
MICROPROCESSOR APPLICATIONS
REFERENCE BOOK

VOLUME 2

August 1983

COPYrIght 1983 by Zllog, Inc. All rIghts reserved. No part
of th,s pubhcahon may be reproduced, stored In a retrIeval
system, or transmItted, In any form or by any means, elec­
tromc, mechanIcal, photocopymg, recordmg, or otherwIse,
wIthout the pnor WrItten permlSSlOn of Zllog.

The mformatIon contaIned herem IS subJect to change
wIthout nohce. Zllog assumes no responslblhty for the use of
any cIrcuItry other than cIrcuItry embodIed In a Zllog pro­
duct No other cIrcuIt patent hcenses are lmphed.

I.

I

Zilog's name has become synonymous with logic
innovation and advanced microprocessor architec­
ture since the introduction of the ZBOe CPU in
1975. The Zilog Family of microprocessors and
microcomputers has grown to include the products
listed in the table below. Each product exhibits
special features that ma~e it stand above similar
products in the semiconductor marketplace. These
special features have proven to be of substantial
aid in the solution of microprocessor design
problems.

This reference book contains a collection of
application information and Zilog microprocessor
products. It includes technical articles, appli­
cation notes, concept papers, and benchmarks.
This book is the second of an expected series of
such volumes. We at Zilog believe that designing
innovative microprocessor integrated circuit
products is only half the key that unlocks the
future of microprocessor-based end products; the
other half is the creative application of those
products. Advanced microprocessor products and
their creative applications lead to end product
designs with more features, more simply
implemented, and at a lower system cost. It is
hoped that this reference book will stimulate new
product design ideas as well as fresh approaches
to the design of traditional microprocessor-based
products.

The material in this book is believed to be accu­
rate and up-to-date. If you do find errors, or
would like to offer suggestions for future appli­
cation notes, we would appreciate hear ing from
you. Correction inputs should be directed to Com­
ponents Oivision Technical Publications, and

Introduction

application suggestions should be directed to Com­
ponents Division Application Engineering.

B-Bit Single-Chip Micro­
computer, 2K/4K Bytes

za FAMILY ROM and 144 Bytes RAM

ZB601/ZB603/ZB6L01 MCU Microcomputer Unit
ZB611/2/3 MCU Microcomputer Unit
Z8671 MCU Microcomputer Unit with

BASIC Debug
ZB6B1/2 ROMless
Z8090/4 & ZB590/4 Z-UPC Universal Peripheral

zao FAMILY

ZB400 CPU
Z8410 DMA
Z8420 PIO
Z8430 CTC
ZB440/1/2 SIO
ZB470 DART

Z80L FAMILY

ZB300 CPU
ZB320 PIO
Z8330 CTC
Z8340 SIO

Controller

8-Bit General-Purpose
Microprocessor

Central Processing Unit
Direct Memory Access
Parallel I/O Controller
Counter/Timer Circuit
Serial I/O Controller
Dual Asynchronous

Receiver/Transmitter

Low-Power B-Bit General­
Purpose Microprocessor

Central Processing Unit
Parallel Input/Output
Counter/Timer Circuit
Serial Input/Output

16-Bit General-Purpose Universal Peripherals
Z800D FAMILY Microprocessor Z8500 FAMILY (Continued)

Z8001/2 CPU Central Processing Unit Z8536 CIO Counter/Timer and
Z80m/4 Z-VMPU Virtual Memory Processing Parallel I/O Unit

Unit Z8581 CGC Clock Generator and
Z8010 Z-MMlJ Memory Managemsnt Unit Controller
Z8015 Z-PMMU Paged Memory Management

Unit
Z8016 Z-DTC Direct Memory Access

Tranafer Controllar 8/16-Bit General-Purpoas
Z8030 Z-SCC Serial Communicationa Z800 FAMILY Microprocessors

Controller
Z8031 Z-ASCC Asynchronous Serial Z8108 MPU Microprocessing Unit

Communications ZB208 MPU Microprocessing Unit
Controller Z8116 MPU Microprocessing Unit

Z8036 Z-CIO Counter/Timer and Z8216 MPU Microprocessing Unit
Parallel I/O Unit

Z8038 Z-FIO FIFO I/O Interface Unit
Z8060 Z-FIFO Z-FIFO Buffer Unit and

FlO Expander 32-Bit General-Purpose
Z8065 Z-BEP Burst Error Processor Microprocessor and 80-Bit
Z8068 Z-OCP Data Ciphering Processor Z80,OOO FAMILY Arithmetic Processor

Z8070 APU Arithmetic Processing
Unit

Z8500 FAMILY Universal Peripherals Z80 , 000 CPU Central Processing Unit

Z8530 SCC Serial Communications
Controller

Z8531 ASCC Asynchronous Serial
Communications
Controller

iI

ZS f..tly
Z8 Subroutine Library • • • • • •
Z8 MCU Test Mode • • • • • • • •
Build a Z8-Based Control Computer with BASIC
Z8671 Seven-Chip Computer • • • • • • • • • •
A Single-Bosrd Terminsl Using the Z8590 Universal

Peripheral Controller •••••••••••

ZSD faaily
Z80 CPU vs. 6502 CPU Benchmark Report • • • • • • •
Integrating 8-Bit DMA to 16-Bit System Tutorial • •
Interfacing Z80 CPUa to the Z8500 Peripheral Family

Z800 f..tly
ZBO Memory Expaneion for the ZBOO • • • • • • • • • • • •
On-Chip Memory Management Comes to B-Bit Microprocessors.
8- and 16-Bit Processor Family Keeps Pace with Fast RAMs.

Z800D f..tly
Coat-Effective Memory Selection for Z8000 CPUs
Benchmark Report: Z8000 vs. 68000 vs. 80B6 • •
Operating System Support - The Z8000 Way
A Performance Comparison of Three Contemporary 16-Bit Microprocessors
16-Bit Microprocessors Get a Boost from Demand-Paged MMU • • • • • •
Segmentation Advances Microcomputer Memory AddreSSing • • • • • •
Initializing the Z8001 CPU for Segmented Operation with the Z8010 MMU
Nonsegmented Z8001 CPU Programming • • • • • • •
Calling Conventions for the Z8000 Microprocessor
Fast Block Moves with the Z8000 CPU • • • • • • •
Character String Translation: Z8000 vs. 6BOOO vs. 8086
Z8002 CPU Small Single-Board Computer • • • • • • •
Interfacing the Z8500 Peripherals to 68000. • • • •
Interfacing the Z-BUS Peripherals to the 8086/8088.
Z8016/Z8000 DTC DMA Transfer Controller
Initializing the CIO • • • • • • • • •
Using SCC with Z8000 in SDLC Protocol •
SCC in Binary Synchronous Communication
Z8530/Z8030 SCC Initialization: A Workaheet and Example
The Z-FIO in a Data Acquisition Application • • • • • • •

iii

.... bl. of CoDI.DIs

1-3
1-53
1-57
1-77

1-B5

2-3
2-23
2-29

3-3
3-15
3-25

4-3
4-9
4-21
4-27
4-39
4-45
4-53
4-59
4-67
4-75
4-79
4-79
4-93
4-105
4-113
4-139
4-153
4-165
4-175
4-183

2

4

Z8™Singie Chip Microcomputer Family I

Zilog

INTRlDJCTlON

This application note describes a preprogrammed
Z8601 MCU that contains a bootatrap to external
program memory and a collection of general-purpose
subroutines. Routines in this applicstion note
can be implemented with s Z8 Protopack and a 2716
EPROM programmed with the bootstrap and subroutine
librsry.

In s system, the user's software resides in
external memory beginning at hexidecimal sddress
0800. This software can use any of the

Z8® Subroutine Library

ApplicalioD
Nole

April 1982

subroutines in the library wherever appropriate
for a given applicstion. This application example
makes certain assumptions sbout the environment;
the reader should exercise caution when copying
these programs for other cases.

Following RESET, software within the subroutine
library is executed to initialize the control
registers (Table 1) • The control register
selections can be subsequently modified by the
user's program (for example, to use only 12 bits
of Ports 0 and 1 for addressing externsl memory).
Following control register initializstion, an El

Table 1. Control Register Initialization

Control Register
N.e Addrees Initial Value

TMR F1H OOH

P2M F6H FFH

P3M F7H 10H

P01M F8H 07H

IRQ FAH OOH

IMR FBH OOH

RP FDH OOH

SPL FFH 65H

1-3

Heming

TO and T1 dissbled

P20-P27 : inputs

P2 pull-ups open drain;
PJO-PJJ inputs;
PJ5-PJ7 outputs;
PJ4 OM

P10-P17 AOO-A07;
POO-P07 AB-A15;
normal memory timing;
internal stack

no interrupt requests

no interrupts enabled

working register file
OOH-OFH

1st byte of stack is
register 64H

instruction is executed to enable interrupt
processing, and a jump instruction is executed to
transfer control to the user's program at location
OB12H• The interrupt vectors for IRQO through
IRQ5 are rerouted to locations OBOOH through
OBOFH, respectively, in three-byte increments,
allowing enough room for a jump instruction to the
appropriate interrupt service routine. That is,
IRQO is routed to locat ion OBOOH' IRQ1 to
OB03H, IRQ2 to OB06H' IRQ3 to OB09H, IRQ4 to
OBOCH' and IRQ5 to OBOFH. Figure 1 illus­
trates the allocation of ZB memory as defined by
this application note.

The subroutines available to the user are refer­
enced by a jump table beginning at location
001BH. Entry to a subroutine is made via the jump
table. The 32 subroutines provided in the library
are grouped into six functional classifications.
These classifications are described below, each
with a brief overview of the functions provided by
each category. Table 2 defines one set of entry
addresses for each subroutine in the library.

•

•

Binary Arithmetic: Multiplication and division
of unsigned B- and 16-bit quantities.

BCD Arithmetic: Addition and subtraction of
variable-precision floating-point BCD values.

FF

FO
EF

80
7F

78
7A

8E
80

85
84

REGISTER

CONTROL
REGISTERS

UNIMPLEMENTED

1

2

3.

STACK

FFFF

0812

081 1

•

•

•

•

Conversion Algorithms: BCD to and from decimal
ASCII, binary to and from decimal ASCII, binary
to and from hex ASCII.

Bit Manipulations: Packs selected bits into
the low-order bits of a byte, and optionally
uses the result as an index into a jump table.

Serial I/O: Inputs bytes under vectored inter­
rupt control, outputs bytes under polled inte­
rrupt control. Options provided include:

odd or even parity
BREAK detection
echo
input editing (backspace, delete)
auto line feed

Timer /Counter: Maintains a time-oF-day clock
with a variable number of ticks per second,
generates an interrupt after a speciFied delay,
generates variable width, variable frequency
pu lse output.

The listings in the "Canned Subroutine Library"
provide a specification block prior to each sub­
routine, explain the subroutine's purpose, lists
the input and output parameters, and gives pertin­
ent notes concerning the subroutines. The follow­
ing notes provide additional information on data
formats and algorithms used by the subroutines.

PROGRAM

USER
DEFINED

START

EXTERNAL DATA
FFFFr--"";;====--.,

USER
DEFINED

INTERRUPT VECTORS

O'
03

00

USER
DEFINED

110 PORTS

REGISTERS USED BY SUBROUTINES:

i. USED BY MOST ROuTINES
2. USED BY SERIAL ROUTINES ONLY
3. useD BY TIMER/COUNTER ROUTINES ONLY

0 080
07F F

000 0

(3 BYTElIRQx)

INTERNAL
SUBROUTINES

0000 ________ ..

Figure 1. "ROMless Z8" Subroutine library M90ry Usage Map

1-4

1. Although the user is free to modify the condi­
tions selected in the Port 3 Mode register
(P3M, F7H)' P3M is a write-only register.
This subroutine library maintains an image of
P3M in its register P3M __ save (7F H) • If
software outside of the subroutine package is
to modify P3M, it should reference and modify
P3M save prior to modi ficabon of P3M. For
example, to select P32/P35 for handshake, the
following instruction sequence could be used:

OR P3M __ save, H04H
LD P3M, P3M save

2. For many of the subroutines in this library,
the location of the operands (source/destina­
tion) is flexible between register memory,
external memory (code/data), and the serial
channel (if enabled). The description of each
parameter in the specification blocks tells
what the location options are.

• The location designation "in reg/ext
memory" implies that the subroutine allows
the operand to exist in register or in
external data memory. The address of such
an operand is contained 1n the designated
register pair. If the high byte of that
pa1r is 0, the operand is in register
memory at the address held in the low byte
of the register pair. Otherwise, the
operand is in external data memory
(accessed via LDE).

• The location designabon "in reg/ext/ser
memory" implies the same considerations as
above with one enhancement: if both bytes
of the register pair are 0, the operand
exists in the serial channel. In this
case, the reg1ster pair is not modified
(updated). For example, rather than stor­
ing a destination ASCII string in memory,
it might be desirable to output the string
to the serial line.

3. The BCD format supported by the following
arithmetic and conversion routines allows rep­
resentation of signed variable-precision BCD
numbers. A BCD number of 2n digits is repre­
sented in n+ 1 consecutive bytes, where the
byte at the lowest memory address (byte 0)
represents the sign and post-decimal digit
count, and the bytes in the n higher memory
locations (bytes 1 through n) represent the
magnitude of the BCD number. The address of
byte O,and the value n are passed to the sub­
routines in specified working registers.

1-5

Digits are packed two per byte with the most­
significant digit in the high-order nibble of
byte 1 and the least-significant digit in the
low-order nibble of byte n. Byte 0 is organ­
ized as two f1elds:

Bit 7 represents sign:
1 negative;
o = positlVe.

B1ts 0-6 represent post-decimal digit count.

For example:

byte 0 = 05H = positive, with five post­
decimal digits

BOH negative, with no post-
decimal digits

90H = negative, with 16 post-
dec imal d 19itS

4. The format of the decimal ASCII character
string expected as input to the conversion
routines "dascbcd" and "dascwrd" is defined
as:

(+ 1 -) (<digit» [(<d1git>)]

in which
() Parentheses mean that the enclosed

times or can be omitted.
[] Brackets denote that the enclosed

element is optional.

Table 3 illustrates how var10US input strings
are interpreted by the conversion routines.

5. The format of the decimal ASCII character
string output from the conversion routine
"bcddasc" operating on an input BCD string of
2n digits is

sign of character (+ 1 -)
2n-x pre-decimal dig1ts
1 decimal point if x does not equal 0
x post-decimal d1gits

6. The format of the decimal ASCII character
string output from the conversion routine
"wrddassc tl is

1 sign character (determined by bit 15 of
input word)

6 pre-decimal digits
no decimal point
no post-decimal digits

Table 2. Subroutine Entry Points

Address

Binary Arit~tic Routines

001B divide
001E div 16
0021 multiply
0024 mult 16

BID Arit~ic Routines

0027
002A

bcdadd
bcdsub

COnversion Routines

0020 bcddasc
0030 dascbcd
0033 bcdwrd
0036 wrdbcd
0039 bythasc
003C wrdhasc
003F hascwrd
0042 wrddasc
0045 dascwrd

Bit Manipulation Routines

0048
004B

c1b
tmj

Serial Routines

004E ser init
0051 ser_input
0054 ser rlin
0057 ser rabs
005A ser break
0050 ser flush
0060 ser wHn
0063 ser wabs
0066 ser_wbyt
0069 ser disable

T~r/COunter Routines

006C tod i
006F tod
0072 delay
0075 pulse_i
0078 pulse

Description

16/8 unsigned binary division
16/16 unsigned binary division
8x8 unsigned binary multiplication
16x16 unsigned binary multiplication

BCD addition
BCD subtraction

BCD to decimal ASCII
Decimal ASCII to BCD
BCD to binary word
Binary word to BCD
Binary byte to hexadecimal ASCII
Binary word to hexadecimal ASCII
Hexadecimal ASCII to binary word
Binary word to decimal ASCII
Decimal ASCII to binary word

Collect bits in a byte
Table jump under mask

Initialize serial I/O
IRQ3 (receive) service
Read line
Read absolute
Transmit BREAK
Flush (clear) input buffer
Write line
Write absolute
Write byte
Disable serial I/O

Initialize for time-of-day clock
Time-of-day IRQ service
Initialize for delay interval
Initialize for pulse output
Pulse IRQ service

1-6

7. Procedure name: ser ___ input

The conclusion of the algorithm for BREAK
detection requires the Serial Receive Shift
register to be cleared of the character
currently being collected (i f any). This
requires a software wait loop of a
one-character duration. The following
explains the algorithm used (code lines 464
through 472, Part II):

1 character time = (128xPREOxTO) sec 10 ~
XT AL iiIT x char

=
1280xPREOxTO

XTAL
sec
Ch8r

A software loop equal to one character time is
needed:

1 character time =.2.... ~ x n cyc Ie
XTAL cycle loop

Solve for n:

(1280 x PREO x TO)
XTAL

2n sec
= Xfj[' loop

2n
= Xfj['

n = 640 x PREO x TO

rhe register pair SERhtime, SER1time was
initialized during ser Init to equal the
product of the prescaler and the counter
selected for the baud rate clock. That is,

SERhtime, SER1time = PREO x TO

The instruction sequence

inlop: ld rSERtmpl, 153 (6 cycles)

lpl: djnz rSERtmpl, lpl

executes in

(12/10 cycles
tsken/not taken)

6 + (52 x 12) + 10 cycles 640 cycles

8. BREAK detection on the serial input line
requires that the receive interrupt service
routine be entered within a half-a-bit time,
since the routine reads the input line to
detect a true (= 1) or false (=0) stop bit.
Since the interrupt request is generated
halfway through reception of the stop bit,
half-a-bit time remaina in which to read the
stop bit level. Interrupt priorities and
interrupt nesting should be established
appropriately to ensure this requirement.

1/2 bit time = (128 x PREO x TO)
XTAL x 2

sec

Table}. Decillal ASCII ll'Iara:ter String Interpretation

Input String

+1234.567,

+---+.789+

1234 ••

4976-

----- Result ------
Sign

+

+

+

PrlH)ecillal
Digits

1234

1234

Poat-Decillal
Digits

567

789

4976

leninator

+

NOTE: The terminator can be any ASCII character that ia not a valid ASCII string
character.

1-7

Z8ASM 3.02
LOC OBJ CODE

ROMLESS Z8 SUBROUTINE LIBRARY PART I

STMT SOURCE STATEMENT

1
2
3 PART I
4

MODULE

5
6
7
8
9

I'ROMLESS Z8' SUBROUTINE LIBRARY PART I

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Initialize: a) Port 0 & Port 1 set up to address
64K external memory;

Note:

b) internal stack below allocated
RAM for subroutines;

c) normal memory timing;
d) IMR, IRQ, TMR, RP cleared;
e) Port 2 inputs open-drain pull-ups;
f) Data Memory select enabled;
g) EI executed to 'unfreeze' IRQ;
h) Jump to %0812.

The user is free to modify
conditions selected for a,
via direct modification of
Mode register (P01M, %F8).

the initial
b, and c above,
the Port 0 & 1

The user is free to modify the conditions
selected in the Port 3 Mode register (P3M, %F7).
However, please note that P3M is a write-only
register. This subroutine library maintains
an image of P3M in its register P3M save (%7F).
If software outside of the subroutine package
is to modify P3M, it should reference and modify
P3M save, prior to modification of P3M. For
example, to select P32/P35 for handshake, use
an instruction sequence such as:

OR
LD

P3M save,n04
P3M-;P3M _ save

This is important if the serial and/or timerl
counter subroutines are to be used, since these
routines may modify P3M.

1-8

44 IAccess to GLOBAL subroutines in this library should
45 be made via a CALL to the corresponding entry in the
46 jump table which begins at address SOOOF. The jump
47 table should be referenced rather than a CALL to the
48 actual entry point of the subroutine to avoid future
49 conflict in the event such entry pOints change in
50 potential future reviSions.
51
52 Each GLOBAL subroutine in this listing is headed by a
53 comment block specifying its PURPOSE and calling
54 sequence (INPUT and OUTPUT parameters). For many of
55 the subroutines in this library, the location of the
56 operands (sources/destinations) is quite flexible
57 between register memory, external memory (code/data),
58 and the serial channel (if enabled). The description
59 of each parameter specifies what the location choices
60 are:
61
62 - The location designation 'in reg/ext memory'
63 implies that the subroutine allows that the operand
64 exist in either register or external data memory
65 The address of such an operand is contained
66 in the designated register pair. If the high byte of
67 that pair is zero, the operand is in register memory
68 at the address given by the low byte of the register
69 pair. Otherwise, the operand is in external data
70 memory (accessed via LDE).
71
72 - The location designation
73 'in reg/ext/ser memory' implies the same
74 considerations as above with one enhancement: if both
75 bytes of the reg. pair are zero, the operand exists
76 in the serial channel. In this case, the register
77 pair is not modified (updated). For example, rather
78 than storing a destination ASCII string in memory, it
79 might be desirable to output such to the serial line.
80 I

1-9

82 CONSTANT
83 !Register
84

Usage!

85 RAM START
86

· - %7F

87 P3M save
88 TEM1i 3
89 TEMP-2
90 TEMP-1
91 TEMP-4
92 -

: =
: =
· -: =
: =

RAM START -P3M save-1
TEMl'" 3-1
TEMP-2-1
TEMP-1-1

93 !The following registers are modified/referenced
94 by the Serial Routines ONLY. They are
95 available as general registers to the user
96 who does not intend to make use of the
97 Serial Routines!
98

· _ TEMP 4-1
:= SER char-1
._ SER-tmp2-1
:= SER-tmp1-1
:= SER-put-1
:= SER-len-2
:= SER-buf-1
!= SER-imr-1

Configuration Data
=1 => odd parity on

99 SER char
100 SER-tmp2
101 SER-tmp1
102 SER-put
103 SER-len
104 SER-buf
105 SER-imr
106 SER-c fg
107 !Serial
108 bit 7
109 bit 6
110 (bit
111 bit 5
112bit4
113 bit 3
114 bit 2
115 bit 1
116 bit 0

! =1 => even parity on
6,7 = 11 => undefined)

117 !
118 op
119 ep
120 ie
121 al
122 be
123 ec
124 SER get
125 SER-flg
126 ! Serial
127 bit 7
128 bit 6
129 bit 5
130 bit 4
131 bit 3
132 bit 2
133 bit 1
134 bit 0
135 !
136 sd
137 pe
138 bd
139 bo
140 bne
141 bf
142
143 RAM TMR
144
145 SERl time

undefined
undefined
=1 => input editting on
=1 => auto line feed enabled
=1 => BREAK detection enabled
=1 => input echo on

· - %80
· - %40
· - %08
· - %04
: = %02
· - %01

· -: =
Status Flags

SER cfg-1
SER=get-1

=1 => serial I/O disabled
undefined
undefined
=1 => parity error
=1 => BREAK detected
=1 => input buffer overflow
=1 => input buffer not empty
=1 => input buffer full

%80
%10
%08

= %04
= %02

%01

: = RAM_START-%10

· - SER_flg-1

1-10

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

SERhtime : = SERltime-1

IThe following registers are modified/referenced
by the Timer/Counter Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Timer/Counter Routinesl

TOO tic
TOO-imr
TOO-hr
TOO-min
TOO-sec
TOO-tt
PLS-1
PLS-tmr
PLS-2

RAM END
STACK

: =

: =
: =

RAM TMR-2
TOO-tic-1
TOO-imr-1
TOOnr-1
TOO-min-1
TOO-sec-1
TOO-tt-1
PLS-1-1
PLS-tmr-1

IEquivalent working register equates
for above register layoutl

Iregister file S70 - S7FI
RAM STARTr : = %70

rP3Msave
rTEMP 3
rTEMP-2
rTEMP-1
rrTEMP 1
rTEMP lh
rTEMP-ll
rTEMP-4
rSERchar
rSERtmp2
rSERtmp1
rrSERtmp
rSERtmpl
rSERtmph
rSERput
rSERlen
rrSERbuf
rSERbufh
rSERbufl
rSERimr
rSERcfg
rSERget
rSERflg

!register
RAM TMRr
rTO!5tic
rTOOimr
rTOOhr
rTODmin
rTOOsec
rTOOtt
rPLS 1
rPLStmr
rPLS 2

: =

: =

: =
: =

: =

: =

: =

: =

: =
: =

: =

file %60

!=

:::
: =

: =
: =

R15
R14
R13
R12
RR12
R12
R13
R 11
R10
R9
R8
RR8
R9
R8
R7
R6
RR4
R4
R5
R3
R2
R1
RO

- %6FI
%60
R13
R12
R11
R10
R9
R8
R7
R6
R5

1-11

I for SRPI

I for SRPI

210 EXTERNAL
211 ser in it PROCEDURE
212 ser=input PROCEDURE
213 ser rlin PROCEDURE
214 ser-rabs PROCEDURE
215 ser-break PROCEDURE
216 ser-flush PROCEDURE
217 ser-wlin PROCEDURE
218 ser-wabs PROCEDURE
219 ser-wbyt PROCEDURE
220 ser-disable PROCEDURE
221 ser:get PROCEDURE
222 ser output PROCEDURE
223 tod-i PROCEDURE
224 tod- PROCEDURE
225 delay PROCEDURE
226 pulse i PROCEDURE
227 pulse - PROCEDURE
228
229
230 $SECTION PROGRAM
231 GLOBAL
232
233
234 IInterrupt vectorsl

P 0000 0800 235 IRQ 0 ARRAY [1 word] = [J0800]
P 0002 0803 236 IRQ-1 ARRAY [1 word] = [~0803]
P 0004 0806 237 IRQ-2 ARRAY [1 word] = [~0806]
P 0006 0809 238 IRQ-3 ARRAY [1 word] = [~0809]
P 0008 OBOC 239 IRQ-4 ARRAY [1 word] = [~080C]
P OOOA OBOF 240 IRQ=5 ARRAY [1 word] = [~080F]

241
242

1-12

----~-------

244 GLOBAL
245
246 !Jump Table!

P oooe 247 ENTER PROCEDURE
248 ENTRY

P OOOC 80 007B' 249 JP INIT
P OOOF 250 END ENTER

251
252

P OOOF 28 43 29 253 copyright ARRAY [- BYTE] : = ' (C) 198 OZ ILOG '
P 0012 31 39 38
P 0015 30 5A 49
P 0018 4C 4F 47

254
255 !Subroutine Entry Points!

P 001B 256 JUMP PROCEDURE
257 ENTRY
258
259 !Binary Arithmetic Routines!
260

P 001B 80 0099' 261 JP divide !16/8 unsigned binary
262 division!

P 001E 80 00B7' 263 JP div 16 !16/16 unsigned binary
264 - division!

P 0021 80 00E2' 265 JP multiply !8x8 unsigned binary
266 multiplication!

P 0024 80 00F6' 267 JP mult 16 !16x16 unsigned binary
268 - multiplication!
269
270 !BCD Arithmetic Routines!
271

P 0027 80 011A' 272 JP bcdadd !BCD addition!
273

P (102A 80 0117' 274 JP bcdsub ! BCD subtraction!
275
276 ! Conversion Routines!
277

P 0020 80 0205' 278 JP bcddasc !BCD to decimal ASCII!
279

P 0030 80 0363' 280 JP dascbcd ! Decimal ASCII to BCD!
281

P 0033 80 0284' 282
283

JP bcdwrd !BCD to binary word!

P 0036 80 02CD' 284 JP wrdbcd !binary word to BCD!
285

P 0039 80 025C' 286 JP bythasc ! Bin. byte to Hex ASCII!
287

P 003C 80 0257' 288 JP wrdhasc ! Bin. word to hex ASCII!
289

P 003F 80 0319' 290 JP hascwrd ! Hex ASCII to bin word!
291

P 0042 80 03BE' 292 JP wrddasc ! Bin. word to dec ASCII!
293

P 0045 80 0340' 294 JP dascwrd ! dec ASCII to bin word!
295
296 !Bit Manipulation Routines!
297

P 0048 80 04A l' 298 JP clb !collect bits in a byte!
299

P 004B 80 04B9' 300 JP tjm !Table Jump Under Mask!
301
302 ! Serial Routines!
303

P 004E 80 0000- 304 JP ser init !initialize serial I/O!

1-13

305
P 0051 80 0000· 305 JP ser_input !IRQ3 (receive) service!

307
p 0054 80 0000· 308 JP ser rlin Iread liner

309
P 0057 80 0000· 310 JP ser rabs tread absolute I

311
P 005A 80 0000· 312 JP ser break !transmit BREAKI

313
P 0050 80 0000· 314 JP ser flush ! flush (clear)

315 input bufferl
P 0050 80 0000· 315 JP ser wlin !write linel

317
P 0053 80 0000· 318 JP ser wabs Iwrite absolutel

319
P 0056 PO 0000· 320 JP ser_wbyt Iwrite byte!

321
P 0069 80 0000· 322 JP ser disable Idisable serial I/OI

323
324 !Timer/Counter Routinesl
325

p 006C 80 0000· 326 JP tad i linit for time of dayl
327

P 006F llD 0000· 328 JP tad !tod IRQ servicel
329

p 0072 80 0000· 330 JP delay linit for delay interval
331

p 0075 80 0000· 332 JP pulse i linit for pulse output I
333 -

p 0078 80 0000· 334 JP pulse Ipulse IRQ servicel
335

p 007B 336 END JUMP

338 IInitializationl
p 007B 339 INIT PROCEDURE

340 ENTRY
341

P 007B E6 F8 D7 342 LD P01M,#$(2)11010111
343 linternal stack;
344 ADO-A15;
345 normal memory
346 timing I

P 007E E6 7F 10 347 LD P3M_save,#$(2)00010000
348 !P3M is write-only,
349 50 keep a copy in
350 RAM for later
351 reference I

P 0081 E4 7F F7 352 LD P3M,P3M save ! set up Port 3
P 0084 E5 FF 55 353 LD SPL,#S1'J:CK I stack pointer
P 0087 BO F1 354 CLR TMR Ireset timersl
P 0089 E5 F6 FF 355 LD P2M,UFF I all inputs I
P 008C BO FA 355 CLR IRQ !reset into requests I
P 008E BO FB 357 CLR IMR Idisable interrupts I
P 0090 BO FD 358 CLR RP Iregister pointerl
P 0092 E6 70 80 359 LD SER_flg, U80 Iserial disabledl
P 0095 9F 350 EI I globally enable

361 interrupts I
P 0095 8D 0812 362 JP $0812

363
P 0099 354 END IN!T

1-14

--~~~~ ~~.

Binary Ar~thmetic Rouhnes

397 CONSTANT
398 div LEN = Rl0
399 DIVTsOR = Rll
400 dividend HI R12
401 dividend-LO R13
402 GLOBAL

P 0099 403 divide PROCEDURE
11011 I··· 1105 Purpose = To perform a 16-bit by 8-bit unsigned
1106 binary division.
1107
408 Input = Rll = 8-bit divisor
1109 RR12 = 16-bit dividend
1110
1111 Output = R13 = 8-bit quotient
1112 R12 = 8-bit remainder
413 Carry flag = 1 if overflow
11111 = 0 if no overflow
1115 R 11 unmod 1fi ed
416 ···1 417 ENTRY

P 0099 A9 7C 1118 ld TEMP 1,div LEN I save caller's Rl01
P 009B AC 08 1119 ld div_tEN,118- !LOOP COUNTER I

420
421 ICHECK IF RESULT WILL FIT IN 8 BITSI

P 009D A2 BC 1122 cp DIVISOR,dividend HI
P 009F BB 02 1123 jr UGT,LOOP TCARRY 0 (FOR RLC)!

424 loverflow!
P OOAl DF 425 SCF !CARRY = 11
P 00A2 AF 426 ret

427
P 00A3 10 ED 428 LOOP: RLC dividend LO !DIVIDEND • 21 P OOA5 10 EC 429 RLC dividend=HI
P 00A7 7B 04 430 jr c,subt
P 00A9 A2 BC 431 cp DIVISOR,dividend_HI
P OOAB BB 03 432 jr UGT,next ICARRY = 01
P OOAD 22 CB 433 subt: SUB dividend_HI,DIVISOR
P OOAF DF 434 SCF ITO BE SHIFTED INTO RESULTI
P OOBO AA Fl 435 next: djnz div_LEN,LOOP Ino flags affectedl

436
437 IALL DONEI

P 00B2 10 ED 438 RLC dividend LO
439 !CARRY = 0: no over flow I

P 00B4 A8 7C 440 Id div_LEN,TEMP_ Irestore caller's Rl01
P 00B6 AF 441 ret
P 00B7 442 END divide

1-15

P 00B7

P 00B7 79
P 00B9 7C
P OOBB CF
P OOBC BO
P OOBE BO
P OOCO 10
P 00C2 10
P 00C4 10
P 00C6 10
P 00C8 7B
P OOCA A2
P OOCC BB
P OOCE 7B
P OODO A2
P 00D2 BB
P 0004 22
P 0006 32
P 0008 DF
P 00D9 7A
P OODB 10
P OODD 10
P OODF 78
P OOEl AF
P 00E2

P 00E2

P OOE2 A9
P 00E4 AC
P 00E6 BO
P 00E8 CF
P 00E9 CO
P OOEB CO
P ODED FB
P OOEF 02
P OOFl AA
P 00F3 A8
P 00F5 AF
P 00F6

7C
10

EA
EB
ED
EC
EB
EA
OA
8A
OB
04
9B
05
B9
A8

E5
ED
EC
7C

7C
09
EC

EC
ED
02
CB
F6
7C

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

CONSTANT
d16 LEN R7
dvsr hi R8
dvsr-lo R9
rem hi Rl0
rem-lo Rll
quot hi R12
quot-lo R13

GLOBAL
div 16 PROCEDURE
! •• T ••
Purpose = To perform a 16-bit by 16-bit unsigned

binary division.

Input = RR8 = 16-bit divisor
RR12 = 16-bit dividend

Output = RR12 = 16-bit quotient
RR10 16-bit remainder
RR8 unmodified •• * •• !

ENTRY
Id
Id
rcf
clr
clr

dlp_16: rIc
rIc
rIc
rIc
jr
cp
jr
jr
cp
jr

subt 16: sub
sbc
scf

skp_16: djnz
rIc
rIc
Id
ret

END div_16

CONSTANT
MULTIPLIER
PRODUCT LO
PRODUCT-HI
mul LEN-

GLOB1iL

TEMP 1,d16 LEN !save caller's Rl0!
d16_LEN,#10 ILOOP COUNTER!

rem hi
rem-lo
quot 10
quot-hi
rem To
rem-hi
c,stibt 16
dvsr hI,rem hi
ugt,skp 16 -
ult,subt 16
dvsr lo,rem 10
ugt,skp 16-
rem lo,avsr 10
rem=hi, dvsr =hi

!carry = O!

d16 LEN,dlp 16 !no flags affected!
quol: 10 -
quot-hi
d16_1:EN,TEMP_l

Rll
R13
R12
Rl0

multiply PROCEDURE
! •••
Purpose = To perform an 8-bit by 8-bit unsigned

binary multiplication.

Input = R 11 = multiplier
R13 = multiplicand

Output = RR12 = product
Rll unmodified

••• !
ENTRY

LOOP1:

NEXT:

END

Id
Id
clr
RCF
RRC
RRC
jr
ADD
djnz
Id
ret
multiply

TEMP 1,mul LEN
mul 1:EN, 119-
PRODUCT HI

PRODUCT HI
PRODUCT-LO
NC,NEXT

!save caller's Rl01
! 8 BITS I
!INIT HIGH RESULT BYTEI
!CARRY = 01

PRODUCT HI,MULTIPLIER
mul LEN-;-LOOPl
mul=LEN,TEMP_l !restore caller's Rl01

1-16

P 00F6

P 00F6 79
P 00F8 7C
P OOFA BO
P OOFC BO
P OOFE CF
P OOFF CO
P 0101 CO
P 0103 co
P 0105 CO
P 0107 FB
P 0109 02
P 010B 12
P 0100 7A
P 010F 78
P 0111 A9
P 0113 44
P 0116 AF
P 0117

7C
11
EA
EB

EA
EB
EC
ED
04
B9
A8
FO
7C
7C
EB 7C

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

CONSTANT
m16 LEN R7
plier hi R8
plier-lo R9
prod hi R10
prod-lo R11
mult-hi R12
mult-lo R13

GLOBAl:
mult 16 PROCEDURE I···T .. .

Purpose To perform an 16-bit by 16-bit unsigned
binary multiplication.

In put = RR8 = multiplier
RR12 = multiplicand

Output = RQ10 = product (R10, R11, R12, R13)
RR8 unmodified
Zero FLAG = 0 if result> 16 bits

= 1 if result fits in 16
(unsigned) bits (RR12 = result)

···1 ENTRY

100p16:

next16:

END

Id TEMP 1,m16 LEN Isave caller's R7!
Id m16 LEN,111'T 116 BITSI
clr prod hi
clr prod:lo linit product!
rcf ICARRY = 01
rrc
rrc
rrc
rrc
jr
add
adc
djnz
Id
Id
or
ret
mult 16

prod hi
prod-lo Ibit 0 to carry!
mult-ni Imultiplicand / 21
mult-lo
nc,next16
prod lo,plier 10
prod-hi,plier-ni
m16 LEN,100p16 Inext bit!
m16-LEN,TEMP 1 !restore caller's R71
TEMP 1,prod hi Itest product ... !
TEMP:1,prod:lo I •.. bits 31 - 16!

1-17

BCD Ar1thmet1c Rout1nes

P 0117

P 0117 B7 EE 80

P 011A

593 !The BCD format supported by the following arithmetic
594 and conversion routines allows representation
595 of signed magnitude variable precision BCD
596 numbers. A BCD number of 2n digits is
597 represented in n+1 consecutive bytes where
598 the byte at the lowest memory address
599 ('byte 0') represents the sign and post-
600 decimal digit count, and the bytes in the
601 next n higher memory locations ('byte l'
602 through 'byte n') represent the magnitude
603 of the BCD number. The address of 'byte 0'
604 and the value n are passed to the subroutines
605 in specified working registers. Digits are
606 packed two per byte with the most
607 significant digit in the high order nibble
608 of 'byte l' and the least significant digit
609 in the low order nibble of 'byte n'. 'Byte 0'
610 is organized as two fields:
611 bit 7 represents sign:
612 = 1 => negative
613 = 0 => positive
614 bit 6-0 represent post-decimal digit
615 count
616 For example:
617 'byte 0'= %05 => positive, with 5 post-decimal digits
61e = %80 => negative, with no post-decimal digits
619 = %90 => negative, with 16 post-decimal digits
620

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

CONSTANT
bcd LEN := R12
bcd-SRC '- R14
bcd-DST := R15

GLOBl"L
bcdsub PROCEDURE

I··· Purpose = To subtract two packed BCD strings of

Input =

equal length.
dst <-- dst - src

R15

R14

R12

address of destination BCD
string (in register memory).
address of source BCD
string (in register memory).
BCD digit count / 2

Output Destination BCD string contains the
difference.
Source BCD string may be modified.
R12, R14, R15 unmodified if no error
R13 modified.
Carry FLAG = 1 if underflow or format

error.

···1 ENTRY
xor

!fall into bcdaddl
END bcdsub

1-18

!complement sign of
subtrahend!

P 011A

P011AE6
P 0110 08
P 011F C9
P 0121 011
P 01211 E5
P 0127 56
P 012A 211
P 0120 70
P 0130 6B
P 0132 70
P 0134 C7
P 0137 76
P 013A 50
P 013C EB
P 013E BO
P 0140 06
P 0143 21
P 0145 40
P 01118 00
P 0111A EB
P 0111C 08
P 0111E 00
P 0150 EB

P 0152 E3
P 0154 56
P 0157 E5
P 015A 56
P 0150 All
P 0160 70
P 0162 7B
P 01611 BB

P 0166 Oil
P 0168 E9
P 016A F9
P 016C 20
P 016E 20
P 0170 E5
P 0173 A5

7E 02
EE
7B
7B 7B
ED 70
70 7F
70 7B
0203'
1A
EC
CD 01
EC FO
EC
OE
7C
01163 '
ED
0203 '
7B
E6
EF
7E
CD

OF
ED 7F
EE 70
70 7F
70 ED
ED
39
18

EC
7C
7B
7C
7B
7C 7E
7B 7E

653
6511
655
656
657
658
659
660
661
662
663
6611
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
6811
685
686
687
688
689
690
691
692
693
6911
695
696
697
698
699
700
701
702
703
7011
705
706
707
708
709
710
711
712
713
7111
715
716

GLOBAL
bcdadd PROCEDURE

I··· Purpose = To add two packed BCD strings of

Input =

equal length.
dst <-- dst + src

R15 address of destination BCD
string (in register memory).

R111 = address of source BCD
string (in register memory).

R12 BCD digit count / 2

Output = Destination BCD string contains the sum.
Source BCD string may be modified.
R12, R111, R15 unmodified if no error
R13 modified.
Carry FLAG = 1 if overflow or format

error.

···1 ENTRY
Idelete all leading pre-decimal zeroesl

ld TEMP 3,#2
ld R13,bcd SRC
ld TEMP lI,ocd LEN
add TEMP-4,TEMP II
ld TEMP-2,@R13-
and TEMP-2,0~7F
sub TEMP-II, TEMP 2
jp ult,oa err -
jr z,ba 1-
push R12 -
ld R12,1(R13)
tm R12,UFO
pop R 12
jr nz,ba 1
clr TEMP T
call rdl
inc @R13
jp ov,ba err
dec TEMP 11"
jr nz,bs 2

ba 1: ld R13,bcd OST
dec TEMP 3 -
jr nz,bs_3

!total digit countl
Iget sign/post dec 01
lisolate post dec #1
Ipre-dec digit cntl
! format error I
Ino pre-dec. digitsl
Isavel
Ileading by tel
!test leading digiti
Irestorel
!no more leading O'sl

Irotate leftl
!update post dec #1
!oopsl
Idec pre-dec #1
Iloopl

ISRC and OST done?1
Ido OSTI

Ileading zero deletion complete I
linsure OST is > or = SRC; exchange if necessaryl

ld R13,@bcd OST
and R13,0~7F- !isolate post dec #1
ld TEMP 2,@bcd SRC
and TEMP-2,#~7F- lisolate post dec #1
cp R13,TEMP 2
push R13 - Isavel
jr ult,ba II lOST> SRCI
jr ugt,ba-5 lOST < SRCI

Idecimal points in same position.
must compare magnitudel

ld R13,bcd LEN
ld TEMP 1,DCd SRC
ld TEMP-II,bcd-OST
inc TEMP-1 -
inc TEMP-II
ld TEMP-3,@TEMP 1 Iget SRC by tel
cp TEMP=3,@TEMP=1I Icompare OST by tel

1-19

P 0176 BB 06 717 jr ugt,ba_5 !SRC > OSTI
P 0178 7B 23 718 jr ult,ba II !SRC < OST!
P 017A OA FO 719 djnz R13,ba:6 ! loopl
P 017C 8B 1F 720 jr ba II lOST> or = SRCI

721 Iswap source and destination operands I
P 017E 08 EC 722 ba_5: ld R13,bcd_LEN
P 0180 OE 723 inc R13 linclude flag/size by tel
P 0181 02 EO 724 add bcd SRC,R13
P 0183 02 FO 725 add bcd-OST,R13
P 0185 00 EE 726 ba_7: dec bcd-SRC
P 0187 00 EF 727 dec bcd-OST
P 0189 E5 EE 7C 728 ld TEMP 1,@bcd SRC
P 018C E5 EF 7B 729 ld TEMP-4,@bcd-OST
P 018F F5 7B EE 730 ld @bcd-SRC,TEMP 4
P 0192 F5 7C EF 731 ld @bcd-OST,TEMP-1 lone byte swappedl
P 0195 OA EE 732 djnz R13,oa 7 -
P 0197 08 70 733 ld R13,TEHP_2
P 0199 50 70 734 pop TEMP 2
P 019B 70 EO 735 push R13 -

736 lexchange complete I
P 0190 50 EO 737 ba 4: pop R13 !restore!

738 IR13 = OST post decimal digit count
739 TEMP 2 = SRC post decimal digit count
740 R13 =< TEMP 2

P 019F 24 EO 70 741 sub - TEMP 2,R13
P 01A2 CO 70 742 rrc TEMP-2 !alignment offsetl
P 01A4 FB 09 743 jr nc,ba 8 !digits word aligned!

744 Irotate out least significant SRC post decimal digiti
P 01A6 08 EE 745 ld R13,bcd_SRC
P 01A8 01 EO 746 dec @R13 ! dec post dec digit II!
P 01AA BO 7C 747 clr TEMP 1
P 01AC 06 0485' 748 call rdr

749 !determine if addition or subtraction!
P 01AF E5 EE 7B 750 ba_8: ld TEMP 4,@bcd SRC ! sign of SRCI
P 01B2 B5 EF 7B 751 xor TEMP-4,@bcd-OST ! sign of OSTI

752 Iget starting addresses I -
P 01B5 08 EC 753 ld R13,bcd LEN
P 01B7 24 70 EO 754 sub R13,TEM'Ji 2
P 01BA 6B 45 755 jr z,ba 14 - !done alreadyl
P 01BC 02 EO 756 add bcd SRC,R13
P 01BE 02 FC 757 add bcd:OST,bcd_ LEN

758 Ireadylll
P 01CO CF 759 rcf !carry = 01
P 01C1 E5 EF 7C 760 ba 11: ld TEMP 1,@bcd OST
P 01C4 76 7B 80 761 tm TEMP-4,1I~80- ladd or sub?1
P 01C7 6B 05 762 jr z ,ba-9 !addl
P 01C9 35 EE 7C 763 sbc TEMP-1,@bcd_SRC
P 01CC IlB 03 764 jr ba 1~
P 01CE 15 EE 7C 765 ba 9: adc TEMP 1,@bcd SRC
P 0101 40 7C 766 ba-10: da TEMP-1 -
P 0103 F5 7C EF 767 ld @bcd-OST,TEMP 1
P 0106 00 EF 768 dec bcd 'UST -
P 0108 00 EE 769 dec bcd-SRC
P 010A OA E5 770 djnz R13~a 11

771 Ipropagate carry thru ~EMP 2 bytes of OSTI
P 010C 08 70 772 ld R13,TEMP_2-
P 010E OE 773 inc R13 Imay be zerol
P 010F OA 02 774 djnz R13,ba_12
P 01E1 8B 09 775 jr ba 13
P 01E3 17 EF 00 776 ba 12: adc @bed OST,IIO
P 01E6 41 EF 777 da @bcd-OST
P 01E8 00 EF 778 dec bcd 'UST
P OlEA OA F7 779 djnz R13-;-ba_12

1-20

780 !carry propagate complete I
P 01EC FB 13 781 ba 13: jr nc,ba 14 Idonel

782 !Rotate out least significant post decimal DST
783 digit to make room for carry at high endl

P 01EE E5 EF 7C 784 ld TEMP l,@bcd DST
P 01Fl 56 7C 7F 785 and TEMP-l,II1.7F-
P 01F4 6D 0203' 786 jp z,ba-err I no post dec digitsl
P 01F7 E6 7C 10 787 ld TEMP-l,Ul0
P 01FA D8 EF 788 ld R13,Dcd_DST
P 01FC D6 0485' 789 call rdr
P 01FF 01 EF 790 dec @bcd_DST Idec digit cntl
P 0201 CF 791 ba 14: rcf
P 0202 AF 792 ret

793
P 0203 DF 794 ba err: scf
P 0204 AF 795 ret
P 0205 796 END bcdadd

1-21

Conversion Rout~nes
821 CONSTANT
822 bca LEN : = R12
823 bca-SRC := R13
824 GLOBiL

P 0205 825 bcddasc PROCEDURE

826 I··· 827 Purpose = To convert a variable length BCD
828 string to decimal ASCII.
829
830 Input = RR14 = address of destination ASCII
831 string (in reg/ext/ser memory).
832 R13 = address of source BCD
833 string (in register memory).
834 R12 = BCD digit count / 2
835
836 Output ASCII string in designated
837 destination buffer.
838 Carry FLAG = 1 if input format error
839 or serial disabled,
840 = 0 if no error.
841 R12, R13, R14, R15 modified.
842 Input BCD string ummodified.
843 ···1 844 ENTRY

P 0205 E6 7C 2D 845 Id TEMP 1,#'-' Iminus sign I
P 0208 77 ED 80 846 tm @bca-SRC,U80 I src negat i ve? I
P 020B EB 03 847 jr nz,bed d1 Iyesl
P 020D E6 7C 2B 848 Id TEMP 1711'+' I positive signl
P 0210 E5 ED 7E 849 bcd d1: Id TEMP-3,@bca SRC
P 0213 56 7E 7F 850 and TEMP-3, U7F'- lisolate post dec cntl
P 0216 02 CC 851 add bca LEN,bca_LEN Itotal digit count I
P 0218 70 EC 852 push bca-LEN
P 021A 24 7E EC 853 sub bca-LEN,TEMP 3 Ipre-dec digit cntl
P 021D 50 7E 854 pop TEM'P" 3 - Itotal digit countl
P 021F 7B 35 855 jr ul t, licd d2 Iformat errorl
P 0221 D6 03F4' 856 call put dest ISign to dest.1
P 0224 7B 30 857 jr c,bed d2 !serial error I
P 0226 A6 EC 00 858 cp bca Li:N,1I0 lany pre-dec digits?1
P 0229 6B 22 859 jr z,bed d6 Ino. start with '.'1
P 022B 76 7E 01 860 bcd d4: tm TEMP J,'1 Ineed next byte?1
P 022E EB 04 861 jr nz,bed d3 Inot yet.1
P 0230 DE 862 inc bca SR~ lupdate pOinterl
P 0231 E5 ED 7D 863 Id TEMP 2,@bca SRC Iget next by tel
P 0234 FO 7D 864 bcd_d3: swap TEMP-2 -
P 0236 Ell 7D 7C 865 Id TEMP-1,TEMP 2
P 0239 56 7C OF 866 and TEMP-1,nOr lisolate digiti
P 023C A6 7C 09 867 cp TEMP-1, '9 Iverify bcdl
P 023F BB 14 868 jr ugt,licd d5 Ino goodl
P 0241 06 7C 30 869 add TEMP 1, 71J30 Iconvert to ASCIII
P 0244 D6 03F4' 870 call put aest Ito destination!
P 0247 00 7E 871 dec TEMP 3 Idigit countl
P 0249 6B OB 872 jr z,bcd d2 I all donel
P 024B CA DE 873 djnz bca LEN, bed d4 Inext digiti
P 024D E6 7C 2E 874 bcd_d6: Id TEMP 1,#'. ,- Itime for dec. pt.1
P 0250 D6 03F4' 875 call put dest Ito destinationl
P 0253 8B D6 876 jr bcd-d4 Icontinuel
P 0255 DF 877 bcd d5: scf Iset error returnl
P 0256 AF 878 bcd-d2: ret
P 0257 879 END- bcddasc

881 GLOBAL
P 0257 882 wrdhasc PROCEDURE

883 I··· 884 Purpose = To convert a binary word to Hex ASCII.
885
886 Input = RR12 = source binary word.
887 RR14 = address of destination ASCII
888 string (in reg/ext/ser memory).
889
890 Note = All other details same as for bythasc.
891 ···1 892 ENTRY

P 0257 D6 025C' 893 call bythasc !convert R121
P 025A C8 ED 894 Id R12,R13

895 I fall into bythascl
P 025C 896 END wrdhasc

1-22

P 025C

P 025C BO 7E
P 025E E6 7D 02
P 0261 FO EC
P 0263 C9 7C
P 0265 56 7C OF
P 0268 06 7C 30
P 026B A6 7C 3A
P 026E 7B 09
P 0270 DF
P 0271 76 7E 01
P 02711 EB OD
P 0276 06 7C 07
P 0279 D6 03FII'
P 027C 7B 05
P 027E 00 7D
P 0280 EB DF
P 0282 CF
P 0283 AF
P 02811

898 CONSTANT
899 bna SRC
900 GLOBAL

R12

901 bythasc PROCEDURE

902 I··· 903 Purpose To convert a binary byte to Hex ASCII.
9011
905 Input =
906
907
908
909 Output =
910
911

RRlll = address of destination ASCII
string (in reg/ext/ser memory).

R12 = Source binary byte.

ASCII string in designated
destination buffer.
Carry = 1 if error (serial only).
Rll1, R15 modified. 912

913
9111
915
916
917
918
919
920

···1 ENTRY
clr

bca go: ld
bca-gol: SWAP

- ld

921
922
923
9211
925
926
927 skip:
928
929
930
931
932 bca ex:
933 END-

and
ADD
cp
jr
SCF
TM
JR
ADD
call
jr
dec
jr
RCF
ret
bythasc

MODE Iflag => binary to ASCIII
TEMP 2,112
bna 'S"RC
TEMY 1, bna SRC
TEMP-l , /I~OF
TEMP-l , /IS 3 0
TEMP-l , /IS 3 A
ult,Skip

MODE,Il
NZ,bca ex
TEMP 1-; n07
put dest
c,boa ex
TEMP ~
nz,boa_gol

1-23

Ilook at next nibblel

lisolate low nibblel
Iconvert to ASCIII
1>9?1
Inol
lin case errorl
linput is BCD? I
I yes. error. I
linput hex. adjust I
Iput byte in destl
lerrorl

!loop till done I
Icarry = 0: no errorl
Idonel

P 0284

P 0284 BO
P 0286 BO
P 0288 E5
P 028B 56
P 028E 02
P 0290 24
P 0293 7B
P 0295 E5
P 0298 E6
P 029B EE
P 029C E5
P 029F A6
P 02A2 6B
P 02A4 FO
P 02A6 E4
P 02A9 D6
P 02AC 7B
P 02AE 00
P 02BO 00
P 02B2 EB
P 02B4 8B
P 02B6 DF
P 02B7 76
P 02BA EB
P 02BC 76
P 02BF 6B
P 02C1 60
P 02C3 60
P 02C5 06
P 02C8 16
P 02CB CF
P 02CC AF
P 02CD

EC
ED
EE 7B
7B 7F
FF
7B EF
37
EE 7B
7E 02

EE 7D
EF 00
12
7D
7D 7C
042C'
1E
EF
7E
EB
E2

EC 80
10
7B 80
OA
EC
ED
ED 01
EC 00

935 CONSTANT
936 bcd adr
937 bcd-cnt
938 GLOBAL

!= R14
R15

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

b"cdwrd PROCEDURE
! •••
Purpose = To convert a variable length BCD

string to a signed binary word. Only
pre-decimal digits are converted.

Input = R14 = address of source BCD
string (in register memory).

R15 = BCD digit count / 2

Output RR12 = binary word
Carry FLAG = 1 if input format error

or dest overflow,
= 0 if no error.

R14,R15 modified. ••••••••••••••••••••••••••••••••• * ••••••••••••••••••• !
ENTRY

clr
clr
ld
and
add
sub
jr
ld
Id
inc
ld

bcd w1: cp
jr
swap
ld
call
jr
dec
dec
jr
jr

bcd w4: scf
tm
jr

bcd_w5: tm
jr
com
com
add
adc

bcd w6: rcf
bcd-w2: ret
END- bcdwrd

R12
R13
TEMP 4,@bcd adr
TEMP-4, fI'1,7F­
bcd cnt,bcd cnt
bcd-cnt,TEM15" 4
ult-;bcd w2 -
TEMP 4,lbcd adr
TEMP-3,1I2 -
bcd adr
TEM1' 2,@bcd adr
bcd cnt,IIO -
z,bcd w4
TEMP "2"
TEMP-1,TEMP 2
bcd Din -
c,bcd w2
bcd cnt
TEM15 3
nz,bcd w1
bcd_wr

R12,U80
nz,bcd w2
TEMP 4-;11%80
z,bca w6
R12 -
R13
R13,1I1
R12,110

1-24

linit destination!

!get sign/post length I
!isolate post Tength!
1/1 bcd digitsT
!# pre-dec digitsl
!format error!
!remember signl
Idigits per by tel
Isrc address I
!get next src by tel
!digit count = O?!
!conversion complete I
Inext digitI

laccumulate in binary I
loverflow or format err!
lupdate digit countl
Inext byte?!
Ino. same.1
!next by tel
lin casel
!result > 15 bits?1
!overflow!
!source negative?!
!no. done.!

!RR12 two's complement!
!carry = 01

-~--~~

990 GLOBAL
P 02CD 991 wrdbcd PROCEDURE

992 I··· 993 Purpose To convert a signed binary word
994 to a variable length BCD string.
995
996 Input = R14 = address of destination BCD
997 string (in register memory)
99S RR12 = source binary word
999 R15 = BCD digit count / 2

1000
1001 Output BCD string in destination buffer
1002 Carry FLAG = 1 if dest overflow
1003 = 0 if no error.
1004 R12,R13,R14,R15 modified.
1005 ••• !
1006 ENTRY

P 02CD Bl EE 1007 clr @bcd adr !init sign/post dec cntl
P 02CF 76 EC SO 100S tm R12,nSO lis input word nega~ive?
P 02D2 6B OD 1009 jr z,wrd bO
P 02D4 47 EE SO 1010 or @bcd_adr,II%SO !set result negative!
P 02D7 60 ED 1011 com R13
P 02D9 60 EC 1012 com R12
P 02DB 06 ED 01 1013 add R13,nl
P 02DE 16 EC 00 1014 ade R12,110 !RR12 two's complement!
P 02El 10 ED 1015 wrd bO: rle R13
P 02E3 10 EC 1016 rlc R12 !bit 15 not magnitude!
P 02E5 EE 1017 inc bcd adr !update dest pointer!
P 02E6 E9 7C 101S ld TEMl'"_l,bed_adr
P 02ES F9 7D 1019 ld TEMP 2,bcd ent !dest byte count!
P 02EA 04 EF 7C 1020 add TEMP=l, bcd=cnt
P 02ED 00 7C 1021 dec TEMP 1 != bed end addrl
P 02EF Bl EE 1022 wrd bl: elr @bed-adr linitialize destl
P 02Fl EE 1023 inc bed adr
P 02F2 FA FB 1024 djnz bed=cnt,wrd_ bl
P 02F4 E6 7E OF 1025 ld TEMP 3,1115 Isouree bit count!
P 02F7 70 7E 1026 wrd_b3: push TEMP=3
P 02F9 10 ED 1027 rle R13
P 02FB 10 EC 102S rle R12 !bit 15 to carry!
P 02FD E8 7C 1029 ld bed adr,TEMP !start at end!
P 02FF FS 7D 1030 ld bed-cnt,TEMP-2 !dest byte count I

1031 !(dest bed string) <-- (dest-bed string • 2) + carry!
P 0301 E5 EE 7E 1032 wrd b2: ld TEMP _3,@bed_adr
P 0304 15 EE 7E 1033 adc TEMP 3,@bed adr !. 2 + carry!
P 0307 40 7E 1034 da TEMP-3 -
P 0309 F5 7E EE 1035 ld @bed-adr,TEMP 3
P 030C 00 EE 1036 dec bed adr - !next two digits!
P 030E FA Fl 1037 djnz bed-cnt,wrd b2 !loop for all digits I
P 0310 50 7E 1038 pop TEM~ 3 - !restore src bit ent!
P 0312 7B 04 1039 jr e,wrd ex !dest. overflow!
P 0314 00 7E 1040 dec TEMP J
P 0316 EB DF 1041 jr nz,wrd_b3 !next bit!
P 0318 AF 1042 wrd ex: ret
P 0319 1043 ENO- wrdbcd

1-25

P 0319

P 0319 BO 7E
P 031B BO EC
P 0310 BO EO
P 031F 06 030A'
P 0322 7B 28
P 03211 06 01100'
P 0327 7B 22
P 0329 A6 7C 39
P 032C 3B 03
P 032E 26 7C 37

P 0331 FO EO
P 0333 09 70
P 0335 56 EO FO
P 0338 56 7C OF
P 033B UII 7C EO
P 033E FO EC
P 03110 56 EC FO
P 03113 56 70 OF
P 03116 1111 70 EC
P 03119 8B 04
P 034B CF
P 034C AF
P 0340

1045 GLOBAL
1046 hascwrd PROCEOURE

1047 I··· 10118 Purpose = To convert a variable length Hex
10119 ASCII string to binary.
1050
1051 Input =
1052

RR14 = address of source ASCII
string (in reg/ext/ser memory).

1053
1054 Output =
1055

RR12 = binary word (any overflow
high order digits are truncated
without error). 1056

1057
1058
1059
1060
1061
1062

Carry FLAG = 1 if input error
(serial only)

(SER flg indicates cause)
=-0 if no error

R14, R15 modified

1063 Note =
1064

The ASCII input string processing is
terminated with the occurrence of a
non-hex ASCII character. 1065

1066 ···1 1067 ENTRY
1068 clr TEMP 3
1069 clr R12 -
1070 clr R13
1071 has c1:
1072

call get src
jr c,has_ex1

1073
10711
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

call ver asc
jr c,has ex
cp TEMP 1,n~39
jr ule,nas c2
sub TEMP 1,#~37

IShift left one nibbTel
IInsert new nibble in least
has c2: swap R13

Id TEMP 2,R13
and R13,1/"%FO
and TEMP 1,n~OF
or
swap
and
and
or
jr

has ex: rcf
has-ex 1 : ret
ENO- hascwrd

R13,TEMP 1
R12 -
R12,UFO
TEMP 2,UOF
R12,TEMP 2
has_c1 -

1-26

linit output!
!get input!
terror!
Iverify hex ASCII!
lend conversion!

significant nibblel

!loop I
!no error!

P 034D

P 034D CC 03
P 034F DC 08
P 0351 04 FD ED
P 0354 D6 0363'
P 0357 7B F3
P 0359 EC 08
P 035B 04 FD EE
P 035E FC 03
P 0360 8D 0284'
P 0363

------ ~~---

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

GLOBAL
dascwrd PROCEDURE
! •••
Purpose To convert a variable length decimal

ASCII string to signed binary.

In put =

Output

RR14 = address of source ASCII
string (in reg/ext/ser memory).

RR12 = binary word
R8,R9,R10,R11 holds the
version of the result.
Carry FLAG = 1 if input

packed BCD

error

R14,

(serial only)
(SER fIg indicates cause)

- or dest overflow
= 0 if no error

R15 modified

Note The ASCII input string processing is
terminated with the occurrence of a
non-decimal ASCII character.
Decimal ASCII string may be no more
than 6 digits in length, else Carry
will be returned.
Post decimal digits are not included
in the binary result.

···1 ENTRY

END

Id
Id
add
call
jr
Id
add
Id
jp
dascwrd

R12,1I3
R13,118
R13,RP
dascbcd
c,has ex1
R14,1I'B"
R14,RP
R 15,113
bcdwrd

1-27

16 digitsl
I temp addr = I
IR8 thru R111
Iconvert to bcdl
lerrorl

!convert to binary I

1134 CONSTANT
1135 dab LEN : = R12
1136 dab-DST . - R13
1137 GLOBAL

P 0363 1138 dascbcd PROCEDURE
1139 I··· 1140 Purpose To convert a variable length decimal
1141 ASCII string to BCD.
1142
1143 Input = R13 = address of destination BCD
1144 string (in register memory).
1145 RR14 = address of source ASCII
1146 string (in reg/ext/ser memory).
1147 R12 = BCD digit count / 2
1148
1149 Output = BCD string in designated destination
1150 buffer (any overflow high order
1151 digits are truncated without error).
1152 Carry FLAG = 1 if input error
1153 (serial only)
1154 (SER fIg indicates cause)
1155 - or overflow
1156 R14, R15 modified.
1157
1158 Note = The ASCII input string processing is
1159 terminated with the occurrence of a
1160 non-decimal ASCII character.
1161 ···1 1162 ENTRY

P 0363 70 EC 1163 push dab LEN Isavel
P 0365 70 ED 1164 push dab-DST
P 0367 B1 ED 1165 das_g1: clr @dab DST !init. destination I
P 0369 DE 1166 inc dab UST
P 036A CA FB 1167 djnz dab-LEN,das g1
P 036C B1 ED 1168 clr @dao DST - I init.1
P 036E 50 ED 1169 pop dab OST Irestorel
P 0370 50 EC 1170 pop dab-LEN
P 0372 E6 7E 01 1171 ld TEMlS 3,'1 Ifor ver asc I
P 0375 BO 7B 1172 clr TEMP:4 Ibit o => digit seen;

1173 bit 1 => dec pt seen;
1174 bit 7 => overflowl

P 0377 D6 03DA' 1175 das_g2: call get src Iget input by tel
P 037A 78 41 1176 jr c,dab ex1 I serial error I
P 037C 56 7C 7F 1177 and TEMP 1,U7F 17-bit ASCIII
P 037F 76 7B 03 1178 tm TEMP-4,U03 !check status I
P 0382 EB OF 1179 jr nz,das g5 ISign char not valid I
P 0384 A6 7C 2B 1180 cp TEMP 1-;-11'+' I posi tive? I
P 03B7 68 EE 1181 jr z,das g2 Iyes. no affectl
P 0389 A6 7C 2D 1182 cp TEMP 1,11'-' Inegative?1
P 038C EB 07 1183 jr nz,das g4 I not sign char I
P 038E B7 ED 80 1184 xor @dab D'ST, U80 Icomplement signl
P 0391 88 E4 1185 jr das g2 Iget next inputl
P 0393 5B OA 1186 das g5: jr mi,das g6 Idec pt has been seenl
P 0395 A6 7C 2E 1187 das:g4: cp TEMP 1";"# I.' lis char dec pt?1
P 0398 EB 05 1188 jr nz,d'is g6 Inope.1
P 039A 46 7B \03 1189 or TEMP 4";"U03 Idec pt and digit seenl
P 039D 8B D8 1190 jr das_g2 Iget next inputl
P 039F D6 OIlOD' 1191 das_g6: call ver asc lis bcd digit?1
P 03A2 78 16 1192 jr c,d'ib ex lend conversion.1
P 03A4 46 7B 01 1193 or TEMP ii,U01 Idigit seenl
P 03A7 D6 0463' 1194 call rdl - Inew digit to destl
P 03AA EB 09 1195 jr nz,das g7 loverflowl
P 03AC 76 7B 02 1196 tm TEMP 4-;-U02 Ipost dec digit?1
P 03AF 68 C6 1197 jr z,das_g2 Ino. get next inputl

1-28

P 03Bl 21 ED 1198 inc @dab DST linc post dec cntl
P 03B3 8B C2 1199 jr das g2 Iget next inputl
P 03B5 46 7B 80 1200 das_g7: or TEMP 4, U80 Iset overflow I
P 03B8 8B BD 1201 jr das_g2 !get next inputl

1202
P 03BA E4 7B FC 1203 dab ex: ld FLAGS,TEMP_4 !carry = 0 or 11
P 03BD AF 1204 dab-exl: ret
P 03BE 1205 END- dascbcd

1207 GLOBAL
P 03BE 1208 wrddasc PROCEDURE

1209 ! •••
1210 Purpose To convert a signed binary word to
1211 decimal ASCII
1212
1213 Input RR12 = source binary word.
1214 RR14 = address of dest (in reg/ext/ser
1215 memory) .
1216
1217 Output Decimal ASCII in dest buffer.
1218 R8,R9,Rl0,Rll holds the packed BCD
1219 version of the result.
1220 R12, R13, R14, R15 modified.
1221 ···1 1222 ENTRY

P 03BE 70 EE 1223 push R14
P 03CO 70 EF 1224 push R15 !save dest addrl
P 03C2 EC 08 1225 ld R14,118
P 03C4 04 FD EE 1226 add R14,RP !R8,9,10 & 11 tempi
P 03C7 FC 03 1227 ld R15,113 !temp byte length!
P 03C9 D6 02CD' 1228 call wrdbcd Iconvert input wordl
P 03CC 50 EF 1229 pop R15
P 03CE 50 EE 1230 pop R14 !restore dest addr!
P 03DO CC 03 1231 ld R12,113 !length of temp!
P 03D2 DC 08 1232 ld R 13,118
P 03D4 04 FD ED 1233 add R13,RP ! addr of temp!
P 03D7 8D 0205' 1234 jp bcddasc !convert to ASCII!
P 03DA 1235 END wrddasc

1-29

P 03DA

P 03DA CF
P 03DB EE
P 03DC EA
P 03DE FE
P 03DF FA
P 03E1 80
P 03E4 70
P 03E6 82
P 03E8 B9
P 03EA 50
P 03EC AO
P 03EE AF
P 03EF E5
P 03F2 FE
P 03F3 AF
P 03F4

P 03F4

P 03F4 EE
P 03F5 EA
P 03F7 FE
P 03F8 FA
P 03FA 80
P 03FD 70
P 03FF B8
P 0401 q2
P 0403 50
P 0405 AO
P 0407 AF
P 0408 F5
P 040B FE
P 040C AF
P 0400

06

OE
0000'
EB
BE
7C
EB
EE

EF 7C

06

OE
0000'
EB
7C
BE
EB
EE

7C EF

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

GLOBAL !for PART II onlyl
get src PROCEDURE
I··T ••
Purpose = To get source byte from

reg/ext/ser memory into TEMP_1.

Output Carry FLAG = 1 if error (serial)
= 0 if all ok

TEMP 1 = source byte.
RR14-updated.

··················*··**···*··························1 ENTRY

END

rcf
inc
djnz
inc
djnz
jp
push
Ide
ld
pop
incw
ret
ld
inc
ret
get_src

R14
R14,get s1
R15 -
R15,get s2
ser get­
R11-
R11,@RR14
TEMP 1, R 11
R11 -
RR14

TEMP 1,@R15
R15 -

Iset good return codel
Itest R14 = 01
Isrc in ext memoryl
Itest R15 = 01
!src in reg memoryl
Isrc in ser memoryl
Isave user'sl
!get by tel
!move to commonl
!restore user'sl
! update src ptr I

Iget by tel
!update src ptrl

GLOBAL !for PART II only!
put dest PROCEDURE
! •• T.* •••••••••••••••••••••••••••••••••• ~ •••••••••••••
Purpose To store destination byte from TEMP 1

into reg/ext/ser memory

Output = RR14 updated.

···1 ENTRY

END

inc
djnz
inc
djnz
jp
push
Id
Ide
pop
incw
ret
Id
inc
ret
put_dest

R14
R14,put s1
R15 -
R15,put s2
ser output
R11-
R11,TEMP 1
@RR14,R1T
R11
RR14

@R15,TEMP
R15 -

1-30

Itest R14 = 01
Idest in ext memoryl
I test R 15 = 0 I
Idest in reg memory!
!dest in ser memoryl
Isave user'sl

Irestore user'sl

1291 CONSTANT
1292 MOOE : = TEMP 3
1293 char . - TEMP-l
1294 INTERNAL

P 0400 1295 ver asc PROCEOURE
1296 I··T ••
1297 Purpose To verify input character as valid
1298 hex or decimal ASCII.
1299
1300 Input TEMP 1 = 8-bit input
1301 TEMP=3 = 0 => test for hex,
1302 1 => test for decimal
1303
1304 Output = Carry FLAG = 0 if no error
1305 1 if error.
1306 ···1 1307 ENTRY

P 0400 56 7C 7F 1308 and char,II'f,7F 17-bit ASCII I
P 0410 A6 7C 30 1309 cp char,II'O' !range start: '0' !
P 0413 7B 16 1310 jr ult,ver err Ino good!
P 0415 A6 7C 3A 1311 cp char, II '9' +1 !dec range end: '9' !
P 0418 7B 10 1312 jr ult,ver ok I all' s we 111
P 041A 76 7E 01 1313 tm MOOE,111- Idec or hex?!
P 0410 EB OB 1314 jr nZ,ver erc Ino goodl
P 041F 56 7C OF 1315 and char,UtNOT('a'-'A') linsure upper case!
P 0422 A6 7C 41 1316 cp char, II' A ' Icheck A-F range!
P 0425 7B 04 1317 jr ult,ver err !no goodl
P 0427 A6 7C 47 1318 cp char ,11'1="+1 lend hex range!

1319 ver ok:
P 042A EF 1320 ver erc: ccf Icomplement carry I
P 042B AF 1321 ver-err: ret
P 042C 1322 ENO- ver asc

1324 INTERNAL
P 042C 1325 bcd bin PROCEOURE

1326 ! •• T ••
1327 Purpose = To convert next bcd digit to binary.
1328
1329 Input = TEMP 1 = digit
1330 -
1331 Output = RR12 = RR12 • 10 + digit
1332 ···1 1333 ENTRY

P 042C 56 7C OF 1334 and TEMP 1, II'f,OF !isolate digitI
P 042F A6 7C 09 1335 cp TEMP-l ,119 !verify validl
P 0432 BB 20 1336 jr ugt,ocd bl lerrorl
P 0434 02 00 1337 add R13,R13-
P 0436 12 CC 1338 adc R12,R12 12xl
P 0438 7B 27 1339 jr c,bcd bl !overflow!
P 043A 70 EC 1340 push R12 -
P 043C 70 EO 1341 push R13
P 043E 02 00 1342 add R13,R13
P 0440 12 CC 1343 adc R12,R12 !4xl
P 0442 7B 19 1344 jr c,bcd b2 loverflow!
P 0444 02 00 1345 add R13,RT3
P 0446 12 CC 1346 adc R12,R12 ! 8x!
P 0448 7B 13 1347 jr c,bcd b2 !overflow!
P 044A 04 7C EO 1348 add R13,TEMP
P 0440 16 EC 00 1349 adc R 12,110 - 18x + dl
P 0450 7B OB 1350 jr c ,bcd b2 !overflow!
P 0452 50 7C 1351 pop TEMP T
P 0454 04 7C EO 1352 add R13,TEMP 1
P 0457 50 7C 1353 pop TEMP 1 -
P 0459 14 7C EC 1354 adc R12,TEMP_l ! lOx + d!
P 045C AF 1355 ret

1356
P 0450 50 7C 1357 bcd b2: pop TEMP 1
P 045F 50 7C 1358 pop TEMP-l !restore stack!
P 0461 OF 1359 bcd b 1 : scf !errorl
P 0462 AF 1360 ret
P 0463 1361 ENO bcd bin

1-31

1363 CONSTANT
1364 s len : = R12
1365 s-adr . - R13
1366 INTERNAL

P 0463 1367 rdl PROCEDURE
1368 1**'***································**··****···*···
1369 Rotate Digit Left
1370
1371 Input = R12 = BCD string length
1372 R13 = BCD string address
1373 TEMP 1 bit 3-0 = new digit
1374
1375 Output = BCD string rotated left one digit·
1376 new digit inserted in units position.
1377 TEMP_l bit 3-0 = digit rotated out
1378 of high order digit position
1379 bit 7-4 = 0
1380 Zero FLAG = 1 if TEMP_l <> 0
1381 R12, R13 unmodified
1382 """""'*"'*"*"""""*"'***"***""'*"""1
1383 ENTRY

P 0463 70 EC 1384 push s len
P 0465 02 DC 1385 add s-adr,s len !address of units placel
P 0467 Fl ED 1386 rdl 01: swap @s adr -
P 0469 E5 ED 7D 1387 ld TEMP 2,@s adr
P 046C 57 ED FO 1388 and @s aar,UF"O !isolate digit!
P 046F 56 7C OF 1389 and TEMP 1,UOF lisolate new digiti
P 0472 45 ED 7C 1390 or TEMP:l,@s_adr
P 0475 F5 7C ED 1391 ld @s adr,TEMP 1 I save new byte I
P 0478 E4 7D 7C 1392 ld TERP 1, TEMP:2
P 047B 00 ED 1393 dec s adr !back-up pointer!
P 047D CA E8 1394 djnz s-len,rdl 01 !loop till done!
P 047F 56 7C OF 1395 and tEMP 1,UDF fold high order digiti
P 0482 50 EC 1396 pop s len !restore R12!
P 0484 AF 1397 ret
P 0485 1398 END rdl

1400 INTERNAL
P 0485 1401 rdr PROCEDURE

1402 ! ••• ,.* ••••• *,.""", •••• "" •••• *, •• ,.*, ••••••• * ••••
1403 Rotate Digit Right
1404
1405 Input = R12 = BCD string length
1406 R13 = BCD string address
1407 TEMP_l bit 7-4 = new digit
1408
1409 Output = BCD string rotated right one digit;
1410 new digit inserted in high order
1411 position.
1412 R12 unmodified
1413 R13 mOdified
1414 * •••••• • ••••• * •• ** ••• ·.*··*··*····***···*·····,'··*"1
1415 ENTRY

P 0485 70 EG 1416 push s len
P 0487 DE 1417 rdr 01: inc s-adr
P 0488 Fl ED 1418 swap @s adr
P 048A E5 ED 7E 1419 ld TEMP 3,@s adr
P 048D 57 ED OF 1420 and @s aar,/I%1iF !isolate digit!
P 0490 56 7G FO 1421 and TEMP 1, U'f,FO lisolate new digiti
P 0493 45 ED 7G 1422 or TEMP:l,@s_adr
P 0496 F5 7G ED 1423 ld @s adr,TEMP 1 ! save new byte!
P 0499 E4 7E 7G 1424 ld TEHp _1, TEMP=3
P 049G CA E9 1425 djnz s len,rdr 01 Iloop till done!
P 049E 50 EC 1426 pop s-len - !restore R12!
P 04AO AF 1427 ret
P 04Al 1428 END rdr

1-32

B1t Man1pulation Rout1nes

1460
1461
1462

CONSTANT
tjm bits
tjm-mask

GLOBAL

R12
R13

P 04A1

P 04A1 E6
p 04A4 BO
P 04A6 90
P 04A8 90
P 04AA FB
P 04AC EO
P 04AE 90
P 04BO 10

P 04B2 00
P 04B4 EB
P 0486 C8
P 04B8 AF
P 04B9

7C
7D
EC
ED
06
EC
EC
7D

7C
FO
7D

08

1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

clb PROCEDURE , .. .
Purpose = To collect selected bits in a byte

into adjacent bits in the low order
end of the byte. Upper bits in byte
are set to zero.

Input

Output =
Note =

R12
R13

input byte
mask. Bit = 1 => corresponding

input bit is selected.

R12 = collected bits

For example:
Input: R12

R13
%(2)01110110
%(2)10000101

Output : R12 = %(2)00000010
••• !
ENTRY

ld TEMP 1 ,118 !bit count!
clr TEMP-2 !bits collected herel

next 1 : rl tjm bits !bit 7 to bit O!
rl tjm:mask !bit 7 to carry!
jr nC,no select !don't use this bit!
rr tjm_blts
rl tjm bits !bit 7 to 0 and carry!
rlc TEMlf 2 ! collect source bit!

no select:
dec TEMP 1
jr nz,next1 Irepeat!
ld R12,TEMP_2
ret

END clb

1-33

P 0llB9

P 0llB9 06 OIlA l'
P OIlBC 02 CC
P OUBE 16 EE 00
P 0llC1 02 FC
P 0llC3 16 EE 00
P 0llC6 C2 DE
P 0llC8 AO EE
P OIlCA C2 FE
P OIlCC E8 ED

P OIlCE 30 EE

P 01100

o errors
Assembly complete

11199
1500
1501
1502
1503
15011
1505
1506
1507
1508
1509
1510
1511
1512
1513
15111
1515
1516
1517
1518
1519
1520
1521
1522
1523
15211
1525
1526
1527
1528
1529
1530
1531
1532
1533
15311
1535
1536

CONSTANT
tjm tabh
tjm-tabl
tjm-tab

=
=
=

R111
R15
RR14

GLOBAL
tjm PROCEDURE
! •••
Purpose = To take a jump to a routine address

determined by the state of selected
bits in a source byte. A bit
is 'selected' by a one in the
corresponding position of a mask.
The 'selected' bits are packed into
adjacent bits in the low order end of
the byte. This value is then doubled,
and used as an index into the jump
table.

Input = RR111 = address of jump table in
program memory.

R12 = input data
R13 = mask

···1 ENTRY
call clb !collect selected bitsl
add tjm bits,tjm bits Icollected bits • 21
adc tjm-tabh,IO - lin case carry I
add tjm-tabl,tjm bits
adc tjm-tabh,IO - Itjm tab pOints to ••• 1
ldc tjm-mask,@tjm tab 1.7.table entryl
incw tjm-tab -
ldc tjm-tabl,@tjm tab Iget table entry ••• !
ld tjm=tabh,tjm_mask I ••• into tjm_tab!

jp Ibyel

END tjm
END PART I

1-34

Z8ASM 3.02
LOC OBJ CODE

ROMLESS Z8 SUBROUTINE LIBRARY PART II

STMT SOURCE STATEMENT

1
2
3 PART II MODULE
4
5
6 !'ROMLESS Z8' SUBROUTINE LIBRARY PART II
7 I

9 CONSTANT
10 IRegister Usagel
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

RAM START nF
P3M save
TEMP 3
TEMP-2
TEMP-1
TEMP-4

: =

RAM START
P3M-save-1
TEM"F 3-1
TEMP-2-1
TEMP-1-1

IThe following registers are modified/referenced
by the Serial Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Serial Routines!

.- TEMP 4-1
:= SER char-1
.- SER-tmp2-1
'- SER-tmp1-1
.- SER-put-1
._ SER-len-2
:= SER-buf-1
._ SER-imr-1

Configuration Data -
=1 => odd parity on

SER char
SER-tmp2
SER-tmp1
SER-put
SER-len
SER-buf
SER-imr
SER-cfg
! Serial
bit 7
bit 6 : =1 => even parity on
(bit

bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

6,7 = 11 => undefined)

45 op
46 ep
47 ie
118 al
49 be
50 ec
51
52
53
54
55
56

~~

SER get
SER-flg
!Serial
bit 7
bit 6
bit 5
bit 4
bit 3

59 bit 2
60 bit 1
61 bit 0
62 I
63 sd
64 pe
65 bd
66 bo
67
68
69

bne
bf

undefined
undefined
=1 => input editting on
=1 => auto line feed enabled
=1 => BREAK detection enabled
=1 => input echo on

· - J80
· - J40
· - J08
: = J04
· - J02
· - J01

. - SER cfg-1

. - SER::::get-1
Status Flags
=1 => serial I/O disabled
undefined
undefined
=1 => parity error
=1 => BREAK detected
=1 => input buffer overflow
=1 => input buffer not empty
=1 => input buffer full

: = J80
: = J10
· - J08
::: J04
· - J02

· - J01

1-35

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
'f26
127
128
129
130
131
132
133
134
135

137
138
139
140
141

RAM TMR

SERI time
SERhtime

RAM_START-%10

SER flg-l
SERltime-l

IThe following registers are modified/referenced
by the Timer/Counter Routines ONLY. They are
available as general registers to the user
who does not intend to make use of the
Timer/Counter Routines!

TOO tic
TOO-imr
TOO-hr
TOO-min
TOO-sec
TOO-tt
PLS-l
PLS-tmr
PLS-2

RAM END
STACK

: =
RAM TMR-2
TOO-tic-l
TOO-imr-l
TOOnr-l
TODmin-l
TOO-sec-l
TOO-tt-l
PLS-l-l
PLS-tmr-l

PLS 2
RA~ENO

IEquivalent working register equates
for above register layout!

!register file %70 - %7FI
RAM STARTr . _ %70

rP3Msave
rTEMP 3
rTEMP-2
rTEMP-l
rrTEMP 1
rTEMP 1h
rTEMP-n
rTEMP-4
rSERcnar
rSERtmp2
rSERtmpl
rrSERtmp
rSERtmpl
rSERtmph
rSERput
rSERlen
rrSERbuf
rSERbufh
rSERbufl
rSERimr
rSERcfg
rSERget
rSERflg

Iregister
RAM TMRr
rTO'Dtic
rTOOimr
rTOOhr
rTODmin
rTOOsec
rTOOtt
rPLS 1
rPLStmr
rPLS_2

EXTERNAL

: =

: =
: =

: =

: =

: =

: =

file %60 -
: =
: =
: =

: =
: =
: =

R15
R14
R13
R12
RR12
R12
R13
R 11
Rl0
R9
R8
RR8
R9
R8
R7
R6
RR4
R4
R5
R3
R2
R 1
RO

%6F!
%60
R13
R12
Rll
Rl0
R9
R8
R7
R6
R5

get src PROCEDURE
put-dest PROCEDURE
multiply PROCEDURE

$SECTION PROGRAM

1-36

I for SRP!

I for SRP!

Serial Routl.nes

P 0000

P 0000 EE
P 0001 EA 04
P 0003 EC 00·
P 0005 FC 51·
P 0007 BC 72
P 0009 DC 05
P OOOB C3 BE
P 0000 DA FC
P OOOF 56 73 F7

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

CONSTANT
si PTR
sCTMPl
sCTMP2

GLOBAL

RR14
R 11
R13

ser init PROCEDURE
! •• T ••
serial initialize

Purpose =

Input =

Output

Note =

To initialize the serial channel and
RAM flags for serial I/O. Serial
input occurs under interrupt control.
Serial output occurs in a polled mode.

RR14 = address of parameter list in
program memory (if R14 = 0,
use defaults):

byte = Serial Configuration Data
(see definition of SER cfg)

byte = IMR mask for nestable
interrupts

word = address of circular input
buffer (in reg/ext memory)

byte = Length of input buffer
byte = Baud rate counter value
byte = Baud rate prescaler value

(un shifted)

Serial I/O operations initialized.
R 11, R 1 2, R 1 3, R 1 4, R 15 modified.

Defaults:
In put echo on
Input editting on
BREAK detection enabled
No parity
Auto line feed on
Input Buffer Address = SER char
Input buffer length = 1 byte
Baud Rate = 9600 (assuming

XTAL = 7.3728 MHz)

The instruction at %0809 must result
in a jump to the jump table entry for
ser _input.

If BREAK detection is disabled, and a
BREAK occurs, it will be received as a
continuous string of null characters.

The parameter list is not referenced
following initialization.

••• !
ENTRY

si 1:

si 2:

inc
djnz
ld
ld
ld
ld
ldci
djnz
and

R14 fuse defaults?!
R14,si 1 !no. given by caller.!
R14,UHI ser def !address of default ••. !
R15,ULO ser-def ! .•• parameter list. !
si TMP1, IISEl" cfg
sCTMP2,115 -
@sT TMP1,@Si PTR !get initialization ••• !
si TMP2,si 2- ! ••. parameters!
SER_imr,U%F7 !insure no self-nesting!

1- 37

228 linitialize Port 3 Mode Register for serial I/O!
p 0012 56 Fl FC 229 AND TMR,II%FC !disable TOI
P 0015 B8 72 230 ld si TMP1, SER cfg Iconfiguration data!
P 0017 56 EB 80 231 AND sCTMP 1,11%80 lodd parity select I
P 001A 46 EB 40 232 OR si-TMP1,11%40 !P30/7 = Sin/Soutl
P 0010 56 7F 3F 233 AND P3R save,/I%3F !mask off old settings I
P 0020 44 EB 7F 234 OR P3~save,si TMPl Inew selection!
P 0023 E4 7F F7 235 LD P3M~P3M_save Ito write-only registerl

236
237 ! initialize TOI

P 0026 BC F4 238 ld si TMP1, liTO
P 0028 C2 DE 239 ldc si-TMP2,@si PTR Isave counter!
P 002A C3 BE 240 ldci @sT TMP1,@sT PTR linit counterl
P 002C C2 BE 241 ldc si YMP1,@si ~TR Iget prescalerl
P 002E 06 DODO· 242 call multiply - !TO x PREOI
P 0031 C9 6E 243 ld SERhtime,R12 !save for BREAK ••. !
P 0033 09 6F 244 ld SERltime,R13 I ••• detection
P 0035 90 EB 245 rl si TMPl ! SHL 11
P 0037 OF 246 scf !continuous mode!
P 0038 10 EB 247 rIc s i TMP 1 ! SHL 21
P 003A B9 F5 248 ld PRt:O,si TMPl

249 linitialize RAM flags and pointers!
P 003C 8F 250 01 Idisable interrupts!
P 0030 BO 71 251 clr SER_get !input buffer ••• 1
P 003F BO 77 252 clr SER put I •.• empty!
P 0041 BO 70 253 clr SER=flg Ino errorsl

254
255 ! initialize interrupts I

P 0043 56 FA E7 256 AND IRQ,II%E7 Iclear IRQ3 & 41
P 0046 56 FB EF 257 and IMR,II%EF Idisable IRQ4 (xmt)1
P 0049 46 FB 08 258 or IMR,1I%08 lenable IRQ3 (rcv)1
P 004C 9F 259 EI

260 !go!
P 0040 46 Fl 03 261 or TMR,II%03 Iload/enable TOI
P 0050 AF 262 ret
P 0051 263 END ser init

264
265
266
267 ! De faul ts for serial initializationl
268

P 0051 OF 00 269 ser def RECORD [cfg , imr BYTE
P 0053 007A 01 - -
P 0056 02 03

270 buf WORD
271 len - ctr _, pre_ BYTE] ,
272 . - -
273 [ec+al+ie+be, %00, SER_char, 1 , %02, %03]

1-38

P 0058

P 0058 BO

P 005A 70
P 005C 70
P 005E 70
P 0060 D6
P 0063 7B
P 0065 76
P 0068 6B
P 006A 76
P 006D 6B

7E

EE
EF
ED
0170'
48
72 CO
08
7C 80
03

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

CONSTANT
rli len := R13

GLOBAL
ser rlin PROCEDURE

I··y·· read line

Purpose =

Input =

Output

Note =

To return input from serial channel
up to 'carriage return' character or
maximum length requested or BREAK.

RR14 = address of destination buffer
(in reg/ext memory)

R13 = maximum length

Input characters is destination buffer.
RR14 = unmodified
R13 = length returned
Carry Flag = 1 if any error,

= 0 if no error.
R12 indicates read status

1. Return will be made to the calling
program only after the requisite
characters have been received from
the serial line.

2. If input editting is enabled, a
'backspace' character will cause
the previous character (if any) in the
the destination buffer to be deleted;
a 'delete' character will cause all
previous characters (if any) 1n the
destination buffer to be deleted.

3. If parity (odd or even) is enabled,
the parity error flag (R14) will be set
if any character returned had a parity
error. (Bit 7 of each character may
then be examined if it is desirable to
know which character(s) had the error).

4. The status flags 'BREAK detected',
'parity error', and 'input buffer
overflow' will be returned
as part of R12, but will be cleared in
SER_stat.

5. The staus flags: 'input buffer full'
and 'input buffer not empty' will be
updated in SER stat •

.............................. T······················I
ENTRY

clr
ser read:

- push
push
push

rli 4: call
jr
tm
jr
tm
jr

TEMP_3

R14
R15
rli len
ser-get
c ,rli 3
SER cTg,lIop LOR
z,rTi 1
TEMP .." U80
z,rlI_1

1-39

!flag => read linel

!save original •.• 1
I ••• dest. pointerl
I ••• and length I
Iget input character I
lerrorl
ep Iparity enabled?1
Inol
Iparity error?1
Inol

P 006F 46
P 0072 D6
P 0075 A6
P 0078 EB
P 007A 56
P 007D 76
P 0080 6B

P 0082 A6
P 0085 6B
P 0087 A6
P 008A EB
P 008C 50
P 008E 70
P 0090 A4
P 0093 6B
P 0095 DE
P 0096 26
P 0099 EE
P 009A EA
P 009C 8B
P 009E 36
P OOA 1 8B

P 00A3 00
P 00A5 A6
P 00A8 6B
P OOAA DE
P OOAB DA
P OOAD 50
P OOAF 24
P 00B2 DB
P 00B4 CB
P 00B6 56

P 00B9 CF
P OOBA 76
P OOBD 6B
P OOBF DF
P OOCO 50
P 00C2 50
P 00C4 AF

P 00C5 50
P 00C7 50
P 00C9 50
P OOCB 8B
P OOCD

P OOCD

70 10
0000·
7E 00
31
7C 7F
72 08
21

7C 7F
3E
7C 08
17
7C
7C
ED 7C
30

EF 02

02
C2
EE 00
BD

ED
7C OD
03

B3
7C
ED 7C
7C
70
70 E3

EC 9C
01

EF
EE

ED
EF
EE
8D

P OOCD E6 7E 01
P OODO 8B 88
P 00D2

339
340 rli 1:
3111
342
343
31111
3115
3116 linput
347
348
349
350
351
352
353
3511
355
356
357
358
359
360 rli_7:
361
362
363 rli_9:
3611
365
366
367 rli 2:
368 rli=3:
369
370
371
372
373
3711
375
376
377
378 rli_5:
379
380
381
382 rli 6:
3B3
384
385
386 END

388 GLOBAL

or SER flg,Hpe
call put-dest
cp TEM1 3,10
jr nz,rl"i 2
and TEMP 1~1~7F
tm SER cfg,Hie
jr z,rl"i 9

edittingl -
cp TEMP 1,H~7F
jr z,rlT 6
cp TEMP 1,H~OB
jr nz,rli 9
pop TEMP 1-
push TEMP-l
cp TEMP-l,rli len
jr eq,rl"i 6 -
inc rli Ieii'
sub R15~H2
inc R14
djnz Rll1,rli 7
jr rli II -
sbc R14~HO
jr rli II

Iyes. set error flagl
Istore in bufferl
I read line?!
Inol
!ignore parity bit!
!input editting on?1
Ino .1

!char = delete?1
Iyes!
Ichar = backspace?1
!no. continue I
Iget original lengthl

lany characters?!
Inonel
!undo last decrementl
Ibackspace & previous I
Ireg or ext mem?1
lext!
Iregl

dec
cp
jr
inc
djnz
pop
sub
ld
ld
and

rli len lin case crl

rcf
tm
jr
scf
pop
pop
ret

TEMP 1,#~OD Icarriage return?1
z,rlT 3 lend inputl
rli len Irestorel
rli-Ien,rli II Iloop for max lengthl
TEMV 1 - loriginal length!
TEMP-1,rli len 1# chars returned I
rli l"en,TERp 1 Itell caller I
R12~SER fIg - Ireturn read status I
SER flg~HLNOT (pe LOR bd LOR bo)

- Ireset for next timel
Igood return codel

R12,Hpe LOR bd LOR bo LOR sd
z,rli_5 Ino error I

R15
R14

!set error return I

loriginal buffer addr!

pop rli len
pop R15-
pop R 111
jr ser read Istart overt
ser rlin

389 ser rabs PROCEDURE
390 I··~··
391 read absolute
392
393 Purpose =
3911

To return input from serial channel
of maximum length requested. (Input
is not terminated with the receipt of
a 'carriage return'. BREAK will
terminate read.)

395
396
397
398
399
1100
1101
402
403

Note = All other details are as for 'ser rlin'. ... T···I
ENTRY

ld TEMP 3,#1
jr ser read

Iflag => read absolutel

11011 END ser rabs

1-40

P 0002

P 0002 E4
P 0005 70
P 0007 54
P OODA 9F
P OODB 70
P 0000 31
P OODF A8
P 00E1 76
P 00E4 6B
P 00E6 BO
P 00E8 76
P OOEB 6B
P OOED 9C
P OOEF A2
P 00F1 EB
P 00F3 76
P 00F6 EB

P 00F8 46
P OOFB 76
P OOFE 6B

P 0100 70
P 0102 70
P 0104 BC
P 0106 BA
P 0108 80

03
FB
73

FD
70
FO
E2
2F
E9
E2
02
80
A9
22
E8
10

EO
03
FB

6E
6F
35
FE
6E

78

FB

02

80

01

08
01

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

GLOBAL
ser input PROCEDURE
! •• * ••
Interrupt service - Serial Input

Purpose =

In put =

Output

Note =

To service IRQ3 by inputting current
character into next available position
in circular buffer.

None.

New character inserted in buffer.
SER stat, SER_put updated.

1. If even parity enabled, the software
replaces the eigth data bit with a
parity error flag.

2. If BREAK detection is enabled, and
the received character is null,
the serial input line is monitored to
detect a potential BREAK condition.
BREAK is defined as a zero start bit
followed by 8 zero data bits and a
zero stop bit.

3. If 'buffer full' on entry, 'input
buffer overflow' is flagged.

4. If input echo is on, the character is
immediately sent to the output serial
channel.

5. IMR is modified to allow selected
nested interrupts (see ser init).

··*··········1 ENTRY
ld
push
and
ei
push
srp
ld
tm
jr
clr
tm
jr
ld

ser_23: cp
jr
tm
jr

SER tmp1,~03
imr­
imr,SER_imr

rp
IIRAM STARTr
rSERchar,SIO
rSERcfg,llbe
z,ser 30
r SERtiiip2
rSERcfg ,llop
z,ser 23
r SERtiiip2, 11%80

Iread stop bit levell
!save entry imrl
! allow nesting I

! save user's!

Icapture inputl
!break detect enabled?1
!nope .1

todd parity enabled?1
!no .1

rSERchar,rSERtmp2 18 received bits = O? 1
ne,ser 30 !no!
rSERtmp1,#1 Itest stop bitl
nZ,ser 30 !not BREAK I

lis BREAK. Wait for markingl

ser
or

24: tm
jr

!wait 1 char
push
push

in loop: ld
lpl: djnz

decw

rSERflg,#bd !set BREAK flagl
~03,#1 Imarking yet?1
z,ser 24 Inot yetI

time to Tlush receive shift register!
SERhtime
SERltime
rSERtmp1, #53
rSERtmp1,lp1
SERhtime

1-41

1 save PREO x TO I

!delay 640 cyclesl

P 010A EB F8 470 jr nz ,in_loop ! delay (128x10xPREOxTO)1
471 I ----------------1
472 I 2 I

P 010C 50 6F 473 pop SERltime
P 010E 50 6E 474 pop SERhtime I restore PREO x TOI
P 0110 56 FA F7 475 and IRQ,IILNOT ~08 Iclear int reql
P 0113 8B 49 476 jr ser_i5 Ibyel

477
P 0115 76 EO 01 478 ser_30: tm rSERflg,lIbf I buffer full? I
P 0118 EB 4A 479 jr nZ,ser i1 Iyes.overflowl
P 011A 76 E2 01 480 tm rSERc fg, /lec !echo on?1
P 011D 6B OA 481 jr z,ser iO Inol
P 011F A9 FO 482 ld SIO,r"SERchar lechol
P 0121 66 FA 10 483 ser i6: tcm IRQ,/lJ10 I poll I
P 0124 EB FB 484 jr nZ,ser i6 !loop I
P 0126 56 FA EF 485 and IRQ,/lLllOT ~10 Iclear Irq bitl
P 0129 76 E2 40 486 ser iO: tm rSERcfg ,ilep leven parity?1
P 012C 6B 14 487 jr z,ser 22 Ino parityl

488 Icalculate parity error flagl
P 012E 8C 07 489 ld rSERtmp1,/17
P 0130 BO E9 490 clr rSERtmp2 Icount 1 's herel
P 0132 CO EA 491 ser_20: rrc rSERchar Ibit to carry I
P 0134 16 E9 00 492 adc rSERtmp2,aO lupdate 1's countl
P 0137 8A F9 493 djnz r SERtmp 1 ,ser 20 Iloop till donel
P 0139 56 E9 01 494 and rSERtmp2,a1 - 11's count even or odd?1
P 013C B2 A9 495 xor rSERchar,rSERtmp2
P 013E CO EA 496 rrc rSERchar Iparity error flag ••• 1
P 0140 CO EA 497 rrc rSERchar t. .. to bit 71
P 0142 88 E4 498 ser 22: ld rSERtmph,rSERbufh
P 0144 98 E5 499 ld rSERtmpl,rSERbufl
P 0146 02 97 500 add rSERtmpl,rSERput Inext char address I
P 0148 8E 501 inc rSERtmph !in external memory?1
P 0149 8A 1E 502 djnz rSERtmph,ser i2 lyes.1
P 014B F3 9A 503 ld @rSERtmpl,rS~Rchar Istore char in bufl
P 014D 46 EO 02 504 ser_i 3: or rSERflg ,lIbne Ibuffer not emptyl
P 0150 7E 505 inc rSERput lupdate put ptrl
P 0151 A2 76 506 cp rSERput,rSERlen Iwrap-around?1
P 0153 EB 02 507 jr ne,ser i4 Ino!
P 0155 BO E7 508 clr rSERpu"E" Iset to startl
P 0157 A2 71 509 ser i4: cp rSERput,rSERget lif equal, then full I
P 0159 EB 03 510 jr ne,ser i5
P 015B 46 EO 01 511 or r SE Rflg, IIbf
P 015E 50 FD 512 ser_i5: pop rp Irestore user'sl
P 0160 BF 513 di
P 0161 50 FB 514 pop imr Irestore entry imrl
P 0163 BF 515 iret

516
P 0164 46 EO 04 517 ser 11: or rSERflg ,abo Ibuffer overflowl
P 0167 8B F5 518 jr ser_i5

519
P 0169 16 E8 00 520 ser 12: adc rSERtmph,IIO
P 016C 92 A8 521 lde @rrSERtmp,rSERchar I store in bufl
P 016E 8B DD 522 jr ser_i 3
P 0170 523 END ser _input

1-42

------ ----~~-- -

525 GLOBAL I for PART II
P 0170 526 ser get PROCEDURE

527 ' •• T ••

528 Purpose = To return one serial input character.
529
530 Input = None.
531
532 Output = Carry FLAG = if BREAK detected or
533 serial not enabled
534 or buffer overflow
535 = 0 otherwise
536 TEMP 1 = character
537
538 Note = This routine will not return control
539 until a character is available in the
540 input buffer or an error is detected.
541 ···1 542 ENTRY

P 0170 70 FD 543 push rp Isave caller's rpl
P 0172 31 70 544 srp IIRAM STARTr !point to subr. RAMI
P 0174 DF 545 scf lin case errorl
P 0175 76 EO 8C 546 ser _g1 : tm r SERflg, I/sd LOR bd LOR bo

547 Iserial disabled or
548 BREAK detected or
549 buffer overflow? I

P 0178 EB 24 550 jr nZ,ser g6 I yes.1
P 017A 76 EO 02 551 tm rSERflg ,llbne Ibuffer not empty? I
P 017D 6B F6 552 jr z,ser_g1 I empty. waitl
P 017F D8 E5 553 ld rTEMP 1l,rSERbufl
P 0181 C8 E4 554 ld rTEMP=1h,rSERbufh
P 0183 8F 555 di Iprevent IRQ3 conflictl
P 0184 02 D1 556 add rTEMP _ll,rSERget !next char addressl
P 0186 CE 557 inc rTEMP 1h linput buffer in ... 1
P 0187 CA 18 558 djnz rTEMP=1h,ser_g3 I •.• external memoryl

559 I ••• register memoryl
P 0189 E3 CD 560 ld rTEMP 1,@rTEMP 11 Iget charI
P 018B 56 EO FE 561 ser_g4: and rSERfIg,ULNOT bf Ibuffer not fulll
P 018E 1E 562 inc rSERget !update get pointer I
P 018F A2 16 563 cp rSERget,rSERlen ! wrap-around? I
P 0191 EB 02 564 jr ne,ser g2 Ino .1
P 0193 BO E1 565 clr rSERget Iyes. set to startl
P 0195 A2 17 566 ser_g2: cp r SERget ,rSERput !buffer empty if get ••. 1
P 0197 EB 03 567 jr ne,ser g5 ! .•. and put = I
P 0199 56 EO FD 568 and rSERflg,ULNOT bne Ibuffer empty nowl
P 019C CF 569 ser _g5: rcf Iset good returnl
P 019D 9F 570 ei Ire-enable interrupts I
P 019E 50 FD 571 ser_g6: pop rp Irestore caller's rpl
P 01AO AF 572 ret

573
P 01A1 16 EC 00 574 ser_g3: adc rTEMP_1h,110 !rrTEMP 1 has char addr!
P 01A4 82 CC 575 lde rTEMP 1,@rrTEMP 1 !get charI
P 01A6 8B E3 576 jr ser_g4 -Iclean upl
P 01A8 577 END ser_get

1-43

P 01A8

P 01AS BO
P 01AA 80
P 01AC EB

P 01AE 80
P 01B1

P 01B1

P 01B1 8F

P 01B2 BO
P 01B4 BO
P 01B6 56
P 01B9 9F
P 01BA AF
P 01BB

FO
EE
FA

0238'

71
77
70 80

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

GLOBAL
ser break PROCEDURE
! •••
break transmission

Purpose = To transmit BREAK on the serial line.

Input = RR14 = break length

Output = None.

Note = BREAK is defined as:
serial out (P37) = 0 for

2 x 28 cycles/loop x RR14 loops

XTAL

RR14 should yield at least 1 bit time
so that the last 'clr SIO' will
have been preceded by at least 1 bit
time of spacing. Therefore, RR14 should
be greater than or equal to

4 x 16 x PREO x TO

28
•• '!
ENTRY
ser b 1:

clr SIO
dec,", RR14
jr nz,ser b1

!wait for last null to-be fully transmitted!
jp ser 01

END ser break

GLOBAL
ser flush PROCEDURE I··T ••••••••••••••••••••• * ••••••••••••••••••••••••••••
input flush

Purpose To flush (clear) the serial input
buffer of characters.

Input =

Output =

None

Empty input buffer.

Note = This routine might be useful to clear
all past input after a BREAK has been
detected on the line.

'*""""'*"""'*""""""""""""""""'1
ENTRY

di Idisable interrupts I
!(to avoid collision with
serial input) I

clr SER_get !buffer startl
clr SER put != buffer end!
and SER-flg,H%80 !clear statusl
ei - Ire-enable interrupts!
ret

END ser flush

1-44

P 01BB

P 01BB BO

P 01BD DF
P 01BE 76
P 01C1 EB
P 01C3 70
P 01C5 D6
P 01C8 D6
P 01CB 7B
P 01CD A6
P 01DO EB
P 01D2 56
P 01D5 A6
P 01D/\ EB
P 01DA 00
P 01DC 76
P 01DF 6B
P 01E1 E6
P 01E4 D6
P 01E7 8B
P 01E9 DA
P 01EB 50
P 01ED 24
P 01FO D8
P 01F2 CF
P 01F3 AF
P 01F4

7E

70 80
30
ED
0000·
020B'
1E
7E 00
17
7C 7F
7C OD
OF
ED
72 04
OA
7C OA
020B'
02
DA
7C
ED 7C
7C

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

CONSTANT
wli len .- R13

GLOBAL
ser wlin PROCEDURE
! •• y ••• *.*** ..
wri te line

Purpose =

Input

Output

To output a character string to serial
line, ending with either a 'carriage
return' character or the maximum length
specified.

RR14 = address of source buffer
(in reg/ext memory)

R13 = length

RR14 = updated
Carry Flag = 1 if serial not enabled,

= 0 if no error.
R13 = # bytes output (not including

auto line feed)

Note If auto line feed is enabled, a
line feed character will be output
following each carriage return
(ser wlin only).

*·**··*·························*···············*····1 ENTRY

wr i te:

wli 4:

wli 1:
END-

clr

scf
tm
jr
push
call
call
jr
cp
jr
and
cp
jr
dec
tm
jr
Id
call
jr
djnz
pop
sub
Id
rcf
ret
ser wlin

SER flg,l/sd
nz,wli 1
wli len
get-src
ser-output
c ,wTi 2
TEMP j, I/O
nz,wli 5
TEMP 1~1/$7F
TEMP-1,1/$OD
nz,wTi 5
wli len
SER-c fg, I/al
z,wli 2
TEMP 1,UOA
ser output
wlC2
wI i-len, wli 4
TEMP 1 -
TEMP-1,wli len
wli_Ten,TE'Rp_1

1-45

Iflag => write linel

lin case errorl
Iserial disabled?1
I yes. error I

Iwrite the character I
!serial disabled I
Iwrite line?1
I no, absolute. I
!mask off parityl
lline done?1
I yes. I

lauto line feed?!
!disabledl
loutput line feedl

Iloopl
loriginal lengthl

Ireturn output countl
Ino errorl

P 01F4

P 01F4 E5
P 01F7 88
P 01F9

P 01F9

P 01F9 C9
P 01F8 05
P 01FE 75
P 0201 58
P 0203 A5
P 0206 E8
P 0208 E6

P 0208

7E
C4

01

7C
0208'
72 04
3E
EC 00
39
7C OA

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

GL08AL
ser wabs PROCEDURE
!**T********* ••••• * ••• ** ••• * •••• * •••••••••••••••••••••
write absolute

Purpose = To output a character string to serial
line for the length specified. (Output
is not terminated with the output of
a 'carriage return').

Note = All other details are as for 'ser wlin'.
•••••• *.*** ••• * •••••• * •• * •••••••••••••••••••••••• T ••• !
ENTRY

Id TEMP 3,#1
jr write

END ser wabs

ser wbyt PROCEDURE
I*·T •• *.*.*.* ••••••••••••• ****.*.**.* •••••••• ****.** ••
write byte

Purpose = To output a given character to the
serial line. If the character is a
carriage return and auto line feed
is enabled, a line feed will be output
as well.

In put = R12 = character to output

Note = Equivalent to ser wlin with length = 1.
.* ••• * •• *.* ••• ***.* •• * •• *********T**.******* •• ** ••• *.!
ENTRY

! fall
END

Id TEMP 1,R12
call ser output
tm SER-cfg,llal
jr z,ser 05
cp R12,IIIOD
jr nz,ser 05
Id TEMP l~#%OA

into ser out puc!
ser_wbyt

1-46

!output it!
!auto line feed?!
!not enabled!
!char = car. ret?!
!nope!
!output line feed!

P 020B

P 020B DF
P 020C 76
P 020F EB
P 0211 76
P 0214 6B

P 0216 70
P 0218 E6
P 021B BO
P 021 D CO
P 021F 16
P 0222 00
P 0224 EB
P 0226 56
P 0229 56
P 022C 44
P 022F CO
P 0231 CO
P 0233 50
P 0235 E4
P 0238 66
P 023B EB
P 023D 56
P 0240 CF
P 0241 AF
P 0242

P 0242

P 0242 8F
P 0243 46

P 0246 56

P 0249 56

P 024C 56

P 024F E4
P 0252 9F
P 0253 AF
P 0254

70
30
72
IF

7E
7E
7D
7C
7D
7E
F7
7D
7C
7D
7C
7C
7E
7C
FA
FB
FA

70

Fl

FB

7F

7F

80

40

07

00

01
FE
7C

FO
10

EF

80

FC

E7

BF

F7

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

GLOBAL !for PART I!
ser output PROCEDURE
! •• T ••
Purpose To output one character to the serial

line.

In put =

Output =
TEMP_l = character

Carry FLAG = 1 if serial disabled
= 0 otherwise.

Note 1. If even parity is enabled, the eigth
data bit is modified prior to character
output to SIO.

2. IRQ4 is polled to wait for completion
of character transmission before control
returns to the calling program .

••• !
ENTRY

scf
tm SER flg,#sd
jr nz,ser 05
tm SER cfg,#ep
jr z sar 02

!calculate parity! -
push TEMP 3
ld TEMP-3,#7
clr TEMP-2

ser 04: rrc TEMP-l
adc TEMP-2,#0
dec TEMP-3
jr nz,ser 04
and TEMP 2~#01
and TEMP-l, II\lFE
or TEMP-l,TEMP 2
rrc TEMP-l -
rrc TEMP-l
pop TEMp_3

ser 02: ld SIO,TEMP
ser-ol: tcm IRQ,#\l10-

jr nz,ser 01
and IRQ, Ut:F
rcf

ser 05: ret
END- ser_output

GLOBAL
ser disable PROCEDURE

!in case errorl
Iserial disabled?!
I yes. error I
leven parity enabled?1
!no. just outputl

Icharacter bit to carry!
!count 1'51

! next bit I
11's count odd/even!

Iparity bit in DOl

!parity bit in D7!

!output character!
!check IRQ4!
!wait for complete!
Iclear IRQ4!
! all okl

! •••
disable

Purpose To disable serial 1/0 operations.

Input = None.

Output = Serial 1/0 disabled •
••• !
ENTRY

di !avoid IRQ3 conflict!
or SER flg,Hsd

- Iset serial disabledl
and TMR,UFC

!disable TOI
and IMR,UE7

!disable IRQ3,41
and P3M save,#\lBF

- !P30/7 normal i/o pins!
ld P3M,P3M save
ei -Ire-enable interrupts I
ret

END ser disable

1-47

T~mer/Counter Routines
840
841
842
843

P 0254

P 0254 DC
P 0256 C3
P 0258 C3
P 025A E6
P 0250 80
P 0260

6C
DE
DE
7B 6C
02B2'

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

CONSTANT
TMP
PTR
PTRh

GLOBAL
=

R13
RR14
R14

tod i PROCEDURE
!'*~""*""""""""'*""*""""""""*"*"
time of day initialize

Purpose

Input

Output

Note =

To initialize TO or T1 to function as
a time of day clock.

RR14 =
byte

byte
byte

byte
byte

address of parameter list in
program memory:
= IMR mask for nestable
interrupts

of clock ticks per second
counter # : = %F4 => TO

= %F2 => T1
Counter value
Prescaler value (unshifted)

TOO hr, TOO min, TOO sec, TOO tt
inItialized to the starting time of
hours, minutes, seconds, and ticks
respectively.

Selected timer is loaded and
enabled; corresponding interrupt
is enabled.
R13, R14, R15 modified.

The cntr and prescaler values provided
are those values which will generate an
interrupt (tick) the designated # of
times per second.

For example:
for XTAL = 8 MHZ, cntr = 250 and
prescaler = 40 yield a .01 sec interval;
the 2nd byte of the parameter list
should = 100 •

For TO the instruction at %080C or
for T1 the instruction at %080F must
result in a jump to the jump table entry
for 'tod'.

The parameter list is not referenced
following initialization.

······················*······························1 ENTRY

END

ld
ldci
ldci
ld
jp
tod i

TM P , IITOD imr
@TMP,@PT~ !imr maskl
@TMP,@PTR !ticks/secondl
TEMP 4,IITOD imr
pre_ctr - Ictr & prescaler!

1-48

---"~ -"-------_ .. ----- -----~-..

899 GLOBAL
P 0260 900 tod PROCEDURE

901 1··· 902 Interrupt service - time of day
903
904 Purpose = To update the time of day clock.
905 ···1 906 ENTRY

P 0260 70 FB 907 push imr Isave entry imrl
P 0262 54 6C FB 908 and imr,TOD_imr lallow nested interrupts
P 0265 9F 909 ei lenable interrupts 1
P 0266 70 FD 910 push rp ! save rpl
P 0268 31 60 911 srp IIRAM TMRr !point to our setl
P 026A 8E 912 inc rTODtt Iticks/secondl
P 026B A2 80 913 cp rTODtt,rTODtic !second complete?1
P 0260 EB 13 914 jr ne,tod ex Inope .1
P 026F BO E8 915 clr rTODtt-
P 0271 9E 916 inc rTODsec !secondsl
P 0272 A6 E9 3C 917 cp rTODsec,1I60 Iminute complete?!
P 0275 EB OB 918 jr ne,tod ex Inope .1
P 0277 BO E9 919 clr rTODsec
P 0279 AE 920 inc rTODmin !minutesl
P 027A A6 EA 3C 921 cp rTODmin,1I60 1 hour complete? 1
P 0270 EB 03 922 jr ne,tod ex Inope.1
P 027F BO EA 923 clr rTODmfii
P 0281 BE 924 inc rTODhr !hoursl

925
P 0282 50 FD 926 tod ex: pop rp Irestore rpl
P 0284 8F 927 di Idisable interrupts 1
P 0285 50 FB 928 pop imr Irestore entry imrl
P 0287 BF 929 iret
P 0288 930 END tod

1-49

P 0288

P 0288 DC
P 028A C3
P 028C C3
P 028E C3
P 0290 80
P 0292 80
P 02911 56
P 0297 56
P 029A Ell
P 029D E6
P 02AO 8D
P 02A3

P 02A3

P 02A3 BII
P 02A6 BII
P 02A9 BII

P 02AC F5
P 02AF BF
P 02BO

65
DE
DE
DE
EE
EE
F 1 3F
7F DF
7F F7
7B 01
02B2 '

65 67
67 65
65 67

61 66

932
933
9311
935
936
931
938
939
9110
9111
9112
9113
91111
9115
9116
9111
9118
9119
950
951
952
953
9511
955
956
951
958
959
960
951
952
963
9611
955
966
961
958
969
910
911
912
913
9111
915
916
911
918
919
980
981
982
983
9811
985
985
981
988
989

GLOBAL
pulse i PROCEDURE
! •••
Purpose = To initialize one of the timers

to generate a variable frequencyl
variable pulse width output.

Input

Output

Note =

RR111 = address of parameter list in

byte
byte

byte
byte

program memory:
cntr value for low interval
counter n : = %FII => TO

= %F2 => Tl
cntr value for high interval
prescaler (unshifted)

Selected timer is loaded and
enabled; corresponding interrupt
is enabled. P36 1s enabled as Tout.
R13, Rll1, R15 modified.

