VLSI Data Book

LSI Products Division TRW Electronic Components Group

A STATE OF	

VLSI Data Book

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolia, CA 92038

©TRW Inc. 1984. TRW is the name and mark of TRW Inc.

LSI Products Division TRW Electronic Components Group

2

Table Of Contents

Introduction	5
Product Indexes	7
Advance Information	9
A/D Converters	17
D/A Converters	125
Multipliers	155
Multiplier-Accumulators	231
Special Function Products	295
Memory/Storage Products	351
Reliability	381
Package Information	391
Glossary	413
Ordering Information	421
Application Notes And Reprints	427

3

HARMAN PROPERTY AND A STATE OF A STATE

A

B

C

D

F

G

Η

•

J

L

M

N

LSI Products Division TRW Electronic Components Group

Challenging the Future

As the world leader of digital signal processing components, TRW LSI Products has made a commitment to the future. In the early 1960s, TRW developed TTL and pioneered the evolution of Integrated Circuit and VLSI technologies. Today TRW LSI is conducting research to create new products and set high-performance standards in the design, development and manufacture of components. As system technologies change and grow, the group of dedicated employees at TRW LSI Products has committed the future to setting even higher standards in order to provide the customer with better, more reliable, and more useful products. TRW LSI Products currently offers a diverse line of DSP components, including: multipliers, multiplier-accumulators, A/D and D/A converters, shift registers, floating point processors, and others.

The use of innovative designs and state-of-the-art manufacturing processes has resulted in product quality that is unsurpassed in the industry. Each device receives thorough testing, and passes stringent quality control requirements. TRW LSI's components have been proven in many applications, ranging from telecommunications and broadcasting to oil and space exploration, medical electronics and underwater surveillance.

TRW LSI Products prides itself in its responsiveness to customers' requirements and needs. As world technological advances intensify, the most modern research techniques are applied to real-life situations in order to produce devices designed to improve system reliability while reducing circuit cost, size and power requirements.

All of your specific needs can be met by our superior products. Follow us as we develop components that will require less space, less energy consumption and less design effort for your system. Follow us as we challenge the future.

Product Index (Family)

A/D Converters	S	Catalog Page Number
TDC1001	8-Bit, 2.5MSPS	21
TDC1002	8-Bit, 1.0MSPS	21
TDC1007	8-Bit, 20MSPS	31
TDC1014	6-Bit, 25MSPS	43
TDC1019	9-Bit, 15MSPS	53
TDC1019-1	9-Bit, 18MSPS	53
TDC1021	4-Bit, 25MSPS	65
TDC1025	8-Bit, 50MSPS	75
TDC1027	7-Bit, 18MSPS	91
TDC1029	6-Bit, 100MSPS	101
TDC1048	8-Bit, 20MSPS	113

D/A Converters

TDC1016-8	8-Bit, 20MSPS	129
TDC1016-9	9-Bit, 20MSPS	129
TDC1016-10	10-Bit, 20MSPS	129
TDC1018	8-Bit, 125MSPS	141

Multipliers

MPY008H	8 x 8 Bit, 90ns Cycle Time	159
MPY008H-1	8 x 8 Bit, 65ns Cycle Time	159
MPY08HU	8 x 8 Bit, 90ns Cycle Time	169
MPY08HU – 1	8 x 8 Bit, 65ns Cycle Time	169
MPY012H	12 x 12 Bit, 115ns Cycle Time	179
MPY112K	12 x 12 Bit, 50ns Cycle Time	193
MPY016H	16 x 16 Bit, 145ns Cycle Time	203
MPY016K	16 x 16 Bit, 45ns Cycle Time	217
MPY016K-1	16 x 16 Bit, 40ns Cycle Time	217

Multiplier - Accumulators

TDC1008	8 x 8 Bit, 100ns Cycle Time, 19-Bit Output	235
TDC1009	12 x 12 Bit, 135ns Cycle Time, 27-Bit Output	247
TDC1010	16 x 16 Bit, 165ns Cycle Time, 35-Bit Output	259
TDC1043	16 x 16 Bit, 100ns Cycle Time, 19-Bit Output	271
TMC2010	16 x 16 Bit, 160ns Cycle Time, CMOS	283

Special Functions

TDC1004	64 x 1 Bit, 10MHz, Digital Correlator, Analog Output	299
TDC1022	22-Bit, 10MHz, Floating Point Arithmetic Unit	307
TDC1023	64 x 1 Bit, 15MHz, Digital Correlator, Digital Output	323
TDC1028	4 x 4 x 8 Bit, 10MHz, Digital Filter (FIR)	337

Storage Products

TDC1005	64 x 2 Bit, 25MHz, Shift Register	355
TDC1006	256 x 1 Bit, 25MHz, Shift Register	361
TDC1030	64 x 9, 15MHz, First-In First-Out Memory	367

See pages 11-15 for information on our new products.

B

Product Index (Numerical)

Numerical Or	der	Catalog Page Number
MPY008H	8 x 8 Bit Multiplier, 90ns Cycle Time	159
MPY008H-1	8 x 8 Bit Multiplier, 65ns Cycle Time	159
MPY08HU	8 x 8 Bit Multiplier, 90ns Cycle Time	169
MPY08HU-1	8 x 8 Bit Multiplier, 65ns Cycle Time	169
MPY012H	12 x 12 Bit Multiplier, 115ns Cycle Time	179
MPY016H	16 x 16 Bit Multiplier, 145ns Cycle Time	203
MPY016K	16 x 16 Bit Multiplier, 45ns Cycle Time	217
MPY016K-1	16 x 16 Bit Multiplier, 40ns Cycle Time	217
MPY112K	12 x 12 Bit Multiplier, 50ns Cycle Time	193
TDC1001	8-Bit A/D Converter, 2.5MSPS, Successive Approximation	21
TDC1002	8-Bit A/D Converter, 1.0MSPS, Successive Approximation	21
TDC1004	64 x 1 Bit Digital Correlator, 10MHz, Analog Output	299
TDC1005	64 x 2 Bit Shift Register, 25MHz	355
TDC1006	256 x 1 Bit Shift Register, 25MHz	361
TDC1007	8-Bit A/D Converter, 20MSPS	31
TDC1008	8 x 8 Bit Multiplier-Accumulator, 100ns Cycle Time	235
TDC1009	12 x 12 Bit Multiplier-Accumulator, 135ns Cycle Time	247
TDC1010	16 x 16 Bit Multiplier-Accumulator, 165ns Cycle Time	259
TDC1014	6-Bit A/D Converter, 25MSPS	43
TDC1016-8	8-Bit D/A Converter, 20MSPS	129
TDC1016-9	9-Bit D/A Converter, 20MSPS	129
TDC1016-10	10-Bit D/A Converter, 20MSPS	129
TDC1018	8-Bit D/A Converter, 125MSPS	141
TDC1019	9-Bit A/D Converter, 15MSPS	53
TDC1019-1	9-Bit A/D Converter, 18MSPS	53
TDC1021	4-Bit, A/D Converter, 25MSPS	65
TDC1022	22-Bit Floating Point Arithmetic Unit, 10MHz	307
TDC1023	64 x 1 Bit Digital Correlator, 15MHz, Digital Output	323
TDC1025	8-Bit A/D Converter, 50MSPS	75
TDC1027	7-Bit A/D Converter, 18MSPS	91
TDC1028	4 x 4 x 8 Bit Digital Filter (FIR), 10MHz	337
TDC1029	6-Bit A/D Converter, 100MSPS	101
TDC1030	64 x 9 Bit First-In First-Out Memory, 15MHz	367
TDC1043	16 x 16 Bit Multiplier-Accumulator, 100ns Cycle Time	271
TDC1048	8-Bit A/D Converter, 20MSPS, Low Power	113
TMC2010	16 x 16 Bit CMOS Multiplier-Accumulator, 160ns Cycle Time	283

See pages 11-15 for information on our new products.

22/03/06-24/05/08/06/04/09/29/04/05/08/06/04/04/04/04/04/04/04/04/04/04/04/04/04/	
free van werde en de state	
	1. Sta
	7

Advance Information

LSI Products Division TRW Electronic Components Group

TDC1011 Advance Information

Variable-Length Shift Register 8-bit, 20MHz

The TRW TDC1011 is a high-speed, TTL Compatible, byte-wide shift register which can be programmed to any length between 3 and 18 stages. It operates at a 50 nanosecond cycle time (20MHz shift rate). A special split-word mode is provided for use with the TRW TDC1028.

The TDC1011 is fully synchronous, with all operations controlled by a single master clock. Input and output register are positive-edge-triggered D-type flip-flops. The length control inputs are also registered.

Built with TRW's state-of-the-art, Omicron-B' 1 micron bipolar process, the TDC1011 provides the system designer with a unique variable-delay capability at video speeds.

Features

- 50ns Cycle Time (Worst Case)
- Single +5V Power Supply
- TTL Compatible
- Selectable Length From 3 to 18 Stages
- Special 4-Bit Wide Mixed-Delay Mode.
- Available in 24 Lead DIP, 28 Contact Chip Carrier or 28 Leaded Chip Carrier

rd	Inpu L3	it Cod L2	19 L1	ե	D ₃₋₀ Length	MODE=0 D7-4 Length	MODE=1 D ₇₋₄ Length	
	0	0	0	0	3	3	18	
	0	(I	0	1	4	4	18	
s	(0)	10/	1	0	5	5	18	
11	101	(0)	1	1	6	6	18	
and I	a	ĩ	0	0	7	7	18	
and and a start of the	0	1	0	1	8	8	18	
	0	1	1	0	9	9	18	
	0	1	1	1	10	10	18	
	1	0	0	0	11	11	18	
	1	0	0	1	12	12	18	
	1	0	1	0	13	13	18	
	1	0	1	1	14	14	18	
	1	1	0	0	15	15	18	
	1	1	0	1	16	16	18	
	1	1	1	0	17	17	18	
	1	1	1	1	18	18	18	

Length Programming

©TRW Inc. 1983 40G01136 Rev. A-11/83 Printed in the U.S.A.

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571

TDC1047 Advance Information

Monolithic Video A/D Converter 7-bit, 20MSPS

The TRW TDC1047 is a 20 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5MHz into 7-bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1047 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

The TDC1047 is pin and function compatible with TRW's TDC1027, and offers increased performance with lower power dissipation.

Features

7-Bit Resolution

Functional Block Diagram

- 1/2 LSB Linearity
- Low Power Consumption, 850mW
- Sample-And-Hold Circuit Not Required
- TTL Compatible
- **•20MSPS** Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP
- 🌢 Low Cost

Applications

- Low Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01393 Rev. A-2/84 Printed in the U.S.A.

TMC2008 Advance Information

CMOS VLSI Multiplier-Accumulator

8 X 8 bit, 100ns

The TRW TMC2008 is a high-speed 8 X 8 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time (10MHz multiply-accumulate rate). The multiplicand and the multiplier may be specified together as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19-bit result. The TMC2008 can also perform subtraction, in which case the outputs are always two's complement numbers, regardless of the input format.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), an 8-bit Most Significant Product (MSP), and an 8-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2008 is pin and function compatible with the industry standard TDC1008; it operates with the same speed, and at less than one-fifth the power dissipation at full speed.

Features

- 100ns Multiply-Accumulate Time (Worst Case)
- Low Power CMOS Process Technology (150mW Typical)
- Single +5V Power Supply
- 8 X 8 Bit Parallel Multiplication With Accumulation To 19--Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- Pin Compatible With TRW TDC1008
- All Inputs And Outputs Are Registered TTL Compatible
- Wo's Complement Or Unsigned Magnitude Operation
- Three-State TTL Compatible Output
- Available In 48 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolía, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1983 40G01276 Rev. A-8/83 Printed in the U.S.A.

CMOS VLSI Multiplier – Accumulator 12 X 12 bit, 135ns

The TRW TMC2009 is a high-speed 12 X 12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time (7.4MHz multiply-accumulate rate). The multiplicand and the multiplier may be specified together as two's complement or unsigned magnitude, vielding a full-precision 24-bit product. Products may be accumulated to a 27-bit result. The TMC2009 can also perform subtraction, which case the outputs are always two's complement numbers, regardless of the input format.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 12-bit Most Significant Product (MSP), and a 12-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2009 is pin and function compatible with the industry standard TDC1009; it operates with the same speed, and at less than one-fifth the power dissipation at full speed.

Features

- 135ns Multiply Accumulate Time (Worst Case)
- Low Power CMOS Process Technology (200mW Typical)
- Single +5V Power Supply
- 12 X 12 Bit Parallel Multiplication With Accumulation To 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- Rip Compatible With TRW TDC1009
- Alchouts And Outputs Are Registered TTL Compatible
- Two's Complement Or Unsigned Magnitude Operation
- Three-State TTL Compatible Output
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038

Phone: (619) 457-1000 Telex: 697-957 TWX: 910-335-1571

©TRW Inc. 1983 40G01277 Rev. A-8/83 Printed in the U.S.A.

Functional Block Diagram

TMC2039 Advance Information

CMOS Video Shift Register

384 words x 9 bits, 21MHz

The TRW TMC2039 is a 384-word by 9-bit shift register with a shift rate of 21MHz. The device is fabricated using TRW's 2-micron CMOS technology.

Shifting of data occurs on the rising edge of a TTL compatible shift command (SH). Active-low shift enable (SHEN) and output enable ($\overline{\text{OE}}$) controls are provided for increased design flexibility. The shift register is fully static and outputs data with a time latency of 384 shift cycles. Devices can be easily cascaded to lengthen the storage capacity, or operated in parallel for words wider than nine bits. The data outputs have three-state drivers for interfacing to high-speed data-busses.

Features

- High-Speed (21MHz) Data Shift Capability
- 384-Word By 9-Bit Static Register Architecture

- Low Power CMOS Technology
- Easily Cascadable
- Edge-Triggered Synchronous Operation
- Fully TTL Compatible Inputs And Outputs
- Three-State Outputs
- Single +5V Power Supply
- Available in 24 Lead DIP

Applications

- Video Scramblers And Descramblers
- General Purpose Data Delay
- A/D Converter Output Data Buffer
- Digital Video Systems

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01401 Rev. A-2/84 Printed in the U.S.A.

Functional Block Diagram

LSI Products Division TRW Electronic Components Group

An and a second state of the	see about the advectory the earth of an of	CONTRACTOR STORES AND AND ADDRESS OF	and such that the state of the success of the state of th	and shaked with the start of a start of a start of the
				and a short to be address of the
AND THE REPORT OF A DESCRIPTION OF A DESCR A DESCRIPTION OF A DESCRIPTIONO	BRAND DEPENDENT OF A STATE AND A STATE AND A STATE AND A STATE	the second as the factor of the test state of the second second second second second second second second second	na manin amananan nama kanala da ta'an kanan ta'ar	Peterster States and States and States
				Reading the second states and the second second

A BARA MURE TANK

And a second second state and second s

na n
and the second
and a state of the
ገንተለው። የግብ የሚያስርጉት ጋር መጣንጫ እር ዓይታቸው በዚህ አስባላ በመሆኑ በዚህ የሚያስርጉት በዚህ አስባላ በዚህ አስባላ በዚህ አስባላ በዚህ አስባላ በዚህ አስባላ በዚህ በዚህ አስባላ በዚህ
and the second
And the second
MANANA ANA ANA ANA ANA ANA ANA ANA ANA A
and the second
AND

A/D Converters

	area area.	25 .	- 11 M.		1200	
	18.0	12 ° 4	2011	1.21	652 9 e	•
and a strange way when a star for provide the second star of the second star of the second star of the second s	1357-27	250	12.50	1.1	1.08.00	154
	ubiAsree	a 42 - 24	X.261 a.	uiles	ing ficer and	(A)
CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR AND A	text in its	14.97	2.12		1541.	C Photo
	11.22 ^{- 2}		1 A A A A A		1.212	144
and the second	10 o 10	15. 1.			56 - 1 D.C	4
	100	. 4	1.1			7
MANAGE THE COURSE AND A DESCRIPTION OF A DE	the second	125.1	2 . St		10.00	7
			1.1			
and a state of the second s	e yest i e e		100			
SHENNE SUBJECT OF PLACE						
and the second second second second second						
ALTERNAL STREAMENT OF STREAM						
Contraction and the second second second second	1					
MAN MARCH PROVINCE OF STREET, CARLES CALLED	7					
MARKERSON AND LONG MARKER AND A STREET	1					
Britishing and an area with a shift and						
MANNER COMMAND STOLES OF SHEET STOLES						
96.2 5 4 7 (1993) A SPACE STUDY						
A REAL PROPERTY AND A REAL						

-

LSI Products Division TRW Electronic Components Group TRW LSI's line of monolithic highspeed analog-to-digital (A/D) converters consists primarily of devices that employ parallel "flash" architecture. The exceptions are the TDC1001 and TDC1002 successive approximation A/D converters. The entire line of A/D converters covers resolutions from four to nine bits and conversion rates from 1 to 100MSPS. All of these devices are built with TRW's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance, size, power, and reliability. TRW LSI Products pioneered the development of monolithic high-speed A/D converters by introducing the TDC1007 in 1977. This device is an 8-bit 20MSPS A/D converter which has become an industry standard in video, radar, and imaging applications. The development of fine lithography techniques has yielded faster, more accurate, and less expensive A/D converters. Most of TRW LSI's A/D converters are available with an evaluation board which contains all peripheral circuitry necessary for quick and convenient operation of the device.

Figure 1. Resolution vs. Conversion Rate For TRW-LSI A/D Converters.

"Flash" A/D Converters

"Flash" A/D converters have three major functional sections: the comparator array, encoding logic, and output data latches. The input voltage to the A/D is compared with (2^N) -1 separate reference voltage points which differ from adjacent points by a voltage equivalent to one Least Significant Bit (LSB). N is the number of data outputs, or the resolution of the A/D converter in bits. The comparator reference voltage points are tapped from a reference resistor chain which is driven by an external reference voltage source. The outputs from the (2^N) -1 comparators form a code sometimes referred to as a "thermometer" code (all comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more negative then the input signal will be on). The "thermometer" code from the comparator array is then encoded into an N-bit binary word.

The conversion operation is controlled by a single CONVert (clock) signal which latches the N-bit results from the encoding logic. The output latches of the converter hold data valid while the

conversion is taking place and are updated by the CONVert signal. Some converters have additional data controls which allow data formatting of straight binary, inverse binary, two's complement, or inverse two's complement notation.

Successive Approximation A/D Converters

Successive approximation A/D converters have three major functional sections: the comparator, D/A converter, and successive approximation register (SAR). The comparator compares the unknown input voltage to the output of the internal D/A. Successive approximation

is an iterative process during which the SAR stores data from the comparator and presents new data to the D/A converter. At the end of the process, the data in the SAR drives the D/A converter to a level which is within 1/2 LSB of the unknown input voltage. At this time, the SAR data is the binary equivalent of the unknown input voltage.

Once the iterative process has terminated, the SAR data is latched in an output register and a "BUSY" signal will change state indicating that new output data is available.

Product	Resolution Bits	Conversion Rate ¹ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1001	8	2.5	0.6	J8	Successive approximation
TDC1002	8	1.0	0.6	J8	Successive approximation
TDC1007	8	20	2.6	J1, C1, L1 E1, P1	Evaluation boards
TDC1014	6	25	1.0	J7, C3, B7 E1, P1	Evaluation boards
TDC1019	9	15	3.9	J1, C1, L1 E1	ECL compatible Evaluation board
TDC1019-1	9	18	3.9	J1, C1, L1	Speed selected version
TDC1021	4	25	0.3	J9	
TDC1025	8	50	4.5	C1, L1 E1	ECL compatible Evaluation board
TDC1027	7	18	1.8	J7, B7 E1	Evaluation board
TDC1029	6	100	1.6	J7 E1	ECL compatible Evaluation board
TDC1048	8	20	14	J6, C3, B6 E1	Evaluation board

Note: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to 70°C.

TDC1001 (400ns) **TDC1002** (1µsec)

Successive Approximation A/D Converters

8-bit, 2.5MSPS, 1MSPS

Functional Block Diagram

The TRW TDC1001 and TDC1002 analog-to-digital converters are high-speed, 8-bit successive approximation devices. These bipolar, monolithic converters offer significant advantages in size, cost, and performance, as well as high reliability and low-power consumption.

All digital interfaces are TTL compatible. A single +5VDC supply is required by the digital circuitry while -5VDC is required by the analog portion of the device. The analog and digital ground planes are internally isolated.

The TDC1001 and TDC1002 consist of a comparator, reference buffer, 8-bit D/A converter, successive approximation register, output register, and control circuitry.

Features

- 8-Bit Resolution
- Binary Output Coding
- TTL Compatible
- ± 1/2 LSB Linearity
- Parallel Output Register
- 600mW Power Dissipation
- Available In 18 Lead DIP

Applications

- Microprocessor Systems
- Numerical Control Interface
- Data Acquisition Systems

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697~957 TWX: 910–335–1571 ©TRW Inc. 1983 40G00272 Rev. E-11/83 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1001 and TDC1002 consist of six functional sections: comparator for the analog input, reference buffer, 8-bit D/A converter (DAC), successive approximation register (SAR), output register, and control circuitry. The SAR and comparator will sequentially compare the analog input to the DAC output. The conversion process requires nine clock cycles.

Power

The TDC1001 and TDC1002 operate from separate analog and digital power supplies. Analog power (V_{EE}) is -5.0VDC and digital power (V_{CC}) is +5.0VDC. All power and ground pins must be connected.

Separate decoupling for each supply is recommended. The return for IEE, the current drawn from the VEE supply, is AGND. The return for ICC, the current drawn from the VCC supply, is D_{GND} .

Name	Function	Value	J8 Package
V _{EE}	Analog Supply Voltage	-5.0VDC	Pin 17
V _{CC}	Digital Supply Voltage	+5.0VDC	Pin 1
AGND	Analog Ground	0.0VDC	Pin 15
D _{GND}	Digital Ground	0.0VDC	Pin 10

Reference

The TDC1001 and 1002 accept a nominal input reference voltage of -0.5VDC. The voltage should be supplied by a precision voltage reference, as the accuracy of this voltage will

have a significant effect on the overall accuracy of the system. The reference voltage input pin should be bypassed to $A_{\mbox{GND}}$ as close as possible to the device terminal.

Name	Function	Value	J8 Package
V _{REF}	Reference Voltage Input	-0.5VDC	Pin 13

Analog Input

The analog input range of the device is set by the reference voltage. This is nominally -0.5VDC with an absolute tolerance of $\pm 0.1VDC$. Since the device is a successive approximation

type A/D converter, a sample-and-hold circuit may be required in some applications.

Name	Function	Value	J8 Package
v _{in}	Analog Input	0 to -0.5V	Pin 16

Conversion Timing Description

The timing sequence of the TDC1001 and 1002 is typical of successive approximation converters. Nine clock cycles are required for each conversion. Start Convert must transition from LOW to HIGH a minimum of t_S prior to the leading edge of the first convert pulse, and must remain HIGH a minimum of t_H after the edge.

This first cycle clears the BUSY flag and prepares the device for a new conversion. The following 8 clock cycles convert each data bit (MSB first, LSB last). During these 8 clock cycles, the analog input must be held stable (to within 1/2 LSB). At t_D nanoseconds after the rising edge of the eighth clock pulse, the seven most significant bits are valid (and the BUSY signal goes LOW). At t_D nanoseconds after the ninth clock pulse the LSB is valid, and the conversion is completed.

Name	Function	Value	J8 Package
SC	Start Convert Input	πL	Pin 2
BUSY	Busy Flag Output	TTL	Pin 12
CLOCK	Convert Clock Input	TL	Pin 18

Data Outputs

The outputs of the TDC1001 and 1002 are TTL compatible and capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. The outputs hold the previous

data a minimum time (tD) after the rising edge of Start Convert (SC).

Name	Function	Value	J8 Package
D7	MSB Output	πι	Pin 3
D ₆		ΠL	Pin 4
D ₅		ΠL	Pin 5
D4		ΠL	Pin 6
⁾ 3		ΠL	Pin 7
⁾ 2		πι	Pin 8
D ₁		TTL	Pin 9
D ₀	LSB Output	πι	Pin 11

Compensation Pin

The COMPensation pin (COMP), is provided for external compensation of the internal reference amplifier.

The compensation capacitor must be connected between this pin and V_{EE}. A tantalum capacitor greater than 10μ F is recommended for proper operation.

Name	Description	Value	J8 Package
COMP	Compensation Pin	>10 µ F	Pin 14

Output Coding

An analog input voltage of 0.0V will produce a digital output code of all zeros; an analog input voltage of -0.50V will produce a digital output code of all ones.

Figure 1. Timing Diagram

LSI Products Division **TRW Electronic Components Group**

810Ω

1N3062

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	8	· ·
	V _{CC} (measured to D _{GND})	
	V _{EE} (measured to A _{GND})	
	A _{GND} (measured to D _{GND})	0.5 to + 0.5V
Input Voltage	S.	
	CLK, SC (measured to D _{GND)}	
	VIN, VREF (measured to AGND)	
Output	· · · · · · · · · · · · · · · · · · ·	
	Applied voltage (measured to D _{GND})	-0.5 to +5.5V ²
	Applied current, externally forced	1.0 to +6.0ma ^{3,4}
	Short circuit duration (single output in high state to DGND)	1 sec
Temperature		
	Operating, case	
	junction	
	Lead, soldering (10 seconds)	+ 300°C
	Storage	
Notes:		

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as positive when flowing into the device.

				Temperat	ture Range			
			Standard			Extended		
Param	ieter	Min	Nom	Nom Max		Nom	Max	Units
VCC	Positive Supply Voltage	4.5	. 5.0	5.5	4.5	5.0	5.5	V
VEE	Negative Supply Voltage	-4.75	-5.0	- 5.25	-4.75	-5.0	- 5.25	V
AGND	Analog Ground Voltage (Measured to $\mathrm{D}_{\mbox{GND}}$)	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
tPWL	Clock Pulse Width, Low	20			20			ns
^t pwh	Clock Pulse Width, High	20		1.1	20	1		ns
ts	Start Convert, Set-Up Time	7			7		1	ns
tн	Start Convert, Hold Time	16			16			ns
VIL	Input Voltage, Logic Low			0.8			0.8	V
VIH	Input Voltage, Logic High	2.0			2.0			V
I _{OL}	Output Current, Logic Low			4.0			4.0	mA
1 _{0H}	Output Current, Logic High			-400			-400	μΑ
V _{REF}	Reference Voltage	-0.4	-0.5	-0.6	-0.4	-0.5	-0.6	V
VIN	Analog Input Voltage	0.0		-0.6	0.0		-0.6	۷
TA	Ambient Temperature, Still Air	0 ·	1	+70				°C
TC	Case Temperature		1		-20		+85	°C

Operating conditions

Electrical characteristics within specified operating conditions

			Temperat	ure Range		
		Star	ndard	Exte	nded	1
Parameter	Test Conditions	Min	Max	Min	Max	Units
ICC Positive Supply Current	V _{CC} - MAX, Static ¹		40		40	mA
IEE Negative Supply Current	V _{EE} = MAX, T _C = -20°C to +85°C		- 80		- 80	mА
BIAS Analog Input Bias Current			10		10	μΑ
I _{REF} Reference Current	V _{REF} - NOM		2.5	1	2.5	μΑ
R _{REF} Total Reference Resistance		200		200		kOhm
R _{IN} Analog Input Equivalent Resistance	V _{REF} - NOM	50		50		kOhm
C _{IN} Analog Input Capacitance			10		10	рF
I _{IL} Input Current, Logic Low	$V_{CC} - MAX, V_I - 0.5V$		-1.0		-1.0	mA
I _{IH} Input Current, Logic High	$V_{CC} - MAX, V_I - 2.4V$		75		75	μΑ
V _{OL} Output Voltage, Logic Low	V _{CC} - MIN, I _{DL} - MAX		0.5		0.5	V
V _{OH} Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V
IOS Output Short Circuit Current			-25		-25	mA

Note:

1. Worst case: All digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

		Temperature Range				
		Star	ndard	Extended		1
Parameter	Test Conditions	Min	Max	Min	Max	Units
F _S Maximum Clock Rate	V _{CC} , V _{EE} - MIN TDC1001	22.5		22.5		MHz
	TDC1002	9.0		9.0		MHz
t _C Conversion Time	V _{CC} , V _{EE} - MIN TDC1001		400		400	ns
	TDC1002		1000		1000	ns
t _D Digital Output Delay	V _{CC} , V _{EE} - MIN		50		50	ns

System performance characteristics within specified operating conditions

				Temperature Range			
				Standard		ended	
Parameter		Test Conditions		Max	Min	Max	Units
ELI	Linearity Error Integral, Independent	V _{CC} , V _{EE} - NOM		±0.2		±0.2	%
ELD	Linearity Error Differential			0.2		0.2	%
T _{CG}	Gain Temperature Coefficient	V _{CC} , V _{EE} - NOM		+ 10		+ 10	ppm/°C
EO	Offset Voltage			±7		±7	mV
T _{CO}	Offset Temperature Coefficient	V _{CC} , V _{EE} - NOM		- 10		- 10	μV/°C
E _G	Gain Error			1.5		2.0	%
T _{CIB}	IBIAS Temperature Coefficient	V _{CC} , V _{EE} - NOM		- 1.0		- 1.0	%/°C

Application

The TDC1001 and TDC1002 are high-speed, TTL compatible, SAR type A/D converters. The combination of very small analog signals and high-speed digital circuitry requires careful design of supporting analog/digital circuitry. Proper physical component layout, trace routing, and provision for sizeable analog and digital grounds are as important as the electrical design.

Two key design areas for fast, accurate A/D conversion are timing and grounding. The timing requirements for this device are detailed in Figure 1. Proper grounding is highly dependent on the board's mechanical layout and design constraints. In general, the noise associated with improper digital and analog ground isolation is synchronous with the clock and appears on the analog input.

Proper Design Practices Include:

 Sensitive signals such as clock, start convert, analog input, and reference should be properly routed and terminated to minimize ground noise pick-up and crosstalk. (Wirewrap is not recommended for these signals).

- Analog and digital ground planes should be substantial and common at one point only. Analog and digital power supplies should be referenced to their respective ground planes.
- Reference voltage should be stable and free of noise. Accuracy of the conversion is highly dependent on the integrity of this signal.
- The analog input should be driven from a low-impedance source (<25 Ohms). This will minimize the possibility of picking up extraneous noise.
- Ceramic high frequency bypass capacitors (0.001 to 0.01μ F) should be used at the input pins of V_{CC}, V_{EE}, and REF. All pins should be bypassed to A_{GND} except V_{CC}.
- A tantalum capacitor of greater than 10μ F should be connected from COMP (pin 14) to VFF.

77**7**7

Figure 5. Typical Interface Circuit

Parts List

Resistors

-			
R1	909 Ohms	1%	1/8W
R2	100 Ohms		Multi–Turn Cermet Pot
R3	1.33 kOhms	1%	1/8W
R4	2.49 kOhms	1%	1/8W
Capacitors			
C1, C3, C5	10.0 µF	25V	
C2, C4	0.001μ F	50V	
C6	0.005 μ F	50V	
Integrated	Circuits		
U1	TDC1001J8		TRW 8-bit A/D Converter
U2	74LS161		TTL 4-bit Counter
U3	74LS04		TTL Hex Inverter
D1	LM113-1.22		1.22V Bandgap Voltage Reference

/		H 4	-
	T	T	7

Ordering Information

		a state of the state		
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1001J8C	STD-TA - 0°C to 70°C	Commercial	18 Lead DIP	1001J8C
TDC1001J8G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	18 Lead DIP	1001J8G
TDC1001J8R	EXT-T _C = -20°C to 85°C	Commercial	18 Lead DIP	1001J8R
TDC1001J8T	EXT-T _C = -20°C to 85°C	MIL-STD-883	18 Lead DIP	1001J8T
TDC1001J8H	EXT-T _C = -20°C to 85°C	Commercial With Burn-In	18 Lead DIP	1001,J8H
TDC1002J8C	STD-T _A = 0°C to 70°C	Commercial	18 Lead DIP	1002J8C
TDC1002J8G	STD-TA - 0°C to 70°C	Commercial With Burn-In	18 Lead DIP	1002.J8G
TDC1002J8R	EXT-T _C = -20°C to 85°C	Commercial	18 Lead DIP	1002J8R
TDC1002J8T	EXT-T _C = -20°C to 85°C	MIL-STD-883	18 Lead DIP	1002J8T
TDC1002J8H	EXT-T _C = -20° C to 85° C	Commercial With Burn-In	18 Lead DIP	1002J8H

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1007

Monolithic Video A/D Converter 8-bit, 20MSPS

The TDC1007 is an 8-bit fully parallel (flash) analog-to-digital converter, capable of digitizing an input signal at rates up to 20MSPS (megasamples per second). It will operate accurately without the use of an external sample-and-hold amplifier, with analog input signals having frequency components up to 7MHz.

A single CONVert (CONV) signal controls the conversion operation of the device which consists of 255 sampling comparators, encoding logic, and a latched output buffer register. The device will recover from a full-scale input step in 20ns. Control inputs are provided to format the output in binary, two's complement, or inverse data coding formats.

The TDC1007 is patented under U.S. Patent No. 3283170 with other patents pending.

Features

- 8-Bit Resolution
- Conversion Rates Up to 20MSPS
- Sample-And-Hold Amplifier Not Required
- Bipolar Monolithic Construction
- TTL Compatible Inputs and Outputs
- Binary or Two's Complement Mode
- Differential Phase = 1.0 Degrees
- Differential Gain = 1.7%
- Evaluation Boards Available: TDC1007E1C or TDC1007P1C

Applications

- Video Systems 3x or 4x Subcarrier, NTSC or PAL
- Radar Systems
- High-Speed Multiplexed Data Acquisition
- Digital Signal Processing

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00276 Rev. C-3/84 Printed in the U.S.A.

Functional Block Diagram

D

TRif

Functional Block Diagram

Pin Assignments

TRW Electronic Components Group

TDC1007

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1007 has three major functional sections: a comparator array, encoding logic, and output data latches. The input voltage is compared with 255 separate reference voltage points tapped from the reference resistor chain. The 255 comparator outputs form a code (sometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more negative than the input signal will be on). The "thermometer" code from the comparator array is encoded into an eight-bit binary word by the encoding logic section. Each of these eight results is sent through an exclusive-OR gate where they are inverted by use of the NMINV or NLINV inputs. This allows operation in binary, two's complement, or inverted data formats.

Power

The TDC1007 operates from two supply voltages, +5.0V and -6.0V. The return for I_{CC}, the current drawn from the +5.0V supply, is D_{GND}. The return path for I_{EE}, the current drawn

from the -6.0V supply, is $A_{GND}.$ All power and ground pins must be connected.

Name	Function	Value	C1, L1 Package	J1 Package	JO Package
V _{CC}	Positive Supply Voltage	+ 5.0V	Pins 23, 41	Pins 28, 43	Pins 22, 37
V _{EE}	Negative Supply Voltage	-6.8V	Pins 14, 18, 19, 21	Pins 47, 48, 49, 50	Pins 15, 16, 17, 18
D _{GND}	Digital Ground	0.0V	Pins 25, 40	Pins 29, 42	Pins 23, 36
AGND	Analog Ground	0.0V	Pins 48, 55	Pins 14, 19	Pins 46, 51

Reference

The TDC1007 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant v_{RT}$ into digital form. V_{RT} (the voltage applied to the pin at the top of the reference resistor chain), and V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) should be between +0.1V and -2.1V, with the difference between them less than 2.1V. V_{RT} should be more positive than V_{RB} within that range. In order to insure optimum operation of the TDC1007, these points should be driven by low-impedance sources capable of providing the

necessary reference resistor chain current. The voltages on R_T and R_B may be varied dynamically up to 7MHz. Due to variations in reference current with clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are varied dynamically (as in an AGC application) a low-impedance reference source is required.

Name	Function	Value	C1, L1 Package	J1 Package	J0 Package
RT	Reference Resistor (Top)	0.0V	Pin 60	Pin 11	Pin 54
RM	Reference Resistor (Middle)	- 1.0V	Pin 51	Pin 17	Pin 48
RB	Reference Resistor (Bottom)	-2.0V	Pin 44	Pin 22	Pin 43

Control

Two control inputs are provided on the TDC1007 for changing the format of the output data. When NMINV is tied to a logic "0", the most significant bit of the output data is inverted; when NLINV is tied to a logic "0", the seven least significant bits of the output are inverted. By using these controls, the output data format can be binary, inverted binary, two's complement, or inverted two's complement. Output data versus input voltage and control input state is illustrated in the Output Coding table on page 40.

Name	Function	Value	C1, L1 Package	J1 Package	JO Package
NMINV	Not Most Significant Bit INVert	ΠL	Pin 29	Pin 41	Pin 24
NLINV	Not Least Significant Bit INVert	TTL	Pin 34	Pin 36	Pin 29

Convert

The analog input to the TDC1007 is sampled (comparators are latched) approximately 10ns after the rising edge of the CONV Signal. This time delay is the sampling time offset (t_{STO}) and varies only by a few nanoseconds from device to device and as a function of temperature. The short-term uncertainty (litter) in sampling time offset is approximately 30 picoseconds.

The output data is encoded from the 255 comparators on the falling edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge of the CONV signal. Note that there are minimum pulse width (tpWH, tpWL) requirements on the waveshape of the CONV signal.

Name	Function	Value	C1, L1 Package	J1 Package	JO Package
CONV	Convert	ΠL	Pin 39	Pin 30	Pin 35

TDC1007

Analog Input

The input impedance of the TDC1007 varies with input signal level. As the signal varies, the comparator input transistors change from active to cut-off, causing the net input resistance and capacitance to change. To prevent this action from degrading the integrity or accuracy of the output data, it is desirable to drive the TDC1007 inputs from a low-impedance source (less than 25 Ohms). The input signal level should remain within the range of V_{EE} to +0.5V in order to prevent damage to the device. When the input is at a level between V_{RT} and V_{RB} reference voltages, the output data value will be directly proportional to the amplitude of the analog input

signal. When the analog input is beyond the range of the reference voltage, the output data will be the appropriate full-scale value. Note that there are two components to the input bias current flowing into the V_{IN} pins. One component is constant for constant input voltage and is the sum of the bias currents of the subset of comparators that are active (I_CB). The other component is related to the action of the CONV signal on the comparator chain (I_SB). All analog input pins of the TDC1007 must be used in order to insure operation over the full input range.

Name	Function	Value	C1, L1 Package	J1 Package	JO Package
v _{iN}	Analog Input Signal	OV to -2V	Pins 46, 50, 52, 54, 58	Pins 13, 15, 16, 18, 20	Pins 45, 47, 49, 50, 52

Outputs

The outputs of the TDC1007 are TTL compatible and capable of driving four low-power Schottky unit loads (54/74 LS). The outputs hold the previous data a minimum time (t_{HO}) after the

rising edge of the CONV signal, and the new data becomes valid after a maximum time of t_{Π} .

Name	Function	Value	C1, L1 Package	J1 Package	J0 Package
0 ₁	MSB Output	Πι	Pin 30	Pin 40	Pin 25
D ₂		ΠL	Pin 31	Pin 39	Pin 26
D3		ΠL	Pin 32	Pin 38	Pin 27
D ₄		TTL	Pin 33	Pin 37	Pin 28
D5		TTL	Pin 35	Pin 35	Pin 30
D ₆		ΠL	Pin 36	Pin 34	Pin 31
D7		ΠL	Pin 37	Pin 33	Pin 32
D ₈	LSB Output	TTL	Pin 38	Pin 32	Pin 33

No Connects

There are several pins labeled No Connect (NC), which have no connections to the chip. These pins may be left open.

Name	Function	Value	C1, L1 Package	J1 Package	J0 Package
NC	No Connect	Open	Pins. 1–13, 15–17, 20, 22, 24, 26–28, 42, 43, 45, 47, 49, 53,	Pins 1-10, 12, 24-27, 31, 44-46, 51-64	Pins 1-14, 19-21, 34, 38-41, 53, 55-64
			56, 57, 59, 61, 62-68		
Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

LSI Products Division TRW Electronic Components Group

-

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltag	85
	V _{CC} (measured to D _{GND})0.5 to +7.0V
	V _{EE} (measured to A _{GND}) +0.5 to -7.0V
	A_{GND} (measured to D_{GND})
Input Voltage	s
	CONV, NMINV, NLINV (measured to D _{GND})0.5 to +5.5V
	v_{IN} , v_{RT} , v_{RB} (measured to A_{GND})
	v_{RT} (measured to v_{RB})
Output	
	Applied voltage (measured to D _{GND})0.5 to +5.5V ²
	Applied current, externally forced1.0 to +6.0mA ^{3,4}
	Short circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, ambient
	junction
	Lead, soldering (10 seconds)
	Storage

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as positive when flowing into the device.

Operating conditions

				Tempera	ture Range			
			Standard			Extended		1
Paramete	er	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Positive Supply Voltage (Measured to DGND)	4.75	5.0	5.25	4.5	5.0	5.5	v
VEE	Negative Supply Voltage (Measured to AGND)	-5.75	-6.0	- 6.25	-5.75	-6.0	- 6.25	٧
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	0.1	-0.1	0.0	0.1	v
^t PWL	CONV Pulse Width, Low	25			25			ns
^t PWH	CONV Pulse Width, High	15			15			ns
V _{IL}	Input Voltage, Logic Low			0.8			0.8	٧
VIH	Input Voltage, Logic High	2.0			2.0			٧
^í ol	Output Current, Logic Low			4.0			4.0	mA
ЮН	Output Current, Logic High			- 400			-400	μA
V _{RT}	Most Positive Reference Input ¹	-1.1	0.0	0.1	-1.1	0.0	0.1	٧
V _{RB}	Most Negative Reference Input ¹	-0.9	-2.0	-2.1	-0.9	-2.0	-2.1	٧
V _{RT} -V _{RB}	Voltage Reference Differential	1.0	2.0	2.2	1.0	2.0	2.2	V
VIN	Input Voltage	V _{RT}		V _{RB}	V _{RT}		V _{RB}	V
TA	Ambient Temperature, Still Air	0		70				°C
т _с	Case Temperature				-55		125	°C

Note:

1. $V_{\mbox{RT}}$ must be more positive than $V_{\mbox{RB}}$ and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

				Temperat	ure Range		
			Star	Standard		nded	
Paran	nøter	Test Conditions		Max	Min	Max	Units
ICC .	Positive Supply Current	V _{CC} – MAX, Static ¹		30		35	mA
IEE	Negative Supply Current	V _{EE} - MAX, Static ¹					
		$T_A = 0^{\circ}C$ to 70°C		- 400			mA
		T _A - 70°C		- 350			mA
		T _C 55°C to 125°C				-470	mA
		T _C - 125°C				- 320	mA
IREF	Reference Current	V _{RT} , V _{RB} – NOM		35		40	mA
R _{REF}	Total Reference Resistance		57		50		Ohms
R _{IN}	Input Equivalent Resistance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}	5		5		kOhms
C _{IN}	Input Capacitance			250		250	pF
СВ	Input Constant Bias Current	V _{EE} - MAX		400		500	μA
ISB	Input Clock Synchronous Bias			200		200	μΑ
կլ	Input Current, Logic Low	V _{CC} - MAX, V _I - 0.5V		-2.0		-2.0	mA
^і н	Input Current, Logic High	V_{CC} - MAX, V_{I} - 2.4V		75		75	μΑ
ų	Input Current, Max Input Voltage	$V_{CC} - MAX, V_{I} - 5.5V$		1.0		1.0	mA
VOL	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	V
V _{OH}	Output Voltage, Logic High		2.4		2.4		۷
^I os	Short Circuit Output Current	V _{CC} – MAX, Output High, one pin to ground, one second duration.		- 25		-25	mA
C ₁	Digital Input Capacitance	T _A - 25°C, F - 1MHz		15		15	рF

Note:

1. Worst case, all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperat	ure Range		1
			Sta	Standard		Extended	
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
FS	Maximum Conversion Rate	V _{CC} - MIN, V _{EE} - MIN	20	1	20		MSPS
tsto	Sampling Time Offset	V _{CC} - MIN, V _{EE} - MIN	0	10	0	10	ns
tD	Output Delay Time	V _{CC} - MIN, V _{EE} - MIN, Load 1	15	40	15	45	ns
tho	Output Hold Time	V _{CC} - MAX, V _{EE} - MAX, Load 1	10		10	1	ns

System performance characteristics within specified operating conditions

			Temperat	ure Range Exte	ended	
Parameter	Test Conditions	Min	Max	Min	Max	Units
E _{LI} Linearity Error Integral, Indepen	ent V _{RT} , V _{RB} - NOM		±0.3		±0.3	%
ELD Linearity Error Differential	V _{RT} , V _{RB}		0.3	[0.3	%
Q Code Size	V _{RT} , V _{RB} - NOM	15	185	15	185	% Nomi
E _{OT} Offset Error Top	V _{IN} - V _{RT}		35		45	mV
EOB Offset Error Bottom	V _{IN} - V _{RB}		-22		-24	mV
T _{CD} Offset Error Temperature Coe	ficient		±50		±50	µv/°C
BW Bandwidth, Full Power Input		7		5		MHz
t _{TR} Transient Response, Full Scale			20		20	ns
SNR Signal-to-Noise Ratio	10MHz Bandwidth					
	20MSPS Conversion Rate					
Peak Signal/RMS	Noise 1.248MHz Input	53		52		dB
	2.438MHz Input	50		49	· ·	dB
RMS Signal/RMS	Noise 1.248MHz Input	44		43		dB
	2.438MHz Input	41		40		dB
NPR Noise Power Ratio	DC to 8MHz White Noise Bandwidth	36.5		36.5		dB
	4 Sigma Loading	j j	ĺ			
	1.248MHz Slot	{				
	20MSPS Conversion Rate	ļ	1			
E _{AP} Aperture Error			60		60	ps
DP Differential Phase	NTSC @ 4x Color Subcarrier		1.0		1.0	Degree
DG Differential Gain	NTSC @ 4x Color Subcarrier		1.7		1.7	%

Output Coding (Input range from 0.000 to -2.000V)

	Bina	ary	Offset Two's	Complement
Input Voltage	True	Inverted	True	Inverted
(-7.84 mV/Step)	NMINV - 1	0	0	1
	NLINV - 1	0	1	0
0.000	0000000	11111111	10000000	01111111
•	•	•	•	•
•	•	•	•	•
-0.0078	00000001	1111110	10000001	01111110
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
	•	•	•	•
-0.9960	0111111	10000000	1111111	0000000
- 1.0039	1000000	0111111	0000000	1111111
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
-1.9921	1111110	0000001	0111110	10000001
•	•	•	•	•
•	•	•	•	•
-2.000	1111111	0000000	01111111	1000000

Calibration

To calibrate the TDC1007, the top of the reference resistor chain, R_T , is connected to analog ground. The reference voltage is then set up by adjusting the bottom of the resistor chain to -2.0V. When this technique is used, offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the A/D. These parasitic resistors are shown as R_1 and R_2 in the Functional Block Diagram. The offset voltage error is the result of the resistor chain current flowing through the parasitic resistance. These errors can be compensated for by applying an equal offset to the analog input signal or by adjusting the voltages on R_T and R_B .

The effect of the offset error at the bottom of the resistor chain manifests itself in the form of a slight gain error which can be compensated for by varying the voltage applied to R_B. This voltage will necessarily be more negative than the desired reference level of -2.0V. The actual operating range of the A/D converter will be:

 $(V_{AGND} - (I_{REF} \times R1))$ to $(V_{RB} + (I_{REF} \times R2))$.

However, if both ends of the resistor chain are driven by transistor-buffered operational amplifiers, the voltages on R_T and R_B could then be adjusted to remove the effect of the parasitic resistances and therefore eliminate the need to apply a compensating offset voltage to the analog input signal. Here the operating range of the A/D will be:

 $(V_{BT} - (I_{BFF} \times R1))$ to $(V_{BB} + (I_{BFF} \times R2))$.

Since both V_{RT} and V_{RB} are adjustable, the offset voltage error effect can be cancelled and the A/D operated with gain and offset errors removed.

The TDC1007 provides access to the mid-point of the reference resistor chain, ${\sf R}_M.$ This point can be sensed by external circuitry for temperature compensation or gain tracking functions in the system. It can also be driven in the manner shown in Figure 6 for fine linearity correction.

Typical Application

Figure 5 shows a typical interface circuit for a TDC1007, an input buffer amplifier, and the reference voltage source. The reference voltage is supplied by an inverting amplifier that has been buffered with a PNP transistor. The transistor sinks the current flowing through the reference resistor chain and keeps the driving impedance at the bottom end of the resistor chain low. The gain of the overall circuit is adjusted by varying the input voltage to the operational amplifier.

The input amplifier is a bipolar wideband operational amplifier followed by an NPN transistor buffer. The transistor drives the input capacitance of the A/D converter and keeps the overall circuit frequency stable. The offset error is compensated by varying the current into the summing junction of the op-amp. Note that all five V_{IN} points are connected together and the buffer amplifier feedback loop is closed at that point. The buffer amplifier has a gain of two, raising the 1V p-p video input signal to 2V p-p at the input to the A/D converter. The A/D converter operates with a 2V full-scale.

Figure 6. Method For Driving Mid-Point Of Resistor Chain

LSI Products Division TRW Electronic Components Group

41

Parts List

R1	t	1/4W	
R2	t	1/4W	
R3	1K	1/4W	5%
R4	4.3K	1/4W	5%
R5	10	1/4W	5%
R6	56	1/2W	5%
R7	240	2W	5%
R8	6.8	1/2W	5%
R9	2K	1/2W	5%
R10	•	1/4W	5%
R11	2K	1/4W	10 - turn
R12	2K	1/4W	10-turn
R13	1.3K	1/4W	5%
R14	2.2K	1/4W	5%
R15	680	1/4W	5%

C1	0.1	501/
01	*	504
62		QUA
C3	0.1	50V
C4	0.1	50V
C5	0.1	50V
C6	1.0	15V
C7	0.1	50V
C8	0.1	50V
C9	0.1	50V
C10	0.1	50V

U1 TDC1007J1 U2 Plessey SL541C U3 μA741 U4 MC14030

Diodes

CR1 1N4001

Transistors				
01	2N5836			
02	2N2907			

† Indicates input terminator/divider

* Indicates amplifier compensation

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1007C1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	1007C1F
TDC1007C1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	1007C1A
TDC1007C1N	EXT-T _C = ~55°C to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	1007C1N
TDC1007J1C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	1007J1C
TDC1007J1G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	1007J1G
TDC1007J1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	1007J1F
TDC1007J1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	1007J1A
TDC1007J1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	1007J1N
TDC1007JOC	STD-T _A - 0°C to 70°C	Commercial	64 Lead DIP	1007JOC
TDC1007J0G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	1007J0G
TDC1007J0F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	1007J0F
TDC1007J0A	EXT-T _C = ~55°C to 125°C	MIL-STD-883	64 Lead DIP	1007J0A
TDC1007JON	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	1007JON
TDC1007L1F	EXT-T _C - ~55°C to 125°C	Commercial	68 Leaded Chip Carrier	1007L1F
TDC1007L1A	EXT-T _C = ~55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1007L1A
TDC1007L1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	1007L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Monolithic Video A/D Converter 6–Bit, 25MSPS

The TRW TDC1014 is a 25 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12MHz into 6-bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1014 consists of 63 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 6-Bit Resolution
- 1/4 LSB Linearity

Functional Block Diagram

- Sample-And-Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- · Selectable Output Format
- Available In 24 Lead DIP, 24 Lead CERDIP And 28 Contact Chip Carrier

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00278 Rev. E-2/84 Printed in the U.S.A.

TRA

Functional Block Diagram

Pin Assignments

24 Lead DIP – J7 Package 24 Lead CERDIP – B7 Package

LSI Products Division TRW Electronic Components Group

Functional Description

General Information

The TDC1014 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 63 reference voltages to produce an N-of-63 code (sometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The

encoding logic converts the N-of-63 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

The TDC1014 operates from two supply voltages, +5.0V and -6.0V. The return for I_{CC}, the current drawn from the +5.0V supply, is D_{GND}. The return for I_{FF}, the current drawn from

the $-6.0V\ \text{supply},\ \text{is }A_{GND}.$ All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package	C3 Package
VCC	Positive Supply Voltage	+5.0V	Pin 7	Pin 12
VEE	Negative Supply Voltage	~6.0V	Pins 1, 6	Pins 3, 9
D _{GND}	Digital Ground	0.0V	Pin 8	Pin 11
AGND	Analog Ground	0.0V	Pins 18, 20	Pins 22, 24

Reference

The TDC1014 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain $(V_{RT} - V_{RB})$ must be between 0.8V and 1.2V. The current in the reference resistor chain can be supplied directly by a 741

type operational amplifier. The nominal voltages are, V_{RT} = 0.0V, V_{RB} = -1.0V. These voltages may be varied dynamically up to 12MHz. Due to variation in the reference currents with clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically (as in an AGC circuit), a bypass capacitor is inappropriate and a low-impedance reference source is required.

Name	Function	Value	J7, B7 Package	C3 Package
RT	Reference Resistor (Top)	0.0V	Pin 22	Pin 26
R _B	Reference Resistor (Bottom)	- 1.0V	Pin 16	Pin 20

Control

Two function control pins, NMINV and NLINV, are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the Output Coding table given on page 50. These pins are active LOW, as signified by the prefix "N" in the signal name. They may be tied to V_{CC} for a logic "1," and D_{GND} for a logic "0."

Name	Function	Value	J7, B7 Package	C3 Package
NMINV	Not Most Significant Bit INVert	Π	Pin 4	Pin 5
NLINV	Not Least Significant Bit INVert	Π	Pin 5	Pin 6

Convert

The TDC1014 requires a convert (CONV) signal. A sample is taken (the comparators are latched) approximately 10ns after a rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature. The 63 to 6 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to the output latches on the

next rising edge. The outputs require a minimum value of to (output delay) after a rising edge of the CONV signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1014 is taking input sample N + 2.

Name	Function	Value	J7, B7 Package	C3 Package
CONV	Convert	TTL	Pin 15	Pin 19

Analog Input

The TDC1014 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert (CONV) signal. This variation is "ISB, clock synchronous bias current." The comparators also cause the input impedance, resistive and capacitive, to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the device must have less than 25 0hms impedance. The input signal will not damage the TDC1014 if it remains within the range of V_{EE} to +0.5V. If the input signal is between the V_{RT} and V_{RB} references, the output will be a binary number between 0 and 63 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All three analog input pins must be connected together.

Name	Function	Value	J7, B7 Package	C3 Package
v _{iN}	Analog Signal Input	OV to -1V	Pins 17, 19, 21	Pins 21, 23, 25

Outputs

The outputs of the TDC1014 are TTL compatible, capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. To improve rise time of outputs, it is recommended that the 2.2 kOhm pull-up resistors to V_{CC} be

connected to data outputs. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONV signal.

Name	Function	Value	J7, B7 Package	C3 Package
D ₁	MSB Output	Π	Pin 9	Pin 13
D ₂		TTL	Pin 10	Pin 14
D3		Π	Pin 11	Pin 15
D ₄		TTL	Pin 12	Pin 16
D5		ΠL	Pin 13	Pin 17
D ₆	LSB Output	πι	Pin 14	Pin 18

No Connects

There are several pins labeled No Connect (NC), which have no connections to the chip. Connect these pins to ${\rm A}_{GND}$ for noise reduction.

Name	Function	Value	J7, B7 Package	C3 Package
NC	No Connection	AGND	Pins 2, 3, 23, 24	Pins 1, 2, 4, 7, 8, 10, 27, 28

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

LSI Products Division TRW Electronic Components Group Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	65 · · · · · · · · · · · · · · · · · · ·
	V _{CC} (measured to D _{GND})
	V _{EE} (measured to A _{GND})
	A _{GND} (measured to D _{GND})
Input Voltages	,
	CONV, NMINV, NLINV (measured to D _{GND})
	VIN, VRT, VRB (measured to AGND)
	V_{RT} (measured to V_{RB})
Output	
	Applied Voltage (measured to D _{GND})0.5 to 5.5V ²
	Applied current, externally forced
	Short circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, ambient
	junction
	Lead, soldering (10 seconds)
	Storage

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

				Temperatu	ire Range			
	· · · ·		Standard			Extended		
Parameter			Nom	Max	Min	Nom	Max	Units
VCC	Positive Supply Voltage (Measured to D _{GND})	4.75	5.0	5.25	4.5	5.0	5.5	v
VEE	Negative Supply Voltage (Measured to AGND)	- 5.75	-6.0	-6.25	- 5.75	-6.0	-6.25	V
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	0.1	-0.1	0.0	0.1	V
tPWL	CONV Pulse Width, Low	19			19			ns
^t PWH	CONV Pulse Width, High	15			15			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0			V
IOL	Output Current, Logic Low			4.0			4.0	mA
ЮН	Output Current, Logic High			-400			- 400	μΑ
V _{RT}	Most Positive Reference Input ¹	-1.1	0.0	0.1	-1.1	0.0	0.1	v
V _{RB}	Most Negative Reference Input ¹	-0.9	- 1.0	-2.1	-0.9	-1.0	-2.1	V
V _{RT} -V _{RB}	Voltage Reference Differential	0.8	1.0	1.2	0.8	1.0	1.2	V
v _{IN}	Input Voltage	V _{RB}		V _{RT}	V _{RB}		V _{RT}	٧
TA	Ambient Temperature, Still Air	0		70				°C
т _С	Case Temperature				-55		125	°C

Operating conditions

Note:

1. V_{RT} Must be more positive than V_{RB} , and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

				Temperate	ure Range		
			Sta	ndard	Exte	nded	
Parameter		Test Conditions	Min	Max	Min	Max	Units
ICC Positive Supply (urrent	V _{CC} - MAX, static ¹		30		30	mA
IEE Negative Supply	Current	V _{EE} - MAX, static ¹					
		$T_A = 0^{\circ}C$ to $70^{\circ}C$		- 150			mA
		T _A - 70°C		-110			mA
		$T_{C} = -55^{\circ}C$ to 125°C				- 180	mA
		T _C - 125°C				- 100	mA
I _{REF} Reference Curren	t .	V _{RT} , V _{RB} - NOM	2.0	8.0	2.0	8.0	mA
R _{REF} Total Reference	Resistance		125	500	125	500	Ohms
R _{IN} Input Equivalent	Resistance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}	20	1	20		kOhms
C _{IN} Input Capacitance				75		75	рF
I _{CB} Input Constant B	as Current	V _{EE} - MAX		150		150	μΑ
I _{SB} Input Clock Sync	nronous. Bias			20		20	μΑ
I _{IL} Input Current, Lo	gic Low	$V_{CC} = MAX, V_I = 0.5V$		-2.0		-2.0	mA
I _{IH} Input Current, Lo	gic High	V _{CC} - MAX, V _I - 2.4V		75		75	μΑ
Input Current, Ma	ax Input Voltage	$V_{CC} - MAX, V_I - 5.5V$		1.0		1.0	mA
V _{OL} Output Voltage, L	ogic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	٧
V _{OH} Output Voltage, L	ogic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		٧
I _{OS} Short Circuit Out	out Current	V _{CC} – MAX, Output high, one pin to ground, one second duration.		25		25	mA
C ₁ Digital Input Cap	citance	Τ _Δ = 25°C, F = 1MHz		15		15	υF

Note:

1. Worst case: all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperat	ure Range		
			Star	ndard	Exte	nded	1
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
FS	Maximum Conversion Rate	V _{CC} - MIN, V _{EE} - MIN	25		25		MSPS
^t sto	Sampling Time Offset	V _{CC} - MIN, V _{EE} - MIN	0	10	0	10	ns
to	Digital Output Delay	V _{CC} - MIN, V _{EE} - MIN Load 1		35		35	пѕ
tho	Output Hold Time	V _{CC} - MAX, V _{EE} - MAX Load 1	15		15		ns

System performance characteristics within specified operating conditions

			Temperature Range				
			Star	ndard	Exte	nded	
Para	neter	Test Conditions	Min	Max	Min	Max	Units
ELI	Linearity Error Integral, Independent	V _{RT} , V _{RB} - NOM		0.4		0.4	%
ELD	Linearity Error Differential			0.4		0.4	%
۵	Code Size	V _{rt} , V _{rb} – Nom	50	150	50	150	% Nominal
EOT	Offset Error Top	V _{IN} - V _{RT}		30	1	30	mV
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-24		-24	mV
TCO	Offset Error Temperature Coefficient			± 100		±100	μV/°C
BW	Bandwidth, Full Power Input		12		12		MHz
tTR	Transient Response, Full Scale		Î	20		20	ns
SNR	Signal-to-Noise Ratio	10MHz Bandwidth,					
		25MSPS Conversion Rate			· ·		
	Peak Signal/RMS Noise	1.248MHz Input	44		44		dB
		2.438MHz Input	43		43		dB
	RMS Signal/RMS Noise	1.248MHz Input	35		· 35		dB
		2.438MHz Input	34		34		dB
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwidth 4 Sigma Loading	26		26		dB
		1.248MHz Slot 25MSPS Conversion Rate					
E _{AP}	Aperture Error			60		60	ps

Output Coding

			Bit	nary	Offset Two'	s Complement
Step	Ra	nge	True	Inverted	True	Inverted
	-1.0000V FS	-1.0080V FS	NMINV - 1	0	0	1
	15.8730 mV STEP	16.0000 mV STEP	NLINV – 1	D	1	0
00	0.0000V	0.0000V	000000	111111	100000	011111
01	-0.0159V	-0.0160V	000001	111110	100001	011110
•	•	•	•	•	•	•
•	•	•	•	•	. •	•
•	•	•	•	•	•	•
31	-0.4921V	-0.4960V	011111	100000	111111	000000
32	-0.5079V	-0.5120V	100000	011111	000000	11111
33	0.5238V	-0.5280V	100001	011110	000001	111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
62	-0.9841V	-0.9920V	111110	000001	011110	100001
63	- 1.000V	-1.0080V	111111	000000	011111	100000

Note:

Voltages are code midpoints when calibrated by the procedure given on page 51.

D

Calibration

To calibrate the TDC1014, adjust V_{RT} and V_{RB} to set the 1st and 63rd thresholds to the desired voltages. Note on the block diagram that R_1 is greater than R, ensuring calibration with a positive voltage on R_T . Assuming a 0V to -1V desired range, continuously strobe the converter with -0.0079V on the analog input, and adjust V_{RT} for output toggling between codes 00

and 01. Then apply -0.9921V and adjust V_{RB} for toggling between codes 62 and 63. Instead of adjusting V_{RT} , R_T can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. R_B is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Parts List

Resis	stors		
R1	t	1/4W	2%
R2	t	1/4W	2%
R3	1.0k Ω	1/4W	2%
R4	4.2kΩ	1/4W	2%
R5	10Ω	1/4W	2%
R6	56 Ω	1/2W	5%
R7	240 Ω	2W	5%
R8	6.8 Ω	1/2W	5%
R9	2.0k Ω	1/2W	2%
R10	••	1/4W	2%
R11	2.0k Ω	1/4W	Multiturn Cermet Pot
R12	2.0k Ω	1/4W	Multiturn Cermet Pot
R13	21.4 k Ω	1/4W	2%
R14	21.4k Ω	1/4W	2%
R15	2.2k Ω	1/4W	5%

Lapacitors				
C1	0.1 µF	50V		
C2	• '	50V		
C3	0.1µF	50V		
C4	0.1 µF	50V		
C5	0.1 µF	50V		
C6	1.0 µF	10V		
C7	10.0 µF	10V		
C8	0.1 µF	50V		

Diode	s
CR1	1N4001
Integ	rated Circuits
UI	TRW TDC1014
U2	Plessey SL541C
U3	741 Operational Amplifier
	Manual M0140011

Transistors

Q1 2N5836

*Amplifier Compensation Components

t

$$R2 = \frac{1}{\frac{2V_{Range}}{V_{REF} Z_{IN}}} = 0.001$$

$$R1 = Z_{IN} = \frac{1000 R2}{1000 + R2}$$

LSI Products Division TRW Electronic Components Group

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1014J7C	STD-T _A = 0°C to 70°C	Commercial	24 Lead DIP	1014J7C
TDC1014J7G	STD-TA - 0°C to 70°C	Commercial With Burn-In	24 Lead DIP	1014J7G
TDC1014J7F	EXT-T _C = -55°C to 125°C	Commercial	24 Lead DIP	1014J7F
TDC1014J7A	EXT-T _C 55°C to 125°C	MIL-STD-883	24 Lead DIP	1014J7A
TDC1014J7N	$EXT-T_C = -55^{\circ}C$ to $125^{\circ}C$	Commercial With Burn-In	24 Lead DIP	1014J7N
TDC1014C3C	STD-T _A - 0°C to 70°C	Commercial	28 Contact Chip Carrier	1014C3C
TDC1014C3G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Contact Chip Carrier	1014C3G
TDC1014C3F	EXT-T _C = -55°C to 125°C	Commercial	28 Contact Chip Carrier	1014C3F
TDC1014C3A	EXT-T _C = -55°C to 125°C	MIL-STD-883	28 Contact Chip Carrier	1014C3A
TDC1014C3N	EXT-T _C 55°C to 125°C	Commercial With Burn-In	28 Contact Chip Carrier	1014C3N
TDC1014B7C	STD-TA - D°C to 70°C	Commercial	24 Lead CERDIP	1014B7C
TDC1014B7G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	24 Lead CERDIP	1014B7G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1019 Preliminary Information

Monolithic Video A/D Converter 9-bit, 18MSPS

The TRW TDC1019 is an 18 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5MHz into 9-bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are differential ECL.

The TDC1019 consists of 512 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The outputs can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 9-Bit Resolution
- 18MSPS Conversion Rate, TDC1019-1
- 15MSPS Conversion Rate, TDC1019
- Overflow Flag

Functional Block Diagram

- Sample-And-Hold Circuit Not Required
- Differential Phase 1.0 Degree
- Differential Gain 2.0%
- Differential ECL Interface
- Selectable Output Format
- Single -5.2V Power Supply
- Available in 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Video Data Conversion
- Radar Data Conversion
- Data Acquisition
- IR Processors

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00281 Rev. C-3/84 Printed in the U.S.A.

7*Rii*i

Functional Block Diagram

Pin Assignments

64 Lead DIP - J1 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1019 has three functional sections: a comparator array, encoding logic and output latches. The comparator array compares the input signal with 512 reference voltages to produce an N-of-512 code (sometimes referred to as a

Power

The TDC1019 operates from separate analog and digital power supplies, V_{EEA} and V_{EED}, respectively. Since the required voltage for both V_{EEA} and V_{EED} is -5.2V, they may ultimately be connected to the same power source, but separate

"thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The encoding logic converts the N-of-512 code into binary data. The output latch holds the output constant between updates.

decoupling for each supply is recommended. The return for the current drawn from V_{EED} and V_{EEA} is D_{GND} and A_{GND}, respectively. All power and ground pins must be connected.

$2f_{\rm H}$	11.4	Jeru:	6Å f
1.57	1.4		44.4
		62	С.
5.96	-	\mathcal{L}	
200.00	e a a Mala i	Helen B	2
100.00	お川に作	76.5	10.1

Name	Function	Value	J1 Package	C1, L1 Package
V _{EEA}	Analog Supply Voltage	-5.2V	Pins 46, 48, 51	Pins 14, 16, 18, 20, 21
V _{EED}	Digital Supply Voltage	-5.2V	Pins 43, 54	Pins 13, 22
d _{gnd}	Digital Ground	0.0V	Pins 4, 7, 26, 27	Pins 41, 65
A _{gnd}	Analog Ground	0.0V	Pins 13, 14, 19, 20, 40, 57	Pins 9, 27, 48, 49, 55, 57

Reference

The TDC1019 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain ($V_{RT}-V_{RB}$) must be between 1.8V and 2.2V. The nominal voltages are V_{RT} = 0.0V and V_{RB} = -2.0V. Parasitic resistances, R₁ and R₂, introduce offsets at the top and bottom of the reference resistor chain. Sense points R_{TS}, R_{BS} and OFS may be used to null out these offsets. Note that R₁ is greater than R, ensuring that a positive voltage is required at R_T. R₃, R₄ and

R₅ are not designed to carry the reference current. OverFlow Sense (OFS) may be used to null out offsets at the overflow (most positive) comparator whenever the OVerFlow (OVF) flag is used. If the sense points are not used, they should be left open. The reference voltages may be varied dynamically up to 5MHz. If these inputs are exercised dynamically, a low-impedance reference source is required. If the reference is not varied, a bypass capacitor is recommended. A midpoint tap, R_M, allows the converter to be adjusted for optimum linearity. It can also be used to achieve a non-linear transfer function. This node should be driven from a low-impedance source. Noise introduced at this point, as well as the reference inputs (R_T, R_{TS}, R_B, R_{BS}, OFS), may result in encoding errors.

