

Rev. B03

DSS-10550-00

August 1998

LEVEL7 Non-Maskable Interrupt Debugger

LEVEL7, the non-maskable interrupt debugger, is a utility to examine the status of a locked-up system.

This can be very useful when debugging interrupt level routines or other functions which may appear to

lock the system. You can also set LEVEL7 to trigger on the standard exception vectors.

To use LEVEL7 to debug a “locked” system, you need to emulate a power fail condition by using a

switch wired to the UPS port on the CPU board. Therefore, you can use LEVEL7 to diagnose system

lockups only on CPU boards which have a UPS port, such as the AM-190. Information on constructing

the necessary switch is at the end of this document.

Using the LEVEL7 debugger preempts any power fail operations usually performed within the

AMOS monitor; therefore it should only be installed during debugging, not as a normal system

utility.

If your CPU does not have a UPS port, you can still use LEVEL7 to debug any condition which

causes one of the normal exception vectors by using the /E or /T switch, described below.

LEVEL7 is user-extensible via custom overlays, several of which are included. Further information on

programming these overlays is covered later in this document. If you develop your own overlay, and wish

it to be included, please submit it with source and instructions to Alpha Microsystems. The overlay will

become property of Alpha Microsystems if included with LEVEL7; no compensation will be given to the

author.

LEVEL7 RELEASE FILES

As of release 1.0(120), the LEVEL7 debugger consists of the following files:

LEVEL7.SYS Main debugger module

GOL7.LIT Program to execute the debugger manually

JCB.L7O Overlay to display job control blocks

TCB.L7O Overlay to display terminal control blocks

DDB.L7O Overlay to display dataset driver blocks

MAP.L7O Overlay to display memory modules

SMEM.L7O Overlay to display shared memory area

DISASM.L7O Overlay to disassemble 680x0 instructions

IDENT.L7O Overlay to identify memory areas

EXAMPL.M68 Example overlay source file

L7OSYM.M68 Symbol file for developing new overlays

INSTALLING LEVEL7

Place the files LEVEL7.SYS and GOL7.LIT in DSK0:[1,4] and all overlays (*.L7O) in DSK0:[7,0]. The

source files are needed only if you plan on creating your own overlays. You may install them anywhere;

DSK0:[7,7] is normally a good choice.

Page 2 LEVEL7 Non-Maskable Interrupt Debugger

 Rev. B03

In your system initialization file (always edit a copy of the file, not the original), locate the SYSTEM

statements. Before the final SYSTEM statement, add this statement:

SYSTEM LEVEL7.SYS/N{/E}{/T}{/P}{/H} {overlay} {overlay} {. . .}

/E is an optional switch which causes the normal exception vectors to be trapped. This means LEVEL7

will be invoked for such things as illegal instructions or address errors.

/T is the same as /E, except that it allows you to toggle exception vector trapping by using the GOL7

command (see below). This lets you enable and disable exception trapping without rebooting your

computer.

You can use /P with /E or /T to ignore privilege violations. These errors often occur due to differences in

newer CPUs from the original Motorola 68000. Normally AMOS handles them for you; however, the /E

or /T switch can cause LEVEL7 to trigger on them.

/H causes LEVEL7 and the interrupt vector table to be copied into the last 128K of high memory. A page

of memory within the RES: copy of LEVEL7, and a page preceeding the relocated vector table, are write

protected. These write protected pages are used as boundaries to catch a program writing throughout

memory.

When using the /H switch, it is very important to load LEVEL7 after anything which might install

interrupt vectors, such as an LDV. You should also enable exception trapping to allow any writes

to the write protected areas to trigger LEVEL7. The /H switch should generally be avoided unless

you are experiencing crashes which overwrite LEVEL7 or the vector table.

Each overlay is an optional overlay file to load. Though they are not required, most are very useful. For

example, the overlay JCB.L7O is available for displaying job control block information.

The proper SYSTEM statement, with all of the currently available overlays and exception trapping

enabled, but privilege violations ignored, would look like this:

SYSTEM LEVEL7.SYS/N/E/P JCB TCB DDB MAP SMEM DISASM IDENT

Once you reboot your system, the debugger should be ready. LEVEL7 will be invoked in any of three

circumstances:

• If you press a button wired to the CPU UPS port, simulating a power fail condition.

• If you use /E or /T, on any of the normal exception vectors.

• If you didn’t use /T, when you enter the GOL7 command. This is handy for verifying the

debugger is properly installed.

If you use the /T switch, GOL7 does not enter LEVEL7. Instead, it toggles exception trapping. Exception

trapping is off when the system boots, the first use of GOL7 turns it on, the next turns it off, etc.