The parameter list is not referenced
following initialization.

The value of Prescaler x Counter
must be > 26 (=%lA) for proper
operation. * !

ENTRY
LD TMP,IIPLS_2
ldci @TMP,@PTR flow interval cntrl
ldci @TMP,@PTR !timer addr!
ldci @TMP,@PTR thigh interval cntr!
decw PTR
decw PTR Iback to flagl
and TMR,II%3F twill be modifying TMRI
and P3M save, UDF ! P36 = Toutl
ld P3W;P3M save
ld TEMP 11,#%1 ! flag for pre ctr!
jp pre_ctr Iset up timerT

END pulse i -

GLOBAL
pulse PROCEDURE

I··· Purpose = To modify the counter load value
to continue the pulse output generation.

·························**·*················*·*·····1 ENTRY
lexchange values I

xor PLS 1,PLS 2
xor PLS-2,PLS-l
xor PLS-l,PLS-2

!exchange completel- -
ld @PLS_tmr,PLS_l Iload new valuel
iret

END pulse

1-50

P 02BO

P 02BO BO

P 02B2

7B

991
992
993
9911
995
996
997
998
999

1000
1001
1002
1003
10011
1005
1006
1007
1008
1009
1010
1011
1012
1013
10111
1015
1016
1017
1018
1019
1020
1021
1022
1023
10211

GLOBAL
delay PROCEDURE
! •••
Purpose To generate an interrupt after a

designated amount of time.

Input

Output

Note

RR111 = address of parameter list in
program memory:

byte = counter U : = SFII => TO
= SF2 => T1

byte = Counter value
byte = Prescaler value and count mode

(to be loaded as is into
PREO or PRE1).

Selected timer is loaded and
enabled; corresponding interrupt
is enabled.
R13, R111, R15 modified.

This routine will initialize the timer
for single-pass or continuous mode
as determined by bit 0 of byte 3 in
the parameter list.
The caller is responsible for provid­
ing the interrupt service routine.

The parameter list is not referenced
following initialization.

···1 ENTRY
clr TEMP II

!fall into pre ctrl -
END delay -

1-51

1026 INTERNAL
P 02B2 1027 pre ctr PROCEDURE

1028 !**y ••• ** •••••••••••••• ****.****.** •••• ***.**.** ••••••
1029 Purpose = To get counter and prescaler values
1030 from parameter list and modify control
1031 registers appropriately.
1032
1033 Input = TEMP 4 = 0 => for 'delay'
1034 = 1 => for 'pulse'
1035 = TOO imr => for 'tod'
1036 T·······················I
1037 ENTRY

P 02B2 C2 DE 1038 ldc TMP ,@PTR ITO or T1I
P 02B4 AO EE 1039 incw PTR
P 02B6 E6 70 BC 1040 ld TEMP 2, 11%8C ! for TMR!
P 02B9 E6 7E 20 1041 ld TEMP-3,U20 ! for IMRI
P 02BC A6 ED F2 1042 cp TMP, #T 1
P 02BF 6B 06 1043 jr eq,pre_1 ! i.s for T1 I
P 02C1 E6 70 43 1044 ld TEMP 2,11%43 ! for TMR!
P 02C4 E6 7E 10 1045 ld TEMP-3,U10 I for IMRI
P 02C7 C3 DE 1046 pre 1: ldci @TMP-;-@PTR linit counter I
P 02C9 C2 EE 1047 - ldc PTRh,@PTR Iprescaler!
P 02CB A6 7B 00 1048 cp TEMP_4,nO !shift prescaler?!
P 02CE 6B 12 1049 jr eq,pre_2 !nol
P 0200 OF 1050 scf !internal clock I
P 0201 10 EE 1051 rIc PTRh
P 0203 OF 1052 scf Icontinuous mode!
P 0204 10 EE 1053 rIc PTRh
P 0206 A6 7B 6C 1054 cp TEMP _ 4, IITOO imr
P 0209 EB OA 1055 jr ne,pre_3 ! for 'pulse'l
P 02DB 60 7E 1056 com TEMP 3
P 0200 54 7E 6C 1057 and TOO lmr, TEMP 3 !insure no self-nesting I
P 02EO 60 7E 1058 com TEMP 3 -
P 02E2 56 70 OF 1059 pre 2: and TEMP-2,UOF Ino Tout mode modI
P 02E5 F3 DE 1060 pre=3: ld @TMP-;-PTRh !init prescaler!
P 02E7 44 70 F1 1061 or TMR,TEMP_2 ! init tmr model
P 02EA BF 1062 di
P 02EB 44 7E FB 1063 or imr,TEMP_3 tenable interrupt!
P 02EE 9F 1064 ei
P 02EF AF 1065 ret
P 02FO 1066 END pre ctr

1067 END PART II-

o errors
Assembly complete

1·52 00-2160-01

Zilog

This application note is intended for use by those
with either a ZB601 or a ZB611 Microcomputer
device. It is assumed that the reader is familiar
with both the ZB and its assembly language, as
described in the following documents:

•

•

•

•

ZB Technical Manual (Reset Section)
(03-3047-02)

ZB ramily ZB601, ZB602, ZB603 Product Spec
(00-2037-AO)

ZB ramily ZB611, ZB612, ZB613 Product Spec
(00-203B-AO)

ZB PLZ/ASM Assembly Language Programming
Manual (03-3023-03)

This note briefly discusses the operation of Test
Mode, which is a special mode of operation that
facilitates testing of both Z8 devices that incor­
porate an internal program ROM (Z8601, Z8611).
There are two problems associated with testing a
ZB with an internal program ROM; the solutions are
presented below.

The first problem is: how can the device be
tested with standard microprocessor automatic test
equipment? To solve this problem, Test Mode
causes the ZB to fetch instruct ions from Port 1
while it is in the external Address/Data bus mode,
instead of fetching instructions from the internal
Program ROM. Diagnostic test routines are then
forced onto this external bus from the test equip­
ment in the same manner as with microprocessor
testing.

1-53

Z8® MCU Test Mode

Application
Note

June 1982

The second problem is: since the Test Mode
requires that Port operate only in the
Address/Data bus mode, how are the other Port 1
modes of operation tested? To solve this problem,
an on-chip Test ROM is provided for execution
while in Test Mode. The program in the Test ROM
checks the other modes of Port 1: input, output,
with handshake control, and without handshake con­
trol.

rigure 1 compares normal and Test Mode operations
in the ZB. (In both normal and Test Mode, program
execution begins at address OOCH.)

NORMAL
MODE

Z8801

Z8811

ON·CHIP
PROGRAM

ROM

1-. __IooCH
TEST MODE

figure 1. Comparison of Nona1
and Test !tides

Test Mode can be entered immediately after reset
by driving the RESET input (pin 6) to a voltage of
Vee + 2.5 V. (See the Reset section of the
ZB Technical Manual for a description of the Reset
procedure.) figure 2 shows the voltage waveform
needed for Test Mode. After entering Test Mode,
inst ructions are fetched from the internal Test
ROM, which is programmed with Port 1 diagnostic
routines. The Z8 stays in Test Mode until a
normal reset occurs.

RESET PIN

v,,----"1

Note the maximum ramp for application of
+ 7,5 VDC to mET pin. After a minimum 01
6 XTAL eLK cycles, the RESET voltage can be
relaxed to VRH.

rigure 2. Test MOde Wave rorm

Program Listing A. Internal Test ROM Program

Z8ASM 4.0
LOC OBJ CODE STMT SOURCE STATEMENT

The program listing in the ROM is included at the
end of this document. Program Listing A (Internal
Test ROM Program) is mask programmed into the
internal Test ROM of the Z8601. Program Listing B
(External Test Program) is an example of a program
that could be executed while in Test Mode. It was
written as a compliment to the internal Test ROM
program, to check the Port input and output func­
tions. To test the other functions of the Z8, the
user must execute other programs developed for
testing.

The interrupt vectors in the Z8601 Test ROM point
to the locations in external memory %800, 1.803,
%806, %809, %80e, 1.80r. The interrupt vectors in
the ZB611 Test ROM point to the locations in
external memory 1.1000, 1.1003, %1006, %1009, %100e,
%100r. This allows the external program to have a
2- or 3-byte jump instruction to each interrupt
service routine.

Programs that are run in Test Mode can use an LDE
instruction for accessing the Test ROM. The LDe
instruction can be used for accessing the program
ROM.

1 Z8 TEST ROM ROUTINE FOR VERIFYING
2 PORT 1 I/O, WITH AND WITHOUT H.S.
3
4
5 TESTROM MODULE
6
7
8 $SECTION PROGRAM
9 $ABS 0

10 INTERNAL
P 0000 0800 0803 11 RUPT VECTOR ARRAY [6 WORD):=
P 0004 0806 0809
P 0008 080C 080F

12 a800 1803 1806 1809 180C 180F)
13 $SDEFAULT
14
15
16 INTERNAL
17 TEST

P oooc 18 PROCEDURE ENTRY $ABS SOOC
19

P OOOC E6 F8 96 20 LD P01M U96 Pl&PO=EXT MEM,STK=IN,NORMAL !
P OOOF 8D 0812 21 JP EXT JUMP TO EXTERNAL TEST CODE !
P 0012 99 F8 22 STARTl : LD P01M R9 START OF Pl I/O TEST I
P 0014 A9 F7 23 LD P3M Rl0 SET H.S.& P2 PU ACTIVE
P 0016 48 E3 24 LD R4 IE3 TEST RDY=l,DAV=l I
P 001P F3 DE 25 LD @R13 R14 WRITE PORT I
P 001A 61 ED 26 COM @R13 WRITE PORT I
P 001C 58 E3 27 LD R5 IE3 TEST RDY=O,DAV=l I
P ODiE E3 68 2B LDR6@R11 READ PORT & STUFF DATA
P 0020 E3 7B 29 LD R7 @Rll DITTO I
P 0022 88 E3 30 LD R8 IE3 TEST RDY=l,DAV=l I
P 0024 C9 F8 31 LD P01M R12 CONFIGURE FOR EXT !
P 0026 8D 0831 32 JP VERIFYl JUMP TO VERIFY ROUTINE

33

1-54 2242-002

~~ -~---

~----------

Program Listing A. Internal Test ROM ProgrlB (continued)

P 0029 B9 F7 3~ START2: LD P3M R 11 START TEST NO H.S.
P 002B 99 F8 35 LD P01M R9 SET Pl TO INPUT I
P 002D lE 36 INC Rl READ & WRITE Pl AS INPUT
P 002E F9 F8 37 LD P01M R15 SET Pl TO OUTPUT!
P 0030 1 E 38 INC Rl READ & WRITE PI AS OUTPUT
P 0031 9 e El 39 LD R9 ~El SAVE RESULTS IN R9 I
P 0033 C9 F8 ~O LD P01M R12 Pl&PO=EXT,STK IN,NORMAL I
P 0035 8D 086D ~ 1 JP VERIFY2 JUMP TO VERIFY 82 ROUTINE
P 003fl 112 END TEST

Program Listing B. External Test Program

~7 INTERNAL
48 SETUP

P 0800 49 PROCEDURE ENTRY $ABS ~800
50

P 0800 flD 0800 51 VECT1 JP VECTl
P 0803 SD 0~03 52 VECT2 JP VECT2
P 0806 8D Ofl06 53 VECT3 JP VECT3
P 0809 8D 0809 54 VECT4 JP VECT~
P 080C 8D 080C 55 VECT5 JP VECT5
P OSOF 8D 080F 56 VECT6 JP VECT6

57
P OS12 SF 58 EXT: DI
P 0813 31 00 59 SRP #~OO
P OS15 2C FF 60 LD R2 UFF INITIALIZE P2 I
P 0817 3C FF 61 LD R3 UFF DITTO I
P OS19 E6 F6 FF 62 LD P2M UFF SET P2 TO INPUT I
P 081C ~C 88 63 LD R4 U8S SET P2<>Pl MUX,P3 GRP B MUX !

64 ALSO DUMMY ADDRS HIGH BYTE !
P oelE 5C 00 65 LD R5 UOO DUMMY ADDRS LOW BYTE !
P 0820 9C 86 66 LD R9 US6 Pl OUTPUT MODE VALUE I
P 0822 AC 39 67 LD Rl0 U39 Rl0 SETS H.S.MODE & P2 PULLUPS
P 082~ BC 02 68 LD Rll U02 Rll POINTS TO P2 FOR PASS1 I
P 0826 CC 96 69 LD R12 U96 R12 SETS P01M TO EXT MEM,ETC.
P 082fl DC 01 70 LD R13 U01 R13 POINTS TO P1 FOR PASS1 !
P 082A FC 86 71 LD R15 n86 SAME AS R9 !
P 082C EC AA 72 LD Rlll UAA DATA LOADED TO TEST PORT !
P 082E E6 10 10 73 LD ~10 U10 RDY/DAV RESULT PASS 1 !
P 0831 E6 1 1 110 71l LD~11 n~o DITTO I
P 0831l 8D 0012 75 JP STARTl END SETUP--JUMP TO TEST START
P 0837 76 END SETUP

77
7S
79 INTERNAL
SO VERIFY

P 0831 81 PROCEDURE ENTRY $ABS ~831
82
83

P 0831 DC 02 Sil VERIFY1:LD R13 n02 R13 POINTS TO P2 FOR PASS2 !
P 0833 BC 01 S5 LD Rll nOl Rll POINTS TO P1 FOR PASS 2 !
P 0835 E6 F6 00 86 LD P2M UOO SETS P2 FOR OUTPUT I
P 01'38 66 Ell 50 87 TCM Ril U50 FROM HERE TO THERE WE VERIFY !

88 TEST RESULTS FOR 1/0 WITH H.S.
89 BOTH PASS 1 &2 !

1-55

Progr_ Listing B. External Test Progr_ (continued)

P 083B ED
P 083E 611
P 08111 ED
P 081111 711
P 0847 ED
P 0811A A6
P 0840 ED
P 0850 A6
P 0853 ED
P 0856 66
P OF59 ED
P OS5C A6
P 085F E6
P 0862 E6
P 0865 9C
P 0867 60
P 086A 80
P 0860 A6

0880
10 E5
0880
11 E5
0880
E6 AA
0880
E7 55
0880
E8 50
0880
E9 86
10 110
11 10
8E
0012
0029
E9 57

P 0870 60 0890
P 0873

P 0890

0890 8B FE

0892

oe80

0880 8B FE

0882

90 JP NZ FAIL
91 TCM R5 "0
92 JP NZ FAIL
93 TM R5 '"
911 JP NZ FAIL
95 CP R6 "AA
96 JP NZ FAIL
97 CP R7 '155
98 JP NZ FAIL
99 TCM R8 "50

100 JP NZ FAIL
101 CP R9 '186
102 LD "0 '1110
103 LD "1 "'0
1011 LD R9 "8E
105 JP EO STARTl
106 JP START2
107 VERIFY2:CP R9 '157
108
109 JP EO PASS
110 END VERIFY
111
112
113 INTERNAL
1111 TPASS
115 PROCEDURE ENTRY $ABS '890
116
117 PASS:JR PASS
118
119 END TPASS
120
121
122
123 INTERNAL
1211 TFAIL
125 PROCEDURE ENTRY $ABS '880
126
127
128 FAIL:JR FAIL
129
130 END TFAIL
131
132 END TESTROM

1-56

IS THIS PASS1? I
RDYIDAV RESULT PASS 2 !
DITTO I
Pl IS GOING TO BE AN OUTPUT
PASSl SUCCESSFUL--TRY PASS2
PASS2 SUCCESSFUL--TEST NO H.S.
CHECK RESULT OF 1/0 NO H.S.TES

00-2042-01

Build a Z8-Based Control
COlllputer with BASIC, Part 1

I hope you believe me when I say
that I have been waiting years to pre­
sent this project. For what has seemed
an eternity, I have wanted a micro­
computer with a specific combination
of capabilities. Ideally, it should be
inexpensive enough to dedicate to a
specific application, intelligent
enough to be programmed directly in
a high-level language, and efficient
enough to be battery operated.

My reason for wanting this is pure­
ly selfish. The interfaces I present
each month are the result of an
overzealous desire to control the
world. In lieu of that goal, and more
in line with BYTE policy, I satisfy this
urge by stringing wires all over my
house and computerizing things like
my wood stove.

There are many more places I'd like
to apply computer monitoring and
control. I want to modify my home­
security system to use low-cost
distributed control rather than central
control. I want to try my hand at a
little energy management, and, of
course, I am still trying to find some
reason to install a microcomputer in a
car. (How about a talking dash­
board?)

Generally, the projects I present
each month are designed to be at­
tached to many different commercial­
ly available microcomputers through

CopYright © J 98 J by Steven A ClarCIa
All rights reserved

Steve Ciarcia
POB 582

Glastonbury CT 06033

existing lIO (input! output) ports.
Most of my projects are applicable
for use on the small (by IBM stan­
dards) computers owned by many
readers, but, unfortunately, a typical
home-computer system cannot be
stuffed under a car seat.

The Za-BASIC
Microcomputer is a

milestone in low-cost
microcomputer

capability.

The time has come to present a ver­
satile "Circuit Cellar Controller"
board for some of these more am­
bitious control projects. I decided not
to adapt an existing single-board
computer, which would be larger,
more expensive, and generally limited
to machine-language programming.
Instead, I started from scratch and
built exactly what I wanted.

The microcomputer/controller I
developed is called the Z8-BASIC
Microcomputer. Its design and ap­
plication will be presented in a two­
part article beginning this month. In
my opinion, it is a milestone in low­
cost microcomputer capability. It can
be utilized as an inexpensive tiny­
BASIC computer for a variety of
changing applications, or it can be
dedicated to specialized tasks, such as

Reprinted with permission of Byte Publications. Inc, 1981

I-57

security control, energy manage­
ment, solar-heating-system monitor­
ing, or intelligent-peripheral control.
[Editor's Note: We are using the term
"tiny BASIC" generically to denote a
small, limited BASIC interpreter. The
term has been used to refer to some
specific commercially available prod­
ucts based on the Tiny BASIC con­
cept promulgated by the People's
Computer Company in 1975 RSSj

The entire computer is slightly
larger than a 3 by 5 file card, yet it in­
cludes a tiny-BASIC interpreter, 4 K
bytes of program memory, one RS-
232C serial port and two parallelllO
ports, plus a variety of other features.
(A condensed functional specification
is shown in the "At a Glance" text
box.) Using a Zilog Z8 microcom­
puter integrated circuit and Z6132
4 K by 8-bit read/write memory
device, the Z8-BASIC Microcom­
puter circuit board is completely self­
contained and optimized for use as a
dedicated controller.

To program it for a dedicated
application, you merely attach a user
terminal to the DB-25 RS-232C con­
nector, turn the system on, and type
in a BASIC program using keywords
such as GOTO, IF, GOSUB, and
LET. Execution of the program is
started by typing RUN. If you need
higher speed than BASIC provides, or
if you just want to experiment with
the Z8 instruction set, you can use the

GO@ and USR keywords to call
machine-language subroutines.

Once the application program has
been written and tested with the aid
of the terminal, the finished program
can be transferred to an EPROM
(erasable programmable read-only
memory) via a memory-dump pro­
gram and the terminal disconnected.
Next, the 2S-pin Z6132 memory com­
ponent is removed from its socket
and either a type-2716 (2 K by 8-bit)
or type-2732 (4 K by S-bit) EPROM
is plugged into the lower 24 pins.
(The choice of EPROM depends upon
the length of the program.) When the
ZS board is powered up, the stored
program is immediately
executed. The EPROM
devices and the Z6132
read/write memory
device are pin­
compatible. Permanent
program storage is
simply a matter of
plugging an EPROM
into the Z6132's socket.

the Z80 or the Intel 8080 require sup­
port circuitry to make a functional
computer system. A single-chip
microcomputer, on the other hand,
can function solely on its own.

The concept is not new. Single-chip
microcomputers have been around
for quite a while, and millions of
them are used in electronic games.
The designers of the Z8, however,
raised the capabilities of single-chip
microcomputers to new heights and
provided many powerful features
usually found only in general­
application microprocessors.

Typically, single-chip microcom­
puters have been designed for

intensive applications. Under pro­
gram control, the Z8 can be con­
figured as a stand-alone microcom­
puter using 2 K to 4 K bytes of inter­
nal ROM, as a traditional micropro­
cessor with as much as 120 K to
124 K bytes of external memory, or
as a parallel-processing unit working
with other computers. The Z8 could
be used as a controller in a
microwave oven or as the processor
in a stand-alone data-entry terminal
complete with floppy-disk drives.

Getting Specific: The Z8671
The member of the Z8 family used

in this project is the Z8671. This com­

There is much more
power on this board
than is alluded to in this
simple description.
That is why I decided
to use a two-part article
to explain it. This
month, I'll discuss the
design of the system
and the attributes of the
Z8 and Z6132. Next
month, I'll describe ex­
ternal interfacing
techniques, a few ap­
plications, and the

ponent differs from the
garden-variety Z8601
chiefly in the contents
of the ROM set at the
factory. The pinout
specification of the
Z8671 is shown in
figure 1b, and the
package is shown in
photo 2 on page 41.
The Z8671 package
contains the processor
circuitry, 2 K bytes of
ROM (preprogrammed
with a tiny-BASIC in­
terpreter and a debug­
ging monitor), 32 lIO
lines, and 144 bytes of
programmable (read/
write) memory.

The operational ar­
rangement of memory­
address space is shown
in figure 1c. The inter-

Photo 1: A prototype of the versatile "Circuit Cellar Controller, " for­
mally called the Z8-BASIC Microcomputer. The printed-circuit board
measures 4 by 4th inches and has a 44-pin (two-sided 22-pin) edge con­
nector with contacts on O.156-inch centers. A 2716 or 2732 EPROM
can be substituted for the Z6132 Quasi-Static memory, plugging into
the same socket.

nal read/write memory
is actually a register file (illustrated in
figure 2) composed of 124 general­
purpose registers (R4 thru R127), 16
status-control registers (R240 thru
R255), and 4 lIO-port registers (RO
thru R3). Any general-purpose
register can be used as an accumula­
tor, address pointer, index register, or
as part of the internal stack area. The
significance of these registers will be
explained when I describe the tiny­
BASIC/Debug interpreter/monitor.

steps involved in transferring a pro­
gram into an EPROM.

Single-Chip Microcomputers
The central component in the

Z8-BASIC Microcomputer is a
member of the Zilog Z8 family of
devices. The specific component
used, the Z8671, is just one of them.
Unlike a microprocessor, such as the
well-known Zilog Z80, the Z8 is a
single-chip microcomputer. It con­
tains programmable (read/write)
memory, read-only memory, and
lIO-control circuits, as well as cir­
cuits to perform standard processor
functions. Microprocessors such as

microcontroller applications and op­
timized for lIO processing. On a
40-pin dual-inline package, as many
as 32 of the pins can be lIO related. A
ROM-programmed single-chip
microcomputer used in an electronic
chess game might offer a thousand
variations in game tactics, but it
could not be reprogrammed as a
word processor. The ability to
reorient processing functions and
reallocate memory has generally been
the province of microprocessors, with
their memory-intensive architecture.

The Z8 architecture (shown in
figure 1a on page 40) allows it to
serve in either memory- or lIO-

1-58

The 32 lIO lines are grouped into
four separate ports and treated inter­
nally as 4 registers. They can be con­
figured by software for either input or
output and are compatible with

OUTPUT INPUT Vee GND XTAL As Os R /W RESEi'

! !

PROGRAM
MEMORY
2048 8Y 8-BI T

110 ADDRESS OR 110 ADDRESS/DATA OR 110
IBYTE PROGRAMMABLE I IBIT PROGRAMMABLE I INY8BLE PROGRAMMABLEI

Figure la: Block diagram of the Zilog Z8-family single-chip microcomputers. Their ar­
chitecture allows these devices to serve in either memory- or IIO-intensive applications.
This figure and figures Ib, lc, 2, 3, and 4 were provided through the courtesy of Zilog
Inc.

LSTTL (low-power Schottky transis­
tor-transistor logic). In addition, port
1 and port 0 can serve as a multi­
plexed address/data bus for connec­
tion of external memory and
peripheral devices.

In traditional nomenclature, port 1
transceives the data-bus lines DO thru
D7 and transmits the low-order
address-bus signals AO thru A7. Port
o supplies the remaining high-order
address lines A8 thru A1s, for a total
of 16 address bits. This allows 62 K
bytes of program memory (plus 2 K
bytes of ROM) to be directly ad­
dressed. If more memory is required,
one bit in port 3 can be set to select
another memory bank of 62 K bytes,
which is referred to as data memory.
In the Z8-BASIC Microcomputer
presented here, a separate data­
memory bank is not implemented,
and program and data memory are
considered to be the same.

The Z8 has forty-seven instruc­
tions, nine addressing modes, and six
interrupts. Using a 7.3728 MHz

crystal (producing a system clock rate
of 3.6864 MHz) most instructions
take about 1.5 to 2.5 /lS to execute.
Ordinarily, you would not be con­
cerned about single-chip-microcom­
puter instruction sets and interrupt
handling because the programs are
mask-programmed into the ROM at
the factory. In the Z8671, however,
only the BASIC/Debug interpreter is
preprogrammed. Using this inter­
preter, you can write machine­
language programs that can be ex­
ecuted through subroutine calls writ­
ten in BASIC. This feature greatly
enhances the capabilities of this tiny
computer and potentially allows the
software to control high-speed
peripheral devices. (A complete
discussion of the Z8 instruction set
and interrupt structure is beyond the
scope of this article. The documenta­
tion accompanying the Z8-BASIC
Microcomputer Board describes the
instruction set in detail.)

The final area of concern is com­
munication. The Z8 contains a full-

I-59

Vee 40 P36

XTAL2 39 P31

XTALI 38 P27

P37 37 P26

P30 36 P2s

RESET 35 P24

R/W 34 P23

os 33 P22

As 32 P21

P3s 31 P20

GND 30 P33

P32 29 P34

POo 28 PI7

POI 27 Pl6

P02 26 PiS

P03 25 PI4

P04 24 PI3

POs 23 PI2

P06 22 PII

P07 21 PI O

Figure lb: Pinout specification of the
Zilog Z8671 microcomputer. The Z8671 is
a variant of the basic Z8601 component of
the Z8 family. The Z8671 is used in this
project because it contains the
BASIC/Debug interpreter/monitor in
read-only memory. Other members of the
Z8 family are supplied in different
packages, chiefly to support system­
development work.

duplex UART (universal asyn­
chronous receiver/transmitter) and
two counter/timers with prescalers.
One of the counters divides the
7.3728 MHz crystal frequency to one
of eight standard data rates. With the
Z8671, these rates range between 110
and 9600 bps (bits per second) and
are switch- or software-selectable.

A block diagram of the serial-1I0
section is shown in figure 3. Serial
data is received through bit 0 of port
3 and transmitted from bit 7 of port 3.
While the Z8 can be set to transmit
odd parity, the Z8671 is preset for 1
start bit,-8 data bits, no parity, and 2
stop bits. Received data must have 1
start bit, 8 data bits, at least 1 stop
bit, and no parity (in this configura­
tion).

Quasi-Static Memory
A limiting factor in small controller

EXTERNAL
ROM OR
PROGRAMMABLE
IR/WI MEMORY

t-------i~g:~

EXTERNAL
PROGRAM MABLE
IR/WI MEMORY

r-------t~g:~

CONTROL AND

IDECIMAL)
255

STATUS REGISTERS 240
NOT
IMPLEMENTED

1 27

GENERAL
REGISTERS

ON-CHIP
ROM

NOT
ADDRESSABLE 110 PORT

4
3

REGISTERS

PROGRAM MEMORY DATA MEMORY PROGRAMMABLE
REGI STER MEMORY
ION CHIPI

Figure Ie: The operational arrangement of memory-address space in the 28 family. The
regions labeled "program memory" and "data memory" may map to the same physical
memory, or two separate banks may be used, selected through one bit of I/O port 3.
The internal programmable (read/write) memory is a register file containing 124
general-purpose registers, 16 status-control registers, and 4 I/O-port registers.

designs has always been the trade-off
between memory size and power con­
sumption. To keep the number of
components down and simplify con­
struction, a designer generally selects
a limited quantity of static memory.
Frequently, the choice is to use two
type-2114 1 K by 4 NMOS
(negative-channel metal-oxide
semiconductor) static-memory
devices. In practice, however, the
1 K-byte memory size thereby pro­
vided is rather limited. It would be
much better to expand this to at least
4 K bytes. Unfortunately, eight 2114
chips require considerably more
circuit-board space and consume
about 0.7 amps at +5 V. Not only
would this make the design ill suited
for battery power, it could never fit
on my 4- by 4V,-inch circuit board.

Another approach is to use
dynamic memory, as in larger com­
puters. Dynamic memory costs less,
bit for bit, than static memory and
consumes little power. Unfortunate­
ly, most dynamic-memory com­
ponents require three separate
operating voltages and special refresh
circuitry. Adding 4 K bytes of
dynamic memory would probably
take about twelve chips. The advan­
tages gained in reduced power con­
sumption hardly justify the expense
and effort.

The solution to this problem, sur-

prisingly enough, also comes from
Zilog, in the form of the Z6132
Quasi-Static Memory. The Z6132,
shown in photo 4 on page 43, is a
32 K-bit dynamic-memory device,
organized into 4 K 8-bit (byte-size)
words. It uses single-transistor
dynamic bit-storage cells, but the
device performs and controls its own
data-refresh operations in a manner
that is completely invisible to the user
and the rest of the system. This
eliminates the need for external
refresh circuitry. Also, the Z6132 re­
quires only a +5 V power supply.
The result is a combination of the
design convenience of static memory
and the low power consumption of
dynamic memory. All 4 K bytes of
memory fit in a single 28-pin dual-in­
line package, which typically draws
about 30 milliamps.

An additional benefit in using the
Z6132 is that it is pin-compatible with
standard type-2716 (2 K by 8-bit)
and type-2732 (4 K by 8-bit)
EPROMs. This feature is extremely
beneficial when you are configuring
this Z8 board for use as a dedicated
controller. As previously mentioned,
the Z6132 can be removed and an
EPROM inserted in the low-order 24
pins of the same socket. Thus, any
program written and operating in the
Z6132 memory can be placed in a
nonvolatile EPROM. (There are some

1-60

STACK POINTER IBITS 7-01

LOCATION

255

254

253

252

IDENTIFIERS

SPL

SPH

RP

FLAGS

MR

RQ

PR

POIM

P3M

P2M

PREO

TO

PREI

Tl

TMR

SIO

STACK POINTER IBITS 15-81

25 1

250

249

248

247

246

245

244

243

242

241

240

127

4

3

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

Tl PRESCALER

TI MER /COUNTER 1

TIMER MODE

SERIAL 110

NOT IMPLEMENTED

GENERAL PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

I

I

I

P3

P2

PI

PO

Figure 2: An expanded view of the
register-memory section of figure 1c,
showing the organization of the register'
file. Any general-purpose register can be
used as an accumulator, address pointer,
index register, or as part of the internal
stack area.

Photo 2: The 2ilog 28671 single-chip
microcomputer. a member of the 28
family of deVices. This dual-mline
package contains the processor cir-

. cuitry, 2 K bytes of ROM, 32 1I0
lines, and 144 bytes of programmable
memory.

Photo 3: A photomicrograph of the silicon chip containing the working parts of a 28 microcomputer.

The following items are avatlable
from.
The MicroMmt Inc
917 Midway
Woodmere NY 11598
Telephone.
(800) 645-3479 (for orders)
(516) 374-6793 (for techmcal informatiOn)

Z8-BASIC Microcomputer
Documentation Includes:
Z8 Techmcal Manual. Z8 Product

SpeCIfication
Z6132 Product Specification
BASIC/Debug Manual
Z8-BASIC MIcrocomputer Construc­

tion/Operator's Manual
Assembled and tested ... $170

Kit ... $140

All prlnted-CircUlt boards are solder-masked and silk-screened,

Z8-BASIC Microcomputer power supply
(Size: 2% by 4% inches)

Provides: + 5 V. 300 rnA
+12 V. 50 rnA
-12 V. 50 rnA

Assembled and tested $35
Kit ... $27

The documentatiOn supplied with the Z8 board includes approximately 200 pages of materials. It is available separately for $25. This
charge will be credited toward any subsequent purchase of the Z8 board

Please mclude $4 for shippmg and handlmg. New York residents please mclude 7% sales tax.

1-61

Photo 4: The Zilog Z6132 Quasi-Static Memory device, shown with the hood up.
This component stores 32 K bits in the form of 4 K bytes in invisibly refreshed
dynamic-memory cells.

Photo 5: The Z8-BASIC Microcomputer Board attached to a power supply. Power
can be supplied either through the separate power connector, as shown, or through
the edge connector.

1-62

_At a Glance ____ ---t

Name
Z8-BASIC Microcomputer

Processor
Zilog Z8-family Z8671 8-bit microcomput­
er with programmable (read/write)
memory, read-only memory, and I/O in a
single package. The Z8671 includes a
2 K-byte tiny-BASIC/Debug resident in­
terpreter in ROM, 144 bytes of scratch­
pad memory, and 32 I/O lines. System
uses 7.3728 MHz crystal to establish clock
rate. Two internal and four external inter­
rupts.

Memory
Uses Z6132 4 K-byte Quasi-Static
Memory (pin-compatible with 2716 and
2732 EPROMs); 2 K-byte ROM in Z8671.
Memory externally expandable to 62 K
bytes of program memory and 62 K bytes
of data memory.

Input/Output
Serial port: RS-232C-compatible and
switch-selectable to 110, 150, 300, 1200,
2400, 4800, and 9600 bps.
Parallel I/O: two parallel ports; one
dedicated to input, the other bit­
programmable as input or outputi pro­
grammable interrupt and handshaking
lines; LSTTL-compatible.
External I/O: 16-bit address and 8-bit
bidirectional data bus brought out to ex­
pansion connector.

BASIC Keywords
GOTO, GO@, USR, GOSUB,
IP ... THEN, INPUT, LET, LIST, NEW,
REM, RETURN, RUN, STOP, IN,
PRINT, PRINT HEX. Integer
arithmetic/logic/operators: +, -, /, "
and AND; BASIC can call machine­
language subroutines for increased execu­
tion speed; allows complete memory and
register interrogation and modification.

Power-Supply Requirements
+5 V ±5% at 250 rnA
+12 V ±10% at 30 rnA
-12 V ±10% at 30 rnA
(The 12 V supplies are required only for
RS-232C operation.)

Dimensions and Connections
4- by 4Y,-inch board; dual 22-pin
(0.156-inch) edge connector. 25-pin RS-
232C female D-subminiature (DB-25S)
connector; 4-pole DIP-switch data-rate
selector.

Operating Conditions
Temperature: 0 to 50°C (32 to 122°P)
Humidity: 10 to 90% relative humidity
(noncondensing)

INTERNAL DATA BUS
--------~~-----.

TO INTERRUPT
LOGIC

Figure 3: Block diagram of the serial-lIO section of the 28-family microcomputers. The
28 contains a full-duplex UART (universal asynchronous receiver/transmitter). The
data rates are derived from the clock-rate crystal frequency. Serial data is received
through bit a of port 3 and is transmitted from bit 7 of port 3. An interrupt is generated
within the 28 whenever transmission or reception of a character has been completed.

Photo 6: The 28-BASIC Microcomputer in operation, communicating with a video
terminal (here, a Digital Equipment Corporation VT8E). A memory-dump routine,
written using the BASIC/Debug interpreter, is shown on the display screen. The
starting address of the dump is the beginning of the user-memory area; the hexa­
decimal values displayed are the ASCII (American Standard Code for Information
Interchange) values of the characters that make up the first line of the memory-dump
program.

1-63

limitations placed on the number of
subroutine calls and variables al­
lowed by this substitution because
variable data and return addresses
must be stored in the Z8's register
area instead of in external read/write
memory.)

ZS-BASIC Microcomputer
Figure 5 on pages 46 and 47 is the

schematic diagram of the seven-inte­
grated-circuit Z8-BASIC Microcom­
puter Board, shown in prototype
form, with a power supply, in photo
5. ICI is the Z8671 microcomputer,
the member of the Z8 family that con­
tains Zilog's 2 K-byte BASIC/Debug
software in read-only memory. IC2 is
the Z6132 Quasi-Static Memory, and
IC3 is an 8-bit address latch. Under
ordinary circumstances, the Z6132 is
capable of latching its address inter­
nally, but IC3 is included to allow
EPROM operation. IC4 and IC5 form
a hard-wired memory-mapped input
port used to read the data-rate­
selection switches. IC6 and IC7 pro­
vide proper voltage-level conversion
for RS-232C serial communication.

The seven-integra ted-circuit com­
puter typically takes about
200 milliamps at +5 V. The +12 V
and -12 V supplies are required
only for operating the RS-232C inter­
face. Power required is typically
about 25 milliamps on each.

The easiest way to check out the
Z8-BASIC Microcomputer after as­
sembly is to attach a user terminal to
the RS-232C connector (}2) and set
the data-rate-selector switches to a
convenient rate. I generally select
1200 bps, with SW2 closed and SWl,
SW3, and SW4 open. After applying
power, simply press the RESET push
button.

Pressing RESET starts the Z8's ini­
tialization procedure. The program
reads location hexadecimal FFFD in
memory-address space, to which the
data-rate-selector switches are wired
to respond. When it has acquired this
information, it sets the appropriate
data rate and transmits a colon to the
terminal. At this point, the Z8 board
is completely operational and pro­
grams can be entered in tiny BASIC.

REFRESH MEMORY ARRAY ADDRESS I":lt MULTIPLEX
COUNTER INPUT ROW

ADDRESS --- DECODER 128 SENSE AMPLIFIERS
r.-;-I BUFFERS (J OF 1281

MEMORY ARRAY
>-- ,..

:
Al COLUMN DECODER

TH RU (J OF 161
A7 BY 8 DATA BUS

l
'-\

MEMORY ARRAY '--I

----'\ MULTI PLEX --- ROW .. INPUT DECODER 128 SENSE AMPLI FIERS
ADDRESS II OF 1281 AO

.. gkZ~~ATOR
BUFFERS

MEMORY ARRAY

AC ..

A8 THRU All

1J
~ ADDRESS

BUFFERS -
........

t-- SENSE -'v-- AMPLI-
FIERS ,..... --'\
AND
1/0 - DRIVERS

• ~

CLOCK
GENERATOR

DATA
1/0
BUFFERS

REFRESH
DEMAND
LOGIC
ICYCLE
COUNTERI

1

~
DO
THRU
07

Figure 4: Block diagram of the 2ilog 26132 Quasi-Static Memory component. This innovative part stores 32 K bits in the form of
4 K bytes, using single-transistor dynamic random-access bit-storage cells, but all refresh operations are controlled internally. The
memory-refresh operation is completely invisible to the user and the other components in the system. The 26132 draws about 30
milliamps from a single +5 V power supply.

(With the simple address selection
employed in this circuit, the data-rate
switches will be read by an access to
any location in the range hexadecimal
COOO thru FFFF. This should not un­
duly restrict the versatility of the
system in the type of application for
which it was designed.)

BASIC/Debug Monitor
I'll go into the features of the tiny­

BASIC interpreter in greater detail
next month, but I'm sure you are
curious about the capabilities present
in a 2 K-byte BASIC system.

Essentially an integer-math dialect
of BASIC, Zilog's BASIC/Debug
software is specifically designed for
process control. It allows examina­
tion and modification of any memory
location, 110 port, or register. The
interpreter processes data in both
decimal and hexadecimal radices and
accesses machine-language code as
either a subroutine or a user-defined
function.

BASIC/Debug recognizes sixteen
keywords: COTO, CO@, USR,
COSUB, IF ... THEN, INPUT, IN,
LET, LIST, NEW, REM, RUN,
RETURN, STOP, PRINT, and
PRINT HEX. Standard syntax and
mathematical operators are used.

The ZS board is
not my idea of what
should be available;
it is available now.

Twenty-six numeric variables,
designated by the letters A thru Z, are
supported. Variables can be used to
designate program line numbers. For
example, COSUB B*100 and COTO
A*B*C are valid expressions.

In my opinion, the 2 K-byte inter­
preter is extremely powerful. Because
it operates easily on register and
memory locations, arrays and blocks
of data can be easily manipulated.

1-64

(Full appreciation of the Z8-BASIC
Microcomputer comes after a com­
plete review of the operating manuals
and a little experience. Documenta­
tion approximately 200 pages long is
supplied with the unit; the documen­
tation is also available separately.)

In Conclusion
It's easy to get spoiled using a large

computer as a simple control device. I
have heard of many inexpensive in­
terfaces that, when attached to any
computer, supposedly perform con­
trol and monitoring miracles. Fre­
quently overlooked, however, is the
fact that implementation of these in­
terfaces often requires the software­
development tools and hardware­
interfacing facilities of relatively large
systems. The Z8-BASIC Microcom­
puter, with its interpretive language,
virtually eliminates the need for cost­
ly development systems with memo­
ry-consuming text editors, assem­
blers, and debugging programs.

1M)

=-- SERIAL IN ITTL!

C4 +5V CRYSTAL
{
i--l SERIAL OUT ITTL!

'" I
0- I
~ I

I
1
1

'P'
[[)

129

?~
10pF 7.372SMH, 10pF r 0)~

I
1
1
1
I
1

t- I
0:
o
11.

t­
o:
o
11.

5
0:
t­
Z
o
"

0-
0: o
11.

0:

'" :<
o
11.

.h.-
13

IE:
[i!;:
,.,..
..."..

d::
:IE:
II[::

[[;::

[L:.
'U"

:L
W-
r
.:t-
l[)

~
'IT :;.

'9'
'IO"

Ill::
4

[[)

'6' ;;:.
.L..

IV

IK:::

:r:::

'2'
::--~ I

L

P20

PZ I

P22

P2 3

PZ4

P2s

P26

P2 7

AIS

AI4

AI3

AI2

Ail

AIO

A9

A8

R/W

OS

AS

AD/OO

AIIOI

A2I02

A3/03

A4/D4

AS/OS

A6/06

A7/07

:tC7

'T' ~'tvF

C8~
+

1 J
CONNECTOR

30

31 P2 0
P33 P34

32 P21

33 PZ2

34 P23

35 P24

36 P2S

37 P26

3S PZ7

r
P07 P06 POs P04 P03

20 f9
IS 17 16

+ 12V
SUPPLY

t
TYPICAL
FOR 3

-1~V
SUPPLY +~v SUPPLY

f C9

rh

---------------_ •. __ .--... _ __ _-----

I 2 3

VCC XTALZ XTALI
RESET .L r

SERIAL OUT 1P37) !....

ICI SERIAL IN 1P30) Lo--
Z 8671

2S MICROCOMPUTER
WITH BASIC 10EBUG ,--

-

P02 POI POo R/W Os As Plo PII PIZ PI3 PI4 PiS PI6 PI7

15 14 13 7 8 9 ZI 22 23 24 25 26 27 Z8

+SV

21 24 25 27 22 t28 11 12 13 15 16 17 18 19

AIO A9 A8 WE OS VCC 00 01 02 03 04 05 06 07 CS ~
Ao f1.L--

IC2
AltL-

A2tL--26132
4K BY 8 A3~
PROGRAMMABLE 1 R/W) MEMORY

A 4iL-
AstL---

All AC VSS -- VBB A7 A6 fL--
BUSY

123 R 14

1 I~c/
3

JUMPERS ~RAM 1.\32K i16K RAM tEPROM ;1 C6

1'.'7 O.II'F

1 +~v

1-65

MCI488

,-------------1
I

~
I 41 b 6 I

I 5 I
I 9 8 I
I 10 C I C 5 I
I II 74LSI0 I
L ______________ -1

~I +5V
I 19 f20

IG 2G V~~ 17
3 5 7 9 8

2Y4

5 2Y3 ~~~S244 2A3 15

7 2Y2 2A213

9 2YI 2AI II

12 IY4 IA48
14 1Y3 IA36

16 I Y2 IA24

@f
2

IAI

2 IC 5 Q 12 GROUND

13 74LSI0)i0
II +5V

-2 10 EG

--.! 20 VCC ~
--1. 30 IC3
-.! 40 74LS373

:;:'%\.F ----ll ADDRESS 50

--1.! LATCH
60

-1Z. 70 GND ~
-1.§. 80

n

t- OC

10 20 30 4 Q SO 60 70 8Q

2 15

1
6

9 12 15 16 19

Number Type +5V GND
IC1 Z8671 1 11
IC2 Z6132 28 14
IC3 74LS373 20 10
IC4 74LS244 20 10
IC5 74LS10 14 7
IC6 MC1488 7
IC7 MC1489 14 7

+5V

I
R I (SIP)
4.7K

J2
RS-232C
CONNECTOR r----,
I I

I
I I

I I
I

I I
~l th L __ --1 L __

JI -, r--
TYPICAL FOR 8

1 6 4 2
B7 I

GJ
B6 I <:!!I
B5 I

::::::II
B4 I Gl
B3 I .::::Q;
B2 I
BI I ~

BO I "-'"

I '-='
L ___ ...J

~~ SW 3 DATA-RATE
3 SELECTOR -

SW4
4

-12V +12V

14

1-66

If you need a proportionai motor­
speed control for your solar-heating
system, you don't have to dedicate
your Apple II or shut off your heating
system when you balance your
checkbook. From now on, there is a
small, cost-effective microcomputer
specifically designed for such applica­
tions. The Z8 board described in this
article is not my idea of what should
be available; it is available now.

Next Month:
I will elaborate on interfacing and

applications for the Z8-BASIC
Microcomputer .•

Acknowledgment
Special thanks to Steve Walters and Peter

Brown of Zilog Inc for help in production of
this artic/e.

Editor's Note: Steve often refers to prevIOus
Circuit Cellar artzcles as reference material for
the articles he presents each month. These
articles are available in reprint books from
BYTE Books. 70 Main St. Peterborough NH
03458. Ciarcia's Circuit Cellar covers articles
appearing in BYTE from September 1977 thru
November 1978 Ciarcia's Circuit Cellar,
Volume II presents artic/es from December
1978 thru June 1980.

Figure 5: Schematic diagram of the Cir­
cuit Cellar Z8-BASIC Microcomputer.
Five jumper connections are provided so
different memory devices can be used. For
general-purpose use and program
development, the 4 K-byte Z6132
read/write memory device will be used;
for dedicated applications, two kinds of
EPROMs can be substituted in the same
integrated-circuit socket. Standard 450 ns
type-2716 or type-2732 EPROM chips can
be used. The connection labeled "32 K"
should be closed if a type-2732 EPROM is
installed; the connection labeled "16 K"
should be closed for use of a type-2716
EPROM.

The pull-up resistors adjacent to IC4
(the 74LS244 buffer) are contained in a
SIP (single-inline package).

Build a Z8-Based Control
Contputer with BASIC, Part 2

The Z8-BASIC Microcomputer
system described in this two-part
article is unlike any computer pre­
sently available for dedicated control
applications. Based on a single-chip
Zilog Z8 microcomputer with an on­
board tiny-BASIC interpreter, this
unit offers an extraordinary amount
of power in a very small package. It is
no longer necessary to use expensive
program-development systems. Com­
puter control can now be applied to
many areas where it was not
previously cost-effective.

The Z8-BASIC Microcomputer is
intended for use as an intelligent con­
troller, easy to program and inexpen­
sive enough to dedicate to specific
control tasks. It can also serve as a
low-cost tiny-BASIC computer for
general interest. Technical specifica­
tions for the unit are shown in the "At
a Glance" box.

Last month I described the design
of the Z8-BASIC Microcomputer
hardware and the architectures of the
Z8671 microcomputer component
and Z6132 32 K-bit Quasi-Static
Memory. This month 1'd like to con­
tinue the description of the tiny­
BASIC interpreter, discuss how the
BASIC program is stored in memory,
and demonstrate a few simple appli­
cations.

Process-Control BASIC
The BASIC interpreter contained in

CopYright © 1981 by Steven A CiarCia.
All rights reserved

Steve Ciarcia
POD 582

Glastonbury CT 06033

ROM (read-only memory) within the
Z8671 is officially called the Zilog
BASIC/Debug monitor. It is essen­
tially a 2 K-byte integer BASIC which
has been optimized for speed and
flexibility in process-control applica­
tions.

There are 15 keywords: GOTO,
GO@, USR, GOSUB, IF ... THEN,
INPUT, IN, LET, LIST, NEW, REM,
RUN, RETURN, STOP, PRINT (and
PRINT HEX). Twenty-six numeric
variables (A through Z) are sup­
ported; and numbers can be ex-

Photo 1: Z8-BASIC Microcomputer. With the two "RAM" jumpers installed, it is
configured to operate programs residing in the Z6132 Quasi-Static Memory. A
four-position DIP (dual-in line pin) switch (at upper right) sets the serial data rate
for communication with a user terminal connected to the DB-25S RS-232C con­
nector on the top center. The reset button is on the top left.

1-67

pressed in either decimal or hexadeci­
mal format. BASIC/Debug can
directly address the Z8's internal
registers and all external memory.
Byte references, which use the "@"
character followed by an address,
may be used to modify a single
register in the processor, an I/O port,
or a memory location. For example,
@4096 specifies decimal memory
location 4096, and @%F6 specifies
the port-2 mode-control register at
decimal location 246. (The percent
symbol indicates that the characters
following it are to be interpreted as a
hexadecimal numeral.) To place the
value 45 in memory location 4096,
the command is simply, @4096=45
(or @%1000=%2D).

Command abbreviations are stan­
dard with most tiny-BASIC interpre­
ters, but this interpreter allows some
extremes if you want to limit program
space. For example:

IF 1> X THEN GOTO 1000
can be abbreviated

IF l>X 1000

PRINT"THE VALUE IS ";S

can be abbreviated
"THE VALUE IS ";S

IF X=Y THEN IF Y=Z
THEN PRINT "X = Z"

can be abbreviated
IF X=Y IF Y=Z "X=Z"

One important difference between
most versions of BASIC and Zilog's
BASIC/Debug is that the latter
allows variables to contain statement
numbers for branching, and variable
storage is not cleared before a pro­
gram is run. Statements such as
GOSUB X or GOTO A*E-Z are
valid. It is also possible to pass values
from one program to another. These
variations serve to extend the capa­
bilities of BASIC/Debug.

In my opinion, the main feature
that separates this BASIC from others
is the extent of documentation sup­
plied with the Z8671. Frequently, a
computer user will ask me how he can
obtain the source-code listing for the
BASIC interpreter he is using. Most
often, I have to reply that it is not
available. Software manufacturers
that have invested many man-years

Photo 2: The Z81Micromouth demo'1strator. A Z8-BASIC Microcomp!lter is
configured to run a ROM-resident program that exercises the Micromouth speech
synthesizer presented in the June Circuit Cellar article. A Micromouth board
similar to that shown on the left is mounted inside the enclosure. Six pushbutton
switches, connected to a parallel input port on the Z8 board, select various
speech-demonstration sequences. The Micromouth board is driven from a second
parallel port on the Z8 board.

1-68

Name
28-BASIC Microcomputer

Processor
2ilog 28-family 28671 8-bit microcomput­
er with programmable (read/write)
memory, read-only memory, and 110 in a
single package. The 28671 includes a
2 K-byte tiny-BASIC/Debug resident in­
terpreter in ROM, 144 internal 8-bit
registers, and 32 110 lines. System uses
7.3728 MHz crystal to establish clock
rate. Two internal and four external inter­
rupts.

Memory
Uses 26132 4 K-byte Quasi-Static
Memory (pin-compatible with 2716 and
2732 EPROMs); 2 K-byte ROM in 28671.
Memory externally expandable to 62 K
bytes of program memory and 62 K bytes
of data memory.

Input/Output
Serial port: RS-232C-compatible and
switch~electable to 110, 150, 300, 1200,
2400, 4800, and 9600 bps.
Parallel 110: two parallel ports; one
dedicated to input, the other bit­
programmable as input or output; pro­
grammable interrupt and handshaking
lines; LSTTL-compatible.
External 110: 16-bit address and 8-bit
bidirectional data bus brought out to ex­
pansion connector.

BASIC Keywords
COTO, CO@, USR, COSUB,
IF ... THEN, INPUT, LET, LIST, NEW,
REM, RETURN, RUN, STOP, IN,
PRINT, PRINT HEX. Integer
arithmetic/logic operators: +. -, /, "
and AND; BASIC can call machine­
language subroutines for increased execu­
tion speed; allows complete memory and
register interrogation and modification.

Power-Supply Requirements
+5 V ±5% at 250 rnA
+12 V ±10% at 30 rnA
-12 V ±10% at 30 rnA
(The 12 V supplies are required only for
RS-232C operation.)

Dimensions and Connections
4- by 4'/,-inch board; dual 22-pin
(0.156-inch) edge connector. 25-pin RS-
232C female D~ubminiature (DB-25S)
connector; 4~pole DI1"-swiich dai:a~rai:e
selector.

Operating Conditions
Temperature: 0 to 50°C (32 to 122 OF)
Humidity: 10 to 90% relative humidity
(noncondensing)

in a BASIC interpreter are not easily
persuaded to give away its secrets.

In most cases, however, a user
merely wants to know the location of
the GOSUB ... RETURN address stack
or the format and location of stored
program variables. While the source
code for BASIC/Debug is also not
available (because the object code is
mask-programmed into the ROM,
you couldn't change it anyway), the
locations of all variables, pointers,
stacks, etc, are fixed, and their stor­
age formats are defined and described
in detail. The 60-page BASIC/Debug
user's manual contains this informa­
tion and is included in the 200 pages

FFFF
FFFD -- Data-rate switches

COOO

BFFF

8000

7FFF

2000

17FF

Remainder
undefined

User-memory and 1/0-
expansion area

undefined

On-board 4 K bytes of readlwrite
memory or EPROM

800

7FF

BASICIDebug ROM

100

FF

Z8 registers

00

Figure 1: A simplified hexadecimal
memory map of the Z8-BASIC Micro­
computer.

of documentation supplied with the
Z8-BASIC Microcomputer board.
(The documentation is also available
separately.)

Memory Allocation
Z8-family microcomputers distin­

guish between four kinds of memory:
internal registers, internal ROM, ex­
ternal ROM, and external read/write
memory. (A slightly different dis­
tinction can also be made between
program memory and data memory,
but in this project this distinction is
unnecessary.) The register file resides
in memory-address space in hexadeci­
mal locations 0 through FF (decimal 0
through 255). The 144 registers in­
clude four I/O- (input! output) port
registers, 124 general-purpose regis­
ters, and 16 status and control regis­
ters. (No registers are implemented in
hexadecimal addresses 80 through EF
[decimal addresses 128 through 239]).

The 2 K-byte ROM on the Z8671
chip contains the BASIC/Debug in­
terpreter, residing in address space
from address 0 to hexadecimal 7FF
(decimal 0 to 2047). External memory
starts at hexadecimal address 800
(decimal 2048). A memory map of the
Z8-BASIC Microcomputer system is
shown in figure 1.

When the system is first turned on,
BASIC/Debug determines how much
external read/write memory is avail­
able, initializes memory pointers, and
checks for the existence of an auto­
start-up program. In a system with
external read/write memory, the top
page is used for the line buffer,
program-variable storage, and the
GOSUB ... RETURN address stack.
Program execution begins at hexadec­
imallocation 800 (decimal 2048).

When BASIC/Debug finds no ex­
ternal read/write memory, the inter­
nal registers are used to store the vari­
ables, line buffer, and GOSUB ... RE­
TURN stack. This limits the depth of
the stack and the number of variables
tRat can be used simultaneously, but
the restriction is not too severe in
most control applications. In a sys­
tem without external memory, auto­
matic program execution begins at
hexadecimal location 1020 (decimal
4128).

1-69

In a system that uses an external
2 K-byte EPROM (type 2716), wrap­
around addressing occurs, because
the state of the twelfth address line on
the address bus (A11) is ignored. (A
4 K-byte type-2732 EPROM device
does use A11.) A 2716 EPROM de­
vice inserted in the Z6132's memory
socket will read from the same mem­
ory cells in response to accesses to
both logical hexadecimal addresses
800 and 1000. Similarly, hexadecimal
addresses 820 and 1020 will be treated
as equivalent by the 2716 EPROM.
Therefore, when a 2 K-byte 2716
EPROM is being used, the auto-start
address, normally operating at hexa­
decimal 1020, will begin execution of
any program beginning at hexadeci­
mal location 820. For the purposes of
this discussion, you may assume that
programs stored in EPROM use type-
2716 devices and that references to
hexadecimal address 820 also apply
to hexadecimal address 1020.

Program Storage
The program-storage format for

BASIC/Debug programs is the same
in both types of memory. Each
BASIC statement begins with a line
number and ends with a delimiter. If
you were to connect a video terminal
or teletypewriter to the RS-232C
serial port and type the following
line:

100 PRINT "TEST"

it would be stored in memory begin­
ning at hexadecimal location 800 as
shown in listing 1.

The first 2 bytes of any BASIC
statement contain the binary equiva­
lent of the line number (100 decimal
equals 64 hexadecimal). Next are
bytes containing the ASCII (Ameri­
can Standard Code for Information
Interchange) values of characters in
the statement, followed by a delimiter
byte (containing 00) which indicates
the end of the line. The last statement
in the program (in this case the only
one) is followed by 2 bytes containing
the hexadecimal value FFFF, which
designates line number 65535.

The multiple-line program in listing
2 further illustrates this storage for­
mat.

One final example of this is il­
lustrated in listing 3. Here is a pro­
gram written to examine itself. Essen­
tially, it is a memory-dump routine
which lists the contents of memory in
hexadecimal. As shown, the IS-line
program takes 355 bytes and occupies
hexadecimal locations 800 through
963 (decimal 2048 through 2499). I
have dumped the first and last lines of
the program to further demonstrate
the storage technique.

I have a reason for explaining the
internal program format. One of the
useful features of this computer is its
ability to function with programs re­
siding solely in EPROM. However,
the EPROMs must be programmed

The first application I had for the
unit was as a demonstration driver
for the Micromouth speech-processor
board I presented two months ago in
the June issue of BYTE. (See "Build a
Low-Cost Speech-Synthesizer Inter­
face," in the June 1981 BYTE, page
46, for a description of this project,
which uses National Semiconductor's
Digitalker chip set.) It's hard to dis­
cuss a synthesized-speech interface
without demonstrating it, and I didn't
want to carry around my big com­
puter system to control the Micro­
mouth board during the demonstra­
tion. Instead, I quickly programmed
a Z8-BASIC Microcomputer to per­
form that task. While I was at it, I set

Listing 1: Simple illustration of BASIC program storage in the Z8-BASIC Microcom­
puter.

100 P R N T T
aoo 00 64 50 52 49 4E 54 20 22 54

E S T
BOA 45 53 54 22 00 FF FF

Listing 2: A multiple-line illustration of BASIC program storage.

100 A=5
200 B=6
3005 "A 'B = ";A 'B

100 A 5
800 00 64 41 3D 35 00

8 3005 A
aOA 36 00 OB BD 22 41

A • B
814 3B 41 2A 42 00 FF

externally. While I will explain how
to serially transmit the contents of the
program memory to an EPROM pro­
grammer, some of you may have on­
ly a manual EPROM programmer or
one with no communication facility.
But if you are willing to spend the
time, it is easy to print out the con­
tents of memory and manually load
the program into an EPROM device.

Dedicated-Controller Use
The Z8-BASIC Microcomputer can

be easily set up for use in intelligent
control applications. After being
tested and debugged using a terminal,
the control program can be written
into an EPROM. When power is ap­
plied to the microcomputer, execu­
tion of the program will begin auto­
matically.

200 B
00 ca 42 3D
• B

2A 42 3D 22

FF

it up to demonstrate itself as well.
The result (see photo 2) has three

basic functional components. On top
of the box is a Z8-BASIC Microcom­
puter (hereinafter called the "Z8
board") with a 2716 EPROM installed
in the memory integrated-circuit
socket, the Z8-board power supply
(the wall-plug transformer module is
out of view), and six pushbutton
switches. Inside the box is a proto­
type version of the Micromouth
speech-processor board (a final-ver­
sion Micromouth board is shown on
the left).

The t\1icrcmouth board is jumper­
programmed for parallel-port opera­
tion (8 parallel bits of data and a
data-ready strobe signal) and con­
nected to lIO port 2 on the Z8 board.
The Micromouth BUSY line and the

1-70

six pushbuttons are attached to 7 in­
put bits of the Z8 board's input port
mapped into memory-address space
at hexadecimal address FFFD
(decimal 65533).

The most significant 3 bits of port
FFFD are normally reserved for the
data-rate-selector switches, but with
no serial communication required,
the data rate is immaterial and the
switches are left in the open position.
This makes the 8 bits of port FFFD,
which are brought out to the edge
connector, available for external in­
puts. In this case, pressing one of the
six pushbuttons selects one of six
canned speech sequences.

Coherent sentences are created by
properly timing the transmission of
word codes to the speech-processor
board. This requires nothing more
than a single handshaking arrange­
ment and a table-lookup routine (but
try it without a computer sometime).
The program is shown in listing 4a.

The first thing to do is to configure
the port-2 and port-3 mode-control
registers (hexadecimal F6 and F7, or
decimal 246 and 247). Port 2 is bit­
programmable. For instance, to con­
figure it for 4 bits input and 4 bits out­
put, you would load FO into register
F6 (246). In this case, I wanted it con­
figured as 8 output bits, so I typed in
the BASIC/Debug command @246=0
(set decimal location 246 to 0).

The data-ready strobe is produced
using one of the options on the Z8's
port 3. A Z8 microcomputer has
data-available and input-ready hand­
shaking on each of its 4 ports. To set
the proper handshaking protocol and
use port 2 as I have described, a code
of hexadecimal 71 (decimal 113) is
placed into the port-2 mode-control
register. The BASIC/Debug com­
mand is @247= 113. The RDY2 and
DA V2 lines on the Z8671 are con-

nected together to produce the data­
available strobe signal.

Lines 1000 through 1030 in listing
4a have nothing to do with demon­
strating the ?v1icromouth board. They
form a memory-dump routine that il­
lustrates how the program is stored in
memory. You notice from the mem­
ory dump of listing 4b that the first
byte of the program, as stored in the

ROM, begins at hexadecimal location
820 (actually at 1020, you remember)
rather than 800 as usual. This is to
help automatic start-up. The program
could actually begin anyplace, but
you would have to change the pro­
gram-pointer registers (registers 8 and
9) to reflect the new address. The 32
bytes between 800 and 820 are re-

served for vectored addresses to op­
tional user-supplied 110 drivers and
interrupt routines.

Programming the EPROM
The first EPROM-based program I

ran on the Z8-BASIC Microcomputer
was manually loaded. I simply
printed out the contents of the Z6132

Listing 3: A program (listing 3a) that examines itself by dumping the contents of mem­
ory in printed hexadecimal form. Listing 3b shows the first and last lines of the program
as dumped during ex~cution.

(3a)

100 PRINf'ENf~R SrART ADDRESS fOR HEX DUMP ';:INPUT X
102 PRINI'rH~ LISr IS HOW MANY BYfES LONG ';:INPUf C
103 PF<INT:PRINT
105 B'~XHl :A'=X+C
10} PRINT'ADDRESS DAfA':PRINf
110 PRINT HEX (X);' ';
120 GOSUB 300
130 X'=X t1
140 IF X=B THEN GO TO 180
150 GOTO 120
180 IF X)-A THEN 250
200 PRINT:PRINT:B=X+S:GOIO 110
;~50 PRINT: STOP
300 PRINf HEX (@X);: PRINT' ';
310 RETURN

(3b)

:RUN
ENTER START ADDRESS FOR HEX DUMP? 2048
THE LIST IS HOW MANY BYTES LONG? 30

ADDRESS DATA

100 P R I N
800 0 64 50 52 49 4E

E N T E R sp
808 45 4E 54 45 52 20

JI. R T Sf JI. D
810 41 52 54 20 41 44

E S S sp F 0
818 45 53 53 20 46 4F

:RUN
ENTER START ADDRESS FOR HEX DUMP? 2360
THE LIST IS HOW MANY BYTES LONG? 45

ADDRESS DATA

0 P 300 P
938 4F 50 0 1 2C 50

N T Sf H E X
940 4E 54 20 48 45 58

@ X) Sf
948 40 58 29 3B 3A 20

I N T Sf sp
950 49 4E 54 22 20 20

310 R E T
958 0 36 52 45 54

N 85535
960 4E 0 FF FF 0 0

T
54 22
S T
53 54
D R
44 52
R sp
52 20

R I
52 49
sp (
20 28
P R
50 52

22 3B
U R
55 52

0 0

1-71

memory using the program of listing
3 and entered the values by hand into
the EPROM programmer. This is fine
once or twice, but you certainly
wouldn't want to make a habit of it.
Fortunately, there are better alterna­
tives if you have the equipment.

Many EPROM programmers are
peripheral devices on larger computer
systems. In such cases, it is possible to
take advantage of the systems' capa­
bilities by downloading the Z8 pro­
gram directly to the programmer.

The programmer shown in photo 3
is a revised version of the unit I
described in a previous article, "Pro­
gram Your Next EROM in BASIC"
(March 1978 BYTE, page 84). It was
designed for type-2708 EPROMs, but
I have since modified it to program
2716s instead. All I had to do was
lengthen the programming pulse to
50 ms and redefine the connections to
four pins on the EPROM socket. It
still is controlled by a BASIC pro­
gram and takes less' than 2% minutes
to program a type-2716 EPROM de­
vice. Refer to the original article for
the basic design.

Normally, the LIST function or
memory-dump routine cannot be
used to transmit data to the EPROM
programmer because the listing is
filled with extraneous spaces and car­
riage returns. It is necessary to write a
program that transmits the contents
of memory without the extra charac­
ters required for display formatting.
The only data received by the
EPROM programmer should be the
object code to load into the EPROM.

In writing this program we can take
advantage of the Z8's capability of
executing machine-language pro­
grams directly through the USR and
GO@ commands. The serial-input
and serial-output subroutines in the
BASIC/Debug ROM can be executed
independently using these com­
mands. The serial-input driver starts
at hexadecimal location 54, and the
serial-output driver starts at hexadec­
imallocation 61. Transmitting a sin­
gle character is simply done by the
BASIC statement

GO@ %61,C

where C contains the value to be

transmitted. A serial character can be
received by

included at the end of your program.

C=USR (%54)

where the variable C returns the
value of the received data.

To dump the entire contents of the
Z6132 memory to the programmer,
the statements in listing 5 should be

Execution begins when you type
GOTO 1000 as an immediate-mode
command and ends when all 4 K
bytes have been dumped. The trans­
mission rate (110 to 9600 bps) is that
selected on the data-rate-selector
switches.

Conceivably, this technique could
also be used to create a cassette-stor-

Listing 4: A program (listing 4a) that demonstrates the functions of the Micromouth
speech synthesizer, operating from a type-2716 EPROM. The simple IIO-address
decoding of the Z8 board allows use of the round-figure address of 65000. The program
uses a table of vocabulary pointers that has been previously stored in the EPROM by
hand. Listing 4b shows a dump of the memory region occupied by the program, prov­
ing that storage of the BASIC source code starts at hexadecimal location 820.

(4a)

100 @246=0:@247=113
110 X=@65000 :A=%1400
120 IF X=254 THEN @2=0
130 IF X=253 THEN GOTO 500
140 IF X=251 THEN A=A+32 :GOTO 500
150 IF X=247 THEN A=A+64 :GOTO 500
160 IF X=239 THEN A=A+96 :GOTO 500
170 IF X=223 THEN A=A+128 :GOTO 500
180 IF X=222 THEN N=O :GOTO 300
200 GOTO llO
300 @2=N :N=N+l :IF N=143 THEN 110
310 IF @65000<129 THEN 310
320 GOTO 300
500 @2=@A :A=A+l
510 IF @65000<129 THEN 510
520 IF @A=255 THEN GOTO 110
530 GOTO 500
1000 Q=2048
1005 W=O
1010 PRINT HEX(@Q) ,:Q=Q+l
1015 W=W+l :IF W=8 THEN PRINT" ":GOTO 1005
1020 IF Q=4095 THEN STOP
1030 GOTO 1010

(4b)

:goto 1000
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
0 64 40 32 34 36
3A 40 32 34 37 3D
33 0 0 6E 58 3D
35 30 30 30 20 3A
25 31 34 30 30 0
49 46 20 58 3D 32
20 54 48 45 4E 20
O! AT 1015

1-72

age capability for the Z8 board. In
theory, a 3- or 4-line BASIC program
can be entered in high memory (you
can set the pointer to put the program
there) to read in serial data and load it
in lower memory. Changing the pro­
gram pointer back to hexadecimal
800 allows the newly loaded program
to be executed. Since the Z8-BASIC
Microcomputer already has a serial
110 port, any FSK (frequency-shift
keyed) modem and cassette-tape re­
corder can be used for cassette data
storage.

110 for Data Acquisition
Data acquisition for process con­

trol is the most likely application for
the Z8-BASIC Microcomputer. Low­
cost distributed control is practical,
substituting for central control per­
formed by a large computer system.
Analog and digital sensors can be
read by a Z8-BASIC Microcomputer,
which then can digest the data and re­
duce the amount of information (ex­
periment results or control param­
eters) stored or transmitted to a cen­
tral point. Control decisions can be
made by the Z8-BASIC Microcom­
puter at the process locality.

The Z8 board can be used for
analog data acquisition, perhaps us­
ing an AID (analog-to-digital) con­
verter such as that shown in figure 2.
This 8-bit, eight-channel AID con­
verter has a unipolar input range of 0
to + 5 V (although the AID in­
tegrated circuit can be wired for
bipolar operation), with the eight
output channels addressed as 110
ports mapped into memory-address
space at hexadecimal addresses BFOO

FF FF
FF FF
FF FF
FF FF
3D 30
31 31
40 36
41 3D
0 78
35 34

Listing 5: BASIC statements that print out
the entire contents of the 4 K bytes of user
memory, for use with a communicating
EPROM programmer.

1000 X = %800 :REM BEGINNING OF
USER MEMORY

1010 GO@ %61,@X :REM TRANSMIT
CONTENTS OF LOCATION X

1020 X=X+l :IF X=%1801 THEN
STOP

1030 GOTO 1010

Listing 6: A simple BASIC program seg­
ment to demonstrate the concept of the
"black box" method of modifying data be­
ing transmitted through the Z8-BASIC
Microcomputer.

100 @246=0:@247=1l3 :REM SET PORT
2 TO BE OUTPUT

110 @2=X :REM X EQUALS THE DATA
TO BE TRANSMITTED

through BF07 (decimal 48896 through
48903). When the Z8671 performs an
output operation to the channel ad­
dress, the channel is initialized for ac­
quiring data, while data is read from
the channel when the Z8671 performs
an input operation on the channel's
address.

Intelligent Communication
Another possible use for the

Z8-BASIC Microcomputer is as an in­
telligent "black box" for performing
predetermined modification on data
being transmitted over a serial com­
munication line. The black box has
two OB-25 RS-232C connectors, one
for receiving data and the other for
retransmitting it. The intelligence of
the Z8-BASIC Microcomputer, acting
as the black box, can perform prac­
tically any type of filtering, condens­
ing, or translating of the data going
through.

Perhaps you have an application
where continuous raw data is trans­
mitted, but you would rather just
keep a running average or flag devia­
tions from preset limits at the central
monitoring point rather than contend
with everything. The Z8 board can be
programmed to digest all the raw
data coming down the line and pass
on only what's pertinent.

Another such black-box applica­
tion is to use the Z8 board as a printer
buffer. Photo 4 shows the interface
hardware of one specific application,

· ' .. ,~:: .: ::11:: : : : : . : : .

"1::) !:f::;::: ',. .' ~~:~~~~~~~
• % .- •••••• · ~ . .. ,

Photo 3: Type-2716 EPROM programmer, adapted from "Program Your Next
EROM in BASIC" (March 1978 BYTE, page 84). The circuit, which is driven
through parallel ports, programs a 2716 in about 2Y2 minutes and is controlled by
a BASIC program.

Photo 4: A three-integrated-circuit hardwired serial output port for the
Z8-BASIC Microcomputer. Connected to port 2, any program data sent to
register 2 will be transmitted serially at the data rate selected on the four-position
DIP switch (between 50 to 19200 bps). The Z8 board, configured with two serial
ports, is used to process raw data moving through it. Data is received on one
side, digested, and retransmitted in some more meaningful form from the other
port. Such a configuration could also be used to connect two peripheral devices
that have radically different data rates.

1-73

R/W~2~0>----------------,

In

A 9 lly:>-:-____ ---..:1~12'4
I
I

I
I
I

I
I

:>o __ .:..I ____ -'I"i1 ENABLE

I IC4 L ___ --1 74LS373

ICS
ADCOSOS

INPUT CHANNELS

I NOI-'2"'6 ____________ -<:::J

IN 1 ... 2,,-7 ____________ -<,
I N21-'2"'S-------------<:::J

IN31-'1-------------CJ

IN4t"2~-----------CJ

INSp3'------------_CJ

IN6p4'------------_CJ

IN7I-'S'-------------CJ

ANALOG
INPUTS
o TO SV

I SK

SK

+12V

IK

LM329B
69V

.--____ --'-17 3D 3QI"6'-------=2""3 ADD C

.--1-____;4"120 2QfS'-------=2,4 ADD B

.---1HI-----...;3"110 IQ 2 2S ADD A

~~

AO/OO

IC7
74LSOO

AI/OI

17 DO

14 01

IS 02

CLOCKfl .:.O ---------c:(
A2I02 II

03 <=n-----------------------------------~S03 IK IK

04

OS

06

07

Number Type

IC1 74LS04
IC2 74LS30
IC3 74LS02
1C4 74LS373
IC5 ADC0808
1C6 LM301
IC7 74LSOO

which I used to attach a high-speed
computer to a very slow printer. The
host computer transmitted data to the
Z8 beard at 4800 bps. Since the re­
ceiving serial port used had to be bidi­
rectional to handshake with the host
computer, I added another serial out­
put to the Z8 board for transmitting
characters to the printer. Only three

IS 04

19 OS

20 06

21 07

GNO -VREF

13 16

:---iC7-- --------,
I 74LSOO I
I I 4 6 I

, I L ______________ J
6S0pF

"'SOOkHz

+5V GND +12V

14 7
14 7
14 7
20 10

see schematic diagram
4 7

14 7

integrated circuits were required to
add a serial output port. A schematic
diagram is shown in figure 3. The
Up.RT (universal asynchronous re­
ceiver/transmitter, shown as ICI) is
driven directly from port Z on the Z8
board (port Z could also be used to
directly drive a parallel-interface
printer), and ICZ supplies the clock

1-74

Figure 2: Schematic diagram of an A/D
converter. This B-bit, eight-channel unit
has a unipolar input range of 0 to +5 V,
with the eight output channels addressed
as I/O ports mapped into memory­
address space at hexadecimal addresses
BFOO through BF07.

signal for the desired data rate. Of
course, the UART could have been
attached to the data and address
buses directly, but this \vas easier.

Transmitting a character out of this
serial port requires setting the port-Z
and port-3 mode-control registers as
before. After that, any character sent
to port Z will be serially transmitted.

23 TOS

26 TOI

27 T02

2B T03

29 T04

30 T05

P20~1~2>_------------------~

P2IUI~3>_------------------~

P22U£>_------------------~

P23~>_------------------~

P24~1!>------------------~;

31 T06

32 T07

33 TOB

P26~>_------------------~

P27l~>_------------------~

ICI
COM2017
UART

TSO 25

CS 34

NP 35

TSB 36

NB2 37

NBI 3B

EPS 39

XR 21

GNO 3

TCP 40

Number Type +5V GND -12V +12V

IC1 COM2017 1 3 2
IC2 COMS016 2 11 9
1C3 COM1488 7 14

+5V

CRYSTAL
506BBMH.

IC3
MCI4B8

OB-25
CONNECTOR

I
I

3 } RS-232C rt OUTPUT

Figure 3: SchemAtic diAgrAm of An RS-232C seriAl output port for the "blAck box" communicAtion ApplicAtion of the Z8-BASIC
Microcomputer. The Z8671 must be configured by softwAre to provide the proper signAls: one such signAl,
DA V2, is derived from two bits of I/O port 3 on the Z8671. The pin numbers shown in the schemAtic diAgrAm for P31 And P3. Are
pins on the Z8671 device itself, not pins or sections on the cArd-edge connector, liS Are P2. through P2, .

Photo 5: When the Z8-BASIC Microcomputer is used with A ROM-resident pro­
grAm, the two jumpers used with the Z6132 Are removed, And the EPROM
jumper is instAlled insteAd. When using A type-2716 16 K-bit (2 K-byte) EPROM
device, the "16 K" jumper is instAlled. If A type-2732 32 K-bit (4 K-byte) EPROM
is used insteAd, the "32 K" jumper is instAlled. The EPROM is inserted in the
lower 24 pins of the 28-pin Z6132 socket (IC2) liS shown.

1-75

-~--------------~--~-.---.---~-

The minimum program to perform
this is shown in listing 6. This circuit
can also be used for downloading
programs to the EPROM programmer.

In Conclusion
It is impossible to describe the full

potential of the Z8-BASIC Micro­
computer in so few pages. For this
reason, considerable effort has been
taken to fully document its character­
istics. I have merely tried to given an
introduction here.

I intend to use the Z8-BASIC
Microcomputer in future projects. I
am interested in any applications you
might have, so let me know about
them, and we can gain experience
together.

Special thanks to Steve Walters and Peter
Brown of Zilog Inc for their aid in producing
these articles.

BASIC/Debug is a trademark of Zilog lnc.

Zilog

INTRODUCTION

The Z8601 is a single-chip microcomputer with four
8-bit I/O ports, two counter/timers with asso­
ciated prescalers, asynchronous serial communica­
tion interface with programmable baud rates, and
sophisticated interrupt facilities. The Z8601 can
access data in three memory spaces: 2K bytes of
on-chip ROM and 62K bytes of external program
memory, 144 bytes of on-chip Register, and 62K
bytes of external data memory.

The Z8671 is a Z8601 with a Basic/Debug Inter­
preter and Debug monitor preprogrammed into the 2K
bytes of on-chip ROM. This application note
discusses some considerations in designing a
low-complexity board that runs the Basic/Debug
Interpreter and Debug monitor with an external 4K
bytes of RAM and 2K bytes of ROM. The board
st ands alone, allowing users to connect it with a
terminal via an RS232 connector and run the
Basic/Oebug Interpreter.

The user of this board can run Basic/Debug with
little knowledge of the ZB601. The board, how­
ever, derives its power through its ability to
execute assembly language programs. To use the
board to its full potential, the Z8 Technical
Manual (document #03-3047-02) and the Z8 PLZ/ASM
Manual (document n03-3023-03) should be read. The
~ic/Debug Software Reference Manual (document
#03-3134-00) provides general information, state­
ment syntax, memory allocations, and other mate­
rial regarding Basic/Debug and the Debug monitor
provided by the Z8671. There are also two docu­
ments describing the Z6132; these are the Z6132
Product Specification (document nOO-2028-A), and
the Interfacin to the Z6132 Intelli ent Memor
Application Note document #00-2102-A).

Basic/Oebug

Basic/Debug is a subset of D~rtmouth Basic, which
interprets Basic statements and executes assembly
language pro,qrams located in memory. Basic/Debug
can implement all the Dartmouth Basic commands
directly or indirectly.

751-1927-0002 1-77

Z8671 Seven Chip
Computer

Bardware
Application Note

September 1981

One advantage to programming in Bas1c/Debug lS the
interactive programming approach realized because
Bas1c/Debug 1S 1nterpreted, not assembled or com­
piled. Modules are tested and debugged using the
interactlve monltor provided wlth Basic/Debug.
USlng Basic/Debug saves program development time
by providing hlgher-level language statements that
simpllfy program development. Using the INPUT and
PRINT statements slmplify debugging.

The Z8671 Microcomputer

Baslc/Debug controls the memory interface, serlal
port, and other housekeeping functions performed
by the assembly language programmer.

The Z8671 uses ports 0 and 1 for communicating
wi th external memory. Port 1 provides the multi­
plexed address/data lines (ADO-AD7); port 0 sup­
plies the upper address bits (AB-A15). The Z8671
also uses the serial communications port for com­
municatlng wlth a terminal. Serlal communication
takes two pins from port 3, leaving six I/O pins
from port 3 available to the user. The serial
communicatlon interface uses one of the two
counter/timers on the Z8671 chip.

All other functions and features on the Z8601 are
available with the Z8671. The user may recon­
figure the Z8671 in software as a Z8601 if
desHed.

Applying the Z8671

Applications of the ZB671 range from a low­
complexity home microcomputer that is memory
intensive to an lnexpensive, I/O-orlented micro­
controller.

For home computer users, Baslc/Debug is used like
other available Basic interpreters. The ZB671,
however, has many advantages over other computers.
For example, the programmer can use the available
funct ions such as int er rupts to perform sophis­
ticated tasks that are beyond the scope of other
computer products. There is also a counter/timer

6/18/81

'--",-- ----~-~--'-.. --~------~----',-'- ',-.--,-------------

that ia uaed as s watchdog counter, a tlme-of-day
clock, a variable pulse width generator, a pulse
width measurement device, and a random number
generator.

As an inexpensive microcontroller, Basic/Debug
speeds program development time by calling assem­
bly language subroutinea (for time critical
applications) and by supplying high-level Basic
language statements that SImplIfy the programming
of noncritIcal subroutines.

ARCHITECTURE

Two major design goals were set for this Z8671
Basic board. First, the board was to be simple.
Second, the board needed to allow the user to
write Basic programs and to utIlize the features
of the Z8601.

Overview

The board has aeven IC packages:

• Z8671

• Z6132
• 2716
• 1488
• 1489
• 74LS04
• 74LS373

(Z8601 preprogrammed with
Basic/Debug)
(4K bytes of paeudo-static RAM)
(2K bytes of EPROM)
(RS232 line driver)
(RS232 line receiver)
(Hex inverter)
(octal latch)

With these chips, a complete microcomputer system
can be built with the following features:

• 2K byte Basic/Debug interpreter in the inter-
nal ROM.

• 4K bytes of uaer RAM.
• 2K bytes of user-programmable EPROM.
• Full-duplex serial operation with programmable

baud rates.
• RS232 Interface.
• 8-bit counter/timer with associeted 6-bit

prescalers.
• 124 general-purpose registers internal to the

Z8671.
• 14 I/O lines available to the user.
• 3 lines for external interrupts.
• 3 sources of internal interrupts.
• Sophisticated, vectored interrupt etructure

with progrsmmable priority levels. Each can
be individually enabled or disabled, and sll
interrupts csn be globally ensbled or
disabled.

• External memory expsnsion up to 124K bytes.
• Memory-mapped I/O capabilities.

This microcomputer csn be used as S microcon­
troller, in which csse a terminal is sttached,
via the RS232 interface, and Basic/Debug is used
to create, test, and debug the system. When the
system is debugged, the program is put into the
EPROM, the termInal disconnected, and the board
run standIng slone. The terminal can be reat-

751-1927-0002 1-78

tsched at any time to monitor the subroutines
running on the board.

This proposed board meets the design requirements
of simpliCIty and of allowing the user to write
and debug programs In BaSIC while maintaIning
access to the Z8671 on-chip features.

Interfacing the Z8671 with External Memory

Both RAM and ROM are used in this application for
program development and to demonstrate the use of
components with and without address latches.

The RAM interface is easy to implement when using
a Z6132 (Figure 1). No external address latch is
needed because the Z6132 latches the address
internally. The Z6132 signals WE (Write Enable),
55 (Data Strobe), and AC (Address Clock) are wired
direct ly to the Z8671 signsls R/W (Read/ Write),
OS (Data Strobe), and AS (Address Strobe). The
only other signal required is Cs (ChIp Select).
Cs is prOVIded by the Z8671 by decoding the upper
address bIt of port O. ThIS board uses address
bit 15 to select the chip. Since there are two
memory ChIPS on thIS board, the upper address bit
ensures that the Z6132 is selected for addresses
800-7FFF (Hex) snd thst the 2716 is selected by
sddresses 8000-FFFF (Hex).

There are two msjor advantages to using the
Z6132. The interface to the Z8671 is uncompli­
cated because both components sre Z_BUS™ compat­
ible, and it provides 4K bytes of RAM in one
package.

The ROM interface is not as simple as the inter­
face to the Z6132. Nevertheless, the circuit is
common in microcomputer applications. The ROM
does not latch the address from the Z8671 and
therefore needs an externsl address latch. The
74LS373 latches the address for the 2716 EPROM.
The Enable pin on the 74LS373 is driven by the AS
signal via an inverter. The EPROM is also
selected by the upper address nibble of port O.
Figure 2 shows the Z8671-to-2716 interface.

Interfacing the Z8671 with RS232 Port

The Z8671 uses its serial communication port to
communIcate with the RS232 port. Driver and
receiver circuits are required to supply the
proper signals to the RS232 interface. The circuit
of Figure 3 shows the interface between the Z8671
and the 1488 and 1489 for serial communication via
the RS232 interface.

The serial interface does not use the control
signals Clear to Send, Date Set Ready, etc. It
uses only Serisl In, Serisl Out and Ground, so it
is a very simple interface.

The Z8671 uses one timer and its sssociated pre­
scaler for baud rate control. When the Z8671 is
reset, it resds locatIon FFFD and uses the byte

6/18/81

os 8

za871

PORT 10 21

PORT 11
22

PORT 12
23

PORT 13
24

25
PORT 14

28
PORT 15

27
PORT 1a

28
PORT 17

B 9

PORT Or
20

PORT 00
13

14
PORT 01

PORT 02
15

751-1927-0002

za871 Z8132

PORT 10 21 ADo 10 Ao DO 11

PORT 11 22 ADI 9 AI Dl 12

PORT 12 23 AD2 8 A2 D2 13

PORT 13 24 AD3 7 A3 D3 15

PORT 14 25 AD4 8 A4 D4 18

PORT 15 28 ADS 5 As Ds 17

PORT 1a 27 ADs 4 Aa Ds 18

PORT 17 28 AD7 3 A7 D7 19

PORT 00 13 As 25 As

PORT 01 14 As 24 As

PORT 02 15 Al0 21 Al0

PORT 03 18 All 23 All

PORT 07 20 AIS 20
CS

RNi
7 27 WE

DS
8 22 OS

Ai 9 26
AC

Vaa

1.
2 *0.1I'F CERAMIC

Figure 1. The Z8671 and Z61'2 Interface

74LS373
ADo 3 Ao LAo 2 8 Ao
ADI 4 AI LAI 5 7 AI
AD2 7 Az LA2 8 - 6 A2
AD3 8 Aa LA3 9 5 A3
AD4 13 A4 LA4 12 4 A4

ADs 14 As LAs 15 3 As
ADa 17 As LAs 18 2 As
AD7 18 A7 LA7 19 1 A7

11 ENABLE OE h
A15 CE

V As 23 As
As 22 As
Al0 19 Al0

Figure 2. The Z8671 and 2716 Interface

1-79

I
120

OE

00
9

01
10

02
11

03
13

04
14

05
15

08
18

07
17

2718

6/18/81

-~------------~--- --- --.-~~-~--~~~---- ------- ---~ --~~~~~~--~-~~--~------ ---

stored there to seled the baud rate. The board
descrlbed 1n this app11catlon note uses EPROM to
seled the baud rate. On reset, the Z8671 reads
FFFD, which is in the EPROM, and decodes the baud
rate from the contents of that location. The baud
rate can be changed 1n software.

Figure 4 shows the full board design implemented
for this applicat10n note.

Uncommitted I/O Pins and Other Pins

Using the above design, port 2 is available for
use r appl1cat ions. Any of the port 2 pins can be
individually configured for input or output. There
are also six pins in port 3 ava1lable to the user.
The port 3 input pins can be used for interrupts.

SOFTWARE

Getting Started

The Z8671 board needs +5 V and ground to run all
components on the board except the 1488 EIA line
dr1ver. The 1488 needs +12 V and -12 V in addition
to the +5 V and ground. (If using no terminal, the
EIA dr1ver/rece1ver circuit 1S disconnected.
Consequently, the +12 V and -12 V lines are not
required.) The test board ran at 200 mAo

+5V

'~
I"

Vee
VEE

14 Vee

1488

~
BUSY Z6132

t OND EIA V" 800·7FFF
DRIVER ,.

GND RAM

~ OUTPUT INPUT L-

1488

80 •
2 INPUT

Z8671

1489 f1
81 3 OUTPUT

INPUT

73728 MHz

figure 3. Z8671 Interface
for Serial Communications

RS·232
CONNECTOR

The RS232 port can interface to any ASCII terminal
1 f the baud rate settmg is matched to the value
programmed into the EPROM. With power supplied to
the board and the terminal connected to it, the
reset button resets the Z8671 and the prompt char­
acter appears (":").

The board is ready for a 8asic command when the
":" appears. The following sequence is a simple
I/O example:

CS 20

D, ~
D, ~
D, ~
D, ~
D, ~
D, ~
D, ~
D, we OS AC Aa As AiD All Ao A1 A2 A3 A4 As A6 Ar ~

2722 2625 2421 23109 8 7 • 5 4 3

I~ l:g I::~ ~; ::: 8
~ <

08
~ ~

aJ
~ ~

~~t!i
~ < ~ ADo-ADr

> >

+i:o I~J,~I:~J,~U, ,f,
+~

7 8 913 1415 1621 22 23 2425 26 2728 20 23 22 19 21 24

14 Vee 4 RIW OS AS POOP01P02P03P1oP11P12P13P14P1sP16P11 ;.. r--J Ao
Vee

LAo f------! OE As As A10VPPVCC

~ SO ~2 .. 0,

t OUTPUT 3 5 ~ ~A1 LA1~ GND 51 ADo-ADr P21 A1 01 P-

~
XTAL1 P22 ;... r--1 A2 L.A2~A2 02r!L

1489
P2, ;... r---!' Aa 74LS373 L.Aa~Aa 2718 OarlL

EIA Z8871 P2, ~ t-E .. OCTAL LA, f1L------! A, 8000·PFFF o,f1!-
RECEIVER .W MICROCOMPUTER

~ t-Y As LATCH L.As j1!-----! As ROM Osf1i-. P2,

XTAL.2 P2e ;- ~A6 L.A6~A6 06~ r INPUT
73728 +5V P2, !4. ...-1§ Ar L.Ar~Ar Orr!!-MHz L

Vee
R'EsET

.....t1 ENABL.E
GND P07 POs POs P04 GND 0. CE GND

~' 20 119.,81" • ~o

r
1'8

~2
A"

J ----i7-- 3 __ 2_
+i1: 3 4

RS·232 Vee

21 I
I RESET I CONNECTOR

" 1 "
... I 1K

I
....

74LS04
INVERTER :f'"~ OND

g

figure 4. The Z8 System with Basic/Debug

751-1927-0002 1-80 6/18/81

:10 input a
:20 "a=u;8
:run
?5
a=5

: list
10 lnput a
20 "a=";a

When a number is entered as the first character of
a line, the Baslc monitor stores the line as part
of a program. In thlS example, "10 input a" is
entered. Basic stores this instructlon in memory
and prints another ":" prompt. The Run command
causes execut10n of the atored program. In thia
example, BSS1C asked for input by print ing "?". A
number (5) 1S typed at the terminal. Baslc
accepts the number, stores it in the variable "a",
and executes the next lnstruction. The next
instruction (20 "a="; a) is an implied print state­
ment; wnting an actual "prlnt" command is not
necessary here. This line of code produced the
output "a=5". The command "list" caused Basic to
display the program stored in memory on the ter­
minal.

Reading Directly from Memory

Baslc lets the user directly read any byte or word
in memory uSlng the Punt command and "1Ir' for byte
references or "." for word references:

:print 1!!8
10

:pnnthex(l!!8)
A

:printhex(.8)
AF6

The first statement prints the decimal value of
Register 8. The next statement prints the hexa­
decimal value of Register 8 and the last statement
prints the hexadecimal value of Register 8 (OAH)
and Register 9 (F6H).

Writing Directly to Memory

Basic lets the user write directly to any register
or RAM location in memory uSlng the Let command

and elther "cr' or ".".

:ga=1.:ff
: .4096=255
:printli1 0
255

:printhex(. %1000)
FF

The Let command is lmplled to save memory space
but can be included. The first statement loads
the hexadecimal value FF into register 10 declmal
(AH). The next instructlon loads the decimal

751-1927-0002

~~-------- --~------'-

1-81

value 255 lnto register 4096 dsclmal (1000H). The
pr1nt commands wrlte to the terminal the values
that were put ln wlth the first two instructions.

Memory Environment

Table 1 gives the memory configuratlon for the
Z8671 apphcation example. Chip Select is con­
trolled by the MSB (most slgOlflcant blt or A15)
of port O. Therefore, the RAM is selected for all
addresses between 800H (2048 declmaI) and 7FFFH
(32767 decimal). Addresses 8FF, 18FF, 28FF, 38FF,
and 78FF address the same location in RAM in this
applicatlon because of Modulo 4K. EPROM is
select ed for all addresses from 8000H to FFFFH
and, like the RAM, several addresses point to the
same location in the PROM.

Table 1
The Memory Environment

Decimal Hex Contents

0-2047 (0-7FF) Internal ROM
(BASIC/DEBUG)

2048-32767 (800-7FFF) RAM (Z6132)
32768-65536 (8000-FFFF) EPROM (2716)

Switching from RAM to EPROM

Register 8 and Register 9 contain the address of
the fnst byte of a user program or, if there is
no program, the address where the Z8671 will put
the first byte of a user progrsm. In this appli­
cation example, when the Z8671 is reset, Register
8 and Register 9 contain 800H, which pOlnts into
RAM. EPROM is selected by changing the contents
of reglster 8 from 08H to 80H (See Table 2).

Decimsl

22-23
8-9

Table 2
The Registers

Hex Contents

(16-17) Current Line Number
(8-9) Address of the First

Byte of User Progrsm

For more details on the register assignments,
refer to the Pointer Registers-RAM System section
of the Z8 Basic/Debug Software Reference Manual.

After the instruction ".8=%8000" is executed, the
Z8671 accesses the EPROM on the Bssic/Debug Board.

The example below shows how to switch from RAM to
EPROM. The example uses two separate programs,
one in RAM and one in EPROM. The RAM program is
listed first, then the EPROM.

6/18/81

:printhex(• B)
800

: list
10 "executIng out of RAM"

: .8=%BOOO
:pnnthex(+ B)

BOOO
:list
10 "executlng out of EPROM"

Baud Control

The baud rate is selected automatIcally by reading
location FFFDH and decoding the contents of that
location when the ZB671 is reset (the ZB Basic/
Debug Software Reference Manual contains the baud
rate switch settings in Appendix B). This appli­
cation example holds the baud rate settIngs in ltS
EPROM. The least significant bits of location FFFD
hex wlil provide baud rates as follows:

Baud Rate Value Read

110 110
150 000
300 111

1200 101
2400 100
4800 011
9600 010

19200 001

After a reset, the baud rate is programmed by
loading a new value into counter/timer 0 (see the
Z8 Technical Manual, sectlon 1.5.7). A Reset
always changes the baud rate back to the rate
selected from the contents of location FFFD.

Burning an EPROM

The EPROM contains the baud rate selection byte in
location 7FDH. The other locations in memory are
used for program storage. See section 6.3 of the
Basic/Debug Manual for the format used to store
programs in memory. This format is used to store
programs In EPROM.

Example

The following is a printout of the game
Mastermind written in Basic/Debug.

10 @243=7
20 ®242=10
30 1!11241=14
40 x=usr(84):a=®242-1:x=usr(B4):b=@242-1
50 x=usr(84):c=®242-1:x=usr(84):d=®242-1
55 "":i=O
100 "guess ",:in e,f,g,h
110 i=i+l
300 j=%7f22:k=%7f2a

751-1927-0002 1-82

301 1=0
302 r=O:p=O
310 lf + j=. kp=p+l
320 j=j+2:k=k+2:1=1+1:lf 4 > 1310
330 J=%7f22:k=%7f2a
331 1=0
340 if. j=+ kr=r+l0:. j=. j+10:1=3
341 j=j+2
350 1=1+1:if4 > 1340
351 j=%7f22
352 1=0
360 k=k+2:if%7f31>k340
363 j=%7f22:k=%7f2a
366 if. j>9. j=. j-l0
367 j=j+2
368 if1.l7f29>j366
370 "right ";r;" place ";p
380 if4>pl00
390 y=999
400 "right in ";i;" guesses;";"play another

y/n":inputx
410 ifx=yl0

Lines 10 through 50 comprlse the random number
generator for the program. The three lines:

10 ®243=7
20 ®242=10
30 ®241=14

initlalize counter/tlmer 1 to operate in modulo-l0
count. Refer to the Z8 Technical Manual for com­
plete information on initializing timers.

The "usr(84)" function waits for keyboard input,
the ASCII value of the key is returned in a
variable with the following command:

:10 x=usr(84) :""
:15 printhex(x)
:run
5
35

In the above example, the program waits at line 10
until keyboard input, in this case the number 5.
The input value is stored in ASCII format in the
variable "x". The line:

40 x=usr(84):a=®242-1:x=usr(84):b=®242-1

wai ts for input, reads the current value of timer
1, subtracts 1 (to get a number between 0 and 9),
and stores the number in variable a. Then it
waits for keyboard input at the second user func­
t ion call, reads the current value of timer 1,
subtracts 1, and stores the number in variable b.
Line 50 of the exa~p18 program gets two more ran­
dom numbers and stores them in variables c and d.
The four-digit random number is located in
variables a, b, c, and d.

Line 300 assigns the locat ion of variable a to
variable j and the location of variable e (the

6/18/81

fust variable In the guess string} lo the
variable k. The atrategy is to access these
variablea IndIrectly and to increment pOinters j
and k to access the vsriables.

A colon is used to separate commsnds on the ssme
line. This is useful in packing the progrsm into
a smsll amount of memory space. The code, however,
is harder to read. See section 5 of the Basic/
Debug manual for more InformatIon on memory
packing technIques.

Below IS a sample run of the MastermInd program: .

: run
«RETURN> on the keyboard is entered four
times here)

guess? 0, 1, 2, 3
right 2 place 0
guess ? 4, 5, 6, 7
right 2 place 1
guess ? 0, 2, 4, 6
right 3 place 2
guess? 4, 2, 1, 6
right 4 place 4
right in 4 guesses
play another? yin
?n

QO.2151-02 1-83

CONCLUSION

The design of thIS spplication exsmple met the
major design goals of simplicity and functional­
ity. The first goal is accomplished by prudent
selection of support components, excluding any
unnecessary chlps. The board allows the user to
exercise the full power snd flexibility of the
festures of the the Z8601 not used by Basic/Debug.
The user csn write snd debug Basic programs with­
out detaIled knowledge of the Z8601.

The Basic application example demonstrates a
memory interface that is applicable for all Z8
Family members. The csse where there is no
address latch on the memory ChIP was discussed,
and an example of how to interface the multiplexed
address/data bus of the Z8 Family through an
address latch was shown.

The software section explaIns the memory environ­
ment and gives several examples of Basic/Debug.
These examples are a good introduction to the
board and to Basic/Debug.

The Z8671 is a customlZed extension of the Z8601
single-chip microcomputer. The simplicity of the
Basic sppllcatlon example demonstrates the flexi­
bility of the Z8601 microcomputer in an expsnded
memory environment.