Name	Function	Value	J1 Package	C1, L1 Package
R _T	Reference Resistor (Top)	0.0V	Pin 10	Pin 59
R _{TS}	Reference Resistor (Top) Sense	0.0V	Pin 8	Pin 62
R _B	Reference Resistor (Bottom)	-2.0V	Pin 24	Pin 44
R _{BS}	Reference Resistor (Bottom) Sense	-2.0V	Pin 25	Pin 43
R _M	Reference Resistor (Midpoint)	-1.DV	Pin 17	Pin 52
OFS	OverFlow Sense	0.0V	Pin 9	Pin 61

Convert

The TDC1019 requires a differential CONVert (CONV and $\overline{\text{CONV}}$) signal. A sample is taken (the comparators are latched) approximately 10ns after the rising edge of the CONV signal. This time is t_{STO}, Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 512 to 9 encoding is performed on the falling edge of the CONV signal.

The coded result is transferred to the output latches on the next rising edge. Data is held valid at the output register for at least t_{HO}, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, t_D, time. In a synchronous system data for sample N is acquired by the external circuitry while the TDC1019 is taking input sample N + 2.

Name	Function	Value	J1 Package	C1, L1 Package
CONV	Convert	ECL	Pin 5	Pin 64
CONV	Convert, Complement	ECL	Pin 6	Pin 63

Analog Input

The TDC1019 uses strobed latching comparators which cause the input impedance, resistive and capacitive, to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must be less than 25 Ohms. The input signal will not damage the TDC1019 if it remains within the range of V_{EEA} to +0.5V. If the input signal is between the V_{RT} and V_{RB} references, the output will be a binary number between 0 and 511 inclusive. All five analog input pins must be connected.

Name	Function	Value	J1 Package	C1, L1 Package
v _{IN}	Analog Signal Input	OV to -2V	Pins 12, 15, 16, 18, 22	Pins 46, 50, 53, 54, 58

Outputs

The outputs of the TDC1019 are differential ECL levels. The recommended load is 500 Ohms to -2V. For optimum operation over the full temperature range, differential line receivers should be used. An OVerFlow (OVF) signal indicates

that the analog input has exceeded the threshold of the most positive comparator. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONVert signal.

Name	Function	Value	J1 Package	C1, L1 Package
D ₁	MSB Output	ECL	Pin 30	Pin 38
0 <u>1</u>	MSB Output Complement	ECL	Pin 31	Pin 37
D ₂		ECL	Pin 32	Pin 36
$\overline{D_2}$		ECL	Pin 33	Pin 35
D3		ECL	Pin 34	Pin 34
D3		ECL	Pin 35	Pin 33
D4		ECL	Pin 36	Pin 32
D4		ECL	Pin 37	Pin 31
D ₅		ECL	Pin 58	Pin 7
$\overline{D_5}$		ECL	Pin 59	Pin 6
D ₆		ECL	Pin 60	Pin 5
D ₆		ECL	Pin 61	Pin 4
D7		ECL	Pin 62	Pin 3
$\overline{D_7}$		ECL	Pin 63	Pin 2
D ₈		ECL	Pin 64	Pin 1
Da		ECL	Pin 1	Pin 68
Dg	LSB Output	ECL	Pin 2	Pin 67
D9	LSB Output Complement	ECL	Pin 3	Pin 66
OVF	Overflow Output	ECL	Pin 28	Pin 40
OVF	Overflow Output Complement	ECL	Pin 29	Pin 39

No Connects

There are several pins labeled No Connect (NC). These pins should be left open.

Name	Function	Value	J1 Package	C1, L1 Package
NC	No Connect	Open	Pins 11, 21, 23, 38, 39, 41, 42, 44,	Pins 8, 10, 11, 12, 15, 17, 19, 23, 24,
			45, 47, 49, 50, 52, 53, 55, 56	26, 28, 29, 30, 42, 45, 47, 51, 56, 60

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

 c_{IN} is a nonlinear junction capacitance v_{BB} is a voltage equal to the voltage on PIN \mathbf{R}_B

LSI Products Division TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltage	S	1
	V _{EED} (measured to D _{GND})	+0.5 to -7.0V
	V _{EEA} (measured to A _{GND})	
	AGND (measured to DGND)	+1.0 to -1.0V
	V _{EEA} (measured to V _{EED})	+0.5 to -0.5V
Input Voltage	· · · · · · · · · · · · · · · · · · ·	
	CONV. CONV (measured to D _{GND})	+0.5 to V _{EE} V
	VIN, VRT, VRB (measured to AGND)	+0.5 to V _{EE} V
	V _{RT} (measured to V _{RB})	
Outputs		
	Short circuit duration (single output to GND)	Indefinite
Temperature		
	Operating, case	60 to +140°C
	junction	
	Lead, soldering (10 seconds)	+300°C
	Storage	65 to +150°C
Note:		

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.

Functional operation under any of these conditions is NOT implied.

Operating conditions

A DA - THE REPORT OF A DATE OF			Tem	perature R	ange	
				Standard		
Parameter			Min	Nom	Max	Units
VEED	Digital Supply Voltage (measured to D _{GND})		-4.9	-5.2	-5.5	v
VEEA	Analog Supply Voltage (measured to AGND)		-4.9	-5.2	- 5.5	V
VAGND	Analog Ground Voltage (measured to DGND)		-0.1	0.0	+0.1	V
V _{EEA} -V _{EED}	Supply Voltage Differential		-0.1	0.0	+0.1	v
tPWL	CONV Pulse Width, Low	Standard	25			ns
		-1 Version	22			ns
^t PWH	CONV Pulse Width, High	Standard	32			ns
		-1 Version	28			ns
VIL	Input Voltage, Logic Low				-1.4	٧
VIH	Input Voltage, Logic High		- 1.0			v
V _{RT}	Most Positive Reference Input ¹		-0.1	0.0	+0.1	v
V _{RB}	Most Negative Reference Input ¹		-1.9	-2.0	-2.1	v
V _{RT} -V _{RB}	Voltage Reference Differential		1.8	2.0	2.2	V
ViN	Input Voltage		V _{RB}		V _{RT}	V
TA	Ambient Temperature, Still Air ²		0		+ 70	°C

Notes:

1. V_{RT} must be more positive than V_{RB} , and voltage reference differential must be within specified range.

2. 500 L.F.P.M. moving air required above 50°C.

Electrical characteristics within specified operating conditions

			Temperat Star	Temperature Range Standard	
Parame	ter	Test Conditions	Min	Max	Units
I _{EE}	Supply Current	V _{EED} , V _{EEA} - MAX			
		T _A = 0°C to 70°C		- 850	mA
		T _A - 50°C		-725	mA
		T _A - 70°C (500 LFPM)		-700	mA
REF	Reference Current	V _{RT} , V _{RB} - NOM	10	36	mA
R _{REF}	Total Reference Resistance		56	200	Ohms
R _{IN}	Input Equivalent Resistance	V _{RT} , V _{RB} – NOM, V _{IN} – V _{RB}	2.0		k0hm:
C _{IN}	Input Capacitance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}		280	рF
СВ	Input Constant Bias Current	V _{EEA} - MAX, V _{IN} - 0.0V		750	μA
li	Digital Input Current	V _{EED} - MAX, V _I 0.7V		150	μΑ
V _{OL}	Output Voltage, Logic Low	V _{EED} - NOM, I _{OL} - Test Load ¹	-1.6		V
V _{OH}	Output Voltage, Logic High	V _{EED} - NOM, I _{OH} - Test Load ¹		-0.95	V
CI	Digital Input Capacitance	T _A = 25°C, F = 1MHz		35	pF

Notes:

1. Test Load = 500 Ohms to -2.0V.

Switching characteristics within specified operating conditions

			Temperat	ure Range	
			Sta	ndard	
Parame	eter	Test Conditions	Min	Max	Units
F _S Maximum Conver	Maximum Conversion Rate	V _{EED} , V _{EEA} – MIN Standard	15		MSPS
		V _{EED} , V _{EEA} - MIN -1 Version	18		MSPS
^t sto	Sampling Time Offset	V _{EED} , V _{EEA} – MIN	0	15	ns
to	Output Delay	V _{EED} , V _{EEA} - MIN, Load ¹		35	ns
tho	Output Hold Time	V _{EED} , V _{EEA} - MAX, Load ¹	3		ns

Note:

1. Test load = 500 Ohms to -2.0V.

D

In all we will be the maximum registry of

System performance characteristics within specified operating conditions

,	na na serie da en			Temperat Star	ure Range ndard	and and the second s
Param	Parameter		Test Conditions	Min	Max	Units
ELI	Linearity Error Integral,	Independent	V _{RT} , V _{RB} = NOM		±0.3	%
			V _{RT} , V _{RB} = NOM ¹ , t _{PWH} = 28ns		±0.15	%
ELD	Linearity Error Different	tial	V _{RT} , V _{RB} - NOM		0.15	%
۵	Code Size		v _{rt} , v _{rb} = nom	15	185	% Nominal
EOTS	Offset Error Top		V _{IN} = V _{RT} , R _{TS} Connected		±4	mV
E _{OT}	Offset Error Top		V _{IN} = V _{RT}		+ 40	mV
EOBS	Offset Error Bottom		V _{IN} = V _{RB} , R _{BS} Connected		±4	mV
EOB	Offset Error Bottom		V _{IN} = V _{RB}		- 40	mV
T _{CO}	Offset Error Tempera	ature Coefficient			20	μν/°C
^t TR	Transient Response, Full	Scale			20	ns
BW	Bandwidth, Full Power	Input		5		MHz
SNR	Signal-to-Noise Ratio		5MHz Bandwidth,			
			18MSPS Conversion Rate			
	Peak Si	gnal/RMS Noise	1.25MHz Input	52		dB
			2.438MHz Input	49		dB
	RMS Si	gnal/RMS Noise	1.25MHz Input	43		dB
			2.438MHz Input	40		dB
E _{AP}	Aperture Error				100	ps
DP	Differen	tial Phase ^{1,2}	4 x NTSC Subcarrier		1.0	Degrees
DG	Differen	tial Gain ^{1,2}	4 x NTSC Subcarrier		2.0	%

Notes:

1. Voltage at midpoint (R_M) adjusted.

2. In excess of quantization.

Output Coding

			Binary		Offset Two	's Complement
Step	Ra	nge	True	Inverted	True	Inverted
	-2000V FS	-2.0440V FS		All Outputs	D ₁ Inverted	D ₂ -Og Inverted
	3.9139 mV Step	4.000 mV Step		Inverted		
000	0.0000V	0.0000V	00000000	11111111	10000000	01111111
001	0.0039V	0.0040V	000000001	11111110	100000001	01111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
255	0.9980V	1.0200V	01111111	10000000	1111111	000000000
256	1.0020V	1.0240V	10000000	0111111	0000000	11111111
257	1.0059V	1.0280V	10000001	01111110	00000001	111111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
510	1.9961V	1.9980V	11111110	00000001	011111110	100000001
511	2.0000V	2.0200V	11111111	00000000	01111111	10000000

Notes:

1. Any output may be inverted by interchanging connections to the true (D_N) and complement $(\overline{D_N})$ output pins.

2. Voltages are code midpoints when calibrated by the procedure given below.

Calibration

To calibrate the TDC1019, adjust V_{RT} and V_{RB} to set the 1st and 511th thresholds to the desired voltages. Note that R_1 is greater than R, ensuring calibration with a positive voltage on R_T . Assuming a 0V to -2V desired range, continuously strobe the converter with -0.00196V on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -1.9980V and adjust V_{RB} for toggling between codes 510 and

511. The Overflow flag is calibrated similarly to V_{RT} except that the converter input is set 1 LSB more positive than the top of the encoding range (-0.00196V in this example). Instead of adjusting V_{RT} , R_T can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. RB is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Figure 5. Typical Interface Circuit

Parts List

Resis	tors			Capa	citors		Integr	rated Circuits
R1	.0Ω ¹			C1	0.1µF	50V	U1	TRW TDC1019
R2	80.6Ω ¹	1/4W	2%	C2	2.0µF	50V	U2	Plessey SL5410
R3	1.0K Ω	1/4W	2%	C3	0.1µF	50V	U3	MC4741
R4	4.2K Ω	1/4W	2%	C4	0.1µF	50V	U4	MC1403
R5	2.0K Ω	1W	Multiturn Cermet Pot	C5	0.1µF	50V	U5	MC10116
R6	100.0 Ω	3W	5%	C6	1.0µF	10V		
R7	120.0 Ω	3W	5%	C7	0.0µF	10V	-	• .
R8	10.0 Ω	1/4W	5%	C8	(See Note 2)		Irans	istors
R9	2.0K Ω	1/4W	2%	C9	(See Note 2)			
R10	(See Note 2)			C10	0.1µF	50V	01	2N5836
R11	2.0KΩ	1W	Multiturn Cermet Pot	C11	0.1µF	50V	02	2N2907
R12	2.0KΩ	1W	Multiturn Cermet Pot	C12	0.1µF	50V		
R13	20.0K Ω	1/4W	2%	C13	0.1µF	50V	Diada	•
R14	20.0K Ω	1/4W	2%	C14	0.1µF	50V	Dioue	ა
R15	2.0K Ω	1/4W	2%	C15	0.1µF	50V		11//001
R16	2.0K Ω	1/4W	2%	C16	0.1µF	50V	UI	1114001

Notes:

R17

Selected for desired input impedance and voltage range.
 Selected for amplifier compensation.

1/4W

2%

75.0K Ω

Ordering	Information
----------	-------------

Product	Temperature Range	Screening	Package	Package
Number				Marking
TDC1019J1C	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	64 Lead DIP	1019J1C
TDC1019J1C1	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	64 Lead DIP	1019J1C1
TDC1019J1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	64 Lead DIP	1019J1G
TDC1019J1G1	$STD - T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	64 Lead DIP	1019J1G1
TDC1019C1C	STD-T _A = 0°C to 70°C	Commercial	68 Contact Chip Carrier	1019C1C
TDC1019C1G1	STD-T _A = 0°C to 70°C	Commerical	68 Contact Chip Carrier	1019C1C1
TDC1019C1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	68 Contact Chip Carrier	1019C1G
TDC1019C1G1	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	68 Contact Chip Carrier	1019C1G1
TDC1019L1C	STD-T _A - 0°C to 70°C	Commercial	68 Leaded Chip Carrier	1019L1C
TDC1019L1C1	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	68 Leaded Chip Carrier	1019L1C1
TDC1019L1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	68 Leaded Chip Carrier	1019L1G
TDC1019L1G1	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	68 Leaded Chip Carrier	1019L1G1

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division TRW Electronic Components Group

Monolithic A/D Converter

4-bit, 25MSPS

The TRW TDC1021 is a 25 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting signals with full-power frequency components up to 10MHz into 4-bit digital words. A sample-and-hold circuit is not required. All digital inputs and outputs are TTL compatible.

The TDC1021 consists of 15 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs, in binary or offset two's complement coding.

Features

- 4-Bit Resolution
- ± ¼ LSB Linearity

Functional Block Diagram

- Sample And Hold Circuit Not Required
- TTL Compatible
- 25MSPS Conversion Rate
- Selectable Output Format
- Available In 16 Lead DIP
- Standard/Extended Temperature Range

Applications

- Video Special Effects
- Radar Data Conversion
- High-Speed Multiplexed Data Acquisition
- Medical Imaging
- Image Processing

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038

Phone: (619) 457-1000 Telex: 697-957 TWX: 910-335-1571

©TRW Inc. 1984 40G01334 Rev. A-2/84 Printed in the U.S.A.

Functional Block Diagram

Functional Description

General Information

The TDC1021 has three functional sections: a comparator array, encoding logic and output latches. The comparator array compares the input signal with 15 reference voltages to produce an N-of-15 code (sometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off).

The encoding logic converts the N-of-15 code into binary or offset two's complement coding and can invert either output code. This coding function is selected by DC controls on pins NMINV and NLINV. The output latch holds the data on the output constant between updates.

Power

The TDC1021 operates from two supply voltages: +5.0V which is referenced to D_{GND} , and -6.0V which is referenced to A_{GND} . All power and ground pins must be connected.

Name	Function	Value	J9 Package
VCC	Positive Supply Voltage	+5.0V	Pin 10
VEE	Negative Supply Voltage	-6.0V	Pin 6
D _{GND}	Digital Ground	0.0V	Pin 11
A _{GND}	Analog Ground	0.0V	Pin 1

Reference

The TDC1021 converts signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain ($V_{RT}-V_{RB}$) must be between 0.4V and 1.3V. The current in the reference resistor chain can be supplied directly by an operational amplifier. These voltages may be varied dynamically up to 10MHz. Due to variation in the reference currents with clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in

which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically (as in an AGC circuit), a bypass capacitor is inappropriate and a low-impedance reference source is required. A reference middle is also provided; this may be used as an input to adjust the mid-scale point in order to improve integral linearity. This point may also be used as a tap to supply a mid-scale voltage to offset the analog input. If V_{RM} is used as an output, it must be connected to a high input impedance device which has negligible offset current. Noise generated at this point will adversely affect the performance of the device.

Name	Function	Value	J9 Package
V _{RT}	Reference Resistor (Top)	0.04V	Pin 4
v _{RM}	Reference Resistor (Middle)	-0.5V	Pin 8
V _{RB}	Reference Resistor (Bottom)	- 1.04V	Pin 5

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e., steady state) use. They permit the output coding to be either binary or offset two's complement, in either true or inverted sense, according to the Output Coding table given on page 72. These pins are active LOW, as signified by the prefix "N" in the signal name. They may be tied to V_{CC} for a logic "1" and D_{GND} for a logic "0."

Name	Function	Value	J9 Package
NMINV	Not Most Significant Bit INVert	ΠL	Pin 9
NLINV	Not Least Significant Bit INVert	ΠL	Pin 7

Convert

The TDC1021 requires a convert (CONV) signal. A sample is taken (the comparators are latched) approximately 10ns after a rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature. The 15 to 4 encoding is performed on the falling edge of the CONV signal. The coded result is then transferred to the output latches on

the next rising edge. Data is held valid at the output register for at least t_{HO} , Output Hold Time, after the rising edge of CONV. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e., data for sample N is acquired by the external circuitry while the TDC1021 is taking input sample N+2.

Name	Function	Value	J9 Package
CONV	Convert	ΠL	Pin 16

Analog Input

The TDC1021 uses strobed latching comparators which cause the input bias current to vary by approximately 5% with the convert (CONV) signal. This variation is "ISB, clock synchronous bias current." The comparators also cause the input impedance, resistive and capacitive, to vary with the signal level as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance must be less than 25 Ohms. The input signal will not damage the TDC1021 if it remains within the range of V_{EE} to +0.5V. If the input signal is between the the V_{RT} and V_{RB} references, the output will be a valid representation of the input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending upon whether the signal is off-scale in the positive or negative direction.

Name	Function	Value	J9 Package		
v _{IN}	Analog Signal Input	OV to -1V	Pin 2		

Outputs

The outputs of the TDC1021 are TTL compatible, capable of driving four low-power Schottky TTL (54/74LS) unit loads or the equivalent. To improve rise time of outputs, it is recommended that 2.2 kOhm pull-up resistors to V_{CC} be

connected to data outputs. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONV signal.

Name	Function	Value	J9 Package
D ₁	MSB Output	ΠL	Pin 12
D2		ΠL	Pin 13
D3		Π	Pin 14
D ₄	LSB Output	ΠL	Pin 15

RIN

Ċ

V_{RB}

No Connects

Pin 3 of the TDC1021 is labeled No Connect (NC), and has no connection to the chip. Connect this pin to $\mathsf{A}_{\mbox{GND}}$ for noise reduction.

Name	Function	Value	J9 Package
NC	No Connect	A _{GND}	Pin 3

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

LSI Products Division TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	83	
	V _{CC} (measured to D _{GND})	0.5 to +7.0V
	V _{EE} (measured to A _{GND})	
	${\rm A_{GND}}$ (measured to ${\rm D_{GND}}$	
Input Voltage	3	
	CONV, NMINV, NLINV (measured to D _{GND})	
	VIN, VRT, VRB (measured to AGND)	
	v_{RT} (measured to v_{RB})	
Output		· · · · · · · · · · · · · · · · · · ·
	Applied voltage (measured to D _{GND})	0.5 to +7.0V ²
	Applied current, externally forced	-1.0 to +6.0 mA ^{3,4}
	Short circuit duration (single output in high state to ground)	1 sec
Temperature		
	Operating, ambient	
	junction	+ 175°C
	Lead, soldering (10 sec.)	
	Storage	
Notes:	1. Absolute maximum rations are limiting values applied individually while all other paramet	ers are within specified operation conditions

Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

			Temperature Range					
			Standard			Extended		
Parameter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Positive Supply Voltage (Measured to D _{GND})	4.75	5.0	5.25	4.5	5.0	5.5	v
VEE	Negative Supply Voltage (Measured to AGND)	-5.75	-6.0	-6.25	-5.75	-6.0	-6.25	٧
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	0.1	-0.1	0.0	0.1	V
^t PWL	CONV Pulse Width, Low	19			19			ns
^t PWH	CONV Pulse Width, High	15			15			ns
VIL	Input Voltage, Logic Low			Ŏ.Â			0.8	٧
v _{IH}	Input Voltage, Logic High	2.0			2.0			V
	Output Current, Logic Low			4.0			4.0	mA
lон	Output Current, Logic High			-400			-400	μ
V _{RT}	Most Positive Reference Input ¹	-1.9	0.0	0.1	-1.9	0.0	0.1	٧
V _{RB}	Most Negative Reference Input ¹	-2.1	-1.0	-0.1	-2.1	-0.1	-0.1	V
V _{RT} -V _{RB}	Voltage Reference Differential	0.2	1.0	2.0	0.2	1.0	2.0	V
V _{IN}	Input Voltage	V _{RB}		V _{RT}	V _{RB}		V _{RT}	V
TA	Ambient Temperature, Still Air	0		70				°C
т _с	Case Temperature				- 55		125	°C

Note:

1. $V_{\mbox{RT}}$ must be more positive than $V_{\mbox{RB}}$ and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

			Temperature Range			
		Sta	Standard		Extended	
Parameter	Test Conditions	Min	Max	Min	Max	Units
I _{CC} Positive Supply Current	V _{CC} = MAX, static ¹	× .	35		35	mA
IEE Negative Supply Current	V _{EE} - MAX, static ¹		-60		-60	mA
IREF Reference Current	V _{RT} , V _{RB} - NOM		-4.0		-4.0	mA
R _{REF} Total Reference Resistance		250		250		Ohms
R _{IN} Input Equivalent Resistance	V _{RT} , V _{RB} – NOM, V _{IN} – V _{RB}	60		60		kOhms
C _{IN} Input Capacitance			25		25	p۶
ICB Input Constant Bias Current	V _{EE} - MAX		20		20	μA
ISB Input Clock Synchronous Bi	IS		5		5	μΑ
IIL Input Current, Logic Low	V _{CC} - MAX, V ₁ - 0.5V		-2.0	ſ	-2.0	mA
I _{IH} Input Current, Logic High	$V_{CC} = MAX, V_I = 2.4V$		75		75	μΑ
I Input Current, Max Input Vo	Itage V _{CC} – MAX, V _I – 5.5V		1.0		1.0	mA
V _{OL} Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.4		0.4	v
V _{OH} Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V
I _{OS} Short Circuit Output Curren	V_{CC} – MAX, Output High, one pin to ground, one second duration		-25		-25	mA
C1 Digital Input Capacitance	T _A – 25°C, F – 1MHz		15		15	рF

The contract and the states of the states of the states

Note:

1. Worst case: all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperature Range			
			Standard Extended		ended	1	
Parameter		Test Conditions	Min	Max	Min	Max	Units
FS	Maximum Conversion Rate	V _{CC} - MIN, V _{EE} - MIN	25		25		MSPS
tSTO	Sampling Time Offset	V _{CC} - MIN, V _{EE} - MIN	0	10	0	15	n\$
to	Output Delay	V _{CC} - MIN, V _{EE} - MIN Load 1		35		35	ns
tho	Output Hold Time	V _{CC} - MAX, V _{EE} - MAX Load 1	5		5		ns

.
System performance characteristics within specified operating conditions

				Temperatu	re Range		
			Sta	ndard	Ext	ended	1
Parar	neter	Test Conditions	Min	Max	Min	Max	Units
ELI	Linearity Error Integral, Independent	V _{RT} , V _{RB} + NOM		±1.6		±1.6	%
ELD	Linearity Error Differential			1.6		1.6	%
۵	Code Size	V _{RT} , V _{RB} - Nom	50	150	50	150	% Nominal
EOT	Offset Error Top	V _{IN} - V _{RT}		+50		+ 50	mV
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-50		~50	mV
T _{CO}	Offset Error Temperature Coefficient			±100		±100	μv/°C
BW	Bandwidth, Full Power Input		10		10		MHz
t _{TR}	Transient Response, Full Scale			20		20	ns
EAP	Aperture Error			50		50	ps
oding					•		

Output Coding

			Bin	ary	Offset Two's	Complement
Step	Ra	nge	True	Inverted	True	Inverted
	-1.0000V FS	-0.960V FS	NMINV - 1	0	0	1
	66.667 mV STEP	64.000 mV STEP	NLINV – 1	0	. 1	. 0
00	0.000V	0.000V	0000	1111	1000	0111
01	-0.067V	-0.064V	0001	1110	1001	0110
02	-0.133V	-0.128V	0010	1101	1010	0101
03	-0.200V	-0.192V	0011	1100	1011	0100
04	-0.267V	-0.256V	0100	1011	- 1100	0011
05	-0.333V	-0.320V	0101	1010	1101	0010
06	-0.400V	-0.384V	0110	1001	1110	0001
07	-0.467V	-0.448V	0111	1000	1111	0000
08	-0.533V	-0.512V	1000	0111	0000	1111
09	-0.600V	-0.576V	1001	0110	0001	1110
10	-0.667V	-0.640V	1010	0101	0010	1101
11	-0.733V	-0.704V	1011	0100	0011	1100
12	-0.800V	-0.768V	1100	0011	0100	1011
13	-0.867V	-0.832V	1101	0010	0101	1010
14	-0.933V	-0.896V	1110	0001	0110	1001
15	-1.000V	-0.960V	1111	0000	0111	1000

NMINV and NLINV are to be considered DC controls. They may be tied to V_{CC} for a logical "1" and tied to digital ground for a logical "0."

Calibration

To calibrate the TDC1021, adjust V_{RT} and V_{RB} to set the 1st and 15th thresholds to the desired voltages. Assuming a 0V to -1.0V desired range, continuously strobe the converter with -0.0335V on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -0.9665V and adjust V_{RB} for toggling between codes 14 and 15. Instead of adjusting V_{RT} , R_T can be connected to analog ground and the 0V end of the range calibrated with an analog input buffer offset control. R_B is a convenient point for gain adjust that is not in the analog signal path.

Typical Interface Circuit

Figure 5 shows a typical interface circuit. In this circuit the input has the range of 0.067V to -0.933V. The range is the difference between the voltages at which the transition from code 0 to code 1 occurs and the transition from code 14 to 15 occurs, +1 LSB. This extra LSB is produced when the analog to digital converter is calibrated with the transition from the 0 code to the 1st code occurring one half LSB away from ground, and the transition from the 14th to 15th codes occurring 1/2 LSB away from full scale. If a range from 0.000V to 1.000V is required, then $V_{\rm RT}$ must be adjusted (see calibration) and another buffer circuit added.

The TDC1021 does not require a buffer to drive the analog input, however, a buffer circuit may be used to provide signal conditioning such as filtering or gain/offset.

Figure 5. Typical Interface Circuit

Parts List

Resistors			Capacitors			Integrated Circuits		
R1	2.0K Ω	1/4W	Multiturn Cermet Pot	C1	10 µF	10V	Ul	TRW TDC1021
R2	21.5K Ω	1/4W	2%	C2	1 µF	10V	U2	741 Op-Amp
R3	21.5K Ω	1/4W	2%	C3	0.1 µF	50V	U3	Motorola MC1403U
R4	2.2K Ω	1/4W	5%	C4	0.1 µF	50V		

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1021J9C	STD-T _A = 0°C to 70°C	Commercial	16 Lead DIP	1021J9C
TDC1021J9G	STD-TA = 0°C to 70°C	Commercial With Burn-In	16 Lead DIP	1021 <i>J</i> 9G
TDC1021J9F	EXT-T _C = -55°C to 125°C	Commercial	16 Lead DIP	1021 <i>J</i> 9F
TDC1021J9A	EXT-T _C = -55°C to 125°C	MIL-STD-883	16 Lead DIP	1021J9A
TDC1021J9N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	16 Lead DIP	1021J9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1025 Preliminary Information

Monolithic A/D Converter 8-bit, 50MSPS

The TRW TDC1025 is a 50 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 12MHz into 8-bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are ECL compatible.

The TDC1025 consists of 255 clocked latching comparators, combining logic, and an output buffer register. A differential ECL convert signal controls the conversion operation. The digital outputs will interface with differential or single-ended ECL. The device requires a single -5.2V power supply.

Features

8-Bit Resolution

Functional Block Diagram

- 50MSPS Conversion Rate
- Sample-And-Hold Circuit Not Required
- Differential Or Single Ended ECL Compatible
- Single -5.2V Power Supply
- Available In 68 Contact Or Leaded Chip Carrier

Applications

- Medical Electronics
- · Fluid Flow Analysis
- Seismic Analysis
- Radar/Sonar
- Transient Analysis
- High Speed Image Processing

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1983 40G01330 Rev. A-11/83 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

LSI Products Division TRW Electronic Components Group

Functional Description

General Information

The TDC1025 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 255 reference voltages to produce an N-of-255 code (sometimes referred to as a

Power

The TDC1025 operates from a single -5.2V power supply. The separate analog and digital power pins, V_{EEA} and V_{EED}, both require -5.2V, and may be connected to the same power supply. However, separate decoupling of the analog and digital power pins is recommended (refer to Figure 5 for a typical decoupling circuit). The return for I_{EED}, the current drawn from

"thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The encoding logic converts the N-of-255 code into binary format. The output latch holds the output constant between updates.

the V_{EED} supply, is D_{GND}. The return for I_{EEA}, the current drawn from the V_{EEA} supply, is A_{GND}. The analog and digital ground planes should be separated to minimize ground noise and prevent ground loops, and connected back at the power supply. All power and ground pins must be connected.

		V	'alue					C1, L1	Pac	k
y.	All	power	and	ground	pins	must	be	CONNE	cted.	
۱r	ρνρη	nt arou	nd In	nns an	d ror	necter	1 ha	ark at	the	r

Name	Function	Value	C1, L1 Package
V _{EED}	Digital Supply Voltage	-5.2V	Pins 7, 29
V _{EEA}	Analog Supply Voltage	-5.2V	Pins 13, 14, 16, 18, 20, 22, 23
D _{GND}	Digital Ground	0.0V	Pins 8, 28, 39, 64
AGND	Analog Ground	0.0V	Pins 46, 50, 55, 58

Reference

The TDC1025 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain ($V_{RT}-V_{RB}$) must be between 1.8V and 2.2V. The nominal voltages are V_{RT} = 0.0V, V_{RB} = -2.0V.

Two sense points, R_{TS} and R_{BS}, may be used to minimize the offset errors and temperature sensitivity. With sensing, resistors R₁ and R₂ (as shown in the Functional Block diagram) are contained within the feedback loop, and no longer contribute to the offset error. The remaining offset errors, E_{OTS} and E_{OBS}, can be eliminated by the calibration method discussed on page 88. The temperature sensitivity of this remaining offset error is specified by t_{COS}, Temperature Coefficient, Sensed. The sense resistors, R₃ and R₄ (as shown in the Functional Block diagram) are approximately 1 kOhm. These resistors are not designed to carry the total reference current, and should not be used as reference inputs. If the sensed points are not used, these pins should be left open. The circuit in Figure 5 shows a typical sensing configuration.

A midpoint tap, R_M , allows the converter to be adjusted for optimum linearity, although adjustment is not necessary to meet the linearity specification. It can also be used to achieve a nonlinear transfer function. The circuit shown in Figure 7 will provide approximately 1/2 LSB adjustment of the linearity midpoint. The characteristic impedance at this node is approximately 75 Ohms, and should be driven from a low-impedance source. Note that any load applied to this node will affect linearity. Noise introduced at this point, as well as the reference inputs and sense points may degrade the quantization process, resulting in encoding errors.

Due to the variation in the reference currents with clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically, (as in an automatic gain control circuit), a low-impedance reference source is required. The reference voltages may be varied dynamically at rates up to 10MHz.

Reference (Cont.)

Name	Function	Value	C1, L1 Package
RT	Reference Resistor (Top)	0.0V	Pin 62
RTS	Reference Resistor Sense (Top)		Pin 63
R _M	Reference Resistor (Middle)	-1.0V	Pin 49
R _B	Reference Resistor (Bottom)	-2.0V	Pin 41
R _{BS}	Reference Resistor Sense (Bottom)		Pin 40

Convert

The TDC1025 requires a differential ECL Convert (CONV) signal. Both convert inputs must be connected, with CONV being the complement of CONV. A sample is taken (the comparators are latched) within 10ns after the rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay may vary from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling time offset is less than 50 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded output is transferred to the output latches on the next rising edge. Data is held valid at the output register for at least t_{HO}, Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, t_D. This permits the previous conversion result to be acquired by external circuitry on that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1025 is taking input sample N + 2. Note that there are minimum pulse width (t_{PWL} and t_{PWH}) requirements on the waveshape of the CONV signal. (Refer to Figure 1)

Name	Function	Value	C1, L1 Package
CONV	Convert	ECL	Pin 54
CONV	Convert Complement	ECL	Pin 53

Analog Input

The TDC1025 comparator array causes the input impedance to vary slightly with the signal level, as comparator input transistors are cut-off or become active. For optimal performance, the source impedance driving the device must be less than 25 Ohms. The input signal will not damage the TDC1025 if it remains within the range of +0.5V to V_{EEA}. If the input signal is between the V_{RT} and V_{RB} references, the output will be a binary number between 0 and 255, proportional to the magnitude of the analog input. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All eight analog input pins should be connected through resistors near the chip

to provide a balanced analog input to all portions of the comparator array. The optimized values are shown in Figure 6.

The analog input bandwidth, specified for a full-power input, is limited by the slew rate capabilities of the internal comparators. Decreasing the analog input amplitude will reduce the slew rate, and thus increase the effective bandwidth. Note that other system performance characteristics are specified for the recommended 2V p-p amplitude, and may degrade with the decreased analog input signal. A sample-and-hold circuit at the analog input will also extend performance beyond the specified bandwidth.

Name	Function	Value	C1, L1 Package
V _{IN}	Analog Signal Input	OV to -2V	Pins 44, 47, 48, 51, 52, 56, 57, 60

Outputs

The outputs of the TDC1025 are both differential and single-ended ECL compatible. The outputs should be terminated with a 1.5 kOhm impedance into a -5.2V source to

meet the specified logic levels. Using the outputs in a differential mode will provide increased noise immunity.

Name	Function	Value	C1, L1 Package
D ₁	MSB Output	ECL	Pin 66
D ₁	MSB Output, Complement	ECL	Pin 67
D ₂		ECL	Pin 68
D ₂		ECL	Pin 1
D ₃		ECL	Pin 2
$\overline{D_3}$		ECL	Pin 3
D ₄		ECL	Pin 4
D4		ECL	Pin 5
D ₅		ECL	Pin 30
D ₅		ECL	Pin 31
D ₆		ECL	Pin 32
0 ₆	· · · · · · · · · · · · · · · · · · ·	ECL	Pin 33
D ₇		ECL	Pin 34
D7		ECL	Pin 35
D ₈	LSB Output	ECL	Pin 36
D ₈	LSB Output, Complement	ECL	Pin 37

No Connects

There are several pins labeled No Connect (NCI, which have no connections to the chip. These pins should be left open.

Name	Function	Value	C1, L1 Package
NC	No Connect	Open	Pins 6, 9, 10, 11, 12, 15, 17, 19, 21, 24, 25, 26, 27, 38, 42, 43, 45, 59, 61, 65

Thermal Design

The case temperature must be limited to a maximum of 80°C for the standard temperature range and 125°C for the extended temperature range. For ambient temperatures above

45°C, 500 L.F.P.M. moving air is required for specified performance. In addition to moving air, heat sinking is an efficient method to optimize thermal management.

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

C_{IN} IS A NONLINEAR JUNCTION CAPACITANCE V_{RB} is a voltage equal to the voltage on PIN R_B

LSI Products Division TRW Electronic Components Group

,

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	185
	V _{EED} (measured to D _{GND})
	V _{EEA} (measured to A _{GND})
	A _{GND} (measured to D _{GND})
	v_{EEA} (measured to v_{EED})
Input Voltage	S
	CONV, CONV (measured to D_{GND})
	v_{IN} , v_{RT} , v_{RB} (measured to A_{GND})+0.5 to $v_{EEA}v$
	V_{RT} (measured to V_{RB}) 0 to +2.5V
Output	
	Short-circuit duration (single output in high state to ground) Indefinite
Temperature	
	Operating, ambient
	junction
	Lead, soldering (10 seconds)
	Storage
Note:	

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Operating conditions

and a second		Temperature Range						
			Standard			Extended		
Parameter		Min	Nom	Max	Mín	Nom	Max	Units
VEED	Digital Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	٧
VEEA	Analog Supply Voltage	-4.9	-5.2	~5.5	-4.9	-5.2	-5.5	V
VEEA-VEED	Supply Voltage Differential	-0.1	0.0	+0.1	-0.1	0.0	+0.1	٧
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	+0.1	-0.1	0.0	+0.1	V
tPWL	CONV Pulse Width, Low	6			8			ns
^t PWH	CONV Pulse Width, High	12			14			ns
V _{IL}	Input Voltage, Logic Low			-1.4			- 1.4	V
VIH	Input Voltage, Logic High	- 1.0			-1.0			V
V _{RT}	Most Positive Reference Input ¹	-0.1	0.0	+0.1	-0.1	0.0	+0.1	v
V _{RB}	Most Negative Reference Input ¹	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	٧
V _{RT} -V _{RB}	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	V
V _{IN}	Input Voltage	V _{RB}		V _{RT}	V _{RB}		V _{RT}	V
τ _C	Case Temperature ²	O		80	- 55		+ 125	°C

Notes

1. V_{RT} Must be more positive than V_{RB} , and voltage reference differential must be within specified range.

2. 500 L.F.P.M. moving air required above 45°C ambient.

Electrical characteristics within specified operating conditions

		r		Temperature Range			
			Star	idard	Exte	nded	
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
I _{EE}	Supply Current	V _{EEA} , V _{EED} - MAX		-	1		с л
		$T_{C} = 0^{\circ}C$ to $80^{\circ}C$		700			mA
		T _C = 80°C		550			mA
		T _C 55°C to 125°C				850	mA
		T _C - 125°C				500	mA
IREF	Reference Current	V _{RT} , V _{RB} - NOM	10	35	10	40	mA
R _{REF}	Total Reference Resistance		57	200	50	200	Ohms
R _{IN}	Input Equivalent Resistance	V _{BT} , V _{BB} - NOM, V _{IN} - V _{BB}	4		4		kOhms
CIN	Input Capacitance			160		160	pF
I _{CB}	Input Constant Bias Current	V _{EEA} , V _{EED} - MAX, V _{IN} - 0.0V		660		1200	μA
կ	Digital Input Current	V _{EEA} , V _{EED} - MAX, V _I 0.7V		160		240	μΑ
VOL	Output Voltage, Logic Low	V _{EEA} , V _{EED} - NOM, I _{OL} - Test Load ¹	-1.6		- 1.5	_	V
V _{OH}	Output Voltage, Logic High	V _{EEA} , V _{EED} - NOM, I _{OH} - Test Load ¹		-0.95		-1.1	v
C _I	Digital Input Capacitance	T _A = 25°C, F = 1MHz		20		20	pF

Note:

1. Test load = 1.5 kOhms to -5.2V, C = 40pF.

Switching characteristics within specified operating conditions

				Temperature Range			
			Star	Standard		Extended	
Parameter		Test Conditions		Max	Min	Max	Units
FS	Maximum Conversion Rate	V _{EEA} , V _{EED} - MIN	50		40		MSPS
tsto	Sampling Time Offset	V _{EEA} , V _{EED} - MIN	0	10	0	10	ns
tD	Digital Output Delay	V _{EEA} , V _{EED} - MIN, Load ¹		15		20	ns
tho	Digital Output Hold Time	V _{EEA} , V _{EED} - MAX, Load ¹	2		2		ns

2

Note:

1. Test load = 1.5 kOhms to -5.2V, C = 40pF.

System performance characteristics within specified operating conditions

			Temperature Range				4
Dorom	the second s	Toot Conditions	Alin Stal	Max	EXTE Min	Max	Unito
Parame				INISX	IAIUI	INIAX	Units
ELI	Linearity Integral, Independent	V _{RT} , V _{RB} ~ NOM		±0.3		±0.3	%
ELD	Linearity Differential			0.3		0.3	%
٥	Code Size	V _{RT} , V _{RB} ~ NOM	15	185	15	185	% Norr
E _{OT}	Offset Error Top	V _{IN} - V _{RT}		+40		+ 40	m۷
EOTS	Offset Error Top, Sensed	- · ·		+10		+10	m۷
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-40		-40	m۷
EOBS	Offset Error Bottom, Sensed			- 10		- 10	mV
T _{COS}	Uffset Error Temperature Coefficient, Sensed			80		80	µ۷/°C
BW	Bandwidth, Full Power Input		12.5		10		MHz
t _{TR}	Transient Response, Full Scale Input Change			10		10	ns
SNR	Signal-to-Noise Ratio	20MHz Bandwidth,					
		50MSPS Conversion Rate					
	Peak Signal/RMS Noise	1.25MHz Input	53		53		dB
		5.34MHz Input	51		51		dB
		10.0MHz Input			47		dB
		12.0MHz Input	47				dB
	RMS Signal/RMS Noise	1.25MHz input	44		44		dB
		5.34MHz Input	42		42		dB
		10.0MHz Input			38		dB
		12.0MHz Input	38				dB
EAP	Aperture Error			40		40	ps

Figure 5. Typical Interface Circuit

84

Res	istors					
R1	0Ω ¹					
R2	49.9 Ω ¹	1/8W	1%			
R3	1.5 KΩ	1/4W	5%			
R4	649Ω	1/8W	1%			
R5	1 0 0Ω	1/8W	5%			
R6	100 \Q	1/8W	5%			
R7	324 Ω	1/8W	1%			
R8	470 Ω	1/4W	5%			
R9	402 Ω	1/8W	2%			
R10	1.21 KΩ	1/8W	1%			
R11	301 Ω	1/8W	1%			
R12	2.0 KΩ	1/8W	1%			
R13	10Ω -20Ω²	1/8W	5%			
R14	200Ω	2W	5%			
R15	8.2Ω-15Ω ²	1/8W	5%			
R16	150 Ω	2W	5%			
R17	2.7Ω	1/8W	5%			
R18	2.7Ω	1/8W	5%			
R19	34KΩ	1/4W	1%			
R20	10KΩ	1/8W	1%			
R21	10 \O	1/8W	5%			
R22	470 Ω	1/4W	5%			
R23	10	1/8W	5%			
R24	10Ω	1/8W	5%			
R25	11.3KΩ	1/8W	1%			
R26	42.2KΩ	1/8W	1%			
R27	392 \	1/8W	1%			
R28	2.0KΩ	1W	5%	Multiturn	Cermet	Pot
R29	2.DKΩ	1W	5%	Multiturn	Cermet	Pot
R30	10Ω -20Ω	1/8W	5%			
R31	$10\Omega - 20\Omega$	1/8W	5%			
R32	10 KΩ	1/8W	1%			
B33	42.2 KΩ	1/8W	1%			
R34	1.2 KΩ	1/8W	1%			
R35	8.2 KΩ	1/8W	1%			
R36	100 Ω	1/8W	2%			
R37	324 \	1/8W	2%			
838	15Ω	1/10W	1%			
R39	10 \	1/10W	1%			
R40	10 \Q	1/10W	1%			
R41	10	1/10W	1%			
R47	10 Ω	1/10W	1%			
R43	10 \Q	1/10W	1%			
R44	10 \Q	1/10W	1%			
R45	15.0	1/10/2	1%			
R46	130.0	1/4W	5%			
R47	82.0	1/4W	5%			
848	10 KΩ	1/8W	1%			
R49	10 KΩ	1/8W	1%			
R50	100	1/8W	5%			
			- u /u			

Inte	grated Circuits
UI	TRW TDC1025L1 or C1
U2	CA3127E
Ū3	MC4741
U4	MC1403
U5	337T
U6	MC10131
U7	MC10131
U8	MC10131
U9	MC10131
U10	MC10101
Tran	isistors
01	2N5836
02	2N2222
03	2N2907A
Q4	2N4957
Dioc	les
01	1N4148
D2	1N4148
D3	1N4001
D4	1N4001
D5	1N4001
D6	1N4148
D7	1N4148
D8	1N4148
D9	1N4148
D10	1N4148
D11	1N4148
VR1	1N5226B
VR2	1N5226B
VR3	1N5232B
VR4	1N5223B
Indu	ictors

Capacitors

C1	100.0 pF	200V
C2	0.1 µF	50V
C3	10.0 µF	25V
C4	0.1 µ́F	50V
65	1.0-8.0pF ²	200V
C6	0.1 µF	50V
C7	0.1 µF	50V
C8	0.1 µF	50V
C9	0.1 µF	50V
C10	0.1 µF	50V
C11	1.0 µF	20V
C12	10.0 µF	25V
C13	0.1 µ́F	50V
C14	1.0 µF	50V
C15	10.0 µF	25V
C16	10.0 µF	25V
C17	10.0 µF	25V
C18	0.1 µF	50V
C19	$10.0 \ \mu F$	25V
C20	0.1 µ́F	50V
C21	0.1 µF	50V
C22	0.1 µF	50V
C23	1000.0pF	200V
C24	1000.0pF	200V
C25	0.1 µF	50V
C26	0.1 µF	50V
C27	100.0pF	200V
C28	.01 µF	50V
C29	0.1 μ F	50V
C30	0.1 µF	50V

In

L1 Bead Inductor

Notes:

1. Selected for desired input impedance and voltage range.

2. Selected for amplifier compensation.

D

Typical Interface

Figure 5 shows an example of a typical interface circuit for the TDC1025. The analog input buffer is a discrete differential amplifier followed by an NPN transistor buffer. The transistor buffer satisfies the input drive requirement of the A/D converter. The analog input resistors, attached close to the V_{IN} pins, provide frequency stability and a balanced analog input to all portions of the comparator array. All eight V_{IN} pins are connected together close to the device package, and the buffer feedback loop should be closed at that point. Bipolar inputs may be used by adjusting the buffer offset control. The buffer has a gain of two, increasing a 1 Volt p-p input signal to the recommended 2 Volt p-p input for the A/D.

The top reference, R_T, is grounded, with the sense point, R_{TS}, left open. The offset error introduced at the top of the reference chain is cancelled by the buffer offset adjustment. The bottom reference voltage, V_{RB} is supplied by an amplifier, buffered with a PNP transistor. The feedback loop through the sense, R_{RS}, minimizes the offset error and related temperature

variations at the bottom of the resistor chain. Additional gain adjustment can be made by varying the input voltage to the sensing op amp.

The differential clock is provided by an ECL gate, with termination close to the TDC1025 to minimize ringing or overshoot. The convert clock is delayed by approximately 5-10ns to latch the data at the output. The data outputs are terminated with 1.5 kOhms to -5.2V. The standard Thevenin equivalent (220 Ohms-330 Ohms to -5.2V) is used where additional termination is required.

The analog and digital ground planes are separated to minimize ground noise and prevent ground loops, and are connected back at the power supply. The independent ECL digital ground aids in maintaining the chip digital ground, especially in a system with highspeed ECL logic. Protective diodes between all three ground planes avoid damage due to excessive differences in ground potential.

Note: Pins are shown for L1, C1 packages

87

Output Coding

			Bir	nary	Offset Comp	Two's lement
Step	Ra	nge	True	Inverted	True	Inverted
	-2.0000V FS	-2.0480V FS		All Outputs	D1	D ₂ -Dg
	7.8431 mV Step	8.000 mV Step		Inverted	Inverted	Inverted
000	0.0000V	0.0000V	000000000	11111111	100000000	01111111
001	-0.0078V	-0.0080V	000000001	11111110	100000001	01111111
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
127	-0.9961V	- 1.0160V	01111111	10000000	11111111	0000000
128	-1.0039V	-1.0240V	10000000	01111111	00000000	1111111
129	-1.0118V	-1.0320V	10000001	01111110	00000001	1111111
•	•	•	•	•	. •	•
•	•	•	•	•	.	•
•	•	•	•	•	•	•
254	- 1.9921V	-2.0392V	11111110	00000001	011111110	1000000
255	-2.0000V	-2.0400V	11111111	00000000	01111111	1000000

1. Voltages are code midpoints after calibration.

2. Any output may be inverted by interchanging connections to the true (D_N) and complement ($\overline{D_N}$) output pins.

Calibration

To calibrate the TDC1025, adjust V_{RT} and V_{RB} to set the 1st and 255th thresholds to the desired voltages. Note that R_1 is greater than R, ensuring calibration with a positive voltage on R_T . Assuming a 0V to -2V desired range, continuously strobe the converter with -0.0039V (1/2 LSB from 0V) on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -1.996V (1/2 LSB from -2V) and adjust V_{RB} for toggling between codes 254 and 255.

The degree of required adjustment is indicated by the offset errors, E_{0T} and E_{0B} . Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_1 and R_2 in the Functional Block

Diagram. Calibration will cancel all offset voltages, eliminating offset and gain errors.

The above method of calibration requires that both ends of the resistor chain, R_T and R_B , are driven by buffered operational amplifiers. Instead of adjusting $V_{RT},\,R_T$ can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. The offset error at the bottom of the resistor chain results in a slight gain error, which can be compensated for by varying the voltage applied to R_B . The bottom reference is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Ordering Information

IN COMPANY OF THE PROPERTY OF THE DESIGNATION OF THE DESIGNATION OF	A REAL PROPERTY OF A REAL PROPERTY AND A REAL PROP	and a second of the second	and the second	
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1025C1C	STD-T _C = 0°C to 80°C	Commercial	68 Contact Chip Carrier	1025C1C
TDC1025C1G	STD-T _C = 0°C to 80°C	Commercial With Burn-In	68 Contact Chip Carrier	1025C1G
TDC1025C1F	$EXT-T_{C} = -55^{\circ}C$ to 125°C	Commercial	68 Contact Chip Carrier	1025C1F
TDC1025C1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	1025C1A
TDC1025C1N	$EXT-T_C = -55^{\circ}C$ to $125^{\circ}C$	Commercial With Burn-In	68 Contact Chip Carrier	1025C1N
TDC1025L1C	STD-T _C - 0°C to 80°C	Commercial	68 Leaded Chip Carrier	1025L1C
TDC1025L1G	STD-T _C - 0°C to 80°C	Commercial With Burn-In	68 Leaded Chip Carrier	1025L1G
TDC1025L1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	1025L1F
TDC1025L1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1025L1A
TDC1025L1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	1025L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

D

LSI Products Division TRW Electronic Components Group

D

Monolithic Video A/D Converter 7-bit, 18MSPS

The TRW TDC1027 is an 18 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 5MHz into 7-bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1027 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 7-Bit Resolution
- 1/2 LSB Linearity

Functional Block Diagram

- TTL Compatible
- 18MSPS Conversion Rate
- Selectable Output Format
- Available In 24 Lead DIP or CERDIP
- Low Cost

Applications

- Low-Cost Video Digitizing
- Medical Imaging
- Data Acquisition
- TV Special Effects
- Video Simulators
- Radar Data Conversion

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00777 Rev. D-3/84 Printed in the U.S.A.

7R#

Functional Block Diagram

Pin Assignments

²⁴ Lead DIP – J7 Package 24 Lead CERDIP – B7 Package

Functional Description

General Information

The TDC1027 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 127 reference voltages to produce an N-of-127 code (sometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The

encoding logic converts the N-of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1027 operates from two supply voltages, +5.0V and -5.2V. The return for I_{CC}, the current drawn from the +5.0V supply, is D_{GND}. The return for I_{EE}, the current drawn from

the $-5.2V\ \text{supply},\ \text{is A}_{GND}.$ All power and ground pins must be connected.

Name	Function	Value	J7, B7 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pins 10, 16
V _{EE}	Negative Supply Voltage	-5.2V	Pins 11, 14
D _{GND}	Digital Ground	0.0V	Pins 4, 21
A _{GND}	Analog Ground	0.0V	Pins 3, 12, 13, 22

Reference

The TDC1027 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain ($V_{RT}-V_{RB}$) must be between 0.8V and 1.2V. The nominal voltages are V_{RT}

= 0.05V and V_{RB} = -1.04V. These voltages may be varied dynamically up to 5MHz. Due to variation in the reference currents with clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically (as in an AGC circuit), a low-impedance reference source is required.

Name	Function	Value	J7, B7 Package
R _T	Reference Resistor (Top)	0.0V	Pin 2
R _B	Reference Resistor (Bottom)	- 1.0V	Pin 23

Controls

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the Output Coding table given on page 98. These pins are active LOW as signified by the prefix "N" in the signal name. They may be tied to V_{CC} for a logic "1" and D_{GND} for a logic "0."

Name	Function	Value	J7, B7 Package
NMINV	Not Most Significant Bit INVert	TTL	Pin 5
NLINV	Not Least Significant Bit INVert	ΠL	Pin 15

Convert

The TDC1027 requires a CONVert (CONV) signal. A sample is taken (the comparators are latched) approximately 10ns after a rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 127 to 7 encoding is performed on the falling

edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONVert signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1027 is taking input sample N + 2.

Name	Function	Value	J7, B7 Package
CONV	Convert	. TTL	Pin 20

Analog Input

The TDC1027 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 25 Ohms. The input signal will not damage the TDC1027 if it remains within the range of V_{EE} to +0.5V. If the input signal is between the V_{RT} and V_{RB}

references, the output will be a binary number between 0 and 127 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins must be connected through individual 10 Ohm resistors to the input driver.

Name	Function	Value	J7, B7 Package
V _{IN}	Analog Signal Input	OV to -1V	Pins 1, 24

Outputs

The outputs of the TDC1027 are TTL compatible, and capable of driving four low-power Schottky TTL (54/74 LS) unit loads

or the equivalent. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONV signal.

Name	Function	Value	J7, B7 Package
01	MSB Output	Πι	Pin 6
D ₂		ΠL	Pin 7
D ₃		ΠL	Pin 8
D ₄		πι	Pin 9
D ₅		πι	Pin 17
D ₆		TTL	Pin 18
D ₇	LSB Output	TTL	Pin 19

77877

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

LSI Products Divison TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Volt	ages	
	V _{CC} (measured to D _{GND})	0.0 to +7.0V
	V _{EE} (measured to A _{GND})	0.0 to -7.0V
	A _{GND} (measured to D _{GND})	1.0 to +1.0V
Input Voltaç	29	
	CONV, NMINV, NLINV (measured to D _{GND})	0.5 to +5.5V
	VIN, VRT, VRB (measured to AGND)	+0.5 to V _{EE} V
	v_{RT} (measured to v_{RB})	+2.2 to -2.2V
Output		
	Applied voltage (measured to D _{GND})	0.5 to 5.5V ²
	Applied current, externally forced	1.0 to 6.0 mA ^{3,4}
	Short circuit duration (single output in high state to ground)	1 sec
Temperatur	3	
	Operating, ambient	60 to +140°C
	junction	+ 175°C
	Lead, soldering (10 seconds)	+ 300°C
	Storage	65 to +150°C

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as positive when flowing into the device.

Operating conditions

				Temperatu	re Range			
			Standard			Extended		
Paramete	r	Min	Nom	Max	Min	Nom	Max	Units
VCC	Positive Supply Voltage (Measured to D _{GND})	4.75	5.0	5.25	4.5	5.0	5.5	V
VEE	Negative Supply Voltage (Measured to AGND)	-4.9	5.2	-5.5	-4.9	-5.2	-5.5	V
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	0.1	-0.1	0.0	0.1	V
^t PWL	CONV Pulse Width, Low	24			24			ns
^t PWH	CONV Pulse Width, High	28			28			ns
VIL	Input Voltage, Logic Low			0.8			0.8	٧
VIH	Input Voltage, Logic High	2.0			2.0			V
1 _{0L}	Output Current, Logic Low			4.0			4.0	mA
ЮН	Output Current, Logic High			-400			-400	μΑ
V _{RT}	Most Positive Reference Input ¹	-1.1	0.0	0.1	-1.1	0.0	0.1	V
V _{RB}	Most Negative Reference Input ¹	- 0.9	- 1.0	-2.1	-0.9	-1.0	-2.1	٧
V _{RT} -V _{RB}	Voltage Reference Differential	0.8	1.0	1.2	0.8	1.0	1.2	۷
V _{IN}	Input Voltage	V _{RB}		V _{RT}	V _{RB}		V _{RT}	۷
TA	Ambient Temperature, Still Air	0		70				°C
т _с	Case Temperature				~ 55		125	°C

Note:

1. V_{RT} Must be more positive than V_{RB} , and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

			Temperature Range				
		Standard		Extended		1	
Parameter	Test Conditions	Min	Max	Min	Max	Uni	
I _{CC} Positive Supply Current	V _{CC} – MAX, static ¹		40		55	mA	
EE Negative Supply Current	V _{EE} - MAX, static ¹						
	$T_A = 0^{\circ}C$ to $70^{\circ}C$		-275			mA	
	T _A - 70°C		- 180			m/	
	T _C = −55 to 125°C				- 350	m/	
	T _C - 125°C		·		- 165	m/	
I _{REF} Reference Current	V _{RT} , V _{RB} - NOM	5.0	30	5.0	40	m	
R _{REF} Total Reference Resistance		30	200	25	200	0	
R _{IN} Input Equivalent Resistance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}	5.0		5.0		k	
C _{IN} Input Capacitance			100		100	pF	
I _{CB} Input Constant Bias Current	V _{EE} - MAX		200		300	μ.	
I _{IL} Input Current, Logic Low	$V_{CC} = MAX, V_I = 0.5V$		ĺ				
	NLINV		-2.4		- 3.0	m	
	CLK, NMINV		-2.0		-2.0	m	
I _{IH} Input Current, Logic High	V_{CC} - MAX, V_{I} - 2.4V		100		100	μ	
I Input Current, Max Input Voltage	$V_{CC} - MAX, V_{I} - 5.5V$		1.0		1.0	m	
V _{OL} Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	۷	
V _{OH} Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		۷	
I _{OS} Short Circuit Output Current	V_{CC} – MAX, Output high, one pin to ground, one second duration.		-25		-25	m	
C ₁ Digital Input Capacitance	T _A = 25°C, F = 1MHz		15		15	pF	

Note:

1. Worst case: all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

denie al Arabica au	na material surves in Venezio Mandel Mandel and Mandel (Mandel and I) a support and support and support of the Mandel Anna Andrew Stranger			And an Indian provide with and to per-	a falsana an an an an		and a state of the state of the state of the
		· · · · · · · · · · · · · · · · · · ·		Temperati	ure Range		1
			Star	dard	Exte	nded	1
	Parameter	Test Conditions	Min	Max	Min	Max	Units
	F _S Maximum Conversion Rate	V _{CC} - MIN, V _{EE} - MIN	18		18		MSPS
	t _{STO} Sampling Time Offset	V _{CC} - MIN, V _{EE} - MIN	0	15	0	20	ns
	t _D Output Delay	V _{CC} - MIN, V _{EE} - MIN, Load 1		35		40	ns
	t _{HO} Output Hold Time	V _{CC} - MAX, V _{EE} - MAX, Load 1	10		10		ns

System performance characteristics within specified operating conditions

				Temperati	ure Range		
			Star	ndard	Exte	nded	
Parar	neter	Test Conditions	Min	Max	Min	Max	Units
ELI	Linearity Error Integral, Independent	V _{RT} , V _{RB} - NOM		±0.4		±0.4	%
ELD	Linearity Error Differential			0.4		0.4	%
۵	Code Size	V _{RT} , V _{RB} - NOM	30	170	30	170	% Nominal
EOT	Offset Error Top	V _{IN} - V _{RT}	T	45		45	mV
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-35		-40	mV
T _{CO}	Offset Error Temperature Coefficient			±40		±40	µv⊮℃
BW	Bandwidth, Full Power Input		5		5	·	MHz
^t TR	Transient Response, Full Scale			30		30	ns
SNR	Signal-to-Noise Ratio	5MHz Bandwidth,					
		18MSPS Conversion Rate					
	Peak Signal/RMS Noise	1.248MHz Input	48		48		dB
		2.438MHz Input	47		47		dB
	RMS Signal/RMS Noise	1.248MHz Input	39		39		dB
		2.438MHz Input	38		38		dB
NPR	Noise Power Ratio	DC to 8MHz White Noise Bandwidth	30		30		dB
		4 Sigma Loading					
		1.248MHz Slot					
		18MSPS Conversion Rate					
E _{AP}	Aperture Error			50		50	ps

Output Coding

.

			Bina	ary	Offset Comp	Two's ement
Step	Ra	nge	True	Inverted	True	Inverted
	-1.0000V FS	-1.0160V FS	NMINV - 1	0	. 0	1
	7.874 mV STEP	8.000 mV STEP	NLINV – 1	0	1	0
000	0.0000V	0.0000V	0000000	111111	1000000	0111111
001	- 0.0078V	-0.0080V	0000001	1111110	1000001	0111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
127	- 1.0000V	-1.0160V	111111	0000000	0111111	1000000

Note:

1. Voltages are code midpoints when calibrated using the procedure given on page 99.

Calibration

To calibrate the TDC1027, adjust V_{RT} and V_{RB} to set the 1st and 127th thresholds to the desired voltages. Note that R_1 is greater than R, ensuring calibration with a positive voltage on R_T . Assuming a 0V to -1V desired range, continuously strobe the converter with -0.0039V on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -0.9961V and adjust V_{RB} for toggling between codes 126 and 127. Instead of adjusting $V_{RT},\,R_T$ can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. R_B is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5.

Parts List

Resis	tors			Capa	citors		Diode	es
R1 R2 R3	t t 1.0K O	1/4W 1/4W 1/4W	2% 2% 2%	C1 C2 C3	0.1 μF	50V 50V 50V	CR1	1N4001
R4	4.2KΩ	1/4W	2%	C4	0.1 µF	50V	Integ	rated Circuits
R5 R6 R7 R8 R9 R10	10 Ω 56 Ω 240 Ω 6.8 Ω 2.0K Ω *	1/4W 1/2W 2W 1/2W 1/2W 1/2W	2% 5% 5% 2% 2%	C5 C6 C7 C8	0.1 μF 1.0 μF 10.0 μF 0.1 μF	50V 10V 10V 50V	U1 U2 U3 U4	TRW TDC1027 Plessey SL541C 741 Operational Amplifie Motorola MC1403U
R11	2.0K Ω	1/4W	Multiturn Cermet Pot				Trans	sistors
R12 R13 R14 R15 R16	2.0K Ω 21.4K Ω 21.4K Ω 10 Ω 10 Ω	1/4W 1/4W 1/4W 1/4W 1/4W	Multiturn Cermet Pot 2% 2% 2% 2%				01 02	2N5836 2N2907
* Am	olifier Compe	nsation Ci	omponents	t _{R2}	= 1 2V _{RANG} V _{REF} Z	E 0.001	R1 -	$Z_{IN} - \frac{1000 R2}{1000 + R2}$

LSI Products Divison TRW Electronic Components Group

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
FDC1027J7C	STD-T _A = 0°C to 70°C	Commercial	24 Lead DIP	1027J7C
DC1027J7G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	24 Lead DIP	1027J7G
TDC1027J7F	EXT-T _C = -55°C to 125°C	Commercial	24 Lead DIP	1027J7F
DC1027J7A	EXT-T _C = -55°C to 125°C	MIL-STD-883B	24 Lead DIP	1027J7A
TDC1027J7N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	24 Lead DIP	1027J7N
TDC1027B7C	STD-T _A = 0°C to 70°C	Commercial	24 Lead CERDIP	1027B7C
FDC1027B7G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	24 Lead CERDIP	1027B7G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TDC1029 Preliminary Information

Monolithic A/D Converter 6-bit, 100MSPS

The TRW TDC1029 is a 100 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full power frequency components up to 50MHz into 6-bit digital words. A sample-and-hold circuit is not necessary. All digital inputs and outputs are ECL compatible.

The TDC1029 consists of 63 clocked latching comparators, combining logic, and an output buffer register. A single differential convert signal controls the conversion operation. The digital outputs are single-ended ECL with the exception of the MSB which is differential. Binary or offset two's complement output format is available.

Features

- 6-Bit Resolution
- 100MSPS Conversion Rate

- 50MHz Input Bandwidth
- Low Cost
- 1/2 LSB Linearity
- Sample-And-Hold Circuit Not Required
- 1V Input Range
- Binary Or Two's Complement Output Format
- Available In 24 Lead DIP

Applications

- Transient Digitizers
- Direct Digital Receivers
- Radar Data Conversion
- Data Acquisition
- Telecommunications
- Medical Imaging

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457 - 1000 Telex: 697 - 957 TWX: 910 - 335 - 1571 ©TRW Inc. 1984 40G01198 Rev. C-3/84 Printed in the U.S.A.

7*Riii*

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1029 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 63 reference voltages to produce an N-of-63 code (sometimes referred to as a "thermometer" code, as all the comparators below the signal

will be on, and all those above the signal will be off. The encoding logic converts the N-of-63 code into binary coding, with the complement of the MSB available for offset two's complement output format. The output latch holds the output constant between updates.

Power

The TDC1029 operates from separate analog and digital power supplies, V_{EEA} and V_{EED}, respectively. Since the required voltage for both V_{EEA} and V_{EED} is -5.2V, these may ultimately be connected to the same power source, but separate decoupling for each supply is recommended. A typical

decoupling network is shown in Figure 5. The return for I_{EED}, the current drawn from the V_{EED} supply, is D_{GND}. The return for I_{EEA}, the current drawn from the V_{EEA} supply, is A_{GND}. All power and ground pins must be connected.

Name	Function	Value	J7 Package
VEEA	Analog Supply Voltage	-5.2V	Pins 18, 19, 24
VEED	Digital Supply Voltage	-5.2V	Pins 1, 12
DGND	Digital Ground	0.0V	Pins 3, 10, 17, 20
AGND	Analog Ground	0.0V	Pins 5, 8

Thermal Design

The TDC1029 has thermal characteristics similar to other high-performance ECL devices and is rated for a maximum ambient temperature of 70°C. For ambient temperatures above

Reference

The TDC1029 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant v_{RT}$ into digital form. The voltage applied across the reference resistor chain $(V_{RT}-V_{RB})$ must be between 0.9V and 1.1V. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between -0.2V and -1.4V. V_{RT} should be more positive than V_{RB} within that range. The nominal voltages are:

 $V_{RT} = -0.3V$, $V_{RB} = -1.3V$. These voltages may be varied

40°C, 500 L.F.P.M. moving air is required for specified performance. The maximum case temperature should be no greater than 110°C.

dynamically up to 25MHz. Due to variation in the reference currents with changes in clock and input signals, R_T and R_B should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground reference of the input signal is recommended. If the reference inputs are exercised dynamically (as in an AGC circuit), a low-impedance reference source is required.

Name	Function	Value	J7 Package
RT	Reference Resistor, Top	-0.3V	Pin 11
R _B	Reference Resistor, Bottom	-1.3V	Pin 2

Convert

The TDC1029 requires a differential ECL CONVert (CONV) signal. A sample is taken (the comparators are latched) approximately 5ns after a rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay may vary by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 50 picoseconds. The 63 to 6 encoding is performed on the falling edge of the CONV signal. The

coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONVert signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1029 is taking input sample N + 2. Both convert inputs must be connected, with CONV being the complement of CONV.

Name	Function	Value	J7 Package
CONV	Convert	ECL	Pin 7
CONV	Convert Complement	ECL	Pin 6

Analog Input

The TDC1029 uses strobed latching comparators which cause the input impedance to vary slightly with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance driving the device must be less than 25 Ohms. The input signal will not damage the TDC1029 if it remains within the range of +0.5V to VFFA. If the input signal is between the V_{RT} and V_{RB} references, the output will be a binary number between 0 and 63, inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. Both analog input pins MUST be connected through 15 0hm resistors as shown in Figure 5.

