrical contact to the substrate. The gold-silicon back contact not only provides good electrical contact to the substrate ground, it also simplifies later attachment of the VLSI die to its package and enhances thermal conduction.

The next step involves computercontrolled testing of each die on the wafer. Known as "die probe," this is an electrical function check for correct operation. If a die is found to be nonfunctional, a drop of ink is automatically placed on it so it can be discarded after die separation.

Figure 3 traces the path of each wafer as it passes through the assembly process that ends with a completely packaged device. Note that each production step has an inspection, screening or test function associated with it.

Figure 3. Inspection, screening or testing lshown in grayl accompanies each assembly step to ensure the reliability of the finished device.

Controlled Assembly Steps

The first step in the assembly process is die separation. This is accomplished with an automated diamond saw that slices the wafer. The saw technique produces a smoother edge and results in higher yields than other die separation methods.

Now the dice are ready to be mounted within the device package. Each die is accurately positioned within the package and a gold-silicon solder preform is placed between the bottom of the die and the package. The combination is heated within very close temperature tolerances, attaching the die to the package.

One of the checks on the die-attach step is temperature calibration of the heating equipment, which is done every four hours. Another check is die shear testing of samples of attached die from each production lot, and is done to detect voids between the die and the package.

After the die is attached to the package, 1.25 mil wires are bonded from pads on the die to package pads that connect to the external pins of the device. To ensure reliable bonds, each bonding machine is monitored every four hours.

To check the wire bonds, device samples are removed from each production lot and subjected to a wirebond pull test. This is accomplished by specialized equipment that pulls bonding wires until they separate from the die. Control charts are maintained to provide trend analysis.

Inspection Enhances Product Quality

After wire bonding, the device goes through a pre-seal microscopic inspection to ensure that it is internally correct and that the workmanship meets all requirements. After passing this inspection, the package is sealed. In sealing, the package moves through a special furnace where a lid is attached to the package.

The sealed package is then gross-leak tested to verify a good hermetic seal. Commercial parts receive complete electrical testing at $25^{\circ} \mathrm{C}$ and then are marked and packaged.

For high reliability parts, military or customer-specified, screens and other
tests are performed. These are followed by complete electrical testing over the recommended operating temperature range. Next, the devices are appropriately marked and packaged. Then data are reviewed for acceptability and if requested, a certificate of conformance is generated.

Electrical testing of devices is performed on automated VLSI testers that are programmed to provide unique signal patterns for each of the VLSI circuits. A full-time programming staff is responsible for the maintenance of all test programs.

Mil Spec Testing

TRW LSI Products' high reliability devices are all produced in accordance with customer or military specifications and standards, notably MIL-STD-883, "Test Methods and Procedures for Microelectronics," and MIL-M-38510, "General Specifications for Microcircuits."

These military documents categorize microcircuits into three product assurance classes related to the reliability requirements of the application. Class S requirements are the most stringent because they cover critical applications. Class B requirements are intended for less critical applications and are the most widely used. The least stringent is Class C.

MIL-STD-883 contains test methods and procedures for various electrical, mechanical and environmental tests as well as requirements for screening, qualification and quality conformance inspection. Table 2, taken from Method 5004 of MIL-STD-883, lists the 100% screening tests required for these three devices. TRW LSI Products typically screens high reliability devices to the Class B requirements.

Following device screening, samples are removed from the $\operatorname{lot}(s)$ as part of our ongoing Quality Conformance Inspection (QCI) program. This testing is divided into four inspection groups: $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D.

Group A electrical inspection involves dynamic, static, functional and switching tests at maximum, minimum and ambient operating temperatures. Sample sizes and specified tests depend on the product assurance class.

Assurance of the absence of lot-to-lot fabrication related errors is covered by Group B inspection, which includes tests for marking permanency, internal visual and mechanical correctness, bond strength, and solderability.

For the remaining two inspection groups, Group C is oriented toward die integrity and Group D covers package integrity. Among the Group C tests are
steady state life, temperature cycling and constant acceleration. Group D includes lead integrity, hermeticity, and thermal and mechanical shock.

The combination of these 100% and sample tests assures that all TRW LSI Products are capable of meeting their specified requirements, and that reliability will meet or exceed customer requirements.

Screen	Class S Method	Requirement	Class B Method	Requirament	Class C Method	Requirament
1. Nondestructive bond pull	2023	100\%		-		-
2. Internal Visual	2010, condition A	100\%	2010, condition B	100\%	2010, condition B	100\%
3. Stabilization bake Ino end point measurement required)	1008, condition C min., 24 hrs. min.	100\%	1008, condition C min., 24 hrs. min.	100\%	1008, condition C min., 24 hrs. min	100\%
4. Temperature cycling	1010, condition C	100\%	1010, condition C	100\%	1010, condition C	100\%
5. Constant acceleration	2001, condition C Imin.) Y1 orientation only	100\%	2001, condition E Imin.I Y1 orientation only	100\%	2001, condition E (min.) Y1 orientation only	100\%
6. Visual inspection		100\%		100\%		100\%
7. Seal a) Fine b) Gross	1014	100\%	1014	100\%	1014	100\%
8. Particle impact noise detection \|PIND)	2020, condition A or B	100\%				
9. Interim (pre-burn-in) electrical parameters	Per applicable device specification	100\%	Per applicable device specification			
10. Burn-in test	1015-240 hrs. @ $125^{\circ} \mathrm{C}$ min.	100\%	1015-160 hrs. @ $125^{\circ} \mathrm{C}$ min.	100\%		
11. Interim (post-burn-in) electrical parameters	Per applicable device specification	100\%				
12. Reverse bias burn-in	1015, condition A or C 72 hrs. @ $150^{\circ} \mathrm{C}$ min.	100\%				
13. Interim (post-burn-in) electrical parameters	Per applicable device specification (Read and Record)	100\%	Per applicable device specification	100\%		
14. Seal 12 a) Fine b) Gross	1014	100\%				
15. Final electrical test a) Static tests 1) $25^{\circ} \mathrm{C}$ Isubgroup 1 , Table 1, 5005)	Per applicable device specification	100\%	Per applicable device specification	100\%	Per applicable device specification	100\%
2) Maximum 8 minimum rated operating temp. Isubgroups 2, 3, Table 1 50051		100\%		100\%		-
b) Dynamic tests and switching tests $25^{\circ} \mathrm{C}$ Isubgroups 4, 9, Table 1, 5005)		100\%		100%		-
c) Functional tests $25^{\circ} \mathrm{C}$ Isubgroup 7, Table 1, 5005)		100\%		100\%		100\%
16. Radiographic	2012 two views	100\%		-		-
17. Qualification or quality conformance inspection test sample selection		Sample 1	Sample	$\begin{aligned} & \text { Sample } \\ & 1 \end{aligned}$		1
18. External visual	2009	100\%		100\%		100\%

Table 2. 100\% Screening Tests (Method 5004)

[^9](20,

At TRW LSI Products, packaging is designed to meet the thermal, mechanical, and electrical needs of the circuit and the customer. In order to achieve this, all units must pass the MIL-M-38510 and MIL-STD-883 qualification test conditions for high reliability. TRW LSI Products offers a wide range of package designs to accommodate these requirements. The High Rel user has the option of 16-64 lead fully gold plated DIPs, flat packs and chip carriers.

Two types of chip carriers are included within this wide variety of packages: contact (also known as terminal or leadless) chip carriers, and leaded chip carriers. TRW chip carriers and their equivalent DIP configurations are indicated below:

Chip Carrier I/O	Equivalent DIP Package I/O
68 Contact or Leaded	48 Lead, 64 Lead Top Brazed DIP (also 64 Lead Flatpack)
44 Contact Chip Carrier	40 Lead DIP
28 Contact Chip Carrier	24 or 28 Lead DIP
20 Contact Chip Carrier	16 or 18 Lead DIP

Contact chip carriers conform to the JEDEC type C outline with 0.050 inch contact spacing located on plane 1 (heat dissipating side only). The body construction consists of multilayer ceramic with a metallized seal ring for gold solder lid seal. Contact chip carriers are used for mother board leaded conversions of ceramic/compliant PCB attachments by means of surface solder mounting techniques.

Leaded chip carriers are available in the 68 I/O configuration. The body is constructed identically to the 68 contact chip carrier however the contacts are located on plane 2 (side opposite the heat dissipating side). Gold plated 'Kovar'" leads, (0.018 inch wide x $0.006-0.010$ inch thick $x 0.400$ inch
long nominal) brazed to the contacts complete the package. This type of chip carrier is used for surface and through hole PCB attachments, and when external heat sinks are required.