6/18/81

~~~~~---------"--'---'.----.. --- ,--'.- "','-





Zilog 

INTRODUCTION 

The Zilog ZB590 Urn versal Peripheral Controller 
(UPC) opens up a wide vauety of appllcations for 
distnbuted processing. One of the most useful 
funct10ns of the UPC is to off-load routine proc­
ess1ng tasks, such as I/O processwg, from the 
CPU. The advantages of such a distributed proc­
essing approach 1nclude greater system throughput, 
more efficient use of system resources, and proto­
col converters that make different peripherals 
look the same to the system software. The last 
advantage is particularly useful where d1fferent 
hardware conf1gurations may be used with the same 
software. So long as the UPC handles the CPU 
interface in the same way, the peripheral devices 
attached to the UPC are transparent to the CPU. 

Th1s paper descubes a CRT display and keyboard 

Z80 BUS 

Z80 
CPU 

A Single Board Terminal 
Using the Z8590 Universal 
Peripheral Controller 

AppUcation Note 

October 1981 

interface circu1t that was des1gned and built by 
the Zilog Applicat10ns Group using the ZB590 IJ'C 
l.n a ZBO system environment. The CRT display 
functJ.on was chosen due to the widespread use of 

CRT displays in the data processing environment. 
For further informatJ.on on the ZB590 UPC refer to 
the Zilog Data Book, pUblication number 
00-2034-01. 

FUNCTIONAL DESCRIPTION 

This paper describes the Input/Output (I/O) part 
of a computer system in l.ts most rudimentary 
form. D1stributed processIng is the theme used l.n 
this design so that as much of the low-level proc­
essing for I/O as possIble is performed by the 
UPC. Figure 1 shows a block dl.agram of the UPC 
I/O system. 

VL---------------------, ASCII KEYBOARD 
~r-------------------~INPUT 

MEMORY 

8MC 
963648 

Figure 1. 

DISPLAY 
RAM 

Block Diagra. of the UPC 
Single Board Terlllinal 

1-85 

COMPOSITE 
VIDEO 



The display interfaces to a standard video monitor 
by way of a composite video signal. Charactel's 
are repl'esented by dots on a l'astel' scan display 
in the form of a 5 x 7 matrix. The CPU intel'face 
to the UPC can hansfer characters on a single 
byte basis or by a block move. So far as the CPU 
loS concerned, the UPC looks like a serial port 
when used in single byte mode. This permits the 
system software to remain virtually the same for a 
serially-linked terminal or for the UPC. The UPC 
also provides for programmable cursor control, 
like that available on a standard terminal, with 
the control characters being optionally selected 
by the system software. When the UPC is initial­
ized by the CPU, a bit in the mode control 
word can be set to indicate that cursor control 
characters will follow. The keyboard input is 
from an ASCII-encoded keyboard that has a strobe 
to signal a valid character present. 

The standard 7-bit ASCII code is supported Wloth 
the negative-going strobe pulse indicating valid 
data. The keyboard input loS TTL compatible and is 
nat buffered into the UPC. 

SYSTEM DESIGN 

The UPC I/O project is designed to fit within an 
existIng ZBO-based test bed. Therefore, the 
interface requirements include a ZBO-type inter­
face with interrupt capabilIty. other specifica­
tions include: 

• Display format of 16 lines by 64 characters 
• 5 x 7 dot matrix characters 
• Composite video output 
• ASCII character lnput from CPU 
• Programmable cursor control 
• ASCII keyboard input 
• Single +5V operation 
• Character or black transfer mode 
• Pl'ogrammable CPU interrupts 
• Programmable enable for CRT and keyboard 

HARDWARE DESIGN 

The hardware desIgn encompasses three basic ele­
ments: the ZB590 UPC and processor interface sec­
tion, the CRT display section, and the keyboard 
input section. 

The ZB590 UPC is treated as a peripheral by the 
master CPU, in this case a Z80A CPU, and is 
accessed using the standard Z80 I/O instructions 
via two parts. One of the two parts is selected 
dependIng an the state of the "A/D line. If "A/D is 
Low the address pointer is being written to. If 

751-1809-0007 1-86 

A/D is High the register cUl'l'ently addressed by 
the addl'ess pointer is being accessed. 

The Z8590 UPC coordinates operation of the display 
sect ion and the keyboal'd input with the zao CPU. 
Six bits fl'om Port 1 al'e used to transfer data 
from the UPC to the CRT refresh memory. The ather 
two bits are used with bit 7 of Port 2 to form the 
three bit command ward for the CRT controller. 
Seven bits of Port 2 are used to input ASCII dat a 
from the keyboal'd. Since four of the bits on Port 
3 are used for lnterrupt contl'ol, the other foul' 
al'e used for I/O control. Bit 3 of Port 3 is used 
for the keyboal'd input stl'obe. This input gener­
ates an intel'l'upt within the UPC when the stl'obe 
input goes Low, indicating valid data at the key­
board inputs. Bit 4 of Port 3 is used to control 
the RAM write pulse coming from the CRT Controller 
(CRTC) and going to the RAM. When this bit is 
Low, RAM wl'ites al'e inhibited for operations such 
as CUl'SOl' home and CUl'SOl' retul'n. Bit 6 of Port 3 
is used to genel'ate the Data Strobe (DS) for the 
CRTC. When OS goes fl'om Low to High, the three 
command bits al'e latched into the CRTC. Figul'e 2 
shows the UPC and interface cifcuitl'Y used. 

The heal't of the display circuit is the Standard 
Microsystems CRT-96364B CRTC ChIp. The basic 
design was del'ived from the CRT -963648 data sheet 
by Standal'd Micl'osystems COl'P. The CRTC contains 
all the circuitry necessal'Y to genel'ate the video 
timing pulses and memory address and conhol sig­
nals fol' the display RAM. The display format is 
64 characters per line by 16 lines. This l'equil'es 
a 1024 charactel' memol'Y which is supplied by the 
2102 RAM devices. Since 64 ASCII chal'actel's are 
displayed, only six bits of memory are requil'ed to 
store character lnfol'mation. The memory addl'ess 
and write signals are generated by the CRTC under 
control of the UPC. Data is entered into the dis­
play memory by writIng a command to the CRTC along 
with the data. FIgure 3 shows the logic used with 
the CRTC. 

Within an 8 x 8 dot character cell prOVIded by the 
CRT timing, only a 5 x 7 dot chal'acter is used. 
The charactel's are formed using a 2716 EPROM char­
acter generator. The lowest three bits of the 
2716 EPROM address inputs fl'om the character row 
count and come from the CRTC. The next SIX bits 
form the character address. Each chal'acter is 
stored In EPROM as eight cont iguous bytes. The 
1'0W count addresses a row (equivalent to a byte) 
within the character block. Thel'efol'e, the chal'­
acter addresses are modulo 8 and take a total of 
512 bytes. The CRY output of the CRTC is used to 
select the CUl'sor pattern in EPROM. When CRY is 
Low characters are normally displayed. When CRY 



DOUT 

,. -
188 0, 11 9 13 D7 

18A 0, 12 8 14 D6 

198 0, 13 1 15 Ds 

19A D. 14 6 16 D4 74LS245 
2.C 0, 15 5 17 D3 

208 0, 16 4 18 0. 

20A 0, 
11 3 19 D1 .., 

21C "" .. ' 18 2 20 Do 

1 12C AD 

~ 

1 74LS10 14S04 

2 12" 1. 7Ao 
13 

1A RESET 13 74LS08 

'i" 9A ViR 
S; 

18 IOWAIT n 

11 8 ViR 12 

tV 7407 4.7K 113 

2 1 12 
WAIT 

~ 
88 iNT -< 

c'o 
~ '-l 

248 A, ... 24A A, e- 25C A, 

S' 258 '" ~ ... 25A A, 

7407 
4 3 5 J ... ,K .4 

P3, 

3 C 

2 • +5V 

1 A 

6 G1 74LS138 

5 G2B 

~ 
26C A, 

.... 
S' 
:;, 

4 G2A 
14804 

P1>l ... 

26A Ao 

lOA INTACK 

+5V 

4Ln_ 4 6 10 CS 

5, 47K#2 

9 D/A 

1 8 po, 

7A lEI 4 Po. 

78 lEO 3 P3l 

118 lORa 

+5V 
~ 4.7K 2" 3 0 
~ 10 8 

I 4 :::'SOO 11 

5J" Y-

74LSOO.1 

IACK~ 

lEI - L-I" 13L) 

Cs 'U~ 

+5V 

Vee 

P,. 3. 
OS 

P27 38 C2 

P17 
28 

C1 

P" 
21 

CO 

P" 
28 

WE 

P1S 26 
~ Sht 2 

DDS 

P14 
25 

004 

P" 
24 

003 

P" 
23 

002 

P" 
22 

001 

P10 
21 

DDO 

Z8590 
UPC 

P" 
30 

ST8 J2·7 

+5V--- J2·25 

P2tl 37 J2·21 

P2S 36 J2·18 

P" 
35 

K8 J2·19 

P,. 34 INPUT J2·20 
P,. 33 J2·6 

P21 
32 

J2·5 

P,. 
31 

J2·17 

Pelk. 
2 3.054 MH1 

PCLK-SHT.3 

A7 
1/0 ADDRESS 

"" 
Vss 

~' 
1·1·1·1 , 1·1·lxl 1·1·1 • 11 1·1 ·1 X It 

0= ADDRESS 
1", DATA 

DOUT 

P1 r: I Co 1-- CRT DATA --] 

P2 r C21 K8 DATA 1 

p'l X I Os I X I WE I s~~1 X I X I xl 



.., 
,,", 

! 
It 

~ 

N 

~ 
n 

5il .... 
00 6' 00 

~ ., 
Q ... 
!D 
~ 

~ ... 
S· 
= .... .... 

{

DO' 
DO. 

003 
SHT.1 DD2 

001 

DDO 

{

WE 

8HT.1 OS 

C, 

C, 

Co 

{
CRT elK 

SHT.3 Dec 

--1! 
12 

=:} 
---.! 81LS97 

~ 
~ 

II l'. 

DeVICE 

81 LS97 10 
2102 • CRT 96364 ,. 
2716 12 
74LS174 8 

-1-
lK lK lK lK lK lK 

13 .. .2 #3 # • •• .. 11 
• 
7 

• 
3 

8 

~'~ N2 . ,. 
• • • 7 8 22 21 20 1 • 18117 

1. DS As As A7 A6 A5 A4 AJ A2 A1 Ao WR .. "" 
2' 

C, 
23 CRT 96364B 

Co 

XC DCC DCE CSYN 

l' • ,. 26 

I 
,. 11 13 r-L-L ..l.-L U 

01 DE _ _ _r"'" ___ -1._ -1. ~ 
15 - - - - -,. - - - - -

1 2102A1 

• - - - - -
2 - - - r-- -• . , #2 • 3 # • •• .. 

- - - - -• - - - r-- -
8 - - - r-- -
7 - - - r-- -
8 

~i- "T-1T-Tr~ l- n-4 .......... 74LSOO 
12 3 

!.1 N2 '-8 
5 J 

iil111.r. 3 

.," R 
, 

+'V 
R1 12 74LS174 

"' 13 
C • 

CRY 
15 

..I. [' r 10 [ · r LD 7 8 5 4 3 2 1 23 

A2 Al AoAaAtAsA6 A7Ae 

.. ~ Vpp 05 14 C. 

AID 04 13 C, 
18 

CE 
MM2716 

03" C, SHT. : 
20 

O£ 02 '0 C, 

01 • Co 

CSYN 

DCE 



.., 
jo<' 

'e 
~ 
f" 

'i" 
s;; 
n 

Q 
-! 

00 ~ <D .... .., 
/:. 
li' 
:' 

~ .... .. ' 
~ 
.... ... ... 

SPARES 

~" 74LSOO., ~5 74LS02 
,. 4 

12 • 

~ 

330 +6.8 F 
COMPOSITE 
VIDEO OUT J2·4 

CSYN ~3 
(SHT.2) 2 I .. Jo"'---~W---f------1II(f----------------

11. A J2·1.2.3,24 74LS08 75 

~ r-
G 

"*" 

~'i 
c, 4 F 

74LS165 3 E C3 
14 D C, 
,.C C, 
12 B 

Co 
LDJSHT 

CI C 
or---

15 

(S~~~2) If~ 

74804 

~001 

~DI 470#1 

12.216 MHz 

DEVICE Vee GND 

LS185 ,. • LS161 ,. • LS73 4 11 
*LS92 5 10 

C 

+5Y 

+5Y 

l 
660 

1K #7 
~+5V 17 110 11 .. ~11-2-_--~n~S04---~~----~----------

Qc RoilS 9 

74LS161 (-8) 

LDI" 

C 

,l C 

Q.1'2 

1K = 8 

74LS73(- 4) 

V~+5V 

HGFEDCBA 

'-----v----' 
CHARACTER 

MATRIX 

000 

001 

010 

011 

100 

101 

110 

111 

DCC} SHT.2 

LD 

+5Y 

PCLK (SHT. 2) 

CRT elK (SHT. 2) 



u .. .. u .. .. u u u U 
0 " 0 " 0 .. .. 

u u .. " 0 0: 

" " • 
figure 5. CRT 963648 

1-90 

.. > 
"0: 
IOU 
0: • 

" N ,,0: 
C b 

0: 

I 
1 

>< 

oX 

c .. .. .. 
C .. 
" 0: 

" " C 
II! 
0 
0: 

Ti.dng WaveforMS 

c c .. .. 
C C 

" " II! 

" 0 .; 0: 



is High the character 1S replaced by an under­
score. 

Five b1tS of the EPROM output are fed wto the 
74LS165 Sh1ft reg1ster. This Shlft register con­
verts the fi ve column dots wto a bit stream for 
the video output signal. Composite video is 
generated by merging the video dot stream w1th the 
Composite Sync (CSYN) output of the CRTC through a 
resistor summing network. 

The remaining circuitry supplies clocks to various 
parts of the circu1t. Three elements of the 74504 
form an oscillator. The output of the osci llator 
goes to three places. It is d1vided by twelve by 
the 74LS92 to form the 1.018 MHz clock required by 
the CRT-96364B. It is also divided by four by the 
74LS73 to provide the 3.054 MHz clock for the UPC. 
The oscillator output is also ANDed with the Dot 
Clock Enable (DCE) output of the CRTS and fed into 
the 7415161 to form the Dot Character Clock (DCC) 
pulses. SInce a character cell time is e1ght 
clock pulses long, the DCC 1S derived from a 
divide-by-eight counter. The d1Vl.de-by-eight 
counter also loads the shl.ft register at each 
character time. Figures 4 and 5 show the circuit­
ry and waveforms for the timing and video output 
circuitry. 

The UPC emulates CRT terminal operat ions by pro­
viding keyboard data input to the master CPU as 
well as CRT output. The keyboard inputs are 7-bit 
ASCII encoded with TTL level signals. The Strobe 
Input (s'i"B) is active Low to indicate a valid 
character at the keyboard data inputs. When STB 
goes Low, an interrupt is generated within the UPC 
and the data inputs are read. 

With this hardware a complete CRT terminal can be 
constructed at minimal cost to the user with no 
sacrifice in performance. 

SOFTWARE DESIGN 

The software design encompasses two areas: the 
UPC programming and the master CPU interface. The 
former includes the UPC internal register organi­
zation and program initialization. The latter 
includes the data transfer protocol used between 
the UPC and the master CPU. 

UPC Programming 

The specif1cs of this CRT project will now be dis­
cussed, as it is assumed that the reader is famil­
iar with the UPC in general. Of the 256 accessi-

1-91 

ble registers withIn the UPC, 22 (addresses 96FO 
through %FF and 9600 through 9605) are special­
purpose control registers defined by the hard­
ware. The remaining 214 registers are general­
purpose in nature and are allocated as shown in 
F1gure 6. 

CONTROL REGISTERS 
%FO 

STACK & 
DATA AREA 

%CO 

KEYBOARD 
BUFFER 

%80 

PARAMETER 
AREA 

%60 

CRT 
BUFFER 

%20 

CPU ACCESS 
%10 

%0 

~RAM 
SPECIAL 

Figure 6. UPC Internal Register Allocation 

The Program (PGM) registers (registers %06 through 
%OF) are general-purpose data manipulat ion regis­
ters. These are the working-set registers used to 
hold data temporarily and to perform vanous com­
parison and calculatIon functions within the pro­
gram. 

The CPU access registers (%10 through 961F) are 
used to facilitate communication between the UPC 
and master CPU. Two bits in the status register, 
CRT Busy (CRTBSY) and CPU Data Available (CPDAV), 
are actually semaphores that form the key mecha­
nisms for data interchange. The CRTBSY bit can be 

set only by the master CPU and can be cleared only 
by the UPC. The CPDAV bit can be cleared only by 
the master CPU and can be set only by the UPC. 
These will be discussed in detail 1n the master 
CPU access section. 

A line of data on the CRT screen is 64 bytes 
long. Therefore registers 9620 through %5F form a 
64 byte line buffer for the CRT display. This is 
used only in Block Transfer mode, since the UPC 
receives a block of data before outputting it to 
the CRT. 

The parameter area (registers %60 through %7F) 
contains the cursor control characters and corre-



sponding informatwn. Flgure 7 illustrates the 
format of the parameter area. SlOce there are 
eight cursor control characters and each occupies 
four bytes of control block information, there are 
a total of 32 bytes allocated for this purpose. 
Most lncoming control characters are compared with 
the ASCII codes 1n thlS table, and lf a match is 
found the software determlOes what to do based on 
the other values in the cursor control block. 

PARAMETER BLOCK (CURSOR FUNCTIONS) 

BYTE 1 Ase 1\ CHARACTER CODE 

~ CRT CODE* 
CURSOR CONTROL 

} BLOCK 
BYTE 3 

DELAY VALUE (MULTIPLE OF 4.2 ns) 

BYTe 4 

·CRT CODE 

CRT COMMAND 

PARAMETER BLOCK IS MADE OF 8 CURSOR CONTROL BLOCKS OF 4 BYTES 
EACH FOR A TOTAL OF 32 BYTES THESE OCCUPY REGISTERS %60-%7F 

figure 7. lFC Parameter Block Definition 

The keyboard buffer (registers %80 through %BF) 
temporanly stores data coming from the keyboard 
within the UPC until the master CPU reads the 
data. The keyboard buffer is used ln both charac­
ter and block modes SlOce keyboard input is actu­
ally done by interrupts. In character mode, the 
buffer is simply a circular buffer that accumu­
lates keyboard data unt il it is processed by the 
master CPU. One pointer, the Keyboard Buffer 
Pointer (KBBPTR), is used to indlCate into which 
location the next keyboard character will go. The 
other pOlOter, the Keyboard Pointer (KBPTR), lS 
used to indicate which location the next character 
will be read from by the master CPU. 

Fmally, the stack and data areas (registers %CO 
through %EF) are used for variable storage. The 
stack grows down from locat ion %FO and occupies 
about ten bytes maximum. The lnternal data area 
contains various run-bme variables used by the 
UPC program, as shown ln Table 1. 

On power-up the UPC initlalizes the necessary 
van ables, all the control registers, and loads 
the default parameters lnto the parameter area. 
When all this is done the UPC sets the Enable Data 
Transfer (EDX) blt in the Data Transfer Control 

(OTC) reglster. ThlS enables communication with 
the master CPU to take place, and indicates to the 
master CPU that the UPC lS ready for operatlon. 
If the EDX bit is cleared, data transfers to or 
from the UPC are inhibited. At this point the UPC 
waits for the Mode register to be set by the mas­
ter CPU before contlnuing. 

1-92 

Table 1. Internal Data Area 

UPC 
ADDRESS VAlUE 

%CO FLAG 
%C1 UBPTR 
%C2 CBCNT 
%C3 COlCNT 
%C4 TIMER 
%C5 KBPTR 
%C6 KBBPTR 
%C7 CHAR 

Appendlx A contains the UPC program listing used 

for thlS project. The UPC program structure con­
SlSts of constants declaratlOn, the main program 
body, and data tables. Withln the main program 
body are routlnes for inltializatlon, the main 
program loop, CRT output, keyboard input, inter­
rupt service, and other support routlnes. 

Master CPU Interface 

The master CPU communicates with the UPC through 
20 special registers. These registers are 
accessed directly by the I/O instruct ion address 
in the Z8090 Z-UPC and indirect ly by a register 
pointer ln the Z8590 UPC. To read or write data 
for a particular register in the Z8590, the 
register pointer is fust written (ii;D line is 

low) and then data (A/D line is High) is written. 
Thus, a reglster access operation involves two I/O 
transactions. The register pointer is latched 
within the UPC so multiple reads of a particular 
reglster (such as the status register) need not 
have the pointer written each time. This is 
useful when poll1ng the status bits or using a 
block move lnstruction for data transfers. 

Of the twenty posslble registers accessible to the 
master CPU only ten are actually used. Figure 8 
shows eight of these registers and their mean­
ings. The Mode register (register pointer address 
%00), end-of-Ilne edit character (EOl, %04), back­
space edit character (BS, %05), delete-line edit 
character (Dl, %06), and interrupt vector (VECT, 



%07) are 1nitialized once by the master CPU. The 
status, CRT data (CROAT), and keyboard data 
(KBDAT) registers are used to control data flow 
into and out of the UPC. 

UPC TERMINAL CPU ADDRESS 

MODE REGISTER = %00 

STATUS REGISTER = %01 

ASC II DATA 

ASC II DATA 

DATA 

DATA 

DATA 

VECTOR 

NOTE: THESE ARE ACCESSIBLE TO THE MASTER CPU 
FOR READ OR WRITE OPERATIONS. 

CRDAT:c %02 

KBDAT = %03 

EOl = %04 

BS", %05 

Dl:: %06 

VECT = %07 

Figure 8. II'C Progra. Status 
and Control Registers 

The master interrupt control reg1ster (MIC) is 
used by the master CPU to control the UPC inter­
rupt condition. The upper three bits (D7, D6, and 
DS) correspond to Interrupt Enable (IE), Interrupt 
Under Service (IUS), and Interrupt Pending (IP), 
respectively, by a master CPU read. When the CPU 
wr1tes these bits, their meanings change as illus­
trated in the table of Figure 9. The EDX bit (bit 
3) is monitored by the CPU after power-up so the 
CPU can determine when to initialize the UPC. 

The data indirection register (DIND) is used for 
block data transfers. The next section expla1ns 
this in greater detail. 

Initializing the II'C 

If vectored interrupt structure is supported, the 
first byte to write to the UPC 1S the interrupt 
vector. This is be the B-bit vector returned by 
the UPC when the master CPU generates an interrupt 
acknowledge in response to an interrupt request by 
the UPC. The vector register is accessed by writ­
ing a 07 hex to the UPC address port, and the 
vector to the UPC data port. 

1-93 

OTHER MASTER CPU REGISTERS' 
3 1 

(INDIRECT DATA) 

INTERRUPT VECTOR 

CPU ADDRESS 

DTC"" %18 

DIND = %15 

MIV = %10 

,E*I,US*I,P* I NV I EOX I DlC I DISwl EOM I MIC = %1E 

*FOR CPU READ, THESE BITS REFLECT IE, IP, AND IUS INTERNAL lATCHES 
FOR WRITE, THESE BITS MEAN: 

07 06 
IE IUS 

D, 
I. 

NUll 
RESET IP AND IUS 
SET IUS 
RESET IUS 
SET IP 
RESET IP 
SET IE 
RESET lEI 

Note: These are accessible to 
the master CPU according to 
UPC specifications. 

Figure 9. other IFC Control Registers 

Next comes the mode control byte. The lower four 
bits determine the operation of the UPC environ­
ment. If CRT Enable (bit 0) is set, then data 
transfers can occur from the master CPU to the CRT 
display. If KB Enable (bit 1) is set, then data 
transfers are enabled from the keyboard to the 
master CPU. The block mode bit (bit 2) indicates 
block transfer mode. This applies to both the CRT 
output and keyboard input. Block mode is used 
with the powerful ZBO block I/O instructions or 
with DMA. 

The Parameters Follow bit (bit 3) indicates wheth­
er or not eight cursor control parameter bytes 
will follow. If the Parameters Follow bit is set, 
then the next eight bytes sent to the UPC are the 
eight cursor control characters in the following 
sequence: cursor home, cursor forward, cursor 
back, cursor down, erase page, cursor return, cur­
sor up, and erase line. These eight bytes are 
written via the DIND register. The DIND register 
eight cursor control bytes are sent to the UPC 
data port by a block move instruction (OTIR) on 
the ZBO. 

This completes initializstion of the UPC by the 
master CPU. Listings found in Appendix B can be 

used as an example of how the master CPU uses the 
UPC. 

Using the IFC 

Of the ten registers utilized by the master CPU, 
four or five are actually used for data transfer. 
The status register (address 01 hex) contains two 
bits that ind1cate the internal UPC status. These 



bits are monitored and controlled by the master 
CPU under the definition of the UPC interface pro­
tocol. The CRTBSY (bit 0) can be set only by the 
master CPU and cleared only by the UPC. When the 
master CPU writes data into the CRT Data register 
(CRDAT, address 02 hex), it also sets the CRTBSY 
bit in the status register. This does two 
things. First, it indicates to the UPC that there 
is data available in the CRDAT register ready to 
output to the CRT display. Second, the busy bit 
remains set and prevents further character trans­
fers until the UPC clears the busy bit. Figure 10 
shows the data flow for character mode transfers 
into and out of the UPC. 

Similar to the CRT data transfer is the keyboard 
data transfer. The keyboard data register (KBDAT, 
address 03 hex) contains the keyboard data loaded 
by the UPC, and the CPDAV bit in the status regis­
ter (bit 1) indicates keyboard data is available. 
The CPDAV bit can be set only by the UPC and 
cleared only by the msster CPU. When the master 
CPU reads KBDAT, it also clears CPDAV in the stat­
us register. This is also shown in Figure 10. 
The sequence of events depicted in Figure 10 is 
important. The order in which the registers are 
accessed should be adhered to or the UPC may 
chsnge or lose data unexpectedly. 

Character IMIde - mT IkJtput 

CPU UPC 

r-Read CRTBSY" SlAT CR~BSY x 
L Loop if set .... 1---''--­

Write data 
Set CRTBSY 

CRDAT .. 
STAT ~ 

(Begin next transfer) 

CR~BSY = 0, IP = 1 

CRTBSY = 1 
~ ) Process data 

Character IMIde - KB input 

Wait in 
loop or 
exit 

~CPDAV = 0 
Branch if clear ~ CPDAV = 1, IP = 1 

.. KBDAT 

Clear CPDAV STAT~ CPDAV = 0 

(exit) 

figure 10. Character Mode Data Transfer 

1-94 

The above description applies to character trans­
fers when polling the status register continuous­
ly. Interrupts can be used with the UPC to indi­
cate s chsnge in either status bit. If CPDAV goes 
from a 0 to a 1 (set) or CRT busy goes from a 1 to 
a 0 (cleared) the UPC generates an interrupt. The 
interrupt service routine must poll the status 
register to determine the cause of the interrupt, 
however, since there is only one vector returned 
in vectored interrupt mode. 

If interrupts are used, then the master CPU 
rupt service routine must perform several 
tions in addition to the data transfer(s). 

inter­
opera­

These 
operstions involve the Master Interrupt Control 
(MIC) register (sddress 1E hex). After the dsts 
transfer condition has been sstisfied in the UPC 
the master CPU must reset the IP and IUS latches 
within the UPC. This restores the dsisy chain to 
its normal state. Then, to allow further inter­
rupts from the UPC, the IE latch must be set. 
Using bits D7 , D6' and D5 of the MIC register 
(shown in Figure 9), IP and IUS are cleared by 
writing 001. IE is then set by writing 110 to 
these bits. IE is cleared by the UPC on power­
up, thus the set IE command must be written to the 
UPC during the initislization phase by the master 
CPU so that interrupts can occur. The interrupt 
operation applies to both character mode transfers 
and block mode transfers. 

Block mode data transfers are faster and more 
efficient than character mode transfers. These 
transfers access the status register, as do char­
acter transfers, but the data is exchanged via the 
DIN) register. DII\{) is a location pointed to by 
another regiater within the UPC. Master CPU ac­
cesses to DIND automatically increment the pointer 
register by one so that several consecutive regis­
ter locations can be written to or read from. The 
number of bytes to transfer by DIND is written by 
the master CPU into CRDAT for CRT block transfers, 
and read from KBDAT for keyboard block transfers. 
Thus, protocol exists for CTR block data trans­
fers, as Figure 11 illustrates. Up to 64 bytes 
may be sent or received at one time in this mode. 
Both the zao .and zaooo block move instructions 
work very well with this method of data transfer, 
resulting in superior sytem throughput. 

Using the Z8090 Z-II'C 

Implementing the single board terminal on a zaooo 
or za processor-based system is very easy with the 
Za090 Z-UPC. The software in the Z-UPC is iden­
tical to the software in the Za590 UPC. The hard­
ware interface to the keyboard and display cir-



Block MOde (transfer handshake) 

CPU 

CRead CRTBSY 
If set, Loop 

Write block 
length 
Set CRTBSY 

C Read CRTBSY 
Loop if set 

Block output 
data 

Set CRTBSY 

CRDAT ~ 

STAT 
~ 

.. S~AT 

.. 
DIND 

~ 

STAT ~ 

(begin next transfer) 

UPC 

CRTBSY x 
CRTpSY = 0 (IP set 1f 

CRTBSY was 1) 

CRT.BSY 

CRTBSY 0, set IP 

CRT.BSY 

Figure 11. Block MOde Data Output to II'C 

1-95 

cuitry is also the same. The only difference is 
the hardware interface to the CPU and the CPU 
software. The protocol and register functions are 
unchanged. 

CONCLUSION 

This paper describes the use of the Z8590 UPC in a 
distributed processing environment. System per­
formance can be most effectively improved by di­
viding CPU tasks into logical functions. Such a 
task, as has been illustrated here, is a fundamen­
tal I/O operation that facilitates communication 
between the user and the computer. Other func­
tions may include such peripheral operations as a 
flexible disk controller, a PROM programmer, a D/A 
or A/D converter, or a communications protocol 
controller. 

Coupled with the powerful instruction set of the 
Zilog fsmily CPUs, the Z8090 Z-UPC and Z8590 UPC 
find many uses in virtually any system environ­
ment. 





Z8ASM 3.03 
LOC OB" CODE 

P 0000 0290 
P 0002 0219 
P 0004 0293 
P 0006 0293 
P 0008 0206 
P OOOA 0218 

P OOOC 

P OOOC 8F 
P OOOD BO FD 

APPENHX A 

UPC CRT Controller Program listing 

STMT SOLRCE STATEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

UPC CRT TERMINAL DRIVER PROGRAM! 

CRTC MODULE 

COIIBTANT 
OTC: =0 
P1: =1 
P2: =2 
P3: =3 
LC: =4 
DIND: =5 
lMRVAL: .%28 
Il3C: =%10 

MODE:"DSC 
CRTEN:=1 
KBEN:=2 
BLOK:=4 
PARMS:=8 

STAT:=MODE+1 
CRTBSY:=1 
CPDAV:=2 
KBOVF:=4 

CRDAT:=STAT+1 
KBDAT:=CRDAT+l 
EOL:-KBDAT+l 
BS:=EOL+l 
DL:=BS+l 
VECT:=DL+l 

9JFF: =%20 
PARAM: =%60 
IoQ3UFF: "%80 
STOR: "%CO 

FLAG:=STOR 
KBB:=l 
KBDAV:=2 
CRTXFR:=4 
KBXFR:=8 
TMRFLG:=%80 

UBPTR:=FLAG+l 
CBCNT:"UBPTR+1 
COLCNT:=CBCNT+1 
KBPTR:=COLCNT+l 
KBBPTR:=KBPTR+l 
TIMER: =KBBPTR+l 
CHAR: =TIMER+1 

MIV: =%FO 
MIC: =%FE 

EDX:=8 
IP:=%20 

lEOL: =%OD 
ms: =%08 
IDL: =%18 

$SECTION PROGRAM 
GLCBAL 

.ABS 0 
WVAL ERROR 
WVAL KBINT 
WVAL DUMMY 
WVAL DUMMY 
WVAL TIMERO 
WVAL TIMER1 

MIIIN PROCEDURE 
ENTRY 

BEGIN: 
DI 
CLR RP 

1-97 

!DATA XFER CONTROL REG! 
!PORT 1! 
!PORT 2! 
!PORT 3! 
!LIMIT COUNT REG! 
!DATA INDIRECTION REG! 
!TIMER COUNT VALUE! 
!CPU ACCESS AREA! 
!MODE REGISTER! 
!CRT ENABLE BIT! 
! KB ENABLE BIT! 
!BLOCK XFER! 
!PARAMETERS FOLLOW! 

!STATUS REGISTER! 
!CRT BUSY FLAG! 
!CPU KB DATA AVAIL! 
!KB BUFFER OVERFLOW' 
!CRT DATA AREA! 
!KB DATA AREA! 
!END OF LINE CHARACTER! 
!BACKSPACE CHARACTER! 
!DELETE LINE CHARACTER! 
!CPU INTERRUPT VECTOR! 
!CRT BUFFER AREA! 
!PARAMETER TABLE AREA' 
!KEYBOARD INPUT BUFFER! 
!RAM STORAGE AREA! 
!FLAG BYTE! 
!KB BUFFER OVF FLAG! 
!KB DATA AVAIL! 
!CRT XFER FLAG! 
!KB XFER FLAG! 
!TIMER ACTIVE FLAG! 
!UPC CRT BUFFER POINTER! 
!CPU CRT BYTE COUNT! 
!CRT COLUMN COUNT! 
!KB OUTPUT BUFFER PTR! 
!KB INPUT BUFFER PTR' 
! TIMER VALUE! 
!KB CHARACTER STORAGE (KLUGE)! 
!CPU INTERRUPT VECTOR REG! 
!MASTER INTERRUPT CTRL' 
!ENABLE DATA XFER BIT' 
! SET IP BIT! 
!DEFAULT EOl! 
!DEFAULT BACKSPACE! 
!DEFAULT DEL LINE! 

!ClEAR REGISTER POINTER 



P OOOF 130 CO 69 CLR FLAG CLEAR FLAG BYTE! 
P 0011 BO C7 70 CLR CHAR CLEAR CHARACTER! 
P 0013 BO C6 71 CLR TIMER CLEAR TIMER! 
P 0015 BO 10 72 CLR MODE CLEAR MODE! 
P 0017 BO 11 73 CLR STAT CLEAR STATUS! 
P 0019 E6 C5 80 74 LD KBBPTR.!lKBUFF INlT KBBPTR! 
P 001C E6 C4 80 75 LD KBPTR.!lKBUFF 
P 001F E6 14 00 76 LD EOL.!lDEOL !DEFAULT EOL=CR! 
p 0022 E6 15 08 77 LD BS.!lDBS !DEFAULT BS=BS! 
P 0025 E6 16 18 78 LD DL.!lDDL !DEFAULT DEL LINE=CAN! 
P 0028 E6 00 10 79 LD DTC.!lDSC ! LOAD DTC REG. ! 
P 002B 6C 60 80 LD R6.!lPARAM !PTR TO CCTABLE! 
P 0020 7C 20 81 LD R7.!lX20 !MOVE 32 BYTES! 
P 002F 8C 02 82 LD R8.!lHI CCTABL !SOURCE! 
P 0031 9C A4 83 LD R9.!lLO CCTABL 

84 CLCDP: 
p 0033 C3 68 85 LOCI C!R6.C!RR8 !MOVE BYTES' 
P 0035 7A FC 86 D.JNZ R7.CLOOP 
P 0037 8C 02 87 LD R8.!lHI TABLE !LOAD INlT TABLE! 
P 0039 9C 94 88 LD R9.!lLO TABLE 
P 003B 6C FO 89 LD R6.!l7.FO !POINT TO REGS. ! 
P 003D 7C 10 90 LD R7.!lXl0 !LOAD 16 REGISTERS! 

91 ILCDP: 
P 003F C3 68 92 LOCI C!R6.C!RR8 !MOVE INIT CODES , 
P 0041 7A FC 93 D.JNZ R7.ILOOP ! TO REG I STERS. ! 

94 ML: 
p 0043 44 10 10 95 OR MODE. MODE !MODE WORD SET?! 
P 0046 6B FB 96 .JR Z.ML !NO. LOOP! 
P 0048 E4 17 FO 97 LD MIV.VECT !SAVE CPU INT VECTOR! 
P 004B 76 10 08 98 TM MODE.!lPARMS !CHECK PARAMS BIT! 
P 004E 6B lB 99 .JR Z.SKIP !SKIP IF CLEAR! 
P 0050 E6 05 20 100 LD DIND.!lBUFF 
P 0053 E6 04 08 101 LD LC.!l8 

102 MLl: 
P 0056 44 04 04 103 OR LC.LC !WAlT FOR LC=O! 
p 0059 EB FB 104 .JR NZ, MLl 
p 005B 6C 08 105 LD R6.!l8 !MOVE 8 BYTES! 
P 005D 7C 60 106 LD R7.!lPARAM 
P 005F 8C 20 107 LD R8.!lBUFF 

108 ML2: 
P 0061 E3 98 109 LD R9.C!R8 
P 0063 F3 79 110 LD @R7.R9 
P 0065 06 E7 04 111 ADD R7.!l4 
P 0068 8E 112 INC R8 
P 0069 6A F6 113 D.JNZ R6.ML2 

114 SKIP: 
p 006B 9F 115 EI 

116 
117 THIS IS THE MAIN PROGRAM LOOP. 
118 UPC ARRIVES HERE AFTER INIT AND 
119 MODE ARE DEFINED. 
120 
121 
122 LOCP: 

p 006C 76 10 01 123 TM MODE.!lCRTEN !CRT ENABLED?! 
P 006F 6B 08 124 .JR Z. L1 !NO. BRANCH! 
p 0071 76 11 01 125 TM STAT.!lCRTBSY !CRT DATA AVAIL?! 
p 0074 6B 03 126 .JR Z.Ll 
P 0076 06 0094 127 CALL CRT 

128 Ll: 
P 0079 76 10 02 129 TM MODE.!lKBEN 
P 007C 6B EE 130 .JR Z. LOOP 
P 007E 76 CO 02 131 TM FLAG.!lKBDAV !KB DATA AVAIL?! 
P 0081 6B 03 132 .JR Z.L2 !NO. BRANCH! 
P 0083 06 0008 133 CALL KB !CHECK KB DATA! 

134 L2: 
P 0086 44 C7 C7 135 OR CHAR. CHAR !ECHO CHAR?! 
P 0089 6B El 136 .JR Z.LOOP !NO • BRANCH! 
P 008B 68 C7 137 LD R6.CHAR 
p 008D 06 014C 138 CALL OAT OUT 
P 0090 BO C7 139 CLR CHAR 
P 0092 8B D8 140 .JR LOOP 

141 
142 THIS ROUTINE PROCESSES CRT CHARACTERS THAT 
143 ARRIVE FROM THE MASTER CPU. 
144 

1-98 





P 0121 EB 27 221 JR NZ,KB4 !YES, BRANCH! 
P 0123 SF 222 DI 
P 0124 A4 C4 C5 223 CP KBBPTR,KBPTR !COMPARE KB PTRS' 
P 0127 6B IE 224 JR Z,KB32 !BRANCH IF EGUAL! 
P 0129 56 11 FB 225 AND STAT,4IXFF-KBOVF !CLEAR KB OVF! 
P 012C 76 CO 01 226 TM FLAG,4IKBB !KBB SET?! 
P 012F 6B 06 227 JR Z,KB31 !NO, BRANCH! 
P 0131 46 11 04 226 OR STAT,4IKBOVF !SET KB OVF! 
P 0134 56 CO FE 229 AND FLAG,4IXFF-KBB !CLEAR KBB! 

230 KB31: 
P 0137 E5 C4 13 231 LD KBDAT,eKBPTR !LOAD KB DATA! 
P 013A 20 C4 232 INC KBPTR !BUMP KB PTR! 
P 013C 56 C4 3F 233 AND KBPTR,4IX3F 
P 013F 46 C4 80 234 OR KBPTR,4IKBUFF 
P 0142 46 11 02 235 OR STAT,4ICPDAV !SET CP DAV! 
P 0145 8B C1 236 JR KBll 

237 KB32: 
P 0147 56 CO FD 238 AND FLAG,4IXFF-KBDAV !CLEAR KB DAV! 

239 KB4: 
P 014A 9F 240 EI 
P 014B AF 241 RET 

242 
243 THIS ROUTINE OUTPUTS DATA TO THE CRT, 
244 IF DISPLAYABLE, ELSE TRANSLATES THE CODE INTO 
245 CONTROLLER FUNCTION. 
246 
247 INPUTS: XR6-ASCII DATA 
246 XR7-XR10 USED 
249 OUTPUTS: NONE 
250 
251 
252 DAlOUT: 

P 014C A6 E6 20 253 CP R6,4IX20 !CTRL CHAR ?! 
P 014F FB 53 254 JR NC,CHROUT !NO, BRANCH! 
P 0151 A6 E6 09 255 CP R6,4I9 !TAB ?! 
P 0154 6B 41 256 JR Z,DAT2 !YES, BRANCH! 
P 0156 9C 60 257 LD R9,4IPARAM !POINT TO PARAM TABLE! 
P 0156 AC 08 256 LD Rl0, 418 

259 DAlO: 
P 015A A3 69 260 CP R6,eR9 !CHECK DATA AGAINST ... , 
P 015C 6B 06 261 JR Z, DATl ! ... CTRL TABLE VALUES' 
P 015E 06 E9 04 262 ADD R9,4I4 
P 0161 00 EA 263 DEC RIO 
P 0163 EB F5 264 JR NZ,DATO !LOOP UNTIL ... ! 
P 0165 AF 265 RET !EXIT IF NO MATCH! 

266 DAT1: 
P 0166 9E 267 INC R9 !GET CRTC! 
P 0167 E3 79 268 LD R7,eR9 
P 0169 9E 269 INC R9 !GET NO SCROLL VALUE! 
P 016A E3 89 270 LD RS,eR9 
P 016C 9E 271 INC R9 !POINT TO SCROLL VALUE' 
P 0160 76 E7 40 272 TM R7,4IX40 !INCR COLCNT ?! 
P 0170 6B OE 273 JR Z,DAT11 !NO, BRANCH! 
P 0172 20 C3 274 INC COLCNT 
P 0174 56 C3 3F 275 AND COLCNT,4IX3F !EOL ?! 
P 0177 EB 1A 276 JR NZ,DAT5 !NO, BRANCH! 
P 0179 E3 89 277 LD R8,@R9 !LOAD SCROLL DELAY VAL' 
P 017B 46 E7 06 276 OR R7,4I8 !SET WRITE ENABLE' 
P 017E 8B 13 279 JR OATS !OUTPUT CTRL CODE! 

280 DAT11: 
P 0180 76 E7 10 281 TM R7,4IX10 !CLEAR COLCNT ?! 
P 0183 6B 04 282 JR Z,DAT12 !NO, BRANCH! 
P 0185 BO C3 283 CLR COLCNT 
P 0187 8B OA 284 JR DAT5 

285 DAT12: 
P 0189 76 E7 20 286 TM R7,4IX20 !DECR COLCNT?! 
P 018C 6B 05 287 JR Z,DAT5 !NO, BRANCH! 
P 018E 00 C3 268 DEC COLCNT 
P 0190 56 C3 3F 269 AND COLCNT,4I'Yo3F !MODULO 64! 

290 DATe: 
P 0193 6C 00 291 LD R6,4I0 
P 0195 8B 27 292 JR OUTP !OUTPUT TO CRTC! 

293 DAr.!: 
P 0197 6C 20 294 LD R6,4IX20 LOAD SPACE! 
P 0199 D6 01A4 295 CALL CHROUT DATA TO CRTC! 
P 019C 68 C3 296 LD R6,COLCNT CHECK COLUMN COUNT! 

1-100 



P 019E 56 E6 07 297 AND R6 •• 7 !MODUlO B?! 
P 01Al EB F4 29B .JR NZ.DAT2 !NO. lOOP! 
P 01A3 AF 299 RET 

300 
301 THIS ROUTINE OUTPUTS A DISPLAYABLE CHARACTER 
302 TO THE CRT. IF COlCNT • EOl (64) THEN DELAYS 
303 FOR SCROll. ELSE. NO DELAY. 
304 
305 
306 CHRJUT: 

P 01A4 BO EB 307 ClR RB ! INIT DELAY VALUE! 
P 01A6 20 C3 308 INC COlCNT 
P 01A8 56 C3 3F 309 AND COlCNT •• X3F !MODUlO 64! 
P 01AB EB 02 310 .JR NZ.CROUTl 
P 01AD BC 04 311 LD RB •• 4 !SCROll DELAY VALUE! 

312 CRQJTl: 
P OlAF 26 E6 20 313 SUB R6 •• X20 !REMOVE ASCII BIAS! 
P 01B2 7C OF 314 LD R7 •• XOF !CRTC COMMAND! 
P 01B4 D6 01BE 315 CALL OUTP !DATA TO CRT! 
P 01B7 BC 07 316 lD Rll •• 7 !DElAY CHAR TIME! 

317 CRQJT2: 
P 01B9 00 EB 31B DEC Rll 
P 01BB EB FC 319 .JR NZ.CROUT2 
P 01BD AF 320 RET 

321 
322 THIS ROUTINE DOES THE ACTUAL DATA WRITE TO 
323 THE CRT CONTROLLER CHIP. 
324 
325 INPUTS: XR6-ASCII DATA 
326 XR7-CRT COMMAND 
327 XR8=TIMER DELAY VALUE 
328 XR9-Rl0 USED 
329 
330 OUTPUTS: NONE 
331 
332 
333 OU1P: 

P 01BE 76 CO BO 334 TM FLAG •• TMRFLG !CHECK TIMER FLAG! 
P 01Cl EB FB 335 .JR NZ.OUTP !lOOP IF BUSY! 
P 01C3 56 03 EF 336 AND P3 •• XEF !ClEAR WRITE ENABLE! 
P 01C6 76 E7 OB 337 TM R7 •• B ! WR ITE ENABLE?! 
P 01C9 6B 03 338 .JR Z.OUTl !NO. BRANCH! 
P 01CB 46 03 10 339 OR P3 •• Xl0 !RAM WRITE ENABLE! 

340 OUT1: 
P 01CE 56 E6 3F 341 AND R6 •• X3F !MASK UPPER BITS! 
P 01Dl 9B E7 342 lD R9.R7 
P 01D3 56 E9 07 343 AND R9 •• 7 !MASK lOWER 3 BITS! 
P 01D6 EO E9 344 RR R9 
P 01DB EO E9 345 RR R9 
P 01DA A8 E9 346 lD Rl0.R9 !MERGE COMMAND BITS! 
P 01DC 56 EA CO 347 AND Rl0 •• lC.CO 
P 01DF 42 6A 348 OR R6.Rl0 
P 01El 69 01 349 lD Pl. R6 !OUTPUT DATA Ir CMD! 
P 01E3 EO E9 350 RR R9 !GET UPPER CMD BIT! 
P 01E5 56 E9 BO 351 AND R9 •• 7.BO 
P 01EB 56 02 7F 352 AND P2 •• lC.7F !ClEAR COMMAND BIT! 
P 01EB 44 E9 02 353 OR P2.R9 !WRITE UPPER CMD BIT! 
P 01EE B6 03 40 354 XOR P3 •• lC.40 !GENERATE DS! 
P 01Fl B6 03 40 355 XOR P3 •• lC.40 
P 01F4 42 BB 356 OR RB.RB !ZERO TIMER VALUE?! 
P 01F6 6B OD 357 .JR Z.OUT2 !YES. SKIP! 
P 01FB B9 C6 358 LD TIMER. RB ! LOAD TI MER! 
P 01FA 46 CO BO 359 OR FLAG •• TMRFLG !FLAG TIMER BUSY! 
P 01FD E6 F4 2B 360 LD TO •• THRVAL !LOAD TIME CONSTANT! 
P 0200 46 Fl 03 361 OR TMR •• 3 !START TO! 
P 0203 00 C6 362 DEC TIMER 

363 OU1'2: 
P 0205 AF 364 RET 

365 
366 * INTERRUPT ROUTINES * 
367 
368 TII'ERO: 

P 0206 44 C6 C6 369 OR TIMER. TIMER !SEE IF TIME DONE! 
P 0209 6B 09 370 .JR Z.DElAYl !BRANCH IF DONE! 
P 020B E6 F4 2B 371 LD TO •• TMRVAL !ELSE. RESET TIMER! 
P 020E 46 Fl 03 372 OR TMR •• 3 !LOAD Ir ENABLE TIMER! 

1-101 

-~- .. ---.- ._"=---.. -."' ..... --.-.~-- ""'---~-~-.-~ 



P 0211 00 C6 373 DEC TIMER !BUMP TIME COUNT! 
P 0213 BF 374 IRET 

375 DELAY1: 
P 0214 56 CO 7F 376 AND FLAQ •• XFF-TMRFLG!CLEAR TIMER BUSY FLAG! 
P 0217 BF 377 IRET 

378 
379 TII'ER1 : 

P 0218 BF 380 IRET 
381 
382 KBINT: 

P 0219 F8 02 383 LD R15.P2 !QET KB CHAR! 
P 021B 56 EF 7F 384 AND R15 •• X7F ! MASK UPPER BIT! 
P 021E 76 CO 01 385 TM FLAG •• KBB !KBB SET?! 
P 0221 EB 33 386 .JR NZ. KBII !YES. BRANCH! 
P 0223 76 10 04 387 TM MODE •• BLOK !BLOCK MODE?! 
P 0226 6B 33 388 .JR Z.KBI3 !NO. BRANCH! 
P 0228 76 11 02 389 TM STAT •• CPDAV !CP DAV?! 
P 022B EB 24 390 .JR NZ. KBI2 !YES. BRANCH! 
P 022D F9 C7 391 LD CHAR.RI5 !ECHO TO CRT! 
P 022F A4 14 EF 392 CP R15.EOL !EOL?! 
P 0232 6B 3C 393 .JR Z. KBI4 !YES. BRANCH! 
P 0234 A4 15 EF 394 CP R15.BS !BACKSPACE?! 
P 0237 6B 44 395 .JR Z.KBI5 !YES. BRANCH! 
P 0239 A4 16 EF 396 CP R15.DL ! DELETE L1 NE? ! 
P 023C 6B 4E 397 .JR Z. KBI6 !YES. BRANCH! 
P 023E F5 EF C5 398 LD .KBBPTR.R15 !STORE CHAR! 
P 0241 20 C5 399 INC KBBPTR !BUMP KBBPTR! 
P 0243 56 C5 3F 400 AND KBBPTR •• X3F 
P 0246 46 C5 80 401 OR KBBPTR •• KBUFF 
P 0249 A4 C4 C5 402 CP KBBPTR.KBPTR !EOB?! 
P 024C EB 41 403 .JR NZ.KBI7 !NO. BRANCH! 
P 024E 46 CO 02 404 OR FLAG •• KBDAV !SET KB DAV! 

405 KBI2: 
P 0251 46 CO 01 406 OR FLAG •• KBB !SET KBB! 
P 0254 8B 39 407 .JR KBI7 

408 KBU: 
P 0256 46 CO 02 409 OR FLAG •• KBDAV !SET KB DAV! 
P 0259 8B 34 410 .JR KB17 

411 KBI3: 
P 025B F5 EF C5 412 LD eKBBPTR.RI5 !STORE CHAR! 
P 025E 20 C5 413 INC KBBPTR 
P 0260 56 C5 3F 414 AND KBBPTR •• X3F 
P 0263 46 C5 SO 415 OR KBBPTR •• KBUFF 
P 0266 46 CO 02 416 OR FLAG •• KBDAV !SET KB DAV! 
P 0269 A4 C4 C5 417 CP KBBPTR.KBPTR !EOB?! 
P 026C 6B E3 418 .JR Z.KBI2 !YES. BRANCH! 
P 026E 8B IF 419 .JR KBI7 

420 KBI4: 
P 0270 F5 EF C5 421 LD .KBBPTR.R15 !STORE CHAR! 
P 0273 20 C5 422 INC KBBPTR 
P 0275 56 C5 3F 423 AND KBBPTR •• X3F 
P 0278 46 C5 80 424 OR KBBPTR •• KBUFF 
P 027B SB D9 425 .JR KBI1 

426 KBI5: 
P 027D A4 C4 C5 427 CP KBBPTR.KBPTR !EOB?! 
P 0280 6B OD 428 .JR Z.KBI7 !YES. SKIP! 
P 0282 00 C5 429 DEC KBBPTR 
P 0284 56 C5 3F 430 AND KBBPTR •• X3F 
P 0287 46 C5 80 431 OR KBBPTR •• KBUFF 
P 028A 8B 03 432 .JR KBI7 

433 KB16: 
P 028C E6 C5 80 434 LD KBBPTR •• KBUFF !RESET KBBPTR! 

435 KB17: 
P 028F BF 436 IRET 

437 
438 ERROR: 

P 0290 E8 00 439 LD R14.DTC !CLEAR ERROR BITS! 
P 0292 BF 440 IRET 

441 
442 DUI't1Y: 

P 0293 BF 443 IRET 
444 
445 ! REGISTER DATA TABLE FOR INITIALIZATION! 
446 
447 TALE: 

P 0294 0000 448 WVAL XOOOO 

1-102 



P 0296 OOA2 449 WVAL "00A2 
P 0298 OOAO 450 WVAL "OOAO 
P 029A 7FC7 451 WVAL "7FC7 
P 029C 0007 452 WVAL "0007 
P 029E 0033 453 WVAL "0033 
P 02AO 0000 454 WVAL "0000 
P 02A2 08FO 455 WVAL "08FO 

456 
457 CURSOR CONTROL DEFAULT PARAMETER TABLE 
458 SETUP AS FOLLOWS: 
459 BYTE 1 - ASCII CHAR CODE 
460 2 - CRT CODE 
461 3 - NOT EOL DELAY VALUE 
462 4 - EOL DELAY VALUE (FOR SCROLL) ! 
463 
464 CCTABL: 

P 02A4 01 465 BVAL "1 ! CURSOR HOME! 
P 02A5 10 466 BVAL "10 
P 02A6 4000 467 WVAL "4000 

468 
P 02A8 06 469 BVAL "6 !CURSOR FORWARD! 
P 02A9 47 470 BVAL "47 
P 02AA 0004 471 WVAL "0004 

472 
P 02AC 08 473 BVAL "8 !CURSOR BACK! 
P 02AD 24 474 BVAL "24 
P 02AE 0000 475 WVAL "0000 

476 
P 02BO OA 477 BVAL "OA ! CURSOR DOWN! 
P 0281 OA 478 BVAL "OA 
P 02B2 0400 479 WVAL "0400 

480 
P 02B4 OC 481 BVAL "OC !PAQE ERASE! 
P 02B5 18 482 BVAL "18 
P 02B6 4000 483 WVAL "4000 

484 
P 02B8 00 485 BVAL "00 ! CURSOR RETURN! 
P 02B9 11 486 BVAL "11 
P 02BA 0200 487 WVAL "0200 

488 
P 02BC 1A 489 BVAL "lA !CURSOR UP! 
P 02BD 06 490 BVAL "6 
P 02BE 0000 491 WVAL "0000 

492 
P 02CO OB 493 BVAL "OB !ERASE LINE! 
P 02C1 10 494 BVAL 11:10 
P 02C2 0400 495 WVAL "0400 

496 
P 02C4 497 END MAIN 

498 END CRTC 

° e1'1'01'S 
A$sembl~ complete 

1-103 





LOC 

0000 

0000 
0003 
0005 

0007 
0009 
OOOB 

0000 
OOOF 
0011 

0012 

0014 

00160 

0018 

001A 

001C 
001E 
0020 
0023 
0025 
0027 

0029 
002B 

0020 

APPOOIX B 

zao Test Progr811 Listings for SBT 

UPC.INIT 
OB.J CODE M STMT SOU~E STATEMENT ASM 5.9 

1 
2 
3 
4 
5 
60 
7 
8 
9 

Z80 CODE TO TEST UPC CRT CONTROLLER 

314020 
3E1E 
D310 

DB 11 
CB5F 
28FA 

3EOO 
0310 
AF 

Fb02 

FbOl 

Fb04 

F60S 

9311 

3£15 
9310 
21B1Q0 
eE11 
06008 
EDB3 

3EOl 
D310 

DB 11 

10 
11 
12 
13 
14 
15 
160 
17 
18 
19 
20 
21 
22 
23 
24 
25 
260 
27 
28 
29 
30 
31 
32 
33 
34 
35 
360 
37 
38 
39 
42 
43 
48 
49 
54 
!!is 
600 
61 
605 
6060 
67 
70 
71 
72 
73 
74 
7S 
760 
80 
81 
84 
85 
90 
91 
92 
93 
94 

KBEN EOU 
CR1'EN EOU 
IN1'EN EOU 
BLOCK EOU 
PRI'S EOU 

RAM EOU 
CPCRT EOU 
OPCRT EOU 
OTC EOU 
01110 EOU 
MIC EOU 
MOlE EOU 
STAT EOU 
CRJli!IT EOU 
KBJli!IT EGU 
EOL EOU 
BS EOU 
OL EOU 

CPJli!IV EOU 
CRTBSY EOU 

-1 
-1 
o 
-1 
-1 

2000H 
10H 
CPORT+l 
lSH 
15H 
lEH 
o 
MOOE+l 
STAT+l 
CRDAT+l 
KBDAT+l 
EOL+l 
BS+l 

2 
1 

ORG 0 
BEGIN: 

BGN: 

*L ON 

*L ON 

*L ON 

*L ON 

*L ON 

LD 
LO 
OUT 

IN 
BIT 
.JR 

LD 
OUT 
XOR 

OR 

OR 

OR 

SP,RAM+b4 
A.MIC 
(CPORT), A 

A. (DPORT) 
3.A 
Z.BON 

A.MOOE 
(CPORT), A 
A 

2 

4 

OR S 

OUT (DPORT),A 

KB INPUT ENABLE SW. 
CRT OUTPUT ENABLE SW. 
INTERRUPT ENABLE SW. 
BLOCK MOVE ENABLE SW. 
PARAMTERS TEST SW. 

I UPC PORT AD DR 
I UPC DATA PORT 
IDTC CONTROL REGISTER 
IDATA INDIRECTION REG 
IMASTER INT CONTROL 
I MODE REG 
I STATUS REG 
I CRT DATA REG 
I KB DATA REG 
lEND OF LINE CHAR 
I BACKSPACE EDIT CHAR 
lDELETE LINE EDIT CHAR 

ICP DATA AVAIL FLAG 
ICRT BUSY FLAG 

s INIT SP 
IPOINT TO EOX BIT 

sLOOP IF NOT SET 

I WRITE MODE 

I SET KB ENABLE BIT 

I SET CRT ENABLE BIT 

lSET BLOCK MOVE BIT 

LD A, DIND l WRITE PARAMTERS 

*L ON 
LOCP: 
*L ON 

*L ON 

LOCP1: 

OUT (CPORT).A 
LD HL,P~8LK 
LD C.OPI:lII!T 
LD B,PftMEND-P~MBLK 

OTIR 

CALL 

LD 
OUT 

KBIN 

A.STAT 
(CPORT) , A 

IN A. (OPORT) 

1-105 

lREAD KB DATA 

lCHECK CP DAV 



002F E602 95 AND CPDAV 
0031 2BFA 96 .JR Z,LOOP1 • LOOP UNTI L SET 
0033 3E03 97 LD A,KBDAT .GET BYTE COUNT 
0035 D310 98 OUT (CPORTl, A 
0037 DB 11 99 IN A, (DPORTl 
0039 47 100 LD B,A I SAVE IN B 
003A 57 101 LD D,A • COPY TO D 
003B 3E15 102 LD A,DIND I READ DATA LINE 
003D D310 103 OUT (CPORTl, A 
003F OEll 104 LD C,OPORT 
0041 21BAOO 105 LO HL,HSSG+l 
0044 EDB2 106 INIR 
0046 360A 107 LO (HL),OAH 
0048 3EOl 108 LD A,STAT • THEN CLEAR CPDAV 
004A 0310 109 OUT (CPORTl, A 
004C 0B11 110 IN A, (OPORT) 
004E E6FD 111 AND OFFH-CPOAV 
0050 D311 112 OUT (DPORTl, A 
0052 42 113 LD B,O I RESTORE BYTE COUNT 
0053 04 114 INC B • ALLOW LF CHAR 
0054 04 115 INC B 

120 *L ON 
121 CALL CRTOUT ,OUTPUT CRT DATA 
126 *L ON 
127 LO HL. HSSG 
128 CALL SO 
133 *L ON 
134 LO B,HSGEND-HSSG 
139 *L ON 

0055 C07900 140 CALL CRTOUT ,WRITE BLOCK LENGTH 
0058 3EOl 141 LD A,STAT I WAIT FOR CRT 
005A D310 142 OUT (CPORTl. A 

143 DELAY: 
005C OBll 144 IN A, (DPORTl 
005E E601 145 AND CRTBSY 
0060 20FA 146 .JR NZ,DELAY 
0062 21B900 147 LD HL,HSSG 
0065 OEll 148 LD C,DPORT 
0067 3E15 149 LD A,DIND ,WRITE TO DIND 
0069 D310 150 OUT (CPORTl, A 
006B EDB3 151 OTIR 
006D 3E01 152 LD A,STAT ,THEN SET CRT BUSY 
006F 0310 153 OUT (CPORTl, A 
0071 DB 11 154 IN A, (DPORTl 
0073 F601 155 OR CRTBSY 
0075 D311 156 OUT (DPORTl, A 

159 *L ON 
160 

0077 18BO 161 .JR LOOP 
162 
165 *L ON 
166 SO: 
167 LD A, (HL) 
168 CP '.' 169 RET Z 
170 LD B,A 
171 CALL CRTOUT 
172 INC HL 
173 .JR SO 
176 *L ON 
177 
178 CRlOUT: 

0079 3EOl 179 LO A,STAT 
007B 0310 180 OUT (CPORTl, A ,REAO CRT 

181 CRT1: 
0070 DB 11 182 IN A, (DPORTl 
007F E601 183 AND CRTBSY 
0081 20FA 184 .JR NZ, CRTl , LOOP IF BUSY 
0083 3E02 185 LD A,CROAT , THEN OUTPUT DATA 
00B5 0310 IB6 OUT (CPORTl, A 
00B7 78 IB7 LO A,B 
OOBB D311 18B OUT (OPORTl, A 
OOBA 3EOl IB9 LO A,STAT I THEN FLAG CRT BUSY 
OOBC D310 190 OUT (CPORTl, A 
OOBE 0B11 191 IN A, (OPORTl 
0090 F601 192 OR CRTBSY 

1-106 



0092 D311 193 OUT (DPORTl. A 
0094 C9 194 RET 

198 *L ON 
199 KBIN: 

0095 3EOl 200 LD A.STAT I READ UPC STATUS 
0097 D310 201 OUT (CPORTl. A 

202 KBI1: 
0099 DB 11 203 IN A. (DPORTl I CP DAV? 
009B E602 204 AND CPDAV 
009D 2BFA 205 .JR Z. KBI1 I NO. LOOP 
009F 3E03 206 LD A.KBDAT J ELSE. READ DATA 
OOAl D310 207 OUT (CPORTl. A 
00A3 DB 11 208 IN A. (DPORTl 
00A5 47 209 LD B.A 
00A6 3EOl 210 LD A.STAT J CLEAR CP DAV 
00A8 D310 211 OUT (CPORTl. A 
OOAA DB 11 212 IN A. (DPORTl 
OOAC E6FD 213 AND OFFH-CPDAV 
OOAE D311 214 OUT (DPORTl.A 
OOBO C9 215 RET 

218 *L ON 
219 

0081 01 220 PRI'IILK: DEFB 1 HOME 
00B2 02 221 DEFB 2 FORW 
00B3 03 222 DEFB 3 BACK 
00B4 04 223 DEFB 4 DOWN 
00B5 05 224 DEFB 5 ERASE PAGE 
00B6 06 225 DEFB 6 RETURN 
00B7 07 226 DEFB 7 UP 
OOBB 08 227 DEFB 8 ERASE LINE 

228 PRI'END: EQU • 229 
230 MSsg: 

00B9 OA 231 DEFB OAH 
OOBA OD 232 DEFB ODH 
OOBB 54484520 233 DEFM 'THE QUICK BROWN FOX .JUMPED OVER THE LA 

DOGS TAIL' 
OOED 24 234 MSCEND: DEFB '.' 235 

236 END BEGIN 

1-107 





APPEH)lX C 

Internal UPC Organization 

v 
KEYBOARD DATA 

FF 
CTRL REGS. 

FO 

STACK & STORAGE 

co 

KB BUFFER 

80 

PARAMETER AREA 

80 

CRT BUFFER 

20 

DSC 
1 

W. REGS. & PORTS 

0 

PORT 1 

PORT 2 

PORT 3 

CHAR 

TIMER 

KBBPTR 

KBPTR 

COLCNT 

CBCNT 

UBPTR 

FLAG 
co 

figure C-1. Port and Data Definitions for UPC 

FLAG 

CC TABLE 

ASCII 

CRTC 

NOT EOl 

EOL 

ASCII CHARACTER 

CRT CODE 

} DELAY VALUE 

CRT COMMAND 

} 
1 CURSOR CONTROL 

CHARACTER ENTRY 

Figure C-2. UPC Status Bytes and Cursor Control Table 

1-109 



1-110 00-2163-01 



ZSO®S·Bit Microprocessor Family 2 





Zilog 

INTRODUCTION 

With the variety of microprocessors available 
today, it is often difficult for users to know 
which one best suits their needs. The choice can 
be based on a number of factors, such as unit 
cost, throughput, code density, ease of program­
ming, compatibility, software and hardware sup­
port, and availability of second sources. 

In high-volume applications (with quantities 
exceeding 10,000), the cost of parts, especially 
of memory, is extremely critical. The right 
microprocessor should be able to interface to 
low-cost memory components and should be efficient 
in its use of memory. In other applications where 
a large software development effort is required, 
the cost of such an effort may be of more con­
sequence than the cost of parts. Therefore, in 
software intensive applications, a microprocessor 
should be evaluated for its ease of programming. 
In some applications, a particular task must be 
done very rapidly, or a large number of tasks must 
be executed in a small amount of time. Some proc­
essors perform particular tasks much faster than 
others, whereas some might not be as fast at a 
particular task, but are generally faster than 
others when a large group of tasks is executed. 
Unfortunately, a user might have to choose a 
particular processor because it is the only one 
that can perform a particular task fast enough, 
even though it may be less memory' efficient and 
more difficult to program than other processors. 

This report compares the capabilities of two 
microprocessors: the zao and the 6502. aoth have 
many characteristics in common, but they also have 
a number of very significant differences. These 
differences will be discussed in detail, and their 
significance in terms of memory usage, number of 
lines of code (ease of programming), and execution 
speed will be measured by a group of benchmark 
programs. 

Ten different benchmark programs are presented 
here. They represent many tasks commonly per­
formed by microprocessors, yet are short and 
simple enough for the reader to understand and 

751-1955-0002 2-3 

Z80® CPU VI. 6502 CPU 

Benchmark Report 

July 1981 

verify without much effort. The programs have been 
optimized for each processor. 

COMMON CHARACTERISTICS Of THE l80 AND THE 6502 

The zao and the 6502 are 40-pin microprocessors. 
The two processors are clearly similar in many 
respects. They transfer data to and from external 
components on an a-bit data bus. Memory is 
addressed by a 16-bit address bus. Each processor 
has various registers that are used for specific 
functions, such as a 16-bit Program Counter, an 
a-bit status register, a Stack Pointer, and an 
accumulator. The zao and 6502 both have mask able 
and nonmaskable interrupt capabilities, both have 
on-chip clocks, and they can both interface to 
asynchronous as well as synchronous external 
devices. 

DISTINGUISHING CHARACTERISTICS OF THE l80 
AND THE 6502 

Table 1 lists the distinguishing features of the 
zao and the 6502. At fi rst glance, the zao 
appears to have significantly greater resources 
than the 6502. Each of these resources should be 
examined to determine their relative importance. 

Table 1. Distinguishing Architectural Features 

l80 6502 

1 • Number of a-bit general-purpose 14 3 
registers 

2. Number of 16-bit general-purpose a 0 
registers 

3. Number of functionally distinct 76 29 
instructions 

4. Number of addressing modes 7 10 
5. Vectored interrupt capability yes no 
6. Separate I/O addressing space yes no 
7. Stack space 64K 256 
a. Dynamic memory refresh capability yes no 

6/12/a1 



MAIN REOISTER S.,. ALTERNATE REGISTER SET 

• ACCUMULATOR F FLAG REGISTER 

• QENERAL PURPOSE C GENERAL PURPOSE 

o GENERAL PURPOSE E GENERAL PURPOSE 

H GENERAL PURPOSE L GENERAL PURPOSE 

-+-- 8 BITS ----. 

Z-80 RegIster ConfIguratIon 

. 16 SITS 

IX INDEX REGISTER 

IV INDEX REGISTER 

SP STACK POINTER 

PC PROGRAM COUNTER 

I INTERRUPT VECTOR I R MEMORY REFRESH 

"4---8BITS~ 

Z-80 RegIster ConfIguration 

.' ACCUMULATOR .' 

.' GENERAL PURPOSE C' 

D' GENERAL PURPOSE .' 
H' GENERAL PURPOSE L' 

. 

FLAG REGISTER 

GENERAL PURPOSE 

OENERAL PURPOSE 

GENERAL PURPOSE 

GENERAL PURPOSE REGISTERS 

A ACCUMULATOR 

X INDEX REGISTER 

Y INDEX REGISTER 

SPECIAL PURPOSE REGISTERS 

SP STACK POINTER 

P STATUS REGISTER 

I PC PROGRAM COUNTER 

... t-------16·BITS------•• 

6502 Register ConfIguration 

Figure 1. Register Architecture 

One of the most striking differences between the 
Z80 and the 6502 is the number of registers each 
hss (Figure 1). Excluding the Program Counter, 
Stack Pointer, and Status (Flag) register, the zeo 
has 14 general-purpoae registera and four 
apecial-purpose regiaters, and the 6502 has one 
accumulator and two index registers. 

Regiaters in the CPU can be acceased much more 
rapidly than external memory; therefore, the more 
data that can be kept and manipulated in regiters, 
the faater a program can execute. A program, 
however, consists of instructiona that are located 
in external memory, and all data muat, at one time 
or another, be transferred to or from external 
memory. If a CPU could be designed to work 
rapidly and efficiantly with external memory, the 
importance of a large regiater set would be 
diminished. 

The most disturbing aspect of the 6502 register 
set is not the number of registers, but the size 
of each. All of the programmer sccessible reg­
isters in the 6502 are eight bits long. This is a 
problem because the 6502 has 16-bit sddressing 
just like the Z80 has, and without 16-bit regis­
ters, the 6502 provides no convenient mechsnism 
for manipulating addreases. 

751-1955-0002 2-4 

The Z80 can pair its general-purpose 8-bit reg­
isters, forming six 16-bit registers in addition 
to its two 16-bit index registers. The term 
"index" used to describe the Z80 registers IX and 
IV is somewhat of a misnomer. The real usefulness 
of registera IX and IV is in base regiater 
addressing. Benchmark program number 10 (See 
Appendix B) illustratea the use of register IX in 
acceasing specific by tea within a variably located 
(dynamic) memory block. 

Tha 6502 index registers are very useful in 
indexing small data structures. Being only 8-bits 
long, however, the 6502 index registers cannot be 
used in data structures of more than 256 bytes, 
except by breaking larger structures down into 256 
byte sections (pages), aa illustrated in benchmark 
programs 4, 5 and 9 (see Appendix C). 

The 6502 design concentrates on quick and effi­
cient exchanges between registers and external 
memory. This ia evident in the large number of 
addreasing modes. Nearly all of the 6502 
instructions can address memory directly (absolute 
addressing), and many instructions have indexed 
addressing. A number of 6502 instructions have a 
special form of pre- and post-indexed indirect 
addressing as well. 

6/12/81 



An interesting feature of the 6502 is its Base 
Page (or Page Zero) Addressing mode. In Base Page 
Addressing, the upper B-bits of the 16-bit address 
are assumed to be zero. This mode is therefore 
onl y applicable to the first 256 bytes of memory. 
The advantage of Base Page Addressing is that only 
one byte is needed to specify an address. With 
single-byte addressing, instructions can be 
shorter in length and therefore can e,xecute faster 
than instructions containing 16-bit addresses. 
The base page assumption is also available in the 
indexed addressing modes. In the pre- and 
post-indexed indirect addresssing modes referred 
to above, the location of the indirect address is 
always assumed to be in page zero. Pre-indexed 
indirect addressing works only with index register 
X, and post-indexed indirect addressing works only 
with index register V. All of these addressing 
modes are very important and very useful, 
especially when dealing with the first 256 bytes 
of memory. 

Another interesting characteristic of the 6502 is 
that its Stack Pointer is only eight bits long. 
An B-bit Stack Pointer allows 256 bytes of stack 
space, which is sufficient for many applications. 
However, there are applications that require more 
stack space, and these applications would not be 
able to use the 6502. The 6502 stack space is 
dedicated to page one (the second lowest 256 byte 
area of memory). As with base page addressing, 
the upper byte of the 16-bit stack address is 
implied and need not be computed during stack 
accesses. Instructions in the 6502 that deal with 
the stack, however, use the Stack Pointer 
indirectly, so no savings in the length of the 
address field can be attributed to the stack 
limitation. 

The ZBO has one very important addressing mode not 
found in the 6502, referred to as Indirect Reg­
ister Addressing. In this mode, the operand is in 
a memory location speci Hed by the address 
residing in a 16-bit register pair. With a 16-bit 
address, this mode can cover the entire memory 
space of the ZBO. Since the register holding the 
address is a pair of B-bit registers, the upper 
and lower halves can be manipulated independently 
to access different bytes within a page or the 
same byte in di fferent pages. Another important 
quality of Indirect Register Addressing is that 
instructions using this mode need to specify only 
the register pair and not the address itself. This 
allows instructions to be shorter than instruc­
tions using other addressing modes. 

Addressing modes are not realized without cost. 
Every instruction a processor has must be repre­
sented by an opcode. One of the most fundamental 
factors affecting the efficiency of a processor is 
its instruction encoding. It is important to keep 
instructions as short as possible, because the 
length of instructions affects the amount of 
memory used by a program and the program execution 
time. If the opcode size is held to a fixed 
length, such as one byte, the number of possible 
instructions decreases as the number of addressing 

751-1955-0002 

~---~------~-.,----. "" .. 

2-5 

modes increases. Instructions whose opcodes imply 
the operands, as in Register and Indirect Register 
Addressing, need only be one byte long, whereas 
instructions with other addressing modes, such as 
Direct, Indirect, Base Page, and Indexed, must 
further contain the address itself and so are two 
or three bytes long. A comparison of the ZBO and 
the 6502 is a perfect example of this point: when 
operand combinations are considered, the ZBO has 
202 different one-byte instructions, and the 6502 
has only 29 one-byte instructions (see Table 2). 

Table 2. Instruction length Data* 

zao 6502 

Average number of bytes 2.03 2.13 
per instruction 

Number of instructions 
taking 

1 byte 202 29 
2 byte 344 74 
3 byte 74 4B 
4 byte 76 0 

*Instruction counts here include permutations of 
operand possibilities including registers and 
addressing modes but not permutations of memory 
addresses. 

In the ZBO, 16-bit registers are useful not only 
in addressing but also in manipulating 16-bit 
data. The ZBO provides instructions to add, sub­
tract, increment, decrement, load, store, and 
exchange 16-bit registers. The 6502 has no 16-bit 
data manipulation instructions. Manipulating 
16-bit data with the 6502 usually requires several 
more instructions than equivalent operations with 
the ZBO. 

The number of instructions a processor has and the 
usefulness of those instructions are important 
factors in the number of instructions required to 
perform a particular task. Other important 
factors are the addressing modes and the number of 
accumulators or registers capable of being the 
destination of arithmetic operations. The more 
accumulators a processor has, the fewer extraneous 
instructions are needed to move data to where it 
can be manipulated. The 6502 has one B-bit 
accumulator through which every add and subtract 
operation must pass. The zao, on the other hand, 
has two B-bit accumulators (A and A') and four 
16-bit registers that can be the destination of 
arithmetic operations (Hl, HL', IX, and IV). 

Both the ZBO and the 6502 have interrupts. The 
ZBO has the additional capability of automatically 
vectoring to up to 12B different programmable 
locations when interrupts occur. An B-bit jump 
table vector is automatically asserted by Zilog 

6/12/B1 



Z80 peripherals. Vectoring reduces interrupt 
response time by eliminating the need for software 
polling to determine the source of an interrupt in 
multiple interrupt systems. The Z80 also has non­
vectoring interrupt modes for use in less complex 
systems. The 6502 has no interrupt vectoring 
capability. 

Another important difference between the two CPUs 
in question is the way they address input and 
output. The 6502 has no special provisions for 
I/O addressing and simply interfaces to input and 
output devices as part of its memory space. This 
is referred to as memory-mapped I/O. The Z80 has 
specific I/O instructions and a specific I/O 
address space of 256 bytes in addition to its 
memory addressing space. Keeping I/O in a 
separate addressing space keeps the main memory 
map clear and reduces the chances of an output 
device being erroneously written to by runaway 
programs. If the need for memory-mapped I/O 
addressing ever arises, the Z80 can accommodate 
the need in the same manner as the 6502. 

Dynamic memory is used in many microprocessor 
applications. The Z80 can refresh dynamic memory 
automatically without special refresh circuitry. 
This feature can reduce the cost of a board by 
decreasing the number of components needed. The 
6502 has no refresh capability. Moreover, it is 
particularly difficult to interface the 6502 with 
dynamic RAM because of the critical nature of its 
memory access timing. 

The Z80 and the 6502 are available in various 
versions, specified by a letter appended to the 
root name, for example, Z80A or 65028. The ver­
sion, in the case of both of these microprocessors 
is closely related to its memory access timing 
(see Table 3). Notice that the memory access 
timing for a Z80A is very close to the memory 
timing for a 6502A. Notice also that the clock 
frequency of the Z80A is twice that of the 6502A. 

Z80 
6502 
l80A 
6502A 
l80B 
6502B 

Table 3. Memory Access Ti_s 
for Various Clock Rates 

Memory Access Time Clock frequeFICy 

575 ns 2.5 MHz 
650 ns 1.0 MHz 
325 ns 4.0 MHz 
310 ns 2.0 MHz 
190 ns 6.0 MHz 
170 ns 3.0 MHz 

The memory access timing of a microprocessor is 
import ant when evaluating the overall speed and 
the cost of a particular application. faster 
memory components are much more expensive and 
difficult to obtain than slower ones. The Z80 has 
a built-in provision for interfacing with com­
ponents that cannot respond in the normal access 
time. The ZBO has an input pin called WAii' that 
can be activated whenever a slow device is 
addressed. Activating the WAiT input causes the 

751-1955-0002 2-6 

ZBO to add discrete clock cycles to its access 
t1m1ng. The 6502 can interface to slower compo­
nents by controlling the clock directly, but doing 
so requires much more critical timing considera­
tions than the method used with the Z80, and it 
defeats the usefulness of the 6502's internal 
clock circuitry. Moreover, variations in the main 
clock might not be tolerable to other devices in 
the system. 

Interfacing the 6502 to program memory that cannot 
respond at full speed ~s futile, because 90 per­
cent of the 6502 clock cycles are typically pro­
gram memory accesses and little would be gained by 
extending those cycles. It is, however, quite 
productive to use a high-speed l80 with program 
memory that cannot respond at full speed, because, 
typically, less than 25 percent of the Z80 clock 
cycles are program memory accesses and extending 
those cycles would have relatively little effect 
on overall execution speed. 

BENCHMARK RESULTS 

There are so many factors involved in ascertaining 
a processor's capabilities that it is difficult 
to determine speci fic figures without actually 
writing benchmark programs. When evaluating a 
processor for use in a particular application, the 
user should use programs representative of his or 
her application. This report is intended for a 
general audience of users and presents a wide 
variety of program types (see Appendix A for the 
benchmark program spec1fications). 

Three di fferent aspects of performance are 
measured by the benchmark programs here: 

1. Memory Utilization 
2. Ease of Programming 
3. Execution Speed 

Memory utilization is often the most important 
criterion in measuring the performance of a 
processor. It measures the amount of memory 
(usually program memory) used by the processor in 
performing various tasks. It is important, 
because the cost of memory is often one of the 
dominating costs of a microprocessor application. 
Table 4 lists the number of bytes of program 
memory used by the l80 and the 6502 in each of the 
benchmark programs. 

The ease of programming is a somewhat subjective 
issue, but very important nonetheless. Software 
development costs are enormous and can outweigh 
many other considerations made by microprocessor 
users. One measure of the ease of programming is 
the number of inst ructions (lines of code) 
required to perform a given task. This measure is 
used in this report because of its simplicity and 
objectivity. The number of lines of source code 
in the benchmark programs for each of the micro­
processors is shown in Table 5. 

6/12/81 



751-1955-0002 

Table 4. NUlllber of Bytee of Progr .. Metnory Used 

Ratio 
Program Description zao 6502 6502/Z80 

Computed GO TO Implementation 9 27 3.00 
8 x 8 Bit Multiply Routine 26 41 1.58 
16 x 16 Bit Multiply 20 44 2.20 
Block Move 11 51 4.64 
Linear Search 8 41 5.13 
Insert into Linked Liat 12 19 1.58 
Bubble Sort 23 31 1.35 
Interrupt Handling 6 11 1.83 
Character String Tranalation 17 48 2.82 
Dynamic Memory Acceas 11 24 2.18 

Average ratio 6502/Z80 2.63 

Table 5. Hmlber of Linea of Source Code 

Ratio 
Progr.. Description zao 6502 6502/zaO 

Computed GOTO Implementation 8 17 2.13 
8 x 8 Bit Multiply Routine 14 20 1.43 
16 x 16 Bit Multiply 11 23 2.09 
Block Move 4 27 6.75 
Linear Search 3 22 7.33 
Insert into Linked List 6 10 1.67 
Bubble Sort 15 15 0.00 
Interrupt Handling 6 7 1.17 
Chsrscter String Translation 10 26 2.60 
Dynamic Memory Access 3 13 4.33 

Average ratio 6502/Z80 3.05 

Table 6. ProgrUl Execution Tinles far the Lowest Speed Versions* 

Progr.. Description usec I18BC Ratio 
Z80 6502 6502/Z80 

Computed GOIO Implementation 20.27 46.33 2.29 
8 x 8 Bit Multiply Routine 160.80 196.00 1.22 
16 x 16 Bit Multiply 405.20 713.00 1.76 
Block Move 16138.00 31816.00 1.97 
Linear Search 8406.00 13011.00 1.55 
Insert into Linked List 24.80 34.00 1.37 
Bubble Sort 250718.00 280474.00 1.12 
Interrupt Handling 17.2 32.00 1.86 
Dynamic Memory Access 27.60 47.00 1.70 

Average ratio 6502/Z80 1.65 

* Z80 maximum clock frequency is 2.5 MHz. Memory access time is 575 ns. 
* 6502 maximum clock frequency is 1.0 MHz. Memory access time is 650 ns. 

2-7 6/12/81 



Execution speed can be important in several ways. 
A computer product that has a human interface, 
such as a keybord and display, will be more 
productive and enjoyable to use if it responds 
quickly. A microprocessor being evaluated for use 
in controlling a high-speed device might have to 
be rejected if it cannot meet very rigid timing 
requirements. 

Execution time varies significantly depending on 
which version of Z80 or 6502 is used, so a com­
parison of different versions is important. Table 
6 lists the execution times of the benchmark pro­
grams for the lowest speed versions of the two 
microprocessors. 

The most relevant comparison of execution times is 
shown in Table 7, where the data is calculated 
from versions of the Z80 and 6502 that can operate 
in systems of similar speeds. One should not be 
confused by the higher clock rate of the Z808, 
because even at twice the clock rate of the 6502B, 
the Z80B has a longer external component access 
time than the 6502B (see Table 3). 

CONCLUSION 

The results of the benchmark programs presented in 
this report show the Z80 performing signi ficantl y 
better than the 6502 in nearly every aspect. In 
six of the ten programs, the 6502 used more than 
twice the amount of program memory than the Z80. 
In the bubble aort program, the 6502' s best re­
lative performance, it used 35 percent more 
program memory than the Z80. The number of lines 

of code used varies dramatically from one program 
to another, but none of the programs have fewer 
lines of 6502 code than Z80 code. Comparing ver­
sions of equivalent speed (Table 7l, the Z80 ex­
ecutes eight of the ten programs in less time than 
the 6502. 

In all three measures of performance (Tables 4, 5, 
and 7), the program that yields the best results 
for the 6502 is the bubble sort. The bubble sort 
program, as specified in Appendix A, operates on 
an array of less than 256 bytes, so one of the 
8-bit index registers in the 6502 can be used very 
effectively. In applications that primarily use 
short byte-oriented data structures, the 6502 is 
worthy of consideration. 

Some of the benchmark programs reveal outstanding 
results in favor of the Z80. For example, the 
linear search program and the dynamic memory block 
access program have only three Z80 instructions, 
and the block move program uses only eight bytes 
of program memory. The reason for such outstand­
ing results with the Z80 is that it has many 
exceedingly powerful instructions. The Block Move 
and Block Search instructions illustrated in the 
benchmark programs are only a subset of the many 
block-oriented instructions of the Z80. The 
ability to access and manipulate bytes in dynamic 
memory blocks spans nearly the entire Z80 instruc­
tion set and is greatly appreCiated by programmers 
who deal with multi-tasking software. 

In applications that require data structures 
longer than 256 bytes or that manipulate 16-bit 
data, the Z80 is likely to be more efficient than 
the 6502, particularly in terms of memory utili­
zation and programmer productivity. 

Table 7. Execution Times for Versions with Equivalent Memory Aceeas Time* 

Program Description usec usec Ratio 
ZeOB 6S02B 65028/Z80B 

Computed GOTO Implementation 8.45 15.44 1.83 
8 x 8 Bit Multiply Routine 67.00 65.33 0.98 
16 x 16 Bit Multiply 168.83 237.67 1.41 
Block Move 6724.17 10605.33 1.58 
Linear Search 3502.50 4337.00 1.24 
Insert into Linked List 10.33 11.33 1.10 
8ubble Sort 104465.83 93491.33 0.89 
Interrupt Handling 7.17 10.67 1.49 
Character String Tranalation 5678.33 7356.00 1.30 
Dynamic Memory Access 11.50 15.67 1.36 

Average ratio 6502B/Z808 1.32 

* Z808 maximum frequency is 6 MHz. Memory access time is 190 ns. 
* 6502B maximum clock frequency is 3 MHz. Memory access time is 170 ns. 

751-1955-0002 2-8 6/12/B1 



APPENDIX A. BENCHMARK PROGRAM SPECIfICATION 

Computed GO TO implementation. A byte is tested 
for three states: negative, zero, and positive. 
The processor branches to a di fferent variable 
address for each state. 

The byte is in a register, and the three 16-bit 
addresses are on the stack. 

8 l( 8 Bit Unsigned Multiply Routine. Two a-bit 
unsigned integers (INT1, INT2) located randomly in 
memory (RAM or ROM) are multiplied together to 
form a 16-bit product (INT3) to be stored in RAM. 

16 l( 16 Bit Unsigned Multiply. Two 16-bit 
unsigned integers, located wherever is most 
efficient, are multiplied together to form a 
32-bit product. 

Block Move. Move a block of memory from one 
location to another. The source and destination 
addresses and the block size are known at assembly 
time, but no restriction on their values are 
allowed. 

Use a block size of 1920 bytes (a typical CRT 
screen) for time calculation. 

linear Search. Search for the f1rst occurrence of 
a certain byte in a string of bytes. The string 
address and length are known at assembly time, but 
no restrictions on their values are allowed. 

Use string length equal to 1000 with no find for 
time calculations. 

751-1955-0002 2-9 

Insert into Linked liat, The linked list exists 
in RAM (not page zero) and has 160 bit forward 
pointers. The root (pointer to top entry) may be 
in page zero. 

The address of the entry to be inserted 1S speci­
fied wherever is most efficient. Insert the entry 
into the top position. 

Bubble sort. Using a standard bubble sorting 
algorithm, arrange an array of bytes (length 256) 
into descending order. 

To calculate the timing, use a length of 100 and 
assume that the array is in ascending order before 
sorting. 

Interrupt Handling. Respond to an interrupt, save 
processor status, save registers, restore regis­
ters, restore processor status, and return. 

Response time does not include the time for an 
executing instruction to complete. 

Character String Translation. A string of ASCII 
characters of known length is translated into 
EBCDIC according to an existing 256 byte trans­
lation table. 

Use a length of 1000 for time calculations. 

Dynamic Memory Aeceas. The following operations 
are performed on bytes within a 256 byte dynamic 
memory block (dynamic means the block address is a 
variable) • 

Set bit 5 of byte 151, increment byte 70, and 
shift byte 205 left. 

6/12/81 



751-1955-0002 

APPENDIX BI Z80 PROGRAM LISTINGS 

1. Z80 Computed GOTO implementation 

bytes cycles 

10 
10 
4 

11/5 
10 

2 12/7 
4 
4 

Lines = 8 
Bytes = 9 
Cycles = 50.67 

COMPUTED GOTO (REG A CONTAINS THE BYTE TO BE TESTED) 

COGOTO POP DE !DE = JUMP ADDRESS IF POSITIVE 
POP HL !HL = JUMP ADDRESS IF ZERO 
OR A ! TEST THE BYTE 
RET M !JUMP TO ADDRESS FOR NEGATIVE 
POP BC !DISCARD ADDRESS FOR NEGATIVE 
JR Z,COG01o !JUMP IF BYTE ZERO 
EX DE, HL !HL = ADDRESS FOR POSITIVE 

CoG01o JP (HL) !JUMP TO APPROPRIATE ADDRESS 
END 

%. 180 B x 8 Bit Unsigned Multiply Routine 

bytes cycles 

3 

3 
3 

2 

2 

2 
1 
2 

3 

13 
4 

13 
17 

7 
4 
4 
7 

11 
12/7 
11 
13/8 
10 

16 

Lines = 14 
Bytes = 26 

PREPARE ARGUMENTS FOR SUBROUTINE 

LD A, (INT1) 
LD E,A 
LD A,(INT2) 
CALL MULT8 

8 X 8 UNSIGNED MULTIPLY ROUTINE 

MULT8 LD D,o 
LD H,D 
LD L,A 
LD B,8 

MUL TI10 ADD HL,HL 
JR NC,MULT2o 
ADD HL,DE 

MULT20 DJNZ MUL T10 
RET 

STORE PRODUCT 

LD 
END 

(INT3),HL 

!RANDOM LOCATION 
!REG E = MULTIPLICAND 
!REG A = MULTIPLIER 
! CALL SUBROUTINE 

!EXTEND MULTIPLICAND TO 16 BIT 
!INITIALIZE MULTIPLIER/PRODUCT 

!INITIALIZE LOOP COUNTER 
!SHIFT MULTIPLIER/PRODUCT LEFT 
!JUMP IF MSB OF MULTIPLIER WAS 0 
!ADD MPCAND TO PRODUCT 
!DEC LOOP CNTR & JMP IF NOT 0 
!RETURN 

Cycles = 402 average 

2-10 6/12/81 



J. 289 16 x 16 Bit Unsigned Multiply 

bytes cycles 

2 7 
3 10 
1 11 
2 8 
2 8 
2 12/7 

11 
2 12/7 
1 Iii 

4 
3 10 

Lines = 11 
Bytes = 20 

16 x 16 BIT UNSIGNED MULTIPLY 

BC = MULTIPLICAND 
DE = MULTIPLIER / PRODUCT MSW 

I HL = PRODUCT LSW 

MUL T16 LD A,16 
LD HL,O 

MULT30 ADD HL,HL 
RL E 
RL 0 
JR NC,MULTJO 
ADD HL,BC 
JR NC,MULT40 
INC DE 

MULT40 DEC A 
JP NZ,MULT30 
END 

Cycles = 1013 average 

4. 280 Block Move 

bytes cycles Move a block of memory. 

3 10 
3 10 
3 10 
2 21/16 

Lines = 4 
Bytes = 11 
Cycles = 40345 

BLKMOV 

5. Z80 linear Search 

LD HL,SOURCE 
LD DE ,DESTIN 
LD BC,BLKSIZ 
LDIR 
END 

bytes cycles SEARCH FOR THE BYTE IN REG A 

3 
3 
2 

10 SEARCH LD 
10 LD 
21/16 CPIR 

Lines = 3 
Bytes = 8 
Cycles = 21015 

151-1955-0002 

END 

HL,STRING 
BC,LENGTH 

2-11 

!A = LOOP COUNT 
!INIT PRODUCT LSW 
!SHIFT MULTIPLIER/PRODUCT LEFT 

!MSB OF MULTIPLIER TO CARRY 
!JUMP IF MSB WAS 0 
IMULTIPLICAND + PRODUCT LSW 
!HANDLE CARRY TO MSW 

IDEC LOOP COUN T 
!LOOP TILL DONE 

!SET UP POINTERS & COUNT 

!MOVE BLOCK 

!HL = ADDRESS OF STING 
!BC = LENGTH OF STRING 
! SEARCH STRI NG 

6/12/81 



6. lBO Insert into 8 linked List 

bytes cycles INSERT THE ENTRY POINTEO TO BY (HL) 

3 13 
7 

3 13 
3 16 

6 
7 

Lines = 6 
Bytes = 12 
Cycles = 62 

INSERT 

7. Z80 Bubble Sort 

LD A, (ROOT) !XfER OLD TOP ENTRY PTR 
LD (HL),A 
LD A,(ROOT+1) 
LD (ROOT) ,HL !ROOT POINTS TO NEW ENTRY 
INC HL 
LD (HL) ,A 
END 

bytes cycles BUBBLE SORT ARRAY INTO DESCENDING ORDER 

3 10 SORT 
3 10 

7 SDRT20 
6 
7 
4 

2 12/7 
2 7 

7 
6 
7 
6 

2 13/8 SORT30 
4 

2 12/7 

Lines = 15 
Bytes = 23 
Cycles = 626795 

751-1955-0002 

LD HL,ARRAY 
LD BC,PAIRCT*256 
LD A, (HL) 
INC HL 
LD E,(HL) 
CP E 
JR NC,SORT30 
LD C,l 
LD (HL) ,A 
DEC HL 
LD (HL),E 
INC HL 
DJNZ SORT20 
DEC C 

END 

2-12 

!INIT ARRAY POINTER 
!INIT PAIR CNTR & ENCHANGE fLAG 
!GET fIRST BYTE Of PAIR 
IADDRESS NEXT BYTE 
!GET SECOND BYTE Of PAIR 
!COMPARE fIRST & SECOND BYTE 
!JUMP If fIRST> = SECOND 
!SET EXCHANGE fLAG 
IEXCHANGE THE PAIR 

ILOOP TILL ALL PAIRS EXAMINED 
!CHECK EXCHANGE fLAG 
IJUMP If EXCHANGE OCCURED 

6/12/81 



8. 18o Interrupt Handling 

bytes cycles 

4 
4 
4 
4 
4 

10 

Lines = 6 
Bytes = 6 
Cycles = 43 

INTERRUPT OVERHEAD (ADD 13 CYCLES RESPONSE TIME) 

INTRPT EX AF,AF' !SAVE REGISTERS AND STATUS 
EXX 
EXX !RESTORE REGISTERS AND STATUS 
EX AF,AF' 
EI 
RET !RETURN TO INTERRUPTED PROGRAM 
END 

9. ISO Character String Tranalation 

bytes cycles 

3 10 
2 7 
2 7 
2 7 
1 7 

7 
7 

2 13/8 
4 

2 12/7 

Lines = 10 
Bytes = 17 
Cycles = 34070 

TRANSLATE STRING FROM ASCII TO EBCDIC 

TRANSLATION TABLE MUST BE AT A PAGE BOUNDARY. 

TRANSL LD HL,STRING !HL = STRING ADDRESS 
LD D,HI TABLE !D = HIGH BYTE OF XLATIDN TALBE 
LD B,LO LENGTH !B = LOOP COUNTER LOW BYTE 
LD C,HI LENGTH+1 !C = LOOP COUNTER HIGH BYTE 

TRAN10 LD E, (HL) !GET AN ASCII CHARACTER 
LD A, (DE) fUSE IT TO INDEX EBCDIC TABLE 
LD (HL) ,A !STORE EBCDIC CHAR IN STRING 
DJNZ TRAN10 !DEC AND TEST LOOP COUNT 
DEC C 
JR NZ1TRAN10 !JUMP IF NOT DONE 
END 

10. 18o Dynamic Memory Acceas 

bytes cyc les 

4 
3 
4 

23 
23 
23 

Lines = 3 
Bytes = 11 
Cycles = 69 

751-1955-0002 

REG IX = MEMORY BLOCK ADDRESS 
! 

DYNACC SET 
INC 
SLA 

DONE END 

5, (IX+151) 
(IX+70) 
(IX+205) 

2-13 

!SET BIT 5 OF BYTE 151 
!INCREMENT BYTE 70 

!SHIFT BYTE 205 LEFT 

6/12/81 



APPENDIX C. 6502 PROGRAM LISTINGS 

1. 6502 CDllputed GOlO illlpl_ntation 

bytes cycles ! COMPUTED GOTO (REG X CONTAINS THE BYTE TO BE TESTED) 

4 COGOTO PLA !POSADR=ADDRESS FOR POSITIVE 
2 3 STA POSADR 
1 4 PLA 
2 3 STA POSADR+1 

4 PLA 
2 3 STA ZERADR !ZERADR=ADDRESS FOR ZERO 
1 4 PLA 
2 3 STA ZERADR+1 

2 TXA !TEXT THE BYTE 
2 3/2 BPL COG010 !BRANCH IF NOT NEGATIVE 
1 6 RTS !JUMP TO ADDRESS FOR NEGATIVE 

4 COG010 PLA !DISCARD ADDRESS FOR NEGATIVE 
4 PLA 
2 TXA !TEST THE BYTE 

2 3/2 BNE COG020 !BRANCH IF NOT ZERO 
3 5 JMP (ZERADR) !JUMP TO ADDRESS FOR ZERO 
3 5 COG020 JMP (POSADR) IJUMP TO ADDRESS FOR POSITIVE 

END 
Lines = 17 
Bytes = 27 
Cycles = 46.33 average 

751-1955-0002 2-14 6/12/B1 



2. 6502 8 x 8 Bit Unsigned Multiply Routine 

bytes cycles PREPARE ARGUMENTS FOR SUBROUTINE 

3 4 LDA INT1 !RANDOM LOCATION 
2 3 STA MPCAND !PAGE ZERO 
3 4 LDA INT2 !RANDOM LOCATION 
2 3 STA MPLIER I PAGE ZERO 
3 6 JSR MULTB !CALL SUBROUTINE 

B X B UNSIGNED MULTIPLY ROUTINE 

2 2 MULTB LDA 110 !CLEAR LOW BYTE OF PRODUCT 
2 2 LDX HB IINIT LOOP COUNTER 
1 2 MULT10 ASL A !SHIFT MULTIPLIER/PRODUCT LEFT 
2 5 ROL MPLIER 
2 2/3 BCC MULT20 !BRANCH IF MSB WAS 0 

ADD MULTIPLICAND TO PRODUCT 
1 2 CLC 
2 3 ADC MPCAND 
2 2/3 BCC MULT20 !HANDLE CARRY TO HIGH BYTE 
2 5 INC MPLIER 

2 MULT20 DEX !DECREMENT LOOP COUNTER 
2 2/3 BNE MULT10 !BRANCH IF NOT DONE 
1 6 RTS IRETURN 

STORE PRODUCT 

3 4 STA INT3 !LOW BYTE 
2 3 LDA MPLIER !HIGH BYT 
3 4 STA INT3+1 

END 
Lines = 20 
Bytes = 41 
Cycles = 196 average 

751-1955-0002 2-15 6/12/B1 



" 6502 16 x 16 Bit Unsigned Multiply 

16 x 16 UNSIGNED MULTIPLY 

MPCAND 2 CONSECUTIVE BYTES IN PAGE 0 
MPLIER 2 CONSECUTIVE BYTES IN PAGE 0 (PRODUC+2) 

bytes cycles PRODUC 4 CONSECUTIVE BYTES IN PAGE 0 (OVERLAPPING MPLIER) 

2 2 MULT16 LDX #16 !INIT LOOP COUNTER 
2 2 LDA #0 !INIT PRODUCT LSW 
2 3 STA PRODUC 
2 3 STA PRODUC+1 
2 5 MULDO ASL PRODUC !SHIFT MULTIPLIER/PRODUCT LEFT 
2 5 ROL PRODUC+1 
2 5 ROL MPLIER 
2 5 ROL MPLIER+1 
2 3/2 BCC MULT40 !JUMP IF MSB WAS 0 

2 CLC !MULTIPLICAND+PRODUCT LSW 
2 3 LDA PRODUC 
2 3 ADC MPCAND 
2 '3 STA PRODUC 
2 3 LDA PRODUC+1 
2 3 ADC MPCAND+1 
2 3 STA PRODUC+1 
2 3 LDA PRODUC+2 !PROPOGATE CARRY 
2 2 ADC #0 
2 3 STA PRODUC+2 
2 3/2 BCC MULT40 
2 5 INC PRODUC+3 

2 MULT40 DEX !DEC LOOP COUNT 
2 3/2 BNE MULDO ! LOOP TILL DONE 

END 
Lines = 23 
Bytes = 44 
Cycles = 713 average 

751-1955-0002 2-16 6/12/81 



•• 6502 Black Mave 

bytes cycles Move s block of memory. 

2 2 BlKMOV lOA flO SOURCE ISET UP POINTERS AND COUNT 
2 3 STA SRCADR 
2 2 lOA fHI SOURCE 
2 3 STA SRCADR+1 
2 2 lOA flO DESTIN 
2 3 STA DSTADR 
2 2 lOA fHI DESTIN 
2 3 STA DSTADR+1 
2 2 lOX #HI COUNT 
2 3/2 BEQ lSTPAG IBRANCH If SIZE < 256 BYTES 
2 2 LOY 10 IY REG USED AS INDEX & CNTR 
2 5/6 lOOP1 lOA (SCRCADR),Y IMOVE A 256 BYTE PORTION 
2 6 STA (DSTADR), Y 
1 2 DEY 
2 3/2 BNE lOOP1 
2 5 INC SRCADR+1 IPOINT TO NEXT 256 BYTE PART 
2 5 INC DSTADR+1 
1 2 DEX IX REG=NUM Of 256 BYTE PARTS 
2 3/2 BNE lOOP1 
2 2 lSTPAG lOY flO COUNT IY REG=NUM Of BYTES REMAINING 
2 3/2 BEQ DONE IBRANCH If NONE lEfT 
2 5 DEC SRCADR IADJUST ADDRESSES 
2 5 DEC DSTADR 
2 5/6 lOOP2 lOA (SRCADR) ,Y IMOVE REMAINING BYTES 
2 6 STA (DSTADR), Y 
1 2 DEY 
2 3/2 BNE lOOP2 

DONE END 
Lines = 27 
Bytes = 51 
Cycles = 31B16 

751-1955-0002 2-17 6/12/B1 



5. 6502 Linear Search 

bytes cycles SEARCH FOR BYTE IN REG A 

2 2 SEARCH LDA IILO STRING !SET UP STRING POINTER 
2 3 STA STRADR 
2 2 LDA #HI STRING 
2 3 STA STRADR+1 
2 2 LDX #HI COUNT !X = HIGH BYTE OF COUNT 
2 3/2 BEQ SRCH20 !CHECK FOR 0 
2 2 LDY #0 !Y = COUNTER AND INDEX 
2 5/6 SRCH10 CMP (STRADR), Y !MATCH? 
2 3/2 BEQ FOUND !BRANCH IF SO 
1 2 INY !INCREMENT COUNT/INDEX 
2 3/2 BNE SRCH10 !BRANCH IF NOT DONE WITH 256 
2 5 INC STRADR !UPDATE POINTER TO NEXT 256 

2 DEX !DECREMENT HIGH BYTE OF COUNT 
2 3/2 BNE SRCH10 !BRANCH IF NOT LAST PAGE 
2 2 SRCH20 LOY #LO COUNT !CHECK LAST PARTIAL PAGE 
2 3/2 BEQ DONE !BRANCH IF NO PARTIAL PAGE 
2 2 LDY 110 !Y = INDEX 
2 5/6 SRCH30 CMP (STRADR), Y 
2 3/2 BEQ FOUND 
1 2 INY 
2 2 CPY IILO COUNT !DONE WITH LAST PARTIAL PAGE ? 
2 3/2 BNE SRCH30 !BRANCH IF NOT 

DONE END 
Lines = 22 
Bytes = 41 
Cycles = 13011 

6. 6502 Insert into Linked List 

bytes cycles INSERT THE ENTRY POINTED TO BY (NEWADR) 

2 2 INSERT LOY 110 !INIT INDEX REG 
2 3 LDA ROOT !XFER OLD TOP ENTRY PTR 
2 6 STA (NEWADR),Y !FIRST 2 BYTES IS FORWARD PTR 
2 3 LDA ROOT+1 
1 2 INY 
2 6 STA (NEWADR),Y 
2 3 LDA NEWADR !ROOT POINTS TO NEW ENTRY 
2 3 STA ROOT 
2 3 LDA NEWADR+1 
2 3 STA ROOT+1 

END 
Lines = 10 
Bytes = 19 
Cycles = 34 

751-1955-0002 2-18 6/12/81 



751-1955-000? 

7. Bubble SDrt 

bytes cycles BUBBLE SORT ARRAY INTO DESCENDING ORDER 

2 2 SORT LDY 110 !INIT EXCHANGE FLAG 
2 2 LDX IILENGTH-1 !INIT INDEX/PAIR COUNT 
3 4/5 SORT10 LDA ARRAY,X !GET FIRST BYTE OF PAIR 
3 4/5 CMP ARRAY+1,X 
2 3/2 BCS SORT20 !BRANCH IF FIRST > = SECOND 
2 2 LDY #1 !SET EXCHANGE FLAG 

3 PHA !EXCHANGE THE PAIR 
3 4/5 LDA ARRAY+1,X 
3 5 STA ARRAY,X 

4 PLA 
3 5 STA ARRAY+1,X 

2 SORT20 DEX !DEX INDEX/PAIR COUNT 
2 3/2 BNE SORT10 !LOOP TILL ALL PAIRS EXAMINED 
1 2 DEY ! CHECK EXCHANGE FLAG 
2 3/2 SEQ SORT !BRANCH IF EXCHANGE OCCURRED 

END 
Lines = 15 
Bytes = 31 
Cycles = 280474 

8. 6502 Interrupt Handling 

bytes cycles 

2 
2 
2 
2 
1 

Lines = 7 
Bytes = 11 
Cycles = 32 

3 
3 
3 
3 
3 
4 
6 

INTERRUPT OVERHEAD (AOD 7 CYCLES RESPONSE TIME) 

INTRPT PHA !SAVE REGISTERS 
STX XSAVE 
STY YSAVE 
LDY YSAVE !RESTORE REGISTERS 
LDX XSAVE 
PLA 
RTI !RESTORE PROCESSOR STATUS 
END 

2-19 

-~~------.~~--~~ 

6/12/81 



9. 6502 Character String Tranalation 

bytes cycles TRANSLATE STRING FROM ASCII TO EBCDIC 

2 2 TRANSL LDA IILO STRING !SET UP STRING POINTER 
2 3 STA STRADR 
2 2 LDA IIHI STRING 
2 3 STA STRADR+1 
2 2 LDA IIHI LENGTH ICHECK HIGH BYTE OF LENGTH 
2 3/2 BEQ TRAN20 !BRANCH IF STRING < 256 CHARS 
2 3 STA COUNT IINIT COUNT 
2 2 LDY flO IY = INDEX FOR PARTIAL STRING 
2 5 TRAN10 LDA (STRADR),Y !TRANSLATE A BYTE 

2 TAX 
2 4 LDA TABLE,X 
2 6 STA (STRADR),Y 

2 INY ! INCREMENT INDEX 
2 3/2 BNE TRAN10 !BRANCH IF NOT DONE WITH PAGE 
2 5 INC STRADR+1 !UPDATE POINTER TO NEXT PAGE 
2 5 DEC COUNT !DECREMENT COUNT 
2 3/2 BNE TRAN10 !BRANCH IF NOT LAST PAGE 
2 2 TRAN20 LDY flLO COUNT IY = INDEX/COUNT FOR LAST PAGE 
2 3/2 SEQ DONE !BRANCH IF NO PARTIAL PAGE 
2 5 DEC STRADR !ADJUST POINTER 
2 5 TRAN30 LDA (STRADR),Y !TRANSLATE LAST PARTIAL PAGE 
1 2 TAX 
2 4 LDA TABLE ,X 
2 6 STA (STRADR),Y 

2 DEY 
2 3/2 BNE TRAN30 

DONE END 
Lines = 26 
Bytes = 48 
Cycles = 22068 

751-1955-0002 2-20 6/12/81 



10. 6502 Dynamic ~ry Access 

bytes cycles (BLOCK) = ADDRESS OF MEMORY BLOCK 

2 2 DYNACC LDY #151 !SET BIT 5 OF BYTE 151 
2 5 LDA (BLOCK), Y 
2 2 ORA #20 
2 6 STA (BLOCK), Y 
2 2 LDY #70 !INCREMENT BYTE 70 
2 5 LDA (BLOCK), Y 
1 2 CLC 
2 2 ADC #1 
2 6 STA (BLOCK), Y 
2 2 LDY #205 !SHIFT BYTE 205 LEFT 
2 5 LDA (BLOCK), Y 
1 2 ASL A 
2 6 STA (BLOCK),Y 

DONE END 
Lines = 13 
Bytes = 24 
Cycles = 47 

00-2116-01 2-21 6/12/81 





Zilog 

617-1564-0003 

The new generation of 16-blt microprocessors 
al lows the system designer to Implement a 
powerful, but cost-effective computer system 
using the currently available 8-blt periph­
eral support devices. These processors 
offer advance block transfer operations that 
allow blocks of data to be moved between 
memory and an Input/Output (I/O) device. 
Although the data transfer rates achieved 
are very high, they are stll I Inadequate for 
Interfacing some system peripherals such as 
the new 8" Winchester disk drives. To In­
corporate such high-speed peripheral 
devices, the system designer needs to Inte­
grate a Direct Memory Access (DMA) controller 
device Into the system. This article II lus­
trates the Increase In throughput obtained by 
Integrating an 8-blt DMA device Into a 16-
bit microprocessor system and discusses the 
various Interface techniques and trade-offs 
Involved In such a task. 

ZSO DIRECT MEMORY ACCESS COmOUER 

A DMA device performs the dedicated task of 
moving data In a microprocessor system Inde­
pendently of the Central Processing Unit 
(CPU). The transfers are usually between 
memory and an I/O device, but some DMAs are 
capable of moving data from memory to memory 
or between two I/O devices. In a small 
microprocessor system, the CPU can normally 
do these transfers via software, but this 
results In a reduction of system throughput 
and ties up the CPU for long periods of time 
when a large amount of data Is to be moved. 
The response time of the CPU In these CPU­
managed transfers Is Inherently slow and may 
not be adequate In situations where the 
nature of data transfers demands fast 
response. The addition of a DMA device to an 
8-blt microprocessor system Is easily accom­
plished, since most 8-blt CPU families have a 
DMA controller device that shares common 
family Interface protocol. Integrating a DMA 
device Into a 16-blt system poses two options 
to the system designer. Since 16-blt LSI DMA 
devices are not presently available, the 
designer can use the 8-blt devices with addl-

2-23 

Integrating an 8-Blt 
DMA Controller 
into a 16-Bit System 

Tutorial 

November 1980 

tlonal hardware, or can opt for Implementing 
DMA functions using discrete TTL logic. The 
latter approach offers the advantage of 
Implementing only those functions that are 
needed. However, even In the most simple 
cases, a high part count Is required to add 
DMA capability using this approach. The 
8-blt devices, on the other hand, offer 
extensive, Integrated capabilities and 
require relatively little additional logic 
to Interface to 16-blt processors. 

The Z80 DMA Is a powerful 8-blt DMA device 
and, unlike most other DMAs, It takes com­
plete control of the system bus during the 
data transfer. It generates all bus signals 
normally generated by the Z80 CPU during a 
data transfer without any external TTL 
packages. Data transfers can be accom­
plished In three different modes. In the 
Byte mode, one byte of data Is transferred at 
a time, giving control of the system bus to 
the CPU after each byte transfer. In the 
Burst mode, a block of data bytes Is trans­
ferred and data transfer operations continue 
until the READY signal (normally from an I/O 
device) becomes Inactive. At this time, bus 
control Is returned to the CPU and when the 
I/O device Is ready to move more data (acti­
vating the READY signal), the data transfer 
operation Is started again. These bursts of 
data transfers continue until the whole block 
has been moved. The Continuous mode operates 
In the same fashion as the Burst mode, except 
that the bus control Is returned to the CPU 
only when the operation Is complete. If the 
READY Signal goes Inactive before the whole 
block Is moved, the DMA simply pauses until 
It becomes active again. In addition to data 
transfers, the Z80 DMA can also search for a 
specific data byte. In the Search mode, data 
bytes are compared to a programmable "match 
byte" and an Interrupt may be generated when 
a match Is found. 

The zeo DMA can generate two port addresses, 
with either address being variable or fixed. 
It Is capable of doing a data transfer from 
memory to memory or between two I/O devices, 
using a single channel In any of the three 

10/28/80 

~~~---~.--.--~----.~--~ 


617-1564-0003

modes described above. The Z80 DMA has a
programmable cycle length. Thus. the read
and write cycles of a data transfer operation
can be made two. three or four clock cycles
long. and the four control signals associated
with data transfers can be deactivated one­
half clock cycle before the read or write
cycle ends. These programmable features al low
easy Interface of the DMA to slow or fast
system components. In addition. the DMA can
be made to automatically repeat a complete
operat Ion us I ng the "auto restart" feature.
Multiple DMAs can be daisy-chained In a
system without any TTL support logic. A
complete description of all the available
features of the DMA can be found In the Z80
DMA Technical Manual (document #00-2013-~

COMPARISON OF DATA lRANSFER
RATES IN A SMAU SYSTEM

Table 1 Illustrates the various transfer
speeds that can be obtained In a micro­
processor system with a Z80A CPU. a Z8000
CPU. or a Z80A DMA. The Z80A DMA can achieve
an Impressive transfer rate of 1 Mbyte/sec.
The Z80A CPU. using the powerful block trans-

programmed to search for a specific byte of
data while It Is transferring data. This
allows the system to perform powerful string
operations at very high data rates. The
transfer rates Shown In Table 1 Illustrate
the Improvement In system throughput that can
be achieved with a DMA device.

INTEGRATION OF A zao DMA IN A zaooo SYSTEM

A smal I. yet effective. Z8000 system can be
built using currently available zao periph­
erals. The implementation of such a system
Is fully described In the Zllog application
note A Small Z8000 System (document
#03-8060-01). Previous discussion has proven
the advantage of the addition of a DMA device
to such a system. The rest of this article
wll I describe the additional logic required
to Integrate the zao DMA Into a Z8000-based
system. By carefully selecting and Imple­
menting only those functions required. the
designer can minimize the additional TTL
logic. Since zao peripherals share common
Interface logic. It Is not necessary to
duplicate the logic when other Z80 periph­
erals are added to the system.

Table 1. Maximum Data Transfer Rates

Memory
to

Memory

I/O
to
I/O

I/O
to
Memory

Z80A CPU

0.19 Mbytes/sec

0.19 Mbytes/sec

1 Continuous mode operation

Z80A DMAI Z8000 CPU

1.0 Mbytes/sec 0.44 Mbytes/sec
1.0 Mwords/sec** 0.44 Mwords/sec

1.0 Mbytes/sec
1.0 Mwords/sec**

1.0 Mbytes/sec 0.4 Mbytes/sec
1.0 Mwords/sec**
2.0 Mbytes/sec* 0.4 Mwords/sec
2.0 Mwords/sec*

* In Search/Transfer mode with external logic
**Requlres external logic for word transfers

fer Instruction. can transfer data at 0.19
Mbytes/sec. Since the DMA achieves the 1
Mbyte/sec. transfer rate using two-clock­
cycle operations for each byte of transferred
data. It requires memory devices with rela­
tively short access times. The Z8000 CPU has
a maximum memory-ta-memory data transfer rate
of 0.44 Mtransfers/sec •• and a maximum I/O­
to-memory data transfer rate of 0.40 Mtrans­
fers/sec. The same transfer rates are ob­
tained by the Z8000 CPU whether the data
transferred Is a byte or a word. However.
since the DMA can be made to transfer words
with some additional hardware. it can stll I
provide a data transfer rate of 1 Mtrans­
fer/sec. In addition. the DMA can also be

Figure 1 shows a block diagram of the Inter­
face requirements for a Z80 DMA device In a
Z8000 system. The Small Z8000 System Appli­
cation Note already Implements part of the
logic shown In Figure 1. These Interface
functions are common to other Z80 periph­
erals. such as the PIO. SIO and CTC. This
Includes the 3-state address buffers and
bidirectional data buffers. which are used to
demultiplex the system address and data
buses. The DMA Is connected to the demultl­
plexed address and data lines rather than
being placed closer to the CPU. Other common
functional blocks are the Status Decoder. I/O
Decoder. and Z8000-to-Z80 Control Translator
logic.

2-24 10/28/80

617-1564-0003

Figure 1. Block Diagram

Since the zao DMA takes complete control of
address and data buses during an'operatlon,
It generates zao CPU system-bus-compatlble
control signals. However, these signals are
not compatible with the system bus control
signals generated by zaooo CPU, and a ZaD-ta­
zaooo Control Translator logic block 15
required to Interface the OMA with the zaooo
system. In particular, the signals that need
to be generated In order to effectively
control the system bus are four status
signals STo-ST3, Byte/Word (B/W), Normal/
System (N/S), Read/Wrlte (R/W), Memory
Request (MREQ), Data Strobe (OS), and Address
Strobe (AS). The segmented ZaOOl CPU gene­
rates a segment address and a 16-blt offset
address within the segment. Since the DMA
can only output 16 bits of address Informa­
tion, a Segment Register 15 required to store
the segment Information. The segment number
15 latched In this register by the zaooo CPU
prior to OMA operation. In memory-ta-memory
data transfers, the data to be moved must
reside In the same 64K address space. How
ever, In memory-ta-I/O operations, when the
block of data to be moved crosses a segment
boundary, the operation requires the loading
of a new segment number Into the Segment
Register before crossing the segment
boundary. The Segment Register 15 shown In
Figure 1.

A 4-blt Control Register that has been
appropriately programmed by the zaooo CPU
before It enables the DMA 15 used to generate
NlS, B/W, and W/DW signals. These three

Signals remain active throughout the DMA
operation. The OMA provides two signals
(MREQ and IORQ) that Indicate whether a
memory or an I/O address 15 being accessed.
These signals are gated with signals
generated by the zaooo Status Decoder, which
decodes the status signals STo-ST3 to dif­
ferentiate between memory and I/O accesses In
the current CPU operation. Since the memory
and I/O address spaces of the DMA are the
same size, the MREQ and IORQ signals can be
Interchanged to generate other zaooo control
signals. The Write -(WR) signal of the OMA Is
used to generate the R/W signal.

The timing relationship between the OMA
control Signals (IORQ, MREQ, RO, WR) and
three of the zaooo control signals (AS, OS,
MREQ) 15 shown In Figure 2. In order to
generate AS and OS from the OMA-generated
control Signals, the OMA must be operated In
the variable cycle mode with a cycle length
of four clock cycles. The OMA, however, can
be allowed to run with an operational cycle
of two clock cycles, If the memory controller
can Initiate and complete a memory transac­
tion with the OMA's control signals Instead
of using AS and OS, and If the memory devices
have the fast access times necessary for
twa-cycle transfers. Figure 3 Illustrates
the generation of AS, OS, and MREQ Signals
from DMA control signals RO, WR, and MREQ.
The four clock cycle memory read or write
operation of the OMA Is translated to a
three clock cycle CPU memory read or write
operation with this logic. The OS Signal 15

2-25 10l2a/ao

617-1564-0003

eLK

iORci
DMA

MREQ, AD r WR
DMA

AS

DS
READ

iii
WRITE

MREQ

T2 T, generated from RO and WR signals as shown in
the same figure.

When a dynamic RAM array needs to be re­
freshed, It becomes necessary to extend a

------,/'/,/,T------

DMA read or write cycle. This Is achieved by
activating the WAIT signal of the OMA. This
signal is multiplexed with the Chip Enable
(CEl signal In the device, since the OMA
needs to be waited only when It is the bus
master. The WAIT signal, however, Is sampled
only at fixed Instances during a read or a
write cycle and then only If the cycle Is
more than two clock cycles long when the
programmable operational cycle feature Is
selected. Thus, In a three or four clock
cycle Memory Read or Write, the WAIT line Is
sampled at the failing edge of the second
clock, and on the fal ling edge of the third
clock In a four clock cycle I/O Read or Write
as Illustrated In Figure 2. This Implies
that In order to be able to use the WAIT
signal to extend the OMA operational cycle,
the designer has to opt for four clock cycle
transfers and use IORQ signal from the OMA to
generate AS and OS signals, rather than the
MREQ signal as shown In Figure 3. Since the
memory and I/O spaces of the zeo OMA are 64K
bytes each, the IORQ signal can be used to
indicate a memory access and the MREQ signal
to indicate I/O access.

WAIT X X X X
--- ___ ~~~~~~L~ _____ _

Figure 2. Control Signal Timings

MREQ 0
OMA

74LS175

eLK elK

WR
OMA-r-+-I O

Q
10011

0

74LS175

ClK

Q t----+--I 0

10111 AS
Q CPU

Q
11001

11011 MREQ
CPU

74LS175 74LS175 DS
CPU

ClK
ClK QI----\

AD-....... -i-i OMA 0 Qt------IO

74LS175 74LS175

ClK ClK

"Figure 3. AS-.DS-.MREQ- Generation

2-26 10/28/80

617-1564-0003

CONTROL SIGNALS

"'~ I
ENBLG OIR RO Ao BAI

SYSTEM
DATA

BUS ~ Bl- B8 Al-Aa V1 A
1\ 100-107-V 00- 07 Ao-A15

1\
SAO-SA15

SYSTEM
ADDRESS
BUS 'Lo::;" ';:=... r

74LS245 100 Z80A
BUS - DMA 107

TRANSCEIVER

A
00-07

...
Figure 4. 8-BIt Data Transfer Logic

BYTE, WORD AND DOUBLE WORD BATA~TRANSFERS

The address translation logic, In conjunction
with the data buffers, al lows the~DMA to
perform byte, word or double word transfers.
The designer has the option of ~selectlng one
or more of these data transfer modes. How­
ever, the hardware required to l'mplement the
functions Increases as more options are
selected. When only byte transfers are
desired, no address translation logic or data
buffering Is needed, ~but, because the system
data bus Is 16-blts wide, an 8-blt bus trans­
ceiver buffer Is required to enable the DMA
to access the higher byte of the data bus
(Figure 4). In this case, the DMA's address
bus Is directly connected to the system
address bus. When 16-blt transfers are
desired, the DMA address bus is shifted so
that low address bit AO Is physically con­
nected to system address bit SAl. In this
case, A15 of the DMA Is not used and SAO Is
ignored by the memory controller. An 8-blt

data buffer serves the purpose of storing the
higher order data byte during the read cycle
and driving It In the write cycle. This Is
Illustrated In Figure 5. The 32-blt data
transfer operation Is similar to the 16-blt
operation but requires two additional data
buffers and the shifting of the ~address bus
by an additional bit. These approaches,
however, require that the same data bus width
be used In data transfers between memory and
an I/O device.

Figure 6 shows the address translation logic
needed to do 8-, 16- and 32-blt data trans­
fers. The CPU needs to set up two signals,
B/W and W/DW, before enabling the DMA to
determine the data transfer width. These two
signals then control the shifting of the
DMA's address bus for the generation of
system addresses. Thus, while moving bytes,
the two transparent latches are enabled and
the DMA address bus remains unshlfted. The
data byte can be stored In any of the data

~
CONTROL SIGNALS

SYSTEM
DATA

BUS

Ii " 08-0 15 :>
'I"" ~r

Ii

'I

I
ClK OC WR BAI RD

74LS364 Z80A
DATA BUFFER

~
DMA

10-80 10-80 00- 0 7 Ao-A14
I-- -y

00- 0 7

Figure 5. 16-BIt Data Transfer logic

2-27

SAI-15
SYSTEM
ADDRESS
BUS

10/28/80

10/28/80

buffers (Figure 5) or by the DMA, depending
upon the memory organization. To accomplish
word or double word transfers, the address
bus is shifted via the multiplexers by one or
two bits, depending on the control signals.
Only the four multiplexers and a data buffer
are required to perform 8- and 16-bit data
movements. Since the upper address bits from
DMA are not used in 16- and 32-blt transfers,
up to 32K words and 16K double words can be
moved In a single DMA block transfer. To
compensate for the shifting of these
addresses, the actual port addresses are
shifted right by one or two bits before being
written to the DMA.

IOW __ w
BNi CONTROL

I lOGIC -

ler always transfers the data byte (In a byte
mode) on the low-order eight bits of the data
bus.

SUMMARY

Integration of a 8-bit DMA device Into a
16-bit microprocessor system Improves system
performance and al lows the system to add new
fast peripherals. The interfacing requires
additional logic, but some of this logic is
already Implemented in the system since the
system usually contains other 8-bit periph­
erals of the same CPU family sharing common

I I ~

r- - IIS~-SAa ~ SAo-SA,

t 1'1
jSAa-SAl1

t 1'1
ISA'2-SA"

t l' ...
SAo-SA15,)

SYSTEM
ADDRESS
BUS

~ r

SELoe IISELoe IISELOC IISELOC I 74LS257A 74LS257A 74LS257A 74LS257A

~t- if:2-Aa it·-A,. I r--
BAI i'AlO-A14

Z80A Ao-
DMA A15

~
Ao-A, 74LS353 SAo-SA, SAo-SA15

r t-

ill: G

-1 t
t t

OC G

~ I:":-
Aa-A1S 74LS353 ~ r

Figure 6. 8·, 16- or 32-811 Data Transfer Addre .. Translation Logic

us I HG THE SEARCH MODE

The search or search/transfer modes of the
Z80 DMA need special interfacing considera­
tion. Since the DMA can search for bytes
only, the use of these functions is limited
In a 16-blt environment without any support
logic. ThUS, when the DMA is set up to do
8-blt transfers, the hardware shown in Figure
4 allows searches on both halves of the data
bus when the data bus "Is 16 bits wide. In
the 16- and 32-bit transfer modes, however,
the DMA can compare only the low-order data
byte, and external hardware is required if
any of the higher order data bytes need to be
searched. When the hardware Is set up to do
8-, 16- and 32-bit data transfers, the search
mode can be used only if the memory control-

interface logiC. Also, the implementation
of the extra logic needed to Integrate the
8-bit DMA can be minimized by carefully
selecting and Implementing only necessary DMA
functions that contribute to the Improvement
of overal I system performance.

REFERENCES

1. Z80 DMA Techn I ca I Manua I; Z II og Inc., May
1980.

2. "A Small Z8000 System", Application Note,
Zilog Inc., January 1980.

3. Z8000 CPU Technical Manual, Zilog Inc.,
May 1980.

2-28 00-2054-01

Zilog

INTRmUCTIIJI

The ZB500 Family consists of universal peripherals
that can interface to a variety of microprocessor
systems that uae a non-multlplexed address and
data bus. Though slmllar to ZBO perlpherals, the
ZB500 perIpherals dlffer 10 the way they respond
to I/O and Interrupt Acknowledge cycles. In
addltlon, the advanced features of the ZB500
peripherals enhance system performance and reduce
proceasor overhead.

To deB1gn an effectIve lnterface, the user needs
an understandlng of how the ZBO Famlly lnterrupt
structure works, and how the ZB500 peripherals
interact wlth thls structure. Thls appllcatlon
note provldes baslc lnformabon on the lnterrupt
structures, aa well as a diacuasion of the
hardware and software conslderatlons lnvolved 10

lnterfaclng the ZB500 perIpherals to the ZBO
CPUS. Discussl0ns center sround each of the
followlng situations:

• ZBOA 4 MHz CPU to ZB500 4 MHz perlpherals
• ZBOB 6 MHz CPU to ZB500A 6 MHz peripherals
• ZBOH B MHz CPU to ZB500 4 MHz perlpherals
• ZBOH B MHz CPU to ZB500A 6 MHz perlpherals

ThlS appl icabon note assumes the reader has a
strong worklng knowledge of the ZB500 perlpherals;
lt is not lntended as a tutorial.

CPU HARDWARE INTERFACING

The hardware lnterface conslsts of three baslc
groups of slgnals: data bus, system control, and
lnterrupt control, descrlbed below. For more
detailed signal information, refer to Zllog's
Data Book, Unlversal Perlpherals.

2-29

Interfacing Z80 CPUs to the
Z8500 Peripheral Family

Application
Note

May 1983

Data Bus Signals

DrDo Data Bus (b1directIonal, 3-state). This
bus transfers data between the CPU and the
penpherals.

Systaa Control Signals

An-AO Address Select Lines (optional). These
hnes select the port and/or control
registers.

ChlP Enable (lnput, active Low). tT is
used to select the proper per ipheral for
programmlng. tT should be gated with ~
or "RRrQ" to prevent SPUrlOUS chip selects
durlng other mach,ne cyclea.

Read (,nput, actlve Low). ~ activates the
chlp-read circuitry and gatea data from the
chip onto the data bus.

"WR'* Write (input, active Low). VIR" strobea data
from the data bus lnto the peripheral.

*Chip reset occurs when l![i and VIR" are actlve
slmultaneously.

Interrupt COntrol

~ Interrupt Acknowledge (input, sctIve Low).
This slgnal lndlcates an Interrupt
Acknowledge cycle and 1S used wlth ~ to
gste the lnterrupt vector onto the data
bus.

Interrupt Request (output, open-draIn,
acbve Low).

lEI

lEO

Interrupt Enable In (input, active High).

Interrupt Enable Out (output, acbve
Hlgh).

These lines control the interrupt dalsy
chain for the perlpheral lnterrupt
response.

Z8500 I/o OPERA TlII'4

The Z8500 peripherals generate internal control
signals from lID" and Wl1". Slnce PCLK has no
requued phase relatlOnship to lID" or Wl1", the
circultry generabng these signals provides bme
for metastable conditions to disappear.

The Z8500 perlpherals are lnltialized for dl f­
ferent operating modes by prOgrammlng the internal
registers.
during I/O

These lnternal reglsters are accessed
Read and Write cycles, which are

described below.

Read Cycle Timing

Figure 1 illustrates the Z8500 Read cycle timing.
All register addresses and TIlTiID< must remaln
stable throughout the cycle. If rr goes active
after lID" goes active, or if rr goes inactive
before lID" goes inactive, then the effectlve Read
cycle is shortened.

Write Cycle Timing

Figure 2 illustrates the Z8500 Write cycle
tlming. All reglster addresses and TIlTiID< must
remaln stable throughout the cycle. If rr goes
active after Wl1" goes active, or if rr goes in­
actlve before Wl1" goes lnactive, then the effective
Write cycle lS shortened. Data must be available
to the perlpheral prior to the falling edge of Wl1".

PERIPHERAL INTERRUPT OPERATION

Understandlng peripheral interrupt operation
requires a basic knowledge of the Interrupt
Pending (IP) and Interrupt Under Service (IUS)
bits in relation to the daisy chain. Both Z80 and
Z85DO peripherals are designed in such a way that
no additional interrupts can be requested during
an Interrupt Acknowledge cycle. This allows the
interrupt daisy chain to settle, and ensures
proper response of the interrupting device.

The IP bit is set in the peripheral when CPU
intervention is required (such condltions as
buffer empty, character available, error detec­
tion, or status changes). The Interrupt Ac­
knowledge cycle does not necessarily reset the IP
bit. This bit is cleared by a software command to
the peripheral, or when the action that generated
the interrupt is completed (i.e., reading a
character, writing data, resetting errors, or
changing the status). When the interrupt has been
serviced, other interrupts can occur.

ADDR ________ -J)(~ _______________________ A_DD_R_E_S_S_V_A_L_ID ____________________ .J)(~ ________ _

_---
CE \ /
RD \~ _____________________________ /

DATA
IN

__ ~{~ ____ D_A_TA __ V_A_LI_D __ __')~-------------

figure 1. Z8500 Peripheral I/o Read Cycle Timing

2-30 2296-001

ADDR ________ -J)(~ __________________ A_D_D_R_E_S_S_V_A_LI_D ______________________ .J)(~ ________ _

\"----
\ 1

\ ____ --'1
D~~~ -----------------------«~ _____________ D_A_TA_V_A_L_ID ____________ _')~----------

Figure 2. Z8500 Peripheral I/o Write Cycle Tuing

The IUS bit indicatea that an interrupt is
currently being serviced by the CPU. The iUS bit
is set during an Interrupt Acknowledge cycle lf
the IP bit is set and the lEI line is High. If

the lEI line is Low, the IUS bit is not set, and
the device is inhibited from placlng its vector
onto the data bus. In the Z80 peripherals, the
IUS bit is normally cleared by decoding the RETI
instruction, but can also be cleared by a software
command (510). In the Z8500 peripherals, the IUS
bit ia cleared only by software commands.

zoo Interrupt Daisy-Chain Qperation

In the Z80 peripherals, both the IP and IUS bits
control the lEO line and the lower portion of the
daisy chain.