Name Function		Value	J7 Package	
V _{IN}	Analog Signal Input	-0.3V to -1.3V	Pins 4, 9	

Outputs

The outputs of the TDC1029 are ECL compatible. Outputs D_{2-6} are single-ended, while the MSB (D₁) is differential. Offset two's complement format is available by cross-wiring the

MSB, i.e. interchanging D_1 and $\overline{D_1}.$ The outputs should be terminated with a 100 Ohm (or greater) impedance into an equivalent -2.0V source.

Name	Function	Value	J7 Package
D1	MSB Output, Complement	ECL	Pin 13
D ₁	MSB Output	ECL	Pin 14
D ₂		ECL	Pin 15
D3		ECL	Pin 16
D4		ECL	Pin 21
D5		ECL	Pin 22
D ₆	LSB Output	ECL	Pin 23

Figure 1. Timing Diagram

Figure 3. Convert Input Equivalent Circuit

LSI Products Division TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	85
	V _{EED} (measured to D _{GND}) 0.5 to -7.0V
	V _{EEA} (measured to A _{GND}) 0.5 to -7.0V
	A _{GND} (measured to D _{GND}) 1.0 to -1.0V
	V_{EEA} (measured to V_{EED}) 0.5 to -0.5V
Input Voltage	s
	CONV, CONV (measured to D _{GND}) +0.5 to V _{EED} V
	VIN, VRT, VRB (measured to AGND)
	V_{RT} (measured to V_{RB})
Output	
	Short circuit duration (single output to ground) Indefinite
Temperature	
	Operating, ambient
	junction
	Lead, soldering (10 seconds) + 300°C
	Storage65 to +150°C
Note:	

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions.

Functional operation under any of these conditions is NOT implied.

Operating conditions

	· · · · · · · · · · · · · · · · · · ·	Temperature Range Standard			ł
Parameter		Min	Nom	Max	Units
V _{EED}	Digital Supply Voltage	-4.9	-5.2	-5.5	v
VEEA	Analog Supply Voltage	-4.9	-5.2	-5.5	v
VEEA-VEED	Supply Voltage Differential	-0.1	0.0	0.1	V
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0.0	0.1	v
^t PWL	CONV Pulse Width, Low	3	4		ns
^t pwh	CONV Pulse Width, High	5	6		ns
VICM	CONV Input Voltage, Common Mode Range (Figure 6)	-0.5		-2.5	V
VIDF	CONV Input Voltage, Differential (Figure 6)	0.4		1.2	v
V _{RT}	Most Positive Reference Input ¹	-0.2	-0.3	-0.4	V
V _{RB}	Most Negative Reference Input ¹	-1.2	-1.3	-1.4	٧
V _{RT} -V _{RB}	Voltage Reference Differential	0.9	1.0	1.1	v
V _{IN}	Input Voltage	V _{RB}		V _{RT}	۷
TA	Ambient Temperature ²	0		70	°C

Notes:

1. $V_{\mbox{RT}}$ must be more positive than $V_{\mbox{RB}}$ and voltage reference differential must be within specified range.

2. 500 L.F.P.M. moving air required above 40°C.

Electrical characteristics within specified operating conditions

			Temperature Range Standard		-
Parameter		Test Conditions	Min	Max	Units
EEA ^{+ I} EED	Supply Current	V _{EEA} , V _{EED} - MAX			
		$T_A = 0^{\circ}C$ to $70^{\circ}C$		-375	mA
		$T_A = 70^{\circ}C$		- 300	mA
REF	Reference Current	V _{RT} , V _{RB} - NOM	10	35	mA
REF	Total Reference Resistance		29	100	Ohm
R _{IN}	Input Equivalent Resistance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB} , V _{EE} - MAX	6		kOhm
PIN	Input Equivalent Capacitance	v_{RT} , v_{RB} - NOM, v_{IN} - v_{RB}		20	pF
СВ	Input Constant Bias Current	V _{EEA} , V _{EED} - MAX, V _{IN} 0.3V		500	μΑ
I	Input Current	V_{EEA} , V_{EED} - MAX, V_{I} 0.5V		250	μΑ
VOL	Output Voltage, Logic Low	V _{EEA} , V _{EED} - NOM, Test Load 1	- 1.650		٧
^V он	Output Voltage, Logic High	V _{EEA} , V _{EED} - NOM, Test Load 1		-0.950	۷
	Digital Input Capacitance	T _A - 25°C		15	pF

Switching characteristics within specified operating conditions

			Temperat Star	Temperature Range Standard	
Paramete	r (Test Conditions	Min	Max	Units
F _S Ma	ximum Conversion Rate	V _{EEA} , V _{EED} - MIN	100		MSPS
tSTO Sar	npling Time Offset	V _{EEA} , V _{EED} - MIN		6	ns
t _D Out	iput Delay	V _{EEA} , V _{EED} - MIN, Load 1		7	ns
t _{HO} Out	put Hold Time	V _{EEA} , V _{EED} - MAX, Load 1	1.5		ns

System performance characteristics within specified operating conditions

			Temperat Star	Temperature Range Standard	
Param	neter	Test Conditions	Min	Max	Units
ELI	Linearity Error Integral, Terminal Based	V _{RT} , V _{RB} - NOM		±0.8	%
ELD	Linearity Error Differential			±0.8	%
۵	Code Size	V _{RT} , V _{RB} = NOM	50	150	% Nominal
EOT	Offset Error Top	V _{IN} = V _{RT}		20	mV
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-8	mV
T _{CO}	Offset Error Temperature Coefficient			±35	μν/°C
BW	Bandwidth, Full Power Input ¹	F _S = 100MSPS	50		MHz
t _{TR}	Transient Response, Full-Scale Input Change			6	ns
SNR	Signal – To – Noise – Ratio ²	100MSPS Conversion Rate			
	Peak Signal/RMS Noise	25MHz Input	42		dB
		50MHz Input	39		dB
	RMS Signal/RMS Noise	25MHz Input	33		dB
		50MHz Input	30		dB
E _{AP}	Aperture Error			30	ps

Notes:

1. Beat frequency sinusoidal reconstruction producing no errors greater then 3 LSBs, t_{PWH} = 6ns.

2. Single frequency sinusoidal input attenuated 3dB at 1/2 sampling frequency (anti-alias prefilter).

Output Coding¹

Step	Ran	ge	Binary	Offset Two's Complement
	-1.3000V FS	-1.3080V FS		
	15.8730mV STEP	16.0000mV STEP	MSB LSB	MSB LSB
00	-0.3000V	-0.3000V	000000	100000
01	-0.3159V	-0.3160V	000001	100001
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
31	-0.7921V	-0.7960V	011111	111111
32	-0.8079V	-0.8120V	100000	000000
33	-0.8238V	-0.8280V	100001	000001
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
62	- 1.2841V	- 1.2920V	111110	011110
63	- 1.3000V	-1.3080V	111111	011111

Note:

1. Voltages are code midpoints after calibration.

Figure 5. Power Decoupling and Input Network

Figure 6. CONVert, CONVert Switching Levels

Calibration

To calibrate the TDC1029, adjust V_{RT} and V_{RB} to set 1st and 63rd thresholds to the desired voltages. Assuming a -0.3V to -1.3V desired range, continuously strobe the converter with -0.3079V on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -1.2921V and adjust V_{RB} for toggling between codes 62 and 63. Instead of

adjusting V_{BT} , R_T can be connected to a fixed voltage and the most positive end of the range calibrated with an offset control. R_B is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 7.

Figure 7. Typical Interface Circuit

Parts List

R1	15.0Ω	1/8W	2%
R2	82 Ω	1/4W	5%
R3	130Ω	1/4W	5%
R4	15.0 Ω	1/8W	2%
R5	68Ω	1/4W	5%
R6	2K Ω		Multiturn Cermet Pot
R7	11.3K Ω	1/4W	5%
R8	2KΩ		Multiturn Cermet Pot
R9	270Ω	1/2W	5%
R10	10.0K Ω	1/4W	2%
R11	$4.22 \text{K} \Omega$	1/4W	2%
R12	20.0K Ω	1/4W	2%
R13	20.0K Ω	1/4W	2%
R14	10 <u>Ω</u>	1/8W	5%
R15	10.0K Ω	1/4W	2%
R16	1.5K Ω	1/4W	5%
R17	1.5K Ω	1/4W	5%
R18	10.0K Ω	1/4W	2%
R19	1.00K Ω	1/4W	2%
R20	18 Ω	1/4W	5%
R21	10 Ω	1/8W	5%
R22	68 N	1/4W	5%
R23	324 Ω	1/8W	2%
R24	100Ω	1/8W	2%

Capa	citors		Integ	grated Circuits
C1 C2 C3 C4 C5 C6 C7 C8 C9	0.1 μ F 0.1 μ F 1.0 μF 10.0 μF 0.1 μF 0.1 μF 0.1 μF 1.0 μF 10.0 μF	Polarized Polarized Polarized Polarized	U1 U2 U3 U4 U5 U6	TDC1029J7 100102D 1001510 3503 4741 337T es
C10 C11 C12 C13 C14 C15 C15 C16 C17	1.0 μF 1.0 μF 1.0 μF 1.0 μF 10.0 μF 10.0 μF 0.1 μF 1.0 μF	Non-polar Non-polar Polarized Polarized Polarized Polarized Polarized	D1 D2 D3 D4 D5 D6	1N4148 1N4001 1N4148 1N4148 1N4001 1N4001
			Indu	ctors
Tran : 01 02 03	2N2907 2N2222 2N2907 2N2222		L1	Bead Inductor

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking		
TDC1029J7C	STD-T _A - 0°C to 70°C	Commercial	24 Lead DIP	1029J7C		
TDC1029J7G	STD-T _A - 0°C to 70°C	Commercial With Burn-In	24 Lead Dip	1029J7G		

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

.

LSI Products Division TRW Electronic Components Group

.

TDC1048 Preliminary Information

Monolithic Video A/D Converter

8-bit, 20MSPS

The TRW TDC1048 is a 20 MegaSample Per Second (MSPS) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 7MHz into 8-bit digital words. A sample-and-hold circuit is not necessary. Low power consumption eases thermal considerations, and board space is minimized with a 28 lead package. All digital inputs and outputs are TTL compatible.

The TDC1048 consists of 255 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

Features

- 8-Bit Resolution
- 20MSPS Conversion Rate

Functional Block Diagram

- Low Power Consumption, 1.4W (Worst Case)
- Sample-And-Hold Circuit Not Required
- Differential Phase 1 Degree
- Differential Gain 2%
- 1/2 LSB Linearity
- TTL Compatible
- Selectable Output Format
- Available In 28 Lead DIP, CERDIP, Or Contact Chip Carrier

Applications

- Low-Cost Video Digitizing
- Radar Data Conversion
- Data Acquisition
- Medical Imaging

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40601216 Rev. C-3/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

28 Lead DIP – J6 Package 28 Lead CERDIP – B6 Package

28 Contact Chip Carrier - C3 Package

Functional Description

General Information

The TDC1048 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 255 reference voltages to produce an N-of-255 code (sometimes referred to as a "thermometer" code, as all the comparators below the signal will be on, and all those above the signal will be off). The

encoding logic converts the N-of-255 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

Power

The TDC1048 operates from two supply voltages, +5.0V and -5.2V. The return for I_{CC}, the current drawn from the +5.0V supply, is D_{GND}. The return for I_{EE}, the current drawn from

the $-5.2V\mbox{ supply, is A_{GND}}.$ All power and ground pins must be connected.

Name	Function	Value	J6, B6, C3 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pins 6, 10
V _{EE}	Negative Supply Voltage	-5.2V	Pins 7, 8, 9
D _{GND}	Digital Ground	0.0V	Pins 5, 11
AGND	Analog Ground	0.0V	Pins 19, 25

Reference

The TDC1048 converts analog signals in the range $V_{RB} \leqslant V_{IN} \leqslant V_{RT}$ into digital form. V_{RB} (the voltage applied to the pin at the bottom of the reference resistor chain) and V_{RT} (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -2.1V. V_{RT} should be more positive than V_{RB} within that range. The voltage applied across the reference resistor chain ($V_{RT}-V_{RB}$) must be between 1.8V and 2.2V. The nominal voltages are V_{RT} = 0.0V, V_{RB} = -2.0V.

A midpoint tap, R_{M} , allows the converter to be adjusted for optimum linearity, although adjustment is not necessary to meet the linearity specification. It can also be used to achieve a nonlinear transfer function. The circuit shown in Figure 5 will provide approximately 1/2 LSB adjustment of the linearity

midpoint. The characteristic impedance seen at this node is approximately 220 Ohms, and should be driven from a low-impedance source. Note that any load applied to this node will affect linearity, and noise introduced at this point will degrade the quantization process.

Due to the variation in the reference currents with clock and input signals, R_T and R_B should be low-impedanceto-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically, (as in an automatic gain control circuit), a low-impedance reference source is required. The reference voltages may be varied dynamically up to 5MHz.

Name	Function	Value	J6, B6, C3 Package
RT	Reference Resistor (Top)	0.0V	Pin 18
R _M	Reference Resistor (Middle)	-1.0V	Pin 27
RB	Reference Resistor (Bottom)	-2.0V	Pin 26

Control

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e. steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the Output Coding table on page 121. These pins are active LOW, as signified by the prefix "N" in the signal name. They may be tied to V_{CC} for a logic "1" and D_{GND} for a logic "0."

Name	Function	Value	J6, B6, C3 Package
NMINV	Not Most Significant Bit INVert	ΠL	Pin 28
NLINV	Not Least Significant Bit INVert	ΠL	Pin 12

Convert

The TDC1048 requires a convert (CONV) signal. A sample is taken (the comparators are latched) within 15ns after a rising edge on the CONV pin. This time is t_{STO} , Sampling Time Offset. This delay varies by a few nanoseconds from part to part and as a function of temperature, but the short-term uncertainty (jitter) in sampling offset time is less than 100 picoseconds. The 255 to 8 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to

the output latches on the next rising edge. Data is held valid at the output register for at least t_{HO} , Output Hold Time, after the rising edge of CONV. New data becomes valid after a Digital Output Delay, t_D , time. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e. data for sample N is acquired by the external circuitry while the TDC1048 is taking input sample N + 2.

Name	Function	Value	J6, B6, C3 Package
CONV	Convert	ΠL	Pin 17

Analog Input

The TDC1048 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cut-off or become active. As a result, for optimal performance, the source impedance of the driving device must be less than 25 Ohms. The input signal will not damage the TDC1048 if it remains within the range of V_{EE} to +0.5V. If the input signal is between the V_{RT} and V_{RB}

references, the output will be a binary number between 0 and 255 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction. All five analog input pins must be connected together.

Name	Function	Value	J6, B6, C3 Package
v _{IN}	Analog Signal Input	OV to −2V	Pins 20, 21, 22, 23, 24

Outputs

The outputs of the TDC1048 are TTL compatible, capable of driving four low-power Schottky TTL (54/74 LS) unit loads or

the equivalent. The outputs hold the previous data a minimum time (t_{HO}) after the rising edge of the CONVert signal.

Name	Function	Value	J6, B6, C3 Package
D ₁	MSB Output	ΠL	Pin 1
D ₂		TTL	Pin 2
D3		ΠL	Pin 3
D ₄		ΠL	Pin 4
D ₅		ΠL	Pin 13
D ₆		TTL	Pin 14
D ₇		TTL	Pin 15
D ₈	LSB Output	TTL	Pin 16

D

Figure 1. Timing Diagram

Figure 2. Simplified Analog Input Equivalent Circuit

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltag	85
	V _{CC} (measured to D _{GND})0.5 to +7.0V
	V _{EE} (measured to A _{GND}) +0.5 to -7.0V
	A_{GND} (measured to D_{GND})
Input Voltages	
	CONV, NMINV, NLINV (measured to D _{GND})
	V _{IN} , V _{RT} , V _{RB} (measured to A _{GND})
	V_{RT} (measured to V_{RB})
Output	
	Applied voltage (measured to D _{GND})0.5 to +5.5V ²
	Applied current, externally forced1.0 to +6.0mA ^{3,4}
	Short circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, ambient
	junction
	Lead, soldering (10 seconds) + 300°C
	Storage65 to +150°C

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as positive when flowing into the device.

Operating conditions

				Temperat	ure Range			
			Standard		Γ	Extended		
Parameter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Positive Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.50	v
VEE	Negative Supply Voltage	-4.9	-5.2	-5.5	-4.9	-5.2	-5.5	V
VAGND	Analog Ground Voltage (Measured to D _{GND})	-0.1	0	+0.1	-0.1	0	+0.1	v
t _{PWL}	CONV Pulse Width, Low	18			18			ns
^t PWH	CONV Pulse Width, High	22			22			ns
v _{IL}	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0			٧
I _{OL}	Output Current, Logic Low			4.0	1		4.0	mA
ЮН	Output Current, Logic High			-400			- 400	μA
V _{RT}	Most Positive Reference Input ¹	-0.1	0.0	0.1	-0.1	0.0	+0.1	V
V _{RB}	Most Negative Reference Input ¹	-1.9	-2.0	-2.1	-1.9	-2.0	-2.1	V
V _{RT} -V _{RB}	Voltage Reference Differential	1.8	2.0	2.2	1.8	2.0	2.2	v
V _{IN}	Input Voltage	V _{RB}		V _{RT}	V _{RB}		V _{RT}	v
TA	Ambient Temperature, Still Air	0	1	70				°C
TC	Case Temperature				- 55		125	°C

Note:

1. V_{RT} Must be more positive than V_{RB} , and voltage reference differential must be within specified range.

Electrical characteristics within specified operating conditions

				Temperate	re Range		
			Stan	dard	Exte	nded	1
Parar	meter	Test Conditions	Min	Max	Min	Max	Uni
lcc	Positive Supply Current	V _{CC} - MAX, static ¹		35		40	mA
^I EE	Negative Supply Current	V _{EE} - MAX, static ¹					
		$T_A - 0^{\circ}C$ to $70^{\circ}C$		-220			mA
		$T_A = 70^{\circ}C$		- 170			mA
		$T_{C} = -55^{\circ}C$ to 125°C				-270	mA
		T _C - 125°C	1			- 165	m/
IREF	Reference Current	V _{RT} , V _{RB} - NOM		30		40	m/
R _{REF}	Total Reference Resistance		.67		50		Oh
R _{IN}	Input Equivalent Resistance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}	10		. 10		kO
CIN	Input Capacitance	V _{RT} , V _{RB} - NOM, V _{IN} - V _{RB}		100		100	pF
I _{CB}	Input Constant Bias Current	V _{EE} - MAX		100		200	μ
կլ	Input Current, Logic Low	V _{CC} - MAX, V _I - 0.5V					
		CONV		-0.4		-0.4	m/
		NMINV, NLINV	_	-0.6		-0.6	m/
- <mark>I</mark> IH	Input Current, Logic High	$V_{CC} - MAX, V_I - 2.4V$		50		50	μ
4	Input Current, Max Input Voltage	$V_{CC} = MAX, V_{I} = 5.5V$		1.0		1.0	m/
V _{OL}	Output Voltage, Logic Low	V_{CC} - MIN, I_{OL} - MAX		0.5		0.5	۷
VOH	Output Voltage, Logic High	v _{cc} - min, i _{oh} - max	2.4		2.4		۷
los	Short Circuit Output Current	V_{CC} – MAX, Output high, one pin to ground, one second duration.		-30		-30	m/
Ci	Digital Input Capacitance	T _A = 25°C. F = 1MHz	1	15		15	ηF

Note:

1. Worst case: all digital inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperat	ure Range]
			Star	ndard	Exte	nded	7
Pa	ameter	Test Conditions	Min	Max	Min	Max	Units
FS	Maximum Conversion Rate	V _{CC} - MIN, V _{EE} - MIN	20		20		MSPS
tST) Sampling Time Offset	V _{CC} - MIN, V _{EE} - MIN	0	10	0	15	ns
to	Digital Output Delay	V _{CC} – MIN, V _{EE} – MIN, Load 1		25		30	ns
tho	Digital Output Hold Time	V _{CC} - MAX, V _{EE} - MAX, Load 1	5		5		ns

1

System performance characteristics within specified operating conditions

				Temperat	ure Range		
			Sta	ndard	Exte	nded	1
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
ELI	Linearity Error Integral, Independent	V _{RT} , V _{RB} - NOM		±0.2		±0.2	%
ELD	Linearity Error Differential			0.2		0.2	%
۵	Code Size		25	175	25	175	% Nominal
ЕОТ	Offset Error Top	V _{IN} = V _{RT}		+40		+40	mV
EOB	Offset Error Bottom	V _{IN} - V _{RB}		-30		- 30	mV
T _{CO}	Offset Error Temperature Coefficient			±20		±20	µv/°C
BW	Bandwidth, Full Power Input		7		5		MHz
t _{TR}	Transient Response, Full Scale			20		20	ns
SNR	Signal-to-Noise Ratio	20MSPS Conversion Rate,					
		10MHz Bandwidth					
	Peak Signal/RMS Noise	1.248MHz Input	54		53		dB
		2.438MHz Input	53		52		dB
	RMS Signal/RMS Noise	1.248MHz Input	45		44		dB
		2.438MHz Input	44		43		dB
E _{AP}	Aperture Error			60		60	ps
DP	Differential Phase Error	F _S = 4 x NTSC		1.0		1.0	Degree
DG	Differential Gain Error	$F_S = 4 \times NTSC$		2.0	·	2.0	%
NPR	Noise Power Ratio	DC to 8MHz White Noise	36.5		36.5		dB
		Bandwidth 4 Sigma Loading					
		1.248MHz Slot			· ·		
		20MSPS Conversion Rate					

-

Ľ

Output Coding

			Bir	nary	Offset Comp	Two's lement
Step	Ran	ge	True	Inverted	True	Inverted
	-2.0000V FS	-2.0480V FS	NMINV - 1	0	0	1
	7.8431 mV STEP	8.000 mV STEP	NLINV – 1	0	1	0
000	0.0000V	0.0000V	000000	111111	1000000	0111111
001	-0.0078V	-0.0080V	0000001	111110	1000001	0111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
127	-0.9961V	-1.0160V	0111111	1000000	1111111	0000000
128	- 1.0039V	-1.0240V	1000000	0111111	00000000	11111111
129	-1.0118V	-1.0320V	1000001	0111110	00000001	11111110
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
254	-1.9921V	-2.0320V	1111110	0000001	0111110	10000001
255	-2.0000V	-2.0400V	1111111	0000000	0111111	1000000

Notes:

1. NMINV and NLINV are to be considered DC controls. They may be tied to +5V for a logical "1" and tied to ground for a logical "0." 2. Voltages are code midpoints when calibrated by the procedure given below.

Calibration

To calibrate the TDC1048, adjust V_{RT} and V_{RB} to set the 1st and 255th thresholds to the desired voltages. Note that R_1 is greater than R, ensuring calibration with a positive voltage on R_T . Assuming a OV to -2V desired range, continuously strobe the converter with -0.0039V (1/2 LSB from OV) on the analog input, and adjust V_{RT} for output toggling between codes 00 and 01. Then apply -1.996V (1/2 LSB from -2V) and adjust V_{RB} for toggling between codes 254 and 255.

The degree of required adjustment is indicated by the offset error, E_{0T} and E_{0B} . Offset errors are generated by the inherent parasitic resistance between the package pin and the actual resistor chain on the integrated circuit. These parasitic resistors are shown as R_1 and R_2 in the Functional Block

Diagram. Calibration will cancel all offset voltages, eliminating offset and gain errors.

The above method of calibration requires that both ends of the resistor chain, R_T and R_B , are driven by buffered operational amplifiers. Instead of adjusting $V_{RT},\,R_T$ can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. The offset error at the bottom of the resistor chain results in a slight gain error, which can be compensated for by varying the voltage applied to R_B . The bottom reference is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 6.

D

Typical Interface

Figure 6 shows an example of a typical interface circuit for the TDC1048. The analog input amplifier is a bipolar wideband operational amplifier, which is used to directly drive the A/D converter. Bipolar inputs may be accommodated by adjusting the offset control. A zener diode provides a stable reference for both the offset and gain control. All five V_{IN} pins are connected close to the device package, and the buffer amplifier feedback loop should be closed at that point. The buffer has a gain of minus two, increasing a 1 Volt p-p video input signal to the recommended 2 Volt p-p input for the A/D converter. Proper decoupling is recommended for all systems, although the degree of decoupling shown may not be needed. A variable capacitor permits buffer optimization, by either step response or frequency response. This may be replaced with a fixed value capacitor, as determined by the layout and desired optimization.

The bottom reference voltage, V_{RB} , is supplied by an inverting amplifier, buffered with a PNP transistor. The transistor provides a low-impedance source and is necessary to sink the current flowing through the reference resistor chain. The bottom reference voltage can be adjusted to cancel the gain error introduced by the offset voltage, E_{OB} , as discussed in the calibration section.

Figure 6. TDC1048 Typical Interface Circuit

LSI Products Division TRW Electronic Components Group

Parts List

Resisto	ors		
R1	0.0Ω	1/4W	5%
R2	80.7 Ω	1/4W	5%
R3	1KΩ	1/4W	5%
R4	2KΩ	1/4W	5%
R5	220 Ω	1/4W	5%
R6	2K Ω	1/4W	5%
R7	1KΩ	1/4W	5%
R8	2KΩ	1/4W	Multiturn Pot
R9	2K Ω	1/4W	Multiturn Pot
R10	10K Ω	1/4W	5%
R11	20K Ω	1/4W	5%
R12	27 Ω	1/4W	5%
1112	2136	1/488	U/U

Capacitors

C1-C4	10μ F	25V
C5-C11	0.1µF	50V
C12	1–6pF	variable

Integrated Circuits

U1	TRW TDC1048
Ú2	HA-2539-5 op-amp
U3	uA741C op-amp
U4	LM313 reference

Inductors

L1, L2 Ferrite beads

D

t

B2 _	1	B1 = 7m -	1000 R2
nz -	2V _{Range} - 0.001 V _{REF} Z _{IN} - 0.001		1000 + R2

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1048J6C	STD-T _A = 0°C to 70°C	Commercial	28 Lead DIP	1048, J6C
DC1048J6G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Lead DIP	1048.J6G
DC1048J6F	EXT-T _C = -55°C to 125°C	Commercial	28 Lead DIP	1048.J6F
FDC1048J6A	EXT-T _C = -55°C to 125°C	MIL-STD-883B	28 Lead DIP	1048.J6A
DC1048J6N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	28 Lead DIP	1048.J6N
FDC1048C3C	STD-T _A = 0°C to 70°C	Commercial	28 Contact Chip Carrier	1048C3C
DC1048C3G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Contact Chip Carrier	1048C3G
IDC1048C3F	EXT-T _C = -55°C to 125°C	Commercial	28 Contact Chip Carrier	1048C3F
TDC1048C3A	EXT-T _C = -55°C to 125°C	MIL-STD-883B	28 Contact Chip Carrier	1048C3A
TDC1048C3N	$EXT - T_C = -55^{\circ}C$ to 125°C	Commercial With Burn-In	28 Contact Chip Carrier	1048C3N
IDC1048B6C	STD-T _A - 0°C to 70°C	Commercial	28 Lead CERDIP	1048B6C
TDC1048B6G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Lead CERDIP	1048B6G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division TRW Electronic Components Group

.

The second se
the constrainty of the second s
which are a set of the
A Star you a start for the start

	and sold of the second
	A PARTY OF A DESCRIPTION OF THE ADDRESS OF A DESCRIPTION OF
	W. L
	median departs a feb., Film, Pebblics to sale the black Science Schedule at Sole
	White a set of the activity of the activity of the set
	NUMBER OF COMPANY
	INCLUSION INTO A POINT OF COMPANY OF A CONTRACTOR
	announced and a state strate and a state of the
	WHITE POP AND A CONTRACT OF A
	A CONTRACTOR OF A CONTRACT

denotes and the denotes of the second s	N
and a provide a construction of the second decision of the second decision of the second second second second s	8×11
A State of the	- *5.
nan kala sela mana kala kala kalan nan nan na nan nan kala kala	. 44a
	. 64

D/A Converters

.

TRW LSI's line of monolithic, high-speed D/A converters employ segmented current switching techniques. These D/A converters have resolutions of 8 and 10 bits, and are exceptionally well suited for video, vector, and raster graphics applications. These devices are built with TRW LSI's proven 3D (triple-diffused) bipolar technology which provides significant advantages in performance. size, power, and reliability. The development of fine lithography techniques has yielded faster, more accurate, and more economical D/A converters.

Operation

D/A converters have four major functional sections: data input registers, decoding logic, output current switches and reference amplifier. The primary function of the data registers is to hold data values constant during conversion. The registers assure precise matching of propagation delays to reduce glitching to a minimum. The decoding logic selects the current switches and special video functions, such as SYNC, BLANK, BRIGHT, and FORCE HIGH. The two analog outputs of the TDC1018 are complementary currents, which vary in proportion to the input data, controls, and reference current. The TDC1016 has an internal resistor to provide a voltage output which varies in proportion to the magnitude of input data and reference voltage. The reference amplifier drives the current switches. The full-scale output value may be adjusted over a limited range by varying the reference voltage or current.

Most applications of these devices require no extra registering, buffering, or deglitching. Four special level controls make the TDC1018 ideal for RGB raster graphics applications. The TDC1016 can be operated in either TTL or ECL compatible modes, with controls for selecting input data format. Binary, inverse binary, two's complement, and inverse two's complement formats are supported.

Product	Bits	Integral Linearity Error (%)	Conversion Rate ¹ (MSPS)	Power Dissipation (Watts)	Package	Notes
TDC1016 ²	8	0.20	20	0.7	J5, J7, C2, B7	TTL/ECL Compatible
	9	0.10	20	0.7	J5, J7, C2, B7	TTL/ECL Compatible
	10	0.05	20	0.7	J5, J7, C2, B7	TTL/ECL Compatible
TDC1018	8	0.20	125	0.8	J7, B7	ECL Compatible

Notes: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to 70°C.

 The TDC1016 has 10-bit resolution, and is available in three linearity grades to meet 8, 9, and 10-bit system requirements.

Video Speed D/A Converter 10-bit, 20MSPS

The TDC1016 is a bipolar monolithic digital-to-analog converter which can convert digital data into an analog voltage at rates up to 20 MegaSamples Per Second (MSPS). The device includes an input data register and operates without an external deglitcher or amplifier.

Operating the TDC1016 from a single -5.2 Volt power supply will bias the digital inputs for ECL levels, while operating from a dual ± 5 Volts power supply will bias the digital inputs for TTL levels.

All versions of the TDC1016 are 10-bit digital-to-analog converters, but are available with linearity specifications of either 8, 9, or 10 bits. The TDC1016 is patented under U.S. patent number 3283120 with other patents pending.

Features

- 20MSPS Conversion Rate
- 8, 9, or 10-Bit Linearity

Functional Block Diagram

- Voltage Output, No Amplifier Required
- Single Supply Operation (-5.2V, ECL Compatible)
- Dual Supply Operation (±5.0V, TTL Compatible)
- Internal 10-Bit Latched Data Register
- Low Glitch Energy
- Disabling Controls, Forcing Full-Scale, Zero, And Inverting Input Data
- Binary Or Two's Complement Input Data Formats
- Differential Gain = 1.5%, Differential Phase = 1.0 Degree
- MIL-STD-883 Screening Available

Applications

- Construction of Video Signals From Digital Data. 3x Or 4x NTSC Or PAL Color Subcarrier
- CRT Graphics Displays, RBG, Raster, Vector
- · Waveform Synthesis

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00280 Rev. D-2/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

40 Lead DIP - J5 Package

²⁴ Lead DIP – J7 Package 24 Lead CERDIP – B7 Package

Pin Assignments

Functional Description

General Information

TTL/ECL buffers are used for all digital inputs to the TDC1016. Logic family compatibility depends upon the connection of power supplies. When single power supply (-5.2V) operation is employed, all data, clock, and disable inputs are compatible with differential ECL logic levels. All digital inputs become compatible with TTL levels when dual power supply ($\pm 5.0V$) operation is used.

The internal 10-bit register latches data on the rising edge of the clock (CLK) pulse. Currents from the current sources are

switched accordingly and combined in the resistor network to give an analog output voltage. The magnitude of the output voltage is directly proportional to the magnitude of the digital input word.

The NFL and NFH inputs can be used to simplify system calibration by forcing the analog output voltage to either its zero-scale or full-scale value. The TDC1016 can be operated in binary, inverse binary, two's complement, or inverse two's complement input data formats.

Power

The TDC1016 can be operated from a single -5.2 Volts power supply or from a dual ± 5.0 Volts power supply. For single power supply operation, V_{CC} is connected to D_{GND} and all inputs to the device become ECL compatible. When V_{CC} is tied to ± 5.0 Volts, the inputs are TTL compatible.

The return path for the output from the 10 current sources is A_{GND}. The current return path for the digital section is D_{GND} . D_{GND} and A_{GND} should be returned to system power supply ground by way of separate conductive paths to prevent digital ground noise from disturbing the analog circuitry of the TDC1016. All A_{GND} pins must be connected to system analog ground.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 9	Pin 44	Pin 6
VEE	Negative Supply Voltage	-5.0V	Pin 2	Pin 34	Pin 23
AGND	Analog Ground	0.0V	Pins 5, 6, 8	Pins 38, 39, 40, 41, 43	Pins 2, 3, 5
D _{GND}	Digital Ground	0.0V	Pin 10	Pin 1	Pin 7

Reference

The reference input is normally set to -1.0V with respect to A_{GND}. Adjusting this voltage is equivalent to adjusting system gain. The temperature stability of the TDC1016 analog output (A_{OUT}) depends primarily upon the temperature stability of the applied reference voltage.

The internal operational amplifier of the TDC1016 is frequency stabilized by an external 1 microfarad tantalum capacitor connected between the COMP pin and V_{EE}. A minimum of 1 microfarad is adequate for most applications, but 10 microfarads or more is recommended for optimum performance. The negative side of this capacitor should be connected to V_{EE}.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
V _{REF}	Reference Voltage In	-1.0V	Pin 4	Pin 36	Pin 1
COMP	Compensation	1 μF	Pin 3	Pin 35	Pin 24

Control

The NDIS inputs are used to disable the TDC1016 by forcing its output to the zero-scale value (current sources off). The NDIS inputs are asynchronous, active without regard to the CLK inputs. The other digital control inputs are synchronous, latched on the rising edge of the CLK pulse.

The rising edge of the CLK pulse transfers data from the input lines to the internal 10-bit register. In TTL mode, the inverted

inputs for CLK, DATA, and NDIS are inactive and should be left open.

The Input Coding table illustrates the function of the digital control inputs. A two's complement mode is created by activating N2C with a logic "0." When NFH and NFL are both activated with a logic "0," the input data to the 10-bit register is inverted.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
NDIS	Not Disable	TTL/ECL	Pin 11	Pin 2	Pin 8
NDIS	Not Disable (Inv)	ECL	Pin 14	Pin 5	
CLK	Clock	TTL/ECL	Pin 12	Pin 3	Pin 9
CLK	Clock (Inv)	ECL	Pin 13	Pin 4	
N2C	Not Two's Complement	TTL/ECL	Pin 17	Pin 9	Pin 11
NFH	Not Force HIGH	TTL/ECL	Pin 20	Pin 12	Pin 13
NFL	Not Force LOW	TTL/ECL	Pin 21	Pin 13	Pin 14

Data Input

Data inputs are ECL compatible when single power supply operation is employed. The J5 and C2 packages allow for differential ECL inputs while the J7 and B7 packages have only single-ended inputs. When differential ECL data is used, any data input can be inverted simply by reversing the connections to the true and inverted data input pins. All inverted input pins should be left open if single-ended ECL or TTL modes are used. All data inputs have an internal 40 kOhm pull-up resistor to V_{CC} .

Data Input (Cont.)

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
D ₁	Data Bit 1 (MSB)	TTUECL	Pin 16	Pin 8	Pin 10
D	Data Bit 1 (MSB Inv)	ECL	Pin 15	Pin 7	
D ₂		TTL/ECL	Pin 19	Pin 11	Pin 12
D ₂		ECL	Pin 18	Pin 10	
D3		TTL/ECL	Pin 23	Pin 15	Pin 15
D3		ECL	Pin 22	Pin 14	
D ₄		TTL/ECL	Pin 25	Pin 17	Pin 16
04		ECL	Pin 24	Pin 16	
D5		TTL/ECL	Pin 27	Pin 19	Pin 17
D5		ECL	Pin 26	Pin 18	
D ₆		TTL/ECL	Pin 29	Pin 21	Pin 18
D_6		ECL	Pin 28	Pin 20	i i
D7		TTL/ECL	Pin 31	Pin 23	Pin 19
0 ₇		ECL	Pin 30	Pin 22	
D ₈		TTL/ECL	Pin 33	Pin 25	Pin 20
0 <mark>8</mark>		ECL	Pin 32	Pin 24	
Dg		TTL/ECL	Pin 35	Pin 27	Pin 21
Dg		ECL	Pin 34	Pin 26	and the second sec
D ₁₀	Data Bit 10 (LSB)	TTL/ECL	Pin 37	Pin 29	Pin 22
D ₁₀	Data Bit 10 (LSB Inv)	ECL	Pin 36	Pin 28	

Analog Output

The analog output voltage is negative with respect to A_{GND} and varies proportionally with the magnitude of the input data word. The output resistance at this point is 80 Ohms, nominally.

Name	Function	Value	J5 Package	C2 Package	J7, B7 Package
A _{OUT}	Analog Output Voltage	OV to -1V	Pin 7	Pin 42	Pin 4

No Connect

There are several pins labeled no connect (NC) on the TDC1016 J5 and C2 packages, which have no connections to the chip. These pins should be left open.

Name	Function	Value	J5 Package	J5 Package C2 Package	
NC	No Connect	Open	Pins 1, 38, 39, 40	Pins 6, 30, 31, 32, 33, 37	None

-

ī

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag	jes	
	V _{CC} (measured To D _{GND})	
	V _{EE} (measured To A _{GND})	
	A _{GND} (measured To D _{GND})	
Input Voltage	s	
	Digital (measured To D _{GND})	
	Reference (measured To A _{GND})	
Output	· · · · · · · · · · · · · · · · · · ·	
	Applied voltage (measured To AGND)	
	Short-circuit duration	indefinite
Temperature		
	Operating ambient	
	junction	
	Lead, soldering (10 seconds)	
	Storage	65 to +150°C
Notes:	1. Absolute maximum ratings are limiting values applied individually while	all other parameters are within specified operating conditions.

Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

Operating conditions

					Temperati	ure Range			
				Standard			Extended		
Paramet	er .		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Positive Supply Voltage	TTL Mode	4.75	5.0	5.25	4.50	5.0	5.55	v
		ECL Mode	-0.25	0.0	0.25	-0.25	0.0	0.25	٧
VEE	Negative Supply Voltage		-4.5	-5.0	-5.5	-4.5	-5.0	-5.5	٧
VAGND	Analog Ground Voltage (Measured to DGND)		-0.1	0.0	0.1	-0.1	0.0	0.1	٧
tPWL	CLK Pulse Width, Low		15			20			ns
^t PWH	CLK Pulse Width, High		15			20			ns
ts	Input Register Set-up Time	TTL Mode	20			20			ns
		ECL Mode	25			25			ns
tн	Input Register Hold Time		2			2			ns
VIL	Logic "O"	TTL Mode	D _{GND}		0.8	D _{GND}		0.8	V
		ECL Mode	- 1.85		-1.475	- 1.85		- 1.475	V
VIH	Logic "1"	TTL Mode	2.0		V _{CC}	2.0		V _{CC}	٧
		ECL Mode	- 1.105		-0.81	- 1.105		-0.81	V
V _{REF}	Reference Voltage		-0.8	-1.0	-1.2	-0.8	-1.0	-1.2	v
CCOMP	Compensation Capacitor		1.0			1.0			μF
TA	Ambient Temperature		0		70				°C
т _С	Case Temperature					- 55		125	°C

Electrical characteristics within specified operating conditions

				Temperate	re Range		
			Star	ıdard	Exte	nded	
Param	ieter	Test Conditions	Min	Max	Min	Max	Units
ICC	Power Supply Current	TTL Mode, V _{CC} – MAX, V _{EE} – MAX		20		20	mA
I _{EE}	Power Supply Current	TTL Mode, V _{CC} = MAX, V _{EE} = MAX ¹		- 120		- 150	mA
I _{REF}	Reference Input Current	$V_{EE} = MAX, V_{REF} = -1.0V$		• 10		10	μΑ
l _μ	Logic "O" Input Current	TTL Mode, V _{CC} = MAX, V _{EE} = MAX		- 1.0		- 1.0	mA
		ECL Mode, V _{CC} = 0.0, V _{EE} = MAX		- 300		- 300	μΑ
I _{IH}	Logic "1" Input Current	TTL Mode, V _{CC} = MAX, V _{EE} = MAX		75		75	μΑ
		ECL Mode, V _{CC} = 0.0, V _{EE} = MAX		300		300	μA
		CLK, NDIS		300		300	μΑ
C _{OUT}	Output Capacitance	A _{OUT} to A _{GND} (Figure 2)		10		10	рF
CIN	Digital Input Capacitance	Any Digital Input to D _{GND}		35		35	рF
Rout	Output Resistance	A _{OUT} to A _{GND} (Figure 2)	70	95 .	70	95	Ohms

Note:

1. Return current from $V_{\mbox{\scriptsize EE}}$ flows through $A_{\mbox{\scriptsize GND}}.$

Switching characteristics within specified operating conditions

				Temperati			
			Sta	ndard	Exte	ended	
Param	eter	Test Conditions	Min	Max	Min	Max	Units
FC	Maximum Data Rate	TTL Mode Full-Scale Output Step	20		20		MSPS
U		ECL Mode Full-Scale Output Step	18	1	18		MSPS
tDS	Data Turn-on Delay	RL - 75 Ohms		20		20	ns
tSET	Settling Time	TDC1016-8 to 0.2%		30		30	ns
		TDC1016-9 to 0.1%		35		35	ns
		TDC1016-10 to .05%		40		40	лs
tRV	Output 10% to 90% Risetime	V _{EE} - NOM, RL - 75 Ohms Full-Scale Step		5.5		5.5	ns

System performance characteristics within specified operating conditions

an a st	The set of the set	andre an fin en Her Mary en en en en en an dan fin fin andre en en et en andre en andre en andre en andre en an	 A D. Ab Influence A. 	Tempera	ture Rar	nge	
			Star	ndard	Exte	nded	
Parame	ter	Test Conditions	Min	Max	Min	Max	Units
RES	Resolution	All TDC1016 Devices		10		10	bits
ELI, ELD	Linearity Error Integral and Differential	TDC1016-8		0.2		0.2	% FS
	Terminal Based	TDC1016-9		0.1		0.1	% FS
		TDC1016-10		0.05		0.05	% FS
VOFS	Full-Scale Output Voltage	V _{EE} – NOM, RL – 10 kOhms	- 0.95	- 1.05	- 0.95	- 1.05	Volts
		V _{REF} 1.000V					
		V _{EE} - NOM, RL - 75 Ohms	-0.47	-0.53	-0.47	-0.53	Volts
		V _{REF} = -1.000V					
Vozs	Zero-Scale Output Voltage	V _{EE} = NOM, RL = 75 Ohms		±15		±15	mV
		V _{REF} 1.000V					
DP	Differential Phase	NTSC 4x subcarrier ¹		1.0		. 1.0	Degree
DG	Differential Gain	NTSC 4x subcarrier ¹		1.5		1.5	%
GE	Glitch "Energy" (Area)	RL = 75 Ohms, Midscale		100		100	pV-sec
GV	Glitch Voltage	RL = 75 Ohms, Midscale		35		35	mV

Note:

1. In excess of theoretical DP and DG due to quantizing error.

Input Coding Table

NDIS	N2C	NFH	NFL	Data	Output	Description
0	x	x	x	****	0.0	Output Disabled
1	1	1	1	111111111	0.0	Binary (Default State for
1	1	1	1	000000000	- 1.0	TTL Mode Control) Inputs Open
1	1	0	· 0	111111111	- 1.0	Inverse Binary
1	1	O	D	000000000	0.0	
1	0	1	1	011111111	0.0	Two's Complement
1	0	1	1	100000000	-1.0	
1	0	0	0	011111111	-1.0	Inverse Two's Complement
1	0	0	0	100000000	0.0	
1	x	0	1	*****	0.0	Force HIGH
1	x	1	0	*****	-1.0	Force LOW

Notes:

Calibration

The TDC1016 is calibrated by adjusting the voltage reference to give the desired full-scale output voltage. The current switches can be turned on either by loading the data register with full-scale data or by bringing the NFH input to a logic zero.

Typical Application

The Typical Interface Circuit (Figure 5) shows the TDC1016 in a typical application, reconstructing video signals from digital data. Television timing signals, SYNC and BLANKING, are added by injecting current from the Wilson current source into a resistor divider circuit at the output of the TDC1016.

The TDC1016 output and currents from the SYNC and BLANKING inputs are summed and amplified by the HA2539 wide-band operational amplifier. Note the careful power supply decoupling at the power input pins of the amplifier. The output

Figure 5. Typical Interface Circuit

Note that all 10 current switches are activated by the NFH input and the resulting full-scale output voltage will be greater than if the system used only eight or nine bits for full-scale data.

of the circuit is a composite video signal with SYNC and BLANKING levels coming from external sources. This technique allows the TDC1016 to use its entire dynamic range for the video information while pulses are added by other means.

The reference for the TDC1016 is generated by dividing the output voltage from a two-terminal band-gap voltage reference. System gain is calibrated by adjusting variable resistor R1. Analog and digital grounds should be routed back to system power supply ground by separate paths.

Parts List

Resistors			Capacitors			Diodes		
R1	5K	1/4W	10-turn	C1	0.01µF	50V	CR1	1N4001
R2	1K	1/4W	10-turn	C2	1.0µF	10V		
R3	1K	1/4W	5%	C3	1.0µF	10V	Transistors	
R4	43	1/4W	5%	C4	2.2µF	25V		
R5	33	1/4W	5%	C5	0.1µF	50V	01	2N2907
R6	330	1/4W	5%	C6	2–5 pF	50V	02	2N2907
R7	750	1/4W	5%	C7	0.1µF	50V	Q 3	2N2907
R9,R9	10	1/4W	5%	C8	0.1µF	50V	Q4	2N6660
R10	75	1/4W	2%	C9	0.1µF	50V	Q5	2N6660
R11,R12	10K	1/4W	5%	C10	0.1µF	50V		
R13	220	1/4W	5%		•	Integrated Circuits		ed Circuits
R14,R15	100	1/4W	5%	RF Chokes			-	
R16,R22	390	1/4W	5%	L1,L2	Ferrite beads		U1	TRW TDC1016
R17,R18	2K	1/4W	10-turn				U2	LM113
R19	1K	1/4W	5%				U3	HA2539
R20,R21	1K	1/4W	5%				U4	SN7404

Ordering Information

 Product Number	Temperature Range	Screening	Package	Package Marking
TDC1016J5CX	T _A - D°C to 7D°C	Commercial	40 Lead DIP	1016J5CX
 TDC1016J5GX	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	40 Lead Dip	1016J5GX
TDC1016J5FX	TC = -55°C to 125°C	Commercial	40 Lead Dip	1016J5FX
TDC1016J5AX	T _C = -55°C to 125°C	MIL-STD-883	40 Lead Dip	1016J5AX
TDC1016J7CX	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	24 Lead DIP	1016J7CX
TDC1016J7GX	T _A = 0°C to 70°C	Commercial With Burn-In	24 Lead DIP	1016J7GX
TDC1016J7FX	$T_{C} = -55^{\circ}C$ to 125°C	Commercial	24 Lead DIP	1016J7FX
TDC1016J7AX	$T_{C} = -55^{\circ}C \text{ to } 125^{\circ}C$	MIL-STD-883	24 Lead DIP	1016J7AX
TDC1016B7CX	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	24 Lead CERDIP	1016B7CX
TDC1016B7GX	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	24 Lead CERDIP	1016B7GX
TDC1016C2CX	T _A - 0°C to 70°C	Commercial	44 Contact Chip Carrier	1016C2CX
TDC1016C2GX	$T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	44 Contact Chip Carrier	1016C2GX
TDC1016C2FX	$T_{C} = -55^{\circ}C$ to 125°C	Commercial	44 Contact Chip Carrier	1016C2FX
TDC1016C2AX	T _C = -55°C to 125°C	MIL-STD-883	44 Contact Chip Carrier	1016C2AX

Note: "X" in part and mark number indicates grade. All TDC1016 devices are available in three grades. Grade "8" is for 8-bit linearity, grade "9" for 9-bit linearity, and grade "10" for 10-bit linearity. The 8-bit version of the B7 (CERDIP) package does not have "-8" marking.

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

LSI Products Division TRW Electronic Components Group

.

TDC1018 Preliminary Information

D/A Converter 8-bit, 125MSPS

The TRW TDC1018 is a 125 MegaSample Per Second (MSPS), 8-bit digital-to-analog converter, capable of directly driving a 75 Ohm load to standard video levels. Most applications require no extra registering, buffering, or deglitching. Four special level controls make the device ideal for video applications. All data and control inputs are ECL compatible.

The TDC1018 is built with TRW's $OMICRON-B^{TM}$ 1-micron bipolar process. On-chip data registers and precise matching of propagation delays make the TDC1018 inherently low-glitching. The TDC1018 offers high performance, low power consumption, and video compatibility in a 24 lead DIP package.

Features

- "Graphics Ready"
- 125MSPS Conversion Rate
- 8-Bit
- 1/2 LSB Linearity
- Power Supply Noise Rejection > 50dB

Functional Block Diagram

- Registered Data And Video Controls
- Differential Current Outputs
- Video Controls: SYNC, BLANK, BRighT, Force High
- Inherently Low Glitch Energy
- ECL Compatible
- Multiplying Mode Capability
- Power Dissipation < 940mW
- Available In 24 Lead DIP Package
- Single -5.2V Power Supply

Applications

- RGB Graphics
- High Resolution Video
- Raster Graphic Displays
- Digital Synthesizers
- Automated Test Equipment
- Digital Transmitters/Modulators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457-1000 Telex: 697-957 TWX: 910-335-1571 ©TRW Inc. 1984 40G01211 Rev. C-1/84 Printed in the U.S.A.

E

538 July As

Functional Block Diagram

Pin Assignments

24 Lead DIP - J7 Package

Functional Description

General Information

The TDC1018 develops complementary analog output currents proportional to the product of the digital input data and analog reference current. All data and control inputs are compatible with standard ECL logic levels. FeedThrough control (FT) determines whether data and control inputs are synchronous or asynchronous. If FT is LOW, each rising edge of the CONVert clock (CONV) latches decoded data and control values into an internal D-type register. The registered values are then converted into the appropriate analog output by switched current sinks. When FT is HIGH, data and control inputs are not registered, and the analog output asynchronously tracks the input values. FT is the only asynchronous input, and is normally used as a DC control.

The TDC1018 uses a segmented approach in which the four MSBs of the input data are decoded into a parallel "Thermometer" code, which drives fifteen identical current sinks to produce sixteen coarse output levels. The LSBs of the input drive four binary-weighted current switches, with a total contribution of one-sixteenth of full scale. The LSB and MSB currents are summed to provide 256 analog output levels.

Special control inputs, SYNC, BLANK, Force High (FH) and BRighT (BRT), drive appropriately weighted current sinks which add to the output current to produce specific output levels especially useful in video applications.

Power

To provide highest noise immunity, the TDC1018 operates from separate analog and digital power supplies, V_{EEA} and V_{EED}, respectively. Since the required voltage for both V_{EEA} and V_{EED} is -5.2V, these may ultimately be connected to the same power source, but individual high-frequency decoupling for each supply is recommended. A typical decoupling network is shown in Figure 7. The return for I_{EED}, the current drawn

from the VEED supply, is DGND. The return for IEEA is AGND. All power and ground pins MUST be connected.

Although the TDC1018 is specified for a nominal supply of -5.2V, operation from a +5.0V supply is possible provided that the relative polarities of all voltages are maintained.

Name	Function	Value	J7 Package
VEEA	Analog Supply Voltage	-5.2V	Pin 20
V _{EED}	Digital Supply Voltage	-5.2V	Pin 5
AGND	Analog Ground	0.0V	Pin 17
D _{GND}	Digital Ground	0.0V	Pin 9

Reference

The TDC1018 has two reference inputs: REF+ and REF-, which are noninverting and inverting inputs of an internal reference buffer amplifier. The output of this operational amplifier serves as a reference for the current sinks. The feedback loop is internally connected around one of the current sinks to achieve high accuracy (see Figure 4).

The analog output currents are proportional to the digital data and reference current, I_{REF}. The full-scale output value may be adjusted over a limited range by varying the reference current. Accordingly, the stability of the analog output depends primarily upon the stability of the reference. A method of achieving a stable reference is shown in Figure 7.

The reference current is fed into the REF+ input, while REFis typically connected to a negative reference voltage through a resistor chosen to minimize input offset bias current effects.

A COMPensation input (COMP), is provided for external compensation of the TDC1018's reference amplifier. A capacitor (C_C) should be connected between COMP and the V_{EEA} supply, keeping lead lengths as short as possible. The value of the compensation capacitor determines the effective bandwidth of the amplifier. In general, decreasing C_C increases bandwidth and decreases amplifier stability. For applications in which the reference is constant, C_C should be large, while smaller values of C_C may be chosen if dynamic modulation of the reference is required.

Name	Function	Value	J7 Package
REF-	Reference Current – Input	Op-Amp Virtual Ground	Pin 14
REF+	Reference Current + Input	Op-Amp Virtual Ground	Pin 15
COMP	COMPensation Input	с _С	Pin 16

Controls

The TDC1018 has four special video control inputs: SYNC, BLANK, Force High (FH), and BRighT (BRT), in addition to a clock FeedThrough control (FT). All controls are standard ECL level compatible, and include internal pulldown resistors to force unused controls to a logic LOW (inactive) state.

Typically the TDC1018 is operated in the synchronous mode, which assures the highest conversion rate and lowest spurious output noise. By asserting FT, the input registers are disabled, allowing data and control changes to asynchronously feed through to the analog output. Propagation delay from input change (control or data) to analog output is minimized in the asynchronous mode of operation.

In the synchronous mode, the video control inputs are registered by the rising edge of the CONV clock in a manner similar to the data inputs. The controls, like data, must be present at the inputs for a setup time of ts (ns) before, and a hold time of t_H (ns) after the rising edge of CONV in order to

be registered. In the asynchronous mode, the setup and hold times are irrelevant and minimum pulse widths HIGH and LOW become the limiting factor.

Asserting the video controls produces various output levels which are used for frame synchronization, horizontal blanking, etc., as described in video system standards such as RS-170 and RS-343A. The effect of the video controls on the analog outputs is shown in Table 1. Special internal logic governs the interaction of these controls to simplify their use in video applications. BLANK, SYNC, and Force High override the data inputs. SYNC overrides all other inputs, and produces full negative video output. Force High drives the internal digital data to full scale, giving a reference white video level output. The BRT control creates a "whiter than white" level by adding 10% of the full scale value to the present output level, and is especially useful in graphics displays for highlighting cursors, warning messages, or menus. For non-video applications, the special controls can be left unconnected.

Name	Function	Value	J7 Package
न	Register FeedThrough Control	ECL	Pin 8
FH	Data Force High Control	ECL	Pin 10
BLANK	Video BLANK Input	ECL	Pin 11
BRT	Video BRighT Input	ECL	Pin 12
SYNC	Video SYNC Input	ECL	Pin 13

Data Inputs

Data inputs to the TDC1018 are standard single-ended ECL level compatible. Internal pulldown resistors force unconnected data inputs to logic LOW. Input registers are provided for synchronous data entry and lowest differential data propagation delay (skew), which minimizes glitching.

In the registered mode, valid data must be present at the input a setup time t_S (ns) before, and a hold time τ_H (ns) after the rising edge of CONV. When FT is HIGH, data input is asynchronous and the input registers are disabled. In this case the analog output changes asynchronously in direct response to the input data.

Name	Function	Value	J7 Package
Di	Data Bit 1 (MSB)	ECL	Pin 21
D ₂		ECL	Pin 22
D ₃		ECL	Pin 23
D ₄		ECL	Pin 24
D ₅		ECL	Pin 1
D ₆		ECL	Pin 2
D ₇		ECL	Pin 3
D ₈	Data Bit 8 (LSB)	ECL	Pin 4

Convert

CONVert (CONV) is a differential ECL compatible clock input whose rising edge synchronizes data and control entry into the TDC1018. Within the constraints shown in Figure 2, the actual switching threshold of CONV is determined by CONV. CONV may be driven single-ended by connecting CONV to a suitable bias voltage (V_{RR}). The bias voltage chosen will determine the

switching threshold of CONV. However, for best performance, CONV must be driven differentially. This will minimize clock noise and power supply/output intermodulation. Both clock inputs must normally be connected, with CONV being the complement of CONV.

Name	Function	Value	J7 Package
CONV	CONVert Clock Input	ECL	Pin 6
CONV	CONVert Clock Input, Complement	ECL	Pin 7

Analog Outputs

The two analog outputs of the TDC1018 are high-impedance complementary current sinks which vary in proportion to the input data, controls, and reference current values. The outputs are capable of directly driving a dual 75 0hm load to standard video levels. The output voltage will be the product of the output current and effective load impedance, and will usually be between 0V and -1.07V in the standard configuration (see Figure 5). In this case, the OUT- output gives a DC shifted video output with "sync down." The corresponding output from OUT+ is also DC shifted and inverted, or "sync up."

Name	Function	Value	J7 Package
OUT-	Output Current –	Current Sink	Pin 18
OUT+	Output Current +	Current Sink	Pin 19

Figure 1. Timing Diagram

Figure 2. CONVert, CONVert Switching Levels

Figure 3. Equivalent Input Circuits

LSI Products Division TRW Electronic Components Group

Figure 4. Equivalent Output Circuit

LSI Products Division TRW Electronic Components Group - E

147

Absolute maximum ratings (beyond which the device will be damaged) 1

	VEED (measured to DEND)	
	VEEA (measured to Acamp)	
	AGND (measured to DGND)	–0.5 to 0.5V
Input Voltag	BS	<u></u>
	CONV, Data, and Controls (measured to D _{GND})	
	Reference input, applied voltage (measured to AGND) ²	
	REF+	V _{EEA} to 0.5V
	REF	
	Reference input, applied current, externally forced 3,4	
	REF+	6.0mA
	REF	0.5mA
Output	· · · ·	
	Andre extend and the formation of the Andrew State	
	Analog output, applied voltage (measured to AGND)	
	Analog output, applied voltage (measured to AGND) OUT+	2.0 to +2.0V
	Analog output, applied voltage (measured to A _{GND}) OUT+ OUT	-2.0 to +2.0V -2.0 to +2.0V
	Analog output, applied voltage (measured to A _{GND}) OUT+ OUT Analog output, applied current, externally forced ^{3,4}	-2.0 to +2.0V
14	Analog output, applied voltage (measured to A _{GND}) OUT+ OUT Analog output, applied current, externally forced ^{3,4} OUT+	-2.0 to +2.0V -2.0 to +2.0V -2.0 to +2.0V
• •	Analog output, applied voltage (measured to A _{GND}) OUT Analog output, applied current, externally forced ^{3,4} OUT OUT	-2.0 to +2.0V -2.0 to +2.0V -2.0 to +2.0V 50mA 50mA
• 2	Analog output, applied voltage (measured to A _{GND}) OUT	-2.0 to +2.0V -2.0 to +2.0V 50mA 50mA Unlimited sec
Temperature	Analog output, applied voltage (measured to A _{GND}) OUT + OUT Analog output, applied current, externally forced ^{3,4} OUT + OUT Short circuit duration	-2.0 to +2.0V -2.0 to +2.0V 50mA 50mA Unlimited sec
Temperature	Analog output, applied voltage (measured to A _{GND}) OUT +	-2.0 to +2.0V -2.0 to +2.0V 50mA 50mA Unlimited sec -60 to +140°C
Temperature	Analog output, applied voltage (measured to A _{GND}) OUT+ OUT- Analog output, applied current, externally forced ^{3,4} OUT+ OUT- Short circuit duration Operating, ambient junction	-2.0 to +2.0V -2.0 to +2.0V 50mA 50mA Unlimited sec -60 to +140°C +175°C
Temperature	Analog output, applied voltage (measured to A _{GND}) OUT +	-2.0 to +2.0V -2.0 to +2.0V 50mA 50mA Unlimited sec -60 to +140°C +175°C +300°C

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current when flowing into the device.

Operating conditions

			Te	mperature Rar Standard	nge	4
Parameter			Min	Nom	Max	Units
VEED	Digital Supply Voltage (measured to D _{GND})		-4.9	-5.2	- 5.5	v
VEEA	Analog Supply Voltage (measured to AGND)		-4.9	-5.2	-5.5	٧
VAGND	Analog Ground Voltage (measured to DGND)		-0.1	0.0	+0.1	V
V _{EEA} -V _{EED}	Supply Voltage Differential		-0.1	0.0	+0.1	V
VICM	CONV Input Voltage, Common Mode Range (Figure 2)		-0.5		-2.5	v
VIDF	CONV Input Voltage, Differential (Figure 2)		0.4		1.2	V
tPWL	CONV Pulse Width, LOW		4			ns
^t PWH	CONV Pulse Width, HIGH		4			ns
ts	Setup Time, Data and Controls		5			ns
ŧн	Hold Time, Data and Controls		0			ns
VIL	Input Voltage, Logic LOW		-1.49			V
VIH	Input Voltage, Logic HIGH				- 1.045	V
IREF	Reference Current	Video standard output levels ¹	1.059	1.115	1.171	mA
		8-bit linearity	1.0		1.3	mА
CC	Compensation Capacitor		2000	3900		pF
TA	Ambient Temperature, Still Air		0		70	°C
Note						

1. Minimum and Maximum values allowed by ±5% variation given in RS343A and RS170 after initial gain correction of device.

Electrical characteristics within specified operating conditions

			Temperat Star	ure Range ndard	
Parameter		Test Conditions	Min	Max	Units
EEA+IEED	Supply Current	V _{EEA} - V _{EED} - MAX, static ¹			
		T _A - 0°C to 70°C		170	mA
_		$T_A - 70^{\circ}C$		130	mA
C _{REF}	Equivalent Input Capacitance, REF+, REF-			5	рF
C ₁	Input Capacitance, Data and Controls			5	pF
VOCP	Compliance Voltage, + Output		-1.2	+1.5	V
VOCN	Compliance Voltage, - Output		-1.2	+1.5	V
R ₀	Equivalent Output Resistance		20		kOhms
C ₀	Equivalent Output Capacitance			20	рF
I _{OP}	Max Current, + Output	V _{EEA} - NOM, SYNC - BLANK - 0, FH - BRT - 1	30		mA
ON	Max Current, – Output	V _{EEA} - NOM, SYNC - 1	30		mA
h.	Input Current, Logic LOW, Data and Controls	V _{EED} = MAX, V _I = ~1.40V		200	μA
¦н	Input Current, Logic HIGH, Data and Controls	V _{EED} - MAX, V _I 1.00V		200	μA
10	Input Current, Convert	V_{EED} = MAX, -2.5V < V_1 < -0.5V		50	μA

Note:

1. Worst case over all data and control states.

LSI Products Division TRW Electronic Components Group

Switching characteristics within specified operating conditions

			Temperat	ure Range Idard	
Param	eter	Test Conditions	Min	Max	Units
FS	Maximum Conversion Rate	VEEA, VEED - MIN	125		MSPS
tosc	Clock to Output Delay, Clocked Mode	V _{EEA} , V _{EED} - MIN, FT - 0		8	ns
TOST	Data to Output Delay, Transparent Mode	V _{EEA} , V _{EED} - MIN, FT - 1		13	ns
tSI	Current Settling Time, Clocked Mode	V _{EEA} , V _{EED} - MIN, FT - D			1
		0.2%		10	ns
		0.8%		8	ns
		3.2%		-5	ns
t _{RI}	Rise Time, Current	10% to 90% of Gray Scale		1.7	ns

System performance characteristics within specified operating conditions

D		Test Occoling	Temperatu Stan	ire Range dard	11-14-
Param		lest Conditions	141110	max	Units
ELI	Linearity Error Integral, Terminal Based	V _{EEA} , V _{EED} , I _{REF} - NOM		±0.2	% of Gray Scale
ELD	Linearity Error Differential	V _{EEA} , V _{EED} , I _{REF} - NOM	(r	±0.2	% of Gray Scale
^I OF	Output Offset Current	V _{EEA} , V _{EED} - Max, Sync - Blank - D, FH - BRT - 1		10	μA
EG	Absolute Gain Error	V _{EEA} , V _{EED} - MIN, I _{REF} - NOM		±5	% of Gray Scale
TCG	Gain Error Tempco			±0.024	% of Gray Scale/°C
BWR	Reference Bandwidth, -3dB	C _C - MIN		1	MHz
DP	Differential Phase	4 x NTSC		1.0	Degrees
DG	Differential Gain	4 x NTSC		2.0	%
PSRR	Power Supply Rejection Ratio	V _{EEA} , V _{EED} , I _{REF} - NOM ¹		45	dB
	*	VEEA, VEED, IREF - NOM2		55	dB
PSS	Power Supply Sensitivity	V _{EEA} , V _{EED} , I _{REF} ~ NOM		120	μαν
G _C	Peak Glitch Charge	Registered Mode ^{3,4}		800	fCoulomb
Gj	Peak Glitch Current	Registered Mode		1.2	mA
GE	Peak Glitch "Energy" (Area)	Registered Mode ⁴		30	pV-Sec
FT _C	Feedthrough Clock	Data – Constant ⁵		-50	dB
ਜ _D	Feedthrough Data	Clock – Constant ⁵		-50	dB

Notes:

1. 20KHz, $\pm0.3V$ ripple superimposed on V_{EEA}, V_{EED}; dB relative to full gray scale. 2. 60Hz, $\pm0.3V$ ripple superimposed on V_{EEA}, V_{EED}; dB relative to full gray scale.

3. fCoulombs = microamps x nanoseconds

4. 37.5 Ω load. Because glitches tend to be symmetric, average glitch area approaches zero.

5. dB relative to full gray scale, 250MHz bandwidth limit.

Table 1 Video Control Truth Table

Sync	Blank	Force High	Bright	Data Input	Out- (mA) ¹	Out– (V) ²	Out– (IRE) ³	Description ⁴
1	X	X	X	x	28.57	-1.071	-40	Sync Level
0	1	x	x	x	20.83	-0.781	0	Blank Level
0	0	1	1	X	0.00	0.00	110	Enhanced High Level
0	0	1	0	x	1.95	-0.073	100	Normal High Level
0	0	0	0	000	19.40	-0.728	7.5	Normal Low Level
0	D	0	0	111	1.95	-0.073	100	Normal High Level
0	0	0	1	000	17.44	-0.654	17.5	Enhanced Low Level
0	O	0	1	111	0.00	0.00	110	Enhanced High Level

Notes:

1. Out + is complementary to Out -. Current is specified as conventional current when flowing into the device.

2. Voltage produced when driving the standard load configuration (37.5 Ohms). See Figure 5.

3. 140 IRE units = 1.00V.

4. RS-343-A tolerance on all control values is assumed.

7R#

Figure 7. Typical Interface Circuit

Parts List

R1	1KΩ	Pot	10 Turn
R2	1.00KΩ	1/8W	1% Metal Film
R3	2.00K Ω	1/8W	1% Metal Film
R4	1.00KΩ	1/8W	1% Metal Film
Capaci	tors		
C1-C3	0.1µF	50V	Ceramic disc
64	0.01 <i>U</i> E	50V	Ceramic disc

Integr	ated Circuits	1
U1	TDC1018	D/A Converter
Volta	ge References	
VR1	LM113 or LM313	Bandgap Reference
Induc	tors	

L1 Ferrite Bead Shield Inductor Fair-Rite P/N 2743001112 or Similar

Ordering Information

and the second second	and any contract the first of a second s	and the four more than the second	A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF	NATE FOR STREET, AND ADDRESS OF THE ADDRESS OF THE PARTY
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1018J7C	STD-T _A = 0°C to 70°C	Commercial	24 Lead DIP	1018J7C
TDC1018J7G	STD-T _A - 0°C to 70°C	Commercial With Burn-In	24 Lead DIP	1018J7G

-

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division TRW Electronic Components Group

and a second second second second second second second second as a second s	An and a second second second second
	A MARCH AND THE REPORT OF A SAME
un her ander eine eine eine eine eine eine eine ei	and the second
	Manager and the second states of the second states and
stand, werden waar werden op werden ander op werden op werden werden waar waar waar werden waar werden waar werden waar waar waar waar waar waar waar waa	And the second
	Construction and all the state
	NETWORKS AND THE COMPANY AND A COMPANY
	<u>~</u>
	n i i i i i i i i i i i i i i i i i i i
Sectors and Andrews and Andrews	
	Ī
ar is neglected practice of the terminant of the second state of the second stat	

Multipliers

.