There are three major advantages to using chip carriers over standard DIP packages. First and foremost is the economy of chip carrier size (see the chart below for approximate area differences in square inches).

	Chip Carrier Area 1	DIP Area 1	Ratio: CC to DIP
$\boldsymbol{/ O}$ Count			

Secondly, chip carriers offer a reasonable size package for present and future high pin count circuits. For example, a 68 Contact Chip Carrier is only .965 inches per side and occupies a 0.93 square inch area, which is approximately the equivalent of a 48 lead DIP (1.440 square inches). When considering the difficulties of handling and inserting a 48 lead DIP into a PCB, the impracticality of a 68 lead DIP (3.4 inches $\times 1.2$ inches, if available) is evident. The third advantage is that chip carriers optimize electrical and thermal characteristics. Shorter leads of approximately equal length reduce lead resistance, inductance and capacitance. The longest trace on a 64 lead DIP is almost eight times that of the longest trace on a 68 Contact Chip Carrier. In addition, the thermal impedance characteristics of the chip carrier are approximately equal to those of a DIP. The Leaded Chip Carrier also provides the external heat sink option, allowing the heat generated by the device to be dissipated through the PCB or to the surrounding environment.

68 LEADED CHIP CARRIER

Chip carriers can typically reduce board space requirements as much as three to one over dual-inline packages.

Cerdip packages provide similar mechanical, and identical electrical configurations as the dual-in-line packages without the full gold solder seal and lead finish, making them more economical. The body construction consists of two single layer ceramic pieces that "sandwich" an aluminized Kovar lead frame. The leads are matte tin finished for easy solderability.

Thermal considerations are an important aspect of package design. Much computer modeling of die/package relationships is required to ensure the integrity of the products over all temperature ranges. A list of thermal resistivity $(\Theta j c)$, which is material and geometry dependent, is listed for all products in Table 1. This list reflects the relationship of the die and the package only. $\Theta j a$, a relationship between die, package and outside environment, is dependent on the particular application. Contact the factory for specific $\Theta j a$ listings.

Productl Package	Maximum Calculated Θ jc
MPY008H.J5 MPYOO8HC2	$\begin{aligned} & 9.557^{\circ} \mathrm{C} / \mathrm{W} \\ & 7.183 \end{aligned}$
MPY08HUJ5	9.557
MPY012HJ1, C1	5.877
MPY012HF1	3.631
MPY016HJ0, J1, J3, C1	7.908
MPY016HF1	4.956
MPY016KJ1	6.753
MPY112KJ4	10.438
TDC100111002.38	22.869
TDC1004.J9	9.908
TDC1004C4	6.417
TDC1005.J9	12.544
TDC1006.J9	11.075
TDC1006C4	7.169
TDC1007S1, C1	3.671
TDC1008J4, C1	7.908
TDC Toog.t, C1	5.428
TDC1010J1, C1	3.382
TDC1010F1	1.991
TDC1011J7	15.297
TDC101187	19.996

Table 1 Continues on following page.

Product Package	Maximum Calculated Ojc	Product Package	Maximum Calculated Өjc
TDC1014	9.804	TDC1023J7	5.906
TDC1014C3	6.335	TDC1023C3	3.638
TDC1014	13.130	TDC1025C1, L1	7.814
TDC1016	13.985	TDC1027J7	8.411
TDC1016J5	13.985	TDC1027C3	5.342
TDC1016C2	10.781	TOC1027B7	11.411
TDC1016	18.139		
TDC1018J7	20.140	TDC1028J4	5.142
TDC1018C3	11.897	TDC1029 7	18.548
TDC1018B7	25.240	TDC1030J6	10.740
TDC1019C1, L1, J1, J0	3.404	TDC1030C3	6.952
TDC1021	23.884	TDC1030B6	14.289
TDCiO21C4	17.212	TDC1043J3	11.364
TDC1021	29.211	TDC1048J6	7.752
TDC1022J1, C1	5.178	TOC1048C3	5.008
		TDC104886	10.566

Table I

Jo Package
64 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.121(3.07)$	$.149(3.78)$	
\mathbf{b}	$.015(0.38)$	$.019(0.48)$	
$\mathbf{b}_{\mathbf{1}}$	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$3.200 \pm .030(81.28 \pm 0.76)$
\mathbf{E}			$.800 \pm .010(20.32 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$			$.900 \pm .010(22.86 \pm 0.25)$
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.160(4.06)$	
\mathbf{a}	$.040(1.02)$	$.050(1.27)$	
\mathbf{S}	$.030(0.76)$	$.070(1.78)$	
α	0°	155°	

Ref. 90×00181

20,

J4 Packag
48 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
A	$.126(3.20)$	$.166(4.22)$	
b	$.016(0.41)$	$.020(0.51)$	
b_{1}	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$2.400 \pm .024(60.96 \pm 0.61)$
E			$.595 \pm .010(15.11 \pm 0.25)$
E_{1}			$.600 \pm .010(15.24 \pm 0.25)$
\mathbf{B}			$.100 \pm .005(2.54 \pm 0.13)$
L	$.125(3.18)$	$.175(4.45)$	
\mathbf{a}	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.057(1.45)$	

Ref. 90×00181

J6 Package
28 Lead Hermetic Ceramic DIP
Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(0.51)$	
\mathbf{b}_{1}	$.045(1.14)$	$.055(1.40)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$1.400 \pm .014(35.56 \pm 0.36)$
\mathbf{E}			$.590 \pm .010(14.99 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$			$.600 \pm .010(15.24 \pm 0.25)$
\mathbf{B}			$.100 \pm .005(2.54 \pm 0.13) 0 . C$.
\mathbf{L}	$.125(3.18)$	$.175(4.45)$	
\mathbf{a}	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1.09)$	$.059(1.50)$	

Ref. 90×00181

J7 Package

Dimensions

24 Lead Hermetic Ceramic DIP
Inches（Millimeters）

Sym	Min	Max	Nom \pm Tol．
\mathbf{A}	$.126(3.20)$	$.166(4.22)$	
\mathbf{b}	$.016(0.41)$	$.020(00.51)$	
\mathbf{b}_{1}	$.035(0.89)$	$.045(1.14)$	
\mathbf{c}	$.009(0.23)$	$.012(0.30)$	
\mathbf{D}			$1.200 \pm .012(30.48 \pm 0.30)$
\mathbf{E}			$.590 \pm .010(14.99 \pm 0.25)$
$\mathbf{E}_{\mathbf{1}}$		$.600 \pm .010(15.25 \pm 0.25)$	
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.175(44.45)$	
$\mathbf{0}$	$.040(1.02)$	$.060(1.52)$	
\mathbf{S}	$.043(1 . .09)$	$.057(1.45)$	

Ref．90X00181

J8 Package
18 Lead Hermetic Ceramic DIP

Ref. 90X00181

J9 Package
16 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.110(2.79)$	$.150(3.81)$	
b	$.016(0.41)$	$.020(0.51)$	
b_{1}	$.049(1.24)$	$.059(1.50)$	
c	$.009(0.23)$	$.012(0.30)$	
D	$.792(20.12)$	$.808(20.52)$	
E			$.295 \pm .008(7.50 \pm .205)$
$\mathrm{E}_{\mathbf{1}}$			$.300 \pm .010(7.62 \pm 0.25)$
e			$.100 \pm .005(2.54 \pm 0.13)$
L	$.125(3.18)$	$.170(4.32)$	
$\mathbf{0}$	$.025(0.64)$	$.045(1.14)$	
\mathbf{S}	$.043(1.09)$	$.057(1.45)$	

Ref. 90×00181

B6 Package
28 Lead CERDIP

Dimensions

Inches (Millimeters)			
Min			
Sym	Max	Nom \pm Tol.	
\mathbf{A}		$.225(5.72)$	
b	$.014(0.36)$	$.023(0.58)$	
b_{1}	$.030(0.76)$	$.070(1.78)$	
c	$.008(0.30)$	$.015(0.38)$	
D			$1.465 \pm .025(37.21 \pm 0.64)$
E	$.510(12.95)$	$.590(14.99)$	
$\mathrm{E}_{\mathbf{1}}$			$.600 \pm .010(15.24 \pm 0.25)$
e			$.100 \pm .005(2.54 \pm 0.13)$
L	$.125(3.18)$	$.200(5.08)$	
a	$.015(0.38)$	$.075(1.99)$	
S		$.098(2.49)$	
α	0°	15°	