When a peripheral's IP bit is set, its lEO llne is
forced Low. This is true regardless of the state
of the lEI line. Additionally, if the peripher­
aI's IUS bit is clear and its lEi line High, the
m line is also forced Low.

The Z80 peripherals sample for both 'Rf and TO'llll'
active, and ~ inactive to identify an Interrupt
Acknowledge cycle. When 'Rf goes active and ~ is
inactive, the peripheral detects an Interrupt
Acknowledge cycle and allows its interrupt dalsy
chain to aettle. When the ~ line goes active
with 'Rf active, the higheat priority lnterrupting
peripheral places its interrupt vector onto the
data bus. The IUS bit is also set to indicate
that the peripheral is currently under service.
As long as the IUS bit is set, the lEO line is
forced Low. This inhibits any lower priority
devices from requesting an interrupt.

2296-002 2-31

When the Z80 CPU executes the RET! instruction,
the peripherals monitor the data bus and the high­
est priority device under service resets its IUS
bit.

Z8500 Interrupt Daisy-Chain operation

In the Z8500 penpherals, the IUS bl t norm all y
controls the state of the lEO ll.ne. The IP blt
affects the dalsy chaln only durmg an Interrupt
Acknowledge cycle. Slnce the IP blt lS normally
not part of the Z8500 penpheral lnterrupt daisy
chain, there lS no need to decode the RET! In­
structlon. To allow for control over the daisy
chain, Z8500 peripherals have a Olsable Lower
Chain (OLC) software command that pulls lEO Low.
This can be used to selectlvely deactlvate parts
of the dalay chaln regardless of the interrupt
status. Table 1 shows the truth tables for the
Z8500 lnterrupt dalsy-chain control signals during
certaln cycles. Table 2 shows the lnterrupt state
dlagram for the Z8500 perlpherals.

Table 1. Z8500 Daisy-Chain Control Signals

Truth Table for Truth Table for
Daisy Chain Signsls Daisy Chain Signals
During Idle State Ouring iNiAiX Cycle