LEVEL7 MAIN MENU

The LEVEL7 debugger operates at interrupt level with interrupts locked. No other processing occurs

while you are in the debugger. When the debugger is activated through a power fail interrupt, processor

LEVEL7 Non-Maskable Interrupt Debugger Page 3

Rev. B03

exception, or the GOL7 command, the following menu appears on the terminal attached to CPU port #0.

The activated by line appears only when LEVEL7 is entered due to an exception:

***** Level 7 Interrupt Debugger *****

(activated by XXXXXX exception)

Primary Functions:

 1) Exit Level 7 Handler 2) Show Stacked Registers

 3) Examine/Modify Location 4) Show System Comm. Area

 5) Display memory block 6) External Cache

Extended Functions:

 7) Display JCB information

 8) Display TCB information

 9) Display DDB information

 10) Display memory modules

 11) Display shared memory (SMEM)

 12) 680x0 Disassembler

 13) Identify an address

The primary functions listed are functions supported within LEVEL7 itself. Extended functions are the

overlays you have specified. In the example, a number of overlays have been loaded. Your extended

functions list may be different.

To return to the Main Menu from any function, press CTRL /C. To leave the debugger and release

operation of the system, select option 1 on the Main Menu. You may redisplay the Main Menu by

pressing RETURN .

The following sections describe each of the functions available on the menu.

Various areas within the primary and extended functions will request a memory address. You can

use an absolute address, or reference a stacked register or an offset from one. All addresses and

offsets must be entered in hexadecimal. For example, all of the following are valid responses:
1A4B20 @A5 1290(A0) @D5 4A(D3)

Exit Level 7 Handler

This option leaves the LEVEL7 debugger. If LEVEL7 was invoked via a button on the UPS port the

system will return to the state it was in before you pressed the button. If it was invoked via GOL7, the

system should continue running and the job executing GOL7 will return to the AMOS prompt. If

LEVEL7 was invoked via a trapped exception, AMOS will be given the exception for normal processing.

This means the job generating the exception will be aborted in the usual manner.

Note there are cases where the system may crash or various interfaces will stop working when you

exit LEVEL7. This is caused by having the system interrupt locked for an extended period of time

while interrupt-generating hardware is still active. This is especially true of Ethernet interfaces.

Though this is a rare occurrence, it can happen.

Show Stacked Registers

This option displays the contents of all registers as they were the moment LEVEL7 was entered. It also

displays the stack frame which caused LEVEL7 to be entered.

Page 4 LEVEL7 Non-Maskable Interrupt Debugger

 Rev. B03

Examine/Modify Location

This option lets you read or write a single memory location. After you select this option you will be asked

for the address, then for the size of the read/write to perform. This sequence will repeat endlessly. Press
CTRL /C to return to the Main Menu.

Show System Comm. Area

This option displays the system communication area at 0x400, one page at a time. Press CTRL /C if you

want to abort the listing prior to the end.

Display Memory Block

This option displays a selected area of memory. Several formats are available; when you select this option

you are asked for the format you want, then for the starting address to display. LEVEL7 will display one

page of information. You may then press RETURN to display the next sequential area or enter a new

address. This continues until you press CTRL /C to return to the Main Menu.

External Cache

This option lets you turn the CPU external cache on or off. This may be handy if you notice a section of

program code or data appears corrupted, and you suspect the CPU may have a faulty cache module. If the

cache module is faulty, the code or data will appear to correct itself after the cache is turned off.

Display JCB Information

This option displays information about a selected job. LEVEL7 asks what job selection method you want

to use. The by number selection allows you to select by position in the job table. This is handy for

scanning job by job. The RunQ List selection displays the active jobs in run queue order.

After you pick the selection method, LEVEL7 asks what job you want to display. It displays the selected

job information and asks for another job. When you’re done, press CTRL /C to return to the Main Menu.

The displayed registers are for the job when running. If this job is the one referenced by JOBCUR,

then they will match the stacked registers. If this job is not referenced by JOBCUR, the registers

are from the user’s system stack area in memory.

Display TCB Information

This option displays information about a selected terminal. As with the JCB function, LEVEL7 asks

what selection method you want, then for the terminal. It displays the information for the selected

terminal, then lets you specify another. Press CTRL /C to return to the Main Menu.

LEVEL7 Non-Maskable Interrupt Debugger Page 5

Rev. B03

Display DDB Information

This option displays information about dataset driver blocks which are used to access devices and files.

LEVEL7 asks for the address of the DDB to display. It displays the address you select as a DDB and

asks for another. Press CTRL /C to exit to the Main Menu.