Ref. 90X00181

B7 Package

24 Lead CERDIP

Dimensions

Inches（Millimeters）			
Sym	Min	Max	Nom \pm Tol．
\mathbf{A}		$.225(5.72)$	
\mathbf{b}	$.014(0.36)$	$.023(0.58)$	
$\mathbf{b}_{\mathbf{1}}$	$.030(0.76)$	$.070(1.78)$	
\mathbf{c}	$.008(0.20)$	$.015(0.38)$	
$\mathbf{0}$			$1.267 \pm .023(32.18 \pm 0.58)$
\mathbf{E}	$.510(12.95)$	$.610(15.49)$	
\mathbf{E}_{1}			$.605 \pm .015(15.37 \pm 0.38)$
\mathbf{e}			$.100 \pm .005(2.54 \pm 0.13)$
\mathbf{L}	$.125(3.18)$	$.200(5.08)$	
\mathbf{a}	$.015(0.38)$	$.075(1.91)$	
\mathbf{S}		$.098(2.49)$	
α	0°	15°	

Ref． 90×00181

C1 Package
68 Contact Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.082(2.08)$	$.100(2.54)$	
B	$.020(0.51)$	$.030(0.76)$	
\mathbf{D}_{1}	$.070(1.78)$	$.080(2.03)$	
\mathbf{E}			$.9525 \pm .0125(24.19 \pm .3175)$ sq.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . \mathrm{C}$.
\mathbf{h}			$.040 \pm .005(1.02 \pm 0.13) 3$ PLCS
\mathbf{j}			$.020 \pm .005(0.51 \pm 0.13)$
\mathbf{L}	$.045(11.14)$	$.055(1.40)$	
$\mathbf{L}_{\mathbf{2}}$	$.080(2.03)$	$.090(2.29)$	

Ref. 90×00181

C2 Package

44 Contact Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
A	$.068(1.73)$	$.084(2.13)$	
B	$.020(0.51)$	$.030(0.76)$	
\mathbf{D}_{1}	$.070(1.78)$	$.080(2.03)$	
\mathbf{E}			$.652 \pm .010(16.56 \pm 0.25)$ sq.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . C$.
h			$.040 \pm .005(1.02 \pm 0.13)$ PLCs
\mathbf{j}			$.020 \pm .005(0.51 \pm 0.13)$ PLC
\mathbf{L}	$.045(1.14)$	$.055(1.40)$	
$\mathbf{L}_{\mathbf{2}}$	$.080(2.03)$	$.090(2.29)$	

Ref. 90×00181

LSI Products Division

C3 Package
28 Contact Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.064(1.63)$	$.078(1.98)$	
\mathbf{B}	$.020(0.51)$	$.030(0.76)$	
$\mathbf{D}_{\mathbf{1}}$	$.070(1.78)$	$.080(2.03)$	
\mathbf{E}			$.450 \pm .008(11.43 \pm 0.20) \mathrm{sq}$.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . C$.
\mathbf{h}			$.040 \pm .005(1.02 \pm 0.13) \times 45^{\circ}, 3$ PLCS
\mathbf{j}			$.020 \pm .005(0.51 \pm 0.13) \times 45^{\circ}$
\mathbf{L}	$.045(1.14)$	$.055(1.40)$	
$\mathbf{L}_{\mathbf{2}}$	$.080(2.03)$	$.090(2.29)$	
Ref. 90×00181			

L1 Package

68 Leaded Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
\mathbf{A}	$.089(2.26)$	$.100(2.54)$	
b	$.016(0.41)$	$.020(0.51)$	
c	$.009(0.23)$	$.012(0.30)$	
E			$.9525 \pm .0125(24.19 \pm .3175)$ sq.
\mathbf{e}			$.050 \pm .005(1.27 \pm 0.13) 0 . C$.
L	$.350(8.89)$	$.400(10.16)$	

Ref. 90×00181

F1 Package
64 Leaded Hermetic Ceramic Flatpack

Dimensions

Inches (Millimeters)			
Sym	Min	Max	Nom \pm Tol.
A	$.064(1.63)$	$.079(2.01)$	
b	$.016(0.41)$	$.020(0.51)$	
c	$.007(0.18)$	$.010(0.25)$	
E			$.900 \pm .009(22.86 \pm 0.23)$
E $_{\mathbf{1}}$			$.800 \pm .008(20.32 \pm 0.20)$
e			$.050 \pm .005(1.27 \pm 0.13)$
L	$.350(8.89)$	$.400(10.16)$	

Ref. 90×00181

ACC Accumulate (Control)

An active-HIGH control signal which causes the contents of the product register to be added to (or subtracted from) the output of the multiplier in a multiplier-accumulator.

AGND Analog Ground

Ground reference point for analog power supply and analog circuitry.

BW Bandwidth

A large-signal parameter which represents the upper limit of the frequency band that can be accurately digitized by an A/D converter. The lower limit of this band is DC. The conditions that apply to the BW specification are:

1. Full-scale sinewave applied to the analog input.
2. A / D converter operating at maximum conversion rate (F_{S}).
3. Worst-case power supply voltages applied to A/D converter.
4. Operation over full temperature range.

BWR Reference Bandwidth

Refers to the small signal frequency response of the reference input. The converter will operate ratiometrically within this range. The conditions that apply to the BWR specification are:

1. Small-signal (-10 dB) sinusoidal variation superimposed onto nominal DC reference value.
2. Maximum reference input frequency which is attenuated less than 3 dB at the output (relative to DC response) is the reference bandwidth. The lower limit is DC.

C Digital Input Capacitance

Parasitic capacitance between a digital input and digital ground.

C_{IN} Input Capacitance

Parasitic equivalent capacitance between analog inputs of an A/D converter and analog ground. One component of the input capacitance varies with input voltage, while total input capacitance includes stray capacitance due to packaging and other effects.

C_{0} Output Capacitance

Parasitic capacitance between the output terminal of a D/A converter and analog or digital ground.

CONV Convert (Input)

An input signal whose rising edge initiates sampling in a flash analog-todigital converter. The input signal is quantized after a delay of ${ }^{\text {tSTO}}$.

$C_{\text {REF }}$ Input Capacitance, Reference

Parasitic capacitance between the reference input terminal and analog ground.

$\mathrm{D}_{\mathrm{GND}}$ Digital Ground

Ground reference point for digital power supply and digital circuitry.

DG Differential Gain

A measure of the variation in amplitude of the color subcarrier component (chrominance) of a video signal when superimposed on a large low-frequency (luminance) signal. The units of differential gain are expressed in percentage of amplitude variation.

DP Differential Phase

A measure of the variation in phase angle of the color subcarrier component (hue) of a video signal when superimposed on a large low-frequency (luminance) signal. The units of differential phase are expressed in degrees of phase variation.

$\mathrm{EAP}_{\text {AP }}$ Aperture Error

An equivalent aperture time corresponding to A/D conversion degradation, encompassing all aperture effects, including aperture jitter and aperture time.

E_{G} Absolute Gain Error

The variation in the slope (gain) of the transfer function of a converter with respect to an established ideal transfer function. This error may be eliminated by adjusting the reference voltage or current applied to the device.

ELD Differential Linearity Error

The difference between the actual differential linearity and the ideal differential linearity of a device. Differential linearity is a measure of the variation of the separation between the midpoints of adjacent conversion levels.

$\mathrm{E}_{\text {LI }}$ Integral Linearity Error (Independent)

The maximum difference between actual transfer characteristic of a converter and the straight line that best fits the data. E_{LI} is usually expressed as a percentage of full-scale or in an equivalent number of Least Significant Bits.

ElI Integral Linearity Error (Terminal-Based)

The maximum difference between the actual transfer characteristics of a converter and the straight line that passes through the end-points (terminals) of that data.

EOB Offset Error, Bottom

The voltage difference between the voltage applied to the terminal at the bottom of the reference resistor chain $\left(\mathrm{R}_{\mathrm{B}}\right)$ and a point that is $1 / 2 \mathrm{LSB}$ more negative than the threshold voltage of the last (bottom) comparator in the chain. E_{OB} is due to parasitic resistances in the path between the integrated circuit and the terminal.