lEI IP IUS lEO lEI IP IUS lEO

0 X X 0 0 X X 0
X 0 X 0
X 0 X 0

0 0

~~~----~-~-- -._ .. 



Table 2. Z0500 Interrupt State Diagra. 

Interrupt COndItIon 

~ 
IrEI HIgh? 

<------> Walt for CPU INTACK Cycle 

INTACK * lEI * RD 

CPU Read, WrIte, or Reset IP 

lEO HIgh? 

Return to main program 

The Z8500 perIpherals use INTACK (Interrupt 
Acknowledge) for recognItIon of an Interrupt 
Acknowledge cycle. ThIS pin, used in conjunction 
with RD, allows the ZB500 perIpheral to gate ItS 
interrupt vector onto the data bus. An actIve RD 
sIgnal during an Interrupt Acknowledge cycle 
performs two functIons. flrst, it allows the 
highest prIority device requestIng an Interrupt to 
place its Interrupt vector on the data bus. 
Secondly, it sets the IUS bit in the highest 
PrIOrlty devlCe to indlcate that the device IS 
currently under serVIce. 

INPUT/OUTPUT CYCLES 

Although ZB500 perIpherals are designed to be as 
universal as possible, certaIn timing parameters 
dl ffer from the standard ZBO tlming. The 
followIng sectlOns discuss the I/O interface for 
each of the ZBO CPUs and the ZB500 peripherals. 
FIgure 5 depIcts lOgIC for the ZBOA CPU to Z8500 
perlpherals (and ZBOB CPU to ZB500A perlpherals) 
I/O Interface as well as the Interrupt Acknowledge 

2-32 

interface. FIgures 4 and 7 depIct some of the 
logic used to lnterface the ZBOH CPU to the ZB500 
and ZB500A peripherals for the I/O and Interrupt 
Acknowledge interfaces. The logic required for 
adding additional Wait states into the timing flow 
is not discussed in the folowing sections. 

ZOOA CPU to Z0500 Peripherals 

No additional Wait states are necessary during the 
I/O cycles, although additional Wait states can be 
inserted to compensate for timing delays that are 
inherent. in a system. Although the ZBOA timing 
parameters indicate a negative value for data 
valid prior to Wll', this is a worse than "worst 
case" value. This parameter is based upon the 
longest (worst case) delay for data available from 
the falling edge of the CPU clock minus the 
shortest (best case) delay for CPU clock High to 
Wll' Low. The negative value resulting from these 
two parameters does not occur because the worst 
case of one parameter and the best case of the 
other do not occur within the same device. This 
indicates that the value for data available prior 
to Wll' will always be greater than zero. 

All setup and pulse width times for the ZB500 
peripherals are met by the standard ZBOA timing. 
In determinIng the interface necessary, the rr 
signal to the ZB500 peripherals is assumed to be 
the decoded address qualified with the 11l1llr 
signal. 

Figure 3a shows the minimum ZBOA CPU to ZB500 
peripheral interface timing for I/O cycles. If 
additional Wait states are needed, the same number 
of Wait states can be inserted for both I/O Read 
and Write cycles to simplify interface logic. 
There are several ways to place the ZBOA CPU into 
a Wait condition (such as counters or shift 
registers to count system clock pulses), depending 
upon whether or not the user wants to place WaH 
states in all I/O cycles, or only during ZB500 I/O 
cycles. Tables 3 and 4 list the ZB500 peripheral 
and the ZBOA CPU timing parameters (respectively) 
of concern during the I/O cycles. Tables 5 and 6 
list the equations used in determining if these 
parameters are satisfied. In generating these 
equations and the values obtained from them, the 
required number of Wait states was taken into 
account. The reference numbers in Tables 3 and 4 
refer to the timing diagram in Figure 3a. 



Table 3. l8500 Ti.ing Para.eters I/O Cycles 

!forst Case 
Min Max Iktits 

6. TsA(WR) Address to WR Low Setup 80 ns 
1. TsA(RD) Address to Ro Low Setup 80 ns 
2. TdA(DR) Address to Read Data Valid 590 ns 

TsCEl(WR) IT Low to WR Low Setup 0 ns 
TsCEl(RD) IT Low to Ro Low Setup 0 ns 

4. TwRDI Ro Low Width 390 ns 
8. TwWRI WR Low Width 390 ns 
3. TdRDf(DR) Ro Low to Read Data Valid 255 ns 
7. TsDW(WR) Write Data to WR Low Setup 0 ns 

Table 4. Z80A Ti~ng Para.eters I/O Cycles 

!forst Case 
Min Max Iktits 

TcC Clock Cycle Period 250 ns 
TwCh Clock Cycle High Width 110 ns 
TfC Clock Cycle Fall Time 30 ns 
fdCr(A) Clock High to Address Valid 110 ns 
TdCr(RDf) Clock High to R5 Low 85 ns 
T dCr (IORQf) Clock High to IORQ Low 75 ns 
TdCr(WRf) Clock High to WR Low 65 ns 

5. TsD(Cf) Data to Clock Low Setup 50 ns 

Table 5. Para.eter Equations 

l8500 l80A 
Para.eter Equation Value Iktits 

TsA(RD) TcC-TdCr(A) 140 min ns 
TdA(DR) 3TcC+TwCh-TdCr(A)-TsD(Cf) 800 min ns 
T dRDf(DR) 2TcC+TwCh-TsD(Cf) 460 min ns 
TwRDl 2TcC+TwCh+TfC-TdCr(RDf) 525 min ns 
TsA(WR) TcC-TdCr(A) 140 min ns 
TsDW(WR) > 0 min ns 
TwWRl 2TcC+TwCh+TfC-TdCr(WRf) 560 min ns 

Table 6. Para.eter Equations 

l80A l8500 
Paranaeter Equation Value Iktits 

TsD(Cf) Address 
3TcC+TwCh-TdCr(A)-TdA(DR) 160 min ns 
Ri5 
2TcC+TwCh-TdCr(RDf)-TdRD(DR) 135 min ns 

2-33 



CLOCK 

ADDR 

CPU 
DATA IN 

WR 

CPU 
DATA OUT 

VALID DATA 

Figure Ja. Z80A CPU to Z8500 Peripheral Minimum I/O Cycle Ti.ing 

Z80B CPU to Z8500A Peripherals 

No additional Wait states are necessary during I/O 
cycles, although Wait states can be inserted to 
compensate for ,any system delays. Al though the 
Z80B timing parameters indicate a negative value 
for data valid prior to Ym", this is a worse than 
"worst case" value. This parameter is based upon 
the longest (worst case) delay for data available 
from the falling edge of the CPU clock minus the 
shortest (best case) delay for CPU clock High to 
W Low. The negative value resulting from these 

2-34 

two parameters does not occur because the worst 
case of one parameter and the best case of the 
other do not occur within the same device. This 
indicates that the value for data available prior 
to W will always be greater than zero. 

All setup and pulse width times for the Z8500A 
peripherals are met by the standard Z80B timing. 
In determining the interface necessary, the IT 
signal to the Z8500A peripherals is assumed to be 
the decoded address qualified with the ~ 
signal. 

2296-003 



Figure 3b shows the minimum ZBOS CPU to ZaSOOA 
peripheral interface timing for I/O cycles. If 
additional Wait states are needed, the same number 
of Wait states can be inserted for both I/O Read 
and I/O Write cycles in order to simplify inter­
face logic. There are several ways to place the 
ZBOS CPU into a WaH condition (such as counters 
or shift registers to count system clock pulses), 
depending upon whether or not the user wants to 
place Wait states in all I/O cycles, or only 

CLOCK 

ADDR 

CPU 
DATA IN 

during ZBSOOA 1/0 cycles. Tables 7 and a list the 
ZBSOOA peripheral and the zaoa CPU timing 
parameters (respectively) of concern during the 
I/O cycles. Tables 9 and 10 list the equations 
used in determining if these parameters are satis­
fied. In generating these equations and the 
values obtained from them, the required number of 
Wait states was taken into account. The reference 
numbers in Tables 7 and B refer to the timing 
diagram of Figure 3b. 

CPU 
DATA OUT --------f VALID DATA >---------

Figure Jb. Z80B CPU to Z8500A Peripheral Minimum I/O Cycle Timing 

2296-004 2-35 



Table 7. Z8500A Timing Parameters I/O Cycles 

Worst Case Min Max lkIits 

6. TsA(WR) Address to WR Low Setup 80 ns 
1- TsA(RD) Address to iii) Low Setup 80 ns 
2. TdA(DR) Address to Read Data Val1d 420 ns 

TsCU(WR) CE Low to WR Low Setup 0 ns 
TsCEl(RD) CE Low to iii) Low Setup 0 ns 

4. TwRDI iii) Low Width 250 ns 
8. TwWRI WR Low W1dth 250 ns 
3. TdRDf(DR) iii) Low to Read Data Val1d 180 ns 
7. TsDW(WR) Wr1te Data to WR Low Setup 0 ns 

Table 8. Z80B Timing Parameters I/O Cycles 

Worst Case Hin Max lkIits 

fcC Clock Cycle Per10d 165 ns 
TwCh Clock Cycle H1gh Wldth 65 ns 
TfC Clock Cycle Fall T1me 20 ns 
fdCr(A) Clock High to Address Valid 90 ns 
TdCr(RDf) Clock H1gh to RB Low 70 ns 
fdCr( IORQf) Clock H1gh to IORQ Low 65 ns 
TdCr(WRf) Clock H1gh to WR Low 60 ns 

5. TsO(Cf) Data to Clock Low Setup 40 ns 

Table 9. Parameter Equations 

Z8500A Z80B 
Par_ter Equation Value lkIits 

TsA(RD) TcC-TdCr(A) >75 m1n ns 
TdA(OR) 3TcC+TwCh-TdCr(A)-TsD(Cf) 430 min ns 
TdROf(DR) 2TcC+TwCh-TsD(Cf) 345 min ns 
TwRDl 2TcC+TwCh+TfC-TdCr(RDf) 325 min ns 
TsA(WR) TcC-TdCrCA) 75 mw ns 
TsDW(WR) > 0 mw ns 
TwWRl 2TcC+TwCh+TfC-TdCr(WRf) 352 m1n ns 

Table 10. Par_ter Equations 

Z80B Z8500A 
Par_ter Equation Value 1k11ts 

TsD(Cf) Address 
3TcC+TwCh-TdCr(A)-TdA(DR) 50 m1n ns 
RD 
2TcC+TwCh-TdCr(RDf)-TdRD(DR) 75 min ns 

2-36 



Z80H CPU to 18500 Peripherals 

During an I/o Read cycle, there are three l850D 
parameters that must be satisfied. Depending upon 
the loading characteristics of the m) signal, the 
designer may need to delay the leading (falling) 
edge of m; t.o satisfy the l8500 timing parameter 
TsA(RD) (Address Valid to m; Setup). Since l80H 
timing parameters indicate that the m; signal may 
go Low after the falling edge of T2' it is 
recommended t.hat the r ising edge 0 f the system 
clock be used to delay m) (if necessary). The CPU 
must also be placed into a Wait condition long 
enough to satisfy TdA(DR) (Address Valid to Read 
Data Valid Delay) and TdRDf(DR) (m; Low to Read 
Data Valid Delay). 

During an I/O Write cycle, there are three other 
Z8500 parameters that must be satisfied. 
Depending upon the loading characteristics of the 
WR" signal and the data bus, the designer may need 
to delay the leading (falling) edge of WR" to 
satisfy the Z8500 timing parameters TsA(WR) 
(Address Valid to WR" Setup) and TsDW(WR) (Data 
Valid Prior to WR" setup). Since Z80H timing 
parameters indicate that the WR signal may go Low 
after the falling edge of T 2' it is recommended 
that the rising edge of the system clock be used 
to delay WR" (if necessary). This delay will 
ensure that both parameters are satisfied. The 
CPU must also be placed into a Wait condition long 

Table 11. 1811l Timing 

Equation 

enough to satisfy TwWRI (WR" Low Pulse Width). 
Assuming that the WR" signal is delayed, only two 
additional Wait states are needed during an I/O 
Write cycle when interfacing t.he Z80H CPU to the 
Z8500 peripherals. 

To simplify the I/o interface, the designer can 
use the same number of Wa~t states for both I/O 
Read and I/O Write cycles. Figure 3c shows the 
minimum Z80H CPU to z8500 peripheral interface 
timing for the I/O cyclea (assuming that the same 
number of Wait states are used for both cycles and 
that both m) and WR" need to be delayed). Figure 
4 shows two circuits that can be used to delay the 
leading (falling) edge of either the m) or the WR" 
signals. There are several ways to place the l80A 
CPU into a Wait condition (such as counters or 
shift registers to count system clock pulses), 
depending upon whether or not the user wants to 
place Wait states in all I/O cycles, or only 
during l8500 I/O cycles. Tables 4 and 11 list the 
Z8500 peripheral and the Z80H CPU t~mlng 

parameters (respectIVely) of concern during the 
I/O cycles. Tables 14 and 15 hst the equatlOns 
used in determining 1 f these parameters are 
satlsfled. In generatlng these equations and the 
values obtained from them, the reqUired number of 
Wait states was taken into account. The reference 
numbers in Tables 4 and 11 refer to the llming 
diagram of Figure 3c. 

Parlllleter I/O Cycles 

Min Max Units 

TcC Clock Cycle Period 125 ns 
TwCh Clock Cycle High Width 55 ns 
rfC Clock Cycle Fall Time 10 ns 
rdCr(A) Clock High to Address Valid 80 ns 
TdCr( RDr) Clock High to lID Low 60 ns 
r dCr( IORQf) Clock High to IORQ Low 55 ns 
TdCr(WRr) Clock H~gh to WR Low 55 ns 

5. TsD(Cr) Data La Clock Low Setup 3D ns 

Table 12. Parameter Equations 

18500 18m 
Parameter Equation Value Unlts 

TsA(RD) 2TcC-TdCr(A) 170 min ns 
TdA(DR) 6TcC+TwCh-TdCr(A) - TsD(er) 695 min ns 
TdRDf(DR) 4TcC+TwCh-TsD(Cf) 523 min ns 
TwRDI 4TcC+TwCh+TfC-TdCr(RDf) 503 mln ns 
TsA(WR) WR - delayed 

2TcC-TdCr(A) 170 min ns 
TsDW(WR) > 0 mln ns 
TwWRI 4TcC+rwCh+TfC 563 m~n ns 

2-37 

-~--",------~-------=----------



CLOCK 

ADDR 

IORQ 

CE 

WAIT 

RD 

RDD 

READ 

CPU 
DATA IN 

T1 

WRITE ------------------------~ 

CPU 
DATA OUT 

VALID DATA 

figure le. ZIIIIl CPU to Z8500 Peripheral MiniRa I/O Cycle Titling 

2-38 2296-005 



Z80H CPU to Z8500A Peripherals 

During an I/O Read cycle, there are three ZB500A 
parameters that must be satisfied. Oepending upon 
the loading characteristics of the ~ signal, the 
designer may need to delay the leading (falling) 
edge of 1m" to satisfy the ZB500A timing parameter 
TsA(RD) (Address Valid to liIT Setup). Slnce ZBOH 
timing parameters indicate that the ~ signal may 
go' Low after the falling edge of TZ' it is 
recommended that the rising edge of the system 
clock be used to delay ~ (if necessary). The CPU 
must also be placed into a Wait cond1tion long 
enough to satisfy TdA(DR) (Address Valid to Read 
Data Valid Delay) and TdRDf(DR) (~Low to Read 
Oat a Valid Oelay). Assuming tha~ the ~ slgnal is 
delayed, then only one additional Wait state is 
needed during an I/O Read cycle when interfacing 
the ZBOH CPU to the ZB500A peripherals. 

During an I/O Write cycle, there are three other 
ZB500A parameters that have to be satisfied. 
Depending upon the loading characteristics of the 
WR signal and the data bus, the designer may need 
to delay the leading (falling) edge of WR to 
satisfy the ZB500A timing parameters TsA(WR) 
(Address Valid to WR Setup) and TsDW(WR) (Data 
Valid Prior to WR Setup). Since ZBOH timing 
parameters indicate that the WR signal may go Low 
after the falling edge of T Z' it is recommended 
that the rising edge of the system clock be used 

to del ay WR (if necessary). This delay will 
ensure that both parameters are satisfied. The 
CPU must also be placed into a Wait condition long 
enough to satisfy TwWRl CWR" Low Pulse Width). 
Assuming that the ~ signal is delayed, then only 
one additional Wait state is needed during an I/O 
Write cycle when interfacing the ZBOH CPU to the 
ZB500A peripherals. 

Figure 3d shows the minimum ZBOH CPU to ZB500A 
peripheral interface timing for the I/O cycles 
(assuming that the same number of Wait states are 
used for both cycles and that both ~ and ~ need 
to be delayed). Figure 4 shows two circuits that 
may be used t.o delay the leading (falling) edge of 
either the ~ or the ~ signals. There are 
several methods used to place the ZBOA CPU into a 
Wait condition (such as counters or shift 
registers to count system clock pulses), depending 
upon whether or not the user wants to place Wait 
states in all I/O cycles, or only during ZB500A 
I/O cycles. Tables 7 and 11 hst the ZB500A 
perlpheral and the ZBOH CPU tlmlng parameters 
(respect1vely) of concern dUrlng the I/O cycles. 
Tables 14 and 15 IlSt the equatlons used in 
determlnlng if these parameters are satisfied. In 
generatlng these equatlons and the values obtained 
from them, the requlred number of Walt states was 
taken into account. The reference numbers ln 
Tables 4 and 11 refer to the llffilng dlagram of 
Flgure 3d. 

Table 13. Parameter Equat10ns 

ZBm 
Parameter 

TsD(Cf) 

TsA(RD) 
TdA(DR) 
T dRDf(OR) 
fwROl 
TsA(WR) 

TsDW(WR) 
fwWRl 

Z8500 
Equation 

Address 
6TcC+TwCh-TdCr(A)-TdA(DR) 
RD - delayed 
4TcC+TwCh+TfC-TdRD(DR) 

Table 14. Parameter Equations 

Z8m 
Equation 

ZTcC-TdCr(A) 
6TcC+TwCh-TdCr(A)-TsD(Cf) 
4TcC+TwCh-TsD(Cf) 
4TcC+TwCh+TfC-TdCr(ROf) 
WR - delayed 
ZTcC-TdCr(A) 

2TcC+TwCh+TfC 

2-39 

Value lkIits 

135 mln ns 

300 mw ns 

Value lkIits 

170 mln ns 
695 mw ns 
525 mlll ns 
503 mil ns 

170 min ns 
> 0 min ns 
313 mln ns 



CLOCK 

CPU 
DATA IN 

CPU 
DATA OUT 

VALID DATA 

I ... CD 

VALID DATA 

figure Jd. lOOO CPU to l0500A Peripheral Mini_ I/O Cycle Ti.ing 

2-40 

~ 
) 

2296-006 



+ 

74LS32 
S 

RD(WR) D Q 
RDD(WRD) 

CLOCK CK Q 

C 

74LS74 

+ 

RD(WR) D Q RDD(WRD) 

CLOCK CK Q 

C 

74LS74 

+ 

+ 

S 
D Q 

CLOCK CK Q Rim (Wim) 

C 

74LS74 

RD(WR) 

Figure 4. Delaying RD or WR 

Table 15. Para.eter Equationa 

Z811t Z8500A 
Par_ter Equation Value lhits 

TsD(Cf) Address 
4TcC+TwCh-TdCr(A)-TdA(DR) 55 mIn ns 
iID - delayed 
2TcC+TwCh-TdRD(DR) 125 mIn na 

2296-007 2-41 



INTERRUPT ACKNOIIlEDGE CYCLES 

The primary tIming d1 fferences between the ZBO 
CPUs and ZB500 peripherals occur 1n the Interrupt 
Acknowledge cycle. The ZB500 tIming parameters 
that are sign1ficant durIng Interrupt Acknowledge 
cycles are 11sted in Table 16, while the ZBO 
parameters are 11sted in Table 17. The reference 
nl.lllbers 1n Tables 16 and 17 refer to Figures 6, 
Ba, and Bb. 

I f the CPU and the peripherals are running at 
different speeds (as with the ZBOH interface), the 
INTACK signal must be synchronized to the 
peripheral clock. Synchronization is discussed in 
detail under Interrupt Acknowledge for ZBOH CPU to 
ZB500/B500A Peripherals. 

During an Interrupt Acknowledge cycle, ZB500 
peripherals require both INTACK and RD to be 
active at certain times. Since the ZBO CPUs do 
not issue either INTACK or RD, external logic must 
generate these signals. 

Generating these two signals is easily ac­
complished, but the ZBO CPU must be placed into a 
Wait condition until the peripheral interrupt 
vector is valid. If more peripherals are added to 
the daisy chain, additional Wait states may be 

Table 16. Z8500 Tiaing Parueters 

Worst Case 

1. TsIA(PC) IN TACK Low to PCLK High Setup 
ThIA(PC) INTACK Low to PCLK High Hold 

2. TdIAi(RD) INTACK Low to RD (Acknowledge) 
5. TwRDA AD (Acknowledge) Width 
3. TdRDA(DR) R5 (Acknowledge) to Dsta Valid 

TsIEI(RDA) lEI to R5 (Acknowledge) Setup 
ThIEI(RDA) lEI to RD (Acknowledge) Hold 
TdIEr( IE) lEI to lEO Delay 

necessary to give the daisy chain time to settle. 
Sufficient time between INTACK active and RD 
active should be allowed for the entire daisy 
chain to settle. 

Since the ZB500 peripheral daisy chain does not 
use the IP flag except during interrupt 
acknowledge, there is no need for decoding the 
RETI instruction used by the ZBO peripherals. In 
each of the ZB500 peripherals, there are commands 
that reset the individual IUS flags. 

EXTERNAl INTERFACE LOGIC 

The following sections discuss external interface 
logic required during Interrupt Acknowledge cycles 
for each interface type. 

CPU/Peripheral Sale Speed 

figure 5 shows the logic used to inter face the 
ZBOA CPU to the ZB500 peripherals and the ZBOB CPU 
to ZB500A peripherals during an Interrupt 
Acknowledge cycle. The primary component in this 
logic is the Shift register (74LS164), which 
generates nITl\l:l(, l!rAl5", and mIT. 

Interrupt Acknowledge Cycles 

4111z 6 MHz 
Min Max Min Max Im.ts 

100 100 ns 
100 100 ns 

Low 350 250 ns 
350 250 ns 

250 1BO ns 
120 100 ns 
100 70 ns 

150 100 ns 

Table 17. Z80 CPU Tilling ParaEters Interrupt Acknowledge Cycles 

Worst Case 

TdC(M1f) 
TdM1f( IORQf) 

4. TsD(Cr) 

4 MHz 
Min Max 

Clock Hi gh to M1 Low Delay 100 
M1 Low to IORQ Low Delay 575* 
Data to Clock High Setup 35 

*ZBOA: 
ZBOB: 
ZBOH: 

2TcC + TwCh + TfC - 65 
2TcC + TwCh + TfC - 50 
2TcC + TwCh + TfC - 45 

2-42 

6111z B IIIz 
Min Max Min Max Itlits 

BO 70 ns 
345* 275* ns 

30 25 ns 



74LS11 

WR.-----------------------------------~~~ }--... WRITE 

RESET 

RD -------------------~ 

74LS164 

INTACK 
A QO ~-------_;~~~~ ... INTACK 

74LS04 Q1 74LS04 74LS04 
B Q2 

Q3 

CLR Q4 

Q5 74LS04 
CLOCK QS 

Q7 

74LS11 74LSOO 

WAIT ~-----------_i 

'------------c WAIT' 

figure 5. Z80A/Z8OB CPU to Z8500/Z8500A Peripheral Interrupt Acknowledge Interface Logic 

During I/O and normal memory access cycles, the 
Shift register remains cleared because the ~ 
signal is inactive. During opcode fetch cycles, 
also, the Shift register remains cleared, because 
only Os can be clocked through the register. 
Since Shift register outputs are Low, ~, 
'I'IIIT1T, and mITT are controlled by other system 
logic and gated through the AND gates (74LS11). 
During I/O and normal memory access cycles, ~ 
and 'I'IIIT1T are active as a result of the system ~ 
and ~ signals (respectively) becoming active. 
I f system logic requires that the CPU be placed 
into a Wait condition, the mITT' signal controls 
the CPU. Should it be necessary to reset the 

system, ~ causes the interface logic to 
generate both ~ and 'I'IIIT1T (the Z8500 peripheral 
Reset condition). 

Normally an Interrupt Acknowledge cycle is 
indicated by the ZSO CPU when ~ and TUror are both 
active (which can be detected on the third rising 
clock edge after T1). To obtain an early indica­
tion of an Interrupt Acknowledge cycle, the Shift 
register decodes an active ~ in the presence of 
an inactive NRr[ on the rising edge of T2 • 

During an Interrupt Acknowledge cycle, the ~ 
signal is generated on the rising edge 0 f T 2. 

2296-00S 2-43 

--------"'~-----.~ 

Since it is the presence of TIiffAl:I( and an active 
~ that gates the interrupt vector onto the data 
bus, the logic must also generate "RDiD at the 
proper time. The timing parameter of concern here 
is TdlAi(RD) [TIiffAl:I( to nIT (Acknowledge) Low 
Delay]. This time delay allows the interrupt 
daisy chain to settle so that the device 
requesting the interrupt can place its interrupt 
vector onto the data bus. The Shi ft register 
allows a sufficient time delay from the generation 
of TIfi'iiCK before it generates"RDiD. During this 
delay, it places the CPU into a Wait state until 
the valid interrupt vector can be placed onto the 
data bus. If the time between these two signals 
is insufficient for daisy chain settling, more 
time can be added by taking "RDiD and WAIT from a 
later position on the Shift register. 

Figure 6 illustrates Interrupt Acknowledge cycle 
timing resulting from the Z80A CPU to Z8500 
peripheral and the zaos CPU to Z8500A peripheral 
interface. This timing comes from the logic 
illustrated in Figure 5, which can be used for 
both interfaces. Should more Wait states be 
required, the additional time can be calculated in 
terms of system clocks, since the CPU clock and 
PCLK are the same. 



Twa Twa Tw Tw T3 

CLOCK 

VECTOR -------------------------------------------------4 
DATA ~------------J 

Figure 6. ZSOA/ZIIOB CPU to Z8500!Z8500A Peripheral Interrupt Acknowledge Interface Ti.ing 

Z80H CPU to Z8500!Z8500A Peripherals 

Figure 7 depicts logic that can be used in inter­
facing the ZBoH CPU to the ZB5oo/ZB5ooA peripher­
als. This logic is the same as that shown in 
Figure 5, except that a synchronizing flip-flop is 
used to recognize an Interrupt Acknowledge cycle. 
Since ZB500 peripherals do not rely upon PClK 
except during Interrupt Acknowledge cycles, 
synchronization need occur only at that time. 
Since the CPU and the peripherals are running at 
different speeds, ~ and 1m" must be 
synchronized to the ZB500 peripherals clock. 

Our ing 1/0 and normal memory access cyc les, the 
synchronizing flip-flop and the Shift register 
remain cleared because the 'R1 signal is inactive. 
During opcode fetch cycles, the flip-flop and the 
Shift register again remain cleared, but this time 
because the ~ signal is active. The synchro­
nizing flip-flop allows an Interrupt Acknowledge 
cycle to be recognized on the rising edge of T 2 
when 'R1 is active and ~ is inactive, generating 
the INTA signal. When INTA is active, the Shift 
register can clock and generate ~ to the 
peripheral and WAIT to the CPU. The Shift 
register delays the generation of 'RDIl) to the 
peripheral until the daisy chain settles. The 

2-44 

WAIT signal is removed when sufficient time has 
been allowed for the interrupt vector data to be 
valid. 

Figure Ba illustrates Interrupt Acknowledge cycle 
timing for the ZBoH CPU to ZB500 peripheral inter­
face. Figure Bb illustrates Interrupt Acknowledge 
cycle timing for the ZBOH CPU to ZB500A peripheral 
interface. These timings result from the logic in 
Figure 7. Should more Wait states be required, 
the needed time should be calculated in terms of 
PClKs, not CPU clocks. 

Z80 CPU to ZSO and Z8500 Peripherals 

In a zao system, a combination of ZBo peripherals 
and ZB500 peripherals can be used compatibly. 
While there is no restriction on the placement of 
the ZB500 peripherals in the daisy chain, it is 
recommended that they be placed early in the chain 
to minimize propagation delays during RET! cycles. 

During an Interrupt Acknowledge cycle, the lEO 
line from the ZB500 peripherals changes to reflect 
the interrupt status. Time should be allowed for 
this change to ripple through the remainder of the 
daisy chain before activating IORQ' to the ZBO 
peripherals, or 'RDIl) to the ZB500 peripherals. 

2296-009 



74LS11 

WR ~------------------------------------------~~r-~ }--. 

RESET ~------------------------------------------~~r-~ __ ~. 
RD ~----------------------------------------~ 

74LS74 
MREQ ------. 

INTA 
D o 

CLOCK ~--------------+-~ 

74LS164 
74LS04 

00 
INTACK 

INTACK A 

01 74LS04 
IREAD 

B 02 

03 

CLR 04 

Os 74LS04 

PCLK 06 

07 

74LS11 74LSOO 

WAIT 

WAIT' 

figure 7. Z80H to Z8500/Z850OA Peripheral Interrupt Acknowledge Interface Logic 

Our ing the RET! cycles, the lEO line from the 
ZB500 peripherals does not change state as in the 
ZBO pedpherals. As long as the peripherals are 
at the top of the daisy chain, propagation delays 
are minimized. 

The logic necessary to create the control signals 
for both ZBO and ZB500 peripherals is shown in 

2296-010 2-45 

Figure 9. This logic delays the generation of 
10RQ' to the ZBO peripherals by the same amount of 
time necessary to generate ~ for the Z8500 
peripherals. Timing for this logic during an 
Interrupt Acknowledge cycle is depicted in 
Figure 10. 



T, T2 Twa Twa Tw Tw Tw Tw Tw Tw Tw Tw T3 ,.......,. 
CLOCK 

M1 

lORa 

INTA 

~ 
PCLK 

J,.. 
OJ 

INTACK 

WAIT 

READ 

VECTOR 
DATA 

figure 8a. ZOOH CPU to Z8500 Peripheral Interrupt Acknowledge Interface T~ing 

'" !ll 
~ 



i 
TI T2 Twa Twa Tw Tw Tw Tw Tw T3 

CLOCK 

M1 

IORQ 

INTA 

PCLK 
IV 
,j,. 
o...J 

INTACK 

WAIT 

READ 

VECTOR 
DATA 

Figure Db. Z80H CPU to Z8500A Peripheral Interr .... t Acknowledge Interface Tilling 



74LS11 

- ~: WRITE ~ • -!"'''--
RESET ~ _ READ 

74LSOO 
RD 

74LS04 I I ~ ~ IORQ' 
IORQ ~~---------------------

74LS164 1 I 74LS04 

M--R-E-Q ~ A QO Fa INTACK 1 [:>0 II INTACK 
74LS04 Q1 74LS04 __ 

h... IREAD 
M1 B Q2 

~ Q3 

~ ~ ~ 
Qs r--o 74LS04 

CLOCK )I I> Q6 

Q7 

.J 
74LS11 74LSOO 

WAIT" ~ ~ __ 

WAIT' 

Figure 9. ZIIJ and Z8500 Peripheral Interrupt klcnMledge Interface logic 



T1 T2 Twa Twa Tw Tw Tw T3 

CLOCK 

M1 

IORQ 

tV INTACK 
tt 

WAIT 

READ 

IORQ' >{ \. 

Figure 10. lao and l8500 Peripheral Interrupt Acknowledge Interface Tilling 



SOFTWARE CONSIDERATIONS -- POLLED OPERATION 

There are several options available for servicing 
interrupts on the Z8500 peripherals. Since the 
vector or IP registers can be read at any time, 
software can be used to emulate the Z80 interrupt 

response. The interrupt vector read reflects the 
interrupt status condition even if the device is 
programmed to return a vector that does not 
reflect the status change (SAVor VIS is not 
set). The code below is a simple software routine 
that emulates the Z80 vector response operation. 

l80 Vector Interrupt Response, Emulation by Software 

;This code emulates the Z80 vector int.errupt 
;operation by reading the device interrupt 
;vector and forming an address from a vector 
;table. It then executes an indirect jump to 
;the interrupt service routine. 

INDX: LD A,CIVREG ;CURRENT INT. VECT. 
OUT (CTRL),A ;WRITE REG. PTR. 
IN A,(CTRL) ;READ VECT. REG. 
INC A ;VAUD VECTOR? 
RET Z ;NO INT - RETURN 
AND 00001110B ;MASK OTHER BITS 
LD E,A 
LD D,O ;FORM INDEX VALUE 
LD HL,VECTAB 

REG. 

ADD HL,DE ;ADD VECT. TABLE ADDR. 
LD A, (HL) ;GET LOW BYTE 
INC HL 
LD H,(HL) ;GET HIGH BYTE 
LD L,A ;FORM ROUTINE ADDR. 
JP (HL) ;JUMP TO IT 

VECTAB: DEFW INT1 
DEFW INTZ 
DEFW INT3 
DEFW INT4 
DEFW INT5 
DEFW INT6 
DEFW INT7 
DEFW INT8 

2-50 



A SUl'lE ZBO-Z8500 SYSTEM 

The ZB500 devices interface eaaily to the ZBO CPU, 
thus providing a system of considerable flexi­

bility. Figure 11 illustrates a simple system 
using the ZBOA CPU and the ZB536 Counter/Timer and 
Parallel 1/0 Unit (CIO) in a mode 1 or non­
interrupt environment. Since interrupt vectors 
are not used, the 'IFJ'rm line is tied High and no 
additional logic is needed. Because the ClO can 

be used in a polled interrupt environment, the TRT 
pin 1S connected to the CPU. The ZBO should not 
be set for mode 2 interrupts since the CI0 will 
never place a vector onto the data bus. Instead, 
the CPU should be placed into mode 1 interrupt 

mode and a global interrupt service routine can 

poll the CI0 to determine what caused the 
interrupt to occur. In t.his system, the software 
emulation procedure described above 1S effect.ive. 

+5V 

+5V 

INT ~--------------------~--------~ INT 8 

1. ZBO CPU 
2. lBO DMA 
5. ZBO PIO 

4. ZBO CTC 
5. ZBO SIO 

07-00 

RD 

Z80 
CPU 

WR 

A7-Ao 

lORa 

..... ---------,f--------~I 07-00 

)--------------01 RD 

)------------01 WR 

Z8536 
CIO 

I ... -+--+-...... -------~~--~ A1-Ao 

10----_---01 CE 

RESET ~---""'--I 

ClK WAIT PClK 

Figure 11. lBO to lB500 Silllple System ItJde 1 Interrupt or Non-Interrupt Structure 

Add~t1onal Information - Zllog Publications 

Technical Manual (05-0029-01 ) 7. ZBO fam11~ Interru~t Structure 
Technical Manual ( 00-20D-AO) Tutorial (611-1B09-0003) 
Technical Manual (03-000B-01) B. ZB530 SCC Techn1cal Manual (00-2057-01) 
Techn1cal Manual (03-0036-02) 9. ZB536 CIO Techn1cal Manual (00-2091-01) 
Technical Manual (05-3033-01 ) 10. lB03B flO Techn1cal Manual (00-2051-01) 

6. ZBOH CPU AC Character1stics (00-2293-01) 11. Zll0!l 19B2/B3 Data Book (00-2034-02) 

2296-015 2-51 





Z800™ 8/16-BII Microprocessor Famll, 3 
. -. -

___ ~~~~_~_ .-------.- ____ -- _~_-o-~----- - -- --





Zilog 

INTR(l)lJCTION 

As operating systems grow more sophisticated, 
application programs more complex, and the use of 
high-level languaqes even more prevalent, the need 
for increased memory addressing space and some 
form of memory protection becomes critical. 

The memory space requirements of many micro­
processor applications have grown beyond the 64K 
byte addressing range of today's S-bit micro­
processors. While the available 16-bit processors 
offer dramatically increased memory addressing 
capabilities, the conversion to these products 
often cannot be justified. For example, in many 
cases an application might be better suited for 
S-bit processing, and switching to a 16-bit 
processor could result in a costlier and less 
efficient implementation. Perhaps even more 
serious is the problem of software incompatibility 
that occurs when changing microprocessors. An 
ideal so lution is one that both extends memory 
addressing space and is object code compatible 

with the user's existing software. 

An additional requirement placed on the user by 
today's increasingly complex software is that o·f 
maintaining system integrity. In order to ensure 
this integrity, various parts of the system soft­
ware must be protected from illegal access. 
Although memory protection features are an impor­
tant part of memory management, they are not found 
on most microprocessors. 

3-3 

Z80® Memory Expansion For 
The Z800™ 

Application 
Note 

March-1983 

This application note describes a way in which the 
ZSO user can increase memory addressing space to 
16M and incorporate memory protection features 
while maintaining object code compatibility with 
application software. The memory management 
techniques employed here are a subset of those 
used by the lSOO series of microprocessors soon to 
be released by Zilog. These techniques provide a 
direct path to the implementation of some lSDO 
features before the fully-integrated solution is 
available. 

MEMORY MANAGEM£NT TECHNIQUES 

Before discussing the techniques used to expand 
the addressing space and provide memory 
protection, the concept of logical and physical 
addresses and of pages in memory needs to be 
explained. The logical address is the address 
generated by the microprocessor, and the physical 
address is the address received by the system 
memory. In a microprocessor system with no memory 
management, the physical address is the same as 
the logical address (Figure 1, section a). In a 
microprocessor system with memory management, the 
logical address generated by the processor is 
translated, or expanded, by the Memory Management 
Unit (MMU) before being sent to the system memory 
as the physical address (Figure 1, section b). 
For example, the 16-bit logical address of the ZSO 
could easily be expanded by an MMU to a 24-bit 
address. 

----, --~-------.--~------------'---



ADDRESS BUS 

8·BIT 
CPU 

(a) 

DATA BUS 

ADDRESS 

16 

8 

EXPANDED 
ADDRESS 

64K (2 .. ) 
BYTES OF 
MEMORY 

BUS 
MEMORY 

BUS 

MANAGEMENT 

16 UNIT n 
8·BIT 2" BYTES 

CPU OF MEMORY (b) 

DATA BUS 

8 

Figure 1. Address Expansion with Memory Management 

While there are many techniques that can be used 
to implement the address translation process, this 
application note considers the paging technique 
only. Two concepts are essential to the compre­
hension of paging: that of a logical page, which 
is a section of the address space of the micro­
processor; and that of a page frame, which is a 
section of physical memory. A page frame is 
simply a fixed-length block of physical memory. 
For the purposes of this application note, a page 
frame consists of a 4K (4096 bytes) block of 
physical memory. Each byte of a page frame can be 

15 

16·BIT 
MAPPING REGISTERS 

14 80016 

13 FFF16 

2 

unique ly addressed by a combination of 12 address 
lines (12 bits specify 4096 bytes). The 64K 
logical address space of an B-bit microprocessor 
contains 16 logical pages, and a 16M physical 
address space contains 4096 (4K) page frames. A 
memory management system maps the 16 logical pages 
that the microprocessor "sees" into 16 of the 4K 
page frames in the 16M physical memory (Figure 
2) • By partitioning the physical memory space 
into 4K page frames, both memory address space 
expansion and memory protection can be easily 
accomplished. 

4K BYTE WIDE 
PAGE FRAMES IN 

PHYSICAL MEMORY 

FFF XXX16 

FFE XXX16 

FFD XXX16 

FFC XXX16 

FFB XXX16 

803 XXX16 

802 XXX16 

801 XXX16 

800 XXX16 

7FF XXX16 

004 XXX16 

003 XXX16 

002 XXX16 

001 XXX16 

000 XXX16 

Figure 2. Memory Management System 

3-4 2265·001, 002 



MEIIIRY ADDRESS SPACE: EXPANSION 

Memory address space expansion consists of taking 
a 16-bit logical address output by the micro­
processor and generating from that a 24-bit 
physical address. The logical address is divided 
into two parts, a 12-bit displacement field and a 
4-bit index fie ld. The index field is used to 
select one of 16 registers known as page 
descriptor registers. Each page descriptor 
register contains 12 bits of addressing informa­
tion, which is used to identify a page frame in 
physical memory. The page descriptor registers 
reside in the I/O space of the system and are 
maintained by the operating system. The physical 
address is generated by concatenating the 12 bits 
of page descriptor information from the selected 
page descriptor register with the 12-bit displace­
ment field of the logical address. Therefore, 
when the microprocessor places a 16-bit logical 
address on the Address bus, the lower 12 bits 
(AO-A11 ) of the address are presented to the 
physical memory and Address bits A12-A15 are used 
to select one of the 16 page descriptor regis­
ters. The 12 bits of address contained in the 
selected register are placed on the bus to form 
the upper 12 bits of the physical Address 
(A12-An ). This process is shown in Figure 3. 

4 

16·BIT LOGICAL ADDRESS 

16-BIT PAGE DESCRIPTOR REGISTERS 

:: I I I 
I 4 BITS I 

2 

o 

I.. 12 BITS _1-. 
I PAGE FRAME ADDRESS I ATTRIBUTE 

I BITS • 
I 

12 BITS 
DISPI:.ACEMENT 

24·BIT PHYSICAL ADDRESS 

Figure ,. Logical-to-Physical Address 
Translation Process 

2265·003 

12 

3-5 

The 16 page descr iptor registers allow the user to 
access 16 separate page frames (64K bytes of 
active memory) at anyone time. If it becomes 
necessary to access a page frame other than one of 
the 16 that are current ly active, the operating 
system simp 1 y uses an I/O instruct ion to load a 
new page frame value into the appropriate page 
descriptor register. If the page descriptor 
registers are loaded with hex ooo-oor, the 
resultant addressing is exactly the same as if the 
address space expansion were not present (i. e. , 
the 24-bit physical Address bus addresses memory 
locations hex OOOOOO-OOFFFT). 

MEIIIRY PROTECTION 

The memory protection features are implemented by 
using attributes associated with each page frame 
of memory. This is accomplished by aSSigning four 
bits of attributes to each page descriptor 
register. The page descriptor registers are 16 
(rather than 12) bits wide. When a page de­
scriptor register is selected by Address bits 
A12-A15, both the address and attribute informa­
tion corresponding to that particular page frame 
is accessed. Attribute bits are used by external 
circuitry in the memory management system to 
monitor the types of accesses made to the page 
frames and to record information about the use of 
the page blocks. The attribute bits are the Valid 
bit, Write-Protect bit, and Modified bit, with one 
bit reserved for future use. A comp lete page 
descriptor register is shown in Figure 4. 

The Valid bit is used to indicate if the page 
frame of memory associated with that particulAr 
page descriptor register can be accessed. This 
bit can be read from or written to by performing 
an I/O read or write to the appropriate page 
descriptor register. If the Valid bit of a page 
register is set to 1, it can be used to access 
memory. If the bit is cleared to 0, a memory 
access to that register is invalid. When an in­
valid access is made, an interrupt is generated 
and the address that caused the invalid access is 
saved for processing by the interrupt service 
routine. 

The Write-Protect bit is used to assign 
attributes to page frames of memory. 
Valid bit, the Wr ite-Protect bit can be 
or written to by the user. If the bit 

read-only 
Like the 

read from 
is set to 

1, the memory is write-protected and an interrupt 
occurs if a write to memory is attempted. When 
the Write-Protect bit is cleared to 0, both read 
And write operations can be performed. This bit 



VALID BIT 
l-PAGE OK TO USE 

O-PAGE UNAVAILABLE 

WRITE PROTECT BIT 
l-READ ONLY 

O-READ AND WRITE 

MODIFIED BIT 
l-PAGE FRAME HAS BEEN WRITTEN TO 
O-PAGE FRAME NOT YET WRITTEN TO 

RESERVED 
BIT 

Figure 4. Page Descriptor Register Format 

is useful in a system in which multiple processors 
share common memory, or in which an operating 
system needs to be protected from accidental 
writes by an executing program. 

The Modified bit is a status bit that is auto­
matically set whenever a write is performed to a 
logic a 1 address within the page frame. It can be 
cleared only by reloading a a into the appropriate 
lower bit of the page descriptor register. The 
Modified bit is used to indicate if the page frame 
has been used for a memory access and is helpful 
in determining whether the information in the page 
frame needs to be copied to secondary storage 
before using the page frame for another purpose. 

LOADING PAGE DESCRIPTOR REGISTERS 

The page descriptor registers reside in the 
microprocessor's I/O space and are accessed by the 
microprocessor's I/O instructions. Each register 
is 16 bits long and so must be read to or written 
from twice in order to access the full register. 
To facilitate this double access, two I/O 
addresses are assigned to each page descriptor 
register: one for the upper byte and one for the 
lower byte. The assigned I/O addresses are listed 
in Table 1. The page descriptor registers can be 
accessed either individually or (by using the 
microprocessor's Block I/O instructions) as a 
block in I/O space. 

3·6 

Due to the uncertain state of the register content 
at power-up, certain provisions are necessary to 
ensure that the system behaves in a predictable 
manner. A bypass mechanism known as Pass mode 
enables the microprocessor to begin its 
initialization as if no memory management 
circuitry were present. In Pass mode, logical 
Address bits A12-A15 are passed on to physic a 1 
Address bits A12-A15 and the physical Address bits 
A16-A23 are set Low. After initializing the page 
descriptor registers, the microprocessor can then 
enter Address Translation mode. 

Table 1. I/O Port Registers 

Port 
Address Registers 

X X a a System control port 
X X a 3 Page fault and system status 
X X 1 a Page descriptor register a (low byte) 
X X 1 Page descriptor register a (high byte) 
X X 1 2 Page descriptor register 1 (low byte) 
X X 1 3 Page descriptor register 1 (high byte) 
X X 1 4 Page descriptor register 2 (low byte) 
X X 1 5 Page descriptor register 2 (high byte) 

X X 2 E Page descriptor register 15 (low byte) 
X X 2 F Page descriptor register 15 (high byte) 

2265-004 



IMPLEMENTATION or MEMORY MANAGEMENT TECHNIQUES 

Implementation of the memory management techniques 

described above for the ZBO consists of circuitry 
for the memory address space expansion and memory 
protection features, as well as the necessary 
logic for power-up and interrupt-handling. 

The memory address space expansion circuitry is 
based on the 745612 Memory Mapper. This TTL 
circuit contains sixteen 12-bit registers which 
are used as page descr iptor registers. Because 
the Memory Mapper's registers are only 12 bits 
wide, sixteen 4-bit registers must be added to 
utilize the protection features. These 4-bit 
registers are added in the form of a 16 x 4 RAM 

a LINES (MOo THROUGH M07) 

CS----~~r-----, 

MULTIPLEXER 
4 

MAo THROUGH MA3-++-........ cs = M 

RSo THROUGH RS3--+ __ -+lCS = L 

16x12 
RAM ARRAY 

MAP REGISTER 
ADDRESS 

12 12 
Do THROUGH D11-++-"""--I_--f--f~NATA 

STROBE--;--+-----~ 

12 

Riw'----------L..J 

(745219) and an associated multiplexer (745257). 
The registers contained in the RAM form the basis 
on which the attribute bits are associated with 

each page frame. These registers and the mapper 
registers are loaded at the same time, and 
together they form a set of 16-bit registers. 

A functional block diagram of the circuit is shown 
in Figure 5. The diagram shows two address paths 
to the register set through the multiplexer. 
Input pins R50-R53 se lect a register for reading 
or loading during an I/O operation, and pins MAO­
MA3 are used to generate a physical address. 
Logical address bits A12-A15 from the micro­
processor are the input signals to the map address 
inputs MAO-MA3. 

4 

12 

C ME 

I~ I 
I r--, L1 LATCH 

LS610 I 12 MOo 
AND THROUGH 

12 I ~~~~ I BUFFER MO" 

MULTIPLEXER 

'- __ ..I 

PASS MODE 
(MM = H) 

MAO MOa 
MAl M09 
MA2 M010 
MA3 MOll 

Figure 5. Hemry Manager Block Diagram 

2265-005 3-7 



The 74S612 Memory Mapper's Pass mode of operation 
is slightly different from the Pass mode pre­
viously described, and provisions must be made for 
it to operate in the required manner. In Pass 
mode, the 74S612 places the upper four bits of the 
logical address (A12-A1S) on what corresponds to 
bits A20-A23 of the physical address while holding 
bits A12-A19 Low. This results in a physical 
address that is different from the logical address 
and makes Pass mode not useable for initializa­
tion. To correct this problem, the registers are 
loaded with data that has been rearranged so that 
Pass mode operates properly for initialization, 
but remains transparent to the user. This is ac­
complished by arranging the data lines and address 
output lines as shown in Figures 6a and 6b. 

Memory protection features are incorporated by 
examining the attribute bits in the page de­
scriptor register associated with the page frame 
of memory being accessed. Writing to or reading 
from a block of memory whose Valid bit is cleared 
to 0 or attempting to write to a page of memory 
whose Write-Protect bit is set to 1 causes a fault 
and interrupts the CPU. The Valid bit is tested 
during every Read or Write cycle to ensure that 
operations on that block of memory can be per­
formed. If a fault occurs, a nonmaskable inter­
rupt is generated to the CPU and Address bits 

A12-A15 0 f the logical address are latched. If 
the page is valid and a write is requested, the 
Write-Protect bit is checked to see if the page of 
memory is write-protected. As in the case of an 
invalid access attempt (valid = 0), a write­
protect fault causes a nonmaskable interrupt to be 
generated to the CPU, and logical Address bits 
A12-A1S are latched. Since in both cases logical 
bits A12-A15 are latched, the interrupt 

service routine can read these bits to determine 
which page descriptor register contains the 
attribute bits that caused the faults. Reading 

I/O port 03H causes the four Address bits to be 
placed on data lines 00-03' 

The memory management circuit has two modes of 
operation: Pass mode and Address Translation 
mode. When powered up, the circuit is in Pass 
mode and the system appears as an unmodified l80. 

During Pass mode and Interrupt Acknowledge cycles, 
the nonmaskable interrupt is inhibited to prevent 
any undesired interrupts from occurring. Memory 
translation is enabled by writing a DOH to I/O 
port DOH, and Pass mode can be reestab lished by 
writing a 01 H to the same I/O port. The System 
mode can be determined by reading bit 4 0 f I/O 
port 03H• 

The circuit shown in Figures 6a and 6b was tested 
by using a lilog lOS 1/40 Development System with 
lAP (lilog Analyzer Program). Since the lOS 1/40 
does not have I/O mapping capability, a user clock 
was built to provide a complete testing 0 f I/O 
ports used in the system. Some useful subroutines 
that can be used by the memory management circuit 
are given in the appendix. 

3-8 

CONClUSION 

The scheme described provides memory expansion and 
memory protection by using a flexible paging 
mechanism. The scheme is compatible with both l80 

object code and the forthcoming Z800 design. It 
therefore bridges the capabilities of the two 
compatible microprocessor families and saves both 
circuit design and software conversion effort. 



~r------------------I 
Ao-All I 

I I 
I I 
I MEGAMEMORY I 

I I 
A12-A23 I 

RD MREQ 

10 8 

+5V 

WRITE 
PROTECTED ----~--+-----------------~--~ 

ClK VALID 
+5V 

10 
VALID ----~----~----~----~ 

'---""-PASS 
__ ~~-MODWR 

Ao 

Al 

A2 
3 

iOJX 
4 

5 
IORQ 

Mi 
6 

2265·006 

A 

B 

C 

LS138 
(D2) 

G2A 

G2B 

G1 

WR 

15 

RD 

74lS02 
2 

N5 
3 

A12 

A13 

A14 

AIS 

MM 

INHIBIT 

2 a- 6 
D1 D 

(F5) 
INHIBIT 

7000W 3 

t PR 

LS375 4 
(l2) 

3 2 Do 

4 5 Dl 

7 6 D2 

8 9 D3 

13 12 D4 

Ds 

Figure 6a. Memory Expansion Hardware Schematic 

3-9 

RESET 

IOOOW 

l5 



+.v 

r---, 

za. 
t·~ 

A7 At As ,.. 

Vee I-!!- +5V ~ 74LS13. 

I,. ~ 
.ND......., , -

+'Y 

; ~ 2: Y2 ~:01:p-
I ~c .:::.:: 1 3 

iOiQ ....:: .. '-_+ __ +-_......:.~ b,!!.,o"O 2X (OS) 
r 5 GaA V1 I '. t 2- 4 6 

_127 ~ CUB "-" D5 
M 1""'--+------101 Yo p.!!... IOOX 10K 

"'--- . 
+'Y 

I 

looaw 

h, (U) 

+-__ -1'1,'-31..6:,.14) 12 .... 4 ,,,, 
" 

, 
, 

+' . 
t tF. 

CLR Q 

LS74 
, 

fiERi' 

s 

• 
lp~ 
MM 

I, 
18 

" -<l-14 

... 
13~5} ! 

" 
'f--­
'1---+.., 
ol---+-I-. 

~ .. , 
38 

38 , , 
4 

13 

I 
I 
I 
I 
I 
I 
I 
I 
I 

31 

H 

r-___ ~12~ .~ __ ~~~ 

,-__ ..;'-I74LS244 11 I---+-H-+~---":::..t 

r-----f. (J2) 13 t==::t:tttt:1;::;=:E1 33 

34 
r---!- 15 

,.....!.. 

Wii I 22 

~_-4-+~'-34~4~'D'+_+-~-+~4-~~_~ 
rP 3 ..-L'~'....G..:.' ...... 

;H 
~~'F 

I" Rffilr::-
iimf~ 
Mimlr.; 

2 fo-MDM 

4 ~ 5~MDR 
~H-+++":':-I ~ • !--MDW 

HH-++-,!13"' CLaI ,: I-!--_'M_D_Y--+-+-++-, 
iIiiiI 17 

M i. t-o- SVTCLK 

elK f-!-o--o- USER elK 

I" 
-~+'Y 

INT~+&V 
I 

Do " 
D, 

15 

D, 
12 

D, 0 

Do 
7 

Do 
, 

Do 
10 

D, 
13 

L.. ___ ...I 

MDM- 2 

MDR - 5 

~3 

-1!. 74Li347 1& I-__ +-~--+_.J 
~ "~--+-H-+---J 
~ 17~--+-H-+--~ 

1 A, 19 , 18 

3 17 
• 18 

• 74"'241 
15 

0 tJ~ 14 

7 " • " • 11 

• D" • D" 
10 

D" .-M:::~~:: L~~57~12_~~ __________ ~~ 12 
LS.it • 

(L1) 7 

7 

• 
• 

10 

11 

12 .. 
30 

" Ao-AlI 

V 

MAo " A" 
MA, 2S A" 
MA, ,. Au 

MA, 27 A" 
14 A" 

ASo 15 An 

AS, 18 A" A1.t-A 

AS, 17 A" 
AS, 18 A" 

" A" 
ill 22 ... 
III! 23 A" 

74L,.12 
(81) 

MD, 

MDo 

MD10 

MDl1 

MOo 
MD, 

Mo, 

Mo, 

MD, 

MD, 

MD, 

MDr 
ilR'Oii! ME AM 

'J • L6 

• lID • 

WRite PROTECTED 
iii~ - a _ ,. A, _ 

: } CHA:NEL 

..L-....!.. Ao 11 

~ 
~-----+--------_VALID 

+5- - 13 ",- A, 

Ao- • 14 
11 (J1) ~ ", Ao- 14 Ao Rill 

An- a rOLl ... ill 

A13- MUX 
, • 

8 CHANNEL 
A,.- 1D • 

A1&- "mx 
+.v 

10 

" D 
WRSUCCESS F, 

ClK 
11 

a 

13 

12 IN3) 

at-----~~::~M~.~-~~J 
IIlm' WI! 

Figure 6b. MellOry Exp_ion Hardware Sche.atic (Continued) 

3-10 2265-007 



Appendix A. So.e Useful Subroutines 

****************************** 
** RETURN FROM LOAD Sf. JUMP ** 
** SUBROUTINE ** 

; ****************************** 

THIS ROUTINE PREPARES THE RETURN FOR THE ORIGINAL CALL. 
IT WILL PUT BACK THE VALUE OF THE PAGE DESCRIPloR REG. 
WHICH WAS USED TO ACCESS ANOTHER 4K PAGE. FIRST IT POPS 
THE RETURN ADDRESS OF THE ONE WHICH CALLED IT. NEXT IT 
POPS THE ORIGINAL RETURN ADDRESS INTO DE THEN EXECUTES 
THE \.IP INIT SUBROUTINE TO JUMP BACK. 

PASSED PARAMETER: 
IV => PREVIOUS REGISTER DATA 
IX => PREVIOUS REGISTER ADDRESS 

CALoUT: 
POP 
POP 
JP 

DE 
DE 
JPINIT 

THROW THE CALL Al-JAV 
oRIG. RETURN ADDRESS 

****************************** 
** LOAD THEN JUMP ROUTINE ** 
****************************** 

THIS WILL LOAD THE REGISTER WITH PREDEFINED ADDRESS 
THEN JUMP TO THAT LOCATION BV CHANGING THE CONTENT OF 
STACK POINTER BEFORE RETURN. THE FORMAT IS FOLLOWED: 

--_._------_ ... _---
I I I I •••• t I •• « •• I I 

'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-' HL REGISTER __________ A_____________ __A __ _ 
1------ ATTRIBUTE 

1-------- A23-A12 

I I I I t I I I I I • I tit , • 

'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-' ____ A___ _ _________ A ___________ _ DE REGISTER 

1-------------- All-AO 1-------------------------- LOGICAL PAGE (O-F) 

PASSED PARAM. : 
A23-A16 => H 
A15-A12 + 4 BITS ATTRIBUTE =<> L 
LOGICAL PAGE + All-A8 => D 
A7-AO =::> E 
IX => REGISTER ADDR. TABLE 
IV => REGISTER DATA 

3-11 



Appendix A. Sollie Useful Subroutines (Continued) 

RETURN PARAM. : 

,JP INIT: 

PC=DE 
IX => REGISTER ADDR. TABLE 
IY => REGISTER SAVED DATA 

CALL FINDRG 
CALL SWAP 
PUSH DE 
RET ,JUMP 

FINDRG: LD C.D MOVE LOGICAL PAGE 
SRL C TO LOWER NIBBLE 
SRL C 
SRL C 
SRL e 
LD B.O 
ADD IX.BC IX POINTS TO THE 
RET REGISTER ADDRESS 

; THIS ROUTINE ONLY SWAPS THE CONTENT OF 1 REGISTER 

SWAP: LD C. (IX+O) 
LD L. (IY+O) 
LD H. (IY+l) 
IN B. (C) 
LD (IY+O).B 
OUT (C). L 
INC C 
IN B. (C) 
LD ( IY+l ). B 
OUT (C). H 
RET 

****************************** 
** LOAD PAGE REGISTERS ** 
** SUBROUTINE ** 
****************************** 

PASSED ~ RETURN PARAMETERS: 
POINTER TO 1ST DATA => HL 
NUMBER OF PAGE => A 

C HAS THE ADDRESS 
NEW LOW BYTE 
NEW HI-BYTE 

SAVE LOW BYTE 
WRITE LOW BYTE 

SAVE HI-BYTE 
WRITE HI-BYTE 

POINTER TO 1ST REGISTER ADDR. => IX 

LOADRG: PUSH 
PUSH 
l.D 
SLA 

LDLOOP: LD 
OUTI 
~JR 

INC 
,JP 

LDEXIT: POP 

HL 
IX 
B.A 
B 
C. (I X+O) 

Z. LDEXIT 
IX 
LDLOOP 
IX 

3-12 

2X # OF PAGES 8c 
RESET Z FLAG 

NEXT 



Appendix A. So. Useful Subroutines (Continued) 

POP HL 
RET 

****************************** ** SAVE PAGE REGISTERS ** 
** SUBROUTINE ** 
****************************** 

THIS ROUTINE SAVES DATA OF PAGE REGISTERS INTO ARRAY 
POINTED BY HL. PASSED & RETURN PARAMETERS: 

NUMBER OF PAGES => A 
POINTER TO 1ST REG. ADDR. => IX 
POINTER TO 1ST SAVED DATA => HL 

SAVREG: PUSH HL 
PUSH IX 
LD B.A 
SLA B ; 

SALOOP: LD C. (IX+O) ; 

INI 
JR Z. SAEXn 
INC IX ; 

JP SALOOP 
SAEXIT: POP IX 

POP HL 
RET 

***************************** 
** ERROR TRAP HANDLER ** 
***************************** 

2X * OF PAGES 
RESET Z FLAG 

DATA IN 

NEXT 

& 

THIS ROUTINE FINDS THE PAGE FAULT WHICH GENERATED NMI. 

TRAP: 

PASSED PARAMETERS: 
REGISTER ADDRESS TABLE POINTER => IX 

RETURN PARAMETERS: 
FAULT DATA => DE 
REGISTER I/O ADR. LOW BYTE => C 
CAUSE => A (0 = INVALID ACCESS) 

IN 
AND 
LD 
LD 
ADD 

(1 = WRITE PROTECTED) 

A. (3H) 
OFH 
B,O 
C.A 
IX.BC 

READ PORT 03H 
GOTCHA 

LD 
IN 

C. (IX+O) 
E. (C) 

; C HAS REG. ADDRESS 
READ LOW BYTE 

INC C 
IN D, (C) HI-BYTE 
DEC C 
BIT 3.E TEST V BIT 
JR Z. NVALID 
BIT 2,E TEST WP 
JR NZ. WP 
LD A.2 THIS SHOULDN'T 

3-13 

~---~" - "- ~ ---



Appendix A. So_ Useful Subrootines (Continued) 

JP DONE HAPPEN 
NVALID: LD A,O INVALID ACCESS 

JP DONE 
WP: LD AI 1 WP PAGE 
DONE: RET 

3-14 00·2265-01 



Increased speed, additional instructions and an addressing scheme that 
extends the available memory address space give the Z8108, an updated 
version of the Z80 microprocessor, greater flexibility. 

On-chip memory management 
comes to a-bit JlP 

The trend toward the use of high-level 
languages in microprocessor-based sys­
tems and toward complex configurations 
has created the need for more memory 
space, greater execution speed, easier ac­
cess to software libraries, and in general, 
more sophisticated processor architectures. 
To those ends, the Z8108 is the first 8-bit 
microprocessor to provide on-chip memory 
management to expand memory address­
ing and a range of operating speeds of 6 
to 25 MHz for increased throughput. 

The initial member of the Z800 family, 
it is an enhanced version of the popular Z80 
with new instructions and addressing 
modes for greater flexibility. In addition, 
a so-called system mode and a user mode 
of operation improve system reliability. 
The Z8108 also provides true 16-bit arith­
metic capability and performs mathemati­
cal operations not done by the Z80. 

The 40-pin chip includes a Z80-com­
patible bus interface with 8 address/data lines and 
11 address lines, an on-chip clock oscillator, program­
mable dynamic memory refreshing, and expanded 
I/O addressing (Fig. 1). Because of its less stringent 
memory timing requirements, at an operating speed 
of 6 MHz the response time of the memories used 
need only be 250 ns. The processor's programmable­
interrupt daisy-chain delay permits easy interfacing 
with most high-speed interrupt-driven devices; no 
external logic is required to generate additional wait 
states during an interrupt-acknowledgment se­
quence. Also, a large memory can be directly ad­
dressed without external bank-switching circuitry. 
Finally, because the processor executes all the in­
structions of the Z80, existing Z80 programs can be 

Roger Whitcomb, Software Applications Engineer 
Zllog Inc. 
10460G Bubb Rd., Cupertino, Calif. 95014 

simply moved unchanged to the Z8108 for execution 
at increased throughput or easily modified to take 
advantage of the new processor's capabilities. 

Looking at the architecture 

Because the Z8108 is binary-code-compatible with 
the Z80, it has all the registers of the Z80, including 
dual 8-byte register banks A -Land A' -1'; two 16-
bit index registers IX and IY; and a dual 16-bit stack 
pointer and program counter. One stack pointer is 
dedi~ated to system programs (including interrupts 
and I traps), the other to user programs. The Z8108 
has in addition a master status register that contains 
a number of flags to indicate the processor's current 
status, Also included are an interrupt and trap­
vector ta,ble pointer and I/O page registers. 

Progralh~ on the Z8108 will be executed in either 
the system ~he user mode. System programs have 

Reprinted with permission of Electronic DeSign, October 14. 1982 3-15 
Copyright 1982 Hayden Publishing Co., Inc 



Microprocessor Special: Enhanced 8-bitprocessor 

access to all registers and instructions, but user 
programs are denied access to certain of these 
resources in order to provide a more secure environ­
ment-for example, one in which programs can be 
reserved in protected memory. The user mode is 
regarded as a subset of the Z80 instruction set 
because some Z80 instructions such as Halt are 
privileged in the Z8108 and can only be executed 
when the unit is in the system mode. Z80 programs 
will operate completely and correctly on a Z8108 
since the processor assumes the system mode on 
power-up or reset. 

The Z8108 addresses memory management in a 
number of ways. The on-chip memory management 
unit (MMU) maps system and user programs and 
instruction and data references separately, and easi­
ly remaps memory pages to different physical areas, 
thereby permitting easy access to very large physical 
memory spaces. Direct access to the memory 
management hardware is usuaJly available only to 
system programs. 

The Z8108's added instructions include some 
formalizations of undocumented Z80 instructions 
(such as accessing the index registers one byte at a 
time), in order to make the entire register set more 
orthogonal. Four new addressing modes increase the 
flexibility of the existing instructions and make code 
generation for high-level languages much easier. In 
addition, the Z8108 has a Test and Set instruction 
to provide syncJ1fonization for multiple processors, 
and both 8-bit and 16-bit multiplication and division 
instructions to increase throughput in computation­
intensive applications. 

The programmable bus timing feature increases 
system throughput. Control-bit settings allow the 
internal processor clock to be scaled for external bus 
accesses and wait states to be automatically inserted 
during bus cycles, as mentioned. Consequently, the 
user can select very high clock speeds to increase 
system performance without requiring high-speed 
memories and I/O devices. 

The interrupt structure of the Z80 has been ex­
tended in the Z8108 to include program traps for 
exceptions and error conditions and a forced 
interrupt-service mode. This new mode provides 
automatic vectoring for each interrupt and trap, and 
provides support for nested interrupt processing. 

With added interrupt-acknowledgment daisy­
chain delay, the contents of a control register may 
be used to select a number of additional wait states 
to be added to interrupt-acknowledge cycles. Thus, 
slow peripheral devices or long interrupt daisy chains 
can be accommodated. 

The ZSO's input/output address space has been 
augmented in the Z8108 by the addition of the I/O 
page register that permits one of a number of blocks 

of I/O locations to be selected. Changing this register 
is a privileged operation that prevents any block from 
being accessed illegitimately. 

The Z8108 includes an on-chip dynamic memory 
refresh controller. Refresh transactions can be 
enabled or disabled under program control and the 
refresh frequency can be selected. Unlke the Z80, the 
Z8108 generates separate bus transactions for 
refreshing, thus easing the memory-access timing 
requirements. Refresh cycles lost because of DMA­
bus accesses or wait states are counted and 
automaticaJly generated when the CPU regains con­
trol of the bus. The Z8108's refresh controller 
generates a lO-bit refresh address, ensuring support 
for very large dynamic RAM chips. 

The on-chip oscillator-clock generator of the Z8108 
simplifies system design by eliminating the need for 
an external MOS clock generator-driver. A crystal 
can be connected directly to the processor, or an 
external TTL-compatible clock signal can be pro­
vided. From this signal, the processor generates an 
internal clock, its frequency being one-half that of 
the input. 

Addressing modes 

Besides expanding the instruction set of the Z80 
with four new addressing modes (see Table 1), the 
Z8108 extends some of the existing addressing modes 
(such as Register Indirect) to other instructions. The 
new modes are: Indexed with 16-bit Displacement, 
Stack Pointer Relative, Program Counter Relative, 
and Base Index. 

1. The 40-pin Z81 DB microprocessor has a bus interface 
compatible with the ZBO, an on-Chip oscillator whose 
frequency is selectable from 6 to 25 MHz, and expandable 
1/0 addressing. The ZB1 DB has all the registers of the ZBO, 
plus a master status register, an interrupt and trap vector 
pointer. and an 1/0 page register for monitoring the 
processor's current status. The 16-bit microprocessor 
executes all software instructions of the ZBO. 

3-16 



The Indexed with I6-bit Displacement mode is an 
extension of the Z80's Indexed addressing mode and 
uses a two-byte rather than a one-byte displacement. 
This method permits access to large dynamic data 
structures addressed by a pointer or access to arrays 
whose base address is known and whose index value 
can vary. 

The Stack Pointer Relative mode is useful for high­
level language applications where subroutine 
parameters and local variables are kept in the stack. 
Addresses of these variables are fixed offsets from 
the current top of the stack (located by the stack 
pointer) and therefore can be accessed directly using 
the Stack Pointer Relative mode. 

With Program Counter Relative addressing, 
position-independent code-that is, code that uses 
only addresses relative to the current program loca­
tion and not absolute addresses-can be produced. 
This procedure is useful for standard ROMs and 
subroutine libraries that can be loaded at different 
locations in memory for various applications, and it 
also reduces the time required to link-edit large 
programs. The Z80 has a few PC-relative instructions 
(all of them jumps), but the Z8I08's PC-relative 
instructions include all the conditional jumps and 
calls, as well as 8-bit and I6-bit load, store, and 
arithmetic instructions. 

Based Indexed addressing uses two registers to 
address an operand (any combination of the HL, IX, 
and IY registers may be used). The contents of the 
two are added to produce the effective address. In 
that way, both the base address of a structure and 

the index or offset can be computed at execution time 
(as is required for dynamic arrays). What's more, 
Base Indexing can be effectively combined with the 
other addressing modes, using the LDA (Load Ad­
dress) instruction, to build up an arbitrarily complex 
addressing mode involving any combination of index­
ing and indirect addressing. 

In addition to the new addressing modes, the old 
modes can be used for more instructions-for exam­
ple, I6-bit Load and Store using the Register Indirect 
or Short Index mode, 16-bit ADD using an immediate 
operand, PUSH using an immediate value, and PUSH 
and POP using direct memory addressing (see Table 
2). These extensions give the Z8I08 the power and 
flexibility appropriate for both high-level and as­
sembly language programming. 

More Instructions 

Foremost among the Z8I08's new instructions are 
those for multiplication and division. The multiplica­
tion instruction has several variations, including an 
8-bit-by-8-bit to 16-bit result and 16-bit-by-16-bit to 
32-bitresult with the operands addressable using any 
of the available addressing modes. Similarly, the 
division operations include 16-bit-by-8-bit to 8-bit 
quotient and remainder and 32-bit-by-16-bit to 16-
bit quotient and remainder. The division instructions 
check for quotient overflow and attempted division 
by zero; these conditions will cause a trap, notifying 
the operating system to print a warning message or 
to abort the user program. 

The Test and Set instruction has been included in 

2. The dynamic page relocator uses the processor's memory management unillo map and 
enable system and user programs independently. The Z81 08's 16-bitlogic addresses are 
divided into two fields for defining the physical addresses and for identifying the required 
set of page descriptor registers, one of which is used for system addresses, the other for 
user addresses. The state of the enabling flags determines which of the programs are serviced. 

3-17 



Microprocessor Special: Enhanced 8-bit processor 

the Z8108 to support multiprocessing. It tests the 
most significant bit of the operand, setting the 
condition codes appropriately and then sets the 
operand to all Is. This primitive operation is often 
used as a signal between two or more cooperating 
programs to guarantee exclusive access while updat­
ing shared resources. 

In addition to 16-bit multiplication and division, 
the Z8108's architecture includes other 16-bit 
arithmetic operations not found on the Z80. These 
instructions include 8-bit and 16-bit Sign-Extend, 
Add Accumulator to Addressing Register, 16-bit 
Compare, 16-bit Increment or Decrement in Memory, 
16-bit Negate, and Full 16-bit Add and Subtract. All 

Shick 
POll1ter" 
Relative 

Displacement 

Dl$placement 

Register addre .. 1 

Register addr'll 2 

these operations use the HL register pair as a 16-
bit accumulator. 

The entire register set is more fully exploited in 
the Z8108 than in the Z80. The Z8108's IX and IY 
registers each can be accessed as a 16-bit register 
or as two single-byte registers (using any of the 8-
bit load, store, or arithmetic operations). That 
capability in effect makes IX and IY into general­
purpose registers like the BC, DE, and HL pairs. 

The Z8108 architecture includes a new group of 
instructions for CPU control, to permit access to the 
new registers (such as I/O page and master status) 
and to handle system and user mode separation. The 
LDCTL (Load Control) instruction loads data into, or 

3-18 

. ,.,' 
r"'pon1el\l~!hII_ ' 
lIun "hO$! Ild_ Itlh<f 
content of • nllIielllr. off. 
... tOythlldl$pl_tln 
arG\l_ 



removes and stores data from, the special CPU 
registers. Available only in the system mode, it is 
used to initialize the I/O page register and the 
interrupt and trap-vector table pointer. 

A number of privileged instructions can be ex­
ecuted only by programs running in the system 
mode. These instructions provide control of the 
registers and processor state that transcend anyone 
program and so are properly the province of the 
operating system. The privileged instructions in­
clude Halt, Enable, or Disable Interrupts, Select 
Interrupt Mode, Load the CPU Control Registers, 
and Return from Interrupts. 

The SC (System Call) instruction provides an 
interface between user-mode programs and the 
operating system running in the system mode. A 
System Call pushes the processor status (in the 
program counter and master status register) onto the 
system stack, pushes a 16-bit system call number 
from the SC instruction onto the stack, and then 
executes a trap sequence. The operating system, 
after vectoring to the appropriate trap service 
routine, will normally use the system call number 
as an index into a table of subroutine addresses for 
the various system functions. This controlled 
mechanism lets user, programs request privileged 
services such as memory management from the 
operating system without compromising the overall 
system and user protection mechanism. 

One of the most troublesome problems of today's 
microprocessor systems is management of large 
program and/or data spaces. This problem has been 
met in a variety of ways, such as adding external 
memory-mapping circuitry (increasing board space 
and complexity) and changing the design to use a 
16-bit processor (losing compatibility with existing 
code and increasing development time). 

Memory space 15 quadrupled 

The Z8108 tackles the problem by using the MMU 
to allow page-oriented memory mapping and provide 
protection without any external logic. The CPU itself 
separates system space from user space and program 
code from data references in both spaces, thereby 
quadrupling available memory space without chang­
ing existing program code or adding external 
hardware. An address translation mechanism, called 
dynamic page relocation, is then used to map these 
logical addresses into the physical address space. 
Logical addresses generated by the CPU are passed 
through the MMU and translated into physical 
addresses using this mechanism before being sent 
to the address lines coming out of a Z8108 chip. 

Simply, the Z8108's 16-bit logical address is divided 
into two fields, a 12-bit offset and a 4-bit index (Fig. 
2). The offset is passed to the physical address 

Base Index 

RegIster 
Indirect 

Index 

Direct 
Address 

Short 
Index 

- apprOXimates correspondmg operation In zelOS 
= eqUivalent operation 

unchanged, and the index selects one of the page 
descriptor registers. The indexed register contains 
the upper bits of the physical address and a set of 
so-called attributes for that page. These attributes 
indicate whether the table entry is valid (Le., 
whether that page's information resides in physical 
memory), whether writes are allowed to the page, 
and if so whether a write has actually occurred. If 
an access is attempted to a page marked as invalid, 
or a write is tried to a write-protected page, the 
instruction is aborted and a trap is taken. The system 
trap prevents a program from inadvertently access­
ing or modifying information not in its own purview. 

As shown, the Z8108's MMU actually contains two 
sets of page descriptor registers with separate ena­
bling flags, one for system addresses, the other for 
user addresses. The appropriate set is chosen based 
on the state of the system/user flag in the master 
status register. Thus system and user programs can 
be independently mapped or unmapped, or mapped 
into different areas of physical memory. In addition, 
program and data separation can be enabled indepen­
dently for each mode. If separation is enabled, the 
appropriate set of mapping registers is divided in 
half, with one half available for program accesses, 
and the other half for data accesses. In this case, 
only 3 bits of the logical address are used to select 
a page descriptor; the lower 13 bits of the logical 

3-19 



Microprocessor Special: Enhanced B-bit processor 

address pass through unchanged. 
The Z8108 has a 512-kbyte physical address space. 

The 19 bits of physical address are produced by 12 
or 13 bits from the logical address and 6 or 7 bits 
from the page descriptor registers. That translates 
into 128 pages of 4 kbytes each with program and 
data spaces integrated or 64 pages of 8 kbytes each 
with program and data references separated. 

The processor provides a mechanism for system 
programs to access data using the user-mode map­
ping tables. Through the use of the LOUD (Load in 
User Data Space) and LDUP (Load in User Program 
Space) instructions, system routines can retrieve 
parameters from user programs (passed via the 
System Call instruction) or return values to user data 
structures. 

The MMU registers of the processor are accessed 
by means of VO instructions to a fixed set of port 
locations. These registers can be read or written 
singly or in blocks using the Z800 family's block I/O 
instructions. 

Using memory management 

Using the memory management features is re­
latively simple. Since the MMU is part of the chip, 
no external logic is needed; the chip merely presents 
a large linear address range to the outside world. 
Simple Z80 programs running on a Z8108 need not 
worry about memory management, since the Z8108 
powers up in the pass-through mode, which means 

that the logical address is passed directly to the 
physical address lines without translation. 

Programs written especially for the Z8108 or ZSO 
programs that could benefit from a larger address 
space can use the memory management features in 
a variety of ways. The first technique is to separate 
the application program from the operating system. 
Thus both the application (running in the user mode) 
and the operating system (running in the system 
mode) can reside in different areas of physical 
memory, since they will use different sets of mapping 
registers. Second, the MMU can be set to separately 
map program and data references, allowing up to 
64 kbytes of program code to access up to 64 kbytes 
of data (Fig. 3a). 

If this technique does not provide enough address­
ing space, a variation of the bank-switching 
technique can be used (Fig. 3b). In this scheme, the 
program or data is broken into sections each 64 
kbytes in length. As long as a program or data 
reference falls within the 64 kbyte range, normal 
addressing is used. But a reference to a different 
section must be preceded by a call to the operating 
system (using the System Call instruction) to change 
the page descriptor registers to map that reference. 
Either one page or the entire 64-kbyte address space 
can be remapped. 

Another useful technique that takes advantage of 
the Z8108's memory management is called virtual 
disk buffering. In this scheme, a large section of 

Table 3: Recognition, zao vs Za10a 
, ; This Instr\lellon sequence expoill$ tile dlfferen(Je; 'In ql)e,~,Qe~,tIIe qo'e.M \lie nco'famllY 

" , : 10 alloW a u~ program 10 declile whicll procesaor ; In, runnlnQ On. 'The fl. are eel tIIus: ' , 
" .' ,', ,,'I 

;" lIipUts "';,none. 
Outputs, - Sign flag eel: ecqt/I'dlr)l! tQ "CPU:" ",,',' 

• "" $ " 1 1M) If zao 
S" O(P)lf:l;800, 

Uees - A and F only 

; The key Instruction Is In the one undeflned 
; shift group on tile ZOO tIIat actually perfOrms 
; a "Iogical shift left and Insert I" operation. 
: wltll the same Ilag operatIOn III tile other 
: shlft/rolate Instructions. This has been 
: replaced on the zaoo with the TelIl and Set 
; Instruellon that tests the sign of tile operand, 
; setting the slIIn Ilag accordingly. then setting 
; the operand to ail l·s. Thus with tile proper choice 
; of operand value. the sign flag resuilltlg from 
; this instruction becomes a Z80/Z800 flag. 

LD 
DEFB 

JP 

JP 
or 

A,4OH 
OCBH.03TH 

M,l80 

P,Z800 

3-20 

; This Is the proper operand. 
; This Is the key InS1ructlon: 
; A Z80 will ohange the opel'an~ 10 
; 81H (shift lett. Insert 1). aettlng 
; the sign flag on the raeult 
; A Z800 will teet the orlgln.i sign 
; (0) a)'Id lileer tile Ilgn flag. 
; then set A to allis. ' 
; Now test the flag and jump. 

1,.", 



memory (typically 256 kbytes or more) is used to 
simulate all or part of a disk file. Whenever a disk 
block would normally be read into a memory buffer, 
the buffer is now simply mapped to point to the 
appropriate part of the virtual disk area. If this area 
is filled from the disk originally, all accesses to the 
file can be made to memory instead of to the disk, 
eliminating the long disk access times. 

In summary, programs can now operate on large 
data bases in memory without using temporary disk 
files for storage. Programs larger than 64 kbytes can 
be run using the MMU to map different areas of the 
program in physical memory into the logical address 
space as they are needed. Cooperating programs 
running in a multitasking system can share portions 
of data memory, yet each can have private code and 
data that cannot be accessed by the other programs. 
These applications all rely on the simplicity and 
flexibility of the Z8108's paged memory management 
system and on the convenience of having the MMU 
as part of the chip. 

The Z8108 also extends the 110 capabilities of the 
Z80. In addition to I/O transfers to and from regis­
ters, data to be sent or loaded can be transferred 
directly to or from memory. That gives greater 
flexibility in I/O transfers and can result in greater 
throughput to the external device. The architecture 

also has the Z80's block input and output instructions 
for even greater I/O transfer rates. 

Also, the I/O addressing space of a Z8108 is larger 
than that of the Z80. The content of the special I/O 
page register is used to drive the upper address bits 
during an I/O transaction, thereby permitting banks 
of ports to be selected. The Z8108 supports eight 
banks of port locations within the 110 address space. 
Because input and output themselves need not be 
privileged operations in the Z8108, the I/O page 
mechanism affords protection to critical devices 
(such as the on-board MMU) on a page basis, since 
access to the I/O page register is always a privileged 
operation. 

I nterrupts and traps 

The three interrupt service modes of the Z80 have 
been expanded in the Z8108 by the addition of a 
fourth mode and by the addition of internal inter­
rupts or traps using this mechanism. The four 
interrupts are modes 0 to 3, with modes 0, 1, and 
2 operating in the same way as in the Z80. Mode 0 
expects an instruction to be placed on the data bus 
during the interrupt acknowledgment cycle that is 
executed to begin the interrupt service routine. Mode 
1 ignores the data and executes an unconditional 
jump to location 0038H. Mode 2 uses the contents 

3. Separately mapped program and data references doubletheZ8108's addressing space. 
Eight descriptor registers are used to map program addresses, and elghtto map data 
addresses (a). Switching between banks of data can be done simply by changing the eight 
data-page descriptor registers to a new block of physical memory (b). 

3-21 



Microprocessor Special: Enhanced 8-bit processor 

of the special I register, along with the data read 
during acknowledgment, to point into a table of 
subroutine addresses, which dispatch the service 
routine. Interrupt Mode 3 uses the interrupt and trap 
vector table pointer register to point to an array of 
new program status values (each consisting of a new 
program counter value and a new master status 
register value) for the traps and nonvectored inter­
rupts and an array of new program counter values 
for use with vectored interrupts. 

If a vectored interrupt is accepted in mode 3, the 
old contents of the program counter and the master 
status register are saved on the system stack and 
an interrupt vector is read from the interrupting 
device. This value is then saved on the system stack 
and used to fetch new contents for the program 
counter from the trap vector table. This sequence 
allows an interrupt to vector to any location in 
memory for service and also permits complete nest­
ing of interrupts, since the previous state of the 
interrupt enable is saved on the stack, not just in 
a temporary flag register as in the Z80. 

The processor supports both maskable and non­
maskable interrupts. Maskable interrupts are 
enabled by a bit in the master status register and 
are accepted only if the bit is set. Nonmaskable 
interrupts cannot be disabled and are always ac­
cepted. The processor checks the state of the external 
interrupt pins at the end of the current instruction 
(or the end of an iteration of one of the block 
instructions) and executes the interrupt service se­
quence before continuing with the next instruction. 
Maskable interrupts can be accepted as either vec­
tored or nonvectored. If they are to be vectored, 
processing occurs as described above. If nonvectored 
(and in interrupt mode 3), a special nonvectored 
interrupt table entry is used to dispatch the interrupt 
service routine. 

Traps in use interrupt mode 3 to vector to a service 
routine and to load a new master status value for 
that routine. Thus a trap can be at least partially 
serviced in a user-mode program. The Z8108's traps 
include Privileged Instruction, System Call, Page 
Fault (from the MMU), Division Exception, Single 

4. A system using theZ8108 may be designed Into an existing system using theZ80, peripherals, and medlum­
speed memory devices. Having multiplexed address and data buses and an internal OSCillator, the processor 
cuts the package pin count without reducing flexibility. 

3-22 



Step, and Breakpoint on Halt. The last two facilitate 
program debugging by providing a reliable means 
of stepping through programs one instruction at a 
time and breaking program execution at any instruc­
tion, respectively. 

Following power-up or a reset, the Z8108 will 
behave like a Z80 (or an 8080). This means that 
memory management is disabled, the system/user 
flag is set to system (allowing all privileged instruc­
tions to be executed), the system stack pointer is 
enabled, the I/O page register is cleared, and the 
interrupt response is set to mode O. All the ZSO's 
instructions run identically on the Z8108. The Z8108, 
however, operates two to eight times faster. 

But what if a program needs to know whether it 
is running on a Z80 or on a Z8108 (in order to take 
advantage of the Z8108's power if it runs on one but 
still be capable of execution on a Z80)? One of the 
new instructions in the Z8108 replaces a previously 
undocumented instruction of the Z80, permitting a 
program to determine which processor it is running 
on. The program achieves this by performing a test 
sequence on the new instruction (see Table 3). The 
instruction sequence is used to skip the initialization 
procedure needed to activate the Z8108 if the pro­
gram is running on a Z80 or to jump to in-line Z8108 
code (to do a multiplication, for instance) rather than 
using a ZSO subroutine for the function. 

DeSigning a system 

The Z8108 has a multiplexed address and data bus 
to reduce the package pin count without sacrificing 
performance (memory transactions still require only 
three clock cycles). In addition, design with the Z8108 
is easy because of the on-chip oscillator, memory 
refresh mechanism, and programmable bus timing 
features. Figure 4 shows an example of a Z8108 
design using existing peripherals and medium-speed 
memory devices. 

Note that the only external element required in 
the oscillator circuit is a crystal (whose frequency 
is twice the desired internal frequency). The external 
clock output (eLK) line provides a system clock at 
the internal clock frequency divided by the program­
mable bus timing value. The multiplexed address and 
data bus is easily dem ultiplexed with a standard low­
power Schottky 8-bit latch. The Address Strobe (AS) 
signal is used to gate the address into the latch. The 
rest of the signals generated by the ZS108 are 
compatible with standard Z80 signals.D 

3-23 





An advanced microprocessor family adds on-chip cache and 
memory management yet retains software compatibility with its 
predecessor. It gives the designer a virtual mainframe on a chip. 

8- and 16-bit processor family 
keeps pace with fast RAMs 

For years, designers have not been able to take 
full advantage of the speed of available RAMs. In 
otherwise efficient microcomputer setups, the pro­
cessors have been the main drag on throughput. 
This situation will change shortly with the intro­
duction of a new family of 8- and 16-bit processors. 
These successors to the popular Z80 microprocessor 
are expected to operate at a 25-MHz clock frequency 
and can use a burst mode on their 16-bit bus to work 
with 80-ns RAMs. But that is not all. 

The Z800 family, to be fabricated using on an 
advanced NMOS process, will have on a single chip 
such features as a cache memory, memory manage­
ment, counter-timers, DMA controllers, and serial 
I/O. Add to that new instructions to ease software 
development and the designer will have a virtual 
mainframe at his disposal. 

The family consists of four members, two with an 
8-bit, Z80-compatible interface and two with a 
16-bit, Z-bus (Z8000 family) interface. All members 
are totally code-compatible with the Z80 micro­
processor. The new instructions, combined with the 
on-chip resources and high clock rate, extend per­
formance to the 5-million-instructions/s level, as 
simulated via a Pascal compiler. This rate is com­
petitive with many of the so-called 32-bit micro­
processors. 

To achieve the high clock rate, a 2-ILm n-channel 
process was used. There are two levels of polysilicon 
interconnections, the first a low-resistance layer 
and the second for interconnections and high­
impedance load resistors. The process incorporates 
four transistor types, as defined by their thres­
holds: one enhancement, one intrinsic, and two 

William Carler, Engineering Manager 
Jacklon Hu, DeSign Engineer 
Frank Lynch, Product Manager 
David Slevenlon, Processor Architect 
Zilog Inc. 
1315 Dell Ave., Campbell, Calif. 95008 

Reprinted With permiSSion ElectroniC DeSign, April 28, 1983 
COPYright Hayden Publishing Company, Inc 3-25 

depletion-mode devices. 
The members of the Z800 family consist of the 

8-bit Z8108 and Z8208 and the 16-bit Z8116 and 
Z8216 (see Table 1). However, only the Z8208 and 
Z8216 have the on-chip peripherals and a full 
16-Mbyte address space. To reduce the board space, 
these processors are housed in dual in-line packages 
with pins on 70-mil centers, permitting a 64-pin 
package to fit in the board area of a 48-pin DIP 
having leads on lOO-mil centers. 

With the Z-bus interface, the processors offer 
twice the system throughput of the 8-bit bus de­
vices. They can take advantage of all the Z-bus pe­
ripherals already available for the Z8000 family of 
16-bit processors. 

The architecture of the Z800 processor core re­
sembles that of the Z80 microprocessor, with the 
addition of several registers to increase flexibility 
As part of the architectural enhancements, the pro­
cessor has been set up to operate in either a system 
or a user mode. In the system mode, all of the in­
structions can be executed and all of the CPU regis­
ters accessed. This mode may be used with pro­
grams that perform operating system functions, 
and it can also run Z80 software emulation. In the 
user mode, some instructions cannot be executed 
and some CPU registers are made inaccessible. 
Thus, system integrity is ensured, even by run-away 
application software that might otherwise alter 
operating system information. 

Enhanced instruction set 

Supporting the two modes are two stack pointers, 
one for the system mode and one for the user mode. 
Additional flexibility was added to the register set 
by the high- and low-order byte addressability of 
the 16-bit IX and IY index registers. 

The instruction set contains all of the Z80 com­
mands, and then some. Added are 8- and 16-bit mul­
tiplication and division operations; Sign Extend, 

Electronic De.ign • April 28, 1983 



Advanced processor family 

16-bit Compare, Negate, and Increment and Decre­
ment in Memory; System Call; test and set com­
mands; several load control instructions; and some 
commands that interface with the extended pro­
cessing units, such as the forthcoming Z8070 
floating-point math processor. 

Multiprocessing is supported by the Test and Set 
instructions, which facilitate communication be­
tween programs that share resources. The Load 
Control instruction group is used in the system 
mode to set up registers that configure on-chip re­
sources and to poll the chip status. The System Call 
instruction enables User programs to request ser­
vices available only in the processor's system 
mode-the enabling or disabling of interrupts, for 
example. 

Abundant ailieon reaoure .. 

Along with the new instructions come four new 
addressing modes: index, base-index, stack-pointer­
relative, and program-counter-relative. These are 
in addition to the five modes carried over from the 

System 
clock 

Z80 (register, immediate, direct-access, register­
indirect, and short-index). 

An abundance of on-chip resources is available 
for the designer (Fig. 1). The Z8216, the most com­
plex member of the family, and the 8208 have the 
Memory Management Unit, cache memory, four 
16-bit counter-timers, a serial port, four channels of 
DMA control, and a dynamic RAM refresh control­
ler. These on-chip peripherals can also be linked 
internally for further enhancement of their capabil­
ities. However, even the 40-pin Z8108 and Z8208 
have the four counter-timers available for internal 
timer applications. 

The on-chip memory manager coordinates the 
16-Mbyte address space of the Z8208 and Z8216 pro­
cessors (ELECTRONIC DESIGN, Oct. 14, 1982, p. 163) 
with no speed penalty during the address trans­
lation. On the Z8108 and Z8116, 19 address lines 
provide access to 512 kbytes of memory. To trans­
late between the logical and physical address 
spaces, the memory manager uses two sets of 16 
page-descriptor registors-one set for the system 

Tx Ax 

Bus 
control 
signals 

DMASTB, DMASTBo 

1. The high-end member of the Z800 family, the Z8218, ha. on-chip resourcea that give It 
the characteriatics of a full minicomputer. Included are a memory management unit, a 
cache memory, multiple DMA channela, multiple counter-timer., and a aerial port. 

Electronic Dealgn • April 28, 1983 3-26 



mode and one for the user mode. Each 16-bit page 
descriptor register contains 12 bits of address infor­
mation and 4 bits of attribute information. 

Addresses are translated when the lower 12 or 13 
bits (depending on whether the program/data sepa­
ration option is enabled or disabled) of the logical 
address is concatenated to the address information 
contained in the appropriate page descriptor regis­
ter (Fig. 2). This register is selected by the most 
significant bits in the logical address. 

Attribute bits control access and provide status 
information for each page. They include a Valid bit, 
which indicates whether or not a page descriptor is 
valid for use; a Write Protect bit, which permits a 
page of memory to be read only; a Modified bit, 
which indicates whether a page in memory has been 
written to; and a Cachable bit, which indicates 
whether a page may be loaded into the cache memo­
ry. The combination of the Modified bit and the 
ability to abort and restart an instruction upon an 
access violation thus permits the processor to im­
plement a virtual memory system. 

Loglcat address 

PhYSical address 

2. The on-chip memory manager translate. a logical 
address into e physical add res. to permit control 01 a 
16-Mbyte address space and lull implementation 01 a virtual 
memory scheme. 

To improve the access time for often-used or 
time-critical program sections, an on-chip cache 
memory consisting of 256 bytes is included on all 
Z800 processors. This cache can be configured to be 
instruction-only, data-only, or a combination of 
both. Since this memory is on the chip, no speed 
penalty is incurred when stored items are accessed. 

Operating on the principle that recently used in­
structions or data have a high probability of being 
called up again, the cache holds the most recently 
accessed code, thereby permitting repetitive items 
to be executed much faster. Every time the pro­
cessor requires data or an instruction, it first checks 
the cache memory to see if the item is present. If it 
is, the processor will use it, and no external bus 
access will be made. It is estimated that the use of 
the Z800's cache memory, will make the execution of 
Z80 code some two to eight times faster. 

Inside the cache memory 

When configured as a cache, the memory is or­
ganized into 16 lines of 16 bytes each (see Table 2). 
Associated with each line are two fields-a 20-bit 
physical address tag and a 16-bit "valid" field. The 
address tag is matched against the most significant 
20 bits of every physical address generated by the 
CPU and the memory manager, and if a match is 
detected on any of the 16 tag addresses, the lower 4 
bits of the physical address are used to select the 
appropriate byte or word in the matched line. The 
valid field contains one Valid bit corresponding to 
each byte in the line. 

If the appropriate Valid bit for the byte accessed 
in the matched line is set, a cache "hit" occurs, and 
that byte is used by the CPU. If the bit is not set, the 
processor sends the address to the external memory 
to fetch the data. This data is then used by the 
processor and written into the cache, which causes 
the Valid bit to be set for each byte written into the 
cache. If none of the 16 tag addresses match the 

Table 1. How the members of the Z800 family line up 

Package Data bu. On-chip Common 
(no. 01 pins) interlace (bits) peripheral. leatur •• 

Z8108 40 8 
Memory manager 

Four 16-blt counter- Cache memory 

timers (internal only) 
Refresh-address 

Z8116 40 16 generator 

Z8208 64 8 
Four 16-bit counter-

Clock oscillator timers (one internal only) 
Four DMA channels 

Z8216 64 16 One s~~ra'lc~6~rous 

3-27 Electronic Design· April 28, 1983 



Advanced processor family 

20-bit address, the line in the cache that has been 
used least recently is "flushed" -that is, the pro­
cessor clears all the valid bits to invalidate the 
bytes-and the 20-bit address becomes the new tag 
address. The appropriate byte or bytes are then 
pulled from the external memory. 

The Z-bus interface on the Z8116 and Z8216 per­
mits the processors to use a burst-mode bus trans­
action to preload the cache. Although the burst 
mode was designed for use with the new 64-kbit 
dynamic RAMs that support a serial nibble output, 
it will also work well to fill up the cache memory. 

If the cache memory is not needed, the circuitry 
can be disabled and the memory reconfigured as 256 
bytes of fixed-address RAM. This "local" memory 
can be used with ROM-only systems, or it can hold 
those portions of a program that need the speed of 
on-chip memory, such as interrupt routines. In the 
fixed-address mode, the tag addressed identify indi­
vidual lines, but the settings of the Valid bits have 
no meaning. Tag addresses can be set by the pro­
grammer and will remain fixed to guarantee the 
addresses of the memory. 

On-chip peripherals add power 

With their ample peripherals on the chip, Z800 
microprocessors are, in effect, full systems on a 
minimum of board space, with minimum device in­
terconnections and components. They are excellent 
for cost-sensitive applications. The four DMA chan­
nels of the Z8208 and Z8216 provide independent, 
high-speed data transfers; the serial port, a full­
duplex asynchronous interface capable of operating 
at up to 2 Mbits/s at a IO-MHz clock rate. Each of 
the DMA channels can be programmed to transfer 
data from memory to memory, from memory to an 
I/O device (or vice versa), or from one I/O device to 
another. Moreover, data can be transferred in any 
of three modes: single-transaction, burst, or con­
tinuous. 

In the single-transaction mode, the DMA section 
releases the bus to the CPU or another DMA chan­
nel between each byte or word transfer; the burst 
mode permits the DMA section to transfer data as 
long as the requesting peripheral remains ready. 
The continuous mode, on the other hand, allows the 
DMA circuit to transfer an entire block of data 
without releasing the bus. Also, each channel of the 
controller can operate in a "no transfer" mode, in 
which it acts as a counter. 

Each DMA channel consists of a 24-bit source 
address register, a 24-bit destination address regis­
ter, a 16-bit count register, and a 16-bit transfer 
descriptor register. All these registers are in the 
I/O space of the CPU and are accessed with the 
word I/O instructions over the CPU's internal bus. 

Externally, the DMA channels use the address, data 
and control lines of the processor to transfer the 
data. Each channel has an input pin associated with 
it, to notify the channel that an external device is 
requesting a transfer. 

Controlling all four channels is a master DMA 
control register that can direct the channels to link 
with one another or to the serial I/O channel. When 
DMA channels are linked, one channel acts as a 
slave that loads the master with new address, count, 
and descriptor information. The master channel 
transfers a block of data to the destination and then 
waits while the slave updates its registers from in-

Line 0 

Line 1 

Line 2 

Line 15 

Table 2. How the Z8OO's 
cache memory is organized 

20 bit., 

Tag 0 

Tag 1 

Tag 2 

Tag 15 

Transfer 
deSCriptor 

16 bitl 

Valid 
bits 

Valid 
bIts 

Valid 
bIts 

Valid 
bits 

16 X 8 bit. 

Cache data 

Cache data 

Cache data 

Cache data 

Register information 
for master DMA resldmg 

In memory 

Destination address 

Destination address 

Source address 

Source address 

Count 

Transfer 
deSCriptor 

Destination address 

DestlnallOn address 

Source address 

Source address 

Count 

Transfer 
deSCriptor 

3. Linked DMA operations can be set up with two of the 
on-chip DMA channels. One channel can be used to 
download control information to another channel, thus 
minimizing the number of times the processor must stop to 
transfer control parameters. 

Electronic Duign • April 28, 1983 3-28 



formation transferred from memory (Fig. 3). With 
this structure, transfers of different types and to 
different locations can be initiated without CPU 
intervention 

Although all the processors have four counter­
timers on chip, only the Z8208 and Z82I6 take the 
lines of three to the outside; the fourth counter­
timer is an internal-only function on all four de­
vices. However, the three externally available 
counter-timers on the Z8208 and Z82I6 are full 
I6-bit down counters that can be independently pro­
grammed to count external events (count mode) or 
internal clock cycles (timer mode). Two of the I6-bit 

Local 
bu8 

4. Complex a,atem. uaing multiple Z800 proce •• ora, linked 
through a global memor" can be reedll, implemented, 
thanks to auch chip features aa the Globel Bus 
Requ .. tJAcknowlaclge lin .. and the local-acld,... regi.ter. 

counters also can be internally linked to form a 
32-bit counter. 

In use, each counter is loaded with an initial value 
that is also latched into the I6-bit time-constant 
register of that counter. When the counter value 
reaches zero, the counter causes one of several 
things to happen: an interrupt is generated, an ex­
ternal pulse is generated, or the counter is reloaded 
from the time-constant register to restart the 
countdown sequence. Command bit options specify 
which of those events occurs. In addition, each coun­
ter can be gated or triggered by either external sig­
nals or software, thus providing an extra measure 
of control. 

Serial port shinel 

The serial port usually takes advantage of one of 
the timers as a baud-rate generator or an external 
clock source. 'fhe serial port can send and receive 
data simultaneously, and two of the DMA channels 
can be linked with the transmitting and receiving 
sections to provide automatic high-speed serial 
transfers. Like most universal asynchronous 
receiver-transmitters, the port handles a data for­
mat that consists of a start bit; five to eight data 
bits; even, odd, or no parity; and one or two stop bits. 

The serial port also can be used to load data or 
programs remotely if a Z800 device is used as a slave 
to a larger host system. This remote-loading capa­
bility is supported by a bootstrap mode that can be 
selected when the processor is reset. When selected, 
this mode automatically links a DMA channel to the 
receiver side of the serial port, programs a default 
destination (000000) into the DMA channel, sets up 
the serial port data format, and begins loading 256 
bytes of data into memory via the serial channel. 
That permits the Z800 to serve as a ROM-less slave 
processor, subject to changes to suit the needs of the 
host system. 

Multlprocel80r operation made ealY 

Besides serving as slave processors, the Z800 
units can operate in multiprocessor systems. Both 
the Z8208 and the Z82I6 have on-chip features that 
readily permit their incorporation into multi­
processor systems. 

In the example (Fig. 4), two or more processors, 
each with a local bus that supports some combina­
tion of memory and 110 devices, communicate via a 
memory block on the shared global bus. This archi­
tecture requires the use of bus arbitration logic to 
allocate the global bus resource. 

Only part of each Z800's address space would be 
assigned to the global bus via the processor's local­
address register. Included in this scheme could also 
be a master processor to control the global bus and 

3-29 ElBelronie Deeilln • April 28. 1983 



Advanoed ",.eeaser family 

+5V 

.& 
;; 

i 

'J 
r; 

~ f 

lEI 
0 
t '" I~ 113 I~ ~ 0 « 

0 ~ 
II) I~ '" 0 ..J 

~ 
II: 0 

g! 
« II) 

~ 

I~ 

!l 
!l .c 
.c 

~ 
Z8030 i [ l senal -

communications j 
~ 7" 

I~ 

1 

Address 
decoder 

160 
> 
:f ijj 

-0 
t 
~ I~ 

Electronic o.lign • April 28. 1983 

" [ 8. 
~ l! 

E '0 .. 

ZS036 
counter-I/O lEO lEI 

chip 

15 
<> :s t 113 I~ ~ 0 I~ 0 I~ II: .. « 

~ 
~ 

3-30 

~ 

ZS036 
counter-itO 

chip 

'" I~ ..J Il(l ~ I~ I~ 

lEO 

Floppy­
disk 

controller 

,! 

t 

... 
~ 

~ 
i 
.& 
w w 
!!! 

'" 0 

~ 

~ 

~ 
~ 



walt r:wa~lt~~::) ••••• 1I 
Pause I~ 

Address 0-23 
Non-Maskable In_upt 

Interrupt A 
Interrupt B 
Interrupt C I •••••• ~ Address/Data 0-15 

Bu. Requeat 
BUB Acknowledge 

Receive 
Transmit 

Bufferred Addr ... /Data o-t5 (BAllo-BAD,,) 

Counter-Timer Input 0 
Counter-Timer I/O 0 

Counter-Tlmar Input 1 

Counter-Timer 1/0 1 
Counter-Timer Input 2 

Counter-Timer 110 2 

I---_-+-+----o~ Address Strobe 
I-----+-+-_~ Date Strobe 
I-----_+----o~ Input Enable 

O'E Output Enable 

Rm Readl\Nr.te 

BiWt---------
SYS CLKI-------__ System Clock 

RaedyO 
DMA Strobe 0 

Reedy 1 

DMA Strobe 1 

R""dy2 

Raady3 

ST.I-----l 
ST,t-----l 

ST,I-----l 
ST,I-----l Stetu. 

decoder 

Intemal Operation 

Refresh 

I/O Transaction 

Halt 
Interrupt Acknowledge A 

Interrupt Acknowledge NMI 

Interrupt Acknowledge C 

Interrupt Acknowledge B 

Memory Reference (C8chable) 

Memory Reference (Non-C8chable) 

5. A complele microcompUler syslem can be buill around Ihe Z8216, because ils powerful 
re.ource. eliminate meny peripheral function •• For perallel 110 and interrupt control, two 
Z8038. can be addad, and a Z8030 serial communication controller can add two more .. rial 
110 channel •• 

allocate tasks to the slave Z800 processors. 
For maximizing board space for memory, the 

Z8216 is the best choice_ It offers many of the func­
tions a designer needs to build a microcomputer 
board. All that must be added are the interface logic 
and buffers required to tie into a system bus like the 
IEEE-696 or IEEE-796. 

To handle interrupts and provide a parallel port 
for a printer, two Z8036 counter-timer and parallel 
I/O circuits can be added. For additional serial I/O, 
a Z8030 dual-channel serial communications con­
troller can be connected -to the local bus (Fig. 5). 

Since the processor contains its own clock oscil­
lator as well as a clock output, all timing can origi­
nate from its crystal. One of the counter-timers acts 
as a baud-rate generator for the built-in serial port, 
and the off-chip serial rommunications controller 
has its own baud-rate generator, reducing system 
complexity. 

The special status and control signals available 
from the Z8216 simplify the external logic needed to 
generate the bus and buffer control signals. To de­
multiplex the lower 16 address/data lines, the ad­
dress latch must simply be strobed with the address 
strobe line, and the status lines can readily be deco-

00-2321-01 3-31 

ded by either a 1-of-10 or a 1-of-16 decoder. (The 
first 10 status outputs are used in systems that do 
not have an extended processing unit, so the smaller 
decoder can be used_ If an extended processing unit 
is present, the remaining six outputs should be 
decoded.) 

Since the processor contains its own lO-bit 
refresh-address generator, dynamic RAMs as large 
as 1 Mbit can readily be handled without the space­
consuming refresh logic often needed in medium­
size systems. Also, the processor can automatically 
generate the appropriate wait states, thus permit­
ting the bus timing to be optimized for the memory 
access speed. 0 

Acknowledgments 

The authors would like to thank Greg Barr, Gary Cole, Monte 
Dalrymple, Khue Duong Bob Kurihara, Stanley Lai, Donald 
Mar Lan Nguyen, Mike Pitcher, Gurdev Singh, and Irving Stu­
art/or their valuable contributions to the development of the ZSOO 
processors. 

How useful? 
Immediate design application 
Within the next year 
Not applicable 

Circle 
556 
557 
558 

Electronic D .. ign • April 28, 1983 





Z8000™I6·BII Microprocessor Family 4 

...-... 0-





Zilog 

COST EfFECTIVE IEIDlY SELECTION Fm lIIOOO CPUS 

The "memory-effective" architecture of the zaooo 
CPU is the key to cost-effective system design in 
msny app licat ions. zaooo CPUs are designed to 
achieve high performance without the use of high­
performance memories. Because a single applica­
tion often requires hundreds of memory chips for 
each CPU, this memory-effect ive design csn result 
in large coat savings. 

Many factors enter into the selection of CPU and 
memory characteristics for a given application. 
This application note examines the simple formula 
that relates these factors to each other and pro­
vides examples of the formula applied in common 

LOGICAL j,. PHYSICAL 

CPU MMU 

ADDRESS I' ADDRESS 

(CD) (MM) 

CosI-Bffeclive .e .. ory 
Seleclloa for Z8000™ CPU. 

Appllcalloa 
Nole 

February 1982 

situations. Background for the material in this 
application note can be found in the zaooo CPU 
Manual (document #00-201O-CO) and t;;- the 
Za001/Za002 CPU ~ Specification (documert 
'iii0-2045-Aii) .-

TIE BASIC FlIIMUlA 

Figure 1 shows a generalized view of the informa­
tion path taken when the CPU issues a valid memory 
address. This process ends when valid data, re­
presenting the contents of the addressed location 
is returned to the CPU. Not all of the elements 
shown in figure 1 are necessarily present in every 
application, in which case the basic formula is 
simplified for that application. 

... DATA AND JI. 
MEMORY ECC 

II' 
ARRAY 

CHECK BITS II' 

(MA) (EC) 

11"- VALID DATA 
I I 

This schematic view shows the principal elemerts that enter into the basic 
formula relating memory and CPU timing characteristics. Many applications 
UBe subsets of these elemerts, ~ich simplifies the basic formula for 
those applications. 

The two-letter symbol in each box is UBed in the basic formula to repre­
sent the time length of that box's task. 

Figure 1. 1he Addreas-to-Data Path IlIlBtratea the BlBie F_la 

2206-001 4-3 



The address issued by the CPU is called a logical 
address. It is transformed by the MMU (or other 
memory management circuitry) int 0 a physical 
address. The symbol "MM" in Figure 1 represents 
the time required for this transformation. When 
no address translation circuitry is present in a 
given application, MM=O. 

When a physical address is emitted by the MMU (or 
by the CPU if address translation is not used), it 
is present ed to the memory array. After an 

interval of time represented by "MA" in the basic 
formula, data representing the contents of the 
addressed location and check bits associated with 
that location appear at the output of the memory. 

If no error check/correction circuitry is used in 
a given application, then no check bits appear, 
and the output of the memory is presented to the 
CPU as valid data representing the contents of the 
addressed location. If error correction circuitry 
is used, then the memory output is input to the 
error check/correction circuitry. After an 
interval of time represented by EC in the basic 
formula, the output of the error check/correction 
circuitry is presented to the CPU as the contents 
of the addressed locat ion. 

The three time periods represented by MM, MA, and 
EC all contribute to the total time elapsed in the 
address-to-data path, but one additional calcula­
t ion is required to reach the total. MM, MA, and 
EC represent the times elapsed in the correspond­
ing elements in the information path. The remain­
ing term, BD, represents the time elapsed while 
passing information between the specific areas. 
Thus, BD must include the delays in any buffers 
required for interboard bus transfers and time 
spent in address decoders or other select ion 
logic. Even the time taken for propagation of 
signals must be considered, although the amount is 
usually negligible in comparison with MM + MA + 
EC. 

The total time elapsed in the address-to-data path 
is the sum of the four terms MM, MA, EC, and BD. 
This total must be less than the maximum, CD, 
specified for the given CPU. This leads to the 
most fundamental form of the basic formula: 

MM + MA + EC + BD < CD (1 ) 

The term CD, however, can also be expressed as a 
formula. CD depends partly upon the characteris­
tics of the clock supplied to the CPU and part ly 

4-4 

upon constants that depend upon the maximum clock 
speed rating of the CPU. Furthermore, the ZOOOO 
architecture allows "wait states" to be inserted 
into memory access transact ions. The number of 
wait states inserted is another factor entering 
into the formula for CD. Finally, there are two 
possible expressions for CD, depending upon 
whether independent timing or the address strobe 
signal (AS) is used to signal "address valid." 

The published ac characteristics of the ZBOOO CPUs 
specify the exact point at which addresses become 
valid. (Parameter 9 of the a: characteristics 
table relates this point to a rising clock edge.) 
An address strobe signal, AS, is also prov ided by 
the ZOOOO CPU. The rising edge of AS, which 
occurs approximately one-half clock period after 
addresses become valid, can be used to signal 
"address valid." Use of AS simplifies the 
circuitry but places a greater demand on the 
memory. Furthermore, no similar signal is availa­
ble from the MMU circuits designed for use with 
the Z8000 CPUs, so that AS can only be used as 
described above in a system without memory address 
translation (Le., when MM=O). 

The two ways of comput ing CD (ac characterist ic 
parameters 11 and 27) are expressed in the fol­
lowing two equations: 

where: 

CD = (2+W)·CP + CH - K1 
CD = (2+W)·CP - CF - K2 

W = number of wait statea 
CP = clock period 
CH = clock width (high) 
CF = clock faUing time , 

(2a) 
(2b) 

K1 ,K2 = const ants whose values depend on the 
rated maximum clock apeed of the CPU 

The right hand side of equation (2a) expresses the 
time between the actual appearance of a valid 
address output and the point at which valid data 
is required. The right hand side of equat ion (2b) 
expresses the time between the rising edge of AS 
and the point at which valid data is required. 
The values of K1 and K2 for Z8000 CPUs are given 
in Table 1. 

The foregoing considerations can now be summarized 
in the basic formula (Figure 2). There are two 
versions of this formula, one for each of the two 
expressions for calculat ing CD (2a and 2b). 



K1 

K2 

Maximum Rated Clock Speed 
4 MHz 6 MHz 10 MHz 

130 ns 95 ns 60 ns 

120 ns 100 ns 50 ns 

TIE ""IT STATE TRADEOff 

As ei tl-er version of tl-e basic formuls shows, 
adding a wait state to the process increases the 
maximum memory access rat ing (MA) by one clock 
period (CP). (Fractions of wait states can be 
simulated by "clock stretching," to which the 
discussion in this sect ion also applies.) CPU 
performance, however, is lessened by the introduc­
tion of wait states. This sect ion is concerned 
with tl-e est imat ion of that reduct ion. 

Table 1. CPU Speed Rating Affects 
the Baaic r~la 

The decline in performance level sttributable to 
tl-e introduct ion of wait states into memory 
accesses is difficult to pinpoint, since each 
instruction is sffected differently. For exsmple, 
s register-to-register multiplicstion takes 70 
clock periods without wait ststes and 71 clock 
periods with s wait stste--s reduction of 1.4~ in 
execution speed. A register-to-register losd, on 
the other hand, tskes three clock periods without 

The B_ic rOrEla 
(Two Versions) 

MA < (2+W) • CP + CH - (MM + EC + BD + K1) 

MA < (2+W) • CP - CF - (EC + BD + K2) 

MA = rated access time of the memory 
W = number of wsit ststes 

CP = clock period 
CH = clock width (high) 
CF = clock fall time 
MM = memory translation (MMU) overhead 
EC = error check/correction overhead 
BD = selection logic, buffers, bus delay 

K1,K2 = constants (see Table 1) 

The besic formula determines the maximum access time for memories used 
with a ZBOOO CPU as a function of any factors that might affect it. 
The first version of the formula is the general case and assumes that 
an independent circuit is used to signal the memory when the CPU or 
the MMU emits a valid address. The second version, not applicable if 
memory management is used, assumes that the rising edge of sddress 
strobe (AS) will be used to generate the RAS or equivalent signal to 
the memory. 

ri9mt 2. 1he B_ic rOrEla 

4-5 

(A) 

(B) 

--------~~~~~------~------ --------.------~~ 



wait states and four clock periods with a wait 
state--a reduction of 251.l in execution speed. 

In one published study (AMD, ZBOOO Benchmark 
Report, 1981), five Z8000 programs were analysed. 
The objective was to compare ZBOOO performance 
with that of competing microprocessors, but 
included in the reported results was a performance 
comparison of each of the five Z8000 programs with 
and without a wait state. The reductions in 
execution speed were 51.l, 61.l, 151.l, 171.l and 211.l. 
The 51.l and 61.l reductions appeared in the "auto-
mated parts inspect ion" 8'.d "XY transformat ion, It 
both of which involve many register-to-register 
arithmetic operations and few memory reference 
instructions. The 151.l and 171.l reductions appeared 
in the "block translation" and in the "bubble 
sort," both of which involve a great many memory 
accesses. The 211.l reduction appeared in a dummy 
'!reent rant procedure," which does almost nothing 
other than save and restore the general registers. 

As the study cited above shows, the effect of 
adding wait states varies from application to 
application. If a numerical value can be assigned 
to the reduction in performance level caused by 
wait states in a given application, then that 
value can also be compared with the reduct ions 
ariSing from other approaches to providing a given 
target memory access rating, such as: 

• Reducing the clock speed (increasing CP). 

• Using values of W other than 1. 

The effect of each of these alternatives can be 
ev~luated numerically and compared with the effect 
of adding one wait state. 

RedUcing Clock Speed 

Assume that values have been assigned to all of 
the variables in the basic formula and that it is 
desired to increase CP to achieve a higher. upper 
bound on MA. If ~ MA is the desired increase in 
the right side of the basic formula, then each 
version of the basic formula gives rise to an 
equation for the required change ~CP: 

~CP 

~CP 

~MA 

2 + W + CH/CP 

~MA 

= 2 + W 

(3a) 

(3b ) 

4-6 

Since the execution speed of the CPU is inversely 
proportional to the clock period, the ratio of the 
new speed to the old after the change ~ CP in 
clock period is 

CP )
-1 

1 ~MA 
( + (2+W) 'CP+CH 

( 4a) p 
CP + ~CP 

P 
~MA )-1 

+ {?",,\.ro (4b) 
\_.", ...... , I 

For example, assume that version (B) of the basic 
formula has been used with values W = 0, CP = 
2500s (4 MHz), CF = 10ns, EC = 0, BD = 6Oos, and 
K2 = 120ns. Then MA < 500 - 10 - (60 + 120) = 
310ns. If memories rated at 3500s access time are 
desired the required ~ MA is 40ns. Using (3b), 
the required ~ CP is 20ns, leading to a new CP of 
270ns, which corresponds to a clock speed of 3.70 
MHz. Formula (4b) gives a value of 

That is, reducing the clock speed to achieve the 
desired memory access time results in an 81.l reduc­
tion in execution speed. If, instead, one wait 
state had been inserted (increasing the maximum MA 
from 310ns to 56Oos), the reduct ions in execut ion 
speed for the programs cited above would range 
from 51.l to 211.l. 

Uaing Values of W Other than 1 

Assume that values have been assigned to all of 
the vari abIes in the basic formula and that wait 
states are desired to achieve a higher upper bound 
on MA. Assume also that a relative performance 
level of PO is achieved when W=l. (For example, 
for the five programs cited earlier, the values of 
Po would be .95, .94, .B5, .83, and .79.) Then, 
for either version of the basic formula, the 

performance level corresponding to W wait states 
is given by 

p Po (5) 
Po + (1 - PO)·W 



Thus, for example, if insert ion of one wait state 
leads to a performance level of .85 (a reduction 
of 15"), the inaertion of one-half wait atate (by 
clock stretching) leads to a performance level of 

P = 
.85 

= .92 .85 + (.15)(.5) 

or a reduction of ~. 

EXMI'lE 1: lIE ZIlOG SYSUM 8II9B 

The lilog System 8000 provides an example that 
includes all of the elemert.a of the basic 
formula. The following characteristics describe 
the main memory of the System 8009: 

MA = 150ns (dynamic RAM) 
W = (') 

CP = 1eans (5.56 MHz) 
CH = 80ns 
MM 90ns (l8010 MMU, 6MHz rated) 
EC = 40 

SO = 60 (Buffers and selection logic) 
K1 = 95ns (lea01, 6 MHz rated) 

Version (A) of the bseic formula must hold: 

150 < (2+0)·180+80-(90+40+60+95) = 155 

00-2206·01 4·7 

The difference of only 5 ns indicates that the 
aystem characteristics have been closely matched. 
Notics that the clock is running at less than the 
rated maximum speed. An increese to the maximum 
sllowed for s 6 MHz rated l8001 CPU would result 
in a clock period (CP) of 165ns, and thus a maxi­
mUIII memory access rating (MA) of 118. The 5.56 
MHz clock speed results in a relative performance 
level of 165/180 = .92, or an 8" reduction in 
execution speed. 

EXAMPlE Z: A lBOOZ WITH A Z61}Z 

The l61J2 quasistatic 4K byte RAM is designed for 
use with the l8000 CPUs. For example, with the 
lea02's AS line tied direotly to the AC input of 
the l61J2 (ses Figure 6 of the l61J2 Product 
Specification, documert. nunber 00-Z028-AO, version 
(B) of the basic formula can be used: 

MA < 2·CP - CF - K2 

For 4 and 6 MHz rated CPUS running at maximum 
speed and using the longest allowed clock fall 
time (ac characteristic parameter 4), the basic 
formula gives: 

MA < 2·250 - 140 = 360 ns 
MA < 2·165 - 110 = 220 ns 

(4 MHz) 
(6 MHz) 

Thus, a 350ns Z6132 can be used with a 4 MHz leoOO 
and a zoOns l61J2 csn be used with a 6 MHz l8000. 





These benchmarks compare the performance of 
the Z8001 and Z8002, the Motorola 68000 and the 
Intel 8086 running the set of programs which have 
become Industry standards for companng micro­
processors The data demonstrates that 
• The 6MHz Z8oo00utperforms the 8M Hz 68000 

and any version of the 8086. 
• At any given memory access time, the Z8000 

gives higher performance than the 8086 or 68000. 
• Any given performance level can be reached with 

the Z8000 using slower memories than the 8086 
or 68000. 

For a demanding microprocessor application the user 
has the choice of three competing microprocessor 
families 
• The Z8000 manufactured by Zllog and AMD 
• The 8086 (or IAPX 86/10) manufactured by Intel 
• The 68000 manufactured by Motorola 

A widely quoted benchmark companson of these 
three microprocessors was published by Intel In 
1980 under the title' "16-blt Benchmark Report 
IAPX86, Z8000 and 68000" (Intel Publication No 
AFN01551A) 

Not surpnslngly, the Intel 8086 was announced the 
winner In that publication Intel achieved this result by 
Inefficiently coding the competing devices, thus not 
utilizing the powerful Instruction sets of the more 
modern Z8000 and 68000 microprocessors 

In order to refute the wrong conclusions drawn by 
Intel, we purposely used the same benchmarks, and 
even the Identical flow diagrams We give Intel the 
benefit of the doubt and assumed their performance 
figures from the above mentioned document For the 
Z8000 and the 68000, however, we rewrote the code 
efficiently. We did not use exotic tncks, Just plain 
straightforward, efficient coding that takes advantage 
of the powerful Instructions of the Z8000 and the 
68000. 

We made one minor modification to the Intel defini­
tion of the Block Translation We wnte the translated 
character back Into the same buffer where the EBCDIC 
character was stored We see no reason why anybody 
would perform a non-destructive translation It wastes 
memory space The punst who wants our exact 
response to the Intel benchmark should subtract 13% 
from the Z8000 performance to accommodate non­
destructive translation, which happens to be less effi­
cient on the Z8000, but does not affect the 8086 and 
68000 performance. 

Description of Benchmark Tests 
The benchmark tests used In this performance 
evaluation were selected for vanety and are 
representative of applications Including data 
processing, Image processing and anthmetlc 
processing Detailed coding IS shown In the appendix. 

Automated Parts Inspection 
The automated parts inspection program controls the 
Interface to an image-dissector camera, and compares 
the gray shade Signal from each of 16,384 pOints to a 

Reprinted with permIssion of Advanced Micro Devices 

BENCHMARK REPORT 
Z8000 vs 8086 vs. 68000 

reference gray shade held In memory The program 
controls the X-Y scan control to the camera by means 
of two 7 -bit D-A converters and reads the resultant 
gray shade Signal via a 12-blt A-D converter 

Reject Part 

Advance Conveyor 

Compute Toler:::: ZO·Percentl100 
and Start AID Converter 

Input Z From AID Converter 

" \\ II \ \ 
I I \ \ 

CJ a a 
ZO=Good Dala 

Z=Measured Data 
Percent= Percent 

Tolerance 

Automated Parts Inspection 

Block Translation - Destructive 
The block translallon benchmark translates a stnng of 
EBCDIC characters Into a stnng of ASCII characters, 
and overwntes the EBCDIC stnng. The benchmark 
assumes 121 characters In the source stnng 

4-9 



;~ 

;~ooo 
Relative 
Performance 

; 
Z8000B /; 3.0 _WMl ___ n __ '_' ___ t_-= __ ~_" ______ ~ _________ _ 

2.5 -" wmWN 

2.0 ------,-------~,.,-------~~-- ---

1.0 

3 4 5 6 7 8 9 

Figure 1 Relative Performance as a Function of Clock Frequency 
Maximum frequencies are shown for available speed selections. Dotted lines Indicate planned 
extensions. 

4-10 

10 
MHz 



BubbleSorl 
The bubble sort is a well-known algorithm for sorting 
data elements into one sequence (in this case, numer­
ically ascending order). The benchmark assumes that 
a one-dimensional array of ten elements is to be sorted 
and that the elements are intitially in numerically 
descending order. 

Array(O) 750 

(1) 700 

(2) 650 

(3) 600 

(4) 550 

(5) 500 

(6) 450 

(7) 400 

(8) 350 

(9) 300 

XV Transformation 

Array(O) 

(1) 

(2) 

Arrange In (3) 
Ascending Order (4) 

(5) 

(6) 

(7) 

(8) 

(9) 

300 

550 

600 

650 

700 

750 

Count = Number of Integers 
In Array 

Bubble Sort 

The XY transformation scales a selected graphic win­
dow c~ntaining 16-bit unsigned integer XY pairs. Each 
X data IS offset by XO and multiplied by a fractional 
scale factor L2/L 1 . Each Y data is offset by YO and 
multiplied by the same scale factor. The benchmark 
assumes the selected window contains 16 384 XY 
pairs. ' 

4-11 

_L2_ 

XO. YO 

Expand The Selected 
Window To Fill The 
Screen 

Count = Number Of XY Pairs 

Computer Graphics XV Transformation 
ThiS flowchart was originally presented by Intel 

Reentrant Procedure 

No 

This benchmark demonstrates the ability of the proc­
essor to handle reentrant procedures and parameter 
passing between procedures. The input parameters 
are passed (by value) to the procedures. Prior to the 
call, the first parameter is in one of the general registers 
while the second and third parameters are stored in 
memory locations PARAM2 and PARAM3, respectively. 

Upon entry, the procedure preserves the state of the 
processor, and it is assumed that the procedure uses 
eight of the general-purpose registers. Next, the 
procedure allocates the storage for three local 
variables (LOCAL1 , LOCAL2, LOCAL3). The 
procedure then adds the three passed parameters 
an.d stores the result in the first local variable. Upon 
eXit from the procedure, the state of the processor is 
restored. 

Table 1 shows execution times for each benchmark 
on each microprocessor without and with one Wait 
State. Execution times are then inverted to indicate 
performance (not time), and normalized with respect 
to the slowest device, the 5MHz iAPX 86/10 (i.e. the 
original 8086). As can be seen from the detail data in 
the appendix, the Z8001 and Z8002 are so similar in 
performance that they can be grouped together. 

Figure 1 shows the average performance data 
graphically. 



Benchmark Z8000B 
[8MHzJ 

OW 1W 

Absolute Performance 
Auto Parts 478 508 
Inspection 

Z8000A 
[6MHzJ 

OW 1W 

637 677 

Z8000 
[4MHzJ 

OW 1W 

68000-10 
[10MHzJ 

OW 1W 

68000-8 
[8MHzJ 

OW 1W 

956 1016 470 498 587 623 

iAPX86/10 
[10MHzJ 

OW 1W 

iAPX86/10 
[8MHzJ 

OW 1W 

668 708 835 885 ms 

Block 
Translation 

Bubble 
Sort 

388 456 517 607 776 912 757 916 946 1145 744 824 930 1030 '"s 

539 646 718 861 1078 1292 507 614 634 768 912 1007 1140 1259,"s 

XY 793 827 1057110315851655777 804 971 10051120115214001440 ms 
Transformation 

Rcc~truj"',t 256 325 34 
Procedure 

Performance Relative To iAPX 86/10 @ 5MHz 

N 
UJ 25 31 32 39 3i 35 39 

Auto Parts 2 8 2 63 2 1 1 97 1 4 131 284 2.68 2.27 214 2.00 189 1.60 1.51 
Inspection 

Block 
Translation 

3 84 3 26 2 88 2 45 1 92 1 63 1 96 1 62 1.57 1 3 2.00 1 81 1 60 1 44 

Bubble 
Sort 

3 38 2 82 2 54 2 12 1 69 1 41 3 6 2.97 2 87 2 38 2 00 1 81 1.60 1 45 

XY 282 271 2 12 203 1 41 1 35 288 2.79 2.3 2.23 2.00 1 94 1 60 1 56 
Transformation 

Reentrant 
Procedure 

242 1 9 1 82 1 44 1 21 095 248 2.00 1 93 1.59 200 1 77 1.60 1 44 

Average 
Relative 
Performance 

3.05 2.66 2.28 1.99 1.53 1.34 2.75 2.4 2.19 1.93 2.00 1.84 1.60 1.48 

OW = No Wait State, 1 W = One Walt State per memory access. 

Table 1 

Memory Access Time 
The benchmark data compares the performance of 
the three microprocessors at nominal clock rates 
without regard to the memory access time required 
to achieve the performance. 

Memory speed is however, an important systems 
consideration since it has a strong impact on memory 
cost and the design of the supporting Circuitry. In most 
systems memory cost far exceeds the cost of the CPU. 
It is therefore more useful to treat the CPU clock fre­
quency as a variable and plot performance as a func­
tion of memory access time requirement. For each 
CPU, the memory access time requirement can be 
relaxed by using a higher speed version of the CPU, by 
lowering the actual clock frequency, or by adding Wait 
States. 

Data sheets for the various microprocessors indicate 
the relationship between memory access time and 
clock period Every Wait State adds another clock 
period to the memory access time. 
TAe =(K+W)T-D 
TAC = memory access time required (at CPU pins) 
K = clock cycles/access (K=3 for the 8086, 

K=2.5 for the Z8000 and 68000) 
W = number of Wait States inserted (usually 0 or 

1) 
T = actual clock period in ns 
D = sum of time for CPU delays, set-up times, 

etc. This is a constant for a given part type 
and speed selection. See Table for value. 

4-12 

Device 

Device 
and 
Speed 
Selection 
Z8001. 
Z8002 
Z8001A. 
Z8002A 
Z8001 B. 
Z8002B 
68000-4 
68000-8 
68000-10 
8086-5 
8086-8 
8086-10 

D 

4MHz 150n8 

6MHz 95 

8MHz 75 
4MHz 120 
8MHz 90 

10MHz 80 
5MHz 140 
8MHz 80 

10MHz 60 

TAC In nanoseconds for various 

~~U:I; T 0; _1_) 
fmax 

T= 
250ns 
[4MHz) 

475 

530 

550 
505 
535 
545 
610 
670 
690 

T= 
167ns 
[6MHz) 

320 

340 

325 
335 

410 
430 

T= 
125ns 
[8MHz) 

238 

223 
233 

295 
315 

Table 2 Memory Access Times Required 

T= 
100ns 
[10M Hz) 

170 

240 



The relative performances computed previously are 
obviously directly proportional to the clock frequency 
used. That is, for a given device selection, the relative 
performance is Inversely proportional to T, the actual 
ciock period. The memory access time requirement IS 
also related to the clock period. 

TAC + D = (K + W)T = K1 T 
K2 

and, RP =T 
K1K2 

Therefore, RP T AC + D 

and Relative Performance can be plotted against 
memory access time required, with the ciock frequency 

Relative 
Performance 

being allowed to vary as required, down from the maxI­
mum for the part selection. As the clock frequency 
IS reduced, a point is reached where equal performance 
can be achieved by raising the ciock frequency back 
up and inserting a Wait State. This results In the same 
performance but a lower memory access time require­
ment, so it IS logical to do so. 

Table 3 contains computed data of memory access 
time requirements as a function of relative performance 
for each device selection with 0 and 1 Walt States. 
Figure 2 plots this data and shows the point at which 
the Walt State can be inserted without redUCing 
performance 

3.5-------------------------------------------------------------

Z80008 
3.0------~~~;..;.;;.--------------------

68000-10 
a~!...W.!t~~ 

2.5------~~~~~~~--------------~~-------------------------

Z8000 
1.5-------..;:a.,..----~~~~~;::~ 

1.0--------~1~------~-------&--------L--------L------~~ ______ ~ ______ _L __ __ 
200 250 300 350 400 450 500 

Fig. 2 Relative Performance as a Function of Memory Access Time 
Wait States are inserted when they reduce access time requirements without affecting performance 
(clock frequency is raised). 

4-13 

550 
ns 

-----------



Relative Z8000B Z8000A Z8000 68000-10 68000-8 iAPX86/10 iAPX86/10 
Performance (1 s 8MHz) (1 s 6MHz) (100 4MHz) (1:5 1 OM Hz) (1:5 8MHz) (f :5 10MHz) (I :58MHz) 

W=O W=1 W=O W=1 W=O W=1 W=O W=1 W=O W=1 W=O W=1 W=O W=1 
34 
33 
32 
31 
30 243 

29 254 
28 266 
27 279 175 
26 292 373 184 
25 307 391 195 

24 323 410 206 270 
23 340 432 219 285 
2.2 359 455 335 233 302 221 
21 380 480 356 247 320 235 
20 402 508 378 486 264 340 252 240 

19 427 538 403 517 282 362 270 354 256 
18 455 572 431 551 302 387 290 379 273 349 
17 487 610 462 589 324 414 312 406 293 373 
16 522 653 496 631 350 445 337 437 315 400 295 
1.5 561 702 536 680 488 378 480 366 472 340 431 320 413 
~----.- ---
14 607 757 581 735 533 411 520 398 512 369 466 349 449 
13 659 821 633 799 586 449 566 436 559 402 506 382 489 
1.2 721 896 694 873 647 827 493 620 479 613 440 553 420 537 
11 793 984 765 961 719 916 545 684 531 677 485 609 465 593 
10 880 1090 851 1067 806 1023 608 760 593 753 540 676 520 660 

W=O = No Walt State, W= 1 = One Walt State per memory access 
Table 3 Required Memory Access Time to Achieve a Given Relative Performance (in nanoseconds) 

What This Benchmark Does And Doesn't Tell You 
Benchmarks are popular simplifications to compare 
the performance of different microprocessors, Like 
all other simplifications, benchmarks must be used 
with care. 

At best they accurately compare the performance 
of different microprocessors In a limited set of applica­
tions, which mayor may not be representative of the 
applications that the user needs. 

At worst they are distorted by a manufacturer who 
wants to "prove" that his device is the best. By choosing 
examples that favor a particular microprocessor or­
more deviously - by Writing IneffiCient code for the 
competitor's device, any manufacturer can "prove" that 
hiS product is superior to the competition's. 
Moreove~ benchmarks describe only one aspect of 

the microprocessor: speed (or throughput). Other 
Important technical considerations are: 

• Code efficiency 
• Ease of programming 
• Ease of interfaCing to memory and I/O 
• Availability of powerful peripheral devices 
• Availability of hardware and software support 
Finally there are good business reasons for favoring 
a particular microprocessor: 
• Price, availability and multiple sourcing 
• Vendor reputation and quality of field application 

support 
• DeVice reliability and quality level. 

Benchmarks tell nothing about these important aspects, 
In spite of these limitations, benchmarks are an 

Important tool for adding quantitative data to the com­
plicated task of selecting the right microprocessor, 

The soon-to-be-announced 8MHzZ8000B is 11% 
faster than the soon-to-be-announced 10MHz 
68000-10, and the Z8000B achieves thiS superior 
performance even With substantially slower memories, 

The 6MHz Z8000A is 4% faster than the 8MHz 
68000-8, and the Z8000A can tolerate memory access 
times 1 OOns longer than required by the 68000-8, 
The iAPX 86, even In its fastest 10MHz version is no 
contender 

The Z8000 is better, 

4-14 



APPENDIX 
A. Automated Parts Inspection 

Z8002 II of Clock Cycles 

LD R12, PER CENT ,Load Percent Tolerance 
7+2W 

LD R8, j GRAYTAB ,Gray Table Base Address 
7 + 2W 

LD RO, 16383 ,Number of Scans 
7+2W 

LD R10, SIGNAL ,Load AID Converter 
Address 7 + 2W 

LD R11, XYSCAN ,Load Addresses for the 
2 DI A Converters 

7+2W 
LD R13, REJECT ,Load Reject Port Address 

7+2W 

LOOP OUT R11, RO ,Write XY Coordinates 

IN R4, R10 

LD R3, R8j 

INCR8,2 

LD R1, R3 
MULRR2, R12 

DIV RR2, #100 

SUBR4, R1 
JRGEBYPASS 
NEGR4 

* 10 + W 
,Z=R4 (Read Signal) 

* 10+ W 
,ZO=R3 (Read Reference) 

* 7 +2W 
,I nc Reference POinter 

* 3 + W 
,R1=ZO * 3 + W 
,R3=ZO*PERCENT 

* 70+ W 
,R3=ZO*PERCENT 1100 

* 95 + 2W 
,R4=Z-ZO * 4 + W 
,R4 '" 0 * 6 + W 
,R4<O-->R4 = I Z-ZO I 

7+ W 

BYPASS CP R4, R3 ,I Z-ZO I -ZO * PERCENTI 
100 * 4 + W 

JR LE ENDTEST ,I Z-ZO I <20* PERCENTI 
100 * 6 + W 

OUTR13, R4 ,Reject Signal 10 + W 
ENDTEST DJNZ RO, LOOP ,Process Next POint 

CONSTANT PERCENT= 
CONSTANT SIGNAL= 
CONSTANT XYSCAN= 
CONSTANT REJECT= 

GRAYTAB WORD (16384) 

* 11 + W 

On average, of 16384 times through Loop we assume that 
8192tlmes Z-ZO>O 
8192tlmes Z-ZO<O I e we execute NEG R4 

1638 times (10% 01 the cases) we reject the part, I e we execute 
OUTR13, R4 

Total Clocks 6(7+2W) + 8192 (229 + 14W) +8192 (236 + 
15W) + 1638(10 + W) = 16422 + 1650W + 8192 
(465 +29W) = 3,825,702 +239,218W 

Z8001 

LOOP 

LD 
LDL 
LD 
LD 
LD 
LD 
OUT 
IN 
LD 
INC 
LD 
MUL 
DIV 
SUB 
JRGE 
NEG 

R12, PERCENT 
RR8, jGRAYTAB 
RO,16383 
R10, SIGNAL 
R11,XYSCAN 
R13, REJECT 
R11,RO 
R4,RO 
R3,RR8j 
R9,2 
R1,R3 
RR2,R12 
RR2,#100 
R4,R1 
BYPASS 
R4 

II of Clock Cycles 

7 +2W 
11 +3W 
7 +2W 
7+2W 
7 +2W 
7+2W 

10+ W 
10+ W 
7 +2W 
3+ W 
3+ W 

70+ W 
95 + 2W 
4+2W 
6+ W 
7+ W 

4-15 

Z8001 (Continued) 

BYPASS CP 
JRLE 
OUT 

ENDTEST DJNZ 

R4,R3 
ENDTEST 
R13,R4 
RO,LOOP 

Total clocks. 3,825,706 + 239,219 W 

II of Clock Cycles 

4+ W 
6+ W 

10+ W 
11 + W 

Notice that there IS practically no performance deterioratIOn due 
to segmentation 

68000 

LOOP 

BYPASS 

ENDTEST 

MOVEW DO, #16383 

MOVEW D6, #PERCENT 

MOVEL A3, #GRAYTAB 

MOVEW A5, #XYSCAN 

MOVEW A6, #REJECT 

MOVEW A4, #SIGNAL 

MOVEW (A5), DO 

MOVEW D4, (M) 

MOVEW D3, (A3)+ 

MOVEW D1, D3 
MULU D3, D6 

DIVU D3, #100 

SUBW D4,D1 

BGEBYPASS 

NEGW D4 

CMPWD4,D3 

BLE ENDTEST 

MOVEW (A6), D4 

DBF DO, LOOP 

II of Clock Cycles 

,Numberof 
scans 

--> DO 8 + 2W 
,Percent 

Tolerance 
--> D6 8 + 2W 

,Gray Table --> A3 
12+3W 

,D/A Address 
--> A5 8 + 2W 

,Address of 
Reject Message 
-->A6 8 + 2W 

;NDAddress 
-->A4 8 + 2W 

,WrlteXY 
Coordinates 

9+2W 
,Read Signal D4 

8+ 2W 
;Read Reference 

D3 8 + 2W 
4+ W 

;D3=D3*D6 
70+ W 

,D3=D3*D6/100 
144 + 2W 

,D4=Z-ZO 
4+ W 

,D4<0 
8/10 + W 

,D4<O--> D4 
Z-ZO 4+ W 

,I Z-ZO I-ZO* 
PERCENT/100 

4+ W 
;1 Z-ZO I<ZO * 
PERCENT/100 

8/10 + W 
,Reject Signal 

8+ 2W 

,Loop to Next Call 
14 + 3W/10 + 2W 

Total clocks. 52 +13W + 8192 (285 + 11W) + 8192 (287 + 
18N) + 1638 (8-2+2W)=52 + 13W + 8192 (572 + 35W) + 
1638(6 +2W)=4,695,576 + 290009W 

iAPX 86/10 II of Clock Cycles 

XOR CX,CX ,ZERO X and Y 
3 

MOV SI,OFFSET(GDATA) ,INIT POINTER 
4+ W 

CLD ,DF=FORWARD 
2 

AGAIN MOV AX,CX ,OUTPUT X 

OUT DTOA,AX 

LODS GDATA 

2 
,ANDY 

10+ W 
,GETZO 

12+ W 

=~.'~-----.-~~~---



iAPX 86/10 (Continued) j! of Clock Cycles 

MOV BX,AX ,STOREZOIN 
BX 2 

MUL PERCNT ,ZO PERCNT 
130+ W 

OUT CONVRrAX ,START AID 
CONVERTER 

10+ W 
DIV HUNDRD ,ZO*PERCNTI 

100161 + W 
MOV DX,AX ,DX=TOLER 

2 
IN AX,ATOD ,INPUT Z FROM 

AID 10 + W 
0UD I"'\I\,D/\ ,DELTA-Z-ZO 

3 
JA CMPARE ;JUMPIF 

POSITIVE 
4/16 + W 

NEG AX ,DELTA=-DELTA 
3 

CMPARE. CMP AX,DX ,DELTA-<= 
TOLER? 

3 
JBE INCCX ,JUMP IFYES 

4/16 + W 

OUT REJECT,AX ,REJECT PART 
10+ W 

JMP SHORT(NEXT) 15+ W 
INCCX INC CX ,INCX& Y 

2 
CMP CX,4000H ,DONE? 

4+ W 
JNE AGAIN ,NO, PROCESS 

4/16 + W 
,NEXT POINT 

NEXT 

HUNDRD. DW 100 

Total numberof clock cycles 6,680,000 + 400W, 

Block Translate - Destructive 
(Special feature for Z8000) 

LD RO,COUNT 

j! of Clock Cycles 

,Get Length of 
EBCDIC 
String 

7+2W 
LD R3, iEBCBUF ,Address of 

EBCDIC 
String 7 + 2W 

LD R5, !TRTAB ,Address of 
Translation 
Table 7 + 2W 

TRIRB R3i, R5i,RD, ,Translate 
EBCDIC 
String 

11 +2W++(14+3W)132 

Total Clocks 1880 + 404W 

B. Block Translate Benchmark - Destructive 

Z8002 j! of Clock Cycles 

TRTAB 

EBCBUF 
CONSTANT EBCEOT=03 
CONSTANT COUNT=132 
CONSTANT ASCEOT=04 

,CICEBD-ASCII 
Translation 
Table 

,EBCDIC-String 
,EOT In EBCDIC 

;EOT In ASCII 

4-16 

Z8002 (Continued) j! of Clock Cycles 

LD R3, EBCBUF 

LD R2,EBCEOT 

LDRO, COUNT 

LD Rl RO 
CPIRB R2,R3i,RO,EQ 

SUBR1,RO 

LD R3,iEBCBUF 

LD R5,iTRTAB 

TRIRB R3i,R5i,Rl 

;Address of 
EBCDIC String 
-; R3 7 + 2W 

,EDT Char -; R2 
7 + 2W 

,RO=COUNT 
7 + 2W 
3+ W 

;RO=COUNT-ac 
11 +2W+132(9+W) 

,Rl =Rl-RO=oc 
;4+2W 

,Address of 
I::tlCDIC String 

,7+2W 
;Address of 

Translation 
Table 7 + 2W 

11 + 2W + 132(14+3W) 
LDB R3i, ASCEOT ,Write ASCEOT 

11 +3W 
Total clocks 3111 + 547W 

ThiS IS the worst possible case since the scanning of the string IS 
actually done only for characters (until the encounter of EOT) 
Z8001 j! of Clock Cycles 

TRTAB 
EBCBUF 

CONSTANTEBCEDT=3 
CONSTANT COUNT=132 
CONSTANT ASCEOT=04 
LDL RR2,iEBCBUF 

,EOT In EBCDIC 

,EOT In ASCII 
11 +3W 
7 +2W 
7+2W 
3+ W 

LD R4,EBCEOT 
LD RO,COUNT 
LD R1,RO 
CPIRB R4, RRnRO,EQ 

SUBR1,RO 
LDL RR2,iEBCBUF 
LDL RR6,i TRTAB 
TRIRB RR2 ,RR6i,R1 

11 +2W+132(9+W) 
4+ W 

11 +3W 
11 +3W 

11 + 2W +132(14+3W) 
LDB RR21',ASCEOT 11 + 3W 

Total clocks. 3123 + 550W 

68000 j! of Clock Cycles 

MOVEB D2,#EOT 

MOVEW DO,#COUNT 

BEO DONE 

MOVEL A3,#EBCBUF 

MOVEL A5,#TRTAB 

LOOP MOVEB Dl,(A3) 

MOVEB (A3),A5(0,D1) 

CMPB D2,(A3)+ 

,Get EOT 
8+2W 

;Get Length of 
EBCDIS 
String 8 + 2W 

;Length=O EXit 
10/8 + W 

,A3=Address of 
EBCDIC 
String 

12 +3W 
,A5=Address of 

Translation 
Table 12 + 3W 

,Get EBCDIC 
Character 

8+2W 
,Replace It by 

ASCII 
Translatton 

19 +4W 
,EOT? 8 + 2W 



68000 (Continued) # of Clock Cycles 

DONE 

DO,LOOP 

DONE 

,Yes- EXit 
10/8 + W 

,No- Loop 
10 + 2W/14 +3W 

Totalclocks 48 + 11W + 132(57 + 12W) - (4 + W) = 44 
+ lOW + 7524 + 1584W = 7568 + 1594W 

iAPX 86/10 # of Clock Cycles 

MOV BX,OFFSET(TABLE) ,INITTRANSLATION 
PTR 4 

MOV SI, OFFSET(EBCBUF) ,INIT EBCDIC BUFR 
PTR 4 

MOV DI,OFFSET(ASCBUF) ,INIT ASCII BUFR 
PTR 4 

MOV CX,COUNT ,INIT COUNT 
14 + W 

CLD ,OF=FORWARD 2 
JCXZ FINISH ,JUMP IF COUNT=O 

6/18 + W 
NEXT LODS EBCBUF ;GETEBCDIC 

CHAR 12+ W 
XLAT TABLE ,TRANSLATE TO 

ASCII 11 + W 
STOS ASCBUF ,STORE IN ASCII 

BUFR 11 + W 
CMP AL,EOT ;CHAR=EOT? 

4 
LOOPNE NEXT ;LOOP IF NE OR 

CX·<> 0 5/19 + W 
FINISH 

Total Number of clock cycles. 7,400 + 800W 

C. Bubble Sort 

Z8002 # of Clock Cycles 

10 

10 

BSORT LD R4,ADR 

LDR5,COUNT 
DECR5 

j'"n 
RESB RL6,0 
LDL RR2,RR4 

COMP LDL RRO, R2! 

,Load Starting Address 
9+3W 

;Load Word Count 9 + 3W 
;Set Number of Compares 

4+ W 
;Clear Exchange Flag 4 + W 
,Copies of Adr and Count 

5+ W 
,Fetch 2 words In RO,R1 

11 +2W 
CP RO,R1 ;Out of Order? 
JR LE DECCNT ,No-Continue 

4+ W 
6+ W 
6+ W EX RO,R1 ,Yes-Swap them 

LDL R2!,RRO ,Store Back 11 +2W 
SETB RL6,0 

DECCNT INC R2,2 
DECR3 
JRGTCOMP 
BITBRL6,0 
JRNZINIT 

4+ W 
;Polntto Next Pair 4 + W 
,Decr, Word Count 4 + W 
;Done? 6 + W 
,Exchange Flag = 1? 4 + W 
,Yes·Start Next Pass 6 + W 
,No-Done 

10 
Total clocks 22 + 7W + 10 (19 + 4W) + 1: 
[(10-m)(56+11W)+ m=1 
(M-1)(35+7W)] = 212 + 47W + 45 (91 + 18W) = 4307 + 857W 

Z8001 # of Clock Cycles 

BSORT 

10 
{ INIT 

LDL RR12, ADR 
LDR5, COUNT 
DECR5 
RESB RL6,0 
LDL RR2,RR121' 
LD R4,R5 

LS SS 
15+4W/13+3W 

9 + 3W 
4+ W 
4+ W 
5+ W 
3+ W 

4-17 

Z8002 (Continued) # of Clock Cycles 

COMP: LDL RRO,RR12 11 + 2W 
CPRO,R1 4 + W 
JR LE DECCNT 6 + W 
EX RO,R1 6 + W 
LDL RR2!,RRO 11 + 2W 
SETB RL6, 0 4 + W 

DECCNT INC R3,2 4 + W 
DEC R4 4 + W 
JR GT COMP 6 + W 
BITB RL6,0 4 + W 
JR NZ INIT 6 + W 

(SS) Total clocks 26 + 7W + 10[(19 + 4W) + (3 + W)] + 45(91 
+ 18W) = 4341 + 867W 

(LS) Total clocks: 28 + 8W + 10[(19 + 4W) + (3 + W)] + 45(91 
+ 18W) = 4343 + 868W 

68000 # of Clock Cycles 

BSORT MOVEAL A1,400 ,StartAddress~ A1 
12 +3W 

,Count~D3 MOVEW 03,404 

SUBQ 03,#1 
CLR.B 01 

10 {INIT MOVEAL 

MOVEW 

AO,A1 

00,03 

12 + 3W 
4+ W 

,Exchange Flag = 0 
4+ W 

;Copy Start Address 
IntoAO 4 + W 

;Copy Count Into DO 
4+ W 

,Fetch word 8 + 2W 
;Next word greater? 

8+2W 
;Yes, Continue 

COMpo MOVEW D2,(AO)+ 
CMP (AO),D2 

BLS.S DECCNT 
8/10 + W 

MOVEW (AO)(-2),(AO) ;No. Exchange these 
17+4W 

MOVEW (AO),D2 ,two words 9 + 2W 
TAS 01 ,Exchange Flag=1 

4+3W 
DECCNT DBE 

NOTB 

DO,COMP 

01 

;Done? 
10 + 2W/14 + 3W 

;No. Test Exchange 
Flag 4 + W 

BPLS INIT , 8/10 + W 

Total clocks 32 + 8W + 10 (22 + 4W) - 2 + 1£ 
m=1 

[(10-m)(68+15W)+(m-1)(40+8W)-10(4 + W)] = 
5070 + 1072W 

iAPX86/10 # of Clock Cycles 

MOVBL,OFFH 

A1 CMPBL,OFFH 

JNEA4 
XORBL,BL 

MOV CX,COUNT 

DECCX 

XORSI,SI 

A2: MOV AX,ARRAY(SI) 
CMP AX,ARRAY(SI+2) 
JLEA3 
XCHG ARRAY(SHZ},AX 

ARRAY(SI),AX 

,EXCHANGE=TRUE 
4 

, EXCHANGE=TRUE? 
4 

; NO, FINISHED 4/16 + W 
; EXCHANGE=FALSE 

; CX=COUNT-1 

;SI=O 

3 

14+ W 
2 

3 

,ARRAY(I) >- 17 + W 
;ARRAY(I+1)? 18+ W 
; NO 4/16 + W 
;EXCHANGE ELEMENTS 

6+ W 
18+ W 



iAPX 86/10 (Continued) 

MOVBL,OFFH 

A3' INCSI 
INCSI 
LOOPA2 

JMPA1 
A4' 

4+ of Clock Cycles 

; EXCHANGE=TRUE 
4 

,SI=SI+2 2 
2 

; DEC CX & LOOP IF<>O 
5/17 + W 

15+ W 

Total number of clock cycles. 9,120 + 950W 

D. Computer Graphics XY Transformation 

Z8002 

XYSCAL 

LDR2,COUNT 
LD R3,jARRAY 

LD R4,XO 
LD R5,YO 
LD R6,L2 
LD R7,L1 

LD R1,R3j 
SUBR1,R4 
MULTRRO,R6 
DIVRRO,R7 
LD R3j,R1 
INCR3,2 
LD R1, R3j 
SUBR1,R5 
MULTRRO,R6 
DIVRRO,R7 
LD R3j,R1 
INC R3,2 

DJNZ R2,XYSCAL 

4+ of Clock Cycles 

Cycles 
;INIT COUNT 9 + 3W 
;INIT ARRAY POINTER 

;INITXO 
;INITYO 
;INITL2 
;INITL1 

7 + 2W 
9+3W 
9+3W 
9+3W 
9+3W 

,GET X ELEMENT 7 + 2W 
;X-XO 4 + W 
;(X-XO) *L2 70 + W 
;(X-XO) *L2/L 1 95 + W 
;STORE ELEMENT 8 + 2W 
,INC POINTER 4 + W 
,GET Y ELEMENT 7 + 2W 
;Y-YO 4 + W 
;(Y-YO)*L2 70 + W 
,(Y-YO)*L2/L1 95 + W 
;STORE ELEMENT 8 + 2W 
,INC POINTER 4 + W 

;DEC R2 & LOOP IF 
,R2<>0 11 + W 

Total clock cycles = 52 + 17W + 16384 (387+17W) 
= 6,340,660 + 278,545W 

Z8001 

LDR2,COUNT 
LD R3,XO 
LD R4,YO 
LD R5,L2 
LD R6,L1 
LDL RR8,jARRAY 

4+ of Clock Cycle 

Cycles 
;INIT COUNT 9 + 3W 
,INITXO 10 + 3W 
;INTYO 10 + 3W 
,INIT L2 10 + 3W 
;INITL1 10+3W 
,INIT ARRAY POINTER 

11 +2W 

XYSCAL: LD R1, RR8j 
SUB R1,R3 
MULT RRO,R5 
DIV RRO,R6 
LD RR8j,R1 
INC R9.2 

;GET X ELEMENT 7 + 2W 
;X-O 4 + W 
;(X-XO)*L2 70 + W 
,(X-XO)*L2/L 1 95 + W 
,STORE ELEMENT 8 + 2W 
;INC POINTER 4 + W 

LD R1, RR8j ;GET Y ELEMENT 7 + 2W 
SUB R1,R4 ;Y-YO 4 + W 
MULTRRO,R5 ;(Y-YO)*L2/L1 70+ W 
LD RR8j,R1 ,STORE ELEMENT 8 + 2W 
INC R9,2 ;INC POINTER 4 + W 
DJNZ R2,XYSCAL 11 + W 

Total clocks 60 + 17W + 16384(387 + 17W) = 6,340,668 

68000 

+ 278,545W 

4+ of Clock Cycles 

MOVEW D2,COUNT ,INIT COUNT 12 + 3W 
MOVEW A3#ARRAY ;INIT ARRAY POINTER 

8+2W 

68000 (Continued) 

MOVEWD4,XO 
MOVEWD5,YO 
MOVEWD6,L2 
MOVEW D7,L1 

XYSCAL: MOVEW D1(A3) 
SUBWD1,D4 
MULU D1,D6 
DIVU D1,D7 
MOVEW (A3)+,D1 

MOVEW D1 ,(A3) 
SUBWD1,D5 
MULU D1,D6 
DIVU D1,D7 
MOVEW (A3)+,D1 

DBF D2,XYSCAL 

4+ of Clock Cycles 

,INITXO 12 + 3W 
;INIT YO 12 + 3W 
,INIT L2 12 + 3W 
;INITL1 12+3W 
,GETX 8 + 2W 
,X-XO 4 + W 
;(X-XO)*L2 70 + W 
;(X-XO)*L2/L 1 140 + W 
,STORE & INC POINTER 

8 + 2W 
;GETY 8 + 2W 
,V-YO 4 + W 
,(Y-YO)*L2 70 + W 
,(Y-YO)*L2/L1' 140 + W 
;STORE & INC POINTER 

8+2W 
14 + 3W/10 + 2W 

Total clocks: 64 + 16W + 16386 (474 + 17W) = 7,766,016 
+ 278,544W 

4-18 

iAPX86/10 

MOV CX,COUNT 

MOV SI,OFFSET(ARRAY) 

MOVDI,SI 

CLD 

XYSCAL' LaDS ARRAY 

SUB AX,XO 
MULL2 

DIVL1 

STOSARRAY 

LaDS ARRAY 

SUBAX,YO 
MULL2 

DIVL1 

STOSARRAY 

LOOPXYSCAL 

4+ of Clock Cycles 

,INITCOUNT 
14+ W 

,INIT ARRAY 
POINTER 4 

;INIT ARRAY 
POINTER 2 

;DF=FORWARD 
2 

;GET X ELEMENT 
12+ W 

,X-XO 
;(X-XO)*L2 

15+ W 

130+ W 
;(X-XO)*L2/L 1 

161 + W 
;STORE ELEMENT 

11 + W 
,GET Y ELEMENT 

;Y-YO 
;(Y-YO)*L2 

12 + Y 
15+ W 

130+ W 
,CY-YO)*L2/L 1 

161 + W 
,STORE ELEMENT 

11 + W 
,DEC CX & LOOP IF 

5/17 + W 
,CX<>O 

Total number of clock cycles = 11,200,000 + 320,000W 

E. Reentrant Procedure 

Z8002 4+ of Clock Cycles 

PUSH R15j,R8 ,R8=PARAM1 
9+ 2W 

PUSH R15j,PARAM2 ,PUSH PARAM2 
13+ 4W 

PUSH R15j,PARAM3 ;PUSH PARAM3 
13 + 4W 

CALR PROC1 10 + W 
INCR15,6 ;Remove PARAM1-

3 from the Stack 
4+ W 

PROC1 PUSH R15j,R14 ;Save R14 9+ 2W 
LD R14,R15 ; Initialize R14 3+ W 
SUB R15,6+16 ;Set up Local 

Storage 7+ 2W 



Z8002 (Continued) 

LDM R15[,RO,S 

,PROCEDURE BODY 
LD RO,S(R14) 

ADD RO,6(R14) 

ADD R0,4(R14) 

LD -2(R14),RO 

,PROCEDURE RETURN 
LDM RO,S,R15[ 

ADD R15,6+16 

POP R14,R15[ 
RET 

Total clocks' 205 + 55W 

Z8001 

PUSH RR14[,RS 

PUSH RR14[, PARAM2 

PUSH RR14[, PARAM3 

CALR PROCl 

INC R15,6 

PROCl PUSHL RR14[,RR12 
LDL RR12,RR14 
SUB R15,6 + 16 

LDM RR14[,RO,S 
,PROCEDURE BODY 

LD RO, 12(RR12) 

LD Rl ,10(RR12) 

ADDRO,Rl 
LD Rl ,S(RR12) 

ADDRO,Rl 
LD -2(RR12),RO 

,PROCEDURE RETURN 
LDM RO,S,RR14[ 

ADD R15,6+16 

POPL RR12,RR14[ 

RET 

'" of Clock Cycles 

:Save Registers RO-7 
25 + lOW 

,GetPARAMl 
10+ 3W 

,ADD PARAM2 
10 + 3W 

,ADD PARAM3 
10+ 3W 

,Store In LOCAL 1 
12 + 3W 

,Restore General 
Registers 35 + lOW 

: Restore SP to POint 
toR14 7 + 2W 

:Restore R14 lS + 2W 

'" of Clock Cycles 

,RS=PARAMl 
9+ 2W 

,Push PARAM2 
14+4W/16+ 5W 

,Push PARAM3 
14+4W/16+ 5W 

15 + 3W 
,Remove PARAMl-3 

from stack 4 + W 
,Save RR12 12 + 3W 
,Initialize RR12 5 + W 
,Setup Local Storage 

7 + 2W 
,Save RO-7 35 + lOW 

,GetPARAMl 
14+ 3W 

,Add PARAM2 
14 + 3W 
4+ W 

,Add PARAM3 
14 + 3W 
4+ W 

,Store In LOCAL 1 
14 + 3W 

:Restore RO-7 
35 + lOW 

,Restore SP to Point to 
RR12 7 + 2W 

,Restore RR12 
12 + 3W 
10+ W 

Total clocks (Short segmentation)' 243 + 60W 
Total clocks (Long segmentation) 247 + 62W 

68000 '" of Clock Cycles 

MOVEW -(SPJ,DO ,DO=PARAMl 
9 + 2W 

MOVEW -(SP),PARAM2 ,Push PARAM2 
17 + 3W 

MOVEW -(SP),PARAM3 ,Push PARAM3 
17 + 3W 

4-19 

68000 (Continued) '" of Clock Cycles 

SUB 

BSRSUB 
ADDQSR#6 

20+ 4W 
:Remove PARAMl-3 

from the Stack 
4+ W 

LINK A6,#6 :A6=Framepomter 
lS+ 4W 

MOVEMW OFFO,-(SP) ,Save A3-0,D7-4 on 
Stack 4S + lOW 

,PROCEDURE BODY 
MOVEW DO,A6( +10) ,Get PARAMl 

12 + 3W 
ADDW DO,A6( +S) :Add PARAM2 

12 + 3W 
ADD W DO,A6( +6) :Add PARAM3 

12 + 3W 
MOVEW A6(-2),DO ,Store In LOCAL 1 

9 + 3W 
,PROCEDURE RETURN 

MOVEMW (SP)+ ,OFFO :Restore A3-0,D7-4 
44+ 11W 

UNLK A6 ,Restore A6 12 + 3W 
RTS 16 + 4W 

Total clocks 250 + 5SW 

iAPX86/10 

PUSH AX 
PUSH PARAM2 
PUSH PARAM3 
CALL PROC1 

, PROCEDURE ENTRY 

PROCl PUSH BP 
MOV BRSP 
SUBSR6 

PUSH AX 
PUSH BX 
PUSH CX 
PUSH DX 
PUSH SI 
PUSH DI 

, PROCEDURE BODY 

MOV AX,(BP+S) 
ADD AX,(BP+6) 
ADC AX,(BP+4) 
MOV (BP-2),AX 

: PROCEDURE RETURN 

POPDI 
POPSI 
POPDX 
POPCX 
POPBX 
POPAX 
MOVSRBP 
POPBP 
RET6 

'" of Clock Cycles 

,PUSH PARAMl 10 + W 
22 +W 
22 +W 
19+W 

:SAVE BP 10 + W 
:INITIALIZE BP 2 
,SETUP LOCAL STORAGE 

4 
,SAVE GENERAL 10 + W 
,REGISTERS 10 + W 

10+W 
10+W 
10+W 
10+W 

,GETPARAM1 
:ADD PARAM2 
,ADDPARAM3 
,STORE IN LOCAL1 

,RESTORE GENERAL 
,REGISTERS 

,RESTORESP 
:RESTOREBP 

17+W 
lS+W 
1S+W 
18+W 

8+W 
S+W 
S+W 
8+W 
S+W 
8+W 
2 
S+W 

20+W 

Total number of clock cycles = 310 + 35W 





SPECIAL REPORT 01 FUTURE DIRECTIOI II SYSTEMS DESIGI 

MICROPROCESsolis/MICROCOMPUTERS &..:===;;;;..., 

OPERATING SYSTEM 
SUPPORT-
THE ZBDDD WAY 
All processor architectures are not created equal when it 
comes to providing designers with the tools they need for 
effective system resource management 

by Richard Mateosian 

I perating systems are responsible for allocation, 
deallocation, and protection of processing and 
storage elements, external interfaces, programs, 

and program status. They manage communication and 
sharing, and define, facilitate, and enforce protocols, 
conventions, and policy. Several kinds of architectural 
support facilitate the operating system's task in a wide 
range of applications: restriction of central processing 
unit and memory use, memory mapping, sharing of pro­
grams and data, program relocation, stacks, context 
switching, input/output system and interrupts, 
distributed control, and support for conventions. 

Operating system support is an important feature of 
ZI!OOO* architecture. Special consideration was given to 
that function during design of the Z8000 central process­
ing unit (CPu), the Z-BUS· component interconnect, and 
their support chips. In this discussion, "operating 
system" will comprise the portion of the computer 
application-both hardware and software-that is 
devoted to managing hardware and software resources. 

Richard Mateosian, z8000specialist at Zilog, Inc, 1315 
Dell Ave, Campbell, CA 95008, is the author of 
Programming the Z8000 (Sybex 1980) and Inside BASIC 
Games (Sybex 1981). Formerly employed in the 
development of minicomputer based turnkey.systems, 
he has a BS in mathematics from Rensselaer 
Polytechnic Institute and a PhD from the University 
of Cali/ornia at Berkeley. 

Hg 1 Hardware block diagram of arcade game system. 
Essential elements Include cPU, memory, Input and display 
devices, and clock circuits. 

To show how the Z8000 provides operating system 
support, an application of the hardware and software 
similar to that used in a popular arcade game will be 
described. Fig 1 shows the game's hardware configura­
tion; the system elements are pieces of hardware 
including cPu, memory, realtime clock, input and 
display units, and integrated circuits for interface to the 
CPu. Arrows represent electrical connections through 
which data and control signals are passed among the 
elements. Configuration of the hardware elements 
alone, however, provides little insight into the game's 
operation. 

In the game's software architecture (Fig 2), system 
elemenM are pieces of software "in action" on the data 
defining the state of play at any time. Connecting 

*Z8000 and Z-BUS are registered trademarks of Zilog, Inc 

Reprinted with permission of Computer DeSign, May 1982 4-21 



r--------, 
I I r---..... ROCKET I 

I 
I 

SCREEN DISPlAY 

Restriction of CPU ICC ... 
The operating system must allocate 
the CPU to a process while protec­
ting itself and other processes. In 
other words, the operating system 
must be able to turn the CPU over to 
a process that win not perform 
potentially destructive actions. To 
this end, the Z8000 incorporates a 
system/normal (SIN) bit in its flag/ 
control word (FeW) register, which 
corresponds to the program status 
word (psw) in other machines. (See 
Fig 4.) The SIN bit determines 
whether the CPU executes in system 
or normal mode. In normal mode, 
the portion of the FCW containing 
SIN is inaccessible; the only way to 
enter system mode is through execu­
tion of a system call (sc) instruction. 

The refresh and program status 
area pointer (PSAP) control registers 
and the system mode stack register 
are all inaccessible from normal 
mode. The normal mode stack 
register is accessible from system 
mode under the alias normal stack 
pointer (NSP), so that normal mode 
programs can pass arguments to 
system mode programs on the nor-

PIa:Z Software bloek dl.anus 01 arcade I-e .ppllc.tion. Ellentlal elements are 
processes, or tasks, th.t provide lor IRpblcs aeneratlon, borlzontal and vertleal 
synchronlz.tion, .nd realtime _rekeeplnl. 

mal mode stack. When the SIN bit is 
in the normal state, privileged instructions-ie, 110, 
interrupt return, nonmemory synchronization, control 
register manipulation, and halt-cannot be executed; 
operating system tasks are executed in the system mode. 

arrows represent the paths and directions of inter­
process communications (messages). The software con­
figuration gives a good idea of how the game works. 
Fig 3 lists system elements supporting the hardware and 
software function outlined in Fig 1 and Fig 2. These 
software components allow manipulation of hardware 
and applicationuoftware, and represent system services 
that all operating systems must supply. 

PROCESS MANAGER EVENT QUEUEI MEMORY All.IltITDR 
• CREATE/DESTROY SEMAPHORE MANAGER • All.IltITE/RELEASE 
• SUSPEND/RESUME • CREATEIDESTROY 
• LOCK/UNLOCK • QUEUE/DEQUEUE 
• SCHEDIJLE • WAIT/TEST/SIGNAL 

CLOCK MANAGER MESSAGE EXCHANGE MESSAGE HANDLER 
• SET/READ CLOCK MAILBOX MANAGER • CREATE/DESTROY 
• INTERVALIFIXED- • CREATE/DESTROY • SEND/RECEIVE 
• TIME AlARMS • PREPARE/READ 
• HARDWARE INTERFICE • REPLY 

INTERRUPT/TRAP UTILITY ItDIIT1NES MEMORY MANAGEMENT 
HANDLER CALLING • MAPPING 

• CONTEXT SWITCH CONVENTIONS • AtCESS RESTRICTIOII 
• DISPATCH • RELOCATION 

• SHARING 
• VIRTUAL MEMORY 

na3 Underlylnl operatinl system elements reqnlred by 
arcade aame .ppilcation. All elements support software 
lunctlons. Hardware support II provided by Interrupt/trap 
handler, c\oc:k man .... , and utilly eiemnts. 

Another protective feature is associated with the 
SIN- bit. There are two copies of the implied stack 
register, one for interrupt and one for subroutine 
returns. One is used when the CPU is executing in system 
mode, the other when it is in normal mode. Programs 
executing in normal mode have no access to the system 
mode stack register. 

'Passing between system and normal modes requires a 
change to the FCW, which is accomplished through a 
privileged instruction or automatically in response to an 
interrupt or trap. Privileged instructions are load from 
control register (LDCTL), interrupt return (IRET), and 
load program status (LOPS). A system call trap, which is 
a I-word instruction with eight programmable bits, 
allows a normal mode program to call one of 256 system 
mode programs. 

The arcade game illustrates how system and normal 
modes can be used. AU of the application software pro­
cesses seen in Fig 2 can run in normal mode, while the 
operating system elements in Fig 3 can run in system 
mode. Calls to the operating system elements from the 
applications software processes are made using the 156 
system calls. For example, the defender guns process 
can execute the instruction SC #Createprocess in order to 
rue a rocket. The constant, createprocess, is a number 
from 0 to 155 encoding one of the system functions­
namely, the one that creates processes. Programs and 
data that constitute the initial state of the new process 
can be passed to the process creation program in 
registers or on a stack. 

4-22 



INACCESSIBLE IN 
NORMAL MODE 

L. FLAG CONTROL WORD 

{ I, SYSIEM MODE 
o = NORMAL MODE 