Multipliers

Digital signal processing (DSP) relies heavily on multiplication. TRW LSI offers a family of parallel multipliers in a variety of word sizes (8, 12, 16 bits) and speeds (40ns to 230ns multiply times). Parallel multipliers accept two n-bit input operands and output the 2n-bit product. Independently clocked registers are provided for the inputs and outputs. Three-state outputs are provided to ease interfacing. All TRW multipliers are TTL compatible.

Multipliers have three functional sections: an input section, the asynchronous multiplier array, and the output section. The input section has two n-bit registers, comprised of positive-edge-triggered D-type flipflops. Except as noted, the operands may be either two's complement or unsigned magnitude numbers.

The asynchronous multiplier array generates the n partial products. The properly weighted partial products are summed by an asynchronous group of adders. The product is rounded and the format is adjusted as appropriate, before entering the product register. The output section includes the product registers and the three-state output ports. The Most Significant Product (MSP) and the Least Significant Product (LSP) each have their own individually clocked n-bit register. The MSP and LSP have separate three-state output ports.

"H" series Multipliers

The MPY008H/MPY008HU (8-bit), MPY012H (12-bit), and MPY016H (16-bit) devices are fabricated using a two-micron triple-diffused bipolar technology.

"K" series Multipliers

The MPY112K (12-bit) and MPY016K (16-bit) devices have been developed for high-speed applications using TRW's OMICRON-B [™] one – micron triple-diffused bipolar technology. The MPY112K has been optimized for minimum package size and operation at video processing speeds (20MHz). The MPY016K is a faster yet pin-compatible version of the MPY016H.

Product	Size	Multiplication Time ¹ (ns)	Power Dissipation (Watts)	Package	Notes
MPY008H MPY008H-1	8x8 8x8	90 65	1.3 1.3	J5, C2 J5, C2	Two's complement Two's complement
MPY08HU MPY08HU-1	8x8 8x8	90 65	1.3 1.3	J5, C2 J5, C2	Unsigned magnitude Unsigned magnitude
MPY012H	12x12	115	3.0	J1, C1, L1, F1	
MPY112K	12x12	50	2.2	J4	16-Bit product
MPY016H	16x16	145	4.4	J1, C1, L1, F1	
MPY016K MPY016K-1	16x16 16x16	45 40	4.0 4.0	J1, C1, L1 J1, C1, L1	

Note: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to 70°C.

LSI Products Division TRW Electronic Components Group

Multiplier

8 X 8 bit, 65ns

The MPY008H is a high-speed 8 x 8 bit parallel multiplier which operates at a 65 nanosecond cycle time. The multiplicand and the multiplier are both two's complement numbers, yielding a full-precision 16-bit two's complement product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPY008H is built with TRW's 2-micron bipolar process.

Features

- 65ns Multiply Time: MPY008H-1
- 90 ns Multiply Time: MPY008H
- 8 x 8 Bit Parallel Multiplication With 16-Bit Product Output
- Three-State Outputs

Functional Block Diagram

- Fully TTL Compatible
- Two's Complement Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 40 Lead Ceramic DIP Or 44 Contact Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40601335 Rev. A-2/84 Printed in the U.S.A. F

7R#

Functional Block Diagram

Pin Assignments

40 Lead DIP – J5 Package

44 Contact Chip Carrier - C2 Package

Functional Description

General Information

The MPY008H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8-bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous

multiplier array is a network of AND gates and adders, designed to handle two's complement numbers only. The output registers hold the product as two 8-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY008H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 8-bit output lines.

Power

The MPY008H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J5 Package	C2 Package
V _{CC}	Positive Supply Voltage	+ 5.0V	Pin 30	Pin 34
GND	Ground	0.0V	Pin 32	Pin 36

Data Inputs

The MPY00BH has two 8-bit two's complement data inputs, labeled X and Y. The Most Significant Bits (MSB's), denoted X_{SGN} and Y_{SGN} , carry the sign information for the two's complement notation. The remaining bits are denoted X_1

through X_7 and Y_1 through Y_7 (with X_7 and Y_7 the Least Significant Bits). The input and output formats for fractional two's complement notation, and integer two's complement notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package	C2 Package
X _{SGN}	X Data Sign Bit (MSB)	TTL	Pin 22	Pin 25
X ₁		ΠL	Pin 21	Pin 24
X ₂		ΠL	Pin 20	Pin 23
X ₃		ΠL	Pin 19	Pin 22
X ₄		ΠL	Pin 18	Pin 21
X ₅		TTL	Pin 17	Pin 20
X ₆		ΠL	Pin 16	Pin 19
X7	X Data LSB	ΠL	Pin 15	Pin 18
YSGN	Y Data Sign Bit (MSB)	TTL	Pin 35	Pin 39
Y		TTL	Pin 34	Pin 38
Y ₂		TTL	Pin 33	Pin 37
Y ₃		TTL	Pin 31	Pin 35
Y4		TTL	Pin 29	Pin 33
Y ₅		ΠL	Pin 28	Pin 32
Y ₆		ΠL	Pin 27	Pin 31
Y ₇	Y Data (LSB)	πι	Pin 26	Pin 30

Data Outputs

The MPY008H has a 16-bit two's complement output which is the product of the two input data values. This output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is always the sign bit, P_{SGN}. The input and output formats for fractional two's complement notation and integer two's complement notation are shown in Figures 1 and 2, respectively. Note that since +1 cannot be denoted in fractional two's complement notation while -1 can be, some provision for handling the case $(-1) \times (-1)$ must be made. The MPY008H provides a -1 output in this case. As a result, external error handling provisions may be required.

Name	Function	Value	J5 Package	C2 Package
PSGN	Product Sign Bit (MSP)	TTL	Pin 36	Pin 41
P1		ΠL	Pin 37	Pin 42
P ₂		ΠL	Pin 38	Pin 43
P3		ΠL	Pin 39	Pin 44
P4		ΠL	Pin 40	Pin 1
P ₅		πι	Pin 1	Pin 2
P6		ΠL	Pin 2	Pin 3
P7		TTL	Pin 3	Pin 4
PSGN	Product Sign Bit (LSP)	ΠL	Pin 7	Pin 9
Pa		ΠL	Pin 8	Pin 10
Pg		ΠL	Pin 9	Pin 11
P ₁₀		ΠL	Pin 10	Pin 12
P ₁₁		πι	Pin 11	Pin 13
P12		πι	Pin 12	Pin 14
P ₁₃		Πι	Pin 13	Pin 15
P ₁₄	Product LSB	Πι	Pin 14	Pin 16

Clocks

The MPY008H has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J5 Package	C2 Package
CLK X	Clock Input Data X	Π	Pin 23	Pin 26
CLK Y	Clock Input Data Y	Πι	Pin 24	Pin 27
CLK P	Clock Product Register	Πι	Pin 4	Pin 5

No Connects

The contact chip carrier version of the MPY008H has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J5 Package	C2 Package
NC	No Connection	Open	(none)	Pins 6, 17, 28, 40

F

Control

The MPY008H has three control lines:

- TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.
- The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J5 Package	C2 Package
RND	Round Control Bit	TTL	Pin 25	Pin 29
TRIM	MSP Three-State Control	TTL	Pin 5	Pin 7
TRIL	LSP Three-State Control	TTL	Pin 6	Pin 8

Figure 1. Fractional Two's Complement Notation

BINAR	y point	1														
¢	1															
X _{SGN}	X ₁	X2	X ₃	X4	X ₅	x ₆	X7	SIGNA	L							
.2 ⁰	2.1	2-2	2-3	2-4	2 ^{.5}	2.6	2.7	DIGIT	VALUE							
								-								
YSGN	Υ ₁	Y2	Y ₃	Y4	Y ₅	Y ₆	¥7	SIGNA	L							
·2 ⁰	21	2.5	2-3	2-4	2 ⁻⁵	2 ⁻⁶	27	DIGIT	VALUE							
								_								_
PSGN	P ₁	Р ₂	P ₃	P4	P ₅	P ₆	Pŋ	PSGN	P8	Pg	P ₁₀	P ₁₁	P12	P ₁₃	P14	SIGNAL
·2 ⁰	21	2 ^{.2}	2.3	2-4	2 ^{.5}	2-6	2.7	.2 ⁰	2 ⁻⁸	2-9	2-10	2.11	2 ⁻¹²	2 ¹³	2 ⁻¹⁴	DIGIT VALUE
_			MSP					I			LSP					

Figure 3. Timing Diagram

LSI Products Division TRW Electronic Components Group

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY008H does not differentiate between this operation:

$$6 \times 2 = 12$$

and this operation:

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design.

The multiply cycle then consists of loading new data and strobing the output register.

Because common design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 and 2.

Absolute maximum ratings (beyond which the device will be damaged) 1

Input Voltag	e0.5 to
Output	
	Applied voltage0.5 to +
	Forced current
	Short-circuit duration (single output in high state to ground)
Temperature	
	Operating, case
	junction ,
	Lead, soldering (10 seconds)
	Storage
Notes:	
	 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.
	2 Applied values must be surrout limited to openified range

- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current flowing into the device.

Operating conditions

		Temperature Range						(
		Standard				Extended		1
Parame	eter	Min	Nom	Max	Min	Nom	Max	Units
Vcc	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v
tpw	Clock Pulse Width	25			30			ns
ts	Input Register Setup Time	25			30			ns
tH	Input Register Hold Time	0			3			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0		1	V
IOL	Output Current, Logic Low			4.0			4.0	mA
ЮН	Output Current, Logic High			-400			- 400	μA
TA	Ambient Temperature, Still Air	0	1	70				°C
TC	Case Temperature				-55		+ 125	°C

Electrical characteristics within specified operating conditions

			Temperat	ure Range]
		Standard		Extended		1
Parameter	Test Conditions	Min	Max	Min	Max	Units
I _{CC} Supply Current	V _{CC} - MAX, Static ¹		375		450	mA
Input Current, Logic Low	V _{CC} - MAX, V ₁ - 0.5V					
	X _{IN} , Y _{IN} , RND		-0.4		-0.4	mA
	CLK X and Y, TRIM, TRIL		- 1.0		- 1.0	mA
	CLK P		-2.0	[-2.0	mA
Input Current, Logic High	V _{CC} - MAX, V _I - 2.4V					
	X _{IN} , Y _{IN} , RND		75		100	μΑ
	CLK X and Y, TRIM, TRIL		75		100	μΑ
	CLK P		150		200	μΑ
Input Current, Max Input Voltage	V_{CC} - MAX, V_{I} - 5.5V		1.0		1.0	mA
V _{OL} Output Voltage, Logic Low	V _{CC} - MAX, I _{OL} - MAX		0.5		0.5	V
V _{OH} Output Voltage, Logic High	V _{CC} - MAX, I _{OH} - MAX	2.4		2.4		V
I _{OZL} Hi-Z Output Leakage Current	V _{CC} - MAX, V ₁ - 0.5V		-40		-40	μΑ
I _{OZH} Hi-Z Output Leakage Current	V _{CC} - MAX, V ₁ - 2.4V		40		40	μA
IOS Short-Circuit Output Current	V _{CC} - MAX, one pin to ground, one second duration max, output high		-50		-50	mA
C _I Input Capacitance	T _A = 25°C, F = 1MHz		15		15	рF
Cn Output Capacitance	$T_A = 25^{\circ}C, F = 1MHz$		15		15	pF

Note:

1. All inputs and outputs LOW.

Switching characteristics within specified operating conditions

			Temperature Range				
			Star	Standard Extended		nded	7
Parameter		Test Conditions	Min	Max	Min	Max	Units
tMPY	Multiply Time	V _{CC} - MIN MPY008H-1		65			
	· · · · ·	V _{CC} - MIN MPYDO8H		90		115	ns
to	Output Delay	V _{CC} - MIN, Load 1		40		45	ns
^t ENA	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		40		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns

Product Number	Temperature Range	Screening	Package	Package Marking
MPY008HJ5C	STD-T _A = 0°C to 70°C	Commercial	40 Lead DIP	DO8HJ5C
MPY008HJ5G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	40 Lead DIP	008HJ5G
MPY008HJ5F	$EXT - T_{C} = -55^{\circ}C$ to 125°C	Commercial	40 Lead DIP	008HJ5F
MPY008HJ5A	EXT-T _C = -55°C to 125°C	MIL-STD-883	40 Lead DIP	008HJ5A
MPYD08HJ5N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	40 Lead DIP	008HJ5N
MPY008HJ5C1	STD-TA = 0°C to 70°C	Commercial	40 Lead DIP	008HJ5C1
MPY008HJ5G1	STD-T _A = 0°C to 70°C	Commercial With Burn-In	40 Lead DIP	008HJ5G1
MPY008HC2C	STD-T _A = 0°C to 70°C	Commercial	44 Contact Chip Carrier	008HC2C
MPY008HC2G	STD-TA - 0°C to 70°C	Commercial With Burn-In	44 Contact Chip Carrier	008HC2G
MPY008HC2F	EXT-T _C = -55°C to 125°C	Commercial	44 Contact Chip Carrier	008HC2F
MPY008HC2A	EXT-T _C = -55°C to 125°C	MIL-STD-883	44 Contact Chip Carrier	008HC2A
MPY008HC2N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	44 Contact Chip Carrier	008HC2N

Ordering Information

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

High-Speed Parallel Multiplier

8-bit, 65ns

The TRW MPY08HU is a high-speed 8-bit parallel multiplier which operates at a 65 nanosecond cycle time (15MHz multiplication rate). The multiplicand and the multiplier are both unsigned magnitude, yielding a full-precision 16-bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. Three-state outputs with separate output enable lines for the MSP and the LSP are employed.

The MPY08HU is built with TRW's radiation hard 2-micron process, and is the unsigned magnitude version of the industry standard MPY008H.

Features

- 65ns Multiply Time: MPY08HU-1
- 90ns Multiply Time: MPY08HU
- 8 x 8 Bit Parallel Multiplication With 16-Bit Product Output

- Independent Most Significant Product and Least Significant Product Outputs
- Three-State Outputs
- Fully TTL Compatible
- Unsigned Magnitude Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 40 Lead DIP

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00286 Rev. B-2/84 Printed in the U.S.A.

7**R**W

Pin Assignments

40 Lead DIP - J5 Package

Functional Description

General Information

The MPY08HU has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 8-bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each number is stored independently, simplifying multiplication by a constant. The asynchronous

multiplier array is a network of AND gates and adders, designed to handle unsigned magnitude numbers. The output registers hold the product as two 8-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY08HU to be used on a bus, or allow the outputs to be multiplexed over the same 8-bit output lines.

Power

The MPY08HU operates from a single +5 Volt supply.

Name	Function	Value	J5 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 30
GND	Ground	0.0V	Pin 32

Data Inputs

The MPY08HU has two data 8-bit unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs) are denoted X₇ and Y₇; the remaining bits are denoted X₀ through X₆ and Y₀ through Y₆ (with X₀ and Y₀ the Least Significant

Bits). The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
X7	X Data MSB	Πι	Pin 22
x ₆		Πι	Pin 21
x ₅		ΠL	Pin 20
X ₄		Πι	Pin 19
X ₃		ΠL	Pin 18
X ₂		ΠL	Pin 17
x ₁		Πι	Pin 16
x ₀	X Data LSB	πι	Pin 15
Y ₇	Y Data MSB	Πι	Pin 35
Y ₆		ΠL	Pin 34
Y ₅		ΠL	Pin 33
Y ₄		ΠL	Pin 31
Y ₃		Πι	Pin 29
Y ₂		ΠL	Pin 28
۲ ₁		Πι	Pin 27
Yo	Y Data LSB	ΠL	Pin 26

F

Data Outputs

The MPY08HU has a 16-bit unsigned magnitude output which is the product of the two input data values. This output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of the MSP is Product bit P15. Product bit P_0 is the Least Significant Bit (LSB). The input and output formats for fractional unsigned magnitude notation and integer unsigned magnitude notation are shown in Figures 1 and 2, respectively.

Name	Function	Value	J5 Package
P ₁₅	Product MSB	ΠL	Pin 36
P ₁₄		TTL	Pin 37
P ₁₃		TTL	Pin 38
P ₁₂		TTL	Pin 39
P ₁₁		TTL	Pin 40
Pto		Π	Pin 1
Pg		TTL	Pin 2
P ₈		TTL	Pin 3
P7	· · · · · · · · · · · · · · · · · · ·	TTL	Pin 7
P ₆		TTL	Pin 8
P5		ΠL	Pin 9
P ₄		TTL	Pin 10
P ₃		Π	Pin 11
P ₂		πι	Pin 12
P1		Πι	Pin 13
Po	Product LSB	Π	Pin 14

Clocks

The MPY08HU has three clock lines, one for each of the input registers and one for the product register. Data present at the

inputs of these registers is loaded into the registers at the rising edge of the appropriate clock.

Name	Function	Value	J5 Package
CLK X	Clock Input Data X	Πι	Pin 23
CLK Y	Clock Input Data Y	Πι	Pin 24
CLK P	Clock Product Register	ΠL	Pin 4

Controls

The MPY08HU has three control lines:

TRIM, TRIL Three-state enable lines for the MSP and the RND LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW. The RND input is registered, and clocked in at the rising edge of CLK X. A one is added to the MSB of the LSP when RND is HIGH. The RND control is used when a rounded 8-bit product is desired.

Name	Function	Value	J5 Package		
RND	Round Control Bit	Πι	Pin 25		
TRIM	MSP Three-State Control	Πι	Pin 5		
TRIL	LSP Three-State Control	ΠL	Pin 6		

LSI Products Division TRW Electronic Components Group

Figure 1. Fractional Unsigned Magnitude Notation

Figure 2. Integer Unsigned Magnitude Notation

LSI Products Division TRW Electronic Components Group

Figure 6. Normal Test Load

Figure 7. Three-State Delay Test Load

-

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Voltag		-0.5 to +7.0V
Input Voltage		-0.5 to +5.5V
Output		
	Applied voltage (measured to D _{GND})	-0.5 to +5.5V ²
	Applied current, externally forced	
	Short-circuit duration (single output in high state to ground)	1 sec.
Temperature		
	Operating, case	55 to +125°C
	junction	
	Lead, soldering (10 seconds)	
	Storage	-65 to +150°C

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.

4. Current is specified as positive when flowing into the device.

Operating conditions

		[Temperature Range						
			Standard		Extended				
Parame	eter	Min	Nom	Max	Min	Nom	Max	Units	
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.50	5.0	5.5	V	
tpw	Clock Pulse Width	25			30			ns	
ts	Input Setup Time	25			30			ns	
t _H	Input Hold Time	0			3			ns	
VIL	Input Voltage, Logic LOW			0.8			0.8	٧	
VIH	Input Voltage, Logic HIGH	2.0			2.0			• V	
I _{OL}	Output Current, Logic LOW			4.0			4.0	mA	
10H	Output Current, Logic HIGH		[-400			- 400	μA	
TA	Ambient Temperature, Still Air	D		70				°C	
TC	Case Temperature				-55		+ 125	°C	

Electrical characteristics within specified operating conditions

				Temperature Range				
		· ·	Sta	ndard	Extended]	
Parar	neter	Test Conditions	Min	Max	Min	Max	Units	
lcc_	Supply Current	V _{CC} – MAX, Static ¹		375		450	mA	
ΊĮL	Input Current, Logic Low	V _{CC} - MAX, V _I - 0.5V						
		X _{IN} , Y _{IN} , RND		-0.4		-0.4	mA	
		CLK X and Y, TRIM, TRIL		-1.0		-1.0	mA	
		CLK P		- 2.0		-2.0	mA	
IH I	Input Current, Logic High	$V_{CC} = MAX, V_{f} = 2.4V$						
		CLK P		150		200	μΑ	
		(All others)		75		100	μΑ	
4	Input Current, Max Input Voltage	V _{CC} - MAX, V ₁ - 5.5V		1.0		1.0	mA	
VOL	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	v	
V _{OH}	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V	
IOZL	Hi-Z Output Leakage Current	V _{CC} - MAX		-40		-40	μΑ	
1 _{07H}	Hi-Z Output Leakage Current	V _{CC} - MAX		40	<u> </u>	40	μΑ	
IOS	Short-Circuit Output Current	V _{CC} ~ MAX, One pin to ground, one second duration max, output high		-50		-50	mA	
CI	Input Capacitance	T _A = 25°C, F = 1MHz		10		10	pF	
CO	Output Capacitance	T _A - 25°C, F - 1MHz		10		10	pF	

Note:

1. Static: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

		Temperature Range				
		Standard		Extended		
Parameter	Test Conditions	Min	Max	Min	Max	Units
t _{MPY} Multiply Time	V _{CC} - MIN MPY08HU-1	Ι	65			ns
	V _{CC} - MIN MPY08HU		90		115	ns
t _D Output Delay	V _{CC} - MIN, Load 1		40		45	ns
tENA Three-State Output Enable Delay	V _{CC} - MIN, Load 1		40		45	ns
tDIS Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns
-	Parameter t _{MPY} Multiply Time t _D Output Delay t _{ENA} Three-State Output Enable Delay t _{DIS} Three-State Output Disable Delay	Parameter Test Conditions t _{MPY} Multiply Time V _{CC} - MIN MPY08HU-1 V _{CC} - MIN MPY08HU V _{CC} - MIN MPY08HU t _D Output Delay V _{CC} - MIN, Load 1 t _{ENA} Three-State Output Enable Delay V _{CC} - MIN, Load 1 t _{DIS} Three-State Output Disable Delay V _{CC} - MIN, Load 2	Parameter Test Conditions Star t _{MPY} Multiply Time V _{CC} - MIN MPY08HU-1 Min t _D Output Delay V _{CC} - MIN MPY08HU Min t _D Output Delay V _{CC} - MIN MPY08HU Min t _D Output Delay V _{CC} - MIN, Load 1 Min t _{ENA} Three-State Output Enable Delay V _{CC} - MIN, Load 1 Min t _{DIS} Three-State Output Disable Delay V _{CC} - MIN, Load 2 Min	Parameter Test Conditions Min Max t _{MPY} Multiply Time V _{CC} - MIN MPY08HU - 1 65 V _{CC} - MIN MPY08HU 90 90 t _D Output Delay V _{CC} - MIN, Load 1 40 t _{ENA} Three-State Output Enable Delay V _{CC} - MIN, Load 1 40 t _{DIS} Three-State Output Disable Delay V _{CC} - MIN, Load 2 40	Temperature Range Parameter Test Conditions Min Max Min t _{MPY} Multiply Time V _{CC} - MIN MPY08HU-1 65 65 V _{CC} - MIN MPY08HU 90 90 1 40 t _D Output Delay V _{CC} - MIN, Load 1 40 40 t _{ENA} Three-State Output Disable Delay V _{CC} - MIN, Load 2 40 40	Temperature Range Parameter Test Conditions Min Max Extended Mpr Multiply Time V _{CC} - MIN MPY08HU-1 65

. .

Application Notes

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY08HU does not differentiate between this operation:

and this operation:

$$(6/8) \times (2/8) = 12/64.$$

 $6 \times 2 = 12$

Ordering Information

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 and 2.

Product Number	Temperature Range	Screening	Package	Package Marking
MPY08HUJ5C	STD-T _A = 0°C to 70°C	Commercial	40 Lead DIP	08HUJ5C
MPY08HUJ5C1	STD-T _A = 0°C to 70°C	Commercial	40 Lead DIP	08HUJ5C1
MPY08HUJ5G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	, 40 Lead DIP	08HUJ5G
MPY08HUJ5G1	STD-T _A = 0°C to 70°C	Commercial With Burn-In	40 Lead DIP	08HUJ5G1
MPY08HUJ5F	$EXT - T_{C} = -55^{\circ}C$ to 125°C	Commercial	40 Lead DIP	08HUJ5F
MPY08HUJ5A	EXT-T _C = -55°C to 125°C	MIL-STD-883	40 Lead DIP	08HUJ5A
MPY08HUJ5N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	40 Lead DIP	08HUJ5N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

.

Multiplier

12 X 12 bit

The MPY012H is a high-speed 12 x 12 bit parallel multiplier which operates at a 115 nanosecond cycle time (8.7MHz multiplication rate). The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full-precision 24-bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The MPY012H is built with TRW's state-of-the-art 2-micron bipolar process.

Features

- 115ns Multiply Time (Worst Case)
- 12 x 12 Bit Parallel Multiplication With 24-Bit Product Output
- Three-State Outputs
- Fully TTL Compatible

Functional Block Diagram

- Two's Complement, Unsigned Magnitude, And Mixed Mode Multiplication
- Proven, High Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, Or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolia, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1983 40G01320 Rev. A-10/83 Printed in the U.S.A.

TRW

Functional Block Digram

Pin Assignments

						-	
X ₈	1 1 1	[二≒ 64	X7	X7	1氏	口 64	X ₈
X	2 🖾	23 63	Xe	Xe	2 5	13 63	Xa
Xin	3 =	2 62	Xc	Xe	3	3 62	Xin
Y.		E at	Y.	Y.		4 61	Yaa
	124	E	<u>~</u> 4	<u></u>	-2	L en	
			^3	<u>^3</u>	9 H		
CLK Y	6 -	L 28	x ₂	X2	6 54	7 59	CLKY
RND	7 뉴글		X ₁	X	7 뛰	¤ 58	RND
TCX	8 🏳	C 🖓	XO	XO	8 🏹	3 57	TCX
۲n	9 🖓	⊑ ⊐ 56	PO (LSB)	(LSB) Pn	9 떠	⇒ 56	i Yo
Υı	10 🖾	iii 55	Pi	P ₁	10 떠	े 55	i Y ₁
Y2	11 = 1	2 54	P ₂	Po	11 11	3 54	Y ₂
Y2	12 🖾	2 53	Pa	P2	12 🖂	3 53	1 Y2
Y,	13 -	57	P	· 3 P.	13	52	Y.
v	14 -	P- 51	Pr -	· 4 D_	14 1	4 61	V-
	15	EC M	Po	'5 D.	16 1		· · 5 I Vac
*CC			-6 D.	-6			VCC
*CC		EC *	7			43	VCC
¥ÇC			r8	P8	1/ 54	H 48	VCC
¥6		4/	Pg	_Pg	18 5	41	¥6
۴7	19 뜨길	⊑ ⊐ 46	P10	P10	19 🎮	46	i ¥7
Y ₈	20 월 20	45	P11	P11	20 떠	∺ 45	iY ₈
Yg	21 🖏	[二]⇒ 44	TRIL	TRIL	21 🖾	⊨ 44	l Yg
Y10	22 🖾	[二] 43	TRIM	TRIM	22 🖾	⇒ 43	³ Y ₁₀
Y11	23 🖏	₫ 42	GND	GND	23 🖾	⇒ 42	2 Y ₁₁
TĊŸ	24 🖾	🗁 41	GND	GND	24 🗠	1 41	TĊŸ
(MSB) Paa	25 🖾	⊟ ≒ 40	Я	FT	25 🖾	⇒ 40) P22 (MSB)
Paa	26 5	2 39	RS	BS	26 5	39	2.5 P22
Par	7 5	2 38	CIKI	CIKI	27	3	Pa1
Pag	28 1	F , 7		CIKM	28	5 7	/ Pop
20	20	民"	D.a	D	20 7	6.	- ZU
F19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	武 20	F12	r12		530	5 6
<u>18</u>	<i>SU</i> 나님		<u>r</u> 13	r_13	30 4	235	2 18
P17	31 드님	34	P14	P14	31 54	734	1 17
P ₁₆	32 :	33	P ₁₅	P15	32 디	_1⊐ 33	³ P ₁₆

64 Lead DIP - JO Package

64 Lead DIP - J1 Package

Pin Assignments

Pin Assignments

64 Lead Flatpack - F1 Package

LSI Products Division TRW Electronic Components Group

Functional Description

General Information

The MPY012H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12-bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders, designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY012H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 12-bit output lines.

Power

The MPY012H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
V _{CC}	Positive Supply Voltage	+5.DV	Pins 48, 49, 50	Pins 50, 51, 52	Pins 15, 16, 17	Pins 55, 56, 57
GND	Ground	0.0V	Pins 23, 24	Pins 10, 11	Pins 41, 42	Pins 17, 18

TCX.TCY

Control

The MPY012H has seven control lines:

FT A control line which makes the output register transparent if it is HIGH.

TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.

RS RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.

RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2^{-12} bit (P₁₀). If RS is HIGH when RND is HIGH, a one will be added to the 2^{-11} bit (P₁₁). In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the MPY012H to consider the appropriate input as a two's complement number, while a LOW forces the MPY012H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
RND	Round Control Bit	Πι	Pin 58	Pin 42	Pin 7	Pin 47
TCX	X Input, Two's Complement	ΠL	Pin 57	Pin 43	Pin 8	Pin 48
TCY	Y Input, Two's Complement	πι	Pin 41	Pin 59	Pin 24	Pin 64
ศ	Output Register Feedthough	Π	Pin 25	Pin 9	Pin 40	Pin 16
RS	Output Right Shift	Π	Pin 26	Pin 8	Pin 39	Pin 15
TRIM	MSP Three-State Control	ΠL	Pin 22	Pin 12	Pin 43	Pin 19
TRIL	LSP Three-State Control	Π	Pin 21	Pin 13	Pin 44	Pin 20

Data Inputs

The MPY012H has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSB's), denoted X_{11} and Y_{11} , carry the sign information for the two's complement notation. The remaining bits are denoted X_0 through X_{10} and Y_0 through Y_{10} (with X_0 and Y_0

the Least Significant Bits). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode are shown in Figures 1-6.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
x ₁₁	X Data MSB	ΠL	Pin 61	Pin 39	Pin 4	Pin 44
X ₁₀		ΠL	Pin 62	Pin 38	Pin 3	Pin 43
Xg		TTL	Pin 63	Pin 37	Pin 2	Pin 42
X _B		TTL	Pin 64	Pin 36	Pin 1	Pin 41
X7		ΠL	Pin 1	Pin 35	Pin 64	Pin 40
X ₆	1	ΠL	Pin 2	Pin 34	Pin 63	Pin 39
X5		ΠL	Pin 3	Pin 33	Pin 62	Pin 38
X ₄		πι	Pin 4	Pin 32	Pin 61	Pin 37
X ₃		ΠL	Pin 5	Pin 31	Pin 60	Pin 36
X ₂		ΠL	Pin 6	Pin 30	Pin 59	Pin 35
x	[TTL	Pin 7	Pin 29	Pin 58	Pin 34
X ₀	X Data LSB	TTL	Pin 8	Pin 28	Pin 57	Pin 33
Y ₁₁	Y Data MSB	TTL	Pin 42	Pin 58	Pin 23	Pin 63
Y ₁₀		TTL	Pin 43	Pin 57	Pin 22	Pin 62
Yg		TTL	Pin 44	Pin 56	Pin 21	Pin 61
Y ₈		TTL	Pin 45	Pin 55	Pin 20	Pin 60
Y ₇		TTL	Pin 46	Pin 54	Pin 19	Pin 59
Υ ₆		TTL	Pin 47	Pin 53	Pin 18	Pin 58
Y ₅		TTL	Pin 51	Pin 49	Pin 14	Pin 54
Y4		TTL	Pin 52	Pin 48	Pin 13	Pin 53
Y3		TTL	Pin 53	Pin 47	Pin 12	Pin 52
Y ₂		TTL	Pin 54	Pin 46	Pin 11	Pin 51
Y ₁		TTL	Pin 55	Pin 45	Pin 10	Pin 50
YO	Y Data LSB	ΠL	Pin 56	Pin 44	Pin 9	Pin 49

Data Outputs

The MPY012H has a 24-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 12-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used (TCX=TCY=1, RS=0). The input and output formats for fractional two's complement, fractional unsigned

magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode are shown in Figures 1–6. For the MSP and LSP to be read, the respective TRIM and TRIL controls must be LOW. RS is an output format control. A logical "1" on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
P ₂₃	Product MSB	TTL	Pin 40	Pin 61	Pin 25	Pin 1
P22		Πι	Pin 39	Pin 62	Pin 26	Pin 2
P21		πι	Pin 38	Pin 63	Pin 27	Pin 3
P20		Π	Pin 37	Pin 64	Pin 28	Pin 4
P ₁₉		Πι	Pin 36	Pin 65	Pin 29	Pin 5
P18		πι	Pin 35	Pin 66	Pin 30	Pin 6
P ₁₇		ΠL	Pin 34	Pin 67	Pin 31	Pin 7
P ₁₆		TTL	Pin 33	Pin 68	Pin 32	Pin 8
P ₁₅		πι	Pin 32	Pin 1	Pin 33	Pin 9
P14		TTL	Pin 31	Pin 2	Pin 34	Pin 10
P ₁₃		πι	Pin 30	Pin 3	Pin 35	Pin 11
P12		TTL	Pin 29	Pin 4	Pin 36	Pin 12
P ₁₁		ΠL	Pin 20	Pin 15	Pin 45	Pin 21
P10		ΠL	Pin 19	Pin 16	Pin 46	Pin 22
Pg		Πι	Pin 18	Pin 17	Pin 47	Pin 23
P ₈		TTL	Pin 17	Pin 18	Pin 48	Pin 24
P7		ΠL	Pin 16	Pin 19	Pin 49	Pin 25
P ₆	1	ΠL	Pin 15	Pin 20	Pin 50	Pin 26
P ₅	1	πι	Pin 14	Pin 21	Pin 51	Pin 27
P ₄		TTL	Pin 13	Pin 22	Pin 52	Pin 28
P3		ΠL	Pin 12	Pin 23	Pin 53	Pin 29
P ₂		ΠL	Pin 11	Pin 24	Pin 54	Pin 30
P		TTL	Pin 10	Pin 25	Pin 55	Pin 31
PO	Product LSB	ΠL	Pin 9	Pin 26	Pin 56	Pin 32

Clocks

The MPY012H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
CLK X	Clock Input Data X	ΠL	Pin 60	Pin 40	Pin 5	Pin 45
CLK Y	Clock Input Data Y	ΠL	Pin 59	Pin 41	Pin 6	Pin 46
CLK L	Clock LSP Register	πι	Pin 27	Pin 7	Pin 38	Pin 14
CLK M	Clock MSP Register	πι	Pin 28	Pin 6	Pin 37	Pin 13

No Connects

The contact and leaded chip carrier versions of the MPY012H have four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
NC	No Connection	Open	(none)	Pins 5, 14, 27, 60	(none)	(none)

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 4. Integer Two's Complement Notation

Figure 5. Integer Unsigned Magnitude Notation

Figure 6. Integer Mixed Mode Notation

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 10. Equivalent Output Circuit

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers (e.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

Selection Of Numeric Format

and this operation:

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY012H does not differentiate between this operation:

 $6 \times 2 = 12$

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY012H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

The multiply cycle then consists of loading new data and strobing the output register.

Because common design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit. The MPY012H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled (i.e., shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltage	e0.5 to +7.0V
input Voltage	-0.5 to +5.5V
Output	
	Applied voltage0.5 to +5.5V ²
	Forced current
	Short-circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, case
	junction
	Lead, soldering (10 seconds)
	Storage65 to 150°C

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

P. 11 . 1

				Temperat	ure Range			
			Standard			Extended		1
Parameter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v
t _{PW}	Clock Pulse Width	25			30			ns
ts	Input Register Setup Time	25			30			пs
t _H	Input Register Hold Time	0			3			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
ViH	Input Voltage, Logic High	2.0			2.0			V.
IOL	Output Current, Logic Low			4.0			4.0	mA
юн	Output Current, Logic High			-400			400	μΑ
TA	Ambient Temperature, Still Air	0		70				°C
TC	Case Temperature			1	-55		125	°C

Electrical characteristics within specified operating conditions

				Temperat	ure Range		
			Star	ndard	Extended		
Parameter		Test Conditions	Min	Max	Min	Max	Units
ICC	Supply Current	V _{CC} - MAX, Static ¹		700		750	mA
1 _{1L}	Input Current, Logic Low	V _{CC} – MAX, V ₁ – 0.5V					
	· · · · · · · · · · · · · · · · · · ·	X _{IN} , Y _{IN} , RND, FT		-0.4		-0.4	mA
		TCX, TCY, RS		-0.8		-0.8	mA
		CLK L, M, X, and Y; TRIM, TRIL		-1.0		-1.0	mA
I _{IH}	Input Current, Logic High	V _{CC} - MAX, V ₁ - 2.4V					
		X _{IN} , Y _{IN} , RND, FT		75	1	100	μA
		TCX, TCY, RS		75		100	μA
		CLK L, M, X, and Y; TRIM, TRIL		75		100	μΑ
l <u> </u>	Input Current, Max Input Voltage	V _{CC} - MAX, V _I - 5.5V		1.0		1.0	mA
VOL	Output Voltage, Logic Low	V _{CC} - MAX, I _{OL} - MAX		0.5		0.5	V
VOH	Output Voltage, Logic High	V _{CC} - MAX, I _{OH} - MAX	2.4		2.4		۷
I _{ozl}	Hi–Z Output Leakage Current	V _{CC} - MAX, V ₁ - 0.5V		- 40		-40	μΑ
IOZH	Hi-Z Output Leakage Current	V _{CC} - MAX, V _I - 2.4V		40		40	μA
los	Short-Circuit Output Current	V _{CC} – MAX, one pin to ground, one second duration max, output high		- 50		-50	mA
с _і	Input Capacitance	T _A = 25°C, F = 1MHz		15		15	рF
Cn	Output Capacitance	T _A - 25°C, F - 1MHz		15		15	рF

Note:

1. All inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperat	ure Range		
		6 T	Star	ndard	Exte	nded	
Parameter		Test Conditions	Min	Max	Min Max		Units
t _{mpy}	Multiply Time	V _{CC} - MIN	10	115	10	140	ns
^t MUC	Multiply Time, Unclocked	V _{CC} - MIN		155		185	ns
t _D	Output Delay	V _{CC} - MIN, Load 1		40		45	ns
^t ENA	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		40		45	ns
tois	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY012HJ1C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	012HJ1C
MPY012HJ1G	STD-T _A = 0°C to 70°C	Commercial with Burn-In	64 Lead DIP	012HJ1G
MPY012HJ1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	012HJ1F
MPY012HJ1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	012HJ1A
MPYD12HJ1N	EXT-T _C = -55° C to 125° C	Commercial with Burn-In	64 Lead DIP	012HJ1N
MPY012HC1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	012HC1F
MPY012HC1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	012HC1A
MPYD12HC1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	68 Contact Chip Carrier	012HC1N
MPY012HL1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	012HL1F
MPY012HL1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	012HL1A
MPY012HL1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	68 Leaded Chip Carrier	012HL1N
MPY012HF1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead Flat-Pack	012HF1F
MPY012HF1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead Flat-Pack	012HF1A
MPY012HF1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	64 Lead Flat-Pack	012HF1N
MPY012HJOF	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	012HJOF
Mpy012HJ0A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	012HJOA
MPY012HJON	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	64 Lead DIP	012HJON

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

MPY112K Preliminary Information

Multiplier

12 x 12 bit, 50ns

The MPY112K is a video-speed 12 x 12 bit parallel multiplier which operates at a 50 nanosecond cycle time (20MHz multiplication rate). The multiplicand and the multiplier may be specified together as two's-complement or unsigned magnitude, yielding a 16-bit result. Mixed-mode operation is not available on this device.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The most significant 16 bits of the product are available at the output register. The output is a single three-state port.

Built with TRW's OMICRON-B^{III} 1-micron bipolar process, the MPY112K is similar to the industry standard MPY012H but operates with more than twice the speed at about three-quarters of the power dissipation. The MPY112K is the industry's first true video-speed 12-bit multiplier.

Features

• 50ns Multiply Time (Worst Case)

- 12 x 12 Bit Parallel Multiplication With 16-Bit Product Output
- Fully TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 48 Lead Ceramic DIP

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00388 Rev. D~2/84 Printed in the U.S.A.

MPY112K

7Riii

Functional Block Diagram

Pin Assignments

48 Lead DIP - J4 Package

Functional Description

General Information

The MPY112K has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 12-bit numbers which are to be multiplied and the instruction which controls whether the inputs are to be considered as two's complement or unsigned magnitude numbers. Each input operand is stored independently, simplifying multiplication by a constant; however,

since the product and the Y input share a common clock, any constant should be stored in the X register. The asynchronous multiplier array is a network of AND gates and adders which has been designed to handle two's complement or unsigned magnitude numbers. The output register holds the most significant 16 bits of the product. Three-state output drivers allow the MPY112K to be used on a bus.

Power

The MPY112K operates from a single +5 Volt supply. Note that the maximum voltage for proper operation over the

extended temperature range is 5.25 Volts. All power and ground lines must be connected.

Name	Function	Value	J4 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pins 12, 13
GND	Ground	0.0V	Pins 36, 37

Data Inputs

The MPY112K has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{11} and Y_{11} , carry the sign information for the two's complement notation. The rest of the bits are denoted X_{0} through X_{10} and Y_{0} through Y_{10} (with X_{0} and Y_{0}

the Least Significant Bits). The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package
x ₁₁	X Data MSB	ΠL	Pin 2
x ₁₀		Πι	Pin 1
Xg		TTL	Pin 48
x ₈		ΠL	Pin 47
X7) TTL	Pin 46
х _б		TTL	Pin 45
X ₅		ΠL	Pin 44
X ₄		ΠL	Pin 43
x ₃		ΠL	Pin 42
X ₂		TTL	Pin 41
X ₁		TTL	Pin 40
x ₀	X Data LSB	πι	Pin 39

MPY112K

TRW

Data Inputs (Cont.)

Name	Function	Value	J4 Package
Y ₁₁	Y Data MSB	ΠL	Pin 16
Y ₁₀		TTL	Pin 15
Yg		TTL .	Pin 14
r ₈		πι	Pin 11
4 ₇) TTL)	Pin 10
6		ΠL	Pin 9
5		[π.]	Pin 8
4		TIL	Pin 7
[′] 3			Pin 6
2		TTL I	Pin 5
- '1		TTL	Pin 4
/o	Y Data LSB		Pin 3

Data Outputs

The MPY112K has a 16-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is the most significant 16 bits of the complete product. The output is truncated to this length, not rounded. The Most Significant Bit (MSB) of the product is the sign bit if two's complement notation is used (TC=1). The

input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively. The output driver is in the high-impedance state when $\overline{\text{OE}}$ is HIGH, and enabled when $\overline{\text{OE}}$ is LOW.

Name	Function	Value	J4 Package
P ₂₃	Product MSB	ΠL	Pin 20
P22		TTL	Pin 21
P ₂₁		TTL	Pin 22
P ₂₀		TTL	Pin 23
P ₁₉		TTL	Pin 24
P ₁₈		TTL	Pin 25
P ₁₇		TTL	Pin 26
P ₁₆		TTL	Pin 27
P ₁₅		Π	Pin 28
P14		TTL	Pin 29
P13		TTL	Pin 30
P ₁₂		TTL	Pin 31
P ₁₁		TTL	Pin 32
P ₁₀		TTL	Pin 33
Pg		TTL	Pin 34
P8		ΠL	Pin 35

Clocks

The MPY112K has two clock lines, one for the X input register and one for both the Y input register and the product register. Data present at the X input is loaded into the registers at the rising edge of CLK X. Data present at the Y input, the two's complement instruction, and the product present at the output of the asynchronous multiplier array are loaded into the appropriate registers at the rising edge of CLK M.

Name	Function	Value	J4 Package
CLK X	Clock Input Data X	ΠL	Pin 38
CLK M	Master Clock	Πι	Pin 18

Controls

The MPY112K has two control lines. \overline{OE} is a three-state enable line for the output. The output drivers are in the high-impedance state when \overline{OE} is HIGH, and enabled when \overline{OE} is LOW.

The device will interpret data as two's complement when TC is HIGH, and as unsigned magnitude when TC is LOW. $\overline{\text{OE}}$ is not registered. TC is registered and clocked in at the rising edge of CLK M.

Name	Function	Value	J4 Package
TC	Two's Complement	Πι	Pin 17
ŌĒ	Three-State Control	ΠL	Pin 19

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

MPY112K

DRB

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Volta	je
Input Voltage	-0.5 to +5.5
Output	
	Applied voltage
	Forced current
	Short-circuit duration (single output in high state to ground) 1 set
Temperature	
	Operating, case
	junction
	Lead, soldering (10 seconds)
	-65 to 150°C

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

				Temperatu	re Range			
D		Standard			Extended			
Parame	eter	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.25	٧
t _{PW}	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
ŧн	Input Hold Time	5			10			ns
VIL	Input Voltage, Logic Low			0.8			0.8	V
VIH	Input Voltage, Logic High	2.0	1		2.0			٧
IOL	Output Current, Logic Low			4.0			2.5	mA
юн	Output Current, Logic High			- 400			-400	μA
TA	Ambient Temperature, Still Air	0		70				°C
TC	Case Temperature				-55		125	°C

Electrical characteristics within specified operating conditions

		1	Temperate	ure Range		
		Star	ndard	Exte	nded	
Parameter	Test Conditions	Min	Max	Min	Max	Units
ICC Supply Current ¹	V _{CC} - MAX, Static		450		550	mA
IIL Input Current, Logic Low	V _{CC} - MAX, V ₁ - 0.5V	1				
	Data Inputs, TC		-0.2		-0.3	mA
	CLK X, DE		-0.6		-0.75	mA
	CLK M		-1.2		-1.5	mA
I _{IH} Input Current, Logic High	$V_{CC} - MAX, V_I - 2.4V$					
	Data Inputs, TC		50		50	μA
	CLK X, DE		50		50	μA
	CLK M		100		100	μA
I Input Current, Max Input Voltage	V _{CC} - MAX, V _I - 5.5V	1	1.0		1.0	mA
V _{OL} Output Voltage, Logic Low	$V_{CC} = MIN, I_{OL} = MAX$		0.5		0.5	٧
V _{OH} Output Voltage, Logic High	$V_{CC} - MIN, I_{OH} = MAX$	2.4		2.4		V
I _{OZL} Hi-Z Output Leakage Current	$V_{CC} = MAX, V_{I} = 0.5V$	- 40	40	-40	40	μA
I _{OZH} Hi-Z Output Leakage Current	$V_{CC} = MAX, V_{I} = 2.4V$	-40	40	-40	40	μΑ
IOS Short-Circuit Output Current	V _{CC} - MAX, Output high, one pin to ground, one second duration		-50		-50	mА
Cl Input Capacitance	T _A = 25°C, F = 1MHz		15		15	pF
Cn Output Capacitance	$T_A = 25^{\circ}C, F = 1MHz$	1	15		15	pF

Note:

1. Worst Case: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

		1	Tomporati	uro Ranno		
		Star	ndard	Exte	nded	
Parameter	Test Conditions	Min	Max	Min	Max	Units
t _{MPY} Multiply Time	V _{CC} - MIN		50		55	ns
t _D Output Delay	V _{CC} - MIN, Load 1		35		45	ns
t _{ENA} Three-State Output Enable Delay	V _{CC} - MIN, Load 2		30		45	ns
t _{DIS} Three-State Output Disable Delay	V _{CC} = MIN, Load 2		30		45	ns

t

Application Notes

Mixed-Mode Multiplication

There are several applications in which it may be advantageous to perform mixed-mode multiplication. Video data are often generated as unsigned magnitude numbers (e.g., data from an analog-to-digital converter.) These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the video data must be converted to two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed-mode operation. The MPY112K can only provide this capability by making the MSB of the unsigned magnitude number a zero, thus required.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register. Due to the sharing of the CLK M pin by the Y input register and the output register, all constants should be kept in the X register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY112K does not differentiate between this operation:

 $6 \times 2 = 12$ and this operation: (6/8) x (2/8) = 12/64

Ordering Information

The difference lies only in constant scale factors lin this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Exceptional Case

The most negative number that can be represented in two's complement notation is greater in magnitude than the largest representable positive number by one LSB. This is only a problem when the full-scale negative number is squared. If fractional notation is used, this means that $(-1) \times (-1)$ with the MPY112K will yield the (incorrect) result (-1). In the full-precision series of multipliers the correct result can be obtained by the use of the RS control, which was not included on the MPY112K due to pin count limitations.

Product Number	Temperature Range	Screening	Package	Package Marking
MPY112KJ4C	STD-T _A = 0°C to 70°C	Commercial	48 Lead DIP	112KJ4C
MPY112KJ4G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	48 Lead DIP	112KJ4G
MPY112KJ4F	EXT-T _C = -55°C to 125°C	Commercial	48 Lead DIP	112KJ4F
MPY112KJ4A	EXT-T _C = -55°C to 125°C	MIL-STD-883	48 Lead DIP	112KJ4A
MPY112KJ4N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	48 Lead DIP	112KJ4N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

Multiplier

16 X 16 bit, 145ns

The MPY016H is a high-speed 16 x 16 bit parallel multiplier which operates at a 145 nanosecond cycle time (6.9MHz multiplication rate). The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full precision 32-bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) has a dedicated output port. The Least Significant Product (LSP) shares a bidirectional port with the Y input. Three-state outputs are employed throughout. The MPY016H is built with TRW's state-of-the-art 2-micron bipolar process.

Features

• 145ns Multiply Time (Worst Case)

Functional Block Diagram

• 16 x 16 Bit Parallel Multiplication With 32-Bit Product Output

- Three-State Outputs
- Fully TTL Compatible
- Two's Complement, Unsigned Magnitude, and Mixed Mode Multiplication
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 64 Lead Ceramic DIP, 68 Contact Chip Carrier, 68 Leaded Chip Carrier, or 64 Leaded Flatpack

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00285 Rev. E-3/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

X ₅ 1 1 X ₆ 2 2 X ₇ 3 X ₈ 4 X ₉ 5 X ₁₀ 6 X ₁₁ 7 X ₁₂ 8 X ₁₃ 9 X ₁₄ 10 X ₁₁ 7 X ₁₂ 8 X ₁₃ 9 X ₁₄ 10 X ₁₅ 11 X ₁₅ 11 X ₁₆ X ₁₇ X ₁₆ X ₁₇ X ₁₇ X ₁₇ X ₁₇ X ₁₈ X ₁₇ X ₁₇ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X ₁₉ X	64 X4 63 X3 62 X2 61 X1 60 X6 59 TRIL 58 CLK L 57 CLK Y 56 P0. Y0 55 P1. Y1 54 P2. Y2 50 P6. Y6 50 P6. Y6 48 P8. Y8 47 P9. Y9 46 P10. Y10 44 P12. Y12 43 P13. Y13 44 P15. Y15 53 P14 54 P12. Y12 43 P13. Y13 44 P15. Y15 53 P17 38 P18 37 P19 36 P20 37 P19 38 P21 33 P23	$\begin{array}{c} X_4\\ X_3\\ X_2\\ X_1\\ X_0\\ TRIL\\ CLK \ L\\ CLK \ L\\ CLK \ Y\\ P_0, Y_0\\ P_1, Y_1\\ P_2, Y_2\\ P_3, Y_3\\ P_4, Y_4\\ P_5, Y_5\\ P_6, Y_6\\ P_7, Y_7\\ P_8, Y_8\\ P_9, Y_9\\ P_{10}, Y_{10}\\ P_{11}, Y_{11}\\ P_{12}, Y_{13}\\ P_{14}, Y_{14}\\ P_{15}, P_{15}\\ P_{16}\\ P_{17}\\ P_{18}\\ P_{19}\\ P_{20}\\ P_{21}\\ P_{22}\\ P_{23}\end{array}$	1 W 2 W 3 W 4 W 5 W 6 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1	л 64 Х5 л 63 Х6 л 7 63 Х6 л 7 7 56 Х12 л 7 7 7 7 56 Х12 л 7 7 7 7 56 Х12 л 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7) 1 2 3 4 5 4 7 5 5 4 7 5 5 4
64 Lead DIP – JO	Package		64 Lead DIP – J1 Pa	ackage	

Pin Assignments

Pin Assignments

Functional Description

General Information

The MPY016H has three functional sections: input registers, an asynchronous multiplier array, and output registers. The input registers store the two 16-bit numbers which are to be multiplied and the instruction which controls the output rounding. This rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,

designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY016H to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The MPY016H operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
VCC	Positive Supply Voltage	+5.0V	Pins 48, 49	Pins 1, 68	Pins 16, 17	Pins 56, 57
GND	Ground	0.0V	Pins 45, 46, 47	Pins 2, 3, 4	Pins 18, 19, 20	Pins 58, 59, 60

Control

The MPY016H has seven control lines:

- FT A control line which makes the output register transparent if it is HIGH.
- TRIM,TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the respective control is LOW.
- RS RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.
- RND When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2^{-16} bit (P₁₄). If RS is HIGH when RND is HIGH, a one will be added to the 2^{-15} bit (P₁₅). In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.

TCX,TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY forces the MPY016H to consider the appropriate input as a two's complement number, while a LOW forces the MPY016H to consider the appropriate input as a magnitude only number.

FT, RS, TRIM and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading these control signals can be avoided by the use of normally LOW clocks.

Control (Cont)

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
RND	Round Control Bit	Π	Pin 52	Pin 65	Pin 13	Pin 53
TCX	X Input Two's Complement	ΠL	Pin 51	Pin 66	Pin 14	Pin 54
TCY	Y Input Two's Complement	Π	Pin 50	Pin 67	Pin 15	Pin 55
FT	Output Register Feedthough	Π	Pin 44	Pin 5	Pin 21	Pin 61
RS	Output Right Shift	πι	Pin 43	Pin 6	Pin 22	Pin 62
TRIM	MSP Three-State Control	ΠL	Pin 42	Pin 7	Pin 23	Pin 63
TRIL	LSP Three-State Control	πι	Pin 6	Pin 46	Pin 59	Pin 35

Data Inputs

The MPY016H has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X₁₅ and Y₁₅, carry the sign information for the two's complement notation. The remaining bits are denoted X₀ through X₁₄ and Y₀ through Y₁₄ (with X₀ and Y₀ the Least Significant Bits). The input and output formats for

fractional two's complement, fractional unsigned magnitude, integer two's complement and integer unsigned magnitude are shown in Figures 1–6. The Y inputs are multiplexed with the LSP outputs, and hence can only be used when the TRIL control is in a HIGH state.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
X ₁₅	X Data MSB	ΠL	Pin 54	Pin 63	Pin 11	Pin 51
X14		TTL	Pin 55	Pin 62	Pin 10	Pin 50
X ₁₃		Πι	Pin 56	Pin 61	Pin 9	Pin 49
X ₁₂		ΠL	Pin 57	Pin 59	Pin 8	Pin 48
X11		ΠL	Pin 58	Pin 58	Pin 7	Pin 47
x ₁₀		TTL	Pin 59	Pin 57	Pin 6	Pin 46
Xg		TTL	Pin 60	Pin 56	Pin 5	Pin 45
Xg		ΠL	Pin 61	Pin 55	Pin 4	Pin 44
X7		Πι	Pin 62	Pin 54	Pin 3	Pin 43
X _{fi}		TTL	Pin 63	Pin 53	Pin 2	Pin 42
X ₅		ΠL	Pin 64	Pin 52	Pin 1	Pin 41
XA		Πι	Pin 1	Pin 51	Pin 64	Pin 40
, Xa		πι	Pin 2	Pin 50	Pin 63	Pin 39
κ ₂		πι	Pin 3	Pin 49	Pin 62	Pin 38
κ ₁		Πι	Pin 4	Pin 48	Pin 61	Pin 37
x ₀	X Data LSB	ΠL	Pin 5	Pin 47	Pin 60	Pin 36
Y ₁₅	Y Data MSB	Πι	Pin 24	Pin 27	Pin 41	Pin 17
Y ₁₄		ΠL	Pin 23	Pin 28	Pin 42	Pin 18
Y ₁₃		πι	Pin 22	Pin 29	Pin 43	Pin 19
Y12		Π	Pin 21	Pin 30	Pin 44	Pin 20
Y ₁₁		ΠL	Pin 20	Pin 31	Pin 45	Pin 21
Y ₁₀		ΠL	Pin 19	Pin 32	Pin 48	Pin 22
Yg		πι	Pin 18	Pin 33	Pin 47	Pin 23
Y ₈		πι	Pin 17	Pin 34	Pin 48	Pin 24
Y ₇		TTL	Pin 16	Pin 35	Pin 49	Pin 25
6		TTL	Pin 15	Pin 36	Pin 50	Pin 26
Y ₅		Π	Pin 14	Pin 37	Pin 51	Pin 27
4		TTL	Pin 13	Pin 38	Pin 52	Pin 28
Y3		ΠL	Pin 12	Pin 39	Pin 53	Pin 29
r ₂	}	m	Pin 11	Pin 40	Pin 54	Pin 30
Y	1	πι	Pin 10	Pin 41	Pin 55	Pin 31
Yn Yn	Y Data LSB	Π	Pin 9	Pin 42	Pin 56	Pin 32

Data Outputs

The MPY016H has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used (TCX=TCY=1, RS=0). The input and output formats for fractional two's complement, fractional unsigned magnitude, integer two's complement and integer unsigned

magnitude are shown in Figures 1–6. The LSP Output can be taken from the Y inputs only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. For an output from the MSP lines to be read, the TRIM control must be low. RS is an output format control. A logical "1" on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package
P ₃₁	Product MSB	πι	Pin 40	Pin 10	Pin 25	Pin 1
P ₃₀	}	TTL	Pin 39	Pin 11	Pin 26	Pin 2
P ₂₉		TTL	Pin 38	Pin 12	Pin 27	Pin 3
P ₂₈		TTL	Pin 37	Pin 13	Pin 28	Pin 4
P ₂₇		Πι	Pin 36	Pin 14	Pin 29	Pin 5
P ₂₆		ΠL	Pin 35	Pin 15	Pin 30	Pin 6
P ₂₅		Πι	Pin 34	Pin 16	Pin 31	Pin 7
P24		ΠL	Pin 33	Pin 17	Pin 32	Pin 8
P ₂₃		ΠL	Pin 32	Pin 18	Pin 33	Pin 9
P ₂₂		ΠL	Pin 31	Pin 19	Pin 34	Pin 10
P ₂₁	1	πι	Pin 30	Pin 20	Pin 35	Pin 11
P ₂₀		πι	Pin 29	Pin 21	Pin 36	Pin 12
P ₁₉		πι	Pin 28	Pin 22	Pin 37	Pin 13
P ₁₈		ΠL	Pin 27	Pin 23	Pin 38	Pin 14
P17		ΠL	Pin 26	Pin 24	Pin 39	Pin 15
P ₁₆		ΠL	Pin 25	Pin 25	Pin 40	Pin 16
P ₁₅		πι	Pin 24	Pin 27	Pin 41	Pin 17
P ₁₄		TTL	Pin 23	Pin 28	Pin 42	Pin 18
P13		πι	Pin 22	Pin 29	Pin 43	Pin 19
P12		ΠL	Pin 21	Pin 30	Pin 44	Pin 20
P ₁₁		ΠL	Pin 20	Pin 31	Pin 45	Pin 21
P10		TTL	Pin 19	Pin 32	Pin 46	Pin 22
Pg		ΠL	Pin 18	Pin 33	Pin 47	Pin 23
Pg		ŤΤL	Pin 17	Pin 34	Pin 48	Pin 24
P7		TTL	Pin 16	Pin 35	Pin 49	Pin 25
P ₆		ΠL	Pin 15	Pin 36	Pin 50	Pin 26
P ₅		ΠL	Pin 14	Pin 37	Pin 51	Pin 27
P ₄		ΠL	Pin 13	Pin 38	Pin 52	Pin 28
P3		πι	Pin 12	Pin 39	Pin 53	Pin 29
P2		πι	Pin 11	Pin 40	Pin 54	Pin 30
P ₁		TTL	Pin 10	Pin 41	Pin 55	Pin 31
PO	Product LSB	TTL	Pin 9	Pin 42	Pin 56	Pin 32

Clocks

The MPY016H has four clock lines, one for each of the input registers and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package	J0 Package	F1 Package
CLK X	Clock Input Data X	ΠL	Pin 53	Pin 64	Pin 12	Pin 52
CLK Y	Clock Input Data Y	TTL	Pin 8	Pin 44	Pin 57	Pin 33
CLK L	Clock LSP Register	TTL	Pin 7	Pin 45	Pin 58	Pin 34
CLK M	Clock MSP Register	TTL	Pin 4	Pin 8	Pin 24	Pin 64

No Connects

The chip carrier version of the MPY016H has four pins which are not connected internally. These should be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package	JO Package	F1 Package		
NC	No Connection	Open	(none)	Pins 9, 26, 43, 60	(none)	(none)		

TRW

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

7

ंहिः

Figure 4. Integer Two's Complement Notation

BINART														Y PUINT																			
																	X15	X14	X12	X12	X.,	X10	Xo	Xo	X7	Xe	Xr	Xa	Xa	X2	[x.	Xo	SIGNAL (TWO'S COMPLEMENT)
																	.215	214	2 ¹³	212	211	2 ¹⁰	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	22	21	20	DIGIT VALUE
																x	Y15	Y14	Y12	Y12	Y11	Yin	Ya	Ye	¥7	Ye	Ys	Ya	Y ₂	Y2	Υ ₁	Yo	SIGNAL (UNSIGNED MAGNITUDE)
																	215	214	213	212	211	210	2 ⁹	2 ⁸	27	2 ⁶	2 ⁵	24	23	2 ²	21	2 ⁰	DIGIT VALUE
	_									r	r				r—	, —	_						_			T				r—	т	_	
=	P31	P30	P29	P28	P27	P26	P ₂₅	P24	P _{Z3}	P22	P21	P20	P19	P18	P17	P16	P ₁₅	P14	P13	P12	P11	P10	Pg	P ₈	ካ	P ₆	P5	P4	P3	P2	P1	Po	SIGNAL
	231	230	229	2 ²⁸	227	2 ²⁶	225	224	223	222	221	2 ²⁰	219	2 ¹⁸	217	216	215	214	2 ¹³	212	2 ¹¹	210	2 ⁹	2 ⁸	27	26	2 ⁵	24	2 ³	2 ²	21	20	DIGIT VALUE RS = 1
	MSP																	L	SP			_					MANDATORY						

Figure 7. Timing Diagram

Figure 8. Timing Diagram, Unclocked Mode

Figure 10. Equivalent Output Circuit

Figure 11. Normal Test Load

TO OUTPUT 🗗 PIN

40pF

LSI Products Division TRW Electronic Components Group

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers (e.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the unsigned magnitude data must be converted to

LOAD 1

+V_{CC}

810Ω

1N3062

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the selected register not be loaded again until a new constant is desired.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY016H does not differentiate between this operation:

$$6 \times 2 = 12$$

and this operation:

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

two's complement notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016H provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the

Figure 12. Three-State Delay Test Load

40pF

TO OUTPUT CT PIN

500 Ω

LOAD 2

resulting product is in two's complement notation.

The multiply cycle then consists of loading new data and strobing the output register.

implications for hardware design. Because common design

output signals often share the same line), the scale factors

Least Significant Bits of the multiplier, multiplicand, and

in detail in Figures 1 through 6.

determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made:

product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated

practice assigns a fixed value to any given line (and input and

2.6V

Register Shift (RS) Control

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit. The MPY016H has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled (i.e., shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltag	9	0.5 to +7.0V
Input Voltage		-0.5 to +5.5V
Output		
	Applied voltage	0.5 to +5.5V ²
	Forced current	0.1 to +6.0mA ^{3,4}
	Short-circuit duration (single output in high state to ground)	1 sec
Temperature		
	Operating, case	55 to +125°C
	junction	175°C
	Lead, soldering (10 seconds)	
	Storage	65 to + 150°C
Notes:		· · · · · · · · · · · · · · · · · · ·

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

_

E

				Temperatu	ire Range								
		Standard Extended											
Parame	eter	Min	Nom	Max	Min	Nom	Max	Units					
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v					
^t PW	Clock Pulse Width	25			30			ns					
ts	Input Register Setup Time	25		<u> </u>	30			ns					
t _H	Input Register Hold Time	0			3			ns					
VIL	Input Voltage, Logic Low			0.8			0.8	v					
VIH	Input Voltage, Logic High	2.0			2.0			V					
I _{OL}	Output Current, Logic Low			4.0			4.0	mA					
юн	Output Current, Logic High			- 400			~ 400	μΑ					
T _A	Ambient Temperature, Still Air	0		70		· · · · · · · · · · · · · · · · · · ·		°C					
TC	Case Temperature				- 55		125	°C					

Electrical characteristics within specified operating conditions

			1	Temperat	ure Range		
			Sta	ndard	Exter	nded	1
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
ICC	Supply Current	V _{CC} - MAX, Static ¹		875		1050	mA
<u>ч</u>	Input Current, Logic Low	$V_{CC} = MAX, V_i = 0.5V$					
		X _{IN} , Y _{IN} , RND, FT		-0.4		-0.4	mA
		TCX, TCY, RS		-0.8		-0.8	mA
		CLK L, M, and X; TRIM, TRIL		-1.0		- 1.0	mA
		CLK Y		-2.0		-2.0	mA
Ι _Η	Input Current, Logic High	$V_{CC} = MAX, V_I = 2.4V$					
		X _{IN} , Y _{IN} , RND, FT		75		100	μΑ
		TCX, TCY, RS		75		100	μΑ
		CLK L, M, and X; TRIM, TRIL		75		100	μA
		CLK Y		100		200	μΑ
4	Input Current, Max Input Voltage	V _{CC} - MAX, V _I - 5.5V		1.0		1.0	mA
VOL	Output Voltage, Logic Low	V_{CC} - Min, I_{OL} - Max		0.5		0.5	V
Voh	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V
lozl	Hi–Z Output Leakage Current	V _{CC} - MAX		-40		-40	μΑ
IOZH	Hi-Z Output Leakage Current	V _{CC} - MAX		40		40	μA
OS	Short-Circuit Output Current	V _{CC} - MAX, One pin to ground, one second duration max, output high		-50		-50	mA
C1	Input Capacitance	$T_{\Delta} = 25^{\circ}C, F = 1MHz$	1	10		10	pF
C _O	Output Capacitance	T _A = 25°C, F = 1MHz		10		10	pF

ĭ

Note:

1. Worst case: All inputs and outputs LOW.
Switching characteristics within specified operating conditions

				Temperature Range			
			Star	ndard	Exte	ended	1
Parameter		Test Conditions	Min	Max	Min	Max	Units
tMPY	Multiply Time, Clocked	V _{CC} - MIN	10	145	10	185	ns
^t MUC	Multiply Time, Unclocked	V _{CC} - MIN		185		230	ns
to	Output Delay	V _{CC} - MIN, Load 1		40		45	ns
^t ena	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		40		45	ns
tdis	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns
			-		-		-

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY016HJ1C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	D16HJ1C
MPY016HJ1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial with Burn-In	64 Lead DIP	D16HJ1G
MPY016HJ1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	016HJ1F
MPY016HJ1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	D16HJ1A
MPY016HJ1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	64 Lead DIP	016HJ1N
MPY016HC1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	016HC1F
MPY016HC1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	D16HC1A
MPY016HC1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	68 Contact Chip Carrier	016HC1N
MPY016HL1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	016HL1F
MPY016HL1A	EXT-T _C = ~55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	D16HL1A
MPY016HL1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	68 Leaded Chip Carrier	016HL1N
MPY016HF1F	EXT-T _C = -55°C to 125°C	Commercial	64 Leaded Flatpack	016HF1F
MPY016HF1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Leaded Flatpack	016HF1A
MPY016HF1N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	64 Leaded Flatpack	016HF1N
MPY016HJOC	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	016HJOC
MPY016HJ0G	$STD - T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial with Burn-In	64 Lead DIP	016HJ0G
MPY016HJ0F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	016HJOF
Mpy016HJ0A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	016HJOA
MPY016HJON	EXT-T _C = -55° C to 125°C	Commercial with Burn-In	64 Lead DIP	016HJON
MPY016HJ3F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	016HJ3F
MPY016HJ3A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	D16HJ3A
MPY016HJ3N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	64 Lead DIP	016HJ3N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

MPY016K Preliminary Information

VLSI Multiplier

16 X 16 bit, 40ns

The TRW MPY016K is a video-speed 16 X 16 bit parallel multiplier which operates at a 40 nanosecond cycle time (25MHz multiplication rate). The multiplicand and the multiplier may be independently specified as two's complement or unsigned magnitude, yielding a full precision 32-bit product.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The Most Significant Product (MSP) and Least Significant Product (LSP) can be multiplexed through a dedicated output port, or the LSP can share a bidirectional port with the Y input. All outputs are three-state.