EOT Offset Error, Top $^{\text {O }}$

The voltage difference between the voltage applied to the terminal at the top of the reference resistor chain (R_{T}) and a point that is $1 / 2 \mathrm{LSB}$ more positive than the threshold voltage of the first (top) comparator in the chain. E_{OT} is due to parasitic resistances in the path between the integrated circuit and the terminal.

F $_{\mathbf{S}}$ Maximum Conversion Rate

The maximum frequency that can be applied to a clock or convert input while insuring that the conversion accuracy is not degraded. This parameter is expressed as a minimum to indicate that the device will operate correctly at a conversion rate of "at least'" that specified rate.

$\mathrm{FT}_{\mathrm{C}}, \mathrm{FT}_{\mathrm{D}}, \mathrm{FT}_{\mathrm{R}}$ Feedthrough -clock, -data, -reference

A measure of unwanted leakage from an input port of a device to another port (e.g., the analog output of a D/A converter), which is expressed in decibels relative to the full-scale value of the output. Clock and data feedthrough refer to spurious output noise arising from logic transitions at the clock and data inputs. Reference feedthrough relates to output variation as a function of reference variation in a D/A converter when data inputs correspond to a zero output.

G_{C} Peak Glitch Charge

The maximum product of the glitch current and the duration of the glitch; usually given in units of picoCoulombs (pC). Since glitches tend to be symmetric, the average glitch charge is usually much less than the peak glitch charge.

G_{E} Peak Glitch "Energy" (Area)

The maximum product of the glitch voltage and the duration of the glitch; usually given in units of picoVolt-seconds (pV-sec). Since glitches tend to be symmetric, the average glitch area is usually much less than the peak glitch area.

G| Peak Glitch Current

The transient current deviation from the ideal output current during an input code transition.

Gy Peak Glitch Voltage

The transient voltage deviation from the ideal output voltage during an input code transition.

$I_{C B}$ Input Constant Bias Current

The constant current drawn into the input of a flash A/D converter which is the sum of input currents of comparators which are active. This current varies with the input signal level, as comparator input transistors are cut-off or become active. The highest I_{CB} occurs when the input voltage to the converter is higher than all the comparator threshold voltages.

${ }^{\text {ICC }}$ Positive Supply Current

Current flowing into the positive power supply terminals from the positive power supply.
$I_{\text {EE }}$ Negative Supply Current
Current flowing out of the negative power supply terminals into the negative power supply.

II Input Current, Maximum Input Voltage Current flowing into a digital input under worst-case power supply and input voltage conditions.

IIH $^{\text {Input Current, Logic High }}$

Current flowing into a digital input when a logic HIGH is applied to that input.

IIL Input Current, Logic Low

Current flowing into a digital input when a logic LOW is applied to that input.

IDF Output Offset Current

The residual output current of a D/A converter that flows when all internal current sinks are switched off.

I_{OH} Output Current, Logic HIGH

The current that flows out of a digital output into an external load when that output is in a logic HIGH state.

IOL Output Current, Logic LOW

The current that flows between an external load and a digital output when that output is in a logic LOW state.

ION Maximum Current, - Output

The maximum current that flows into the "OUT-" output of a D/A converter.
$I_{0 P}$ Maximum Current, + Output
The maximum current that flows into the "OUT+" output of a D/A converter.

IoS Short Circuit Output Current

The current that flows from a digital output to ground when that output is connected to digital ground and is forced to a logic HIGH state.

IREF Reference Current

Current flowing into or out of the reference input terminals of an A / D or D/A converter.

ISB Input Clock-Synchronous Bias Current

The variation of input bias current which occurs when the comparators are strobed by the convert clock. The ISB component of the input bias current is normally much smaller than the Input Constant Bias Current, ICB

MSPS Megasamples Per Second

The abbreviation for the conversion rate (clock or convert frequency) at which an A / D or D / A converter is operating.

NPR Noise Power Ratio

The Decibel ratio of the noise level in a measuring channel with the baseband fully noise loaded, to the level in that channel with all of the baseband noise loaded except the measuring channel.

PREL Preload (Control)

A control signal which determines (in conjunction with the three-state control pins) which of three signals is to be loaded into the output register at the rising edge of the product clock: the result of the calculations which were just performed, the present contents of the output register, or a value applied to the output port by external circuitry.

PSS Power Supply Sensitivity

A measure of DC variation of an output under consideration (e.g., the analog output of a D/A converter) as the power supply voltage is varied around the nominal value. PSS is specified in milliamps or millivolts of output change per volt of supply change.

PSRR Power Supply Rejection Ratio

A measure of high-frequency noise rejection from the power supply inputs of a device to the output under consideration (e.g., the analog output of a D/A converter). Expressed in decibels relative to full-scale output. Generally, PSRR decreases with increasing frequency, and for this reason is often specified at more than one frequency.

0 Code Size

The nominal amount of voltage change at the analog input of the converter required to change the digital output data by one Least Significant Bit. Q is calculated from:
$0=\frac{\text { Full-scale input voltage range }}{\text { Total number of possible codes }-1}-\frac{A}{\left|2^{N}\right|-1}$ where A is typically $0.5,1.0$, or 2.0 Volts depending on the specific A / D converter and N is the number of bits of resolution of the specific converter.

RES Resolution

The smallest level separation (input level for A/Ds and output level for D / As) that is unambiguously distinguishable over the full-scale range of a converter. It is expressed as a percentage of full-scale or as an equivalent number of bits; usually the number of data inputs of a D/A or data outputs of an A/D converter.

RIN Equivalent Input Resistance

The equivalent resistance between the analog input of an A/D converter and analog ground.

$\mathrm{R}_{\mathbf{0}}$ Equivalent Output Resistance

The effective equivalent resistance between an analog output terminal of a D/A converter and analog ground.

R REF Total Reference Resistance $^{\text {R }}$

Total resistance between the top (R_{T}) and bottom (R_{B}) of the reference resistor chain.

RS Right Shift (Control)

A control signal which changes the output format to permit a valid result for the product of two most negative numbers.

SNR Signal-to-Noise Ratio

Signal-to-noise ratio is the ratio of the output signal (peak or RMS) to the RMS output noise level. Since the generation of spurious output noise in a converter varies with conversion rate and input frequency, SNR figures under various conditions are often specified. SNR is expressed in dB relative to the full-scale value.

SUB Subtract (Control)

A control signal which determines whether the present contents of the output register is added to
(SUB $=$ LOW) or subtracted from (SUM $=\mathrm{HIGH}$) the product at the output.

T_{A} Ambient Temperature

The temperature of the air in the immediate vicinity of the package containing an integrated circuit.

TC Two's Complement (General Definition)

Two's complement is a binary numbering system in which the Most Significant Bit (MSB) carries the sign information by virtue of a negative place value. In two's complement, an MSB of ZERO signifies a positive number, a ONE denotes a negative number, and the negative number order is reversed from straight binary. That is, the number which consists of all ONEs is the least negative number, and the number which consists of a ONE and all ZEROs is the most negative number.

TC Two's Complement (Control)

An active HIGH signal which designates one or both inputs as two's complement numbers. If TC is LOW, unsigned magnitude processing will be used. Note that some parts allow independent designation of each input as two's complement or unsigned magnitude, and other parts do not.

${ }^{T}$ C Case Temperature

The temperature of the package containing an integrated circuit.

TC $_{G}$ Gain Error Tempco

The factor which linearly approximates the variation with temperature of Absolute Gain Error, E_{G}.

TC $\mathbf{O}_{\mathbf{0}}$ Offset Error Tempco

The factor which linearly approximates the variation with temperature of Offset Error Top (EOT) and Offset Error Bottom (E_{OB}).

${ }^{t}$ D Output Delay Time

The period between the rising edge of the output register clock and the time when output data is guaranteed to be stable and valid.

${ }^{t} \mathrm{H}$ Hold Time

The time period after the operative edge of a CLK signal during which input data must be constant in order to be correctly registered.

${ }^{\text {tho }}$ Output Hold Time

The period between the rising edge of the output register clock and the time when output data begins to change to its next value.

tPW Pulse Width

The time period between consecutive edges of a logic pulse.

tPWH Pulse Width, HIGH

The time period between the rising edge of a logic pulse and the falling edge of that pulse.
tpWL Pulse Width, LOW
The time period between the falling edge of a logic pulse and the rising edge of the next pulse.

TRIL Three-State Least Significant Product (Control)

A control which enables the output state for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH.

TRIM Three-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH.

ts Setup Time

The time period prior to the operative edge of the clock signal during which input data must be stable in order to be correctly registered.