.J I REFRESH REGISTER I REfR£SH 

I-lir----P-SA-PO-'N-I£-' ------.IPSAP 

FlAGS 

REGISTER SET 

I RO 10 m·1 
[==~NO~RM~'~Ls~m~'~R~EGI§SI~ER==~I~·~dS~"kE~.~ ~ Os. REGISIER NORM'L ~. 

MODE MODE 

~ 
STACK REGISTER 

I 

'------INACCESSIBLE IN NORM'L "00£-----,--,------' 

168115 {1 
,--_:.;.7f-;:;=I=N;;:UM;::.BE:::R~IN:::OE:..X -11---- : 

(CAUSES S~Rl~S~~U~~~~~M MODE) 2~S 

• OR AD TO AI4 AND RIS IN NONSEGMENTEO OPERATION 

ENCODES UP TO 
256 SYSTEM 
PROGRAMS 

Fig 4 Z8000 system/normal operation. SIN bit of 
Dag/control word determines execution mode, system or 
normal, of CPU. 

Memory management 
Existence of a user mode and privileged instructions 
does not solve the entire protection problem; the other 
half of the solution involves restriction of memory use. 
Most CPU designs call for a comprehensive memory 
management facility to unify the approach to restriction 
of memory use, memory mapping, program relocation, 
sharing of programs and data, and stack use. 

The Z8000 uses an external memory management unit 
(MMU) that is integrated with a segmented addressing 
scheme in the CPU. The MMU translates addresses, 
checks attributes, and interrupts the CPU if an invalid 
access occurs. Sets of attributes are checked against ac­
cess rights implicitly or explicitly associated with each 
process. Then, for example, if a program in user mode 
attempts to access a memory address whose attributes 
do not match the program's access rights, the CPU will 
trap to a system routine designed to deal with such in­
valid accesses. CPU addressing scheme and the MMU 
determine which sets of attributes can be associated with 
portions of the memory address range. Typically, at­
tributes are associated with a segment in a machine that 
uses 2-dimensional, or segmented, addressing. In a 
machine with linear addressing, attributes are usually 
associated with fixed size blocks of addresses called 
pages. 

The arcade game probably does not need memory 
mapping or virtual memory, since the total memory 
space of such an application is small. Access restriction, 
relocation, and sharing of programs and data can be 
useful in any application, however. On the other hand, 
UNIX and UNiX-like operating systems, in which there 
are many small processes, are well suited to the Z8000'S 
segmented addressing and memory management. 

Use of stacks 
Stacks are important tools for meeting the operating 
system's responsibilities. A stack is a last in, first out 
memory associated with two operations: pushing (adding 

an item) and popping (removing an item). Stacks are 
explicitly or implicitly used by the operating system to 
allocate memory in a flexible way, which, in connection 
with based addressing, allows programs needing non­
register storage to be reentrant and position indepen­
dent. A special case of this is storage of return addresses 
for subroutine calls and machine state for interrupt pro­
cessing. In the arcade game, the use of stacks to allow 
reentry of programs plays an important role. Rocket 
processes, for example, can all share a common process­
ing routine while each uses a different set of data. 

Z8000 architecture calls for the placement of stacks as 
arrays in memory with an address register marking the 
top of the stack and providing, through based address­
ing, access to items at locations relative to the top of the 
stack. The stack register is a dedicated (special purpose) 
register in some architectures. In the Z8000, any of the 
registers Rl to Rl5 can be used as a stack register, 
although the architecture determines which stack 
register is to be used for saving returns from a 
subroutine or the machine state on interrupts. 

The implementation of stacks as arrays in memory 
and the use of general purpose address registers for 
stack registers make provision for overflow and 
underflow protection difficult. The Z8000 provides stack 
limit protection through use of the attribute specifica­
tion associated with memory protection. Other architec­
tural features are desirable for the support of stacks, 
including the ability to designate one or more stacks for 
program use, single- and multiple-argument push and 
pop instructions, and automatic warning (traps) of 
impending stack overflow or underflow. 

Context switching 
One difficulty that arises when several processes run 
concurrently is the overhead associated with context 
switching. The context of a process is that portion of its 
state which occupies shared resources. For example, 
since all processes must share the program counter (PC), 
each process's PC value is part of its context. The Z8000 
has a single set of general purpose registers, control 
registers, CPU status registers, and so forth. Thus, when 
the same processing element (CPU) is allocated to more 
than one process, the process contexts must include the 
contents of any register that is used. Context switching 
saves the context of one process and recalls the stored 
context of another process. 

Automatic context switching is provided for inter­
rupts and traps. When an interrupt occurs, the current 
CPU status (FCW and pc) is saved on the system mode 
stack, along with a "reason" read from the address data 
lines ADl5 to ADO during the interrupt acknowledge 
cycle. Then new values for the FCW and PC are taken 
from the program status area (PSA). The IRET instruc­
tion restores PC and FCW to the preinterrupt state and 
discards the reason, leaving the stack as it was before 
the interrupt. Architectural features that expedite con­
text switching include automatic saving of CPU state on 
interrupts, single-instruction block register saving and 
restoring, and access to all necessary control registers. 

The Z8000 interrupt and trap handling facility pro­
vides an automatic, rapid context switch from the exe­
cuting program to the interrupt processing routine using 
interrupt vectors stored in a memory table (the PSA). 
The Few. PC values, and a reason are saved on the 

4-23 



system mode stack, and new FCW and PC values are set 
from the PSA entry (vector) corresponding to the inter­
rupt type. The IRET instruction restores the CPU to the 
preinterrupt state, while at the same time removing the 
saved information from the stack. 

Context switching involving general purpose registers 
is facilitated in the architecture by block register saving 
and restoring instructions. These can be used to 
simulate pushing or popping a block of registers to or 
from any stack. For example, the eight registers ROto R7 
can be saved on the stack controlled by register RR14 by 
executing 

DEC RU •• 16 !Make room on stack! 

LDM @RRI4.RO./IS ISave the registers! 

These two instructions require 39 clock cycles of exe­
cution time, or less than 4 p.s at 10 MHz. 

Stacks are an important tool for 
meeting the operating system 's 
responsibilities. 

In some cases, the values of control registers are 
essential to the context of a process; the normal mode 
stack register and the flags register, which contains the 
bits that define condition codes such as "less than or 
equal to," are obvious examples. A load control register 
instruction allows the transfer of any of these registers 
to or from a general purpose register, permitting them 
to be saved and restored. 

110 system and interrupts 
Operating system responsibilities in the 1/0 system and 
interrupts vary greatly with the type of application. Ar­
chitecture of a general purpose CPU must provide the 
flexibility necessary to accommodate the 1/0 re­
quirements of a wide range of applications. 

One of the operating system's most difficult tasks is 
control of access to 1/0 resources. Unlike memory, 
which can be divided into large, relatively homogeneous 
blocks, the elements of the 1/0 space require special pur­
pose management, protection, and access techniques. In 
addition, device timing requirements and externally set 
policies for conflict resolution make hardware support 
of 110 mechanisms mandatory. 

Architectural features that support the 1/0 system and 
interrupts are a vectored interrupt scheme; specification 
under program control of the CPU state to be established 
for each type of interrupt; and a rapid, automatic con­
text switching mechanism in response to interrupts. 
Also desirable are a means of defining conflict resolu­
tion policies and interruptibility of interrupt processing; 
a coherently designed family of components, com­
patible interconnection bus, and established set of bus 
protocols to allow future family growth; block 110 
instructions and direct memory access; and restricted 
access to 1/0 facilities. 

A vectored interrupt scheme allows the CPU state to 
be switched immediately to an appropriate processing 
routine without the need for software to ascertain the 
interrupt type and call the appropriate routine. This is 
done on the basis of either the port of connection or the 
contents of a vector supplied by the interrupting device. 

The PSA block of memory stores interrupt vectors (ie, 
the new CPU status) for each type of interrupt and trap. 
In addition to separate lines for nonvectored and vec­
tored interrupts, as well as a nonmaskable interrupt for 
situations that cannot wait, there is a table of PC values 
to be indexed by an 8-bit vector placed on the AD bus by 
the interrupting device. The block of memory used for 
the PSA is not fixed, as it is in some cPus; it can be 
anywhere in memory, and a pointer to it (the PSAP 
register) can be set using the privileged LDCTL instruc­
tion. 

Conflict resolution is achieved through a simple 
scheme. The three levels of interrupt-nonmaskable, 
nonvccion:d, and vcc,ored-are assigned ,hree ieveis oi 
priority by the CPU. Using the privileged disable/enable 
interrupt (DIIEI) instruction, the vectored and nonvec­
tored interrupt lines can be masked so that interrupts 
wait until the unmasking of the associated line. When 
interrupts arrive simultaneously on more than one line, 
priority determines which will be processed first. The 
processing routine for one interrupt type can be inter­
rupted by the routine for another if the corresponding 
line has not been masked. Whether other lines are to be 
masked or not can be determined automatically by 
specifying the appropriate mask bit in the feW portion 
of the PSA entry. Otherwise, the determination can be 
made by the program, which can bracket interrupt sen­
sitive code between DI and EI instructions. 

A priority scheme is daisy chained through devices at­
tached to the CPU on the same interrupt line. In this way 
devices closer to the CPU can interrupt the processing of 
more remote device interrupts unless the given line is 
masked during all or part of the processing. This 
approach allows any priority resolution scheme to be 
implemented externally. 

Block 1/0 instructions and direct memory access are 
important and straightforward performance improve­
ment features. Block 1/0 instructions require careful 
implementation; they must use general purpose registers 
continuously to save their current state so that they can 
be interrupted. Direct memory access functions require 
the development of bus control protocols and a means 
of protecting partially loaded or saved memory blocks 
from access by concurrently executing programs. A key 
aspect of the Z8000 1/0 system is the protection privileged 
instructions provide, allowing an operating system to 
manage the 1/0 interfaces without interference from 
normal mode programs. 

Distributed control 
When processes to which separate processing units may 
have been allocated share a common memory, guarded 
commands and semaphores are used. Basic architectural 
support for these techniques is atomic test and set 
(TSET), a CPU instruction that tests a memory location 
for the value "available" and simultaneously sets the 
value to "not available." "Atomic" refers to the fact 
that there can be no other access to the given memory 
location between the test and set portions of the instruc­
tion. This prevents two concurrently running processes 
from finding the location set to "available" 
simultaneously. 

Architecture provides synchronizing procedures, both 
for processes that share memory and for those that do 
not. In the case of shared memory. the TSET instruction 

• 4-24 



provides the basis for synchronization. In the case of 
nonmemory synchronization, the Z-BUS specification 
includes a set of lines and a protocol for resolving 
simultaneous requests for shared resources while the 
CPU provides instructions to support the bus connection 
and protocol. 

Support for conventions 
In the design of a cpu, consideration must be given to 
whether architecture should support all conventions 
equally or encourage specific conventions through 
special features. For instance, should a CPU be designed 
with general support for high level languages, or should 
it be designed to optimize Pascal at the expense of 
FORTRAN programming efficiency? Should it provide 
special features that make a subroutine argument pass­
ing convention using the stack especially efficient at the 
expense of the efficiency of other argument passing con­
ventions? zsooo design supports many conventions, 
including a segmented addressing scheme, message pass­
ing for interprocess communication, component and 
backplane bus protocols, and interrupt protocols for all 
components. 

A message is a set of characters (or words) emitted'by 
one process and received, asynchronously, by another. 
The processes do not need to know whether they have 
been allocated the same or different processing 
elements. Message passing suPPort includes block 1/0 
instructions in the ZSooo cpu; asynchronous inter­
processor connection in the Z-F10 (first in, first out) buf­
fer chip; acceptance of commands from and delivery of 
messages to the master CPU in designated message 

registers by the universal peripheral controller (Z-UPC); 
and '8llowance for high speed direct access to memory 
from external devices (eg, a Z-FIO chip) through the 
direct memory access chip. 

Summary 
Several kinds of architectural support are available to 
system designers for meeting the requirements of the 
modern operating system. Restriction of access to CPU 
facilities, restriction of memory use, memory mapping, 
sharing of programs and data, program relocation, 
stacks, context switching, an 1/0 system and interrupts, 
and distributed control and support for conventions are 
all tools that 'can expedite effective system resource 
management. 

4-25 





The performance of two addressing mechanisms 

on three different microprocessors is examined. One of the 

mechanisms-and one of the micros-provided superior performance. 

A Perfornlance 
COnlparison of Three 
Contenlporary 16-bit 

Microprocessors 
Martin De Prycker* 

University of Ghent 

The choice of a new computer system is influenced 
by considerations of various importance: compatibility 
with the former system, software availability, cost, 
maintenance, and system performance,! To a great ex­
tent, the system's performance depends on the central 
processor's architecture. To study the performance of a 
particular architecture, two methods are frequently us­
ed. One is that which was used in the CFA project,2.4 in 
which three architectural parameters were defined and 
compared for a set of machine language routines. The 
other method consists of measuring the execution times 
of assembly language benchmarks on different pro­
cessors, as was done at Carnegie-Mellon5 and by Nelson 
and Nagle.6 Other contributions to architecture evalua­
tion have been made by Shustek,7 who compared in­
struction execution times, and by Lunde,8 who 
evaluated an ISP description of the processors. How­
ever, in order to obtain performance figures with any of 
these methods, the actual processor, or a simulator, has 
to be available. 

The above-mentioned methods involve comparisons 
of performance made at a low level; here, I compared 
the performances of processors executing high-level­
language programs. In block-structured high-level 
languages, a major part of execution time is spent on 
procedure and block entry/exit. (This has been noted by 
Batson, Brundage, and Kearns,9 Tanenbaum,1O and 
B1ake. ll ) When we also include the execution time of 
variable addressing, it is clear that a larg(~ amount of the 

*No\\ \\!th Bell Telephone Manufactunng Company. Antwerp, BelgIUm 

execution time of block-structured high-level-language 
programs is spent on procedure and block entry/exit 
and variable addressing. The overall system perfor­
mance is thus strongly influenced by the implementation 
of the addressing mechanism. Therefore, several var­
iable addressing mechanisms have been proposed, e.g., 
the display mechanism introduced by Dijkstra l2 and the 
addressing mechanism presented by Tanenbaum. lo 

In a recent paper,l) I analyzed a method for describ­
ing variable addressing implementation performance, 
one that employs three independent parameter sets: a set 
of program statistics determined by high-level-language 
benchmarks, a set of architectural parameters based on 
the processor architecture and the variable addressing 
mechanism, and a set of technology-dependent param­
eters. The usefulness of this model lies in the in­
dependence of the three sets, and in the fact that the 
processor is available in neither physical nor virtual (i.e., 
simulated) form. Hence, a complete performance anal­
ysis can be done analytically. In addition, in order to 
evaluate the program statistics, the high-level-language 
benchmarks can be run on any computer system. 

Using this analytical model, I compared the address­
ing mechanisms implemented on a number of pro­
cessors. I chose three comparable l6-bit micros-the In­
tel i8086,14 the Zilog Z8000,15 and the Motorola 
MC68000,!6 

In the next section I will explain the performance 
model, as adapted to processors with an instruction 
prefetch pipeline. 17 I describe a set of Algol and Pascal 
benchmarks in the third section of this article and 

0272-1732/83/0400-0026$01.00 @ 1983 IEEE IEEE MICRO 

Reprinted with permission of IEEE, April 1983 4-27 



Addressing mechanisms that implement 
the block structure in high-level languages 

In block·structured high·level languages, program 
statements can be recursively grouped into com· 
posite statements by means of two block delimiters 
(begin·end and procedure·return). The recursive pro· 
gram structure so generated can be represented by a 
program tree (Figure 1). Each composite statement or 
block can thus be given a number, its static leXical 
level, which is the depth at which the block definition 

Hence, the lexical level of a block is always deter· 
mined by the level of the (static) surrounding block: A 
begin generates a lexical level which is one level 
higher than the surrounding block; a corresponding 
end returns the level of the block to the surrounding 
level. A procedure call generates a lexical level which 
is one higher than the level at which the procedure is 
declared; a return puts the level back to the calling 
level. 

Variables may be accessed only when they are 
declared within the same block or in static surround· 
ing blocks, that is, when they reside at a lexical 
parent level. With respect to the program tree, this 
means that we can access all variables declared in 
path nodes from the root to the actual active node. 
This also means that scope rules are fully determined 
by the static program structure known at compile 
time. Within a block, each variable gets a sequence 
number, and a lexical address is formed by the pair 
(lexical level, sequence number). When a block ends 
(by an end or return), all variables within that block 
are no longer visible. 

For the implementation of the scope rules of a 
block·structured language, one needs two stacks: a 
stack with static information (known at compile time), 
and a stack with dynamic information (known only at 
run time). Generally, one combines these stacks with 
the evaluationlallocation stack on which the defined 
variables and the temporary results are stored. The 
three stacks are merged into one stack via a linked· 
list technique. The stack of static and dynamic en· 
vironments is implemented through marker words 
that are linked. Among other information, each 
marker contains two pointers: a static link, pointing 
to its parent static environment, and a dynamic link, 
pointing to the previous dynamic environment. The 
top·most stack marker serves as the base address of 

begin 
real a b 

begin 
real c d 

begin 
real e f 

o 

end 

end 

end 

o alO 1) 

blO 2) 
1r------, 

ci 1.1) 
dl1 2) 

2'ei'2i'1 
f 12 2) 

Figure 1. Lexical level and program tree. 

Apnl1983 

the allocatlonlevaluation stack of the current environ· 
ment For the sake of efficiency, the latter stack is 1m· 
plemented contiguously. 

It IS clear that, with the above Simple structure, ac· 
cessing variables In parent static environments 
necessitates tracing down the static pOinter chain, 
pOSSibly to a depth Of several levels. In order to 
lessen or avoid this run·time overhead, two mech· 
anisms have been proposed, namely the display mech· 
anism and Tanenbaum's proposal 

The display mechanism. In order to provide fast ac· 
Ge~::; tu any iexicai ievei, Ihis scheme uses an extra 
stack (display) Each display location contains a 
pointer to the base of a visible environment. When a 
variable at lexical level i is accessed, DISPLAY[i] is 
used as base for level i. Thus, only one level of in· 
direction is needed to access a variable at any static 
level. The main benefit of the display mechanism is 
that the address of any variable can be determined 
very easily: address = DISPLAY!i] + sequence 
number. Thus, the variable access time is indepen· 
dent of the lexical level. 

During the execution of statement Q in our exam· 
pie, the display and data stack appear as shown in 
Figure 2. Variables are accessible through the 
display:AII variables in the three levels can be reached. 

Tanenbaum's mechanism. In order to reduce the 
overhead associated with display rebuilding-which 
must be done after every procedure return-Tanen· 
baum reduced the display to two pointers: a local 
pointer LP and a global pointer GP. Local and global 
variables can be reached through these pointers, and 
intermediate variables must be accessed by tracing 
the static pOinter chain through indirections. The ra· 
tionale behind this approach is that the addressing of 
variables at levels between the current level and the 
global level (I.e., intermediate variables) is a relatively 
rare event. 

In our example the data stack during the execution 
of statement Q will appear as shown in Figure 3. 
Local (e,f) and global (a,b) variables can be addressed 
directly; intermediate variables (C,d) can be reached 
only by tracing the static pointer chain. 

f 
e 

< 
STATIC I DYNAMIC l~ 

d 

~ 
C 

STATIC I DYNAMIC 

< b 2 
a 1 

0 I 0 0 
STACK DISLAY 

Figure 2. Display and stack during statement Q. 

f 
e 

< STATIC I DYNAMIC 

l~ I LP d 
C 

STATIC I DYNAMIC 

< b 1/ a 
0 ! 0 I GP 

STACK 

Figure 3. Pointers and stack during statement Q. 

4-28 



ui,cu" their ,tatl,tical paramete". In the fourth ,ection 
DIJk\tra', and Tanenbaum', addre"ing mechanhm" a, 
implemented on the three mI<:roproce,so"" are com­
pared. It I, ,hO\\n that Tanenbaum's mechanism always 
performs better than DIJbtra', display mechani,m. In 
the la;t section, I compare the relative performance of 
the three JTlICrOproce,,"or"l, a\ a function of memory 
,peed. I conclude by ranking the processors according to 
their performance. The correspondence with low-level 
performance analyses performed elsewhere i; striking, 
not only qualItatively but also quantitatively. I also 
discu>\ a co;t/performance model. 

Variable addressing implementation model 

In an earlier work,tJ I expressed overall system per­
formance as a function of three independent factors: the 
high-level-language programs (benchmarks); the pro­
ce;;or architecture, I.e., the instruction set and register 
organilation; and the technology. Here, I will examine 
thi, model as it has been adapted to processor; with in­
;truction prefetch buffers of different lengths. t7 

The overall system execution cost K, induced by pro­
cedure and block entry/exit and variable addressing, can 
be written as a product of three independent arrays: one 
composed of high-level-language program statistics 5, 
one determined by the processor's architecture M, and 
one influenced by the technology KT . That is, 

K=KT · M· sr, (I) 

where the superscript T denotes array transposition. 
This model was obtained in a very straightforward 

way: The execution cost of any high-level-language pro­
gram can be determined as a weighted sum of the execu­
tion costs of the individual high-level-language instruc­
tions, with the frequency of these instructions in the test 
program as the weight factor. Thus, we can write 

K=T·sr. (2) 

The array 5 contains high-level-language program 
statistics concerning variable addressing, and thus is 111-

dependent of either architecture or technology. The 
statistics which make up the 5 array comprise the 
following: 

• The number of block entry/exits (nb). 
• The number of procedure call/returns (n,,). 
• The number of variables accessed in the program 

(n,). 
• The number of local variables accessed (nl). Local 

variables are variables which are accessed at the 
same level at which they are declared. 

• The number of glObal variables accessed (ng). 

Global variables are variables which are declared at 
the outermost level. 

• The number of intermediate variables accessed (n,). 
Intermediate variables are nonglobal variables 

which are accessed at an higher leXical level than 
that at which they are declared. 

• The total lexical-level difference of Intermediate 
variables (d,,), that ", the ,um of the lexical-level 
differences between declaration and access. 

• The total leXICal-level difference between declara­
tIon and access of procedure, (<iI',) 

The operations descrIbed here can be Viewed a, "generic 
instructions," and each high-level-language program 
can thus be WrItten as a sequence of these generic 1Il­

structions. 
In Equation 2, T denotes an array of execution costs 

T, of the generic instructions I, or 

. T, . Tn)· (3) 

One possible description of the execution cost K is the 
execution time of the test program. Since my study in­
volves only microprocessors, this execution tIme can be 
expressed in terms of the number of clock cycles, be­
cause of the indivisibility of the clock cycle time I, (in 
nanoseconds). 

The number of clock cycles T, needed to execute each 
generic instruction 1 depends on various parameters: 

• The number of clock cycles Te, needed to execute 
each generic instruction I. It is assumed that the 
memory is fast enough (no wait states) and the in­
struction pipeline is always full. 

• The number of extra clock cycles needed to per­
form a memory read (TMR,) and a memory write 
(TMW,) and used by slower memory. 

• The number of extra clock cycles in the delay TPC,. 
This delay is caused by an empty pipeline resulting 
from the execution of a sequence of instructions 
when not enough memory is free. 

• The number of clock cycles in the delay TPS,. This 
delay is caused by a memory that is slower than 
specified in the user's manual; hence, extra wait 
states are introduced in order to have a full 
pipeline. 

The total number of cycles T, can thus be written as a 
sum of clock cycles: 

T, = TC, + TMR, + TMW, + TPC, + TPS,. (4) 

The value of each of these parameters is determined by 
the processor's architecture and technology. If we ex­
press each parameter as a product of a technology­
dependent part and an architecture-dependent part, 
then Equation I will be satisfied, since the technological 
parameters are independent of I: 

TC,=C,' ~ 
TMR, = MR, . KMR 

TMW, = MW, . KMW 

TPC, = PC, . Kpc 
TPS, = PS, . Kps 

(5a) 
(5b) 
(5c) 
(5d) 
(5e) 

IEEE MICRO 

4-29 



It we defIne a technological array KT and an architec­
tural array M, a, 

and 

M, = (C, MR, MW, PC, PS,)T, (7) 

then we can rewrite Equation 4: 

T,=KT · M, (8a) 

or 

(8b) 

If 

M=(M J • •• M, .. Mn). (9) 

ApplYlllg Equation 8b to Equation 2 finally leads to the 
basic model of Equation I. 

For each of the five parameters of Equation 5, the 
question of whether to separate them into technology­
dependent and architecture-dependent parts must be in­
dividually determined. 

Execution lime in the optimal case. When the memory 
is fast enough (no wait states) and the instruction 
pipehne b full, the total number of clock cycles needed 
for each generic instruction I is the sum of the number of 
clock cycles C'j needed for the machine instructions j 
which compose the generic instruction I. These numbers 
CIj can be easily found in the microprocessor user's 
manual. 

Influence of slower memory on data memory opera­
tions. The read/write timing diagrams of the typical 
user's manual give the minimum number of clock cycles 
needed by the processor to execute a memory read or 
wflte. We call these values m, and mw. Let us denote the 
memory access time as x (in nanoseconds). The memory 
IS fast enough ifx/t, :5m, for a data read-no wait states 
have to be introduced. The number of clock cycles to be 
Imerted depends on the memory speed, e.g., when 
III, <x/t, :5m, + I, only one cycle has to be introduced. 
The number of clock cycles to be inserted can thus be 
\Httten as 

(10) 

where f~l denotes the smallest integer greater than or 
equal to ~. A similar expression Ow exists for data write 
operations. 

ThiS delay occurs for each data memory operation. 
The total number of memory operations required for 
each geneflc lIlstruction I is the sum of the number of 
memory operations required for the individual machine 
llIstrucrionsj (R'I read operations, WIj wflte operations). 

April 1983 

Pipeline influence. The number of clock cycles re­
quired for each machine instruction, as described in the 
user's manual of a microprocessor with an instruction 
pipeline, is only the number of clock cycles needed to 
"really" execute the instruction. It is assumed that the 
instruction word IS already pre fetched and available in 
the pipeline buffer. However, slIlce the memory bus is 
not always free to fill the pipeline, sometimes the 
pipeline buffer is empty. This causes a delay so that the 
buffer can be filled before the instruction is executed. 
Microprocessor manufacturers give a typical value of 5 
to 10 percent for this delay, but note that the value can 
be much higher, depending on the instruction sequence. 

To determine this delay TPC, exactly, the internal 
microcode of each processor would have to be available. 
However, since no information on this microcode was 
available, I used a best/worst-case analysis to determine 
an upper and lower bound for TPC,. 

In the best case I assumed that all free clock cycles in 
one machine instruction were grouped consecutively. 
For instance, when an instruction needed eight clock 
cycles and two memory operations of three cycles each, I 
supposed that the two free clock cycles were contiguous, 
as shown in Figure 1. Only one cycle needed to be in­
serted to do the prefetch. 

The number of cycles to be inserted for each machine 
instruction can be determined by using the values of R'j' 
W IJ , and IIJ (the number of clock cycles for that instruc­
tion), and a table. One such relation for the Z8000, 
which has a pipeline length of one word, is shown in 
Table 1. 

In the worst case I assumed that the free bus cycles 
were not grouped, as shown in Figure 2. In this example, 
two clock cycles have to be inserted. The number of 
cycles to be inserted can again be determined using a 
table, as shown for the Z8000 in Table 2. 

lONE MACHINE INSTRUCTION 

ME~OR; t ME~OR; t FR~E 
OPERATION 1 OPERATION 2 CLOCK 

CYCLES 

Figure 1. Memory operation in the best·case model. 

Table 1. 
Number of clock cycles to be inserted in the Z8000 

for the best·case model. 

10 11 

o 0 
o 0 
o 0 
3 1 

4-30 



Influence of slower memory on the use of a pipeline. 
When the memory IS slower than specified, problem; 
can anse in filling the pipeline buffer dunng instruction 
execution. These problems cause a delay TPS, that I; 
dependent on the memory speed \. Again, information 
on the microcode would be needed to determine this 
delay exactly, and again I u~ed a best/worst-ca~e 

analysis to find bounds for thiS delay. 
In the besl case I took into account only the instruc­

tions Q which have just enough free clock cycles to do 
the prefetch without delay when fast memory IS used. 
This is a lower bound, since I eliminated the instructions 
which operate without delay even when the memory IS 
slower, i.e., instructions which have at least one free 

I . ON~ MACHINE INS~RUC.TION I 
MEMORY I j) I MEMORY I j) 
OPERATION 1 fi: OPERATION 2 fi: 

Figure 2. Memory operation in the worst·case model. 

Table 2. 
Number of clock cycles to be inserted in the Z8000 

for the worst·case model. 

3 

o 
3 

o 
2 

o 
2 

Table 3a. 

6 

o 
2 
3 

o 
2 
2 

o 
2 
2 

9 10 11 

M lor the display mechanism, Implemented on the Z8000 
lor the best and worst cases. 

MBES! = 

194 
11 
7 
o 
6 

24 
2 
1 
o 
o 

[

85 

MWORs! = ~ 
12 
13 

194 
11 
7 

30 
31 

24 
2 
1 
3 
4 

Table 3b. 

clock cycle avmlable. The number 01 c\c1e, to be in­
serted for the,e InstructIOn, Q depend, Oil Ihe memory 
speed and I; equal 10 D, (Equation 10). 

In the w<J/SI case I assumed thai e\er) l!1;truction 
cames a delay of Dr clock cycle" e\cepl Ihe in,trllctlOns 
which use the memory data bu, very hille and Ihll' have 
enough free cycle,. However, since 111 pnnclple IIlfll1ltely 
slow memory can be used, no Imlruclloll wlil have 
enough free cycle,. Therefore I reduced Ihe mlmmum 
memory speed to a practical value. Tim mlnll11UI1l" ob­
tained for a maximum access time I'M. Thll' an IIlstruc­
tion which causes no delay in doing a prcfelch must have 
at least Z free cycles, with 

(II) 

ThiS value IS maximum (an upper bound) for a 
minimum value of I,. This minimum value 1,,1/ means a 
maximum processor clock frequency. 

Given these descriptions, it is ea,y to determllle the M 
array for both addressing mechamsms in both the be~t 
and worst cases; Tables 3a and 3b show M for the 
Z8000. It is obvious that only the fourth rows of the M 
arrays differ in the best and worst cases. 

The KT, M, and S values can be applied to Equation 1 
to obtain a lower bound KL for the total number of 
clock cycles in the best case, and an upper bound Ku for 
the total number of clock cycles in the worst case. The 
total execution time of a test program's block-structured 
and variable addres~ing instructions, running on a pro­
cessor with clock cycle time Ie, will always lie in the 
range [KL . Ie, Ku . Ie). This range can be used to com­
pare addressing mechanisms and processors, as describ­
ed in the following sections. 

Benchmarks and program statistics 

Processors and addresslllg mechanisms are usually 
more suited to some languages and applications than to 
others. In a statistical analysis, one hopes to eliminate 
this bias by considering different languages and applica­
tions. In this study, I was limited to two languages, and I 
considered only a few apphcatlons. However, even with 
applications belonging to totally different domains, the 
results were almost language- and application-inde­
pendent, as is shown in the next two sections. In my 
system, I used HP Algol,18 a slightly changed version of 
Algol 60, and Swedish Pascal,19 a versIOn of Jensen and 
Wirth's Pascal.20 

M lor Tanenbaum's proposal, Implemented on the Z8000 lor the best and worst cases. 

[1 
139 14 14 22 'I] [1 139 14 14 22 

'!J 
8 1 1 1 8 1 1 1 

MBES! = 6 1 1 1 MWORS! = 6 1 1 1 
0 0 0 0 12 24 2 2 4 
5 0 0 1 11 23 2 2 4 

IEEE MICRO 
4-31 



The program, te,ted concern nonhomogeneom ap­
plications ,uch a, numerical problems, compiler con­
,truction, and data manIpulation. They were written by 
graduate and po'tgraduate students. Let us call the 
graduate students programmers A and B, and the 
po'tgraduate students programmers C and D. DIGFD, 
DIGFP, and DIGFK are numerical programs used for 
digital filtering and speech recognition, and BUBBLE is 
a bubblesort; all were written in Algol. The Pascal pro­
grams are TREE, a program that generates the syntax 
tree of a program, and SPLIT, which generates the 
LR(O)-items and adds the look-aheads in a syntax­
analyzer generator.21 The numerical programs were 
written by programmer C, TREE and BUBBLE by 0, 
and SPLIT by A and B. Dynamic program statistics ob­
viously depend on their input data. Therefore each pro­
gram was run several times with different input data. 

In order to measure the program statistics as describ­
ed in the preceding section, I developed a measurement 
system that can analyze any block-structured high-Ievel­
language program and measure any high-level-language 
program statistic.z2 In the same work, I identified a set 
of useful statistics. For a comparative study of variable 
addressing mechanisms on microprocessors, I needed 
only a few of these statistics, namely those defined in the 
section above. These statistics, measured for the pro­
grams described above, are shown in Table 4. 

A comparison of two variable addressing 
mechanisms 

In order to compare the display mechanism with 
Tanenbaum's proposal, I applied the M array of each to 
Equation I. By doing so, I obtained a measurement pro­
portional to the execution time of programs which im­
plement Tanenbaum's mechanism, and one proportion­
al to the execution time of programs which implement 
the display mechanism. As stated in the second section 
of this article, I was also able to analyze the influence of 
memory speed on these measurements, for the three 
microprocessors under both the best- and worst-case 
models. 

To compare the two addressing mechanisms, I calcu­
lated R, which is the ratio of the execution time of Tan­
nenbaum's proposal to that of the display mechanism: 

(12) 

Figures 3a and 3b show this ratio, under both the best­
and worst-case models, for an i8086 with a memory fast 
enough to eliminate wait states. This ratio lies in the 
range [0.73,0.86] for Algol programs and in the range 
[0.57, 0.59] for Pascal programs and is almost indepen­
dent of program and input data. Both figures show that 
Tanenbaum's mechanism really performs better than 
the display mechanism. The better behavior of Tanen­
baum's mechanism in the Pascal programs is due to the 
low use of intermediate variables in Pascal, which is a 
consequence of the ability to compile Pascal programs 
separately. Figures and results for the l8000 and MC-
68000 are very similar. 

April 1983 
4-32 

A measurement system for high-level­
language program statistics 

The measurement system we developed has two 
important features: It is independent of language and 
it can be adapted to any program statistic. Such a 
system needs three types of input: 

(1) a description of the language to be analyzed; 
(2) some indications of the statistics that must 

be measured; and 
(3) a program in the language to be analyzed. 

In contrast, language-dependent measurement 
systems lack Input 1-Le., the language description 
is built-in. 

Since both the description of the language and the 
description of the statistics are intimately connected 
with the syntactic structure of the language, a formal 
means of describing this structure can be used to 
describe both the language and the statistics. In our 
system we used the BNF notation developed by 
Backus and Naur.1 

Our measurement system uses the above­
mentioned connections between the program syntax 
and the statistics. The way in which this is done can 
best be explained by considering the compilation 
process. A compiler first creates the syntax tree of 
the program (I.e., by means of a syntax analyzer). 
Then, this tree is converted to machine code via 
semantic routines, which generate specific pieces of 
code for each BNF rule. In a high-level-language inter­
preter system, the semantic routines directly execute 
the semantic functions associated with the syntactic 
construct. 

In our measurement system, things are similar: We 
first construct the syntax tree of the program, using 
an automatic-construction parser. Rather than defin­
ing a semantic routine for each syntax rule, we ap­
pend one or more software probes to some or all syn­
tax rules. These software probes perform one of the 
following functions: 

(1) measurement of static statistiCS, 
(2) insertion of write statements in particular 

places in the test program, or 
(3) insertion of block delimiters (begin-end) to keep 

the test program syntactically correct and 
semantically unchanged. 

When the converted test program is compiled and 
executed, the inserted write statements generate 
trace files, which will later be analyzed to collect 
dynamic high-level statistics. 

1. P. Naur, "Revised Report on the Algorithmic Language 
Algol 60," Comm. ACM, Vol. 6, No.1, Jan. 1963, pp. 1-17. 



1 0 

o 5 

I 0 I 0 

F==I= p:= 

fz== 

o 5 - 05 

00 00 

(a) DIGFD DIGFK DIGFP 
4 

BUBBLE (b) 

1 2 3 1 2 

Figure 3. Execution time of Tanenbaum's proposal relative to that of the display mechanism: for Algol programs on 
the i8086 (a) and for Pascal programs on the i8086 (b). 

Analyzing the influence of processor and memory 
speed on R, I again drew similar conclusions: R is almost 
independent of processor and memory speed. Figures 4a 
and 4b show R for the three microprocessors (each with 
memory that is fast enough) and for an "average" pro­
gram, i.e., a program exhibiting the average of the 
statistics shown in Table 4. We see that the ratio is in­
deed very similar for the three microprocessors. The in­
fluence of the memory speed x (in nanoseconds) on a 
12-MHz MC68000 is very small (Figure 5). Similar 
figures can be drawn for the i8086 and the Z8000. Notice 
also that the influence of memory on slower processors' 
R is still smaller. 

Given these results, I conCluded that under both the 
best- and worst-case models, and for all three micro­
processors, both languages, all programs and input 
data, and any memory speed, Tanenbaum's mechanism 

(a) 
1 0 

(b) 

~ 

05 

results in considerably better performance than that pro­
vided by the classical display mechanism. The gain in 
performance reaches a value of at least 14 percent for 
Algol programs and 39 percent for Pascal programs. 

Comparison of the three microprocessors 

To compare the execution ties of procedure and block 
entry/exit and variable addressing in high-level-language 
programs running on the three microprocessor systems, 
I used the model described in the second section of this 
article. Applying the M arrays for the three processors 
to Equation 1, 1 obtained sets of performance figures, 
one for each processor and one for each addressing 
mechanism in the best and worst cases, and one for the 
individual programs. With such figures, one can com­
pare two processors for the different cases mentioned 
above by examining the ratio of their respective perfor­
mance values. 

o 0 -'-'S:-:0-::-:S6:-'-cZ:-:S-::-:00C:C0.LM:-:::C:::6S-::-:00:-!0 00 
,S086 ZSOOO MC6S000 

In the course of my analysis, I arrived at an important 
conclusion: The relationships among the performances 
of the microprocessors are almost mdependent of pro­
gram and input data. This conclusion can be deduced 
from Figures 6a and 6b, which describe the performance 
of each processor relative to the 8086 worst case (assum­
ing that the memory is fast enough), for Algol programs 
implementing the display mechanism on the Z8000, and 
for Pascal programs implementing Tanenbaum's pro­
posal on the MC68000. The figures for different pro­
grams and input data differ by only a few percent. 
Notice also that best- and worst-case results lie within a 
reasonable range. Because of this program and data in­
dependence, only the results of "average" Algol or 
Pascal programs need to be discussed below. Average 
Algol or Pascal programs are as defined in the preceding 
section. 

Figure 4. KTA/Kol for Algol programs on the three processors (a); 
KTA/Kol for Pascal programs on the three processors (b). 

4-33 
IEEE MICRO 



Table 4. 
Program statistics concerning variable addressing. 

nb np nt n, ng n, dit dpt 

951 963 71583 6 19331 4 24690 6 27561 6 27561 6 16371 
OIGFO 851 863 563906 15083 2 20225 2 212536 212536 14671 

651 663 32061 6 78840 131400 110376 11037· 6 10608 

2102 2115 78014 5 198199 28675 6 29519.0 29519 0 42300 
OIGFK 2102 2115 78014 5 198199 28675 6 295190 29519 0 42300 

1402 1414 537856 13235 2 205568 19712.0 197120 28280 

1 2752 2765 1158570 380673 45239.4 325503 32550.3 55300 
DIGFP 2 2752 2765 1158570 380673 452394 325503 32550 3 55300 

3 1852 1864 79150.0 856404 31957 6 21552.8 21552 8 37280 

1 46200 21270 1572 0 921.0 921.0 00 
2 2670 1170 96.0 540 54.0 00 

BUBBLE 3 4200 1890 1440 1140 114.0 00 
4 291.0 129.0 1050 570 57.0 00 
5 2280 960 900 420 420 00 

1 10 2200000 211200 1988800 00 00 20 
SPLIT 2 10 1100000 13310.0 96690.0 0.0 00 20 

3 10 1100000 13310.0 966900 00 0.0 20 

380 20802 6 10782 3 100203 00 00 2660 
7501 408859.0 210806.2 1980528 0.0 00 5250.7 TREE 

nb = NUMBER OF BLOCK ENTRY lEX ITS ng = NUMBER OF GLOBAL VARIABLES ACCESSED 
np = NUMBER OF PROCEDURE CALL/RETURNS n, = NUMBER OF INTERMEDIATE VARIABLES ACCESSED 
nt NUMBER OF VARIABLES ACCESSED dft = TOTAL LEXICAL-LEVEL DIFFERENCE OF INTERMEDIATE VARIABLES 
nf = NUMBER OF LOCAL VARIABLES ACCESSED dPt = TOTAL LEXICAL·LEVEL DIFFERENCE BETWEEN DECLARATION AND ACCESS OF PROCEDURES 

Figure 7a shows the influence of memory speed on the 
execution-time ratio KZ8000/KMC68000 for an average 
Algol program, with the display mechanism, imple­
mented on 4, 8, 10, and l2-MHz processors. The same 
ratio is shown in Figure 7b for Tanenbaum's proposal. 
Both addressing mechamsms have a better performance 
when implemented on the Z8000 than when implement­
ed on the MC68000, provided that the memory is fast 
enough for the processor's clock frequency. With slow 
memories and high processor clock frequencies, how­
ever, the MC68DOO performance degrades more slowly 
than that of the Z8000. Indeed, an MC68000 with a slow 
memory actually performs better than a Z8DOO with a 
slow memory. This behavior can be easily explained. 
The Z8DOO needs only three clock cycles for a memory 
operation (m, = mw = 3), whereas the MC68DOO needs 
four or five cycles (m, = 4, mw = 5). When fast memories 
are used, the Z8000 can operate at maximum speed and 
thus execute a memory operation in only three clock 
cycles. A bet1er Z8000 performance is lhus obtained. 
When slower memories are used, Z8DOO performance 
begins to degrade as soon as a memory operation re­
quire; more than three clock cycles. This is in contrast to 
the MC68DOO, the performance of which does not begin 
to degrade until a memory operation requires more than 
jour clock cycles. Thus, MC68000 performance 
degrades more slowly than Z8000 performance for 
memory speeds of at least 3 . I" e.g., 250 nanoseconds 
for a l2-MHz processor and 300 nanoseconds for a 
IO-MHz processor (see again Figures 7a and 7b). 

April 1983 

Comparing Figures 7a and 7b, we see that the Z8000 is 
better suited to the display mechanism than to Tanen­
baum's proposal, compared to the MC68000. The main 
reason for this lies in the method of computation of the 
base address of the lexical level, which is slower in the 
MC68000. In the display mechanism, this operation is 
performed at each variable access and thus requires 
more operations in the MC68000. Again note that the 

10 

09 

WORST b ALGOL ---
081::_-1-____ -=--~ 
I--\B~';--- -

07 

W3RST /I PASCAL 
06~--L--------4-/--------__ -

'-BEST 
05+-~~-+-1--~+-~~-+~--~~ 

o 200 400 ns 

Figure 5. Influence of memory speed lC on KTA/KDI for a 
12·MHz MC68000. 

4-34 



best- and worst-case ratios do not differ much: The ex­
act performance ratio lies between tight limits. Similar 
figures can be derived for an average Pascal program. 

Similar conclusions can be reached in comparing the 
Z8000 to the i8086 (Figures 8a and 8b). One major dif­
ference is striking: The performance of the i8086 is 
much poorer than that of the MC68ooo. 

Since the 18086 and the MC68000 both need an equal 
number of clock cycles for a data read (mr = 4), and 
since only the number of memory write cycles is dif­
ferent (m" = 4 for the i8086, mw = 5 for the MC68ooo), 
the influence of memory speed on the execution-time 
ratIo KMC68000/K,8086 is very small, as is shown in 
Figures 9a and 9b. Note also that both processors are 
equally suited to both addressing mechanisms. 

20 

-
-~I-- BEST 

I--
I--I--I--

1 5 
WORST 

10 

(a) DIGFD DIGFK DIGFP 

Using the results shown In FIgures 7, 8, and Y, I made 
a global performance analysIs and compared my results 
with those from other studies. To obtain one pertor­
mance value for each processor, I averaged the perfor­
mances of all the programs in both languages with both 
variable addressing mechanisms. I aho used average per­
formance values from the studies by other rescalchers; 
these values were obtained by averaging the perfor­
mances of all programs, normalized to equal proce"()f 
clock frequencies. Figures lOa and lOb sho" the mean 
performance ratio of programs analYlcd by Nelson and 
Nagle,6 by Grappel and Hemenway' and adjusted by 
Patstone,23 by Hunter and Ready, Inc. ,24 and by Han­
sen et aU5 They also show an upper and lower bound 
for my rewits. The upper bound IS obtallled by dIviding 

4 

BUBBLE (b) 

20 

1 5 

1 0 
t 

SPLIT 

BEST 

1--.-

r-r--
WORST 

1 

TREE 

Figure 6. Relative performance of the Z8000 compared to the 18086 worst case, with the display mechanism im· 
plemented for Algol programs (a); relative performance of the MC68000 compared to the i8086 worst case, with 
Tanenbaum's mechanism implemented for Pascal programs (b). 

(a) 

1 2 

1 0 

KZ80001 KMC68000 

I 
I 

I 
I 

I 

~.---

'---I _ 
10 187---­

YV 
WORST / / ~4 

~==:::±:::Z:::::::::"-_-y-= 
BEST 

08-r~~-+-+-+~~~~-~~. 

200 400 ns 
(b) 

jKZ8000 /K MC68000 

1 2 

10+ 

WORST 

BEST 

200 400 
ns 

Figure 7. KZ8ooo/KMC88000 as a function of the memory speed x for the display mechanism on 4, 8, 10, and 12·MHz pro· 
cessors (a) and for Tanenbaum's proposal on 4, 8, 10. and 12·MHz processors (b). 

IEEE MICRO 

4-35 



r""'" 
KZSOOO/K,S08fi /' 

Og / o 9 // ./ 

/ / 
// / / 

/ / 
/ 

/ 
/ 

/ 
/ 

/ 

'''t 
I o 7 

/} WORST 

WORST BEST 

t 
( 

, 
7 ----z::--

J -- -BrST 4 

x x 
o 5 I .. I • 

(a) 0 200 400 ns (b) 0 200 400 ns 

Figure 8. KZ8ooo/KI8086 as a function of the memory speed x for the display mechanism on 4, 8, 10, and 12·MHz pro· 
cessors (a) and for Tanenbaum's proposal on 4, 8, 10, and 12·MHz processors (b). 

k M 1:08001/ K 1808h KMC6BOOo/K 'BOB6 

/ 

/ 
/ / 

/ 
/ / 

n 8 o 8 / 10 
/ 

/ 
WORST 

/ 

WORST 

~~8 o 7 
BEST 

07 BEST 

10 

x 
a 6 I • 06 

200 400 ns 200 400 ns 
(a) (b) 

Figure 9. KMC68ooo/Ki8086 as a function of the memory speed x for the display mechanism on 4, 8, 10, and 12·MHz pro· 
cessors (a) and for Tanenbaum's proposal on 4, 8, 10, and 12·MHz processors (b). 

2 a - 2 a -
UPPER 

~ 
I---

UPPER 

~ LOWER 

1 " r-- 1 5 - ~ 

e--- LOWER 

~ 

1 0 
NAGLE GRAPPEL HUNTER HANSEN OUR 

1 a 
NAGLE GRAPPEL HUNTER OUR 

(a) STUDY (b) STUDY 

Figure 10. Relative performance of the MC68000 to the 18086 as determined in live studies (a); relative performance of 
the Z8000 to the i8086 as determined in four studies (b). 

Apnl1983 

4·36 



5 5 

50 

4 5 

40 

35 

30 

2 5 

2 a 

1 5 

the best-case re,ults for one processor by the worst-case 
re,ults for the other. The lower bound is similarly ob­
tained by dividing the wor't-case results for the first pro­
cessor by the best-case results for the second processor. 
The real performance ratio will always lie in the range 
defined by these bounds. Note that there is a great 
resemblance among the studies, even when my perfor­
mance figures include only the times to execute pro­
cedure and block entry/exit and perform variable ad­
dressing in high-level-language programs. This proves 
that the results from an analytical model provide great 
accuracy. 

The results can also be combined to provide a 
cost/performance analysis. Figure II shows a global 
comparison of the three processors with a set of possible 
clock frequencies. (We assume that each processor is or 

RELATIVE PERFORMANCE 
B 

18086 
MC68000 
Z8000 

B = BEST 
W = WORST 

B 

W 

W II t I 
III I 

10+===t===~~==~t+~==== 
II I I 

100 200 300 400 500 ns 

Figure 11. Relative performance of the three 16·bit micros as a func· 
tion of the memory speed x. 

will be available with a 4, 8,10, or 12-MHI clock.) The 
results depicted are for an average Pascal rrogram hav­
ing the display mechanism, but )lmilar results \\ ill be ob­
tained for an average Algol proglam and/or Tanen­
baum's proposa\. Even when program, rroducing dif­
ferent statistics are used, the re'Lllts Will be SImilar. 
Thus, various microprocessor system confIgurations will 
yield a relative performance of, say, 3.5: a 12-MHz 
Z8000 with 395-nanosecond memory, a 12-MHz MC68000 
with 445-nanosecond memory, a to-M Hz Z8000 with 380-
nanosecond memory, or a to-MHz MC68000 with 415-
nanosecond memory. These solutions are for the worst­
case model. 

By taking a set of processors T, with a memory speed 
xWk, we can find the lowest-cost configuration, depend­
ing on the cost of the processor P" the cost of the 
memory Mk, and the size of the memory S. The pro­
cessor cost Pk is a function of the processor type T" 
which is characterized by the manufacturer rnk and the 
clock frequency fk-thus, P, = P(m" f,). The memory 
cost Mk is a function of the memory speed xw,' i.e., 
Mk = M(XWk). Thus, for each possible configuration k 
we obtain a cost figure Ck : 

The lowest-cost processor/memory configuration will 
have the smallest Ck. 

Since we used the worst-case model to obtain the 
memory speed xWko we can be sure that the relative per­
formance will be at least minimally acceptable, since the 
real performance value will always lie in the range [worst 
case, best case]. Systems using memories with a speed 
Xbk obtained under the best-case model can also have 
the same performance figure, even with a slower 
memory, since xbk > XWk. For instance, a relative perfor­
mance of 3.5 can be prov.ided by a to-MHz MC68000 
and a memory with access time of 540 nanoseconds 
(>415 nanoseconds), if the best-case results are taken. 
Since the memory is slower, the cost will be lower. 
However, given a memory speed xbk , it cannot be 
guaranteed that the performance will actually have the 
value in mind, since the figures are obtained under best­
case models and the real performance value can thus be 
smaller. The choice of memory speed depends on wheth­
er the application is time-sensitive. If it is, the worst-case 
speed XWk must be used to ensure that the desired per­
formance will be obtained. If the application is cost­
sensitive rather than time-sensitive, the best-case speed 
Xbk must be used, since it always results in a cheaper 
configuration than if the worst-case speed is used. Of 
course, this approach cannot ensure that the desired per­
formance will be obtained. 

We have analyzed the performance of addressing 
mechanism implementations for block-structured high­
level languages. The performance measure defined here 
can be written as a (scalar) product of three arrays, each 
array depending on one parameter set. These three sets 
are completely independent-that is, they comprise 
technological, architectural, and program-statistical sel>. 

IEEE MICRO 
4-37 



This model provided a bam for comparing, m three 

contemporary 16-blt mlcroprocesso"" the Implementa­

tIOn of the traditional dl'play mechanism to the Im­

plementatIOn of the mechanism ploposed by Tanen­

baum. A best/"or;t-case analysis overcame the lack of 

Information about the microcode and its relatIOnship to 

Inltruction prefetch behavIor. 

The performance figures presented here were consIs­

tent with one another and with tho,e derived in other 

studie,. They showed that Tanenbaum', proposal pro­

vided a uniformly better performance than the display 

mechanism. t ne ttgures atso tnCllcatea tne relative per­

formance of the three microprocessors-·the Z8000 did 

the best, the MC68000 the second-best, and the i8086 

the wor;t. These results agreed well with earlier data. 

The methods presented here also showed how to deter­

mine the influence of memory speed on performance, 

and how the results could be used to obtain a cost/per­

formance figure .• 

Acknowledgment 

The author wishes to thank Dr. J. Van Campenhout 

for his many helpful comments and for his thorough 

proofreading. 

References 

1. D. Fenari, Computer Systems Performance Eva/ua/ton, 
Prentice-Hall, Englewood Cliffs, NJ, 1978. 

2. W. E. Burr and R. Gordon, "Selecting a Military Com­
puter Architecture," Compuler, Vol. 10, No. 10, Oct. 
1977, pp. 16-23. 

3. S. H. Fuller and W. E. Burr, "Measurement and Evalua­
tion of Alternative Computer Architectures," Computer, 
Vol. 10, No. 10, Oct. 1977, pp. 24-35. 

4. W. B. Dietz and L. Szewerenko, "Architectural EffiCien­
cy Measures: An Overview of Three Studies," Computer, 
Vol. 12, No.4, Apr. 1979, pp. 26-32. 

5. R. D. Grappel and J. E. Hemenway, "A Tale of Four 
Micros: Benchmarks Quantify Performance," EDN, 
Apr. I, 1981, pp. 179-265. 

6. V. P. Nelson and H. T. Nagle, "Digital Filtering Perfor­
mance Comparison of 16-bit Microcomputer~," IEEE 
MIcro, Vol. I, No. I, Feb. 1981, pp. 32-41. 

7. L. J. Shustek, "Analysis and Performance of Computer 
Instruction Sets," PhD thesis, Stanford University. Stan· 
ford, CA, 1978. 

8. A. Lunde, "Empirical Evaluation of Some Feature> of 
Instruction Set Processor Architectures," Comrn. ACM, 
Vol. 20, No.3, Mar. 1977, pp. 143-153. 

9. A. P. Batson, R. E. Brundage, and J. P. Kearns, "De­
sign Data for Algol 60 Machines," Proc. 3rd Ann. Symp. 
Compuler Archlleclure, 1976, pp. 151-154. 

10. A. S. Tanenbaum, "Implications of Structured Program 
ming for Machine Architecture," Comm. ACM, Vol. 21, 
No.3, Mar. 1978, pp. 237-245. 

II. R. P. Blake, "Exploring a Stack Architecture," COli/­
piller, Vol. 10, No.5, May 1977, pp. 30-38. 

12. E. W. Dljkstra, "Recursive Programming," Numensche 
Malh, Vol. 2, 1960, pp. 312-318. 

13. M. L. De Prycker, "A Performance Analysis of the Im­
plementation of Addressmg Methods in Block-,tructured 

April 1983 

Language.;;," 11:'£..£: Trans Compllfc/\, Vol. C-31. No 2, 
Feb 1982, rp 155-163. 

14 The 8086 Fal/Illl' (he! \ ,\tal/lta/, Intel Corp, San!.! 
Clara, C A, 1979 

15 L8000 CPU Tcc/]fIlcal .Haflua/, li!og Corp, CUperll!1Cl, 
CA,1980 

16, .\1C68000 j\lICl()/)I()Ce~'<;()! Usn's A/anual, 1'vloloro1a 
Semiconductor Product'), Inc, PhOenl\, AZ, 1979 

17 M L De Prycker, "Repre<.,enttng the Elfect... of In"truc­
!lon Pic/etch Il1 a Microprocc<;<.,or Pel formancc Model," 
to appear ltl/EEE Tran.s COlllpulen 
•• no ., 'T, 1 .." 1 , '-' f' '-'. .,,~. 

10. IIr rilgU/, nCWICI1-rdI.KctIU \...-1..1., '--UpU UIIO, "--!-\, I ';III. 

19. Pascal/(!! PDP-ll Undol RSX!f"lS, Tech. Report S-126 
25, L.M. Enc"on Co., Stockholm, S"eden, 1979 

20. K. Jen"en and N WIrth, Pascal Uwr ,Wal/uo! and Reporf, 
Spnngel Verlag, Berltn, 1976. 

21. A. V. Aha and J. D. Ullman, PllnClp/c, of Compiler 
DeSign, Addison-Wesley, Readtng, MA, 1977 

22. M. L, De Prycker, "On the Development of a Mea'iure­
ment System tor HIgh-Level Language Program 
Statistics," fEEE Twns. COli/pI/len, Vol. C-31, No 9, 
Sept. 1982, pp. 883-891 

23. W. Patstone, "16-bit Micro Benchmarks: An Update 
With Explanations," EDN, Sepl 16,1981, pp. 169-203. 

24. Hunter and Ready, Inc., "Executive tn ROM FIls 8086, 
68000," Eleclrolllcs, Jan. 27,1982, pp. 134-136. 

25. P. M. Hansen et aI., "A Performance EvaluatIOn of the 
Intel iAPX 432," Compl/ler ArchlleCll/re News (ACM 
Sigarch newsletter), Vol. 10, No.4, June 1982, pp. 17-26. 

Martin De Prycker IS a systems engineer 
with Bell Telephone Manufacturing Com­
pany, Antwerp, BelgIUm, where he 1<; in­

volved tn long-range development A 
member of the ACM and the IEEE, he 
received the MS 111 electrical engineermg 
in 1978 from the University of Ghent, 
BelgIUm, and the BS and PhD in com­
puter "cience from the same universi(v in 
1979 and 1982. . 

De Prycker's addre" is Bell Telephone Manufacturlllg Com­
pany, EA5, Fr. Wellesplein 1, B2000 Antwerpen, Belgium. 

4-38 



A paged-memory management chip brings virtual memory to two 
16-bit CPUs. Additionally, a coordinated bus structure makes 
possible distributed-processing or multitasking, multi-user systems. 

16-bit ~Ps get a boost 
from demand-paged MMU 

Faced with applications that demand large pro­
grams and extensive data manipulation, micro­
computer manufacturers are turning to virtual 
memory management, an approach originally de­
veloped for minicomputers. A single chip uses 
demand-paged virtual memory to expand the al­
ready large memory-addressing capabilities of two 
new I6-bit microprocessors. 

Running the software being developed for those 
processors-the 8-Mbyte Z8003 and the 64-kbyte 
Z8004-means using the latest techniques for effec­
tive memory management. The technique known as 
demand-paged virtual memory, chosen for the 
Z80I5 paged-memory management unit (PMMU), 
keeps the most frequently used codes in fixed­
length blocks in RAM, swapping them in and out of 
disk storage to extend the range of addresses. Such 
a scheme naturally leads to multitasking and multi­
user systems, since the time spent accessing a disk 
can be used for other tasks. With the Z80I5, for 
example, the Z8003's 8-Mbyte logical address space 
translates into a I6-Mbyte physical address space. 

The Z80I5 has the same address translation and 
access protection features as the 
Z80I0 but is based on 2-kbyte pages 
rather than the variable-length 
segments used in the earlier chip. 
Together, the Z80I5 and the Z8003 
(or Z8004) bring multitasking and 
multiuser capabilities to the micro­
computer. 

In addition, the Z80I5's access vali­
dation feature protects memory from 
unauthorized or unintentional ac­
cess. The memory management unit 

Richard Mateoaian,' Marketing Manager 
Zilog Inc. 
1315 Dell Ave. 
Campbell, Calif. 95008 
-Now with National Semiconductor Corp. 

also generates an Instruction Abort signal during 
page faults and at the same time saves sufficient 
status and information to restart or resume any 
instruction after the fault is corrected. 

One important application of virtual memory is 
in disk-based multitasking systems. A system of 
this type can be implemented easily with the Z8003 
and the Z8015. 

Virtual memory enables a system to execute pro­
grams that do not fit into its primary memory. In 
order to accomplish this, a secondary storage 
device-usually a disk-is required. When a disk 
access is required, however, the program in 
progress must he interrupted. This interruption can 
cause large and unpredictable delays known as 
paging overhead, which may become excessive be­
cause of the slow access time and transfer rates of 
floppy disks. For a typical personal computer or a 
small business computer, these delays might slow a 
system sufficiently to make virtual memory man­
agement impractical. 

Hard-disk systems, on the other hand, are faster; 
therefore, the paging overhead will be shorter and 

Reprinted with permission of Electronic DeSign, May 26, 1983 4-39 
Copyright 1983 Hayden Publishing Co., Inc. 



Computer System Design: MMU for 16-bit "Ps 

therefore acceptable. When a CPU must access a 
rigid disk fairly of ten-a condition called 
thrashing-even the comparatively fast disk can 
produce too much delay. 

Fortunately, the paging overhead of a virtual 
memory can be minimized with multitasking oper­
ating systems that allow one task to run while an­
other waits for access to the disk. Such multitasking 
operating systems can be single-user systems, like 
MD/M n.- ,,,,,,, ... If.Lnoo.'I'O DUO ... 'O'''''''' H1.,.o TT .... ;v 
....... 0&., ....... , V.I. ,U,&\o&.&\1& 10&,"",,'" ~J"''''''''''''.L''', ........... '" ...... u .... .n.. 

Virtual memory and mulllproceelOr. 

A distributed processing system-such as a local­
area network or an intelligent terminal-places 
computing power and data where they are used, 
rather than at a central host computer. Supplying 
each processor in such a system with its own semi­
conductor or magnetic memory would be pro­
hibitively expensive. Virtual memory management, 
however, permits resources to be shared among all 
the devices in a system. 

The entire Z8000 family, which uses extensively 
programmable VLSI components, is geared to dis­
tributed processing strategies. Furthermore, a vari­
ety of features built into the Z-Bus-the inter­
connection protocol that all Z8000 family com­
ponents are designed to use-reduces the chances of 
bus conflicts and data collisions while multiple pro-

cessors are being employed. 
One such feature is the Bus Lock Status signal 

that accompanies a Test and Set instruction in the 
Z8003 or the Z8004. That instruction prevents access 
to a shared memory by another CPU or DMA con­
troller. In that way, two CPUs, using a flag (sema­
phore) stored in shared memory, keep track of 
which processor currently has access to a resource. 
The Bus Lock Status lets other potential bus mas-
+o..-a ),"'''' ...... "''''n''' n .. nL.,,,, ...... ,.n ;"" nl..".,.. ... f."" l,. ........ ", ... ,U' ....... A 
""' ........... u.vn " ..... M'''" C4f ... "'~v ........... '" .I..., AUUU." "" U,,", "''''''t.u,'''''I.I"u.. 

The Test and Set instruction consists of two sepa­
rate bus cycles: a memory read, followed by a memo­
ry write (Fig. la). When asserted, the Bus Lock sta­
tus replaces Data Read during both cycles' (Fig. Ib). 

Given the general picture of how the Bus. Lock 
Status is used to implement semaphores, the ques­
tion of what applications can benefit from the dis­
tributed processing approach still remains. One an­
swer is peripheral controllers. 

Software and memory management 

Most complex peripheral devices are governed by 
microprocessor-based controllers, and it is natural 
for a controller CPU and the main CPU to commu­
nicate through a shared memory. In such a config­
uration, semaphore locations can be used to manage 
access to message buffers, with the Bus Lock Status 
being used to generate these semaphores. 

Phase ... ----------.. Test --------~-_______ set ________ .. 

Addreu/~ Semadd"!!~ X Semacon:°tare >--< X )-~ '._.. '. s::r.::re Not available . 
MM~ ~------~ ~--------~ 

registers ~ Data Read SlatU8 X,..-------DaI--a W-ri-te-S-tot-u-. -------}-

Phase ·----------Test---------.... ----------Set.------__ .... 
Addreu/~ Semaphore X semaphore >-< Semaphore X Not available >-add,... contenta addreaa 

Stat~ 

regl'ters~ 
Bus Lock Statue }-

R/W-< Data Read X Data Writ. >-
(b) 

1. To 1Ih ..... n, I'HOUree, multiple procllure mUlt '!rIt lilt • 1000tion In memory, cilled I 
_Iphore, during I Tilt Ind Set Inltructlon (I). Acce .. then dependl on the _lph_'1 
contente. In eddHlon, I BUI Lock Stltul IIgnel il I .. ued (b). Thll Ilgnll kllpe other 
potential bul m .. t .... 'rom _ling the I'HOUree while It II being lilted b, the controller. 

4-40 



In addition to controlling access to shared re­
sources, another aspect of virtual memory manage­
ment is handling faults: CPU requests to those 
memory locations which are not in the physical 
memory space. 

Every memory management scheme involves 
translating logical addresses into physical address­
es. Additionally, most schemes involve both access 
checking-to prevent invalid accesses-and usage 
recording to assist in implementing memory allo­
cation algorithms. 

For example, consider the flow of control in a 
simple virtual memory system. During the exe­
cution of the main program, if the CPU issues an 
address that does not correspond to a physical 
memory, the memory management unit attempts a 

logical-to-physical memory address translation. At 
this point, the microprocessor's Wait input is 
asserted and the memory management circuitry 
performs the necessary actions, including all disk 
accesses. Afterward, execution of the interrupted 
instruction resumes. 

There are, however, drawbacks to this approach. 
First, the CPU is idle while the fault is processed 
and must therefore be isolated from the bus if direct 
memory access is used for memory management. 
Second, the entire fault-processing action is carried 
out by the memory management circuitry, without 
help from the CPU. 

In an alternative approach that is employed by 
the Z8003 and Z8004, page faults are processed by 
the CPU's ordinary interrupt-handling mechanism 

Main program 

EFault-prOdUClng Instruction 

FI 

~~-~~-c=;.:-~-~ 
Automatic 

I 
saving of program Fault Information 

counter's contents, read from MMU Saved PC contents and 
flow control FeW (as modified) restored 

word (FOW). and 16·blt I from stack; 
code from MMU 16-bit MMU code 

on stack discarded from stack 

Saved FeW and 

I PC contents modified 
on stack if L------I------ _-1 necessary 

I PC and FeW I set for fault I routine I 
I 
I I _____ + _____ ..J Fault-producing I address given I a block of 

physical memory I 
(disk, write, and read, I 

I as necessary) 
I 

L 

I 
I I 

I 
I 

Interrupt return I 
Instruction I 

I 
I L _____ I _____ J 

2. To use virtuel memory efficiently, a CPU should take part in page-fault processing. In 
mOlt cases, however, it is much easier to aimply di.able the CPU and leave the job to a 
memory management unit. In the 78000 family, the CPU and MMU share the burden by 
running fault-proce.sing 80ftware (block B) with the CPU'. normal interrupt routine (blocks 
A and C). 

4-41 



Computer System Design: MMU tor 16·bit "Ps 

(Fig. 2), which generates an Instruction Abort sig­
nal. The signal terminates the instruction that has 
produced the fault before the contents of any regis­
ters are changed. After the fault is corrected, the 
instruction can simply be restarted. 

Because certain instructions perform multiple 
memory transfers, a fault may occur that requires 
more than a simple restart. For this reason, the 
Z8015 is designed to monitor the execution of in­
structions ann to provine accurate restart informa­
tion to the fault-processing routine. Thus, the fault­
processing software restricts itself to correcting the 
fault and resuming execution. Here again, a benefit 
of multitasking is in switching tasks when a page 
fault is being processed-allowing another task to 
run while the necessary disk accesses are in the 
process of being carried out. 

MultiproceslOr systems 

Not all multiprocessor or multitasking systems 
are as complex as the one just described, nOr are 
they all shared-resource designs. Some coprocessor 
systems, for example, have been designed to run Z80 
software in systems based on microprocessors like a 
6502,8088,68000, or Z8000. 

Disk 
controller 

Taking that approach one step further is a system 
that uses a Z8003 with a Z80 and Z8015, plus dual­
ported memory, to run under both Unix and CP/M 
(Fig. 3). 

Since no memory management is used for the ZSO, 
only 64 kbytes of the memory must be dual-ported. 
The remainder needs to be accessible only to the 
CPU. However, with memory management there is 
no difficulty in extending the design to accommo­
date a multitaRking verRion of C!P/M. Tn t.hat. ('aRP, 
as much memory as is needed in a particular appli­
cation must be dual-ported. 

The system forms the nucleus of a high-end per­
sonal computer that runs Unix on the Z8003 and 
CP/M on the Z80. In operation, a CP/M task is ini­
tiated through Unix, and a Unix task accepts an I/O 
request from the CP/M program running on the 
microprocessor, carries it out, and signals its com­
pletion to the system. 

The dual-ported memory is a shared resource and 
is controlled using semaphore locations in memory. 
As described above, a Bus Lock Status issued during 
the read cycle of the Z8003 Test and Set instructions 
protects semaphore locations from access by the 
associated Z80 microprocessor. 

Counter-timer 
and 

parallel 110 unit 

Serial 
communications 

controller 

3. Uling multlprocaelor tnturae and a lharsd 84-kbyte dual-ported memory, a Z8OO3 and a 
Z80 can form the heart of a CP/M- and Unix-baaed microcomputer. Such a 1,ltem would 
u .. a Share aemaphore and a Maaaege lIeg in a sharsd-memory to carry out a handlhake. 

4-42 



computer System Design: MMU for 16-bit "Ps 

The 64-kbytes of dual-ported memory can run on 
the Z8003 under Unix. It is controlled by the Share 
semaphore-a mechanism that can be easily mod­
ified to cover multiple blocks of dual-ported memo­
ry. The Share semaphore is used only for Z8003 
tasks to control access to the CPIM facility (Fig. 4). 
In addition, a Start semaphore initiates 1/0 re­
quests, utility calls, and the Done signal that are 
passed from the ZSO to the Z8003 by means of a 
message buffer register. 

A Message flag is used for handshaking with this 
buffer. That flag is set by the Z80, which then waits 
for it to be cleared before proceeding. The Z8003 
clears Message before setting the Start semaphore. 
Thereafter, its principal loop consists of waiting for 
message to be set, performing the requested task, 

and clearing Message. 
The Start semaphore indicates that the Z80 is 

executing programs in the shared memory and is set 
by the Z80 only during its power-on initialization. 
Following that, the Z80 microprocessor only clears 
the Start flag. Subsequent setting is done by the 
Z8003 whenever a Z80 program has been loaded into 
the dual-ported memory of the system and is ready 
to run the program's instructions. After executing 
the program, the ZSO clears the Start flag.D 

How useful? 
Immediate design application 
Within the next year 
Not applicable 

ExIt 10 
CP/M 

Circle 
553 
554 
555 

I/O request Done 
or 

utility call 

Perform • Cie.jr Message 
requested ftag 

task • Clear Share 
semaphore 

(a) (b) 

4. T •• k. running on .h. Z8OO3 (.l.nd.he Z80 (bl communlc •••• nd synchronize .helr 
.c.lvl ..... hrough.he m .. At. buffer, .h. m .... g. fIeg, .nd .h. Slert eem.phor •. The 
Sh.re .. m.phore I. used only In the Z8OO3 '0 .llow i •• teak. '0 sh.re .cce .. '0 .h. Z80 
.nd .he du.l-ported memory. 

4-43 





As memory spaces for microcomputers grow, linear addressing gets 
cumbersome and error-prone. Segmented addressing solves these 
problems efficiently, while anticipating 32-bit addresses. 

Segmentation advances 
~C memory addressing 

As a memory model, linear addressing has always 
presented problems for microcomputers. In addition 
to invalid accesses, traditional micros have faced 
four major difficulties: accommodating objects 
whose sizes vary (e.g., stacks or lists); creating and 
deleting objects dynamically, causing memory 
fragmentation; relocating objects after the loader 
has established linkages among them; and sharing 
objects among otherwise independent processes. All 
five major problems-which have increased ex­
ponentially as systems have grown-can be avoided 
by using the abstract addressing model provided by 
segmentation and implemented in the Z8000 CPU 
and its memory-management unit. 

Segmentation organizes the address space into a 
collection of independent objects corresponding to 
the largely separate but interrelated objects found 
in a typical programming situation. This method 
works for addressing somewhat like a high-level 
language: The programmer need not worry about the 
computer memory's physical implementation. Lin­
ear addressing, on the other hand, corresponds to 
a machine language: The model used for the 
computer's memory is very close to its actual hard­
ware implementation. Examining some memory­
addressing tasks that confront programmers will 
illustrate the trouble with this "machine language" 
strategy. 

PROGRAM 
1 

PROGRAM 
2 

ARRAY 
1 

STACK 

PROGRAM 
1 

PROGRAM 
2 

ARRAY 
1 

STACK 

L __ ..IN.l In general, a programmer deals with a variety of 
objects and their interactions. Depending on how 
"fine-grained" the picture is to be, a programmer 
could be said to deal with just two objects, the 
program and the data. Or, at the other end of the 
scale, he could be said to deal with a multitude of 
objects-listing separately each instruction and 
datum. Between these extremes lies the typical 
programming situation dealing with largely separate 

1. A traditional relocating loader putl the ObJects that make 
up a program .equentlally Into memory apace. 

Richard Mateollan, Senior Microprocessor Specialist 
Zilog Components Div. 
10460 Bubb Rd., Cupertino, CA 95014 

Reprinted with permission of Electronic DeSign, February 19, 1981 
Copyright 1981 Hayden Publishing Co., Inc. 

4-45 



Segmentation 

but interrelated objects. A chess-playing program, 
for example, might include: 

• Chessboard display program 
• Representation of the current position 
• Program to generate legal moves 
• Routine to evaluate moves 
• File of previously evaluated positions 
• Handling routines for the previous-position file 
• Program to study published games. 

ThiR Roftwlll'P. might. !,11n nnrlp.l' thp I'ontl'ol of lln 
operating system, which can also be divided into 
objects: 

• Task scheduler 
• Memory allocator 
• Secondary-storage interface routines 
• Terminal interaction routines 
• Process status table 
• System stack 
• User-process status tables. 
Usually, portions of the computer's memory are 

allocated to each of these objects. A relocating loader 
might pack the programs together end to end and 
then allocate fixed areas for data, also end to end, 
in memory not occupied by the programs (Fig. 1). 
In the earliest computers, each object received an 
address directly related to-in fact, usually the same 
as-the actual memory address at which it was 
stored. These addresses were all numbers in the 
range 0 to N -1, where N was the total number of 
memory locations available. Every program that 
wanted to access any of these objects had to use these 
addresses. As a result, one problem that has always 
affected linear addressing is invalid accesses. 

This hassle occurs even in the smallest systems 
and on the smallest computer-a program er­
roneously uses an address as if it belonged to a 
certain object. For example, if an array is 1024 bytes 
long and a program erroneously refers to its 1025th 
byte, then the reference will actually be to the first 
byte of the object stored in memory immediately 
following the 1024-byte array. If the erroneous access 
is a store operation, then the object following the 
array will have been damaged (Fig. 2). 

Problems stack up 

Trouble also crops up with the use of stacks. A 
common approach in a single-user system is to 
allocate the lowest memory values to programs and 
data and the highest ones to a stack, since the push 
and pop instructions on most computers are designed 
to make stacks grow "backwards" in memory. The 
first item placed on the stack is at the highest­
numbered address, and the "top" of the stack is at 
the lowest-numbered address. If program changes 
cause the program and data areas to expand, less 
and less remains for the stack. Sooner or later, a 

4-46 

1024-
byte 
array 

Program .. I I r! ijn<; ~ STA array X F 
2. The program executes a store-Into-array, using 
an out-of-range Index. The result Is an Invalid 
access that wipes out part of the program. 

Lowest a~dress 

Program 
and 
data 

I I 
I Free I space for 

I program I or stack 
I growth I 
I I 

Next element pushed I- - - - -l 
goes here ----.., 

Top ~ Stack pOinter I 
r----

Stack 

Highest address 

3. Program and stack u8uailY grow Into memory space from 
opposite ends. Eventually, they may collide. 

stack push will cause the stack to overflow its allotted 
area and destroy programs or data (Fig. 3). 

Such problems are often attacked by creating an 
"envelope" around the accesses in question. For 
example, instead of using the computer's indexing 
capability to access arrays directly, the prOgram 
might call a subroutine that accepts the index and 
the identity of the array as arguments and returns 
a validated memory address for fetching or storing. 
(The routine might handle the actual fetching or 
storing as well.) In either case, the routine would 
validate an access by using the array identity as a 
key to a set of array attributes, including the array's 
length and location in memory. 



In the case of a stack, a similar envelope would 
be placed around pushes and pops. Rather than use 
the machine's push and pop instructions, the pro­
gram would call subroutines for these operations, 
generating a large software overhead. 

Handling Invalid accesses 

Another type of invalid access occurs when several 
programs or sets of data-not necessarily related to 
one another-share memory locations. As a result, 
a program's accesses might be restricted either to 
its own subroutines and data, or to portions of 
memory containing data or subroutines that it 
shares with another program and to which it is only 
allowed certain kinds/of access (such as "read only" 
or "execute only"). 

All the discussed software envelopes can be ex­
tended to shared-data access, but it is difficult to 
place such envelopes around program accesses. 
Furthermore, these envelopes are voluntary; that is, 
a programmer who wishes to avoid them can usually 
obtain the information needed to make the accesses 
directly. To guard against such conflicts, hardware 
solutions such as limit registers have been in­
troduced. 

For example, the operating system might set 
registers defining the limits of a program ready to 
run at locations 10000 through 19999. In that case, 
the program is free to make references of any sort, 
so long as the address used lies within the given 
range. An attempt to call a subroutine at any higher 
address, say at location 20000 would result in a 
"trap," and control would be returned to the operat-

Program 

pus~7~op 
PUSH/POP 

envelope 

ing system. 
An envelope around push and pop instructions 

could detect invalid accesses before they occurred, 
and provide an alarm-but this is not a solution. 
Figure 3 shows only one stack. that doesn't run out 
of memory until the entire memory is exhausted. 
However, if many stacks must be managed, it might 
be best to assign a small amount of memory to each 
stack and then expand those that were about to 
overflow (Fig. 4). If all accesses to stacks go through 
the envelopes that surround the push and pop in­
struction, the stack can be "continued" elsewhere in 
memory. Through this operation, the gap in the 
actual memory addresses between the last location 
of the original stack and the first location of the 
extension will be completely concealed from the 
program using the stack. 

Unfortunately, the way in which stacks are or­
dinarily used is not well suited to_ this approach. 
Frequently, a program is allocated aolock of stack 
space, which it then accesses via "based" addressing 
-Le., the actual memory address of the first location 
of a block of stack space is kept in a register, and 
accesses into the block are made by adding an "index" 
(obtained, for example, from an instruction) to the 
"base" address in the register. This common practice 
is incompatible with the existence of gaps in the set 
of addresses assigned to the atack. 

The traditional solution is to allocate a larger 
contiguous block of memory to the enlarged stack 
-either by moving the stack to another part of 
memory or by moving something else out of its way 
so that it can be expanded where it is. This approach 

Stack 
segment 

3 

Basea-addresslng 
-.,..J I references to 

L _ -14- this location are 

Program 
uSing 
based 

addressmg 

Stack 
segment 

1 

. actually meant 

for here 

4. A PUSHIPOP envelope conceall the allocation of the Itack Into different legments. Lack of 
luch an envelope for b .. ed addre .. lng Invalidate. thll Icheme. 

4-47 



Segmentallon 

has two inherent problems. For one thing, moving 
objects around in memory and keeping the unused 
memory all in one place increase the processing 
overhead. For another, all those base addresses for 
blocks of stack space that the program has in 
registers or in storage must be exchanged. Save for 
the most elementary cases, this obstacle is almOlit 
insurmountable. 

When no memory-management facility is avail-
_L1_ L'L __________ .1_ 1.1_.1",.-..3 "'_ .'L _ _ L_"': ___ 1 __ _ 
au,,,, WI" lJ'-ugI AJ1UUCI ID lll1111A1'U LoU "IU::; D..,."" ...... ::;'''''''''-
tion provided by a relocating loader. 

Accommodating objects whose sizes vary leads to 
yet another problem: creating and deleting objects 
dynamically. It arises even in the simplest single­
user systems-for example, "initialization" code 
might be abandoned after its first execution and the 
space given to a large data array. Here, too, the 
difficulties mount rapidly as the system becomes 
more complex. Because of the difficulty in relocating 
addresses, objects that should be moved to keep 
unused memory together often are not. The unused 

let 
objec1 

2nd 
object 

a.!!!.n~ 

3rd 
object 

4th 
oblOC1 

abandoned 

5th 
objOC1 

6th 
objOC1 

r:l 
L;:J 
No~ 

...... --

5. Memory get8frlgmlntecl whln lome orlglnll 
obJectel" lbandoned. Although the,. Ire 
enough mlmory loclUonlleftforobJecI 8, not 
Inough I,. contiguoul to 1CC0mmodltllhit 
object. 

memory soon becomes fragmented, which makes it 
increasingly difficult to find contiguous blocks big 
enough to accommodate newly created or expanded 
objects-even when the total amount of unused 
memory suffices (Fig. 5). 

Up to now, the only "solution" has been to leave 
management of the assigned memory to the user 
program. The user is provided with tools like chain­
ing commands and overlay structures in some sys­
tems but, by and iarge, the creation ud deletion of 
objects are simply treated as part of the algorithm 
implemented by the program. 
R.loesUon 18 no .s., tuk 

After the loader has established links among 
program parts, it becomes almost impossible to move 
any of these parts. A hardware solution has been 
provided at several levels. 

Dynamic relocation, which occurs after initial 
program loading, requires a mechanism that allows 
actual addresses to be determined at run time. One 
solution is provided by various kinds of based ad­
dressing, usually in the form of relative addressing: 
Calls, jumps, and loads of program constants are 
specified by an offset that is added to the actual 
program-eounter value. Data references, too, are 
made via offsets that are to be added to a stack 
pointer or other address register. Relocation by based 
addressing is called "user-eontrolled" relocation, 
since the running program controls setting of the 
stack pointer or of another address register. 

From the standpoint of reliability, "system-eon­
trolled" relocation is usually a better solution. Its 
simplest form, memory mapping, is a translation 
mechanism that converts the addresses used by the 
running program (logical addresses) into the actual 
memory addresses (now called physical addresses). 
With memory mapping, the program always uses a 
fixed set of addresses, and relocation is achieved by 
a change to the translation mechanism. For example, 
a translation mechanism for a value set into a base 
register automatically adds that value to any address 
used in the program. This approach is similar to 
based addressing, which. however, uses an explicit 
reference to the base register in the instruction. In 
memory mapping, the base register is used to trans­
late addresses completely independently of the pro­
gram that generates them (Fig. 6). 

One natural outgrowth of memory mapping is a 
mechanism for sharing objects among otherwise 
independent processes, even though the mapping 
mechanism must be more sophisticated than a 
simple base register. If different blocks of logical 
addresses are mapped independently of one another, 
a program or data area in physical memory can 
correspond to different logical addresses for dif-

4-48 



ferent processes. Thus, the shared program or data 
can reside at a convenient location in the logical 
address space of each process. And the mapping 
mechanism will cause references from each process 
to be mapped by that process's mapping scheme into 
the given physical locations. 

Segmentetlon offerl bener lolutlonl 

Memory mapping, which provides the means for 
dealing with two major problems plaguing linear 
addressing, ironically must be part of any 
segmented-addressing scheme, since physical memo­
ries are not usually organized in segments. Moreover, 
all five major problems stemming from a linear­
addressing model can be avoided. 

The segmented addressing model assigns to each 
object in the address space a "name" that is really 
a binary number. Calling it a name emphasizes that 
there is no relation between objects regardless of any 
numerical relationship between their "names." 

In the chess-playing example, the chessboard dis-

-0 0 

.. Memory-
mapping 

using 
bue 

lID 
register 

K -- K 

M-1 .~ 
"Logical" 
add_ 

--- K+M-1 
N-1 

ActUlI 
add_ 

8. M.mory m.pplng b.com ••• Impl. with. b ••• r.gl.t.r: 
Ita "valu." I •• utomatlc.lly .dded to th.loglc.1 eddr ...... 

4-49 

play program could be assigned the name "1," the 
current-position representation could be "2," the 
legal-move generation program could be "3:' and 8.0 
forth. The address of any location within the 
chessboard display program would then consist of 
the name, 1, and an address within object 1's linear 
address space. If this program occupied 2048 bytes, 
then the addresses within object 1 would range from 
(1, 0) to (1, 2047). The length of 2048 bytes would 
be an attribute of object 1 and the mechanism 
responsible for the interpretation of segmented ad­
dresses would cause an appropriate error indication 
if an address like (1, 2049) or higher were ever used 
(Fig. 7). 

Consider the case of the current-position program 
-object 2 in Fig. 7. Suppose that this representation 
takes the form of an array of 256 bytes. The addresses 
of these bytes would be (2, 0), (2, 1) ... (2, 255). One 
way to refer to items of this array is indexed 
addressing. The address of the desired item would 
be specified by giving the array base address of 

7. With •• gm.nt.d .ddr ••• lng, the .ttrlbut •• of.1I obJ.cts 
.r. known, .nd .rror "' •••• g •• pr.v.nt.n III.g.l.cc ••• 
b.'or.1t c.n do .ny h.rm. 



Segmentation 

(2, 0) in one place-say, in the instruction or in a 
register-and an index (also called an offset) in a 
register. The index is simply a number to be added 
to the second component of the segmented address. 
If the index were 17, then the item address would 
be (2, 17); the address manipulation cannot affect 
the object-name portion of the address, only the 
linear address within the object. 

In object 1 of Fig. 7-the display program-the 
___ 1... __ : _________ !Ll ... ~ __ _ .:I.J __ ...... !_L _____ L ...... ! __ 
Ul'C\"UQ,UU:Ull J. 'CoYUU,:UUl1:, .lUI. QUU.l 'CiiOiO 111!,A;;;J.}Jl. ~;a, .. a"lVU 

performs a similar computation for addressing rela­
tive to the program counter. If the program contains 
a branch to "current location + 1264," for example, 
then the offset given in the instruction is applied to 
the second part of the address. If the call were made 
from location (1, 562), then adding 1264 to 562 would 
yield (1, 1826). 

Pr.v.ntlng Invalid acc ••••• 

Suppose that a programming error causes the 
current-position representation array to be ad­
dressed with an index value of 257. In a linear 
addressing scheme, the result would be a reference 
to the second byte of whatever object follows the 

23·BIT LOGICAL ADDRESS __ --------~A~ ________ ~ 

SEGMENT 
DESCRIPTOR 

REGISTER 

87 

OFFSET 

-I 
I 
I 
I 
I 
I 
I 

24·BIT PHYSICAL ADDRESS 

8. The Z8000'a memory-menegement unit (MMU) 
apeeda up addreaa tranalatlon by forwarding the 
low-ollaet byte directly, while adding the high byte 
to the aegment value In hardware. 

4-50 

current-position representation array in memory. If 
the legal-move generation program happened to 
follow the array in memory, half of its first word 
would be overwritten. With segmented addressing, 
the mechanism that interprets addresses would dis­
cover that (2, 257) is incompatible with the declared 
length of the array (256 bytes); an appropriate error 
indication would be generated. 

Once the mechanism to check accesses against 
.1 __ 1 ___ ..1 .... L.! __ .. _! __ L __ \... ___ .......... _'L..l: ... t..,..A : ....... 1.r"",n h"," 
U'Ci\,;.lQ..l'CiU VUJc ....... ~1~C: IIGO U~'Ci1.l ~i:)\.QJJJ..lc",,,,~u, ... " '--& ...... .., U\.&IU 

a small step to add the checking of other object 
attributes. Problems like protecting one process's 
data or program from accesses by another process 
or allowing "read only" or "execute only" accesses 
to a section of data or program can be solved by 
checking attributes associated with the objects in 
question. A write into a "read-only" object, a user 
access to a "system-only" object, and other such 
invalid accesses can be identified and prevented. 

This capability is available in the segmented­
addressing model built into the Z8001. Its 32-bit 
addresses contain two fields, the segment-name field 
and the "offset"; the latter is added to the physical 
memory address of the segment "base" to obtain the 
physical address of the element in question (Fig. 8). 
For example, if segment 5 has a base address in 
physical memory of 1024, then the physical memory 
location addressed by the segmented address (5, 26) 
is 1050, because 1024 + 26 = 1050. 

Ent.r the m.mory manag.r 

The Z8001 is designed to work with an external 
circuit called a memory-management unit (MMU), 
which keeps track of the base addresses correspond­
ing to the various segments, and computes the actual 
physical addresses. This MMU can also associate a 
variety of attributes with each segment, so it can 
perform the corresponding access checking and gen­
erate an error interrupt (called a "segmentation 
trap") in the event of an invalid access. 

Another feature of this implementation is that 
seven bits have been assigned to the segment-name 
field and 16 bits to the offset. The result is up to 
128 segments, each of them presenting a linear 
address space of 64 kbytes. Furthermore, the ex­
ternal MMU circuit is designed only to translate the 
uppermost eight bits of the offset; the eight low-order 
bits are passed directly to the physical memory. 
Consequently, all segment-base addresses in physi­
cal memory must be a multiple of 256 (since the eight 
low-order bits are zeroes), and the size of a segment 
-one of the attributes that the MMU checks-must 
be a multiple of 256 bytes. 

One problem with the Z800l's segmentation 
scheme is that no object can exceed 64 kbytes in size 
unless it consists of more than one segment. For-



tunately, this rather infrequent problem can be 
solved by software with very little overhead. For 
example, to access the byte with an index kept in 
R3 of the array whose base is in RR2, one must replace 
the instruction 

LD RL 1, RR2 (R4) 
with the sequence 

EXB R4 

ADD R3, RS 

ADCB RH2, RH4 

LD RL1, @RR2 

!move high-order index to 
segment field! 

!add low-order index to 
offset field! 

!add (w. carry) high-order 
index to segment field! 

where RR4 takes the place of R3. These instructions 
place several segments "end-to-end" and treat the 
segment name like a number. 

However, the MMU implementation has a twofold 

64K 
BYTES 

MEMORY 
ACTUALLY 
ASSIGNED 

I 
I 
I 
I 
I 
I 

/' 

I I 
OF :~~ENT-_.L - _---l 

\256 
BYTE 

TOP OF STACK 

NON·FATAL 
STACK WARNING 
OCCURS ON REFERENCE 
TO THIS AREA 

S 

9. When data begin to fill the top 258 bytes of assigned stack 
space, a nonfatal warning Is generated to prevent possibly 
de.tructlve overflow. 

speed advantage: 
1. Since the segment-name field is not involved 

in the address computations of indexed, based, or 
relative addressing, this field can be output to the 
MMU one cycle earlier than the offset portion of the 
address, thus giving the MMU a one-cycle head start 
on the address translation. 

2. The eight low-order bits of the offset, which go 
directly to the memory un translated, are the bits 
needed first by the memory, which enables the 
memory to get a small head start on the transaction. 

As a result, an external MMU circuit entails very 
little time penalty in memory addresses. The true 
independence of the segment-name field from the 
offset in all address computations means that off­
chip memory mapping can be achieved with very 
little overhead. 

The architectural advantage of the Z8000 family 
becomes clear by comparing its economical im­
plementation with the method by which a non­
segmented CPU might achieve memory man­
agement. Undoubtedly, the approach will take the 
form of paging. 

In a paged system, the uppermost bits of the linear 
address are treated like a segment-name field Ofter 
the address computation is complete. Until the 
computation is complete, these bits are treated like 
part of a monolithic linear address-they can be 
changed in the course of the computation. Thus, 
while a paging scheme permits memory mapping and 
attribute checking, it suffers from many of the 
problems of linear addressing. In addition, it cannot 
achieve the overlap of MMU and CPU computational 
time that is available via the Z8000's segmentation 
scheme. The only antidote to the computation over­
head of an off-chip MMU for a linear-addressed 
machine is to design an on-chip MMU; but with the 
current technology, this approach is likely to require 
the sacrifice of other features. 

One more noteworthy point to be made about the 
way the Z8001lMMU combination implements 
segmented addressing concerns the use of stacks. The 
most difficult problem associated with dynamically 
expanding stacks involves the correction of pointers 
into the stack when a stack is moved to another 
location. Naturally, this problem goes away with 
memory mapping, since the logical addresses of the 
locations already used on the stack don't change 
when the stack is physically relocated in memory. 
Furthermore, the MMU accepts as one of the at­
tributes of a segment that it is to be used for a stack. 

Consequently, as Fig. 9 shows, a nonfatal stack­
warning interrupt occurs when the stack is nearly 
full-Le., when an access is made into the last 256 
words allocated to the stack. Moreover, the employed 
method for memory-address computation and size 

4-51 



Segmentation 

specification takes into account that stacks grow 
downward in memory, from the highest addresses 
toward the lowest. 

Segmented VI linear 

Just as there are some who argue that higher-level 
languages are "inefficient" and deny the program­
mer the total control of assembly-language program­
ming, a few designers adamantly reject segmenta­
tion and cling to linear addressing. In fact, their 
argument has some merit. Just as high-level lan­
guages may be inappropriate for very small systems, 
segmentation may represent overkill in a small 
memory space. The Z8000's answer to this problem 
is to provide segments large enough to accommodate 
a small application completely in one segment. One 
of the Z8000's addressing modes consists only of 
offsets, so that no references occur outside the 64-
kbyte linear address space of one segment. In fact, 
for such applications, a smaller package is available 
that lacks the eight pins dedicated to segment-name 
output and segment-error interrupt input; this 
smaller version cannot enter the segmented mode of 
operation at all. 

Drawing the line 

Where does one draw the line between systems 
that are too small for segmentation, systems in 
which segmentation is desirable but inessential, and 
systems that are so large that segmentation is 
mandatory? It is a matter of judgment. The Z8000 
architecture provides a 16-bit linear address space; 
in its 23-bit address space, clever, well disciplined 
programmers can handle unrestricted linear ad­
dressing; in its ultimate 32-bit address space, 
segmentation is undoubtedly the only viable ap­
proach. 

This concern for the future expansion to 32-bit 
address spaces greatly influenced the decision to use 
segmented addressing in the 23-bit version. The 
Z8000 represents a break from the architecture of 
the Z80; it seemed shortsighted to ask designers 
moving from 8-bit to 16-bit or 23-bit systems to face 
one architectural break today and another in a few 
years (not to mention the huge investment in 
already-developed software). By developing his sys­
tem around a Z8000, a designer will not have to face 
another architectural upheaval when segmentation 
is introduced-which, if the address space increases 
to 32 bits, seems inevitable.D 

4-52 



Zilog 

INTRODUCTION 

ThlS appllcatl0n note explalns how a ZSool CPU, to 

whlCh at least one ZSolo MMU IS attached, IS Im­
bal1zed for segmented operatlOn. Descnbed are 
the speclflcatlon of the Imtlal CPU status to be 
establlshed In response to RESET, executl0n of the 
flrst program out of unmapped memory, and InItIal­
IzatIon of the fIrst, and pOSSIbly the only, MMU. 

WhIle an attempt has been made to make thIS applI­
catIon note self-contaIned, a general famll1anty 
wlth the ZSoOl CPU and the ZSOlo MMU IS assumed. 
For furlher detaIls, the reader IS referred to the 
technIcal manuals desc rlblng these components 
(ZSOOO CPU Techmcal Manual, document lI00-201o-C, 
and ZS010 MMU Technlcal Manual, document #00-2015-
A). 

INITIALIZING SEGMENTED PROGRAMMING 

In response to a RESET slgnal, the ZSOOl CPU 

estabhshes the CPU status speCIfied in 10cal1ons 
2 through 6 of segment 0 (see FIgure 1). Mean­
whIle, the ZS010 MMU, whlch IS assumed to be con­
nected to the CPU as shown In Flgure 2, enters a 
state In Whlch It passes the SN6-SNO and AD15-ADS 
lInes dlrectly through to ItS A22-AS address out­

put hnes and asserts a 0 on A23. The practlcal 
effect of thlS IS that the first Iml1alization 
Instructlons to be executed are taken from speci­
flC addresses In physical (unmapped) memory. 

OperatIon of the ZSOol CPU In segmented mode 
depends on the setl1ng of the SEG blt (blt 15) In 
the Flag/Control Word (FCW) control reglster. The 
1m bal FCW set tlng IS taken from locatlon 2 of 
segment 0, so the contents of locatIon 2 must have 
blt 15 set to duect the CPU to enter segmented 
operatlng mode. 

Initializing the Z8001 CPU 
for Segmented Operation 
with the Z80 1 0 MMU 

Application 
Note 

September 1981 

The example shown In F Igure 1 also has bl t 14 
set. BIt 14 IS the SIN blt, whICh controls the 
CPU's cholce of system or normal mode operatl0n. 
The settlng of SIN blt duects the CPU to enter 
system mode. T he CPU must begln ope rat 10n 1 n 
system mode, Slnce the fust order of bUSIness IS 
to establIsh an Imtial settlng for the System 
mode stack regIster and to 1m t.lallze the MMU, 
whlch requIres the executl0n of pnvileged 1/0 
Instruct lons. 

The Inltial settIng of the EPU bIt (blt 13) In the 
example shown In Flgure 1 IS 0; If an EPU IS 
present, thlS bl t can be set 1m tlally, but It IS 
also posslb Ie for the CPU to determlne the appro­
priate setting of the blt as part of ItS Imtlah­
zatl0n. 

The Interrupt enable bIts (bItS 12 and 11) are 
Iml1ally set to 0 by the FCW specIF1ed In FIgure 
1. ThIS IS mandatory dUring the Int lallzat Ion 
process, because there IS no automatlC Imtlallza­
tl0n of the System mode stack reglster; the 
System mode stack IS used In the processlng of all 
traps and Interrupts. 

The Iml1al PC value of segment 0, offset S glVen 
In the example In F Igure 1 IS a convement one, 
Slnce It means that the lnltlallzat 10n programs 
can follow the Imtlal CPU status In memory. 
Also, the CPU status and the Imtlal1zat!On pro­
gram are In the same area of memory, so only a 
small part of the physlcal memory address space 
needs to be commltted to a speclflc use. 

• The addresses of the Int tlal CPU status and the 
Imtlahzatl0n program are 10glcal addresses, but 
at the tlme of execut!On of a reset or power-on 
sequence, there IS no assurance that the MMUs have 
been Iml1allzed to perform address translatlOn. 
The ZS010 MMU, however, has been deslgned to enter 

4-53 



a mode after a reset or power-on sequence In Which 
It passes addresses dIrectly to physIcal memory 
untranslated. (More precIsely, It performs a SIm­
ple, well-defIned translatIon: segment N offset K 
IS translated lo physlCal address K + N x 216 .) 
Thus, the Imbal CPU status IS taken from phys­
Ical addresses 2 through 6, and In the example 
shown In FIgure 1, the Imtlal1zallon program 
beglns at physlCal address 8. One of the tasks 
that the InItIalIzatIon program must perform IS to 
ImtIalIze MMU mappIng tables. Uillmately the 

removed ent Hely from the log lcal address space, 
remaInIng In physical memory, that can be left 
InaccessIble unt 11 another reset or power-on 
sequence occurs. 

FIgure 3 shows an InItIalIzation program that con­
tInues the example begun In FIgure 1. The program 
carnes out three steps: 

(1) InItIalIze the Stack regIster (RR14) and 
Program Status Area POInter (PSAP) to pOInt 
at a small temporary stack and a skeleton 
Program Status Area, both In known locat lOns 
In physIcal (unmapped) memory. (The perma-

nent PSA and stack wIll be establlshed In 
mapped memory after Imtlal1zat lOn of memory 
mappIng. ) 

(2) Call the SETMMU roullne (FIgure 5) to lnl­
tlallze memory mappIng, leavIng the locatIons 
In segment 0 used by the Iml1allzatlon 
sequence st 111 mapped to the same physIcal 
locatIons they were uSIng before MMU Initlal­
lZatlOn. 

17:\ T __ J... __ 1 ___ LL_ l"'.L __ 1. _____ '- ____ oJ DeflO .1._ 

\,/) .L11..LI....LCl.L.LLC I..IIC ,J1".c:n .. " .LC"'=!.LOI,..C.L ClIIU I ..... nl I,..U 

address the "real" stack and Program Status 
Area In mapped memory. 

After carryIng out these steps, the program trans­
fers to the SYSTART roullne (not In segment 0) to 
contInue Imtlallzation of the speCIfIc appllca­
tlOn. The roullne at SYSTART IS free to estabhsh 
a new mappIng for segment zero, rendenng the 
1m t lallzat Ion code Inaccessib Ie; anot he r reset 
makes It avaIlable agaIn. 

The routIne at STARTUP, the skeleton Program 
Status Area at INITPSA (FIgure 4), and the SETMMU 
roullne and Its assocIated table at MMTAB (FIgure 

CPU Status for RESET Instruction Memory, Segmeoc 0, Offsets 2-6 

Offset Conteocs (hexadecImal) Meani~ 

0 Irrelevant 

2 COOO Imbal FCW: SEG (bIt 15) and SIN (bIt 14) set; all others 0 

4 0000 Imbal PC: segment 0 (bItS 14-8); all other bItS must be zero 

6 0008 Imbal PC: offset 8 (16 bItS) 

8 (Start of startup program) 

The values shown are a pOSSIble settIng for the Imbal CPU status to be establIshed when a 
RESET SIgnal IS receIved. The FCW setting IS taken from segment 0, offset 2. The value COOO 
shown here results In the set tlng of segmented operal1ng mode (bIt 15) and System mode (bIt 
14). BIt 13 IS 0, IndIcatIng that no EPU IS present, and bIts 12 and 11 are 0, Indlcallng 
that neIther vectored nor nonvectored Interrupts are enabled. The settIngs of the FLAGS bIts 
(bItS 7-2) and the unused bItS (bItS 1-0) are Irrelevant In thIS example. 

The PC segment number and offset are taken from segment 0, offsets 4 and 6, In the standard 
lwo-word segmented address format. Any address can be speCIfIed. The value of segment 0, 
offset 8 shown here allows the startup program to begIn at the next locatIon of segment O. 

If MMUs are part of the system, they must handle the Imtlal InstructlOn fetches properly, 
even though the CPU has not yet InItIalIzed the MMU translatIon tables. 

F1gure 1. Locahons 2-6 of Segmeoc 0 Determine Initial CPU Status 

751-1790-0008 4-54 



4) all res~de ~n ROM, whereas the temporary stack 
(wh~ch need not exceed 10 words ~n length as the 
present program ~s Wrl tten) must res~de ~n RAM, 
preferably ~n "physiCal segment 0", ~.e., In the 
first 65,536 bytes of phys~cal memory. In fact, 
us~ng the MMTAB entry for segment 0 shown ~n 

F~gure 4, the temporary stack should res~de ~n the 
fust 784 bytes of phys~cal memory. SInce all of 
the ~nstruct 10ns and tables shown In F ~gures 1 
through 5 occupy less than 512 bytes, a phys~cal 

memory whose fus t 784 addresses refer to 512 
bytes of ROM and 256 bytes of RAM (usable later 
for other purposes) w~ll suff~ce. 

T he skeleton PSA shown ~n F ~gure 4 needs 11 t tle 
explanatlOn. Only the segmentatlOn trap and the 
nonmaskable ~nterrupt must be prov~ded for, s~nce 

no other ~nterrupts or traps can occur In the 

A 

r--- RESET SNa-SNo , 
AD1S-ADs 

Z8001 ; 
CPU 

5Ta-5To 

; 
CONTROL 

course of execut Ing the programs shown ~n F ~gures 
1 through 5. (Of course, a memory error could 
lead to an unimplemenled ~nstructlOn or system 
call trap, and a faulty CPU could do pract ~cally 
anyth~ng.) Both of the ~nterrupt roullnes 
prov~ded do noth~ng but halt. The segmentat ~on 
trap routIne could do somethIng more ~ntell1genl 

~f It had access to a means of communlCat~ng error 
~nformat~on to the "outs~de world." 

The MMU lmllallzatlon program shown In Flgure 5 
lS easlly understood by anyone faml11ar wlth the 
contenls of the Z8010 MMU Techmcal Manual. It 
beg~ns by transffiltllng a set of segment descl'1p­
tors to the MMU; then ~t enables address trans la­
t10n by the MMU. Two "programm~ng tr~cks" and a 
convenllon must be understood. 

~ 

~ A ~ 
A23-A S 

~ Z8010 
~ r 

MEMORY 
MMU SYSTEM 

~ SUP 

~ 
____ r 

rr=:u~cs - SEGT ¢ll I I AD, RESET SEGT Il Ir 
AD7-ADo ADD = a 

I J 

Th~s d1agram shows the convent 10n adopted In th~s appl1callon note for the connect 10n of the 
f~rst (posslbly only) MMU. Th~s MMU wlil translate references to segments 0 through 63 (SN6 = 
0). Its ChlP Select (CS) s~gnal 1S actlVated by a 0 on AD1 , whlch means that any spec~al I/O 
transactlOn whose I/O address has a lower byte ~n whlCh b~t 1 ~s zero wlil be recognlZed as a 
command by thlS MMU. The reason for us~ng the complement of the g~ven A/D line to seleel the 
Ch1P ~s an artlfact of the behavlOr of 3-state log~c. The "floaLlng" value shows up as a Hlgh 
on CS dUl'lng a reset. Allow~ng the Reset lIne to be lnput to ~ causes thlS MMU to pass 
addresses to the memory untranslated after a reset. 

In mult~ple-MMU conf~guratlOns, the Reset l1ne needs to be lled to Cs for only one of the 
MMUs. MSEN lS set and TRNS ~s cleared In that MMU, allow~ng It to pass the 1m hal memory 
accesses untranslated. All other MMUs w~ll 3-state then outputs. The form of connectlOn 
shown here ~s the same as for MMU Ifl In the examples ~n the Z8010 MMU Techn~cal Manual (doc 
/100-2015-AJ. 

F .tgure 2. I'I4U Is Connected as H .... 11 

4-55 



The f~rst programmlng trlck lS the use of a compu­
tatl0n to determlne the number of bytes to be 
transferred to the MMU by the SOTIRB lnstructl0n. 
The requued number lS the dlfference between the 
offset port 10ns of two addresses: the fust 
descuptor byte and the fust byte past the 
descuptors. 

The second programmlng tuck lS the lncluslon of 
the lmtIal SAR and mode reglster values ln the 
table of descnptor values. ThlS programmng 

to perform the one-byte transfers are SOUTB and 
SOUTIB. The only alternatIve to the last two 
lnstruct lOns before the RET, for example, lS 

LOB RHO,II%C2 
SOUTB 1.0000, RHO 

That alternatIve lS perfectly acceptable ln thls 
case, but ln cases where the ldent lty of the MMU 
to be addressed 1S not known ln advance, the 
alternat1ve shown ln Flgure 5 lS preferable. 

The conventlOn that must be understood concerns 
the way m WhlCh the speclal I/O lnstructl0ns are 
used to select MMU operat~ons. The MMU opcode or 
lnternal regIster address lS represented 1n the 
h1gh-order byte of the speclal I/O space address, 
wh lIe an MMU select Ion code (decoded by speCl al 

clrcultry) lS contalned In the lower byte. In the 
example 1n Flgure 4, the reglster R4 conta1ns the 
speclal I/O address. The low-order byte (RL4) 
conta1ns the complement of the value 3 (blt 1 
clear, all other b1tS except blt 0 set), whlCh lS 
the selectlon code for MMU 111. The upper byte 
(RH4) fust conta1ns 1 (the "address" of the MMU's 
Internal SAR reglster), then 2 (the opcode for 
"transmt descriptor and lncrement SAR"); then 0 
(the "address" of the MMU's 1nternal mode 
reglster) • 

The table at MMTAB (Flgure 5) can be easlly 
understood. The fust entry, a slngle byte of 0, 
lS used to lmtIalne the SAR (segment address 
reglster), an lnternal MMU reglster used to 
determ1ne whlCh of the 64 segment descriptor 
reglsters lS belng addressed by the command to the 
MMU. 

The next 4'(n+1) bytes are the values used to 
lmtlalne the descriptors for segments 0 through 
n. ThlS lS done uSlng a block I/O transfer to the 
MMU "address" that loads a descriptor reg1ster 
(four bytes) and then lncrements the SAR to 
address the next descriptor reglster. 

The flnal byte lS used to set the MMU mode 
reglster ID held to 0 and the blts MSEN and TRNS 
to 1; thlS lS a change from the values 

Thls lS the lmt~ahzat10n program transferred to after a reset of the ZB001 CPU, assum1ng 

the se\. tlngs shown ~n F 19ure 1 for locat lons 2-6 of segment O. The FCW shown ln F 19ure 1 
results ln entry to th1S routlne 1n segmented system mode. 

$ABS <O>B 
STARTUP: 

!Program beglns at 
LOA RR14,INITSTACK 
LOA RRO,INITPSA 
LOCTL PSAPSEG,RO 
LOCTL PSAPOFF,R1 
CALR SETMMU 
LOA RR14,REALSTACK 
LOA RRO, REALPSA 
LOCTL PSAPSEG,RO 
LDCTL PSAPOFF,R1 
JP SYSTART 

segment 0, offset 8! 
IInitlallze system stack reglsterl 
IInltlallze PSAPI 

!Inltlallze memory mapplng! 
!In1tlalize system stack! 
!Inltlallze PSAP! 

ThlS start-up program conducts a "bootstrap" operatlOn. It first sets the Stack reglster 
(RR14) and the Program Status Address Powter (PSAP) to values 1n the unmapped physlcal memory 
area used by the Inltlallzaton routlne. It then calls the SETMMU program to lnltlallze memory 
mapplng. Flnally, lt sets RR14 and the PSAP to then correct values ln the mapped memory and 
jumps to the address SYSTART ln mapped memory to contlnue the lnltlallzatl0n process. At thlS 
pOlnt, the space ln physlcal memory used by STARTUP and the temporary PSA and stack, whlCh was 
not remapped by the SETMMU rout1ne, can be released. 

Figure ,. Startup Code InitIalizes Interrupt Vectors and Memory Mapping 

4-56 



estab l1shed by the RESET: MSEN set, TRNS zero. 
MSEN (master enable) must be set to enable the MMU 
to em1t addresses (otherw1se 1tS oodress output 
hnes rema1n 3-stated). If MSEN 1S set, the TRNS 
b1t determlnes whether address translat ion 1S 
performed (TRNS = 1) or addresses are passed 
through as 23-b1t patterns (TRNS = 0). The other 
settable b1tS of the mode reg1ster, wh1Ch are left 
clear by the value shown 1n F1gure 4, are URS, MST 
and NMS. URS (upper range select) allows the MMU 
to respond to segment numbers 64-127 rather than 

0-63 on the CPU output 11nes SN6-SNO' MST 
(mult1ple segment tables) allows select lve 
enabllng of address lranslatlOn by the glven MMU 
(CS is used to enable command recogmtlOn by the 
MMU but has no effect on address translat10n). If 
MST 1S set, then match1ng the NMS (normal mode 
select) value w1th the MMU's N/S 1nput 11ne serves 
as an enabl1ng cr1ter10n for address translatlon. 

Setting the 10 f1eld of the MMU's mode reg1ster to 
o duects the MMU to respond to the segment trap 

acknowledge status output of the CPU by assert 1rg 
ADa (a + value of the 10 f1eld) and leaVlng 
A015-A09 3-stated. US1ng the convent 10ns glven 1n 
the Z8010 MMU Techmcal Manual, th1S uEntlfles 
the MMU as MMU 111 1n the "reason" placed on the 
stack when a segment trap occurs. 

The number and values of the descl'1ptor sett1ngs 
In the table at MMTAB depend on the detal1s of the 
spec1f1c ~pllcatlOn and are not dlscussed further 
here. The add1t10nal lnltlallzat10n code at 
SYSTART also depends on the speClf1c ~pl1catlOn. 

TYP1cally, thlS code 1nltlalues penpheral deV1ce 
handl1ng, enables 1nterrupts, and starts user 
processes. The deta1ls are not discussed here. 

Th1S concludes the dlScuss10n of the spec1f1C 
deta1ls common to the lnlllal1zatlOn of any ZOO01 
cPU/Za010 MMU system. Van at lOns are poss1ble, 
but, m most cases, the general form of 
1nlt1ahzatlOn shown here 1S followed. 

ThlS 1S the Program Status Area used temporanly dunng the stage of 1mllal1zatlOn that 
precedes the 1n1 t lahzat ion of memory mapplng. 
followlng the STARTUP rout1ne. 

It res1des In phys1cal memory duectly 

INITPSA: word 0,0,0,0 ! Unused entry! 
word 0,0,0,0 !Ummplemented 1nstruct wn trap! 
word 0,0,0,0 !Prlv11eged instruct10n trap! 
word 0,0,0,0 ISystem Call trap! 
word O,%COOO ! Segme ntat lOn trap! 
address SEGTRAP 
word O,%COOO !Nonmaskable interrupt! 
address NMISTOP 

No more of the PSA lS reqUlred. Processing rout1nes can res1de 1n 1mmedlately follow1rg 
10catlOns. 

NMISTOP: HALT 
SEGTRAP: HALT 

ThiS lS the bootstrap PSA used for the orderly handl1ng of unexpected interrupts dunng the 
phase of the lmt1al1zatlOn process that precedes lnllal1zat10n of memory mapping. The two 
process1ng rout1nes, NMISTOP and SEGTRAP slmply halt. More effectlve act10ns can be taken 1n 
an actual system 1f ~proprlate rout1nes eX1st at known locat10ns In phys1cal memory. 

Flgure 4. Initial PSA Has Few Real Entrles 

4-57 



ThIS IS the MMU Inltlallzatlon routIne called from the STARTUP program; It assumes a 
slngle-MMU system. Fust, up to 64 of the MMU's segment descnptor regIsters are loaded 
from a table In memory. Then address translatIon IS enabled. The only restnctlOn on the 
address translatlon set up thIS way IS that the addresses of STARTUP must cont Inue to be 

mapped to the same physIcal locatIons. 

SETMMU LOB RL4,H3 
COMB RL4 

MMTAB: 

LOA RR2,MMTAB 
lOR RH4;IJ1 

SOUTIB ®R4,®RR2,R1 
LOA RRO,MMTABX 
SUB R1,R3 
LOB RH4,H%F 
SOTIRB ®R4,®RR2,R1 
LOB RH4,HO 
SOUTIB ®R4,®RR2,R1 
RET 

byte 0 

word 0 
byte 2 
byte 11A 

word BASEn 
byte SIZEn 
byte ATTRIBUTESn 

MMTABX: byte %CO 

!Select MMU H1 and assure BIt 0 = 1! 
! Use complement to act lvate CS! 
!Address of InformatIon for MMUI 
!Address of SAR In MMU! 
IImllallze SAR! 
!Next byte past descnptor table! 
INumber of bytes In descnptor table! 
IOpcode for descnptor transfer! 
ITransmlt descrIptor table to MMUI 
! Opcode for "set mode reg" I 
I Enab Ie address translat lOn! 

IImtlal value (segment nurrber) of SAR! 
ISegment 0: starts at physIcal address O! 

784 bytes long 
Execute only 

!Segment n (~63): 

256·(SIZEn + 1) 
attrIbutes as 

starts at 
bytes long 
speCI hed 

256*BASEn! 

!MMU mode regIster value: MSEN, TRNS; 10 = O! 

ThIS MMU Imllallzatlon routIne transmIts the table of segment descnptors at MMTAB to 
the MMU addressed by specIal I/O InstructIons WIth a lower byte In whIch the value of bIt 1 IS 
o (MMU H1 USIng the convent Ions suggested In the Z8010 MMU Technical Manual). FInally, It 
transmIts a mode regIster value In whICh the MSEN and TRNS bItS are set and all others are O. 

FIgure 5. A Few Instructions Initialize the MMU 

4-58 00-2154-01 



Zilog 

INTROOUCTION 

The Z8001 CPU, which is designed to operate with 8M 
byte segmented memory address spaces, can also be 
operated in a non segmented mode. Thus the user 
gets the best of two worlds: the flexibility and 
power of 8M byte segmented memory address spaces, 
and the economy of 16-bit addresses. Furthermore, 
the Z8000 CPU Family has been designed in such a 
way that operation of the Z8001 CPU in non segmented 
mode is compatible, to the extent possible, with 
operation of the Z8002 CPU, which is designed to be 
used exclusively in nonsegmented mode. 

This application note first describes in detail the 
differences in memory and register space require­
ments and in instruction execution times between 
segmented and nonsegmented Z8001 CPU operation. It 
then enumerates and discusses the few points of 
incompatibility between ZA002 CPU operation and 
nonsegmented Z8001 CPU operation. The Z8003 CPU is 
identical to the Z8001 CPU for the purposes of this 
note. 

One of the trickier points in dealing with nonseg­
mented Z8001 CPU operation is the mixing of nonseg­
mented and segmented programs within an applica­
tion. Several ways to handle such mixing are dis­
cussed. Finally, to make parts of the discussion 
completely specific, a means of handling the system 
call (SC) trap is shown with actual Z8001 CPU 
programs, and several utility routines designed to 
be invoked through the SC mechanism are presented. 

Non-SegDlenled 18001 
CPU Programming 

Application Nole 

September 1981 

This application note deals very specifically with 
"esoteric" details of Z8001 CPU operation. The 
reader is assumed to have read the Z8000 CPU 
Technical Manual (OO-2010-C) and to be familiar 
with the general ideas of segmented memory address­
ing on the Z8001 CPU and with interrupt and trap 
handling in the Z8001 CPU Family. 

ECONOMIES OF NONSEGHENTED Z8001 CPU OPERATION 

All Z8001 CPU memory addresses are 23 bits long. 
In the segmented mode of operation, each address is 
specified completely, using 32-bit representations 
in instructions and registers. In nonsegmented 
mode, all address representations assume implicitly 
the 7-bit segment number field of the Program 
Counter (PC), so that only 16 bits are required to 
represent any address. 

The abil i ty to use 16-bit address representations 
when operating the Z8001 CPU in nonsegmented mode 
results in economies of both space and time. The 
economies of space derive from the smaller memory 
and fewer registers used for 16-bit address repre­
sentations. The economies of time, generally 
speaking, deri ve from the fact that there is no 
need to fetch or store a second word of address 
representations in instructions, in registers, or 
on a stack. Thus, for example, a RET instruction 
requires an additional three clock cycles of execu­
tion time in segmented mode, because an extra word 
must be popped from the stack. The space and time 
economies of nonsegmented mode Z8001 operation are 
summarized in Table 1. 

4-59 



Table 1. EconOlllles of Z8001 
Nonsegmented Operation 

Function 

Instructions using 
direct addressing 
(compared with full 
segmented address) 

Instructions using 
direct addressing 
(compared with short 
segmented address) 

Instructions using 
indexed addressing 
(compared with full 
segmented addresses) 

Storage of an address 
in a register 

Moving an address 

CALL or CALR 

RET 

LOPS 

Loading to or from 
PSAP or NSP control 
register 

3P using indirect 
register mode (@) 
if jump is taken 

Use of indexed 
addressing to 
simulate based 
addressing 

Space Economy 

1 word of 
instruction 
memory 

1 word of 
instruction 
memory 

1 word register 

1 word of stack 

2 words of data 
memory 

1 word register 

1 word register 

Fewer instructions 
for many operations 

4-60 

Tillie EconOlll)' 
(clock cycles) 

3 cycles 

1 cycle 

3 cycles 

Difference in 
timing between 
word and long 
word version of 
LD, PUSH, POP, etc. 

5 cycles 

3 cycles 

3-4 cycles 

7 cycles 

5 cycles 

2-4 cycles for 
Load instruction; 
added savings 
when shorter 
programs result. 



Table 1 can also be regarded as summarizing the 
"segmentation penalty" if nonsegmented operation is 
taken as the standard. It is clear from the table 
that among common operations the only difference in 
size between segmented and non segmented mode in­
structions is the extra word required by direct or 
indexed addressing using full (as opposed to short 
segmented) addresses in the instructions. Most 
large programs avoid direct addressing, except for 
CALL instructions and references to global varia­
bles, both of which can use short segmented ad­
dressing in a large proportion of cases. 

The table also shows that among common operations 
not involving direct or indexed addressing, the 
only difference in instruction execution time be­
tween the segmented and non segmented Z8001 CPU 
operating modes is in subroutine calling and 
returning. Th is difference is due to the sav ing 
and restoring of 32-bit return address representa­
tions. 

A major savings that is difficult to measure 
quantitatively results from the use of indexed 
addressing in nonsegmented mode to simulate based 
addressing. Thus, for example, it is possible to 
write 

ADD RO,4(R15) 

to add the third word of the stack to the contents 
of RO. In this construction, the offset (4) plays 
the role of the address, and the address (the con­
tents of R15) plays the role of the offset. Since 
each is 16 bits long, there is no difference; they 
are added together to obtain the 16-bit offset por­
tion of the argument address; the segment number 
portion Is derived from the PC. Thus, based 

4-61 

addressing, which is essential for the handling of 
stack-based data, is available with most instruc­
tions. 

There is one pitfall to watch for when using index­
ed addressing to simulate based addressing. Index­
ed references never resul t in "stack reference" 
status on ST 3-STO, since this status only occurs 
when the Stack register (R15) is used as an address 
register. In indexed addressing, the address comes 
from the instruction, dnd the register contains an 
offset. Thus, if data and stack memories are 
distinguished by the STJ-STO status outputs, then 
indexed address ing cannot be used to access stack 
elements 

lBOOZ Ca.patlbility 

The road between the Z8002 CPU and nonsegmented 
Z8001 CPU operation is a two-way street: programs 
can migrate in either direction. For example, a 
Z8001-based development system can be used to 
d('velop and check programs whose target system is 
Z8002-based. Conv('rsely, a Z8002-based application 
can be easily evolved into a Z8001-based applica­
tion by using a nonsegmented Z8001 operation as a 
first step. Furthermore, utility routines or other 
parts of a program developed for one of these CPUs 
could be integrated with programs develop('d for the 
other. All of these possibilities illustrate the 
importance of writing nonsegmented code for the 
Z8001 CPU. 

There are very few differences between Z8002 code 
and nonsegmented Z8001 code; all of them are 
associated with interrupt processing (see Table 2). 



Table 2. Differences Between l8002 and 
Nonsegmented l8001 CPU Operation 

l8002 Operation 

Interrupts and traps, including 
SC, cause a 3-word CPU status to 
be saved on the stack in the 
format: 

SP ---> reason 
FCW 
16-bit PC 

The 256 possible interrupt 
vector byte values correspond 
to legal vectored interrupts. 

The Z8002 CPU uses a Program 
Status Area (PSA) format in 
which one word is dedicated to 
each FCW and each PC. No entry 
is required for the "segmenta­
tion trap" vector. 

The Z8002 CPU must be placed in 
system mode before the IRET 
instruction is executed. 

l8001 Operation 

Interrupts and traps, including 
SC, cause a 4-word CPU status 
to be saved on the stack in the 
format: 

SP ---> reason 
FCW 
PC - segment number 
PC - offset 

The 128 even-numbered interrupt 
vector byte values correspond 
to legal vectored interrupts. 

The Z8001 CPU, regardless of 
the mode in which it is 
operating, uses a PSA format 
in which two words are 
dedicated to each FCW and each 
PC. 

The Z8001 CPU must be placed 
into segmented system mode 
before the IRET instruction is 
executed. 

4-62 



The practical effect of th~se differences is very 
small in many applications. The PSA differs 
between the lB002 and lB001 versions, but the dif­
ferences are only in the sizes of th~ vector 
entries--four words for the lB001, two words for 
the lB002. The lB001 restriction to ~ven-numbered 
vectored interrupt devices I imi ts the number of 
devices to 12B, which is ample for most appl1ca­
t ions. The interrupt and trap routin~s can be 
almost identical for the two versions, unless they 
access the saved PC value or anything "deeper" in 
the stack. Since the "reason" and the saved FCW 
are the top two words of the stack in either case, 
the instructions that access these items can be the 
sa11K' in both versions. The lB001 versions of the 
interrupt routin~s can be written in nonsegmented 
form. The SEC bit must be set to zero in the 
corresponding PSA entry's FCW value, and the CPU 
must b~ placed into segmented mod~ before execution 
of the IRET instruction. A good approach to this 
is to dedicate one of the SC instructions (e.g., SC 
110) to the performance of this kind of segmented 
IRET. The details of this will be explained in a 
later section; the advantage of the approach is 
that it provides a one-word replacement for the 
IRETs of a lB002-based program. 

When the lB001 CPU is operating in non segmented 
mode, R14 refers to the sam~ register in both 
Syst~m and Normal modes, just as in lB002 CPU oper­
ation. This is not anomalous or surprising, but 
many new lBOOO programmers have been confused by 
the requirement that interrupts be processed in 
segment~d mode. If an interrupt occurs when the 
lB001 CPU is operating in non segmented System mode, 
the CPU immediately enters the segmented System 
mod~ of operation. At that time, R14 begins to 
refer to the s~gment portion of the stack register, 
and the register previously referred to as R14 is 
accessible now only by using the LOCTL instruction 
with th~ NSPSEC operand. This situation remains in 
effect until the CPU returns to nons~gmented opera­
tion, which could happen before the ~xecution of 
the first instruction of th~ int~rrupt-processing 

routine if the FCW loaded from the PSA do~s not 
have the SEC bit set. 

COIBININC SEGIENTED All) NONSEGMENTED CODE FOR 
mE l8001 

Segmented and non segmented programs can be mixed to 
any extent desired, since any program running in 
System mode can carry out the required setting or 
clearing of the SEC bit in the FCW. If such 
switching of modes is to be done at many points, or 
if it is to be done by programs running in Normal 
mode, two of the 256 SC instructions can be dedica­
ted to the FCW changes. 

4-63 

Progra.s that access data or call progra.s in 
another s~t aust consist wholly or partially of 
s~ted code. ProgriUIS that Mke no references 
outside of their own seg.ents can consist entirely 
of nonSCl!Jllented code. 

One point to consider when mixing segmented and 
nonsegmented code is that operation of the RET 
instruction depends on the mode in which the CPU is 
operating when the RET is executed, whereas the 
operating mode on entry to a subroutine is that of 
the calling program. Thus, special steps must be 
taken to assure that subroutines called by programs 
running in either mode behave properly. One 
approach is to enter such routines through the SC 
mechanism. Another approach is to allocate two of 
the SC instructions to subroutine entry and ex 1 t 
functions. The first of these SC instructions is 
executed as the fl rst instruction of a subroutine 
to save the caller's operating mode; the second 
replaces the RET instruction and causes the CPU to 
enter the proper mode before return ing. Further­
more, there can be two versions of the first of 
these SC instructions; each can save the caller's 
op('rating mode, then place the CPU into the mode 
appropriate for the given subroutine. 

A Syste.s/Application Distinction 

One separation of segmented and non segmented code 
is on the basis of the System/Normal operating 
mode. A set of g~neral utility programs can be 
written to be executed in segmented System mode, 
and self-contained application programs can run in 
non segmented Normal mode, using the SC mechanism to 
make calls on the utility programs. An approach 
such as this, which centralizes control of the mix­
ing of segmented and non segmented programs, avoids 
the complications of uncontrolled mixing of modes. 

TIE SC IECHANISM 

The preceding discussion includes several refer­
ences to the use of SC instructions. To allow 
these examples to be understood at a more concrete 
level, one of the many possible ways to handl(' SC 
traps is (,laborated here. 

Figure 1 shows a program to be executed each time 
an SC trap occurs; that is, it is assumed that the 
address SCHANO will be stored in the PC field of 
the SC entry (vector) of the PSA. The program at 
SCHANO is assumed to be segmented, and it accesses 
the System mode stack, so the SEC and SIN bits must 
be set in the FCW field of the SC entry of the 
PSA. Furthermore, the VIE and NVIE bits of the FCW 
field of the SC entry in the PSA must be 0, for 
reasons to be discussed shortly. 



SCHAND: DEC R15,#14 
LDM @RR14,RO,#3 
LD R1,RR14('14) 
CLRB RH1 
foIlLT RRO,'6 
LD R2,TABLE(R1) 
INC R1,#2 
LDL RRO,TABLE(R1) 
LDL RR14('10),RRO 
In D1 DD1/.1.1L"\ 
.... " 1\' ,,,n'"T\" lUI 

AND R1,H1800 
AND R2,#~E7FF 
OR R2,R1 
LD RR14(#8),R2 
LDM RO,@lR14,#3 
INC R15,#6 
IRET 

!Room for new status & 3 registersl 
IUse RO-R2 fo~ working space! 
!Get SC instruction (~eason)1 
!Low byte is index to tablet 

of 6-byte entries 
!Get FCW entry from TABLE I 

!Get PC entry from TABLE! 
!Put PC entry into new status! 
1/",.. ............... f ........ C,..'" ....... + .... . 
.~ ... .., .. """' .. v ............ " ....... "'.3. 

!Save VIE,NVIE settings! 
IZero VIE,NVIE in FCW from TABLEI 
!Put saved bits into new FCW! 
!Put FCW into new status! 
!Restore registers used! 
!Bring new status to top of stack! 

This SC-handling routine allows each of the 256 SC instructions 
to be written as if it had its own separate interrupt. An array 
of 3-word entries called TABLE contains the FCW and PC values to 
be established for each, except that the VIE and NVIE (inte~rupt 
enable) bits in the FCW are taken from the saved status of the 
program executing the SC instruction. 

The Program shown here has not been optimized fo~ speed. Multi­
plication of the low byte of the ~eason by 6, fo~ example, can be 
accomplished in fewer clock cycles than are required for the CLRB 
and MULT instructions shown here. 

Figure 1. A Flexible SC-handling Sch_ 

4-64 



The program at SCHAND simulates a "vectored inter­
rupt" facility for SC instructions, but the VIE and 
NVIE values are taken from the saved status of the 
program executing the SC instruction, not from the 
"vector" for that instruction. This assures that 
the routines invoked by SC instructions, which can 
be called from a variety of priority levels, won't 
have the side effect of enabl ing any previously 
disabled interrupts. For this reason, the FCW 
entry for SC must leave both VI dnd NVI disabled. 

Given this mechanism, several of the uses of the SC 
instructions suggested earlier can now be made con­
crete. Figure 2 shows possible assignments for the 
first three SC instructions; Figure 3 shows the 
corresponding TABLE entries and implementing pro­
grams. A reader who has difficulty understanding 
these programs or the program in Figure 1 should 
review the material on interrupt and trap handling 
in the Z8000 CPU Technical Manual. 

SC Instruction 

SC flO 
SC #1 
SC f/2 

Function 

Perform segmented IRET 
Set SEG bit in FCW 
Clear SEG bit in FCW 

Figure 2. Possible SC Instruction Functions 

TABLE: word %COOO 
long SEGIRET 
word %C080 
long SEGSET 
word %COOO 
long SEGSET 

SEGIRET: INC R15, #8 
IRET 

SEGSET: LD @RR14,RO 
LD RO,RR14(#2) 
JR C,$l 
RES RO,f/15 
JR $2 

$1: SET RO,f/15 
$2: LD RR14(H2),RO 

LD RO,@RR14 
IRET 

!SC #0: SEG, SIN set! 

!SC f/l: SEG, SIN, C set! 

!SC #2: SEG, SIN set! 

!Remove SC-related stack items! 

!Save RO, use reason as scratch! 
!Get saved FCW from the stack! 
!C distinguishes SC #1 from SC #2! 
!C 0 for clearing SEG! 

!C for setting SEG! 
!Replace altered FCW on stack! 
!Restore RO! 

This section of TABLE and the associated programs implement the 
three SC instructions shown in Figure 2. The program at SEGIRET 
is operating in segmented mode because of its entry in TABLE, so 
all it needs to do is return the stack register to its value 
before execution of the SC #0 and to perform the IRET. 

The program at SEGSET implements both the setting and the 
clearing of SEG. The C bit setting in TABLE distinguishes the 
two functions. The change to SEG is made in the saved FCW on the 
stack, which is the source of the status that will be established 
by the IRET instruction. 

Figure 3. IIIple.entation of Three SC Instructions 

00·2152·01 4·65 





Zilog 

1.0 INTRODUCTION 

The Z8000 Callwg Convent IOns allow programs 
written In vanous languages for the Z8000 mlCro­
processor to communIcate WIth each other and to 
share common hbranes. The convent lOns lnclude 
argument passIng, Stack POInter status, and regis­
ter asslgnments on entry to and eXlt from a 
rout lne. The convent lons descnbed here apply to 
all programmIng languages supported by the Z8000 
mIcroprocessor. 

Caillng conventlons were developed that: 

• Satisfy the requuements of lanquages such as 
C. PLZ/SYS, FORTRAN, and PASCAL. 

• Do not lntroduce undue call and return overhead 
In code generated by one language processor at 
the expense of another. 

• Mlnlmlze the complexlty of the code generators. 

• Allow passlng of structured parameters by 
value. 

• Encourage efflclency by allowing local varl­
abIes to be kept In registers and parameters to 
be passed In regIsters. 

The call1ng convent lOn has three parts whICh are 
described In the followIng sect lOns. These three 
parts descnbe: 

• How regIsters may be used by procedures and 
what happens to the regIster contents when 
caillng or returning. 

0130-001 4-67 

Calling Conventions 
For The 
Z8000™ Microprocessor 

Software 
Interface 
Specification 

February 1982 

• How the stack must be orgamzed when entering, 
executwg w, and returmng from a procedure. 

• Where parameters must be when entering or 
returnlng from a procedure. 

2.0 REGISTER USAGE 

As shown In FIgure 1. the ZBOOO I S general-purpose 
reglster set is dlVlded Into three groups for the 
purposes of thIS caillng conventlon. 

01 

01 

0 

7 

8 

4 

5 

NON·SEGMENTED 
PROGRAMS 

~ 

>--

H seRATe 
REGISTE 

RS ____ 

SAFE 
REGISTE ~ 

Lr{ 
R > 

OPTIONA 
.. r FRAME 
~ POINTE 

TERr _ST ACK POIN 

SEGMENTED 
PROGRAMS 

Figure 1. ZBoOO Register Usage 

AO 

A7 

R8 

012 

013 

014 

015 

The fust group IS called the scratch reqlsters 
and consIsts of RO-R7. These regIsters WIll 
contaIn value or reference parameters when 
entenng a procedure and result parameters when 
returmng from a procedure. WhIle executIng, the 



procedure may use these registers in any way and 
does not need to restore them to the ir anginal 
values when it returns. 

The second group IS called the safe regIsters and 
conSists of RB-R14 for nonsegmented programs and 
RB-R13 for segmented programs. The values in 
these reg lsters must be the same when a procedure 
returns as they were when the procedure was 
entered. Th IS means a safe reg ister can hold the 
value of a local variable, because procedure calls 
wl11 not 81tl?'!" !ts \Ifill...!€" IF e. p!,0!:;~dlJ!"e chenge~ 

the value of a safe regIster, It must save the 
value of that regIster when it IS entered, and 
restore it when It returns. 

The thud group conSists of the stack pOinter 
(SP), which IS R15 for nonsegmented programs and 
R14 and R15 for segmented programs. The stack 
pointer always points to the top of the stack. 

The callIng convent IOn also allows for, but does 
not reqUIre, the use of a frame pOlnter to pOInt 
to the current stack frame (deSCribed In the next 
sectIon). When a frame pOInter IS used, It IS 
always the hIghest safe regIster, R14 for a 
nonsegmented program, RR12 for a segmented 
program. 

The l8000 
simulated 
package or 

Floating-Point Registers 
in software by the Z8070 

provided in hardware by 

(either 
emulation 

the l8070 
arithmetic processing unit) are Similarly divided 
into two groups as shown in Figure 2. 

FLOATING 
SCRATCH 

REGISTERS 

FLOATING 
SAFE 

REGISTERS 

FRO 
1-----1 

1------1::: 
L-___ -'FR7 

Figure 2. ZBOOO Floating-Point 
Register Usage 

The first group is the floating scratch registers, 
FRO-FR3. These registers will contain floating­
point value parameters upon entering a procedure 

and floating-point result parameters when 
returning from a procedure. While executing, the 
procedure may use these registers in any way and 
does not need to restore them to their original 
values. 

The second group IS the floatIng safe registers, 
FR4-FR7. These registers are used in the same way 
as the general-purpose safe registers and thus the 
values In these registers must be the same when a 
procedure returns as they were when the procedure 

3.0 STACK ORGANIZATION 

Figure 3 shows how the top of the st ack must look 
when a procedure IS entered. The return address 
must be on the top of the stack (pOInted to by the 
stack pOinter), followed by any parameters that 
must be passed In on the stack. ThIS fIgure also 
shows the stack after the same procedure has 
returned. The only dIfference IS that the return 
address has been popped off the stack. 

STACK 
POINTER 

UPON ENTRY 
TOA 

PROCEDURE 

PARAMETERS 
PASSED IN 
STORAGE 

RETURN 
ADDRESS 

! 
STACK 

GROWTH 

I'" 

.. ~ 

AFTER RETURN 
FROM A 

PROCEDURE 

PARAMETERS 
PAS5ED IN 
STORAGE 

! 
STACK 

GROWTH 

i'" 

.... 

STACK 
POINTER 

Figure 3. The Stack Upon Entry To 
and After Return From a Procedure 

DUring the execut ion of a procedure. the stack 
Will contain a data area called the stack frame 
(also known as the aclt vat Ion record) for that 
procedure. The st ack frame IS allocated on the 
stack by the procedure and contaIns saved values, 

4-68 0130-002 



local vanables. and temporary locat Ions for the 
procedure. FIgure 4 shows the stack whIle a 

. procedure IS execut ing. 

STACK 
FRAME 

FOR 
EXECUTING 

PROCEDURE 

STACK WITHOUT 
FRAME POINTER 

PARAMETERS 
PASSED IN 
STORAGE 

RETURN ADDRE~ 

SAFE REGISTER 
SAVE AREA 

FLOATING SAFE 
REGISTER 

SAVE AREA 

LOCAL 
VARIABLES 

AND 
TEMPORARIES 

~ 
STACK 

GROWTH 

FRAME 
POINTER 

STACK 
POINTER 

-

--

STACK WITH 
FRAME POINTER 

PARAMETERS 
PASSED IN 
STORAGE 

RETURN ADDRE~ 

OLD VALUE OF 
FRAME POINTER 

SAFE REGISTER 
SAVE AREA 

FLOATING SAFE 
REGISTER 

SAVE AREA 

LOCAL 
VARIABLES 

AND 
TEMPORARIES 

t 
STACK 

GROWTH 

STACK 
FRAME 
FOR 
EXECUTING 
PROCEDURES 

Figure 4. The Stlrk During Procedure Execution 

The called procedure mayor may not use the frame 
pOInter as shown. If no frame pOInter IS used. 
the size of the st ack frame must not change wh lIe 
the procedure IS executIng. Thus parameters 
passed in storage by calls from thIS procedure 
must be accommodated In temporary locatIons at the 
bottom of the stack frame, and not pushed onto the 
stack. 
bally 

ThIS orgamzat IOn of the stack substan­
shortens the subroutIne entry and eXIt 

sequence. 

If a frame pointer is used, then the calling 
procedures's frame pointer must be saved on the 
stack by the called routine as shown in Figure 4. 
If a frame pointer is used, the size of the stack 
frame can vary, and thus parameters can be pushed 
onto the stack if desired. 

The calling convent IOn allows procedures wIth and 
wIthout a frame pOinter to be mIxed on the stack 
From thIS pOInt of VIew, the frame pointer IS just 
a safe register that IS used In an agreed upon way 
by certaIn procedures. 

If a procedure modIfIes the contents of any of the 
safe registers or float Ing safe regIsters whtle It 

9130-003 4-69 

executes, then It must save the values of these 
reg Isters tn lls stack frame when tt IS entered so 
that It can restore them when It returns. The 
hIghest safe regIster not used as a frame pOInter 
should be saved at the top of the act. Ivat Ion 
record (nearest the return address) wIth lower 
number regIsters saved at lower addresses. ThIS 
is the same order used by the LDM Instruct Ion. 
Only those safe regIsters actually modIfIed by the 
procedure need to be saved. 

Any floatIng safe regIsters that are modIfIed by 
the procedure are saved tn the act Ivat IOn record 
just below the last general purpose safe 
regIster. HIgher numbered floating regIsters are 
saved toward the top of the actIvatIon record. 

4.0 PARAMETERS 

Parameters provide a substitution mechanism that 
permits a procedure's activity to be repeated, 
varying its arguments. Parameters are referred to 
as either formal or actual. Formal parameters are 
the names that appear in the definition of a 
procedure. Actual parameters are the values that 
are substituted for the corresponding formal 
parameters when the procedure is called. 

The Z8000 parameter-passing convent 10ns cover 
three kInds of parameters: value, reference, and 
result. Value and reference parameters are passed 
from the calling routme to the called routme. 
For value parameters, the value of the actual 
parameter IS passed. For reference parameters, 
the address of the actual parameter IS passed. 
For result parameters, the value of the formal 
parameter tn the called rout lne lS passed to the 
correspondIng actual parameter of the callIng rou­
tIne when the called routIne returns. 

Each kind of parameter has a length given in bytes 
(denoted as length(p) for a parameter p). For 
value and result parameters, this is the length of 

the declared formal parameter as determined by its 
type. For languages that do not declare formal 
parameters or when the procedure declaration is 
not accessible when the call is being compiled, 
the length is the same as the length of the actual 
parameter. For reference parameters, the length 
is the length of an address, in other words, two 
bytes in non segmented mode and four bytes in 
segmented mode. 



In addition to a parameter's length, the calling 
convention distinguishes between parameters of 
floating-point type and parameters of all other 
types. 

The kind, type and length of a parameter are 
determined by the conventions of the language in 
which the calling and the called procedures are 
written. The user must ensure that these conven­
tions match when making inter language calls. 

4.1 THE PARAMETER REGISTER ASSIGNMENT ALGORITHM 

ThIS sect Ion descrIbes an algonthm that assIgns 
every parameter In a parameter 11st to eIther a 
general-purpose regIster. floatIng pOInt regIster, 
or storage offset. The parameter assIgned to a 
regIster IS passed In that regIster durIng a 
call. A parameter assIgned to storage offset IS 
passed In a storage locat lOn whose address IS the 
gl ven offset from the Stack POinter on entry to 
the called routIne. The algorIthm asSIgns as many 
parameters to general-purpose reglsters rZ-r7 and 
floatIng-poInt regIsters frO-fr3 as possIble. 

The algorithm makes the following assumptions: 

There are four kinds of general-purpose registers: 

• Byte (denoted as rln, rhn, n = 0 ••• 15) 

• word (denoted as rn, n = 0 ••• 15) 

• long Word (denoted as rrn, n = 0, 2, 4, 6, 8, 
10, 12, 14) 

• Quad Word (denoted as rqn, n = 0, 4, 8, 12) 

• The length of a general-purpose register r 
[(denoted length(r)] is 1 for a byte register, 
2 for a word register, 4 for a long word 
register, and 8 for a quad word register. 

• Each general-purpose regIster has a set of 
underlYIng byte reglsters as follows: 

• The underlYlng regIster of byte regIster IS the 
reg Ister 1 tsel f. 

• The underlYIng regIsters of a word regIster 
(rn) are the byte regIsters rln and rhn. 

• The underlYIng reglsters of a long word 
regIster (rrn) are rln, rhn, rln+l, and rhn+1. 

• The underlYlng reglsters of a quad word regIs­
ter (rqn) are rln rhn, rln+l. rhn+ 1, rln+Z, 
rhn+Z, rln+3. and rhn+3. 

ThIS IS Illustrated In Figure 5: 

RQO 

RRO RR' 

RO I R1 R2 I R' 

~ RHOIRLOIRH11RL1 
UNDERLYING 

BYT 
"c~ISicn;:t 

RH21Rl21RH31RL3 

R Q4 

RR4 

R4 I 
RH41 I I 

Figure 5. The Underlying Registers 

• If n > m, general-purpose regIster rxn or rn lS 
hlgher than a general-purpose reglster rxm or 
rm. A byt.e reglster rln lS hIgher than a byte 
reglster rhn. 

• There are eIght float lng-POInt regIsters, frO­
fr7, each capable of holdIng one floatlng pOlnt 
value of any preCIslon. 

• A floatIng regIster frn IS hIgher than a float­
Ing regIster frm If n > m. 

The algOrIthm starts by proceSSIng each value or 
reference parameter In left-to-rIght order. If 
there are unused regIsters of the same SIze and 
type as tne parameter. lne parameter IS assIgned 
to the hIqhest of these regIsters; otherwIse, It 
IS aSSIgned to the next avaIlable storage 
locat ion. Once a parameter is assIgned to 
storage, all the parameters In the parameter hst 
that follow It are also assIgned to storage. The 
same thIng IS then done for the result parameters, 
except they are asslgned to the lowest avaIlable 
regIsters In sequence rZ, r3, r4, •• , r7 (or frO, 
frl, frZ, fr3), whereas the other parameters are 
assIgned to the registers In sequence r7, r6, r5, 

rZ (or fr3, frZ, frl, frO). The result 
parameters can overlap value or reference 
parameters In regIsters, but not In storage. 

4-70 

The algorithm marks byte registers and floating­
point registers as available or unavailable to 
keep track of which registers have been assigned 
to parameters, and it uses a variable, current 
offset, to indicate which storage offsets have 
been assigned parameters. 

0130-004 



4.2 TIE AlGORITlIH 

This algorithm assigns parameters to registers and 
storage. The phrases in bold are defined in 
detail in Table A. 

1. Mark all byte registers underlying r2-r7 as 
available, and mark all other byte registers as 
unavailable. Mark floating-point registers 
frO-fr3 as available and mark all other float­
ing-point registers unavailable. 

2. Initialize current offset to 4 if in segmented 
mode or to 2 if in nonsegmented mode (this 
allows for the return address to which the 
stack pointer points). 

3. For every value or reference parameter in 
left-to-right order in the parameter list, do 
the following: 

a. Determ.ne whether p will fit into a 
register. 

b. If P will fit into a register, assign p to 
a value/reference register. 

c. If P will not fit into a register, assign 
p to storage and mark all available byte 

and floating-point registers as unavail­
able. 

4. Mark all byte registers underlying r2-r7 as 
available and all other byte registers as 
unavailable. Mark floating-point registers 
frO-fr3 as available and all other floating­
point registers as unavailable. 

5. For every result parameter in left-to-right 
order in the parameter list, do the following: 

a. Detenalne whether p will fit into a 
register. 

b. If P will fit into a register, assign p to 
a result register. 

c. If p will not fit into a register, assign 
p to storage and mark all available byte 
and floating-point registers as unavail­
able. 

Table A. Definition of Algorltt. Ele.ents 

1. Determ.ne whether p will fit into a register: 

If P is a floating-point value or result 
parameter, then p will fit into a register if 
there is a floating-point register which is 
available. Otherwise, p will fit into a 
register if there is a register r such that 
length(p) = length(r) and all byte registers 
underlying r are available. 

2. Assign p to a value/reference register: 

If parameter p is a' floating-point value 
parameter then: 

a. Assign p to the highest available float­
ing-point register r. 

b. Mark floating-point register r as unavail­
able. 

Otherwise: 

~. Find the highest general-purpose register 
r such that length(p) = length(r) and all 
byte registers underlying r are available. 

b. Assign parameter p to register r. 
c. Mark all byte registers underying r as 

unavailable, and mark any higher available 
byte registers as unavailable. 

0130-005 4-71 

3. Assign P to a result register: 

If parameter p is a floating-point result 
parameter then: 

a. Assign p to the lowest available float­
ing-point register r. 

b. Mark floating-point register r as unavail­
able. 

Otherwise: 

a. Find the lowest general-purpose register r 
such that length(p) = length(r) and all 
byte registers underlying r are available. 

b. Assign parameter p to register r. 
c. Mark all byte registers underlying r as 

unavailable, and mark any lower available 
byte registers as unavailable. 

4. Assign p to storage: 

a. If length(p) > 1 and current offset is 
odd, then add 1 to current offset. 

b. Assign parameter p to storage at offset 
current offset. 

c. Add length(p) to current offset. 



APPBI>IX A 

This appendix gives an example of using the Z8000 
calling conventions for a C language routine, 
"caller", which calls another routine, "called". 

Figure 6 shows the C code, and Figure 9 shows the 
corresponding assembly language code. Figure 7 
shows the registers upon entry to "called" (just 
after executing line 25 in Figure 9) and after 
returning from routine "called" (just after exe­
cuting line 13 in Figure 9). Figure 8 shows how 
the stack looks during execution of "called" 
(line 11 in Figure 9). 

long called (a,b,c,d,e) 
I*called routine - returns long */ 

long b,c; 
int a,d,e; 

{ 
long y; 

} 
return y; 

caller () 1* calling routine */ 

{ 

} 

0130-007 

long a2, a3, x; 
int al, a4, a5; 

x = called (a1, a2, a3, a4, a5); 

Figure 6: A Sallple C Progr_ 

4-72 

UPON ENTRY 
TO"CALLED" 

SCRATCH 
REGISTERS 

SAFE 
REGISTERS 

UPON RETURN 
FROM "CALLED" 

Figure 7. Registers ~ Entry To and 
Return FrOll Routine Called 

STACKJ 
Ii'DAUC 

OF "cALLi;;';; 1 

STACK { FRAME 
OF "CALLED" 

:t~ :::::~~:s 
SAVE AREAAND 

T~r·~RAL~~ 
A6(E) 

M(D) 

RETURN 
ADDRESS 

SAVED SAFE 
REGISTERS 

LOCAL 
VARIABLES 

AND 
TEMPORARIES 
OF "'CALLED" 

~ 
STACK 

GROWTH 

SP BEFORE CALL 

SP ON ENTRY 
TO "CALLED" 

SPWHILE 
"CALLED"IS 
EXECUTING 

Figure 8. The Stack Fr_ When the Routine 
Called (FrOll the Suple C Progr.) is Executing. 



1 modul MODULE 
2 $SEGMENTED 
3 CONSTANT 
4 fp :=r15j 
5 EXTERNAL 
6 stkseg LABEL !stack segment! 
~---------- code for routine called -------------, 

7 GLOBAL 
8 called PROCEDURE 
9 ENTRY 

10 dec fp,114 !Allocate called's stack frame! 
11 ldl rr2,!stkSegl(fP) !Assign local variable y to return register! 
12 inc fp,11 !Deallocate stackframe! 
13 ret 
14 END called 

.------------ code for routine caller ------------, 
15 caller PROCEDURE 
16 ENTRY 
17 sub fp,1122 !Allocate caller's stackframe! 