Display Memory Modules

This option lets you display memory module information in system memory, user memory, or starting

from a selected address. LEVEL7 asks for the area you want to display. It then lists memory modules

one page at a time. If any of the stacked address registers contain a value within the listed module they

are displayed to the right of the screen. To exit prior to the end of the modules, press CTRL /C.

Display Shared Memory (SMEM)

This option displays the shared memory area set up by the SMEM command. If any of the stacked

address registers contain a value within the listed area they are displayed to the right. If any JCBs are

located within the listed area the job name is displayed.

680x0 Disassembler

This option lets you see a disassembled listing of code anywhere in memory. You select the starting

disassembly address. By default, it begins disassembling 20 hex bytes prior to the stack program counter.

A page of disassembled instructions will then be displayed. When you’re done, press CTRL /C to return to

the Main Menu. You can use these keys with this function:

A Display stacked address registers

D Display stacked data registers

SPACE Display another page

RETURN Display another line

Identify an Address

This option lets you enter an address and attempts to identify its location. It can identify I/O, non-existent

memory, modules, and other areas. This function will be enhanced as methods are perfected to identify

more hard-to-map areas within AMOS.

CREATING LEVEL7 OVERLAYS

To allow examination of data not originally anticipated in the creation of LEVEL7, you may write your

own overlays which LEVEL7 can load and add to its menu when the system boots. Remember, these

routines will run at interrupt level and have no AMOS functions available to them.

The high memory option (/H) adds some additional requirements. Overlays are loaded and

initialized in low memory, then moved. Any data stored in the overlay is moved with it. Take care

not to store any absolute pointers to items within LEVEL7 or the overlay. PC relative references

Page 6 LEVEL7 Non-Maskable Interrupt Debugger

 Rev. B03

will operate fine. The interrupt level portion of your overlay will execute from high memory when the /H

switch is used.

Support Functions

We provide the following macros, which interface to internal LEVEL7 routines to provide for I/O and

common conversions:

CHROUT Outputs a character to the terminal. The character should be placed in

D1.

STROUT adr Outputs a string to the terminal. adr is the address register or label

where the string is located. STROUT behaves like the TTYL monitor

call; it does NOT handle immediate strings like the TYPE monitor

call.

HEXOUT nib,{mem} By default, HEXOUT outputs a hex value to the terminal. The value

should be placed in D1. The required nib argument can be a data

register or immediate value specifying the number of nibbles to

output. Specifying a value for the optional mem argument causes

HEXOUT to send its output to a buffer indexed by A2.

DECOUT {memory} By default, DECOUT outputs a decimal value to the terminal. The

value should be placed in D1. The {memory} argument is optional.

Specifying a value for the optional memory argument causes

DECOUT to send its output to a buffer indexed by A2.

CHRIN Reads a character from the keyboard and returns it in D1. If there is a

serial communications error, CHRIN returns NE status.

STRIN Reads a string from the keyboard. The entered string is indexed with

A2 upon return. If ^C is entered, STRIN returns NE status.

HEXIN {memory} By default, HEXIN inputs a hex value from the keyboard and returns

it in D1. If a ^C is entered or the input is invalid, HEXIN returns NE

status. Specifying a value for the optional memory argument causes

HEXIN to process input from a buffer indexed by A2.

A nice feature provided by HEXIN involves the use of stacked

registers. If a user specifies a data or address register in the input,

HEXIN automatically and transparently handles it.

DECIN {memory} By default, DECIN inputs a decimal value from the keyboard and

returns it in D1. If a ^C is entered or the input is invalid, DECIN

returns NE status. Specifying a value for the optional memory

argument causes DECIN to process input from a buffer indexed by

A2.

UNPAK Converts RAD50 to ASCII. The RAD50 value should be indexed

with A1. A2 should reference a buffer for the ASCII conversion. The

UNPAK call operates like the UNPACK monitor call.

PAK Converts ASCII to RAD50. The ASCII value should be indexed with

A2. A1 should reference a buffer for the RAD50 conversion. The

PAK call operates like the PACK monitor call.

LEVEL7 Non-Maskable Interrupt Debugger Page 7

Rev. B03

EXAMPL.M68 Example Overlay

LEVEL7 includes source code for an example overlay file. By examining this and using it as a template

you will be able to understand the requirements of LEVEL7 overlays:

; EXAMPL - Example LEVEL7 overlay source - does nothing special

 SEARCH SYS

 SEARCH SYSSYM

 COPY L7OSYM

 OBJNAM .L7O

 RADIX 16

VMAJOR = 1

VMINOR = 0

VSUB = 0

VEDIT = 100.