TSL Threa-State Least Significant Product (Control)

A control which enables the output stage for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH. A HIGH on this control
also forces the most significant product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

TSM Three-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH. A HIGH on this control also forces the most significant product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

tSTO Sampling Time Offset

Sampling Time Offset as it relates to flash A/D converters is a measure of the time delay from convert clock to the actual sampling time. $\mathrm{t}_{\mathrm{STO}}$ is determined by logic propagation delays and time taken for comparator activation and latch-up.

TSX Three-State Extended Product (Control)

A control which enables the output stage for the extended product when in the LOW state, and places the output stage for the extended product in the high-impedance state when HIGH. A HIGH on this control also forces the extended product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

tTR Transient Response Time

Transient Response Time is the time taken by the A/D's comparators to recover from full-scale input transitions and convert without increased code errors.

VAGND Analog Ground Voltage

Analog ground voltage is a measure of the voltage at an analog ground terminal, usually measured with respect to digital ground.

VCC Positive Supply Voltage

The positive power supply voltage required for operation of a device.

$V_{E E}$ Negative Supply Voltage

The negative power supply voltage required for operation of a device.

VEEA Analag Supply Voltage

The negative power supply voltage associated with the analog portion of a device.
$V_{\text {EED }}$ Digital Supply Voltage
The negative power supply voltage associated with the digital portion of a device.

VICM Input Voltage, Common Mode Range
The operational limit over which a differential logic input voltage may be varied.
$V_{\text {IDF }}$ Input Voltage, Differential
The voltage difference between a logic input and its complementary input.
$\mathbf{V}_{\mathbf{I H}}$ Input Voltage, Logic HIGH
The voltage required on a digital input in order for that input to be forced to a valid logic HIGH state.
$V_{\text {IL }}$ Input Voltage, Logic LOW
The voltage required on a digital input in order for that input to be forced to a valid logic LOW state.
$V_{\text {OCN }}$ Voltage Compliance, -Output
A measure of the range over which the output voltage of a current generator may be varied. $\mathrm{V}_{\mathrm{OCN}}$ is the voltage compliance of the -output of a D/A converter.
$V_{0 C P}$ Voltage Compliance, + Output
$\mathrm{V}_{\text {OCP }}$ is the voltage compliance of the +output of a D/A converter. See $\mathrm{V}_{\mathrm{OCN}}$.

$\mathbf{V}_{\mathbf{O H}}$ Output Voltage, Logic HIGH

The voltage present on a digital output when it is in the logic HIGH state and is driving a specified load.

$V_{\text {OL }}$ Output Voltage, Logic LOW

The voltage present on a digital output when it is in the logic LOW state and is driving a specified load.

$V_{0 Z S}$ Output Voltage, Zero Scale

The residual output voltage of a D/A converter that appears at its output when all internal current sinks are switched off.

$\mathbf{V}_{\text {RB }}$ Reference Input Voltage (Bottom)

The voltage applied to the terminal corresponding to the bottom of the reference resistor chain, R_{B} of an A / D converter.

$V_{\text {RT }}$ Reference Input Voltage (Top)

 The voltage applied to the terminal corresponding to the top of the reference resistor chain, R_{T} of an A / D converter.

For Special Assistance		Ohio, R.O. Whitesell	
Call The TRW Sales		Cincinnati	(513) $521-2290$
Office Nearest You:		Cleveland	(216) 447-9020
		Columbus	(614) 888 -9396
North American Sales Offices		Dayton	1513) 2988.9546
		Oregon, TRW ECG	
Alabama, TRW ECG		Portland	15031 620.5032
Huntsville	1205153377600	E. Pennsylvania, TRW ECG	
Arizona, TRW ECG		Bala Cynwyd	1215) 667-3400
Scotisdale	16021994.0441	W. Pennsylvania, R.O. Whitasell	
S. California, isds		Pittsburgh	(412) 963.6161
Los Angeles	1213147800183	Puerto Rico, Electronic Sales Assoc.	
Woodland Hills	121318883.7130	Rio Piedras	(809) 769.2911
Santa Ana	1714) 973-2162	Tennessee, R.0. Whitesell	
San Diego	(619) 571-1544	Greeneville	(615) 639.6154
N. California, Straube Assoc.	(415) 969.6060	Texas Technology Sales Co.	
Mountain Vew	1451 9696060	Austin	(512) $345-2331$
Colorado, Straube Assoc. Westminster	13031426.0890	Texas, TRW ECG	
	(Jo3) 42	Dallas	(214) 24888000
Connecticut, TRW ECG		Houston	17131 772.5541
Rowayton	(203) 85334466	El Paso	(915) 594.8259
Florida, TRW ECG		Utah, Straube Assoc.	
Ft. Lauderdale	13051 772-3000	Salt Lake City	18011 263.2640
Orlando	1305) 857.3650	Virginia, TRW ECG	
Georgia, TRW ECG		Richmond	180412888.8334
Norcross	1404) 447.6154	Washington, TRW ECG	
Idaho, TRW ECG		Seatte	(206) 641 -9996
Boise		Wisconsin, TRW ECG	
$11 \mathrm{llinois}$,		Brookfield	(414) 784.7773
Chicago	13121693.7730	Canada, Renmark Electronic Mkt.	
Indiana, R.O. Whitesell		Caretion Place	16131 257.1490
Ft. Wayne	12191 $432-5591$	Toronto	(416) 49445445
Indianapolis	(317) 359.9283		(10)
Kokomo	(1317) 457.9127	International Sales Offices	
lowa, C.H. Horn			
Cedar Rapids	1319) 393.8703	Australia, S.T.C. Cannon	
Kansas, Midtec Assoc.		Moorabbin, Vic.	555-9566
Desoto	(913) 441-6565	Austria, Transistor Vertriebs GmbH	
Kentucky, R.O. Whitesell		Wien	222-829401
Louisville	(502) 426.7696	Belgium, REA Belgium	
Maryland, TRW		Bruxelles	(102) 5117089
Baltimore	(301) 964.9110	Brazil, TRW Mialbras, S.A.	
Massachusetts, TRW ECG		Sao Paulo	2409211
Framingham	16171 620-0625	China, Tektron Electronics	
Massachusetts, Byme Assoc.		Kowloon	3-856199
Maynard	16171897.3131	Denmark, ASS Nordisk Elektronik	
Michigan, R.O. Whitesell		Herlev	(02) 842000
Southfield	13131 559-5454	Finland, OY Fintronic AB	
St. Joseph	16161983.7337	Helsinki	(90) 692-6022
Grand Rapids	(1616) 942 -5420	France, Radio Equipements-Antares	
Minnesota, TRW ECG		Paris	(01) 7581111
Minneapolis	16121 854.6616	Germany, TRW EBV GmbH	
Missouri, J.G. Macke Co.		Muenchen	(1089) 7103.0
St. Louis	(314) 432-2830	Jermy GmbH	
New York, TRW ECG		Bad Camberg	(06434) 23.0
Rochester	(716) $425-3775$	Hong Kong, Tektron Electronics	
Metro	12031 853-4466	Kowloon	3-856199
North Carolina, TRW ECG Greensboro	(919) 852.4676	India, Motwane Private Ltd. Bombay	273845
		Italy, Exhibo Italiana S.R.L.	
		Monza	1039) 360021