18 ld r2IstkSeg+4+14l(fP) 
19 ld I stkseg I (fp),r !Move a4 to overflow parameter area! 
20 ld r2Istkseg+4+161(fP) 
21 ld Istkseg+21(fp),r2 !Move a5 to overflow parameter area! 
22 ld r7,lstkseg+4+12!(fP) !Move a1 to r7! 
23 ldl rr4'lstkseg+41( p) !Move a2 to rr4! 
24 ldl rr2, stkseg+4+41(fp) ! Move a3 to rr 2! 
25 call called 
26 ldl ~stkSeg+4+81(fP),rr2 !Assign returned value to x! 
27 add p,1I22 !Deallocate caller's stackframe! 
28 ret 
29 END caller 

30 END modul 

figure 9. Actual ZOOO1 Code for Progrllll of figure 4 

4·73 0130·008 



APPEtlHX B 

SPECIAL TREATMENT OF FLOATING POINT PARAMETERS 

For programs which will run on a Z8000 without a 
Z8070 arithmetic processing unit or Z8070 software 
emulator, floating-point value and result param­
eters should be treated just like non-floating­
point parameters. 

Until September 1982, all Zilog compilers will 
pass floating-point parameters in the same way as 
non-floating-point parameters. Thereafter, the 
full standard given here will be used. 

4-74 03-0130-01 



Zilog 

The ZSOOO CPUs are equipped with instructions that 
allow memory-to-memory transfers to proceed at 
speeds usually associated with DMA equipment. 
This application brief shows how to use the two 
different mechanisms available in ZSOOO CPUs for 
block moves; then it compares their performance 
fo r long and sha rt blo cks • 

The two block-moving facilities in the ZSOOO CPUs 
are the LDIR instruct ion (and its alter ego, the 
LDDR instruction) and the LDM instruct ion. With 
LDIR, words are moved from one memory area to 
another at a basic rate of 9 clock cycles per 
word, using two address registers and a 16-bit 
counter register. With LDM, words are moved from 
memory into registers, then from registers into 
the new memory area. The basic rate for this kind 

Fast Block Moves wiUt the 
Z8000™CPU 

Application Brief 

September 1981 

of transfer is 6 clock cycles per word. In either 
case, there is overhead associated with setup and 
looping. The differences in overhead make LDM 
more effect ive with small blocks and LDIR more 
effective with large blocks. In either case, only 
blocks of words, aligned on word boundaries, are 
considered. For blocks of bytes, there is a byte 
version of the LOIR instruction but no byte 
version of LDM. 

Figure 1 shows a comparison of the two methods in 
moving a block of eight words. The method using 
LDIR requires SS clock cycles, v.hile the method 
using LDM requires only 70 clock cycles. At clock 
rates of 10 MHz, these result in trans fe r rates of 
1.S2M bytes per second for the LDIR method and 
2.29M bytes per second for the LDM method. 

!Assume that RR12 contains the address THERE and RR1D contains the address HERE. The follow­
ing sections of ZS001 instruction move a block of S words from HERE to THERE. 

! LDIR version: 

! LDM version: 

LIl< R9,t/B 
LDIR @RR12,®RR10,R9 

LDM RO,@RR10,tIS 
LDM ®RR12, RO,tIS 

5 cycles 
~cycles 

SB cycles B.B us ®10 MHz or 1.B2 M bytes/sec 

35 cycles 
21...cycles 

70 cycles = 7.0 us ®10 MHz, or 2.29 M bytes/sec 

In this case, the LDM version is faster--taking BO% of the execut ion time of the LDIR 

version. Othe r differences are: 

(1) The LDIR version uses R9 for a counter and modifies RR10 and RR12. 
(2) The LDM version modifies RO-R7 but leaves all other registers unchanged. 

In some applications, the modification of RR10 and RR12 may be desirable, in others it may 
not. 

Figure 1: LDM outperfoms LOIR in an 8-word transfer. 

© 1981 by Zllog, Inc . 4-75 

. __ ._-----._-----



Figure 2 shows s comparison of the methods in 
moving a block of 128 words. In this csse the 
LDIR method is fsster, requiring only 1170 cycles 
as opposed to the 1415 cycles required for the LDM 
method. At clock rates of 10 MHz, the LDIR method 
gives a transfer rate of 2.19M byt.es per second, 
while the LDM method achieves a rate of 1.81M 
bytes per aecond. 

In aummary, for large or small blocks of data the 
zeooo CPUa are capable of effecting 
memory-to-memory transfers at rates in excess of 
2M bytes per second using CPU instructions, 
without the need for a DMA device. 

!Assume that RR12 contains the address THERE and RR10 contains the address HERE. Each of the 
two following sections of Z8001 instructions moves 128 words from HERE to THERE. 

! LDIR version: 

ILDM version: 

LD R9,#128 
LDIR aRR12,@RR10,R9 

LD R9,#16 
LP: LDM RO,®RR10,#8 

LDM ®RR12, RO, #8 
INC R11,#16 
INC R13,1I16 
DEC R9 
JR GT ,LP 

7 cycles 
--11Q..cycles 

1170 cycles 

7 cycles 

117 us ®10 MHz, or 2.19 M bytes/sec 

~: ~~~~:}s x16 
4 cycles 
4 cycles 
6 cycle 

7 + 16 x 88 = 1415 cycles = 141.5 us ®10 MHz, or 1.81 M bytes/sec 

In this case, the overhead of the loop associated with the LDM version outweighs the speed 
advantage of the LDM instruct ion. In fact, even if the LDM version consisted of 16 
repetitions of the sequence LDM, LDM, INC, INC (without the INCs an the fine! sequence), the 
LDM version would still require 1240 cycles--70 more than the LDIR version. 

Figure 2: LDIR outperforRIa lDH in a 128-t1Ord transfer 

4-76 00-2186-01 



Zilog 
1315 Dell Avenue 
Campbell, CA 95008 
(408) 370-8000 

October 1982 

CHARACTER STRING TRANSLATION: 
Z8000 vs 68000 vs 8086 

Task: Translate a string of 1000 characters from one code to 
another, e.g., EBCDIC TO ASCII. 

5042 

3604 

LINES = 9 LINES = 7 
BYTES = 17 BYTES = 26 

8086 68000 

EXECUTION TIME (IlSEC) 
(ALL CPUs AT 10 MHz) 

5606 

1404 

LINES = 4 LINES = 12 
BYTES = 16 BYTES = 26 

Z8000 8086 

4007 

2358 

LINES = 10 LINES = 9 
BYTES = 36 BYTES = 28 

68000 Z8000 

CASE 1: STRING LENGTH IS KNOWN CASE 2: STOP IF A SPECIAL CHARACTER 
IS ENCOUNTERED 

4-77 Prmted m U S.A 



PROGRAM LISTINGS 

Z8000· 68000 8086 

CASE 1: 

LO R3,H1000 MOVE.L H1000,03 CLO 
LO R6,HSTRING LE,~.L STRING,A1 MOV CX,1000 
LO R8,HTABLE LE.~.L TABLE,A2 MOV SI,STRING 
TRIRB @R6,@R8,R3 CLR.L DO MOV 01, SI 

LOOP MOVE.B (A1),00 MOV BX,TABLE 
MOVE.B O(A2,00),(A1) + LOOP LOOSB 
OBF 03,LOOP XLAT 

STOSB 
LOOPNZ LOOP 

"'" .!..:J 
00 

CASE 2: 

LOB RLO,HEOS MOVE.L HEOS,04 CLO 
LO R1,H1000 MOVE.L H1000,03 LES OI,STRING 
LO R2,R1 LEj~.L STRING,A1 MOV BX,TABLE 
LO R3,HSTRING LEA.L TABLE,A2 LOS SI,STRING 
LO R4,R3 CLR.L DO MOV CX,1001 
LO R5,HTABLE BRA ENTER MOV AH,EOS 
CPIRB RLO,@R3,R1,EQ LOOP MOVE.B O(A2, OO),(A 1) + JMP ENTER 
SUB R2,R1 ENTER MOVE.B (A1),00 LOOP XLAT 
TRIRB @R4,@R5,R2 CIVIP.B 04,00 STOSB 

OBEQ 03,LOOP ENTER LOOSB 
CMP AH,AL 
LOOPNE LOOP 

L ___ - --_ .. _--

·Code and timing applies to Z8001, Z8002, Z8003, and Zl3004. 
For Z8001 and Z8003 in Segmented mode, add five P.SEIC, and four bytes. 



Zilog 

INTRODUCTION 

This application note describes the design of a 
system using a la002 CPU and l-BUS peripherals. 
This system was designed to demonstrate that a 
la002 system is easy to design and build, and to 
provide a vehicle for the demonstration and evalu­
ation of l-BUS peripherals. The system includes: 

• la002 CPU 

• l-SCC Serial Communications Controller 

• l-CIO Counter-Timer Parallel Input/Output Unit 

• l-fIO fIfO Input/Output Unit 

• l6132 Memory 

• 2732 EPROM 

Basic goals of this system design were: 

• It should be simple, with minimum parts count. 

• It should use l-BUS-compatible components 
wherever possible. 

• It should be expandable 

With these goals in mind, the next step in the 
system design was to select the major devices in 
the system. 

The la002 CPU was selected because of its high 
performance and because its 64K byte addressing 
range capably handles this application. This 
allows a system that is hardware compatible with 
all l-BUS peripherals and memories, and thus keeps 
the system cost down. 

4-79 

Z8002®CPU 
Small SlDgl.· 
Board Computer 

Application 
Note 

August 1982 

The peripherals were chosen to demonstrate l-BUS 
peripherals currently available (l-SCC, l-CIO, and 
l-f 10) and because of their ability to support 
functions necessary for running this system. The 
l-SCC provides two channels of serial communi­
cations, one for a terminal and one for a link to 
a host computer, such as the System BOOO/l-LAB. 
The l-CIO and l-fiO are included so that the user 
of this system will have one of each l-BUS 
peripheral available on the board. 

The l6132 memories were chosen because they inter­
face easily to the la002 and provide 4K bytes of 
storage per package. In a simple system such as 
this, large amounts of dynamic RAM would be over­
kill. The l6132 provides all the storage needed 
in a convenient, easily interfaced device. 

The 2732 EPROM was chosen because of its density 
and speed. The 2732 is twice as dense as a 2716 
and is availab Ie in higher speeds than the 2716. 
The higher speed EPROMs would be necessary if this 
system were to operate at 6 MHz. 

The system was designed to allow the use of a 
modified software monitor from the la002 
Development Module. Modifying the Software 
Monitor is accomplished by simply rewriting the 
serial I/O drivers for connection to a l-SCC 
rather than a laO SIO, and by rewriting the 
single-step code, which uses different hardware in 
the new sytem. Starting from an existing monitor 
considerably reduced the time necessary to 
complete the software. 

HARDlfARE DESIGN 

The laOOO CPU architecture is based on the machine 
cycle as its fundamental unit of execution. All 
hardware interface logic must be aware of what 
kind of machine cycle is being executed so that, 
for example, operations intended for memory affect 



memory only, and not input/ouput devices. In 
order to differentiate between the different 
machine cycles, logic was included in this system 
to decode the four CPU status linas, STO-ST3, and 
to produce status signals to be used in other 
parts of the system. 

STATUS IlECODIt«i 

U37 (see the schematics attached to end of 
application note) is an octal decoder (74LS138) 
that decodes the first eight status codes (those 
codes for which ST 3 = 0). Two sections of U15 (a 
74LSOO) are used to derive a signal called MREF 
which is valid for any memory access, regardless 
of the type of address space (code, data, or 
stack). MREF is represented by this logic 
equation: 

It would have been possible to include another 
74LS138 to decode the upper eight status codes and 
to OR the three status codes for code, data, and 
stack memory accesses, but that would have added 
additional chips, and would have been contrary to 
the goal of minimum chip count. In addition to 
this status decoding, one section of U15 and thrae 
sections of U16 (a 74LS32) are used to generate a 
signal that is the combination of Data Strobe from 
the Z8002 and a status signal for stack refer­
ences. This signal is used to drive the single­
step logic, which is discussed later. 

MEJlJRY INTERfACE lOGIC 

The memory interface logic is divided into two 
major parts, the RAM interface (for the Z6132s), 
and the EPROM interface (for the 2732s). 

RAM INTERfACE 

The RAM interface logic consists of even/odd bank 
decoding, and chip select decoding. The even/odd 
bank selection is done by one half of a 74LS157 
multiplexer (U12). It takes as its inputs the 
byte/word signal (BiW) , the read/write signal 
(R/II) , and Address/Data bit 0 (ADO) from the Z8002 
CPU. For any read operation, both outputs are 
active. For write operations, if the byte/word 
line indicates a word write, both outputs are 
active. For write operations in which the byte/ 
word line indicates a byte write, only the even or 
odd output is active, depending on the state of 

ADO. In essence, for byte write operations, 
ENAEVEN is active if ADO = 0 and ENAODD is active 
if ADO = 1. For any other operation, both outputs 
are active. This decoding is necessary because, 
for byte write operations, however, the data 
appeara on both halves of the Address/Data bus, so 
there muat be some way of allowing writes to only 
one bank of the memory. 

The RAM chip select logic is composed of two 
74LS138 decoders: one for the even byte (U4) and 
one for the odd byte (U3). The decoders have as 
inputs the uppermost three address bits (AD15-
AD13) , the MREF signal decoded from the status 
lines, and either ENAEVEN or ENAODD. Each Z6132 
is connected to one of these chip select lines, 
depending on the address desired and whether it is 
the even or odd bank device for the address. 

EPROM INTERfACE 

The EPROM interface logic is simpler, because the 
EPROMs have no requirement for even/odd bank 
select because they do not respond to write 
operations. The EPROM chip selection is done by 
U5, a 74lS138 decoder. This decoder is enabled by 
the MREF signal and uses as select inputs 
AD15-AD13 (the 2732s are 4K x 8 devices). This 
gives EPROM select signals that allow EPROMs to be 

placed anywhere within the 64K byte address space 
of tha Z8002. Because there is no even/odd 
selection, both even and odd byte devices at a 
given address are wired to the same EPROM select 
signal. 

4-80 

WAIT STATE GENERATION 

To accomodate slower memory devices, which are 
often used for reasons of cost, separate wait 
state generators are included for the RAMs and for 
the EPROMs. Each generator takes the chip select 
signals used on the board and ORs them together. 
This ORed chip select is then gated with Address 
Strobe (active High). The resulting signal 
presets a 74LS74 flip-flop, causing the If output 
to go low. This signal is used as the wait input 
to the CPU. The first falling edge of PClK clocks 
the flip-flop with the "0" input Low, causing the 
Q output to go High again. This allows the 
generated wait signal to be recognized once, 
adding one wait state to that memory access. The 
outputs of both wait state generators go through 
OIP switches to two sections of a 74LS32 , which 



combines these wait aignals with the BUSY outputs 
of the Z6132s into one WAIT output that is fed to 
the WAI T input of the ZB002. The BUSY outputs of 
the Z6132s must be included because they may need 
to generate one or more wait states in order to 
perform their internal refreshing. The DIP 
switches allow the user to select one wait state 
for RAM accesses, EPROM accesses, or both. More 
elegant wait-state generators sre possible with 
selectsble numbers of wait states, but the single 
wait state circuits were used because of their low 
psrts count and simplicity. 

PERIPIERAl INTERFACE 

Using Z-BUS-compatible peripherals eliminates all 
external interface logic except the chip select 
circuitry. This function is handled by U21 and 
U6. U21 is used to detect the case in which the 
upper-most five address bits are all 1s. This 
signal is fed into one of the enable inputs of U6, 
a 74LS13S decoder. This decoder is also enabled 
by the status line indicating an I/O machine 
cycle. This one decoder gives eight chip select 
signals derived from the upper eight bits of the 
Address bus. Because Z-BUS peripherals are byte­
wide devices on the low byte of the Address/Data 
bus, it is wise to perform the chip selection with 
the bits not used by the peripheral for addressing 
internal registers. By selecting only on the 
basis of the upper eight bits, the design avoids 
conflict with any peripheral, because one device 
may use the lower six bits while another may use 
the lower seven bits. To make these chip select 
signals compatible with other devices, the latched 
address lines LAS-LA15 are used to drive the 
decode logic. In this wsy the chip select outputs 
are valid throughout the machine cycle. Z-BUS 
peripherals latch the chip select input on the 
rising edge of Address Strobe, so a longer chip 
select signal is not necessary. However, because 
compatability with devices other than Z-BUS parts 
is desirable, and, because using the longer cycle 
does not add any additional logic (the latched 
addresses are already needed for addressing the 
EPROMS), the longer chip select signal was 
incorporated. 

INTERRUPTS 

Proper interconnection of Z-BUS periperal inter­
rupt signals is easily accomplished with the logic 
already in the system. 

The Z-BUS interrupt structure is based on a prior­
ity daisy chain for resolving conflicts when 

4-81 

several devices interrupt at the same time. In 
order to allow experimentstion with different 
interrupt input to the CPU (in this case VI, the 
vectored interrupt input, was used), and the 
interrupt acknowledge back to the peripherals 
(VIACK). The interrupt input is a wired-ORed 
signal, since all peripherals have open-drain out­
puts for this s~gnal. The interrupt acknowledge 
output of the status decoder is used to feed all 
of the peripherals; the priority daisy chain 
resol ves for which peripheral the acknowledge is 
intended. 

SINGlE-STEP LOGIC 

The single-step logic is composed of three flip­
flops (U22 and U2S). The single-step logic is 
enabled ("armed") by writing to an I/O port 
address (in this case F900). Writing to this port 
address sets the first flip-flop (which is con­
nected as a set/reset latch). This then enables 
the chain of two flip-flops (U28) to count stack 
operations. Several gates are used to generate a 
signal vslid for any stack reference; this signal 
is ANDed with Data Strobe. 

The instruction sequence for single-stepping is to 
arm the chain with an I/O write to the single-step 
port and to follow this instruction immediately 
with an Interrupt Return Instruction (IRET). The 
stack has already been set up to return to the 
next instruction in the user program. The two 
stack operations in the IRET instruction are 
counted and a nonvectored interrupt is genersted. 
This interrupt is not generated until the rising 
edge of Data Strobe during the last machine cycle 
of the IRET instruction, so it is not recognized 
during that instruction. It is recognized during 
the next instruction, which is the next instruc­
tion of the user program. This instruction 
executes to completion, and then the interrupt 
acknowledge sequence starts. 

After one instruction of the user program is 
executed, control is returned to the monitor. 
This allows user instructions to be executed one 
at a time under softwsre control. This method of 
single instruction execution was used instesd of a 
method that uses hardware control of the CPU so 
that the monitor could be used to examine and 
alter memory and register contents between 
execution of user instructions. 

In the hardware design of this system, an 
important question was whether or not to buffer 



the Address/Data bus and the control signals. 
Several items were considered in order to answer 
this question. 

When considering the de loads on the CPU outputs, 
the only devices that present significant dc loads 
are the "LS" series devices. A l8002 output 
drives at least four LS-series inputs. The 
memories and peripherals are all MDS devices, and 
as such have negligible dc loading. 

The capacitance of inputs is another item that 
must be considered. The outputs of the lB002 are 
specified at a capacitance of 100 pF, so that the 
sum of the input capacitances of the devices on 
the bus must be less than 100 pF. The memory 
devices have a 5-10 pF input capacitance and the 
peripherals are typically 10-15 pF. With the 
number of peripheral and memory devices in this 
system, there is no problem driving these inputs 
directly from the l8002. 

Considering the present loading, the status and 
control signals were buffered by a 74LS244, al­
though Address Strobe, Data Strobe, and read/write 
also go directly to the peripherals. The status 
outputs are fed to a number of LS-series devices, 
so buffering helps the loading here. Status is 
not critical to timing, so the small delay the 
buffer introduces has no effect. The Address/Data 
bus was not buffered so that slower access time 
memories could be used, but if the system were 
expanded, ~t would be adv~sable to buffer tne 
Address/Data lines with 74LS245 bidirectional 
buffers. 

SOFTWARE DESIGN 

The monitor on the l80D2 Small Single Board 
Computer (SSBC) is a modified version of the 
monitor used on the lilog lB002 Development 
Module. The commands are the same, except that 
the TAPE and PUNCH commands have been deleted. 

The syntax interpretation for l8002 SSBC monitor 
commands is: 

The following notation is used in the command 
descriptions: 

< > Angle brackets are 
scriptive names for 
entered, and are 
entered. 

used to enclose de­
the quantities to be 
not actuall y to be 

[ ] 

(CR) 

Square brackets are used to denote optional 
quantities, and are not actually to be 
entered. 

Bar is used to denote "OR." F or example, 
WIB means either of the characters W or B 
may be used. 

Carriage return. 

All commands can be abbreviated to their first 
letter. Commands and options can be entered in 
either upper or lower case. All numbers are 
represented in hexadecimal notation and must begin 
with a numeric digit. The first character typed 
on a new line identifies the command being in­
voked. If the command is not understood, a"?" 
is printed on the terminal and a new command is 
requested. 

SIMtARY IT COIIWI)S: 

BREAK <address> [<n>] 

Set and clear breakpoint. 

COMPARE <address1> <address2> <n> 
Compare memory blocks. 

DISPLAY <address> [<H of long words/words/bytes>] 

[LjWIB] 
Display and alter memory. 

FILL <address1> <address2> <word data> 
Fill memory. 

GO 
Branch to last PC. 

10PORT <port_address> [WIB] 
I/O port read/write. 

JUMP <address> 
Branch to address. 

LOAD <filename> 
Load file from host system. 

MOVE <address1> <address2> <n> 
Move memory block. 

NEXT [<n>] 
Step instruction. 

QUIT 
Enter transparent (terminal) mode. 

4-82 



REGISTER [<register __ name>] 
Display and alter registers. 

SEND <filename> <start address> <ending_ address> 
[<entry_address>] -

Send file to host system 

NOTE 
All outputs in monitor mode can be sus­
pended with the XOFF character (CONTROL 
S), and resumed with the XON character 
(CONTROL Q). 

CIJMIWI) OCSCRIPTIONS: 

BREAK 

Syntax: 
BREAK <address> [<n>] 

Daacription 

The BREAK command is used to set a breakpoint at 
the given even address. 

If n is specified, the user program execution 
is not interrupted until the nth time the 
breakpoint instruction is encountered. The value 
for n should be in the range ~0001 - ~FFFF. If 
n is not given, 1 is assumed. If the BREAK com­
mand is issued with no parameters, it clears any 
previously set breakpoint. This action should 
be performed before setting the current break­
points. 

When user program execution is suspended by the 
BREAK command, the monitor prints a message 
informing the user of the break and the address 
at which it occurred. 

Syntax: 
COMPARE <address1> <address2> <n> 

Description: 

The COMPARE command is used to compare the con­
tents of two blocks of memory. 

Locations <address1> and <address2> specify the 
starting addresses of the two blocks of memory; 

4-83 

<n> specifies the number of bytes to be 
compared. If any locations of the two blocks 
differ, the addresses and contents of those 
locations are displayed on the terminal. 

DISPlAY 

Syntax: 
DISPLAY <address> [<I of long 

words/words/bytes>] 
[qWIB] 

Description : 

Displays the contents of specified memory 
locations on the terminal, starting at the given 
address, for the given number of bytes. 

If the number (#) of long words/words/bytes 
parameter is specified, the contents of the 
desired locations are displayed, both in hexa­
decimal notation and as ASCII characters. 

If the number of long words/words/bytes is not 
specified, the memory locations are displayed 
one at a time, with an opportunity to change the 
contents of each location. For each location, 
the address is displayed, followed by the 
contents, followed by a space. If the contents 
at that location must be changed, the new 
contents are entered at this time. A carriage 
return, either alone or after the new contents, 
causes the next sequential location to be 
displayed. 

If the [LIWIB] parameter is not specified, data 
is displayed in word format. 

A "Q" followed by a carriage return terminates 
the command. 

F"lLL 

Syntax: 
FILL <address1> <address2> <word data> 

Description: 

The FILL command is used to store the given data 
word into sequential memory locations starting 
at <address 1 > up to and including <address2>. 
The command addresses must be even hexadecimal 
numbers. 



GO 

Syntax: 
GO 

Description: 

This command is used to branch to the current 
PC, thus continuing program execution from where 
it was last interrupted. 

All registers and the FCW are restored before 
branching. Before executing a GO command, 
ensure that the FCW is set to the appropriate 
value. 

IOPORT 

Syntax: 
IOPORT <port_address> [WIB] 

Description: 

This command is used to read data from the given 
port address, display the data on the terminal, 
and write new data to that port address. 

After the current port data is displayed, the 
user can either enter a "Q" followed by a 
carriage return to terminate the command, or 
enter a series of bytes or words (maximum 12B 
characters per line). Bytes or words should be 
blank delimited with a carriage return at the 
end. This allows multiple writes to a port 
without scrolling the terminal screen excess­
ively. If the [W\B] parameter is not specified, 
byte data is read and written to the I/O port. 
If a carriage return alone is entered, a zero 
value is written to the port. 

JlIoIP 

Syntax: 
JUMP <address> 

Description: 

The JUMP command is used to branch uncondition­
ally to the given even address. 

All registers and the FCW are restored before 
branching. Before executing a JUMP, ensure 

4-84 

that the FCW is set to an appropriate value. 

LOAD DATA FROM IIlST 

Syntax: 
LOAD <filename> 

Description: 

This command is used to download a ZBOOO program 
from a host system into the SSBC memory. 

The monitor program transmits the command line 
to the host system exactl y as entered. The 
monitor assumes the host system recognizes this 
command line. When the SSBC is connected to 
either a PDS-BOOO or a System-BOOO, this command 
causes the file <filename> to be opened, the 
data is converted to Tektronix hex format and 
transmitted to the SSBC. 

The monitor program verifies the two checksum 
values in each record and stores the data in RAM 
memory at the address specified in the record. 
An acknowledgement from the SSBC causes the host 
to send the next record. 

A non-acknowledge from the SSBC causes the host 
to retransmit the current record up to 10 times, 
after which a record with an error message is 
sent and the command aborted. 

After successful completion of the loading 
process, the entry point received in the last 
record is printed on the terminal. An ESCAPE 
key is used to abort the LOAD command. Any set 
breakpoints from a previous program must be 
cleared before loading a new program. 

IIlV[ 

Syntax: 
MOVE <address1> <address2> <n> 

Description : 

This command is used to move the contents of a 
b lock of memory from the source address 
specified by <address1> to the destination 
address specified by <address2>. The value <n> 
is the number of bytes to be moved. 



NEXT 

Syntax: 
NEXT [<n>] 

Description: 

The NEXT command causes the execution of the 
next n user instructions, starting at the 
current PC, and displays the contents of all 
registers after each instruction is executed. 

The value <n> should be in the range %001 -
%FFFF. If <n> is not specified, 1 is assumed. 

QUIT 

Syntax: 
QUIT 

Description: 

The QUIT command is used to enter the 
T ransparant IIKlde (terminal mode) from Monitor 
mode. 

In Transparant IIKlde, all keyboard input is 
passed to the host serial port, and all input 
from the host serial port is passed to the 
terminal. The baud rate of the host serial port 
is controlled by three switches of the eight 
position DIP switch (U11). 

The NMI switch on the SSBC is used to return to 
Monitor rode. 

REGISTER 

Syntax: 
REGISTER [<register_name>] 

Description: 

The REGISTER command is used to examine and 
alter registers. 

The following are valid register names: 

• 

• 

• 

Any of the sixteen 16-bit registers named 
RO' R1, R2···R15 

Any of the sixteen 8-bit registers named 
RHO' RLO' RH1' RL1 ••• RH7' RL7 

Any of the eight 32-bit registers named RR O' 
RRZ' RR4 ••• RR14 

4-85 

• Program counter register named RPC 

• Flag and control word register named RFC 

I f no register name is given, the contents of 
all registers are displayed. If a register name 
is given, the specified register name is dis­
played, followed by its contents, followed by a 
space. 

If the contents of that register are to be 
changed, the new contents can be entered at this 
time. A carriage return, either alone or after 
the new data, causes the next register. 

A "Q" followed by a carriage return terminates 
the command. 

SEN> DATA TO IIlST 

Syntax: 
SEND <filename> <start address> <ending_address> 

[<entry_address>] 

Description: 

The SEND command is used to transfer the con­
tents of memory of the SSBC to a file on the 
host system. 

The monitor sends the command line to the host 
system exactly as received. The SEND command on 
PDS-8000 or a System-BOOO opens a file name 
<filename> and sends an acknowledge (ASCII 0) to 
the SSBC to start transmission. 

If the file cannot be opened, 
acknowledge (ASCII 9) is sent to the 
the SEND command is aborted. 

an abort­
IIKlnitor and 

The monitor formats the contents of memory spec­
ified by <start _address, and <ending address> 
into Tektronix hex format and transmits this 
data to the host system. The monitor then waits 
for an acknowledge before sending the next 
record. 

A nonacknowledge (ASCII 7) received by the 
roni tor causes the same record to be resent up 
to ten times. If this record is still not sent 
successfully, a record with double slash 
characters (II), followed by a carriage return, 
is sent to the host system to abort the SEND 
program in the host. The two slash characters 
are also sent if the ESCAPE key is pressed by 
the user to abort the SEND process. 



The address specified by <entry_address> is sent 
in the last record as the entry address for that 
file. If no entry address is specified, an 
address of %0000 is assumed. 

RECORD FORMAT FOR lOAD/SEMl COtI4AN)S: 

The record format for the LOAD and SEND commands 
is Tektronix hex format, which uses ASCII char-
acters only. Each record contains two checksum 
bytes, a starting address, and a maximum of 30 
bytes of data. The format of the record is shown 
below: 

For Records 1 to n: 

/<address(4»<count(2»<checksum1(2»<data(2) ••• 
<data(2»<checksum2(2»«CRC» 

<address(4» The address of the 1 st byte of 
data in the record (address is 
represented as 4 ASCII char­
acters) • 

<count(2» The number of data elements 
«data(2» is one data element) 
in the current record (2 ASCII 
characters). 

<checksum1 (2» The checksum for the address 
and count field (2 ASCII char­
acters) • 

<data(2» Data element. This is a byte 
of data represented in two 
ASCII characters. 

<checksum2(2» The checksum for the data por­
tion of the record (2 ASCII 
characters) • 

For the last record: 

This record has a 00 in the count field and indi­
cates the end of the load data. 

/<entry_address(4) >00<checksum(4) >«CR> 

<entry __ address> The starting address for the 
program (4 ASCII characters). 

<checksum> The checksum for the entry 
address (4 ASCII characters). 

For records with error .essages: 

I f either the host system or the SSBC aborts a 
LOAD or SEND process, it may send a record of the 
form: 

ACKNOIIlEDGE 

After each record is received from the host system 
while loading, an acknowledge (ASCII 0) is sent if 
the checksum values are verified. 

A non-acknowledge (ASCII 7) causes the host system 
to load the same data record up to 10 times. 
After the tenth try, the monitor program returns 
to Monitor mode for the next command, and the host 
system aborts the LOAD command. 

An abort-acknowledge (ASCII 9) is sent to the host 
system if the user decides to abort the LOAD or 
SEND process by pressing the ESCAPE key. This 
action also causes the host system to abort its 
program. The monitor returns to Monitor mode for 
the next command. 

The address used in the data record during the 
loading process is specified when the object file 
is originally created on the host system. This 
address must be greater than %4500 (%4000 - %44fF 
is used by the monitor program). 

For the SEND command, data is formatted and sent 
to the host system in Tektronix hex format. An 
ASCII 0 response from the host causes the next 
data record to be sent. 

The same data record is sent again if ASC II 7 is 
received. The SEND command res ends the same 
record up to ten times before it aborts the 
sending process. 

An ASCII 9 response from the host system indicates 
that the input file already exists, or that an 
error occurred during a disk access. 

4-86 

t«JNITOR I/O PROCEDURES 

The SSBC monitor contains subroutines to do 
character I/O to and from the terminal. These 
subroutines can be called by a user program in 
order to do terminal I/O. A description of each 



subroutine follows, along with detai Is of which 
registers, if any, are affected by calling the 
routines. The hex address in parenthesis next to 
the subroutine name is address to which the user 
should do a CALL instruction to use that routine. 
For example, to output a carriage return and line 
feed to the terminal, a user should execute the 
following instruction: 

CALL %OFD4 !output CR/LF. RO is lost 

TYIN (W"AO) 

Get a character from the keyboard buffer. If the 
buffer is empty, this procedure waits for a char­
acter to appear. The character is stored in RLO, 
and the contents of RHO are destroyed. 

TYWR (SlFC8) 

Display a character in RLO on the terminal. The 
character is not displayed if the XOFF character 
is received before this procedure is executed. 
This procedure waits until an XON character is 
received to display the character in RLO. If the 
display character is a carriage return, the zero 
flag is set and RHO is destroyed. 

PUTMSG (W"CO) 

Send a character string to the terminal. Register 
R2 should contain the address of the character 
string buffer, and the first byte in the buffer 
should be the number of characters to be dis­
played. If there is no carriage return in the 
string, the entire string specified is displayed, 
otherwise the string is displayed up to and 
including the first carriage return. Registers 
RO, R1, and R2 are destroyed. 

TTY (W"OC) 

Receive and echo at the terminal a line of char­
acters up to the first carriage return. The 

4-87 

string is stored in a buffer pointed to by R2. R1 
contains the size of the buffer. If the size of 
the string received exceeds the size of the 
buffer, the zero flag is set. All lower case 
alpha characters are converted to upper case 
before being stored in the buffer. R1 returns the 
actual number of characters received from the 
terminal. The contents of RO and R2 are des­
troyed. 

CRlF (S0FD4) 

Output a carriage return followed by a line feed 
to the terminal. RO is destroyed. 

EXPANSION 

Chip decoding for extra EPROM and RAM and I/O 
devices exists. To connect additional Z-BUS 
peripherals, for example, the device is wired to 
the Z-BUS signals required and an unused chip 
select line is connected to the chip select input 
of the peripheral. Other peripheral devices can 
be connected, but they may require additional 
circuitry in order to interface to the Z-BUS. 

Additional Z6132 RAM devices can be connected 
directly to the Z-BUS In parallel with the 
existing RAMs; the only difference being the chip 
select lines, which should be selected from 
currently unused outputs. Extra [PROMs can be 
added in a similar manner. There is enough EPROM 
decoding to fill the entire 64K byte address space 
with 2732 EPROMs, and enough RAM decoding to do 
the same with Z6832 RAMs. The user can select 
either RAM or [PROM. 

Any expansion beyond two additional peripheral 
chips should be accompanied by the addit ion of 
74LS245 buffers on the Address/Data lines. Buf­
fering is already present on AS, 65, R/W, B/W and 
STO-ST 3. If 74LS245 buFfers are added, their 
direction should be controlled so that they drive 
from the CPU to the outside world except during 
the time that Data Strobe is active during a read 
operation. 



,j>. 

85 

~ 
§ 

Nel 

Vee Vee 

[8[ El A015 fL AS~ 
WAiT , " 23 WAIT AD1. tL os~ 

AD13 fL RJW""'! 
p..---! .... A012 tL ~15 B/W----.! 

V" AD11 fL STO....!.! 

dp,CS 
~ BUSREQ A010 tL ST1....E 

A09 P- ST2~ 
~ BUSACK AO. t1L ST3....!! 

AD' f1!--" 14 

U" st NOr--

RESET AD, f2!-
AD' r!l-

~ NMi AD. ~ 
AD3 ~n . 12 13 " %S002 

Vi VI CPU AD' ~ 
U32 

AD' fE- . 
~ ~ NVl ADO 

~ AOO·AD7 

~ 
.. " .. 

S3 ~ Mi Os r!!-os 
c 10 11 

MREO f1!-
~ MO RJW ~RJW 

Nis ~NIS 
Vec~ .'V aNi ~BJW 

V" STO ~STO 
14 :CL~l ~ GND m ~ST1 

S" r!!- ST2 
K1160A - '" U3S ClOC~ ST3 p!....ST3 4MHz. 

, 
~ .--

BST3 

85TO 

B5T2 

BST1 

...---
f---2 C YO b-!!- iNrOP 
~a Y1 p.!.!... REFRESH 

f-.c---2 A Y3 p..!!-IIO REF 

J L$13S Y3 p..!LSPEC 

U" U37 Yo4 p..!!-SG'fACK 
14 , 

G1 Y5 ~N'MiAci( 
, G Y6 bLNVIAC~ 
~ "pLv,.e, ~ 
STA~DING 2 U15 

BSTO !J!!..lSOO 9 • 
BST3 10 U15 

5 74LS32 

,-!!!2 4U166'~U168 ~ 

.J 
.sn 

BS" 2 U16 3 """ 
U36 

- .... 
, 

.~ .1 "J, 
F9~~' , p, ,",,, p, 
BRIW'3U160 Q 0 Q~O Q 

74U74 ~ 74U74 74U74 
U22 U28 U28 

J 3 ,,' r ,," "t!-~ ~ a 
-=- L-.....!.Y 1f 13 

STAC~OS 

RViACK 
SINGLE-STEP CIRCUIT 

...---
tlLBAS 
~BDS 
~BRiW 

740$244 t1!- BBIW 
U20 ~BSTO 

~ 
~BST1 
P-BST2 

J1-- BST3 

, " 
~ 

, 

H F...-.;rn-~ - 1!2!U I"""'Li"i3s f>lL i C U4 YO RAM03 C U3 YO 

{~ B Y1 ~RAM2E {~B Y1 p,:.:-i 
I~ A Y2~1'i.AM4E I~ A V2~i 

Y3p.!!..ii1i:tm: Y3~i 

"""'" RAM20 

RAM40 

RAM60 

RAM80 

RAilAO 
RAMCO ......, 1E · :.~= # · :.I;i: ENAEVEN 5 G24 V6 p!..... RAMeE EN400D 5 G24 Y6 ~ 

MREF 4 G23 Y7 pL RAMEE~Vr 4 G23 Y7 pL-
3 L...--- ~~ L.....--

AD13· 
AD" 

'---

, 

AD15 
AD14 
AD13 
A012 
A011 
AD10 
A09 
AD. 

AD' 
AD' 
AD< 
AD. 
AD' 
AD' 
ADO 

~ . ADD~HES 
3 r--:-:;-:-;:;-

(...1!. D7 U26 07 19 
,." 4 --!. LS13S 15 

I....!!. 06 06" 
I....!!. 05 05 15 

~ I....!! D4 04 12 

I......!. 03 03 • 

I....l. 02 0' , 

I....! 0' 0' ' , .... l-l. DO 00 ' 
G oe 

LA14 

LA13 

,m 
LAU 

,m 
LAB 

LAB 

LS30 G1 U6 VO ~ 

5~ G2A Y1 0::-
8 110 REF....!c G28 Y2 ~ 

12 V3~ 
11 V4 0::-

3 C Y5~ 
2 B Y6~ 
1 A Y7 p!-

F8XX 

F9XX 

FAXX 

i!Dxx 

FDXX 

FEXX 

""" 

ADDRESS SELECTED 

, 
U13 

, AS U , L-
IIOIJ 

'ECODES 

(..l!~i-11 t--lA7 

l..!l 0' Cl6J1! t--LA6 

J"'!! 05 05 J1!. .J--LA5 

ADO-A07 ).l1 D. 04 J1! 1-, .. 
1.-1 03 Q3a-!-- t-- lA3 , 1-1. 02 02~ !--LA3 

J"""! 01 Q1 ~+--LA1 
l.-1 DO 00 f!-!-- LAO 

rBi~ 5 U15 
L-AS -=-

MREF 

'1" .. >,--,--sw lB L$157 
a 2A U12 

8 28 2Y p!-- ENAODO 
G S 

-=- lSI t 

BRIW 

ADO 

f""L'S1'3'i" 
3CU5YO~ 
2 B Y1 10::-
1 A V2 p.!!-

Y3~ 
Y4 P:::-

6 G1 V51o::!-d G2A Y6~ 
_ ~ G2B Y7P!-

PROMO 

PR"OM2 
PROM4 
PROM6 

PROM8 

PROMA 

"""'" PROME 

STARTING ADDRESS 

L...---EPR<l 'MOECOOES 

MREF 

Figure 1a. SS8C Sc'-tic 



~ 
§ 

"'" 00 
<D 

'.--1 
,,--._j 13--

'2--
,--
,--
V" 

U36 

~-----------------------------------, 
RAMPR 

MD 
~ 31 018 PROM~IT 

AD15-

AD14-

AD13-

AD12-

AD11 

ADtO 
v" "IBUHnl J"'" 

: 4 7k 18 PLACES) 

11 U11 8171615141312 

AD' . 
AD, 

lAD< AD, 
AD2 
AD' ADO 

I I I I I I I I I I I 'I 7'~!" I" 1 1 1 1 1 1"1 __ 

1111111111111111 ~WAO 
v" 

1"BUSY 
-.l>' 

~CE . I I I I I I I I II I I I I I I 1:1; 
I" 1111111 IIIIII III ::1: "A 

I I I I I I 'lA' (:~~I 2 U30 

"A I: I I I I I I I II I I I 1 II I :1:: 
I: 1111111111111111 ~I:: A. 

lAl0 22oA' 

A. Z6132 t9° A 

~: 1111111 III ( 

DO" 
01~ 
D2~ 

D' 
D6l..!! 
07 111 

:~ A9 

'~~+=~=t+t!:j=±±±±=[3j~AlO 1f ~~ Att 

D' " .. 
" 

1000) 
U8 

LA12 

iiRi 

:1:: III I 

.I1111111111~ -I: IIIII111 

'---------- ,:,,'9 J I: cs 

RAM" =r§20 'l- 1 
RAM40_ 

~LS20 LSOO 

RAMeE -+ U17 ~ .. __ 6 

RAM60 
RAiiPii 

PROMO. ~PRo.PR 
PCLK 3 t»13;,:, .~ ______ _ 

v" 

'~ 

figure 1b. SS8C Sc'-tic 

, 
2732 
1000) 
U2' " 



~ 

cD 
0 

t:l 
~ 
g 
OJ 

AS 

RJW 
BUSY 

IWm> 
RAM6E 

Z6132 
LOW.BYTE 

(ODD) 
U. 

AC 

05 22 
WE 27 

BUSY 
, 

CS 20 

AO 10 
9 

I 11111111 I I I I II II I I I I I 

26.1£ 

22 OS 
21 WE , 

BUSY 

l2!! CS 
10 AO 
9 

3 .7 

25 .. 

2. A9 

21 AtO 

23 All 

" 00 , 
D1 

13 02 

15 03 

"1M 
17 05 

" 

p.: DE 00 
, 

18 CE 0' ~ 
• A' 

D> ~ 
7 ., 

" ~ · ., " t!!-
' A3 2732 05 t!!-
• A4 

LOW· D6 ~ 3 AS BYTE 
(ODD) 

2 AS U.S 

'A7 

~:rIJ:r ~A8 
~ A9 

f-!! ." 

LA12 

~~ Z6132 
00 ' HIGH-BYTE 

(EVEN) 18 CE 01 f1!L 
U1. S AD 02 p!-

L--...-...l At oat!!-
' A2 04~ 
' .3 2732 05 rtL 
• A4 

H' .... D6~ 
3 AS 

BYTE 
(EVEN) 

2 AS U31 

'A7 

" .. 
22., 

19 AtO 

21 A11 

Figure 1c. SS8C Sct.e.atic 



-~ 

I@ 

01, "I t . '" 5! .... ~::j "1,1 - - " .. 
~.-£ ~§~~~~~~~ 

r. rc ,~ 
11:1< I~ I~ 

g ~ 

l 2~o 

c~ 
~;g 

" 

Ie 

01- .1.1. .. ~ ... ••• •• . " .1.1 
~§ ~ ~ ~ ~ ~ ~ ~ I~ I~ '~ I~ • ~ ~ § @ • . . . , . . 

,t;--" o 0 ;1 • ~1 ~1 ~1 ~1 ~ 1 £1 gl~ • 
C ~~ ~ I~ I~ I~ ~ Ii I~ I~ I~ 

~~:I ~ 

L 1"1"1"1"1- ~~ § ~~ . I~ I~ It ~ ~~I!:~~~SIit;g ~nnuu~ 
" " " '1'1 01 " • , • • ."~,~ .. • "1"1 ~ ~ig) !!g ~J g :g:: .. .... I'> 

;! ~;! • g r!t~ 
~ I "' ... "'5! ~:?~~ + 

. . . " . N . 
:1 ~1 ~1 ~1 ~ 1 ~1 ~1 

I!' :W' ~ . I~ l "':=! W!Ii '" '" 

J'~'i " 
":l ... ::0 ~ '" J' ~.7;; .~~.: ;!; ! g :!~ 

" - - > , 

~s . 

I~ 
"" 

... 11 
.~ f;! ... ~ 

~ 
N •• ... •• ~ ~ ,1· 

• , "0'0' 1'.1 
- -

§~~§~~~~ I~ l:g I~ I~ • 
I< I~ ~ ~ 

r: 
... 

;;-" ~ ei ... • ; ~5~ 
"0' N .. ? 010°.° ... ° !0= 

[, :~ .~ "~ .~ .~ .~ "~ .~ 
':';:1 . I 

. . 
~ ~ 2 2 ~ f ~ f ~ ~ ~ ~ ~ ~ 

'~'~~~~~§~~§l~'> "1"1 "1"1 "1'1"1 °1'1 "1'1"1 iii ~ 

00-2264-01 4-91 





Zilog 

INTRODUCTION 

This application note discusses interfacing 
Zilog's Z8500 family of peripherals to the 68000 
microprocessor. The Z8500 peripheral family 
includes the Z8536 Counter/Timer and Parallel I/O 
Unit (CIO), the Z8038 FIFO Input/Output Interface 
Unit (FlO), and the Z8530 Serial Communications 
Controller (SCC). This document discusses the 
Z8500/68000 interfaces and presents hardware exam­
ples and verification techniques. One of the 
three hardware examples given in this application 
note shows how to implement the Z8500/68000 inter­
face using a single-chip programmable logic array 
(PAL) • 

This application note about interfacing supple­
ments the following documents, which discuss the 
individual components of the interface. 

• Z8036 Z-CIO/Z8536 CIO Technical Manual (docu­
ment number 00-2091-01) 

• Z8038 Z-FIO Technical Manual (document number 
00-2051-01) 

• Z8030/Z8530 SCC Technical Manual (document num­
ber 00-2057-01) 

• Motorola 16-Bit Microprocessor User's Manual 
3rd ed. Englewood Cliffs, N.J., Prentice-Hall, 
Inc. 1979. 

• Monolithic Memories Bipolar LSI 1982 Databook 

This application note is divided into four sec­
tions. The first section gives a general descrip­
tion of the Z8500 family and discusses pin func­
tions, interrupt structures, and the programming 
of operating modes. The second section discusses 

4-93 

Interfacing the Z8500 
Peripherals to the 68000 

Application 
Note 

October 1982 

the Z8500 interface itself. It shows how the dif­
ferent ZB500 control signa Is are generated from 
the 68000 signals and summarizes the critical tim­
ings for the three types of bus cycle. The third 
section shows three examples of implementing the 
68000-to-Zilog-peripheral interface. The fourth 
section suggests methods of verifying the inter­
face design by checking the three different types 
of bus cycle: Read, Write, and Interrupt Acknowl­
edge. 

GENERAl Z8500 fAMILY DESCRIPTION 

The Z8500 family is made up of programmable 
periphera Is that can interface easily to the bus 
of any nonmultiplexed CPU microprocessor, such as 
the 68000. The three members of this famil y, the 
CIO, SCC, and FlO, can sol ve many design prob­
lems. The peripherals' operating modes can be 
programmed simply by writing to their internal 
registers. 

Progr~ng the Operating Hodes 

The CPU can access two types of register: Control 
and Data. Depending on the peripheral, registers 
are selected with either the AO' A1' A/B, or D/f 
function pins. 

Peripheral operating modes are initialized by 
programming internal registers. Since these 
registers are not directly addressable by the CPU, 
a two-step procedure using the Control register is 
required: first, the address of the internal reg­
ister is written to the Control register, then the 
data is written to the Control register. A state 
machine determines whether an address or data is 
being written to the Control register. Reading an 
internal register follows a similar two-step 



procedure: first, the address is written, then 
the data is read. 

The Data registers that are roost frequently 
accessed, for example, the SCC's transmit and 
receive buffer, can be addressed directly by the 
CPU with a single read or write operation. This 
reduces overhead in data transfers between the 
peripheral and CPU. 

GENERATING Z8500 CONTROL SIGNALS 

This section shows how to generate the 18500 con­
trol signals. To simplify the discussion, the 
section is divided into two parts. The first part 
takes each individual 18500 signal and shows how 
it is generated from the 68000 signals. The 
second part discusses the 18500 timing that must 
be met when generating the control signals. 

Z8500 Signal Generation 

The right-hand side of Table 1 lists the 18500 

signals that must be generated. Each 0 f these 
signals is discussed in a separate paragraph. 

AO' A1' AlB, D/C. These pins are used to select 
the peripheral's Control and Data registers that 
program the different operating modes. They can 

be connected to the 68000 A1 and A2 Address bus 
lines. 

DE. Each peripheral has an active Low Chip 
Enable that can be derived by ANDing the selected 
address decode and the 68000's Address Strobe 
(AS). The active Low AS guarantees that the 68000 
addresses are valid. 

00-07' The Z8500 Data bus can be directly con­
nected to the lowest byte (00-07) of the 68000 
Data bus. 

I£I and lEO. The peripherals use these pins to 
decide the interrupt priority. The highest 
priority device should have its lEi tied High. 
Its lEO should be connected to the lEI pin of the 
next highest priority device. This pattern 
continues with the next highest priority 
peripheral, until the peripherals are all 
connected, as shown in Figure 1. 

INT. The interrupt request pins for each periph­
eral in the daisy chain can be wire-ORed and con­
nected to the 68000's ILPn pins. The 68000 has 
seven interrupt levels that can be encoded into 
the ILPO' ILP1' and ILP2 pins. Multiple 68000 
interrupt levels can be implemented by using a 
multiplexer like the 74LS148. 

Table 1. Z8500 and 68000 Pin F met ions 

68000 Signals Z8500 Signals 
Mnemonic Function Mnemonic FlWlCtion 

A1-A23 Address bus AO,A1,A/B,D/E* Register select 
AS Address Strobe CE Chip Enable 
CLK 68000 clock (8 MHz) 00-07 Data bus 
DO-D15 Data bus lEI, lEO Interrupt daisy chain 
DTACK Data Transfer Acknowledge control 
FCO-FC2 Processor status INT Interrupt Request 
ILPO-ILP2 Interrupt request INTACK Interrupt Acknowledge 
R/W Read/Write PCLK Peripheral Clock 
VMA Valid Memory Address RD Read strobe 
VPA Valid Peripheral Address WR Write strobe 

* The register select pins on each peripheral have different names. 

4-94 



INTACK. The INTACK pin signals the peripheral 
that an Interrupt Acknowledge cycle is occurring. 
The following equation describes how INTACK - is 
generated: 

INTACK = (FCO)·(FC,)·(FCZ)·(AS) 

The 68000 FCO-FCZ are status pins that indicate an 
Interrupt Acknowledge when they are all High. 
They should be ANDed with inverted AS to guarantee 
their validity. The INTACK signal must be syn­
chronized with PClK to guarantee set-up and hold 
times. This can be accomplished by changing the 
state of INTACK on the falling edge of PClK. If 
the INTACK pin is not used, it must be tied High. 

POLK. The SCC and CIO require a clock for 
internal synchronizstion. The clock can be 
generated by dividing down the 68000 ClK. 

RD. The Read strobe goes active low under three 
conditions: hardware reset, normal Read cycle, 
and an Interrupt Acknowledge cycle. The following 
equation describes how RD is generated: 

RD = [(R/W)·(AS) + RESET] 

+6V 

1------1 lEI lEO 

PCLK 

Z8500 

(FIRST) 

HIGHEST 
PRIORITY 

PERIPHERAL 

Z8S00 

(MIDDLE) 

The Read strobe timing must meet both the Read 
timing and Interrupt Acknowledge timing discussed 
in the following section. In addition to enabling 
the Data bus drivers, the falling edge of RD sets 
the Interrupt Under Service (IUS) bits during an 
Interrupt Acknowledge cycle. 

WR. This signal strobes data into the periph­
eral. A data-to-write setup time requires that 
data be valid before WR goes active low. The 
equation for generating the WR strobe is made up 
of two components: an active reset and a normal 
Write cycle, as shown in the following equation: 

WR = [(R/W)·(AS) + RESET] 

Forcing RD and WR simultaneously low resets the 
peripherals. 

Z8500 Tiaing Cycles 

This section discusses the timing parameters that 
must be met when generating the control signals. 
The Z8500 family uses the control signals to 
communicate with the CPU via three types of bus 
cycle: Read, Write, and Interrupt Acknowledge. 

Z8S00 

(MIDDLE) 

1-----.... lEI lEO 

zeloo 

(LAST) 

LOWEST 
PRIORITY 

PERIPHERAL 

~ __________________________ --Jr---
\\-______ ---1r-

t •• Hle(NS) 

PERIPHERAL 
«MHo) FIRST MIDDLE LAST 

CIO 3SO 150 100 
FlO 35. 160 100 
SCC 26. 120 , .. 

Figure 1. Peripheral Interrupt Daisy Olain 

2267-001 4-95 



The discussion that follows pertains to the 4 MHz 
peripherals, but the 6 MHz devices have similar 
timing considerations. 

Although the peripherals have a standard CPU 
interface, some of their particular timing 
requirements vary. The worst-case parameters are 
shown below; the timing can be optimized if only 
one or two of the Z8S00 family devices are used. 

Read Cycle 

The Read cycle transfers data from the peripheral 
to the CPU. It begins by selecting the peripheral 
and appropriate register (Data or Control). The 
data is gated onto the bus with the RD line. A 
setup time of 80 ns from the time the register 
select inputs (AlB, cID, AO' A1) are stable to the 
falling edge of RD guarantees that the proper reg­
ister is accessed. The access time specification 
is usually measured from the falling edge of RD to 
valid data and varies between peripherals. The 
SCC specifies an additional register select to 
valid data time. The Read cycle timing is shown 
in Figure 2. 

READ 
CYCLE 

ADR 

DATA OUT 

Write Cycle 

The Write cycle transfers data from the CPU to the 
peripheral. It begins by selecting the peripheral 
and addressing the desired register. A setup time 
of 80 ns from register select stable to the 
falling edge of WR is required. The data must be 
valid prior to the falling edge of WR. The WR 
pulse width is specified at 400 ns. Write cycle 
timing is shown in Figure 2. 

Interrupt Acknowledge Cycle 

The Z8S00 peripheral interrupt structure offers 
the designer many options. In the simplest case, 
the Z8S00 peripherals can be polled with inter­
rupts disabled. If using interrupts, the timing 
shown in Figure 2 should be observed. (Detailed 
discussions of the interrupt processing can be 
found in the Zilog Data Book, document number 
00-2034-02.) An interrupt sequence begins with an 
INT going active because of an interrupt condi­
tion. The CPU acknowledges the interrupt with an 
INTACK signal. 

WRITE { 
CYCLE 

\_>400_/ 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 

--l I- >0 -I 1-->0 

DATA IN ---< VALID DATA ) 

a ~>ot_ 
IIITACK 

-------- <300 I-
DATA IN ( VALID DATA ) 

Figure 2. Z8500 Interface Timing (4 Itlz) 

4-96 2267-002 



A daisy-chain settle time (dependent upon the num­
ber of devices in the chain) ensures that the 
interrupts are prioritized. The falling edge of 
RD causes the IUS bit to be set and enables a 
vector to go out on the bus. 

The table given in Figure 1 can be used to calcu­
late the amount of settling time required by a 
daisy chain. Even if there is only one peripheral 
in the chain, a minimum settling time is still 
required because of the internal daisy chain. The 
first column specifies the amount of settling time 
for only one peripheral. If there are two periph­
erals, the time is computed by adding together the 
times shown in the first and the last columns. 
For each additional peripheral in the chain, the 
time specified in the middle column is added. 

Recovery T iR! 

The read/write recovery time specifies a minimum 

amount of time between Read or Write cycles to the 
same peripheral. The recovery time differs among 
peripherals and is summarized in Figure 3. In 
most cases, this parameter is met because of the 
time required for instruction fetches. The recov­
ery time specification does not have to be met if 
DE is deselected when Read or Write occurs. 

68000 INTERFACE EXAMPLES 

This section shows three examples, presented in 
increasing order of complexity, for interfacing 

CE \ / 
RoIWR / \ 

Zilog's 4 MHz Z8500 peripherals to an 8 MHz 
68000. Faster CPUs or peripherals can be used by 
modifying some of the timing. These examples 
suggest possible ways of implementing the inter­
face but may require some modifications to operate 
properly. They were chosen because they give the 
user a variety of interface design ideas. The 
first example uses 
to implement the 
Peripheral Address 

a minimum amount of TTL 
interface because the 
(VPA) cycle meets the 

logic 
Valid 
Z8500 

timing requirements. In this mode the 68000 
accepts only nonvectored interrupts. The second 
example uses the Data Transfer Acknowledge (DTACK) 
pin. This interface allows faster operation and 
makes use of the Z8500's 8-bit vectored 
interrupts. The third example also uses a DTACK 
cycle and is similar to the second, except the 
external logic is integrated into a single chip, 
the PAL20X10 programmable array logic. 

EXAMPLE 1: A TTL Interface Using a VPA Cycle 

The 68000 has a special input pin, Valid 
Peripheral Address (VPA), that can be activated by 
the Z8500 chip se lect logic at the beginning of 
the cycle to indicate to the 68000 that a periph­
eral is being accessed. This generates a special 
Read/Write cycle that meets the peripheral timing 
requirements. This cycle allows the Z8500 control 
signals to be generated easily. The 68000 
responds to interrupts using an autovector and the 
Z8500 can be programmed not to return a vector. 

\ r--
/ \ r-

I· trecovery ·1 

Peripheral 
(4 MHz) 

Recovery Time 

CIO 
FlO 
SCC 

Greater than 3 PCLK cycles or 1000ns 
Greater than 1OO0ns 
Greater than 6 PCLK cycles + 200n8 

NOTE. The diagram shows that the recovery time Is measured between consecutive reads 
and writes only II the peripheral is selected 

Figure 3. Recovery T~ 

2267-003 4-97 



Figure 4 shows how the hardware can be imple­
mented. PCLK is generated by dividing down the 
68000 CLK. RD, WR, and INTACK are simply ANDed 
68000 signals. The worst-case daisy-chain settle 
time is 450 ns. Connecting INT to IPLO generates 

VIlA 

FCo 
FC, 
FC, .... r All .... 

De~D7 

1 L.r'\ 
Au-Au -

8.000 

A, 

Ao 

RIW 

VMA to. ... 
ClK 

IPLI! .5V 

1PL1 ---1 

IP,-

a level 1 interrupt. The internal registers are 
accessed by AO' A1' D/C, and AlB, which can be the 
68000 lowest order addresses. The timing is shown 
in Figure 5. 

~ 

D ot--- III1'lIllR 

ClK 
74LS74 

Q 

- • .... 0, 

CE 

,,7 
",-DlC 

A1-AlB 

H »--- !Ill 

~7 
Z8500 

Perlph .... 1 

q »--- WI! 

-
f--- D 0- peLK 

ClK 
74LS74 

~l 
lIlT 

figure II. Interface Using the YPA Cycle 

eLK 

\~ ______________________________________ ~r___ 
1~·~------------------>~------------------~·~llt·~:::::::::::::>~·~~~::::::::::::~'I 

II ,'-____________ ....J1 \ 

\~ ____________________ ~r___ 

\~ ________________ ~r___ 

Figure 5. VPA Cycle Tilling 

4-98 2267-004, 005 



functional Description 

VPA is pulled Low at the beginning of the cyc Ie 
and the CPU automatically inserts Wait states 
until E is synchronized. 

VPA = [(AS)'(CE)] 

RD = [(CE)'(VMA)'(R/W)] 

WR [(CE)' (VMA)' (R/W)] 

INTACK = [(FCO)'(FC1)'(FC2)'(AS)] 

EXAMPLE 2: A TTL Interface Using DTACK Cycles 

Using the 68000 Data Transfer Acknowledge (DTACK) 
cycle is a second way of interfacing to the Z8500 
peripherals. The 68000 inserts Wait states until 
the DTACK input is strobed Low to complete the 
transfer. In addition to generating the control 
signals, the interface logic must also generate 
DTACK. 

The timing shown in Figure 6 can be generated by 
the hardware shown in Figure 7. The 8-bit Shift 

eLK 

PCLK 

AS / \ 

Q, 

QF 

RD/WR 

DTACK 

INTACK \ 

register (74LS164) is used to generate the proper 
timing. At the beginning of each cycle, QA 
(Figure 7) is set High for one PCLK cycle and then 
reset. This pulse is shifted through the 
QA-QH outputs and is used to generate R5, WR, 
and DTACK signals. Some of the extra Wait states 
can be eliminated by tapping the Shift register 
sooner (e.g., QC)' 

EXAMPLE 3: Single-Chip Pal Interface 

This example illustrates how to interface the 4 
MHz Z8500 peripherals to the 8 MHz 68000 using a 
PAL20X10 device to generate all the required con­
trol signals. The PAL reduces the required inter­
face logic to a single chip, thus minimizing board 
space. This interface offers flexibility because 
the internal logic can be reprogrammed without 
changing the pin functions. The PAL uses 68000 
signals to generate Read, Write, and Interrupt 
Acknowledge cycles. In addition to generating the 
Z8500 control signals, the PAL also generates a 
DT ACK to inform the 68000 of a completed data 
transfer cycle. This allows the 68000 to use the 
peripheral's vectored interrupts. 

r--
/ \ 

/ '--
\ ;--

\ ;--

r 
figure 6. Timing for DTACK Interface 

2267-006 4-99 



+5V 

VPAW -R/W 

I 
~ 1!1! 

A" 
A" 

b~ A" to. -A" T ... Ft-->- WI! »- 74LS74 ... VCC .. , Q -A QA f--
CLR Q. ..-Au 

A23 
Qe r-O Q-

to. QD 74LS74 r-- ... • 74L8184 QE 
0 Q CLK 

Q, t--
74LS74 Q. ~~l CLK f--- ~ 8.000 

CLR Ql r<' CLR Q. Z.800 
GNO ..... IPH.RAL 

~ 
+5V CO 

AI" " ILPa ~~V PCLK 
1LP1 

ILPo INT 

FCo ~ .. ..-

FC, I 0 Q JIITA'eK 
r 74LS74 

FC, . ~ DTACK 
""I Il 

Do-o, ~ r-- Do-o, 

figure 7. Hardware Diagr_ for DTACK Interface 

Functional Description 

Figure 8 shows the PAL's pin functions. The PAL 
generates five control signals, of which four (WA, 
lID, CO, and INTACK) go to the Z8500 and one 
(DTACK) goes to the 68000. The remaining signals 
are used internally to generate these outputs. 

CLK 

ew 
NC 

TEST 

AI" 
RIW 

FC. 

FC, 

FCo 

II!m 
Ne 

GNO 

figure 8. 

Timing diagrams for the Read, Write, and Interrupt 
Acknowledge cycles are shown in figure 9. 

The PAL uses a 4-bit downcounter to generate the 
proper placement of the control signals where Co 
is the least-significant bit and C3 is the 

Vee 
lIlm" 
WI! 

PAl Pinout 

4-100 2267-007, 008 



most-significant bit. All of the PAL is clocked 
with the rising edge of the 68000's elK. The 
counter toggles between counts 14 and 15 and 
starts counting down when AS goes active. The 
counter goes back to toggling when AS goes 

CLK 

inactive. eye goes active low at the same time 
the counter starts counting down. The equations 
in Figure 10 can be entered into a development 
board to program the PAL. 

\~----------------------------------------
co 

C, 

c. 

Co 

INTERRUPT 1 DTACK 

ACKNOWLEDQE INYACK 
CYCLE 

lID 

2267-009 4-101 



PALZOX10 PAL DESIGN SPECIFICATION 
P70B9 (10) 
MC6BOOO TO ZILOG PERIPHERAL INTERFACE 
MMI, SUNNYVALE, CA 
CLK /CS NC TEST /AS RW 
FCZ FCI FCO /RESET NC GND 
fOE /C3 /CZ /C1 /CO /CYC 
NC /OTK /RD /WR /ACK VCC 

CO .- /CO*/TEST COUNT/HOLD (LSB) 

C1 := /RESET *AS*C 1 HOLD 
:+: /RESET*AS*CO DECREMENT 

CZ .- /RESET*AS*CZ HOLD 
:+: /RESET*AS*CO*Cl DECREMENT 

C3 .- /RESET*AS*C3 HDLD 
:+: /RESET*AS*CO*Cl*CZ DECREMENT 

DTK .- /RESET*/ACK*CYC*C3*/CZ*/C1* CO*CS DTACK FOR RD/WR CYCLE 
+ /RESET* ACK*CYC*C3*/CZ* Cl*/CO DTACK FOR INTERRUPT 

OPERATION 

CYC .- /RESET*AS*/CYC*CO NEW CYCLE STARTED 
+ /RESET*AS* CYC PROCESSING OF CYCLE 

:+: /RESET*CYC*DTK END OF CYCLE 

RD .- /RESET*CYC*/ACK*RW* C3*/CZ*CS NORMAL READ OPERATION 
+ /RESET*CYC*/ACK*RW*/C3*CZ*C1*CO*CS NORMAL READ OPERATION 

:+: /RESET*CYC* ACK*RW* C3 READ DURING OPERATION 
+ RESET 

WR := /RESET*CYC*/ACK*/RW* C3*/CZ*CS WRITE 
+ /RESET*CYC*/ACK*/RW*/C3* CZ*Cl*CO*CS WRITE 

:+: RESET 

ACK .- /RESET*FCO*FC1*FCZ*AS* Cyc*/CO INTERRUPT ACKNOWLEDGE 
+ /RESET*FCO*FC1*FCZ*CYC INTERRUPT ACKNOWLEDGE 

figure 10. PAl Equations 

Hardware Diagr_ 

The hardware diagram of the PAL interface is shown 
in Figure 11. The 6BOOO signals CLK, CS, AS, R/W, 
FCO' fCl' and FCZ are used to generate the ZB500 
control signals. The control signals are syn­
chronous with the rising edge of the 6BOOO's CLK. 
TEST and OE must be grounded. CS is used to 

enable DTACK, RD, and WR as shown in the equa­
tions. The ZB500 INT is connected to ILPO, which 
generates a 6BOOO level 1 interrupt. The periph­
erals are memory-mapped into the highest 64K byte 
block of memory, where A17-An equals "fFH". 
Addresses A4-A6 are used to select the peripheral; 
Al-A3 select the internal registers. Table Z 
shows the peripheral's memory map. 

4-102 2267-010 



~ 
21 
8 

f'-
~ 

&3 

'-----

+5V 

VPA ~ 
A16-A23 -4-Qv 

.. 3. 

A, 33 

.. 32 

A'~ 
A1 29 

DTACK 10 

elK 15 

88000 l\li • 
RM 9 

FC, 28 

FC, 27 

FC, 26 

00-0 7 

1LPo 2. 

1LP1 ~+5V 
ILP2 

23 

-- --_._--

+5V 
16 

• VCC 
YO 15 62A 

6 61 Y1 14 

r-r--7' 62 • Y2 13 

C 
2 874138 , 

A 
OND 

8 
-: 

, 2' +5V ~ 
eLK DlACK 20 

~ cs co ~ 
• AS 2~:~O AD ~ 
6 

R/W WR ~ 
9 FC, 1N1'Al:K ~ 
8 FC, OE 

~ 7 FC, 
+5V __ '0_ RESET 

,r- TEST 

OND 

'~ 
8 

+5V +5V 
9 23 

VCC VCC 

~ or }SE~IAL ~ or 
I'- ~ 36 

SCC ~ CIO Rl! Z8530 PORTS lIli Z8538 
I~ WI! WI! 8 WI! 
[,-INTACK 8 INTACK [,INTACK 25 INTACK 

I~ PCLK ~ PCLK 

~ Alii 00-0 7 ~ ~ .. 00-07 
~ ole 1m' ~A1 1m' 

lEI GND lEO lEI GND lEO 
7 31f I 171 7 ~ 18 1 

+5V 

Figure 11. PAl. Hardware Diagr_ 

+5V 
40 
VCC 

}PORT2 ~ or 
} 3 PARALLEL I'-~ 3 FlO 

PORTS lID Z8038 
~ WI! 
I~ INYACK .~ 
~ DIC • 2 

~ +sv---1! M1 00-0 7 r,;----
t MO 1m' F 

lEI GND lEO 

B1 2°r I 

+5V 

TO 
NEXT 
PERIPHERAL 



Table 2. Peripheral Memory Map 

Peripheral Register Hex Address 

SCC (lB530) 
Channel B Control FF0020 
Channel B Data FF0022 
Channel A Control FF0024 
Channel B Data FF0026 

CIO (lB536) 
Port C's Data Register FF0010 
Port B's Data Register FF0012 
Port A's Data Register FF0014 
Control Register FF0016 

FlO (lB03B) 
Data Registers FFOOOO 
Control Registers FFOO02 

INTERFACE VERIfICATION TECHNIQUES 

This section suggests possible ways of verifying 
the Read, Write, and Interrupt Acknowledge cycles. 

Read Cycle Verification 

The Read cycle should be checked first because it 
is the simplest operation. The lB500 should be 
hardware reset by simultaneously pulling RD and WR 
Low. When the peripheral is in the reset state, 
the Control register containing the reset bit can 
be read without writing the pointer. Reading back 
the FlO or C10 Control register should yield a 

01H' 

The SCC' s Read cycle can be verified by reading 
the bits in RRO. Bits 02 and 06 are set to 1 and 
bits DO, 01' and 07 are o. Bits 03-05 reflect the 
input pins DCO, SYNC, and CTS, respectively. 

Write Cycle Verification 

The Write cycle can be checked by writing to a 
register and reading back the results. Both the 
CIO and FlO must have their reset bits cleared by 
writing OOH to their Control registers and 
reading back the result. The SCC can be checked 
by writing and reading to an arbitrary read/write 
register, for example, the Time Constant register 
(WR12 or WR13). 

Interrupt Acknowledge Cycle Verification 

Verifying an Interrupt Acknowledge (INTACK) cycle 
consists of several steps. First, the peripheral 
makes an Interrupt Request (INT) to the CPU. When 
the processor is ready to se-rvice the interrupt, 
it initiates an Interrupt Acknowledge (INTACK) 
cycle. The peripheral then puts an B-bit vector 
on the bus, and the 6BOOO uses that vector to get 
to the correct service routine. This test checks 
the simplest case. 

First, load the Interrupt Vector register with a 
vector, disable the Vector Includes Status (VIS), 
and enable interrupts (IE = 1, MIE = 1, lEI = 1). 
Disabling VIS guarantees that only one vector is 
put on the bus. The address of the service rou­
tine corresponding to the B-bit vector number must 
be loaded into the 6BOOO's vector table. 

Initiating an interrupt sequence in the Fro and 
CIO can be accomplished by setting one of the 
interrupt pending (IP) bits and seeing if the 
6BOOO jumps to the service routine (setting a 
breakpoint at the beginning of the service routine 
is an easy way to check if this has happened). 

Initiating an interrupt sequence in the SCC is not 
quite as simple because the IP bits are not as 
accessible to the user. An interrupt can be 
generated indirectly via the CTS pin by enabling 
the following: CTS IE (WR15 20), EXT INT EN 
(WR1 01), and MIE (WR9 OB). Any transition on the 
CTS pin can initiate the interrupt sequence. The 
interrupt can be re-enabled by RESET EXT/STATUS 
INf (WRO 10) and RESET HIGHEST IUS (WRO 3B). 

CONClUSION 

lilog's lB500 family of nonmultiplexed 
Address/Data bus peripherals can interface easily 
with the 6BOOO and provide all the support 
required in a high-performance microprocessor sys­
tem. The many features offered by the SCC, FlO, 
and CIO solve many system design problems by mak­
ing interfacing to the external world easy. These 
intelligent peripherals also greatly enhance the 
system performance by relieving the CPU of many 
burdensome overhead tasks. Additionally, the 
powerful interrupt structure allows the 6BOOO to 
use vectors and reduce interrupt response time. 

4-104 00·2267·01 



Zilog 

INTROOUCTION 

Microcomputer systems based on Intel's 8086 and 
80B8 CPUs can take advantage of the advanced 
features of lilog's Z8000 series of microprocessor 
peripherals with a minimal amount of external 
logic. These devices are easily integrated and 
can satisfy many of the peripheral support 
requirements in a typical 80B6/B08B-based system. 
This Application Note discusses a general design 
that enables the 80B6/BOB8 to interface with 
Zilog's Serial Communications Controller (lBOJO 
Z-SCC), Counter/Timer - Parallel I/O Unit (Z80J6 
Z-CIO) , and fiFO I/O Controller (lBOJ8 l-flO). 
Discussions of the lB500 peripherals 
(non-multiplexed address and data bus versions) 
can be found in other Zilog documents. 

BUS INTERfACE 

The Z8000 peripherals (also called Z-BUS peri­
pherals) lend themselves conveniently to B086/80B8 
- based designs because of the multiplexed ad­
dress/data bus architecture. There is no need for 
an external address latch because the Z8000 
peripherals latch addresses internally at the 
beginning of each bus cycle. Furthermore, the 
peripherals allow the CPU direct access to all of 
their data and control registers. Figure 1 shows 
the interface logic that translates the signals 
generated by the 8086/8088 into the necessary 
Z-BUS signals, and Table 1 gives a description of 
each signa 1. 

Inlerfacing 
Ihe Z·BUS® Peripherals 
10 Ihe 8086/8088 

Application 
Nole 

July 1982 

808618088 
,5 MHz) 

MNIMX 

+5V 

DT/R I---------{>c---------j 

ALEI---------{>c---------j 

..rt..rU1... 

+5V 

ADo-AD15 11'------------------"\1 
(NOTE 311\r-------..., 

ADDRESS 
DECODER 

(NO~~,! I------------~ __ __' 

Note. 
1. The source of PCLK can, but need not, be derIved from the 

System eLK. 
2. Does not apply to Z-FIO 
3. ADO-AD7 and A8-A 15 on 8088. 
4. 101M on 8088. 

Figure 1. Interface Logic 

2255-001 4-105 

z·see 
z·elo 
Z·FIO 

RIW 

is 

iii 

peLK 
(NOTE 2) 

es, 
(NOTE 2) 

INTACK 

ADo-AD7 

Cio 



Table 1. Signal Descriptioos 

8086/8088 Signals 

Minimum/Maximum. This input is pulled high so that the CPU will operate in the "Minimum Mode." 

DT/R Data Transmit/Receive. DT/R is high on write operations and low on read operations. 

ALE Addreas Latch Enable. ALE is used to latch addresses during the first T state of each bus 
cycle so that the bus can then be free to transfer data. 

AD Read. AD strobes data into the CPU on read operations. 

MR Write. WR strobes data out of the CPU on write operations. 

ADg-AD15 This is the 16-bit, multiplexed address/data bus on the BOB6. 
address/data bus, AOO-A07, and a high order address bus, AB-A15. 

The B088 has a low order 

MIlO Memory/Input-Output. This output distinguishes between memory and I/O accesses. On the B086 
it is high on memory accesses and Iowan I/O accesses. On the B08B, the polarity is reversed 
(IO/M). 

Z-8US Si!Plala 

Riii Read/Write. This input tells the peripheral whether the present access is a read or write. It 
is generated by inverting DT/R of the 8086/BOBB. 

AS* Address Strobe. AS is the main clock signal for the Z-BUS peripherals. It is used to initiate 
bus cycles by latching the address along with CSD and INTACK. It is generated by inverting ALE 
of the BOB6/B08B. 

DS* Oata Strobe. When the Z-BUS peripheral is selected, OS gates data onto or from the bus, 
depending on the state of R/W. It is generated from the BOB6/BOBB signals RD and WR as shown 
in Figure 1. 

INTAC!( 

CSg,CS1 

Interrupt Acknowledge. When low, this signal tells the peripheral that the present cycle is an 
Interrupt Acknowledge cycle. 

Address/Data Bus. This bus is connected directly to AOO-AD7 of the 80B6/808B. It is posaible 
to connect it to AOB-A015 of the B086 as long as the BOB6 doesn't expect to read an interrupt 
vector from the peripheral during interrupt acknowledge transactions. 

Chip selects. CSo is active low and is latched with the rising edge of AS. CS1 is active high 
and is unlatched. In this interface, CS1 is pulled high while CSO is generated from the 
address decode logic. 

PCLK Peripheral Clock. This signal does not apply to the Z-FlO. It can also be omitted from the 
Z-CIO interface if the chip ia not used as a timer, its REQUEST/WAIT logic is disabled, and it 
does not employ deskew timers in its handshake operations. The maximum frequency of PCLK is 4 
or 6 MH:!:, depending on the grade of the component, and it can be asynchronous to the system 
clock. 

*A hardware reset of a Z-BUS peripheral is performed by driving AS and OS low simultaneously. 

4-106 



BUS TIMING 

Each BOB6/BOBB bus cycle begins with an ALE pulse, 
which is inverted to become Address Strobe (AS). 
The trailing edge of this strobe latches the reg­
ister address, as well as the states of CSO and 
INTACK within the peripheral. OS is then used to 
gate data into (write) or from (read) the selected 
register, provided that an active CSO 
latched. To assure proper timing, 
Characteristics of both the BOB6/BOBB 
l-BUS peripherals, must be examined. 

has been 
the AC 

and the 
The para-

graphs that follow discuss all of the significant 
timing considerations that pertain to Read/Write 
operations in this interface. 

ADDRESS AND OUP SELECT (CSo) SETUP TIMES. The 4 
MHz l-BUS peripherals require that the stable 
address setup time prior to AS be at least 30 ns. 
Since the 5 MHz BOB6/BOBB is guaranteed to provide 
valid addresses at least 60 ns before Address 
Latch Enable (ALE) goes low, this requirement is 
easily satisfied. The CSO setup time is of no 
concern because the lBOOO peripherals require no 
CSO setup time prior to AS. 

svs eLK 
(5 MHz) 

ALE 

AD15-ADo 
(NOTE 2) 

MIN ~-
- " -MIN ...., 
~ 60 

MIN 

A1S-Ao 

\ 

-
...-90_ 

MIN 

\ 
215 

-MIN-

Note. 
1. All hmmg In ns. 

DATA OUT -

[ 
1_410_1 

MIN 

2. A)5-AS and AD7-ADO on SOSS 

~~N I~ 

MIN _1000q: 

3 6 PCLK cycles + 200 ns for Z-SCC. ThIs parameter only 
applIes to consecutIve accesses to the same devICe 

Figure 2. Write Cycle Timing 

2255·002, 003 

E3) 

ADDRESS AND CHIP SELECT (CSO) HOLO TIMES. The 
Z-BUS speci fications require that the address and 
CSO remain valid a certain period of time after 
the rising edge of AS. These minimum values are 
50 and 60 ns respectively for the 4 MHz devices. 
At 5 MHz, the BOB6/BOBB will hold its addresses at 
least 60 ns after ALE goes inactive. Although 
this is equal to the minimum CSo hold time, a safe 
margin will be maintained if the propogation delay 
between the address going invalid to CSo rlS1ng, 
exce~s the propogation delay between ALE falling 
and AS rising. 

ADDRESS STROlE (AS) TO DATA STROlE (OS) OELAY. 

The 4 MHz peripherals need a 60 ns delay between 
AS rising and 05 falling. This parameter is of no 
concern on write cycles because the O-flop will 
delay OS until the beginning of r 3 (See Figure 
2). On read cycles, OS follows RD, so the delay 
between AS and OS is approximately equal to the 
delay between ALE and RD. If ALE falls at its 
latest possible point in time and RD falls at its 
ear Hest point, the time between these two edges 
would be about 60 ns. This result is unrealistic, 
however, because a delay in the termination of ALE 

SYS eLK 
(5 MHz) 

ALE 

AD15-ADo -=t::;t=~-Flc)Ar"""---1[~~:==}-;;:;;;;;:--(NOTE 2) _ 

4-107 

CSo ~-L+--+ __________________ __ 

Note: 
1. All hmmg In ns 
2 A)5-AS and AD7-ADO on SOS8. 
3. 6 PCLK cycles + 200 TIS for Z-SCC ThIS parameter only 

applIes to consecutive accesses to the same devlce. 

Figure 3. Read Cycle Timing 



will always lead to a delay in the activation of 
RD. The actual time between the two edges is well 
over 100 ns. 

ADDRESS SETUP THE TO DATA STROBE (DS). The 4 
MHz Z-CIO and Z-FIO require that the stable 
address setup time to DS be at least 130 ns. 
Since the delay between AS rising and DS falling 
is well over 100 ns, and since the address setup 
time to AS is at least 60 ns, this requirement is 
easily satisfied. 

DATA STROBE (DS) LOIf WIDTH. The minimum Data 
Strobe low Width of the 4 MHz Z-BUS peripherals is 
390 ns. On read cyc les, DS wi 11 have the same 
width as RD, which is at least 325 + 200Nw ns, 
where Nw is the number of wait states in the bus 
cycle. On write cycles, the D-flop will shorten 
this minimum width to 210 + Nw 200 ns. One wait 
state (Tw) in the bus cycle will ensure a 
sufficiently wide Data Strobe for both types of 
bus cycles. A discussion of wait state generation 
is presented in the next section. 

WRITE DATA SETUP AND HOLD lItES. On write cycles, 
the Z-BUS peripherals require the CPU to put valid 
data on the bus at least 30 ns before 55 goes 
active, and to hold it there at least 30 ns after 
DS terminates. D-flip-flop in Figure 2 guarantees 
the setup time by delaying the falling edge of WR 
until the next falling edge of SYS ClK (Figure 
2.). The Hold Time is also guaranteed because the 
8086/8088 will hold valid data at least 90 ns 
after the termination of WR. 

REAO DATA SETUP AN) HOLD lItES. When the B086/ 
BOBB reads from memory or peripherals, it requires 
them to put valid data on the bus at least 30 ns 
before the falling edge of SYS ClK at the begin­
ning of f4 • It also requires them to hold the 
valid data at least 10 ns after this edge. Since 
the Z-BUS peripherals will provide valid data 
early in Tw and will hold it until after DS termi­
nates, these parameters are well within the speci­
fications. 

VALID ACCESS RECOVERY TItE. This parameter refers 
to the time between consecutive accesses to a 
given peripheral. If the 4 MHz Z-SCC is accessed 
twice, then the time between DS rising in the 
first access and DS falling in the second access, 
must be at least 6 PClK cyc les plus 200 ns (i. e. 
1700 ns for a 4 MHz PClK). The Valid Access 
Recovery Time for the 4 MHz Z-CIO and Z-FIO is 
1000 ns, and this can't possibly be violated with 
a 5 MHz BOB6/BOBB since there will always be at 

least one instruction fetch cycle in between I/O 
accesses, and 1000 ns translates into only 5 clock 
cycles at 5 MHz. 

WAIT STATE GENERATION 

The previous section explained why the 4 MHz Z8000 
peripherals need to place a wait state in I/O bus 
cycles when interfaced to the 5 MHz 80B6/BOB8. 
The following two examples illustrate how wait 
state generation can be implemented. Since 
BOB6/BOB8 - based systems typically use an B2B4 
Clock Chip, which synchronizes the CPU's READY 
input with the system clock, the task reduces to 
designing a circuit that will control the RDYl 
input of the B2B4 (RDY2 is assumed to be 
grounded). 

SINGLE WAIT STATE GENERATION. For the processor 
to enter a wait state after T 3' the RDYl input 
must be low during the falling edge of SYS ClK at 
the end of f 2' Then, for the processor to enter 
T 4 after the wait state, RDYl must be high during 
the next falling edge of SYS ClK. To make sure 
that these levels are well-established during 
their sampling windows, the single wait state 
generator should toggle RDY1, using the clock 
edges that precede the sampling edges (Figure 4). 
The circuit in Figure 5 performs this function ~d 
generates a single wait state when one of the CSO 
inputs is active. 

svs 
eLK 

RDY1 
8284 

I T3 I Tw I T. I 

Figure 4. ROY1 T~ng for Single Wait State 

TO RDV 1 
8284 

Figure 5. Single Wait State Generator 

4-108 2255-004, 005 



MULTIPLE MAlT STATE GENERATION. Though Read/Write 
operations require only one wait state, Interrupt 
Acknowledge transactions need multiple wait states 
to allow for daisy-chain settling, which is 
explained in the next section. The following 
discussion introduces a multiple wait state 
generator and serves as a basis for understanding 
the subsequent Interrupt Acknowledge Circuit. 

In the preceeding discussion of the single wait 
state generator, we established that ROY1 must be 
high at the end of T 3 for the processor to enter 
T 4 after the wait state. In general, the 
8086/8088 will continue to insert wait states 
until ROY1 is driven high. In fact, the number of 
wait states wi 11 be equal to the number of clock 
cycles that ROY1 is held low after the rising 
clock edge in T2' 

A convenient way to implement a multiple wait 
state generator is to use a serial shift register 
such as a 74LS164. Figure 6 shows a wait state 
generator that requests one wait state on Read/ 
Write cycles, and up to seven wait states on 
Interrupt Acknowledge cyc les. When RO, WR, or 
INTA goes active, the 74LS164 is taken out of the 
clear state and logic "ones" are allowed to shift 
sequentially from QA to QW On Read/Write 
cycles, ROY1 is held low until the leading "one" 

....... ..k-----t-- INTACK 

figure 6. "dtiple Wait State Generator 

SV 

LIEf 

HIGHEST 
PRIORITY 

Z-BUS 
PERIPHERAL lEO I------ lEI 

appears at QB' and on Interrupt Acknowledge 
cycles, ROY1 is held low until the leading "one" 
appears at QH' The next section shows how 
INTACK can be generated and discusses the complete 
interrupt interface. 

INTERRUPTS 

In Figure the IN TACK input to the Z-8US 
peripherals is pulled high. This does not mean 
that the peripheral can't interrupt the CPU; it 
just means that it won't respond to the CPU's 
interrupt acknowledge. The designer can, however, 
implement a circuit that will drive INTACK, and 
allow the 8086/8088 to proper ly acknowledge the 
interrupts of the Z-BUS peripherals. This section 
examines the interrupt acknowledge protocols of 
the Z-BUS peripherals and the 8086/8088, then 
proceeds to show how they can be made compatible. 

Z-BUS INTERRUPT N:KNOWLEDGE PROTOCOl. The Z-BUS 
peripherals typically use the daisy-chain tech­
nique of priority interrupt control. In this 
scheme the peripherals are connected together via 
an interrupt daisy chain formed with their lEI 
(Interrupt Enable Input) and lEO (Interrupt Enable 
Output) pins (Figure 7). The interrupt sources 
within a device are similarly chained together, 
with the overall effect being a daisy chain con­
necting all of the interrupt sources. The daisy 
chain allows higher priority interrupt sources to 
preempt lower priority sources and, in the case of 
simultaneous interrupt requests, determines which 
request will be acknowledged. 

In each bus cycle the Z-BUS peripherals use the 
rising edge of AS to latch the state of INTACK. 
If a low INTACK is latched, then the present cycle 
is an Interrupt Acknowledge cycle and the daisy 
chain determines which interrupt source is being 
acknowledged in the following way. Any interrupt 
source that has an interrupt pending and is not 
masked from the chain will hold its lEO low. 

Z·BUS 
lEO f----:/.f------.. lEI 

PERIPHERAL 

LOWEST 
PRIORITY 

Z·BUS 
PERIPHERAL 

ADo-AD7 AS os TNT INTACK ADo-AD7 AS Os TNT INTACK 
- -

!NT INTACK ADo-AD7 AS os 

ADO-AD7 

AS 
DS 

INT 
IN TACK 

2r-t t I 
1 I 

1 . 

irtt I t gLl 
1 

f. 

Figure 7. A Z-BUS Interrupt Daisy Chain 

2255-006, 007 4-109 

+s 

f 



Similarly, sources that are currently under 
service (i.e. have their IUS bit set) will also 
hold their lEO lines low. All other interrupt 
sources make lEO fo llow lEI. The result is that 
only the highest priority, unmasked source with an 
interrupt pending will have a high lEI input; only 
this peripheral will be allowed to transfer its 
vector to the system bus when the Data Strobe is 
issued during the Interrupt Acknowledge cycle. 

To make sure that the daisy chain has settled by 
the time DS gates the vector onto the bus, the 
Z-BUS peripherals require a sufficient delay be­
tween the rising edge of AS and the falling edge 
of DS in INTACK cycles. The amount of delay 
required can be calculated using Table 2. for a 
particular daisy chain, the minimum delay is: 
Thigh for the highest priority device, plus Tlow 
for the lowest priority device, plus Tmid for each 
device in between. 

Table 2. Daisy Dlain Settling TiEs for the Z-BUS 
Peripherals {in ns} 

Z-SCC 
Z-CIO 
Z-fIO 

Thigh 

4MHz 6MHz 

250 250 
350 250 
350 250 

Tmid 

4MHz 

120 
150 
150 

Tlow 

6MHz 4MHz 6MHz 

100 120 100 
100 100 70 
100 100 70 

B086/8088 INTERRlPT ACKNOWLEDGE PROTOCOL. If the 
BOB6/8088 receivea an interrupt request (via its 
INTR pin) while its Interrupt flag is set, then it 

I T, I T, I T3 I T, I T, 

will execute an Interrupt Acknowledge sequence. 
The sequence 
cycles with 
(figure B). 

cons~sts of two identical INTA bus 
two idle clock cycles in between 

In both bus cycles, RD and WR remain 
inactive while an INTA strobe is issued with the 
same timing as a WR strobe. The 8086/808B 
requires an interrupt vector to appear on ADO -
AD7 at least 30 ns before the beginning of T4 in 
the second INTA cycle. This protocol is normally 
used to read vectors from the B259A Interrupt 
Controller but it can easily be adapted to the 
Z-BUS Interrupt Acknowledge Protocol, as 
illustrated in the following paragraphs. 

INTERRUPT ACKNONlEDGE COMPATIBILITY. The first 
function of the Interrupt Acknowledge circuit, 
shown in figure 9, is to generate the Z-BUS INTACK 
signal using INTA from the 8086/B088. Since INTA 
goes active after ALE has terminated, the 
peripherals will not latch an active INTACK during 
the first INTA cycle. However, if the rising edge 
of INTA is used to toggle INTACK, then an active 
INTACK latches with the rising edge of AS in the 
second INTA cycle. Thus a rising-edge triggered 
toggle flip-flop, as configured in figure 9, can 
be used to generate INTACK. ~gure 10 shows the 
timing relationship between INTA and INTACK. 

The next function of the Interrupt Acknowledge 
circuit can be broken down into three operations: 
first, it must cause the CPU to enter a series of 
wait states after T 3 in the second INTA cycle; 
then, it must activate DS after a sufficient daisy 
chain settling time; lastly, it must bring the CPU 
out of the wait state condition when the vector is 
available on the bua. 

T, T, I T, I T, I T, I 

ALE f\""'--____ --Jn~ __ _ 
INTA ___ "'" 

\'--_...JI \'--_...J1 

ADO-AD7 }----------:=~--------~~ 
FLOAT ~ 

figure B. BOB6/BOBB INTA 5eqIB1Ce 

4-110 2255-008 



Figure 9 shows how the multiple wait state 
generator, discussed in the previous section, can 
be used to perform each of these operations. 

808618088 
(5 MHz) 

RD~~------------------------~ 

INTA ~ ___ -------=--I>. 

z-scc 
Z-CIO 
Z-FIO 

lEI 

INTR~----------------------~<cI--+---~INT 

Figure 9. Interrupt Acknowledge Circuit 

While INT ACK is high the circuit operates 
normally; the number of wait states it requests is 
determined by the positioning of the jumper on the 
Q outputs. When INTACK goes low, it operates as 
follows: the next activation of INIA bungs the 
shift register out of the clear state, and logic 
"ones" shift into QA until they fill the entire 
register. When t.he leading "one" appears at QG' 
DS is driven low; when it appears at QH' t.he CPU 
is taken out of the wait state condition. 

This arrangement takes advantage of the full 
length of the shift register and provides a 
daisy-chain settling time of more than 1300 ns, 
which allows the implementation of a chain with as 
many as seven Z-BUS devices. Figure 10 shows the 
hming of the important signals in the Interrupt 
Acknowledge transaction. 

HARDWARE: RESET 

The designer may want to incorporate a hardware 
reset in the interface design. This can be 
accomplished with two NOR gates as shown in Figure 
11 • The -,,!OR gates allow the system RESET signal 
to pull AS and DS low simultaneously, and hence 
put the peripheral in a reset state. A hardware 
reset is not necessary, however, because all of 
the peripherals are equipped with software reset 
commands. 

1 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 
T3 Tw T4 T[ Tt T1 T2 T3 Tw Tw Tw Tw Tw Tw Tw T4 

Note 

SVS 
CLK 

INTACK -----------+-------i 

DS ----------f---------7----------------r--------------------------------~, 

RDY 1 8284 _________ -J 

ADO-AD7 -----------------------~~;_--------t_--------------------------------!_----~~V~E:CT:O:R.-J FLOAT 

I-------------s;~~~~ ~!ME __________ ---<~I 

* Thls assumes that Q8 IS the selected output 

Figure 10. Interrupt Acknowledge Timing 

2255·009, 010 4-111 



ALE --------\'"'"""\ 

Q 

FROM D·FlIP·FLOP 

Figure 11. Hardware Reset 

stMIARY 

The z-see, Z-CIO, and Z-FIO can easily be designed 
into BOB6/BOBB - based systems. Their data and 
control registers can be mapped directly into the 
I/O address space, and the Z-BUS control signals 
can be generated with a minimal amount of external 
logic. The user can also take advantage of the 
devices I interrupt control capabilities because a 
simple interface circuit makes their interrupt 
structure compatible with that of the B086/8088. 

4-112 00-2255-01 



Zilog 

I NTROOUCTI ON 

Direct Memory Access (DMA) is a data transfer 
method that uses special hardware to transfer data 
between system memory and the outside world (e.g., 
a peripheral I/O device) without the intervention 
of a Central Processing Unit (CPU). 

A transfer controller usually handles all aspects 
of a data transfer: it provides read or write 
control signals and addresses to the system, 
updates the addresses, counts the number of words 
or bytes in the transfer, and signals the end of 
an operation. The advantage of DMA is speed. 
Transfers can proceed at the memory's maximum 
speed rather than waiting for the CPU to fetch and 
decode the instructions, move the data, update the 
addresses, and count the words or bytes. The DMA 

CHANNEll 
REGISTERS 

SYSTEM BUS 

INTERNAL BUS 

MASTER MODE 

COMMAND 

CHAIN 
CONTROL 

TEMPORARY 

Z8016 Z8000™ DTC DNA 
TraDsfer CODtroller 

ApplicalioD 
Note 

February 1983 

controller performs these tasks at hardware speed 
and reduces CPU overhead costs. 

The Z8016 DMA Transfer Controller (DTC) is a high­
performance 16-bit peripheral interface device 
designed for l8000 processor systems. Each of the 
DTC's two channels can perform the following kinds 
of transfer: memory-to-peripheral, memory-to­
memory, peripheral-to-memory, and peripheral-to­
peripheral. For all DMA operations (Le., 
Transfer, Search, and Transfer-and-Search), the 
DTe operates with either word or byte data sizes 
and provides a packing/unpacking capability. To 
eliminate the overhead needed to load the internal 
registers, the DTC provides an auto-chaining 
operation to load and reload the 13 channel 
registers (Figure 1b). The CPU need only load the 
address of the control parameter tab le into the 

CHANNEL 2 
REGISTERS 

CONTROL 
lOGIC 

INTERFACE 
TO 
PERIPHERALS 

Figure 1a. Z8016 DTC Block Diagram 

2271·001 4-113 



Chain Address register and issue a St art Chain 
command to load the control parameters from memory 
into the channel's control registers. 

The OTC is Z-BUS compatible and operates within 
the Z8000 daisy-chain, vectored-priority interrupt 
scheme. Additionally, a demand inter leave 
operation is supported, which allows the OTC to 
surrender the system bus to the external system or 
to alternate between internal channels. This 
capability allows for parallel operations between 
the two channe Is or between a OTC channel and the 
CPU. 

INTERFACllIIi 

A block diagram of the lB016 OTC (Figure 1) shows 
the internal configuration. The internal 
registers are defined in Figures 2 and 3 and 
listed in Table 1. Figure 4 shows the interface 
signals. All of the input and output signals 
(except the c lock input) are direct ly TTL 

compatible. All outputs source at least 250 ~A at 
2.4 V and sink up to 3.2 mA at 0.4 V. 

CHAIN ADDRESS REGISTER 

CURRENT ADDRESS REGISTER A 

Mf ':~M~N~ 1_ ..!.A~ _] y-,; OFFSET 

CURRENT ADDRESS REGISTER B 

Mf ':~M~~ 1_ ..!.A~ _] y-,; OFFSET 

NOTE: 
CHANNEL 1 AND 
CHANNEL 2 ARE 
iDENTiCAL 

Figure lb. l8016 DIC Block Diagram, Channel Registers 

4-114 2271-002 



MASTER MODE REGISTER 

ID,I D.ID,ID.ID, ID,I D, ID.I 

~E
L CHIP ENABLE 

L lOGICAUPHYSICAL 
ADDRESS SPACE 

CPU INTERLEAVE 
ENABLE 

WAiT LINE ENABLE 

DISABLE LOWER CHAIN 

'------- NO VECTOR ON INTERRUPT 

o NVi ACKNOWLEDGE 

1 Vi ACKNOWLEDGE 

1 0 NMI ACKNOWLEDGE 

1 1 :~~~~~lL~~~~ 

COMMAND REGISTER 

ID, I D'ID'ID~'I Dl1' ID~' II~' I D~ CHANNEL2ICHANNEL 1 

~SETfCLEAR 
INTERRUPT PENDING 

INTERRUPT UNDER SERVICE 

INTERRUPT ENABLE 

o 0 0 RESET 

o 0 1 INTERRUPT CONTROL 

o 1 0 SOFTWARE REQUEST 

o 1 1 FLIP BIT 

1 0 0 HARDWARE MASK 

1 0 1 START CHAIN 

1 1 NOT RECOGNIZED 

1 1 NOT RECOGNIZED 

INTERRUPT SAVE REGISTER 

ID15ID"ID13I0"ID11ID1OID.1 D.I D"D.I D'I D41 D,I D,I D'iDOJ 

I I 
I 

CHAIN CONTROL REGISTER 
(CHAIN LOADABLE ONLy) 

(WRITE ONLy) 

I 

STATUS IUS 
INTERRUPT { CIE 

ST13 - ST15 IP 

VECTOR 

DTC {N~~ STATUS 
ST9-ST12 WFB 

SIP 

RESERVED 

CHANNEL NUMBER 
0- CH1 
1 "" CH2 

TC 

EOP 

MC 

CHAIN ABORTED 

MCL 

MCH 

HARDWARE REQUEST 

I Vl'h!li\ll"""j'l 'fn 'I'~ =::~=:.~-:' 
PATTERN AND MASK (2 WORDS) 

BASE OP·COUNT (1 WORD) 

BASE ARB (2 WORDS) 

BASE ARA (2 WORDS) 

'---------- CURRENT OP·COUNT (1 WORD) 

'-__________ CURRENT ARB (2 WORDS) 

'------------ CURRENT ARA (2 WORDS) 

BASE AND CURRENT ADDRESS 
REGISTERS A AND B 

15 8 7 6 5 4 3 2 1 0 

SEGMENT :TAG I I 10 0 WAIT STATES 

o 1 1 WAIT STATE 

1 0 2 WAIT STATES 

1 1 4 WAIT STATES 

o 0 INCREMENT ADDRESS 

o 1 DECREMENT ADDRESS 

1 X HOLD ADDRESS 

o 0 0 SYSTEM DATA MEMORY 

o 0 1 SYSTEM STACK MEMORY 

o 1 0 SYSTEM PROGRAM MEMORY 

o 1 1 110 

1 0 0 NORMAL DATA MEMORY 

1 0 1 NORMAL STACK MEMORY 

1 1 0 NORMAL PROGRAM MEMORY 

1 1 1 SPECIAL 110 

OFFSET 

STATUS REGISTER 

!<>"[D,, [D131D'!lD'''"'<>l D'.iD'.iD, 06 05 04 03 02 01 Do 

~I IL= :~p ) COMPLETION 
MC STATUS STO-ST4 

TEMPORARY REGISTER 

PATTERN AND MASK REGISTERS 

MCL 

MCH 

HRQ} HARDWARE 
INTERFACE 

HM STATUS ST5-ST8 
RESERVED 

BASE AND CURRENT OPERATION COUNT REGISTERS 

INTERRUPT VECTOR REGISTER 

I INTERRUPT 
VECTOR 

CHAIN ADDRESS REGISTER 

15 14 • 7 

SEGMENT 

10 0 WAIT STATES 

o 1 1 WAIT STATES 

1 0 2 WAIT STATES 

1 1 4 WAIT STATES 

L------------------------------~~~:~~~CAL 
ADDRESS ONLY 

OFFSET 

tigure 2. 18016 Ole Internal Registers 

2271-003 4-115 



DATA OPERATION FIELD 

Code/Operation 

Transfer 

0001 
100X 
0000 
0011 
0010 

Transfer-and-Search 

0101 
110X 
0100 
0111 
0110 

Search 

1111 
1110 

101X 

Operand Size 
ARA ARB 

Byte 
Byte 
Word 
Byte 
Word 

Byte 
Byte 
Word 
Byte 
Word 

Byte 
Word 

Illegal 

Byte 
Word 
Word 
Byte 
Word 

Byte 
Word 
Word 
Byte 
Word 

Byte 
Word 

TRANSFER TYPE FIELD AND MATCH CONTROL FIELD 

Code 

00 
01 
10 
11 

Transfer Txpe 

Single Transfer 
Demand Dedicated/Bus Hold 
Demand Dedicated/Bus Release 
Demand Interleave 

Transaction 

.In!!:. 

Flowthrough 
Flowthrough 
Flowthrough 
Flyby 
Flyby 

Flowthrough 
Flowthrough 
Flowthrough 
Flyby 
Flyby 

N/A 
N/A 

Hatch Control 

Stop on No Match 
Stop on No Match 
Stop on Word Match 
Stop on Byte Match 

II I L Mm" CO''"O' ""0 
PULSEO OACK 

HAROWARE REQUEST MASK 

SOFTWARE REQUEST 

CHAIN ( TC 
ENABLE MC 

EOP 

B TO C ( TC 
RELOAD MC 

ENABLE EOP 

INTERRUPT ( ;~ 
ENABLE 

EOP 

I 
1015101410131012101110101091 oal 071 0 6 051 04 I 03 I 02 I 01 I 00 1 

~ 
-~L 

Figure 3. Z8016 DlC Channel Mode Register 

4-116 

OATA OPERATION FIELO 

FLIP BIT 
(0) - ARA = src, ARB = dst 
(1) - ARA = dst, ARB = src 

TRANSFER TYPE FIELO 

2271-004 



Table 1. ZB016 DTC Internal Registers 

Chain 
Control 

Register Bit 

DEVICE REGISTERS 

Master Mode register 
Command register 
Chain Control register 
remporary register 

CHANN£l REGISTERS 
Address registers, chainable 

Current Address - A 9 

Current Address - B B 
Base Address - A 6 
Base Address - B 5 
Chain Address 0 

Control registers, chainable 

Current Op-Count 7 
Base op-Count 4 
Channel Mode* - High 
Channel Mode* - Low 
Pattern* 3 
Mask* 3 
Interrupt Vector* 2 

Status/Save registers, Non-chainable 

Status register 
Interrupt Save register 

*Slow-readable registers. 

Port 
Channel 1 

Segment/Tag 

1A 
12 
1E 
16 
26 

4-117 

32 
36 
56 
52 
4A 
4E 
5A 

2E 
2A 

Offset 

oA 
02 
DE 
06 
22 

Address(Hex) 

3B 
2C 

Channel 

Segnent/Tag 

1B 
10 
C 
14 
24 

30 
30 
54 
50 
4B 
4C 
5B 

2C 
2B 

2 

Offset 

DB 
00 
OC 
04 
20 



SNO ADO 

SNI ADI 

SN2 AD2 

SEGMENT SN3 AD3 

NUMBER SN4 AD4 

SNs ADs 

SNs ADs 

SN7/MMUSYNC AD7 ADDRESSI 

ADa DATA 

STo ADs 

STI AD10 

ST2 Z8016 ADll 
STATUS 

ST3 DTC AD12 

R/W AD13 

BiW AD14 

N/S ADIS 

BUSREQ CS/WAIT 

BAI DREQl, DREQ2 DMA 

BAa DACK1, DACK2 CONTROL 

EOP 

AS 

os INT 

lEI 
INTERRUPT 
CONTROL 

lEO 

+5V GND ClK 

Figure 4. l8016 OTe Pin Functions 

The interface signals and pin assignments are 
listed in Table 2. 50me of the signals are 
three-state, i.e., they are high-impedance when 
not under bus control. The open-drain pins 
require a pullup resistor 0 f 3. 3K ohms or more. 
The DTC decodes the status lines (5TO-5T3) for the 
Interrupt Acknowledge signal and generates status 
for data transactions. The multiplexed input 
CS/WAlT serves as an active Low alip Select (CS) 
signal when the DTC is a bus slave, and serves as 
an active Low Wait (WAI1) signal when the DTC is 
bus master and the control bit in the Master Mode 
register is enabled. The multiplexed output 
5N7/MMUSYNC is driven Low when the DTC is not in 
control of the system bus and the MM1 bit of the 
Master Mode register is set. SN7/MMUSYNC floats 
to a high-impedance state when the DTC is not in 
control of the system bus and the MM1 bit is 
cleared. When the DTC is in control of the system 
bus and is operating in logical address space, 
this line outputs an active High MMUSYNC pulse 
prior to each memory transaction cycle. In 
physical address space, this line outputs 5N7, 

whiCh is the 24th address bit in the lillea..:' 
address space. 

If a peripheral device requires DMA service, it 
issues a request to the DTC by asserting DREQ. If 
the channel receiving the request is enabled and 
the BU5REQ and BAI lines are High, the DTC issues 
a bus request to the CPU by driving the BU5REQ 
line Low. When the CPU relinquishes bus control, 
a Bus Acknowledge signal is output to the DTC by 
driving the BAI line Low, indicating that the 
request for bus control has been granted. Upon 
receipt of the Bus Acknowledge signal, the DTC 
issues a DMA Acknowledge signal to the peripheral 
by lowering the DACK output; it then issues the 
control signals and addresses necessary to effect 

the transfer. When the transfer is completed or 
terminated, DACK is driven High and the DTC begins 
the termination procedure. The DACK output can be 
programmed as level or pulsed for Flyby transac­
tions and as level or inactive for Flowthrough 
transactions via the CM18 bit of the Channel Mode 
register. 

4-118 2271-005 



Table 2. Z8016 Ole Interface Signals 

Interface Signal Pin Nunber Input/futput Three-State Open-Orain 

ADO-AD15 5-20 
AS 44 
BAl 
BAO 3 
BUSREQ 2 
B!W 35 
CS/WAIT 42 
DACK 1 ,DACK2 39,40 
DREQ1,DREQ2 36,37 
55 43 
EOP 38 
lEI 46 
lEO 48 
INT 47 
N/S 30 
R/W 41 
SNO-SN6 21-25,28,29 
SN7/MMUSYNC 27 
STO-ST3 31-34 
ClK 45 
GND 26 
+5V 4 

To establish DMA operation, the internal registers 
can be loaded under software by the CPU. The 
registers are addressed via the low byte of the 
Address/Data bus (AD7-ADO). The high byte of the 
Address/Data bus (AD15-AD8) is decoded with the 
user's chip select logic. Chip Select (CS) must 
be valid prior to the rising edge of AS to allow 
the CPU to write to, or read from, the DTC' s 
registers. During a DMA transfer, the DTC 
generates control signals (R/W, B/W, N/S, and 
STO-ST 3) to indicate the transfer direction, the 
data size, and the type of space and transaction. 
It also generates AS, 55, DACK, and MMUSYNC 
signals to synchronize timing and to demultiplex 
the Address/Data lines. Additionally, it 
generates addresses (SN7-SNO and AD15-ADO for 
physical addressing space or SN6-SNO and AD15-ADO 
for logical addressing space) of the source and 
destination of the transfer; samples the DREQ, 
WAIT, and EOP lines; stores the data for the Flow­
through transaction; and issues an EOP low signal 
when the transfer is terminated. Upon termina­
tion, the DTC performs either an interrupt, 
base-to-current reloading, chaining, or does 
nothing, under the control of Channel M:lde 
register (i.e., bits CM7-CM15). 

To relinquish bus control, the DTC drives its 
BUSREQ line High and allows BAO to follow BAl. 

In/Out Yes No 
In/Out Yes No 
In No No 
Out No No 
In/Out No Yes 
Out Yes No 
In No No 
Out No No 
In No No 
In/Out Yes No 
In/Out No Yes 
In No No 
Out No No 
Out No Yes 
Out Yes No 
In/Out Yes No 
Out Yes No 
Out Yes No 
In/Out No No 

The CPU regains bus control upon sampling its 
BUSREQ input; if inactive, the CPU drives its 
BUSACK output inactive. Whenever both BAI and 
BUSREQ are High and no DMA requests are pending, 
the DTC passes the High signal through BAO to the 
lower-priority device, enabling it to request bus 
control. This procedure allows the CPU to regain 
bus control whenever an interrupting device 
releases bus control. See the lilog 1982/83 Data 
Book" for more details on the lUog l-BUS. 

INITIAlIZATION 

After a hardware reset (i.e., AS and 55 are 
simultaneously low) or a software reset (Le., a 
reset command is issued to the Command register), 
take the following steps to initialize the system: 

• Clear the Master Mode (MM) register to disable 
the DTC. 

• Set the Chain Abort (CA) and Non-Auto Chaining 
(NAC) bits in each channel's Status register. 

• Load each channel's Chain Address register. 

• Issue Start Chain command. 

"(document number 00-2034-02) 

4-119 



to minimize interaction with the host CPU, the DTC 
loads its own control parameters from memory into 
each channel (Le., performs chaining). The CPU 
need to only program the Master Mode register and 
each channel's Chain Address register (Figure 5). 
All other registers are loaded by the channe Is 
themselves from a reload table located in system 
memory and pointed to by the Chain Address 
register. During chaining, the N/S and B/W lines 
are driven Low and the ST3-STO outputs are set to 
1000 (i.e., Memory Transaction for Data). 

The first word in the reload table, the reload 
word, specifies which registers in the channel are 
to be reloaded. Bits 0 through 9 in the reload 
word relate to either one or two registers in the 
channel (Table 3). When a reload word bit is 1, 
the register or registers corresponding to that 
bit are reloaded. The data loaded into the 
selected registers follow the reload word in 
memory at successively larger addresses. 

The reload table is of variable length. For 
example, when the contents of the segment and 
offset fields of Channel l' s Chain Address 
register are OOOOH and 1 020H, the reload table 
is started at location 1020H. Thus, the data 
stored at location 1020H is the reload word. If 

the reload word is 03fT H' all 0 f Channe 1 l' s 
registers are loaded with the data in locations 
1022H through 1042H (a total of 17 words). If 

0100 2101 0000 LD R1,f10000 
0104 3B16 002C OUT %002C, R1 
010B 8D07 NOP 
010A 2101 0000 LD R1,1I0000 
010E 3B16 0026 OUT %0026,R1 
0112 8D07 NOP 
0114 2101 1020 LD R1,lf1020 
0118 3B16 0022 OUT 1m022,R1 
011C 8D07 NOP 
011E 2101 0001 LD R1,lfOO01 
0122 3B16 0038 OUT %0038,R1 
0126 8D07 NOP 
0128 2101 OOAO LD R1,%00AO 
012C 3B16 002C OUT %002C, R1 
0130 8D07 NOP 

the reload word is 0203H, only Current Address 
register A (Current ARA), Channe I Mode register, 
and Chain Address register are reloaded with the 
data in locations 1022H through 102CH (a total 
of six words), and the remaining registers are not 
changed. When loading the address registers, the 
segment and tag word must precede the offset word 
(e.g., the segment and tag word of Current Address 
register A is located at 1022H' while the offset 
word is located at 1024H). 

After the Master Mode bit MMO is set, a Start 
Chain command causes the selected channel to clear 
the NAC bit in its Status register and to start 
chaining. The control parameters of the channel 
are reloaded and the channel is ready to perform 
the DMA operation. DMA operation can be initiated 
in one of the following three ways: 

• By software request--issue a Set Software 
Request command. 

• By hardware request--apply a Low signal on the 
channel's DREQ input; the Hardware Request Mask 
bit (CM19) in the Channel Mode register must be 
cleared. 

• By chaining--load a Software Request bit 
(CM20 = 1) into the Channel Mode register 
during chaining. 

;RES(f 

;LOAD SEGMENT/TAG OF CHANNEL l' S 
;CHAIN ADDRESS REGISTER 

;LOAD OFFSET OF CHANNEL 1'S 
;CHAIN ADDRESS REGISTER 

;LOAD MASTER MODE REGISTER TO 
;ENABLE DlC 

;LOAD START CHAIN COMMAND 

Figure 5. Initialization of the Z8016 Ole 

4-120 2271-006 



Table J. EXlllllple of Chain Control Tables 

Me.ory Data Register Remarks 

Chain Control register Chaining all registers 1020 
1022 
1024 
1026 
1028 
102A 
102C 
102E 
1030 
1032 
1034 
1036 
1038 
103A 
103C 
103E 

03FF 
0000 
1FOO 
0074 
FF01 
OOAO 
0000 
2FOO 
0074 
FF01 
0100 
1234 
FOOD 
0002 
0004 
3042 

Segment/Tag of Current Address Register A 
Offset of Current Address Register A 
Segment/Tag of Current Address Register B 
Offset of Current Address Register B 
Current Op-Count 

System data mem, increment, 0 waits 
Starting address 
I/O, hold, 2 waits 
Peripheral address 
160 transfers 

Segment/Tag of Base Address Register A 
Offset of Base Address Register A 
Segment/Tag of Base Address Register B 
Offset of Base Address Register B 

System data, increment, 0 waits 
Starting address 
I/O, hold, 2 waits 
Peripheral address 

1040 
1042 

1080 

Base Op-Count Register 
Pattern register 
Mask register 
Interrupt Vector register 
Channel Mode High 
Channel Mode Low 

0000 Segment/Tag of Chain Address 
1080 Offset of Chain Address 

0182 Chain Control register 

256 transfers 
0001001000110100 as pattern 
1111000000000000 as mask 
Vector = 02 
Pulsed DACK 
Chain at EOP, 8ase to Current at 
TC, Address Register A to Address 
Register B Demand/Bus release, 
word-to-word flyby 

Address of next chain control word 

Chaining three registers 

1082 0076 Segment/Tag of Current Address Register B I/O, hold, 4 waits 
Peripheral address 
80 transfers 

1084 FF02 Offset of Current Address Register B 
1086 0050 Current Op-Count 
1088 0010 Channel Mode High 
108A 0240 Channel Mode Low 

When DMA operation is initiated by either software 
or hardware request, the DTC drives the BUSREQ 
line Low and performs the DMA operation after it 
receives an active Low BAI signal. When DMA 
operation is initiated by chaining, the DTC 
performs the DMA operation as soon as chaining 
ends if the MM2 bit (CPU Interleave Enable bit) is 
clear. If the MM2 bit is set, the channel gives 
up bus control after chaining and before DMA 
operation. 

DNA DPERATIIWS 

There are three types of DMA operation: transfer, 
transfer-and-search, and search, each of which can 
occur in either a Flowthrough or Flyby 
transaction. They are controlled by programming 

4-121 

Software request during chaining 
Interrupt at TC, Address Register A 
to Address Register B, word flow­
through 

bits 0 through 3 of the Channel Mode register. 
The Flip bit (CM4) is used to control the transfer 
direction. Figure 6 shows state diagrams for the 
various types of operations. Table 4 lists the 
operation codes. 

Flowthrough Transfer and Flowthrough Transfer­
and-Search operations consist of both read and 
write transactions. When bit CM4 is clear, the 
DTC reads data from the location specified by The 
Current Address Register A (ARA) (Le., the 
source), stores the data in the Temporary 
register, compares the data with the unmasked 
pattern, and then writes the data into the 
location specified by the Current Address Register 
B (ARB) (i.e., the destination). When bit CM4 is 
set, the source location is specified by the 



SAMPLE DREQ AND BAI, 
DRIVE BUSREQ. 
DACK = 1 

(CM4 = 0): C·ARA ON BUS 
(CM4 = 1): C·ARB ON BUS 
RJW = 1; AS = 0 

TI 

DACK = 0 T11 

AS = 1; OS = 0 
BUS RESERVED FOR DATA: 
SAMPLE WAiT 

OS = 0 
SAMPLE 
WAiT T1WA 

= 1 

=0 

=0 

= 1 

T12 

PLACE DATA FROM 
SOURCE INTO TEMPORARY 
REGISTERS: 
OS = 1 T13 

(CM4 = 0): C·ARB ON BUS 
(CM4 = 1): C·ARA ON BUS 
R/iN = 0 
AS=O T21 

AS = 1, OS = 0 
PLACE DATA FROM 
SOURCE ONTO BUS: 
SAMPLE WAIT T22 

SEND DATA TO DESTINATION: 
OS = 1 
UPDATE ADDRESs/COUNT 

T23 

Figure 6&. nowthrough Tr_fer and nowthrough Tr_fer-and-Search Operations 

4-122 227Hl07 



~--------~ 

SAMPLING DREQ 
DRIVING BUSREQ 
SAMPLING BAI 
DACR INACTIVE 

(CM4 = 0): C·ARA ON BUS: 
(CM4 = 1): C·ARB ON BUS: 
R/W = 1,lIll = 0 
LEVEL DACK ACTIVE 

lIll = 1: os = 0 
BUS RESERVED FOR DATA 
SAMPLING WAIT 

T1 

PULSED DACK ACTIVE 12 

os = 0, DACK = 0 
SAMPLING WAIT 

TWA 

• 

DATA INTO TEMPORARY REGISTER 
COMPARING WITH 
UNMASKED PATTERN: 
os = 0, PULSED DACK INACTIVE 
UPDATE ADDRESS AND 
COUNT CHECKING TC, MC, 
EOP: SAMPLING DREQ T3 

figure 6b. flyby Transfer and flyby Tr_fer-and-Search Operations 

Current ARB, and the destination is specified by 
the Current ARA. 

Flyby Transfer and Transfer-And-Search operations 
consist of a single Read cycle or a single Write 
cycle. When CM4 is clear, the DTC reads the data 

227HJ08 

from the location specified by the Current ARA and 
the DACK signal strobes the data to the flyby 
peripheral. In Transfer-and-Search operations, 
the data is also stored in the Temporary register 
and compared with the unmasked pattern. 

4-123 



~---------, 

SAMPLING DREQ 
DRIVING BUSREQ 
SAMPLING BAI 
DACK = 1 

= 1 

= 1 

T1 

= 0 (CHANNEL REQUESTED) 

(CM. = 0): C·ARA ON BUS: 
(CM. = 1): C·ARB ON BUS: 
R/W=l,AS=o 
DACR = 0 T1 

AS = 1: OS = 0 
BUS RESERVED FOR DATA 
SAMPLING WAIT 
PULSED DACK ACTIVE T2 

OS = 0, DACK = 0 
SAMPLING WAIT 

TWA 

(CM. = 0): DATA INTO FLYBY PERIPHERAL 
(CM. = 1): DATA FROM FLYBY PERIPHERAL 
OS PULSED, DACK = 1, 
UPDATE ADDRESS AND COUNT, 
CHECKING !£J!!C, EOP 
SAMPLING DREQ 

T3 

figure 6c. Search Operation 

4-124 2271·009 



Table II. ~ratioo Codes lind Progr~ng Suggestions 

Operation 

Flowthrough 
Transfer 

Flyby 
Transfer 

Flowthrough 
Transfer & 

Search 

Flyby 
Transfer & 

Search 

Flowthrough 
funneling 

Flyby 
funneling 

Search 

Operatioo 

Single 
Operation 

Demand with 
Bus Hold 

Demand with 
Bus Release 

Demand 
Interleave 

Operation Code 

C",-CHo* 

0 
1 

2 

3 

4 
5 

6 
7 

8 
9 

C 

o 

E 
f 

Operatioo Code 

~ ~ 

0 o 

0 

o 

Size 

w - W 
B - B 

w - W 
B - B 

w - W 
B - B 

w - W 
B - B 

B - W 

B - W 

W - W 
B - B 

*CM (Channel Mode) register's bit. 

Suggestions 

If CM4 = 0 then ARA to ARB; if CM4 = 1 then ARB to ARA 
If CM18 = 0 then level OACK; if CM18 = 1 then DACK inactive 

If C~ = 0 then ARA to ARB; if CM4 = 1 then ARB to ARA 
If CM18 = 0 then level DACK; if CM18 = 1 then pulsed OACK 

CM4, CM18 same as flowthrough transfer 
If CM17 = 0 then stop on no match; if CM17 1 then stop on 
match 

CM4, CM18 aame as flyby transfer 
If CM17 = 0 then stop on no match; if CM17 = 1 then stop on 
match 

Byte at ARA, word at ARB 
If C~ = 0 then byte-to-word; if CM4 = 1 then word-to-byte 
If CM18 same as transfer 
Operation count = number of words 

If CM4 = 0 then source at ARA; if CM4 = 1 then at ARB 
If CM17 = 0 then stop on no match; if CM17 = 1 then stop on 
match 

Suggeations 

Each Software Rec. command causes one operation; 
Each DREQ falling edge causes one operation** 

Each Software Req. command causes block operation***; 
Operating when DREQ Low; Hold bus when DREQ High 

Each software Req. command causes block operation***; 
Operating when DREQ Low; Release bus when High 

Each Software Req. command causes block operation***; 
Operating when DREQ Low; Release bus to other 
channel or CPU after each operation 

**The DREQ falling edge must meet the timing requirement. 
***If MM2 (Master Mode) bit is set (CPU interleave is enabled), the DTC releases the bus after each 

operation when the channel is not in Bus Hold mode. 

4-125 



When Flip bit CM4 is set, the DlC activates DACK 
to the flyby peripheral, which enables the data 
onto the AID bus, writes the data into the 
location specified by the Current ARB, stores it 
in the Temporary register, and compares it with 
the unmasked pattern. 

The Search operation consists of a Read cycle 
only. The DTC reads data from the source location 
(specified by the Current ARA when CM4 = 0 and by 
Current ARB when CM4 = 1), stores the data in the 
Temporary register, and compares it with the 
unmasked pattern. No data is written into any 
location or peripheral. Channel Mode register 
bits CM17_CM16 are the match control field for 
programming the Stop condition. 

Channel Mode bits CM6-CMS select the channel's 
response to the request to start a DMA operation. 
There are four types of response: single 
operation, demand dedicated with bus hold, demand 
dedicated with bus release, and demand inter­
leave. These responses are detailed below. 
Figure 7 shows flow charts for each of these 
responses. Interleave operations between the CPU 
and the DTC, and between DTC channe Is, are shown 
in Figure B. 

The setting of bits CM6 and CMS are described as 
follows: 

a) Single operation (C"t; = 0, C~ = 0). In 
response to a software request or active DREQ 
High-to-Low transition, the channel performs a 
single LJMf\ 11:era{.10n. ihe DTe relinquishes bus 
control after each transaction unless a second 
High-to-Low DREQ transition meets the timing 
requirement. 

b) Demand Dedicated with Bus Hold (CH6 = 0, CMS = 
1). In response to a software request, the 
channel acquires bus control, performs a DMA 
operation until termination occurs (i .e., TC, 
MC or EOP occurs), and then relinquishes bus 
control. 

In response to an active Low DREQ, the channel 
acquires bus control, performs DMA operations 
while DREQ is active Low, retains bus control 
when DREQ is High but does nothing, resumes DMA 
operation when DREQ is Low again and only 
relinquishes bus control when the operation 
terminates (Le., TC, MC, or EOP occurs). If 
the DACK signal is programmed as level (CM1B = 
0), it will be active Low from the time the 
channel acquires bus control to when it 
relinquishes control. 

c) DeIIIand Dedicated with Bus Release (C"t; = 1, 
CMs = 0). In response to a software request 
the channel performs DMA iterations until TC, 
MC, or EOP occurs. In response to a hardware 
request, the channel performs DMA iterations 
until DREQ goes inactive. The contents of the 
Current Address registers and the Current 
Operation Count register will not be reloaded 
until TC, MC, or EOP occurs. 

d) Demand Interleave (C"t; = 1, CH5 = 1). Demand 
Interleave varies, depending on the setting of 
Master Mode register bit MM2 • If MM2 is set 
(CPU interleave is enabled), the DTC 
relinquishes bus control after each DMA 
iteration and then re-requests it. This 
permits the CPU and other devices to gain bus 
control during DMA operations. If MM2 is clear 
(CPU interleave is disabled), control can pass 
from one channel to the other without releasing 
bus control. If only one channel is programmed 
in Demand Interleave mode, the other channel 
will retain control until termination or until 
DREQ goes inactive, at which time control is 
returned to the other channel. 

Channel Mode register bit CM18 selects the wave­
form of DACK. The pulsed DACK (CM18 = 1) is used 
only in Flyby transactions. It is inactive during 
Non-Fl yby transact ions when CM1 B is set. 

Byte-word funne ling allows packing and unpacking 
of byte data to facilitate high-speed transfers 
between byte-oriented peripherals and word­
organized memory. The funneling option can be 
used only in Flowthrough transactions. For 
transfers from a byte source to a word destina­
tion, two consecutive byte reads are performed to 
move data from the source location. These bytes 
are assembled in the Temporary register. The 
Temporary register data is then written into the 
destination location as a word. For word-to-byte 
funneling, word data is read from the source 
location into the Temporary register. This word 
is then written to the destination in two 
consecutive byte writes. The byte address must be 
programmed in the Current ARA and the word address 
must be in the Current ARB. Bit CM4 in the 
Channel Mode register is used to specify the 
transfer direction. It is set to 0 to specify 
byte-to-word funneling and to 1 for word-to-byte 
funneling. To access the high byte of the word 
first, bit fG 3 of the Current ARB must be 
cleared. Bit TG3 of the Current ARB is set when 
accessing the low byte of the word first, after 
which the ARB address increments. Figure 9 shows 
two examples of data funneling. 

4-126 



2271·010 

ANOTHER 
CHANNEL OR 
RELEASE BUS 

( EXIT) 

(A) Single operation 

ANOTHER 
CHANNEL OR 
RELEASE BUS 

( EXIT) 

(B) Demand operation when 
software requesting 

INTERRUPT 
B·TO·C LOAD 

CHAINING 

ANOTHER 
CHANNEL OR 
RELEASE BUS 

INTERRUPT 
B·TO·C LOAD 

CHAINING 

(C) Demand dedicated with bus release 
(hardware request) 

INTERRUPT 
B·TO·C LOAD 

CHAINING 

ANOTHER 
CHANNEL OR 
RELEASE BUS 

( EXIT) 

(D) Demand dedicated with 
bus hold (hardware request) 

Figure 7. Flow Charts of DMA Operations 

4-127 

----------~-----,-.-'-.--.•.. "-. , .. _, -, -.----~".- ... ~--- ---,-.--'" - '-"'-.-. --.-. 



~ 

~ 

~ 
~ 

CH 1: INTERLEAVE 
eH 2: INTERLEAVE 
CPU. NO INTERLEAVE 

eH 1: INTERLEAVE 
eH 2: INTERLEAVE 
CPU INTERLEAVE 

eH l' INTERLEAVE 
eH 2: SOFTWARE DEMAND 
CPU: INTERLEAVE 

eH 1: DEMAND 
eH 2: DEMAND/BUS RELEASE 
CPU: NO INTERLEAVE 

;1 

9.REQ2 

9 
:) 
t 

~) 
CH2 
TERMINATE 

eH 1. DEMAND INTERLEAVE 
eH 2: DEMANDIBUS HOLD 
CPU: NO INTERLEAVE 

figure 8. flow O1arts of Interleave Operations 

eH 1 DEMAND/INTERLEAVE 
eH 2: DEMANOI BUS RELEASE 
CPU: INTERLEAVE 

eH 1. DEMANnNTERLEAVE 
eH 2: DEMANDSIBUS HOLD OR RELEASE 
CPU: INTERLEAVE 



A) Byte-to-Word Funneling: Data is moved from the byte source addressed at FA70 to the word 
destination addressed from 1600. 

Current ARA: 0010-FA70 
Current ARB: 00xx-1604 
Current Op-Count: 0003 
Flip bit (CM4): 0 

Source Data string 
AA 
BB 
CC 
DO 
EE 
FF 

FA70, Address hold) (Segment = 00, Offset 
(Segment = 00, Offset 1604, Address hold/change) 
(Three words) 
(Data from "ARA" to "ARB") 

Destination Data Distribution 

TG4,TG3 
ADDRESS DO 01 10 11 

00-1600 * FFEE * * 
00-1602 .. DDCC * .. 
00-1604 AABB BBAA EEFF FFEE 
00-1606 CCDD * * .. 
00-1608 EEFF .. * .. 
oO-16oA * .. .. * 

ARB INC. DEC. HOLD HOLD 
NOTES WRITE FIRST HIGH LOW HIGH LOW 

B) Word-to-Byte Funneling: Data is moved from the word source addressed from 1800 to the byte 
destination addressed from 1AOO. 

Current ARA: 0000-1AOO 
Current ARB: 00xx-1800 
Current Op-Count: 003 
Flip bit (CM4): 1 

Source Data Distribution 

Address Word Data 

00-17FA 
00-17FC 6677 
00-17FE 8899 
00-1800 AABB 
00-1802 CCDD 
00-1804 EEFF 
00-1806 

"Data unchanged 

2271-012 

(Segment = DO, Offset 1AOO, Address increment) 
(Segment = 00, Offset 1800, Address hold/change) 
(three words) 
(Data from "ARB" to "ARA") 

Destination Data Distribution 

TG4,TG3 
ADDRESS 00 01 10 11 

00-1AOO AA BB AA BB 
00-1A01 BB AA BB AA 

00-1A02 CC 99 AA BB 
00-1A03 DO 88 BB AA 
00-1A04 EE 77 AA BB 
00-1AOS FF 66 BB AA 
00-1A06 * * * .. 
00-1A07 * * .. * 
00-1A08 * * * .. 

ARB INC. DEC. HOLD HOLD 
NOTES READ FIRST HIGH LOW HIGH LOW 

Figure 9. [xalllpies of Byte/Word Funneling 

4-129 



l0016 OTC-TO-lOOOO CPU INTERFACE 

CPU and OTC On 5_ Board 

The Address/Data bus and control signals of the 
ZBOOO CPU and those of the lB016 DTC are directly 
connected. The AS, 55, and BUSACK signals of the 
CPU are connected through the reset logic to the 
AS, 55, and BAI signals of the DTC. Cs/WAIT 
demultiplexing logic is required for the CS/WAIT 
input of the DTC if hardware waits are necessary. 
The DREQ lines are connected to the request 
outputs of peripheral devices. The DACK lines are 
connected to the corresponding enable inputs of 
the peripheral devices. 

When programming for Flyby transactions, the R/W 
input of the flyby peripheral should be inverted 
internally by the peripheral or externally by 
special logic. R/W High indicates that the flyby 
peripheral should accept data, and R/W Low 
indicates that the flyby peripheral should drive 
data onto the bus. The memory or non-flyby 
peripheral uses the R/W High signal to indicate 
that it should drive data onto the A/D bus, and it 
uses the R/W Low signal to indicate that it should 
accept the data from A/D bus. 

When reading a slow-readable register (e. g., the 
Channel Mode register) , external logic for 
inserting hardware Wait states is required. The 
worst-case 55 low width for the slow-readable 
registers is approximately 2000 ns for a 4 MHz 
Z0016 DTe. The interrupt vector is supplied by 
t.he Interrupt Save regl.s1:er (8 fast-readable 
register), therefore, the 05 Low width for 
Interrupt Acknowledge does not require hardware 
Wait states. 

Figure 10 shows the interface of the ZBOOO CPU and 
the ZB016 OTC when located on the same board. No 
buffer is required for BUSREQ. The pins of 
BUSREQ, EOP and INT require 3.3k or larger pullup 
resistors. When more than one DTC or other 
peripherals are used, the BAI-BAO and lEI-lEO 
daisy chains are used to determine priorities for 
bus control and the interrupt service. 

CPU and OTC on Different Boards 

When the DTC and CPU are located on different 
boards, the address/data and control signals pass 
through the system bus. The system bus must 
provide: 

• Multiplexed Address/Data lines (ADO-AD15) 
• Bus timing lines [Address Strobe (AS), 

Data Strobe (05)] 

• Read/Write (R/W) status signal 
• Bus control lines [Bus Request (BUSREQ) and Bus 

Acknowledge (BUSACK)] 
• Interrupt Request lines 
• Status lines (STO-ST 3) 
• Ready (ROY) line 

The BUSREQ pin of the OTC requires special 
bidirectional buffer logic to prevent competition 
between buses. The other connections are the same 
as those made when the CPU and DTe are located on 
the same board. 

Figure 11 shows the interface configuration for a 
Z-BUS system used with the l80i6 DTe. 

4-130 



+5V 

0 

RESET +5V .... J 

I 
) 

V' -

~ BUSREQ BUSACK BAI BUSREQ 

- RESET OS 
OS lEI 

AS 
AS - ~ Za016 

zaooo DTC ~ 

CPU RM RtW MULTIPLEXING 
CSiIWAIT 1--LOGIC 

BM BM 

of'" 
~ 

w 

N/S 
A T I I I~ 

N/S BAa 

STO I( STO 

ST3 ST3 

Vi ~ 

I 

r 
INT lEO r--

ADo·AD15 ADo·AD15 

1'1 -f>"A 
ADDRESS/DATA BUS ~~ JJ. 

Y 

-& +5V 
;> DECODER 

0 B 

'"- OE 
25LS373 

""-
2946 

G I-- TlR CD r-
'--

Y A n 

,.!J. -.:.....7 ~ 
) SYSTEM BUS 

AO·A15 MIS STO·ST3 BIW R/W AS OS INT BUSREQ 00. 0 15 lEO BAa WAIT \ 

, 

Figure 10. DTC-to-Z8000 CPU Interface Configuration 



+ 

RESET OUT RESET 
~ DECODER 

SYSTEM MEMORY ;L-
CLK a127 ZCK 

CLOCK Y- MREQ SNo-SN7 
5V ,--- zaOI)O ---Y r 
~ WAIT WAIT CPU 

~7 
RIW Ao-AIS Do-DI5 OS SLOW 

BUSREQ tiJ READY 
r-- BUSACK ~ 

~) AS STo-ST. IIIW NIS RIW OS ADo-AD15 II ... :... ~ 

~ A 7:~:104 T~ Y A 

25L8373 •• 47 
Qn~ ~ 0....- r OE Gt-- f- TIll OE I-

"--B 

CLR D J. ~ I 

t 1l it WAIT STATES CONTROL .... :>'" .... 7-

~ - RDY BUSREQ WAIT AS STO-ST3 BIW NIS RIW DS ADo-ADI5 STO-STa.NIS ADo-Ao,5 AS RIW ADo-ADI5 DS RDY SNO-SN 
Z-BUS BUSACK w 

'" ADDRESS AS 5TO-ST3 IIIW NI~; RIW OS ADo-ADI5 SNu-SN7 IUSACK WAIT AS RDY RIW AS IUSREQ 

f 

I IT 
... ,.. ... j:... 

I 
1 
,~~ 'I ---

... 7- ~ 
CS SLOW 

AS STO-ST3 BIW HIS RIW DS ADo-ADI5 ~ IUFFERED r-- f- MUL TlPLEXING BUSREQ SNO-SN7 r--- LOGIC LOGIC , DREQ ~ 
zao-Io IAI 

I t t DTI: 
BAO , 

DACK Cs/wAIT I 
BUSREQ 

figure 11. DTC-b-Z-8US Syste. Interfa:e Configuratioo 

~ 
~ 
U) 



Z8016 DTC-TO-8086 CPU INTERfACE 

To control data transactions the 8086 CPU provides 
lID and WR signals and the I8016 DTC provides 55 
and R/W signals. The R/W signal is valid and 
stable at the T1 state, whereas R5 and WR are 
valid at the T2 state. Therefore, the use of RD 
or WR to generate a R/W signal violates the 
R/W-valid-to-55 falling edge setup time 
requirement. To avoid this, the DT/R signal of 
the 8086 CPU can be used to generate the R/W 
signal for programming the DTC. This interface 
configuration between the I8016 DTC and the 8086 
CPU is shown in Figure 12. 

External logic provides and controls the status 
signals STO-ST3. See the Interface Support Logic 
section of this application note for details. 

Z8016 DTC-TO-I8DJO I-SCC INTERfACE 

The I8030 Serial Communications Controller (I-SCC) 
functions as a serial-to-parallel, parallel-to­
serial converter/controller. Address and data 
transactions through the Z-SCC are activated by 
controlling the CSO and CS1 inputs. The CS1 must 
remain active High throughout the data transac­
tion. The CSo Low allows the address of the 
internal register to be accessed. Figure 13 shows 
the DTC-to-I-SCC interface configuration. 

When interfacing with the I-SCC, the DTC should be 
programmed for: 

• Single operation or Demand operation 
• Byte-to-byte flowthrough transfer, transfer­

and-search, or search. An FlO is necessary in 
Flyby mode due to recovery time parameters. 

• One wait state insertion for accessing the 
Z-SCC and three wait states for the memory 
cycle. lhis is to meet the SCC recovery time. 

For example, to transfer data from the Z-SCC 
(addressed as OO-FFBx) to memory (e.g., 00-2000 to 
00-20FE), the ARA, ARB, Op-Count and Channel Mode 
registers are: 

ARA: 
ARB: 
Op-Count: 
Channel Mode: 

0000 - 2000 
0072 - FFBO 
0100 
0000 - 1001 

Because of the write to 55 falling edge setup time 
requirement, Flyby transactions are not 
recommended unless the memory access time is fast 
enough to meet this requirement. The I-SCC 
requests a DMA transfer by pulling the DTR/REQ 
output Low. 

I8016 DTC-TO-Z8018 I-FlO INTERfACE 

The Z803B FIFO I/O Port (Z-FIO) provides an 
asynchronous, 12B-byte FIFO buffer. This buffer 
is expandable in both width and depth. The data 
transfer logic of the Z-FrO is especially designed 
to work with DMA controllers in high-speed 
transfers. Figure 14 shows the DTC-to-Z-FIO 
interface configuration. The DACK output of the 
DTC is connected to the DMASTB input of the 
Z-FIO. When DACK is active Low, it masks the CS 
for Flyby DMA operations. The following rules 
apply when programming the DTC to transfer data 
between the A/D bus and the Z-FIO. 

4-133 

(1) The time between the rising edge of 55 and 
the next falling edge of 55 in the DTC must 
meet the valid access recovery time of the 
Z-FIO. In Demand Block transfer opera­
tions, the delay of two 55 signals equals 
approximately two DMA clock cycles. 
Therefore, Demand Inter leave transfer or 
Single transfer operations are suggested. 

(2) The pulsed DACK bit (CM18) of the Channel 
Mode register must be set. 

(3) For Flowthrough operations, CS of the I-FrO 
must be activated. 

(4) For word-to-word transfers, two FIOs must 
be used. 



of" 
~ 

w 
~ 

rlO~ 
RESET ....... 

8284 

AEN1 AEN2 RDY1 READY 

4 
-=-

L.....-

[ WAIT STAT~l GENERATOR 

.- -

[ SLOW 

1 -
HOLD 

RESET 

8086 
CPU 

I ROY MIlO DEN .- I I 

I 
I 

MilO 

4 f 

Q 

0<1 

J 

I 
HLDA-

.~. 

Rill--

8USREQ lEI 

I 
~ 

BAi 

WR -
r==t-->- ., ~ 

EOP I~ 

S240~ 
......- -<t 

_ os 

DT/A 

., 1 
DREa 1--

~ 

Z8016 

ALE 

. ~ - RlW 
DTC 

o.r/ 
"V' 

OACK --

~-

.... 
~ 

9 

BHE 

AS 

ADo·AD15 -r-- ~l-<]: 
"F 11 

r ~ 
B/W 

I I "I I ADO I 
ADDRESS/DATA BUS 

I .., ~ I I I 
~AD15 CS/WAIT BAD I 

I 

.of~ T T-

t-
~ 1 :Jill 

I I III 
...... ADS 

i5 r t-1 
~ 11 

~u 
~-

j JJ~? 

i 

~ 
-

A 
I f--I MULTIPLEXING 

,~ 
'-

-L 
lOGIC 

DIR LS245 GI-n 
'" 1 

I 

I B -1 TI 
I 

I y ---, 

_I G DeCODER '~l 

RO WR SHE AO·~~15 

I 1--.J 
SYSTEM BUS 00·015 

i 
An SLOW "\ - - - - -

figure 12. Z8016 DTC-to-8086 CPU Interface Configuration 



of" 
~ 

w 
(J] 

- lEI 

BUSREO 

BUSREO 

lEO 

AS 

OS 

DREO 
Z8016 

DTC DACK 

BAO 

BAI 

CS/WAIT 

R/IN 
ADO·A015 STO·ST3 

/?. ~ 

"'--.7 
ADO·AD15 

,.J,J.. 
STO·ST3 

lEI 

• ... • AS lEO I--- OS 

DTR/REO CHl ¢= 
r--- +5V 

~ CSl Z8030 ¢= 1- CSo Z·SCC CH2 

MULTIPLEXING 
LOGIC 

1--

-- R/IN 

+5V ~ IN/REO 
ADO·A0 7 

,--- A,B YO l-

n r+ C,G Vi I---
DECODER 

ADOR 
ADDRESS/DATA BUS 

ADo-AD7 

( 

R/W OS BAI STn 
CONTROL BUS AS WAIT ( 

Figure 13. DTC-to-Z-SCC Interface Configuration 



.---------:-1 
I 

DREQ REQ I 
DACK DMASTB I 

.Ln I 
BAO .... CS I MULTIPLEXING 

CSlwAIT 
LOGIC ...... - I 

Z8038 

~ 
Z8018 t DTC BAI • • Z·PIO 

PORT 2 

RJW RJW I 
liS liS I 
AS AS I 

I 
YO Y1 - MO I 

DECODER I 
M1 -STO·ST3 ADO·AD15 BUSREQ A,B,C,G,E 00·D7 J 

n £').. ...(">. 
~n , m -=-

STO·ST3 BUSREQ BAI AS WAIT ST2 DS R/W 
CONTROL BUS I 

Q- ~ 
ADO·AD15 

ADDRESS/DATA BUS ADDR ADO·AD7 I ADa·AD15 

figure 14. DTC-to-Z-FIO Interface Configuration 

Z8D16 DTC-TO-lB010 till INTERfACE 

The Z8010 Memory Management Unit (MMU) contains a 
table of access attributes that are individually 
programmable for each segment. The attributes 
provided are read-only, System-mode-only, 
OMA-only, execute-only, and CPU-only. If the MMU 
detects a memory access that violates one of the 
attributes of a segment, the MMU interrupts the 
CPU or OMA to inhibit an illegal memory access. 

Figure 15 shows the OTC-to-MMU interface configur­
ation. The MMUSYNC output of the OlC ORad with 
the BUSACK signal of the CPU is connected to the 
DMASYNC input of the MMU. The MMUSYNC pin of the 

OlC is multiplexed with SN7. If bit MM1 of the 
Master Mode register is set (Logical Addressing 
mode), this pin outputs an MMUSYNC active High 
pulse prior to each OMA cycle when the OlC is in 
control of the system bus; when the OlC is not in 
control of the system bus it outputs a Low level. 
If the MM1 is clear (Physical Addressing mode), 
this pin outputs the SN7 when the OlC is a bus 
master and is driven with high-impedance off when 
the OlC is not in control of the system bus. 

The SUP output of the MMU is connected to the EOP 
pin of the OlC so that OMA operation will be 
terminated whenever a violation is detected. 

4-136 227Hl17 



+5V 

t -I " J -
MMUSYNC EOP DMASYNC SUP ... AS II .. AS 

Aa·A23 AO·A23 

os os r 
R/W II .. RiW 

Z8016 STO II .. STO Z8010 

~ 

BAI 
DTC 

ST1 ST1 
MMU 

-:f 
OE Y G l-

II .. 
25LS373 

ST2 II .. ST2 0 -W 
'-J r '"~'Q '" 

II .. ST3 /';>.. 

CLOCK CLOCK SEGT -
N/S 

.J. 
ADO·AD15 SNO·SN6 

t 
SNo-SNe ADs-AD15 

~ ~~ 

I BUSACK 
I--- -

AS t BUSREQ N/S ClK ST3 ST2 ST1 STO R/W OS AS 

CONTROL BUS 
I--- -

I SNO·SNS SEGMENT BUS 

~ .... ". 

/ ADO·AD15 ADDRESS/DATA BUS ADa·AD15 ADO·AD7 I 
Figure 15. DTC-to-llll Interface Configuration 



INTERrACE SUPPORT LOGIC 

figure 16 shows the external logic for 
multiplexing CS and WAIT (or ROY) signals for the 
CS/WAIT input of the lB016 OTC. The slow circuit 

shown assumes a timeout feature such as on the 
AMZB127 clock chip. figure 17 shows the logic for 
decoding the status lines to generate the MREQ, 
IORQ, and MilO signals. 

cs 
ADe 

RtW 

CP 

AS ___________ ......... t f 
(A) WAIT, cs tliltiplexing Logic 

cs ------------i~~----------~r_~ 

BAO --~>01I~~--~~~~----~~~ 
BAI -----....I 

CLOCK ---------~~------l_~~~ 

RDY 

5T2 ... -----1 

5T3 ------I 

-= 

(8) ROY. CS Multiplexing Logic 

figure 16. Multiplexing Logic for CS/WAIT Input 

So 

51 

53 

E1 

Eli 

Z8148 
DECODER 

Yo 

Vi 

Vi 

Va MEMRQ 

L---l~r-----.,D-- M/iO 

figure 17. Status Lines Decoding Logic 

4-138 00·2271·02 



Zilog 

INTRODUCTION 

Zilog's Z8536 Counter/Timer and Parallel I/o Unit 
(CIO) and Z8036 (I-CIO) can provide convenient 
solutions 
problems. 

to many microprocessor-based design 
Their handshake control, bit manipu-

lation, pattern recognition, and interrupt control 
capabilities extend the range of applications far 
beyond that of traditional counter/timer and 
parallel I/O circuits. This application note 
gives a generalized procedure for initializing the 
CIO, as well as an initialization example for one 
particular application. All comments in this 
document referring to "the CIO" apply to both the 
I8036 and Z8536. References to the Z-CIO refer 
only to the I8036. 

ACCESSING THE REGISTERS 

From the programmer's point of view, the only dif­
ference between the Z8036 and the Z8536 is the way 
the registers are accessed. In the Z8036, they 
are mapped directly into the CPU's I/O address 
space, and the Right Justified Address (RJA) bit 
in the Master Interrupt Control register deter­
mines which address bits are used to select them. 
When RJA = 0, bits AD6-AD1 are decoded, and when 
RJA = 1, bits AD5-ADO are decoded. 

The Z8536 uses only AD and A1 to select the regis­
ters and thus occupies only four bytes of I/O 
address space. The Data registers for each port 
are accessed directly using AD and A1' The Con­
trol registers (as well as the Data registers) can 
be accessed using the following two-step sequence 
with AD = A1 = 1: first, write the address of the 
target register to an internal 6-bit pointer reg­
ister; then read from or write to the target reg­
ister. An internal state machine determines 

Initializing 
The elG 

Application 
Note 

October 1982 

whether a given access refers to the pointer or 
the target register. 

SIFTWARE RESET 

A software reset is performed by writing a 1 to 
the Reset bit in the Master Interrupt Control reg­
ister. This causes all control bits to be reset 
to 0, all port I/O lines to be at high impedance, 
the Interrupt pin to be inactive, and the Inter­
rupt Enable Output (lEO) pin to follow the Inter­
rupt Enable Input (rEI) pin. A reset disables all 
functions except a read or write to the Reset bit; 
therefore the Reset bit must be cleared before any 
other control bits can be programmed. 

INIT IAlIZATION 

Once the CIO has been reset and, in the Z-CIO, the 
RJA bit has been programmed, it can easily be ini­
tialized for a given application by using the pro­
cedures outlined in the flowcharts of Figures 1 
through 7. These flowcharts are intended to serve 
more as a logical guide than as a sequential algo­
rithm. The actual sequence of initialization is 
unimportant, except that a few basic rules must be 
observed: 

• The ports and counter/timers should be enabled 
only after their functions have been completely 
specified. 

• When Ports A and B are linked, Port B should be 
enabled before, or simultaneously with, the 
enabling of Port A. Also, the Port Link Con­
trol (PLC) bit in the Master Configuration 
Control register should be set before either 
port is enabled. 

4-139 



• The counter/timers should be triggered only 
after they have been enabled. 

• When Counter/Timers 1 and 2 are linked, the 
functions of both must be specified and the 
Counter/Timer Link Control (LC) bits (in the 
Master Configuration Control register) must be 
programmed before either counter/timer is 
enabled. 

• The Master Interrupt Enable (MIE) bit in the 
Master Interrupt Control register should be set 
only after the functions of the CIO's interrupt 
sources have been completely specified. 

figure 1. Port A or B Initialization 

Internal 
Address 
(Binary) 

A5···Ao 
000000 
000001 
000010 
000011 
000100 
000101 
000110 
000111 

001000 
001001 
001010 
001011 
001100 
001101 
001110 
001111 

010000 
010001 
010010 

Table 1. l80J6/l85J6 CID Register S_ry 

Read/Write Register ~ 

Main Control Registers 
R/W Master Interrupt Control 
R/W Master Configuration Control 
R/W Port A Interrupt Vector 
R/W Port B Interrupt Vector 
R/W Counter/Timer Interrupt Vector 
R/W Port C Data Path Polarity 
R/W Port C Data Direction 
R/W Port C Special I/O Control 

Most Often Accessed Registers 
* Port A Command and Status 

* Port B Command and Status 
* Counter/Timer 1 Command and Status 
* Counter/Timer 2 Command and Status 

* Counter/Timer 3 Command and Status 
R/W Port A Oata** 
R/W Port B Data** 
R/W Port C Oata** 

Counter/T~r Related Registers 
R Counter/Timer 1 Current Count 
R Counter/Timer Current Count 
R Counter/Timer 2 Current Count 

(MS Byte) 
(LS Byte) 
(MS Byte) 

* All bits can be read and some bits can be written. 
** Also directly addressable in Z8~36 using pins AO and A1. 

4-140 2256-001 



Table 1. Z80J6/Z85'6 CIO Register S_ry--Continued 

Internal 
Address 
(Binary) 

010011 
010100 
010101 
010110 
010111 
011000 
011001 
011010 
011011 
011100 
011101 
011110 
011111 

100000 
100001 
100010 
100011 
100100 
100101 
100110 
100111 

101000 
101001 
101010 
101011 
101100 
101101 
101110 
101111 

Read/Wdte Register N_ 

Counter/Ti_r Related Registers (continued) 
R Counter/Timer 2 Current Count (LS Byte) 
R Counter/Timer 3 Current Count (MS Byte) 
R Counter/Timer 3 Current Count (LS Byte) 

R/W Counter/Timer 1 Time Constant (MS Byte) 
R/W Counter/Timer 1 Time Constant (LS Byte) 
R/W Counter/Timer 2 Time Constant (MS Byte) 
R/W Counter/Timer 2 Time Constant (LS Byte) 
R/W Counter/Timer 3 Time Constant (MS Byte) 
R/W Counter/Timer 3 Time Constant (LS Byte) 
R/W Counter/Timer 1 Mode Specification 
R/W Counter/Timer 2 Mode Specification 
R/W Counter/Timer 3 Mode Specification 

R 

Port 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 

Port 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 
R/W 

Current Vector 

A Specification Registers 
Port A Mode Specification 
Port A Handshake Specification 
Port A Data Path Polarity 
Port A Data Direction 
Port A Special I/O Control 
Port A Pattern Polarity 
Port A Pattern Transition 
Port A Pattern Mask 

B Specification Registers 
Port B Mode Specification 
Port B Handshake Specification 
Port B Data Path Polarity 
Port B Data Direction 
Port B Special I/O Control 
Port B Pattern Polarity 
Port B Pattern Transition 
Port B Pattern Mask 

4-141 



Figure 2. Bit Port Initialization 

4-142 2256-002 



o 
• Deskew Timers Are Used Only For Output Ports 

Figure J. Handshake Port Initialization 

2256-003 4-143 



Figure 3. Handshake Port Initialization 
(continued) 

4-144 

Figure _. Port C Initialization 

2256-004,005 



*For hnked operatIon elTs 1 and 2 must 
both be inItialized belore they are enabled 

Figure 5. Counter/Timer Initialization 

2256-006 4-145 



Figure 6. Interrupt Initialization 

Figure 7. Pattern Recognition Initialization 

4-146 2256-007, 008 



APPLICATION EXAMPLE 

Figure 8 shows the Z8036 configured to function 

as: 

• An input handshake port 
• A priority interrupt controller 
• A squarewave generator 
• A watchdog timer 
• A general-purpose timer 

In addition, there are two bits left over to 
function as bit-addressable output lines. The 
following sections discuss the specific initiali­
zation procedures used to program each of the 
functions. 

jAPROCESSOR 
INTERFACE 

Z8036Z-CIO 

} 
BIT·ADDRESSABlE 
OUTPUT LINES 

PB7~} ::::== 6-INPUT PRIORITY 
INTERRUPT 

PB3 ~ CONTROLLER 

pa2 -+---

PB1 .......--L..-______ ...I 

Figure 8. Z-CIO Application Example 

Port A as an Input Handshake Port 

In Figure 8, Port A is an input port with Z-Wire 
Interlocked Handshake. (The CIO also supports 
Strobed Handshake, Pulsed Handshake, and IEEE 
3-Wire Handshake.) Port C provides the handshake 
control signals, with PCZ as ACKIN (Acknowledge 

Input) and PC3 as the RFD (Ready For Data) output. 

Port A is specified as an input handshake port by 
writing a 0 to bit D7 and a 1 to bit D6 of the 
Port A Mode Specification register. Writing a 1 
to bit DS and a 0 to bit D4 of the same register 
specifies the double-buffered mode and allows the 
port to interrupt the CPU when both the Buffer 
register and Input Data register are full. Since 
the ports reset to Interlocked Handshake, the Port 
A Handshake Specification register need not be 
programmed in this example. 

2256-009 

I f Port A is to place an interrupt vector on the 
system bus during Interrupt Acknowledge transac­
tions, then the Port A Interrupt Vector register 
should be programmed with the appropriate value. 
The Port A interrupt logic is enabled by writing 
1s to bits D7 and D6 , and a 0 to bit D5 of the 
Port A Command and Status register. This encoded 
command sets the Port A Interrupt Enable (IE) 
bit. 

The programmer should specify the correct data 
direction for the handshake bits, as well as the 
initial state of RFD. Writing F4 (hexidecimal) to 
the Port C Data Direction register programs PC3 
(RFD) as an output bit, PC Z (ACKIN) as an input 
bit, and allows PC1 and PCO to function as bit­
addressable output lines. PCo, PC1' and PC3 can 
be programmed with their initial values by writing 
to the Port C Data register. In this example, PC3 
(RFD) is initially High, signaling that Port A is 
ready for data. 

Port B as a Priority Interrupt Controller 

The priority interrupt controller is implemented 
using the OR-Priority Encoded Vector (OR-PEV) mode 
of pattern recognition. When any of the six 
inputs (P81-PB5 and PB77) are High, Port B's Pat­
tern Match Flag and Interrupt Pending (IP) bits 
are set. If no higher priority interrupt sources 
(e.g., Port A) are under service, and if Port B's 
interrupts are enabled, the CIO interrupts the 
CPU. If no higher priority interrupts are pending 
at the time of the next Interrupt Acknowledge 
cycle, then Port B places its interrupt vector on 
the bus. Encoded within this vector is the value 
of the highest priority interrupt request at Port 
B (with P87 as the highest priority input). The 
CPU can then automatically branch to the appro­
priate service routine. 

To function as a priority interrupt controller, 
Port B must be specified as a bit port with OR-PEV 
pattern match; hence a 06H must be loaded into 
the Port B Mode Specification register. PB1-PBS 
and PB7 must be programmed as input bits by writ­
ing 1s to bits D1-DS and D7 of the Port B Data 
Direction register. The polarity of the interrupt 
request signalS can be specified independently in 
the Port B Pattern Polarity register and the 
sources can be individually masked using the Port 
B Pattern Mask register. In this example, all of 
the interrupts are active High and bits PBO and 

4-147 



PB6 are masked off; FFH is therefore loaded into 
the Port B Pattern Polarity register, and BEH is 
loaded into the Port B Pattern Mask register. 
Transition pattern specifications should not be 
used in the OR-PEV pattern match mode, so the Port 
B Pattern Transition register should not be pro­
grammed. 

The base interrupt vector should be loaded into 
the Port B Interrupt Vector register, and the Port 
B interrupt logic is enabled by writing 1s to bits 
07 and 06' and a 0 to bit 05 of the Port B Command 
and Status register. Also, the Port B Vector 
Includes Status (VIS) bit should be set so that 
unique vectors can be generated for each of the 
interrupt sources (this can be done at the same 
time the MIE bit is set). 

Counter/Tiaer 1 as a Watchdog Timer 

In this example, Counter/Timer 1 acts as a watch­
dog timer, interrupting the CPU whenever a 10 ms 
interval elapses without the occurrence of a ris­
ing edge on its trigger input (PB6 ). Each time 
the timer is triggered (i.e., with each rising 
edge on PB6), it reloads its time constant and 
begins counting down toward the terminal count. 
Since the Counter/Timer 1 Time Constant is pro­
grammed to provide a timeout interval of 10 ms, a 
terminal count condition always indicates that at 
least 10 ms has elapsed since the last rising edge 
on PB6 . 

The programmer must set bits 02 and 04 of the 
Counter/Timer 1 Mode Specification register. Bit 
02 is the Retrigger Enable (REB) bit, and 04 is 
the External Trigger Enable (ETE) bit. All other 
bits in this register can remain reset to o. 
Since PB6 is the designated external trigger input 
whenever Counter/Timer 1's ETE bit is set, Port B 
must be programmed as a bit port and PB6 must be 
programmed as an input bit. 

Since Counter/Timer 1 is in the Timer mode (i.e., 
it does not have an external count input), it 
counts the pulses of the internal clock signa 1 
(PCLK/2). Assuming a 4 MHz PCLK, the Time 
Constant should be 20,00010 for a 10 ms timeout 
interval. This can be achieved by loading 4EH 
to the most-significant byte of Counter/Timer 1's 
Time Constant, and 20H to the least-significant 
byte of Counter/Timer 1's Time Constant. 

The base interrupt vector should be loaded into 
the Counter/Timer Interrupt Vector register, and 
the Counter/Timer 1 interrupt logic is enabled by 
writing 1s to bits D7 and 06, and a 0 to bit 05 of 
the Counter/Timer 1 Command and Status register. 
Also, the Counter/Timer VIS bit should be set so 
that Counter /T imers 1 and 2 can generate unique 
vectors. (This can be done at the same time the 
MIE bit is set.) 

Counter/Timer 2 as a Squarewave Generator 

While Counter/Timer uses PB6 as its trigger 
input, Counter/Timer ,2 can use PBO as its output. 
The squarewave duty cycle is selected by writing a 
1 to bit 01 and a 0 to bit 00 of the Counter/Timer 
2 Mode Specification register. Setting bits 07 
and 06 of the same register sped fies the Con­
tinuous mode with an external output. Since PBO 
is the designated Counter/Timer 2 output whenever 
Counter/Timer 2's External Output Enable (EOE) bit 
is set, Port B must be programmed as a bit port 
and PBO must be programmed as an output bit. 

In the Squarewave mode, the timeout interval 
should be equal to half the period of the desired 
squarewave (see the CIO Technical Manual, section 
4.2.5, document number 00-2091-01). A frequency 
of 100 KHz corresponds to a period of 10 ~s and, 

therefore, a timeout interval of 5 ~s. With a 
4MHz PCLK, the period of the input c lock signal 
(PCLK/2) is o. 5 ~s, and therefore the necessary 
Time Constant is 10m or OOOAH= This value 
should be loaded into the Counter/Timer 2 Time 
Constant registers. Since the squarewave genera­
tor does not interrupt the CPU, there is no need 
to enable Counter/Timer 2's interrupt logic. 

Counter Timer J as a General-Purpose Tiller 

For Counter/Timer 3 to interrupt the CPU period­
ica lly, the user must specify the Continuous mode 
by setting bit 07 of the Counter/Timer 3 Mode 
Specification register. All other bits in this 
register can remain reset to o. Loading 4E20H 
to the Counter/Timer 3 Time Constant registers 
specifies a 10 ms timeout interval. Writing 1s to 
bits 07 and 06' and a 0 to bit 05 of the Counter/ 
Timer 3 Command and Status register enables the 
Counter/Timer 3 interrupt logic. 

4-148 



When all of their functions have been completely 
specified, the ports and counter/timers can be 
enabled simultaneously by writing F4H to the 
Master Configuration Control register. At this 
point, the counter/timers can be started by set­
ting the Gate Command (GCB) and Trigger Command 

( rCB) bits in each of their Command and Status 
registers. Finally, setting the MIE bit, along 
with the appropriate VIS bits, completes the ini­
tialization. Table 2 summarizes the initializa­
tion sequence for this application example. 

4-149 



Step 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

1Z. 

13. 

14. 

15. 

16. 

Table 2. Initialization Sequence for Application £xa.ple 

Master Interrupt 
Control 

Master Interrupt 
Control 

Port A Mode Spec­
ification 

Port A Interrupt 
Vector 

Port A Command 
and Status 

Port C Data 
Direction 

Port C Data 

Port B Mode 
Specification 

Port B Data 
Direction 

Port B Pattern 
Polarity 

Port B Pattern 
Mask 

Port B Interrupt 
Vector 

Port B Command and 
Status 

Counter/Timer 
Mode Specification 

Counter/Timer 1's 
Time Constant-MS8s 

Counter/Timer 1's 
Time Constant-LSBs 

XOOOOOOO* 

XOOOOOOX 

X100000X 

X000010X 

X001000X 

X000110X 

X001111X 

X101000X 

X101011X 

X101101X 

X101111X 

X000011X 

X001001X 

X011100X 

X010110X 

X010111X 

Hex Value 
loaded 

01 

00 

60 

VV 

CO 

F4 

48 

06 

FE 

FF 

BE 

VV 

CO 

14 

4E 

ZO 

C~t6 

Reset l-ClO. 

Clear Reset. 

Double-buffered input port, 
interrupt on two bytes. 

Interrupt vector depends on 
user's system. 

Port A Interrupt Enable. 

PCz is input PCO' PC1 and PC3 
are output. 

RFD is initially High. PCO 
and PC1 are initially Low. 

Bit port, OR-PEV pattern 
match. 

PBO is output. PB1-PB7 are 
input. 

Interrupt inputs are active 
High. 

PBO and PB6 are masked off. 

Interrupt vector depends on 
user's system. 

Port B Interrupt Enable. 

Single cycle, External 
Trigger Enable, Retrigger 
Enable. 

Time Constant = (ZO,000)10 
for a 10 ms timeout. 

* If the initial state of the RJA bit is unknown, then the first access to the Master 
Interrupt Control register must be performed with ADD = O. 

4-150 



Step 

17. 

1 B. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

2B. 

29. 

30. 

00·2256·01 

Table 2. Initialization Sequence for Application Example--Continued 

Register 
Progr8llllled 

Counter/Timer 
Interrupt Vector 

Counter/Timer 1 
Command and Status 

Counter/Timer 2's 
Mode Specification 

Counter/Timer 2's 
Time Constant MSBs 

Counter/Timer 2's 
Time Constant LSBs 

Counter/Timer 3 
Mode Specification 

Counter/Timer 3 
Time Constant MSBs 

Counter/Timer 3's 
Time Constant LSBs 

Counter/Timer 3 
Command and Status 

Master Configuration 
Control 

Counter/Timer 
Command and Status 

Counter /Timer 2 
Command and Status 

Counter/Timer 3 
Command and Status 

Master Interrupt 
Control 

Address 
ADrADo 

X000100X 

X001010X 

X011101X 

X011000X 

X011001X 

X011110X 

X011010X 

X011011X 

X001100X 

X000001X 

X001010X 

X001011X 

X001100X 

XOOOOOOX 

Hex Value 
loaded 

VV 

CO 

C2 

00 

OA 

BO 

4E 

20 

CO 

F4 

06 

06 

06 

BC 

4·151 

COIIIIIeIlts 

Interrupt vector depends on 
user's system. 

Counter/Timer Interrupt 
Enable. 

Continuous, External Output 
Enable, Squarewave duty 
cycle. 

Time Constant 
5 /ls timeout. 

(10)10 for 

Continuous, no external 
enable. 

Time Constant = (20,000)10 
for a 10 ms timeout. 

Counter/Timer 3 Interrupt 
Enable. 

Enable all ports and counter/ 
timers. 

Trigger and Gate commands. 

Trigger and Gate commands. 

Trigger and Gate commands. 

Master Interrupt Enable, 
Port B Vector Includes 
Status, Counter/Timer Vector 
Includes Status. 





Zilog 

This application note describes the use of the 
I8030 Serial Communications Controller (I-SCC) 
with the Z8000 ™ CPU to implement a communica­
tions controller in a Synchronous Data Link 
Control (SDLC) mode of operation. In this 
application, the Z8002 CPU acts as a controller 
for the Z-SCC. This application note also applies 
to the non-multiplexed l8530. 

One channel of the I-SCC communicates with the 
remote station in Half Duplex mode at 9600 
bits/second. To test this application, two Z8000 
Development Modules are used. Both are loaded with 
the same software routines for initialization and 
for transmitting and receiving messages. The main 
program of one module requests the transmit 
routine to send a message of the length indicated 
by the 'COUNT' parameter. The other system 
receives the incoming data stream, storing the 
message in its resident memory. 

DATA TRANSFER III)£S 

The Z-SCC system interface supports the following 
data transfer modes: 

• Polled IlJde. The CPU periodically po 11s the 
Z-SCC status registers to determine if a 
received character is available, if a character 
is needed for transmission, and if any errors 
have been detected. 

• Interrupt IlJde. The Z-SCC interrupts the CPU 
when certain previously defined conditions are 
met. 

• Block/DIttA IlJde. Using the Wait/Request (W/REQ) 

Using sec With Z8000 
In SDLe Protocol 

Application 
Note 

October 1982 

signal, the Z-SCC introduces extra wait cycles 
in order to synchronize the data transfer 
between a controller or DMA and the Z-SCC. 

The example given here uses the block mode of data 
transfer in its transmit and receive routines. 

SOlC PROTOCOL 

Data communications today require a communications 
protocol that can transfer data quickly and 
reliably. Dne such protocol, Synchronous Data 
Link Control (SOLC), is the link control used by 
the IBM Systems Network Architecture (SNA) 
communications package. SOLC is a subset of the 
International Standards Organization (ISO) link 
control called High-Level Data Link Control 
(HOLC), which is used for international data 
communicat ions. 

SOLC is a bit-oriented protocol (BOP). It 
differs from byte-control protocols (BCPs), such 
as Bisync, in that it uses only a few bit 
patterns for control functions instead of several 
special character sequences. The attributes of 
the SOLC protocol are position dependent rather 
than character dependent, so the data link control 
is determined by the position of the byte as well 
as by the bit pattern. 

A character in SOLC is sent as an octet, a group 
of eight bits. Several octets combine to form a 
message frame, in which each octet belongs to a 
particular field. Each message contains: opening 
flag, address, control, information, Frame Check 
Sequence (FCS), and closing flag (figure 1). 

4-153 



__ ------ZERO INSERTION/DELETION ------... 1 

__ -----CRC ACCUMULATION -----.. 

FLAG 
(BEGINNING 

OF MESSAGE 
FRAME) 

ADDRESS CONTROL 

ZERO OR MORE 
8·BIT 

CHARACTERS 

INFORMATION FCS FLAG 
(END OF 

MESSAGE 
FRAME) 

Figure 1. Fields of the SOLe Transmission Frmne 

Both flag fields contain a unique binary pattern, 
01111110, which indicates the beginning or the end 
of the message frame. This pattern simplifies the 
hardware interface in receiving devices so that 
multiple devices connected to a common link do not 
conflict with one another. The receiving devices 
respond only after a valid flag character has been 
detected. Once communication is established with 
a particular device, the other devices ignore the 
message until the next flag character is detected. 

The address field contains one or more octets, 
which are used to select a particular station on 
the data link. An address of eight 1s is a global 
address code that selects all the devices on the 
data link. When a primary station sends a frame, 
the address field is used to select one of several 
secondary stations. When a secondary station 
sends a message to the primary station, the 
address field contains the secondary station 
address, i.e., the source of the message. 

The control field follows the address field and 
contains information about the type of frame 
being sent. The control field consists of one 
octet that is always present. 

The information 
transferred data. 
may contain an 
However, because 

field contains any actual 
This field may be empt y or it. 

unlimited 
of the 

number of 
limit. at ions 

octets. 
of the 

error-checking algorithm used in the frame-check 
sequence, however, the maximum recommended block 
size is approximately 4096 octets. 

The frame check sequence field follows the 
information or control field. The FeS is a 16-bit 
Cyclic Redundancy Check (CRC) of the bits in the 
address, control, and information fields. The FeS 
is based on the CRC-Cel TT code, which uses the 
polynomial (x 16 + x 12 + x5 + 1). The 18030 z-see 
contains the circuitry necessary to generate and 
check the FeS field. 

Zero insertion and deletion is a feature of SOLC 
that allows any data pattern to be sent. Zero 
insertion occurs when five consecutive 1s in the 
data pattern are transmitted. After the fifth 1, a 
o is inserted before the next bit is sent. The 
extra 0 does not affect the data in any way and is 
deleted by the receiver, thus restoring the 
original data pattern. 

Zero insertion and deletion insures that the data 
stream will not contain a flag character or abort 
sequence. Six 1s preceded and followed by Os 
indicate a flag sequence character. Seven to 
fourteen 1s signify an abort; 15 or more 1s 
indicate an idle (inactive) line. lhder these 
three conditions, zero insertion and deletion are 
inhibited. Figure 2 illustrates the various line 
condit ions. 

A. ZERO INSERTION 

FLAG ADDRESS CONTROL FLAG 

~_01_1_11_1_10 __ ~_1_0_10_1_01_1 __ ~0_1_11_1_10~1_1~ __ ~~~: __ ~_0_1_11_1_11_0~1 ~~i~~~REAM 
t 

ADDRESS = 10101011 
CONTROL = 01111111 

B. ABORT CONDITION 

xxxx111111101111110 ....... . -..---.-
ABORT FLAG 

C. IDLE CONDITION 

xxxx111111111111111 ..... : .. 

ZERO INSERTION 

Figure 2. Bit Patterns for Various line Conditions 

4-154 2280·001, 002 



The SOLC protocol differs from other synchronous 
protocols with respect to frame timing. In Bisync 
mode, for exsq>le, a host computer might 
temporarily interrupt transmission by sending sync 
characters instead of data. This suspended 
condition continues as long as the receiver does 
not time out. With SOLC, however, it is invalid to 
send flags in the middle of a frame to idle the 
line. Such action causes an error condition and 
disrupts orderly operation. Thus, the trans­
mitting device must send a coq>lete frame without 
interruption. If a measage cannot be transmitted 
completely, the primary station sends an abort 
sequence and restarts the message transmission at 
a later time. 

CONTROL 
INPUTS 

RESET 
SWITCH 

RESET 

ADDRESS 
DATA 

NMI NON MASKABLE 
SWITCH INTERRUPT 

SEGMENT 
ADDRESS 

Z8000 
CPU 