Built with TRW's OMICRON-B^{mm} 1-micron bipolar process, the MPY016K is pin compatible with the industry standard MPY016H, and operates with three times the speed at comparable power dissipation. The MPY016K is the industry's first true video-speed 16-bit multiplier.

Features

- 40ns Multiply Time: MPY016K-1 (Worst Case)
- 45ns Multiply Time: MPY016K (Worst Case)
- Pin Compatible With TRW MPY016H

- 16 X 16 Bit Parallel Multiplication With 32-Bit Output
- Two Least Significant Product Output Modes: Multiplexed With Most Significant Product Or Multiplexed With Y Input
- Output Registers Can Be Made Transparent
- Three-State TTL Output
- Two's Complement, Unsigned Magnitude, Or Mixed Mode Multiplication
- Fully TTL Compatible
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier
- Available Screened To MIL-STD-883

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01132 Rev. D-2/84 Printed in the U.S.A.

7R#

Functional Block Diagram

Pin Assignments

X4_1≍		⊐64 X5	
X3 2 ⊑		⊐ 63 X ₆	
X ₂ 3 ≍		⊐ 62 X7	 – × – ,
X_1_4 ≍		≍ 61 X ₈	ᇊ <u>승ᇆ</u> ᇰᅆᇡᅶᇡᇡᆇᅆᇯᅸᅌᄩᆃᆽᆗᆽ
Xnٰ5 ≍		≍ 60 Xg	
TRIĽ6≍		⊐ 59 X10	
		3 58 X11	
CLK Y 8 K		3 57 X12	X ₁₃ 61 〉 〈43 NC
Po.Yo 9 K		3 56 X12	X ₁₄ 62)
P+ Y+ 10 5		⊐ 55 X14	X ₁₅ 63 > (41 Y ₁ ,P ₁
Pa Ya 11 K		⊐ 54 X15	CLK X 64) (40 Y ₂ ,P ₂
P2 Y2 12 5		⊐ 53 CLK X	RND 65 \rangle \langle 39 Y ₃ ,P ₃
P. Y. 13 E		⊐ 52 RND	TCX 66 >
Pe Ye 14 C		⊐ 51 TCX	TCY 67 2
Pe.Ye 15 K		⊐ 50 TCY	V _{CC} 68 2
P7.Y7 16 1		∃ 49 Vcc	V _{CC} 1 2
Po.Yo 17 5			GND 2 >
Po Yo 18 🖾		a 47 GND	GND 3 > (
P10 Y10 19 1		⊐46 GND	MSEL 4 2 4 32 Y ₁₀ ,P ₁₀
P11, Y11 20 5		3 45 MSEL	FT 5 2
P12, Y12 21 K		⇒ 44 FT	RS 6 2 4 12,P12
P12 Y12 22 5		⊐ 43 BS	TRIM 7 $\langle 29 Y_{13}, P_{13} \rangle$
P14, Y14 23 5		a 42 TRIM	CLK M 8 2 (28 Y14,P14
P16.Y16 24 K		HA1 CLK M	NC 9 27 Y ₁₅ ,P ₁₅
Po.Pie 25 K		3 40 Po1.P15	Kanning
P1.P17 26 K		∃ 39 Pan.P14	0122549786822888888888888888888888888888888888
P2 P10 27 5		∃ 38 P20.P12	58,518,52,52,52,52,52,52,52,52,52,52,52,52,52,
Pa Pin 28 5		⊐ 37 P20 P12	
Pa Pao 29 K		∃ 36 P27.P11	
PE.P21 30 K	· · · · · · · · · · · · · · · · · · ·	35 P26.P10	
Pe.Pag 31 K		∃ 34 P25.Po	68 Contact or Leaded Chip Carrier – C1, L1 Package
Pr.Pro 37 1		□ 33 P24 Po	
· /· / / · · ·	1	r · · · · 24/· 8	

64 Lead DIP - J1 Package

Functional Description

General Information

The MPÝ016K has three functional sections: Input registers, an asynchronous multiplier array, and output registers. The input registers store the two 16-bit numbers which are to be multiplied and the instruction which controls the output rounding. The rounding control is used when a single-word output is desired. Each input operand is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders,

designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words, the Most Significant Product (MSP) and the Least Significant Product (LSP). Three-state output drivers allow the MPY016K to be used on a bus, or allow the least and most significant outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The MPY016K operates from a single +5.0V supply. All power and ground lines must be connected. Note that the device is pin-compatible with the MPY016H, which has an additional ground pin; this is a control lead in the MPY016K. A ground on this pin (which must exist in all MPY016H applications) will cause the MPY016K to function like an MPY016H.

Name	Function	Value	J1 Package	C1, L1 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pins 48, 49	Pins 1, 68
GND	Ground	0.0V	Pins 46, 47	Pins 2, 3

Data Inputs

The MPY016K has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{15} and Y_{15} , carry the sign information for the two's complement notation. The remaining bits are denoted X_0 through X_{14} and Y_0 through Y_{14} (with X_0 and Y_0 the Least Significant Bits). The input and output formats for fractional two's complement, fractional unsigned magnitude,

fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6, respectively. The Y inputs are multiplexed with the LSP outputs, and hence can only be used when the TRIL control is in a HIGH state. This is true whether or not the LSP is also multiplexed out through the MSP output port.

Name	Function	Value	J1 Package	C1, L1 Package
x ₁₅	X Data MSB	TTL	Pin 54	Pin 63
х ₁₄		TTL	Pin 55	Pin 62
х ₁₃		TTL	Pin 56	Pin 61
X ₁₂		TTL	Pin 57	Pin 59
x ₁₁		TTL	Pin 58	Pin 58
x ₁₀		ΠL	Pin 59	Pin 57
Xg		ΠL	Pin 60	Pin 56
x ₈		TTL	Pin 61	Pin 55
X7		TTL	Pin 62	Pin 54
x ₆		TTL	Pin 63	Pin 53
X ₅		TTL	Pin 64	Pin 52
X ₄		TTL	Pin 1	Pin 51
X3		TTL	Pin 2	Pin 50
X ₂		TTL	Pin 3	Pin 49
x ₁		TTL	Pin 4	Pin 48
x ₀	X Data LSB	ΠL	Pin 5	Pin 47

Data Inputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package
Y ₁₅	Y Data MSB	TTL	Pin 24	Pin 27
Y ₁₄		ΠL	Pin 23	Pin 28
Y ₁₃		TTL	Pin 22	Pin 29
Y ₁₂		ΠL	Pin 21	Pin 30
Y ₁₁		Πι	Pin 20	Pin 31
Y ₁₀		TTL	Pin 19	Pin 32
Yg		TTL	Pin 18	Pin 33
Y ₈		TTL	Pin 17	Pin 34
Y ₇		TTL	Pin 16	Pin 35
Y ₆		ΠL	Pin 15	Pin 36
Y ₅		TTL	Pin 14	Pin 37
Y4		πι	Pin 13	Pin 38
Y3		TTL	Pin 12	Pin 39
Y ₂		TTL	Pin 11	Pin 40
Y		TTL	Pin 10	Pin 41
YO	Y Data LSB	TTL T	Pin 9	Pin 42

Data Outputs

The MPY016K has a 32-bit two's complement or unsigned magnitude output which is the product of the two input data values. This output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP). The Most Significant Bit (MSB) of both the MSP and the LSP is the sign bit if fractional two's complement notation is used (TCX = TCY = 1, RS = 0). The input and output formats for fractional two's complement, fractional unsigned magnitude, fractional mixed mode, integer two's complement, integer unsigned magnitude, and integer mixed mode notation are shown in Figures 1 through 6, respectively.

If $\overline{\text{MSEL}}$ is LOW, the LSP output can be taken from the Y input pins only when TRIL is LOW. Care must be taken to enable these shared input lines only at the proper time. If $\overline{\text{MSEL}}$ is HIGH, the LSP output is made available at the MSP lines, as well as at the Y input pins. For an output from the MSP lines to be read, the TRIM control must be active.

RS is an output format control. A HIGH on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, or integer two's complement operation.

Name	Function	Value	J1 Package	C1, L1 Package
P ₃₁	Product MSB	TTL	Pin 40	Pin 10
P30		Πι	Pin 39	Pin 11
P ₂₉		Πι	Pin 38	Pin 12
P ₂₈		ΠL	Pin 37	Pin 13
P ₂₇		TTL	Pin 36	Pin 14
P ₂₆		TTL	Pin 35	Pin 15
P ₂₅		TTL	Pin 34	Pin 16
P ₂₄		ΠL	Pin 33	Pin 17
P ₂₃		πι	Pin 32	Pin 18
P ₂₂		Πι	Pin 31	Pin 19
P ₂₁		πι	Pin 30	Pin 20
P ₂₀		Πι	Pin 29	Pin 21
P ₁₉		Πι	Pin 28	Pin 22
P ₁₈		Πι	Pin 27	Pin 23
P ₁₇		πι	Pin 26	Pin 24
P ₁₆		Πι	Pin 25	Pin 25

Data Outputs (Cont.)

Name	Function	Value	J1 Package	C1, L1 Package
			N	AUXED
			Input/Output	Input/Output
P ₁₅		TTL	Pin 24/Pin 40	Pin 27/Pin 10
P ₁₄		ΠL	Pin 23/Pin 39	Pin 28/Pin 11
P ₁₃		ΠL	Pin 22/Pin 38	Pin 29/Pin 12
P ₁₂		ΠL	Pin 21/Pin 37	Pin 30/Pin 13
P11		ΠL	Pin 20/Pin 36	Pin 31/Pin 14
P ₁₀		Πι	Pin 19/Pin 35	Pin 32/Pin 15
Pq		ΠL	Pin 18/Pin 34	Pin 33/Pin 16
Pa		ΠL	Pin 17/Pin 33	Pin 34/Pin 17
P7		ΠL	Pin 16/Pin 32	Pin 35/Pin 18
P ₆		ΠL	Pin 15/Pin 31	Pin 36/Pin 19
P5		TTL	Pin 14/Pin 30	Pin 37/Pin 20
P4		TTL	Pin 13/Pin 29	Pin 38/Pin 21
P ₃		TTL	Pin 12/Pin 28	Pin 39/Pin 22
P ₂		ΠL	Pin 11/Pin 27	Pin 40/Pin 23
P ₁		ΠL	Pin 10/Pin 26	Pin 41/Pin 24
P ₀	Product LSB	πι	Pin 9/Pin 25	Pin 42/Pin 25

The MPY016K has four clock lines, one for each input register and one for each product register. Data and two's complement instructions present at the inputs of these registers are loaded into the registers at the rising edge of the appropriate clock. The RND input is registered, clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with loading this control signal can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package
CLK X	Clock Input Data X	ΠL	Pin 53	Pin 64
CLK Y	Clock Input Data Y	ΠL	Pin 8	Pin 44
CLK L	Clock LSP Register	ΠL	Pin 7	Pin 45
CLK M	Clock MSP Register	ΠL	Pin 41	Pin 8

ARM

Controls

The MPY016K has eight control lines.

- FT A control line which makes the output register RND transparent if it is HIGH.
- TRIM, TRIL Three-state enable lines for the MSP and the LSP. The output driver is in the high-impedance state when TRIM or TRIL is HIGH, and enabled when the appropriate control is LOW.
- RS RS is an output format control. A HIGH level on RS deletes the sign bit from the LSP and shifts the MSP down one bit. This is mandatory for unsigned magnitude, mixed mode, and two's complement integer operations.
- MSEL <u>MSEL</u> is an output multiplex control. When <u>MSEL</u> is LOW, the MSP is available to the output three-state drivers at the MSP port, and the LSP is available to the output three-state drivers at the LSP/Y input port. When <u>MSEL</u> is HIGH, the LSP is available to both three-state drivers and the MSP is not available.
- When RND is HIGH, a one is added to the MSB of the LSP. Note that this bit depends on the state of the RS control. If RS is LOW when RND is HIGH, a one will be added to the 2^{-16} bit (P₁₄). If RS is HIGH when RND is HIGH, a one will be added to the 2^{-15} bit (P₁₅). In either case, the LSP output will reflect this addition when RND is HIGH. Note also that rounding always occurs in the positive direction; in some systems this may introduce a systematic bias.
- TCX, TCY Control how the device interprets data on the X and Y inputs. A HIGH on TCX or TCY makes the appropriate input a two's complement input, while a LOW makes the appropriate input a magnitude only input.

FT, RS, MSEL, TRIM, and TRIL are not registered. The TCX input is registered, and clocked in at the rising edge of the X clock signal, CLK X. The TCY input is also registered, and clocked in at the rising edge of the Y clock signal, CLK Y. The RND input is registered, and clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention is required if normally HIGH clock signals are used. Problems with loading of these control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	C1, L1 Package
RND	Round Control Bit	ΠL	Pin 52	Pin 65
TCX	X Input Two's Complement	ΠL	Pin 51	Pin 66
TCY	Y Input Two's Complement	ΤTL	Pin 50	Pin 67
FT	Output Register Feedthrough	TTL	Pin 44	Pin 5
RS	Output Register Shift	ΠL	Pin 43	Pin 6
MSEL	Output Select	TTL	Pin 45	Pin 4
TRIM	MSP Three-State Control	TTL	Pin 42	Pin 7
TRIL	LSP Three-State Control	TTL	Pin 6	Pin 46

No Connects

The contact and leaded chip carrier versions of the MPY016K have four pins which are not connected internally. These may be left unconnected.

Name	Function	Value	J1 Package	C1, L1 Package
NC	No Connection	Open	(none)	Pins 9, 26, 43, 60

Figure 1. Fractional Two's Complement Notation

2

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Fractional Mixed Mode Notation

Figure 7. Timing Diagram, Non-Multiplexed Output

7Rii

Application Notes

Mixed Mode Multiplication

There are several applications in which mixed mode multiplication may be advantageous. For example, inputs to a digital signal processor are often generated as unsigned magnitude numbers (e.g., data from an analog-to-digital converter). These numbers are effectively all positive values. In contrast, filter coefficients must often be negative. As a result, either the data must be converted to two's complement

notation (which requires an additional bit), or the multiplier must be capable of mixed mode operation. The MPY016K provides this capability by independently specifying the mode of the multiplicand (X) and the multiplier (Y) on the TCX and TCY pins. No additional circuitry is required and the resulting product is in two's complement notation.

Multiplication By A Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the desired register not be loaded again until a new constant is desired.

The multiply cycle then consists of loading new data and strobing the output register.

Selection Of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the MPY016K does not differentiate between this operation:

$$6 \times 2 = 12$$

(6/8) $\times (2/8) = 12/64$.

The difference lies in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

Register Shift (RS) Control

and this operation:

In two's complement notation, the acceptable range of values for a given word size is not the same for positive and negative numbers. The largest negative number is one LSB larger than the largest positive number. This is true for either fractional or integer notation. A problem can arise when the largest representable negative number is multiplied by itself. This should give a positive number of the same magnitude. However, the largest representable positive number is one LSB less than this value. As a result, this product cannot be correctly represented without using one additional output bit. implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 6.

The MPY016K has a Register Shift (RS) control that permits shifting of the result to provide a correct answer for every two's complement multiplication. When RS is active, the value of all bits in the MSP is doubled (i.e. shifted left one position), which provides the capability to represent the largest possible product. The MSB of the Least Significant Product is changed from a duplicate of the sign bit to the necessary bit to fill in the output word. The effects of this control are illustrated in Figures 1 and 4. Note that for unsigned magnitude operation, the RS control must be HIGH.

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Volta	ge0.5 to +7.0V
Input Voltage	90.5 to +5.5V
Output	
	Applied voltage
	Forced current
	Short-circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, case
	junction
	Lead, soldering (10 seconds)
	Storage −65 to +150°C
Notes:	

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

		Temperature Range							
				Standard			Extended		
Paran	neter		Min	Nom ¹	Max	Min	Nom ¹	Max	Units
V _{CC}	Supply Voltage		4.75	5.0	5.25	4.5	5.0	5.5	v
t _{PWL}	Clock Pulse Width, Low		15	22		22	25		ns
^t PWH	Clock Pulse Width, High		15	22		22	25		ns .
ts	Input Setup Time	(MPY016K)	20			25			ns
		(MPY016K-1)	20			20			ns
tн	Input Hold Time		0			2			ns
VIL	Input Voltage, Logic Low				0.8			0.8	V
V _{iH}	Input Voltage, Logic High		2.0			2.0			v
IOL	Output Current, Logic Low				4.0			4.0	mA
IOH	Output Current, Logic High				-400			-400	μA
TA	Ambient Temperature, Still Air		0		70				°C
т _с	Case Temperature					-55		+ 125	°C

Note:

1. Nominal performance at V_{CC} = NOM, T_A = 25°C.

.....

HALF ADDRESS TO THE R. S. L.

Electrical characteristics within specified operating conditions

			1	Temperat	ure Range		
			Star	ndard	Exte	nded	1
Parar	neter	Test Conditions	Min	Max	Min	Max	Units
	Supply Current	V _{CC} - MAX, Static ¹					
		T _A - 0°C to 70°C		875			mA
		$T_{A} > 25^{\circ}C^{2}$		860			mA
		T _C = -55°C to +125°C				1050	mA
		T _C > 35°C				960	mA
		V _{CC} - 5.0V					
		T _A > 25°C		840			mA
		T _C > 35°C				920	mA
կլ	Input Current, Logic Low	$V_{CC} = MAX, V_I = 0.5V$					
		Data Inputs, Controls		-0.2		-0.2	mA
		Clocks		-1.2		-1.2	mA
		TRIM, TRIL		-0.6		-0.6	mA
Чн	Input Current, Logic High	V_{CC} - MAX, V_{I} - 2.4V					
		Data Inputs, Controls		50		50	μA
		Clocks		100		100	μΑ
		TRIM, TRIL		50		50	μA
4	Input Current, Max Input Voltage	$V_{CC} = MAX, V_{I} = 5.5V$		1.0		- 1.0	mA
V _{OL}	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	٧
VOH	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		v
lozL	Hi-Z Output Leakage Current (non-shared pins)	$V_{CC} = MAX, V_{I} = 0.5V$		- 40		- 60	μA
lozh	Hi-Z Output Leakage Current (non-shared pins)	$V_{CC} = MAX, V_1 = 2.4V$		40		60	μΑ
los	Short Circuit Output Current	V _{CC} - MAX, One pin to ground,	-4	-50	-4	- 50	mA
		one second duration, output high.					
CI	Input Capacitance	T _A = 25°C, F = 1MHz		10		10	pF
CO	Output Capacitance	$T_{A} = 25^{\circ}C, F = 1MHz$		10		10	рF

Notes:

c

1. Worst Case: All inputs and outputs LOW.

2. Part has a negative temperature coefficient, i.e., power consumption falls as temperature increases.

Switching characteristics within specified operating conditions

				Temperature Range			
			Star	Standard		Extended	
Param	eter	Test Conditions	Min	Max	Min	Max	Units
tMC	Multiply Time, Clocked	V _{CC} - MIN (MPY016K)		45		50	ns
		V _{CC} = MIN (MPY016K-1)		40		45	ns
tMUC	Multiply Time, Unclocked	V _{CC} - MIN (MPY016K)		75		85	ns
		V _{CC} - MIN (MPY016K-1)		70		75	ns
to	Output Delay	V _{CC} - MIN, Load 1 (MPY016K)		30		35	ns
		V _{CC} - MIN, Load 1 (MPY016K-1)		30		30	ns
^t SEL	Output Multiplex Select Delay	V _{CC} - MIN, Load 1		20		25	ns
tena	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		30		35	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		30		35	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
MPY016KJ1C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	016KJ1C
MPY016KJ1C1	STD-T _A - 0°C to 70°C	Commercial	64 Lead DIP	016KJ1C1
MPY016KJ1G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	016KJ1G
MPY016KJ1G1	STD-T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	016KJ1G1
MPY016KJ1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	016KJ1F
MPY016KJ1F1	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	016KJ1F1
MPY016KJ1A	EXT-T _C 55°C to 125°C	MIL-STD-883	64 Lead DIP	016KJ1A
MPY016KJ1A1	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	016KJ1A1
MPY016KJ1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	016KJ1N
MPY016KJ1N1	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	016KJ1N1
MPY016KC1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	016KC1F
MPY016KC1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	016KC1A
MPY016KC1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	016KC1N
MPY016KL1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	016KL1F
MPY016KL1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	016KL1A
MPY016KL1N	EXT-T _C 55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	016KL1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

a design in the second s
 A state of the sta

Multiplier – Accumulators

Multiplier-Accumulators

Multiplier-accumulators perform the sum of products operation found in most digital signal processing algorithms. TRW LSI offers a family of multiplier-accumulators in a variety of word sizes (8, 12, 16 bits) and speeds (100ns to 225ns multiply-accumulate time).

The multiplier-accumulator is an extension of the multiplier. The operation of addition/subtraction has been included, along with a feedback path for accumulation and a preload path for initializing the accumulator. With the accumulator adder embedded in the multiplier array, the product and sum are generated in only slightly more time than is required to derive the product alone. Clearing the accumulator is accomplished simultaneously with computation of the first product, and the accumulator may be disabled for operation as a multiplier. All TRW multiplier-accumulators are TTL compatible, and have full precision outputs (except as noted), plus three extended bits.

Multiplier-accumulators consist of three functional sections: an input section, the multiply-accumulate array, and the output section. The input section has two independently clocked n-bit input registers for the operands, comprised of positive-edge-triggered D-type flip-flops. Four mode controls (ACCumulate, SUBtract, RouND, and Two's Complement) are also registered.

The multiply-accumulate array is an asynchronous group of AND gates and adders which generates the product of the two input operands and, if desired, adds or subtracts the current contents of the product register (the results of the previous calculation). The ACCumulate control (ACC) determines whether the feedback path from the product register to the multiply-accumulate array is enabled. The SUBtract control (SUB) determines whether to add or subtract the product register contents from the new product. The input operands may be interpeted as two's complement or unsigned magnitude. User selectable rounding is available.

The output section includes the product registers and the three-state output ports. The product register receives the accumulated result from the multiply-accumulate array. Accumulation can generate word growth; in addition to the n-bit Most Significant Product (MSP) and the Least Significant Product (LSP), there is an additional three bits of eXTended Product (XTP) in the product register. The output pins are bidirectional ports through which the product register may be preloaded by coordinating the PRELoad control (PREL) with the three-state controls.

Bipolar Multiplier-Accumulators

The TDC1008, TDC1009, TDC1010 (8, 12, and 16 bits, respectively) and the TDC1043 (16 bits) are triplediffused bipolar devices. The TDC1043 is similar to the TDC1010; however, there is no preload function, and the LSP, though internally used, is not output.

CMOS Multiplier-Accumulators

The TMC2010 (16 bits) is a TRW CMOS multiplier-accumulator which is pin and function compatible with the bipolar TDC1010. It operates at speeds comparable to the bipolar device and dissipates less than 0.5 Watts.

Product	Size	Multiplication Time ¹ (ns)	Power Dissipation (Watts)	Package	Notes
TDC1008	8x8	100	1.8	J4, C1, L1	
TDC1009	12x12	135	3.2	J1, C1, L1	
TDC1010	16x16	165	4.7	J1, C1, L1	
TDC1043	16x16	100	1.2	J3, C1, L1	19-Bit Output
TMC2010	16x16	160	.5	J3, C1, L1	CMOS

Note: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to 70°C.

LSI Products Division TRW Electronic Components Group

- -

1

VLSI Multiplier – Accumulator 8 X 8 bit, 100ns

The TDC1008 is a high-speed 8 x 8 bit parallel multiplier-accumulator which operates at a 100 nenosecond cycle time (10MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 16-bit product. Products may be accumulated to a 19-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), an 8-bit Most Significant Product (MSP), and an 8-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, LSP and MSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1008 is a uniquely powerful LSI signal processing device.

Features

• 100ns Multiply-Accumulate Time (Worst Case)

- 8 x 8 Bit Parallel Multiplication With Accumulation To 19–Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 48 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01343 Rev. A-2/84 Printed in the U.S.A.

and a second sec

7/2//

Functional Block Diagram

Pin Assignments

48 Lead DIP - J4 Package

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1008 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 8-bit numbers which are to be multiplied, and the control lines which control the input numerical format (two's complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of

products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 8-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1008 to be used on a bus, or allow the outputs to be multiplexed over the same 8-bit output lines.

Power

The TDC1008 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package	C1, L1 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 37	Pin 51
GND	Ground	0.0V	Pin 12	Pin 18

Data Inputs

The TDC1008 has two 8-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X₇ and Y₇, carry the sign information for the two's complement notation. The remaining bits are denoted X₀ through X₆ and Y₀ through Y₆ (with X₀ and Y₀ the Least Significant Bits). Data present at the X and Y inputs are

clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package	C1, LI Package
X7	X Data MSB	ΠL	Pin 29	Pin 39
X ₆		Πι	Pin 28	Pin 38
X5		πι	Pin 27	Pin 37
X ₄		Πι	Pin 26	Pin 36
X3		πι	Pin 25	Pin 35
X ₂		Πι	Pin 24	Pin 34
X ₁		Πι	Pin 23	Pin 33
x ₀	X Data LSB	ΠL	Pin 22	Pin 32
 Υ ₇	Y Data MSB	TTL	Pin 40	Pin 54
Υ ₆		πι	Pin 39	Pin 53
Y ₅		ΠL	Pin 38	Pin 52
Y4		Πι	Pin 36	Pin 50
Yg		πι	Pin 35	Pin 49
Y ₂		Πι	Pin 34	Pin 48
Y ₁		Πί	Pin 33	Pin 47
YO	Y Data LSB	TTL	Pin 32	Pin 46

Data Outputs

The TDC1008 has a 19-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 8-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the

eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J4 Package	C1, L1 Package
P ₁₈	Product MSB	Πι	Pin 43	Pin 63
P ₁₇		ΠL	Pin 44	Pin 64
P ₁₆		ΠL	Pin 45	Pin 65
P ₁₅		ΠL	Pin 46	Pin 66
P ₁₄		ΠL	Pin 47	Pin 67
P ₁₃		ΠL	Pin 48	Pin 68
P ₁₂	2	Πι	Pin 1	Pin 1
P ₁₁		πι	Pin 2	Pin 2
P ₁₀		ΠL	Pin 3	Pin 3
Pg		Πι	Pin 4	Pin 4
PB		ΠL	Pin 5	Pin 5
P7		ΠL	Pin 9	Pin 15
P ₆		Πι	Pin 10	Pin 16
P ₅		Πι	Pin 11	Pin 17
P ₄		πι	Pin 13	Pin 19
Pg		TTL	Pin 14	Pin 20
P2		ΠL	Pin 15	Pin 21
P ₁		Πι	Pin 16	Pin 22
Po	Product LSB	TTL	Pin 17	Pin 23

Clocks

The TDC1008 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising

edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J4 Package	C1, LI Package
CLK X	Clock Input Data X	ΠL	Pin 30	Pin 40
CLK Y	Clock Input Data Y	ΠL	Pin 31	Pin 41
CLK P	Clock Product Register	TTL	Pin 7	Pin 12

Controls

The TDC1008 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW, and PRELoad is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs. When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Function Value J ⁴		C1, LI Package	
TSX	XTP Three-State Control	Πι	Pin 42	Pin 56	
TSM	MSP Three-State Control	Πι	Pin 6	Pin 6	
TSL	LSP Three-State Control	ΠL	Pin 18	Pin 24	
PREL	Preload Control	Πι	Pin 8	Pin 13	
RND	Round Control Bit	ΠL	Pin 21	Pin 31	
TC	Two's Complement Control	Πι	Pin 41	Pin 55	
ACC	Accumulate Control	ΠL	Pin 20	Pin 30	
SUB	Subtract Control	ΠL	Pin 19	Pin 29	

-

Preload Truth Table 1

PREL ¹	TSX ¹	TSM1	TSL ¹	ХТР	MSP	LSP
L	L	L	L	Register> Output pin	Register — Dutput pin	Register> Output pin
L	L	L	H.	Register 🔶 Dutput pin	Register 🔶 Output pin	Hi-Z
ι	L	н	ι	Register — 🗲 Output pin	Hi-Z	Register Output pin
L .	L	н [–]	н	Register> Output pin	Hi-Z	Hi-Z
L	Н	ι. ι	L	Hi-Z	Register 🛶 Output pin	Register Output pin
L	Н	L	Н	Hi-Z	Register 🔶 Output pin	Hi-Z
L	н	[н	ι ι	Hi-Z	Hi-Z	Register — Dutput pin
L	Н	н	н	Hi-Z	Hi-Z	Hi-Z
H ²	L	ι	L	Hi-Z	Hi-Z	Hi-Z
H ²	Ĺ	ί.	н	Hi-Z	Hi-Z	Hi-Z Preload
H ²	L	н	L	Hi-Z	Hi-Z Preload	Hi-Z
H ²	. Н	L	L	Hi-Z Preload	Hi-Z	Hi-Z
H ²	Н) L	н	Hi-Z Preload	Hi-Z	Hi-Z Preload
H ²	Н	н	ι	Hi-Z Preload	Hi-Z Preload	Hi-Z
<u>H²</u>	н	н	н	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.

2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

TRW Electronic Components Group

G

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply voltage								
Input voltage								
Output								
	Applied voltage0.5 to +5.5V							
	Forced current							
	Short-circuit duration (single output in high state to ground) 1 set							
Temperature	· · · · · · · · · · · · · · · · · · ·							
	Operating, case							
	junction							
	Lead, soldering (10 seconds)							
	Storage							

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

			Temperature Range					
			Standard			Extended		
Param	Parameter		in Nom j	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	٧
tpw	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
ŧн	Input Hold Time	0			3			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
V _{IH}	Input Voltage, Logic High	2.0			2.0			v
IOL	Output Current, Logic Low			4.0			4.0	mA
I _{OH}	Output Current, Logic High			-400			-400	μ
TA	Ambient Temperature, Still Air	0		70				°C
TC	Case Temperature				- 55		+ 125	°C

at marking the type for the

Electrical characteristics within specified operating conditions

			T				
			Sta	ndard	Extended Min Max		1
Para	neter	Test Conditions	Min Max				Units
- 100	Supply Current	V _{CC} - MAX, Static ¹		450		525	mA
ί <u>ι</u>	Input Current, Logic Low	V _{CC} - MAX, V ₁ - 0.5V					
		Data, Registered Controls,	1	-0.4		-0.4	mA
		Clocks, Unregistered Controls		-1.0		- 1.0	mA
		CLK P	1	-2.0		-2.0	mA
I _{IH}	Input Current, Logic High	$V_{CC} - MAX, V_1 - 2.4V$					
		Data Registered Controls,		75		100	μΑ
		Clocks, Unregistered Controls		75		100	μΑ
		CLK P		150		200	μΑ
l <u> </u>	Input Current, Max Input V	V _{CC} - MAX, V _I - 5.5V		1.0		1.0	mA
VOL	Output Voltage, Logic Low	V _{CC} - MAX, I _{OL} - MAX		0.5		0.5	v
VOH	Output Voltage, Logic High	V _{CC} - MAX, I _{OH} - MAX	2.4		2.4		٧
lozl	Hi-Z Output Leakage Current	V _{CC} - MAX		-40		40	μΑ
OZH	Hi-Z Output Leakage Current	V _{CC} - MAX		40		40	μΑ
los	Short-Circuit Output Current	VCC - MAX, Output high, one pin to ground, one second duration		-50		50	mA
C _I	Input Capacitance	T _A - 25°C, F - 1MHz		10		10	pF
C0	Output Capacitance	$T_{A} = 25^{\circ}C, F = 1MHz$		10		10	pF

Note:

1. Worst Case: All inputs and outputs LOW

Switching characteristics within specified operating conditions

		Temperature Range					
			Standard Extended		nded		
Parameter		Test Conditions	Min	Max	Min	Max	Units
tMA	Multiply-Accumulate Time	V _{CC} - MIN		100		125	ns
to	Output Delay	V _{CC} = MIN, Load 1		40		45	ns
^t ENA	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		40		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns

7**R**17

Figure 8. Normal Test Load

Figure 9. Three-State Delay Test Load

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and the desired register not be loaded again until a new constant is desired. The

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1008 does not differentiate between this operation:

$$6 X 2 = 12$$

and this operation:

 $(6/8) \times (2/8) = 12/64$

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

Temperature Range

 $STD-T_A = 0^{\circ}C$ to $70^{\circ}C$

STD-T_A = 0°C to 70°C

EXT-T_C = -55°C to 125°C

EXT-T_C = -55°C to 125°C

FYT_T_ _ _ 55°C to 125°C

Ordering Information

Product

Number

TDC1008J4C

TDC1008J4G

TDC1008.14F

TDC1008J4A

TOCIOR MN

multiply cycle then consists of loading new data and strobing the output register.

implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Package

48 Lead DIP

48 Lead DIP

48 Lead DIP

48 Lead DIP

49 Lood DIP

1001000341	EXT 1(: = -35 0 to 125 0		+0 Lead Dil	10000416
TDC1008C1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	1008C1F
TDC1008C1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	1008C1A
TDC1008C1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	1008C1N
TDC1008L1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	1008L1F
TDC1008L1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1008L1A
TDC1008L1N	EXT-T _C = -55° C to 125° C	Commercial With Burn-In	68 Leaded Chip Carrier	1008L1N

Commercial

Commercial

MIL-STD-883

Screening

Commercial With Burn-In

Commercial With Burn-In

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Package

Marking

1008J4C

1008J4G

1008.J4F

1008J4A

1009 (41)

VLSI Multiplier – Accumulator 12 X 12 bit, 135ns

The TDC1009 is a high-speed 12 x 12 bit parallel multiplier-accumulator which operates at a 135 nanosecond cycle time (7.4MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 24-bit product. Products may be accumulated to a 27-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 12-bit Most Significant Product (MSP), and a 12-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP, the MSP, and the LSP. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1009 is a uniquely powerful LSI signal processing device.

Features

135ns Multiply-Accumulate Time (Worst Case)

- 12 x 12 Bit Parallel Multiplication With Accumulation to 27-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Outputs
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 © TRW Inc. 1984 40G01345 Rev. A-1/84 Printed in the U.S.A.

77711

Functional Block Diagram PREL TSX 12 Rχ (12) $(x_{11-0})^{x_{IN}} \Sigma$ 27 +1 3 **XTPOUT** (P26-24) CLK X > 27 24 R_C ACC,SUB RND,TC 5 MSP_{OUT} (4) RA X (P₂₃₋₁₂) TSM 12 12 Rγ ^γin (γ₁₁₋₀) Σ LSPOUT (12) (P11-0) CLK Y > CLK P TSL

Pin Assignments

F			v	• ~	TD	- CA	v _
X5 1 드	L_7 64	X4	^4			~104	^5
X ₆ 2 🗮	🖾 ដ	X3	X ₃	25		⊐ 63	x ₆
X7 3 📬	□ ⊐ 62	X ₂	X ₂	314		≍ 62	X7
Xa 4 = 1	F 61	Xī	X	4 🖾		≍ 61	Xg
X 5 -	– 60	Xo	× X	55	1	3 60	Xő
Y. 6 7		20 ACC	01A	6 1		59	Xin
							Y.,
	38	SUB	300			~ 00 ~ =	<u>^11</u>
		HND	KNU	85		~ 5/	ULK X
CLK Y 9 🖂	5 6	TSL	TSL	. 954		⊐ 56	CLK Y
Yo 10 🖂	55	Pa	PO	10 🎞		≒ 55	YO
Y1 11 📇	54	P ₁	Pi	ារ ដ		⊐ 54	Υ ₁
Y2 12 =	53	P2	· Pa	12 텄		≍ 53	Y ₂
Y5 13	52	P5	P	13 🖬		⊐ 52	Y2
۲, 14 ⁽	F _ 51	P.	P	14 E		⊒ 51	Y.
v- 15 月		14 D-	' 4 D_	15 0		- הו	V-
		-5 CND	5 CND	10 0	1		15 V
	49	GNU	นกม			~ 40	, CC
Y ₆ 1/ ⊨□	48	P ₆	Pe	1/5			¥6
Y7 18 🛱	[] 47	ዋታ	P7	18 5		⊣ 4 /	¥7
Yg 19 📬	L	P8	P ₈	i 19 🏳		⊐ 46	Y ₈
Yg 20 📬	45	Pg	Pg	20 🏳		⊐ 45	Yg
Y ₁₀ 21 🖂	1	Pin	Pin	21 🛱		≍ 44	Y10
Y11 22 =		P11	Pii	22 🖾		≍ 43	Y11
TC 23	- 42	CLK P	CLK P	23 ដ		⇒ 42	τĊ
TSX 24		PRFI	PRFI	24 5		⇒ 41	TSX
Pag 25		TCM	TCM	25 5		ביים ביים מו בי	Pag
		13m		25 5		9 20	' ZO Den
	L 35	<u>F12</u>	<u></u> 12	20 7		G 33	F25
P24 2/	L 38	P13	P13	215		C. 30	24
P23 28 🖓	[] 37	^P 14	P14	28 5		151	<u>"23</u>
P22 29 🟳	[二⊐ 36	P ₁₅	P ₁₅	i 29 디		⊐ 36	P22
P ₂₁ 30 🖏	⊑⊐ 35	P ₁₆	P ₁₆	,30 ≍		⊐ 35	P21
P ₂₀ 31 📬	⊑⊐ 34	P ₁₇	P ₁₇	∘31 ដ		⊐ 34	P ₂₀
P19 32 🗂	23 (1)	P ₁₈	P18	32 🛱		∣⊐ 33	P19

64 Lead DIP - JO Package

64 Lead DIP - J1 Package

Pin Assignments

Functional Description

General Information

The TDC1009 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 12-bit numbers which are to be multiplied, and the control lines which control the input numerical format (two's complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each input is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of

products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 12-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1009 to be used on a bus, or allow the outputs to be multiplexed over the same 12-bit output lines.

Power

The TDC1009 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
VCC	Positive Supply Voltage	+5.0V	Pin 49	Pin 16	Pins 68, 2
GND	Ground	0.0V	Pin 16	Pin 49	Pins 34, 36, 37

Data Inputs

The TDC1009 has two 12-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X_{11} and Y_{11} , carry the sign information for the two's complement notation. The remaining bits are denoted X_0 through X_{10} and Y_0 through Y_{10} (with X_0 and Y_0 the Least Significant Bits). Data present at the X and Y inputs

are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
X ₁₁	X Data MSB	ΠL	Pin 58	Pin 7	Pin 59
X ₁₀		TTL	Pin 59	Pin 6	Pin 58
Xg		πι	Pin 60	Pin 5	Pin 57
X ₈		TTL	Pin 61	Pin 4	Pin 56
X7		TTL	Pin 62	Pin 3	Pin 55
Х _б		πι	Pin 63	Pin 2	Pin 54
X ₅		Πι	Pin 64	Pin 1	Pin 53
X ₄		ΠL	Pin 1	Pin 64	Pin 52
X ₃		ΠL	Pin 2	Pin 63	Pin 51
X ₂		ΠL	Pin 3	Pin 62	Pin 50
X	1	TTL	Pin 4	Pin 61	Pin 49
x ₀	X Data LSB	TTL	Pin 5	Pin 60	Pin 48
Y ₁₁	Y Data MSB	TTL	Pin 43	Pin 22	Pin 8
Y ₁₀		TTL	Pin 44	Pin 21	Pin 7
Yg		ΠL	Pin 45	Pin 20	Pin 6
Υ ₈		TTL	Pin 46	Pin 19	Pin 5
Y ₇		TTL	Pin 47	Pin 18	Pin 4
Y ₆	1	TTL	Pin 48	Pin 17	Pin 3
Y ₅		TTL	Pin 50	Pin 15	Pin 67
Y ₄		TTL	Pin 51	Pin 14	Pin 66
Y ₃		TTL	Pin 52	Pin 13	Pin 65
Y2		TTL	Pin 53	Pin 12	Pin 64
Y ₁		TTL	Pin 54	Pin 11	Pin 63
YO	Y Data LSB	TTL	Pin 55	Pin 10	Pin 62

Data Outputs

The TDC1009 has a 27-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 12-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the

eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
P ₂₆	Product MSB	TTL	Pin 40	Pin 25	Pin 11
P ₂₅		TTL	Pin 39	Pin 26	Pin 12
P ₂₄		TTL	Pin 38	Pin 27	Pin 13
P ₂₃		ΠL	Pin 37	Pin 28	Pin 14
P22		ΠL	Pin 36	Pin 29	Pin 15
P ₂₁		ΠL	Pin 35	Pin 30	Pin 16

Data Outputs (Cont.)

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
P ₂₀		ΠL	Pin 34	Pin 31	Pin 17
P ₁₉		ΠL	Pin 33	Pin 32	Pin 18
P ₁₈		ΠL	Pin 32	Pin 33	Pin 19
P ₁₇		ΠL	Pin 31	Pin 34	Pin 20
P ₁₆		ΠL	Pin 30	Pin 35	Pin 21
P ₁₅		TTL	Pin 29	Pin 36	Pin 22
P ₁₄		Πι	Pin 28	Pin 37	Pin 23
P ₁₃		Πι	Pin 27	Pin 38	Pin 24
P ₁₂		ΠL	Pin 26	Pin 39	Pin 25
P ₁₁		ΠL	Pin 22	Pin 43	Pin 29
P ₁₀		TTL	Pin 21	Pin 44	Pin 30
Pg		TTL	Pin 20	Pin 45	Pin 31
P ₈		ΠL	Pin 19	Pin 46	Pin 32
P7		TTL	Pin 18	Pin 47	Pin 33
P ₆		ΠL	Pin 17	Pin 48	Pin 35
P ₅		ΠL	Pin 15	Pin 50	Pin 38
P ₄		TTL	Pin 14	Pin 51	Pin 39
P3		ΠL	Pin 13	Pin 52	Pin 40
P ₂		TTL	Pin 12	Pin 53	Pin 41
P ₁		Πι	Pin 11	Pin 54	Pin 42
PO	Product LSB	ΠL	Pin 10	Pin 55	Pin 43

Clocks

The TDC1009 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 57	Pin 8	Pin 60
CLK Y	Clock Input Data Y	Πι	Pin 56	Pin 9	Pin 61
CLK P	Clock Product Register	Πι	Pin 23	Pin 42	Pin 28

Controls

The TDC1009 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW, and PRELoad is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at

the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.
Controls (Cont.)

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs unsigned magnitude only inputs.

When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 41	Pin 24	Pin 10
TSM	MSP Three-State Control	ττι	Pin 25	Pin 40	Pin 26
TSL	LSP Three-State Control	Π	Pin 9	Pin 56	Pin 44
PREL	Preioad Control	Πι	Pin 2	Pin 41	Pin 27
RND	Round Control Bit	ΠL	Pin 8	Pin 57	Pin 45
TC	Two's Complement Control	Πι	Pin 42	Pin 23	Pin 9
ACC	Accumulate Control	Π	Pin 6	Pin 59	Pin 47
SUB	Subtract Control	TTL	Pin 7	Pin 58	Pin 46

Preload Truth Table 1

						and the second
PREL ¹	TSX ¹	TSM ¹	TSL ¹	ХТР	MSP	LSP
L	L	L	L	Register — Dutput pin	Register —► Output pin	Register — Dutput pin
L	· L	ι.	н	Register — Dutput pin	Register — Dutput pin	Hi-Z
L	L	н	L	Register — Dutput pin	Hi-Z	Register — Output pin
L) · L) н	Н	Register>Output pin	Hi-Z	Hi-Z
L	н	L	, L	Hi-Z	Register — Output pin	Register — Dutput pin
L	н	L L	н	Hi-Z	Register — Dutput pin	Hi-Z
L	н	. н	ι ι	Hi-Z	Hi-Z	Register — Þ Output pin
L	н	н	н	Hi-Z	Hi-Z	Hi-Z
H ²	L	L	L	Hi-Z	Hi-Z	Hi-Z
H ²	ι	ί	н	Hi-Z	Hi-Z	Hi-Z Preload
H ²	L	н	L	Hi-Z	HiZ Preload	Hi-Z
H ²	н	L	L	Hi-Z Preload	Hi-Z	Hi-Z
H ²	н	L	н	Hi-Z Preload	Hi-Z	Hi-Z Preload
H ²	н	н	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H ²	н	н	н	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.

2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

LSI Products Division TRW Electronic Components Group

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 3. Integer Two's Complement Notation

Figure 4. Integer Unsigned Magnitude Notation

LSI Products Division TRW Electronic Components Group G

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply voltag	je −0.5 to +7.0V
Input voltage	0.5 to +5.5 V
Output	
	Applied voltage
	Forced current
	Short-circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, case
	junction
	Lead, soldering (10 seconds)
	Storage

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

			Temperature Range					
			Standard			Extended		1
Parameter		Min	Nom	Max	Min	Nom	Max	Units
v _{cc}	Supply voltage	4.75	5.0	5.25	4.5	5.0	5.5	V
T _{PW}	Clock Pulse Width	25			30			ns
Τ _S	Input Setup Time	25			30			ns
т _Н	Input Hold Time	0			3			กร
VIL	Input Voltage, Logic Low			0.8			0.8	V
VIH	Input Voltage, Logic High	2.0			2.0			v
IOL	Output Current, Logic Low			4.0			4.0	mA
I _{OH}	Output Current, Logic High			-400			-400	μΑ
TA	Ambient Temperature, Still Air	0		70				°C
т _с	Case Temperature				-55		+ 125	°C

Electrical characteristics within specified operating conditions

	a construction of the second state and the second state of the sec	A REPORT OF A DESCRIPTION	na Malandali dina Maji Bilila	NUMBER OF COMPANY OF STREET, ST	CARON, KEPMAANAN IN IN	ағ өлелектері қаларынаға	contrast internation manufacture
				Temperat	ure Range	I	
			Sta	ndard	Exte	ended	-
Para	neter	Test Conditions	Min	Max	Min	Max	Units
Icc	Supply Current	V _{CC} - MAX, Static ¹		750		850	mA
4	Input Current, Logic Low	$V_{CC} - MAX, V_I - 0.5V$					
		X _{IN} , Y _{IN} , RND, ACC, SUB, TC		-0.4		-0.4	mA
		CLK Y, P, PREL		-2.0		-2.0	mA
		CLK X, TSL, TSM, TSX		-1.0		-1.0	mA
ſн	Input Current, Logic High	$V_{CC} = MAX, V_1 = 2.4V$					
		X _{IN} , Y _{IN} , RND, ACC, SUB, TC	1	75		100	μA
		CLK Y, P, PREL	1	150		200	μΑ
		CLK X, TSL, TSM, TSX		75		100	μΑ
4	Input Current, Max Input V	V _{CC} - MAX, V ₁ - 5.5V		1.0		1.0	mA
V _{OL}	Output Voltage, Logic Low	V _{CC} - MAX, I _{OL} - MAX		0.5		0.5	v
V _{oh}	Output Voltage, Logic High	V _{CC} - MAX, I _{OH} - MAX	2.4		2.4		v
IOZL	Hi-Z Output Leakage Current	V _{CC} - MAX		- 40		-40	μΑ
lozh	Hi-Z Output Leakage Current	V _{CC} - MAX		40		40	μΑ
los	Short-Circuit Output Current	VCC - MAX, output high, one pin to ground,		-50		-50	mA
					<u> </u>		
Cl	Input Capacitance	$T_A = 25^{\circ}C, F = 1MHz$		10		10	p۴
CO	Output Capacitance	$T_A = 25^{\circ}C, F = 1MHz$		10		10	pF

Notes:

1. Worst Case: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

	н. С			Temperature Range			
			Star	Idard	Exte	nded	1
Para	meter	Test Conditions	Min	Max	Min	Max	Units
tMA	Multiply-Accumulate Time	V _{CC} - MIN		135		170	ns
tp	Output Delay	V _{CC} - MIN, Load 1		40		45	ns
^t ena	Three-State Output Enable Delay	V _{CC} = MIN, Load 1		40		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns

TRI

OUTPUT

Figure 8. Normal Test Load

Figure 9. Three-State Delay Test Load

LSI Products Division TRW Electronic Components Group

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and the desired register not be loaded again until a new constant is desired. The

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1009 does not differentiate between this operation:

$$6 X 2 = 12$$

and this operation:

$$(6/8) \times (2/8) = 12/64$$

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

Temperature Range

STD-T_A = 0°C to 70°C

STD-T_A = 0°C to 70°C

 $EXT-T_C = -55^{\circ}C$ to $125^{\circ}C$

 $EXT-T_C = -55^{\circ}C$ to $125^{\circ}C$

EXT-T_C = -55° C to 125° C

 $EXT-T_{C} = -55^{\circ}C$ to 125°C

EXT-T_C = -55°C to 125°C

EXT-T_C = -55°C to 125°C

 $EXT-T_C = -55^{\circ}C$ to 125°C

 $EXT-T_{C} = -55^{\circ}C$ to 125°C

Ordering Information

Product

Number

TDC1009J1C

TDC1009J1G

TDC1009J1F

TDC1009J1A

TDC1009J1N

TDC1009J0F

TDC1009J0A

TDC1009JON

TDC1009C1F

TDC1009C1A

multiply cycle then consists of loading new data and strobing the output register.

implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Package

64 Lead DIP

68 Contact Chip Carrier

68 Contact Chip Carrier

TDC1009C1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	1009C1N
TDC1009L1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	1009L1F
TDC1009L1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1009L1A
TDC1009L1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	1009L1N

Screening

Commercial With Burn-In

Commercial With Burn-In

Commercial With Burn-In

Commercial

Commercial

Commercial

Commercial

MIL-STD-883

MIL-STD-883

MIL-STD-883

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Package

Marking

1009J1C

1009.116

1009J1F

1009J1A

1009J1N

1009J0F

1009J0A

1009JON

1009C1F

1009C1A

LSI Products Division TRW Electronic Components Group

. . . .

VLSI Multiplier – Accumulator 16 X 16 bit, 165ns

The TDC1010 is a high-speed 16 x 16 bit parallel multiplier-accumulator which operates at a 165 nanosecond cycle time (6MHz multiply-accumulation rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32-bit product. Products may be accumulated to a 35-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a 3-bit eXTended Product (XTP), a 16-bit Most Significant Product (MSP), and a 16-bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's 2-micron bipolar process, the TDC1010 is a uniquely powerful LSI signal processing device.

Features

- 165ns Multiply-Accumulate Time (Worst Case)
- 16 x 16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Proven, High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead Ceramic DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1983 40G01321 Rev. A-11/83 Printed in the U.S.A.

TRW

Functional Block Diagram

Pin Assignments

ł

.

ļ

$\begin{array}{c} X_7 & 1 \\ X_8 & 2 \\ X_9 & 3 \\ X_{10} & 4 \\ X_{11} & 5 \\ X_{12} & 6 \\ X_{13} & 7 \\ X_{14} & 8 \\ X_{15} & 9 \\ X_{14} & 8 \\ Y_{15} & 9 \\ TSL & 10 \\ Y_{14} & 10 \\ Y_{14} & 10 \\ Y_{15} & 10 \\ Y_{16} & 10 \\ Y_{17} & 10 \\ Y_{1$	64 X6 63 X5 62 X4 61 X3 60 X2 55 X1 58 X0 57 P0.Y0 56 P1.Y1 55 P2.Y2 55 P2.Y2 51 P6.Y6 50 P7.Y7 44 P9.Y9 46 P10.Y10 445 P11.Y11 447 P9.Y9 46 P10.Y10 444 P12.Y12 439 P13.Y13 440 P16.Y15 310 P16 311 P16 312 P17 313 P21 314 P22 313 P23	X ₆ 1 <i>W</i> X ₅ 2 <i>U</i> X ₄ 3 <i>H</i> X ₃ 4 <i>H</i> <i>W</i> X ₃ 4 <i>H</i> X ₁ 6 <i>H</i> <i>W</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i> <i>Y</i>	Л 64 Х7 Л 63 Х8 Л 61 Х10 Л 60 Х11 Л 59 Х12 Л 59 Х13 Л 7 57 Х14 Л 7 55 ТSL Л 7 55 TSL Л 7 57 Х14 Л 7 57 Х14 Л 7 50 СLK X Л 7 7 50 CLK Y Л 48 TC Л 7 7 15X Л 44 Л 7 7 754 Я 7 7 42 Р33 Л 7 7 7 28 Л 7 7 7 28
64 Lead DIP	– JO Package	64 Lead DIP -	J1 Package

Pin Assignments

68 Contact Or Leaded Chip Carrier - C1, L1 Package

Functional Description

General Information

The TDC1010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format (two's complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of

products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TDC1010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TDC1010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 49	Pin 16	Pins 17, 18, 19, 20
GND	Ground	0.0V	Pin 16	Pin 49	Pins 53, 54

LSI Products Division TRW Electronic Components Group

Data Inputs

The TDC1010 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X₁₅ and Y₁₅, carry the sign information for the two's complement notation. The remaining bits are denoted X₁₄ through X₀ and Y₁₄ through Y₀ (with X₀ and Y₀ the Least Significant Bits). Data present at the X and Y inputs

are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
X ₁₅	X Data MSB	TTL	Pin 56	Pin 9	Pin 10
X ₁₄		ΠL	Pin 57	Pin 8	Pin 9
X ₁₃		TTL	Pin 58	Pin 7	Pin 8
X ₁₂		TTL	Pin 59	Pin 6	Pin 7
x ₁₁		TTL	Pin 60	Pin 5	Pin 6
x ₁₀		TTL	Pin 61	Pin 4	Pin 5
Xg		TTL	Pin 62	Pin 3	Pin 4
х _в		TTL	Pin 63	Pin 2	Pin 3
X7		TTL	Pin 64	Pin 1	Pin 2
x ₆		TTL	Pin 1	Pin 64	Pin 1
X ₅		TTL	Pin 2	Pin 63	Pin 68
X ₄	ļ	TTL	Pin 3	Pin 62	Pin 67
x ₃		TTL	Pin 4	Pin 61	Pin 66
X ₂		TTL	Pin 5	Pin 60	Pin 65
X1		TTL	Pin 6	Pin 59	Pin 64
x ₀	X Data LSB	ττι	Pin 7	Pin 58	Pin 63
Y ₁₅	Y Data MSB	ΠL	Pin 24	Pin 41	Pin 45
Y ₁₄		TTL	Pin 23	Pin 42	Pin 46
Y ₁₃		TTL	Pin 22	Pin 43	Pin 47
Y ₁₂		TTL	Pin 21	Pin 44	Pin 48
Y11		TTL	Pin 20	Pin 45	Pin 49
Y ₁₀		ΠL	Pin 19	Pin 46	Pin 50
Yg		TTL	Pin 18	Pin 47	Pin 51
Yg		TTL	Pin 17	Pin 48	Pin 52
Y ₇		TTL	Pin 15	Pin 50	Pin 55
Υ ₆		TTL	Pin 14	Pin 51	Pin 56
Y ₅		TTL	Pin 13	Pin 52	Pin 57
Y4		TTL	Pin 12	Pin 53	Pin 58
Y3		ΠL	Pin 11	Pin 54	Pin 59
Y ₂		ΠL	Pin 10	Pin 55	Pin 60
Y		ΠL	Pin 9	Pin 56	Pin 61
YO	Y Data LSB	TTL	Pin 8	Pin 57	Pin 62

1

Data Outputs

The TDC1010 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the

eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J1 Package	J0 Package	C1, L1 Package
P ₃₄	Product MSB	TTL	Pin 43	Pin 22	Pin 26
P33		TTL	Pin 42	Pin 23	Pin 27
P ₃₂	· · ·	TTL	Pin 41	Pin 24	Pin 28
P ₃₁		TTL	Pin 40	Pin 25	Pin 29
P30		ΠL	Pin 39	Pin 26	Pin 30
P ₂₉		ΠL	Pin 38	Pin 27	Pin 31
P ₂₈		TTL	Pin 37	Pin 28	Pin 32
P ₂₇		TTL	Pin 36	Pin 29	Pin 33
P ₂₆		TTL	Pin 35	Pin 30	Pin 34
P ₂₅		TTL	Pin 34	Pin 31	Pin 35
P ₂₄		TTL	Pin 33	Pin 32	Pin 36
P ₂₃		TTL	Pin 32	Pin 33	Pin 37
P ₂₂		TTL	Pin 31	Pin 34	Pin 38
P ₂₁		TTL	Pin 30	Pin 35	Pin 39
P ₂₀		TTL	Pin 29	Pin 36	Pin 40
P ₁₉		· TTL	Pin 28	Pin 37	Pin 41
P ₁₈		TTL	Pin 27	Pin 38	Pin 42
P ₁₇		TTL	Pin 26	Pin 39	Pin 43
P ₁₆		TTL	Pin 25	Pin 40	Pin 44
P ₁₅		TTL	Pin 24	Pin 41	Pin 45
P14		TTL	Pin 23	Pin 42	Pin 46
P13		TTL	Pin 22	Pin 43	Pin 47
P12		TTL	Pin 21	Pin 44	Pin 48
P ₁₁		ΠL	Pin 20	Pin 45	Pin 49
P ₁₀		TTL	Pin 19	Pin 46	Pin 50
Pg		TTL	Pin 18	Pin 47	Pin 51
P ₈		ΠL	Pin 17	Pin 48	Pin 52
P7		Πι	Pin 15	Pin 50	Pin 55
P ₆		ΠL	Pin 14	Pin 51	Pin 56
P5	1	TTL	Pin 13	Pin 52	Pin 57
P ₄		TTL	Pin 12	Pin 53	Pin 58
P ₃		TTL	Pin 11	Pin 54	Pin 59
P ₂		TTL	Pin 10	Pin 55	Pin 60
P ₁		Π	Pin 9	Pin 56	Pin 61
Pn	Product LSB	Π	Pin 8	Pin 57	Pin 62

Clocks

The TDC1010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 51	Pin 14	Pin 15
CLK Y	Clock Input Data Y	TTL	Pin 50	Pin 15	Pin 16
CLK P	Clock Product Register	TTL	Pin 44	Pin 21	Pin 25

Controls

The TDC1010 has eight control lines. TSX,TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL are HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TXL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs. When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J1 Package	JO Package	C1, L1 Package
TSX	XTP Three-State Control	TTL	Pin 47	Pin 18	Pin 22
TSM	MSP Three-State Control	ΠL	Pin 45	Pin 20	Pin 24
TSL	LSP Three-State Control	TTL	Pin 55	Pin 10	Pin 11
PREL	Preload Control	TTL	Pin 46	Pin 19	Pin 23
RND	Round Control Bit	πι	Pin 54	Pin 11	Pin 12
TC	Two's Complement Control	Πι	Pin 48	Pin 17	Pin 21
ACC	Accumulate Control	ΠL	Pin 52	Pin 13	Pin 14
SUB	Subtract Control	ΠL	Pin 53	Pin 12	Pin 13

LSI Products Division TRW Electronic Components Group

Figure 1. Fractional Two's Complement Notation

MSI LSI Products Division

231 230 223 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22

234 233 232

XTF

21 2⁰

LSP

DIGIT VALUE

Absolute maximum ratings (beyond which the device will be damaged)¹

Input Voltage]	-0.5 to +5.5V
Output		
	Applied voltage	0.5 to +5.5V ²
	Forced current	1.0 to +6.0mA ^{3,4}
	Short-circuit duration (single output in high state to ground)	1 sec
Temperature		······································
	Operating, case	55 to +125°C
	junction	175°C
	Lead, soldering (10 seconds)	
	Starago	-65 to +150°C

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current flowing into the device.

Operating conditions

		Temperature Range						
		Standard		Extended			1	
Param	eter	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v ·
^t PW	Clock Pulse Width	25			30			ns
ts	Input Setup Time	25			30			ns
t _H	Input Hold Time	0			3			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0			V
lol	Output Current, Logic Low			4.0			4.0	mA
юн	Output Current, Logic High			-400			- 400	μA
TA	Ambient Temperature, Still Air	D		70				°C
TC	Case Temperature				-55		+ 125	°C.

Switching characteristics within specified operating conditions

A 1997 ST 1998 ST 1999	concentration and concentration and a second state of the second	the analysis of the second second second second structures of the second second second second second second second	a second strategies are strategies	and an address of the second states whether	periodic a subsydia a tarta fila		
				Temperature Range			
			Star	ndard	Exte	nded	1
Parar	neter	Test Conditions	Min	Max	Min	Max	Units
tMA	Multiply-Accumulate Time	V _{CC} - MIN	10	165	10	200	ns
to	Output Delay	V _{CC} - MIN, Load 1		40		45	ns
^t ENA	Three-State Output Enable Delay	V _{CC} = MIN, Load 1		40		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		40		45	ns

-

1.4.4

Electrical characteristics within specified operating conditions

				Temperate	ure Range	1	
			Sta	ndard	Exte	ended	
Para	neter	Test Conditions	Min	Max	Min	Max	Units
ICC	Supply Current	V _{CC} - MAX, Static ¹		1100		1250	mA
կլ	Input Current, Logic Low	$V_{CC} = MAX, V_I = 0.5V$			1		
		X _{IN} , RND, ACC, SUB, TC		-0.4		-0.4	mA
		Y _{IN}		-0.8		-0.8	mA
		CLK X, TSX, TSM, and TSL		-1.0		- 1.0	mA
		CLK P, CLK Y, PREL		-2.0		-2.0	mA
I _{IH}	Input Current, Logic High	V _{CC} - MAX, V _I - 2.4V					
		X _{IN} , RND, ACC, SUB, TC		75		100	μA
		Y _{IN}		75		100	μA
		CLK X, TSX, TSM, and TSL	-	75		100	μA
		CLK P, CLK Y, PREL		150		200	μA
ų	Input Current, Max Input V	V _{CC} - MAX, V _I - 5.5V		1.0		1.0	mA
VOL	Output Voltage, Logic Low	V _{CC} - MAX, I _{OL} - MAX		0.5		0.5	٧
V _{OH}	Output Voltage, Logic High	V _{CC} - MAX, I _{OH} - MAX	2.4				V
lozl	Hi-Z Output Leakage Current	V _{CC} - MAX		-40		- 40	μΑ
I _{OZH}	Hi-Z Output Leakage Current	V _{CC} - MAX		40		40	μA
los	Short-Circuit Output Current	V _{CC} – MAX, Output high, one pin to ground, one second duration		-50		-50	mA
CI	Input Capacitance	T _A = 25°C, F = 1MHz		15		15	pF
с ₀	Output Capacitance	T _A = 25°C, F = 1MHz		15		15	pF

Note:

1. Worst Case: All inputs and outputs LOW.

Figure 5. Timing Diagram

LSI Products Division TRW Electronic Components Group .

Preload Truth Table 1

	and the second			ومصيبهم وسادية بموادرهما المرورو ويتباور والارتمام مركبي بوارا مهرياتهم		
PREL ¹	TSX1	TSM ¹	TSL ¹	ХТР	MSP	LSP
L	L	L	L	Register 🔶 Output pin	Register — Dutput pin	Register — Dutput pin
L	L	L	H	Register — Dutput pin	Register — Dutput pin	Hi-Z
L	L	н	L	Register — Dutput pin	Hi-Z	Register — Dutput pin
L	L	н	н	Register — Dutput pin	Hi-Z	Hi-Z
L	н	L	L	Hi-Z	Register —> Output pin	Register>Output pin
L	н	L	н	Hi-Z	Register> Output pin	Hi-Z
L	н	н	L	Hi-Z	Hi-Z	Register — Dutput pin
ι	н	н	н	Hi-Z	Hi-Z	Hi-Z
H ²	L	1 L	i	Hi-Z	Hi-Z	Hi-Z
H ²	L	ι	н	Hi-Z	Hi-Z	Hi-Z Preload
H ²	L	н	L	Hi-Z	Hi-Z Preload	Hi-Z
H ²	н	L	L	Hi-Z Preload	Hi-Z	Hi-Z
H ²	н	Ľ	н	Hi-Z Preload	· Hi-Z	Hi-Z Preload
H ²	н	н	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H ²	Н	н	н	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.

2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant only requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1010 does not differentiate between this operation:

$$(6/8) \times (2/8) = 12/64$$

6 X 2 = 12

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

Ordering Information

cycle then consists simply of loading new data and strobing the output register.

implications for hardware design. Because common good design practice assigns a fixed value to any given line land input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1010J1C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	1010J1C
TDC1010J1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	64 Lead DIP	1010J1G
TDC1010J1F	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	1010J1F
TDC1010J1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	1010J1A
TDC1010J1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	1010J1N
TDC1010JOF	EXT-T _C = -55°C to 125°C	Commercial	64 Lead DIP	1010.JOF
TDC1010J0A	EXT-T _C = -55°C to 125°C	MIL-STD-883	64 Lead DIP	1010J0A
TDC1010JON	EXT-T _C = -55° C to 125°C	Commercial With Burn-In	64 Lead DIP	1010.JON
TDC1010C1F	EXT-T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	1010C1F
TDC1010C1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	1010C1A
TDC1010C1N	$EXT-T_{C} = -55^{\circ}C$ to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	1010C1N
TDC1010L1F	EXT-T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	1010L1F
TDC1010L1A	EXT-T _C = -55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1010L1A
TDC1010L1N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	1010L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

LSI Products Division TRW Electronic Components Group **TDC1043** Preliminary Information

VLSI Multiplier – Accumulator

16 X 16 bit, 100ns

The TRW TDC1043 is a high-speed 16 X 16 bit parallel multiplier-accumulator which operates at a 100 nanosecond cycle time (10MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge triggered D-type flip-flops. All outputs are three-state.

Built with TRW's OMICRON-B[™] 1-micron bipolar process, the TDC1043 is pin-compatible with the industry standard TDC1010, but does not provide the preload and Least Significant Product (LSP) output capabilities of the TDC1010. However, the LSP bits are used internally for accurate accumulation. The TDC1043 operates with almost twice the speed of the TDC1010 at less than one-third the power dissipation.

Features

- 100ns Multiply-Accumulate Time (Worst Case)
- 16 X 16 Bit Parallel Multiplication With Selectable Accumulation And Subtraction, and 19–Bit Limited Precision Output

- Pin Compatible With TRW TDC1010
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State TTL Output
- Two's Complement Or Unsigned Magnitude Multiplication
- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier
- Available Screened To MIL-STD-883

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01133 Rev. C-3/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

LSI Products Division TRW Electronics Components Group

Functional Description

General Information

The TDC1043 has four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied and the control lines which control the input numerical format (two's complement or unsigned magnitude), output roundings, accumulation and subtraction. Each number is stored independently, simplifying multiplication by a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output

registers hold the complete result. Three-state output drivers are provided for one 16-bit word, the Most Significant Product (MSP), and one 3-bit word, the eXTended Product (XTP). The Least Significant Product (LSP) is not available with the TDC1043. It is held internally for use in accumulation. Three-state output drivers permit the TDC1043 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The unit is pin-compatible with the TDC1010 with the exception that there is no preload capability or least significant product output.

Power

The TDC1043 operates from a single +5V supply. The voltage tolerance is different for the standard and extended temperature range parts. All power and ground lines must be connected. A good ground must be provided due to the large number of data outputs capable of changing simultaneously. A $0.1-\mu F$ (minimum) bypass capacitor between V_{CC} and ground is recommended.

TDC1010 Compatibility Note: Permanently connect pin 46 (J3 package) or pin 23 (C1, L1 package) on the TDC1043 to ground. Do not leave this pin open or connected to a TTL output. (On the TDC1010, this pin is the preload pin.)