Japan, Nihon Teksel Co. Ltd.		521 Weddel Crive	(4081 745-6600
Tokyo	1031461.5121	Sunnyvale, CA 94086	
Japan, TRW Overseas Inc.		Hall-Mark Electronics	
Tokyo	103) 434.0881	3878 Ruffin Road, Unit 10A	(619) $2688 \cdot 1201$
Korea, Dong Young Trading Co.		San Diego, CA 92123	
Seoul	794.4812	500 Mercury Drive	$14081773-9900$
Netherlands, Koning En Hartman N.V.		Sunnvvale, CA 94086	
Den Haag	(70) 210101	Hamiton/Avnet	
New Zealand, AWA		10950 W. Washington Blvd.	(213) $5588-2824$
Porirua	644375069	Culver City, CA 90230	
Norway, Nordisk Elektronik Norge A/S Hvalstad		4545 Viewridge Avenue	(619) 571.7523
	1021 786210	San Diego, CA 92123	
Seamax Engineering Private Ltd. Singapore		1175 Bordeaux Drive Sunnvvale, CA 94086	14081 743-3355
	65-747-6155		
South Africa, Electrolink Pty Capetown	021.5350	3170 Pullman Street Costa Mesa, CA 92626	(714) 641-1410
Johannesturg	011.6181027	4103 Northgate Blvd.	(916) 920.5531
Spain, Unitronics S.A.		Sacramento, CA 95834	
Madrid	11) 2425204	20501 Plummer Street	1213) $700-2600$
Sweden, Nordisk Elektronik AB		Chatsworth, CA 91311	
Stockholm	\{081 635040	Colorado	
Switzerland, Baerlocher AG		Arrow Electronics	
Zurich	101) 429900	1390 S. Potomac Street	(303) 696-1111
Taiwan, Sea Union Eng.		Aurora, C0 80012	
Taipei	751-2062	Hall-Mark Electronics	
United Kingdom, MCP Electronics Ltd. Middlesex		6950 S. Tucson Way	13031 694-1662
	10119025941	Englewood CO 80112	
Hi.Tek Distribution, Ltd.		Hamilton/Avnet	
Cambridge	10954) 81996	8765 E. Orchard Road Suite 708	1303) $740 \cdot 1018$
		Englewood, CO 80111	
		Connecticut	
TRW LSI Products are available off the shelf from the following distributors:		Arrow Electronics	
		12 Beaumont Road Wallingford, CT 06492	(2031 26557741
Alabama		Hamilton/Avnet	
Arraw Electronics		Commerce Industrial Park	(2031 797.2800
3611 Memorial Pkway South	(205) $882 \cdot 2730$	Commerce Drive	
Huntsville, AL 35801		Danbury, CT 06810	
Hall-Mark Electronics			
4900 Bradford Drive	12051 837-8700		
Huntsville, AL 35807		Arrow Electronics 1001 N. W. 62nd Stree	13051776.7790
Hamilton/Avnet		Suite 108	(305) $770 \cdot 7 / 9$
4692 Commercial Drive Huntsville, AL 35805	12051837.7210	Ft. Lauderdale, FL 33309	
		50 Woodlake Drive West	(305) 725.1480
Arizona		Building B	
Arrow Electronics		Palm Bay, FL 32905	
Tempe, AZ 85281	(1602) 968-4800	Hall-Mark Electronics	
		1671 West NcNabb Road	(305) 971-9280
Hall-Mark Electronics		Ft. Lauderdale, FL 33309	
4040 E. RaymondPhoenix, AZ 85040	(602) 243-6601	7648 Southland Blivd.	13011 855.4020
		Suite 100	
Hamiltan/Avnet		Orlando, Fl 32809	
505 S. Madison Drive Tempe, AZ 85281	(602) 231-5142	15301 Roosevelt Blvd. \#303	18131 530-4543
		Clearwater, FL 33520	
California		Hamilton/Avnet	
Arrow Electronics		6800 NW 15th Way	(305) 944-2060
19748 Dearborn Street Chatsworth, CA 91311	(213) 701.7500	Fort Lauderdale, FL 33309	
		3197 Tech Drive North	(813) 576.3930
2961 Dow Avenue	17141838-5422	St. Petersburg, FL 33702	
		6947 University Blvd.	(305) 628.3888
9511 Ridgehaven Court San Diego, CA 92123	(619) 565.4800	Winter Park, FL 37792	

Georgia		3510 Roger Chaffee Mem. BI.	(616) 243.0912
Arrow Electronics		Southeast	
2979 Pacific Drive	140414498252	Grand Rapids, M1 49508	
Norcross, GA 10071		Hamilton/Avmet	
Hall-Mark Electronics		32487 Schoolcraft Road	13131522-4700
6410 Atlantic Blvd	14041 447-8000	Livonia, MI 48150	
Suite 115		Minnesota	
Norcross, GA 30071		Arrow Electronics	
Hamilton/Avnet		5230 73rd Street	(612) $830-1800$
5825D PeachTree Corners E.	(1404) 4477.7500	Edina, MN 55435	
Norcross, GA 30092		Hall-Mark Electronics	
11 linois		7838 12th Avenue South	(612) $854 \cdot 3223$
Arrow Electronics		Bloomington, MN 55420	
2000 Algonquin Road	(312) 397-3440	Hamilton/Avnet	
Schaumburg, IL 60195		10300 Bren Road East	(612) 941-3801
Hall-Mark Electronics		Minneapolis MN 55343	
1177 Industrial Drive	(312) $860-3800$	Missouri	
Bensenville, IL 60106		Arrow Electronics	
Hamilton/Avnet		2380 Schuetz Road	(314) 567.6888
1130 Thorndale Avenue	(312) 860.7780	St. Louis, Missouri 63146	
Bensenville, IL 60106		Hall-Mark Electronics	
Indiana		2662 Metro Blvd.	(314) $291-5350$
Arrow Electronics		Maryland His., MO 63043	
2718 Rand Road	13171 243-9353	Hamilton/Avnet	
Indianapolis, IN 46241		13743 Shoreline Court East	(314) $344 \cdot 1200$
Hamilton/Avnet		Earth City, M0 63045	
485 North Grandle Drive	(317) 844-9333	New Hampshire	
Camel, IN 46032		Arrow Electronics	
lowa		1 Perimeter Road	(603) 668-6968
Arrow Electronics		Manchester, NH 03103	
375 Collins Road East	(3191 395.7230	New Jersey	
Cedar Rapids, lowa 52402		Arrow Electronics	
Kansas		6000 Lincoln Drive East	(609) 5968.8000
Hall-Mark Electronics		Marton, NJ 08053	
10815 Lakeview Drive	19131291.5350	2 Industrial Road	(201) $575-5300$
Lenexa, KS 66219		Fairfield, NJ 07006	
Hamilton/Avmet		Hall-Mark Electronics	
9219 Quivira Road	(913) $541-7922$	107 Fairfield Road	(201) 575.4415
Overland Park, KS 66215		Fairfield, NJ 07006	
Maryland		2091 Springdale Road	(609) 424.7300
Arrow Electronics		Cherry Hill, NJ 08003	
4801 Bendson Avenue	(3011) $247-5200$	Hamilton/Avnet	
Batimore, MD 31227		1 Keystone Avenue	(609) 4240100
Hall-Mark Electronics		Bldg. \#36	
10240 Old Columbia Road	1301) 988 -9800	Cherry Hill, NJ 08003	
Columbia, MD 21046		19 Industrial Road	12011575.3390
Hamilton/Avnet		Fairfield, NJ 07006	
6812 Oak Hall Lane	(301) 995-3526	New Mexico	
Columbia, MD 21045		Arrow Electronics	
Massachusetts		2460 Alamo Ave. S.E.	(505) 243-4566
Arrow Electronics		Albuquerque, NM 87106	
Arrow Drive	(617) 933-8130	Hamilton/Avnet	
Woburn, MA 01801		2524 Baylor SE	(505) $765-1500$
Hall-Mark Electronics		Albuquerque, NM 87106	
8H Henshaw Street	(617) 935-9777	New York	
Woburn, MA 01801		Arrow Electronics	
Hamilton/Avnet		20 Oser Avenue	(516) 231-1000
50 Tower Office Park	(617) 27377500	Hauppauge, NY 11788	
Woburn, MA 01801		3000 S. Winton Rcad	(716) 275-0300
Michigan		Rochester, NY 14623	
Arrow Electronics		7705 Maltlage Drive	(315) $652 \cdot 1000$
3810 Varsity Drive Ann Arbor, MI 48104	(3131971.8220	Liverpool, NY 13088	