~~~~~ ~~::::::::::::::::~~: INIOUT '"\I 

SYSTEM INTERFACE

The Z8002 Development Ibdule consists of a Z8002
CPU, 16k words of dynamic RAM, 2k words of EPROM
monitor, a Z80A S10 providing dual serial ports, a
Z801 CTC peripheral device providing four
counter/timer channels, two Z80A PIO devices
providing 32 programmable I/O lines, and wire wrap
area for prototyping. The block diagram is
depicted in Figure 3. Each of the peripherals in
the development module is connected in a
prioritized daisy chsin configuration. The Z-SCC
is included in this configuration by tying its lEI
line to the lEO line of another device, thus
making it one step lower in interrupt priority
coq>ared to the other device.

RSo232C
SERIAL
CHANNELS
(2)

figure 3. Block Diagr_ of Z81X1O OM

2280-003 4-155

Two leOOO Development Modu les containing l-SCCs
are connected as shown in Figure 4 and Figure 5.
The Transmit Data pin of one is connected to the
Receive Data pin of the other and vice versa. The
le002 is used as a host CPU for loading the
modules' memories with software routines.

Z8002
z·scc

Z8002
z·scc

LOCAL REMOTE

Figure 4. Block Diagra. of Two ZBOOO CPUS

The le002 CPU can address either of the two bytes
contained in 16-bit words. The CPU uses an even
address (16 bits) to access the most significant
byte of a word and an odd address for the least
significant byte of a word.

When the le002 CPU uses the lower hal f of the
Address/Data bus (ADO-AD7 the least significant
byte) for byte read and write transactions during
I/O operations~ these transactions are performed
between the CPU and I/O ports located at odd I/O
addresses. Since the l-SCC is attached to the CPU
on the lower half of the A/D bus, its registers
must appear to the CPU at odd I/O addresses. To
achieve this, the l-SCC can be programmed to
select its internal registers using lines
AD1-AD5. This is done either automatically with
the Force Hardware Reset command in WR9 or by
sending a Select Shift Left Mode command to WROB
in channel B of the l-SCC. For this application,
the l-SCC registers are located at I/O port
address 'FExx'. The Chip Select signal (CSO) is
derived by decoding I/O address 'FE' hex from

lines ADB-AD15 of the controller.

To select the read/write registers automatically,
the l-SCC decodes lines AD1-AD5 in Shift Left
mode. The register map for the Z-SCC is depicted
in Table 1.

Table 1. Register Hap

Address
(hex)

FE01
FE03
FE05
FE07
FE09
FEOB
FEOD
FEOF
FE11
FE13
FE15
FE17
FE19
FE1B
FE1D
FE1F
FE21
FE23
FE25
FE27
FE29
FE2B
FE2D
FE2F
FD1
FE33
FD5
FD7
FD9
FDB
FDD
FUF

INITIALIZATION

Write Register Read Register

WROB RROB
WR1B
WR2
WR3B
WR4B
WR5B
WR6B
WR7B
B DATA
WR9
WR10B
WR11B
WR12B
WR13B
WR14B
WR15B
WROA
WR1A
WR2
WR3A
WR4A
WR5A
WR6A
WR7A
A DATA
WR9
WR10A
WR11A
WR12A
WR13A
WR14A
WR15A

RR1B
RR2B
RR3B

B DATA

RR10B

RR12B
RR13B

RR15B
RROA
RR1A
RR2A
RR3A

A DATA

RR10A

RR12A
RR13A

RR15A

The l-SCC can be initialized for use in different
modes by setting various bits in its write
registers. First, a hardware reset must be

4-156 2280·004

~
§

of"-

§ll

IAD15

lAO"

IAD13

lAO"

IADl1

IAD10

IADo

IADo

IAD7

lADe

IADo

IAD4

lADe

IAIl:>

lAO,

IADo

WAIT

STOP

W
NVi

NMI

iiESl'I'
4MH,

I

8

• ,.
"

a

• ,.
"

a

• ,.
"

a

• ,.
"

T
4.7KO

LS

-!!!..
•• 4A • 8

3. SA • •
2. 2A • •

3 • ,. 'A

'3 , ~
-
•• 4A

a 3

3.
3A •

2

28 2A • ,
3 ..

'8 'A

7"E-
~

a ..
.8 'A
38 SA • 37

2. 2A • ..
3 ..

18 lA

7"E-
.---

.8 4A • 34

• ..
38 3A
28 2A • 3.

3 ..
18 'A

fE----'3 ,

2~~

1; LS 1:6 1~C
• 244 I,. ,.~

1 ,.
...

'3 ,.
30

AD15

T AD14

AD13

All"

r 4.7KD

AS
.. I I I
17

iii
ADl1 'a

MREQ
AD10 '8 ST,
ADe ,.

ST,
AD, 20

ST,
2'

ST,

AD,

ADe

AD,

AD, 25
iiIW
NIS

2B

Z8002

ADe

AD,

AD, 24 ...
ADo BUSACK

WAIT
lffijp

W
ii'ii

Niii
iiESl'I'
CLOCK

1
2 ,a

'7 3

• , .
8 LS ,.
'3 244 7

• ,. ,. •
'0 2G I I I
Y Y I I 47K!l

+~v --3 lA '8 " IRiW

• ,.
INIS LS

243

V ...
....

1AD15

IAD14
L ...
I IAD13

IAD12

I
IADl1

L .. 1AD10 I
IADo

~
...

.....
IADo ..

figure 5. Z800Z With sec

I IP -'" ..
rp_ R-.>-

lAS

iiii
IMREQ

• Eli • C

~ 2
B LS Y2 ,

D
A 13.
Eli

EN -+fv
'ff

7 VlACK

IADo

lAO,

IAIl:>

lADe

lAD,

lAD,

lADe

lAO,

Vi
4MHz

+.v
.A

iAii

~
iiii

IRiW

+.v
rI

.. , ..
2 ..
3

37

•
•

20

7

•
32 ..

Z8030

INTACK

ADo

AD,

AD,

AD,

AD,

ADs

AD,
Ao,

INT

PCLK

lEi

lEO

AS
iii
RiW

CSI

CliO

TxDA

RxDA

TRxCA

WAIT

RTxCA

performed by setting bits 7 and 6 of WR9 to one;
the rest of the bits are disabled by writing a
logic zero.

SDLC protocol is established by selecting a SDLC
mode, sync mode enable, and a x1 clock in WR4. A
dats rste of 9600 baud, NRl encoding, snd a
character length of eight bits are among the other
options that are selected in this example (Table
2).

Note that WR9 is accessed twice, first to perform
a hardware reset and again at the end of the
initialization sequence to enable interrupts. The
programming sequence depicted in Table 2
establishes the necessary parameters for the
receiver and transmitter so that they are ready to
perform communication tasks when enabled.

Table 2. Progr~ng Sequence
for Initialization

Value
Register (hex) Effect

WR9
WR4

WR10
WR6
WR7
WR2
WR11

WR12

WR13
WR14

WR15
WR5

WR3

WR1

WR9

CO
20

BO
AB
7E
20
16

CE

o
03

00
60

C1

OB

09

Hardware reset
x1 clock, SDLC mode, sync mode
enable
NRl, CRC preset to one
Any station address e.g. "AB"
SDLC flag (01111110) = "7E"
Interrupt vector "20"
Tx clock from BRG output, TRxC
pin = BRG out
Lower byte of time constant =
"CE" for 9600 baud
Upper byte = D
BRG source bit = 1 for PCLK as
input, BRG enable
External Interrupt Disable
Transmit B bits/character SDLC
CRC
Rx 8 bits/character, Rx enable
(Automatic Hunt mode)
Rxint on 1st char & sp. cond.,
ext into disable
MIE, VIS, status Low

The Z8002 CPU must be operated in System mode to
execute privileged I/O instructions. So the Flag
and Control Word (FCW) should be loaded with
system normal (S/N), and the Vectored Interrupt

Enable (VIE) bits set. The Program Status Area
Pointer (PSAP) is loaded with the address 1"04400
using the Load Control instruction (LDCTL). If the
lBOOO Development Module is intended to be used,
the PSAP need not be loaded by the programmer
because the development module's monitor loads it
automatically after the NMI button is pressed.

Since VIS and Status low are selected in WR9, the
vectors listed in Table 3 will be returned during
the Interrupt Acknowledge cycle. Of the four
interrupts listed, only two, Ch A Receive
Character Available and Ch A Special Receive
Condition, are used in the example given here.

Table ,. Interrupt Vectors

PS
Vector Address'>

(hex) (hex) Interrupt

28 446E ChA Transmit Buffer Empty
2A 4472 Ch A External Status Change
2C 4476 ChA Receive Char. Available
2E 447A Ch A Special Receive Condition

*Assuming that PSAP has been set to 4400 hel<, "PS
Address" refers to the location in the Program
Status Area where the service routine address is
stored for that particular interrupt.

TRANSMIT OPERATIIW

To transmit a block of data, the
calls up the transmit data routine.

main program
With this

routine, each message block to be transmitted is
stored in memory, beginning with location 'TBUF'.
The number of characters contained. in each block
is determined by the value assigned to the 'COUNT'
parameter in the main module.

To prepare for transmission, the routine enables
the transmitter and selects the Wait On Transmit
function; it then enables the wait function. The
Wait On Transmit function indicates to the CPU
whether or not the Z-SCC is ready to accept data
from the CPU. If the CPU attempts to send data to
the Z-SCC when the transmit buffer is full, the
Z-SCC asserts its Wait line and keeps it low until
the buffer is empty. In response, the CPU extends
its I/O cycles until the Wait line goes inactive,
indicating that the Z-SCC is ready to receive
data.

4-158

The CRC generator is reset and the Transmit CRC
bit is enabled before the first character is sent,
thus including all the characters sent to the
I-SCC in the CRC calculation.

The I-SCC I S transmit underrun/EOM latch must be
reset sometime after the first character is
transmitted by writing a Reset Tx Underrun/EOM
command to WRO. When this latch is reset, the
I-SCC automatically appends the CRC characters to
the end of the message in the case of an underrun
condition.

Finally, a three-character delay is introduced at
the end of the transmission, which allows the
I-SCC sufficient time to transmit the last data
byte and two CRC characters before disabling the
transmitter.

REDEIVE OPERATION

Once the Z-SCC is initialized, it can be prepared
to receive the message. First, the receiver is
enabled, placing the Z-SCC in Hunt mode and thus
setting the Sync/Hunt bit in status register RRO
to 1. In Hunt mode, the receiver searches the
incoming data stream for flag characters.
Ordinarily, the receiver transfers all the data
received between flags to the receive data FIFO.
If the receiver is in Hunt mode, however, no data
transfer takes place until an opening flag is
received. If an abort sequence is received, the
receiver automatically re-enters Hunt mode. The
Hunt status of the receiver is reported by the
Sync/Hunt bit in RRO.

The second byte of an SDLC frame is assumed by the
Z-SCC to be the address of the secondary stations
for which the frame is intended. The I-SCC
provides several options for handling this
address. If the Address Search Mode bit D2 in WR3
is set to zero, the address recognition logic is
disabled and all the received data bytes are
transferred to the receive data FIFO. In this
mode, software must perform any address recogni­
tion. I f the Address Search Mode bit is set to
one, only those frames with addresses that match
the address programmed in WR6 or the global
address (all 1s) will be transferred to the
receive data FIFO. If the Sync Character Load
Inhibit bit (D1) in WR3 is set to zero, the
address comparison is made across all eight bits
of WR6. The comparison can be modified so that

only the four most significant bits of WR6 need
match the received address. This alteration is
made by setting the Sync Character Load Inhibit
bit to one. In this mode, the address field is
still eight bits wide and is transferred to the
FIFO in the same manner as the data. In this
application, the address search is performed.

When the address match is accomplished, the
receiver leaves the Hunt mode and establishes the
Receive Interrupt on First Character mode. Upon
detection of the receive interrupt, the CPU
generates an Interrupt Acknowledge Cycle. The
I-SCC returns the programmed vector %2C. This
vector points to the location %4472 in the Program
Status Area which contains the receive interrupt
service routine address.

The receive data routine is called from within the
receive interrupt service routine. While
expecting a block of data, the Wait On Receive
function is enabled. Receive read buffer RR8 is
read and the characters are stored in memory
location R8UF. The Z-SCC in SDLC mode auto­
matically enab les the CRC checker for all data
between opening and closing flags and ignores the
Receive CRC Enable bit (D3) in WR3. The result of
the CRC calculation for the entire frame in RR1
becomes valid only when the End Of Frame bit is
set in RR1. The processor does not use the CRC
bytes, because the last two bits of the CRC are
never transferred to the receive data FIFO and are
not recoverable.

When the Z-SCC recognizes the closing flag, the
contents of the Receive Shift register are
transferred to the receive data FIFO, the Residue
Code (not applicable in this application) is
latched, the CRC error bit is latched in the sta­
tus FIFO, and the End Of Frame bit is set in the
receive status FIFO. When the End Of Frame bit
reaches the top of the FIFO, a special receive
condition interrupt occurs. The special receive
condition register RR1 is read to determine the
result of the CRC calculation. If the CRC error
bit is zero, the frame received is assumed to be
correct; if the bit is 1, an error in the
transmission is indicated.

Before leaving the
Reset Highest IUS

interrupt
(Interrupt

service
Under

routine,
Service) ,

Enable Interrupt on Next Receive Character, and
Enter Hunt Mode commands are issued to the Z-SCC.

4-159

If receive overrun error is made, a special
condition interrupt occurs. The Z-SCC presents
vector %2E to the CPU, and the service routine
located at address %447A is executed. Register RR1
is read to determine which error occurred.
Appropriate action to correct the error should be
taken by the user at this point. Error Reset and
Reset Highest IUS commands are given to the Z-SCC
before returning to the main program so that the
other lower-priority interrupts can occur.

In addition to searching the data stream for
flags, the receiver also scans for seven
consecutive 1s, which indicates an abort
condition. This condition is reported in the
Break/Abort bit (D7) in RRO. This is one of many
possible external status conditions. As a result

transitions of this bit can be programmed to cause
an external status interrupt. The abort condition
is terminated when a zero is received, either by
itself or as the leading zero of a flag. The
receiver leaves Hunt mode only when a flag is
found.

SOfTWARE

Software routines are presented in the following
pages. These routines can be modified to include
various other options (e.g., SDLC Loop, Digital
Phase Locked Loop etc.). By modifying the WR10
register, different encoding methods (e.g., NRII,
FMO, FM1) other than NRI can be used.

4-160

Appendix

Software Routines

plzasm 1.3
LOC OBJ CODE

0000

0000 7601
0002 4400
0004 701D
0006 2100
0008 5000
OOOA 3310
OOOC OOlC

OOOE 7600
0010 00D6'
0012 33!0
0014 0076

0016 7600
0018 OOFA'
OOlA 3310
OOlC 007A
OOlE 5FOO
0020 0034'
0022 5FOO
0024 008C'
0026 E8FF

0028 AS
0029 48
002A 45
002B 4C
002C 4C
0020 4F
002E 20
002F 54
0030 48
0031 45
0032 52
0033 45

0034

STMT SOURCE STATEMENT

1
2
3 SOLC MODULE

$LISTON $TTY
CONSTANT
WROA ,. \FE21
RROA ,. \FE21
RBUF ,. '5400
PSAREA ,. H400
COUNT ,. 12
GLOBAL MAIN PROCEDURE
ENTRY

LOA Rl,PSAREA

LDCTL PSAPOFF,Rl
LD RO,U5000

LO Rl('UC),RO

LDA RO,REC

LO Rl(U76) ,RO

LDA RO,SPCOND

LO Rl(n7A) ,RO

CALL INIT

CALL TRANSMIT

JR $

TaUF, BVAL \AB
BVAL 'H'
BVAL 'E'
BVAL 'L'
BVAL 'L'
BVAL '0'
BVAL
BVAL 'T'
BVAL 'H'
BVAL 'E'
BVAL 'R'
BVAL 'E'

END MAIN

4-161

IBASE ADDRESS FOR WRO CHANNEL AI
IBASE ADDRESS FOR RaO CHANNEL AI
IBUFFER AREA FOR RECEIVE CHARACTER I
ISTART ADDRESS FOR PROGRAM STAT AREAl
IND. OF CHAR. FOR TRANSMIT ROUTINE I

ILOAD PSAPI

IFCW VALUE(i5000) AT '441C FOR VECTORED I

IINTERRUPTSI

IEXT. STATUS SERVICE ADDR. AT '4476 INI

IPSAI

ISP.COND.SERVICE ADDR AT '447A IN PSAI

ISTATION ADDRESSI

0034

0034 2100
0036 OOOF
0038 7602
003A 004E'
003C 2101
003E FE21
0040 0029
0042 A920
0044 3A22
0046 0018
0048 8004
004A EEF8
004C 9E08
004E 12
004F CO
0050 08
0051 20
0052 14
0053 80

0054 OC
0055 AB
0056 OE
0057 7E
0058 04
0059 20
005A 16
005B 16
005C 18
0050 CE
005E 1A
005F 00
0060 1C
0061 03
0062 1E
0063 00
0064 OA
0065 60
0066 06
0067 C5
0068 02
0069 08

006A 12
006B 09
006C

006C

006C C828
006E 3A86
0070 FE23
0072 6008
0074 00A8
0076 3A86
0078 FE23
007A 2101
007C FE31
007E 2102
0080 OOOE
0082 2103
0084 5400
0086 3Al8
0088 0230
008A 9B08
008C

1****************** INITIALIZATION ROUTINE FOR z-sec ********************* •• ,

GLOBAL INIT PROCEDURE
ENTRY

LD

LOA

ALOOP. LD

ADDB
INC
OUTIB

TEST
JR
RET

SCCTAB. BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

END

BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

BVAL
BVAL
INIT

RO,U5

R2,SCCTAB

Rl,tWROA

RL1,@R2
R2
@R1,@R2,RO

RO
NZ,ALOOP

2*9
'CO
2*4
'20
2*10
\80

2*6
'AB
2*7
'7E
2*2
'20
2*11
\16
2*12
'CE
2*13
o
2*14
'03
2*15
'00
2*5
'60
2*3
%C5
2*1
'08

2*9
'09

INO.OF PORTS TO WRITE TOI

IADDRESS OF DATA FOR PORTSI

IPOINT TO WROA,WRlA ETC THRO LOOPI

lEND OF LOOP?I
INO,KEEP LOOPING I

IWR9-HARDWARE RESET I

IWR4-X1 CLK,SDLC,SYNC MODEl

IWRlO.CRC PRESET ONE,NRZ,FLAG ON IDLE,I
I FLAG ON UNDERRUN I

IWR6- ANY ADDRESS FOR SDLC STATIONI

IWR7-SDLC FLAG CHARI

IWR2-INT VECTOR %201

IWRl1-Tx CLOCK , TRxC OUT-BRG OUTI

IWR12- LOWER TC-CEI

IWRl3- UPPER TC-OI

IWRl4-BRG ON,BRG SRC-PCLKI

IWRl5-EXT INT. DISABLE I

IWRS-Tx 8 BITS/CHAR, SDLC CRCI

IWRl-ADDR SRCH,REC ENABLE I

IWRl-RX INT ON 1ST' SP COND,I
IEXT INT DISABLEI

IWR9- MIE,VIS,STATUS LOWI

.****************** RECEIVE ROUTINE ***************·********************1

RECEIVE A BLOCK OF MESSAGE

GLOBAL RECEIVE PROCEDURE
ENTRY

LOB RLO,li28 IWAIT ON RECV.I
OUTB WROA+2,RLO

LOB RLO,%A8

OUTB WROA+2,RLO IENABLE WAIT FNC. SP. CONDo INTI

LD Rl,tRROA+16

LD R2,tCOUNT+2 ICOUNT+2 CHARACTERS TO READI

LD Rl,'RBUF IRECEIVE BUFFER IN MEMORYI

INDRB @R3,@Rl,R2 IREAD THE ENTIRE MESSAGE I

RET
END RECEIVE

4-162

008C

008C 2102
008E 0028'
0090 C868
0092 3A86
0094 FE2B
0096 C800
0098 3A86
009A FE23
009C C888
009E 3A86
OOAO FE23
00A2 C880
00A4 3A86
00A6 FE21
00A8 2101
OOAA FE3l
OOAC 2100
OOAE 0001
OOBO C869
00B2 3A86
00B4 FE2B
00B6 3A22
00B8 0010
OOBA C8CO
OOBC 3A86
OOBE FE21
OOCO 2100
00C2 OOOB
00C4 3A22
00C6 0010
00C8 2100
OOCA 039E
OOCC F081
OOCE C800
0000 3A86
0002 FE2B
0004 9E08
0006

0006

0006 93F3
0008 93F2
OOOA 93Fl
OODC 93FO
OODE 3A94
OOBO FE21
00E2 A690
00E4 E602
00E6 SFOO
00E8 006C'
OOEA C838
OOEC 3A86
OOEE FE21
OOFO 97FO
00F2 97Fl
OON 97F2
00F6 97F3
00F8 7BOO
OOFA

1****************
I

TRANSMIT ROUTINE ************************************1
SEND A BLOCK OF EIGHT DATA CHARACTERS I

I THE BLOCK STARTS AT LOCATION THUF I

GLOBAL TRANSMIT PROCEDURE
ENTRY

LO

LOB
OUTH

LOB
OUTH

LOB
OUTH

LOB
OUTH

LO

LO

LOB
OUTH

OTIRB

LOB
OUTB

LO

OTIRB

LD

DEL. DJNZ
LOB
OUTH

RET
END TRANSMIT

R2,.TBUF

RLO,n68
WROA+l 0, RLO

RLO,nOO
WROA+2,RLO

RLO,n88
WROA+2,RLO

RLO,n80
WROA,RLO

Rl,'WROA+l6

RO,n

RLO,n69
WROA+IO,RLO

@Rl,@R2,RO

RLO,nCO
WROA,RLO

RO,.COUNT-l

@Rl,@R2,RO

RO,'926

RO,DEL
RLO,.O
WROA+lO,RLO

IPTR TO START OF BUFFERI

IENABLE TRANSMITTER I

IWAIT ON TRANSMIT I

IWAIT ENABLE I

IRESET TxCRC GENERATOR I

IWR8A SELECTED I

ISDLC CRCI
IWRSA-TxCRC ENABLE I

ISEND ADDRESSI

IRESET TxUND/EOM LATCHI

ISEND MESSAGE I

ICREATE DELAY BEFORE DISABLING I

ITRANSMITTER SO THAT CRC CAN BEl
ISENTI
10ISABLE TRANSMITTER I

1************* RECEIVE INT. SERVICE ROUTINE *************************1

GLOBAL REC PROCEDURE
ENTRY

PUSH @RlS,R3
PUSH @R1S,R2
PUSH @RlS,Rl
PUSH @RlS,RO
INB RLl,RROA IREAD STATUS REG RROAI

BITB RL1,.0 ITEST IF Rx CHAR SETI
JR Z,RESET IYES CALL RECEIVE ROUTINE I
CALL RECEIVE

RESET. LOB RLO,n38
OUTH WROA,RLO IRESET HIGHEST IUSI

POP RO,@R1S
POP Rl,@RlS
POP R2,@RlS
POP R3,@RlS
IRET

END REC

4-163

OOFA

DOPA 93FO
oorc 3A84
OOPE FE23
0100 A687

0102 E603
0104 C820
0106 3A86
0108 FE21
010A C830
010C 3A86
010E FB21
0110 C808
0112 3A86
0114 FE23
0116 C838
0118 3A86
011A PE21
011C 97FO
011E 7BOO

0120

I •• •••••••••• SPECIAL CONDITION INTERRUPT SERVICE ROUTINE ••••••••••••••• 1

GLOBAL SPCOND PROCEDURE
ENTRY

PUSH
INB

@R1S,RO
RLO,RROA+2 I READ ERRORS I

BITH RLO,t7 lEND OF FRAME 11
IPROCESS OVERRUN, FRAMING ERRORS IF ANYI

JR Z,RESE
LOB RLO,n20
OUTH WROA,RLO I YES,ENABLB INT ON NEXT REC CHARI

RESEI LDB RLO,n30
DUTH WROA,RLO I BRROR RESET I

LOB RLO,n08
OUTH WROA+2,RLO IWAIT DISABLB,RzINT ON 1ST OR SP COND.I

LOB RLO,n38
OUTH WROA,RLO IRESET HIGHEST IUSI

POP RO,@RlS
IRET

END SPCOND

END SDLC

4-164 00·2280·01

Zilog

Zllog's Z8030 Z-SCC Serlal Communlcatlons Control­
ler IS one of a family of components that are
Z-BUS~ compatible wlth the Z8000· CPU. Comblned
with a Z8000 CPU (or other eXlsting 8- or 16-bit
CPUs with nonmultlplexed buses when uSlng the
Z8530 SCC), the Z-SCC forms an Integrated data
communlcations controller that is more cost effec­
tlve and more compact than systems Incorporatlng
UARTs, baud rate generators, and phase-locked
loops as separate entities.

The approach examlned here implements a communlca­
tions controller in a Blnary Synchronous mode of
operabon, with a Z8002 CPU actwg as controller
for the Z-SCC.

One channel of the Z-SCC IS used to communicate
wlth the remote station in Half Duplex mode at
9600 bits/second. To test thlS application, two
Z8000 Development Modules are used. Both are
loaded with the same software routines for Ini­
tialization and for transmitting and receiving
messages. The main program of one module requests
the transmit roubne to send a message of the
length indicated In the 'COUNT' parameter. The
other system receives the Incoming data stream,
storing the message In ItS resident memory.

DATA TRANSfER MODES

The Z-SCC system interface supports the following
data transfer modes:

• Polled Mode. The CPU periodlCally polls the
Z-SCC status registers to determine the avail­
ability of a received character, If a character
is needed for transmisslOn, and if any errors
have been detected.

• Interrupt Mode. The Z-SCC wterrupts the CPU
when certain previously defIned conditions are
met.

SCC In Binary
Synchronous Communication

Application
Note

October 1982

• Block/DMA Mode. USing the Walt/Request (W/REQ)
signal, the Z-SCC Introduces extra walt cycles
to synchronize data transfer between a
CPU or OHA controller and the Z-SCC.

The example given here uses the block mode of data
transfer in its transmit and receive routines.

SYNCHRONOOS MODES

Three variations of character-oriented synchronous
communications are supported by the Z-SCC: Mono­
sync, 8lsync, and External Sync (Figure 1). In
Monosync mode, a Single sync character IS trans­
mitted, which IS then compared to an Identical
sync character in the receiver. When the receiver
recognizes this sync character, synchronization is
complete; the recel ver then transfers subsequent
characters Into the receiver FIFO in the Z-SCC.

I SYNC

I SYNC DATA ~ DATA

•. MONOSYNC MODE

SYNC DATA ~
b. BISYNC MODE

EXTERNAL
SYNC SIGNAL

DATA

CRC1 CRC21

CRC1 CRC21

t
~'f: __ DA_T_A __ C_RC_1 __ C_RC_2 ... 1

c. EXTERNAL SYNC MODE

Figure 1. Synchronous Modes of eo....nication

Bisync mode uses a 16-blt or 12-bit sync character
In the same way to obtain synchronization. Exter­
nal Sync mode uses an external signal to mark the
beginning of the data fIeld; i.e., an external
input pln (SYNC) indicates the start of the Infor­
mation fIeld.

2278-001 4-165

In all synchronous modes, two Cycllc Redundancy
Check (CRC) bytes can be concatenated to the mes­
sage to detect data transmission errors. The CRC
bytes ~nserted ~n the transm~tted message are com­
pared to the CRC bytes computed to the receiver.
Any d~fferences found are held in the rece~ve
error fIfO.

SYSTEM INTERFACE

The Z8002 Development Module consists of a Z8002
CPU, 16K words of dynam~c RAM, 2K words of EPROM

CONTROL
INPUTS

RESET
SWITCH

ADDRESS
DATA

NMI NON MASKABLE
SWITCH INTERRUPT

zaooo
CPU

EXT~~~~~ /'----------'\1
INIOUT \.----------.11

Two Z8000 Development Modules containing Z-SCCs
are connected as shown in figure 3 and figure 4.
The Transmit Data pin of one is connected to the
Receive Data pin of the other and vice versa. The
Z8002 is used as a host CPU for loading the
modules' memories with software routines.

The Z8000 CPU can address either of the two bytes
contained in 16-bit words. The CPU uses an even
address (16 bits) to access the most-sigmflcant
byte of a word and an odd address for the least­
significant byte of a word.

...... C
SERIAL
CHANNELS
(2)

figure 2. Block Diagru of Z8000 lit

monitor, a Z80A SIO providing dual serial ports, a
Z80A CTC peripheral device providing four counter/
timer channels, two Z80A PIO devices providing 32
programmable I/O lines, and wire wrap area for
prototyplng. The block diagram is depicted in
figure 2. Each of the peripherals in the develop­
ment module is connected in a prioritized daisy-c­
hain configuration. The Z-SCC is included In this
configuration by tYing its lEI line to the lEO
line of another device, thus making it one step
lower in interrupt priority compared to the other
device.

4-166

Z8001
z·scc

_!!D ___ ~
_ ,!!!x.£. _ .2I~c

RTxC TRxC ... -----
RxD TxD -----

Z8001
z·scc

LOCAL REMOTE

figure 3. Block Diagr_ of Two Z8000
DevalopEOt Modules

2278-002, 003

~
~

f'"
(J)
'-.J

La
243

r---
IAD,S 48 4A AOts

lAD,. 38 3A AD,.

IAD'3 10 28 2A AD'3

IAD'2 11 1 B AD12

IADl1 48 4A ADU
IAD,O 8 38 3A 5 2 Ao,o

8r---iwa
IAOg 10 28 2A 4 1 ADe

IADa 11 18 1A 3 31 ADa

r-L
r--<Am" AD,

lAS :r1ADa

2A 4 35 ADs

1A 3 38 AD.

~~8g ~ °u
~ rom
~ n~

~
r---

IAD3 48 4A 34 AD3

IAD2 38 3A 33 AD!

IAD, 10 28 2A 32 AD,

Z8002

+6V

f-----------1~J=::t=~:::::::::jt:::==::ms
iDS
iMREQ ,------.

Ali 17
- .
~ . ~ , -~ .. MREQ 18 ,. 244 La Y2

M. • ~ U '" 20 15
ST, 21 10 20 Mo

iiiW~
NISI-!!

..

T ..l.

Y7!oI

~ 1A La 1°1:: I I ::
243

Z80ao

VlACK
INTACK

IADo 40 ADo

lAo.. 1 AD,

IADz .. ADz

lAD, 2 ADs

lAD. 31 AD.

lADs 3 ADs

lADe 37 ADe

lAO, 4 AD,

Vi 5 iff
4MHz 20 PCLK

~
6 TxDA

13 RxDA

14 fiiiCi

10 WAIT

12 R'fiCA

IADo 11 18 1A 40 ADo aUSACK ,...
TI L to. ... +5V 7 lEI

a lEO GBAGAB

+5V

r
L 4.7KD

~~ I II f

iAi 36 is

Jrn6V
iDS" iii IANi 34 RiW

IAD'5- i. +5V : CSI

lAD" I to. COC I
lAO" r--f
IAD12 I

"""'-
~

IAD11 -------I

IAD'0 -.::::=~C>----t~...J
IADo -

1Y Yi4

IADa --11><>---'

RESi'f 14 iiEi!f
HIli 1.~ HIli

OMH. : 30 CLOCK

r igure fl. l8002 with sec

When the Z8002 CPU uses the lower half of the
Address/Data bus (ADO-AD7 the least sigmflcant
byte) for byte read and write transactlons during
I/O operations, these transactJ.ons are performed
between the CPU and I/O ports located at odd I/O
addresses. Slnce the Z-SCC is attached to the CPU
on the lower half of the A/D bus, ItS registers
must appear to the CPU at odd I/O addresses. To
achleve this, the Z-SCC can be programmed to
select its internal reglsters uSlng lines
AD1-AD5. ThlS IS done elther automatically wlth
the Force Hardware Reset command in WR9 or by
sendlng a Select Shi ft Left Mode command to WR08
in channel B of the Z-SCC. For this application,
the Z-SCC reglsters are located at I/O port
address 'FExx '. The ChIP Select sIgnal (CSO) IS
derlved by decodlng I/O address 'FE' hex from
l1nes ADa-AD15 of the controller. The Read/Wute
registers are automatJ.caUy se lected by the Z-SCC
when Internally decodwg lines AD1-AD5 In ShIft
Left mode. To select the Read/Write registers
automatlcally, the Z-SCC decodes lines AD1-AD5 in
Shi ft Left mode. The register map for the Z-SCC
IS depicted in Table 1.

INITlALIZATlIW

The Z-SCC can be initIalized for use in dlfferent
modes by settlng various bits 1n its Wute regis­
ters. Fust, a hardware reset must be performed
by settlng bits 7 and 6 of WR9 to one; the rest of
the blta are dlsabled by writlng a IOglC zero.

BIsync mode is established by selectlng a 16-blt
sync character, Sync Mode Enable, and a X1 clock
in WR4. A data rate of 9600 baud, NRZ encoding,
and a data character length of elght bits are
among the other options that are selected in this
example (fable 2).

Note that WR9 is accessed twice, fIrst to perform
a hardware reset and again at the end of the inl­
tiallzatlon sequence to enable the interrupts.
The programming sequence deplcted In Table 2
establishes the necessary parameters for the
recelver and the transmitter so that, when
enabled, they are ready to perform communication
tasks. To avold internal race and false Interrupt
conditions, It is important to Inltlalize the reg­
isters in the sequence depIcted in this applica­
tion note.

Tmle 1. Register Map

Address
(hex) Write Register Read Register

FE01 WROB RROB
FE03 WR1B RR1B
FE05 WR2 RR2B
FE07 WR3B RR3B
FE09 WR4B
FEOB WR5B
rEDO WR6B
FE OF WR7B
FE11 B DATA B DATA
FEU WR9
FE15 WR10B RR10B
FE 17 WR11B
FE19 WR12B RR12B
FE1B WRUB RRUB
FE1D WR14B
FE1F WR15B RR15B
FE21 WROA RROA
FE23 WR1A RR1A
FE25 WR2 RR2A
FE27 WR3A RR3A
FE29 WR4A
FE2B WR5A
FE2D WR6A
FE2F WR7A
FD1 A DATA A DATA
FE33 WR9
FD5 WR10A RR10A
FD7 WR11A
FD9 WR12A RR12A
FDB WRUA RRUA
FDD WR14A
FE3F WR15A RR15A

The Z8002 CPU must be operated in System mode in
order to execute priVIleged I/O instructJ.ons, so
the Flag Control Word (FCW) should be loaded with
System/Normal (S/N) , and the Vectored Interrupt
Enable (VIE) bits set. The Program Status Area
Pointer (PSAP) is loaded wlth address %4400 using
the Load Control instructl0n (LDCTL). If the Z8000
Development Module is Intended to be used, the
PSAP need not be loaded by the programmer as the
development modules monitor loads it automatically
after the NMI button is pressed.

4-168

Register

WR9
WR4

WR10
WR6
WR7
WR2
WR11

WR12

WR13
WR14

WR1S
WRS
WR3

WR1

WR9

Table Z. Progra.aing Sequence
for Initialization

Value
(hex) Effect

CO Hardware reset
10 x1 clock, 16-b~t sync, sync roode

enable
o NRZ, CRC preset to zero

AB Any sync character "AB"
CO Any sync character "CD"
20 Interrupt vector "20"
16 Tx clock from BRG output, TRxC

p~n = BRG out
CE Lower byte of time constant =

"CE" for 9600 baud
o Upper byte = 0

03 BRG source bit = 1 for PCLK as
~nput, BRG enable

00 External ~nterrupt d~sable
64 Tx B bits/character, CRC-16
C1 Rx 8 b~ ts/character, Rx enable

(Automat~c Hunt roode)
08 RxInt on 1st char & sp. cond.,

ext. ~nt. d~sable)

09 MIE, VIS, Status Low

Since VIS and Status Low are selected in WR9, the
vectors listed in Table 3 will be returned during
the Interrupt Acknowledge cycle. Of the four
interrupts listed, only two, Ch A Receive Charac­
ter Ava~lable and Ch A Spec~al Rece~ve Condition,
are used in the example given here.

Table J. Interrupt Vectors

PS
Vector Address*

(hex) (hex) Interrupt

28 446E Ch A Transm~t Buffer Empty
2A 4472 Ch A External Status Change
2C 4476 Ch A Receive Char. Ava~lable
2E 447A Ch A Special Receive Condition

* lIPS Address" refers to the locahon in the Pro­
gram Status Area where the service rout~ne

address is stored for that partlcular interrupt,
assuming that PSAP has been set to 4400 hex.

TRANSMIf IFERATION

To transm~ t a block of data, the
calls up the transm~t data routine.

main program
With this

rouhne, each message block to be transmitted lS
stored ln memory, beginnlng with location 'TBUF'.
The number of characters contained ln each block
is determlned by the value assigned to the 'COUNT'
parameter ln the main module.

To prepare for transmlssion, the rouhne enables
the transmitter and selects the Walt On Transmit
function; lt then enables the walt function. The
Walt On Transmlt functlOn lndlcates to the CPU
whether or not the Z-SCC lS ready to accept data
from the CPU. If the CPU attempts to send data to
the Z-SCC when the transmlt buffer is full, the
Z-SCC asserts its Wait Ilne and keeps lt Low unt~l
the buffer lS empty. In response, the CPU extends
ltS I/O cycles unhl the Walt line goes mactive,
lndlcatlng that the Z-SCC is ready to rece~ve

data.

The CRC generator lS reset and the Transmlt CRC
bit is enabled before the flrst character is
sent, thus includ~ng all the characters sent to
the Z-SCC in the CRC calculatlon, until the Trans­
rolt CRC blt is dlsabled. CRC generahon can be

dlsabled for a particular character by resetting
the TxCRC bit withln the transmit routine. In
thlS appl~cat~on, however, the Transmit CRC blt is
not disabled, so that all characters sent to the
Z-SCC are included ~n the CRC calculat~on.

The Z-SCC's transmit underrun/EOM latch must be
reset sometime after the fust character lS trans­
mltted by wrltlng a Reset Tx Underrun/EOM command
to WRO. When this latch ~s reset, the Z-SCC auto­
matlcally appends the CRC characters to the end of
the message in the case of an under run cond~t~on.

F~nally, a flve-character delay is ~ntroduced at
the end of the transmisslon, which allows the
Z-SCC sufhcient hme to transm~t the last data
byte, two CRC characters, and two sync characters
before disabllng the transmitter.

RECEIVE OPERATION

Once the Z-SCC is lnlhalized, lt can be pre­
pared to receive data. Fust, the receiver is
enabled, plac~ng the Z-SCC in Hunt mode and thus

4-169

setting the Sync/Hunt bit in status register RRO
to 1. In Hunt mode, the receiver 1S 1dle except
that it searches the incoming data stream for a
sync character match.
between the incoming
characters stored in
exits the Hunt mode,
in status register
Receive Interrupt On

When a match is discovered
data stream and the sync

WR6 and WR7, the receiver
resetting the Sync/Hunt bit
RRO and establish1ng the
F HSt Character mode. Upon

detection of the receive 1nterrupt, the CPU gener­
ates an Interrupt Acknowledge cycle. The Z-SCC
sends to the CPU vector %2C, which points to the
location in the Program Status Area from which the
rece1ve interrupt service routine is accessed.

The receive data routine is called from wi thin
the receive interrupt service routine. While
expecting a block of data, the Wait On Receive
function is enabled. Receive data buffer RRB 1S
read, and the characters are stored in memory
locations starting at RBUF. The Start of Text
(%02) character is discarded. After the End of
Transmission character (%04) is received, the two
CRC bytes are read. The result of the CRC check
becomes val1d two characters later, at which time,
RR1 is read and the CRC error bit is checked. If
the bit is zero, the message received can be
assumed correct; if the bit is 1, an error in the
transmission is indicated.

Before leaving the interrupt serV1ce routine,
Reset Highest IUS (Interrupt Under Service),
Enable Interrupt on Next Recieve Character, and
Enter Hunt Mode commands are issued to the Z-SCC.

If a receive overrun error is made, a special con­
di tion interrupt occurs. The Z-SCC presents the
vector %2E to the CPU, and the service routine
located at address %447A is executed. The Special
Recei ve Condition register RR1 is read to deter­
mine which error occurred. Appropriate action to
correct the error should be taken by the user at
this point. Error Reset and Reset Highest IUS
commands are given to the Z-SCC before returning
to the main program so that the other lower prior­
ity 1nterrupts can occur.

SOFTWARE

Software routines are presented in the following
pages. These routines can be mod1 fied to include
various verS10ns of Bisync protocol, such as
Transparent and Nontransparent modes. Encoding
methods other than NRZ (e.g., NRZI, FMO, FM1) can
also be used by mod1fying WR10.

4-170

Software Routines
plzasm 1.3

Appendix

LOC OBJ CODE STMT SOURCE STATEMENT

0000

0000 7601
0002 4400
0004 7010
0006 2100
0008 5000
OOOA 3310
OOOC OOlC

OOOE 7600
0010 00F4'
0012 3310
0014 0076

0016 7600
0018 011E'
OOlA 3310
OOlC 007A
DOlE 5FOO
0020 0034'
0022 5FOO
0024 00A6'
0026 E8FF
0028 02
0029 31
002A 32
002B 33
002C 34
0020 35
002E 36
002F 37
0030 38
0031 39
0032 30
0033 31
0034

1 BISYNC MODULE
$LISTON $TTY
CONSTANT
WROA ,. UE2l
RROA ,. UE2l
RBUF ,. '5400
PSAREA ,. \4400
COUNT ,. 12
GLOBAL MAIN PROCEDURE
ENTRY

LOA Rl,PSAREA

LDCTL PSAPOFF,Rl
LD RO,"5000

LD Rl(.nc) ,RO

LOA RO,REC

LD Rl(n76),RO

LOA RO,SPCOND

LD Rl("7A),RO

CALL INIT

CALL TRANSMIT

JR $
TaUF, BVAL '02

BVAL '1'
BVAL '2'
BVAL '3'
BVAL '4'
BVAL '5'
BVAL '6'
BVAL '7'
BVAL '8'
BVAL '9 '
BVAL '0'
BVAL '1'
END MAIN

4-171

IBASE ADDRESS FOR WRO CHANNEL AI
IBASE ADDRESS FOR RRO CHANNEL AI
IBUFFER AREA FOR RECEIVE CHARACTER I
ISTART ADDRESS FOR PROGRAM STAT AREAl
INO. OF CHAN. FOR TRANSMIT ROUTINEI

ILOAD PSAPI

IFew VALUE('5000) AT '441C FOR VECTORED I

I INTERRUPTS I

IEXT. STATUS SERVICE ADDR. AT '4476 INI

IPSAI

ISP.COND.SERVICE ADDR AT '447A IN PSAI

ISTART OF TEXTI
IBVAL MEANS BYTE VALUE. MESSAGE CHAR.I

0034

0034 2100
0036 OOOF
003S 7602
003A OOU'
003C 2101
003E FE21
0040 0029
0042 A920
0044 3A22
0046 001S
004S S004
004A EEFS
004C 920S
004£ 12
004F CO
0050 OS
0051 10
0052 14
0053 00
0054 OC
0055 AB
0056 OE
0057 CO
005S 04
0059 20
005A 16
005B 16
005C IS
0050 CE
005E lA
005F 00
0060 lC
0061 03
0062 IE
0063 00
0064 OA
0065 64
0066 06
0067 Cl
006S 02
0069 OS

006A 12
006B 09
006C

006C

006C CS28
006£ 3A86
0070 FE23
0072 6008
0074 00A8
0076 3AS6
0078 FE23
007A 2101
007C FEll
oon 3C1S
0080 C8C9
0082 3A86
00S4 FE27
00S6 2103
OOSS 5400
OOSA 3CIS
OOSC 2E3S
OOSE AB30
0090 OAOS
0092 0404
0094 EEFA
0096 3C1S
009S 3ClS
009A 3AS4
009C FE23

009E CSOO
OOAO 3AS6
00A2 FE27
OOA4 920S
00A6

1****************** INITIALIZATION ROUTINE FOR Z-SCC ***********************'

GLOBAL INIT PROCEDURE
ENTRY

LO

LOA

ALOOP. LO

ADOB
INC
OUTIB

TEST
JR
RET

SCCTAB. BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

BVAL
BVAL

END INIT

RO,n5

R2,SCCTAB

Rl,IWROA

RLl,@R2
R2
@Rl,@R2,RO

RO
NZ,ALOOP

2*9
,CO
2*4
no
2*10
o
2*6
'AB
2*7
,CO
2*2
\20
2*11
\16
2*12
iCE
2*13
o
2*14
'03
2*15
'00
2*5
\64
2*3
'Cl
2*1
'OS

2*9
'09

INO.OF PORTS TO WRITE TOI

IAOORESS OF DATA FOR PORTSI

IPOINT TO WROA,WRIA ETC THRO LOOPI

lEND OF LOOP?I
INO,KEEP LOOPINGI

IWR9-HAROWARE RESET I

IWR4=X1 CLK,16 BIT SYNC MODEl

IWR10-CRC PRESET ZERO,NRZ,16 BIT SYNCI

IWR6-ANY SYNC CHAR 'ABI

IWR7=ANY SYNC CHARR 'COl

IWR2-INT VECTOR '201

IWRl1-TxCLOCK & TRxC OUT-BRG OUTI

IWR12- LOWER TC-'CEI

IWR13- UPPER TC-OI

IWRl4-BRG ON, ITS SRC-PCLKI

IWR15-NO EXT INT EN.I

IWR5- TX 8 BITS/CHAR, CRC-161

IWR3-RX 8 BITS/CHAR, REC ENABLEI

IWR1-RxINT ON 1ST OR SP CONOI
I EXT INT OISABLEI

IWR9= MIE,VIS,STATUS LOWI

,.*.***.*********** RECEIVE ROUTINE *********************.**************1

RECEIVE A BLOCK OF MESSAGE
THE LAST CHARACTER SHOULD BE EOT('04)

GLOBAL RECEIVE PROCEDURE
ENTRY

LOB RLO,n28 IWAIT ON RECV.I
OUTB WROA+2,RLO

LOB RLO,MS

OUTH WROA+2,RLO IENABLE WAIT 1ST CHAR,SP.CONO. INTI

LO Rl,IRROA+l6

INB RLO,@R1 IREAD STX CHARACTER I
LOB RLO,nC9
OUTH WROA+6,RLO IRx CRC ENABLE I

LO R3,tRBUF

READ. INB RLO,@R1 IREAD MESSAGE I
LOB @R3,RLO ISTORE CHARACTER IN RBUFI
DEC R3,n
CPB RLO,n04 lIS IT END OF TRANSMISSION ?I

JR NZ,READ
INB RLO,@R1 I READ PAD11
INB RLO,@Rl IREAD PA021
INB RLO,RROA+2 IREAD CRC STATUSI

PROCESS CRC ERROR IF ANY, AND GIVE ERROR RESET COMMAND IN WROA I
LOB RLO,IO
OUTB WROA+6,RLO 10ISABLE RECEIVER I

RET
END RECEIVE

4-172

00A6

00A6 2102
00A8 0028'
OOAA C86C
OOAC 3A86
OOAE PE2B
OOBO C800
00B2 3A86
00B4 PE23
00B6 C888
00B8 3A86
OOBA PE23
OOBC C880
OOBE 3A86
OOCO PE21
00C2 2101
00C4 PE31
00C6 C86D
00C8 3A86
OOCA PE2B
OOCC 2100
OOCE 0001
DODO 3A22
0002 0010
0004 C8CO
0006 3A86
0008 PE21
OODA 2100
OODC OOOB
OODE 3A22
ODED 0010
00E2 C804
00E4 3E18
00E6 2100
00E8 0686
OOEA F081
OOEC C800
OOEE 3A86
OOFO PE2B
00F2 9E08
OON

00F4

00F4 93FO
00F6 3A84
00F8 FE21
OOFA A684
OOFC EE02
OOFE SFOO
0100 006C'
0102 C808
0104 3A86
0106 FE23
0108 C8Dl
OlOA 3A86
OlOC FE27
OlOE C820
0110 3A86
0112 PE21
0114 C838
0116 3A86
0118 FE21
OllA 97FO
OllC 7BOO
OllE

,****************
I

TRANSMIT ROUTINE ************************************1
SEND A BLOCK OF DATA CHARACTERS I

I THE BLOCK STARTS AT LOCATION THUF I

GLOBAL TRANSMIT PROCEDURE
ENTRY

LD R2,'TBUF

LOB RLO,n6C
OUTB WROA+IO,RLO

LOB RLO, noo
OUTB WROA+2,RLO

LDB RLO,n88
OUTB WROA+2,RLO

LOB RLO,n80
OUTB WROA,RLO

LD Rl, 'WROA+16

LOB RLO,n6D
OUTB WROA+lO,RLO

LD RO,U

OTIRB @Rl,@R2,RO

LDB RLO,nCO
OUTB WROA,RLO

LD RO,'COUNT-l

OTIRB @Rl,@R2,RO

LDB RLO,n04
OUTB @Rl,RLO
LD RO,U670

DEL. DJNZ RO,DEL
LDB RLO,.O
OUTB WROA+IO,RLO

RET
END TRANSMIT

IPTR TO START OP BUFFER I

I ENABLE TRANSMITTER I

IWAIT ON TRANSMIT I

IWAIT ENABLE,INT ON 1ST & SP CONDI

IRESET TxCRC GENERATOR I

IWR8A SELECTED I

ITx CRC ENABLE I

ISEND START OF TEXTI

IRESET TxUND/EOM LATCHI

ISEND MESSAGE I

ISEND END OP TRANSMISSION CHARACTER I
ICREATE DELAY BEPORE DISABLING I

IDISABLE TRANSMITTER I

1************* RECEIVE INT. SERVICE ROUTINE *************************J

GLOBAL REC PROCEDURE
ENTRY

PUSH @RIS,RO
INB RLO,RROA IREAD STATUS PROM RROAI

BITB RLO,'4 ITEST IF SYNC HUNT RESETI
JR NZ,RESET IYES CALL RECEIVE ROUTINE I
CALL RECEIVE

RESET. LDB RLO,n08
OUTB WROA+2,RLO IWAIT DISABLE I

LOB RLO,nDl
OUTB WROA+6,RLO IENTER HUNT MODEl

LDB RLO,n20
OUTB WROA,RLO IENABLE INT ON NEXT CHARI

LOB RLO,n38
OUTB WROA,RLO IRESET HIGHEST IUSI

POP RO,@RIS
IRET

END REC

4-173

1************ SPBCIAL CONDITION INTIRRUPT SBRVICS ROUTINI ***************1
0111

0118 93PO
0120 3U4
0122 P823

0124 C830
0126 31.86
0128 P821
0121. Ca08
012C 31.86
0128 '823
0130 C8D1
0132 31.86
0134 PB27
0136 C838
0138 31.86
0131. '821
013C 97PO
0131 7BOO

0140

o errors
Aaaemb1y complete

GLOBAL SPCOND PROC8DUR8
BRTRY

PUSH
INB

@R1S,RO
RLO,RROA+2

IPROCISS BRRORSI
LDB RLO,n30
OUTB WROA, RLO

LDB RLO,n08
ODTB WROA+2,RLO

LDB RLO,nD1
ODTB WROA+6,RLO

LDB RLO,tU8
OOTB WROA,RLO

pop RO,@RlS
IRIT

BRD SPCOHD

8RD BISYNC

4-174

IRIAD BRRORS I

IIRROR RlSITI

IWAIT DISABLI,RxINT OR 1ST OR SP COND.I

IHUNT MODS,RlC. BRULII

IRISET HIGHEST IUSI

00-2278-01

Zilog

INTROOUCTHIN

This application note describes the software
initialization procedure for the Zilog Serial
Communications Controller; the procedure applies
to both the Z-SCC (Z8030) and the SCC (Z8530).
Although the Z8030 and Z8530 have dl.fferent bus
interfaces, their registers are programmed in the
same order.

A worksheet is provided in this application note
to assist with the initialization process. A
program example of how the Z8000 initializes the
SCC for asynchronous operation is shown in
Appendix A. Other operation modes are initialized
in a similar manner and are described in the SCC
Technical Manual (document number 00-2057-01).

REGISTER OVERVIEW

Each of the SCC's two channels has its own
separate Write registers that are programmed to
initialize the different operating modes. There
are two types of bits in the Write registers:
Mode bits and Command bits. Write Register 14,

2266001

Z8530 and Z8030
sec Initialization:
A Worksheet and an Example

Application
Note

September 1982

shown in Figure 1, is an example of a register
that contains both types of bits.

~~L BR GENERATOR ENABLE) L BR GENERATOR SOURCE

iYi"R/REQUEST FUNCTION MODES

AUTO ECHO

LOCAL lOOPBACK

_H{ 0 0 0 NULL COMMAND

0 0 1 ENTER SEARCH MODE

0 1 0 RESET MISSING CLOCK

0 1 1 DISABLE DPll

1 0 0 SET SOUReE "" BR GENERATOR

1 0 1 SET SOURCE = RTxC

1 1 0 SET FM MODE

1 1 1 SET NRZI MODE

Figure 1. CoRDand and Mode Bits

Bits D4-DO are Mode bits that can be enabled or
disabled by being set to 1 or reset to O. Each
bit has one function. For example, bit DO enables
and disables the BR generator.

4-175

Bits 07-05 are Command bita, which require the
decoding of several bits to enable the function.
(Command bits are usually denoted by having boxes
drawn around them--see figure 1.) Functions
controlled by the Command bits can only be
enabled; they cannot be toggled like the !tide
bits. For example, the Search .mode is entered by
setting bits 07-05 to 001. Each command requires
a separate write of the entire register. Care
must be taken when issuing a command, so that the
!tide bits are not changed accidentally.

INITIALIZATION PROCEDURE

The SCC initialization procedure is divided into
three" stages. The first stage consists of
programming the operation modes (e.g., bits per
character, parity) and loading the constants
(e.g., interrupt vector, time constants). The
second stage entails enabling the hardware func­
tions (e.g., transmitter, receiver, baud rate
generator) • I t is important that the operating
modes are programmed before the hardware functions
are enabled. The third stage, if required, con­
sists of enabling the different interrupts.

Table 1 shows the order (from top to bottom) in
which the sec registers are to be programmed.
Those registers that need not be programmed are
listed as optional in the comments collJlln. The
bits in the registers that are marked with an "X"

are to be programmed by the user. The bits marked
with an "5" are to be aet to their previously
programmed value. For example, in stage 2, Write
Register J bits 01-07 are shown with an "5"
because they have been programmed in stage 1 and
must remain set to the same value.

INITIALIZATION TABLE

Figure 2 provides a worksheet that can be used as
an aid when initializing the SCC. The bits that
must be programmed as either a 0 or a 1 are filled
in; the remaining bits are left blank to be
programmed by the user according to the desired
mode of operation. The binary value can then be
converted to a hexadecimal nlJllber and placed in
the table after the Write register notation in t~e
column labeled "HEX." When completed, the
worksheet in figure 2 can be used to produce a
program initialization table.

RESET COft)ITIONS

The SCC should be reset by either hardware or
software before initialization. A hardware reset
can be accomplished by simultaneously grounding R5
and WR on the ZB5JO or AS and os on the ZBOJO. A
software reset can be executed by writing a COH
to Write Register 9. The states of the SCC
registers after reset are shown in Figure J.

4-176

Table 1. sec Initialization Order

Regiater

WR9
WRO
WR4
WR1
WR2
WR3

WR5

WR6
WR7
WR9

WR10
WR11
WR12
WR13
WR14

WR14

WR3
WR5
WRO
WR14

WR1

WR15
WRO
WRO
WR1

WR9

Data

11000000
o 0 0 0 0 0 X X
X X X X X X X X
o X X 0 0 X 0 0
X X X X X X X X
X X X X X X X 0

X X X X 0 X X X

X X X X X X X X
X X X X X X X X
000 X 0 X X X

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X 0

X X X S S S S S

S S S S S S S 1
S S S S 1 S S S
1 000 0 0 0 0
000 S S S S 1

X S S 0 0 S 0 0

X X X X X X X X
000 1 000 0
000 1 000 0
S S S X X S X X

o 0 0 S X S S S

1 (Set to one)
o (Set to zero)
X (User choice)

Connent&

Stage 1. Hades and Constants

Hardware reset.
Select Shift mode (ZB030 only).
Transmit/Receive control. Selects Async or Sync mode.
Select W/REQ (optional).
Program interrupt vector (optional).
Selects receiver control. Bit 00 (Rx enable) must be
set to 0 at this time.
Selects transmit control. Bit 03 (Tx enable) must be
set to 0 at this time.
Program sync characters.
Program sync characters.
Select interrupt control. Bit 03 (Master interrupt
enable) must be set to 0
Miscellaneous control (optional).
Clock control.
Time constant lower byte (optional).
Time constant upper byte (optional).
Miscellaneous control. Bit 00 (BR Generator enable)
must be set to 0 at this time.
This register may require multiple writes if more than
one command is used.

Stage 2. Enables

Set DO (Rx Enable).
Set 03 (Tx Enable).
Reset T xCRC •
BR Generator enable. Set bit 00 (BR Generator
Enable). Enable OPLL.
Set 07, (OMA enable) if required.

Stage 3. Interrupt Enables

Enable external interrupts.
Reset EXT/STATUS twice.
Reset EXT/STATUS twice.
Enable receive, transmit, and external interrupt
master.
Enable Master Interrupt bit 03.

S (Same as previously programmed)

4-177

Label of SCC Table: SCC Base Address: ----------------- ------------------
Description: __ __

Modes

Enables

Interrupt

Register

WR9

WRO

WR4

WR1

WR2

WR3

WR5

WR6

WR7

WR9

WR10

WR11

WR12

WR13

WR14

WR14

WR3

WR5

WRO

WR14

WR1

WR15

WRO

WRO

WR1

WR9

Hex

C 0

o

8 0

1 0 --
1 0

Binary

D, Do

11101010101010

00101010101 I

I I I I I
I 0 I 0 I I 0 I 0

I I I
I I 10

I 0

o 0 I 0 I 0

I 0

I 0

I I

11010010101010

o I 0 I 0 11

01010111010010

01010111010010

I I I
o I 0 10 I I I I I

Comments

Software reset

Reset TxCRC

Reset Ext/Status

Reset Ext/Status

Figure 2. SCC Initialization Worksheet

4-178 2266-002

HARDWARE RESET

16543210

10 0 0 0 0 o 1 0

o 0 0 0 o 0

o 0 0 0

1 1 0 0 0 0

o 0 0 0 0 0 0 0

o 0 0 0 1 0 0 0

1 0 0 0 0 0

1 1 1 1 1 0 0 0

10 1 1 0 0

10 0 0 0

10 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

CHANNEL RESET

16543210

o 0 0 0 0 o 0 0 1

o 0 0 0 o 0 1

·1

o 0 0 0

o 0 0 0 0

1 0 0 0

1 1 1 1 1 0 0 0

0 1 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Dots (.) are Indetermmate, and may be a 1 or a 0,

WRO

WR1

WR2

WR3

WR4

WRS

WRS

WR'

WRD

WR10

WR11

WR12

WR13

WR14

WR15

RRO

RR1

RR3

RR10

figure 3. Register Values After Reset

INITIALIZATION EXAMPLE

The program example in Appendix A shows how the
Z8000 initializes the Z-SCC for asynchronous
communication. The initialization sequence is
stored in a table beginning with the program label
SCCTABLE and is used by a subroutine called
ZINIT. The same subroutine can use different
initialization tables. The table in the program
example requires two bytes for each register; the
first byte is the register address and the second
byte is the data. The ZINIT subroutine takes the
data in this table and writes it to the SCC.
Three arguments must be set before calling the
subrout.ine:

• The peripheral base address (in R1).

• The address of the beginning
initialization routine (in R2).

of the

• The number of entries in the table (in R3).

For the Z8000 to use vectored interrupts, the
peripherals must be connected to ADD-AD7 of the
CPU's Address/Data bus.

2266·003 4-1 79

Appendix A. Z8000 Program £X8lllple

plzasm 1.3
LaC OBJ CODE STMT SOURCE STATEMENT

1 SCC_INIT MODULE
$liston $tty
CONSTANT

!***!
SCC BASE ADDRESS

The see is 1/0 mapped at address location
!FEOO. This is accomplished in hardware by decoding 1
Ichip enable (eE) from addresses ADB-AD15 and the statusl
!lines STO-ST3. The sec address is assigned to the 1
!label SeeBASE in the following equate statement. !
1***1

seCBASE := %FEOO !z-Sce base address

!***1
! sec REGISTERS

For clarity, the address of the internal registers
lis assigned a label as shown below in the equate
Istatements. The peripheral's ADO-AD7 pins must be
!connected to the CPU's ADO-AD7 pins because the
!CPU reads the interrupt vector from the low-order byte
!(ADO-AD7) during an Interrupt Acknowledge cycle.
!To access the peripheral's internal registers, the
!least significant address bit (AO) in the register
!addresses must be set to 1, and the Shift Left mode
!must be selected.
!***1

WROB := %01: WROA := %21
WRIB := %03: WRIA := %23
WR2B := %05: WR2A := %25
WR3B := %07: WR3A := %27
WR4B := %09: WR4A := %29
WR5B := %OB: WR5A := %2B
WR6B := %OD: WR6A := %2D
WR7B := %OF: WR7A := %2F
WRBB := %11: WRBA := %31
WR9B := %13 : WR9A := %33
WRIOB := %15: WRIOA := %35
WR11B := %17 : WR11A := %37
WR12B := %19: WR12A := %39
WR13B %IB: WR13A %3B
WR14B %lD: WR14A %3D
WR15B %1F; WR15A %3F

4-180

Z8DOO Progra. [xa.ple (Continued)

0000

0000 2101
0002 FEOO
0004 7602
0006 OOlC'
0008 6103
OOOA 0046'
oooe 5FOO
OOOE 0010'

0010

0010

0010 2029

0012 A920

0014 3A22
0016 0318
0018 ECFB

OOIA 9E08

GLOBAL MAIN PROCEDURE

!***!
I MAIN PROGRAM FLOW

To initialize the sec, the following four instruct­
lions must be included in the main program. The first
Ithree instructions load arguments into registers
!RI-R3 for use by the initialization subroutine
IZINIT. The fourth instruction calls the ZINIT
!subroutine.
!***1

ENTRY

LD Rl,#SeCBASE !I/O address of Z-SCC

LDA R2,SCCTABLE !Beginning of data table!

LD R3,SCeCOUNT !Size of data table

CALL ZINIT ICal! subroutine

END MAIN

GLOBAL ZINIT PROCEDURE

1***1
! INITIALIZATION SUBROUTINE
!
! This routine is called from the main program
Ito initialize a Z-BUS peripheral in a Z8000 system.
IThe following arguments must be set:

Rl = Base address of peripheral
R2 = Pointer to data table
R3 = Number of iterations

!***1

ENTRY

LDB RLl,@R2 ILoad register address
!from table

INC R2 IIncrement the table
Ipointer

OUTIB @Rl,@R2,R3 !Write data to the sce

JR NOV,ZINIT !Repeat if not at the
lend of the table

RET !Return to main program

4-181

---- ... ------... ~ .. ~.-----

ZOOOO ProgrMl EXlllllple (Continued)

OOlC 33
0010 CO
OOlE 29
OOlF 4C

0020 25
0021 10
0022 27
0023 CO
0024 2B
0025 E2
0026 20
0027 00
0028 2F
0029 00
002A 33
002B 01
002C 35
0020 00
002E 37
002F 56
0030 39
0031 06
0032 3B
0033 00
0034 3D
0035 02

0036 3D
0037 03
0038 27
0039 Cl
003A 2B
003B EA

003C 3F
0030 00
003E 21
003F 10
0040 21
0041 10
0042 33
0043 09
0044 23
0045 10

0046 0015

0048

!***!
! SCC INITIALIZATION TABLE
1
1 This table is used to initialize the SCC for
!Asynchronous operation, 8 bits/character, 2 stop bits,
Ina parity, x16 clock, and 9600 baud.
!***1

SCCTABLE:
!MODES AND CONSTANTS!

BVAL WR9A
BVAL %CO
BVAL WR4A
BVAL %4C

BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

!ENABLES!
BVAL
BVAL
BVAL
BVAL
BVAL
BVAL

WR2A
%10
WR3A
%CO
WR5A
%E2
WR6A
%0
WR7A
%0
WR9A
%01
WRlOA
%0
WRllA
%56
WR12A
%06
WR13A
%0
WR14A
%02

WR14A
%03
WR3A
%Cl
WR5A
%EA

IENABLE INTERRUPTS!
BVAL WR15A
BVAL %0
BVAL WROA
BVAL %10
BVAL WROA
BVAL %10
BVAL WR9A
BVAL %09
BVAL WRlA
BVAL %10

SCCCOUNT:

!Force hardware reset

!x16 clock,2 stop bits/character!
!no parity !

!Interrupt vector = %10

!Rx 8 bits/char;Rx disabled

!Tx 8 bits/char;DTR;RTS;Tx off

!null (no sync char)

!null (no sync char)

!VIS; Status low

!NRZ

!Tx & Rx clk = BRG;TRxC=BRG out

!Time canst = 6 (default=9600)

!Time canst (high) = 0

!BRG source = PCLK;BRG off

!BRG enable

IRx enable

!Tx enable

!All ext/status rupts off

!Reset Ext/Status interrupts

!Reset Ext/Status interrupts

!MIE;VIS;Status low

!Rx int on all rx chars or
Ispecial condition

WVAL (($-SCCTABLE)/2)-1

END ZINIT
END SCC_INIT

4-182 00·2266·01

Zilog

INTROOUCTION

The 18038 I-FlO is an intelligent 128x8 FIFO
buffer that can link two CPUs or a CPU and a
peripheral device. The I-FlO manages data trans­
fers by assuming Z-BUS, non-Z-BUS (a generalized
microprocessor interface), 2-Wire Handshake, and
3-Wire Handshake operating modes. These modes
facilitate interfacing dissimilar CPUs, or CPUs
and peripherals running under differing speeds or
protocols, allowing asynchronous communication and

reducing I/O overhead. The width of the buffer
can be expanded by connecting multiple Z-FIDs in
parallel, and the depth can be expanded by using
18060 FIFO buffers.

This application note illustrates the use of the
Z-FIO in a simple data acquisition application, in
which a peripheral device transfers data to a
18002-based system at a constant rate of one byte

every 100 IJ.s. In this application, it is
desirable for the system to record each byte in
memory as well as dynamically keep track of the
frequency of a certain data pattern. The I-FID
facilitates this task by allowing the CPU to

handle the data in blocks rather than requiring it
to service an interrupt every 100 IJ.s.

For a more complete understanding, this
application note should be read in conjunction
with the Z-FlO Technical Manual (Document
1100-2051-01) •

HARDWARE CONFIGURATION

In this application, the Port 1 side of the I-FlO
is connected to the lower byte of the system bus.
The Z-BUS Low Byte mode is programmed by

connecting MO and M1 to ground. The Port 2 side
receives data from the peripheral device using the
Interlocked 2-Wire Handshake mode. Figure 1 shows

The Z-FIO in a Data
Acquisition Application

Application
Note

March 1983

the Z8038 hardware configuration, and Table 1
gives a description of each signal used in the
application.

INITIAlIZING THE I-flO

Before writing the initialization software, the
user should keep in mind that the Z-FIO is con­
nected to the lower byte of the system bus, so all
of its registers have odd addresses. Since the
least significant address bit, AD, must always
equal 1 when performing byte-oriented accesses to
the Z-FIO, this bit cannot be used to seJect
registers. It is for this reason that the Right
Justified Address (RJA) bit in Control Register 0
(CRO) must be reset to 0, requiring the address to
be left-shifted by one bit (Le bits A4 - A1
are used to select the registers).

The first step in initializing the Z-FIO is the
software reset, performed by writing a 1 to the
Reset bit in CRO. Since no hardware reset circuit
is employed, it must be assumed that the RJA bit
is in an unknown state upon power-up. The first

access must be performed with A4 - AD = 00000 so
that CRO is addressed regardless of the state of
the RJA bit. A word-oriented output instruction
(OUT) is executed, with the Z-FIO's even base
address as the destination. This procedure is
detailed in the program listing in the Appendix.

The ZINIT procedure completes initialization. It
is called with the I-FlO's base address in R1, and
it uses the information in the table TAB to load
the Z-Flo's registers. TAB is a string of byte
v8lue pairs, each pair consisting of a target
register address offset and a value to be loaded
into the corresponding target register. For

example, the first two byte values are 01 and 00.
ZINIT loads the value 00 to the target register
with address offset 01.

4-183

Vi

A
ADo-AD15

~

Z8002
CPU

~

of"

STATUS
STo-ST3 -,I DECODER

~
AS

DS

RiW

+5V PORT 1 PORT 2 .,..

INT

~ ADo-AD7 FULL ~

IAD~
--y EMPTY

CS

" ADDRESS : Z8038
DECODER. Z·FIO A . Do-D7 1\

+5V

L
~

IOREF
DMASTB RFD/DAV · · • VIACK
INTACK ACKIN

AS

DS

RIW

TO/FROM { __ lEO
SYSTEM

DAISY CHAIN .- lEI

~ Mo

~ Ml

-=

Figure 1. ZaOla Hardware Configuration

+5 v

.---

lTO/FROM
PERIPHERAL
DEVICE

L....j+5 V

ADO - AD7 (Address/Data)

DMASTB (Direct Memory
Access Strobe)

os (Data Strobe)

R/W (Read/Write)

CS (Chip Select)

AS (Address Strobe)

Table 1. Signal Descriptions

I-BUS Low Byte: Port 1 Side

Multiplexed, bidirectional Address/Data lines, Z-BUS
compatible.

Input, active low, tied High in this example.

Input, active low; provides timing for data transfer to or
from Z-FID.

Input, active High signals CPU read from Z-FIO; active low
signals write to Z-FIO.

Input, active low. Enab les I-flO; latched on the rising
edge of AS.

Input, active low. Addresses, CS and INTACK sampled while
AS low.

INTACK (Interrupt Acknowledge) Input, active low. Acknowledges an interrupt. Latched on
the rising edge of AS.

lEO (Interrupt Enable Out)

lEI (Interrupt Enable In)

INT (Interrupt)

DO - 07 (Data)

RFD/DAV (Ready for Data/
Data Available)

ACKIN (Acknowledge Input)

FUll

EMPTY

Output, active High.
priorlty devlce lEI pin.

Sends interrupt enable to lower

Input, active High. Receives interrupt enab Ie from higher
priorlty devlce lEO pln.

Output, open drain, active low. Signals Z-FID interrupt
request to CPU.

2-Wire Handshake: Port 2 Side

Bidirectional data bus. Input in this example.

Output, RFD active High. While port is input, signals that
Z-FIO is ready to receive data.

Input, active low. Signals that input data is valid.
Pull-up resistor ensures that ACKIN is High when handshake
is enabled.

Output, input, open drain, active High. Must be pulled
High in this example since the conditions for setting the
Full Interrupt Pending (IP) bit are: Buffer is full, and
FUll input is High.

Output, input, open drain, active High. Must be pulled High
in this example since the conditions for setting the Empty
IP bit are: Buffer is empty, and EMPTY input
is High.

4-185

INTERRUPT CONSIDERATIONS

Essential to this application are the powerful
vectored interrupt capabilities inherent in Z-BUS
architecture. When the IB002 VI input is pulled
Low, a vectored interrupt is requested. I f the
Vectored Interrupt Enable (VIE) bit in the Flag
Control Word (FCW) is set to 1, the IB002 executes
an Interrupt Acknowledge cycle during which it
reads a vector from the lower byte of the
Address/Data bus. The IB002 then loads the Program
Status registers (which include the FCW and the
PC) from the vector table in the Program Status
Area.

The I-flO interrupts the CPU each time the buffer
is full. In servicing the Buffer Full interrupt,
the CPU performs the necessary overhead operations
and then executes an Input Increment and Repeat
Byte (INIRB) instruction to move the data from the
Z-FIO to memory.

In order to dynamically count the occurrences of a
certain data pattern, the I-FlO must interrupt the
INIRB instruction each time the pattern appears in
the Data Buffer register. (INIRB is an iterative
instruction and can be interrupted after each
execution of the basic operation.) Finally, when
the buffer is empty, the Z-Fro interrupts the
INIRB instruction again so that a 1 can be loaded
into the iteration counter (in this case RO) and
the block move can be terminated. This method of
inputting data until the Z-Fro is empty is more
efficient than inputting a fixed number of bytes,
because the block size varies according to the
amount of time spent servicing Pattern Match
interrupts.

Initializing the Vector Table

The vector table in the Program Status Area
consists of an FCW, which is used for all vectored
interrupts, and up to 256 word values that can be
loaded into the CPU's PC during a Vectored Inter­
rupt Acknowledge cycle. These values correspond to
the 256 possible values of the Interrupt Vector
that is read on the lower byte of the Address/Data
bus. The vector value 0 selects the first PC
value, the vector value 1 selects the second PC
value, and so on up to the vector value 255.

Though Port has only one Interrupt Vector
register, the three interrupt conditions used in
this application (Buffer Empty, Buffer Full, and
Pattern Match) can generate unique vectors via the
Vector Includes Status feature. This feature
encodes the interrupt status into bits 01 - 03 of
the vector according to the convention shown in

Figure 2. Assuming a base vector value of DOH,
Table 2 gives the vectors that the interrupt
conditions generate, their corresponding PC
values, and the byte offsets that address these
values in the Program status Area.

VECTOR
STATUS

I
NO INTE RRUPTS PENDING

BUFFER EMPTY

BUFFER FULL

OVER/UN DERFLOW ERROR

BY TE COUNT MATCH

PATTERN MATCH

DATA 01 RECTION CHANGE

M AILBOX MESSAGE

J I JT
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Figure 2. Interrupt Vector Register

Table 2. Interrupt Vectors

Interrupt Interrupt PC Byte
Condition Vector Value Offset

(hex) (deci.a1.)

Buffer Empty 02 PC3 34
Buffer Full 04 PC5 .38
Pattern Match OA PC11 50

The software routines show how these byte offsets
(in conjunction with the PSAP) form indexed
addresses to initialize the vector table.

Buffer Full Interrupt

Buffer Full is the only interrupt that interrupts
the background task. Since one byte 0 f data
is moved to the buffer every 100 JJ.s, it takes
128 x 100 = 12.B J.Ls from the time the buffer is
empty until the Buffer Full condition requires
service. The primary task of the FULL service
routine is to execute the INIRB instruction,
which moves the data from the Z-FlO to a memory
buffer starting at location BUF (6000H). 8efore
INIRB is executed, the Pattern Match interrupt is
enabled, the Full interrupt is disabled, and the
Disable Lower Chain command is issued so that no
interrupt sources 0 flower prior it y than the I-Fl 0
can interrupt the FULL routine.

4-186 2306-002

After execution of the INIRB instruction, the
destination pointer (R1) is decremented to
compensate for the extra iteration that takes
place after the buffer goes empty. The Clear Full
Interrupt Pending command is issued in case the
Full IP bit has been set since the most recent
Clear Full IP command (e.g. the peripheral device
transferred a byte to the buffer just after the
first iteration of the INIRB instruction, thus
causing the buffer to go full and the Full IP bit
to be set). The Full IE bit is then set so the
Z-FIO can cause an interrupt the next time it is
full, and the Pattern Match IE bit is cleared to
prevent a Pattern Match condition from inter­
rupting the background task. Finally, the lower
daisy chain is enabled and control is returned to
the background task.

Buffer Empty Interrupt

The Buffer Empty IP bit is set whenever the Z-FIO
makes a transition from a "not-empty" state to an
empty state. In this application, it is set when
the INIRB instruction reads the last byte from the
Z-FIO buffer. Since the Buffer Empty interrupt
has lower priority than the Buffer Full interrupt,
the Full Interrupt Under Service (IUS) bit must be
cleared if the Buffer Empty condition is to
preempt the FULL service routine. (Z-BUS inter­
rupt sources hold their Interrupt Enable Output
(lEO) line Low whenever their IUS bit is set.) The
EMPTY service routine loads a 1 into the itera­
tion counter (RO), causing the INIRB instruction
to be terminated after the next iteration. The
service routine then clears the Empty IP and IUS
bits and returns control to the FULL routine.

Pattern Match Interrupt

The Pattern Match interrupt is a higher priority
interrupt than the Buffer Full interrupt, and it
can preempt the FULL routine if the Pattern Match
IE bit is set. The Pattern Match IP bit is set
whenever the Data Bu ffer register contains the
pattern (specified as 55H by the initialization
sequence). The PAT service routine simply
increments the pattern counter (RL3), clears the
Pattern Match IP and IUS bits, and returns control
to the FULL routine. The IP and IUS bits are
cleared in separate commands to prevent a spurious
interrupt caused by IUS being cleared before IP is
cleared. The background task can interpret the
value in RL3 as the number of times the pattern
55H appears in the most recently transferred
block of data.

APPEN>IX

Following is a listing of the software used in
this application. It is assumed that the PSAP has
been initialized and that the ZB002 is in System
mode when it enters the MAIN procedure. The
background task is simulated by the "JR $"
instruction.

Under ZINIT, each address offset shown is keyed to
the name of the corresponding register, and each
loaded value is keyed to the effect of the load.

4-187

LOC 08J COl)[STMT SOURCE STATEMENT

1 RECEIVE MODULE
2 EXTERNAL ZINIT PROCEDURE
3 INTERNAL CONSTANT
4 BUF := %6000 ! MEMORY BUFFER!
5 FIOBASE := 1.FOOO !FlO BASE ADDR!
6 FOATA := %F01F !FIO DATA REG!

7 CRO := %F001 !CONTROL REG O!
8 ISR1 := %F007 !INTR STATUS REG 1 !
9 ISR3 := %FOOB !INTR STATUS REG 3!
0

0000 11 GLOBAL MAIN PROCEDURE
12 ENTRY
13

0000 7C01 14 01 VI !DISABLE VECTORED
INTR!

15
16 ! INITIALIZE flO!

0002 BD01 17 LDK RO,f/1
0004 3B06 FOOO 18 OUT FIOBASE,RO ! RESET FlO WITH

EVEN ADDR!
0008 2101 FOOO 19 LD R1,#FIOBASE
OOOC 5FOO 0000* 20 CALL ZINIT

21
22 !INITIALIZE VECTOR TABLE!

0010 7015 23 LDCTL R1,PSAP !LOAD PROG STATUS
AREA PTR!

0012 4015 001C 24 LD 28(R1) ,#%4000 !LOAD FCW FOR
VECTORED INTR!

0016 4000
001B 7602 0038' 25 LDA R2,FULL !LOAD ADDR OF FULL

PROCEDURE!
001C 6F12 0026 26 LD 38(R1) , R2 !ENTER ADDR IN

VECTOR TABLE!
0020 7602 0084' 27 LDA R2,PAT !ENTER ADDR OF

PAT PROCEDURE!
0024 6F12 0032 28 LD 50(R1) ,R2 !ENTER ADDR IN

VECTOR TABLE!
0028 7602 007A' 29 LDA R2,EMPTY !LOAD ADDR OF

EMPTY PROCEDURE!
002C 6F12 0022 30 LD 34(R1),R2 !ENTER ADDR IN

VECTOR TABLE!
31
32

0030 2101 6000 33 LD R1,#BUF !LOAD ADDR OF MEMORY
BUFFER!

0034 7C05 34 EI VI !ENABLE VECTORED INTR!
0036 E8FF 35 JR $!BACKGROUND TASK!

0038 36 END MAIN
37

0038 38 INTERNAL FULL PROCEDURE
39 ENTRY
40

4-188

LOC 08J aJI)[SJMT SOIReE STATDENT

0038 2100 OCDC 41 LD RO,#%OCDC
003C 3A06 fD07 42 OUTB ISR1,RHO !SET PATTERN MATCH IE!
0040 3A86 fD01 43 OUTB CRO,RLO !DISABLE LOWER DAISY

CHAIN!
0044 2100 20EO 44 LD RO,I1%20EO
0048 3A06 fD08 45 OUTB ISR3,RHO !CLEAR FULL IP & IUS!
004C 3A86 fDOB 46 OUTB ISR3,RLO !CLEAR FULL IE!
0050 8CB8 47 CLRB RL3 !INITIALIZE COUNT!
0052 2102 fD1F 4B LO R2,I1fDATA
0056 7C05 49 EI VI !ENABLE VECTORED INTR!

50
0058 3A20 0010 51 INIRB 1IR1,IIIIR2, RO !REAO DATA FROM FLO!

52
005C 7C01 53 DI VI !DISABLE VECTORED INTR!
005E AB10 54 DEC R1
0060 2100 AOCO 55 LD RO,'%AOCO
0064 3A06 fDOB 56 OUTB ISR3,RHO ! CLEAR FULL IP!
0068 3A86 fDOB 57 OUTB ISR3,RLO !SET FULL IE!
006C 2100 OE9C 58 LD RO,'%OE9C
0070 3A06 fD07 59 OUTB ISR1,RHO !CLEAR PATTERN MATCH IE!
0074 3A86 fD01 60 OUTB CRO, RLO !ENABLE LOWER

DAISY CHAIN!
0078 7BOO 61 IRET
007A 62 END FULL

63
007A 64 INTERNAL EMPTY PROCEDURE

65 ENTRY
007A BD01 66 LDK RO,#1 !TERMINATE BLOCK MOVE!
007C C302 67 LDB RH3,#%02
007E 3A36 fD08 68 OUTB ISR3,RH3 !CLEAR EMPTY IP AND IUS!
0082 7BOO 69 IRET
0084 70 END EMPTY

71
0084 72 INTERNAL PAT PROCEOURE

73 ENTRY
0084 A8BO 74 INCB RL3 !INCREMENT COUNT!
0086 2104 OA06 75 LD R4,U%OA06
008A 3A46 fD07 76 OUTB ISR1,RH4 !CLEAR PATTERN MATCH IP!
008E 3AC6 fD07 77 OUT8 ISR1,RL4 !CLEAR PATTERN MATCH IUS!

0092 7BOO 78 IRET
0094 79 END PAT

80 END RECIEVE

1
2 ZIN MODULE

0000 3 GLOBAL ZINIT PROCEDURE
4
5 THIS IS A GENERAL ROUTINE USED
6 TO INITIALIZE A Z-BUS PERIPHERAL
7 IN THIS EXAMPLE If INITIALIZES
8 THE Z-FlO.
9

4-189

LOC 08J COlE STMT SOURCE STATDENT

10 R1 = PERIPHERAL BASE ADDR
11 R2 = ADDR OF TABLE
12 R3 = NO. OF BVfES TO BE OUfPUT
13
14 ENTRY

0000 7602 0014' 15 LOA R2,TAB
0004 6103 0024' 16 LD R3,COUNT

17 LOOP:
0008 2029 18 LOB RL 1,1002
OOOA A920 19 INC R2
OOOC 3A22 0318 20 OUTIB 001 ,1002, R3

21
0010 ECFB 22 JR NOV ,LOOP
0012 9E08 23 REf

24
25 TAB:

0014 01 26 BVAL %01 !CONTROL REGISTER O!
0015 00 27 BVAL %00 ! CLEAR RESE f !
0016 01 28 BVAL %01 !CONTROL REGISTER O!
0017 OC 29 BVAL %OC !INTERLOCKED HS PORT!
0018 15 30 BVAL %15 !CONTROL REGIS fER 3!
0019 50 31 BVAL %50 ! INPUT TO CPU!
001A 13 32 BVAL %13 !CONTROL REGISTER 2!
001B 03 33 BVAL %03 !ENABLE PORT 2!
001C 1B 34 BVAL %1B IPATfERN MATCH REGISTER!
0010 55 35 BVAL %55 !PATTERN IS 551
001E OB 36 BVAL %OB !INTERRUPT STATUS REGISTER 3!
001F CC 37 BVAL \\lCC !SET FULL ANO EMPTY IE!
0020 01 38 BVAL %01 !CONTROL REGISTER O!
0021 9C 39 BVAL %9C ! SET MIE BIT!

40
41 COUNT:

0022 0008 42 WVAL «$-TAB)/2 -1)
0024 43 END ZIN! f

44 END ZIN

4-190 00-2307-01

Zilog Sales Offices and Technical Centers

West Midwest
Sales & Technical Center Sales & Technical Center
Zilog, Incorporated Zi log , Incorpora ted
1315 Dell Avenue 951 North Plum Grove Road
Campbell, CA 95008 Suite F
Phone: (408) 370-8120 Schaumburg, IL 60195
TWX: 910-338-762 1 Phone: (312) 885-8080

Sales & Technical Center
TWX: 910-291-1064

Zilog , Incorpora ted Sales & Technical Cen ter
18023 Sky Park Circle Zilog, Incorpora ted
Suite J 28349 Chagrin Blvd.
Irvine, CA 92714 Suite 109
Phone: (714) 549-2891 Woodmere, OH 44122
TWX: 910-595-2803 Phone: (216) 831 -7040

Sales & Technical Center
FAX: 216-831-2957

Zilog , Incorporated South
15643 Sherman Way
Sui te 430 Sales & Technica l Center
Van Nuys, CA 91406 Zilog, Incorporated
Phone: (213) 989-7485 4851 Keller Springs Road,
TWX: 910-495-1765 Suite 211

Dallas, TX 75248
Sa les & Techn ical Center Phone: (2 14) 931-9090
Zilog, Incorporated TWX: 910-860-5850
1750' 12th Ave. N.E.
Suite D161 Zilog, Incorporated
Bel levue, WA 98004 7113 Burnet Rd.
Phone: (206) 454-5597 Suite 207

Aust in, TX 78757
Phone: (512) 453-3216

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008

00-232Q.Ol

East
Sales & Technical Cen ter
Zi log , Incorporated
Corporate Place
99 South Bedford St .
Burlington, MA 01803
Phone: (617) 273-4222
TWX: 710-332- 1726

Sales & Technica l Center
Zilog, Incorporated
240 Cedar Knolls Rd.
Cedar Knolls, NJ 07927
Phone: (201) 540-1671

Technical Center
Zilog, Incorporated
3300 Buckeye Rd.
Suite 401
Atlanta , GA 3034 1
Phone: (404) 451-8425

Sales & Technica l Center
Zilog , Incorporated
1442 U.S. Hwy 19 South
Suite 135
Clearwater, FL 33516
Phone: (8 13) 535-557 1

Zilog , Incorporated
613-B Pitt S1.
Cornwall, Ontario
Canada K6J 3R8
Phone: (613) 938-1121

United Kingdom
Zilog (U .K.) Limited
Zilog House
43-53 Moorbridge Road
Maidenhead
Berkshire, SL6 8PL England
Phone: 0628-39200
Telex: 848609

France
Zilog, Incorporated
Cedex 31
92098 Paris La Defense
France
Phone: (1) 334-60-09
TWX: 611445F

West Germany
Zilog GmbH
Eschenstrasse 8
D-8028 TAU FKI RCHEN
Munich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d.

Japan
Zilog , Japan K.K.
Konparu Bldg. 5F
2-8 Akasaka 4-Chome
Minato-Ku, Tokyo 107
Japan
Phone: (81) (03) 587-0528
Telex : 2422024 AlB: Zilog J

Telephone (408)370-8000 TWX 91 0-338-7621

Printed in USA