Name	Function	Value	J3 Package	C1, L1 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	0.0V	Pins 16, 46	Pins 23, 53, 54

Data Inputs

The TDC1043 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X₁₅ and Y₁₅, carry the sign information for the two's complement notation. The remaining bits are denoted X₁₄ through X₀ and Y₁₄ through Y₀ (with X₀ and Y₀ the Least Significant Bits). Data present at the X and Y inputs

are clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X ₁₅	X Data MSB	TTL	Pin 56	Pin 10
X ₁₄		Π	Pin 57	Pin 9
X13		πι	Pin 58	Pin 8
X ₁₂		πι	Pin 59	Pin 7
X11		TTL	Pin 60	Pin 6
X ₁₀		ΠL	Pin 61	Pin 5
Xg		TTL	Pin 62	Pin 4
X _B		ΠL	Pin 63	Pin 3
X ₇		πι	Pin 64	Pin 2
X ₆		ΠL	Pin 1	Pin 1
X5		TTL	Pin 2	Pin 68
X ₄		πι	Pin 3	Pin 67
X3		ΠL	Pin 4	Pin 66
X ₂		TTL	Pin 5	Pin 65
x ₁		πι	Pin 6	Pin 64
X ₀	X Data LSB	πι	Pin 7	Pin 63
Y ₁₅	Y Data MSB	Π	Pin 24	Pin 45
Y ₁₄		TTL	Pin 23	Pin 46
Y ₁₃		TTL	Pin 22	Pin 47
Y ₁₂		ΠL	Pin 21	Pin 48
Y ₁₁		ΠL	Pin 20	Pin 49
Y ₁₀		TTL	Pin: 19	Pin 50
Yg		TTL T	Pin 18	Pin 51
Y ₈	l.	TTL	Pin 17	Pin 52
Y ₇		דו	Pin 15	Pin 55
Y ₆) TTL	Pin 14	Pin 56
Y ₅		TTL	Pin 13	Pin 57
Y ₄		πι	Pin 12	Pin 58
Y3		ΠL	Pin 11	Pin 59
Υ ₂		πι	Pin 10	Pin 60
Y1		TTL	Pin 9	Pin 61
YO	Y Data LSB	TTL T	Pin 8	Pin 62

Data Outputs

The TDC1043 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. Only the most significant 19 bits are available off-chip. The output is divided into one 16-bit output word, the Most Significant Product (MSP), and one 3-bit output

word, the eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 and 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P ₃₄	Product MSB	TTL	Pin 43	Pin 26
P33		TTL	Pin 42	Pin 27
P ₃₂		TTL	Pin 41	Pin 28
P ₃₁		TTL	Pin 40	Pin 29
P30		TTL	Pin 39	Pin 30
P ₂₉		TTL	Pin 38	Pin 31
P ₂₈		TTL	Pin 37	Pin 32
P ₂₇		TTL	Pin 36	Pin 33
P ₂₆		TTL	Pin 35	Pin 34
P ₂₅		TTL	Pin 34	Pin 35
P24		TTL	Pin 33	Pin 36
P ₂₃		TTL	Pin 32	Pin 37
P ₂₂		TTL	Pin 31	Pin 38
P ₂₁		ΠL	Pin 30	Pin 39
P ₂₀		TTL	Pin 29	Pin 40
P ₁₉		TTL	Pin 28	Pin 41
P ₁₈		TTL	Pin 27	Pin 42
P ₁₇		TTL	Pin 26	Pin 43
P ₁₆		TTL	Pin 25	Pin 44

Clocks

The TDC1043 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. Note that the input to the output register comes only from the internal adder and multiplier array. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	TTL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	ΠL	Pin 50	Pin 16
CLK P	Clock Product Register	ΠL	Pin 44	Pin 25

Controls

The TDC1043 has six control lines. TSX and TSM are three-state enable lines for the XTP and the MSP. The output driver is in the high-impedance state when TSX or TSM are HIGH, and enabled when the appropriate control is LOW. TSX and TSM are not registered.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs and TC LOW makes both inputs magnitude only inputs.

When ACCumulate (ACC) is HIGH, the contents of the output register are added to or subtracted from the next product generated, and their sum is stored back into the output

registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the contents of the output register are subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	Πι	Pin 47	Pin 22
TSM	MSP Three-State Control	Πι	Pin 45	Pin 24
RND	Round Control Bit	Πι	Pin 54	Pin 12
TC	Two's Complement Control	Π	Pin 48	Pin 21
ACC	Accumulate Control	Πι	Pin 52	Pin 14
SUB	Subtract Control	TTL	Pin 53	Pin 13

No Connects

The TDC1043 has one pin labeled "No Connect" (NC). No connection is made between the chip and this pin.

Name	Function	Value	J3 Package	C1, L1 Package
NC	No Connection	Open	Pin 55	Pin 11

Figure 1. Fractional Two's Complement Notation

Figure 2. Fractional Unsigned Magnitude Notation

Figure 4. Integer Unsigned Magnitude Notation

- -

LSI Products Division TRW Electronics Components Group

Absolute maximum ratings (beyond which the device will be damaged)¹

Input Voltage	-0.5 to +5.5
Output	
	Applied voltage
	Forced current
	Short-circuit duration (single output in high state to ground) 1 sec
Temperature	
	Operating, case
	junction
	Lead, soldering (10 seconds) + 300°C
	Storace

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

		Temperature Range						
			Standard		I	Extended		1
Parameters		Min	Nom ¹	Max	Min	Nom ¹	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	٧
tpwl	Clock Pulse Width, Low	25			25			ns
t _{PWH}	Clock Pulse Width, High	25			25			ns
ts	Input Setup Time	25			25			ns
t _H	Input Hold Time	0			0			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0			V
IOL	Output Current, Logic Low			4.0			4.0	mA
ЮН	Output Current, Logic High			-400			- 400	μA
TA	Ambient Temperature, Still Air	0		70				°C
T _C	Case Temperature				-55		+ 125	°C

Note:

1. Nominal performance at V_{CC} = NOM, T_A = 25°C.

Electrical characteristics within specified operating conditions

			Temperat	ure Range	1	
		Sta	ndard	Exte	ended	
Parameter	Test Conditions	Min	Max	Min	Max	Units
I _{CC} Supply Current	V _{CC} - MAX, static ¹					
	$T_A = 0^{\circ}C$ to $70^{\circ}C$	-	220			mA
	T _A ≥25°C		200			mA
	$T_{C} = -55^{\circ}C \text{ to } +125^{\circ}C$				250	mA
	T _C ≥ 35°C				210	mA
	V _{CC} - 5.0V					
	$T_{A} \ge 25^{\circ}C$		195			mA
-	$T_{C} \ge 35^{\circ}C$				200	mA
IIL Input Current, Logic Low	$V_{CC} = MAX, V_1 = 0.5V$		12			
	Data Inputs, RND, ACC, SUB, TC		-0.2		-0.2	mA
	TSX, TSM, CLK X, CLK Y, CLK P		-0.8		-0.8	mA
I _{IH} Input Current, Logic High	V_{CC} - MAX, V_{i} - 2.4V					
	Data Inputs, RND, ACC, SUB, TC		50		50	μA
	TSX, TSM, CLK X, CLK Y, CLK P	Ľ.	100		100	μA
I Input Current, Max Input Voltage	$V_{CC} - MAX, V_I - 5.5V$		1.0		1.0	mA
V _{OL} Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	v
V _{OH} Output Voltage, Logic High	$v_{CC} - Min, i_{OH} - Max$	2.4		2.4		٧
I _{OZL} Hi-Z Output Leakage Current	$V_{CC} - MAX, V_1 - 0.5V$		- 20		-20	μ
OZH Hi-Z Output Leakage Current	$V_{CC} - MAX, V_I - 2.4V$		20		20	μA
I _{OS} Short Circuit Output Current	V _{CC} - MAX, One pin to ground,	-5	-50	-5	-50	mA
	one second duration, output high.					
C Input Capacitance	T _A = 25°C, F = 1MHz		15		15	рF
CO Output Capacitance	$T_{A} = 25^{\circ}C, F = 1MHz$		15		15	рF

Note:

E

1. Worst Case: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

				Temperature Range			
			Standard Extended		nded		
Parame	eter	Test Conditions	Min	Max	Min	Max	Units
^t MA	Multiply-Accumulate Time	V _{CC} - MIN		100		120	ns
to	Output Delay	V _{CC} = MIN, Load 1		35		35	ns
^t ena	Three-State Output Enable Delay	V _{CC} - MIN, Load 1	10	35	10	35	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2	10	- 35	10	35	ns

7**R**11

Figure 7. Equivalent Output Circuit

Figure 8. Normal Test Load

Figure 9. Three-State Delay Test Load

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TDC1043 does not differentiate between this operation:

6 X 2 = 12

and this operation:

$$(6/8) \times (2/8) = 12/64$$

Ordering Information

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1043J3C	STD - T _A = 0°C to 70°C	Commercial	64 Lead DIP	1043J3C
TDC1043J3G	STD - T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	1043.J3G
TDC1043J3F	EXT - T _C 55°C to 125°C	Commercial	64 Lead DIP	1043.J3F
TDC1043J3A	EXT - T _C 55°C to 125°C	MIL-STD-883	64 Lead DIP	1043J3A
TDC1043J3N	EXT - T _C = -55°C to 125°C	Commercial With Burn-In	64 Lead DIP	1043J3N
TDC1043C1C	STD - T _A = 0°C to 70°C	Commercial	68 Contact Chip Carrier	1043C1C
TDC1043C1G	STD – T _A = 0°C to 70°C	Commercial With Burn-In	68 Contact Chip Carrier	1043C1G
TDC1043C1F	EXT - T _C = -55°C to 125°C	Commercial	68 Contact Chip Carrier	1043C1F
TDC1043C1A	EXT - T _C 55°C to 125°C	MIL-STD-883	68 Contact Chip Carrier	1043C1A
TDC1043C1N	EXT - T _C = -55°C to 125°C	Commercial With Burn-In	68 Contact Chip Carrier	1043C1N
TDC1043L1C	STD - T _A - 0°C to 70°C	Commercial	68 Leaded Chip Carrier	1043L1C
TDC1043L1G	STD - T _A = 0°C to 70°C	Commercial With Burn-In	68 Leaded Chip Carrier	1043L1G
TDC1043L1F	EXT - T _C = -55°C to 125°C	Commercial	68 Leaded Chip Carrier	1043L1F
TDC1043L1A	EXT - T _C 55°C to 125°C	MIL-STD-883	68 Leaded Chip Carrier	1043L1A
TDC1043L1N	EXT - T _C 55°C to 125°C	Commercial With Burn-In	68 Leaded Chip Carrier	1043L1N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

TMC2010 Preliminary Information

CMOS Multiplier – Accumulator 16 X 16 bit, 160ns

The TMC2010 is a high-speed 16 x 16 bit parallel multiplier-accumulator which operates at a 160 nanosecond cycle time (more than 6MHz multiply-accumulate rate). The input data may be specified as two's complement or unsigned magnitude, yielding a full-precision 32-bit product. Products may be accumulated to a 35-bit result.

Individually clocked input and output registers are provided to maximize system throughput and simplify bus interfacing. These registers are positive-edge-triggered D-type flip-flops. The result is divided into a three bit eXTended Product (XTP), a sixteen bit Most Significant Product (MSP), and a sixteen bit Least Significant Product (LSP). Individual three-state output ports are provided for the XTP and the MSP; the LSP is multiplexed with the Y input. The output register can be preloaded directly via the output ports.

Built with TRW's state-of-the-art 2-micron CMOS process, the TMC2010 is pin and function compatible with the industry standard TDC1010 and operates with the same speed at one-sixth or less power dissipation, depending on the multiply-accumulate rate.

Features

- Low Power Consumption CMOS Process
- Pin And Function Compatible With TRW TDC1010
- 160ns Multiply-Accumulate Time (Worst Case)
- 16 x 16 Bit Parallel Multiplication With Accumulation To 35-Bit Result
- Selectable Accumulation, Subtraction, Rounding, And Preloading
- All Inputs And Outputs Are Registered TTL Compatible
- Three-State Output
- Two's Complement Or Unsigned Magnitude Operation
- Single +5V Power Supply
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- Array Processors
- Video Processors
- Radar Signal Processors
- FFT Processors
- General Purpose Digital Signal Processors
- Microcomputer/Minicomputer Accelerators

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G01150 Rev. C-3/84 Printed in the U.S.A.

7**R**#

Functional Block Diagram

Pin Assignments

64 Lead DIP - J3 Package

Functional Description

General Information

The TMC2010 consists of four functional sections: Input registers, an asynchronous multiplier array, an adder, and output registers. The input registers store the two 16-bit numbers which are to be multiplied, and the control lines which control the input numerical format (two's complement or unsigned magnitude), output rounding, accumulation, and subtraction. The round control is used when a single-word output is desired. Each number is independently stored, simplifying multiplication by a constant. The output registers can be preloaded with a constant to provide the sum of

products plus a constant. The asynchronous multiplier array is a network of AND gates and adders, which has been designed to handle two's complement or unsigned magnitude numbers. The output registers hold the product as two 16-bit words and one 3-bit word: the Most Significant Product (MSP), the Least Significant Product (LSP), and the eXTended Product (XTP). Three-state output drivers permit the TMC2010 to be used on a bus, or allow the outputs to be multiplexed over the same 16-bit output lines. The Least Significant Product (LSP) is multiplexed with the Y input.

Power

The TMC2010 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J3 Package	C1, L1 Package
V _{DD}	Positive Supply Voltage	+5.0V	Pin 49	Pins 17, 18, 19, 20
GND	Ground	0.0V	Pin 16	Pins 53, 54

Data Inputs

The TMC2010 has two 16-bit two's complement or unsigned magnitude data inputs, labeled X and Y. The Most Significant Bits (MSBs), denoted X₁₅ and Y₁₅, carry the sign information for the two's complement notation. The remaining bits are denoted X₁₄ through X₀ and Y₁₄ through Y₀ (with X₀ and Y₀ the Least Significant Bits). Data present at the X and Y inputs

is clocked into the input registers at the rising edge of the appropriate clock. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
X ₁₅	X Data MSB	ΠL	Pin 56	Pin 10
X14		ΠL	Pin 57	Pin 9
X ₁₃		ΠL	Pin 58	Pin 8
X12		ΠL	Pin 59	Pin 7
x ₁₁		ΠL	Pin 60	Pin 6
X ₁₀		ΠL	Pin 61	Pin 5
Xg		πι	Pin 62	Pin 4
X ₈		ΠL	Pin 63	Pin 3
X7		ΠL	Pin 64	Pin 2
x ₆		Πι	Pin 1	Pin 1
X ₅		ΠL	Pin 2	Pin 68
X ₄		ΠL	Pin 3	Pin 67
X ₃		ΠL	Pin 4	Pin 66
X ₂		π	Pin 5	Pin 65
X ₁		πι	Pin 6	Pin 64
X ₀	X Data LSB	ΠL	Pin 7	Pin 63

Data Inputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
Y ₁₅	Y Data MSB	ΠL	Pin 24	Pin 45
Y14		ΠL	Pin 23	Pin 46
Y ₁₃		ΠL	Pin 22	Pin 47
Y ₁₂		πι	Pin 21	Pin 48
Y ₁₁		ΠL	Pin 20	Pin 49
Y ₁₀		ΠL	Pin 19	Pin 50
Yg		πι	Pin 18	Pin 51
Yg		πι	Pin 17	Pin 52
Y ₇		ΠL	Pin 15	Pin 55
Y ₆		ΠL	Pin 14	Pin 56
Y ₅		ΠL	Pin 13	Pin 57
Υ ₄		ΠL	Pin 12	Pin 58
Ya		πL	Pin 11	Pin 59
Y ₂		ΠL	Pin 10	Pin 60
Ŷ		ΠL	Pin 9	Pin 61
Ŷo	Y Data LSB	ΠL	Pin B	Pin 62

Data Outputs

The TMC2010 has a 35-bit two's complement or unsigned magnitude result that is the sum of the products of the two input data values and the previous products which have been accumulated. The output is divided into two 16-bit output words, the Most Significant Product (MSP) and Least Significant Product (LSP), and one 3-bit output word, the

eXTended Product (XTP). The Most Significant Bit (MSB) of the XTP is the sign bit if two's complement notation is used. The input and output formats for fractional two's complement notation, fractional unsigned magnitude notation, integer two's complement notation, and integer unsigned magnitude notation are shown in Figures 1 through 4, respectively.

Name	Function	Value	J3 Package	C1, L1 Package
P34	Product MSB	ΠL	Pin 43	Pin 26
P33		Πι	Pin 42	Pin 27
P ₃₂		п	Pin 41	Pin 28
P ₃₁		Τι	Pin 40	Pin 29
P30		Πι	Pin 39	Pin 30
P ₂₉		ΠL	Pin 38	Pin 31
P28		ΠL	Pin 37	Pin 32
P ₂₇		ΠL	Pin 36	Pin 33
P ₂₆		Πι	Pin 35	Pin 34
P ₂₅		Πι	Pin 34	Pin 35
P24		Πι	Pin 33	Pin 36
P ₂₃		Πι	Pin 32	Pin 37
P ₂₂	· ·	πι	Pin 31	Pin 38
P ₂₁		Πι	Pin 30	Pin 39
P ₂₀		ΠL	Pin 29	Pin 40
P ₁₉		Πι	Pin 28	Pin 41
P ₁₈		Πι	Pin 27	Pin 42
P ₁₇]	Π	Pin 26	Pin 43
P ₁₆		ΠL	Pin 25	Pin 44

Data Outputs (Cont.)

Name	Function	Value	J3 Package	C1, L1 Package
P ₁₅		πι	Pin 24	Pin 45
P14		ΠL	Pin 23	Pin 46
P13		ΠL	Pin 22	Pin 47
P12		ΠL	Pin 21	Pin 48
P11		ΠL	Pin 20	Pin 49
P10		ΠL	Pin 19	Pin 50
Pg	4	ΠL	Pin 18	Pin 51
P8	τ. Έ	TTL	Pin 17	Pin 52
P7		Πι	Pin 15	Pin 55
P ₆		Πι	Pin 14	Pin 56
P ₅		ΠL	Pin 13	Pin 57
P4		ΠL	Pin 12	Pin 58
P ₃		TTL	Pin 11	Pin 59
P2		TTL	Pin 10	Pin 60
P1		ΠL	Pin 9	Pin 61
P ₀	Product LSB	πι	Pin B	Pin 62

Clocks

The TMC2010 has three clock lines, one for each of the input registers and one for the product register. Data present at the inputs of these registers is loaded into the registers at the rising edge of the appropriate clock. The RouND (RND), Two's Complement (TC), ACCumulate (ACC), and SUBtract (SUB) inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
CLK X	Clock Input Data X	ΠL	Pin 51	Pin 15
CLK Y	Clock Input Data Y	ΠL	Pin 50	Pin 16
CLK P	Clock Product Register	Πι	Pin 44	Pin 25
Controls

The TMC2010 has eight control lines. TSX, TSM, and TSL are three-state enable lines for the XTP, the MSP, and the LSP respectively. The output driver is in the high-impedance state when TSX, TSM, or TSL is HIGH, and enabled when the appropriate control is LOW.

PRELoad (PREL) is an active-HIGH control which has several effects when active (see Table 1). First, all output buffers are forced into the high-impedance state. Second, when any or all of TSX, TSM, and TSL are also HIGH, external data present at the output pins will be preloaded into the corresponding section of the output register on the rising edge of CLK P. Normal data setup and hold times apply both to the logical AND of PREL and the relevant three-state control (TSX, TSM, TSL), and to the data being preloaded. These setup and hold times are with respect to the rising edge of CLK P.

RouND (RND) controls the addition of a 1 to the MSB of the LSP for rounding. When RND is HIGH, a 1 is added to the MSB of the LSP for rounding the product in the MSP and XTP (if appropriate) rather than truncating it.

Two's Complement (TC) controls how the device interprets data on the X and Y inputs. TC HIGH makes both inputs two's complement inputs, while TC LOW makes both inputs magnitude only inputs. When ACCumulate (ACC) is HIGH, the content of the output register is added to or subtracted from the next product generated, and their sum is stored back into the output registers at the next rising edge of CLK P. When ACC is LOW, multiplication without accumulation is performed, and the next product generated is stored into the output registers directly. This operation is used for the first term in a summation to avoid a separate "clear" operation.

The SUBtract (SUB) control is used in conjunction with the ACC control. When both the ACC and SUB controls are HIGH, the content of the output register is subtracted from the next product generated and the difference is stored back into the output register. Note that the previous output is subtracted from the product, not the product from the previous output.

The RND, TC, ACC, and SUB inputs are registered, with all four bits clocked in at the rising edge of the logical OR of both CLK X and CLK Y. Special attention to the clock signals is required if normally HIGH clock signals are used. Problems with the loading of these four control signals can be avoided by the use of normally LOW clocks.

Name	Function	Value	J3 Package	C1, L1 Package
TSX	XTP Three-State Control	πι	Pin 47	Pin 22
TSM	MSP Three-State Control	ΠL	Pin 45	Pin 24
TSL	LSP Three-State Control	ΠL	Pin 55	Pin 11
PREL	Preload Control	ΠL	Pin 46	Pin 23
RND	Round Control Bit	ΠL	Pin 54	Pin 12
TC	Two's Complement Control	ΠL	Pin 48	Pin 21
ACC	Accumulate Control	TTL	Pin 52	Pin 14
SUB	Subtract Control	ΠL	Pin 53	Pin 13

Figure 1. Fractional Two's Complement Notation

=	P34	P33	P32	P31	P ₃₀	P29	P28	P27	P ₂₆	P ₂₅	P24	P ₂₃	P22	P21	P20	P ₁₉	P18	P17	P ₁₆	P ₁₅	P14	P ₁₃	P ₁₂	P11	P10	Pg	P8	Pŋ	P ₆	P ₅	P4	P3	P ₂	P1	PO	SIGNAL
	-234	233	232	231	2 ³⁰	229	2 ²⁸	227	2 ²⁶	225	2 ²⁴	223	222	2 ²¹	2 ²⁰	2 ¹⁹	218	217	218	215	214	2 ¹³	212	211	210	2 ⁹	28	27	26	2 ⁵	24	2 ³	22	21	2 ⁰	DIGIT VALUE
		XTP						_			MSP)															L	SP								i

LSI Products Division TRW Electronic Components Group

289

Absolute maximum ratings (beyond which the device will be damaged) 1

Input Volt	age	0.5 to (V _{DD} +
Output		
	Applied voltage	0.5 to (V _{DD} +0.
	Forced current	-1.0 to +6.0m
	Short-circuit duration (single output in high state to ground)	
Temperatu	re	
	Operating, case	
	junction	
	Lead, soldering (10 seconds)	
	Storage	
Notes:		
	 Absolute maximum ratings are limiting values applied individually while all other param Functional operation under any of these conditions is NOT implied. 	neters are within specified operating conditions.
	2 Applied voltage must be current limited to specified range	

- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current flowing into the device.

Operating conditions

		Te	mperature Ra	nge				
			Standard					
Parame	eter	Min	Nom	Max	Units			
VDD	Supply Voltage	4.75	5.0	5.25	v			
tpw	Clock Pulse Width	25			ns			
ts	Input Setup Time	25			ns			
^t H	Input Hold Time	3			ns			
VIL	Input Voltage, Logic Low			D.8	٧			
VIH	Input Voltage, Logic High	2.0			V			
IOL	Output Current, Logic Low			8.0	mA			
IOH	Output Current, Logic High			-4.0	mA			
TA	Ambient Temperature, Still Air	0		70	°C			

Electrical characteristics within specified operating conditions

			Temperatu Stan	ire Range dard	
Parameter		Test Conditions	Min	Max	Units
I _{DD} Quies	cent	V _{DD} - 5.0V, V _{IN} - 0V TSL, TSM, TSX - 5.0V		1	mA
Suppl	y Current	V _{DD} = 5.0V, F = 6MHz TSL, TSM, TSX = 5.0V		40	mA
Suppl	y Current	V _{DD} – 5.0V, F – 6MHz TSL, TSM, TSX – 0V Load – Load 1		120	mA
l _{jL} Input	Current, Logic Low ¹	V _{DD} - MAX, V _I - 0.5V	-75	+75	μΑ
I _{IH} Input	Current, Logic High ¹	$V_{DD} - MAX, V_I - 2.4V$	-75	+75	μΑ
lj Input	Current, Max Input V	$V_{DD} - MAX, V_I - V_{DD}$		200	μΑ
V _{OL} Outpu	rt Voltage, Logic Low	VDD - MIN, IDL - MAX		0.4	٧
V _{OH} Outpu	it Voltage, Logic High	V _{DD} - MIN, I _{OH} - MAX	2.4		V
I _{OS} Short	-Circuit Output Current	V _{DD} – MAX, Output high, one pin to ground, one second duration max		- 100	mA
C _j Input	Capacitance	T _A = 25°C, F = 1MHz		15	рF
Cn Outpu	it Capacitance	$T_A = 25^{\circ}C, F = 1MHz$		15	pF

Note:

1. These values are also valid for outputs in high-impedance state.

Switching characteristics within specified operating conditions

					Second of the second state
			Temperat	Temperature Range Standard	
			Star	ndard	
P	arameter	Test Conditions	Min	Max	Units
t _N	A Multiply-Accumulate Time	V _{DD} – MIN, Load 1		160	ns
to	Output Delay	V _{DD} = MIN, Lord 1		45	пs
t _E	NA Three-State Output Enable Delay	V _{DD} - MIN, Load 1		40	ns
to	IS Three-State Output Disable Delay	V _{DD} - MIN, Load 2		35	ns

7**R**#

Figure 5. Timing Diagram

Figure 9. Three-State Delay Test Load

LSI Products Division TRW Electronic Components Group

Preload Truth Table 1

PREL ¹	TSX1	TSM ¹	TSL ¹	ХТР	MSP	LSP
L	L	L	L	Register Output pin	Register Output pin	Register Output pin
L	L	ι .	н	Register-+Output pin	Register>Output pin	Hi-Z
L	L	н	L	Register>Output pin	Hi-Z	Register Output pin
L	ι (н	н	Register>Output pin	Hi-Z	Hi-Z
L	н	L	L	Hi-Z	Register>Output pin	Register->Output pin
L	н	L	н	Hi-Z	Register>Output pin	Hi-Z
L	н	н	L	Hi-Z	Hi-Z	Register Output pin
L	н	н	н	Hi-Z	Hi-Z	Hi-Z
H ²	ι .	} ι	L	Hi-Z	Hi-Z	Hi-Z
H ²	L	L	н	Hi-Z	Hi-Z	Hi-Z Preload
H ²	L	н	L	Hi-Z	Hi-Z Preload	Hi-Z
H ²	н	L	L	Hi-Z Preload	Hi-Z	Hi-Z
H ²	н	L	н	Hi-Z Preload	Hi-Z	Hi-Z Preload
H ²	н	н	L	Hi-Z Preload	Hi-Z Preload	Hi-Z
H ²	н	н	н	Hi-Z Preload	Hi-Z Preload	Hi-Z Preload

Notes:

1. PREL, TSX, TSM, and TSL are not registered.

2. PREL Hi inhibits any change of output register for those outputs in which the three-state control is LOW.

Application Notes

Multiplication by a Constant

Multiplication by a constant requires that the constant be loaded into the desired input register, and that the register not be loaded again until a new constant is desired. The multiply cycle then consists of loading new data and strobing the output register.

Selection of Numeric Format

Essentially, the difference between integer, mixed, and fractional notation in system design is only conceptual. For example, the TMC2010 does not differentiate between this operation:

 $6 \times 2 = 12$ and this operation:

The difference lies only in constant scale factors (in this case, a factor of 8 in the multiplier and multiplicand and a factor of 64 in the product). However, these scale factors do have

implications for hardware design. Because common good design practice assigns a fixed value to any given line (and input and output signals often share the same line), the scale factors determine the connection of the output pins of any multiplier in a system. As a result, only two choices are normally made: integer and fractional notation. If integer notation is used, the Least Significant Bits of the multiplier, multiplicand, and product all have the same value. If fractional notation is used, the Most Significant Bits of the multiplier, multiplicand, and product all have the same value. These formats are illustrated in detail in Figures 1 through 4.

Ordering Information

_

Product Number	Temperature Range	Screening	Package	Package Marking
TMC2010J3C	STD-T _A = 0°C to 70°C	Commercial	64 Lead DIP	2010J3C
TMC2010J3G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	64 Lead DIP	2010J3G
TMC2010C1C	STD-T _A = 0°C to 70°C	Commercial	68 Contact Chip Carrier	2010C1C
TMC2010C1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	68 Contact Chip Carrier	2010C1G
TMC2010L1C	STD-T _A = 0°C to 70°C	Commercial	68 Leaded Chip Carrier	2010L1C
TMC2010L1G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	68 Leaded Chip Carrier	2010L1G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

	Carlos and Car
	And at the set of a spectrum and another set
	NEW WITTE CONTRACT OF A CONTRACT PROVIDED AND A CONTRACT
	GALICOURT TRACES ASSOCIATED AND ADDRESS
	MUNUTATION AND AND AND AND AND AND AND AND AND AN
	NUMBER OF A REAL OF A PROPERTY OF A PARTY OF A
	(C) The shift of the second s second second se second second s second second s second second se
	KORD HOLD STREET DREET REPORTED A STREET
	AND AVAILARY WALLAND AND THE STATE STATES AND A
	CONTRACTOR AND A DECK
	•
The state of the second states of the	
Here has a section of the section of	
Analysis surveyor and	

Special Function Products

Special Function Products

TRW LSI has several special function devices to address particular requirements found in digital signal processing. Floating point arithmetic has significant processing advantages over fixed point, specifically, a vastly improved dynamic range without excessive word size. Prior to the introduction of the TRW LSI floating point devices, performing floating point arithmetic required massive investments in hardware.

Correlation is a function frequently found in digital signal processing systems. Digital correlators provide a measure of the similarity between two signals.

Digital filtering often involves complex hardware; for even simple filtering functions, the sequencing of instructions can become difficult. The TDC1028 is an 8-tap finite impulse response (FIR) filter element which handles 4-bit data and coefficients and can be easily expanded in coefficient size, data size, and filter length.

The special function devices are all TTL compatible and are built using the triple-diffused bipolar technology.

Floating Point Devices

TRW LSI floating point hardware uses a 22-bit data format specifically suited to many digital signal processing applications. The 16-bit significand and 6-bit exponent are both two's complement numbers. This data format allows the full precision of the significand to be maintained over the dynamic range of the exponent (equivalent to 64 bits fixed point).

The TDC1022 floating point arithmetic unit performs the following floating point operations: addition, subtraction, normalization, and denormalization. The device has a feedback path for accumulation. Two 22-bit operands are accepted through an input port, the desired arithmetic operations are performed, and the output emerges through a three-state output port. Internal pipeline registers may be enabled to allow a 10MHz data throughput rate.

Correlators

A digital correlator is a device which measures, bit-by-bit, the congruence

between two strings of bits, "reference" and "data." The output is a binary number tallying the number of matches between the two bit strings. A correlation score of zero indicates perfect anticorrelation, such that each "1" in the reference aligns with a "0" in the data stream, and vice-versa. Conversely, a maximum score indicates that each bit in the reference stream matches the corresponding bit in the data stream.

A digital correlator consists of two tapped shift registers, one for the data and one for the reference code. In the TDC1004 and TDC1023, each shift register is 64 taps long. At each tap, the contents of the reference register are exclusive-NORed with those of the data register; the 64 results are then tallied by a parallel counter. The output of the counter is the 6-bit binary-encoded correlation score, which runs between 0 and 64, inclusive.

Both correlators also include a masking function, which permits the user to eliminate any of the taps from consideration in the correlation score. For example, a 32-tap correlator can be built by masking off the last half of a TDC1004 or TDC1023, leaving only the first 32 taps active.

The TDC1023 offers the additional benefit of a reference preload/holding latch structure, in which the contents of the reference register can be stored. With the latch in this hold mode, the reference register can be preloaded with the next sequence. Returning the latch to its "track" mode reprograms the chip to correlate with the new (preloaded) reference sequence.

Digital Filter

The TDC1028 consists of eight 4-bit Multiply-ADd (MAD) cells, organized into a one-dimensional systolic array. The chip accommodates 4-bit data through its data input port, and outputs 13-bit sums at the same rate, through its SUM_{OUT} port. The TDC1028 performs the standard vector inner product or convolutional sum:

 $SUM_{OUT} = SUM_{IN} + aD(n) + bD(n-1) + ... + hD(n-7),$

H

where a through h are the (preprogrammed) coefficients and the D(i) are the eight data values most recently clocked into the data input port.

The SUM_{IN} port permits the user to cascade the chips serially, to build either longer (more taps) or wider (greater resolution) filters from these "building block" chips. To facilitate parallel expansion, the data and coefficients have independent two's complement/unsigned magnitude controls.

Product	Description	Size	Clock Rate ¹ (ns)	Power Dissipation (Watts)	Package	Notes
TDC1004	Correlator	64x1	66	0.7	J9	Analog current output
TDC1022	Floating Point Arithmetic Unit	22-Bit	100	2.4	J1, C1, L1	Two's complement
TDC1023	Correlator	64x1	66	1.7	J7, C3	Binary digital output
TDC1028	FIR Filter	4x4x8	100	2.5	J4, C1, L1	8 Taps

Note: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to 70°C.

TDC1004

Analog Output, Digital Correlator 64-bit

The TRW TDC1004 is a 64-bit digital correlator with a current source analog output. The device consists of three 64-bit, independently-clocked shift registers capable of a shift speed of 15MHz and a parallel correlation rate of 10MHz.

Correlation takes place when two binary words are serially shifted into the A and B registers. The two words are continually compared, bit for bit by exclusive-NOR (XNOR) circuits. Each XNOR circuit controls a current source. The current output of each current source is then summed to produce the correlation current that is proportional to the degree of correlation.

The third 64-bit shift register (M register) is provided to allow the user to mask or selectively choose "no compare" bit positions.

Functional Block Diagram

Features

- 10MHz Correlator Speed
- 15MHz Shift Speed (Static Shift Registers)
- Current Output
- Mask Register
- TTL Compatible
- Available In 16 Lead Ceramic DIP
- Radiation Hard
- 700mW Power Consumption

Applications

- Image Comparison/Recognition
- Bit/Word Synchronization
- Key Word Detection
- Error Correction Coding
- Radar And Sonar

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00274 Rev. E-2/84 Printed in the U.S.A.

TRU

Functional Block Diagram

Functional Description

General Information

The TDC1004 has three 64-bit long shift registers: A,B and M. Shift registers A and B are bit-by-bit XNORed (gate provides a true output if the two inputs are the same). The 64 results are then bit-by-bit ANDed with the M register. Each of the

outputs of the AND gates are used to turn on one of the 64 equally weighted current sources whose outputs are summed to provide the analog correlation output.

Reference

The TDC1004 provides an output current of:

 $IOUT = N \times IBIT + ICOZ$

where $I_{\mbox{BIT}}$ is the individual bit output current, N is the number of correlating bits and $I_{\mbox{COZ}}$ is the offset current.

By adjustment of I_{REF} as described in the calibration procedure, the mean bit current variation can be zeroed. I_{REF} is a current input. The voltage at this pin may vary from device to device due to input impedance variations.

Name	Function	Value	J9 Package		
IREF	Reference Current	350 µA	Pin 1		

Correlation Output

The output of the TDC1004 is a current source at pin 2. The output stage consists of the collector of an NPN transistor whose base is connected to V_{BB} ; it is therefore critical that

the voltage at the output pin be kept 1.5V to 2.5V above V_BB to avoid saturation of this output transistor. V_BB should be set to a voltage level of V_CC + 1V \pm 0.3VDC.

Name	Function	Value	J9 Package
C _{OUT}	Analog Output	300 to 3028 µA	Pin 2
V _{BB}	Base Bias Voltage	6V	Pin 3

Power

The TDC1004 operates from a +5.0V supply. A bias voltage of +6.0V is also required. Since less than $100\,\mu A$ are drawn

this supply, a separate supply is not necessary and the V_{BB} can be provided by the circuit shown in Figure 6.

Name	Function	Value	J9 Package
V _{CC}	Supply Voltage	+5V	Pin 16
V _{BB}	Secondary Supply Voltage	+6V	Pin 3
GND	Electrical Ground	OV	Pin 8

Clocks

- CLK A, Clock input pins for the A, M, and B registers,
- CLK M, respectively. Each register may be independently
- CLK B clocked.

Name	Function	Value	J9 Package
CLK A	A Register Clock	TTL	Pin 14
CLK M	M Register Clock	TTL	Pin 13
CLK B	B Register Clack	TTL	Pin 15

Data Inputs

MIN

Input to the M register. Allows the user to choose "no compare" bit positions. A "O" in any bit location will result in a no-compare state for that location. a_{in}, b_{in}

Input to the A and B 64-bit serial shift registers.

Name	Function	Value	J9 Package	
M _{IN}	Mask Register Input	TTL	Pin 10	
AIN	Shift Register Input	TTL ·	Pin 12	
B _{IN}	Shift Register Input	TTL	Pin 11	

LSI Products Division TRW Electronic Components Group

Data Outputs

B_{OUT}, A_{OUT}, M_{OUT} Outputs of the three 64-bit serial shift registers: B, A, and M, respectively.

Name	Function	Value	J9 Package
BOUT	Shift Register B Output	Πι	Pin 5
AOUT	Shift Register A Output	Πι	Pin 6
MOUT	Shift Register M Output	TTL	Pin 4

No Connects

There are two leads labeled no connect (NC), which have no connections to the chip. These leads may be connected to ground for increased noise reduction.

Name	Function	Value	J9 Package
NC	No Connect	GND	Pins 7, 9

LSI Products Division TRW Electronic Components Group

2

Absolute maximum ratings (beyond which the device will be damaged) 1

Current Sour	e	
	Reference signal, I _{REF}	5.0 mA
Input Voltage	· · · · · · · · · · · · · · · · · · ·	
	Data and Clock	0.0 to 5.5V
Output Volta	e	
	Digital outputs, A _{OUT} , B _{OUT} , M _{OUT}	0.0 to 5.5V
	Analog output, C _{DIJT}	
	Applied voltage	-0.5 to 5.5V ²
	Applied current, externally forced	– 1.0 to 6.0mA ^{3,4}
	Short-circuit duration (single output in HIGH state to ground)	1 sec
Temperature		
	Operating, ambient	55 to +150°C
	junction	+ 175°C
	Lead, soldering (10 seconds)	
	Storage	

- -

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current flowing into the device.

				Temperatu	re Range	4,4		
Parameter			Standard			Extended		
Paramet	ter	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Positive Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	٧
V _{BB}	Secondary Supply Voltage	5.7	6.0	6.3	5.7	6.0	6.3	V
REF	Reference Current		320	350		320	350	μΑ
V _{CO}	Analog Output Voltage	6.5	V _{BB} +2V	8.5	6.5	V _{BB} +2V	8.5	٧
COFS	Full-Scale Analog Output Current	2.73		3.03	2.73		3.03	mA
^t PW	Clock Pulse Width	20			20			ns
ts	Input Register Set-Up Time	20			20			ns
tн	Input Register Hold Time	10			10			ПS
VIL	Input Voltage, Logic Low			0.8			0.8	٧
ViH	Input Voltage, Logic High	2.0			2.0			٧
OL	Output Current, Logic Low			4.0			4.0	mA
он	Output Current, Logic High			-400			-400	μΑ
V (I _{REF})	Current Reference Voltage		2.2			2.2		٧
TA	Ambient Temperature, Still Air	0		70				°C
۲ _C	Case Temperature				-55		125	°C

Operating conditions

Electrical characteristics within specified operating conditions¹

				Temperati	ure Range		
			Star	ndard	Exte	nded	
Parameter		Test Conditions	Min	Max	Min	Max	Units
ICC	Supply Current	V _{CC} - MAX		130		130	mA
I (V _{BB})	Secondary Supply Current			100		100	μΑ
VOL	Output Voltage, Logic LOW	V _{CC} - MIN, I _{OL} - 4.0mA		0.5		0.5	V
V _{OH}	Output Voltage, Logic HIGH	$V_{CC} - MIN, I_{OH}0.4mA$	2.4		2.4		V
μ	Input Current, Logic LOW	V _{CC} - MAX, V _{IL} - 0.4V Clock		-4.0		-4.0	mA
		Data		-0.8		-0.8	mA
Чн	Input Current, Logic HIGH	V _{CC} - MAX, V _{IH} - 2.4V Clock		200		200	μΑ
		Data		50	•	50	μΑ
I _{BIT}	Single-Bit Analog Output (Delta)	See Note 2	37	43	37	43	μΑ
^I coz	Zero Correlation Analog Output (Offset)	See Note 2	300	340	300	340	μΑ

- -

Notes:

Switching characteristics within specified operating conditions

				Temperat	ure Range		
			Star	ndard	Exte	nded	J Max Units
Para	neter	Test Conditions	Min	Max	Min	Max	Units
t _{CO}	Analog Output Delay	See Figure 2		100		100	ns
tD	Digital Propagation Delay	See Figure 1		65	1	65	ns
FSI	Maximum Clock Frequency	Analog output	10		10		MHz
		Digital outputs	15		15		MHz

Application Notes

The TDC1004 is a 64-bit digital correlator with current source analog output. The device performs a bit-for-bit exclusive-OR correlation. In a mathematical sense the TDC1004 performs a convolution on 1-bit words which can be expressed in the general form:

$$y(k) = \sum_{n=1}^{N} k(n) \bullet x(n - k) \qquad \begin{bmatrix} \text{Logical } 1 = +1 \\ \text{Logical } 0 = -1 \end{bmatrix}$$

In some applications it may be useful to utilize the output current to generate a voltage source for threshold triggering. When converting the output to a voltage, insure that the voltage at the output pin remains above V_{BB} in order to avoid saturation of the output transistor. It is recommended that the voltage at C_{OUT} be in the range of 7.5V to 8.5V for a 6.0V V_{BB}. Two methods for achieving this are shown below:

Figure 4.

Figure 5.

Note: 1. 7.5V $<\!V_{\rm H}\!<\!8.5V$

LSI Products Division TRW Electronic Components Group VBB may be provided by the circuit shown below:

Figure 6.

Calibration

The TDC1004 requires two supplies (VBB and V_{CC}) and a reference current source (I_{REF}) for proper operation. The voltage at the I_{REF} pin will vary from part to part due to differences in input impedance; hence, the source will be specified as a current source. The analog output current will be directly proportional to I_{REF}; therefore it is necessary to scale I_{REF} to minimize output error due to variations.

The total output current (I_{CON}) is equal to the number of correlation bits (N) times the individual bit currents ($I_{B|T} = 40\mu A \pm 3\mu A$) plus the offset current ($I_{COZ} = 320\mu A \pm 20\mu A$).

Therefore, the total output current can be expressed as:

 $I_{CON} = N \times I_{BIT} + I_{COZ}$

As noted in the electrical characteristics, IBIT and ICOZ vary

separately over the temperature range; thus, by using the following procedure, I_{REF} can be adjusted to yield a statistically zero mean input current variation.

Calibrate IREF as follows:

1) Set V_{BB} at V_{CC} + 1 \pm 0.3V

2) Set I_{REF} to 320µA

3) Measure ICOZ (zero correlation analog output current)

4) Measure I_{COFS} (full scale correlation analog output)
5) Reset I_{RFF} to:

New IREF =
$$\frac{2.56\text{mA}}{(I_{COFS} - I_{COZ})} \times \text{Old I}_{REF}$$

*This procedure may be done iteratively by taking the new I_{RFF} and repeating steps 3 through 5.

Ordering Information

				a a second a
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1004J9C	STD-T _A = 0°C to 70°C	Commercial	16 Lead DIP	1004,J9C
TDC1004J9G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial with Burn-In	16 Lead DIP	1004J9G
TDC1004J9F	EXT-T _C = -55°C to 125°C	Commercial	16 Lead DIP	1004.J9F
TDC1004J9A	EXT-T _C = -55°C to 125°C	MIL-STD-883	16 Lead DIP	1004.J9A
TDC1004J9N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	16 Lead DIP	1004.J9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1022 Preliminary Information

Floating Point Arithmetic Unit

22-bit

The TDC1022 is a monolithic, 22-bit floating point arithmetic unit. Its operands are two 22-bit floating point numbers, each with a 16-bit two's complement significand and a two's complement 6-bit exponent. All data inputs and outputs, instruction bits, and controls are registered.

The TDC1022 allows parallel loading and outputting of data. Internal pipeline registers may be enabled to permit a throughput rate of 10MHz (100ns). Three-state output buffers are provided. All signals are TTL compatible.

Features

- Two's Complement Floating Point Operation
- 100ns Pipelined Cycle Time
- Dynamic Range Equivalent To 64-Bit Fixed Point
- Parallel Data I/O Structure

- Selectable Pipelining
- Selectable Add/Accumulate Function
- · Selectable Overflow/Underflow Characteristics
- Three-State TTL Outputs
- Available In 64 Lead DIP, 68 Contact Chip Carrier Or 68 Leaded Chip Carrier

Applications

- ALU In Array Processors
- Microprogrammed Signal Processors
- Conversion Between Fixed/Floating Point Numbers
- Floating Point Digital Filters And FFT's
- Geometric Transforms
- Image Processing

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00270 Rev. C-1/84 Printed in the U.S.A.

Functional Block Diagram

_ _

Pin Assignments

Functional Description

General Information

The TDC1022 has six functional sections: input section, denormalizer, ALU, renormalizer, round/scale/limit section, and output section.

Two 22-bit floating point operands, along with the instructions and controls, are brought into the TDC1022 at the input section. When accumulate mode is selected, the operands are the result of the previous calculation.

The denormalizer selects the operand with the smaller exponent and downshifts its significand to compensate for the difference in exponents. The operands are then passed to the ALU.

The ALU performs the selected arithmetic function and passes its result to the renormalizer. Data pipeline registers located

Input Section

The inputs to the TDC1022 are: data inputs DI_{21-0} , Latch A control (LDA), enable signals for Registers B and I (LDB, LDI), mode controls ACCumulate (ACC) and Pipeline Register FeedThrough (FT), three ALU instruction bits (I_{2-0}), and three signals which control adjustment of the ALU result: RouND (RND), SCAle (SCA), and LiMiT (LMT). All inputs are registered except FT, ACC, and the register controls.

Operand Input

Input operands A and B are timeshared on one 22-bit input port. Latch A is provided before the input to Register A to allow for proper demultiplexing to Registers A and B. Latch A is transparent when $\overline{\text{LDA}}$ is low. Data A is clocked into Latch A at the rising edge of $\overline{\text{LDA}}$. MUX(A) selects between the between the ALU and the renormalizer may be enabled to permit a throughput rate of 10MHz (100ns).

The renormalizer removes redundant leading bits (zeroes in the case of positive numbers, ones in the case of negative numbers) by upshifting the significand and decrementing the exponent accordingly. The number is normalized when the MSB and the next bit differ (S15 \oplus S14 = 1). Flags are generated in this section which are used by the limiter.

User selectable rounding, scaling (decrementing the exponent by one, thus performing division by two), and limiting functions are available. The adjusted result, along with the flags, then enters the output registers.

contents of Latch A (ACC-0) and the result of the previous calculation (ACC-1) based on the state of the accumulate control, ACC. Register A is always loaded at the rising edge of CLK.

Register B inputs are also connected to the input port (Dl_{21-0}) . Register B is in hold mode when LDB is high, and is loaded at the rising edge of CLK when LDB is low.

Instruction and Control Input

The instruction register (Register I) accepts inputs I₂₋₀, RND, SCA, and LMT when $\overline{\text{LDI}}$ is low. When $\overline{\text{LDI}}$ is high, Register I is in hold mode. The rising edge of CLK loads Register I when $\overline{\text{LDI}}$ is low.

Denormalizer Section

Floating point addition is performed by forcing the two exponents to equal values and then adding the significands. The greatest accuracy is maintained by denormalizing the operand with the smaller exponent. This is done by right-shifting the significand n-places with sign-extension (downshifting), where n is the difference between the two exponents. The exponent of the denormalized operand is incremented by n, thereby equating the exponents. These internal operations are performed automatically by the TDC1022.

ALU Section

Operation of the ALU section is controlled exclusively by the ALU instruction microcode, I_{2-0} . The 17 bit significand emerging from the ALU (which includes one overflow bit) enters the significand pipeline register (Register S), and the exponent enters the exponent pipeline register (Register E). These registers may be made transparent by asserting the feedthrough control (FT-1); they are functional when FT-0. Note that there is no pipeline register for the instructions. Detailed discussion of the pipelined mode is provided at the end of the ALU functional description. The eight ALU instructions are described below.

ALU Instructions

Instruction	12	4	IQ	Name	
0	0	0	0	ZERO	
1	0	0	1	A + B	
2	0	1	0	A - B	
3	0	1	1	B - A	
4	1	0	0	Normalize B	
5	1	0 ·	1	Normalize (-B)	
6	1	1	. 0	Denormalize A	
7	1	1	1	Denormalize (~A)	

With 16-bit significands, the maximum allowable shift is 15 bits. If the exponents differ by 16 or more, the TDC1022 will yield a significand of zero (0.000 0000 0000 0000) when denormalizing a positive number and a significand of -1 LSB (1.111 1111 1111 1111) when denormalizing a negative number. All bits shifted beyond the LSB position are truncated.

After denormalization, the two significands are passed to the ALU where the selected arithmetic function is performed.

Zero

Both the A and B data fields are forced to ZERO (exponent = 100 000, significand = 0.000 0000 0000 0000). The contents of the input registers are unchanged. The ZERO flag is set high, and the final output is 0.0 x 2^{-32} .

A + B

The ALU adds the significands after the operand with the smaller exponent has been denormalized. Round should be enabled (RND=1) in this mode.

A-B

The operand with the smaller exponent is denormalized. Negative B is generated in two's complement form by one's complementing the B significand, then adding 1 LSB. This addition of 1 LSB is necessary due to the asymmetric nature of the two's complement number line and is called adding a "hot-one". The significands (A and -B) are then added. The rounding function must be disabled during subtraction (RND=0).

B-A

This operation is the same as A-B, except the operands are reversed. As before, the rounding function must be disabled during subtraction.

Normalize B

This function is used to normalize a number entering the B data field. The A operand is forced to ZERO (0.0 x 2^{-32}) to ensure that B passes through the denormalizer unchanged. The ALU does not affect the B operand, which is passed through to the renormalizer. Redundant leading ones (negative numbers) or leading zeroes (positive numbers) are removed by left-shifting (upshifting) the significand while decrementing the exponent, thereby normalizing the number. The number is normalized when the MSB of the significand does not match the next lower bit (see Data Format, page 315). If B is already a normalized floating point number, this instruction is effectively a "pass-through." If B is an unnormalized floating point number, the TDC1022 will attempt to normalize it, generating an Exponent UNderflow flag (EUN) if the exponent exceeds its maximum negative value. This instruction would be most frequently used to convert a fixed point number into a floating point number.

Normalize (-B)

The B significand is one's complemented and a "hot-one" is added to the LSB, generating -B in two's complement form. This result is normalized as in the preceding instruction.

Denormalize A

This is used to convert a floating point number, A, to a fixed point number scaled by B. The B significand is zeroed, but not the B exponent. If the A exponent is less than the B exponent, the denormalizer downshifts the A significand up to 15 places. Beyond shifts of 15 places, positive significands become zero and negative significands become -1 LSB. If the A exponent exceeds the B exponent, the Significand OVerflow flag (SOV) is set. In this case, the significand output remains unchanged. This instruction disables the renormalizer section.

Execution of the Denormalize instructions in pipelined mode must be handled carefully. Since the instructions are not pipelined, it is necessary to execute a "fill" instruction (e.g., same instruction repeated), prior to start of Denormalization to avoid interfering with other data going through the pipeline. The first result will be undefined: the true denormalized results start to emerge after the second result. It is also necessary to execute an extra denormalize instruction after the final desired denormalization to prevent the renormalize shifter from being enabled. The result of the calculation after the final denormalize will again be undefined. Basically, when doing the denormalize instruction n-times, n+1 denormalize instructions must be executed. Note that the SOV flag is generated before the pipeline register, and since there is no pipeline register for the flag, it will emerge one clock cycle ahead of the data it represents. This will cause improper functioning of the limit section; the result of the calculation previous to the one causing the overflow will be limited in this case (when LMT=1). Additionally, the overflow case will be passed through without being limited, since the SOV flag has already taken its effect.

Denormalize (-A)

The A significand is one's complemented and the "hot-one" is added to the LSB, creating -A in two's complement. This result is denormalized as in instruction Denormalize A. Note that the case where this instruction is executed with the A significand = 1.000 0000 0000 0000, and the A exponent = B exponent is undefined.

This is due to the fact that -(-1) = +1 is not representable in two's complement. This case will generate the SOV flag. The ZERO flag is set when Denormalize (-A) is executed with A = -1 any time the A exponent is greater than or equal to the B exponent. In these cases, a clean zero (0.0 X 2⁻³²) is the output. Attempting to Denormalize (-A) for A = -1, where the A exponent is 16 or more than the B exponent, results in the output of the B exponent, a significand of +1 LSB, and no flags are set. Use of the Denormalize (-A) in pipelined mode causes the same situations which occur when Denormalize A is executed (see above).

Operation of the TDC1022 in Pipelined Mode

There is no pipeline register for I_{2-0} , RND, SCA, and LMT. As a result, when the TDC1022 is operated in pipelined mode, the RND, SCA, and LMT functions must be delayed one clock cycle from the data and instructions (I_{2-0}) with which they are associated for proper operation. This is true since these functions take effect after the pipeline registers, which delay the data resulting from execution of ALU instructions on the input operands. RND, SCA, and LMT affect the results of the ALU output on the current clock cycle, which is the result of the previous calculation when pipeline mode is used. Use of the Denormalize instructions in pipelined mode is covered under the description of instruction "Denormalize A," in the ALU instructions.

Changing the instructions when in pipelined mode requires consideration of all the above mentioned facts. Changing states on the FeedThrough control (FT) is not permitted.

Renormalizer Section

The significand result emerging from the ALU is examined for possible positive or negative overflow into the 17th bit. If overflow is detected, the renormalization logic downshifts the significand one bit while incrementing the exponent by one. The resulting number is then assured to be a normalized number.

If no overflow is detected, the renormalize section removes redundant leading zeroes of positive numbers (leading ones of negative numbers) by upshifting the significand and decrementing the exponent. This process is continued until the number is normalized, which means that the MSB and the next bit are different (see also Data Format, page 315).

The TDC1022 will always produce a normalized number as the final output, except when either Denormalize A or Denormalize (-A) is executed. This is true regardless of the states of RND, SCA, and LMT.

All flags except the Significand OVerflow (SOV) flag are generated in this section. Upon completion of rounding and scaling, the flags may need to be set. This is handled in the next section. The renormalized number and the flags are passed directly to the round/scale/limit section.

Flag Generation

EOV

The EOV flag is set high (EOV-1) when the exponent exceeds its maximum positive value of +31.

EUN The EUN flag is set high (EUN=1) when the exponent drops below its maximum negative value of -32.

ZER0 The ZERO flag is set high (ZERO = 1) when the significand is zero due to the subtraction of two identical significands, the execution of instruction ZERO, or Denormalization of positive numbers where the significand is shifted beyond the LSB. The ZERO flag is also set when Denormalize (-A) is executed where A = -1 and the A exponent is greater than or equal to the B exponent. When the ZERO flag is set, a clean zero is always output.

SOV

The SOV flag can only be set high (SOV=1) when either instruction Denormalize A or Denormalize (-A) is executed. If either of these instructions is executed and the A (data) exponent exceeds the B (seed) exponent, the SOV flag will go high. The only other way to set SOV high is to execute Denormalize (-A) with the A exponent greater than or equal to the B exponent, and an A significand of -1. In this case, the ZERO flag is erroneously set and the TDC1022 outputs a clean zero. In any normalized mode, the significand cannot overflow.

Round/Scale/Limit Section

The round/scale/limit section operates on the normalized floating point number passed to it from the renormalizer. The operations of rounding and scaling occur before the limit function, since it is possible for rounding and scaling to generate exponent overflows or underflows. The flags (SOV, EOV, EUN, ZERO) are used by the limit section to produce the appropriate result of maximum positive, maximum negative, or zero. In pipelined mode, the controls RND, SCA, LMT must be delayed one clock cycle from the data which they are to influence. The output of the limit section, along with the flags, goes directly to the output registers.

Rounding

When the round control is high (RND=1), the TDC1022 adds a 1 to the 1/2 LSB position. This results in a carry propagation into the LSB if there was a 1 in the 1/2 LSB position.

Scaling

When the scale (divide by two) control is high (SCA=1), the exponent is decremented by one, resulting in a division by two. Note that if the exponent is -32 and SCA=1, the EUN flag would be set and if the limiter is turned off (LMT=0), the resulting exponent is +31. This condition would produce the correct result of ZERO (0.0 x 2^{-32}) if the limiter is enabled (LMT=1).

Output Section

The data and flag output registers are unconditionally loaded at the rising edge of CLK. The data output emerges through a three-state, 22-bit output port. The output format is identical

Limiting

When the limit function is disabled (LMT=0), the significand and exponent retain their two's complement characteristics upon overflow; adding one to maximum positive numbers return maximum negatives, and subtracting one from maximum negative yields maximum positives.

When the limit function is enabled (LMT = 1) and exponent overflow occurs, the data output is clipped. The resulting output is the maximum positive number possible (exponent = 011111, significand = 0.111 1111 1111 1111) if the significand is positive. If the significand is negative, the resulting output is the maximum negative number possible (exponent = 011111, significand = 1.000 0000 0000 0000).

When the limit function is enabled and exponent underflow occurs, the data output is forced to ZERO, regardless of the sign of the significand. This also occurs when a zero significand (denoted by the ZERO flag being set) with an exponent other than -32 exists. These cases will always be replaced with clean zeroes, regardless of the state of the LMT control.

When the limit function is enabled and significand overflow occurs, the limiter clips the emerging result to a full-scale maximum positive or negative value, as appropriate. The case of Denormalize (-A) with A = -1 and the A exponent greater than or equal to the B exponent results in the output of a clean zero, since the ZERO flag is also set.

to the input format. The flags are not three-stated, and the flag buffers are always enabled.

Signal Definitions

	Signal Name	Function	Value	J1 Package	C1, L1 Packa
Power					
	V _{CC}	Supply Voltage	+ 5.0V	Pin 49	Pins 52, 53
	GND	Ground	0.0V 💀	Pins 2, 16	Pins 18-20, 34, 44
	CLK	Clock	Π	Pin 46	Pin 56
Data Input					
	ĹDĂ	Latch A Control	Π	Pin 44	Pin 58
	LDB	Register B Load Control	ΠL	Pin 45	Pin 57
	DI ₂₁₋₀	Data Input	Π	Pins 22-43	Pins 1-12, 59-68
Control, Instructions					
	LDI	Register I Load Control	ΠL	Pin 17	Pin 17
	ក	Feedthrough Control	ΠL	Pin 47	Pin 55
	ACC	Accumulate Control	Π	Pin 21	Pin 13
	I2-0	ALU Instructions	Π	Pins 18-20	Pins 14-16
	RND	Round Control	πι	Pin 15	Pin 21
	SCA	Scale Control	Πι	Pin 13	Pin 23
	LMT	Limit Control	Π	Pin 14	Pin 22
Flags					
	ZERO	Zero Flag	Π	Pin 4	Pin 32
	SOV	Significand Overflow Flag	Πι	Pin 6	Pin 30
	EOV	Exponent Overflow Flag	Π	Pin 5	Pin 31
	EUN	Exponent Underflow Flag	ΠL	Pin 3	Pin 33
Data Output					
	ÖĒ	Three-State Output Enable	πι	Pin 48	Pin 54
	D0 ₂₁₋₀	Data Output	Πι	Pins 1, 7-12, 50-64	Pins 24-29, 35-43,

-

Floating Point Data Format

Exponent

The exponent is represented by bits D_{16} through D_{21} . It is a two's complement integer with D_{21} the two's complement sign bit. The exponent ranges from -32 to 31.

Exponent =
$$D_{21} \times (-2^5) + \sum_{n=16}^{20} D_n \times 2^{(n-16)}$$

Significand

The significand (sometimes referred to as the MANTISSA) is represented by bits D_{15} through D_0 . It is a fractional two's complement number with 16-bit precision: D_{15} is the two's complement sign bit. The significand ranges from -1 to $(1-2^{-15})$.

Significand =
$$D_{15} \times (-1) + \sum_{n=0}^{14} D_n \times 2^{(n-15)}$$

Zero

Zero is represented as follows:

Significand = 0.000 0000 0000 0000 Exponent = 100 000

Representable Floating Point (FLP) Number Range

Normalized Floating Point Range: A normalized floating point number is one for which the first two bits of the significand (D₁₅ and D₁₄) are different, that is $D_{15} \oplus D_{14} = 1$.

TDC1022 Timing Diagrams

General Information

TDC1022 can be operated in any one of the following four modes:

1.	Non-Accumulate without Pipelining	(ACC=0, FT=1)
2.	Non-Accumulate with Pipelining	(ACC=0, FT=0)
3.	Accumulate without Pipelining	(ACC=1, FT=1)
4.	Accumulate with Pipelining	(ACC=1, FT=0)

In non-pipelined modes, the CLK period t_{CYN} is approximately twice as long as the CLK periods of the pipelined modes t_{CYP} .

The input register setup and hold times, the output delay time, the three-state enable and three-state disable times are the same in all four modes, thus they are only shown for the non-accumulate without pipelining mode (see below).

Figure 1. Non-Accumulate Mode Without Pipelining

The output data is available one clock cycle after the input data is entered.

Figure 2. Non-Accumulate Mode With Pipelining¹

The output data is available two clock cycles after the input data is entered.

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

Figure 3. Accumulate Mode Without Pipelining

The first output data is available one clock cycle after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.

 $OUT_0 = I_0 (A_0, B_0)$

2. The second output is the result of performing the second instruction on the second two operands.

 $OUT_1 = I_1 (A_1, B_1)$

 Any subsequent output depends on the previous output and the current instruction and incoming operand.

The first output data is available two clock cycles after the first input data is entered. The output is further described below:

1. The first output is the result of performing the first instruction on the first two operands.

 $OUT_0 = I_0 (A_0, B_0)$

The second output is the result of performing the second instruction on the first output and the incoming operand. The third output is the result of performing the third instruction on the first output and the incoming operand. OUT₂=I₂ (OUT₀, B₂)

 Any subsequent output depends on the output from two cycles ago, the current instruction, and the incoming operand.

 $OUT_n = I_n (OUT_{n-2}, B_n)$

Note: 1. Since RND, SCA, LMT are NOT pipelined, they must be entered one clock cycle after the data which they are to affect.

LSI Products Division TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged)¹

Supply Voltag	65	
Input Voltage	S	
Output		
	Applied voltage	0.5 to 5.5V ²
	Forced current	
	Short circuit duration (single output in high state to ground)	1 sec
Temperature		
	Operating case	
	junction	175°C
	Lead, soldering (10 seconds)	
	Storage	-65 to 150°C

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

	· · · · ·	Te	Temperature Range		_
			Standard		
Parame	eter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	v
^t PWL	Clock Pulse Width, Low	20			ns
t _{PWH}	Clock Pulse Width, High	20			ns
^t pwa	Clock Pulse Width (LDA)	30			, ns
ts	Input Setup Time	30			ns
t _H	Input Hold Time	0			ns
,t _{HA}	Input Hold Time (Latch A)	4			ns
VIL	Input Voltage, Logic Low			0.8	v
VIH	Input Voltage, Logic High	2.0			۷
IOL	Output Current, Logic Low			4.0	mA
ЮН	Output Current, Logic High			-0.4	mA
TA	Ambient Temperature, Still Air	0		70	°C

-

Electrical characteristics within specified operating conditions

			Temperature Range Standard		Units
Parameter		Test Conditions	Min	Max	
100	Power Supply Current	V _{CC} - MAX, static		900	mA
ιĽ	Input Current, Logic Low	V _{CC} - MAX, V _{IL} - 0.5V (all inputs except CLK, OE) CLK, OE		-0.4	mA mA
I _{IH}	Input Current, Logic High	V _{CC} - MAX, V _{IH} - 2.4V		75	μΑ
4	Input Current, MAX Input Voltage	V_{CC} - MAX, V_{I} - 5.5V		1.0	mA
V _{OL}	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - 4.0mA		0.5	v
V _{OH}	Output Voltage, Logic High	V_{CC} = MIN, I_{OH} = -0.4mA	2.4		V
IOZH	High-Z Output Leakage Current	V _{CC} - MAX		40	μΑ
IOZL	High-Z Output Leakage Current	V _{CC} - MAX		-40	μΑ
¹ 0S	Short Circuit Output Current	V _{CC} – MAX, One pin to ground, One second duration, Output High		-40	mA
CI	Input Capacitance	T _A = 25°C, F = 1.0MHz		15	pF
C _O	Output Capacitance	$T_{A} = 25^{\circ}C, F = 1.0MHz$		15	pF

Switching characteristics within specified operating conditions

			Temperature Range		e nek atawa yan tang pintu usa	
			Standard			
Parameter		Test Conditions	Min	Max	Units	
^t CYP	Cycle Time, Pipelined	V _{CC} - MIN		100	ns	
^t CYN	Cycle Time, Non-pipelined	V _{CC} - MIN		200	ns	
tD	Output Delay	V _{CC} - MIN, Load 1		40	ns	
^t ena	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		35	ns	
tdis	Three-State Output Disable Delay	V _{CC} – MIN, Load 2		35	ns	

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1022J1C	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	64 Lead DIP	1022J1C
TDC1022J1G	$STD-T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial With Burn-In	64 Lead DIP	1022J1G
TDC1022C1C	STD-T _A = 0°C to 70°C	Commercial	68 Contact Chip Carrier	1022C1C
TDC1022C1G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	68 Contact Chip Carrier	1022C1G
TDC1022L1C	STD-T _A = 0°C to 70°C	Commercial	68 Leaded Chip Carrier	1022L1C
TDC1022L1G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	68 Leaded Chip Carrier	1022L1G

- -

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division TRW Electronic Components Group

7RW

Digital Output Correlator 64-bit

The TRW TDC1023 is a monolithic, all-digital 64-bit correlator with a 7-bit three-state buffered digital output. This device consists of three 64-bit independently clocked shift registers, one 64-bit reference holding latch, and a 64-bit independently clocked digital summing network. The device is capable of a 17MHz parallel correlation rate.

The 7-bit threshold register allows the user to preload a binary number from 0 to 64. Whenever the correlation is equal to or greater than the number in the threshold register, the threshold flag goes HIGH.

The 64-bit mask shift register (M register) allows the user to mask or selectively choose "no compare" bit positions enabling total word length flexibility.

The reference word is serially shifted into the B register. By clocking the R latch, the data is parallel-loaded into the R reference latch. This allows the user to serially load a new reference word into the B register while correlation is taking place between the A register and R latch. The two words are continually compared bit-for-bit by exclusive-OR circuits. Each exclusive-OR provides one bit to the digital summer. The output is a 7-bit word representing the sum of positions which agree at any one time between the A register and R latch.

A control provides either true or inverted binary output formats.

Features

- 17MHz Correlation Rate
- TTL Compatible
- All Digital
- Single +5V Power Supply
- Serial Data Input, Parallel Correlation Output
- Programmable Word Length
- Independently Clocked Registers
- Available In 24 Lead DIP

- Output Format Flexibility
- Three-State Outputs

Applications

- Check Sorting Equipment
- High Density Recording
- Bar Code Identification
- Radar Signature Recognition
- Video Frame Synchronization
- Electro-Optical Navigation
- Pattern And Character Recognition
- Cross-Correlation Control Systems
- Error Correction Coding
- Asynchronous Communication

Functional Block Diagram

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00283 Rev. E-1/84 Printed in the U.S.A. Ĥ
Functional Block Diagram

Pin Assignments

DROD

Functional Description

General Information

The TDC1023 consists of an input section and an output section. The input section contains A, B, and M registers, an R

latch, XOR/AND logic and a pipelined summer. The output section consists of threshold, inversion and three-state logic.

Power

The TDC1023 operates from a single +5 Volt supply.

Name	Function	Value	J7 Package
GND	Ground	0.0V	Pin 16
V _{CC}	Supply Voltage	+5.0V	Pin 1

Control

- $\begin{array}{cccc} \text{INV} & \text{Control that inverts the 7-bit digital output.} & \text{LDR} & \text{Control that a} \\ \text{When a HIGH level is applied to this pin, the} & \text{from the B r} \\ \text{outputs IO}_{0-6} \text{ are logically inverted.} & \text{for correlation} \\ \text{is transparent} \end{array}$
- TS Control that enables the three-state output buffers. A HIGH level applied to this pin forces outputs into the high-impedance state.

Control that allows parallel data to be loaded from the B register into the reference R latch for correlation. If LDR is held HIGH, the R latch is transparent.

Name	Function	Value	J7 Package
INV	Invert Output	ΠL	Pin 7
TS	Three-State Enable	ΠL	Pin 8
LOR	Load Reference	τι	Pin 21

Clocks

- CLK A, Input clocks. Clock input pins for the A, M, and CLK S CLK M, B registers, respectively. Each register may be CLK B independently clocked.
- CLK T Threshold register clock. Clock input pin for T register.

Digital summer clock. Clock input which allows independent clocking of pipelined summer network.

Name	Function	Value	J7 Package	
CLK A	A Register Clock	πι	Pin 22	
clk m	M Register Clock	ΠL	Pin 23	
CLK B	B Register Clock	πι	Pin 24	
CLK T	Threshold Register Clock	πι	Pin 5	
CLK S	Digital Summer Clock	Πι	Pin 6	

Data Inputs

Min

Allows the user to choose "no compare" bit positions. A "0" in any bit location will result in a no-compare state for that location.

AIN, BIN Shift register inputs to the A and B 64-bit serial registers.