Hall-Mark Electronics		10899 Kinghurst Drive	$17131530-4700$
Building \#4, Unit 1A2	(516) 737.0600	Suite 100	
One Conac Loop		Houston, TX 77099	
Ronkonkoma, NY 11779		Hall-Mark Electronics	
Hamiton/Avmet		11333 Pagemill Road	(214) $341 \cdot 1147$
16 Corporate Circle	13151 437-2641	Dallas, TX 75243	
East Syracuse, NY 13057		12211 Technology Blvo.	(512) 988 -9800
933 Motor Parkway	(516) 231.9800	Austin, TX 78759	
Hauppauge, NY 11788		8000 Westglen	(713) 781.6100
North Carolina		Houston, TX 77063	
Arrow Electronics		Hamiton/Avnet	
5240 Greens Dairy Road	19191876.3132	8750 Westpark Drive	17131 780-1771
Raleigh, NC 27604		Houston, TX 77063	
938 Burke Street	1919) $725-8711$	2111 West Walnut Hill Lane	(214) 659.4100
Winston-Salem, NC 27101		Dallas, TX 75240	
Hall-Mark Electronics		2401 Rutland Drive	\|5121 837-8911
5237 North Boulevard	19191872.0712	Austin, TX 78758	
Raleigh, NC 27604		Utah	
Hamilton/Avnet		Arrow Electronics	
3501 Spring Forest Road	1919) $878-0810$	4980 Amelia Earhart Drive	18011539.1135
Raleigh, NC 27604		Salt Lake City, UT 84116	
Ohio		Hamilton/Avnet	
Arrow Electronics		1585 West 2100 South	$18011972 \cdot 2800$
6238 Cochran Road	(216) 248.3990	Salt Lake City, UT 84119	
Solon, OH 44139		Virginia	
7620 Mcewen Road	(5131 435-5563	Arrow Electronics	
Centerville, OH 45459		8002 Discovery Drive	$18041282 \cdot 0413$
Hall-Mark Electronics		Bichmond, VA 23288	
4460 Lake Forest Drive	(513) 563.5980	Washington	
Suite 202		Arrow Electronics	
Cincinnati, OH 45242		14320 NE 21st Street	1206) 642 -4800
5821 Harper Road	(216) 349-4632	Bellevue, WA 98007	
Solon, OH 46139		Hamilton/Avnet	
6130 Sunbury Road, Suite B Westerville, OH 43081	(614) 981 -4555	14212 NE 21st Street Bellevue, WA 98007	12061 643-3950
Hamilton/Avnet			
4588 Emery Industrial Pkwy	12181 $831-3500$	Arrow Electronics	
Cleveland, OH 44128		Meridian Building	$16081273-4977$
954 Senate Drive	(1513) $433-0610$	2984 Triverton Pike	
Dayton, OH 45459		Madison, WI 53711	
Oklahoma		430 W. Rawson Avenue	(414) 273-4977
Arrow Electronics		Oak Creek, WI 53154	
4719 South Memorial Drive	(1918) $665 \cdot 7700$	Hal-Mark Electronics	
Tulsa, OK 74135		9667 S. 20th Street	(414) $761 \cdot 3000$
Halt-Mark Electronics		Oak Creek, WI 53154	
5450 S. 103 E. Avenue	1918) $665 \cdot 3200$	Hamilton/Avnet	
Tulsa, OK 74145		2975 Noorland Road	(414) 784.4510
Oregon		New Berlin, WI 53151	
Hamilton/Avnet		Canada	
6024 SW Jean Road	(503) $635 \cdot 8157$	Hamilton/Avnet	
Bldg. C, Suite 10		6845 Rexwood Road, Units 3-5	14161 677.7432
Lake Oswego, OR 97034		Mississaugua, Ontario	
Pennsylvania		Canada, L4V 1R2	
Arrow Electronics		210 Colonnade Road	(613) 22261700
650 Seco Road	(412) 856.7000	Nepean, Ontario	
Monroeville, PA 15146		Canada, K2E 7L5	
		2670 Sabourin Street	(514) 331-6443
Arrow Electronics		St. Laurent, Montreal	
10125 Metropolitan Drive	(512) $835 \cdot 4180$	Quebec, Can. H4S 1M2	
Austin, TX 78758			
13715 Gamma Road	(214) $386 \cdot 7500$		
Dallas, TX 75234			

2.

Application Notes And Reprints

TP-1 "Multiplier-Accumulator Application

 Notes" by L. Schirm IV.Covers the use of multiplieraccumulators including an explanation of the clock, input and output controls. Other discussions include: larger word accumulations, multiplication plus a constant, operation with microprocessors, digital filters and complex multiplication.

TP-2 "Monolithic Bipolar Circuits for Video Speed Data Conversion" by W. Bucklen. Describes the "flash" A/D converter, TDC1007J, and the TDC1016J, D/A converter. Also included are approaches for extending the performance of the TDC1007J.

TP-4 "Digital Signal Processing for Radar

 Systems" by W. Finn. Describes how VLSI multipliers and multiplier-accumulators can be used in a radar signal processor to achieve data rate reduction, by means of predictive mechanization; pulse compression, utilizing an FIR matched filter; maximum computational capabilities, via pipelining; and high-speed convolution, using 2-point DFTs and a complete FFT processor.
TP. 5 "An LSI Approach to Digital Signal Processing Enhances Telemetry Systems" by

 W. Finn.All aspects of Telemetry have one thing in common: an increasing need for high-speed digital signal processing. The impact of large scale integrated (LSI) circuitry on telemetry systems is a topic of increasing importance. Dependency of real-time digital signal processors on LSI circuitry is largely due to the advantages they afford: smaller size, faster speed, lower power consumption, more reliability and less cost. These advantages are over and above those which can be achieved by SSI, MIS, or even analog circuitry.

TP- 6 "introduction to the Z-Transform and its Derivation" by R. Karwoski.

A tutorial discussion of LaPlace and Z-transforms and their use in sampled data systems. Application of the Z-transform to filter synthesis is also treated.

TP-7A "Hardware Development for a General Purpose Digital Filter Computing Machine" by R. Karwoski.

This paper describes the hardware for a flexible, fast, digital filter computing machine that can be easily programmed. Emphasis is on real-time signal processing, particularly in the area of digital filtering.

TP-8 "Second Order Recursive Digital Filter

 Design with the TRW Multiplier-Accumulators" by R. Karwoski.Develops the fundamental concepts for second order recursive digital filters and describes some efficient hardware implementations using the TDC1010J multiplier-accumulator.

TP-9 "A Four-Cycle Butterfly Arithmetic Architecture" by R. Karwoski.

Explains the background of the FFT and the computational element called the butterfly. A block diagram of the FFT processor is presented and the DAU (Data Arithmetic Unit) architecture is described in detail. The text's description of the four FFT instructions is supplemented by computational diagram, block diagrams, a data flowchart and a timing diagram.

TP-10 "An Introduction to Digital Spectrum Analysis Including a High-Speed FFT Processor Design" by R. Karwoski.
Develops the DFT using well-known continuous Fourier Transform and series concepts. Common spectrum analysis terms are defined with respect to the DFT, and the decimation in time FFT is derived in detail. Describes the design of a high-speed FFT processor, particularly the architecture and address generation. Also included is an explanation of the use of bit-slice microprocessors as FFT sequencers.

[^10]TP-17 "Correlation-A Powerful Technique for Digital Signal Processing" by J. Eldon. Correlation techniques find use in communications, instrumentation, computers, telemetry, sonar, radar, medical, and other signal processing systems. Electronic systems that perform correlation have been around for years, but they have been bulky and inefficient. The development of a new VLSI chip from TRW LSI Products has changed this; now correlation can be performed efficiently with a minimum number of components.

TP-18 "LSI Multipliers Application Notes." Describes larger and smaller word multiplication, higher speed multiplication and division using multiplication.

TP. 19 "Non-linear A/D Conversion" by B.

 Friend.Describes the quantization process necessary to produce a non-linear transfer function. TRW LSI Products offers A/D converters which can be used in place of more expensive or impractical methods to achieve this result with a minimum of cost and effort.

A discussion of a typical TRW A/D converter includes information on the internal circuitry of the device and provides diagrams of circuit modifications to use with the A/D converter to improve performance.

TP-22 "A Guide to the Use of the TDC1028; a Digital Filter Building Block" by F. Williams. Discusses word and length sizing of Finite Impulse Response (FIR) digital filters, and implementation of filters with different lengths and word sizes. A circuit to autoload coefficients in stand-alone applications is also provided.

TP-23 "A 22-Bit Floating Point Registered Arithmetic Logic Unit" by J. Eldon. Introduces the TDC1022, a registered arithmetic logic unit (RALU), built with TRW's dual layer metal, one micron bipolar process
(OMICRON-B ${ }^{\text {M }}$). Emphasis is on RALU architecture, and the instruction microcode. Block diagrams and ALU function control chart are provided.

TP-24 "A Single Board Floating Point Signal Processor" by G. Winter and B. Yamashita. Floating point arithmetic offers many advantages to the field of digital signal processing (DSP). This article describes the realization of a Finite Impulse Response (FIR) filter using a family of floating point devices; the TDC1022 Floating Point Adder, the TDC1033 Floating Point Registered ALU, and the TDC1042 Floating Point Multiplier.