VWHO = 0

; overlay MUST have the label BASE: at the base of the module!

BASE: PHDR -1,0,0 ; Program version area

 LWORD NAME-BASE ; Offset to menu item text

 LWORD INIT-BASE ; Offset to initialization code

 LWORD CODE-BASE ; Offset to functional code

 .=L7HSIZ ; skip the rest of the overlay header

; String which will appear as overlays menu entry

NAME: ASCIZ "Example extended function"

 EVEN

; Initialization code (not really much to do right now)

; Called at boot time with boot jobs context, USE AMOS CALLS

INIT: TYPECR <Example overlay loaded and ready>

 LCC #PS.Z ; successful return

 RTN

; Actual code called by LEVEL7, A0 points to stacked registers upon entry.

; Interrupts locked, no job context, DON'T USE AMOS CALLS

CODE: STROUT HELLO1 ; output first part of welcome msg

 MOV A0,D1 ; get address of stacked registers

 HEXOUT #8. ; output all 8 nibbles

 STROUT HELLO2 ; finish welcome message

10$: STROUT PROMPT ; output prompt

 CHRIN ; get a keystroke

 CMPB D1,#'Q ; 'Q' hit?

 BEQ 20$; yes - leave

 CMPB D1,#'q ; 'q' hit?

 BNE 10$; no - prompt user again

20$: STROUT BYBY ; say bye

 RTN ; back to main menu

; Messages

HELLO1: ASCII "Hello, welcome to the example overlay"

 BYTE ^H0D,^H0A

 ASCII "function. The stacked registers are"

 BYTE ^H0D,^H0A

 ASCIZ "at "

 EVEN

HELLO2: ASCII ". Press Q to leave here."

Page 8 LEVEL7 Non-Maskable Interrupt Debugger

 Rev. B03

 BYTE ^H0D,^H0A,0

 EVEN

PROMPT: BYTE ^H0D,^H0A

 ASCIZ "Press 'Q': "

 EVEN

BYBY: BYTE ^H0D,^H0A

 ASCIZ "Goodbye, returning to main menu..."

 BYTE ^H0D,^H0A,0

 EVEN

 END

Macros and header offsets for LEVEL7 overlays are contained in the file L7OSYM.M68, which is

COPYed into the program as it is assembled.

The extension of the object module should be .L7O, which is set by the OBJNAM statement in the

example code above.

The overlay header consists of a program header PHDR prefixed by the label BASE:, offsets from BASE:

to the title string, initialization code, and functional code. There are several other header items filled in

by LEVEL7 itself which you must skip over before your code begins. This is done by the statement:

.=L7HSIZ.

The initialization code is called once when the system boots and LEVEL7 is loaded in the SYSTEM

statements. This is the only place in the code where there is a job context and AMOS monitor calls. The

initialization code can store a copy of initial system areas, perform some setup, or do nothing. If

initialization is successful, you must return EQ status. Upon failure, you should print some appropriate

message (using the AMOS I/O calls) and return NE status.

The functional code is called whenever the user selects your entry on the main LEVEL7 menu. Interrupts

are locked and no AMOS calls may be performed at that time. I/O should be performed using the

LEVEL7 support macros only.

Register A0 points to the base of the stacked registers. Above these registers is the interrupt stack frame

which invoked LEVEL7. The format of the stack frame will vary by processor as well as by entry

method (UPS port versus exception). In any case, the base of the stack frame will always be the same.

The area looks like this:

Location Contents Size

 frame type word

 return address longword

higher addresses processor status word

 A0 through A6 longwords

@A0 points here → D0 through D7 longwords

Make sure you provide a way to return to the Main Menu from anywhere you accept input, such as with a
CTRL /C. To return to the Main Menu, simply clean up any stack operations you have done and execute a

RTN.

LEVEL7 Non-Maskable Interrupt Debugger Page 9

Rev. B03

UPS PORT WIRING

You need the following parts to generate level 7 interrupts (power fails) on the UPS port:

• 1 SPST momentary push-button

• 1 female DB-9 connector

• 5 feet or less 22-gauge, twisted-pair wire

• 1 100 ohm resistor (for AM-190 rev B or earlier ONLY)

Unless you are using an AM-190 revision B or earlier, connect the push-button between pins 2 and 9 of

the DB-9 connector. This is for all later model AM-190s, and all other boards.

If you are using an AM-190 revision B or earlier, connect the push-button to pin 2 of the DB-9 connector,

and one end of the 100 ohm resistor to pin 9. Connect the remaining side of the resistor and push-button

together so they are in series.