Name	Function	Value	J7 Package
MIN	Mask Register Input	ΠL	Pin 2
AIN	Shift Register Input	ΠL	Pin 3
B _{IN}	Shift Register Input	TTL	Pin 4

Data Outputs

100-6

Bidirectional data pins. When outputs are enabled (TS LOW), data is a 7-bit binary representation of the correlation between the unmasked positions of the R latch and the A register. IO_{β} is the MSB. These pins also serve as parallel inputs to load the threshold register. Data present one setup time before CLK T goes HIGH will be latched into the threshold register.

TFLG TFLG output goes HIGH whenever the correlation score is equal to or greater than the number loaded into the T register (0 to 64).

 BOUT,
 Shift register outputs of the three

 AOUT,
 64-bit serial shift registers: B, A, and M,

 MOUT
 respectively.

Name	Function	Value	J7 Package
106	MSB	ΠL	Pin 9
105		TTL	Pin 10
104		TTL	Pin 11
103		TTL	Pin 12
102		TTL	Pin 13
101		ΤΤL	Pin 14
100	LSB	ΠL	Pin 15
TFLG	Threshold Flag	ΤΤL	Pin 17
Волт	Shift Register B	ΠL	Pin 18
AOUT	Shift Register A	TTL	Pin 19
MOUT	Shift Register M	TTL	Pin 20

TDC1023 Timing Diagrams

1. Continuous Correlation

The TDC1023 contains three 1 X 64 serial shift registers (A, B, and M). The operation of these registers is identical and each has its own TTL-compatible input, output, and clock. As shown in the timing diagram (Figure 1), valid data is loaded into register A (B, M) on the rising edge of CLK A (CLK B, CLK M). Data is valid if present at the input for a setup time of a least ts (ns) before and a hold time t_H (ns) after the rising clock edge.

The summing process is initiated when the comparison result between the A register and R latch is clocked into the summing network by a rising edge of CLK S. Typically, CLK A and CLK S are tied together so that a new correlation score is computed for each new alignment of the A register and R latch. When LDR goes HIGH, the contents of register B are copied into the R latch. With LDR LOW, a new template may be entered serially into register B, while parallel correlation takes place between register A and the R latch. In the case of continuous correlation, LDR is held HIGH so that the R latch contents continuously track those of the B register.

The summing network consists of three pipelined stages. Therefore, the total correlation score for a given set of A and B register contents appears at the summer output three CLK S cycles later. Data on the output pins 10_{0-6} is available after an additional propagation delay, denoted t_D on the timing diagram.

The correlation result is compared with the contents of the threshold register. TFLG goes HIGH if the correlation equals or exceeds the threshold value. TFLG is valid after a delay of to (ns) from the third CLK S rising edge.

T REGISTER PRELOADED

Figure 1. Continuous Correlation

2. Cross-Correlation

When LDR goes HIGH, the B register contents are copied into the reference latch (R latch). This useful feature allows correlation to take place between data in the R latch and the A register while a new reference is being serially clocked into the B register. If the new reference is n bits long, it requires n rising edges of CLK B to load this data into the B register. For the timing diagram (see Figure 2), n = 64. LDR is set HIGH during the final (n^{th}) CLK B cycle, so that the new reference word is copied into the R latch. The minimum low and high level pulse widths for LDR are shown as tpwL (ns) and tpwH (ns), respectively. After the new reference is loaded, the data to be correlated is clocked through the A register. Typically, CLK A and CLK S can be tied together. This allows a new correlation score to be computed for each shift of the A register data relative to the fixed reference word in the R latch. The digital summer is internally partitioned into three pipelined stages. Therefore, a correlation score for a particular alignment of the A register data and the R latch reference appears at the summer output three CLK S cycles later. After an additional output delay of t_D (ns), the correlation data is valid at the output pins (IO_D-6). If this correlation result is equal to or exceeds the value in the threshold register, then TFLG goes HIGH. TFLG is valid t_D (ns) after the third rising edge of CLK S.

3. Threshold Register Load

The timing sequence for loading the threshold (T) register is shown in Figure 3. The T register holds the 7-bit threshold value to be compared with each correlation result. The rising edge of CLK T loads the data present on the 10_{0-6} pins into the T register.

The output buffers must be in a high-impedance state (disabled) when the T register is programmed from an external source. After a delay of t_{DIS} (ns) from the time TS goes HIGH, the output buffers are disabled. The data pins 10_{D-6}

may then be driven externally with the new threshold data. The data must be present for a setup time of t_S (ns) before and t_H (ns) after the rising edge of CLK T to be correctly registered. The minimum low and high level pulse widths for CLK T are shown below as tpwL (ns) and tpwH (ns), respectively.

After TS is set LOW, there is an enable delay of t_ENA (ns) before the internal correlation data is available at pins $I0_{D-6}$.

4. Mask Register

In addition to the A and B shift registers, the TDC1023 has another independently clocked register – the M, or mask register. The M register functions identically to the A and B registers, except that its parallel outputs are ANDed with the exclusive-ORed outputs from the A register and R latch.

Many uses of the TDC1023 digital correlator require disabling the correlation between certain bit positions (A_i and B_i) of input words A and R. While correlation data is being clocked into the A and/or B register, a mask word may be entered into the M register. Where no comparison is to be made, zeroes are entered in those M register positions. The exclusive-OR result between each bit position is ANDed with a bit from the M register. Thus, if a particular mask bit (M_i) is zero, the output correlation between A and B for that bit position will be disabled. Consequently, a zero correlation is presented to the digital summer for each masked bit position.

The mask register is useful for changing correlation word length and location within the registers. Where a word is undefined or no correlation is to take place, the M register should contain zeroes. The M register is useful for building logic functions. Note that for each bit A_i and B_i , the correlation logic is:

 $A_i \oplus R_i = A_i \overline{R_i} + \overline{A_i} R_i$ (A; exclusive - OR R;)

This result is complemented at the input of the AND gates and ANDed with the mask bit (M_i) resulting in:

$$[A_i\overline{R_i} + \overline{A_i}R_i] \bullet M_i$$

The last step, performed in the digital summer, is to sum the above result over all bit positions simultaneously for a correlation at time K:

$$C(K) = \sum_{j=1}^{n} \overline{[A_j \ \overline{R_j} + \overline{A_j} \ R_j]} \bullet M_j$$

where,

n = correlation word length

Figure 4. Equivalent Input Schematic

PIN	VALUES	NUMBER OF INTERNAL
	R1 R2	CIRCUITS LOADING PIN
AIN, BIN, MIN	50K 35K	1
CLK A, B, M	35K 20K	2
LDR	35K 20K	2
CLK S	35K 20K	3
CLK T, INV	35K 20K	1

- -

Figure 6. Equivalent Circuit for Three-State (TS) Input.

The circuitry to the right of dashed line is repeated 7 times.

Figure 8. Three-State Delay Test Load

Figure 7. Normal Test Load

LSI Products Division TRW Electronic Components Group H

Absolute maximum ratings (beyond which the device will be damaged) 1

Input Volta	age	
Output		
	Applied voltage	~0.5 to +5.5\
	Forced current	1.0 to +6.0mA ³
	Short circuit duration (single output in high state to ground)	1 s
Temperatu	re	
	Operating, ambient	60 to 135
	junction	+ 175
	Lead, soldering (10 seconds)	
	Storage	–65 to 150°
Notes:		
	 Absolute maximum ratings are limiting values applied individually while all other parameters a Functional operation under any of these conditions is NOT implied. 	are within specified operating conditions.
	2 Applied voltage must be surrent limited to exception range	

- -

3. Forcing voltage must be limited to specified range.

4. Current is specified as positive when flowing into the device.

Operating conditions

<u></u>	in the second				Temperatu	ıre Range			
				Standard			Extended		
Paran	neter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5.0	5.25	4.5	5.0	5.5	٧
^t PWL	Clock Pulse Width, LOW	CLK A, CLK B, CLK M, CLK S, LDR	20			20			ns
		CLK T	25			30			ns
t _{PWH}	Clock Pulse Width, HIGH	Clocks	25			30			ns
		LDR	30			. 35			ns
ts	Data Input Setup Time	A _{IN} , B _{IN} , M _{IN}	20			22			ns
		10 ₀₋₆	45			50			ns
ţН	Data Input Hold Time	A _{IN} , B _{IN} , M _{IN}	3			. 3			ns
		10 ₀₋₆	0			0			ns .
VIL	Input Voltage, Logic LOW				0.8			0.8	۷
VIH	Input Voltage, Logic HIGH		2.0			2.0			۷
IOL	Output Current, Logic LOW	-			4.0			4.0	mA
ЮН	Output Current, Logic HIGH				-400			- 400	μΑ
TA	Ambient Temperature, Still Air		0		70				°C
TC	Case Temperature					- 55		125	°C

Electrical characteristics within specified operating conditions

		na serie e serie e serie e serie e serie e serie e serie de serie e serie e serie e serie e serie de serie est	RICCARDINGUE & LITTE	THE REAL OF THE PARTY OF		an a	72.0 M. (7 M.
				Temperati	Ire Hange		
D		Test Conditions	Star	Max	EXIE BAin	Max	11-140
Para	neter		Min	Max	wiin	max	Units
ICC	Supply Current	V _{CC} - MAX, static ¹					
		$T_A = 0^{\circ}C$ to $70^{\circ}C$		335			mA
	ļ	T _A - 70°C		295			mA
		$T_C = -55^{\circ}C$ to $125^{\circ}C$				395	mA
		T _C - 125°C				275	mA
կլ	Input Current, Logic LOW	V _{CC} - MAX, V _I - 0.5V					
		10 ₀₋₆ , TS		- 350		-400	μΑ
		Clocks, INV, LDR		- 1.0		- 1.3	mA
Iн	Input Current, Logic HIGH	V _{CC} - MAX, V ₁ - 2.4V					
		10 ₀₋₆ , Controls		50		50	μα
		Clocks, LDR		100		100	μΑ
4	Input Current, Max Input Voltage	V _{CC} = MAX, V _I = 5.5V		500		500	μΑ
Vni	Output Voltage, Logic LOW	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	ν
VOH	Output Voltage, Logic HIGH	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		۷
lozl	High–Z Output, Leakage Current ²	V _{CC} - MAX		- 350		- 400	μΑ
^I OZH	High-Z Output, Leakage Current ²	V _{CC} - MAX		50		50	μΑ
CI	Input Capacitance	T _A = 25°C, F = 1MHz					
		Clocks		10		10	pF
		10 ₀₋₆ , Controls		5		5	рF
с ₀	Output Capacitance	T _A = 25°C, F = 1MHz		15		15	рF

Note:

1. Worst Case: All digital inputs and outputs LOW.

2. Due to the IO_{0-6} and T register interconnection, these values are the I_{IH} and I_{IL} of the T register.

Switching characteristics within specified operating conditions

		Temperatur			re Range		
			Star	ndard	Extended		1
Parameter		Test Conditions	Min	Max	Min	Max	Units
FSH	Shift-In Clock Rate	V _{CC} - MIN	20		17		MHz
FC	Correlation Rate	V _{CC} - MIN ¹	17	· ·	15		MHz
to	Digital Output Delay	V _{CC} = MIN, Load 1 (Figure 7)					
		10 ₀₋₆		45		50	ns
		AOUT, BOUT, MOUT		35		40	ns
		TFLG		40		45	ns
^t ENA	Three-State Output Enable Delay	V _{CC} - MIN, Load 2 (Figure 8)		40		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} = MIN, Load 2 (Figure 8)		35		35	ns

Note:

1. Synchronous clocking: CLK A = CLK B = CLK M = CLK S.

Application Notes

1. The TDC1023 can be cascaded to implement correlations of more than 64 bits. Typically, all clocks are tied together and the A, B, and M outputs of preceding stages are connected to the respective inputs of subsequent stages. An external

summer is required to generate the composite correlation score. Use of the T register and TFLG require additional hardware in this configuration.

 When comparing a multi-bit word to a single-bit reference, the outputs from the individual correlators must be appropriately weighted. This weighting reflects the relative importance of the different bit positions. Normally, simple shifts (+2, 4, 8, ...) provide the required weighting.

Figure 10. Multi-Bit x 1 Bit Correlation

3. The correlation of two multi-bit words requires evaluating the term:

 $R(M) = \sum_{n = 1}^{N} h(n) x(M+n)$

An example of two 3-bit words is shown below.

For additional TDC1023 Digital Output Correlator applications, see Application Note TP-17, "Correlation – A Powerful Technique for Digital Signal Processing." This application note is available upon request from TRW LSI Products.

Ordering Information

.

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1023J7C	STD-T _A = 0°C to 70°C	Commercial	24 Lead DIP	1023J7C
TDC1023J7G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	24 Lead DIP	1023J7G
TDC1023J7F	EXT-T _C = -55°C to 125°C	Commercial	24 Lead DIP	1023J7F
TDC1023J7A	EXT-T _C = -55°C to 125°C	MIL-STD-883	24 Lead DIP	1023J7A
TDC1023J7N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	24 Lead DIP	1023J7N

TDC1028 Preliminary Information

Digital Filter/Correlator

Building Block, 10MHz

The TDC1028 is a video-speed, TTL compatible bit-slice building block for Finite Impulse Response (FIR) digital filters and multi-bit digital correlators. It is used independently in the coefficient and signal data word dimensions as a bit-slice processor. Word lengths can be multiples of four bits. Two's complement or unsigned magnitude operation is independently selectable for both coefficients and signal data words.

The TDC1028 provides eight delay stages, eight multipliers, and eight adders in a single integrated circuit. Eight coefficient storage registers are also provided for ease in programming filter characteristics and to make correlation possible. One coefficient may be changed every clock cycle. The delay registers and the adder pipeline registers have been merged for efficiency.

Features

- 10MHz Throughput Rate
- Eight Coefficients
- Cascadable (To > 36 Taps) Without External Components

- 4-Bit Coefficient And Signal Data Words
- Independently Expandable Coefficient And Signal Word Length
- Independently Selectable Format For Coefficients And Signal Data Words (Two's Complement or Unsigned Magnitude)
- Available In 48 Lead DIP
- Radiation Hard Bipolar Process
- Single +5V Power Supply
- TTL Compatible

Applications

- Digital Video Filters
- Matched Filters
- Pulse Compression
- Multi-Bit Correlation
- Waveform Synthesis
- Adaptive Filters

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00817 Rev. B-2/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1028 has four internal functions: delay, multiplication, addition, and coefficient storage. These functions are connected to form a building block for finite impulse response filters or correlators. Cascading inputs are provided to allow the construction of filters or correlators of arbitrary length. The basic word size for coefficients and data is four bits. The order of the operations has been changed from the canonical form to permit the merging of delay and pipelining registers (see Figure 1).

Power

The TDC1028 operates from a single +5 Volt supply. All power and ground lines must be connected.

Name	Function	Value	J4 Package
V _{CC}	Positive Supply Voltage	+ 5.0V	Pin 36
GND	Ground	0.0V	Pins 13,37

Inputs

The TDC1028 has three types of inputs: signal data, coefficients, and sum (cascading) inputs.

Name	Function	Value	J4 Package
01 ₃	Signal Data Input MSB	πι	Pin 24
DI ₂		TTL	Pin 23
D1 ₁		TTL	Pin 22
Di _O	Signal Data Input LSB	πι	Pin 21
Clg	Coefficient Input MSB	Π	Pin 33
CI ₂		TTL	Pin 32
CI ₁		TTL	Pin 31
Clo	Coefficient Input LSB	ΠL	Pin 30
SI ₁₂	Cascading Sum Input MSB	πι	Pin 14
SI ₁₁		TTL	Pin 12
SI ₁₀		ΠL	Pin 11
Slg		TTL	Pin 10
SIB		ΠL	Pin 9
SI7		ΠL	Pin 8
SIB		ΠL	Pin 7
SI5		ΠL	Pin 6
SI4		ΠL	Pin 5
SI3		TTL	Pin 4
SI2		TTL	Pin 3
SI		ΠL	Pin 2
si _o	Cascading Sum Input LSB	ΠL	Pin 1

Data Outputs

The TDC1028 has two outputs: a sum output and a data output. The data output is used to connect one TDC1028 to

the next (cascading) for greater filter or correlation length. The sum output is used both for cascading and signal output.

Name	Function	Value	J4 Package
S0 ₁₂	Sum Output MSB	Πι	Pin 34
S011		Π	Pin 35
S010		Πι	Pin 38
SOg		ΠL	Pin 39
SO _B		Πι	Pin 40
S07		TTL	Pin 41
SO ₆		Πι	Pin 42
S05		ΠL	Pin 43
SO4		TTL	Pin 44
SO3		ΠL	Pin 45
SO ₂		ΠL	Pin 46
SO1		πι	Pin 47
soo	Sum Output LSB	ΠL	Pin 48
D03	Data Output MSB	TTL	Pin 25
		ΠL	Pin 26
D01		ΠL	Pin 27
DOO	Data Output LSB	πι	Pin 28

Clocks

The TDC1028 operates synchronously from a single master clock, and can be clocked up to 10MHz. All internal circuitry is static; there is no minimum clock frequency required.

Name	Function	Value	J4 Package
CLK	Clock	Π	Pin 20

Controls

The TDC1028 has six control inputs. TCC and TCD control the interpretation of the data and coefficients as two's complement or unsigned magnitude numbers. These inputs provide two's complement operation for the respective input when a logic

HIGH is applied, and unsigned magnitude operation when a logic LOW is applied. One active LOW input controls the writing of a coefficient, and three inputs control the selection of which coefficient is to be written.

Name	Function	Value	J4 Package
TCC	Two's Complement Coefficients	Πι	Pin 19
TCD	Two's Complement Data	ΠL	Pin 18
CWE	Coefficient Write Enable	TTL	Pin 29
CA ₂	Coefficient Address MSB	ΠL	Pin 15
CA ₁		ΠL	Pin 16
CAO	Coefficient Address LSB	TTL	Pin 17

Figure 1.

TDC1028 EQUIVALENT ARCHITECTURE

Figure 2.

ARITHMETIC SUMMATION OF "SUM" OUTPUTS FOR 8-BIT COEFFICIENT, 8-BIT SIGNAL DATA WORDS

SIGN	GN EXTENSION BITS REQUIRED IF TWO'S COMPLEMENT IS USED											TDC 1028 Data	INPUTS COEFFICIENTS											
									^d 12	^d 11	d10	dg	dg	d7	d ₆	d5	d4	d3	ďz	d ₁	dO	┢	- LSBs	LSBs
+					d12	^d 11	d ₁₀	dg	d8	ሳ	d6	d5	d4	d3	ď2	dı	dO	♦					- LSBs	MSBs
+				\mathbb{Z}	d ₁₂	d11	d10	dg	d8	ď7	d ₆	d5	d4	dz	ď2	d1	dO	•					- MSBs	LSBs
+	^d 12	^d 11	d10	đg	d8	d7	d ₆	d5	d4	d3	d2	d1	d0										- MSBs	MSBs
	^s 20	s ₁₉	s ₁₈	s ₁₇	^s 16	s ₁₅	s14	s ₁₃	^s 12	s ₁₁	s ₁₀	sg	s ₈	\$7	s ₆	S 5	s 4	sz	\$2	s1	SO			

Figure 3.

H

Figure 4.

Figure 8. Normal Test Load

Absolute maximum ratings (beyond which the device will be damaged) 1

Input Voltag	8	-0.5 to +5.5
Output		
	Applied voltage (measured to D _{GND})	0.5 to +5.5V ²
	Applied current, externally forced	
	Short-circuit duration (single output in HIGH state to ground)	1 sec
Temperature	· · · · · · · · · · · · · · · · · · ·	
	Operating, case	55 to +125°C
	junction	
	Lead, soldering (10 seconds)	
	Storage	

Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

			Temperature Ra Standard	ange	
Paramet	er	Min	Nom	Max	Units
v _{cc}	Supply Voltage	4.75	5.0	5.25	V
tPWL	Clock Pulse Width, LOW	48			ns
^t PWH	Clock Pulse Width, HIGH	48			ns
^t CY	Clock Cycle Time	100			ns
ts	Input Setup Time				
	Data In, Sum In	15			ns
	Coefficient In, Coefficient Address In	25			ns
	Coefficient Write Enable	30			ns
t _H	Input Hold Time (All inputs)	5			ns
VIL	Input Voltage, Logic LOW			0.8	V
VIH	Input Voltage, Logic HIGH	2.0			V
I _{OL}	Output Current, Logic LOW			4.0	mA
ЮН	Output Current, Logic HIGH			-400	μA
TA	Ambient Temperature, Still Air	0		70	°C

Electrical characteristics within specified operating conditions

			Temperat	ure Range ndard	
Para	meter	Test Conditions	Min	Max	Units
ICC	Supply Current	V _{CC} - MAX, Static ¹		700	mA
41	Input Current, Logic LOW	V _{CC} = MAX, V ₁ = 0.5V		1	
		Data Inputs		-0.4	mA
		Clock Input		-1.0	mA
1 _{IH}	Input Current, Logic HIGH	$V_{CC} - MAX, V_1 - 2.4V$			
		Data Inputs		75	μΑ
		Clock Input		75	μΑ
4	Input Current, Max Input Voltage	$V_{CC} - MAX, V_I - 5.5V$		1.0	mA
V _{OL}	Output Voltage, Logic LOW	v _{cc} - min, i _{ol} - max		0.5	v
VOH	Output Voltage, Logic HIGH	V _{CC} - MIN, I _{DH} - MAX	2.4		V
IOS	Short-circuit Output Current	V _{CC} – MAX, Output HIGH, one pin to ground, one second duration		50	mA
CI	Input Capacitance	T _A – 25°C, F – 1MHz		15	pF
c _o	Output Capacitance	$T_A = 25^{\circ}C, F = 1MHz$		15	pF

-

Note:

1. Worst Case: All inputs and outputs LOW.

Switching characteristics within specified operating conditions

	11 I I I				1
			Temperati	ure Range	
			Stan	dard	
Para	meter	Test Conditions	Min	Max	Units
ťCγ	Cycle Time	V _{CC} - MIN		100	ns
to	Output Delay	V _{CC} - MIN, Load 1	10	30	ns

Note:

1. Typical performance at V_{CC} = NOM, T_A = 25° C

Application Notes

More than one TDC1028 may be connected together to form filters of greater length, greater signal data resolution, and/or greater coefficient resolution.

The simplest form of expansion is length. Each TDC1028 has a data and a sum input, and a data and a sum output. To make a filter of greater length, connect the data and sum outputs to the data and sum inputs of the next device, as shown in Figures 2 and 3. This procedure is used for each section of a filter built with higher resolution for signal data and coefficients. Note that the sum inputs of the first device in a series (the one to which signal data is directly applied) must be supplied with a "zero" input (that is, all sum input pins must be grounded). This form of expansion is also used in combination with increased resolution, and is directly applicable to those cases.

Two options are available for increased resolution. The first method uses external adders and pipeline registers, the second uses the internal adders and pipeline registers of the TDC1028. Block diagrams of these methods are shown in Figures 9 and 10. The second method significantly increases latency; the output experiences a significant delay with respect to that of an ideal but causal Finite Impulse Response filter.

This section discusses the increasing of signal data and coefficient resolution when both signal data and coefficients are given in two's complement notation. For additional information, refer to TRW LSI Products Application Note TP-22.

The basic approach is to divide the word that requires greater resolution into two or more parts of four bits each. A separate section will be needed for every four bits or fraction thereof. Usually, both signal data words and coefficients will be divided. Next, a filter section is assigned to each possible combination of non-overlapping 4-bit groups of signal data with 4-bit groups of coefficients. (A filter section is assigned for each element in the cross-product of the signal data and coefficient data word spaces.) This process is shown in Figure 3, which illustrates division into 4-bit segments, used with both options for increasing resolution.

The choice is made between the adder option and the no-adder option. If the adder option is chosen, a pipelined adder must be designed using MSI components. A complete 16-tap filter using 8-bit signal data words and 8-bit coefficients is shown in Figure 9. Care must be taken to assure that the outputs of each of the sections are properly weighted. Note that the Two's Complement Data (TCD) pin should be active only in the sections which have the MSD of the data word as the input. Likewise, the Two's Complement Coefficient (TCC) pin should be active only on the sections which have the MSD of the coefficient word as the input.

However, another approach is possible. The TDC1028 has internal adders which are not used in the above configuration. Those are the adders in the first device in each section. By introducing suitable delays, these adders can be used to increase resolution without using external adders. A sample circuit, a complete 16-tap filter using 8-bit signal data words and 8-bit coefficients, is shown in Figure 10. Notice that this introduces an eighteen sample delay in the signal path. The necessary 8-bit wide by 9 or 18 stage long shift registers are provided by TRW's TDC1011.

Figure 9.

-

777

Figure 10.

Ordering Information

		the second s	the second s	The State of Article Pro-
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1028,4C	STD-T _A = 0°C to 70°C	Commercial	48 Lead DIP	1028J4C
TDC1028,J4G	STD-T _A = 0°C to 70°C	Commercial with Burn-In	48 Lead DIP	1028J4G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

LSI Products Division TRW Electronic Components Group

	and the second
	and the second second second second second second
and a second	AN ARABIN PLANT AND A MARKED AND AND AND AND AND AND AND AND AND AN
	Sectors 1987 and 1987 and 1987 and
	States of the second
	When the destinations and the second s
	Annual Alexandron Annual Contraction of the
	96.944948355553794803357753535
	and all the second second second second second
	Particle Strength and Providence
	Statistic Contract data - 1455 Dente
AND DESCRIPTION OF THE DESCRIPTO	
Management and the second s	1
	3
Brital ARBWARKSTOCHUL - COLLEGE AND	
	7
and the second	,

Memory/Storage Products

LSI Products Division TRW Electronic Components Group

Memory/Storage Products

The TDC1005 and TDC1006 are very high-speed, synchronous shift registers. Both devices are TTL compatible and support 20MHz clock rates. The TDC1005 stores a serial string of 256 bits, while the TDC1006 stores two parallel 64-bit strings.

FIFO

To help interface systems with differing instantaneous clock rates, TRW has introduced the TDC1030, a first-in first-out memory. The device accommodates up to 64 nine-bit words and is fully TTL compatible. Data may be written into and read out from the device asynchronously, using the TDC1030's input and output handshaking ports. Two or more TDC1030s can be cascaded serially to facilitate storage of longer data sequences. The maximum shift-in and shift-out rate is 15MHz for individual devices, and 13MHz for cascaded parts. The device may be used without the control flags up to 18MHz.

Product	Description	Size	Shift Rate ¹ (MHz)	Power Dissipation ¹ (Watts)	Package	Notes
TDC1005	Shift Register	64x2	25	0.5	J9	Expandable/Cascadable
TDC1006	Shift Register	256x1	25	0.7	J9	Expandable/Cascadable
TDC1030	FIFO	64x9	15	1.5	J6, B6, C3	Expandable/Cascadable

Note: 1. Guaranteed, Worst Case, $T_A = 0^{\circ}C$ to $70^{\circ}C$.

LSI Products Division TRW Electronic Components Group

Serial Shift Register

Dual 64-bit

The TRW TDC1005 is a dual 64-bit positive-edge-triggered serial shift register which operates at 25MHz. This device is cascadable in the number of words and the word size.

Complementary TTL outputs Q and \overline{Q} are provided. The two data inputs in each shift register, D_Q and D₁, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25MHz Guaranteed Clock Frequency
- Fully TTL Compatible
- True and Complementary Outputs

Functional Block Diagram

- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available In 16 Lead Ceramic DIP
- Available Screened To MIL-STD-883
- Horizontal And Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage For FIR Filters
- Digital Delay Lines
- Local Storage Registers

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00275 Rev. D-2/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

Functional Description

General Information

The TDC1005 is a positive-edge-triggered dual 64-bit serial shift register. One of two data inputs (D $_0$ and D $_1$) is selected

by the Data Select control (DS). Complementary outputs Q and $\overline{\mathbf{Q}}$ are available.

K 1917

Power

The TDC1005 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 16
GND	Ground	0.0V	Pin 8

Data Inputs

The TDC1005 has two data inputs per block, (D0A and D0B, D1A and D1B).

Name	Function	Value	J9 Package		
DOA	Data Input 0, Block A	Πι	Pin 11		
D1 _A	Data Input 1, Block A	ΠL	Pin 12		
DOB	Data Input 0, Block B	TTL	Pin 6		
D1 _B	Data Input 1, Block B	TTL	Pin 5		

Data Select

Two data select controls, one for Block A (DSA) and one for Block B (DSB), are provided to select between inputs 0 and 1.

The 0 input is selected when DS is LOW; the 1 input is selected when DS is HIGH.

Name	Function	Value	J9 Package
DSA	Block A Data Select	TTL	Pin 13
DSB	Block B Data Select	TTL	Pin 4

Data Outputs

Complementary outputs Ω and $\overline{\Omega}$ are provided for the TDC1005.

Name	Function	Value	J9 Package
QA .	Data Output Block A	ΠL	Pin 15
ŌĀ	Data Output (Inv.) Block A	ΠL	Pin 14
QB	Data Output Block B	ΠL	Pin 2
ŌB	Data Output (Inv.) Block B	ΠL	Pin 3

Clocks

The TDC1005 has three clock inputs (CLK A, CLK B, CLK C) which are combined to provide the clock signals for the two blocks. Block A is clocked by the logical OR of CLK A and

CLK C. Block B is clocked by the logical OR of CLK B and CLK C. This allows the two blocks to be clocked either independently or simultaneously.

Name	Function	Value	J9 Package	
CLK A	Clock A	TTL	Pin 10	
CLK B	Clock B	TTL	Pin 7	
CLK C	Clock C	TTL	Pin 9	

No Connects

Pin 1 on the TDC1005 is not connected internally. This pin may be left unconnected.

Name	Function	Value	J9 Package		
NC	No connection	Open	Pin 1		

Figure 1. Timing Diagram

Figure 3. Test Load for Delay Measurement (Typical)

Absolute maximum ratings (beyond which the device will be damaged) 1

input vortag	ge	
Output		······································
	Applied Voltage (measured to GND)	0 to +5.5V ²
	Applied current, externally forced	
	Short circuit duration (single output in high state to ground)	1 sec
Temperatur	8	· · · · · · · · · · · · · · · · · · ·
		EE to . 15000
	Uperating, ambient	53 10 + 130 0
	Uperating, ambient junction	55 tu + 150 t
	uperating, ambient junction Lead, soldering (10 seconds)	- 35 t0 + 130 t + 175°C + 300°C

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as positive when flowing into the device.

Operating conditions

		(Temperatu	ire Range							
			Standard			Extended		1				
Parameter		Min	Nom	Max	Min	Nom	Max	Units				
Vcc	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v				
PW	Clock Pulse Width	15			15			ns				
S	Input Register Setup Time	0			0			ns				
ĥ	Input Register Hold Time	10			10			ns				
V _{IL}	Input Voltage, Logic Low			0.8			0.8	V				
ин	Input Voltage, Logic High	2.0			2.0			۷				
OL	Output Current, Logic Low			4.0			4.0	mA				
он	Output Current, Logic High			-400			- 400	μΑ				
TA	Ambient Temperature, Still Air	0		70				°C				
T _C	Case Temperature				-55		125	°C				

Electrical characteristics within specified operating conditions

				Temperat	ure Range			
			Sta	ndard	Exte	ended		
Parameter		Test Conditions	Min Max		Min	Max	Units	
lcc	Supply Current	V _{CC} - MAX		105		120	mA	
VOL	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	v	
VOH	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V	
- <u></u>	Input Current, Logic Low ¹	V _{CC} - MAX, V _{IL} - 0.4V		-0.5		-0.8	mA/load	
lι _Η	Input Current, Logic High ¹	V _{CC} - MAX, V _{IH} - 2.4V		20		50	μAlload	

Note:

1. CLK C: Eight equivalent loads

CLK A, CLK B: Four equivalent loads

Switching characteristics within specified operating conditions

				Temperature Range			
			Star	ndard	Exte	ended	1
Para	meter	Test Conditions	Min	Max	Min	Max	Units
FC	Clock Frequency	(See Figure 3)	25		25		MHz
tD	Output Delay	(See Figure 3)	10	30	10	30	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1005J9C	STD-T _A = 0°C to 70°C	Commercial	16 Lead DIP	1005J9C
TDC1005J9G	STD-T _A = 0°C to 70°C	Commercial with Burn-In	16 Lead DIP	1005J9G
TDC1005J9F	EXT-T _C = -55°C to 125°C	Commercial	16 Lead DIP	1005J9F
TDC1005J9A	EXT-T _C = -55°C to 125°C	MIL-STD-883	16 Lead DIP	1005J9A
TDC1005J9N	EXT-T _C = -55°C to 125°C	Commercial with Burn-In	16 Lead DIP	1005 <i>j</i> 9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Serial Shift Register

256-bit

The TRW TDC1006 is a positive-edge-triggered serial shift register which operates at 25MHz. The device is cascadable in the number of words and the word size.

Complementary TTL outputs Q and \overline{Q} are provided. Two data inputs, D0 and D1, are controlled by a data select input, DS. This provides on-chip recirculate gating when the true output is hard-wired to one of the inputs.

Features

- 25MHz Guaranteed Clock Frequency
- Fully TTL Compatible
- True and Complementary Outputs

Functional Block Diagram

- Proven High-Reliability Radiation Hard Bipolar Process
- Single +5V Power Supply
- Available in 16 Lead Ceramic DIP
- Available Screened to MIL-STD-883
- · Horizontal and Vertical Cascadability

Applications

- High-Speed Data Acquisition
- First-In First-Out Data Buffers
- Coefficient Storage for FIR Filters
- Digital Delay Lines
- Local Storage Registers

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 © TRW Inc. 1984 40G01348 Rev. A-2/84 Printed in the U.S.A.

Functional Block Diagram

Pin Assignments

NC	1 (1 16	VCC
NC	2 (15	NC
NC	3 (ſ)	14	NC
NC	4 (13	NC
DO	5 (12	NC
D1	6 (ļ	11	Q
DS	7 (10	ā
GND	8 (9	CLK
16 Le	ead	DIP	- J	3 Pa	ckage

Functional Description

General Information

The TDC1006 is a 256-bit positive-edge-triggered serial shift register. One of two data inputs (D0 and D1) is selected by

the Data Select control DS. Complementary outputs Q and $\overline{\mathbf{Q}}$ are available.

Power

The TDC1006 operates from a single +5 Volt power supply.

Name	Function	Value	J9 Package
V _{CC}	Positive Supply Voltage	+5.0V	Pin 16
GND	Ground	0.0V	Pin 8

Data Inputs

The TDC1006 is a single 256-bit shift register with two data inputs D0 and D1. $\ensuremath{\mathsf{D}}$

Name	Function	Value	J9 Package
DO	Data Input 0	ΠL	Pin 5
D1	Data Input 1	ΠL	Pin 6

Data Select

The TDC1006 has one data select control (DS) to select between inputs D0 and D1. Input D1 is selected when DS is HIGH, D0 is selected when DS is LOW.

Name	Function	Value	J9 Package
DS	Data Select	ΠL	Pin 7

Data Outputs

Complementary outputs Q and \overline{Q} are provided for the TDC1006.

Name	Function	Value	J9 Package
٥	Data Output	ΠL	Pin 11
ā	Data Output Inverted	Π	Pin 10

Clocks

The TDC1006 has one clock signal, CLK.

Name	Function	Value	J9 Package
CLK	Clock	TTL	Pin 9

No Connects

There are several pins on the TDC1006 which are not connected internally. These pins may be left unconnected.

Name	Function	Value	J9 Package
NC	No Connect	Open	Pins 1-4, 12-15

Figure 1. Timing Diagram

Figure 2. Equivalent Input/Output Schematics

Figure 3. Test Load

Absolute maximum ratings (beyond which the device will be damaged) 1

Supply Volta	je	
Input Voltage Input Voltage Output Applied voltage (measured to GND) Applied current, externally forced Short circuit duration (single output in high state to ground) Temperature Operating, ambient		
Output	· · ·	
	Applied voltage (measured to GND)	0 to +5.5V ²
	Applied current, externally forced	1.0 to +6.0mA ^{3,4}
	Short circuit duration (single output in high state to ground)	1 sec
Temperature	· · · · · · · · · · · · · · · · · · ·	
	Operating, ambient	55 to +150°C
	junction	
	Lead, soldering (10 sec.)	
	Storage	

Notes:

 Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as conventional current flowing into the device.

Operating conditions

A SHALL NOT A D

			Temperature Range					
			Standard			Extended	1	
Parameter		Min	Nom	Nom Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	v
tPW	Clock Pulse Width	15			15			ns
ts	Input Register Setup Time	0			0			ns
tH	Input Register Hold Time	10			10			ns
VIL	Input Voltage, Logic Low			0.8			0.8	v
VIH	Input Voltage, Logic High	2.0			2.0			V
IOL	Output Current, Logic Low			4.0			4.0	mA
IOH	Output Current, Logic High			-400			-400	μΑ
TA	Ambient Temperature, Still Air	0		70				°C
TC	Case Temperature				-55		125	°C

Electrical characteristics within specified operating conditions

				Temperature Range			
			Star	ndard	Extended		1
Para	meter	Test Conditions	Min	Max	Min	Max	Units
¹ CC	Supply Current	V _{CC} - MAX		135		155	mA
V _{OL}	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	V
V _{oh}	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V
հ	Input Current, Logic Low ¹	V _{CC} - MAX, V _{IL} - 0.4V		-0.5		-0.8	mA/load
l _Η	Input Current, Logic High ¹	V _{CC} - MAX, V _{IH} - 2.4V		20		50	μA/load

Note:

1. CLK: Sixteen equivalent loads.

Switching characteristics within specified operating conditions

Parameter		r Test Conditions		Temperature Range			
				Standard		Extended	
				Max	Min	Max	Units
FC	Clock Frequency	(See Figure 1)	25		25		MHz
tD	Output Delay	(See Figure 1)	10	30	10	30	ns

Ordering Information

		(a) A start of the second s Second second s Second second se		
Product Number	Temperature Range	Screening	Package	Package Marking
TDC1006J9C	STD-T _A = 0°C to 70°C	Commercial	16 Lead DIP	1006J9C
TDC1006J9G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	16 Lead DIP	1006 J 9G
TDC1006J9F	EXT-T _C = -55°C to 125°C	Commercial	16 Lead DIP	1006J9F
TDC1006J9A	EXT-T _C = -55°C to 125°C	MIL-STD-883	16 Lead DIP	1006J9A
TDC1006J9N	EXT-TC = -55°C to 125°C	Commercial With Burn-In	16 Lead DIP	1006J9N

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

TDC1030 Preliminary Information

First-In First-Out Memory

64 words by 9 bits cascadable

The TRW TDC1030 is an expandable, First-In First-Out (FIFO) memory organized as 64 words by 9 bits. A 15MHz data rate makes it ideal in high-speed applications. Burst data rates of 18MHz can be obtained in applications where the device status flags are not used.

With separate Shift-In (SI) and Shift-Out (SO) controls, reading and writing operations are completely independent, allowing synchronous and asynchronous data transfers. Additional controls include a Master Reset (\overline{MR}), and Output Enable (\overline{OE}). Input Ready (IR) and Output Ready (OR) flags are provided to indicate device status.

Devices can be easily interconnected to expand word and bit dimensions. The device has all output pins directly opposite the corresponding input pins, facilitating board layouts in expanded format. All inputs and outputs are TTL compatible.

Features

- 64 Words By 9 Bits Organization
- 15MHz Shift-In, Shift-Out Rates With Flags

- 18MHz Burst-In, Burst-Out Rates Without Flags
- Cascadable To 13MHz
- Readily Expandable In Word And Bit Dimension
- TTL Compatible
- Asynchronous Or Synchronous Operation
- Three-State Outputs
- Master Reset Input To Clear Data And Control
- Output Pins Directly Opposite Corresponding Input Pins For Easy Board Layout
- Available in 28 Lead Ceramic DIP, CERDIP, or Contact Chip Carrier

Applications

- High-Speed Disk Or Tape Controller
- Video Time Base Correction
- A/D Output Buffers
- Voice Synthesis
- Input/Output Formatter For Digital Filters and FFTs

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038 Phone: (619) 457–1000 Telex: 697–957 TWX: 910–335–1571 ©TRW Inc. 1984 40G00400 Rev. F-1/84 Printed in the U.S.A.

Functional Block Diagram

TRii

Functional Block Diagram

Pin Assignments

28 Contact Chip Carrier - C3 Package

Functional Description

Data Input (Figure 1)

Following power up, the Master Reset (\overline{MR}) is pulsed LOW to clear the FIFO (Figure 2). The Input Ready (IR) flag HIGH indicates that the FIFO input stage is empty and available to receive data. When IR is valid (HIGH), Shift-In (SI) may be asserted, thus loading the data present at D₀ through Dg into the FIFO. Bringing the SI signal HIGH causes IR to drop LOW.

The data remains at the first location until SI is set LOW. With SI LOW, the data then propagates to the second location and continues to "fall through" to the output stage or last empty

Data Transfer

After data has been transferred into the second location by bringing SI LOW, the data continues to "fall through" the FIFO

Data Output (Figure 4)

The Output Ready (OR) flag HIGH indicates that there is valid data at the output stage (pins $\Omega_0 - \Omega_8$). An initial Master Reset (MR) pulse LOW at power up sets the Output Ready LOW and clears the output stage (Figure 2). Data shifted into the FIFO (after MR) "falls through" to the output stage, causing OR to go high.

When the OR flag is valid (HIGH), data can be transferred out via the Shift-Out (SO) control. An SO HIGH results in a "busy" (LOW) signal at the OR flag. When SO is brought LOW, data is shifted to the output stage, and the empty location "bubbles

location. If the FIFO is not full after the SI pulse, IR will again be valid (HIGH), indicating that there is space available in the FIFO. If the memory is full, the IR flag remains invalid (LOW).

With the FIFO full, the SI can be held HIGH until a Shift-Out (SO) occurs (Figure 3). Following the SO pulse, the empty location "bubbles up" to the input stage. This results in an Input Ready (IR) pulse HIGH and awaiting data is shifted in. The SI must be brought LOW before additional data can be shifted in.

in an asynchronous manner. The data stacks up at the end of the device, leaving the empty locations up front.

up" to the input stage. At the completion of the SO pulse, OR goes HIGH. If the last valid piece of data has been shifted out, leaving the memory empty, the OR flag remains invalid (LOW). With the FIFO empty, the last word shifted out remains on the output pins $\Omega_{\Pi} - \Omega_{R}$.

With the FIFO empty, the SO can be held HIGH until a SI occurs (Figure 5). Following the SI pulse, the data "falls through" to the output stage. This results in an OR pulse HIGH and data is shifted out. The SO must be brought LOW before additional data can be shifted out.

Data Inputs

The nine data inputs of the TDC1030 are TTL compatible. There is no weighting to the inputs, and any one of them can be assigned as the MSB. The memory size of the FIFO can be reduced from the 9×64 configuration by leaving open unused data input pins (i.e., 8 x 64, 7 x 64 . . . 1 x 64). In the reduced format, the unused data output pins must also be left open.

Name	Function	Value	J6, C3, B6 Package
0 ₀	Data Input	TTL	Pin 5
D ₁		ΠL	Pin 6
D ₂		TTL	Pin 7
D ₃		ΠL	Pin 8
D ₄		TTL	Pin 9
D5		ΠL	Pin 10
D ₆		πι	Pin 11
D7		TTL	Pin 12
D ₈	Data Input	TTL	Pin 13

Data Outputs

The nine data outputs of the TDC1030 are TTL compatible, capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. There is no weighting to the outputs, and any one of them can be assigned as the MSB.

The memory size of the FIFO can be reduced from the 9 x 64 configuration by leaving open unused data output pins (i.e., 8 x 64, 7 x 64 . . . 1 x 64). In the reduced format, the unused data input pins must also be left open.

Name	Function	Value	J6, C3, B6 Package
QQ	Data Output	TTL	Pin 24
0 ₁		TTL	Pin 23
Q2		ΠL	Pin 22
03		ΠL	Pin 21
04		Πι	Pin 20
Q ₅		TTL	Pin 19
0 ₆		TTL	Pin 18
0 ₇		ΠL	Pin 17
0 ₈	Data Output	ΠL	Pin 16

Controls

SI	The rising edge loads data into the input stage.	MR	MR LOW clears all data and control within the
	The falling edge triggers the automatic data		FIFO: Input Ready flag is set HIGH, Output
	transfer process.		Ready flag is set LOW, and the FIFO is cleared.
			The output stage remains in the state of the
SO	The rising edge causes OR to go LOW. The		last word shifted out, or in the random state of
	falling edge moves upstream data into the		power up.
	output stage and triggers the "bubble up"		
	process of empty locations.	ŌĒ	With the \overline{OE} LOW, the outputs of the FIFO are

Output Enable

$\overline{(\text{OE} \text{HIGH})}$, the outputs go into their high-impedance state.				
	Function	Value	J6, C3, B6 Package	-
	Shift - In	ΠL	Pin 4	
	Shift - Out	TTL	Pin 26	
	Master Reset	πι	Pin 27	

TTL

TTL compatible. When disabled

Power

The TDC1030 operates from a single +5.0V supply. All power and ground pins must be connected.

Name SI SO MR

ŌĒ

Name	Function	Value	J6, C3, B6 Package
V _{CC}	Supply Voltage	+5.0	Pin 28
GND	Digital Ground	0.0	Pins 1, 2, 14

Pin 15

Status Flags

Input Ready (IR) and Output Ready (OR) flags are provided to indicate the status of the FIFO. Operation with use of the flags is explained in the Functional Description. In this mode of operation, the Shift-In and Shift-Out rates are determined by the status flags. It is assumed that a Shift-In or Shift-Out pulse is not applied until the respective flag (IR, OR) is valid (Figures 1 and 4).

The IR and OR flags are not required to operate the device. A high-speed burst mode is achievable when operating without the flags. Refer to the High-Speed Burst Mode section for a complete description.

- An IR flag HIGH indicates that the input stage is empty and ready to accept valid data. An IR LOW indicates that the FIFO is full or that a previous SI operation is not complete.
- An OR flag HIGH assures valid data at the output stage (pins $\Omega_0 \Omega_8$). However, the OR flag does not indicate whether or not there is any new data awaiting transfer into the output stage. An OR LOW indicates that the output stage is "busy", or that there is no valid data.

Name	Function	Value	J6, C3, B6 Package
IR	Input Ready Flag	ΠL	Pin 3
OR	Output Ready Flag	πι	Pin 25

IR

OR

Application Notes

Expanded Format

The TDC1030 is easily cascaded to increase word capacity without any external circuitry. Word capacity can be expanded beyond the 128 words X 9 bits configuration shown in Figure 6. In the cascaded format, all necessary communications and timing are handled by the FIFOs themselves. The intercommunication speed is controlled by the minimum flag pulse widths and the flag delays. (See Figures 7 and 8.)The maximum data rate when cascading devices is 13MHz.

With the addition of a logic gate, the FIFO is easily expanded to increase word length (Figure 9). The basic operation and timing are identical to a single FIFO, with the exception of an additional gate delay on the flags. Word length can be expanded beyond the 18 bits X 64 words configuration shown in Figure 9.

High-Speed Burst Mode

Burst rates of 18MHz can be obtained for applications in which the device status flags are not used. In this mode of operation, the Burst-In and Burst-Out rates are determined by the minimum Shift-In Pulse Widths, and Shift-Out Pulse Widths (See Figures 10 and 11). With the Input Ready and Output Ready flags not monitored, a shift pulse can be applied without regard to the status flag. However, a Shift-In pulse which would overflow the storage capacity of the FIFO is not permitted.

TDC1030 Timing Diagrams

Figure 1. Shifting In Sequence, FIFO Empty To FIFO Full

- 1. Input Ready initially HIGH FIFO is prepared for valid data.
- 2. Shift-In set HIGH data loaded into input stage.
- 3. Input Ready drops LOW (t_{IR} delay after SI HIGH) input stage "busy."
- 4. Shift-In set LOW data from first location "falls through."
- Input Ready goes HIGH (t_{IR} delay after SI LOW) status flag indicates FIFO prepared for additional data.
- 6. Repeat process to load 2nd through 64th word into FIFO.
- 7. Input Ready remains LOW with attempt to shift into full FIFO, no data transfer occurs.

- 1. Input Ready LOW, Output Ready HIGH assume FIFO is full.
- 2. Master Reset pulse LOW clears FIFO.
- 3. Input Ready goes HIGH (t_{MRIRH} delay after \overline{MR}) flag indicates input prepared for valid data.
- 4. Output Ready drops LOW (t_MRORL delay after $\overline{\text{MR}})$ flag indicates FIFO empty.
- 5. Shift-In HIGH (t_{MRSI} delay after \overline{MR}) clearing process complete, move new data into FIFO.

- 1. FIFO is initially full, Shift-In is held HIGH.
- 2. Shift-Out pulse data in the output stage is unloaded, "bubble up" process of empty location begins.
- 3. Input Ready HIGH (tFT fallthrough delay after SO pulse) when empty location reaches input stage, flag indicates FIFO is prepared for data input.

Figure 4. Shifting Out Sequence, FIFO Full to FIFO Empty

"bubbles up."

is complete, FIFO is again full.

5. SI brought LOW - necessary to complete Shift-In process, allows data "fall through" if additional empty location

- 1. Output Ready HIGH no data transferring in progress, valid data is present at output stage.
- 2. Shift-Out set HIGH results in OR LOW.
- 3. Output Ready drops LOW (top delay after SO HIGH) output stage "busy."
- 4. Shift-Out set LOW data in the input stage is unloaded, and new data replaces it as empty location "bubbles up" to input stage.
- 5. Output Ready goes HIGH transfer process completed, valid data present at output.
- 6. Repeat process to unload the 3rd through 64th word from FIFO.
- 7. Output Ready remains LOW FIFO is empty.
- 8. Shift-Out pulse asserted with attempt to unload from empty FIFO, no data transfer occurs.

Figure 5. With FIFO Full, Shift Out Is Held High In Anticipation Of Data

- 1. FIFO is initially empty, Shift-Out is held HIGH.
- Shift-In pulse loads data into FIFO and initiates "fall through" process.
- Data Output transition (t_{DOF} delay before OR HIGH), valid data arrives at output stage.
- Output Ready HIGH (t_{FT} fallthrough delay after SI pulse), OR flag signals the arrival of valid data at the output stage.
- 5. Output Ready goes LOW data Shift-Out is complete, FIFO is again empty.
- Shift-Out set LOW necessary to complete Shift-Out process, allows "bubble up" of empty location as data "falls through."

The TDC1030 is easily cascaded to increase word capacity without any external circuitry. In the cascaded format, all necessary communications are handled by the FIFOs

themselves. Figures 7 and 8 demonstrate the intercommunication timing between FIFO A and FIFO B.

- 1. FIFO A and B initially empty, SO (A) held HIGH in anticipation of data.
- 2. Load one word into FIFO A SI pulse applied, IR pulse results.
- Data Out A/Data In B transition (t_{DDF} delay before OR (A) HIGH), valid data arrives at FIFO A output stage prior to OR flag, meeting data input setup requirements of FIFO B.
- OR (A) and SI (B) pulse HIGH (t_{FT} delay after SI (A) LOW), data is unloaded from FIFO A as a result of the Output Ready Pulse (T_{OP}), data is shifted into FIFO B.
- 5. IR (B) and SO (A) go LOW (t_{IR} delay after SI (B) HIGH), flag indicates input stage of FIFO B is "busy," Shift-Out of FIFO A is complete.
- 6. IR (B) and SO (A) go HIGH (t_{IR} delay after SI (B) LOW), input stage of FIFO B is again available to receive data, SO is held HIGH in anticipation of additional data.
- 7. OR (B) goes HIGH (tFT delay after SI (B) LOW), valid data is present at the FIFO B output stage.

- 1. FIFO A and B initially full, SI (B) held HIGH in anticipation of shifting in new data as empty location "bubbles up."
- Unload one word from FIFO B SO pulse applied, OR pulse results.
- IR (B) and SO (A) pulse HIGH (t_{FT} delay after SO (B) LOW), data is loaded into FIFO B as a result of the Input Ready Pulse (tIP), data is shifted out of FIFO A.
- 4. OR (A) and SI (B) go LOW (t_{OR} delay after SO (A) HIGH), flag indicates the output stage of FIFO A is "busy," Shift-In to FIFO B is complete.
- 5. OR (A) and SI (B) go HIGH (t_{OR} delay after SO (A) LOW), flag indicates valid data is again available at the FIFO A output stage, SI (B) is held HIGH, awaiting "bubble up" of empty location.
- 6. IR (A) goes HIGH (tFT delay after SO (A) LOW), an empty location is present at input stage of FIFO A.

LSI Products Division TRW Electronic Components Group

Figure 9. Expanded FIFO for Increased Word Length - 64 Words X 18 Bits

The TDC1030 is easily expanded to increase word length. Composite Input Ready and Output Ready flags are formed with the addition of an AND logic gate. The basic operation and timing are identical to a single FIFO, with the exception of an added gate delay on the flags.

In the high-speed mode, the Burst-In rate is determined by the minimum Shift-In HIGH and Shift-In LOW specifications. The IR status flag is a "don't care" condition, and a Shift-In pulse can be applied without regard to the flag. A Shift-In pulse which would overflow the storage capacity of the FIFO is not permitted.

In the high-speed mode, the Burst-Out rate is determined by the minimum Shift-Out HIGH and Shift-Out LOW

specifications. The OR flag is a "don't care" condition, and a Shift-Out pulse can be applied without regard to the flag.

LSI Products Division TRW Electronic Components Group

Absolute maximum ratings (beyond which the device will be damaged)¹

Input Voltage		-0.5 to +5.
Output		
	Applied voltage	0.5 to +5.51
	Forced current	1.9 to +6.0mA
	Short circuit duration (single output in high state to ground)	1 s
Temperature		
	Operating, case	60 to +140
	junction	+ 175
	Lead, soldering (10 seconds)	
	Storage	65 to +150

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

3

4. Current is specified as positive when flowing into the device.

Operating conditions

				Temperat	ure Range			
			Standard			Extended		
Parameter		Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5.0	5.25	4.5	5.0	5.5	۷
tSIL	Shift-In Pulse Width, Low	20			20	[ns
^t SIH	Shift-In Pulse Width, High	15			18			ns
ts	Input Setup Time	0			0			ns
^t H	Input Hold Time	25			30			ns
tSOL	Shift-Out Pulse Width, Low	20		1	20			лs
^t SOH	Shift-Out Pulse Width, High	15			18			ns
VIL	Input Voltage, Logic LOW			0.8			0.8	V
V _{IH}	Input Voltage, Logic HIGH	2.0			2.0			٧
IOL	Output Current, Logic LOW			4.0			4.0	mA
ЮН	Output Current, Logic HIGH			-400			-400	μΑ
TA	Ambient Temperature, Still Air	0		70				°C
т _с	Case Temperature				- 55		125	°C

c

Electrical characteristics within specified operating conditions

			Temperature Range				
			Standard		Extended		
Paran	neter	Test Conditions	Min	Max	Min	Max	Units
Icc	Supply Current	V _{CC} - MAX, static ¹					
		$T_A = 0^{\circ}C$ to $70^{\circ}C$		350			mA
		T _A - 70°C		280			mA
		T _C = -55°C to 125°C				400	mA
		$T_{\rm C} = 125^{\circ}{\rm C}$				260	mA
կլ	Input Current, Logic Low	$V_{CC} = MAX, V_{I} = 0.5V$					
		D ₈₋₀ , MR		-0.4		-0.4	mA
		SI, SO, DE		-1.0		- 1.0	mA
ин	Input Current, Logic High	$V_{CC} = MAX, V_I = 2.4V$		75		75	μΑ
l _l	Input Current, Max Input Voltage	$V_{CC} = MAX, V_{I} = 5.5V$		1.0		1.0	mA
V _{OL}	Output Voltage, Logic Low	V _{CC} - MIN, I _{OL} - MAX		0.5		0.5	v
V _{OH}	Output Voltage, Logic High	V _{CC} - MIN, I _{OH} - MAX	2.4		2.4		V
I _{OZL}	High–Z Output, Leakage Current, Logic Low	$V_{CC} = MAX, V_I = 0.5V$		-40		-40	μΑ
OZH	High-Z Output, Leakage Current, Logic High	$V_{CC} = MAX, V_I = 2.4V$		40		40	μΑ
los	Short Circuit Output Current	V _{CC} - MAX, One pin to ground, one second duration, output high.		-40		- 40	mA
с,	Input Capacitance	$T_{A} = 25^{\circ}C, F = 1.0MHz$		15		15	pF
Ċn.	Output Capacitance	$T_{A} = 25^{\circ}C, F = 1.0MHz$		15		15	pF

Note:

1. Worst case: all digital inputs and outputs LOW, OE HIGH.

Switching characteristics within specified operating conditions

	•	· · · · · · · · · · · · · · · · · · ·		Temperat	ure Range	}	
			Star	ıdard	Exte	ended	
Paramet	er	Test Conditions	Min	Max	Min	Max	Units
F _{SI}	Shift-In Clock Rate	V _{CC} - MIN	18		16		MHz
F _{BI}	Burst-In Clock Rate	V _{CC} - MIN	20		18		MHz
^t IR	Input Ready Delay	V _{CC} - MIN		40		50	ns
^t FT	Fallthrough Time	V _{CC} - MIN, Load 1		1.6		1.8	μs
F _{SO}	Shift-Out Clock Rate	V _{CC} - MIN	15		13		MHz
F _{BO}	Burst-Out Clock Rate	V _{CC} - MIN	18		16		MHz
tor	Output Ready Delay	V _{CC} - MIN, Load 1		51		65	ns
to	Data Output Delay	V _{CC} - MIN, Load 1		50		65	ns
tho	Data Output Hold Time	V _{CC} - MIN, Load 1	15		15		ns
tMRW	Master Reset Pulse Width	V _{CC} - MIN	20		25		ns
^t MRORL	Master Reset to OR Low	V _{CC} - MIN, Load 1		60		80	пs
t _{MRIBH}	Master Reset to IR High	V _{CC} = MIN, Load 1		45		65	ns
^t mrsi	Master Reset to SI	V _{CC} - MIN	55		65		ns
t _{IP}	Input Ready Pulse	V _{CC} - MIN, Load 1	40		45		ns
top	Output Ready Pulse	V _{CC} = MIN, Load 1	45		50		ns
^t DOF	Data To Output Flag Delay	V _{CC} - MIN, Load 1	1		1		ns
^t ENA	Three-State Output Enable Delay	V _{CC} - MIN, Load 1		35		45	ns
tDIS	Three-State Output Disable Delay	V _{CC} - MIN, Load 2		30	1	40	ns

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1030J6C	STD-T _A = 0°C to 70°C	Commercial	28 Lead DIP	1030J6C
TDC1030J6G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Lead DIP	1030J6G
TDC1030J6F	EXT-T _C = -55°C to 125°C	Commercial	28 Lead DIP	1030J6F
TDC1030J6A	EXT-T _C = -55°C to 125°C	MIL-STD-883	28 Lead DIP	1030J6A
TDC1030J6N	EXT-T _C = -55°C to 125°C	Commercial With Burn-In	28 Lead DIP	1030J6N
TDC1030C3C	STD-T _A = 0°C to 70°C	Commercial	28 Contact Chip Carrier	1030C3C
TDC1030C3G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Contact Chip Carrier	1030C3G
TDC1030C3F	$EXT - T_C = -55^{\circ}C$ to 125°C	Commercial	28 Contact Chip Carrier	1030C3F
TDC1030C3A	EXT-T _C = -55°C to 125°C	MIL-STD-B83	28 Contact Chip Carrier	1030C3A
TDC1030C3N	$EXT-T_{C} = -55^{\circ}C$ to 125°C	Commercial With Burn-In	28 Contact Chip Carrier	1030C3N
TDC1030B6C	STD-T _A - 0°C to 70°C	Commercial	28 Lead CERDIP	1030B6C
TDC1030B6G	STD-T _A = 0°C to 70°C	Commercial With Burn-In	28 Lead CERDIP	1030B6G

TRW reserves the right to change products and specifications without notice. This information does not convey any license under patent rights of TRW Inc. or others.

Preliminary Information describes products that are not in full production at the time of printing. Specifications are based on design goals and limited characterization. They may change without notice. Contact TRW for current information.

	and the second second second	
n an the 🖉 and a start with the start was an and the start of the sta		
and a construction of the second second second and a second second second second second a second second second		
and the second se	and the second	
an a	We want the second s	
and a second state of the second state and the second state of the	1	
en en gener 👘 en sons severes van versen van en	and the second	
	anage in the Set series and set of the set of the set	
and the second		
	All and the second second second	
e en		

Reliability

The ability to produce integrated circuits to high reliability specifications cannot be learned overnight. It takes years to develop such capability, with special attention given to manufacturing processes and circuit design techniques.

TRW has been in the forefront of the development and production of high reliability integrated circuits. Following the small-scale integration afforded by the first TTL gates, TRW moved to medium and large-scale integration.

TRW LSI Products' movement from SSI to VLSI has been centered around the use of a triple diffusion (3D) bipolar process. This process was developed by TRW in the early 1960s and has been consistently improved to give superior producibility, performance and reliability.

The 3D process meets the stringent requirements of MIL-M-38510 and MIL-STD-883, as well as those requirements of other high performance commercial and industrial applications. Development of the process was only one of the steps required to produce high reliability VLSI. Circuit design must also be directed toward the same goal. Reliability cannot be added at a later stage in the development process. It must be included in the initial design of each device.

Another aspect of reliability is the control of the assembly process, which is necessary to obtain the desired results. Here again, there is no substitute for experience. Each step in the TRW LSI assembly process is controlled within narrow limits to produce high-yield devices of proven reliability. Testing verifies that high reliability VLSI has been achieved. TRW performs unique, productoriented accelerated life tests in addition to tests that are in accordance with MIL-M-38510 and MIL-STD-883.

Demonstrated VLSI Reliability

Reliability is expressed in terms of failure units, or FITs, which are defined as failures per 10^9 device-hours. VLSI devices from TRW LSI Products exhibit a failure rate many times better than that obtainable from SSI or MSI logic.

An example of the reliability possible from VLSI is evidenced by tests performed on the MPY016H multiplier. The MPY016H contains 14,000 components (transistors and resistors) configured into 888 Current Mode Logic (CML) gates. Eighteen of these devices were operated for 2,000 hours at 290°C junction temperature, and a median life of 8.0 x 10⁶ hours at Tj=125°C was demonstrated. This corresponds to a mean time to failure (MTTF) of 3.39 x 10⁷ hours or a failure rate of 29.5 FITs.

Accelerated life testing at elevated temperatures is used to reduce testing hours to a practical number. The theoretical basis for accelerated temperature testing is the Arrhenius equation that relates failure rate to temperature:

$$\frac{1}{t_f} = A \exp\left(\frac{-E_a}{kT}\right)$$

where:

tf = time to failure

A = a constant

 $E_a = activation energy$ (approx. 1.02 eV)

k = Boltzmann's constant(8.61 x 10⁻⁵ ev/°K)

T = absolute temperature(°K=°C+273°)

A graphical solution of the Arrhenius equation can be performed. The first step in the evaluation of the test results is to plot the cumulative percent of failures vs. the hours to failure, as shown in Figure 1. Then, the best straight line fit for these points is drawn to represent the failure distribution. The intersection of this line with the 50% failure line is the median lifetime, t_m , which in this case is 1500 hours.

An activation energy of 1.02eV was used for the example in Figure 2. From this data point (a junction temperature of 290°C and median lifetime of 1500 hours), a median lifetime of 8 x 10⁶ hours at 125°C is extrapolated. This corresponds to a mean time to failure (MTTF) of 3.39 x 10⁷ hours, or a failure rate of 29.5 FITs.

Figure 1. Median lifetime, $t_{m^{\prime}}$ is 1500 hours for 18 samples of the MPY016H multiplier operating at 290°C junction temperature.

Figure 2. Median Lifetime is 8.0 x 10^6 hours for the MPY016H at 125°C, as determined by accelerated reliability testing at 290°C.

Inherent Radiation Hardness

Radiation Source	Radiation Level (Device Fully Functional)		
Gamma Rays	10 ⁶ rads (Si)		
Neutrons	10 ¹⁴ n/cm ²		
X-Ray (Upset)	2.9 x 10 ⁸ rads/sec		
X-Ray (Burnout)	1.3 x 10 ¹² rads/sec		

Table 1. Radiation Resistance Levels

As shown in Table 1, TRW's 3D bipolar process is inherently radiation resistant. High energy radiation excites and ionizes the semiconductor materials and displaces atoms from normal crystal sites, thus, it has a profound effect on device parameters. These effects result from damage induced by neutrons, X-rays, and gamma rays. The damage can change AC and DC parameters, affect functional performance, and in some cases even destroy the device. Often, these effects are temporary, lasting only microseconds, but in some cases they cause permanent damage.

The small geometries and 3D bipolar fabrication process make TRW LSI Products' VLSI devices inherently radiation-hard. This hardness is obtained by structural perfection and cleanliness of the silicon-silicon dioxide interface. As a result, these devices outperform many of the MOS and bipolar devices exposed to similar radiation environments. TRW's multipliers have been found fully functional after an absorbed dose of 10^6 rads (Si) from a gamma ray source.

Neutron damage also causes a change in device characteristics by reducing h_{fe} , the current gain of the transistor. The 3D transistors are inherently resistant to neutron damage because their narrow base region and low transmit time provide an f_t of about 300MHz for 2-micron geometries; thus, any small change in h_{fe} has little effect on performance. VLSI multipliers fabricated with the 3D process have survived a dose of 10¹⁴ n/cm² without functional failures.

Another source of potential radiation problems comes from X-rays, which can cause circuit upsets or burnouts. An upset can produce permanent effects in regenerative circuits by causing latch-up conditions or changes in logic states.

VLSI multipliers fabricated with 3D technology have experienced no functional failures or latch-ups when subjected to 2.9×10^8 rads/sec of X-ray upset. The high upset tolerance is again due to small geometries and fast recovery time constants inherent in the 3D process. The resistance to latch-up is also due to the low inverse betas of the NPN and PNP transistors.

The same VLSI multipliers that passed 2.9 x 10^8 rads/sec were tested for X-ray burnout with a dose of 1.3×10^{12} rads/sec. There were no functional failures, latch-ups or burnouts in the samples.

Reliability by Design

Fabrication

Matching the fabrication process to both semiconductor and circuit design, TRW LSI Products achieves optimum performance from VLSI. As a result, both high reliability and good yields are available.

An example of the reliability designed into our bipolar and CMOS processes is the use of a composite metallization system consisting of titanium and aluminum. This technique virtually eliminates electromigration, which causes voids or hillocks in metallization. Elimination of electromigration is achieved because titanium reduces residual silicon dioxide in the contact windows, providing improved ohmic contact and excellent mechanical adhesion.

Accurate Masks Lead to Reliable Devices

The final physical layout of the chip is stored on magnetic tape and applied to a pattern generator which automatically draws the device on a glass reticle. Manual steps are eliminated, thus ensuring accurate masks for device production. The first output from the pattern generator is a glass reticle containing the layout of a single chip that is several times actual size.

The reticle is accurately aligned and the image is reproduced repeatedly to produce the master mask. This mask is less susceptible to plate defects (small pinholes in chrome) than an actual size mask. Projection printing is used in the wafer fabrication process. In contrast with contact printing, projection masks have a longer useful lifetime because they encounter essentially no physical wear. On the other hand, most contact masks must be discarded after one hundred (or less) operations. Projection masks also provide better results than contact masks because minor defects are less likely to occur.

Controlling Production to Assure Reliability

Once the design is completed, fabrication of the VLSI die can begin. This involves tightly-controlled steps with appropriate levels of inspection, testing and screening.

The fabrication process begins with a silicon wafer. Before any work is done on the wafer, it is inspected for visible surface defects.

Next, the wafer's thickness, flatness and resistivity are measured. A thin wafer can be excessively brittle, whereas a thick wafer is more difficult to cut into individual dice. Flatness is important in obtaining an accurate projection of the artwork contained on the production masks. Resistivity affects the electrical parameters of the semiconductor devices on the wafer.

After a blank wafer passes inspection, it is processed through many steps. These include diffusion, ion implantation, etching, coating with photoresist, metallization, etc. The masks are aligned within very tight tolerances to ensure proper registration between elements on each die. To protect the finished surface of the wafer against contaminants, silicon dioxide (glass passivation) is deposited over the entire wafer. Gold is then evaporated onto the back of the wafer to provide a good electrical contact to the substrate. The gold-silicon back contact not only provides good electrical contact to the substrate ground, it also simplifies later attachment of the VLSI die to its package and enhances thermal conduction.

The next step involves computercontrolled testing of each die on the wafer. Known as "die probe," this is an electrical function check for correct operation. If a die is found to be nonfunctional, a drop of ink is automatically placed on it so it can be discarded after die separation.