TP-25 "Floating Point Hardware for Digital Signal Processing" by J. Haight. Recent advances in VLSI circuitry make high-speed digital signal processing (DSP) with wide dynamic range possible without significant penalties in cost or hardware overhead. The architectures of the TDC1022, TDC1033 and TDC1042 are discussed, as well as their applications in some designs.

TP-26 "Floating Point, the Second Generation for Digital Signal Processing" by J. Haight. High-speed digital signal processing (DSP) has recently progressed to a widely used real or near real-time field. Today, a new generation of 22-bit floating point integrated circuits (TDC1022, TDC1033 and TDC1042) makes it possible to build circuitry to handle signals with wide dynamic range at high speeds and reasonable cost. This article discusses the architecture of these ICs and the motivations behind them.

TP-27 "Components For Instruments That Employ Digital Signal Processing Techniques" by D. Watson.
Applications of fast analog-to-digital (A/D) converters are expanding into the measurement and analytical instrument marketplace. This article discusses A/D converters as they are used in digital instruments, reviews "flash'' A/D technology, and presents future directions of A / D design.

TP-28 "A Floating Point ALU for Digital Signal Processing" by R. Sierra and G. Covert. Discusses applications of the TRW LSI TDC1022, Floating Point Arithmetic Unit. The architecture of the TDC1022 is discussed, together with several application examples in the areas of filtering and spectrum analysis.

TP-29 "The Use of Floating Point Arithmetic in Digital Filters and Equalizers" by F. Williams.

Digital Audio, a high-performance technology, has undergone rapid growth during the last few years. This article describes TRW LSI floating point processors and how they are used in digital audio systems to provide noise control, accurate response control, and maintenance of effective SNR. Frequency response high and low filter graphs are provided.

Article Reprints

R-1 "Packing a Signal Processor onto a Single Digital Board,'" by L. Schirm IV, Electronics, December 20, 1979.

Discusses general applications of multiplier-accumulators and the design of a single-board FFT processor.

R-2 "Microprocessor Compatible Recursive Digital Filters," by Ford, Youseff-Digaleh and Current (UC Davis); Proceedings of the IEEE, April 1979.

Describes the implementation of recursive digital filters through timeshared use of a single multiplieraccumulator.

R-3 "A Radix-4 FFT Processor for Application in a 60 -Channel Transmultiplexer Using TTL Technology," by Roste, Haaberg and Ramstad; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979.

Presents a hardware solution for the two 128 -point DFT processors with a transform time of $125 \mu \mathrm{sec}$ needed in a 60-channel transmultiplexer for conversion between FDM and TDM signals.
"Design of a 24-Channel
Transmultiplexer," by M. Narashima; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979.

Discusses the design of a transmultiplexer capable of performing the bilateral conversion between 1544 $\mathrm{kbits} / \mathrm{sec}$ digital signal and two analog group signals.
Note: Both articles are included in the same reprint.

R-4 "Television Gathers Speed On its Way from A to D,' Broadcast Communications, September 1979.

Explains the ways in which the TV broadcast studio is evolving towards digital implementations. Discusses the advantages of the digital vs the analog approach.

R-5 "Get to know the FFT and take advantage of speedy LSI building blocks," by L. Schirm IV; Electronic Design, April 26, 1979.

Explains the use of the FFT (Fast Fourier Transform) and how to implement an FFT processor board using a multiplier-accumulator.

R-6 ' On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," by F. Harris, Proceedings of the IEEE, January 1978.

A comprehensive discussion of data windows and their effect on the spectrum analysis problem. Key parameters are identified, and window options are compared. Applications are discussed in detail.

R-7 'Floating-point chips carve out FFT systems," by J. Eldon and G. Winter; Electronic Design, August 4, 1983.

Describes the implementation of realtime signal processing using a set of three floating point ICs: the TDC1033, an arithmetic logic unit with registers; the TDC1042, a floating point multiplier; and the TDC1022, a floating point arithmetic unit.

R-8 "Quantization Effects on
Differential Phase and Gain
Measurements,' by F. Williams and R. Olsen; SMPTE Journal, November, 1982.

Discusses absolute performance standards as a means of characterizing television systems. Equations are provided which are used to obtain Differential Phase and Differential Gain limits for use in the evaluation and diagnosis of television equipment.

R-9 "High speed FIFO memory: theory and applications," by E. Chocheles and R. Sierra, Electronic Products, March 28, 1983.

A comprehensive study of the TDC1030, a First-In First-Out (FIFO) memory buffer (fixed or variable-length storage) used in data transfer elements. Extensive timing analysis is covered in the article.

R-10 "One-chip DAC delivers composite video signal,' by R. Castleberry and C. Robertson; Electronic Design, September 1, 1983.

Describes the TDC1018, a low-cost, digital-to-analog converter that delivers a composite video signal, capable of driving high-resolution graphics displays. Device architecture and performance specifications are included.

R-11 ''Single-chip Flash A/D

Converters With Evaluation Boards," by J. Eldon and R. Olsen; Proceedings IEEE 1982 Region 6 Conference.

Describes TRW LSI Products' A/D Converters and optional evaluation boards. The boards may be used to evaluate the ICs, or as models for individual circuit design effects.

R-12 " 6 -bit a-d chip steps up the pace of signal processing," by J. Muramatsu and R. Olsen; Electronic Design, September 16, 1982.

Describes the TRW LSI TDC1029, a 6-bit analog-to-digital converter that samples broadband signals at 100 MegaSamples Per Second (MSPS). This device increases the real-time performance of military, medical and industrial systems.

R-13 "Video-speed filtering gets its own digital IC," by F. Williams;
Electronics, October 20, 1983.
Describes the TRW LSI TDC1028, a single-chip filter that is paving the way to video-speed fixed and adaptive filter implementations in design processes.

R-14 "One-Micron VLSI Chips for Military Systems," by J. Eldon, M. Gagnon and F. Williams; Defense Electronics, November 1983.

Describes TRW's one-micron VLSI chips and their applications for military systems. The article also discusses the bipolar 3-D process used in fabricating the devices, VLSI reliability, and other topics related to implementation of these chips.

R-15 "Using high speed multipliers for real time signal processing," by R. Sierra; Electronic Products, February 7, 1984.

Complex signal processing can now be implemented with the precision and accuracy of digital arithmetic logic components. This article describes TRW LSI Multipliers and their usefulness in filtering and spectrum analysis.

R-16 "CMOS comes to high speed digital signal processing," by J. Haight.

Discusses the possibilities for CMOS: as geometries continue to shrink, the improved performance and reduced power of CMOS make possible a much greater number of devices on a chip. This opens up many exciting possibilities in the digital signal processing market.

The Application Notes and Article Reprints listed above are available upon request from TRW LSI Products.

图

LSI Products Division
TRW Electronic Components Group P.0. Box 2472

La Jolla, CA 92038

[^0]: See pages 11-15 for information on our new products.

[^1]: NMINV and NLINV are to be considered DC controls．They may be tied to $V_{C C}$ for a logical＂ 1 ＂and tied to digital ground for a logical＂ 0 ．＂

[^2]: Notes:

 1. Selected for desired input impedance and voltage range.
 2. Selected for amplifier compensation.
[^3]: Note: " X " in part and mark number indicates grade. All TDC1016 devices are available in three grades. Grade " 8 " is for 8 -bit linearity, grade " 9 " for 9 -bit linearity, and grade " 10 " for 10 -bit linearity. The 8 -bit version of the 87 (CERDIP) package does not have "-8" marking.
 TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

[^4]: TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
 Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

[^5]: Note: 1. Guaranteed, Worst Case, $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

[^6]: TRW reserves the right to change products and specifications without notice．This information does not convey any license under patent rights of TRW Inc．or

[^7]: All flags except the Significand OVerflow (SOV) flag are generated in this section. Upon completion of rounding and scaling, the flags may need to be set. This is handled in the next section. The renormalized number and the flags are passed directly to the round/scalellimit section.

 ## Flag Generation

 EOV
 The EOV flag is set high $\operatorname{EEOV}=1)$ when the exponent exceeds its maximum positive value of +31 .

[^8]: TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.
 Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

[^9]:

[^10]: TP. 16 "An LSI Digital Signal Processor for Airborne Applications" by L. Schirm IV. Discusses the background of digital signal processing with emphasis on radar processors. Described is a digital signal processing board, employing a multiplier-accumulator IC, which includes the basic processor, address generators, controller and system interface.