Figure 3 traces the path of each wafer as it passes through the assembly process that ends with a completely packaged device. Note that each production step has an inspection, screening or test function associated with it.

Figure 3. Inspection, screening or testing (shown in gray) accompanies each assembly step to ensure the reliability of the finished device.

Controlled Assembly Steps

The first step in the assembly process is die separation. This is accomplished with an automated diamond saw that slices the wafer. The saw technique produces a smoother edge and results in higher yields than other die separation methods.

Now the dice are ready to be mounted within the device package. Each die is accurately positioned within the package and a gold-silicon solder preform is placed between the bottom of the die and the package. The combination is heated within very close temperature tolerances, attaching the die to the package.

One of the checks on the die-attach step is temperature calibration of the heating equipment, which is done every four hours. Another check is die shear testing of samples of attached die from each production lot, and is done to detect voids between the die and the package.

After the die is attached to the package, 1.25mil wires are bonded from pads on the die to package pads that connect to the external pins of the device. To ensure reliable bonds, each bonding machine is monitored every four hours.

To check the wire bonds, device samples are removed from each production lot and subjected to a wirebond pull test. This is accomplished by specialized equipment that pulls bonding wires until they separate from the die. Control charts are maintained to provide trend analysis.

Inspection Enhances Product Quality

After wire bonding, the device goes through a pre-seal microscopic inspection to ensure that it is internally correct and that the workmanship meets all requirements. After passing this inspection, the package is sealed. In sealing, the package moves through a special furnace where a lid is attached to the package.

The sealed package is then gross-leak tested to verify a good hermetic seal. Commercial parts receive complete electrical testing at 25°C and then are marked and packaged.

For high reliability parts, military or customer-specified, screens and other

tests are performed. These are followed by complete electrical testing over the recommended operating temperature range. Next, the devices are appropriately marked and packaged. Then data are reviewed for acceptability and if requested, a certificate of conformance is generated.

Electrical testing of devices is performed on automated VLSI testers that are programmed to provide unique signal patterns for each of the VLSI circuits. A full-time programming staff is responsible for the maintenance of all test programs.

Mil Spec Testing

TRW LSI Products' high reliability devices are all produced in accordance with customer or military specifications and standards, notably MIL-STD-883, "Test Methods and Procedures for Microelectronics," and MIL-M-38510, "General Specifications for Microcircuits."

These military documents categorize microcircuits into three product assurance classes related to the reliability requirements of the application. Class S requirements are the most stringent because they cover critical applications. Class B requirements are intended for less critical applications and are the most widely used. The least stringent is Class C.

MIL-STD-883 contains test methods and procedures for various electrical, mechanical and environmental tests as well as requirements for screening, qualification and quality conformance inspection. Table 2, taken from Method 5004 of MIL-STD-883, lists the 100% screening tests required for these three devices. TRW LSI Products typically screens high reliability devices to the Class B requirements.

Following device screening, samples are removed from the lot(s) as part of our ongoing Quality Conformance Inspection (QCI) program. This testing is divided into four inspection groups: A, B, C, and D.

Group A electrical inspection involves dynamic, static, functional and switching tests at maximum, minimum and ambient operating temperatures. Sample sizes and specified tests depend on the product assurance class.

Assurance of the absence of lot-to-lot fabrication related errors is covered by Group B inspection, which includes tests for marking permanency, internal visual and mechanical correctness, bond strength, and solderability.

For the remaining two inspection groups, Group C is oriented toward die integrity and Group D covers package integrity. Among the Group C tests are steady state life, temperature cycling and constant acceleration. Group D includes lead integrity, hermeticity, and thermal and mechanical shock.

The combination of these 100% and sample tests assures that all TRW LSI Products are capable of meeting their specified requirements, and that reliability will meet or exceed customer requirements.

Sc	reen	Class S Method	Requirement	Class B Method	Requirement	Class C Method	Requirement
1.	Nondestructive bond pull	2023	100%		-		-
2.	Internal Visual	2010, condition A	100%	2010, condition B	100%	2010, condition B	100%
3.	Stabilization bake (no end point measurement required)	1008, condition C min., 24 hrs. min.	100%	1008, condition C min., 24 hrs. min.	100%	1008, condition C min., 24 hrs. min.	100%
4.	Temperature cycling	1010, condition C	100%	1010, condition C	100%	1010, condition C	100%
5.	Constant acceleration	2001, condition C (min.) Y1 orientation only	100%	2001, condition E (min.) Y1 orientation only	100%	2001, condition E (min.) Y1 orientation only	100%
6.	Visual inspection		100%		100%		100%
7.	Seal a) Fine b) Gross	1014	100%	1014	100%	1014	100%
8.	Particle impact noise detection (PIND)	2020, condition A or B	100%				
9.	Interim (pre-burn-in) electrical parameters	Per applicable device specification	100%	Per applicable device specification			
10.	Burn-in test	1015-240 hrs. @ 125°C min.	100%	1015-160 hrs. @ 125°C min.	100%		
11.	Interim (post-burn-in) electrical parameters	Per applicable device specification	100%				
12.	Reverse bias burn-in	1015, condition A or C 72 hrs. @ 150°C min.	100%				
13.	Interim (post-burn-in) electrical parameters	Per applicable device specification (Read and Record)	100%	Per applicable device specification	100%		
14.	Seal 12 a) Fine b) Gross	1014	100%				
15.	Final electrical test a) Static tests 1) 25°C (subgroup 1, Table 1, 5005)	Per applicable device specification	100%	Per applicable device specification	100%	Per applicable device specification	100%
	 Maximum 8 minimum rated operating temp. (subgroups 2, 3, Table 1 5005) 		100%		100%		-
	b) Dynamic tests and switching tests 25°C (subgroups 4, 9, Table 1, 5005)		100%		100%		-
	c) Functional tests 25°C (subgroup 7, Table 1, 5005)		100%		100%		100%
16.	Radiographic	2012 two views	100%				
17.	Qualification or quality conformance inspection test sample selection		Sample 1	Sample	Sample 1		1
18.	External visual	2009	100%		100%		100%

Table 2. 100% Screening Tests (Method 5004)

J

LSI Products Division TRW Electronic Components Group

Anno 1996 and an anno 1996 anno 1996
وريار ومناد والعاد الراكر الأراج
Carlos and C
and a second
Charles and the second second
State and a second second
and the second
L
Δ
<u></u>
A
a
/

Package Information

LSI Products Division TRW Electronic Components Group At TRW LSI Products, packaging is designed to meet the thermal, mechanical, and electrical needs of the circuit and the customer. In order to achieve this, all units must pass the MIL-M-38510 and MIL-STD-883 qualification test conditions for high reliability. TRW LSI Products offers a wide range of package designs to accommodate these requirements. The High Rel user has the option of 16-64 lead fully gold plated DIPs, flat packs and chip carriers.

Two types of chip carriers are included within this wide variety of packages: contact (also known as terminal or leadless) chip carriers, and leaded chip carriers. TRW chip carriers and their equivalent DIP configurations are indicated below:

Chip Carrier I/O	Equivalent DIP Package I/O 48 Lead, 64 Lead Top Brazed DIP (also 64 Lead Flatpack)		
68 Contact or Leaded Chip Carrier			
44 Contact Chip Carrier	40 Lead DIP		
28 Contact Chip Carrier	24 or 28 Lead DIP		
20 Contact Chip Carrier	16 or 18 Lead DIP		

Contact chip carriers conform to the JEDEC type C outline with 0.050 inch contact spacing located on plane 1 (heat dissipating side only). The body construction consists of multilayer ceramic with a metallized seal ring for gold solder lid seal. Contact chip carriers are used for mother board leaded conversions of ceramic/compliant PCB attachments by means of surface solder mounting techniques.

Leaded chip carriers are available in the 68 I/O configuration. The body is constructed identically to the 68 contact chip carrier however the contacts are located on plane 2 (side opposite the heat dissipating side). Gold plated "Kovar" leads, (0.018 inch wide x 0.006-0.010 inch thick x 0.400 inch long nominal) brazed to the contacts complete the package. This type of chip carrier is used for surface and through hole PCB attachments, and when external heat sinks are required.

There are three major advantages to using chip carriers over standard DIP packages. First and foremost is the economy of chip carrier size (see the chart below for approximate area differences in square inches).

I/O Count	Chip Carrier Area ¹	DIP Area ¹	Ratio: CC to DIP
68	0.903	2.560	0.353
44	0.432	1.200	0.353
28	0.203	0.840	0.242
20	0.123	0.270	0.456

1. Square Inches

Secondly, chip carriers offer a reasonable size package for present and future high pin count circuits. For example, a 68 Contact Chip Carrier is only .965 inches per side and occupies a 0.93 square inch area, which is approximately the equivalent of a 48 lead DIP (1.440 square inches). When considering the difficulties of handling and inserting a 48 lead DIP into a PCB, the impracticality of a 68 lead DIP (3.4 inches x 1.2 inches, if available) is evident. The third advantage is that chip carriers optimize electrical and thermal characteristics. Shorter leads of approximately equal length reduce lead resistance. inductance and capacitance. The longest trace on a 64 lead DIP is almost eight times that of the longest trace on a 68 Contact Chip Carrier. In addition, the thermal impedance characteristics of the chip carrier are approximately equal to those of a DIP. The Leaded Chip Carrier also provides the external heat sink option, allowing the heat generated by the device to be dissipated through the PCB or to the surrounding environment.

Chip carriers can typically reduce board space requirements as much as three to one over dual-inline packages.

Cerdip packages provide similar mechanical, and identical electrical configurations as the dual-in-line packages without the full gold solder seal and lead finish, making them more economical. The body construction consists of two single layer ceramic pieces that "sandwich" an aluminized Kovar lead frame. The leads are matte tin finished for easy solderability.

Thermal considerations are an important aspect of package design. Much computer modeling of die/package relationships is required to ensure the integrity of the products over all temperature ranges. A list of thermal resistivity (Θ jc), which is material and geometry dependent, is listed for all products in Table 1. This list reflects the relationship of the die and the package only. Θ ja, a relationship between die, package and outside environment, is dependent on the particular application. Contact the factory for specific Θ ja listings.

Product/	Maximum
Package	Calculated ⊖jc
MPY008HJ5	9.557°C/W
MPY008HC2	7.183
MPY08HUJ5	9.557
MPY012HJ1, C1	5.877
MPY012HF1	3.631
MPY016HJO, J1, J3, C1	7.908
MPY016HF1	4.956
MPY016KJ1	6.753
MPY112KJ4	10.438
TDC1001/1002J8	22.869
TDC1004J9	9.908
TDC1004C4	6.417
TDC1005J9	12.544
TDC1006J9	11.075
TDC1006C4	7.169
TDC1007J1, C1	3.671
TDC1008J4, C1	7.908
TDC1009J1, C1	5.428
TDC1010J1, C1	3.382
TDC1010F1	1.991
TDC1011J7	15.297
TDC1011B7	19.996

Table 1 Continues on following page.

Product/ Package	Maximum Calculated ⊖jc	Product/ Package	Maximum Calculated ⊖jc	
TDC1014 TDC1014C3	9.804 6.335	TDC1023J7 TDC1023C3	5.906 3.638	
	13.130	TDC1025C1, L1	7.814	
TDC1016 TDC1016J5 TDC1016C2 TDC1016	13.985 13.985 10.781 18.139	TDC1027J7 TDC1027C3 TDC1027B7	8.411 5.342 11.411	
TDC1010	20.140	TDC1028J4	5.142	
TDC1018C3	11.897 25.240	TDC1029J7	18.548	
TDC1018B7		TDC1030J6	10.740	
TDC1019C1, L1, J1, J0	3.404	TDC1030C3	6.952	
TDC1021	23.884	TDC1030B6	14.289	
TDC1021C4	17.212	TDC1043J3	11.364	
TDC1021	29.211	TDC1048J6	7.752	
TDC1022J1, C1	5.178	TDC1048C3 TDC1048B6	5.008 10.566	

Table I

LSI Products Division TRW Electronic Components Group

J4 Package 48 Lead Hermetic Ceramic DIP

Dimensions

			VIAM DOM-OFFICERS CONSTRUCTIONS IN TRANSMITTER AND TRANSMITTER		
	Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.		
A	.126 (3.20)	.166 (4.22)			
b	.016 (0.41)	.020 (0.51)			
b ₁	.045 (1.14)	.055 (1.40)			
c	.009 (0.23)	.012 (0.30)			
D			2.400 ± .024 (60.96 ± 0.61)		
E			.595 ± .010 (15.11 ± 0.25)		
E1			.600 ± .010 (15.24 ± 0.25)		
e			.100 ± .005 (2.54 ± 0.13)		
L	.125 (3.18)	.175 (4.45)			
۵	.040 (1.02)	.060 (1.52)			
S	.043 (1.09)	.057 (1.45)			

Dimensions

	E1
SEATING PLANE	

Inches (Millimeters)			
Sym	Min	Max	Nom ± Tol.
A	.126 (3.20)	.166 (4.22)	
b	.016 (0.41)	.020 (0.51)	
b ₁	.035 (0.89)	.045 (1.14)	
c	.009 (0.23)	.012 (0.30)	
D			2.000 ± .020 (50.80 ± 0.51)
E		[.590 ± .010 (14.99 ± 0.25)
E1			.600 ± .010 (15.24 ± 0.25)
e			.100 ± .005 (2.54 ± 0.13)
L	.125 (3.18)	.175 (4.45)	
a	.040 (1.02)	.060 (1.52)	
S	.043 (1.09)	.059 (1.50)	

J6 Package 28 Lead Hermetic Ceramic DIP

Dimensions

Inches (Millimeters)				
.126 (3.20)	.166 (4.22)			
.016 (0.41)	.020 (0.51)			
.045 (1.14)	.055 (1.40)			
.009 (0.23)	.012 (0.30)			
		1.400 ± .014 (35.56 ± 0.36)		
}	{	.590 ± .010 (14.99 ± 0.25)		
	·	.600 ± .010 (15.24 ± 0.25)		
]	.100 ± .005 (2.54 ± 0.13) O.C.		
.125 (3.18)	.175 (4.45)			
.040 (1.02)	.060 (1.52)			
.043 (1.09)	.059 (1.50)			
	Min .126 (3.20) .016 (0.41) .045 (1.14) .009 (0.23) .125 (3.18) .040 (1.02) .043 (1.09)	Inches Inches Image: Max .126 (3.20) .166 (4.22) .016 (0.41) .020 (0.51) .045 (1.14) .055 (1.40) .009 (0.23) .012 (0.30) .125 (3.18) .175 (4.45) .040 (1.02) .060 (1.52) .043 (1.09) .059 (1.50)		

Dimen	Dimensions			
Sym	Min	Max	Nom ± Tol.	
A	.126 (3.20)	.166 (4.22)		
Ь	.016 (0.41)	.020 (0.51)		
b1	.035 (0.89)	.045 (1.14)		
c.	.009 (0.23)	.012 (0.30)		
D		1	1.200 ± .012 (30.48 ± 0.30)	
E			.590 ± .010 (14.99 ± 0.25)	
E1			.600 ± .010 (15.25 ± 0.25)	
e			.100 ± .005 (2.54 ± 0.13)	
L	.125 (3.18)	.175 (4.45)		
۵	.040 (1.02)	.060 (1.52)		
S	.043 (1.09)	.057 (1.45)		

J8 Package 18 Lead Hermetic Ceramic DIP

Dimen	Dimensions				
	Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.		
A	.110 (2.79)	.150 (3.81)			
b	.016 (0.41)	.020 (0.51)			
b ₁	.049 (1.24)	.059 (1.50)			
c	.009 (0.23)	.012 (0.30)			
D			.900 ± .010 (22.86 ± 0.25)		
E			.295 ± .008 (7.49 ± 0.20)		
E1			.300 ± .010 (7.62 ± 0.25)		
e			.100 ± .005 (2.54 ± 0.13)		
L	.125 (3.18)	.170 (4.32)			
۵	.025 (0.64)	.045 (1.14)			
S	.043 (1.09)	.057 (1.45)			

J9 Package 16 Lead Hermetic Ceramic DIP

Dimensions				
Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.	
A	.110 (2.79)	.150 (3.81)		
Ь	.016 (0.41)	.020 (0.51)		
^b 1	.049 (1.24)	.059 (1.50)		
C	.009 (0.23)	.012 (0.30)		
D	.792 (20.12)	.808 (20.52)		
E			.295 ± .008 (7.50 ± .205)	
El		l	.300 ± .010 (7.62 ± 0.25)	
e			.100 ± .005 (2.54 ± 0.13)	
L	.125 (3.18)	.170 (4.32)		
٥	.025 (0.64)	.045 (1.14)		
s	.043 (1.09)	.057 (1.45)		

B6 Package 28 Lead CERDIP

Nimensions

Dilliens	Differizione				
And the second second	Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.		
A		.225 (5.72)			
Ь	.014 (0.36)	.023 (0.58)			
b1	.030 (0.76)	.070 (1.78)			
c	.008 (0.30)	.015 (0.38)			
D			1.465 ± .025 (37.21 ± 0.64)		
E	.510 (12.95)	.590 (14.99)			
E1			.600 ± .010 (15.24 ± 0.25)		
e		ĺ	.100 ± .005 (2.54 ± 0.13)		
L	.125 (3.18)	.200 (5.08)			
۵	.015 (0.38)	.075 (1.91)			
S		.098 (2.49)			
α	0°	15°			

Nom ± Tol.

C1 Package 68 Contact Hermetic Ceramic Chip Carrier

		Inches (Mi	llimeters)
Sym	Min	Max	Nom ± Tol.
A	.082 (2.08)	.100 (2.54)	· · · · · · · · · · · · · · · · · · ·
В	.020 (0.51)	.030 (0.76)	
D1	.070 (1.78)	.080 (2.03)	ļ
E			.9525 ± .0125 (24.19 ± .3175) sq.
e			.050 ± .005 (1.27 ± 0.13) O.C.
h			.040 ± .005 (1.02 ± 0.13) 3 PLCS
j			.020 ± .005 (0.51 ± 0.13)
L	.045 (1.14)	.055 (1.40)	
L2	.080 (2.03)	.090 (2.29)	

C2 Package 44 Contact Hermetic Ceramic Chip Carrier

m ¹	
Dim	ensions

Inches (Millimeters)			
Sym	Min	Max	Nom ± Tol.
A	.068 (1.73)	.084 (2.13)	
В	.020 (0.51)	.030 (0.76)	
D1	.070 (1.78)	.080 (2.03)	
E			$.652 \pm .010$ (16.56 \pm 0.25) sq.
e			.050 ± .005 (1.27 ± 0.13) O.C.
h			.040 ± .005 (1.02 ± 0.13) PLCs
i			.020 ± .005 (0.51 ± 0.13) PLC
L	.045 (1.14)	.055 (1.40)	
١ ₂	.080 (2.03)	.090 (2.29)	

LSI Products Division TRW Electronic Components Group

C3 Package 28 Contact Hermetic Ceramic Chip Carrier

Dimensions				
Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.	
A	.064 (1.63)	.078 (1.98)		
В	.020 (0.51)	.030 (0.76)		
D	.070 (1.78)	.080 (2.03)		
E			.450 ± .008 (11.43 ± 0.20) sq.	
e			.050 ± .005 (1.27 ± 0.13) O.C.	
h			.040 ± .005 (1.02 ± 0.13) x 45°, 3 PLCS	
j			.020 \pm .005 (0.51 \pm 0.13) x 45°	
L	.045 (1.14)	.055 (1.40)		
L ₂	.080 (2.03)	.090 (2.29)	· · · · · · · · · · · · · · · · · · ·	

Ref. 90X00181

25

19

L1 Package 68 Leaded Hermetic Ceramic Chip Carrier

Dimensions

Inches (Millimeters)					
Sym	Min	Max	Nom ± Tol.		
A	.089 (2.26)	.100 (2.54)			
b	.016 (0.41)	.020 (0.51)			
C	.009 (0.23)	.012 (0.30)			
E			.9525 ± .0125 (24.19 ± .3175) sq.		
e			.050 ± .005 (1.27 ± 0.13) O.C.		
L	.350 (8.89)	.400 (10.16)			

F1 Package 64 Leaded Hermetic Ceramic Flatpack

Dimensions

	Inches (Millimeters)				
Sym	Min	Max	Nom ± Tol.		
A	.064 (1.63)	.079 (2.01)			
Ь	.016 (0.41)	.020 (0.51)			
c	.007 (0.18)	.010 (0.25)			
E			.900 ± .009 (22.86 ± 0.23)		
E ₁			.800 ± .008 (20.32 ± 0.20)		
e	}		.050 ± .005 (1.27 ± 0.13)		
ι	.350 (8.89)	.400 (10.16)			

Ref. 90X00181

LSI Products Division TRW Electronic Components Group

K

LSI Products Division TRW Electronic Components Group

нара на Мананана на Палинина на Палинина на на кака на	

Glossary

	the second se
a an	ada aya in ay waxaa aha barra barra da waxada
	WE THE STORE STORES
	anna constante a resulta antigio de constante antigio de constante
	We what has the state of the property of the
and the second statement of the se	NUMBER OF THE REPORT OF THE PARTY OF THE
	$CPe(\mathbf{r}_{1}^{(n)},\mathbf{r}_{2}^{(n$
accessing and the second state of the second s	and a second state of the second s
	19 × 45 % 20 %
CONTRACTOR OF CONT	AND FRANCISCOM AND A LOCAL ADDRESS OF THE STREET
COMPRESS OF DESCRIPTION OF	
and an and the second second second second second	
and the second entering subscription and	
alamaning and any and search readers and search and	71
MANAGEMENT BLACKE OF A STRATE WAS	50
INVESTIGATION AND CAREFUL TO CONTRACT. IN CONTRACT,	7
SHERING STREET, STREET	,
NATIONAL STREET, STREE	
Man March Leanstein Son	
Alternational Antonio and a the second	

-

LSI Products Division TRW Electronic Components Group

ACC Accumulate (Control)

An active-HIGH control signal which causes the contents of the product register to be added to (or subtracted from) the output of the multiplier in a multiplier-accumulator.

AGND Analog Ground

Ground reference point for analog power supply and analog circuitry.

BW Bandwidth

A large-signal parameter which represents the upper limit of the frequency band that can be accurately digitized by an A/D converter. The lower limit of this band is DC. The conditions that apply to the BW specification are:

- 1. Full-scale sinewave applied to the analog input.
- 2. A/D converter operating at maximum conversion rate (F_S).
- 3. Worst-case power supply voltages applied to A/D converter.
- 4. Operation over full temperature range.

BWR Reference Bandwidth

Refers to the small signal frequency response of the reference input. The converter will operate ratiometrically within this range. The conditions that apply to the BWR specification are:

- Small-signal (-10dB) sinusoidal variation superimposed onto nominal DC reference value.
- 2. Maximum reference input frequency which is attenuated less than 3dB at the output (relative to DC response) is the reference bandwidth. The lower limit is DC.

CI Digital Input Capacitance

Parasitic capacitance between a digital input and digital ground.

CIN Input Capacitance

Parasitic equivalent capacitance between analog inputs of an A/D converter and analog ground. One component of the input capacitance varies with input voltage, while total input capacitance includes stray capacitance due to packaging and other effects.

Cn Output Capacitance

Parasitic capacitance between the output terminal of a D/A converter and analog or digital ground.

CONV Convert (Input)

An input signal whose rising edge initiates sampling in a flash analog-todigital converter. The input signal is quantized after a delay of t_{STO}.

CREF Input Capacitance, Reference

Parasitic capacitance between the reference input terminal and analog ground.

D_{GND} Digital Ground

Ground reference point for digital power supply and digital circuitry.

DG Differential Gain

A measure of the variation in amplitude of the color subcarrier component (chrominance) of a video signal when superimposed on a large low-frequency (luminance) signal. The units of differential gain are expressed in percentage of amplitude variation.

DP Differential Phase

A measure of the variation in phase angle of the color subcarrier component (hue) of a video signal when superimposed on a large low-frequency (luminance) signal. The units of differential phase are expressed in degrees of phase variation.

EAP Aperture Error

An equivalent aperture time corresponding to A/D conversion degradation, encompassing all aperture effects, including aperture jitter and aperture time.

E_G Absolute Gain Error

The variation in the slope (gain) of the transfer function of a converter with respect to an established ideal transfer function. This error may be eliminated by adjusting the reference voltage or current applied to the device.

ELD Differential Linearity Error

The difference between the actual differential linearity and the ideal differential linearity of a device. Differential linearity is a measure of the variation of the separation between the midpoints of adjacent conversion levels.

ELI Integral Linearity Error (Independent)

The maximum difference between actual transfer characteristic of a converter and the straight line that best fits the data. E_{LI} is usually expressed as a percentage of full-scale or in an equivalent number of Least Significant Bits.

ELI Integral Linearity Error (Terminal-Based)

The maximum difference between the actual transfer characteristics of a converter and the straight line that passes through the end-points (terminals) of that data.

EOB Offset Error, Bottom

The voltage difference between the voltage applied to the terminal at the bottom of the reference resistor chain (R_B) and a point that is 1/2 LSB more negative than the threshold voltage of the last (bottom) comparator in the chain. E_{OB} is due to parasitic resistances in the path between the integrated circuit and the terminal.

EOT Offset Error, Top

The voltage difference between the voltage applied to the terminal at the top of the reference resistor chain (R_T) and a point that is 1/2 LSB more positive than the threshold voltage of the first (top) comparator in the chain. E_{OT} is due to parasitic resistances in the path between the integrated circuit and the terminal.

FS Maximum Conversion Rate

The maximum frequency that can be applied to a clock or convert input while insuring that the conversion accuracy is not degraded. This parameter is expressed as a minimum to indicate that the device will operate correctly at a conversion rate of "tat least" that specified rate.

FT_C, FT_D, FT_R Feedthrough -clock, -data, -reference

A measure of unwanted leakage from an input port of a device to another port (e.g., the analog output of a D/A converter), which is expressed in decibels relative to the full-scale value of the output. Clock and data feedthrough refer to spurious output noise arising from logic transitions at the clock and data inputs. Reference feedthrough relates to output variation as a function of reference variation in a D/A converter when data inputs correspond to a zero output.

G_C Peak Glitch Charge

The maximum product of the glitch current and the duration of the glitch; usually given in units of picoCoulombs (pC). Since glitches tend to be symmetric, the average glitch charge is usually much less than the peak glitch charge.

GE Peak Glitch "Energy" (Area)

The maximum product of the glitch voltage and the duration of the glitch; usually given in units of picoVolt-seconds (pV-sec). Since glitches tend to be symmetric, the average glitch area is usually much less than the peak glitch area.

G Peak Glitch Current

The transient current deviation from the ideal output current during an input code transition.

Gv Peak Glitch Voltage

The transient voltage deviation from the ideal output voltage during an input code transition.

ICB Input Constant Bias Current

The constant current drawn into the input of a flash A/D converter which is the sum of input currents of comparators which are active. This current varies with the input signal level, as comparator input transistors are cut-off or become active. The highest I_{CB} occurs when the input voltage to the converter is higher than all the comparator threshold voltages.

ICC Positive Supply Current

Current flowing into the positive power supply terminals from the positive power supply.

IFE Negative Supply Current

Current flowing out of the negative power supply terminals into the negative power supply.

Ij Input Current, Maximum Input Voltage

Current flowing into a digital input under worst-case power supply and input voltage conditions.

IIH Input Current, Logic High

Current flowing into a digital input when a logic HIGH is applied to that input.

IL Input Current, Logic Low

Current flowing into a digital input when a logic LOW is applied to that input.

InF Output Offset Current

The residual output current of a D/A converter that flows when all internal current sinks are switched off.

IOH Output Current, Logic HIGH

The current that flows out of a digital output into an external load when that output is in a logic HIGH state.

IOL Output Current, Logic LOW

The current that flows between an external load and a digital output when that output is in a logic LOW state.

ION Maximum Current, - Output

The maximum current that flows into the "OUT-" output of a D/A converter.

IOP Maximum Current, + Output

The maximum current that flows into the "OUT+" output of a D/A converter.

Ins Short Circuit Output Current

The current that flows from a digital output to ground when that output is connected to digital ground and is forced to a logic HIGH state.

IREF Reference Current

Current flowing into or out of the reference input terminals of an A/D or D/A converter.

ISB Input Clock-Synchronous Bias Current

The variation of input bias current which occurs when the comparators are strobed by the convert clock. The I_{SB} component of the input bias current is normally much smaller than the Input Constant Bias Current, I_{CB} .

MSPS Megasamples Per Second

The abbreviation for the conversion rate (clock or convert frequency) at which an A/D or D/A converter is operating.

NPR Noise Power Ratio

The Decibel ratio of the noise level in a measuring channel with the baseband fully noise loaded, to the level in that channel with all of the baseband noise loaded except the measuring channel.

PREL Preload (Control)

A control signal which determines (in conjunction with the three-state control pins) which of three signals is to be loaded into the output register at the rising edge of the product clock: the result of the calculations which were just performed, the present contents of the output register, or a value applied to the output port by external circuitry.

PSS Power Supply Sensitivity

A measure of DC variation of an output under consideration (e.g., the analog output of a D/A converter) as the power supply voltage is varied around the nominal value. PSS is specified in milliamps or millivolts of output change per volt of supply change.

PSRR Power Supply Rejection Ratio

A measure of high-frequency noise rejection from the power supply inputs of a device to the output under consideration (e.g., the analog output of a D/A converter). Expressed in decibels relative to full-scale output. Generally, PSRR decreases with increasing frequency, and for this reason is often specified at more than one frequency.

Q Code Size

The nominal amount of voltage change at the analog input of the converter required to change the digital output data by one Least Significant Bit. Q is calculated from:

_		Full-scale	input	voltage	range		A
u	-					-	- 11

Total number of possible codes -1 [2N]-1 where A is typically 0.5, 1.0, or 2.0 Volts depending on the specific A/D converter and N is the number of bits of resolution of the specific converter.

RES Resolution

The smallest level separation (input level for A/Ds and output level for D/As) that is unambiguously distinguishable over the full-scale range of a converter. It is expressed as a percentage of full-scale or as an equivalent number of bits; usually the number of data inputs of a D/A or data outputs of an A/D converter.

RIN Equivalent Input Resistance

The equivalent resistance between the analog input of an A/D converter and analog ground.

Rn Equivalent Output Resistance

The effective equivalent resistance between an analog output terminal of a D/A converter and analog ground.

R_{REF} Total Reference Resistance

Total resistance between the top (R_T) and bottom (R_B) of the reference resistor chain.

RS Right Shift (Control)

A control signal which changes the output format to permit a valid result for the product of two most negative numbers.

SNR Signal-to-Noise Ratio

Signal-to-noise ratio is the ratio of the output signal (peak or RMS) to the RMS output noise level. Since the generation of spurious output noise in a converter varies with conversion rate and input frequency, SNR figures under various conditions are often specified. SNR is expressed in dB relative to the full-scale value.

SUB Subtract (Control)

A control signal which determines whether the present contents of the output register is added to (SUB = LOW) or subtracted from (SUM = HIGH) the product at the output.

TA Ambient Temperature

The temperature of the air in the immediate vicinity of the package containing an integrated circuit.

TC Two's Complement (General Definition)

Two's complement is a binary numbering system in which the Most Significant Bit (MSB) carries the sign information by virtue of a negative place value. In two's complement, an MSB of ZERO signifies a positive number, a ONE denotes a negative number, and the negative number order is reversed from straight binary. That is, the number which consists of all ONEs is the least negative number, and the number which consists of a ONE and all ZEROs is the most negative number.

TC Two's Complement (Control)

An active HIGH signal which designates one or both inputs as two's complement numbers. If TC is LOW, unsigned magnitude processing will be used. Note that some parts allow independent designation of each input as two's complement or unsigned magnitude, and other parts do not.

T_C Case Temperature

The temperature of the package containing an integrated circuit.

TCG Gain Error Tempco

The factor which linearly approximates the variation with temperature of Absolute Gain Error, E_G .

TCO Offset Error Tempco

The factor which linearly approximates the variation with temperature of Offset Error Top (E_{OT}) and Offset Error Bottom (E_{OB}).

to Output Delay Time

The period between the rising edge of the output register clock and the time when output data is guaranteed to be stable and valid.

t_H Hold Time

The time period after the operative edge of a CLK signal during which input data must be constant in order to be correctly registered.

t_{HO} Output Hold Time

The period between the rising edge of the output register clock and the time when output data begins to change to its next value.

tpw Pulse Width

The time period between consecutive edges of a logic pulse.

tpwH Pulse Width, HIGH

The time period between the rising edge of a logic pulse and the falling edge of that pulse.

tpwi Pulse Width, LOW

The time period between the falling edge of a logic pulse and the rising edge of the next pulse.

TRIL Three-State Least Significant Product (Control)

A control which enables the output state for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH.

TRIM Three-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH.

ts Setup Time

The time period prior to the operative edge of the clock signal during which input data must be stable in order to be correctly registered.

TSL Three-State Least Significant Product (Control)

A control which enables the output stage for the least significant product when in the LOW state, and places the output stage for the least significant product in the high-impedance state when HIGH. A HIGH on this control also forces the most significant product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

TSM Three-State Most Significant Product (Control)

A control which enables the output stage for the most significant product when in the LOW state, and places the output stage for the most significant product in the high-impedance state when HIGH. A HIGH on this control also forces the most significant product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

tSTO Sampling Time Offset

Sampling Time Offset as it relates to flash A/D converters is a measure of the time delay from convert clock to the actual sampling time. t_{STO} is determined by logic propagation delays and time taken for comparator activation and latch-up.

TSX Three-State Extended Product (Control)

A control which enables the output stage for the extended product when in the LOW state, and places the output stage for the extended product in the high-impedance state when HIGH. A HIGH on this control also forces the extended product section of the output register to be preloaded at the rising edge of the product clock when PREL is active.

tTR Transient Response Time

Transient Response Time is the time taken by the A/D's comparators to recover from full-scale input transitions and convert without increased code errors.

VAGND Analog Ground Voltage

Analog ground voltage is a measure of the voltage at an analog ground terminal, usually measured with respect to digital ground.

V_{CC} Positive Supply Voltage

The positive power supply voltage required for operation of a device.

VEE Negative Supply Voltage

The negative power supply voltage required for operation of a device.

VEEA Analog Supply Voltage

The negative power supply voltage associated with the analog portion of a device.

VEED Digital Supply Voltage

The negative power supply voltage associated with the digital portion of a device.

VICM Input Voltage, Common Mode Range

The operational limit over which a differential logic input voltage may be varied.

VIDF Input Voltage, Differential

The voltage difference between a logic input and its complementary input.

VIH Input Voltage, Logic HIGH

The voltage required on a digital input in order for that input to be forced to a valid logic HIGH state.

VII. Input Voltage, Logic LOW

The voltage required on a digital input in order for that input to be forced to a valid logic LOW state.

VOCN Voltage Compliance, - Output

A measure of the range over which the output voltage of a current generator may be varied. V_{OCN} is the voltage compliance of the -output of a D/A converter.

V_{OCP} Voltage Compliance, + Output

 V_{OCP} is the voltage compliance of the +output of a D/A converter. See V_{OCN} .

VOH Output Voltage, Logic HIGH

The voltage present on a digital output when it is in the logic HIGH state and is driving a specified load.

VOL Output Voltage, Logic LOW

The voltage present on a digital output when it is in the logic LOW state and is driving a specified load.

VOZS Output Voltage, Zero Scale

The residual output voltage of a D/A converter that appears at its output when all internal current sinks are switched off.

V_{RB} Reference Input Voltage (Bottom)

The voltage applied to the terminal corresponding to the bottom of the reference resistor chain, R_B of an A/D converter.

V_{RT} Reference Input Voltage (Top)

The voltage applied to the terminal corresponding to the top of the reference resistor chain, R_T of an A/D converter.

		A
	- • • · · · · · · · · · · · · · · · · ·	2
		<u> </u>
press (1), (2), (2), (2), (2), (2), (2), (2), (2		
Veh 200 C		
He gave of convex phononality and a second strategy and the		

Ordering Information

LSI Products Division TRW Electronic Components Group

Ordering Information

For Special Assistance **Call The TRW Sales Office Nearest You:** North American Sales Offices Alabama, TRW ECG Huntsville Arizona, TRW ECG Scottsdale S. California, isds Los Angeles Woodland Hills Santa Ana San Diego N. California, Straube Assoc. Mountain View Colorado, Straube Assoc. Westminster Connecticut, TRW ECG Rowayton Florida, TRW ECG Ft. Lauderdale Orlando Georgia, TRW ECG Norcross Idaho, TRW ECG Boise Illinois, TRW ECG Chicago Indiana, R.O. Whitesell Ft. Wayne Indianapolis Kokomo lowa, C.H. Horn Cedar Rapids Kansas, Midtec Assoc. Desoto Kentucky, R.O. Whitesell Louisville Maryland, TRW Baltimore Massachusetts, TRW ECG Framingham Massachusetts, Byrne Assoc. Maynard Michigan, R.O. Whitesell Southfield St. Joseph Grand Rapids Minnesota, TRW ECG Minneapolis Missouri, J.G. Macke Co. St. Louis New York, TRW ECG Rochester Metro North Carolina, TRW ECG Greensboro

		Obio, B.O. Whitesell		
		Cincinnati	(513)	521,2290
		Cloveland	12161	AA7 0020
		Columbus	(210)	000 0300
		Deutan	(014)	000-0000
		Dayton	(513)	298-9040
		Oregon, TRW ECG		
		Portland	(503)	620-5032
(205)	533-7600	E. Pennsylvania, TRW ECG		
		Bala Cynwyd	(215)	667-3400
(602)	994-0441	W Benneylyania B.O. Whitesell		
		Dittehurgh	(11)	002 0101
(213)	478-0183		(412)	302-0101
(213)	883-7130	Puerto Rico, Electronic Sales Assoc.		
1714	973,2162	Rio Piedras	(809)	/69-2911
(610)	571.1544	Tennessee, R.O. Whitesell		
1010/	3/1-1344	Greeneville	(615)	639-6154
	000 0000	Texas Technology Sales Co.		
(415)	969-6060	Austin	(512)	345-2331
		Tavan TRW FCG	10121	
(303)	426-0890	Dallas	121.45	240 0000
		Dallas	12141	240-0000
(203)	853-4466	Housion	1/13	//2-0041
12001	000 1100	El Paso	(915)	594-8259
12051	0000 277	Utah, Straube Assoc.		
10001	067 3660	Salt Lake City	(801)	263-2640
13031	007-0000	Virginia, TRW ECG		
	447.0454	Richmond	(804)	288-8334
(404)	447-6154	Washington, TRW ECG		
		Seattle	(206)	641-9996
		Wisconsin, TRW FCG		
		Bronkfield	(414)	784-7773
(312)	693-7730	Conside Depmork Electronic Nikt		
		Canada, Henniark Liccublic Inkt.	10121	257 1400
(219)	432-5591		(013)	207-1490 ADA E AAE
(317)	359-9283	Toronto	(410)	494-0440
(317)	457-9127	International Sales Offices		
		International Jaies Offices		
(319)	393-8703	Australia STC Cannon		
		Moorabbin Vic	555.0	566
(013)	441 6565	Austria Transistar Vertricke Carbli	000-0	1000
1010/	441 0000		000.0	00401
1000	400 2000		222-0	129401
15021	420-7090	Belgium, HEA Belgium		
		Bruxelles	(02)	511/089
(301)	964-9110	Brazil, TRW Mialbras, S.A.		
		Sao Paulo	2409	211
(617)	620-0625	China, Tektron Electronics		
		Kowloon	3-856	6199
(617)	897-3131	Denmark, A/S Nordisk Elektronik		
		Herley	(02)	842000
(313)	559-5454	Finland OV Fintrania AB	(02)	0.2000
(616)	983-7337	Halsiaki	(00)	602 6022
(616)	942-5420		1001	032-0022
1010	010 0120	France, Hadio Equipements-Antares	(04)	7504444
(612)	854,6616	Paris	(01)	/581111
10121	034-0010	Germany, TRW EBV GmbH		
101.0	100 0000	Muenchen	(089)	7103-0
1314	432-2830	Jermyn GmbH		
		Bad Camberg	(0643	34) 23-0
(/16)	425-37/5	Hong Kong, Tektron Electronics		
(203)	003-4466	Kowloon	3-856	6199
10 (-)		India, Motwane Private Ltd.		
(919)	852-4676	Bombay	2738	45
		Italy, Exhibo Italiana S.R.L.		
		Monza	(039)	360021

Janan Nihon Teksel Co. Ltd	
Tokyo	(03) 461-512
Japan, TRW Overseas Inc. Tokyo	(03) 434-088
Korea, Dong Young Trading Co. Secul	794-4812
Netherlands, Koning En Hartman N.V. Den Haag	(70) 210101
New Zealand, AWA Porirua	644375069
Norway, Nordisk Elektronik Norge A/S Hvalstad	(02) 786210
Seamax Engineering Private Ltd. Singapore	65-747-6155
South Africa, Electrolink Pty Capetown Johannesburg	021-5350 011-6181027
Spain, Unitronics S.A. Madrid	11) 2425204
Sweden, Nordisk Elektronik AB Stockholm	(08) 635040
Switzerland, Baerlocher AG Zurich	(01) 429900
Taiwan, Sea Union Eng. Taipei	751-2062
United Kingdom, MCP Electronics Ltd. Middlesex	(01) 9025941
Hi-Tek Distribution, Ltd. Cambridge	(0954) 8199(

TRW LSI Products are available off the shelf from the following distributors:

Alabama		
Arrow Electronics		
3611 Memorial Pkway South	(205)	882-2730
Huntsville, AL 35801		
Hall-Mark Electronics		
4900 Bradford Drive	(205)	837-8700
Huntsville, AL 35807		
Hamilton/Avnet		
4692 Commercial Drive	(205)	837-7210
Huntsville, AL 35805		
Arizona		
Arrow Electronics		
2127 West 5th Place	(602)	968-4800
Tempe, AZ 85281		
Hall-Mark Electronics		
4040 F Baymond	(602)	243-6601
Phoenix, AZ 85040	10021	210 0001
Hamilton/Avnet		
505 S. Madison Drive	(602)	231-5142
Temne, AZ 85281	(002)	2010112
o rt 1		
California		
Arrow Electronics	(010)	701 7500
19/48 Dearborn Street	12131	/01-/500
UNATSWORTH, LA 91311		
2961 Dow Avenue	(714)	838-5422
Tustin, CA 92660		

9511 Ridgehaven Court San Diego, CA 92123

	(02) 461 5121	521 Weddet Drive Suppyyale CA 94086	(408)	745-6600
	103/ 401-0121	Hall-Mark Electronics		
	(03) 434-0881	3878 Ruffin Road, Unit 10A San Diego, CA 92123	(619)	268-1201
	794-4812	500 Mercury Drive Sunnyvale, CA 94086	(408)	773-9900
	(70) 210101	Hamilton/Avnet 10950 W. Washington Blvd.	(213)	558-2824
	644375069	4545 Viewridge Avenue	(619)	571-7523
	(02) 786210	San Diego, CA 92123 1175 Bordeaux Drive	(408)	743-3355
	65-747-6155	Sunnyvale, CA 94086 3170 Pullman Street	(714)	641-1410
	021-5350	Costa Mesa, CA 92626		• · · · · · · ·
	011-6181027	4103 Northgate Blvd. Sacramento, CA 95834	(916)	920-5531
	11) 24252D4	20501 Plummer Street Chatsworth, CA 91311	(213)	700-2600
	(08) 635040	Colorado		
	(01) 429900	Arrow Electronics 1390 S. Potomac Street Aurora, CO 80012	(303)	696-11 11
	751-2062	Hall-Mark Electronics	12021	604 1662
•	(01) 9025941	Englewood CO 80112	(000)	034-1002
	(0954) 81996	Hamilton/Avnet 8765 E. Orchard Road	(303)	740-1018
		Suite 708		
		Englewood, LU BUTTT		
		Connecticut		
f	the shelf	Connecticut Arrow Electronics 12 Beaumont Road	(203)	265-7741
f	the shelf	Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492	(203)	265-7741
f	the shelf	Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 05492 Hamilton/Avnet Commerce Industrial Park	(203)	265-7741
fi	t he shelf	Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 05492 Hamilton/Avnet Commerce Industrial Park Commerce Drive	(203) (203)	265-7741 797-2800
fi	the shelf 205) 882-2730	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06610	(203) (203)	265-7741 797-2800
f (the shelf 205) 882-2730 205) 837-8700	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics	(203) (203)	265-7741 797-2800
f (the shelf 205) 882-2730 205) 837-8700	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108	(203) (203) (305)	265-7741 797-2800 776-7790
f ((the shelf 2051 882-2730 2051 837-8700 2051 837-7210	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309	(203) (203) (305)	265-7741 797-2800 776-7790
fi (the shelf 205) 882-2730 205) 837-8700 205) 837-7210	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Buildian B	(203) (203) (305)	265-7741 797-2800 776-7790 725-1480
f ((the shelf 205) 882-2730 205) 837-8700 205) 837-7210	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 068100 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905	(203) (203) (305) (305)	265-7741 797-2800 776-7790 725-1480
ff ((t the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1621 Wast Neylabb Boad	(203) (203) (305) (305)	265-7741 797-2800 776-7790 725-1480
f	the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800	Englewood, CD 80711 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 FL Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road FL Lauderdale, FL 33309	(203) (203) (305) (305)	265-7741 797-2800 776-7790 725-1480 971-9280
f ((the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800 602) 243-6601	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Industrial Park Commerce Drive Danbury, CT 06610 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100	(203) (203) (305) (305) (305) (305)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020
	the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800 602) 243-6601	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100 Orlando, FL 32809	(203) (203) (305) (305) (305) (305)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020
	the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800 602) 243-6601 602) 231-5142	Englewood, CD 80711 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100 Orlando, FL 32809 15301 Roosevelt Blvd, #303 Clearwater, FL 33520	(203) (203) (305) (305) (305) (301) (813)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020 530-4543
ff () () ()	the shelf 205) 862:2730 205) 837:8700 205) 837:7210 602) 968:4800 602) 243:6601 602) 231:5142	Englewood, CD 80111 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 HallMark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100 Orlando, FL 32809 15301 Rossevelt Blvd. #303 Clearwater, FL 33209 Hamilton/Avnet 6800 NW 15th Way	(203) (203) (305) (305) (305) (301) (813) (305)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020 530-4543 944-2060
	the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800 602) 243-6601 602) 231-5142 213) 701-7500	Englewood, CD 80711 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100 Orlando, FL 32809 15301 Roosevelt Blvd. #303 Clearwater, FL 33520 Hamilton/Avnet 6800 NW 15th Way Fort Lauderdale, FL 33309 1072 Tach Daire Mirth	(203) (203) (305) (305) (305) (301) (813) (305) (305)	265-7741 797-2800 776-7790 725-1480 971-9260 855-4020 530-4543 944-2060
	the shelf 205) 882-2730 205) 887-8700 205) 837-7210 602) 968-4800 602) 243-6601 602) 231-5142 213) 701-7500 714) 838-5422	Englewood, CD 80711 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Industrial Park Barbon Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 1001 Novel Industrial Park Suite 100 Orlando, FL 32809 15301 Roosevelt Blvd. #303 Clearwater, FL 33520 Hamilton/Avnet 6800 NW 15th Way Fort Lauderdale, FL 33309 3197 Tech Drive North St. Petersburg, FL 33702	(203) (203) (305) (305) (305) (301) (813) (813)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020 530-4543 944-2060 576-3930
	the shelf 205) 882-2730 205) 837-8700 205) 837-7210 602) 968-4800 602) 243-6601 602) 231-5142 213) 701-7500 714) 838-5422 619) 565-4800	Englewood, CD 80711 Connecticut Arrow Electronics 12 Beaumont Road Wallingford, CT 06492 Hamilton/Avnet Commerce Industrial Park Commerce Drive Danbury, CT 06810 Florida Arrow Electronics 1001 N. W. 62nd Street Suite 108 Ft. Lauderdale, FL 33309 50 Woodlake Drive West Building B Palm Bay, FL 32905 Hall-Mark Electronics 1671 West NcNabb Road Ft. Lauderdale, FL 33309 7648 Southland Blvd. Suite 100 Orlando, FL 32809 15301 Roosevelt Blvd. #303 Clearwater, FL 33520 Hamilton/Avnet 6800 NW 15th Way Fort Lauderdale, FL 33309 3197 Tech Drive North St. Petersburg, FL 33702 6947 University Blvd. Winter Park, FL 32792	(203) (203) (305) (305) (305) (813) (305) (305)	265-7741 797-2800 776-7790 725-1480 971-9280 855-4020 530-4543 944-2060 576-3930 628-3888

Georgia Arrow Electronics 2979 Pacific Drive Norcross, GA 10071 Hall-Mark Electronics 6410 Atlantic Blvd Suite 115 Norcross, GA 30071 Hamilton/Avnet 5825D PeachTree Corners E. Norcross, GA 30092
Illinois Arrow Electronics 2000 Algonquin Road Schaumburg, IL 60195 Hall-Mark Electronics 1177 Industrial Drive Bensenville, IL 60106 Hamilton/Avnet 1130 Thorndale Avenue Bensenville, IL 60106
Indiana Arrow Electronics 2718 Rand Road Indianapolis, IN 46241 Hamilton/Avnet 485 North Grandle Drive Carnel, IN 46032
Iowa Arrow Electronics 375 Collins Road East Cedar Rapids, Iowa 52402
Kansas Hall-Mark Electronics 10815 Lakeview Drive Lenexa, KS 66219 Hamilton/Avnet 9219 Quivira Road Overland Park, KS 66215
Maryland Arrow Electronics 4801 Bendson Avenue Baltimore, MD 31227 Hall-Mark Electronics 10240 Old Columbia Road Columbia, MD 21046 Hamilton/Avnet 6812 Oak Hall Lane Columbia, MD 21045
Massachusetts Arrow Electronics Arrow Drive Woburn, MA 01801 Hall-Mark Electronics 8H Henshaw Street Woburn, MA 01801 Hamilton/Avnet
DU Tower Uffice Park Woburn, MA 01801 Michigan Arrow Electronics 3810 Varsity Drive Ann Arbor, MI 48104

	OF10 Darren Chatter Marris DI	(010) 040 0010
	Southeast	1010/243-0912
(404) 449-8252	Grand Rapids, MI 49508	
	Hamilton/Avnet	
14041 447 0000	32487 Schoolcraft Road	(313) 522-4700
1404/ 447-8000		
	Minnesota Arrow Electronics	
	5230 73rd Street	(612) 830-1800
(404) 447-7500	Edina, MN 55435	
	Hall-Mark Electronics	(C10) 0EA 0000
	Bloomington, MN 55420	(012) 004-0220
(312) 397-3440	Hamilton/Avnet	
	10300 Bren Road East	(612) 941-3801
(312) 860-3800	Minneapolis MN 55343	
1312/ 003 0000	Missouri Arrow Electronice	
	2380 Schuetz Road	(314) 567-6888
(312) 860-7780	St. Louis, Missouri 63146	
	Hall-Mark Electronics	
	2662 Metro Blvd. Maryland Hts M0 63043	1314) 291-5350
(317) 243-9353	Hamilton/Avnet	
	13743 Shoreline Court East	(314) 344-1200
(217) 044 0222	Earth City, MO 63045	
(3171 044-9333	New Hampshire	
	1 Perimeter Boad	(603) 668-6968
	Manchester, NH 03103	
(319) 395-7230	New Jersey	
	Arrow Electronics	
	6000 Lincoln Drive East Martton NJ 08053	(609) 596-8000
(913) 291-5350	2 Industrial Boad	(201) 575-5300
	Fairfield, NJ 07006	
(013) EA1 7022	Hall-Mark Electronics	10041 535 4445
1313) 041-7322	TU7 Fairfield Koad Fairfield N.1 07006	(201) 5/5-4415
	2091 Springdale Road	(609) 424-7300
	Cherry Hill, NJ 08003	
(301) 247-5200	Hamilton/Avnet	10001 404 0100
	I Keystone Avenue Bida: #36	(003) 424-0100
(301) 988-9800	Cherry Hill, NJ 08003	
	19 Industrial Road	(201) 575-3390
(201) 005 2526	Fairfield, NJ 07006	
13011 333-3320	New Mexico	
	2460 Alamo Ave, S.E.	(505) 243-4566
	Albuquerque, NM 87106	
(617) 933-8130	Hamilton/Avnet	(COC) 205 1500
	Albuquerque, NM 87106	(000) /00-1000
(617) 935-9777	New York	
	Arrow Electronics	
(617) 272 7600	20 Oser Avenue	(516) 231-1000
10177 270-7000	Hauppauge, NY 11788	17161 275,0300
	Rochester, NY 14623	1107 273-0300
	7705 Maltlage Drive	(315) 652-1000
(313) 971-8220	Liverpool, NY 13088	

Hall-Mark Electronics	(516)	737.0600	10899 Kinghurst Drive	(713) 530-4700
One Conac Loop	1010/	/3/-0000	Houston, TX 77099	
Ronkonkoma, NY 11779			Hall-Mark Electronics	1014) 041 1147
Haminon/Avnet 16 Corporate Circle	(315)	437-2641	Dallas, TX 75243	1214/ 341-114/
East Syracuse, NY 13057	(510)	001 0000	12211 Technology Blvd.	(512) 988-9800
933 Motor Parkway Hauppauge, NY 11788	(510)	231-9800	AUSTIN, TX 78755 RNND Westnien	(713) 781-6100
North Carolina			Houston, TX 77063	
Arrow Electronics	(010)	070 0100	Hamilton/Avnet	(713) 700 1771
5240 Greens Dairy Road Raleigh, NC 27604	(919)	8/6-3132	Houston, TX 77063	(/13/ /00-1//1
938 Burke Street	(919)	725-8711	2111 West Walnut Hill Lane	(214) 659-4100
Winston-Salem, NU 2/101			2401 Butland Drive	(512) 837-8911
5237 North Boulevard	(919)	872-0712	Austin, TX 78758	1012, 00, 0011
Raleigh, NC 27604			Utah	
Hamilton/Avnet 3501 Spring Forest Boad	(919)	878-0810	Arrow Electronics 4980 Amelia Farbart Drive	(801) 539-1135
Raleigh, NC 27604	10101	0.00010	Salt Lake City, UT 84116	10017 000 1100
Ohio			Hamilton/Avnet	10011 072 2000
Arrow Electronics 6238 Cochran Boad	(216)	248-3990	Salt Lake City, UT 84119	1001) 9/2-2000
Solon, OH 44139	1210	2100000	Virginia	
7620 McEwen Road	(513)	435-5563	Arrow Electronics	10041 202 0412
Hall-Mark Electronics			Richmond, VA 23288	1004/ 202-0413
4460 Lake Forest Drive	(513)	563-5980	Washington	
Suite 202 Cincinnati OH 45242			Arrow Electronics	10001 040 4000
5821 Harper Road	(216)	349-4632	Bellevue, WA 98007	12001 042-4600
Solon, OH 46139 6130 Suppury Road, Suite R	(614)	001.4555	Hamilton/Avnet	(200) 042 2050
Westerville, OH 43081	1014/	301-4333	Bellevue, WA 98007	(200) 643-3950
Hamilton/Avnet	(216)	931,3500	Wisconsin	
Cleveland, OH 44128	(210)	031-3300	Arrow Electronics	16091 272 4077
954 Senate Drive	(513)	433-0610	2984 Triverton Pike	10001 213-4311
Dayton, UH 45459			Madison, WI 53711	(414) 070 4077
Arrow Electronics			430 W. Hawson Avenue Oak Creek, WI 53154	14141 2/3-49/7
4719 South Memorial Drive	(918)	665-7700	Hall-Mark Electronics	
Tulsa, UK 74135 Hall Mark Flectronics			9667 S. 20th Street Oak Creek, WI 53154	(414) 761-3000
5460 S. 103 E. Avenue	(918)	665-3200	Hamilton/Avnet	
Tulsa, OK 74145			2975 Noorland Road	(414) 784-4510
Oregon Hamilton/Avnet			Senade	
6024 SW Jean Road	(503)	635-8157	Hamilton/Avnet	
Bldg. C, Suite 10 Lake Oswego, OB 97034			6845 Rexwood Road, Units 3-5	(416) 677-7432
Pennsvivania			Canada, L4V 1R2	
Arrow Electronics			210 Colonnade Road	(613) 226-1700
650 Seco Road Monroeville, PA 15146	(412)	856-7000	Nepean, Untario Canada, K2E 7L5	
Texas			2670 Sabourin Street	(514) 331-6443
Arrow Electronics			St. Laurent, Montreal Quebec, Can. H4S, 1M2	
10125 Metropolitan Drive Austin, TX 78758	(512)	835-4180		
13715 Gamma Road Dallas, TX 75234	(214)	386-7500		

	and the state of the
	ananyananananyan kana tertakan tarapat yang dipanananan kanananan
	And the second se

Application Notes And Reprints

LSI Products Division TRW Electronic Components Group

TP-1 "Multiplier-Accumulator Application Notes" by L. Schirm IV.

Covers the use of multiplieraccumulators including an explanation of the clock, input and output controls. Other discussions include: larger word accumulations, multiplication plus a constant, operation with microprocessors, digital filters and complex multiplication.

TP-2 "Monolithic Bipolar Circuits for Video Speed Data Conversion" by W. Bucklen.

Describes the "flash" A/D converter, TDC1007J, and the TDC1016J, D/A converter. Also included are approaches for extending the performance of the TDC1007J.

TP-4 "Digital Signal Processing for Radar Systems" by W. Finn.

Describes how VLSI multipliers and multiplier-accumulators can be used in a radar signal processor to achieve data rate reduction, by means of predictive mechanization; pulse compression, utilizing an FIR matched filter; maximum computational capabilities, via pipelining; and high-speed convolution, using 2-point DFTs and a complete FFT processor.

TP-5 "An LSI Approach to Digital Signal Processing Enhances Telemetry Systems" by W. Finn.

All aspects of Telemetry have one thing in common: an increasing need for high-speed digital signal processing. The impact of large scale integrated (LSI) circuitry on telemetry systems is a topic of increasing importance. Dependency of real-time digital signal processors on LSI circuitry is largely due to the advantages they afford: smaller size, faster speed, lower power consumption, more reliability and less cost. These advantages are over and above those which can be achieved by SSI, MIS, or even analog circuitry.

TP-6 "Introduction to the Z-Transform and its Derivation" by R. Karwoski.

A tutorial discussion of LaPlace and Z-transforms and their use in sampled data systems. Application of the Z-transform to filter synthesis is also treated.

TP-7A "Hardware Development for a General Purpose Digital Filter Computing Machine" by R. Karwoski.

This paper describes the hardware for a flexible, fast, digital filter computing machine that can be easily programmed. Emphasis is on real-time signal processing, particularly in the area of digital filtering.

TP-8 "Second Order Recursive Digital Filter Design with the TRW Multiplier-Accumulators" by R. Karwoski.

Develops the fundamental concepts for second order recursive digital filters and describes some efficient hardware implementations using the TDC1010J multiplier-accumulator.

TP-9 "A Four-Cycle Butterfly Arithmetic Architecture" by R. Karwoski.

Explains the background of the FFT and the computational element called the butterfly. A block diagram of the FFT processor is presented and the DAU (Data Arithmetic Unit) architecture is described in detail. The text's description of the four FFT instructions is supplemented by computational diagram, block diagrams, a data flowchart and a timing diagram.

TP-10 "An Introduction to Digital Spectrum Analysis Including a High-Speed FFT Processor Design" by R. Karwoski.

Develops the DFT using well-known continuous Fourier Transform and series concepts. Common spectrum analysis terms are defined with respect to the DFT, and the decimation in time FFT is derived in detail. Describes the design of a high-speed FFT processor, particularly the architecture and address generation. Also included is an explanation of the use of bit-slice microprocessors as FFT sequencers.

TP-16 "An LSI Digital Signal Processor for Airborne Applications" by L. Schirm IV. Discusses the background of digital signal processing with emphasis on

signal processing with emphasis on radar processors. Described is a digital signal processing board, employing a multiplier-accumulator IC, which includes the basic processor, address generators, controller and system interface. TP-17 "Correlation-A Powerful Technique for Digital Signal Processing" by J. Eldon. Correlation techniques find use in communications, instrumentation, computers, telemetry, sonar, radar, medical, and other signal processing systems. Electronic systems that perform correlation have been around for years, but they have been bulky and inefficient. The development of a new VLSI chip from TRW LSI Products has changed this; now correlation can be performed efficiently with a minimum number of components.

TP-18 "LSI Multipliers Application Notes."

Describes larger and smaller word multiplication, higher speed multiplication and division using multiplication.

TP-19 "Non-Linear A/D Conversion" by B. Friend.

Describes the quantization process necessary to produce a non-linear transfer function. TRW LSI Products offers A/D converters which can be used in place of more expensive or impractical methods to achieve this result with a minimum of cost and effort.

A discussion of a typical TRW A/D converter includes information on the internal circuitry of the device and provides diagrams of circuit modifications to use with the A/D converter to improve performance.

TP-22 "A Guide to the Use of the TDC1028; **a Digital Filter Building Block**" by F. Williams. Discusses word and length sizing of Finite Impulse Response (FIR) digital filters, and implementation of filters with different lengths and word sizes. A circuit to autoload coefficients in stand-alone applications is also provided.

TP-23 "A 22-Bit Floating Point Registered Arithmetic Logic Unit" by J. Eldon. Introduces the TDC1022, a registered arithmetic logic unit (RALU), built with TRW's dual layer metal, one micron bipolar process (OMICRON-BTM). Emphasis is on RALU architecture, and the instruction microcode. Block diagrams and ALU

function control chart are provided.

TP-24 "A Single Board Floating Point Signal Processor" by G. Winter and B. Yamashita. Floating point arithmetic offers many advantages to the field of digital signal processing (DSP). This article describes the realization of a Finite Impulse Response (FIR) filter using a family of floating point devices; the TDC1022 Floating Point Adder, the TDC1033 Floating Point Registered ALU, and the TDC1042 Floating Point Multiplier.

TP-25 "Floating Point Hardware for Digital Signal Processing" by J. Haight.

Recent advances in VLSI circuitry make high-speed digital signal processing (DSP) with wide dynamic range possible without significant penalties in cost or hardware overhead. The architectures of the TDC1022, TDC1033 and TDC1042 are discussed, as well as their applications in some designs.

IP-26 "Floating Point, the Second Generation for Digital Signal Processing" by J. Haight. High-speed digital signal processing (DSP) has recently progressed to a widely used real or near real-time field. Today, a new generation of 22-bit floating point integrated circuits (TDC1022, TDC1033 and TDC1042) makes it possible to build circuitry to handle signals with wide dynamic range at high speeds and reasonable cost. This article discusses the architecture of these ICs and the motivations behind them.

TP-27 "Components For Instruments That Employ Digital Signal Processing Techniques" by D. Watson.

Applications of fast analog-to-digital (A/D) converters are expanding into the measurement and analytical instrument marketplace. This article discusses A/D converters as they are used in digital instruments, reviews "flash" A/D technology, and presents future directions of A/D design.

TP-28 "A Floating Point ALU for Digital Signal Processing" by R. Sierra and G. Covert. Discusses applications of the TRW LSI TDC1022, Floating Point Arithmetic Unit. The architecture of the TDC1022 is discussed, together with several application examples in the areas of filtering and spectrum analysis.

TP-29 "The Use of Floating Point Arithmetic in Digital Filters and Equalizers" by F. Williams,

Digital Audio, a high-performance technology, has undergone rapid growth during the last few years. This article describes TRW LSI floating point processors and how they are used in digital audio systems to provide noise control, accurate response control, and maintenance of effective SNR. Frequency response high and low filter graphs are provided.

Article Reprints

R-1 "Packing a Signal Processor onto a Single Digital Board," by L. Schirm IV, **Electronics**, December 20, 1979.

Discusses general applications of multiplier-accumulators and the design of a single-board FFT processor.

R-2 "Microprocessor Compatible Recursive Digital Filters," by Ford, Youseff-Digaleh and Current (UC Davis); **Proceedings of the IEEE**, April 1979.

Describes the implementation of recursive digital filters through timeshared use of a single multiplieraccumulator.

R-3 "A Radix-4 FFT Processor for Application in a 60-Channel Transmultiplexer Using TTL Technology," by Roste, Haaberg and Ramstad; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979.

Presents a hardware solution for the two 128-point DFT processors with a transform time of 125μ sec needed in a 60-channel transmultiplexer for conversion between FDM and TDM signals.

"Design of a 24-Channel Transmultiplexer," by M. Narashima; IEEE Transactions on Acoustics, Speech and Signal Processing; Vol. ASSP-27, No. 6, December 1979. Discusses the design of a transmultiplexer capable of performing the bilateral conversion between 1544 kbits/sec digital signal and two analog group signals. Note: Both articles are included in the same reprint.

R-4 "Television Gathers Speed On its Way from A to D," **Broadcast** Communications, September 1979.

Explains the ways in which the TV broadcast studio is evolving towards digital implementations. Discusses the advantages of the digital vs the analog approach.

R-5 "Get to know the FFT and take advantage of speedy LSI building blocks," by L. Schirm IV; **Electronic Design**, April 26, 1979.

Explains the use of the FFT (Fast Fourier Transform) and how to implement an FFT processor board using a multiplier-accumulator.

R-6 "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," by F. Harris, **Proceedings of the IEEE**, January 1978.

A comprehensive discussion of data windows and their effect on the spectrum analysis problem. Key parameters are identified, and window options are compared. Applications are discussed in detail.

R-7 "Floating-point chips carve out FFT systems," by J. Eldon and G. Winter; **Electronic Design**, August 4, 1983.

Describes the implementation of realtime signal processing using a set of three floating point ICs: the TDC1033, an arithmetic logic unit with registers; the TDC1042, a floating point multiplier; and the TDC1022, a floating point arithmetic unit.
R-8 "Quantization Effects on Differential Phase and Gain Measurements," by F. Williams and R. Olsen; SMPTE Journal, November, 1982.

Discusses absolute performance standards as a means of characterizing television systems. Equations are provided which are used to obtain Differential Phase and Differential Gain limits for use in the evaluation and diagnosis of television equipment.

R-9 "High speed FIFO memory: theory and applications," by E. Chocheles and R. Sierra, **Electronic Products**, March 28, 1983.

A comprehensive study of the TDC1030, a First-In First-Out (FIFO) memory buffer (fixed or variable-length storage) used in data transfer elements. Extensive timing analysis is covered in the article.

R-10 "One-chip DAC delivers composite video signal," by R. Castleberry and C. Robertson; **Electronic Design**, September 1, 1983.

Describes the TDC1018, a low-cost, digital-to-analog converter that delivers a composite video signal, capable of driving high-resolution graphics displays. Device architecture and performance specifications are included.

R-11 "Single-chip Flash A/D Converters With Evaluation Boards," by J. Eldon and R. Olsen; Proceedings IEEE 1982 Region 6 Conference.

Describes TRW LSI Products' A/D Converters and optional evaluation boards. The boards may be used to evaluate the ICs, or as models for individual circuit design effects.

R-12 "6-bit a-d chip steps up the pace of signal processing," by J. Muramatsu and R. Olsen; Electronic Design, September 16, 1982. Describes the TRW LSI TDC1029, a 6-bit analog-to-digital converter that samples broadband signals at 100 MegaSamples Per Second (MSPS). This device increases the real-time performance of military, medical and industrial systems.

R-13 "Video-speed filtering gets its own digital IC," by F. Williams; Electronics, October 20, 1983.

Describes the TRW LSI TDC1028, a single-chip filter that is paving the way to video-speed fixed and adaptive filter implementations in design processes.

R-14 "One-Micron VLSI Chips for Military Systems," by J. Eldon, M. Gagnon and F. Williams; **Defense Electronics**, November 1983.

Describes TRW's one-micron VLSI chips and their applications for military systems. The article also discusses the bipolar 3-D process used in fabricating the devices, VLSI reliability, and other topics related to implementation of these chips.

R-15 "Using high speed multipliers for real time signal processing," by R. Sierra; Electronic Products, February 7, 1984.

Complex signal processing can now be implemented with the precision and accuracy of digital arithmetic logic components. This article describes TRW LSI Multipliers and their usefulness in filtering and spectrum analysis.

R-16 "CMOS comes to high speed digital signal processing," by J. Haight.

Discusses the possibilities for CMOS: as geometries continue to shrink, the improved performance and reduced power of CMOS make possible a much greater number of devices on a chip. This opens up many exciting possibilities in the digital signal processing market.

The Application Notes and Article Reprints listed above are available upon request from TRW LSI Products.

LSI TRV P.O. La

LSI Products Division TRW Electronic Components Group P.O. Box 2472 La Jolla, CA 92038